From a0e5ea7fea9ff810c54249a2c80e1b4f753bb03b Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Wed, 3 Apr 2024 16:32:19 +0200 Subject: [PATCH 001/199] Fix docstring Fixes gh-987 --- control/rlocus.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/rlocus.py b/control/rlocus.py index ea17ae942..b3c14123a 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -49,7 +49,7 @@ def root_locus_map(sysdata, gains=None): ---------- sys : LTI system or list of LTI systems Linear input/output systems (SISO only, for now). - kvect : array_like, optional + gains : array_like, optional Gains to use in computing plot of closed-loop poles. Returns From a9415a036d4e34d18446d6cf3c3fda093859736d Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 4 Apr 2024 06:43:37 -0700 Subject: [PATCH 002/199] update documentation, processing of root_locus kvect keyword --- control/rlocus.py | 29 ++++++++++++++++------------- control/tests/rlocus_test.py | 7 +++++++ 2 files changed, 23 insertions(+), 13 deletions(-) diff --git a/control/rlocus.py b/control/rlocus.py index b3c14123a..10581ffee 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -42,15 +42,15 @@ def root_locus_map(sysdata, gains=None): """Compute the root locus map for an LTI system. Calculate the root locus by finding the roots of 1 + k * G(s) where G - is a linear system with transfer function num(s)/den(s) and each k is - an element of kvect. + is a linear system and k varies over a range of gains. Parameters ---------- sys : LTI system or list of LTI systems Linear input/output systems (SISO only, for now). gains : array_like, optional - Gains to use in computing plot of closed-loop poles. + Gains to use in computing plot of closed-loop poles. If not given, + gains are chosen to include the main features of the root locus map. Returns ------- @@ -98,20 +98,20 @@ def root_locus_map(sysdata, gains=None): def root_locus_plot( - sysdata, kvect=None, grid=None, plot=None, **kwargs): + sysdata, gains=None, grid=None, plot=None, **kwargs): """Root locus plot. Calculate the root locus by finding the roots of 1 + k * G(s) where G - is a linear system with transfer function num(s)/den(s) and each k is - an element of kvect. + is a linear system and k varies over a range of gains. Parameters ---------- sysdata : PoleZeroMap or LTI object or list Linear input/output systems (SISO only, for now). - kvect : array_like, optional - Gains to use in computing plot of closed-loop poles. + gains : array_like, optional + Gains to use in computing plot of closed-loop poles. If not given, + gains are chosen to include the main features of the root locus map. xlim : tuple or list, optional Set limits of x axis, normally with tuple (see :doc:`matplotlib:api/axes_api`). @@ -145,10 +145,10 @@ def root_locus_plot( * lines[idx, 2]: loci roots, gains : ndarray - (legacy) If the `plot` keyword is given, returns the - closed-loop root locations, arranged such that each row - corresponds to a gain in gains, and the array of gains (ame as - kvect keyword argument if provided). + (legacy) If the `plot` keyword is given, returns the closed-loop + root locations, arranged such that each row corresponds to a gain + in gains, and the array of gains (ame as gains keyword argument if + provided). Notes ----- @@ -160,13 +160,16 @@ def root_locus_plot( """ from .pzmap import pole_zero_plot + # Legacy parameters + gains = config._process_legacy_keyword(kwargs, 'kvect', 'gains', gains) + # Set default parameters grid = config._get_param('rlocus', 'grid', grid, _rlocus_defaults) if isinstance(sysdata, list) and all( [isinstance(sys, LTI) for sys in sysdata]) or \ isinstance(sysdata, LTI): - responses = root_locus_map(sysdata, gains=kvect) + responses = root_locus_map(sysdata, gains=gains) else: responses = sysdata diff --git a/control/tests/rlocus_test.py b/control/tests/rlocus_test.py index 5511f5b82..0b3e868e9 100644 --- a/control/tests/rlocus_test.py +++ b/control/tests/rlocus_test.py @@ -180,6 +180,13 @@ def test_root_locus_plots(sys, grid, xlim, ylim, interactive): # TODO: add tests to make sure everything "looks" OK +# Test deprecated keywords +def test_root_locus_legacy(): + sys = ct.rss(2, 1, 1) + with pytest.warns(DeprecationWarning, match="'kvect' is deprecated"): + ct.root_locus_plot(sys, kvect=[0, 1, 2]) + + # Generate plots used in documentation def test_root_locus_documentation(savefigs=False): plt.figure() From 1b59bd60edb97dcdd5f070725b2d91bb18c9638c Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 5 Apr 2024 21:27:46 -0700 Subject: [PATCH 003/199] fix typo identified by @bnavigator --- control/rlocus.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/control/rlocus.py b/control/rlocus.py index 10581ffee..631185cc6 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -146,9 +146,8 @@ def root_locus_plot( roots, gains : ndarray (legacy) If the `plot` keyword is given, returns the closed-loop - root locations, arranged such that each row corresponds to a gain - in gains, and the array of gains (ame as gains keyword argument if - provided). + root locations, arranged such that each row corresponds to a gain, + and the array of gains (same as `gains` keyword argument if provided). Notes ----- From 6b00fd42cca247f5109e10ad2fae6f7dfef5e885 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 7 Apr 2024 10:54:35 -0700 Subject: [PATCH 004/199] fix typo in ICSystem updfcn, outfcn: update_params -> _update_params --- control/nlsys.py | 4 ++-- control/tests/interconnect_test.py | 30 ++++++++++++++++++++++++++++++ 2 files changed, 32 insertions(+), 2 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index c154c0818..38efea355 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -706,10 +706,10 @@ def __init__(self, syslist, connections=None, inplist=None, outlist=None, # Create updfcn and outfcn def updfcn(t, x, u, params): - self.update_params(params) + self._update_params(params) return self._rhs(t, x, u) def outfcn(t, x, u, params): - self.update_params(params) + self._update_params(params) return self._out(t, x, u) # Initialize NonlinearIOSystem object diff --git a/control/tests/interconnect_test.py b/control/tests/interconnect_test.py index 285e9d096..f4b0c59a8 100644 --- a/control/tests/interconnect_test.py +++ b/control/tests/interconnect_test.py @@ -16,6 +16,7 @@ import numpy as np import scipy as sp +import math import control as ct @@ -659,3 +660,32 @@ def test_interconnect_rewrite(): outputs=['y', 'z']) assert icsys.input_labels == ['u[0]', 'u[1]', 'w[0]', 'w[1]'] + + +def test_interconnect_params(): + # Create a nominally unstable system + sys1 = ct.nlsys( + lambda t, x, u, params: params['a'] * x[0] + u[0], + states=1, inputs='u', outputs='y', params={'a': 1}) + + # Simple system for serial interconnection + sys2 = ct.nlsys( + None, lambda t, x, u, params: u[0], + inputs='r', outputs='u') + + # Create a series interconnection + sys = ct.interconnect([sys1, sys2], inputs='r', outputs='y') + + # Make sure we can call the update function + sys.updfcn(0, [0], [0], {}) + + # Make sure the serial interconnection is unstable to start + assert sys.linearize([0], [0]).poles()[0].real == 1 + + # Change the parameter and make sure it takes + assert sys.linearize([0], [0], params={'a': -1}).poles()[0].real == -1 + + # Now try running a simulation + timepts = np.linspace(0, 10) + resp = ct.input_output_response(sys, timepts, 0, params={'a': -1}) + assert resp.states[0, -1].item() < 2 * math.exp(-10) From 03df7185bc8a44a345fb926effb38ed6aeb817cc Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Sat, 20 Apr 2024 16:25:33 +0200 Subject: [PATCH 005/199] Replace np.NaN removed in numpy 2 --- control/tests/timeresp_test.py | 14 +++++++------- control/timeresp.py | 14 +++++++------- 2 files changed, 14 insertions(+), 14 deletions(-) diff --git a/control/tests/timeresp_test.py b/control/tests/timeresp_test.py index fb21180b3..441f4a7b7 100644 --- a/control/tests/timeresp_test.py +++ b/control/tests/timeresp_test.py @@ -173,15 +173,15 @@ def tsystem(self, request): # System Type 1 - Step response not stationary: G(s)=1/s(s+1) siso_tf_type1 = TSys(TransferFunction(1, [1, 1, 0])) siso_tf_type1.step_info = { - 'RiseTime': np.NaN, - 'SettlingTime': np.NaN, - 'SettlingMin': np.NaN, - 'SettlingMax': np.NaN, - 'Overshoot': np.NaN, - 'Undershoot': np.NaN, + 'RiseTime': np.nan, + 'SettlingTime': np.nan, + 'SettlingMin': np.nan, + 'SettlingMax': np.nan, + 'Overshoot': np.nan, + 'Undershoot': np.nan, 'Peak': np.Inf, 'PeakTime': np.Inf, - 'SteadyStateValue': np.NaN} + 'SteadyStateValue': np.nan} # SISO under shoot response and positive final value # G(s)=(-s+1)/(s²+s+1) diff --git a/control/timeresp.py b/control/timeresp.py index 58207e88e..843ae3a83 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -1590,15 +1590,15 @@ def step_info(sysdata, T=None, T_num=None, yfinal=None, params=None, InfValue = InfValues[i, j] sgnInf = np.sign(InfValue.real) - rise_time: float = np.NaN - settling_time: float = np.NaN - settling_min: float = np.NaN - settling_max: float = np.NaN + rise_time: float = np.nan + settling_time: float = np.nan + settling_min: float = np.nan + settling_max: float = np.nan peak_value: float = np.Inf peak_time: float = np.Inf - undershoot: float = np.NaN - overshoot: float = np.NaN - steady_state_value: complex = np.NaN + undershoot: float = np.nan + overshoot: float = np.nan + steady_state_value: complex = np.nan if not np.isnan(InfValue) and not np.isinf(InfValue): # RiseTime From 38188fbd6d8b95ef0ed5d76e396db43f95bbf488 Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Sat, 20 Apr 2024 16:35:21 +0200 Subject: [PATCH 006/199] Replace np.Inf removed in numpy 2 --- control/tests/timeresp_test.py | 4 ++-- control/timeresp.py | 4 ++-- 2 files changed, 4 insertions(+), 4 deletions(-) diff --git a/control/tests/timeresp_test.py b/control/tests/timeresp_test.py index 441f4a7b7..bdbbb3e89 100644 --- a/control/tests/timeresp_test.py +++ b/control/tests/timeresp_test.py @@ -179,8 +179,8 @@ def tsystem(self, request): 'SettlingMax': np.nan, 'Overshoot': np.nan, 'Undershoot': np.nan, - 'Peak': np.Inf, - 'PeakTime': np.Inf, + 'Peak': np.inf, + 'PeakTime': np.inf, 'SteadyStateValue': np.nan} # SISO under shoot response and positive final value diff --git a/control/timeresp.py b/control/timeresp.py index 843ae3a83..428baf230 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -1594,8 +1594,8 @@ def step_info(sysdata, T=None, T_num=None, yfinal=None, params=None, settling_time: float = np.nan settling_min: float = np.nan settling_max: float = np.nan - peak_value: float = np.Inf - peak_time: float = np.Inf + peak_value: float = np.inf + peak_time: float = np.inf undershoot: float = np.nan overshoot: float = np.nan steady_state_value: complex = np.nan From 0b5332bfa9580df81ba2ebc6f9d8f54975fa9cd6 Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Sat, 20 Apr 2024 16:44:45 +0200 Subject: [PATCH 007/199] replace deprecated numpy.linalg.linalg.LinAlgError with numpy.linalg.LinAlgError and isort --- control/statesp.py | 30 ++++++++++++++++-------------- 1 file changed, 16 insertions(+), 14 deletions(-) diff --git a/control/statesp.py b/control/statesp.py index e14a8358a..0c2856b15 100644 --- a/control/statesp.py +++ b/control/statesp.py @@ -48,26 +48,27 @@ """ import math +from copy import deepcopy +from warnings import warn + import numpy as np -from numpy import any, asarray, concatenate, cos, delete, \ - empty, exp, eye, isinf, ones, pad, sin, zeros, squeeze -from numpy.random import rand, randn -from numpy.linalg import solve, eigvals, matrix_rank -from numpy.linalg.linalg import LinAlgError import scipy as sp import scipy.linalg -from scipy.signal import cont2discrete +from numpy import (any, asarray, concatenate, cos, delete, empty, exp, eye, + isinf, ones, pad, sin, squeeze, zeros) +from numpy.linalg import LinAlgError, eigvals, matrix_rank, solve +from numpy.random import rand, randn from scipy.signal import StateSpace as signalStateSpace -from warnings import warn +from scipy.signal import cont2discrete -from .exception import ControlSlycot, slycot_check, ControlMIMONotImplemented +from . import config +from .exception import ControlMIMONotImplemented, ControlSlycot, slycot_check from .frdata import FrequencyResponseData +from .iosys import (InputOutputSystem, _process_dt_keyword, + _process_iosys_keywords, _process_signal_list, + common_timebase, isdtime, issiso) from .lti import LTI, _process_frequency_response -from .iosys import InputOutputSystem, common_timebase, isdtime, issiso, \ - _process_iosys_keywords, _process_dt_keyword, _process_signal_list -from .nlsys import NonlinearIOSystem, InterconnectedSystem -from . import config -from copy import deepcopy +from .nlsys import InterconnectedSystem, NonlinearIOSystem try: from slycot import ab13dd @@ -2221,9 +2222,10 @@ def _convert_to_statespace(sys, use_prefix_suffix=False, method=None): by the calling function. """ - from .xferfcn import TransferFunction import itertools + from .xferfcn import TransferFunction + if isinstance(sys, StateSpace): return sys From ebb8a5284c8c4e58ef8efdae656f1e4748b3ba68 Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Sat, 20 Apr 2024 16:49:11 +0200 Subject: [PATCH 008/199] Replace deprecated numpy row_stack with vstack --- control/rlocus.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/control/rlocus.py b/control/rlocus.py index 631185cc6..281fed082 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -21,7 +21,7 @@ import matplotlib.pyplot as plt import numpy as np import scipy.signal # signal processing toolbox -from numpy import array, imag, poly1d, real, row_stack, zeros_like +from numpy import array, imag, poly1d, real, vstack, zeros_like from . import config from .exception import ControlMIMONotImplemented @@ -421,7 +421,7 @@ def _RLFindRoots(nump, denp, kvect): curroots.sort() roots.append(curroots) - return row_stack(roots) + return vstack(roots) def _RLSortRoots(roots): From c02c254af77403a7fa5c1cc95d5078631c61bc02 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ryan=20W=C3=BCest?= Date: Tue, 23 Apr 2024 13:12:26 +0200 Subject: [PATCH 009/199] Fix setting freq range for frd with nyquist --- control/freqplot.py | 8 ++++++++ 1 file changed, 8 insertions(+) diff --git a/control/freqplot.py b/control/freqplot.py index 961f499b3..2f0bcea28 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -2468,6 +2468,14 @@ def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num, """ omega_range_given = True + if omega_in is None: + for sys in syslist: + if isinstance(sys, FrequencyResponseData): + # FRD already has predetermined frequencies + if omega_in is not None and not np.all(omega_in == sys.omega): + raise ValueError("List of FrequencyResponseData systems can only have a single frequency range between them") + omega_in = sys.omega + if omega_in is None: if omega_limits is None: omega_range_given = False From 035156203ade87ed67b5fc759291a0074868574c Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ryan=20W=C3=BCest?= Date: Tue, 23 Apr 2024 13:37:59 +0200 Subject: [PATCH 010/199] Expand nyquist test --- control/tests/frd_test.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/control/tests/frd_test.py b/control/tests/frd_test.py index 987121987..25ecc5e21 100644 --- a/control/tests/frd_test.py +++ b/control/tests/frd_test.py @@ -192,6 +192,8 @@ def testNyquist(self): # plt.savefig('/dev/null', format='svg') plt.figure(2) freqplot.nyquist(f1, f1.omega) + plt.figure(3) + freqplot.nyquist(f1) # plt.savefig('/dev/null', format='svg') @slycotonly From 626a5efcf9fc3b49684c1233ef86310a4f9e8f55 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 16 Apr 2024 22:30:46 -0700 Subject: [PATCH 011/199] set response I/O labels from system for frequency response --- control/lti.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/control/lti.py b/control/lti.py index cccb44a63..e631a6213 100644 --- a/control/lti.py +++ b/control/lti.py @@ -120,7 +120,8 @@ def frequency_response(self, omega=None, squeeze=None): response = self(s) return FrequencyResponseData( response, omega, return_magphase=True, squeeze=squeeze, - dt=self.dt, sysname=self.name, plot_type='bode') + dt=self.dt, sysname=self.name, inputs=self.input_labels, + outputs=self.output_labels, plot_type='bode') def dcgain(self): """Return the zero-frequency gain""" From c5e2639d80e6a28ce6176c7a7d1e97039da290b4 Mon Sep 17 00:00:00 2001 From: Geordie McBain Date: Fri, 10 May 2024 14:17:42 +1000 Subject: [PATCH 012/199] klist->gains #998 --- control/matlab/wrappers.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/control/matlab/wrappers.py b/control/matlab/wrappers.py index 0384215a8..6e2bc83bc 100644 --- a/control/matlab/wrappers.py +++ b/control/matlab/wrappers.py @@ -197,19 +197,19 @@ def _parse_freqplot_args(*args): # TODO: rewrite to call root_locus_map, without using legacy plot keyword def rlocus(*args, **kwargs): - """rlocus(sys[, klist, xlim, ylim, ...]) + """rlocus(sys[, gains, xlim, ylim, ...]) Root locus diagram. Calculate the root locus by finding the roots of 1 + k * G(s) where G is a linear system with transfer function num(s)/den(s) and each k is - an element of kvect. + an element of gains. Parameters ---------- sys : LTI object Linear input/output systems (SISO only, for now). - kvect : array_like, optional + gains : array_like, optional Gains to use in computing plot of closed-loop poles. xlim : tuple or list, optional Set limits of x axis, normally with tuple From cb4244ddc9ba3767f6e6d6dfd7cbd676db319a38 Mon Sep 17 00:00:00 2001 From: "Scott C. Livingston" Date: Fri, 10 May 2024 16:30:30 -0700 Subject: [PATCH 013/199] DOC: update keywords of matlab.wrappers.rlocus --- control/matlab/wrappers.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/matlab/wrappers.py b/control/matlab/wrappers.py index 6e2bc83bc..153342096 100644 --- a/control/matlab/wrappers.py +++ b/control/matlab/wrappers.py @@ -224,7 +224,7 @@ def rlocus(*args, **kwargs): Closed-loop root locations, arranged in which each row corresponds to a gain in gains. gains : ndarray - Gains used. Same as kvect keyword argument if provided. + Gains used. Same as gains keyword argument if provided. Notes ----- From ff2fe8d5166b5990cdd7fec8e16a1d5af42ee1de Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Apr 2024 15:56:32 -0700 Subject: [PATCH 014/199] add better check for find_eqpt with mixed specifications --- control/nlsys.py | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 38efea355..7063cd2d3 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1746,9 +1746,9 @@ def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, # Make sure the input arguments match the sizes of the system if len(x0) != nstates or \ - (u0 is not None and len(u0) != ninputs) or \ - (y0 is not None and len(y0) != noutputs) or \ - (dx0 is not None and len(dx0) != nstates): + (u0 is not None and iu is None and len(u0) != ninputs) or \ + (y0 is not None and iy is None and len(y0) != noutputs) or \ + (dx0 is not None and idx is None and len(dx0) != nstates): raise ValueError("length of input arguments does not match system") # Update the parameter values From df2436f64cb7471f34c59de3f15f9b8c3e354447 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 10 May 2024 21:34:27 -0700 Subject: [PATCH 015/199] fix nlsys conversion of float, array to dt=None --- control/nlsys.py | 5 ++-- control/tests/timebase_test.py | 44 ++++++++++++++++++++++++++++------ 2 files changed, 40 insertions(+), 9 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 7063cd2d3..9d866b934 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2574,13 +2574,14 @@ def _convert_static_iosystem(sys): # Convert sys1 to an I/O system if needed if isinstance(sys, (int, float, np.number)): return NonlinearIOSystem( - None, lambda t, x, u, params: sys * u, inputs=1, outputs=1) + None, lambda t, x, u, params: sys * u, + outputs=1, inputs=1, dt=None) elif isinstance(sys, np.ndarray): sys = np.atleast_2d(sys) return NonlinearIOSystem( None, lambda t, x, u, params: sys @ u, - outputs=sys.shape[0], inputs=sys.shape[1]) + outputs=sys.shape[0], inputs=sys.shape[1], dt=None) def connection_table(sys, show_names=False, column_width=32): """Print table of connections inside an interconnected system model. diff --git a/control/tests/timebase_test.py b/control/tests/timebase_test.py index a391d2fe7..79b1492d7 100644 --- a/control/tests/timebase_test.py +++ b/control/tests/timebase_test.py @@ -3,18 +3,36 @@ import numpy as np import control as ct +# Utility function to convert state space system to nlsys +def ss2io(sys): + return ct.nlsys( + sys.updfcn, sys.outfcn, states=sys.nstates, + inputs=sys.ninputs, outputs=sys.noutputs, dt=sys.dt) + @pytest.mark.parametrize( "dt1, dt2, dt3", [ (0, 0, 0), (0, 0.1, ValueError), (0, None, 0), + (0, 'float', 0), + (0, 'array', 0), + (None, 'array', None), + (None, 'array', None), (0, True, ValueError), (0.1, 0, ValueError), (0.1, 0.1, 0.1), (0.1, None, 0.1), (0.1, True, 0.1), + (0.1, 'array', 0.1), + (0.1, 'float', 0.1), (None, 0, 0), + ('float', 0, 0), + ('array', 0, 0), + ('float', None, None), + ('array', None, None), (None, 0.1, 0.1), + ('array', 0.1, 0.1), + ('float', 0.1, 0.1), (None, None, None), (None, True, True), (True, 0, ValueError), @@ -25,16 +43,28 @@ (0.2, 0.1, ValueError), ]) @pytest.mark.parametrize("op", [ct.series, ct.parallel, ct.feedback]) -@pytest.mark.parametrize("type", [ct.StateSpace, ct.ss, ct.tf]) +@pytest.mark.parametrize("type", [ct.StateSpace, ct.ss, ct.tf, ss2io]) def test_composition(dt1, dt2, dt3, op, type): - # Define the system A, B, C, D = [[1, 1], [0, 1]], [[0], [1]], [[1, 0]], 0 - sys1 = ct.StateSpace(A, B, C, D, dt1) - sys2 = ct.StateSpace(A, B, C, D, dt2) + Karray = np.array([[1]]) + kfloat = 1 - # Convert to the desired form - sys1 = type(sys1) - sys2 = type(sys2) + # Define the system + if isinstance(dt1, (int, float)) or dt1 is None: + sys1 = ct.StateSpace(A, B, C, D, dt1) + sys1 = type(sys1) + elif dt1 == 'array': + sys1 = Karray + elif dt1 == 'float': + sys1 = kfloat + + if isinstance(dt2, (int, float)) or dt2 is None: + sys2 = ct.StateSpace(A, B, C, D, dt2) + sys2 = type(sys2) + elif dt2 == 'array': + sys2 = Karray + elif dt2 == 'float': + sys2 = kfloat if inspect.isclass(dt3) and issubclass(dt3, Exception): with pytest.raises(dt3, match="incompatible timebases"): From f6f88f8e39112a51a78c491795c083dd18735bc2 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 11 May 2024 10:01:14 -0700 Subject: [PATCH 016/199] add support for nlsys w/out inputs or outputs --- control/nlsys.py | 53 ++++++++++++++--------- control/tests/nlsys_test.py | 62 +++++++++++++++++++++++++++ control/tests/type_conversion_test.py | 14 +++--- 3 files changed, 101 insertions(+), 28 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 9d866b934..3285d33e6 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -132,13 +132,15 @@ def __init__(self, updfcn, outfcn=None, params=None, **kwargs): if updfcn is None: if self.nstates is None: self.nstates = 0 + self.updfcn = lambda t, x, u, params: np.zeros(0) else: raise ValueError( "states specified but no update function given.") if outfcn is None: - # No output function specified => outputs = states - if self.noutputs is None and self.nstates is not None: + if self.noutputs == 0: + self.outfcn = lambda t, x, u, params: np.zeros(0) + elif self.noutputs is None and self.nstates is not None: self.noutputs = self.nstates elif self.noutputs is not None and self.noutputs == self.nstates: # Number of outputs = number of states => all is OK @@ -364,9 +366,8 @@ def _rhs(self, t, x, u): user-friendly interface you may want to use :meth:`dynamics`. """ - xdot = self.updfcn(t, x, u, self._current_params) \ - if self.updfcn is not None else [] - return np.array(xdot).reshape((-1,)) + return np.asarray( + self.updfcn(t, x, u, self._current_params)).reshape(-1) def dynamics(self, t, x, u, params=None): """Compute the dynamics of a differential or difference equation. @@ -403,7 +404,8 @@ def dynamics(self, t, x, u, params=None): dx/dt or x[t+dt] : ndarray """ self._update_params(params) - return self._rhs(t, x, u) + return self._rhs( + t, np.asarray(x).reshape(-1), np.asarray(u).reshape(-1)) def _out(self, t, x, u): """Evaluate the output of a system at a given state, input, and time @@ -414,9 +416,17 @@ def _out(self, t, x, u): :meth:`output`. """ - y = self.outfcn(t, x, u, self._current_params) \ - if self.outfcn is not None else x - return np.array(y).reshape((-1,)) + # + # To allow lazy evaluation of the system size, we allow for the + # possibility that noutputs is left unspecified when the system + # is created => we have to check for that case here (and return + # the system state or a portion of it). + # + if self.outfcn is None: + return x if self.noutputs is None else x[:self.noutputs] + else: + return np.asarray( + self.outfcn(t, x, u, self._current_params)).reshape(-1) def output(self, t, x, u, params=None): """Compute the output of the system @@ -444,7 +454,8 @@ def output(self, t, x, u, params=None): y : ndarray """ self._update_params(params) - return self._out(t, x, u) + return self._out( + t, np.asarray(x).reshape(-1), np.asarray(u).reshape(-1)) def feedback(self, other=1, sign=-1, params=None): """Feedback interconnection between two input/output systems @@ -523,8 +534,8 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, u0 = _concatenate_list_elements(u0, 'u0') # Figure out dimensions if they were not specified. - nstates = _find_size(self.nstates, x0) - ninputs = _find_size(self.ninputs, u0) + nstates = _find_size(self.nstates, x0, "states") + ninputs = _find_size(self.ninputs, u0, "inputs") # Convert x0, u0 to arrays, if needed if np.isscalar(x0): @@ -533,7 +544,7 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, u0 = np.ones((ninputs,)) * u0 # Compute number of outputs by evaluating the output function - noutputs = _find_size(self.noutputs, self._out(t, x0, u0)) + noutputs = _find_size(self.noutputs, self._out(t, x0, u0), "outputs") # Update the current parameters self._update_params(params) @@ -1516,7 +1527,7 @@ def input_output_response( X0 = np.hstack([X0, np.zeros(sys.nstates - X0.size)]) # Compute the number of states - nstates = _find_size(sys.nstates, X0) + nstates = _find_size(sys.nstates, X0, "states") # create X0 if not given, test if X0 has correct shape X0 = _check_convert_array(X0, [(nstates,), (nstates, 1)], @@ -1732,9 +1743,9 @@ def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, from scipy.optimize import root # Figure out the number of states, inputs, and outputs - nstates = _find_size(sys.nstates, x0) - ninputs = _find_size(sys.ninputs, u0) - noutputs = _find_size(sys.noutputs, y0) + nstates = _find_size(sys.nstates, x0, "states") + ninputs = _find_size(sys.ninputs, u0, "inputs") + noutputs = _find_size(sys.noutputs, y0, "outputs") # Convert x0, u0, y0 to arrays, if needed if np.isscalar(x0): @@ -1977,15 +1988,15 @@ def linearize(sys, xeq, ueq=None, t=0, params=None, **kw): return sys.linearize(xeq, ueq, t=t, params=params, **kw) -def _find_size(sysval, vecval): +def _find_size(sysval, vecval, label): """Utility function to find the size of a system parameter If both parameters are not None, they must be consistent. """ if hasattr(vecval, '__len__'): if sysval is not None and sysval != len(vecval): - raise ValueError("Inconsistent information to determine size " - "of system component") + raise ValueError( + f"inconsistent information for number of {label}") return len(vecval) # None or 0, which is a valid value for "a (sysval, ) vector of zeros". if not vecval: @@ -1993,7 +2004,7 @@ def _find_size(sysval, vecval): elif sysval == 1: # (1, scalar) is also a valid combination from legacy code return 1 - raise ValueError("can't determine size of system component") + raise ValueError(f"can't determine number of {label}") # Function to create an interconnected system diff --git a/control/tests/nlsys_test.py b/control/tests/nlsys_test.py index 1c2976c56..80baa646f 100644 --- a/control/tests/nlsys_test.py +++ b/control/tests/nlsys_test.py @@ -9,6 +9,7 @@ import pytest import numpy as np +import math import control as ct # Basic test of nlsys() @@ -45,6 +46,7 @@ def kincar_output(t, x, u, params): ]) def test_lti_nlsys_response(nin, nout, input, output): sys_ss = ct.rss(4, nin, nout, strictly_proper=True) + sys_ss.A = np.diag([-1, -2, -3, -4]) # avoid random noise errors sys_nl = ct.nlsys( lambda t, x, u, params: sys_ss.A @ x + sys_ss.B @ u, lambda t, x, u, params: sys_ss.C @ x + sys_ss.D @ u, @@ -92,3 +94,63 @@ def test_nlsys_impulse(): # Impulse_response (not implemented) with pytest.raises(ValueError, match="system must be LTI"): resp_nl = ct.impulse_response(sys_nl, timepts) + + +# Test nonlinear systems that are missing inputs or outputs +def test_nlsys_empty_io(): + + # No inputs + sys_nl = ct.nlsys( + lambda t, x, u, params: -x, lambda t, x, u, params: x[0:2], + name="no inputs", states=3, inputs=0, outputs=2) + P = sys_nl.linearize(np.zeros(sys_nl.nstates), None) + assert P.A.shape == (3, 3) + assert P.B.shape == (3, 0) + assert P.C.shape == (2, 3) + assert P.D.shape == (2, 0) + + # Check that we can compute dynamics and outputs + x = np.array([1, 2, 3]) + np.testing.assert_equal(sys_nl.dynamics(0, x, None, {}), -x) + np.testing.assert_equal(P.dynamics(0, x, None), -x) + np.testing.assert_equal(sys_nl.output(0, x, None, {}), x[0:2]) + np.testing.assert_equal(P.output(0, x, None), x[0:2]) + + # Make sure initial response runs OK + resp = ct.initial_response(sys_nl, np.linspace(0, 1), x) + np.testing.assert_allclose( + resp.states[:, -1], x * math.exp(-1), atol=1e-3, rtol=1e-3) + + resp = ct.initial_response(P, np.linspace(0, 1), x) + np.testing.assert_allclose(resp.states[:, -1], x * math.exp(-1)) + + # No outputs + sys_nl = ct.nlsys( + lambda t, x, u, params: -x + np.array([1, 1, 1]) * u[0], None, + name="no outputs", states=3, inputs=1, outputs=0) + P = sys_nl.linearize(np.zeros(sys_nl.nstates), 0) + assert P.A.shape == (3, 3) + assert P.B.shape == (3, 1) + assert P.C.shape == (0, 3) + assert P.D.shape == (0, 1) + + # Check that we can compute dynamics + x = np.array([1, 2, 3]) + np.testing.assert_equal(sys_nl.dynamics(0, x, 1, {}), -x + 1) + np.testing.assert_equal(P.dynamics(0, x, 1), -x + 1) + + # Make sure initial response runs OK + resp = ct.initial_response(sys_nl, np.linspace(0, 1), x) + np.testing.assert_allclose( + resp.states[:, -1], x * math.exp(-1), atol=1e-3, rtol=1e-3) + + resp = ct.initial_response(P, np.linspace(0, 1), x) + np.testing.assert_allclose(resp.states[:, -1], x * math.exp(-1)) + + # Make sure forced response runs OK + resp = ct.forced_response(sys_nl, np.linspace(0, 1), 1) + np.testing.assert_allclose( + resp.states[:, -1], 1 - math.exp(-1), atol=1e-3, rtol=1e-3) + + resp = ct.forced_response(P, np.linspace(0, 1), 1) + np.testing.assert_allclose(resp.states[:, -1], 1 - math.exp(-1)) diff --git a/control/tests/type_conversion_test.py b/control/tests/type_conversion_test.py index ad8dea911..efd1a66a8 100644 --- a/control/tests/type_conversion_test.py +++ b/control/tests/type_conversion_test.py @@ -57,7 +57,7 @@ def sys_dict(): ('add', 'ios', ['ios', 'ios', 'E', 'ios', 'ios', 'ios']), ('add', 'arr', ['ss', 'tf', 'frd', 'ios', 'arr', 'arr']), ('add', 'flt', ['ss', 'tf', 'frd', 'ios', 'arr', 'flt']), - + # op left ss tf frd ios arr flt ('sub', 'ss', ['ss', 'ss', 'frd', 'ios', 'ss', 'ss' ]), ('sub', 'tf', ['tf', 'tf', 'frd', 'ios', 'tf', 'tf' ]), @@ -65,7 +65,7 @@ def sys_dict(): ('sub', 'ios', ['ios', 'ios', 'E', 'ios', 'ios', 'ios']), ('sub', 'arr', ['ss', 'tf', 'frd', 'ios', 'arr', 'arr']), ('sub', 'flt', ['ss', 'tf', 'frd', 'ios', 'arr', 'flt']), - + # op left ss tf frd ios arr flt ('mul', 'ss', ['ss', 'ss', 'frd', 'ios', 'ss', 'ss' ]), ('mul', 'tf', ['tf', 'tf', 'frd', 'ios', 'tf', 'tf' ]), @@ -73,7 +73,7 @@ def sys_dict(): ('mul', 'ios', ['ios', 'ios', 'E', 'ios', 'ios', 'ios']), ('mul', 'arr', ['ss', 'tf', 'frd', 'ios', 'arr', 'arr']), ('mul', 'flt', ['ss', 'tf', 'frd', 'ios', 'arr', 'flt']), - + # op left ss tf frd ios arr flt ('truediv', 'ss', ['E', 'tf', 'frd', 'E', 'ss', 'ss' ]), ('truediv', 'tf', ['tf', 'tf', 'xrd', 'E', 'tf', 'tf' ]), @@ -88,7 +88,7 @@ def sys_dict(): for rtype, expected in zip(rtype_list, expected_list): # Add this to the list of tests to run test_matrix.append([opname, ltype, rtype, expected]) - + @pytest.mark.parametrize("opname, ltype, rtype, expected", test_matrix) def test_operator_type_conversion(opname, ltype, rtype, expected, sys_dict): op = getattr(operator, opname) @@ -98,7 +98,7 @@ def test_operator_type_conversion(opname, ltype, rtype, expected, sys_dict): # Get rid of warnings for NonlinearIOSystem objects by making a copy if isinstance(leftsys, ct.NonlinearIOSystem) and leftsys == rightsys: rightsys = leftsys.copy() - + # Make sure we get the right result if expected == 'E' or expected[0] == 'x': # Exception expected @@ -107,7 +107,7 @@ def test_operator_type_conversion(opname, ltype, rtype, expected, sys_dict): else: # Operation should work and return the given type result = op(leftsys, rightsys) - + # Print out what we are testing in case something goes wrong assert isinstance(result, type_dict[expected]) @@ -126,7 +126,7 @@ def test_operator_type_conversion(opname, ltype, rtype, expected, sys_dict): # # * For IOS/LTI, convert to IOS. In the case of a linear I/O system (LIO), # this will preserve the linear structure since the LTI system will -# be converted to state space. +# be converted to state space. # # * When combining state space or transfer with linear I/O systems, the # * output should be of type Linear IO system, since that maintains the From 206ca859de895a4fe372befd00525d40c49178d2 Mon Sep 17 00:00:00 2001 From: "G. D. McBain" Date: Mon, 13 May 2024 11:42:01 +1000 Subject: [PATCH 017/199] process legacy keyword k->gains #999 --- control/rlocus.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/control/rlocus.py b/control/rlocus.py index 281fed082..dab21f4ac 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -160,7 +160,8 @@ def root_locus_plot( from .pzmap import pole_zero_plot # Legacy parameters - gains = config._process_legacy_keyword(kwargs, 'kvect', 'gains', gains) + for oldkey in ['kvect', 'k']: + gains = config._process_legacy_keyword(kwargs, oldkey, 'gains', gains) # Set default parameters grid = config._get_param('rlocus', 'grid', grid, _rlocus_defaults) From 6fe3e8f82d7355e3b5194659a5718106a56f6757 Mon Sep 17 00:00:00 2001 From: Pierre Haessig Date: Wed, 15 May 2024 10:32:53 +0200 Subject: [PATCH 018/199] add place_varga in API doc --- doc/control.rst | 1 + 1 file changed, 1 insertion(+) diff --git a/doc/control.rst b/doc/control.rst index 1b1b74069..ce5073e07 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -124,6 +124,7 @@ Control system synthesis lqr mixsyn place + place_varga rootlocus_pid_designer Model simplification tools From ecbbe55938ffd81d36d228b71e5b4d3312c0ed7d Mon Sep 17 00:00:00 2001 From: Romain Andrieux <130487480+ansrandrieu@users.noreply.github.com> Date: Wed, 15 May 2024 15:19:49 +0200 Subject: [PATCH 019/199] Fix typo in xferfcn.py --- control/xferfcn.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/xferfcn.py b/control/xferfcn.py index 099f64258..de38a4a30 100644 --- a/control/xferfcn.py +++ b/control/xferfcn.py @@ -1687,7 +1687,7 @@ def zpk(zeros, poles, gain, *args, **kwargs): zeros : array_like Array containing the location of zeros. poles : array_like - Array containing the location of zeros. + Array containing the location of poles. gain : float System gain dt : None, True or float, optional From c63712e072d1ccb2fdaedb1eda4cc2ce514ca400 Mon Sep 17 00:00:00 2001 From: "Scott C. Livingston" Date: Fri, 17 May 2024 23:47:32 -0700 Subject: [PATCH 020/199] DOC: correct numpydoc syntax in place_varga() --- control/statefbk.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/statefbk.py b/control/statefbk.py index 15bba5454..d996264ab 100644 --- a/control/statefbk.py +++ b/control/statefbk.py @@ -195,7 +195,7 @@ def place_varga(A, B, p, dtime=False, alpha=None): >>> B = [[0], [1]] >>> K = place_varga(A, B, [-2, -5]) - See Also: + See Also -------- place, acker From b58f4353047523802f42b1f783fb77eddfd3d455 Mon Sep 17 00:00:00 2001 From: "G. D. McBain" Date: Wed, 22 May 2024 16:47:24 +1000 Subject: [PATCH 021/199] test deprecated 'k' keyword for rlocus --- control/tests/rlocus_test.py | 7 ++++--- 1 file changed, 4 insertions(+), 3 deletions(-) diff --git a/control/tests/rlocus_test.py b/control/tests/rlocus_test.py index 0b3e868e9..15eb67d97 100644 --- a/control/tests/rlocus_test.py +++ b/control/tests/rlocus_test.py @@ -181,10 +181,11 @@ def test_root_locus_plots(sys, grid, xlim, ylim, interactive): # Test deprecated keywords -def test_root_locus_legacy(): +@pytest.mark.parametrize("keyword", ["kvect", "k"]) +def test_root_locus_legacy(keyword): sys = ct.rss(2, 1, 1) - with pytest.warns(DeprecationWarning, match="'kvect' is deprecated"): - ct.root_locus_plot(sys, kvect=[0, 1, 2]) + with pytest.warns(DeprecationWarning, match=f"'{keyword}' is deprecated"): + ct.root_locus_plot(sys, **{keyword: [0, 1, 2]}) # Generate plots used in documentation From c87f5f3ce33b64b69fe1e096923318659eb0b0c5 Mon Sep 17 00:00:00 2001 From: Ben Greiner Date: Wed, 22 May 2024 11:19:31 -0700 Subject: [PATCH 022/199] fix numpydoc for place_varga --- control/statefbk.py | 33 +++++++++++++++------------------ 1 file changed, 15 insertions(+), 18 deletions(-) diff --git a/control/statefbk.py b/control/statefbk.py index d996264ab..86813c520 100644 --- a/control/statefbk.py +++ b/control/statefbk.py @@ -150,7 +150,7 @@ def place_varga(A, B, p, dtime=False, alpha=None): """Place closed loop eigenvalues. K = place_varga(A, B, p, dtime=False, alpha=None) - Required Parameters + Parameters ---------- A : 2D array_like Dynamics matrix @@ -158,14 +158,10 @@ def place_varga(A, B, p, dtime=False, alpha=None): Input matrix p : 1D array_like Desired eigenvalue locations - - Optional Parameters - --------------- - dtime : bool + dtime : bool, optional False for continuous time pole placement or True for discrete time. The default is dtime=False. - - alpha : double scalar + alpha : float, optional If `dtime` is false then place_varga will leave the eigenvalues with real part less than alpha untouched. If `dtime` is true then place_varga will leave eigenvalues with modulus less than alpha @@ -179,26 +175,27 @@ def place_varga(A, B, p, dtime=False, alpha=None): K : 2D array (or matrix) Gain such that A - B K has eigenvalues given in p. - Algorithm - --------- + See Also + -------- + place, acker + + Notes + ----- This function is a wrapper for the slycot function sb01bd, which - implements the pole placement algorithm of Varga [1]. In contrast to the + implements the pole placement algorithm of Varga [1]_. In contrast to the algorithm used by place(), the Varga algorithm can place multiple poles at the same location. The placement, however, may not be as robust. - [1] Varga A. "A Schur method for pole assignment." IEEE Trans. Automatic - Control, Vol. AC-26, pp. 517-519, 1981. + References + ---------- + .. [1] Varga A. "A Schur method for pole assignment." IEEE Trans. Automatic + Control, Vol. AC-26, pp. 517-519, 1981. Examples -------- >>> A = [[-1, -1], [0, 1]] >>> B = [[0], [1]] - >>> K = place_varga(A, B, [-2, -5]) - - See Also - -------- - place, acker - + >>> K = ct.place_varga(A, B, [-2, -5]) """ # Make sure that SLICOT is installed From e1d21d2d78648766307f0fd0baf2c0aa5c1ec9fb Mon Sep 17 00:00:00 2001 From: Pierre Haessig Date: Fri, 24 May 2024 01:07:49 +0200 Subject: [PATCH 023/199] Add "See Also" to `acker` pole placement doc (#1006) --- control/statefbk.py | 4 ++++ 1 file changed, 4 insertions(+) diff --git a/control/statefbk.py b/control/statefbk.py index 86813c520..19fec5d29 100644 --- a/control/statefbk.py +++ b/control/statefbk.py @@ -266,6 +266,10 @@ def acker(A, B, poles): ------- K : 2D array (or matrix) Gains such that A - B K has given eigenvalues + + See Also + -------- + place, place_varga """ # Convert the inputs to matrices From d44a5771e4b71a34b7ec5334b1ed11765d10cd99 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 4 Jun 2024 22:15:27 -0700 Subject: [PATCH 024/199] allow solve_ivp errors and improve arrow placement --- control/freqplot.py | 13 +++++++++++++ control/nlsys.py | 4 ++-- control/phaseplot.py | 17 +++++++++++++---- 3 files changed, 28 insertions(+), 6 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 961f499b3..dcc91dd86 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1963,9 +1963,22 @@ def _add_arrows_to_line2D( if transform is None: transform = axes.transData + # Figure out the size of the axes (length of diagonal) + xlim, ylim = axes.get_xlim(), axes.get_ylim() + ul, lr = np.array([xlim[0], ylim[0]]), np.array([xlim[1], ylim[1]]) + diag = np.linalg.norm(ul - lr) + # Compute the arc length along the curve s = np.cumsum(np.sqrt(np.diff(x) ** 2 + np.diff(y) ** 2)) + # Truncate the number of arrows if the curve is short + # TODO: figure out a smarter way to do this + frac = min(s[-1] / diag, 1) + if len(arrow_locs) and frac < 0.05: + arrow_locs = [] # too short; no arrows at all + elif len(arrow_locs) and frac < 0.2: + arrow_locs = [0.5] # single arrow in the middle + arrows = [] for loc in arrow_locs: n = np.searchsorted(s, s[-1] * loc) diff --git a/control/nlsys.py b/control/nlsys.py index 3285d33e6..c73ac8c51 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1317,7 +1317,7 @@ def nlsys( def input_output_response( - sys, T, U=0., X0=0, params=None, + sys, T, U=0., X0=0, params=None, ignore_error=False, transpose=False, return_x=False, squeeze=None, solve_ivp_kwargs=None, t_eval='T', **kwargs): """Compute the output response of a system to a given input. @@ -1593,7 +1593,7 @@ def ivp_rhs(t, x): soln = sp.integrate.solve_ivp( ivp_rhs, (T0, Tf), X0, t_eval=t_eval, vectorized=False, **solve_ivp_kwargs) - if not soln.success: + if not ignore_error and not soln.success: raise RuntimeError("solve_ivp failed: " + soln.message) # Compute inputs and outputs for each time point diff --git a/control/phaseplot.py b/control/phaseplot.py index d785a2221..4769ee0e4 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -375,7 +375,7 @@ def streamlines( sys, revsys, timepts, X0, params, dir, gridtype=gridtype, gridspec=gridspec, xlim=xlim, ylim=ylim) - # Plot the trajectory + # Plot the trajectory (if there is one) if traj.shape[1] > 1: out.append( ax.plot(traj[0], traj[1], color=color)) @@ -596,6 +596,7 @@ def separatrices( color = unstable_color linestyle = '-' + # Plot the trajectory (if there is one) if traj.shape[1] > 1: out.append(ax.plot( traj[0], traj[1], color=color, linestyle=linestyle)) @@ -883,12 +884,13 @@ def _create_trajectory( gridtype=None, gridspec=None, xlim=None, ylim=None): # Comput ethe forward trajectory if dir == 'forward' or dir == 'both': - fwdresp = input_output_response(sys, timepts, X0=X0, params=params) + fwdresp = input_output_response( + sys, timepts, X0=X0, params=params, ignore_error=True) # Compute the reverse trajectory if dir == 'reverse' or dir == 'both': revresp = input_output_response( - revsys, timepts, X0=X0, params=params) + revsys, timepts, X0=X0, params=params, ignore_error=True) # Create the trace to plot if dir == 'forward': @@ -898,7 +900,14 @@ def _create_trajectory( elif dir == 'both': traj = np.hstack([revresp.states[:, :1:-1], fwdresp.states]) - return traj + # Remove points outside the window (keep first point beyond boundary) + inrange = np.asarray( + (traj[0] >= xlim[0]) & (traj[0] <= xlim[1]) & + (traj[1] >= ylim[0]) & (traj[1] <= ylim[1])) + inrange[:-1] = inrange[:-1] | inrange[1:] # keep if next point in range + inrange[1:] = inrange[1:] | inrange[:-1] # keep if prev point in range + + return traj[:, inrange] def _make_timepts(timepts, i): From 1b71fa00ebca08af89f6f96074f89b9b1e4b96b4 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 5 Jun 2024 03:41:10 -0700 Subject: [PATCH 025/199] add warning messages on trajectory errors (+ ability to suppress) --- control/nlsys.py | 36 +++++++++----- control/phaseplot.py | 88 +++++++++++++++++++++------------ control/tests/phaseplot_test.py | 23 +++++++-- control/timeresp.py | 25 +++++++--- 4 files changed, 118 insertions(+), 54 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index c73ac8c51..fbb58918d 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -18,16 +18,17 @@ """ -import numpy as np -import scipy as sp import copy from warnings import warn +import numpy as np +import scipy as sp + from . import config -from .iosys import InputOutputSystem, _process_signal_list, \ - _process_iosys_keywords, isctime, isdtime, common_timebase, _parse_spec -from .timeresp import _check_convert_array, _process_time_response, \ - TimeResponseData +from .iosys import (InputOutputSystem, _parse_spec, _process_iosys_keywords, + _process_signal_list, common_timebase, isctime, isdtime) +from .timeresp import (TimeResponseData, _check_convert_array, + _process_time_response) __all__ = ['NonlinearIOSystem', 'InterconnectedSystem', 'nlsys', 'input_output_response', 'find_eqpt', 'linearize', @@ -528,7 +529,6 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, # numerical linearization use the `_rhs()` and `_out()` member # functions. # - # If x0 and u0 are specified as lists, concatenate the elements x0 = _concatenate_list_elements(x0, 'x0') u0 = _concatenate_list_elements(u0, 'u0') @@ -1317,7 +1317,7 @@ def nlsys( def input_output_response( - sys, T, U=0., X0=0, params=None, ignore_error=False, + sys, T, U=0., X0=0, params=None, ignore_errors=False, transpose=False, return_x=False, squeeze=None, solve_ivp_kwargs=None, t_eval='T', **kwargs): """Compute the output response of a system to a given input. @@ -1393,6 +1393,11 @@ def input_output_response( to 'RK45'. solve_ivp_kwargs : dict, optional Pass additional keywords to :func:`scipy.integrate.solve_ivp`. + ignore_errors : bool, optional + If ``False`` (default), errors during computation of the trajectory + will raise a ``RuntimeError`` exception. If ``True``, do not raise + an exception and instead set ``results.success`` to ``False`` and + place an error message in ``results.message``. Raises ------ @@ -1593,8 +1598,12 @@ def ivp_rhs(t, x): soln = sp.integrate.solve_ivp( ivp_rhs, (T0, Tf), X0, t_eval=t_eval, vectorized=False, **solve_ivp_kwargs) - if not ignore_error and not soln.success: - raise RuntimeError("solve_ivp failed: " + soln.message) + if not soln.success: + message = "solve_ivp failed: " + soln.message + if not ignore_errors: + raise RuntimeError(message) + else: + message = None # Compute inputs and outputs for each time point u = np.zeros((ninputs, len(soln.t))) @@ -1650,7 +1659,7 @@ def ivp_rhs(t, x): u = np.transpose(np.array(u)) # Mark solution as successful - soln.success = True # No way to fail + soln.success, message = True, None # No way to fail else: # Neither ctime or dtime?? raise TypeError("Can't determine system type") @@ -1660,7 +1669,8 @@ def ivp_rhs(t, x): output_labels=sys.output_labels, input_labels=sys.input_labels, state_labels=sys.state_labels, sysname=sys.name, title="Input/output response for " + sys.name, - transpose=transpose, return_x=return_x, squeeze=squeeze) + transpose=transpose, return_x=return_x, squeeze=squeeze, + success=soln.success, message=message) def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, @@ -2252,7 +2262,7 @@ def interconnect( `outputs`, for more natural naming of SISO systems. """ - from .statesp import StateSpace, LinearICSystem, _convert_to_statespace + from .statesp import LinearICSystem, StateSpace, _convert_to_statespace from .xferfcn import TransferFunction dt = kwargs.pop('dt', None) # bypass normal 'dt' processing diff --git a/control/phaseplot.py b/control/phaseplot.py index 4769ee0e4..23de0dc96 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -52,7 +52,7 @@ def phase_plane_plot( sys, pointdata=None, timedata=None, gridtype=None, gridspec=None, plot_streamlines=True, plot_vectorfield=False, plot_equilpoints=True, - plot_separatrices=True, ax=None, **kwargs + plot_separatrices=True, ax=None, suppress_warnings=False, **kwargs ): """Plot phase plane diagram. @@ -88,22 +88,6 @@ def phase_plane_plot( Parameters to pass to system. For an I/O system, `params` should be a dict of parameters and values. For a callable, `params` should be dict with key 'args' and value given by a tuple (passed to callable). - plot_streamlines : bool or dict - If `True` (default) then plot streamlines based on the pointdata - and gridtype. If set to a dict, pass on the key-value pairs in - the dict as keywords to :func:`~control.phaseplot.streamlines`. - plot_vectorfield : bool or dict - If `True` (default) then plot the vector field based on the pointdata - and gridtype. If set to a dict, pass on the key-value pairs in - the dict as keywords to :func:`~control.phaseplot.vectorfield`. - plot_equilpoints : bool or dict - If `True` (default) then plot equilibrium points based in the phase - plot boundary. If set to a dict, pass on the key-value pairs in the - dict as keywords to :func:`~control.phaseplot.equilpoints`. - plot_separatrices : bool or dict - If `True` (default) then plot separatrices starting from each - equilibrium point. If set to a dict, pass on the key-value pairs - in the dict as keywords to :func:`~control.phaseplot.separatrices`. color : str Plot all elements in the given color (use `plot_={'color': c}` to set the color in one element of the phase plot. @@ -117,6 +101,27 @@ def phase_plane_plot( out[1] = Quiver object (vector field arrows) out[2] = list of Line2D objects (equilibrium points) + Other parameters + ---------------- + plot_streamlines : bool or dict, optional + If `True` (default) then plot streamlines based on the pointdata + and gridtype. If set to a dict, pass on the key-value pairs in + the dict as keywords to :func:`~control.phaseplot.streamlines`. + plot_vectorfield : bool or dict, optional + If `True` (default) then plot the vector field based on the pointdata + and gridtype. If set to a dict, pass on the key-value pairs in + the dict as keywords to :func:`~control.phaseplot.vectorfield`. + plot_equilpoints : bool or dict, optional + If `True` (default) then plot equilibrium points based in the phase + plot boundary. If set to a dict, pass on the key-value pairs in the + dict as keywords to :func:`~control.phaseplot.equilpoints`. + plot_separatrices : bool or dict, optional + If `True` (default) then plot separatrices starting from each + equilibrium point. If set to a dict, pass on the key-value pairs + in the dict as keywords to :func:`~control.phaseplot.separatrices`. + suppress_warnings : bool, optional + If set to `True`, suppress warning messages in generating trajectories. + """ # Process arguments params = kwargs.get('params', None) @@ -149,7 +154,8 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): kwargs, plot_streamlines, gridspec=gridspec, gridtype=gridtype, ax=ax) out[0] += streamlines( - sys, pointdata, timedata, check_kwargs=False, **kwargs_local) + sys, pointdata, timedata, check_kwargs=False, + suppress_warnings=suppress_warnings, **kwargs_local) # Get rid of keyword arguments handled by streamlines for kw in ['arrows', 'arrow_size', 'arrow_style', 'color', @@ -203,7 +209,8 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): def vectorfield( - sys, pointdata, gridspec=None, ax=None, check_kwargs=True, **kwargs): + sys, pointdata, gridspec=None, ax=None, suppress_warnings=False, + check_kwargs=True, **kwargs): """Plot a vector field in the phase plane. This function plots a vector field for a two-dimensional state @@ -244,6 +251,11 @@ def vectorfield( ------- out : Quiver + Other parameters + ---------------- + suppress_warnings : bool, optional + If set to `True`, suppress warning messages in generating trajectories. + """ # Get system parameters params = kwargs.pop('params', None) @@ -283,8 +295,8 @@ def vectorfield( def streamlines( - sys, pointdata, timedata=1, gridspec=None, gridtype=None, - dir=None, ax=None, check_kwargs=True, **kwargs): + sys, pointdata, timedata=1, gridspec=None, gridtype=None, dir=None, + ax=None, check_kwargs=True, suppress_warnings=False, **kwargs): """Plot stream lines in the phase plane. This function plots stream lines for a two-dimensional state space @@ -328,6 +340,11 @@ def streamlines( ------- out : list of Line2D objects + Other parameters + ---------------- + suppress_warnings : bool, optional + If set to `True`, suppress warning messages in generating trajectories. + """ # Get system parameters params = kwargs.pop('params', None) @@ -373,7 +390,8 @@ def streamlines( timepts = _make_timepts(timedata, i) traj = _create_trajectory( sys, revsys, timepts, X0, params, dir, - gridtype=gridtype, gridspec=gridspec, xlim=xlim, ylim=ylim) + gridtype=gridtype, gridspec=gridspec, xlim=xlim, ylim=ylim, + suppress_warnings=suppress_warnings) # Plot the trajectory (if there is one) if traj.shape[1] > 1: @@ -465,7 +483,7 @@ def equilpoints( def separatrices( sys, pointdata, timedata=None, gridspec=None, ax=None, - check_kwargs=True, **kwargs): + check_kwargs=True, suppress_warnings=False, **kwargs): """Plot separatrices in the phase plane. This function plots separatrices for a two-dimensional state space @@ -509,6 +527,11 @@ def separatrices( ------- out : list of Line2D objects + Other parameters + ---------------- + suppress_warnings : bool, optional + If set to `True`, suppress warning messages in generating trajectories. + """ # Get system parameters params = kwargs.pop('params', None) @@ -586,13 +609,15 @@ def separatrices( if evals[j].real < 0: traj = _create_trajectory( sys, revsys, timepts, x0, params, 'reverse', - gridtype='boxgrid', xlim=xlim, ylim=ylim) + gridtype='boxgrid', xlim=xlim, ylim=ylim, + suppress_warnings=suppress_warnings) color = stable_color linestyle = '--' elif evals[j].real > 0: traj = _create_trajectory( sys, revsys, timepts, x0, params, 'forward', - gridtype='boxgrid', xlim=xlim, ylim=ylim) + gridtype='boxgrid', xlim=xlim, ylim=ylim, + suppress_warnings=suppress_warnings) color = unstable_color linestyle = '-' @@ -880,17 +905,21 @@ def _get_color(kwargs, ax=None): def _create_trajectory( - sys, revsys, timepts, X0, params, dir, + sys, revsys, timepts, X0, params, dir, suppress_warnings=False, gridtype=None, gridspec=None, xlim=None, ylim=None): # Comput ethe forward trajectory if dir == 'forward' or dir == 'both': fwdresp = input_output_response( - sys, timepts, X0=X0, params=params, ignore_error=True) + sys, timepts, X0=X0, params=params, ignore_errors=True) + if not fwdresp.success and not suppress_warnings: + warnings.warn(f"{X0=}, {fwdresp.message}") # Compute the reverse trajectory if dir == 'reverse' or dir == 'both': revresp = input_output_response( - revsys, timepts, X0=X0, params=params, ignore_error=True) + revsys, timepts, X0=X0, params=params, ignore_errors=True) + if not revresp.success and not suppress_warnings: + warnings.warn(f"{X0=}, {revresp.message}") # Create the trace to plot if dir == 'forward': @@ -1212,6 +1241,3 @@ def _find(condition): Private implementation of deprecated matplotlib.mlab.find """ return np.nonzero(np.ravel(condition))[0] - - - diff --git a/control/tests/phaseplot_test.py b/control/tests/phaseplot_test.py index a01ab2aea..18e06716f 100644 --- a/control/tests/phaseplot_test.py +++ b/control/tests/phaseplot_test.py @@ -9,14 +9,16 @@ the figures so that you can check them visually. """ +import warnings import matplotlib.pyplot as plt import numpy as np -from numpy import pi import pytest -from control import phase_plot +from math import pi + import control as ct import control.phaseplot as pp +from control import phase_plot # Legacy tests @@ -156,7 +158,22 @@ def invpend_ode(t, x, m=0, l=0, b=0, g=0): ct.phase_plane_plot( invpend_ode, [-5, 5, 2, 2], params={'stuff': (1, 1, 0.2, 1)}) - + # Warning messages for invalid solutions: nonlinear spring mass system + sys = ct.nlsys( + lambda t, x, u, params: np.array( + [x[1], -0.25 * (x[0] - 0.01 * x[0]**3) - 0.1 * x[1]]), + states=2, inputs=0) + with pytest.warns(UserWarning, match=r"X0=array\(.*\), solve_ivp failed"): + ct.phase_plane_plot( + sys, [-12, 12, -10, 10], 15, gridspec=[2, 9], + plot_separatrices=False) + + # Turn warnings off + with warnings.catch_warnings(): + warnings.simplefilter("error") + ct.phase_plane_plot( + sys, [-12, 12, -10, 10], 15, gridspec=[2, 9], + plot_separatrices=False, suppress_warnings=True) def test_basic_phase_plots(savefigs=False): diff --git a/control/timeresp.py b/control/timeresp.py index 428baf230..a4fa2a63f 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -71,19 +71,18 @@ """ import warnings +from copy import copy import numpy as np import scipy as sp from numpy import einsum, maximum, minimum from scipy.linalg import eig, eigvals, matrix_balance, norm -from copy import copy from . import config from .exception import pandas_check from .iosys import isctime, isdtime from .timeplot import time_response_plot - __all__ = ['forced_response', 'step_response', 'step_info', 'initial_response', 'impulse_response', 'TimeResponseData'] @@ -230,7 +229,8 @@ def __init__( output_labels=None, state_labels=None, input_labels=None, title=None, transpose=False, return_x=False, squeeze=None, multi_trace=False, trace_labels=None, trace_types=None, - plot_inputs=True, sysname=None, params=None + plot_inputs=True, sysname=None, params=None, success=True, + message=None ): """Create an input/output time response object. @@ -307,6 +307,13 @@ def __init__( a MIMO system, the ``input`` attribute should then be set to indicate which trace is being specified. Default is ``False``. + success : bool, optional + If ``False``, result may not be valid (see + :func:`~control.input_output_response`). + + message : str, optional + Informational message if ``success`` is ``False``. + """ # # Process and store the basic input/output elements @@ -460,6 +467,10 @@ def __init__( # Store legacy keyword values (only needed for legacy interface) self.return_x = return_x + # Information on the whether the simulation result may be incorrect + self.success = success + self.message = message + def __call__(self, **kwargs): """Change value of processing keywords. @@ -978,9 +989,9 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, :ref:`package-configuration-parameters`. """ + from .nlsys import NonlinearIOSystem, input_output_response from .statesp import StateSpace, _convert_to_statespace from .xferfcn import TransferFunction - from .nlsys import NonlinearIOSystem, input_output_response if not isinstance(sys, (StateSpace, TransferFunction)): if isinstance(sys, NonlinearIOSystem): @@ -1370,8 +1381,8 @@ def step_response(sys, T=None, X0=0, input=None, output=None, T_num=None, """ from .lti import LTI - from .xferfcn import TransferFunction from .statesp import _convert_to_statespace + from .xferfcn import TransferFunction # Create the time and input vectors if T is None or np.asarray(T).size == 1: @@ -1543,9 +1554,9 @@ def step_info(sysdata, T=None, T_num=None, yfinal=None, params=None, PeakTime: 4.242 SteadyStateValue: -1.0 """ + from .nlsys import NonlinearIOSystem from .statesp import StateSpace from .xferfcn import TransferFunction - from .nlsys import NonlinearIOSystem if isinstance(sysdata, (StateSpace, TransferFunction, NonlinearIOSystem)): T, Yout = step_response(sysdata, T, squeeze=False, params=params) @@ -1875,8 +1886,8 @@ def impulse_response(sys, T=None, input=None, output=None, T_num=None, >>> T, yout = ct.impulse_response(G) """ - from .statesp import _convert_to_statespace from .lti import LTI + from .statesp import _convert_to_statespace # Make sure we have an LTI system if not isinstance(sys, LTI): From ab3b4984a68ddc08d3742e9715c6283fa57ccff1 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 5 Jun 2024 22:37:05 -0700 Subject: [PATCH 026/199] tweak arrow placement in _add_arrows_to_line2D --- control/freqplot.py | 8 ++++++-- 1 file changed, 6 insertions(+), 2 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index dcc91dd86..82c9d62f1 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1985,12 +1985,16 @@ def _add_arrows_to_line2D( # Figure out what direction to paint the arrow if dir == 1: - arrow_tail = (x[n], y[n]) - arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2])) + n = 1 if n == 0 else n # move arrow forward if at start + arrow_tail = (x[n - 1], y[n - 1]) + arrow_head = (np.mean(x[n - 1:n + 1]), np.mean(y[n - 1:n + 1])) + elif dir == -1: # Orient the arrow in the other direction on the segment + n = s.size - 2 if n == s.size - 1 else n # move backward at end arrow_tail = (x[n + 1], y[n + 1]) arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2])) + else: raise ValueError("unknown value for keyword 'dir'") From 44ccafbcd24574f92baa4aa165c3f58d1a798d8a Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 7 Jun 2024 22:40:53 -0700 Subject: [PATCH 027/199] add invpend example from Caltech CDS 110 --- examples/cds101_invpend-dynamics.ipynb | 610 +++++++++++++++++++++++++ 1 file changed, 610 insertions(+) create mode 100644 examples/cds101_invpend-dynamics.ipynb diff --git a/examples/cds101_invpend-dynamics.ipynb b/examples/cds101_invpend-dynamics.ipynb new file mode 100644 index 000000000..a50c5cf7e --- /dev/null +++ b/examples/cds101_invpend-dynamics.ipynb @@ -0,0 +1,610 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "t0JD8EbaVWg-" + }, + "source": [ + "# Inverted Pendulum Dynamics\n", + "\n", + "CDS 110/ChE 105, Winter 2024
\n", + "Richard M. Murray\n", + "\n", + "In this lecture we investigate the nonlinear dynamics of an inverted pendulum system. More information on this example can be found in [FBS2e](https://fbswiki.org/wiki/index.php?title=FBS), Examples 3.3 and 5.4.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "# Import the packages needed for the examples included in this notebook\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "from math import pi\n", + "\n", + "import control as ct" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "P_ZMCccjvHY1" + }, + "source": [ + "## System model" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Msad1ficHjtc" + }, + "source": [ + "The dynamics for an inverted pendulum system can be written as:\n", + "\n", + "$$\n", + " \\dfrac{d}{dt} \\begin{bmatrix} \\theta \\\\ \\dot\\theta\\end{bmatrix} =\n", + " \\begin{bmatrix}\n", + " \\dot\\theta \\\\\n", + " \\dfrac{m g l}{J_\\text{t}} \\sin \\theta\n", + " - \\dfrac{b}{J_\\text{t}} \\dot\\theta\n", + " + \\dfrac{l}{J_\\text{t}} u \\cos\\theta\n", + " \\end{bmatrix}, \\qquad\n", + " y = \\theta,\n", + "$$\n", + "\n", + "where $m$ and $J_t = J + m l^2$ are the mass and (total) moment of inertia of the system to be balanced, $l$ is the distance from the base to the center of mass of the balanced body, $b$ is the coefficient of viscous friction, and $g$ is the acceleration due to gravity.\n", + "\n", + "We begin by creating a nonlinear model of the system:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": invpend\n", + "Inputs (1): ['tau']\n", + "Outputs (2): ['theta', 'thdot']\n", + "States (2): ['theta', 'thdot']\n", + "\n", + "Update: \n", + "Output: None\n" + ] + } + ], + "source": [ + "invpend_params = {'m': 1, 'l': 1, 'b': 0.5, 'g': 1}\n", + "def invpend_update(t, x, u, params):\n", + " m, l, b, g = params['m'], params['l'], params['b'], params['g']\n", + " umax = params.get('umax', 1)\n", + " usat = np.clip(u[0], -umax, umax)\n", + " return [x[1], -b/m * x[1] + (g * l / m) * np.sin(x[0] + usat/m)]\n", + "invpend = ct.nlsys(\n", + " invpend_update, states=['theta', 'thdot'],\n", + " inputs=['tau'], outputs=['theta', 'thdot'],\n", + " params=invpend_params, name='invpend')\n", + "print(invpend)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IAoQAORFvLj1" + }, + "source": [ + "## Open loop dynamics" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "vOALp_IwjVxC" + }, + "source": [ + "The open loop dynamics of the system can be visualized using the `phase_plane_plot` command in python-control:" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 17, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHgCAYAAACmWWlGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hTZfvHPyfpSHfpbimUsjeUvfdeCiKKA8X1Q0VcONBXBUF5xfHiQhwoCqiAbHCA7L2hUDYtpdCWLrp3cn5/PE1K6UrbtEna87muXk2Tk3PuQM4593OP7y3JsiyjoKCgoKCgoFBHUZnbAAUFBQUFBQUFc6I4QwoKCgoKCgp1GsUZUlBQUFBQUKjTKM6QgoKCgoKCQp1GcYYUFBQUFBQU6jSKM6SgoKCgoKBQp1GcIQUFBQUFBYU6jeIMKSgoKCgoKNRpFGdIQUFBQUFBoU6jOEMKChVk6dKlSJJk+LGxsSEwMJCpU6dy8+bNYtsdO3bMjNZaNr/++isLFy6stv03atSIxx9/3PB3dHQ0s2fP5tSpU0bvY/v27XTp0gUnJyckSWL9+vUmt1PPtWvXkCSJpUuXVtsxLJUBAwYwYMAAc5uhUEexMbcBCgrWyk8//UTLli3Jyspiz549zJ8/n927d3PmzBmcnJzMbZ5V8Ouvv3L27Fleeumlatn/unXrcHV1NfwdHR3NnDlzaNSoER07diz3/bIsM2nSJJo3b87GjRtxcnKiRYsW1WIrgL+/PwcPHqRJkybVdgwFBYXiKM6QgkIladu2LV26dAFg4MCBaLVa5s6dy/r163n44YfNbJ1lk5mZiaOjY4Xeo9Vqyc/Px97e3uj3hISEVNS0IkRHR5OUlMT48eMZPHhwlfalJysrC41GgyRJxV6zt7enR48eJjmOgoKC8ShpMgUFE6G/iUVGRhZ5Pi0tjWeffRYvLy88PT2ZMGEC0dHRRbZZuXIlw4YNw9/fHwcHB1q1asWbb75JRkZGke3Cw8N58MEHCQgIwN7eHl9fXwYPHlws7bNy5Up69uyJk5MTzs7ODB8+nJMnT5b7GfSpvW3btjF16lQ8PDxwcnJi7NixhIeHF9v+xx9/pEOHDmg0Gjw8PBg/fjznz58vss3jjz+Os7MzZ86cYdiwYbi4uDB48GAGDBjAli1biIyMLJJ2hMJ00YIFC5g3bx7BwcHY29uzc+dOsrOzefXVV+nYsSNubm54eHjQs2dPNmzYUMy+O9Nku3btomvXrgBMnTrVcLzZs2eX+G8xe/ZsAgMDAXjjjTeQJIlGjRoZXt+3bx+DBw/GxcUFR0dHevXqxZYtW0r899y6dStPPPEE3t7eODo6kpOTU+IxS0qTzZ49G0mSCAsLY/Lkybi5ueHr68sTTzxBSkqKYbuQkBD69u1bbJ9arZb69eszYcKEYv+2H3zwAQ0bNkSj0dClSxe2b99e7P2XL1/moYcewsfHB3t7e1q1asXXX39dZJtdu3YhSRK//fYbb7/9NgEBAbi6ujJkyBAuXrxYZFtZllmwYAFBQUFoNBo6derEX3/9VeK/h4JCTaE4QwoKJuLKlSsAeHt7F3n+qaeewtbWll9//ZUFCxawa9cuHnnkkSLbXL58mVGjRrFkyRL+/vtvXnrpJVatWsXYsWOLbDdq1CiOHz/OggUL2LZtG9988w0hISEkJycbtvnwww+ZPHkyrVu3ZtWqVSxbtoy0tDT69u3LuXPnjPosTz75JCqVylDTc+TIEQYMGFDkOPPnz+fJJ5+kTZs2rF27ls8//5zQ0FB69uzJ5cuXi+wvNzeXcePGMWjQIDZs2MCcOXNYtGgRvXv3xs/Pj4MHDxp+7uSLL75gx44dfPLJJ/z111+0bNmSnJwckpKSmDlzJuvXr+e3336jT58+TJgwgV9++aXUz9SpUyd++uknAP7zn/8YjvfUU0+VuP1TTz3F2rVrAXjhhRc4ePAg69atA2D37t0MGjSIlJQUlixZwm+//YaLiwtjx45l5cqVxfb1xBNPYGtry7Jly/jjjz+wtbUt/z/hLu677z6aN2/OmjVrePPNN/n11195+eWXDa9PnTqVffv2Ffu337p1K9HR0UydOrXI81999RV///03CxcuZPny5ahUKkaOHFnk/+DcuXN07dqVs2fP8umnn7J582ZGjx7NjBkzmDNnTjEb33rrLSIjI/nhhx/47rvvuHz5MmPHjkWr1Rq2mTNnDm+88QZDhw5l/fr1PPvsszz99NPFnCYFhRpFVlBQqBA//fSTDMiHDh2S8/Ly5LS0NHnz5s2yt7e37OLiIsfGxhbZ7rnnnivy/gULFsiAHBMTU+L+dTqdnJeXJ+/evVsG5NOnT8uyLMsJCQkyIC9cuLBU265fvy7b2NjIL7zwQpHn09LSZD8/P3nSpElGfbbx48cXeX7//v0yIM+bN0+WZVm+ffu27ODgII8aNarY8e3t7eWHHnrI8Nxjjz0mA/KPP/5Y7HijR4+Wg4KCij0fEREhA3KTJk3k3NzcMm3Oz8+X8/Ly5CeffFIOCQkp8lpQUJD82GOPGf4+evSoDMg//fRTmfu8246PP/64yPM9evSQfXx85LS0tCJ2tG3bVg4MDJR1Op0sy4X/nlOmTKnQ8e6077333pMBecGCBUW2fe6552SNRmM4VkJCgmxnZye/9dZbRbabNGmS7OvrK+fl5RU5RkBAgJyVlWXYLjU1Vfbw8JCHDBlieG748OFyYGCgnJKSUmSf06dPlzUajZyUlCTLsizv3LlTBop9H1atWiUD8sGDB2VZFt8bjUZT6verf//+Rv07KSiYGiUypKBQSXr06IGtrS0uLi6MGTMGPz8//vrrL3x9fYtsN27cuCJ/t2/fHiiaTgsPD+ehhx7Cz88PtVqNra0t/fv3BzCknTw8PGjSpAkff/wxn332GSdPnkSn0xXZ9z///EN+fj5TpkwhPz/f8KPRaOjfvz+7du0y6rPdXfPUq1cvgoKC2LlzJwAHDx4kKyurSKcWQIMGDRg0aFCJ6Zb77rvPqGPfybhx40qMoqxevZrevXvj7OyMjY0Ntra2LFmypFiKrjrIyMjg8OHDTJw4EWdnZ8PzarWaRx99lBs3bhSLclTms99NSd+j7Oxs4uLiAPD09GTs2LH8/PPPhu/F7du32bBhA1OmTMHGpmiJ6IQJE9BoNIa/9ZGtPXv2oNVqyc7OZvv27YwfPx5HR8ci36dRo0aRnZ3NoUOHyrURCr/rBw8eJDs7u9Tvl4KCuVCcIQWFSvLLL79w9OhRTp48SXR0NKGhofTu3bvYdp6enkX+1hcAZ2VlAZCenk7fvn05fPgw8+bNY9euXRw9etSQotFvJ0kS27dvZ/jw4SxYsIBOnTrh7e3NjBkzSEtLA+DWrVsAdO3aFVtb2yI/K1euJCEhwajP5ufnV+JziYmJAIbf/v7+xbYLCAgwvK7H0dGxSFeXsZS0/7Vr1zJp0iTq16/P8uXLOXjwIEePHuWJJ54gOzu7wseoKLdv30aW5VI/O1Ds85e0bUUp73sEIh138+ZNtm3bBsBvv/1GTk5OMacVSv8/zs3NJT09ncTERPLz8/nyyy+LfZdGjRoFUOz7VJ6N+n+X0o6toGAulG4yBYVK0qpVK0M3WVXYsWMH0dHR7Nq1yxANAorU5+gJCgpiyZIlAFy6dIlVq1Yxe/ZscnNzWbx4MV5eXgD88ccfVVppx8bGlvhc06ZNgcKbXkxMTLHtoqOjDXboKalzyhhKet/y5csJDg5m5cqVRV4vrSjZ1NSrVw+VSlXqZwdM9vkryvDhwwkICOCnn35i+PDh/PTTT3Tv3p3WrVsX27a0/2M7OzucnZ2xtbU1RLuef/75Eo8XHBxcIfv035vSjn1ngbqCQk2iRIYUFMyM/kZ5d8v4t99+W+b7mjdvzn/+8x/atWvHiRMnAHEztLGx4erVq3Tp0qXEH2NYsWJFkb8PHDhAZGSkQRSvZ8+eODg4sHz58iLb3bhxgx07dhjdhm5vb18ksmEMkiRhZ2dXxMGIjY0tsZuspOMBFT7mnTg5OdG9e3fWrl1bZD86nY7ly5cTGBhI8+bNK73/qqB3XtavX8/evXs5duwYTzzxRInbrl27tkgkLS0tjU2bNtG3b1/UajWOjo4MHDiQkydP0r59+xK/S3dHgsqjR48eaDSaUr9fCgrmQokMKSiYmV69elGvXj2mTZvGe++9h62tLStWrOD06dNFtgsNDWX69Oncf//9NGvWDDs7O3bs2EFoaChvvvkmIFrJ33//fd5++23Cw8MZMWIE9erV49atWxw5cgQnJ6cSu4Du5tixYzz11FPcf//9REVF8fbbb1O/fn2ee+45ANzd3XnnnXd46623mDJlCpMnTyYxMZE5c+ag0Wh47733jPrs7dq1Y+3atXzzzTd07twZlUpVrsM2ZswY1q5dy3PPPcfEiROJiopi7ty5+Pv7F+ukupsmTZrg4ODAihUraNWqFc7OzgQEBBjSW8Yyf/58hg4dysCBA5k5cyZ2dnYsWrSIs2fP8ttvv9VYJKgknnjiCT766CMeeughHBwceOCBB0rcTq1WM3ToUF555RV0Oh0fffQRqampRb4fn3/+OX369KFv3748++yzNGrUiLS0NK5cucKmTZvYsWNHhWyrV68eM2fOZN68eUW+X7Nnz1bSZApmRXGGFBTMjKenJ1u2bOHVV1/lkUcewcnJiXvuuYeVK1fSqVMnw3Z+fn40adKERYsWERUVhSRJNG7cmE8//ZQXXnjBsN2sWbNo3bo1n3/+uaFmxM/Pj65duzJt2jSjbFqyZAnLli3jwQcfJCcnh4EDB/L555/j4eFR5Dg+Pj588cUXrFy5EgcHBwYMGMCHH35Is2bNjDrOiy++SFhYGG+99RYpKSnIsowsy2W+Z+rUqcTFxbF48WJ+/PFHGjduzJtvvsmNGzfKdfQcHR358ccfmTNnDsOGDSMvL4/33nuvVK2h0ujfvz87duzgvffe4/HHH0en09GhQwc2btzImDFjKrQvU9O8eXN69erFgQMHePjhh3Fzcytxu+nTp5Odnc2MGTOIi4ujTZs2bNmypUjdW+vWrTlx4gRz587lP//5D3Fxcbi7u9OsWTND3VBFef/993FycmLRokUsW7aMli1bsnjxYj755JNK7U9BwRRIcnlXHgUFhTrD0qVLmTp1KkePHjVJPZSC5XHt2jWCg4P5+OOPmTlzprnNUVCwCJSaIQUFBQUFBYU6jeIMKSgoKCgoKNRplDSZgoKCgoKCQp1GiQwpKCgoKCgo1GkUZ0hBQUFBQUGhTqM4QwoKCgoKCgp1GsUZUlBQUFBQUKjTKM6QgoKCgoKCQp1GcYYUFBQUFBQU6jSKM6SgoKCgoKBQp1GcIQUFBQUFBYU6jeIMKSgoKCgoKNRpFGdIQUFBQUFBoU6jOEMKCgoKCgoKdRrFGVJQUFBQUFCo0yjOkIKCgoKCgkKdRnGGFBQUFBQUFOo0ijOkoKCgoKCgUKdRnCEFBQUFBQWFOo3iDCkoKCgoKCjUaRRnSEFBQUFBQaFOozhDCgoKCgoKCnUaxRlSUFBQUFBQqNMozpCCgoKCgoJCnUZxhhQUFBQUFBTqNIozpKCgoKCgoFCnUZwhBQUFBQUFhTqN4gwpKCgoKCgo1GkUZ0hBQUFBQUGhTqM4QwoKCgoKCgp1GsUZUlBQUFBQUKjTWI0zNH/+fLp27YqLiws+Pj7ce++9XLx4sdz37d69m86dO6PRaGjcuDGLFy+uAWsVFBQUFBQUrAWrcYZ2797N888/z6FDh9i2bRv5+fkMGzaMjIyMUt8TERHBqFGj6Nu3LydPnuStt95ixowZrFmzpgYtV1BQUFBQULBkJFmWZXMbURni4+Px8fFh9+7d9OvXr8Rt3njjDTZu3Mj58+cNz02bNo3Tp09z8ODBEt+Tk5NDTk6O4W+dTkdSUhKenp5IkmTaD6GgoKCgoKBQLciyTFpaGgEBAahUZcd+bGrIJpOTkpICgIeHR6nbHDx4kGHDhhV5bvjw4SxZsoS8vDxsbW2LvWf+/PnMmTPHtMYqKCgoKCgomIWoqCgCAwPL3MYqnSFZlnnllVfo06cPbdu2LXW72NhYfH19izzn6+tLfn4+CQkJ+Pv7F3vPrFmzeOWVVwx/p6Sk0LBhQ+77eCM/PtPfdB9CocKkZudxNS6dq3HpXI4Xv6/EpZOQnlvi9nY2Kka29eOhbg1pU9+tRmzMyMggICAAgOjoaJycnGrkuCYnMRGaNQOtFo4cgRYtirx8ISaViYsPYqtWseu1Abg5FF9YKNQMKZl5JGRkI8ugk+VSf+tkce3U6SA5O4/EjByS0sR7E9NzSUzPJSEjh8T0HDJzdcWOI0nQMdCdAS29GdDCh8ZeTjUWLbem8+rBbw9yNjqVWSNb8HCPRkVf3LEDxo+HevXg0iWwszOLjXUBnU7m6s14urRthouLS7nbW6UzNH36dEJDQ9m3b1+52959suqzgqWdxPb29tjb2xd7/mh0Nsl5NjT0dKyExQqmwNUVAn08udslvZ2Ry6VbaVy6lcbFW2lcupXOpVtpJGfmsel8MpvOJ9OpoTuP9WrEyLb+2NlUX6mcWq2+w15Xi75ol4mrK4wcCZs3w4YNMG9ekZe7urjQqqEvF2+lsS8yg8ndGprJUAVXV2hg4n1m5uaTkJZLbGo2B64m8O/5W5y9mcrpuFxOx93k8z03CfZyYkgrH4a08qVzUD1s1Mp5BTCxZ3PObT7H35fTeHaYa9EXx46FBg2gXTvIzQUvL/MYWUdophL3eWOcdqurGXrhhRdYv349e/bsITg4uMxt+/XrR0hICJ9//rnhuXXr1jFp0iQyMzNLTJPdTWpqKm5ubjR4aRXPDmvLrJGtqvwZFKofWZY5cT2ZZQevseVMDHla8TX3crbnoW4NeKh7EH5uGpMfNyMjA2dnZwDS09Mt+qJdLitXwoMPQqNGEB4uQgN3sHj3Vf771wW6BXuw6v96msdGhRojOjmL7Rfi+PfcLQ5eTSRXWxg9cne0ZWALHyZ3a0i34NJLF3Q6GZWq4tEkazqv4tNy6DF/O1qdzM6ZAwj2usvW7GzQmP7ao1Ac/f07JSUFV1fXMre1mm4yWZaZPn06a9euZceOHeU6QgA9e/Zk27ZtRZ7bunUrXbp0McoRupvVx26Qk6+t8PsUah5JkugcVI+FD4Zw4M3BvDK0Ob6u9iSk5/DFjiv0+WgHz/96giMRSVjZeqDmGDsWnJ3h2jU4cKDYy/d0DECS4EhEElFJmTVvn0KNEuDuwKM9gvj5iW6ceHco3zzciQkh9XF3tCU5M491J28y6duDvLLqFAnpOcXev3R/BIv3XDWD5TWLt4s9vZuKiM/6kzeLb6A4QhaJ1ThDzz//PMuXL+fXX3/FxcWF2NhYYmNjycrKMmwza9YspkyZYvh72rRpREZG8sorr3D+/Hl+/PFHlixZwsyZMyt8fF9Xe5Iycvn7bKxJPo9CzeHtYs+Mwc3Y98Ygvn6oE92CPcjXyWwJjWHStwcZ+fleVh2LQqerulNkY2PDY489xmOPPYaNjVVmoQtxdIT77hOPV6wo9rK/mwM9G3sCsPF0dE1apmBmnO1tGNnOn88e6Mixt4ew8pkePNClAZIEa0/cZPCnu/n18HXDObV0fwSzN51j8a6rpGTmVfh41nZejQ8R9U0bTt0sfbF1/TqEhtagVQplYTVpstJyfj/99BOPP/44AI8//jjXrl1j165dhtd3797Nyy+/TFhYGAEBAbzxxhtMmzbN6OPqw2z/XX+Cbw5G07VRPVZP61WVj6JgAZyLTmXZoWusO3mT7DwR7h/YwpvPJnWknpNS1Ghg2zYYNgz69oU9e4q9vOpYFK//EUoTbyf+faW/Ij9RxzkVlczb684QFp0KQEhDd3oEe/LN7sKI0PMDm/Da8JbmMrFGyMjJp8u8f8nK07LuuV6ENKxXdIOlS2HqVBgyRJxjCtVCRdJkVuMMmQv9P+blqFsMX3QMrU7m75f60tKv7H9YBesgJTOPX49cZ+G/l8jJ1xHgpuHLhzrROahe+W+uC2i1cOYMdOhQrGYIIC07jy7z/iUnX8em6X1oF1gzXXsKlku+VscvByP5bNsl0nPyi73uYKtm9+sD8HGp3emiF38/yYZT0TzeqxGzx7Up+mJ4ODRpIs6pGzegoFNOwbTUypohc+PjqmFYa9Gm/+vh62a2RsFUuDna8uyAJqx7rjfBXk5Ep2TzwLcH+WFveKVqiWRZJiMjg4yMjNpRi6RWQ8eOJTpCAC4aW4YWnBfrSqqPUKhz2KhVPNEnmJeGNCvx9aw8LYt2Vqx2yBrPq3tD6gOw6XQ0edq7pAoaN4bevUGW4fffzWCdwt0ozlAFeKRHECBy4hklrHgUrJfWAa5snN6b0e39ydfJzNtynv9bdrzC9Q2ZmZk4Ozvj7OxMZmYtKyrOzBSdMHcxvuCiv/F0NPl3X/QV6iyTuzVk5rDmONgWv80sP3StQkX31nhe9W3qhaeTHYkZuey7nFB8g4cfFr+XL69ZwxRKRHGGKkDPxp4EezmRnpPPhlNKwWhtw0Vjy1eTQ5h7Txvs1Cq2nrvF6C/3Enoj2dymmZ933gFfX9Fufxf9mnvj4WRHQnoO+66UcNFXqJM42dswfVAzDs4azDN9g7G5o6U+XwczV582o3XVj41axdgOIv21/lQJUdNJk8DGBk6ehHPnatg6hbtRnKEKoFJJPNxdiMstPxRpNeFaBeORJIlHezZizbO9aODhwI3bWUz85iC/HLxWt/+/7ewgPb3EVaytWsXY9kLNXUmVKdyNu6Mdb41uzYFZg7i3YwB6l+hwRBLf763drfb6VNnWsFvFswmenjBqlHhcQremQs2iOEMVZGLnQOxtVJyLSeVkVLK5zVGoJtoFurH5hb4Ma+1LrlbHuxvCmP7rSdKyK94WXCvQh/R37IDo4lHR8Z3E3J9/wmJLLJpVUPBx0bDwwRB2vz6ARgVK/h9uucCmWizL0CHQjUaejmTladl6rgRZFv15tX59jdqlUBzFGaog7o52jGkvQp8rDimF1LUZNwdbvn20M++MaY2NSmLLmRjGfrmPC7Gp5jat5mncGHr2BJ2uxILPDoFuBHs5kZ2nY2uYosWlUDoNPZzY8eoAhrfxQ0Z0XdVWnSpJkgzRoXUnS/iMY8fCsmVw+HANW6ZwN4ozVAke7iFSZZtDo0nOLHlIqELtQJIknuwTzKppPQlw03AtMZNHfjhcNxWX9avY334r9pIkSdzbUX/RV1JlCmWjUkl883An7u8ciE6Gl2qxQ6Q/L/Zdjic+7S5lbgcHeOQRofSuYFYUZ6gShDRwp7W/Kzn5Ov44fsPc5ijUAJ0a1mPLjL609nclIT2XqUuPVkpJ16q5/35QqeDYMbhypdjL+q6y/VcSuJVavOtMQeFOVCqJj+5rz6QuhQ7RhpIKja2cRl5OdGzgjk6m/JRgXa5LNDOKM1QJJEkytNmvuENyXqF2U8/Jjh8f74qfq4YrcelMW36c3PyireRqtZqJEycyceLEIpO2awU+PjB4sHi8alWxlxt6OtI5qB46GTYq3ZYKRqBSSfx3QqFD9PLKUyU6RNZ+Xt3bsYyuMoDFi4We199/15xRCkVQnKFKck/HAJztbYhIyOBgeKK5zVGoIfzcNPw0tSvO9jYcDE/kzbWhRbrMNBoNq1evZvXq1Whq40DG6dNh3jwxzb4ExocoqTKFiqF3iB7o0qBUh8jaz6sxHQJQqyRCb6RwNT69+AZnz8Lp04oAoxlRnKFK4mRvY7jwLz8UaWZrFGqSVv6ufP1wJ9QqibUnbvL59svmNqnmGDcO3n5bFFSXwOh2/tiqJc7FpHIxNq2GjVOwVlQqifkT2hVxiEqc+G6leDnb06+ZmGS/oaTPNXmy+L1uXYnCpgrVj+IMVQF9qmzruVtKjUQdo39zb+be0xaAhf9eLlY7lpieU9Lbaj31nOwY2MIHUKJDChVD7xA92FU4RK+sql0Okb6rbP2p6OKaZT17QoMGkJYGf/5pBusUFGeoCrTwc6Fro3podTK/H4kytzkKNcxD3Rvy7IAmAMxaG8qBqwkkpaQiSRJeLhoSk2tpC35OjlCifu65Egs+9RHTDaduKvV0ChVCpZL4cHxRh+jPMzFkZGQgSRKSJJGRkWFuMyvF0Na+ONqpuZ6UyYnryUVfVKnggQfEYyVVZhYUZ6iK6KNDvx+9rsxlqoO8NqwFY9r7k6eVeernY4z+fK/htVNRt81oWTWSmwuPPw7ffAOnThV7eWBLH1w0NsSkZHMoQqmnU6gYeodocjfhEL3+Ryg3aoGUhaOdDcPb+AGU3DWnr8PbvFlEiBRqFMUZqiIj2vrh4WRHTEo2Oy7EmdschRpGpZJ4a1RLPJ3syMzVcjO5MF16ODzJjJZVIy4uMHq0eFzCrDKNrZoxBeM5alOaQ6HmUKkk5t7Tls5B9UjPyWfW2jPmNskklDnJvlMnaNYMsrJg40YzWFe3UZyhKmJvo+b+LmIUwfLDiiJ1XUOrk3nx91MkZhQX3zxUm7sM9avY338vMVWmF5r760ws2XnamrRMoZZgo1bxv0kdcbJTcyyydkRZezfxxMvZntuZeey5FF/0RUmCJ54Q51YpDQoK1YfiDJmAh7sFIUmw51I8kYnWmc9WqBxqlcQPU7rSs7FnsddCb6TU3jldo0YJ1dzIyBJHCXRt5EF9dwfScvL59/wtMxioUBto6OnIe2PbmNsMkyEm2RdETUvS4nrzTaHw3rNnDVumoDhDJqChpyP9mnkD8MtBpc2+ruHmaMvPT3RjYufAIs/rZDhSW2tmHB3hnnvE4xJSZSqVxL0hQmhu3QklVaZQee7vEsiQ1j6Gv6090qhvMNh2ThlqbEkozpCJmNq7EQArj0aRWlcnm9dh7GxUfDyxPTMGNS3y/JbQGDNZVAPou19WrgRt8RuU/qK/+1J8nZUaUKg6kiQxZ1xbw9+fbr1oRmuqTrv6bjQuGGr8z9lShhqfOwc//lizhtVxFGfIRPRv7k0zH2fSc/JZdVRps6+LSJLE9CEt6NxnEA6NuyCpVPx5Jrb2tpcPGwb16kHDhhBXvHmgqY8L7eq7ka+T2XKmFjuFCtWOt6sD3fsPwaFxF1YcucHey/Hlv8lCuXOSfYnjOaKioE0bePppiC3FWVIwOYozZCL0080Bftp/TWmzr6NoNBqO7d3O6nUbkGzsyMrT8tP+CHObVT3Y28PVq3DoEPj7l7iJ/qK/VkmVKVQBjUbDoV3bePXTn5Bs7Ji5+jTJmcWbFqyFewpmle2/kkBc2l2CvQ0aQPfuoNPBH3+Ywbq6ieIMmZB7Q+rj6WTHzeQs/glTikbrMqPbBxgEGT/ddomE2pomqlevzJfHdvBHJcGpqGSuJ1q/VoyCeXlrVCsaeztxKzWHt9edLa7kbCUEeTrRIdANnQxbS7pX6FPQq1fXrGF1GMUZMiEaWzUPF4gw/rAv3MzWKJibV4c2p4WvM5m5Wj7Yct7c5lQvyckQUzwV5uOioXdTMZNp42klOqRQNRzs1Hz+QAg2KoktZ2KseuTLiLYimvp3SXVDEyeK33v3QnQJXWcKJkdxhkzMoz2CsFOrOHk9meO1RBtDwXgyMjJwcnLCycmJnOwsPprYAUkSc7r2X0kwt3nVw8KF4OMDH3xQ4svjOoiUQIkzmRQUjODO86pxPRteGtIMgPc2hBFlperUI9sKNeqD4YncvlunrEED0V4vy7BmjRmsq3sozpCJ8XaxN7QUL1GiQ3WSzMxMMjPFBbpjA3ceLYgW/mf9WatvCy6RFi0gL09ctEvoKhve1g87GxVX4tI5F1NL57UpVDt3nlfT+jehc1A90nLyeXXVabRW2KTQyMuJln4uaHUy20rS4po0SfxetapmDaujKM5QNfBkH6Ee+vfZWKtdtSiYjpnDW+DjYk9EQgbf7LpqbnNMz+DB4O4uOl/27y/2sqvGliGthE7MxpKE5hQUKsid6tRHriXx3R7rXHiONCZVFhYGqcoiorpRnKFqoIWfC32beaGTYemBa+Y2R8HMuGpseXdsawC+2XWVq/HpZrbIxNjZFQowllLwOa6D6CrbeDq69koNKNQoDT0deW+cUKf+bNtFriVYn/r/yHYiVbbvcgJpd+vTBQaKmqGYGHB1NYN1dQvFGaom9G32igijAsDodv70b+5NrlbHO+uttwumVO6/X/xes0a0BN/FgBbehkn2R67V0gG2CjXO/Z0D6dfcmzytzGfbLpnbnArTzMeZxt5O5Gp1JQ/67tNHSFgoVDuKM1RNKCKMCnciSWIKt72NigNXE626C6ZEhg4FNzexii0hVaaxVRsKRjcoqTIFEyFJEm+MaAGIqGNYdIqZLaoYkiQZzou/zpQhsCjLoi5PodpQnKFqQhFhVLibhp6OzBgsumA+2HLeqkXjimFEqkw/yf7PMzHk5ivng4JpaBPgxtiCjsVP/rG+UR36uqFdl+LIzC1hVtkPP0DTpvD11zVsWd1CcYaqkTtFGP8OU2TV6wIqlYr+/fvTv39/VKrip9fTfRvTzMeZxIxc/vvXBTNYWI383//Bl1+Kydsl0L2xJz4u9qRk5bHnkvWOU1Coeco7r14d2hwblcTOi/EctbI0bJsAVwLrOZCdp2P3xRLOi8xMCA9XBBirGcUZqkaKiDDuraUjGRSK4ODgwK5du9i1axcODg7FXrezUfHhhHYA/H40yuou3GXSqxdMnw4BASW+rFZJhhX8htNKqkzBeMo7rxp5OTGpawMAPvrrglXV5BVJlZXUVXbffSBJcOCAmFumUC0ozlA1oxdhPBWliDAqCLo28uDBggv3+5vOWdWFu6roZzJtOxdLek4JKQEFhUoyY1Az7G1UHIu8zc6LJRQjWzB6NeodF+LIyb9Lq6t+fVFIDYoAYzWiOEPVjCLCqFASr49oiYOtmjM3U9h7uRYpU2dlwXffweTJJXaVtavvRmMvJ7LzdGw7p6SOFUyHn5uGx3s3AmDB3xetSsIhpIE7vq72pOfks6+k64G+W1MRYKw2FGeoBlBEGOsOGRkZeHt74+3tTUZG6bonHk52TO7WEIBFu67UlHnVjyTBq6/C77/D0aMlvCwxriA6pHSVKRiLsefVs/2b4KKx4UJsGptCref7pVJJjGhTTqoM4OBBuFnLOlEtBKtyhvbs2cPYsWMJCAhAkiTWr19f5va7du1CkqRiPxcu1Gzh6p0ijD/tv1ajx1aoeRISEkhIKD/a83S/YGzVEofCk2pPClWjgTFjxONSQvr6WWV7LyeQmJ5TU5YpWDnGnFfujnb8Xz+x+Pxs2yXyrKiLV58q23buVnG7AwKgd2/xeO3aGrasbmBVzlBGRgYdOnTgq6++qtD7Ll68SExMjOGnWbNm1WRh6RSKMF5XRBgVAPB3c2B8iGg3/6Y2RYf0q9g1a4Q+yl009namfaAbWp3MljPFJ90rKFSFqb2D8XK2JzIxk5VWpPHWLdgDTyc7UrLyOBSeWHyDJ54QHZs9etS8cXUAq3KGRo4cybx585gwYUKF3ufj44Ofn5/hR61Wl7ptTk4OqampRX5MgV6EMSNXy7KDkSbZp4L183/9myBJ8O/5OC7GppnbHNMwcqSIEIWHw+nTJW5yT4HmkJIqUzA1TvY2vDCoKQBfbL9MVq51DEdWqySGtfEFSkmVPfEELF4MXbvWsGV1A6tyhipLSEgI/v7+DB48mJ07d5a57fz583FzczP8NGjQwCQ2SJLEcwObAPDdnnAlOqQAQBNvZ0Nbba2JDjk5wYgR4nEpqbKx7f2RJDgeeVupo1MwOZO7NSSwngNxaTlWNR9SL8C4NSwWrRUVgNcGarUz5O/vz3fffceaNWtYu3YtLVq0YPDgwezZs6fU98yaNYuUlBTDT5QJdR3GdahPUx9nUrLyWKLoDikU8NwAsYrdeDqa64m1xDHQp8pKqW/wcdXQq4knID63goIpsbNR8crQ5oBYZKRkWsfis2cTT9wcbElIz+VYSRpkOp3QG1q0qOaNq+XUameoRYsWPP3003Tq1ImePXuyaNEiRo8ezSeffFLqe+zt7XF1dS3yYyrUKomXh4gTdMm+CG5n1KJxDAqVpm19N/o190Ynw7d7rprbHNMwZgw4OIC/P6Snl7jJPR30qbKbdUprSaFmuKdjfZr7OpOanW8155WtWsWQVmWkyiIjRSH1jBkQr6i4m5Ja7QyVRI8ePbh8+bLZjj+yrR+t/F1Jz8nnu72K7lBtQ6VS0aVLF7p06VLi2IDSeG6ASKGuPn6DuLTs6jKv5nB3h7g4+PdfcHYucZMR7fyws1Fx6VY6F2pLvZRCtVCZ80qtkpg5TAxx/Wn/NeJSreO80qfN/wmLLa6VFBwMISGg1cKGDWawrvZS55yhkydP4u/vb7bjq1SSIXy7dP814tOU1uLahIODA0ePHuXo0aMljg0oje7BHnRq6E5uvo4l+2pJCrUUJ0iPq8aWQS18AKWQWqFsKnteDW3tS0hDd7LytCzaZR3RoT7NvHCyUxOTks3pG8nFN5g4Ufz+448atau2Y1XOUHp6OqdOneLUqVMAREREcOrUKa5fvw6Iep8pU6YYtl+4cCHr16/n8uXLhIWFMWvWLNasWcP06dPNYb6BIa186BDoRlaelsW7reMEVaheJEni+YGidmj5wUirqXEwipgYSCp5Bpt+PMem09FWpRisYB1IksSrQ0V0aNWxKKtoXNHYqhlUkCr7u6RUmd4Z2r691PNKoeJYlTN07NgxQkJCCAkJAeCVV14hJCSEd999F4CYmBiDYwSQm5vLzJkzad++PX379mXfvn1s2bKlwq35pkaSJF4tCN8uOxRJbIp1hG+tBVmWScvOIyopkzM3Uth7OZ5Np6NZdiiSr3Zc5qf9EZy9mWJx3RqDWvrQ0s+FjFwtvxy8Zm5zTMNLL4nZSj/+WOLLA1v64GJvw83kLI7VFuFJBYuid1NPmvo4k5mrZe3xG+Y2xyjuHNxarJ6ueXNo1w7y82HjRjNYVzuRZKVysUxSU1Nxc3MjJSXFpMXUsiwz6duDHL12m0d7BDH33rYm23ddJCopkz/PxLDlTAxh0alGOTou9jZ0aVSP7o096RbsQbv6btiqq7Y+yMzMpHXr1gCcO3cOR0fHCr1/w6mbvPj7KTyc7Nj3xkAc7WyqZI/Z+fprMcm+Rw8xSqAEXlt9mtXHb/Bw94Z8ML5dDRuoYA1U9bz65eA13t0QRmNvJ7a/0h9JkqrDTJORmZtPp7nbyM7TsWVGH9oEuBXd4P334b33YPRo2LzZPEZaARW5f1tVZKg2cWd06Pej1xWtlUoQnZzFD3vDuffr/fRdsJP5f10g9EZhxMfeRoWfq4aWfi50D/ZgeBtfJnUJZEALb5ztbUjLyWfnxXj++9cFJiw6QPvZW3n4h0OsOBxZ6aiRLMtERkYSGRlZqQ6p0e38aejhSFJGLr8fsR713FIZP178PnQIokuuC9ILMG45E0NuvvWMT1CoOap6Xk3oFIizvQ3h8Rnsv1KCurOF4WhnQ//m3kApqTK9dMXZsyJCpFBlrHzZad30aOxJ76ae7L+SyJc7LrNgYgdzm2TxpGTmsfbkDTaHxhSZ5yVJ0CPYk9Ht/enf3BtvF3s0tqUrjWt1MudjUjkUnsiRiCSOXEsiOTOP/VcS2X8lkV8PX2fevW0JaVivJj6WARu1imf6NeY/68/y/d5wHukRhJ2NFa9ZAgJEVOjQIdH98uyzxTbp2cQTbxd74tNy2Hs5nsEF9RIKCqbC2d6GCZ3q88vBSH45eI0+zbzMbVK5jGjrxz9ht9h27pZh4WygdWs4fBi6dIEKdK0qlI7yr2hmXiko7ltz4iYRCaVPY67r5ORr+WFvOP0+3smcTec4HnkbSYJujTyYM64Nh98azG/P9OCRHkE08HAs0xEC0Xbbtr4bT/VtzHdTunDiP0P556V+vDmyJa4aG8KiU5nwzQFmrQ2tcT2oiZ0D8XaxJyYlm/WnasGEan10aN26El9WqyTGtheF1OuVrjKFamJKzyAA/j1/i5vJWWa2pnwGtvBBJcGF2DRu3L4rcyBJ0K2b4giZEOVf0sx0DqrHoJY+aHUyn/97ydzmWByyLPPnmRiGfraHeVvOk5KVRzMfZ94Z05qDbw5m1bSePNarET4umiodR6WSaOHnwrT+TdgxcwD3dQpEluG3I1EM+nQXK49er7FuJ42tmqcKBvsu3n3V+gUJ9c7Qzp1wu+Qi6XtDhDO07VwsGTlK2F/B9DT1caFXE090Mqw4ZPnzId0d7egS5AHAzgtxpW+o1SqpMhOgOEMWgF53aMPpaC7fUsTn9ByPvM193xzguRUnuJ6UibeLPf+d0I6/X+rHk32C8XOrmgNUGl7O9nw6qQOr/q8nLXxduJ2ZxxtrzjBx8QHColOq5Zh381D3hjjaqQmPz7D+LqtmzaBtW3HBLqXYs119N4K9nMjO07H1XAk1EgoKJkAfHfr9aBTZeZY/wHVgS6HDtaM0Z2j2bNGtuWVLzRlVS1GcIQugbX03RrTxQ5bhf0p0iMjEDJ5fcYL7vjnAievJONiqeXFwM3bNHMCD3RqiVtVMJ0i3YA82z+jDf0a3wslOzYnryYz9ch8/1IByuIvGllHthDjo6mO1oJD6P/+Bn38WYzpKQJIkg+aQIsCoUF0MaeWLv5uGpIxc/jwTY25zymVwK+EM7b+aSGZuCdGflBS4dQuWLxfzyoYOVbSHKoniDFkILw9tjiTBn2diOR2VbG5zzIJOJ/PD3nCGfraHLWdikCR4oEsDdr02gJeHNsfJvubr/W3VKp7q25jtrw5gdHt/dDLM23Ke70qZdSRJEq1bt6Z169ZVbt+9v3MgAFtCY0q+EFoTDzwAU6ZAvdIL0vVdZXsvJ5CQriizKxRiqvPKRq3i4e4NAfjloOWnypr5OBNYz4HcfB0H7u6Cu3gRsgs06v74A55/Xoy/0Vp+xMsSUZwhC6GFnwvjC24Gb6wJJU9bt1qMb6VmM+XHI8zbcp5crY4+Tb34c0ZfPprYHl/X6kmHVQQ/Nw1fP9SJl4Y0A+DDPy+UGCFydHQkLCyMsLCwCmuh3E23YA+CPB3JyNXy55nanzoK9nKiQ6AbWp1sFat2hZrDlOfVg90aYqdWcSoqmdCSxl1YEJIkMbggVbb9zlTZ9u3QsiUsXlz8TdZeY2gmFGfIgnhrdCvqOdpyITaNb+vQmI6/z8YwfOEe9l1JQGOr4oPxbVn2ZDda+ZtO5NJUvDSkOS8OFg7RvC3nqzVlJkkSEzuJ6FCtSJXFxMDHH8OHH5a6ybiCBcH6k7Wgi07BIvFytmdUO6HwbA3RIf1ojh0XbhU2UwweLCKtJaGrWwtpU6E4QxaEl7M9744VKqtfbL/Clbh0M1tUvWTk5PP6H6eZtvwEyZl5tKvvxpYZfXm4e5BFK8S+PLQ5M2rIIbqvcyCSBIcjkrieaOXCnFeuwOuvC4cor+QZUWPb+6OS4MT1ZOv/vAoWy5RejQDYeDqapBqWzqgo3YM9cLRTcys1h7Do1MIXvvgCgoKKv0GJDFUKxRmyMO7tWJ8BLbzJ1ep4c01orR1eefL6bUZ9sZdVx24gSfDcgCasebYXTbzLnnRuKbw8pBkzBonBqvO2nDdMms/MzKRNmza0adOGzMyq38wD3B3o01QIxP1x3MqjQ716gY8PJCfDrl0lbuLjqqFXE/F5N55WokPWQG6+juuJmRy8msia4zf4dvdV/j13i+RM0zkZpj6vQhq407a+K7n5OlZZeNRVY6s2XAOKdJW5ucEvvxR/g+IMVQpFgdrCkCSJD8a3Y9hnuzkWeZvlhyOZ0rORuc0yGbIss3h3OJ9svYhWJxPgpuGzBzrSo7GnuU2rEJIk8fLQ5uhk+GrnFeZuPodKgkkdfTh37hyAyfSBJnYOZO/lBNacuMlLQ5qjqqFuOpOjVsM998D33wsBxqFDS9zsno4B7LuSwPpT0Tw/sKlFRwnrGjn5Wv46E8u287e4eTuL6OQs4tNzSr3/tvRzoWsjD7oGe9CtkUel5TBkWTbpeSVJElN6NuL1P0JZfiiSp/s2rrEu1cowuJUPW8/dYvuFOENUGoB+/US0dcEC8xlXS1CcIQukvrsDb4xsybsbwvjorwsMbuVLfXcHc5tVZVKy8pi5+jTbzt0CYGyHAObd2xY3B9tqP7ZWKzpQo6Lgxg3xOz1dSOC0aiUGQWsqeJ0W8+WaIyPz9c6rzNl0jvwc0yvbDm/jh4tGTHY/cDXRKkYJlMr48cIZ2rABvvqqRAXd4W39eHv9Wa7EpXMuJrX4kEqFGudmchYrDkWy8mgUiSWklextVAS4OeCjccZFY0t46m3C4zO4EJvGhdg0lhWIHDbwcOCBLg14ul9j7G3KVomvbsZ1CODDP89z43YWOy/EMaS15Y6BGdhCFFGfjkomPi0Hbxf7whfffx/++QdOnxZ/K5GhSqE4QxbKI92D2HgqmmORt3l73Rl+eryrVa+Qz0Wn8uyK40QmZmKnVjHnnjY82LVBtX6mM2dg2TIRhLh2rWyRVpUKGjcWjtHAgfDkk1DSkOP8fPjrLxg7VvwtSRIzh7VAlmHRrqt8+OcFk38Oja2acR0CWHH4OquPR1m3MzRoEDg7i6Gtx46JkQJ34aqxZUgrH/48E8uGU9GKM2QmdDqZ/VcT+OVgJNvP30Kfsfd11tDVsTmxZzxIS7AlNdGG+DiJIzES+gyWvz+0bK3DIzATnUcy8bZx3CCWqKQsPtl6ibUnb/LBve3o2cTzjuPV7HQJja2aSV0a8N2ecH45FGnRzpCPq4b2gW6E3khh58U4JnVpUPiivT2sWAGdO0NOjuIMVRKlZshCUakk/ntfe+zUKnZdjLdqIbo/jt9g/KL9RCZmUt/dgT+e7cnkbg2rxRG6eRM++QQ6dID27UWt7pUrwolRq6FBA+jZEyZNgscfF2Us7u7iQnzlCmzaBK+8IrZ7/XWxPz1ZWWJY9P33iyiTHkmSeG14C+7pGFDpafflcX/Bxe/vs7GkZpdcfGwV2NvDqFHicSmzygDGdRBdZRtPRdfaujlLRZZlNp2OZshnu3l0yRG2nROOUFvH+vRM6kfckkF8/WoD1ix1YutmOw4dVHH1aqEjBKJxcOd2FWt+dmbd/wLZt6AT8sqRDJF74WHnQHh8BpO/P8Srq06TlJHLTz/Bm2/W/Gd9pHsQkgR7LsVzzcJnQw7Sq1GfL0GNuk0bmDdPPP7nnxq0qvagRIaMxQzedlMfZ2YMbsonWy8xZ1MYfZt54elsX/4bLYTsPC1zNp3jtyPXAejf3JuFD3SknpOdyY8VEQGvvgrr1xf+V9naCsHjhx+GFu1yic1NJjQmmZPXbxORkIGPiz1dhzsyvp4jLrIzuQnOJF53YNVyW86fl/j4Y1i4EB56CJ5+WjhHBw6IfX/1FcydW3h8SZJ4/562HLp4k+oox+wQ6EYzH2cux6Wz+XQMDxUIx1kl48cLrzM7W3ihhw+LaFG7doZNBrb0xkVjQ2xqNocjkopEEBSqj8T0HN7ZcNaga+Vka0Pj2225ts+PLacL01ouLjBhAoSEiCjQnT+yDGFhEBpa+HPyJERGSixZUA8v74G0GXqLcJ/TrDlxg80nb3FzSysID+TNNyU8PGru8zb0dKRPUy/2Xk5g0+loXrizHsfCGNzSl4X/Xmbv5Xhy8rXF04w+wlni449FaFuhQkiy1U+BrF5SU1Nxc3MjZedOXAcMqPHj52l1jP1yHxdi0xjXIYAvJofUuA2V4cbtTJ5bcYLQGylIErw0uDkvDGpq8uLfnBxRO/jhh4VirH36wH0PaLFvFs2l5ERORSUTUYFVn6Otmq7qNlz5tz4H9pccPPXwgOvXwcmp6PPbz0QypH0jADYevcrYLo0r87FK5Ls9Ig0X0tCddc/1Ntl+a5zkZNixA/7+GzZuFGG2b7+FZ54pstkbf4Sy8lgUk7s1YP6E9uaxtQ7x99lY3l53hsSMXGxUEmMC2rB3aUNOHBfnrI0NjBgBjzwi0sQV0T7MyoIffxT36cgCaR9HJxmnNjfQ9A5DZacl+7oHj7RozyfvORV7f0ZGBs7OotM0PT0dp7tPvCqw6lgUr/8RSgtfF/55uZ/J9mtqdDqZHvO3E5eWw7Inu9G3mXfRDW7fFg5Rfj5cvgxNm5rHUAvCcP9OScG1pLqHO1DSZMayaZNZDmurVrFgYntUktDEWHfyhlnsqAg7Ltxi9Bf7CL2RgrujLUunduPFIc1M7gj984+Y//nuu8IRGjgQjp7M56G5V/kpcTsf7Qxl3cmbBkeosbcTEzrVZ+69bVn5TA++fqgTb45syUPdG9K3mReNPB2xVUtk5mnZnR1K8qCtPDL7GhrH4iJmSUni4n43PZt44+4TgNrVh/c2hpl0rMS9IfVRqyROXk/mSpwVDvRNTxf5yQYNRL7x+++L5hvv4p6CSfZbQmPIyVdGDFQXKZl5vPT7SaYtP05iRi6NnN0JuT6YL2YEceK4hKurcGKio8Vl8IEHKuYIATg4iGkRly+LMVpt2kBmhkT8kQbcXDyInFsuaBomsTrpAKGRxb/bkiQRFBREUJDpNciGt/bDVi1x8VaaRQ/KVqkkQ6pse0mpsnr1QL9gLyMFrVAySprMWG6YzwlpH+jOswOa8PXOq7y2OpR6jnYMKOgusCTytTo+23aJRbuEenaHBu58/VAIgfWqJp9/N4mJMG2aGMcDIjT/0cc6tI2u8+yWK8SnCQekqY8zY9r7E9KwHh0D3XFzLL9rTauT2Xkhjv/9e4mw6FT2Eob/cxe5taUtmecDgMIL8aefwrPPihWzHkdHR2JvXueer/ZzITaNN9eE8v2ULia5gPu4aBjYwpt/z8ex+vgNZo1sVeV91ijOzuDtLZwiI+ge7Imvqz23UnPYfTGeYW38qtnAusfOC3G8sSaUuLQcJKBzTid2/eBHYqL4vj76qHCEfE1UW2xrK9LW586JVBqALsuO2KV9cR9wHrfuETz47WE2vdyjiOaYo6Mj165dM40Rd+HmaEvfZt7suBDH5tAYXh7qUi3HMQWDWvrw+9Eotl+4xXtjS5jTNn68mE+2di289pp5jLRSlMiQsXz/vVkP/+rQFozrEEC+TubZ5Sc4cf22We25m7jUbB7+4bDBEXq8VyNW/19PkztCFy5A9+7CEVKrYcYMmfm/3mBx1C5mbwojPi2HBh4OfDapA/+81I+XhjSnf3NvoxwhALVKYkhrXza/0IdvH+1MK39XdOp8vMedIuDxfagcCyM9kZGwenXxfdjbqPnfAx2xU6v493wcvx81XRXRxM6ikHrtiZvkW+P8ugULhJ7B3ZTgLKpVEuM6iOjQ+lOKAKMpkWWZj/+5wNSlR4lLyyHI1YXm54ayZqE/iYkSbdvC7t1C089UjtCdzJ0LS5aAp6EUTCJ5V2sSNncgIz+Xyd8dqlBqu6qMae8PwObQaJPpg1UHvZt6YWejIiopi6vxJSwq7rlH/D50SITyFIxGcYasBJVK4pP7O9CvuTdZeVqeWHrUYkK6B68mMuqLfRyOSMLJTs2Xk0OYPa4Ndjam/Xpt3Qo9esDVq9CoEfzxdwbnG+3hvb9PczM5Cx8Xe+be25btrwxgQqfAKomoSZLE8DZ+bHmhD9883IkWvi7Y+qZSf9oONA0Lp0c//3zJLfut/F2ZObw5AHM3nzNZp8qglj54ONkRn5bDnsvxJtlnjeLkJO6wRvZQ6yfZ/3s+jpQsK+6isyDytDpe+yOUr3eKhcuEFk1JW9OXrZvssLUVkaATJ4SeX3WhUsETT4hz+cUXC33hjLBAYpf1IiYGHvr+UI2NZBna2hc7GxVXC7SRLBUnext6FgjUlpgqq19frBZBaHkpGI3iDFWE1NTyt6lG7GxULH6kEx0buJOcmceUH49wM9n0In/GotXJfL3zCg//cIiE9Bxa+Lqw8YU+jC1YzZuSr74SHdkpKaJAev7SW7y1Zy+XbqVTz9GWt0a1ZM/rA3m0R5BJnTCVSmJkO3/+erEvH93XDnuNjM+Dh6g/6Cogc/s2TJxY2MGWlZVF165d6dq1Kw939qdHYw8yc7W8vOqUSSI5djYq7i1wEFYfs/z6sRLp0QPeesuoTdsEuNLC14XcfJ0yyd4EZObm88wvx/jj+A1UEjzVojO/vdWCkyckvLxEhmXmTJHOqgnc3ETHZliYkMMAyI1159avPbkRq2Xy94eISsoscl5lZZn+mueisWVAc1GQvDnUsiMqg1uVMMX+TsaPF78PHaohi2oHijNkLOPHi5iuvhXCTDja2fDT411p6uNMTEo2jy45bJZBg1fi0rl/8QE+/uciOhnu6xTI+ud7m3y2WF6eiL688IJQkZ4yRWbkaxd5869jZOZq6dXEk+2vDuCZfk3Q2Fafoq1KJfFA14b8PLUbLhobbLpeoMUD5wGZDRtg/nyxnU6n49ixYxw7dgyQ+XRSR1zsbTh5PZlv95hmoOv9XcQk+3/P37LeaMk770Dr1oV/l3KDkySJCZ2E87f2hJU6fxZCUkYuD31/mJ0X47G3UTHJvQ/znvUjNlaoGhw9Wr3RoLJo1Uq033/9tUh/59124vba7kTF5fLQD4e4kZRhOK901TSVfUzBIm5zaIxFp8r0atTHI2+XPP/t8ceF4uzSpTVql7WjOEPGkpUl8iEWEHqs52THL090I8BNQ3h8Bo//dISMnDLklU1IvlbH4t1XGfXFXk5cT8bZ3oYF97Xnk/vb42BnWmckL090rixaJMLoc+Zqkfsd5bsDVwB4um8wvzzRDY9q0C0qjV5NvVj5fz3wdrEnu1EEjcZcBuDtt+Gnn4pvX9/dgTn3tAHg651XTNJd1srflWY+zuRpZXZdLGV1aOnY2cGqVYX5kbNnS930no71kSQ4eu22Msm+kty4ncnExQc4FZWMm4Mtg7L789GbbuTkiDKT/ftF6tmcSBI89xwcOSK6zzJuuJH+Z1eux2czdemRaj/+4JY+aGxVRCZmcvamebMAZdHAw5Hmvs5odTK7L5WQKvf1FW22VjyxwBwozpCx6OcvrF9vVjP0BLg78MuT3XF3tCX0Rgrjv95PZGL1FhxeupXGfd8c4L9/XSA3X0e/5t7883I/JlXDWA0RBRIdonZ28MWSTP6128Oey/FobFV8/mBH3h7dGht1zX+F2wS4sfbZXgR7OSG3uYxPHxHxefppMarjbsaH1Kd9oBuZuVq+KSgwrypDC0YHbD1Xemu6xdOmTWErsH6uUgn4uWkMU7vXnVQKqSvK+ZhUJiw6QHh8BgFuGobk9Gfxp6KxYdYs0XjkYkENVJ06wfbtYlbg7YueZG3vRGRC9ZcDONnbMLilOK8sPVU2qMDOEuuG7qSaomi1EcUZMhb9CIE9e0RvtwXQ1MeZV4eJIt1LcekM/GQXC/6+YPIuozytjq92XGbMF/s4fSMFF40NCya25+epXatlgKxOJwRUf/9d1C6887/bLIrYw/WkTALrObD22d6Gwlpz0cDDkT+m9aRDoBuaXudxbX8DrVa0IuvZV1DgrB/XAbDsUCTRJqjz0reZ774Yb90aPHoZ7zNnILf0dO/4kIJU2ckbFp3CsDQu3Urjwe8OEZeWQ3NfZwbl9eOz+ULF/qOPhFhpTc4DM5aePQs7RuNP+pG2t2WNHLewq8yyU2V6vaG9l+NLHleTkiKk84OChDKtQrlY4GlgoQQHi2FXWi1s3mxuawzcziisGdEVDAvt9d8dnDJB631adh7f7wmn34KdfLL1ErlaHYNb+rDt5f5M6lI9Q1ZlWdQI/fyzuBC+81kKv9w8RGaulj5Nvdg0vQ+tA8pWEq0pPJ3t+e2ZHgxs6Y37sFBcmsYbVLAB3lx7xnBB7dPUi+7BHuTm6/hyx+UqH7t9fTd8Xe1Jz8nn4FXLcM4rRc+ewoN8/vkyw/rD2/jhaKcmMjGTE9eTa84+K+bG7UymLDlCSlYeHRu40z+nDx+8JyqjP/hAjJexZEaPLhQ2TTneyPB8VDWmSge29MHJTs3N5CxORiVX23GqSkhDd5ztbbidmUdYdAkpPRcXoY1w44ZQe1coF8UZqgj6Kn0LSZUBHIss7vTEpeVw76IDTFt2jOzcitcSRSdn8eGf5+k1fwcf/HmemJRsvJzt+d8DHfjhsS74uWlMYXoxZBlefhkWLxb3xXc/SWPFrQPkanWMaufH0qldq2WuWVVwtLPhu0e70DHIFfexx7HzLmzLTUjLJSZFeEd3RodWHbtRZQ0VlUpiSKtakCpTqUSr/UcfldnC5GRvw4iCaJhSSF0+iek5TFlyhNjUbJr5ONMzqzv/mSVq+mbPNrqZz+xMmSIGL9/JW+vOVNtAZI2t2jC9fvNpy+1etFWr6FHQYr/3Sgl1QypVoeaQBd2vLBnFGaoI994rfv/zD0VGNJsJrU7mZAnOkJ6/w27Rfs5Wnvr5KCsOR3LpVlqJIdXsPC2XbqXx99kYXl55in4LdvLdnnDScvJp6uPMR/e1Y98bAxkfElgt0SA9778Pn38uHr/3cSarbh8gO0/HwBbeLHwgxCz1QcaQkpWHp7MdKjst9YafBrwALzIvBBB6I9mwXZdGHgxq6YNWJ/O/bZeqfFx9quzfc7esf7K7EbmaCZ1EF91mZTxHmWTk5PPE0qOEJ4gaoeE2PXnzNSGT/p//iPE11sQrr+jXoV4geXLkagpL9pmmM7MkxrQXXWV/nomx6POqX3NRR7f3UkLJG+jvVxs3KrVDRqCM46gIHTqIkH6vXmaZYn83F2PTSCuniyxXK/Pv+Tj+LSi0c3OwpXNQPQLcNUQmZhKRkMHN5KxiH6dnY0+e6deY/s29TT5TrCRWrhQrVoB35mexNn0f6Tn59GjswTePdDa5gKMpcXOwxcFWnEqa+vm4991H8t4W3N6Zx56TkYxoW7jtq8Oas+NCHBtPRzOtf5Mqpfx6NPbA2d6GuLQcTt9IJqRhvap+FPNx6pSo5L3//iLT6++kZxNP/Fw1xKZms/NCHCPa+tesjVZAbr6OacuPc/pGCvUcbXm6cS+eflhEU994Qyw4rK3JSJLg+++dOHQonpgYSD0QwScuF+jf3IcWfqav/O7X3AsXextiU7M5fv02XRt5mPwYpkDfVHA88jaZufk42t11Ox8wAFxdITZWtOj16FHzRloRijNUESRJhPQthOTMXCZ2DqSeoy3ujnbUc7TDw6nwsYOtiitx6ZyKSuZY5G1OXk8mJSuPHSWIdbnY29DY24lW/q483D2IdoFuNfY5jh4V0hgATz2Xy5/5+w11Dj881rVa9YNMgZ2Nii8mh+Bgp+aP4zdw7XGVzCu+5Ma489NHXnzwSOENqE2AG2Pa+7M5NIbPtl3kh8e6Vvq49jZqBrTwZnNoDNvO3bJuZ+iDD0TFrE5XqjOkVkncExLAt7vDWXPipuIM3YVOJ/PKqlPsvZyAo52at3v14Mn7HNBq4bHHhBaWtTlCejw9Rf3QyJGQdjwYhyZxvLzyFOuf723yhZK9jZqhbXxZe+Imm09HW6wzFOzlRH13B24mZ3E4IsmgP2TAzk4UXv32m0iVKc5QmUiyJZfMWwCpqam4ubmRkpKCq6tlFO5WljytjvMxqRy9dpvE9BwaeToR7O1EsJcTnk521ZoCK42bN6FrV4iJgSHDtaT33UVMWjat/F35/ekeRs8UswR0Opn3Npxl2eHr5CU6EbO0L3K+msWLZf7v/wr/bcPj0xn6vz1odTJrnu1F56DKOzEbT0cz47eTNPVx5t9X+pviY5iH5ctF1LVNmzI1hy7GpjF84R5s1RKH3xpSoxpTlowsy8zeGMbPByOxVUt8MqYbL072IjIS+vcXo2zsasE/1XPPwTffgK1rNr5Td/PiyEbMLKjFMyU7L8QxdelRvF3sOTRrcJVG+1Qnb64J5fejUTzZJ5h3xrQuvsGqVUKsrUULMdixjlGR+7fl5h4smRs3hBLgqVPmtqRC2KpVtA9058k+wbw+oiWTujagayMPvJztzeIIZWaKGr+YGGjVWkbb/yAxadk08XZi2ZPdrMoRAlHUPGt4E+TNs0n85wXcegvtnFdfhYiIwu0aezszsaD+5eN/LlSphXdAC29s1RJX4tIJL2lwo7UwerRoHwwLEwOrSqGFnwttAlzJ08oWrwVTkyw/FMnPByORJJg/riMfviQcoWbNYM0a63eEsrKyGDBgAGfODKBJkyzyUjUkbWvLol1XOFkNQ6t7N/XCzcGW+LQcDkdYbrdm32ZihMje0uYUjhghZpU99FDJQxQVDCjOUGX4z39EK7AFpcysDVmGqVPh+HHw9JTp+sw5wlNS8HGxZ/lT3fFytje3iZVClmWuhx0jJ+osziER2AcmkpEh8X//V7TMbMaQZtipVRwKT2L/lcpfbF01toaukm3W3FVWr54IYUC5Ku/6Quq1JxQBRoAjEUnM2XQOgNeGtWTVpwEcOQIeHrBly52T4a0XnU7H7t272bdvNz/8oEOthsxz9Uk778e8LedNrglkZ6MydC9a8ky83k09kSS4dCud2JTs4hu4uooZZe++CzZKVUxZKM5QZRg3TvzesMEiCqmtkY8/FhFcW1t4ek4su2OuYaOS+PrhTvi7mV7I0Rz0auqB56hQJLWObdtg27bC1+q7O/Bwj4YAfLrtYpWOM6w2qFFDYStwOc7QuA4BqFUSp6KSuWrN0TATEJOSxXMrjpOvkxnbIYCk/Y1ZvVqcV+vWichQbaNrV6GcDZC8szVHr6SUPJaiigxvK86rXRfjLVaA0d3Rjvb1RX3nviuldJUpGIVVOUN79uxh7NixBAQEIEkS643QT9i9ezedO3dGo9HQuHFjFi9eXHVDhg0De3sIDxdhfYUKceBAoc7JzNkZrL55EoBZo1pZbLFiZfjmkc74BubjHHINEN08d3a4PjegKbZqiZPXkzl7M6XSx9Hropy4fpv4NCtWm9U7Q/v2QULpF3ZvF3v6NSsYz1GHo0PZeVqmLT9BQnouLf1cGOXZnvfeE+nuxYvNN3S1JnjrLWjQAPJTHUg73ojPtl0yucPSPdgTW7XEjdtZRFrwTLxyU2UAaWmwenWZ51Vdx6qcoYyMDDp06MBXX31l1PYRERGMGjWKvn37cvLkSd566y1mzJjBmjVrqmaIszMMGSIeW8DgVmsiKQkmTxZC3hMmavlXPki+TmZMe3+e6N3I3OaZFHsbNXPvaYtbzyuo7PM4dUqMGNHj7WJv6Ihacfh6pY/j7+ZAh0A3ZBm2n7fi6FBQkJCvcHWFc+fK3LQwVXaj2gT4LBlZlnl3w1lORyXj7mjLB8O7MHWKGp1OpJ+feMLcFlYvDg6iAREg9VBTTl7KYtu5W1xLyOC/f11gwd9VLxZ2srcxNDeU6WiYmT4FC4P9VxJK10UaOhQmTYJNm2rQMuvCqpyhkSNHMm/ePCZMmGDU9osXL6Zhw4YsXLiQVq1a8dRTT/HEE0/wyd2SppVBv4rduLHq+6oj6OuErl+Hpk1l6HOcuLScAmHH9mYp4q5uRrXzo2tLJ1y7i6Lgt98uOiro4e4iVbbh1E3SsvNK2oVR6Ae3WnXdEIjFRVxcuWGNoa19cXOwJTol26JvVNXF8sPXWXXsBioJFk4K4bXnHbl1SwwrN3KtaPU8/DCEhIAux5aUA015aeUpBnyyi8W7r3I5zjTp037NRdRlz2XLjah0algPRzs1Cem5nI8tYTQHCE0CUBbvZWBVzlBFOXjwIMOGDSvy3PDhwzl27Bh5eSXfeHJyckhNTS3yUyJjxojfR45AtNLVYgxffCF8Rzs7GD7jGsdj4nGyU7P4kc442dfO4j5Jknh7dGtcOl9D7ZzNtWvw7beFr3cP9qCJtxOZuVrWn6r890ivRr33SgIZ5QhxWjRBQWWO5dCjsVUbhreuPBpV3VZZFEevJTFno0jPvzGiJTt+9WbnTnByEpkQR0czG1hDqFQwaIoobk47GURKbGHTRXJm6UN/K0K/ghTUwauJ5Jl4ALapsLNR0bOgiWJfaU6bfvG+dStkVX1QdG2kVjtDsbGx+Pr6FnnO19eX/Px8EkrJnc6fPx83NzfDT4MGDUreub+/aFm0sYFjx0xteq3j2DF47TXx+JnXUtl8U6RBPr6/A019nM1omelxdHTE8Y47Uuegeozt7INbbzGCY+5c0PvYkiTxcPcgAFYciqx03UMzH2eCPB3JzdexpxqKSWscWYaMsue3PdBVnJvbzt0iId2Ka6UqQGJ6Ds+vOGFILTfKbsy8eeK1776DljUz3N0s3H1eATx+vyNOTeJApyJ5d+GHT8owjTPU2t8VDyc70nPyOWnBA4L1qbK9pTlDHTpAw4bCEdq+vQYtsx5qtTMEFEu96G82paVkZs2aRUpKiuEnKqqMVedPP0F8fGF3mUKJpKfDgw9CXh6MGafjoOYIAE/0DmZUu9qlIuzk5ERGRgYZGRk4OTkZnn9jREvqhdzExiOdhAT49NPC99zXKRB7GxUXYtMqPZFdkiRDV5nVp8r++AOCg+Gll8rcrJW/Kx0auJOvk1lzvPYPb9XpZF5dfdqQWn6tf3umTJGQZZg2TUjJ1FZKO6/a1nfjw//KIMlkXvIn+4ao8UnOrHzK+U5UKskw9sKS07H6Iuoj15LIzithbp8kFe2CVihGrXaG/Pz8iI2NLfJcXFwcNjY2eJYivmFvb4+rq2uRn1Jp1Qrc3U1oce3kjTeEjl5gIDQYF0ZCeg5NvJ14fYTplWMtlYaejjzeO4h6/UQb/aefytwq8FncHG0NwyF/rUIh9dDWIlW2/UKcdRcVu7lBZCRs3lzugMnJBdGhlUejLLb92VT8uD+CXRfjsbdR8eXkEF5+wYa4OFEn9L//mds68zFjoi9dhiUDcHtnK2QZbmfmmmzIat+CqIsl1w018XbC301Dbr6OIxFJJW80dqz4bcR5VRep1c5Qz5492XanuAuwdetWunTpgq0RdQkVQqtM0S6JbduEWDfAC7Nv8+fl66gkkR6z9JljpuaFQc3w65CInf9tMjIkvv668DW95tDm0OhK1zt0DqqHi70NKVl5nI8ppdbNGujfH1xcxIDJo0fL3HRMhwAc7dSEJ2SUfhOoBZyOSuajgg6pd8e25ug2V9atE+VVy5aBRmNmA83MuiXuqO205EbXIzvSE51MuUOsjUUfdQm9kWyyWiRTI0mSwWkrNYJ153l15kwNWmcdWJUzlJ6ezqlTpzhVMAYjIiKCU6dOcf26WE3PmjWLKVOmGLafNm0akZGRvPLKK5w/f54ff/yRJUuWMHPmTNMZtXWrqB2aNs10+6wlJCcXtvg++YyW1bHHAXi6b2M6WfNQ0TLIzs5m9OjRjB49muzsooqwbo62vDikGa7dwgFY9I1sqGUMaeBOK39XcvJ1rKmkdo5aJdEtWOg0HQq33BEC5WJnV9j9Uk63prO9DWMLomq1tZA6LTuPF347SZ5WZlQ7P/r4NeSFF8Rrc+ZAx45mNa9GKOu8AgisLxmuNalHGwMQn1qCInMl8HPT0NzXGVmmSmrx1U2h3lApESx7e6HtEREhaogUimBVztCxY8cICQkhJCQEgFdeeYWQkBDeffddAGJiYgyOEUBwcDB//vknu3btomPHjsydO5cvvviC++67z3RGqdWio2zTJiX0eBcvvSTGuDVpAg69wohPE+mxl4c2N7dp1YZWq+XPP//kzz//RFtCtPDRHkG07J6G2jWTxASJFSvE86KQWkSHVhyufCG1fjTHwauWe9E2Cn19gxHSFQ92E6myLWdiSMkyTa2IpSDLMm+tO8v1pEzquzvwwb3tmTpVIjUVevYsbEqo7ZR3XgG8MVONJMlkh/uQG+9sUkV2o4QNzUzvpl5IElyITSOuNEdw1Cho1KhG7bIWrMoZGjBgALIsF/tZunQpAEuXLmXXrl1F3tO/f39OnDhBTk4OERERTDN1BKdvXyESd+tWuSH9usSGDfDzz6Jub/rsJDadj6qz6bE7sbNR8WS/IFw7XwPgf/+TDRNd7g2pj5OdmvD4DA6FVy7l07OJcIaORCRZd93QyJFioXH2rFB6L4OODdxp4etCTr6ODadqlyL16mM32HQ6GrVK4suHQvjlB1t27hTt8z//rIybupMmTWD8eNEYk3q0sUlnivW9o1vLUmvTPJzsaBugjOaoLFblDFkkdnZiMjAo6p4FJCbCM8+IxzNe0vJr5AkAnqrF6bGKcF/nQHy7xiDZ5XPunMTWreJ5Z3sb7inQzllxOLJS+27l74qrxoa0nHzCois/4sPseHiIhQaUe15JkmSIDv12pPYUUl+JS+e9Aj2hmcNa4JJTjzffFK998kntnDtWVV59VfzOOBfA6Us5RCWZZoxG92BP7GxU3EzOIjyhbMkHc6JvsT9QVmR482ZRTL1kSQ1ZZR0ozpAp0FfpK2rUAMycKUSEW7cGVZcw4tJyaOztxCtWkB7LztOy6lj11p64aGx5oLcfzu3Ece7sBHqom0iV/RMWWyntHFE3JKJDVl03BPD44zB9OvTqVe6m40PqY2ej4nxMKmeqMOfNUsjN1/HSypNk5Wnp09SLZ/o25plnIDtbTAJSShRLplcvkT5Eqyb1RJDJzmUHOzXdCuYmWrKOlz5NfjiijHP/3DnhEK1eXUNWWQeKM2QKRo4UcqhnzsC1a6JQZvduc1tlFnbsgKVLRXrstbmprA0VF6MF97W3ivTYisPXef2PUJbsi6jW4zzWqxEuna8BMv/8UziKq219N9oHupGnlfn7bGxZuyiVHo3FRdvq64Yeewy+/FKMKS8Hd0c7RrYV0gK/14JC6v/9e4mzN1Nxd7Tl00kdWLpUYtcuMZPr22/F+aVQMvroUPrJIH47cJN8EylH9y1P2NAC6BxUD7VKIiopi5vJpShN6xfvO3eKAa4KgOIMmYZ69aB9e/G4Tx8xTvnLL81rkxnIyipMj02bJrM2OhQQooJdrGAafXpOPl/vvALA3M3n+LEaHaJgLyeG9XDCoZko8ly4sPA1vRDlP2GVdYbE6vDotdsmuxFYA3pF6o2nokm34pEkh8ITWbxbzLL774R2yJka9A2wc+dC48ZmNK4auZWaTeiN5Crv5957IbixjC7bjogDPuy8aJpITt87RnPk5FumlIqzvQ3t6ou6ocOlRYZbthQFVrm5QvtEAVCcoarz5pvg5wcF7f7cLCjgVFt+FMTUvP++EFesXx+6TLxB6I0UnO1teGOkdYgrLtkbUUTG//3N5/hpf/U5RI/3Dsa1q9j/smUy8QXX7OEFc8YOXk2slK5Ja39X3BxsSc/J52y0FesNAeTnw65dsHx5uZv2CPaksZcT6Tn5VqtInZKVxysrTyHLMKlLICPa+jNjhpCp6NwZXnzR3BZWD5GJGdz3zQE+/PN8lfelVsMrL+sLqYNZcajyQqZ30tLPBS9ne7LytJyITDbJPquD7o3LkdeQpKICjAqA4gxVne7dMdzF7qSOtXmcPg0ffyweL/gsn6/2C4G4l4Y0w8fF8hXhkjJy+X5v8a6lOZvOsbQCDpGTk5Ohy/HOsQEl0bepF61CcrDzTSE7WzLc74O9nGjh60K+Tmb7+bgKfQ4QIwRqhd4QiA7NgQPhhRfEPJcyUKkkHu/dCICf9keYTIG4Jnln/VmiU7IJ8nTkvbFt2LBBlHao1fDDD7XzsnI+JpWJiw9y43YWh8KTOB5ZvJOyIucVwNSp4Oomk5/sxD9bdUSXljKqACqVEcKGFkCPYH3dUBkdqfpB41u2KJIwBSjOUFUZPx4efrj487XxqlUKWi08/bT4fd99cElzkaSMXJr6OPNYr0bmNs8ovtl1pdTUyuxN5/jl4DWTH1OlkpjauxHO7UWNy88/F968hxfUv1Q2VdaztugNdesGXl4iNLJvX7mb39cpEFeNDdcSM9l5UTiS1qI9tP7kTTYWtNEvfKAjulwbnn9evDZzpvWKK8qyTFxqNofCE/n9yHXm/3Wer3de4di1JA6FJ/LAtweJTytsFvh659UqH9PJCR5+qCA6dCbQZIXUhaM5LNcZ6tKoHioJIhMziUkpxQnUS8LExSmSMAUozpAp+OILkSq7kzqUJvvhB3E+ubrCjP+kGRyH2WPbYKu2/K+YVqsjJ19HE28n7Eqx990NYUxYtJ+r8ekmPfaEToH4dIwDlY7TpyVOnxbPjyhIle2+FE9mbsXrX/R1Q8euJZFnzXVDajWMHi0eGyFd4WRvw+SCjryvdlzh2eXHeW7F8eq00CREJWXyzvqzALw4uBkhDesxd67IugcHw3vvmdnASnArNZvX/zhN2/f+oduH23nwu0O8ufYM3+4O5+N/LjJx8UEe/O4QqdlFv987LsSZRBbi8cfF76xLfvy6N9okulu9C4a2notOJcNC69JcNLa0NdQNlRIdsrMT51X//uVGXOsKln+nsgY8POC774o+p6ob/7Tx8TBrlng8d67MV4fPopPFzVyveWHJHL2WxODPdvPLwUiuxmeQW+A4eDnb4XBX99uJ68kM/Ww3b/wRWmrYPTs7m/vvv5/777+/xLEBd+Nsb8Pkvn44NhWF1L/8Ip5v5e9CQw9HcvJ17K5EAWhLPxfcHW3JyNVaf6u5vr5h0yYwQkOofwtvJOBkVDJ/nY3lYqxld8xodTKvrjpNWk4+nRq689yAJpw7Vyi58OWXoovMWsjK1fLF9ssM/GQXq47dICNXi0qChh6O9GvuzZSeQYxq54ezfenR80V3RYcqel6BaEJs0UJGzldz9YiHSVrifV01BLhp0MkQesNyzyv9YqjMNPny5aIer0+fmjHKwqk7uZzqZuxYeOSRwkLPpNo7NPJOZs2C27dFCL9Rn1g+W5WEvY2Kt0e3MrdpZZKn1fH5v5dZtOsKOhkc7dT0auJJ/xY+DGjuTQMPR0B0mN28nUVEQjpLD0RyKDyRlceiWHfqJo/2COKFQU1xd7Qz7Fer1fLHH38AGJTRy+OxXkF83e4cmZf8WbZc5qOPJGxsJIa38eX7vRH8HRbLyIIOM2NRqSS6B3vwT9gtDoUnWrfY5bBhYiV75QpcvCi6YUogKimThf9eZt3JG9zpMiWk55KQnoOXs33N2FtBvtsTzpFrSTjZqVn4QAhqlYrp00Xt+LhxhYExS0eWZTaFxvDfP88TnSIclpCG7rw5oiUdG7pjb1N0caHTyYTFpPDFv5fZfiGOOwM3W87E8HJcOk19nIHKnVeSBFOnSrz5JmScDWTF4XAGtvSp8ufs2NCd6DOxnIpKNii+Wxrdgz34bk942XVDdWTBbizKv4Yp+fLLwvHRUdavdVIeBw8Wiph+/oWOz7aLoun/69/E4ExYIuHx6Uz85gBf7RSO0IRO9Tn81mB+eKwrj/YIKmK7s70NLfxcGNHWn9+f6cGaZ3vRPdiD3HwdS/ZFcO/X+7lxu2oqt0GeTvQdqEXlkEN8XKEi9YiCuqEd5+PIza94qqvW1A25uMCAAeJxOamyg1cTKCkbcumWZUaHzt5M4bNtFwF4b1wbGno6snKlkIDRaODzz81sYAX437ZLzPjtJNEp2QS4afhicghrn+1F98aexRwhEA57u/rufP9YV/a/OYgOgW5FXn/9j9NVtumRR0Clksm54cG2Q+mkZFY9JRTSQCwsTl6/XeV9VRddGnmgkiAiIYNb5Q2sjY+HS5dqxjALRnGGTIm7O4aKx8jKjVOwFrRaeO458XjqVLhuG8W1xEw8nex4pp/lCqFsDYtl9Bf7OH0jBTcHW756KITPJnXERWNr1Ps7B9Xj92d68MsT3Qis58C1xEzuX3yQK3FVqyW6p7M/Tq2jgcJUWUiDeni72JOWk8+BqxUXeuvRRF83dNu664agMFV24ECpmzTwcOS3Z3rg51q8e/GSBabKsnK1vPi7mEY/oo0f93cOJC0NXnlFvP7229YzU/OrHZf5YofQ6Jo+sCk7Zg5gXIcAJCPVIf3dHNgwvQ/fPtIZl4L02YnrySz4+0KV7KpfH4YMETakhAYYiuqrQseG7oBIw1rq6Bc3B1taB7gC5aTKfv4ZfH3h5ZdryDLLRXGGTI1+eFB8vFCirqUsXiykldzd4d338/l8+2UApg9qWmYtgDk5cf02L/wmRhz0auLJ3y/1ZUz7gArvR5Ik+jX35o9pvWjq40xMSjaTvj3I2SrU5oxs64drO6FRtW69THKyWDkPb+MLVK6rrLmPCx5OdmTlaU0iZmdWHngAjh2DNWvK3CzI04lfn+6Oj0vRlNi5GMvTW/rvX+e5Gp+Bj4s9H05ohyRJvP8+xMRA06YYhBYtne/3hPPJVhFZmDWyJTOHt6i02vzwtn6cfHcoY9uLtPCiXVf57UjVdIL0hdTpZwP5p5Kq7nfSNsANG5VEfFqOIR1oiXQvaLFfceg6r60+zeBPdxXRUQOgSxdRh7d9O2RY7sy1mkBxhkyNl5fQHgKh4VALSUyEd94Rj+fNgy2XrxGflkNgPQce6t7QvMaVQlRSJk//fIycfB1DWvmw7Mnu+LtVrSrVz03Dymd60La+K0kZuUz+7hDHrlWuVszL2Z4BvW2x9UojN0cyjA0a0UbcFLaG3apwN4y+bgjgUGldJdaCt7dQHTSizqGxtzO/Pt0DT6fCaN+RsmonzMCui3H8fFBEjz++vwMeTnZcvlyYFvv888KMuyXzy8FrfFAglPjK0Ob8X/8mVd6njVrFlw914um+wQC8te4Mf5+pvBNz773g7CKjTXXkz21asvOqph7tYKempb8LAKeuJ1dpX9XBjgu3eHTJYX49JL5fR64lsfr4DSISMnBzuCsC3rq1CD/m5IhZSnUYxRmqDu65R/z++2/z2lFNvPeeKJpu1w4eeDTXMDrg1WHNS6wNMDcpWXlMXXqUxIxc2gS48vmDIahVphnu5Olsz69P96BbIw/ScvL5v2WVb+Me28Efp7Yimvjzz+K57o09cHOwJTEjt1KOlr7A0+rFFytIUx9nfnump6Ej8HpSpsWMJolPy2HmalEP83ivRvRvLsY8vPqq6HIeORJGjTKnhcax/uRN3t0QBsDzA5vwwqCmJt3/W6NaMblbQ2QZXl9T+fohBwd48AHxOPGUP/uvVH22mCXXDTX1duFweBJZd9UZ1nO0K37dk6RCAcY6rkatOEPVwUMPiS/WihXmtsTknD0L33wjHi9cCN/vu0padj4t/VwY16G+WW0ridx8Hc8uP86VuHT83TT8+HhXnEycxnPV2PLzE93oHuxBZm7lV53D2/jh1lbUDe3fL9IltmoVg1uJDph/wm5VeJ/6LrLQGykWW99gNLdviwK1Vq1Eq1U5NPd1YdmT3ZAAnQzLDpm/jk+nk3l19WkS0nNp6efCmyNFZ9y2baI23MYGPvvMzEYaQWxKtkEX6ck+wcwc1sLo+iBjkSSJefe2ZUx7f/K0VfvuPvKIsC3rsi9/h1b8PLqbjg3cATgVlVzlfZmahp6OPFkQVbsTT2e7EramqDNk7deIu6jIvHTFGaoOgoJEP6yj5XZUVQZZhpdeEurtEyZAq85ZLD1wDYDXR7QwWbTFlLy/OYwDVxNxslOz5LGu+JZQXGsKHOzUfDE5BC93Fxq8/Adv/n4Yxwr+/7s72jGwkwt2/slA4UJNP6tsx4WKX8Sb+7pgp1aRkpXHjdtVH0lgVlxdYeNGuHBBtDIaQZdGHjzaMwiAxbuvmj069OP+CPZcisfeRsWXk0PQ2KrJzy+sX50+vVTlAItBlmX+s/4MaTn5dGjgzlujWpncEdKjVkl8Nqkj/dsE0uDlPxg0/29s7Cp+DvfuDa7uOnTZdmz4J7fKAoz6IuozN1Mssjnh+YFN8b6rbs7DqRRnqH9/IdkdHV04Y7MWkJ9fWMJrDIozpGA0GzeKOjt7ezGH7Ivtl8nJ19GtkQcDW1Rdv8PUHI+8zfJD15Ek+PKhEEN3RXXh66rh0wc6orLT8NvJeLaeq7jzMqZ9gEGAccMGccHu2cQTlQTXypLXLwU7GxUt/ER9g9WLL6rVIocERqlR63ljREtcNTbcSs1h7cmb1WRc+Zy9mcJHBd1R74xpTTNf8f/y7bcQFgaenvDuu2Yzz2g2hcbw7/k4bNUSH09sX+2LIDsbFZ8/GIJ3PVeuJuezaFfFx3XY2MC4scLO2DMeHI+sWnor2NMJNwdbcvJ1XIixvE5FZ3sbXh9edEC2p1MpOlsaDQwdKh5X4LyydL7/Hs6dM357xRmqLm7fFm7psGG1IvSYmytqGkD8tvfI4o+CyeCvjTB9iLyq6HQyszeKeob7OwcyqKVvjRx3YAsfQ+Hn63+EcrOCAyKHtvHFtaVo/932L6SnizScXl6/MrU/+vdavTMEhQqEFWhOcLK3YXpBPcvn/16ulGZTVcnIyWfGb6KNflhrXx4uaDRITi4ctTF3LtSzcG3MpIxcw3k1fWAzmhc4dNWNh5Mdc+5pA8DXO69wvhLdgePvLUiVXfGtcleZSiXRoSBVdjLK8uqGQMzpax1Q+P/jZF9GPef06fDjj/B//1cDllU/ycmFTT7GojhD1YWDgxBh3LYNQkPNbU2V+fpruHpVjGCbNQu+232VPK1Mz8aedG3kYW7zirH6eBRnbqbgYm/Da8NrLu+Qk5PDxZUfod35Fclpmbz0+8kKheRdNbYM6+2AjXsGuTmFAoxVEVBsW19ExKrS+m8xDB8uIkTnzkFEhNFve7RHI7xd7LmZnGWyoZ3GItJKZwlPyMDPVcNH97U3LB4+/FB0Z7ZuLYYdWzrvbwojKSOXFr4uPDug6p1jxpKTk8Mfn72F/f5vyMvN5bU/Tlc45TlsGNjaiUn263emV7mGLkRfN2SBHWUgHLa597Q1/F1mF93gwaIez7dmFo3VzQcfiPOqRYvyt9WjOEPVhUYjvmBg9S32SUli1Qrid6aczW9HxQ3F1B0kpiAlK48FfwtV3xeHNCuWO69O8vPzWbbsF24c+RsnW4mj126zvoKpmbEdA3AoSJVt3Cgu2HoBxYOViAy1K4gMnb1ZC4qoPTxEAQhU6LxysFPzXMHN+6sdV6rcXl0Rlh+KZN3Jm6hVEp8/2JF6BbUb164VttJ//LFI5VgyOy/Esf5UNCoJFkxsj51Nzd0+8vPz+fnnn7m0bwuu9irO3kzl2z3hFdqHszMMGiS+/+HHXblQRSFOfd2QJRZR6+kc5EHDAkX9ZBOob1sDERFidjoI6RdjUZyh6qSWtCzOm1fYSj91KvywN4LcfB2dGrpb5GyeL7ZfJjEjlybeTkzp2chsdkzrL5S4P916sUI338EtfXBvKYZKbtgok58PXRt5oFZJRCVlVXj8Rws/F2zVErcz8yqctrNIKpEqA5jcrSH+bhpiU7NZcbhqQn7GcuL6bd7fLAoX3hjRgu6NC8+Xt98W6efBgwtLoSwVWZYN9U5P9gk2pIjMgb4D7/N/L3M1vmLK7xPGi1te5mVftlaiO/NOOga6AxCekEFyZm7ZG5sRvfZbTHljOWJjRSvj++/XgFXVx5tvivNqyBDwamF8ClNxhoykUitqvVjIoUOQUHVtC3Nw5Uqhl/3JJ5CSncvyghblFwY1s7haoStxafxc0OH27tg2Nbp6vZuHewRR392B6JRsftp/zej3OdnbMHSQGpUml+TbKg4cEAWR7Qx1QxXTG7K3URtqO2pFqmzMGGjTBrp1q9DbNLZqXhjUDBBztCpajF5REtNzeH7FCfK0MiPb+vF038IxNUeOwK+/CpmXTz4Rvy2ZXRfjuRCbhpOdmukDm5nVlns6BtCvuTe5Wh0L/71coffqp7rkxtRj48GqCXHWc7Ij2MsJsOzo0KCC4bTXE8vR2oqKEgWhn3wivAkr5OBBWLWq8Lz6ZrfxxfaKM2QkNyvTlhwYKMa5yzL89ZfJbapuZFmot2q1QlR72DD4aX8Embla2gS4MqCFt7lNLMaCvy+Sr5MZ0srHIGZnLjS2al4d1hyARTuvFJfCL4P+Lb1waCIKqTdsEM/po3CVqRtqV5uKqFu3FoJXc+ZU+K0PdG1ASEN30nPy+c+6s9WWNszX6pjx+0liUrJp7O3EgomFdUL5+YW6rGPGiEuEpaO/qTzUvSFujsbN8asuJEnijRGiGGRzaDRX4oxPd/n7Q+euwiE4td+RuPKiJeWgrxs6aaF1QwBNvZ1x0diIzreyUoOdO4uaobQ02Lu35gw0EbJc2OTz+OOg8U2r0LVScYaM5Hxl88uVDOmbG1mGKVNEyy+IWvDU7DyDrtD0gU0tLioUlZTJtvMi9K0PpZubezvWp7W/K2k5+Xy5w/hVbN9m3jg0E59l/XoZWYYejSuvJt3GUDdkeTO6ahK1SuKj+9pjq5bYfiGOzaExJj+GLMu8syGM/VcScbRTs/iRzoZBwPn5oos5tqCZyRqm0h+PvM2RiCRs1RJP9rGMIcxtAtwY2toXWYYvCwbEGst9d6TKDlVxTIs11A2pVJJBJPJEWYrZKlVhNsPK7lcA69aJyJCjoyjtaOHnwrInuxr9fsUZMpKLlR30OHq0mKtkRVX6Op3otFy+XPzt4QFdu4pC0LTsfJr6OBuEAC2JFYevI8vQp6kXTX1qpuW3PFQqibdGtQLEv19konHDEBt5OtKkYzqodISHS0REQJegetioJG4mZxGVVLG6oVpVRK0nKwv++afC0hXNfV14fqAo/J+9MYzbFYjYGcNXO67w2xGhb/XZpI6GFGVODtx/P+zaJbarXx+CiwsFWxz6cTvjQ+rj52Y5A9NeHCzSdZtOR1eodkhfypkT5cH+i1VzhvRjOU5Z8AR7KFSiP1GevpKVLt7z80WXM8Arr0BAwfztkIbGdzorzpCRnI+tpDPUvbtYBlrDEhDxpXriCVi0qPC54cMhT6sz1OJM698ElYWpTWfnaVl5VBTF6hWHLYU+zbzo19ybPK3MpwXTvctDkiQGtquHfYEa9c6dopZIX7ha0VRZSz8XbFQSiRm5xFjwpG2j0WqhYUMYMQJOV3xu1bMDmtDMx5nEjFzmbTlvMrNWH4vi023i/3j22DaMaCsWDZmZIuW8fn3htvqbsiVz+VYa287dQpLgmX4110pvDG3ruzGklQ86WTigxtKmDbjV0yHn2bBtT9Uc4Zb+4rxKycqz6An2nYMKnKHy0nlDh4KtLVy6BJcrVo9lTn78UZjs5QWvvVa5fSjOkJFURuQLEKFHIyZtWwK5ufDgg4VDQvUMHAh/nonhVmoOXs72jO3gbx4Dy2BLaAy3M/MIcNMwuKX51LAdHR2Ji4sjLi6uyDgOfY3DljMxRBvZ0dWnqTeahsLp2blTPNejsVjpVLTFXmOrNige14q6IbUaevUSjyuxirW3UfPf+9ojSbDmxA1Wm0B7aOeFON5cewYQztZjvRoBogRj1Kjic5v79q3yIaudxbtF+/qw1r409XE2yT5lWeZ6YiYbTt1kzqYwnvr5GB/9fYG/z8YSk5JVYoSltPPqxcGiJm/DqZuEGxkdUqlgwADxODzUibi0yjsxtmqVoYj6SlzFOttqko4N3ZEkMbA4IT2n9A1dXQu/mFYSHcrIKBQufecd8REqg3XcpS2AuLTcsr9E5aHTwZkzpjPIxGRliZXrmjXFX+vaVebHfULg7tEeQRY5mf6Xgg63h3sEYaM239dakiS8vb3x9vYuUlPVJsCNno090epkVhw2bmBoryaeaBoJp2f7DlE31LOxFyDqhioalm9Xm8QXoTCkX0npis5B9Xh+gEiXvbn2TKVmv+nZcOomzyw7hlYnMyGkvmEUwu3bYrFd0sDIrsaXM5iF2JRsNpwSGlnT+psmKnTy+m1GLNxLv4938uLvp/hp/zX+PX+Lb3ZdZdry4/Scv4NJ3x7kwl2R+NLOq3aBbgxuWRAd2ml8dGjYEHGNyLnuyeEKdmfejd5JvHzL8sZy6HHV2NKswE6jUmX29lbTAb1woUi+BAfDtGmV34/iDFWAsOhKRodyc6FRI2jfvkKquTXJokUlN7w5OECuazKnb6Rgp1bxcI+GNW9cOYTeSOZ0VDJ2ahUPdG1gbnNKRR8p+O1IlFG6Q/Wc7OjSVQtqLbExEpcvixu4rVoiJiWbyMTK1w3VCvTFnocPQ3x8pXbx6rDmTOhUH61O5rkVJ8ouMC2F7/eE8+Lvp8jTyoxu718QcRI37GXL4OjR4u9xdYWmlqdXWoSNp2+Sr5PpHFSPkIZVmxOSnadl/l/nue+bA1y8lYatWqJDoBuP9Qzi3TGtebBrA1r5u6JWCaHSMV/sY/5f58nMzS933zMKaoc2noo2esE6cKD4nXOzHvuqWDekdzIsOTIEd9QNlZcqe/ppobRbEcVCM5GYCAsWiMcffAB2pcyiNQbFGaoAYdGVvInY2QlnCODPP01mjyl59VXYt0+UYdxJ587w8yHhwN3TMQAv55pTczaWXw6KSMuodn5mty8nJ4fnn3+e559/npycohfmIa18CHDTkJSRa3QXU//WntjXTwZEqszBTm3oDKloqqyNob0+1aKLPY0mMBA6dBAF1HfnoIxEkkR32YAW3mTn6Xhi6VFCbyQb9d7sPC2zN4bxwZ+i5mhq70Z8+WBIEW2rGTNEQLh586Lv7dLF8rPn+u/ovR0DqrSfm8lZjP1yH9/uDkcni0LsI28NYcP0Psy5py1P9Anmv/e1568X+7LvjYGMaONHvk7m293hDF+4h6ikzDLPqw4N3OnQwJ18nczaEzeMsqllS6jnqUXOV7NtV9WUmZsWpJ+txxkqx+F3cREtWVbAf/8LqalCnuKBB6q2Lws/HS2LsKq0JVtBlX779qLQE0QHGUCbrln8XTDUcGpvy2t9ScnMY9PpaAAeNaPatJ78/HwWLVrEokWLyM8vuqq1Uat4pKC4++cD14xySPo280bTUISrt28X23cpmAVn7E1bT+uClXdCeg63UquQ8rUk9OdVFRYZtmoVix7uRIcG7iRn5jF+0QHm/3W+zOjdv+duMfR/uw1SE7NGtuTdMa1LbCzw8YGYAt9X3z1m6SmyyMQMQm+koJJgRNvK1wim5+Tz5NKjXI5Lx9vFnu+ndOF/DxSOJLkbfzcHFj/amR8f70J9dweikrJ48LtDXE9IK/W8AniwICL8+9Eoo84rSYIBBdGhqtYNNfUuSJPFVX3eWXXSKcgdENeNPGPnuqVarhTHzZvw1Vfi8QcfVH1xoThDFaDSkSEovGjv3FnocVgY//ufSBM3bw6RkfDRR5AffA2tTqZXE09aB1SyMq0a2XHxFjn5Opr5ONOpQPPD1By8msgX2y8za20oj/14hKd+PsqyQ5HEVqJ75MGuDbGzUXHmZkr54WrEas69idhu+05RN1RZAUWNrdoQ0q8VRdRQeF79/bdohawkjnY2/Dy1K2Pa+6MtiEqM/HwvP+wN5+DVRJIycgm9kcySfRE8/MMhnvrlGFFJWfi7afju0c78X/8mpepuzZ8viqg7dRIdL8uWCQFTS0YfFerZxLPSs/20OpkZv53kQmwaXs72rH++N0NbGycxMqilL+ue60WwlxM3k7OYuvRImduP7RCAo52a8PgMjpVXE1PA8CGi9jG7inVDjb2dUEliJmJ8VepKq5nGXs64amzIztNxIaac+qYrV8TquFWrCktX1BRz50J2NvTpY5pxNoozVAGuJWaSll3JkGqbNiIHlZ1d2BpkQSQkCPlyEF8yZ2d48RUtx26LLhtLjAoB/HteqDQPa+NrchHIS7fSeOzHI0z+/hCfbbvEb0ei2H0pnn/Px/HO+rP0mL+d+745wLkK1JJ5ONlxTweRdtBLFZSFnY2K/r3VSDZakhJUnDtX6AxdjE0jN79ik7v1Du3FykpFWBrdu4t5SgcOiA6zKuDuaMdXD3Xiu0c74+tqT0RCBvO2nGfy94foNHcb477az9zN59h/JRFbtcSzA5rw7yv9GVaG5taNG/D11+LxBx+IYayPPAKDBlXJ1GpH7wyNaV/5FNmHf55nx4U47G1U/PCYiPSURnaelsS7HAkfVw2/Pt2dBh4OXE8suwPT2d6GMe1FBGvlUeM6Aw11Q9Hu7D1feWdIY6s2DEO9cstyU2UqlWSo/ToeWc7nDQyEq1chOhpOnap+4yrIlSuwZIl4PH9+6eNstDrjHTnFGTISP1exOjpfnkddGpJk0amyBQvE6jUkBCZOFM/9E3aL5Mw8/N00hvk2lkRuvo49F0Xh7OBWphO11Opk5m4+x4iFe9h9KR5btcS9HQN4aUgzPrqvHW+MaEmnglbV45G3uffr/fy4L8LoELm+kPrPMzFGjejo18oT+/ri4rVzJwTWc8DNwZY8rcylCnawNCkI6UckWGZ0ssKo1fDyy2IFayJneFgbP7a+3J/XR7RgeBtfAuuJm7irxoZBLX14bXgLtr7cnzdGtMTJvuxR8x98IMQW+/YVel3WwNX4dM7HpGKjkhhRSXHVTaejWVLQgfrZpI6GOjc9Wp3M32djmbMpjHu+3k+72f/w378uFNuPv5sDvz7VA3+38qNT+uaJLaExpBqxaG3WDDx9tKBV8+/uykcVAYPI65UKDo6taUIKoueh5UWGNRox6RQs8n41e7YIBI8cKSJDpXGyAg0RVucMLVq0iODgYDQaDZ07d2ZvGTNUdu3ahSRJxX4uXCh+0pVHS38TtCXfKXVuQaHHmJjC3Ou8eYW5V72I4f1dGqC2MJFFgKPXkkjLycfL2c4wQbqqyLLMuxvOsmRfBDoZRrTx499X+rPwwRBeGtKcB7o25NkBTVj7XG8OvjmYIa18yNXqeH/zOaYuPUp8Wvlh8rb13WgT4Eq+TuafsNhyt+/U0B1NkCiW3rNHRpIk2layTb6Rp9BEiUiw7Iu2uXFzsOW5AU359tEu7HtjEGFzhnPq3WH8+HhXnh/Y1KAtUxYREfDDD+LxvHmWP4xVz+bTIirUu6lXqbU9ZZGdpzU4NtMHNmV0+6I1R9cTM5n83SGmLT/OT/uvcToqmTytTERCyersDTwc+XxyiOHvP8+U3HzQqWE9mvo4k5WnNdQRloUkwcAB4nH4WQejzt3SKGyvt+zzSh9VNqr+1QT1eNVBWJgYcgzlN7xtvxBn9H6tyhlauXIlL730Em+//TYnT56kb9++jBw5kuvXr5f5vosXLxITE2P4adas4lOXW/mJm0+l2+tBxMZnzoSlSyu/j2pg/nyhM9SzZ2Hu9XpiJvuvJCJJcH/nQPMaWArbzgldmIEtfEymiP3xPxdZcViMUvj8wY4sfrQzQZ4l3/j83DR8P6ULc+9pg72Nil0X49l50biTT3+DKO3Cfiet/F1xDBROz6HDwoluG1C5uiH9TfxaBdvyLZ4VK0Q7SaRxGk4VxcnepsLfsfffF6vXYcOgX79qMata2BwqHIkx7StXOP3T/mvcTBb1VNMHFeoHyLLMb0euM+LzPRy5loSTnZopPYNY+EBH9rw2kNXTepa6z3b13Q2P3998rsSCZ0mSDIXUxqbK+vYWqdXcWHeOXqt8qkxfi3e5AkNjzUHbAmfoclwaWbnlyHvoF++HDlmU5tB774lYwn33iTq80pBlme3njdcOsypn6LPPPuPJJ5/kqaeeolWrVixcuJAGDRrwzTfflPk+Hx8f/Pz8DD/qStQWtArQO0NViAw5OsLHH4tktYUsE69fh2+/FY/vXL2uPCYczD5NvWjgYXltlrIss71AJM9UKbLv94SzaJeYw/TBve24p2P9ct8jSRKP9mzExul9eLpvsNGO4+h24kZzoKA4tyw0tmradxS1QVHXVSQkFF7UzlbQOW/kJf4vkzJySc407Uwus/LNN7BqlcWsYi9ehF9+EY/nzjWvLRXh0q00LselY6dWlVkLVRqJ6TksKhA/fG14CzS2hdfapQeuMWvtGTJztXQL9uDvl/rx/j1tuTekPg09HY2u+UvJzGPWmjMlpqXHh9THRiUReiOFa6VEmu6kSxfxOzfWrUpR/2a+1qE15ONij5ezPTrZiBFTJpCuMDUnTghhYEmCOXPK3vZcTCrRycY3uViNM5Sbm8vx48cZdlcbxrBhwzhw4ECZ7w0JCcHf35/Bgwezs5zi5ZycHFJTU4v8ALTyK9SSMEYwz1qYN09oQg4cWFjUma/VsfqY0OuY3M3yRBZBtLFGJWVhZ6OibzOvKu/vYmwa//1bhPbfGNGSh7pX7HO38HPh7dGtcXR0JCIigoiICBwcSi8YDfJ0om19V7RGpso6N3PGxkNcaI8dKwx3n49JNb5NFtE15ecqhm2WlpawSiwspD97thCdHzcOunUztzXGs7ugBq9XU0/cHGwr/P4vtl8mLSefNgGu3HvHYmLv5Xjmbj4HwIxBTfn96R4VWmQ5ODgQERHBv0fOYK/RsP1CnCEyfCeezvZ0LxhZU9Lrd9OxI0gqGW26hiNhxo3JKQl9LV5Ceq7JB/+akjtT7GHGOH/66JCFnFfvvit+P/SQ6Ekqi3/Oln9dvROrcYYSEhLQarX43jX93dfXl9jYkj+0v78/3333HWvWrGHt2rW0aNGCwYMHs2fPnlKPM3/+fNzc3Aw/DRqIsKufm4Z6jrbk6ypetFoEWYatW+HFFyE5ufL7MQHh4fDTT+LxnavXXRfjiUvLwcPJjiEmLEw2Jf8WhD97NfEst4i1PPR1QlqdzPA2vjw7oPKjB1QqFY0aNaJRo0aoyhG+GFUQHdpihABjh0B37P3ExevoUWjo4YiLvQ25+boKr0YLU2W10Bnavl3kfM1IWBisXCkel7d6tTSOFKSKejb2rPB7ryVksOKwiCi/PaqVIa0YkZDB8ytOoJNhYudAXh7avMIpR/15NbhrW54uGBj72bZL6EroFtJfs4xxhhwdoUlzsbg9dUKqtE6Qk72NoVvO0ouo9Sn2s8bUDY0fD1OmiKGVZubwYVFuq1YXziIri3/CKjZex2qcIT13h1JlWS41vNqiRQuefvppOnXqRM+ePVm0aBGjR4/mE30PeQnMmjWLlJQUw09UVJThuC0L6oaqFAqVJOEIffEFbNtW+f2YgLlzRU3D8OHQu3fh86sKhlbe16l+ETVdS2J7QUu9KVJkm0JjOByRhMZWxTtjWld5f8aiT5UdDC8/VdaxgTt2BRPsjxyRUakk2hSs8CpaN9SowBmKiK9FzlC7diKsn5VV8iCwGmTOnMKaho4dzWpKhdDpZEPdTLdgjwq//7cj18nXyfRr7k2vpiJam5uv45lfjpGanU+nhu58ML5tlSUwnunXGBd7Gy7EpvFXCat/vZbRscgko7o1e3YX17iECCfi6kARtaH5wpiSj65dxeTuceOq2ary0UeFpkwRnYBlcS0hg4u30rCpgNNtmXe6EvDy8kKtVheLAsXFxRWLFpVFjx49uHz5cqmv29vb4+rqWuRHTxMfcRO5WlXP3wJCj5cvF9Y03Ll6TcnKY1dBqPw+Cy2cTsnMM0jKV3VCfXpOPh9sEeH75wc0JbBe1eqjcnNzee2113jttdfIzS37QlyRVFljb2fcG4rv3aEjQnyxcIVXMWeosd4Zqk1F1JJkEedVaCisXi3MmT3bbGZUistx6SRn5uFgqzbUpBlLnlbHmhNiqOsjd6SYfz96nctx6Xg527H40c6VHvJ853nlaANP9BG6Z//791IxLZnAeo608ndFJ8MOI7qJenQrGNoa61almtCmVjKjTP9/e+lWGjn51lHysW+fSKjY2MB//lP+9vrraddGxjv1VuMM2dnZ0blzZ7bdFU3Ztm0bvXr1Mno/J0+exN+/cl0Sjb3El/1qXBVX1PqQ/l9/icICM/D+++LQo0cL3To9W8NiydXqaO7rbIiEWRqhN5ORZZEqCihDyM0Yvtt9lVupOQR5OvJ0v8ZVti0vL49PPvmETz75hLy88rVOjE2VqVWS6JyQdCTEqYiOFhO7oRLt9V61tL3eAqQr9A7QpEnQtq1ZTKg0RyKEfEOnIHds1RW7Ney6GE9Ceg5eznYMLFigZOTk88V2sfB8cXAzfFw0lbbt7vPqyb7BuDnYciUuvcQ2en10aNu58utG7iyiPnOj8t3C1tJRVt/dAXdHoVNmVBRLluHkycJOGzOgT4tNnQqNjbhM652hwa28jT6G1ThDAK+88go//PADP/74I+fPn+fll1/m+vXrTJs2DRAprilTphi2X7hwIevXr+fy5cuEhYUxa9Ys1qxZw/Tp0yt1/CYFX/YqR4b69BESz7duifL4GubixUKdhrtrGjaZQHm2ujkdlQyIAY1VITdfx69HRI3D68NbFul8qSn0onZHIpLKbXXt3MQVWy/x3Tt6FNoURIbOxaSSX4Ei6uA70mSWPEupwgweLMTivLwgpebHjZw6BevWiaiQMTUNlsbhiIIUWaOK1wutLkitjw+pb3CkluyLICE9lyBPRx40cSOGq8aWZwoWL1/uuFzsezyswBnacymh3IaX9u1BrZbRZdlz+Ezl682spaNMkqSKRZUTEsTE7mnTxECwGmbPHtixA2xt4e23y98+NTuPUwX3iP7Njc8cWJUz9MADD7Bw4ULef/99OnbsyJ49e/jzzz8JChLDL2NiYopoDuXm5jJz5kzat29P37592bdvH1u2bGHChAmVOn4T78LC04rcfIphZwdDh4rHZgjp66NC48aJ77iepIxc9l8RehKV1RipCU7fECdwh8CKhfLvZuu5WBLSc/F1tWdYG/MUigd7ORHgpiFXq+NYORL5HQPdsS+oGzp6VKS7nOzUZOfpCK9AZ1hDD0dUEmTkai16llKFcXaG2FhRaenuXuOH1y8sHnxQCGJbE7Jc+Xqh+LQcQzrq/i6i4SQxPYfv9oQD8OqwFhWONBnDlJ5BONqpuRqfwdFrRZWG2wS4EuCmIStPa7imlYZGA01bCofpxPHK1zPpO8piUrLL1/AxM20qUjfk7V3YEvnXX9VoVcnoFxZPPgkFt/oyORKehE4W11b/CmQOrMoZAnjuuee4du0aOTk5HD9+nH53qJktXbqUXbt2Gf5+/fXXuXLlCllZWSQlJbF3715G6UPplSDAzQGNrYo8rcyN21XsWDFTfcOFC/Dbb+Lx3TUNf52NQauTaVvflcYFJ7alIcuyweuvamRoxSHhOD/QtWG1XKyNQZIkejYRxab7rySWuW37Bu7YFXSUHTkqiqj1yugXY40PzdvZqAy1UbWqiBrArWoOcmU5eRLWrxdRoXfeMYsJVeJ6Uia3UnOwVUuGkQ3Gsv7kTfJ1Mh0buNPcV0iQ/LT/GukFLfZj2lXPwspFY8u4gjl/vx0pKrwrSRJDCqJD+vmFZdGzu3CCYq46VFp/y83BFkc7EV2OTa34EOeapEIdZWA26Ypdu8SPrS289ZZx7zkYLq6jPSrYEWl1zpA5Uakkgr1MlCrTO0O3bonhrTXE3LkiBXzPPWIO2Z3oc+9jLThFFpuaTXxaDmqVRJuAytc0XYlL52B4IioJg2qtuejdVJy0B6+WvYINcNPgHSS+K6FnRFpAP17DGIG5O6mV7fV3kpoqhoLVEO+/L35Pnmx9USEoTJG1D3SvcLp43UmROrm/i2i40Olk1p4QOmXT+jcxmTp8SejTb1vOxBRzYvo1E/Uih8PLXmQAdOkkPnNegnOFBi/fiSRJ+LmJuqiYZPPKO5RH2zt0yozKcujvV9u2CWG6GkIfbX3qKWhg5GX64FXx/92zieIMVSv6VFmVnaGAALh0SYj9aCpfWFgR7owK3V3TEJeWbbgg3j1LyJI4HSUiI819XXC0q7y+kH4lOailb5WLsKtKr4LI0JmbKaRklV50LUkSnTqIUzYuVkVqKgQXKEpXdLyG3hmqSHrNanjiCfD0rLFV7KlThVEhYzpdLJEjEZVLkSWk53AuRjgPwwvq3w5FJBKdko2LxsZQyFxddAh0o5W/K7n5OoNTpqdrIw8kSXzHy5s71rKl+J2X6FylkUsBbuJaEpNi2ZGhIA9HnO1tyMk3MsUeEgK+vpCeDmXMAzUlu3cXRoVmzTLuPbczcg3fxx6NK/ZdVpyhCqLPC1e5owyEWEINjuWYN09EhcaNKx4V2nUhHlmG9oFuVW4vr05O30gGoGODyqdD8rU6w8r14QoqTVcHfm4aGns7oZPLX8W2bOiA2klcaM+fL+wMq2iEJ7g2ag3pcXERAlo1VN+gjwo98IB1RoUATkSKmptuFWhFhsJVeEs/F7ycxWT5dQUt9mPa+1d7U4IkSUzuJkIGvx+JKlJI7eZoS4uCtN2xcuaO6f/f8pMdOR1ZeWdIHxmy9DSZSiUZCr6N6ihTqQoHV9bQeaWPCj35pPFRocMFHZHNfJwr3L2oOEMVxGQdZXei1VZ7i/2lS4VRIb141Z3oB4wObFE13Z7qRt9J1r4KU+pP30jhdmYebg629GtufOvlneRpdVxLyChWKOng4MDZs2c5e/ZsmeM47qZ3QXTowNWynaEmPk7YeIrv3vnzhWmyyAo6Q5V1oqyCO+vxqrlbLjS0sIPMGmuFAHLytYbvQesKpp4PFKR2exeILGblag3Dhyd0Mp1OWVnn1T0d66OxVXHxVlqxqI5eZ+ZIOc6Qvz84OulAVnHibPmSGKXup8AZirbwNBlUQgpAf17VgKjpnj2wc6fQFTI2KgSVT5EBVG2OQR2ksanTC88/D7//Dhs3FpWBNjEffij8rTFjinaQgWgx33tZXNQGVVHEsDrR6WTOGDrJ3Cu9nz2XhKhkn6ZeqCtYzxAWncJ3e8LZeSGO1Ox8QOh2PN6rEVN6BWFvo6ZNeUNzSqBXE0+WHYost/OlsZczdl5p5Fz34vx5uO9BEcVLSM8lLTsPF41x86Qa3zG9XqeTq7Wuo8bp3x8cHEQb8Jkzone6mpg3T/y+/35oXXPi5SYlMjETnQzO9jb4uNhX6L37ruidIXHz2XouloxcLQ08HOgSVM/o/cSn5fDLwWusOhZFWnY+akmic6N6PNazEf2be6NSqUo9r9wcbBnQ3Ie/w2LZGhZbRDCyW7AHyw5FGtKApSFJ0KyFzOkTEHFVXelzwr8gTRZr4WkygGY+Imp22VgpgOHDxbibPn2q0SqxfnnsMfF44kRoWIHgvb54ujLjZJTIUAVpXFAzlJSRa5TUe7kkJYmfLVuqvq9SuHoVli8Xj0uKCh2LTCI9Jx8vZzvDAFBLJDwhg7ScfDS2Kpr7Vr7bbc9l4Qz1a16xAa+rj0UxftEBNpyKJjU7H1u1uFjeTM7igz/PM/SzPYQWpPEqSs8mnkiSuDAllNHu3sTbCduCyFBYmA4ZqOcoHKAVh66z7FAkX24vrrtyN35uGiRJOMK3a9P0ehA1eIMHi8fVeF6FhcEff4jH1hoVgkJdnCY+zhUalRGVlElUUhY2KoluweLms+m0iAqNDwk0el//hMXSd8EOvtxxhVupOWTmaknLyWfXxXimLj3Kg98fKvdaq5fG2HrXPDJ9DdT5mFTSssuO+LRrI26HWXFO3EqrnDOjjwxZes0Q3KGYbez4EFdXMc3bzq4arYJnnoFr18Rj/WLDGBLSc7hU8Fm6K85Q9eNoVziQL9wUqbIaaFmcP19k4kaOFKNm7mZngUZI/+Y+Fh0h0Evltwlww6aSrfApmXmGVFtFUmRf77zCa3+EkpuvY1BLH9Y825MLc0dy6t2hLLivPT4u9lxPymTy4n3838tvMHv27HLHcdyJu6OdoR6trFlj3i72uPiJEPyeo7m0n72V25niIv/fvy/wzvqz/HU2ttwbka1ahYejuKjVKq0hPfqQfjXWN3zwQeEMMmtTm74TgzNUsNAzFn0Us0MDd5ztbdDqZEPN21AjZwZuOh3NcytOkJ2no0OgG4se7sSe1wby54y+PNUnGCc7NUcikhj7+U5mvDar1PNqUEsf1CqJC7FpRCUVNhP4umpo6OGITobjkbeLve9O2rQW50x+ojORlRxVYy01Q1DoDIUnpFdNN8+EfPop/PCDeOzhAU0qMDNbf91s4u2Eh1PFHTbFGaoEjU3VUQYi9ChJcPp0tah7Xrsm5uxB6avXnQWzyCw5RQZwveACVdGL9p3su5KAThb5cn1IuzwOhSfy6daLAMwY3IwfpnShc5AHapWEu6Mdk7o2YPur/ekW7EFaZg7fLVzAnDlzjBrHcSdtC+o1zt4o3RmSJInmLcSFKz3BHjm/+ClsrE6Md0FKpLxOG6tE7wwdOAC3y74JVoaLF0V2G6y3g0yP/jqmvzkay/6C+ozeBfUZ52NSScvJx8XexqjaoyMRSbz4+0m0OpkJIfVZ82wvRrXzp6GnI60DXPnPmNb/z955h0dRtW38nu3Z9N5IQiCEFnrvSBOQoqjYQBCs6KeAXV8Vu4IVsTcsWMCCBaR3CBBKqAklvfeebJ/vj7Mzu0m2zMzuJrshv+vKlc1mdvZkM+fMc55yP9j88BjEBimRV16Pj955y+q8ClDK2ORva94he6Ey84qyXIHGEFNNVtmgsat83d5EB3jBSyqGVk8jp5Lj39vURBqN9+8PNDq3t+GnnwJPPGH6edQofq9nJBEYZX6+dBpDAmB28E7JGzJX93SBd2j1alJYM2WK5Ysrv6oRV0vrIRZRGNuDX9iorck1TtgYB6rdmHwhrl6hqgYNVvyaCgMN3DKkC1ZOTbToPfNVSLH+nmEYHm/Kk+CrQsvkOthThe3dTQZKrgVtoBCka139MyiWW65GhzaG4uJI+4C1awGx8yua3niDeIVmz/aszvSWYDxDCTyFVpleZkyH+qNGr9Cw+CC7uXhqnR7P/nEWBhqYPSAKa24dYNHb2yPcF5sfHoOuIaY5b82LwZTx72jR9Jgxkux5hlhjqNIb2eXCbvR+XhJ4GSvo3D1vSCSi+DeXVShIxcC5cyTD2Ul89x2wbFnz5yxFMWzBGEN8iwAYOo0hATBhsqJqJ13s5o1bnUhBAfD11+Sxtd3rcVZszR/+XtySb9sLxhiKDRZuDDEJn1yNoQ92XUZRjQrdQrzx8hzbidFKmQTv32bSLFizPZ3X2FhjyI4qbPcwHzZvaLBfa316zp4hnw5sDAFkq7lsGcl1cCKZmcCGDeSxJ+cKAaQoIdMor9Cdh2eoqkGDklpy3TDX7dFMspZw0Xf5bF8mMsoaEOIjx2tzk2waT0HeMqy93TSvmDYfLWGMoZTsStQ0mrxHTOuJ9OI6m7l03bsDIjENWivBxavCKsooivKovKEefI0hinJ6CHrjRiIN1hK+MhWmNIpOY6jNYOPCzrrYXaTu+c475HTjxpECG0swPX2G8dQXaQ+YXICYIGHGUEW9GgXGktchHCpdyurU+CWFNKB89cYkeMvtF1+ax6p/Pp5ndzdqDrOjKahuspkw2i3UG9JAcgOLFodAYnYj8feSIj6YWxixQ3uGXMhbb5EcvOuv5797dTcKa5rQpNVDKqYQy2NeXS4h5dhdAr3YfCHGUzQi3nbyalmdGh/vuwoAeHF2H/gr7W/Cehj1ggDgy4OZ7Dw2JyZIie5Gva4Us1L6hDAfiEUUapq0rAFnCakUiOxCvLlXrgqXZGBVqGvcv7w+gdUa4t7Oh71fbdnisHTF3r3AXXdZVpbhYwzVq3Ws8GyfyE5jqM1gtSScdbEPGgRMmwasWOG01hylpcDnn5PHtnIaThqbg3IxDtoTtU6PImNSIp9F25x0Y/+uuGCivmqPbw9nQa0zYEBMAEYL0K0AgLe3pXPuDO+nkLJiiBdshMq6h/pA7EeuvbJiMa43azLbN8qPcxI8awx1xARqhtxc4LPPiPy6E8jLA9avJ4893SsEABlGr1BcsDev/nyMMcSIGqYX16JWpYOPXGJ3Z/5rSi40OgMGxgRgtgC1e5XWgDe2pln8HVPVZq4rJJeIWSmJtGLbXldG3C8vn/ewWCI9RIUaEFBeD5gqyrKzHZ5X48YB33zTugGrSAQkJnI/T5pRdTrCT4FgH37yEOx7CnrVNQ7TCbekVgWDwQmibiIRsH07kbJ1kkv//fdJrtuwYcDUqZaPqW7UsKWIfDRB2oOCqibQNKCUiREsoFIAME2YXhG+do4E6lRa/JCcAwB4eGJ3XiXHDDKJCMezKrHPmKfEBeZGYquiLD7EG1J/YgxlZBlwz5h49nd8DEXGGCq1sVv2eFauBB56CPj1V6ecbs0aQKsFJk50qSxYmyE0X+iS0RhKNM6lY8YQ2dCugTYrPXV6AzYcI61wFo2OEzSvRBSw5WwRm6NkzghjsnRLJXemoXF6kW0PSEI8GXtdmcxmaxxbRDo7cuBCzHOG9FzvZT4+ZAIADofKJBJg4UJiFDGnBoBu3QA5D5vmQoFjITKg0xjiBU2TBoT/GhuaavU0HvvlNB784SSe/eNsO4/ORFUV8PHH5PHzz1vv+MGEcLqFegu2ptuKvCpy848NUgpaQAEgzbgQ9ubgRt2TXoo6tQ7xId6YwrFMuCULRhK1sA92XeH8Gib/4oKNvCGFVIywCOJXzs6hMSQuEAopmcp8RPPYnKGO7BkyV6N2kJIS4MsvyWNPryBjEFpJdrmYvM7cMwTYF0PdnV6KohoVgrxlmJEkrAfi/GFdMLJbkMXyaaZy7HxhLerVOvZ5ZgOUbscz1M1oDOnqFIIryjwpTBYbpIREREGtM6CEjxyAE+dVVpapO8LOnSQfb+5cfudg+pE5Ygx1KlDzgKIobD1XhF1ppexz/5wlImNO6XxeV0cUPkeMIPrwAlm3jpwqKYlUu1jjhNEYcnevEGBKnnakbxqzEPaKsD9htp0nFSk39Ivkpb2kUChw/PhxAEBcYm/8dLIUZ/KqcTa/mlMLkSRjWSgzua0RHUMjDUBhgQgURSEuyBuXSuo45V8wXBM5Q0w/pZQUEjsOEy4f8f77JIo9YgSJFHQEmDy8OB5FCTRNmzxDRmOICbfZM6p+P0niT/OHxvDqW2Y+r/r2HwAvmdTipigqwAtdAr2QX9WEUzlVbKEEYwxdKrbtGWLCZLpaL+RUNqBfF/5l2lEBnpNALRZRiAxQIK+yCQXVTdybVs+cSUSB+vQheUMO9NhcvZrk4E2dCowcSb7uvJPfOZj1UmglGdDpGeLNLUMsGz0jBShetmLuXOCmm0jpokDq64EPPySPn3uOROCscZI1hjwneVpovpBWb2AbEtpLsGvS6LHPqL00PSmC1/uIxWIMGzYMw4YNQ5i/EjP7kdf/eDSH0+sZDau8ykabQmixxsuwoY50r2cqZhrV3Mv5mUaGNU1aqHXurYkimMhIkpNH0yQULZCqKuCTT8hjW95WT6O8niTqh/lxb2pZWqdGTZMWYhGFbqHeoGnaTLjRujGk0RlYocZZPHOFzOeVUi6z6R1mvENM007AFCa7WloPjc7GvDK2ftDXegkWXgw3fpa8PC3tCFMdXVDFw5PVoweQk0OkKxyYDIWFwLffksfPPy/sHDRNs1IIfD2c5nQaQzyZ1CvMont2BIdyUrtcfz357kALgS++ACoqgIQEYP5868fRNM3ukpLcuAUHA+Oyjg3i3vzUnKzyBmj0BnjLxOgSaPscB66UoUmrR3SAl0NuVwBYMJJkBv59prBZua81IvwUkElE0BlomzvLLmFSiBTkRpaXR14HABU8WsT4eUkgM+Z3MDfFDol59YtAPvqIeFv79yf9/ToKFcYQKZ88PGbd6BqshEIqRkWDBjVNWlCUyZi3xMmcKjRo9AjxkQmu+OECUxl71ky8NMpfAV+FBDoDbVMslzGGdLUK5PMxDswIMCq71zbp7BzpHkQHkA2mpQo9mzhhR/Dee4BaTfLvxo8Xdo7aJh0bEnUkctBpDPFEJhFh7sCoZs/FBSs5qxnbhFm09+4l2c88UatJOT0APPOMba25lrs7d8dRjSE2eTrSfrXVvkskDDqtbzjv/CSNRoM1a9ZgzZo10Gg0GBIXiF4RvtDoDDia1TrhsyUikanE2VZH+TA/BVtRlpsLhAjI/6Eo6toIlTHzascOokDKk5be1o7iFTIYaFbCIYRHziBTecSGyIw/dwn0shn62s8InvYI5d32p+W8sgWTE5hmlixNURQ7XluaOkyYjNZIUVwmzJjxVZDsE43e4PYq1ADYzWF+lQBPmE4HJCcLKrGvqCCFnoBj3tY847hDfOS8Qq8t6TSGBHBri1AZU8HgMElJQJcuxBDav5/3y7/7DigqAqKjgQULbB/bcnfn7jATVajlz7hRubTyOJ1bDUBY6FOr1eKpp57CU089Ba1WC4qi8NbN/XHw6Um4vi+3kFtXo8Fny00f6iuHxI94jnJzgWAfshst52nUhFwLxtCIEaTRUW0tcPEi75d//jnppZyQQLpodxRqVVrojBVEgd7cc82Y8A8TXrlaZj9EBpiMoQk9ufcEZGg5r2zRM9wXFEUad5pf18xN35YHxNsb8PUnYbSCfGF3Z2+ZKRW3TuX+3qFo1hjiuQHX64H4eGD0aKJIzZOPPgIaGoiC+/TpvF/OwozbnsffHp3GkAD6RPk1++Cdki8EENOYSfjkWbKo0wFvv00eP/mk/bJEVieEQ5l5e6M30Kg1LipCy+qZxokRdjx4jRod+9nYq4zhysCYAPbGwYXYIGKw5djyDPnKITHzDDGVYXzCZMA1oEINEBfp1q1AeTmJc/FApSJ5ooB9b6unwYRGfRUSyCXc/zDmWmG8ihmlxuRpG8ZQnUrLemfHJri27Y+XTMwKj5pXj3HNjYmIIsZQSZGw26NYRLE6ZuYVbe5KlwD7RqJFxGJgwADymOf9qq6OpBsBjntbTRvlTmOoXZjWx1RuPcJZxhAgOL9h40bSJiAkBLj3XvvHM54hRnTLnak32135KoS1DClljCE7iaIXCmthoIFwPzlbItvWMH2Ysm14hsJ8FZAENkAeUg9/f5OHp5xnmTyrNVTnGcmeghkxAggI4P0yxtvapQvRQ+lIMPlCfEJkgOlaCfMzGkOMZ8hG8iqz3kT6CxfF40OvSGMpvVmoLJqDZwgAusQAlESPGtstAm3ChMrqVMK0itoSxttOtNx4hrsE3q8+/5wUJSQmAvPm8XvLlpg8Q8LzhYBOY0gwNw/uwj7ms+u3y+TJRBc+I4NYNxwwGIA33ySPH3uMuHrt4UmeoVrjguIlFUMmEXbJltQxniHbC/GZvGoAzvMKCSHOuKu1pXMS5ieH39BsRCzdjxWPG1iPWXWjFlobVWgtYV5XxdOjdC3Q0tsqE+aUdFsYLyJfbyvrGfIhmwUu5flpRmOIi+CpM+htlM9IE+AZWv+DHjErt4FKyOMuRNgC1jPkAWGyCH8FKApQ6wz8CykYY+jIEaC6mtNLVCqSOA04x9vaGSZrZ2LMJr5Tk+R8fYFffgGuXiUynBzYsgU4f5689OGH7R9P07RZEqTwUsS2glGC9fMSLotVXEMWcKac3BqpjDEUEyD4vRwlzphAnVPZYFXhPEgpY3uSlderEaiUgclJtdXXrCVeMrISNXlAoqfDrF9PREyYfhp2+PVXIgjH1dvqabCVZD78jKFSozHEeIYYb6QtwU8mRMZF8NQZWFKcZj0g1bY9IFHBUlAUyQmuahS2SWA8Q7UeYAzJJCKEG9dF3qGyrl2BXr1I/tCOHZxewnhbY2JIXzJHabcw2aRJk1BtwQKsra3FpI6iRMYBH5kETJiz1tmu0HnzSAtlDtA08Prr5PFDDwGBHPQTa5t0aNSQm5+jrsW2gPl8/QSGyLR6AyoayIJtL/SVVU7yH3qGt5/HjHHnq7QGq4uxSESx4Y3SWjVEIgpB3vxDZV5Sxhji7k3yWLKzgWPHgH/+sXuowUAasgLA8uWA0v2nCW8YLwCfsJVap0e1USIi1EcOrd7A3vCZ688S6WbVnG0BU4SQZ1YhxXiG6tU6m2XvErEIAUbxUj4bC3OYcL4nhMkAIDKAaSEiQE6Ahxq1ubf1iScc97bSNM16+trcGNq3b5/F0kaVSoWDBw86NBhPQiSi2C7m7VkxsG8fWd8VCtKGiQtMMnGAUuoRlWTMwuXnJcwYKqtTg6YBqZhCkNL27GNcrjECxR2dgVQsgr+X/cWY2ZkzO/UQpqKMh6ub9QxprgHPELNo79pFGozZ4N9/+XlbPRFmgxDCI0xWYby2pGIKAUopG14VUUCAlflprmnWu43CZMyGok6lYz3LXmZ9DfOrbZeRM1pyFQL1t3wUnpNADYBdF6s4aKG1gplX27ZZbj9vhrO9rU1aPeqMn7G94hh7cI47nD1r6r118eJFFBcXsz/r9Xps27YN0dHRDg3G0/BTSFCv1rnGGNq0iTRpWbaMdLS3whtvkO9LlgDhHFtoMT1z7CUTuwsmz5CwMBlTChzmq7Cpb1Kr0rILZ7TAXYZCocDevXvZx0IJ9iaNIisaNOhh5RimEqy8WSJsHa/yesYz1GEVqM0ZOhQIDQXKyoDDh03NJltA06Z5tWyZoLxrj6BCgGeolM0XkoOiKDbvKFApszq3qhq1aDAa20J1wvjOK6VMgiBvGSobNCioamI3F9GBXqgwPtc3yrrYbLC3DJllDYI9Q36K9t8o84ERiqwWYgyNHQu89JJJNNgKrvC2MhtlsYiCt8yxjT3nu8vAgQNBURQoirIYDvPy8sJHH33k0GA8DV+FFKhRucYVum8f8NdfpJ2AFWMoJYVscsVikuDJlRK2zNxDjCE2Z0iYZ4g1hvxsL/qMuzVQKWUTIPkiFosx0cpNlg/BPjJkljfY3Jkynkkm5Mm49vl022Y8g9eEZ0gkIoImP/xAXPpW/k/m3tYVK9p0hG2KyRji7hlqWVbP5RzM/AvylvEq4TdHyLzqEuhFjKHqJrZnFRNatpcLxHiGKhuESU54Wpgs0Lh2VAvJkZLLgVWr7B7mCm8r8/n6KiSCG3gzcA6TZWVlISMjAzRN4/jx48jKymK/CgoKUFtbiyVLljg0GE+DSeh1ifVvrjdkJdmPqSC7806Sx8YVJpnYczxDxjCZwJwhZgG319HdWSWazoDLYszm+2jI56NgvTzc83+uqQRqwDSvbOQ3CPG2eiKMx9WfxybDZAwx7V/Iz5ZaFDGUcpx/zobJETJXVmb+VnsbBib/ia9uF4OvB+kMAaaNlNCEcXu4ytvq6L3BHM7b37g40mPJYCcmeC3hUuv/uuuIxZ2TQ1Rz+/Zt9uu0NGDzZvL4mWf4nZrJGQr3FGPIwWoyxnPibcfb44yqBK1Wiy+++AIAcP/990MqFTZJg9kQmPXFqaUhIzfKDvAJeZkSqK8RY+j664mH6MIFolbJNKMycuKEMG+rJ8JIMEjF3FNH69XNQ9aVbHm+dUOnxAnrjZB51cWCsjIzbvvGEOMpEba2+3hQNRlgCpMJyhkCiLXz119kk/HGGyQpyAxXeVtrzTxDjiLoDBkZGfjggw+QlpYGiqLQu3dvPPbYY+jOsQKqo+Dryriwtzdx42/fTrxDLYyht98m19+NNwJ9+vA7tceFyRysJmNu9F52ksWZXa8ji7ZGo8EjjzwCAFi8eLFwY4j1DNk3hhhjjwlB8PEMKaTkRqi6FsJkAGnLMX06SViw0P9PqLfVE2FacUjF3MMLamPVodx43TDXp03PEJuzJ9wzJGReMfPYXF2d8QzZa6IqZC6ZY9ooe4YxFMjmDAn0DFEU8OKLpC3HxIlkApnBzCtne1vrnOgZ4l1Ntn37dvTp0wfHjx9H//79kZSUhGPHjqFv377YuXOnwwPyJFgtCR45Gryw4tLPySG51QDw7LP8T8t4sqxVf7gbjlaTqYwLuL3KOcal7YxdhqMwxlCFjTCZ0vj3MDpXzA1KzaNM/przDAFEmGvTJqBnz2ZPp6UBf/5JHj/9dDuMq43R6vh7hjRGb5LM+JoKDsZQSa3jmwwhWAqJ+XEMkzHirhrBxhAjuuhZOUOCPUOA1VZSJ04AO3e6xtvK3HvbxTP0zDPPYMWKFXiLSQs3e/7pp5/G1KlTHR6Up8BY/y5zhc6cSQQYWyRQv/su0WuYNAkYPpz/aRlPgpeD2fdthaOuUMZYYLwg1mCMIaHJ084kkFWGtr44tfYM8Q+TKa5FY8gKq1cTb+vcua0csR0SrdEzJBHxMIaMxgFjLDCGt621hC3h5ynu6CiOGEOMgchHzd0cZg1pUHvGvHKomoxh9mzg+HFSXWYGYyrccYfzva2sZ8gJG3veq35aWho2btzY6vklS5bggw8+cHhAnoRLw2QA0KMHkJzc7KnSUuCrr8jj554Tdlrm5qmUtf9NnwvMgiS0EoU1huy8npHO93EDz5DJTW99MW2pESTEtc+cQ6U1gKZphysyPJXcXODHH8ljofPK09CxOUM8wmS65nNRZ8whldiQrFBxMJhcgSkkpm31nF3PkPEzEWoMMdOIhrB2Hm0Nk4/pkIDw2LGAUf6AIT0d+OMP8phvbisX6pyYM8Q7TBYaGorU1NRWz6empiIsLMzhAXkSTIhB1YYaLb/+SlIdhg0jniEhNBqrj5Qe4hlyFMYYsrcYu5NniPHyaGwsxi1DXMxr+LSHMc+jEpof0RH48UfHvK2eiFbP5Axxvw2oW3iGdKx3yZYxxHhm29gYsiA14cd687mFyYQaQ54Gcw0I7cVmje++c6231RQ1aAfP0H333Yf7778fmZmZGD16NCiKwqFDh/D222/j8ccfd3hAnkRb7aE1Gg0++eQTZGRkoFu37ti6dRl8fGQQuolnPEOeoD7tDFRs0qfrc4bM1dnXrVuHFStWQCZAc55LzoKyhWdISGm9+TXQpNFfM9cE0Hpebd68DJGRHawbqw2YG72Eh2eoZZhMx57DukFl8iYJb4UpZF4xXqDqJi3r9WTmjL2CAcY4uFY2CIwxqzfQDnuIzedVfHx3bNy4DImJrplXajYf1PE2q7zP8MILL+DFF1/ERx99hAkTJmD8+PFYt24dVq1aheeff97hAdnjk08+QXx8PBQKBYYMGWK3Bcj+/fsxZMgQKBQKdOvWDZ999pnLx+hMnnrqKSiVSqxYsQLr1q3DypUrMHu2Ev/885TgczaxYbJr48bXxIbJ7OQMMWEyOVlEaZqGSqtHo0Zns7Ejw1NPPYUQs5LSZ555BkqlEk89xf9/xcUYYgyX1jlD3BdwsYhi3+tayhuyNK9uvlmJ334TPq88DVM1GR/PELlGmARqnd5+RZopwV/YeiN0XjFSGnoDzXpYRcabvL3ZfK15hszzxnQOeIdazqvHH1+BO+5QYsMG184rygmuCd7GEEVRWLFiBfLz81FTU4Oamhrk5+fjsccec3m+wa+//orly5fj+eefx+nTpzFu3DjMmDEDubm5Fo/PysrCzJkzMW7cOJw+fRrPPfccHn30Ufz+++9OGQ9lCgy7hKeeegpr1qyBXt/8JqXX67FmzRpBN1mNzsBe7NeKMcTVTd9yB6vRG9DrhW3o8+J2u+JpzP+qpQ6X0P8Vc7OxZQx5Wa0m42fUCAmveTKumFeehsFAsyERXtVkzBwxXmtckrAd8Qw5Mq9EZvcjZi/DPGWws7kxJVB7Rs6Po5h7B3UC/+b2nFfOyM1yyLfk6+sLX9+26+793nvvYenSpbj33nvRu3dvfPDBB4iJicGnn35q8fjPPvsMsbGx+OCDD9C7d2/ce++9WLJkCd555502G7NQNBoN3nvvPZvHvPfeexab5to8r9lOR2hCsqeh0nErrW9p25ovprY2S674X8k45AyxGIcpVBvFYPzjxDbyPjoKrppXnobWzLjgEyZjc4bELcNkzs8ZcvR/JW42f8k1zsxpe84PLpuRjoT53NcJEFZur3nlTP8LJ2No0KBBGDx4MKcvV6HRaHDy5ElMa1FmPm3aNBw5csTia5KTk1sdf/311+PEiRPQWularVarUVtb2+yrPfjkk09aWdgt0ev1+OSTT3id13yB0HMI/XQI2IXQ9mGmhbL5wgmYDAZLuOJ/JeMQ8mLDHMZdOROq4LuAs7t7Hh4CT8VV88rTMN/9Sx0orecSatO0MKC44uj/yvxGyXjBmD/VXtjbWWEyT1lizf9/QjxDHWFeccoUvfHGG9nHKpUKn3zyCfr06YNRo0YBAI4ePYoLFy5g2bJlLhkkAJSXl0Ov1yO8hXxleHg4iouLLb6muLjY4vE6nQ7l5eWIjIxs9Zo333wTL7/8MqcxuTIqmJGR4dTjGMx3cPprxAXMVTOEMZZoC8aTLbe6K/5XjNFqywhj/h5mV8clf8MSQkqsPRVXzStPo5kxxOP/zmygTNdc82vQEkIrlRz9X5mPiXlrrp4h6TXmGTL/9wnJGWrveeUMo5OTMfTSSy+xj++99148+uijePXVV1sdk5eX5/iI7NAyL8le5rul4y09z/Dss89i5cqV7M+1tbWIiYmxOSZXaElwbW3CtwWKeQms9hrpM8cubHaMv5YLJUVRoCgy0Wx50Vzxv1JzCO21NH5YdWAeuRl6A83+vXw8BJ6Kq+aVp2EefuUTHpW38JhwaenR8vrkiqP/q+Y5Q803OPZyhphQ0bUQOgbIWieiyNpn77OxRHvNK2ckTjPwXv02bdqEu+++u9XzCxYscFpisiVCQkIgFotbeYFKS0tbeX8YIiIiLB4vkUgQHBxs8TVyuRx+fn7NvtqDZcuWQSy2HWMXi8W8vXEURbET3NmaEu4KV2l9NrnS7HNhq09sfFSu+F+pWmgHWULXIrylaSGIxwVzbxmf3BFPxVXzytNgNnB8vdvyFsrTFOvBtP4aoa0tHP1fiSgg0l/Bdq8n2Pe4AuYl29dGXqVGZ2A3RfbEaS3REeYVb2PIy8sLhw4davX8oUOHoFC4rveMTCbDkCFDWvU/27lzJ0aPHm3xNaNGjWp1/I4dOzB06FDBDTTNceWtQyaTNfNQWWLlypWCNGwY75AjJZSeBPcwWWsXOhOusvVZueJ/xckz1EL9ly175uEZMv+7+FQVeSqunFeeBFOJSNP8PDaMoc0KmUrtyzIINYYc/V9RFIXkZyfj8DOT2HYTXAVYmzi28OkoNJnpLglRCu8I84q3utzy5cvx0EMP4eTJkxg5ciQAkjP0zTff4MUXX3T6AM1ZuXIlFi5ciKFDh2LUqFH44osvkJubiwcffBAACXEVFBTg+++/BwA8+OCDRg2RlbjvvvuQnJyMr7/+Gj///LNTxsPcRlyVJHfTTatx5Eg0kpOfgMFgKu0Wi8VYuXIlVq9eLei8UrEIap2Bjfd3dGQSbtL6LROoAcBbLoam0YAGO6X1zP/i3XffbVYGLPR/xSzatgwbJkwmaZE4zSdRVWt2g7oWjCEAmD59NY4ejcLhw086dV55EuZGtkpj4OxNZOUbjNcNl0a/MgcEDJ09r+pU3FTm20s1u71o1JLPRWKmO8aXCRNWIyUlAgcOPN1m88qZebuCGrV269YNH374IX766ScAQO/evbF+/XrMnz/feSOzwG233YaKigq88sorKCoqQlJSErZu3Yq4uDgAQFFRUTPNofj4eGzduhUrVqzAxx9/jKioKKxduxY333yzU8bj6oanr70GHD78GB54YBl69foYGRkZ6N69O5YtW+aQhS2+xjxDXMtkmf+jueHj7yVFVaPWbi8jgCzczz77LIKCggAAb731lmAFai6eIVZBWNT8ZsNnMWPyxijq2smPeOkl4NCh5Xj88YfRpYvz5pUnIRWLIBFR0BloNGn18Ac3T3lL+Qamv2GTDUVnXjIRFnDmvGJb7thp36C6xsJkjt7LaBr43/+A1NSVWLXq/+Dv3zbzylJqg1AE9R2YP3++yw0fayxbtsxq3HH9+vWtnpswYQJOnTrlkrEwTeL8nNAXpSWpqcDWraQU9IknpEhIWG76JU0Dej1gJ0ZrjWutUsKUQG3777XUxJGV9OfYzdl80j/yyCOCFwEuOUN6g+UEaj7idmx/qmsgeRoADh0iXzIZsGKFFNHRy9t7SO2Gl1SMOrWOl/K4SeW8uefEdpiMHOPIeuOseVWvNvaysuMZanKSZ8hTtpuOdiXYto3cs7y9gUcekSI4eLnplwYD+XLBGsOq8DtBMFbw6DQaDfLz85Gbm9vs61qitonsMvxc0OX8rbfI9/nzgYQEs1+89hoQEwNs2iT43EyHYi7eDneAydvRC6x+kzIVMDrbSxPb5Vpl5hky5hq09WfFNNO1tVNrqf7LJH3yyhm6hsrqAeDNN8n3RYuA6Oj2HUt7o2jR244LJpVzxjPUvCWMJdi8Io3tUHNbUM83TCYwZOTMnlltQSNrDAm7lzHz6oEHgGa1ScuXAxERZAfiAhhHRJ2dxrtc4P2XX7lyBUuWLGkldMiUuNsTXupI1DmxY645V6+abJ1nnmnxy9paoKCAuI1uv13Q+QOVMgANqG70DJVdpsdQnUrYYirjmEBtyUi05C2yhVwux8aNG9nHQimrUwMAQn2sn6NR3dxgElJar9U3r0jryJw5Y/K2Wu0M0NBAtrfXAFzyfVrSMkzGXHu2WrkEeZMNRWWD8BuWs+ZVHRsms33rU3NMtLZGrQujBq6A3XwJ8IQdPgwcPAhIpUCrHOrycqCsjEy88eOdMNLmME21GceEI/A2hhYvXgyJRIJ///0XkZGRLu9H5s4wHgTmJuosVq8mXsUZM4ABA1r8csYMYM0a4pcU6HoMVJIJWsUx9NPeMBe8vf5g1uCas8B6hpoZQ0YDiaPhKJFIcOuttwoZZjNKaokxFO5nvUKzsoGMibnZOFJafy14hhhv6623tvC2AsClS8BttwF1dWQ3cg2sa8yNj08vO2thskYbXh+TMaQWNE7AefOKuWna8ww5GiZj1hBPMYaqjOtbgJL/eG16W2fMADZsAP77zzQBnUi7eoZSU1Nx8uRJ9OrVy+E393Rc4RkqKAC++448fu45CweMHQu88w4wfbrgBZspM63yEM8QYwwJ9Qwxrm5bCzZgmljmxlC4LzFGimpUgt5bKCW15P3C/azvgiusGEP8wmT8m3V6IlevAkbHQmtvKwB06QKkpQEaDTGMroH1TcGhLL4lpqa+3MNkwd7kGi5vaP/1primCQAQ4W9bBoZNoBYYJnPVRtlVFNcQQzXCxubLEmfOAFu22PC2Xn89uU+dPQvk55N55kQcvTeYw/s/3adPH5SXlzv8xh0BZpfh68ScoffeI+vxuHHE7mmFVAo8/jjQt69wY4hnUnB74+ug9c8af3bc9JZCYl2CiGBbQXUTp/fS6XTYtGkTNm3aBJ1O+AQtNYbJwmwsThX15JgQn+bGLZ8cNg2HRpsdAcbbOnMmMHCghQO8vYEJE8jjrVvbcmjtBpfkZ2uvYTxDjHfJVpgs2Hh9VtYLN4acNa/yq8g87hLoZfM4xguttONBsoaneYbYzZcdI7El5t7WHj0sHBASAowYQR7/958DI7SM6d7QRsaQedPSt99+G0899RT27duHiooKt2hq2l44u5qsogL4/HPy2KJXyEkEGj0JnpIzxFR+CA2TsYuxnZ2pJWMoOkAJwLSI2kOtVrPVlmq18LBAKesZ4hImIzvvMg4GVEuYayBQ2XFLyu16WxlmziTfXbBouyNeQhKoJYw3qXnOEBfPkL35ZwtnzSuTMaS0eVxxjX3PrC3YnCEvzzCGihiPGY+1w9zb+uyzNg504bwyeYbaKEwWEBDQLDeIpmlMnjy52THXZgK1cz1DH31E8jcHDiTeRavQNPDjj2QHu3YtEBrK630CPCxniEl2rBVo/ZtyFmwvxsHGZGXGKwOYdpCF1U3QG+g20eIxGGiTZ8jX+mJcbtxpM8Yel6TrllQw5/DuuMaQubd1zBgbB86YAaxYAezfT3KHfH3bbIztARevTksYo5kxon04FDcw86/CgZwhZ6DW6VFSR4wce54h5jhbmxFbMFEDfw8xhoqNOYr2wofmmHtbW+W2mnPTTaTwZ+5cB0fZGmeGyTjdxffu3cs+zs7ORkxMTKs+JAaD4ZoqrdfqDWxlgjOs/7o6YtcAxMq2GQGjKODdd0nA9oYbgAULeL1XywXN3XHUFWpajG3/vdHGBbKopgkGAw2RiEK4n4IVpyutUyHS3/Yi6gxyKxuhM9CQS0Q2jSHGuGMMGZNniLsxVG68QQXzMKA8CXNvq83dKwAkJgLdugGZmcCePS5ZvN0JIdVkjOFdXseEaJt7JS0RYuaZZeZVe1BUrQJNk1wpe8Z/idEzxDeHhsHkGfKMnCG+f29BAcDI+tmdV0lJpOjHBTD33nq1zuFri9N/agITSwcwadIkFBUVISwsrNkxFRUVmDJlChYtWiR4MJ4E40aViUUIckKI4YsvgKoqsh5zEsieOZMYQ//9x9sYYjxD9owDd4GtJhPoCmXc9FWNthfjcF85xCIKWj3xzET4KyAWUYgMUCCvsgn5VU1tYgylFZFwc2K4r9WS90aNSSwvyFuGJo2eNc5DbRhQLalo4V3qaDDe1kGDSM2BTSiKzKt168i86uDGkElniLt+F2P8lDdoQNM0a6yX1qnY6EBLmLC8gQYqGzXsOdqavKpGACREZqsKul6tQ4Mx7CfcM+Q5OUM6vQFl9fw8Q+++C2i1pFreYm5rG8HcG2gA9RqdQ5837wRqaxd8fX29Sxu1uhtM7Dk60MvhnY5KRS4uAHj6aY7C0jNmkO/bthE1ah5E+ZtCP7SrGqs5EV8HdYYCvckE0RtodsdmCYlYhEjjYlBQ3cg+HxdEdGcyy+oFvT9f0orrAAC9IqyHaRgjRiYRwUcuYXfmCqnIrrpu8/MYd/jeHc8zxMvbyjBvHtlczJrl0rG5A0I8Q4who9ERzzjjhVRpDVZz+qRiEetx4Jp75wouFpJNRvdQ2zpSTDKxr1zCapzxxVRN5v7GUGG1CnoDDZlYxMlQraggm3eAg1eIQaMBtm8nosFORC4Rg7n9Ohoq4/yfZjrSUhSFF154AUqlKQFNr9fj2LFjGGixTKNjks/uMhz3FHz3HVBURKoOOTt5Ro0CAgKAykrg+HHyM0ciA8jCpNIaUNmgcfsQiaNhMrlEDB+pFNUVYpw8p8XkEda9INEBXsivIl6gIaTlHXpF+OLQ1XKkFdUJen++pBs9Q70j/aweU8YaMTJQFIWyerKAh/rKeWl/Md7BjugZ+vxzk7d13jyOL7ruOvJ1DcAYQ/aaEDd7jUwMb5kYDRo9Kuo1iA/xhrdUgrpGA0rr1FZlRmKDlSiuVSGnogEDYwKcMXzenM2vAQAMjAm0eRwTMuITbm5JjQd5hi6XkHWte5gPp5zItWtN3labua3mNDSQlA69Hli4EDD2E3UGFCgANM7mVyM6QPj9mLNn6PTp0zh9+jRomsa5c+fYn0+fPo309HQMGDDAYm+wjgrXEk176HQkEQ0AnnyS9EzihERiuhJ5lgLLJWLWvd2eOzWuOCq6CACGrCgUfDoZjz9i+wNm8obMS+l7GY2S9OK2qZZMZzxDkdY9Q1llDQCAuGCyyy2tZRKu+XlnTUnY7m0Q80WlIonTANEVEtjGr0PDGMB8E5tDjGtHeb0aL70EpL0xFTWHe7DXoCW6BpPNc05Fo9VjXE1qXjUAYEAXf5vHMcnTfJKJzaFp2hQm84CcoUtGY6hnuI/dY+vqSOgZIJWZnPddgYHA6NHksROrykpqVdAboxubTxc4dC7O/ykmifqee+7Bhx9+CD8/67vWawGuJZr2+PVXkq8ZEgLcey/PF8+YQU6wZQvw6qu8Xtol0AuldWoUVDdhQDvt1LjiY2YMCa3oCo3UIw1AUYFt+7+LcWdRYGYk9jYaJWlFdVbDxAwymQzffvst+5gvVQ0a5FaSG0bvCOtzLMMYsuseRowhxlPEp5IMMIXJOlo12fr1Jm/rXXfxfDFNE5G4s2fJLraDwuSW2Up+tkSwtww5FY0or1PDzw+gDSLoar1QWmddmJQx2rMrGgSN1dF5VWZc6ygKSLJjDDEChOE8NxYMTVo9dMa+gZ7kGeoRbr968rPPiLe1Z09SJMaLGTNI344tW4AHHxQw0tYczaxgHx++WgGd3iC4tRBvs5W5IK91nBEmMxhMolUrVgBKvnbV9OlE+lMiIVthHjlb0YFKnMqtbnbTd1fMpQvq1TpB5apR0WRxKi8VQacjH5klLHmGEozu45omLYprbVeUSaVSLF68mPf4GA5eJYKmPcN92cRTS1wtJcZQQijZzbGeIR6ufYOBNlWkdaAwmbm39amneHhbGbKzib6FRALMmQP42755eiqhHCrBLGGeRB0bS57T13qhrK7a6mvieHqGaJrG8axKlNWrMat/lMPz6mw+GVv3UB+7BgqjUs1XgJChvM6Uzye0C3xbcqmY8QzZNoYc9rbOnEncSXv28L5fWeNYViX7uF6tw4ErZZjUK1zQuTq2Br8LcUaY7J9/gPPnAT8/YNkyAScIDwdKS0nOEM8Li4mtMkadOyOXiNlmq0LFtaIjKUBkgEFPoajI+nGMpy/XbNGWS8Rs0iVT6eUqDlwuAwBM6GlbO8rkGSLGEFMpw8e1X6vSsjvYoA7kGfr5ZyAri8hvLV0q4ATx8WTrq9MBO3c6fXzuAiPOydsYYsJkdWrWGCKeIVthMjJ/uBpD+y6X4bYvjmLV3xfYNjOOcPgq8SAM4uAFZ8JG3UPth40swczFmEAvt+/dqdMbkGkMufe0UbABAN98AxQXAzExwJ13Cniz/v2BqCigsZFoeTkBc88QAGw6kS/4XJ3GkAB0egOKaxnxLmFhMpoG3niDPH74YZILLYjgYEEvs+QBcWcczRsK9ZdD7EP+Z3l51o/rYTQusisamonRMcnMFwpsG0M6nQ5btmzBli1beLcNoGka+xljKNG6MaTVG9ibCrNgc93dmcPkC/kqJLyau7ozBoOpceTKlQK8rQzXgBo1EyZr0Oh5JVGHmIkosp6hejmKq6yHyWKNnqHyejWnOTwuIQThfnKU12uw7UKxw/Nq+4ViAMCUPra9BjRNm3L27BgH1mDC3LFBjqVQtAXZFY3Q6A1QysQ2k4+1Wge9rYBJugJwyrwqrVWxhhzDrrQSwUrnncaQAIpqTKWIfHM0GHbtMjl0li93wqDq6shOliOMR8sTEqgBwN+ojST0Qo8JVELiR/5WW9qgob5yBHnLYKBNoSjAtKNMyamy+T5qtRqzZs3CrFmzeLcNSCuqQ1mdGl5SMYZ2tV7xklNBRBmVMjEi/RXQmu3uEnkYQ6beZh0neXrzZtJv1d8feOghB05kvmh7gPyEELxlYrairLye+7XKeIbyKpsQHg5IJDRAi5CTb/1z8lNIWe9jDoe8IYlYhDuGE0vrx+Qch+bVhcJaFFQ3QSEVYXwP2x7X4loVqhu1EIsoJIQJ8wx5kjHEhA97RvjalIj56ScgJwcICxPobWVg5tXZsw6chHDULETGoNXT+CtVWCJ1pzEkACbhLC5YyUtjyGDm7X39dfL9/vvJBeYQt99OPERHjnB+iaVEYXeG0f8pFtg9Pi5YCYmffc8QRVGsd8U8JDY8nnjgTmZXQqe37LbX6Ay8Qw7mMJN4TEKITU8NGyIL9QFFUcipaIBGb4C3nd1dS5iwRkdJnqZpk4zJ//2fg6k+48aR5q1FRUBqqjOG53ZQFCUoiZrJg7lcUgeRCAiNIPOhIN/2WshUlJlvMmxx+7BYiEUUjmdXOlTJue088QpNTAxje6lZI72ICZF5s01p+cIYQzEeYAydMG7uhsZZ33zp9c29rV6OFFBPm0ZyQ3bvduAkhGMtQmQMQkNlncaQAC4Yxbv6RvGrqFuyhLgY//2XhEylUlJO7zBSKfFj8iixZ8JkdWqdR7TliPBjWmUIM4Zig5QQGz1DOTm2d/pMSTvjLgfIzslPIUGDRo+LFvKGUvOqcf0HB/DM78J2PCqtHr+eIFba7cNibB7LJk+HMSEy8nOPcNu7u5Yw3qSuIbZF6DyFbduA06eJDfPYYw6eTC4HpkwhjztwF3shxlC1sadhSa0KGp0BMcZQWXGByKaIa98oYp0y66c9IvwVmN43AgDw8d6rnMdnjt5A45+zhQCA6UkRdo9n5nYvG5Wc9sjzIM/QiWziXRnaNcjqMX/8AVy6RFI5HPK2AmRy9u3LoybfOnHBSjx8XXc8MS2Rfe6jOwbh1Rv7wmDg783tNIYEcJE1hvhtPVNSSIsWRuV//nxS+uswjOtxyxbOL1HKJKwqbEaZsHLXtsRRz1BUgBfk/uS1V7NsJ2QyJe2XzIwhsYjCMOOCcdyCezZIKUNBdROOZFjerdjjnzOFqG7UIjrAC9f1su0qPGXczfUx5jGZdEL45TgwHiah4QB3gqZN6hIPPkikKhyGmVd79jjhZO5JqIXmxPZgFJoNNLD1XBF6xJPbSEOlzOZ5kqLJ9Xq+oIbzez02pQdEFLDrYinn15iz7Xwxcioa4aeQ2M0XAkzeYFuCp/Zgw2TB7m0MVTdqcLmErAHWPEM0bYpiPPooKfZxGg6Gn+8f3x1PXt8Lj0zqwfa/6xbqjSFxQYK6QnQaQwK4UEQmMx/PkE4HXLlCHjPhst9+Ax5/nGToO8S0aaTE/vx52zGgFvQwimxdLW0bZWVHYKqkimqEhfXEIgrhUWTyZWXbnoRMVUVL1/yIbsQYOmbBGIoNVuK+cfGCxmYw0PguORsAcNfIWJs6SnoDjePG3RwznitGYyiRZ8In42ESWjXjTuzbByQnE4fO44876aQ33USS+zo9Q83IMAtzfXsoC127kutVV+vFGtiWYDaP5wtqOLcBSgz3xbzBwnaMNE3jk33Eo7R4TDx8OLTW4CJ4aotalZb1nMU4qEHnak4aN1XdQr2tiq5u2UJaYPr4OMHbytDQQMrRunQhj50AI3cidLMMdBpDvKlp0iKvktyQ+/AwhjIzSSTLHLWaiFhlZDg4qOBgYORI8pjHws3cBK+UtE3PLUeICmCMIeEXe7xRAb7QTm5DYrgvKIpUW5nfJJi8oZTsSotu2GUTExDmxz//ZuOJPJwvqIWXVIzbhtoOkaUV1aJOpYOvXOKQZ8hgoJFZ3nE8Q4xXaOlSIDLSSScNDQUmTyYWVgeFrzFE0zRS802enTMFNZAZPa76Wi+bXubEcF/IxCLUqnTsGsqFFVMTIZfwv1XtvVSKC4W1UMrEuGd0V7vHq7R6tv9gH4GeISZEFuwtE9zXrK2wly9knoP30ENAkPVIGj+USrJzKSx0mtfVtFnuNIbaDMaNGh3ghQAe3erT0lo/J5cDf/8NjBnjhIEJCJWxnqE2akDqCEzOkCOWf5+eJCGyvlaMChvRLC+ZGPFGXRTzUFnfKD/4yiWobtTitFHa3xxvuQTPTO/N/rwnrcTumMrq1HhjK7k4Hp+WaLctBqOrMbRrICRiEVRaPbLLjZVkEdyNmoLqJqi0BsjEIsQ4ob9ee3L4MLB3L0mde/rp9h6NZ8G05SnjWE2WW9nYqqLzUiMR7tJWettsZiyTiFiv6/lC7qGy6AAvPDW9J/szU8Bii+pGDZ7/8zwA4K4RsTYFTBlSsithoIFwPzn7ufAlz4OSp1OybOcL7doFHDtGEqad5m0FmpfY87hf2SLKwcgB0GkM8YZJ/uPjFQJaG0NSKUlMmzzZSQO74Qbyffdu4nLiQI8wsjB5gmeIyRmqaNA00//hQ0K0AmJfMlnS020fy+QMnDGWngKk+zaTz7PzomVDZ+6QOEy//zkETX0Qz25Os5kfodLq8cSmM6hV6ZAU7YfFHHavRzPJAjayG/FSnS+ogYEmO1E+Mg9MOKNriFKwfL27wOxeFy0Cq3vjNGpqiDz8qFGkrKaDwdczdDq3utVzJ6pzAAC6am9cKbQtqpgUbQqV8WHR2ASMuOsJBE19EA//cpY1OixB0zSe+u0simpUiA/xxvIpiVaPNYcRPB3XI1SwWKKnlNXXqrRsr7aR8Za16hhv6/33E31fp+Jk6YooVkS40xhqMy4U8s8XAoCjR02PKYqo5DLXg1MYMIDEYd9+m7PeECMwWFDdxEt0rT0IUEqhkJLLlUng5EtcsDekwcQIsOSpM2eI0XWckt08P2iqMQlzx0XLiV5SqRR/ffwqJs1biHodcOtnyWxprzkqrR73/3AS+y+XQS4R4a15/e0aJQYDzY5nhNEYYpR1R3YL5rWAd5R8oZQUUkUmFgPPPuuCN1AqgW+/JRP4xAkXvEH7wt8Yaq2zpZI1QK7UAzSFi5dsFycwSdTneBpDMpkM/3z6GvpPuw2FtVrc/sVRNleu2Vi0ejz9+1nsuFgCqZjCR3cM4hyuOnCZtMIZb0Pw1B6eYgwdulIOnYFGt1Bvi4ne+/eTNmIymZMqnlty3XVEZC83F7h40eHTxRsrYluKMPKh0xjiidBKskOHTI+//x64+WZnjgrEwtqwAXjkEVK+yIFAbxmbhW8r8dEdoCiKTZITGheOC1ayxpA9z9DweOI6PpldBb1ZftDEnqGQiilkljVY1UuRSUT4atEwjOsRgiatHg/+eBJ3fXUUm08XYE96CT7dl4GJa/bhwOUyeEnF+PaeYeyO2RZpxbWoadLCWyZGktEYP5xBFvAxCfzKp5jcDk/PF2J2rwsWAN26ueANpFJSoAA4zaXvToSadaDnUo5sKTwc5ieHfyTZkednSWx6bpMEJFGbj/WX+0eiW4g3CqqbMOPDg1j19wUcz6pEdnkDfjuZj1s+O4KNJ/IhooBX5yZxmlcACb9fKqkDRRH1a6Ewa0Kcm1eS7U0n1XmTelquXH3lFfJ96VIgOtoFA1AqiUEEOGVeMW2JMsrqeV9XDJ3GEA+qGzVssuoAO52PzblyBWyOynPPkYXbXWBuhp4QKmOkAITmDcUGmYyhs+ftlNdH+sFHLkGdWtdMfNFXIcWo7mSxtBQq0+v12LdvH04fO4wvFw7G4tFdIaKIB2f5r6lYsv4E3t6WjuJaFcL95Ph+6XCM7s5t8d1u9DCN7BYMiViERo2O3amPSeDXliWjA3iGTp8m/f1EIjKvXAbjwu2AVWXB3sQY0hloVHHQG3twQnf8dO8IfL9kOABAJhbh6LOTMXMc2YBpynxt9h/rFekLmUSEqkYtL0kPZl6lnTqKDfcOw5TeYdAZaKw/ko35nydj4jv78MSmMzhfUIsApRTfLRmO24dzj5keuEJCZP2j/TnlF1kco4HGeWO7nn487g9tjcFAY+8l8vdakvE4fJjkNUulpCGry3Bia47YICUkIgqNGj3bKosv7p3u7mYcy6oETRN1UqbJIRdeeIF8793bpNngMvLyyMU1YwbpqGeHHmG+OJpZ6RFJ1JHGirJCgUlyCqkYYbFqVAJIS7O9exCLKAyJC8T+y2VIya5stsOc1iccBy6XYcfFYjw0sXuz16lUKlxn3PHU19dj1Zy+WDo2Hj8ey8HRzErQNGmjMW9wF8wdGMW5J5jBQOOP00Shes7AKABE70irpxEd4MXbLd8RNIaY3esddwCJ3NJChDF9Ovl+8iTRwYiwL97nKcgkIoT6ylFWp0Z+VZPdBP6Z/UipHtOOSKM3oLC6Cb17k+tPW+GDzLJ6q00/5RIxhsYF4khGBZIzyjlffy3n1VeLhuHw1XJ8dTATV8vqUVStQmK4L6b0DsMdI2JZLzJXmHwhR0JkmWX1qFfroJSJ2XxMd+RCYS3K69XwlolZ7TRzmHnlkhw8c2bMAIYMASZNcvhUUrEIscFKZJY1IKO0gff/H+g0hniRbBTUG9Wd+y48MxPYtIk8/vZbV4yqBYsWkdKatWtJTwI7eJJnyFHhRYA0I08HUJAnQlOTbWn54fFBrDF0zxiThtDUPuF44a/zOJ1bjZyKBsQF2w5LxgQp8eyM3jaPsceJnCrkVzXBRy7BtD7kZswIPI5J4JcvVNWgQYWxIqhbqGeqT585Q/qQURTw/PMufrOICLJonzxJEpQWL3bxG7Yt8SHeKKtTI7uiAQM4dHUHyGYhJoiU0mdXNDQzhjLKbFdRju4ejCMZFTh8tQILR3UVPO4xCSFseJimacFJz3oDjUNXHc8XYhKSk6L9bWqFtTd7jCGysT1CIGshWXD0KLBjhwtz8Mzp3t2peXjdQ32QWdaAzPJ6jO3BP9TZGSbjAVPWPKob9w/69deJyOL06cCIEa4amRk8SxaZJGrPEF50LGcIAAYlKiFSaEDTFCuCaQ1zxWnzOHS4n4LtKv9LCneRS0f44xTptzOzXwTbX+nwVWH5QkxZc0yQF5Qyz9wPMbvX224jHleX4+RSYHeCkZHgm3zKJK1mVzSiTx/ynLbSG1dLbJ9ntPF6Tc6sENQ2wRJCDSGA5M9UN2oRqJRiIEdj0BJnjfpLfFIo2oM9l4gxdJ2FfKGXXybfFy1yUQ6eC2FC/hkce9+1pNMY4khlvZpVJx3ZjZv6VFYWSZYGgJdectXIWsAs2vv2cVL37GEU6supbESjxr0ryiL9HNeS6NfFD9Ig8rnYqyjr38UfMokI5fUaZJU3/yxvH0b8x5tO5ENrpXGrs1Bp9dhylmi5MGq8lQ0ato8SH08lYNIXGRbnLBW1tuXsWSJLQVGmELTLmTmTZJLGxbXRG7Yd8UbvYMtr3B6MRzS7vAFduwJSGQ3oxTiXbnsd6R/tDx+5BDVNWot9/tqaDceINMCtQ2MgdUBmgpHh4Opdaw/yKhtxJq8aFAVMapEvdPy4qTLT5d5Wc+rqiOCewbF1tLvxOhbaXqrTGOJISjZJVO0V4Ws3rs7w+uukyn3aNJNAtMvp3Rvo2pVoDXFQ9wz1JQJjNN28S7s7wuQMORIm6xvlD4kxifriRdu7UoVUjIFdAgC07kc2uXcYQnzkKK9XYzcHcUVH2HGxBHVqHaIDvDDc6K3aeq4INE0SvcN8ueevAaZ2IkzFnKfBeIVuvRWsR8LljBhB8vHeeaeN3rDt6MoYNRX8biJMg9+cigaIxUD3HuRmlpZGQaOzfmOTiEUYYbz2GO9me5Ff1Yh9xnyhO3gkXLdErdOz6+cA45rhjmw5RzZVI+KDWuW9rlpFvi9c2IZeIb2e3K/mzgVSUx06VbdQU0WZEDqNIY4czzbpuXAhMxNYv548Zi6yNsFc3ZNj9YtJCM3NjSFjmKy8XgO1TpgAXvdQbyjDyWRJTrF/jpFGr8s+Y/UFg1QswvyhxEvz03HXhcr0Bhrr9pB43s1DurANCDcZO9zfPJhf3atap2fLo4d5oDF09izw++/kMn/xxTZ8Y4pySqdtd4TJG8sqa+BVltwyvDZkILmdNBb5NFNutwQTKhPa2NhZ/HI8DzRN8u6YsJ8Q0orqoNXTCPKWoYsbK7r/e7YQADB7QFSz548eJXU3YjHwv/+14YDEYmD8ePLYwWpNxjNUVKMSpJvXaQxxhPEMcA1JvPYaMXqvv56I17Yp5vkNHBY3RrOGrypsWxNoJrxYWC2wfFIsQmJf0iTu1En7N7epvYnI4oErZa30U24bRqr1Dl4pQ66NcmJH+PN0AS6X1MPfS4qlxiTu9OJanMmvgURE4aZB/Iyhs/k10OgMCPGRoZsDi397weQ0zJ8P9O3bDgPQ60lNfwciNkgJigLq1Do2sZ4LTMVYVkUD6tU6DB1K5pOmOACpZsrtlmCkII5nVdr0IrkSrd7A5vzdNcKx8OcZ4wZjQBd/h/KXXElmWT3OF9RCLKIwI6l5Az9mw3733SSvuU1xUj5egNKkm8c35At0GkOcySpvBEVZly43JyPDlCvELN5tCqPuWVhIEpfswHqGCt3bM0RRFLqFMAnfwqvfRg4XA6BRUSpGUZHtY5Oi/RDpr0CjRo8jGc1d+nHB3hifGAqaBtsdWyqVYvXq1Vi9ejWkUqngMQIkV+j9nZcBAMsmdoe/kpxv0wmSTD2ldzjnkC3DcbMQmbsu2tY4c8aUK9SmXiEGlYrkDQ0eTJRzOwgKqRhRRq8rn5tIqK8cEX4KNsQ+bBh5XlPkjzMW2naYkxjmi2BvGZq0epyyoGrdEmfOK4YtZ4tQXq9GqK+cVZYXCmsMuXG+0L/GvMOxCSEIMtNSSk4Gtm8HJJI29goxzJhBvh87BpQ7FjZ1JFTmMcZQVVUVFi5cCH9/f/j7+2PhwoWorq62+ZrFixeDoqhmXyMdSN4ZGBPA3pBs8corZAPZZhVkLVEqSSZcWRmn4C9jDF0pqRPc96utSAhz3Bga1N2HFV88edL2sRRFYYrRO2RJZPGxyQkAgE0n85FT0QCZTIYnn3wSTz75JGQyYeJtDD8ezUFBdRMi/RVYZOxbptEZsNmoNzR/WBfe52Tzhaw0Z3RnmN3rbbe1Ya6QOQoFkED+3x1NgNE8VMYHZu04l1+DQYMAkYiGvkGB4xdse0pFIgoTjdVMltrVtMSZ8woAGtQ6vL2NyNDfPTLOocRpwCx52k3zhWiaxt9nLIfImI3F3Xe3UwVZly5A//4kirF9u0OnYpOoBdwfPMYYuvPOO5Gamopt27Zh27ZtSE1NxcKFC+2+bvr06SgqKmK/tjqwiF3f177Y2qVLwI8/ksdMome7MGECEBjI6dBIfwWCvGXQGWhOHaHbE0YK4IoDUgB9o/whi6wGAKSk2A8jMrvGXWmlrUqBh8QFYUJiKPQGGh/utlOrz4PcikasNZ5vxZREKKSknH5PeikqGjQI85VjfA9+mig6vQEnsxnPEL8KtPbm1CmiKyQStWFlpiU6qBo1k0SdxTOJmuk1dr6gBkol0LM3mR/p56Wot5O3cUN/sp5uPVfktBJ7rqzbexVFNSrEBHnhvvGOWQDFNSpklDWAotzXM5ReXIerpfWQiUWY1tfkBTtwgHSnl0rbsDLTEkyjcYfzhhjPUAcNk6WlpWHbtm346quvMGrUKIwaNQpffvkl/v33X1y6dMnma+VyOSIiItivoCDhO2IuxtArr5AKwTlzwLqN3R2KotjGs+6eRN0j3HHPUK8IXygiyd955Jj9fIWR3YLhK5egrE5tMRdi5VQif7z5dAEuFdUgJSUFKSkp0Avscl6v1uHe71NQq9JhQEwA5hmTpGmaxndHsgGQEnu+3ebTiurQoNHDVyGxqhDsrjBeoTvvBHr1aseBMIv27t0kbNZBYJKH+XqG+rEhdpJvOGoEuSbVRQE4l287B3FsQih8FRKU1qlxIsd2qEyv1zs8rxgyy+rx1cFMAMCLs/qyGw2h7E4nHuNBMQHNwk/uxG8nSWj9ul6h8FOQ6AZNm7xCS5eSoq52g9lkbNtGwioC6d7Rw2TJycnw9/fHCLOY08iRI+Hv748jR47YfO2+ffsQFhaGxMRE3HfffSgtLbV5vFqtRm1tbbMvgHgk7FUbXLxIutEDbVxBZo2vvwZGjyblN3ZIarGouSsJRpn7q6XCG/IppGJ0700SRU+esJ9jLpOIMKEn8cJYCpUNiAnAlN7hMNDAu/+dx/DhwzF8+HCoBNwsDQYay39JxeWSeoT5yvHFwiGs0bPvUhmSMysgE4tw1wj+ZcDHskjlzrCuQW6tkNuSlBTSg0wsbqdcIXP69yd5Q42NpLV3B4HRGuJbXs8YQ1dL69Go0TXLGzprJ4laJhGxaupbjFVO1lCpVA7NKwaDgcZLf1+AVk9jYs9QTOltuVEpH3YZ14TJvR3LO3IVap2eFW1lij4A0qhg/37Smd6lvf24MHIksG4dETsSCzdOzTfLfCuOPcIYKi4uRlhY64s2LCwMxcXW480zZszAhg0bsGfPHrz77rtISUnBpEmToFarrb7mzTffZPOS/P39EWPs7zXZQkO7lrz0ErmxzpsHDBrE4Q9zNWlpJDvu33/tHmreTdqdiQs2NeQrdEBvaMRQEUAZUFUhRkGB/eOZUJklYwgg3iGK4pb/YI0mjR7P/XkOu9JKIJOI8MXdQxFu1ALR6Q14YytRibxnTFfE8OxFBpjKmC31I3JnGPf9ggVAjx7tO5Zm0hUdSI2aKZPPKm/gFbIK81Mg1FcOA008j6wxVOzPtqewBRMq++98MfQuDpXRNI3Xt6bh4JVyyMQivDS7r8NFBI0aHQ4b59UUNzWGdlwoQVWjFhF+CkxIJPcxmjYlS99/P6c2lq5FIgEeftjhUrboAC/4e0mhM9C8W0y1qzG0atWqVgnOLb9OGHuXWLpo7fWjue2223DDDTcgKSkJs2fPxn///YfLly9ji41F7Nlnn0VNTQ37lZdHSi8n2dlBnD4N/PYbWSvbpYLMEub5DXbUPZnYf3pRncsVlR1BKhaxHrorDuQ39e/qC2koeT2X9jgTe4ZBIqJwtbTeooZKnyg/3DdOeO7B6dwq3LD2IFvq+/bN/Zq1Bth4Ih9XSusRoJRi2XUJvM9f06TFQWNn7slO2A23FQcPmipd2t0rxMCEyjhKV3gCXQK9IBFRUOsMvLt+s6Gyghr06wdIpTQMKhmOn7Ffpt8sVJZdafd4gGhvPfjDSVaVnSsf7bmKrw+R6to35vVzSFeI4dCVcmh0BnQJ9EJiuHs2Pf7VuKbMH9qF9Qj/9x/ZJysUbuAVciIURbH3sgs8oxztagw98sgjSEtLs/mVlJSEiIgIlJS03pGXlZUhPJy7NR4ZGYm4uDhcsdGUSi6Xw8/Pr9kXQJR+bcHsXu+4A0hK4jwk1zJ2LODrC5SW2i2big1SwlchgUZvcPumrc7IG+rfJQDyCDJZuCRR+3tJWSNi4wnLIosrpyYigWPj05pGLfZdKsX7Oy9j4dfHcPOnR5BZ3oBwPznW3zMMNw0yVYrVq3V4z1hi/9jkHvD34l9avONCMbR6GonhPkgM94x8IfPd69KlbtQrafJkcgf54Yf2HonTkIhFiDV6G/lqtJjrlMlkwICB5PncS3KU1Vn3wgPNQ2Vbz3EzbjafLsC2C8V4+KdTeOq3M3YF9gwGGp/vz2Dn0Euz++CWIfwrMS2xO42kXUzpHe6WUhW5FY04dLUcFEXajQDN59UjjwCRkTZO0NZ8/TVw441Afr7gU/Rloxz88l/b1RgKCQlBr169bH4pFAqMGjUKNTU1OH78OPvaY8eOoaamBqNHj+b8fhUVFcjLy0OkgP++rQs9OZlsEsViN8kVYpDJgKlTyWM7Lv1mSdTunjcU6gxjyB/KaDJZ9h7kFltm+pH9cSrfYjxaIRXjzZv7sz//ayMP4v4fTmDxtyn4cPcVHLxSDgMNzBkQhe3Lx7Mlxwyrt6WjvF6NrsFKweJwjMbIrP5Rdo50H3bvJtUucjl//ZPyejXO5lfbrWgShI8P6bUzenSHUqVmPCWZfI0hprzeGGIfOYJ8JurCQLt5Q4BZVdn5Yug4eKXnDIzCw9d1B0URj+nsjw5h/+Uyix7to5kVmPPxIbz5HymjXz6lB+4xipc6isFAY7exA7y7eluZjdvYhBA2tP7nnySS4eMDPP10e47OAl99Bfz1l0NVZcx9jK9nyCNaVvfu3RvTp0/Hfffdh88//xwAcP/992PWrFno2bMne1yvXr3w5ptv4qabbkJ9fT1WrVqFm2++GZGRkcjOzsZzzz2HkJAQ3HTTTU4dH7NQL17sBjkNLbnhBqJUt3WrXUstKcofRzMrcS6/BvOHtncQ2ToJRs/GFQeMIYVUjCEjdPjvP+DEcRHUanLTtcX4xFBE+ClQXKvCzoslFg0L5sYAAC9sPo/YsCCLquWD4wJRXKvC4NhADI4NwNCuQRa9jz8czcH3yaSR5Iuz+0Am4b9/qWrQsD2gZvV3p22gdWja1CzywQeJFIk9kjMq8MepfJzIqWK9GxRFysYHdPHHQxMTPK6Kri1hu9DzNIb6Gbu0Xymth0qrx/jxYqxbB6hygnEip9BuYvHYhFAEKqUoq1NjV1oppifZrtqVikV48vpeGJsQihW/piKzvAGLvjkOP4UEk3qFIdxPgcIaFXKNTUkBwFcuwYqpibhnTFdef5stzuRXo7xeDR+5BCPcUKpCpzdg00liDDEbOb3eFMVYsQIICWmv0VnhhhtIb5CtW0kykwAYz1BaUR2vPDSPSKAGgA0bNqBfv36YNm0apk2bhv79++OHFm7qS5cuoaaGWINisRjnzp3D3LlzkZiYiEWLFiExMRHJycnw9XXegrhrF+mHKpO1s06DNRh1z5QUwEKo0RxGI+N0nn1F2PaE1RoqqRNcUQYAU0crIfJWQasW4dgx+8eLRRTbj4yJw9tCpTVg6XcpFnMhnpjWE/ufvA7v3zYQC0d1tWgIHbhchlV/XwAAPHl9T0zqJSxBc9uFYugMNPpE+rEKre7OX3+RwhKlEnjmGdvHFteo8MhPp3DHl0ex6WQ+awgFectA0yTsszm1ELM+OogPdl12TvsHmiadth98EKh1bzkKrjAVZXw9rhF+CgR7y6A30EgvrsPEieR5bbkfdp+qtvt6mUSE24w36++Tszm/76juwfjvsXG4a0QsgrxlqFXpsDm1EJ8fyMQ/ZwpxJq8aIgpYMDIW+56ciCVj450aymJCZBMSQwVtUlzNrrQSlNSqEeQtw5Q+xHO1YQOpeg4MBFaubOcBWoLJc921izQbF0B8iDe8pGI0afW8qiM9wjMEAEFBQfiRUTO0gvmN0cvLC9sdVLO0B02bks8efBCIc6y9jWuIjAQmTgSCgsiibSPHanAcEWlMK6pDo0YHpcw9L4/4EG+IKKBWpUNZvZp313aGUd2DoYipRGN6FPbsoTF+vP2F8tahMfho71UcvFKOvMrGVlVdUqkUL730EnR6AzK7hONIVg0Wf5uCH+8d0Swh2l5p+6XiOjy84RT0BhrzBkdj2UThVRZMuG7WAPf2Cm3bBuzcSYwfxtu6fDkQYcVRQNM0vk/Owdvb0tGo0UNEkdLhaX0iMDg2EP5KKcrr1bhYWIvvk3OwK60EH+y6gv/OFWPdnYPQw5HcKYoCnngCuHKFhKJvvln4udyEXhFMeKHWbnGKOSRp1R/7L5fhXEENBo4MQO++BqRdECE1RYrKBo1d/Z0FI2PxxYEMHMmowOWSulZ5bcy8Yh4zBHrL8PpN/fDK3CScyq3CnvRSqLR6RPl7ITJAgf7RAYgN5l95aQ+aprH9AqkcddcQ2TeHsgEAg/1isWSRGKtWmQRLn34aCAhor5HZYNAgcs8qKiIxcibNgwdiEYXekb44lVuN9CLuGxX3M2c9iD//JA4Xb2+TS98t2bOHaA3ZieFF+SsQ4aeA3kDjrB3BtPZEIRWzyZ5XHUj2HhgTAJ944rXZtotb3lBMkBJjuhPf8iYLidQymQyrVq3Ca6++gq/vGYWR3YJQr9bhts+T8dHuK3a1LwwGGt8ezsLcjw+hTq3DsK6BeHNeP8E72rI6NZKNpb+z+rl3vtDhw8B77xHxtwsXyGL9xBOWj9UbaLz8z0W89PcFNGr0GBwbgH/+byzenNcf1/UKY9vmhPjIMT4xFF/ePQTr7hyEYG8ZLpXU4a6vjiGv0sHmuuZVZR2APpF+EFEk36qklt+uvB/blqMaADB1Mrm1NOWEsCFaW3QJVLLyFYywqDnMvFq1apXFdhxiEYVhXYPw9PReeGl2X9w3vhtm9Y9yiSEEACnZVbhSWg+FVITJAj22ruRcfg2OZ1dCIqKgLIzDTz+RFjbZ2WRz8X//194jtAJFmaIZDswrJl0hzULlrzU6jSGB6PWm3euKFYAFGST3gccOb3BcAABwap7YnjDiiw7nDY00drBPEXMWFGaEyzadzLcZk/aSifH1omGY2DMUap0B7+68jBkfHrSY7EnTNNKKanH7l0fx8j8XodIaMLp7MD5fOBRyiXARsm3ni2CgSTdtV90YnAUjcdBotFFEIuItbxkJVWn1+L+fT2G98ab53Mxe+O3B0WyugCUoisKs/lHYuXICeob7orROjUXfHEcljy7trTBvIWBHusIT8JKJ0cM4r/jqjQ2KDQBAjASA9IoGSN4QI+lgD6b/3h+nClDTpOX1/m0NE867cWA0p36Vbc23h4mEwKz+kTh33KhVZqwlqKsDvv0W0LrrR+yETQaTRN3pGWoDvv+eaBoGBlrfvbodly/b7bY9OJaEyk7lVLfBgITjjPJ6AJg6yhtiHxW0GgrJydxeM61vOAKVUhTVqFqJLBoMBly4cAEXLlyAwWCAt1yCbxcPw9o7BiHER47MMpLsmfTSdsz75DCe//Mc7v7mOAa+shMzPjyI41mVUMrEeO3GJGy4d4TD8v5/Gpu6unsVGU0TL6s5lZXA/PnNdVAa1Dos+uY4tp4rhlRMYe0dg3D/+O4QcVTUDvKW4bslwxEd4IXM8gbcsz4FjRqBFWfjx5OSnJIS0jytA9CyMowrw+KDIKJIflZxjQoTJgAURUNX6YM9J2s55faN6haMnuG+aNLq2fYRDC3nVXtSWmua9wtGul9uRGmtCv8YQ+OLRsW3UlVpaCAl9e3a488WU6YAXl7EhVUnTEuO2RhdLOw0hlxKU5NJAO655wB/6xtS9+GJJ4CePYGPPrJ52CCjMXQ6t8qh5GRX44yGrQDJG5LHkjDSnj3c/l65RIy7R3UFAKzdfaWZYm9TUxOSkpKQlJSEpqYmAMQrMWdAFHY/PgGLRsXBVyGBWmfAqdxqbDiWiwOXy1DTpIVcIsKU3mHYvnw8FoyMczjZMyW7EqdyqyETizB3oHsbQzk5QEVF6+dvuMG0aGv1Bjz80ykcy6qEj1yC9fcMx5wB/P+uCH8FvlsyDAFKKc7kVePRn1OFXes8pCs8BfPGq3zwU0hZQ+poZgUCA4H+A8jvci74cGqcSVEU7h5NjIsfkrPtzqv24ufjedAZaAyODWhWPeou/Hg0B1o9jaFxgZA3BFi0JxYvBl59tc2Hxg0/P6KNd/Ag0ckTQI9wH0hEFGpV3Dc6ncaQANauJZpQsbHEwvYIhg8n3+0s2knRfpCJRaho0CCnwsGcCheSEOYcz9DAmAD4dCV5Q9t3cd9xLhkTD1+5BJdK6thESnv4e0nx8twknHlxGvY8PgEf3DYQD07ojlfn9sU/j4zF+Zevx1eLhglqtWGJz/ZlAABuHhKNMD9hSeZtRUuvEADceitRhVAoSBjx+T/PYd+lMiikIny3ZDjGJAivC04I88XXi4ZBJhFhV1oJNqdy6MliiQ6WN9RPoGcIIA2NAbA5apMnEWNelRuMQxxDZTcNioavQoLsikbssNL6pj3R6g346TiRumA2RO6ESqvHj8eI93/J2HiL8+qRR4i2oQMtwFyPj2NVr3KJmLe4bKcxxJPKSuDNN8njV18lC7VHMG0aufrT0oCsLKuHySVi9DXuDt05b4jpTlxer0FFvbASTIDJGyK7h1MnRGy+ij38lVJWs+TDFt4he4hEFLqF+uDGQdF4ZkYvLBzVFf26+EPKswu9LS4V12F3eikoCrh/vGP9ftqCffua/7xoEfDTT8T5AgDv77qCjSfyIaKAj+4YjCHGykdHGBIXiMcmk6KCV/65KOw6YkqBa2uJy9jD6RNFkqhL69Qo5dmWY5TRGDpqbAjM5g3lBuPgFftJ1ACglEmwyGhkrN6ezkmEsS3ZdZGUqwd7yzCjn209pPbgr9QCVDZoEB3ghWl9wrFzZ/PfP/ss2cyLPOXOX14ueF4xeUNc8ZSPxG144w2gpgbo1w+46672Hg0PAgJIew7A7i52CJM35MbGkLdcgm5GkbizDjaXnTLCG2LfJuh1FA4d4v66JWPj4SOXIL24DjsuCm/Q6go+30+8QjOSIpzSg8nV/P236fGDDwLffEP6kQHArym5WLubtNB57cZ+bNWRM7h/fDf0ivBFVaMWL/9zkf8JIiNJiU56Oslz8HCUMgm70eCrRD+0ayDEIgo5FY0orG7CuHGASERDV+WNA6caOOs7PTChG4K8Zcgsa2B79bkLjADq7cNjHCpscAV6A41Pjd7gxaO7QiIW4b//TL9/4w3y5TGi6QsWECkY8z+CB53GkItQ6/TIzgbWrSM/v/22m7sZLcG49O10sWf0htw9iZrR7TmdW+3QeUZ1D4ZXPHHj//03dw9PgFKGxcYKmA93X+XlHXIl+VWN+OsMSaB8cIL7e4WuXDG1Irr1VuCTT0w719O5Vfjf5vMAgEcnJeDOEbFOfW+pWITVt/SHiAL+PlOIPekCQjNuKTAmHFOZPD8xSV+zvKHkjAr4+wNjxpDfVaSF4DTHzZWvQsp67D7Yddk1LVUEkFZUi+TMCogo4E6BbXFcyb9nC5Fd0YgApRR3jojFkSMkkgEATz5JvEIeRWgoqdK0c7+yBt98rk5jiCNXSurw7LNEFHPSJGD69PYekQAYY2jfPlJSYAWmoiy9uNZuE8T2hCnnTTVK7jtyHt+exBj6YzPNqxH50rHx8JaJkVZUi51p7pHj8NXBLOgNNMYkBKN/l4D2Ho5dHn2UfO/eHfj1V9POtaJejWUbTkGrpzEjKQIrpia65P37dwnA0rGkX9X//jwv/Oar0Zjqlz2Yvg7kDbGhskwSKps7l/wzm66E4xAHvSGGO4bHomuwEuX1Gnx5IJP3OJwNTdN4bQvxHM5IikR0gHt5AQ0GGh/vvQoAWDomHkqZhM1nHTUKWL26HQcnFAelK3pH+vHygnUaQxxRFQXgl1/IQv3uux7kajSnd28gPp5YdLt3Wz0swl+BEB8ZDDTpv+OuDIwhRtuZvGqHvDIKqRhTJgOURI+iAhFSU7m/NtBbxuqjrN6WDpWWm3ijq6hs0OCXFJJA+dCEhHYdCxeSk4nyNEUREVNmXukNNB77JRVFNSp0C/XG6lv6u7Qr+MqpPREbpERhjQof7bnC/wQPPUQaPe3f7/zBtTGMZ4hvo0sAbB++ZKMxNGcOeV6VF4zdqa3b0lhDJhHhqem9AABfHszknb/kbLZfKMHhqxWQSUR42jgud2JnWgkul9TDVy7B3aO74q+/SDNWqRT45Zf2Hp1AHJSu8JZL2PZJXOg0hjjCaJ3cfTcwcGC7DkU4FEWCxn//DUyebPNQJs+E6XbujvSK9IVcIkJNkxZZPHrQWGLmoFAojKGyv/7i99oHxndHiI8cGWUN+OJQNp544gk88cQTzdoGtBXv7LgEldaApGg/jElwv+aR5tC0SaPrnntIHh7Dezsv4dDVcnhJxfhswRD4Klz7WXrJxHhxVh8AwPdHclBWxzOZWqUimigdoKqsbxTZURfVqFDOM6l8aFwgJCIK+VVNyKtsRI8eQI+eBsAgQsohBQqruSfDzkiKwKDYADRq9Pj0QE67zSuVVs96he4f183txEtpmsa6PcQrtGh0VyglUjz1FPndE0+QqmePRCYjhT+A4FDZC7P6cj620xjiyLFjJD/y9dfbeyQOcvvtwOzZpIeIDSL9SZncP2cK3SYXpiVSsYjdxaY6mDc0pU84lD1ImOv3P/m5ZP2VUrx2YxIA4Ksj+Vi0/H9Ys2aNxbYBriQ5owI/Gctq/3dDH5d6UpzBH38AR46QZqyvvGJ6fndaCT7eSxJB376lP+8SWaFM7h2GgTEBaNLq2URUzsyaRb4LXLTdCfPiBL6hMm+5BP27mPSGAODmm8htpvFKOLbw2FxRFIXnZvYGAGxKLcJNDz7dLvPqywOZyK9qQoSfAsuuc78cPKYnnJdUjCVj4/HZZyQPLyzMfpNjt6cN51WnMcSDJ54AoqPbexRtQ6CSLDh1Kh3+OJVv5+j2g8kbOp3nWOVbiI8coyeqAYrG+bMie0LdrZieFIEb+kdCb6DxxKYzzumMzoMmjR7P/HEWAHDXiFhW88Vd0WhIs0ig+bwqrlHhiU1nAJCKGCGiikKhKAorjXlJPx7LQXENj9DM1KkkJnHlClF693CYTcZ5AT0KW4bK5s4lzzdlhuKvU/w8zcO6BuH2YTGgaWD5L6kOyWgIobC6CR/vI16X527o7XbNq2maxkdGr9CCkbEQaWV4+WXyu5dfJvqFHg3Tp+zkSdK81YV0GkMcCQsD63r0eC5eJJ1lv/nG6iESM82bN7amuW0iNZM35GgSNQDMHhECeTQxqsxLvbny8py+CFCIcf7SVbz2y/42bRvw/q7LyKloRKS/As/McL+chpZ89BGQkUEqZ598kjynN9BYuTEVVY1a9I3yw7Mz2/7vGNcjBMO6BkKjM2DdXh65Q35+JMcB6BDeIaFtOQCT+OLRjArQNI3hw4HQMBq0RoqUZAlyeIa0X5rdF91DlCjMz8UDn/4HnZ1mx87kzf/SodIaMLxrEGb3j2yz9+VKckYFTuZUQSYR4b5x3fDyy0TJvU8f4N5723t0TiAiguyWvvrKbjTDUTqNIY68/LLDopjuw5EjJHfoiy+sHlLdaOriV9moxSfG3ZG7wXiG0orq0KRxbJGc2iccXgnGUNkf/A2ZEB85nr2+Owo+W4pXF05CanbbVJedyavGVwdJxc3rNyW5PL/GUUpLTWGxN94wzasvDmTiSEYFvKRirL1jULvouBDvUE8ApO1CfhUPFXbGpd8B8oaS2CRqfuX1ADA0LghSMYXCGhXyKpsgEgFz5xiryq6G885D9JKJsWZeLxR8thS/P3UTPt+TxntMQvjjVD7+OVMIEQW8NMf9ws40TePt7ZcAAHcMi0FFgYKVfvngA5NOl8ezZg2wdKnL3VydxhBHbr+9vUfgRBjV3OPHSaa+BSobmrujvzyYhbxK92vPEemvQJivHHoDzVskriVdQ7zRdyRp73HwIIXqav7nuKGfafe4/JdU3gmofNHoDHj697Mw0MCNA6MwqZfzBAldxQsvEMHmwYNJjySAePbe3UEW9pfn9GWF/9qDUd2D0T/aH3oDjSc3neX+QsYYOnCAKLN6MIxgXUF1EyobNLxe6yUTsxpg+41tOJhQWeOVcPxzhn+4o2e46Ub43s7LOOviKtdjmRV4+nfyv39oYne28ac7sf1CMc7kVUMpE+ORST2wciVRdpgzx9QyrxPudBpDHPEY+XIuREUBQ4aQch4r6p4VLRZAjc6AN/9rmx0ZHyiKMuUNOUExe951fpAE1UOvowRt8M13j9nljbj76+OoVWltvEI4egONp347g/TiOgR5y/DibO6VE+3FmTPE4w2Q3atIBNSrdXjsl9PQGWjc0D8St/Ioh3UVT88g3qHkzAqsP2K9fU0zEhLIrunllwXporgTvgqp4CRqAJjcmxjlO4x9+yZPBpRKGvo6L5w5TSGjTHhPQa2exsM/nUIBj8o0PmSW1eP+H05Cq6cxs18EHjd6Ct0Jnd6A1Uav0L1j45FyUI5t20ja2rvvtvPgXEFmJlkwLDVbcxId6RbfCR/sZOlX1LfeDW49V8xWiLgTzswbmtY3At49yc71+x8cq6IL9pHiYlEtlq5PcTiE1xKDgcazf5zF5tRCSEQU3r11AIK827bKhi80DSxfTuyE+fOBcePI8y/9dQE5FY2IDvDCGzf1c4twxJiEUCikZHl8+e+LnJvx4uefiQ5HoOO909qbAUbvzols7vpADNf3JX27kjMqUN2ogZcXMHs2+b82XIjGvwK8QwxdghTIq2zCrZ8eQaYDRpUlKhs0WLI+BTVNWgyMCcB78wdCJGr/67Elv53MR2ZZAwKVUiwa2Q0rVpDnly8nNnmH4623gBUrgB9+cNlbdBpD1yqMMbR9OyntaUFFizBZVIACd4+K46XO3FY4qy0HQMID8aOIa3/XTqCwUPi5vrh7KHwVEqRkV2HJ+hSnVZjRNI0X/z7PNi798PZBuK5XmFPO7Ur++IOInysUJkXcLWeL8Psp8nd8cPtA+Hu5T74TExqhATy84SR2u4nCeFsxslsQAAjaAMWHeKNXhC90Bhq700oBEI02AGi4GIW/eVaVmfP9PSPQLdQbhTUqzP88WZA4pCVUWj0e+OEEsisa0SXQC1/ePRQKqfv1XFJp9fhgF0nuf/i6BHz7hRSXL5Min//9r50H5yqY+9Wff8JVN6FOY+haZfBgkqlfX09yHMxQ6/QYmxCCp6b3xM2DSc3zsK5BeGVuEls260707+IPkVEkrsRBpVqKojB3gj/k0ZUwGCj8+KPwc/WJ9Me3i4dBIqKQnFmBGR8eQFGNY659mqbx6r9p+PFoLlFDnz8AN7hhlUtLGhrA7l6ffJK08yquUeG5P88BAJZNTMCwrkHtOMLWjIg3eXd0BuChH09h36VS+y+sqiKyv5cuuXB0rmdUtxAAxOMqxLPJeIe2Gb1q06YBYeE0DE1ynDvmhUvFdYLGFRnghY0PjEKfSD+U12tw+xdHcTKHv/fKnAuFNZj90SGkZFfBVyHBt4uHIdRX7tA5XcV3R7JRXKtCdIAXJnaJw6pV5Pm33uoApfTWmDyZNAPNzwfOn3fJW3QaQ9cqIhHp/RIcDBQ3DwHIJWJ8tWgYlk1MwM2DSf7G0UxSJuuOeMslrDCfM7xD0/qEwzuJaCt99x2/XmUtGdo1COvuHAQAyChrwJi39uCVfy4IErIsrVPh8Y1n8M1hksPy1rx+uGlQ++fXcOG114C8PKBrVyIEZzDqMdU0adG/iz8em9KjvYfYip4Rze8sGr0B9/9wEoeu2OmxtWwZcMcdwPffu3B0ricmyAtR/gpo9TRO5vDPx5ueRIyhA5fL0KjRQSIBFtxlDJWd74J/zwp3u4b4yPHz/SMxNC4QdSodFnx1HJ/tz+BttBkMNL44kIEbPz6MK6X1CPWV4+tFw9CjjYQ++VLTpMUnRkHQ5VN64PlnxGhoAEaPBhYtaufBuRJvb9JKCnBZx9lOY+ha5p13SDXZggVWDxkUGwiZWISSWjVyKtyvmoxhkLG5rKPiiwAwPD4IUYPLQUn0uHiRwsmT3F8rkUiwbNkyLFu2DBJjbev0pEi2R46BBr45nI3Br+7EnnQOXgYQt/jHe6/iujX78MfpAgDAq3P74rZhnqGzn55uSur88EOiOP3tkWwculoOhVSE928bCKnY/ZainhGtb4ganQH3fp+CY7ZCR0yDyX/+cdHI2gaKoljNoORM7k1WGXpF+CIuWAm1zoD9l0jomblhN14Nxx/JpZw3WJbmlb+XFD8sHYEJiaFo0urx1n/pmLBmL348mgOt3n5IOru8AQu+PoY3tqZDq6cxrU84ti8fj+Hx7uWhNOeTfVdR06RFYrgP/Cq7YONGsq/9+OMOVuRjiW7dyPetW13ide0oSgSdCCEgwO4hXjIxBsT4IyW7CseyKtA1xLXCV0IZFBOAn4/nOtyWAyCCkzeNCENmj2I0pkVj/Xpg6FBur5XL5fj4449bPf/czN7490whGrVkka5u0mLJ+hTEBSuxZEw8ZiRFIMxPwR6v1umRW9GI03nV+HDXFbZyZkBMAF6c1RtD4tx3wTaHpoH/+z9AqyU2wuzZwKXiOry9LR0AaRvSnmX0tugW4gOJiILOzIvnIxfj/vHd0SfKRjxixgxyZzp3DsjJITFBD2Vk92D8cboARzP5h6EoisL0vhH4/EAmtl0oxox+kejfH+jXn8a5syKkHw7EsaxKTmrp1uaVl0yMbxYPw5+nC/D+zssoqG7C/zafxwe7LmPOwGgM6OKP2CAlogO94KeQ4nhWJfZfLsO+S6XIKCPij15SMV6a3Qe3DYtxi+R9a2SW1eObQ8QrvHJSLzx2Gxnrww97cL9MPnTtSr7TNHDXXaRHlth5OV2dxlAn5OKqrCQhMwuM7BaMlOwqHM2sdFtvBFNefza/Bjq9oZmCthBuHxaLz5PS0JgWjZ9+ovHuuxTkDqQQBChlWDiqKz4/kNns+ZyKRrz09wW89PcFdA/1RqS/F7IrGlBY3QTzSFqkvwJPT++FOQOi3LK6xRqbNgG7dgFyObB2LaDR6/HYL6eh0RkwqVcY7hrhntcTQDqnx4d440qpqWLpkzuHYHzPUNsvDA4GxowBDh4k3qFHHnHxSF3HKKOhciavGg1qHbzl/G4Z04zG0J60Uqh1esglYtyzmMLKlUD9+WisP5zpcOsYsYjCLUO6YPaASPx8LBfv77qC8noNazhYQ0QBYxJC8PKcvujmpgY5A03TeOXfi9DqaUzsGYrTW8Nw6RJJmjbv69ehMVegPnkSeO89k3y9E+jojrVO7LFvHxATA9x4o9VDRsSTxeqYG+cNdQ/1ga9cgiatHukCEzPN6RPlh5HjdBD7qFBVxV1ziKZplJWVoaysrNVntXRcPGSSVDdMFAAAWiVJREFU1lNOLKJAgeQUHbpajvwqYgj5yCVIivbD41MTsefxibhxULRHGUK1tcDKleTxs88SL/eabZeQXlyHYG8Z3r65v1vvxAHiiXtgfDfMHUh6pP16Mo/bC2fPJt89PFQWE6REdIAXdAZheUODYgIQ5itHnVqHIxkktHjnnYBYTENTFIh/D9ZxUvm2Na8Y5BIxFo+Jx5FnJuHuUXEQ27i2QnxkmJkUie/uGe72hhAA7E4rxb5LZZCKKSzp3xevvUb+tjVrODn4Owb6FvlgL7wApDlP+67TGLrWiY8HCgpIi44Ky3kQg+MCIBGZ5PXdEZGIwjBjrP/wVf75DZa4c2QMvPuSHJ3167kZgY2NjQgLC0NYWBgaG5sv8mG+Ctw+LKbZc1H+CmxfPh6nX5yKzxcOweqb+2PjA6Nw/PnJOLdqGv79v3H4v8k94CVzvxJfezz3HLm0uncnff0OXSnHV8bd+upb+rtttY45q2/uj2dn9saDE0i38m3ni7mJ/THG0N69xCr0YEx5Q/xL7EUiiq0qYwQYw8OB6dPJzbzufBf8cDTH7nlszauWeMsleGVuEn68dwSrFdWS8noNuoZ4e8TmQqXV45V/LwIAlozphjee90ZjI2mFt3BhOw+uLdG16I+pVhMJ+5bPC6TTGLrWiYsD+vcnSnhW1KiVMgkrwHY0y/1EFxnG9SClwAftVftwZFb/KIQOJnooW7eSaihHeWBCd0iMC3C3EG9semg0EsJ8EKCU4fq+EZg/LAbD44MQ5qtwe6+JLQ4fBj75hDz+/HNAZdDg8U2pAIC7RsSyCsXuDnOz7B3ph9Hdg6E30Pg+Odv+C3v2JOp3Wi2QnOzaQboYRk5DqOAqU1W240IJ9MbYL6s5dK4LfjqS73RRUoCM+5vFwywaRP5eUtw3vpvT39MVfHUwE7mVjQj3kyO8tAe2bydh5y++ADx4ieCPJaPn+HFSCOQEOo2hTuyqUQPAiHjhAmxtxbgeJJfjeHalUxZXb7kEt031hzy2Ano9hbVrHT4logO8cNOgaPSJ9MPGB0chOsDL8ZO6GWo1cN99JBXtnnuASZNoPPfnOZTUqtEt1Bv/u6FPew9REEvGkNLen4/l2r++KAr47jsgNxe4/vo2GJ3rYMQXz+bXoF7Nfxc+PD4IAUopKho0rJr1jTcCkZE09PUKFKWGYnNqgTOHzDK6ewi+WdTaIFo2sbtbCXxao7C6CR/vJaX0j4zui6efJB7i//2P2NvXFC3DZAAwahTpQeKE9I1OY6gTk0t/2zayk7UA4yo/JqCqpK3oHuqNKH8FNDoDjgtoIWCJO4bHwm84SXr+/AvaKRGP5VMT8fP9IxHi4/5hIiG89RYJ5YeFkU3bppP5+O98MSQiCh/eNsgjQ34AMKlXGGKCvFCr0mHrOQ4KyqNHk3w8D6dLoBIxQV7QG2hBrTmkYhGmGD2BjACjTAY8/LAxVJYSj28PZbssH3F0Qgi+XjQMcmO+XrifHItGd3XJezmb17emoUmrx/CuQdi9PgLl5UBSEgk7X3PodICvLzGAAJLicfgw8PjjTnGRdRpDnQDDh5M7V00NqYCxwJC4QIhFFAqqm9yyez1ASnkZ79DBy2VOOWdStD+Gj1VDElSPulqKbTLqCNEBXh6xKxXCxYvA66+Txx99BNTRDXj57wsAgJXTEtGvi/t1/+aKSEThtqHEuPk1xQkxUw9iZLzwvCEAmG7MG/rvXDF0Rg2gBx4AFAoamhJ/nD0pFXxuLowxM4gendzDLdtstOTQlXJsOVsEEQVcH9Af331HgaKAL78kxuQ1x4svAuXlpIWUTAZkZTlVb6jTGOrEpEYNWK1+8ZZL0N94IzuW5b7eoXGJJG/owBXnGEMAcOfIWPgNI96hDz+krTnPrnn0ehIe02pJ5PXGeQY89ksqGjR6DI8PwgPju7f3EB3mliExEFEkFHu1lEOT0F27gOnTPb5plClvSNjcH5cYgiBvGYprVdhnFGAMCQHuvpvs6GtT4rH+cLZTxmqNsT1CsOHeEZg/1P29dfVqHZ7+/SwA4PaBJGkaICoNI0e258jakW7diBHk6wtMnEiec2K1Zqcx1AnhzjtJy+PbbrN6CFNin5zhvnlDYxNCQFHA5ZJ6FNc41qeMYc7AKAQNLIJIqUZuLoXffnPKaTsc77xDihJ9fUny9Pu7LiM1rxq+Cgnemz8AYg+o3LFHhL8Ck4xNcTee4OAdqqwkO1kPv2hGGMPk5wtqUKfivxuQS8S4dQhRYd9wzFQ9tnw5+d50JRz/Halzudd5aNcgt1Q7b8mbW9NQUN2EmCAvlO7uicxMIDbW5HW95nGBdIX7XxWdtA1TpgDvv29z2zEmgSyIh65a1/pobwKUMvTvEgAAOOgk75CPXIIJvYPgOzgbAGktYe3Pl0gkWLRoERYtWsS2DbgWOHuWyH4ApOVGVlMZPjX2UFp9c390CVS24+icCyM8+vvJfGh0dto+TJ9OEjwvXfLoxq3RAV6IDVIa84aEtby5Yzj53PZdLmONnt69yUcEUKg50dVqmf21NK8OXy3HhmO5AIB5oUPw9ZfkNv3tt2Sj0QlMxtDhw1YlYfjSaQx1wplhXYMgl5A+ZVe4hAjaifFOLrEHgJsGR8N3UA4oiR4nTwIHDlg+Ti6XY/369Vi/fj3kjkhWexBqNdE70WqBuXOBmTersHJjKgBgwchYzOgX2b4DdDLX9QxFmK8cFQ0a7EorsX2wnx9w3XXk8d9/u35wLmSUA3pDANA1xBvjeoSApoFfUnLZ51esIN/rz8bgx/2FqGzQtHrttTKv6tU6PPUbCY/d2i8e775AUhP+7/+ASZPac2RuhrkkzNatTjllpzHUiQmtluQ4vP++xV8rpGK2iaEzDQ1nwyRRH7paLqg7vCVGxgdDrNSy3exffsM5Ql8dgZdeIp6h0FDgs89IN/ryeg16Rfh6bBm9LSRiEW41Nt79hUsi9Zw55LuHG0Mjuzsur8G0X/k1xeRVmzoV6NuXBq2VoOh4FD7cddnxwXooTHisS6AXCrb2QkEB0KMHqdDspAULFpAeZd2coxfVaQx1YqK4mKxMTzwBlFkOMZmEDZ2XoOxsBsUGwFsmRmWDBheLnKP+G6Ak5Rt+w7IA0Ni7Q4L9R1rnTtA0jYaGBjQ0NLhtKNGZHDoErF5NHn/+OfBneiYOXimHl1SMdXcO8oiqHSEwSbgHr5TZz3NhXPpHjlidV57ASLO8oZomYVUEk3uHI8xXjvJ6NXZeJF41igKWLzeW2Z/oih8O5SOjrLnn+VqYV+bhsRt8h+Lnn0QQiYhclbLjRJmdx5NPAj/+SPoAOgGPMYZef/11jB49GkqlEgEcm7HQNI1Vq1YhKioKXl5emDhxIi5cuODagXoyMTGk/bEN1yPjdTmWWQm1zvmqsc5AKhZhVHditO13Uom9WEQhQCmFNKiBbdFx+9Im6PTNF+bGxkb4+PjAx8fHbtsAT6e2Fli0iORPLVoExA6uwjs7SF7My3P6IiGs4yY4xAV7Y0xCMGia6CjZJDbWNK+4NrlzQyL9vdAt1BsGGjggcF5JxSK2JY15IvWCBWT50dd7oepEHN76L73Z6zr6vDIPj93YsxveX+UHgOgJMbI6nbgWjzGGNBoNbr31Vjz00EOcX7N69Wq89957WLduHVJSUhAREYGpU6eirs7xRp4dFjsu/V4RvgjxkaNJqxfUuLGtGJ/ofA9WoNE7FDDuMiDWozjdD/e9budG2EGhaVJGz1S5vPymBo/+fBp6A405A6LYMFJHhkmk3nQij20zYZVbbgEmTyZ6Xh7M1D5EPHHHRTu5Uja4bXgsRBRwJKMCmUYPkEIBvPoq+X3t0QRsO1Xh1mr3zoSmaaz6+wIKqpsQ5eeF1O97oqyMpMSsWtXeo3NzaBo4c4YIBjuIxxhDL7/8MlasWIF+/fpxOp6maXzwwQd4/vnnMW/ePCQlJeG7775DY2MjfvrpJ6uvU6vVqK2tbfZ1TcEYQ9u3A6rWpelE2JAYGoc8IG/oZE4VGgS0ELBEgJIIJUr8m+A3NBsAsGFtADafLHTK+T2JTz8FNm4EJBJgw080/rf1NAqqmxAXrMTrNyV5dF81rkzrE44ApRRFNSr7npLnnyf5eDNnts3gXMS0PkQ8cV96qf1KOitEB3jhup7EKPz5uCmResECoq5sUElRezQBr29Jc1rOnzvz8/E8/HYyHyIKSCofgf37RFAqgV9/JT3IOrHB9u3E6/rAAw635PAYY4gvWVlZKC4uxrRp09jn5HI5JkyYgCNHjlh93Ztvvgl/f3/2K6YDyOnzYvBgIDoaaGgA9uyxeMjYBOdXazmbrsFKdAn0glZP45iTmssGKU2yr/4jr0LkpYG2whfb/uh4/cVsceKEqQJo9WrgUO0lNk/oswVD4KvomOraLVFIxZg3iEmkzrVzdMdgUEwAQnzkqFPrHEukHmn0qp3Mh0pLwu1isSlRuO5EV5xOU+OvM67pWeYunMmrxiqjQvvciAH4+kMirvjpp0CvXu05Mg9hwgSSUJWbSzxEDtBhjaHiYtIDJzy8eXfs8PBw9neWePbZZ1FTU8N+5TmjVbknQVEm79Bff1k8hPEMnS+ssVgG6w5QFIXxicQ7dOCyc4w2JonaWyZGTIQU/qOvAAA2fx2IevdVGnAq1dXA/PmARkOabSZMKsRn+416Qrf0R+9Iv3YdX1tz+3CyWdqdVorSOg4in0VF1nUZPACRiMLUPsSrs9OBUNmExDBEB3ihulGL/86b+rzNnAmMHw/QejGqDyVizbZLrLHU0ahs0GDZhlPQ6A0Y2yUaG1dHw2Ag+Xd3393eo/MQvLwAxuFh5X7FlXY1hlatWgWKomx+nThxwqH3aOmup2napgtfLpfDz8+v2dc1x9y55LsVSzvMT4FeEb6gaVIB4a6Md3Ll27CugXhrXj8cf34Kvlo0FL6DciAJaEBJCVFf7ugwXeizskiPxGffqmWTPh8Y3w2zB0S18wjbnsRwXwyKDYDOQOOv03bCpUePAlFRxJo0CAsxuQNM3tDOiyWCw1hiEYU7jIbkhqMmrxpFAW+/TR43nO+C7KsSfH0o07EBuyF6A43HfjGGlgOVKP23PwoLKfTqBaxb196j8zDsbN650q7G0COPPIK0tDSbX0lJSYLOHRFBYtstvUClpaWtvEWdtGDiROD0aSA52eohTKjMnfOGRnUPgYgCMsoaUFDd5PD5bh8ei9uHx8JbLkHvSD/MGhSBgAmk6mXNGrLp78i88w6weTNpD/T191o88ddJNGn1GNcjBE9Nv3Z9+jcPJqGy30/ZSaYfPJiIMJaUAMeOtcHIXMPo7iFQysQorlXhXEGN4PPMHxoDiYjCiZwqnDc7z8iRwLx5AGgK1Qd64oNdV1Ba65zWOu7Ch7su4+CVciikIgyuGYWd20VQKEiekI9Pe4/Ow5g1i/TXPH2ahMsE0q7GUEhICHr16mXzS6FQCDp3fHw8IiIisHPnTvY5jUaD/fv3Y/To0c76EzomcjlJSrPhQRtnDEEdvOK+rTn8vaQYGBMAQHgpsC1WTOkBn17FkEdVobEReOwxQCQS45ZbbsEtt9wCsbjjaOxs3gw8/TR5/O57NL69fBq5lY2ICfLC2tsHdYi+Y0KZ1T8SMrEI6cV1uFhoo+BCJjMlUDu4i21PFFIxJvYk89+RUFmYnwIzjerkH7QQWnzjDUAsptF0NQK1mUG4/cvjmHfzzR1iXu1JL8HaPVcBADcFD8OHb5F73IcfkgqyTngSGgow93QHhE09JmcoNzcXqampyM3NhV6vR2pqKlJTU1FvlqzRq1cv/PnnnwBIeGz58uV444038Oeff+L8+fNYvHgxlEol7rzzzvb6MzwPveV4/fCuQZCJRSisUSGjrKGNB8Udpmpl23nreWJCSQjzxU2DohE49TwokQGbNgF//KHApk2bsGnTJsGGvLtx8iQReqVp4KGHgLr4SzhwuQwKqQifLxiKQG+Z/ZN0YAKUMrZ565+n7XiHmBC0BxtDgHmJvWPzavmUHhCLKOxKK20m1dGzJ/DAA8TArtjaH0VVFBrGPooNP//q0fPqamk9lv+SCgCYFpGIj/5H2pM8+CCRquhEIMy82rFD8Ck8xhh68cUXMWjQILz00kuor6/HoEGDMGjQoGY5RZcuXUJNjcnd+tRTT2H58uVYtmwZhg4dioKCAuzYsQO+nd3u7EPTwJIlRBcls3XM3ksmxrD4QADAITdWo57Zn+w8D18tR5ULkr2fnN4TIV0b4WdMpn74YaAj5dzn5xMB5cZGkqc45LYsfH6ASZgegD5R12BOnQXmDY4GAGxOLYRObyMfaPp0okeQng5c9ty2E5N6hkMsonC5pB7Z5cI3Q91CfXCLMcy4Znt6My/zW28BsXE09LVKVO3tg/TiOtz2RbLHJlTnVjTirq+OolalQ5/AUGz/IAENDaTn2Nq1Nh3xndjjjjuIIfTbb4JP4THG0Pr160HTdKuviRMnssfQNI3FixezP1MUhVWrVqGoqAgqlQr79+8XnIN0zUFRJFO2stKq63FsAhMqc9+8oe6hPugd6Qedgca2C873DkX6e+HVuUnwH5UBeVQVamqAxYs9Oj+Wpb6ehOOLioC+fYFF/yvEq/9dBACsnJqIOddgwrQ1JvYMQ6BSirI6NQ5n2Cg5DwgwNW71YO+Qv1KKEcY+hY6EygDg0Sk9IBOLcDSzEoevmj47X1/gu/XEQqg/E4umzFCczq3GnV8eRb2TtMPaiuIaFe76+ihKatXoHuSLyr+GIjeHQkICsGkTIG1jNQqaplFer0ZKdiU2puThrf/S8eAPJ/HM72ex6UQesso9rO1JdDRpJSUT7qWWOHE4nXQ0brwR2LePJIwsX97q1+N6hODtbaRxo0ZngEzinrb1rP6RSCuqxb9nC3HH8Finn3/uwChsv1CMv6tTUbR+CPbs8YdYDNTX18Pb29vp79cW6PVks3XmDHEO/m9tBf73XyoAYNGoOPzfpIT2HaCbIZOIMHtAFL5PzsGfp/IxwZhTZ5EbbwR27iSbjCefbLMxOptpfcJxJKMCOy+W4L7xwptlRgd44a6Rsfj2cDbWbE/HmIQxbMXvxInAgOmlOLPNG6WbRgAADCt+w11fHsX3S0bAX+n+mlbl9Wrc9dVR5FU2ITZIibCzo/FLsgj+/sA//wBBQW0zDp3egO0XSvDD0WxcKKxFncqyQck0Hw72lqFftD96hJMNpUIqRlWjBtWNWlQ1aFDVqEV1owaVjRrcMybe4zdHncZQJ9aZO5cYQQcPAuXlQEhIs1/3ifRDsLcMFQ0anM6twghjI0d3Y3b/KKzZfgnJGRUoq1Mj1Ne5sq4UReG1G5OQkn0QTePSUGXUqkxLA4YOdepbtQkGA7B0KfDvv6RNwpovavHKvhToDDRmD4jCS7P7XhMK03yZN7gLvk/OwbYLxahX6+Ajt7K8zptH3B433NC2A3QyU/tGYNU/F3EipxLl9WqE+AifV8smJuDXlDycya/BjosluL5vBPu7+1Y24LFjNPRm3X/O5Nfg9i+P4oelwx16X1dT06jFwq+PI6OsAVH+CgwuG4sPN0ggEgG//NI2wooNah02ncjD14ezkFdpqqqlKGKIxod4o1uIN+KCvVFSp8LJ7Cqcza9BRYMG+y6XYR+H4pNX5rjBpq+hAXjxRWD3blKtyVO+u9MY6sQ6XbuSqrLUVHJnNAtBAkSAbUxCCP4+U4hDV8vd1hiKDVaifxd/nM2vwbbzRVg4qqvT3yPYR4635vXDPRWHWGNo6VIgJcUhz22bYzAA999POmWLxcA7nzTh/TNH0aghJfTv3joAomu4cswWA7r4o1uINzLLG/DfuSLcOtSKen1EBLBwYdsOzgVEB3ihb5QfLhTWYk9aKeYPE67WH+orx5Ix8Vi39yre3XEJU3qHsxWKw3v4I/j6Uyj9hRzbdCUc3n1rkBju47beaIA0X128/jjSimoR4iPHmIaxeOcd4slau5akj7mS0loVvkvOxo9Hc1HTpAUABCqluHtUV8zsF4m4YCUUUsuVeSqtHucLanDoajl+TclDUY11aQOlTIzekW6Qh+vlRSzMwkLSPWHGDF4vd98rqRP34MYbyffNmy3+mlGjPuDGeUMACZUBwD9nXScGNKVPOG4ZEs3+fPYsyUH3lPwhg4FUi339NZHt+OgLDTYUH0FVoxYDYgLw2YIhbn3zaW8oimITqf88zaGNhIXef54G06vMkcatDPeN7wY/hQSXS+rxt1kbjr5RfvCKMhXGVO/pC12NF5IzKtw2mbpRo8N9353A6dxqBCilmKIfi3deJ56Kt94ihRauQqs3YN2eKxi7ei8+3puBmiYtugYr8dqNSTjyzGSsmJqInhG+Vg0hgMgnDO0ahOVTEnHkmUl4cVYfSMWWN0GDYgMgEbvBuiASmarKjFXlvF7u5OF00tFgjKEdO0hJUQuYhqjn8qtR3eierTkA4Ib+JJ6dkl2JEhcKuD09w+T3pkQ0NmwAnnjC4R6CLoemgf/7P+CLL8iasvYzDTZVHUFhjQrdQr3x7eJh8LYW9umEZe5AYgwlZ1ag0JbQp1ZLXHCDB8OTe7kwJfYHr5ShUeNYUrO/lxQPTuwOAHh/5xW2EaxSJkFCmEmJUNcoQ9XvI1FUYsBtnx9FXmXrdak9ya1oxLxPjiA5swI+cglukIzF26uIHMBLL5n0ulzBxcJa3PjxYbyz4zI0OgOGxAXi84VDsPvxiVgwMg5eMv4aTRRFYcnYeBx/bjLGdG/t/R8a10ZJT1y46Sby/a+/rMrCWKPTGOrENv37E3fjE08AanWrX0f4K9AjzAcGGs0qQdyN6AAvDI4NAE0DW8+5zjtk3qQ0cNo5AMD775OGpu4KTZPUsE8+IXkEb37QhB/KDiKzrAGR/gr8sHQEgq5xLSGuxAQpMSI+CDQNbE614R2SSMgG4/Rpj64q6x3piy6BXlDrDE6pKl08uitCfOTIrWzExhMmjYoPbhvIPo6OBhrLlKjePAIZhSrM+/RIMwXr9uTA5TLMXncI6cV1CPGRYZ7PWLzxvBIAMYJeesk176vRGfDezsuYs+4QLhTWIkApxYe3D8RvD47C9X0jnCKKGugtx4b7RuLbxcPg72Va59zKOzdhAuDvD5SW8lZ57zSGOrENRQFbtwKvvAIEBlo8hFGj3ZNe2pYj480so3foXxeGyszx7l2IsKmkXcczzwDffNMmb8sLlYo0hly7lvz8v7fr8WPFARTXqpAQ5oPfHhqN6ACv9h2kh8G05/jjVIH18mSKMmXXv/xyG43M+VAUZRJgvOB4qEwpk7CVimt3X2FvtPGhJs/QX3+RCqz6PH+otg9DabUGt39xFEfasU8iTdP4dF8GFn97HDVNJKw8TzEBrz1NEosfewx4803XaAmdy6/BnHWHsHb3FegMNKb3jcCOFeMxd2C0SwodrusVhuRnJ2H2AJJ68NWhLOxJd/x/7xRkMlNhAs9QWacx1InDTOpFFsN9l0qhF9i4sS24oX8kKAo4mVNlO4ThAGKxGDNnzsT0GTMwNjEUXoMzEDyKiFYuXQp89ZVL3lYQRUWkdPmHH0iy9IpXavBrzUHUqnQYHBuA3x4c1WkICWBGvwjIJSJcLa3H+QIb7TkYY+jKFY/2DjF5Q7vTS2wLTnLk9uExiA7wQmmdGmt3EzFTZl7NnDkTffuK8e+/JF+27GIwcGgo6lQ6LPr2OP45Y6dZrgtoUOvwyE+n8fa2dBho4NZBMYg8PwrPPyljVdvff9/5hpDeQOP9nZdx4yeHkV5chyBvGdbdOQifLhiMMF/XqnQrZRJ8eNsg3DQoGnoDjWUbTuFEdqVL35MzTKjszz955Sd0GkOdcKOhgVxcFy60+tXQroHwVUhQ0aDBmfzqth8bR8L9FBjWlcS3t7jIO6RQKLBlyxb8t3Urvlk6BqO7B8N7XBr8+5OQyX33AXfeCTS5xhbjzMmTwLBhxJMcGAg8/WEJNjceglpnwJTe4dhw70gEKDtDY0LwVUgxzVgabrN5a2Ki6fE99xD5Cg9kWNdABHnLUN2oxQEnqNHLJWK8MKs3AOCz/RlIya5k59WWLVugUCgwahRpakpRQO7RMIiODIFWT+P/fj6Nbw5lOTwGrmSW1WPeJ0ew5VwRpGIKz03phzNf98Pnn4lAUSRZ+uOPnW8Ildercfc3x/Dh7ivQG2jM6h+JnSvGY1b/qDaTvRCJKKy+pT+u6xkKldaAJetTcKm4rk3e2ybXXw/ExxMRRh5FCp3GUCfcePRRoo/yxRetfiUVi1iRuT1p7h4qI67df8+6fgepkIrx1aKhGNEtCP7Xn4GyO/lsfv6ZVFdv3Ng+idUbNwLjxgEFBUCvXjQeej8LG/JOwEADtw+LwWcLBgtKtOzExLxBJJH6nzOF0FrzlojMlt+qKtKgyt0z7S0gEYswdyAJQW86Yac3G0emJ0Vi3uBoGGhg5cZU1Km0rY6ZPRt49VXyOPtQBKo2jQKtE+GVfy/ixb/Ou7Sgo6RWhf9tPodp7x/ApZI6hPrKsWbaaLz3SCx27qSgVAJ//EHyhJxtm6RkV+KGtQdx+GoFvKRifHDbQKy7czCC20FvSSoW4ZO7hmBIXCBqVTrc/c2x9k9o9/UFMjKATz8l7kOOdBpDnXBjzhzyffNmiwv25N6kUeVuN88bmpEUCRFFRNtyK1w/aZUyCb5dPAzD4gMQctMJ+AzIAQDU1gK33QaMHw+cP+/yYQAAqquBRx4h79vUBEyepsfI5anYkEZabDw6KQFvzuvnHmWyHs64HiEI8SGCpPsvcfSW/P478OOPrh2Yi7h1CNEY2pVWgkon9QBcNacvogO8kFfZhFf/vWjxmOefB/r1I49rM4OQ/+l10FZ74fvkHIx7ey/e23mZ1dhxBpUNGryxNQ3jV+/Fj0dzoTPQGJ8YikcTxmPJTQG4dAno0gU4fNhUiOssaJrG5/szcPsXpK1HQpgP/n5kDG4cFG3/xS7ESybGN4uGoWe4L0pq1bj7m+Mor29dbNOmCLBAO1e9TrgxbRqgVAK5ucCpU61+PSExDCIKSCuqdVk+jjMI9ZVjpFEccosLqsoaGhrg7e0Nb29vNDSQBpbecgm+vWcYBsf7I3j6eQRdfxYAMSgPHQIGDCCOt6oqGyd2AJomeUG9ehGXPQDcdHc9Kkbvwd6sQkhEFF69MQkrp/XsVJZ2EhKxCHMGMM1bOWgOMTzyCJljHkafKD/0jfKDVk/jLz5/rw38FFK8N38AKAr45chVKJTKZvOKwdxZbWhUoPDLiag/FYc6tQ5rd1/B2Lf34MNdV1BrwbvElTqVFh/suozxq/fiiwOZUOsMGBoXiPdvGI3av4fj7ttlqKoChg8nQqsDBwp+K4vUNGlx/w8n8eZ/6dAbaNw4MAp/PTwGPcLdQOwQpFfdd0uGIzrAC1nlDVj87XGL3rw2Ra8HkpM5H95pDHXCDS8vk2SqhSz9IG8ZBseSajPPqSpzTaissbERjS00mXwVZLGI9fGH78A8hN+RDEpCdFkMBuCjj4iSvLM5f55Um959N1BSAvToQePG567gVOR+VDVp0CvCF389MgYLR8Y5/82vcW4cRK6zXWkllhuLWgqJ1dZ6bKffW4eQKjpnhcoAYES3YNxv7HumbmpqNa8AYORIYOxYsycMIlTsTELBl+OBKl/UqXR4f9dljHt7L9btuYLMsnqodbbLwTU6A1LzqrH+cBYe++U0xq3eiw92XUG9Woe+UX74/M5hGFQ5CnddH4i//iJKCU88QVo5RkTYPDVvzhfUYNZHB7HzYglkYhFeuzEJ79820O10vyL8Ffhh6XAEe8twvqAWKzeead9mr/Pn85L5dq9PsxP35qabSCD8zz+B115r9etJvcNwIqcKe9JLscCNb67TkyLwwl/ncaGwFlnlDYgPaZu+On4KKf5aMQJDnjgKRWwVujyyCyW/joCmiBiR331HnG/LlwORkcLfh6aJ8+7rr8muWa8n573j/jqcDjiO000qiEUUHprQHY9O7tGpKu0i+kX7Iz7EG1nlDdhxoRjzjCX3Nundm9zda2qsSlm4K3MHRuONrem4WFSLC4U16Bvl75TzrpyaiD3n8sCoDlm6wT71FPGymqOr9EXR+nG485EaZIedRVZVHd7ZcRnv7LgMigLCfRWIDVKiS5AXYgKVCPdT4GppPU7nVeFCYS0r+sjQLdQbyyf1BJUfgcfmU7h0iTw/YQLxuPbt65Q/txm/puTihb8uQKMzICbIC5/cOQT9ujjnc3UF3UJ98O09w3Dzp0ew82IJ/j1bhNnt1cD1uuvI/YojFN2uppv7U1tbC39/f9TU1MDPz6+9h9O+VFWRFuY6HXDpUvNqGACXiutw/QcHIJeIkPriNLdOwr37m+M4cLkMj09NxP9N7uG08zY0NMDHh2iiWOta/9V6HZ768RJ8B2cDFKBJ7wLJhd7IzyDVWzIZcQ6sXEk+Yq6Rq+xsYMMGknaSnm56/vobdIiZeRk7c0mVTUKYD969dQAGxAQI/0M74cQHuy7jg11XMCExFN8tGd78lz//DNx1FzBqFEkwGTgQGDSoVUNkT2LZhpPYeq4Yi0d3xao5zrMOTmcWY3B3skP4cs9F3Htd72a/NxiIMWJ+3YvFJhHisDAaU2+tRUVMGnIaqtGosS8UGKiUYlBsIAbGBMCvMQTn9gXgl18oFBodyuHhwLvvkupQZ0eXVVo9XvzrPDYavWyTe4XhvfkD4a+U2nmle8Bc98HeMuxaOQGB7SHamp+P2pgY+AOc7t+dxpAdOo2hFlx3HfEFf/ghSXQxg6ZpjH17Lwqqm/D1oqGY3Du8fcbIgY0n8vDUb2fRI8wHO1aMd1quDBdjSKsFEhKAMn01Bt57DoWqWtA0EF0XD/WJRJxKMTlsg4OJCHi/fqbvEgnRCCoqIj0Ji4qAc+dI0iaDQkFj5HVqyPpm47IkAzRNFuz7xnXDyqmJNvsSdeI8ssobcN07+yAWUTj23OTmHdYLC8kdOzyciFB98w25u65c2X4DdpC96aW4Z30KApVSHHtuitO8jubzKvGpP/HfE1PQzUyIESAf39Kl5PFNNwGffUY2Bh98AOQZ3UpKJTB/Po3EvjoERqkgD21Ag7ge+VWNKK5VIS5IiT6hQQgVB4Cu98LJkxR+/JHML4bAQKKE8MILQECAU/68ZuRWNOKhDSdxobAWIgp4fFpPPDShu0c1SNboDJj90SFcKqnDvMHReG/+wHYZR+3QofA/ebLTGHIGncZQCw4eJCVQ998PfP55q1+/+Nd5fJ+cgztHxOKNm/q1wwC5UdOkxYg3dkGlNWDjA6MwPN45/XW4GEMA8OWXpOpk6jQDvk/Owbs7LqFBo4dYROE6/964tCMayful0Ou5L4AUBYyfYEDciHJcVqahqNHU82pCYigenZyAIe7UR+gaYe66QziTX4OX5/TFotFdLR/00UdkczF2LJljHopOb8Dot/agtE6NzxYMxvQkB+K9ZpjPq5gVv2FQt3BsfHAU5BKTUa9WE3mZOXNI2Eps/JVWS+Qk1qwBzpxpfW4/P1JcoFYTo6nSgnagTAbMmgUsXAjMnEl+dgW700qw4tdU1Kp0CPKWYe3tgzC2h2d6Ck/nVmHep0dA08D6e4ZhYs+wNh9D7csvw3/Vqk5jyBl0GkMtqK0lvV8A4O+/idiHGfsulWLxtymI8FMg+dlJbl2d9MzvZ/FLSh5m9Y/EujsHO+WcXI2hlhTVNOHlvy9i24Vi9jk5JUU3aQQCVWGgK/xRmq3AhQsURCIgIpJGUIgBPoFayP00kPipoOhWioOFeWyug59CgvlDY7BgZBy6tlFeVCet+eZQFl759yIGxQbgz2VjLB+UmwvExRGLtriYhKM9lLf+S8dn+zMwuVcYvl48zCnnNJ9XfZ/djHqDBNf1DMVnC4c0M4jOnQOSkiyHrWga2LMH2L0buHgRSEsDrl61nKvu4wPExABdu5II5q23ujaFi1GTXrf3KgDSCf7jOwcjysMV4F/55yK+OZyF6AAvbF8xHj5tnPRde/o0/AcP7jSGnEGnMdSCujqylQJIbsOFC80WbpVWj0Gv7ESTVo8tj451WhKlK7hQWIMb1h6CREThyDOTEObnuIR9U1MTZsyYAQD477//4MVD9AsA9qSX4KdjeTiRU4nqxualqRIRhYQwH9Q0aVFSq4K1zid9o/xw96g4zBkQ7dZ5W9cKpXUqjHxjNww0cODJ6xAbrLR84NChRBr8yy+Be+9t20E6kYyyekx+dz/EIgrJz05ySmsI83n10sc/4KFfzkOlNWBSrzB8umBwM4OID2o16YZy6RIJocXEkC8/P9f0EbNEXmUjVm5MRUo20dZYNCoOz9/Qp0MUNjRqdJj2/gHkVzU5PY+MC3zu353GkB06jaEW1NcThU+GOXOIEKPZynHf9yew82KJ05OTXcEtnx7BiZwqLJ/SA8unJNp/QRthMNC4UlqP49mVSMmqxPGsShTXNpeWl4lFiPBXICpAgagAL0QHeOG6XmEYFBPg1h65a5GFXx/DwSvltufEa6+RRJQbbgD+/bdtB+hk5n1yGKdyq/HsjF54YEJ3p5//8NVyLFmfArXOgMm9wvCJAwZRe7L5dAFe2HwedWodvGVivDGvH+YObF8RRWdz6Eo5Fnx9DBQF/PbgqDYN1XcaQ06k0xhqQUMD8SGb02In+8vxXDzzxzkMjAnA5oethAXchL/PFOLRn08jzFeOw89MgtRN1ZdpmkZ+VRMul9Qh2EeOqAAFQrzlHpVUeS2z6UQenvztLLqHemPXygmWjdULF0iMRyYjfcp83UNQTwg/H8/Fs3+cQ0KYD3Y6sUDBHHODaErvMHxy1xCP8abUNGnxwubz+NvYWHZwbAA+uG2Qda+hh/PkpjPYdDIfCWE+2PLo2DYzXPncvz3jyunEvVm+nATfjVzXi4TNzuRXo6yunWXZ7TC9bwRCfOQorVNju1m+jrtBURRigpSY3DscA2MCEOar6DSEPIjpSRGQSUTIKGvAhUIrnez79AF69AA0GuC//9p2gE5mVv9IKKQiXC2tR2petUveY0xCCL5eNAxyiQi70kqxbMOpVtpA7sixzArM/PAg/j5TCLGIwoopidj4wKgOawgBwP9u6IMQHzmultbj4z1X7b+gHeg0hjrhh6UdXkMDKbPQEZXdcD8F+kX7g6ZJQrU7I5OIcOeIWADA98k5Dp+voaEBoaGhCA0NbdU2oJNrF1+FFFOM/fsYb0ArKIqEyv74g5QueTC+CilmGCvJNp10XJHa2rwa2yMEX949FDKJCLvSSvDwT+5rEGl0Bqzelo7bvzyKguomxAUrsenBUXhsSo8O3w/QXynFK3NJvtAn+zKQVmRlQ9COdOz/QCfOx5q7OzW12W52ktE7tNfNjSEAuHN4LMQiCsezKpFe7PgkLS8vR3l5uRNG1klHgskF+Tu1EHpr2e/z5xORHKXnewmY9hz/nCmESmtf5NAe1ubV+MRQfGU0iHZeLMEjbmYQ0TSN3WklmLn2ID7ZRzS/bh3SBVseHce2MLoWmJEUgev7hkNnoPH8n+fat1WHBTqNoU74YW4MiYyXz4oVJMfBrMyeMYYOXC53q4XJEhH+ClzflwhEOsM71EknlpjYMxR+CgmKa1U4nmVBzKaDMbJbMLoEeqFOpXN5CHp8YijrIdpxsQSzPjqIo5kVLn1PLpwvqMGdXx7D0u9O4GppPYK8Zfj0rsFYc+uANi8zb28oisIrc5OgkIpwKrfa7XpYdhpDnfBDLAYefBDYvh14/HHyXEEB0EJPp1+0P0J85KhX65CS7f4L/92jugIA/jxVgJqmdu623EmHRC4RY2Y/Ejqy2dk9O5t07bXQ/8+TEIko3DzY+c1brTHB6CEK8pbhckk9bv/iKFb8morSOpX9FzuZwuomrPw1FbM+OoTkzArIJCI8OKE79j05ETP6OUeI0hMJ91OwwqPv7bwMgzUPaTvQaQx1wg+pFPj0U2DaNOLSHzWKdCpsgUhEYVKvUADA7jT32gFYYkR8EBLDfdCk1eN3J+Q4dNKJJeYMJE0rt54rst45PSMDePVVYO1aU3MtD+UWY6jscEY58ipbd5x3NuMTQ7Hn8Qm4c0QsKAr483QBJr+zH98dybYemnQidSot1mxPx3Xv7MMfp4nBO3dgFPY8PgHPzOgFP4Vn9BZzJQ+M7w5vmRgXCmvdqmil0xjqRDhDhwJHjgDLlln89aReJPS0O73E7eLDLaEoivUO/XA0x612LJ10HEbEByPCT4FalQ77LpVZPmj8eCJ3XFbWvOGcBxITpMS4HiGgaeCLA5lt8p4BShneuKkfNi8bg37R/qhT6/DS3xcwZ90hnM6tcvr7GQw0jmdV4sW/zmP86r34eG8G1DoDhscH4a+Hx+DD2wehS6Dn54A5iyBvGZaOjQcAvL/rcpsYqVzoNIY6cRlje4RAJhYhp6IRmeXuX1l106Bo+MolyCpvwKGrnQnQnTgfsYjC7AF2QmVSqSn/7s8/22hkruOhiUR0ceOJvDaV2hhg1Dl79cYk+CkkuFBYi3mfHsGKX1Pxz5lClNYKD58ZDDRO5lTh5X8uYNRbuzH/82R8n5yDqkYtuoV444uFQ/Dr/SMxICbAeX9QB2LpuG7wU0hwuaQe/561Ul3ZxlxbGVyduIaqKqKYe/vtZCE34iOXYES3IBy8Uo6dF0vQfYKPjZO0P95yCW4e0gXrj2Tj++QcjE8M5X0OkUiEoUOHso876aQlcwdG48uDWdiVVoo6lRa+lkIn8+YB339Pyuzfe6/tekO4gFHdgjEwJgCpedX45nAWnp7ei/c5hM4rsYjCwpFxmJEUgTe3puP3U/n483QB/jSGsLoGKzEiPhjD44MwPD4IXQK9mglE0jSNRo0eVY0aVDdqUdmgwcErZdhytgiFNSZjylcuwbS+EZjVPxJje4S4rXiru+DvJcX947vhnR2X8cGuK7ihX2S7ywt0KlDboVOB2g40TZr5FBQAO3YAU6c2+/UPR3PwwubzHqFGDZj6KlEU6SMVE9Tp3u7EudA0janvH8DV0nqsuaU/bh0a0/qgpibS+6+xEThxAhgypO0H6kR2XizBfd+fgI9cgsPPTIK/V/vkzpzMqcKWs0U4llWBi0W1aHn3i/JXIDLACzVNWlQ3alHTpIFWb/kW6S0TY2qfcNzQPwrjE0M8sh1Ie1Kv1mH86r2obNBg9S39Md/SPHCQTgXqTtoOiiK9lADg999b/fr6vuGgKCA1rxpFNU1tPDj+dA/1YXMcNhzLbe/hdNIBoSgKcweQROq/Uq2ECLy8AGNjUvzxRxuNzHVM7hWGxHAf1Kt1+PFo+8lXDIkLxIuz+2DLo+OQ+uI0fLt4GB6c0B2DYgMgEVEorFHhZE4VrpbWo7xezRpCMrEIYb5y9Ajzwaz+kfhswWCcfGEqPrh9EKb2Ce80hATgI5fgIWPfug93XWl3CZbOMFknjnPLLcAXX5BF++OPSfm9kTBfBYbGBSIluwrbzhfjnjHx7ThQbiwcGYeDV8rxa0oulk/pAYW0c6HrxLnMHRiNd3dexpGMcpTWqSx3dr/5ZmDPnmbzyVMRiSg8NLE7Vvx65v/bu/OwKOv18ePvZwYYhlVklEWRRTRcEwEltUQtFZfUirLSb3rKb5ZW1ulbWeekdln+OumpTp08Wac8J61s0bK0XDKXXFIRN1QMFUFBwQUQZGd+fwyQIwOhMvMwM/fruuYamGeGuRl9hns+y33z0S8n+FP/cPRu6v5evnpXBkW1rWsfdLm8kpTMfApKKmjl4UorvZvp2sMVvatWmh9bwYT4UBZtOc7p/BK+2J3FhPhQ1WKRkSFx4xISoHVr0+6XLVvqHR5eU5b/h4MtZxtlY4Z0CaBdKz0XL1fwTUoj9WAsuHz5MmFhYYSFhXH5svW3Egv71MHfg+gOrag2wqr9OZbvdPfdcPYsvPKKbYOzktE9g2nvp+d8cTlf7M66psfa4rzycHOhf6SBET2C6NfRQNdgH4Jb6fFwc5FEyEr0blqmD4oE4N0N6c1Sqfx6STIkbpyrK4wda/r6q6/qHR7ePRCAXRkXWnzjVjAtupzcPwyAf/z02zWdoEajkZMnT3Ly5MkWX05AqKt2quybhqbK3NzMNiTYOxethkdrpkUWbT5ORVXTp0XkvHJc4/uEEOzrzpnCUj5VcWmC3SRDr776Kv369cPDw4NWrVo16TGTJk1CURSzS3x8vHUDdVZ33226Xr4cqs3f5Nq10nNze1Pj1rWH7GN0aEJ8KEG+7mQXlMraIWEVI3sGo9Uo7MvKJ6Ox0hNGIxw8aLvArCgppj0GLx2n80saXi8lnIrORcsTQzoB8N7GdC6XV6oSh90kQ+Xl5SQlJfHYY49d0+OGDx9OTk5O3WX16tVWitDJDRkCvr5w5gwcOFDvcO1U2Y92MlXm7qrlqZoT9J8/p1NUps4JKhxXG28d/SMNQCOd7MvLoXNn6NED0tNtGJ11uLtq6wruLdyYLsVNBWCqVN6htQfnispV6w9pN8nQnDlzePrpp+nRo8c1PU6n0xEYGFh3ad26tZUidHI6nWmKLDsbbr653uHEmqmy7cfOk3+53NbRXZd7YtoTYfDkQnE5H26xTfVc4Vx+nyo7bXn6x80NQmsWlTrArjKACfEd8HZ34Vhesd2MFAvrctVq6j58/mvTMS6V2r4/pN0kQ9dr48aNtG3bls6dOzNlyhRycxvvk1VWVkZhYaHZRTTR7bdDYKDFQ2EGT6ICvamsNrLu0FkbB3Z9XLQa/jz0JgA+2Hyc80Utf72TsC9DuwWgc9FwPK+Y1OwG3mtqp6AtlK6wR97urjxU0/rmvY3HZA2QAGBsdDs6tvEk/3IFH/2SYfPnd+hkKDExkaVLl7JhwwYWLFjArl27GDx4MGVlDf9RmzdvHr6+vnWXkJDmLwTlFCy8wSXa2VQZmEa0urfzobi8ivc2HlM7HOFgvN1dub2LqYdfg+05xo0z1fPauROyrm0XVks1uX8Y7q4a9p8qYGv6ebXDES2AVqMw4/bOACzedoKSctvuLFM1GZo9e3a9Bc5XX3bv3n3dP/++++5j5MiRdO/endGjR/PDDz9w9OhRVq1a1eBjZs6cSUFBQd0ly0HefGxm/XrT+qEXX6x3KLGHadRoy2/nVBkGvR4ajcJzw0ztAz7ZfpLT+Y0XjlQUha5du9K1a1fZjiuapLaT/cp92ZabVgYGQv+a6u0OMlXm76VjfFwHwLQm74/IeeUcRvQIIqS1qazJ8pRTNn1uVZOh6dOnc/jw4UYv3bt3b7bnCwoKIjQ0lN9++63B++h0Onx8fMwu4hoUFJgKxS1bVm90qFNbLyLaeFJeVc2GI41PV7Ykt3YyEB/RmvKqat5ef7TR+3p4eJCamkpqaioeHtLKQ/yxhJva4OPuwtnCMnaeuGD5Tlfu1nQQU26LwEWjsP34+T/sJi/nlXPQahQm9zMtsP/olxM2XWCvajJkMBiIiopq9OLubqEy63U6f/48WVlZBAUFNdvPFFdJTAQPDzhxAvbsMTukKErdQmp7mipTFIXnappLfpV8ivTcIpUjEo5E56JlRI8/6GR/112m6y1bTIUYHUC7VnrGRrcDkCloUefeuBC8daYF9puO5tnsee1mzVBmZiZ79+4lMzOTqqoq9u7dy969eykq+v0PU1RUFCtWrACgqKiIZ599lu3bt5ORkcHGjRsZPXo0BoOBcePGqfVrOD4PDxgxwvS1hQKMteuGNqbl2XxO+Eb07uDHHV0DqDbCgrVpaocjHEztVNnqAzmUVVo4Lzp0gFdfNU1D+/vbODrrmTqwI4piauR65IxsVhGmnmXj+5jW6n74i+128dpNMvTyyy8THR3NrFmzKCoqIjo6mujoaLM1RWlpaRQUFACg1Wo5cOAAY8aMoXPnzjz00EN07tyZ7du34+3trdav4Rzuvdd0/cUX9abKugX70N5PT0lFFZuO2s9UGcCzQ29CUUxtRfZl5Vu8z+XLl+nWrRvdunWTdhyiyfqG+xPgo6OwtJJNaQ18Gn7xRRg8GFwcp6VkZFsvRtR8QHr529QGd5bJeeVcHuoXhlajsDX9PIca2mXZzOwmGVq8eDFGo7HeJSEhoe4+RqORSZMmAaDX61mzZg25ubmUl5dz8uRJFi9eLLvDbGHECFPX7ePHISXF7NCVU2X20qus1k2B3oyrGdZ/Y43l0SGj0cihQ4c4dOiQbBkWTabVKNxZ28m+oQKMDmrmiCj0rlp2nrjAl8mWF83KeeVc2vt51P2d+PcvJ2zynHaTDAk74ukJo0aZvv7ii3qHa6tRbzica3lKoAV7+vbOuGoVfkk/x9b0c2qHIxzImF6mRHv9obMNVzxPSYGnnjJtUHAQ7f08ePoOU8G9easPc6HYPoqyCut65NYIAFbuO01uYanVn0+SIWEd998PQ4dCXFy9Q9EhrQjw0XGprNLuEoqQ1h482NdUEfhva9LkU6poNt2CfYho40lZZTVrGho1XbsW/vEP+PBD2wZnZZP7hxMV6M3FyxW8tvqw2uGIFqBXSCtiQv2oqDLyyQ7rt+iQZEhYx7hxsGbN71uCr6DRKAzvVjNVdsC+psoApg2KxMNNy76sfNakOsbOHqE+RVEYc7NpdKjBqbKkJNP1zz/DOfv6INEYV62G1+7qgaKYdmzuOC6FGAU8UtPHbsmOk1bfcCPJkFBF7VTZusNnqaiq/oN7tyxtvHX8qb/pJP3bmiN2N9UnWq4xNbvKtqafI++ShUr5ERHQuzdUVUHNzllH0buDHw/0MRVifGnFATmvBEO7BdqsCKMkQ8K6Tp+GRYvq7SrrE94af0838i9X8OvxBgrNtWD/OzACf083jucVs2Bt44UYhWiqMIMnN4e0oqrayOoDOZbvdM89pusvv7RdYDby3PAoDF46juUVs2iTNEd2dlcWYfy3lYswSjIkrKe8HLp0gUcfhavaqmg1CkO7mXoy/XCwgTf9FszH3ZV5d/UA4IMtx9l2zDRloSgKoaGhhIaGStsAcV2u7GRvUe1U2YYNDjVVBuCrd+Wvo7oA8M7P6WScKwbkvHJmtUUYj+cVs9GK5VgkGRLW4+b2ewFGC59ia6fK1qSetdyTqYUb2i2Q8XEhGI3w7Bf7KCipwMPDg4yMDDIyMqRtgLguo3oGoVEgJTOfzPMWaupERkKvXqapsm++sXV4VnfnzcEMiDRQXlnNX789iNFolPPKiV1ZhNGa2+wlGRLW1UgBxlsi/PFxd+FcURnJJxvvTdRS/XVUV0L9PcguKOXlbw+qHY5wAG193OnX0QCYthVblJQE7dqZEiIHoygKc8d2x81Fw5bfzrHSyeouifpsUYRRkiFhXYmJprpDJ0/Crl1mh9xcNNze1X6nygA8dS78/d5eaBT4dm+2vHGLZlG7kPqbvdmWyzc88wxkZpqmoB1QmMGT6YMiAZi1MpWCkgqVIxJqskURRkmGhHXp9TB6tOlrSwUYu/3euNWWHYqbU0yoH9MHm4rGvfjFbnr1jiEuLo6SkhKVIxP2alj3QNxcNKTnFnEox8InYXd30Dj22/ejAyMIbuVO/uUKpv13O3FxcXJeOTFrF2F07LNJtAxXTpVVm2+jv61zG7x0LuQUlJKcaZ9TZQBPDI7k5va+FJZUsC9lD7t376a62r5KBoiWw8fdlSFRbQHTiGODKithzx4bRWVbOhctf7u7JwCb0/LYvXu3nFdO7MoijP/d3vxFGCUZEtaXmAje3nD2LKSZ9/Ryd9UyvGb4c0VKA+sj7ICrVsOb9/VC76pVOxThIMbW9MH7du9pyxsMLl40rRvq0wfyGmjuaucGdGpDgI/O7DZ73GwhmkddEcZfm78IoyRDwvrc3WHVKsjNNW21v0pt89NV+3Mor7TfT30Rbbx4LvGmuu/Tztqm27JwTAk3tcFX78rZwjK2H7NQkdnPD0JCTIuoly+3fYA2cn8f8+baM5alWL0asWiZaosw5luhCKMkQ8I2br0VfH0tHoqP8Kett46Ckgo2plmvjoQt3Bf7+xv3c1/ulyq64rrpXLSM6mkqP9HgqOl995muP//cRlHZ3u1dAs2+X38ol/Ef7LBcoVs4tCuLMH68NaNZe0NKMiRsr8J8Z4hWo1yxe8Z+p8oAs4JwR88WSXVqcUNqR01/PJhjeTSkdj3epk2Q7Zg7GbsE+eCrdzW7bV9WPuPe28pvZy+pFJVQyz2x7dG7aknPLWLniebrXiDJkLCd9eshNhamTq13qHZ9xPrDuRSWOs422g+2HLc8xSFEE8SE+hHSWk9xeRVrD1loahwaCv36mWp4OWB7DjB9WOoT3rre7aculvDnL/fZ9dS6uHY+7q51H56X/JrZbD9XkiFhO66ukJxsWt9QZj7E3TXIh05tvSivrOZHO+xkfyWDwYDBYCApth1GI/z5i71SJ0VcF0VRGNfL9EHhD6fKli2zUVS2Fx/RGo3eB43ep+42L50L79wfjZuL/BlzNhPiQwHTiGlzTZfK/yJhOwMGQHAw5OfD2rVmhxRFqRsdsuddZZ6enuTl5ZGXl8crd8cSVlOd+k+Ld1FUVql2eMIO1Z4XW35roJN9UhIoCmzfbirE6IAGdQ8h5MlPCXnyU+IiAwnx01NUVsnjS/dQLOeV0+nezpebQ1pRUWXky+SsZvmZkgwJ29Fqf1/j8Nln9Q7XDn3uOHGenAL7L6zmqXPhnw/2xsfdheSTF3noo51ccqApQGEbEW286jrZf2epwnlQELz7rqkZckhI/eMOoGMbL6ICvZmfdDNfPdaPpY/E4+/pRmp2IU98lkJllUyVOZsJfTsA8Omvmc1SbkGSIWFb999vuv72WyguNjvU3s+DPmGtMRphZWOF5uxIt2Bflj4SX5cQTfp4lyRE4prdVTM61OAGg8cfh5gY0wiRA1IUhe+eGMA9Me1RFIUO/h58+FAsOhcNG47kMue7Q826s0i0fKN6BuPj7sKpiyVsPnrjdbYkGRK2FRcH4eFw+bKp9tBVxta96dtnMlRSUkJCQgIJCQl1bQN6tDclRL56VxkhEtdlVM8gtBqF/acKSM8tUjscmyspKeGOIYPNzqvoDn68dV8vFAU+2XHSqh3NRcujd9NyT4xpJHTJjhuvSC3JkLAtRYHx401fW6iNMqJHIK5ahcM5hRw5Y39FC6urq9m0aRObNm0yaxtgSoj64qt3ZU9mviRE4pr4e+kY2LkNAN80tKZu1y6YPBnefNOGkdlGQ+dVYo8gXhphKuT66urD/HDAPhs+i+vzYLxpqmxDWi6nLl6+oZ8lyZCwvfvvh7vvhoceqneolYcbg24y9WT6JsU+R4ca0r2dJETi+o27YqrMYlPjQ4dg8WL44APTVnsn8fCAcCbGh2I0woxle9ljxz0OxbXp2MaLfh39MRrh8503tpBakiFhez16wFdfwZgxFg/XTpWtbOhN345dnRD9jyREoonu6BqAl860RmL3SQt/8MeOBTc3OHwYDh60eXxqURSFWaO7MjiqLWWV1Uz5z25SswvUDkvYyIN9TdvsP9+VdUM1pyQZEi3O4Ki2eOtcyC4oZWdG81UYbSmuTIhSMvP5n3/vdKhCk8I63F21JDbW1NjXF0aMMH1tYbemI3PRanjn/mi6Bftwvricce9t47OdmbKo2gkM7RZAG28d54rKLBcmbSJJhoR6fvsNZs+GHPN5fndXLSN6mHoyfWvn7TkaUpsQ+bi7kJKVz5h3t1JQUq52WKKF+72pcTalFRbaczzwgOn600+h2rm2m3vqXFjycF8G3dSG8spqZi4/wDNf7JM6RA7OVathfJxpIfXSHddfZ0uSIaGehx6COXMsLqQeE22qObRqf47DNjvt3s6XT6fEo3PRcOJcMfGvbWDV/mz5NCsaFB/hT5CvO4WllZabGo8aBd7ecPIkbN1q+wBV5ufpxr8fiuP54VFoNQorUk5z57u/cFR6mDm08X06oFFg+/Hz173bUpIhoZ4JE0zXS5bUOxQf/vub/s9HbryGhC15eHjg4eHRpPt2b+fL4klxAJRUVDHt0xTu+Ptmdp6QfmaiPo1G4c6a4qTL91gYNdXrTZsTAJYutWFk1tfU80qjUXgsoSOfTYknwEfHsbxi7nz3F75KPmWDKIUa2rXSMzjKtPFm6a/Xt81ekiGhnnvvBRcX2LPHtOjzChqNwp0313Syt6P2HJ6enhQXF1NcXIynp2eTHnNLpIEJNVtEAdLzirj3/R3c9/52Dp6WhaDC3F3R7QH4OS2X/MsWplYnTIDOnSEqysaRWc/1nFd9wluz6slbubWTgdKKap79ch/PfbWPknLHHGl2dg/W9Cv7OvnUdf0bSzIk1GMwwPDhpq8tfIqt3VW24UguBZcde4HxC4ld8PNwNbvt1xMXGPXOLzz2SbJTFtoTlt0U6E2XIB8qqoysslRXZ/BgOHIEZsyweWwtjcFLx+LJfXjmjs4oCnyx+xTj3tvKsTw5nxzNwE5tCGmtp7C0ku/2X3tZFkmGhLpqp8qWLq1XG6VLkA9Rgd6UV1Xzw0HHLqbmpXNh2qBIi8d+SD3D99dxcgvHNa5mTd0KS1NliuKwbTmuh1aj8OSQTix9uC8GLx1Hzlziznd+cdjNGc5Ko1F4oI9pdGjpdVSklmRIqGv0aPDygowM2Lat3uExveyrk31paSkjR45k5MiRlJaWXtNjJ8SHEuTrbvHYW+t/49kv93G+yELXcuF0xvRqh6LA7pMXyTzfQOXd0lJTPa8C+59qvZHzqla/SAOrnxpAfERrisureOrzvTzxWQr7svKbN1ihmqTY9rhqFfadKuDAqWv7fy/JkFCXh4dpwaePDxw/Xu9wbSf7X09c4HR+y+9kX1VVxerVq1m9ejVVVdc2b+3uquWpIZ3qvtdqFN64pycP1HRn/ir5FIMXbOLznZkOV4xSXJsAH3f6dzQAjTRvTUiApCRYvtx2gVnJjZxXV2rr7c7SR+J5YnAkigLf7ctmzD+3MvafW1mRcsphd646C4OXjsTuprIs19qvTJIhob7XX4czZ2DixHqHglvp6RveGnCcTvaNuSemPeEGT7QahbfH9yIpNoTXxvXg68f6ERXoTUFJBS8sP8C4hdv4ZHsG2XaQIArrqGvPkXLacjmG0aNN1xZ2azozrUbhz0NvYuW0AdwV3Q43rYa9Wfk8vWwf/eZtYP6aNHIK5LyyVxNqFlKv3JdNQUnT15oqRilq0qjCwkJ8fX0pKCjAx8dH7XCc0uc7M3lh+QFuCvBmzdO3qR1Oo4qLi/Hy8gKgqKioyTtfrrT6QA7VRiOjegab3V5ZVc3ibRn8fd1RLl+xW6JbsA+3dwngjq4BdAv2QZH1Ik6hqKyS2LnrKK2o5ptp/ekV0sr8DidOQESEaf1QVha0a6dKnM2hOc6rhpwrKuPznZks2ZHJmULTFJxWozCsWwD/c0sYfcNbyzllR4xGI8Pe2szRs0U8PziEx4fd3KS/33YxMpSRkcHDDz9MeHg4er2ejh07MmvWLMrLG6/YazQamT17NsHBwej1ehISEkhNTbVR1OKaGY0Wp8oSewThptWQdvYSh3Psr5P9tRrRI6heIgSmlgOP3BrBhj8nMDMxirgwPxQFUrMLefun3xj1zi/0+38b+Ms3B9iYlitD/g7OS+fCsG6m9hwWy0+Eh0P//qbzykJhU2Fi8NIxfXAnfnl+EAsf7E18RGuqqo2sPnCG8Yt2MPytLSz99SS5l0qlIKodUBSlrl/Zst1Nry1lFyNDP/74I8uWLeP+++8nMjKSgwcPMmXKFCZOnMj8+fMbfNzrr7/Oq6++yuLFi+ncuTNz585l8+bNpKWl4e3t3aTnlpEhGzl3zvTGffIknD1r6rN0hamfJPNj6hkevS2CmSO6qBTkH7PmJ1hLzheVseFILusPn2Xz0XOUXNGiwdNNy22d29A/0kCQrzsGLx1tvHX4e7mhc9FaNS5hGz+n5TL54134e7qx48UhuGqv+ny7cCE8/jhER5vqedkpW59XR84U8t/tJ1mx57TZOeXn4UqnAG9uCvCmc4AXnQO86RzgjZ+nm1XjEdemsLSCvq/+RHHRJbLeurdJf7/tIhmy5I033mDhwoUctzCSAKZRoeDgYGbMmMHzzz8PQFlZGQEBAbz++us8+uijTXqe2mToTN4FAgx+zRa/uIrRCN27w6FD8NFHMHmy2eEfD55h6pJkAn3c2fbCYDSaljlsbes37SuVVlSx/dh51h0+y0+Hz3K2sOGdZ756VwxebrTx1tUlSQYvHX4ebmg1pk9XGkVBATQaUFBQFEy31VxrFOgU4E3HNl42+x2FucqqauLn/cS5onI+mhTL4KgA8zucPw+BgVBZCamp0LWrOoHeILXOq4KSCr5KPsUXu7I4mnvp6uofddp467gpwJtOAV4119707tBKptdUNHP5fpZuSWtyMuRio7iaXUFBAa1bt27w+IkTJzhz5gxDhw6tu02n0zFw4EC2bdvWYDJUVlZGWdnvf0QKaralZuddQO8mn6at6p574JVX4OOPf28pUCMmWIenUkZ23mV+2p9B3wh/lYJsXHFxcd3XhYWFN7Tz5XrEBLsTExzKc4M6cCingI1H8kjNKeB8UQXnisq4UFxOZbWRi2VwMR9+u8Hne3JIJP97W8fmCF1cpzs6+bB0Ryaf/5JGbLDe/KCrK9xxB/zwA6xaBe3bqxPkDVLrvFKApJ7+JPX0p7SiiuN5RaTnFpGeV0x67iXSc4vIzi/lbNllzp67yOaaVRit9C5seX6wJEMqGtPVj0/Wm8pONGnMx2iH0tPTjT4+PsYPPvigwfts3brVCBhPnz5tdvuUKVOMQ4cObfBxs2bNMgJykYtc5CIXucjFAS5ZWVl/mFeoOjI0e/Zs5syZ0+h9du3aRWxsbN332dnZDB8+nKSkJB555JE/fI6rM3Oj0dhotj5z5kyeeeaZuu+rq6u5cOEC/v7+dpHlFxYWEhISQlZWlqxxQl6Pq8nrYU5eD3PyepiT18Ocvb0eRqORS5cuERxcf0PK1VRNhqZPn8748eMbvU9YWFjd19nZ2QwaNIhbbrmFRYsWNfq4wEDTLoszZ84QFBRUd3tubi4BAQENPQydTodOpzO7rVWrVo0+V0vk4+NjF/9ZbUVeD3PyepiT18OcvB7m5PUwZ0+vh+9Vm3EaomoyZDAYMBgMTbrv6dOnGTRoEDExMXz88cdoNI1XBQgPDycwMJB169YRHR0NQHl5OZs2beL111+/4diFEEII4Rjsos5QdnY2CQkJhISEMH/+fPLy8jhz5gxnzpwxu19UVBQrVqwATNNjM2bM4LXXXmPFihUcPHiQSZMm4eHhwQMPPKDGryGEEEKIFsgudpOtXbuW9PR00tPTaX/VbgjjFavE09LS6nZ/ATz33HOUlJTw+OOPc/HiRfr27cvatWubXGPIHul0OmbNmlVvqs9ZyethTl4Pc/J6mJPXw5y8HuYc+fWw2zpDQgghhBDNwS6myYQQQgghrEWSISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZMjBrVq1ir59+6LX6zEYDNx1111qh6S6srIyevXqhaIo7N27V+1wVJGRkcHDDz9MeHg4er2ejh07MmvWLMrLy9UOzWbee+89wsPDcXd3JyYmhi1btqgdkmrmzZtHXFwc3t7etG3blrFjx5KWlqZ2WC3CvHnz6kq1OLPTp08zYcIE/P398fDwoFevXiQnJ6sdVrORZMiBff3110ycOJHJkyezb98+tm7dKjWWMJVcaEp5dkd25MgRqquref/990lNTeXNN9/kX//6Fy+++KLaodnEsmXLmDFjBi+99BIpKSnceuutJCYmkpmZqXZoqti0aRPTpk1jx44drFu3jsrKSoYOHWrWINUZ7dq1i0WLFtGzZ0+1Q1HVxYsX6d+/P66urvzwww8cOnSIBQsW2GV3hgY1qTOqsDsVFRXGdu3aGT/88EO1Q2lRVq9ebYyKijKmpqYaAWNKSoraIbUYf/vb34zh4eFqh2ETffr0MU6dOtXstqioKOMLL7ygUkQtS25urhEwbtq0Se1QVHPp0iVjp06djOvWrTMOHDjQ+NRTT6kdkmqef/5544ABA9QOw6pkZMhB7dmzh9OnT6PRaIiOjiYoKIjExERSU1PVDk01Z8+eZcqUKXzyySd4eHioHU6LU1BQQOvWrdUOw+rKy8tJTk5m6NChZrcPHTqUbdu2qRRVy1JbvNYZ/j80ZNq0aYwcOZLbb79d7VBUt3LlSmJjY0lKSqJt27ZER0fzwQcfqB1Ws5JkyEEdP34cgNmzZ/OXv/yF77//Hj8/PwYOHMiFCxdUjs72jEYjkyZNYurUqcTGxqodTotz7Ngx3nnnHaZOnap2KFZ37tw5qqqq6jVsDggIqNfixxkZjUaeeeYZBgwYQPfu3dUORxWff/45e/bsYd68eWqH0iIcP36chQsX0qlTJ9asWcPUqVN58skn+e9//6t2aM1GkiE7M3v2bBRFafSye/duqqurAXjppZe4++676xrcKorCl19+qfJv0Xya+nq88847FBYWMnPmTLVDtqqmvh5Xys7OZvjw4SQlJfHII4+oFLntKYpi9r3RaKx3mzOaPn06+/fv57PPPlM7FFVkZWXx1FNPsWTJEtzd3dUOp0Worq6md+/evPbaa0RHR/Poo48yZcoUFi5cqHZozcYuepOJ302fPp3x48c3ep+wsDAuXboEQNeuXetu1+l0REREONQi0aa+HnPnzmXHjh31eurExsby4IMP8p///MeaYdpMU1+PWtnZ2QwaNIhbbrmFRYsWWTm6lsFgMKDVauuNAuXm5tYbLXI2TzzxBCtXrmTz5s31+kA6i+TkZHJzc4mJiam7raqqis2bN/Puu+9SVlaGVqtVMULbCwoKMvtbAtClSxe+/vprlSJqfpIM2RmDwYDBYPjD+8XExKDT6UhLS2PAgAEAVFRUkJGRQWhoqLXDtJmmvh7/+Mc/mDt3bt332dnZDBs2jGXLltG3b19rhmhTTX09wLRVdtCgQXWjhhqNcwwUu7m5ERMTw7p16xg3blzd7evWrWPMmDEqRqYeo9HIE088wYoVK9i4cSPh4eFqh6SaIUOGcODAAbPbJk+eTFRUFM8//7zTJUIA/fv3r1dq4ejRow71t0SSIQfl4+PD1KlTmTVrFiEhIYSGhvLGG28AkJSUpHJ0ttehQwez7728vADo2LGjU34Czs7OJiEhgQ4dOjB//nzy8vLqjgUGBqoYmW0888wzTJw4kdjY2LpRsczMTKdYM2XJtGnT+PTTT/n222/x9vauGzXz9fVFr9erHJ1teXt711sr5enpib+/v9OuoXr66afp168fr732Gvfeey87d+5k0aJFDjWaLMmQA3vjjTdwcXFh4sSJlJSU0LdvXzZs2ICfn5/aoQmVrV27lvT0dNLT0+slg0ajUaWobOe+++7j/PnzvPLKK+Tk5NC9e3dWr17tUJ90r0Xt2o+EhASz2z/++GMmTZpk+4BEixIXF8eKFSuYOXMmr7zyCuHh4bz11ls8+OCDaofWbBSjM7zzCSGEEEI0wDkWCQghhBBCNECSISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZEgIIYQQTk2SISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZEgI4TA2btyIoijk5+erHYoQwo5IMiSEsFsJCQnMmDGj2X+uoih88803zf5zhRAtkyRDQgghhHBqkgwJIezSpEmT2LRpE2+//TaKoqAoChkZGQAkJycTGxuLh4cH/fr1Iy0tzeyx3333HTExMbi7uxMREcGcOXOorKwEICwsDIBx48ahKErd98eOHWPMmDEEBATg5eVFXFwc69evt9WvK4SwIkmGhBB26e233+aWW25hypQp5OTkkJOTQ0hICAAvvfQSCxYsYPfu3bi4uPCnP/2p7nFr1qxhwoQJPPnkkxw6dIj333+fxYsX8+qrrwKwa9cuwNSxPScnp+77oqIiRowYwfr160lJSWHYsGGMHj2azMxMG//mQojmJl3rhRB2KyEhgV69evHWW28BpgXUgwYNYv369QwZMgSA1atXM3LkSEpKSnB3d+e2224jMTGRmTNn1v2cJUuW8Nxzz5GdnQ2Y1gytWLGCsWPHNvr83bp147HHHmP69OlW+f2EELbhonYAQgjR3Hr27Fn3dVBQEAC5ubl06NCB5ORkdu3aVTcSBFBVVUVpaSmXL1/Gw8PD4s8sLi5mzpw5fP/992RnZ1NZWUlJSYmMDAnhACQZEkI4HFdX17qvFUUBoLq6uu56zpw53HXXXfUe5+7u3uDP/L//+z/WrFnD/PnziYyMRK/Xc88991BeXt7M0QshbE2SISGE3XJzc6OqquqaHtO7d2/S0tKIjIxs8D6urq71fu6WLVuYNGkS48aNA0xriGoXbAsh7JskQ0IIuxUWFsavv/5KRkYGXl5edaM/jXn55ZcZNWoUISEhJCUlodFo2L9/PwcOHGDu3Ll1P/enn36if//+6HQ6/Pz8iIyMZPny5YwePRpFUfjrX//apOcTQrR8sptMCGG3nn32WbRaLV27dqVNmzZNWr8zbNgwvv/+e9atW0dcXBzx8fH8/e9/JzQ0tO4+CxYsYN26dYSEhBAdHQ3Am2++iZ+fH/369WP06NEMGzaM3r17W+13E0LYjuwmE0IIIYRTk5EhIYQQQjg1SYaEEEII4dQkGRJCCCGEU5NkSAghhBBOTZIhIYQQQjg1SYaEEEII4dQkGRJCCCGEU5NkSAghhBBOTZIhIYQQQjg1SYaEEEII4dQkGRJCCCGEU/v/wgQkhfDydkYAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ct.phase_plane_plot(\n", + " invpend, [-2*pi - 1, 2*pi + 1, -2, 2], 8),\n", + "\n", + "# Draw lines at the downward equilibrium angles\n", + "plt.plot([-pi, -pi], [-2, 2], 'k--')\n", + "plt.plot([pi, pi], [-2, 2], 'k--')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "WZuvqNzeJinm" + }, + "source": [ + "We see that the vertical ($\\theta = 0$) equilibrium point is unstable, but the downward equlibrium points ($\\theta = \\pm \\pi$) are stable.\n", + "\n", + "Note also the *separatrices* for the equilibrium point, which gives insighs into the regions of attraction (the red dashed line separates the two regions of attraction)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "2JibDTJBKHIF" + }, + "source": [ + "## Proportional feedback\n", + "\n", + "We now stabilize the system using a simple proportional feedback controller:\n", + "\n", + "$$u = -k_\\text{p} \\theta.$$\n", + "\n", + "This controller can be designed as an input/output system that has no state dynamics, just a mapping from the inputs to the outputs:" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": p_ctrl\n", + "Inputs (2): ['theta', 'r']\n", + "Outputs (1): ['tau']\n", + "States (0): []\n", + "\n", + "Update: . at 0x15345b560>\n", + "Output: \n" + ] + } + ], + "source": [ + "# Set up the controller\n", + "def propctrl_output(t, x, u, params):\n", + " kp = params.get('kp', 1)\n", + " return -kp * (u[0] - u[1])\n", + "propctrl = ct.nlsys(\n", + " None, propctrl_output, name=\"p_ctrl\",\n", + " inputs=['theta', 'r'], outputs='tau'\n", + ")\n", + "print(propctrl)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "AvU35WoBMFjt" + }, + "source": [ + "Note that the input to the controller is the reference value $r$ (which will will always take to be zero), the measured output $y$, which is the angle $\\theta$ for our system. The output of the controller is the system input $u$, corresponding to the force applied to the wheels.\n", + "\n", + "To connect the controller to the system, we use the [`interconnect`](https://python-control.readthedocs.io/en/latest/generated/control.interconnect.html) function, which will connect all signals that have the same names:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": invpend w/ proportional feedback\n", + "Inputs (1): ['r']\n", + "Outputs (2): ['theta', 'tau']\n", + "States (2): ['invpend_theta', 'invpend_thdot']\n", + "\n", + "Update: .updfcn at 0x15345af20>\n", + "Output: .outfcn at 0x15345ae80>\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/murray/src/python-control/murrayrm/control/nlsys.py:1208: UserWarning: Unused output(s) in InterconnectedSystem: (0, 1) : invpend.thdot\n", + " warn(msg)\n" + ] + } + ], + "source": [ + "# Create the closed loop system\n", + "clsys = ct.interconnect(\n", + " [invpend, propctrl], name='invpend w/ proportional feedback',\n", + " inputs=['r'], outputs=['theta', 'tau'], params={'kp': 1})\n", + "print(clsys)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "IIiSaHNuM1u_" + }, + "source": [ + "We can now linearize the closed loop system at different gains and compute the eigenvalues to check for stability:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "kp = 0 ; poles = [ 0.78077641+0.j -1.28077641+0.j]\n", + "kp = 1 ; poles = [ 0. +0.j -0.5+0.j]\n", + "kp = 10 ; poles = [-0.25+2.98956519j -0.25-2.98956519j]\n" + ] + } + ], + "source": [ + "# Solution\n", + "for kp in [0, 1, 10]:\n", + " print(\"kp = \", kp, \"; poles = \", clsys.linearize([0, 0], [0], params={'kp': kp}).poles())" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iV4u31DsNWP9" + }, + "source": [ + "We see that at $k_\\text{p} = 10$ the eigenvalues (poles) of the closed loop system both have negative real part, and so the system is stabilized." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Jg87a3iZP-Qd" + }, + "source": [ + "### Phase portrait\n", + "\n", + "To study the resuling dynamics, we try plotting a phase plot using the same commands as before, but now for the closed loop system (with appropriate proportional gain):" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1deA39mS3fTeAwkESCih994REBEpIigixYK99/apPxR7Q1QEpIoKohTphN57Cx3SSSO9Z+/3xyYLMQlJyKbf93n2STK5M/fM7szsuacqQgiBRCKRSCQSST1FVd0CSCQSiUQikVQnUhmSSCQSiURSr5HKkEQikUgkknqNVIYkEolEIpHUa6QyJJFIJBKJpF4jlSGJRCKRSCT1GqkMSSQSiUQiqddIZUgikUgkEkm9RipDEolEIpFI6jVSGaohLFiwAEVRTC+NRoOPjw+PPPIIERERRcYdOnSoGqWt2SxdupSvvvqq0o7v5+fH5MmTTX9HRkby3nvvcezYsTIfY8uWLXTs2BFra2sURWHVqlVml7OAq1evoigKCxYsqLQ5aip9+/alb9++lT5P+/btefbZZyt9nprIunXreO+994r933/vleokODgYRVEIDg4udWxV3p/FoShKoff0vffeQ1EU4uLiqlSO6pq3OtBUtwCSwsyfP5/AwEAyMjLYsWMHM2fOZPv27Zw8eRJra+vqFq9WsHTpUk6dOsVzzz1XKcf/66+/sLOzM/0dGRnJ+++/j5+fH23bti11fyEE48aNo1mzZvzzzz9YW1sTEBBQKbICeHp6snfvXvz9/SttjvrMlStXOHr0aKUq4DWZdevW8f333xerEP33XqkNVPX9KakZSGWohtGqVSs6duwIQL9+/cjLy+ODDz5g1apVTJw4sZqlq9mkp6djZWVVrn3y8vLIzc1Fp9OVeZ927dqVV7RCREZGkpCQwKhRoxgwYECFjlVARkYGer0eRVGK/E+n09G1a1ezzCMpyp9//ombmxs9e/astDkyMjKwtLSstOPfCWW53yp6r1QHlXF/Smo+0k1Wwyn4Ert27Vqh7SkpKTzxxBO4uLjg7OzMfffdR2RkZKExy5cvZ/DgwXh6emJpaUnz5s157bXXSEtLKzTu8uXLjB8/Hi8vL3Q6He7u7gwYMKCI22f58uV069YNa2trbGxsGDJkCEePHi31HApce5s2beKRRx7ByckJa2trRowYweXLl4uMnzdvHm3atEGv1+Pk5MSoUaM4e/ZsoTGTJ0/GxsaGkydPMnjwYGxtbRkwYAB9+/Zl7dq1XLt2rZDbEW66i2bNmsWHH35Io0aN0Ol0bNu2jczMTF588UXatm2Lvb09Tk5OdOvWjb///ruIfLea/oODg+nUqRMAjzzyiGm+ktwG7733Hj4+PgC8+uqrKIqCn5+f6f+7du1iwIAB2NraYmVlRffu3Vm7dm2x7+fGjRuZMmUKrq6uWFlZkZWVVeycxbnJCszfp0+f5oEHHsDe3h53d3emTJlCUlKSaVy7du3o1atXkWPm5eXh7e3NfffdV+S9/eijj2jYsCF6vZ6OHTuyZcuWIvtfuHCBCRMm4Obmhk6no3nz5nz//feFxhS4NZYtW8abb76Jl5cXdnZ2DBw4kHPnzhUaK4Rg1qxZ+Pr6otfrad++Pf/++2+x78d/GTt2LC1btiy0bcSIESiKwh9//GHaduTIERRFYfXq1YXGrlixglGjRqFSlfw4LXi/jx49yn333YednR329vY8+OCDxMbGFhrr5+fH3XffzcqVK2nXrh16vZ73338fgFOnTjFy5EgcHR3R6/W0bduWX3/9tdj3bfHixbzwwgt4eHhgaWlJnz59ir1f//nnH7p164aVlRW2trYMGjSIvXv3Fiv/kSNHGDNmDI6Ojvj7+zN58mTT53br/Xb16lXTufzXTRYaGsqDDz5Y6LP//PPPMRgMpjEF19Nnn33GF198QaNGjbCxsaFbt27s27ev0PEOHTrE+PHj8fPzw9LSEj8/Px544IEiz8yyUNr9WZbrFiA5OZmXXnqJRo0aYWFhgbe3N88991yRZ29ycjLTp0/H2dkZGxsb7rrrLs6fP1+ifGFhYaVeP2V97gPs37+fESNG4OzsjF6vx9/fv1SLekhICI0bN6ZLly7ExMTcdmytQkhqBPPnzxeAOHjwYKHtX3/9tQDETz/9VGhc48aNxdNPPy02bNgg5s6dKxwdHUW/fv0K7fvBBx+IL7/8Uqxdu1YEBweLOXPmiEaNGhUZFxAQIJo0aSIWLVoktm/fLlasWCFefPFFsW3bNtOYjz76SCiKIqZMmSLWrFkjVq5cKbp16yasra3F6dOny3RuDRo0EFOmTBH//vuv+Omnn4Sbm5to0KCBuHHjhmns//73PwGIBx54QKxdu1YsXLhQNG7cWNjb24vz58+bxj388MNCq9UKPz8/MXPmTLFlyxaxYcMGcfr0adGjRw/h4eEh9u7da3oJIcSVK1cEILy9vUW/fv3En3/+KTZu3CiuXLkiEhMTxeTJk8WiRYvE1q1bxfr168VLL70kVCqV+PXXXwudj6+vr3j44YeFEEIkJSWZzu+tt94yzRcWFlbsexEWFiZWrlwpAPH000+LvXv3iiNHjgghhAgODhZarVZ06NBBLF++XKxatUoMHjxYKIoifvvttyLvp7e3t3j00UfFv//+K/7880+Rm5tb7JwF5z1//nzTtnfffVcAIiAgQLzzzjti06ZN4osvvhA6nU488sgjpnEF19+t770QQqxbt04A4p9//ik0R4MGDUTPnj3FihUrxB9//CE6deoktFqt2LNnj2nf06dPC3t7exEUFCQWLlwoNm7cKF588UWhUqnEe++9Zxq3bds2AQg/Pz8xceJEsXbtWrFs2TLRsGFD0bRp00LnW3A+U6dONV1f3t7ewsPDQ/Tp06fY96WAOXPmCEBERkYKIYTIyckRtra2wtLSUkyfPt007pNPPhEajUYkJycX+jwVRREbN2687RwF8vn6+oqXX35ZbNiwQXzxxRfC2tpatGvXTmRnZ5vG+vr6Ck9PT9G4cWMxb948sW3bNnHgwAEREhIibG1thb+/v1i4cKFYu3ateOCBBwQgPvnkkyLvW4MGDcTIkSPF6tWrxeLFi0WTJk2EnZ2duHTpkmnskiVLBCAGDx4sVq1aJZYvXy46dOggLCwsxM6dO4uV/9VXXxWbNm0Sq1atEhcvXhRjxowRQKH7LTMz03QuBfeKEELExMQIb29v4erqKubMmSPWr18vnnrqKQGIJ554wjSu4Hry8/MTd911l1i1apVYtWqVCAoKEo6OjiIxMdE09o8//hDvvPOO+Ouvv8T27dvFb7/9Jvr06SNcXV1FbGxskffl1ufaf7nd/VnW6zYtLU20bdtWuLi4iC+++EJs3rxZfP3118Le3l70799fGAwGIYQQBoNB9OvXT+h0OvHRRx+JjRs3infffVc0btxYAOLdd9+9o+unrM/99evXC61WK1q3bi0WLFggtm7dKubNmyfGjx9fZN6C9zE4OFg4OjqKkSNHirS0tBLfx9qIVIZqCAVfcPv27RM5OTkiJSVFrFmzRri6ugpbW1sRHR1daNyMGTMK7T9r1iwBiKioqGKPbzAYRE5Ojti+fbsAxPHjx4UQQsTFxQlAfPXVVyXKFhoaKjQajXj66acLbU9JSREeHh5i3LhxZTq3UaNGFdq+e/duAYgPP/xQCCHEjRs3hKWlpRg2bFiR+XU6nZgwYYJp28MPPywAMW/evCLzDR8+XPj6+hbZXvCA9ff3L/TwKI7c3FyRk5Mjpk6dKtq1a1fof/99wB88eLCIsnE7CuT49NNPC23v2rWrcHNzEykpKYXkaNWqlfDx8TE9RAvez0mTJpVrvuKUoVmzZhUaO2PGDKHX601zxcXFCQsLC/HGG28UGjdu3Djh7u4ucnJyCs3h5eUlMjIyTOOSk5OFk5OTGDhwoGnbkCFDhI+Pj0hKSip0zKeeekro9XqRkJAghLj55fXf6+H33383ffkKYbxu9Hp9iddXacrQxYsXBSAWLlwohBBi165dAhCvvPKKaNSokWncoEGDRPfu3Qvt+9VXXwlHR0fT+1ASBe/3888/X2h7gTKyePFi0zZfX1+hVqvFuXPnCo0dP3680Ol0IjQ0tND2oUOHCisrK5OCUPC+tW/f3vQ5CiHE1atXhVarFdOmTRNCCJGXlye8vLxEUFCQyMvLM41LSUkRbm5uhc61QP533nmnyLk9+eSToqR19X/vlddee00AYv/+/YXGPfHEE0JRFNM5F1xPQUFBhZTeAwcOCEAsW7as2PmEMN4zqampwtraWnz99dem7WVRhm6d+7/3Z1mv25kzZwqVSlVkYfvnn38KQKxbt04IIcS///4rgEIyCmFceJakDJXl+rmVkp77Qgjh7+8v/P39C92v/+VWZWjRokXCwsJCPPPMM4Wul7qCdJPVMLp27YpWq8XW1pa7774bDw8P/v33X9zd3QuNu+eeewr93bp1a6CwO+3y5ctMmDABDw8P1Go1Wq2WPn36AJjcTk5OTvj7+/Ppp5/yxRdfcPTo0ULmaoANGzaQm5vLpEmTyM3NNb30ej19+vQpU3YGUCTmqXv37vj6+rJt2zYA9u7dS0ZGRhGzeoMGDejfv3+x7pbRo0eXae5bueeee9BqtUW2//HHH/To0QMbGxs0Gg1arZZffvmliIuuMkhLS2P//v2MGTMGGxsb03a1Ws1DDz1EeHh4EdfQnZz7fynuOsrMzDSZv52dnRkxYgS//vqr6bq4ceMGf//9N5MmTUKjKRx2eN9996HX601/29raMmLECHbs2EFeXh6ZmZls2bKFUaNGYWVlVeh6GjZsGJmZmUXcIKVd63v37iUzM7PE66s0/P398fPzY/PmzQBs2rSJoKAgHnzwQa5cucKlS5fIyspi165dDBw4sNC+K1asYOTIkUXeh5L4r4zjxo1Do9GY7oFbz7FZs2aFtm3dupUBAwbQoEGDQtsnT55Menp6EdfWhAkTCsWQ+fr60r17d9Nc586dIzIykoceeqiQi8/GxobRo0ezb98+0tPTCx2zotfc1q1badGiBZ07dy5yDkIItm7dWmj78OHDUavVpr+Le86lpqby6quv0qRJEzQaDRqNBhsbG9LS0sx275bnul2zZg2tWrWibdu2hcYNGTKkUDZbwefw32tiwoQJJcpRluunLM/98+fPc+nSJaZOnVrofi2Jjz76iMmTJ/Pxxx/z9ddf39YlXFupe2dUy1m4cCEHDx7k6NGjREZGcuLECXr06FFknLOzc6G/CwKAMzIyAOMDolevXuzfv58PP/yQ4OBgDh48yMqVKwuNUxSFLVu2MGTIEGbNmkX79u1xdXXlmWeeISUlBYDr168D0KlTJ7RabaHX8uXLy5x26eHhUey2+Ph4ANNPT0/PIuO8vLxM/y/AysrqjjJVijv+ypUrGTduHN7e3ixevJi9e/dy8OBBpkyZQmZmZrnnKC83btxACFHiuQNFzr+4seWltOsIYMqUKURERLBp0yYAli1bRlZWVrEp0yV9xtnZ2aSmphIfH09ubi7ffvttkWtp2LBhAEWup9JkLHhfSpq7LAwYMMCkbG/evJlBgwYRFBSEu7s7mzdvZvfu3WRkZBRShqKjo9m9e3e5FIT/yqPRaHB2di7TZxsfH1+u66Oi95vBYODGjRulylUeynsOZbk+J0yYwHfffce0adPYsGEDBw4c4ODBg7i6uhYaV1G5y3rdXr9+nRMnThQZZ2trixDCNC4+Pt70+d/K7a7Z0q6fsj73C+KMCuKjSmPx4sV4e3szfvz4Mo2vjchsshpG8+bNTdlkFWHr1q1ERkYSHBxsWhUAJCYmFhnr6+vLL7/8AhhXDL///jvvvfce2dnZzJkzBxcXF8CYNVOWlXZJREdHF7utSZMmwM0HX1RUVJFxkZGRJjkKKC5zqiwUt9/ixYtp1KgRy5cvL/T/koKSzY2joyMqlarEcwfMdv7lZciQIXh5eTF//nyGDBnC/Pnz6dKlCy1atCgytqTP2MLCAhsbG7Rarcna9eSTTxY7X6NGjcolX8F1U9LctwbAlsSAAQP45ZdfOHDgAPv37+ett94CoH///mzatIlr165hY2NTKCvvr7/+wtramkGDBpVZ1ujoaLy9vU1/5+bmEh8fX+QLsbjP1tnZuVzXR0nvR8Fcpd1vKpUKR0fHUuUqD+U9h9JISkpizZo1vPvuu7z22mum7VlZWSQkJFRI1ltxdHQs83Xr4uKCpaUl8+bNK3ZcwTk6OzsX+/kX97nd+r/bXT9lfe67uroCEB4eXuJct7J+/Xruv/9+evXqxZYtWyr0PVBTkZahOkrBQ+u/KeM//vjjbfdr1qwZb731FkFBQRw5cgQwfhlqNBouXbpEx44di32VhSVLlhT6e8+ePVy7ds1UFK9bt25YWlqyePHiQuPCw8NNLoKyoNPpyr0iVBQFCwuLQg/76OjoYrPJipsPqNAq1Nrami5durBy5cpCxzEYDCxevBgfH58ibpOqouBLYNWqVezcuZNDhw4xZcqUYseuXLmykCUtJSWF1atX06tXL9RqNVZWVvTr14+jR4/SunXrYq+l/yoGpdG1a1f0en2J11dZGDBgAIqi8Pbbb6NSqejduzcAAwcOZNu2bWzatInevXsXcq+uWLGCu+++u1xlGf4r4++//05ubm6ZCkMOGDDA9GV3KwsXLsTKyqpI+YRly5YhhDD9fe3aNfbs2WOaKyAgAG9vb5YuXVpoXFpaGitWrDBlmJVGea7/AQMGcObMGdOz5dZzUBSFfv36lXqMW1EUBSFEkc9g7ty55OXlletYt6M81+3dd9/NpUuXcHZ2LnZcgXJecK7/vSaWLl1aohylXT9lfe43a9YMf39/5s2bV6YFn6+vLzt37kSn09GrVy8uXLhQ6j61DWkZqqN0794dR0dHHn/8cd599120Wi1Llizh+PHjhcadOHGCp556irFjx9K0aVMsLCzYunUrJ06cMK20/Pz8+L//+z/efPNNLl++zF133YWjoyPXr1/nwIEDWFtbm1J/b8ehQ4eYNm0aY8eOJSwsjDfffBNvb29mzJgBgIODA2+//TZvvPEGkyZN4oEHHiA+Pp73338fvV7Pu+++W6ZzDwoKYuXKlfzwww906NABlUpVqsJWkMo8Y8YMxowZQ1hYGB988AGenp6l3vj+/v5YWlqyZMkSmjdvjo2NDV5eXibTf1mZOXMmgwYNol+/frz00ktYWFgwe/ZsTp06xbJly6rMElQcU6ZM4ZNPPmHChAlYWlpy//33FztOrVYzaNAgXnjhBQwGA5988gnJycmFro+vv/6anj170qtXL5544gn8/PxISUnh4sWLrF69ukjcSGk4Ojry0ksv8eGHHxa6vt57770yu8nc3Nxo1aoVGzdupF+/fiYlYODAgSQkJJCQkMAXX3xhGh8fH8/27dv57bffyiXrypUr0Wg0DBo0iNOnT/P222/Tpk0bxo0bV+q+7777LmvWrKFfv3688847ODk5sWTJEtauXcusWbOwt7cvND4mJoZRo0Yxffp0kpKSePfdd9Hr9bz++usAqFQqZs2axcSJE7n77rt57LHHyMrK4tNPPyUxMZGPP/64TOcUFBQEwCeffMLQoUNRq9W0bt0aCwuLImOff/55Fi5cyPDhw/m///s/fH19Wbt2LbNnz+aJJ54ot8JvZ2dH7969+fTTT3FxccHPz4/t27fzyy+/4ODgUK5jlUZZr9vnnnuOFStW0Lt3b55//nlat26NwWAgNDSUjRs38uKLL9KlSxcGDx5M7969eeWVV0hLS6Njx47s3r2bRYsWlShDaddPWZ/7AN9//z0jRoyga9euPP/88zRs2JDQ0FA2bNhQROkCo4t0+/btDBkyhN69e7Np0yZatWplpne3BlCd0duSm5SUWl/WccVlSuzZs0d069ZNWFlZCVdXVzFt2jRx5MiRQplF169fF5MnTxaBgYHC2tpa2NjYiNatW4svv/yySKr2qlWrRL9+/YSdnZ3Q6XTC19dXjBkzRmzevLlMMm/cuFE89NBDwsHBwZQ1duHChSLj586dK1q3bi0sLCyEvb29GDlyZJH0/YcfflhYW1sXO19CQoIYM2aMcHBwEIqimDJdSsoSKeDjjz8Wfn5+QqfTiebNm4uff/7ZlE1xK//NkBFCiGXLlonAwECh1WqLZIL8l9vJsXPnTtG/f39hbW0tLC0tRdeuXcXq1asLjSnrtfLf+YrLJrs19fjWY1+5cqXIcbp37y4AMXHixBLn+OSTT8T7778vfHx8hIWFhWjXrp3YsGFDseOnTJkivL29hVarFa6urqJ79+6mzEIhbl7Tf/zxR6nnYzAYxMyZM0WDBg2EhYWFaN26tVi9erXo06dPqdlkBTz//PMCEB999FGh7U2bNhWAOHHihGnb3LlzhZWVVZnTiwve78OHD4sRI0YIGxsbYWtrKx544AFx/fr1QmN9fX3F8OHDiz3OyZMnxYgRI4S9vb2wsLAQbdq0KZLFWPC+LVq0SDzzzDPC1dVV6HQ60atXL3Ho0KEix1y1apXo0qWL0Ov1wtraWgwYMEDs3r27WPn/e70IIURWVpaYNm2acHV1Nd1vBddPcffKtWvXxIQJE4Szs7PQarUiICBAfPrpp4UylG53j/z3/goPDxejR48Wjo6OwtbWVtx1113i1KlTReauaDZZwf9Ku26FECI1NVW89dZbIiAgwPQcCwoKEs8//7wpM1gIIRITE8WUKVOEg4ODsLKyEoMGDRIhISElZpOV5fopy3O/gL1794qhQ4cKe3t7odPphL+/f6GMteI+98TERNGjRw/h5ORU5mdQbUAR4hb7qERSCSxYsIBHHnmEgwcPmiUeSlLzuHr1Ko0aNeLTTz/lpZdeqm5xKp1hw4ZhaWnJihUryjT+vffe4/333yc2NrbccTHlJTg4mH79+vHHH38wZsyYSp1LIqkrSDeZRCKRlJN169ZVtwgSicSMyABqiUQikUgk9RrpJpNIJBKJRFKvkZYhiUQikUgk9RqpDEkkEolEIqnXSGVIIpFIJBJJvUYqQxKJRCKRSOo1UhmSSCQSiURSr5HKkEQikUgkknqNVIYkEolEIpHUa6QyJJFIJBKJpF4jlSGJRCKRSCT1GqkMSSQSiUQiqddIZUgikUgkEkm9RipDEolEIpFI6jVSGZJIJBKJRFKvkcqQRCKRSCSSeo1UhiQSiUQikdRrpDIkkUgkEomkXiOVIYlEIpFIJPUaqQxJJBKJRCKp10hlSCKRSCQSSb1GKkMSiUQikUjqNVIZkkgkEolEUq+RypBEIpFIJJJ6jVSGJBKJRCKR1GukMiSRSCQSiaReI5UhiUQikUgk9RqpDEkkEolEIqnXSGVIIpFIJBJJvabWKEMzZ86kU6dO2Nra4ubmxr333su5c+dK3W/79u106NABvV5P48aNmTNnThVIK5FIJBKJpLZQa5Sh7du38+STT7Jv3z42bdpEbm4ugwcPJi0trcR9rly5wrBhw+jVqxdHjx7ljTfe4JlnnmHFihVVKLlEIpFIJJKajCKEENUtxJ0QGxuLm5sb27dvp3fv3sWOefXVV/nnn384e/asadvjjz/O8ePH2bt3b1WJKpFIJBKJpAZTayxD/yUpKQkAJyenEsfs3buXwYMHF9o2ZMgQDh06RE5OTqXKJ5FIJBKJpHagqW4B7gQhBC+88AI9e/akVatWJY6Ljo7G3d290DZ3d3dyc3OJi4vD09OzyD5ZWVlkZWWZ/jYYDCQkJODs7IyiKOY7CYlEIpFIJJWGEIKUlBS8vLxQqW5v+6mVytBTTz3FiRMn2LVrV6lj/6vAFHgFS1JsZs6cyfvvv19xISUSiUQikVQ7YWFh+Pj43HZMrVOGnn76af755x927NhR6sl5eHgQHR1daFtMTAwajQZnZ+di93n99dd54YUXTH8nJSXRsGFDdh4LIVPoiEvLIjYlk7i0bOKSs4w/U7KIS83iRnr1ud7UKgU/ZyuautnQzMOWpm62NHO3wcvBss5YtJIychj+9Q4SM3J5++7m3N+pYXWLVK/539ozLD0Qhq1eze+PdaeBk1V1i1RvibiRzturTnPgagIAPZo488HIVrjZ6atZsvpHTHImjy06zIWYVGz1ar6f0J72viWHc9QrcnMhKAgiI+Gnn+D++yt1uk3HrzCmd1tsbW1LHVtrAqiFEDz99NP89ddfBAcH07Rp01L3efXVV1m9ejVnzpwxbXviiSc4duxYmQOok5OTsbe3JykpCTs7u9uOzc41EJ+WRUxyFunZeagUowVKUUClABh/VwCVUvC78SdAnkGQlWsgKzeP7FyD6fesHOPv2QV/5/8vNSuXSzGphESnkJRRvCJmq9MQ4GFLgIctgZ52BHnb08bHvkQFKc8g+OtoBGM63F7RrC5+3XOVd/85jbO1BcEv98VWr61ukeot2bkG7v9pL0dDE2nhacfKGd3Ra9XVLVa9xWAQzN9zlVnrQ8jKNWBvqeWDe1txTxuv6hat3pGUnsPUXw9y6NoN9FoVsye2p3+ge+k71gc+/BDefhu6dYM9eyp1qqSkJBwcHMr0/V1rlKEZM2awdOlS/v77bwICAkzb7e3tsbS0BIxWnYiICBYuXAgYU+tbtWrFY489xvTp09m7dy+PP/44y5YtY/To0WWatzzKUHUhhOB6chZno5MJiUrhXHQyIdEpXIpNJSev6Mfr72rNxC6+jO7gg71lYWXi+20X+XTDOeY82J67WhWNqapucvIMDPlyB5fj0niynz8vDwmsbpHqNVFJGQz/ZhcJadmM6+jDrDFtqlukes/FmBSeX36ckxHGJJO7W3vy4b2tcLCyqGbJ6hcZ2XnMWHKYbediUasUPhvbmlHtauYis0qJjoZnnoEnnoC+faESPRfl+f6uNcpQSZaM+fPnM3nyZAAmT57M1atXCQ4ONv1/+/btPP/885w+fRovLy9effVVHn/88TLPWxuUoZLIzjVwOS6VkKgUQqJTCIlO5sCVBNKz8wDQa1Xc08aLB7v60trHgRPhidw3ew+5BoGtTsM/T/ekkYt1NZ9FUTaejubRRYfRaVRse6kvXg6W1S1SvWb3xTge+mU/BgGfjA6S7ssaQE6ege+3XeTbrRfJMwjcbHV8MqY1/QLcqlu0ekVOnoFX/jzBX0cjAHjn7hZM6dmomqWqP9RJZai6qM3KUHGkZOaw6mgEi/eFcu56iml7Ky87opMziUvNNm0L9LDlrxk9sLSoWa4PIQTjf9rH/isJjGrnzZf3t61ukeo9BRZFC42KFY93J8jHvrpFkgAnwhN5fvkxLsUai9NO6NKQN4c1x1pX68JFay0Gg+CDtWeYv/sqAE/1a8KLg5vVmVjOmoxUhsxIXVOGChBCcOjaDRbvu8a/J6PJzjMUO25MBx8+G1vzXB8nwhO557vdAKx+qqf88q1mDAbBo4sOsflsDD6Olqx5uqd0y9QQMnPymLX+HPN2XwGgoZMVX4xrQ0c/GdRbVQgh+H7bRT7beB4wKqUfjGyFWlWPFaJLl2D2bAgMhOnTK2WK8nx/19qii5KKoSgKnfyc+Hp8O2aNDSpx3J+Hw1m2P7QKJSsbrX0cGNXOG4AP155B6vTVi0ql8Pm4tjR0siL8RgbPLz+GwSA/k5qAXqvmnREtWDq9C94OloQmpDP2x73MXHeWmJTM6havXqAoCk/1b8pHo1qhKLB0fyhPLztCVm5edYtWfWzaBF98AZ9+Cnl5EBwMa9ZUmzjSMlQKddUydCsZ2XnsuBDLvyej2HA6moycwlYiBfhuYjuGB9WsrJSIxAz6fxZMVq6Bnx7qwOCWHtUtUr3ndGQS983eQ1augRcGNeOZAaVnfUqqjuTMHP5v9Rn+PBwOGLNcezRx4Z42Xgxp5YFdDcrO3HA6mrSsXPoFuOFoXXesjOtORvHcb8fIzjPQ3d+ZnyZ1xKY+ui1TU8HT0/jT2xsiIuDRR+HHH802hXSTmZH6oAzdSnaugb2X41lxOIxNZ64XUoxeuSuAx3v7o6pBpt1Z60OYHXyJxi7WbHi+N1q1NHZWN38cCuPlP0+gKPDrI53p3cy1ukWS/IdNZ64zO/giR0MTTdssNCoGBLoxsq0XfQPcqr1MwqcbQvh+2yVUCnTwdWRAc3cGNnfD39Wm1sfb7LoQx6OLDpGenUdrH3vmT+6Es42uusWqOnbtgh9+gN9+A8Mti+9Ro2DlSrNNI5UhM1LflKFbyTMINp2J5sO1Zwm/kQFAzyYufD6uDe41pJhbSmYO/T4LJi41m/fvacnD3f2qWyQJ8PrKEyw7EIajlZY1z/TCW2b81UhC49P553gEq45FcjEm1bTdVqfhrlYejGzrTTd/52qJbfli4zm+2XqxyHYvBz1tfRxp5m5DI1djtqtBCAwGyBMCg0FgEDd/zzMIDEKgVik0dbOllbddjYhnOx6WyCMLDpKQlk1jV2uWTOuCp309uU/+9z94882i23v1gh07zDaNVIbMSH1WhgoQQrBo7zU+XHeW7FwDDlZaPr4vqMbUIVq87xpvrTqFo5WW4Jf7FamdJKl6MnPyGDtnLycjkmjjY8/vj3dDp6lZWYmSmwghOBuVwt/HI1h9LJLIpJuxRK62Ou5u7cnwIE/8XKxxtLKoFOUoIzuP6ORMopIyiE7K5M/D4ey5FG/2eQB8HC1p5WVPkI89Lb3saOVtj0s1WGYuxqQy6Zf9RCZl1q/7RAh44AFYvrzw9sBAOHvWbNNIZciMSGXoJhdjUnlu+VFORSQDMK6jD++MaFnt/u7cPAN3fb2TizGpPNanMa8PbV6t8kiMhCWkM+K7XSSm5/Bg14Z8eG/JgfqSmoPBYMw0/ftYBGtPRpH4nzZDigJOVha42OhwtrHA2UaHi03+39Y3t9vqNSRl5JKYnk1ieg438n8mZmRzIz3HtL3gfwX1z8qKvaUWZxsLXKx16LQqFEVBrRhbE6kU40utUlCpjNszcwycjU7mWnx6scfztNfT0sueVt7GSv1B3vZV0s6k3t4n6enQsyccPXpzm7MzxMWZbQqpDJkRqQwVJjvXwJebzzNn+yWEAF9nK768vy3tGzpWq1xbQ64zZcEhLNQqtrzYR/bJqiEEn4vhkQUHEQK+GNeG+9rLCry1iexcA7suxvL3sUh2X4wjPi2byvzGsNSq8XTQ42mvJzE9h9ORyab/6TQqejV1YUQbLwY0d7/jRVhSRg6nI5M4HZHMqcgkTkYkcSUurdjz6t3Mlcd6N6a7v3OlxinV2/skNBQ6doTY2JvbcnNBbR7rmFSGzIhUhopn3+V4Xvz9OBGJGahVCk/1a8LT/ZugqaYAZiEEE+fuZ8+leEa08eLbB9pVixySony56Txfb7mAXqvirxk9aO4p76PaSm6egRvpOcSlZhGfmk18WhaxKVnE5zesjk/LJj41i7jUbFIyc7Cz1OJoZYGDlRYHKwscrbQ4WOb/bq3FwdL4P0crCxytLbDTa0xKxw/Bl5i97SIDmrtxVytP+jRzrbQCsKlZuZyNSuZkeBKn8hWl8zEpJgWppZcdj/ZuzLAgz0pL0qi398muXdCvn1EJAqNi5OJilkNLZciMSGWoZJIycnjn71P8fSwSgLYNHPjq/rb4VVMLj9ORSdz97S6EgL9mdKddNVurJEbyDIJHFhxkx/lYvOz1LJzahSZuNtUtlqSGE5OSib2lttpiaELj0/ll12V+PxRORo7RheftYMmUno24v1MDs4cHGPLvk+3nY/FztuKfp3vWqFIHlcrcuTcLL545A83NE+ogiy5KqgR7Sy1fj2/H1+PbYqvXcCwskWHf7GT18chqkaellz2j883LH609Kwsx1hDUKoWv729LYxdrIpMyGTtnD8fCEqtbLEkNx81WX63BxA2drXh/ZCv2vNafFwY1w9nagojEDD5Yc4buM7fwyfoQYpLNV7RSpVL46v62eDtYcjU+nZd+P15/nmHTpsGTTxp/X7SoWkSQlqFSkJahshF+I50Xfj/OgSsJqBT4bkJ7hgVVfbZZdFImfT/bRmaOgR8mtmdoNcggKZ741CweWXCQE+FJWGrV/PBge/rKxqGSWkJmTh4rjoQzd+cVrsQZe71ZqFXc286LR3s3pombrVnmOR6WyNg5e8nOM/Da0EAe7+NvluPWeDZtgsGDwcrK6Cqzqnjcp7QMSaocH0crlk3vyriOPhgEPPvbUbaFxFS5HB72eh7t1RiAj9eHkJ1bfM81SdXjbKNj6fSu9GrqQkZOHtN+PcSq/G7eEklNR69VM7GLL1te6MOPD3Wgg68j2XkGfj8UzsAvdjB94SGzWIraNHDg3XtaAMaisnsrqbxAjWPAAPD1NWaZ/TflvgqQypDEbKhVCjPva83drT3JyRM8vvhwtdzIj/Xxx8VGx7X4dBbtu1bl80tKxkan4ZeHO3FPGy9yDYLnlh9j7s7L1S2WRFJmVCqFIS09WPFEd1Y80Y3BLdxRFGNV72Hf7GL/5Yo/8yZ0bsjo9saF5dPLjnDdjO64GotKBY8/bvzdjC05yjx9lc8oqdOoVQpf3t+WAYFuZOUamPbrQY6G3qhSGax1Gl4c3AyAb7ZcIDE9u0rnl9weC42Kr+5vyyM9/AD4cO1ZZv4rY7wktY8Ovk78NKkjG57rTaCHLXGpWUyYu5+fdlyq0PWsKAof3tsq/5jZPLnkCDl59cDK/cgjoNHA/v1w/HiVTi2VIYnZ0apVfD+xPd39nUnLzuPheQc4c0u9kKpgXMcGBLjbkpSRw487pOWhpqFSKbxzdwteuSsAgB+3X+alP07Ujwe+pM7RzN2WlTO6M6qdN3kGwf/WhTBjyRFSMnNK37kELC3UzHmwA7Y6DYeu3WDmuhAzSlxDcXc39ieDKrcOSWVIUinotWp+ntSR9g0dSM7M5aFf9nMpNrX0Hc2EWqWYrEOL910jNSu3yuaWlA1FUZjRtwmzxrRGrVJYcSScxxYdJqOclYglkpqAlYWGL8a14YN7W6FVK/x7KpqR3+3m/PWUOz6mn4s1n49rA8C83VdYc6J6MnWrlMceM/5cvNjY0b6KkMqQpNKw1mmY/0hnWnrZEZ+WzYNz9xOWUHwp/MpgYHN3GrtYk5KZy/KDYVU2r6R8jOvYgJ8e6oBeq2JrSAwT5+7jRpp0bUpqH4qi8FBXX35/rBue9noux6Ux8rvd/H3szhMFBrf0MGWUvfrnCS7G3LlyVSvo1w+aNAFPT7h6tcqmlcqQpFKxt9SycEpnmrjZEJWUycS5+6ssGFClUpiWn1k2b9cVcqULpsYyoLk7S6Z1wd5Sy5HQRMb+uJfIxIzqFksiuSPaNXRkzdM96dnEmDn57G/HePfvU3ec3frS4GZ0a2wMO3h88RHS6rKlW6WC7dshJARataq6aatsJkm9xdlGx+KpXWjoZEVoQjoPzt1PQhWt/O9r720qlrbuVHSVzCm5Mzr4OvHH493wsNNzMSaV+2bvYcPpaBlYLamVONvo+HVKZ57q1wSAX/de4/6f9hKVVH4lX6NW8c0D7XC303ExJpXXVp6s2/eFl5exI3AVIpUhSZXgYa9nybQueNjpuRCTyqR5+0muQHBhWdFr1Uzq5gdQ4QwPSeXTzN2WFTO608TNhujkTB5bdJj7f9rHifDE6hZNIik3apXCS0MC+OXhjtjpNRwNTWT4N7vYfbH8ndldbXV8P6E9GpXC6uORbDxzvRIkrmFkZMC+fVUylVSGJFVGAycrFk/rgrO1Baciknlk/kHSsyvf3PtQN1/0WhWnIpLZa4YaIJLKxdvBklVP9uDJfv7oNCoOXEngnu9289xvR4mQrjNJLWRAc3fWPN2LFp52JKRl89Av+1lxOLzcx+no58SjvY2u/w/WnCEzpw4nG1y+DN7eMGgQpFR+nJRUhiRVShM3GxZN7YKdXsPhazd4dOHhSo/lcbK2YGyHBgD8LNPsawU2Og0vDwlk20t9ua+dNwCrjkXS77NgPlkfUqGUZYmkOmjobMXKGd1NxRRfXXGCXRfKbyF6qn8TPO31hN/I4Mftdfh51qgRuLoaM8qqoCK1VIYkVU4LLzt+ndIZaws1uy7GMWf7pUqfc2rPRigKbDsXW6FUV0nV4uVgyRf3t2X1Uz3p0siJ7FwDPwRfou+nwSzae1UGxUtqFXqtmk/HtDZVYH988WHORpWvBpuVhYY3hhm7us8OvlilGbpViqLc7GQ/d26lTyeVIUm10K6hIx/ca8wU+GrzBU5FJFXqfH4u1gxp4QEg2z/UQoJ87Pnt0a78PKkjjV2siU/L5u2/TzPkqx1sOXtdxoJJag0qlcKnY1vTpZETqVm5PDL/YLmDqu9u7UnXxk5k5Rr4aO3ZSpK0BjBp0s2K1CdPVupUsmt9Kciu9ZWHEIIZS47w76lomrrZsPrpnui16kqb7/C1G4z+YQ8WahW7Xu2Hm52+0uaSVB45eQaW7g/lq83nuZFudJc1cbPBzVaHrV6DnV6LrV6LrV5j/NtSi51eg61ei6OVBc09bVGqOFNFIvkvSek5jJ6zh4sxqQR62PL7492w02vLvH9IdDLDv9lFnkGweGoXejZ1qURpq5ExY2DFCnjmGfj663LtWp7vb6kMlYJUhiqXhLRsBn+5g7jULKb2bMTbd7eo1PlG/7CHw9du8GQ/f14eElipc0kql+TMHL7fdpH5u6+Wq37LwOZu/PhQR9QqqRBJqpfwG+mMmr2H2JQsejZxYf4jndCqy+6wee+f0yzYc5Umbjb8+2yvcu1ba1i/HoYOBUdHiIwEfdkXsVIZMiNSGap8toZcZ8qCQwAsnd6F7v6Vt8JZfyqaxxcfxt5Sy57X+mOt01TaXJKq4XpyJqcjk0jJzCU5I4fkzFzj75k5pGTmkpKZQ3KG8fer8Wnk5AmpDEtqDCfDk7j/p72kZ+cxpoMPn45pXWbLZVJGDv0/CyY+LZu3hjc3FZmtU+TlQePGEBpqVIyGDCnzrlIZMiNSGaoaXl95gmUHwvCy17P++d7lMheXhzyDYOAX27kSl8a7I1rwSI9GlTKPpGby97EInv3tGAA/TGzP0CDP6hVIIgG2hcQw9deDGAQ8N7Apzw1sVuZ9lx8M5dUVJ7HRadj6Uh/cbOug+3/zZvD1haZNy7Vbeb6/66BNTVIbeWt4Cxo6WRGZlMl7/5yutHnUKoWpPY0K0C+yRUe9Y2Rbb6blf/4v/nFcZhZKagT9At348N4gwJhQ8vuhsvdSHNuhAW187EnNyuXjf+toZ/uBA8utCJUXqQxJagTWOmPHZ5UCK49EsP5UVKXNNbq9D07WFoTfyGD9admio77x2tBAuvs7k56dx2OLDpOUIWsWSaqfCV0aMqOvsSHrGytPsuN8bJn2U6kU3runJWB8dh6+llBpMtYIsrIq5bBSGZLUGDr6OfFYfnfmN/46RUxK5TR0tbRQ81BXX8BYhFF6iusXGrWKbx9oh7eDJVfi0nh++TEMBnkNSKqfl4cEMLKtsQbRjCVHOBNZthpE7Ro6Mq6jDwDv/nOavLp4PV+/DqNHQ7NmkGP+BYxUhiQ1iucHNqN5fsn611dUXjPCh7r5otOoOB6exIErdXwlJSmCs42OHx/qgE6jYmtIDF9tuVDdIkkkKIrCrDGt6drYWINoyoKy1yB65a5AbPUaTkUks/xg2d1stQZHR9i1yxhIvW6d2Q8vlSFJjcJCo+Kr+9tioVaxJSSm0m5qFxsdozsYV1I/yyKM9ZJW3vbMvM8Yp/HNlgtslC5TSQ1Ap1Hz44MdaZrfrPiR+QfJyi29B5mLjY7n8wOvP90QQmJ6dmWLWrVYWMDDDxt/r4SK1FIZktQ4AjxseWmI8ab+YM0ZQuMrp9z8tPwWHZvPxnAxRgbS1kfua+/D5O5+ALzw+3EuxqRWr0ASCWBvpWX+I51wsbEgJDqF77deLNN+D3XzpZm7DTfSc/h84/lKlrIamDbN+HPdOoiIMOuhpTIkqZFM7dmYzo2cSMvO44Xfj1WKD7yxqw2DmrsDMHfnFbMfX1I7eHN4czrnt0Z4dNEh2QRWUiPwcbTi/0YaWxbNDr5UpvghrVplCqZesv9amWOOag3NmkGvXmAwwMKFZj10rVKGduzYwYgRI/Dy8kJRFFatWnXb8cHBwSiKUuQVElJH0w/rEGqVwudj22Cj03Do2g1+qqRu84/2NhYpW3kkotICtiU1G61axfcT2uNpr+dybBov/n5cBlRLagRDW3kwpKU7uQbBqytOlKkUSHd/F4a39sQgjBWq61yCyNSpxp/z5oEZz61WKUNpaWm0adOG7777rlz7nTt3jqioKNOraSXXK5CYhwZOVrwzwtie44tN5wiJNv8qp4OvI+0aOpCdZ2DR3mtmP76kduBqq2POgx2w0KjYeOY6328rm1tCIqlMFEXhg5GtsNNrOBmRxC+7ymbBfnNYcyy1ag5cTWD1icorU1ItjBkDNjZw8aIxoNpM1CplaOjQoXz44Yfcd9995drPzc0NDw8P00utrrxmoBLzMraDD4NauJOTJyqlO7OiKDyaX8J+0b5rZOaUHqgoqZu0aeDAh/ca3RJfbD7P1pDr1SyRRAJudnreurtgUXieK3Fppe7j5WDJE/k1i77beqFuWTqtreH1141NW1u2NNtha5UydKe0a9cOT09PBgwYwLZt2247Nisri+Tk5EIvSfWhKApvD2+BVq2w80Icuy7EmX2OwS098HawJDE9hw0yo6heM65jAx7q6osQxoDqtKzc6hZJImFsBx96NnEhK9fAaytOlEm5mdzDD1udhvPXU9kaElMFUlYhb7xh7GLv5GS2Q9ZpZcjT05OffvqJFStWsHLlSgICAhgwYAA7duwocZ+ZM2dib29vejVo0KAKJZYUR0NnKyZ2MRZJ/GR9iNlXOWqVwpj8NPs/DoWb9diS2sfbd7fAz9mKxPQcVh0zb8aKRHInKIrCzPuCsNSq2X8lgWUHQ0vdx06vZWJ+cdkftl+qbBFrPXVaGQoICGD69Om0b9+ebt26MXv2bIYPH85nn31W4j6vv/46SUlJpldYWB0sXlULeap/E6wt1JyMSGJdJbTqKFCGdl+KIyKxbEXOJHUTC42KSd38AFi451rdC0CV1EoaOFnx8pAAAGauCyGyDM+pKT38sFCrOHztBgev1rHisunpxiDqGTPMcrg6rQwVR9euXblwoeRqszqdDjs7u0IvSfXjYqNjen7m12cbzpFj5garDZys6NrYCSFg5WFpHarvjO7gg6VWzbnrKeyXFcolNYSHu/vRvqEDqVm5vLXqVKmKupud3lRc9ofgOmYdSk6GRx+FH36AsxWPJ613ytDRo0fx9PSsbjEkd8C0Xo1xsbHganw6v1VCZeqxHYwu0T+PhEtrQD3H3lLLqPbeACzce7V6hZFI8lGrFD4Z3RoLtbGNzD/HI0vd57HejVEpsDUkhrNRdSgG1sMDhg83/j5/foUPV6uUodTUVI4dO8axY8cAuHLlCseOHSM01Og/ff3115k0aZJp/FdffcWqVau4cOECp0+f5vXXX2fFihU89dRT1SG+pILY6DQ83d9YFuHrzRfMHtw6NMgDG52Ga/Hpsl+ZhEndjPEWG05fL3N/KImksmnqbsvT/ZsAxjpC8am37+Lu52LN0CCjAeDHuhY7NGWK8eevv1a4eWutUoYOHTpEu3btaNeuHQAvvPAC7dq145133gEgKirKpBgBZGdn89JLL9G6dWt69erFrl27WLt2bblT8yU1hwc6N6ShkxVxqVnMK2PNjbJiZaFheP5D4w/pKqv3BHrY0aWRE3kGwdL9pQesSiRVxWN9/An0sOVGeg7vrz5T6vgn+hjT7FefiCIsoXLaG1ULw4aBmxvExFS4eWutUob69u2LEKLIa8GCBQAsWLCA4OBg0/hXXnmFixcvkpGRQUJCAjt37mTYsGHVI7zELFhoVLyUH0T4447Lpa6KysvYjkb/+rqTUTKtWsLD+X3Llh0ILVOzTImkKrDQqJg1pjUqBf45HsnmM7evidXK255eTV3IMwjm1qXG1FotFHiD5s2r0KFqlTIkkQDcHeRJSy87UrNy+X6bec2+HXwdaeRiTXp2HmtP1rHKrZJyM6iFOx52euJSs/n3pKxBJak5tPZxYHp+wdg3V50kuZSeegXWoeWHwsy+iKxWHnnE+HPtWrh+54VSpTIkqXWoVAqvDQ0EYPG+a2Y1+yrKzZpDf0pXWb1Hq1YxsUtDQAZSS2oezw9qhp+zFdeTs/iilC713fydaeNjT2aOgV/3XK0aAauCFi2ga1fo3x8S7jzWUypDklpJr6au9GjiTHaegS833f4hUF7ua++NSoEDVxK4Fl966XtJ3WZ854Zo1QpHQhM5GZ5U3eJIJCb0WjUf5LeQWbo/9La1hxRFMbXo+HXvNVLrUhjA9u2wcSM0b37Hh5DKkKTW8updRuvQX8ciOBNpvpRRT3tLejZ1BaR1SGJs4loQWC+tQ5KaRs8mLnRp5ER2noHvSmkwPKiFB41drEnKyOG3A3UoKcDCosKHkMqQpNbS2seB4a09EQJmbQgx67HH5rvKVhwOJ68uNTmU3BEP5Vek/vt4JDfSsqtXGInkFhRF4YVBzQD4/WDYbcMG1CqFx/oY44zm7rxCdq55i9dWOxERsGnTHe0qlSFJrealwQFoVArB52LZeynebMcd1MIdO72GyKRM9lwyf3NYSe2ifUMHWnnbkZ1rYPkh2aJHUrPo0tiZnk1cyDUIvt1acocFgHvbeeNupyM6ObNu9d47eBAaNoTx4yGr/AHiUhmS1GoauVgzvrOxcvTH60PMVjlar1VzT1svQDZvlRhX3wX9yhbtvSathZIax/P51qEVRyK4GldyrKNOo2ZaT6N1aM72SxgMxhI1F2NSq0TOSqN9e2NV6oQEWLOm3LtLZUhS63lmQFMstWqOhyWy/pT50p8L2nNsOB1NUkbFqptKaj/3tPHCwUpLRGIGW0NiqlsciaQQHXwd6RvgSp5B8E0p1qEHujTETq/hcmwaL/95nCFf7WDi3H1VJGkloVbfrDl0B+05pDIkqfW42eqZ1qsRALODL5nNOtTax55m7jZk5RpYc6L0HkCSuo1eq+b+TkYFeeHeq5yNSua5346SmC5jiCQ1g4LYoVVHI0q09GTnGth1IRYna2PQ8YojEZy/nkpKZh3ILps82fhz/XqIKl+dOI35pZFIqp5HejTixx2XORmRxJHQG3TwdarwMRVFYWyHBny07ix/HApnYhdfM0gqqc082KUhP22/zM4LcQz9eicAU3o2wsGq4tkskuohLSuXS7GpJKbnkJiRQ1JGDknp2SRl5JCYbvw7JTMXX2cr2vs60r6hI/6u1iiKUt2iF6G1jwMDm7uz+ex1vtlygW8eaFdkzOaz15mx5EiR7enZeeTmGdCoa7GNJCAAunWDvXthyRJjV/syIpUhSZ3AydqCe9t68fuhcObvvmoWZQiMwYYfrw/hWFgiF2NSaOJma5bjSmoXeQbBhtPR/Lj9Ev+1O4YmpNPax6E6xJLcISmZOWwNiWHtiSi2n48lqwxZVXsvx/PbQWPwvIOVlnYNHOiQrxy1aeCAta5mfJ0+P6gpm89eZ/WJSJ7s14QAj8LPrGFBnkzu7seCYgovpmbl1n7F/pFHjMrQ/PkwfXqZd6sZn55EYgYe7u7H74fC+fdUNFFJGXjaW1b4mK62OvoFuLH57HX+OBTO68PuvKiXpPaSnp3Ld1svciaqaD2rsATZ0b42kJSRw5az11l3Mood5+PIzrupALnY6HCxscDBSou9pRYHS+PvdpZaHKy0WFmoORedypFrNzgenkhieg7bzsWy7VwsACoFOvo68cLgZnRt7FxdpwhASy97hrby4N9T0Xy95TyzJ3YoMuaNYc05GZHE4Ws3Cm1PyawDytC4cfDMM3D5Mly7VubdpDIkqTO09LKncyMnDlxJYMm+UFND14oypoMPm89eZ+XRCF4eElC7zciSO8JWr2XBlE6M/mFPEeUntC51Aa9j5OYZWHMiir+PRbDrYhw5eTfteo1drRke5MnQVp4097Qts9srO9fA2ahkDl+7weHQGxy9doPIpEwOXE1g/E/7GNjcjdeGBlarFfm5gc1YfzqadSejOR2ZREsv+0L/t9ComD2xPcO/2UXcLX3KSutvViuwtzd2sO9QVAm8HYowV7RpHSU5ORl7e3uSkpKws7OrbnEqjBAQHw+hoRAWZvwZGgqRkWBnBz4+0KCB8WfBy8qquqUuO/+ejOKJJUdwsrZgz2v90WvVFT5mdq6BrjO3kJCWzbzJHekf6G4GSSW1katxaYz+YQ/xtxRe7OHvzJLpXatRKklx7LwQy4drznLueoppW1M3G4YFeTIsyJNm7jZmi/sJS0jnxx2XWHYgjDyDQK1SuL9TA54b2BQ3W71Z5igvTy87yurjkQxq4c7PkzoWO2b/5XjG/7yPAi1g2fQudPN3qUIpK5fyfH9Ly1A9ICYG/v4bVqyAnTshvZwL2SZNjHWsJk6EwMDKkdFcDGrhjpe9nsikTFYfj2RsxwYVPqaFRsW9bb2Zt/sKfxwKl8pQPcbPxZoFj3Tm/h/3kJ5jdLOcr+31WeoYF2NS+WjtGZMLy95Sy+Tuftzd2pOm7pVjrWngZMWH9wYxuXsjPlkfwqYz11m6P5RVRyN4rLc/03s3wsqiar9unx3QlLUnItl05jonwhOLjWvr0tiZFwc147P8Jq8nI5LrlDJUHqRlqBRqq2UoPBz++uumAmT4T3ygu7uxWKeXt8DRPQdL+xxi4nOJiVaTlagjMU5DRLhC2n9qd7Vvb1SKxo8HL6+qO5/y8EPwJT5ZH0JLLzvWPN3TLKu/s1HJDP16J1q1wuG3B2Gn15pBUkltZdeFOCbN209B7cVL/xuGWlXzsovqEzfSsvlq83kW7w8lzyDQqIyFMp8Z0KTK42D2X47nf/+GcDwsEQA3Wx0vDm7GuI4NqjQL7YXlx1h5NIJ+Aa7Mf6RzsWOEEPT4ZCuRiZl1y8q5axfJTz2F/fHjZfr+lspQKdQ2ZWjfPnjrLdiypfD29u0FzbsnY9M0hiyrJK6nZRCVlMGN9JJ9xF72lvjbOSLC3Tm/x4mje3Tk5hpvZEWBgQPh44+NClJN4kZaNl1nbiEr18Afj3ejk595MssGfB7Mpdg0vh7flpFtvc1yTEntZfHea7z19ykA5jzYnrtaeVazRPWT7FwDC/de5ZstF0jOr5UzsLk7bwwLpLGrTbXJJYRgzYkoZm0IMcWZjengw8f3BVVZ3OHVuDQGfLGdPINgxRPd6eDrWOy4zWeuM23hIfRaFcfeGWyW8IJq5/Rpklu1wh7K9P0tI0HrCKdOwb33GkssbNliVFZ69ICX383g6R/PkTNiI7usd7E+8jzbLl7nTFSySRGytlDT1M2GPs1c6Rfgipe90ccdmZTBzrBIdomjxHTbgscTm/AZfobGrTIQwtgPr1MneO45SDZf0/gK42htwah2RmVlwe6rZjvukJYegLEitUTyYDdf2jVwAIxNLyVVz9HQGwz5agcfrj1LcmYuzT3tWDqtC3Mf7litihAY65SNaOPF5hf68PrQQNQqhT8Ph/PYosNkZOdViQx+LtaMbm98Fn61+XyJ4/oHuuFmqyMzx8CmM9erRLZKp2VLaNu2zMOlZagUarpl6MoVePddWLzYGBytUsEDEw20vzeSrRFXOBVxU0vxdrBkeGtPGjpZ4e1giZudjrSsPCzUChq1CrVKQaNSUKkUMrLyuBKfRmh8GqEJGZyNTuZcdIqpHodVph3WJ9tyaKvRB+/lBV9/DaNHGxWxW8nMBH0VxxAWuLXUKoWdr/TDy6HiafbHwxIZ+f1urCzUHHl7UN1YPUkqxMWYFAZ+sQMF2PRCH5q4Ve8XcH1BCMH83VeZ+e9ZcvIELjY6Xh7SjDEdGtRYd+XmM9d5cukRsnINtG/owLzJnarEfReWkE6/z4LJNQjWPN2TVt72xY77fOM5vt16kT7NXPl1SvEutdpG8qxZ2L/6qnSTmYOapgwlpmdz/noq0fHZ/PiFNRv+sCEv33XVsEMCdj1CSLW6YcoO0KoVBrf0YHynBvTwdyE2NYvt52PZfj6WXRfiytRzq7mnHXe39mRIC3dORSbz9ZYLXMlvBKiN8iBpS2tiI4wxNEOHwnffQWNjH0B++QV++81oRapqxv+0l32XE5jR159X7qp45LcQgu4fbyUqKZO5kzoysIUMpJbA9IWH2HTmOvd3bMAnY1pXtzh1nqSMHF798wTr8y20Q1t58MmY1rUiju/Q1QSmLDhIcmYuTdxsWDils1kWaqXxzLKj/HM8kvGdGvDx6OKv0WvxafT5NBiVAnteG4CHffVkwZmT5CtXsG/cWCpD5qCmKUNX4tLo8cph4v5pR0680Sqj94vFofc5dJ5JpnHudjoe7dWYu9t4cTk2je3nYwk+F0NIdEqh49nqNNhZaskzCHINgjyDgTyDMP2dnWfg1iukpZcdd7XywEKtYumBUK7Fp2PIUZF7JICYXY3Iy1WwtIR58+DAAfjyS+N+p04ZrZZVyfpT0Ty++DCOVlr2vj7ALJac9/45zYI9VxnbwYdPx7Yxg5SS2s7hawmM/mEvFmoVO1/th7td7f8SqamcikhixpIjhCako1UrvDmsOQ9396uRrTFK4vz1FCb9coDo5Ew87fUsmtq50msSHbiSwLgf92KpVbP/zQElKo7jftzLgSsJvDwkgCf7NalUmaoCmVpfRxEC1iyz5vqinhhyVaisM3EZegJL/1jTGAuNivfvacF97XxYdiCUoV/vJOGWmiiKAq297ekT4EafZq608bG/bTDfjbRsNp6JZs2JKPZciud0ZDKnI42ut5ZeRovR0dAbRHQ5i3uTUNK2tiHpsiMPPFD4OD/8YLQYVSUDm7vh7WBJRGIG/xyLZFyniqfZD27pzoI9V9l89nrt7+MjMQsdfJ3o5OfIwas3mLf7Cq8PlVXKzY0QgsX7Q/lg9Rmy8wx4O1jy/cT2tM2P2apNNHO3ZcWM7jz0y34ux6YxZs5efnm4U4nBzeagk58jzdxtOH89lZWHw5nco1Gx48Z08OHAlQRWHA5nRl//WqVkVhRpGSqFmmIZio01tlxZu9b4t6X/dZyHnkBtfVPRaeRizbLpXTgamsgn60O4Gm8sKORsbUGfZq70CXClZxMXnG10dyRDQlo2G09Hs/akUTHKy88rbu5py+AWHvx+KIzIG5nc2BhEyvGGhfa1tYWICOPPquTH7ZeY+W8IzT3tWPdMxdPsc/MMdPpoMzfSc1g2vSvd/Ku39L6kZlCQjWOr07D79f61wmVTW0jNyuW1FSdYc8LYhXxgc3c+H9sGe6va/R4npGUzZcFBjoUlotcaK0JXZg2zhXuv8s7fp2niZsOm53sX+yxMy8ql00ebSc/OY8UT3czW47G6KM/3t1zW1gK2bIHWrY2KkE4H015JxG30oUKK0JgOPsy8rxVPLj3KE0uOcDU+HRcbCz68txX73xjAF/cb08HvVBECYzPU8Z0bsmhqFw6+OZAPRrbE0UrL2agUZgdfZHR7H7x1jjgOOYl9z3OF9k1JMQZ5VzX3d2qAXqvibFQyB64kVPh4GrWKAc2NDyyZVSYpoH+gG03dbEjJymXp/tDqFqfOEJaQzsjvdrHmRBQaldEt9vOkDrVeEQLj83Tp9C70DXAlM8fAY4sOcyT0Ruk73iGj2nljZaHmYkwq+0t4FlrrNAwLMpaI+ONQeKXJUhORylAN55dfYMgQiI6GgEDBiLfPsEnZDflKvUal8OLgZqRn5zL+p/0cvnYDvVbFM/2bEPxyPx7s6lsprhwnawse6ubHxuf7MLC5Ozl5gu+2XcTF3UBnb1ccelzEeehxuKXH97ffQlXbIR2sLBjVzgeg2C7Nd0JBiv3G09FIw6oEQKVSeLS3MWtg3q4rZOVWTep0XeZMZDL3/bCHS7FpeNjpWf5YV6b3blynXDdWFhp+ntSRQS2Mz9Anlxwh/pZeYYDJAl9RbPVaU320xftKbmA6poPxebnmRFSVlQCoCUhlqIYiBLz/PkybBnl5MGpsLu6TdnIw5QoalcK4jg1wtdEypoMP32y5wLqT0SgKjOvoQ/BL/XhhcAA2usoPCXO11fHzpA58PrYNtnoNJ8KTOBETT88mLti0Dsd1zCFQG2+os2dh/fpKF6kIk7v7AUZLTkRixTuM92rqgpWFmsikTE5GJJW+g6ReMLKtNx52emJSslh1NKK6xanV7LkUx/0/7iU2JYsAd1tWPdmj1rtsSkKrVvHFuDY0drEmKimTZ387Rp5BkJGdxxebzvPKnyfMNteDXY3hC+tPRROTklnsmC6NnGjoZEVqVi7rT0eZbe6ajlSGaiC5ufDoo/Dee8a/pz6VwdVW27iWlIKnvZ5VT/bgzeGBNPe057eDYeTkCfo0c+XfZ3sxa0ybKk+JVBSF0R182Ph8b3o1dSEr18Cui3E0drHGpkkMHhP2ouiMKfxTpxrPryoJ8LClu78zBgFLbrMiKit6rZq+Aa6AdJVJbmKhUTG1pzEw9ccdlzGYaUVf31h7IorJ8w6SkpVL50ZO/P54tzqR5n07bPVafniwA5ZaNbsuxvHkkiMM+DyYb7ZcYPfFOLNZoFt62dOuoQO5BsHvB8OKHaMoisk6VJ9cZVIZqmGkpcHIkTB3rrGA4pNvJbHTPpiE9Gxaetmx6ske6LVqRs3ew44LcVhoVHw6pjW/TulMoEf1pv572luycEpnPhrVCisLNZfj0nC20eHUKBX3+/ejaPKIioIZM6petge7+gLw97FIs3xJ3axGXUeqtUrMwgNdGmKr13A5No2NdaWSbxXy656rPLXsCNl5Bu5q6cHCKZ2xt6z98UFlIcDDlqfy09nXn44mMslouYlOzjT9bg4eyn8WLjsQVqIL7r723igK7LkUT/iNcnb2rqVIZagGERMD/frBunVgaSl47IMo1uTsIivXwIBAN35/rBsnw5O49/vdXI5Nw9Nezx+PdTNLZ3ZzoSgKE7v4sv7Z3vg5WxGbkoWTlQV+gVk4Dz8GwM8/w08/Va1c/QPdsNFpiEjM4GhYxYMU+wW6oVUrXIxJ5VKs7FouMWKj05i+bOZsvyRjysqIEIJPN4Tw7j+nEcLozvl+Yvt6VeX9XHQKX20pvmXGoasVT/4oYFiQJ45WWiISM9gWElPsGB9HK7rnZ8quOFw/XL5SGaohxMZC//5w8CA4OwvGvnOJdclHAHi4my9zHuzA3J1XmLbwEKlZuXT2c+Kfp3rSpobW2WjobMWS6V3xdrAk7EYGVhYaGnZMMGWZPfmkYNu2qpNHr1UzOL9i9D/HIit8PDu9lm7+LoB0lUkKM7mHHxYaFcfCEs2SwVjXyc0z8MqfJ/h+2yUAXhrcjA9GtqqxbTUqiwAPW76b0B6tuuh5H75mviwzvVZtWkAv3l9y2MDYDsYxfx4JqxcuX6kM1QASEmDQIDh9Gjy9BL1eOMn2xHMoCrxzdwteGhLAk0uP8GV+o72Hu/myZHoXXG3vPE2+KvB2sGTJtC642eq4FJuKg6UW554XsWoeQW6uwpgxcPFi1ckzoq0XAGtPRpGbZ6jw8Ya0LEixl+4QyU3cbPWMbm+Mufh2axVe4LWQ3DwDzy0/xh+Hw1Ep8MnoIJ7q37ROZYyVhyEtPVg8tQvWusIWsUNXzZtyP6GzMZB6+/lYwhKKd4MNaemBrU5DWEJGian4dQmpDFUzSUnG1Pnjx8HNXdB6+lGOJoeh16qY82AH7mvvzbgf97HxzHUs1CpmjWnN+yNboa0llY/9XKxZMq0LTtYWXIpNw9vRCuehJ9B53iAhAUaMgMTEqpGlZxMXHK20xKVms+9yxW/uQS3cURRjA9doM/r0JbWfGX390aoVdl2MY9/l+OoWp0ZSoAitORGFVq3ww4MduL9Tw9J3rON0aezMH491LxQrdTYqmdQs82We+LlY06upC0LAkhLqYllaqE01h/49VfezymrHN2odJSUFBg+GQ4fAxUXQ5clThGRGYavX8Nuj3ejm78ykeQc4G5WMi42O3x/vxrgaFB9UVpq627JwSmfs9BpCE9LxdNLict9htHaZhIQYK2tXRWiFVq1iaP7N/c/xivvB3Wz1dGhoLKG/8Yx0lUlu0sDJynSvfrHxvIwd+g+5eQae//24SRGaPbGDKSlBAi287Fj9VE8c8hUiAfx70rwKSUFSye+HwkqsizU43/q9+cz1On8NS2WomkhMhPbtjc1M7ewEfZ87y4m0UCy1auZP7kRTNxsemX+QE+FJOFlbsGx6l1rZh6eAVt72LJjSGWsLNddTsnByycN51EEUtYFVq4yd7auCEa2NrrL1p6LNUhiv4AG+/pRUhiSFeap/Eyw0Kg5cTWDXxbjqFqfGUKAIrT4eaVKEBrWovDYUtZWGzlZseL63yWX23daLZlVIBgS64WmvJyEtu8TnV48mLlhqjTXVCnpS1lWkMlTFCAHLl4O3tzFeRqMR3P3aBQ6mXMFCreKnSR1o5W3PtF8PcfjaDez0GhZN7UxT9ypu6lUJtG/oyC+TO6HTqEjOzMXOJxW7bhcAePppwfUqCL3p3MgJdzsdyZm57Dhf8S+oAmVo/5UEbtzSEFci8bS3ZGIXo9vnc2kdAoyK0Au3KELfT2hfqxShzJw8ToYn8fexCHZdiCMsId0s8Ycl4W5nzBhWgGsJ6WwyY7kGjVrF+Hy3ZEkVqfVaNb2bGRNFzDl3TaRWKUM7duxgxIgReHl5oSgKq1atKnWf7du306FDB/R6PY0bN2bOnDmVL2gJ7NoF3bvD+PGQng4gGPnyFXYnXUCtUvh2Qjs6N3Li0UWH2Xs5HhudhkVTu9DSy77aZDY3XRs7M+ehDigKZOUacOx2Ca1bEvHxCk89Vfnzq1UKd+dbh/45XvGssobOVgR62JJnEKw4Es4fh8J4faX5KsZKajdP9PVHrzVmlm0tIY25vlCgCP1ziyI0uAa7xlIyc9hzMY65Oy/zwvJj3PXVDlq9u4ER3+3i2d+O8eAv++k1axvN31lPv8+CeXjeAd79+xRL9l8jJTPHbHK08LJnen6rlw/XniUzx3wtMsZ3boBGpXDw6g1Coou3/AxqYfyMpDJUg0hLS6NNmzZ89913ZRp/5coVhg0bRq9evTh69ChvvPEGzzzzDCtWrKhkSQtz5gzccw/06gX79t3cHjg0nEOGswB8NrY1/QPdeGrpUXacjzW6yx7pVGNT5ytCvwA3Hu1lvLmt9Cpchp0AxcCff8Kff1b+/CPaGJWhzWeuk55950GJN9KyWXcyypQK++Has7z85wk2yuwyST5utnoezm8H88Wm+msdyjMIXvzDqAhpVDVbEYpPzWLmurN0/mgLE+bu58O1Z1l5NIKQ6BRyDQIHKy0dfR3xd7XGQq0iJ09wJS6N7edj+XXvNd786xQ9Pt7K5xvPkWAma/GzA5ribqcjNCGdX3ZdMcsxwWh5KrDM/VVCC5n+gW6oFDgTlVynCzBWfvMqMzJ06FCGDh1a5vFz5syhYcOGfPXVVwA0b96cQ4cO8dlnnzF69OhKkvImUVHw9tswfz4Y/mNJ1TeKIaO10YLwwb2tGNHai2eXH2PTmevoNCp+ebgjnfzqZi8egBcGN2P7+VhColNo2DSbtK6XSN7blCefFPTtq+DiUnlzt/Gxx9fZimvx6Ww+G8M9+cpReVl5NIIP1pwpst1KV38KxUlK57He/izee43TkclsOB3NXa08q1ukKkUIwRsrT/L3MaMiNHtizVSEEtKy+WnHZRbuvUp6foNSbwdLgrztaeFlRwtPO1p42eFprzel/ucZBNHJmVyLTyM0Pp2r8elsOhPNpdg0vt16kbk7rzC+cwOm92qMl4PlHctmrdPw+tDmPLf8GN9vu8jo9j5ma1Eyoo0X/56KZt3JKF67K7BIWQMnaws6+jpx4GoCW87GmJT7ukatsgyVl7179zJ48OBC24YMGcKhQ4fIySnejJmVlUVycnKh152iVhsDpP+rCGmdU3AfdxCA14YG8lBXX95ffYa1+ZkVPz7Uge5NKlEbqAHoNGq+Gt8WC7WK6ORMPPteRuuSQkyMwrPPVu7ciqKYAqkrUoDx4W6+tPIu2gLF2qJWrTEklYyTtQVT8nuWfbHpvNm6kNcGhBB8sOYsyw+FoVLg2wfa1ThFKDE9m083hNDrk63M2X6J9Ow8grztmTe5I7te7cechzrwzICmDGzhjpeDZSFlQa1S8HawpLu/C+M7N+S1oYFser4Pcx5sT5C3PRk5eczffZU+n27jlT+PExp/55aVkW296ODrSHp2Hh//e9Ycpw4YLfWWWjVhCRmciijJVWa0HtVlV1mdVoaio6Nxdy8cnOfu7k5ubi5xccUHz86cORN7e3vTq0GDO09ld3ODbdsgMPDmNpUuG/dJuwB4rE9jHu/jz/KDoSzadw1FgW8faE/fALc7nrM2Eehhx8tDAgDIU/JwHnYcFMHSpfDPP5U7d4GrbPv5GJLS78y/r1GrmDmqNf8tlGtlIS1DksJM69UYO72G89dTWXOi4rFqtYWvNl9g3m6jW+fTMW1MpS1qCssOhNLzk218v+0Sadl5tPSyY+6kjvzzVA/6B7rfUfFHlUrhrlae/PNUDxZN7UzXxk7k5Al+PxTOsG92sjXkzhQKRVF4b0RLFAVWHYs0W4sOSws1/QON3zlrS0jfH5ivDO27HE9ShvnioWoSdVoZAopczAU++5Iu8tdff52kpCTTKyys+M6+ZSUvD1ILWlepDHg8vAu1hYH+gW68OiSQY2GJvL3qNAAvDGzGXa1q1qqpspnasxHdGjuTkydw9E3FrvNlAJ58EjIyKm/eAA9bAtxtyckTFWqnEeRjz+TujQpts9ZJy5CkMPaWWqbnx8l9vflCpWYg1RR+3nGZr7cYs0X/b2RLRud3Qq8J5OYZePfvU7y+8iSpWbk097Tjx4c6sObpngxscWdK0H9RFIVeTV357dFurHiiOx18HUnNymXqr4f4IfjO+tYF+dgzLr9NxnurT5vNyjg0yPi9s+5kVLFyNXKxpombDbkGQfC5upkIUKeVIQ8PD6KjC3/RxcTEoNFocHZ2LnYfnU6HnZ1dodedkpMD48ZBeDg09hc0nnQIrWMGPvbWfDW+LfFp2Ty+6DDZeQYGt3DnyfyOxfUJlUrhs3FtsNVrSM/Ow77HedS2GYSHw/ffV+7c97Q1T1bZC4Ob4X5La5T62UhAUhqP9GyEo5WWy3FprDJDf7yazNL9oXy0zujKeXlIAJO6+VWvQLeQlJ7D5PkH+XWvMZ385SEBrH26J0NaelRaG5AOvo4sm96VCV0aIgR8sj6E55Yfu6PMsJfvCsBWp+FURDJ/HKrYYr2A/oFu6LUqQhPSS6wnVOAq23xWKkO1jm7durFp06ZC2zZu3EjHjh3RarUl7GU+XnkFtm8HGxsY+OwF8txjsVA0/DqtI5ZaNU8uOUJ0cib+rtZ8Pq4NqnrWmLAAbwdLPhjZCgC11oBDT2MPtv/9T3DDvC15CnF3a6PJfs+lOGJTsu74ODY6DR+OCjL9XRB8KZHcio1Ow+N9/AH4est5snPrpnXo72MRvLnqJGAsLVCTFnkXY1K5d/Zudl2Mw8pCzY8PdeDJfk2q5NlroVHxv1FBfHBvKzQqhb+PRTLux71EJZXPBO5io+PZgU0B+HTDObO4rawsNPQLuL2rrEAZCg6JqZPXbq1ShlJTUzl27BjHjh0DjKnzx44dIzTU2Fvl9ddfZ9KkSabxjz/+ONeuXeOFF17g7NmzzJs3j19++YWXXnqp0mVdvBjyk9iY9lYsGyIuoCgw5+G2+Lva8NHasxy4moCNTsNPkzpiq6985awmM7KtF8NbeyIA26BwtC4p3Lih8MknlTenr7M1bRo4YBBG83BFGNTCnUYuVgBmS6eV1D0mdfPD1VZHWEKGKZamLrH5zHVe+P04QsBDXX15JT8msCYQfC6GUbN3cyUuDW8HS/58vHu1tAB5qKsvi6Z2wdFKy4nwJO75bjdHQsu36nu4ux/+rtbEp2XzTb4rsqKY+pCV4Cpr6+OAi42OlKxc9l+pe/32apUydOjQIdq1a0e7du0AeOGFF2jXrh3vvPMOAFFRUSbFCKBRo0asW7eO4OBg2rZtywcffMA333xT6Wn1R4/C9OnG36c8lcGaZGPm2EuDA+gf6M6fh8NZsOcqAF/eb1SO6juKovDRva1wtdUhFHDoEwLA118LwsMrb96CtPrVZijA+NzAZgBcT86st/VkJLfH0kLNa3cZMyq+2XKh3FaBmsyeS3HMWHqEPIPgvnbevH9PyxrTfX7xvmtMWXCQlMxcOvk58vdTPWjhdechEBWlm78z/zzVk0APW2JTshj/0z4OXyu7QqRVq3j77haA8dziUu/csl1A/0A3dBoVV+PTORNV1FWmUikMbG60HtXFrLJapQz17dsXIUSR14IFCwBYsGABwcHBhfbp06cPR44cISsriytXrvD4449XqoxxcTBqFGRmwoDBeRxz3U1OnmB4kCcz+vpzMjyJN/4ympCfGdC0VpWir2wcrCx4cZBRobBpEovOJ4HMTIX33qu8Oe9u7YmiwKFrNypcUGxwCw/UKoW07DyuxKWZSUJJXeO+9t50zE+R/nCt+VKkq5OjoTeY/ushsnON8Y+zxrSuMW7/9aeiePvvUxgEjO3gw+JpXXCx0ZW+YyXTwMmKFU90p08zV7JzDTy26FC5nkF9mrnSpoEDWbkGFuYvriuCte6mq6wkS7kpbqgONm6tVcpQTScvDyZMgGvXoEkTgc1dh4lPzyLQw5ZPx7YmPTuPJ5ceITvXwIBAN54b0LS6Ra5xjOngg7+rNQaEyTo0f77gbCV9Z7jb6enkayxuue1cbIWOZWmhpqOvsYv97kt1z4wsMQ+KovB/I1uhUmDtiSh2XajdTVzPRacwef5B0rLz6NnEhW8ntEOjrhlfLcfDEnlu+TGT227WmNboNDWn9IW1TsPsie1p7mlHXGo20349RGpW2ariK4rC4/ltOn7de420Mu53O25mlUUXq+zU5catNeOKrSN8/DFs2gRWVjDu9TCOXY/F2kLNnAc7YGWh4X/rzhKakI63gyVf3N+2xqycahIatYpX8t0I1g0SsWwajcGg8MYblTdnnwBXAHacr5gyBNAzv1jmHtmlXHIbWnjZmTKs3vnnVK0NSL0al8aDv+wnKSOHdg0d+PGhDjVG2YhIzGDawkNk5hjoG+DKuyNa1Bi33a1Y6zT88nBHXG11hESn8Myyo2VOmR/c0gM/ZyuSMnL43QyZZQOau2OhUXElLo2zUSlF/l+XG7dKZchM7NgB+aFLvPpBGssvngLg/ZGt8HOxZsf5WJbsN8YzzRrTGnvLmh8wLYTgYkwKx8MSOXwtgf2X49l9MY7t52M5cCWBnEqqlTK4hTvtGzqQJwSOvc+BIli1CvbsqZTp6N3UqAztvRRf4XPq0dT4oNh7OR5DPao0LCk/zw9qhouNBZdj08zab6qqiErKYOLc/cSmGK3fCyZ3rjE1tlIyc5i64KBJtm8fqDnWquLwcrDk50kd0WlUbA2JYea6spnC1SrF1MR17s4rFX5+2eg09G1mfB6W5Cob2LxuVqOuuVdHLSI2Fh54wNh244GJBrbkHSDXILi7tSej23uTlJHDqyuMfcge7uZLjxreauNybCqfbzxHr1nbGPjFDkZ+v5vRP+zl/p/2MXHufh6ed4BxP+6l00ebeW3FCXacjzWrYqQoCq8NbQ6AhUsqNkHGFc+HH5ptikK09LLDydqC1KxcjpQjiLE4WnvbY6vTkJieU2wQokRSgL2lltfzr/Nvt14gMrH2BFPHp2bx4Nz9RCRm4OdsxcKpnbG3qhkLvNw8A08tPUpIdAqutjp+mdypVmTrtm3gwGdj2wAwd9cVfjsQWsoeRka398HFxoKIxIwKZ8UCDM8vOVJSAcYBzd3rZONWqQxVEIMBHn4YIiONbTdchpzmWrzRFfbRqCBjfMDqM0QlZeLnbMWrQwNLP2g1cCMtm4V7rzLy+930/3w73269SPiNDPRaFd4OljR0sqKxqzUB7ra08DQqD4npOfx2MIxJ8w7Q+aPNvL7yBMfCEs0iT+dGTgxs7oYA7LpeAgT//gtnivZFrTAqlWJyb+2sYPyGRq2iS2NjDNIu6SqTlMJ97b3p5GcMpv6olgRTJ6RlM3Hufi7FpuFpr2fxtC642ZqnaWhFEULw/uozbD8fi16rYu6kjnhXoEFqVTOijRfP52elvrXqFHsulf4M0WvVTM5vnjpn++UKBzb3D3TDQqPiclwaIdFFXWUFjVsBttShAoxSGaogn30G//4Lej08+WEM/5wORaXAF+PaYG+pZePpaFYcCUelwOfj2mBVA5t4/nU0nF6ztvHO36c5HpaIWqXQN8CVr8e35ejbg9n9Wn92vNKPrS/2ZcPzvVn3bC8OvDGApdO6MKFLQ5ytLbiRnsOyA2GMmr2b/1t95o4qq/6XV+4KRKWA1jEdy2ZGk+wXX1T4sMXSO980vONCxeOGuvsbFavdUhmSlEJBMLVapbD2ZBQ7zXD9VSaJ6dk8OHe/yeqyeFoXfBytqlssE4v33+zz+NX9bWnTwKG6RSo3zwxowj1tvMg1CJ5ccoT4MqTNP9jVFysLNWejkiu8oLPVa02hA/+WllV2tu64yqQyVAH278cU2Pv+x9n8ePIoADP6NqFLY2cS0rJNafTTezemQ742XVNIzszh2d+O8vzy46Rm5RLoYcvbd7dg3+sDWPBIZ0a29cayhKajGrWK7k1c+N+oIPa/MYAl07owsq0XQsC83VcY9s3OCluJmrnbMia/n5FdJ2PPskWLBNF33kqsRHrnx/qcjEiqcNHEAjfowasJZOXKatSS29Pc046HuvoC8M7fp82SFVQZJGXk8NAvBzgTlYyLjQXLpnepUTXSwhLS+V++de2VIYHc1apiTWGTM3P4cM0Zgs/FkFGFVeUVRWHWmNYEethyIz2H/60LKXUfBysLxndqCMCPOy5VWIbhrY1ZZWtLcJX1yg+iPnT1RqXFjlY1Uhm6Q1JTYeJEYzr9uHGCg7rDpGTm0qaBg6lU+turThGXmk0zdxuT6bOmcPjaDYZ9vZO/j0WiVim8MKgZa57uydSejXC1LV8NDo1aRY8mLnw9vh3zJ3fCzVbH5dg07pu9m882nKtQpsxzA5uh06jQed/AwvMG2dlKpfQsc7PTE+hhixBUeHXezN0GFxsdmTkGjoYmmkdASZ3mhcHNcLfTcSUujTf+OlnjargkZ+Ywad4BTkYk4WRtwdLpXWniZlvdYpkQQvDmqlNk5OTRuZETj+UHFVcEtaIwd9cVJs8/SJv3N/LAT/v4fttFToQnmq1Baknoter8MAtYcSScvWUo1TG1VyPUKoXdF+M5GZ5UofkHNHfHQq3iUmwa56+nFvl/MzdbHK20ZOTkcaKCc9UUpDJ0hzz3HFy6BA0aQO9HQjl4NQFrCzVf398WrVrFupNRrD0ZhUal8PnYtui1NSPdNM8g+GbLBcb9uJfwGxn4OFry+2PdeGZAU7NkW/QLdGPj870Z2dYLg4Dvtl3knu92cS3+zooQejlYMrmHH4qCqaP97B8E6ZUQt1fgKquomVlRFHo0MTYClin2krJgp9fy7QPtUef3rFp2wDwNOM1BalYuk+cd4HhYIo5WWpZM60Iz95qjCAH8dTSCHedjsdCo+Pi+ILOULbn1mZ2dZ2Dv5Xg+3XCOe77bTfsPNjJ69h7GztnDlPkHmbrgIBN+3se93+/mrq92MGPJYVYeCedGBazMHXwdmdDZaO15c9XJUq3M3g6Wpor6cypoHbLTa00p9BtPFzXFq1QKXRoZn3H7LteNmmpSGboD/voLfvkFFAU+n53J93uMptnXhjXHz8Wa9OxcPlhjjPSd0defIB/76hTXhMEgePH3Y3yx6Tx5BsG9bb1Y92wvOuQXCjQXDlYWfD2+HbMntsfRSktIdAoTft5/x5kHT/TxR69VYdUsGo19OgnxCr/+alaRgZsp9jsvxFZ4Zd4jP25IBlFLykrnRk68nN/L673VpzkVUf0r7sT0bCb9sp8joYnYW2pZPK0LzT2rr41FccSlZvF/+c/bZwc0pbGZXHdqlYKFpvivyKSMXA6H3uDg1RtsPRfDlpAY9lyK51hYIiHRKaw7Gc0Lvx+nw4ebGDdnLz/tuERYQvmff6/cFYiLjdHSPif4cqnjH823iP17MuqOF6AF9MlfHO4uIYi7a36iiFSG6imRkTf7jr38smB1zAnSs/Po7OfExHwt/ofgS0QlZeLjaMmMGtKxWQjBR+vOsirfLfb52DZ8Nb4ddpWYcjosyJP1z/WmsYs1EYnGmiTXkzPLfRwHKwtGtfNBUYFtR2M9li++FBjM7Kru6OeIXqvienIW564XzaIoD93zLUPHw5NIyax4V2lJ/eDRXo0ZEOhGdq6BJ5ceIbkar53opEzG/biXI6GJ2Ok1LJ7ahZZeNWNhdyv/t/oMiek5NPe0MykD5sLyNhZ9nUbF0FYevHN3Cz4ZHcTX49vy00MdmP9IJ57u34RAD1sMAg5cTeB/60Lo91kwn288V644QntLLe+MMPYg+z74Ipdji7qsbqW5px19mrliELBo77Uyz1Mc3fNjH49cSyw2Zqqrv/EZV1fihqQyVA4MBnjkEYiPh3btoMPom6bZmaONptnQ+HR+3GHU4N8a3qLGuMd+2nHZVNht1ujWjM4PTC4rQghC49NZdTSC3w+GsediHNfi00qNB3K307NkehcaOFlyLT6dCT/vu6Omgg93NwaY2rQOQ6XL4eIFhdWry32Y26LXqk2m353nK2bR8XG0wtfZijyD4MCVBHOIJ6kHqFQKn49rg7eD8X55bcWJaokfuhSbyugf9nD+eirudjr+eLx7jbFw38rWkOv8czwSlQKfjA5Ca+bCipbaosdr4WnL1+PbcvK9IfzwYAem9GzE/Z0aMrKtN4NbetAvwI0XBwew/rne7Hq1H+/f05IujZzINQi+3XqRu7/ZVa4u9SNae9KrqQvZuQbeWnWq1Ovhwfxg/FXHIsmtgJLS2MUaT3s92XkGDl0r+gyra3FDUhkqBz/8ABs3GtPov/8pm5nrb5pmC7IqPlh7huxcA72aujCkZc1owrricDgz/zVmJLwxLLDMitD56ynM3XmZJxYfpvP/ttD70208t/wYr6w4wYS5++nzaTABb/9L1/9tYdqvh9h3Ob7YG9XT3pKl07riaa/nUmwaD87dT2J6+XzpgR52dG3shMoiD5t2xhXPV1+Z/0uiclLs64YZWVI1OFhZ8N2EdmjVCutORvOrGZpwlofjYYmMnbOXiMQMGrtYs+KJ7gR41KwYITDGMr31l7HS/9SejWjt42DW4yekZZOUcTOz7962Xux6tR/rnu3NyLbeJbrQbsXH0YqHu/ux/LFuzJ7YHhcbCy7EGBXND9acKVOWmqIofHhvK3QaFXsuxbPqWMRtx/dp5oqTtQVxqVnsrICbXlGU2z7D6lrckFSGysilS/DKK8bfZ82C3y6e5kZ6DoEetibT7PbzsWw6cx2NSqkxfXC2hcTwSn716+m9GvFob/9S94lLzeKlP44z+MsdfLj2LP+eiiY2JQutWqFdQwd6N3PF39UanUaFEBCdnMnms9cZ/9M+Rv+why1ni3Y0buBkxdLpXU39dybNO1BuF0BBYTHbdtcAQXCwwuXS3ejloiDFfv+VhAqn05qCqMtQOE0iuZV2DR15Y5ixOvVH686yoZgg1spg54VYHvh5Hwlp2bT2seePx7vVqDpCt/Lp+hAikzJp4GTJ84PMm617LCyRu7/ZSUZOHnqtyhRWUJH3YliQJ5ue78Oodt4IAb/susJdX+/galzpsT2+ztY8k9/Y+8M1Z0lKL/nZaaFRmQKpVx65veJUGgXPsJJqptWluCGpDJWRGTMgPR369YMWA2L4+5jRNDtrTGu0ahXZuQbeX30aMH5p14S002NhicxYcoQ8g2BUO29T6f+SyM0zsGD3Ffp9Fsyfh8MB4yrjlbsC+P2xbpx8bwh/zejBwimd2fJiX0I+uItDbw1k5YzuTOzSEAuNiiOhiUz99RBDv97J+lOFC3Y1crFm6bQuOFlbcCI8ied/O4YQgqT0HD7+N4R/jkfeVr6Bzd3xdrBEY5eJ3s94cy5YcOfvT3E0cbMxmoZzDey/UrEbvGBVFRKdUqGsEkn9ZHJ3P0a29SInT/DE4sOme7IyyDMIvt1ygYfnHSA9v/v80uldcbYpX5mNquJafBqL83s9zhzV2qzFbH8/GMbYOXuITMqkkYs1q57sUe6wgpJwtLbgy/vbMn9yJzzt9VyLT+eBn/cRGl96cPX0Xo1p4mZDfFo283YX7mX338Xn6PZGeTeejq5Q3FlBzbRTkUnFWvPrUtyQVIbKyL59YGMD3/6Qy9t/Gwsp3mqa/XXPVS7HpuFio+OZ/DpD1UlGdh7PLDtKRk4efZq5MmtM69ummx6+lsCI73bz3uozpGTm0srbjpUzuvPrlM7M6NuEzo2cisQ/KYqCi42O9g0d+WhUELte6cdjfRpjo9MQEp3C44uP8H+rzxSqydHU3ZaFUzpjoVaxJSSGxxYdpuesrczZfqnUvmAatcrkDy/oV7ZggXkDqRVFuSWrrGIWHSdrCxq7WANwPDyxoqJJ6hmKYkx0GNPBB4OAl/44zrxKaOgam5LFw/MO8Pmm8xiE8Yv0l8kdsakhTVeL47utF8kzCPoGuNKzqfl6PW45e51XV54gJ09wV0sP/n6qB4Ee5s+e6xfoxj9P9cTf1ZqopEwe+HlfqdlmFhoVz+V/tyzYc5XYlExWHgln4tx97P9PXGIrbzuautmQlWtg3Yk771fmbqeniZsNQhRv/alLcUNSGSoHn38O/1y+UMQ0G5OcyddbLgDw6l0BlZqhVVa+2nye0IR0PO31+fEHJX/U/56MYtyP+zgblYy9pZYP723F30/2pH3D8qXcu9npeX1oc3a/1p/H+xjdcfN2X2HKgoOFVicBHrb0b+4GwMYz10nJNPrly9LYdHynBug0KqyaXUelyyEsTGHr1nKJWSoF1VV3nK943FBBO4Da/qCQVA8atYpZo1sztWcjAP5vzRm+3HTebEHVey7GMeybney6GIelVs1nY9vw+bg26DQ1I/GjOELj01l51Oj+eXaA+RaeIdHJPLPsKELAA50b8MOD7Sv1We5qq2PZ9K6mbNsHft5HRCnNeu9q6YGnvZ6kjBx6fLyVF34/zu6L8SRnFLb+KIrCffnWoQq7yvwLXGXFxw11bVw34oakMlRGBgyAAfemmlZm79/T0mSa/XLzBVKzcmnbwMFknqxOToYn8fNOYzDNh/e2um3H5vWnonl62VHyDILhQZ5se6kvD3b1RV2BomX2llpeGxrI7Int0WtVbD8fy32z95jqXny75QLrTxWNgTgbmVzqQ97R2oKRbb1QNAasWhjdavPm3bGoxdKziQsqBS7EpFa4k3jr/Ayc42ZqYCupf6hUCm8Nb85Lg42Lr6+3XOCNv06RlHHn7o/YlCzeX32aib/sJzYliwB3W/55qoep/U1N5vttRqtQ72autCvngq0k4lKzmLrgEGnZeXT3d+b/RraqkphPNzs9S6d3xc/ZivAbGTzw074SnzlJ6TkM/nIHUUnG8iTZeTeflanFtHAZ1c4bRTGm9pfFDVcSBSn2JdcbkspQveLbb+HDtWfIyRP0C3Clf6AxUywsIZ0/DhldNm8Nb26WyqcVISfPwKsrTmAQcHdrTwY0LzmjbdOZ6zy19Ai5+QUYv3mgHU7WFmaTZViQJ3881h0POz0XY1IZ+f1u9l+O59mBzYp96KZk5RJ+o3Tl4+H8QOoCV9nKlYIbZc9ULRUHKwuT+3NXBV1lBZah4+GJNa7FgqT2oCgKT/Vvyv+NbAnAsgOh9J61jR+CL5Ur0D8+NYuZ687Se9Y25u++ihBGa+uqJ3vQtIZVlS6OsIR0Vhwxxk6ZyyqUmZPHY4sOE5GYQSMXa2ZPbG/2FP3b4WGvZ9mjXWnoZEVoQjoT5+4vVtG1t9IyoUvDYo9RnDLkYa+nZ74i89fRO7cOdW3sjEqBy7FpRCUVfT4XKEO1PW5IKkNl5EJqDNvOxaJVK7wzoqVp+zdbLpCbv0rp6Ff9jVh/3nmZM1HJOFhpee+eliWO23L2Oo8vPkyuQTCijRefjW1TIWtQSQT52PP3Uz1o42NPYnoOU389xKXYVGaNbs39HRsUGX86snR3Uksvezr7OWHhkYTWJZmsLIXffjOv3L3y4xD2VnC108LTDo1KIS41u1QTuERSGpO6+bHgkU40dbMhKSOHT9aH0OfTbSzad42YlMxiFe6kjBz2XIzjf+vO0mvWNn7ccZmMnDzaNHDg1ymd+Xh06xIbMtc0ZgdfJNcg6NXUxSyV84UQvLHyJIev3cBOr2Huwx1xsDLfgrCseNpbsuzRrng7WHIlLo23S6gnNLVnI4YFeRTZXhBq8F/ua+8NwMqj4Xe8GLO31BKUvzgszlXW1M0GJ2uLWh83JJWhMvLJemOdnqk9G9MoPyj2SlyayXf9gplTO++EK3FpfLXZGLv09vAWuJSQCTIn+CLTfj1EnkEwtJUHX45rY5a+ZCXhbqdn+WPd6NzIidSsXKb9eoikjBxm3hfE+E6FLUTHy3gzPdzd2K/MJsi4Spw/37xWl4J4qYq6t/RaNYGexhV3bX5QSGoOfQPcWP9cbz4f2wYfR0tiUrJ4e9UpOn+0haD3NjLi2108vewoTy87Sr/Pgmnz/kYmzN3PTzsuk56dR5C3PfMnd2LVjO6mlgu1gfAb6fxxyLxWoQV7rrLyaARqlcLsiR1M9eKqA28HS76d0A61SuGf45HFWnOMHe3b4OdSOMW/JGVoSEsPrC3UXItP53ApCSq3oyBuqLhei8Z6Q7U/xV4qQ2UkLCEDN1sdT/W/2V7jmy0XyDMIBgS60TbfHVJdGAyC11acMBV8LFgR3MrJ8CTu/3EvH68/h8AYz/LNA+0qVREqQK9VM+fBDvg4WhKakM4TSw6TJwT/G9WaMR1uyrqhmFii4hjYwg1bvQbrlhGgMnDwoMKpU+aTt8C9dTku7bY1Pcp0rPxVlYwbkpgLtUphdAcftrzYh/fvaUljF2sUxeguORmRxOrjkaw+HsmV/Bo2DZwsGRbkwdxJHfnnqR70C3SrEXXQysPs4EvkGgQ9mjibxQofk5zJZxvOAfD28OZmzUq7U9o3dDQpeu/8fbrYWB8bnYafH+qIVn3z80stIX3eykLD0CBPAFZUIJC65y1xQ8VZmOpC3JBUhsrB68MCTemmF2NSWJWvuZu74NedsPZkFPuvJGCpVfO/UUGFHnSXY1N5cukRRny3y5SCaaFRsfzRblXqG3eytuCXhzthbaFm3+UE3l99GpVK4dMxbUzFDq/EpRFfhnYdOo2awS08UFtnY+kfA8CyZeaV1dfZuPo6VsG0+ALF6phUhiRmRqdR83B3P7a+ZKz7tfmF3vz0UAdeHxrIK3cFsHBKZ46+PYidr/Rn9sQODGzhXuuUIICIxAxTbOazA8zzvP343xDSsvNo19CBSd38zHJMc/BkvyZ08nMkNSuXZ347WmwcTlN3Wz4aFWT6+3xMyT3LChbGa05EkplzZ4Vk2/s6otMY+zZeKqY/2q1xQ6W1aKqpSGWojLTxsefetjctGG+tOoXAWAiwlXf19uwRQjA7+BIAj/VpTAMn45d4dFImr688yaAvd7D2P7UmXhzUrFriBAI8bPlqfDsUBRbvC2XR3qsoisL8yZ1wtrZAAF9uOl+mY93d2rjisQ40ntvKleZ1lZnLolNwnFMRSYVqLkkk5kSnUdPEzZbBLT14rI8/M/o2oXczVxzNmBRRXfyy8wo5eYJujZ3p3KjiVqHD1xJYeTQCRYH3RrSs9sSXW1GrFL68vy22eg3HwhL5Jr9sy38Z17EBbfKzVc/epixJ10bOeDtYkpKZS/C5OysXoteq6ehnDB0oLW7oZETiHc1hbnLzDEz/9VCZx0tlqIy8Oby5aUX15+Ew9l02WlheHFz9VqHt52M5G5WMlYXa1LJi/ako+ny6jWUHQot8AbvY6Jjey7zdncvDoBbuvDwkAID3Vp/heFgiarWKL+9vA8BvB8MIv1F6KmiPJi7YW2qNliGVgZAQhZAQ88nZ1kwWnSZuNlhZqEnLzit2VSWRSEomO9dg6sdljq70eQbBO38buwWM69DAZLmtSfg4WpksP99vu8jBq8U3e/5pUkcUjDFDZyKLV4hUKoXB+X0yg8/F3LFMBdWoi2vNcWvc0N5LNcNVplGriEnJLPN4qQyVkRZeRg38SOgNXl1hrEDtbqejuaf5q5OWlx/yrUITOjc0ZUL0C3Qz+Xn/y4f3Vv9K6Ik+/gwP8iTPIHjjr5Pk5hno1dSV7v7O5BqEKRD8dlhoVAxp6Y5Kl4ve13iD/vWX+WRs29ABMCpDFUmLV6sUgvKth9JVJpGUj60hMSSkZeNmqzNleVaE5QfDOB2ZjK1ew8t3BZhBwsrhnjZejG5vrD7+7t+nMRRjVXa309Mv0FjAtqDkQHH0CzCO2XYu5o6fZT38b2bYFmfhLrDYHQ1NvKPjVwZtytG8VypD5eBEeCIPzd1vuhD651+E1cnhazfYfyUBrVphaq9Gpu06jZrZD7Zn4H/qDDVzt2FIy6KpmVWNoii8d09L7PQaTkcms3DvNRRF4ZW7AgFYeSScC9dTSj3O3a2NDQmtml0HYIUZXWUtPO3QqhUS0rLLVP/odpjqDUllSCIpFwU92Ua1965wskdiejafbjCaj18Y1KzEjNuawhvDArHVaTgTlczfx4sPgH6wq7H20KqjESXW+encyAlLrZrryVllqvRfHK287bHTa0q0QhWEi5wuwUJVHbRpUPYQFqkMlZEzkUk8OHc/abcUOCsIGqtOCqxC97XzwdPestD/dBp1fiPZm1agt+9uUWMCKF1tdbyW3zz2843niE7KpG0DB+5q6YFBwGcbz5V6jG7+zjhaabFqch0QHD6kEG6mfpZ6rdpk+TtqprghmV4vkZSd2JQstuW7dsaaoTr2l5vOcyM9h2buNqY+hzUZZxsdj/c1tjb6bMP5YgOgezd1xcVGR3xadokxQXqt2tSB/k7jhtQq5WZ7oWLigpp72qEoEJ2cSVwZkmCqgvJkeUtlqIw8uvAQyf+p5dCsmiu2nr+ewuaz11EUeLRP8b70FYfDyckTWFkYA+BKcp1VF+M7NaB9QwfSsvN4f7XRj//SkGaoFNhw+jpHQ29fG0OrVnFXK0/UNlnovI1jV60yn3ymuKEKmn4LVihno5LvOKNDIqlv/H0sgjyDoG0DB5q4Vex5G5eaxbIDxoy090a0rNJM2oowpUcjPOz0RCRmsHDv1SL/16hVjGpntJD/eTisxOMUuNO2hdx53FCBu/9URNFFnY1OQyNnYw2+mmIdauRS9rpRteNqqAEkZhRWhFQKNHa1riZpjMzZbrQK3dXSo9hiYVm5eaYeZW/f3YLPx7apMVahAlQqhY9GBaFWKfx7KpqtIddp4mZr6vFWkCV3OwqyyqyaGWsU/fWX+VxlbW9pp1ERvB0scbGxINcg7thMLZHUJ4QQpiKL5uiZtmx/KNl5Bto2cDD126oNWFqoeSE/Uee7rRdJTM8uMmZ0/vtTEF9VHH3z44aOhN4o9hhloUAZOlmMMgTQwstoSS9LJ4GqoDyxsVIZukMau9pUa2fn8Bvp/HPM2Kj0iXwz6n9ZcTiCmJQsPO31jG7vg69z9SpvJdHc087Ulfudv0+TkZ3HY/mWri1nr5faLLVLIyecrS2wzFeGtm+HeDMlNBSYhU9FJFWo746iKKZ+ZzJuSCIpndORyZy7noKFRsWI/NjAOyUnz8CS/aEAPNy95rvH/svo9j4EuNuSnJlb7AIx0MOOIG97cvIE/xwrPrbI28GSAHdbDMKYgXwnFMQFnYtOISu3qIXbFDcUUfsWfFIZKiODWxQOlm7mXn1l2wF+OxBmqsbaupiI+dw8g8ly9GjvxlhoavZH/dzApng7WBJ+I4PF+67RxM2Wro2dMAj47UDobffVqFUMDfJA65CB1jWZvDyFNWvMI1cjZ2vs9Bqycg2ERJUe0H07ZNyQRFJ2CgKnB7dwx95KW6FjbTx9nejkTFxsLBiWX5G5NqFWKbw2zJhcsmD3VcISipYeGZ1fXPHP22SV9Q00tl+507ghH0dLHKy05OQJzkcXLRPSsoZZhspDzf6GrEFcTzYGhHXyc8TaQl2t8UJCCFafMFqFxhXT7BSMFalDE9JxsrZgfKfiOx1XhJPhSfzf6jPMWHKYMT/soc+n2+j3WTCvrTjBmhORJZpqS8LKQmMqQ//Tzstk5uTxUFc/AJYdDCvVKnMzq8xoHVq7tpwnVAKqW4IGK16J2rhqkpYhieT2ZOXmmWoLmcNF9uueq4Cx/Eh1WvQrQt9mxtIj2bcsdG/lnrbeaNUKpyKSCYku3jLTP99Vtv187B0VgFUU5bauspb5JWiuxqeTUkKLkJqKVIbKyPHwJCzUKr6f2J6dr/YvVI26qjkVkcy1+HT0WlWR1Hkw9imbvc14s0zp4WfWStOHribw8LwDjPhuF/N2X2HdyWgOXbvBtfh0rsSl8dvBMJ5aepT2H2xi2q8Hi13BlMS97bzxdrAkNiWLPw6FMbilO662OmJTsth4+vpt9+3k54SNToPez1hvaMsWgcFMVeHbmSmIusCCdzkujaSM2vWgkEiqkq1nY0hMz8HdTkevphVrJnsmMpkDVxPQqBQmdKl9LrICFEXh6f7GBePKIxFFniFO1hYMCDR+H6w4XLx1qL2vI7Z6DQlp2Zy4w8Vdq9soQ07WFnjZ6wFKLAJZU5HKUDkY0cYLN1s9TtYW+LlUX/zNmnyr0IBAd6zze6XdytaQGM5dT8FGp+EhM/XcuZGWzaR5BxgzZy/bz8eiVimMbOvFeyNaMHtie/54vBvzJndkas9GBHoYrWabz8Yw6MvtzA6+WKZ4GwuNisfzY4XmbL+MEPBAJ6Pla9G+q7fdV61S6O7vjM4zEcUil4QEhZMnK3bOBdzsLXbnXZ/B+KBomN8q5aR0lUkkJbL+tNHCe29bb9QVLBBbkIE1pJUHHvlf1FVFZk4e1+LTOHzthlnSzbs2diLA3ZaMnDxTr7ZbKQikXn08qtjiilq1it75yuWdZpXdLqMMbhYorikZZWWl1ilDs2fPplGjRuj1ejp06MDOnTtLHBscHIyiKEVeIXfYs6Gg1UV1IoRgTX6fsRFtivd9F2SQPdTNF3vLivnaAaKSMhj74152nI9Fq1Z4oHMDtr7Yh6/Ht2Nyj0YMC/Kkk58T/QPdefvuFqx/rjebX+hDt8bOZOYYmLX+HMO/2cmhEkrK38rYjg1wtdURkZjBqqMRjO/cEJUC+y4ncDHm9jE7PZu6oKgFeh/jPFu2VPjUgZsZZZdi00iuoOm3RX7dovNlKCgpkdRHDAbBzgtGC29FC9smpmeb3G1V9fw+G5XMk0uP0Ob9jQS+vZ4+nwYz+oc9dPxwM3d9tYP3V59m54XYO6oErSgKD+efx8K914q4uno1dcFSqyY6ObPErNW+AfnK0B3GDQXdEkRdXFPWVt4FcUNSGao0li9fznPPPcebb77J0aNH6dWrF0OHDiU09PYBtufOnSMqKsr0atq0abnnbuZuY/qQq5MjoYlEJGZgbaE2pUreSlRShqkz/aRuFTcJX4pNZcwPe7kYk4qHnZ41T/di5n2tS81Ma+Jmw9LpXfh8bBucrC04fz2Vw9dKt6zotWoeze+bNjv4Im62OpMrcPG+23/O3fPLxRe05ti02Twp9s42Oho4GQtangirmEWnoBzD5TjZo0wiKY7TkckkpGVjo9PQ3texQsf641A4mTkGmnva0bGCxyqNUxFJPLrwEEO/3snaE1GF3FgFxq2Q6BTm777KQ78cYPL8g4TGlz2MoIB723lhp9cQmpBepNeYsbii8TlYkuWn4HvjZERSuXp3FeDjaIm9pZbsPEOxi7qWJstQ7bJ+1ypl6IsvvmDq1KlMmzaN5s2b89VXX9GgQQN++OGH2+7n5uaGh4eH6aVWlz+GZkQbzxpRo6fARTaohTt6bdHzKOhO38nPsUhF6vISEp3M2Dl7iUjMoLGLNX8+0Y0Aj7IHjiuKwugOPmx5oQ/P9G/ClJ6NSt8JmNClIY5WWq7Gp7P2ZJSpUuyKw+GkZ+eWuJ+/qzXudjr0vsa8+u07BDlmCs0pyASrqKusoB7UpZi0iookkdRJdlwwWiy6+TtXuDDi2pPG5+GELg0r9fm9aN81Rny3i41nio9tLC5Wefv5WAZ+Ecz328oWRlCAlYWG+/PDBxbkB4bfSoE1bWsJypCrrc4UynD4avmfZ6UHURuNBhdiUmtVgdlaowxlZ2dz+PBhBg8eXGj74MGD2bNnz233bdeuHZ6engwYMIBt27bd0fzDgypW58Ic5BmESdkZ0aZ4eQpcaHdXsC5HRnYeTy45QkJaNkHe9vzxeDd8HK3u6FiO1ha8MDigzA82a53GVHdozvbL9PB3pqGTFSlZuWwLKdm0qygKPZq4oHVLRmWZRUaaigMH7kjkIhQEDZ6/XjGLjr9bvjIku9dLJMWyI78GTu8KNmWNTckyFUsd3KJoook5EELw/baLvL3qFLd6vVxtddzfsQE/PtSBPa/1Z/1zvVg6rQvvjWhRqFhvdp7g0w3neHThoXIpDg919UNRYOeFuCLPkn756fNHwxKJLyFOqcDidqdthm4XRO1pb4yrzTMIzkXXnnCAO1KGpkyZQkpK0ZNMS0tjypQpFRaqOOLi4sjLy8PdvfBF7e7uTnR0dLH7eHp68tNPP7FixQpWrlxJQEAAAwYMYMeOHSXOk5WVRXJycqEXgJtd1QbeFcfBqwnEpGRhp9cUm2ERlpDOsbBEVAoMDapYM9ZP1odwKTYNN1sdC6d0xrmKGxo+1NUPC42Ks1HJnI1OMdUG+fdU1G336+HvgqKAvqHROmSuuCGTRaeCSkzBgzAmJavC8UcSSV0jNSvX5E7v3axiWWTbQmIQwhjj4l4Jz28hBP9bd5ZPN9zsoago8GQ/f/a81p9PxrRmSEsPvBwsCfSwo3sTFyb3aMTm5/swb3JHWvvcbCK67Vwsjy0qu0LU0NnKlDm28D/WIU97S5p72iFuU1yxfUOjMnSkDKELxXG7IGpFUW6pN1R74obuSBn69ddfycgoWhU4IyODhQsXVlio2/FfU6cQokTzZ0BAANOnT6d9+/Z069aN2bNnM3z4cD777LMSjz9z5kzs7e1NrwYNiq/jUx2sPm50kQ1p6VFsEcUCk3CXRs642d75zb/jfKzJ/Prp2DY4Wlvc8bHuFHsrrWk19/uhMO5qZVTutoXE3PaBUeAv1/sZlaHNZoobMsX6xKZhuIP6HAXY6bW42epMx5JIJDfZeymeXIPA19mqwhXzt4QYXVYDmlcsCLskvtlykZ93XjH97e1gyW/Tu/LykMDbWsFVKoX+ge78+Xh3JnS5WQNu+/k4ppXDQlQQEL7iSESRffrnW4dKcpW1b+gAwImIpGKDoEujQBkKiSo+iLqmteUoC+VShpKTk0lKSkIIQUpKSiHryY0bN1i3bh1ubpVz4bm4uKBWq4tYgWJiYopYi25H1/9n77zDoyi7Nn7P1mRTNr33Rugl9N4FQVQs2LAAKmIF/RBsrwXLawN9ERuoiIAoxUaR3jsk1CQE0nvdbJLN9vn+mJJNMrvZMoEE5ndduYBsexJ2nj3POfe5z+DByMrKsnr74sWLUVtby34VFFgffHc9IUmSrUdPtVoiK6Zvd95hVaXR4/82ngMAPDYkGqNcPJ25AmMo+WdaMboEeSJU6YYGvQmH6U4TLkKUbogP9GBF1MeOAxrHNYqtiPJTQCIi0GgwoVTtuOjQkibdkFAqExCw5FAWUyJzbd/RGkxsRxqXF5urnC9U4Ys9V9h/R/sr8PfzwzEozt/u55BJRPjg7p54/+4erH3A4axKzN+Qalen2dB4f4Qp3VCvM7KlRQZGN3TwSgWMHHqk2AAP+Cik0BvNSHdiVmKkn20RdQ9aRH3xZs0M+fj4wM/PDwRBICkpCb6+vuxXQEAAZs2ahWeffbZdFiqTyZCSkoJdu3Y1+/6uXbswdOhQu58nNTUVoaHWgwW5XA5vb+9mXx2BnMoGVNTpIJOIMDjOr9XtuZUNuFikhlhEYHIP54OhD7alo0ytQ1ygBxZN7urQY0mShNZgQq3G4FL2hGFYQgBClW6obTRgd0Y5butOZYcYDxJbj5P4aCD2aoTRQODECZeXAqlYhGh/SjPlaqksPsiDl+cRELjZYPVCLh7CjmdXQaM3IdhbzpZs+EJrMOGlX1NZUbSXmwSrHhsAPycz6A8Pisa3j6SAqW9sv1iGDafaPoSLRAQm0/IBpirA0CfSF74KKdRaI2cXL0EQrJns2XznRNRMdzVXqYz5nWeUqDmDsY6IQ8HQvn37sGfPHpAkiY0bN2Lv3r3s1+HDh5Gfn4/XX3+9vdaKBQsWYOXKlfjhhx+Qnp6O+fPnIz8/H3PnzgVAZXUeffRR9v7Lli3DH3/8gaysLFy6dAmLFy/Gpk2b8Nxzz7XbGtuLU7RHT+8IJaedPJMVGhrv7/RFWVCtwaazlCfHJ/f2tsu5urbRgO8PZmPMp/uR8Pp2JL+5A73f3YmBH+zBa1su4ICVk4k9iEUEO73+9zOFbKlsd3qZze6LYQmUbkgepgIAnDrl1Mu3gq+MDl/6IwGBm4n8Kg1yqzSQiAgMibc/w8LFnnSqPDQ2OZj3LrL/7shAdiWVbhYTBFY83A8JQa7NqhzfLRhvTO3G/vutPy/hqh37DKOl3JPeXD4gFhFsC/3eTGulMlo35KSzvi0RdYy/BzxkYuiMZuRUdg45QGv7YhuMGjUKAJCTk4PIyEiIRNe3GW3GjBmoqqrCu+++i5KSEvTo0QPbtm1DdDTVel1SUtLMc0iv1+OVV15BUVER3N3d0b17d2zduhW33377dV03H5yiWyAHxLTOCgFNXWSuTHf+/lA2TGYSwxMCkNKGJ4fBZManOzOx5lgeNPrWNe7Keh3WncjHuhP5SA7xwmf392b9Jxzh3pQILN93FYeyKvD+XT3g7yFDVYMeJ7KrMdxKt8ngOH8QBCALVUGTGYqTJ0kArm+I8UGewOUyXHNR68MEQ4JmSECgiQN0iaxftC88OZz17YUkSexJpyQF43nWC+28VIofj+Sy/158e7LL40IYZg2LQXZFPdaeyIfeZMbcNWew9cXhNmep9Y30QZjSDcW1Why8UoGJ3ZsaZ8YkB2FLahH2ZZRjMUeWv6+LImpbBrIiEYG4QE9cKKpFbpUGiTdwlqe9OPWOi46OhkqlwqpVq5Ceng6CINCtWzfMmjULSqXjH3iOMG/ePMybN4/ztp9++qnZvxcuXIiFCxe263quF0xmaEBs62Cook6HjNI6EATlP+QMFXU6NjU7b3S8zfvW64x4du1ZtlOhS7AXnhgWg1FdAuEhl0AmFuFUbjV2XCzFP+dLkFFahzuXH8HzYxPx7Jh4SBzwDokJ8MDAWD+czKnGn2lFmNg9GOtPFmDHpRKrwZDSXYquId44G6oCABw/wVMwxFNGh2mvz61qgNFkduj3ISBws3KYDoZc1SlmlNahuFYLN6mIbajgg7P5NXh23Vn239S+Z593mj0QBIF3pnVHRokaZ/JVuFpRj2W7ruBVG3IFplS26nAOtl4oaRYMjUoMBEFQdiDlam2rjujekUoQBFCkauS8vS1iaIF7nhXjyCg/BS4U1SLfgfmUNxKnduHTp08jPj4eS5cuRXV1NSorK/H5558jPj4eZ8+ebfsJBByiXK1FXpUGBAHOjM2ZPCpQ6hLs5XTn149HcqAzmtE70sdmirpcrcWMb6n5ZG5SEZY/1Bc7XhqBBwZGIVTpDm83KdykYoxIDMT7d/fEnpdHYVL3EBjNJJbuvoLn1qU6XDZjhNSbU4tY3dC/l8ps6pJ6RyohC64FQKKoUIQy23Ne7cKyo8wVQr3d4CYVwWAiUVDTuitTQOBWhJnXZy37bS9MVmh4QgCnMa2jkCSJX47n4b5vjsJgatpzXpvS1eW5aS2RiEX47P4+kIqp5/3uUA6KVLb3CGulMqVCii50RoZLF+TlZnm7yuG1MsFQeZ2O0ww3kp7D6Miw7huJU8HQ/PnzMW3aNOTm5mLz5s3YsmULcnJyMHXqVLz00ks8L1HgJJ0V6hriDW+31rPGmBJa/xjn7ObVWgPWHMsDQGWFrNXYdUYTHvvxFC4Vq+HvIcOvTw3B1F5hNmvyAZ5yfP1IPyyb0QcysQg7LpXi/zaed0hgPbF7MCQiAtkVDQhTusPLTYKKOh1nrZqhe5gSIrkJUn8qi8OHbig+gMrolKq1qNdZd8JuC5GIQFyA0FEmIMBQ06BHcS3Vpdk11LWSCjOOaBTHuCJH0RpMWLjxPN744yIsz3AjkwLbrdM2JsADCyYkAaCMdt//57LN+zOlMq6uMubwbG0UUl+6xT7VCRG1UiFlZ19yZX+YodQ3fWbo1VdfhUTSVGWTSCRYuHAhTp8+zdviBChO0Rf3QI4SGQB2AGr/aOdOVL+dKkCdzojEIE9MsNGG+smOTKSXUIHQ5nlD2QGmbUEQBO7qG46vHu4HiYjAltQivP7HRbsHFXq7Sdmf/dDVSgyKpTJXx7OrrD6GEffJ6FIZH07USoUUAZ6MR5DgRC0gwBeMOV+MvwJeHAc+eyFJkj0k9aFH6DhLYY0G935zFL+fKWz2fQLA67c71mkLUK7+maV1SCtQteklNGdEHGLpzMu2i6VWJ8QDtrvK2g6GaCdqJ0XUTIctV6mMCYbyqjqHNtKpYMjb25tzOGpBQQG8vDq+UKqzYSvzo9Eb2Y3E2cwQI75+dEg0RFbSvoezKrHyMGUw9vG9bQ9q5WJCt2AsndEHIgJYfzIfv52238Opad5OGWstYC0YMpjM8JCKISIAeSi1ifz0Zy0eXnncqUnRlsQH8tMWz9fzCAjcDFwuoa7Tbi62wRfWNEKlMUAmFiEpxPkOr0NZFbjjf4dxsai1T87knqF2z2g0mszYcCofoz/Zh65v7cBtyw7irq+OoNfbOzF9xRH8crz15HmAsvJY9kAf9t9v/XnR5uswnbYHr1Q0y7ozB+SLRWrOAIzpKDtfpHJoPhoDm/2xEQwV1DTyYrXS3jgVDM2YMQOzZ8/Ghg0bUFBQgMLCQvz666+YM2cOHnzwQb7XeEuj1hqQXkpdkAM5aulpBSoYzSRClW4I93F8MGuxqhFpBSoQBHBbD+4RHrUaA17+PQ0A8PCgKIxzwcTsjt5hWDgpGQDw7t+X7Z7azLzmiexq1sb+dG4Np/5o/oY0TFh2EGayKTNUdMUd9VqTy222TEbHVd1Qkxi7c5yaBATaE+ZA50zHqSVMVqhLiJfNLixbmMwkfj9diBoN97icR4dE2/U8p3KrMfmLQ3h10wXk0vuct5sE/h4y6E1mnM1X4Y0/LmLq/w7jJJ39t6R3pA9G0E0iZ/NVOGEjE94n0gcKmRg1GgMyLOaBRfq5I8BTDr3JzOkGHRfgAS+5BFqD2amDGZsZqm69j4X6uEEsIqA3mlFexz0jrSPhVDfZp59+CoIg8Oijj8JopLQTUqkUzzzzDD766CNeF3ircyavBiRJvem41P6n2ayRn1Mf9DsuUgaG/aN9rY7wWHk4mzJiDPDAG1O6cd6HJEnszSjHn2nFuFpej4JqDcJ83NEn0gdjkoNwW/cmv48nR8Rhb3o5TuZWY8Fvadjw9JA2hYixAR6IC/BAdmUDytXUfDa11ojLJWr0apEOf3JEHJvtkgWpAbEJZq0MoSLXvEsAavMA+MgMCWUyAQEGJhhyNTN0nhZhM2VyZxCLCHz5YF+M7xaMN/+4iNrGpqDIVyHFICtyBUuOXq3ErNWnoDWY4aOQ4vmxiZjeNxy+HjKQJIn8ag12XS7D//ZeRXqJGjO+O4Yld/XAw4OaB1qvTkrGoazDAID/7b1q1eFaKhZhYKwf9mdW4Oi1Svb3SBAEUqJ98O+lMpzOrUFKCymFSEQgPsgTaQUqZFc0IDnEsd9/tJ/1jjKpWIRwH3fkV2uQX61BiPLGz/e0hVOZIZlMhi+++AI1NTVIS0tDamoqqqursXTpUsjl13eg580Oowey1mFxOo/xH3KuRMYEQ5OsuFbXaQ1YTc8p+7/bunAaMWaW1uGRVScwe/Vp/HWuGJdL1KjTGZFZVocNpwsw95czuOfrozhHT0gWiwh8dn9veMolOJ1Xgx+P5LR6Ti6YUtm+zAoMtKEb6h3pgyH0pkGISSogAoAK17pUAAutT7lrGZ3YAA8QBKDSGFDdoHd5XQICnZVGvYnV4HUPdS0YYrQ1lkNQnWVa7zDsnD8SfoqmDt17UyLaPHQez67C7NWnoTWYMTY5CAf+bwxmD4+FTCLC9gsl+P10Ic4V1iLKT4FtL4zA9L7hIEng9S0XsfJQdrPn6hGuZGUBh69W2uzMYva8lntiW7ohV8xko/xti6Q7k4jaJYMThUKBnj17olevXlAoFHytScCCzFLqDcp1cZvMJGuY1ZZJIhfldVqcotvyJ1kpka07kQ+11oi4QA+2rd2SU7nVuOurIzhytQoyiQhzhsdi5aP9sXP+SHw3MwVzhsfCXSrG2XwV7lpxBGuOU11rkX4KvD6FEiH+b+/VZqcva4ylDdT2Z5ZjYCz18x7Pbp1eBoCnR8Wxf/cZnoWg+05g+jTX22wT6I0jp7KBs9ZvL+4yMcKU7vRzCdkhgVuXjFI1zCTVeeqo140lluLpni5khixxl4mh1jYdVmYNt+0rVKRqxJzVp9FoMGF0l0B8/Ug/1OuMeOnXVPRfshvPrD2LhZvO44X1qXhqzRmQIPHZ/b0xdxTl7bZkazq7RzK8ZiHWXrHvqtXXHhpPldROZFc3kw8wnw1n82s4NZOujAdi2uuLaho5JQuRnSgYsrtMNn36dLufdPPmzU4tRqA1zAcl04ptSWZpHep1RnjKJQ6nNwFg56UykCQ14oNLb6Q1mFjR9DOj4luJq88VqPDEj6fQaDBhaLw//ntPL/bNDwBJwV6Y2D0Ec0bEYcnWy/jnfAne/OMi6rQGzBudgPv7R+KHwznIKq/H9wez8cptXWyud0CMH7zkElQ16OHvQWUgT+VUcxoXjkoKRGKQJ7LK6+EeR7WbpiT2cfh31JIwH3fIJSLojGYU1mhcmqwdonSjDc86fj1dQKC9aNILuZYVKqhuRG0jLZ7myfF4X0Y5mKHsIxIDEKq0rsskSRL/+fMi6nVG9I3ywTePpOBMXg2eW5fKZn+j/RWIC/CA1mCG1miCp1wCgiDw6qQukEtE+GJPFt77+zL6Rvqwpb5eET7oGuqF9JI6bDpbiDfv6AaFrPVHd7cwb1Y+cLFYzXb79ghXQiYWobJej/zq1nuWK/rFIC85ux8Wq7RspoghqhN5DdmdGVIqleyXt7c39uzZ06yN/syZM9izZ0+7O1DfShhNZjaijg1s/aF7hvaG6Bvl45T517+XbJfINp8tQkWdDmFKN9zZJ7zZbaW1Wjz240nU64wYHOeHHx4f0CwQsiRE6Yb/PdgXz41JAAB8vCMTn+3MhFhEsAHQqsM5KK+zPQ1eKhZhMG0IWVGvg5ebBHU6SjfUEoIg8Cz9enwiFhHsaSjXTvG3NYK8qICuM4gLBQTaC770QkxWKDnUCzIJP67uOy81ubVO7xdu456UEezu9HJIxQQ+vqcX/r1UipmrTqK6QY/uYd7YPG8o9r8yGj8+MRDrnxqMLfOGwYcuwREEgZfGJ2Jit2DoTWY8u+4s6rRN2fJ5o6i9TG8iselMEefri0UEqyk6dq2pVCaXiNHToumkJZb6RUe7bUUigg14cjla6DtTe73d75gff/yR/QoODsb999+PnJwcbN68GZs3b0Z2djYeeOABBATwZ39+q1Os0sJgIiGXiBDKkT5marzdnKizG01m9sJgtDgt+TONuugeHxbTanN575/LUGkM6BHujZWPDWjT6ZUgqMDn9du7QiIi0JsWPU/sFow+kT5oNJiwYt+1NtfNpHzT8lWskPGElVLZlF6hcLdYlz2DD+0hmBYClqttB29twQRDZS4+j4BAZ4Y5zLiaGTpfpALgmnjaEq3BhL0ZTcHQsHjrn20NOiPe/usSAODpkfEwk8Crm87DZCZxd99wbHpmKPpF+drUGxEEgU/u7Y1wH3fkVWnw/tZ09raJPYLZvWzN8VyrzzGUPiwevVbZ7PuMzCKd4+AY7a+ARERAozeh1Im9qKmjzJbxYsd32ncqfP7hhx/wyiuvQCxu+qARi8VYsGABfvjhB94Wd6uTTZfIYvw9OP1/mGg7JsDxUk1WeT0aDVSalmvicmW9jp2Hxti9Mxy4UoGtF0ogIoCP7+nt0FDFJ0fGYe/LozGenqFGEARenki5rf5+uqDZaYgLxhfjTH4Nmwa+yNEyClCZpKEWo0WyeAqGAmnjxYp61zI6jD5CyAwJ3KoYTWZk0B/QzhzqLGHF0zwFQ8euVaHRQNXIEoI8beqZNqcWoVStRYSvO54YFoN5a89AazBjRGIAPruvt91jQZQKKesvtOF0AdsOL5eIMbU3tQ9fKau3eoBidEOncqub+QYxZUOuPVAqFrEBjTONIVF0R1m+jcxQZT33yI6OhFPBkNFoRHp6eqvvp6enw2x23LhJgJucSurNFWsl2GHKNNH+jovX0+jOrl4RSs4S267LZTCT1O0Rvk3Przea8R/aAOzxobFOpbZb1pWHJwQgPtADDXoT/kjlTgEz9IpQQiIiUFGnYzMrXKcdhml9wti/85UZCvKmy1suan0ChTKZwC1OsUoLndEMuUTElp+d5TJdbuMrM2Q5z2uIlZZ2gNIKrTmWCwCYNSwWK/Zfw7WKBoR4u2HZjD5WjWytMSDGD3f0DgNJAkv+SWdLV7MtxNu/neI2rE0K9mR9gyz3O+bAa20PdMXqw5YLteXIjoIOnh1yKhh64oknMGvWLHz66ac4fPgwDh8+jE8//RRz5szBE088wfcab1nYYIhDL2Q0mVlRmrVgyRZMm3tvKyM1mJb7lh1kOy6VIrdKgwBPGeZPSHT4dbkgCAIzB1P+GmuO59msW7tJxWw6XUuf2q5VNFi1t7fMevHl6cMEYRUuBjGsZkgokwncopTUUh+QYT7uDgcNltTrjKxJojOZci7OFTZlnIfaGF59PLsaV8rqoZCJMTIpEL/Q3WAf3dMT/p7OWc28OqkLZBIRjmVXYU96OQAgOcQbYXSJ/vcz3MEQQRDoSu+PTHAINHXBFqka0cAxVzG+jWDJFjdLe71TwdCnn36KRYsWYenSpRg5ciRGjhyJpUuXYuHChfjkk0/4XuMti63MUJGqEUYzpScKtmKWaAsmM8Q1X6y20cDWnFu23DMX+kODol2aIdSS6SkRUMjEuFJWzw5atAYzT+dqRT18FVKYzCSyyrgvYktR95WyOs77OEogb8GQGy/PIyDQWSmhh7OGuNBSDwAl9GR3bzeJQ2V7a5AkibSCpsyQNbNDAPiZzgrd1Tcc607kQ2c0IyXa16VBrhG+CjwxLAYAsGJ/Uzs9k+nOr260Os2eKTdesgiGfD1kCPCkxNpc7vmuZIaYjF5elYbzINtZRNROBUMikQgLFy5EUVERVCoVVCoVioqKsHDhwmY6IgHXYIKhOI5giLnNmp7IFg06IxsYcAVD+zPLYTCRSAzyZC8SAMgqq8PJnGqIRQQeHBjp0Gu2hbebFHf1pbo12ppZxoioU/NV6Epf+NZKZd5uTWnaMrWuTU2SPTBBTFvdb20+D11uq2rQOzUXSECgs8MEQ6EuuhMzE+/DnBhJxEVBdSPUjVQGJTnEC34eMs771WoM2HmZEllP7RWKtSeow+JL4xNdHv0ze1gspGICZ/NV7FR5y67ereeKOR/HZM6ZeW8MzF5+taL1odCVWYnM/12jwYR6jqwT4zzd0Q99Lvcfent7w9vbNeGbQGu0BhMb+XNlhnKZYCjAcb3QhaJamEnqNBZsY8THyBYnm7UnqOG845KDbPptMGSUqh2a7n4XfaHvvlwGvdF6cNCPDoYul6iRSKd3udrrGaIsskN8zALjKzPkp5BBQgeylS6KsQUEOiOldJnM1VENxaqmchsfnCtUsX8fYqNEdvhqJUxm6uB4obAWOqMZfSJ9MDzB9a7qIG833NGbygT9cCQXABWYebtRma+tF0o5H8fMd7tcrG6WqUkMpvZKrix6HB0oOXNgdJOK4SalQgkVxzw3X4XU6m0dCaeCobKyMsycORNhYWGQSCQQi8XNvgRcJ79aA5IEvNwknKcSRjztjOjwnI0SGQCcpzcCSz2R2Uzib/ok8tCgKJvPX6xqxIINaZj8xSEs2dpaaG+NlGhfBHrJodYaW7WGWhKmdEOApxwmM8n6dNgSUUf6NW2QTBDpCozWp0Fv4qy/24tIRLCBVZlgvChwC8JkdEJdDGKYMpmrGSaG8xbBUFcbhrYHrlB6nlFJgdh6gZqHaM/IDnthRNPbLpSgTK0FQRAYTg9vvVxcy+n6nBDkCamYgFprRGFNUymN0Q1x6YKU7lL2c8byMfbiS+/DNZrWo4WU9G2qxo49dsip4urjjz+O/Px8vPnmmwgNDeXtP16gCaauGxfgwfn7zXWhrZ7JovTkGPGhN5qRXkKX0CwGoF4uUaOqQQ8PmZht3+TiWkU9HvjuOJs1cZeKoTOa7JogLRYRuK17MH45no/tF0oxugu3/xFBEEgM8kRlvY7NrFwuoU5BXL8rS92Qq6UtAPCQS+AhE6NBb0J5nQ6xLmgUgrzkKKnVCiJqgVuSUiYYclEzVKTit0xmKZ5mxlW0hCRJHLhCudt3DfXCysM5EBHWRxs5Q/cwJVKifXEmrwZ/nyvGnBFxuDclEtsulMJgJnG+UIV+LYavyiSUA/elYjUuFavZ/S8hiGqvtyaSDvKSo7pB71SW2kchQ0mtlhWxN7uNlilw3daRcGoXP3z4MA4dOoQ+ffrwvBwBBqZTzNq4hzwX2uqZyJ8rq5RRqobeZIavQtoso3Ioi8rUDIn3t+ruWl6nxUPfU4FQUrAnPr2vd6uJ8m1xe49Q/HI8Hzsvl+J9U49WYzYY4oM8cCy7CvU6I6RiAnVaI4pUjc1sABgiLb7H1+iLQC85Gqo0qKjTOdXN1/Q8bgBqhfZ6gVsSVkDtYkanqSvN9cyQ2UziokVmyFI3aUlmWR3K1Dq4SUUopoOxIfH+CHCyg8wad/YJw5m8GvxFB0ND4/1BACAB7LhU1ioYAigR9aViNS6XqNngjCmT5VVrOA+o1LrrnCr/N5XCWmd/mKxRbQcPhpwqk0VGRjps2y3gGEy60d+zdYnM1bb6IjoYCvdtfYpiSmg9I3yaZVkOZVEnIFu18Hf/vowytQ4JQZ5Y/+RghwMhABgY6weluxQ1GgNrr88Fs0HlVjWwAWNupe3WToA/Tx++RdRCMCRwq6E3mtkshKsZHVYzZIeWsS0q63XQ0LYd/h4ythTfkoN0VmhInD/2ZFDlspYGtXxwe89QiAjgfGEtciob4CYVs7+vffTrtoTxf8uwkA8EecnhJZfAZCaRz+EJxJTsnckMsWWyhtbBkA8TKHXwMplTwdCyZcuwaNEi5Obm8rwcAQZmijvTCWVJSa0WRjMJmRNt9XqjGWX0BzjXcFYmPdzHooTWqDexouoRVtpFD16pwD/nKVfqZTP6OO2vIRGL2DEb1ibSA03+QdcqGtifo9hKq6llmaxMzY/xV6A3v15DFTyU7wQEOhOMi7JMImIzC85AkiSv3WSWLevxHO78DOfpvbJvlC/rfj0y0fl2emsEeMoxjD6E/kPrNpk9MruyASZz68QEk/UvsND/EASBUDpzxqVRZFrvndnTmICHqxTGfIbdNAJqX19f+Pn5wc/PDw888AD279+P+Ph4eHl5sd9nvgRcR2UjGGKzRh4yh9vqS2obQZKAXCJi3/yWXKAvcMusTmpBDfQmM0KVbpxt/kCTF8ajQ2JcdoAdTHt6nMipsnofJjOUV9XAiiYLrQRDYT5uYH5LpXyVyTz5yeiwGSZBQC1wi2HZVu+K7rSqQQ+90QyCAGd3rKMwJS/AeokMADJLKW2lm1QEo5lEgKccERzZdj5gSl0H6Qz9GHqepMlMsjYrljDrKKxpngGyldF2pUuWyQxxlcmYQElnNFs1x+0I2K0ZWrZsWTsuQ6AlajoY8uE4MTH+F95OmB5alshabkAkSbIuoZbOzcxF3yNcyblpXS2vw/HsaogI4KmRcQ6vqSVMMHQqpxpGk5lTNxTi7QaFTAyN3gQPWsBsLTMkl4jh5yFDVYOeN68LvkZyCJPrBW5VGJ2Pq4aLzHUf6CnnZVq95T4Sz+H+DwA6ownZdBDCeOv0ifRpt2aiEQlUxik1X4V6nRH9Y3zZ287mVbeaL8lIIOq0RtQ2GthDta39pqlM5ng5y1ZmyFMugVhEwGQmUaPR22XLciOwOxh67LHH2nMdAi1gUopcmSE17QPh7e64/p3JnnCVyFQaAxrpyN1S0HiF9qVICuY+JTH+Q+O7BvOSpk4O8YLSXYraRgMuFqs5LQBEIgJxgR64WKRmsz5FNlpCfelgSKM3QWsw2T040Rp8DWsNoDegKsFnSOAWo5Sn0lYxz51kxbVtl8mulVPlKW83CTvctG+UDy+vz0WUvwJRfgrkV2twMqcKY5OD2Y7Wg1mVuH9Ac7sThUwCf3rPK6ppZD9HAm0c4hjhtyuZIa7WeoIg4OMuRVWDHiqNocMGQ06F0WKxGOXlrYVbVVVVgs8QT9jSDKlt3NYWTMDAlc5lNoEAT1mzYCGLdqtmJh+3hJmdc19/flypRSICg2L94CYV2bRwjw2gNio97bVhuYm1xFKTwEdJij1FuZjRcad/z1obJpMCAjcjjG6FybI6C3MgYbIermKZGYqwEmBlllHC5OQQb3a0UXsGQwBY3RDT2TuZFmtbC164SmV2lcmcEVB72NYF+XQC40WngiFrnWQ6nQ4yGbfyXsAxmoKh1r9PNjPkTJnMRmaI64RFkiQ7uoMrGMqrakB+tQZSMWFzmKGjLLm7B87/57Zm9vMtCaYvXiMtICxRaWHmEBMCzX+PFfWui5UVMiorpzW6VgNnnFs7ci1dQKA9aDRQ5SVPmWuzxLR66trx4GEmGdA8w2ytkyyDlg7EB3mwe6otc0Y+GEGbLTI+QY8OoYZbW5u5GM4GQ00/T6CNMhmTGap2YjyQj43MkOXttR24o8yhd8+XX34JgEp7rVy5Ep6eTSlEk8mEgwcPIjk5md8V3oKYzSQb8HBnhmjNkBOZIeaUwOXHw9WeWl6ng1prhJguS7WEOaX0jfLlbTMCmk4wtmBKTBodtT69yYyKeh2niNLy98hHZojRJugMrmV0GK8PnZAZErjFaKSDGFdL1kxp39XnYbDsJuPSbAJAHm3j4Ud/yHvKJVbvyxejkgKx75XRiKG95RJpE8UajaGZLoiB2eMtg6EgGyJpX4WM1fZUN+gdEqM3CaitZIY6QUeZQ59eS5cuBUBlC7755ptmJTGZTIaYmBh88803/K7wFqROawSTfLOpGXJzPPhg3oxc/kVc830YJ+woPwWni/SZPKrlfpgNV+r2gjnJVDXoEeLthiJVIwprGtsOhngQK8uZYMjFIIbJDJnMJAwmM6RWTCYFBG42tPRBgrkGnIUJhtx5CIa0BhMrAvaUS6xej6wXDy1YjOBoSOEbD7mkmdu9u0yMAE8ZKuv1KKzRQOnevIuXKZMVNCuTMZqh1tlxsYiAv4cM5XU6VNRxHyqtwcgQ6nVG6I3mVkJ2pQ2BdUfBoU/TnJwcAMCYMWOwefNm+Pr6tvEIAWdgzKkUMjFndwSjGXImM6ShT2MKWeuNo4gNhpouAuaiD7RSj2c6zbqGcuuJ2hPLVtAATxmKVI2crZ1A82DIWirXEZqCIVfLZE3/D1qDSQiGBG4ZmBKz3NXMEL2nuctcv3Ys9wZb3kfMvqg3UqdWLtnB9SDcV0EHQ43sgFaGQIuyF0MQHeAwcxVbZvP9PeUor9OhisM80RbeblKICMBMUp9fLTP7Pu4dfz6ZU++effv22RUIeXt7Izs725mXuKWxJZ62vN0ZzRATDLlLW8fB7JwgizIZcyFxeRKZzCSuVTCdZtc/GGLWVFmvhyedJau3MjhVadF5p+ehJMVs4K4+l9wi2NW6WHITEOhMaHkqb2l5zAwxgRVAdaBag2k/r9dRe3F7+Qu1RQSHLojBi/58sJxC7ymXsAdhLqdpJkunc1DDKBIR7OGca+wGU0LsyCM52vUYKozscI62giG1ltEMOV4ma9RTj+XKDDGBhOXzMi3ffhwbQ361BjqjGXKJqJnL8/WCyQxVN+jgQf88dVorwZDFKY8PfY5lmcyV9zlBEOxzCSJqgVsJJvh3NYjhUzPUaHENWhNPaw0mdq9kZAdcGszrgTVzRaBpH2+5JzLZII2+9X7DZKb1DgqoAUAioh5r5Ghi8aIPq3VWDqsdASEn3wGx5TEEOF8mI0kSGoP1MhnXCYtJl/p5tC6TMW3vsQEeEDvohM0HfgoZCDo1K6X1a9YzQ5bBkOtBh2VGx5mNwxJmE+djXQICnYWmzJCLmiG2TMaPZojBWpmMyajIxCJ2L7YmI2hvImyMImIyQ8waGWzpHZnbnMl4MxV+M8fhkP106MD5ESEY6oBo6OyNp5XuLGdb66ksBvV3Bcdzc52wbJXJmm67MRuBRCxigxypmLrc6q1lhiyDIR7KUZZicr5E1EKZTOBWgrlu+Oom46dM1nQN+lrJDDElsgBPGRpsaDCvB0p6jUyHsSVMNqZBb2o2v8xWJlomdj4YEtECcq5EOTM2iuzA0ZAQDHVCmLSno8FQg0XWhGvj4DphVdUzmSHrwRDXbdcL5uJlghNrmSHL3xUfZTIm+AL4bK8XMkMCtw5sZoijS9WZ5+ElGLIIEKxl3pkmDR+FjN0zFS56JTkLE/Cota21OF4W3caWh8SmTHTrfYtp2HEm280EQ1yDY5nd0tyBz3vtGgy1R6vhihUrEBsbCzc3N6SkpODQoUM273/gwAGkpKTAzc0NcXFxnaL1n/m9WYuhmTSkyMH/PaZGLJeIOMtaTGbC8pTD1Hi5Aq8qJ4IhvV6PZcuW4fnnn8eyZcug17vWXcBcvHI6u2ItGLIcaMtH0GGp9XG9o0zIDN0I+H4vCjhGI19lMuZ5eMjOWAZDEiulf+bDXiomoKGNIxVy11/bmfcjY6/CpZWUS8TsHmUZLLH7FldmyIUymchGmQzELZ4Z4ltAvWHDBrz00kt4/fXXkZqaihEjRmDy5MnIz8/nvH9OTg5uv/12jBgxAqmpqXjttdfwwgsvYNOmTbyui2/YKNrK709Mv7EcjbIbbeiFjCYzexqwPGEx/4dcwVMNHQz52xkMLVy4EAqFAvPnz8fy5csxf/58KBQKLFy40LEfxAImM8QI/6yVySzhy+CQP68heiSHIKC+brTHe1HAMfjqJmvqkOVBM8QhKm4JIxAWiwhodPyUyZx9P3J1jHHd3jwYspEZckFAzWSGuIYAMJ8eHbmnql2Doe3btyM83Po4BUf5/PPPMXv2bMyZMwddu3bFsmXLEBkZia+//prz/t988w2ioqKwbNkydO3aFXPmzMGsWbPw6aef8ram9oCwUXsFLN90jr2zNDZSupazsSw3J+YUxJXk0ztQ81+4cCE++eQTmEzNNxuTyYRPPvnE6Q8h5iTDBGsaOwIKPjRDQFN7vavPx5QJhMzQ9aG93osC9kOSJPt+l7uYGdLyqNth9Jq2YEb+SESipj2Vw6rEXlx5P3rZyAwBgEzcunTF/L65giGpK5khG59LzOdHB46F7DddXLBggd1P+vnnnwMAhg8f7viKrKDX63HmzBksWrSo2fcnTpyIo0ePcj7m2LFjmDhxYrPv3XbbbVi1ahUMBgOk0va1T3cWNoq2djt9B0eDIeYkxrX5MLVvgmjeKcWW5DiiIea2tqqher2efU9Y4/PPP8eSJUscnm3HBENG+iRjT1MbX9ocvspkcmE+2XWjPd+LAvajs3L4cgZeBdR2HEiM7AGRbHptJwMxV9+PTDu7ycpnARMDWe7ftvYt1wTU9GtyaoZsH/A7AnYHQ6mpqc3+febMGZhMJnTp0gUAcOXKFYjFYqSkpPC7QprKykqYTCYEBwc3+35wcDBKS0s5H1NaWsp5f6PRiMrKSoSGhrZ6jE6ng07XZEalVqt5WL1jsFG0lXcOo39xNBhiauBcb1ZmMJ9UJGqm9WJegqtMxnWhcbFixYpWp56WmEwmrFixAi+99JLN+7WEuXiZ9Vur81v+qlxthWfgq0wmzCe7frTne1HAfiyzqa4KqJl9iA+JqtGOvcFkkRlicPa1XX0/kjYOqwD3gZXdbzgCP1da622WyTpBb73dwdC+ffvYv3/++efw8vLC6tWrWSfqmpoaPPHEExgxYgT/q7SgpSibJEmbQm2u+3N9n+HDDz/EO++84+IqXaOtC0ts401nC6mNqN+yi8Dyd9qUGWr9fLZus+TatWt2rc/e+1kiodPATIBjj9+R0cTPBSltEYg5i8lsO5AT4I/2fC8K2I9l84ejh7qW8HUoAdBs/JG1q5EJhsRiEaRiAgYT6fQe4Or7selAyv04rgMrm8Hh+L3z0U3G9bwi9oDv8NNeN5wq1n722Wf48MMPm43k8PX1xZIlS/DZZ5/xtjhLAgICIBaLW2WBysvLW2V/GEJCQjjvL5FI4O/vz/mYxYsXo7a2lv0qKCjg5wdwgLZSii0DFXux9Ua3ZiLYdOpqfbWRNm6zJD4+3q712Xs/S5gNkLkQ7QmG+DBns3xt18cJ8KOdEGib9nwvCthPy5l8rmBLA+Pwc3HMgmxJU2aIcKmsBLj+fjS3cbjnaoCx5djN/GxtZfu5sFWxYD7TXA182xOndl+1Wo2ysrJW3y8vL0ddXZ3Li+JCJpMhJSUFu3btavb9Xbt2YejQoZyPGTJkSKv779y5E/3797eqF5LL5fD29m72db1pEptZKZPRt3P5OdhCZtN5lNtE0FYrJHMxcdm6WzJv3jyIxbYDBrFYjHnz5tm8DxeM1qkpGGr7Lc2HtsDytV19PmZgJR/jBARs057vRQH7kYqb7D1cbRywVfZx+LnsuAYJi/3XFcEx4Pr7kW1wsfJYE0f23tYYFFuDvNuiKePEcWMnEFA7FQzdfffdeOKJJ7Bx40YUFhaisLAQGzduxOzZszF9+nS+18iyYMECrFy5Ej/88APS09Mxf/585OfnY+7cuQCorM6jjz7K3n/u3LnIy8vDggULkJ6ejh9++AGrVq3CK6+80m5r5AM282Pl+mI2EUeD7Jb6GkukYoK9yC03FaZLgmkhtaRp9o3t4XsymaxNAf6CBQucEqwyFy9TYrKn1MRbMMTboEl+MkwCbdOe70UBx3DjaSYfs6/xPWbHGqyzs87oUis64Pr7kWmZ97JiwGs2t84c2RJ9N7oUDNnKDFF04MSQ/ZohS7755hu88soreOSRR2AwUP8ZEokEs2fPxieffMLrAi2ZMWMGqqqq8O6776KkpAQ9evTAtm3bEB0dDQAoKSlp5jkUGxuLbdu2Yf78+fjqq68QFhaGL7/8Evfcc0+7rZEPmrrJrGWGnEs52hLHMSaCWoO52abS1LrJ5XDKeFy03Y768ccfA6D0ZpaCQbFYjAULFrC3OwoTDDEBovX0btPvig9zNsD2puIIOtaJVyiTXQ/a670o4BhuUjEa9CY2M+osTJnM2exMs+eyQ8ztKaf2vXqd0SWTQgZX3o/VbXi96S0aYxhsOXZr2D3N8dDAZjdZG0bCHQGngiGFQoEVK1bgk08+wbVr10CSJBISEuDh4cH3+loxb948qynDn376qdX3Ro0ahbNnz7bzqvilqZvM9u3OlsnMJNU1IRE3//CVS8R0MNR0YdvysfC2YQXPxccff4wlS5ZgxYoVuHbtGuLj4zFv3jyXTuGMLwjzu7Cmu7GcOcRHZshkJtkN0OUyGY9TtwXsoz3eiwKO4caTTxefAmrLzJC1IM3TYk90pfvKEmffj7ZGImn0Rjbr7OvRlDlisj9c+00jvZ86kxmyleFuygx13HDIpYEqHh4e6NWrF19rEaBhBdRWbhezQjXHnlfWQiTdOhhibNotg6HWDqZNt9k2/OJcg0zGW8sySTb5fDBrsDY0VtXYZG3Pi1OtRWrfdc2QUCa7EfD5XhRwHL78tfi0prDcI2sbuQ95zADtep0RSndqanxbukm7XtuJ9yM7O5JjkDZzm0wiajb021ZG2xXNkK0B4iYOIXdHw6lgqKGhAR999BH27NmD8vJymFuIW7Kzs3lZ3K0K0VQn46RpOrCDmSGL4EdvNKPlUOamrozWZTI1R8Dj70EFHhV1ula3XQ/qdUY2e1ZLX4iBHJsCANRomjY2PrrJLGcY2aMzsIWWpxlNAgKdCdZ53WWfrvbRDNVyTIIHmvbEep0RAfR+U1l/Y/bAktpGAECQV+tDoGUJzVIzZLNM5sLgWTUdPDJaUq7blFaG33YEnAqG5syZgwMHDmDmzJkIDQ1tl4GstzKMCNiaKM/ZMplELIKIoDJKXGldOcdYCGZyM5dmKMKPOhUV1mgcWgdfFKu0AKgLTEUHO1YzQ5qmzBAfGZimVLOo2RBYR6HGEghlMoFbDze+MkM8ldssnwtoOzNkMpPw9WCCoRsz5PdKWT0AICHIs9Vt1kpoGr31w5fGyTKZwWRGA/28XJkhZn++6YKh7du3Y+vWrRg2bBjf6xEA4EOnbKxdjExEb88crpbIaJE0V6DFvFFrLAIHW6WwcB93+v4G1OuMzVKx1wMmCIvwdWdPZv5WgqGaBovMEI9lMlefS28ys+VOV514BQQ6E02HL1fLZO2jGbK2/ypkYhAEpelk9swblR3PKqOsbJKCvVrdxuyJlsGQRm9kgyGflqUBWAy9dTAYsvx8YD4zLGF+lz4dOBhyKi/v6+sLPz8/vtciQOOjoN4wltkMS3zpNzEzNd4RmIBFzZECZlKt5Wot+z0myldpuLvJmLUW1TQ6vBZXKVJRrxnh687WxwOslsmafld8DHTkax6SZRZOMF0UuJVgMhP8CahdL5NZ7g1qK8EQQRDsPsrc/0aUyeq0BhTXUnt1UlDrYIjJDFlmy5lsupdcwpmlcba1nvldecolrbSoAKBiS2g3WTD03nvv4a233oJGc2PKIzc7TPRc22jgbFNkApAajgClLZgLg+viZYMhi1NOqNINQFNtuiURvjeuVFZIB2Ah3m6o19ECao7aOdA8sAyhfyZXaHTyBNUSpq2+5YBcAYGbHaYs7HJrPY8CasvAwdphFACCvak9hNFv3ojM0LmCWgDUHq1UtA4yCug9mVkrABTTB8gwOqtvCUmS7D7q4aBmqEk8zf242ptVM/TZZ5/h2rVrCA4ORkxMTCs3587Wyt7RYKJnMwnU6Yyt3kBMZsjWxWqNQC85MkrruIMh+qKxDIYifBUAmgKPlkT4KHCxSI28KurCu1peh3/OlyBM6Y77B0Q6vD5HYAIwD/oCdJeK4WWlVGcZOIZzbASOwpfHENuOKhEL2juBWwreWut5yjABgIdcAnepCI0GM2obDVZnX4b7uONqeT075/BGZIYOZVUAAIYlBHDezuiJkoKb9ERNwVDrA2GNxsAGlIFWDpXWYCoN1jI/bJmMozTXUXAqGLrrrrt4XoaAJW5SMdylYjQaTKjVGDiCodbaHnsJ9LTeAcZcAJa3hdOZn9pGA+q0hlZOp0nBnthxCbhcTJ1SzuarsGx3FvpG+bR7MJRbSQVDJnpDSgr2tBpQVFuUFLlORY7Cl2aoaRSHkBUSuLXgTUDNOFnzUCYDqENhXpUGZhJo0Js4tZDMHsIIjitsBENagwm708twqViNVycl87JGADiYVQkAGJHYOhgiSZJTT2QrM8RIHQK95A43c9hqqweAWvqz6qbLDP3nP//hex0CLfBVSNFYa4KqUY8oKJrdxkTXTpXJOAIeBq4ymadcAl+FFDUaA4pUjUgOaf5mTg6hZrdtTi3Cq5O7Yjh9SjlXoEJtY+tAji8a9SZk0hc7IwbnEhEyVNRRtXKZmGCDSVdgTjoeLorGGd1XR66lCwi0B6yA2sUgpkkH6fh+yEWQp5zNdNc2GjiDIUYewFiOqGw0kZhJEi/9mgajmcRDA6MQ6adodR9HKajWIL1EDYA7M1RRr0ONxgCCaN5pVkRrhjiDIRX1MzuTObfVVg9YZoY67j7n9HFUpVJh5cqVWLx4MaqrqwFQ5bGioiLeFncro7QR8DBuok6VyZjMEKdmiEqdMoEDA1sqq25dKusZoQRAlfRO5lQjzMcdcYEeMJPA8ewqh9dnLxeLa2EykwjykqOILpd1CeEOhrQGE8rU1M8b6uPOSzmKESKGKl3LMpXUMs/juo5JQKAzwQQOjpi2csGU9/nS7QRZXIu1Vg6cTJmpok7H6oxyKho476uQSdA70gcAf3vi2hPU2KkRiQGcdiJZdIks2k/RLMvDZIa4Ah5GCsEEeo7ABDtcmSGzmewUmiGngqHz588jKSkJ//3vf/Hpp59CpVIBALZs2YLFixfzub5bFkZEzRXwsJmhBmcyQ9ZNwoK8qYuqqkEPo0XrPXPhcImkI3zdWTPHPRllAMBmhw7Tadz2IDW/BgDQJ9KHrY0zWaqW5FQ2sP6VETyUyIAmQXmYi0FMUzDEz7oEBDoLgWz3qmtBjK3SvzNYGhha0wKF+1AHxOLaRsQHUmOorlbUWX3OwXFU9/Xx7GqX16c1mPDb6QIAwMzB0Zz3uUJnzRNbZMsL6ewP1+GLCYbCnQiG2DIZR7BTrzey9iE3XTC0YMECPP7448jKyoKbW9MvdfLkyTh48CBvi7uVYdKJXF4XLgmoPa2fovwUMohFBEiyuYlYU8dY68wQQRCIos0Xz+ZRAQoTDO2/Ut5us2jSClQAgB7h3sirtp0ZulZRz/7dmQudi2Ib6WZHKKWDKiEzJHCrEezNlOW1bdzTNswhjr9gqOlaLLDSJcvsIyUqLeLoYOhaOXdmCAAGxfoD4Ccz9O2BbFQ36BGmdMPY5CDO+5zKpYKuHmFK9nu1GgMK6Ow+l6SAtSpxqkxGC6i5PIbo7JpcIurQxrJOBUOnTp3C008/3er74eHhKC0tdXlRApZeQ1zBkPOt9VwiaQaRiGB9esosvIaYYMjaxpASQ5168qs10BlNGJ4YAHepGAXVjThfWOvwGtuCJEmcoQMvpbsUJElZzlvrgLDcpPgQTwNN6eZQjq4Mh55HKJMJ3KIEerXuXnXueajrvk5nZC0vXMEyM5Rfzb3nBXvJIRYR0JvMCKHLdJaHrpakRPtCIiJQpGpEgZXntIer5fX4at9VAMDi27tyevqYzCSOXKWCruEW4urzRSoAQJSfgnXOtqTIhcwQsx8GerfexzpDiQxwMhhyc3ODWq1u9f3MzEwEBga6vCgBQOnOZH9aBzxMmazRYHK4E4MJdmo0Bhg4XKgZfVCexQUbG0gJ8K6Wc1/sE7tRpxMzCVwqVkMhk2B8t2AAwF/nih1anz2kFahQptZBIROzWqBBcdZNQC03KT6CIZIkUVxrvfbuCKV0MBQilMkEbjEsGzZcySB7ySVsZxof2SEm0wRw6yQBarQREwQxBoW2giEPeZNuaP+VCqfWVVCtwWM/nITeZMbIpEBM7RXKeb8LRbWobTTAy02C3hFNmSHmYNrL4nuWFLF6IscF3rlV1IEz1t+j1W2dQTwNOBkM3XnnnXj33XdhMFA/JEEQyM/Px6JFi3DPPffwusBbFTYz1Ni6FObtJmGn/3IFS7bwpUthQNNUY0sSg1oHPt1CKS1OdmUD20pqyaC4ADCS5N2XKd3QtN5hAIB/zhc7PEOtLbaeLwEAjOsajGN02nlUkvUg3HKTSrZSSnOEGo2B9Qdy1cBREFAL3KowGR290czpiG8vBEGwpS1XS26AfWUyoMm/hxk0m1upaaa1bMkE+oC442KJQ+vRGkz49sA1TP3fYRSpGhEX4IFP7+tltRHkMO0/NDTev1nm6BwtLegd4dPqMfU6Ixu0OJoZMplJtvwWE9A6kGL2OEe9i643TgVDn376KSoqKhAUFITGxkaMGjUKCQkJ8PLywvvvv8/3Gm9JmFIYVzcDQRCswNpRryGRiIA/nSLlOkUlsMFQkxgw0EuOQC85SBJIL2ktEvSUS9gL6N9LVJl0ZFIAvN0kKFPrcPgqf0Jqs5nEtgvUZjImKZC9wEdaCYbMZpINhqQiwqrI2hGYlHCAp5xtD3YGvdHMCjSFYEjgVsNNKmZLJ2UuBjGBHLYgrj4XAORXWQ+GutKHxGJVI9ykIuhNZqvmtAAwuUcIAEpEXe3AKKV3/r6ED7dnoLbRgK6h3lj/1OBmAVtLmvyHmu+J5wpVALgzQ4zgOsBT7vCMyWJVI/QmM2RiEWcjSE4ltf/GBrTOGnUknAqGvL29cfjwYWzatAkfffQRnnvuOWzbtg0HDhyAh0fH/oE7C0yZzFqw4+OC8SJjz841YiOBIzMEAN3DqAv/cknr8igAjO1ClcqyKxpQ22iAXCLG9H4RAIAfj+Q4vEZrpBaoUFyrhYdMDBBUaa5LsJfVbqzi2kY2i9M11AsyHkZeNLWnuhbAMLosmUTUarK0gMCtQBBPHWVBNrSQjuKrkMKN3idUjQa2U6olTDCUXlKHeFpKkG5lfwSAaH8PdA/zhslMYtdl+7W1c0bEIcpPgU/u7YV/nh/ebLxGSwqqNax42jJbXqbWokytg4gAeoS3DobS8lUAgD6R3CU0WzAlsih/BVt1sCSnki6hBXi2uq0j4dInw9ixY/HKK69g4cKFGD9+PF9rEoBlmYz7QmzqKHNcRM1E6NmVrbsfmGAop7KhWcqXKZUxTtMtuZ2uX5MA9meUAwCeGBYDggD2Z1Y0yzS5AhNYTewewmacRiZx29EDTV1nANA70peXNfDVDm9ZIhNGcQjcigTx1FHWlBlyvUxGEATiLYwKrQmemWAos7SOLT2dpS0/rHF7T2qf/Oe8/aWy+EBP7H9lNO7rH8kZbFiy7mQ+SJLyH7I0d2QaThKDvDiNYpmsEVcJrS1y6exZjD+31iib9l+KuxkzQwCwZ88eTJ06FfHx8UhISMDUqVOxe/duPtd2S8MEO1y6HgBsN0CVEzNxmFPMNQ5BdJjSHQqZGAYT2UxE3Z1u0bxczH3y6RvlA5mYulB/P1MIgDoJje9K1cl/OJLr8DpbcqWsDlvpEtmDA6Kw/QJ1uprYPcTqY45ea2pl7WlFOOgotiztHYHJzIXYOOkJCNzMBPHUUcZnZgho7tpcYEVEHRvgATepCI0GU5O9CJ1hscYUOhg6fLXSoa4yURtBEADojCb8doryH3p4UHP/oZ20fIFrdAfQdGjsE+Vj95oYculDdQyHeNpsJtnMUczNGAwtX74ckyZNgpeXF1588UW88MIL8Pb2xu23347ly5fzvcZbEsuZYFxpWqaLqcBGjdoa8UG0LwZH94NIRLDBEuNiCgDd6DJZRmkdp0hQLhFjcBzlpXEyt5q9z+zhsQCAjacLbdbf7eHLPVkgSWBS9xCcL1Kh0WBCcogX+kdbz/gcswiGnDn1cMG0w3MNO3QEQTwtcKvDX5mMn6CKISGwKRjiMpsFALGIQBdag8iU3y8U1kJnY7xITIAHhicEgCSpLA6f7LhYiqoGPUK83TC+a5P/kN5oxp50Kls/uWfrg2NNg54dP9LLmcxQpfVgp1SthdZghkREOOVsfT1xKhj68MMPsXTpUqxfvx4vvPACXnjhBaxbtw5Lly7FBx98wPcab0k85RJW6Mx1goimU5J5VdaNvqzBZoYqGjhbWpmOMstgKdpPAQ+ZGDqjmbO8BgCPDqFOI3qjmW0fHRTrhxGJAdCbzPhoR7rDa2U4lVvNZoWeH5uANcfz6NeMsVpiKq3VsvVqd6mo2WnPFfjKDDFt9aE8eR8JCHQ2+Cpv2fJPc4ZEi0nvjLiYi26hVHdqZb0Ofh4y6E1mXLKSPWd4hHaN3nCqwGbg5AhagwlLd10BADwwMLJZF9nRa5Wo0xkR6CVHXw6pQBpdIosL9HDKC4jN/HBkhpj9N8pPASmHJ1JHwqnVqdVqTJo0qdX3J06cyOk/JOAcTM3XdjDkeLYlNsADBEFlnao4uhqYenmWxSYgEhFsjdyakeLIpCB2NMe3B64BoOrvr0/pChEBbLtQyor7HKGqXofn1p0FSQL39ItARb0OeVUaeLlJcFffMKuPO5bd1MXWM9ynzXq7PZjNJK6UUr8XV7sjmECWLyNIAYHOBjNXzOWRHDx2kwHNy2QncqzvWYyWMqO0Hv3oEhPjxG+N8V2DEKp0Q3WDnu2MdZVvD2Qjt0qDIC85m41nYDp8b+sezFluYzpy+ziRFWqrrb5JPN2xS2SAk8HQtGnTsGXLllbf//PPP3HHHXe4vCgBiig/6wFPNB2F51drHDYsc5OK2ZQll5Ei21HWooyWEkOdKk5YsZSXSUQY04XqYDidV8O2jSeHeGPGgCgAwBtbLjpkFKkzmvDShjSUqXWID/TAm1O74qPtGQCA+/tHQiGz3gZ69GrTOofE+9v9mrbIrWpAnc4IuUTEZtCchTlBMqdLAYFbjSCeMkPM81TV63jxNYv292A/HPOrNZz+akCTiPpScS36MsFQGyJqiViEhwZS++G3B7JhtljvmuN5OGkj+OIir6oBX+2nXKnfnNoNXhbDUk1mEjsvUd5vk7pzmzQyeiHGFNIR2LZ6iQhhnG31N3kw1LVrV7z//vuYMmUKlixZgiVLlmDq1Kl4//330b17d3z55Zfsl4DzMNkfLkv4CF93EASg0ZuazRGzl6ZSWetgiJlbk1VW38ylemg8Jb47eq3KagD2CF0qI0mwwwQB4OWJSQjwlCGzrA7v/H3JrjWW1mox49vjOJRVCTepCCseTsFvpwuQUVoHX4UUz45JsPl4S/H0pB7WRdaOcKGIyop1C/PmtMK3l4o6HcrrdCAI6wNmBQRudpg2cVczOv6ecohoq42qBtezQ1KxCN50Ry9JAj9ZaQDpHqaEVEygTK1DJO3efyavps0D6iODo+EllyCjtA5/n6dc+vdllOPNPy5i5qoT2JdZbtc6q+p1mLP6NPRGM4YnBLRypd6bUY6qBj2U7lJOl36Dycxmsvo4EQxZlsG4sk5sMBR4kwZDq1atgq+vLy5fvoxVq1Zh1apVuHTpEnx8fLBq1SosXboUS5cuxbJly3he7q0FUybjCobkEjEbiedXu6Ab4hguGO2ngNJdCp3R3Kx7bECM5XwdbuH20PgA1hbgpyO57KYQ4CnHshl9QRDA+pMF+DOtqNnjMkvrcLGoFlfL63C+UIUPt6fj9i8PIa1ABaW7FN/N7A+FTIylu7IAAK/d3tWmN09maV3T4EFfd16cpwFKIAkAPTm8OhyB8WuK9ffgbHUVELgVYDI6Gr0J9TrnXajFIoINrKztTY5iOVR01eEczvFF7jIxG0SoG40Qi6jAyJb5IkB1Az81Mg4A8PmuKzCYzBgS74+xyUHQGc14cvXpVntkS2obDXj0h5PIKq9HiLcbPpzes5l+kiRJrKAzRg8MjOTU7BzProJaa0SAp4zTf6gtmKwSkyFryU2fGcrJybHrKzs7m+/13lJE2dAMWd7ujG7IVmZIJCLY+vcZi/q3QiZhU8FHr3G7SotFBGYPiwFAnfYs7zc8MQDP0dmc//v9PNvuCQCvbbmAqf87jPGfH8S05UfYyczJIV74+7nh6B3pg3lrz6LRYMKgWD/cmxJh8+f7mt4EAMr5lS8fHyYz5GowdKm4KcMkIHCr4iGXUAaqAMrVrpXKmOnx2TZmhDmC3tgU/FTZ0PcwXbRn82uQEkVJCezJ7MwaHosATxnyqjTYcKoAblIxvp2Zgmm9w2A0k3jx1zQ8+fNptluLgSRJ/HWuGLd/cQiXitUI8JRh7ZODmvkKAZTTdWq+CjKJqJWOiGH7RWoPntAtxClNJaMBHRjTWphtMJnZg3xcBzdcBJwMhg4cOMD3OgQ4YIKdwppGzjq4KyLq+EDr7fUA0J+eRH+mRf17CH3hH7OiGwKAR4fEshfW+1ubd5C9OC4Rk3uEQG8y45m1Z9nTj5+HDCHeblC6S+HlJsGk7iH4+uF++Ou54fDxkOLRH07iQlEt/Dxk+Oge63N5AGoTYy5yALjNhg+RI5jNJKvzcdWziMm4Mf5NAgK3KqEu2IRYwhzwrHW7OkJNrRlXfu2Gou9HgTRSH5PfHMjmLH8xwdDx7CqMSaY0k0wruy085BL2cPjZzkyU12khFYuwdEYfzB0VD7GIwK7LZRj72X7ctvQgXvn9HJ78+TRGfrIPL6xPRZGqEeE+7lgzexD7s1vCZIXu7x/BOb6D0hNR++RkJ2QERosSW0p06xJcbmUDTGYS7lIxgi2G33ZUnAqGJkyYgKioKCxatAgXLlzge00CNMHebpCJRTCaSc7RGVE2NEVtwXSMFaka0ahvLWjuR59wWnZGDLFDN6RUSDGtN1W7vlxS10xwLRGL8L8H+2J633CY6NPPi7+m4r07e+D4a+Nw7j8TceHt2/DNzBRM7hmKs/k1mPHtcZwrUMFHIcXaOYPaTLnuTi+DzuJUt2LfVV6caXOqGlCvM8JNKmrmQ+IMTDAkZIYEbnXYgxlHM4cjMA7Hrj4PAJRpGtCYEwBjtSf05VSJPb1Ezc79sqRflC+kYgLFtVp0D6UON8euVaHBjrLfQ4Oi0S3UGzUaA17deB4kSUIsIrBocjL+fWkERncJhJkEMsvqsPFMIXZdLkNBdSMUMjFenpCEPS+P4ixRpRWocCirEmIRgadHxnO+9uncalTWU3oiZxpMMkrr0KA3wUsuQRcOGcJp+rOjV4SyUzjsOxUMFRcXY+HChTh06BB69+6NXr164eOPP0ZhYSHf67ulEVsYVXEFPNF+1MWf64TXkL+HDEp3KUiyqa5rSe9IJcQiAiW1WtZXB6CcpuUSESrqdFazSgCaiZv/uyOj2W0SsQif3tcbc4bHgiCAP9OKMfaz/Xh+fSp+OpKDbRdK8PX+a3j8x5N44LvjSC9Rw0chxS+zB1mtTVuy6nDzWWh7Mytw29KDLrexXmTE06GuiacbdEbk0P9n3YVgSOAWpymj41oQE8/hj+YsmWVqyEKp611f6sN+n7EMscRSN1RS24hIP3foTWYcsWNAtUxCZYJkEhH2ZVZg/cmmppOEIC/89MRAnHxtHL6dmYIXxyXinWndsXbOIBxbNA7Pj0tspmti0BpMWLjxHADgzj5hrcpnDEz2fHzXYKc8gBgJRb9oX84SG1tCi22dNeqIOLWjBwQE4LnnnsORI0dw7do1zJgxAz///DNiYmIwduxYvtd4S8Nkf2x5DTnj7EwQBNsazjVcUCGTsB4alrohN6kY/en6sGW3VksSgrwwLIGppatwuoW/kEhE4I2p3fDXs8PRL8oHGr0Jf58rxtt/X8a8tWfx3x0Z2J9ZAbGIwCODo7Bz/ki7BH5lai2nz0eNxoBXN513aaPkSzydUaoGSQLB3nIEeHb89LGAQHtiq5nDmefJq9Jwip0dIbO0DvJQFQBAV+IDAOgR7o1ofwWn0JsplZ3Iqca4ZGoE0d4M+zrCuoR4YeFtXQAA7/1zmT10MQR5u+G27iGYPyEJjw2NwbCEACgV1s0RP9qegStl9QjwlOO127ty3sdsJln/IWdKZEBTsGNtAgB7e8xNHAxZEhsbi0WLFuGjjz5Cz549BT0Rz9gSSTOBUlWD3qlODOY0k1rA7YuRQr/Jz7QILpgW+31tXOz/uaM7+/dXN53n1D31jFBi0zND8etTg/HyhCSMSgpE3ygf3N03HPPHJ2Hn/JFYcldPzpo3F2uO5YGreNclmBJic9XW7eU8I552caxHk7+QkBUSEOAroxPi7QaFTAyjmXRKOmDJmOQgvPE4FdToS6jDz/S+Efhwei94cnR/Doq10A3RXmt7M8qbeQjZYtawWAxL8EejwUR1iNlwvbbF/sxy/HQ0FwDwyX29rB62TuVWo6RWCw+ZGMOtzCuzBUmSNoOd0lotCqobISLANuN0dFwKho4cOYJ58+YhNDQUDz30ELp3745//vmHr7UJoCkY4rq4vd2kbHu5M2M5+rK6IBXn7f3oYKilidjEbtQmcfhqJWobW89NY0gK9sKdvSmH6GsVDezE+ZYQBIHBcf54flwiVs8aiC3zhmHpjD54cXyiQ8FLSW0jvjvUuoPxjt5h2PLsUJcGBZrNJC7x1UlWJIinBQQYmC6w8jod5xxGexGJCIuOMteyTANi/PDoNOr6NFR5wqyT4GIxt/M+APSL9mF1Q2E+1LDr8jpdm6M5LNf+9SMp6BWhRHWDHg+vPNGqi6wtzuRV46UNaQCAx4ZEY0yXIKv3/YYu903rE85ZamuLwppGlKl1kIgITn+ik3Sg1C3Mu5kJZEfGqWDotddeQ2xsLMaOHYu8vDwsW7YMpaWl+OWXXzB58mS+13hLY2skB2ARLDlRKusX7QOAKttwif2YzNClYnUzB9bEYC8kBXvCYCKx63KZzdd4bUpXSOlp9h/vyHRoUrOjfPJvZrN2WBEBvDGlK758oI9Np2p7uFyiRoPeBIVMzAo+XXkuQBBPCwgA1KGOGafhahDDtHDzoRsKCgLCI80ACOhLla3KV5ZQtiPUfnn4aiU7HX7X5VKrj2mJt5sUq58YiOQQL5TX6XDXiiP4+1yxXY/dfqEED31/AiqNAX0ifbDYSnkMoGw99mVWQEQAc0fF2b0+S5hqQfdwJdxlrYOp02wJrXOUyAAng6H9+/fjlVdeQVFREbZu3YqHHnoICgW3SEvANWxlhgCL9nongoxQpTtClW4wk9zzxsJ9qNtNZhLnCprffntPqlusLVFysLcb5tLmYnqTGYs2nXd4fIg9XCyqxeazTSZlXnIx1s4ZjDkj4njpZNidTgV9wxMCXBJPaw0mZNIpcEE8LSBAwVdHWZP+iB+voSGDqL1DV6LE1fJ6zs5bBsbCY/vFUtbxfktakd2lMoAyY1wzexB6hHtDpTHg+fWpeHbtWatZooJqDd7+6xLmrTsLndGM8V2DsO7JQTazPV/vp7JCU3uFsWOdHIUpkQ2wohdiRop0FvE04GQwdPToUTz77LMICHC81ijgGExmqEZj4EwhR7tgvAhYtNBbmafD1INbmixOoYOhQ1kVNktlADB3dALCfSjNz5FrVa26vVyFJEks2XqZ/bdMLMK2l0bwNo8MaBJDju8a7NLznM6tgd5oRpCXnA10BQRudWyZwDr0PEG2/dMcZeBAKhjSl/jATDaZrnLBBECncqvRP9oPnnIJCqobbQ565SLQS44t84bhxXGJkIgIbL1QgtGf7sekZQfxyb8Z+N+eLPx3RwbmrD6NUZ/sw09Hc0GSwMzB0fh2Zn+bWfDcygb2APvMaO6W+7YgSRKH6U45Lr1QbaOBPfAN6CTiacAFzdCVK1fw3XffYcmSJXj33XebfbUHNTU1mDlzJpRKJZRKJWbOnAmVSmXzMY8//jgIgmj2NXjw4HZZX3vhKZcgwJPSBXGVwmJc9NZgHKVTrQRDo5OaxICWJAZ7ITGIKpXtbqNU5iGXYMXDKWC6L9/fmt7mYxxh1eEcHM9u2nC+ergvIn35s38vU2txvrAWBEEJK13hUFYFAGBEYmCn8N4QELgesO31LpbJmoKqBl4y0AMGUH/qSin9kK12+XAfd/SKUIIkgUNZlbiD9lr73WJGo71IxSLMn5CEP54dhhGJARCLCGSU1uGrfdfw2a4r+Hr/NexOL4OZBEYmBeKnJwbg3Tu7t+ki/e3BazCTwNjkILtsSri4WKRGXpUGblIRWw605GxeDUiSGsHBlD87A04JKb7//ns888wzCAgIQEhI81EHBEHgrbfe4m2BDA899BAKCwuxY8cOAMBTTz2FmTNn4u+//7b5uEmTJuHHH39k/y2TWZ9n1VGJD/REZX01MkrrWrWXMyLcS8W1MJtJzmF5tmDq3Kn5KpAk2eoDenSXQBAEpRsqU2vZ+T8AMKVXKJbtzsK2CyW4p43xGL0jffDKxC74+N9MkACeW38WG+cOdWoejiW7L5c1c7l+eFAUJnTjx3GagQkEe0f4uHxxH7hCBUMjk4SsqoAAA18dZbEBHiAIKjtR3aCHv4vWFSkpAEGQMKkVMNXLceRaJeZPSLJ6/9u6h+B8YS12XCrFi+MSsf5kAbZdLME7d3Z3SkjcI1yJNbMHQaXRY096OU7kVEEsIuAulUDpLsWUXiFICLJv7uLlYjU2nqG8AOc5mRUCgH/owbJjk4M45yqebKPlvqPiVGZoyZIleP/991FaWoq0tDSkpqayX2fPnuV7jUhPT8eOHTuwcuVKDBkyBEOGDMH333+Pf/75B5mZmTYfK5fLERISwn75+XWetB0DE/BwCfjiAz3gJhWhQW9yyoa+R7g3ZGIRqhr0nLokf085etOt5C1b6ZlS2UE7SmUAMHdUPAbTk5O1BjOe+OmU0y2kAOWP9OKvqWwrfZSfu1VfDVfYQ+uFxrmYFSpXa5FRWgeCoDJDAgICFIxmKLeqAUYXPILcpGKE0+M9rrmYZQIALy+gWzfq79oiX6Tmq2w6SzOePUevViI+0APxgR7QGsz457xrhq8+ChnuSYnAx/f2xofTe+GtO7rhxfGJdgdCWoMJ8zekwWAiMbFbsNPePyRJsj/L1F5hnPdh9EIDOpFeCHAyGKqpqcF9993H91qscuzYMSiVSgwaNIj93uDBg6FUKnH06FGbj92/fz+CgoKQlJSEJ598EuXl9hlhdSR6hFPpzMscbZoSsYj1q7HV7WANuUTMdjVZ0w2NpYMAW6Uyy6Gr1hCJCHzxQF9E0JtVRZ0Od351xK7HtiSjVI3Zq0+hwULQ+Pn9fXifAK81mNj6+DgX9UKMlX+PMCVriSAgIACEKd3hJhXBYCJ5m1HGl25o3DgqW67NC4DJTLIf9lzEBXoiKdgTRjOJvRnluK9/JADnSmV88tnOTGSW1SHAU4YPp/d0+nlSC1QoUlHjQLha98vUWvZzZFhC58p+OxUM3Xfffdi5cyffa7FKaWkpgoJa/+KDgoJQWmr9g3Ty5MlYu3Yt9u7di88++wynTp3C2LFjodPprD5Gp9NBrVY3+7rRMJmhyyVqzs4ExvfGlrjPFv0sSmVcMMHQ4auV0Bmbd1Pc1TccAPDLiXy7XivY2w2/zR3CjhnR6E14as0ZLNt9xa4TodlM4ofDOZi2/AiKVU3zxhZNTm4Xp9MjVyuhNZgRpnRD11D7TmHWYPRCQolMQKA5IhHR1BbfwTrKmKEK2jyqIaOtMRuTelAZ8x0XSzG9bzjEIgJn81W4Wu58FtwVjl2rwkq6aeW/9/RyqXT4zzkqKzS+azBnS/22CyUgScpokcnQ3UiulNn/+e1UMJSQkIA333wTjz/+OD777DN8+eWXzb7s5e23324lcG75dfr0aQDgFJtyaVwsmTFjBqZMmYIePXrgjjvuwPbt23HlyhVs3brV6mM+/PBDVqStVCoRGRlp98/TXsQHekAuEaFeZ+Rsoe/hajBE+w1Zywx1D/NGkJccGr0JJ7Kbn4pmDIiETCzCuQIV0gpUdr1emI87fp87BNF+TRfLst1ZGP3pfqw6nIM6jq45g8mM49lVeOzHk3j3n8vN/ITemdYdc0c5XwO3xW56+vS4rsEuCZ7NZhKH6MzQSKFEJiDQCsYw0dWMDl/PwzBqFCASkTBWe8KodmMzxdaYRLfYH7hSAQ+5hG1CsZw7dr0ordXild/PgSSBBwdGupTdNptJthNtaq9Qzvu0VUK73vx1zv7ypFM1he+++w6enp44cOBAq/EbBEHghRdesOt5nnvuOTzwwAM27xMTE4Pz58+jrKx191FFRQWCg+3/zw0NDUV0dDSysrKs3mfx4sVYsGAB+2+1Wn3DAyKJWITkUG+cK1DhUnFtq6ntPSPozFGx2ikRNZMZSi+pg0ZvbNWaSRAExnQJwobTBdibUY6RSU0f5gGeckztHYrNZ4uw+mgu+szoY9drhirdseHpoZi9+hTr0lpY04j3/rmMZbuuoE+UD/w8ZPD3kKOiXocDmeVQa5vX6kUEVRpjslN8Q5Ik9mbQeqGurumFLhWrUd2gh4dMzDp7CwgINMF3R1kWT5khHx+gd18SqWcIaPP8keFdhMp6ndVRF11DvRDtr0BelQbbLpTgkcHR2JNRjvUn8/HsmAS7S+Rag8kpd2iG7Ip6zFx1EkWqRkT7K/DGlG5OPxdATaEvVWvh5SbBqC6tD3RFqkacyasBQVDNNTcao8mMf+w0rQSczAzl5ORY/crObj0OwRoBAQFITk62+eXm5oYhQ4agtrYWJ0+eZB974sQJ1NbWYujQoXa/XlVVFQoKChAaav0/Si6Xw9vbu9lXR4Ax6LtY1DrtlxDoCTcplTnKcWIsR6jSDcHecpjMpPVSGR0M7Mssb9Wy+vjQGABUl0F5nbblQ60SonTDn88OwxtTusJd2vRWrNMZcSirEn+mFeOHIzn4+1wx1FojLBMzId5uWPXYgHYLhABKCFim1kEhE7ODGJ3lIF0iGxIf4NSEaAGBmx2+OsoYDWRhTSOq6q1LIhxh0kTqmtXmUSXuYzaGVBMEgRkDqAP0LyfyMbpLILqFekOjN1kdSdQSs5nEIytPYP6GNFQ68TNcKKzFfd8cQ5GqEbEBHvhl9iCX9ZRMF9nEbiGQS1oHaVvp2wfG+DXrOr5RHLlWhcp6vd33t3tXXrBgARoaGti/W/t6+eWXHV91G3Tt2hWTJk3Ck08+iePHj+P48eN48sknMXXqVHTp0oW9X3JyMrZs2QIAqK+vxyuvvIJjx44hNzcX+/fvxx133IGAgADcfffdvK+xvelh0ULfEolYxHpGOCOiJgiCFbsxrd8tGZ4QAJlYhLwqTauutV4RPugb5QODicT6E46lgiViEeaMiMPul0djco8Q2EpqkSTl5bHkrh44sHC0y54/bfHzsTwAwJ19wlw6oQHAQfr3OkrQCwkIcBLPU3lL6S5ln+tcocrVZQEAxo2j/tTm+YMk29YN3d8/ElIxgXMFKlwsUuP5sQkAgJ+O5NrVeZtaUIMz+TXYklqEcZ8dwPqT+XY5WRtNZmw8U4gHvz+OqgY9eoR74/e5Q1jzXmfRGkxNJbLe3MmEv+mS1B29O0aJbBNtI2AvdoeKqampMBgM7N+t0V5GcmvXrsULL7yAiRMnAgCmTZuG5cuXN7tPZmYmamupYEAsFuPChQv4+eefoVKpEBoaijFjxmDDhg3w8nJNCHsjYDJDl4rVnFqpnuFKpOarcKGwFnf2cTxbMjY5CJvPFmFfRjlne7qHXIJBcX44lFWJvenlrQaoPj40Bqn5aVh7Ig/PjI6HTOJY9iPcxx1fP5KCOq0Bp3KrceRqFVLza6CQSRDsTWWuuoR4YXKPUIef2xlKahuxg+5ye3RIjEvPVa8zsrN8LEuMAgICTTAC6hqNwWYZyh76RPriWkUD0vJVGJvsWhcoAAwdCsjkJPT17jBWe7SpGwrwlOP2nqH4M60YvxzPw4fTeyIhyBNXy+ux5lgunhubaPPxKdF++GPeMLy25QIuFauxePMFbDpTiJlDojE0PqCV35nOaMKmM0X4+sBVFFRT3XhD4vzx3aMpvAxK3XimEJX1eoQp3TCco0sst7IBF4pqIRYRrL3AjaSqXod/HexStjsY2rdvH+ffrxd+fn745ZdfbN7Hsnzj7u6Of//9t72Xdd3oEuIFsYhAdYMepWotQpXNlfquiqhHJARCLCKQVV6PgmoN50liQrdgHMqqxF/nivHkyOYD/ib3CMUSr3SU1+mw41Ippjl5OvByk2JscjAvG5grrD2eD5OZxMBYP6edWhl2XS6F0UwiNsDD6VlAAgI3O+4yMeICPZBd0YALhbUuZX77RCqx6WwhUu1s6mhzbe7A8GHA3r1UqazQPw/5VRpE+VvPuDwyOBp/phXjz3NFeO32rnhuTAJe2pCGVYdz8MSw2DbLVr0jffDns8Pw09FcfL7rCk7n1eA0fahKDvFCYrAXqup1qKjToaRWi3ra/8jfQ4bZI2Ixe3gsZznLUYwmM749SM0ze2pkHGeZnymhDY33d9nokg/WnciHzmhG9zBv2FurEMQLnQQ3qRiJdE39EoduiGmvv1TM3X7fFkqFFCm0kHp/JrcX09ReYZCKCVwoqkVGafM1yCQiPDQwCgDww+GcdhnGer3QGU1Yf5KyCmD0UK7AuL7e5UTGTkDgVqIPbfDqanmrTyS1l50rUPG2F40dy/gNUfrBQ1e5JQUM/aN9kRziBa3BjE1nCzG1Vyii/RWo0RjY/aUtWBnBglF4elQc6ymXUVqHv88V4+i1KmSV16NeZ0SwtxxvTe2Gw6+OxbzRCbwEQgDVIVZQ3Qh/DxlmDIiyeh8AuOMGdpGpNHrM35CGK2V1+Pk4JXF4dEi03Y8XgqFOBCMMvMihG0oM8mTb73OdEFEDwOhkqoSzL5P7IvfzkLGeQ1z12IcHR8FNKkJagQq7eJw9dr3Zer4EVQ16hCrdMLGbaxmqwhoNjtJiy3tShGBIQMAWvSN9AFBBjCskh3pBLhFBrTUixwlnfi4mTKD+bMwNAGkUYcdF22UYgiDw8GDqw/iXE3kQiwh2DMa3B7PRqDfZengzwnzcsXhyV2x7cQTOvDEeXz7YF6/f3hXLZvTB2jmDsGv+SBx+dSxmDY/l9P9xFrOZxIr9VwHA6nNfKatDRmkdpGICt3W/cSWyK2X12JJahNuWHURFnQ4BnjKHRjMJwVAnoklEze1EzZRznC2VMYHO0WuV0Bq4L9R7U6guiS2pxa1MEoO83DB7eCwA4KMdGS7Z6t9IVtPC6YcHRUHiYufXlrNFIEkqfRzhK0ypFxCwRS/aJuRcYa1LGR2pWMRKB+z1P2uL/v2BkBASpF4KbZ4/jlytbLNb7e6+4fCQiZFd0YBj16pwd98IhPu4o6JOhy/3Wrd4sYW/pxzTeofhyZFxuKtvOIYlBCAx2KtdulT3ZJTjSlk9vOQSPDKYO8vyA23oOKZLEJQK1/VJzpJJj3Zi3jbVDXp8sC3dxiOaIwRDnQhWRG0l2GFKZc50lAFAl2AvhCrdoDVQBodcjO4SCH8PGSrrdWy7uCVPj4qHn4cM2RUN2HCDLeidIa1AhXMFKsjEIjwwkDslbC8kSWLjWSqDdm8bg2wFBASArqHekIopbWShi2M5mJmKrmaZGEQi4O67qVKZJisEZhJsk4U1POUS3N2PygivPpYLmUSEt6d1BwB8fzAbmaU3xpXaHkiSxPJ9VFZo5pBoKN1bBzqltVpsove4p0fFtbr9etJyzqWZbJIo2IMQDHUimDJZca0WNQ2t/RNcHctBEARG0/NmWg5lZZCKRay3D9cbzdtNihfoNtKlu7JsDjXsiPxE+4BM7R3qUjcLAJzKrUFelQYeMjEmdYAOCwGBjo6bVMxmuF3WDUX5AOAvMwQA06dTf2qygkGam8ZT2ILpRv33UhkuFddiQrdgTOgWDKOZxBt/XHBK49neZFfU440/LuJcgQpyiQiz6Ix/S344kgODicTAGD+kRN/YwaxcgWW4r/1+R0Iw1InwcpMihu5e4CqVMWnhS0XOiagBYEyXJt2QtTT1Pf2oLMfuy+VQaVoHZQ8Nika0vwKV9Tp8f8h+E84bzcWiWvxJO5byI5ymMmNTeoW2cvUWEBDghi2VuRjE9KX1R5dL1FbL/o4yahSg9CFh1sihK/LFiZyqNo1mk4K92O7aT/7NBAC8Pa07FDIxTuXW4PczHS+Dvmz3Fayl500+MCCS82BYqzFgLS1UfmZ0+4xDsheSJJFe0vwzMdzHHaseHWD3cwjBUCeDGdrKKaIOpkTUdS6IqIfR5or51a3NFRm6hXmjW6g39CYz/uawO5dJRFh4WzIA4LuD2Q65Ut8oSJLE239dAklSc3d60Sl2Z9HojdhKd1gwOisBAYG2Yctbhc5luBkifN3h7yGDwUTicknrw6MzSKXAtDvoUtkVulTWhpAaABZMSIJERGB/ZgWOZ1ch3Mcd88cnAQA+3J7Bm1M2H2SW1jWb6eUm5Q4Tfj6Wiwa9CckhXhjNMZ7jelJZr282rinE2w3rnxyMCAfMJoVgqJPRPbzJfLElUrGIPVWdyKludbs9MOaKgPVSGdCkgdlwivtUc3vPEPSO9IFGb8LSXc4JBa8nf6YV43ReDdylYrw+pbXppKPsuFiKBr0JUX4KDIgRZpEJCNhLHzqjc6Gw1qUmDIIgeOtOs4QZYKC5EgKSbGort0VMgAceGEgdij7ekQGSJPH4sBgkh3hBpTHgw+0ZvK3PVd7753Kzf397MAdf7G6+hzfqTfjxaC4AKivUXmbL9nLK4vNO6S7BuicHIcpf4ZAIXwiG7KS+g2hfmI6yVCsT5ofGU+6gbdnF24LVDVnxGwKoERUiArhYrEZmaevAjCAIvE47Wa8/mW91zEdHoF5nZLsOnhub0MrQ0hl+P90knL7RG4WAQGciLtATnnIJGg0mXHVxNAcTWPGpG7rtNkDuRsKkVsBQ7o1TudUoU7ed/X5hbCLcpCKczVdhd3o5pGIRPpjeEwRB6S+5suzXm7R8Fae79tLdV/D5ritscLHhVD6qG/SI9HPHlJ43fijrz8dzAQASEYGNc4cijp6Q8OUe+w/iQjBkJxddTNnyRb9oX4hFBAprGlFYo2l1+/BEKhg6eq3KZd3QyZxq1Gm55+j4e8qRHEJlqV7bcoHzPgNj/VjTq5d/O+fUwMHrwfK9V1Fep0OUn4K1BnCF7Ip6HMuuAkEA9whdZAICDiEWEehBZ8DPF7i277ZHMKRQALdPpv7OZIeYuV22CPJ2wxPDqP3lrT8vwmQm0S/KF0+NoLqwXvn9HM7zNEvNWV7+PY3z+z3CvdkMt8FkxveHqEaTp0bGu2w/4iplai1O5VDJgXemdUdiMDVuK7eyAT8dzbP7eYRgyE4Sgz3bvtN1wFMuYbvGTmS3LoX1jvCBQiZGdYMeGU62bcYFeiIhyBMGE4ntNurh4+hJ9mfyVFbr5q/d3hVJwZ6orNfh1Y3nO5wzdXZFPVYdpkTeb03t5vJAVgBsO+rYLkEI93E9yyQgcKvBlLfSXAwOGP1RXpWGswPXWdgW+ytUl6g9pTIAmDsyHlIxgZJaLd78gzpELpyUjNFdAqEzmvHUz2dQbkeWqT34M60I1yqa60RjAzzw1UP98NezwzEiMRAEQeC30wUoUjUiwFOO+zrAYe/r/ddgIkl0DfXGQ4Oa7FCWbL0MgwNlViEYspOOMG+FYXAcZQfP5QUkk4gwMJbS/By95nyp7G66fX7zWes+Df3o1lUAmL8hFaW1rS9iN6kYXzzQFzKJCHsyyrHmuP2RentDkiTe/ecyDCYSo7sEssGdK+RWNuDPNCrd/cI428MYOzINOiNOZFdh5aFsvLA+FWM+3Y9eb/+LO/53GM+vT8Xnu67gj9SiDiX8FLh56MOTR5BSIUVcADUP0NXAypKpUwGZjISh0gv6Mm+cyatBsaptXySlQspKGdadLMBa2pn6ywf7IiHIE6VqLZ5cc4a37jd7adAZ8bpFhj/QU4YP7u6JnfNHYkqvUIhEVPBXrtbiI1rf9MzoeF4Oj65QrGrEOrrr7c0pXVlJwr7McuxOL4dEZL9EQQiGOiGDaYHz8RxuY8RhPOiG7u4bDoIAjmdXo6C6dTkOALwtTLgaDWY8/ctp6I2tI/Guod5YNInqLnt/azqulHUMo7FVh3OwP7MCUjGBt6Z240Xbs3zfVZjMVHDFnG47E2VqLf7z50X0fW8XZnx3HEu2puOvc8XIqWyAWmvEhaJa/H2uGF/uycJLG9Iw4uN9+GxnJtRWyqkCAs7Qi752MkrrXA4M2FJZvsq1RVng6wtMm0btF/UXqOzIVjuzQw8PbspevL7lIn47VQBvNylWPtofSncpzhWosGjT9cuia/RG3PvNUdTrqN/zM6PicXDhWDw0KKqVq/Vbf15CndaIXhFKPObA3K/24qt9V6E3mTEo1g9D4qkkgd5oxrt/UyLwR4TZZDc3/WP8IBYRKKjm1g0NS6CCoRM51ZzBiT2E+bhjKP3m+iO1iPM+nvLmjqTnCmqt2p8/MSwGo5KoVPAL61Ov+8mnJXszyvA+vdZFk7uygjtXyKtqwBb6d/ViJ8sKlau1eOfvSxjx8T6sPpYHvdGMEG9qNtsrE5OwetZA7HhpBL6bmYLXbk/GgwMjkRziBY3ehP/tvYqRH+/Dtweu3fD/V4GbgzClGwI85TCZSc7OWUdoD/NFAJg1i/qz4XI4SBOBdSfz7dJp9o1s3l26cNN5/HoyHzEBHvj64X4Qiwj8kVaMJVvTYWpnQ8ZGvQlzVp9GekkdZGIR1swaiFcnJ3POINtxsQQ7LpVCIiLw0fReN1wrVFCtwW/0lIMFE5LYw+yPR3KQU9mAAE85nh5pvyu2EAx1QtrSDSWHeMHPQwaN3uSSi+v0vtSJZ3NqEecpxdOttZHgT0dz8Wda6+CJIAh8el9v+HvIkFFah6duQCqYIbO0Ds+vSwVJAg8OjMKsYTG8PO+KfddgMpMYmRSIvlGdo53eYDLj038zMeLjffjxSC70RjP6R/ti3ZxBOLZ4LL57tD+eG5uIUUmBSA7xxsTuIXhqZDw+nN4L218cgW8e6YeEIE+2PXj0J/utdjoKCNgLQRDoE8mX+SJ1LZ7Jq3FIQ9IWEycCoWEkzI0yaK4GI6eyAYfsyMYHeskR6NVcdrFo8wWsO5GPoQkBePdOalzHqsM5eOrn0+3Wyaw1mPDkz6dx9FoVFDIx1j81GCOSuP2CahsNeOvPSwCosRvMNIQbyfK9V2EwkRieEIBBtHSkXK1lO8gWTU7G7u32z0oTgqFOii3dkEhEsClDV0plk3qEwF0qRk5lA1I5NiRPOber8qJNFzhLYYFecnwzMwXuUjEOXqnAM7+cgc54fQOiynodZq8+hQa9CYPj/PDund15KY8VVGvYGT2dJStUWKPBfd8cw/J9V6EzmtE3ygdrZg/E73OHYGhCQJu/F4IgMKlHKHa8OAIf39sL4T7uKFVr8fDKEy697wQEAEvzRZVLz9MtzBu+CinqdUZes0NiMfDYo9Q10kCXylbT3jttrim0dTDx2pYLWHM8Dw8PisaXD/aFnNZZ3rPiqFWpgrMwgdDhq5VQyMRYPWsgUqKtH+A+3JaO8jod4gI88PzYG7+/XauoZ+c+zp+QxH7/ox0ZaNCb0CfSB8PCwjF/vv3PKQRDnRQm2GlLN3T0Kvft9uAhl2AyPVOLS0jNFQyJCMq+3ZpwbUCMH354fADcpCLsy6zAvF/OOl3KcxSd0YS5a86gsKYRMf4KfP1wCm+TnlfsvwqjmcSIxACbm0pH4d9Lpbj9i0NIK1DBy02Crx7qh83PDGU7RhxBIhbh/v6R2Dl/JIYnBECjN+GJH0/Z5cwrIGANRjd03kVbE7GIwPBEKuNxkGe/syeeoP5szA6CsU6OfZnlyLXi3G8JV2aFAHChUAW90YxpvcOw4ekhCPKSI7OsDnd+dQSncp0z0m3JsWtVmLb8MA5lVcJdKsaPjw/AgBjrc8WOXqvEr7S57ofTe95w0TRJknj378swmUmMTQ5i99szedXYfJaqSrx9R3fMm0egxoEktRAMdVL6035D1nRDw2nd0Nn8GpeGpU6n55D9fa6kVRZHLCKgkIkhFROY2DUYvgopzCSQGOxlU4MzJN4fqx4bwJ58nl3X/gFRo96El35Nw+m8Gni5SbDysQHw9ZDx8tyFNRrWZLGjZ4V0RhPe+fsSnl5zBmqtEb0jfbDthRGY0ivU5QyZh1yCVY/3x6TuIdCbzJi39gx+P93x5i4JdA560276OZUNnDMQHWEk7b/GdzCUlAQMG0YCJIGGS+EgSeDnY213zHJlhtykYjw3JhEyCfWx3CfSB38+Nww9wr1R3aDHg98dx6sbzyPHjmCLi9JaLZ5fn4oHvz+OK2X18POQ4YfHB7AlJi5qNQYs3kx1mT08KMrmfa8Xe9LLceAK1fjyBj0tQG80Y9Emap3394/AxYM++OMPQOLASEghGOqkeMgl7OiN4xy6oSh/BSJ83WE0kzjpwoliSLw/QpVuqG00YG96a0fqd+/sgZOvjcd3j1HaEgD45sC1NmvzwxICsPKx/pBJRNh1uQzPrjvbbh1J2RX1uOurI9h+sRRiEYEVD1M6F774ah+VFRqW4I/+Nk5YN5pajQGPrDyBH4/kAgCeHBGL358egkgH5ve0hVwixvKH+uL+/hEwk8D/bTyPVYdzeHt+gVsHH4WMHUzt6pyyEXRm6HxRLa9+QwDwxBNMV1kkSBL4/XRBmwdQJjM0JM4fG+cOwcBYPzQaTHj6lzOo1TTtg6FKd/z29BBM6RUKo5nEhtMFGPvZfjy77iwuFtn3O1Fp9Pju4DWM+2w//j5XDIIAZg6Oxt6XR7EVBi60BhNmrz6FvCoNQpVueHVysl2v155oDSa8S48LmT08jj10r9h/FVnl9fD3kOGx3l3x/PPU/V991f7nFoKhTowt3RBgWSpzXr8hFhG4i/Yc2nS2tTD63pQINsPy4MBI+HvIkF+twQ92fACOSAzEdzNTIBNTAdHEzw9ib0aZ02vlYvuFEkxbfgSZZXUI8JRj7ZxB7MbIB2fza9gU8kvjk9q4942jtFaL+789hlO5dGbs0f54fUo39hTKJxKxCP+9pxeeHEG57b73z+UOMWpAoPPRj25EOGlFDmAvIUo3dAn2AkmCc9yEK9x/P+CuIGGs9oS+2Ad1OiM2W+nAZYjx98Ca2QOx7slB6B/jh8/v740ATznSS9R49MeTzZz/FTKqjL1x7hCMTQ4CSVJt/FP/dxgPfHcMb/91CSsPZWP7hRKcL1Thankdfj9dgMWbz2PC5wfQ591d+GAbpaXpG+WDv58bjvfu6gEfhfXMuNFkxnPrUtlM+o9PDIC3m/1i5PZi1eEc5FdrEOwtx/NjEwAAV8rq8BVtdPufO7rj/16UQaUC+vcHFiyw/7mFYKgT02YwlMj4Dbm2kUyng6H9meU2TfYUMgkW0aeHpbuv2CX6G90lCGufHIQYfwVK1VrM+uk05m9Ic/n0ZjCZseSfy3hm7VnU64zoE6nEtheGs78zPqBSs+dBksA9/SJs1t1vJNkV9bjn66PILKtDkJccv88dgvHdgtv1NQmCwGu3d2VbWxdvvoBsF+dMCdx6NDWCuLaHAcDIJGo/PJTFb6nMywu4/z4qO1R3jvIQWn0016ZPkFhENNPnRfgqsHbOIPgqKJ+hWT+dgkbfPLvUn9Zbbn9xBKb1pmZDHs+uxk9Hc7FkazqeWXsW05YfwfjPD+L/Np7H+pMFyCqnrrn4QA98fG8vbJo7FD3oTmRrkCSJ17dcxO70MsgkIqx6bAA7eulGUqxqxPK9VNCzeHJXeMglMJlJvLrpPAwmEuOSg1B6MhTbtwNyObB6tVAmu2XobzGnjCvwYHyCLpeoXXIKqoqVCwAAYXpJREFUTgz2Qq8IJYxmss0T/r0pERgU6wetwYz//HXJLuOwATF+2P7iSDw5IhYiAtiSWoQJSw/gz7Qih7VEtRoDvj1wDcP/uw8rLbJT/5naHUHebg49V1t8vf8arpRRqdk3eJh03x6cL1Th3m+OoUjViNgAD2x6Zuh129gIgsD/3dYFg2L9UK8zYt7as4IPkYBDMJ5p5wtVLpfRR7Ai6kreDQ2feor6s+FyGEwNMlwtr3c4gOsS4oU1swfBy02CU7k1ePLn05zXS9dQb3z5YF/sf2UM3rurB+aOiscdvcPQN8oHQV5yuElF6B/ti6dHxeG7mSk488Z47Hl5NO7vH8k6Sdvis51XsOF0AUQE8L8H+7ITDW40H27PQKPBhP7RvrizTxgAYM2xXKTmq+Apl2BWr56YP5/6+ZYsAbp1c+z5hWCoE2OpGzqR01oXFOApR3IINbTumJXskb0w2aHfzxTa3EgIgsD7d/eEVExgb0a53R1F7jIxXp/SDZueGYrEIE9U1uvx4q9pSHlvF55ddxZ/pBZZFVGSJIkjWZV48Lvj6PveTny4PaPVFGkDz+ZlWWV1WL6P8rN4e1p33sTYfHLkKvU7qW7Qo2e4Er/P5VcfZA8SsQj/e7AvAjwpf6m3/7p0XV9foHMT5uOO2AAPmEluTzVHGBjrB7lEhFK1ls2Y8MWQIcDgwSRgEqPubAwAynPNUXqEK7F61kB4yMQ4crUK89Zaby6J8ldg5uBoLJqcjP892Bdb5g3DydfHI+O9ydj4zFAsntwVE7uHODRKavXRXHa24vt398Rt3UMc/hnag+PZVaze6e1plB1KkaoRH/+bCQB4eUIyFjzjBo0GGDPGsfIYgxAMdXLaKpUNjeenVDatTzjkEhEuFas5Ay9LEoI88cyoeADA239falb/bou+Ub7454XheGl8IgI85ajTGbH1fAle2pCGlCW7cc/XR/HwyuOYvuIIJi07iMEf7EHymzvw8KoTOJZdBWsxTyOPGQlzi9Ts1F6hvD03XxzOqsQTP1F+SsMS/LH+qcEIuEHz9YK83fDFA31BEMCvpwqw6Yz1eXcCAi0ZluC6ZxpAdWsx3VB8d5URBPDyy3SpLDUaZoMIezLKnPIH6hfli1W0/cjejHI8teZ0u88A1BlNePfvy/gPfVh5eUISHhwY1cajrg9Gk5k9RD00MAo9wpV0Ke8CNHoTBsT4IvvfKJw8Cfj4UOUxkRORjRAMdXLaCoaGJzZtJK6khv08ZLivP9Vm/+2Ba23ef96YBMT4K1Cm1uGznVccei25RIyXxifh5GvjsGXeUDw7Jh5dgr1gMpM4k1eDI1ercDZfhYzSOpSqtdDZUUpr1PMXDK05noezdGp2yd09eDFt5JOj1yox5+dT0BvNGN81GD88PsCqQeb1YlhCAF4aRwnM3/jjYoeZTyfQ8eFj1iID22Kfxb8p6N13AzGxlCN1w8UIkCSc7qQcHOeP72ZS3bb7MyswcelB/HupfXy7ssrqcNdXR/HDEWqtc0fF4zlanNwR+P5QDjJK66B0l+KViV0AUFKK/ZkVkIlFuC+yDz74gNqDv/0WiIx07nWEYKiT05ZuaGCsP2QSEfKrNbhS5lpqeM7wOIgIYF9mBTJKbc8LcpOKseSungCA1cdynbLUF4kI9I3yxf/dlox/54/EoYVj8Pn9vfHFA33w7cwUrJk9EBvnDsE/zw/HjhdH4P27e2ByjxB4c4wJaTTwY2lfpGrExzuoqc2vTuqCUKU7L8/LFyeyqzD7p9PQGswYmxyErx7uC7nkxpqkMTw3NgEjEgPQaDBh3tqzLvlfCdw6DIn3B0EAWeX1KG9R/naUkfS4iRPZVbzr18RiYP5L1Iey+lQsSBJYeyIP+VXOuUePTArE5meGokuwF6oa9Hh6zRks2JCG2kZ+LEhIksQvx/Mw9X+HkV6ipn2H+mPR5OQOc8DLLK3D0l3UYfr1KV3h6yFDQbUG/6FHgzw5OAmLnlfAbAZmzqQ6+5xFCIY6OW3phjzlEoykhYNbL9g3VdkaMQEemNyDKgl9dzC7zfsPTwzA3X0pI7LXtlyA0cW5QJF+CkzvF4E7+4Tjtu4hGJEYiP4xfugRrkRyqDceHhSNrx9JQepbE/HHs8PwysQkDIr1g1RMoFHvuqkjSZJ4Y8sFNOgpEd/Dg2781GZLTudW44mfTqHRYMKopECseLhfhwmEAKqDZumMPgj2luNqeT0+3Zl5o5ck0AnwUcjQnfblOXrNtXJ/YpAnQrzdoDOaeXN0tmTWLMDHh4SxxhONV4NhMJH4bJfz7/Me4Ur89fwwzB0VDxFBzYm8belBl8t8BdUaPLXmDN744yJ0RjNGJAZgx0sjMDa5fbtMHcFgMmPBb2nQm8wYlxyE+1IiYDSZ8dKGNNTpjOgX5YvUX+OQkwPExADLl7v2ekIwdBPAlMqOXuNO/U7pRYngtrkYDAHAU3Sr9F9pxShWNbZ5/9endIXSXYpLxWos253l8uvbg1hEoE+kD54bm4gNTw9B2lsTMYGHVvIv9mRhH52a/eiennZ1ZlwvzubX4PEfT0GjN2FEYgC+nZlyw23zuQjwlOPje3sDoJx600tcm0gucGvAV6mMIAiMaCc3agDw9ATmzqWzQycpn60/04rtNkjkQi4RY9HkZPw+dwhrQfLoDycx+YtDWL43y27LitpGA9afzMf93xzDiI/3YdflMtbFefUTAxHkxW+3rass33sVl4rV8FFI8eH0niAIAsv3XcWZvBp4ySUYYkzB+nUExGLgl18AbxebZIVg6CaAGb1xILMCJg4F8biuwZCJRbhaXu+yVqN3pA+GxPnDaCbtqocHeMrxzjRqCvPyfVfxRxtmZO2Bh1zSakq0o/yRWsQGc+/c2R0JQV58LI0XLhTW4rFVJ1GvM2IIrTXoiIEQw6ikQEzuEQKTmcRbf17kvc1Z4OZjaEJTMOTq+4UplR280j7DhJ9/HpBKSegK/aErprL2/6VL666QEu2HbS+OwONDYyAREUgvUePTnVcw9rMDmPzFIXy17yqOXavC0auVOHClAnszyvDvpVJsSS3Es2vPYsD7u7F48wWczK0GQVDC9C3zhmHOiLgOdbADqD2N6Wp7784eCPJ2w5m8anYi/ZweffCfRdSevmQJMGyY6695Y1WVArwwMNYPXm4SVDXokZpf02okhLebFCMSA7Anoxxbz5cgaYJrH+RPj4rDsewqrD+ZjxfGJkKpsO1MelffcGSU1uGbA9ewcON5RPq5IyW6Y3hX2MOp3Gos3HgeAPD0yLgO02UBUOLHR384gTqdEQNj/bDq8f5wl3XcQIjhjandsD+zAqdya7AltYidgScgwMWAGF/IxCIU12qRW6VBbICH0881PCEABAFkltWhTK1FMM/+Y2FhwEMPEVi9GlCfjEPQXak4lFWJw1mVGE5npZxFIZPg7Wnd8dL4ROy8VIZ/LpTgyNVKpJeo7cqydgn2wt39wnFnn7AOp3dk0BpMWPBbGkxmElN6heKO3mGo0xrw0oY0mElgSnIEvv1PMBobgUmTgIUL+XldITN0EyAVizCmSxAAYFc69ziL23tSWh8+SmWjkgKRHOIFjd6EX060PZQQABbe1gUTuwVDbzLjqZ/PONVyeiPIrWzAUz+fht5kxqTuIXh10o2fz8NQUK3BI6tOoEZjQO8IJX54fAAUss5xvgn3ccfz46iOlQ+2ZbTbXDqBmwOFTIK+UT4AXC+V+XrI0It2YW6PUhkAvPwy9acmMxS6curw+d8dGTDz5Hfmo5Dh/gGR+HnWQJx6fTw+mt4TI5MCERfggaRgT3QL9UavCCX6RflgYKwf5gyPxdYXhmPHSyMwd1R8hw2EAGDprivIKq9HgKcc793ZAwDw1p+XUFDdiAhfd9Tu7Yn0dCro/Pln59rouRCCoZsERhOz6zJ3MDS+WzCkYgJZ5fXIcrFURhAEnh5FaYd+PJJjV1eGSERg2QN90D3MG1UNesxZfdoh/6EbgUqjx6yfTqFGY0CvCCWWzujTYdLJ5WotHl55AmVqHZKCPfHTEwNvePu8o8wZHoe4AA9U1uvYjhEBAWswbtTWtJGOwJbK2qHFHgB69gQeeAAACNQcSIZEROBCUa3LTSxc+HnI8MDAKPw8ayD2vjIaO+ePwrYXR+Cv54Zj87xh+O3pIXhjajd0D1N2mC4xa5zOrcZ3h6jmnA+n94Sfhwx/phVhS2oRRAQwQTIQa9eIIBIB69YBgfyNmRSCoZuF0V0CIRUTyK5owDUOQZ3SXcra0W+74LpfxdReYQj3cUdlvR6bOQa4cqGQSbDysf4I8pIjs6wOL6xP5dQ4dQT0RjPm/nIG2ZUNCFO6YeWjHaf8VNOgxyOrTiC/WoMoPwXWzB7UIR2w20ImEeFtWk+2+mguLhcLYmoB6zDmi8euVbmcYWGCocNZFbxla1qyZAkgkZDQZgehPoeSBXzyb6bDI4ZuFVQaPeb/lsbOepzQLRi5lQ14Y8tFAMD06O7475vUlPq33wZGjeL39YVg6CbBy03KdpVZyw7xWSqTikWYPZzqlvj+ULbdQU2o0h3fP9ofcokI+zIr8P7WdJfXwjd6oxmv/H4Ox7Or4SmXYNXjA3ifa+Ys9TojHv/xJK6U1SPYW461cwbxrnm4noxMCsTtPUNgJiGIqQVs0ivCB+5SMWo0Blx2sQuxT6QPvOQS1GgMOJtfw9MKmxMfDzz9NJWJqTmQDBFBIL9ag/Un89vl9TozJjOJF39NY0thb93RDfU6I578+TTqdEb0DAjE5o+j0dgI3HYb8Npr/K9BCIZuIphS2W4rwdCErlSpLLOsDld5mM0zY0AklO5S5FQ2YKcD7qi9I33w+f19AAA/HMnBW39ehMFFDyK+qKrX4ZGVJ/DXuWJqUOFDfdE19MZPbAYoYeGc1adwrrAWvgopfpk96LrPGmsP3pjSDe5SMU7n1didZRS49ZCKRezEdUf2G2vPNaE7tV+2NXzaFd58E/DwIKEv8UFdOvV6X+7J6vASgevN57syceBKBdykInw7MwVecgkWbEhDVnk9Aj3kqN+egpwcAnFxVHlM3A5JeiEYuokY35W62M7k16CSY5aNUiFl6+58ZIc85BI8OoQyHvxkp2Pp3ym9QvHmVGqs8M/H8vDoqpOobuAexHq9yChVY9ryIziZWw0vuQSrHhvACtNvNAaTGfPWnmWzVatnDURicMdp73eFMAsx9Yfb0wUxtYBVetDmi+tPFrj8XHf0piafb71Q4rIhrDWCg4FXXqGyQ6qDXUCYCVQ16PHBNtdb7W8WdlwswVf7qBFP/72nF7qHKfHl3izsvFwGmViEnqXDsH+vGAoFsGUL4NdOjcidJhh6//33MXToUCgUCvj4+Nj1GJIk8fbbbyMsLAzu7u4YPXo0Ll26eadmh/m4o0e4N0gS2JteznkfPktlAPDkyDgEeMqQXdGAn4/lOvTY2cNj8f2j/eEhE+NYdhXu/Opwm2M+2otdl8twz4qjKFI1ItpfgS3PDsWY5I4RCJnMJOZvSMPejHLIJSKsfKw/ekX43Ohl8UqTmFqPlYecm+ckcPOTEERpRirqddjlYnZoeEIAfBVSVNbrcczKbEc+ePllIDCQcqVWn6cGZ60/mW81g38rkVVWh5d/OweA+jy4s084/k4tZT3dpngNwI8rqM63H34AevVqv7V0mmBIr9fjvvvuwzPPPGP3Yz7++GN8/vnnWL58OU6dOoWQkBBMmDABdXU375DICV0pt2lrLfYTuwVDIiKQUVrHKbR2FG83Kf7vNmp43he7s1BR59h05QndgrHl2WGI8lOgoLoR01ccbbeBhFyQJIkV+6/iqTWn0aA3YWi8P/6YN6zDmCqSJInXNl/AP+dLIBUT+GZmCqsNu5mQSUR4hX4f/XA4BzU3OEso0DHx82jyNFu85QI0eufn20nFIvZw2J6lMi8v4K23qOxQ7eFEmPVUjWfR5vOcGfxbBbXWgKfWnEGD3oTBcX5YPDkZV8rqMH9DGgBgclgXfL+EqmT83/8BM2a073o6TTD0zjvvYP78+ejZs6dd9ydJEsuWLcPrr7+O6dOno0ePHli9ejU0Gg3WrVvXzqu9cYzvRmUzDmVVcE5q91HImkpl5/nJDt2XEoleEUrU6Yz45F/H079JwV7489lhGBrvD43ehKfXnMGXe7LaXUxbpGrEc+tT8fGOTJAkMHNwNFbPGthhOrNIksSSrenYcLoAIgJYNqNvhynbtQeTuoega6g36nVGfGvH7DuBWw+NxYzByno9vnBxxA9TKtt+sRQ6I7+DWy156ikgLg4wNbhBfSIebhIRKuv1WLTpwi3ZNGA2k5j/axpy6G7drx7qh3qdEbN+PA0jTGjICMEvr8ejoQEYPx744IP2X1OnCYYcJScnB6WlpZg4cSL7PblcjlGjRuHo0aNWH6fT6aBWq5t9dSa6hXoj3McdWoMZh62Yk02hT0N8eV6IRAT+cwfVIv37mUKcL1Q5/By+HjKsnjUQjw+NAQB8vusKbv/yMP46V8x7+31JbSPe/OMiRn+yD1vPl0AsIvDeXT3w3l09IBV3nEviiz1Z7MiTj+7phSm9Qm/witoXkYjAgglJAKhWe0ezjAI3P5oWnmYrD+e4ZMkwMMYPwd5y1GmNOJDZPgaMACCTAf/9L/X32uPxUBd7QCwisDu9DL+ddl3/1Nn4Yk8W9mSUQyYR4duZ/aF0l+L59akoVGmgr/BA5V99UV9PwNsbWLsWkFwHC7WOs/PzTGkpVWoJDm4+oDM4OJi9jYsPP/wQSqWS/YqMjGzXdfINQRAWBozcP+eEbsEQ06Uye4f8tUVKtC87of7tvy45ddqRiinfmf/e0xMeMjHSS9R4YX0qxn22H+tP5rt8citTa/GfPy9i1Mf7seZ4HgwmEkPi/LFx7hDMHNyxJtCvPJTN1s3/c0c33N+/c70PnWV81yD0jlCi0WDCNweu3ejlCHQwNLrmZTGTmcTiLRecPjCJRASm9qKyQ3/zlCm3xj33AHffDcAsQtW23pAQ1MfvO39fRl5VQ7u+dkfi15P5+IKeMfb+XT3QI9wbb/55CYeyKmHWiVH6yzCApH43ajUwfz5gdL4aajc3NBh6++23QRCEza/Tp0+79BotHTdJkrTpwrl48WLU1tayXwUFnS9qZ4KhPenlnJuEr4cMQ+Mp3cn2i/zpcxZNToZCJsbZfBX+SHO+RXrGgCgcXTQOCyYkwVchRW6VBos3X8DIj/dh5aFs1OvsvzLUWgNOZFfh7b8uYcTH+7D6WB70JjMGxvrh16cGY/1Tg9E3ytfptbYHa0/kYQntv/TyhCQ8MSz2Bq/o+kEQBBZMpLRDvxzPQ2mt9gavSKAj0cBR+j9XoMJaO8cCcTGNLpXtvlzmkgapLQgCWLEC8PUloS9TovxwDIK85NDoTZi/Ia3dOto6EltSC7F4ywUAwFMj43BvSgQ+2JZOeS+ZgZKfRoDUN591uW4d8P777b+2G+rf/9xzz+EByrPcKjExMU49d0gIJSQuLS1FaGhTeaG8vLxVtsgSuVwOudy1Cec3GsvBrWkFNZxDUaf0DMWhrEpsPV+CZ8ck8PK6wd5ueG5sAj7ekYkPt2VgQrcQp0dEKBVSvDAuEXNGxGL9yQJ8fzAbpWotlmxNx/vb0hGmdEe0v4L+8kC0nwIRvgqUqbW4XKLG5WI1LpXUoqC6sdnzDojxxfzxSRgS798hrenXncjH67Tj6tMj4/DcWH7+bzoTIxMDMCDGF6dya/DVvqt4764eN3pJAh2ElpkhAFDIxDiVW4NHBkU7NS6nV4QS0f4K5FVpsOtyGe7sE87HUjkJCQG++ILAo48CqiOJKEwsgzLUiLP5Knxz4BqeG5vYbq99o9l2oQQv/3aO1WcunpyM/+29iu/p7tHy9UNhVDUfwBsbSwVC7S2eBm5wMBQQEICAANem+FojNjYWISEh2LVrF/r27QuA6kg7cOAA/ssUb29SmMGtf50rxs7LZZzB0MTuIXjjj4ts4NAtjB9jwdnDY7HhVAHyqjT4at9VlwebKmQSzB4ei0cGR+GP1CJ8eyAb2ZUNKFI1okjViKPX2m6JDactB2YOjsGwhI4ZBAFUIPQafWqaNSwWiyYnd9i1ticEQWDBhC548Pvj+PVUPp4eFYcI385vLingOg16EyQiAolBnkgvrYO7VIyTr42Dp5u07QdbgSAI3NErDMv3XcXf50raNRgCgEceATZsALZuFaNqWy94Pn4cALBsdxZGJQWhZ4SyXV//RrD7chleWJ8KMwnc3z8C70zrjh+P5OJzeiZhQHp/5BU2Zej9/SnDyrlzgeuVm+g0mqH8/HykpaUhPz8fJpMJaWlpSEtLQ319k+YlOTkZW7ZsAUC9wV966SV88MEH2LJlCy5evIjHH38cCoUCDz300I36Ma4bbQ1u9fOQ4bbuVPbM3snz9iCXiPHmFMpM8dsD15DDkyZJLhFjxoAo7Hl5FE6/MR6bnhmCz+/vjRfGJeKuPmHoE+mDAE85kkO8ML1fON6Y0hXrnhyEtLcm4Miisfh2Zn8MTwzosMHF+pPNA6E3p3btsGu9HgyJ98fQeH8YTCSW7716o5cj0EF4ckQszv1nIra+MAJBXnI0Gkw4lev6OI1pfahS2YEr5ajVtK/pJ0EA334LeHuT0Jf4ouJYDDzkYhjNJJ5ecxqFNZp2ff3rzcErFZi39iyMZhLTeofhw+m9sPFMId795zIAYKS0D878RX1eicXA4sXAtWvAiy9ev0AIuMGZIUd46623sHr1avbfTLZn3759GD16NAAgMzMTtbW17H0WLlyIxsZGzJs3DzU1NRg0aBB27twJL6+O4SHTnoxqMbg1PtCz1X0eGRyNrRdK8EdqERZPToaXC6crS8Z1DUKPcG9cLFLjkVUncXDhGIh5mvZOEAQCPOUI8JRzZrw6I+tP5mPxZiEQasnLE5Nw9Otj+P1MIeaOikdMgEfbDxK4qYmz2Mdu6x6CNcfz8O+lUpcNUpOCvdAl2AuZZXXYcakEMwZEubpUm4SHA59/TmDOHKD2cBIUiWXwCdGiuFaLh74/gd/nDunUMwcZjmdX4ak1p6E3mXFb92B8dn9v7LhYikWbzwMAxnj2wJq3qUA0NhbYvx+Iat9fvVU6TWbop59+AkmSrb6YQAigxNGPP/44+2+CIPD222+jpKQEWq0WBw4cQI8et4b+wNticKs1p9PBcX5ICPKERm/CH6n8zYQiCAJL7qT8oIpUjbhz+WFoDe3n4dGZ+dUiEHpiWIwQCFmQEu2H0V0CYTKT+HKPa34yAjcfTGZ71+UyXuw3mOzQ3+fat6uMYdYsYOJEgDSKUfVXP9TVA0p3KfKrNXh45QlUdXJDxjN5NZj90yloDWaM6RKI/z3YD4evVuKlDVS5bJhHMn59PwomE4Fx44DMzBsXCAGdKBgScJy2SmUEQeDhQdS7b83xPF7Nv/pE+SDAkzIvvFisxn3fHBWGE7bg15P5WGQRCL01tZsQCLXg5QlUZ9kfaUW8DBcWuHkYFOcHpbsUVQ16nMlzvVR2B91if/RaJcrr2r+LkSCAlSuBwEBAV+aNqq29odIY4KuQ4mp5PR5ZdbLdS3btxZ9pRXh45XE06E0YluCPrx9JwZ70MsxdcwYGE4n+bon4879x0GoJ3H47sHUrIOWnMOE0QjB0E2M5uLVY1ch5n+n9IuAuFeNKWT0vtXeu1weAC0Vq3PfNMcFIj+anIzlCIGQHPSOUmNgtGGYSWLb7yo1ejkAHQioWYRxdHuNjhE+UvwK9I31gJvlz52+LyEhq+KhMBmiuhEJ1KAl6gxm+CinSS9R47MeTDlmJ3GiMJjPe33oZL/6aBq3BjNFdAvHdzBT8fCwX89adhc5oRm95HHZ+noiGBgITJgCbNl1fbZA1hGDoJibMxx2DYv1AksAWK2UwpbuU9dn45Th/QmoA6B/TXNOTUVqHe74+gvyqm0sg6AgkSeLjHRl4+29KPDhrWKwQCLXBfNqVeuuFEuRW3jrmdAJtM5Eulf17qZSXzDazF7a3AaMlw4YB339P/V19LBFlacHwkEvg4y5FWoEKs346xTlaqaNR06DHYz+eZFvlnx0Tj28fScEH2zLwwbYMkCQwyrsrDnyRjLo6AqNHA3/8Abh1EGmUEAzd5NybEgEA+P10gdXN4hHafXn7xRJeBwf2j25tZphf3YjpXx/FpeJajkfc3BhMZvzfxvNYsZ9yVv6/27oIGiE76BrqjbHJQSBJ4LtDwswygSZGJQXCTSpCYU0jLpe4Pjppaq9QEASld7meXV2PPgosWkT9vXp7L1y7KEd8kAc85RKczKnGU2tOt+vsNFe5XKzGHcsP48jVKihkYqx4uB+eGZ2Ap385g7Un8kEQwCRFf/z6TixqawkMHw78/Teg6ECOGUIwdJNze89QKGRi5FZpcNpKXb1nhBK9I5QwmEhe5+RE+yvgzzH01EyaUVTDXba7WdHojXjq59PYeKYQYhGBj+/phWfHJAiBkJ3MHRUPANh4plAotQqwuMvEGJkYCAD4lwc3/WBvNwyKpTLa10tIzfD++8DUqQBpEqN8c3+cuKBFqNIN7lIxDmVVYuaqkyio7nhZ9b/OFWP610dQWNOIaH8Ftswbhr5RPrjvm2PYn1kBN6kIE80j8N3bwdDrCdx1F7BzJ+DZusH5hiIEQzc5HnIJO5h14+lCq/d7mM4OrTuRz9tgVIIgkGKRHWrqriduSmMxa1Q36PHQ9yewj94YvpuZgvsH3BqzxvhiQIwv+kb5QG8046ejOTd6OQIdiEk9mFIZd6OIo0zrTZkubj5beF0nyotEwPr1lKDarJGj/PeByMjTwUMuhptUhJM51Zi07CB+PZnfISbd12kNeOfvS3hhfSq0BjNGJgXir2eHw2g2466vjiC9RA1/hQwDy8fgu4+9QZLAvHnAxo2Au/uNXn1rhGDoFoAplf1zvtjq7J07eoXB202CwppGHLzC3/RmJhia3CMEO18aiW6h3qhu0OPZtWehN978s3gKqjW495ujSCtQwUchxdo5gzGuq/VxMALcEATBZofWHMvrVKJSgfZlXHIwJCICmWV1vGjKpvSisulZ5fU4ZofDPZ94egK//0793VDphdKfh6G0WAQRCHQJ9kKD3oRFmy/giZ9OoUx9Y+b2GUxm/HwsF6M+2Y8fj+QCoD5jnhoeix2XSnD/N8dQptYh3s8LEefGYM13lCjoo4+A5cspY8WOiBAM3QIMjPVDtL8CDXoTtl/gTiW7y8S4N4XKVvAppB6bHIR1cwbh60dSkBDshW8eSYG3mwRn81X4YFs6b6/TEblUXIt7vj6K7IoGhPu4Y+PcIc0yZQKOMaFrMOICPKDWGvHryfwbvRyBDoJS0eSpxkdXmdJdinv6UQfIH4/muvx8jjJqFDB0KPV3o8oDJT8Nh6pYgStldZjaMwwyiQj7Mysw4fMD2JJ6/bJXJElix8VS3Lb0IN768xKqG/SIC/DAnOGx+CutCM//mopXN11Ag96EXsow1G8ejr82SyCRAGvWAK++StkJdFSEYOgWgCAI3Etf3BvP2CqVUZ5DezPLeRMPJgZ7YWhC0/y5KH8FPr+/DwDgp6O5+Grf1Q6R8uUTkiTx68l8TF9xFOV1OnQJ9sKmZ4YiIejmdz5vT0QiAk+NjAMArDqcc0tkFgXs47buVLaVj2AIAB4bSskGdqeX3RCdzsKFTX83N8pR+vNQNOb74Z8LxRgXE4Fe4UqotUbM33AOc385w2vjCxdn82tw3zfHMPeXM8iubIC/hwxv39ENQ+P9sfJwDvQmEjUaA+QSESbI+uPAR31w8oQI3t7A9u3UPLaOjhAM3SJMT4kAQQDHsqusXtzxgZ4YluAPkqRGRLQX47sFYwHdLv3Jv5l495/LMPOkU7rRaPRGvPzbOSzafAE6I+W8+tvcIQhRdpD+0U7O3f3CEeglR0mtFn+dK77RyxHoIEzoRumGzuarUM5D+SghyAsjEgNAksDPx3Jdfj5HmTKF8iBiII0SlP06CA2ZIdh+NR8Rvgo8OzoBEhGBfy+VYcyn+7Fw4znszyyHwcTPIUFnNOHI1Uo8u/Yspq84itN5NXCTivDcmARsmjcUv58pxC8nmj4nzDoxPI4Pwcr3gqFWExgyBDh3Dhg/npfltDtCMHSLEO7jjmHxVIZm01nr2aFHBlEnog2nCtr15P3CuES8MaUrAODHI7l4aUNapz/pXymrw7TlR7A5tQhiEYFXJyVj1WMDoHS/wdaqNxFyiRizhsUCAL47eO2mCaIFXCNE6YY+kT4AgJ1WHPcd5YlhMQCAX08VoOE6a9QkEuDpp1t8kxSh8o9+qD8di60XSvDz8VzcPyASScGeqNMa8dvpQjz+4ykMeH83Xt14HgevVDgcGOVXafDzsVzM/ukU+ryzCw+vPIGtF0pAEMB9KRHY98pojEwKwJQvD+FScZOVga5EiZLVI5C6xwciEYk33wQOHgRiYlz/XVwvCPJmq1HwjFqthlKpRG1tLby9vW/0clziz7QivPhrGiJ83XHw/8ZAxDE81WAyY9hHe1Fep8P/HuyLO2gTsvbij9QivPL7ORjNJEYkBuDrR1LgKe8084NZNp4pxJt/XESjwYRgbzn+92A/DIy9OQbJdjTUWgOGfrgX9TojVj3WXxCkCwAAvt5/Df/dkYERiQFYM3uQy89nNpMY89l+5FVpsOSuHqwf2/WitJSa1WWgJ3L06gWcp+abwie2Fu5j0iALrIeXXIzJPUJBiAjsSS9DZb2efQ4fhRSTuoege7gSEhEBMUFALCIgEVN/igkCJpLE6dwaHLhSgZwWAvRALzlGJQVi1rBYeMjFeOfvy9ibUc7ebtZKUHsiHuqTcYBZBLFXI778Vod5D/q096/HLhz5/BaCoTa4mYKhRr0JA9/fjTqdEeueHISh8QGc9/t81xV8uScLg2L9sOHpIe2+rgNXKvDML2eg0ZvQK0KJHx4fgADPDuDPbgeNehP+89dF/EbbFoxIDMDSGX06zfo7Kx9uS8e3B7MxMMYPv81t//eoQMcnu6IeYz87AImIwJk3JkCpcD0j+8PhHLz7z2UkBHli1/yR190X7MEHqVb0r78GZs+murEWLwYaGgCxhETEiAKY+1yGSGaCj0KK2cNj0T3MG3vSy7HjYimqGvRtv4gFEhFlhzKqSyBGJwUhNkCBHZdK8evJApzIqWbvZ/7/9u47rqr6f+D469zL3rJBQBBFcCO4B5rmqtQ0yxyFKy0rtb5mZqVlaTmqX5blKFdaZq5yZu4cqShOhoIIMgSUvS5wz++PqyS5EO/lXuDzfDzO43rXOe975N77vp/x/hQryAnzJvsfX9SFmlpydZqk0vLFy7zQyYVxt2Z+6ptIhrSoJiVDANM2nuPn4/EMbFW3bCDzfyVnFdDp832UqmV2TepCI1fdD/y9XXb+Zp4KH0dLVo1qg6e9AZUnvYfwhEze3XCWyJQcJAkm9/BjQrcGKO/R4iZo1/XsQjp+tpcStcyGVzuIWXoCAD2/PED09Vy+fKEFzwZ6PPb+sguLaT97D3mqUn4a3ZZODe/9A1JXjh+H/Hzo2vXf2xISYOJEzZpmAE5uJbj2jiDbWTN+x97ShOFtvWjmYUuBqpQTcRmk5RRRopZRyzIlaplStZqSUs31UrVMI1cbujZyooOvA9ZmxpxPzGLdiQQ2hyeSU/hvF6Gfkw2WcQ35+1cn0lM1c+QDGsvM/lSif3/Dmy0mkiEtKjuZN25gY1/9uz1OxWcwcNERzIwVnHz/yft2Sb22Jozt51J4urkb3wxtVSWxxaTl8tIPx0nMLMDJ2pSVI9vQ2N3wEtCkzALm7oxkc7hmAK+jlSlfD2lZbtacoHv/W3+G38KuEeRVhw2vddB3OIIBWPBnFAv3XqZ3E1e+HxGklX3O2HKelUev0iPAmWUvt9bKPrXhjz/gjTfg6q1KKIEdCyisH0OecwKS0b9jhWzNjfF3tSbAzYYAN81lHQsTUrILScosICmzkOQszWVSZgHJWQVk5BeXPb+unTk9vb1RxnuwYokJMZrVhPD2ho8+gmHDDLd2kEiGtKjsZP76KzaDB+s7nMcmyzIh8/YTfzOf2c82ZWjbe/eDRyRn0+f/DgGwc1Jn/F2rJim5nl3Iyz8eJzIlBzNjBWM61WdcSH2szfQ/CDmvqITFB2JYciiWwmLNh82gVh5M7dMIZ2sxW6yqXU7NpccXBwD4dmggTzXX7fg2wfCdT8zi6YV/Y26s5PSHT2Jm/Pjf0jFpuXRfcABJgv3/60o9B0stRKodeXkwaxYsWAAltxpwLKzUeAdnYB5wjZs2iah59K94E6WCdk6eWKV4E37QkqNH/23ycXaGDz6AsWMNY7X5BxHJkBaVncwBA7C53S5ZzX25O5r/23MJFxtT/nnv/vMeJ6w5xbZzyVr9lVURWQXFTFhzir8vpwPgYGnCpB4NGdLGC2Nl1U+AVKtlfjt1jfm7oki9tS5WG297Pni6ca1aVsQQtZr1JzfzNPVNdkzsTH0nA1vwSKhSsizT6fN9JGYWsHhEEL1urWr/uF7+8TgHotMY3cmHD55urJV9alNUFPz4I6xdC9fumCzs7i7T5UkV5k4FFBjnkCFlklh8kwKjPNztzHG1McPeyApzlRVSniUl2Wbk3TAl7KgJZ8LL93l16ACDB8OYMYa3rtj9iGRIi8pO5rlz2DRtqu9wtCIps4AOn+0F4MOnAxjVqf49H3fpeg49vzqILMPWNzrRtG7VffHLssyuC9f5fGdk2QyH+k6WTO3tT8/GLlU2kPFY7A1mbb1YNo3Uy96C9/r606uJq1hk1QCMWXmCvyI0s1vcbM3YPKEjLjaila42+3TbRZYeuqLVH3H7olIZufwE1qZGHHuvO5YGOuNVrYZDhzRJ0fr1kHHvtbkxMpJxcZHIyNCMSboXhUIzVmngQHj2WXCvhg2vIhnSopo2gPo23/e2U6qWMVJIbJ/YGT+Xew+SnvjLabaEJ+mtv7y4VM3Px+P5v78ulc2MaONtz7S+/gR66WbQ7KXrOWw/l8KO88lEpuQAYG1qxBvdG/ByB29MjQy0g7wWWrT/MnN3RpVd93e1Zt249qK2Uy0WmZJN768OYayU+Oe9Hthbmjz2PtVqme5fHOBKeh6z+jdhRHvvxw9Ux4qKYOdO2L9f01p07Zpm8HVysiZpupOLi6bIo5eX5rJ5c+jXDxyr+TBIkQxpUU1Nhlp+9CeZBZpBcj4OFvz+Rqd7jsuJTdOMy1DLsHlCx7LCZlUtp7CY7w/EsOzQFYpuFWfs2diFro2cCapXh4bOVvesm1QRsiwTfT2XbeeS2XEumUupuWX3GSkkhrTxZHIPPxzEdHmD88eZJN74+XS529r42LNqVButjBcRqqdnFv7NucQsPny6MaM6+WhlnysOX2HmHxfxdbJk9+SQSn/e6FtJiSYhSk4Ge3vw8ACzGtqYKpIhLSo7matWYbNuHXzxBfj56Tusx9Z9wX5i0v4tsNWriQvfDw+6Z9fP27+eYcOpa4T4ObFyVJuqDPMuyVkFLPgzmg2nrnHnX661qREtvewIqleHVl51aOllh81/kruiklKy8ovJKigms6CYzPxiziRksv18MrF3nAtjpUTnhk70aepKz8auWqlXIujGmYRM+n97+K7bezVxYdGwIFHmoJZadTSOD7dcIMDNhh0TO2tlnzmFxbS/Vexz1ag2dPFz0sp+Bd15lGTIMDs+DdGqVfDXX9CyJXzyib6jeWz/7UbYdeE6iw/GMv4exbImdm/I5vBEDkSnEXb1JkH19FdiwM3WnPmDWzCmsw9bzyRzKj6D8IRMcopKOHQpnUOXNIOuJQkaOFmhVEhk3kqACopL77tfEyMFXRo60beZK90DXEQ3SzXhdZ9aVAei0zgYnUY3f+cqjkgwBP1auPPJ1ggikrM5n5illfGO1mbGPBfkwYojcaw4EieSoRpGJEMVNWyYJhlauVJTXMFQCytU0L26xObujKR5Xdu76uV4OVgwOMiDX04k8MXuaNaMaVdVYd6Xv6tN2XT/klI1kSk5nI7PIOxqBqfiM4m/mV+uu+s2SdIkgnbmxtiaG+NRx4KeTVx4wt/ZIKbvC4/GzsIYa1Mjcu5YO+qFYE/e6d1IdGvWYnYWJjzZxIVtZ5P5Leya1iZ/vNzBmxVH4tgbmcqV9Dx8HA1nmr3weEQyVFF9+0KdOppRaHv3wpNP6juix2Jtdvd/vamRkv3RafcsHvj6Ew3YcOoahy/f4FjsDdrVd6iKMCvESKmgaV1bmta1LRvYmJZTxPnELIyU0q3kxwTbW1+c1bWvX7ibJEl42luQVVCMg5UJZ69lUVyqFomQwHNBHmw7m8zm8ESm9fXXysQHH0dLujVyYl9UGiuPxDGzXxMtRCoYArFqfUWZmWkWigFYsUKvoWjDf1tBjBQSOyZ15r2+Afd8vEcdC15o7Qlo1i4z9KFmTtamdPN3pnNDJ5p72OHlYIGtubFIhGqgOQObsX9KVz7uryl9sfVsMjdyi/QclaBvXRo64WJjSmZ+MXsjUh/+hAq6PSB77fF4kjILtLZfQb9EMvQoRo7UXG7cCJmZeg3lcTVwtuL1bg3Y93YILT3tKFHLrD+Z8MDnTOjWABMjBcev3OTw5RtVFKkgPFgLTzuMlQpaetrRwsMWVamaX048+G9ZqPmUComBrTTrk60Pu/aQR1dcpwaOtPGxR1Wi5qu/orW2X0G/RDL0KIKCoEkTKCyEX3/VdzSPZXQnH/7XqxE+Tla82lUzaHrV0avkFBbf9zlutuYMbeMFwBe7owy+dUiofV661U265thVSkrVD36wUOMNDtIkQ/ujUknNLtTKPiVJ4t0+/gD8FnaNS9dztLJfQb9EMvQoJAlCQ6FdO3DVTpl3Q/BkgAu+TpbkFJbw8/H4Bz72tW6+mBkrOBWfyf7otCqKUBAq5qnmbthbmpCUVVhWmVqoveo7WRFUrw5qGTaeTtTaflt51aFXExfUMszdFfXwJwgGTyRDj+qtt+DoUU15zhpCoZAYd2tKvaao4f2noDtbmzGinWZx1y+rwdghoXYxM1Yy5NbYtlVH4/QbjGAQnrvVOrT+ZIJWP6+m9PJHIcHui9c5GXdTa/sV9EMkQ49KUTNP2YCWdXG1MSM1p4hNpx78C2p8iC8WJkrOXssSv74FgzOsXT0UEhyJuSG6MASebu6GmbGCmLQ8Tidkam2/DZyteD5Yk3h/vjNS/DCs5mrmN3tVyMiAZcs0tc1rABMjBWM6a2ZJLD4YS6n6/m9sBytTXu7gDWg+BB7UkiQIVa2unTlPNnYBNOPghNrN2syYPk3dAM0YH22a1MMPUyMFJ+Iy2CN+GFZrIhmqDLUamjWDsWM1hRhriBfbeGFrbsyV9Dx2XUh54GPHdamPo5UJl1Nz+XZfTBVFKAgV8/KtgdQbTl0j+wGTAoTa4fZA6j/OJFH4gEr0j8rV1qxsqv3cXZEP/BEpGDaRDFWGQgEDB2r+/eOP+o1FiyxNjXi5vWY80PcHYh7Y7GtnYcJH/TR1XRbtu0xEcnaVxCgIFdHe14EGzlbkq0rZqOXWAKH6aVffAY865uQUljz0h96jGh/ii625MdHXc9l4SvytVVciGaqs2zWHtmyBGzWn5s7LHbwxM1Zw9loWR2Ie/Lr6NnOlZ2MXStQyUzecFVOZBYMhSRIv3UrsVx29ilr8Yq/VFAqJQbdrDp3UbsJia27MhG6aCShf7o7WasuTUHVEMlRZgYGaRVtVKli7Vt/RaI2DlSlDWmtqCX23/8HdX5IkMWtAU6zNjDh7LYvlh+OqIEJBqJiBrTywMjUiNj2PwzHp+g5H0LPbs8oOx6STqOXK0S+198bN1oykrEJWi3Fq1VK1SYY+/fRTOnTogIWFBXZ2dhV6TmhoKJIkldvatdPiIqOjRmkua1BXGcCYzj4oFRJ/X07n3LWsBz7WxcaMD55qDMD8P6OIS8+rihAF4aGsTI0Y1KouACuPiC+o2s7T3oJ29e2RZdig5a5TM2Mlk5/0A+CbfZfJKhDj1KqbapMMqVQqBg8ezKuvvvpIz+vduzfJycll2/bt27UX1NChYGIC4eFw+rT29qtnHnUs6NfCHdCMHXqYwcEedGzgQFGJmqkbzoouCcFg3F64d0/kdRJu5us3GEHvBgdppsL/FnZN61PhB7XywM/FiqyCYhZX4HNTMCzVJhn66KOPmDx5Ms2aNXuk55mamuLq6lq22dvbay8oBwd49llQKuH4ce3t1wCMC6kPwPbzyVx5SGuPJEnMebY55sZK/rlyU6wLJRiMBs5WdGrgiCzDT/+I1qHark8zV6xMjYi/mc/xK9otlKhUSEzppVmm48fDV7iupeU/hKpRbZKhytq/fz/Ozs74+fkxduxYUlMfXAuiqKiI7OzsctsDzZ4N167BuHFajFr//F1t6O7vjCzDkoMP/5Xj5WDB/3o1AmDO9giSs8RqzoJhuD2Qet2JBDG4tZazMDHiqWaamkPaXLz1th4BzgTXq0NhsZqv/rqk9f0LulOjk6E+ffqwZs0a9u7dy4IFCzhx4gRPPPEERUVF933OnDlzsLW1Lds8PT0ffJD69WvUOmV3ur2A64awxAr9ygnt4E1LTztyikp4f9N5UZFVMAjdA1yoa2dOZn4xSw/G6jscQc8GB2sGUm8/l0xekXaL5t65iOuvJxOIScvV6v4F3dFrMjRz5sy7Bjj/dzt58mSl9//CCy/w1FNP0bRpU5555hl27NhBdHQ027Ztu+9zpk2bRlZWVtmWkPAIXT4p2q1foW/B3vYE16uDqlTNj39feejjlQqJuc81x1gpsScylT/OJldBlILwYEqFxKQeDQH44q9o9keJSsG1WVC9Ovg4WpKvKmWTFhdvvS3Y254eAS6UqmXm7ozU+v4F3dBrMvT6668TERHxwK1p06ZaO56bmxv16tXj0qX7N1+amppiY2NTbnsolQp69IC6deFqzRqXcLt1aNXRqyRVYDqqn4s1bzyh+eKZ+fsFbuTevxVOEKrK4GBPXmzjhSzDmz+f5uoNMeuxtpIkqWyx6R/+vqKTCR9TezdCIcGuC9fZcU78KKwO9JoMOTo64u/v/8DNzMxMa8e7ceMGCQkJuLm5aW2fgGZGmVqt2Vau1O6+9ewJf2faeNtTUFzKp9sjKvSc8SG++LtaczNPxcdbL+o4QkGomJn9GhPoZUd2YQnjVoeRr6oZ6woKj+751p7YmBlxJT2PvyKua33/DV2sGR+i+SH53qZzpIrB1Aav2owZio+PJzw8nPj4eEpLSwkPDyc8PJzc3H/7ZP39/dm0aRMAubm5/O9//+Po0aPExcWxf/9+nnnmGRwdHXn22We1H+DtmkPLl2uSohpCkiRm9muCQoJtZ5M5UoHidSZGCj4f1ByFBFvCk9ijgw8bQXhUpkZKvh8ehKOVKZEpObzz21kxrq2WsjI1Ytit1qGlh3QzjmxSDz8au9mQkV/M1A3ib83QVZtk6MMPPyQwMJAZM2aQm5tLYGAggYGB5cYURUVFkZWlKRKoVCo5d+4c/fv3x8/Pj5dffhk/Pz+OHj2KtbW19gMcOBBsbCAuDvbu1f7+9aixuw3D2mo+OGb+foHiCiy70cLTjjGdNdPzp286LxbLFAyCi40Z3w1vhZFCYuvZZJ19EQqGL7SDN8ZKiRNxGZyKz9D6/k2MFHz5QktMlAr2RaXx83FRcsSQVZtkaMWKFciyfNfWtWvXssfIskxoaCgA5ubm7Nq1i9TUVFQqFVevXmXFihUPnx1WWRYWmiKMAD/8oJtj6NHbPf2oY6FZjLCi5eYn9/DD28GClOxCXl97ukJJlCDoWmtve2Y8o6ma/tmOSP6+JJbqqI1cbMzo31JToXyZjpLiRq7WTLlVcuSTbRfFWDUDVm2SoWph7FjN5caNNWrxVtCsUn+7oNiXf0WTXoGB0eYmSr5+MRBzYyUHo9P4YLOYbi8YhuHt6jE4yAO1DK//fEpUp66lxt5qvd55PkVnicroTj609bEnX1XKW7+eoVRU6DdIIhnSplatNAu4qlSwZo2+o9G6F1p70rSuDTmFJRWeMtrcw46vXwxEIcEvJxL4Zu9lHUcpCA93e5Hh5h62ZOYXM251GAUqUZCxtmnkak3XRk6oZc3MMl1QKCQWPN8CK1Mjwq5mVGiJI6HqiWRI22bOhFWrYMwYfUeidUqFxEf9NKUOfj15jdMV7Gd/srELH/VrAsCC3dFaXyRRECrDzFgzoNrB0oSLydlM2ygGudZGr9xqHfr1ZAIZeSqdHMOjjkVZ1+xXf0VzIenBC2ALVU8kQ9rWrx+MGKEZQ1QDBdWrw8BbK4HP/P1ChWt0jGjvXbbe2dQNZzl8WYzTEPTP3c6cb4e1QqmQ2ByexPLDcfoOSahi7X0daOJuQ2Gxmp+O6a5O3HNBHvRs7EJxqczkdeFiaRgDI5Ih4ZG928cfK1MjzlzLYn1YxWdITO3lz9PN3ShRy4xfHUZUSo4OoxSEimlX34HpfQMA+HR7BEdjatZ4P+HBJEnilS6aH2orj8bpLEmRJIk5A5vhaGVC9PVcFvwZpZPjCJUjkiFdKC6GL76ANm0gp+Z94Ttbm5UtbzB3ZxRZBRWbNq9QSMwf3II2PvbkFJUQuvw4KVmiGJmgfyM7evNsYF1K1TKvrz3FnxdSOBl3k6iUHJKzCsgtKhFdaDVY32ZuuNuakZ6rYrMOlui4zcHKlM8GNgdg2d9XOBYrEm9DIcniHf5A2dnZ2NrakpWVVbGlOQBkGQICICoKli6tkeOHikvV9Pm/Q1xOzSW0gzczb40JqojMfBWDvjtCTFoeAW42/DquHdZmxjqMVhAerkBVynPfH+FCUvY971dImmJ91mbG2JgbY21mhEcdc8Z18aWRqw5qlwlVatmhWD7ZFoGvkyW7J4egUEg6O9bU386y7mQCde3M2Tmps/j805FH+f4WLUO6IEn/JkDLluk3Fh0xViqY+YwmAVp97CqRKff+ArkXOwsTVoxsg6OVKRHJ2by25pSoQSTonbmJkqUvBfNUczea1rWhnoMF9pYmGN36UlTLkF1YQmJmARHJ2Ry/cpONpxLp838HmbbxLKk5opWzOhvSxgtrMyNi0vLYG6nbxXw/eKYxnvbmJGYW8NEfYskiQyBahh6iUi1DAKmp4OGh6TI7exaaNdNdkHo0fnUYOy+k0NbHnl9eaYckVfzX1Nlrmbyw+BgFxaU8H+zB54OaP9LzBaEqyLJMYbGanMJisgtLyi6zC4rZfi6ZHedTALAwUTI+xJexnetjbqLUc9RCZczZEcHiA7G08bHn13HtdXqsE3E3eX7xUWQZFo8IolcTV50erzYSLUOGwNkZ+vfX/LuGtg4BTH8qAFMjBf9cucnWs4+2OnNzDzu+GaqpQfTryWt8vUfUIBIMjyRJmJsocbYxo4GzFYFedQjxc+KZFu58NzyI38a3p6WnHfmqUr7YHU3X+ftYfzJBJ6uhC7o1soMPRgqJ41duEp6QqdNjtfa2Z1wXzWKu0zaeE+Mn9UwkQ7p0u6ts9WoorJl/6J72FrzWtQEAs7dHkFf0aCuBdw9wYdYATe2iL/+KZt2JeK3HKAi6FOxtz6bXOvD1i4HUtTPnenYRU347y9ML/+aIKCFRrbjamtGvpTuguwVc7zT5yYYEuNlwM0/FsGXHuFGByv6CbohkSJd69AAvL8jIgA0b9B2NzowLqY9HHXOSswr5dt+jt+4Ma1uPV7tqfiFN3XCOOdsjKBFjiIRqRJIk+rVwZ8/bIUzr44+1mREXk7MZuuwfRq84weXUmjertKa6vUTHjnPJOl+mxdRIydKXgnCzNSMmLY8RPxyv8OxcQbtEMqRLSiW89ho8/zw0aqTvaHTGzFjJB09rqqsuO3SlUh/8U3o2Kqv1sfhgLMOW/SMGpArVjpmxknEhvhyY0o3QDt4YKST2RKbS66tDzPz9AqoSkeQbugA3Gzo3dNTpEh138qhjwZoxbXG00lRCH7n8+CO3sAuPTwygfohKD6CuZWRZZuSKE+yPSqOBsxVbJnTE0tTokfez/VwyU9afIU9VirO1KYuGtSLY214HEQuC7sWm5TJnRyS7L14HoHNDR74fHlSp94ZQdQ5dSmPED8exMFFy5N0nsLMw0fkxI5KzGbLkGFkFxXTwdeDH0NaYGYuB+I9DDKAWqpwkScx7rgXO1qZcTs3l3Y3nKlWkrm8zN35/oxMNna1IzSliyJJj/PD3FVHwTqiW6jtZsfSlYH54ORgLEyWHLqUzdKkYG2LoOjVwJMDNhnxVKWv+qZpxjAFuNqwc1QZLEyVHYm4wQZQcqVIiGaoqkZEwdSoUFOg7Ep1xutWSY6SQ+ONMEiuPxFVqP75OVmye0JFnWrhTopaZtfUir/98mlzRdCxUU90DXFg7th11LIw5cy2Lwd8f1fl4FKHyNEt0+ACw/HAcRSVVs45YS087fghtjamRgj2RqUxeF06pmJVYJUQyVBVkGfr2hblzYf16fUejU8He9rx3a52nT7ZFEHa1Yivb/5elqRFfD2nJzGcaY6SQ2HY2mQHfHhYDUYVqq6WnHb+92oG6dubEpucx6LsjRCRXvFipULWebu6Oq40Z6blFbDmdVGXHbVffge9HBGGslNh6NplpG8+KMg1VQCRDVeHOitSLF+s3liowsqM3T91akHXCmlOkV7JLQJIkQjv6sG5cO1xsNN1v/b85zNazVffBJAja5OtkxYZXO9DIxZrUnCKeX3yUf8T6VAbJWKlgVCdvAL4/EFOlXVbdGjnz9ZB/a7B9vPWiGCqgYyIZqiqjRoGRERw5AufP6zsanZIkic8HNcfXyZKU7ELe/Pn0Y02VD6pnz7Y3O9O+vgN5qlJeX3uaj/+4KPrThWrJ1daMX8e1p7V3HXIKSxjx43F2XUjRd1jCPbzYxgt7SxNi0/P45URClR67TzM35j7XAoAVR+JY8Gd0lR6/thHJUFVxdf23InUtaB2yMjXi++FBmtkYMTf4YvfjvZEdrUxZPboN40M09Yh+PHyFwd8f5WB0mvjFJFQ7thbGrB7dlh4BLqhK1Lz6Uxg/HxcFRw2NtZkxk3o0BOCr3dHkFFZtDaDngjyY1V+zBuQ3+y6zaL+o0q8rIhmqSuPGaS5XrYK8PP3GUgUauljz2aDmACzaH1M2vbiyjJQK3u3jz+IRQVibGhGekMlLPx6n79d/s+n0NdFSJFQrZsZKvh/eiheCPVHLmiUZFu65JJJ7A/NiGy/qO1lyI0/Fov0xVX78Ee29mdrbH4C5O6MqPTFFeDCRDFWl7t3Bxweys+GXX/QdTZXo18Kd0A7eALz1azhXbzx+EtiriSu7JndhZEdvLEyURCRnM3ndGbrM3cfSg7FV/utNECrLSKngs0HNeL2bZkmbBbujmfH7BTGDyIAYKxVM66OZFPLD31e4llH1swBf7epb9jcy4/cLLD0YKwZVa5lIhqqSQvFv69C2bfqNpQq91zeAoHqa8RHjfzpFgerxp6m625kz45kmHHn3Cab0aoSjlSnJWYV8uj2CDp/tZc6OCK5niwrWguGTJIn/9WrEzGcaI0mw6uhV3vzldJVN5xYerkeAM+3q26MqUTN/V5ReYni7px8jO3oD8On2CF5eflx8xmmRqED9EFqvQJ2XB40bw7VrsH079Or1+PusBlKyCnnq60PcyFMxqJUH8wc3R5Ikre2/sLiULeGJLDkYS0yapvXJWCnRv2VdXulSHz8Xa60dSxB05Y8zSbz1azjFpbJO3idC5Z27lsUz3/wNwJYJHWnhaVflMciyzE//xPPptosUFquxszDms4HN6N3UrcpjqQ4e5ftbJEMPoZPlOFq3hpMnwdYWjh8HPz/t7NfAHbmczvAf/kEtw5yBzXixjZfWj6FWy+yNTGXJwViOx90su71rIycGtfKguYctXvYWVfYFU1RSyt+X0om+nlu2GO3DqNUyOYUlZOSryMhXkVlQTGa+CoUk4WhlioOVCY5WptSxMEGpEF+UNc3+qFRGrTiBWobZzzZjaFvtv0+EynlrXTgbTyfSxtuedePa6S1RvZyaw6R14ZxP1NSpej7Ygw+faYKVWOalHJEMaZFOkqG+fWHHDs2/GzT4NzGqBRbtv8zcnVGYKBX89mp7mnvY6exYp+MzWHoolp3nU7ize93azIim7rY0rWtD07q2NK1ri4+DJQotJRb5qhIORKWx43wKeyNTyS0qIcDNmu+HB5GcVUhKViHJWYWk5xZpkp18TbKTmV9MRr6KrIJiKjIcQCGBvaUJDpb/Jki3Lx2tTGjspnmNomWh+vlufwyf74zERKlg/fj2emmFEO6WlFlAt/n7KSpRs3hEEL2auOotFlWJmi//iub7AzHIMtRzsODLF1rSyquO3mIyNCIZ0iKdJEMvvQSrV/97vW9f+P13zSr3NZxaLfPK6jD+irhOXTtztr7RiTqWul0E8eqNPFYdvcqJuJtEJuegusesM0sTJU3cbWlS14am7rY087DF0cqUUrWMWpbLLtVqKL11XZblsn/nFJZwMDqNQ5fSiUjOpkQLgxstTJTUsTDBzsIYOwtj1GpIzy3iRp6mxagi71wfR0v6tXCnX0t3fJ2sHjsmoWrIsuZ9svti1b1PhIqZtyuSb/fF4ONoya5JXTAx0u/Q22OxN3j71zMkZhagVEi88UQDXu/WACOlGBIskiEt0kky9Pbb8MUX5W+bOhU++0w7+zdwWQXF9Pvmb67eyKeDrwPLXg7GwqRqmneLS9Vcup7L+cQszidlcS4xi4jkbAqLdT8t38xYgbutOa62ZrjamuFkrenqsjM3xs7ChDoW/17aWhhjanT/5LikVM3NfBXpOSpu5BVpkqRcFem5KtJzi7ieXciJuJvlXlezurb0b+muWWbA1kznr1d4PNmFxfRb+DdxN/Lp4ufE8tDWolvUAOQWldB13j7Sc1XMeKYxIzv66DsksgqK+XDLebaEa6rzB3rZ8dULLannYKnnyPRLJENapJNkaM4ceO+9u2//6ScYNkw7xzBwF5OyGfTdEQqKS2nlZcePoa2xs9DPL9+SUjWx6Xmcu6ZJkM4nZnEhKZv8W7PeFBIoFRIKSbNp/q25TQZKSmVUpWpUJfdPqHwcLdn7dkiVdlnlFpWw+2IKW8KTOHQpvWy6tiRBOx8H+rd0p09TN2wtjKssJuHRRCRn8+yiwxQWq5nYvSGTn6wd4wsN3Zp/rjJ903nsLIw5MKUbtuaG8R7aEp7I+5vPk1NYgolSwds9/XilS/1a21UukiEt0kkytGwZjB179+1eXnDmDNjZaec4Bi7sagajVpwgq6AYPxcrVo1qazAtFrIsI8uaxKGiHyR5RSUcupTOnojr7ItKJT1XVXZffSdL9r7dVUfRPtyN3CK2n0tmS3gSJ+9YPNdYKdG1kTP9W7rT3d8Fc5Oa31Vb3WwIu8bb688gSfBjaGu6NXLWd0i1Xkmpmj7/d4hLqbm80qV+2eLUhuBaRj5vrD3N6YRMAGzMjRjaxovngz2pX8u6ykUypEU6SYY2b4Znn/33uiTBokWa9ctMate4gOjrOYz44R+uZxdR186c1aPb1Ig3rFotE34tkz0R19kTkUphcSn7p3TTd1gAJNzM54+zSfwenkRkSk7Z7U7Wpnw2sBndA1z0GJ1wL9M3nWPNP/HYmhuz9Y1OeNpb6DukWm9fZCojV5zARKlgz9shBvV/UqqWmb7p3F3rqdW1M2NgYF36NHMnwM26xrcYiWRIi3SSDB0+DAMGQGgoHDgAJ07Ahx/CRx9pZ//VTMLNfF768ThX0vNwsDRhxcg2NPOoWbPr0nKKcLI21XcYd4lKyeH3M4lsPp1EYmYBAENae/L+043FNF0DUlRSyvPfH+XMtSya1bVl/fj2mBmLVjx9kmWZET8c5+/L6Tzd3I1vhrbSd0h3+WDzOVYfu/ead3XtzBnWzovXujao4qiqzqN8f4vh5vrQqpWm6OK8eZrB1KBJkGopT3sL1o9vT9O6NtzIU/Hi0mMciUnXd1haZYiJEEAjV2um9PJnz9shjO3sgyTBLycS6PN/B/kn9oa+wxNuMTVSsmh4EHUsjDmXmMVHf1zUd0i1niRJvNc3AEmCrWeTORWf8fAnVbGP+jWlayOne96XmFnAweg0TsVniPXwEC1DD6WTlqE7qVRw9Ch06aLpLqvFcgqLeWVVGEdjb2CiVPD1iy1FZdUqduc0XUmCsZ3r89aTfqIVwkAciE4jdPlxZBnmPdecwcGe+g6p1puy/gzrw67RysuODa92MLiup4w8FU8v/Lus5fdeGrvZMLxdPfq3dMeyBrUIi5ah6sTEBEJCan0iBGBtZszyka3p3cQVVama19ac4pfj927iFXSjXX0Hdk7qzAvBnsgyLDkYS79v/uZ8Ypa+QxOAED8nJnXXzCh7f/N5LiSJ/xd9e7tnI8yNlZyKz2TH+RR9h3OXOpYmfDusFcbKf79jvOzNWTu2LYNaeWBqpOBicjbvbTpHu9l7+HDLeU7FZ2hlDcnqpFq0DMXFxTFr1iz27t1LSkoK7u7uDB8+nOnTp2PygAHHsizz0UcfsWTJEjIyMmjbti3ffvstTZo0qfCxdd4ydKf8fM3m6Kjb4xi4/w7+e6d3I14N8TW4X1w13V8Xr/PuxrOk56owUkhM6tGQ8SG+opibnqnVMqNWnmB/VBpe9hb88UYng5naXVt9sTuar/dcwsvegt1vdXlgjTB9WXU0jg+3XECpkFg/vn1ZperMfBW/hV1jzT/xXEnPK3u8JIG3gyX+rtY0crXG39UGf1drvOwttFatX9dq3ADqnTt3sm7dOl588UUaNGjA+fPnGTt2LCNGjGD+/Pn3fd7nn3/Op59+yooVK/Dz8+OTTz7h4MGDREVFYW1dsYU7qywZWrUKJk6EoUPh2291d5xqQpZl5u2KYtH+GADGdPLhvb4B1eZNWFPcyC1i+qbz7Lyg+cXb0tOOL55vUSNm/FVnmfkqnvpa0/XRI8CZJSOCxXtDj/KKSug6fz9pOUW8/1QAYzrX13dId5FlmTd/Cae+o+U961Wp1TJHYm6w9vhVjl+5Wa40yJ3MjZX4uVoTcCtJup0o1bEwNrgfrDUuGbqXefPm8d133xEbG3vP+2VZxt3dnUmTJjF16lQAioqKcHFx4fPPP2fcuHEVOk6VJUN790L37mBlBYmJoOtWqGpi2aFYPtkWAcCgVh58NqgZxqJlokrJsszm8EQ+3HKBnMISzIwVvNc3gOFt64kvYD06dy2LQd8fQVWiZkqvRkzoVnNnBVUH607EM3XDOWzMjDj4Tje9FZF9kLyiEkyNFBVq3U3LKSIqJYfIlGwib11GX8+9b3FZSQITpQJTIwWmxkrNpZECE6N//337dhMjBaa3YpAB9a26bjL/1niTuXUp37ofMFJIOFiZ4GytqeDvbG1669IMRyuTu15XrUiG3n//fXbu3MnJkyfveX9sbCy+vr6cOnWKwMDAstv79++PnZ0dK1eurNBxbp/MzMxMbHW5mKosQ+PGEBkJCxfC66/r7ljVzIawa7yz4Sylapnu/s58O6yVGNCrB0mZBUz57QyHL2tmmXVu6Mjc55rjZmuu58hqr1+Ox/PuxnMoJFg9ui0dG9TuLnZ9KlXLPPX1ISJTchjV0YcPn2ms75C0rqRUTdyNfCJTsolKySEiOYeo69kk3Lz/4OyqIklgb2GC0x0JkrWymI+ea11zk6GYmBhatWrFggULGDNmzD0fc+TIETp27EhiYiLu7u5lt7/yyitcvXqVXbt23fN5RUVFFBUVlV3PysrCy8uLX/efplegjps+Fy+Gd94BX1/NSvYK0QJy277IVN5efwZViZrngz348JmKj/sStEetlvnlRDwLdkdTVKymWV1b1o5ta3DN47WFLMt8sPk8m8OTsLcwZuvEztiYifFD+nL4cjrjVodhrJTYPKFjrVkbLF9VQl5RCUXFalRqNapiNUUlpahKNEsVFZWoUZWUoiq549+3FsxW3PrskCQJCc3yR5Ikaar/37odCSQkSkrVt9ZgLCItt4j0HBXpuYXcyCsuW27oTuqifBK/C61YY4asRzNmzJC51TJ2v+3EiRPlnpOYmCg3aNBAHj169AP3ffjwYRmQk5KSyt0+ZswYuVevXo8Vk9jEJjaxiU1sYqseW0JCwkPzEb22DKWnp5Oe/uDiet7e3piZadarSkpKolu3brRt25YVK1ageEDLSWW7yf7bMqRWq7l58yYODg4P/fWbnZ2Np6cnCQkJup95VsOIc1d54txVnjh3lSfOXeWJc1d5j3LuZFkmJycHd3f3B+YLAHqtruTo6IhjBaeRJyYm0q1bN4KCgli+fPlDX5iPjw+urq7s3r27LBlSqVQcOHCAzz///L7PMzU1xdS0fLVgu0dcONXGxkb8gVeSOHeVJ85d5YlzV3ni3FWeOHeVV9FzV9GxvtViUEpSUhJdu3bF09OT+fPnk5aWRkpKCikp5Qtc+fv7s2nTJkDTzzhp0iRmz57Npk2bOH/+PKGhoVhYWDB06FB9vAxBEARBEAxQtai7/eeff3L58mUuX76Mh4dHufvu7OWLiooiK+vfiqzvvPMOBQUFvPbaa2VFF//8888K1xgSBEEQBKHmqxbJUGhoKKGhoQ993H+HP0mSxMyZM5k5c6ZuAvsPU1NTZsyYcVc3m/Bw4txVnjh3lSfOXeWJc1d54txVnq7OXbWcWi8IgiAIgqAt1WLMkCAIgiAIgq6IZEgQBEEQhFpNJEOCIAiCINRqIhnSsW3bttG2bVvMzc1xdHRk4MCB+g6pWikqKqJly5ZIkkR4eLi+wzFocXFxjB49Gh8fH8zNzfH19WXGjBmoVPdefVqARYsW4ePjg5mZGUFBQRw6dEjfIRm8OXPm0Lp1a6ytrXF2dmbAgAFERUXpO6xqZ86cOWUlYISKSUxMZPjw4Tg4OGBhYUHLli0JCwvTyr5FMqRDGzZsYMSIEYwcOZIzZ85w+PBhUePoEb3zzjvl1pYT7i8yMhK1Ws3ixYu5cOECX375Jd9//z3vvfeevkMzSOvWrWPSpElMnz6d06dP07lzZ/r06UN8fLy+QzNoBw4cYMKECRw7dozdu3dTUlJCz549ycvL03do1caJEydYsmQJzZs313co1UZGRgYdO3bE2NiYHTt2cPHiRRYsWPDIRZHv66ELdgiVUlxcLNetW1detmyZvkOptrZv3y77+/vLFy5ckAH59OnT+g6p2pk7d67s4+Oj7zAMUps2beTx48eXu83f319+99139RRR9ZSamioD8oEDB/QdSrWQk5MjN2zYUN69e7ccEhIiT5w4Ud8hVQtTp06VO3XqpLP9i5YhHTl16hSJiYkoFAoCAwNxc3OjT58+XLhwQd+hVQvXr19n7NixrF69GgsLC32HU21lZWVhb2+v7zAMjkqlIiwsjJ49e5a7vWfPnhw5ckRPUVVPtwvdir+zipkwYQJPPfUUPXr00Hco1crvv/9OcHAwgwcPxtnZmcDAQJYuXaq1/YtkSEdiY2MBmDlzJu+//z5bt26lTp06hISEcPPmTT1HZ9hkWSY0NJTx48cTHBys73CqrZiYGBYuXMj48eP1HYrBSU9Pp7S0FBcXl3K3u7i43LXMj3B/sizz1ltv0alTJ5o2barvcAzeL7/8wqlTp5gzZ46+Q6l2YmNj+e6772jYsCG7du1i/PjxvPnmm6xatUor+xfJ0COaOXMmkiQ9cDt58iRqtRqA6dOnM2jQoLIFZiVJYv369Xp+FfpR0XO3cOFCsrOzmTZtmr5DNggVPW93SkpKonfv3gwePJgxY8boKXLDJ0lSueuyLN91m3B/r7/+OmfPnuXnn3/WdygGLyEhgYkTJ/LTTz9hZmam73CqHbVaTatWrZg9ezaBgYGMGzeOsWPH8t1332ll/9ViOQ5D8vrrrzNkyJAHPsbb25ucnBwAGjduXHa7qakp9evXr7UDNCt67j755BOOHTt2V7n14OBghg0bxsqVK3UZpsGp6Hm7LSkpiW7dutG+fXuWLFmi4+iqJ0dHR5RK5V2tQKmpqXe1Fgn39sYbb/D7779z8ODBu9aMFO4WFhZGamoqQUFBZbeVlpZy8OBBvvnmG4qKilAqlXqM0LC5ubmV+z4FCAgIYMOGDVrZv0iGHpGjoyOOjo4PfVxQUBCmpqZERUXRqVMnAIqLi4mLi6NevXq6DtMgVfTcff3113zyySdl15OSkujVqxfr1q2jbdu2ugzRIFX0vIFm6mm3bt3KWiIVCtH4ey8mJiYEBQWxe/dunn322bLbd+/eTf/+/fUYmeGTZZk33niDTZs2sX//fnx8fPQdUrXQvXt3zp07V+62kSNH4u/vz9SpU0Ui9BAdO3a8q4RDdHS01r5PRTKkIzY2NowfP54ZM2bg6elJvXr1mDdvHgCDBw/Wc3SGzcvLq9x1KysrAHx9fcUv0AdISkqia9eueHl5MX/+fNLS0sruc3V11WNkhumtt95ixIgRBAcHl7WixcfHizFWDzFhwgTWrl3Lli1bsLa2Lmtds7W1xdzcXM/RGS5ra+u7xlVZWlri4OAgxltVwOTJk+nQoQOzZ8/m+eef5/jx4yxZskRrrd8iGdKhefPmYWRkxIgRIygoKKBt27bs3buXOnXq6Ds0oQb6888/uXz5MpcvX74raZTFesx3eeGFF7hx4wYff/wxycnJNG3alO3bt9faltuKuj1Go2vXruVuX758OaGhoVUfkFArtG7dmk2bNjFt2jQ+/vhjfHx8+Oqrrxg2bJhW9i9WrRcEQRAEoVYTAwoEQRAEQajVRDIkCIIgCEKtJpIhQRAEQRBqNZEMCYIgCIJQq4lkSBAEQRCEWk0kQ4IgCIIg1GoiGRIEQRAEoVYTyZAgCIIgCLWaSIYEQXgsXbt2ZdKkSfoOQyse97WsWLECOzs7rcUjCELVEMmQIAiPZePGjcyaNUvfYVQ5b29vvvrqK63vNy4uDkmSCA8P1/q+BUG4N7E2mSAIj8Xe3l7fIQiCIDwW0TIkCMJjubNrydvbm9mzZzNq1Cisra3x8vIqt6p0+/bteffdd8s9Py0tDWNjY/bt21e2j1mzZjF06FCsrKxwd3dn4cKF5Z6TlZXFK6+8grOzMzY2NjzxxBOcOXOm7P6ZM2fSsmVLVq9ejbe3N7a2tgwZMoScnJyyx+Tl5fHSSy9hZWWFm5sbCxYseKTXfPXqVSZPnowkSUiSVO7+Xbt2ERAQgJWVFb179yY5Obnc/cuXLycgIAAzMzP8/f1ZtGhR2X0+Pj4ABAYGIklS2YKoJ06c4Mknn8TR0RFbW1tCQkI4depUhWMWBOH+RDIkCIJWLViwgODgYE6fPs1rr73Gq6++SmRkJADDhg3j559/5s71odetW4eLiwshISFlt82bN4/mzZtz6tQppk2bxuTJk9m9ezcAsizz1FNPkZKSwvbt2wkLC6NVq1Z0796dmzdvlu0jJiaGzZs3s3XrVrZu3cqBAwf47LPPyu6fMmUK+/btY9OmTfz555/s37+fsLCwCr3GjRs34uHhUbbi/Z3JTn5+PvPnz2f16tUcPHiQ+Ph4/ve//5Xdv3TpUqZPn86nn35KREQEs2fP5oMPPmDlypUAHD9+HIC//vqL5ORkNm7cCEBOTg4vv/wyhw4d4tixYzRs2JC+ffuWS/AEQagkWRAE4TGEhITIEydOlGVZluvVqycPHz687D61Wi07OzvL3333nSzLspyamiobGRnJBw8eLHtM+/bt5SlTppRdr1evnty7d+9yx3jhhRfkPn36yLIsy3v27JFtbGzkwsLCco/x9fWVFy9eLMuyLM+YMUO2sLCQs7Ozy+6fMmWK3LZtW1mWZTknJ0c2MTGRf/nll7L7b9y4IZubm5e9loepV6+e/OWXX5a7bfny5TIgX758uey2b7/9VnZxcSm77unpKa9du7bc82bNmiW3b99elmVZvnLligzIp0+ffuDxS0pKZGtra/mPP/6oULyCINyfaBkSBEGrmjdvXvZvSZJwdXUlNTUVACcnJ5588knWrFkDwJUrVzh69CjDhg0rt4/27dvfdT0iIgKAsLAwcnNzcXBwwMrKqmy7cuUKMTExZc/x9vbG2tq67Lqbm1tZHDExMahUqnLHsbe3p1GjRo/9+i0sLPD19b3ncdPS0khISGD06NHlYv/kk0/KxX4vqampjB8/Hj8/P2xtbbG1tSU3N5f4+PjHjlkQajsxgFoQBK0yNjYud12SJNRqddn1YcOGMXHiRBYuXMjatWtp0qQJLVq0eOh+b4/LUavVuLm5sX///rsec+e09gfFId/RTadt9zru7ePdPv7SpUtp27ZtuccplcoH7jc0NJS0tDS++uor6tWrh6mpKe3bt0elUmkxekGonUQyJAhClRowYADjxo1j586drF27lhEjRtz1mGPHjt113d/fH4BWrVqRkpKCkZER3t7elYqhQYMGGBsbc+zYMby8vADIyMggOjq63NilBzExMaG0tPSRjuvi4kLdunWJjY29qzXszv0Cd+370KFDLFq0iL59+wKQkJBAenr6Ix1fEIR7E8mQIAhVytLSkv79+/PBBx8QERHB0KFD73rM4cOHmTt3LgMGDGD37t2sX7+ebdu2AdCjRw/at2/PgAED+Pzzz2nUqBFJSUls376dAQMGEBwc/NAYrKysGD16NFOmTMHBwQEXFxemT5+OQlHxkQPe3t4cPHiQIUOGYGpqiqOjY4WeN3PmTN58801sbGzo06cPRUVFnDx5koyMDN566y2cnZ0xNzdn586deHh4YGZmhq2tLQ0aNGD16tUEBweTnZ3NlClTMDc3r3C8giDcnxgzJAhClRs2bBhnzpyhc+fOZS0zd3r77bcJCwsjMDCQWbNmsWDBAnr16gVoup22b99Oly5dGDVqFH5+fgwZMoS4uDhcXFwqHMO8efPo0qUL/fr1o0ePHnTq1ImgoKAKP//jjz8mLi4OX19fnJycKvy8MWPGsGzZMlasWEGzZs0ICQlhxYoVZVPqjYyM+Prrr1m8eDHu7u70798fgB9//JGMjAwCAwMZMWIEb775Js7OzhU+riAI9yfJuuw8FwRBeETe3t5MmjSpxizxIQiC4RMtQ4IgCIIg1GoiGRIEQfiPQ4cOlZv6/t9NEISaRXSTCYIg/EdBQQGJiYn3vb9BgwZVGI0gCLomkiFBEARBEGo10U0mCIIgCEKtJpIhQRAEQRBqNZEMCYIgCIJQq4lkSBAEQRCEWk0kQ4IgCIIg1GoiGRIEQRAEoVYTyZAgCIIgCLWaSIYEQRAEQajV/h9qzgztu3rcBQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ct.phase_plane_plot(\n", + " clsys, [-2*pi, 2*pi, -2, 2], 8, params={'kp': 10});" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "5nss-eU_vevc" + }, + "source": [ + "### Improved phase portrait" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jhU2gidqi-ri" + }, + "source": [ + "This plot is not very useful and has several errors. It shows the limitations of the default parameter values for the `phase_plane_plot` command.\n", + "\n", + "Some things to notice in this plot:\n", + "* The equilibrium point at $\\theta = 0$ is not showing up. This happens because the grid spacing is such that we don't find that point.\n", + "\n", + "To fix these issues, we can do a couple of things:\n", + "* Restrict the range of the plot from $-\\pi$ to $\\pi$, which means that grid used to calculate the equilibrium point is a bit finer.\n", + "* Reset the grid spacing, so that we have more initial conditions around the edge of the plot and a finer search for equilibrium points.\n", + "\n", + "Here's some improved code:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ]" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUxR+H3yvpvVdIIEDovZfQO4ggIqBUAUWxgNgL+LOgqAgWFERAqkiR3kvovYXeCYEkpPdyubv5/bHJkZCEXJILCbLv8+TJZTM7O7s3O/vZmW9RCCEEMjIyMjIyMjJPKcryboCMjIyMjIyMTHkiiyEZGRkZGRmZpxpZDMnIyMjIyMg81chiSEZGRkZGRuapRhZDMjIyMjIyMk81shiSkZGRkZGReaqRxZCMjIyMjIzMU40shmRkZGRkZGSeamQxJCMjIyMjI/NUI4uhCsLChQtRKBSGH7Vaja+vL6NGjeLevXv5yp04caIcW1uxWbZsGTNnziyz+v39/Rk5cqTh7/DwcKZOncqZM2eMrmPXrl00bdoUGxsbFAoFa9euNXk7c7h9+zYKhYKFCxeW2TEqKh06dKBDhw5lfpzGjRvz1ltvlflxKiKbN29m6tSpBf7v4XulPAkODkahUBAcHFxk2cd5fxaEQqHIc02nTp2KQqEgJibmsbajvI5bHqjLuwEyeVmwYAE1a9YkPT2dffv2MW3aNPbu3cu5c+ewsbEp7+Y9ESxbtozz58/z9ttvl0n9//77L/b29oa/w8PD+fzzz/H396dhw4ZF7i+EYNCgQdSoUYP169djY2NDYGBgmbQVwMvLi8OHDxMQEFBmx3iauXXrFqdPny5TAV6R2bx5M7/++muBgujhe+VJ4HHfnzIVA1kMVTDq1q1L06ZNAejYsSM6nY4vvviCtWvX8uKLL5Zz6yo2aWlpWFtbF2sfnU6HVqvFwsLC6H0aNWpU3KblITw8nLi4OPr370/nzp1LVVcO6enpWFpaolAo8v3PwsKCli1bmuQ4MvlZtWoV7u7utG3btsyOkZ6ejpWVVZnVXxKMud9Ke6+UB2Vxf8pUfORlsgpOzkMsNDQ0z/bk5GTGjx+Pq6srLi4uDBgwgPDw8DxlVqxYQbdu3fDy8sLKyopatWrxwQcfkJqamqfczZs3GTx4MN7e3lhYWODh4UHnzp3zLfusWLGCVq1aYWNjg62tLd27d+f06dNFnkPO0t6OHTsYNWoUzs7O2NjY0LdvX27evJmv/Pz582nQoAGWlpY4OzvTv39/Ll26lKfMyJEjsbW15dy5c3Tr1g07Ozs6d+5Mhw4d2LRpE6GhoXmWHeHBctH06dP58ssvqVKlChYWFuzZs4eMjAzeeecdGjZsiIODA87OzrRq1Yp169bla1/uqf/g4GCaNWsGwKhRowzHK2zZYOrUqfj6+gLw/vvvo1Ao8Pf3N/z/wIEDdO7cGTs7O6ytrWndujWbNm0q8Hpu376d0aNH4+bmhrW1NZmZmQUes6Blspzp7wsXLjBkyBAcHBzw8PBg9OjRJCYmGso1atSIdu3a5atTp9Ph4+PDgAED8l3br776isqVK2NpaUnTpk3ZtWtXvv2vXbvG0KFDcXd3x8LCglq1avHrr7/mKZOzrLF8+XI+/vhjvL29sbe3p0uXLly5ciVPWSEE06dPx8/PD0tLSxo3bsyWLVsKvB4P8/zzz1OnTp082/r27YtCoWDlypWGbadOnUKhULBhw4Y8ZVevXk3//v1RKgsfTnOu9+nTpxkwYAD29vY4ODjw0ksvER0dnaesv78/ffr0Yc2aNTRq1AhLS0s+//xzAM6fP0+/fv1wcnLC0tKShg0b8tdffxV43ZYsWcKkSZPw9PTEysqK9u3bF3i/rl+/nlatWmFtbY2dnR1du3bl8OHDBbb/1KlTDBw4ECcnJwICAhg5cqThe8t9v92+fdtwLg8vk925c4eXXnopz3f/ww8/oNfrDWVy+tP333/PjBkzqFKlCra2trRq1YojR47kqe/EiRMMHjwYf39/rKys8Pf3Z8iQIfnGTGMo6v40pt8CJCUlMXnyZKpUqYK5uTk+Pj68/fbb+cbepKQkxo4di4uLC7a2tvTo0YOrV68W2r6wsLAi+4+x4z7A0aNH6du3Ly4uLlhaWhIQEFDkjPrly5epWrUqLVq0ICoq6pFlnyiETIVgwYIFAhDHjx/Ps33WrFkCEHPnzs1TrmrVquKNN94Q27ZtE/PmzRNOTk6iY8eOefb94osvxI8//ig2bdokgoODxe+//y6qVKmSr1xgYKCoVq2aWLx4sdi7d69YvXq1eOedd8SePXsMZb766iuhUCjE6NGjxcaNG8WaNWtEq1athI2Njbhw4YJR51apUiUxevRosWXLFjF37lzh7u4uKlWqJOLj4w1lv/76awGIIUOGiE2bNolFixaJqlWrCgcHB3H16lVDuREjRggzMzPh7+8vpk2bJnbt2iW2bdsmLly4INq0aSM8PT3F4cOHDT9CCHHr1i0BCB8fH9GxY0exatUqsX37dnHr1i2RkJAgRo4cKRYvXix2794ttm7dKiZPniyUSqX466+/8pyPn5+fGDFihBBCiMTERMP5ffLJJ4bjhYWFFXgtwsLCxJo1awQg3njjDXH48GFx6tQpIYQQwcHBwszMTDRp0kSsWLFCrF27VnTr1k0oFArx999/57uePj4+Yty4cWLLli1i1apVQqvVFnjMnPNesGCBYduUKVMEIAIDA8Vnn30mduzYIWbMmCEsLCzEqFGjDOVy+l/uay+EEJs3bxaAWL9+fZ5jVKpUSbRt21asXr1arFy5UjRr1kyYmZmJQ4cOGfa9cOGCcHBwEPXq1ROLFi0S27dvF++8845QKpVi6tSphnJ79uwRgPD39xcvvvii2LRpk1i+fLmoXLmyqF69ep7zzTmfl19+2dC/fHx8hKenp2jfvn2B1yWH33//XQAiPDxcCCFEVlaWsLOzE1ZWVmLs2LGGct9++61Qq9UiKSkpz/epUCjE9u3bH3mMnPb5+fmJd999V2zbtk3MmDFD2NjYiEaNGgmNRmMo6+fnJ7y8vETVqlXF/PnzxZ49e8SxY8fE5cuXhZ2dnQgICBCLFi0SmzZtEkOGDBGA+Pbbb/Ndt0qVKol+/fqJDRs2iCVLlohq1aoJe3t7cePGDUPZpUuXCkB069ZNrF27VqxYsUI0adJEmJubi/379xfY/vfff1/s2LFDrF27Vly/fl0MHDhQAHnut4yMDMO55NwrQggRFRUlfHx8hJubm/j999/F1q1bxYQJEwQgxo8fbyiX05/8/f1Fjx49xNq1a8XatWtFvXr1hJOTk0hISDCUXblypfjss8/Ev//+K/bu3Sv+/vtv0b59e+Hm5iaio6PzXZfc49rDPOr+NLbfpqamioYNGwpXV1cxY8YMsXPnTjFr1izh4OAgOnXqJPR6vRBCCL1eLzp27CgsLCzEV199JbZv3y6mTJkiqlatKgAxZcqUEvUfY8f9rVu3CjMzM1G/fn2xcOFCsXv3bjF//nwxePDgfMfNuY7BwcHCyclJ9OvXT6SmphZ6HZ9EZDFUQch5wB05ckRkZWWJ5ORksXHjRuHm5ibs7OxEZGRknnKvvfZanv2nT58uABEREVFg/Xq9XmRlZYm9e/cKQJw9e1YIIURMTIwAxMyZMwtt2507d4RarRZvvPFGnu3JycnC09NTDBo0yKhz69+/f57tBw8eFID48ssvhRBCxMfHCysrK9GrV698x7ewsBBDhw41bBsxYoQAxPz58/Mdr3fv3sLPzy/f9pwBNiAgIM/gURBarVZkZWWJl19+WTRq1CjP/x4e4I8fP55PbDyKnHZ89913eba3bNlSuLu7i+Tk5DztqFu3rvD19TUMojnXc/jw4cU6XkFiaPr06XnKvvbaa8LS0tJwrJiYGGFubi4++uijPOUGDRokPDw8RFZWVp5jeHt7i/T0dEO5pKQk4ezsLLp06WLY1r17d+Hr6ysSExPz1DlhwgRhaWkp4uLihBAPHl4P94d//vnH8PAVQuo3lpaWhfavosTQ9evXBSAWLVokhBDiwIEDAhDvvfeeqFKliqFc165dRevWrfPsO3PmTOHk5GS4DoWRc70nTpyYZ3uOGFmyZIlhm5+fn1CpVOLKlSt5yg4ePFhYWFiIO3fu5Nnes2dPYW1tbRAIOdetcePGhu9RCCFu374tzMzMxJgxY4QQQuh0OuHt7S3q1asndDqdoVxycrJwd3fPc6457f/ss8/yndvrr78uCnuvfvhe+eCDDwQgjh49mqfc+PHjhUKhMJxzTn+qV69eHtF77NgxAYjly5cXeDwhpHsmJSVF2NjYiFmzZhm2GyOGch/74fvT2H47bdo0oVQq873Yrlq1SgBi8+bNQgghtmzZIoA8bRRCevEsTAwZ039yU9i4L4QQAQEBIiAgIM/9+jC5xdDixYuFubm5ePPNN/P0l/8K8jJZBaNly5aYmZlhZ2dHnz598PT0ZMuWLXh4eOQp98wzz+T5u379+kDe5bSbN28ydOhQPD09UalUmJmZ0b59ewDDspOzszMBAQF89913zJgxg9OnT+eZrgbYtm0bWq2W4cOHo9VqDT+Wlpa0b9/eKO8MIJ/NU+vWrfHz82PPnj0AHD58mPT09HzT6pUqVaJTp04FLrc899xzRh07N8888wxmZmb5tq9cuZI2bdpga2uLWq3GzMyMP//8M98SXVmQmprK0aNHGThwILa2tobtKpWKYcOGcffu3XxLQyU594cpqB9lZGQYpr9dXFzo27cvf/31l6FfxMfHs27dOoYPH45andfscMCAAVhaWhr+trOzo2/fvuzbtw+dTkdGRga7du2if//+WFtb5+lPvXr1IiMjI98ySFF9/fDhw2RkZBTav4oiICAAf39/du7cCcCOHTuoV68eL730Erdu3eLGjRtkZmZy4MABunTpkmff1atX069fv3zXoTAebuOgQYNQq9WGeyD3OdaoUSPPtt27d9O5c2cqVaqUZ/vIkSNJS0vLt7Q1dOjQPDZkfn5+tG7d2nCsK1euEB4ezrBhw/Is8dna2vLcc89x5MgR0tLS8tRZ2j63e/duateuTfPmzfOdgxCC3bt359neu3dvVCqV4e+CxrmUlBTef/99qlWrhlqtRq1WY2trS2pqqsnu3eL0240bN1K3bl0aNmyYp1z37t3zeLPlfA8P94mhQ4cW2g5j+o8x4/7Vq1e5ceMGL7/8cp77tTC++uorRo4cyTfffMOsWbMeuST8pPLfO6MnnEWLFnH8+HFOnz5NeHg4ISEhtGnTJl85FxeXPH/nGACnp6cD0gDRrl07jh49ypdffklwcDDHjx9nzZo1ecopFAp27dpF9+7dmT59Oo0bN8bNzY0333yT5ORkAO7fvw9As2bNMDMzy/OzYsUKo90uPT09C9wWGxsLYPjt5eWVr5y3t7fh/zlYW1uXyFOloPrXrFnDoEGD8PHxYcmSJRw+fJjjx48zevRoMjIyin2M4hIfH48QotBzB/Kdf0Fli0tR/Qhg9OjR3Lt3jx07dgCwfPlyMjMzC3SZLuw71mg0pKSkEBsbi1ar5eeff87Xl3r16gWQrz8V1cac61LYsY2hc+fOBrG9c+dOunbtSr169fDw8GDnzp0cPHiQ9PT0PGIoMjKSgwcPFksgPNwetVqNi4uLUd9tbGxssfpHae83vV5PfHx8ke0qDsU9B2P659ChQ/nll18YM2YM27Zt49ixYxw/fhw3N7c85UrbbmP77f379wkJCclXzs7ODiGEoVxsbKzh+8/No/psUf3H2HE/x84oxz6qKJYsWYKPjw+DBw82qvyTiOxNVsGoVauWwZusNOzevZvw8HCCg4MNbwUACQkJ+cr6+fnx559/AtIbwz///MPUqVPRaDT8/vvvuLq6ApLXjDFv2oURGRlZ4LZq1aoBDwa+iIiIfOXCw8MN7cihIM8pYyhovyVLllClShVWrFiR5/+FGSWbGicnJ5RKZaHnDpjs/ItL9+7d8fb2ZsGCBXTv3p0FCxbQokULateuna9sYd+xubk5tra2mJmZGWa7Xn/99QKPV6VKlWK1L6ffFHbs3AawhdG5c2f+/PNPjh07xtGjR/nkk08A6NSpEzt27CA0NBRbW9s8Xnn//vsvNjY2dO3a1ei2RkZG4uPjY/hbq9USGxub74FY0Hfr4uJSrP5R2PXIOVZR95tSqcTJyanIdhWH4p5DUSQmJrJx40amTJnCBx98YNiemZlJXFxcqdqaGycnJ6P7raurK1ZWVsyfP7/Acjnn6OLiUuD3X9D3lvt/j+o/xo77bm5uANy9e7fQY+Vm69atvPDCC7Rr145du3aV6jlQUZFnhv6j5AxaD7uMz5kz55H71ahRg08++YR69epx6tQpQHoYqtVqbty4QdOmTQv8MYalS5fm+fvQoUOEhoYaguK1atUKKysrlixZkqfc3bt3DUsExmBhYVHsN0KFQoG5uXmewT4yMrJAb7KCjgeU6i3UxsaGFi1asGbNmjz16PV6lixZgq+vb75lk8dFzkNg7dq17N+/nxMnTjB69OgCy65ZsybPTFpycjIbNmygXbt2qFQqrK2t6dixI6dPn6Z+/foF9qWHhUFRtGzZEktLy0L7lzF07twZhULBp59+ilKpJCgoCIAuXbqwZ88eduzYQVBQUJ7l1dWrV9OnT59ihWV4uI3//PMPWq3WqMCQnTt3NjzscrNo0SKsra3zhU9Yvnw5QgjD36GhoRw6dMhwrMDAQHx8fFi2bFmecqmpqaxevdrgYVYUxen/nTt35uLFi4axJfc5KBQKOnbsWGQduVEoFAgh8n0H8+bNQ6fTFauuR1GcftunTx9u3LiBi4tLgeVyxHnOuT7cJ5YtW1ZoO4rqP8aO+zVq1CAgIID58+cb9cLn5+fH/v37sbCwoF27dly7dq3IfZ405Jmh/yitW7fGycmJV199lSlTpmBmZsbSpUs5e/ZsnnIhISFMmDCB559/nurVq2Nubs7u3bsJCQkxvGn5+/vzv//9j48//pibN2/So0cPnJycuH//PseOHcPGxsbg+vsoTpw4wZgxY3j++ecJCwvj448/xsfHh9deew0AR0dHPv30Uz766COGDx/OkCFDiI2N5fPPP8fS0pIpU6YYde716tVjzZo1/PbbbzRp0gSlUlmkYMtxZX7ttdcYOHAgYWFhfPHFF3h5eRV54wcEBGBlZcXSpUupVasWtra2eHt7G6b+jWXatGl07dqVjh07MnnyZMzNzZk9ezbnz59n+fLlj20mqCBGjx7Nt99+y9ChQ7GysuKFF14osJxKpaJr165MmjQJvV7Pt99+S1JSUp7+MWvWLNq2bUu7du0YP348/v7+JCcnc/36dTZs2JDPbqQonJycmDx5Ml9++WWe/jV16lSjl8nc3d2pW7cu27dvp2PHjgYR0KVLF+Li4oiLi2PGjBmG8rGxsezdu5e///67WG1ds2YNarWarl27cuHCBT799FMaNGjAoEGDitx3ypQpbNy4kY4dO/LZZ5/h7OzM0qVL2bRpE9OnT8fBwSFP+aioKPr378/YsWNJTExkypQpWFpa8uGHHwKgVCqZPn06L774In369OGVV14hMzOT7777joSEBL755hujzqlevXoAfPvtt/Ts2ROVSkX9+vUxNzfPV3bixIksWrSI3r1787///Q8/Pz82bdrE7NmzGT9+fLEFv729PUFBQXz33Xe4urri7+/P3r17+fPPP3F0dCxWXUVhbL99++23Wb16NUFBQUycOJH69euj1+u5c+cO27dv55133qFFixZ069aNoKAg3nvvPVJTU2natCkHDx5k8eLFhbahqP5j7LgP8Ouvv9K3b19atmzJxIkTqVy5Mnfu3GHbtm35RBdIS6R79+6le/fuBAUFsWPHDurWrWuiq1sBKE/rbZkHFOZab2y5gjwlDh06JFq1aiWsra2Fm5ubGDNmjDh16lQez6L79++LkSNHipo1awobGxtha2sr6tevL3788cd8rtpr164VHTt2FPb29sLCwkL4+fmJgQMHip07dxrV5u3bt4thw4YJR0dHg9fYtWvX8pWfN2+eqF+/vjA3NxcODg6iX79++dz3R4wYIWxsbAo8XlxcnBg4cKBwdHQUCoXC4OlSmJdIDt98843w9/cXFhYWolatWuKPP/4weFPk5mEPGSGEWL58uahZs6YwMzPL5wnyMI9qx/79+0WnTp2EjY2NsLKyEi1bthQbNmzIU8bYvvLw8QryJsvtepy77lu3buWrp3Xr1gIQL774YqHH+Pbbb8Xnn38ufH19hbm5uWjUqJHYtm1bgeVHjx4tfHx8hJmZmXBzcxOtW7c2eBYK8aBPr1y5ssjz0ev1Ytq0aaJSpUrC3Nxc1K9fX2zYsEG0b9++SG+yHCZOnCgA8dVXX+XZXr16dQGIkJAQw7Z58+YJa2tro92Lc673yZMnRd++fYWtra2ws7MTQ4YMEffv389T1s/PT/Tu3bvAes6dOyf69u0rHBwchLm5uWjQoEE+L8ac67Z48WLx5ptvCjc3N2FhYSHatWsnTpw4ka/OtWvXihYtWghLS0thY2MjOnfuLA4ePFhg+x/uL0IIkZmZKcaMGSPc3NwM91tO/ynoXgkNDRVDhw4VLi4uwszMTAQGBorvvvsuj4fSo+6Rh++vu3fviueee044OTkJOzs70aNHD3H+/Pl8xy6tN1nO/4rqt0IIkZKSIj755BMRGBhoGMfq1asnJk6caPAMFkKIhIQEMXr0aOHo6Cisra1F165dxeXLlwv1JjOm/xgz7udw+PBh0bNnT+Hg4CAsLCxEQEBAHo+1gr73hIQE0aZNG+Hs7Gz0GPQkoBAi1/yojEwZsHDhQkaNGsXx48dNYg8lU/G4ffs2VapU4bvvvmPy5Mnl3Zwyp1evXlhZWbF69Wqjyk+dOpXPP/+c6OjoYtvFFJfg4GA6duzIypUrGThwYJkeS0bmv4K8TCYjIyNTTDZv3lzeTZCRkTEhsgG1jIyMjIyMzFONvEwmIyMjIyMj81QjzwzJyMjIyMjIPNXIYkhGRkZGRkbmqUYWQzIyMjIyMjJPNbIYkpGRkZGRkXmqkcWQjIyMjIyMzFONLIZkZGRkZGRknmpkMSQjIyMjIyPzVCOLIRkZGRkZGZmnGlkMycjIyMjIyDzVyGJIRkZGRkZG5qlGFkMyMjIyMjIyTzWyGJKRkZGRkZF5qpHFkIyMjIyMjMxTjSyGZGRkZGRkZJ5qZDEkIyMjIyMj81QjiyEZGRkZGRmZpxpZDMnIyMjIyMg81chiSEZGRkZGRuapRhZDMjIyMjIyMk81shiSkZGRkZGReaqRxZCMjIyMjIzMU40shmRkZGRkZGSeamQxJCMjIyMjI/NUI4shGRkZGRkZmacaWQzJyMjIyMjIPNXIYkhGRkZGRkbmqUYWQzIyMjIyMjJPNU+MGJo2bRrNmjXDzs4Od3d3nn32Wa5cuVLkfnv37qVJkyZYWlpStWpVfv/998fQWhkZGRkZGZknhSdGDO3du5fXX3+dI0eOsGPHDrRaLd26dSM1NbXQfW7dukWvXr1o164dp0+f5qOPPuLNN99k9erVj7HlMjIyMjIyMhUZhRBClHcjSkJ0dDTu7u7s3buXoKCgAsu8//77rF+/nkuXLhm2vfrqq5w9e5bDhw8/rqbKyMjIyMjIVGCemJmhh0lMTATA2dm50DKHDx+mW7duebZ1796dEydOkJWVVabtk5GRkZGRkXkyUJd3A0qCEIJJkybRtm1b6tatW2i5yMhIPDw88mzz8PBAq9USExODl5dXvn0yMzPJzMw0/K3X64mLi8PFxQWFQmG6k5CRkZGRkZEpM4QQJCcn4+3tjVL56LmfJ1IMTZgwgZCQEA4cOFBk2YcFTM6qYGHCZtq0aXz++eelb6SMjIyMjIxMuRMWFoavr+8jyzxxYuiNN95g/fr17Nu3r8iT8/T0JDIyMs+2qKgo1Go1Li4uBe7z4YcfMmnSJMPfiYmJVK5cmdaf/ENYirTNzdacV9pXZUDjSpiry3+lUQjB5xsusOrkPWwsVCwb04IAd7vyblYeUlNT8fb2BqDJh/+w+Z0uWJqpTHeAy5fBzg58fEpXTUQSz885jBCwaHQzGvsVvgxbKoSAoUNh82b48UcYPboYuwo+WXuedWfCcbBSs2JcK3ydrcumnaUgMT2L+QdusfhIKBqtHoCutd15s3N1qrjalnPrJMIT0hkw+yApmTre7FyNcUEB5d2kAllx/A5fbrqEENCrnidf9a+Hmar8x57caLR6TofGs/9GDAeuRXM9Kq9zi7O1Ga2rudKuuiutAlxxtjF/7G3M0ukRAvTZL8VCgEBk/5buLZG9nexyIrugyFVerweNTo9GqyNTqydTq0OTJcjUZX/W6snM0qPR5fxfjyZLT6ZOL/1PqyM1U0dYfDqhsSkkZ+gMbdRrMrg3ezgAPq8tQmluiUKR3aaH8HG0pGElRxpWdqSBryM1POxQP6Z+cSculQnLTnMzOhVztZIvn61Lr3r5V1vKi7Nh8byz9AjHpw3Gzq7o5+ETY0AthOCNN97g33//JTg4mOrVqxe5z/vvv8+GDRu4ePGiYdv48eM5c+aM0QbUSUlJODg4EBsXz64byczceY17CekA+DpZ8XaXGvRv5INKWb5LaBqtnpf+PMqxW3H4uViz9rU2OJXDYFMYqamp2NpKD8BKE1fxXp/6TOhU9HdYHny4JoTlx8Jo4OvAv6+1QVlW3+1PP8Fbb4G9PVy8WCwhl5GlY9Ccw4TcTaSWlz1rxrfGytyE4tKERCSmM2P7VVafuotegFqpYEjzyrzZuTpudhbl3TxWnbzL5JVnMVMpWPd6W2p725d3kwpk/dlwJq04g1Yv6FTTnV+HNq6w3zlIQnPv1WiCr0Rx8HosKZlaw/8UCmjg60iHQDc6BLpT38eh7O6zCo4Qglm7rlLZ2Qa9gKt3o/n42cYA1HjvXzIVZkbXZWWmor6vA439nGhS2Ym21V1N+9L5EMkZWby5/DR7rkQD8EanakzsUqPcv8t7Cen0mLmPxMQkwmYOIjExEXv7R9/XT4wYeu2111i2bBnr1q0jMDDQsN3BwQErKytAmtW5d+8eixYtAiTX+rp16/LKK68wduxYDh8+zKuvvsry5ct57rnnjDpujhjKuZiZWh0rjofx8+7rRCdLtkXV3G15p2sNetT1LFe7otiUTPr9epC78em0DnDhr9HNK8zb48NiyNbWhj2TO+Bhb2n6gx04IL1GtWtXot2jkzPp+H0wKZlaZgxqwIDGj56BLDE6HbRpA0ePQr9+8O+/0lOiCDQaDbNmzSIpPYtN+obEZQieaeDNrMENK7Rd25XIZL7depndl6MAsDFXMTaoKmPbVcXGovwmqYUQjFt8kh0X71PT0451E9pgoa6YImPP5SjGLz1JRpae5v7OzBvZFHtL4x+WZUVOnwR46623MDfP+yKm0eo5GRpP8NUo9l6J5nJkcp7/O9uYE1TdlQ6B7tTyssfdzgJHa7MK3Z9NSYuvdxKVnEmf+t680sqbelU8AUhOTiZVr+ZmdCq3Y1O5HZPKzRjp9+3YVLJ0j358O9uYM6R5JV5q6YeXg5Vh+9bzEdT0tMff1abUbdfpBd9uvczcfTcB6FHHkxkvNMDavHwXnq5EJjNq7l4OT+n73xJDhd0UCxYsYOTIkQCMHDmS27dvExwcbPj/3r17mThxIhcuXMDb25v333+fV1991ejjPiyGckjX6Pjr8G1+C75BYrrkmVbXx57J3QJpX8Ot3G7iSxFJPPfbIdI0Ooa38uN//Qo3MH+c5BZDfWfsIOR+JgMa+zBjUEPTHmjxYhg+HGrWhJAQMCvZg2J28HWmb72Cp70luye3L7sb+/x5aNQItFpYtQqMEOm5r+Wec6GMWXYerV7wca9ajA2qWjbtNCGHb8TyzZZLnL0reYS62lrwdpfqvNCsUrmJ95iUTLr/uI/YVA3jOwTwfo+a5dIOYzh+O47RC4+TnKGltpc9i15ujqtt+c6w5e6TKSkp2Ng8+iEbkZjO3ivRBF+J5sD1mDyzRjmYq5S42Vngbm+Bu50F7naWeNhLv92yt3nYW+JsbV7uMxEgiWqdXpClE2Tp9ViolZirlEU+CxLSNDT8344HG7IyCJ0xEHj0tdTpBTeiU9h6PpLN5yLyCEwFYKZWGpanVUoFPep4MqK1P7W97Oj4w17MVUpWjW+VRySVhpUnwvj43/NodHpqedkzb0RTfBxNU3dJuRMZg5+X239LDJUXhYkhw/8zspi37yZ/HrhFqkZa923m78S73WvSvEoZ2ZsUwbYLkbyy+CQAX/Wvy4st/MqlHbnJzMzklVdeAeD1T77l+XknAFj7ehsaVnI03YESE6FaNYiJgV9/hddeK1E1GVk6uszYy934dN7uUp23u9QwXRsf5rPP4IsvwNNTWi5zcnpk8dzXcs6cOfx9MoIp6y+gVMCi0S1oW9217NpqIoQQbDoXwXfbrhAamwZAVVcb3usRSPc65TPDuvV8JK8uOYlSAStfbUWTsrIXMwEXwhMZMf8YMSkaqrrasHhMi3J98DzcJy0sjBdnWbrsWaMr0Ry8HkNYfBoJacaHPlErFbja5ogmS1xszA02NgKBXjz4TC7bIP1DdkLksh/S6gVZOr30oxVocj7r9GTpBBrtQ39nf374aapQSEtXlmaq7N/KXJ+lnzSNlkM3Yg37CG0Wsdt+QQEMnvgFH/atR1W3om3scoTRppAILkYkFVrO1dacmBQNAAFuNvzzSitcTCSmT9yO49UlJ4lJ0eBqa86cYU3K9T4q6vmdG1kMFYGxFzM2JZPfgm+wKJexaPsabkzuFkg9X4fH1VwDv+y+xvfbr6JWKlj8cgtaBRRsMF5eTPrnDGtO3aNxZUdWj29t2off7Nnw+uvg6grXr4NDya7/ppAIXl92CkszJXsmdzDZG1Q+MjOhYUPJCHzMGPjjj2LtLoRg8soQVp+6i5O1GesntKVSBTSoLgiNVs/yY3f4adc1YlOlAbpxZUc+7FWLZv6PfxDN6Zd+LtZseatduU/1P4qb0SkM+/MY9xLS8XKwZPHLLajmXjEM00tLRpaO6ORMopIziU7OICo5k6ikTO4nZX/O3h6bqinQsPi/hq2FmsaVHann60Cgpz01Pe2o4mpT6Ezq7ZhUNp+PYPO5CM7fK1wYAdTwsGXV+NYmW269G5/G2EUnuRSRhLlKyVf96/J800omqbu4yGLIhBTnYoI0/fvz7uv8czwMrV66tD3revJOt8DHOlAJIXjz7zNsOBuOk7UZ615vS2WXivOAvJ+UQcfvg0nT6Jg1uCH9GpbOCywPWi3UqyeJi/feg2+/LVE1QggGzTnM8dvxDGjkw4wXGpqujQ9z4IA0izV3LrRsWezdcxtU1/ayZ3UFNqguiOSMLP7Yd5M/9t8iPUuaYe1a24P3ewRS7TF6RiamZ9Fj5j4iEjMY1tKPL56tGMvMhRGRmM5L845yIzoVZxtz/hrVvFxevsqLLJ2emBRJKEkiKYP4bFGtUChQKEBBzm/y/q1Q5NqWuzyoVUrMVErMVArMcz6rH/pbpcRcrTB8NlNJy2JmagUqpQKNVk96lo7MLOl3ukZHepaOjOwf6bOelSfCOHUnodjnbq5SEuBuS01POwKzf2p62uFpb5nn5fJObBqbz0ew5VyEYWn6YRyt1Pw0pDHtqrua5MU0NVPLpH/OsO3CfQDGBVXl/R41H7ujkSyGTEhxxVAOobGpzNx5jbVn7iEEWGS7Hj5OhZyukR6Q5+4lEuhhx+rXWmNbToaqQgjS0qTlEGtraxQKhWH2ysvBkl3vmNguZ9Mm6NMHzM0lUXTzJixbBn/+WaxqQu4m8MwvB4EyWNJ7GL0eiggM9ijCE9Lp+/MBYlM19GvozcwXKrZBdUFEJWXw485r/HMiDJ1eoFRA6wBXutRyp3Mtj8cy43XgWgwv/XkUgEWjmxNUw63Mj1ka4lI1jFxwjJC7idhaqPljeNMKNxMsUzgDfzvE3fh0Kjtb4+tsha+jFe7WCnwdLanu44q5WsX1qBSuRCZx5X4ylyOTuRqZbDDLeBh7SzU1Pe2p6WVHp5rutKvuhkqp4ExYAs/+evCRbQn0sGV02yr0a+hTai80vV4wc+dVftp9HYCOgW78NKQRdo/R4F8WQyakpGIohyuRyXy56SL7r8UAMLRFZab0rf3YvFUiEzPo+8sBopMz6VLLg7nDmpSLsWFBBpYZWTo6/7CXewnpvNW5OhO7mtAuRwjo2hV27QIPD7h/H9RqSEmBYtgzwIOlk6Z+Tqx8tdXjERhRUeDuXuC/UlNT8cl2w793714eA8sjN2N5ad5RtHrBJ71rMaZdxTeoLojrUSlM33qZ7Rfv59le09OOrrU96FLLg3pl6I49Zd15/jociqe9JdveDsLBuvw9th5FckYWYxed4MjNOMzVSmYPbUyX2h5F72giHtUnZR5Nlk6fZ7nLGGN0vV5wLyGdy5HJXIlMyv6dzM2YVHT6vI90H0crXmhWifq+DpwMjedMWAJnwhJIzshvtJ6Do7UZg5tVZngrP7xLaYu2/mw47648S6ZWT3V3W+aNaIqfy+PpH7IYMiGlFUMgddyfd19n5q6rCAENKjny24uNS93JjOX0nXhemHsEjVbPax0CeK8cPGUKu8Fz2+XsfqeD6a7J9euS3dD27Xm3nzwJjRsXq6rIRGlJLz1Lxy9DG9Gnvrdp2lgQQsD06TB1qhSQsWPHfEWKGiwXHrzF1A0XUSpgycstaF2t4htUF8atmFR2XrzPjkv3OXE7jtzjvLudBZ1redC1tjutA0wbTyVdo6PXT/u5FZNK/0Y+/FiWS6QmIiNLx4Rlp9l56T4qpYLvn69P/0ZlFBbiIYrrTSZTOKW5lplaHTeiUrlyP4nTdxJYdybc4O2sVECnmu4MaV6ZdtVcCUtI58ydBI7fjmP35SiikjPz1WeuVvJut0BGt61SqiWus2EJjFt8gvtJmTham/Hbi00ey+ylLIZMiCnEUA57rkTx9t9nSEzPwsXGnJ+HNHpsD6p/T99l4oqzAKa30TGCwm5wIQQvzDnCsdtxPNPAm5+GNCr9we7cgTp1pFmgh5k3D15+udhVztp5jR93XsXH0Ypd77Qv00BmvPoqzJkD/v5SeICHoqfq9Xpu3LgBQEBAQL6cO0+yQfWjiE/VsOdKFDsv3Wfvleg8ywRWZiqCarjSpZYHnWq6m8Q75tSdeAb+dgi9gN9ebEzPChRdtzC0Oj3vrQphzel7AEztW5uRbaqU+XGL6pMyxmNKYZmRpWPr+UiWH7vD0Vtxhu2e9pYMaurLoGaV8HWSxoZbMSlMWX+BfVelVQylAsPLR1M/J757vgFVShGX6H5SBuMWneDs3UTUSgWf96tT5p7OshgyIaYUQyAZs7265CQXI5JQKuD9HjUZF1T1sSy9TNtyiTl7b2KhVvLPK61oUJb2Lw/xqBv8/L1E+v5yACFg9XgTuTTv2AHPPAMZGXm3T5gAP/9c7OrSNTo6/RBMRGIG73YP5PWO1UrfxsJITpYMwENDJWH022/FriIjS8fzv0v2Yk+iQXVRZGp1HLkZx86L99l56T4RiQ++Z4UCmlR2okv2clppHBe+23aZX/fcwMnajG0Tg3C3K4MgoSZGrxf8b+NFFh66DcDELjV4s3O1J85+7GmlrGbZbkSnsOJ4GKtO3iXOYGQOQdXdGNK8Mp1ruWOmUnI2LIEvN13k+O14qQxSCAILtYIPetZiRCv/Ei9PZ2TpeG9VCOvPhgMwopUfn/apXWYpRGQxZEJMLYZA6hAf/3ue1afuAlLEzu+er1/mhmU6vWDsohPsvhyFu50FG95oWzYRoAugqBv8/VUhrDgRRn1fB9aaKgXG7t3Qty9kG24D0KoVHDpUourWnr7H2yvOYGOuYs+7Hcr2wbh7N3TuLH3evl2yfyomuQ2qn23ozY9PoEG1MQghuBCexI5sYXQhPK8rcb+G3nz7XP0SzeZptHr6/XqQSxFJdKnlzh/Dmz4R11BK8XCNmTuvATCqjT+f9q5dIYITyjyasl5yzNTq2H7hPn8fv8PB6w/iG7nZWfB8E18GN6tMJWcrtpyPZNqWS4TFpefZv0UVZ74b2KDE3slCCGYH3+C7bVcAGNjEl+8G1i+T+0oWQyakLMQQSB1i6dE7fL7hAlk6QYCbDXOGNSlzN+LkjCwGzD7EtagUGvg6sOKVVmW75JNNUTd47hQY3z/fgIFNTGTrsG8f9Oz5QBBZWEifSzCNr9cL+v92iLNhCbzQtBLfDqxvmjYWxoQJUuDISpWkSNXZ/S8rK4u5c+cCMG7cOMweEWX7yM1YXpx3FN0TblBdHMIT0tl16T47LkVx8HoMOr2gub8zc4c3wdG6+Pn6Lkcm8czPB9Ho9EwfWJ9B5RQzpSQsOHiLzzdIuRn71Pfiq2frlYkxeHH6pMyjeZz2V6Gxqfx9PIyVJ+4Sk/LAZqhtNVcGN69E+xpuLD92h593XSc5V5RwSzMlH/euzYvNK5dYYG8+F8Eby0+j0wsmdKzG5O6BRe9UTGQxZELKSgzlcOpOPK8tOUVkUgY25iq+e75BmWf+DY1Npd+vB0lIy3psLtjG3OC/773BN1su425nwZ7JHUyXr+rgQWmWJTP7Zj91SkqBUQJOhsbz3G+HUChg4xttqeNdhjFdUlKgQQMpLMDYsVIMIoo/WOY8EFVKBYtHN3+iDaqLy8HrMby6+CTJmVqqutnw16jmJbKfyumbthZqtr7dzmBn8SSw5tRd3l0Vgk4vcLW14H/96tDTxHkUZQNq01Ee1zJLp2fXpfssPxbGvmvRhkCW1d1t+e75BlRysuLHnVdZdvROHieGFlWc+GFQwxLfD38fu8MHa84B8MWzdRnW0rQ2RMV5fstWbuVM48pObHyzLS2rOpOq0fHa0lNM23wJrU5fZsf0c7Fh9tDGqJQK1p0J57e9N8rsWDmoVCoGDhzIwIEDUakKnoka1cYfPxdropIzmR183XQHb9NGsiHKGfy/+abEVTXxc6JvA2+EgC82XqRM3yVsbWHBArC0lFKMCAE3b6KaNKnIa5mbka39GdDYB51e8PqyU9yNTytyn/8Kbaq5snJ8K7wcLLkZnUr/2Qc5G5ZQ7HrGtqtKUz8nUjK1TF55Fr3+yXmHHNDYlxXjWhLgZkNMSiavLT3FuMUniUzMKHpnIzHm/pYxjvK4lmYqJT3qevHX6Obse7cjb3aqhouNOdeiUhgw+yBz993kk9612fp2EO1zxd06eiuezj/sZfnR0BKNhYObV2ZidqqjKevOs+1CpMnOqbjIM0NFUNYzQzlodXq+23aFOdmZf1tWdeaXoY3LNAHj4sO3+XTdBRQKmDusKV0fY1ySwsjJq2auVrJrUnvTekF9+SV8+qkUiPHePSldRwm4G59G5x/2kqnVM2dYE7rX8TRdGwsiJ+bQ0qUwfrxkYH3jBlQ1fskrt0F1HW97Vr363zKoLorIxAxGLTzOpYgkrMxU/DSkUbH7++2YVHrO2k96lo7P+tRmdNuy99IyJZlaHb/uvs7s4Bto9QI7CzUf9KrJkGYlX+qQ+e8Sn6rh8w0XWHtGMnau6mbDdwPr08TPmb1Xo5my7jy3Yx+8WLWp5sr3z9cvdtoiIQQf/Xue5cfuYKFWsnRMC5qaKBWPPDP0BKJWKfmwVy1mv9gYG3MVR27G0eenA5y6E19mxxzWyp8XW1RGCHj779Ncjnx0DpvHQbfaHrQOcEGj1TNtyyXTVv7RRxAYCBoNfP11iavxdbJmbLbtzdebL5GpLTgSrMmwsoIRI+CllyQhBLByZbGqsDRT8fuwJrjYmHMhPIkP14SU7axWBcPTwZKVr7YiqIYb6Vk6Xll8gkWHbxerDn9XGz7uXQuAb7de5npUAaEbKjAWahWTugWy8c22NKzkSHKmlo//Pc/gP45wI/rJOheZssfJxpyZgxsxb3hTPOwtuBmdysDfD/O/DRdp7u/Mzknt+aR3LXJ09MHrMXSZsZdVJ+8Wa2xRKBR80a8OXWp5kKnV8/JfJ7h2P7mMzqpwZDFUwehVz4t1E9oQ4GZDZFIGL8w5zOIjJZuCNIapz9R5sES35BQZWWX8YC8ChULBZ31ro1TA5nORHLkZW/ROxqJUwqxZ0ufZsyE6usRVje8QgJudBaGxaSw6FGqiBhbAiRNSkMhFi/Ju/+efYlfl42jFL9nLo2vPhBtmIZ8WbC3U/DmiKYObVUIv4LN1F/h686ViLXm92KIyQTXcyNTqeeefM2W6nF1W1PSUQi181qc21uYqjt2Ko+es/fy65zpZT+D5yJQtXWp7sH1ie55v4osQMP/gLXrM2seJ0HjGtKvK0jEtsbOU7DtTM3VMXnmWMX+dICrJ+GVYtUrJz0Ma0biyI4npWYyYf8yky7jGIIuhCkg1dzvWTWhLz7qeZOkEn649zydrz5eJIDJTKZn9YhPc7Sy4GZPKjzuumvwYIBkFSokQFaSmpj6ybE1Pe4Y0rwzA/zZczBdevlR06wbvvCO5rruVPOeUjYWad7O9H37afY3YlPzRW03C5s3Sklgu0gCfU6fw8fQ05HszllYBLnzcS5rd+GbLZRYcvGWqlj4RmKmUTBtQj8ndJDuFuftu8sby00a/BCgUCqY/Vx97SzVn7yYyO7js7e3KApVSwei2Vdj2dhBBNdzQaKVl+r4/HyDkbkKx60tLS8PHxwcfH59i90mZvBRnrHxcOFiZ8d3zDVg4qhleDpaExqYxeO4RPlt3nvq+DmyY0JYAtweG3rsuR9H1x31sPR9h9DGszFX8OaIZVd1sCE/MYOSCY4bo2Y8DWQxVUGwt1Mx+sTEf9qyJUgFLj97hq02XykQQOduY81X/egD8sf8mZ0pgYGpqJnWtgZ2lmosRSaw8EWa6ihUK+P57aN261FUNbOxLHW97kjO0/LizbEQkn30G27blyVMmgHAg/P79EvWHUW38ea1DAACfb7jIwqdMECkUCiZ0qs6PLzTATKVg07kIXpp31JDtvCg8HSwN2ex/2nWNc4VkAn8SqORszV+jmvHjCw1wsjbjcmQyz/56kK82XSRNU3juqocRQhAeHk54ePhTtfz6tNEh0J3tE4MML6uLDofSfeY+7iWks+a1NnmSGiemZ/HqklOsOH7H6PqdbMz5a1Rz3OwsuByZzCuLT5S9GUI2shiqwCgUCl5pH8C3z0nxbOYduMUvu03oZZWLrrU96NfQG70gO6le+S6Xudha8Fbn6gB8v/0KyRll9IYQW/JlOKVSwad9agOw7OgdrkSW0Tp3165w5owhT5klcBo47eWFpWXxAz8qFAre7R7I+GxBNHXDRf7Kjlb8NNG/kS9/jWqOnaWaE9khE0JjjXsTf6aBN73reaHVCyb9c6bcl5dLg0KhoH8jX3ZOam8YA/7Yf4vuM/ex/5pxS8mWlpacPn2a06dPl6hPyjw52FmaMW1APZaOaYGPoxV349N5cd5RvtlymVkvNGBka/885d9ffa5YM9CVnK1ZOKoZthZqjtyMY9I/j8d7UxZDTwDPN63EZ9kP3R92XC2zN/kpfevgaiu5U5aV6CoOw1v5U9XVhpgUjenbIwR8/DH4+sKBAyWupmVVF3rU8UQv4MtNZehq7+UlhQeYOhUV0BBoGBGB6uDBElWnUCh4r3sgr7aXBNGU9ReKbVD8X6B1NVdWj2+Nt4MlN2NSGTD7EKeNcFpQKBR88WxdXG0tuBaVwvfZ0XSfZFxsLZg1uBELRjbD28GSsLh0hv15jHf+OUtC2qNnzVQqFQ0bNqRhw4aya/1TQptqrmybGMTwVlJsoOXH7tDrpwN0CHTjq/51UefyUPx8w0V+3WP8GF7H24G5w5pIM7chEXxRlmNrNrJrfRE8Ltd6Y/hxx1Vm7ZLC688Y1IABjU2fkXrzuQheW3pKikH0ehvq+pgmqGBJA4ntvnyf0QtPYKZSsGNie/xLkSgwH+PGwR9/SHGI9u9/EIeomITGptJ1xj40Oj0LRjajY033oncqDdu2QZ8+oNVClSpw7RqU8AEkhOCbrZeZs1cypv6iXx2GtfI3YWOfDO4nZTB64XEuhCdhaabkp8GN6GZEyISc/qlQwLIxLR9LJu7HQUqmlu+3XeGvw7cRQrIZeaaBN8828qZxZacnIiVJRSFTqyMuVUNsiobYVA1xqZkPPqdo0Oj0WJursLFQY22uwkyvYUJ3yWxh3fEbuDraY22hxtZChbW5GhtzNdYWKszKKJ9XSThyM5b3V4cQmu1qP7CJL91qe/DuqpA8dj+vdQjg3e6BRvef9WfDeXP5aQA+6lWTcUEBxWqXHIHahFQkMSSEkGw8Dt1GpVTw24uNjRqwi8trS0+y+VwktbzsWT+hjUluupKKISEEIxYcZ9/VaLrW9uCP4U1L3RYD9+5JwQwzMmD9eimPWQn5evMl5u67SYCbDVvfDirTgSorK4ulU6fCtGm8aG2N2b174FBy0SqE4Jstlw3eZWURCfZJICVTy+tLT7H3ajQKBUztW4cRD035F8SHa0JYfiwMH0crtrzdDvsyzjH4ODkZGs+Ha0K4ev+B672vkxX9GnrzbEMfqntI6YOysrJYunQpAC+++OJTkY4jS6cnNDaNm9EphMWnE5uSSVyqhpgUSfDkCKDcaSyMQa/JIOzHgQBUmrgKpXnBy47mKiWVXaxpUtmJJv5ONPFzoqqrTbkJ1TSNlu+3XWXBoVsIIXmvThtQj6nrL3Az5sHy88jW/nzWx/g8efP23+TLTVKYlZkvNOTZRj5Gt0kWQyakIokhkPJjvbsqhNWn7mKuUrJwVDOTp1eITs6k2497iU/LYlLXGryZbbtTGkoTYv7a/WR6zNqPTi9YOqYFbUx5vh98AN9+C3XqwNmzJZ5hScrIouN3wcSmapjatzYj25RdQL481/LTT7EZNgyql+47EkIwbctl5mYLoi+frctLT6Eg0ur0fLruPMuPSUb744Kq8mHPmo98wKRmauk5az934tJ4rrEvPwxq8Lia+1jQ6vQcuhHL2jP32HY+klTNA/uo2l72PNvIm87VHKjmIxnP/pfScQghiE3VcDM6lZvRKdyMkX7fiE7lTlya0Z6uaqUCZxtznG3McbW1wNnGHBdbc1xszDFXK0nT6EjT6EjN1JKYlMKvIyUHj94/7ECjMCM1U0eqRktapg7NI8IfONuY07iyJIya+DlR39fhseSezM2J23G8s/IsobFpuNiY8+vQxvyy5zoHrscYygxq4su05+qjMlIQfbnxIvMO3MJMpWDByOa0rS49A4QQ6PSi0Kz3shgyIRVNDIE0OL2+7BTbLtzH2lzFsrEtaVjJ0aTHWHfmHm/9fQYzlYINb7Slpmfpzj0jI4PnnnsOgNWrVxfbyHLq+gssPHSb2l72bHqzrenefuLjpUjOCQmwcKEU3LCELDkSyidrz+NobUbw5A4lSgpqDPmupbm5FENJqwV1yfO5CSH4evMl/tgv2aR91b8uL7Z4+gTRw1m1fx7SiL4NvB+5z4nbcQyacxi9gN9fakyPumWbX7C8SNfo2HnpPuvO3CP4SjTabDEgdBqytn6Hh70lWzesw8O5bBNOm5qMLJ1hludmTCo3olMMAigpo/CZHWtzFVVcbfB3scHNzgIXG3Ocbc1xsbEwiB0XGwvsrdRGj1lFjZUarZ50jY6kjCyuRCZzIjSeU6HxnL2bQKY2r1AyUymo4+1A02xx1MTfCXe7sjdwj03JZMSCY5y/l4SdhZo/hjdhy/lI/jr8ICZb73pezBzc0KhZdL1e8NaKM2w4G46NuYoVr7TCx9GKj9eeo3sdT/o1LHi2SBZDJqQiiiGQbt6X/zrOweuxOFqbsWJcKwI9TTcACSEYu+gEOy9FUd/XgTXjWxeqvh8H8aka2n67m1SNjt9fakKPuiZcHpw+Hd5/HypXhitXpFxgJUCr09P7pwNcuZ/M6DZV+KxvbdO18VGkpsJbb0m/ly0rse0TSN/7V5suMe+AJIi+7l+PoS0qm6qlTxQztl/hp93XcbOzYNc77Ytc/pq+9TKzg2/gZG3GtolBj+WhU57Ep2rYfD6CdafDOXY7zrDdXKWkQ6AbzzbyoVNN9zKZmVh98i4ZWh3V3e2o7m6Lk03RLx45gudWTCqhsancjk3ldkwat2NTiXhEgD+FQlryqepmS1VXGwLcbKTPbjZ42ltWGPspjVbP+fBEToXGc+J2PCdC4/Nkos+hkrMVzfycea6JL60DXMqs/UkZWYxZeIJjt+OwNFPy+0tNCItLY8r6C4Zkr+1ruDFnWBOj+kimVsfI+cc5fDMWBysz1EoFsakaetb15LeXmhTcBlkMmY6KKoZAmp5/cd5RzoQl4G5nwapXW1PZxXS5vO4nZdB1xl6SMrS836OmwRW7vPhu22V+3XODmp52bH6znenyKaWnS8tMsbGwfTu0a1fiqvZdjWb4/GOolQq2Twyiqputadr4KE6cgFatpJmh+fNh1KhSVSeE4MtNl/jzKRdEGVk6es7az62YVIa38uN//eo+srxGq+fZXw9yMSKJTjXd+XNE0wrzoCxr7sanseFsBOvO3ONyrhATdhZq6vk64Olgiae9JV4Olng6WOHlYImHvSUuNuYluo+nrDufZ5bBxcacqm42VHK2xsPOAgszFVqdICYlk9uxqYTGpj1S8ADYWaqp6mZLgKsNVXMJHn8Xm8e+1GQKhBCExaVz8k4cJ27HczI0niv3k8n9xK/jbc+4oKr0qudVJnaO6Rod45eeJPhKNGYqBTNfaISDlRnjFp8gLXu5tbm/E3+NbmFUrsTo5Ay6/biP+LQHRtlWZipOf9a1wO9IFkMmpCKLIYCENA0vzDnClfvJVHK2YtWrrfGwN90b6coTYby7KgRztZLNb7ajmvtjeLgXQkKahrbf7iElU8tvLzamZz0TLkXs3y95ZvmW3kNv1IJj7LkSTZdaHswbYUKD70cxbZqUe83aGk6dknKwlYKHBdG0AfUMgdaeJg5dj2HovKMoFPDva22KXI6+EplM358PoNHpn9prdjkyibWnw1l/5h7hRQgQM5UCD3tJKHk6PBBLnvaWWJopSc7QkpSRJf1OzyIp++/LEUnciC5+dGZ7SzVVXG3wc7HB39UGfxdr/F1tqOJig6O12X9evCZlZHHmTgI7L91n5Ym7pGfHx/J2sGR02yq80KwSdiZ2ANBo9Uz65wwbQyJQKqSXq+ZVnBnyxxHuJ0kzV40rOfLXy80Nx45ITMfe0gwbiwfL/tfuJzN+6akCcwL+MbzgROOyGDIhFV0MAUQlZfD8nMOExqZRw8OWFeNaGTVtbAy5vbkaV3Zk5autjTZ6y01qairu2VGUo6KiSmxg+cP2K/y8+7rpZ4dMyPWoZLrPlAy+l41pYXID97S0NBo0kIx0z549i7W1Neh0UqqR3buhUSM4fBgsLEp1HCEEX2y8xPzsuFbfDKjH4Kfw4T5xxRn+PX2POt72rHu9TZHLxX/su8lXmy9hba5iy1vt8HP5bxgTP4qC+qReLzh7N8GwDHU/MYOIxAwikzKITMwgOiWTsnr6WKqV1Pa2p3WAqzS78wQJHlONlUURn6phyZFQ/jp8m5gUKY6UnYWaoS0qM6pNFTwdTPdSrdMLPlkrZaYHyU2+d31v+v68n7hUaZanro89S15uweXIZCYsO8V73WsyqFklQx0pmVreXx3CppD8KT4Kc1yQxZAJeRLEEEBYXBoDfz/E/aRMGvg6sHRsS2wtSm5Mm5t7Cel0/3EfKZlaPu1Tm5fbFt9TqjTeZLlJTMui7be7Sc7UMvvFxvQy5exQDkeOQI0a4Oxc4ipypvFretqx6c12JRKQhVHotQwPh/r1peW+iRNhxoxSH0sIwf82XmTBwdvA0ymIopMz6fxDMEkZxvV/vV4wdN4RjtyMo4mfE/+80sqk339FpCT3d5ZOT1RyJpGJ6UQmZhKRmE5kYgYR2WJJo9Vjb6XG3tIMO0vpt72V9DlTq+ebLZfz1dmwkgMTOlanU033CvmiZAymGiuNJSNLx9rT9/hj/03DbJtaqeCZht6MbVeVWl6mee4JIfh26xV+3yvl83u9YwC96nox8PfDhhkqN1tzYlM16AU083di5aut89Wx4OBtvt58yWC8D9IS5+lPu+Z7UZHFkAl5UsQQSNOIg+YcJj4ti1ZVXVgwqpnJ1rqXHg3l43/PY2mmZOtbQcUOfmjKG3zGjqv8tOsagR52bHnLxLNDkyfDDz9ILvfTppW4mvhUDe2/20NShtbkAkKn03HkyBEAWrZsmTfi74YN8Mwz0ufNm6Fnz1If72FB9O1z9Xih2dMliJYdvcNH/57DxlzFznfa4+Vg9cjyd+PT6DlzP8mZWt7tHsjrHas9ppaWD4/sk2VAlk5PzU+3Glzb21V35bUO1WhZ1bnCz/wUxeMWQzno9YI9V6KYu+8mR289MIhvV92VcUFVaVvN1STXdnbwdaZvlTw1h7X0o1sdD0YuOF5gmILd77Qv0O7yZGgc45ecJCr5QWT0RaOaERSYN+BtcZ7fFSeEpUypqe5hx8JRzbExV3H4ZixvLD9N1iNiUhSHoc0r0zrAhYwsPe+vDnksuWIK4+W2VbCzVHPlfjKbi5EV2SiCgqTfP/0E9++XuBonG3NDfKbvt18lpZiB1x6FSqWiTZs2tGnTJv9Dp29feOMNcHUtlVdZbhQKBZ/1qW3IOfT+6nN8s+UyGq1p+taTwOBmlWji50SqRsfU9ReKLO/rZM2UZ+oAMHPnVS6EP7nJXI3hkX2yDDBTKankZEX3Oh6se70Ni19uQasy9Ix6GlAqFXSu5cGKV1qx7vU29KnvhVIB+6/FMOzPY/T66QD/nr5b6mfKax2q8eWzdVEoYPGRUJYcCcXNtmCzjpUn7xa4vYmfM5vfCqJJZSfDtu+2ly4ljiyG/mM0qOTIvBHNMFcr2XHxPu+tMo1wUSgUfPtcfazMVBy9FcfSo6FF71RGOFiZGZYqZu28ZnTgM6Po2xeaN4e0tFLNDIGUW62Kqw0xKZnMLkZenlIzfTqEhECPHiarUqFQMKVvbcZkX/ff995g4O+HuBVTfCPWJxGlUsFX/euiUirYduE+Oy8WLZSfa+xD9zoeZOkEE1c82clcKyIrX23NnGFNaWDiGGsy0nPkl6GN2ftuR0a29sfaXMWliCQmrjjLM78c5Nr90iWlfqmlHzNfaIg6+34qzJNs1YkwtIWIL1dbC1a80pLu2YbT5+4lcfxWKRJvl3hPmQpLqwAXZg9tjEqp4N/T9/h93w2T1FvJ2Zr3e0heStO2XCYsLs0k9ZaE0W2rYG+p5lpUCpvOmXB2SKGAL7+UPv/2G4SFlbgqc7WSD3vWBGDegVsmu15arZaVK1eycuVKtNoCZpwsLaXErjlERprkuAqFgk/61Oa3FxvjYGVGyN1Eev+0n5Unwso8iWJFoKanvUEMTll/gTTNo2f7FAoFX/evh6utBVfv/zeSuRZGkX2yDHCzK52DgEzRVHK2ZuozdTj0QSfe7R6Ik7UZlyKS6PPzARYdvl2q+75fQx/mDm+ChVrJrZg06nrbY2eRVxRFp2jYezW60DrUKiVzhjelVVUpJ+CE5adJzsgqtPyjkMXQf5QutT348lkpLsqM7Vc5E5ZgknqHt/Knmb8TaRodH/17rtwegvaWZoxpVxWAWTuvmnZ2qEsXablMo4GvvipVVV1re9CqqgsarZ5vt+Y3+CwJmZmZDBo0iEGDBpGZmT+oWh42bpTc7OfONcmxAXrW82LLW+1oUcWZNI2Od1eF8Mby03kSMv5XeatLdXwcrbiXkM6sndeKLO9ia8G3z0lJN/88eIvDN0r+5lqRKVaflHnicLQ25/WO1dg2MYigGm5kavV8tu4CoxceJzq55N93p5oe/DW6ObYWas6HJ1HZxQYfx7z2eDO2Xy2ynjnDm+Bpb8H9pEz+t+Fiidoii6H/MIObVaJ3fS+0esGby0+bxG5FqVQwfWADLNRK9l+LYcVx42ZOlEol7du3p3379iiVpul2o9r442Blxo3oVDaGhJukTiDv7NCff8LNm6WoSsEnfWqhUMDGkAhOhsYVvVMRFOtahoRAUhJMmAAHDpT62Dl4O1qxbGxL3u0eiEqpYGNIBL1m7ef47dKfX0XG2lzN//pJtkDzDtziUkRSkft0ruXBkOaVEAImrzxLUgnfXCsyZXF/P61U5GvpbmfJwpHNmNK3NuZqJXuuRNNj5j52Xy65fWXLqi4sH9sSJ2szLoQnYWkmpTjJ4UJEEsFXoh5Zh72lGT8NaYxCIdkZbS2BLansTVYET5I3WUEkpmfRa9Z+7iWkM6CRDzNeaGiSenNiqdhZqNk+KahI75qy4pfd1/h++1WqutmwY2J707ow9+gBFy7AokXQsWOpqnpv1Vn+OXGXBpUc+Xd868fn9isEvPACrFwJ7u5StOpKlYrerxicvhPPW3+f4U5cGkoFTOhUnTc7VSvX9C1lzauLT7L1QiSNKzuy6tWiv8//ejJXmaePK5HJvPX3aUPE8WEt/fioVy2jIkkXxPWoZF6ad4zIpAxaVHEmPCGNsHgpaKethYo9kzsWuTT6zZbL/L43OyXO20FYopG9yWQkHKzMmDW4IUoFrDl9j7Wn75mk3tFtq9CwkiPJmVo+WlN+y2UjWvvjaG3GzehU1p81zbkZmD8frl0rtRACmNwtEGtzFWfDEthgylmsolAoYMECKf5QVBT07y+lHzEhjSo7sfmtdgxo7INewE+7rvHC3CPlalNW1kx5pjY25ipO3UngbyNmR20s1MwY1AClAlafKtmbq4xMRSLQ0461r7cxOLMsPhJK318OcP5eyTwnq7nbsWBUM4OTTptqbjhbSxGpUzJ1vLb0ZKHG1DlM6lqD2l72xKdl8d7qkGI9l2Qx9BTQ1N/Z4Ob9ydrz3Ikt/UNKpVTw3cD6mKukqdJdlx49jVlW2FmaMTbbduinXdeLvFmKhbd3iZO2Poy7vSWvZed2+3bLZdI1j9GzyMYG1q0DFxc4eRLGjsXUoX9tLdTMGNSQWYMbYmeh5mRoPL1m7WfdGRML1AqCl4MVk7pJzgTfbLlklN1EU39nXmkv9YEP15wjKvnRqSpkZCo6lmYqPu1Tm0Wjm+NuZ8H1qBT6zz7InL03SuTFXMvLnu+fl2ZN/z4exojW/liqJZly/HY80zZfeuT+5molMwc3xFytJPhKNCuO3zH62E+UGNq3bx99+/bF29sbhULB2rVrH1k+ODgYhUKR7+fyZdMYsj5JTOhYjaZ+TqRkannzb9PEH6ruYcfo7LeCb7defqQRc2pqKm5ubri5uZGaalp37BGt/XGyNuNWTCrrzpTBrItOB3/9JdnflIIx7ari42hFeGIG8/aX3A4pPT2dhg0b0rBhQ9KNneXx94dVq0ClgqVLpez2ZUC/hj5sfqsdTfycSM7U8tbfZ5j0zxmTxlmqKIxo5Ucdb3uSMrR8XcQgncPELjWolf3m+sHq8ptRNTUl6pMyBVKWY2VZEVTDja1vBxlCSUzbcpmX/jxKRGLx+0Lv+l6GF8fZwTd4v2egIWTanwdvs/7so8f4Gh52fNBD8uL9zgjj6xyeKDGUmppKgwYN+OWXX4q135UrV4iIiDD8VK9evYxaWHFRqyTFbGep5kxYglGeMMYwvkMADlZmXItKYXUhAbJyiImJISYmxiTHzY2thZqxQdLs0M+7r5l2dgjgvfdg5Ej4+ONSVWNppuK97NAEv+29wf2kks0M6PV6zp49y9mzZ9Hri3GuHTrAzJkwfjw8/3yJjm0MlZytWTGuJW91ri4tz566R69Z+9l7Nfo/8/AH6Z76un89KYnr6XscvF503zZXK5n5QkPMVUp2X45ifnZU7yedEvdJmQIpq7GyLHG2Mef3l5rwzYB6WJmpOHQjlh4z9xeYS6wo3ukWSMdAyWvtj323+LBnrQf/++cMlyMf7bgwsrU/bau5kpllfF98osRQz549+fLLLxkwYECx9nN3d8fT09Pw8zgipFZEfJ2smTZAcvP9Nfi6Sdx8HazMmJCdamDGjqvlFlhuRCt/nG3MuR2bxlpTzw698oo0o7Jxo5S3rBQ808CbRpUdSdPoShx3xtLSku3bt7N9+3Ysi7uM9/rrMHs2mJsmkW9hqFVKJnatwYpXWuHjaMWduDRGzD9G1x/3sfjwbVL/IzNFDSo5MrylHyAtQRvT/wM97fiwl/Tm+vXmSxy68WQ99AqiVH1S5j+DQqFgcPPKbHqzLfV9HUhMz+L1Zad4b9XZYkWsVykVzBzciCquNoQnZrDr0n1ezV5iztIJhv157JGhPJRKBd8/3wB7S+Pzcz5RYqikNGrUCC8vLzp37syePXseWTYzM5OkpKQ8P/8l+tT3ZlBTX4SQsnHHp2qK3qkIhrXyw8fRisikDEP+qseNjYWacWU1O1SjBowYIX3+5JNSVaVQKPi0T20AVp26WyJjQ5VKRdeuXenatWvxhX3udAVarXQ+0YUHNSstzfyd2fxWO0a18cfWQs31qBQ+XXeBll/v4n8bLnL7PxDB+p3ugbjbWXArJpXfgo0LcDqytT/9G/mg0wsmLDvN3fgn29i8VH1S5j9HVTdbVo9vzYSO1VAq4J8Tdxm/5CSZWuNflh2szPhjeBNsLdQcvRVHmkZL3/pSMNno5EzGLzn5SLskTwdLPutb2+jj/afFkJeXF3PnzmX16tWsWbOGwMBAOnfuzL59+wrdZ9q0aTg4OBh+KpnYDbkiMKVvHaq62hCZlMEHa4pncV8QlmYq3ulWA5CS8CWklV5glYThrfxwsTEnNDaNNSbymjPw6adgZga7dkERgrooGld24pkG3ggBX2y8WH5LR2++KQWV7NEDEssud5aDlRlT+tbh8IedmNq3NlVdbUjO1DL/4C06/hDMqAXH2Hs1ulzz3ZUGe0szw6D7W/ANbkanFLmPQqFg2oB61PWxJy5VwyuLTz5eo3oZmTLGTKVkcvdAFoxqjoVaya7LUbyy+GSxVg+qudsxIzsMxaLDobQKcCHQ0w6AQzdimbXr0TZBPep6PfL/uflPi6HAwEDGjh1L48aNadWqFbNnz6Z37958//33he7z4YcfkpiYaPgJK0U6hoqKjYWan4Y0wkwl5YVZdsx4i/vC6NfQh5qediRnaPn1cebhyoW1uZpX2j+YHTJVklpAMkAeO1b6PGVKqb2x3u9ZEwu1kqO34th2oXgBy7RaLZs2bWLTpk2lS33w5pvg5ganTkk52dLKdnbCztKMkW2qsHNSexaOakbHQDeEgD1Xohkx/xhdZuzlr0O3H2lsHZGYXiFnk3rX86J9DTc0Oj2frD1vlMC1NFMxZ1hTXGzMuRCexIcmeDEpL0zWJ2X+c7Sv4caCkZLLfPCVaMYuOlEsQdStjicTu0gv21PXX+StztUxy45hNmvXdXZdKnnAx9z8p8VQQbRs2ZJr1wo3HrawsMDe3j7Pz3+Ruj4OvNddslv4YuPFUifeUykVfJCdh+uvQ6HlNu3/Uks/XG3NCYtLZ82pRxt0F5uPPgILC9i/H3bvLlVVPo5WhpAA07ZcKtb0cWZmJn369KFPnz6lS31QsyZs2wYODtI5DRwopSApY5RKBR0C3Vkwqjl7JndgVBt/7CzU3IxJZcp6aQlt6voLBc6wHLkZS6cfgpmw7FSJ45mUBQqFgi/61cVCreTQjVjWGhlSwMfRil+y8wiuPRPOnwdulXFLywaT9UmZ/yStq7myYFQzrM1V7L8Ww8t/HS/WTOgbnarRrbYHGp2ezzdcYFK3B05Qbyw/bZIXpKdODJ0+fRovL+Onzv7LvNy2Cu2qu5KRpeeN5adLbfzcvoablIdLp2fGjrzTl0qlkqZNm9K0adMyDTFvba42GNr9vPt6sYz2isTHB8aNg3btwAQieXyHANzsLAiNTWPRoVCj9zPptWzUCDZtAisr2LIFhg2TQgk8Jqq42khLaB915ot+dQhwsyElU8vCQ7fp9MNemn21kyFzj/DZuvMsPnybA9di0AsptUmfnw8wfP4xDt+IrRAzKpVdrA3xvD7fcNHoOEKtAlz4pLfkLfP15ktGeaVVNB7X/f008F+9li2ruvDX6ObYmKs4eD2WUQuPGe1IoVQqmPFCQ6q723I/KZMdF+7TrporAGkaHeMWnSgycXJRPFHpOFJSUrh+XVqCadSoETNmzKBjx444OztTuXJlPvzwQ+7du8eiRYsAmDlzJv7+/tSpUweNRsOSJUv45ptvWL16tdEeaU96Oo6iiErOoOfM/cSmahjZ2p+pz0h5l27FpOLvYo1CUby0EWfDEuj360EUCtj0Rjtqez/+a5au0dFu+h5iUjKZNqAeQ5pXNl3lGo1kO1TM61IYK47f4f3V57CzVBM8uQMutuWUiXvbNmmpLCsLXnsNfv21XJohhODA9Rj+OnSbXZejjF6NrOpmw7h2VXm+iS+qckwDkqXT0++Xg1yMSKJrbQ/mDmti1D0khGDyyhBWn7qLk7UZ6ye0pZKz9WNosYzM4+VkaDwj5h8jJVNLc39n5o9qhq2FcV5ft2JS6ffLAZIytPRr6M2ey1EkZUgiqG8Db34a3DDP/Vac5/cTJYaCg4PpWEBqhBEjRrBw4UJGjhzJ7du3CQ4OBmD69OnMnTuXe/fuYWVlRZ06dfjwww/p1auX0cf8r4shgD2Xoxi18DgAPw9pxJmwBP46dJttE4MIcLMtdn2vLzvFppAIOgS6sXBUc1M31yj+PHCLLzZexMfRij2TO2CurphvWDq9oO/PB7gYkcRLLSvz5bP1yq8xq1fDqFFScMZu3cqvHdmkZGq5EZXCtagUrkUlcyMqhf3XYsh8xGyfAsmLpK63A/6u1lR2scHP2Ro/F2t8HK0eS760SxFJPPPLAbJ0gpkvNOTZRj5G7ZeRpWPQnMOE3E2klpc9a8a3LnGeJ5n/JkII9EIaN/RC+tHpBXo96HI+Z293sjbH0qxi9p/Td+IZPv8YyRlamvg5sXBUM+wszYzaN/iK9LwSAoY0q8TyXOlwvni2LsOyQ13Af1gMlQdPgxgCmLLuPH8dDkUB5HSI7wbW5/mmxfemux2TSpcZe9HqBcvGtqB1gKtJ22oMGVnS7FB0ciZf9a/Liy38it6pOMTGwg8/QKdO0KVLqao6cjOWwXOPoFTAxnKaTTMQGyul7aigNP1yJzEpJbNJUSkV+Dha4ediTeVsgdTU35nGlZ1M3MoHCYTtLdXsmNQeD3vjYu+EJ6TzzC8HiEnRFPimK/PfJyVTy+WIJC5GJHExXPp9PSqFjCwdxXG4VCsV1PCwo56PA/V8Hajn40BNLzss1BVDIIXcTeCleUdJytDSsJIji15ujr2Rgui34Bt8u/UyaqWC1gEu7LsmLS3bmqvYNbmD4X6TxZAJeRrE0KHrMUzdcIGr9/MarA5pXtkQpLG4fLbuPIsOh1Lf14F1r7chPT2d2rUl9+OLFy9ibV32SwDzD9zifxsv4u1gSfC7HU07O/T++zB9OrRoAYcPl3rZ7PWlp9h0LoLmVZxZMa7lIx+A6enpdMkWYDt37sTKyqpUxy6Uq1clQ/FXXy2b+otJaqaWOlO2AWBppqS6ux3VPWyp4WFHDQ9b/F1s0AtBWHw6oTGphMalcSc2Tfodl1ao/diswQ3p19C42Rtj0er09J99iHP3EulU050/RzQ1WtQcvRnLi/OOotULPupVk3FBASZtW1nw2PrkfwghBBGJGVwMT+JSjviJSOJWZBzh814DwHvMbJRmxQtiqVSAUqFAW4ByUisVBHpKAqmujwP1fR0I9Cw/gXT+XiIv/XmUhLQsGvg6sGh0CxysixZEQggmLD/NppAInG3MMVMpuJ8kvST1ru/Fr0MbA7IYMin/dTEkhODjtedZdjS/e31NTzu2vh1UonpjUjJpP30PqRodvwxtRMcAB2xtpSW3lJQUbGxsStVuY8jI0hE0fQ9RyZnMGNSAAY19TVf5/ftQpYqUAX7TJijG0mtB3I1Po/MPe8nU6vllaCP61PcutGxqamrZX8vISCnTfXQ0vPOOJPzK2ZgzOSOLozfjqOFhh6+TFUql8QJUrxfcT84gNDZHIKVyJiyBg9djcbAyY/vEIKNnb4zl6v1k+vx0AI1OX+xZ1kWHb/PZugsoFfDX6Oa0q+5m0raZmsfSJ/8D3IlNY/P5CPZdjeZiRBIJafmjKOs1GYT9OBCAr9adomEVTwI97bC1UKNUKFApFagUCpRKabYz7zbpnhBCcC8hnfP3Egm5m8i5e4mcv5dIfAHHM1NJM0itqrowvJU/lV0er63axfAkXvrzKHGpGur62LN4dAucbIqOkJ+m0TJg9iEuRyZT1c2Gm9EPPMoWjmpGh0B3WQyZkv+6GALpxvl++xV+3ZM3eq4COPd5d6ON2x5m5s6rzNx5DT8Xa9a90hQnB+n6Pc7B8tc91/lu2xVqe9mz6c22pl1yePdd+P57aNoUjh0r9ezQjzuuMmvXNbwdLNn1TodC7UW0Wi0bN24EoE+fPqjVJft+HokQkgD64APp78GDYeFCKbTAf4QsnZ4B2bM3HQKlWCimXpLKmc63s1CzfVIQXg7GzZgIIXhvVQgrT97FwcqMDRPaPvaHVHF4LH3yCeVmdApbzkey+VwEF8LzZjRQKRVUd7eltpc9tb3tqeVlT2V7FZU9nAHTjpXGCCSFArrV9uDltlVp5u/02JZor0QmM/SPI8SmaqjlZc/SMS1wNkIQhcWl0efnAySmZ9Hc35ljt+MA8Ha0ZNekDmRlpMpiyFQ8DWIohz/23eSrh7JvLx3TgjbVSmbzk5qppf13e4hJ0fBxtyqM6yx5qj1OMZSQpqHVtN2kZ+lYNqYFrUt4LgUSFSXNDqWlwYYN0KdPqapL1+joMmMv9xLSeatzdSZ2rWGihpaCJUsko2qtVkr0+u+/4OhY3q0yGdfuJ9P75wNotHrTex4iLZcN/P0wZ8ISCKrhxl+jjBdcGVk6Xph7hLNhCdT0tGPNa62xNpdFxpPAtfvJbD4XyZbzEVyOfBDDTaVU0LKqM93reNK4shPV3G3zGTk/zlm2HIF0NiyRlSfDCL7yIDVPfV8HXm5bhV71vAxBDsuSa/eTGfLHUWJSMqnpaceSMS1wNcK79p/jYby3OgQrMxVudubciUsHYHz7qoxv42P087tiutjIlAtjg6oyfWB9cg/Vu0sR3dPGQs1b2XFXyisqtaO1OQObSMtj80wd0M7dHSZMkD5PnVrqqNRW5io+6iXFm/l9742Kka/qpZdg82aws4PgYCnG0l0TB7MsR6p72PFut0AAvtx4kbA4015ztUrJ9883wFytZN/VaFYcNz6ivaWZijkvNcHV1oLLkcm8u+rJjVD9X0cIwaWIJGZsv0KXGXvp+uM+ftx5lcuRyaiVCtrXcOObAfU49lFnlo5pyfBW/tT1cSh3by+FQoGvkzW963uxcFRzdk4KYkjzyliolYTcTeStv88QNH0Pv++9QWIBS2ympLqHHX+Pa4m7ndTfX1l80qgsAs839aVFFWfSs3S42VmSs3o+Z99NrkcZH0xYnhkqgqdpZiiHrecjGL/kFAJwtTXnxCddS1xXlk5Ptx/3cSM81rAO/rhtCm7FpNLph2CEgJ2T2lPNvfjhAgolJkZK1ZGaCuvWwTPPlKo6IQSD5x7h6K04etXzZPaLTfKV0el07N+/H4B27do9nsSYZ85Az56SLdGwYZAdy+u/gE4vGDL3CMdux9GiijPLx7Yslj2SMeTMutpaqNn6djt8nYxf8jp+O44hc4+g1QsmdqnBW12qF73TY6Zc+mQFIDEtixUn7vD3sTBu5oqCbK5S0q66Kz3redG1lodRRsE5PDwzpDK35EJ4EmfDErgSmUxalo4srR6tXo9GJwr8nKUTZOn0mKuUBHraUcfbnjo+DtTxtsfdrmjbuNiUTJYevcOiw6EG701rcxXPN/FlVJsq+LuW3fh9IzqFZ389SHKGlpfbVjEkti5qn54z96PR6elb34sNIREA2CgyufjNc/IymSl4GsUQwD/H7/De6nMALB3TnDbVSm7AuflcBK8uOFRuYghg7KIT7Lh4n6EtKvN1fxPH8pkyBSIipAzwlUu/zHIpIoneP+1HLygwNEG5Gavevi150f3xh0kicFckQmNT6TlrP2kaHZ/2qc3LbauYtH6dXjBozmFOhsbTppoLS15uUSx7jCVHQvlk7XkA3u0eyOsdq5m0faXlaTOgvnY/mQWHbvPvqXukZ0fuN1cr6VDDjV71vOhUy91oN/HcaHV6zt6+T9NqkgNF12+3cTNBW6BnWElxs7Ogrrc9dbwlcVTH24FKzlYF9sdMrY712Wlicpb7FAroUsuDCR2r0aCSo8nalZvtFyIZt/gkAL+92Jie9YrOGpFjo+psY44CiE3VoM9MI2zmIFkMmYIcMXThVgS1/T3LuzmPldeWnmTzuUiqutqwfWJQiQPWCSHoM3M3O74ajYO1GaGXQx6La31ujt6M5YW5R6TcUR90Kr9Iz0by6drzLD4SSk1POza+0TbPtU9LS6NZs2YAHD9+/LFfSwNCSAEan3uu3D3NTEGO4LBQK9n0ZjvTziAiGdL2+mk/GVl6vny2Li+1LF7sq5zYRQDvdK3BG50rzgxRhemTZYheL9hzJYoFB29zIFfKlJqedoxs7U+fBt7FdjaJTMzg6K1YQu4mcjYsgfPhiaSlpRH51yQAPEfMQGlmiautBQ0rOVDH2wFHazPUKiXmKgVmKqXhs1qpxEytxEypwEytRK1UkJqp42JEIhfCk7gQnsSN6JQCV/PtLNXU8bYnqIYbQ5pVzufNJYTg0I1Y5u2/yZ5suyKlQkop9FbnGmUS1Hba5kvM2XcTWws16ye0oWoRAYAztTq6zdhHaK6lblkMmZAcMVTp7X+o5utGhxrudAh0o3kV53Jf7y1r4lM1BE3fQ3KmtkSDd25yAguqlQp2TGpPlTKcZi0IIQTP/HKQc/cSmdS1hiGHVEUlPlVDh++DSUzP4n/96jC8lX95Nyk/v/wCb7whBZ1ctAie8Jx/QgiGzz/G/msxNPB1YPX41iaPWJ0T+8raXMW2t4OKnXIjxzsS4O0u1Xm7SwUwsv+Pk5yRxcoTd/nr8G1CY6UHrVIBXWt7MKpNFVpUcS7WLF+aRsvW85GsPnWXQzdi84kTWws19XwcaFDJkQa+0m8vB0uTeHalabRcikjmYngi5+8lcSEikauRKWhy2eZYqJUMaOzL6Db+VPewy1fH9agUftp1jfVnwwGo62PPzBcaUs09f9nSoNXpGTrvKMduxVHT045/X2tTZET2Y7fiGDTnsOFvWQyZkBwx5D9pJcLsgVuslZmKVgEudAiUBFJFdnstDQsO3uLzDRdxtjFnz+QOOFgVf+o3h1ELjrHnSjS963nx64uNTdhK41h35h5v/X0GV1tzDrzfyfRi9uxZ+OILyej42WdLXV1OrBkHKzOCJ3cwKvbGY2XBAsmAPC0NXF1h/nwpv9kTTERiOt1+3EdyhpbJ3WowoZNpRbNeL9mEHbsdR8uqziwbU3z7pBx3fYA3O1dnYpfqcpTqMuBmdAqLDoey8kQYqdkZ1u0t1QxuXplhLf2KJWT1esGRW7GsPnmPLecjSMuVsb2ejwONKjvSwNeRBpUcqOpqa3KbtUeh0eq5HpXC6bB4lh+7w/l7D9z/21V35eW2VQiq7pavTZtCIvh47TkS0rKwUCv5qFcthrfyM2lfjErKoNdPB4hJyWRAYx9+eL5BkfV/sDqEv7MdFWQxZEJyxNCdyBjORWkIvhLF3qvRhmiXOVR1taF9oBsdA91pU80V1WPszGVJlk5Pz1n7uR6Vwpi2VfjECGO2wrgcmUTPWfsRAta93qbM1psLI0unJ2j6HiISM5j+XH0GNSt+qpFH8skn8NVX0LAhnDpV6rhDWp2ePj8f4HJkMsNa+vHFs3VN005TcvkyDBkiGVgDvP46fPcdPMERiP89fZeJK85iplKw9vU21PF2MGn9obGp9Ji5n/QsHZ8/U4cRrf2LXcfcfTf4erMkiN7oVI1JXWvIgshEnAlL4Jfd19h5KcqwrZq7LSNb+zOgsU+xwhvcjE5hzal7/Hv6HvcS0g3b/VysGdDIl/6NfCrUi7QQguO345l/4BbbL0Ya0n8EuNkwqk2VfOd/PymDySvPsj87HUa76q58/3wDkwYwPXwjlhfnHUEvMCr8RWJaFp1nBBOTogFNGqE/ymLIJBRkQC25USYTfDWKvVeiORkan8fArbq7Le92D6RrbY//xAAVfCWKkQuOo1Yq2D4xqMi124LIsSmITMrAZtB0ejfy57eX8ntKlTVz9t5g2pbL1PCwZdvbQab9fmJjJc+ylBSTeJYBHLoRw9A/jqJUwKY321HLy5709HSeya57/fr15Z/6IDMTPvoIZsyQ/q5bF/7+G+rUKd92lRAhBK8uOcm2C/ep6WnHugltTJ6uIGfWz8pMxZa32pXIO2fe/pt8uUmKC/Z6xwAmdwsst/GmwvXJEnDsVhw/775meLArFNAp0J1RbarQppqL0dc2MS2LDSHhrDl1l1N3Egzb7SzU9GngxXONfWniV3hAw4pifxUWl8bCQ7dZcTyMlEwpM7yDlRlDmldmRGs/QwBRIQSLDofy9eZLZGr1OFqb8XX/evQywujZWHJmQ83VStaMb01dn0e/oKw/G86by0+jzErn1oznZTFkCozxJkvKyOLQ9RiCr0Sz5XwkielSPIYmfk6836Mmzas4P84mlwk5S1yda7rz58hmxd4/t7dJpYmrUFtYEjy542N/K0pMz6L1tF2kanQsGt2coBomTnPw4YfwzTfQpAkcP17q2SF4YMjeooozf49rSVpaWsX03Nm2DUaMkMINHDwo5W17QolJyaT7j/uITdUwvkMA7/eoadL69XrBi/OOcvhmLM38nVgxrlWJlkb+PHCLLzZeBCRj1ve6l48gelK9yYQQHLwey0+7r3HslhS9WKVU0L+RD691CCjWi19UcgZz9t5kyZFQMrPz4CkVEFTDjeca+9K1todRS/PGXEshBInpWcSkZBKVnElMioaY5EyiUzKJSc4kJiWT2FQN9pZmVHKWEhPn/imOq39yRharTt5lwcHb3Mk2TlYpFTzTwJuPe9cyBEa8HpXCxBVnOHcvEYABjXyY2q9OibzqHkavF4xbfIKdl6Ko5GzFxgntHnkOQghGLjjOnnOh8jKZqSiua31iehZz9t5g/sFbZGRJN0Snmu682z2QWl5PrjvyjegUuv+4D61elEhE5L7BB88O5nBoCiNb+zP1mcc/e/D5hgssOHiboBpuLBrd3LSVR0dLs0NpabBxI/TuXeoqc+ct+3VoY7rXdmPFihUAvPDCCxUr9UFUFOzdC88//2Dbhg3QsSPYmtY7q6zZej6SV5ecRKmAla+2pomfabPbh8Wl0WPmPlI1Ot7rEchrHUrmLp9j1wfwSlBVPuhZ87ELIq1WW3H7ZAEIIQi+Es1Pu69xOnv2xkyl4PmmlRjfPqBY9kAFiaCannY819iXfo28jYrrk5uHxZCVlTXn7iWy50oUB67FcDc+ndjUTDRagTbBGm2cDfpMNUKrQp+lQmhViKzsH6FAZZOJyjYTlU0GattMVHYZONiDn6skjHLEUquqLo8Ufzq9YNel+8w/eIsjNyXh6GJjzrfP1adLbQ9Asj/6adc1ZgdfRy/Ax9GKHwY1oGVVl2Jdg4JITMuizy/7CYtLp0std+YOa4pSqTBE0X44dldYXBqdvtnC9e8GymLIFJQ0ztD9pAxm7brGiuNh6PQChQKebejDpK41iu1BUlH434aLzD94i+rutmx5q12xPG1y3+BbT9/ilb8vYG2u4vAHnYv1lmIK7sSm0eH7PegFbHs7iEBP03pB8N57kt1M8+Zw5IhJZody8pb5OFqxc1L7Ir0qKgwXL0K9euDmBp99BmPHgtnj/b5Lw6QVZ1hz+h5VXG3Y9GZbk6fDWHH8Du+vPodSAUvG5I8pZSw5y24AY9tV4aNetf4TS/SmRq8XbL94n1/2XDMYCluolQxpXplX2lc1OnccSCJo7t6bLDkaanjxbVTZkbe71CCoumuJr3/usXLCX4c4FJpC1H0Fmih7NNF2ZMXYkhVjR1aMHUJbsnFAYaZF7ZCOhW8clpVjsawUh8o2kyZ+TjzfxJfe9b2we8SMTsjdBN5bFWKIPTSkeWU+6V0Lm+zQAidD45i44ix34tJQKGBcUFXe616z1La05+8lMuC3Q2i0et7rEUiHGu5MWX8eO0sz5hewYjFz8xkm9m4kiyFTUNqgizejU/hhx1U2ZUfENFMpeLGFH290qlbhY908TGJaFh2+30N8WlaxDT9z3+DJyckMnHeKy5HJfNCzJq+2DyijFhfO+CUn2XI+kkFNfZk+sIFpK8+d0X7rVujevdRVpmt0dP4hmPDEjCfLpXr/fim32Y3sJMDVqsHHH0uxiexMLELLgMT0LLr/uI/IpIwymckUQjB5ZQirT93F1dacjW+0w9OhZManiw/f5tNsQfRy2yp80lsWRDno9IJN5yL4dfd1rtyXHuDW5ipeaunHmHZVijV7U5AIaljJkYldSy6CcuxQ91yJYmdIKGvf7gKAffMzpN/2JyuqYBsZS0sIDARnZ7C2zv+jUEjDUXi4FBc2PBwSEgpug5lzChaVYrGsHIdD9Vj6Nnfl+Sa+tKzqUuASbkaWjh+2X2HegVsIAf4u1sx4oSGNK0szqCmZWr7YcJEVJyTPrgGNfPju+QalFkTLj93hwzXnDGmjBJKX35nPuuVrZ1x8Ai7OTrIYMgWmikAdcjeB6VuvGIJ12ZirGBtUlVfbBzxR8YoWHwnl07XncbSW3L0drY1z93546nfzpTjeXRWCp70l+97rWCZBux7FydB4nvvtEOYqJQc/6ISbnYmF6ddfSx5Vr7wijUomYGNIOBOWncZcKZjR2QEPe0saN25c8VMfaDRS1Or//U9aRgPp2jz7LMyaJc0aVWD2XY1m+PxjAKZP9oskdAf8dohLEUk08XNi+diWJb4fckeqHtysElOfqfNYxhedTsepU6cAKlSfzNLp+ff0PX4LvsGt7HQZdhZqRrT2Z3TbKkZlRs+hLETQrZhUFhy8xfYL9wmPziL9lhtp12xJu5hjo5YC2KBQCGrWVFCvnuSfkPNTtSoU91KnpUmi6Px5Kd3g3r1SVJA8SkCpx7pGJHYN7xDQII2BTXwZ2MS3wFWNQzdimPzPWcITM1ApFbzesRpvdKpmSO667sw9Jv1zFp1e8EwDb2YMalDi+F16vWDliTA+W3/BsCSZw5a32uUzRSnO81sWQ0Vg6nQcB67F8O3WywYjs/q+Dvz+UhO8HZ8M7wutTk/vnw5w5X5ysd6UHxZDagtL2n67h+jkTH58oQH9G/mWZbMLpP/sg5y+k8CbnaoxKTtZZ0UmJ2/Z4Svh5ZrapMQkJ0uBGhcuhKtXpdhE4eEPls3u3QMPDygLexOtVkowGxoKiYnQoUOxUop8/O85lh69QxVXG3aUIhp7YdyOSaXvLwdIztAyqo0/U/qWfAZq2dE7fPSvlEqnmrstM19oWKT3TWmpaAbUGVk6Vp4I4/e9Nw0u7Y7WZoxqXYWRbfyLFS8tOSOLX3Zf56/Dt/OIoLe7VKd9DbcSiaCQuwn8vvcGW85Hoom2Jfm0HynnfREaNZAKSNdywIAUnn3Whh49yvadIT5emsTduxd27hSEhDw4J7VTCrYNwrCtF0abunYMalqJvg2882SyT0zP4rN151l3RgrE2MDXgR9faGiwQdpyLoI3lp9Gqxf0rufFzMEN8+xvLNejkhk05whxqZp8/ysoOK0shkxIWeQm02dP2X627jzxaVm42prz69DGtDCBkdnj4OD1GF6cdxSVUsHWt9oVGKX0YdLS0qhdW4pRdPHiRaytrQ3pBep427PxjbaPfUp/U0gEry87hZO1GYc/7Fx2b9B6vTRfbYLzuxieRK8ZO7j7x2u42llw8+rlJy/1gRBw4gTcuSMtl4F0jfz9JQP0unWlWE0NGki/69cvWrgIIa0D3LghiaxataTtV69KEbLv3ZOOkUO1arB+/YNyRZCSqaX99D3Epmr4ZkA9BhcR66Qk5M7H9POQRvRt4F3iuoKvRPHuqhCikzMxUymY2LUGrwQFlFn8s4Lu7/IgNVPLsqN3mLv/JtHJUiw4V1sLxgVVYWgLv2Kly9DrBf+evse0LZcNyUpLI4KEEBy4HsPve29w4Gos6Tc8SD7pR0boA5UTEAC9eqXxzz+1sbQsv2t5+jTMmQNLlwpSUrLPU6WTZosah9KomY7pz9Wnnm9ekb3+bDif/HuOpAwtVmYqPu5dixdbVEahULD9QiSvLztFlk7QvY4HPw9pXKIZ0JvRKQyff4y78el5tvep78UvQ/MG85XFkAkpy0StYXFpjFt8kksRSaiVCj7rW5thLU0bwbOsyEl8GlTDjb9GNStRm+NTNbT6ZhcZWfoCE5KWNVqdng7fB3M3Pp2v+9djaAvTP+BYs0ZK5DprFnTqZJIqcwzZKzlbsf3tJ8iY+lFcviwZnCcnF/z/CRPg55+lz+np0K2btNSmUkFYGNy8KW0HKUXITz9Jn2NjJXEE0gxU5crSMaKiJIG1aRO0bWtUE3Pc2D3tLQl+t0OZiOdvt17mt+AbWJurWD+hDf4uNkQkZpTI6SIuVcNHa86x9UIkAM39nflhUIMn1oHjUSSmZ7Ho0G3mH7xFfJoU2sTbwZJXOwQwqGmlYn9X5+8lMmX9BU6GxgNQxdWGT3rXolNN92KPdVqdni3nI/l97w3O3Uoj+UxlUk77oU2UvgelUgpJNmGCNERUpOE/OVkKGTZnDpyUdDpODe9h3/0MSgWMbVeVt7vUyDMGRSSm884/Zzl0IxaAjoFufDuwPu52luy6dJ/xS06h0enpUsuDX19sVKIYXlFJGYxccJyLEQ+iZbvYmHHik655vh9ZDJmQss5an67R8d7qEDZk53kZ1NSX//WrW+HtiG7HpNL1x71k6QQLRjajY033EtXzydpzLDlyh0413Qv0Bihrch5wAW427JjY3vRh8CdMgF9/hfbtpQV6E5CSqaXrjL1EJGbwWocA3jNxDJxyQ6+XRM2ZM5IRw5kz0s/duzB+PMyeLZWLiSl4zUCplMTO0KFSJHCQZoyOHAE/P/D0lMpERcHAgZKIOnbM6PWHjCwdnb6XjNg/7lWLsUFVTXHWedDq9Ayff4xDN2Kp6mZDgKsN6Vl6lowpWcwmIQQrT97l8/UXSNXosLVQ8/kzdRjQ2OeJeOkqivtJGSw6fJtFh0JJzg4M6O9izWsdqvFsI59izzwkpGn4fvsVlh29g15IaZfe6FyNl9tWKfZDOyNLx6qTd5m77yahURkkn6lM0uHq6NIkOyVnZ8m58tVXpUnRkqDV6TkfnsTliCRSMrWkZupI02hJ1WhJy9SRkqklTaMz/J2p1eHnYkNtb3vqeNtT28sefxcbo8a9kyclUTRwqIYNERcMzyw/F2um9a+Xx5ZOrxfMP3iL6duuoNHq8XawZNnYlvi72hB8JYpxi0+i0erpGOjGby81KdHzLjkji1eXnOTg9VjDtr2TO+CXK4CpLIZMSFmLIZAGrD/23+SbLZfRC2hQyZE5LzUpsVfJ4+KrTRf5Y/8tGlV2ZM341iU2IOz0QzBCwM5J7U2eKbwokjOyaD1tN8mZWuaPbEqnmh6mPcDdu9Lct0YjiaH27U1S7bYLkbyy+CRqpYJNb7YzfXiAikRsrHT9chLBZmRIMzrp6dJ2Hx/pGvv5Ge+2r9FI9kq5n0JabZH2Sv+cCOO9VSE4WZux772Oj3Q/LikxKZn0mrWfqOQHKX9Wj29FE7+SB2+9E5vGpH/OcCJ7pqN3PS++6l/XaAeIioQQgmO34lh0JJRt5yMN0f8DPex4rWMAvet5FdumS6cXrDgexnfbLhtmlvo28OajXjWNcrfP1Oq4F5/Onbg0bsemsvPifY7diidTqyf1ojfJB2qiSZDqqVEDPvgABg8uftYaIQTXolI4eD2Gg9djOXorluQMbfEqeQhrcxW1vB6Io9re9tTwsCtSoOy6dJ9P1p4nIjEDgBeaVuKj3rXy2GNdiUxm/NKT3IxOxcPeguVjW1LVzZYD12IYs+g4GVl6gmq4MXdYyQSRRqvntaUnDalTXmpZmS+frWf4vyyGTMjjEEM57L8WzYRlp0lMz8LV1oLfX2pMU/+KG706KjmDtt/uQaPVs2Jcy0faPKWnpxMUFATAvn378oTrz1lyG9K8MtMG1CusijIjR9S1DnBh2diWpj/A+PHw++/SHPiuXaWuLiMjg8GDB3MmLAHR8S2aBXjwzysli2Ask838+ZLH25o1D0RXAWh1errP3MeN6FTe7FydSV1NH+IgNVPLC3MP50uYufjl0kX01ukFv++9wY87rqLVCzzsLfj++Qa0q156y9ycPgnw999/Y2lp+he5NI2WtafDWXT4tiG+DUjLfy+3q0LXWh4lugdO3YlnyroLBqeWGh62fP5MXVoFFD6ehcWl8dOua9yJSyMsLo2IpIw83lhCQMYtVxL31iIzSnpueHnB1KkwevSjNffDY2VMuuDQDUn8HLoRa7BfysHeUk3Dyk44WplhY6HGxlyFtYUaWwsV1uZqbC3UWJursLFQo1IquB6VwsWIJC5kzyg97JUFUoTp1gEujG5bhfYFJGnNITkji2+3XmbJkTsAuNlZ8EW/OvSo++Aeik7O5MV5R7h6PwU3OwuWj21BNXc7Dt+IZfTC46Rn6WhbzZU/hjct0ZK/Xi8Y+PshTt1JwMpMxYlPuhjiHcliyIQ8TjEE0hvcuMUnuByZjJlKwdRn6vBiC78yP25J+ejfcyw7eoeOgW4sGFV4NOdHeZscuxXHoDmHsVArOfRBp8cef+leQjpB0/dIsUjebGvyxJzcuSPNXGi1cOgQtGpVqupyX8vA9/8lAzOjEhjKFEJqqmRQHRkpzRSFhDwyBtKWcxGMX3oKG3MV+97raNL+mpSRxagFxw22KrlZPd40UbDP3U3krRWnuRktuZq/2KIy44Kq4udScg+wsvQmuxWTyuLDoaw8GWaYBbEyU/FsIx+Gt/IrcWT/uFQN0zZfYuXJu4Dkcj+xaw2GtfIr0tNJq9PT/rtg7iWkIwTokiwROiVqxzR0yVbEbq1Hxm1JZFpbSzmc33rLuCgbua9l6y82cS8l7yPa0kxJM39nWge40qaaC3W8HUpsGK/V6bkVk8rFiCQuhksC6UJ4omF2DB4kaX2usW+hYuX47TjeXx1i6FM963ryeb86hvhNsSmZvDjvKJcjk3G1NWfpmJYEetpx7FYcIxccI02jo2VVZ+aPbFaiwKYZWTpaTttFQloWr7YP4IOekumALIZMyOMWQyC9Ab27MoRN56RAjUOaS/FCTJ0s0hTczl7m0ouC4zzk8KjBUghBv18PEnI3kYldavBWl+qPpe25eWP5aTacDWdAIx9mvNDQ9Ad4+WVp9qF3bylNRynIyspi4cKFAOiqBfHNtuvYW6rZ9U4H08dLelq4dg26dpVc76dMkV7hCyF3fx3dpgqf9a1tsmb8e/ouH645Z3Dhzk3Lqi78Pc40M5fpGh3Ttlxi0eFQw7agGm4MbV6JLecjGduuarHc8XP3yZEjR2JWyijjGq2efVejWXwklL1Xow3b/V2sGdbKn4FNfIvlHp8bISQvsS82XjQ89Ac28eX9HjWNvn+EgGdHx7N9jxalZRaOHS6jtk8n+WQV4vcGgk4aq595RrrtXYx0FL4Smcyv2y/w8wjphanSxFWYWVrRsJIjrQNcaB3gSmM/xzJ9FgghuB2bxpIjofmStA5tUZnhrfwKXDrMyNLxy+7r/L73Blq9wN5SzfSB9Q2zRPGpGl768ygXwpNwtjFn6ZgW1PKy52RoHCPmHyclU0tzf2fmj2pWLK+/HHZdus/Lf51ArVSwbWIQAW62shgyJeUhhkDqkL/vvcn0bZcRQhqo5g1v+tiDExrD68tOsSkkgmcbejNzcKMCyxT15piTZdjV1pwD73d67AbkZ8MS6PfrQdRKBYc+7FTsfEJFcu0a1KwpGQmfOye5j5sArU5Pv18PciE8iX4NvZlVyPWXMYKVK2HQILCxkVz0PQq3H9t/LZphfx7DXKVk9+T2+fIilYaIxHR+2H6V1afu8vDovOrVViZdOj90PYY5+26y71p0vmM1r+LEW51r0DrA+IztpSE6OZM9V6LYfSmK/deiSdXoAMm7qmOgO8Nb+RH0iCUbY7gTm8bHa88ZMtPX9LTjq/71SjTj9srENNbcvIxNrQg0UXbEbGqQJ1L0Tz9Jjo1FIYTgyM045uy7QfCVaPSaDEMcsX+PXqdLg+KFBDAlyRlZrDxxl4WH8iZp7VXPi5fbVqFhJcd8+1wMT+KDNSGE3E1EoYCv+z+YtU5My2LY/KOE3E3E0dqMJS+3oK6PA6fvxDN8/jGSM7R0re3B3GFNStTnRi88zu7LUbSr7sqi0c1JTk6WxZCpKC8xlEPwlSjGLzlFepaOZxp4M/OFhhXONuT8vUT6/HwAlVJB8OQOBbruFiWGck87l1Ucl6LICcJYmqSZj+Srr6BRI+jZ06T+syF3E3j214PoBSx+uTntqrsRk5JpyCYtYyRCQIsWcPx4Xlf+AosKhv4hZZ1/vokv3z1v4pQuSA+VaVsuGR7cAL5OVux/r6PJxcmd2DSWHgtl2dE7+Qxyq7jY8E73GvSs62XSOEVCCC6EJ7H7chS7LkdxNiwhz//d7Cx4tqE3w1r6U9mldGJTq9Mz78AtZu68SkaWHnO1krc6V2dcUNViB//T6wXLjt3hmy2XSU7Vk3CwOklHA0BI10ahgCVLJKfGR6HTC7aej2TOvhuE3JXslZQK6FzNgXlj2gEVI4AlPEjS+ueBWxy9FWfY3riyI+90C6TNQ1HZtTo9n62/wLKjki1R7rRLielZjJh/jDNhCdhbqlkypgX1fR05fSeeF+YcQaPT81GvmowLKn6aptsxqXT7cR8anZ45w5rQqpK1LIZMRXmLIZAE0Zi/TqDVC0a18eezPrUrnFvsS/OOcuB6TKFRqY2xKfhj302+2nyJau627JgY9NjP8Z/jYby3OgQ/F2v2vNOhwonOHPR6PZcuXQKgVq1aKJVKpq6/wMJDt/FztmZcUFWmbbnM7nfa425fsT0SKxx79kiG7mq1FPsooPAB+fSdePrPPoRSAdsnBlHNvWw8+vZejebDNSGEJ0heO0OaV2LagPplcqxlR0P56N/zBf7P3lJNh0B3+jbwopq7HT6OVoaZ6oL6ZG40Wj1RyRlEJmZwLyGdIzfj2HM5isikjDzl6vk40KmmO51ruVPX28Ek92DI3QQ+WH3OEJOmdYALX/WvRxXX4ouMm9EpvLPyLKfvJKCJsiN+fVMyYvMKtUWLYNiwwuvIiY79x/5bhtkWC7WS55v6MqZtVdysqFDRvB/m/L1EFhy8zYaz4Wh00nLuqDb+vN+jZp4ZfSEE07dd4bdgKS/hq+0DeL9HIAqFguSMLEZm28bZWapZNLo5jSo7GdLJqJQK/h7XkmYlmAX9ftsVftlzHR9HK9aMaYSnm7MshkxBRRBDAGtP3+PtFWcAeLd7IK93fDBzodHq0QtRrrGJcqJSW5opOfh+fiNoY8RQUrabe0qmlgWjmtExsGSxi0pKmkZL8692kZKpLZMcVHnQaMC8ZG7NBV3L5IwsOv2w1xB1F+CLZ+syrGXFNb6vsPToAbt3w59/PvqpBoxbdILtF+/Ts64nv73UpMyapNML3vr7NBuzEz6XVZyjH7Zf4efd140qq1SAl4MVlZ2t8bKBH1+S7FxmbD5LvEZJRKIkfiKTMohJycy3DAeSIXTb6q50rulOx5rueJhQvKdmapmx4yoLDt5CL6R0HB/3qsXAJr4letFad+YeH605R0qmDk1IVWJ2B6LVKFEoBCJ7VujPPyVvscI4fCOWD9eEcDtWEkFO1mYMb+XP8FZ+hjGzoqU2KYyo5Ax+2nXN4ElW3d2WHwtI/fL73ht8s+UyIGW3//LZuqiUClIytYxecJxjt+OwtVCzcFQzmvg58faKM6w7E46HvQWb3mxX7BnudI2OLjP2ci8hnXEtvfi4fxOjnt8VzwClAiOEQK8vH+34bCMfPu0jGWp+t+0Kfx+TOuDV+8n0+/UgOy7eL5d25dA6wIV6Pg5kZOn5K5dRZm5cXV1xdS1cYNhbmjG4WSUA5u2/WSbtfBTW5mr6NZRSICw/HlY2BxFCSljq6/sgk3sJePhangyNJzNLl6fM9uzIwzLF5Oef4cqVIoUQwOTugSgUsOV8JCF3E8qsSSqlgl+GNubNTtJL0FebL7H4SMH3WWnImal4GEu1Enc7C3wcrXCzs8BcpUQvJE/MwzdjWXXyHkore5RW9vy44xqLDoey4+J9zt1LJDpZEkLmKiWVnK1o7u/M8FZ+LBzVjNOfdeWP4U0Z3LyySYXQnitRdPtxH38ekIRQv4be7JzUnuebViq2EMrI0vHRv+d46+8zJCUq0W5rReTWWmg1Svr0ge+/l+r7/ffChVBSRhYfrjnHkD+OcDs2DQ97C/7Xrw6HPujMxK418r08FjVWVgTc7Sz58tl6LBjVDDc7C65FpdB/9kFmB19Hl+s5+Wr7AKYNqIdCIWWcf/Pv02i0ekkAjW5Gq6oupGRqGT7/GMdvx/N1/3pUc7flflImb/99Jk9dxmBlruKT3lKanT8P3jJ6P3lmqAhyZoaqvbsKncoSvZBcDRtWcqJhZUcaVXIk0NOuREnnSsL0rZeZHXwDpULygFh7JhyNVl9gXpbHTU6uL0drMw6+38kQ66E43I1Po/13wej0gs1vtqOWlx0XwpOo4WH3WIzHc+yfzFVKjnzUuVhZrY2md2/YvBnGjJFi25SS34Jv8O3Wy/m2qxRw8tOuT2RgvSeJSf+cYc2peyaJBVQUDy89fP98AwY2MV2S46F/HCElU0sNDzsCPeyo4WlHDQ9bPO0t84gIIQTRyZnciUvjTlwaobFSvJ3olEzc7CzwcrDE08EKL3tLPB2kH2dr8zJfeo5OzuR/Gy8aoiP7Olnx5bN1/8/eWYdHdXVd/DcaVyJAFHeCuzsU15YCxUoptFhbWqi7UaSFlqKltFCKtri7BQhOIAHi7p6M3e+POzNJIDYToX2/rufJQ5iZK7lz7j377L32WvQwM8sckpjFrN8DCIxJJy/CmZwjbUhLVKBUwjffwJw5oNXCzp0wblzR+zh6L4739twmLl3M2r7Y3pu3BzbEvhIEO58VkrNULNp1i8N3xUV5UdYv+2/FMG/bddRagW71XVk9oRXWSjk5Ki0v/3qVcw8TcbRWsO/1LuSotAxdeZ4ctdYsPS9BEJi43p8zd8OJWD72vzJZRcAQDHnN+xOpRdEkPgu5lGYeDrTwcqSFtyMtvBzxcLSqFM6LIAjM+eOG8WY3wEYp49r7fZ9pqUyrE+j93SlCk7J5f3BjpnWpZdZ+XtsSwL5bMTT1sEel0REUl8mVd/tUWdv44B/Ocicqnfeea8T0rhVfiuDiRejUSVRLfvhQtJAoB1KyVMz/8wanHiQ89d53Y/wYVYGT5f87XLsmdgC2Ld4qJiI5m17fnUKtFSq/vIr4DPh47z1+uRCKVALfv9CSwc3NN3V9ct//ND5iWaDTCfx5NYIvDgSSnqtBKoGpnWuxoF99s3RrAPbejOadnbfIzNOivtqAuFN10Okk1Ksn+nW1KmXtmZiZx0d/3zWWNn2rWfPVqOZ0+JcYcpuKoqxfPhrahFEFrF9OByUwc/M1ctRaWvs4seGltjhYK8hVaxn780VuRabR3NOB7TM7cvB2LPO23UAigU1T2tGtvmnioA/jM+j39WFClo75r0xWkTg0tyv+i3tzaVFvNkxuw5xedelazwV7Szl5Gh1Xw1JYdy6E17Zcp8vXJxm44ix7rkeh0T6tF1IeXA1L4fSD+Kdez1JpufAosYgtqg4yqcTYAbD+7GPUJv7tosJsFJEpYqr+TlQ6QXGZgFj/ryo831YMTrb6h1Mpa4WOHUWSrloN335b7t052SjZ8FJbFvSt/1ST2t9PBM3/wQRs2gRt2ojmUbrix7KXszXj9d2PXx9+UDljpgAkEgkfDmnM82290Akw748bHKugMvm/MRB6GJ/B82su8c4u0S29mYcDf7/WhfcGNzZbwO/d3bd5fet1MjJAe7gjMSfqotNJmDRJjI9LCoQEQWBXQCR9lp5m360YZFIJM7vX4dC8bv+zgRCIY2dsGy8Ozu1GGx8nMvM0vLn9JrN+DyAlSwVA9/qu/Da9HfaWcq6FpTBuzUXiM3KxVMhYNb4VDlYKbkWm8em+ewxv6cH49t4IAszbdoOYtJxSzqAw6rrZMaFj2TmT/2WGSkFpBGqdTiAkKYsb4anciBB/AmPSjX45Xs5WzOhWhzGtPSska6PS6PjiQCC/XAh96r1xbbz4enTldJmUFblqLV2+PkliZl6hrEROTg4DBw4E4ODBg4XsOAx4nJDJ0JXnjSJfBbHv9S4micCVBxm5atp9fpwctZbtMzua1dFQKgxdSxYWEBoqmoiWEbm5uUybNg2A9evXF7I+OBucwOtbAkjNEa+hVAJ3Pu5v9ur4/zUSEsRusowM2LpVNJMq7qMZeXT75iQ5ai0/T2xN/yZl/z7NhVYnsOBPkWyqlEnZMLktXeo9G55JSWOyspCn0fLjyUf8eOohaq2AlULGG/3qM7mTr8neZAaE6sti92LS0aRaoznUibgwC5RK0SdY/ycWi6jUHN7dfduYpW1Uw55vRjWnmWfZn11leVb+0/Gk9Ut1e0s2T2tHPXex4zIwJp2J6/1JzMzDt5o1O1/tRDVbC07ej2fKL1cAWD6uBQOaVmf06gvciUqnlbcj217paBIlJTohGQ+3av+VySoC5nSTpWWr2XwplA3nQ0nWR8QuthZM7eLLhA4+FVIr/utGFG/vuEVuAV8ZR2sF197rW6FaIObAwGGp52bL4XndkEolZe6QMFgdPIk/X+lIu1pV59O2cMdN/rwaychWHiwd26LiDyAI0LmzWDJ74w1YsqTMm5Z2LaNTc5i80d+YVZvWxZf3Bz8td/AfyoDPPoP334fatcVW+xKUlQ0tvfXcbDk0r1uV3IcarY7ZWwI4fDcOK4WMX6e1q5zgvRRUdQfUpcdJLN5922j/0KuhG58Ma1Iu8ctDd2J4c/stMvM0yGOrE7+nJRlpUmrUEC3rOpQi/n0uOJFZv18jPVdTLh2jf0s3WVlQ0PqloA0HiIHn+LWXiE7LpX0tZ36b3h6FTGrsaLRSyPjrtc5YymU898NZMnI1TOtSy9hIVBaYMn//q8pkZ86cYciQIdSsWROJRMKePXtK3eb06dO0bt0aS0tLateuzerVqyv9PB2sFbzWqx7n3+7FR0Ma4+FoRWJmHt8cekDnr07wzaH7T5ntmYphLTzY+3oXfJzzVw2p2WouPHy2pTKAFzt4Y2chJzg+kxP3ny7plYSBemXTJ1GVZTLAKPp44HYMaTnqUj5tBiQS0bAIRBJ1dtFdPEVBqVSybNkyli1bhrKI9vyajlbse70rfvrV6K8Xw4hONS3F/B/0mD8fXF3h8WNRoboEvNytNg5WCoLjM9l9PapKTk8uk/L9Cy3pXt+VHLWWKRuvPCVeWBUobUxWFJIy83h7xy2eX3NJP8FasHJ8S9a/1MbsQEgQBFadfMjM3wLIyNXg+KgJIZtbkZEmpV07uHq19EBo88VQXtroT3quBj8vRw7M6crsnnWrrLHmn4pmng7serUTTWrak5ip4oW1lwjU6z1l5mkQELsML4ck89m+ewDM61OfLnVdyFFrmfnbNZxtlXynFzVdfy6EQ3diKuVc/1XfVFZWFn5+fqxcubJMnw8JCWHQoEF07dqV69evs3jxYubMmcPOnTsr+UxFWCllTO5ci1Nv9eC7MX7UdbMlI1fDj6ce0fmrE3x5MJA8jbb0HRWDeu527J/bjR4N8ollXxXRVVTVsLdUML6DGEysPm16+/g7AxvS5gl5/KJKZ5WJll6ONHC3I1et468blTSxDRwIH3wA/v5lc3DUQ6FQMG/ePObNm1esB5RSLmXHq53wdrZGrRVYsO3GM5OF+FfDxkZ02ASxfaiERLqDlYJZPUTO3NIjD8hVm39vmwILuYyfJ7amQ21nMvM0TFh3udImjOJQljFZHqg0OtadfUyPJafYdlWUvXihnTfHF3RncPOaZnOdVBodC3fc4tvDDxC0ElxudOLmDl90OgkvvQSnT0PNErjpaq2O9/bc5v2/7qLVCYxs6cG2GR2o62Zr1vn8L8LRWsmW6R1o7ulAcpaK8WsvseTwA0b+dIGYtFxqOokL+k0Xw/jzSgQyqYQVz7eghoMljxOyeHvHLfo2dmeGXlfrre23CE3MqvDz/FcFQwMHDuSzzz5j5MiRZfr86tWr8fb2Zvny5TRq1Ijp06czdepUlphQkqgIKGRSRrX25Mi8bvw8sTV+Xo7kaXT8fPoxo366QEg5vlhbCzkbJ7c16vPcjU7nXPDTXUVVjWmda6GUSbkalsKV0OTSNygAhUzKyvGtcLDK57kYCHhVBYlEwvPtxGu65XIlEaklEvj4Y2jQoOL3jXgdf5nSFku5lEshyWwwQXPjPxTAq6+KQdHNm3DkSIkffamTLx6OVkSn5Vbp9bZUyFj3Ulva13ImI0/DzN8C+GTvPVSaim3geBY4+SCeASvO8Nn+QDJyNTSpac+OmR35cmQzHKzND7xSs1VM2nBZdK1Xy3A814OAI05IpbBsGWzcCCVRn1KzVUze6M9vl8KRSODtAQ35bqzfM+3o/afCwVrB5mntaebhQEq2mpUnHxrHZmhiFi91EonO7+25Q0B4CtVsLVg5vhVyqYT9t2PYeD6Ut/o3oK2vExl5Gub+cd1k/aHS8K8KhkzFxYsX6devX6HX+vfvz9WrV1Griy595OXlkZ6eXuinoiCVSujfpDp7ZnXi54mtcbJWcCcqncHfn2X39Uiz9yuRSPhqVHP6NRaNJef+cYO07Eoo7ZgAN3tLRrX2AGD1KdOzQ9UdLFlVQDfpWnhKhZ1bWTGipQcWcin3YzO4qfcOqlTklK2UpdPpCA0NJTQ0FF0JXU4AtV1teV/vqv7NoQfGFPV/MAHOzjBjBtSoAaU8DywVMt7sL2qi/HTyEUnlLIebAlsL0efpFf0KesP5EMatuUhUFZRITRmTZcWjhEymbPRnysYrRs7J16Oa8fdrXcptVhuamMXIHy9w6XEyFmprlId6c+uSNVZWsHs3zJtXsn3go4RMRvx4gfMPk7BWyvh5Qmte7VHnH9uNl5WnISQxi8uPk9h7M5r150L48mAgC3fcZOmRB+y5HsWtyNRKzcBn5KrJVhW9fzsLOf2buKPS6pi5+Rpx6bm09nHiXb144hcHArkVmcoPL7TCzkLOzcg0tl+tWGHcfy2BWiKRsHv3boYPH17sZ+rXr8/kyZNZvHix8bULFy7QuXNnoqOjqVGjxlPbfPTRR3z88cdPvV4ZdhwxaTnM/eMG/nrju1GtPPlkWBOzxApBbE0fsPws4cnZDPGryQ8vPFsH88cJmfReehpBgN0zWtOqjni9TSEFjl97iQuPkvBxtub0wp6VebpFYv62G+y+HsXzbb34alQlderFx4tP34sXReXjUjgXphIsBUFg+qarHL8fT8PqduyZ3fm/1aupSEsT0wQWBbSuDI/OJyZAnU5g6Kpz3IlKL9arr7Jx9F4cb/x5g/RcDY7WCpaNa1Gp9jYVSfpNy1Hzw/FgfrkQikYnoJBJmNK5Fq/1qlshzSf+IcnM2HyV1Gw1TqpqJOxoR1SEFFdX2LcP2rUrefszQQnM3iLyizwcrVj3Uhsa1ai4uaG81zJHpeXE/Xj2347mfkwG8Rl5JgU5bnYW1Ha1oY6rLbVdbWnm4UAbH6dyC2ZqtDp+OvWIZceCeDKp4+lkxYE5XRm9+gJBcZm09HbkjxkdUMqkvLb1OvtvxVDd3pJ9c7rw141oPt13D2cbJSff7IGDVfFj4n+WQG0OnozUDbFfcRH8okWLSEtLM/5ERFSSLQOir8/Wlzswr089pBLYGRDJkB/OcTfavCyEtVLO9y+0RCaVsPdmdOVxXcqI2q62DGwqthhvOBuCtbU11iZwYwC+GNEMgLDkbGLTckv5dMXDUH78+2Z05a2a7O3FVvvQUNiypUybmHItJRIJX49ujoutkvuxGSw5/KAcJ/v/FA4O+YGQTgd//SV2A96799RHpVIJiweKK9rfLoWVqwxuLvo2dmf/nK4083AgNVvNlI1XWHL4QYXrnhWEOfd3QeSotPxyPoReS06x7lwIGp1A74ZuHJ7XjcWDGlVIILT7eiQT1l0mNVuNZ54XoRvbExUhpW5dcS1SUiAkCAK/nA9hyi9XyMjV0NrHib9e61yhgZABpl7LPI2WY/fimPvHdVp/dpTZWwI4cDuWx4lZxueWtVKGbzVr2vk681zzGkzp7MuCvvV5oZ0X7Wo5Gz3A4jPyuPQ4md8vh/PpvnuM/fkivZeeZu2Zx8buaHMgl0l5vXc9dr7aCW/nwnIBkSk53I/NYO2kNjhYKbgensr7e0TD4K9HNaeOqw2x6bnM/eM6L7b3pq6bLclZKpYdDTL7fJ7E/3RmqFu3brRs2ZIVK1YYX9u9ezdjx44lOzu7TES/qjJqvfw4ibl/3CA2PRelTMq7zzViUkcfs9KuK44Fs+xYEHaWcg7N64aH47PTqbgZkcqwVedRyqT4v9vbLGuIkT+eJyA8lXcGNmRm9+JdxCsDgiDQe+lpHidk8eXIZrzQrnxq0cXim2/g7behYUO4exekFb9OOR4Yx7RNVwH4fXp7OleyUvL/HPLyYPNm+PBDiNaLWf79NwwZUuTHp2z05+SDhEo3cS0JeRotn+3L9zHrUNuZ719oiZtd5esAlRVp2Wp+vRjKxgv5UiR1XG14f3Bjs200noQgCCw7GsT3ehPaxpr6nFxVl9xcCR06iF+jawkCx4Ig8Nn+QNafE3lgI1t58OXIZljIn12GVaPVceGRWPY6dDeWjNz8xZqnkxVD/GrSta4L1R0scbO3xLYMFYe0HDWPEzJ5nJDF48RMHsZncv5hkjGgUsqkDGpWnRc7+NDGx8nssmBWnob399xhV4Guyz6N3Fj3UlvOBifw0gZ/dAJ8PLQJL3XyFT049fYcC/rWp6W3IxPX+yOTSjgwp6uxXf9J/JcZ0qNjx44cPXq00GtHjhyhTZs2ldLxUB60r12Ng3O70qeRGyqtjg//vsuMzddIzzWd+zO7Zx1aejuSkavhjT+fbReRn5cjjWvYo9Lq+OuGeWrIY9uI2Zmd1yIrXd33SUgkEmN2aKveHLdSMHOmmH24f1/MOlQCejdyZ3x7MZh748+bz5xX9q9Bbq6oA1W7Nrz8cn4gBBBSPEl60aBGSPUmrtfCTGsiqChYyGV8Orwp37/QEhuljEuPk3nu+3NsvxrxzMnVMWk5fLbvHp2+Os53R4NIzlLh5Sx6iR2a163CAiGNVuwYMwRCnSQtOLpCDISGDIHjx0sPhL44kB8IvTOwId+N8XtmgZBWJ7D5UhgdvjzBpA3+bL8WSUauBjc7C6Z2rsXuWZ04u7Anbw9oSKe6LtR2tS1TIARiR2RLbydGtfbkrf4N+XliGy4v7s2XI5uJ9khaHXtuRDNm9UX6Lz/DpguhZkmP2FjIWTquBSue90OuL78dC4znYXwGXeu5skifWf1k3z0uPkqivrsdX4xsCsDKkw/xdramfxN3tDqBj/ferZB54V8VDGVmZnLjxg1u3LgBiK3zN27cIDxcnKQWLVrEpEmTjJ+fOXMmYWFhLFiwgMDAQDZs2MD69et58803n8XplwonGyVrJ7XhwyGNUcqkHL0Xx6T1/mSYGBDJZVKWjW2Btf7ht+5c1TvAF8TYNqIK9Z9mEt4GNa+BUi4lOD6Tu9FVTwAe1coThUzCrcg0s0uYpcLeHmbPFn//8ssSW7jLg/eea0QtFzHl/O6e21UeXP4roVTCrVuFgyADHhd/b9V3tzMG8p/vD3ym13qoX03+fr0LDdztSMjI460dt+j2zUl+Pv3IrAVXefAoIZOFO27S7ZuTrDsXQpZKS8Pqdqx4vgUn3+jBhA4+FabPk6vWMuv3ALZfi0QmldBf3oE/vvZAo5EwfrxosFpSNUoQBL4+9IC1Z8VA6IsRzZjZ/dkRpa+FJTPkh3O8v+cOiZl5ONsoebG9N3/M6MDFRb35YEhjWnqbn7EpCjYWcl5o582+17vy92udGdfGC0uFlKC4TD78+y4dvjjOqpMPzSrBDmvhybEF3Y3B2tRfrpKn0TK9ay1GtPRAqxOYvSWAyJRshrfwoGs9F1QaHR/9fZd3BzXCQi7lwqMkDt6JLfff+a8qk506dYqePZ8m0b700kv88ssvTJ48mdDQUE6dOmV87/Tp08yfP5+7d+9Ss2ZN3n77bWbOnFnmY1ZVmexJ3IpMZdIGf1Kz1bTxcWLT1HYmE6u3+oezaNdtlDJppdW2y4KULBVtPzlI9I7PaOPrzJH9f5ks128wb31WhNTZWwLYfyuGiR18+HR408o5SHw8+PiImYhjx6B37yI/lpeXx2uvvQbAypUrsbAwzcD2RkQqo366gFYnsHxcC4a39Cj3qf/PQ62GYcPg4MHCrw8ZItZYikF8ei7dvz1FjlrLTy+2YmCzp5s2qhI5Ki2bLoay8XyI0UXd1kLO+PbeTOnsSw0H80rqpY3JuPRcjgfGc+ReLKeDEoyxfvtazszsUYce9V0rPMDIzNMw49erXHiUhFIupZe6Mz9/Iz4DX3kFVq0CWQnJHUEQ+O5IECtPihmlT4c1YWJH3wo9x6KQm5vLqFGjANi5cyeWlpbEZ+Ty1cH77AoQy0r2lnLe6NeA8e29n4mwY1qOmj3Xo/j9cphR6b65pwNLxvhR373oklVJiEjKpu/y0+SqdUzq6MMnw5qSq9YyZvVFbkel0cLLkZ2vdiI0KYsBy8+g1gqsndSG21FpfH88GA9HK44t6I6VUvxCdToBqVRi0vz9rwqGngWeVTAEcCcqjfFrL5Geq6FdLWd+mdLWJI8pQRB4+ddrHAuMo4G7nSht/oy6iGZsOM/aaV0A8zokDJ41zjZKLi/uXeUPgHPBiUxYfxk7Szn+i/sYb7oKx2uviU/pYcOgGIX1iujcMfLKLOTsfb0Lvi7/Xsn/KkNWlhigXr6c/1rDhhAYWOJmS48G8f3xYHyrWXNkfneU8mefkFdpRDHRtWcfGyczuVTC0BY1mdGtNg2rm/ase3JMWltbcy8mnWP34jl+P45bT0hT9G3szszudWj9hLhqRSElS9QAuhmZhrVCRqf0rqz/Xhzjb70FX39dcus8wPJjQSw/FgzAh0MaM6Xz08r4lYGC1zIlLZ0dNxNYfiyYzDwNEgmMbe3FWwMaGAnPzxKCILD7ehQf/X1XtCGRSZnbpx6vdKttsj/ciftxTP1F5DT+8EJLhvjVJCo1hwHLzpCRpzF+B18fus9Ppx7h6WTF3te6MPiHc0Sl5jC3dz3GtPFk/bkQ4tPzWPViq/+CoYqE4WJeCYogPAMexmeilEtxslbiaK3AwUph/N3RSomdpbzcLYgFcTMilQnrLpORp6FTnWpsmNzWpIAmMTOPAcvPkJipYnqXWrxngq9LReLQjVAGthQfJokpaVRzNO1hq9Hq6PDlcRIzVayb1IY+ek2lqoJOJ9B9yUkiknNYMsaP0XoD2gpHaChs2yYK/RVz86pUKr7Vu92/9dZbZtkfaLQ6xq25xLWwFOq42rB7ducK6db5n0dSkthF9kDfkadQiMTqEmbWrDwN3b89RWJmHh8NaczkKppUywKdTuBUUDw/n37M5ZB8XpOrnQX13W2p52ZHfXc76rnbUt/N7imRwzyNluQsFbHJmaz6filZeVpq9XyBUw+TiS7Q/SmRgJ+nI30buzOgaXXquFaeQnNMWg4T1/vzMD4TRysFbZO6se4HMRP92WeweHHpgdAPx4P5Tt+p9N5zjZjetXalne+TKBgM9fjiICFpopK5n6cDHw9rSgsvxyo7l7IiLj2Xxbtuc1xvv+SnzxLVMzFL9M2h+/x46hE2Shl/v96FOq62/HYpjPf23MFaKePogu44WSvo/d1pYtJymdu7Hg2q2zHr9wAM065OEAn4x9/o8V8wVJEwXEyveX8itSi91VEpl9KlrgsDm1anb2N3s7qnnsS1sBQmrb9MlkpL13ourJ3UxqSAqGAX0bYZHWhfu1q5z8lUpGdk4mAv3hjbLwYzukNdk/fx6b57rD8XwqBm1fnxxarvzll18iHfHn5AGx8ndrzaqcqPX9GIT89l6MrzxKbn0q2+KxteamO22/f/K4SHg58fpKbm/9/Lq8RNfr8cxru77+BkreD0wp7/yMDzZkQqa8485uCdmKd0YAxws7OgpqMVaTlqEjPzCnUwPQkrhYwu9Vzo28idng3dcLWr/ExGSGIWE9ZdJio1B3c7S1onduGn5eJxly4VreZKw4+nHvLNITHYfRYdrBkZmdjrn5Ve83fg4mTP2wMaMKa1V4UutCsagiCwKyCKj/fmZ4nm9a3HjK5lzxJptDpeXHeZyyHJNHAXNdEs5FLGrbnIldAUejV0Y/1LbThwO5bZWwJQyCQ093DgWnhqof1YyKXc/3QAGRkZ/wVDFQVDMNTo7Z00rVWDBu52aAWBtGw1KdkqUrPVpGarSM1Rk60q7EUkl0roVNeFQU2r069JdZxtzA+M/EOSeWmDPzlqLb0auvHThFYmdTO8veMW265G0NTDnr9nd6nym6rgauf5H0+x9dXuJu/jbnQaz31/DqVMypV3+5RLit8cxKfn0uHL4+gEOLuwJ17O5muqlAmCIPKHrCpPGuFOVBqjV18gV61jSmdfPhzyn7t9mRAQAG3aiN/Rrl0wYkSJH9dodQxYcZaH8ZnM7F6HdwY2rKITNR2ZeRoexmcSFJdBcFwGQXFii3VxStZyqYRqtkqq2VhQzVaJTzVrejd0p2OdalValr8bncZLG/xJzFThW82GZrGdWblUfEYsWybqmpaGtWce8/kBsez5Vv8GzO5p+qKtPMhVa5nz6yXWThcpBW9tvcS7Q1tV+bOuPIhNy2Xx7ttGk24/L0dWvtCyzM/L+Ixcnvv+HAkZeYxq5cmSMc15lJDJoBXnUGl1/PBCSwY3r8GE9Zc5/zAJhUyCWvt0GOP/bm8sBdV/wVBFwRAMpaam4uDgUOJnc9VaQpOyOHwnjoN3Yrgfm2F8TyaV0KG2M0P9ajKyladZnJeLj5KY8os/uWodfRu78+OLrcq8n6TMPLp/e4rMPA3LxvkxomUllXmKQcFgyHvBDi6+P4iaZugfDVh+hvuxGXw+oikvtvep6NMsFS+uu8T5h0ksHNCAWT0q8UF55gwsWCCqwP34Y6G3BEEgMTERABcXl3ITTw/ejuHV3wMAKldL6X8Nf/0F48bBhg0wfnypHz92L47pv15FKZdy8s0ez1T/yxxk5mkIjssgLj0PJ2sF1WwtcLW1wF7vIViRY9JUXAtLZvKGK2TkaWhU3Z4GkR1Z8Z14XsuX53vtloTNl8KMQn/z+9Rnbp96lXjGTyMpM4+Xf73K1YexRCwbDZRfzftZQRAEdlyL5JN998jI1VDDwZLfprcvc3n04qMkXlx3CZ0AX49qxri23kaeo4utkmMLupOYqWLA8jNoiklj7ny1E/WcZP/pDFU0ynJzWypkNKxuz9w+9RjiV5O9r3fhrf4NaFLTHq1O4PzDJN7eeZvnvj/LhYeJJp9DxzrVWDepLUq52HY/Z+v1MrczVrO14FW9o/aSw0FV5qhdFARB1AwyB6NaiUGcuduXF0OaixbWf5upmVRmCAJcuya6RcbHF3orOzsbNzc33NzcyM7OLvehBjarwYK+op/W+3vucPFRUrn3+f8Cw4bBn39CWFiZPt67kRvtazmj0uj49tD9Sj65ioethZyW3k4MaFqd9rWrUdfNFgdrBRKJpMLHpCnwD0kWJUjyNLT1caZxdCeTA6EzQQl8+JcYCL3eq26VB0IP40Wvs4DwVOwtzbNjMgfZKg0PYjM4cjeWTRdC+ftmNDciUknOUpVLCkIikTCmjReH53WjrpstMWm5jPv5Ypm9ETvWqcYb/UQD6w/+usu96HRe7VGHem62JGaqeHf3HZYfCyo2EAKITDFtHP6XGSoF5nSTXQ9PYcSPF2jj48QvU9thayEnLCmLfbdiWHf2MSl6sbtBzaqzeFAjPJ1MK7ecehDPjF+vodLqmNWjDgsHlC3lnqPS0nPJKWLTc6u8Fl4wM+Q1fwe+1Z059WYPk8t1BUtVJ9/sQa0q7oJKzVbR9vNjqLUCR+d3M5kgWGYIAnToAP7+8N578Omnxrcq0gcq/3ACc/64wd6b0ThaK9gzq/N/HWZlRWCg6OUwdWqpH70dmcbQVefEBcGrHWntUz7D0X8KKmNMlgUXHiUy7Zer5Ki1dK5bjTqR7fj0Y3GNv2IFzJlT+j7EQOQ8GbkaRrf25NvRzas0s3XpcRKvbL5GWo4aL2crVo1pgl9t0caoIu/vyyHJXHiURERyNuHJ2YQlZZNYgpGwrYUcL2drvJys8Ha2pomHPf2bVDepoxnEjNekDf7cjU7HwUrBr1Pb4VcGErhOJzBt0xVOPkjAt5o1f7/eheC4DEavvoggQH03W4LiM4vdfm7vekxrX/2/zFBlQ6PVFZtdWXJEJN9dDUth8gZ/MvM0+FSzYXbPupx8sweTOvoglcCB27H0WXqaFceCTcrU9Gjgxndj/QD46fQjzgYnlGk7K6WMN/qJGYBVJx+SUg6fGVNhY2ODIAhk52mwt7MlPDm7UPdKWeFmb0nXeqJc7O6Aqs8OOVor6aY//t6blZgdkkhEew4QW+0z8296w7UUBKHCJh2JRMK3o5vj5yl6WU3/9WqVi/H9K5GTA127wrRpcP58qR9v5unAOL0Q44d/30X7DNXhKxKVMSZLw9ngBKZsvEKOWku3+q40S84PhL77rmyBUGq2iumbRK+xtr5OfD6iaZUGQrsCIpm4/jJpOWpaejuyZ1Znmtdyr7BrmZqtYv25EPosPc3zay7x/fFgdl+P4lpYijEQcrBS0MzDgf5N3Gnn60x1e7HzLjNPQ2BMOkfuxbHuXAjzt92k3efHWbTrNjcjUsucOapma8GWlzvQytuRtBw1L667bDQnLwlSqYSlY1vg4WhFaFI2H/11l9Y+zkzQ0yNy1FrquxdfdjtTxnnRgP8yQ6XAkBnacfEB58OyuReTTmxaLum5anQCSCWgkEmRSSVYKWRYK2VEpBQmGrb1dWLjlHaFJNEDY9L58O+7xkHh6WTFe881pn8T9zLfjIt332bL5XBcbJUcmNu1TH5DWp3A4B/OERiT/swIs4t23WarfzgjW3qwdFwLk7f/60YUc/+4gaeTFWfe6lnlZPA916OYt+0GtVxsOPFG98p7eGq10KgRBAeXvRWmnPivw8wMvPwyrFtXqgCjAYmZefRccoqMXM1/HC0zcfJBPK9svoZKo6NXQzdaZLZm7uviOP30UzGZWhrUWh0vbfDnwqMkPByt+Ou1zlWq3WPoTgV4rlkNvhvrVyGEc0EQCAhP5ffLYey/FUOe3nbFWiljQJPq1HO3w9vZGp9q1ng5WRdJzs5Va4lMyTFmkUKTsjhxP56wpPzSU8PqosL6iJYeOJWhOSgrT8P0TVe5+DgJS4WUNRPb0K1+CT4oegSEpzDqpwsIAmyf2ZGG1e3ou/QMsem5TOrow4n7cUSm5Ms4uNpZkJCRJ6pTv9ERF2en/wjUFQFTW+uLQ+Madvw5s1OhgEgQBPbdiuGLA4HE6DU5Rrby4KuRzcskzJar1jJ81Xnux2bQuW41fp3aHlkZAoOzwQlMXO+PQibh2ILu+FSr2nKIoYxoqZDi/24fk9uMc1Ra2n5+jMw8zTORCsjK09D6s6PkqnXsfa0LzTxLJtaXC2vXwowZ4OkpWj9UgadewQ6zF9p58/nwpv/olt7ScPlxEgduxxgXL1KpBKlEgkwqQSIBG6WciR18yvRALxJBQaL4oiCIJruNS9fy2nAuhE/23cPZRsnJN3r8q7qFnjWO3Ytj1u8BqLQ6+jV2p72mFdOnic/LRYvg889L1xESBIH39tzh98vh2Chl7JzVyWShyfLA4A4AMLN7HRb2b1Due0wQBLZfi2TDuZBCzTuNatjzYntvhrWoiV05JB10OoFLIUn8eSWCA3dijd52SpmUAU2r82a/BnhXK3mOzFVrefW3a5x8kIBSJmXl+Jb0a1K91GMv2nWLrf4RNKphz77Xu3A8MI4Zm68hk0r4eUJr3txxk1Q9/aSuqw3hyTmotDq+HFyH8V0b/VcmqyxYyKVYKaRYyqUoZRKUMvF3eQmD+V5MBs0/Osxn++4SkyZmjiQSCUP8anL8je681rMuMqmEXQFRvLTBv0wmmpYKGSvHt8JKIeP8wyR+OvWwTOfftZ4r3eq7otYKRj2NykZubi5jxoxhzJgxNHS1pJ6brRhMmFFqslLKGNRMvIF2F3A9rirYWMjp3VAUfdx7q5KJ1BMngrs7REYaFanz8vKYN28e8+bNIy+v+Jq/uWjq4cCysS2QSMSH9hvbb5rlO/SskafR8uWBQJ5fe4lNF8PYfCmMTRfD2Hg+lPXnQlhz5jE/n37M0qNBfLLvnvkHql8/v7VeL4ZZGiZ29KGemy3JWSqWHQsy/9j/EFT2mDTg0J0YZv4m8iUHNatOL8tWzHhZnMbmzClbIATw68Uwfr8cjkQCK55vWaWB0NngBN7Td63N7V2PdwY2LBQIFXxW5ubmFrebQohJy2HSBn8W7rjF/dgMLBVSxrT2ZPesThyY04UJHXzKFQiBuIjoVMeF5c+35MriPnwyrAlNaormrX/fjKb/8jOsPxdSYunXUiHj54ltGNSsOiqtjld/D2BfGZ6hb/VviIOVgsCYdLZcDqNfk+oMbFodrU7ghxPB/Dq1HQqZeA3DkrOZ2UMUydxwPrTMf99/maFSYMgM1XtrB3JLm6e0hMzFkOY1+Gx4s0IrwtNBCcz67RpZKi113WzZOLltmbQZtl+N4K0dt5BKYNsrHWnrWzopMzAmnUHfnxVlUmZ1opV35cjiG/AkwXLLtTg+PxCIn5cjf83ubPL+DNktVzsLLi/qXeWZi0N3Ypn52zVqOFhy/u1elXv8LVtEN8mhQ0EqrTKy6l83oljw5020OoG+jd354YWWz8zOxVQ8jM9g7h83jMa+w1rUxKeayGvR6gR0griSzlZp2XwpDJlUwok3ypElvXxZJLzL5aKTvWfp0hXnHyby4rrLyKQS9s/pUqUTckWjKsbk/lsxzPnjOlqdwBC/mgx29mPIEClqNUyfDmvWlC0QOhucwOSNV9DqhCpvJAmKy2DUjxfIyNMwoqUHS8f6PVVmN+VaCoLAnhtRfPDXXTJyNVjIpczrU5/x7byrLNt4OzKNzw/c49JjkfLRytuRb0Y3p65b8c0lGq2OhTtvsSsgCqVcyo6ZHWnu6VjicX69GMoHf93FwUrByTd7oNHq6L30NBm5Gr4a2QwHK4VRIuSnF1sx/88bZGdmErF87H+ZoYpErlpnDITsLOU093RgqF9N5vSqy+u96jKqlScda1fDt5p1kSWuJ+/RvbdiaP3ZUVYcDzIS0brXd2X7zE5Ut7c0djjciEgt9dxGt/ZkREsPdALM2Xq9TMToRjXsGa1vU//iGThqD2/pgVwq4WZEKg8KpHTLina1nLFWykjIyHsmTvY9GrhiayEnJi2Xa+EplXuw8eNh+HCQiuNKoVCweNEiFr/zDopKLJsNa+HBzxNaG6Ucpv5yhay84hWH/wkQBIHfLoUx+Idz3I1Ox8lawZqJrVnxfEsW9K3PG/0asHBAQ94Z2JBFgxrx6fCm9GjgilYn8NOpR+YfuH176NYNNBqxjakM6KxXqtfqBD7++94zdbUvLxQKBYsXL2bx4sWVMiYP3M4PhEa09OAFXz9GjRIDodGjYfXqsgVCD+MzmfV7AFqdwMhWHrzSrepsNhIy8piyUdRCaufrzFejmpWLb5iUmces3wOYv+0mGbka/Lwc2T+nK6/2qFOlZddmng5smd6Bz0c0xdZCTkB4KoNWnGPVyYeoi8koy2VSloz2o08jd1QaHa/+FkByKfPW+HbeNKxuR1qOmiVHHuBmb8nc3qIEwg8nHtK7kTvd6rkAsPF8qLFRoaz4LzNUCgyZocV/XGZk+7rUcrXFSa+tURwEQSApS0V4cjaH78Sy63oUCRkltTDK2DC5Le1qidyX2LRcpv5yhXsx6VgqpKx4viX9S6mrZuZpGPLDOUISs+jTyJ21k1qXeqPFpuXSY8lJctU6Vk9ozYCmpdduzUVRq50Zv17lyL04sz3TDNvP61OPeX3qV/Qpl4oFf95gV0BU5TrZP4mcHNi3TyzHLFkiTsCVjIuPkpi+6QpZKi0tvBz5ZUrbCrGZqWgkZebx9s5bHAsUdZm61nNhyRg/3O1Lbiy4FpbMqJ8uopBJOPVWT/PFEPfvF4PWmTPhhx/KtElEcjZ9lp4mT6Nj1fhWPNf82bra/xNx8HYMr20VA6GRLT2Y2tSPHt0lJCVBnz7i7WBRBt5ztkp8Rj5KyKK1jxNbXm5vkop/eZCj0vL82kvcjEillosNu17tVCxHrSyZoaP34li06xaJmSrkUglze9fj1R51nnmzQ3RqDu/uvs3JB2InV+Ma9nwzujlNPfJ5lYIgkJajxtFaSXqummErzxOSmEWXui5smtquRN7r5cdJjFtzCYkE9r7WhbputnT95iQJGXl8PqIpneu40HPJKQRg4+S2TFlzmrBl/2WGKhRvD2xIa19nnG2UpQYZEokEF1sLWnk7sWhQIy6+04uNk9vyXLMaKIsYrJl5Wsb+fInpv1whI1dNdQdL/pzZkR4NXMlV65j52zXWnwspceVoayFn5fiWKGVSjgXGsbEMtdLqDpZM7yKujL4+dL/YKL6yMFYfue++HmUk45mC3o3cANHR/llgqJ8owHjgdkzlc2qyssSJ1tYWxo6FK1dEU9cqQMc61djycgccrRXciEjl+TWXiM8oG5ehKiAIAofuxDBgxVmOBcajlEl577lGbJrSrtRACKC1jzMda1dDrRVYc7oc2aGBA8XvpIyBEICXs7WxTPP5/nvkVFAZ/n8Fh+7E8vrW/IzQ6+39GDhADITatoXdu8sWCAF8ui+QRwlZuNtbsHpC6yoLhHQ6gQV/3uBmRCqO1go2TG5rNllfpxN4f88dXv71KomZKuq727Jndmde713vmQdCADUdrdgwuS1Lx/rhaK3gXkw6w1edZ/d1UQYlV63lnZ23WbxbJI/bWypYPaE1VgoZ5x4m8t2Rkjms7WtXY1iLmggCfPDXHZQyKbP0YsIrTzykhqOlcUGx63oUfU0w9H72V+//AeQyKT0burHqxVb4v9ubT4c3pbbr09H+sfvxtP/iGHeiUrFWyGioF/QTBNGk9MdS0vhNajrw3uBGAHx5MJB7ZSgfzexRBxdbJSGJWfzhH27GX2c+ejRwxdXOgqQsFacemB7Q9GwgBkM3I9NKzLxVFjrXdcHJWkFSlooLlaXarFbD+++Dt7do/6DTIQBZQFZQUJWVVvy8HPnzlY642VlwPzaDMasv8jiheMGzqkJQXAYT1l9m5m8BJGTkUc9NnBymd61tEo/r9V6itcrWKxHmB3pSKXh4mLzZzO518HC0Ijotl5/KE4w9QwiCQFZWFllZWRU2Jg/fjeW1LQFodALDW9RkcW8/nhskITJSbN47cEBcG5QFh+7EstVfJEwvHduiSkxjDfjm8AMO3olFIRM7n8wVitXpBN7eeYvNl8KQSGBGt9r8/VqXQlmXfwIkEgkjW3lydH53+jV2R6MTmL/tJitPBDNuzSW2XY3g6L04kvQ6Rw2q2/H16OYA/HjqEYfvxpa4/0UDG2GtlBEQnsru61G80M4bd3sLYtJy2XYlwui0sP9WtEnVjv+CoSqGo7WSiR18ODi3K3N61X2qAy1bpWPID+cZvuocq888BkQNIoBvDz9g/62YEvc/sYMPfRu7o9YKfLz3bqkPJlsLOa/3Euuua84+rlIROLlMymB9FH/0XpzJ27vZW9LUQ0x9mhNMlRcKmZRBzcTzrzQBRoVCjIaT80XKsgFbwPbzz6vU+qC+ux07ZnbCy9mKsKRsBq44y+rTj55Jp1lajpqP995l4IqznH+YhFIu5fVeddn7ehca1zSdiNyxTjVaeTui0uhYdzak/Cd49y6cPVumj1opZbz3nLiIWX36ERHJVWtnURHIzs7G1tYWW1vbChmTR+7GMvt3MRAa1qImnw1pwYjhEgIDxXjzyBFwcSnbvmLTcnln1y0AZnStTee6ZdywAvDnlQhW6wPcb0Y3N1sGxBAIbb8WiVQC3z/fksWDGv2jGxpc7cQM3OROvgAsORLETT0HVq0VCnUCD/WrydTOtQB448+bPCphoVXdwdI4Z315UKxovKY31F118iF1XG3p0cAVnQDnH5Z9kfpfMPSMYCGXsaBfA/a+3gW/J3RqBOBWVH5WJzIlh+EtxBXngj9vcL0Ewq5EIuGjoU2wkEu5HJJcapQNYrnK0VpBRHIOR++V/vmKRN9GYhrzxP14swKxXvrs0MlnEAwBDNGXyg7djSUtW83xwLiKz7B9+ilMmVKx+zQT3tWs2TGzE13qupCn0fHVwfsMW3WeO1FpVXJ8rU5gq384PZecYuP5ULQ6gf5N3Dm+oDtv9Gtg9uQgkUh4XU/G/O1SWKlkzhKxfTs0bSpyh3RlCxQHNK1OpzrVUGl0fPR36YuY/2UcuxfHbH1GaIhfTb4Z6cekiRLOnwdHRzh0CLzKyI3V6QTe2H6D1Gw1TT3sjX5XVYHwpGw++Du/hd5cc+wnA6EVz7c0Pnf+6ZBIwMfZ6qkGIoBtVyIKjfNFgxrSzteZzDwNMzdfK7FZY2oXX2q52JCYmcf3x4MZ29aLmg6WxKXnsdU/3Gii/ZcJHpL/BUPlRFqOmouPkth8KYwd1yI5cT+OgPAUQhOzSMtRF/qyBUHgwO3CmZ1GNezZNasz7z3XCIsShBZtLGT0auhGnkbHy79eLXH16OFoZeyS+PxAIHmaknkIVkoZ4/UquBvOhZb2J5sFa2trMjMzyczMxNo6Xy6gbS1n7CzlJGWpuBFheldWz4ZiMHQ2KLHKOU8ANRwssbOUk5ErCjFO23TVrCxXiZBI4OefYdAgAKyBTCDTw6PQtawquNtbsnlaO74d3RwHKwV3o9MZtuo8Xx28X2kGwNkqDVv9w3nu+7Ms2nWb5CwVdd1s2TytHT9PbFMmCYrS0KO+K0097MlWadl4vhzZoX79wM4O7t0TazllgEQi4eOhTVDIJBy/H8/eUjLA/zQUd3+biuOBcbz6+zXUWoHBzWuwdIwfC+ZL2b0blEqxUtzUhF6FtWcfc/5hElYKGSueb1kmMduKgCAIvLPrFrlqHR1qOxu7nsqCgtfS0tLqXxsIGSCTSYtcpATHZ3K9QLe0QiZl5YstcbOzIDg+k4U7bxW7KLCQy/hwiNh0s/F8KBHJ2czWl7p/PPUID0dLPJ2sTJoT/usmKwUFjVqVVjZcDknmTlQad6PTuBOVTngpKW25VEJTDweG+NUkV6Xh2yNBxXZuhSRkMuWXK4QmPb1Pa4WUE2/2YMovVwmMSae+uy07Xu1UrHpzVp6GXt+dIi49r0xaGrFpuXT5+gQanVD5qspPYM7W6/x9M5pXe9Th7TKazhqg0wm0/fwYSVkqtrzcnk51qi4FPn/bjSJFH/s1dmfNpDYVf8CsLOjZUyRPgxgkqVSits0zQkJGHh/tvWss3/pWs2bRoEb0bOBWIRPP44RM40IjI1dcKdpZypnfpz4TO/qgqGDSqEE/ys5Czrl3euFgZWaL8sKFYsdft25w+nSZN1t+LIjlx4KpZqPk2ILu5qti/wtx4n4cMzeLytLPNa/BinEt+G6JlHfeEYf6tm0wZkzZ93cnKo0RP55HrRWq3PbkD/9w3tl1G0uFlENzu5llevxvzgg9iZDELN7cfpNrYYUXvGNbe/LNGL9Cr10LS2bcz5fQ6AS+GNGM8e2L/96mb7rKscA4Bjevwbej/ejy9QmSslRIJaATQJeX/Z/OUEVj/bnHdPn6JC9t8Ofbww84cDvWGAh5OlnRu6Eb3eq70tzTAU8nK2yUYiSs0QnciEjl0333+PaIqDQ794/rXA97OgtSy9WWowu6F8mAz1brOHA7hvUvtcHNzoKguExe23K9WL6GjYWchf3FwGLliYelEoyrO1ga+Tvrzz0u41WpGBi6wo6ZkVGRSiX00JfKTgRWbansle61jaqnBVHRE7QRNjZi+3Z1fSAtCKLA3zOEq50Fq8a3Yu2kNrjbWxCalM0rm6/R5rOjvLn9JqcexJu0OhMEgejUHPbejGbCusv0+u40G8+HkpGrwaeaNe8914hzC3sxtUutSrnO/Rq7U9/dlow8DZsvhpq/o7lzRb7XmTOiIGMZMatHXeq725KUpeLT8qhi/8tw8kF8fiDUTAyEdmwXAyGAZctMC4SyVRrmbL2OWiuWUZ9va5rmTHkQm5bL5/sDAXijbwOzA6F3duUHQsv/xYEQQC0XG/58pSOLBzVEVqAbe+f1KDKfMIRu7eNsXBR/fei+kWidlqN+ijO7oK8oqXLgdgxnguNJzRbL2+ZQX//LDJWCJ73J3O0taF+rGnXdbLC3VGCllJGRqyEmLZfYtFxi0nKQS6XUcbPB29maajYWRCRns/7cY7LVhSeFQc2q8/7gxtRwKKxrotMJfPj3XTZfCiv0uoVcwr2PB3AvJoOxP18kR61lQgdvPh1WtNOyTicw4sfz3IxM4/m2Xnw1qnmJf+utyFSGrjyPXCrh/Du9ytSWXFbk5eXxyiuvAPDzzz9jUaAfNi1bTevPjqLRCZx+q4fJKsD7b8Uwe0sAtV1tOPFGjwo757Jg5YlglhwpbKcw1K8m37/QstKOqbpzh49btgSNhg+PHkXZp0+lHcsUpOeqWXXi4VO6Wo7WCvo3rk4rH0dsLORYK2VYK+XYKOVYKaWEJ2dzMyKN21Fp3IpMM7ppg5gR6N3QjQkdfOhWz7XClL6jomDTJlEjcfHiwsk1gxGwk7WCc2/3wsbCzMzb5MniQUaPFnlEZcT18BRG6o0pf5nS1hjs/5OhUqn4+OOPAfjwww9RKsue0Tr1IJ4ZetPVgU2r8/0LLbl8UUrv3mLic8EC0YXeFBi8rKrbW3Jwbtcqy7AJgsDLv17jWGAcfp4O7Hy1k8kt73l5efQcPp5bkWm4DniNFRPaGWU8/hcQFJfBjF+vGisgzzWrwaoXWxX6jEarY8jK8wTGpDPUryaeTlZsvhiGtYWMy4sLP+9e2uDP6aAEJnTwpp6bHR/+fdf4nimZof+CoVJgCIa6frqP1/o3o4ajFduvRnLobqxZ2jhPwkYp441+DZjU0afQTSMIAsuOBvH9icJ+Y53rOPP7yx05fFdM5wsCfDKsCZM6+ha5f4OgnEQC+17vQpOaJZe/xqy+wJXQFGb3rMNb/U0rWZWE0oTExq+9xIVHSbw/uDHTutQyad/puWpafWJ+MFUeqLU6Rvx4njsFCO8jW3mwdGyLSjtmoWv588/YzJhRaccyB1qdwNXQZPbdiuHgnRgSM00jI8ukEuq729G9visvtveuED4QiFzmfftE79sDB/K5zfPmiZmHguffZ+lpQhKzWDyoITO6mWnXcOcONGsmttwHBUGdsu/nk7332HA+BA9HKw7P71bI4PmfCHPtOM4EJTD916uoNDr6N3Fn5fhWhDyS0rGj2EA5YgTs2GEUXy8TTgcl8NIGfyQS+H1aezpVYffY3pvRvL71OgqZhL2vm2excjkomg4NxIaZtSfuMb1no4o+zWcOtVbHK5uvcUKvEffbtPZ0qVf4ezKUrJ/EvU/6Y63Mvx8uPkrihbWXsJBLOfd2T2b9HsCVULHy8l+ZrBIwrEVNfjz1iInr/fn7ZjQqjY4aDpa08XFiiF9NZnSrzQeDG/PTi61Y8XwL5vSux3PNauBbiotvlkrLJ/vuMWxVYesNiUTCgn4NeP8JZebzj5JZeuQB/ZtU5x19KvHz/YGEJGYVuf/WPs4M8RNFqj7ZW7rkvyEQ+f1yeJUKwPXWd5WZUyqzt1TQxlf0VjtRxQKMCpmUJWP8KEiPqWyXNLlczty5c5k7YgTy2FjQ/rOE+mRSCe1rV+PT4U25vLgPW15uz6SOPvRq6Eb7Ws4093SgjqsNNRwscbBSUNfNlpGtPPhoSGN2vtqJux/35+DcrrwzsGGFBUKCIPpXDRsmBkQ6nSjaB7B8OWzYUPj8DVola86EmL/oadoUBgyAatXEYMgEvNm/Pp5OVkSl5vDtofvmHb8KYRyTc+ciLyOH7WxwAi/rAyHR+64VqclSBg0SA6F27eC330wLhHLVWj74S+zgmtzJt0oDoeQsFR/psxKzetQ1KxDKytPw1o6bxv9XZXmvKqGQSVn/Uhv66CkSr/5+rVBTUEB4Cq9tCShy27AnOLUdajvj5+VInkbHpgthbJzc1iy+4n+ZoVLwZJnMRiljaAsPXmjnRTMPh1LVqFOyVBwNjOOv61FcCkmiKPqEpUJKrlqHRAIT2vvwZv8GhYibO69F8ub2mxT8opaO9WNESw8mrvfn3MNE2tVy5o+XOxjLCGnZaqM/TWRKNr2/EyX/S7Pd0OoEun97ksiUnFLJa6agtJVjWFIW3b89hUwqIeC9viZ766w584gvDtynaz0XNk9rXyHnbAp+OB7Ed0eDAVFM8pcp7Sr/oJGR8MYbEBMjknTL4XP0v47168VgSCqF+fPh5ZehQQP45BP48EOR3nPyJHTWewartTo6fnmCxMw8Nk1tR/f6ruYdODJSDIasTLf4OBecyIT1l5FIYMfMjrT2Kd2A+d+Cs8EJTN90lTyNjj6N3PjxxdYIWrE0dv481KoFFy+Ce9kFhIF8Arq7vQXHFnQvt1O7KTA0VNR3t2Xf613NmpDf2n6TbRcfErFsNFC5Rsz/BOSqtYxefYE7Uek0rmHPzlc7YaXn23535AE/PFEZAdGEdWCzwrY1h+7EMPO3AOwt5VxY1Jtt/uF8uj/wv8xQZaC5pwPfjGqO/7t9+HJkM5p7OpbJZM/JRsnYNl78/nIH7nw0gB/Ht6R9LedCYou5ah113WwRBNh8KYwRq84XipJHtfZkxRMcFIMw1Zcjm2GtlOEfkszvl8O4FZnK5I3+hVYXnk7WzNC32n9RSqu9TCoximRtOF+yBUhFwqeaDfXdbdHqBE4FmZ7d6aVvsb/8OPmZmInO7FEXJ30AF5tWRVYVCoXYa3z2rDiD/IcicesWvPaa+Ptnn4mWbg30cjPvvSdSetRqGDkSwvUSUQqZlP5NxJn40J1yaG95epoVCAF0qefC6NaeCAIs3HGr0mQLqhqnHsQzTR8I9dYr8ytkUqZPF4exg4PYJ2BqIBSWlGVU6X9/cOMqDYRO3o9n9/UopBL4ZrSfWYHQ3pvRbL8W+f9qTWOpkLFmYhuq2Si5F5PO4t23jXPOgr71mdjB56ltiuq27tu4OrVdbEjP1fCHfzgTO/pib2laafm/YKiM2PJyB8a29TKfTImo5zOoeU22vdKR+58O4OuRzYxltIfxmdR2scHNVsnjxCxG/XSBwJh8HspQv5rM7pnPORCAwd+fo5qtkoX9xSf7R3vvMXTleU49SCAorrAT/MzudXCzsyA8OZutl0sWBRzX1gtbCzkP4zM5HZRg9t9rKoylMjO6wuq42uLlbIVKq+P8w8SKPrVSoZBJmaPXEolKyamaINLdHSZNEn9fsqTyj/cvREaG2IWUmytah739duH3pVL45Rdo0QLi48XskQGGDOrRe7HlV2bX6WDvXtFo1wS891wjXGwteJSQxfJjweU7h38ATtyPY8av14ylsR8ntMJCLuPzz8WSmEwmcoQamUiTEQSBD/66i0qjo2s9F55rVnWGtxqtzkjandq5Fi28HE3eR0RyNot3iX5dr3SvXZGn949HTUcrVo5vhUwqYff1KH65EArka28NecK8OLQISohMKjEu+A0K8qZKKfwXDD0jyGVSxrXz5uSbPVg+zg9bCzmPE7NIy9XgZmdBfEYeY1df5GIBz6s3+jagd8P8zpJcjY4By89w+bH4mYIP7LDk7EKcHxsLuVFhd4Neubc42FkqjCaqG8pg+FpR6KMPhk49iDeZpyGRSOjdMF/N+llgbBsvZBIJGXmaEuXky4usrCwkEgkSiYSsV18VX/z7b3hQssnh/zcIArzyikjX8fSEX38tmn9iY5Pf7HX0KEREiL93qF0Ne0s5iZmqp/RRTMbAgTB0KGzebNJmjtZKPhveBICfzzziTBUuTkxBoTGZVTR/8ei9OF7ZfA2VVseAJtVZNV4MhP78U7TfA1i1SnSiNxWH78ZyOigBpUzKx0OblClrX1H460Y04cnZONsoma9v9TYFGq2OuX9cJyNPQytvR2br1ZP/P6FjnWosHiRGwJ/tD+RKqGg/JJVKWDquBa19HI2fvRmZWuQ+RrTywM3Ogtj0XPbciOL5/4KhfxckEgnDW3pydEE3o8VBfEYe9pZyMvI0vLTBn4N61WqpVMKy51sUMnkNT87hVBEPSEEQs00FMaqVB47WCsKTs0tVSZ7cyReJROz2CH4iy1RZaOHliIutkoxcjfFmMAUGNeqTD+KfiZ2BjYWcjnVE76EqC8jq1xcnWUGApUur5pj/EqxeDVu3itmGP/4o2cuqbl1RHxHEz4KY7evTuAJKZSAGQyD2iJfRosOAAU1rML69N4Ig8lLi06uoDFuBOHQnlld/E5Wln2tWgx/Gi2rQV6/CSy+Jn5k/XwxeTUVWnoaP94qaTDO716a2axndWysAWp3AqpMir2V611pmVQ6+P/GQgPBU7CzkrHi+5T/Cff5ZYGpnX4a1qIlWJ/DOzlvGBbFCJuW3aR1wtRXlWILjM4vULrOQy5iqbwD6+fQjfJytaV+r7Dy7/59XvYIhCAJ3o9PYeS2SX86H8P3xYD7ff4+3d9zize03WX8uhKuhySV2Z9VwsOLXqe34aEhjLORS0nM12FnKUWl1zNoSYNQcsrdUsHZSG2yV+fLmOWodjlZP34QPnghirJVyXmxvsN0QU4k6fRv0k15M3tWs6aefCH57Qu/IHFhbWxMfH098fHyxcv0yqcTI/TkWaHpXWftazlgpZMSl53E3Or30DSoBBgHJygyGnrqWb74pvvHrr2Kt5z9w5YrYMg/w1Vf5xOiS8OKL4r9btuS/NqCJWCo7fDe2fAH2tGmisVZQkNjOZiI+GNyYhtXtSMpSMfePG1VqqFwWlHR/77sVXchrbMXzLVDIpERHi919ubmi08y335p37O+PBxOTlouXsxWzelZtVmX/7RgeJ2bhYKUoVt6kJIQmZhmDqc9GNMXL2bpMz8r/RUgkEj4Z2hQXWyWPErJYezZf/NdKKWPXrE7IpBK0OoFtVyKK3Mf49t7YWch5lJDFscA4xrQpux/cf8FQOfAoIZNlR4PovfQ0z31/jje23+SjvfdYejSItWdD2HY1gh3XIvl03z1Gr75I048OM2iF6K10LezpzIdUKmFy51r8/VoXXO0syMjV4GClQBDg/T132BUQCYj8mB+eEKkCngqI7sc8bZ45qaMvCpkE/9Bk5m27TpevTzB69UWiU5/mMhjSjPtvx5TbmVwikeDq6oqrq2uJKex83lCcyZOPpUJmdKQ++YxKZYZg7mpoCulPKKtWFJ66ll26iH3Iubnw00+Vcsx/E5KSRFK0SgXDh4sNd2XBqFEiJ/3GDdFWDKBbfVesFDKiUnMKaUmZDDs70bgVTFcQRBzbK8e3wlop4+LjJFYW0WXzLFHc/b3VP5w5W6+j1QmMaOnBsrF+yGVScnLE7yY6Gho3zs/gmYoHsRms1y/sPhnatEpd3HU6gVX672Fq51pmaUEtPRqEVifQo4Erw/Rm3GV9Vv4vwsFawbvPieWy748HE16ALO3lbM1sfbD706lHRS4I7C0VTOgokq5Xn35ETxMES/8LhkyEView+VIYz31/lt7fnWbF8WAeJ2ShlEtp6eVIu1rOdK5bjW71XOhWz4V2vs7Uc7PF0UqBVidwLyadrf7hjPrpIuN+vsjpoISnJv0G1e34Y0YH3O0tSMtR46hvs39n120C9I71PRu4FfLxSs3R0LG2C3YFGPSXQwrzHOLTc9l8MQylPg2753o00frOp7wiODpd6rrgaK0gMVPF5RDTy1bmoGs9F5RyKRHJOQTFmc67MQQjVUn8LgifajbUdrVBoxM4G1RFRG6JBD74AL74Al5/vWqO+Q+FTidyysPDRY3DjRvLrjhQrZooCwT52SFLhYyeDcW2+kN3y2me+vrr+RYd/v4mb17XzZbPhosupSuOBxXiE/4Tsfr0Ixbtuo1OgBfaeYl6XDIpgiAmyq5cEa/53r1QStdzsfh03z00OtFyo2fDqlXqPnIvjgdxGdhZyJnc2dfk7e9Fp/P3TdFV/c1+DSr47P69GN7Cg461q5Gn0fHB33cKzY8zutXGzlJOVGpOsaXrKZ19UcqlBISnPtVIVBL+C4ZMwMP4TEavvsD7e+5wNzodmVRCh9rORnHF6xGp+Ickc/5hEmeCEzkTnIh/aDLB8Zmk5qiRSSR4OllRy8UGmRQuhyTz0gZ/hqw8x4HbMegKRLp1XG3ZNqMjNR0sSc1RY62UodLomPHrNWMWZ2b32oVqogfvxvLt6OYo9X5Z92PTCw0kW0s5B+7EkFVEua4owrJCJmVgU5HJ//eN6HJdu7y8PGbPns3s2bPJyyveJ81aKaeLPrtjTqnMwNm5FZVWIQrh5qBXg8otlalUKj7//HM+//xzVCp9efO552DRInD+39GiMQfvvy+qS1tail1Jjo6mbV+wVGa4dfrrS2Xl5g3VrAnjx4u/m5EdAhjZypMxrT3RCaLHYUHrkmeJgmMyLy+Prw7e56uDoljkzO51+GJEM2R6OZFvvhEzQXK5+B3VNrN56tLjJM49TEQhk/Dec41L36ACIQgCP5wQu/te6uRrlqHvd0fEhofBzWvQ1CPfGaCsz8rKRHKWisN3Y/l8/z1G/Hie3t+dYvAPZxmz+gIT119mxq9X+eJAIP4hyRVespVIJHw6vCkKmYRTDxIK3Xe2FnKmdhZ5QatOPiyyeuBmZ8lAfSfo3ptln7f+E10sBQbRxeUHrrPqfAwqjQ5bpYyejdyJSM4upBotl4rcH6VcikImNd78GbkaUrJUZDyhf+NgpSBbpUGtFb+CDrWdWfF8y0KeYBHJ2byw9hKRKTkoZBLUWoEmNe3ZPrMj1ko5jxIy6bfstFHMsZqtkqVj/Hhpo+hsvuL5Fsb0K4irkeE/nn8qUChOWO7Co0TGr72MvaWcq+/1NduJ3BS5/t8vh/Hu7ju09HZk96wykD0KQBAEWn56lNRsNXtmdzarzbW8uPAwkfHrLuNiq8R/cZ8K89MyoEzXUhD+34kwrlmTT8D95Zd8Yq4pyM4GNzfIyoILF6BjR8jIVdP602OotDqOLehGXTc780/y9m1o3lyUvz53Dkzw8DKeo0rDsJXnCY7PpFOdavwypZ3Z92VFoeCYXPD7JXbeErOi7wxsyMzu+ZIgBw7A4MHi8Pzpp/zKoakQBIFxay7hH5LMxA4+fKrPmFUVTtyPY+ovV7FWyjj3di+cTfQ+uxqazOjVF5FJJRyd360Q6dtca5PyIiVLxeozjzgeGP9U801JcLJW0KuhO30bu9O9vqtRNNGA8w8TufgoiTf7m5b9MoguVre35Ngb3Y1lyJQsFZ2/PkG2SsvGKW2LLIUZLFnspSpufznyP9HFisR3R4JRaXS09XWmrrsde29GGwOhRtXtaO3thKVCTkRKDo8Ssrgfm8Hd6HTuRqcTnpxtDIQUMgludhYo5VLSctSotQI2FnIUMgmXHiczaMXZQu2zXs7WbHulI97O1qi1AjKphLvR6by5/SY6nUAdV1vm9Mpv50zKVBEYk8GIlmIAtOxoUKGMU+Oa9rz/3NMiHnnFCLq1r1UNNzsL0nM1nA2umtKTocX+RkTqU8Tu0iCRSGipD4Cuh5ezHdpMtPF1xtZCbMm+FfU0b6u8kMvlTJ8+nenTpz9tfXDggMgW/uuvCj/uPxkHDsCsWeLvH3xQfCC071Y0E9dfZu4f1/ls3z1+Pv2I3dcjeRArptOtrUU/LMgvldlZKuhcV8w4ljs71KwZXL8uOtmbEQiBmD1d9aLIH7rwKIk39M+CZwm5XM7kqVNp2H04OwJikEjgy5HNCgVCDx6IiTGD5IG5gRDAhUdJ+Icko5RLmVVAf60qIAgC3x8XuUITOviYHAgJgsA3h8Ws0JjWnlXa/VYUctVafjz1kG7fnOTn04+NgVBdN1teaOfNsnF+/DGjA79MacvqCa1YOtaPT4c3ZURLDxysFKRkq9kZEMnM367R7duT7LgWaRyPf/iH89IGfzaeDzGZQzm7Z128na2JTc9l2dF8OxsnG6WxEejHk0Vz5zrXEeet1JyyC/D+s93//kGwUUrp36ImR+7Fka3SYqWQ0szTgccJWQTG5tclazhY4u1sjYOVwvgjIGZk7kSlkZGnIV7v6C0BLORSo2KyQiYhKUvFpA3+zOpRhwV96yOXSfFwtOL36e0Z/MM50nLUSCVw4HYsK9yCmd+3PjN71OavG5E8ThTJZt8cvs+pN3tw6E4soUnZHLoby6ACImQTOvhwNjiBI/fyyziqYgjSMqmE55rXYOP5UPbejDYSnCsT7vaW1HG14VFCFtfDU0w+ZitvJ04+SCAgPJUppiWWKgRKuZSu9Vw4eCeWk/fjKzw7ZWFhwdq1a4t+8+xZMaWxZInIUP1/gBs3YOxY0aJt8mT46KOiPxeRnM2b22+Sq356rMulEo7oV+jjx4sCgNu2iQaucrkowHjyQQKH7sbyWq965TvhFi3Ktz1Q392O1RNaM23TFfbejMbZWsFHVayvUxApuQIJLSaT45qOhUzKsnEteK6AWF5amtg5lpYm8v2//978YwmCwFL95Di+nTc1HMxT+DYX5x4mciMiFQu5lOldTTOVBkT6hD6QMwi1PgtodQI7AyJZeiSIWL1cQ+Ma9szqWYdOdVxKDfImdvBBo9VxJTSFo/fiOHQnhui0XN7cfpNfL4ZS28WWPTeiANCotOy4GmlsfS8LLBUyPhnWhMkbr7DxfAgjW3kYjcand63NpgthXAlNwT8kmXZPtNDLZVKGt/Rg9dGyL4j/dZmhH3/8kVq1amFpaUnr1q05e/ZssZ89deqUUQis4M/9+6YbH9ZxtWPPjWiyVVoaVrfDzlKBf0gKiZkqHK0VvNjem+0zO3L+7V5se6Ujaya14dsxfrw3uDHvD27M1hkduPlhP46/0Z1l4/zoVt8VAVE4EcSgSK0VMFRUfjz1iOfXXCJBHzh5OVuz/PkWSCRgWASuOB7MpcdJWMhlfDXKz3iuOgE+3nuXl/WKnMv0HQsGSCQSvh3dolCdO7eEtv8hfjUBkTBYVeatrbxF49UAM7I7LfXbPqvMEBTWPKpSGEi658/DpUtVe+xngMREMebLyhLF+tasKbo6KAgC7/91h1y1jpbejrz3XCNmdKvNiJYeeDhaodEJ/HlV7Nbs00fkGiUkiCRfELOVUgnciUovZJVTLqSnm0WkNqBbfVeWjBHv+00Xw55Zh9mtyFSGrjzHnah0nG2U/P5y+0KBkE4HEyeKmSFPT5EnZGZSDBCDiWthKVjIpczqUbVZIcB4nV9o542bnWUpny4MnU7g28Pi/DOxgw81Has2kDMgLVvNC2svsXDHLWLTc/FwtGLZOD/2vd6Fwc1rljnbJZdJ6VinGh8MaczJt3qwaGBDbCxk3IpMMwZCBmy6GGpyBrNHAzcGNauOToDvjuRnh9ztLY1t8yuLyQ6NbOVR5OvF4V8VDG3bto158+bx7rvvcv36dbp27crAgQMJNxgKFYMHDx4QExNj/KlXz/Ro/FZUGhZyCW19nbgfm0F8Rh6+1axZPaE1/ov78PmIZrT1dTbyQ3JUWoLiMgiKy+BhfAYP4zMJS87G29maES09+XVqO/3Aq4FUkt/NZRgrcqmEq2EpTFh32Vgq6tnAjTn6VamBj/TOTtGzqF0t50IOx8fvJzDUrwb2lnKC4zPZd6swkczBWsGq8fl+Zzcjiy/ntPRyxMPRimyVtsrEBFv7iAGNOcq/fl4OSCQQmZJDfMazEajr0UDkX92KTKvac6gAku6/BRoNjBsHYWGiaOL27WIcWBT2347h1ANRoXjJGD+md63N4kGNWDauBe/py8a7AiLRaHUoFNC3r7jd4cPiv9VsLYyrz8N3y1kqA7h2Dby8xEhOZVopuCCGtfDgwyEiefi7o0FsKcVqp6Jx4HYMY3++SHxGHvXdbflrdmfa+hZepX/6qdgxZmEBu3eb7jlWEAWzQhM7+OBmb1owUl6EJmZxOSQZqcQ824xDd2O5E5WOjVL2TAI5gJi0HMb8fAH/kGTsLOS8O6gRx9/ozoiWnuXiN1rIZbzSvQ6Dm9Us8v2wpGyzfCff6t8QqURsSLlTgHbwSrc6yKQSzgQlcLuI+athdXsaVC87v+9fFQwtXbqUadOmMX36dBo1asTy5cvx8vLip1K0Vdzc3KhevbrxR2aGoIWHoyUutpZcCRUn55c6+nBgblcGNK2OUi5FEASC4zJYd/YxE9dfxu+TI/RbdoZ+y87QZ+kZ+iw9Tc8lp2j5yVFe/vUqmy+GYmshZ+X4Vpx4owdD/fIHkATQ6MQs0YO4DCauv0xatlhvndO7Ht3qu6LVifyh0KRslh0THw6LBjYqZE43/48bRr+W5ceCn9IK6lLPlba+pQcdEonEmB0yhZ1fHrTSB0M3I9JM1jiys1RQX09yvR6eWtGnVia42VnS3FNM6Z56ULFcq6ysLGxsbLCxsSna+mDBAvHfXbsgJKRCj/1Pwttvw4kTop3Gnj3Fd46l5aiNCsWzetahzhMcjd6N3HG2URKfkcfZYJH4a2ixP3Qo/3MFBRjLjWbNxBOPiRFbq8qBKZ1r8Zpef+W9Pbf5sxhBuopErlrLp/vuMev3AHLVOjr72nL+vUE09HItNCb//ju/bLl6NbRpU77jnnwQz82IVKwU4sRb1TC0wneu62JyeU4QBCP3ZXrX2lTTKypXJR7GZzDqxwsExWXibm/B9lc78nK32hWqz/TFyGZ8OqwJ1kXsc6MZ9k61XGyM88+qAlkg72rWxnnzx1NFZ4eG+pXdo+5fEwypVCquXbtGv379Cr3er18/Lly4UOK2LVu2pEaNGvTu3ZuTJ0+adfykLBVRqTnUdLDkt2nt+XhYU6yVcgRB4PDdWHp9d5q+y87w2f5AzgYnotLosLeU42yjxMla5A5ZKWRk5mk4ei+O9/+6S48lp+i37DT3Y9NZ8XwLlozxw0ohQwCk+nKYRAJ3o9OZtNGfjFw1MqmEFeNa4OFoZSx9rT3zmNuRaTjoeQMG3I5Op3MdF5ysFYQkZrH7etRTf9f7g8VVZVBcBpkluL0bBt2JB/GVJiZYEHVdbbGzlJOj1nI/tuxaEQa00nvZPKtgCDB2OVSGAGR2djbZ2cWUa5o3h379xPrE8uUVfux/ArZuzXcf2bQJmjQp/rPfHr5PQkYetV1seLWI1bhSLmVYC3F8b78mBhL9+4vv+fuLIo4A/fTB0NWwFGP52mwolTBnjvj7d9/l9/GbiTf61eeFdt7oBFi485aov1NOodTicD82neGrzhvFDqd1qcWP41s9NSYfPBDLYwCvvSbyucqDglmhSZ18cLWr2mBCEARj6Wd4C9NKMAAB4akEx2dipZAxzQyuUXlxLSxFFNhNy6W2qw07X+1Ew+pmCjyVAJlUwsSOvpx8qwd9GhXu9DobnGhSp5oBBrHFg3diC2kHGe7nQ3djiUx5+nn4XDFZqqJgVjA0depUMjKenqCysrKYOnWqObssFYmJiWi1WtyfyLG6u7sTG1v0Sq1GjRqsWbOGnTt3smvXLho0aEDv3r05c+ZMscfJy8sjPT290A8grn7qVuPQ/G50qSfq4IQmZjHllyu8svkaIYmi8GK3+q68P7gxxxZ05+aH/Qh4vy/XP+jHzQ/7cffj/ux7vQtv9W9Ah9rOKGQSguIymflbAKN+uoBPNWv2vt6ZhtXtjOUyQ4f0zYhUpmy8QlaeBicbJT9NaGUUTzQ8ANVaHcNaeODtlL9ief2P68aOjpUnHz5Vs23m4YC3szUancCxEvzKGtWwo46rDSqNjqN3Tdf/sbKyIiQkhJCQEKysSl9RSaUSI/fHLN6Ql/nbVhQMvKHzDxMrtNunTNfSILu8fj2kPLtrUBm4dUsU7QN45x1RObo4XAtL4Xd96ejzEc2wkMtYt06cpBMLaGKOaS2WmI/diyclS4WHh5i8EQTRvBVEd+2mHvYIAhXTWfnKK2J26PZtOHasXLuSSCR8Prwpc/WE3PXnQpi66SppORW3cNHpBNadfczQH85zPzYDF1slGya34f3BjbGztSk0JjMyYORIkRbVpUvF2OYdD4w3lphe6Vb1WaG70ek8TsjCQi6lXxPTa3079Q4CA5tWx96yeF0iU5+VZcGdqDReXHeJ1Gw1Lbwc2TGzE55OlWv14W5vybqXxA40qwJZovnbbpjsLlDf3c6YmS3YQVbf3Y5OdaohCLA74OnFvosJAbNZwdCmTZvIyXnaviEnJ4dff/3VnF2WGU92SwiCUGwHRYMGDXj55Zdp1aoVHTt25Mcff+S5555jyZIlxe7/yy+/xMHBwfjj5SU+JJt7OrBmYhvsLRXkabQsPfKAfsvOGHkIr/Wsy/X3+/Lr1HZM61KLum62T52XVCqhqYcDs3vW5Y8ZHbn2fl9e71UXK4WMgPBUxqy+yFcHH7BmYmvGFvBUEQSxdHY1LIXZWwLQ6QSaezoaW0olEgiMSWfNmcfIpBLm98tvtY9MyaGltyN2lnLCkrI597CwKrJoFCuuckoqgRUqld0yvVQmlUrx9fXF19cXaVHW4UWgtbf5vKGW3o6ASO6srBVyaWha0x5rpYz0XA3BZqyGikOZrmXfvuKMv3GjaAXxP4KUFHGSzckR/8TPPiv+s2qtjsW7biMIMLq1Jx3rVCMqSowTf/utcHWqcU17mtS0R6XV8Zd+9V9UqcygxVUhCudOTmBYPFYAv0sqlTC/b31WjW+FpULKmaAERqw6z/3Y8vv0XXiYyIgfz/PZ/kBUWh29G7pxaF43ejV01x87f0xKJFKmThUtTWrUKJnLZQo2XQwFYEJH09vZKwKGcdGnkTt2JQQzRSFXrTU+X0e3Ltkvy5xnZUnIyFUze4tYzuxaz4UtL7cv1/XLVWtNeqYOaFqDK+/2Nkqe3I5KY/XpRyYf97VeYnbo75vRhCbml2IN13NHQGS5/ANNutLp6emkpaUhCAIZGRmFsicpKSkcOHAAN7fKkUR3cXFBJpM9lQWKj49/KltUEjp06EBwcHCx7y9atIi0tDTjT0SEmDb/8cVW2FjIyVVrmfHrNb4/8RCVVhxch+Z15c3+DUx2LLa3VPBGvwacfqsH49t7I5NKRHO5ny8yvp23UUsBQEAMiE49SGCN3sBuZvc6+FSzNmbYVxwL5mF8JkOa18SrQHbojT9vMqqVOGCKIlgO0Xd+nAlOIDW7eDKnIRg6F5xosv6POTCUuszJ7tTRl9ly1TqzymwVAblMagzKroRWjZ2JERKJaNw6ZozYG/4/AJ0OJkyAR4/A17d0P6sd1yJ5EJeBk7WCxYMaIQjw6qtitqJdu3xdIgPG6B+q26+JK3hDMHT4cH4Vq1s9MRg6G1xB2b5580AqFQ9y50759wc817wGO2Z2oqaDJY8Tsxi04ixvbr9ZZBmhNNyOTGPi+suMX3eZm5FpWCtlfDa8KeteaoNLMZyX998XO8bkcti5E6pXL+9fBCGJWZwNTkQigQntfcq/QxOh1QlGvtDQFmUvvRhw9F4cGbkaPByt6FC7WkWfXrEQBIFFu24TlpSNh6MVK19ohbWy7M8DQRC4FpbCurOPmffHdXp/d4pGHxyi3nsHafnJEfosPc24ny/yxYFA7kSlFRuM2Foq2D27M1P0tiXfHHrAcRMdBpp6ONCroRs6QfQmM2BA0+rYKGWEJWUbOb3mwKRgyNHREWdnZyQSCfXr18fJycn44+LiwtSpU5k9e7bZJ1MSlEolrVu35qghZ63H0aNH6dSpU5n3c/36dWrUKJ5UZWFhgb29faEfAEdrJTkqLdM3XeV0UAJWChkrx7fk16ntyi2a5WZvyRcjmnF4XlfqudkSl57H2DWXaO3jVGgVYRhm3x66T0B4CpYKWSGOkEqr45tD95HLpMztk58dikjJoVMdscPjaGAc8emFu5vqudvRsLodaq1QIjm0jqstDavbib5bJpYJVCoVb731Fm+99Va+hUQpaOHliEQCEcmmd4VJpRKjvs+zbLFv4yNed3OyW8VBrVazfPlyli9fjlpd+fytfwo++yzfamPXLtHXqjioNDpjC/RrverhbKNk2zaxq0mhgA0bng6khrXwQCmTcjc6nXvR6XTuLFaxYmPF0hyIxH5bCznJWSruRFeAoGbt2mKqSyoVFakrCE09HPjrtS70a+yOThADw15LTvPR33cJissoMZCLTs1h4/kQnl9zkSErz3E2WLS8mNzJl9Nv9WRCB5+nst5qtZply5bTp89yPv9cHJPLl4sK3hWBrf7iIq5HfVe8nKveyd0/JJm49DzsLOXGTlFTsEMfYI9s5VFqx5Y5z8ri8MeVCPbdikEulfDD+JY4WJctoyUI4jN+5E8XGPXTBT7bH8ieG9E8SshCEMTFQUq2mofxmVwOSWbNmccM/uEcfZed4YfjwcSkPV05AvhgcGPGtfVCAF7fer1Qd1hZYOAO7QyINAb31kq5UcphxzXzmwdMsuM4ffo0giDQq1cvdu7ciXMBHySlUomPjw81a5oeNZcV27ZtY+LEiaxevZqOHTuyZs0a1q5dy927d/Hx8WHRokVERUUZS3XLly/H19eXJk2aoFKp+O233/jqq6/YuXMnI0eOLNMxDXYc0fFJzN/9gEuPk7FWytg4uS3tKyHCz8hVM3/bDY4FiqTbl7vWIjo1l/23C5tEejpZsX9OVxysFLyy+SqHC/B49r7WhUY17Oj+7UmiUg1iWnZYK+VcDUvhzX71nxKOW3XyId8efkCXui78Nr19sef32b57rDsXwvNtvfhqVPMy/13mSswPWH6G+7EZrJ7QmgFNTVtiLjsaxIrjwYxs6cHScS1M2raicDY4gYnr/fF0suLc270qZJ8mXcuMDNH34MwZMRL4l1p0HDwo2q8JQtmsNrb6h7No121c7Sw4u7AnWekyGjYUeUIffyyqVBeFWb9f48DtWKZ09uXDIU0YOlS8bF99JXavAcb77Y2+9Xm9IkTzHj4U0yi+vuXfVxEICE/h20MPuPg439jVzlJOCy9H/DwdERBIy1GTlqMhNDGL2wUmKIkERrTwYH7f+iUGIaGhWdSqZVgUZtKsmQ03b1bMcMtVa+n45XFSstWsm9SGPo0rX/j1SSzadYut/hGMa+PF16PL/twDiEvPpeOXx9EJcPLNHtRyKfnZV1F2HPdj0xm28jx5Gh2LBjYsc/fd5cdJfHckCH99NttSIaVbPVeaeTjQ1MOBJjXtkUgkJGepSMrMIyYtl+P34zgWGG+0ebJSyJjftx5TOtdCISucc1FrdUzZeIVzDxOpbm/Jntmdqe5QdomEF9dd4vzDpEI2LFdCkxmz+iI2ShlX3utjzH4Z5u+y2HGYlD/v3r07ACEhIXh5eVVIPdMUjBs3jqSkJD755BNiYmJo2rQpBw4cwMdHTJvGxMQU0hxSqVS8+eabREVFYWVlRZMmTdi/fz+DBg0y+dizfgvgelwethZyfpnSljZPaGkUBUEQCEvK5uLjJEKTsrCQSbFQyFDKpHg5W9OlnovRb8UAO0sFaya24bujD1h18hFrz4Ywsb03fRu7c7QAwTkyJYd3dt7ixxdb8cGQJpwJSiRHb6mx9OgDNk5px9ze9Vm4U1zS3ovJ4PPhTbgalsJW/whe7VHXqFUEolngt4cfcOFRIgkZecV2anSqW41150K4UEWO2a18RF2ngPAUk4MhQ4nqWZKoW3o7IdVrHsWm5Zp00xcHmUzGeL2WUKkyEWq1OPtnZ4t96L17l/v4VY2QENFA1VDmKi0QKpgVmtm9DpYKGV/9IAZCTZuKpOviMKa1Fwdux/LXjWgWDWzEgAFS9u6FI0fyg6Fu9V05fDeOM8EJFRMM1a1b/n2UgFbeTmx5uT3nHybx85lHXA1NISNXw9ngRKOUQEFIJNDWx5l+Tdzp36R6qZmYv/6C6dNlgF7fChm//15xcffBOzGkZKup6WBZ5c70AHkaLQduixnzYWaUyHZfj0InQBsfp1IDoYpCjkrLa1uuk6fR0aOBKy93LV0TSRAEVp54yHf6jj2lXMqL7b15tUedIsUlxTlC5COOau1Jeq6aI3fj+P1yGNfDU/niwH12BUTx+YimtPbJny8VMimrXmzF6J8uEByfycu/XmXnq53K7K83u0ddzj9MYldAJO8MbIiNhZw2Pk74VLMmLCmbg7djGVUKL6somEUm8PHxITU1lfXr1xMYGIhEIqFx48ZMnToVBweH0ndQDsyaNYtZTxb79fjll18K/X/hwoUsXLiwQo57LTwFBwd7Nk1tZ1RHLg53otLYeD6UC48SiUkrvryjlElpX9uZPo3cGeKXr/oplUp4q39DarvY8sb2m2y+HM7c3vV4GJ9JSAHi2ME7sWzxD+fF9j7M6V2Prw+JyqaiFUUKI1p5iG3FmWKq9UpoMg5WCqJSczgTlFDoweJTzQY/TwduRqZx8E4Mkzr6FnnObX2dkUklhCdnE5mSXekdCa28ndhyOZwAc0jU+o6y0KRskrNUz4R0aWshp3FNe+5EpXM1LJnBzcufObW0tOT3338v24ednWHKFFi1SiTp/suCodxcsVssJUXk+SxbVvo2uwIiiUrNwdXOghfbe5OXJybHQOSzlKR+3LWeC252FsRn5HHifjw9e4oB+MWLojaiUpnPGwoITyU9V11iZ5DJCA4GDw/RJK0CIZFI6FLPhS71XNBoRR7d9fAU7sWkYyGXYa+3DnKxVdKpjkuZ2tbT0mDuXFHaACwBcUy2aSN24lUUfr8kLnBfaOddaAFXVTgTlEhajho3OwuTqwGCILBTXyIzZ4I2FxsvhPAwPhM3Owu+G+NXamlOrdXx/p47/KHXqBrXxov5feubtHizt1QwurUno1p5sP1aJF8eCOR+bAajfrrI7J51eLNfA2N51cFKwYbJbRm68hy3o9L48dRD5hWgdpSEjnWq4VvNmtCkbA7cjmFMGy8kEgmjW3ny3dEgdlyLNOtam5XauXr1KnXq1GHZsmUkJyeTmJjI0qVLqVOnDgEBAebs8h8PiQR+nti6xEAoMTOPd3beYsjKc+wMiCQmLReFTEI7X2cmd/JlYgcfxrXxYqhfTXyqWaPS6jgbnMiHf9+l+7cnWXf2cSE3+VGtPflArwO04ngwQ/1qoJAVHtRfHggkKTOPaV1q4Vst/wG67GgQiie4Q/tuxTJS3zn2e1FE6jIIK9pZKoxigherIDtkUKK+FZVW6NqUBQ7WCuq4iiuxfwJv6Go5yH3lwrx54gA+eBACA5/NOZiJ118XfU1dXERSrkUpc7RKozPK8xuyQn/+CfHxYoxhMGHV6Qmxg1acZebma0YOjVwmNfIPLjxKpGFDcHUVu9euXhW39XK2prarDVqdwIWHT2dWzMacOdCggSG6qDTIZVKaejgwsaMvX45szkdDm7Cgb32mdanFsBYeZQqETpwQA56iTrUiaaP3Y9O5GpaCXCphXAGF/aqEoYtsqF9Nk4OxW5FpBMdnYiGXFrIoqUxk5KpZc0Zsslk0qGGp4o6ZeRqmbbrKH1cikErg02FN+Hp0c7Oz2BKJhLFtvDj+Rg9jV/Sqk494Y/tN1AW60Lycrfl4mFjmWnniIfeiy9b1KJFIGNNGHAvb9RY6ACNbeyKRwMXHSWZZ5pgVDM2fP5+hQ4cSGhrKrl272L17NyEhIQwePJh58+aZs8t/PCZ08KFTHZci3xMEgQ3nQuj57Sn+uBKBIIiBxeZp7bj1YX/+nNmRj4Y24dPhTfl6dHNWPN+Ck29059iC7iwe1JCG1e3IyNXw2f5A+i07XagcNq6tl1H2feXJR0+1ZWbmaVl6NAilXFpIUO6s3gxweEsPYwCl0Qk4WInJwBP3454iuRlu1iuhKUSnFk2AA+ioXx1VRTDkW80aZxslKo2Ou2YQVlsZfcpSK/jMyo42epXvq2FV3FFmQN26oksmVIzgSxVh40ZYt06M47ZuFd0rSsOugEgiU/KzQoIAK1aI782eDXK5wOmgBIasPMecrde5F5POobuxhRoHDGPmZkQqEgl06ya+fvp0/nEqtMXegHr1xFrgsmVi69w/GKGhYoD5JGxtYfToijuOISvUr4l7lVtvgMhXOqbvejKni8ygLdS/ScnaQhWJDedCSc1WU8fVhqF+JYtD5mm0TFh3mTP6pqA1E9swsZiqQEGotToyctUkZeYRnZpTpGels42Sb0b78e3o5sikEnYFRDF901WjMTmIncz9m7ij0Qm8taNwsFQSRrXyRCoB/9BkY7XEw9GKzvo5elcRmkOlwezM0Ntvv428QMuuXC5n4cKFXDUsn/7HMLcYboBOJ/Dx3nt8su8eGXkamnk4sGNmR354oSVtfZ25+DiRt3fcouOXx2nywSHqv3uQWosO0OKTo3x18D5SiYRvR/vx9chmuNhaEJqUzcu/XuWDv+7wxp83+Gz/Pd4Z0JCRrTzQ6gR2B0TR/gmH3i2XwwmMSWdES09qFIjmlx59gK2FnGEF1FJ/uxxOu1rO6ATY9oRsfw0HK6M9R0ldZYag8OLjpHLpOpQFEomEVnruj3l6Q/pgKOLZZ4buRaeXqPJdVmRlZeHq6oqrq2vRdhxFwSDCuHlz0bPYPww3buS3vn/yiWieWho02qezQhcuiDZglpbw8svw0+lHvLTBn7vR6dhayI330orjwcbskKEL8V5MOrlqbYnB0JmgxIq7B6ZMET1FgoNh376K2WclYepUUX8pfwrIAlzRaFyRSMo4JktBVp7GqJr/4jNopwdREydXrcPF1oJmHqZRQARBYP8tsfGlqkpkadlq1p0Ts0Lz+tQvNZP1xf5AbkSk4mCl4I8ZHUokp0en5rDhXAhjV1+kwXsHafbREVp/doxOX52g2UeHGfHjeb48GMipB/GFjMHHtPFi3aQ2WClknA5K4IW1l4wuBhKJhE+HN8XRWsHd6HR+LqP+UHUHS7rp78GCHWSGZMFOMzSHzAqG7O3tizRHjYiIwO5/SOCtIIrybtHqBBbvvs0vF0IBeO+5Rvw1uzNNPRz46uB9Wn96lKm/XGXb1Qhi0nLJUmlR6SPf9FwNxwLj+Gx/IENWnmPb1Qi+HtWMV/ReYr9eDGNnQBRH7saiE+DrUc3pVt+V4S09+OGFlrgWSH0KwKf77qGQSQoR5S49TuZaWEqh9HJiporBzUQexF83op8aMAYeUUkE6dY+TihlUmLScglNqiAH7xLQshzZHQOJ+kZ4aoWqQJuC6g6WeDpZoRMqrlyXmJhIYqIJJZrOnUXSTV4e/PhjhZxDZSEtTeQJ5ebCoEGweHHZtjtxP57IlBycrBWMbydqdK1eLb43fjw4OOlYf1a0kHixvTdnFvZkzcQ22FnIuR+bYVwAeDpZ4WyjRK0VCIxJR983wvnzojksQPta1VDKpUSl5vAooYIENW1tRVVq+Meb7AqCyMPSaAqWLhPJza24suGxwDgy8zT4VrOmU52q0+YpCP8QMZvb1tepWHHf4hAcn0lSlgpLhdSYTa9srDv3mIxcDQ3c7XiuWclluQO3Y9h0MQyA5eNa4KdfBDyJyJRspmz0p9NXJ/hk3z38Q5Mp+CiVSyVodALXw1P5+fRjJm+8woDlZzhwO8b4zO3Z0I0tL7fHyVrBrcg05my9bgyY3Ows+WiIKBGz4ngwD8qoCzdWXyrbcS3SuK/+TapjIZcSnpxtsu2HWcHQuHHjmDZtGtu2bSMiIoLIyEj++OMPpk+fzgsvvGDOLv910Gh1vPHnDWOd9Tu9E7Z/aDIDlp9h9elHZKm02ChlONsoKe42UsgkyCQSAsJTmbbpKvtuFW6hT8pSczwwDoVMypqJrflyZDPc7C15Z2DDQp+78CiJo/fieL6dVyGi8Fb/cNr4OBWy6DgTnIhSJiUkMeupB7kh63PpcVKh6L4grJQyWuiDjAuPyvbws7Ky4s6dO9y5c8dkifnyONjXc7NFLpWQpdISm148mb2yYXDyrgjekFnXUiKBhQvFtqzhw8t9DpUFQRDLLI8fg7e3mMgqa9Pqb3oe3Ni2XlgpZWRminpEIGaFzgYnkJSlwsXWgo+HNsHZRomDtYIpXUSfqOXHxOyQRJKvUXUzIpWmTcWETWamyF8C8R4wZJVOB1Ugb+i118R0y5kz+SSlfyBWroQ//xRP9ehRePNNK2rXvsPt26bf38XBQBcY1KyGyYFIReGqvr28LN3DT+KyXsqglbdTmTulwPxnZXKWig16v7j5feuVSJoOS8ri7R1ip/HM7nWK7NLT6QQ2Xwqj/7IznHyQIHYZ+jrx/uDG7Hu9M58Ob8yUTr50qlONwc2qM7mjD6NaeWBvKSc4PpNZvwfw3A/njIKzLb2d+HVqeywVUk49SOCrg/n8xWEtatKnkRtqrcDnB8rGa+zdyA0nawVx6Xmc0eveWSllRpK7qQbZZgVDS5YsYeTIkUyaNAlfX198fHyYPHkyo0eP5uuvvzZnl/86LDkSxJ4b0aKY1QutGNHSg0/33eP5NZcITcrGzlKOlUJKlkpLcpYKAfBytqJrPRfa+jrRuIY99pZy1FoBbYHsTFQRXJ23d94iI1eNpUJmfCiMaOmBn2fhtO3nBwKRS6VM1at8Auy9GUVGnobnC6hZnwlKpENt8eY+8oQfWdOa9thZysnI1ZQoiGVYqZWVNySVSmnSpAlNmjQxWZLBz9MRqQRi03OfEowsDXK9jAFQSMK9qmEI6CqCN2T2tRw1SvShaNGi3OdQGRAE8RSPHRMDoO3bxWa4siA0MYszQeID+8V2Ykll925RUaBuXWjfHnZf1ysI+9VEXkD7ZFrnWthZynkQl8EhfXbIz9MRgBsRqchk0LWr+NmiSmWnHlRg2dHTE55/Xvz9H8rvunw5v+q6ZIl4bb79Vsq5c01o2tT0+7soqDQ6Tusns77PQFcIxGDgqn4BZqAPmIJL+qxS+1qmZYXMvb/Xnn1MlkpLk5r29G9SvAyJSqNj9pYAMvI0tPFx4o1+T3dxZeSqmbjhMu/vuUOWSktbXyf2vtaF2q42LDn8gME/nOf9PffYeCGUM8GJ7Lsdyy/6aoZGJDj/rwABAABJREFUJ+Dn6YCNUkZgTDovrLnExvMhCIJAM08Hlozx059vCNuviiUuiUTCB4ObIJdKOBOUwKXHpc8rFnKZkQJi2A+IwpwAp4JMuy/NGrVKpZIVK1aQkpLCjRs3uH79OsnJySxbtgyL0to9/gdwJTSZn8+Itc1l41owqFl1Ptl3z+jibAgmctQ6Gla3Y9k4Py4u6sXZhb3YPK0922d24sDcrlx7vy+/T2/PxA4+OFgVT65LyVbz2pbrhfxgpFIJHwxpXOhzYUnZ7L8dzcSOvkb9ojyNwF/Xo4x2HCAqVTeoLop6HXnCdFUukxpv3pJKZUbe0KPK5w1ZKWV46DNbIWYENAZtj5CkZxcMGTJD18OfnVfaPxmxsaJa8e7d4v9nzRKremXFFr1Ccff6rnjruyp/+018b8IEyMxTc0Qf6IxoWZhU6mCtYGpnMTu0Qp8d8vMSFxo3I8UFQVG8oa76FvtrYSkV+50uWCD+e/w4lJUTVkVIToaxY0X5qlGjxAY4A0oQ9jcZl0OSyMjT4GpnYQxMqxpB8Rlk5GqwVspoXMM0d3dBELj8WB8M1TY9q2QqNFqdMSB4vVe9EjNpW/3DuROVjpO1gh/Gt3xKFDFXLTotnH+YhJVCxkdDGtPCy5EhP5xj25VIo55dcchWabkZmUa2SouPsxUaPa92wZ83yVFpGdy8JnP0PmPv7r7DjYhUALyrWfN8O7H0teTwgzLNK4ZS2dF7cUaLKINCuH9IciGydmkoVwhvbW1Ns2bNaN68OdYVrIvxT0VWnoY3/rwprmJbeTLEryZLjwYZeUPWShkZuRpcbC34elQz9s/pqic2P53uVMikdK7rwqfDm3LqzR5M6OBdbDntdFACH+29W2iAtPZxNrbDG7D2zGPsLeWML5AJ+v1yOG52FnStm79CuRGRpv839alsiyHrU1IJrIWXI5YKKUlZKoLiSq/NqlQqPvroIz766COzJOZ9q4kBTagZAY1h25CEZzex1HOzxd5STrZKS2BM+bzS1Go1a9euZe3atebZcQQGinWjw4fLdR4VhT17oEkTMeMAYGVVNj0hA3LVWv7UTwQG36qYmHwj+AkT4NCdWPI0Ouq42tDU4+mJbWqX/OzQ2YeJxjJZSGIWqdkqYzB08WK+T1k9N1vsLMTvtCz3QJnRsqWoI/D4segH8g+BTicKXoaHi9m29evzhRXLPSafgKFE1qeRW6kaOZWFK/rMTitvp0KZxLIgJDGLxMw8lHKpcSyVFeY8Ky+HJJOYqcLRWkHvRsULU+aqtazSNxm80a/BU/OSSqNj1u8BXA5Jxs5CzrqXWrP27GPWng3hydDEqggebUEIQFhyDgqZBAmi+OSkDZfJUWmZ16c+/Zu4o9LqWLjjplE25fVe9bCQS7kallKmMlfjmvY0qmGPWisYvc5qudjg7WyNWiuUKcNkQJm/4ZEjR5b5538Zn+0PJDxZNL37cGhj1p55zA96tVsLuZRslRY/TweOzu/GuLZlFwlzslHy2fBm7JsjpiKLwm+XwvntUlih194Z2BCLAvXoezEZXHycZDSdBLgfm8HNyDTGF+jIuBGRarxJjz5hmNe5rpj1uRKaXKy2j1IuNWY7LpaBN6RWq/n444/5+OOPzXpYGrM7iaYTtmu56MtkzzAzJJVKCnCfylcqU6lUzJgxgxkzZpjnXbR+vdiz/s035TqP8iIzU4zJRowQMw4GvPKKad6y+2/FkJqtxsPRysh9+OMPcfLu2BHq1MHYlTSylWeRq2YHKwX9GoulhevhKThaK426Xbci0/DzEz3NkpIgTH8LSqUSI3euwlXOR436RwVCIHK69+0TCdPbt0NBfd1yj8kCEASBY8Zg6NmUyACj6WcbM0pkl/WBlLhoLEUl/gmY86w0aMMNbFrjqUxPQfx2KYz4jDw8HK2MWRUDBEHgze03OXE/Hgu5lG9GN2PqL1eNlk4AUglM6ujDX7M74+1cxAJfKmFq51rUc7M1SrqotQICYCGTcCU0hde2BKATBL4a2RxnGyVBcZnGLjJ3e0smd/IF4NvDD8rU9NJXH/yd0stcSCQSY3bonAk6YGUOhhwcHIw/9vb2HD9+vFAb/bVr1zh+/HilK1A/S1x4mGg0DFwyxo/wpGy+1JPA5FIJeRod7Wo589v09jiZqXbcpKYDu2d1psMT7fOWCvGr+uLAfcIKTOoejlZPtZ2uOxtCPXc7ozgiwNbL4fRq5IZcmj9AW3iKK+SjT/CG6rvbUs1GSa5aV2L3k8F92b8KHNkN2Z0wczJDxkDq2ZYcmupbcx+UM4sgk8kYNmwYw4YNK92OoyjMmSO6lJ44IfawPwNcviwmQNate/q96dNN29dm/QJhfPv8xYeh3PbCCxCTlmP05Rqqz6SmZquY/XuAsSwG0KSmeD/c1Yu/GbprbkSkYmEBzfWWVFeu5B+7pdEMONW0ky4rBAEizDefrCicPw+LFom/f//907Szco/JArgbnU50Wi5WCplxYfYsYCBPtysHefrJ53hlQKXRcfCOWAIe4ld8rTJbpWG1PuiY07vuU6TunQFR/H1T5MF+N8aPuX/cIK/AYrhbPReOzO/OJ8Oa8vfN6CKfY2q9mOmv09rx4NOBvFigQpGnFZACx+/H886u2zhaK4yiwj+ceGhs5pnZvQ62FnLuxaQb/66S0EO/ADoTlGAsVxuDoSLsZopDmYOhjRs3Gn/c3d0ZO3YsISEh7Nq1i127dvH48WOef/55XFye3eCtbKw4HgyIkXFbXycW7bqNThA5QhqdQKc61dg0pR125RTXcrBSsGlaO4YXEPnKVeuobm9JjlrL2ztvFYqYp3T2pWAC6sT9eB7GZxTiCf19MxqVRmfUZgC4qy/XXHiYVEj/RiKR0LFO6bwhg+7G/TK2QpYHtcoR0Bi2jUjOKbZDripQ103kaT2ML9/1srS0ZM+ePezZswdLSzOE6Ly9YcwY8fdnQNLNy4P580V/0ifRqpVYMisrHiVkciMiFblUYlzpJiWJkzfA0KEGCQloV8vZSKZfcuQB+2/HsOxYELO3BJCr1hqDIYMSbsGOMhBtJqBwk1el6lg9eCDKPHftmt/T/wyQmAjjxoFWK0oUvPzy058p95gsAIPIYdd6LiZnVSoKkSnZRKflIiuQ/SsrBEEwZoYqw8z7SZx7mJBvF1ICWXvThTASM1X4VLNmZIG5AcROtM/33wNgbp96vLvnDipt/rNyaudabJraDm9na1affsRvl8KwsZBhrXg6hEjMzGPKxiuotDo+H9GMbTM6YDBOMIRWO65FsvLEQ4a1qEm3+q6otDpxPtUJONkomabv8NxwPqTUv9/P0xEnawUZuRoC9IuSjrVdUMqlJdphPQmzOEMbNmzgzTffLLQCkMlkLFiwgA0bNpizy388roencDkkGYVMwqweddl0MYzbUWko5VIycjU42yhZ8XxLrJQVc/NayGV8N7ZFoTRxXHouFjIplx4n87t/vs6Tl7M1zz3hebX+XAhD/GoaU5U5ai0nHyQUqiffiUqjlosNKm1+54YBBQnSxaFBdVFTKjQxi9xSSHXlhY++ZBGWlG0yYbumgxVKuRSVVleisnZlo56beL2C4jIrnXReKgztQFu3QpTpaq3lgYUFnDwpCvc9iUmTTNvXIf3KsVPdfD+tAwfEEpmfH/j45Gc+DSabd6PT2KJvw1fIJBy8E8v4tZeMPntRqTmkZKmMmaGbkakIglBkMGQImB4niNyiCoW3tyiQGRaWrxFQxdDpxO8kKkp0Cvn554ozYC0ORr7QM+oig3wJjKY17Y0O6GVFRHKO0YqpNB/LisDfN8QS2XPNaxRLy8hRaY1NP3N61XuqlPblgUBSstU0rG7H6QdicGXAnF51eX9wI66GpTBg+Rm+OnifPI2OrDwt2eqiaRT3YzPo/u1JzgTF0752Nc4u7GWsShiw/HgwNyPT+Hx4U6wUMvxDko2ZoBc7eCOXSrgWlkJgTMk2HTKpxNjZeVLf2VlQ+qKsMCsY0mg0BBbhcRQYGIjuHy4jby4MEeqIlh5oBYHvjjwAMHJqvhjRrEyePqZAJpWw4vkWNNJ3MgiAtYUYbH11ILCQncbLXWsV2nZXQCRKuZSeDfKDn+OBcfQo8P8ctc5Iqt54IaTQBN1Z//r1iBSyVUWvSt3sLHCwUqATqDjhuWLg5WyNTCohR60lLj3PpG2lUgk++ozA42dYKqvtaoNUAmk5ahIzK3jiNBVt2uRnHFaurPLDKxQiyRnyJ1eZTCxrmQJDh9iAAq3Ef/8t/jt0qEgYva3vCOtS1wVBEPj473voBBjcvAabp7XH3lJOQHgqmy+FGXlCd6PTaVzDHoVMQmKmisiUHGMwdO1avluGk42S2vrMo6ErpsJgZZUvw/3dd/nM7SrEkiWipZ2lpagrZGtbuceLScvhbnQ6Egn0fgYO9QZcKYe+0KUQcQHZ3NOxwhbHxSFHpTUGj0820xTEyQfxRl7dsCdsRS4+SmL7tUgkEhjUtLpRTgBgamdfFvRrwNngRCasu/zU87OFlyOTOvrw6bAmfDC4MS+296aWntIQl57HpA1XmPfHdayUMk6/1aNQsKbVCczfdoNqtkpm6MWGv9crwbvZWRrlAZ7kyRYFw7xWkHRdcK4rC8wKhqZMmcLUqVNZsmQJ586d49y5cyxZsoTp06czZcoUc3b5j8fJ+6KGyYxudVhxLIhsldbI4xnd2pMBTYvXdSgPbCzkrH+pDdVsRQ5SSrYaF1slWSqtkbgN4o1XMBLO04gkxILp0JP343kUn4mTdf5K51e9909AWEohYqm3szUejlaotUKxQoESiYQG7oZsR+WWyhQyKZ7laK838IaepdaQpUJmLNMEl6NUlp2dja+vL76+vmRnl0MB3JAdWr1aZDNXIQpOsrt2QaNGMHAguJnw/IpOzeFmZBoSSb4WTV6eaBMBYjB0JyoNlVaHi60Sb2dr9t6KwT80GUuFlMWDGtGhdjU+HS6aRZ56EE+TmmLp9050GpYKmXEhcjMylSZNxPNNSytc4ssnUaeW65oUiVmzxFSavz9cuFDx+y8BFy7kq39//30+Z6ooVNSYNAirNq3pUKrBaGXC8Mxra0YwZFCtblcFfKGTD+LJUmnxcLQy8teKgoFgPeQJjS1BEIy81xfaefHDiWDje/XcbHl7YENOPYhn+q9XC/OH6ruy89VO7JndmU+GNWViR1+mdqnF5yOacfKtHhxb0J2JHXyQSmDPjWj6LjtDZEoOh+d1NXZMSxCf5Z/vD2Rq51rYWYjdnAYl+Bc7iHyjPdejSrUx6lbfFYkEAmPSidWXxrrVM42yY7bo4jvvvMOyZcvo1q0b3bp1Y9myZSxcuJBvv/3WnF3+K9CvsTvVbJTs0aclc9U67CzlvD+4cSlblg81Ha1YMtrP+H9DVuHPKxGEF7DDMFhxyPRBzd6b0fRq6IajXsMoPVfDiftxpGQ/PbB0AiRk5GdcJBKJ0cribgluwvX1ekUV2lpcDMpDoi4P56giUc/IGzL/egmCQFhYGGFhYeUrtw0ZAp06wdy5VWoM+uQkO3y4ONd//rlp+zFkhdr4OBmzshcvinFd9eoi/8iwym3tI9op/KhvK57Voy41HcXguouepHs/NgNfl/zMEOTz4u5Fp6NQ5BOHDaUyQQA/D4NdTCXwhtzcYOJE8fcq5HclJ4vaj1qtmK0rjdReUWPylj6LZ9B5ehbI02gJ0i9WWpnIF4L8DKE5xGtTcVZPEB7YtHqx2kKZeRpO3BfLR4ObFyZYX49I5Vaknu6Ro8FQ9ZJKYMXzLXkUn8WMzdcKdRW/91wjNk1pa+yOLQp13Wz5dHhTdr7aiXputiRm5jFpgz/hydlsfbk9EjC26v9+OZzHiZlM0YsFG3wCO9auRh1XG7JUWvZcL7mU72yjNJasDSKodVxtsVaWPcQxKxiSSqUsXLiQqKgoUlNTSU1NJSoqioULF5a7k+CfjFe612Hb1QhUGp1RY6E0wcQnkZ6rZtuVcGZvCaDzVyfo+OVxun97kld/u8b2qxHF8g56NnRjZKt8sTg7C5G0vfxYUKHPuNhaGBWtzwQnkK3S0LUAaVoqkeBsXXSn25MP84Z6TtCD2OKDIWNmqBQStaWlJf7+/vj7+5tNsCyPeKJh22fZXg9QV88bCi5H8FgR1xIQZZ7PnYOPPgJ700TlzEVysji5PjnJ2tqWnHkoCga16IJqu6dOif/27Cn+edcKBEOZeRoe6DOYL7TL73KpZmth1B4ydKPcjRYnZcO4ufk4m1WrwNA1/vbbYsu+pSU46RwBcRKsFP+7+fPFf3fvhkdlM7IsDwRB9IyNiBD1hMrCE6qoMXkrMhWA5h6OZu+jvIhKyUEQRB0dU6kPOp1AeLK4QDU0TJgKU66lkdxfQvv/8cA48jQ6arnYGJsEDPhVr483uFl19hawgprftz513Wx5Y3u+BpBCKmH1hNZM71r7qcArKjWHCw8T+ftmNMcD44hNy0UQBFp6O7H39S70aeRGnkbHjF+vkZyt5tXudQpt/+WB+0zpLIoF34/N4Mi9WCQSibFT+rdLpQfZPZ8olUmlEhpVL3tQXW7ddHt7e+yr6EH6LOHlbEVzDwc2643tctRalHIpUzrXKmVLEYIgsPt6JL2WnOLtnbfZfyuGqFSRaBeWlM3BO7G8teMWXb8+yZozj8jTPE1I/mBwY2Mgk6FPG+6+EUWw/gEvk0qMkb+9pQK1VuDgnVi6FkgXngpKYE6fekWe45Np/obVxe+1pG6x+vpg6EEpZTKZTEbbtm1p27at2QGzgURtTqnLKLz4D8kMladMVhHX0ogq9HwSBJE0HR4uBhKrV5t/+OQslbEcUTAYMihEd+8u3nMBxmDImXvR6QgCVLe3fGqS61JXXDBEJIs8vJDELLLyNMZxE5GcxWuvQUCA+PnISFETUSaDfu3ssFSIjRSPEyshQ9q4sVhDFATYsqXi9/8Evv9e5F0plSJPqCze2xUxJnU6gTtR4sKr+TPMDEWkiGPAy9nKZE+0uIxcVBodcqmEGg7mBYVlvZY5Kq3xuVucySrkl8gGNy/s8ZaQkceB2+KCIiU7nzBtayFjWpdarDr5sBB5+YOhTQrRQXT6NvpxP1+k81cnGL/uMnO2Xmfapqt0+PI43b89xS/nQ0RT3wmtGdaiJhqdwLxtNxjQrDpeBfwy/UOTuRqWatQY2nAuFIBRrT1RyqTcj80oNZtu6JS+FJLvitCoZtljE7OCobi4OCZOnEjNmjWRy+XIZLJCP/+L6NnAjRP344lKzUGu79Aa09qzTCsHg6rn/G03ScxUUcvFhrm96/HHjA7sfa0LW1/uwJze9ajnZktGnoYvDtznue/PPTXpO1orC1lwWCqkCAKsOfPY+JqBRJejFoOlvTejCwVDjxOy6FS7GkrZ0zf5k8Jxhm6xRwmZqIuxGzAEQ5EpOaXWdcuLfN6POcKL4raRKTnF/i1VgXru5S+TVTh0OlFNz5CBqCT88AP89Vf+JFueNdTxwDh0gqgNZOBh5eXBpUvi+927iwFNUpYKpVxKUw97buu99pp5Pj3RGvgFV8NSqG5viSCI/AND2SxFnU3DRk+vTJs3B0sLKc31lhGVwhsC+OQTUTH8vfcqZ/96XLsGb70l/v7dd6IWVFXhcWIWmXkaLBVS6rpWMlO7BEToMzteTqa7KhhoCx5OViarVpuK21FpaHUC7vYWRTocgNiscVovRjj4iY7jbVfCUWl1+Hk6GI1OAaZ3rU1Eco5RqVrctgYTCmgGpWSpmLbpCnO2XudySDJSCdRxtaF9LWcauNshk0oIT87mo7336PrNSc4/TGTZ2Bb0buiGSqPjlc3X+G6sX6Hz+epgIM+380IqEYOjxwmZOFgp6KRv5nnSR/NJNKphh0ImITVbTaQ+oG1SswyRvB5mfVuTJ08mICCA999/nx07dhi1hgw//4vo2cDN6H+k0Qp6MnXtUrdTa3XM2Xqdg3diUcqlLBzQgMPzujG/b3061K5GM08HOtapxoK+9Tk8rxvfjm7O/7F33eFRVG/3zNYkm957gRBaIPTepUpTFFRERRFRwIZi72KlKBZEEZFqoar0XkMnBAghCSG99759vj/u3NmS3c2WFPT7nefJQ9jszO7O3rn3ve973nN8XaW4XVyL+1ed4bsaKKbEBaMDN1HIuQLvP9fyUcVF9r3CPRHqRYjPAHD2ThmEAobPSADAqduluMeEsuu13EqDQCHUyxmuUmIme8eMlYWXTMIHhGkWskNKpRJLly7F0qVL7VaojdKz5LC1HBHgLoWzWAiNluUnu7ZAe+67K61V8l46tkKtVmPz5s3YvHkz1M2hP1NUBEybBnz9NSHvtACuXNEtskuXEj6PI6BZISquBpC3LpcDAQGkDZyWyLqHeEAqEvLGw5QHpI/ekV5wEgtQXKPgM5BXsiogEBArgRqFGqNmNJaZoJ+Dlh8s3QMOoU8fYOzYFs3kVVcTPSGVivC4Fiyw/tjmGJPX8yoBEPJ0SwcSlpBTwQVD3rYHQ1nc3BJux7EU1s6VtERmybvteEoxVBoWHfxd+c0tQLKmv10gYp49wjxBp32xkMETAyPxw/HbUHNzbKC7FJ9N68ZnlTJL6zDxm1M4llICiUiAF+7pgDNvjMKRV0bgj3kDceDlYbj+wVh8fF8swrydUVqrwOx1F7H0YAqWz4hDOz8ZCqrkWHkkDeO76tah9JI6XM6q4LvA/uAsdqgyfFPBkFQk5D8jvde7tHRm6PTp09i8eTOee+453HfffbzyKP35L6JzkJuBAGHvcC9E+DQtl//eX0nYn1QIiVCAnx7rjfkjGit/UggEDKb3CcPeF4age6gHKupVeHztBX7Q0+e8Or4j/3+JkIFcpcX2K7kACPGZZofcnERgWdI6SU0lATLJ63Mm6HPlKi1S9EpiDMMghstk3LKGN2RhIVCpVHjttdfw2muv2e1dFOrlzCt9F9XY5l7PMIwus9SGvCGZVIQQjrhrb3ZIoVBg1qxZmDVrFhQK22QGTCIoSNfTbospmJWoqSGLrFIJTJ0KPP+84+dM4O4JfR2XU6fIv8OGkZiB5wtxfArKRzEVDElFQl6wjmqw7EzIw6hlJ3ii5z+1F8BIDRcnGgy1a02Cfl0diViaESwLPPssoSSFhwO//GJb3NUcYzIxx3zmrjWRy5VKQ71MZ1ssIacZgiFr50pK1LYkCknLxPrzP0AaXvIqG+AkFvCeXgDh0snVGuzW4w8tHNWBFxKualDhqfUXkV8lR5SvDLvmD8aiMTGNMlMuEhEeGxCBQy+TrjIA+OF4OpYdTMGPs3rDSSzAmdtlGB7jb6A/tO5MJi+euv1yHlQaLUZz2niJOZUoqrY879N7+xoXDEX6WJ9htCsYCgsLa3vRuFZGYm4VlGot7wNmjSDYqbQS/HYhGwwDrH6sl9W6B/7uTvjjmYEY2sEXDSoN5qy/aNA1NrZLAB/xUpXQzed1BLPJXDq0Xkl4R2fTyzA0RlcqS8iuaFRj7sFNQMalsk5ca3GKNbyhwpYt/YiEAn63Zp8SNac11IaGrYCuVGYvb0ggEGD06NEYPXo0BIJm2kHTEtnWrYTU00xgWdIdfvs2EBpqaO5pL6oaVHwgqW+CmZBA/qVu93wwFE7I01QjJdZEMASALydTwTljvohAxMKtp+G1oWWkdlzGr8V1rJYvB8LCyPfUjFi3juhvCoXkXy8btQKbY0zSMmb3Ng6GHMoMlTkeDFkLPhiykBlKNNOdd4ori/WJ9EaunvfYI/3C8Wt8Jp8V0vcw02pZLNxyBXdK6hDs4YQ/5g1oMvPiJBbi4/tisXx6HBiG+Gv+cTEHL9xDeKtLD6YYWIhczamEj6sEvq4SlNYqcOxWMfzdnXQ+mk1kh+i9TTND1nqDAnYGQ19//TXeeOMNZGZm2nP4vxLU24iWkZoyEKxTqPHG9usAgCcGRmJUJ9vUVJ0lQvwwqze6BLmjtFaJZzfp2hsZhjFg4wsZkmKkEvCdg9zg5yblrSfi08swIMqHV6POr5JDpdEaEPy8ZaTUdSXLKBji0o6WSNQd+fb6lrfl0JGobS91UYXhQhsk2lsCPInazo4yZ2dnHDp0CIcOHYKzs+27V5Po0QMYNYq0eX3zTfOcE8CGDcCmTbpF1qcZ3AlopjTSx8VAiyYxkfwbF0e6wjL0gh9Kng7yaEyepujABfXVXDBULVehj1H7sFuvTIAh95VAAMQSiSKek5ZdVt+ynDS5HKioaFYRxuRkYOFC8vvHHxO1BVvh6JhUa7R8B193C4t7a8AhzlAzZIasQUmNAnmVDWAY85k0pVqLmxwB2riURg1MZXp2J35uUoR5OfPq7ACwYKSukrEzIQ+n0krhLBZizRN94O9mPUH8gd6h+OIB0i768+kMBHk4oWOAG8rrlJCKBAa2K5vOZfFWUn9cJKUyqiPWVDBEM0PX86psTthYHQx5eXnB29sb3t7eePjhh3H8+HG0b98ebm5u/OP057+IeG7waFky8bU34yxP8cvpDORVNiDE0xmLx3W0+FxzcJWK8MvsvvByEeNmQTW+0yO0jesayLf0UwuZvddJapNhGN5ElQG5QcvrlbygHEBKBvo6EcW1JEAwDno68lkf84EObRe/08Iq1IAuda2vvm0t6PWqkbedzxOg4w21dZt/I1ARxjVrSG3LQaSk6ASUP/wQGDLE4VMC0GUve+qVyOrqdEKIcXFAQZUcai0LiUiAQHcnPutgLisEACGeZHIvqyVlnpIaBR7sHWLwHJGbAjGdScbV3Z3oIQKkQ81JLIBay/LkzRbBvHlEmfrKFeDkSYdP19BASpgNDcDo0UQyoC1wu6SW6LZJRTw3sC1Qq1DznVVhJlzZmwIfDPm0bDBENwTRfq5mvTBTCmugVGvh4SzmN5EA0VE6x23uk/Xm9XtjA3EyrZSfH2USIS/n0qDUYBnnuvDS6A4GawkFy7K4mV+Nn06mY8XBFPx0Mh3XcnVyEzP6hOH5UdEAgHd23sCzIwjndseVfDzFaQwBwJ5rBZgQG4jnR0Xj/cnEqJAGQ2fvlBloHhmjY2BjErW1sNp05euvv7bpxP81pBbVQiAlA2p0Z3+LLZdKtZZ30n51XAxkUtu8bfQR6OGEj6bG4vnfEvD9sduYEBuIzkHukIgEeKRfOO9CDACHbxbhwyldidFqOx/8k5gPF6kQdQoNzqaXoXOQO59avZpThe6hHnxtOLuMDJyccuL9RT8fba/Pq2xAtVwFdxM3XoA7WRFKa5UGx7YE6OvbE9C4OZHvoVrevHwLW0EzE2VtbclhjPHjgU6dgFu3SD3rpZfsPpVcThbZ+nqScHrjjeZ7m9QhvqceV+L6dZIoCQwkOoVnbtPdvTMEAgbXef0a88EQ5T3UcuVlhVqLoR38IBYyfEOCs1iIxx8T4K03AZHebS0QMIjydUVyQTUySmv5TFGzw9cXeOIJokuwfDlpm3MAr7xCrp2/P7BxI8l2tQVoeamdvysENpQ2mhs0K+TlIrbZcLtGruKbIlo6M0Q5nJb4VYl0zId6GMzJl7MqIFdp4esqRX6lLsN+T+cAvg0fIAEIzdj8ciYDBVVyhHg64wmu/V0faUU1eH37NZPdlJ2D3PHmhE4YFuOHF+/pgPMZ5biQUY4/L+aib6QXLmZWoLxOCZGAgVrLQq1lkVpci1fG6pIIHfxd4eEsRlWDCskF1WalBKQiIWIC3JCUX40beVUYHGH9fWj10H/iiSes/vmvgraj6zu/m8K+GwUorlHA302Kid3M+8VYi8lxwRjfNRAaLYsv99/iH3+kXxj/O8OQ8hdVzqWu8w16vKEuQbpugsScSoNdckW9EgwD1Ck1KNPrcvJwESPQneyYzZV1fLgSm1KjbfH2ejpB2RPQuDtwbHOClnZoBsJW1NfXo2vXrujatatjdhzGEAhIANSzJ9Cu6U5JS1i8mJSt/Px0ZbLmgFbL8gG9Pnlav0QGNOZu0JJZTKD5VluZVAR3LmCWcR6ADSqtAfm0T6QXxowm06Yxt5WSqFuck0aD1N27gdRUi0+1hO3bgR9+IL9v2EACSXvh6JikxNhA97az4AD0SmR2BDM0K+Qtk9gcSNmKQu56hXqaz16Z6zY7w1U5+kR6Qq3XRdY30gvHU3Ut9vd2I1wejZbFhrOZAIBXxsYYlLQA4ERqCSZ+expXsishFQkwurM/Hh8YgdGdAyCTCJFcUI3Hf7mAL/ffAsMwWD49DlKRAGfvlGFgO8LT25mQh0HtdTX0fdcLDF5D3xGhKaV3YxK1tbBrHyAUClFcXNzo8bKysv+szhCgIyt3CbJMGtvACTPOGhBhtnPMVrwxoRNEAgbHUkr4tuIIHxlvukfLo9SiINLHBYHuTqAd6AnZFQZkt8TcSgM10galhg96ssoMJ7NgrnxQbIbJ7ywRwoUzJGzpbAfN7tTakRlyd+YyQw1tWybzkRHhzNI6pV2NCCzL4ubNm7h582bzNzI8/TQRm5kyxe5T7Nql837dsIE0qzUXcirqUdWgglQkMGgVTiEZfHQlWfVG3A1qYePfhC4YteiggXNJjcJAXyUu1BOhnN1fdbVhQESzQS1Oou7YEZg0idz0dmbss7J06t+vvQaMG+fYW3J0TOqCIQcU1ZsBvOCiHXwhRwIpW1FYRTZS/haul87axNPg8ZvchllfnqRPhDfSS+p4SyYXsYDf9J9NL0NRtQIezmJMNLLzuJpTiWc5u46hHXxxfPEI/PxEX3w0NRY/P9EHp18fhccHkm6yVcfT8fbO6wj1csY8TpZmR0Iuuga7QaHWGnCQTt8u5RsZKHqGcbY3TRgiU55ruo3dunat1OYGu0KhgERi2urhvwJfV6lFA8HSWgXfxfJQ3zCzz6NQqrX482IOHlt7HiOWHsMDP8Rj+cGURiTfSF8ZZnDn0zfTW/lwT4OOGqrFQHhDOv5WZlmdgRRAZb0KdQoNH8Sw0HEmjHV4fF1pGcx8JoMayZbVmX6Ok5MTjh07hmPHjjkk10+DIXvKZHdPZohcK6VaizplY6XxptBc19IkhEKH2r2ys4nKNAC8+iqpvDUn9IMcsZ4WTRZnbB0ZSf7VX5hYlkUJN3Z9mzD/pMEQtdsprpFjREd/0MpNmLcz/P0BsZjEIgV6G1jeLqY1uhUXLSL/btxICFM2QKUiSgqVlUD//sCSJY6/HUfHpDWLe2uAjptQO/hCdBMZ4WAwZM21LK6xHDyqNVq+W9VYSoIG6/pNKL0iPHlPLwAY3tGfzwDtSCCyLZO6B0Eq0iU7FGoNFv15FQ0qDYbH+GHtE30btdh7yST4aGosVsyIg4ABfr+Yg2+P3sazI9rD11WC3IoG3gz5Rn4V3DhKiUpDjMb10SvCE4CuTG4O9B4ubKIN3xg2kVm+4bpMGIbBzz//DFdXXQ+/RqPByZMn0alTJ5vewL8NnYPMp9kBXQqyS5A7Apq4sYur5Zi74RLf/ggAmWX1uJxVgbWnM/D+5C54qK9uV/rc8Pb47UI2TqWVIrO0jtfNGd3ZH1dzKuHmJMKoTv7QaFkIBQw6B7lj19V8nvNQXE0E5ehNm1tBCN5pXATtypUGjDNDvtxuusRC1sdHJkVOeQO/AzeGUCjEiBEjLF4Pa8BzhhR2lMnuEgK1i0QEZ7EQDSoNymoVcLWRU9Zc19IiamqI2MyQIUDv3lYdolYDM2eSZqe+fW03XrUG+ZVk5x5sVB6gwVAE2YTyQVOEjwy1CjVPumwqGKIdllT7pKRGAYGAga+rFMU1Cni5SCAQACEhQGYm8e8K527Rdn40M9QK6uIjRpAoZsYMQGYbP+n994mhrYcH6fATN0NFx9Ex2dTi3lrIdSAzRMdmiB36RPqw5lrSTJq5Naa0VgktS1rL9bOhSrWWD/j0g4WOge74+6qOL0Q7+pRqLfbfINUGfW9MAFh7OgN3Surg6yrFN4/0tFgFmdYrFHKVFm/tvI6vD6dicLQvnhgYieWHUnEjrxpiAYNbhTUY1N4H8ellkEmEUBgRpePCPMEw5N4urVWYvZfp3JBf2YLB0FecIBvLsli9erVBSUwikSAyMhKrV6+26Q3820C7q8yBSp/r6/qYQr1SjUd/Po+04lp4uogxb1h79AjzRF5lAzafz0JCdiVe334dpbVKLBhJGPhh3i4YEeOHYykl2HIhG2/d2xkA0JdzR3YWC7F4XEeeLEf1bEQCEgylFdegS5A7H+zkVdajnZ+MD4bkKpLxy7YjM+RLM0OtVCZzKDPUoGpxondT8JZJkFfZgLI6pVXina2OxYuJQ+f06cQ7wwp8+CFw5gzxsvr9d2K70dzIqzC94FBpJBqYZHGdeuHeLnyALpMI4SyxXManEynNfdOMUqiXM4prFGhQkUxeWBgJhnJzdcfSklxRtQIqjdYgc9XsYBjg7bdtPuzQIeDzz8nva9YAUdZZK7Y4aCa8qQ1kS4PKKnjLbB+8VNfN1s2NrVBrtHw5K8AMx4oGl76uEgNCenZ5PbQsuRf0qQadAt2wQk/3jGaTkvKrUK/UwMtFbMDRU6g1+PlUBgDgzQmdrDIrn9k/HBczy7EzIQ+LtyXi92cG4Pvjt3GrsAb9o7xwPqOC1/HrGuyOmf0NhYHdncRo5ytDekkdbuRVmdXtoxua0lqFSY9Pc7Dpbs3IyEBGRgaGDx+OxMRE/v8ZGRlISUnBgQMH0L9/f1tO+a8BHU+dLPCFWJbF6TSSGRrewTLJesmeZKQV18LfTYq/FgzGcyPaY2B7HzzYOxTbnx2EF6ko1YEU7L6mi9hnci6+f1/N52u+cWGeEAsZFNcoeKPJvdcLsPIwKac1cLYdKw6mGhjv5ZY38No7AFDN3RzZ5YZpd9r9VFpjoUwms0wKVqlU+P777/H999/brUAN6AjUdgVDHGdIrWX5Ra2t4EjwqFarsWvXLuzatat57DhMgXoxbN9OVv0mcOyYLhP0008O86/NIpfuvvUyQ/X1QAnH+4yIAKrqVfxYpnYAACyWtynoREozSSXV5Fh6D9BxR3lDOTm6Y/UXhOqGVi7FWmFxU1QEPPYYKe898wyJc5sLjo5JnjPk0bYEagWnESWxI5ClmQxjgrGtaGquLKvTZX3MjelibtwaawFR+ZNIXxfQvIuAIeNefxNM+aS0O6xXuJfB5nH/jUKU1ykR6O7E81atwYdTu8JHJsGdkjocSCriTZZFXBsjDYoTcipRZ6IZh4qbWrJU8pZJ+KCKXgdrYNfW5dixY/CyQqLU3d0dd+7cafJ5/wbQgWApM1Raq0RxjQIMA/SKMH99MkvreDGprx/u0SgzIBAweHlMDOYNJyvKm9uv8+TlYTG+kEmEKKyW89opTmIhn9a8wHmZRfu7GpTfAOKbk6OnvZBb0WAgvFjLlZ6My2R+3MJtHWfI9KSsVCqxcOFCLFy40G5vMkA/M6SymajpLBbyiqRtTaKmO89yMxwrS1AoFLj//vtx//33N48dhyl060aEZ7Ra4rBqASUlwKOPkkV2zhzg4Ydb5i0BusyQvlUCDUhcXQFPT52CsK+rBC4SER+g0wDUEmhmqE5JxgfNDLlKDYNwP26vU6ZnVyYSCnjOgzH5s8WQnU1KZYMHWxRh1GqB2bNJQNS1q928a7NwZEw2KDV88NrWmSEFt0mSim1fGuX0WAebZpqaK2ng6OcqNauwTMetccMA7aoMcNfdP8Gezsgpb+CbbUI8neDFzU9UhNd4PdtxJQ8A4cXa4iPn7iTmtYZ+OHYbE7mONap3dKuwBkEeTlBpWF4aQB80+2pcvdAHwzD8umaLwG6Lqkr8lyw7qJpzgIWdC426Q72cLe4Ofj59Bxoti17hnnAWC/nrVFqrwJbz2Vh9Ih1nbpdi8diO6B7qgRqFGl8eIO0yUpGQTw/qq3FSEjXtFOjg72rSW0e/E46KQlLUKcjNXFKrMOg0oGWyEovBUNOltOYADYZUGrZRTbkpMAzDt063PYlap81kKwQCAQYNGoRBgwY1nx2HKVCS7po1pHXKBFgWePJJQiTu3BlYubLl3g4A5Fc15gzRrFBAAKke0YCFZmoo160pvhAABHMEUGp8THeW+kE4QPg2QOPL4uFCXrOytYIhmYy02F+6BBw/bvZpX30F7N8PODkBf/xBdBubE46MSbq4u0iELV5iago0I6hPFLYW8mbKDDUFXUnR/HjmM0PupoMhoV4M1THAzcAaqHOQjnBN29j1BXqVai3f0Uzb723Bw/3C4S2TIL9KDqVaAzepCOV1SoR7O4OFLoC7VdBY+DWMW9NoBcQcKJG7sNp64cW2swb+l8LT2fzukrL02/maN4fTaFmekCZXaXH/qnj8Gp+J4ynFGLn0ON7aeR2f77uFQzeLIBIK8OEU0iu8MyGPTw1SNc4MPQVjqmqcwZE3GYYxaRmi7/KdW1GPIL1FhZaOWBaQ69Vaec5QjfmFu7U4QzKJiG92sktryFnHG2pL+PCZIduvl7OzM86cOYMzZ840nx2HKYwbR1rsv/jCLMt25Upgzx6ixPz77zZzeW2CRsuigCNF6gfxVVwClAYodOzSRYmWd60pk1F9IRW3GaDcC3cjrhp9rSrD5CsfgNFgqsXh40N85d56i0SjJnDxok70cuVKnfxAc8KRMVmo11bfljw+QFfqskcShWaVnOzIKtmCopqmO+/ouPUzKpMVc8dW65WggjyckK7XAUlLlXKVBvlc4KVfEUnMrUSDSgNvmYQ38rYFTmIh32n9d2IB+kURzqunC5kTaWZNn9JBQZW9LWWGACCI64wuuFsyQ/81yCRCizcJ1TVoZ8Gq42pOBUprlXCTipDMqYh2CXLHs5suo0ahRqdANzzQK5TP9PQM98KQaF8D4asxXQJw+vWR+H5mL/68USZcs+/p3JhgNrqL7rG8igYE6e0c1HqeSjRLBOj4Eg0qjck6LqBf9mnZYEggYOAqcZxE3dYdZXxZsYUzaQ5BIAD++gt47jmTqYTLl4lGDQCsWAF0796yb6esTgG1loWAMSyn0OwMDVAUKsMdOpV78LOiTGac8qfSB5SrRkVFzQVDni46d+9WwyefkB8TqonV1aRsqVYDDz4IzJ3bem/LWpTZkLlraSj4zJAdZTIHskq2oKTaisxQjSHXjYLO3zX1unnaSyZBhd68Tb8Hml1yEgv4cQ3oSmf9o7ztDl6pmfiJ1BKemE3LjHRTTtdHfdAyGXVKMAea4S2xwHM1RtvmJP9loJGrOWRx0Wo7C1L8V3PI7Bni5YxbhTXoF+mN3y5kQ67Son+UNzY93b9RF8rLYzpgTJcA3j1YJhU1svigAVhORQOUai0kIgH6RXkbWAkAgLeL7uZQaVk4S3TnUWtZuEiEqFdqUK9UA5Dyr0dbwUtrFSbtRWgwZI4z1JxwcxKhRqF2iETd1mUyaozbGterpRAfTxbZ++4j8VJLgwY5UpHQgCthnBmiHSR0QaMZTWsyQyJjDgZ367galcnc3Q1fm4Jmjivr747vNSmJ8JoiIgixvY0TLyah1pLvVSxq+zdnPHZsOraVMkNU/NdS0EWDIWPOEO14q9Hb7Ho4iw0IyfQ+oSXpIA9ng6CHrnMdmuistoTOQW4I8XRGXmUDn2CgG2laBjTmrgK68niNQo16pcas1ZULVZC3QcetRb+1lkh5rlq1ClFRUXByckLv3r1x6tQpi88/ceIEevfuDScnJ7Rr186h1v+m2gfpRGkpaKLOzBR9Ir2wh5Mef2diF4iFAiiVSnz99dd4/vnn8fXXX6NbkCueGBRpsS3Y300KiUgAjZbla/DUp0UfDSoNn/IHAK1edM2yRAMHMMwMAeDFGc3xdOji1Bo8MV1HmQOWHG1cJhNzRXu1xvbr1dDQgL59+6Jv375oaGhBU1AjGI/LefOUOHqU2Ji1xiJL3eBFQsMXa1QmUxmWyWjZbNvlXEz9/gxvOmz8eZRKZaNz0/tD52tnOTNEy7BVbUTQN/5MvXsrcfUqsGMHYEXPi91wZEzSKYNB2wdDSkfKZK3EGWK5CN3S1aIZIGMvyXquMUB/Hvd0kRhsLH1lErzwWwKW7LkJAAZNNoCuk8ta/zVT9xnDMHx5rIQr6VH+JP23Rq7m72UKZ7GQn2tok4Mp0G5AlcZ6XmmLZoaae2H8448/8NJLL2HVqlUYPHgwfvzxR0yYMAE3b95EOBUY0UNGRgbuvfdezJ07F5s2bcKZM2cwf/58+Pn54YEHHrD59b1kloMhGkBQ3oEpZHPRLl3IJSIBVBoWET4u6Bbqgddeew0rVqyARqMbBK+++ioWLVqEL7/80ux5CTlYjNJahcHA7h3hxfuVAST6lklF/KSu1GjBgGyAWe69l9bqbhprwU9orbAqNofWUKuWMSzAHv6zVqvFpUuX+N9bA5bG5YgR5sdlc4JmOI3bno3LZHK+TEaeJ+DGZD6n61QjV5n9PC+//DIgHME/pguGDMurNDNUY8Tx9OQJ1K2fGbJ37mgOODIm+cW9jWMhlmX1ymR2EKibqZusKdC51hpDW+NrSjND+ptgD2exYTDkJsWxlGL+MeMOP8rXCbNCXNLSmOw+9TnsTMhDVnk9fF0lKK1VQsAAWpbc40pOT0nf3oRhGLiIhahTaixmfWh1xZbNZosGQ/v27UNISEjTT7QSK1aswJw5c/A0Z6rz9ddf48CBA/jhhx/w2WefNXr+6tWrER4ejq+5PtLOnTvj0qVLWLZsmV3BUFOZIRqpyiSNL+tja8+jRq7mOSK024QOuLhQT7z22mtYunRpo2M1Gg3/uKVJzd1JxAVDuoV+cLQvNpzN4gdZZb2SXxwAQK7UQsi5BQN6mSEbbSJ0wZDpv0ulUuzevZv/3RE44k9Gd/5qbctnsCyBTkYCO1aA5ryW1sDRcdlcoLs84zIylWKhIo+01OHELWh0zaDX+utP38fmNd81Or9Go8GyZcvg3u8OvEYSTxE6TPgxx8lP0CDWeL/HZ5BaOTPU1t+RI2OSxk5tTZ5W6mURHGmtdzQz1NS1pEkGe64WzRhp9OY/TxexAW3AzUlk0E1sXPaja5ZXE8KUTY3JGeX1gO8EZJXVw9dVitJaJTxdxCivU8HTRYziGgWKjYIhAHCWiFCn1DSqXuiDzhFKGwJzq4OhRbTN1gqsWLECADBkyBCrj2kKSqUSly9fxhu0LYLD2LFjER8fb/KYs2fPYuzYsQaPjRs3DmvXroVKpYLYRh36phRl6UAzVcdMzKlEtVzNT5b0i6THBMqEeI+7buawYsUKLFmyxKz/mxvtlNKP8jnSqIBhoGVZsKxhwCJXayDSD4a4gV9vo/u8tokbVCQSYeLEiTad0/xrkX/tmTsd2fk1JxxJmjbntWwKSqWSv5/Noalx2Vzgg6EmuCU0M0QXNLrICgSAVq3Eb2tXWTy++uIueAydBYGIfB6WZXmvsgal5cmVfq+NuEctiLvhO3JkTNJboRUvmUko9UpHdhGoaUbSwbmlqWvJzx02Xi+WZfnMkH4w5CQSGmSGWBbQ6E1Qxhs2yo2yJExpzZjctm41Ql6+B+V1Sp7zStdY+q8pBWlK2WhQWSiTcd9fiQ2ii1YHQwkJCQb/v3z5MjQaDTp27AgASE1NhVAoRG8rfYxsRWlpKTQaDQICDNvFAwICUFhYaPKYwsJCk89Xq9UoLS1FkAk7bYVCYSAaVq0nJNJU/ZEONFPcHjoha4wyEvTLvnzgD4NUoiloNBqsWrUKL730ksm/S2k0rHdT07cs4FJDAgFjQD6VqzQkW8KNKwkNhsxkhppaxO3JdNgKR3ZgSge6RZoTdBi0xvVyBKtWrXJ4XDYXaJnM3KaEjk1duaJxZqg2YW/TZRxWi9qEvXDvex9/XnNdRsb3Ax1frUkGvpu+I3vQ1EaqtaDPo7FVgZqU2OwXbLQF/GbQxium1Gj5Ta9+mUyp0Rr8X8uy0L9FjIUd+XvBwue0ZkxqtRrUJuxF3eAHIOHvVfJa/LRoYr2hwZC5NQrQcTJTbXCutzoYOnbsGP/7ihUr4ObmhvXr1/NK1BUVFXjyyScxdOhQq1/cHhinUpvymDL1fFOPU3z22Wf48MMPTf5NqbYcCUgs1CnpeDIeWEIu316Sl23x3BTp6elm/8aXB/QGKQ2+6KsKGcZgAVZptIb/t5NA2FSZTKVSYfPmzQCARx991OasnD4cISq21oTVFHTj0PZjNRoNjh49CgAYNWqUgUdgc8PSeLPneY5AZcYqwfgayo1a6+n4FjAM1JWmN07G0H+elmX1AnCabTJzHLeKiFpSDNMId8N35NCYvEs2BvrkaVtLdioNywcpjmaGmporKcfK1kya/vXVD6SUaq3BXGqcGdJ/GZZl+YBKaOEaWTvW1JWFEAkFfFnOeAyYWnGteX06R2htoEPYxRlavnw5Dh48aGDJ4eXlhSVLlmDs2LF45ZVX7DmtRfj6+kIoFDbKAhUXFzfK/lAEBgaafL5IJIKPj4/JY958802DkmB1dTXCwkhLe1OZIWeJEKgzTT6mX7JQLyjSaFk+6JD5Wcetat++vdm/mSoBaY22rkIBY3ATuUhEBkR3eg5LJHBTaKrDQalU4sknnwQATJ8+3aFgyBGiIi+q1pImmlaAdWABkMvlfPm3trYWshZUOrQ03ux5niNQmukmM4bWKNAU6JXJRJ6NtXhMQf95Wtb6bCRP8m7FzOPd8B05MiaNv6+2giMaQ/rlHEc3Wk3NlU1tPM1BLBRAIhKQoE/vWJVGa/CZNVrWoIJRoiekyzAMXKUi1CrUqFWoYdoq1fqxJvIMhJuTiF8zaecnvWeN1y9AR+Ew11YP6JIOpo43B7u+terqahQVFTV6vLi4GDXG7RXNBIlEgt69e+PQoUMGjx86dAiDBg0yeczAgQMbPf/gwYPo06eP2cVYKpXC3d3d4IeiqWCIr2WaSN9RmX6qV0Jl5924oCN40JQmd1NCoRDz5883+3c6YetPxMZEYYEePwggZDn99DBNPbqYIIFbgo7H0/IzmtKRzBDPJ2ljzpCduzuAWB/ExcUhLi6uZe04AMyfP9/hcdlcoDwcVRMZWmOCPR8UgYFrz3ubvmaMAK497+X/qzXoMiLHmptj+TJZEwFbc+Ju+I4cGZM8BaaNoyFeusGOm1J/A0rnmJaCjkBt+/uUSQxLx0DjzJBWjyMH6GymKIzV2E3BmjEpEJD7LNJHxitF13HnXDAyGt/N7ImOgY21jGqtCIboc2zpk7FrJr3//vvx5JNPYtu2bcjNzUVubi62bduGOXPmYNq0afac0iosWrQIP//8M3755RckJyfj5ZdfRnZ2Np599lkAJKvz+OOP889/9tlnkZWVhUWLFiE5ORm//PIL1q5di1dffdWu1286M2S+E8vPlQoYkqCIGjrSWmlGubJJkvqiRYvMEiBZluUHlL7QFm0h12WmGAPLDBeJiBfxAvSDIRszQ624uzMuWdgCpQOu1M0J3U1q+wVzdnbG1atXcfXq1Za14wDZhDgyLpsTVNDQWBaBvrScU97XdX6RCVGXGWIgEEkw5bFnLL5O0JAHefI0wNnTGGWG6jihd+MEiLmOt5bE3fAdOTIm7xbOEF1cbe2kBcgGlAbKLS3oqgsebT+WbnL1ldaVGm0jaoW+jIyxQzyVmbD0Oa0Zk93vJU0KXYLceW08quJ9b7dATOoeDH8jOxF9Eril6kWlHXY4dpXJVq9ejVdffRWzZs2CiutrFYlEmDNnjslWuubCQw89hLKyMnz00UcoKChAbGws9u7di4iICABAQUEBsrN13JuoqCjs3bsXL7/8Mr7//nsEBwfjm2++sautHoBB0GAKLmJK7GocMVNZdCfuhnF3FgGVukXxTkkdtr+/BAAa6TIIhcImtUJKahRQqLUQMETdmqKgkgig9Yvyxrzh7dDeT8YvEoChFhQDXXebcWaITvLm5nhHblBb4Yjs/d3DGSL/tnUHjSWcPw+8/z7wyy9k3NkzLpsT5qwuaPKW9joYi3LSa0zH5qzn30YHfzezn2fM7FdQI1dh0Z+J/N+MLT6MhR4p1E2QvJsbFRXAtGnAZ5/dHd+RPbhb/LxpxkOp1kKu0ticeXZzEkNhpPPWEtCJVJoH/ZsxZ4YGEPplMePMUHmd0iAzVKfUIKusDhE+JPKngVJTptxffvkl1BoW36z8qtGYfGb+8zjsPhZQaxHi5QwtC15rKMTTmb+HjaFQ60jgljJD9ijA2xUMubi4YNWqVVi6dCnS09PBsiyio6NblLtAMX/+fLPp3l9//bXRY8OHD8eVK1ea5bX1u7RMgeoQVZiwWAjkhKtoRE4HdHZ5Pdr7yZBeUocz6aX48ssvsWTJEqxatQrp6elo37495s+f3+SujkqkB3s6G0zENFvUJdgdg9r7Iq9Spw7rIhYY3LhCAcP7wuhH3Qq1hm/X95GZ1hBxJHVrKxyRvddZOrR1Zuju4EmYQ1UV8MgjQEYG8OGHwI8/2jcumxNU3blBpTFYrIzVoGkJupovk+kI1AAhOTd1n9HdsEQkgJNYoGf+KjB4LeNgSJcZavkvlmWBZ54hZvWzZwNJSW3/HdkD40xeW0EmEfF6bNVylR3BENF5a+nP4WxFNxVdiyqNNg50k6v/2RRqjQHpu6hG0WitO5JcjKeGRAEAIn1kOHenHBml5s1Ss8vq8cE/SSiLmoq6uiX44YcfkJqWhrCIKDz42By89VcylJkV6BPhhdtcx1eQhzNKa5XoEuxu9rzUqsNJLOA9Kk3B+HNbA4dEF2UyGbq3tDvjXYTyOsuRcCiXkcmpaCxHT20xKJ+IflkXM8oxpUcQ0ksysP9GISZ1D4ZEIrG5BTYxp9LgdSjo4KGS6vrGoO7OEoNBIxYK+GBIPzNE5dElQkPDPn3QtCT1/mpJyB3gDNEyWVsHQzQD52zHZ2hoaMCECRMAEGHT5i6VsSzw7LMkEIqMJKb1ABqPS5YFrl8HunVr1tc3Bzep3mLVoDIbDBlzhiiZkoYndGdp6T6ju15fmQQMwxj4oum/lnEwVM7tSM3tbJsTa9YA27YBIhGwcSMgFAJCoYnPlJJCvsgWFOh0ZEzyvoa1bevnJhAQcnC1XI3qBjX8bbTecjPyr2sp+FjhA0nNVo2NSukm11lvI1lSo+CNowGguFrOj2OKI7eK+GDIlCl4XmUD9lzLh6ezBDP6hkEmFSI+vRRylRYXsqvx0ksv4XJWBR74IR4/riS6gG5SET6Y0hWz1p4HoMvaD2hnurkJANI5/lKUr6tFBW57ymR2rQh1dXV49913MWjQIERHR6Ndu3YGP/9VFNcoLPKGwn10jrrG6BRE7ixqfldQJYdYyKCwWo5eYaQr7+DNIrtd38/dKQMADGjnbfB4biV5LzQzpT/hhHg5G5QcnPXahvU5Q8VcPdfPTWqW5FjEiVsFGNV4mxtqjZbvdLDPTPHuEF0spM7THrZfL61WixMnTuDEiRMtYsexbh3w++9kkf3tN8DT08ST6uqAXr2AHj1I1NQKEAgYfserP24bB0NcmYxTi6aLBw2CVE1keAHdBsCXK28b89TMBUN53EYoxLNluVxJScCLL5LfP/sM6NvXzBOfeQbo1Il8oS0IR8akz11kWuzu3DQfxhwcsQmyBdRI1VKZitIyjJ9DN7muUl2wnlfZYECtSCuubaTufC69jA/yIrlgKFMvGLqQUYZP997C2tMZ/Ht8uC+xyFp2IAVavQ41hiG0jT/mDUSAuxOGdvBDiKczUotIoDM+1nzH550S8ppUpNEcWi0z9PTTT+PEiRN47LHHEBQU1OZdAK0BsVAADQsUVcsR6mXaoC6MezzbRDAUE+AGAUMi1kB3JxRWy9HOzxUphTXIr2pAbIg7buRV47cL2VgwMtqm96ZQa3A+oxyAYVQtV2lwq4B099HUY1aZbgB38HdFEZc5AkhqtbxehWAPw1IbdUD2czO/syxqYnGXSqX4888/+d/thVxvIXNIZ6iNM0PFDgSPzXUtTSE5GXj+efL7kiXAgAFmniiTAf7+xEthzRrg00+b9X2Yg4ezGBX1KoPJzthB3rjbhY5bWsottSIDQTOodIfdYCTkWFnJvR+9YIhlWeRzZegQK3yb7EV9PfDQQ4QwPm4cYJGnSjenX30FPP54i9VlHRmTNCtRUa+ElhOGbSsQ78IGu4yc3aT2G0jro6lrSa+XpUyar5mAiQZsHnpm3bkVDRjY3pf//62CahhDwwInU0sxsXsQ2vu5AgDSimug0mghFgowqmMAhAIGKUU1PL9o/oj22HY5F4m5VVgXn4mnBkfi9icTwMKQU/ftIz3x5o5r+O1CDga197G4kbhTSgKm9r5NBEOtxRnat28f9uzZg8GDB9tz+L8SAe5S5NeTjI7ZYMhblxkyFoN0EgsR7e+K1KJatPeTobBaDk9uF/J3YgGeGhyFRX8m4qeTdzCrfwTfim8NDiQVoUauRqC7E7oG62bna7lVUGtZ+LtJ+QF2PU830KP9XXGrUCeF4OUiQUZZfaOo26ZgyMziLhKJMH36dKs/kznouxjbE9A44krdnKCZoUA7MkPNdS2NIZcDDz9MFtsxY4DFi5s44L33gJkzyUGtBA8XCVBWb5AGp5krGqC46pXJWJblxy3lktLsrCXwZTJu4SnUy44CQE4OeZ6+9WJVg4rvRGrJzNCiRSQzFBgIbNjQhNnvM88AH38MJCYSctHIkS3ynhwZk14u5BprtCyqGlRNel61JGiZ357sDu9L52BmqKlr6ctn0sxnhnzdyDUsqTEMCujapR8T55TXG4zXAr0Nsj6O3CrCxO5BaOcrg4ezGFUNKiTlV6NHmCc8XMToH+WN+PQyHEwqwtxh7eDv7oTXx3fEu38l4bO9yYj2d8XwGL9G5z1/pwx/XCQ31Av3dDD7mQAgmdvct+MCMlNgWdaghGct7FoRvLy84O3t3fQT/0OgZab8SvMTKeUM1Sk1Jstdg7jom+58CqsbIGCAqzmViAvzREyAK6oaVFh2MMWm97b5XBYAYEbfMAOF68tZFQCIcz0NzJLyq/i/R/u7GvyfsvPbGUXdJdWNW/aNwQdD7i1rHKpwQCVW//g2L5NVtc71sgWvvAJcu0YSPk0usgAweDDwxBMtykUxhqeJMlkgl1WvqCABHS2TqbUs5CotH8DQQLqg0vRkrw+aPaIlCVr6Duc2PFnklkN4uO6YXK5E5usqcdis0xy2bQN+/JEsZhs2kO/KIry9CbsaAJYvb5H35CgkIgGfzbO0wLcG3K1oGzcHXRdjS5fJdJkh1kwrnrnMEB2/1Xok74IquYEDvVjI4JtHegDQ8ezGdQ3A/T1J5C8QMOgTQagdlzLL+ePGdSU34o6EPP59zRoQgclxwVBrWcxdfwnrzmRArUc1ib9dinmbLkPLAtN6hljkC1U1qHA9j6xXfaPMxx/5VXLUyNU2t/LYFQx9/PHHeO+991Bfb55N/l8D3cGbi5oBkv2hAZF+xgUgux4aTGSW1kEkYJBV1oBe4WRQbTqXhfcndwUAbDyXhWMpxVa9r6O3inA+oxwiAYOH+4YZ/O1CBuER0deQqzRI0/Nq6RDghpt6KVF6W0UZB0PcDWWs+aAPnjPkbvo5arUaW7duxdatW6FW2z9Z8NwNOzI7Kj1vnrYsk7Esi+IaGgzZnhnSaDQ4c+YMzpw506T/j7XYsQNYxfmXrl+vCzBseFPkp4VB+T/0+gGAlxdA+bq5uURYjk6ENXIVf9/RLh/bMkPk2GyjYIgqeHCqHgDAd2q2VFYoMxN4+mny++uvk+ydVXjxRRLZCgSAqmXIvY6OSXqd25pEzXOGGuzPDDlaJmtqrvTW48CZe590A2BMoI7gea26e0ChJgrUtAOyVqFB/yhvuElF/Jqg0bIY2oFkdViW5XlDF/WCoak9giEVCZBcUI0r2ZUASCfn8ulxuLdbIJQaLT785yYGfX4UT6+/hCnfncbMn8+jsl6FuDBPLLk/1uJ1ib9dCo2WRXs/mcV7jJb5mlKqN4ZdK8Ly5ctx4MABBAQEoFu3bujVq5fBz38RNDNUYCEzBAA9wjwBAAnZFQaPJ+ZW4ssDJOOTU9HAE53pRP3HxRzEBntg9qBIAMALWxIMsjamUFWvwvt/JwEA5gyJQrDeACmvU+L07VIAwPCOZBAnF1TzJDaZRAiJkDHYxdDsTpRRCpLyW/wtZDF0mSHTi7tCocCMGTMwY8YMAyNcW0EnS08X21PpNCMgEQl4Im5boLxOyds2WAowzUEul2PIkCEYMmQI5PKmsxxNITsbmDOH/L54MTB+vI0nWL8e6NgR2L7d4ffSFKjWiT55k2EAzjEHublkAqbZ14IqOfxcyTWmrcgFVXKzO2oK/TKZXKXhg/1wbxfI5QAV4DcIhih5ugX4QioVkTqoqiI8ro8+suHgmBhS1/v7b8ABGxxLcHRMelvRIdUacCwz1DwE6qbmSiexkJePMJdJ89PLDOmPdRrM51c2GFAFimoUBvSPW4W1iA7QrQOU3AwAH/ydxBOlz2eU85keTxcJJscFAwDWx2fyz5eIBPjukV74eGpX+MgkKK5R4HByEa7lVkEoYPBIvzD8PndAk64HJ9PIekaDMnOgiQhTHqGWYBdn6L777rPnsH81Aj25MpmFzBBAsjC7rxUggYuMKXqEeiLIw4nPLNGg4UJmOToGuCGlqAZrTt3BGxM64WZBNS5klGPmmvP4fmYvDOnga/wyqFWo8dT6i8gpb0Cwh1OjWuvua/lQaVjEhrjz7fYXMnRR/KBoX4MB7iIRIquM7H6Ny2S0nTHUzCSvVGv5Saylyz6UAE5valuQU0E+X6iXc5uSNOnC6iOT2MVdYhgG0dHR/O+OQK0mi2xlJdC/P/DJJ3acJCMDSE8nZZjp01tUPCnKr3FbLwCEhgKpqWTNl6s0vNjcrqt5eG9SF96TiYFuvNJshCnw3WSuUr5E5uYkgqeLGLdvk+e4uJAqFEVLZobeew84d44Qtn/7zY6YJji42d+TPhwdk3zpp42DIZ73YweB2t1I7LMl4eMqQa1CjbI6JdqZiA3o2FaotahVqPkSnr+blOhmqbRwl4pQqibXO6+iAZE+Lvx9lVxQjRh/N34dyy6vR1mtAj6uUvSK8ML6s1l8Q9Cuq/l4oFcIGIbB7EGR2HY5F/9cy8eCkdG8nYZAwOCxgZF4qG84zt0pQ1ZZHTxdJOgT6YUgj6bvF5VGiyPJZAdiinekDxoMsbBNi86uYOj999+357B/NYK5L0y/G8sUeoZ7AgAScioNSNQCAYPxsYFYdyYTAHA9rwreLmKU1ioxrVcoUopq8NOpO5jRJww/P9EHj6+9gKs5lXjsl/O4v2cIHhsQgdgQD9QrNTieUowv96cgr7IB7k4i/PJk30ZqnNuv5AEA7u8Zyj+294bOtHZkR38k5lbqPp+nE24X10EiEhhkmCrrlcjkgqRuIUZ9xBxoGU0sZHgyZEuB52742BEMcceGmSHAtxZoFs3fjhIZQERP09LSmuW9fPABEB9POrLsWmQBYP584PPPgQsXgLNnATNegc0BGqjTFlsKSmTOyQESsiv59P6R5GK8P7kr/FylyKtsgKcL6UYrqJRbDIb0u8n0S2QMw/DBUGSkYdx3M5+k5y2RO+3BwYPk8gLAzz+T17Ub2dlAWhpwzz3N8dZ4ODomvSkpuAlV45aGrrXekTJZy4tH+sgkyCqrN3u9nCVCyCRC1Ck1KKlR8MEQwzAI93ZBalEtvF0lKOWCz5sF1ege6oljKSUASDBEqxz0POfulGNi9yCM6OgPkZ7H5atbExHh44K+kd6IDfHA+K6B2J9UiGUHU7Dm8T4G70siEmBYjB8AywGNMfZeL0BxjQK+rlIMijbPKwKAlEId9SPCRwZrR6XdxInKykr8/PPPePPNN1FeTjIOV65cQV5enr2nvKvRiYtwbxfXmjRipegS7A6JUIDyOmWjFvuJ3YL431OLannC2anUEgxu7wOlWosP/0mCm1SE358ZgIf7hoFlgR1X8nD/qnh0eHsf4j48iBd/v4q8ygaEejljw5z+6BRoqNh5Oq0UiTmVEAkYTOHSlrkV9bwwIwCM6OiHfdcK+P/Tdsk+EV4GJOxruaRUF+njYrY0xS/ubk4tnnHJMuJu2AKaGQrzblkNmKbAd5K1MXn6yBFdR/yaNUBUlJ0n8vcHZs0iv7cwSZfy2crqlKjS6yhz4uLKM2d0mlsA2dFmltbxHAo6hvMslLtrFWpUcOf2d5M24gslci4d+lqTGi3Lby7ohqg5UFhIOuIBYN484MEHHTjZ6dOk1f7RRwEHStUtAV8r2sVbA+4OZIZai0AN6GsNmb9etLvZOItKx3GAXkNMYk4l4sJ0m93kgmqezEybTs7eIWUqD2dxI6IzbeIBgFfHxUDAAIduFuHorcaG7vaAJhFmDQi32PxSVa9Cut5GqbcN96JdwdC1a9cQExODL774AsuWLUMl19O6c+dOvPnmm/ac8q6Hv7sT/Nyk0LIwIB0bQyoSomsICU6u6PGGWJZFp0A3g44sgYCBTCJEcmENxnUNhFjI4MitYqyPz4STWIjPH+iOvxYMxr3dAvmbFCC74xfu6YADLw3jo3cKrZbFp3uTARAmP10E9l3XZYU6BbpBKhLger7uc1CLC+OS3DVugu8eavg6+qBy6i2prUJBF6YIe4IhjjTY1pkh2pFoT1t9c6GoiMQvLAvMnQvMmOHgCV9+mfy7axdw546jb88sZFIRX4rN0MvSUl7whQuGwRAA7LiSy98HVEy0wAKJOonrWAnycIKXTGI2GIqL0x2TWlSDeqUGrlIROtgqXWwGWi0JhIqKgNhYIhXkEPr3J8z4oqIWF2G0FTrO0N2RGbKn1NVaCtSALni0JLxIS1TGzTzh3tRjTLe5vZJdYTDH3y6uRYS3C7xcxHwGKD5dd1+N7RoAQOf7t/taAW9DFe3vhqcGk53VG9uv26X5o49zd8pwNacSEqEAj/aPsPjc46nF0GhZngyur5/UFOwKhhYtWoTZs2cjLS0NTk66CX3ChAk4efKkPaf8V4CWiW7kWSY207bDUxzhKz69FOO/PoU3d97A1B662v1fV/PxYB9SxvrtYg5eH98JAPDp3lt8W3xcmCdWPdobCe+NRcK7Y3D9g7E48spwLBoTY9Ko7s9LObhZUA03qYjnEbEsi78T8/nnjOzkz6dDAdKZdSmrEgAwzIiclshlhrqHmi6RAUQaAECjwKwlkF1GszuOZIbaNhii46djgH2Lplwux8SJEzFx4kS7yKp0kS0sBLp2Bb7+2q63YYiuXYkCoFYLrFzZDCc0D50dgI7zRk1aS0uBc5cNd+bbr+TxhFIq9mapK5S278Zy9ztfXrUQDNGNT1yYh0Fm1RF88QVw6BDplPvzT13HnN0Qi3WKmitWNKtDqqNjkjao5JmwMmpN6AjUtmd3KEWgrE7ZyCC1uRHoTgZDroXrZS4YivQl41hfuLS0VgkBw/C8UC0LpBbXGmSA7pTU8VWA0Z0D+OcBpLNt+5Vc/rmvjuuIdn4yFNco8OrWa3zjjq2QqzR4a+d1AMADvUMtat0BwOFk0oWt0rAQCRiLLfjGsCsYunjxIubNm9fo8ZCQEBQWFpo44r8BOjnS0pE53MMNlKO3iqHWaOHuJEZKUQ0O3Cjky1YAScfnczyG5IJqsCyLsV0CoNRoMXvdBVzXex2hgIGXTAI3J7FZguLVnEq8x3WXLRwVze+2TqSW8BM8A+CRvuHYf0NXIusQ4IpahRreMgm6BBmW3BKtCHSseU5zgBIGAXs5Q22fGWJZlv8uutt5vTQaDfbu3Yu9e/fa1ca8bBnhoTg7A3/8QYjAzQIqhfzLL7ropAUQ5UtKuvq8If3qfGl8pMHz8yobeEkGeuvkVpiXBaHBanfufqevQzvJUjgZMP1giBJNe3LWOo4iPh54913y+3ffAZ07N8tpiQijiwsRlDp6tJlO6viY7BBAVY1rm+z0a0lQ78WmHNlNIcjTCUIBA4Vai6Ia2wNCWxDDXa/Uohqzz+nM0Sf0OTSALst/LbcK+nH79bwqxOnNSWfTyzCwPQmGZFxG9SyXHQr2dMag9oalsvXxmXzQ4yQW4qsZPSARCXA4uQgf/ZNk1/f67dE03CkhZe43uGSBOSjVWhzXk6TpFe6FShsI+XYFQ05OTqg2MdmlpKTAz882YtS/CbZkhrxcxKisV+FiZgViQzzQJcgdSo0Wl7IqMKZLAP/cI8nFeJHL4Kw4lIZXx8Wgb6QXauRqzFp7HidSS8y9jAHulNRi7oZLUKq1uKeTP54eSmT4WZbFV4d1FLLxsYHwcZXguF5mqDPnmzaovY8B56ewSo7iGgWEAsZA2VofDUoNv/OwFAxJJBKsW7cO69ats9tFm2aFvFzE/A7OWjQoNfwE15acofwqOUprlRAJmEaBp7Vw5FqeOwe8/Tb5feVKktBpNowZQzRt9u8H3JqnVGQK7bmOsjscF0KrJYrMFPXJwdDUG44PypugCuSXsyrMTs7XaGYo1APldUr+dbqHeuDGDfJ6Pj6GDVpUSqNXhKdjHw5EPPKRR4hs0yOPAE8+6fApdfDyAp56ivzejPwuR+/vCB8ZRAIG9UpNkx27LQlaCq2sVxlw0qyBWCjgxQszLTi6NwVrrmUMl/VJLaoxm4WimaE7JXUGLvRdgtwhFQlQWa+CRM8WIyGrAj30SmWn0kowkMsMURukgzd1yQ5ashJxa0ZORQP+0atAxIV54qsZPcAwwPqzWViyJ9mmDNG2y7lYdTwdAPDx1NgmXRkuZpajRq6GhCuRDe3ga7VeH2BnMDR16lR89NFHUHGFeoZhkJ2djTfeeAMPPPCAPaf8V4AGQ2nFNRZJ1CKhAKM6kYDn0E1CIHu4HxFC+eNiDmYP0tU9tSxwJq0U/SK90aDS4K0dN/DjY33QK9wTVQ0qPPHLBXy6N9lAcdcYu6/lY8p3Z1BSo0DHADesfKQnn6o/nlJiQJx+emgUfruQbSA+eIOz6BhqxBeiE3xMgBucJaZJa0n5VdBoieVBkAUOjFgsxuzZszF79myI7dQ6MeZu2AKaCXCTitpUY+g6x8GKCXCzW6XY3mtZWUmcM9RqwhGiAn7NBoYhNbfBg1u2vZ6WybiMTXo6UFur9wStEIJb0bywZs8wD75zL7eiHlKRAEXVCgMBUopahZoPnLqFeOAKV66O9neFp4sEp0+T5/Xrp/uIlfVKnrTZw8HMEMsSzafsbKB9e2D16ha4lC+9RE66bx9w82aznNLR+1ssFPDfa5qFbEdLQyYV8bzOjCY6h02BNzG141gKa65lhLcLJCLSIp9jJssZ5OEENycR1FqWl0cBSEcXXcv0x9ae6wUGmaGLGeUI9nSCr6uUD2KOJBfznKixXQPg5ybl1xIAWH4wxcDMfGL3ILw3qQsAYO3pDMzbeKlJM3KWZfHnxRws3pYIlgWeGBhh0byV4mASCdTouxka44djt6xLJgB2BkPLli1DSUkJ/P390dDQgOHDhyM6Ohpubm74xC6hkn8HAtyl8HVtmkQNgM/+HLxZCJZlMTUuBBKRALcKayCTiAyyAodvFWP+yHZwk4pwKasCKw6lYMvcAZg1gGj9/3TyDgZ/fhQf/J2EPdcKcDO/GufulGHj2UxM/vY0Fm5JQK1CjX5R3tg4px8vyFUjV+Gj3brJrme4J7qHemL1iXT+sWEdfHGzoAYSoYCvA1Ps5wbXQAsS6fp8oZY27NW11Vs26TN5LNUY4tqj2wrXrOBgtQRYlgQ/WVmkoeinn1o0XtG9aAuALpp3Smuh0bK4cqXxc5TX22Fwe5KlntYrFN880gMiAYOqBjXiuGtPOX36SMqrAssCwR5kEbhELW04FfcTJ8jzhg/XHXMpkzwn0seFL03bi1WrgJ07Cb3n9991JrTNivbtgfvuA1xdgRs3WuAF7AMtld02EaS2Jky5slt9rAlR0JaASChANNcBnFJoOnhkGIbvgr5lVCqjHY/6GaPbxbWI8XflmwxUWhYXMiswpgvxfHGViqBQa/kNvlgowEN9yCafOgLkVDRg22UddwgAnhwchW8e6cmVzIoxYukx/HzqjsnMW3pJLZ769SJe234NLAvM7B/OOzNYQrVchR2cnIxKwyLE0xnhXi64bCR+bAl26Qy5u7vj9OnTOHr0KK5cuQKtVotevXph9OjR9pzuXwOGYdAtxB3HUkpwI68KvSPM7wKHxfhCKhIgt6IBtwpr0DnIHRNiA/HX1Xz8cSkXr43viNnrLvLP//CfZKx8pAfmrL+ETeeyEe3niiX3dcPQDn5YcTAVKUU1+DU+E7/qKXtSSIQCzB0WhZdHx0DEpT1ZlsWbO67zu1wGwLuTuuDvq/kG7ZjOXHZiUlwQ364JEOLaYW7QT4rTSQIYw1rytFqtxoEDBwAA48aNg0hk+9DLKqfcDdvLXDq+UNu21dNgqJsDwZBGo8H164RU2K1bNwiFTWeYfviBCETTRdajJWOx4mLSs3/tGunfb+aoK8JHBlepCLUKNVKLapCQ0DhiKCwE5CUkg5hZVg+pSIgOAW5ILqhGmLcLLmRW4FRaCeYMMdQTMCZPX84isiG9I72g1QK0P0Q/GKKlg6bE4JpCQoKOdvXll0CfPpaf7xC+/ppEWtTl1kHYMyaNEe3vBqAQaUVtGwxF+chwIaPcLrPPSB/T7ey2wNq5smMgsVNKLarB2K6mMycdA91wMbOiEYmaWDRlQF+kmQXw46l0DO3giwNJZO4/lVqKyd2D8duFHD7j809iPqb1Io0/j/QPx+oT6XwZDSDZoUndg3ipAQCYEheMCG8XvLHjOpILqrFkTzI+23cLvSO8EOjuBIYBrudW8SVpsZDBcyOi8dI9HaySa9lyPhs1CjWkIgEUai0eGxiBU7dLbCrL2RUMUYwaNQqjRo1y5BT/GlDJ8bgwIkx1IaMcT3DWGabgIhFhaAc/HE4uwq6EPHQOcscj/cLx19V87LiSi5fuicbgaB+cuU0IaRmldUgrrsUrY2Kw7GAqPvjnJhpUWjw3oj3GdgnA8ZQSHLxZiKT8auRWENK1n6sUY7oEYFqv0EY70k3nsrBbT0fomWHt0CPUEy//nsA/1iXIDfu5Qf/EQMPPcuxWMeqUGoR4OqOnhUDH2mBIoVBg0qRJAIDa2lq7gqFsLqCJ8LYjM1Te9p1kLMvyUgVxFqQKmoJcLkfPnj0BkGspk1m+Hlev6hbZL74A+va1+6WtA8MQN1G5nGjbDB3arKcXChjEhXngzO0yXMmuwJUrjYMhhgHuXJMBoTqh1K7B7kguqOZ1Ss7fKYdCrTHQLeHJ7aEeUKq1fDdl7wgv3LgBlJcDMhnQuzd5vlqj5TtYxplZkKxBTQ3w0EOAUglMmUKoVy0KfYfZZoCtY9IUOvhTEnXblckAncq5PaWu5iiTWTtXUmeBFAvBY0eeRG0UDJnZyK+Pz8Kb93bmg6GTaSV4e2Jn+LtJUcz5nJ1KK0VFnRJeMglCPJ3xUN8wbD6fzW9QSmuV+GzfLXx6fzeDc8eFeWL380Pw56UcrD2dgdvFtQauCAC5t4d18MU7k7rw2ndNQa7S8PYg1GftoT5heGeXbVlPu0UXjxw5gkmTJqF9+/aIjo7GpEmTcPjwYXtPd9fjDtfGO4zb/Z1MKzFw3zWFhzjj1D8v5UCuIuZ3vSO8oFBr8ePJDLw5wbBF5It9tzA+NhALRrYn/99/Cx/9cxNKjRYjO/njs2nd8ffCIbjy7hgcfWUE/pg3EE8PbWcQCLEsix9PpOPdv3SM0vZ+Mrw8Jgbr4jORpWfQN6SDL5QaLeLCPA1qxQD4QGpS9yCzZaXSWgVyKxrAMI5lOqxFNjfBONRW34aZoayyelTL1ZAIBfxEZg8YhkFwcDCCg4ObLPnRRVahACZNInSRFoefH3GzB1pMhJF2bSVkV2LQIBLkUR0eiYR4eC19X5cZAoDYYLIwFFY1wNdVigaVhpewAEhgQ/8fG+KBG/lVUKq18HIRo52vjC+RDRqkU+q+mFmB8jolPF3E6GdDG68+WBZ47jkiDB0WRprxWq2Sy7LAqVNAg2Mt7baMSXO4WzrKaKnLnuwOLeFmldW3eHt9x0Cuo8xMmQwAOnNlMuNgKMDdie+c00e9UoOCygbe6Ph2cS2KquWY2J1UB9ykQqi1LPZc1220F46KhkQk4I2QAZKpib/duAxNvMjCcXjRcJxYPAJfPNAN707qgjcndMLqWb2R8N4YrHuyn9WBEADsTMhDSY2Ct96Y2iMYcrXGgOxtDewKhr777juMHz8ebm5uePHFF/HCCy/A3d0d9957L7777jt7TnnXI4kjGceFesLLRYwauZp35jWHkR39EOThhIp6FfbdKADDMHzn2ObzWfB3l+LB3jq7DC0L3Pd9PBaMaI83JpA2wl/OZGDyt6f5DIwl1MhVeGvndXy27xb/mKtEiJUP90ROeT0+3aPjDw1q74N/EsmAfnyAoZBVnUKNI5xy6KTu5j2NznCDPdrP1ebuLltRVa/i1aej/W23O6A+bJG+tu9Ymwu0S6lzsLtdnmQULi4uyMvLQ15eHlws9MXTRTY1lXh3/fprKy6yNOr6+2+yyjczaNdWQnYFPvgAeO01kk3x8iLZldRUnS1GZmkd5CoNunKlr5sFNRjCSfqf1uMN/XYxB7kVDfBwFqN3hBcuc1yg3hFeYBgGXOUCI0fq3scBjlc3unMAX6K2BjdvAgsXkiD1l1+AzZsBoZBYovhYdhtoXkyfDgwbRt6AA7B2TFpClK8MAoYoOBfX2N7a3lzQ6VjV2RyUhXg6Q8S111Ol+ZYC3VCll9QacH8MnsMFQwVV8kbEZX8zmj1/JeYZcBr3Xi/gJWFqFKRxaH18Bn9tgjyc8Ri3hugHWIu3JxoESMaI8JHhob7hmDMkCvOGt8f42ECb15F6pRqrjhN/HHoNHh8YibWnMqDSsBarGsawa0b+7LPP8NVXX+G3337DCy+8gBdeeAFbtmzBV199hU+pvv9/DFRHRChg+OxQU217IqEAj/Qj6ehN57IBkI6tnuGeUKi1+OnEHbw7sYtBF1atQo2Bnx/D00OisHpWb/i6SpBaVIv7vj+DaavOYPe1fINONq2WRXZZPb46lIrBnx/Fbxdy+L+5O4mwee4AdAx0wwu/JfD1YQFDSgYFVXIEezjxUT/F4eQiyFVaRPq4IDbEPIOTBlOOlAesxcXMcrAsUd9uSnjLGCU1CmSU1oFhmk8Hxh7QzqTuZjzemhv6i+zvv7fyItupE0lFsWwzqToagnZtpZfU8URMhtHxbC5doiRoCdRaFkn51egc5A6GIXYoPTgC6Z7rBSitVaCiTonlB4mA0CtjY+DmJOazRL0jvFFXR+hPAPlYAMnC0g6W8TbeAxs3At9/T97vwoXksSVLSCNeq4L6yK1YQTQD2hBSkRARXFamLUnUERzvp0aubrLzyRgioYDPXLc0iTrE0xkyCcnUmCvLuTuJ+fLjeSNldhp4BBjNp0umxhrIv2y/koceYZ4I9dKtU2nFdQayL8+NaA8XiRCV9SpeiTuvQk7WnRbMkH2yJxk55Q2QigTQssDgaB+EejljywWy3s7sb3052K5gqLq6GuPHj2/0+NixY03qD/0XcPp2KR8Jj+xI2PX6Wj3m8HDfMIgEDC5nVSC5oNogO7TpfBbqVWosmx5ncExVgwqDPj+K0Z39cejl4bxq9ZXsSizckoDO7+1Ht/cPYPTy44j94ACGLT2GlUfSDFRTPV3E2DJ3ALqFeODdXTeQrJcmnT+iPe/18uHU2EYt3lvOk4E0qbv5lHdVvQonUkkwOKWH+exRc+FCJqkt929neymCkmA7Brg1qVXRUmBZlu/CMJYwaAlcv97GiyygIyqtW0fINs0Ib5mEJ6sm5OhKXfrBEMMwPDcrMacSrlIRorjF1s9VyptdTlsVj7d2XkdlvQqdAt0ws184WJblO8n6RHrh8GFCgYqMJNYYAOEX5VfJ4SIRNrKxsQSNBti0ifx+4wY5b+/eJLvV6nj6aaIJlZwMPvXVhqBZ37Zsr3cSCxHCmVXbxRuiJGoHeEPWgGEYPvNjrqMMAAZHk7Gpb6cBAEvuJwO5okFlQB84nlLCCwcDxKcsuaAG0/RMvwFgzUmd7Y6vqxQvj44BAAP6yNFbxfhkT7JNn8taHLtVjM3cWqVQayERCvDR1FhsPJuFeqUGnQLd0KulvcmmTJmCnTt3Nnr8r7/+wuTJk+055V2P4hoFz8gfFuMHhiGDpLAJgTB/dyfex2XzeWJmNzzGD30jvSBXafHuriQMau/Dd7VQ4nxxjQIDPz8KVykpc+1aMAhuevYbNQo1bpfUoV6pgZBh+K4wAJjWKwQHXx6GToFueHVbIn6/qMsW9Qr3RHx6GdRaFuO6BhjsAAAg/nYpzmeUQyIUWIyqDyQVQqVh0THAzSH+i7Wgu5r+UbanNy5kkEWtb6R9nI7mwK3CGuRVkh2MLQunKcjlckyfPh3Tp083aX1QW0t0hORyYPz4NlpkAWDECKBnT8JHWb262U/fM1zHG6Kg5PCLXKMmJfZTE9UuHG8oq7weW58diHBvF2SX12PfDZLheX9yV4iEAiTkVKK0VgFnsRDdQjzw99/kfFOm6EqN+7ljRnb0t0kz6vhxINew+xiXLwMffEACpVaFuzsxpwMc4nc1NSathY5E3dbt9bQrzHbxREda820FtfSxpERNVaTPpBtyeDoGuCHc2wVKtRZ99MRCDyQVoWOAKx8QAsTf79EBEdCv7p9JL0NSvk6A+KkhUegZ7okGlRYhnros0i9nMvDrmQy7Pp85lNcp8dr2awAAZ44rNH9kewR7OPMd18+NaA+lxvqslF3BUOfOnfHJJ59g4sSJWLJkCZYsWYJJkybhk08+QdeuXfHNN9/wP/8l0EyQt0zC7ziPW6FwOYtT6tx2ORfF1XIwDINP7u8GsZDB4eQi7LtRiMXjOqJ3hBe0LMAJaKKkRoFuHxxEcn4VeoR54fd5A3g9B31oWBYNKg3EQga/PNEHK2b0gItEhIW/JfDaCwDg5yrBuK6BuJJdCZlEiA+mGOo3sCyL5YdSAQCP9AtDsKd5svE/14jS6GQLbffNhVqFGjc4U1l7SKqXuMxQn8i2K5Ed1ssKuUgcauKERqPBtm3bsG3btkbWBywLPPsscOsWEBICbNgACOynJzkGhgHeegt49VXgscea/fR015egx6ejmaEbN0gMRhsDKOeOKqkn5VejnZ8rdswfxOsOTeoexC8cO7n7ZnxsICRCIXbvJuedMoX8q9JoeS+mCd1sK5Ft2GD68R9/JBm9VscLL5Ba6pEjpPXQDlgak7ZAn0TdltCRqG1/H1F8R5n9KtTWgm5EjVvn9TEgygcChihR62/eGYbhN8Na6CoAhdVyZJbVG/BZd13Nh49Mgqk9DLNDP5/SBTlCAYOlD3aHRCRAXqWct/AAgA/+uYmvDqU2CzG+vE6Jx385j5IaBdycRGhQadHeT4bnRrTHt0fTUFanRKiXMyZ2C4LShrFo1zS5du1aeHl54ebNm1i7di3Wrl2LpKQkeHp6Yu3atfjqq6/w1Vdf4esW4Aq0JfQDH1tKZQPb+6BXuCfkKi2+PUrIXjEBbnhuOOkae//vJChUWvzyRF90DHCDhgUvKS5XazHhm9N4bfs15Fc24IsHu5t9ndmDIjG8oz9+v5CNoV8c5XeuAPGWeW18R3y+n5CrF4/riCAPw2DnZFopLmdVQCoSYP7IaLOvU1qr4MnTlgjW+pBIJPjuu+/w3Xff2SzXfymzHBotizBvZ4sBminUKdRI4gKptswMHUomwZCxsKU9sHQtf/7ZkIzb5u44Dz4ILF1K2qSaGTQzdDW7gu/cCQ0F/P1JhiUxUSdhkFVWj4o6Jc+Bo870vq5S/DFvIH59si+WzyDlaqVai91csH9/zxDExxPpJHd3nUrAkeQiFFUr4Osqwdgu1gdDdXXA1q2NH588mQRCPXrYehWaARER5HsCdC15NsKR+1sfHfx1mY627CjjAxp7MkMOCi/aci1pF+8VC/YyHi5iXjfr7B3D7NBYLhg6kVoCP1fdax1OLsKMvmF8paK0VoFTaaV4eqihLtffV/N42RKAaEW9NJrQQIxJ3SuPpGHxtkSzZG9rUFQtx0M/nsWNvGo4iQSokashYIBP7++GG3lVvKDwOxM7QyQU2PRadgVDGRkZVv3cuXOn6ZP9i3A5q4KXIh/Ziawyp2+XNnnBGYbB4nGkO+y3C9m8x9b8kdFo5ydDSY0Cn+1LhoeLGOuf6ocQT2coNSxcpbrI+s+LOZi74TJe2ZqIaL/GHVH+nCz6qGXH8MaO66jQU/f0dZVg6YPd8eaOG2BZ4PGBEY00kliWxQqOQDprQAQC3M1ba+y9XgAtS7RYrO3OEovFWLBgARYsWGCzXP95TovCnhJZQnYlNFqiSGprINVcKKyS41puFRgGBrV4e2HuWiYm6kzJP/mk2eV97jp0DHSDk1iAarmal77QJ1FfvEgWgnbcGE3MreQzQ5ll9Sjmun2cxEKM6OjP6w2dSC1BRb0Kfm5SDGrvw/N77r+ftO0DwMZzpOT9UN8wmzoDt2wx7GJ3diYZob/+IkFcm4Hyuy5dAlS2eXIBjt3f+ugQ4AqJkPhmtUZmxRwcaa+nx2aV29deb8u1jAv1hLNYiLI6Jd8xawo04xl/25A31FvPR3OYXvl+87lsBHs4YURH3aDcfiUXnYPcDTiPGhb4XK97GQCeGdoOw2L8oDLx2bddzsPU78/wPE5bkJhTiemrzyKtuBauUhEv9Pj5tO6IDfHAoj8ToWWBaT1DMD6WVCwULR0MnaCCG/+PEOnjArWW5TMiscEe8HOTolahxkkrzFQHtvfB0A6+UGtZfH2ElKKcxEJ8xglT/X4xB1sv5SDQwwkb5/RDmLczahUaiATgPZYAQK1hcbuk8Q1aXKPAujOGOkIAcG+3QHw4JRYv/ZkItZbF/T1D8MHkro2I0QeSipCYWwVnsRDPchkrc6BmfJOtzAo5Ch1fyPbMzkWOeN23LUtkXFaoR5inzZ1w1qKqimzuFQrg3nuBxYtb5GXsx4kTpA2rGbXIxEIBuod4AoCBzEW/fuTfs2fJv7RUlphTBW+ZhC+v/XjS9GZtVwIpkU2JC4ZGLcCff5LHaaUvvaQWZ26XgWHAd4taA5bVOdEDxPX+6lViJN+GDjEE/foRF/tr13QiSm0AqUjIt3XTe7ctoC+8aGuGKtjTCWIhA6Vai/wqx/SbmoJEJODL//FGnCB9DGqvI1Hrfx6RUMBv0Jz1yvdZ5fW4lluFh/vqMroHbhSiqFreSLV9z/UCA/FEkVCA72f25K1AjJFcUI0HfjiLRX9c5QVRLSGvsgEv/Z6Aqd+fQXZ5PdydRHzL/nuTumBG3zB8ujcZWWX1CPZwwvt69A+VuoU5Q2PGjEF4eDjeeOMNXoL9v47BXDRMy2ICAYOpnPbC1ss5Zo/Tx6tjOwIgIlGU8Na/nQ9e4LrL3t55A5cyy9HOzxX/LByCYTF+UGtJdBsb7M6XzqyBn6sE65/sC5FAgAVbrkCp1mJMlwAsfbB7I3nzgqoGvLWTfI9PDo60uGDfyKvCxcwKMAwateRbgkajwfHjx3H8+HGbOAX1SjVvYTHAgkeaOej4Qm1XIjvcjCUyANBqtUhLS0NaWhq0Wi1v7nn7NhEWblOekDns2AHs2QMsW9asp+3JET/P39FNxjQjdvIkCUAoJ+gq13X2Itf1sulcFoprDMm+1XIVX9K8v2cI9uwhLvIhIYQPDpBdMwDc08kfoV7Wa+p8+ilQRE6NJ54gmauYGKsPb3mMHEnqq3bAeEw6AnqvUp2ntkCYlwsEDBEhtFXzyLC93vbslq1zJQ10zhp1i+mjb6QXxEIGeZUNvOE1BeUNHU8tgY+egO+fl3IwqpM/r0ek0rJYezoDw2P8eOI2xUe7kwyyYG5OYqyd3deg6ccYOxLyMHzpcUxYeQorD6fhVFoJrmRXIKWwBpcyy7Hq+G3MXncBo5Ydx66rZAPu6Szmu6ZfGRODp4ZEYcv5bL6rbOn0OAMjbkUTwsj6sGvKzM/Px2uvvYZTp04hLi4O3bt3x5dffolc4xaJ/xCGdiBlseMpJXxkPZ0zqTuSXIzS2qZvmLgwT4zvGgiWBZYeSOEff+meDpgQGwilRotnN11GXmUDPF0kWDe7LxZy3J0b+dXQaFmMiPFF91B3uDuJoB/SCBiiKzS2SwC2PTsQC0ZGY9Gfifg7MR8CBpg3vB2+m9mzkTCcWqPFC78loJzjU9DAzBy+4gjWU+KCbSo7yeVyjBw5EiNHjrSp2yQhuxJqLYtgDyeE2qgerdJo+U6jtuIL1SnUfGp6bJfmCYYaGhoQExODmJgYNDQ04JtvdL5jW7e2sp6QtXjxRRKhHTjQrOagQ6PJfXkqTXdfDhhArkVeHnDnDtCD4xYl5laBZVkM09P6Wn3cMDu073oBlGotOvi7omuwO18ie/RREic0KDXYxm1+HjUSK7WECxeA998nvz//PBHAbMMEjGUoFISBbwOMx6Qj6MNZRVy0o5TSXJCIBHyga0+pLIbjPul3W1kLW+dKWgI7d6fMrKaPi0TEa6wZt9gP6+AHJzHx0aTiigAJVlQalndSAMgGoqpBhcXjOhqc40ZeNbZdMVz/Qzyd8f2jvZp8/8kF1fjqcCoeW3sB01bFY9zXJ/Hg6rP4cn8KjqeUQKHWwt9dCgEDVDao4OkixooZcVg4KhprT2fwG/nnRrTnZQQoWpwz5Ovri4ULF+LMmTNIT0/HQw89hA0bNiAyMvI/61XWJ8ILTmIBCqvlPHO/Y6Ab4sI8odayfGq9KbwyNgZCAYNDN4uw/wYRLRQIGCyfEYcuQe4orVXi6fWXUFmvhFDA4NVxHfHXgsEYHuMHDQscTy3FtdxqyKQiTOkRjLcndsb7k7vgtfGdMHtQJMrqlHhw9Vl88M9NlNUpERPgip3zB+PNCZ0NPJgolh9KxcXMCrhJRfh+Zi+LLcIJ2RU4cqsYAga8VlJLgy+RtfOxWeb/Zn416pUaeDjrhMdaGydTS6DUaBHh42KXcrY5iMUeADywaBFp1gJIZzQtEd11aNeOkG4Au0m6ptAn0gvOYqGB9IWLi67F/uRJoHOQG8RCBuV1Ss4+hsFLXHZo8/ksnjuk1bLYfpncx/f3CkF5OcN3kc2aRf79JzEf1XI1wrydMbyDdez0sjIi9KzREKL0ypXN9OFbApcvE0L1pEk29/l7eHjAoxkcgKkB9p2SOpRZsclsKVA+5B0TtISmQF3hr9jgmm4vYoPd4SYVoVquxs188zp/fIu9kU2Gs0SIIdymggomAiTwP5BUiBl9wvgybr1Sg1/jM3FPZ/9Gemlf7r+FWoUaSrUWuxLyyMYjxg9dgnTCvQyApwZHYmqPYIPSsIABXCRCuDmJ4CQWwFksRLCHE2Qcb7a4WgEtS2gfh14ejmm9QvH9sdv4eDdxVZg3vB1eMwrQAEDV0sGQPqKiovDGG2/g888/R7du3f6zfCInsRADuTINFc8DgBl9SKvhHxdzrKotdwhww7xh7QAA7+y6gQpO4dRFIsKaJ/rA11WC5IJqPLj6LPIqyQ4rLswT65/qh23PDsSwGD+IhQwKquT462o+PtmTjA//uYnP993CN0dv86q5PcM98d6kLvjn+SGNfMcojt0qxg/HCfv+8we68+qv5vDVYWKrMK1XKG910NI4x5U/7Gmpp5yDPhFeVjkftwS2XSa7pXFdA+32bDJGfb0MLFsJoBI//SSDWg088IBOZPGuBSXpbtqkqxc5CCexEAM4IU59RVzqKn/iBOGh0AmZtuEP6+CLXlx26IcT6TiWUoyJ357mxT2n9gjBzz8TLnGvXkC3biRY+oXTS3m0f4RVY0qrBR5/HMjOBqKjifJ0m/ODLKFTJ+Jnkp4OXlzJCshkMlRWVqKystIuk1Z9eMkk/MZB3zuutdGV06Si5sq2gAZ0l7MqW7wrTiQU8GK0xt1i+qBZk7PpZY2I3eM4Lby/E/PRMUA3t/9+MRth3i64p5Muq73uTCbqlBq8O6mLQXWitFaJ9/+6gac3XMJLf1zlOXn39wwBALhJRWABrD+bBXcnMf54ZiDu6xEMb5kEWpYEWjVyNeQqLRpUGuRXyVGn0MDNSYT7egRj/VP9sOrR3tCyLF7+4yqWHSRVipdHx+CN8Z1Mzq+2iGY6FAydOXMG8+fPR1BQEGbOnImuXbtiN91K/QdxbzfCkdlxJZcf4JPjgiEVCZBWXMs7XDeFF0d3QAd/V5TWKvHhPzpD1RBPZ2yZOwBBHk64XVyLB1bFGyiL9on0xoan+uHa++OwZW5/vMiV1yZ1D8IDvULxSL9wfDC5C86+OQo75w/GU0OiTGaDAGD/jQI8u+kyANJd1hT/51JmOU6mlkAkYPDCqNbJChVUNfCp8iFG6U9rQLvQ2oovlFtRj6OcHIN+qtlRbNoEqI0sf5KSCGforsagQaSGpVQSL4pmwnBqnmwmGAL0xBe5YEg/O7TuTCaeXHcRyQXVcJOK8On93RDg6sy/xRdeIP8eSCrErcIauElFeKSvdcTpTz8F9u4FnJyAbduAZkictCxkMiJUBRCLjjYCbXhoy2CI+lrZk92JDfGAWMjwZtYtDcqnNC6B6aNHmCfcnEQoq1M2Iqff2y0IrlIRMsvq8ZDe2D53pxw55fV8uzxAHBK2nM9CTIAbZhmVirdfyYMXp/L/+b5b2H45F+NjA/Hx1K44/9Y9mNojGBoti43nsjBn/UXEhnjgzOsjcfDlYfhwSlc8OTgS84a1w8KR0Vg0JgYbnuqHy++MwdcP90T/KG98f+w2Ri47jp1cJebNCZ3w4ugOJgMhhVqDPy5mW30N7QqG3nrrLURFRWHUqFHIysrC119/jcLCQmzatAkTJkyw55T/CtzbLQguEiEyy+r5m9TdSYwJsURnZOsl64jUUpEQS6fHQcAQMSv9TFNMgBu2PzcIHfxdUVgtx4Or4w12vABJaw5q74uXx8Tgh1m98d3MXlg+Iw6fTeuG2YOjGukHGWPt6Qw8t/kKFGotRnXyx9sTOzf5nldwXKHpfUIR7mOfEaOt2HElDyxLskK2OtXXyFX8dRsW0/L2F6bw+4UcsCwxxbXFhdkSWBZYu7bx47duAWPGAHe9Gw7NDq1aBdQ3T+s09Qq8mFmOOq7LZNAgwvHJzCRZmTijYAggApi0s0wiEmDu0CicfG0kZvYPx65dQE4O0Wl66CGSFVp5hGRGnxwSZZWty6FDwHvvkd9/+IF0j/0rsHAhITSdPk3ITm2APhFkA9OWHWVUxyqtuBbVctvkBpzEQl7GoTUCOkqivpBRDpUZ0rBEJOA99KhoLoVMKsJ9PQlf6HJWhYFg4p+XchAb4sFnjwBgzakMyFUavDwmBm5Sww33oaRCvmLy+vZrSC+pxWMDI+EiFWHlwz3x29wB6BLkjhq5Gkv2JKPnx4fw5f5bkIgEeGpwFBaMisbz90Tj+VHR6BDgin8S8/Hq1kQM+/IYlh5IQb1Sgx5hnti1YDDmWeh8Xnk4DcU11nvL2RUMHT9+HK+++iry8vKwZ88ezJw5026n4n8TZFIRnx2i5Q8AmMERqf++amiiagk9wjwxlyuXEV8k3ZcW7OmMbc8OQt9IL9TI1Xjilwt48fcElDjo5KzRsvjwnyR8vPsmWBZ4tH84fnqst9nsEcXptFLEp5dBLGSwsJWyQizLYjt3jfWVUK3F/huFUKq1iPZ3NahZtxZUGi1vg2K8e3IEFy8CSUkKALO5HzImxowha5e7jR+VZVnUKdR26aHYhfvvB8aNIykTOzuXjBHlK0OYtzNUGhbnOI6ZmxspbwGEN0QzQ9dyq1DVQI1dGax6tDfemdgZx18dgbcndoEX101DeT3PPkuyOvpZoTmDDVuLTSEnB3jkERK8zp0LzJ7dLB+1dRAcTN48YLVFh0KhwOzZszF79mwoFI7zfGi7+PW8KshVre1RQuDnJkWYtzNY1jCItha9uGCqNXhDnQLd4OUiRr1Sw3ffmsIkjiC973qhgYcYAMzsR+apA0mFeGygbs5adyYTDUoS+FCU1Cjwa3wmvGUSLBpryNWpV2mRXFCDKd2DoNaymL/5isH1G9jeB/88PwRfPNANIZ7OkKu0OJxcjDd3XMfQL4+h+wcH0fGd/Yh6cy8GfnYUr2xNJO4NNQoEuEvx1UNx2PHcIP6eNoVjKcW8AKO1sCsYio+Px4IFC+Dr2zY77rYEXZh3XytAvZLsQge0I065NQo19icVWH2ul0fH8KKLC7ckGET0Hi5ibJzTH7MHRULAAH9dzceo5cex6VxWo0HcFLRaFn8n5mPMVyd4g9Y3JnTCkvtiG3WXGaO8TolXtyYCIDyJkFYSLkzIqcSd0jo4i4V8AGoL/ua0kKbGmTebbUkculmE0loF/NykjfzfHAHhHqsBrAewHs7OaqxaRZq0QpuIGYuq5dh4NhOP/3IBI5YeQ8+PDiL67X3o+v4B9Pz4EGavu4Bvj6Qh/nap2d2lwxCJgP37ibiOtHk0lxiG4Utl5nhDUb4ydAxwg1Kj5XWyACDQwwlPD21n0Bl56RIJLEUi4LnnjLJCgyObzAopFITDVVZGArJ/pSsRzeBt20bSa01ArVZj/fr1WL9+PdTGNVw7EO7tAj83KVQa1uLi3tLoZcL/zupjOdmH1sgMCQQMXyo7a1FvyAfeMgnK6pQ4a+Ri3yXYHT24hiBXqa5buVahxubzWegU6G5Ap/jmSBryKxvw+MBInk9LcT2vCt6uUgzt4It6pQZPrLtgoIMkFDB4qG84Tr8+EntfGIpXxsSgR5gnjGl4AoZkdZ8d3h4bnuqHE4tH4v6eoRb5eodvFmHehsvQskCnIOt9M+02SUpNTcXx48dRXFzcSFfiPZobbkZUVFTghRdewN8cqW/KlCn49ttv4enpafaY2bNnY/369QaP9e/fH+fOnbP7ffSL9EaYtzNyyhtwIKmQ/2Km9w7DV4dTse5MJu7rEWLVAuwkFuLbR3pi+uqzOH27FO/9dQOf3t+NP9ZJTPzDpvUKwds7b+B6XhXe2XUDXx1KxcTuQZjaIxi9wr3MO8s3qHAqrQTfHEnj1Uk9XcT4eGosJsc1LZio1bJ4dWsiCqvlaO8na9ROaQvEYjG+/PJL/vemQDNvE2ID4WpBq8IUimvkfMfElB6tIwxpjE1UobhPGMRNBJzWorQUnACgGMCXCA8H9u0To0sX88co1Br8eTEHOxLyLE7oVQ0qHE8p4XW0wr1dsGhMDKbEBbcZ+dwWDOvgh03nsg14QyNGEFkjovPIYHqfUCzZk4ytl3LMZus0GmDBAvL7ww8DQUFkF02zQk8NaTor9OKLJIPn7U0kD5zMi7nfvYiLA0aPJhdv715g/nyLT7f1/m4KDMOgT4QX9t0oxKWscrsaKJoDPcM88dfVfCTYkd2hJOpbhTWoU6ghs3Ies/daDmrvg303ChGfXmY2gy8WCjAhNhCbz2fjn8R8XjKGYmb/cFzNqcQfl3IwoqMvjqWQefT7Y7cxa0AEXh7dAXuvF4DlCM8f776JH2b1xtcP98C9K0+hrE5X4fg1PhOvjI1BrUKNhOxKPLb2Aj6Y3AWzBkTwaxbDMOgS7I4uwe54/p4OYFkWSo0WSrUWCrUWzmKh1dcNIBWB53+7ApWGxYTYQIS4AIesPNauYGjNmjV47rnn4Ovri8BAwy4ZhmFaJBiaOXMmcnNzsX//fgDAM888g8ceewz//POPxePGjx+PdevW8f93xDcHIBH4g71I4LPtci7u70m247MGhGP1iXRcy63CybRSfqfaFLoGe+Cbh3vimY2X8NuFHET6yBrVQbuHkvroxrOZ+O7YbZTWKrHhbBY2nM1CsIcT2vu7wlsmgY9MClcnEdKLa3EjvwpZenL2bk4izB3aDk8OjoSbk3U32NrTGTh6qxgSkQDfzexl06A0hkQiwWIrZZHlKg2/e7enRLbnGrEL6RHm2WSHXEsgvaQW8ellEDDAI/2tVyi2BJYlFSay75DgrbcW46OPzFeaNJzcw4pDqXxXIkC6DMd3DUTPcC94uojh4SyGTErGzJXsClzJrsSZ26XILq/HS39cxeoT6Vg8riNGdfJv3gxbQwNprbpwgRiqOYhB0b4QCRhkltUjs7QOkb4yjBhB7DMyM4HUVOC+niH4fN8tJOZWIbWohje51MfKleQteXgAX3zROCvk6WJ5/vj1V2KvwTDEIy4y0uGP1nZYupRoQ3U374dIYcv9bS36RHqTYKgNxRd7cQFNQg7pCrPlHgjycEaQhxMKquRIzK3keT1Nwd5rOZA7/+WsCshVGrMyKZPjgrH5fDb23yjEx/fFGtAkJncPxse7byKnvAGLRsfwwVBFvQq/XcjGk4OjMDUumBdB3HejECdSSzA8xg/LZsThyXUXDV5r+cFUvDOxMyK8XbDraj7e/SsJNwtq8OGUriZtbBiGgVQkhFQkhPU5HYK91wvwwm8JUGtZTOoehK8e6oEluy5bfbxdW9YlS5bgk08+QWFhIa5evYqEhAT+58qVK/ac0iKSk5Oxf/9+/Pzzzxg4cCAGDhyINWvWYPfu3UhJSbF4rFQqRWBgIP/j7e34DmNaL9IqGJ9ehtwKEnD4uErxKLfwfXskzaZ2ytFdAvDORLK9/2zfLd4kUh9CAYPZg6Nw7s17sP6pfpjWKwQyiRD5VXKcSivFX1fz8cuZDHxzJA17rhfwgVColzOeHxWN06+Nwgv3dLA6EErIrsAXnKnr+5O7oHMr8m4O3ixCjVyNEE9nu1Sn/+Ju1PvaKCu0hVNDHdnRv9nKiqtWkdINQAjUn3xiPhA6dqsY9648hVe2JiKvsgH+blK8O6kLzr15D3bOJ6TDflHeiAlwQ4C7E1ylIsSFeeLJwVH49pGeOP36SCwe1xFuTiLcKqzBnPWX8NymKzw5uVlQVkZSMGvXEm0bB+EqFfE78ZNpJDskkwHDhpG/799PTFlHdSJeS6aaHdLTgXfeIb8vW0aoM/tuWJ8VunxZ14j14YfA+PEOf6y2RY8eVgVCLQXaUXYps7z1OG1G6BToDqmIeKXZI77IB1N2lNlsRXs/GQLcpVCotRatOfpGeiPAXYpquRqnUhtrDj3Qi2xA9ycVootemWnV8XTIVRq8ODoGIr1s8ft/3YBcpcHIjv54huPB6mPJnmQMaOeDNyZ0AsMQf84ZP55tNi5VtVyFD/9JwsItV6DWsrivRzC+fqgHxEIBymtbmEBdUVGB6dOn23OoXTh79iw8PDzQv39//rEBAwbAw8MD8fHxFo89fvw4/P39ERMTg7lz56K4uNji861BmLcLBrbzAcuSjieKucPaQSIS4FJWBd/WbS2eHByJWVww9fyWBGw4m2nyeSKhAMNj/LBiRg9cemcMNs7ph+XT4/D2vZ0xb3g7PNIvDK+P74RNc/oj4d0xOP36KLwytqNV3S8UVfUqPM9F2BO7BWGmDf5L5qDRaHDx4kVcvHixSYl5Spye1ivE5hJNVlkdruZUQsAAE1vJO00fcpWGL/E9OqB5skJnzgAvvUR+/+wzYPZsLfLy8pCXl2dQoq5TqPHatkQ8+etFpBTVwN1JhDcmdMKJxSMxZ0gUAj2sq9e4SERYMDIap14biWeHt4dEKMD+pEI88EO8gUO1QwgNJW1agNUk3aYwvGPjFnsakHAJZV41fmdCngEvihKdGxqAUaOIvUmtQo0le4io21NDoixmhUpLgWnTCF9o0iTg7beb5SPdPSgosGjgqtWaHpOOoHOQO5zFQlTL1bhdYt6EtCUhEQl4r7Qr9vCGKInaBt6QLXOlPhiGwQTOoHR3onnuqlDA8DxM464ygJTKAOBwcjGW3B/LP15So8DWSzmI8pVh/ghSvRAwxPT4J05T6NWxHfnOTf2Z+40d1xHgLsXaJ/rATSrC1ZxKTFsVj+c2XUa6nd8ty7LYmZCLUcsIF1bLEq/A5TN6QCQUoKhajkPJhVafz65gaPr06Th48KA9h9qFwsJC+JuwdPb390dhofkPO2HCBGzevBlHjx7F8uXLcfHiRYwaNcpit4NCoUB1dbXBjynQ8s22yzrNoQB3JzzETbbfHbVN9IVhGHwwpSuifGVgAbz3VxIeXXMONRZaOp0lQgzt4IcHeodi7rB2eHNCZ3w2rTueG9EeQzr48p0xtqC4Ro5H1pxDbkUDwryd8dkD3ZqlPCKXy9GvXz/069fPosR8YZUcp7idPd2h2AKaFRoc7dtipqiWsPVyLqoaVAjxdMbwGMdtyAsKiAGrWk1ih9dfJ9YHoaGhCA0N5a0PErIrcO83p/DnpVwwDPD0kCicem0Unh3eHs4S+7q2PF0keGNCJ/z2TH/4ukpxq7AGU78/Y2DK6BBeeYX8++efpP/dQQzj+A/x6WW8DD8Nho4fJ4HOiI5+8HWVoLRWyfOjAFJKS0oiLvJr1pAy14qDqSiokiPc28WiebFaTfhF2dlAhw6k+nfXecM5gtdeI6rUW7eafYqpMekoxEIBr+R8N7TYO8IbupJdYXW1wNq50hQmx5Eg5+DNIotdeJQzeuhmUaMO6JgAN/SJ8IJGy+LYrRID9f5vjt6GQq3BglHRiPZ3BU3YfX/sNjJK6yAREZPWIA8nsDAMiF7+IxHn7pRj74tDML13KAQMybyO/eokXt92DcdTiq3qxi6vU+Kvq3l46MdzePmPRJTWKtDOV4aNc/rhs2ndIBQwqKhT4rG151GvaGEF6ujoaLz77ruYPXs2li9fjm+++cbgx1p88MEHYBjG4s+lS5cAwOSC3FQN96GHHsLEiRMRGxuLyZMnY9++fUhNTcWePXvMHvPZZ5/xsvIeHh4ICzMtljehWyBkEiGyy+t5lWSAyIKLBAxO3y61OQ0oEgqw6el+PKP+THoZBnx6BPuu57e4iilAPHge+CEeNwuq4esqwU+P9YG7lWW15sLOhDxoWZIip3L41oJlWey6SjJ1U3uEtMTbswi5SoNVx0gQ/MywdhA6SDxWKkkgVFgIxMaSihId7iKRCCKRCBoti5WH0/Dg6rO8a/NvcwfgnUldbMoGWkLvCG/8vXAwYkPcUV6nxKM/n7NaU8sievYk5qAaTbN4VHQJcoevqxT1Sg0fsHXpQpJQcjlpsRcLBbwirv5niIoCkpOBnTuJc8j13Cr8Gk/UppfcF2sxoHz7beDIEVKW27EDsNDT8e+EuzvJCi1fTlJoZkDHZHOCEqeNLSRaEzrxxUqbj+0SRMpsFXaW2WxFr3AvhHg6o1ahxrFb5qsgPcM8EejuhHqlBkdvNVaDp870685kYtmDulJpSY0C2y7nQioS4osHuvPzkUKtxXObLqNBqUGolws2P90ffm7SRgHRTyfv4PnfruKFezpg34vDcE8nf2i0LP64lIPZ6y4i7qODmPXzeaw+kY5tl3Ox/XIudlzJ5fmPU78/g95LDuHF36/iQmY5nMQCLB7XEfteGsqTwZMLqvHwT+eQWlQLsQ3m5nYFQz/99BNcXV1x4sQJfPfdd/jqq6/4n6+//trq8yxcuBDJyckWf2JjYxEYGIgiE/L9JSUlCAiwvm05KCgIERERSEtLM/ucN998E1VVVfxPTo7pSd9FIsIUbsFdc0pn9hjq5cJzimzNDgFAiKcLpupxXeqUGjy3OQFzfr2E/MqWUzK9lluJB3+IR055AyJ8XLD9uUGtyhMCqDYPyRDYkxVKyq/GnRKyO9EXCGst/H4hGwVVcgR5ODWL4vSLLwLx8YTMu2MHWWwBYn2gUqlQXlOPF7fdxFeHU6HRspgSF4x9Lw2zi2fVFII9nbF13iBM7B4ElYbFa9uv8fIFDoEaq61ZA1Q51kItEDC4h+MEHbxJMsYMQ2SNgMalsqO3DA2Wvb3Jc9UaLd7ceQ1aFpjaI5gXdTSFP/4AuMYf/PILCVr/c3juOZIyu3KFpNhMgI5JlUrlsB2HPkZ0JN/nqdQWlHtoApT3k1JYbTNvTr/M1hot9gzDYFKc+RKY/vPGcnPkquON9XjGdQ1E5yB31CrU2H+ziBcnBYjJeLVchd4RXnhiYCQAUi67VViDd3bdAMuyaOfnii1P94e3TAL98FnAAFdzKjHxm1PIKK3D2tl98ee8gXi4bxiCPZygVGtx+nYpPt93C69uTcQrWxOx6M9EvPTHVXxzJA2JOZVgWaKrNG94OxxeNBwLRkZDKhJCrdHi+2O3MeW700gpquGVsK2FXcFQRkaG2Z87d+40fQIOvr6+6NSpk8UfJycnDBw4EFVVVbigp4Z6/vx5VFVVYdCgQVa/XllZGXJychAUZF63RiqVwt3d3eAHgMkb8Zlh7SBgyKSq70783Iho/vEbebZP8E8NbkxCO5pSjJHLjmPt6QyzzsT24khyER7+6RzKOOf6bc8OapMurK2XcpFVVg8fmcSq1n9j0MV5dGd/q4nizQW5SoPvuUllwchoi4a31uDnn4HVq8livmULKb/oI6e8Hg/8EI9jKSWQigRYMSMO3zzSEx7OLfe5nSVCfPdITzwxMAIsC7zy51W+pGk3xo8HOncGamqapatsPKcGfyCpkCfdGvOGYgLcEBfqYdZgef3ZLNzIq4a7k4hvbDCFa9eAp54iv7/+OjBjhsNv/+6Ejw/w5JPk92bid1mL7iEe8HWVoEahbrNSWYC7E4I9nKBlYZfmkU58sbKZ35lpTOa4kkeSi1FrIXijvKGk/GreEJtCIGCwiBNZ/PVMJpY+oMsOVdar8CXXXLN4XEeEeDrz5bLtV3Lx2wWSQOgQ4IZNc/rzc5JIwEDLkoCoWq7Gs5su47G156HWavHZtG4488YoHF40HO9P7oIJsYEYHuOHYTF+GNrBF0M7+GJyXDC+fLA7zr91D/a/NAxvTuiMUC8i9nynpBbTfzyLpQdSoNKwiAv1AMMwUGmsXyutDoYWLVqEuro6/ndzP69QHkAzonPnzhg/fjzmzp2Lc+fO4dy5c5g7dy4mTZqEjh112jedOnXCzp07AQC1tbV49dVXcfbsWWRmZuL48eOYPHkyfH19cT91z7YBp9Map2mjfGU8SfcHveg6ylfGL+bfHjWfhTKHbqEeBpE4hUKtxc+n7iCjtHnIhLcKq/HkuguYs/4S6pUaDIn2xe/PDGwTro1cpcHKI8TyY8HIaJvb+OuVap64PCWu9Utkm85loaRGgRBPZ16R3F6cP6/Tuvn4Y+Deew3/fimzHFO/P4PUolr4u0nx57yBmGZHJs0eMAyD9yd3xSQuQzRv42W71Hl5CASEO3TvvcS3zEEMivaBq1SEomoFrnIGm6NHk867W7eALCL/xGeHtl7KRUFVA7/ZyatswPKDpEP1zXs7m70XysqI1EF9PTB2LOnu+0/j5ZdJZL5nD6knthIEAobn3lkq+7Q0eupxf2wFzSzZQqJ2BF2D3dHOVwaFWovDNxtXVCi6hegy/89tvtKIrzO6sz/iQj3QoNLgt4s5BoKLm89lE9sOqQifTetmcNwHfyfxc0KXYHdsnNMPbk4iqLUsHxABpHx2Kq0UM9ecx32r4nEgqQjtfGV4cnAUfpjVG+uf6ocNT/XDxjn9sXFOf3z7SE/M6BOGAHfSCKLRsjiVVoJFf17FhJWnkJBdCVeJEL3CPZGYW4XyOiWcJdbne6x+ZkJCAlRcN4F+K72pn5bA5s2b0a1bN4wdOxZjx45F9+7dsXHjRoPnpKSkoIpLtQuFQly/fh1Tp05FTEwMnnjiCcTExODs2bNwc7NVwQD4O7HxDhIAz6rfc70Ad/RY8QtHkuzQgaQiu3bPs01I/jMACqrkuPeb01h2IAWFVbaR6ygKqhqweGsiJqw8hWMpxHz1ycGR+GV2X5sFDpsLG89moahagWAPJ7u6sLacz0Z5nRIRPi4Y3dlx4rItqFeqeen350dFm9TPsBb5+WSRVSrJv2++afj3HVdy8fAPp5G2cyXYMz/jz7l9+O6N1oJAwGD5jDgMiSbqsrPXXbC7IwQASa/s2QMMHuzwe5OKhHz7/IEbpFTm6amLs6gsGTVYTimqwcDPjqLD2/vQ6+NDmPLtadQrNegT4cU3QxhDLgemTgXu3CFcoy1bms1Z5O5FdDT50IBJA1eFQoEFCxZgwYIFzWLHoY+RnUiZ8mhbBkPcPWaXEjWXGUotrrHZ48wekFIZ2Yz/Y6GUra8vVF6nxHt/3Wh0HmrBseFcFhaP7cjzWVkAb+64BpVGi2ExfnikH7lXRAIGSo0W8zdfQQUnwNg91BN/LxyCLkHuUHOREMOdQyxkIGSI3cmzmy5jyBdHsWDLFfx4Ih1n08tQI1eBZVk0KDUoqpYjtagG8eml+Oifmxjw2RE8tvYCdlzJg0KtJfwssRBXskk38eTuQZDYwNtk2NZg5v6LUV1dDQ8PD7R7ZRsufzTZZHvtnF8v4sitYszoE4ovH9S5MX7wdxJ+jc9EpI8L9r80zKbSiUqjxZAvjqKoWgGRgMGn07qhW4gHPvrnpoGMevdQD4zuHIAxXQLQKdDNJKFco2WRXFCNCxnluJhZjqO3iqHgum0mdgvCq+M6IspGsrKtqKurg6sr6Uqora014BXUyFUY9uUxVNSr8OUD3THDRr6NXKXB0C+PoaRGgS8e6Gbgutwa+PFEOj7bdwth3s44+soIuxWn5XKimnz+PNC1K3D2LPHYolhz8g4+2ZsMrVKOnK8eBND4WrYmahVqzFxzDtdyqxDi6Yztzw2yun2/JbH3egHmb76CCB8XHH91BBiGwVdfEYeJQYOIVAFAvrdf4zNRUqPgJ2kAkAgF2P3CEJOijFot6RzbupVwueLjYVEB/D+F06eBoUMJuSo3l/CIOFi6vx1FVYMKvT4+BI2WxcnFI1vNKFofV7IrMG1VPHxkElx6Z7TNHbbDvjyG7PJ6rH+qX5OCvM1xLW8X12D0ipMQCxlcfHu0WVmIqDf2GHB6vn2kpwFFgWVZPPBDPK5kV2J671BE+rhg6cFU/u+Lx3XEgpHRkKs0mLnmHK5kV0IkYKDWshgc7YO1T/Tl1z25SoNP9yZjw1mSnnUSCyBXkXVIKGAgYGCyrCURCfjuUGO4O4vQMcAN1Q1qpBTVkM/kK0O0nwyHkouhVdQj5+sZqKqq4ikv5tA2aYB/IVQaLXZfKzAp4z9/ZDSO3CrGjit5eHF0DC+098rYGOy9XoDMsnqsPpGOl0bHNDrWHMRCAWb1j8CaU3ew+rHevHrplrn9cSCpCD+dTEdCTiWu5VbhWm4VVhxKhb+bFN4yCZwlQjiLyY9CrcXVnMpGteN+kd54495O/K6lpSEWi/H+++/zv+vj51MZqKhXob2fjCef24I/LubwJSqqCN5aqFXoskIvjOpgdyDEssTx4Px5wMsL+OsvXSDEsiyWHUzB98fI6zw9PBoat/fAMEyzWB/YC1epCOtm98X01Wdxp7QO8zdfxh/zBtpvP5KbS4y8Jk8mi66dGB7jB6lIgKyyetwqrEHnIHc89BCpxsXHAxkZJKMzb3h7zBveHloti8oGFUpqFCiuIQT4aH/T2ePXXiOBkEQC7Nr1/ygQAkjm7qefiKCSs6GYqKX721F4OIvRJ8IL5zPKcfRWkcmseUuja7A7JEIByuqUyClvsDkgG9DOG9nl9TieUtxkMNQc1zLa3w2dg9yRXFCN/TcK8bAZrTipXkACAG9uv4a4UE/+8zEMg1fHdsTMn89j6+Vc/L1gMNaezkB5PclwrTychondghDpK8Pqx3rjvu/OIL9KDgEDnLldhrkbLmHN433gJBbCSSzER1NjMbCdD17bfg01cjUEDPl+K+pV0IBUYn1kEkhFQtQq1KhqUPGBEAPipOAsESLQ3Yls8gtrcJFTKBcwhPh9NbsCh5JJFvHR/uH43Mpr9r/MUBOgmaGwl/5Enw7B2DHfdCr/4Z/O4tydcsweFIkPpnTlH999LR8LtyRAIhTgwMvDbMrAlNYqUFmvQrSezoM+SmoUOHqrCIduFuFUWimf7TEFN6kIvSO90DfSGwPa+aBXuGebGJgao6xWgWFfHkOdUoNVj/ay2ZRVodZgxNLjKKiS4+P7YvFYMzrEW4Pvj93G0gMpiPKV4dDLw5o0vjWHb74h3WMCASH6jhlDHtdqWbz39w1sOke67F4b3xHzR0Q319tvFmSX1WPit6dQI1fj2eHt8caETvadaOFC4PvvgYkTgd27HXpPczdcwqGbRXjxng58qn/0aNIC/8knwFtv2X7OX34hYowAsdqYOdOht/g/2ACafR0W44cNT/Vrk/dw/6ozSMiuxMqHe9gs3XEgqRDzNl5GmLczTi4e2Spz76rjt/Hl/hQMjvbB5qdN8/G6f3AA1XLDjXJcmCe2zhvIl/tZlkWfJYdRVqeEu5MIPz/eBzN+0vl7Dmrvg81P9wfDMLiRV4Xpq8+iQaXhM0SD2vvg5yf6wEWiy71kl9Xj7V3XcUqPi+stk6Bcz9vMWnQNdkeUrwxF1XI+MAr3dsHSB7ujs68YHh4eVmWG/kvSYC0KAUO6AW4Xm+ZGLBhJFqjfL2YbtOtO7BaEoR18odRo8d5fN2zSC/J1lZoNhADAz02Kh/qG4+cn+iLhvTHY/txAbJzTDz8+1hsrH+6Bz6d1w+fTumHPC0Nw9f2x+PXJflgwMhq9I8ybu7Y2Vh1PR51Sg9gQd4zvGmjz8dsv56GgSg5/Nymm2+Fj5gjKahW88uqL93SwOxA6eJDwUwHSpk0DIaVaixf/uIpN57LBMMAn98fedYEQAIT7uOBLrttk9Yl0HE+xk9vx0ks6ku7Nmw69JzqWDiTpRFlp8LJ5s0W5HJO4elVHav/oo/8FQgAIi7yVQHlg5+6UoV7ZjLYwNqBnGMmi29MiP7SDLyQiAXLKG5BmZg1pbtCusrPpZSiuMc0vlYgaUzcScyoNHBAYhsGYLuT6V8vVeH3HNYzR42XGp5dhK9e8EhvigRUzCFVErWUhETKITy/D7F8uGlQnwn1csHFOf/y1YDAvg0IDoSAPJ3QKdEO0v6sBh1UsZOAjkyDC2wVdg90xoVsgBrX3QVpRLXZfK+ADodmDIrH/paHob6PEyP+CIStBtUZ+PmVaOmBItC+6h3pArtIaPIdhGHw8NRYSkQCn0krxzzXzMumOwEUiQu8Ibwzt4IdxXQMxtUcIHu4Xjof7haNrsIfDAoCOQqvVIikpCUlJSbxcf35lAzZy7u6Lx3Wy2XpDpdFi1XGi5TRveHuH29ltxRf7b6GqQYXOQe52SQEAQEoKacnWaoHZswmvBSD19XkbL+GfxHyIhQy+ebgnHu1Psl4sy6KyshKVlZWtIsZpDSZ0C8LjA8n7W/Rnon3k/uhowhoHTJJ0bcE9nf0hEjC4VVjDi91Nm0bKWzdvAtevW3+uykoifimXk6TVf85qw1akpwNDhhBWOmcX0dJjMtrfFaFezlCqtThzu/WCMH30b0cEIE+kltj8GV0kIgxuTxbnQxY6vADTc6U9CPN2QY8wT2hZYN91004NUhPNHqse7cmLLlKM6qTTbcsorUduRT1kUt18+87OG7yMzIRuQXiZo4RoWMBJJMCFzHI8vvZ8IwJ5XJgnfnysDw69PAzTeoVAKGBQUCXHrcIa3C6uRa1CDbGAga+rBAIGKKtTIqu8Hkn51dh3vZCozWu0iAlwxatjY3Bi8Qh8MKWrQRbKWvwvGLISTw6OBEC8yIqrG0/0DMPwu/afT2WgTC87FOkrwwLubx/vvtkqHQV3GxoaGhAbG4vY2Fhern/ZwRQo1Vr0j/LGsA7WOTrr46+r+citaICvq6RZ/NNswaXMcvx5ieyGltwXa1ewWVFB6DFVVYTYS3WF5CoN5m64hGMpJXASC7Dm8T4GwVZ9fT28vLzg5eWF+vpm8gprBrx1b2d0CSIq1S/8ngC1PSJ5VIRx40YivW0nPF0kGMgtPjQ75OlJfMMA0gFmDViWSOykpxNHig0b/mNWG/YgIIBElLdvA3//DaDlxyTDMHx2qK26yoZE+0IiJFy0O3aoSY/uQgKKw8mWgyFTc6W9mMLNG1SZ3xhh3s54anAUdswfhPFchuZkammjykHHQEMOXXJhLYLcdc0SSo0WT2+4xFdFXrgnGvf3DIFGy0Ku1kIqEuBKdiVmrjmHTBPXrkOAG1bM6IELb92DtU/0wQujojEsxg+eLmKotCxKa5VQqHUBqEwiRHs/GRaMbI8DLw3DwZeHY+GoDg7p4/1/v62tRq9wL/SO8IJSo8XaMxkmnzO2SwCvp/DQT+cMdg/PjmiHdr4ylNQosHR/Smu97bsWe68XYMeVPDAM8PqETjaX7TRalre+eHpoO7v9t+yBWqPFO7tIG+rDfcN4/yFboFKRjFBaGhAeThSmpVKgQanBnPUXcSqtFC4SIX59sh+vwnu3w0ksxPeP9oJMIsSFjHJ8c8R2jS0MHEh+lErgu+8cej/juFLZ/huNS2VbtpBsXFNYsYIQpSUSYNs20kj1/x6urkSVGgCWLm21lx3JBUPHUorbJCMqk4r47JA9mkf3cNmVqzmVKKlpXvkBc5gUFwSxkEFCdiWucbpb+vht7gC8N7kLeoV74emhROx3R0KeAdUDAMK8XOAkNgwXbpfUwUemI3gXVskxf/MVqDRaMAyDZdPj8ASXLVaotXASCXAjrxoTVp7CpnNZJr9DH1cp7ukcgEVjO2LDU/2Q8O4YnFg8AnteGIJTr41E4ntjkf7pvUj6aDyOvDICi8d1ahSo2Yv/BUNW4nJmBW/WuOVctsnsjkDAYExnMuBvF9filT8T+S9cKhLi4/uIVv/Gc1nYe71lymX/BuRXNuCN7dcAAM8Nb29XR9vua/m4U1oHTxexyQ6/lsSv8Zm4VUjk3l8fbztZmGWB558HDh8mFht//0022/VKNZ789QLO3C6DTCLE+qf6mbTWcHFxgVKphFKphItL67cZW0KUrwyfciJs3x67bVKstEnQ7NAPPwB19vs5je0SAIaT/y+oIjvsiROJ1VZOjq7F3hzi44myNAB8/TXQp4/db+W/h4ULSYR49iwQH98qY3JgOx9IRQIUVsmRXFDTIq/RFEZ2tD87FejhhG4hHmDZ1hOQ9HdzwiSOO7T2dONNvP4mtHeEF+LCPKFUa7GJoy9QCASMSamJsjqVQantQkY5PvqH8P2EAmI+vngcEUaWq7Xwc5WiQaXBO7tu4MlfL5qsshi/vwgfGboGeyDM2wUeLuIWo3z8LxiyEn9ezsE9nfzRwd8VNQo1Np8z7bKt72O0IyGP57QAxEl97lBSi311ayJSi9rmhm5rvL7tGqrlavQI8+Q7fWyBQq3hsw5PDY5qVaHIwio5vjpEdDbemNAJXjLT+h2WsHIl8OOPpCT2229AXBxp0Z/9y0Wcu1MOV6kIG+b0R99I02kI2lIvFovvGiK8Pqb2CMHDfcPAsmSc19haFp46lVyUWbMABwT8/N2d0JsLtA8mkdKEkxPwwAPk70uW8JSXRigtBR56iPz94YeBZ5+1+238NxEURL4fAFi2rFXGpJNYiG6cz9f2K81gFGwHaKnuQka57eMawGhus3yoiVJZc4Lyf/ZcK7DI5WMYhn/uxrNZjeRYTAVD03qF4Mgrw6Dvh7rxXBZ+u5DNn3PByGh8+UB3CAUMSmoViPaTQSxkcDylBMOXHsdmo8CrrfC/YMhKHEwqRFWDCvO47NAvZzIgVzWeSSOM9CeWHkjFlvO6wOn18Z0wqL0P6pUaPLPhEqoa/v/xhy5lVcBVKsI3D/e0S5Nm1bF0pJfUwUcmwRODIpv/DVrAx3tuok6pQa9wT0zvbbvtxu7dOpL0smWEM1QjV2H2LxdwIbMcbk4ibJzTz67S292E9yd3RYSPCwqr5fh83y3bDhYKiSnoypUO16WoV5l+qezll4lMzsGDwBtvND5GqwUef5zIHsXEEGmduzDmbHtQ66Vdu0i9txVAlaB/v5jT7B6N1iDSV4Z2vjKotaxdWc/RXFfWqbQSk+tHSyA2xAP9oryh1rIGXWKmMCE2EFG+MpTVKfH9MUOj8Y5cMOTvJuU7wA4lFUEkEGLd7L4Gz3131w1c0vOSm9E3DD/O6g2pSIDbJXXwdZUiyMMJDSoN3t51A13e24+FW67gZn5Vs5VAi6rl+OlkYxNac/hfMGQl1Fpg0/ksTIkLRpCHE0pqFNhpwuTRlI7QWzuvYw/XRSYSCvDtIz0R4umMzLJ6vPzHVd5Q8v8TltwXa5eS7K3Cav4m/XBq1xY1JjXGydQS7LlWAAEDfHxfrM3db1evAo88Qspkc+eSRblWocbsdRdxKasC7k4ibH66P3o2UTZUKpVYvHgxFi9eDKXSdl2O1oCzRMh7Fm0+n93ICLJJNBNLmfKGzmeU8a273boB69aRvy9bBqxfr3s+ywKffgrs20eySFu3GqqA/w966NKF1B1ZFso1a1plTFLrmTqFBt8fa50AzBgjHSBydwlyR7CHE+QqLeLT7Sgh2wma8dlyIbuRB5k+xEIB3rq3MwBg7akM5JTryPC9IjzxzsTOOPnaSKx6tDfiwjxRo1DjnV3XMTTGDwtG6gzG1VoWczdcQnJBNf/Y6C4B2DK3PwLdnVBQJUdBlRyBHAm7XqnB7msFuPeb0+j50SG8s/M6LmeV2xzwqjXEj+3p9Zcw6POj+ObI7aYP4vC/YMgGfHf0NjQaLT+wfjp5p9GX5ekiMblAv/RHAk6mEo8yH1cpVs/qDYlIgKO3irH8UGqj5//XoJ8BmxIXjPt62q40rdZo8dq2a1BrWYzpEoCJNgo0OgKFWoP3/04CADwxKBJdgz1sOj43l6wbtbXAqFFEW7BOqcbsXy7gclYFPJzF2DJ3ALqHejZ5LpVKhWXLlmHZsmW8X+DdiEHtfXnPojd2XLdvJ3zmDLB4se3CQBzCOE0SLUt83SgeekjXIv/MMyRjt3Qp0KkT8O675PFvvwW6dzdx0maCQq1BYk4ldlzJxd+J+TiSXISz6WVIzKnE7eKaViPZOoQPPgCWL4dq+vRWGZOezrqy9DdHbvOyCa2JUXpEbls3sgzD4B5aKrvZel1xozsHINzbBZX1KmzXuw9MP9cfg6N9oNRo8dk+nSlv7whvPD20HZzEQggFDJY+2B1iIYPDycX462o+Fo/rjFGddDSRinoVHvrxLC5nlRuc4/ArwzFnSBQEDFBYLYfYaFNZ2aDCpvPZeOCHs+j2wQG8/EcCbhfX8mbKFCzLolquQmpRDY6nFGP5wRQM/uIont5wCYeTi6DRsiYNz83hf3YcNkCh1uK5zVfw/aO98O1RciMeTCrEBKNFOdJX1sjJO8TT2WAx6Bbqgc/u74ZXtibi+2O34SOT4CkjbYf/CliWxUd7U+DebxrcnET48H77Vph1ZzJxLbcKbk4iLLkvtlX5Mt9yE6+/mxSLbOQ5VVeTQCg/n2ymt28HlFo1ntLLCG2a0x+xIdYFWGKxGK9yJOO2tOOwBm9M6IwjycXIKK3DyiNpthHOKyqIbLRcTnrihw+36z3MGhCBN3dcx5pTdzBrQASvR/XRR8CNG8T6ZPJk3fNdXUkFiKpNNwdYlsWtwhpcy61EYm4VrudW4VZhtUkvJn10CXLHxO5BmNQ9yKG24RZDnz5AYCDEgwfj1WefBVxdW3RMqvVaANVaFou3JuKPeQNbVUetb6Q3XKUilNYqcT2vymaj5NFdArDxXBaOJBdBq22cYW6J+1soYDB7UCQ+2n0T685kYGa/cLOZbYZh8O6kLrh35SnsvV6I83fKTAoYxgS44flRHbDiUCre2HEN7f1csfaJvhi1/DgySklGqVquxqyfL2D1Y715GxJXqQjvTuqC+3uG4O1dNxqtlfqoV2qwMyEfOxPyIRIwCPdxQYCbE0pqFSiobECdiSyXl4sYD/QKxZAOvth13vrM0P/sOJqAvh2HQErKOqtm9kJyYTW+PXobcaEe2LVgsMHC/NLvCdh1lbgF+8gkKKtTomuwO/5aMLiRSvEzGy7hICfC9dTgSLx1b2e7lYzvVlCDUZGAwbbnBqGHHS7rmaV1GPf1SSjU2lY3Y72QUY6HfzoLLQubLUNUKrLQHjgABAYC584BfkGkNHYhg3CENj/d36qM0L8V1IpAKGDw14LBVgd9AEgL9+rVJBiilvM2Qt+yZcl9sQbdhzU1xAYtMRHo14+ULx96qPlKY7UKNXZeycXGc1lILWqsPOzlIkanQGITUK9Uo06pQb1CjXqVBtUNKugnHrqFeGBi9yBM7BaEMO+7qItQoyEkrE6diN+Jn2XvLUdw+GYRnt5wyeCxdyd1aSQS2NJ4btNl7LtRaGD3Yi0Uag16fXQIdUoN/l44uNXu/VqFGgM/PYIahRrrnuzLd8aZw9s7r2Pz+Wx0DXbH3wuHmAw41Rot5qy/hBOpJfB3k2LXgsHwlknQ7YMDBoG+SMDg64d78J1tFBotiy0XsvHFvluNCNsAEO0vg7NYhPSSWtSbKe95OIsR5OGEcG8XjI8NRIC7FL9dyMHe6wVQy603av1fMNQETAVDUqEAW57pj5lrzkOh1mLL3P68kSoAfHUoFQk5lVgwoj3a+clwz/ITqJar8cHkLo1MBhUqDbp9eJA3o+sY6IbvZ/ayaMPxb8La0xn4eDdptXxzQieegG4LtFoWj6w5h/MZ5Rgc7YNNc/q3WlaoqkGFe1eeQl5lAx7sHYpl0+OsPpZlgXnzgDVrABcX4MQJoEt3NZ76lXSNuUlF2PR0f5t3lv9GLNh8BXuuF5jdFJhFWhrQsSO5mElJdjuj/nomAx/8cxMhns44vniEAXG/oQEoKgIiI+06tUmkFtVg49ks7LiSy+9encQC9Ar3QrdQD3QP8UT3UA+EejmbHcsVdUocSCrE7msFiE8vNQiMHukXhjcmdG5VzpxF+PsDJSWEcX7tGhHNagHsv1GAZzddMXjMSSzAvhdt8310FH9eysFr266he6gH/l44xObjaTD1wqhoLBrbsQXeoWks2X0TP5/OwNAOvtg4p7/F55bVKjBi6XHUKNT48sHumNHHdMNIjVyFB384i5QiYoq89dmB2Hu9AK9tu2bwPAbAkvtjeSV9fRTXyLHsQAovZEshkwgxuksAonxkEAoZKFRaaFgtwrxcEOkrg0qtRVpxLZLyq3EjrwrpJbUG98nQCBdsmj/qf8FQc8BUMMSAGGbmV8qx8VxWo4GlUGsg1fN82XguC+/uugGZRIi/Fg5pFOh8uicZP+lZeIiFDF4f3wlPDY6ymaR7N0E/EJo/vB2md3ICwzAIDw+HwAaC7ObzWXh75w04i4U48NIwu4jX9oBlWTz/WwJ2XytAhI8L9rww1KY2/o8/Bt57j3Qi7doFjBmvwVO/XsTZO2Vwk4qwYU6/JsnS5t6XWk12USKR6K5srzdGSY0Co1ecQFWDCq+P74TnRtgQFE+bBuzcCTz1FLB2rV2vL1dpMOSLoyj9P/bOO6yqwv/jrzvYU/YUUXEgThy4d65Mc5ualqllllpm37ZNLdOytFyZZZbmNvfeuFBcoIBsVPa8F7jr/P44gKAIF7jg+PF6nvsAV865x8MZn/MZ73eOioUjWjDyERf2qnI6IoWfj4RzNvJ+n0R9RwsmBHgx3N8Da9PKBS+pOfnsu3GPXVfuEljQjO5kZcIXQ/yKJuYeJ0KjRmgKJsrkI0ci2bChWqS6C42vH6StV50aLZclZefR/uvDAJz/qDdOVqblLFGSLUHxvLvpCk1drdk7s2uJf9PpdMTGihPIFb1WlkdcmpLuC4+iE2D/rG7lChYWZvUdrUw4OqfHI69/8elKhi47Q0pOPr2aOPHruDZ0/e4oSaX0vU3t5s0HA5qWet3680wUn+4MQSoRvTlLW748HCxN6NzQnmndGuBhSa1Ra3XQrp4tdhbGCIBcKmVqt/rIpRJOhqdwtJg5pckD5ncvta9LQH07FCotr/8V9FA6cFKB1Uchaq3AV7tDGbPqLLGpT47dQkUoHgjN6NmQ6V09qV+/Pt7e3hWSmL+bmcv8PeJo9px+jWssEALYcimBXVfvIpdKWDKmdYUCoTVrxEAIxEbcvv1FZenAyFQsTeT8UclACETrA2NjY4yNjZ8oO46ycLQy4ZPnxazOj4fCiEyugFnl3Lni13XrxMarSmBqJGNKgcLuL8duG3wsOy5NybR1Fxm3+hxnI9OQSSX0b+bC+tc6cPid7rzS2bvSgRCIQxfjOnjxz9QANk4NoL6DBUnZ+bz+VxBv/BX0SCPOmkLZti3GgDGg3LRJbHqvBjSl9Fg1c7emq49jqWWW6sLJypQWBZpHx24lV3j5nk2ckEog9G4WCRklr4e5ubl4e3tX+FqpD5525kUTlr8/wkmhOBM71aOevTnJ2flFiv+l4VHHnNUT22JSMBS0YN9NJjxCDHfliSj6/nCiVFuOCR3r8WJrdz4c2JSzH/RmyxudeLtXQ8a2r8sAPxc6eNvRyNkSRysTjGQS3G3N6NfMmXf7NmLNpLac/7A3Fz/uw5IxrfF1Kzv4eZDaYKgCTOnagP8VNIAuP34be0vjIs+yL/4LIV9Tek1TJpXw89g2uFibEpGUw/ubr5bQUnCzNSsh1ljI+ag0Bv10ssR449PAmmKB0Js9G/Duc40qlb3Q6QQ+2HqNnHwNrevaMqkGNYWiUxR8tkO03Jjdt1GF+pz27BEnlAA++AAmT9Xy2p8XOHO7UFm6XaVUt592hrdxp6uPA/kaHR9tu66/nkhAgGgMqlbDTz9V+vPHB3hha25EVIqCXVcrF1Q9iFKlYdGBW/RefJz9NxKLGlVPvd+T5RP86dzQweCZuw717dkzsytv9myAXCph7/V79Fl0nI0XYh+fcW/DhiV/XrwYFi0y+MeotTqsTOQMau5aNJY9MaAeM/v41HjJsEiNOrTiU2F2FsZFWmKHa1CAEe6P2W+9nFDCQ7M0jOX3R+1Xn4oq817UytOWxaNaAeKwi0wqwUhW+rEfkZRDvx9PsPLE7RIehhKJhPnDmhdVRfy96vDOc42ZP6w5v473Z+O0jhyY3Z0LH/Uh/OuBnP5fL1ZMaMtbvX3o1cQZJ+uKZeiKUxsMVYBfjt1maGs3vOzNSVWo+DMwhrd7++BoZUJUiqJUufNCHK1MWDauDUYyCbuv3WX1yZK/O6Zd6Wn7SZ3rPVnNkuWw5lQUXxQLhOY817jSN4MF+25y7FYyxjJpkYJpTaDW6pi5MRiFSksHb7siGxZ9uHABRo4Ue0pffhk+mafltT8ulrDY8PeqmpCgubk56enppKenP3F2HGUhkUj45sXmmMilBEamsreYEGK5zJ0L3t5i/1AlsTCRM7mgZ2/Z0Ygq6XsJgsDOK3foveg4Px+JQKXR0bmhPXtndmXeC81wtTGr9Lr1wdRIxnv9mrBzRheau9uQlafh/S3XmPJnUI2J+RXH3MeHdCAdKDoi58zR3xFXT55r5sKlT/uybFwbxgeIQxT/GSiwrSiFI/anIlKKej4rQpEadTku9obG36sOLT1sUGl0rC8mCPwo+vo606mBPSpNyVH70hjUwrXIfmPRwbAyH/ryNTq+2XOTF385Q8id+3pEpkayx9IeUhsM6YmxXEpwXAZBMRm83csHgBXHbyORSIqyRUuPRJQpd+7vVYdPC0oFC/bdJPD2fSG6Pk2dsStm7WBtKpZklh2NKJI2f5LR6QSWHY0wWCC0/lwMK0+IfVQLR7bApxQp+OpiyaFwrsRlYG0q54fRrfQOwm7dgoEDQamEfv1g6a9apq67yKmIAtPVV9vT9hEWGxVBIpFga2uLra3tU9EvVBxPO/Oi4PLr3aFlCsCVYNAgCAsTLeSrwMud6mFlIicsMadoirOixKUpGbvqLG//c5m7mXl41DFj+Xh//prcoVTLgurE182abdM78dHAppjIpRwKTWTimvOVsoqoChJvb2wBW8SeyiImTRJH9QyEjZlRUfP74AJH9tMRKY9Fk6m5uw0Olibk5Gu4UExtWV8KXezPRqaSqay5v5dEIimScVlzOqpcF4TCUXupBPZcu8d/V8oOPqf3aMAIfw+0OoFLselF77/RowHv9Xt48u5aQiYvLD3Fwv039b8eVAO1wZCeDCsQCfzlWARDWrnh7WBBulLNH2eiebG1O/5edVCqtHyzp+zIeXyAF8PauKPVCcz4+1KRgaSxXMqLBZ8xtJUbZ/7Xm7Ht66IT4IOt15i+PuiJFWGLS1Py0uqzLNx/C6h6IHQ8LJlPd4gCh7P7NGJIq4oLNFaWs5GpLCvwk5s/rAVutvo94cfHw3PPiZ5W/v6w7m8tb24IKuE+/yivsf9vvN69Ae62ZiRk5LL8uJ5y+VIpyKsui2ZjZlRk4bL0aHiFy0rbLsczYMlJzkamYWok5Z2+jTj0Tnf6+7k8tsBULpMypVt91k3ugJWJnHNRaYxffY50RQ2qk3uXMtrer584QtlS/wnMiuBlb0FLDxt0Auy9XvPG11KphB6NxfaGyqhRN3C0pImLFWqtwM4rD7sZVCeDmrvS0MmSDKW6hH/mo2jqas30HmIp9IOt14hJfbTYZWEGuE9Tp6Lx+hdaujK3X2Pe7OnD2lfaYWpUMvTQ6ASWHb1N+68P8cHWq1yMTqvxkm9tMKQnnRs6ICtolg69m83M3mJ2aOWJSBQqDZ+/0AyJBHZeuVOm9UDhgeLrak2qQsX09ZeKeo1Gt/Pk0+d9+WF0KyxN5Xzzoh/v9G2EXCphz7V79P3hOFsvxT++voAHEASBfy/EFd0czI1lfP2iX5UCoVv3snlz/SW0OoFhrd15u3fD8hcyEIlZeczccBlBgFFtPRjUQj89odRUMRCKjRUni7ft1DJnexAnwpIxNxZ9e9p7Gy4QUqlUzJs3j3nz5j2xdhxlYWYs46NBYh/C8uO3K9YTp1LB2rWiZHQlebWLN2ZGMq4nZHEsTL/m18xcNTM3XGb2xivk5Gvw96rDwdndebu3T5GI4+Omvbcd/0wNwM7CmCvxmYxaEUhiOa7ghkJlb888qZR5MhmqgABx+m/fPujYsVo/tzA7tDP48ZbKKutCXziu/uBIeXUjl0n5YIBY0fj9dDTx6eWfg7P6+NCuXh1y8jW89c/lMkuDxnIpy8f783JHsYl655W7fLLjOhqtjh6Nnbj8yXP0avxwn2x2voZ/zscxYnkgvRYdZ+mR8IcazCtCTJr+CuW1o/XlUDhaP231CUwtLNkefIeuPg6sfaU9z/1wnNvJCt7p24i3e/vw4bZr/H0uliYuVux6q0uZWiqxqUoGLz1FZq6a8QF1+Wpo80f+7o07mczdfJUbBXXVHo0d+ebF5npnLaqDpOw8Ptx6jUMFzYNtveqwaFTLR6rkKhQKLC1FSYGcnBwsLB7+vaTsPF5cdoaEjFzae9uxbnL7hybzqos8tZbRKwK5Ep+Jj5Ml29/sjIUe02M5OaJI8rlz4O4OR45r+eZEEMduJWNmJOP3V9oRUIp6a1XQZ18+6QiCwEurzhEYmUr/Zi4sn+Cv34I//iiauvn5iXo2lQy6v94dwqqTUbSpa8uWNzqVGbyfj0pj9sZgEjJykUklzOztw/QeDZ5YcdSIpGzGrz7Pvaw8PO3MWD85oNqnMB/XMXkvM4+OCw4jCHD6f71wr+FrYlaemjZfHESjEzg6p0eFtY7SFCo6fHMItVZgz9td8XWzrrF9WfwcfLG1Oz+MblXuMncychn400kylGomd/EumhAt6zN+OxXF13tCEQTo2diRpS+1Kbq2XoxO4/V1QaQ8kMWUSijSC5JIoIO3HU1drXGzMcPN1gxXW1Pcbc1wtDRBKpWgVGmITlESk6ogKlVByJ0sLkSncTc5XW/RxSfzbH4C2R+SyLA2YrnmZHgKZ2+nMrOPWP9cdTKSlJx83nuuMTZmRty8l83f5fT51LU358cxrZBI4K+zsawrw024mZuocv1ev8YYy6Ucu5XMcz+c4K+zMY/F5HXvtbv0++EEh0KTMJZJ+d+AJmyc1rFMuwC5XM706dOZPn068lLKHbkqLVP+uEhCRi7eDhYFDsc1EwgJgsB7m69yJT6TOuZG/DaxnV6BUH4+DB8uBkJ2dvDfbi1fHrtYFAitmWT4QAjK35dPAxKJhHkvNEMmlbDvxj39HcAnTRL9Mq5fF91UK8mUrvUxlku5FJtRonevOGqtjkUHbjFmZSAJGbnUtTNn0+sdebu3zxMbCAE0dLJi0+sd8bI3Jy4tlxHLzxCWmF2tn/nIYzKvejNTLjamtC8oP+8qp5elOrA2NSoqf1emVGZnYUzfgt6hfy/GATV3fkskkqJJsW2XE7gWn1nuMm62ZiwcIZY9fzsVVe4knEQi4bWu9fl1XBtM5FKO3kpm5PLAot7atvXsuPBxH+YPa46p/P45Vfy2JghwNjKN309H8/WeUN78+xLDfjlDh28O0+jjvbT58iC+n+5n4E8neWP9Jb7bd4tdV++SmFWxtpLazFA5FBddnNzTl73X73IvKx9LExlH5vRg0poLhNzNYkgrN5aMac26wGg+2XEDa1M5R+f0wN6ybCXWnw6Hs7jAqFUfWfmIpBze33KVoBixMa2lhw3jA7wY1MIVc+PqO3HUWh0HQxL562wMZwpuHr6u1iwe3bLITqCy6HQC09dfYt+Ne9iaG7FteucaVZMt/BvIpRL+eq2DXgGMRgOjRonVAAsL2L1Pw4rQi5y5nYq5sYzfJrajYwPDB0LPGvN23mDtmWh8nCzZM7NrCWXoRzJnjji23aMHHD1a6c/+dMd1/gyMAUT5C6kEpBJJwUu8IOcWTGYNb+PB50OaVUhr6nGTlJXHhN/OcysxG1tzI9a92oHmHhUzGK40CgW88454goSFga1ttX3UX2dj+Hj7dfzcrdn1VtfyFzAwq09G8tXuUALq27FhasXLgkdvJfHK7xewNTfi3Ie9a+whsJBC+6iO9e35e4p+6v6f/3eD309HY2tuxN6ZXfWanrwcm85rf1wkVaHC1caUVS+3LWHNk5Ov4ceDYfx5Nqbc6TyZVIIgCCWCJksTOY5WJliZyMnKU5OQkUu+UlGbGaoO/joXU2RYl5Ov5aWVZ/nk+aZIJbAj+A5HbyXxUgcvfF2tycrT8P2BW+Wu861eDZnWXRSD+3JXCD8fLrups6GTJf9O68hng30xM5JxJT6T9zZfpf3Xh/lg6zWC4zIM2lMUl6Zk4f6bdJx/hOnrL3HmdipSiSikuP3NzgYJhOb9d4N9N+5hLJOyckLbGg2Edl+9WxSMfjXUT69ASKuFiRPF67yJCfzzr5ZlN4rrCLWvDYT0ZHafRthZGBOelMO6gsCkXGbNAiMjOHYMzp+v9Ge/3r0BdcxFbRqtTkCtFcjX6MhVa1GotOSqtVibyvl5bGsWjWr5VAVCAE7WpmycFkArT1sylGpeWXuBO1Xov6gQZmZw+rRo0bF8ebV+1MDmrsikEq4nZFVMzNNAFIoYnotKq1R/SzcfR1ysTclQqjlUg072hcwpqDgERqaWEA8ui/8NaIKfuzUZSjUz/wkuoRX0KFrXrcO26Z1p4GjB3cw8hiw7zef/3SiaZrM0kfPx877c/KI/C0c0R15GdKLVlQyEQAymolIUXE3IJDpVWa4J8oPUZobKoTAz1Obj7aSq5fi5W3M94b4mQvt6dWjqZs0fZ2JwtzXjwOxuhNzNYuTyQCQS2PFm+UZ8giDw85GIopvy690b8H7/8puQk7Ly2BQUz78X44gpplTd2NmK0e08GdravcS4vr6otTqO3kzi7/OxHA9LpvAIcbA0YXQ7D8a0q1th7SNBEEhJEUshDg6iEF2uSsusjZfZf0NMtf44uhVDW9fc5Ni1+ExGrjhDnlrHq529+XRw+b5XgiAKKq5eLQ43rd+oYWPieYJi0rEqUJb+/yioWBX+OR/LB1uvYVWQTXUoJ5sKiCP2a9eKVh1btlT6s/M1WrJyNegEoeAlBuiF37tYm2Jm/GQ0SFeWnHwNI349w8172fi6WrP5jY7VmkUu4s8/xacGFxeIigLTygvilcfENec5HpbM7D6NmNnHp9o+51GMXhHIuag03uvXmDd7VnzoY+H+myw7epvujRxZ+0q7h66V1c38PaGsOBGJj5Mle2d21asMHJ2i4PmfT5GTr6mQx1qmUs3/tl4t0hmztzBmbv/GjPT3LKEvFJWiYPSKMyRlV25IxEgqwd1S4PhHz9d6kxmCwmBo7t+BbLxSem9BzyaOhN3LISEjt+imWph6bOJixbbpnfW6oBamWwEmdvTis8HN9BKf0ukEzkWl8e9F0ak3v1iK0cHShLp2ZtS1M6eunTmeBV/dbM3IzFUTl6YkJk1JbJpS/D5VSUJGbgm7gi4NHRjXoS59fJ31K2OUwoNNgUqdnNf+vMiVuAyMZVIWjmxRoyP0SVl5vLD0NPey8ujeyJHfJrYt9wIgCGJS4qefxEnvNX9q2JZxjuACTaJ1k2vGdFWhUGBbUHbIyMh4Khuoi6PVCQxddpprCZmMbuvJtyNalL9QSAg0ayZ2V4aGVkmM8f8DonfUaVJyVPRr5syv4/wNKmxX6jGpUkGDBqLuxMqVMGWKwT7vQQq9vho4WnDone41LnPw74U45m65WunPj05R0OP7Y0gkcHBGB3w8xEmrmmpGz8xV033hUTKUauYPa87Y9nX1Wm5HcAIzNwQjkcD6yR3o1NCh/IUKOBmezOf/hRCRJGbzWnjYMO+FZiUeJqNSFIxZGVii/+e95xrTyMWSm3ezUao15Kp0KAqsWBq7WOHnbkMTFytszY2L7t+1wZABKNyZR69GMWn9jUf+XteGDpyMSEEqgW3TO+Nqa8rAJSdJyVEx0t+DhXq6nf99LpaPtl9DEGCEvwffVlB5OTNXzc7gBDZejCuRwaoo9hbGjPD3YGz7utQzQNmqeDAUfPsu0/8NISEjF1tzI1ZOaGvQ0fPyKD451tDJkq3TO5XrGyUI8OGHsGCB+PMvKzTsyT/LtYRMbM2N+GtyhxL17+rkWZgme5CgmDSG/ypmU7dP76xfUPnCC2KD7qJF0PzR05i1iATFpDF25TlUWh0zejZkTj/DBZCPPCZ/+EHsHfLxEYNWWfVk2bLz1Ph/dQiVRlc0lVWTZOepafvVIfI1Ona8qefx+wCjVgRyPiqNt7p6MOf5VkDNnt+F7gGOViYcm9NDryESgPc3X2XjxTgcLE3Y9HrHCrU5qLU6/jgTzZJD4WQXBDTD23jw/oDGRea3kck5jF11lsSsfHycLNk3q5ve98TaYMiAFO7MyIQkev5Udn9CMzdrbtzJoomLFf+91YULUWmM/+0cOgG+G9GiSFOiPLZdjufdf6+gE0R58x9Ht6pURiZTqSYuXcz6xBbL/sSlidkfGzMjPO3M8Xoga+Rlb4GTlYnBnxwLL5a+H2xHoZNTz96cNZPaUd/R0mCfUx46ncDbG0QneltzI3a82bnMKTh4OBBa+IOGI5JAQu5mYWdhzF+TO9ToxVen03H3rigy5+rqalBX68fJOxuD2Xo5AX+vOmx+vWP5T9d5eRAZKTZx1QZDerH1Ujzv/CsqQhuyLP3IYzInB+rWhfR0sZw5bJhBPq80Xl8XxL4b93ijRwPeL3AFqEne/ucyO6/cYWJHLz4f4lfh5TcHxTNn0xXcLSWc+WQQULPBkEqjo+8Px4lJVTKztw+z+z6sFl0auSotw349Q+jdLFxtTPl3WscKt1EkZ+fz3b6bbAoS9ZZM5FK6N3JkYHNXejd1Ijk7nzErz/LFED/6+7novd7aYMiAFO7MjIwMOiw8Q94jutzn9mvMMH93Bvx4knSlmrn9GzO9R0N+PhzOooNhmMilbH+zM01d9btp7r12l7c3XEatFejq48D3I1viXAUTusdN8WDIc/Zm2vu4svLltpXqaaosOp3Ah9uuseFCHHKphHWTO5Tb6CwIotnqt9+KP3/5rYqjsjPcTlbgYGnC31Nq3oLhWSUxK48eC4+Rq9by67g2DGiuh+jlvXvQpg2cOQP16lX7Nj4LLNh7k+XHb2Msl7JxagCtq7vH7eOP4euvoVs3UZG6mth99S5v/n0JjzpmnJzbs8ZLZcfDkpm45jx1zI0492EfjMvqAC4FpUpD+68Pk5WdQ9wPI4Caz/wW7kMzIxnH3+uht/FpSo4YrEQk5eBua8bGaQF41Km4ttXl2HTm/RfClbiMoveMZVK6NXIgoL49I/09sDHX/55RGwwZkOI7c/jqy4QnlZxWMJFLydfo6NLQgXWT27P1UgLvbrqCiVzK/lndqGtnzitrL3A8LBlvBwt2zuiMVTklmUKO3kri9XVB5Gt0WJvK+WxwM4a1cX/q/Ki0OoFv/wvmo6FtAJi25jQ/ju9Qo8q9giDw8fbrrD8Xi1QCP4xuVW6P0oOB0Kfz8zkonOJOZh5uNqase60DDWowqwXivoxPV5KSoyI1J59Uhfg1JUdV9L2JXIqPsxUNnSxp5GyFj5Ol3invx83iA7f46UgE9ezNOTC7e/k3FEEAc3PxdfFi6bYQtZRApxOY9lcQB0MScbA0YeeMztUr4JqUBEuXwowZ4ORUbR+Tq9LS9quDKFRatk7vVOODDBqtjk4LjpCUnc+KCf5FU2YV4YOtV1l/KvyxBUOCIDDs1zNcjs1gbHtP5g/To3+vgKSsPMasPEtkioK6duZsnBZQKcNiQRAIvZvN3ut32X3tLpHJ91WkjWQSOjd0oLVnHepYGGFrboytmRG25kbUMTfGxtwIS2M58em5hNzN5FL4HT4a1rY2GDIExYOhWVtvlSqsVahJ8su4Ngzwc+HlNec5GZ5Cpwb2rH+tA+lKNYN+OsndzDwGNXdl6Uut9Q5owhKzmbPpClcLBLF6N3Him2HNn5osUVBMGp/uuMG16KSiEzwrKxsrq5oLIgRBYN7OG/wRGINEAotHteTF1h7lLAP/+x98953484df5bJPd4pUhYr6jhasm9yhxtRus/PUnAxP4VBIIkdvJZGWrSTr4k4ArNu+gERWfnDtbmuGj7MYHPVo7EjH+vZPZFCdk6+hx8KjpOSomDfYl0md9QhuzMzEkpmHh9iXYlmzAerTiCJfw3ADTpipVCqWLFkCwMyZMzE2rrmMb3EKB1fKU/WvLr7ZE8rKE5H0a+bMigltK7z8pdh0hv545LEFQyCqQo8omIb+Z0pAhYRj72XmMXplIDGpSrwdLNgwNaBK9ypBEAhPymHPtbvsvXaPWxUUD9XlK/XWGaoNhsqheDD0/dHYIpG2Qoa1dsfJ2oTlxyNxtTHl0DvdSc1R8dyPx8lT64p6hYJi0hm9IhCNTtD/Il+ARqtjxYlIfjwUhlorYG0qZ94LzXix9ZObJUrKzmPB3ptsvSQaEFpKNdyYPxSo2RNcEAS+2BXC76ejkUjgu+EtGFlO75YgiLp+ixeLP8/5PIe92tPk5Gvwc7fmj1falyumWVXi05UcDk3iUGgiZyNTS2hmGOlURCwUey9eXnEcFztb7C2Nsbc0wd7CGIVKQ3hiDmGJ2YQn5ZRq8Ovnbs3Ubg0Y6OfyxKkpF4ro1TE34vjcnuU2t9Oq1X1n9D59YPdueEw346cJQ06YVaipPz9fFOiqBk5HpDBu9TnRsPaj3jUjIVCMm/ey6P/jSYxkEs5/2Ic6FWwDEASBXgv2c+zDAcDjG5AobIp2tzVj76yu5Z+DxUjIyGX0ikDi03Np4GjBhqkdcbQyzN87IimHAyH3iEvLJUOpIkOpJl2pIjNXTYZSXSSSaiyX0tjZivo2En6a2KU2GDIExYOhDcHJfLPnJk1crKhrZ86BkETcbEzZ/XZXBi89RXx6blHz3orjt5m/9yY2ZkYceqc7jlYm/HYqii93hWAkk/DvtI4VrtXfuidmia4liFmiPk2d+ObF5nrXdWuCwumAHw+Fk5OvQSKB0W09ebtHPT58920AVqxYgUk1XQyLIwgC3+wJZdXJKAAWDGvOmHJGRrVaeOMNWLVK/Pmtj7PYL5wmX6Ojg7cdqye21bvMWVEU+Rr+OR/L5qB4bt4r+QRU38GC3k2d6NPUGT8Xc96c/gag375MV6gITxKDo6vxGey8coc8tdj75lHHjNe6eDOqnWeN3zgehUaro9+PJ7idrNCvGXbGDFi27P7P48aJGjfPSGN5dVJ8wuyzwb68UoGHtOLk5+czbdo0oIxj8vJlePddcHWF9eurstmPRKcT6PH9MWLTlCwcUf6DT3UwcMlJQu5m8eWQZkzoWK/Cyy87FML7s98WxUiPb6uRa+WD5ORrGLjkJLFpSr19y4oTl6Zk9IpA7mTm0cjZkn+mBFT7AySIk8JZuWrqWBhjJJPW9gwZkuI7MzpLR7pSTTcfB/LUOvosPk5CRi5v92qIn7sNU9cFYSSTsG9WN7zszBmy7DQ37mTRs7Ejqye2QyqB6esvsff6PZysTNg/q1uFnxzUWh0rjt9myeFw1FoBGzMj3n2uEcPaeDx2hdzTESl8tvNGkW5ESw8bPh/iR6sa0N55EEEQ+HbfLZYfvw3A1y/6Ma6DV5nLqNUwYQJs3CjeR6d/msae/LNodQJ9mjqx9KU21dLnlKZQsfZMNH+ciS5SY5VKRN+ePk2d6N3U2aC9SWkKFesCY/gjMJq0AoNEW3MjJgR4MbFTPf1ED6uZgyGJTPnzouhnNKdH2T0tS5aIAlDFmT1bHLl/QjOnTxKFFkImcin/vdWl+gYCLl8Wm92lUggPh/r1q+Vjlh2NYOH+W/h71WHLG52q5TPKolAvrpWnLdvf7Fzh5ZOz8wmYfxitTuDg7G74PKYBjaCYdEYuP4NOgKUvteb5Fm4VWj46RcHoAo2gJi5W/DMloML3u6pSkWCo9tGpArTwsKV7I0ckEglmxjI+HiSa3C0/EUkTF7EXQ60V+1NkUgkLR7QsMqdbfPAWEomEb0e0wNXGlKTsfEavDESrh4x5cYxkUmb08uG/t7rg525NZq6aT3fcoMPXh/ho2zVu3CnfbM+QaHUCZyJSeOOvIMatPkdEUg52FsZ8O7w526Z3fmyB0KIDYUWB0BdDmpUbCOXmwosvioGQkRG8/nki/+UGotUJDGvtzq/j/Q0eCMWnK5m38wadFhzmp8PhZOaq8Xaw4OsX/Qj6uC//TuvI1G4NDN6kbWdhzMw+Ppx+vxdfDvXDy96cDKWan49E0GnBEebvDS3XG6i66dPUifbeduRrdOXb2pTWNP3DD/D999Wzcc8Y4wO86NHYkXyNjlkbgsnXaKvng1q3hn79QKer1r/NyLYeyKUSgmLSq92gtjSGtHJHJpUQHJfB7UrYgzhamdCridhoXjhq/jjw96pTpKb90bbrReaq+lLPwYK/pwTgaGXCzXvZjF4ZSERSzf899OWpCYa+/vprOnXqhLm5eZHSaXkIgsC8efNwc3PDzMyMHj16cOPGo4UTK0p/Pxc6NbBHpdHx9Z5Q5g1uhrFMysnwFPZev4evmzXfDhe78Zcdvc3uq3exNjVi9cttkQBhiTn0WHSM5OyKOzs3cbFm2/TOzBvsS30HCxQqLevPxTLop1MMXXaaTRfjyFVVz0VNpxMIiklj3s4bdPjmMC+tPsfe6/eQSkTl7KPv9mB0u7ol+g8EQUChUKBQKAzqnfYggiDww6Fwlh6NAODT5315uZxUdXY2DBwotpqYmQmM+ziW3TkXAZjUqR7fj2xZaeXt0rh1L5t3NgbTY+Ex1p6JJk+to7m7Db+Oa8Ohd7ozroNXjTxBmRnLmBDgxZF3e/DruDa09LRFpdGx4ngkY1YG1pyPVSlIJBI+KuaoXWaQ/6gMw/vviyP3tZSJRCLhuxEtsLMwJuRuVpEtULXwwQfi1zVrILFsx/PK4mRlSu+mYjDxz/nYavmMsnC0MqF7I1FBeltBz2RFEASBwb526FR5bAmKQ13BB2ZD8nZvH1p42JCZq2bOpivoHjQEK4cGjpb8/VoHHCxNCEvMYfDPp/n3Yly13gMqy1MTDKlUKkaOHMkbb7yh9zLfffcdixcvZunSpVy4cAEXFxf69u1LdrZholOJRMJng5shk0rYfyORuHRlkenqx9uvczczl6Gt3ZnSVXxynbPpCiF3smjmblMkHBWXlkvX745yJLTiFwYjmZRJnb05/G53/pkSwPMtXDGSiU8k722+SodvDvH5fze4npBZ5ac9QRC4npDJ/D2hdP3uKMN/DWTtmWhScvKxMTNibHtPdr/dlc+H+GFj/nBPjVKpxNLSEktLS5RKZSmfUHXyNVre23yVnw6HA/DxoKa82qXsHojEROjZU/T8tLIS6PPOLY4qrwHwTt9GfDbY12DikzGpCl5fF0S/H0+w9XICGp1Al4YOrH+tAztndGZAgeFkeRRaH9ja2qJQKMr9/fKQSSUMaO7K9umdWD6+DVamci7FZjDop5N6GzdWBy09bRnc0g1BgPl7bj76AvqgvpBEAi+9JDZVd6r5MsnTiJOVKfOHidNXK09EcjaydOuhR6H3MdmtGwQEiE3UP/5YhS0um8LewG2XE8hTV1OmqwyGtRFlO7Zeiq9wAKFUKhnSrgFxP4wgOT271AnmmsJIJuWH0a0wNZJyKiKFPwKjK7wOH2cr9szsQpeGDuSqtczdfJWZG4LJzlMbfoOrwFPXM7R27VpmzZpFRkZGmb8nCAJubm7MmjWL999/HxCb/Jydnfn222+Lmv3KQ5+a47ydN1h7JpqGTpZsn96J0SvPcuNOFm3q2rJhakekEnhl7QVOhqfgUceMnTO6kKvW0nnBkRLrmRBQl48G+VapHJOcnc+moDj+PhdLfPr9J3upBDztzKnvYEF9R0saOFpS39GC+o4WOBb0iGTlakjKziMpO1/8mpVf8H0+1xMyiUq5f5GzNJHznK8zg1u60bmhQ7l6MNVtIZGSk88bfwVxITodqQQ+G9yMiZ3qlbnMrVswYIDoIWlvL+D76hVipQkYy6R8N6KFwdR5c/I1LDsawW8no1BpdUgkMMDPhde7NyjXxLc0qntfxqYqmf53UJGdy4yeDZndt1GFbGEMRVyakt6LjqPS6lj7Sjt6NH6ETo2zMygUMGkSzJ0rqh7XUmEqO0VUoWNy504YMgSsrSE2FmwMb2Oj1Ql0++4oCRm5LBlTvqaYoclTa2nz5UGUKi1/T+lApwb6e3Y9KFDbpak7f08JqK5N1YvifWW73upSqT4mnU5g+YnbLDoQhlYn4GVvzs9jW1fqGqgvz3QDtb7BUGRkJA0aNODSpUu0bt266P0hQ4Zga2vLH3/8Uepy+fn55OffH0XOysrC09OzzJ2Zmaum5/fHSFOo+HhQU57zdeH5n0+Slafhlc71+GxwMzKUKl5YeprYNCWdGtjz56vtGf/bOc5GppVYV0NHC5aMbU0zt6pdIHQ6gZMRKaw/G8OZ26nkFPi+lIaliRyVVldun4ipkZTeTZwZ3NKVHo2dKhS0VecN/Oa9LCavvUhCRi5WpnKWvdSGbgVp6kdx+rRobZWWBp71dNgPP0u6PJ065kasfLkt7epV3StNpxPYejmBb/fdLBpv7+rjwCfP+1apSVWn03H7ttgP1aBBg2qx48hTa/lqdwh/nRXLDB3r27NkbKsiv6Ca5KtdIaw+FUVjZyv2zOxaelC2fr0Y2drVnMfds0hlp4gqdEzqdKJ9SkiI2Nv1YPO7gfjxUBg/HgonoL4dG6Z2rJbPKItCe5C2XnXYXIFG7uLXSu93t6CTm1Ta78xQCILAK2svcOxWMr6u1mx/s3OFFbYLCYpJ5+1/LpOQkYuRTML7/Zvwamdvg9o/FVIbDAFnzpyhc+fOJCQk4OZ2vwt+6tSpxMTEsH///lKXmzdvHp9//vlD75e3Mzecj+V/W69hZSLnyJweXInL4LU/xb6Twk78W/eyefGX0yhVWl7pXI+mLtbM3XL1oXUZSSUsHNnSYJkJQRBIzs7ndrKC28k5RCYriEwRv8anKymexbUxM8LJygQnaxOcrExxsjLB0coEjzrmdPFxqPTEWnUFQwdDEpm14TIKlZZ69uasntiOhk5lNxxv2SJOX+fnQ9MWarR9TpBvlEd9Rwt+n9SuXK8yfbgUm87nO29wpUAs08venE8G+dK7qdMTqw1VGjuCE/hg6zWUKi2OVib8NKZ1uRYmhiZDqaLbd0fJytPw7fDmjG6nR9bnwgU4fx7efLP6N/AZo/gU0c9jWzO4ZcWmiPRi1y7Rr2zMGHFioRq4k5FLl2+PoBPgyLvda9QDEWDXlTvM+OcyAFve6Ii/l36BevFr5Yw/zvBfSBoD/Fz4dbx/tW2rPiRl5fHcDyfIyFUzuYs3nzzvW+l1ZSrV/G/rVfZevwdAj8aOLBrZ0uDj909NMPSowKM4Fy5coG3b+0qeFQ2G7ty5g6vrfY+jKVOmEBcXx759+0pdrjKZIRDTskOXneZaQibP+TqzYoI/3+2/xa/HbmNhLGPHjC40dLJk3/V7vP5XEABfDm3GV7tCyX8gI+Nua8aut7tQpwIeLJUlT60lPl2JiVyGo5VJtVlkGDoYEgSBFSci+XbfTQQBOjWw55dxbbAtY58JgjiF/c474vetuyhJ63Ac5Do6NbDn13H+pfY7VYR7mXl8u+8m2y4XiE2ayHmrV0Mmda6Hibzm7EcMSURSDtPXBxGWmINUAu8+15g3ujeolie5R7HqRCRf7wnFycqEY+/1KFsTKTQUfH1BLheNXD1rXmvmaafQFsXaVM7+2d0qZavwJPDq2gscuZnEtG71+aCgIb+mSMnOo+3XhwGwtzDmyJwe2JiVf30pfq28fPsuQ1cGIZHA4XdqPqB7kOL3r+9HtmCEf+XPLUEQWH8uli92haDS6HCyMmFOv8YMbeVe6azTgzw1o/UzZswgNDS0zJefX8XdfwFcXMQG5Xv37pV4PykpCWdn50cuZ2JigrW1dYmXPsikEuYPa46xTMqBkER+OxXFu30bEVDfDoVKy/T1QShVGvr7ufB2bx8AvtwVStt694UXJRKQICp4frM7FG0FG+8qg6mRjIZOVnjamdeoV1hVyNdoeXfTFRbsFQOhcR3q8ser7csMhPLzYepUUX5GEKDtgDRSOx4FuY7RbT3549X2VQqECvWfen5/jG2XE5BIYFRbD47M6c607g0MGgip1WqWLVvGsmXLUKurvwmxoZMl29/szLA27ugEWLj/Fp//d6NGJ0Je7uSFRx0zkrLzWV0govlImjYVu+I1GrEMU0uFeau3Dy09bMjK0zDj78vlNgFX6ZhUq0W102pgTDvxZr05KL7G5SIsi/VbpSpUvLfpSoXPGR9nK/o0dUIQxMb2x01/Pxfa1LUFYM6mq/x9LqbsBcpAIpEwPsCLnTM609DJkqTsfOZuvkr3hUf57VQUStWjWzuqg8caDDk4ONCkSZMyX6amletR8Pb2xsXFhYMHDxa9p1KpOH78OJ2qacLEz92GT54Xnz7m771JcFwGP41tjZOVOFb44dZrCILArN4+9PV1RqXRcaOgSdXF2pRN0zqyZGxrZFIJm4LieW/zlRoJiJ4mkrPzeWnVObZeSkAmlfDFkGZ8/WLzMkff792DXr1g9WqQSAT8R8aS1DwQiRT+N6AJC4aXvXx5XInL4IWlp5m/9ya5ai3+XnXY8WZnvhvRslp6bFQqFTNmzGDGjBmoVCqDr780zI3lLBrZkq+G+iGRwB+BMSzYV8aEl4Exkct4r19jAFYcv01qzsMWIyWYO1f8unKlWI6ppUIUThEV6vV8tP16mb9f6WPyjz/Ax0cU+KoGejVxwsnKhFSFikOVmNitCiZyKcWTpwdCEisV0LzevQEAWy8lkJRVcRkWQ7NoZMui7z/cdp3/bb1SpWnlJi7W/DejCx8MaIKjlQl3M/P4clcInRccYcmhcDKUNXONe2pG62NjYwkODiY2NhatVktwcDDBwcHk5NwXtWrSpAnbtm0DxKhz1qxZfPPNN2zbto3r168zadIkzM3Neemll6ptO8cHePFCSze0OoEZf19GJpGw9KU2yKQStgff4a9zsUilEhaPaklDJ0syctXUMTdi8xsdaVvPjhdauvHTGDEg2nopgXf/DX4so6GGRiaTMWLECEaMGIFMVvEsiSAI7AhOoN+PJwiKScfaVM7aV9qVqyF08SK0bSvKzVha6Wg8MZiU+tcwM5ayfHwbXu/eoNI9PDn5GubtvMHQX04TejcLW3MjvhvRgs2vd6zWCYmq7svKUvgk99VQMVu74ngkPx2OqLHPH9zCDT93axQqLb8cu132L/frBy1bihNmixbVzAY+Y9R3tGR6D/FG/M/5WD7efu2RGaJKH5Px8RATA/Pni43VBkYukzKqwJKjpjWHJBIJFg/0WH63/xbnypEteHBftq1nR1uvOqi0On47XU5WtAbwdrSkicv9AZAN5+MZ+esZ4tMrL5liZixjWvcGnJzbk29ebI6XvTnpSjU/HAqj04IjfLUrpMKijxXlqWmgnjRpUqkTYEePHqVHjx6AePD9/vvvTJo0CRBvoJ9//jkrVqwgPT2dDh06sGzZsgqV3ipScyxEka/hhaWnuJ2soKuPA2tfac9vpyL5Zs9NjGVSNr3ekZaetkSlKBiy9BRZeRra17Nj9aS2RaOse6/d5a1/LqPRCTRxseKH0a1o6qrf5z9r3M3M5eNt1zlcoLfR2NmKX8a3KVeZed06mDJFLJG51FUh7x+IrE4O9R0sWDauTZX258GQRD7dcZ27BSfoi63d+XhQ0xrx33kSKLQcAPhoYFOmdKsea4UHOR6WzMQ15zGWSTn6Xg/cy7Lp2L5dlBU3N4eICNETq5YKodPpaPbZgSIDzK4+DiwZ0xo7Q4mCZmSAlxdkZcG2bTB0qGHWW4y4NCVdvzsKwMm5PfG0Mzf4ZzyKjvMPF10jCnG0MmH3W10q5Cl5KCSR1/68iKWJnNP/66VX71F1Uui9WRwbMzlLxrR+tPxFBdBodey5fo9fj90m9K5YPTGSSRjW2oNeTZ1o7Wmr1/57ahqonwYqEwwBhCVmM2TpaXLVWmb29mFWHx9e/yuI/TcSxQbpt7pQx8KYC9FpvPr7BbLzNTRzs+aPV9sXeUMdD0vmnY3BpCpUGMukzOnXiNe61K/RxtXHiU4n8Pf5WBbsvUlOvgYjmYS3evnwevcGZTbY5efD//53X9PNs1U69DiP1ETDCy3d+GZY80pPxSVm5TFv542iKQhPOzO+Htq83FH+Z5GfD4ezqECt+MuhfkwIKNvyxBAIgsCYlWc5F5XGqLYefDeiZVm/DJ07Q2AgvP46/PprtW/fs8gnO66xLvB+VsXd1oxl49oYzmrn44/h66/B31+cAqyGacsJv53jZHgKM3o2ZE5BubUm6LP4eJFXYyGF1/Kp3RrovR6dTqD/khOEJeYwt39jpvdoaOhNrRDRKQp6fH/sofclEnivn+G2TxAEjoUl8+vR25yPLilD425rRitPW/FV1xY/NxvMjEtmJWuDIQNSuDMvRSTQukHFRky3XornnX+viD0Wr7SnVV1bXvj5FNGpSno0dmTNxHZIpRKuJ2Qycc15UhUq6jtYsO61DkVPvCk5+fxvy1UOhYpZkYD6diwa1arsJ+JngKgUBe9vucr5KPEEaF3Xlu+GtyhX7Cs8XJzWvXRJ/Nm9ZxSydiGYGEmZN7gZY9t7VqosptMJrD8fy3d7b5Kdr0EmlTCla31m9vZ56AT8/4IgCEUTkwDfj2zJCH+Pav/coJh0hv96BqkEDszuXraUwsmT4gHx5Zfw6qvVvm3PIpdj03nxl5K2JkYyCZ8+78v4AK+qS0WkpIjZIaUS9u6F/v2rtr5S2H31Lm/+fQlnaxNOv98LuQHtdcpiyLLTXInLKPq5voMFW6d3KnPY41FsCYrn3U1XcLA04dT7PR/7wEv/H09w815JNwdnaxP+mtyhWsxlL0ansTkonsuxGYQlZfNg5CKTSmjiYkUrT1uszYzIV+vIzs7k+3GdnvxpsqeJBWXZATyCYW08GNveE0GAWRuDUeRr+GWcPyZyKcduJRc1oPq527Dp9Y6425oRmaJg5K9nigz+HCxNWPVyW+YPa46ZkYyzkWn0//EEO4Ir7nnzOFEoFEgkEiQSSZly/RqtjuXHb9P/xxOcj0rDzEjGZ4N92fx6p4dOMEEoOYTy11+iKfalS2Bho8VlxEXk7UOo72jB9umdealD3UpduMMSsxm5IpBPtl8nO19DS09b/pvRhf8NaFLjgVCeWsvNuGRc3Nxwd3evkLVJvkbLzXtZ7AhOMEhTokQiYW6/xkwqUPqeu/kKu67eqfJ6y8Pfqw59mjqhE2DxwXJMXLt2FcfrawOhStPSwxZnq5LlX7VW4JMdN5i1UTR2VSqVuLu7V/iYBMDBAQptlr78kofucgagr68z9hbGJGblc/RWssHX/ygaO1vydq+GbJgagEwqITJFQUI5nn+Pula+0MoNNxtTUnLy2XLp8Rm4FvJcM5eH3kvMyiekoKxlaNrWs2PB8Bbsn92Na/P68feUDrzXrzF9fZ1xtDJBqxO4cSeL9edi+fXYbdacjmLjBf33U21mqBwKM0Oes/5lxatdGNC8Yn0HeWotw389w407Wfh71WHD1AB2Bt/h3U1XAJjS1ZsPBzZFIpFwJyOXCb+d43ayAjsLY/58tT1+7veVqKNSFMzeGExwwZPG4JZufPUIL7AnDX10hq4nZPK/rVeLbCC6+jjwzYvNS63xC4KYXXdxgVdeEbX1/vxT/DeXxlnIep9HbpXP4JZuzK9kWSxPreWXoxH8evw2aq2AhbGMuf2bMD7Aq1qsKXQ6gcgUBXczc7mbmUdiZh53s/K4l5nH3cw87mXmkq5Uo1PlEffDCAC6fb2Hei721LUzx8veHE87czzrmCEIEJeu5Na9HMISs7mVmE1UiqJoOvHqvOf0tlrQZ7s/2HqNjRfjkEklrBjvTx/fR8tXGIKb97IYsOQkggD/zehCcw/DWzrUcp/Pdlznj8CSY9SWJnI+G+zLCH+PIu9BqKSO2N274O0t1riDgsSnGgMzf08oK05E0ruJE79Namfw9ZfHW/9c5r8rdxjW2p3FZSh7l3WtXHMqii92hVDP3pzD7/Z4LBY5hdy4k8mgn07hbmvG4lEt2Xv9HmvPRCOXSvhtUrsis9qaQBAE7mTmERybwbWETFQaHcZyKbp8JR+96F9bJjMExYMhDyc7Dr/bo8LZgJhUBc//fIrsPA2vdfHm4+d9+TMwmk933ADglc71+PR5XyQSCak5+Uz6/QLXEjKxNJGzemJbAurfV/zVaHUsPRrBz0ci0OoEXG1M+X5kSzo31N/75nHwqBNcEATORaWx8kRkkSGhjZkRnzzvy/A27o/M5HzxBXz2GdjYCDg4SLh9G6RSAbeeUUjbhGJiLOWzwb681L5y2aCzkal8uO0akcnik1mfps58MaQZbgYuT2bnqTkVnsLhm0kcvZlEqqL8jI2JTCA3MQqNFowcvZBIK3Y81jE34vKnz1V2k0tFqxN4599gdgTfQSqBZS+1qfCDQ0WZvTGYbZcT6OrjwLrJHcr+ZZ0O/v4bDh6EtWurpS/lWeZMRAovrT5X9LOxTMp/b3WmsYt4g9FqtVy7JhocN2/evHJTjqtWiTYdAdXjwxWZnEOvRceRSuD0/3rVuJDk1XhRgkMulXDq/V642JTeAFxWMKRUaei04AgZSjXLXmrDoBaPbyhAEAQW7r/FGz0aYGVqhE4nMGtjMDuv3MHcWMbfUwIM11dWSWp7hgxI4c5s/9lOEvOkvNWrIe8+V/EGvOLKncvHt6G/nyvrz8Xw0TZRv2NCgBefv9AMqVRCdp6a1/64yLmoNEzkUn4Z14beTUs+aV+OTWf2xmCiU8WU9PMtXJncxZvWdevwJPLgCW5qZs6+6/dYeeJ2kWWFRCKOT3/8fNMy9Xnmz4cPPyz5noWdCsv+FzH1TKeevTnLxrWplL9bplLN/L2hbLgQB4iTH1+80Iz+fi4Gs9GISVVwODSJIzeTOBeVilp7/xQ0N5bhWcccFxtTXKxNcbExxdWm8KsZLjamWJvK0QnilF1smpK4NCUxqeLrWkImCem5aMs4rVt62LBjRheD/F+Ko9bqmLTmPKdvi6PDL3esy4cDq2Y8XBaxqUp6LTqGRieUb4YZHw8NG4qZhz17RB+zWvRGo9XR9utDZOeqsTQ1IjNXzZSu3nw0qPKWDI+D0SsCOReVxuw+jZjZx6fGP3/U8kDOR6fxRo8GvN+/Sam/U14WffHBMH46HI6fu6jP8yTZ+6g0Ol778yInwpKpY27Eptc7lWuPVJ3UBkMGpHBnbg4M493tYaLC9Oxu1HOouJ1EoeGklYmc/97qQj0HCzZeED3NBAHGtq/L10P9kEol5Km1zPj7EodCk5BJJSwqxatMqdLw1e5Q/j53f9KjTV1bXu3iTf9mLjXWJKgPxU/wVYdvsC4okZiCQM5ELmWEvwevda2Pdzn79fvv4b33Sr5n3ugudv2vYWSu5tXO3szu2+ghfY/yEASB3dfuMm9nCCkFgn4vdajL+/2bVHmMVRAELkSncyg0kcOhidxOLtkzVd/Bgl5NnOjV1Il29eyqJABZ+HkHbiSy5HAYIXezH/r3hk6W/D6pXbWMGOdrtHT59miRMa2LtSkfDGzC4BZu1TIF+cn266w7G0MrT1u2Te9U9o1hzhxRc6hFC7h8GarB4PZZZtnRCLr5OJKiyOeV3y8gk0rY8WbnEqV8g5GRAba2Bl/t9ssJzNoYjLutGSfm9qzxMtOBG/eYui4Ia1M5gR/0LvU6VV4wlKZQ0WnBYfLUOv6a3IEuPk9WVUCRr+Gl1ee4EpeBm40pW6Z3emx2LrXBkAEp3JkZGRnM2HyTk+Ep9GrixJpK1JzVWh1jVp4lKCadhk6W/DMlAEcrEzYXqE0LgmjhMH9YC2RSCWqtjrmbrxb5XM15rhGvd2/wUJBz404ma05F89+VO6i0onCZm40pL3eqx9h2dZ+InqLYxDS8XMRyn+fszUiNTbE1N+LljvV4uaNXkZxAWTyYEZKa52M/8CrmDZKw1tjw9+zmlbowJ2Tk8sn260VlugaOFswf1oL23lVzQM/OU7P1UgJ/BkaXCIDkUgnt6tnRu6kTvZo4VdhvSK1Ws379egDGjRuHURlGl1fjM/jxYDhHbiWVeF8igZ6NnRgfUJfujZwMelMoLAcUp4WHDR8ObFqi5GsIkrLy6LbwKHlqHSsn+Jfa1FlEaio0aACZmaII1fjxBt2W/0+8+fcldl+9S0sPG7ZO74xOq9H7mCwTQYB334Xly+H0aWjd2oBbLfYBdvjmMJm5atZMakuvJtXb2/YgOp1Ar0XHiE5VMm+wL5M6ez/0O/r0V87beYO1Z6Lp0tCBv14rp0T8GEhTqBix/AyRyQpcbUxZPt6flo+hZFYbDBmQ4jszOV9K/x9PoNYK/Dax7UOlK324m5nL0GWnSczKp4GjBf9MCcDJ2pQdwQnM3hiMToBhrd1ZOLIlMqkEnU7gi10hrD0TDYCfuzXfDm9RagkoKTuP9Wdj+etsTFHviZmRjBH+HkzqXK9ckUJDE5em5MztFE5HpLIvOJrw74YB0PHLXUzr1YyRbT3KNtwsQKcTh4Hua24KWLaJoU63m4CEjBONUVyty80QKT4VyHyrNDp+Px3FksPhKFVajGQS3uzZkDd6VM1LLDwxmz8DY9h6KR6FShx3szCW8VwzF3o3daKrj2OVsk2VMb2NSlGw/NhttlyKp569BRHJ97VP6tqZM39Yc4P2nU36/TzHSpna6dPUif8NaEJDJ8ON3n677ya/HrtNI2dL9s7sVnZgt2ABfPCBOMp98yZU0u7n/ztJWXn0XnSc7HwNXwxpxvAWjoYzYh4/Htavh+HDYfNmA23xfb7eHcKqk1F0bmjP+teqpz+pLNYFRvPJjhvUtTPn6JyHm6D1Ob/j0pT0+P4YWp3wxA4QJBQMBEUmKzCWS/nmxeY1Ir1RnNpgyIA8uDPn7w1lxfFInK1NOP5e5bQeolIUvLTqLHcz86jvYMHfUwJwsTFl19U7zNwQjFYn8EJLNxaPaolcJkUQBDYHxfPV7lAyc9XIpBKmdhM1bkr7/Dy1lp1X7rDmVFQJHYiejR3p0dgJXzdrmrhYYWWgaaJCUnLyOXM7lTMRKZy5nUps2v0RW0GjIm/vd+IFYN9/WFqUX6IRBDhwQFSRjhNbeJDXycFh0BVM3DPIi7UjN9YOozpKHL2UnF/YASsz/cpjJ8OT+WznjaIG6bZedVgwvHmlb9IarY5DoYn8cSaGwGJy+w0cLZjYqR4vtnY32P7Oy8tj+PDhAGzZsqVC/n1J2XnodGKJdf25WDYHxZOZKxprTu7izXv9Ghukx+fWvWz6/Xii1H/r09SJlRPaGqxslqlU0/W7I2TlaVg8qiXD2pRxwVUqRS+sO3egSxfYsgWcqq6Y+/+Rwpu6pYmc3W92YPor44CKH5MPceMGFLoEXL8OzZoZYGvvk5CRS7fvjqLVCex5uyu+bjWr7J+r0tJxwWEylOqi/tHi6Ht+Fw4QDGruyrJxhp++MwRZeWre2RhcpJM3qVM9PhrUtMqtAHp/fm0wZDge3JmKfA0B8w+TnadhSCs3loypXBo3NlXJ2FVnScjIxcvenH+mBOBma1bChmNQc1d+HNOq6MBJys7j850h7L52FwBvBwsWDGtOh0eUHgRBIDAylTWnojh8M+kh+Y569ub4ulnTzM0GX1drfN2scbIyKbchT6XRoVRpyMnXcOteNqcjUjlzO+UhAS6ZVEJLDxs6N3SgeyNH/L3q6N3sd/EivP8+HDki/iwx0mDTMQLrdlEgEUAqPDQQ9Ki0c3Hi05V8tSuUfTdEBWkHS2Pe79+E4W08KnVzTsnJZ8P5WNafiy2S3ZdKRF2TlzvWo1MD+yeqwfFBFPkavtkTyvqCvrPGzqL1iyFuENPXB7Hn2r0S7/Vv5sJPY1uXqSBeGX45FsF3+27haWfG4Xd6lL3+o0dFm468PFGUsV3Nj1k/C2h1AsN/PUNwXAYDm7vwyzh/w618+HDYuhVeeknMEhmYwjH34W08WDSqDBXzauL7/bdYejQCf686bHmjcsbhN+9l0f/Hk0glcPjdHuX2Wz4udDqBJYfDWXI4HIAO3nb8Mq5NjVgX1QZDBqS0nVncl6Uq0uhxaWJAFJ+ei6edGf9MCcCjjjkHbtzjzb8vodYK9GvmzM9j25S4uB+4cY9PdlwnMet+o+//BjQpUzcmKkXB9ssJ3LiTyY07WQ/55RTiYGlMU1drTI1kKFUaFPlaFPkalCotCpUGRb6mxPTTgzRxsaJzQwc6N7Snvbd9hfV9IiLgo4/g33/Fn6VyHRatorHpGIHMXMxgOFmZUM/BQtTWsTOnboG+jre9BXUe4ZmUp9ay8kQky45GkK/RIZNKeLmjF7P6NKpUySouTcmvx2+z+WJ8UZ+WvYUxY9p78lIHr6dOIfxwaCLvb7lKSo7hrF8KL9aFWJnKOTW3JzaVUN8tj1yVlm4LxcbtL4Y0K9fAl1u3IDS0Wryw/j8RcieLwUtPodUJhu3BuXxZ1BqSSiEkBBob1kIjOC6DoctOYyQTx9ydK+ATZgiSsvPosuAoKq2OrdM70aaSU8Cv/H6eo7eSGdu+LvOHNTfwVhqW/Tfu8c7GYBQqLe62ZqyY4F89zffFqA2GDEhpO1Or1dHok31FAnaz+vgws7dPpTIACRm5vLTqLDGpStxtxYCorr05R24m8vq6S6i0Opq72/DD6FYlRhSz8tTM33OzyInZxdqUL4f60dfXmfh48CinNJumUBFyJ4uQu2JwFHIni9vJOTzClLpUjOVS3GxM6dhADH461revVLQvCHDsGCxdCtu3C+h0EpAIWPgmYNs1DCObXNrVs+O1rt50a+RYoTKOIAgcDk3ii10hRWW7Dt52fDHEj8YuFS+JRSTl8MuxCHYE3yn6+7f0tGVSJy8GNnetUq/R46Y6rF9eXxfEvhv3MDWSkqfW8UJLN5aMaVUt2bLCso2DpQkn5vbQqx+tiEuXRCuIDz8sW4MoPV383du377+iokQpdDMzcdRxmNgbR1gY/PKLWPJp1Uos95g9XUGyPnyzJ5SVJyJxtzXj4DvdKrbfy2LIENi5EyZMuK+oakBGLj/Dheh03uzZgPf6lT7mXp3M2XSFzUHxVSpznY9KY9SKQORSCQdmd6vwMEZNE56YzdR1QUSlKDCRS1kwvDkvtq6+PqLaYMiAPGpnjlkRyNmo+8ZxY9vX5cshzSo1zn4vM4+xq84SlaLAzcaUv6cEUM/BghNhybz1z2Uyc9WYGkn5cGBTJjzgBXQ2MpX/bblapDfU08uT9TOb07athGnTYORI0bRbH3JVWm4lZnPzbhZaQcDCWI65sQxLEznmJnIsjGVYmMjF901kFar7KhQKnAp6M5KSkrCwsCAnR7TQWLpUbBMoxLR+EnW638TKTcHIth5M6VofL/uKp4CjUhR88d+NIvl9F2tTPhrUlOdbuFb4ZnzjTia/HL3Nnut3i8qN3Ro5MqNnwypPnVUUpVJJy5Ziav/KlSuY6/sH1gNBENhwIY4v/gshV63FylTOV0P9GNLKvfyFSyHkThabguIY4OfC2FXn0OoEPn+hGRMLLDwMiUqjo/fiY8Sl5fJev8a82VPPjG12Nvj6ilpEI0eKpq4xMfdfEydCjx7i727fLpbYHsWKFTB1qvj9wYPwXDFxS5lMzHC0aiW+Bg40eD/M40Cp0tBrwQGCfnwNGzMjYsNDDXNMXrwoljAtLMSmwTqG1VDbf+Me09YFYWtuxJn/9TJcEKcnxctcx9/rWSR1Udq1siwKhxUel7J2RcnMVTN7Y3DR9O7kLt58MKBJtUjB1AZDBuRRO7N4qayQvr7O/Dy2daUaUJOyxIDodrICZ2sT/pkSQH1HS+5l5jFn0xVORaQA0L2RIwtHtMCpWFo3T63lx0PhrDoZSXaoM8k7W4NOPLBsbQUmTBADo8d53S0+IXHmTA4bN1rw+++QVWBjIzXWYN4sAavW0Th45jGhoxeTOnnjaFXxTFNSdh4rjkeyLjAGlVaHkUzCa13rM6NnwwrrD12KTWfZkQgO37w/mv6crzNv9mz4WEZFoXLTZBWlOqxfVp+M5KvdoRjJJGyY2hF/L8MLhBbqyFiZyjk5t6f+hphr1ohBkFr98L99+y3MnSt+HxIiZn4aNLj/ql8fTEwgN1fUMPIu6FuLiIBff4WrVyE4WDQkLc7PP8OMGeL3gvBUq2LvCopkcFvRhf1ixB38GxhIGXnlShg8GFwNr7SsLRhzj0lV8uWQZkwor7RaDUz47Rwnw1N4tbM3nw4WBSwren5HJOXQ/8cTaHQCf77anm41aINRWXQ6gR8OhfHzkQgAOjWwZ+lLbbB7RJtDZakNhgzIo3bmpdh0hj3g5AyiieRvE9tWypU4OTufl1adJTwpB0crE/6Z0oGGTlbodAJrz0SzYN9NVBoddcyNmD+sBf39SmqqXE/I5NMd17kQkkvONQ+yr9RFm3n/Ca1zZ/GhdcAAcKzB80WphN27FYwaVZjCzQHEE9zYToFF62gs/eJxdZLxWpf6jO1Qt1JeYknZeaw8Hslf52LIU4t9PN0aOTJvsG+F0seCIHA2Mo2lR8M5HSFOhkkl8HwLN6b3bEATl5qdPnkQrVbL2bNnAQgICKic9YEelGb98ut4/0pL7AuCwIy/L7P72l1crE3Z9XYXvYJqKX4AAGZfSURBVPSlKoJOJzDwp5PcvJdd4gajF6dOwVtviUGNl9f9V9++0L591TZMEET/reBg8XXxophFKjwRV60StSPGjYNRo8DesHpM1Y1Wq2X452s5G5lG184d+ff1zk/04EAhf5yJ5rOdN6hnb86Rd3tUizBoWRwPS2bimvNYGMs480FvbMyMKvWw8/l/N/j9dDQ+Tpbsndn1iRLcLYt91+/yzr9XUKq0OFga83ZvH8a0q2uwAYvaYMiAPGpnqjQ6Wny+v+imW4hcKuGzwb6VfspIzcln3Opz3LyXjYOlMX9PCaBRgVt7WGI2szYEF7kCj/T34LMXmj0UOITezWJzUDzbghJIuGFN9hUvcsOdQLh/gDVrBt27i9n/bt3A2YDaY9nZ4gP0xYui88GRIwJ5eUqgICCRZ2BWPxerljGYeqfQwMmC17s1YEhrt0r13JQWBLWua8usPo3o5uOg90VZEASOhyWz9EgEF2PSxU2VShjWxp03ejR8Yqc1qpvi1i+WJnL+eLV9pbM6OfkaXlh6ishkBZ0a2LNucgeDqwAfu5XEpN8vIJHAv9M60q5ezZYxK0X37nCiQIrAyEh8avnkE8OemNVMQkYuvRcdI0+tY+lLrXm+hZthPyAmRgxODYgiX0PH+YfJytOw6uW29K1mg+EHEQSB/j+e5FZiNh8MaMK07g0qFQxlKtX0+P4o6Uq1fgMETxBhidm8/ldQkcxJXTtz3n2ukUFU62uDIQNS1s4cu/JsCU0ZgC9eaMbLVeyHSFOoGL/6HCF3s7CzMGbRqJb0bCzWkFUaHYsPhrHixG0EATztzFg8qlWpF3yVRsfRW0lsuhjPwYuZZF7xQBnqhjrl4cbhJk1Ef0QPD3BzK/lydga5HDQaMctT/JWTI1YDrl+//4qJeWj1SK2S0WWL/wePt7fS2MuOHo0c6dXEiYD69pU66EsLglp52jK7b8WDoIMhiSw9GsHVAp80Y7mUMe08mdqtPh51DG9b8bSRk69h8toLnItKw8JYxh+vtqdtJYOM8MRshiw7jVKlrbbm1cLm1Lp25uyd2bXC5dEa584d2LBBbKK7fFl8z8JCtBB5912wMpxIZXWy5FA4PxwKw83GtFKm1qWSmyv2aR0+DOHhUK9e1ddZjELRzvbedvw7raNB160P/16MY+7mq7jamHJibk9UebmVKoMXDhDYmhtxbE6PSlUnHhcqjY6NF2JZcjiiyA7J19Wauf0b072RY6WzjLXBkAEpa2cWGua52pjS2NmKY2HJWJvK2fVWV+raV+0GmqFU8fKa80U35wkBXnw4sGnRxeVcZCrv/HuFhIxcpBJ4vXsDZvVp9Mj0YnJ2PjuCE9h0MZ6QqHzy4uzIj7MjL9YedXI5B4lEDIZKa6d4FDLLPIwcsjH1SsWsQSLmdmnc/l6csgmNSaJJ3crX6QwVBOl0Anuv3+PnI+FFGklmRjLGdajL1G71S/RlPUloNBq2bdsGwIsvvohcXjM3eqVKw+S1FwmMTMXCWMbaV9tXOuuy88od3v5HvOmvfrktfQz8RJ6Vp6b/Dye4k5nH+IC6fDX0yR47LsHRo6LI1oUL4s+DBsGuXY93m8qh8JhUaXQsi7TjTraKt3v78E7fRob5gL594dAhmDZNtOowIPcy8+jy7RE0OoGdMzrTwsPWoOsvj3yNls4LjpKSk8+SMa3o42NbqWBIo9Ux6KdT3ErMZlKnesx74elrzlfka1hzKoqVJyLJztcA4lTr+/2bVMqEvDYYMiCFO/NmzD0a1y15wT4bmcqJsGRm9GqIXCplzMpALsVm4OduzebXO1VZyTdPrWXB3ptFVhz1HSz4YXSrosbdrDw183beYOsl0busqas1M3o2pF8z50fWjAVB4FpCJpsuxrP3+j1ScvLR5hqRH2eHKtkKrcIUbY5JwUv8vnh5rWAtSIy04kuuRW6di5FjDsYO2Rg5ZmPkkI3MTI2nnRm9GjvRo4kTLZxNcagjakpUtuk3OkXBX2djqhwEabQ6/rt6h2VHbxORJNpSWJrIebmjF5O7eNeIGFhVqIkG6keRq9Iy+Y8LnLmdirmxjN8ntXuk6Gd5FPor2ZgZcWB2N4NrvZwKT2H8b+cAnprG0iIEQbSi+PBDWL1aLKMVvg9PXLN18WNyy9kI3tl2ExO5lEPvdDeMIfCpU9C1q1hCjIiAunWrvs5iFKo5V0VItyr8fDicRQfD8HO3ZsMrrbEqyARW9PwuPOZlUgn7Z3U1qO1NTZKmUPHL0Qj+LBiCAejXzJn3+jUpITFTHrXBkAEp3JkTfj3CH9N6lHnDvZORy/M/nyJNoWJse0/mD2thkG04GZ7MnE1XSMzKRy6V8HZvH6b3uG/YuufaXT7cdo0MpZi6cbMxZWKneozRw6Q1O09NXFousWlK4tKUxBa84tKUxKUrUakFdEoTBJ0EiZEWqZEWZDokErA2leNgZYKjpUnRV8eCr/716lDfwaJof+Xm5jJgwAAA9u7di5meeiuZuWr2XLvLlqD4oj4eEIOgWX18KpRCVWt1bLuUwC/HIoqkCKxN5bzS2ZtXOtd7atLKld2XBvt8lZYpf17kVEQKZkYyfn+lXaUMWFUaHcN/PcO1hEx6N3Fi9cS2Bm+6/XTHdf4MjMHVxpR9s7pVyRPusaDRiGnZQhYuhPPnxSkrA4+aV4Xix+SePXt49a8rnI1MY4CfC7+ON5Ayda9eYtZs+nRYtsww6yzgekImz/98CplUwsm5PXGrYdHUdIWKjgVO9Gtfbsm86aKJcGXO79f+uMih0ES6N3Lkj1er2Pj/mEnIyOWHg2FsvRSPThAHWUb6ezKte329hmJqgyEDUrgzPWf9y4pXuzCgedkjnifDk3l5zXkEAb4f2dJgxnQZShUfbb/O7quiFUfrurb8MKoV9QqaelNy8vkzMIb1xUxazY0LTFo71auUGJdWJ5CYlUdsmpJ7mXlYmcpxKAh8HCyNq01gUKPVcTI8hS2X4jkQkohKIz4ZSCXQuaEDr3bxpkcFgqCcfA2bL8ax6mQUCRm5ANhZGDO5izcTOnqVqdxdS+nkqcWA6GS4GBD9NqktnRpU3Oj11r1sBv98CpVWZ9DzpRClSsPAJSeJTlUyrI07i0e1Muj6a5SUFLGBWKkET0/RpqJr18e9VaVy814WA5ecRCfA31M6VOrYeIjjx8WJD2NjUeyyPGXZClLYAzqtW30+GNjUoOvWh4+3X+Ovs7H0aerE6omV1wuKSlHw3A/HUWsFfp/Ujp5Nnn7vvbDEbBbuv8XBkMSi97zszenRSPTbDKhvX2p/Wm0wZECKB0MuDnU49G73cm+ehU2EpkZStr/Z2WCj2IIgsCP4Dp/suE52ngZzYxmfPO/LmHaeRYFBnlrLzuA7rDld0qS1dxMnXu3i/UR7ZYXezWLrpXi2B98hOTu/6H0fJ0uG+3swtJU7Ljb6l1KiUxT8ERjNpovx5BTUnx0sTZjWrT7jAurWuMjas0aeWsu0dUEcD0vG1EjKbxPb0blhxW96hb5iVqZyDszuhquNYZ/Kg2LSGLk8EJ0AKyb406+ZS/kLPalcvCj6dYWHi1YVH30En35aMnv0hFCYlWvsbMXut7sYZty7cOrurbfgp5+qvr5iHA5NZPIfF7EylRP4Qe9KyXtUhcjkHHovPo4gUGUn+kJV8PqOFuyf1a3GjFGrm6CYNJYcjiDwdkoJWygTuZQO9e0LgiNHvAuqErXBkAEp3Jn1Zm9CMDZjQoAXXw71K3MZnU5g0toLnAhLxtvBgh0zOhs0+5CQkcu7/wZzNlJUwO7T1In5w1qUECgUBIHA26n8VmDSWkhjZyte7VKPIa3cDeJOXhV0OoHIFAXHw5LZEhRfJBkAYubmhZZuDG/jgZ+7dYUmw05FpLD2dDRHbt03p63vaMErneoxsq3nY/9/P0vkqbW8/lcQx24lYyIXA6IuPhULiDRaHcOXB3IlLoPujRxZ+0o7gwfs8/eGsuJ4JA6Wxuyf1e2J7wsrk5wcePtt+P138eeOHcUsUaHY4xNChlJFj++PkaFUG051/MgR6N0bGjUSR1eNDHdd1ekE+vxwnMhkBZ8+78urXWp+f76zMZitlxPo3NCevyZ3qPwUVZ6anguPkapQ8cnzvkx+DP+X6iQnX8PpiBSO3Urm+K0k7jzgtVnXzpwejR1p527KC+18aoMhQ1A8MyQ1MUcCbH6jU7k6K2kKFc//dJI7mXkM8HPhl3FtDHqB1+kEfjsVxcL9t1BpddhbGLNgeItSdTIik3P440w0m4LiUaq0ANQxN8Lfy45mbtb4udvQzM0aVxvTassa5eTk4FXPG41Ox5w1BwlNVnEtPrNoYgDASCahdxNnhvt70L2RY4WEt5QqDVsvJbD2THRRUzRAz8aOTOrsTdeGDjUuqFZd5Obm0rGjOAIcGBhY4z1DD5Kv0fLGX5c4cjMJE7mUVS+3rXCzckRSNgN/OoVKo+Pb4c0Z3c6wDbL5Gi2Dfz5FWGIO/Zu58Ot4w56Pj4WNG8XpqsxMUbwxMhIsH4831aOOycJxbxszcdz7UUbKeiMIopv988+Lqt8GZv25GD7adh2POmYcf6+nwTWwyiMuTUnP+fuJWjYJK1MjEuJiKj0g8c/5WD7Yeg1rUznH3utpcHXnJwVBEIhIyuHYrWSOhSVxPiqtKGuky1cS9+Oo2mDIEDwYDAF41jHjyJwe5aYeL8emM2pFIGqtwMeDmvJa1/oG376b97KYtSG4qCTWqYE9r3X1pkcjp4du/plKNRsvxvLHmZii3pni1DE3ws/dBl83a5q5iQGSt71FpYKIDKWKK/GZXI3L4Ep8Bpci73H5ixcA8Jy9GamxWO4yNZLSwt2WwS1deb6FW4UvlnFpStadjWHD+Viy8sTAysJYxsi2nrzc0euJNy6sDI9zmuxR5Gu0vLn+EodCkzCWS1k5wZ8ejSvWq7DqRCRf7wnF0kTO/tndqmQQWxrXEzIZuuw0Gp3AkjGtKu239kQRHQ3jx8Pw4TB79mPbjEcdkxqtjud/PsXNe9lPhcRBrkpLpwWHSVeq+XVcm3J7RKuDTzdf5MuRYs9QVlY2VlaVu4ZpdQLP/3yS0LvZjGzrwcIRLQ25mU8sinwNZ26ncuxWEoeuRHP+8xdqgyFD8GAwJJdK0OgEvY0gC+Xe5VIJG6YGVFqorizyNVoWHQjjt1NRRU7q9R0teLWzN8PbeDzUWKbR6rgUm8H1BNGx/sadTMKTcoqWLY6FsYymrta42Zqh0elQaQQ0Oh1qrQ61Vij4qkOjFVAVfM1Ta0kq1vMDoFPlEffDCADeWR9I24ZutPSwpZGzZYV7CXLyNRy5mcTO4DscuZlI4WZ72ZszsWM9RrT1eKaborVaLUeOHAGgV69e1WbHUVFUGh1v/n2JgyGJGMukrJrYlu4VyBBpdQKjVgQSFJNOl4YOrJvc3uDZm58Oh7P4YBjWpnIOzO5eoR60JxaNRuwfkhacR3fugIOD2GhcQ5R1TJ6NTGXMyrNIJbDrra74uhnIzkajEXuoAgIMs74CFh24xc9HImhT15at0zsbdN36EJ+UjqezeJ/4+/QtxnaqvFZT4b4H+GtyhwqXsJ92MjMzsbW1rQ2GDMGDwdCwNu5svZSAiVzKgdndynVTFwSBtzcE89+VOzhbm7D77a4G92MqJCEjlz/ORPPP+ViyC7IktuZGjOtQl5c71itTxyVPrSUsMZsbd7KKgqSb97IeshupCN4OFrTwsKGFhy2N7eV09RVLH5XJZmTmqjkcmsiea/c4EZ5cNGEG0NXHgUmd6tGz8cPZsFpqFpVGx4y/L3EgJBErEznbZ3SmQQWyc5HJOQz86SR5ah1fv+jHuA6GtV9Qa8Vx/qvxmdXWn/RYSUkRTQg9PWHLFrCpfBOuIXlz/SV2X7tLe287Nk4NqPo+T04We6Xi4kTdIU9Pw2wooqhrlwVHUWl1bNGjJcLQFM+ydfh8F8c/7F+lyd0+i48TkZSDiVzKvpld8X4Gs+WPoraB2oAU7sy6s/9FYmyOkVRCcw8bLsVm6P30qijwY7qdrKBNXVv+eLU9VtWYucjJ17DpYhy/n44mNk3U0zGSSRjcwo1Xu3jj567fBVKj1RGVouD6nUxSc1QYy6UYyQpfEoxkUuRSCUZyKcYPfO9Zx7yExlFlSjsZShUHQhLZe+0upyJKTg94O1gwsLkLQ1u54+P8dAqLPauoNDrGrT7Lheh0GjhasP3NzhU63teciuKLXSGYG8vYP6ubYUT7ilG8P2n+sOaMbW/Y/qTHyqlT0L8/KBTQogXs3St66jxm4tOV9F50nHyNgXzLBEEcsz9xAt54A375xSDbWch7m66wKSieQc1dWTaujUHXXR7Fr5Weszfz6Yutq9RisSUonnc3XQHAylTOhqkBNHN7MoLk6qY2GDIghTvz43/PsS4oGYBGzpbEpCrJ1+hYPKolw9qUr3cRnpjNsF/PkJ2noXVBQFTdpRytTvTcWnMqivPRaUXvB9S347Uu9enVpOYyKfoGQ6k5+RwISWTPtbsE3k5FU6x05+NkyYDmrgxs7kJjZ6tn64m+Amg0Gvbv3w9Av379asyOoyIkZefxws+nuZeVR5+mzqyc4K/3sabTCYxZeZbz0Wl0rG/P+tc6GPw4XX0ykq92h2JhLGNfNQRcj5WgINHCIzFRVGretw+aVq9ujj7H5I+HwvjxULjhfMuOHYOePatFlfrmvSz6/3gSqQSOv9ezRo+PB4MhO1srTsztWen7RWaumpafHyj62dJExu+vVN5K52miNhgyIIU7825yKkNXXuZeljjC16mBPWdup2JnYcyhd7rr1al/LT6T8b+dEw9ODxv+nNyhxhRxr8Rl8NupKHZfu1vUG+RpZ0a7enY0d7eheUHjdHVp75QWDOWptYQn5hByN5OQO1lcv5NFcFxGid6lJi5WDGzuygA/l9oMUAFPYgN1aQTHZTBqRSAqjY5ZfXyY1Uf/3oeYVAX9fzxJrlpbLS7cOp3AmFVnOR+VRntvOzZMCXi2SqxRUWKGKCxMVKreuRO6dKm2j9PnmMxVaemz+DgJGbmG8y0rVKWuBs+yCb+d42R4Cq929ubTwb4GXXdZFN+XPb7ZS1Smluk9GjC3f+UNjXt/f4zbKYqin02NpPw6zv+ZEGQsi9pgyIAU35nn43N57c+LAEgATztzYtOUdPVx4PdJ7fRqBL6eIAZEGUo1zd1tWDe5fY3aQNzJyOWPwGj+OXd/+qoQqQQaOlni525DC3cbmnvY4OtqYxDn6fjkDPr26kmuWsvzH64gLFXF7WRFqU3bfu7WDPATA6BncRqsquTm5tKtWzcATpw48dhH68ui0JEbYNXLbUuVfngUfwZG8+mOG5gZydg3q2u5/XkVJTZVSf8lJ1CqtLzfvwmvdfV+ZsTpALF/aPBgOHtWHEPfuhUGDqyWj9L3mNx99S5v/n0JE7mUw+92x6NOFTMuJ09Ct25idig8XFToNhDHw5KZuOY8FsYyznzQu8YeXIvvy89WbGLGvzcwNZJybE7PSjf8v7/5KhsvxpV4Ty6VsGhUy2djqvIR1AZDBuTBnTlt3UX23xAlwd1tzUhTqMhVaysk4R5yJ4vxv50jTaHC19Wa9a91qLr+RgVR5Gs4G5nKtYRMridkcjU+86EJMBADJB8nK/zcbWjqaoWRTIpWJ6ATBLQ6Aa0goNMJaHXc/77gq1orEJWSQ+jd7KKM2oPUMTfC180aX1drfN2saetl92yVLGrhsx3X+SMwBksTOdvf7Ky30aJOJzBu9TkCI1NpX8+ODVMNn70p1JUBkEkluNma4mVnQV17c7zszPGyN6eunQVe9uZYPEKROE+tJTJZQXhSNmGJ2YQl5jCouStDWz8BNxmlEsaOhZs34eBBgxucVhRBEEug56LSGNjchV/GGcC3rE8fOHwYpkwRPdsMhCAI9PvxBGGJObzbtxFv9fYx2Lorsg0jlwdyMSadMe08WTC8cn6XGy/E8v6Waw+9b2NmxO63u1Q9KH1CqQ2GDMiDO/NuZi69vz+GsmDKqruPA8fDUwAqpF1y614241afJSVHRRMXK9a/1uGxq+ImZeVxrSAwup6QydWEzBK2GFWlnr15icCnqas1LtbVJ/RYy5OBWqtj3OpznI9Ko76DBdsroMgel6ak/48nUKi01aIKLAgCn+28wb8X48qdnLS3MMbJ2hRLExlSiYQ8tZbUHBUJGbk8eBFdPt6f/n5PiO2HRiMKM9pX3Ey3Ogi9m8WgnwzoW3b6tFgC7NtXbBg3oNTEjuAEZm4IxtpUzqn/9Xoskh1BMWkM/zUQqQQOzO5WKSf6sMRsnvvhRIn3WnjYsPaV9s+sGCPUBkMGpbSd+dupKL7cFVL0O8+3cGXX1buYGknZ/Honvae1IpKyGbvqHMnZ+TRytmT9awElLDWeBBKz8rgWn8m1hEwiknNAAKlUgkxS+FWCTCpBKpUglYBMIinxvnsdM3xdrWnial3jXj+1PDmk5OQz+OdT3M3Mo3cTJ1a93FbvLE9h9sbUSMqet7tWS+lUEASSsvOJSVUSk6ogNk0pfp+mJDZVQbpSXaH1/Ty2NX2aOhukxGxwtm0TrTtatXpsm/DJ9uusOxtDExcrdr/dtepKz5cvQ+vWhtm4Ymh1YnYoIimH2X0aMbNPzWeHAKb+eZEDIYn09XVm1cttK7y8TifQ8osDZOdp8HG2JDwxB6kE/p3WsVq0754UaoMhA1LaztRodYz/7VyRN5ijpTGNXKw4HZGKu60ZO2d01jvLczs5h7Erz5KUnU9DJ0v+fq0DTmXoAT2tKJVKfH3FJsSQkBDMzZ/NtGxNkJubS58+fQA4dOjQE90zVJyr8RmMWC42VL/dqyHvPNdYr+UEQWDCb+c5FZGCv1cd/p3WscZtEjJz1cSmKolOVRR5Ij2q9FuIRAIedczwcbLCx8mSTg0dHr8tzK5dMGSIKMp48qTo8WUAKnpMpitE37LMXDXfvNiclzo8ufIGO6/c4e1/LmNlKufU+72qvXeotGtlRFIOz/1wHJ0Am1+vXADzyfbrdPVxoK+vM7M3BrM9+A7utmbsmdm1xvqhapqKBENPTbfg119/TadOnTA3N8fW1lavZSZNmoREIinxCjCAWqlcJmXpS21wLsjiJOeosDSR4+1gQUJGLm/+fQm1Vj+xwgaOlmyc1hFXG1MiknIYs/Is9zLLvsg+jQiCQExMDDExMdTG31VDp9Nx5swZzpw5g05XeVHMmqaFhy3zXxTtGH46EsG+6/f0Wk4ikfDtiBZYmsgJiklnzamo6tzMUrExM6K5hw2DW7qxYHgLzn7Ym91vd2FQcxceDG3kUgm25kYIAsSl5XLkZhIrTkQycc15ei8+ztrTUWTnVSzTZDC6doWWLSEpSey1iY01yGorekzWsTBmZkEPzuKDtwy3P1JSYPNmw6yrgEHNXfFxsiQ7T8Pvp6v/2CvtWtnQyZLR7URhyfl7b1bqGvrlUD+ea+aCRCLhy6F+1LUzJyEjl4+2Xau9JvMUBUMqlYqRI0fyxhtvVGi5/v37c/fu3aLXnj17DLI9DpYmLJ/gj7zgKW//jUTGtPPEwljG2cg0vt4dqve6vB0s2Di1I+62ZkSmKBizMpC7mQ97h9VSC4CJiQnbtm1j27ZtmFSDWWV1Mtzfg1c61wPg3X+DCU/M1ms5d1szPh4kDigsPhhGfLqyujZRb5q52bBsnD/H3uvBuA51i4yFW3nacvmTvlz8uA//TAngy6F+jGnniZWJnKgUBfP+CyHgm8N8tuM6t5NzyvkUA2NjI+oONW4sqjf37SvqEVWRyhyT4wO88HawICVHxbKjt6u8Ddy9K5b/xowRdYcMhEwqKSqP/XYqiszcxxPIzurTCFMjKUEx6RwMqdrfzMrUiCVjWiGTSth19S6bg+INtJVPL09dmWzt2rXMmjWLjIyMcn930qRJZGRksH379kp/XnlptkJnYABzYxmfDfYt6tpfOKIFI9vqLxMfl6Zk7KqzxKfnUtfOnH+mBhjcrPJx8bRo49RS/ai1OiYUlJm9HUSFan3S9MUnkXo3cWL1xLZPVPN9UnYev5+OJlelZd4LzR7695x8DVsvxfPHmWhuJ9/XfOnWyJFXOtWjeyPHmiuhxcWJTcexsWKm6Ngx0DPjbkgOhiQy5c+LGMvEUfsqT5IOHCg2UU+cCGvXGmQbQey5GbDkJLcSsw2nkfQIyrpWLtx/k2VHb9PA0YL9s7pV2NfxQZYdjWDh/luYG8vY9VaXZ07K5Jksk1WWY8eO4eTkRKNGjZgyZQpJSUll/n5+fj5ZWVklXmUxtn1dRvmLCtRKlZZNF+OL0r8fbb9OcFyG3tvqaWfOhqkB1C3QLxq9IpC4tMf/BFxLLYbESCZl2UttcLc1IypFwawNl0vVm3oQiUTC1y/6YSSTcPhmUpHExZOCk5Up7/dvwmePEOizNJHzcsd6HHqnO+smt6d3EyckEjgRlswray/Qa9ExfjsVRVZNlNA8PeHQIXB2hitXRMXq3JrPRvdp6kSnBvaotDoW7L1Z9RV+/rn4dd06uHWr6usrQFosO/T7qSgyK9hQbyimdW9AHXMjbicr2GSAbM7r3RsQUN8OpUrLzA3BJTwf/7/xTAdDAwYMYP369Rw5coRFixZx4cIFevXqRX7+o8fF58+fj42NTdHLUw8DwC+G+tHYWYyoL8akAwJ9fZ1RaXRMW3eRpGz9e4A86pizcVoA9ezNiU/PZfSKQC7Hpuu9fC3PPlqtlmPHjnHs2DG0Wu3j3pxKYW9pwooJ/pjIpRy9lcwPB8P0Wq6hkxXTujUAYN7OG+Tka8pZouYpL1slkUjo6uPIb5PacWxOD17r4o2VqZzoVCVf7hJLaJ9sv05Ekn4lxErj4wMHDogZIX9/UZixklT2mJRIJHw8yBeJBHZfu8uFYrZBlaJdO3jhBdDpYN68qq3rAfo3c6GJixXZ+RpWn4o06Lr1xdrUiBm9xKDsh4Nh5Kqqdv7LpBJ+GN0KW3MjriVksuiA4QLIp43HGgzNmzfvoQbnB18XL16s9PpHjx7NoEGD8PPzY/Dgwezdu5ewsDB27979yGU++OADMjMzi15xcaJqZ7pC9chlTI1ErxeLgjHaJYcj6NXYkYZOliRm5fPGX5cqFHG72pixcVpH6jtacCczjxHLA/n5cLheT8+1PPvk5eXRs2dPevbsSV7e09ts7+duw7cFInJLj0aw99pdvZab0ashXvbm3MvKY/EB/YKoJxUvews+ft6Xsx/05quhfvg4WaJUaVl3NoY+i08wd/MVFNUZ8LVoIWaGliwBaeVvB1U5Jn3drBld0E7w5a4QdFW9zn3xhfh1wwa4erVq6yqGVCphVmF26HQ0GcpH3xOqk/EBdfGoY0ZSdj5rDNDQ7WpjVnQerjgRycnw5Cqv82nksQZDM2bMIDQ0tMyXn5+fwT7P1dUVLy8vwsPDH/k7JiYmWFtbl3gBfLHrRpkd9262ZqyaeF//4ePtN3ije32sTMUJmHn/3ajQtjpbm7Ltjc4838IVrU5g0cGwp7psJpFI8PX1xdfX94nq83gaeZb25dDW7kwuEFJ8d9MVYlIV5SwhPnx8MUS8Lqw9E8X1hMxq3caawMJEzvgALw7M7sbfr3Wgr68zEgn8ezGe538+xdX4jOr78Lp1RR0AALUagoMrvIqqHpPvPNcIC2MZV+Mz2XElocLLl6BlSxg9Wvz+00+rtq4HeM7Xhaau1uTka1h1snqyQ+XtSxO5jDkFshTLj90mrYwHdX3p18yFcQXyBu/8e4XUHMOJ7T4tPNZgyMHBgSZNmpT5MjU1nOZOamoqcXFxuLq6VnjZgyFJbLlU9knaqYEDHw4QzfS0gsAnO27wXr/GSCTw97lY1p+LqdBn2pgb8fPY1iwe1RJLEzkXY9IZsOQk2y7HP3WjkObm5ty4cYMbN27UagxVkWdtX34woAntvcW+hXf/vaJXBrR7I0eeb+GKToAPt117ZrKmEomETg0dWPVyW/6ZEoCrjSlRKQqG/XKG5cdvVz1rUhaZmdCvnzh+f6NiD29VPSadrEyZ3rMhAN/tu1Xl8g/z5oGpKbi5gQFLyVKppKgndO3paIMEIg+iz758oaUbvq7WZOdrWHrEMJNzHw/yxcfJkuTsfN7bfPWpu8dUlaemZyg2Npbg4GBiY2PRarUEBwcTHBxMTs790dQmTZqwbds2QOzCnzNnDoGBgURHR3Ps2DEGDx6Mg4MDL774YqW2Yd7OG+VmZqZ0q18kw69UaVl6JIJp3eoXLV/RmrhEImFYGw/2zuyKv1cdcvI1zN54hbc3BD+2Ec9aajEkcpmURSPvB/wrTug3Zv3p875Ymci5Gp9Z4QeNp4GA+vbsndmVgc1d0OgEFuy9yYQ156pPh8zcHAQBcnJg6FBIr9lexcldvHG3NeNuZh4rT1Qx69KkCSQkwC+/GNSeA6BfM2d8Xa1RqLTVlh0qD6lUwv8KHrzXnY0mOqX8jGp5mBnL+Glsa4zlUo7cTOLPwGfvnCqLpyYY+vTTT2ndujWfffYZOTk5tG7dmtatW5foKbp16xaZmWLKXCaTce3aNYYMGUKjRo2YOHEijRo1IjAwECurinu7tKlrS06+hnf+DS7zKVQikbBoZEsaOIrjkEnZ+RwKSeS5Zs6otQJv/HWpUhpCnnbmbJwawDt9GyGTSvjvyh0GLjnJucjUCq+rllqeNDztzIumsH44GMaNO+WXvpysTZnbXywXLNx3i8RyFKGfRmzNjVn2Uhu+Hd4cMyMZpyNSGbDkBAdu6CdYWSGMjGDTJtH5PSJC1OvR1FyDuqmRrOgGv/z47aoHfXbVYzMhkdzvHfrjTPVkh/Shq48DXX0cUGsF/rf1qkGyhk1drYuqG1/vCSX0btnT1M8ST00wtHbtWgRBeOjVo0ePot8RBIFJkyYBYGZmxv79+0lKSkKlUhETE8PatWv1mg4rjW9ebI6liZwL0eU/uVqYyFk9sR0mcrHeG5GsIF2horGLFSk5+by+LqhSTZFymZS3e/uw6fWOeNmL6qFjVp3lu303n/iRSKVSSbNmzWjWrBlK5dPZ9/SkkJubS9++fenbty+5j2EcuroY4e/Bc77iQ8M7G6+Qpy6/vPFSBy9aetqSna/hi2J+gc8SEomE0e3qsuvtLvi5W5OuVDN1XRAfbbtW9XLSgzg4wPbtYGYmTpp98IFeixnqmHy+hSv+XnXIVWtZuN9Ak03BwfDhh2LWy0D09XXGz90apUpb9SzWA+h7rZRIJHw9VAySz0amsf68YdTEJ3aqR68mTqJtzj+X9ToPnwWemmDocePxwJNreU2b3g4WLBlz3zjwQnQ6LtYm2JoZcSU+k3Grz1V6GqFN3TrsfrsrI/09EAT45dhthv96pubVbCuAIAiEhIQQEhLy/64WbWh0Oh2HDh3i0KFDT5UdR3lIJBLmD2uOg6UxtxKz9RrzlUklfPOiH1IJ7L56l2O3ytYRe5pp4GjJ1jc6F5Xd15+LZfDSU4TcMfDTe6tW9wULv/8e1q8vdxFDHZMSiYRPnhevs1suxXMtvorN8RkZ0KkTzJ8PBw9WbV3FkEgkzOotCi/+GRht0Ibjilwr69qbF2VHF+wJNYgyu0QiYeGIFjhamRCelMNXu5/Nh4wHqQ2GKsAIfw/6N3NBrRWYuaH8iLm/nyutPW2Lfj4eloKfuzW25kYEx2UwesVZkiqZ2rc0kbNwZEt+GdcGGzNRI+L5n07xz/nY2mDjGcfExIS//vqLv/7666mz4ygPe0sTFgwTx3xXn4rirB5l4GZuNrzSWZxI+2TH9Wf6SdZYLuWDgU1ZN7k9TlYmRCTlMHTZaX47FWXY5upRo+5nhWbPBkXZPSmGPCZbedoytJUbII7aV+l6ZmsLhRZOH31k0OxQ76ZOtPCwqZbsUEWY2LEebb3qoFBp+WCrYXzG7C1NWDyqJQB/nY1lf3WUZZ8waoOhCiCRSPim4Mn1drKCz3ZeL3eZb4Y1L/HzqYhUvOzMcbQy4VZiNiOrOC4/sLkr+2Z1pVMDe3LV4skwdV1QpYOsWp585HI548aNY9y4ccjl8se9OQanj68zY9p5Igjw7r9X9DLxfKdvI1xtTIlLy+XnI4+WznhW6OrjyN6ZXenT1AmVVseXu0J4Ze0FkrMNOBL95ZcwfTocPQrl2OcY+pic278JpkZSzken6W3o+0jef1/c/osXYceOKm9bIcV7h/4MjCHlMY2jS6USvhvRAhO5lJPhKfx7Mc4g6+3q41iUhZy7+SphevoIPq3UBkMVxM7CmO9HihHzxgvxrC5nmqCpqzXN3Ep6olyJzwQEnK1NiElVMmL5Gb0NK0vD1caMvyZ34KOBTTGSSTgYkkiXb48yd/OVKq23lloeFx8/74unnRkJGbl8/l/5aXoLE3mRH9jKE5H/L457e0sTVr3cli+HNMNELuV4WDIDlpzgqKFKhTIZLFsGzR72Watu3GzNmNpVvBHP33uTfE0Vsn1OTjBzpvj9J5+I6tQGomdjJ1p62pKr1rLiuAHMZitJfUdL3n1OLNt9tSvUYBOH7z7XmNZ1bcnMVTPht3NPrc6dPtQGQ5WgR2Mn2nuLkwpf7Q7lp0PhZaYmx7av+9B7ydkqkrPycbY2ITErn1ErArlSAR+zB5FKJUzpVp/tb3bG36sOKq2Ofy/G0/eHE7y69gKBt1Nry2fVhFKl4bdTURWyXakKWq2WCxcucOHChafWjqM8LE3kLB7VCokENgfF65Ud6NfMhT5NxQbsj7Zdr15NnicEiUTChI71+O+tLjRxsSIlR8XktRfYEVxF4cLSOH0ali4t9Z+q45ic1r0BTlYmxKYpWXs6umormzMHbGzg+nXYuNEg2wcls0PrzsbU2DWgNCZ3qV80TPDhNsOUy4zlUn6f1I5GzqKbwrjV557ZqkNtMFRJviuQLwdYfCiM19cFPTKdP7ilGybyh3e1VCqO4bf0tCVdqealVWcJvF21UflmbjZseaMTW97oSP9mLkgkcORmEmNXneWFpafZeeUOGu2z03T7OMlUqvnpcDidFxzhy10hRCTVTAN7Xl4e7du3p3379k+1HUd5tKtnV+RD9uG2a3rdaOa94IuZkYzz0WlsNoCR5dNCI2crtr/ZmRH+HugEmL0x2LAB0fXr0K2bmGE5deqhf66OY9LCRM57/cTm4KVHIqpWhqpTRwyIAD77zKCSAT0aOdLK05Y8tY4Vxx9f75BMKjY+G8tEnaDtBvr725obs25yhyID8Qm/nX9sViTVSW0wVEnqOVjgU2DOCrA/JJEXlp7m1r2H0/M2ZkYMKBBiLI5GJzB3y1V+HN2STg3sUai0TPz9PIdCqu7G7e9lx/IJ/hx9twcTArwwNZJyLSGTt/+5TPeFojt2TZpcSiQSvLy88PLyeuotJJKy85i/N5ROCw6z+GAY6QUO1tEpJVPIeWotSdl5RCTlcDk2nfNRacSkKqrc4Pss7cvymN3Xh6au1qQpVHywpfynXY865szuKz6pf7M39LFpwDwOTI1kfDe8BWPaeRo+IPLzg3HjxBLTSy89JMhYXcfk8DYe+LmLSss/HqqiD93MmeL/Y8YMg5bKimeH/jobU+XMSVX2ZSNnK97uLSp5z9sZYrBMlbO1KX9N7oBTQa/rpN8vVK9n3mNAItTWTsokKysLGxsbMjMzi3zKCvn12G2+3XezxHtmRjK+GebHi609Srx/OiKFcavPYWtuxOw+jVh88BaZueLB1NTFivWvdeD9rdc4GJKITCrh+5EtHlpHVUhTqFgXGCOOgRbcIKxN5YwL8GJSp3o4WxvO9uRZRKnScC4yjd9PR3H6dmqpwpuOViZYmcjJylOTlatBVUYGzs7CGGdrU1xtTHGxMcXV2hRnG/FnVxtTnK1NsTI1qs7/0lPDrXvZDP75FCqtjgXDmjOmlLJzcdRaHYN/PsXNe9mM8Pco6vH7/4JOJ/DhtmtsuBCHVAI/jG7FkFbuVV9xdja0aSMKMg4fLgo01kAwfjYylTErzyKVwL5Z3WjkXHHR3CIEoVq2WRAEhv16hsuxGbza2ZtPC2RYHgdqrY6hy05z404W/Zo5s3y8v8EC1LDEbEatCCRDqaZzQ3t+m9gOUyPDKnwbkrLu3w9SGwyVQ1k7MzI5h16Ljpe63Ow+jZhZ8LQA4gXqjfVBfDzIF087c8ISsxmz8mzRk2tAfTtWv9yWT3feYGuBB9oXQ5rxcsd6Bv3/5Km1bL2UwOqTkUQWSLgbySQMaeXOlK71aexShQvNU44iX0NMqpLoVIX4SlEQnaokIimn0hkGiQSsTORYmxkhk0pIzMojT63fU6mliVwMlGxM6d7IkcEt3f7fBq0rT9zmmz03sTCWsXdmN+ral+1/dSk2neG/nkEQYMPUAALq29fQlj4Z6HQCH2y9xsaLYkD045jWvNDSreorvngROnYUy0wrV8KUKVVfpx5MW3eR/TcS6dbIkT9fbV8jn1lRToQl8/Ka8+JU19yeOD3GczXkThYvLD2FRiew9KXWPN/CAH/7AoLjMhi36iwKlZbnfJ35ZVwb5LIns8hUGwwZkPJ2Zt/Fxwl/oFdkQHMX5r/YHFtz4zLXHZ2iYOTyQJILauHN3KxZM6kdvx67zdoz0QDMea4Rb/ZsaPByiE4ncCg0kVUnI7kQfT/l3cLDBn+vOvh71aGtlx0uNs/WzTdPrSU6VUFkcsmAJzpFQVI5Y8lyqQRBEE14S8Pd1owfRrfCylQMfqxN5VgYy5FK7//tBEEgM1fN3cw87mXlcS8zT/w+M5d7Wfncy8zlbmYe2XkPp6AlEujUwJ4hrdzp7+eC9f+jzJFWJzB21VnOR6XR1qsOG6d1RCYt+5z4aNs11p+LpYGjBXtmdsVE/uQ+wVYHOp1o0/DvxXikElgypjWDDREQLVwIc+eKKtUXL4Jv9WdBolMU9P3hOGqtwO+vtKNnY6fKr0wQYPNm+Okn2LsXLC3LX0av1QqMWB5IUEw6kzrVK5pufFwsPhjGT4fDsbMw5uDsbthbGk6T7MztFCb9fgGVRsewNu58P6Jlievck0JtMGRAytuZ3++/xdKjJV2DX2rvydcvNtcrgEnIyGXYL6dJzBJvxE5WJqx9pR37biTy02FRL2Vqt/p8MKBJtfWHXIpNZ/XJSPZdv8eD1R93W7Oi4Mjfqw5NXKwq9RSQm5tLt27dADhx4gRmZmaG2PRSEQSBxKx8IpNzuJ2i4HZSDpEpCiKTc0jIyC1Td62OuRH1HCyoZ1/wcjAv+t7G3AhBEEjJURGemE1Ecg4RSTmEJ+YQnpRDdp6a0C/6G+SioMjXFAVLYYnZ7Lp6l6AYMWgVNCpS//sOR0sTlqxcS7+Wnv8vbvRxaUoGLDlJTr6Guf0bM71HwzJ/P1OppvfiY6TkqJjzXCNm9PIp8/efRXQ6gfe3XGVTUDwyqYQlY1pVPUug00H//qKi83vvwXffkZeXx5gxYwDYsGEDpqaGf4j6encIq05G0dDJkr0zu2JU2WyEWi0GcBER8Pnn8OmnBtvGU+EpjP/tHMZyKSfe61mph0lDXStVGrFcfCsxm8Et3fh5bOvyF6oAB0MSef2vILQ6gUmd6vHZYN8nroexNhgyIOXtzGvxmQxeeooO3na80NKNj3dcRxBEEbi3e+t38U3KymPUikCiU8UGXFMjKT+PbUNsmpIvC/yWxrQTA6zynoarwr3MPM5FpXIpJp2LMemE3s16KDiyMJbRqq4t/l52+HvVoXVdW70yFAqFAsuCJ7CcnBwsyhFxKw9BEMjK0xCfruR2shjoRCYriEzJISpZgaIMzyZrUzn1HS2p72CBVykBT2XJUKqwNjWqtiekuDQlO6/cYcvZCI5+OAAAz9mbsbW2ZGBzV15o5UaAt/0T+YRmKDZdjOO9zVcxkknY/mZnmrnZlPn7O4ITmLkhGGO5lPWvdaBdveox73yS0RUMamwuCIh+GtOaQS1cq7bSe/fgv//gtddAIjH4+V0amblqen5/jDSFquotBBs3ika0lpYQGQmOjgbZRkEQGLUikAvR6YzrUJevX2xe/kIPYMh9eTU+gxd/OYNWJ7Bigj/9mj08yFMVtl2OZ/bGKwDM7O3D7L6NDLr+qlIbDBmQ8namIAj8cz6O0e08kUklrAuM5pMdNwD4dnhzRrcru9mzkDSFipdWn+XmXXEaTQK8P6AJduZG/G/rNXQCDGruyqJRLWusYU2RryE4LoOgguDockw62Q9MEEgk0NjZilaettSxMMbSRI65sQwLYznmJjIsTMRSEZo8OjQSmzgTUzNwsLV+qHyUna8hNUdFmiKflBwVaQrxlZKTT5pCRWqOilSF+O9pChVq7aMPXZlUQl07c+o7WNDASQx86jtaUt/RAnsL4yfuCaYiqFQq5i9ZTnBcBgmOHUhS3P+buFib8kIrN4a0csPX1fqp/n+WhiAITFsXxIGQRBo7W7FjRucyzwdBEHhl7QWO3UrGWC5l8aiWBu2feFrQ6gTmbr7KlksGDIhALDndvIm6YUPWFviZTZo0CSOj6inhFl5f65gbcWxOz8o/vOh00K4dXLokTpn9+KPBtrF4w/femd0q3Idp6MDy2303+fXYbRytTDg4u1u57RsV5Y8z0Xy2U7znffK8L5O7eBt0/VWhNhgyIBXZmYUs3H+TZUdvI5NKWPWyP72aOOv3WXlqJq05z6XYjKL3hrfxoEdjB9799yoqrY76DhYsHNkCf6+af8LV6gTCk7IJikknKDqdoNh0YlL1UyTVqfKI+2EEIGYzpMammBvLMDeWI5NCukJd5vTVo6hjblSU5Ske9NS1M8e4FG2nZw2dTuBcVBo7ghPYc+0uWcV6jRo6WTLS34NJnes9U2W01Jx8+v14gpQcFVO71efDgU3L/P1clZZZGy+z/4YoWfHBgCZM7Vb/mQsUy0OrE3hv8xW2XkpAJpXw89jWDGxugIBoxAgxU7RhA3gYbgK2NDRaHQOWnCQ8KYfJXbyLTF0rxcGD8NxzYGwMt25BvXoG287Chu8uDR1YN7l9hY41QwdDeWotg346ye1kBcPauLN4VKsqra80fj4czqKDovTBdyNaMKqtp8E/ozLUBkMGpDLBkCAIzNkkPoWZGkn5Z0oArevW0WtZpUrDlD8vcjrivvhiW686TO7izbz/bpCYlY9EAq908mZOv0aYGz9eb6qk7DwuxWQQcieT7HwNynwtCpUGpUpLTr4GpUp8Lysnm6DPXwDuB0OlYWEsw87SGHsLE+wtjLG3NMauxPfGOFiaYGchfv8kj3XWNPkaLcduJbMjOIFDoUmoNGJw2cDRggXDWzxTJaJDIYm89udFJBL4Z0r502JancBXu0P4vUDJeEKAF58N9n1ip2CqC61O4L1NV9h6WQyIlo5tzYCqBkTt28OFC2KpKTQU7Kt3cu94WDIT15xHLpVwYHY36jtWoQG6Tx84fBgmTIA//zTYNsamKumz+DgqrY5VL7elr69+D8Rg+GAIICgmnRHLxenKNZPa6v2Ari+CIPD17lBWn4pCKoFfxrWhv58BAu0qUhsMGZDKBEMgaj289sdFjoclY2dhzObXO+p90uaptby5/hKHb973GHK3NWPJmFZsvBDHpgJlXS97c74d3uKpGBsufoInp2WCkUlR4KTVCdSxMMa+NrjRC51OR2hoKABNmzZFKn34hp6Vp2b31bssOhBWpNw7IcCLuf0bPzP6Rf/bcpUNF+JwtzVj36yuev2/fjsVxVe7QxAE6NPUiZ/Gtn7sDxQ1TfGASC6VsPSl1lW7cV26hM7fn1AAKyuaHjiANCDAUJtbKq/8fp6jt5Lp09SZ1RPbVn5FFy+K5TKJBMLCoGHZTfkVYcHemyw/fpt69ubsn91N7+xsdfVffbUrhNWnonCxNuXAO90MPo0qCAL/2yLKORjLpPw2qS1dfQzTi1VZKnL//v/1WFSDGMmk/DKuDS08bEhTqJj4+3m91UBNjWQsn+BfoqafkJHLxDXn6e/nwtpX2uFqY0pMqpIxK8/yyfbrT5UaqJmxDAdLE+ram9PU1Ro/dxvcbc1qAyE9yc3Nxc/PDz8/P3Jzc0v9HWtTI8a2r8vhd7ozuiBlve5sDH0XnzCIwvmTQHEz18JBg/KY3MWbX15qg4lcyqHQJMasPGtYp/enAJlUwsKRLXmxtTsancCMvy9XzRm+TRtyW7fGD/DLzia3Sxf44QfKHNusIh8NaopMKuFQaCJnIlIqv6K2beHjj2HfPmjQwHAbCMzo1RAHSxOiU5X8USCV8jh597nG1LM3515WHt/sDjX4+iUSCd8Ma87A5i6otDqm/hlUNAH7NFAbDFUjFiZy1kxqh5e9OXFpuby69oLeFhhGMik/jWnNCP/7NXiFSstrf14kLDGbfbO6Mrb9/Zvccz+c4FR4FS4KNYCDgwMODg6PezOeCfTdlzbmRnw7ogV/v9YBr4IL4Wt/XmTG35ee+iDA0kTOopGimeu/F+P1DvIGNHfl7ykB1DE34mp8Ji/+crrGfOWeFESV+5YMbeVWEBBdqlpANGsWDoADgFYL77wDQ4dCWpphNvgBGjpZMb6DOJzyxa6QUhXh9ebLL8XeIQP3kFmayJlb4K328+GKeatVx7XSzFjGtwWemhsuxHEyPNmg6wfxuPphdCu6+jiQq9byyu/nuRqfYfDPqQ5qy2TlUNkyWXFiUhUM++UMqQoVXX0c+G1iO72be3U6gXn/3eDPwJgS74/09+CrF/24EJXO+1uukpAhZgjGtvfkg4FN/18J8tWiH7kqLT8eDmP1ySi0OgEbMyM+HtSUEf4eT3Uz8Td7Qll5IhIHSxMOzO6GnYV+0zJRKQpe+f080alKbMyMWDnBnw5PQcnZkGh1Au/8G8yO4DvIpRKWj/enTwX6W4pQKMSeoQczlXXrio3VHTsaZoOLka5Q0X3hUbLyNMwf1pyx5di06EVammjqaqDzQacTeGHZKa4nZDG2fV3mD6v4qL2h+WzHdf4IjMHd1oz9s7thaWL4MrFSpWHCb+cJiknHRC7lq6F+jHwMTdW1ZbInDC97C35/pR3mxjJOhqf8X3t3HhZl1T5w/DvDvpMg4AKCIIsrCkbkhqWpWWr1miZqlppm5lbY22v9srTM1LTctdKyXNJcWtxzTVMREHcUkUUWWWUTZmDm+f0xMIKisgwMyvlc11ww2zNnZp555p5z7nMfPvjtLOpK/pKRy2V8OqANC4d0wMrkzjDS5rAbDP/uJD5NrNgztTsjA1sAsOFUAn0WHuFQVOr9Nik0UGbGBnzYz4cd73ShdRNrsguKCNlylhHfnyK+krMC66NpvT3xdLQkPU/BjG0PX8y1lJu9Bb+9/TQdXWzJLihixPen+D0yqZZbW78YyGUsGNyBgSU9RJM2RnDl5r2LTT+UhQW8+OK9l8fHw5AhtdJD9ISFMZN7aeraLNgbRW5hUc02uGABuLnB77/roHUacrmM/3tBU4l6U2g8F5NydLbt6pre15vmT2iGl/9v+/lKf16qwtzYkDVvdOZZbwcUxWpCtpxlxrZzKIprtkh1bRLBUB1p39yWZcGdMJDL2BaRyNw9lx9+pxIymYyXOjZn/3tB9PS6k5AWGptF/2//ITGrgM8GtmXjW0/Rws6c5OxCRq0J5f3NkWTfruEBQnjstG1mw46JXfigrzcmhnL+iU6nz6IjfHc0huJqlDfQN1MjA75+1RdDuYxd51PYcabyAY2dpQkbxj5F3zaaPIdJGyJYfuharXxB1FeGBnIWDO5AYEs7bitVvPXT6eodN4YMufey/v0hLAwa1c5MxhFPtcDN3oL0PCVLD16r2cYyMiAnBz74QDPUpyNPujWif/smqCX47M8Let+3LEwMmfefDhjIZWyNSGT10ZhaeRxrUyNWj/Rnai9PZDL45WQ8Q1aeIDm74jxHfRPBUB0K8nLgy5Ju0pWHY1hz7HqV7u9obcoPozrz1X/aY16SbJySU8gLi4+y5MBVfJ1t2TW5G292cUMmgy1hN+i98HC9SJgtKCggKCiIoKCg+yb9CpVTWFhIcHAwwcHBFBZWLin/bkYGct4Ocmf3lO481bIRBUUqZv91iZeXH68Xv16rqm0zG23F9//bcZ6U7Mq/LqZGBiwN7sSbXTTF4ubuvsxH288/koFhdRkayFkyrCPNbM2IzbjN5E0RVcrDKSwsJPjXXwk2MKAQNLV7vvlGU6VaR9WdK2JsKGdGSZ2pH/65TkJmDXo4p0/XVKSOioIlS3TUQo0P+2l+eJyIyWTPhQfnZtXFsTLQ3Y6P+2tetzm7LnPwcu2MJMjlMib3asUPozpjY2bEmYRbvPDtPzVLeq8lImfoIXSRM3S3pQejmbcnCpkMFr9WvRWFk24VMO3XM5yIudP97Ghtwoz+rXmxfRPC4rKYvuWsdmX6Qb5N+fB5H72tel4X5fobitpY2mRTaAKf77xEbmExhnIZ43q05N1nWj1SM/yKVWpeWfEvkQm36NbKnp/erFqxO9B8oc4qmXr/jLcDi1/riEUt5FTUV+cTs3ll+XEUxWom9vTg/ZIE4Icpt0+2aoXFr79Chw6wYQN4empmbdUSSZIY/v1JjkVn0L9dE5YGd6r+xj76CD7/HAwN4epVnRZiXLA3isUHonFuZMa+qT3u+9mqq2OlJEn8b9s5NpxKwMrEkG3vPI2HQ9WqZVdFfMZtxv8cxsXkHOQy+KBv7Rc/FTlD9dyEIHdGPNVCs4bZpkhOxGQ8/E53aWprxoaxTzF7UFuMDTQ7080cBZM2RPDysuPI5TJ2Tu7GuO4tkctg+5kknv7yAGN/Os3By6k1m30h6JWxsTELFy5k4cKFGBvXvLS+TCZjaMk0/L5tnChWSyw9eI3nvzlKVEo18kf0pHS4x8RQztGr6fx8Mr7K23izqxvLg/0wMZRz4LJm6n1lS2I8Dto2s+HLVzS910sORrP7fHKl7qfdJ//7X4xPnQJfX82q8MHB8PrrUM0ezMqQyWR81L81chn8dS6ZU9drkJ80YwbI5VBcrCkmmVy5518Z43u442htQkJmAT9UcVSgNshkMj4d0JYn3RqRqyhm9I+nuXVbWWuP52JnztYJT/NKp+aoJU2P1Ns/h9c810tHRM/QQ9RGzxBoZnG880s4uy+kYGVqyObxgXg7VW/7CZm3ee/XSE7Flj8IDOjQlOl9vUjPU/L5XxcJjb1T86GpjSmvdnbmVX9nmtrW3grypUTP0KNj9/lk/m/HBVJzFdiYGbHmjc50qmQF9frgh3+u89mfFzEzMmDX5G642ld9XwuPz2LMj6fJzFfSzNaML19px1Mt7aq/Uvoj5rM/LvLDseuYGxuw/Z0ueDpWo8cgIwPatIGbNzV5OF9+qfuGlvHh1nNsOBVPu2Y27HinS/UXLG7dWlNJG6BlSzh8WGfLjGwNv8G0XyOxMDbg4PtBOFTQU1/Xx8qMPAUDlx7jRlYBXTzsWPvGk7W6n0uSxC8n4/n0jwsUqSTcG1uwcoRfrfRKiQrUOlRbwRBoKk2P+P4kobFZ2Fsas3KEP34tqvelo1ZLrDsRx5ydlygsvpPrYGIoZ0w3N94O8iD5VgEbQxP4LfwGt0oSJOUyTS7T0M7OPOPtUGvLE4hg6NFy67aSN9eGEh5/CzMjA1aN9NN7NdnKUqslgr87yb8xGfi1eIJfxwViUI0vxtj0fN5YG8r1kqFmK1NDeno50Ku1Iz08G2Nj9viWryhWqRn+/UlOxGTiZm/B9ne6VO/57tihqTckl8OxY1CLlanTchX0nH+IPEUx8wd3KFejrUreew++/vrO+ZYt4eBBTZmAGlKrJV5afpzIhFsM9mvOvMEd7rmNPo6Vl5JzeGX5cW4rVbwe2IJPB7at9ccMj89iws/hpOQUYmFswLzBHXSzVl4ZIhjSodoMhgCybxfx2uoTXEzOwdhAzpyX2/FKdT/EaA7gIVsiy/UCAdhbmvD+c54M9nemSKVmz4UUNpyKvyfnaLCfM0M6O+PcyLzabaiICIZ0R61WEx+vGQJycXGpcDkOXbitLGbcujCOXk3HyECz0nmN17GqIzeybtN30VHyFMV80Nebt4OqV104M1/JvD1R7L2QQkb+nSEEQ7mMgJaN6OXjSC8fR51/XuqDjDwFA5YcI/FWAT29GvP9653v29vywH1y5EhYtw68vCAiAsxqryd6xeFrfLnrMo7WJhx8P6h6S62sX68Z3ivL1VUTEOkghyg8PouXlx1HJoPf3+lKu+Y25a7X17Fyz4UUxq0LA+CLl9oxLEAHdZseIj1PwcT14drvoXHdWxLSx0tnP8pFMKRDtR0MAeQripn26xntqtrjerRkeh/vav2aBc0Q3NrjsczddQmlSkImu1MZ38vJio/7t6ZrK01105i0PDaFJrAl7Ib2YC+TQVcPe4Y96UKv1o466TIVwZDu1OVrqShWMW1TJH+dS0Yugzkvt2NI59o/SOrC5tMJhGw5i5GBjN8ndsWnSfU/vyq1xJmELPZdTGX/pZv3VKz2drLSBEatHWnfzKb6QzT1TNmE6nef8eC95ypOqH7gPpmVpRkuS07W9LrMn19r7VUUq+j19WESMguY9GwrpvX2rPpGLl3SDJXdzcUFDhzQybIdUzZGsP1MEv4tnmDz+MByScT6PFYuOXCV+XuvYCiX8fOYgDpZ97JYpWbenihWHtFM8X+qZSOWDOuEvaVJjbctgiEdqotgCDTdp4v2X+HbA9EAPOvtwKKhvjVaVPNaWh7vb44kIv4WADKg9M1uYWfOm13c6NfOCQcrU5TFavZdvMnG0HiOllnWw97SmP/4OTO0s3O1ci9K5efn4+DgAEBqaqoIhmqgrl9LlVrio+2aWScA/3vem7e663Ydp9ogSRJjfwpj/6WbeDtZsWNil0ovlvkw19Pz+fvSTfZdvElobCZl5yM4WJnwrI8jvVs78LS7/SM1I68ipXkuACuGV7wa+UP3yb/+ghdeAAMDzSwtN7daa+/Oc8lM+CUcUyM5B94LqnpOpEoFVlb3VtP28oLFi6F37xq3MTm7gGfmH6agSMXi1zryYoc7M4r1eayUJIlJG8/wR2QST5gb8fvErnXW67nzXDIhmyPJV6pwsjZl2fBONc5VFMGQDtVVMFTq98gkQjZHoihW4+loyXcjO+NiV/2dUaWW+P6fGJYfukbWfQqpOVmZ0Mn1CXydbfF1fgJbMyN2RCby6+kb5davamFnjpejFd5OVng5WePlZIWrnXmt5RkJ9YckSXy5+zIrD2t+vU0Iciekj1e9X8YjLVdBn0VHyMxXMiHInel9vXX+GFn5Sg5dSWX/xVQORaWSr7xTsM/MyICurewZ4u/Msz4O9f71up9P/7jAmmOxWJQkVLeqTkL1jBnQqxf07Kn7BpYhSRJDVp7gVGwmg3ybsmhox6pv5Kmn4OTJO+c9PeH8eTDSXZ7YN/uvsnD/FZrZmvH3e/efal/XCpQqXl35L+cSs/FytOK3CU/XypIdFYlOzeWtdWHEpOVjZCDj/15sw/AAl2p/bkQwpEN1HQwBRCbcYuxPp0nNVfCEuRHLgv0IdK9Zd2VhkYrfI5P48XgsFx5SVM9ALqN/uyYseLUDf19KZWNoPIevpFW4CLWxoZxWDpZ4OWmCJG8na7ydrGhsZXLfHbiwSMWNrAISsm5zI/M2z7drgp0OukSF2rf80DXm7tZUTx8W4MKsgW2rPZxbV3adS+btX8KRy2Dz+KerPUmhMhTFKk7GZLL/0k32X7xJUpnij51dn+C//Xxq9fFrS5FKzQhdJFTXkXM3shmw9B8kCbZNeJqOVe1hePttzZpq48fDokWa0gDbtmmSwXWkQKni2QWHSMouZFpvT23R0PogJbuQF5f8Q1qugl4+jqwa4VdnQ7+5hUVM33KWXSULB3dysSWkj3e1vgNFMKRD+giGQLMzvrXuNGdvZGMol/HZwLY6SWiTJInTcVmsOHSNvx9QdXR8SdG90oJzmflKLifncDkll6iUXC7fzOVKSi4FRRWXrbcxM6KZrSlPmBtjbChHpZbILigi6VYBaXl3ElFlMrjwaZ/qJToKerH+ZDwztp9DkuCF9k34+lXfSi88rC9TN51hW0QibvYW/DWpa53sb5IkcSEpR/sjRFEyy7NvGydC+nrh3tiy1tugSxl5Cl5c/A9J2YU84+3AdyP9q/8FGRcHubnQtvZmLb2/OZItYTfo5GLLb28/XbXehfPnoVkzzaKtM2bAF19Aq1aay3VQ26vU75FJTNoQgZmRZqq9k41+iuJWJCI+iyGrTqAsVtdar+r9SJLE6qMxfL3vCoVFms9NVw973u/jha+zbaW3I4IhHdJXMASaHpSQLWf5o2TxyFFPu/JRfx+dDUudup7ByO9PlZuKX5aJoZwgr8Y8364Jz/o43tNVqlZLJGTd1gZIUSm5XErJITY9n7trOkrFStK2fQFA45f+h8xQc0AxkMto0cgcUyMDTI3kmBkbYGZkgImR5q+pkRwzozuXASiL1RSpSk8SSpWaouK7zpeeisufL1ZJqCUJCU1SuVqStD1e0t2XU5p4rrmNVHIbc2NDGluZ4GhtgoOVKQ5WJjham9LY2kT7fyNz41r7JaVQKJg4cSIAS5YswcSk7nvV/jybxNRNZyhSSQR5NWZ5sB9mxvWjm78i2QVF9Fl4hJScQkYGtuCzOpg6XFZydgEL911hS9gN1JJmvx/a2ZnJvVrhYFV/vgAf5tyNbP6zQpNQPekZD6aVJFRXaZ/cuxdeflkzZf30aZ0GF2XdzCmk5/xD3Faq+Pa1jgzoUPVK/4AmaPPwgNRUTS/R5Mk6a6MkSQxe8S+n47J4qWMzFg7xpbCwkFdeeQWA3377DVNT/e0f2yJuMHWTJl/sm6G+DPRtVqePfzOnkCUHotkYGk+RSnOg7t3akfee86xUXT4RDOmQPoMh0HxYlh6MZv7eKwB0a2XPktc6YWOumy7qS8k5vLriOLmKBy9MaGwop3urxvRv78SzPo5YPyCxu7BIRXRqHuduZLP9TCJhcVkoCwtIWPgfAJynbkFu/Oh8AVSHoVyGvaUJDqUBU0mg5GBlipONCb7OT9DIonpfAvVlZt6hqFTG/xxGYZEa/xZP8H3J+kP11dGraYz4/hQA60Y/qZe6SVEpuXy1+7K2V9bc2ICx3VoytnvLOsvLqKnyCdV+9G3rVLV9Mj0dfHw0f2fP1vS81JJv/77K1/uu0NTGlAPvB1U/L2fVKhg3TtNTFB2t04Vnz964xYAlxwDYOuFpvOyM68Xnu9ScXZdYeTgGE0M5v44LpEMVemZ0JSHzNov2X2VbhObHhEwGAzs0ZUovzwdO7BHBkA7pOxgqtft8CtN+PcNtpYqW9hZ897o/LXXUzR4en8Xw705yW6mil48jZsYG7DybREkgjoFcVm75DmMDOd1a2fN8uyb0au340C/APEUxy/ddYPqLvkD5YGiof3Ne9nOmsEhFQZGKwpJTgVJFYbFa87f0siIVcpkMIwO55mQow7j0fwM5RgYyjA3vOq+9rea8oVyOXKb5MMlkMmSU/QsyZCXX3ed/IFdRTGqOgrTcQm7mKEjNLSQ1V0Fqyf8Z+coK86vKksmgQ3NbgrwaE+TlUKXp2Eqlknnz5gEQEhKikyU5qut0bCZvrA0lt7AYnybW/PTmkzS2qr/5Xx9vP8+6E3E4WZuyZ2p3vQVvJ2IymLPrMpEJtwDNrM3Jz7Zi6JMuj0SV67IJ1TsmdsHF1qRq+2RpLR9jY4iMBO/aGYIpm5fz/nOeTHymmnk5xcXQsaNmmGzKFFi4UKftLB3S83W2Zd3IDlhbaxLU60MwpFJLjP3pNAcup+JgZcIf73bV2xqX0am5fL3vCjvPafKJDOUyBvs7M+lZD5rY3Dtr8LELhmJjY5k1axYHDhwgJSWFpk2bMnz4cGbMmPHAD50kSXz66aesWrWKrKwsAgICWLp0KW3atKn0Y5e+mDfTM3Gw02/i48WkHMb+dJrEWwVYmxqyNLiTzn7d/nM1nUkbI9gzpTuNrUy4mVPILyfiWH8qnvQyOT53B0ZGBjK6eNjzpFsj3OwscGtsgaudxT2/wMr+cvScvg2FTPMltHRYJ/q3fzQK+VVWkUpNRp6S1LLBUo6iJGAqJC7z9j11ahpZGNO9lT1BXg5092xc7V4jfbiYlMPIH06RnqfA1c6cdaMD6m0RwtvKYp7/5iixGbd5uWMzvh7iq7e2SJLEznMpzNtzmdgMzWrrbvYWhPTxol9bp3o986xIpWb4dyc5eT2TlvYWbJ/Y5YG9xfeQJOjfH3btgm7d4NAhTZXqWrDjTCKTN57BvGQJjGp/ke/ZowngPv9c00ukQ6klQ3r5ShVzBrRiWBfN8GN9CIZAk9T88rLjXE3No0NzGzaNC9Tr7LfzidnM3xvFoag0QDNyMeKpFkwIci83GeexC4Z2797Npk2beO211/Dw8OD8+fOMHTuWESNGMP8BBbzmzp3L559/ztq1a/H09GT27NkcOXKEqKgorKwqNzW09MXsM3c3P7zVvU7W8XqQ9DwF49eFcTouCwO5jI/6+zDqaVedHDjTchX3/KpXFKv462wy60/GcybhFsWVXOC1qY0prvYWuNpb0NLeAkczGNBZU5smNiWDn0JTWHcijp2TuuHh8GglkupCcnYBh6PSOBSVxrHodHIVxdrrZDJo39yWIM/GBHk1pn1z23o/Yys2PZ/h35/kRlYBTtamrBv9ZPWmX9eBsLgsBq84jlq6f92culSkUrPhVDzf7L+qLXza0cWWD/v58KSb7oZjdC09T8GAkoTqZ70dWF3VhOq4OE0xxvx8WLFC5wFGKUmSeGnZcc48YAmMSsvLA8vaOV4tPRjNvD1RNDaVOP3piyUPVz+CIYC4jHwGLj3GrdtFDPRtyqIhvnoP2ENjM5m3O0q7LqeFsQGju7oxpntLrE2NHr9gqCLz5s1j+fLlxMTEVHi9JEk0bdqUKVOm8MEHHwCaJD9HR0fmzp3LuEp+8EpfTN8Z21g44mmCvBx09hyqS1GsYsa282wJuwHAa0868+mAtrU+o6ewSMW5xGzC47IIj88iPP5WuTpED6JWFmpzhrrM/gv3JvY4Wpvg7WSNu4MlbnYWPGFhhKmRAYZymd4/ZHWpSKUmLC6LQ1FpHIpK5fJdK8U/YW5E95LAqHsrTa9RerqmMKa9vX29ea1SsgsZ8f1JrqbmYWtuxI9vPKmX/ILK+Gr3ZZYdukYjC2Ntb6i+5SmKWXUkhtVHYrSzNHv5OPBBX+96G1ieu5HNKyuOoyhSMdrfnreD3Ku2T377rSYh2doaLl7UzOCqBWWXwPhjYlfaNrN5+J3qWGGRit4LDxOXkqU9VtanYAjgeHQ6I344hUotMb2vFxOCPPTdJCRJ4sjVdObvieJcYjagmc08voc7L7dthFPjRo93MPTRRx+xe/duTp8+XeH1MTExuLu7Ex4eTseOd4puDRw4EFtbW3788cdKPU5pMHQ9MRXXpvVnoUpJkvju6HW+2HUJSYIn3RqxYrhfnQ6vSJLEjawCwuOziIi/RXh8FhcSs7W5RqVkMjBSK7n61cvAwxOo5TIwMTTAxEiOiaFc87+hvOR8yf+ll991G0MDuTa35+5cHyrKDeJO/hBlrnu5UzO9jYunZBdy+Eoqh6LS+Ofqvb1Gre2N2fn+c0D9O1hm5SsZteYUkTeysTA2YPXr/jztbq/vZt1DUaxi4JJjXE7JpZePI6tH+tWboDI1p5BFf19lU2gCKrWEXAav+jsztben3vbJB/kt7AZTfzlZvS9wlQqCgqB7d/j4Y6jFmVOTNkTwe2QST7o1YtNbT1X//ZYk2LoVfv0VNmzQ6fDernPJjFtzvN4GQwDr/o3l4x0XkMlg9Qh/erV21HeTAM330Z4LKczfe0WbhtDIqJiI2YMe32Do2rVrdOrUiQULFjBmzJgKb3P8+HG6dOlCYmIiTZvemVL51ltvERcXx549eyq8n0KhQKG409uRnZ2Ni4sL3+0OZXBgNda5qWVHrqQxfUskeQoVge52rB7pr9f2FChVXEjKJvLGLSITbhGZkE1GvhK1spDEZSMB+P34OVILZMRl3iYuI5+4jNskZBZQpKp4ir8+rB8bQPvmtvpuBkUqNZEJt/jnajpHo9OJSskt91omJSXVu4NlnqKYyRsiOHk9ExMjObsndaNxPfwSj0rJYeiqExSpJL58uR0vVHfqdS2JSc/jm/1X+PuSJi+iu6c9y4L99Nyqin26NYyv33gGgMgr13F1rMLwnkqlWaajliXdKuCFxf+gLFazcEgHerd2qt6GMjOhXTvNkNmqVTBkiM7aKEkSI1Ye4Y8PBmjaXA8/3wCz/rzAptAbmBvL+WtSNxrXo/IQKrXEX2eTWHoomoSUTBKXj+LWrVvY2DykN1DSo08++USipHzL/U6hoaHl7pOYmCh5eHhIo0ePfuC2jx07JgFSUlJSucvHjBkj9enTp0ZtEidxEidxEidxEqdH45SQkPDQeESvPUPp6ena3If7cXV11RadSkpKomfPngQEBLB27VrkD+ierO4w2d09Q2q1mszMTOzs7OpNNzpohu+cnZ1JSEjQ65R/4f7Ee1T/ifeo/hPv0aOhPr5PkiSRm5tL06ZNHxgvAOi1ype9vT329pXLJ0hMTKRnz574+fmxZs2ahz4xNzc3nJyc2LdvnzYYUiqVHD58mLlz5973fiYmJvdUT7W1ta1UG/XB2tq63ux4QsXEe1T/ifeo/hPv0aOhvr1PDx0eK1H/q3uh6REKCgrC2dmZ+fPnk5aWRkpKCikpKeVu5+3tzbZt2wBNQuyUKVP44osv2LZtG+fPn2fUqFGYm5szbNgwfTwNQRAEQRDqoUei/vvevXuJjo4mOjqa5s2bl7uu7ChfVFQU2dnZ2vPTp0+noKCACRMmaIsu7t27t9I1hgRBEARBePw9EsHQqFGjGDVq1ENvd3f6k0wmY+bMmcycObN2GqZHJiYmfPLJJ3pZpFOoHPEe1X/iPar/xHv0aHjU36dHcmq9IAiCIAiCrjwSOUOCIAiCIAi1RQRDgiAIgiA0aCIYEgRBEAShQRPB0GNEoVDg66tZSfjMmTP6bo5QIjY2ltGjR+Pm5oaZmRnu7u588sknKJVKfTetwVu2bBlubm6Ympri5+fH0aNH9d0kocScOXPo3LkzVlZWODg4MGjQIKKiovTdLOEB5syZoy1r86gRwdBjZPr06eXWYRPqh8uXL6NWq1m5ciUXLlxg4cKFrFixgv/973/6blqDtmnTJqZMmcKMGTOIiIigW7du9OvXj/j4eH03TQAOHz7MO++8w4kTJ9i3bx/FxcU899xz5Ofn67tpQgVCQ0NZtWoV7du313dTqkXMJntM7Nq1i2nTpvHbb7/Rpk0bIiIi8PX11XezhPuYN28ey5cvJyYmRt9NabACAgLo1KkTy5cv117m4+PDoEGDmDNnjh5bJlQkLS0NBwcHDh8+TPfu3fXdHKGMvLw8OnXqxLJly5g9eza+vr4sWrRI382qEtEz9Bi4efMmY8eOZd26dZibm+u7OUIlZGdn06hRFVb2FnRKqVQSFhbGc889V+7y5557juPHj+upVcKDlBbUFZ+b+uedd96hf//+9OrVS99NqbZHouiicH+SJDFq1CjGjx+Pv78/sbGx+m6S8BDXrl1j8eLFLFiwQN9NabDS09NRqVQ4OjqWu9zR0fGeZX4E/ZMkiWnTptG1a1fatm2r7+YIZWzcuJHw8HBCQ0P13ZQaET1D9dTMmTORyWQPPJ0+fZrFixeTk5PDhx9+qO8mNziVfY/KSkpKom/fvgwePJgxY8boqeVCKZlMVu68JEn3XCbo38SJEzl79iwbNmzQd1OEMhISEpg8eTI///wzpqam+m5OjYicoXoqPT2d9PT0B97G1dWVoUOH8scff5Q7gKtUKgwMDAgODubHH3+s7aY2WJV9j0oPEklJSfTs2ZOAgADWrl2LXC5+i+iLUqnE3NyczZs389JLL2kvnzx5MmfOnOHw4cN6bJ1Q1rvvvsv27ds5cuQIbm5u+m6OUMb27dt56aWXMDAw0F6mUqmQyWTI5XIUCkW56+ozEQw94uLj48nJydGeT0pKok+fPmzZsoWAgIB7FrYV9CMxMZGePXvi5+fHzz///MgcIB5nAQEB+Pn5sWzZMu1lrVu3ZuDAgSKBuh6QJIl3332Xbdu2cejQIVq1aqXvJgl3yc3NJS4urtxlb7zxBt7e3nzwwQeP1JCmyBl6xLm4uJQ7b2lpCYC7u7sIhOqJpKQkgoKCcHFxYf78+aSlpWmvc3Jy0mPLGrZp06YxYsQI/P39CQwMZNWqVcTHxzN+/Hh9N01Ak5S7fv16duzYgZWVlTaXy8bGBjMzMz23TgCwsrK6J+CxsLDAzs7ukQqEQARDglDr9u7dS3R0NNHR0fcEqKJjVn+GDBlCRkYGn332GcnJybRt25adO3fSokULfTdNAG3Jg6CgoHKXr1mzhlGjRtV9g4THmhgmEwRBEAShQRMZnIIgCIIgNGgiGBIEQRAEoUETwZAgCIIgCA2aCIYEQRAEQWjQRDAkCIIgCEKDJoIhQRAEQRAaNBEMCYIgCILQoIlgSBAEQRCEBk0EQ4Ig1EhQUBBTpkzRdzN0oqbPZe3atdja2uqsPYIg1A0RDAmCUCNbt25l1qxZ+m5GnXN1dWXRokU6325sbCwymYwzZ87ofNuCIFRMrE0mCEKNNGrUSN9NEARBqBHRMyQIQo2UHVpydXXliy++4M0338TKygoXFxdWrVqlvW1gYCD//e9/y90/LS0NIyMjDh48qN3GrFmzGDZsGJaWljRt2pTFixeXu092djZvvfUWDg4OWFtb88wzzxAZGam9fubMmfj6+rJu3TpcXV2xsbFh6NCh5Obmam+Tn5/PyJEjsbS0pEmTJixYsKBKzzkuLo6pU6cik8mQyWTlrt+zZw8+Pj5YWlrSt29fkpOTy12/Zs0afHx8MDU1xdvbm2XLlmmvc3NzA6Bjx47IZDLtQqWhoaH07t0be3t7bGxs6NGjB+Hh4ZVusyAI9yeCIUEQdGrBggX4+/sTERHBhAkTePvtt7l8+TIAwcHBbNiwgbLrQ2/atAlHR0d69OihvWzevHm0b9+e8PBwPvzwQ6ZOncq+ffsAkCSJ/v37k5KSws6dOwkLC6NTp048++yzZGZmardx7do1tm/fzp9//smff/7J4cOH+fLLL7XXh4SEcPDgQbZt28bevXs5dOgQYWFhlXqOW7dupXnz5toV78sGO7dv32b+/PmsW7eOI0eOEB8fz/vvv6+9fvXq1cyYMYPPP/+cS5cu8cUXX/Dxxx/z448/AnDq1CkA9u/fT3JyMlu3bgUgNzeX119/naNHj3LixAlatWrF888/Xy7AEwShmiRBEIQa6NGjhzR58mRJkiSpRYsW0vDhw7XXqdVqycHBQVq+fLkkSZKUmpoqGRoaSkeOHNHeJjAwUAoJCdGeb9GihdS3b99yjzFkyBCpX79+kiRJ0t9//y1ZW1tLhYWF5W7j7u4urVy5UpIkSfrkk08kc3NzKScnR3t9SEiIFBAQIEmSJOXm5krGxsbSxo0btddnZGRIZmZm2ufyMC1atJAWLlxY7rI1a9ZIgBQdHa29bOnSpZKjo6P2vLOzs7R+/fpy95s1a5YUGBgoSZIkXb9+XQKkiIiIBz5+cXGxZGVlJf3xxx+Vaq8gCPcneoYEQdCp9u3ba/+XyWQ4OTmRmpoKQOPGjenduze//PILANevX+fff/8lODi43DYCAwPvOX/p0iUAwsLCyMvLw87ODktLS+3p+vXrXLt2TXsfV1dXrKystOebNGmibce1a9dQKpXlHqdRo0Z4eXnV+Pmbm5vj7u5e4eOmpaWRkJDA6NGjy7V99uzZ5dpekdTUVMaPH4+npyc2NjbY2NiQl5dHfHx8jdssCA2dSKAWBEGnjIyMyp2XyWSo1Wrt+eDgYCZPnszixYtZv349bdq0oUOHDg/dbmlejlqtpkmTJhw6dOie25Sd1v6gdkhlhul0raLHLX280sdfvXo1AQEB5W5nYGDwwO2OGjWKtLQ0Fi1aRIsWLTAxMSEwMBClUqnD1gtCwySCIUEQ6tSgQYMYN24cu3fvZv369YwYMeKe25w4ceKe897e3gB06tSJlJQUDA0NcXV1rVYbPDw8MDIy4sSJE7i4uACQlZXFlStXyuUuPYixsTEqlapKj+vo6EizZs2IiYm5pzes7HaBe7Z99OhRli1bxvPPPw9AQkIC6enpVXp8QRAqJoIhQRDqlIWFBQMHDuTjjz/m0qVLDBs27J7bHDt2jK+++opBgwaxb98+Nm/ezF9//QVAr169CAwMZNCgQcydOxcvLy+SkpLYuXMngwYNwt/f/6FtsLS0ZPTo0YSEhGBnZ4ejoyMzZsxALq985oCrqytHjhxh6NChmJiYYG9vX6n7zZw5k0mTJmFtbU2/fv1QKBScPn2arKwspk2bhoODA2ZmZuzevZvmzZtjamqKjY0NHh4erFu3Dn9/f3JycggJCcHMzKzS7RUE4f5EzpAgCHUuODiYyMhIunXrpu2ZKeu9994jLCyMjh07MmvWLBYsWECfPn0AzbDTzp076d69O2+++Saenp4MHTqU2NhYHB0dK92GefPm0b17dwYMGECvXr3o2rUrfn5+lb7/Z599RmxsLO7u7jRu3LjS9xszZgzfffcda9eupV27dvTo0YO1a9dqp9QbGhry7bffsnLlSpo2bcrAgQMB+OGHH8jKyqJjx46MGDGCSZMm4eDgUOnHFQTh/mRSbQ6eC4IgVJGrqytTpkx5bJb4EASh/hM9Q4IgCIIgNGgiGBIEQbjL0aNHy019v/skCMLjRQyTCYIg3KWgoIDExMT7Xu/h4VGHrREEobaJYEgQBEEQhAZNDJMJgiAIgtCgiWBIEARBEIQGTQRDgiAIgiA0aCIYEgRBEAShQRPBkCAIgiAIDZoIhgRBEARBaNBEMCQIgiAIQoMmgiFBEARBEBq0/wfqRp4FpFOl0AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "kp_params = {'kp': 10}\n", + "ct.phase_plane_plot(\n", + " clsys, [-1.5 * pi, 1.5 * pi, -2, 2], 8,\n", + " gridspec=[13, 7], params=kp_params,\n", + " plot_separatrices={'timedata': 5})\n", + "plt.plot([-pi, -pi], [-2, 2], 'k--', [ pi, pi], [-2, 2], 'k--')\n", + "plt.plot([-pi/2, -pi/2], [-2, 2], 'k:', [ pi/2, pi/2], [-2, 2], 'k:')" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3QU9deHny3ZTe+VEErovfdeRQUFBERBEKUIggh2f/beABFFBQQEBASlo/Tek0AoCRDSe+/ZbJ/3j0mWLNlUuu8+5+Qk2Z2dmW137veWz5UIgiBgxYoVK1asWLFi5aFHer9PwIoVK1asWLFixcqdwerYWbFixYoVK1as/EewOnZWrFixYsWKFSv/EayOnRUrVqxYsWLFyn8Eq2NnxYoVK1asWLHyH8Hq2FmxYsWKFStWrPxHsDp2VqxYsWLFihUr/xGsjp0VK1asWLFixcp/BKtjZ8WKFStWrFix8h/B6tg9wHz00UdIJBIyMzPv63kUFRUxfvx4mjVrhpOTEw4ODrRq1YrPPvuMoqKi+3puDyNLliyhefPmKJVKGjZsyMcff4xOp6vycSEhIbz88su0adMGJycnfHx8GDx4MIcOHboHZ23Fyr3HagP/e3z//feMHj2ahg0bIpFI6N+///0+pf8c8vt9AlYefHQ6HYIgMH/+fBo2bIhUKuXYsWN88sknHDlyhAMHDtzvU3xo+Pzzz3n//fd5++23GTp0KEFBQbz33nskJSWxbNmySh+7YcMGzp07xwsvvEC7du0oKiril19+YdCgQfz+++9MmjTpHj0LK1b+f2G1gXeOX375BQcHBwYOHMjOnTvv9+n8NxGsPLB8+OGHAiBkZGTc71OxyJtvvikAQlRU1P0+lYeCzMxMwdbWVpg+fbrZ7Z9//rkgkUiEsLCwSh+flpZW7ja9Xi+0bdtWaNSo0R09VytWHgSsNvC/h8FgMP3dqlUroV+/fvfvZP6jWFOxDxnXrl0jMDCQbt26kZ6eDkD//v1p3bo1x48fp3v37tjZ2eHv78/777+PwWC4a+fi5eUFgFxe88BvbGwsEomE1atXl7tPIpHw0Ucfmf4vTcdcunSJsWPH4uLigru7O/Pnz0ev13P9+nWGDRuGk5MTDRo04JtvvjHbn1qt5rXXXqN9+/amx/bo0YPt27ebbbdx40YkEgk//vij2e0ffvghMpmM/fv31/h5lmXPnj2o1WqmTJlidvuUKVMQBIFt27ZV+nhvb+9yt8lkMjp16kRCQsJtnZsVKw8LVhv48NpAAKnU6nbcbayv8EPE0aNH6dmzJ23btuXw4cNmF/rU1FTGjx/PhAkT2L59O2PGjOGzzz5j7ty5ZvswGAzo9foqf4xGY7njC4KAXq8nPz+fPXv2sGDBAp555hnq1at31587wLhx42jXrh1///0306ZNY9GiRcybN4+RI0fy+OOPs3XrVgYOHMhbb73Fli1bTI/TaDRkZ2fz+uuvs23bNjZs2EDv3r0ZPXo0a9asMW03fvx4XnrpJV577TWCg4MBOHToEJ999hnvvvsuQ4YMMW1bm9fxypUrALRp08bsefn5+eHp6Wm6vybo9XqOHz9Oq1atavxYK1YeNqw28OG2gVbuEfc5YmilEsqmIdauXSsoFArhlVdeMQtlC4Ig9OvXTwCE7du3m90+bdo0QSqVCnFxcabb6tevLwBV/nz44YflzmfDhg1m20yZMkXQ6XS1em4xMTECIKxatarcfbcev/R1WLBggdl27du3FwBhy5Ytptt0Op3g5eUljB49usJj6/V6QafTCS+++KLQoUMHs/vUarXQoUMHoWHDhkJ4eLjg4+Mj9OvXT9Dr9Wbb1eZ1nDZtmqBUKi2eU9OmTYWhQ4dWeM4V8b///U8AhG3bttX4sVasPOhYbaD56/Cw28BbsaZi7w7W5omHgM8//5wlS5bw7bffMm/ePIvbODk58cQTT5jd9uyzz7J8+XKOHTvGxIkTAdi5cycajabKY9apU6fcbY888ghBQUEUFBRw+vRpvv76a7Kysti6des9Ca8PHz7c7P8WLVpw8eJFHn30UdNtcrmcxo0bExcXZ7bt5s2b+f7777l48aJZF5utra3Zdkqlkk2bNtGpUyc6duyIs7MzGzZsQCaTmW1X29dRIpFUuG1l91lixYoVfP7557z22ms8+eSTNXqsFSsPE1YbKPJfsIFW7j5Wx+4hYN26dfj7+zN+/PgKt/Hx8Sl3m6+vLwBZWVmm21q2bIkgCFUe05KRcnNzo3PnzgAMGDCARo0aMX78eLZv386oUaOq3Oft4u7ubva/QqHA3t6+nGFSKBTk5+eb/t+yZQvjxo1j7NixvPHGG/j6+iKXy/n5559ZuXJlueM0btyYPn36sHv3bmbOnImfn1+5bWrzOnp4eKBWq1GpVNjb25ttl52dTadOnarcXymrVq1ixowZTJ8+nW+//bbaj7Ni5WHEagNFHnYbaOXeYH3FHwL27NmDjY0Nffr0KbcKKyUtLa3cbampqYDoUJTSqFEjbGxsqvz55JNPqjyvrl27AhAREVHj51RqiG5d8ZU1wHeKdevW0bBhQ/78809GjhxJ9+7d6dy5c4WrzRUrVrB79266du3Kjz/+yNmzZ8ttU5vXsbS27vLly2b7Sk1NJTMzk9atW1fr+axatYqpU6cyefJkfvnllxpH+qxYediw2sDb40GxgVbuDdaI3UNA/fr1OX78OIMHD6ZPnz4cPHiQJk2amG1TUFDAjh07zFIR69evRyqV0rdvX9NtdzJ8fvjwYUBc3dUUHx8fbG1tuXTpktntt3Zp3QkkEgkKhcLMAUpNTbV4rMuXL/PKK68wadIkli9fTs+ePXn66ae5cOECbm5upu1q8zoOGzYMW1tbVq9eTbdu3Uy3r169GolEwsiRI6vc3+rVq5k6dSoTJ05kxYoVVqfOyv8LrDbw9nhQbKCVe4PVsXtI8PPz4+jRozzyyCP07duX/fv3m0V4PDw8mDlzJvHx8TRt2pR//vmH5cuXM3PmTLOOrVs7MqvDr7/+yvHjxxk6dCgBAQEUFRVx/PhxlixZQs+ePc3qu2JjY2nYsCGTJ0+22MZfikQiYeLEiaxcuZJGjRrRrl07zp07x/r162t8flUxfPhwtmzZwqxZsxgzZgwJCQl8+umn+Pn5cePGDdN2RUVFjBs3joYNG7J06VIUCgWbNm2iY8eOTJkyxUyOpDavo7u7O++99x7vv/8+7u7uJoHijz76iKlTp9KyZUvTtmvWrOGFF15g5cqVJuHhzZs38+KLL9K+fXtmzJjBuXPnzPbfoUMHlEpljc/LipWHAasNrD0Pig0ECA4OJjY2FoD8/HwEQeCvv/4CoEuXLtSvX7/Wz9NKCfe1dcNKpVgS58zNzRV69eoluLu7C0FBQYIgiB1hrVq1Eo4cOSJ07txZUCqVgp+fn/Duu+/WumOrLCdPnhSGDx8u1KlTR1AoFIK9vb3Qrl074dNPPxWKiorMtr18+bIACG+//XaV+83LyxOmTp0q+Pj4CA4ODsKIESOE2NjYCjvCbhUpnTx5suDg4FBuv6WvR1m++uoroUGDBoJSqRRatGghLF++3LTfUiZOnCjY29uXEwrevHmzAAiLFi2q8jlVh8WLFwtNmzYVFAqFUK9ePeHDDz8UtFqt2TarVq0q1zE3efLkSrvPYmJi7sj5WbHyoGC1gRW/DoLwcNrAyuyYpQ5hKzVHIgjVqH608kDTv39/MjMza6WDdqdZunQpb775JlFRURaLma1YsWLlTmO1gVas3MTaPGHljnL48GFeeeUVq0GzYsXK/0usNtDK/cZaY2fljrJ58+b7fQpWrFixct+w2kAr9xtrKtaKFStWrFixYuU/wl1NxX755Zd06dIFJycnvL29GTlyJNevX7+bh7RixYqVe4LVvlmxYuVB5K46dkePHuXll1/mzJkz7N+/H71ez9ChQ83GmVixYsXKw4jVvlmxYuVB5J6mYjMyMvD29ubo0aNmgpFWrFix8rBjtW9WrFh5ELinzRN5eXlA+Xl3pWg0GjMla6PRSHZ2Nh4eHlaFfStWrFSIIAgUFBRQp06d+zabsir7BlYbZ8WKldpRIxt3rwTzjEajMGLECKF3794VblMqlmj9sf5Yf6w/tflJSEi4VybNjOrYN0Gw2jjrj/XH+nN7P9WxcfcsFfvyyy+ze/duTpw4Qd26dS1uc+tqNi8vj3r16vH1XycQ5PYU6fQUqvWoNHqKtHqKNAYKtXryVDpS8tQVHtvTUUFjb0d6NPLgkZa+OCjlbA5JYMPZeDIKtQAobaSMbF+Hid3r09DTsVbPURAEvt5znXVn4pBK4Oun2vJoG79a7etW1pyO5Zs913FQytg6qxd1XO2qftDnn8M335jf9tdf0LcvbNgAzz9PeHIezyw/i8EosOjp9gxpeWe0lzR6A7P/uMDp6Cxc7eT8/mJXGnk53ZF9bzmfyGe7r6LVG/F3s2XRuPa0rONyW/vUG4ycj8vlfHwOIXE5hCbmUKw1mm1jayOlQ4Abrf2d8XRU4GqvwM1BgZu9DW724v+2NrJy+w6OzSYhW4XpiyaAgEDpN8/0jRUEdHoDap2RYp0Rtd6AVmfEiEBSTjEnIms3HFwuBX2Zp9LAw54Vkzvj61LxZ+jwtXTe33aZ3GI99gop7z3ekifa+9fq+GW5EJ/DlFVB6I0C7z7WnGe71b/tfRqNAh9vCeH7FweRm5uLi8vtfRZqQ3XsG1Rs4/xnrkaqtEcmlTCslQ+Teza4rc/07kvJvL3lMoIAU3o3YP7gpnckInghPptJK4MQBFg6sSN9m3hV/aDhw+H48Zv/y+UQHw8ODqab8tU6Rv54kvQCDc/3asDrQ5tV74R++gnefRdsbGDfPujYsdwmC/dHsPJEDFIJLBh352zcpcRcfj8Vy/7wNIwl3+WmPo5M6tGAx9r4oZDXLnKclqdm8qpzJOYU08DTntXPd8XT6fZHBeoMRr7be50/zsYDMLC5F1+Mbouj8vYSd4UaPedisgmKzSY4NptrqQXc6lUEuNvRpb47Les44eGgxM1BgbujAg97Jc528go/m/vDUinU6EXbWcZu3vR0xH8EQUBrENDqjej0AlqDAa3BiE5v5Ex0FtGZqtt6jqU083Vi2XOd8HC0/H4YjQKrT8Xww8FI9EYBH2clX49uS+eGFUfxq4NaZ+DF5cfY9c7Iatm4e+LYzZkzh23btnHs2DEaNmxY7cfl5+fj4uJCXl4ezs7OlW5bpNETmV5IRFoBN0p/pxWSlFtcbtt2dV14vK0fQ1r4ciEhhxXHYwhPyTfdP7iFNy/0bkiPwJqnRwRB4N2tV9hwLh65VMIvEzsx+A4YEoNRYNyvpwmJy6FPE0/WvNC14nMrLob//Q8WLwajuXNCy5ag10NEBCQng58f3+69xk+Ho/ByUnJgXj9c7G1u+3xBfE+eXXGWiwm5+LnY8tfMnvhXxyGtBleS8pj5RwgJ2cUo5VI+H9WGMZ0qvqDWFJ3BSFhyPkEx2ZyNySY4Lptcla7Kx9krZLjZK3CylSMIYBSEkp8yfxvFz4neKP7oDEb0BgG90YjOYPnrKJdK0Bsrvq+Bpz3+rnbkqnQk5ajILKr8XH1dlGye0ZMAd/sKt0nNUzN34wXOxmQDMLqjP58+2RqH27wQ/HYihk93hWMjk7D5pZ60D3C9rf1BzWzFnaa29g1unvfO4EjWn8/gVNRN571XYw+m921E3yaetXLKNpyL550tlwF4fWhTZg9sUuN9WOLTXeH8diIGX2db9s3vi7NtBfYiL0+0Qz/9VP6+vXth6FCzmw5dS+OF1cFIJbB1Vi/aVedzIQgwejRs2wYNGsD581BmUL24icDbf1/mz+AEFHIpv0/pSo9GHtV6rtUhIVvFypMx/BmUgEprAMDbScnzvRowoWv9WtnThGwVT/96muQ8Nc19ndg4vTuu9oo7cr6bghN4b+sVtAYjTX0cWfZcZxp4OlT9wGqSV6wjODabM9FZnInOJiw5jwpMFwA2MgnuDgo8HJR4OCqwV8hKbCdQ1pEThJLfoi3VGUR7qS/9XWI/S+2pTCpBaSMlNU9tel9uxctJSas6zrja2ZBWoCY+q5jk3GIqc4r83Wz566We+FWyML6UmMvcjaHEZBYhlcDLAxozd1AT5LLal4nk5eXh6upaLRt3Vx07QRCYM2cOW7du5ciRIzRpUjPDcieMdaFGz420Ai4n5bHnSipnorPMPmTtA1x5vI0vPi627AhN5sDVdNN9Lf2ceeex5jgq5XSo52Zh75YxGAVe2xTKttBkFDIpvz3fmT7VWdlWQVRGIY8tPo5Gb+Sbp9oyrkuA5Q2NRnEV+/XXle9wwwYYPx61zsDjPxwnKqOIsZ3q8u3Ydrd9rqVkF2kZ9+tpItMLCfRyYPOMHhWudmpKrkrLq3+GcuR6BgATutXjgxEtUcrLR81uF6NR4EZ6Iedis7memk9OkY6sIg05RTqyVVpyirQVOl73Glc7Gxp5O2Arl3E9rYDMkqj0rcgkMHtgE17s07DCi7PBKPDjoUgWH4zAKEBDTweWPNOB1v61jyYJgsDMdefZE5aKv6sdu1/pfdsXrfvh2N2ufYPy5305MY/lx6PZfTkFQ8nnqZmPE/OHNuWRVr413v+K49F8tvsqAB+OaMmUXjVzPC1RrDXw6OJjxGapeKZrAF+Obmt5w/R0GDECzp0rf9/bb8OXX5a7+dWNF9gWmkwzHyd2zuldvahXTg506gQxMfDkk7B1K9ziCOsNRmb9cZ594Wk4KuVsnN79tj7DlshT6Vh/Lp7Vp2JIyxejsvYKGaM6+DOstS/dGnrUKIoXk1nEuF9Pk1GgoW1dF9ZN7VaxE11Dzsfn8NLaENILNDjbyvnx2Y70bXr71yhL5KtFR+9sdDYxmUVkFWnJKtSQVaSlQK2/K8esLd5OSuq522NrIyUkLodindHidlIJTO0dyLS+gXhVEE0t0uj5aEcYm0MSAehYz5XF4ztUupiujJrYuLvq2M2aNYv169ezfft2mjW7GVp3cXHBzq7qyM3dMNYZBRr2hKWy+1IyZ2OyzULGHeu5MqJdHSLTC/j7fBLqkjdVLpWwc04vWvhV3xDoDUZmr7/AnrBUbG2krHmhG11vMxwLsOxYFF/8cw0npZx98/tWumrg559h9uzyUbtSXnpJ3AYxXTj219MIAqx9sesdcURLSc4tZszPp0jOU9PG34UN07vfdvi/FKNR4IdDN1h88AaCAO0CXPl5QsfqparvIIIgUKDRk1OkJatIS5FGj1QiKfkBqVT8LZFIkJXeLgUbmRS5VCL+lkmQS6XYyCTIS24HUGkNPLv8DNdSC8yO6aCQ4eagwM5GhsEokK/Wk1WkKZcGqQq5VMLjbf2Y2juQNnUtf8bPRmfx6p+hpOSpUcikvP1oc6b0alDr9F6+WseIJSeIy1IxsLk3KyZ1Riqtfarwfjh2t2vfoOLzTsxRsfJELBuD4k3RhlEd/PloRKsaR4C+PxDB9wduAPDNmLaM61zBgrAGnI3O4ullZwBY92I3ejfxtLyhSgUTJogRtbJ06wZnzpTbPLtIy5CFR8kq0jJ3UBPmDWlavRMKDoZevUCrhQULYP78cpuodQaeX3WOM9HZeDgo+GtmTxrewUhVKVq9kZ0Xk1l+PNrsO+uklNO3mRdDWvjQv5lXtRYzN9IKeHrZGbKLtHSq78aaF7redsS8lLR8NTPWhhCakItUAu882oKpfRre0yYejd5AdpGWrEItmYUaMgu1aPQGJEiQSEACJb/Ff8T/JcikmGylaDul2EhL7KZMgo1UikEQyFVpeX5VULnjSiXgYmeDvUKOURAoUOsp1NTcyZQAfZp4MndwUzrVtxz82XExmf9tuUyBRo+TUs5no1rzZC3KWh4Yx66iD8iqVat4/vnnq3z83TbW6QVq9l5JZdelFM7F3nTyOtZzZfaAxmwISmB/eBpArSJvWr2R6WuDOXI9A0elnHVTu9122slgFHjq51OEJuQyoJkXK5/vUvkXcedOeOop0FlIzTVvDlevmv79aEcYq0/F4u9qx755fe+YAQGITC9k3K+nyS7S0rORByuf72KxHq22HL6ezqsbQ8kr1uHuoGDJMx3o1biCi81DyLd7r+HpqKSumz0B7nbUdbO36ByrdQYi0wu5llrAtZR8rqcVEJacT3bRzaidjUyCIGAxwvh05wDefrQ5bg7lLzo5RVre/PuS6TsxuIU334xph7uFbatDWHIeo5aeQqs38taw5szs36hW+4H749jdrn2Dqs87T6Xjl2NR/Ho0CqMAPs5KvhnTjn41iK4IgsDnu6+yoqTObMkzHXm87e3X/n6w/QprTsfh72rH3nl9K16sGQzw2mtiaUgpMhlkZ4OF57zrUjKz119ALpWw65XeNPet5vu5dCm8/LKY/v3sM4ubFKh1jF92hrDkfOq62fH3zJ74ONtWb/81RBAETkVlsfOimAnKLLxZWymTSuhc340hLX0Y3MKn0lRoWHIezyw7Q75af8dtp1pn4P1tV0xRpVEd/PlydJs7apvvJ5HpBby75QqBXg7ij6cjgV4OBLjbY3NLWjSvWEdMZhFR6YVEZxYSnVFEeEo+cVk36/NkUglKudRiand4Wz8+GN4Sbwufp4RsFa/+GUpIXA4AT3Wsy8dPtqpRgOOBcexul3tprNPz1aw7E8fy4zEU68Q3zUYmKVfzNKlHfd4a1rzaTo9aZ2DKqiBOR2fhYmfDxundaeF3e8/lRloBj/9wAq3ByIKx7Xiqqtqy4GAYNAjy88vfl5oKJcOqizR6hi46RlJuMc/3bMBHT7S6rfO8lUuJuTyz7AxFWgOPtPLhp2c73lbNwa0kZKt4aV0IYcn5SCUwo18jZvVvhNMdSl88rAiCQHBcDlvOJ7LrYgoFZVamXo5KclVadGWcPDuFjHcebc6EbvWR3RJFEwSBNafj+Hz3VbQGIwHudmyY1p26brVLL5TWgcmkEtZP7Ua3wNrVPt3PGrvbobrnfT4+h9c3XSQ6UxQ/frZbPf73WItq2yFBEHhny2U2BiUgl0pYPqkzA5p739a5F2n0PPL9MRJzinmue30+Hdm68gcsXgzz5mFaQf/xBzz7rMVznbE2hH3habSt68KWmT2rZycEAUJCoHPnSjfLKNAw9pdTxGapaObjxKYZPe5YXXFFGI0Cl5LyOBCexoGraeWi732aePLtmHb4ulh2MkMTcpm44iyFGj39m3nx63Od7ljJiSAI/H4qlk93X8VgFGjj78Li8e0J9KpdE+F/CUEQuJZawM6Lyey4mExizs2afbsS57fUXwCwkUqYNaARLw9oUi7trjcY+eFQJD8euoFRgNb+zqx7sZspcpuSV8yxiAye7lLP4rlYHbvbID1fzXf7rrMpOLHCbQLc7fh2TDu6V/MiVKTR89xvZzkfn4uno4KN03vQ2Pv2vjRLj0TyzZ7rONvK2T+/X9WrzpgYsWMsN9f89k2bYOxY07/HIjKYtPIcEglsntGDzg1uP31cllORmTy/KgitwcjTnQP46qk2dzT0f+sK1N1BwdxBTXima71ad6n9l1DrDOwPT+Pv84kci8gw1ZvKpBJkEtCWWcjUdbXj+/HtLX4GwpLzmLnuPPHZKvxd7dg4vXutakcEQeC1TRfZciEJbyclu1/pU2HNSmX81x07EGvbvt5zjdWnYgGo527Pd2PbVbvEw2AUmPdnKDsuJqOUS1l9B5oITkZmMmHFWQA2Tu9etU3ctg3GjBGjeK1awZUrFjdLz1czeOFR8tV63nm0OTP61SKaq9GIkUF5eec3IVvFUz+fIr1AQ6f6bqx7sRt2insXpUrIVnHwahoHrqZzJjoLvVHA1d6Gr59qW2Et5bmYbCatPItaZ7wrC+NTUZm8/Md5clQ65FIJE7vXZ+6gJhaj9/8fEQSB0IRcdlxMZvelFNILbkZglXIpmjLSAy52NnwxujWPt6lTbj/nYrKZuS6ErCItzX2d+GNqN6Izi5i5LgSDUeDMu4MsOu1Wx+42eWfLZTaci7d4X1npiOd7NuDNYc2wV1S9as4r1jFhxRmuJOXj62zL5pd61LqIEkTvf/TPp7iUmMfgFj4sn9SpagcpNhaaNjVPy44bB3/+abbZ65sv8ldIIo28HNj9Sp87HpbfcyWFWX+cxyjAS/0a8fajze/o/gVBYG9YGt/suWaKcDTwsOeNR5rzWBtfqxBsCen5araHJvP3+URTBEGs1zOaOXjD2/jx8ZOtyjW9pOapeWb5GWIyi/B3tWP9tG7U96h5zZJKq2fkTyeJSCukZyMP1r7YrVyksCr+Pzh2pZyKzOSNvy6RlFuMRALT+gQyf0jTan1PdQYjM9eFcOBqOg4KGeumdqtRY5glSu1lfQ979sztW7WD9NtvMHWq+PeRI9Cvn8XNNgUn8OZfl1DKpfw7t0/NIkiJiWIJSq9esHChxU2upxYw9pdT5KvFKNjySZ3LpefuBVEZhczdeIErSWJG5Zmu9Xh/eAuL15UTNzJ54fcgtHojT7avw6Jx7W+rNvVWErJVfLgjjEPXxCZCZ1s5cwY2YVLP+nelKe1hxWAUOBsjptm3nE9CozciQcx2lE3Tdq7vxndj25VLtUekFfDs8rNkFmrwclKSXaih1OQueaYDI9qVdwitjt1tkl6gZtuFJP4MSiAqo/zcx0BPe5MuTqCnA6umdKnWBS27SMv4ZaeJSCukua8T217udVtO0/XUAoYvOY7OILB4fPvqFWSuWwfPPXfzf7lcjOKV0ZTKU+kYvOgoGQUaXh7QiDceubOOF8CfQfG89bcoxTC1d0PefazFHTVQIF7E/gxK4PsDN0z1Le0DXHnn0ea1Tvn9FxEEgZORWXy8M4wb6YWAmKLNLrppbOxspLz7eEsmdqtn5hin5YvOXXRGEX4utmyY1r1W0gmR6QU88eNJVFoDcwY25rXq6piV8P/JsQOx+eSzXeGmzEITb0eWT6qebIVaZ+CF1UGcisrC01HJP3N74+1U+zqzfLWORxYdIyVPzQu9GvLBiJZVP+jZZ8Wu/GbN4NIlUJSPCgmCwKSV5zh+I5OuDdzZOL179W3Etm0wapT4dwUpX4CQuGwmrBCjYIOae7Pk2Q7VWqjfabR6Iwv2X2fZsWgEAQK9HPhhvOXu84NX05ixNgS9UeDVwU14dXA1G0xqwIkbmXy2O9y04Kvnbs9bw6wLY0sk5qj46t9r7LqUAoh6p4IRNAYxAiSTSJjVP5BXhzQzW7BeTclj9NLTZqlcgN6NPVk3tVu541gduzuEIAicj89lU1A820KTzUKtI9r6ERSbQ2q+Gk9HJWte6ErLOlWfY2qemuFLjpNZqOXpzgF8PaYCqYBqsuTgDRbsj8DV3oZ98/pWbaAFAYYMgYMHQSoVO2Znz4YlS8w223MlhZfWnUcmlbBjdi9a3aYAsCXKSjE82tqXRU+3vytFu0UaPcuPR7PsWLRpNTW4hTevDm5KqzrOD52hMhpFPaeaRrWqQmcwsu5MHAv3R5hkCJyUcrOavMfb+LFgXDuz9+lMVCbvbQ8jMr0QH2clG6Z1r1V9zvbQJOZuDAVg9ZQu9G9W/Rqw+20rasvtnveB8DTe3nKZzEJNjexQkUbP6KWnuJ5WQPdAd/6Y2v22Pk9Hrqfz/Kqg6pdw5OSI2YPMTFH25O23LW6WkK3ike+PodIa+PTJVjzXo0H1T+p//4MvvgA7Ozh1Ctq3F9OzSvPI8+Hr6by0NgSN3kjbui6smNz5thzd2+FUZCbzNoWSlq/BRibh9aHNmNYnsJxD+1dIIq9vvohEAisnd7nteklLGIwCf4ck8t2+66a0Y6f6brz3eIvbjvL+FwmKzeaTneFcThJHC9rZyMyctu6B7iyb1NkkWfPKhgvsuJhscV/H3hhAPQ/zjJ7VsbsLqLR6tpxPYsG+6+SUCNUOb+tHRFoBEWmFONnK+W1yl2rVu5yMzGTib2cRBPh2TFvG3ob8gM5gZORPJwlLzmdYK19+ntixakclIgLatBGlAUCsQ7l0SRQvLsOsP0L453Iqreo4s+3lXnclTbE9NIk3Nl9CazDSsZ4ryyd1vmM6d7eSXqBm8YEbbAxKMGmE1XWzY3ALHwa18K6RzpTBKJjkS24XQRDILtKSkFNMYo6KhOxiMgs15BfryCvWka/WkV+sL/mto0CjRxBEuRNHWzmOSjlOtjY4mf6W4+diR/t6rnQIcK2xRlxWoYbv9l1nY1ACglBeHLmFnxNrXuiGl5OSzcEJvLv1Muunded/Wy8TkVaIt5OS9dO616qO9H9bL/PH2Xg8HBQcmN+v2vU9D5KtqAl34rwzCjRMWnmOqyn5ONvKWTWlC53qV22HItMLeeLHE7WOkt5KaQlHoKcD/8ytRgnH2rUwaZLoeIWFQQXizqtPxvDRznAcFDL2zutb/UYdgwEef1wUQ27YEA4dEo/32Wfi9J0yhMRlM/X3YHJUOuq62bF6StfbroOuLTlFWt7ecom9YWL3ea/GHiwY275cY8V72y6z7kw8zrZyds7pXasyiOpQpNGz7Ji4MC51VLoHujOkpS9DW/rcVknRnUIQBHJVOhJzislWaclVaclV6cgp+Z2r0pKj0lGg1mEjk2KvkGGnkGFnIy/ztwwnWzmNvR1p4+9Sq+uQ0Sjw1/lEvt17nYwSZ1gCJsFjPxdbNk7vjoNSzuSS76wl+VNLmTKrY3cXMRoFvvj3KiuOxwBiZ4tUIuFSYh5KuZSlEzoyqEXVkyZ+OHiDhfsjsLWRsu3lXtVv6bdAeHI+T/x4Ar1R4MdnOzC8bfn8fDk+/BA++QRsbUGthv79RcNXxlFJL1AzZOEx8op1vPFIM14e0LjW51gZZ6OzmL42hLxiHfU97Fn1fJe72pEVlVHIwv0RHAhPM4vCOirl9G3qyeAWPgxo5l2pUxGTWcSIJSdo7utECz9nmvuJv5v5OJXrVCw1Okm5ouOWmFNMYk4xCdni3wk5qgqV0e8EgZ4OtA9wpUM9VzrUc6OZr1O1nPTLiXl8uOMK5+NzAVH7qdQIudrb8GS7Ovx+Og6AZ7oG8NrQZkxccZZrqQV4OirZMK0bTXxqNkZOrTMwYskJbqQX1kgs+0G0FdXhTp13XrGOF1cHERyXg52NjF+e61QtSZTSKKlEAqundK2RjEq5c1DpGLLoKOkFGmb0C+SdR1tU/gBBgIEDxTq74cNFaSYLGEum7gTH5dC3qRe/T6lC4qks2dnQpQtER4vSKvn54jEPHiy3aUxmEc+vOkdclgoXOxuWPdfpvpVsCILAxqAEPtkZTrHOgKejgq2zepk5UVq9kaeXneZCfC4t/JzZMrPnXW0ASc0TGwv/Pp9oppXZ3NeJIS19GNLShzb+LlW+N5uCEkjMUdHcz5nmvk7U93CoVrRYozeQlFNMQk4x8dkqErJVxGepTH8X1EKHrjLquNjS2t+FNv4utK4r/vasprNXqNHz0+FIfjseg9ZgNLOdCpkEV3sb0gvEwMqItn6ExOeQnHtzLKqHgw1n3x1s1hxjdezuAUcjMnhlwwWTbloDd3vOJ+Qik0r45qm2VUqQGI0Cz68O4lhEBoGeDmyf3eu2ZDkW7Y9g8cEb+DgrOfRa/6plEIqLxbqTiRPFmrviYou1KH+HJPLa5osoSgqYG90lhysyvZDnS+YjutrbsGJS5zvekXsrxVoDJyIzOXg1jYPX0k0rLBCdmAYeDng5KU0/3k62pr+dbeWMWnrK4n5d7OS42CmQSSVodAZyVLpydRSW8HFWEuBmT4C7Pd7OSlzsbHC2tcHZzgZnW7n4f8ltEgkUlohq5qt1pr8L1HoK1DqiM4q4kJBLTGb5GlFbGyk9G3kysXs9+jX1rtSoCoLA9tBkPtsdTmahFplUYop2lkUhl3LyrYHIpBImrDjL1ZR8PB0V/DG1O818a+bchcRlM+YXUSx7/dRu9KyGHuGDbCsq406ed7HWwEvrQjgakYGNTML3T3eoll7du1svs/5sPO4OCna/0rty0fMq2B+exrQ1wcilEva82ofG3lW891evwjPPwPffi4vLCojKKOTRxcfFWrTqSDyV5cgRUe6prFD7sWPQp0+5TbMKNUxdE8yF+FwUMinfjWvHExYK2e8VURmFzFp3nutpBTT1ceTvmT3NrhNlS3tGdfBn4bh2d720JCFbxf7wNPaFpxIUm2NmD3ydbRnUwpvG3o6irXS8aT8dleJM2B8P3eC7fRGmx9jKpTTydiTQ04G6bna4OSiQSaRkFWlKFsHiArhsF2pFeDsp8XBUmuZ3u9jb4GZvg6udAld7G5xsbdAZjBTrDBRrDai0hpK/9RSX2Oqryfmmprtb8Xe144n2dRjfJaBaEdL4LBWv/nmB8/G5ZpG7sjgq5RyY35cF+66zOSTJdPsnT7RiUs8Gpv+tjt09IiFbxfS1IVxNyUcmldDSz4nLJZ1N7z3egql9Ait9fHaRlsd/OE5KnprH2/rx4zMdav2lVOsMDF10jPhsVc3TKl98Idaj+PjA9etQZsCwIAhMXiU6oDUuYK4hGQWiUb2YkItCLmXB2HYWu4PuBqU6U6USBFfLzA6+U3g5KfF3taOumx3+bnYmJy6g5P+70XWWU6QlNDGXC/G5hCbkEhqfQ36ZMT4B7nZM7FafcZ0DKo1QJucWM21NMGHJFb8upZ+7nCItE387S1hyPh4OCnbM6V3jGcHvb7vC2jNxNPCwZ8+rfatM6z3otqIi7vR5a/VG5m0KZfelFKQS+GJUG8Z3tayLVYpaZ2D00lOEp+TTpYEb66d1v62yi6m/B3Pgalr1o2uCUG4EmCVKJZ5c7GzYP78a9cQgzsMePNhMiB0QHb0DByw+RK0zMHfjBVMq9O1HmzOjb+B9q8VNzVPzxI8nSC/QMKi5N8smdTZbjJ2JzmLCirMYjAIfP9GKyWWcgbtNrkrLoWvp7A9P42hERqWZB1sbKV5OSoxGLM5wrw52NjLquYt2s567PfXc7ajnIf5d183+jtVoF6h1hCXncyUpj8slPzGZRWaRyp6NPBjftR6PtPKp1HZr9KIEV2USam8Oa8as/o3590oKr2y4gM4goJRLOfHWQJP8k9Wxu4cUaw28s+US20LFIsgm3o6mzsJZ/RvxxiPNKjUIIXE5PP3rafRGgY9GtOT525jluDcslRlrQ1DIpRyc36/6tQ8ajVhf16mTOLDbyzwdY1bAPLI1z3WvX+tzrIpirYFXNl4wTTd4a1hzXup3741qSl4xsZkqMgo1pOerySjUkFFw8yezUEt+sdZMFqQs9T3sGdLChz5NPKnrbo+/q90DoeZeOvN2c3ACm4ITTE6eQi5lRNs6TOpRv8Lh6yqtnpnrznM0IsPi/S52ck6/Mwh7hZxclZZnlouRuzb+Lmx+qUeNnn++WseQhUdJy69eZ/bDYCsscTfO22AUeG/bFZNkU3V04GJLSgsKNPrqpVGr2NeQRUfRGQRWPt+Zgc2rLk0xoVKBvWW7pTcYGbn0JFeS8nmsjS9LJ3SqfF8GgxiVO33a8v3Hj0Pv3pYfahSndaw8KZbcTOhWj4+eaHVf5FBAFCge9+tptHqjRYmo0kY0uVTCxund73q2wxJqnYHTUVmciMwkNV9NRr7GZDdrMq7LRiahoacDnRu408BDdNjquonTdtzsbe6bg12o0XPiRgYbziVw7EaGyclzs7dhdMe6PNM1oMIItSAI/Hwkim/3XrcYtXN3UHDq7YHY2shIzFHx2OLj5Kv1tA9wZdOMHijkUqtjd68pVe7+bPdV9EaBtnVduJQodsZM6FaPz0a2rvTD+NuJGD7dFY6NTMKmGT1q3XEkCAITfzvLycgsHm3ty88TqzB8pXz9NXz0EaxeDU8/bXGTVSdj+HhnOI5KOfurmlF7mxiMAp/tDmfVyVgAxnWuy2cj2zxwAsO3djUpZFKebF+HaX0DaVrD2rL7QbHWwM6Lyaw5E2vS0AJoW9eF14c2szgU3GgUWHwwgsUHIy3us2ykOiFbxRM/niBHpWNMp7p8O6ZtjYxy6UJFnNXcu9KJLQ+LrbiVu3XegiDw9Z7r/HI0CqjeIvPfyynM/OM8AL9N7lytWuGK+PLfq/x6NJqGng7sfbVv1d9doxG+/Ra++UacIdukicXNwpLzeOLHkxiMAr9M7Miw1lWkmvPzRfu2cKFYS1yWrl3h7NlKH77yRAyf7g5HEMRasi9Gt6HjfeoILds1vnBcO0Z3vJmOFgSBORsusOtSCt5OSna9cnsSNncalVZPZoGWjEI18VnFzNsUWm6bdgGuzOgbyCOtfO94x/+dJjFHxaagBDYFJ5Kaf/Nz1auxBx+OaFWh/T8ZmclL60JMqgNl+WB4S17oLQZ2ojIKGf7DCYp1Bib1qM8nT7auka14sK6UDykSiYTnezVk8fgOSCVwKTGPPk08kQB/nI3nl6PRlT7+hV4NeLS1LzqDwOz1F8gpM9ezpufxwfBWSCXw75VUTkVlVu+BarX48/rrUGS5tmBSjwZ0qOdKoUbPe1uvcDfXAzKphA9HtOLDES2RSmBTcCITfztrNu/0QaCum+jcutjZ8PKARpx4awDfjm33UDh1IIppjusSwM7ZvdkyqyejO/ijkEm5lJjHpJXnmP9naLnXXCqVMG9IM356tiO2NuXNx3d7r6EpqScMcLdnyTMdkUpEeYZ1Z+JqdH6PtPLlkVY+6I3iOCxLtX1WLCORSHj70ea8NUyM7Cw9EmVaKFXEo238eL4kjTd/00USc1SVbl8Zswc0xtNRSUxmEb+fqvy4JScMhw+LzQ5z50IF9qVVHRde6icuHN7bFkaeysIM7LI4O8Pnn8ONGzBlinnK99w5+PvvSh/+Qu+G/DKxE672NlxLLeCpn0/x/rYr5KurOO5d4Mn2/rw8QIy8vv33Zc7H55juk0gkfP1UW5r6OJJeoGH2HxfQGYwV7eqeY6+QU8/Dnk713XmyfR1sZDffh8EtfNg0owfbZvXksTZ+D7xTB1DXzZ75Q5tx4q0B/Da5M4Nb+CCTSjgZmcVji4/z9Z5rFFtIS/dq7MnuOX1o5lO+Vv2rf69SVBLZbOTlyI/PdkAigTWn4/gzyPLAhIqwRuzuMJuCEnjz70sADGrhzcGr6Ugk8MvEThWOigEx9fTEkhPEZqkY0MyL3yZ3qXUtW+lw7ua+Tuya07vqsTPFxWIqNjZW1LTLzBS71CZMMNssIq2Ax38QBZF/eKbDPSkqPnw9nTnrL1Co0VPP3Z7fJneucafl3WJfWCrJucWM7RxQ7ZmdDzpZhRp+PBzJ6lOxCIKYIvhgeEuebF+nXLTnSlIeU38PNluxAvRo5M76qd1N2/96NIov/72GXCphw/TudKlBmig1T82QhUcp0OgrLVV4GG0F3JvzXnYsii/+uYa0pPPVUiS2FK3eyNhfT3MxIdcsDVQbSidHOCnlHHq9f9Wj4q5fF2WYdDrYsQNGjLC4mVpn4PEfjhOVUVSjzmlAlHWaP/9mV6yDg2j3PCtv0Mkq1PDFP9f4+7xYJ+XtpOSjJ1rxaOuqBXvzinXoDcY7IuNkNAq8tE6co+vpqGTH7F7UKVO/Gp1RyJM/nqRAo+f5ng34cETLB1Kn85FFx+hY35UXewfeN1mZO01CtoqPd4Zz4KpYRlTXzY5PnmxlsRShSKNn/qZQUx1nKU28Hfl3bh/TNbtUPUMhk7Li2Zb0a93AGrG7H4zrEsB7j4v1KQevptO1gRuCAK9uDOVKiXDh9dQC5m68YPY4Z1sbfprQEYVcyuHrGaw7W7PoRlnmDW6Ki524wtwYlFD1A+zsYNEi8e+ff4aNG+GNN6DAfFB1Ux8nZg8QUyQf7Qi7JxG0Ac282TKrJwHudsRnqxi99BRHrqff9eNWh6GtfHm+V8P/jFMH4OGo5MMRrdgysyfNfJzILtLy6p+hPL8qqFwEp7W/Cztm96L9LTV5p6OyWVim621630Aeb+uH3igw64/zpN3iCFaGr4stb5bUE3279zrJtSy6/v/MtD6BjO1UF6MAL68/T1SGWAMsdjwnoS8T2VHIpfz4TAecbeWEJuSy+GBERbutkjEd69LG34UCjZ4F+65X/YBmzUSnC8So3a2p0xJsbWR8M6atKIYcIs48rjZt24pNE+vWgY2NmKHo3bv8DO1b8HBUsmBcO9ZP60ZDTwfSCzTM+uM8L/4eTEJ25ZHN30/FMvbX03fksyuVSlj0dHua+zqRWahh2ppgVNqbab1AL0cWjBMd3dWnYll6JOq2j3k32PZyL74c3fY/49SBmKFYMbkzy57rRB0XWxJzinlhdTAvrQ0hJc/8vXdQyvl5QideuqX29UZ6IbP+OG/KiM0e0JhHWvmgNRiZ/2dotc/F6tjdBab2CWTuINEBOhebQ1MfR4p1BqauCebrPdcYseQE20OTib2lpbpVHRfeLb2I7bleowtgWdwcFMwfIo6ZWbDvetXpCoAnn4ShQ8WCY3t7SEmBTz8tt9nM/o1MF/xPd4XX6vxqSlMfJ7a/3JuuDdwp0Oh5YXUQq07G3NV08P93OtRzY+ec3rw+tCkKmZSjERkMXXSMlSdizFKi3s62/DG1G+3qip3UpbGBJYcjTSk4iUTCt2Pa0szHiYwCDTPXhaDRV1+3b0LXenSu70aR1sAH2+9uGcB/EYlEwmejWtO5vhsFaj1Tfw/memo+L6wOYu7GUEITcs22D3C355uSiTi/Ho0mIq3Awl6rRiqV8NETouj5n8EJpoVtpbz3Hvj7Q0yMWHNXAZ3quzO5ZArFO1sum1JY1WbCBAgNBScnMVL46KPlFrKW6NnIk3/n9mHuoCYoZFIOXUtn6KJjfLQjjNCE3HKfzSKNnpUnY4jOKGLsL6eJLnGqbwcHpZwVkzvj4aAgLDmf1zZdxFjmOzm0la8puPDt3uusKmkAeZC4m3p795uhrXzZP78fM/oGIpNK2BOWyuAFR1lxPNrsfZJKJbw1rBmTe5g3I+4LT+PtkqyfVCphwbj2NPF2NOneVQerY3eXeHVwE6b0agCIGm0eDgpS89T8fCQKbckKuXTQclme69GAdnXFVe4nO2vvOE3oVo+mPo7kqHQsOlCNVbdEAj/8IK5iVSUr0EWL4No1s80UcilfPdUGiQS2Xkji8D2Knrk7KFg3tZsp8vDxznDe3XrlgaojudfoDUZS89RcTMhlX1gq687E8cfZOHZcTObw9XRC4nK4kVZAap7abFVfXRRyKbMHNuGfuX3o2sAdldbAJ7vCmbjiLHnFNxcLDko5K5/vQqCnAwI3nbsPd4Sx54o4P9FeIefX5zrhbCvnfHwuH9fgsy2VSvhydBtsZBIOXE3n3yuppvsEQeB0VBYvrAqq8fP7/4RSLooW13G1JSaziMcWn+DwdTHSdeR6+YjXsNZ+DG4h1jf+b+tlswtSTSitqRIE+HhnWNVOuaMjLFgg/v3FF2KatALeeKQZ/q52JOUW8+3eakQEb6VlSzhxAtzcxIaNESMqjBKWxdZGxrwhTflnbh+6NXSnWGdg9alYRv50kv7fHWHhvutEligjrD8bT27Jwjopt5hxv54mLLkaDm4V1HWz59fnOmEjk/DvlVR+OHTD7P6pfQJ5dbAYXPh4ZzibgquRubFyx3BQynnnsRbsmtObTiWL0s92X+Xl9efNau8kErGefGR7sayp1Hb+GZzI9yXXbUelnGWTOuNoW31n2FpjV4YrSXkWhy7XFqNR4K2/L7E5xLJ+TZ8mnqx9sfyw37KdXzWWCyjDychMJqw4K64a5vapXm3am2+Kc2MbN4YrV8Qo3p495XSmPtkZzsqTMdRxsWXf/H443qN0pCAIrDgewxf/XkUQoGtDd5ZO6FhtRfCHEZ3BSHhyPsFxOZyPyyE2q4i0fA1ZRZqKaswtUtfNju6BHiU/7tUfzYT4Wd4QFM8Xu69SpDXQ1MeRVVO6munTJeaoeOrnU6Tla0xinDKphC0ze9AuQOwkPHw9nRdWByEI8NXoqjXWyrJwfwQ/HLyBl5OSA/P6cjkpnx8O3uBcbDZGjYqE78dZa+wqISFbxZwNF8pF6FrVcWb3K+XFepNyixmy8CgqrYGvn2rD012q/16VJSWvmIHfHaVYZ2DJMx2q1qYsnUhx8iSsXCmKqFfAsYgMJq08V/0ZtZYIChJ17aZOFZ3KGtSkCYLAkesZbAtNYl9YmpkQeUs/Z+KyiyjSmEennZRyVk7pUqNa04oorWO0NDNWEETJlhUnYpBKYMkzHaslWG3lzmI0Cqw/F88nO8PRGoy0C3Bl+aROZl3LOoORGWtDOHQt3UzIuLT72WAU+HbHBd4Z1ckqd1ITknKLGbzgKG8Na3ZbWnK3ojcYeernU1xMLL9KU8ikXPhgiMUarS/+ucqyY9H4u9qxf35f7BW1c5ymrwlmX3gafZp4suaFrlUX0hYUQFaWmJJt1UrUuNuyBUaNMttMpdUzdNExEnOKmdyjPh8/2bpW51dbDl5NY+7GUAo1evxcbPn1uU60ret6T8/hblGk0XMuNpuQ2ByC47K5mJBX4eQKmVSCt5MSb2dbvEuK0wvUupIJFOJUigK13mJHaamj1yPQg2GtfatVKxienM+U1edIy9fg7aRk1ZQutKpzczF0PbWAsb+cMhNBtlfI+OeVPjTwFJXaS5XnFTJxnF51htaDKPT56OLjRGcU4eOsJC3/phK91bGrmp8OR1YY2Tr37iC8ncvLYyw/Fs3n/1zF1d6Gg/P71boBoLQIvI6LLQdf6191Ki6iJMvQtGmV+35j80U2hyTSyMuB3a9UY0atJWJjoX79Gjl1t1Kk0XPgahrbQ5M5FpFhNl/5VmxkEn4Y34FH29y+o1XZzFhBEHh362U2nEvARiZh2XOdzZy//4+odQZRj7RQQ2aBxkyjtFhrwNnOBld7G1ztbHBzUOBiJ06xqO9hX+O522U5F5PN9LXB5Kp0+LvasWpKFzMFhWKtgUkrzxIUW7bbGb4Y2ZqNwYlciUklesEYq2NXitEooDUYEYSKc/ulDlB1OlhrikZvYMzPp7lsocbk1+csH0ul1TNk4TGScouZ3jeQdx+rnWBoXFYRQxYeQ2swsmJSZwa3rEH07/33xYHZPXuKq+dbOHEjk4m/nUUigU0zetyRFWhNiEwvZPqaYKIzi1DIpXw5qk3NRg09QGQWajh4NY29YWmciMxEqzdPMTvbyulU343ODdxp4eeEj7Mt3k62eDgoquyeFgSBfLWeC/E5nInO5kx0FpeT8sycPRc7Gyb3qM/kng2qvHgn5xYzZVUQ19MKcFDIWDrRfC5pUGw2E1ecNZvD6+2s5MD8fjjb2mA0CkxfG8yBq+m0revClpk9TV1geSodLvYVj9Y7fC2dKavLp12tjl312HUpmdc3X0StM/98fTOmLeM6B5TbXm8wMuLHk1xNyWd0R38Wjmtfq+OqdQYGLThKUm4xrw5uwquDq3bYqkueSsfgRUfJKNBYFO+tMWo1vPoqfPAB1Kld539WoYYnfjpJUk7lDRO9Gnvw1ei21ReTt0BVM2MNRoF5f4ay42IySrmU1VO60qPR/ZmBe68RBIHEnGJC4sRFcnBsDtfTCmqU6ShFIoHWdVzo1diT3o096dzArcaLiJjMIqasOkdslgonpZylEzvSp8lN25lXrGP8sjMWJx/VxMY91I6dIAik5qu5mpLP1ZQCrqbkcy21gOwiLTq9EZ3RiM4gmF3AvJyUNPF2FH98nGji7UhKXjGv/nnRtI1SLmXD9O53VIgyPV/NI98fI+eWRobH2/jx04SOFh9z8GoaL/4ejEwqYcfsXmaRkZrw9Z5r/HwkikBPB/bN61u1/Ekphw6JgqGbN4tFxhYoXS039HTgn1f63POi2Hy1jnkbQzlYUq84pVcD3n2sxX1TiK8J8Vkq9oWnsjcsleC4HDNjE+BuR9cGHnRu4Ebn+m408nK8o6PcCjV6gmOzOROdzZ4rKcRmiXWVtjZSnu4cwNQ+gZVebPKKdby0NoTT0VnIpBK+HNWGcV1uOgb7w9N4aV2I2XfvkVY+/PpcZ0D8PgxaeJQCtZ73Hm/BsNa+LD5wg9CEXPbP71fhcQVBYPyyM5yNyTa73erYVZ8rSXlM+z2IlDIRz0HNvfnt+S4Wt78Qn8Pon0+Js3undaNno6pn91pi96UUXl5/HlsbKUffGICPhQihRc6fh8REeOKJCjcpFbOWSuDvmT1rLfIOwEsvwa+/Qr16sHcvNK+9o5iv1hGTUUhoQi4hcTlEpBWSnKemoFhnSrdJJTCyvT+zBjSqerZuBVQ1M1ZnMDJzXQgHrqbjoJCxbmq323uNHmAyCjTsDRN1XINjcyzOmFXIpaY5tp5l5tk6KGTkq3XkqHTkqrTkqsS/c4q05WSdFHIpXRq40buxF0919LcY8bZETpGWGWtDOBebjUwq4bORrXmmTElKeoGaJ5acLHe8/6xjJwgCkemF7AtP48SNTK6m5psKU+807g4KtszsaUof3QmORmQweeU5s9tsZBKufTIMWQWOyKw/QvjncirtAlzZMrNnrcQbCzV6+n5zmOwiLd+OactYCyvzcty4IcoPAISEQIcOFjfLK9YxdJE4+mlq74a8N7xljc/vdjEaBb4/EMEPh8RpCD0CPfjx2Q53RDfqTpOWr2bXpRR2hCaVS8+38XdhaEsfHmntSxNvx3umP2UwCuwNS+WXo1GmiSkyqYQRbf2YNaBxhYLLWr2Rt/6+xNYL4uDqVwY1Yd7gJqbzLqvpWMp3Y9sxpiSquvFcPG9vuYxcKlaV6I3iRS7s42GVLhAuxOcwaukps1oUq2NXMzIKNLy0NpiQ+FxAfL+vfvIIigpmXpbO7g30dODfV/vUaq6xIAg89fMpzsfnVr9849Ahcdaru7tok9wqdkZe3XiBbaHJppSsRAKh8bl0C6xhdComBh55RDyeh4e4sB0woGb7qAJBEDhwNZ0fD9/gYoL4nZNIYFgrX14e0LhWtd5VzYxV6wy8sDqIU1FZ2NnIWPR0u6ondzwkpBeo2Xslld2XUzgXk03ZLLhcKqGVvwud64uL5I713fB2UiKRSNAbjGQWaknLV5NeoCEtX01moQY7Gxlu9gpc7cV0rJu9DTqDQHhKHqciszkRmWFWCqKQiwviGf0Cq1W7rNEbePvvyybbObN/I94smQxjMApM+u0sJ6OyzB7zn3PsDoTGcDpBxf6racRlmWsGyaQSGnk50MLPmea+zrTwc8LPxQ6FXIqNTIJCJsVGJsVGLsVgFIjNLCIirYDwlHyCYrKJz1aZ1QOVpZ67HVtn9bqjDkLpqB2lXGpKVb3UL5C3K5jNmJavZvACUaD1kydbMamkxb+mlIrEBrjbcei1/tWLaD3zjKhp17evaGBPnIB+5aMph66l8cLqYCQS+OulHnSqf+/nFALsuZLKa5tCKdIa8HRUMn9IU8Z1rlv9COVdIlel5d8rqewITeZMTJYpMieVQLeGHjzSyochrXzNGhHuB6Udpj8fjeL4DXFqiY1MwvwhzZhe0rpv6THf7bvOT4dFvayZ/RuZph0ALNx33eRwA8hlEo683h9HpZylRyJZcTyGW0uRdszuVWW95Mx1Ifx7JRUnWzkFar3VsasFWr2RuRvP8+8VUSR19oDGvP5IM4vb5qt1DFogpjvnDW7K3MGWR35VxanITJ5dcRaFTMrhN/pX/ZnX66F9ewgLE7Xtvv++wk1zVVqGLDpGRoGGcZ3rcjkpH7XOwKHX+tV8kZSRAY8/LjZWSKXiyMV33wXZnc9IXEzI5afDkewLvylWO7F7PT55onWNo/RVzYwt0uiZ+cd5k/bfG480Y1b/Rg+kiHFV5Kl07LiYxK5LKZyLzTbLeLSr68KQlj50aeBOuwBXbG1k6A1GwpLzOROdxenoLK4k5de4Ac3FzoaejTzo3cSTeu72RGcUseNiMiFxYl2cXCphdEd/ZvZvTMMqgkKCILD44A2+PyB2NL85rBmz+jemSKPn891XuZyUZ1a+9Z9z7AJe3YRUKXrBCpmUno09GNTChw4BrjTxcazV6nH1yRg+2hlO90B3sgq13Ei3rC/k6ahg66xet1UDURadwcjYX04TmpCLt5OS9AINcqmEQ6/1p56H5WOsPR3L+9vDcFTKOfhav+qnMMpQrDXQ55vDZBZq+GJUG57tVo0Ot/h4MQ1RXCxG765fh2PHxMHatzB/UyhbzicR6CWmZO/XwPsbaQXMWBdCdIaoEdjY25G3hzVnUAvve2q88lQ69oWn8s/lFE5EZqIz3PyadarvxhPt6vBYG7+q1fjvIYsP3GByz/q42iu4kpTH9wciOHBVTHF3bejOwnHtKlyNln5GAb4c3caUWtAbjIxfdobguJsFwQ087PlzRg+e++0sEWnlv3ffPNXWLK17K9EZhSzYF8Huyymm2x52x27FwSsMbNuABh729/RzKggCL/4exKFrGSjlUk68NbDCz+TOi8nM2XABhVzK3lf7Vnnhqojxy05zJjqbZ7rW48vRbap+wIEDMGSI6FRduiTKlFTAvrBUpq8NMbvt37l9Kp0zXCEqFcyZI3bmghg5/OMP8L47zQfXUwtYeiSSnReTMQowtlNdvn6qbY2cu4pmxuoNRtMCV28w8tnuq6wu0Zkc3dGfL0e3qdV19F4jCAJnY7LZeC6ef66kmtUitwtw5fE2vjza2s90vY7KKOTwtXROR2VxLiabAgt6h6YGtJImNE9HBWqdkRyV1pSSzSnSWgwANfCwp3djT/xc7TgZmcGpKLFERCqB4W3rMHdwExp5VS7CvPJEDJ+UaMK+MrAx20KTic8WJ1DJpBKTDf7POXat39nCkPYNGdLChz5NvW5bWsNgFBjw3RHiSxTDJ/eoz+yBTQiJy2FfeCpHr2eQVWaqglwq4b3HW/BcjwZ3ZI5dQraKx344ToFab+ru69bQnQ3Tulv8EhuMYgojNCGXx9r4snRCp1odt/QD5Odiy+HX+1fP+froI/j4Y1FfqrBQXD0HB5dbueapdAxZdJT0Ag0z+gXyTgURyHuBVm/kj7Nx/HDwhqmm0clWzpReDXmpX2CtO4yrIqdIW+LMpXIyMtOsK665rxNPtK/DiLZ17tgi4U5SGnXt08ST1VO6IpNKEASBv0IS+WhHGEVaA062cj4b2Zon2/tb3Mei/REsPngDmVTCque7mEZXJWSreGzxcTOjOrFbfV4d0oRnlp0pt6ia0qsBH45oVeG5vvnXRTYFm0sIPeyOXeni1dtJSbcSOZpBzX3wdbn7g9x1BiODFx4lLkvFo619+XmiZfsiCAKTVwVxLCKDXo09WPdit1o5oUGx2Yz95XSVC1ozRo6E7dth2DD491+Lm2QXaXnzr0umkU6lzBnYmNeGWo5EVos1a2DmTFG4/cIFqHt3G7R2XEzm1Y0XMAowpsS5q8l1p0ijZ9TSk0SkFdKlgRvju9bjbHQW34wxH7229kwcH+0Iw2AU6FzfjV+f6/RAlq+A2Fz2d0gifwYlEF1G2L+5rxOjO/qbOXMFah27L6WwKTiB8yWlBqU42crp1tCd7oEedGngjr+bHe72VTeggfg9uZyUx4kbmRy/kcGF+FwzG9/E25HH2/hxMTHXpBGplEt57/EWTOxev9Lvykc7wkyOdikKuZSgdwfx9LIzXEst+O85dlnZObi7ud6x/e65kspL68xXdUNb+rB4fAdTbU9WoYbfT8fxx5k4k5PXxt+Zz0a2od0tI5RqQ2khsQTxDdTojZWmWsOT8xm+5DhGAbbOql1xsFpnoP+3R0jNV1c6d9MMlUqM1iUmgq2t2DH2yy8wY0a5TQ+EpzF1TfCdKWC+A+QV6/jlaBS/HY8xiULLJNCxvhvT+gYypIXPbUVH1DoDF+JzOR2VyenorHJf9Oa+Tjza2o/H2vje9fm2giCQVaTlRlohkRmFRGcUojcIyKQSbGQS5DIpNlIJNjIpjbwd6VTfzRT5zSnSMvR7MYUF5dOp8VkqXv3zgslIPtGuDp+ObI2LnU25c3ht00W2XEjCUSnnr5k9aO4rGqDtoUnM3Rhqtv2WmT0JcLfnmWWnicy4aax7BHqwYXr3Cp+rzmBk+ppgk/GEh9+xG7loP2EZOtPnFMQ0+JPt/XmpX2Cti+qrS1ntzJ+erVjvLD5LxZBFR9Hojbelsfncb2c5fiOTpzrWNY3AqpTISDFSp9PBP/+IkyLKUJmsVKCXAwfn1yIdW5bwcEhPh/79xf8FAaKiRL3Pu8DOi8m8+mcoBqPA6I7+fDumXY2cu7IzY0trUTfN6EHXhuap2eM3Mpj1x3kK1Hrqutnx2+QuNPN9MGZxG40Cp6OzWH82nn3hqaash71CxhPt6jC+az3a1XVBIpFgNAqcicnir+BE/rmSYur6lkklYuq0sSc9GnnQqo6LxddRZzASl6UiKqOQqIxCijR6bGRSpIIUhVyCUiGWdNVxtaV9gBvuDgoK1DrORGdz/EYG2y4kmSJ6gZ4OPNm+DkGx2ZyIFOvkBrfw5uun2lp0nCPTC5m5Lpgb6UXl7vtlYkda+7sw7Pvj5Ofn/7ccu5oaa4NRID5bxfXUAiLSCkx1eXKpBJlMwoHwNIudMh3qubJiUmezF99gFFh/No6v91ynUKNHIhGnOrwxtHmlsgzV4d2tl1l/Nh5HpZxCjR57hYw9c/tWuIIt7UDt3diTdVNvChuXDbNXxbozcby37QpeTkqOvTGgel2s69bBc8+BUinq2nl6ioXFrq7lNi0tYG7s7ciuOb3vW0q2LP9cTmHWH+fL3a6QS+lUz40Xezekb1OvCoedC4JArkpHYk4xiTkqbqQXciY6i5C4HDNJD4AWfs5iOqCNX5Uh+NtBZzByNjqbA1fTuJKYx5UrkJVkiy7bAV22I4YCWwS9FEEnQ9DLkNgYkNlrkdprkDloUHgXUK9ZMX06K4nOKionxfPzhI5mGlt6g5GlR6JYfPAGBqOAv6sda1/sSuAtz1GjNzDpt3OcjcmmjostW1/uZXIgS9P1pbja23D67UEUlkQYEkukIRyVMi5/9EilF2KVVs8zy89ysURs92F37PLy8lDYOXAhPpcz0VkcK4kIlDKkpQ8v9WtEp/p3b7G0YN91lhyKxMNBwf75/XB3sKzZVVon3KqOMztn965Vt3ZoQi4jfzqJVAL75/er3nfl9ddFAeEWLeDiRXFKThmyCjW8+meoqT60LHte7WNaZNwR/vxTHEs2fTq89ho0alT1Y2rI7kspvLLxgujcdfDn27E1c+42B8fzxl+XTf839XZk99w+5eqrI9MLefH3IOKyVChkUqb2acjLAxrftxnYmYUa/gpJZOO5eFO3Poh1c+O71mNEuzqmrJ1Wb2TbhSR+ORZlKr8BaOTlwLjOAYzqYLlbNT5LxT9XUjh1pYDQIBuSom3QZDmgy3FAn2dXYjelIEgBAamdVrSfDhoUnoX4Ny2mezcY2M2eTvXdqONqy7ozcaw4EWNq6Kzvbk+7AFf+vZyCzijg5aRk4bh2ZvImIJZJ/W/rZbZcSCp3nqULn12Xkpm16uT/L8dOrTNwLCKDA1fTCE/J50ZaYbkLbnVxt7dh0dPt6dfMvI4io0DDl/9cNb34no4KfpnYqXZK52XO+8kfT3I9rQAPRwVZhVq6B7qzfqrllGxCtoqBC46gMwise7ErhRo9v5+KY1hr33IdUBWh1RsZuOAIiTnF/O+xFkzrG1j1g4xGUaB4xAjRsF67Juo8LVpUbtOcIrGAObNQw6z+jXhz2G1qSt0BSmVjqsJGJsHFzgZnOxucbG1wUMjIKtSSmKOiSGtZINjLSUnPRqLIb89GntVLK9UStc7A8RuZ7LmSyu4T+aRfdUMd54km3gOjpnaLDIlCh9I/B4fmKdg3TUVqK6467RUytr/cq1yk8UJ8Dq/+GUpclgpPRyV/TO1WboWfp9Ix6ueTRGcU0aqOM5tm9MChZPHy2OLjphIIgMfb+vLTs51IL1AzZOFR8orF4x95vR8NPCu/2GcXaRn900lis1X/Ccfu1vM+H5/DL0eizIrquzZw541hze6KZqRGb2DEkhNEpBXyRLs6/PCM5U74nCItfb45TKFGz88TOtKzkSebQxLQGQRm9q++gzP19yAOXE2v9Fhm5OaKmppz5sC0aSAv73gYjQJLj0SycH+EWVPOrVHo22bOHPjxR/FviUSUYpk/X6w/voM1kv9eTmHOhgvojQIj29dhwbj21XLu0vPVjFp6iqRccx29imx+TpGW+ZtCTVFwH2clU3sHMrVPw3tS86kzGDl+I4O/zyexL+xmdM5JKWdkB3/Gdw0wk/tSafVsOJfAiuPRpOSJsiCOSjkj2tVhbOe6dAhwLXfe8VkqdoamsHarivCzDqjjPNFl3J6tkNppsW+aSsNuWbzyrCsjOvix5XwSy49Hk12S6evSwI3MQi0xJSnkqb0b8sawZmY1jYIg8PupWD7dFU6Zcmxc7eSEvD8UmVTCwC//4fC7j/+3HTuN3sCJG5nsvpTC/vC0ckWRSrmUpj5ONPVxItDLAZlUbCMOicvhclIuBWp9OZHOsrSr68KrQ5rSr4mXmZN1OiqL97dfITK9EIVcyndj2/FEVSNyKuFyYh5P/HQCQRAbQ7QGI58+2YrnKkjJvvHXRTYHJ5q2BWrsQJXKULg7KDj+5oCarcz27hXrXORysZC5RflaurKaUltm9aL9HUhd3w7bLiTx6p+ht70fLycldd3sqOduT+f6bvRo5EkjL4e7bvjCk/NZcTyaXUFZZF70oSjMH22KeeTGwVGgTRto0VxCs2aiiL6Dg1gWZGsrZtTT08WfhAQ4e85IyHnQFJdZvcsM2AVm4NAiGfvmKdT3sGfXK71xtjV3GjMLNUxccZZrqQW42duw9sVu5eQZ4rNUjFp6kqwiLYOae7NsUmdkUgkX4nMY88tpM327dS90pXdTL+Iyixi08Ch6o8Djbf346VnL+o5lSchW8ejiY+TnF/znHLtSItMLWXYsiq0XktAZBCQSmNG3EfOHNK0wylxbLibkMmrpSYwCLHuuE0MrEGovHe/mYidHrTOg0QsMbenDskmdq32ssOQ8Hv/hBBIJ7Jnbt3opQKNR7FKtgtNRWczecJ6sQvHi6mJnw8UPh1b73KrFkSOizmfZmr86dcR6wJ9+umOH2XMlhdnrReduQrd6fD6q8oaTIo2ep5ed5kpSeZFbhUzCkTcGUMdCN3KpBMunu8JNiy9nOznzBjdl0h2qL7/1eJcS89h6IYmdF5PN6trbBbgyoWs9hrfzM6uJzlPpWH0qltWnYkz10x4OCro1dKdjfTdkUgl6g4DOaERvEFDrDIQl5xMcqicxyJuiMH8MBebPPbCpni5doF0rGc2bSwgMFGVb7exE26nTQVqaaDuTk+H0OQPHThq4HiZHr735WZQ5qnFtncr0ORqmDK7DgfB0Fh2IQKs34umopF2ACwdLGiE613dj1ZQuON1iW8/FZDNjbQg5qpuvxcbp3eke6MG7m87y5dPd/5uOXXyWil+PRbHjYjIFZbpUfJ1teayNH10butPM14l67vZVfhCLtQZS8oqJTC/kbEwWYUn5xJTM4SylkZcDL/YOZHRHf1NaUaXVM3djKPtLVtKvD23KywMa1/oC/7+tl/njbLypS9ZeIePI6/3NQsiCIPDJrnDWnYkz67AEscD2u7HVqFMpQV9SLB2bpeKNR5rx8oAa1ok8/rj4CV+1SmymsMArGy6w42IyDTzs2f1Kn/sW1gdYczqWD0o6NkGMRnWq72aamdrKzwWN3mgav1X6u0ijx81BQV03O/xd7e5pWlkQBE5GZvHrsSgOntCSfy6Qomt+YBQNiUwm0LcfDBksYeBA6NRJ9LXzinWElbTJX08tQK03IAhgFISS32Kqs7W/Cy18XMhOsmXNn1r271SSlyxGG5V1cvB97hQAAW527JzdG9db0nK5Ki2TV57jYmIeTrZyfn+hazlB7/PxOTyz7AwavZG5g5owb4g4bWDJwRss2B9h2s7bScmptwcil0n5KziB1/+6hI1Mwsm3B5rNU6yIi/G5PLFoP/H/UceulNQ8Nd/tu85fJbOnW/o58/349mY6g2eis0jNUzOyg+UGl+pQmmr1clJy8LV+5Rz7g1fT+OlQJOdvmTnbPsCVbS/3qtGxSmVrKmvaqJAqnLyMAg2TV54lPKUAgM9GtmZi9/o1O0Z1uHpVlGFZu1ZUECjb4CEIotCxi4voJcjl4o+zMwQEQLdu8MILVR5iz5VUZv4RgiDA6ild6N+s4s7cArWODefiWX0yluQ8dbn7O9V35e+ZFb9Pap2BT3eF88fZeNNttnIpg1p48+Yjzal/G9quGr2B83G5nIzM5J/LKWaNEJ6OCka0q8OYTnXLifEXavSsOhHDsuPRput+fQ97ZvRtRLu6Ljy+5ES5YwkCaBLcyTvTCHXMzdfL3snI6NECTzwuo39/8PISI72RGYWExOUQGp9LVpEGldaASmtArRN/Cwg09BSHGzT1caS+qxPpkU5s/UvKps0CqgIZEoWeurP3I1cYebS1H2M6+/PF7mvcSC806RSeuJFBgcZA+wBXfn+ha7la5bR8NZNXnuVaqthU1q2hO3/O6MEnfwfz4Zgu/y3HLlMj5afDUWwLTTKt9r2dlDzWxo/hbf3oWM/tjinzJ2Sr+P1ULBuDEigsiQS6OyiYN7iJqbvFYBT48h9xwDKIztUXo9rUagWdq9Iy4Lsj5Kh0+LvakpSrtrgyO3w9nRdXB5XT/erb1Is1L3St0TG3Xkhk3p8XcbGz4fhbA8oZ7wrZuFFMOfz8Mzz5ZIWb5al0PLr4GMl5asZ3CeCrp9rW6PzuJKtPxnAkIoNuDT3oFuhOG3+XB3YyhcEosOtSMr8ejSbktA35Zxqjjrup9N+pk8DEiRKeeQZ8fER9sd2XUjhxI5PLSXlmac7qIJFAYy9H2tR1IVBWh6P/2BEvpJDpG2n6njkq5Syd0NHU5VpKgVrHC6uDCIrNwUEhY+XzXcqJwZZGS+VSCdtLpqcYjALjl502m4n42pAmzBnUFEEQGLHkBFeS83m+ZwM+eqLi7tiyfPBXEJ+O7fqfduxK2XMlhXe2XCZHpUMhl/L2sOZM7lGftWfi+HT3VZp4O/Lv3D61XmiqdeJM3pjMIovadkeup/OCBTvk72rHybcH1uhYEWkFPPL9MQQBds3pXT1hXkGAv/+G996DnTuhScWaemUVBewVMo6+MeDuSQwVF4ujF5XKm5JQubmViiozapQ4i7uUtDTxi22Bj3eGsepkLH4utuyd17dKm60zGPn3Siq/HY8u11Tyv8eaM61vxWnz/eFpTFtjuXzF19mWp7sEML5rAF6Oygrru41GgWyVloRsFWdjsjkZmUlQbLZZpszWRsrQlr6M6uhPn8ae5fal1hlYdyaOpUeiTKnNZj5OzB7YmMfa+JmCN0MXHTVJJwkCFEd5kXeqiSmzIZEIDB1mZNqLMoYPF9+iiLQC9l4Rp/6cj88xCxTVhJZ+zoxsWxf79LoEXVGTVT+cE5Finae9QsZbw5pzNSWfjUEJpvNPziumQK2ntb8z617sVm4GrVZvZNLKs5yJFuVT9r7al79PR/C/0Z3/O47djBXH2BeZbzIk/Zp6MaNfIN0betTamSt92pUZvwK1jj+DElh1MtZUq9CniSffjGmLn4sYzl17OpYPd4RhFMRuvl8mdqpVU8WfQfG89fdlbG2kqHVGZFIJ++b1LVdU/Psp8Xhlae7rxJ5X+9boeAajwCPfHyMyvdAsmlIlb70lph9atBBTsRbqXEo5HZXFsyvOIAji/N1hre/c/N3/Cnq9GPyMjYUjYVlsiw8nNRVyjjRHHSs6UlKZwNPjJLz2mhiZMxgFTkRm8ndIInvDUsvVkwa429G6jgut6jjjbGeDRCJBAkglEiQSscj8clIelxPzyq3o/V3tmNC9Hk918Gf35RQWH4wkr1hMeUzoVo93H2thFn1VafVM/T2YU1FZ2NpI+W1yF3o1vumICoLAzHXn2ROWSnNfJ3bM7o1CLuVaaj6PLT5u+k7LpRKC/jcINwclJyMzmVATEVsgIzsHbw/3/xeOHYg1VG/+fYkjJTVRpdH+Ura/3Ou2uvdLlQPsbGQcfaN/uQJ0S3ZIIZNy/bNhNXYo5268wPbQ5ErHmpXjscfEqNjo0aKTVwlqnYEhC4+SkFNMv6ZerHq+yx0dz1cper1Yk5yWJjae6fVibi83V6yJaNZMFIIHsSGtZUuYOBGWLBElpsqg0uoZ9r1Yo/pM1wC+HF29xbIgiCVIy49HszdMzDJJgKUTO/JoBZMn1p+N592tly3eVxYJYtDDq0QDzlEpI6NAQ0qemrR8dbnsEoCno5LejT3o29SLoa18LcqX6QxGNgUnsORgpGm0VkNPB14d3IQRbesglUrQakW7GRUFy3encTwhEZmjmryTzUyLYYncwLPPGfjkPQWBgWKWbvflFDacizeJCpdiZyOjfYArHeu7UtfNHnuFDDsbGfYKOXYKGQajQFRGITfSCrmRXkBkeqGpvg/Ez/+Qlj6M7VwXL0clH+8K51zJ6MP+zbwY2tKHr/69Rr5aj6u9DYIgkFesp7mvE39M7VauY1YQBB5dfJxrqQU09nZkQENH3vsvOXalGk+DW/gwZ2DjahksQRCIziziVIkwYVq+mvxiMcVWoNZRqNGjkEtp4OFAQ08HGniKv5v7OtHG38XMOOkNRtadieOrPddQ64w42cr55MlWjGzvj0Qi4fC1dGavP0+R1kBrf2c2Tu9RY609o1FgdMnK0tdZSWq+psL0xIfbr/D76TjT/652ckI/fKRGxwNxIPjs9RdwsbPh9DsDq6fvlpcndoBlZcHixZCdLcayX37Z4ualaR03exv2vtq32vP0/ut8/DH8/rto2wV7FW79r6Gsm03ukRYUhYtpNIlE4PnnJXzwATRoIEZ2fzsRw6bgBLNygSbejjzRrg4d6rnR2t+53OqvMtIL1FxJyuN0VBZ/hSSa6lYUMinD2/kxoVs9dl5MMWksBbjb8d2YdmaRObXOwMx1IRy+noGTrZztL/cy65bNLNQwdNExsou0vDKwMfNLNMVKx1SV0q+pF7+XRJ6fXX6GU1FZPN05gK/HVH0Bu58THG6H2zlvQRAbBb7bF1FOPb8mF/6K9j3651NciM9lYvd6fDayfF3XrXYI4ML7Q3CroJu2IqIzChm88ChGoQZiwmFh0LatmI49fhx6965084i0AkYsOYFGb+SD4S15oXc1pJ7uNT/9BLNni3+3bCk6rLfMqT0TncX4ZWcAWPdiN3o3qdnc3ojUAqasDiIptxgJ8Nmo1kzoVj49vfjADRYdiCi/gxIUcqmZOHBFSCSiI9eurgu9GnvSq7FnpeMSjUaBXZdTWLjvuqkjto6LLXMHN+GpjuIUoQ0b4J13RNtpNILCJw/XvlcpuuZP0eW6gAQkAt2G5fL3Chf860iJTC9k3Zk4tpxPNMmSyKQSBjb3pndjTzrVd6O5r1ONpxRlF2nZdSmZTcEJZjWN/q52vP1oc1Lzivl2n1hn52JnwxPt/Nh9OZXsIi2udjZIJJCj0tHE25E/pnUzlZ6cuJFJHVdbHJVyBpVMnurkp2TLq0P+O47dlF+P8Nrw9uXy7rdSrDXw7xUxLXUqKqvcEN3qUs/dnpHt6zCyg7/ZBSoqo5D5my6aJBaGtfLl81Gt8XBUEp6cz3O/nSWrSEvfpl78NrlzjdN9V5LyGPGj2EhRqj20ZVbPcrVLeoORyavOcTLy5iy5iM8erXEa2GAUGLjgCHFZKouzBSvkxx/FrjBnZ8jPF3/fuGFRkV2jNzDqp1OEp+TTt6kXq+/lavkB5uBBGDLMgHP3KJw6R1F0JYDcY80QtGK018dH7FNp1050nFafimXp4UiTUXK1t+GJknqUWxcitUWtM7DrUgprT8eaUjdSCbzQqyG9Gnvy3rYr4gVBIo4imtnv5igijd7AxBVnCYrNoZGXA9te7mVWGFy6iJBJJWx/uRet/V3IKdLS/7sjpogg3NRoPB+fw+ilp5BJJeyf17ecrMqtPOyO3b4L0bRu6Iuvs22130u9wcjYX0+byaKU4qCQce5/g2+rtrXUiZBLJRyY36/c3Gy9wcjzq4JMaSeAffP6VjhbuDJeXn+e3ZdSqq9rB6KW5rJl0LUrnD5dZVNF6XQUhUzK9tm9ajeN4m5z/Dg8/TSkpIgRu1WrYMwY8b4zZ2DBAj6Y+CFrTsfh72rH3nl9axxE0BmMvLH5IttCkwGxY/iNoc3M7HJp3TeIjlW7AFfaBbjStq4Lbeu64qiUYzAKZBdpySjQkF6gJqNAQ4Faj7ezEj8XW3xd7PB2UlbrOigIAkcjMvhmz3XCU0QHydNRwcsDGvNst3pmHaQZGWJzmMaow6XPNaRKPTmHWmIsFiNeMjstK9areH6kK5mFGhbtj2DDuXhTdiDA3Y7xXeoxtlPdOxpoCEvOY3NwIttDk0wL5D5NPHmhV0MW7o8wSUpJJKL0zPW0Qpxt5djIpGQVaQn0cuCXCZ1YclicPvLe4y2Y2ifQZDsFrYr4RQ+A3MmxY8f49ttvCQkJISUlha1btzJy5MhqP766xjqrUMOa03GsPRNnysOD6JG72yvQGYzklrl4VIRcKsEoCGa1I+3quvBUp7qM6xxgmjf3y9Eovj9wA32Jnte6qd1o6OlAaEIuzyw7Q7HOwJhOdfl2TNsaX3Df23aZdWficbaVk6/W07WhO39O715uP4UaPf2/PUxmSdfX0Tf6U9+j5kWtpcYuwN2OI68PqF7nk04HrVqJzpyPj5hmmD4dfv3V4uaR6QU8/oO4Wv5wREumVEcY+T9OSGwOYxdcRK2SkPVvO7Qprqb7HnkEduwAqczIlvNJLNwfYVqkNPNxYs6gxgxp6XNXRwCFJuSy/Fi0aWxXfQ97Phjekr1hqaapDzP6BfL2sOamz2ZGgYYRS06Qmq9mcAtvlj3X2exiMeuPEP65bJ6SvbWxpZ67HUffGIBEIuHF1UEcvJbOiHZ1WFKFHMb9cuzulI0rzUq42dvQso4zLf2caVnHmQHNvCuNwBZp9Hz571XWnYkvd9/XT7Xh6S7VGB1YCc+vOseR6xkMb+vHjxa6lAvUOgYtOEJ6gWiHVk7uwsAWNR+5dTEhlyd/OomNTMLxNwdWb+JGaqooEFxUBBs2wPjxlW4uCALT1gRz4Go6Tbwd2fmA6GyWIzVVfC5Hj4r/L14sOq4bNwJQFB3HI5siScwprjCaWhWCIPDDwUhTVO7J9nX4Zkxbk03ZcyUVuVRC2wCXajUw3Q6no7JYdCDClLZ0UsqZ3jeQF3o3rHBhMubVFE7m3SD3aPObjRESI54Nijl/2gYvdxmrTsby0+FIU5384BbeTOrRgN6NPe9qcEGtM/DzkSh+PhKF1mBEIZPSNsCF4DI1xY28HLBXyLiclI+zrRyFXEpmoRaZRIKhxCUb3MKbFZPF0oQ5Gy6w/VxktTv/72oFeVFREe3atePHUr2fO0xMZhH/23qZnl8dYvHBG2QXaXGzt8GjJBVgMApkFGrILdYhkYgK5O0DXOke6M6AZl482tqXoS19CPRyQCoBvVEoVxB8MTGPD7aHMXTRMfaHpyGTSpg9sAnbXu5FQ08HknKLGfvLaa6l5tM+wJUfn+2AVAJ/hSSyaH/FoeyKeH1oM9wdFOSr9cikEs7FZHP4enq57RyVcjZM726STNocklhum+owplMAbvY2JGQXszcstXoPsrER6+wAcko+rCtWiKKhFmjs7cT/HhdlUb789xrXUwtqda7/BTR6A1/vucaYX06RG+ZNyuo+JU6d+MGbN08U1r+eLkpBvPn3JVLz1dRxseW7se34Z24fhretc9fnOrYPcOWnCR1Z9XwX/FxsictS8eLvwchlUl4fKtZj/no0mne3XjE1WXg5KVk2qRMKuZQDV9P5/pZUzqdPtsbDQcG11AKWHBIHXz/btR7Ny8hcxGcXs+2CGEkoHQO182Iy4cnlpRseBO6UjWvgIXbx56h0nIzMYvnxGOb9eZFuXxzk9c03swS34qCU89nINqx7sRs+zuY1OreOKKoNbz7SHIkEdl1K4bKFqQ5OtjZsmNaD0uvkjovlRVarQ7sAV7o2dEdnEFh1KqZ6D/L1FWt+Ad5+W5yKUwkSiYSvn2qLl5OSG+mFpvmcDxy+vuJ83NJu2blzTU4dgENoCN+UNKOtOxPPqajygsxVIZFImDu4Cd+NbSc2NoUm8/SvZ4hIE23zsNa+DG7pc9ecOkEQOBWZybhfT/PM8jOci8lGIZcyvW8gx94cwJxBTSw6dYUaPW9svsjR2GTSN3YvcepE+zNqFCSE2xOWkc3ghUf5es81CjV62vi78Of07qyYLI45vNsZI1sbGfOGNGXvvL70buyJ1mA0c+oAojKKcLGzoV1dF/LVelNAylAmznY2JttkWz99shUOyurb/HuWipVIJHcsYlesNbDoQAQrjkebHDEvJyXZRVrTCyGTSmjh60Tfpl50LdG4qayLSK0zEJleSERaAScjs9h9Odmizl3/Zl58MLwlgV6OZBRomLTyHFdT8nGxs+H3F7rSPsCVDefieWeLWHj6xag2PNutZqvm0kYKZcmosWY+Tvwzt4/FaNoH26+w5nQcAW52HHtzQK1Scgv3XeeHQ5G0C3Bl26ye1duHIIjjdY4dEyVPQkPF/w8dsijQKQgCU1YHceR6BoGeDmyb3av6nbj/EcKS83ht00WuROjI3N0eTbx5B+mCBTD3VYGfj0SaIsKu9jbMHtCYid3r37foQoFax1f/XjOlZgLc7RjXKYCFB8TaruFt/Vg4rr2pFGDL+UTmbxKd/F8mdmRYmQLt0ikgMqmEbbN60aauC6eiMnl2+VnTNs62coLeG4xSLmP2+vPsupRitnq1xIOQir1dG6ewcyAyvZDw5HzCU/I5E53FtTKLoDb+LjzXvT4jO/hbLLsoUOt4b+sVtl9MNt1W2whaWUqnyfRp4snaF7tZ3Ka0ltbFzobz7w+pleZZ6UhCJ6WcU+8MLKfxZZGiImjaVOxA2rhRTGNWwfEbGUxaeQ5BuDNRzbtCQYFYhxFjwcl96y346itTujTA3Y59r/ar3hQhCxy/kcGsdecp0OixkUl4qV8jXh7Q+K7YG2NJ49eSQzdMXfEKmZSnuwQwa0AjU1OiJULispmz5gqXNgVSdKV0Xq8ASJg5E75eoOfT3WGmjIKPs5I3H2nOqA7+963857u91/jxcFSF93dr6E52kbbcvOxSds7uTZu6Ygnaa+tOsfC5Xvc/FWt2oDvk2J2OyuLtLZdMY8LqutmRnFtcLtJWioNCRsf6bnRt4Ia/mz1avZEirYG8Yh35xTryinUoZFIaeonNE4GeDtTzsEetM7I9NIn1Z+PNjCuIEwqm9w3k1cFNUWkMPL/6HBfic3FQyFgxuQs9GnmYBDylElgxuWYzFQ1GgSGLjhKdUWRy7r4d05axnQPKbZtTpKXrFwfQGQQ2v9SjVor0GQUaen19CK3eWLN9XLokGiB/f7FLVq0WW/dHjbK4eVahhuFLTpCSp2ZISx9+ndjp/0W9nSAIrDgewzd7r5F/w5Os3e0xqBQ4OIjNfVu3inPGez+iYt6foQSXdGs91saXz0e2qXExekUYjQJ5xTqyirSotHr8XOzwdFRUezFwOiqLN/66SGJOMR4OCl7s3ZBFByLQGQQGNPNi0dPtKdIa8He149Nd4fx2IgZ7hYwts3qajXMqrafqVN+Nv17qgUQiMemZlTJvSFPmDmpCVEYhQ0oK6y3Vm5byX3Dsbj1vQRA4H5/LH2fi2HU5xVSs3tzXiS9Ht6lwFvPOi8nM+zNUXBjY2XDi7YE1rsMqS9mJN39M7WbW9VxKsdZAp8/2o9Ia+G1yZwa1qPkMWWOJ3YvKKDLVF1WLnTtFNdnBg6t9rFItRYVMysYZ3Sv8XN1XTp8WZ+Lm3RIpHTAADh2iUKNn6MKjJOepmTOwsSnCXRuSc4v5YHsYB66KXbMNPR34fFRrejaqWXNGReSqtPwVksgfZ+NNExgUcinPdAngpf6VO3R6g5HFB2+waFMqaVs7oc92RCoVePFFCcuXw4cfwphpebyy8QLRGUVIJPBSv0bMGdi4eg2BVWAwCuSotGQXacks1JBfrMfHWUl9Dwfc7G0qtZ9Go8BfIYl8/k+4aapOKVKJqCvaPsCVQo2eSAvO3buPNWd6iSzNsoNXmDG4zcPn2Gk0GjSam91++fn5BAQEkJeXBwo7vvznGhvOiVEDV3sbpEB2SZFi90B36rra89f52qUkyyKVQPdAD57qWJdhrX24llrIl/9cNV1wS+nd2JOfnu2IXCZh+tpgTkZmoZBLWfZcJ/o19eKtvy+xKTgRFzuxI7RadSMllEY97BQyirUG/FxsOfx6f4urqLf+usSfwQkV1sFUh3e2XGLDuQSGtPRheQ3U40289x58/rlYe3f5coVjdUITchn3y2m0BiOvD22KUi5jUs/6dz21eL/IK9bxxuaL7L2SRu6JpuSfFjW3OnYUx036+EBwMOS6JvLe1isUaQ04KuV8/EQrRnf0r3VThNEocCkpj0NX0zh6I5OkHBU5Kp3ZxAcQdZbqudtTz92eNv4ujGhXp1yRfFkyCzU8v+ocV5LycVDImNW/MUsO30CtM+KgkDGucwAfPtHKrLC+mY8TO+f0NkWZ0vLV9P3mMBq9kVXPd2FAc28SslUMWnjU5LzYK2Rc+GAISrmMN/+6yKbgRAY082LVFMt6jQ+LY1eZjavsvLOLtGwOTuDXY+KoIokEnu/ZgNeHNrOYsorKKOTxH46j1hkZ0sKHX5+7vUXURzvCWH0qlrZ1Xdj+ci+Ln8sv/rnKsmPRtdLVLGXjuXje3nKZOi62HH1zwF3TmzQaBWb9IcrweDsp2Tmnt2mm8QPFxYswdKg49qAUBwfR2ZPJTLI0CpmUf1/tc1vzqQVBYG9YKh9sDzNJ5/RqXHod9K2xk6TWGQiKzWZ7aDI7LyabZJkclXLGdq7LS/0aVfmaZxRomLPhPAd22pK9tw2CTk6dOgIbN0ro0wcOHRKIUcTy9b/X0BqM+Drbsujp9vRo5FHpfitDozdwNjqbQ9fSOXw9nfhsVbmu81IclXIC3O1p7uvE8LZ+9GlieeZ4TpGWL/65Wq5kyl4hQ6U10KGeK9EZheWcv75NPVnzghglX3EojGmDWj98jt1HH33Exx9/XO72oIgE5v4dYdKSC3CzI6FkYHiAux2fPtma/s28TaOyKsPHWYmHgxKpVPTENXqj6WKn1hnIU+lQl2njtlfIeLS1H+M61yUqo4gv/gmnUHNzbmhDTwd+m9yZOq52zF5/gQNX03BQyNhaUoP31M+nuJSYR+/Gnqx5oWu1javeYGTQwqPEZalwUsop0Oj55qm2jOtSPmpXOppHLhXV+mtjoCLTRckBiQQOVHcod1kiIuDdd+Hbb6Fh5c0Rpca7lHmDmzJ3cMUiow8rV5LymPXHeWKStWTv6IgqRtSlmzVLTLva2ooXmO/2XWfpETFc36WBGwvHtSfAvXYzZ4Njs9kYlMCR6+mmxppbcVKKukwZhRqLBqt9gCujOvgzvK1fOW0lEFN+M9aGcCoqC7lUQjNfJ8JKauDcHWw4/744uim7SMuQhUfJKtLy2pCmzBl08z0udQLKDpIvTeeV8u6jzZnerxGxmUX0/+4IEgkcfq2/RcfzYXHsKrJxeXl52Dk4VunIZBdp+WxXuGlmtb+rHV+MbkO/W8SjQZz8Me6X0+iNQrnXv6ZkFmro981hirQGVj5vOQMRn6Wi33eHEQQ49Fq/KjuZLaHWGej99SEyC7UsHt+eJ9vXcIJGqQNkoUP/Vgo1ekYvPUlEWiEd6rmycXr3B3OBef06DBoESWXqF69cgVatEASBF1YHcfh6Br0be7L2xa633SGfr9bx7Z7rrDsbZ7IPDgoZj7bx45FWvtT3sMff1c5sQWEwCmQVaUjNU3MuJptjNzI5G51lprHZws+Z57rX58n2darVrR0Sl83MNRe4tqMhBcFi9HbwYPjjD/HtVesMzN8Uyj+XxUj/kJY+fPNU21plOARBTBH/cSae4zcyLM4Gd7O3wcNRiaNSTlq+2kzDruw2j7Xx48n2/nRp4FbuvQiOzealdSEm2+xmZ4PWIGYRh7XyZV94qln2US6VcO3TYchlUlYfDmfKwFYPn2NX0Wq22Zt/oZbY4uWkRKXRU6Q1IJNKmNYnkLmDmphqC8rWtpUiBeq42uFsJycqo6icmGtFKOVSbGQSMyfukVY+zBrQiOXHYth1KcV0u7OtnJ8ndqJrQ3ee+01Ui67nbs/2l3uRrdKaVs7vD2/JizXQTyp1VB0UMoq0Bpr5OLHnVcuK8mN/OUVQbI6ZTlhNKR3K/Wy3enxRxTxCM3btgnHjxGjd2bPVmuX43IqzHC+RSbCRSthjQYz5YWbDuXg+3BFGUao92du6oM6yx85O7DF59llxG7XOwOubL5o+S7MHNGbekKa1qk+6mJDLgv0RHIvIMN3mqJTTt6knA5p507KOMx4OStwcbEwXr1yVlpE/nWRKrwYYBTh0LZ2TkZlmosHPdqvH/CFNy3VmavQGJqw4W64oGOCrp9owvqRuaXtoEnM3hqKQSflnbm8ae4uNEtlFWvqWDJJfOqEjj7XxI6NAQ++vD5m+o862ci58IA7ALu3OnNq7Ie8Nb1numA+LY1dZxO6TvTG0D3Ct1tirYxEZvLv1Mok5ovzM+49b1mYrXURJJLBiUu1SpKWUOuO9Gnvwx9TuFrcp7WSe0qsBH46o3tSQWylNk7aq48yuOb2r76isWwczZ4q26LffqvWQ2MwinvjxBPlqPU93DuCrp9rck6H3NSYuTlQnzyqRuPrmG3jjDUB0qIcsOopGb+SHZzrc1uzysiRkq9hyPom/zydanGjjZm+Dl5OSHJWOrEKNxXIoX2db+jfzYmznADrWc63WaysIAr+fiuXjv26Quq2DSaj9vffgo49AJhMjYNPWBBMcl4NCJuX94S1MU6FqyrmYbL7bd93UlQtizf6g5t4MauFDu7ouuDsoLE7FSMwpJj67iBM3sth5KZmMMiLh7QNc+eiJVuVmpesNRt746xJbSxZnneq5ERIv2tHH2/iy+3IqEgkmp/p/j7VgTKe6/HnqOjOHtn34HLtbKSsF0LiuOCTcIIhFxN+MaWvSITIYBX46HMkPB8WCcwAnWzl13eyITC80U7/2c7ElJU+Nm70NgV6OlH4MDEYBrcFIsc5gyqOXIpeKI8QExBEoL/dvTB03O97+6xK60mYNiYRvx7alfzNvnvzpBAnZxfQI9GDNi13ZGJTA+9uuoJBL2Tm7d/WGXSPqDfX/9ghJucXYyCToDAJrX+xKnyblV+elWjeejgpOvj2wVivPs9FZPL3sDEq5lJNvD8TTQrTGIunpomhxYaEoOzBunCi2OX68KF58C1eS8hj7yymKyzSndGngxqYZPR5Mo1oDtHojH+0MY/3ZeIpjPMnZ0RmdWka9erB9+83RutklhikkLge5VMKXo9tYrKGsimup+Xy3N8JUGyOXSniqY12ebF+Hzg3cK9U2XH4sms//uYqzrZw1L3ajfYAr6QVqdl1MYVtoEpdKuiBd7W14bWgznu1az+R0XkrMZfTSk1haJynlUna/IjpxgiDw4u/BHLqWTuf64ntcGrVetD+CxQdv0MjLgX3z+iGTSsqJFn/yZCsm9WjA4WvpTFkdhLOtnDPvDiqXFnpYHLtbKT3vN9efZvOlLIwCDGnhzbguAbTwc6auW8WRW5VWz6e7rprKU6b3FeVnbs0KlEooOSnlbJvdq9YLqMQcFX2/OVypkPDRiAwmrzyHk1J8n2qjo5dTpKXnV4co1hlYP7UbPS3U9Fnk9Gno2VNcWF66BIGBYvHqjBmVPuxoRAZTVp3DKMCbw5oxq38NZ2ffK5KSxEYRlUqsa05IMJW8/HDwBgv3R1Q43/d2EASB4LgctpxPJDQhj8QclcXxW1IJeDgqae7rRL+mXvRt6lWpGLEl1DoD7265zJ+Hckj/qwv6bEfs7QV+/11ikvNLyFYxedU5ojOKcLKVs+y5zrVKvV5JyuObvddNi2GFTMqz3eoxuqM/reu41Lh0wWAUOB2VxfbQJHZfTkFVEvUb06kubw5rVq7DuGyGsUegB6ejxVKuDgGunI3JRiGTinIpcikyCTzZ0o2vn+1x/x27wsJCIiMjAejQoQMLFy5kwIABuLu7U69e1Z1IpUZv4Bf/EJUnXkGeaCfq7ZTWmqXkFTN3Y6jJ267jaktbfxeORGSYuloDPR1oW9eFvGIdx29kWLwY3YqNTIJUIjGL8MmlEpPjWN/Dnul9Avl6zzWTaGxpo4S/qz2jl56kSGtgco/6fPREK1O4vLmvE9tn96q241U62qU0F19Wnb8sOoORPl8fJjVfzaKn2zGqQ10Le6scQRAY+dNJLibm1Tw9+sknYhWrr684MzEvD375pZxRTc1T8+RPJ8wmJ5TyeQUq6A8LmYUaZq07z7nYbAovBpCzrw1Go1gL8vffN33cxBwVE1acFdPstnJ+ndip+hevEgRB4LcTMXz17zX0RgGpBEZ1qMvcQU2o51F1Glel1dP3m5s6iI5KOaumdDFrnDkVlcnHO8K5XiKB4Odiy9IJHU1F+2ejs5ixNpjc4vJGvqGnA9tm9cLF3oak3GKGLjxKkdbAp0+24rkeDQAxpdvnm8PkqnR8N7YdYzrVJSFbRf/vjpjKI9zsxS5LQYABJWLaljrN75djd6dsXKmO3a009nakf1Mv+jfzpktDN5PdKNTokUslKOVSfjkazdd7rgEwol0dvhvb1sy+aPVGJqw4Q1BsDs19xXrH2tauvfzHeXZfTmFc57p8M6a8kLDRKDB44VGiM4v4bGTrakUfLVE61WJgc29WVnfMGIgjxrZuFTtKMzLEbtnU1Arnr5ay4ng0n+2+CsBHI1ry/IOqtRkUBN27iyMX/v5bfL6Yz/e9nWhpdclX60jKKSazUIObvQJvJyUejspaZRtKySjQMGNtMKdPQ/rfnTEWK6lXT2D7dolpQXwlKY8pq4PIKNDg52LL7y90rbEgttEosOJENN/suY7eKCCXShjXJYDZAxpTpxrjC6tDer6ar/ZcY8t5MSpnK5cyb0hTpvcNNHN0y47ma1XHmbDkfHyclcgkknLjHoc0cmLF9H73X8cuODiYDh060KGDKC46f/58OnTowAcffFCj/ZS2As8b3JTF49ubnLp9Yak8uvg452KycVDIeLZrAFq9kT1haah1RjrUc+WZLgFoDQa2hSZz+Lplp05S8mNrI8XV3gY7Gyk6g1ChUyeTSsRpDbvCmT2gMc624qrUKMDMdecp1OhZ9HR7AH4/HceGcwl8PaYt7iUaXgv2VV/f7qlO/vi52Jq8/6MRGdxIK68DZyOTMqHkYvf7qbhy91cHiURiEg/+Myi+XKF9pXTqJM6NTU292cW1cCG3FnHtuJhETpFlseiPdoSRll9cq3O/31xJyuOJJSc4G5ON6mRzsva0xWiUMHEi7N9/06lLySvmmeVniMtSUdfNjq2zetbYqctT6Zi2JoTPdl9FbxQY0tKHffP6sWBcu0qdOo3eQFRGIUcjMnht00WzGrxCjZ6JK85ytIxmYs9Gnux+pTfvPNocmVRCSp6asb+cZnOwOMy6W6AHO+f0obG3ec2bBFFj8rXNoQiCKOL95jBxNNLXe66TXFIr62Rrw0v9xI6v7w+IY3cC3O3NUkk5Kh3/XklBKpXwXImTsOZ0LPco0VAld8rGyS1cECWIta8rTsQw8bez9PrqMCtPxJBeoOa5386yKThB7Cju34iF40Q9sp0Xk3l+ZRBFmpvOtkIuZemETrjZ23AttYBlx6LLHau6vNC7AQDbQpPJLCy/OJNKJTzX4/bfp1LH6sj1dFNtdZUYDKLTA2LTQXKJ7MulyuuuAab2CeSVgWKk7qOd4WwqGdj+wNGlC7z+uvj3G2+I82cRtdM+fkJ05n4/FcuVpPKag3cSZ1sbWvg506eJF639XfB2tr0tpy48OZ+RP53kxAElaRu7YyxW0qkTnD1706m7nJjHM8vOkFGgobmvE1tn9aqxU1eawv3iH3FB/GhrXw691p8vRrWp1KlT6wxcTsxjz5VUVp6I4bNd4by/7QpLj0Sy7UIS52Kyzb4P3s62LBzXnq2zelLH1Ra13siX/17j9c2X0OhvlndN7tmAaX3Ez/r11Hz8XGxJy9dYrN8r7SuoDg/FSLFGr//Fook9GFFi8AVB4Nu9NwvOW/s7E+jpyI4S/aYGHvYMauHDtgtJZJUI/9nKpXg6KUmswYtzKxJEB0prKO8d1nFRkpwnvrHOtnL+ntmTvWGpfLcvAhuZhH9e6UNMZhHT14aIgp9zelc5Iq2UUnV+Wxspap2xwjmQGQUaen11CK3BWOsh4GqdgW5fHCSvWMeqKV0Y0MybuKwi5DKp5WHsRqM48mbrVss73L1b1PQoQ2ahho3n4ll3Jr7c2Ld67vYcfaP/Q5WS/edyCvM3hVKsEdAd6UBKkKjb9sEHYk1I6VNJz1fz9LIzxGQWUd/Dnj+n96hRpzTAhfgcZq+/QFJusVhbMqIlE7vVq/D10huMHI/MZNuFJPaGpVrUZryVHoEeTOnVgL5Nvcgv1jFp5blykj/T+wby1jDR4StQ63hpbQgno26OuCtdCJXW/BiMAmN/OcX5+FwzTbpirYG+3x4mo0BjiuZFpBUwdNEx077qudtz7M0B5BXr6P7FQYp1BjZO7073MvNqH4RUbG2oKmIX4G5HhwA3TkVlmS4cpa+tj5OSY28NMEXnjt/I4KW1IRRpDQwu6YQte7Et7bRXyKXsfbUvDSvpfq4IQRAYufQUFxNyK4zq56vF90mlNbBhWvdadyg+s+wMp6OzmDuoCfOGNCUpt5icIi2t/S3Yzbw86NfPskj6d9/Ba69VeTxBEPh891VWnIhBIoHF4+9cvdodpbAQmjQRF9ELFsD8+aa7SqWEWvg5s2N2r7vWVXwn2R+extyNF0g750/2vtYgSBgxQqzqcSj5iF5PLeDpZafJVeno0sCN357vUuN0c0hcDnPWnyc5T41CLuWjEa14pmtApbbzRGQmO0KT2RuWarGh4la6NHBjeNs6PNraFy8nJYv2R/DDoUizbTrVd+PX5zqZSp2MRoHZG87zz+VU7BUy9AbBoo8hN6iJ+m7M/Y/Y3SmWTexk5tR9tvuqyamb2L0eCpmMHReTkUhgSs8G+LvZ8duJGLKKtPg4K/F2UqLWG2/LqQNRClFrMGJpYaI3gr+reJHOV+t57rdzNPCwx9lOjs4g8NbflxjUwofhbf0QBLEQubo+9bjOAeJzKLko/30+iSwLq2UvJyWPtxWdit9rqTpvayNjVAexE+2Lf64yfMlx+n17hJBbpF5MSKXiytGpgpXTa6+JI8jK4OmoZPbAJhx/awA/PtuBLg1uakjFZ6uYuS7kgYnIVIYgCPx46Aaz/jiPSgXG/T1ICfJDKoXly+Hjj286dRkFGp5ZLjp1dd3sWD+te42duqMRGTy97AxJucXU97Bny6yePFdBwXC+WseX/16l+5cHmbIqiO2houB2dRbVp6OzmL42hPYf72PggiNmTl3p45cdi2b6mmAK1DqcbG1Y82I3RnW4eRH0dhKN1ic7w8hVaZFJRdV/G5mEA1fTORstOoF2ChlzSiIlPx2OQmcw0tTHicFlivzjs1WExGXjYmfDqI7iZ3PN6dgavXYPKwnZxey4mIy3k4KJXQOQlUzIAUgr0PDDwRumbfs08WLNi91KJn+k8dW/V832NaqDv6iErzfyv62Xa/Udk0gkvNCrAQBrz8SZRR9Kcba1YXTJ+1RbOwQwvqtYc7ryZAwjfzpBr68OsbOM+LIZLi5iJMvSRboaETsQn9v/Hm/BhG71EASY92cof9Vyos9dxdFRlJZq0+Zm0W4JH41ohau9DVdT8llaiTDug8LqkzFMWxNM8uGGZO9tA4KE6dNFOdRSpy4ms4gJK86Sq9LRLsCVlbVw6o5FZPDM8jMk56lp6OnA1lk9ebaCBbFaZ2DxgRt0++Igz68KYsuFJIq0BtwdFLQLcOWxNr5M7d2Qlwc0YnRHf7oHulOvRMUgKDaHD3eE0e3Lg/T86lA5p87WRkpIXA5P/niSqyUzcaVSCQvHtadDPVdUJdJmltBWs/ETHhLHrnNDse5HEAQ+3ikKn4I4vHh/eBrn43NwspUzo28g68/FczIyC7lMQj13e9LyNaQXaFDKpXfsyVrKUKYXaAhws8exZOxHar6a2RtCTU0Y5+Nz+f1ULG8Na45CLuVkZJbFUWGWsLWR8XSJzImjUo5Wb7Q4GxIwpUH+vZKKSlu+9qkyCjV6fj4SxYlIsZj0RlohV5LED5/BWMmHqkcPcWK9Jefu2rUKZ8jayKQMb1uHzS/1ZNec3iYHb09YGq9uDLV40XhQEFvtL/LdvgiMWhmy/X1IDHVDqRRLX6ZOvbltnkrHxBVnicoows/Flg3TuluOflbCiRuZTF8TjFZvZHALb3bN6W0xciEIAttDkxi04Ci/Ho02zR8spfSzq5BL8Spp3beUBgRQ641mXeGljx/cwgelXMrBa+k899s5VFpx/N3Cce3p1ViMziTnqQlwtyOzUMvnJbVLTXycGFfSILJgf4TJsXi6SwCejgpS89UcvCp+J2YNaGR23K/+FWvIJpV8vveGpZlSuv8fCE8pYN25BAy32J6fDkex7kyc6bXsVN+N78aKtW/Lj8ew/uxNOyGRSPh8VGuUcimnorL4+3ztxn891sYPPxdbMgs17Ai17GhNKqmj3H81zWx+d3UQBIHVJ2NMI9EK1HpCE8TUou7WF6AsEyeKzRK3XqwrGHVoCYlEwqdPtmZ0R38MRoHXN1/k013h6C1EUO4rkyfDhQswcKDZzV5OSlNKdsmhGw/sKD6jUeCzXeF8uCOc7IMtyDshKjm8/75Ymi0v6blJzFExYfkZMgvF9OvvU7pUbyJJGU5GZjKtxHYOau7Njtm9LGbLBEFgf3ja/3H31eFRXO/3Z9bj7gkkQAIECYHg7k6BCqVOlVKn7q60QGmRGtDSIhUoLcXdnYQAcXeX3STr8/vjzr07m+wmu0n6/ZTfeZ4+DSuzuzN33vvKec+LySuOYcXBdFQ16OHrpsB9w7vij8eH49Ibk7DziZFYc/cgvDErFi9O7YXldwzA1keH4/hL43Hm1Ql4Y2ZvDIjwAs/DZjnV312JSD9XFNU24c5vzzJalUIqwaz+IZBLOeRVNyLUu2OaijeFYweQk/62IJIJAE9P6IGfz+ahrF6HHoHuuG9YV3xzPBs6oxnd/N3A8yTSl0o4SDhAZzTD1q0plXCI8HHB0ChfjIn2R89gj3artJ/NqYZbKyKOy/algeeBRULE+9HuVIcNxh0JEeA4sIHGm87mQmto6fjER3iji68rmgwmtkk6Che5FMfSy5FZ3tDiuVYNKmBx7txtdNy9/TZQXd3ycRH6hnnht8Uj8MbM3uA4YGdSMe794TxqnNwU/i9QqdHh7u/PkXZ1nRzKA+ORm+wODw9yCsRNkUaTGU9svoy0MjUCPZTY8sgwpzXqTmdV4uGfLkBnNGNS7yCsuXuQTeOWK0S2z2xNRIVax7JrJp6Hm0KKe4d1xdd3xePQ82OR8t40XHhjEq69OxWZH81A7iczse/Z0Vgyrjv6h3tB0UoJ52x2FdY/MBjernIkFtTiiV8u40RGBeauPoVTmVXwdyfSKDxP9tjfLhXitCBt8+SEHlDIJDifU41TmSRrp5RJcdsg4vBtFjo8B3bxwXBRqfVibg1qGvToFeyJoVG+MJl5/HKufVzS/yoCPZSI7+KNvmGeDmVWKd748xqe/zWJBXKz+4dgWl+S8Xxz5zWczLDMEu3q54ZnJ5FZvx/8c8Nm5r8tyKUS5ritP2WbRxcT5IE+oZ4wmXnHZ1AL4DgOZWodruTXtnjO0Ja9pM6dGDdutKgatAaJhMPnt8XhaUH374eTOVi08QLqGh0/RmvgeR5XC2uxO7mE/XfgRhnqtU4cXyol/9nAnLhQTO0TBKPgmLZ5zv6PoTWY8MTmy/jueA6q9/ZjGnVffkl68KhfXtdkwH0/nEdxnRbdAtzw88NDW8gutYUzWVV46EdqOwOx9h7btrOsXouHfryIR366iILqJgR7qvDlnQNw7rWJeO+WvhjU1bdNelCIlwseHt0Nvy8egacn9LAZMBfWNOGpCdEYEOGNuiYD7l9/Hn8nFeGW1afw/q4U9vuKa1ufe9wWbgqOXV1dHb4/W4JVhzPBccCLU3pi/alcVGp0SOjqgz6hXvhRKM0opBz0bTghXXxdMS8+DHMGhCLSz80m6VOtNeB4eiV2XS3GwZSyth2bNtAj0B2Z5RqM7OGHNXcPxPjPj6G6QY/35/ZlpPC2cO8P53AioxLuSik0OhNW3zWQlV7F+HRvKtYezcLUPkH45l7npkiU1DVh+pcnUNvMiDk88/bMGWDqVDJqDADCw4lR3bGDOH8O4Hh6BZ74hcwujPRzxff3JzD9s/810svUeHDjBRTWNMHV7ALjP2OQcUMGHx/i1A1u1sBHu/tc5FL8/vhwh3mVFOdzqnH/+vNoMpgwvmcA1t07yGZH9YXcajz840XUNRnYqBqArPX7R0Ti9oRwp8oXWoMJ2y4U4MtDGTYzLi9MicHw7v6467uzLbQhu/i6ok4Y1zcgwguJBXXo6ueKfc+OgUouZVMM4rt4Y/vjZDZxXlUDxi4jIsTHXxyPCF9XpqpPQUV26bzZYE8VTr8yARIJd9Nz7MoqqxHoRzLW74gCWIBogYV4KXGloHVCfHwXb7w6vRc+3ZuGS3k1kAoyTZ4qGfY9N4aNbTKYzJj91Umklqrtdre2hdpGPYZ/TCRJfn1sOIZEtRxDuPZoFj7dm9qq7p09GExm3LbuDJIKaq0et8cvboGffwbuu8/SvJWcDPTt69R3AAh/9vlfk9BkMCHcxwVvzIzF1D5B7eIAZ1do8GdiMXYmFrGRmGJ4qGS4b3hXLBoZ5bjUlEYDrFpFOIaffsoeLldrMWXFcdQ2GrB0cgxzUv/XqGnQ4+GfLuJiTi1qdg+A+nooJBIiO/jAA5bXmcxktvjx9AqEeqmwfclIp6krF3Krcd8PbdvOtFI1Fm0gDqRcyuGhUd3w1IQe7ZLqEaNKo8Mr25Nx4EaZ1eP9wr3w4wODMWf1qRb0MA7A8O5+OC3iK1OYdY0oWHnH/z8cu2Pp5axW/eq0Xth8Ph+VGh16h3gg1NuFOXUAWnXqegS64/fFw3HsxXF4bnIMuge4g+d5ZFVocCStHD+ezsXn+9Lww8kcHEuvQKCnEstuj0PiW1Pw7pxYuCnbr0o+MMIbKjkpwe69VopnBdLxygPpDkdqVPSV2qqdibZLKbMEZ+9IWgXUzkSBIFHHp7e2NJzG1kqxYgwfDuzdaynLhoeTqRRipy43t9VDjIkJwB9LRiDM2wW5VY2Y8eVJLN+fZjND+X+JY+kVuHXNaRTWNCFE6QX+n7HIuCFDYCBw7FhLp27T2Tz8eIZklVYsGOC0U1dap8Xiny+hyWDCmJgArL3HtmHak1yCu78/h7omA+RSDmaeZKKfnRSNw8+PxUOjomw6ddsvF9o9pyq5FPePiMTpVybg7dmxcG02YPyrw5lIKa6zyfvIr27EK9NJF+z1onr4uyuQV9WItQIvdsn47lDJJbiSX8voCF393DA62h88D6bLNqFXIHxcLd+b6ttN7B0ID6UMpfVaJux5s0MulSC3sgHfn8huwUsrrdfCTSnDmVcnMH5bi/dLgCv5tbjjm7OMD2sy84gOdEe91og3dlxjmTW5VIIPBQHy3y8VstmdzsDbVcGCSnt2aGY/8vwZUeOHo5BLJVh154AW1RO90cEA+557gB9/tKR/mmfxHMSMfiH443FiiwprmrD450tY8M1ZXC2sdej9PM/jSFo57v7+LCZ8cQyrDmUgr6oRLnIpBkf6YEiUL4ZE+aKrnyvUWiNWH8nCyE8O4+PdKY5VcxITgddfJwoEWRZOXaCHyqokm1z473bJOoKC6kbcuu40LmbXonZ3PNTXQyGTAVu3Wjt1APDx7hQcT6+ASi7Bt/clOO3UlddrsXgTsZ2jo/3t2s5TmZW4be1plhXc88xovDK9V4edOoBo+n13XwL+enIkInwt1Jvkwjr8cj4PRTY4/zwI3cSjg59/Uzh2r/5BpkksSIjAH5eLUFhDyONjowNI0wRIGdEeJBzw0tSe2P/sGCREkpRqSkk93v37OoZ8dAgTvziGRRsu4O2/ruPrI5l4f9cNPLn5Cm5fdwYD3z+A57YlwttVgQPPjcWikZH2xqC2iuMZFVg6mZRAPt+fjrkDwtAtwA1VDXqsO+oYyXVSbCB83RSsO+doWoXN8kBsiCe6+btBbzQz4VpnMLVPMJNOoXAqYzliBBEoBsgkikqhFFRdDTz0EJCQQLppW0FMkAf+fGIkxvUMgN5kxqrDmZi68rjVZIX/K1DOz4MbL0CtMyLOLxD1f4xA6g0pgoOBo0cJj1mM05mVeEfQJ3pxak9M6xvs1GcaTWY8veUKqhv0iA3xxLf3DrI5J3jjqRws2XwZeiNpjDCYeET5u+H3xcPx7KSYFmrpFJUaHV7+4yoWfHsWJXX2uWoquRSLRkbh4NKxGNjFmz2uM5rxzfFsTOljWx8s0s8V43sGwGDm4SHIAf1wMge1jXoEeqhwv1DKWy7i2t01hKy5Xy8WwiAIc4pHSpWrdbheXAelTIrJwufuskemv8kw9KODGPf5UXzwTwps3WknM6uw4JuzSIj0waGlYzC6mUSOvWbnKbFBUEgJH3KnwIerazQgubAWCV19YObJpIf2gHaM7k4usVnu6+Lniv7hXjDzwN5rzpVjAeLsfzDXOsumd4Z3e++9lo7RtWuJvmY7EBvqiX3PjcFTE3pAKZPgfG415nx9CrO/OonlB9KRWFCLuiYDOwcVah2OpJVj9ZFMTFlxHIs2XMCpzCpIJRzG9QzAygUDcPGNSfht8Qj8+thw/PrYcBx5fhy+uXcQ4iK82b319NYrbZdRR40Cpk0DjEbSgi/CnDjSnWkw8Xhqy2VG4/lf4HpxHeavPY2s0kZo9iSg/noI5HLg99+B22+3fu1vFwvwvcCj/+L2Aba7oFuByczjma2JqGrQo1ewB769N8Gm7dxxpRD3rz8Ptc6IIVG+2P74iH+lMtQ/3BvHXxyPJ8b3YL7DV4eysGRcd5uvL67V4m3BKW+vNsRN4djVa42Ii/CGwWRmXKUHR0VinaDHxANospN5CPZU4cRL47FkfA9IJBySCmoxd/UpTP/yBDacykV1gx6uCil6BXtgap8g3DOsC2b2D8HgSB+EeKmgN5qx/0YZntmaiGkrjyPM2wW7nhrFeEStQSG1XJbSeh2iAz0Q7uOCCrUOWy/k4xVB22vTmTyHbjqlTIpbhW4zd6UMepMZe66VtHgdx3Esa/fP1ZbPO4I3Z8UiwscSZdQ3Ocl1u/deYMgQkl585x0y4C8yEli/nozFSUxs8xABHkpseGAw1t49EMGeKuRVNeK+9efx9s5r/2fZO73RjNd2JOOdv2/AZOYxo0dX5GxKwI3rEoSEEKeud2/r91RqdHh66xWYzDzmxYfZvYFbw5eHMnA+l+gzrr57oE3D9MelQrzz9w3wPJl8Qhsb/nl6FBMRtocdl4tgMPFIKqjF7K9OWo3TsYVQbxdse2y41W8pqGlCg9aIuTYkIa4X1+PDef3gppAip5KQgTU6I747Qe7Zx8Z2h5tCimtF9dh3nQQfk2KDEOChRKVGx8oXtydYC22vPEA0IGf3F5yKa6XO6S3+R+GIDE1+dSOW/HIFD/90CXcO6YJ19wxEW2oWedWNeHoi6Tp+489rWLzpIgZ/dBDv/H0D43uSeap/JhYhq0Lj9Hce0d0P/u4K1DQarHh8YlA7tOtq+xzwufFhuEW0vprLI7WJDz8E/PxIyXLt2nZ9B4DY2+en9MSRF8ZhXnwYOA5ILqrDqkMZmLv6FOLe3Y/o1/eg+2u7MfjDg1i04QKW7UtDRrkG7koZHh4VhWMvjsPGRUMwNz6sRUZIIuEwtU8w/lwyAqvvGkhG8CWX4vGfL7fdRPbBB+T/v/wCXL/OHuY4MtEm1EuF3KpGvLXzWrt/f0dwIqMCd6w7g/JaPXQHBqP6eiAUCtL5esst1q+9VlSH13eQ7/n0hB42qUZtYdWhDJzJroKrYDtdFC1t54mMCrzw21UYzTxmx4Vi00NDnObvOQKa2eU4Di9O7Yk9z4yGr5sCepMZv14qZD6AGNeK6nDrwDAkdPUBDzIswVncFI6dt4sMCxIisP1KETgA/cI88fbOG22+b0CEN469NA5hPq7QGkz4eHcK5q05hcSCWsilHGb0C8aGBwbj6ttTsPfZMfjm3gR8MLcfVt81EL8tHoHTr0zAnmdG46kJPRDp54p6rREf/JOCpzZfwVuzYq0yGLagN/FQyS2n+MN/bjBph7VHszA0yhfdA9yg1hkdFsSk3bENAlF6p52utFmCMTyWXoG6JudJvyq5FN/el8AihhslLUWR2wTN2m3aREojatExDh506BAcx2F6vxAcfH4sHhgRCYCIPs/+6uS/3vFVpdHhnh/OYcv5AnAc8PSoWJxZ3QfJyRyCg4EjR4Cezcby8jyPl3+/ikqNHjFB7vh4vvOzJ09mVOLrI4R68PGt/W3qjV3Jr8GrO0gmWyrhYOKJUPGauwe2GLfVHDzPY+sFS7dkpUaPu74726agrFwqwUvTeuGrhfGM3H8yqwpGsxm3D7Qe1n61sBah3i5YMp6sd5p52CgEU75uCjwglBU3nMphx79DcORoN2efUC+r0VXHMiphMJkxsoc/vFzkqFDrcD6nGmtvAmkHR6GSSxDspYK3q9xmxJ5T2YAnNl/G2qNZ+OrOePi62edOXsitBgfSdafRGbH3ehkrn3u6yDCpdyDMPKxkUxyFTCph5da/7GROZwjPn8upRrm6fYTwD+f3Y6UppyWrlEoyVxUAPv7Y2ga1A6HeLlixgJDqP7utP6b3DbYqm5nMPDgO6B7ghjlxoXh3Th+cfnUC3pgV2+p4OAqO4zCzfwi+vW8Qk615bNOl1p27QYOAW28lQfSbb1o95e2qwMo7yf26/XIRdlz5v5Vv2X65EIs2XIBGawZ/dAjKkgKYUzdrlvVrm/QmPLP1CvQm0iRGm3ycwenMSqw6TNbyR/P62Ryfl12hwRO/XIbJzGN+fBi+XDCgXSM428LqI5m4be0ZK4HtXsGeOLh0LLr4uqJCrcMflwvx/i3WU0ISC2rBcRxeFugspnbw+28Kx+7VGb2ZJhMP4FBqy3Jc8/6H2f0JN0IpkyKrQoMZX57AN8ezYeaBuQNCcfqViVhz9yCM7xUIo5nH6cxKfLY3FQ//eBH3rz+Pu747iwc3XsCe5BLEd/HG74+PwCfz+8HfXYHsygY8vTURg7r6YN6A1gUsdQYzqMOdWdEADkC3ADfUNBrw45k8Nrh7w+kchzIPPQI9MDjSh/HszuZUodRGW3VMkAdigtxhMPHY72RXGkXvEE9M7E2i+tTSdjhR/fsTfSlbcNCxo3BXyvDOnD748cEhCPBQIqNcg7lrTuGog5IxzuJKfg3LZLkrZVh162BsfS8KiYkcAgNtO3UA8Mu5fBxKLYdCKsGXd8bbzLS1BrXWgOd+TQTPE6K4LYHU0jotHtt0iZVfTWYek3oHkUi/ldmwFJfyapBVYc2rMpp5vLXzOl76/Wqb2dDZcaFYsWAAKyvsSi6FSi7FXNG9QDteHxgRCT83BSrUeoR6q9CgN7HJB/cM6woJRzb9TGG6zJ2Du4DjgJOZlcgVuF+3DbJk7fRGMw6nlEEhk2AqLcdeLW4XPeK/hFn9Q/DD/QlIfmcKUt6bhrOvTkTiW1OQ/uF0HH1hLF6a2hPdA6wd/KTCOjyzLRFPT4xBdKDt+a9l9TpczKuxKXha02hgm+dfScU2J9q0hTnCNd9/vRRNNgRcw31cMSDCG3w7y7EAufdfn0nS4uVqnfMySPfdR2asVlYCK1e26zs0R6CHCnckRGDtPYNw9Z0pSP9gOpLenoKzr07E9Xen4tDz47BqYTzuHxHZrrmt43oGYsMDg6GSS3A0rQIrDrTheL/3HtEU3bGDjB0TYUiUL56ZSK7zGzuutSs76yx4nsxvX/prEgxGHi5nhqHgoj/kciIHNXNmy/d8sicFWRUNCPRQYtlt/Z2e1arRGZntXJAQgbnxYS1eU9dowMM/XkS91oiBXbzx0fx+Tn+OI1h1KAPL9qVBbzLj62Zadr5uCmx+ZCiCPVXIKNdg+5UifDLfwuXJrmyARmvA4EhfTOgVCDNgxTV2BDeFY7c7uQT1WqPdkSVSibW23O2DwrFqYTykEg7pZWos+OYssisbEOSpxA/3J2DlnfEI8FCiqLYJL/2ehLh39+Ou789hzdEsHEwpw7H0CpzOqsKRtAqsOpyJBzdexPCPD+FCbg3W3TMIDwrjbr47kYOaRgOmt8Kf4gH4uFlSvMv2p+MJYcj0d8ezMaFXILxd5SiobmrRPWMPtwvSEK4KKXgedkU7Zwnlql3tLMcCpCQLAIXVTU4ToKFQALt3237u+HFA63wEPzYmAHufGY2xMQHQG814dNOlTnXueJ7HpjO5uOObM0zMcvMDI7BsaSAuXCBVnUOHgF4tM+jILNfgg39IJvnl6b1sDklvC+uOZaFCrUOUv5vNeY86owmPbbrItBnNPJkUseZux5w6ANjaSnb4t0uFmLnqBJKLalvN3t0yIAzL74hjGaVN5/IxNiYAowTuV1WDHkmFtXBTyvC4UL6l5cYfT5OO9hAvF0zoRQIH2jAR4evKjvFPconwWaFW0gHfnSAZPrq+914rZfp5Nys+ubU/+od743BqOd7flYLb1p7GtJXHcdu6M3jpj2QU1DRh6eSe2PP0aDJpRHifwcTjnb+uI76LNyLtjJMb0cMPvYJbcodqGw3oG+aFKbFB4HlS/ncWA7v4IMzbBQ16Ew6n2r4PWTk2qf126I6ECLgrZTCZeZxIt132tQuZDHj/ffL3smWECtKJ4DgOCpkEXi5yBHup2syYO4qRPfyxcgEZVfft8awWHcJWiI0l9BegRdYOIDJDQ6N80aA34ZEfL3aadIstGExmvPJHMpP3CkoegbSTvpBKgW3bWmbqAFJZoo1my26Ps9ozHcU3x7JQVq9DVz9XvDOnpe3keR5Pb72C7MoGhHqp8I0d7l1HwPM8lh9Ix/IDlrGhv10sQH6zLuhwH1f89NAQeLnIcSW/Flfya/HWzFjLbxGC35em9QTHkSDMGdwUjt2x9EoopBK8OMV2alYcjA6I8MYH8/qyBok7vyXihrEhntj99GhM7B2Eeq0BH+y6gfGfH8WvFwuhM5oR6KHE/PgwvD+3Lz6/PQ5f3jkA793SB7cODEe3ADcYTDz+uFyI29adQX51A96/pQ+JptIrkFGmwZDIlu3+FJUaPUI8Sft6hVqHopom9Ar2gFpnxKYzeYw0vl4gjLaFCb0DwXFg82N3JrXeHXsqsxK1je3Tg+vq54beIR7gAaf1qACQRoq77275uE4HnDrVru/k567E9/cnYGqfIOLc/XQJR+xsKs6gSqPD4z9fxps7r8NgInMEf3tkJF5c7IETJ0jycf9+26oJZkEzSmswY3S0PxYJZWNnUFLXhO8Fp+WV6b1sGp3vT+QgqbAOSpkEOqMZvm4KrLxzgMNOncFkRlaFBn5uCrv8rKyKBsz+6hTi3z+Aj/ekINtOhD8vPpw5/gDw2o5r+HBuH3QVdPreFZpH7hnWFUGeSlQ36BHmrUKTwYTvBMNFJXT+EHXo0kYT2vjj767EeMEBBIDL+TXQ6IwY0d0Pvm4KVDXoUa/93xHDOwPv/n0dIz85jGe2JmL9qRxczKtBaqkaSQW1OJ9TjS3n8/HE5suYvuoEytQ6LL8jDnHhlmz4rxcLEeHrAn8bG+J3x3Ow7p5B8HSxdjioTaBjwfZcK0WZkxw2juPYVKC/7NghWo69kFdts7rgCCQSjmVudye3w0G87TYgLo6UYpcta9d3+DfQ0ACcPg2cPAlkZ7cYrY1pfYMxOy4UZh548fek1rOVb78NLFxIBOGaQSrh8PVdAxHqpUJ2ZQOe3HL5XxFdrmsy4IEN57HtYgE4AL3zR+HCXh9IJIQCOG9ey/fUNurx4m9ERPr+4V0xNibA6c8tqWti/N1Xp/eyyav7M7EIx4RO2+/uT0CAh4OSMm3AbOZRVNuEoppGvPf3jRa0BqOZZ+VhMWKCPLD2noHgOGDbxQKE+rjg1oFkjW88lYsmvQm9gj0xT2ggc2Y63E3h2AHAknHdcSSt9Y5IXzcF1t4zEEqZFAXVjbjru7OobtCjX5gXNj8yFH7uSuRVNWDe6lP4/mQO9EYzhkb54vfFw3HutYlYvmAA7h3WFbcNCsctA8Jw3/BIfHFHHA4/Pw5/PjESM/uHQMIBB1PK8fn+dDw7MQYhXipkVmig0RkR1coAdjHPbc2xTDwymogy/nIuHwsGR0Am4XA+t9qhtnR/dyXihTmwEg64VlTPSllidAtwR3SgO4xmHmds6OI4CtqZ2N5GDLz3HtCtGzB/vvXjGza0+zvJpRJ8fddATOsTDL3JjEd+uogNp3LaPYrs4I0yTF15Anuvl0Im4fD6jN5YtWAgFj8kx/79ZLzN7t3AwIG23//75UIkFtTCTSHFstvi2pXe/2J/OnRGMwZH+mBKbMtu06LaJpbWp9pxy27rjyBPx6UAahr0CPN2QVWDngVELnIpIv1c0TfUE31CPeHvrgAHktH55lg2JnxxDA9tvICC6pbaW4tGRrKMdZPBhKe2XMH39yeA48i0lTNZVVDJpXhS4NrRJqFtFwugNZgwNiYQoV4q1DYaWKluYi/y2xMLahkv61YRh8/MAyczKiCTSpgT2F66wX8Fv10stFkutYUDN8rw3K9J8HdX4HZRmfpERhXiunhD2czJL1frcCG3GmvuGmT1eHUDycD3CfVCQlcfmMw8frvoGNdXDEoXOJJWYVO6KdTbhZVjj2e0v6t9dhxxEA/cKHO+eUoiIU0GgYFAVFS7v0Nn4fJlMkLb0xMYORIYPRro3p0EjV99Za2n/O6cPvBzUyC9TIPVzcp6VoiKAjZvts0RAWlG++7+BLjIpTiRUYkP/kmx+br2IrNcg3lriEi5q0KKsQ1jsW8rCT6+/x5YsMD2+5YfSEe5WoduAW54ZXpv2y9qA8v2pUFrMGNIpC+m9mlZQavXGvDhP2R6zVMTop2WnmqOSg0Z53fXd2cR9+5+jPzkMEZ+egQb7IzQ23650GaAPKK7Px4dQ3yBV7ZfxTOTeiDAXQm1zoj1Avf4uckxgial49/vpnDsvFxkCPFW4VxONZQyjskniLdODsDXC+MR4uUCo8mM57YloqbRgL5hnkyx+nxONeauPoWsigYEe6qwcdFgbH10GBIifZFX1YhXt19lJaHmGBDhjdV3DcT+58agX5gX6poM+GRvKoZ184Ovqxw3Surh46aw28HSaDAj3IdswFqDGSV1TQjzdkFdkwGX8mpYdm2jg7MVJwqzNGknz+FU22XckUJZ60x2+x07SpA+m+28HhUA4tRlZBByxR9/WBTTt29vU/akNcilEnx1VzzmDgiF0UzGzT27LRENTrT1Z1do8PCPF/DwTxdRqdEhJsgdfz4xEg+P7obHH+fwxx+kovznnyT5aAv1WgM+20uMxjOTop3WXAKAG8X1+OMyITa/NqO3zYaLj/5JQZPBxNbYAyMi2TpwBL9dLMDEL45h19USSDjClfv23kG48tZkHH1xPHY9PRr/PD0aF9+YjNQPpuGbewdhQq9ASDjgUGo5pqw4jm+PZ1lF+hzH4bPb+rMO6qtF9dh1tRj3DCWi25/sITOR7xgcIax3I7xc5KhtNGDf9VJIJRwWCPqMtGEi2EuF/uFkLA/NxI6KDrC6t3ZcIdmhWcLa7IyM7c2GQ6kV2HOtBAuEqTQAcCilHKNslKU/2ZOK/hFeeF5U9cgVlYcWClWDrRcKYHayy7h3iAeiA90F/qPt60BL5Wc7EGDGRxClArXOiBN2unBbxcyZQE4O8Nhj7f4OHQXPk0bdQYOAPXuI+QsNJU6dQkGGZDz9NHH2MoQkj6+bAu/dQsoEa45mIa/KQd1BfcsqTZ9QL6xYQASpN57OxQpRybAjOHijDHNXn0K2MDZxrmIsfvya8D5XrQIWLbL9vtTSevws6FN+cEtfm5m2tpBcWIftwni812fatp3L96ejUqNDN383PDy6/Y59uVqLd/66jlGfHsbyA+k4nVUFtc4IuZRrtXvV3ArV4fnJPdEn1BO1jQa8vuMaXp9JeD5rj2ahSqNDhK8rptlwVlvDTeHY3TciEisPkpMyJMoPai05kWLzc+ugcIwQnJjVR7JwMa8G7koZ1t49CF4uclzKq8E9359DTaMB/cO9sPPJkRjXMxDZQofZhC+OYsv5Anx1KAOJ+TXYej4fP5zMwdbz+dh3vZSNtuoR6IHtS0bgqQlEk2bHlSIM7OoDN4UUl/NrWSbNFsrqLE7RxtO5LNr+5Vw+043bf73UoWiUNjXUC5lASlZvjmHCWCZbStaOIsK3Y3pUAEjEDJCs3d69gFxOdKVqa9v9vQDi3K1YMABvzYqFVMJhZ2Ixxi47ip/O5LY6NPlaUR1e/v0qpqw4joMp5ZBJODw2phv+epLMYH3tNaKGLpEAW7YAkybZ/w4rD2SgUqNHtwA3PDCifUbji/2EjzKzf4hNqZKTGZX4J7kEnKBVF+qlYiLAjmDdsSy8+PtVqHVG9A/3wl9PjsJXC+MxpU+wzZKvUibF1D7BWP/AYOx/biyGRvmiyWDCR7tT8dimS1ZziD1Ucnx3fwLjwa0+koX5A8PgppAiqbAO/ySXQCmT4u5hZI1T400duQWDIyAVMtaZ5YTAP0lwWA/cII6Cu1KGhK4WusOpzCrwPI+ESF+4yKWo/hc5Q/8LRPm7YXCkDwZEeCM+whtdfS1zqMXQ6EzYdrEA42ICWKB7KLUCY6Otde6qGvT46lAGnhzfA70Fvl1RbRNr2JrRLwQeKhkKa5pwMtM5p4njOMaVPJ1l+73Du1kCzPZm1SUSjpV1/2mPfArHAa7OjfPrbLz+OvDGG+TvhQuBtDSgqAjIzATKy0m2ztub9D+MGAFcExRKZvYPwehofxjNfNuUndJSovg7alTL2i6AaX1D8IbQjPLloQysPNh+505vNOPjPSl4+KeL0OiMGBLpi/sDx+DjN0mg9847wFNP2X4vzxN+qJkHpvcNZvu3s/jiQBoAwsWNs7H/Xi+uw0/CEIP3bunb7g7Ys9lVmPHlCWw8nQutwYy4cC98NK8fdj89GinvTUPGhzOQ9dEMHH1hHN6ZE9uioWlnYjFSSlo2ISpkEnx55wCo5BKcyKiElJOgb5gnNDojvhIytHRGtqO4KRy7QA8lSuq08HNTMIkLcbnBRS7Bi1NJ+vlSbjW+PEQW6gdz+yLC15Up+OtNZkzoFYhtjw5HkKcKu64WY/ZXJ/HP1RKYeSDES4UKjQ5z15zGK9uT8f6uG3hlezIe23QJAz84gLmrT+GXc3ngeeD5KT2x/I44SCUcDqaUIy7CGxIOOJ9bgwHhttO8BjOPEC9S16/U6FHTqAfHkS7F5QfSnYpGewZ5IMzbBUbBMJ/PqbbpyAzr5guOI2ny9soNABaeTLv4LRRGI7BxI/Dtt8SS9e9P2ks7CI7j8OCoKGx5ZBi6+LqiUqPDWzuvY9jHh/DUliv46UwufrtYgK3n8/HWzmuY/uUJzPrqJLZdLIDRzGNCr0DsfXYMXp3RGyq5FCtWAJ98Qo797bctK8hiZJar2eSTd2b3cZjrJkZhTSMOCw0gVMRaDJ7nWVMGneH67KQYh4i/lMz7yR6SUVwyrjt2LBlpU/SzXK3FsfQKHE4tw5HUcuRXNYLnefQIdMfWR4fh01v7QSkjYrd3fnsWFWpLoNIr2JNp3BnNPNYdzcIjQolh2b40mMw8bh8UAbmUQ2md1qobNthLhfE9Ca+GNvpQx+5kZgXrthzb08K90eiMyKrQQCGTICGydc2+mwUKqQQz+oUgNsQDuVUNuJBbg8SCWlwpqEVedSM0OnIeaMVCjCNpFYgXyS+dzKxEkJc1h2jDqVxkVWiw6aGhTMyaOnEuCinmC12EYikcRzG8e+sB5KCuPpBLOZTUaW2O03IU1A61qxxLYTYDv/1m0X/7P8I33xDFFQD44gtSNY0R3e5eXsCTTwJXr5KMXmUlMHEiGShRUwP0Arm/Np0ubL35QSYjlZELF0iXrA08PLobXptBAsOVBzPw3t83nJ4pm1muxvy1p/DNMcJtu394V9zfZSieWkw6OJ98EnjrLfvv33OtFGezq6GUSfDajPaVYPOrGnFUoGg9Z0ceZfn+dJiFoHlUdPucxw2ncnD39+dQqSGix788PBR/PjESdw3tgthQTyYEL5VwiPQnAf6BpWPx++LhVt3sd31nWxC+R6AHHh9L6Cqf7U/Fi1OIP/Pz2TwUVDdiSJQvPFSOO6Q3hWP320VSoorv4o2qBj08VTJm5ABg8dgeCPJUQa014MEfL8DMEwMwNz4MWoMJj/18CRVqHXoGeeCrhfFQySX4eHcKntx8BY16E4I8leAAlNRpYTDx8HKRY1QPf8yOC8Wk3oGICXIHzxPOz+s7rmHi8qP4O6kY8+LD8fXCeMilHE5nVbF5iWnlGiv9OjFKRVm7H8/ksYCqtE7HjJYjYp4cx2GSkLVTyiRoMphwxcZ4JW9XBWKF7syO8OxmivSonBpWLUZ1Nbnbf/sNuHKFMIYVCqCkA86iCEOifHFw6Vi8P7cvAj0IWf/vpGK8tfM6Xvz9Kl7ZnoyfzuQhpaQecimHOXGh+G3xcKx/YDB6CNHVL79YxOo//pgMymgNq49kMbmRMe0g/QLArxcKwPNE8NWW7tLZ7Gqklqohl3LQGc3o5u+G+c104+xhy/kCRuZ9aVpPvDStl1V3uVprwIoD6Rjz2WEM+fAQ7l9/Hg9uvIhFGy9gzLIjGPDefrzwayKyKjRYMLgLNj8yDD6uclwtrMOd356x2mCWjO+BYIHvt+9GGQZ28YGPqxx5VY04mFKGAA8l47/QuaVbBerDFOHxQ0Ipr3cICVy0BjNOCc5Hc1I1Lb/QrPTNjPgIb/QO8cDu5BLcKFGD54kW2twBobhtUDjmxIWim6BnqLbTKHI5v5Z1v5p4gG9WUjWaeaw4mAF/DyXmxZNqwZZzFifuTqEce+BGmdOUi8GRvpBJOBTWNNnkYroopIiPIA742Q7QQuIjvBHiRWRzzrUhqm0Xly8Dd9xB0kmZrXDWOhEnTxLTB5BSLLUxthARQZq0YmJIFi8ujnTjv/GwH/TlHjBzJvxyPs/+Afz9geeeI3+/+SZgsu0APzqmO14XHKr1p3Kw8NuzKK5t6XQ0h1prwEe7UzBt5QlcK6qHj6sc39w7CDND+mLBHRIYjZYeDnsyRCYzz+grj43tjgjf9mVStwhByOhof0Ta0PvMrWxgQfMLU2xzD9vCL+fy8K4gUH/LgFDsWDISI3v4s5Kv2czjWlEdfr9UiM/3peHrwxnYdDYPV/JrMLCLDw49Pw4fz+8HuZRDTaMBc746ZfMeeWRMFII8lSiobkJ6mQYjuvvBaOax6WweOI5DtBNTMW4Kx+5qYR1kEjDtLaPIYAV6KPHImCiklNRj0hfHUNdkhJTj2CiaVYcykFRQCy8XOb69bxDclDJ8fTiTtRMHeihRVq8DDzKb8rfFw5H41mT8/PBQfLUwHt/fT0pRZ16dgDdm9oa/OznxT225gpd+T8K4noFsturZ7GrEBLmjSW9CgJ0hzvaKEIW1jcxRO+hgNNqcX3XKjuM2QoimO2JQI3xdEeXvBpOZx7nsdhrUwEBCIAGIwXFzI3Nku3UjEWYnQCGT4N5hXXHy5QnY9ugwPD2hBybHBmF8zwCM6xmAh0dFYfVdA3Hm1YlYtTAeg0XdzP/8QySvAODZZ4GXX279swqqG5kwK5396yyMJjO2CYR1ynNqjp9Es5ABYOkU+6PCxMgsV+O9XaQz9YUpMVgiyOwAgqzL2TyM/OQwvjyUgfxq2wa9rsmI3y8XYdLy43hw43lE+Lpg+5KRCPFSIauiAY9uusg69VRyKT6ab2kZ/uCfG7gjgUjz0PmndwvcO+o4/H65EDqjCeN7BjI1/7J6LTiOw2ShgYR2x/YK9kCQp+W+oo/TbNHNjJxKDZIK66CQSfDI6Cice20iDj0/DivvjGdd+gsGR7Q5Yii1VI0wb+I0l6v16BFgvWHuSS5BXlUD4xkdTLE4cb1DPIUJPzz+siN8bg9uShkGCGUwe+XYYcJ16gjfVyLhMFrIupxsbyNGQgIwfTpxeN57r93fxVFUVJDGAaOR/P/VV9t+j68vGdwDkM5ZkgDgUH+BZMF/PN061QRLlwI+PoS0t3Wr3Zc9MqYb1t0zCB5KGS7m1WDCF0fx0e6UFt3RPM8jt7IBH+9JwahPj+Db49kwmnlM6k2qHZGyYEyaRL7rlCmkMCNpxUTtvVaK3KpGeLvK8ZiQ2XcWeqOZNfs0H4FJ8ZOQPBnfM8Cm0HtbOJ5egbd2Ehv69IQeWLlgAKOSaA0mbDqTi0nLj2HWVyfxwm9J+PpIJj7fn443/7yGeWtOY9jHh/DhPzcwJTYIB54ThIk1Otz57VkU1lg7d64KMt0EIPN9Fwi2c+v5fDTqjYgJsq1VaQs3hWMHEG5dTmUDVHIJk/kASFfe30nFuOXrkygTSkNjYvzh66ZAQXUjmzn36a390dXPDbuuFuMLgTDq5SJHuVoHLxc5Ni4ajPUPDMbgSF9cK6rH8gPpuPeHc5iy4hhmf3USr25PhsnMY/0DCXh6YjQkHJEYmL/2NMbEBGCRoKJfWNMEd4UUBTVNdkUFbRlng4lHbaOeaUIdbaMDGACGdvOFq0LKOiRP2+HGtFUmcRSUAH3KSQ6OFV54gbSCJScDv/5KOHZaLbBkSafqSylkEgzt5oelU3riu/sSsGHREGxcNARvzIrFzP4h8G/meK9eDcyZQ6o0t95KSiVtid5+c5xk68bEBDg9z5DiaFoFyup18HVT2Jy7WlzbhP2CvqHBxKNnkAdm9G17zI7OaMJTWxKhNZjh4yrHbxcLsOCbM3hm6xV8+M8NzF9zCm/+ec1KJiTAXQk/dwUkHFmjUg5W+nGHUysw5rMjSC2tx4ZFg+GhlOFcTjVe+SOZ8aYm9ArCSGG9pZdp0CPIHRKOrL30MjWGdfNFtwA36IxmeKhkqG004ExWFQI8lIgL9wZgydpRHukxYT4wx3FWWbvMcg0a9Ub0C/OCq+KmMWU2UdtEfseRF8bh9Zmx8HNTYNfVYrzyx1VMWXEMsW/tw8d7Uu0GhmIU1TYxqkpmRSNkooVs5oHvTmQzJ85o5vHHJcs0gtlCE5c9TbrWMKINOzOsGwmizmS1n2cHkEYagMzPbTeort3PPxPn51+CyUSG7hQXE+3L77+3tisNOiP+TirG878m4ZGfLmLFgXRczCWB8+rVJFMnRsONUChMJBlha5wkg7c38OKL5O+337Zus22GaX2DsevpURjU1QdagxnfHs/G0I8OYcIXR7Fow3nc+8M5jPjkMMZ9fhTfHMtGXZMB3QLcsGHRYHx//2Bcv6jCgAFESSY2FqzhzB54nsfaYyRTev/wyBbj1RzF/hulqNToEeihtNlE1qAzMsfv/nbIT+VXNVpNqHhucgzL0mWUqTHrq5N4c+d1ZFc2CPaSw7S+wViQEIEJvQLhrpShXK3DdydyMHbZUey+VoJtjw5DlL8bimqbcM/351pMhbp1YDh6BXugXmtERrkGXYWJV9svF8FN6bhI8U1jDWl0It6QpRIOyYV1ePmPZOhFYzfemk20tT7blwa90YwR3f0wtU8Qciob8PyvRC8nwF2JuiYDovzd8PeTozCuZyBSS+uxaMN5zP76JFYdysCJjEqkl2mQXFSHo2kV+HhPKuZ8fQo3iuvxwby+8HdXIqWkHvd8fw6Lx3bHkChfNOpNCBDKUfaay+yZtEOpFZjRj5Sk/nGAy6aUSVmUDJBSsa2O0MGRvpBKOORVNVqNN3EWI7uTSLlDjp2vL/D88+Tvd94BXnkF6NOH1ByeeKL9x20ncnJIhPnkk8Sp69KFcF9aizYBoLxei18FikB7ZsFS0C7s2waF2yT1bj6XD5OZZ8T5OwZHOCSl8v2JHKSU1MPXTYHpfYORV92EcznV2JlYjO9O5OBKQUtZnQqNDlUaPcw8WaMm3jo7DpCO7sd/vozDKeVYe88gyCQcdlwpshpt9/xUS8lj2/l8TIkla/rH07ngOI5l8dwEIVfqRNCM9SEhEzeoqw8kHKFIUF7K2BiLnp2ZJ1louVTS5mzc/zrG9wrAtseGkVnUV4sxecVxPLn5CrZeKEB6mcbuLGwALeRNALLJUAR4WG8I2y4U4L2/r6NJaIDZdqFA5JiT83sup8rpofGU/H7ajuM2sIsPFDIJytU6ZFc62Nlp63MEBzKlpN6K5+kUBg0iomp0lvW/hPffJ2VVFxfCQHEXJV2uFdVh0vJjeGrLFfxxuRAHbpThy0MZRJT69yRwCgN++qnZAc0SROhJdurvtgSfn3oKCAggJL0WB7JGVz83/L54ODYsGoxBXX3AcUB2RQOOpFXgREYlSuq0kEk4jOrhj+/uS8CB58YiLiAQjz5KeIBaLfmNR45Y/0ZbOJlZiWtF9XCRS9vlcFHQ5qs7B0dAbqOCsf1yIdQ6I7r5u2FMtPM0mfd23YBaZ8Sgrj74+FbLaMh910sx5+tTyCzXEKeyV6BgL3mczarCkCgf3D8iEpsfGYpv7xmEfmFe0OiM+GxvGl7enox1dw9CmLcLcqsa8eJvSVb3ilTC4ZmJpPqz+Xw+07jdeDoXLk7wt28Kx657gBuuCvpuRaJZgSq5BLubdWlG+Lggyt8dV/Jr8HcSGTVEW6Df33UDOqMZAR5KVGh08HaVY8MDg9HFzxW7rhZj7upTOJJWAQkHzOgbjOcmx2DJuO5YOCQCM/qFYECEFziQ8sWbf17H3AGhCHBXILVUjUUbLuDNmb2hlEmQU9kAf3cF6poMdrN2Chut0UdSyzGtr0W+wZERY/2FLIebUgqjmbc5zN1DJUc/IaPUEZ7d8O5+4Dggo1zjtJCpFZ59ljh4aWkkvNuwAUyWfPPm9h/XCTQ2EmJvr17AgQOWx/ftaz3apNhyvgB6oxkDu3hjaJR9cerWoNEZWTaKOjtimMw8mxKh0ZkglXA2R4zZOi4V63xjZm8M/Rc4aJ/tS8PFvGo8LRiht3ZeY+KzA7v4YFBXbwDAxbxajBOaHrZfLoJGZ2QafRUa8vpDKeXgeZ5F3SczK9GkN8FVIUOvYMIPTcyvBQCMiva3ynhfENb7kHZeg/8KvridzKt89+/reHLzFeRUNsBNIUWgh7LN8mtsqCdcmnF6Gw0mZntK6q1lLwwmHutP5SK9TAMXuRTZlQ24LJzfbgHuiPRzJY0VTkqKxAsaehVqnc2xVSq5lM3X7ogd8ndXMt6wvbKvQ3j3XZI+++03IDGx/cexgz/+IB8BkMYJsbD5kbRy3L7uDErqtAj1UuHRMd3w1qxYzI4LBSdUg+Z8fQrDxuoxZ471ccNBAqUTGRWtSzu5u5PAGQC+/tpmh6wYHMdhfM9A/PH4CCS+OQXf35eAZbf1xxe3x2Hzw0Nx9Z0p+PnhoZjQMwjff8chOhr47jvL+9etI2ybtkCbLe4cEgHfdkyYAIioMS3p327DdgJgFJf7hnd1Wlf0aFo5DqaUQSbhhKYxElhfzK3GU1uuoMlgwsgefvjxwSFWa7C2yYDnf7uK+9efx5yvT+HZXxPRLcANT0/sAZVcguPpFXjs54v4YG5fKKQS7L9Rhh+adTlPjg1CmLcLqhv0UMolcFNISfOjE7zXm8Kxi/R3hd5ESkripdmgaxnF3j2McHg2nMoFAMyLD0OfUC8cSSvH4dRySDky/UHCAWvvHoRIfzdsOpOLJzdfYVMDPp7fD5kVDVhxIB1rjmZhy/kC7E4uQWJBHSQSIMxbBZOZx/cncxAd5AE/NwVqGvXwclGw2Yu0k89e1GtoNtjXVSFFVYMeZp6Hh1IGjc5oszW6Oaj6PI1YzubY70oDSOt3e+HtqkBfQdixQ1k7T0/gpZfI3++8A8THW9qnFi/+VwnNPE/seK9eJJoWSz3deaftUWEtj8Hjz0RC3L9nWFebukmO4Fx2FYxmHpF+rqx5Q4zkojpUanQsCBjVw98htfRNZ/JQ20iy0XPiQplT39lYeTADQR5KxIV7oV5rxOs7ktlzz02yZO1OZlYgyt8NTQYydqpbgDu6BbjBZAbkUg5FtU1IK1OjV7AHQr1U0BktDRMDBQfxstAY5OUiR5Soy4wS6Fub/HIzQCbh8NSWy8xu+bsr0KA3oVyta7P8eiW/FqOiAxDurWKOE+DYGCLKVxPrYNIpH/a0Me1BKZMyzqq9ciy9TlcLa506dnPQ7sYO2aF+/chND7TevtkOnDplmfD11FOWvwGS7X9acA5GR/tjz7Nj8NqM3nhwVBS+WhiPrY8MQ4iXCjmVDVj88yWs+9YMpei2D1R6oKufK3RGMwsM7eLxx0kX2NGjbXNLRPBylWNSbBBuT4hgUmKuChlOnQIGDyZmulqUQ+jZ0/o32kNJXRNOCY4QHc3ZHhC5IyA60N1m40W5WotrRWT/nOVAMCyGwWTGe7tIef7+EZHoITQt5Fc14pGfLkJvNGNybBB+enAoPtqdgiaDfa5jo96EnYnFWHUoE6N7BCDES4XcqkZ8vCcFz00mQfFn+9KsRo7JpBI8IGQyt5wrYI2LWTaGENjDTeHY0RmT4m6+5hEqxe2DwlHXaMBeQYn+gRGRMJt5fCiobFNB34VDumB4dz+cyarCO3+Ti/jA8EgEuCvx8h/JSLczENtkBopqiVyDVOAORQe54+eHhqKLnyseHh2FmCB3NOhNCPRQwmDibXbINjfW1CAfTSvHQMEJs5V9aw6q20P17NJKbX/vnkFkcWaUdWwANBU8tqeb5zCefJKUQjZuJO35r71GdJfUajL+px1zZNuCRkP06O64AyiwIbDvqG1PKqxDTmUDXORSmyrnjoJKTYy0o990XDDaUqEu7EgnbKPekq17cnwPyKQSRPq5wa2Z8Ke8kwZfv7bjGpaM6w6ZhMOh1HKWiRnZw491ce5JLmNyJnsEisFkITtHI/ZDKeWEQye87kIeWfu0k/KKkFECwLI1gGU9Rwc53jH2X8Q3x7KxO7kUMikHN4UUlRpLxOGmlGJ0tD/mxYdhbIy/TRHXAzfKMCYmEGvuHggXkQxO8+suhlzKsckdh0TCwrQceyStwmmxYmrHrhfZDkpjhK7dDCc2KVug84RPZlR2iK+Hd94Bhg0jHN9OQmIi0UJuaiL/X77c+vm3/7oOtdaIuHAvrH9gMLxcrKs6Q7uRTJCHUobzOdX45lyKVY+HXscxu9PmmEcXF5K18+pYcMfzwKOPEhN95UrL52nysy3sSioBzxMHv72dsAAJFgHYlS85LswT7hfm1YJP3RYOpZQhu6IBvm4KNm6P53m8/mcyahoNiAv3wpd3DsB3x7OdEso+kFIGk8kMPzc50ss0OJpWgZHd/aA3mvHu39etXrtgSATcFFKklanRLZDY0dTSthM9FDeFY0e166obLMZubnwY1tw9EJ4iTadu/q7wc1fir6vF0BvN6BnkgX5hXjibU4XMcg2UMgmqGvTwUMmwdHIMqjQ6PLn5MmtjTi2tx/YrlnmH43sG4Ms7B2DXU6Ow84mR+HBuX/QUDJOZJxwkDqQb9gdh/IdcKmFZOyoLIrND2PJ1tXx3ujEdSilnZaULuW07diFeKvi7Kxmfz57jFi101KTZcVgdBVOQ70BnGwDSEbt9OzBmDPm3TEa6t4KDCdtY6dzN6Ajc3UlUKbWx191yC9DbQSmlP4U1Mjk2qN3EX8CSbWjLsWsymKCSS1iXaGs4cKMM1Q16hPu44JYBJFKVSDj4uVtKHl4qGQytbNhSjjgT43oGEI2mVpxAE8/jrb+usw6uT/amgud5cByHe4TsuYnn4SlsXkfTiC7dJOG3ULkUyqujDRR0tB7VZrtaVMd4tuJxQGqdEVUanU2Ozc2ENQKZXMpxaBCy/a4KKd6eHYtLb0zGpoeGYsWCAfjxwaFIfnsKvloYj5BmE042n8/HX0nFeHeOZX5vg6jRrPlVVMmkGNeTTBZJLVUz/u2QKF+4KaSoUOtww4GqgRjUjmWU27YzMcLzmWWaDjlkgyN9oZBKUFynRWFN+3nDiIkBzpwBpk1r/zFEyM4mnN26OuIE/forMW0UR9LKsecambjy8fz+dtdtTJAHvlw4AACw6Wwe5t6nZo0UaWnAVKHR6nBqeevdsWLwPJDXikxKK+A4ohjg7d3yuW7dSMOZI6BzzecMcC6LJgbP88yhGm3HsaOZzHE9nefWbTlPov4FgyPgqSJ2a/+NMpzIqIRCJsGqhfG4VlSPZfvS2jxW83uuXKOHzmiGi0yCcznViA7ygFxKgmJqAwHAUyXHrP7kHOVXNcFTJUOD3nGdwZvCGtY0GuCqkFo1IwyN8sOMfiHYuGgIe4zW2n8Xauu3J4SD4zhsE3hK7sIm/Pi47vBzV+Krw5moaiCCg+4KKc4KGTJPlQy/PjYcGxYNwS0DwtA3zAtxEd64e1hX7Ht2DH56cAgTCaVfafO5fLbhT+sTjJ5BHtAazHBTSu2WY+tFpWRKgE4tVTMtqgu51W0aP47jrIaBF9U2QW1DZ44a3Aq1jk3RaA8op6+otokNEe8UGI1AWBiRP3nhBafKBs7ggQdIdaI5aGW4LRhNZqYzOC/eMS05Wyiv1yK9TAOOA4bb4MDVaw24UlDL/t0/3BuuiradSDoZ5JYBoUwSpV5rYPqJHIA6OzpoACl1mnhCc5gSG4zdT49G+gfT8fNDQ9i6bI6yeh0Ucglc5FIkFdTioJD9oXwhgHRsh/u4oMlgwrH0cgzs4gNfNwW0wqaUVFgHrcGEfsJaTi6qg9nMI8rfDd6ucuiNZkZNiA31tPr868X16KQE5P8MPA/4uSlYh3uYjwp/PTkSi0ZGtRCilkklmB0XiiMvjMPcZhvkJ3tSEeXvxhwoAKxi0NySNBlMcFfKMFBoPKFNLEqZFAlCyVS8Bh0BDSAzym07bpF+bpBJOKh1RpTUtT8r76KQIiaYfFZH6CWdibIyYPhwIm8SFwfs2tVy0AWdGnH/8Ej0CvbEhQv2jzehVxCmxAbBZObx6d5UJr+UlEQy2QEeSqi1RlzKa6lf2gKFheTLDR5MShftwKhRRJuuOV54wdp5tYfMcg2uFdVDJpog0h7kVTWisKYJcimHoVEtbafJzOOEIIXTXPuyLRRUN7J5xncOJv6E0WRmAvGPju4Gb1cFntuWCFOz9e3p0vIk0Fd4iKbGaHQmSAR6zU9nchlveuXBDKt7ZobQob7/RplDQb0YN4VjB4BpM1EMFVrnU4XSY7iPC24bFIHSOi2SCusg4UhWr7ZRjz3CZlfVoIdMwmFBQgTyqxrxyzkSvcyJC8Uvgpfu5SLHzidHsaxZk96EP68U4Z2/rmPpr4lYfiAdHioZjr84Dl2apZLf+PMayuu1kEg4PDGBaIbR/cbdRmbHKOLZ3SiuR6Sf5XgKqQSVGj1yHOgeo+VY6hzaKnO4K2UIF+Z52iszOwIvFzk7TkpJx7J/AIjw0auvknRZYyPgIXIeKipIybau8wz3gQPA2rXkb5WQ8Bg50v4c2Oa4UVKPSg3J+rZXxRwA45n0DfWCjw0C8enMKpjMhG8JWDiSraFRb8QRQYxzukgSZcflIjZg3rsVCR65lENdkwH+7gq8NK0nZglD1yUSDqOiA7D32TF4xM6cxZ9O5+HWQcTRpZp1AR5KDO5Ks881rBy7/3oZpBKO8a1cFVKYzDxSSuoRE+QBhUwCtdaIvOpGcBzHxvRRnl2fZo7dpbyadvMc/ytQCNUEgJyPHxcNZdweMRr1RtQ26mEy82RKyoIBeGiU5ZqYeeCF35Lw0jSLCr/WDgfIaOZxMbeaNa2I5+32DSPn+Fqhc/delL8bpBIOaq0R5TY6VhUyCROS7YgdAiwleVrR6RDUakK6nTu3zSaD5uB5Mku6WzfS3O/rC+ze3bL6mVfVgBMZleA4QhH68UeiVbd4sf1jvzK9F6M5DJtWB6mUTAzLyuJY09ZFByo7CAoioywqKsjcsnYgM9MirEw7XwMCSLDsCPbfIPvw6Gj/djdNABYKS3wXH5sVk6uFtahtNMBTJbNSjXAEv18qBM+TylRXP7JOj6ZVoKC6Cb5uCiwZ3x2f7k1toS7hIpeivskSMId6qzCwiw/8hUqJWmeycrYadKS5ycwTEWWljENyUZ0VxWlEdz94uchRqdHZFK5vDTeNYyfOekX6uTLl+uSiWgAkOxDgoWTly9hQT/i7K7Hvein0RjNbSJN6B8HPXYlvT2TBYOIxqoef1QidNXcPZEKGB26UYdSnh/HstkRsPJ2L7ZeLsOpQBuatOY2HfryI5QvimNI+/Y4fC6ObpvUJho+rnE3IEM/WFIPyYS7l17ANK7VUjbgIYhUu5rYdjdEsB+UgZtgxmDSK76hB7S0YVEeaO9qEXE5KsJmZwJo11s/dcw8Rc6KdDlu3kv/odGwnceMGoe9RbamLF4Hw8LaFiMWgvMeErj4dKv/RLk+q7dUc1FjTbq6BDsh5HEurgNZgRoSvi5Xzs+OyRafMHqFeIZPAYOIxsVcgDr8wDkvG9WBlCDFenxmL522MPTPxPMrqtOA4YnhpQHLnEBL18gDLPF0UMgx03VLjfCW/FicyKhAuBHGbz+Vj//VSximjAYu/u9JKqNjZrNJ/EeKl9NG8flbNNGYzjx1XCjHrqxPo8/Y+DHjvAAa8ux9P/HIZ14rq8cbM3pjZz8L1zKtuQmqJGr1DLI4hHVDenFt5JruK0Suu5NewjAFtuLnmZDZMKZOiqxCg2rMzVGg1s4M8O1qSd7ZcbBN1dWTE2M6dwKFDDr/t2jVg6lRCF25sJIWG/fuBUBuVxl/O0SkJAfCSubKG1ehoIna7M5EkENafzGEyLt0C3DFTyNzszczH2LHkPXv3EhsEWO6nViGXEz07AFi2zOlguaaG8AWrqkjS7/p1YOhQojfv4tL2+wHLXja6HdIjYlwrIt/dnhpBkmAPhkT5OSTkLsZRoYRLJ7MAYMoEtw0KR12TgWnjUbgqpEyOKDbEE9/eNwhzB4RBJuEQ4KHEsG6+iA50R/PwqqbRAJmEw6X8WowQpMTWHctiz8ulEqYgUFDT6FRV4qZx7CpEc07FI4SoDEr/MOoI0Y2XXHQ6JYHyEG4bFA690cxmUvYP92aq+/MHhjG+09bz+Xjkp4uoaiCiwY+MjsKLU3tiTlwoVHIJLufX4q7vzmHJuO5W80F3XCnCtSKiID9XKNV5qGR2Ne1UMnK1GnQmhAobWnJhHRO8zbQhG9AcNHNIf2O6HZ6dxbHrmEHtVMdOoSBTKADg009J5Ezx7rvE6pWWks6GhQvJfzExwDPP2B2VYwsVFcCsWUB9PSkpfP89kc87f54YLEdxnslrdExCJEfogrLVDQuA6XxRAUvxHFB7oLySqbHBLINVVNuEROEe8bJRKgBINldnNGN4Nz+su3eQTYdOjKcmRuOFKS2du0Op5UzrkOrzibOaBdVN4Dggv7oR5Wot49PpBKOYUlKPt/+6zn77dyey8eimS9idXCq839I5Jm6gSHOCVPxfRZPAn+kX5sm4keRxMhLxuW1JuFZUz5JJap0R/ySXYPbXJ/HZvjR8dlucFedu9ZFMqzIU7cJvzq08k1WFnsEebNwR5atRpym9TM0mizgKOvzcLt83sHMCTFqS75SMXXg48Nhj5O8332wza1dRQSgdcXHWckmPPUYk8pqD53mmu7ZwcAR++IFk92JigDsf0OGOb87gma0kgfDerhuYvOIYy6DePogER38lFWPiZLJO9uwBK5dfzq9xrMnlrrtIkFxTA6xc2fbrBej1hEOXnk50Pv/6i/z/0CHS8esIzEJ2GIDVtJ/2gNoHe1ksOqEq2olJDQBJzFCnkWolltdrWRXkjoQIfHs820rRQi7l2MCEsTEBWDA4Ak9tvoI1R7NwPrcaKSVqnM2uRka5pkWTDACYhXVWKsiHncystBrrRrnIF3JrWMDkCG4ax07MD6WRvs5oYsaBOkIXhKiADgancgganREyCYcRPfxwIqMCtY0G+LsrmVYTx1mGCF/IrcZrgnTDvcO64vALY/HkhGj0CHTHiO5+WH7HAIzrGQC90Yx3/r6OxWO6WXWf0XFltw4kXj+VPrElJKoWZSLpckkuqkOkkAbOdaAUGypkL6mYbFuRckcbKGKFTEBKZ22o990H9OhBSgXiMsGwYSQk3riRpNrGjSM8EQA4fZqEyA5AqyUVlpwcUi7ZscPSmxES0rYYMQXP8ywj3FHdNHpd6XVuDnEJvqufq0OdXTRzIS7b7hEJXTfpbW/QGp0RHkoZVi2MdzgL+cT4HlbDrQFSBnQV7oM910rA8zwCPVQI9SYOx6W8atadfTmvlmWF6PSL5KI6TI2132UsduzEHLIqjb5jnZH/ISyd3JM55TzP49ltV3DgRhkUMglenNoT51+biPQPpuPPJ0Yybs7ao1l4bUcyvloYz47TZDBD4kB5OqmwFiYzz/QCk4WNLdzHBd6uchhMPNJLnQsEqeNmr/O1swJMyvksrtN2iDfM8OqrJP109izxnGxApwM+/5yYq3XriKg5hbt7yw5Yii8PZUCjM4LjSMaKFieef57Hs79dwtXCOni7ynH/8K7oFeyB2kYDHv/lEq4W1mJEdz+EebtArTXCI4qU6k6fBmICPeCqkEKtNSLdTrOKFaRSixjz8uXWeiV2wPOkYfjIEcKS2bWL9LcBpP/N0Wbb9HI16rVGuCqkVpnk9oDaRnsjwqiGorPly8t5NTCZeYT7uLAky7H0CpjMPOIivBHp54odouZKwBIwhXqrMDraH2//dR06oxlDo3zxxe1x2PDAYLwwJQbBnirUNRlaZN3MQgNmSokavYX1TMdUApasbGa5Bj0CbP9eW7gpHLvmm02ED/Fc00rVMJh4eLsS3pdaa2AtwQldfVFU24Si2iZG4O4T5gVXhYxx7ib2DsBVwZCNjwlEhK8rDCYzXt+RDDMPzB0QinfnxGLbhQKM+PgQHtt0Ca9sT8aSXy4jvUyNwZE+MPPAtyeyWQcgAOxKKkZRbRP6hHoi2FPFHC6zjc1H7LDSjauotomVjvOq2nZeXBRSK+5UdoVtZ5ByBhwZ9NwaYkNoNK+BweR4p45dyGSWMsHnn1uXCRQK4P77ifjckSPEou3ZQ+odHm0bCJ4HHn6YvM3Li8yD9W8nNS6rogE1jQao5JIOacPpjWY2J9CWcTKYzMi3k52yB6PJzPimYd4uKK5tgtFktiJW600t1x+lAiwe190hjTwKjuPwzT0tUxOJBTWQSzkUVDexjZ1Oi6jQ6Fm293J+Dbxc5Va80oxyDcb1almmoUFTUW0TE+0Wf1ejmXd6SsJ/Eb6uCowRZdm2XSjAvutlUEgl2PTgEDwxvgcCPVVQyCQYEOGNVQvj8eWdAyCTcNiZWIwjaeWMxwiQUnaYt8rWRzEYTDxxsoVgmVZAOI5jmpXOlmOjWanVtrNB13y+jUHozsBDJWdZjE4px4aEWKbf2MnarVlDJnXV2/i4N96wXZY8m12FVYcIfcTfXYmsNBmysshrXWOLcSG3Bq4KKX5fPALv3tIXfz81CuN7BkBrMOP5X5Ng5nk2brBYWgqVipjI3BwJy+QniuSAWsXttxP9vvp6MjexDXz+OfDDDyT43bqVvLU9oAmXgV18nC6PiqHWGliZOtKOY0f3v25OOEIAmbYCWAfttEIzorsfLuTWoFZEZRHLry0Z1x2fCDSspyb0wNZHh6FHoDvO5VSjoLoJdw+LwJTYIObI2QKl3YjnNPu5K5lslKeNjJ893BSOXaCHNdGSkvevCyn4fmFe4DgO2RUNMPNAoIcSwV4qlvr1FbTrBnelmlhkkSlEC2yeoBG273op0ss08HGV4+3ZfbDueDbe2nmdyQb4uMrh4ypHca0WGp0R42L8cevAcDwxvjtTeucBYeqFZWC1TMK1ECVujn3XyxjZkn61vOoGh9LsYq5fjZ1uVeos1jogXNoawn1coJBKoDeaOzaBQoyFC8mgQUfKBNOmkQHXDuDDD4FffiHB6h9/OCZAbA+5ohKAwonxLs1RUNPIslu2nKn86kaYzDyTGQnybH1zBkh5Qm80w00hxbmcaoz4hHBDqf6bPcmSJoMJCqkE9wztavP51tAjyANLBZFNinK1njXzHBTa98WSBLSJiMqZUEdPIZPAZOYR5KFqMa1lXM8AyKXk/qEli+bnrdIJVfb/KuYMCGWbhc5owsqDxBl4YWqM3ekhtwwIw+e3xwEAVh/JYvQPgKjg00xca0grUzMqC+UsA2AZ2QInHTBqi8RafGJQ6Z3aRr3TOnnNQZ3Eoo5Inojx0kskFXX5MuHbNcOzz1rGzIrh5WW7276guhFLfrnMqDjd/N2wezf5e9IkYMtlQXNyQg9Gy5BLJVi5IB7ernJklGuw/XIRox9dyK9GvJCYvXDBkv10eESbRAIminfkSKsl5507LfzjFSuAGTMc+whboHSJ/uHtD4gBILeSrEV/d4XN0qZGZ2Q2oru/cxk7GtRQGhdgkRwbEunL7BkFrRJ0C3DFvutlMJp5TI4NwrMTo/Hu3zdwy+pTWHcsC9suFuCL/Rk4mlaOfmFe4AGrzB0Pwhf8eB7xmm+U1KNKZM9oBaa1sYLNcVM4ds07X2ialDoVVOiQts/T56maMy8UOeO7+ECtNbCboEDImkg4MGFUyg26d1hXFNU24bO9Fq0ahUyC6f1CcOKl8Xh9Rm+8NqM3vrkvAR/M7QtPFwUeGBEFb2GxUekTyjFS2hFUFkMu5RAuZCN5noNUwkFrMNvsLmuOUFHXcKPeZJMXQzdMjc7ouPaRDUgkHHNA7RlvpyEuE6xeTWoeNtDUJKrANjYSIvCOHTZf+9tvFvremjVkpmFHQLNsNGPcXlAHsaufm81uzhwh4qTrPtDTgTKsEOT0DvFkhs3XVcH+lrbCvB3XMwBedrpl28IT46NbCHB7u5C1cVnIFsaIuC46A8ms0XuPrltXIXNYodG1aO2f0ieYdcVTJyOgWWm6St2J0jv/I4yJsTjAe6+VorRei2BPldU8zbomA979+zrGLTuC8Z8fxTt/XceoaH/cPojQPr49no1+osYZR0rUWRUa5lSIs2iBgoPmiP0Rg66l5gPO2fOCjTTzgMZOU5mjCBQc/HJ1JwWYAQGEvwsQD67Z+eM44tyFNVM6euYZMlBHjAadEY/8dNFKf7VHoDvOnSN/903Q4noxkf9YOLiL1Xu9XOV4fCyZQf3LuTwMjfIFxwkluV7EtqemgmVz7FVpbOKWW0hN9eRJu7JSiYmEksfzxGF1lEtnD9Tx7ogoMQBkV5IqgL0yLLWd/u4Kp20arWTRKkKlRofcqkZwHDCwq08LWRnqrE/vE4ITGZWQcMBbs2Kx6nAmNp7OBceRps7nJsUgvos39CYeyUV1rBtWjAq1Dv0jvBlVRTycoL8QKBfXOL7GbwrHTidq1w/0ULLuOsqroBm5UmFQOCURFwuOHn1/F19XJBfVgedJuSpN4I5E+LjCUyVHvdbAlPNvT4jAi78lsc8N8lRi37Nj8NG8fnBXyfHImG4YHR0ApUzKNudHx3TDwaVjWQdaXZOBlezod2its4VkLIihqmrQscxkblXbN21zsVJbRtVTJWef31ENOpoxafcQblu49VZSkr10yaZA8bJlJFHn5UXoMPzqNSTCfvllooMnwoULhLoHEEP86KMd/3qUWE6vS3tBy+uRdsiwdHOl6yjIo+2MHX1P9wB3NrOVF601nQ1HnnI+NTojdlwpbPG8I5BKOExrNn2DZs8oX6urnxtbdxUNZF2W1GlhNJlZdkcm/Nbyeh2mizSupBwwrmcg2xDo7/RvnrFruPkzdv3CvNnfVI/w1kFhbE5lvdaA29edxoZTucitakROZQM2ns7FjC9PYMHgCLgqpLheXI/7R0aya6s3mRnv0R6yKzQsK1xWr2POYABzmpx07Fwsjp0tx1IllzIKQF0Hqwft/Y6t4vnngYceIrXHZo6PyQTcfTdQVETskERCEnxPP219CLOZx9JfExk9giI6yB2XLpG/eX+yeY+K9rcpeXTboHDIJBySCutQqdEzZ8YjkNzfGRmWcqQjewQDx5GOMTvk4pISYPZsEjdPmgSsWtVxWdHiWuukS3tR2IaDWFTb2Orz9sDzPJMwYYkhwdaEernAQymzqzZBaSATegWC54GvjxCx8U/n98dXC+PxzKRobH98BF6cSsYs2lImqGzQo7pBj+FC08Y5kWPXVfgtzsyKbb9s/v8hmgxG0K8aJtpUq4UTRG+KEiE7QY0U9cBp10qwlwrXUshm0yPQnSn70+6qS3k1MPPEAXRTypAiuik/mteP3Vh6vR5r1qxBVlYWunfvjiVLlkChUMBFIYWLQopjL45ni8NdKYNSJmEbq0wiYZpizWHmwYSPS+u0CPRQIq+q0Sriswfq2CmkHPQmHrWNBgQ2cwgkEg5eLnLUNBpQ02hgEXl7QMn8nVoCk0hY1q75OfbweAIvvSQHoAewBp98koX02V2wxdcXiowMGDZswOqGBmRlZcHPrxfWrXsMWq0MM2cSnkhnoLMcOzq4256mHH2e8hcdKcXS8rq3m5wRqduK2ihf7XRWFSQcZ9Xibwv21v2dgyPwp4gXklaqBgfiJJTXaxHoSaajlKt1KKppJGV8kxkldVoEC+uW7v9l9VpM7xcMCUfuh57BnvBykbP1Rh2B5hm7m70U6+8uZ04Kz/NMq2uyqJnki31pSC/TwNdNjrdm9UFyXiW++24dUksLseBcF9x+z4PYerkUh1PLMbybH46mV2BsTCA0OhMSW5GEyapoYFlhvdGM2kYDfNwUlmyYk3QLmrE1mXk06E02NTy9XeVoqjOhplHfoSwOtXGdGmD6+pK2ebRc83l5T+Cvv+RQKonkSFkZiUP9mlXKvzyUgX3XW87aDXJ1RaEQQ9UqSBKBjs2z9XmDugzEuVw1TmdVIsrPDdkVDZD7NABwQ3a2JXOVV9UAk5lvNTNvE42N0B8/jjWpqcjKykJERA/8+usTKCyUoVcvUvVwRHy4NYidpuZ6tM5CK5QjPexM/KHlSltrrjXUNBqY3iO1SSWCMxripUJRbZPVFBeZhIPRzMNDJWOUsEm9g/DTmVyYzDxGR/vjDkHgGAAMBgMMSbvgl3QOOXp3+A2eBYPI/erq6wJfNwWTqRJLAVHVC2fW+L/u2K1ZswbLli1DSUkJ+vTpg5UrV2L06NFOHUOcbfATRTbVQpROHyurs1wIgAwcBkgNWy7l4OemYE6Sq0LKulBpR+11IcMwqKuP1QDsEC8Vm5/40ksvYfny5TCJpDZeeOEFLF26FJ999hkA66hEKuHQI9CdXfy2Ih+ajSyr17G/7XUzikGJlTKpBHqTyS6PzsdVITh2HcvYMceuMw2qAFvnGPgcQAKAXQDI49v/Blw4DlNdXXF08WI0iVvU8An8/T/Cli332hwh1h4w49TBUixdzzQT0xxaoYxODY0jpViaofVykTODdKWgdX0ro5kHB3J/RPq3/ptaW/fvffgxpBIyRxkAtj02DEt+uYzCmiYU1DQi0FOFcB9XlKt1KK3TIszHBTmVDSioaWRGlAY7ZfU6KGVS5gjSEqE4A0V/JzWuQCdv7E6iM2xcF19LaYlMjzFCLuVY40y91sBoItUNBjz8xLOoOrsd4Mn5UF8GPvtnHTwS5uKg7GE8PrY7jqZXILmoDmNi/Fs4dvS6A8Qplksk8BXsY2m9Fj5uChZQOHtuVXIJc97rmgw2N1kvFzlK6rQd5vv+Kxk7Abbt0BcAvsSGDfMxbBh5ZM4c6/dllKmt9MjE0NWSc+ruDmSryf1JxaBtfR4nkcAjYS7O9XudNb81SUl2rrwcTM/VYOJR26iHnzNzUYuLsXHIEDxZXIwGq8zq51CpPsfffy+wOULMWdRrjSyrFdpGM09boI5d82ksFFQ2yN7z9kCTQP7uloog9R+CvVQtMqK0EdJNIWU6mkOifJkixt1DLaV1W9e15sh6eA6eC5/xDwIgXbFag4k1fGSLZM5CvV3AcWiToy/Gv1qK3bZtG5599lm8/vrruHLlCkaPHo3p06cjPz+/7TeLIF5z4oikusE6Y0eV26nTITZIgR4qSCQci+zFg7RpOahI2BAjfFxwOsuiAD2hVyA4jsNLL72EZcuWNbvRAZPJhGXLluElO3OpAsUdfG1cHHchY1fVoGMlFEdIk7QcTDuI7ZVaaZao00qxnZwpsXeOgSIAO0GdOgozz2NPY2Mzp468vrLyPrz/voOzwhwAFZn2UHUsHqL8R1vyN4DFoaMOoI9r2yrt1LHzdlGwazIgvO0GE9oEEtUK0bitdf/W66+iq8gxqW00sHuqrJ58F183su4a9CbG9VRrjSzzRrXs6P1Jszg0I0G/J30dzT5TiFXf/y/RWTZOPMuXRutR/m7sd5/LrmZdzTVH1qPqzO/MqaPgzWbUn9+O+JJ/0FeI/NPL1BgSaUknUfvJiZYezwONBpOoHGvdoFLVoGfZXUfAcRwLNNu0Q3Z4eI7iX6GEoC07dCuuXLHYlebBenSQB86+OhFvzOzNOHAUpkZynYOCiI0HSBXK3ufRa5r+9zpWKWiQECejspJcT1rWbtC1vU9Y/cYVK7CoqKiZU0d+o1Z7J779tnNsZ71wjVVyiUNjEVsDtY1KO44bdfxcnHTsqpnvYLkPS0SJInWzMYz0diit18Fk5iHhCC+SSrEMF/Q87a4jnlzXmiPrAZAgO6tCw+Sviuu0jAevkEmsElqO4F917JYvX46HHnoIDz/8MHr37o2VK1ciIiICa+lMJwfBi6Ycih07ajRowwJdn/Q1YltEnaQqgewvVmB3U9IsGbmQwV4uVjIj0YHu0Ov1WG5PpEjA8uXLode3NGTijbn5fLnmoE+becvidCRjJxWsC+Uq2TOYdDPs6EZICfMdacJoDkfOseMgJ9LeNWkPzM3WV3thydjZc+ysr7cj/JZ6UcaObsINDhDT6W8RGzQxHF334V4iuZ1KDcsy0jIeXXcmM8+4gwaTucW9SiNhOlmCOgj0XNniCorf93+NzrJxYhtBnXQaoH5zLAsf704BAJiNetRf+LPVY/3x4zqEeJLzVlavtZrSQZcS1+x0abRGdk/TzIC4k9pZnUAqht1WA0VdBwNMGsg643i2hdbXvGN2xcdNgYdHd8Oh58di4RCSveE4gDOS3+3hwbNspasUbd5jR35fDxVH1r5ZTt7X0EA4f7TJyhnJH71ej+UrVth5tnNtJ9uXO2HsnyVjZ9t2NrXTsaP2Q6z9SANwN6WszXMb4uXCGkQCPJTwcpE7ZDvrL/wJs5Gc49I6rVWw2iD6THvVHXv41xw7vV6PS5cuYcqUKVaPT5kyBadPn7b5Hp1Oh/r6eqv/AGvdF/GJb75M6FPUERQbI/qXUcjsiO0AvTEop8lVIYVGazFIPm4KrFmzxkb0Zg2TyYQ1zcdiwbkMj1gXzkWIbhzJ2DEb3IZ9o6Ur6gC2F/RrSjro5IjhyDl2FvauSbuOZW5587cHujaiTuq80E9xRBKCOnFuomHT9pwgMehvsVe6cHTd5538k/27vsnADBFdb2KDJZNQB8IsumetQTdseg8rbDh2YmfufzEIvjNtnKuoXEmzA9RuXCuuZ538miu7W2TqmsNkMmH7zyQTUNdksFoT9hxgja6lAyZeds6ueYVw/dssH3XwXmIbcifuZB2x9c3BcRzLttyREAHeQM6LSmW5N7Zs/M6hzzv0588AAJ3ZKHoccBeuryOBHEVn/sa2QK9RZ8xz1gr3v8oejYU6dm00DDUHXaX21pFG2/q5Vckl7DU00eTQfsabyT0NUumQSSVWTW0Ucif363/NsausrITJZEJQkLV0QVBQEEpLS22+5+OPP4aXlxf7LyIiosVrxNkSujE2b0agtou3eoz8y5ayvu0MjMiB5DhkZdnmTDSHrdc1H+PTGsSOHY1KHHLshN9AnQ97G3Vb/C5HQTOPnRGFUTh6jv9Xx6XntuMZu7ZKseR5emodWT62Mlr2ji+Gid0Xtn+To+euvswyP9E23cByfHr+9EZzC2NP/93829D1Kv594ixNWxSHfwOdaeMMot9FfwknnAXxcjPW2j5uc+TmEK6PVMLZXD+OnC1xYOzsbU5L5vY6cmlJTdUBPUjAYus7GmyJ0RFbbws00eAil0Imo1NFLM9nZzt2nIqiPACAyWzZDxq0pha23xF09m9sDRbHrsOHcoBjJ9hWB+TFrCCcOs6OfHBbFQGO4yx7onA9HD139J6mn0DfL/5ImZORy78ud9LccPM8b9dzf/XVV1FXV8f+Kyggm4W4bCp2JKjAMC0H0oVt6xrQh1gmQPQc5SawDcdktvL4NVojunfv3trPZLD1OmfKlVLRBaSL1NWBtDI1bHRx2TOYbZUBHYW5k5wcMRw9x/+r45o7yZm1VeoSg65fep84Umak61VcxlU40DVCv4HGDj/H0XMn97HMN/X3ULI1T9dHXZOlpMOiYxvnkZUKOWvjRk+VySzO2FneZ6/T/P8CnWHjxN+fTtqwZGEt2TyZt/2Ra2IEh3cFQJwJsTNszwFyV9qaY2n529lsS1slsbY2aEfB2yihdRQdsfW2QK9fg87IOkyNRsuaDu8S5dBxfIJJEOAisZTtT2WXM9qQM2egs39jazB3ovNtZlUT288zJ9fJQM9SirX9fFtdtjUNenioLNxhwPFzJ/MORjd/N3i7yGE0mZmKh7jS1+ik3uO/5tj5+/tDKpW2iFzLy8tbRLgUSqUSnp6eVv8BAC8uv4r+pl45zYDQ5gnaVSi+RnRB2MrYqbXWnJYKtc6Kl1JY04glS5ZA2sZGKZVKsWTJkhaPi+VK2kqpUkMo4USdjg4ILdIFSX+n3TKfoZ0RTTOY/gWDumTJEkgkLnDORLUOe9ekPaDla30Hy8XUSDQn5FJQXhk9C45E4i5ycsxGvYlFxnKZ4+fRHsnd0XUv62MpR0b5ubGOMkrIp3wipVTC/vZzV1gcQOGrstJsM2eWvkfMRTOabZdl/6/QmTZOrNVJ1wflTYaI5G7c42dYdz7YgFQqxbBZCwEQDUHaJQ2Igwbr97irZCyLRtc571Bezzaa2uBCUWezo44dvTU6z2KQNc9xHq0e1Rm7Qq9ng94Id6FHSa22ND3MXvgAuDYyMlKpFENn3AkAUIGsB1dXoFZraWy594dzeP7XJFzOr2mTE7l48RIA/uis39gaLEFZx+9RahvrtW1wN51symmeGAEsWTKd0cyaGu2hplHPeMrlai2a9Eb0nnhbm9cVnATu8TPw55MjMSk2iGnccRysPtOW9l2rv8epVzsBhUKBQYMG4cCBA1aPHzhwACNGjHDqWOKbX3zBmASCYCTo5nS1gPBtxK3f1OmjXrC49EE32GBRV1i0aIBwSnE9FAoFli5d2ur3XLp0KRSKliR08UD3thyhHEFZ299dyTYzW6NTmoNdeOHw9jJ2+k4qxbY75d0KCgoUUCg2dNrxAPvXpD2wOP4dIxR7Cx2i9m7W5vp2jvgsNGPXqDcx58cRQ0ozJ/a6Ch1Z948ueQrFGouzGxvqyTT/qPQQlaNwU0nZuBw/NyUTU6Z8Uj83SycmYOl4r2727+a/rzPJ846iM22cWGCZTp/JEwRSY4ItM5ElMgU8B89t9VhLly7F5UJiR/qGeTKphhAvFcyCsyZuIuc4UhVoLvBe0+C4/WkOah/sOW5tkeAdBbX5bW28zuD4cQWA9a2+xhm7QjtBNToTAoRRvhUVlqCnTs/DZ+j8Nj+vsklIThhId6yfn/V9qzfx+ONyIeavOY3b151ptVL0zjsKAN+0+ZmdYTvpPqzRGVs0hjkLL9Zt3bmOHR23WSmy7UxKp17XYvpV823czJN7yE0hhcHE4+ezeXjslySEjrqt1c/1HDwXA6MC4Slk+6gIchdfV5aE0hlNTo0TA/7lUuzSpUvx/fffY/369UhJScFzzz2H/Px8LF682KnjiA2LWIhUTKjWGU2s4/WyMAtWLDOi1hrRoDOylnGxx08dLyp+nFhQizUiHaJzudUwm3l89tlnePHFF1tkMKRSKV588UWmYyeGwWS2mrXYVmaBLqBQL5WVNllbaC4i2jbHrmOXnm7cHRWcpKitBWbNArTaBQgO3gCJxPr7RwCY7OcHoPnvkiI2doRT16S96CxRZup42ZWCEK43LWM60u3mImyQWoOJrfu2GmQ4WDIeYkFMwLoTu611HzXzMfaYv7sCWiMZgyeVcIgWRuTkCc5FoIcKlYKT5ueuQGk9WUc0k011rkqbaVJWN1pPmWnQGa2I+f8Dvw5A59m4YtGsUyrxUttoQHWDHgOEkUIUPuMfhOeQ+S0yd/R6vPfhx/g7iQhGj+8ZyGZmU2V8wJqKEuHjCp3RzAINqo1W3E5RWbOZZ3bGXim2szJ27f2O9pCWBtx+O8DztyE2dm0LO9Qeu0IzOWV1WgQSOVTU1AARXiR5UFjThBkPvQDPIfNbZHjEn0cbhNz0JMsbGWm5r5rj4dHdrOZZ8zwZC1ZRAfz4I/DppwAwHzNmfPKv205PlYztN+X1nWM77QXF7XXsaBd/pUbHql7BbKSeFv5u1vqAUhtc4L3XS9En1AsAaR5yU0ghG34fpt75SIt7lZNI4DV0PnzGP4gHRCMDrwpaunS0GNC+Ocj/qkDxggULUFVVhffeew8lJSXo27cvdu/eja5duzp1HD93BVBNfpw4QqFebnWDHqezqliXUU5lA3RGiy4TnfxQWq9ljl1ZvQ6ucgkaDWY2Z7OvcFHyqhog4TjmhDXqTbiYV40hUX747LPP8MEHH9hU4LcFndGMe4Z1xZ5rJSir17XaJSblOJapCPF2cc6xE84L5RbYIy1Th7atMUNtgc5NDevgFAYAMBiAO+4gsw/Dw4Hz5++Hn99Cdo77yuV4eMUKSGtqkLcvEcPuP4TS0izI5d3x449LsHChouVUhKlTocjM7PB3E6OzNLOojps9kWhqvORSum6b2HQU+8dUsO8W7KVCaqnaJu1ADLlMwqL6NGHKyqW8Grz55zX4eyix4YHBzLm0t+4TizS4+/uz7Ji3DAhjY/n6hnrCXSlDXaMB9UJWPCbIHamlaiikEgR6qJhWFHXMqFNBHbtglj0SHDshsqZi0RT8/8iz6ywbV1SrhdnMQyLh4KKQItzHBYU1TbhRXA+ZlINcylnZjtApj8Br9D3gb+zH2GAzEvr3xpIlSyCXy/Hu3zdQ1aBHuI8LRvXwx6vbkwG0nLlNERPkwWYKuyqk8BSyX4XNRiw5ikZRdsGe40Y5Q/a6Gx1F8zFQHUFVFZm0VVsLjBgBHD78GDhukcO23h6iRGO/fHx4uLtz0GgAT6MXgDLkVjZgeHc/nBj/IKYtegbDtZdbfJ7BZGYi98Zacrxu3YACG5v+0skxmNbXmot57Bjw9dfAX3+RkWEA8PrrwAcfvAS9/lnr3zh2LBRHjzr1G1sDx3EI9FSioLoJFRotutgZpegIvNkcYtu2s72Onb+7EhxHOpWrG/Xwd1cy/6G0TouoAGs9QuobiK3OzsRipiF6KrMSM/qF4LdLhQif9ijWPLQUr3/8BYy1pZB5B8M9fgYkMgUm9Q7EnDgLP/ngDTIYYUR3i/YkHc3oDP71yRNLlizpcJ0+3McFyBccO42OkZOpiGlBdRMyRBkHo5nHmawqxpOjBOLSOi0b4F5Y04gQbxdkVTSwjF1MsDsUUgnqmozoH+6Fq4WWE/r9iRwMiSInW6FQ4Nlnn3Xou7srZXhjZm/sulps9zUcyAKJCnBjgq4+rnIU1zkejVINPtoObsvhqmnQs7JzeAemJ/A8bxnq3EHHjufJAO0DBwhn5K+/gJAQAGh2jhsbgb590XVsDAoL+yElhTiBVBnd6pqcPw/060fk3XNz0Sny6ei8jJ13W1GnK83YkX8X12ptvk4MaizzqxvZbNk29Q9FVim3qgFqrQF+bgrcKKkHVwIM//gQfn54KGKCPMDzPBQKBbqOvQ0Tb/NAgIcSr+9MwY4rRSyg8naR4dlJ0Xjkp4sAgPHCtBbxBAxKMO4d4gGFTMLWEXUwQ71VUGsNUOus6RHNS7M0sKDQOtGg1NnoDBtnMJlRptYyx3ZwpC8Ka4pwNrsKtyeEtwgImwwmBHq7o7L/LFyUS9CrR1f8ebUMh1PKsfc64fy9PbsPDqaWo6pBjwAPJdKbzS2l6BnszjK24T4ujMdsyYY5Ny2AXhsPlcxmAKk1mJid62hg2FkzSPV6YP58ICsL6NoV2LGDjqu2YeuNRhKF9u3r0LHDvF0gl3JkD1Jr0aOHCxITAZcmkkhIKqzD8jvi8NneNJzPU+OzFx5hUyYoTmRUQKMzwt9dgZyzxA4NHAj8pra2DTP7heCpCT1afIcPPyT/p7rZU6cC771H/raynUVF5ASYTMD48cCAAQ79xrYQ4E4cu45m7CwC+23ptDrn2MmlEvi6KlDVoEd5vQ7+7koEe5HzXFqvhbtShmBPFQuAbMWRKSX1zBbuv1GGpZOjIeGAgylleGBEJH5f/QG+PJSJa0V18HaR447BEXh2UjRr+Mgs1+CSUG2cIpq/LfZDHMW/3hXbGQgX3bR6o5kZfepUFFQ3Mk+XYt/1MuZx05JUiTDOCCBjTqgqeKVGhya9CUqZFH2E8S5BzYaMH0opQ1aFdbnKUZzKqkKlRm+3/EnXyKAuPox0rjOYwfPEmXBkpqt4pE6Il8qmwneOiGvjrM6PGPVNRnYNwrw7Nl7rq6+AtWsJZ2HzZiA+3s4L160DnnwSUCohlRKbatdfS0gAevUC6uqAThM87rzxRY6WYmnZjK6J1kAVy3OrGlhAk1JS3+p79CLdRjMPnM2uRqS/G+IivMGD/M51x7LQoDPiwY0XsOlsLl7fcQ2zvz6JJzdfxh+XC5khA4DlCwYgq6IBZ7OrIeGIbhcA7E4uYa+hHJv+4d4AgCv5tQAsHaDhPq4sW+ehksFNKYPBZGYbAi0zNy9P1LehM3UzQGzAh3XzBQCcya4Cz7e0RwCpVMSGeEJrMOP7kzl46fer2Hu9FBIOeHt2LEb18Mfn+9IAAPPjw3Aig8yfbd7AFRfujQtCuXZQVx/2OKWQOOs0ZVcQO9M9wN1mNy3l/Hm5yFn2ur0o7IRSLM8DixcDx48DHh7Arl1gJdMWyMkBYmOBsWOB+tbvLwqZVMLmfeZUNKBnT+GJGm8AQGJ+LfzdlRgbEwCeB77Yn97iGJvPke7pGX1DceYMOadDhgDVGosNiQ3xxLLb+7c45+fPAwcPWh/vyhUgOdnGlw0LI+UTAHjrLYd+nyNgM307KSjubI4dILbvlmCB4wiNq0KtY+O+7KFea8S4nv7s35vPFeCeYSRz/8JvSegX5o2dT4xExgfTcenNyXh5Wi8rrvuKA+ngeWBybJDVPUdn2juDm8KxC2g2zJ6WwmjGLr1c3WKzPXCjjJ0cSqxOK62Hq0LGHDrK3+Fh4eVN6Enu6Oa8JhMP3P3dWYfEYpvjp9O5AGC1CVKIb8F+4V7YsWQkNj8yFDVCqrl3iEeL99hCmYhjF+VvewHmCpnJSL/WF2hbSC0lBi3IU9khB3H3buC558jfn34K3HKLg2/MzCTTt+1BIgHeeYf8vXIlqbF0AmiAkVtpm9fiKOhmJu6WFoOWGykPqcSBjF1XP5q9bmSzbI1mHl5CWa01uh3toKMGZN4AS2ngr8RirDmaiSNpFXj3r+uI7+INjgMu5tWwqNXLRY519wzCiO7+eH0H2S3mxoch1NsFJjPPhqGHeKkY7SEuwhtqrYGtJZ4nhOEADyUrOXUTGpjSy9TQm8zwUMkYlaJQ5Nh1Zkfk/xKX8iyZzRHCSKIr+TWY+dUJlNkIJsw8kFWhweKx3TF/YBhGR/vjvuFdseup0bh3WFe88FsS8qsbmZ2jHX/i7J9KLsHo6ACczyGO3eBI4lDyPI/LwvehvCFHkSVk/+xthDmC4xfl79Yh0Vqd0YRUIXihM4Xbg2XLgA0biNn49dc2EnFdupAXVlcDX37p8GfQkX0Z5WokJJDHsm7IEeSphN5kxuX8Grw4lXh8fyUVY2diEXvvwRtlOJhSBqmEQwwfhepqwNcX6BtnYoPpvVxk+O7+BJsB/fvvt/w+5eXAuHFAUpKNL/v22+Q3/v03cOGCw7+xNYQy29nYxitbBw167dlOOpqvQW9iaheOgtoWWsFzVcjQXbBB14rqEBPkyF5sWc+l9VoMjvRF9wA3lNZrcc/351BWr7Up6r/5XD7+SS6BhAOemRjNHs8oU7NqpFhovC3cFI6df7PBxs0du+LalhmNSo2OnWLqvScJEfFAISoVVzdOCtHspFgiU3CloJYZRIrSeh3Wn8px6rufy67CodRySDjbnXveLpYbcUCEN6L83TCiuz8yysjFbItbBZDfr9YaWadOm46dnecdBY3uE7r6tvsYV68CCxaQ7ryHHgJeeMHBN2ZlEYs0YABw333kv3feIaxnMebPJ69Rq4nl7gT0FgayZ1c2dKi7i/LG6rVGm5FlhK8rOM7i2BU7kLEL8XKBQiqBwcSzrFZ2RQPiu3gDsF7rYkg5Dk2CzMWRtHLwPI9bB4Wz7nGjmcel3BpM7RMEoxm4kFODpZNi8M7sWDwzMRrL74jDyZfHY0QPPyz55TKuF9fDy0WOV6f3BgDsuVbCfuPEXoFIKVVDJuEwoVcgruTXwsyDcbqGRJH1RNfXYOE+vSZwTPqGejFHQOzYOWPw/ssQO3YRvq4YEOENM2/h/jZP+CuE8t66Y1lo1JmwaGQk7hraBTmVDZi/9jT+SS6BQirBy9N64YeTxG41b0IdHR0AE8+zc0yvQWFNE4rrtJBJOAzs6u3U76CVje4Btp0tOkXDnp1yFNeK6qEzmuHrpkD3NrIp9rBjB/Dyy+TvL78Epk1r4w1SqSVo/OIL0gXhAOLCyTW8lFeDwYPJY+fOcRjejTjwB26UoW+YFxaPJdpnz21LxBt/JuPzfWlYsvkyAOCBEZE4uJPseXPmAJcLLAHrd/cl2MxaJiWRDGRzBASQYNqmE9uzJ3DvveTvN9906Pe1BZqguFHifFlRDLrnl9ZrbWq7eajkzP41bwhrC7HCfUYDSwDoH0Yeu1pYx4Ke1nA5rwYxoiDjvb+vY+3dgxDooURamRozvjyBbRfy2XevbdTjkz2peE0IiJ+bFIO+YZZAascVi4PvTOf/TeHYBTdzsKjhCBNSpfYaEi7lVcPXTcEyC9eK6mAy8xjYhWwY2RUalnE6lEqyCr2CPdDF1xVagxnDu/m1OOYne1KtulxbQ5VGh6W/kpDIHpG9tsnCJeojcuKSCmsBkPR6W6DZRg+BHN3NjkHNEYQso/w7Vj49n0s+9ZF0rAABAABJREFUb3CkTxuvtECjsZQWS0uB2bPJY+PGAWvWOKFKzvOAmxs5yKZN5L933wV69yb1lAYhmyaRWEgkX33VeobPQQR5KuHjSmaxppfZ5is5Ag+VHKHCms6wcRyVXIquvpZrRBsMWoNUwiHClxh2CcdBKZNAozOiRxtRJpWrkUs5FNY04UJuDTxUctw33EL+P5tTjUq1DlP7BEFvMuOLA+nYdrEQSrkEHAd8dzwbU5Yfx+HUcihkEnx3XwICPJQwm3lWCuQ4i3jomJgA+LopcDKTlgbJd6BOBXVwEgRDSsnD/cItBk9MKHbv4GDx/wqSC+usAoa5Qua0rskACQc0pxHqTTzclTJIONKR9+DGi5i28gSe2HwZVwvr4KmS4Ys74rDyYDqrFhiaHWPugDDsSiqG0cyjW4Ab496eEzJ4/cK9nB7cTh03e45dTic5dhdZgOnjcOZPLbrdLl4E7r6b/P3EE4Tp4RDuuIN4RE5QPQYJtvJSXg0SEgC5nNDZBnkTusLOxGLojWa8OLUn7kgIh5kHfj6bj6+PZEJvNGNybBAW9O6JrVvJ8RYvBsuEJ3T1Yfzv5rj/fut/KxTASy8BGRnAo48SP9Um3noLkMmAffuAkycd+o2tgSYobhTXOz13WAxfNwUb0ZZVbrtyQjNrGU46dv0Eh+qayLZQm5NcVMvoEa2htF6H+4dHsn9XaPTYfrkIvz42HL2CPVDVoMfLfyQj7t39SPjgIOLfP4B1ggLHgyOj8MR4Cz+yukGPjUK1D7BMa3EEN4VjF+HjasULoR61Si5l3vkjo6Pw/i192IWYHBuIIVF+zPtVSCVo1JuQVaFhPJKkwjoMEjIaGeUa1DUZwHEc7hxCbrbMCk0LxWmjmcfUlcdRVNO6c1dS14QHNlxAUW0TPFUym3M7ZRKO8evmDwwTZSMaca2oHhxnKcm0BroR0vfbc9yyBYe4I6VYo8mMSzSjEuV4xu6DD4AHHiC2cM4cQuKNiQH++IMYG4fRoweQmAhs20ZCzk8/Ja1sPA988w2wapXltbNmESJKYyPt7+8QOI5jBqot/lpboDIgaXYcxGiRQ1ZSq4XRgckKdCNNK6tn31M8tcTLhtZXI5tuQp779SLh8jw6ujsrCQPApfxadPF1wWszesFVIUVKST0+25uG57YlYdXhTJTWaxHh64ItjwxlDto3x7ORKwQTc/qHYs81Quq/ZUAojCYzi0ZrhYzekEhf1DUZ2Dmh92lykdC1LtzLxbVNyBcFV/IOSvf8F0BLcrRyAACz4kKhkEqQWqrGMCHIdFNYfisHQhlRSCWIj/BG9wA3eLvKER3ojsfGdsPyO+Lw8Z4Udg1cm6Xruvm7YVrfYGy5QK75nYMtIxzPZZNs0FA7DoM9mM08K8Xay6JRO9RRx+4CCzAdt0MLFgCffUbsz+zZQFMTydKtXOnEB0skJJgEyBsrK1t9OUCqMVIJh5I6LWoNTRg9mjxeleaDQA8lqhv0OJxKyq2f3RaHDYsGY+GQLrhlQChWLIjDunsG4fVXpNDpCL0vbqCJSdo8Ps72hIOvv7Yutd56K5CSQkyhV1vV9W7dgEWLyN+dwLWLDvSAXMqhXmts0dHu9LGCLBQNW6BleWczdn0Ffn1GuUbEBbY0uPi6KdAr2HagLK6uNuiN6C163brjWSiqbcSfT4zEGzN7I9zHBQYTj0qNDjxPkknr7hmEt2bHWpVpVx3KYPbZz82ZTfImcewkEs6qgeKGKFUaHUhOYKS/G+4dHolbhNZhCcdhSp9g9BMuFiVVXi2sQ3SgOzxVMjTqTRgQQTYPngf2XiMk7zsSIqCQSnC1sA4LEsJbfJ9GvQnjlh1FemnLzb22UY+VB9MxbeUJJBfVwVUhtUvsdhPx02aLWp73Chvg4EhfRuhsDZcFAjpxTIH4iJaZtLomA3NGxJkPZ3GjpB4NehM8lDL0Cm47mwgQZ27tWuCnn0iW/8IFIq75zz+EK+I0XFxI1PzSS+S/XbuAw4fJY+KaLseRrJ2nJ2BnEoCz6B1MHbv2Z+wAoKdw49OSe4vnBcdOLuWgN5mRbud1YiQIWYHzOTWshFAvKtHbS4tKOQ51Ah9ldzIpnXq5yvHKtF5Wr/vuRC7qtUacfHkC3pkdi9lxoRjR3Y9tPgeeG4tBQnn+bHYVlu1LBUCal4K9lKhQ69DF1xXT+4bgaFoFKtQ6uCmkMJl59A3zRKS/G84KzQKRfoRvdzy9AjcE/S4aUZ/LseZM1raDKP1fw3iB27v7mqXRxN9diVsHEfvD8yQ4bdCbGV+SB9lQtEYzrhTUorCmCbEhnogOcseB62V4+KdLrGvUXSlFY7OIf8n4HkgpqUdSQS1kEg7zB5LPatKbWGftmOi2A0sxrhcT++CmkNqkfGgNJlwT7HdvB6oR9qA3mnFeWAcJDlYOkpKAPXtI6XXQIJL079uXxIgyZ5O+8+aRTi+NhniKbcBVIWMVmYu51azk++cOCTvva49ls2zW+J6B+Hh+P3x5ZzzmxYejrpbDuXPEp1y1ilAc6rVGhHipMK5ny06PCxcA2ujq7w8cPQr8/jvx1xzGG2+QZooZM6wVrdsBhUzC9mrx/t0e0Ixcerm9oLh1x88egj1V8HdXwGTm2V4ZG+IFuZRDhVqH7MoGFmBR2Jok9fWRTLwxs7fVY4s2XkRGmQYPj+6GEy+Nx6lXJmD306Nx4fVJ2PvsmBbyNAdulFll66oa9E6N77wpHDsA6COqO6eW1rN6M+UQ0e46GtUnF1pvBnTG5LnsKkgEjg8A1DbpmdjgL+dIL7i/uxKz+ocAIGWFUBvt/gYzj6krT2DVwQyrWv/zvyZh5cEM1DUZ4OMqZx53cyikHOoEh69nkIdVJEAdu+nNLrYtaA0mtvEBhBPgY8O7P5tdBTNPomgqqdAe7E4m321EDz+HF9q331oayMrKiH+xcSNJvnUaxo8nFlou6rIzGoEpU0h4Tok0HQTdjG50MGNHjVOaHQkKapyoDthVoTTfGmjp8mJeNSO8Xy+uY6Rge51ilI7g7ULW68ZTuQCA2waFY2wMkcqnV/rrw5l4/tdEzBsYjq8WxmPzI8PY5kO/695rpbjn+3OMAvHKtJ74Rejqe35KDBQyCbacJ/caFVFdMLgLAOCPS4UASGcYAHx5KAMGEw9vFzm6CL/jbFY1++5SoWvNpRMnoPwvQDuZD9woYyMSAeCxMd0g4Uh37ByhNCuWEDHz5Np4KElV4HRWFXYnl7JyKEA4jM1nAY/q4Y95A0Lx8Z4UAMD0fiGMy7w7uQRqrRERvi4tNrK2cDStHAAwsoe/TfrJ+Zxq6I1mhHip2s2LA4j8R73WiAAPJeuwbgtiqm1lJaBSAdu3k7jPaXCcpSvh+nWHxsPQDPTZ7GrMnUseO3YMmBUTCVeFFEkFtdh1tcTme319Sbbtr7+Afv14/Hg6DwCwcEiXFnY4M5P4YiYTUX0qKiJZPqfRpQuRi3rhBeJRdhC0inC9g45dtJCRsxcUUwfS3vP2wHEcs5u0HOuikLJ74HBKObOHFJQGJqa/1WuNSC6qsxIe1hvNuG3daRxOLQPHcQjzdkFsqKfNxM3Z7Co8u/UK+zfN1s2LD23xWnu4aazhSFFJUmsws3Q+dewoz6xPqCc4Diiu06JCrWMZhGqhPfpwajlMZh7T+xHH7UhqBYZ1J6+5WljH0sRPTYyGTMLhSFoFnhxn2wPhASw/mI7Yt/Zh1KeH8er2q3BRSOCmkELKtT7fTZw8GdrNl5VRC6obmZZNcy/eFq7k18Jg4pmUyujoAJuvOyXwmUb1cC4CF8Ns5vGX0K01d0CYQ+/R6VqWOXgeePFFi6ZSp8NgIDLrlADcZt3BcYi5Io6UR+0hpo2okjp+dLZvkgOOXd9QL6jkZBZrsOAoXMmvRReRZqHchjNOO8Cp5MgPJ7NRrzVAIuGwYsEAhHqpwMMyCeNIWgWGfHgQ7/99A5fyqlHToEd5vRZ7r5Xiru/OYvHPlxin6+4hEfgzsRganRFxEd6Y3T8U53OqcSi1HBzIPaKSS3DLgFBUanQ4nEocg9sTIqA1mJAo3Au1TQY8sPECyuu1OCvK2PkIivCObu7/VWSVaxDooYRaa2T3KkAqEbcI91pGuRo9g9yh1pkQKRJ55QEmP2QLzSsG3q5yfHFHHA6klOFUZhUUMglemtqTPU+d7gUJETY7+FrDMaGzemxP23bopMgOdaQjdmciKUPO7h/qUICZmwts2WL9mFZLzISmfSpWxHs6fZpUDBz4LTSzdjClDN278/AQYvkvPlCxpolP96baDcDc3Ajr5PdLhUgsqIVSJsECUfkcIE7c5MnEce3XDzh1ykmqS3M4ncq0D8oXb4/grhjRjENnJygWHL+i2iY0ODC1R4w4YcrL2RxL8EiTQIdSy2zSB+iVFweXKw9l4KHRkaxpBiDNcA9uvIjnf0202fDZoDNi9ZFM3P3dWVG3sxxVDXp4KGV4fKzjmZCbxrFrXj6kGRNadsyuaEBtox4eKjmTM0kuqkWAh5KdXJVcgqoGPRILajE2JgCuCimKapswRMTRoBmDKH83dtP8eqkQD46MbPX7FdY0Ycv5Auy6WooGvcluFyIAyDhAZ7S8QHwjrz2WBZ4HRkf7O5RZ+1sQPqYp/DExrRvUER1w7M7nVqO4TgsPlYyJz7aFzZuBYhvazKmpDlUw2ofkZKJ7t3UrqQEDxJvcv7/DHxoT5AEvFzk0OiMb/9Ie9Ah0B8eRFLstweNuAW6QSjjohYWUVND2ZylkEnY/FNQ2oUegO4xm3moDbc4ZpfB1lcNg4uHnrkC91ojvT5AuSl83Bd6cFQtvF9I0QrNFOqMZP5zKwa1rzyD+/QMY8tEhLP75Ek5nWZyupyb0QGm9DteK6uHrpsDqu4hI4Xu7rgOwdLvPiQuFp0qOPwWx47hwL8QEeWD/9VKr++hERiUmLT+GvCoRv1VY9505K/R/gaMZFZjah2QptwmcN4pXpveCm0KKpII6zIoLhUouQW5VIyu3OwMOwOq7BsJo5vHmTnIdFo/pxroNkwvrcDGvBlIJh9sTIlo5UkvUNRpYgD3GToBJtfRGOVniFaNBZ8QBQbf0lgGOZTFWrLBdTTxwAPj553Z+EY4Dhg93uPNreDc/eKhkqFDrcKWghtFQNm0C5vWOQpg3mTby5ObLdoPGSo0OH+4mWdbnJscwrVaANOhOnkyc2B49iLnzsE0Jcw48T9qH77vPscHVdkC5t+dzqmHoUFBMflRBdZPNzlgfNwWzLc7y7GhG7nh6BfuOE3uR+/JCbg3TYBSDnpEmEdVBazDj7T+vY83dA1uI+P9xuQgjPz2MeatP4Z2/ruOTPalYvOkShn9yCMv2pTGb5+sqZ77B8gUDEOTVsnJoDzeFY8fzPKKD3K30qmg618dNwbzoxIJaABYZjuPpxIhM7E0uDNXAOZhSBpVcyngt9VoD27C+P5HNiJPPTIyGm0KKxIJaBHuqWHawozA2uzdoBFNU24TfBPL60yItG3vQGU34R0jd0w45W9+xuLYJ2RUNkHBwurQixp8C2X1G3xCHZjyazZbGVDF69gT27iXk3n8FAwdamiWWLiWlkuRkIrf+2mukVtFOSCUcG/dySkR0dxauChmbgmIra6eUSa2iw7QydduTJGBpaLmQU42Jvcn6LhXJpdTYyQbUCd3ZdALEumNZyK7Q4Fx2FZ7/LQl9w7wYtUAp41oVlu0X5oUvbu+Pw6nlOJRaDrmUw9cL4xHu44qNp3NxrageKpkEFRodXORSPDspBkaTmWWKbhMcip/O5LU4dvPsU2WDHhznmNbffxkarQk9Bf7m/htlyBc5r0GeKjw7KQYA6UB+a1YspBIOV4vqMC4mAKFebfNwKZ6a2AP9wr3w4IYLqFDr0DPIA48LFQme5/HO38TZm9U/xMppcASnsioZ3SPCt2UDV4Vax7hLHakc7L9RiiYDyVr2d4AvXFVF4rzmGDMGuHyZdJh2GFVVxPlpBQqZhGV/9l4rhbvQNGwyAfffI8M39w6Ci1yKExmVWPprUgsdtsKaRtzz/TnUNhoQG+KJh0dFsecMBuC220i5NiyMOKzBbRd8HEN1Nal+bNpEasHtRGyIJ3xcSVCcJOzV7YGvm4LN37VXbqXyKolOfs6ACG/4uimg1hpZU2IXP1dEB7rDZOZxNK11sWBxg9LhtAr8eCYX4T4uCGgm2cbzRFJt4+lcrDuWhb3XS1HfZLFtAe4KVmV8dlI0JscG4Uq+Y9I6wE3i2OVUNUApk1qpMYs5R/FC+pQ2EUzobUmd8jzPbiY6lohOqZgp8Oj+SirBvYJCdL3WiN+FrF2gpwpvzooFAHx+IB1vz4rtcCeXLWRXkHFOa49mwmDiMbybn0OdXkdSy1HXZHFKR9nhtdDySP9wb4fmztpCXZOB8T9ucbDW/913JHqkcHcHPv+caNhNndqur+E4nnuOlEp0OqJp0KuXhXhCO9raiZHCpnQys/2OHWApTdgzPnQNuMhJg4EjGlA0+3wmu4qJbec1k+exVbky8Tz8BIMW4eMCvdGM13Yko0FnhMFkxsnMSiRE+iC+izd0Rh41jQYEeSoxuocfZvUPwfz4MDw9oQdemhqDCB8XvPD7VVwvroefmwJbHhmGET38cSKjgmUbKLduybjuCPV2wa8XC5FV0QAvFzluGRAKndHEsj9iiMnKfm5kLfcP82JCxzczTmdVYowwfeDHM7lWzz0wMhJxEd6o1xqx7UIBPru1HzgOOJpeAV93FZ6ZGM2mG9hDzyB3zOkfigXfnEVamRoBHkqsXzSYcSx3JhbjUl4NXORSvDK9V6vHsoV/hAkjY2NsZ/NPZBA71CfUE37ujjujYvA8jw0CB3RufJhD5dznnycjwyjCwkhZ9uhRIC6OjHO7WliLkxmVOJFRgYLqRuckOQoLgago0ryV07rO6VRhVNS+62XQGyyfceQIkJ/khRUL4iDhiEjxtJUnsPZoFvZfL8Wyfam45etTSC0l123FggGQiWz9yy+T/jF3dyL8Hhnp+NdvE35+lk6MN99sdyOFRMKxilFHbSfl0l/Ms+3s0ATG6SznPkcq4TBOyNpRWghg8SnO2DmeTDCqjQYzVKIu/W+P5+BMdjXCfV0cms/u766ASi5BhUYPCQe8NYvohZartXhOxLtrCzeFY3dBqHcnRHqzxy7l1bD6ebxASqUe7ehofyhkEjZDtk+oJ4I9VTCYeEg5DhnlGuRUNmBS7yAEeJBuvXAfF9ZE8dXhDJYKXzA4AuN6BkBvNOOV7cn45eEhjB/Vmdh+uQibheaNZya1na0DLOKFNGVMZVqag0pYTO3T/hDu57N50OiMiA50xzAHJBDKyy22AAAWLgTS04mR7RDnw1FwHPDDD6QlLCkJ+OgjS/rwl19IFq+doI7dlfxam6UAR8HGRonKl9afQ84z5S07Uo5NiPSBu1KGsnodOI7wqezpPDYHvZ9K67VQyiQ4m12Nojot1tw9CDIJhwM3yuHrpsCLU3vC312JsnodTmRWYdfVEmy/UoRVhzPx2b507L5WCp4HpvYJws4nRyIh0hdJBbVY8stlmMxEQLleIOc/MqYb1FoDlh8genfPTIyGp0qO709kt5jHOL1vsNVvobxSf3elzdmNNxv2XS9jpcVtFwqsMjZyqQSr74qHl4scSUK5dP39CfBykeNaUR3WHsvC1D5B2LFkBL6+Kx6f3daf6eBRDI70xbw1p5FSQhzuDQ8MZqK25WotPhKc7icn9HC6waqkrok1fd02qKWSAGCxQ5N6t79D/XRWFa4W1kEll7BgvDWcPUu68QFyH73yCtEyv/0OHvuul+K+9efR/539mPP1Kdzzwznc+8N5jP7sCEZ+chgf7U5xbC50eDgpyRqNbQaNY2MCoJBJkF/dCL2Ldab+3nuBEV1CsOWRYYjwdUFRbRM+3ZuKRzddwuojWahq0KN3iCd2PjGSddUDpNt1xQry96ZNQP/+bX9lp/H884SrnJxMxnO0E6OpY9eBagdgcdzs207yOWezq50S9gUsM67Fjt1cxnPVIC7cCyO7W++BRjPPAmZbn3Ylv5ZVDFtDpUYPrcGMmCB3/PTgUDw4KgoVGh0e2ngRlQ2Od//fVI7dtD4h7DGDiWcXlWbsEvNrYTCZ4aqQsXLZoZRycBzHPO5AgVT++6UCKGQS3DOUGIftV4owewA5flm9jpFzOY7Dp7f2R4CHEqmlarz8RzJ+WzwcM/tZvgtAuCvNT6a3iwwB7i29mEFdfTA1NggDIrwR4qWChAOWH0iHmQfmxYc5VC6tUOtwJLWCnYtIP1ebvJaUknpcya+FXMrhdhvSLY6gSW/CekG5fsn47m0SqjUa0oWl1RIn7u+/CdcuJKTVt3U+goMt9d4PPyRE4PnzSR6cqse3A5F+rgjzdoHeZGZaWu0BjV4v5FazEqgYVCC7QehovJhX3eI1zaGSS1lH6Z5rpYxuIIY9O6c1mtHF1xUGE89GlL3393X4uinw9V3xkEs5HEopx7YLBVh15wB8cXsc5sWHoYuvK/zcFPBUyTCwizceGhWF3U+Pxjf3JiDcxxW/XijA7d+cgVprRIC7AuVqUoJde/cgqORSrDmahUqNHlH+bmy2Is3KAMQ53fDAYKtzJOGA4jod5FLOrhbgzYShUb5E+LpUjR6B7tDojKw7mSLcxxUrFsSB44At5wtwMrMKfz85EsO6+UJvNOO7EzmYv/Y01p/MQWqJGt0D3JEgBL1SCYefz+VDrTNicKQP/nl6NMt6NOlNeOSnSyhX69A9wA0PiUp8juKXs/kwmXkMifK1OS0ns1zDZgg3J/w7g7VHiZjrgoSINrN+ubmkMsDzJOmUnAx89BGPQ5nFGLvsCBb/fAnH0yvQZDDB21WOXsEeiAlyh0zCobhOi2+PZ2PMZ0ew6lBG284B7ZDdtKnlFBwR3JQylkk3RVlTDaqrSaFhaDc/7H1mDN6Y2Rsz+4egZ5AHZvUPwfI74rBjyQirylVmJvDgg+Tvl14C67btdPj4EOcOILbT2L6AlgXFBbVOj/wSg9rG8zlVNq9N31BPeChlVjJfjmJMTACkEg6Z5RpGiegd4ok4YRLM9H4hWL9oMOtkp6DqAzqjGSHNnuNAGjpbQ5i3C2bHhWL1XQOx95kxGBXtj5SSesxbfRrJRXVwVznurt0cjl1uDXiex8hmhFtaYuwd4knKSDojcwIn0k6WFFJ2nSZkq+jg9W0XCqE3mrFwaATkUg5X8msxJTaI8WA/+OcG6xYM8lRh/f2DGf/h3b9v4Ms7B2DNXQNZaZMH0Hxrrm0yokI0pNnPTYF19wzEH4+PwDf3JeDPJ0bi1MsTMK1vCOqaDOji64r3bunj0DlZczQTepMZKqGmf+/wSJsO11aBtzQlNrjFaDZHse1CPqoa9Aj3ccHs/q2XYfV6IoSZmkrKAomJRCdYjNpGPY6klmP5/jS8/PtVvLo9Ge/vuoE9ySXs+nQa7riDaE65uRFL/+67JJv3++9kEnY7wHEcy6ad7kBJITrQHf7uCmgNZpvlWD93pZXW14n0SpsOYHNQqZ7dySWY4UBntRhFNY2QSTikl5FMt8HE4/GfL2FgFx/8vngEwn1ckF/diLu+P4c910px7/CuOPrCOFx6czKuvjMV25eMxJuzYtE7xAOnsypx7w/n8NIfV6E3mhHsqUKFhnDiVi2MR98wL5zIqMA3gvL6K9N7QSGT4ER6BSqF+6ZvqCd2Pz0a4T4uOJJmiaDpTMjh3fxQWNMED9XNPVbsbsGh3XqhAIvHELGxdcey2PhEigm9gvDxvH4AgB9O5mD9qVz8/NBQbFg0GPFdvMHzhJKy/lQOvjiQzkpVJjOP7gFu+Hh+P2x+ZBib5mM0mfH8b4lIKqiFt6sc398/2CH+rBhagwmbBTuzSCTxIAblT07oZT3g3BkkF9bhZGYlpBIOD49uXZCtooI4dfX1pCyZmQko/DW489uzeHrLFRTWNMHHVY4nxnfH/ufG4PIbk7H32THY/9xYXH1nCr65dxD6h3uhUW/C8gPpuPeHcy2uhRWGDCHK62YzmbXaCh4QGvEk3QshcbG2d+vXkxKxm1KGh0d3w+q7BmLfc2Pw9V0DMX9guNW1aWggvDq1Ghg1isSu/yqeeYZ4yGlp7e44ifB1RaSfK0xmns0nbg/6CI5bvdZo03GTSSUYKlREnC3HernI2VQlsa7kQiEg2XI+HwqpBA+OtA6A8qub4CmMCC2p1zFlAsCiOdkcShmHVQvjkfvJTJx6ZQK+WhiPmf1DUK7W4fUdyZj91UkU1TYh0tcVYd6O08BuCseuqkGPrAoNPFVyqw6To+lktqVUpEt3QHDkJgjp/sv5Nahu0GNUD3+E+7igyUCGiVdqdDhwowyBHiqWfTtwoxx3CRevptGAFQfS2Wf1C/fC6rvjIeFI2XTxz5cwrlcAzr8+ER/P62clP9AcwZ4qvDytF04KThyFyczjpT+uYndyCaQSDl/eOQAeqrbTtUW1TfjlLDGUWoMZLnKpzfJHk96E7UK5duGQLm0e1xa0BhO+PZ4NAHhsbHcrXkdzmM0kety/H3B1BQ4eJJO+AMKNOZddhSc2X0bCBwexaOMFrDqciW0XC7DlfD5+OJmDx3+5jPj3D+DRny52aGSXFTiOdMampJAv1bcvqQsDHVJUp5EnDS7a99W4tksKQuZZKZOQwCW3bWM4KtofHipSjnVXyW027dnLuZp4i1xAVrkGXf1cUa7W4b715xHm44J/nhqN2weFQ8KRJqT5a05jyEcH8eTmy3hr5zV8tDsFj226iFGfHsFd353DiYxKSDhCBi6t10Iq4fDh3H6YHBuEvKoGPLn5Csw8Kd9NiQ2C1mBicxNjQzyw44mRCPV2wYe7U6wyjRVqsiHS4OvWQe3PAv0XMDYmAF18XVHXZECT0YS4cC806E1YcTC9xWvvHNIFH8wlQz43ns7F9C9PoHewB3YsGYkzr07AR/P64bGx3bAgIQILh3TB27Nj8dvi4Tjw3FgsHNKF8XArNTrc+8N57E4uhVzK4Zt7BrWLQ7zragmqG/QI9VKxbLEYWoOJ8ZbvHto+O8TzPJbtJ5mw2f1DbDZnUKjVRBYkPZ1IsZ04weOftDzM+uoEzuVUQymTYOnkGJx+ZSJenNoLMUEeVkGxq0KGqX2CsfOJkVixIA6uCilOZ1Vh1lcnkGlHYgOAheqxbRshEtvB0Chf9A3zBCczwyPekrWj9+lvvzlyPoitTUoic1+3bOlUZRLb8PS06IG++641cdEJUNt5vAO2UyaVsEYxe7ZzuCCRdirT9vOtYV48Kb1uu1DA+Jaz40KhkkmQV9WIs9lVuGtoFzbGk0Ip2h+rNHqriRG2kr4uChn2JJfg831p+GJ/Gv4fe+cd3lT5/v9XRpPuvTeFQoFC2btsEBkCCrJkKqAMQdx7f1RUkOECB6AIgmwQZG9oWWWvUujee2Wf3x8nSVuaTkDF7+99Xb0IbZKTNifPuZ/7fo/3tl5m8JIjdPl0H6ujEtAZBDoEu2CtkFXpeWoJD0VhB2VvXnmeWGJOqTl3sK9xQdl7VRRM+Dnb0NTHEYMgfk8qlZiLG5Plw+oo8UM12Vh5b4lJZlgbf7Mfzc/Hblf4Y/YO8+KbcW1QyqXsvZrBmGUnSctXMaZjIAdf7sXZt/uxfEI7Ph4ezv+Gt2DhqAiOvNKLk2/04bmeDc0kZRAVrXPWnuOPM0nIpBK+HBlB68DaOagv3nsTjd5g/j0eb+NnURSx/UIKhSodga625tF0XbHscBwp+Sq8Ha0ZWQV3BsSFZt48kb4ml4tRYR07ij+7lJzPqGUnGbXsJDsupIq5lO52PNHGn5f6N2Zev8ZM6BxEqKe96EpyJZ1HvjrMy+srK8PqBS8vcQ68apXopv7229C8eZnPXT3QPVRs119LKzSfg/VB54bVk3xNi6CJnLv3as2Zt0q5jP7NxM/JnxdTkRqvGN6O1rQOEMdvAmIagSVcTSsk3M8Rlc6AXCrF3V7BtbRCnvz+BKVaPZ+PjGDPvB4Mb+2HnUJGVpGG7RdSWXUinmWH4/jrcjrJeaVYSSX4OFljEMTMRHd7Jb8905GxHQPJKlIzbdUZ8ku1RAQ489GwcCQSCfN3XScxtxQHpZyVUzpiJZNy6EZmBTWaKWe3QwNXzibkIZWIF8uHGTKpxGxo+u2BW7xs9JVbG51gMU/4qU5BfPq42Lm7mVFEt88O8N7Wy7jYKhjbMZDXH23KZyNa8snjLZjctQHtg13NxYsgCOy/ls6QJUc5EZeNrULG0rFt6FgPxbxap+frA6LK/KnOQRY3fqY0Ez9nmyrtmGrCvqsZHL6RiUImNSuELb4etci2MKXbbNyq5cMDZ3hz0yVUWgORoe7se7EHz/cJrbAeW4JEImF4a3+2zupKI0970gvUjF4WVbWFRkSEOCGAajeNEomEqcaOo0eXO/y4Qk9amhhpDWJ29gcfVK1R0Oth+nSR6mZlJZos+9ePZVN3zJwptkKXLKloBl8HmJXBl9Mw3AM51jSOPRFnuXAzXfOqorpUh8EtfbFTyLidVczJOHEzbaeUE2k8f9/fdgUHayum96jYOc4s0piPqzUIaPUGiybEUsQ1Pa9Ey85LaSw9EMuS/bFm1wCDIIrCHmnuxen4XK7VoagzPf9DAdObN6x1RWNcU8ckMtQdpVEwYYpfGtRCvLiZLERGtvU35/VJJSIR91ZmEREBzjzS3AuDAN8dvMWL/cVF1SDAy3+cr+ApNCDch9+mdsTFViQx9194mG8P3kKrN+Bqp6BfMy/GdQxibMdAhrf2t7izPHErm4GLjrD9QipWMglfj21d6feqCnGZRfxxVtz9Fql12ClkFq1RNDoDS40L7pgOgXU2GgVRXv/NQfE53hjUtNoRzccfw6JF4u0VK8T8xQKVltc2XGDI0qNEG3fKYzoEsOP5bux/qSdfPhnBrN6hPN8nlA+GhrNnXg/2vNCdR8O9EQRYfyaJYV8fq36XXBf07Su+0KFDITq6bBGuB1zsFOYP8J8XLbvF1wamLOBzCXkVAuBN6NDAFblUYjas3Hc1o1aKPdM4dtflNP6a0x2pRBRFTCg3KlPKq34/b2cW42Jrxa3MIoLd7PBxsiYus5gnvj3OmfhcGnrYs3BUK86905+10zrx+qNhzO7diKe7NeDNgU355PEWaA0Cqflil+7x1n5sn92NjiFuXE8rZOjSY2Zl5vdPiVy7g9cz+OmYyOVcNKYVHg5KdHoDH2+/UuG1pRm5KqY0mX7NvMzE/IcVWr2BsR0D8XWyJiVfxaWUAvOa9ObmSxZ5RKM7BDKhszjC1RkEVhy/Q8v3d/Pmpoucic+tsG4JgkB8djHrTycycPFRpqw4TWq+ihB3O7bM7FpvYdXyw3HczirGw0FpUcyg1ZetQ2M7Vk5JqA3UOj0f7hDPgacjG1iMKgOx4Bk/XpwU2NnBstUlvLL3GH9dTsdKJuGtQU1ZObkD/i7Vq4fvRiNPB9ZN70xTH0eyitSMXnay6uLu/ffFSAsfH/EFVYGBLXzwdrJGK9Ng1ywZLy+xZjKNU999V6yfYmIqPu7KFTHjdvlyUQzy44/iGPZvg62t6FU1eHCt/fvuRvmJwpk6WHjcDdOmOPp2jkXfvyZeDrjaKSjR6GuV3FMedko5jxkFEyYaAcCTRp76tbRCVkfF80xkCAGuFakFx29l08QosCxQ6bCSSsz8OxMMiJ9ZuVTk1oV5O9A20JnWAc5EhrrTyMOeC8n5/HU5vV7CsIemsDt+Kxut3kBzX8cKOy3TTt5WITd7I5m6GiPbBSCTSjh1J5cb6YV4OlrT1yiiMPE8Vhnz2F4ZEIZMKmHftQyaejuYTY4vJOXzxe6KZNi2Qa5smdmNLg3dUOsMfLbrGr2+OMjifTdJLecZVh4anYH919KZufosY5af5FZmMe72Sn6c2L7CeLY66A0Cr224iN4gmG0f5vZtbNFvanVUPPHZJbjbK82Lf13x8Y6rqLQGOjZwZUjLql/jN9+ITTAQi7tx48SkiwELD7P2VCKCIBqJ7n+pJ5883tIc22IJoV4OfPtUW9Y/2xlvR2tuZRYzdOkxsyHpPcGUYXbjRllY5D3AVDztqCIGqDYIdrPFx8kajd5g9k0qDzulnFZGcZBMKiEhp4RbmTWbbnZt5I6zrZUx47CI3kaTzYtJ+WaPp+xijdky5G4Ua/QEudliq5BxOj6XMG8HAl1tSc4rZeR3x/ly93W0egMKuZROIW5M79GQF/s34e3BzZjaPYQxHQLp0diDCUYO3oJRrfByVLLtfApPfHtc5I242bJ2msj3is8u5qX14vhqYucg8+tdcfwON+66iBoQg7PPxIsZp49F+JqFRA8r9l/NwNpKZt5Ufn0gllm9GmGnkBF9O4fvD9+y+LiXHmmCYzlzZo3OwOqoBJ749jjh7/1Fx//tpcfnB2j94R56fH6Ql/+4wNXUAuwUMqZ1D2HLrK5mJ/+6IjGnxFy0vTWoqUUayW9RCcRlFuNqp2B8PdehH4/eJj67BE8HJTN7VZECJMBzz4ljTCsreG9xLu8eP8KtzGK8Ha1Z/2wXnokMqdcGF0TvtNXPdCTM24GsIjWTV0STU2xhFBkWJtqffPstyKreOFnJpGbT+8//ukGu8bneeAO+/16Mw967V4yjDQsT96RhYeKgYedOcSry22/3NHS4P6iH9Un5icK9rJ1NfRyNcXk6izFlUqnE3NUrz8+tLcYaJ3y7LqWZ358OwWVd7Xe3XCYtX8Xbg5pVemxWkQYvY6fOJJqwRFPQGURq1bW0Qs4k5HEuMY8jN7OIrcUaXx0eisLO1daKvBItx29lI5GUvVkg5qqZLCdM41hTEeBVrpAzWYmMNapgc4wy9jXRiaTml9LQw57RRn7dB9uv8vW41ubx13eH4ioVFoFutqx+piNfjozA1U5BUm4pC/bcoMsn+2n/0V6GfX2M5349w9MrTzHq+xO0+2gPU1acZsfFVCQSeKpTIPte7FGn0cTS/bFE38nBSiZBqxdo5GlvJuKWR36plsX7bgLwQr9Q7KpIG6gOR29msfNSGjKphPcea16lX9Qvv4g7TRB3mc/NNPDxjiuM+yGKlHwVQW62rJvemUWjW5utFWqD9sGubH++G51CXCnW6Hnu1zPsvIfOGABdu4rqLhDVHe3bi/4Hw4fXy1G9fzNvZFIJV1IL6j2OLX8+H6tCiGGS3zsYL+B7r9a8SCnkUkYb81d/PHrbzG3acDa5QqFfnRNKTGI+w1r5YiUTo/XCfR15LMIXgwBL9sfS58tDrDh2u8rYnhWT2/PB0HACXG05fiuLYd8cZ/aacxSpdXQKcWXTjK409LAnLrOIUd+fJKtITZi3A68PFImZp+7k8MnOa2V/q3LPbRpPPh3ZgHWnk2r8e/zbserEHQRBYHhrP5r6OFCo0rHudBLvPiaKqRbsvmHOvy4PR2srphvjqO6GSmsgvUBNfHYJeSVaFDIpEf5OzOvXmGOv9eaNgZaLsdrig+1XUGkNdApx5bGIyqKq/FItXxk5gi/0a4xjPY6VkF3C0v1i8fj6wDCLySmCIMaZmrpYz76fyTc3j5sVwFtndzVvju4FpuIu0NWWxJxSnvv1jOURn1vtRtoTOgfTyNOerCI1H5TrSk+bJuq6Ro4Ui9Tr12HfvjKx7bBhYidv1Kh7/pXqD7UaPv0UmjWrVyZbeYFXXe1ITJBJJXQwWm8dq4LK0t+Y5rLtfGrdvAkRefXNfR3R6A1mrrqDtdy8DukMAhN+iqJzQzez2MKE7GINjTztzUbuSbmlRN3OZmbPhhV4dzWh/Jonl9V+U/JQFHb9jG/O9vOiBUn5GBm1zmD2TzIpYWMS88goFKtkE69u49kkVFo9kY3cCXKzpURrEI1Y9QbzwjGnr5gPez29kD1XMnhzUFPzcV74PaaCGzyIF+Un2vpz7NXeLHgygvbBLghAZpGamMQ8dl5KY9/VDKJu51Cg0iGRiIqbpt4OuNkp62QWfOpODov2iYukzng1fv+x5hYNib85GEtuiZZGnvaMqmMsEIgj1Fc3iN2T8Z2CKigzy2PjRpg0Sbz9/PMwfa6KMctOstwYRzW2YyB/Ph9pjpKpK9ztlfz6dEeGt/ZDZxCYtebcvRd3I0aU3U5KEhMqNm+GHTvq/FT3axxrileqij9numjmGZ3I99WCZwcwsUsQcqmEqNs5uNopCHG3I79US0aBxuzFmFeixaeaqJrfohOZ2DkYmVTCn5fSiM8p4eNh4bjaKUjIKeG9bVfo/Mk+nvv1DN8fusXRm1mcjMvmyM1Mtp5P4fWNF+k+XxRSnE/Mw8ZKxvO9G7FqSkdc7BTEZhQyetlJ0gpUhHras+rpDlhbycgoUDHj17MVFv3yy7JeEM2Kg1xtOHQj07wJe1hxPimfA9czkEolvGEsbH89GU+opz2PhnujMwjM+f2cRd/ESV2CcbVwsZAA8/qFsuG5zmyf3Y2L7/dny6xuPN8nFGfbezOT3Ho+hT1X0pFLJXw4NNzixu+bA2Xr0Jh6WJzoDQLz1sVQotHToYFrlfnU770HCxaItx+blcLW/GgMAjzRxp/Vz3TC06FuCRrVwc1eyQ8T22GvlBN1O4d3t16uumA4f17cOFbxc2srGZ+PaIlUInqSlv9cN2kicuhSUsTJ58qV4hKVkSEGXDSvnXnCg4NpDnz9ehkHpw7o2sgdR2s5GYVqTtdCEFYVTJnEf12yPH3p18wLGysZCTklnLewMaoJo431w+qoePQGAalUgnO51J2EnFJeXHee/xnFTOVx7FY2fZp6mjvqBaU6vj98i5Ht/Hn90TCLVmh3Q0CMQp3UJZi1UzvW+nU/FIVd/6Ymt+40NDoDfZt6VVjIyydFmEJ8TR227qEe+LvYUKDSsf1CKlKphFnGdn6eMV5p3elEEnNK8HSwNnNNFuy5gZ+TNZHGi26RWse4H0+SXlDZi8ZGIePxNv6sf7YLp97sy6xeDS1eaARB3MVeSS3Ez6X23aucYg1z18ZgMF7MBES+YFcLsTyJOSVmD7DXHw2rVsVaFd7ZfInkvFICXW15qVw4eHns2AGjR4ud+MmTYdTsbIYsPcLp+FwclHK+e6ot/xveol7dwvKQy6R8MTKCx1v7oTcWd2uiE+q8+zLjbu8VE559tl5jBdPO09QRrg/6NPVCIZNyI73Ioho4wNWWtkFlO8Iz8blk18I41cfJhoFGxffK43eY208knf9wNI4XyhHQsy2NlMrhx2O3eW1AE5xtrTifmMeifTeZ/0RLPhzanGA3WwpUOnZeSuOTndd46scoRi87yfgfo5mzNoY10Qkk5JSgkEmZ2DmIw6/0Yl7/JljJJKw/ncjj3xwno1Ds1K2dJl6ENToDz6w6TWYNv6NWL/DuVrHTMa0G+4uHAfN3XcdgEIgM9SDQ1QYBGLP8JC/0bYyXo5K4zGJm/3auUs6mnVLOc3d17aQS+Gp0K57v05i2Qa6E+zlVy6msCy4k5fHy+vMAPNujocVRbnx2sXkdemNg/dah7w7d4nR8LvZKOV+OjLBYPH7ySZkYtev4BM7ZiBZGLz/ShC9GtjQnnNxPNPZyYPGYVkY/wQTWRFvgd+bnQ5cu4sZx584qn6t1oIvZuuWNTRcr5IaD6K/+yCNiTOvAgaIC9l8BK6syM+bPPxeDausAhVxKf+OErTyHra4Y0NwbqUTcGCXelbADIkXLNMnbGmMhtLwGDGvli6O1nLjMYnOyistdm6LdV9LZeTm9Up49wB9nkhndPsDs5qEziBPAlcfv8O6QZqx+piOzezeiTaCzGD3moMTRWk6YtwOj2wfwv+EtOPpqb957rDm2dbiWPhSFnZOtFR5Gt/qjsZnYKeUVTHyP38omKVd8U02CiXXGIO3yatjfjCrY4a39CHazpVClI9hNNGQ1jS7nlkt9eHb1WZ7qFISvs7jjS8wp5cnvT5BhobgzwcNByUuPhLF5ZtcqR4/2Snklg+OqkFusYdwPUaLK0DiCbRXgzIcWdgganYHZa86h0RnoHOJmVh/VBVtiktkck4JMKmHhqFYWRx979ohedVqtWNz1fDqeCT9FkVWkIczbga2zuzGgjv5p1UEmlfD5yAgebyMWd69vvMiM1Wfr53nXo0dZlEN5JCeLs486wsQVSc4rrbennZONFd0bi0W6qSt9N0xdahsrGQYBNtdykTKZzW67kEKHYBfCvMUx36WUfHOnUKMzVDLbLA9BgE93Xee9wc1o7GVPRqGaZ1ad5tCNLH6Y2J510zvz+qNhPBruTYiHHQ097AjzdqB1oDNTujbgp0ntOPdOP94fGo6Hg5LkvFIm/nyKl/+4QIFKR6sAZ36b2gk3eyUlGh1Pfn+cC+V217JqSNpavUAzX0fk8oe7Y2dtJeVaWiFbzosjn2lGLzuV1sDo5Sf4aFg4SrmUfdcyeG3DxUobm6c6BZnVdzKp6I01tIoO170gvUDF1FWnUesM9GriwQv9KitUNToDz685h0ZvoFsjd4sm2TXhUnK+2W7qvceaWxShLVggctIAwofGk+R7EYVMyqLRrZjZq1Gt4sbqi95hXrw6QIxde3/b5cobMicnmDFDvP3mm9VuGuf1a0wDdzvSC9RMWXGKgvvhBIAomKn3Brg2GDVKtI/KzxeLuzpisNETdfuF1FrlYFuCh4PSXAvsqGJqYpp4bL+QUuexr4O1lbnwXrT3BnqDgJOFnOwFe27QzNsyV3XZkduMaR9IryZlVXlKvopZa2J49tczJOWW8v5j4Rx8qSen3uzLhfceYdfc7nz6REtGtvPnYlI+89bFMOLb47V+3Q9FYZeYW2ouhLafF9+8u2XGG8+KC+ITbfxRyKScT8rnUrJ4cRjZ1h+5VMLZhDwuJecjl0nNSlJTZMzGc8nEZRbR0MMeW6P60yDArNVneal/E3OVHp9dwuhlJ82j3qoQ7ufEttndLNqMDInwrVUnK7dYw9gforiaWoBCJkWrF/ByVLJsfFuLCtUvdl8nJjEPR2s580e0rPPClphTwlubLgEwu3ejCl0iE/btE3041WoYOkygwROXeGfbJXQGgccifNk0o+sDydOVSSV8MSKC1x4NQy6VsPNSGgO+OlJ3HzknJ+jUyfLPzp2rs6O6izFxAeDF9ectqrNqg/KLnKXFeFALH2RSCaVG5ezaWnYtIwKcaRfkglYv8OvJBOYZL8Q/H7vDrF5lXZ70AjUOVdifgDgWe2HdeZ5s68+kLuJodu/VdB5ddJhfT8YT7G7HwlGt2P9iT/a92JNdc7uzaUZX3hnSjN5hXijlUg5cy+C5X8/Q8/MDonWFXMqrA8L449nOuNopyClS02/BYWLKRadJJWKObXlIJdDFaD5qbSXl6a4NzHSKhxWmC86Xu2+g1umJLJcik1Os5d0tl/lwWDgyqYQNZ5P435/XKjzeRiFjZk9xUrB0TGvz+XQ/odLqmfbLGdIL1DTytGfRmNYWVa6f7brG+aR8nGys+PSJFnVeh4rUOuasPYfOIPBouDdPtKlcoH71VVkQQnD/2xSGXcLBWs7KKR0eSEFrCdMiQ+jR2AO1zsCs385WVrW/+io4OIiEuA0bqnweaysZS8a0xtFazpn4XMb/EEV+Sd2Lu/wSLWujE3hj00WGfn2MsLd30fCNPwl/9y/afbSXJ749ztL9N7mckn9/Cj6ZDD76SLz91VeQXjeBmylwQGcQeMnYAa4PTJnv2y9Y3uz2aOyBk40VGYVqom7X3dNuctdgnGysuJVZzLbzKZU6diDqANws2JqYMH/3ddztFczr1xibctfuQpWOTeeSGbL0KKFv7qTV+7sZsuQoQ5cepeun+2n+zl9MXnGKjWeTKdHU/tryUBR2/Zp5mUdeu6+ko9Lq6drQvUKo7h9nkhAEATd7JY8Yu0UmN3RPR2vzSOqrvWJn7rEIX0Lc7ShS6wlxt0NvEPhw+xUkEggv11LVGk2E5/YLNac8xGUV89iSo5ypIeLJ1U7BqikdmBpZ0aG6NpE62UVqxhmLOiuZBI1RgbhsfDs8Lahg919LNxsJfz4yoloDT0so1eiZ+dtZCtU62gQ6m8fVFY6xX5Taq1TwyKMGrPtH89tpsQv68iNNWDS6VY3eUPcCqVTCsz0asmlGV0Lc7UgrUDHxp2hm/nbW4oi8SvTtW3bb01OU0jk5iQHey5fX+XWZOiWp+SoWWTCUrdVLaiYWP3FZxVyx4KTuZq800wLkUjHv+GxCXq2e29S1Wx0VT+eGbmZH/T1XMszjEIBCdfW7ZgH46M9rFKm0bJvVjV5NPNDqBbaeT2H6L2do++EenvohihfXneezXddYvO8mr/xxnlHfn6Dj//YxecUpdl5KQ6sX6NjAlZ1zInmup2h6fTk5n8j5B0jOq6gqv3uDrZRL+WR4C04bf/dZvRrxyc5rD31WrFYvoJRLScot5beoBAJdbSuoXVPyVSzad4NXB4jUiOVH4pj1W0UO4piOgfw0qT2P1nIaUBfkFmsY/2NUWULFhHYWxRB7rqTzozF+8PMRLetsLWIwCLzwewy3MovxclTyv+GVC8NFi8ToLQCfnnEYWl3Bx8maP57tYrbA+DsglUr4YmQE7vZKbqQX8dGOirY8uLuXVZ9vv13tpjHcz4k10zqZbbTGLD9Zu5xaRIHJe1sv0/nTfby28SK/RSVwPjEPtc6AQRAL5awiNWfic/li9w0GLT5K5PwDbDiTdE8+coC4y2/XDkpL4fXX6/RQK5nUTFnacTG13mbvA5qLIrZLyQXcsSBiU8ilPGqsCeozjnWwtjJ30Bfvu2n+XCrlUtoavWeLNHoeM3rfVYX1Z5L563Iam2Z0YVzHwEqTCAGRHnYxOZ/zSfkk55Wi0RuqNJOvDg9FYQfQJtAFb0dritQ6Dt3IRCqVmCt1gIScEnNup0mmvOVcstmZ/vk+oWa3/POJechlUuYYx64ZhWqz8m/r+RRa+FWclev0Ah9uu8zs3qHmP3JagZqR353gu0O3qv1wyGVS3hzUjEWjW2FtJSXM24EIC7P48jhwPYMBi45wJbUAuVQcv1pbSfl2XBszh7A8UvNFAieIROq6elIJgsBLf5znQlI+LrZWLBrduhInZvdu0c29tBR699Oh6nGEk/FZ2CpkLBvf9oGPPsqjhb8T25/vxuSuwUglomS+z5eH+MWoLKwRffuK49iXXoK4OFFQYXJUnzdPzCGqA8rbzSw9cIuoKgwzq4O9Um4eWW2vwgLANI41dWvX1pKb0r+5Nw3c7cgt0bLscJzZUuOXk/E8c9emozb442wyz6w6xcQuwWye2ZVnujXA18maYo2eo7FZbDibxLcHb7Fgzw3WnU4i6nYO2cUaXGytmNK1ATvnRPL79M409LBHqzfw/tbLDFpy1OzVdzdMyjKJBF4Z0ISPdlxFozPQr6kXB69nkFWkNotBHmaojQrLRftuklmkrsTZSc5V8dPR22Yj4+0XUun0yT6up4nnq1Iuq7cBcHVIyC7hiW+Pc+pOLg7WcpaNb2fRSy4pt8TceZnStQH96+GNt2DPDfZcSUchl/LdU21xuUsU8sUXMHeueNu92y2sOlwlzNuBjTO60KSKUdiDhIeDkoWjIgD49WSCWchnxgsvlMVw/fJLtc/V3NeJtdM6426v4EpqAT3mH+DjHVcsblpLNXq2nk/h6RWn6PnFAVYcv0OJRk+YtwPP9mjIkjGt2fdiD6Le6MPBl3qy4/lu/G94C/o2FcUESbmlvLj+PI99fZST9VivzJBIRHUsiAamly7V6eFKq7LrzAu/x1Qf21YF3OyV5slYTePYnZfS6mxWDDCxSzAutlbEZRUjlUh4b0gzot/oyx/PdaZnEw80OgNvbLpYo/r6ckoBQ5YepamPA3/NjWRC56AahV8CoJBJ6dao9psWifBAh/D3hoKCApycnMjPz8fR0ZEPt1/hx6O3eSzCl8VjWpOQXUz3zw+a7/9kO3/mj4hAEAT6LDhEXGYxHw8PZ5zR4mTeuhg2nk2mR2MPVk7pgN4gMOCrw9zMKKKlv5O5sHmxXxPe2lL5BLWWS3m2Zwhf7a049unQwJX3hjS3GH5dHpdT8rmdVVzlmKRUo+d/f17ll5NiF0wuk6DTC7jaKfhxYjuLyRTlDTNb+Dnxx3Od60yS/mrvDb7aexMrmYRfn+5YyYH+zz9FN3e1Grr21lDQ9RAFGjFC6IeJ7Wv8vR8kLiXn89bmS+as1VHtAvhwWHj1pGmNRlyA2rQp+15ioig1KyyEXr1g+3bRjLMWmLLiFPuvlVmQ+DhZs2tOd4tcjOqw/UIKs347R4CrDYdf7lWpUC5S62j30R5UWnFhsrGSEf1mn1pZVuy6lMazv55BKZey/8UevLrhIkdjs+gU4kpidgnJNQRUV4WuDd14Z0hzQj1FQ83YjCIyClVkFKgpVuvwd7El0M2GQFc7Wvg5md8XQRA4GZfN3N9jSC+o3WL+bI8Q/jiTRFaRho4NXAn1tOfXqAQclHJWT2pJRIivea14WGBa4wLmrkOqLDvf+jb1IsTDlmWHb1d6jK+TNUFudmbTdgnihee1R8PqnPNaE87E5zJt1WmyizX4Odvw8+T2NLYglsgsVDNmubgORfg7sf7ZLnUWLmw7n8LsNaL4YcGTETzepmKcwscfi8ExAC5dbuLQ7QadG7ry/fh2dXIYeBD4ZOdVvj8Uh5udgt0vdMetfC73F1/Ayy9DUJBY4Cmrz+yOzSji+TXnzJ17hUxKjyYe5hFeqVbPsdgsSspthHo09mBqZAhdG7nVuMFWafWsPH6HpftjKTQ2Pka1C+CDYc3rL7AJD4fLl0Wv0AMHah2F0fbD3WQXl42dezT24OdJ7evsN7g2OoHXNl6kqY8jO+dEVvq53iDQ+ZN9ZBSq+WFCO7Ogoi749uAtPtt1jSA3W/a80MN8fqfkldJ/4WGK1Dq6NXLnqAWutUIuQaOrWGr5OFnzv8db4O2oZMS3JyptbG2sZLwxKIwIf2caedoTdT2J3i0b1GqNe2g6dlCmQNx7NZ1ClZZAN7sKGa07LqRSotEhkUjMXbvfosq4SHP6hCKTSjh0I5Mz8TnIpBKzCOFCUj5BrrbklmjZd80yV6CRlz3Tuzc0u0qbEH07h4GLjzB11WmuWDBKNKG5r5PFoi6/RMvyw3H0XXDIXNRJEDuFQW62bHiui8WiLqdYw7jlYsSNj5O1Me6sbh/M7RdSzOPpj4aFVyrq/vhD9E1Sq6F9zxLS2u+jQKMhwt+JzTO7/qNFHYgjjI3PdeGtQU2RSuD304lM+jm6eo6KQlGxqFu1Clq2FIMlQVyYBg+GksoqK0u4e8eVmq/itY0X6sxj6R3miY2VjMSc0griARPslXL6GcUaTjZWlGrFXXtt8EhzLzoEu6LWGfhy9w3+N7wFNlYyTsblWIy8qS2O3crmka8O8+iiI5y4lU2HYFdm9GzEe4815/OREczpG8rw1v60DXJBIZeSkF3Cor036fH5QcYsj6q2qDP9WSWInbpt51PJKtLQzMeRpj6O/GpUIn8+siXBbvef1/lPYu/V9AoX7vLo0cSD+UabDBB39CuO36H9x3vZfC7pvvCn8ko0vLnpIiO+O052sYZwP0c2zehisagTaSMnzevQ1+Pa1LmoO5+Yx8t/iN2+6d1DKhR1giBO+UxFnVPkdRwjbzAkwoeVUzr840UdiAKIJl4OZBdreGfr5Yo/nDkTWrUSu3e1mGo08rRnx/Pd+HlSe9oHu6DRG9hzJZ2t51PMNjMlGj0BrjbM7t2IvfN6sHJKB7qFutdqamJtJWN6j4YcfLkn4zsFmdfNMbXgjleJsWPFf2NjxY1xcnKtHqa463p16EamOX2mLnikuTdyqYSrqQUWDdxlUon52rv2VP1UuBM6B+FuryA+u4TlR+LM3/d1tjFbo5X30+ve2IMvRrZEKZdWKupAvE5M/vkU436IpntjD+4Wjn/yeAvGdwqmpb8zNlYyUnIthx9YwkPVsRMEgb4LDnErs5j3H2vOxC7B/Hoynrc2l3XXPhoWzlOdgsgt1tDxk31odAa2zOxqHmG+tuECa08l0qWhG79N7VThe37O1qTkqcTWp1yKRiemLoztGMjbmy9RoNLRJ8yTQS19mLeuarJnAzdbOjV0Z3BLHzo2cK001hQEgcxCNVdSC9h7NZ0NZ5LNpHippIxXNKC5Nx8ND8fdvvKFt7ywwstRydppnessWjh+K4vJP59CrTPwdLcGvD24ooP2ypVi0LTBAC2655Pf4RgSmcCgFj58+WTEfe8O3CsOXMtg1m9nKdbo8XWyZs20TgTV5oL/+++ivNfKSpT6mtC7N2zbVmPnbubqsxZHAJ883sKsyK4tZv12lu0XUpka2YA3LTiaH72ZxVM/RpkV0i39ndg6q3aZQheS8nhs6TEAts3qRvSdHD7cfgWFTIrGgujDxkpKqbbuYwtnGyv8XWzwdbbB3UFJbrGG5LxSEnNKyK2i4JZJxfNMQNypejgoScgpQSmX8kLfUH48dofMQjXBbrZ0aehu5s9+MLQ5EzoHV1orHhZU1bEDsFPIzLv4DsGudAxxZYlRJPLGwDAupxSwxQJnqKGHHYvHtK424aUq6PQG1p9JYv6ua+b3anhrPz4aFm5R8JVTrGHs8pNcSyvEy1HJ79M6Vxn5VRWupRUwetlJ8kq09GziwY8T25tFGQaD6JH59dfifZ17XsWpYxzTuofw2oCweidJPAhcTMpn2DfH0BsEvhnXxszrBsTqtJ5UlTPxORUERRJEUVSbQOf7Qn85fCOTWb+dpUClw9vRmmUT2tLS37luT7J9u0jANqFRIzh4EPyqF7JEzt9PYk7FgsVKJmHTjK6E+9Xt/J34UzSHbmTyYr/GzLYQs3krs4g+Xx5CIoH9L/asl8hv87lk5v4eg0Iu5a+53c3PIQgCr/xxgfVnkpBI4N3BzZnYJQiJRMLZhFxmrT5rTqCoDRys5fRs7EGxRk9SbgkJ2SWUFBeR+NWTtVrjHqrCDkSH9ne2XCbEw45983pQotET8f5udMZqKMDVhgMv9kQukzJ37Tk2x6Qwql0An41oCYg8kF5fHESrF1gztROdG7qRX6Klz4JDZBWpaeHnyMXkAiQSeGdQMyZ1DUYikRB9O4enfoxCozPQws+JvBINibWooCWIOyRbhQwHaytsFTJS80srXeBkUomZCB3oasv7Q5tXaROQXqBiyopTXE4pwMNBydppnWjoUTeO0ak7OUz4MZpSrZ6+TT35fny7Cgq3BQvKeL+Nu2ei6hiNRArP927E3L6N/1ULanlcTS3gqR+iyC7WIJdKeKl/YyZ2aVC9qEMQIDISjh2r/LNaFHdz1p6rdIEN83ZgZLsAs3Chtth1KZVnfz2Lj5M1R1/tXUl1KAgCjy46wrW0QmQSCXpBYMfz3Wp9ETd9Jjo2cGX1Mx0Z+f0JzlUhwujS0I1zCbn1Ku5qC5lEvN6ZaC9BbrYk5pRgEMDZ1opR7QL46dhttHqBxl72RPg7s97oW1meZvFfK+z8nG1IzivFwVr0cOvXzAuJRMLXB2L5/C8xgmBISx+2VcHHtFHIGNnWn8EtfWkX5FLt51UQBM4l5rE1JoXtF1LIKhJthJp4OfD+0OYVrKXKI6NAxaSfT3ElVVyHfp/WiZA6rkO3MosY9f0Jsoo0tApw5tdnOpotljQamDgR1q4FJAKu/S/i1DqR9x9rzvjOwXU6zt+FL/66ztIDsbjZKdgzr4dF4+h7KfIeFG5nFfPMylPcyixGKZeybEI7etSFr5mQII6ay6MWxV3vLw8Sl1lR8NAqwJlnIhvUWdm97nQir/xxgYYeduyd18Ni0WuizUzsHMT7QytbhtUEQRCY8FM0R25m0TnEjd+mdjQfR6MzMOGnKE7G5eDnbMPmmV3N05DcYg1TVpzinJEyVB8Y1CW1LuweqlEswONt/LFXioaBR2OzsFPKGRJRtjNKzCk1k8/HGUOpN8Ukk2JU2/m72Jqjlj7ddc3sS/O+MbrnqlGwIAjw8Z9XibotKl87NHDllykdcLG14mJyfiUjSRA7HHdDQOREZBdruJMtKh5NRV35i7beIHLp5vYNZfcL3ass6g7fyGTgoiNcTinA3V7Bb890rHNRdzYhl8k/n6JUqycy1J2lY9uYX4sgiDoCs5VAjyRUnaJRKqR8NaoV8/o3+dcWdYCZY2GvlKMzCHy66zodP9nLJzuvmr0OK0EigYULLf9s/35R+VXNWFZu9MVr7OVgzvD9YGh4nYs6gJ5NPHG2tSI1X2UxYUIikTDF+LxWRu+2X43j+9rg5QFhKOVSom7nsO9aBvOfaGl+zU287Jndu0wNffxWtsXzsD5B7lVBL4hFnZ+zNW524pjDIMDAFt70auLJ94fj0OoF+jXzopGHvbmo++TxFuaiDsRkmf8SMotUKORSClU6EnJKzBePGT0b8rLRNHzbhVSzsKQ8bKxklGr0rDoRz5Pfn6DTJ/sY/2MUr224wOJ9N1kTncDXB2J5c9NFJv8cTbfPDvD4N8dZcfwOWUUaXO0UvD24mTHSz3JRd+RmJgMXiwIvd3sla6bWvahLzClh3PIo83h95ZQO5qKusFBkQ6xdCxKpAffBMXi2T2H5hHb/2qIOYHafRmUj2bt52oIgxkbch5zq+40G7nZsmtmVnk1E+5Zpq07XTVQREADOzhW/V4uxrJVx7WzkIXa+lHIpK6d0qJddz6Ph3tgpZNzKLObELcuv3bQmrz+TZPEaXhMkEgkfD2uBtZWUE3HZ5vUIMAt+GrjbkZxXytRVp80WOC52CjY818VsVGyCq50Vg1p4W6wd7gUPXWFnr5SbfY1WHhcvaK892rSCJPjbg6JStV2QCx0buKLRGViy/6b557N7N8JeKed8Yh6/nLgDiBeSvk090RnAwUZcXHQGgbHLT/LHadHsuGOIG1tmdiPU054CVUXpes8mHpx+qy+75kYyq1cjc65nddAbRIuDwS19+GlSO6Le6MPcvo0tjjh1egNf7r7OxJ+jyS7W0NTHkfXPdqlzgPfFpHwm/hRNkVpH5xA3lo1vZz6eWi3ukOfPF+/r2+8Gho7n8XBQsGZqJ4a1/nv8oe4Vno7WrJveycxBKijV8f2hOLrPP8D0X05z4lZ2ZR5S+/ZVJ2rv2wdLllR5vCfa+rH/xR7sfqE7j7cWuUG1VazeDWsrmdkOZ9UJywXb0Fa+uNsrzSKKP84kmTcuNcHP2cashH1/62U8Ha2Z3VscWyTnqXgswtdcOAD8eSmtwshCQpnnms09juIliAWdtZWU5DwV2cUaAlxsmBrZgHMJeWw6l4xEIsbaXUst4E9jdvH8J1qaR9yCIPDdoVu8ezev6SGHRifgbVRb/+/Pq+y+LBYCEomEmb0a8d1TbbGxklXo/MukEr4cGcH5d/vz8+T2PNHGHwelGNt05GYWa08lsmDPDV7feJHP/7rO6qgEDlzPJDmvFFuFjGGtfPl5Unui3ujD090aWIwr1BsEFuy+zoSfos2G5Ouf7Uwjz7oVdUm5JYz9oSxK7peny7hyqanQs6dohC5V6PAYcYoGHbP5fXon+jStO+n974RSLuOLkRHIpBK2X0g1v2+A0en7U9Ev8513/rkXWQUcra1YNr4dvcM8RXrOilOcTahlooREIvKU78bNm/DKK1U+bEavhhx+uRd75vWgiZcDap2BLTG14+fdDQdrKzM3c6Xxun43ujR0I8zbgRKNvt5rdKCbrTm55+MdVyvY0jjbKvhpUnucbKyIScxj4k/R5gJSKpWYJ4cm5BRr2XkpjfYN3BjVzp/q9swv9qtsQVYVHrpRLIiqob4LxFn54Zd7EeBqy6jvT5i7a4BZ+XL6Tg4jvjuBTCph37weZv7HLyfjeXvzJWwVMna/0B1/F1tS8kp5ZOFhs1KoPKb3COGVR8KQSSUUqrQ8v+YcB66Lvjvu9qJfXbNy4zCDQWD2mrPsuFh5Zza2QyAdQ1zxc7ahibdDjarGq6kFvLv1MtHG329cx0DeHtyszhy3E7eymf7LaQpUOjoEu7JiSntsFWIBmpMjKl8PHQKpTMBtwEVswxNp5uPIsglt6+xH9W/Ad4di+XTndYs/a+LlwKdPtKgoSklKEscJ5V3ivb3FUNzOnWt1zHMJuQz/5jhKuZToN/rWWRkLYiejx+cHMAiwd153GnlWLt4X77vJgj03sFPKKFbr6zRaKFbrGLT4CHeySxjaypcvRkbw1A9RRN3OIcjNls0zurBoXywrjt8xP6ZdkAuudgp2G6P6JBLjRMn48/KLiFQibsA0eqGyaWsVCHC1oUtDdy4m5XElVXTx93W2plsjdzaeTUZnEPBztmHxmFa0DRLNiU0WA3+cSarTmOLfhOo4dgBNfRy4mlqItZWUtdM6V7BTuJySz9SVp83cnUEtvJk/IqICF06t03MmPpek3FJS81Sk5JWSWaTG1U6Br5M1vs42+LnY0DbIxbwWVIXYjELe2nyJk3HiOjSmQyDvDqn7OnQ5JZ/JP58io1BNkJst66d3NntzXr4sRmclJIDURo3niFO0bS/ww4T2eFeTafxvw2e7rvHtwVv4OduwZ173sr/tsWPQrZv4AYqJsVwM/cNQafU8vfIUx2KzcbSWs2Zap9pRPWbPhqVLy/5vbQ2//ipeWGoxev752G3e33aFMG8Hds6JrBd/8GZ6If0WHkYqgSOv9raY/rTuVCKvbLiAr5M1h1/pVa+4O53ewGNLj3EltYAhEb4sHt2qwus9dSeHKT+folCto7GXPSsmd8DX2QZBEBj1/Um8nKyZ1r0BS/bFmtdUE8rz7E3wdlQS7mHFj9N6/vOj2I8//pguXbpga2uL891t2ntAI097IkPdEYSyMdR7j1VMRf7mYCyCINAu2JWeTTzQGwS+KmceO65DIO2DXSjR6Hlr8yUEQcDX2YavRreyeA5+fyiO6b+cpkitw8Haih8mtmdmz4bIpBKyijQMWXqM97ddrlCdLx3bxuw5ZUJkqDv/e7wFQ1v50S7YtdqiLjajkJm/neXRRUeIvp2DnULG4jGt+Xh4izovphvOJDHhpygKVDraBbnw0+Syou7mTTHW8NAhUNrqcX8iGtvwRAa39GHDc10eyqIOYHr3hrQKsLwg2SplNPW568Ph7y+OSUA0FwUxddup9iTeVgHOhHmLO8/6qq8CXG3NnQlTV/pujOsYiFIupdhoKrzmVGK1UXflYaeUs2BUK2RSCVtiUvjzYirfjGuDv4sN8dklzFpzjjceDWNIRNk45HR8LmqdgendQ5AZqQpSiVjQlV+DFHIpBgEKVLoaizqFXEqfME+eaOOPjVzG76cSuZJaiIMpck+AdaeT0BkEBrbw5s85keaiLqdYw1M/RPHHmSSkEh5I2klNeFDrG2A2o76aWkgzX0dUWgOTf44mIbuMEtDc14kts7oR7ieexzsuptH7y4NsKqeMVcpldGnozpPtApjTN5TPRrTkp0nt+WJkBPP6N2F0h0AiQz2qLeris4uZ93sM/Rce5mRcDrYKGV+NasUnj9d9HTpyM5NR358ko1BNEy9jPrCxqPvrL+jaVSAhAeSuRXiPP86w/jasm975nos6jc5ASl4pcZlF9Y6vqgue7x1q5kku3lfOHqtrV9EQVBBg+PB65VM/aFhbyVg+oR3tglwoUOkY/2M0cRaUppUQIfr5ERgoFnUqlWjKXMsC7fHW/ijlYrRedLkmTV0Q6uVAl4ZuGARYXQVF5bFWvrjZKUjJV7Hrcv1G4nKZlE+faIFUItr0/HpXVnj7YFd+n94ZTwfRvPrxb45zPa0QiUTCl09G8NWoVrTwc2bZhHbsndeD1x8No3OIG1YyiUWz9bQCNbuvZFT+QRV4oB27d999F2dnZ5KSkvjxxx/Jy8ur0+OrI0TvuZLO1FWncbKx4uTrfbBRyHh00WGuppZl9q2d1olOIW5cSs5n8JKjSCSwa053s5FlbEYRAxcdQaM3sGh0K3MUTXmC8t0I83Zgw3NdzLvihOwSPv7zCn9dFqtuJxsrHovwZVhrX9oYu0Gf7rrG94dEefSG5zqbL06WoNMbOJeYx5roBDafSza/yYNb+vDyI01qp/IsB0EQWLj3pjkL925F619/iYLQvDywcVHjPDwKpWchL/VvwoyeDf820+EHhfjsYvp+eQhtuU+Lv4tIbLWkNmbTJtHTbvZsMRB30yaRY7dlS62PaSLxejuKO8L6BJEfi81i3A9R2CpknHyjj0WX/9c3XmBNdCLOtlbklWgtKpurw8I9N1i07yYO1nJ2ze1OQamWJ749TolGz6QuwbwxsClTV52u4Ajf3NeR1x8NY/G+WKLviIuvUi41m+sCyKUil9VGITPzD/UGASuZhGKNnjtZxUgl4n3iyjnFy6USwrwduJ1dbC5YbaxkvD24GWM6BJjPxVN3cnhx3XkSckqwU8hwsrEiKSPnb+/Y3ev6BmVrXOjLf6CRVixe+jX1ZM/VDKzlUvxcbLiVWYy7vYK/5lb0SRMEgd1X0vloxxWzwrCFnxNPtvNnUEtfywT+GiAIAldTC/nlZDzrTyeaxWn9m3nx2qNhdebTgciDfOWPC+gMAp1CyvznBEGkuL78soDBIEHpn4PH46eZMzCIef3qLtS6k1XM4ZuZHL2ZRXx2CZlFanKKK+ZKu9op8HO2wd/FhshQDwa19Lnvtil7r6TzzKrTYgTinMgy2kxcnCgsEAR45BHYufNfJ6YAKFBpeeqHKC4k5RPiYcfmmV0trkNmXL4Mhw/D00+LI+d334WGDeHqVdFxoBZ4c9NFVkcl0CfMkx8nta/X6/7rchrTfzmDq52C46/1trj5WLDnBov33aRNoDMbZ3St13GgzNtOLpXw29ROdGhQ8dqelFvCpJ9PEZtRhIO1nKVj21QrSilS6zhxK5trqQWsPCFyXu2Vcga28CHAXuD5R1v9e1SxK1asYO7cufe1sNMbBHp8foCk3FLmP9GSJ9sHcCY+hye+PWG+T2SoO7883RGAGavP8OfFNB5p7sX349uZ77Nk302+3HMDVzsFe40qJkEQGLzkKJcteNK91L8xs3pXllIfuZnJ+9uuEJtRtrMJcLVhWCs/2gW5cOB6Bjczilj9TMWcUq3eQHaRhqjb2Ry4lsHBG5nklePN9G/mxQv9GlfuLtUCKq2e1zZcMAfGz+jZkJeM4gdBgC+/FIUSBgPYBuTi+tgZXNz1fDW6Fb3D/t1clrrg7kL98xEtGdmu5lg3rl0TjTdtbUVjUZ/aRTWpdXq6fXaAzEK1RaPV2kAQBPovFM2z3x3SjMldKwsxTGMHE6ytpBx5pXetfem0egMjvztBTGIenUJc+e2ZTuy+ks6zv54BRIHCiLb+vLf1MqvL7Uidba14a2BTZFIJ/9t5zewWL5NKsFXIKFRVpjJUBSuZhEae9hSpdCTnlVbarR5/rRe+zmLHOL9Eyyc7r7L2lMh5dbdXoNUL5JdqcVfoOPPhsH9kFFvf9Q3K1riEtCymrL7EzXLrh51CRpiPI2fic/F1tqawVEehWoeNQsby8W3pFlrxAqHS6vnx6G2+PhBr9sCTSyVEhrrzWCtfWgW44OdsU+VGQ6XVcyIum/1XM9h/LaNCvFuPxh682L9x3W0wEDeri/bdNFu1DInwNfp7ySgtheeeE62VAOxaJBI45CoLxrRgQHjtPm+CIHA2IZdN55I5fCOLhBzLQie5VCJ2uS107JRyKf2bi7m0kaEe900g9MzK0+y9mk7HBq6sndapbKMcEQEXLoi3n3pK/ANI/32U98xCNUOWHCWtQEXfpp4sG9+udoV2UZFY1Ol0ogDN1M2rAXGZRfRZcAihGhpKTdDpDfT4/CDJeaV8MTKCEW0rr78ZhSq6fXoAjd7AphmWfWJrA0EQmLXmHDsupOJur2Db7G74OFUc/+aVaJi66rQ5GWtEW3/eHNi0UqrK3ShQaZm26jRDInwZ1zGoTsr/f1Vhp1arUavLiIgFBQUEBARU+Yt8f+gWn+y8RjMfR3Y83w2JRELfBYcqFFfbZnWjhb8TsRmF9F94GINABV87jc7AY0uPci2tkGGtfPlqdGsALqXkM3jxUfPzBLvZcie7BKkEPhrWgrEdK/uT6fQGjt/KZnNMMn9dSqu0gEglopmhu72S/FIt2UXqSiIMELt+vZp4MKVbg3otpABXUgqY+/s5bqQXIZNK+HhYOKONhPPcXJg8uawJZd8yAdd+l4kIduDrsW3qnDP7b4dWb2DQoiPczChCANzsxA+grwX+RQVcvixWv599Bh51i2oyFZP3whcx8UAbuIvWPpYW1Ek/R3PweiZudgqyizVM7x7C6wOb1voYt7OKGbT4CCUaPW8MDGNa94Zm/p5cKo4NHovwZdWJeN7bernC2LVLQzfeGBjGkZvZbDibVOFzp5RLcbKxQimXIiB+zpRyKTYKGUq5DIlETE1JNfpGVoXoN/vgYa9k6/kUPtx+xWzFEeBiY7YbCvdzZOGwJjQO9PrXF3bVrXGHbheZkxdMaOBuh1ZvICm3lBZ+TlxMLvMzG97ajw+HhZuVpCZkFqrZEpPMlpiUCvcHcQ3ycbIhwNUGZxsFOSUasovUZBdrKmwoQdwodGvkwbTuIZU6EbVFUm4Jc9bGcCZevKiV95+LjYUnnhC4cEECEgGX3ldoOzCL78a3rZXSv0itY/O5ZH49Gc+1tLJJjVwqoW2QC90bexDu54SXoxJPB2ucbayQSiXkl2pJzi0lKbeEG+mFbIlJqVBQ+znb8MHQ5vdFqJGYU0K/hYdQaQ0sHBXBcKO4qkKMBsCkSWJOtbxm0d3fjfOJeYz8/gQanYHn+4Qyr1/j2j3w5EkIC6uslq0B01adZveVdEa3D+DTJ+rHQfzmYCzzd12nhZ8TW2d1tbj+vrjuPBvOJtG3qSc/TKxfdxCgRKPj8W+Ocy2tkOa+jmx4rkulLqFKq+eTP6+y6mQ8giBeg959rDlDWvpUe21Q6/QIgjgef2gLu/fee4/333+/0ver+kVyizV0+mQfap2BlVM60KOxB0duZjL+x2jzfTqFuLJmqrhTMkWKle/kAcQk5jH8m2MIAswf0ZIn2wUgCAKdPtlHVpEGvUEgwt+Jhp72bDwrKnbm9WvM7N5V56OWavTsuZrOzoupxGYUkZBTUmFcVR5SCYR6OtArzJM+TT1pHeBcL0IniJ3MH47E8cXu62j1Au72Sr4a1Qplnjvt28OpUzBqlJh3L5UbcO59GftWCUzoHMRbg5vWP1LmX44z8blcTslnbXQiV1ILiAhwZt30TlX/vnfuiOMSg0FUsdVyx2lCXomGLp/up0Sj55enOxAZWrfCEESRQ6dP9lGo0rFicnt6WrAeOXErmzHLT5oJt7YKGUdf7V2n8dua6ARe33gRK5mEFZM70KWhGy+uP8/Gs6Iq9WPjRubwjUxmrD5Dkbpsw6KQS5ndqxGTugYTl1nMhrNJbD2fUqlIqC/eGdyUPy+mcdpYGHg5KClS6yjW6JFJJTzbI4TZvUPRlBb/Yz52dSnsqlvjrKztCH9vF3d7RXcLdePMnTxKtXo8HRRkFJaNFV1srfh4eAseDfe2uBbdyixiS4yYVnAnq9hshF4VvB2t6d3Uk75NPekc4l69/2MN2HEhldc2XqBQpcNBKeejYS1obO1L06aiHmnSZIHCAglSWzXuQ84xaqiSTx5vYdEIuTyScktYdjiOjWfLssCtraQMbunLI8296dzQrVKxWx0EQeBScgEbziaxJSbZrDQe1MKHd4c0M3MA6wvTJs/dXsG+F3uKI999+8TM6vJ44glYvbrGyLF/AhvOJPGiMQf4u6faMiC87jnAtYVp8qaQSTn6Wi88Her+988uUtP50/1odFV35G5lFtF/4WH0BoH1z3amfXD9Ni8gFvADFh2mWK2vUHPcjTPxuby24YJ5I9GziQezejWibZBLjZv/B1rYVbUwlcepU6do165s3PmgOnaAOT+2pb8TW2aKs/Ienx8goZybtckFPCG7hN5fHkRnEFg+oR39yuXFmfJSFTIpv0/vROtAF07dyUEmgSkrT5NXoqWJlz1dG7nz07E7ADzRxp93hjSrFTfDlDYRn1NCTrEGZxsr3OwVuNkpcTLuJO8VSbklvLjuvFkd3K+ZF58Mb8F3i5S8+64Ynr14sYBOJ8HKuQS3oWdwCSzmE6OY4/8CEnNKGLzkKPmlWsZ0COSTx1tUfecnn4T160Uvpn37RLPNbt1qzRd5b+tlVhy/U2kjURd8sO0KPx27TddGbpXG+CaYHNedbKzIL9Uys1dDXn4krNbHEASB59fGsO18CvZKOeumdybM24G3t1wyj2DfHNiUqd1DiM0oYu7v57iUXJGmYKeQMbS1H2M7BNLYy4E72cXczjJ+ZRYTn1OMlUyKo40VTjZWOFrLRQGGVOSpRt/JrTYA3EomwdvR2tyla+7ryPwRLc1qvftlUPwg1zeoeY0b+d1x88imPJ5s68/WCylmi5u70aOxBx8MbV4tB1cQBLKKNCTkFJOQU0JBqc68Bon/KnC1U9wzrza/VMv/dlzld6NNVOtAZ754ojXvzLPl7FlRP/Djj+J9lf45+A6P4b0xIYzvFFTtsRNzSvj6QCx/nEkyc/5C3O0Y1ymIEW3866VAvxulGj2L9t1k+ZE49AYBB2s5rz0axpj2gfVeozU6A48uOsytzGKe6hTIR8NaQH4+uLiIPLvy6N9frHrt/n0Reaa1yE4hY9PMrhbj5SxCEEST944dwat2XdDHvznG2YQ8ZvduxIv9m9T8AAswdeQeDffm26faWryPiafcLsiF9c92vqdz//CNTCb8JDaVGnvZs3ZqJ1wt8Lg1OgPfHrzF1wdizYk/Yd4OjOsUxLBWvlUKKh9oYZeVlUVWVuWQ2/IIDg7G2rqsyn4QHDvz6ylS033+AUo0evNO4uStLEYvjzLfx8/Zhn0v9sDaSsanO6/x3aFbeDgo2fNCd5xtxc6GwSDw7K9n2H0lHS9HJdtmdTPv1K6nFTL+xyizPH9YKz8W77+JIICXo5KPhrWoUCT+3ShW6/jhyG2WHb5FsUaPrULGu0Oa8UTrAGbPlvDddxXvb9skBbcBF+kU5sgXIyMIdPtvjV5rwqEbmUz6ORpBgK9Gtaran+/OHXGUoFaLyRRHjsA334ikoFqgvG3JzjmR9eJJ3s4qptcXBwHYNTeSMO/Kz3ElpYBBS46YrxF2ChkHXupZp06DWqdnwo/RRN3OwctRycYZXfF1sq4g/Hm+Tygv9A3FIIgCkc92XiWvtDKVoIWfEyPb+RPh70yol32NNhoqrZ6YxDz2XknnSGwWN9MLzVw7aysp9kq5eQSrkEt5oW9jnoms6LN2vwq7v3N9g8qve8Hu6yzeH2vxvuM6BLLlfIq5S3U3rGQSfn26Y6W8578LOr2B36ITWLjnBrklWiQSmNmzEc90DmXMKCm7doGooZYAAo4d4+j8ZCpLxkVU68eZkF3C0gM3zbY3AF0bufFcj0a1Cr2vD66kFPD6xgucN2Y2d23kxjfj2tZbYHE8NouxP4jXJJOoj2bNRGHB3Rg7Vuzc/cug0xuY8FM0x29lE+xmy/bnI2vXGZ05s2zd/OabWh3LlMDjbGvF8dd617iGWIIpQlECHHqlJ4GulYvltHwVPT4/gFpnMFuk3Qsm/RTNQaPYzMZKxqLRrejf3HJ3MzajiOWH49hyPtm8YbNTyBgQ7kOrACea+ToS5u1o7mA/tKPYu1HbX+TL3ddZsj+WUE97ds3tjkwqMVf8JrzQtzFz+oai0uoZvOQosRlFFTh1IHI2hn99jJsZRbQJdGbNtLJRXXx2MU/9GEViTinejta8OqAJi/fHctuo6hsS4ct7Q5pVUKs9aGj1BtZGJ7BoX6zZJLFtkAsLnozA09aOMWNMPDpxMZUotLj2v4RLyzReHdCEKV0b/KtTJB4kzIpQpZydcyOrtnR56y2RD+PuDllZItcuNhZqWTzM/O0sOy6k8ngbPxY82aper7XH5weIzy4hwNWGwy/3snghm/d7DBvPJWOvlIvncWs/Fo6q2/HyS7WM/O44N9KLaORpz4Znu+Bka1VBfFLeQzG/RMuCPddZdSK+Sp6cRCJG5DX2ciDQ1Rad3kCpVo9KK/6bWajmcko+Wn3FZ/B0UKLS6s0cVBujcfPT3RpY5ID+k5Fi97OwK18AWMKUrsGsO51ksbizkkl4dUAYk7oE15vKUR8IgsDB65l8/OdVM8+ykac9Hw4Np5GTK4MHQbSZHSNB5lCK++AY5o53YV6/xlWKOdILVCzed5PfT5WpciND3ZnTJ5R29zA2qy30BoFVJ+7w+V/XKdHoaexlz8+TO1j0RqsNTJnkQW627JwTie20Z8pUIyZYWYm5q/3734ff4P4jp1jD4MVHSMlXMaKtP1+MrAVF5dAh0XFaJoOLF6FpzRxgvUGg95cHic8uMefC1wetP9hNbomWYDdb9r/Y0+L1ztTsaexlz8453e9JOJOSV0qXT/dX+N7wVr6891h4lR3l/BItG84msToqnlt3xatJJBDsZoe/iw2q4iL+mNP3n/exS0hIICYmhoSEBPR6PTExMcTExFBUVAtPnDrgmcgQHK3l3MwoYut5kQO3aHTrimkUh2JJzivF2kp0BpdKYHNMSgVncHulnOUT2uFoLedsQh7vbrls9oMKcrNj/fQuhHrak1ag4oPtV5jXrzHTe4SYvWz6LTzMLyfuUFzFjvp+QWN05+634BBvb7lMVpHYSVw6tjXrp3fGQWJHx47lHTokWAdl4vv0YYJbFvPn8914JjLk/2xRB2L6SJtAZwrVOub9ft6cplAJr70mqmGzssTiLjNTlPLXEtMiQwDYGpNCan7t0iHuxoDm4i4yMae0yoSFF/o1RiGTUqTWIQE2nUsmqi6RQIiinRWTO+DtaE1sRpE5Emdmr0bmyL3VUQkMXnKUC0l5YhTf0HD+nBPJ8NZ+2N7FxzJF88Vnl7DnSjo/Hr3NyhPxrDst8vD2XEknJjEPrV7ATinDw0GJwhhvllEoCovc7ZW81L8xx1/rzXuPNf9XCXvu5/p26IboUdUmyAVFuaLM9AltarRo+unYHZ5s51/h4iMFglxt0eoFPtpxlcFLjnL6Tv18wOoCg0Hg0A2R0zx5hWjp4Gqn4MOhzdk1JxK5ypbgxmqiT5u6dBJsmyXjOeIUHzzZmNceDbNY1OWXaPls1zV6fH6A1VEJ6AwCkaHubHiuC7883fGBFnWFKi3HY7OIzRBFZ5O7NuCPZ7vg5Sj6kQ3/+hiXU/JrfiILeGNQU3ycrInPLhE3Sh2N9AypFJ55Bvr0Aa1W9LlbtKjymPZfAFc7BQtHtUIqERNvtp1PqflBPXrA0KGg11ebQlEeMqmEZ4zxXz8cjat6fa4BHRuI3es72SV8uN3y2vlcj4Y4Wsu5kV7EpnP1S70wwdfZhp5NKvKpN8Wk0G/hQfZfqxwRCeBka8WUbg3YO68Ha6Z2YkbPhvRs4oGngxJBEKc2R25mVQhgqAkPtGM3adIkVt69IwEOHDhAz549a3x8XXbhpq5CoKst+17sgZVMyuzfzrHtQtmJNyTClyVjxA6dqUp3txdHsuWlx4duZDL552gMAnw4tGLgdE6xhsk/R5tb9I+38WNEW38+2HbFrMxyUMp5oq0/4zsH1TnHtSqYCL5/nElk6/kUM8HX3V7BnD6hjGofiEIuZe9e0ffSdG2R2qpx7XMF65AMCk40wjaxAXduS/+N/Ny/HfHZxQxcdIRijZ6XH2nCzF5VRLasWiVmrZlMN62tRfuTwMrKaEt48vsTRN/OYXqPEF5/tPaKVRNMvkwmVDU+NvFNXWytyC3R0sTLge3Pd7MYDVUdrqUVMPLbExSqdTzS3IvFY1qjlMs4cC2DVzZcILNQjUwqYXbvRszs1cj8/CUaHbsvp7PpXDJHbmZaNNqsDVxsrejc0I1eTTwZEuFbownuuYRc5m87x9pZff7Wjt29rm9Qtsa1fmsz+157FBc7BaO+P0H0nRzGdgikfbAr89bFYBDE4u6qcY2JDHXnyE1xZCyRwIweDfFxtuGL3dfNwpWujdx4sl0AjzT3rrORcHVIL1Cx/nQia6ITzZYoCpmUyV2DmdGrEU42Vrz/dTbvv+CEoBXHSDLHElz7Xkab5UD+iUYM6Cvnzz8rPm+JRsfK4/F8ezDW3KltE+jMKwPCqsystYQSjY60fBVp+SoKVFpc7ZR4OCjxdFBWEGZodAaupRVwPjGPmMR8ziflcSuzCEGA755qU8FuJSWvlMk/n+J6upgC8v34dtX6kVWFg9czmPTzKSQSWNfTlfZfvisq71u0EPOon35aDMgFkeP7ww/gUHfLjwcN05TMwVrOzjnVTDxMuHEDmjcX7U/27YPevWs8RqlGT5dP95FbojXz5OuKbw7EMr+c1VUFZXI5fHfoFp/uvFaBtlVf7LqUZraMuhtV2aVVhcxCNVdSC8gsVKMtLWJsZNN/zyi2vqhLYVei0dF9/gGyijR8PDyccR2DKFHraPPhHlTl1KjrpnemQwNXVFo9Q5Yc5WZGEY9F+LJ4TOsKz2eyUpFK4MsnK54Map2er/be5PtDtzAYeXafDG9BfE4Jq07Em8ezIC7AI9r60zrAhQBXmzrxQVRaPdfSComKy2bj2WSup5dJ+r0clYzrGMTT3Rpgp5QTGyt60m3caNwdSwzYRyTi3P0aJTd8yDvcBEOJEkdHkb4xeHCtX8Z/GiYzYblUwsYZXSzbyxgM8Oijopno5s0i1+6pp+CXX2p1DJNRqYNSztHXeteZp2OKKTNBLpWwdlqnSp2L3GIN3ecfoFCtw04ho1ij5+3BzczB13XB8VtZTPrpFBq9gQ4NXFk2vi3OtgpyizW8teUSOy6kAtDS34kFT0ZU8pvKKFRx6HomcVnF3DGKKO5kF1cg/yvlUhysRSFFsLsdXRq60aWhO2HeDrXqJkffzmHJ/pscuZn1n4gUG9Q2hG+fasuWmGQCXW3NSr7tF1KYszYGvUGgibcD143Fnbu9gnA/Jw4aow2b+Tjy3mPN2XAmiXVnEs0NHwdrOUNb+fJkuwBa+DnVmZMmCAJxWcWcic9l75V09l3LMHdQHK3lPN7GnyldGxDoZsutOzoeHV3IzShnQAJSAw5t7qAMzCLvYDN0OeJG19FRTNRq0EBcT9dEJbD0wC0zpaSJlwMvPdKEvk09q329CdklHI3N4titLGLTi0grUFUb7q6QS1HKpVhJpRSotOYR793Y8FwX2gZVVFIWqLQ8+8sZjhsD5sd3CuLdIc3qPPZ+ef151p9JooGbLX8+H4lNeZ6aIIixXPPmiUWQt7dYCDWrvfH434HyHpjtgl34fVrnmkeYpsix1q3h9Ola+faZjISrsy2pDuXVvABWUglrLKydKq2enp8fJK1AxVuDmvKMcdJSH2j1BjobHTXKw9Fazq/PdKy3hdm/jmNXX9SVN2PKmvN2tObgyz2xtpLxy8k7vL25rAXbzMeRbbO7IZNKiEnM4/FvjmEQKku4BUHg9Y0XWXsqEYkEPhnewuwDZ8KZ+FxeXBfDHWPMT7dG7vxveDi3s0v45cQd9l3LqNBNd7a1ooWfEy39nWju64SNlQwBAYPBGM0kCKQVqLiYlM/F5HxuZhRVaEGbTDRHtPWnWyN3ZFIJUVHw+ediQScI4klvE5qGS49reDkrGODZnA6hTgQHQ3BwnS2F/vMQBIEZq8+y81IaIe52bH++m2WiriCIrZEzZ8CkiDx1qux2NTAYBAYsOsyN9CKe792IeXVUeVnibbjaKdg8o2sl4Yupc23q2tkr5ex/sUe9LBuO3Mxkxq9nKVTrCHG346dJ7c1Zy1vPp/D25kvkl2qRSSUMbOHDM90amP0hLcFgEMgqUiOVSnCwltfLWsdgEDh+K5sl+2+aRxNyqYSBTZxYMqnbQ1vYBb6wDonClveGNGOSBTPqXZfSmL3mLFq9QGMve26kiy35bo3cxYzYv66TW6JFIZPyQr/G9GvmybbzqfxxJqmC0bCHg5LGXvaEejrQyNOeUE97gtxEr7wSjZ5SrZ4SjY4StZ4bGYWcuZPL2YRc84TAhPbBLozpEMjAFj5YW8m4fh1efVfF1vUKBIN4wbYJTcOxYyyadCfGtWpEpwgbGjYUfWvd3UFvMLDhbBKL98WaX2OAqw1z+zRmWGs/i4VCsVrH/msZHIvN4mhsFkm5lukNdgoZ3k7WONlYkVOsIbNQbdGYuCoceaWXxbG/Rmfg6ZWnzN1SF1srZvZqxKj2ATVmfpuQX6ql/8JDpBeomRrZgDcHWSjaTpyAMWPE8WVcXJkS//vvRcN0f3+wtxd97+RyUUXr7S3+7G9CQrZo8VGi0TOjZ0NeGVCDEj8zU7SQKigQuYUTJtR4jOwiNZFGceTdTha1wd32Z1D12rk2OoHXNl7ExdaKQ6/0qj5lowZ8svOqWXQGZek81lZS3hzUjKc6Bta5SP3PFXaXbqfQPLjmNqxap6fX5wdJyS+rugVBoOfnB4kv50ZenoxpCmt2t1ewa273CjFTBoPAu1sv84sxc85SAkCJRsfHO65WcOb3cbLGM74FXVtZo/ZJJTohk2tpBZUI4rWBq52CFn5OPNLc2xx7k5EBa9bAL78InDlTdnJYh2Tg1DmWjp0MPNujIQOq8Lb6N8BgELieLnYjT8bl8GL/xtUq4x4kcos1DFh0mPQCNeM6BvLx8GosUADGjYOoKPjpJ+jevVbH2HkxledWn8VOIeNIHX3mNDoDjd/aWen7DT3s2Dija4UOYKlGT88vDpBeoMbX2ZqUPFUlkVBdcD2tkCkrTpGcV4qLrZWYIWnc7aYXqHhz00X2Xi3LMGwf7MLT3ULo18zrvrn3C4LAucQ8dlxI5c+LqaQaQ++tZBJGtA1gRs+GOMl1/5h44l5gWuNeXn2cdRdykACLR7dmSCvfSvfddzWd5349i0ZvoJmPA7ezSijV6nG1U/DOoGZsu5DCvmvie+Fmp2BMhyB0lxrQuEMhh5Lj2XkpDU0VXpo1QSmXEuHvTLtgF4a19qOxlwNqNezYAct+0PPXLikYN5ZK/xycul3HJqiME1TetkKrN7DtfApLyonPvByVzO4dypPtAirx7nR6A0djs9h8Lpm/LqdX8OKTSyW0CXShSyM3WgU44+dsg7eTtcUiq1itI7NQzfW0An48docz8blVcreufTigynGcIAj0XXCoAtHdXilnVPsAJnUJrhUPdP+1dKasOI1EAn88W7k7CIBGA7duVRQbODpCYWHl+wK0b19epSLaMzVtWmuLkfpg49kk5q0TO2KfPdGCUe1roKfMny8WdUuXijZStcD8Xdf45uAtmvo4smN2tzpxw6+nFfLIV4crfb+Rpz0bnutSYe3U6Q088pVoS/Nsj4a89mjtLaPuhsnNwE4h48snWxER4MRL689zLFbs9vZq4sFnI1rWyaPvP1fYtX93C0ffGlyrzM3fTyXw6oaLWMulnHqrLw7WVmbZswlKuZTts7sR6uWAWieOZG+ki0rY36Z2qvCBFgSBT3ZeY9lhsfp+dUAYz/VsWOm4m86KLV+DAAa1nKSlfRF0MmRKHa27FzF+nIwOnXXE5hRwMSmfa+mFGAwCEomRViyRIJGAs40V4X5OhPs50cLPCR8na0DCpUtiR37XLoG9e0GvN57cUgN2zZJx7BDHgEhbpnUPoWMD17+1oBMEgdwSLUm5JZRq9OJ4zUaOg7UVDko5UqkEg0HgaloBUXE5nIzLJvpOTgUT24Mv9TR3g/4JlN/Z/TixXdWu87t3w6xZ8PbbMH58rZ/fYBBj6q6kFtSLa9f2wz1k35V3aW0l5b0hzSt1kk07T2vjLlEAfp/Wqd42GBmFKp5ZeZoLSfkoZFI+H9mygu/h5ZR8fjx6m23nU8ybF3ulnKY+DoT7OdIh2I1wPye8naxrzffLKlJzPa2QQzcy2XEhtULXyV4p54k2fkzv0dCcHvJPqmLvBabXnZmdQ5cvT6Ax/v1e6t+Emb0qZzUfupHJtFWnUesMtAl0pkitM3fvpnQNppGnPV8fuEVyXimqJBfSV3cBiUD7TnqeGiuhRWQhmdpCYjOKuJleyM2MIlLySlHKZdgoZNhYybBViLf9XWxoG+RK2yAXmvk4opBLKSgQ40A3bdGzbh0UFZStlTaN0nHseAtr/8o+fCEeduyY3Y11p5NYdjjO/H662imY0bMhT3UKqlRIXU7JZ8OZZLaeTzGPaEFMAerb1Iuuoe50CHat0dC4Kuj0BlYcv8OqE3cq+J5KJeIotrqYqYxCFV0+2V9plCuVwIBwb57uFmK5WCsHk2F+A3c71j/b2XJ2dXlotTB1qphlnZws8n11OvGroAD69StTzGm14Ooqkq3btxfHoKNGgaLuucHVQRAEBi46YuZ+vjagCdN7VJMxrtGII9g6JGzklWiI/EykmHw9tg2DWtaea5dbrKH1h3sqfb9TiCtvDGxaaSxqyqCXSSVsmdmVcD+nWh/rbry24QJTujUw+/0ZDAIrjt/h013X0OgMuNop+GBocwaG+9SqWP3PFXYBc9fxSKtgvq9FTp1Ob6D1h3soVOkI93Nk2ywxasyUFWtCUx9HNs/sglIuIzajiMe/OUaBSsegFj4sGdO6wnEEQWDh3pss3ncTKPPzuvvkNe3C9CUKCk42pPiqD/qiMmm8RGqgRQvo0llKq1Zi59zDQ/ySyaC0VPwqKICbN0W+6bVrAlHRkJ1V8VgKn1zsmifjEp7O413cmdY95G/peCXmlHAiLptLyfkkGWN5knJLzdmUlmDq3FSnbDrzVt+/1SrGEkwGnJ4OSva80MOyPP2jj8Sizt9fzJKtg5GoiWtnYyXj8Cu9ap3pCjDgq8MVYpMAfpjQlr7NKnskGQwCo5ad4NSdXLwdrUkrUNVbSGFCqUbPnLXn2H1FVHZN6BzEi/2bVNjxpheoWHn8Dj8evV1lyoq9UoazrQIXWwW9wjwIcrVDLpNQpNZxM72I62mF3EgvrFTE2ilk9G3mxaAWPnRv7FGpCHjYC7v8/Hw+2BXHH2fLVHkDmnvxxZOtKnmFHYvN4pmVpynV6nGzU9AmyIU9xvelua8jHw4NJyW/lM9WZHNqvS/qpLKCXiIVCGyoo2sXCb26yQgPl+DpKeDlJTGfygaDWDPk5orr0PXrcPGynsNHBS5fkGHQl61FMnsVds2T8WqbSotwCSFu9iispFjJpMilEuQyKQaDgcspBVxNKyTH+L662yuY3LUBE7sEV/j9itU6tp1P4bfoBC4klalPXWytGBLhy/DWfrQKcL7vG9c72cW8sfGimT8HYqbnqwPCqvycrjh2m/e2XbH4s8EtfVg8unW116v8Ei0DFh0mNV9FYy97fpvaqebirioIglg0mVRx8fEwbJhIZDTBx0f0lJsxQzRHvk+4u3HyaLg3n41oeU+jzLthsqdq5GnPX3Nrb0kiCAJN3tqFRm8wj0MlwM4qPEGhzKIqzNuBrbO61aqhVBfcSC9k7toYrqSKJu+hnvZM79GQxyJ8qz3Wf7KwkyrFbtQbtcjBfG/rJVYcF8enw1r5snBUKwpUOrp+uq9CHNLT3Rrw9mCR33DiVjYTfopCqxeqbMOa8ucARrcP4J0hzSrxsZbuv8kXu28A4mdNneRC8VU/Sm94oS+ufzSNxEqH0j8H66BsPJpl8WikPQOae9OjiUe9zBtri/QCFSduZXP8VhYn4rJJzKnassPLUYmtQk6hSkuBSlensc+Njx697x+gukKl1TNw0RHisoqr9mgqLRWJzHfuwJtvgqenuAt+9tkan18QBIZ9c5zziXlM6dqAd4bUnhA98ado9AaBCZ2DOHQjk9VRCbQPdmHddMtu6bezinl00WFUWgO2ChklGj1z+4Yyt28tcx4tQG8Q+HTnVZYfuQ2Au72StwY1ZWgr3wqvoUSj4+3Nl9hwtv7WARKJaOHR0t+ZgS286dnEs1ql2n+hsLuapWXUspMVft7I057vLWSnXksr4Pk158zdur5NvTgdX9YF79HYg+f7iOq7RZuT2L5FTtFlX7QZVXcgrJQGBAPotNV/DuUuxVgHZhHWpYAJj9swuJUPDe7qtguCQExiHuvPJLE1psxU2d/FhundQxjZLqDC+3k5JZ/fohLYUu6+VjIJ/Zp58Xhrf3o08aj3pqQuSMwp4c3NFzl8Q+TQOSjlvDYwjHEdgyrdV28QGLr0KJdSKqawdGjgyqopHWqlrIzLLGLM8pOkF6gJ9RSLu7ps+GpEerpIGVm6FFKMDhFubvDrrzBgwH07TORn+82pMABBbrZ8PbZN1R0vtVq0dElIEF9bDShQaYn87AD5pdrqTeUtYNwPJ+kd5sWItv68sfEiOy6m8khzL74fb5kfnV2kpt/Cw+QUa+55zawKap2ebw7c4qejtyk0nu8+TtY83a0BYzoEWuxC/2cLO6BWipUz8bk88W2ZivCZbg14c1BTjsZmVSJSrprSge5G2Xp5Bc0nj7dgTIfKfAGTQAPEOJuvRreq0M4tn2BRHm0CXcjJkHP1vAxVsgvaHDv0JQoMJUr0JWJ7XCLXI5EbkFjpkTuXYOVahJVrMbZeRTRtqaNtiMi169LQ/YEWQfHZxey4mMrOi2mVQsRlUgkR/k60D3Yl2F00TvR3scXHydpi8HGhSkdmoYpfTyaw+0paJaUQiAv49Q8f/Vf46p2+k8PI708gCPDz5Pb0spDPyoYNMGKESGjWakXeS2ys2HqtAYduZDLxp2gUcimHX+6Ft1Ptiv0Clda8Ay7vll5VhizAj0dv8+H2KyhlEtR6AakE1kyt/0jWhGOxWby95RJxRo5RpxBXPhoWXkkZu/dKOrPXnLOYTxrsZkuIhz06g4DeYMBKJiXU057GXg408XYg1NOhTjmlD3thdzslE39PV9p9vLdSzq6DUs6XT0ZUcrA3BYuvPCFuYht52tPA3Y795VSrkaHuPN8nlAAXW6JuZ3PoXCGHjwnEXlagSnFGl2eDoUSJoLPwt5YYkDuXYuVSjNy1CPfAUsLbq+nfwYGBLXwIsWDllFGoYtPZZNafSTKbFYMYsfRcz4YMbulrLtCKjN25tdEJZvsoEM+NMR0CGdHW/x/r4p9NyOW9rZfNXcPxnYJ4Z0izSsXlxaR8hiw9av6/Qi7lwIs98KvJ/qMcbmcVM2bZSdIKVDTytOe3qR3rlY9aLTQaMR7xk0/EUdClS9D4/hUsi/fdZMGeGxW+p5BJeXtIFUKBs2ehrTHmKzpaHBfXAJMwLNjNlr3zetTLhDs2o5D+Cw9jEGDbrG608LdceG49n8Lza84hl0rYNrtbvVKDaoMClZbfohL46ehtMoyRik42Vgxr5Uvnhm50aOBm5mP/pws7gEWjW1WbbVqk1hH+7l8Vvvdsj4a8OqAJc3+PYUtMmbedh4OSXXMizQuIKTNWJpXw06T2Fr2KjsVm8eK686QVqJBLJcztG8pzPRuZ28OFKi3Dvj5mJtd2aODK2qmdkEolFKq0xCTmcfpOLukFKrR6AZ3BgM4goNMb0OkFHG2szIq1UC8HAlxsHriT/O2sYv68KJLTL5fbgUokEO7rRJeGbnRq6Eb7YNc6BWzfjeS8Epbuj2XnpbQKF7BmPo68MbAp3ULd7+n3uB8wjWS9Ha3ZPa975ZGCIIhmogcOiDLjvLxax+UIgsDI705wOj6X8Z2C+HBYeL1e40fbr/DD0ds083Fk66yuFs8PvUFg1PfisTwdlGQUqvF2tObPOZF1Em9Yglqn54cjt1m876Z5vNGjsQfz+jeuYKkRk5jH0ytOVRityqUSjrzaCx+n+jn4W0JeXj4uLs4PbWH31Df7WfVsT15cd56NFkxS2we7sHJKB4vd+X1X03n5jwvkFGtQyqU83bUBGUVqNp8ri+DqFOLKsFZ+dAt1x9/FllKNnovJ+cQk5pJbrKWkWEJejgS9YECQ65HI9Pi4W9HY256GnvY09LC3aNMjCAKxGUWciMvm0PVMDt7INBeV1lZSHg33YWQ7fzo1cEMqlSAIAueT8lkbncDW8ylmCoeVTMIjzb0Z2yGQTiFu/4pNnsEg8P3hOOb/dQ1BEBXIX49rU+nv8M6WS6w6EY9EIi4NPZt48OPE9nUSD93JKmbM8pOk5qto6GHHmmmd7n9xByIfLypKDOw1Yf9+MQP7Hvh3sRmF9F1QWaQAVO0EMHGi6BHapQscPSpebKpBsVq0NMsu1jD/iZY82T6gXq/VlNLTKcSVNVM7WZx4CILA9F/EBk24nyObZ1heY+8X1Do9m84ms+xwHHHl7NJAtP7pGOJKS08FI7s0+e8WdlYyseiKDK26QxI5f3+lseFzPRsyt08oXT7dX+FC0yfMkx8mtkMiEReeF9efZ+NZMZ5p/bOdLVbreSUa3tx0iR0XRT+vdkEuLBzVyqyIis0oYtjXxzAIArvmdP9X5rGm5JWy7XwKW8+nVCjmZFIJnUPcGNjCh0eaez2QXbMgCJy6k8P//rzKhaR8s5lt98YevDYgjGa+/9zFuVSjZ8Ciw8RnlzCqXQCfjWhZ+U4XLoh+TAbjuFkqhfPnIbzmQu34rSzGLo/CSibhwEs9azb3tIDsIjW9vjhIgUpXrVfd7axiBnx1GLXOgLu9gqwiTYXz/V6RmFPCy3+c52RcmQLSWi6ldaALQyJ86NrIHUEQmPTzKbMt0L2odMujVKPnaGwWe6+kszsmjpiPhz+0hV3A3HW8Pbwtfi42zFh9tsJ95FIJ66Z3pk01ZPyMQhUvrb/AYWNOpbu9kpFt/cgq1rD5XHIFRX6Iux3dQt2JDPWgU4hrrW06QFS0xmeXcDIumxNx2UTFZVfqwrcJdGZkuwAGtfQxb4pS80v582Ia608nVuCKhnjYMbp9AI+38a8/v+wBY/flNOb+HkOJRk+Ihx0/TWxfQeiVX6rlsaVHmdM7lNc3XUStM9TL1ig+W+zcpZiKu6md6mVTVCccOSKqU9u1g99/h6DKI+faov/CQ2ZqgAljOwby9qBmlrvvycli17CkRDRlHjWqxmMsPxzHx39exc/ZhgMv9azX5Coxp4R+Cw+h0hr4cmQET7StbFgMkFGgos+CQxSqdMzpE8oL/e7/SPZu6A0CB69ncOhGJifjsiv8Pevi1fnQFXYSCYzvGMgzkQ2rLZamrjptJhSXx4yeDRnS0oeBS45W8JgrnzCh0RmY8FMUJ+Ny8HGy5vdpnS0eSxAENp5N5t2tlylS67BXynmxf2NGtw/ERiHjr8tpZBdpGNuxdgkFfweyi9T8eSmNrTHJnLpTpl6TSSV0aejGoBY+9G/ufc8dnbogs1DNNwdj+fVkPFq9qBSe2DmYNwY2/cd4d9G3cxi1TBzJrpzSwbLL/KxZ8PXXEBIiek317SuqZmtRMI1dfpLjt7IZ3T6AT5+wUDjWAmuiE3h940VsFTL2zOtRZYblD0fi+GjHVaQS8X3W6gXeGdyMKfUwLrYEQRD47tAt5u+6bjEz1t1eQYdgV66lFRKXVVztCKQ6GAwCibklRMXlsPtKOkdjM82Gx/8Fg2KZ0pbvxrdl9m/n0OgNNPd1wFYh59SdXNzsFGx4rku1ynGDQWDd6USWHog1+7s521oxsq0/cqmU6Ds5xCTmVRAxyaQSvByUuNiJghZnWytcbBW4GIVD6QVqMgpV5n+zizWVkq6Ucintgl3oHOLGgHBv80g+Ja/UPAUon9utlEsZ1MKH0R0CaR/s8q+1ZCqPyyn5TF15mpR8Fc62Vnw7ri2dG5ZRGorVOuyU8gr2H/UJlU/ILmH0shOk5KvwdbJmZu9GjGjrXy/Px1rhzz9F+6a8PFFQsXIlDBlSr6cyCRxMcLa14tDLvao3ZP/wQ3jnHQgIEMVoNfjwlWr0dP/8AJmFaj4cFs74TvUrRL89eIvPdl3D1U7Bvnk9KiRPlUd5elZ1tJcHhewiNdG3c4i6ncPRKwnse33gf6+wk0sl6AxCrSTPC3ZfZ/H+2ArfU8qlPNezITN6NuKHo3FmIYTpZ1tndaOJMZMxv0TL49+K41R3ewU/TmxfpflqYk4JL/wew+l4sVBytVMwqUswEzoH4Wz79xVIVSG9QMWeK+n8dTmN47eyzQu7RALtg115LMKXgS18/tZizhLis4uZ/9d1c6pB+2AXvhnX9v6SieuA97ZeZsXxO/g6WfPXC90rdzZycsQdb3i4KKjQaES7gcceq/G5z8Tn8MS3J5BJJex/sQdBbnW3ejEYBJ40jlr7NvVk+QTLXTi9QaDbZ/tJzVdhJRMLOyuZhI3Pda1XgVUVTF59VaGZjwO2Sjkj2/oT6iUa5JYfcwuCgM4goNUbUGkN3M4q4mpqIVdTC7iaWsD1tMJKJrN+zjb0a+ZF5wBbBrQJeagLO6nSFplUQktfRyKbeDK7dyM0OgOjlp3gUnIBXo5KfpzYvkYLBq3ewJaYFL45EGse69gr5YztGEjnEFdKNAZOxGVx9GaWuYtaFyjkUtoEOtM5xJ1OIa60CnRGKZeh0xu4mlrIybhsdl6qWMxJJOJUY0iEL0Mj/KoMRP83I6NQxdRVZzifmIdcKuF/w1tYHAeaRrMO1nK2zepWZxunhOwSxv5w0lycezkqmRoZwtiOgQ9GKHfnjtgtM3ngffKJGGNUx4L7RrrIX+sQ7EpKfilJuaWMbOvP55ZEaCaUlkJYmCiieO89ePfdGo+z8vgd3t16uUIQQV2h1RsYvPgo19MLq57KIK5JkfMPkJRbikwCP05sT8+wv7e4M+E/y7EzXZSC3WzZM69HtSqpPy+mmkcapoLQXiln34s98HK0rsB1MsHXyZo/nuti9sZKL1Ax+edTXEktwMZKxtKxrav0N9MbBNZEJ/D94VvmEbCtQsaYDoE83a2B+Tn/LtzKLGL3ZbGYi0nMq/CzFn5OPBbhy+AIn/vKc7pf2HslnRd+j6FQrcPb0Zrvx7etNtHgQaFEo2PAV0dIyClhTIdAPnm8GuPiN94QF8QmTeDKlVrF5Uz8KZpDNzJ5vLUfC0a1qtdrvJFeyMBFR9AZhErpKeWx42IqM42fB6kEDIKoXNs+u1udRnE14aejt/lgu2ULCEtwsJajNwjo9AIafc0qaoVcSlMfR3o38aRfMy+a+jggkUgeevHE3VOJz0e0ZERbsWjIKFQxbnkUNzOKsFXIWDy6da06QXqDwJ8XU1m6P7ZCHKGNlYyOIa50a+ROYy8HHKzl5JVqySvRkFss/ptTIo5XPR2s8XJU4ulgjaejEi9Ha1xtFUilEvJLtZxNyOXMnVzOxOcSk5hXQSgjkUD7IFcGtvDm0RY+eD3oseLfAJVWz0vrz7PduPm0xPXS6AyMWX6SM/G5NPFyYNPMLnUuyEo1etZEJ7DscBxpBaIht6O1nKc6BTG9ewhO97thoNHAyy/D4sXi/59/HhYurNU6ZoIgCKw/k8QTbfw5l5BbJkKb1J5e1RVD69eLubiOjpCUVGM2bvkggvpGJkLZ5hrKokYtYUtMMnPWxgCi5+ybg5rydLcGf3un+T9b2IH4hxWgxjZsXGYRj3x1mDEdAnmuR0OeXX2W84l5FWTOWUVqenx+gOJyFiihnvasf7azudNWpNYxY/VZDt/IRCqBD4aG81Q1x9XpDey4mMp3h+K4avSpkUslDG7pQ68wTzqFuN33BU4QBJJySzkTLy6wx29lVXBFB2gd6Ez/Zt4MCPeuZE3wb8StzCKmrjpNXGYxCrmU/w1vwYgquBAPEiduZTNmuWhB8evTHasWd9y5A2PHwnffQcvajVbPJ+Yx9OtjSCSiQqu+Zpif/3WNrw/cwtvRmj3zLHQWEbt7Ld77q1LHa2iEL1+NbnVfFymT+MQEpVzCwlGtyC/VcSPdZI5bZL5gVQUvRyVNfRwJ83akqY8DzXwcaeBuZ5HE/F8q7AAeb+PHlyMjzO9LfqmWmavPcjQ2C6kE3h5cOQWnKhgMAnuvprP9QirHYrMqeQS62ysI8bDH2cbKPI51Mo5kbRUycos1ZBWJsVyZRWqyitRkFqpJK1BVGss6WstpE+RCryaeDAj3/k8Uc3dDEAQ+3nGVH47eRiIxJoVEVEwKSS9QMWjxUbKK1DwW4cuien7G1Do9G88m83W58TqIGyIfR2tCvRxoEygmgjTwsL9377ivvoIXXhBvr1sHI0fW+6lMAi8vRyW751bhCwqi4uTNN0UxRZPa8RJ/i0rgjU1i/NeBl3rWezL2+sYLrIlOJNTTnh3PR1qk/qh1elq8+5fZPBzgiTb+fDw8vF7dwvriP13YmeBia8XRV3tX6TquNwik5JWaxQxXUwsYsuQoOoPAkjFlH8T9V9OZsvJ0hce2CXRm9TOdzIRPrd7Am5susu50EiCKMF7u36Ra5ZYgCBy6kcl3h25VIJYDNHC3o1OIK51C3Opc6Gn1BjIL1aTml3I+MZ8z8bmcjs8hvUBd4X5WMgmdG7rTv5kX/Zp5PZQLbIFKy7zfY8yRVZO6BPPmoKZ/i59Veby9+RK/nIzH38WG3S90r7z7Tk8XR7F5eaKMP6Ka0cNdeH7NObaeT6nWk64mqLR6HvlKFHtM6hLMe481t3g/kxrsbnwwtDkTjPzS+wG9QWDm6rPsuiwagr8yoAkzejaqdL8ClZaMAjUKmRQruQS5VGq+bSWT1ul9/q8VdgDz+jU2e9GB+Nl/Z8sl1kQnAjCxcxBvD65bCL0pys+UtRoVl2PRjqa2CHazNadTtAt2oZGH/b9C0fqgIQgCb2y6xJroBORSCcsmtKV3WMUualRcNmN/iEJvuHdOq05vYNO5ZN7bdrlCI+Ju2FhJGdE2gA+GNq//Zm3tWjh2TOze3cOGr7wv6JPt/Jk/ovbrYk3Q6Q0MXHyEG+lF1a55NSGvREOfLw+RXazh5UeaMLNX5XUK4OkVp8xxfSa0CnBm2fi2D17gYsR/vrCzlktR6Qy1Cx4uhy93X2fJ/ljsFDI2z+xqTmpYfvgWH/95DcAsWe/VxINlE9qZLy6CILB4XywL94pePUNb+TJ/RMtakVpjEvPYcSGFk3E5XE4pU4Ca4GqnwMFaLn4prYy3xX9VWj3pBdWTl0HsCjb3c6JtoLjAdgt1v6/O3/8UDAaBRftumkm5nUJc+WZc27+VD1ik1tF/wSFS8lVVGwuPHAl//AGRkXDoEGRk1CqjMSWvlN5fHkSlNVTYcNQVpkg0iQQ2z+hqcXS940IqM3+zzIGryrexvlBp9Yz7IYq8Eg0753R/4CKYh72we3LxXuwdHCtdPMqLukBch5YdjuOTneJ61TvMk8VjWtfbgkijM3AhKY+0AhV5JeIYNq9ES67xdrFGh6udAnd7JR72StwdxH89HJT4udj8a5Wsfwf0BoF560T7LIVcyorJ7enSsGJH3+QlKZdK+G1qpyrHfbWFRqtn+q9nOHA9s9r7hbjb8VgrX4a28rv3CY1WK37VIGywhPK+oNVOPMrj0iUx41ZW/bX1WGwW436IQiaVsGtOZL2TlzadS+KF38+jlEvZ/UJ3i3zn1VHxvLnpUqXvezkqWT6hXaVosgeB/2xhFxnqzuzeoeSWaJj+yxnkUgnbn+9WZTTI3dDpDUz4KZrjt7Jp4G7HllldzcXPG5su8ltUAlDGQXq8jR9fjIiosANdfzqR1zdeRGcQaBfkwucjI+r0wckv1XL6jpiXWlWhVxPkUgmeDkqaeDvQLljcLUf4O9fJ0PVhw1+X05j3ewzFGj0Brjb8NLH93xKhZsKB6xlM/vkUEglstJQjmZAgkoBLS0VH9337xF1vLYw3F+29ycK9N/B1smbfiz3r/T7OXXuOzTEpNPd1ZMvMyr5LBSotbT7YUynfEkR15MrJHe6rj2BOsYaEnBJa/Q38yIe9sMvLy8PO3oHRy05W4P1KJPDVqMq+nTsvpjL39xjUOgNNfRz5dlybfzRr+f8qtHoDM1afZc+VdGwVMn59piNtyq0NgiDw/NoYtp1Pwd1eybbZXe+Z12wwCHy44wo/H7tT6WeeDkoKVFqzWhygpb8TQ1v5MSTCp+7eeCqVyH8rLYVt28C67t0pkwjN38WGv+Z2rz7b95VX4Isv4NtvYfr0Gp972qrT7L6STmSoO6umdKhXl1IQBJ76MYpjsdl0b+zBysntKz1Pcl4pXT/dX+mxA1t48+HQ8L/FSPs/V9iNXrqPlwa3rhCqPP2X0/x1OZ1WAc5seK5Lrc0gs4vUPLb0GMl5pfRt6skyY/6swSAw4adojsZmVbj/9O4hvH5XjNnhG5nMWH2WIrUOhVzKnD6hTOseUq8RYYFKS2qeyhjDpaVQpaNApaPQeNvGSiaSlx2t8TISmV2M5OX/a7iZXsjTK0+TkFOCg1LO4rGtLSdDPCC88HsMm84l09jLnu2zLfAxPv4Y3noLbGzEhbBjRzh+vEYCskqrp8+Xh0jOK72nCJusIjV9vjxEfqm2yoSW0ctOVKIGBLrakJBTiq1Cxi9Pd6wxvPzfiIe9sMvNzcPZ2QmVVk//hYcqhNLLpRKWT2xX6VyPSczjmZWnySpSo5BLmdmzEc/2DHlw1hj/Hxah0up5ZuVpjsZm4WgtZ+20zhV8OEs0Oh7/5jjX0gpp4efEuumd73kTLgjiJOOrvTcrfH/Dc11o4u3AnitpbD6XwtHYLLMLglIuZU7fUKZG1uFadeGCaCBcXAyDB4upO3U0Mi5W6+i/8DDJeaVM7hrMu0OqGZsuXgxz5oCrq5iQ4VZ9Sk58djH9FhxGozfUy17GhLjMIgZ8dQSNvurJSb8Fh7hpTFMxcf3vxWS+rqjLGvfPhnPWEt+Pb1fpYvP+Y+E4KOXEJObx68n4Wj+Xm72S755qi0IuZe/VDBbvFz8YUmPSRDOfil2g7w/HsfxwXIXvdW/swc45kUSGuqPRGfj8r+sMWXKU83epT2sDR2src+etd5gXQ1v5Mb5TEDN6NuLVAWE83yeUUe0D6dXEk2a+jrjZK/9PFnUAoV4ObJ7ZlQ4NXClU63h6xSl+Onqbv2tv8vbgZrjaKbiRXsQ3B2Mr3+HFF0VPu9JSMW4sKkp0Vq8B1lYycwbyd4dukZxXdR5vdXC3V/K6MeP4y903SMqtbGVhKg7slXKebCeKURJySmnsZU+JRs/kn6O5clf25f/Hg8fXB8TzydpKxpaZXXEtRzTXGQSe+/UMp+9ULMhbBTizZVZX8zq0cO8NHv3qCMfu2pz+fzxYWFvJWDahLW2DXChQ6ZjwUxS3MsuMZW0VcpaNb4eLrRUXk/N56Y/z97xmSSQS5vZtzDuDy2ghnUPcaBvkgr1SzvDW/qyc0oGoN/rwwdDmRPg7odYZmL/rOoMXH+VMfE41z14OLVvC9u1ip277dhg+XEyvqAPslHKzo8CK43eqP/aMGaJ9VE6OuEmuAUFudjwdKXIXP9pxBbWufnzREA97ZvRqCMAH26+Qf1esH2BW9j7e2o+FoyKQSOCXk/H8cuJOvY75IPFQFHaW4O1kzSvGi9j8XddIqcPFsIW/Ex8bq+yv9t5k31XRyFghl7Lu2S74OVdsN3/851W+ORhb4cMY4GrLqikdWDgqAhdbK66lFTL8m2N8uP0KJZq6nfj/H7WHq52CX5/uyJPt/DEI4ofwjU2X0NbCKuN+HNtE0v36QCw3yllIAOLit2iReNuUSPHqq5BfMW/XEga28KZDA1dUWgOfGvlT9cGT7QJoH+xCqVbP3LUxlf4uvcM8iQx1568XujN/RASzjGTh25nFhHk7mC9McZlFlp7+/+MB4fvDcey6JFpouNgp2f58N2zLdXVUWgOTV5ziQlJehcf5OduwakoHloxpjYeDkrisYsb9EMXctefILKwoqPovwVBX/soDhq1Czk+T2tPc15GsIg0Tf4omr6RMfRzoZsu3T7VFLpWw40IqS/Zb2BjWA1O6NeDLkRHIpBJm9a5M/He3VzKhczCbZ3ZlwZMRuNopuJ5eyBPfnuCNTRctFjCV0LMnbNokTh7+/BNatYLs7Dq9zu6NPRjR1h9BgFf+uICqKsGOXA5Ll4q3v/9eFKPVgJm9GuHhoOROdgkrLIyna4vnejYkxMOOzEK1xeJ7UAsffprUjgWjWjGstT+vPCLWH+9tu/Kv20w9tIUdwLgOgbQNcqFYo+edLZfqtAsa2S6ACZ1F25K5a2PMFzJ7pZzNM7uhvGvMNn/XdV74PabCCSmRSBje2p+983owrJUvBkEky/ZbcJj919L/tk7S34FClZYfjsT9Ky4WCrmUz55oyVuDmiKRiAkM43+MIvcuG4cHgSEtfegT5olWL/DqhgsVXPwBcVwxZAhMngyNGokiivfeq/F5JRIJ7w5phlQC286nEH27ljvquyCVSvhiZAQOSjmn43OZv6tikdjI055VUzqYUyrm9WvMo+HeaA0C6QUqQj3tySrS8NQPUfXuHP5/1A/z1p03bxZ8nW3ZOqsr5ZvzhSodI787wZaYispmiUTCkAhf9r3Yg4mdg0QBTUwKvb88yK8n4/91RdC94EZ6IS+vP89nf9V/8/Og4GRjxaopHQh0tSUpt5Q5a2MqrA+dQtz4yNhQWLDnBjuNcZT3iifa+rNueie6NKx6bCmRSHi8jT/75vUwd+p/i0qgz4JDbD2fUvO1asAAWL5cvH35Mvj7i1w4VfWWReXx1qCmuNsruZVZbO5QW0SPHjBmjKhinDWrbJNcBeyVcl41iiiX7I8lo7D2r6k8lHIZX41qhUImZc+VdH48ervCzyMCnCson5/tEcLw1n7oDQIzVp/9V22GH+rCTiqV8MnjLbCSSdh7NYOdl9Lq9Pi3BjWjfbALhWod0385Q5Fa7LR5OChZ8GRlafbmmBRGLztJxl3+W272Sr4a3ZoVk9vj52xDcl4pU1acZsBXR/jlZLz5eR9GpOaX8smfV+nyyX4+2nGV+Ozimh/0N0AikfBMZAg/TmyHnULGybgchn1zrMII5EEd96Ph4dgr5ZxLyGPl8TuV77Rpk7gImnaeS5aIi2ENaO7rxGijMvX9bZcrF421RJCbHZ+PFL30lh+5zV+Xyz4XEomkAjFYKpXw5ZMRhPs5kluiRaXVE+hqS0q+ivE/RP0rCvn/C+jYwJUSjZ5pq06buyiNPB2Yf5cjvlpnYM7aGD7dea3S+eFobcX7Q8PZMrMr4X6OFKp0vLX5Ej2/OMjXB+p/wfunIQgCx2OzmPRzNP0XHmb9mSRuZ/471qG7YaL6WFtJOXQjk0VGFwUTRncIZHLXYEAs5C8l19zNrw3aBrnWSjjgYqdg/ogI1k7rRIiHHVlFap5fc45JP5+q+bM+ZQr07i3eVqlEQ+OwMPjttxqLLwBnWwUfDRMnHt8evFU95ePzz8HODk6cgF9+qfG5H2/tR4S/E0VqHV/8db3G+1eFlv7OvD1YpMV8uvMaZ8oJme6GRCLWH60CnMkv1TJm+cnKU5x/CA91YQfQ2MuB53qIs/F3t14mv7QWrWUjFHIpX49rg5ejkpsZRbxSrv06qKUvzXwqExRjEvMYtOQoF5MqfyB7NvFk9wvdeaZbA2ysZFxPL+TtzZfo9L99vLPlEjf/JW96bXAlpYB5v8cQ+dkBvj8cR6GxOP23dXF6h3mxcUZX/F1siM8u4fFvjte721Vb+DjZ8JqRBvD5X9dJzLmLy2aS6T/yiBgvZmsL12u32LzYrzEO1nIupxSw/nRivV/jgHAfsyP7S+vPk1BNdJStQs4PE9rj72JDYm4pJRodnsax3uhlJx54sfz/AZ+PjMDP2YY72SXMWH3GXLSNaBtAc9/K69B3h24xZcUpClSV17uW/s5smdmN94Y0w8FaTkJOCZ//dZ0un+xn+i+nOXA9o96bhr8TYjRaMkOWHmXsD1EcLGfxEZdZzPW0QjIKVOj+BhpGXdDM19HMKVu8P5a9d2WWvzmwKZGh7pRqxUL+nyi4O4W4sXNOJC/0bYxCJhahYoRmDZ/1X38Vx6UmxMeLWbMdOsCBAzUed0C4D4+Ge6MzCLyy4XzV752fn5gh6+JSo+0JiBvUd4yijPVnkipRFuqCpzoFMbilDzqDwOzfzlY7CbK2krF8QjuaeDmQXqDmye9PVEp6+ifwUKhia1KBqLR6Bi4+Qlxmcc3RTxZwJj6X0ctOoNULvNC3MXP6iqage6+k88yq0xYfIzd2Ou62ITAhv1TLhjNJ/Hoy3pzXCKIP24TOwfRt6vWPBdzfDUEQyC3RkpRbwp4r6ey4mEpcFTtiHydrvJ2szV5Wng7WeDiYbov/ejta/+0Cj6wiNVNXneZcQh4KmZTPR7as8r25HzAYBEYvP0n07ZyqpfY3b8LUqSIn5auvav3cJu8rNzsFB17uWW8/Qq3ewOhlYrRRc19HNjzXpVqn9PQCFRN+jOZ6eiH2SjkKuZScYg32SjlfPhnBI80tx5X9G/Cwq2Lz8/NJLBIY9vUxtHqBAc29+M6YkGPy67IEL0clq5/pSCNPy9Y/JRodOy6ksvZUYoXug5+zDSPb+fNku4C/Pe7wbmj1BlLzVCTllpCUV0pcZjHHYrO4nlZYq5g5qQRc7ZTmdci0NgW72dIrzPMfM2d/d8slVlaRGZtfqmX418eIyyqmdaAza6Z2+ltTDMojNqOQKStEtwFnWyuWT2hH++Bq/PbmzCmLHrsbH30kpkhUg4xCFf0WHCa/VMurA8J4rmdDy3fUaKCgANxrb8Fkci5oG+TCH8/Wz/AdROrRY0uPcTurmF5NPPhxYvtqr2l5JRom/XyKmMQ87BRisdel0f2zjoL/oN1JbX6RqLhsRi0To5+qy32rCqaIEoCX+jdmVu9QDAaBfgsPVYrnKo85fUKZ0ye0yjddEASOxWbzy8k77LmSbvasU8iltPBzonWAM60CnWkd6IKvk/UDyZ8zFW6JOSUk5paQlFtKUm4JybliUHNyXiklmvq7z98NNzsFvcI86dvUk8hQj+p9i+4jVEbBgCnx4OVHmjCjZ8MHlukXl1nEgEVH0OgMfDEyonLk2ebNoorMykq0DQirnZm2Vm9gwFeHuZVZzNTIBrw5yIIhci2Rml/KoMVHySnW1GrTk1+iZcrKU5yJz0UplxDsZm/OGZ3VqxEv9Gtca2uhvxP/hcLO0dGRtacSeG2DuA6FeTuwdlonnGysGLL0KJeSLY+u7JVyltTC+udGeiFroxPZcDapwmTDz9mGFn5OtPB3ItzPiRZ+TvfVAFwQBLKKRE/DxJwSEsp9JeWUkFagqrOXJ4jpQ/ml2hofGxHgbE7gCfW0/9syPmvKjI3LLGLY18coUOkqRcj93cgqUvPMytPEJOahkEtZ8GQEg1tWYZaekiKq/9V3jW779RPXvFoYGf9xJomX1p9HIZeya04kIR729/5LAGn5Knp9cZBSrZ5Foyv7P9YFV1IKGP7NMdQ6Q5XpOeVRbKR0HY3NQiGTsmRs6/u6Gf4/WdhBWe5bQw87/pwTWWc/p68PxPK5cT5v8hNbG53AaxsvVvu4PmGevD+0Of4u1Z/QKXmlrIlOYO2pRIt8Bk8HJa0DnWkV4IKvszX2SjGBQvxX/LJXypHLpBgMAoVqHQWlWvJLRQ+8glIdBSot+SVakvPE4i0xR/z37oxQS7BTylDIpGj1AsVqHZZOjGY+DjzfpzFZRWoyCsXMSPFLZc6S1JbL1FPIpHRu6Ebfpp70aer1wLsDBoPA//4UcxwBxnQI4MOh4XWKXaoLvjkYy/xd13GysWLvvB54OJQzqhQEUUixYwf06QPz5sHVq6ItSg04dCOTiT9F19mE2xIO38hk4s/RCAIsHBXB8NbVZ+6WavQ8t/oMB69nIpNAt1B3Dt0QVV89GnuwaHSremczPij8Vwo7gCFLjnLRyL2yU8hYOrY1xRo9s347V+nxJjN1iUTcyEyLDKnxXFdp9fx1OY010QmVPA1N8HWyJtzPiVAve+yUcmytZNgq5FgrZNhaybBRiF8SEBMrSjXkFhuTK0rLkisyCtQk5JTUGFumkEvxd7HB38UWLwclCrm4DmUXqUnOKyUhu4SSu57jz+cjaeLtQHZx+XWobF2KScyrNBYLcrOlX1OxyGsb5PLA1gUT0gtUDF5ylMxCy5mxR25mMunnU+gNAlMjG/DKgLC/PTLRhFKNnjlrz7HbODp+/dEwpnUPsVxsPv+8yB02wc0Nbt8Gh9qZxguC6Bt75GYW7YNd+H1a5+qnPFu2wOrVYtxZDb6gS/ff5IvdN8SM2hd64GRT/wQm0/VfKoE1UzvRMaR6Xz21Ts+cNWJzQSqB+SMsbPjrif+zhV1+iZY+Cw6JhNDejZjXv3aBwuXx7cFbfGZUEj7fuxHP9WxI5PyDZBWpkUuhT1Mv/rpcxpkwGRUq5VKe7dGQZ3s0rNF8UhAE7mSXcC4hl5jEPM4l5HE1tcBiIoAlKOVSNHqDxWix6uDpoCTA1ZYA4wLq72KDn/G2j5N1hVGASqvnZnoRV9MKuJpawLXUQq6mFeBqq2D/Sz2rPIZWb+DUnRz2Xc1g79V04u/idjX1cWRshwBGdwh8oAvYyuN3eH/bZQyCWIx8Pa5NvWOXqoNWb2DY18e4nFLAwBbefDOubcU7xMVB8+Zl6jGZDM6dgxY10wVMruot/JzYNKPLPV2EFuy5weJ9N7GxkrFlVlca15DaodUbeHn9eTbHpAAwvLUvOy+lodIacLdX8NOk9n9LjE5t8V8q7E7dyWHkdycq3G9kWz9OxOWYg+Bdba3IsWBVEebtwDuDm9V6DFSg0nI5uYBLyflcTM7nUnJ+BerI/YJEAr5ONgS42hDoakugq624FrmK65C7XfX+nIIgkJRbyrW0QnE9SitgctcG1Y8MgYwCFXuvZrDnShrHbmWj0ZWNdv2cbXj5kSY8FuH7QKkj0bdzGLv8JLoqMmNXnbjDO1tEcVWrAGcWjW5lMdbq74DeIPDh9iusMIrCxncK4t0hFvKIk5PFrp1GI3LudDqYOxcWLqz1sZJyS+i/8DAlGn31edVZWdCgARQViRYo06ZV+7wqrZ4BXx3mTnYJo9oF8NldAqS6QBAEXlx3no3nkvF0UPLnnMgaY/R0egOvb7zI+jNitvy95gSb8H+2sIOyPEyZVMJvz3SsscK2hOWH4/j4z6sAzOzVkP/H3lmHR3F2ffhejbsTYnhwdy0tXlooXtrSAi2UAqWuL/3q7oa0QKFAgeLuwSHBg4cQd/fV+f6YZMkS2wiFpnNf7LVhdnb22dndM+d5zjm/Y6NS8GtIJAuf6ETPJu7suJjA7FXnTI6YSiEzrVL5Otvw9vBghrb2rtayeqHWQHhCNudisjgfl0VmgZbcIj15RXpyNWInitJtYkqwVslxtFbhaKPC0VpZfK/Cx8mahsVOnJ+rLb7ONrXO4RAEgdQ8jcVtaQRB4GZqHnsup7DvSjJnYjJNYZMgdzteHdy82uepOuy5nMycVWcp1BkI9nFkyZQueDvVfb5NeHw2j/x0FINR4NfJHRnS2sd8hw8+EBOBVSqx52KvXnDoUJUzz5ScIh78OoScIr1FoYDKMBgFnirurNLYw47NL/SuMkRuNAq8X8rIT+zqz74ryaQUrzY/0MKTt4YF08SzbsIotaE+OXaCIPDg12VTQBytFORoDDzU0osfJnZg1akY3t9y2bSyrpBByWL5oJZevD08uEYOQm6RjksJorMXk1FAgdZAoc5AoVa8FegMFGkNFOj0GI3gbKvCxVaNs63K9LeTjXjv7mCFv6stDZyt73lHjHyNnsM3Utl9OZn9V1PIKnaM2zV04u3hLWvdx7Uyfj9yi/cr6Rm79UICb66/SG6RHju1gv97pDWPdfS9Z6HZ347c4sNtlxEEMSL1w6QOZmFkAGbPFnPgHn5Y7JUNYgXr5MkWv86yY1HM33wJO7WCXfP6Vhz1+vZbmDcPnJ3FQjTPytMOTt3KYNwCcXK0fGpX+jT1sHhMd1Kg1fPIj0e5kZJH7ybuLHuma5XpKIIg8NG225GjOQObMu/BprX6PP/Tjp0gCLy05jwbij3sbXP6mIfHLKQkgR3g6Z6BPNbJl9a+zqbHL8Zl89SSk2Tk3541O1gpTdWj3Ru58t7IVrUKod2JzmAkX6Mnt0iPtUqBo43ynhvL6pCep2HL+QR+PBBBWp5YadTB35k3hwbfNaN6IS6LZ5aKbZe8Ha1ZMa1rhYnmteGLXVf56cBNPBys2DuvH06lOgdQVAQBAaKmnVwuSgP89psoH1AFf5+O4+W151Er5Gyb07tW/XHT8jQM//4wyTnlh4XKQxAEftwfwVd7RNmGwa28uRiXRUL27Uq+1g0ceaJHAMPbNrgrq6KWUJ8cOzCfXN7J1+PaMbqjGN45djONacvCTDmyJdcboyCmQTzTO4hZAxrjUMMCnPpKkc7Ab0du8fOBCFOayuBWXrwxNLhavb8tRRAEXvzrHJvOiT1jt83pXaaoIz6rkHmrz3GquMPIiLY+fDSqTa1CibWhdD/itg2dWP5MN3O7lp0thl7lcrFLxEcfiSLtx45Bhw4WvYbRKDB+4XFCozIr7/eq14t9t8+dgyefhGXLqjx2SfGKr7MNu+b1rZVtupGcy8gfj1KoMzB3YFPmPVR120dBEPjpQARf7hZt56CWXnw8uk2VK34V8Z927MDcw+7Z2I3lU7vVKOF76dFbvLdFdO6m9wnirWHBZl+6pOwi3lh/noPXbqtOu9iqyNcY0BqMyGXiUva8h5rddzlJ95I8jZ5FhyJZeCjSlHvzYLAXbwxtflecrtiMAp5eGkpESh4+Ttasm9nTJNBbV5SuzB7bqSFfjL1DB3HJEnNHzsFBzEmpoheiIAg8szSUA9dSq90XuTxCozKYsPCEKKrZvzGvDbGsoGPFiWj+tykcowDudmqK9AbyNOY5T9ZKOSPaNTB1v/gnVxvqm2OXnqeh+yf7zPJVAVr6OLJpVi9UpSrqo9LymbHiNFeTbsspOduqTCtS7vZWvDa4OWM6NfzPtiOsiNRcDd/svc7qUzEYBTH68kT3QOYMbFLnNrt0z9iSwpg7X8NgFPjlYATf7L2BwSjg62zDN+Pb39XVxMo4HZ3JtGWhZBbo6BzgwvKp3cpPNTIYxJW7HTvESWxYmMXVrDdT8xhaXIT2xZi2jO3sV/6OJ09Cjx5i7vLevWLeciXka/QM+e4QsRmFTO7uz4ePVk8t407Wn4njpTXnAfj8sbaM61LBOO9g+Ylo3t9yCZ1BwM1OzUej2jCkdfWLKv7zjh2IJdwjfzxKgdZQ43w7gOXHo3i3OP/hmV5BvDsiuMwFa//VZF5dd4H0vNt6Ny62KjKLDau9lZLhbXwY3dGXrkGWCUn+F0jJKeLbfTf4KzQWg1FALoPxXfyY92AzPOtYoiAjX8vYX49xMzWfRh52rH2uB241nDlVRFhUBmMXHEcQyln+FwTRicssJXjZrRucOFHlcROzCxn09SFyNXreGtaCZ/tWIA9gIX+ejObtDeGAmHA/a4BlId5zsVm8svY8ESlV69p9P7EDI8tppH23qG+OHcCsP8+wrbg7gXVxXq1RgIfbNeDrce3MclSNRoHVoTF8sPUyhcUpGzLEPp0lAumtGjgyuXsAQ1t7SxPNO7ienMvH26+YtPKcbFTMHdiUKT0D69QZjkkvYMyvx0jJ1dC2oRMrpnUrV87obEwmL/51juj0AuQysW3WnIFN70lhxdWkHMb9epycIj0PtPBkwROdyh9HZqa4qtaqldgj28nJ4tcoyW13tFay96V+Fdv/J58Uw70ODhATI4ZmK+FYRBqTiqWCVk7vRs/GtZMg+Xj7FRYeikQmg+8ndOBhC23c5YQcXlpzzjT5GtXBl/dGtqrWaqzk2BWz6Vw8c1efQyaDpU93pV+zmsXZS0uhTOzqx/yHW5XJVyvSGfhy1zWWHL1F6Um2rVphJiXi52rD6A4NGd3R954lyN5vRKTk8fnOq6ZqLAdrJd+Ob8/AYK8qnlk9ErIKGfPLMRKyi2jj68SqZ7vXeejwvc2XWHosCl9nG3bP62uexzZpEqxaZf6E8eNF5fYq8u3WhMby2t8XUCvl7Jjbh8a1lAdYeOgmH28Xi4TeHdHSJGZcFUU6A9/svc6iQ5EVykzYqRV8+lhbRrT1+ccmMfXRsTt0PZUnfz9FIw87Fj3ZmRvJucxedRadQWBQSy++Ht++zPc3u1DHm+svsP1i6W4jou5myeqfUi6jbzMPRrZrwIMtve5Z+Px+5ND1VD7efsV0AR7YwpNvJrSvsZZkedxIzmX8whNk5GvpFODCH890LTffNU+j573Nl1hXnIQf4GbLkFbePNjSi47+Lv+o7FBYVAaTfztJkc7IqA6iNEu5Dm9iInh5VWnP7kRvMDLq52NcjM9mcCsvfp3cqXzbkZkJHh7iCmGTJnD0aJX5dm9tuMjKkzH4u9qy88U+ZXMFq4EgCLy1IZxVp2JQymUsfLKTWZuxytDoDXy39wa/htzEKIC3ozWfj2lLXwv9EsmxK0XJh+piq2LbnD41ltv4K1QsexYEMRzyw6QO5V5c4zILeOPvCxyJMG+S7GqnpkCrNyuA6BLowuiODRne1qdODce/lbCoDN7fepkLxV095jzQhLkP1q1uWkRKHuMWHCcjX0vPxm78PqVLnQqD5mv0DPrmEPFZhUzpGch7I1vdfnDhQnjuubJPGjIE1q8Hm4q/m4Ig8NSSUA5dT6VTgAtrnutR6/Py7d7rfLv3BgCfjG7DxOJ2ZpZwJiaTV9acL1NBqZTLTEVF7Ro68dqQFvRo5HbXQ4D10bEzGgXe23KJVwY3N9mHfVeSmbniDFqDkQA3W76b0IH2fs5ljns9KYd5f53nUuJt7TsZ4GijMtOws1LKGRjsych2Dejf3POeieTeTxiMAqtOiaufGr3R5FjXdjJVmksJ2UxceIKcIn2VdmjL+QTe3nCRnKLbrSldbFUMaOHJQ8Fe9Gnm8Y845/uvJjP9D7ErSkXRKzMEAWJjwd8yu3I5IYeRPx5BbxT4aVJHhrf1KX/HwYNh927x76AgMfzbvOKIXG6RjsHfHCIhu4inewUy/+FWFe5rCQajwEtrxHxJtVLO0qe7VGsl8HR0Ji+vOUdUsWLE5O7+vDk0uMpiNsmxK0WRzsCYX48RHp9DpwAXVj/bvcbL2QeupvDy2vNk5GuxVSt4v5LKpZDrqbyz4SKxmeYtuOQysQ1J6VU8K6Wc9n7OBPs40tzbgRbeDjTzcqjwgzYaBVJyNcViwwXYqZUMuo+7AlQHrd7IR9sus+x4NAB9m3nw3fj2uNShYOqFuCwmLjxBvtbAkFbe/PR4xzp1HktWWmQyWDejB50CivNjrl2rWKS4XTsxb6SSvJT4rEIGf3OIPI2+WqtsFSEIAp/uuMqC4tDC1+Oq1rgrTZHOwDsbw00rCjIZvP9ISzLydCw4FGn6jjdwsmZYGx+Gt/WhvZ/zXVnFq4+OXUWcjs5gzqpzxGcVopTLeGlQM2b0bVzGeRYEgV2XknhnY7ipWKkEK6UchVxmZofsrBT0auxOE097GnnY08jDjsbu9uYJ86WOnZ6vJTI1n8jUPCLT8knL0/D1uPbVPwn3KRfjsnl2eRiJ2UU4WCn5fmIHBrSofHWoOpyLzWLy4pPkafT0b+7Bgic6VVgMl1ukI+R6KnsvJ3PgWqqZc65WyOne2I2Hgj0Z0bZBndrKO9lwNo55f4l5ZpWmcRQUiLIk27eL8k4BARYd/+vd1/h+fwTu9mr2zOtX/ntZvRomTrz9fxcXUeeuT58Kj1uiCyqTwdrnetC5CpmcqtAZjDz/5xn2XE7GVq1gxbRudPR3sfj5BVo9n+24arrOBbjZ8smoNvRo7FahfbwvHLuoqCg++OAD9u/fT1JSEg0aNGDy5Mm8/fbbqNWWffHqyljHpBcw/IfD5BbpmdY7iHdG1FzJPzmniBdXn+N4pLgi92j7Bnw4qk25MyaN3sDy49EsORpVox6r3o7WeDpaYW+lRC6TkV2oJT1PS0qeBn2peO9zfRvx5rDgco9hMAroDEb0RgF98b3RKGAUwCgIGAUBwfS3eA9ijomzjequC3hWxIazcby5/iJFOiO+zjb8OrkTbRpanrNRFWJT8VC0BiMTuvjxyeg2depwvLL2POtOx9HYw45tc/qIs3FBgAYNICmp/Cc1bSrOPhtXnENXkh9nrZKzc25fszZFNUEQBOZvvsQfx6NRyGX8NKlDWbmWKiipPiuhja8T47o05GpiLhvPxpuJY/s62zC8rQ/D2/jQtqFTnZ3zf9qxqwv7BjUfd3ahjrc2XGTbBTEHr2djN74e175cOZ8inYHFhyNZfPgWWdXopV2Cs60KdzsrbNUKjAjkFOpJy9OU6VbTwtuBRU92xkol2gy9QbQ9OoOA3mhEbxDQGsR7vcGIodj2CIjfQwFAAAHBpNHpYK3CzV6Nu50VjjbKfzw/OTVXw8wVpwmLzjSJQM/sV3fdbE7dyuDJ38UQ5+BWXvw0qWOVNldvMBIWncney8nsuUMr1FolZ2wnP6b2Dqq1baiI0ooRH49qw6Ru5azIabWio3XqlNhH9vBhsOB3odEbGPH9EW6k5DGqgy/fjG9fdqekJPC5w0ap1WKl7IQJFR771bXnWXs6jkbuYgOD2q5OF+kMTFsWxpGINBytlax+tgcty+nrXBlHbqTx2rrzJpWBDv7OPNunEYNaeZdZbLgvHLudO3fy119/MXHiRJo0aUJ4eDjTp0/niSee4Msvv7ToGHVprHddSuK55acB+HVypxpVpZRwZ+VSoJstP0zsWKHjIQgCYdGZ/G9TOFcSc8vdB6Cppz321kriMgvL7UxRGdYqOTYqBQajUOzECeiM1RcxvhMnGxVudmpc7NS42KpxtVPhYqfGw96Ktg2dadvQ6a6Fb64k5jBjxWmi0wtQK+V88EgrxnexPFxYFTvDE3n+zzMYBZjZvzGvW1ghagnZBToe/CaE1FwNLwxowiuDi0MFEyeKM86K8PCALVvEwopyEASBxxef5NjNdLoGubJ6evdahzmNRoHX/r7AutNxqBQyFj7RuVorE0ajwPbwRM7HZvHH8Wg0xSKw3o7WTOrmj5+LLQeuiYLVpZ2Bhi6ik/dgsBfNvR1qlY7wTzt2dWHfoHbjFgSBtafjeG/zJQq0BlxsVXz2WNsKV+/1BiNHItJ4f8vlSkWIPR2s8HWxISGrkOSc6tmhu4lKIcPVTo2bnZXo7Nlb4W6vpmUDR7oFud21rjZavZH3tlxi5ckYQJQh+WJMuyqF6C3lyI00nlkWilZv5JH2Dfh6XHuLIwglWqF7r6Sw+VwCl4tD7zKZKK8xvU8jOgXUfYV6ibyTXAY/TerI0DblTAajoqBjRzEvbu5ci/tln43J5LFfjmEUYMmULuXbopYtxS4+d/Lpp/Daa+IJuIPsQh0PfR1CSq6m0sWQ6lCg1fPEb6c4HZ2Ju72av57rUe2QfU6Rjs93XmVNWJxJQDvAzZZpvYMY08nP9D27Lxy78vjiiy/45ZdfiIyMtGj/ujbWH269zOIjt3CwVrJ1du9aFy+ERWUwd7UYElEpZLw+pAVTewdV+iNaduwW8zdfrvS4DtZKGrnb4eFgRb7GwLWknHJV5muKTAYKmQy5TIZMBnKZDIX89t9GQSC3VD5HZaiVcto3dKZLkAtdg9zoFOBSp/ke2YU6Xl5zjr1XUgCY0MWP90aWLV6pKX+FxvB6cW/Ouqg4Lc3O8ERmrBDFsje/0ItWDZzg119h5kwx9Hr5sihYXBorK1HQ+NVXKzxubEYBg78VFdv/b2QrnuoZWOuxGowCc1efZeuFRKyUcpZUM2+khIx8LX+eiOaPE9GmyYmNSsG4zg2Z1NWfW+kFbLuYyL47nDwQHcGmXvY083Kgqac9Tb0caOplb5HDdz+EYqtr36Buxh2Zmsec1WdNvWQnd/fnneEtK/2N/Hkimrc3hld6XBdbFS18HPB2tEEGXEnKISIlr4wESwnWKjkyZBTpxc9VpZCjkstQKuSoFDJUCjlKhQyVXLwX7Y9oK2WIdkkmAxky03U5p1BHep7WpA9aGf6utnQLcqV7Ize6NXKtssVjdVlxIpr3Nl9CbxRo6ePIgic64edaN6+x70oyzy0/jd4oML6zGEGo7oRNEASOR6az6FAkB4qre0HsZvFs30YMLmcVqKaULiJQK4rzzMrrdrJ1qyiDArBuHTz2mEXHL7lW+zhZs3te37I6jLNmwc8/m29TqUSnbv588e9y2Hs5mWl/hCGXwd8ze9KhGuHTisgu1DFp0QkuJeTg42TN2hk9avTdS83V8MfxKJafiDZJFbnYqniiRyBP9ghAbdTcn47dO++8w86dOwkLC7No/xKjFxIeRd9WlsXoK0NnMDJhodiUuVUDR/6e2bPWDkJ2gY7X/75gajw/oLkHX45tV6mUxvozYgPkmjS+vhMZ8EzvQJRyOTIZWCkV4uqdWuzvqFbKUCpkKOVyFAoZymJjKpPJTMYUoLmXg1mJud5gJLtQR2aBlox8HRn5GjLyS/6vJT6zkLDoTNLyzGf0chm0auBEl0BXuga50iXQpdayIkajwC8hN/ly9zUEQQz1/TK5Y50Z7l9DbvLpDrFCtFIdpRrw/J+n2X4xiVYNRP0x5a1I2LULZsyAcePEookSlEo4cAB6967yuCVtiGxUCna92Bd/t9qfC53ByMwVZ9h7RcwbWT61G50Camb4NHoDW84nsvhwpKnCUCYT9Qqn9Q6ija8TIddT2XoxkdNRmSTlFFV4LB8nawLd7Ey9ku2slNiX/K1WYGelRK4vZEyP5vfUsauufYO6c0i1eiNf7r7GwkOiU9nU054fJnWoVCB9Z3iiqcq2OpTYjTvt18NtfWjt64RKIcNKJfadVivlqBVyVAq5meNW/E88Xilb5ONkU24nkyKdgYx8MRUlPV9juk/MLuJMTBbh8dkY7hhQQxcb0ckrdvbqwgk7dSuDmStOk56vxdVOzU+TOtKjcfW7G5XH9ouJvLBSjCA81SOA90a2qvFK243kXH47cov1Z+LRGsRVID9XG6b2CmJsZ78qE/UtwWAUeGHlGXaEJ2GnVrDq2e7ltxl8/XX4/HNwdITTp8Vq1ioo1BoY8t0hotMLmNTNn49H3aFBt27d7W4XJXz3ndjDtgpeXH2WjecSaOppz9Y5vetE5D89T8O4Bce5mZpPgJsta5/rUWPJrgKtnrVhcSw+EklshpjCpVbKGdHCmW+e6Hl/OXY3b96kY8eOfPXVV0ybNq3cfTQaDRrNbUchOzsbf39/AmYt47OJ3cpf7q0mSdmFjP31OJkFOsZ2bljrChkQZy9rwmL5dOc1dHojng5WbHqhV6Vq7zvDE3nj74vojQLtGzrx6WNtuZKYw/m4LE7dyiAyPZ8ibdkWYneLT0e3YUQ1dcfEnrf5nInOJCw6kzMxmcRnml+gezR2Y9GTnetkjMdupvHa2vNkFepxslHy98yeeDvVTfjlq93XWHI0CoVcxg+TOtC3Fi1oSpOaW8QjPx4lp0jP3AebML1PqRXBrVvh8cfFv9VqMS9l2DBR/qQKg240isLFYdGZdAl04benutRJ5WmRzsDsVWc5fjMde2sFf07rRmOPmotGC4LAycgMlh2/xeEbtyvF3xkRzIRSYfXsQh2RqXncTMkjIjWfm6l53EzJJSVXW95hy2DUFBD/yxSysrJwqoZ+Vl1hiX2Dim3ci4v38eajHWo90Tx2M4231l8kLU+LSinnj6e70KaSnr5HItKYu/osGp0RpRwWP9WF9DytaIeiMohOyzfp4v0TTOjiV6Mc6DyNnrMxmYRGZRIWlcGlhBwzR8/OSsHR1x+ok5zhxKxC5qw+y5XEXDEv9fGO9LawN29VbDkfz1sbwhEEmNmvMbMeqHkbQYC0XA2rT8WwOjSGrEJx1bOZlz1/z+xZJ+FZjd7ArD/PcCIyAxdbFaumd6fhnQ60TgcjRoiane3bi5NXC+RQTkVm8MyyUAB+f6oLXRuVKnhITxd71bq7izl827eLsienTonFFJWQma/l0Z+Okp6vZXqfIOY+WHUXCUtIzi7iySUnic8soomnHSund6+VtIrBKLDvSjK/H40iPD67ejZOqCbz588XKM53regWGhpq9pz4+HihSZMmwtSpU2t9bOkm3aSbdKvoFhsbW12T9o/ZN8nGSTfpJt1qe7PExlV7xS4tLY20tLRK9wkMDMTaWlyGTEhIYMCAAXTr1o2lS5cir8RTv3M2azQaycjIwM2t4hLg6pCTk4Ofnx+xsbH/KkmE6iC9x/pBfX+Pdf3+BEEgNzeXBg0aVGpjquJu2jeQbFxdUN/fY31/fyC9x5pQHRtX7XVCd3d33C3sARcfH8+AAQPo1KkTS5YsqXIwVlZWWFmZ52M5V9EypCY4OjrW2y9TCdJ7rB/U9/dYl++vLkKwd9O+gWTj6pL6/h7r+/sD6T1WF0tt3F2Tq05ISKB///74+/vz5Zdfkpp6u0rH27t+iOlKSEj8N5Hsm4SExP3KXXPsdu/eTUREBBERETRsaK5mX83or4SEhMR9hWTfJCQk7lfuWluBKVOmiGri5dzuFVZWVsyfP79MKKQ+Ib3H+kF9f4//9vd3P9o3+PefV0uo7++xvr8/kN7j3ea+7hUrISEhISEhISFhOfemEaiEhISEhISEhESdIzl2EhISEhISEhL1BMmxk5CQkJCQkJCoJ0iOHaJoaPv27ZHJZJw7d+5eD6dOiIqKYurUqQQFBWFjY0Pjxo2ZP38+Wq1lLZruV37++WeCgoKwtramU6dOHD58+F4Pqc745JNP6NKlCw4ODnh6evLoo49y7dq1ez2su8onn3yCTCbjxRdfvNdDqbfUR/sGko37N/Jfs3H3yr5Jjh3w2muv0aBB9fqk3u9cvXoVo9HIggULuHTpEt988w2//vorb7311r0eWo3566+/ePHFF3n77bc5e/Ysffr0YejQocTExNzrodUJISEhzJo1ixMnTrBnzx70ej2DBg0iPz//Xg/trhAaGsrChQtp27btvR5KvaY+2jeQbNy/kf+Sjbun9s2iBor1mO3btwstWrQQLl26JADC2bNn7/WQ7hqff/65EBQUdK+HUWO6du0qzJgxw2xbixYthDfeeOMejejukpKSIgBCSEjIvR5KnZObmys0bdpU2LNnj9CvXz9h7ty593pI9ZL/kn0TBMnG/duorzbuXtu3//SKXXJyMtOnT2f58uXY2tre6+HcdbKzs3F1db3Xw6gRWq2W06dPM2jQILPtgwYN4tixY/doVHeX7OxsgH/tZ1YZs2bNYvjw4Tz44IP3eij1lv+afQPJxv3bqK827l7bt7vWeeJ+RxAEpkyZwowZM+jcuTNRUVH3ekh3lZs3b/LDDz/w1Vdf3euh1Ii0tDQMBgNeXl5m2728vEhKSrpHo7p7CILASy+9RO/evWnduvW9Hk6dsnr1as6cOUNoaOi9Hkq95b9m30Cycf826quNux/sW71bsXvvvfeQyWSV3sLCwvjhhx/IycnhzTffvNdDrhaWvr/SJCQkMGTIEMaOHcu0adPu0cjrBplMZvZ/QRDKbKsPvPDCC1y4cIFVq1bd66HUKbGxscydO5cVK1ZgbW19r4fzr6O+2zeQbJxk4/693C/2rd51nkhLSyMtLa3SfQIDA5kwYQJbtmwx+8EYDAYUCgWPP/44y5Ytu9tDrRGWvr+SL1VCQgIDBgygW7duLF26FLn83+nLa7VabG1tWbt2LaNGjTJtnzt3LufOnSMkJOQejq5umT17Nhs3buTQoUMEBQXd6+HUKRs3bmTUqFEoFArTNoPBgEwmQy6Xo9FozB6TMKe+2zeQbJxk4/693C/2rd45dpYSExNDTk6O6f8JCQkMHjyYdevW0a1btzKNvf+NxMfHM2DAADp16sSKFSv+9RfMbt260alTJ37++WfTtpYtW/LII4/wySef3MOR1Q2CIDB79mw2bNjAwYMHadq06b0eUp2Tm5tLdHS02bann36aFi1a8Prrr9erkMy95L9g30Cycf826ruNu1/s2382x87f39/s//b29gA0bty4Xhi9hIQE+vfvj7+/P19++SWpqammx7y9ve/hyGrOSy+9xBNPPEHnzp3p0aMHCxcuJCYmhhkzZtzrodUJs2bNYuXKlWzatAkHBwdTXo2TkxM2Njb3eHR1g4ODQxnjZmdnh5ubm+TU1SH13b6BZOP+jdR3G3e/2Lf/rGNX39m9ezcRERFERESUMeT/1kXa8ePHk56ezvvvv09iYiKtW7dm+/btBAQE3Ouh1Qm//PILAP379zfbvmTJEqZMmfLPD0hC4j5GsnH/PiQb98/wnw3FSkhISEhISEjUN/6dWaYSEhISEhISEhJlkBw7CQkJCQkJCYl6guTYSUhISEhISEjUEyTHTkJCQkJCQkKiniA5dhISEhISEhIS9QTJsZOQkJCQkJCQqCdIjp2EhISEhISERD1BcuwkJCQkJCQkJOoJkmMnISEhISEhIVFPkBw7CQkJCQkJCYl6guTYSUhISEhISEjUEyTHTkJCQkJCQkKiniA5dhISEhISEhIS9QTJsZOQkJCQkJCQqCdIjp2EhISEhISERD1BcuwkJCQkJCQkJOoJkmMnISEhISEhIVFPkBw7CQkJCQkJCYl6guTY3Se89957yGQy0tLS7vVQ+Pbbbxk9ejRBQUHIZDL69+9f4b4pKSlMmTIFd3d3bG1t6dGjB/v27fvnBltPqM15XLx4MY8++iiBgYHY2NjQpEkTZs6cSWJi4l0etYRE3SHZwP8ucXFxvPjii/Tr1w9nZ2dkMhlLly6918P61yI5dhJl+PXXX4mOjuaBBx7Aw8Ojwv00Gg0DBw5k3759fPfdd2zatAkvLy+GDBlCSEjIPzjifze1PY/z58/H3t6ejz/+mJ07d/Laa6+xdetWOnXqRHJy8j/wDiQk6heSDfxniYiI4M8//0StVjNs2LB7PZx/P4LEfcH8+fMFQEhNTb3XQxEMBoPp71atWgn9+vUrd7+ffvpJAIRjx46Ztul0OqFly5ZC165d7/Yw6w21PY/JyclltoWGhgqA8MEHH9TpWCUk7haSDfzvUvp8l9iuJUuW3LsB/cuRVuzuY65evUqjRo3o1q0bKSkpAPTv35/WrVtz+PBhunfvjo2NDb6+vrz77rsYDIY6eV253LKvxYYNG2jevDk9evQwbVMqlUyePJlTp04RHx9f7dcuCcfcydKlS5HJZERFRZm2BQYGMmLECLZu3UqHDh2wsbEhODiYrVu3mp4THByMnZ0dXbt2JSwszOyYYWFhTJgwwRTCDAwMZOLEiURHR5v2EQSBYcOG4ebmRkxMjGl7QUEBrVq1Ijg4mPz8/Gq/z9LU9jx6enqW2dapUycUCgWxsbG1GpuExL1EsoG3qc820NLzLWEZ0tm8TwkJCaFnz560bduWAwcOmF28k5KSmDBhAo8//jibNm1izJgxfPjhh8ydO9fsGAaDAb1eX+XNaDTWaIzh4eG0bdu2zPaSbZcuXarRcavD+fPnefPNN3n99ddZv349Tk5OjB49mvnz57N48WI+/vhj/vzzT7KzsxkxYgSFhYWm50ZFRdG8eXO+/fZbdu3axWeffUZiYiJdunQx5fnIZDKWL1+Ora0t48aNQ6fTAfD8889z69Yt1qxZg52dHSAaQEvOt16vN3sPd+M8hoSEYDAYaNWqVbWfKyFxPyDZQMuoDzZQoo65twuGEiWUDkMsX75cUKvVwpw5c8yWqAVBEPr16ycAwqZNm8y2T58+XZDL5UJ0dLRpW0BAgABUeZs/f36F46osDKFSqYTnnnuuzPZjx44JgLBy5UrLT0AxJefhTpYsWSIAwq1bt0zbAgICBBsbGyEuLs607dy5cwIg+Pj4CPn5+abtGzduFABh8+bNFb62Xq8X8vLyBDs7O+G7774ze+zIkSOCUqkUXnzxReH3338XAGHx4sVm+xw4cMCi833n+6jr85iTkyMEBwcLfn5+Qm5ubrWeKyFxr5BsoMh/0QaWRgrF1h5l3bmIEnXBRx99xA8//MAXX3zBvHnzyt3HwcGBkSNHmm2bNGkSixYt4tChQ0yePBmALVu2oNFoqnzNBg0a1Hi85YUMLHmsrmjfvj2+vr6m/wcHBwNiuMbW1rbM9tIhhry8PD744AP+/vtvoqKizMI4V65cMXudXr168dFHH/H6669jZWXF5MmTmTp1qtk+nTp1IjQ01KJx33nO6+o8FhUVMXr0aKKjo9m/fz/29vYWP1dC4n5AsoHVo77YQIm6Q3Ls7jNWrFiBr68vEyZMqHAfLy+vMtu8vb0BSE9PN21r2bIlgiBU+Zo1zW9wc3Mze70SMjIyAHB1da3RcavDna+hVqsr3V5UVGTaNmnSJPbt28e7775Lly5dcHR0RCaTMWzYMLNwRQmPP/447777LhqNhldffbXM4/b29rRv396icSuVt396dXUeNRoNo0aN4siRI2zdupVu3bpZ9DwJifsJyQZWj/pgAyXqFinH7j5j586dqFQq+vTpYzazKk15EhZJSUmAaGhKaNy4MSqVqsrb+++/X6OxtmnThosXL5bZXrKtdevW1T6mtbU1QJlZdl1rW2VnZ7N161Zee+013njjDQYOHEiXLl1o06aNySiXxmAw8Pjjj+Pi4oK/vz9Tp05Fq9Wa7RMSEmLR+VapVGYJ0HVxHjUaDY8++igHDhxg48aNDBw4sJpnRELi/kCygf89GyhRt0gu831GQEAAhw8f5sEHH6RPnz7s27ePpk2bmu2Tm5vL5s2bzUIRK1euRC6X07dvX9O2ux2GGDVqFM8//zwnT540rQ7p9XpWrFhBt27danTcwMBAAC5cuECXLl1M27ds2VKjMVaETCZDEASsrKzMti9evLjcyrr58+dz+PBhdu/ejZ2dHX379uXVV1/lu+++M+1T0zBEbc9jyUrd/v37Wb9+PYMHD7ZoDBIS9yOSDQwE/ls2UKJukRy7+xAfHx9CQkIYPHgwffv2Zc+ePWYzPzc3N2bOnElMTAzNmjVj+/btLFq0iJkzZ+Lv72/ar02bNjV6/bCwMNNsKicnB0EQWLduHQBdunQhICAAgGeeeYaffvqJsWPH8umnn+Lp6cnPP//MtWvX2Lt3r9kx33vvPf7v//6PAwcOVKriPmzYMFxdXZk6dSrvv/8+SqWSpUuX1rlsh6OjI3379uWLL77A3d2dwMBAQkJC+O2333B2djbbd8+ePXzyySe8++67ppWwTz75hFdeeYX+/fszatQoQMz76dy5c7XHUp3zOHDgQEJCQsyqysaMGcOOHTt4++23cXNz48SJE2bvs2XLltUek4TEvUSygf8tGwiYzm9kZCQgfgYlOcJjxoyp0TH/s9zLyg2J25QnzpmVlSX06tVLcHV1FUJDQwVBECvCWrVqJRw8eFDo3LmzYGVlJfj4+AhvvfWWoNPp6mQsTz31VIWVTHdWKiUlJQlPPvmk4OrqKlhbWwvdu3cX9uzZU+aYL7/8siCTyYQrV65U+fqnTp0SevbsKdjZ2Qm+vr7C/PnzhcWLF5dbETZ8+PAyzweEWbNmmW27deuWAAhffPGFaVtcXJzw2GOPCS4uLoKDg4MwZMgQITw8XAgICBCeeuopQRAEISEhQfD09BQeeOABs+o8o9EoPPzww4Kzs3OF1V3VwdLzWFIReOf7rehWUTWfhMT9hmQDb/NftIGV2TGJ6iETBAsySyXuG/r3709aWhrh4eH3eijVomvXrgQEBLB27dp7PRQJCYl/MZINlJCoHCkUK3HXycnJ4fz58yxbtuxeD0VCQkLiH0eygRL/JJJjJ3HXcXR0tCiBWUJCQqI+ItlAiX+Suyp38sknn9ClSxccHBzw9PTk0Ucf5dq1a3fzJes9Bw8e/NeFICQk6iOSfbs3SDZQQqJy7qpjFxISwqxZszhx4gR79uxBr9czaNCgWjcMlpCQkLjXSPZNQkLifuQfLZ5ITU3F09OTkJAQM60hCQkJiX87kn2TkJC4H/hHO09kZ2cD/0ybFQkJCYl/Esm+SUhI3A/8Yyt2giDwyCOPkJmZyeHDh8vdR6PRmCWYGo1GMjIycHNz+0eaKUtISPw7EQSB3NxcGjRoUOO+n7V9/arsG0g2TkJComZUy8b9U4J5zz//vBAQECDExsZWuE+JQKV0k27STbrV5FaZfbmbWGLfBEGycdJNukm32t0ssXH/yIrd7Nmz2bhxI4cOHSIoKKjC/e6czWZnZ+Pv709sbCwODg4U6gzkF+nJ0+op0BjI1xjI0+rJKtByKy2fiJRcIlLyScwuKvf49tYKHmjuxZDW3rTxdWLnpUSWH48mJqMQAKVcxuBWXjzZI5BWvk41eq83U3KZsiSUzAIdHfycWfBkJ2zVtVeViUrPZ/TPx9Dqjcx/uCVjO/tV/oSEBBg1Cq5eLfvYL7/ApEkAaPVGxi84zo2UPIa38eazMe1qPdYS9l5J5qW/zmEU4Olegbw8qHmdHDdfo+fdjRfZfTkFgEfbN+CdES2xVilqfWyN3sCl+GxOx2RyOjqTczFZ5GnM+ybKZOBorcTFVo2zrRoXOxUuNmqc7dS42CpxtlFjb60EAYwCGAXh9s0o/l8QQC8IGIxGdAYBvcGI3iigN4g3ndGI1mBEMAqolHKi0/M5eK1sE3CFHBytVOTr9Gj1lv+U5wxswrN9G1f4uM5g5Mf9Efx+9BaCAE087fhybDuaeDpYfjLLQaM38ORvp7iUkEMbXyeWPdMVtbL2K2xXo5Pp1rYZWVlZODnV7LdbUyy1b1CxjXvw/b+5liF+z2Qy6N/cgyk9A+no71KjlbzsQh1Tl4VyNTEXL0cr/nimK74uttU+zp0U6Qw89ssxotMLGNWhAR88WkXLrpgYmDwZzp83337mDDQ2//69veEim84lEOhuy7oZPS3/PX/8MXz2GQQFQWgoqFRmD99MzeOp306SVainW5ArP0/uiJWy9rYC4EpiNr8dvsXuy8kYi39+nfxdmNo3iD5N3Gv02QmCwKtrz7PzUjLu9mrWPtcDD0frOhlvTEY+c1adJSIlH5VCzrsjghndsWGdHDu7QMeZmExCozIIi8rkalKO6ZyU4Gqrws3eClc7dYU3W7UCodhuAggCCAjF9+L5MQoCegPojEbRXhqMGIzivU5vRGMwAiCXyVgbFsvlxNwy43W1VeFgrSSjQEtuUdneuBXx5tDmPN49sMLHswq0zN8czr4rqQD0aOzGx6Na4+FQu8/w8KVoRvRsa5GNu6uOnSAIzJ49mw0bNnDw4MEyjZyrIicnBycnJ7Kzs3F0dLT4eXkaPREpeVxPzuVGci7Xk/O4lJBNWp7WtI+jtZLBrbwZ2saHIp2BpceiOHUrw/R41yBXpvUO4sFgL2QyqvUDDY/PZtKiE+QU6endxJ3FT3WuE6dj8eFIPtx2BXsrJbvn9aWBs035OxYUQLt2EBFR/uNPPAF//GH677nYLEb/fBSjAL9P6cwDLbxqPdYS1oTF8tq6CwC8MbQFM/pV7ExUB0EQWHAoks93XsUoQNuGTvwyuRO+FZ2TGmIwClxJzCE0KoNTtzIIjcow+x7dT/g4WdPSxxFnWxXp+VrOx2aRWaCrcP+H23rzzfgOKBUVO1aHb6Qy76/zpOVpsFbJ+d+IVkzs6lersGFsRgHDvz9MTpGeKT0DeW9kqxofq4Sa2oraUFv7BrfHnZWVxdV0PYsOR7L3Sorp8Q7+zjzbpxGDWnmjkFfvnKfnaRi34Dg3U/MJcLNl7XM98KwDByE0KoNxC44jCLDsma70a+ZR/o43bkDHjpCXV/axBQvg2WfNNmUX6HjwmxBSczU8378xrw1pYdmA9Hp46y2YNw98fMy3K8VJ9fnYLCYuOkGB1sDQ1t78OKljtc9nZUSl5bPg0E3+Ph2PttipaOnjyPMDGjO0tU+1X6tAq2fUT8e4lpxL5wAXVk7vXicTIBCvjy/9dY7dl5MBmNIzkLeHB6OqxA7UhJwiHWFRGZyIzOBEZDrh8dllHL37AWuVnBbeDjT2sMdWrSQ5p5Dzsdkk51asOzi8jWg7K/pMBEFg1alY3t96iSKdETc7NV+MbVura2t1bNxddeyef/55Vq5cyaZNm2je/PZqjZOTEzY2VV+A69JYG40CYdGZbLuQwPbwJFJLfWhONioGt/KilY8TZ2Iy2HYxCX3xN7BdQydcbNX8PqUL8mr8OM/EZPLE4pPkaw0MbOHJL5M71fqHaTAKjP31GGdisujXzIOlT3ep+AJ76xYMG1b+ip2LC6Sni0sDxXy07TKLDt/Cx8ma3fP64mCtKvu8GrLw0E0+3i6O49PRbZjQ1b+KZ1jOkRtpzF51hswCHa52an6c2IGeTdzr7Ph3IggC6flaMvO1pvuMguL7fB2ZBeL2fI0euUycMcplMuRy8W+ZTIaiZLtchkohQymXo1TIUJXcK+Qo5TKUCjkCAoVaA7svJ5NUwUp0ZSjlMtN3uTzUChlP9wpiYld/At3tyt0nNVfDy2vPc+i6OAMd3saHj0e3wcmm5t+RvZeTmfZHGAA/TerI8LY+VTyjcu6FY1db+wbljzsiJY/fjkTy95l4tHrRSWjt68hXY9vT3Lt6K6ZJ2UWMXXCM2IxCmnnZ89ezPXCxU1frGOXx3uZLLD0WRQMna3ZVZi/WrhUnkneK806YAKtWldl9Z3gSM1acRiGXsWlWL1rXMHLCzZswZgzs2gWenoBoK55ZGorWYGRiV38+HtW6zvMak7KL+O1IJH+ejKFAK64CNXCypm8zD3o1cadnYzfc7K0sOtattHxG/nCEXE3dTYBKMBoFvt9/g2/33gCgRyM3fnq8I6518N2oiNwiHbEZhaTna0jPE+1kel7J3xrS8rSk5WnQ6I3IEC9PMmTF97cXV2QyUMhlKOWirVQpzO2nUiFHJZdhEAQ0OiMnItO5G06OUi5jbKeGTOoWQJuG5X9PbyTnMnvVWa4miSuGU3oG8sbQFjVa6LlvHLuKfjRLlixhypQpVT7/bhlrg1EgNCqDbRcS2RGeRFrebaMT7OPIc30bcTUphz+OR5t+nENbe/PTpI7Vcu5ORKbz1O+n0OiNDG/jw/cTO9R6lhiRksew7w+j1Rv5fExbxlUWks3IEMOxhw6VfWzTJhg50vTfQq2BId8dIjq9gMe7+fPRqCpCLNXk0x1X+TXkJnIZ/Px4R4a0rt2FvDSxGQXMWHGaSwk5yGXw5tBgpvUJqlfJ6L0+3U+eRk9DFxv8XGzFe1db/Fxt8Ha0Rm8UiE4v4GpSDteScrmalEtcZmG1XmNgsCfzR7TC361syM5oFFh0OJIvdl1DbxRo6GLD9xM70NHfpcbv6ZMdV1gQEom9lZIts3sTVIFjaQn3wrGrrX2Dysedmqvhj+NRLDsWRU6RHrVCzsuDmjGtT6Nq2ZGY9ALGLjhGco6Gtg2d+HNat1pP3Aq0egZ/e4jYjMKq7cWxY6KtSU+/vc3LCxITzSaXJcz68wzbLibS0seRTS/0qv5K0nvvwVdfiSuFn3wCb7xhemj7xURmrTyDIMALA5rwyuC6SQ+5k8x8LcuOR7H0WBRZd6yat/RxpFcTN3o1cadrkGulqTqlJ0DfjG/HqA51EzYtYdelJF766xz5WgMNXWxY+ERnWjb4Z34//wSxGQX0+fwAAHZqBUEedjRyt6eRhx1B7nY426gwCAIJWUVEpuYTmZbHzdQ84jIKyziDMqjQQezZ2I0PHm1NYw/7Mo8V6Qx8tvMqS45GAdDC24EfJnagqVf1Jmn3jWNXW/4JY20wCpy6lcG2iwlsOpdAbpEegF5N3DAaBI6XCs+283Pix4kd8XO1PFfl4LUUpv8Rhs4g8FjHhnwxpm21nMPy+DXkJp/uuIqDtZI98/rh7VRJeEWjgSlTYPVq8+2BgeKstlR1zbGbaUxadBKAVdO706OxW63GWRpBEHjj74v8FRaLWiFn6dNd6nRlrUhn4K0NF1l/Jh6AEW19+OyxtthZ1Y+ueTlFOhyreTHOLdJxPTmXywk57LqUzNGbaZT82pVyGY42KrIKtGbhEYVcxvP9GjPrgSblzirPxWYxe9UZYjMKUchlvDm0BdP6NKrRe9IbjExadJJTURm08HZg46xeNU5ZuBeOXV1gybhTcop4Y/1F9l8VQ7RdAl34cmw7Atwsd4RvJOcyfuEJMvK1dA10ZdkzXbFR1y49pLS9WDmtW+W/5xs3xAhC6fSQS5egZcsyu6bmanjomxCyCnS8MqgZLzxQjRD37Nnw44+3/x8QINo5xe33+ufJaN7eIHau+N+IljzTu/K8yNpQqDVw8lY6RyPSOBKRzpXEHLPHVQoZHf1deLJHYIWr1l/vvsb3+yOwVslZP7NXnTte15Nzmf5HGNHpBdioFHw5tl2tV9DvF9LzNFxLyqWRhz1ejlYWT/aLdAai0wu4kpjDjvBEDlxLNa2eAzjbqCjQ6tEabhtPGfBEjwBeHdy83InTgaspvLL2POn5WqxVcj4d3ZZHO/ia7ZNdqKswEiI5djUkM1/LjwciWH482pQncSe2agVvDgvm8a7+FjtoO8OTmLXyDAajwOTu/nzwSO1CAHqDkcd+Ocb5uGwGtvBk8VOdKz+e0SjmoHz2mfn2X36BGTPMNr25/iKrTsUQ6GbLjrl9a2387xz3CyvPsvNSEnZqBaue7U7bhs51dnxBEFh+Ipr3t1xGbxRo4GTNS4OaM6qDb53m0/xbScgqZMPZeP4+E0dk6u3uCPZWSrQGo5nhcrVT8fGotgxu5VXmu5VTpOOt9RfZeiERgBcfbMqLDzar0ZiSc4oY9t1h0vO1jO/sx2dj2tboOPXZsQPxu702LI73t14mT6PHRqXgreHBTO7mb7EtCY/PZuLCE+Rq9PRt5sGiJzvVuojg7Q0X+fNkDH6uNuyc27fyiVRaGjzyiLiCBzB9OixcWO6uG87GMe+v86gVcrbN6V316obBAK+8At9+W/axLVtgxAizTT/su8FXe64Dd2clrCLS8jQcu5nO0RtpHIlIIz7r9qr6pG7+/K+cIjCDUeCZpaGEXE/Fz9WGLS/0xtm2bkOmWQVaZq86y+EbYoHW6I6+vDq4OT5OdZuz/G8lp0jH7kvJbD6fwNGINAylZsNWSjmaUrbTRqXgtSHNeapHYBkfISW3iJfXnOfwjTRkMvhklJiaZDQKfL3nOmHRGax+tkf5Y5Acu9qx9XwCs1edrTQu36uJG5891paGFlaabToXz4t/nUMQ4Nm+jXhzaItaOXfXk3MZ8f0RtAaj5YZp7lz4/vvb/3dygitXzBKOc4p0DPr6EEk5RTzbtxFvDQuu8RjLo0hn4JmloRy7mY6rnZo1z/WgiWfZ5evaEBqVwdxVZ0kozklr4e3Am8OC6du0ZlVq9Q1BEDgfl83fp+PYfD6B7EIxVKRSyJAhM5vUtPF15IeJHcvk3wmCwC8hN/l8p9gbdc4DTZj3ULMand8jN9J44veTCAJ8ObYdYzpV/yJb3x27EmIzCnh13XlORIqRhD5N3fl8TFuLL8BhURk88dspCnUGhrTy5sdJlRfPVEWeRs/gbw4Rn1VoWR5YYaFYUHH1KtjYQEoK2Jf9/QuC6MwcuJZKB39n1s3oWfnkLDQUhg+H1NSyjw0ZAjt2lDn+/225zNJjUSjlMhY92ZkBLTwtect1hiCI6ROrQ2NZcOgmgiDmUv48qVOZdIisAi0P/3iE2IxC+jf34PenqpfzbQl6g5HPd11j4aFIQCwqeLZPI57r17jeRD7qgvQ8DTvCk9h8PoHQqAxTFMRGpaBQd7u61tfZhp8mdaD9HekqRqPA/225xLLj0QC8NawFJyIzTCvy+1/uR6NyQrqSY1dLftx/g0WHb5kueKWRIV4AtQYBO7WC/z3ckvFdLCsGWH0qhjfWXwTgzaEteK6WFaI/HYjgi13XcLJRsWdeX8sq3vr1E3PubGxEIzt+fJkw7b4ryUxdFoZcBhue70U7P+dajfNO8jR6Ji06wYW4bBo4WbPq2e7VCitZQkml808HIkzh9d5N3HljaIuaJ2TXQzR6AweuprD48C3CojMBsZioQKtHVxxmkMtgRr/GzH6gaZkV3NKFMbMGNOaVQc1r5Nx9t/cG3+y9jrVKzqZZvatdJPBfcexAvDAsOx7FpzuuotEbcbBW8n8jWzGqg69F5/7wjVSmLg1DazAyoYsfnz5Ws1XSEg5dT+XJ308BsOa5HnQNqqLzRn4++PpCdja89JKYD1cOCVmFDPrmEHkaPe+OaMnUqkKm6eni8UpV/Ju4eRMamacMGI0CL605x8ZzCVir5Cx9uivdG9Vd+kl1OHgthXl/nSOzQIeDtZIvx7ZjcCtvs30uJWQz+udjaPRG5gxsyksP1WyVvCrOxWbx0bbLhEaJ9sDDwYqXH2rG2M5+UuTjDhKzC/nl4E1WnIjGKIgpLlYqOfmlJLIeaefDOyNa4eFwu2hGEAQ+2naFxUdulTnmc/0a8ebQsgsqkmNXBxTpDOy9kszqUzEciUg3e8xWraCppz3n48QWQs/1bcQbFq7A/XbkFh9svYxcBiund6+VIdEZjIz6+Sjh8TkMaunFgic6VT2GpCRo0kQ0rjKZKBK0fTsMHWq229zVZ9l0LoEW3g5sfqF3nZXal5Cep2HsguNEpubjZqdm0VOda5WIXxGZ+Vp+OhDBH6XC64+2b8DLg5pXK1eyviMIApvPJ/DJ9qsk5YgrnR4OVmbV496OVix+qksZx7hEhgdEB/D1IdV37oxGgaeWnOLwjTQaedix+YXe2FdjleC/5NiVcDM1j5fWnOd8bBYA0/sE8dawYIvO/a5LScxccRqjQNVFWBbw+roL/BUWS5C7Hdvn9Kk6hWPHDjHnTqEQNe3alu9cluTD2agU7Hqxb7mFPWXYtQueew6io29vmzwZli8vs6vOYGT6H2EcvJaKWiHnq3HteLhdg6pf4y6QkFXICyvPcCYmCxA/z9eGtDArHll/Jo6X1oiagL891ZmBwXUnTVUaQRDYGZ7EpzuvEp1eAIiRj7eHB9OnaQXyNv9hriXl8sHWyxyJEEPZdmoFBVqDKepnb6Vg8VNdzK73u8ITeWHlWXR3qBa426s59sbAMtdcybGrY+KzClkTGsuy47crnJxtVDzavgFLi5dTx3VuyMej2lQZ1hAEgZfXnmf9mXg8HKzYNqc3nrUQLrySmMPIH4+gMwh8P7EDIy0xSj/+KCYZW1nB4MHw66/m+k+IjtdD3xwiI1/LvAebMffB6mt0VUVKThHPLAslPD4HK6Wc7yZ0YEhr76qfWANiMwr4avc1Np5LAECtkPNYp4YMae1N90audSZYWlcIgkCB1kB2oY6cIh05hXrx7+L/g5gb52CtxM5Kafrb3kqFnZUCeytljVbOCrR6fj5wk4WHItEajCbJlhLJFJVCxo+TOppWE3KKdMzfdIlWDRxNzl11HIzSpOdpGP79EZJyinikfQO+m9DB4ufeL7aiutR23HqDkR8PRJhkK8Z39uPj0W0sWlkpyTOzVsnZOKsXLbxrft6yC3UM+iaE5BwN0/sE8fbwskURZRgzBv7+G3r0gCNHzAq5SjAaBSYtPsGJyAx6Nnbjz2ndLPte5eWJecU//CD+39ZWXNGzLmtri3QG5q4+y65Loq7bG0Nb8FzfRvckbUNnMPLpjqv8VryS0znAhR8mdTALtc/fFM6y49E4WCvZ/ELtqsmrQqs38sfxKH7YH2GKYPVv7sGMfo3pHOBSqzD+P4HRKJBTpCOrQJSiyi3So1LIsVUrsFErsFEpTH9bKxW1Cm8LgsDeKyl8tO0yUcXOsEohM0U+ZMAHj7ZmcvcAAN78+wKrQ2PLTfn6dXJZ5QjJsbtLGI0CK05G8/H2KxTpjFir5Izr7Gdahh3U0ovvJ3aosrKvQKvn0Z+Ocj05jx6N3Fg+tWutfiAlYSwXWxW75/UzW/ItF4MBunYVZ8p3iBWXZvP5BOasOotKIWPr7D7VDo9ZQr5Gz+xVZ9l/NQWZDN4eFszU3ndPqiQ8PptPdlzhaKlVWDu1gj5NPRgY7MkDLTwt0plKzC4kNCqTYG8Hgtztqv356Q1GErOLiM0sIC6jkNjMAmIzCojLFP9Oz9NWqj9XFY7WStr5OdPBz5n2/s6093OplkZVdHo+H267wp5iEdM79fBeeqgZ4zo3ZMqSUK4m5fLl2HYUavW8u+kSAM/0CuLdEdV37k5HZzBuwQkMRoHFT3bmwZaWrUjcb7bCUupq3GtCY3lj/QWMgijN9O2E9lVOVoxGgSlLQzl0PbVGq6R3sv9qMs8sFVM41s3sWfUKfFwcBAeLTtjChWIxRTlEp+cz+NtDFOmMfDK6DROro4O5dy88/bT4WsuXiyt35WAwCny47bJJkmJyd3/ee7jVPXNcdoYn8era8+Rq9Ljaqfl2fHv6FgtBa/VGJi06QVh0Jk097dk4q9ddz4HLKtDy/b4I/jgeZbIDLrYqBrTwZFBLL/o287C4w1JKThFOtqpaT6bzNXpiMwuISS8gJuO2/cwo0JJVoCOrQEt2oa5aosj2VkqaeNrTxteJNr5OtPZ1oqmXfbUkdzR6A8uORfHDvghyNfoyj4/p5EszTwc+3iGmsAR7O3AlybwzRt+m7vwxtZvZNsmxu8uk5mqYueK0KSdpSGtv9l1JRmcQ6BbkyqKnOlcpTRGRkscjPx4hX2tg1oDGvDrYQpX1ctAZjIz88ShXEnMsX+kIDYVu3cQVu02bQK0Wc+5KCasKgsD0P8LYeyWFdn7OrJ9ZRQJzDdEbjLy35RIrTsQAoojjuyNa3rV8DkEQOH4znS0XEtl/NZnknNvhRpkMOvq7MDDYk/YNnfFwsMLTwRpHG/MVsKi0fPp/eRAAtVJOMy97Wng70sLbgWAfR5p62aPRGYnPKiQus5C4TNHoxGcWEpdVQGJWkUWOm1Iuw8lGhZONCgcbFY7WShxtVMgQcxXzivTifcmtSF/hcf1dbWnv50x7P2f6NfcoV3PpTg5dT+X/tlziZqkq2hKsVXKKdGJ4u7mXAztf7MPKUzEmKYkpPQOZ/3DLajt3Jfp2Pk7W7Hmpn0XOxv1qK6qiLse9MzyROavOoTUY6dPUnV8nd6rygn/nKum349vXalL10l/nWH82nmZe9myf06dqx+ibb8S8uNGjxdW7CigJ9ztYKdnzUhUST3ei0Yhtx0JCxDCtWl2ufh6IqTIfbruMIMDAFp78MKlDnbSErAnR6fk8/+cZLiXkoJDLWPNcDzoFiM5ySk4RI344QkquhmFtRI3Vf2KF8VZaPj8fiGDPlWQzfT61Uk7vJu481NKLgcGelUahPt5+hd+O3KKxh51oM31Emxns7WgmSVKkM5BQbD9FO1pAbKlJcHU6ANmpFTjbqnGwVqIzGCnSGSnQ6inQGswqWstDrZQT7ONIG19H2jZ0ZnBLb5xsq5aeSsvT8NXua6w6FQvczny6kw5+zjzWyZf/23LZtLoHcOT1AWbFmZJj9w+gMxj5ZPtVfj8qLpm38XUiMjWPfK2BVg0cWfp01ypXzkpWxACWTOlSq6qsi3HZjPzpCIIA62b0oHNgFQnMIK7YdeggCoW++KJYUbZ/v5nRS8ou4qGvQ8jV6HlneHCNNcuqQhBEAdySRPwHg734fmL7u25UjUaBSwk57LmSzL4ryVxKyCl3P7VCjoeDFe4OVnjYW+Fiq2Lt6bhavbZaIcfXxea22LCLKDjs52KLl6M1TjYqrFXyahlsQRAo0hmJSMnjXGwm52KzORebWa5j1quJG090D+DBYK9KL8A6g5Fv9lzn54M3AbGYojzfccnTXRjQ3JPVp2J4c8NFBAGe7BHA/41sVa33UKg1MPjbQ8RkFFisuH8/24rKqOtxH7mRxrPLwyjQGujg78zSKV2rvAiFRWUwfqG4SvrRqNY83i2gxq+fVaDlga9CyMjX8t7DLZnSq4qCB71elCN59NEKnS0QV9Qe++UY52KzeDDYk0VPViHxVB4HD8Krr8LDD8P//lfhbjvDE5m7+hwavZG2DZ1Y/FTnWqXL1IbSYWI/Vxu2z+lj0kg7HZ3JhIXH0RkEXh/Sgpn966ZdoyXoDUbCojPZczmZPZeTickoMHvcyUaFR7Gt9HAodbO3Iiw6w+Ts3IlKIcNKqcBgFMwqTCvC2VaFv6stfq624r2LLW72alxs1bjYqnCyVeFso640R9xY/FqFOgNZBVouJeQQHp/NxfhsLsXnlFl1s1LKGd7Ghwld/ekSWHUv592XkphXLAJdkcjx2hk98Ha05onfTprCuJ0CnPl7Zi/TPpJj9w+y6Vw8r/99gSKdES9HKzQ6A1mFegLdbFk+tVuVCfrvbgxn+YlonG1VbJvTp1a9Tt8ojtm38XVi06xelucLREWJQqGFhbBiBTz+uNnDK0/G8NaGi9ioFOye1/euFh1su5DIvDXn0OqNtGvoxOKnulQdWq5DErML2XclhYPXUohKLyA1V1NudbQlyBATYZt6OeDvKnaLaFjcNcLXxQYvB+s6lyyoiOxCHRfisjgXk8WpqAyORqSZnDMvRysmdvVnYld/vCqprN50Lp5X116oUOOxZ2M3Vk7vDog9gl//+wKCAPMfbsnTVV3g7+DwjVSe+O0UMhmsn9mTDlWE9f4NtqI87sa4z8Rk8vSSULILdbTwduCPZ7pWWTG/IOQmn+y4ilopZ/3MnrWqHC8peHC0VnLw1QF11qbqenIuw78/XL184tIsXw5PPin+vWYNjB1b4a6nozOZtiyUzAIdDV1sWPp0F5p41n0qiiXkFOkY+u1h4rMKGd3Rl6/HtTc9VnKu5TJY+nRXU7j2n0QQBK4n57HnchJ7LiebigrrAhuVAj/XUnbT2cbkyPm52taqraElGI0C0RkFXIzPJjw+m0PXU03twQAae9gxoYs/j3VqWOn3/HpyLpMXnySlgv6zA1t48tuULhiNAi/+dZbN50WN0M8ea8v4LmJhk+TY/cNcSczhueWnickowE6twM5KSUquBk8HK5ZP7VZpbppGb2Dsr8e5EJdNOz9n1j7Xo8YVqGl5GgZ8cZBcjZ7PH2vLuC4WVrqlp4uz2OPHwdtb1Jhyum3YjUaBiYtOcPJWBr2buLN8ate7uuwfFpXB9D/CTEb1t6e63JX8PkvR6A2k5mpMt5RcDRn5Wv4KjTUTGC2hU4AzU3oGMay1N4r7NLk4LrOAVadi+Cs01hTSUMhlDG7lxeTuAfRo5FbuZ3w+Nounlpwq0yaphC0v9Db1TSwJnynkMlZO60a3alaAv7TmHOvPxNPC24Ets3tXmufyb7EVd3K3xn01KYcnfjtFaq6GADdbVlQxyTQaBZ5dLqZdBLjZsmV272p3OinBYBQY/v1hribl8kT3AD54tLVlT8zOhgUL4OWXzTpFlKYkn9jVTs3el/pV32mcN08UMbaxgcOHoVOnCne9lZbP00tOEZVegKO1kk9Gt2VYG+97UlQRGpXB+AXHMQqYObWlO/o42ajYOrv3Pa/2zynSkZJTREqOhtQ8jZntLPn/1TtyykrwdLBicCsvRnVoKLb8slXdV9qjgiBwLjaL1adi2XIhwdRyVKWQMaiVN0/1CKxQ7ierQMu0ZWGmFK472T2vL82Khbj/b/MllhyLQqmQsW5GT9r7OUuO3b0gu0DH9D/COBWVgbONCmdbFVHpBbjaqdn4fK9Ky/RjMwoY8cMRsgt1tW72XHIxdbdXc+CV/pb1hBw2TJQfcHCA3FxRyPgOBfdbafkM+fYQGkt61NYBpY2qvZWSHyZ2+McFRKuiRBIGxFy4ke0aML1vI4J97u/vamk0egM7w5NYcSLapFsF0LeZBx892rrci0RSdhHT/wjjYnzZmXmPRm6selZctRMEgbmrz7H5fALu9mq2zO5dLSX7jHwtD34thvVeHdycWQOaVLjvv8lWlOZujjsmvYDHfztBbEYhXo5WbHi+Fw0qiQhkFWgZ/v0R4rMKa523dfxmOhMXnUAug+1z+1RdcWs0QqtW4qTy559h5sxyd9PqjYz88QhXk3KrXTkNiKHfkSNFe+flJTp3TSuu+E/P0zDtjzDOFkuQDGjuwfuPlP+7uNuUtBZzsFayY24fU/5Vkc7A+IUnOB+bRbCPI+tn9qzTjkF1Tb5GT6v5u8y29WzsxvS+jejfzOO+cuQqI7dIx+bzCaw+FWtmCx9p34C3hweXG77XG4x8UqrquTRdAlxYO7MnIE60nlt+mj1XkvF2tGbz7F5YC1qLbcX9uZzwL8TJVsVvUzrTxteJrEIdBVoDzb0cyMjXMnVZqEmiojz8XG35elw7AJYei2JbcaummvBkj0AauduRlqflx/0RVT8B4P/+T8xvyS2eRf3wA5w/b7ZLkLsd84oFMT/cepmU3KIaj9ESgtzt2PB8L7oFuZKn0TN1WSiLD0dyP81DfJ1tcLBS8lzfRhx+fQBfj2//r3LqAKyUCh5p78vaGT3Z+WIfHu/mj1op59D1VAZ9c4jFhyPR3xF69XayZs1zPRhRTj/J45HpHChWUJfJZHz2WFtaeDuQlqdlxoozaPRV582U4Gqn5t0RolDnd/tucCutbJ6gRMX4u9mybkZPmnraizIkf4RRoC1bpVeCs62aHyd1QKWQsf1iEn8cj65w36ro0diNYW28MQrwf5svV/27lcth1izx77ffFtuPlYNaKeezx9oil8Gmcwnsu5JcvYEplbBqFbRvD8nJ8NBDYsVsBbjZW7FqenfmDmyKWiHnwDXxd7Eg5Ca6ClIS7hZzBjalg78zuUV6XvrrvKmtlbVKwa+TO+Jur+ZKYg5vrL9wX9nJO7GzUuJqp0ZRPBneOrs3K6d3Z0Bzz3+NUwfgYK3i8W4BbJndm62zezO+sx+y4u/lwK9CWH4i2qz1GIBSIefdES35cmw7VArz9xoancn6M2LuoVwu4+vx7WjsYUdSThHPrzhj1vKxKiTHrg5xsFax7JmuNPG0JyVXQ75Wj7u9mhspecxeedbsAnn5jiT9gcFezCjuRPHauvNEp9fsIqZWil8cgN+P3rLsYtilCzzzjPi3s7M4e541S7wvxbTeQbT2dSSnSM97my/VaHzVwcVOzfKp3ZjQxQ+jAB9uu8JbGy5W6wt+NxnX2Y+jbz7Am8OC60VPxRbejnw0qg075vahW5ArhToDH267wqifj3EpwXx1zkat4IeJHXi5HPX7Z5eHEVucTG2jVrDwic442ag4H5vF/zZeqtZF59H2vvRp6o5Wb+TtDRfv6wvW/YiXozVLnu6Cm52aSwk5vLzmPMZSF5s7nZMO/i6mNoIfbrvMhbisGr/2m0ODUSvlHI9MN2nEVcqMGaJQcWam6NxVQDs/Z1MR19sbwiudNJeLk5NYHdusmShi/PTTle5urVIw76FmbC/1u/hkx1Ue/uEIZ2PKD6vdDZQKOd+Ob4+dWsGpqAx+DblpeszHyYafJnVEKZex6VwCvxfLttyvvPhgU0Je7c/3EzvUi05ArX2d+GxMWzbN6kUbXydyi/S8uzGc0b8cI7ycyMaYTg1Z81wPPO/IH395zQXTd8rBWsWiJzvjYKUkLDqTz3ZesXg8kmNXx7jaqYvzWWyIyyzETq3ESikj5HoqH2+/Sma+lrmrzzL6l6MU3VH188qgZnQNdCVfa+CdjeE1vogNaOFJ/+Ye6AwCH227bNmTPmvdAWwAAQAASURBVPlEdOqyskQ5gOhoiIkx20WpEGfLCrk4o98ZnlSj8VUHtVLOJ6Pb8M7wYOQyWHUqlid/P0lmvuWl7neLQHe7Guch3c809rBn1fTufDq6DY7WSi7GZzPyx6N8suMKhdrb31mZTMbsgU35aVJHM2kanUHg0Z+Omj4jfzdbvp/YAZkM/gqLZeWpmDKvWREymYyPHm2DtUrOsZvprKtlJfJ/kYYutix4ohMqhYwd4Ul8t08UMz4dncnQ7w6XWX2f0jOQoa290RkEXlt3ocYrU36utjzXV3TAPtp+uYy9K4NSKYqnAyxaBGFhFe4678FmBLrZkpRTxKfFemDVwtMT9uyBAQNEDT0LaOJpz+pnu/PFmLY426q4mpTL6F+O8e7GcDLKsUcGo2DmRNcFAW52/N8jYs7iN3uuc6646whAt0ZuvD1cdMo/3n6FYxHlr3reDzzZI9DiPuv/Jto2dGbjrF7838hW2FspOR+bxcgfj/D+lsvk3VFd28HfhXUzepq3GgPGLzhORIoYPWvkYc93E9uLtjPUctsnOXZ3AW8na/6c2h1PByuiMwpMqzm/H71Fn88PsOlcAkU6I8cjzVuVKRVyPhvTFrVSzuEbaWw+n1DjMbwzvCVKuYy9V1IIuV5OY+w78fCA998X/7a2hqNHITCwzG6tGjiZjPX/NoXXuGK0OshkMqb1acTipzpjb6XkRGQGj/58lIiUvLv+2v9V5HIZE7r6s/flfgxv44PBKLAgJJLB3x4iNCrDbN/hbX34ZFQbs23p+VpG/nTE5Aj2a+bBq4ObA/De5kucriCBuDz83WyZ96C4MvjR9iuk5ZWtLAu9lVFmm8RtOge68nHxZ/Tdvhs8s+QUY349RkRKHiHXzO2DTCbjo1FtcCl2XpYcLZsPZCkz+zfG29Ga2IzCcvOKytCnj1iVLwjwwgtlogYl2KgVfDJabEO28mQMx2+ml7tfpfj7i/JOQaUqtquYTMtkMsZ29mPfS/14rGNDBAGWn4im28d7efaPMHZfSjJFFCJT83jw6xBWnIg2mxDVlsc6+jK8rQ96o8Dc1WfJL+UwTOkZyOgOvhiKc7TKWy2SuLso5DKe6hnIvpf7MaKtD0ZBvPY/+FUIZ+5Y4fV3s+WPZ7riaH1b1ktrEBj541GSs8XCvAdaeJUbGakMqXiiFIIg1GmM/3pyLuMWHCerQIdtce+40jzZI4D3HylbMVbS6sfdXqz8cratmVzAB1sv89uRWzTxtGfH3D5Vq2fr9dCxI1y8KOraffNNubsV6QwM++4wkWn5ddJEvDpcS8pl6rJQ4jILcbBW8v3EDgxofn8VVdwtjEaBm6l5RKUXkJxTREquhpScIpJzikjOEat1ZTJwsFbiYF0sZmytwqFY1Li5lwPdGrnWaKa893Iy724KJzG7CLVCzpfj2pWRm/jpQARf7Lpmtq2DnxNrZ/REqZAjCAKzVp5h+8UkPB2s2Dq7d5UyHCXoi0W4L5cS4S4Rmv523w1OXI0j9ttxUvFEFbyw8gxb78jhHd7Wh58mdSyz75qwWF5bdwEblYI9L/Wt8QrLxrPxvPjXOWzVCg680r9SSR1A1NVs1kzsSPH775WGSt/acJGVJ2MIcLNl59y+tSsa2LBBLBrbuBFcLOtbfexmGp/uuMqFUhIfrnZqRrZrQKCbLe9tESMmLrYqJncP4MkegXUi35RdoGPod4dIyC5iXOeGfD6mnemxIp2Bp34/xclbGbjbq1k7o+ddbTsmUTkh11P536ZwotMLsFLK+WZ8e4a1Mc9PDovKYPJvJ02C7yBWCO99uR+O1ioEQWDqokMsea6/VBVbHYxGgXlrzvHWsOCqDU81OBeTyWO/Hi+TRAnQ0MWGw68NKONMavVGhn1/mIiUPCZ29TPNTKtLdqGOB748SHq+lv+NaMkzvS3QEgsJgdWrxdU7NzdYulTsUNHKvFL3ZGQ64xeeAGDltG70bOJeozHWhPQ8DTNWnCY0KhOZDF4d3JyZ/Rr/qxJvLaFQa+B8XBanozMJi8rgTExWnayQNnSxoXsjt+Kb5Y5enkbPq2vPs6M4BH9nT01BEHh/q9iWqbQQ58NtfYpDsTLyNHpG/XSUGyl5dA5wYeX07hbL+1yMy+aRn45gFOCNoc3ZeznFJB1g1BRIjl0VlEwY78TRWsmZdx8qI1ItCALjF57g1K2MmosCFx/nsV+OcSYmq4wOW4V8/bU4wfz44zJ9rEuTW6Rj0DeHSMwu4tm+jUz5gdWmoAAaNRILKtq2FXPwvC3vW30tKZe/z8Sx4Ww8qRVolYFYPf9wOx9m9m9ikraoKScixcpjQYAfJnbg4VITrZwiHRMWnOByYg4NXWz4e2bPOr2uSVSP0q0zAV4f0oIZ/cz7ER+8lsK0ZWFmnYNaeDuwcVYvjkak8d32C2x5ZZDk2FWHtWGxvLruAsE+jqx5rrtlMiEWEnIthaeXhpar1r9nXl+alvMDP3Urg3ELjgOw5rkeFWrjVMWqUzG8uf4iDtZKDr7S36I+qCbeeAM++0zMQ9m3r4wy/NsbLvLnyRj8XW3Z9WItZ8vVRKM38N7my6wqztca3saHz8e0ves9E+8mgiBwMT6b3ZeSORyRxqX47DLtwaxVcpp5OeDlaI2ngxVejtZ4OVrhWfx/gNwiffFNR06hjtwiPRkFWs7GZHExPrvMJMPP1YYJXfyZ3D2gSsFPg1Hgo21XTB1XnugewHsjW5ly7EomSJvOJZg5d6Xb5t1Ky2fkj0fILdLz8kPNmD2wYrmJO3lv8yWWHosqs11y7KomIauQ55afLlemZu2MHnQpp1tNREouQ78TRYF/ndyJIa0td3ZKcz42i0d+OgrAhuerFpxGECrtRFGa0j1q1z/fi/Z+zjUaIxcuwKBBonPXuLGYgxdkwWS4FHqDkcM30lh3Jo6dF5MwVHJ5dbRW0qqBE+39nPB1scXXWRQu93W2sdiOfbHrKj8duImdWsGmF3rTxPN2m8DUXA1jfz1GVHoBzb0c+Ou57jWO/tRHjEaB+KxCbqXlU6QzYBQEjEJxbqQg3qyUCpp42hPkbletfrHlYTAKfLD1ssl+je/sx4ejWpsdd/P5BOauPmuWEeDpYEVKrqZaNq7eOHYGo8CttHyuJuWQka9FqzeiNwro9EZ0BiNag4CAgL+rLU09HWjqaY9LsbhlZr6WgcV6WQB9mrrz+5Qutf4gS1PiON7JG0OaM6N/+fpcJZ0kmniKfRdrIlxsMAo8/MMRLifm8Hg3fz66IxeqUiIjxY4UGk25Su2lZ8tTeweZqnH/Sf48Gc17my+hMwi08HZg4ROdK9UMvN/QGYycupXB7ktJ7L6cTGK2eSK7l6MVnQNc6RTgQqcAF1o2cKzV9zJPoycsKoMTkRmciEw3c/TsrZRM6ubP1N5BVc7uFx+O5KPtVxAEeKilF99P6GBy7LV6I1OXhXL4hnny9u9TOvNACy9A7GIxd/U51Ao52+f2oYmnPdHp+ey6lMSzfStujZSRr6X3Z/vLpDVIjp1lFGoNvP73hTL5uzP7NeL1oeWvdn256xo/HojA29GavS9b1ru3PF5Ze551p+No7+fMhud7Vm/1r6hIzP2tgBJNySae9myd3RtrVQ0nmTdvihIot25BgwZiu7OOZcPUlvD8itNsr2GB2fC2Pnw3vn2VvXb1BiOTfzvJicgMmnras3FWLzOnMDajgDG/HiM5R0NHf2dWTOt2z3rf3kuSsos4H5dFREoeESl53EjJ5WZKvkVty0Bs/9jIw44W3g4083aghbcDnfxdLeoZeydLj97i/a2XMQpiW8efH+9kNqFefiKadzeGl3levXfsNHoD52KyuJyYw9XEXK4k5XAtKbfKZr534m5vRVNPe9LyNNy4IxF/bKeGfD6mbZ2F9wRBYN5f59h4x0pGgJstIa8OKPc5WQVaBn4VQnq+llcGNeOFByxf2ShNSdhUIZex76V+BFqSb5GQAFOnwsmTovyAnx9cuQJ25s89cC2Fp5eEIpPB2ucs7FFbx4RFZTDzzzOk5mpwslHx46QO9Gn6z7fWsRSdwciRG2lsuZDAvispZuFVW7WC/s09GNjCi65BrjR0sbmrIeY8jZ7dl5JYEBLJtWSxEkutkDOqgy/P9mtEYw/7Cp+7/WIiL/4ltn9r7+fMb091Nq0I52v0TFp0wqy9kJ1aQchrA3C3t0IQBJ5eGsrBa6m0a+hEsI8j607HYaNWcGH+oErf84/7b/Dl7utmPWslx85yBEHg15BIPtt5u5q0gZM1x94cWO7+RTqxd290egHP9Arifw/XbAKXklPEgC8Pkq81WL76Fx0tCqYbjbB5c4W7ZeZreeibQ6TlaZjRrzFvDG1RozECou0bNAguXQIrK7FSd9q0ah9m7K/HzES/bdUKWng70MTTHnd7K2zVSmRASm4R8VlFxGcVkpBVaLIHlr6P1FwNw78/TEquhpHtGvDdhPZmv59rSWKud3ahjn7NPFj0ZOcadzf6t6AzGDkdncmBaymEXEutsNOFWiEn0N0WOyslCpkMuUyGXA5ymQyFXEZukZ4bybnkl1P8olbKGdLKm/Fd/OjRyK1a7SH3XUlm9qqzFGgNNPW05/cpXUyi1wajwJBvD5XxSeqlY2dUWnPgWgp7LicTci213BNto1LQ3NsBHydr1Eo5KoV4UytkqBRyDIJAVFo+15Pzym0FdScvPtiUFx+sXjVKZeRp9Iz4/jBR6QWoFDJ0BvHUb53du0Itn5LEY7VSzu4X+1rmlJXDlCWnOHgtldEdfPl6fHsLBpsHzZuLRq5EBuXtt+HDD8vsWjITb+Rux/a5fWo+W64FSdlFPLfiNOdjs5DLRDmEZ/s1wkp5fyiwG40CoVEZbD6fwPaLiWSWasnlaqfmwWBPBrfyplcT93ty/gRB4MC1FH49GMmp4qpXmQxGtmvAew+3Mq1u30locfu3rAIdAW62rJze3dTvOD1Pw9hfjxNZSkuxk78z62aKqzUX47IY9fOxMuHmY288UGmHhAKtnn5fHCQ1V4O1Sk6Rzig5djVg/9VkZiw/Y+r9W5kdOnQ9lSd/P4VcBptfqHi/qihZ/Wvu5cCOuX2qvhhevQpt2oiFXTt3wuDBFe66+1ISzy4/jVwG62b2pGNV4d7KyMoS+8pu2VKh3auKN9dfxM1OTcsGjgT7OBLgamvRxX/rhQReWHkWgF8nd2RI64pzDEsIjcpgwsITGIwC7z/Siid7BJo9fjo6k8mLT1KoM/BwuwZ8O769mURRfSC7UMeu8CT2X03haEQauaWqhWUyCPZ2pHmxY93E056mnvb4udiQmqflWnIueUV6DEYBnUGM9umL7+3USpxsVej0RqIzCrialEt4fLaZRmxDFxvGdvJjTOeGFvd7D4/PZuqyUJJzNHg4WLF+Zk+Tc7fxbByvrrtg8hGgHjp2o7/dw7lkrVlukLu9Fe39nGnp40ALH/GH4+9qa/GX9cTNdN7eeJECraFM+Ks0bw8PZnqxGGZdEB6fzaifj6IzCNio5BTqjDTxtGf3i33L/dELgsCTv5/i8I20WvVpvRCXxcgfjyKXwe55/cxyMSqkpGm2tbUYCrGyElft7sg7yS7QMejbEJJzNLVLYK4lRToD/9sUzpowUe+noYsNrw5uzsNtG1RrNlVXCILAhbhstl1MZMv5BLPvmbu9muFtfBjWxofOga73hZEVBIH0fC3R6fn8cjCSvcWq/l6OVnw5tl2Fq6A3U/N46vdTxGUW0szLnnUze5r0/a4l5fLwj0fMRKVfG9Kcwa28GfnDkXInaKVDthVxZwXuv92xy8rKwsmpZs5SbbiaKGoUag0CrRo4snV27wrty+xVZ9lyPoG2DZ3Y8HyvGn1nswt09P58P7lFerOep5Xy0ktihX5wsNgRR1Vx+GveX+fYcDaexh52bJtTy0mm0QgrV8LEibd71+p0lb5+XfHh1sssPnILeyslG2f1sshel7STVClk/PVcjzKObenk/IdaevHdhPb/+rCswShwNCKNdafj2HUpySxq52anpm8zD/o396BPUw+cbFRcSsjmckIOV5NyiyN+OeQUVdyN5U58nW1o5mVPUy8HHKyUxGYWsONiksmJlMmgfzMP3hwWbFFxTFJ2EU/9foprybk08rDj7xk92HYxiY+3X2FIKy+2XkgyTbzqnWPn9+Ia5Fa2NPdy4KGWXjzY0ou2vk61uljPWXWWzecTaOBszXN9GxOZmsf+qynEZpZdyRvRVkzMr6sfwe9HxBi7SiHDaBQwCPB/I1vxVM/AcvePTs9n0Ddin9Zvx7fn0Q6+NXrd6X+EsedyMiPa+vBjOfIGZTAaoWdPMRzr4yPKEDz2GKxbV2bXfVeSmbosrG5my7VAEATWn4nn811XSc4Rq9NaNXBkVAdfnukVdNcdvJIm0dsvJrL9YpLZyrCDlZLBrb15pH0DejRyqzJ/5p9m3ek4Fh2KZMOsntiqlVyMy+bFv85yM1WcmT7TK4jXhjQv92KZkFXIoz8dJSVXUyZHddmxKOaX6lQik8H2OX0Ijcrgf5vKdjCpqi/s+1sus/TYLbNipH+7Y9fp3Y30aulPtyA3ujVypZG73T9W5X0qMoPxC48jQKXOVkpuEQO/CiG3SM97D7dkSq/qFRaU8P2+G3y95zqNPOzY/WLfqn8HWVliP9e0NPjuO5gzp+JdC8SQbGquhuf6NuLNupxkajTQtSuMGAHvvAM2d6/bjN5g5PHFJzl5K4MmnvZsuiN3rjwEQeD5P8+wIzwJHydrts7uXaZYbmd4InNWi+kTbRs6sfipzuX2NL3fuZmax9+n41h/Jp6knNsT5mZe9gxr48OA5p608XVCbxQ4HpnOzvAk9lxOIi2vrJC0Ui6jsYc9zrYqVAo5SoUMpVyOSiFDqZCTXpyqVV61s41KwZDW3vi6WBN6K4OTtzJNx5zaO4g5A5tW+bklZRcx6uejJGYX4WijJKdQdBID3MRWo2N/PY5RqIeO3Q87zzOyc5M6S4pPyCqkz+cHTCuAzrYqfnuqM50CXMnM1xJyPYW1YXGcickyJVd6OFjx0aOtGdSqZlVhpREEgel/hLH3SgpudmrS87XYqBTserFvhe+xZIXC3V5NyKsDalT9eSUxh6HfHQZg54sWNOYG0anr3l28GrduLaq0d+9e7q4v/XWO9XU1W64lBVo9vx+5xa8hkSbFb2uVnNEdGjKzfyP8XOtO16lIZ+B0dCb7r6aw42IiCaVW5mxUCh4I9uThtg3o39zjHzknWQVabqbmkVWgw0alwEatwFatNP3tZKMqk2MTm1HA0O8Ok6fR80h7MVQjk8ko1Br4ZMcVU9/Q5l4OfDuh/J644fHZjFtwnAKtgQld/PhkdBtkMpmowbQszFTqD+Js+vibA1l1KsbM6QN4uF0DfphYcXP3MzGZTFp0wkzz6d/u2JVMXkvwcLBiSCtvpvdp9I8UA321+xo/7I/AxVbF3pf6VVg9X5LYbW+l5OCr/XGvTpV9MblFOvp8foCsAh1fjW3HY50aVv2khQvhuedEfbmICHCtOJd37+Vkpv0RhkwG62b0pFNAHU0yV68WV+9ArJr96ScxF+8uOeCpuRpG/HCY5BwNw9v68GOxZFBl5BbpeOTHo0Sm5dOnqTtLn+5KXpEeB2ulaVIbVpw+kVmgw9fZhiVPd6m19Mo/gd5gZO+VZJYdizYT93e2VfFIuwaM6eRHa19HtAYjB6+lsis8ib1Xks1W5BytlbRt6EywjwMtvMVIX2NPu3JTdjR6A1kFOuytlNhZKcnM13IjJY/rybncSM7l8I00szSTQDdbBgZ7cSM5l0PFhWM+Ttb8b0RLhrT2rvCzEwSBXw5G8PmuslJEe+b15WhEGu9tuVz/HLvaGGudwUhS8YVWqRATIn/cH1GmwbVaKee78e0Zeodw4IYzcXyw7YqpYvbBYE/mP9zKFAuvKZn5WoZ+d5iknCLc7dWk5Wnp3siVldO6l7uqpNUbeeibEKLTC6pc0aiMWX+eYdvFRAa38mLBE50te9Ljj4shiX794MCBCg1Z6dlyrROY64i0PA3/2xTO9ovm1WnejlY83K4BM/s3xtWuehcnrd7Iudgsjt1M4/jNdM7GZJmWy0EsEngg2Ivhbbzp18zzrsnAlIR6Q6MyuJmax82UfCKS8klOUGDIs0bQKTDqFQh6BXKlAbmdBoWNFmsnHZ2a2tMtyJWuQa60a+jMtGVhptw6oEyezoGrKby67gJpeRrUCjmvD23BM70CyxirfVeSmf5HGEZBDLk+X1zxnZanYci3h826RjzW0ZevxrVn6dFbJiFXgMYedux7uX+l733/1WSmLQurN8UTu89GcjFVx8nIdM7GZplC13IZDGvjw4x+je9qT02t3sjIH49wNSm3QsFiEHNFH/35KBfispnWO4h3algJ/8vBm3y28yr+rrbse7lf1ZXeBgN06CBq282ZI67cVcJLa86x/kx83ef9btwodsSIjxf/37OnKAs1fDjI634F/nR0BuMXnEBvFHhneLCpR25lXEvK5dGfjlKoM/Bs30acupXBxK5+jO/ib9onKi2fZ5aGEpmWj4OVkl8md6J3039Oi7Q6ZORrWR0aw58nYkwRELkM+jf3ZEynhgwM9sRKqSAtT8OfJ2JYcTLabHXN3d6Kwa28GNrah26NXM2+a0nZRZyITOd4RAY3bhpJiFaSlqQkN09Ao5Eh6BXIZEbsnA14eAj4+sho1kKgaYCaboGuGBFYFxbP1gsJprQShVzGAy08uZSQTUKW6Hv0bebB+yNblZsjHx6fzdhfj5dbofvq4OY8378x0/84ze5zt/6bjl18ViFXEnK4lpzL9eRcriXlEpmab3bRrYp3hwcz9Y4fT4FWz4/7I1h0OBKdQcBaJWf2A02Z0a9xrXKjTt3KYMJCcZlVrZChNZSf+FrChrNxzPvrPI7WSg6//gCO1kpO3crASqWwWLvpRnIug749hCDAlhd606ahBReLmBixkKJhQzh8WBTurEB+oHQC84bne9GupppSdciRG2lM/u1khY/7OFnTs7EbTTztxY4NNmK3Bju1kvQ8DXGZhcRlFhTfFxKVnl+mAtvb0ZqeTdwY3Mqbfs3u3sqc0ShwOiaTHReT2HkxiagIJUVR7hTFuaJLt0efZQvGqi8wCscCrHyyUPtkY+Ofgco7y8xfLy9PJy1Pwxt/X2DvFXHlbVrvIN4eHlzGuSsdei0tnBpyPZWnfj9ltu+f07rSq4kHiw7d5KPtYpWmDLj64ZAqC19KOiPAv9+xKz3uIp2Bk7cy+O3ILQ6VagfYp6k7M/s1pkdjt7sSpr0Yl82jPx/FYBQqTdov+RytlHIOvTYAL0drinQG4jILaOJp2cpPgVZP388PkJan5dPRbZjQ1b/qJ+3dK0qRNG4M4eGVyp+UzvutjQNaLjk5MH8+/PwzaItDe61bw/HjYG9B7nI1Kfk9KeQy/pzWje6N3Kp8Tsm1ogQ3OzX7X+lvJquRma/lueWnORWVgVIu4+NRbRjXxa/Ox19TLsZls+x4FJvPJ5gmOq52aiZ08ePx7gGmIoVLCdksORrF5nMJpmu9l6MVI9o2YGhrbzr4u5iu0+l5Go5EpHHgfDZ79xuJCbenKMYVXYa9RXazBKVzPmqfLDwb5zFqNDzay5XE7ELWnY4zVUJ7OljR0d+ZfVdS0BkF1Eo5X4xpyyPty6ZSXUnM4bnlp4nJKDDb3t5P7D2bka+lx/tbuP75mP+GYxedns/WC4lsu5DI5cSccvdRK+TI5RRXvFT9doPc7PhsTBu6BLqaGdCIlFze3XjJtAxcFwmoX+++xvf7I3CwVpJbpMdWrWDn3PJDsqXLoB9o4UlCViFXk3KrvYL34uqzbDyXwIDmHix5uqtlTzp2DDp3FvPuPvwQliwRZ8/lhERKNKWaetqzdU7ve16Zuv1iIs//eaZOj+lmp6ZHYzd6NHajZ2N3At1s72pO1KWEbFadimHnhRRiwx3Iv9yAwkgPjIVlVxttbAT8/WXY2YGtrXj9KyiAlBRISRHIySk7ToVjAXbBidgFJ6DyzEEmo9w8HUEQ+O3ILT7cdgWAyd39eX9k6zKrzO9vuczvR2+hVspZNb0bnQJczbaX4Git5MgbD+BorWL+pnCWFa+kf/ZYG7MVhoooSVGoT45daS4lZLMgJJKtFxJMq5N9mrrzxZh2eDvVfW7U5zuv8vPBm7jbW7FnXt9yq6EFQWDcguOERmUyuqMv3o7WrA6NpV8zD76xpOK+mN+O3OKDrZdp4GTNgVf7W2YnVq+GRx6xKL+tRLhYJhNF3rsEupKWp6lR+LhcEhPFlcOffxZ73G7bdvuxhQvB11fUAQ0IqHg1LzcXTp2CuDhxFVCnE2WmGt4OTwuCwEtrzrPhbDzu9lbsfalvlULDRqPAkO8OcT35tmRGeVI1Gr2B19ZdYNM5UddwaGtv3h3RstKq9LuJRm9g+8VE/jgezdmYLNP2Nr5OPNUzkBFtfUyT5mMRaXy//wYnIm9HGtr5OfNMr0CGtfExrcwZi/PsluyPZ/NGOTkXfdHEuSBOIW+jsjLiF2DAP1DAxVmGk70cBzs5BRojMXFGkpIFkpNkpMTfWTwjYOWXgXeHFMaOgW4tHfhx/w2i0kUnrVOAC4IgcKb4/cx7sBlzBjYpc73ILtAx96+zHLyjd/Optwfi6WDN9EWHWPxsv/rr2CVkFbL5fALbLiSaqagr5DKaetrT3NtBvHk50MzLAV9nG9OFR5Q7ySUuq4CbqflcS8wlNrOAjHxtGaevbUMnpvdpxNDW3qYEX0EQWHc6jrc3hqPVG2nj68RvT3W2uOflnZTWiPJxsiYxu4gejdxYOb1bmQ8+NqOA/9tyybRiUsKUnoG8N9K85Vdl3ErL58GvQzAYBf6eWc0cFL1eDImEh1cYEhE1pUJIy9Pe0yrZEv4KjeH1vy+W2W6tlNPK1xFHaxU2KgVWKgX5Gj05RWK3hnyNHhc7NQ1dbGnoYlN8s8Xf1fauO3KAqRfqLyE32X+ykNyz/uRfaYAx//Z3zdZWoG9fGQ88AO3b315YBYG4zEKK9AYEAYyCcPteqyT5pi1hYTI27yni1FElBs3tyYmVbwZejx9HJoM2vo5snNW7zMr06lMxvLnhIoIAYzo15LPH2prtYzAKzFhxmj2Xk3G1U7NpVi/8XG3R6A08+tMxrpSahJXudTn652OcicnE39WWkFf7V3mOBUFgzqqzbAq9WS8duxJiMwpYdDiS1aGxaPVGnGxUfDyqDcPbmq+qGYwC6fmaGifEF+kMjPjhCBEpeYzq4FuuoyYIAr8fucUHxc59Cb2auPHntPLzbyt6rX5fHCA5R1NppKI2lEgxNXSx4c1hLXhrfTibX+hFgFsd9k7NyhJvgYHi/+PiRN3PEmxswMtLvLe2Fu3mlCniYxcuQLt25sdzcYFFi8RCtWIKtQZG/niEGyl5TOrmz8eVCM0LgsCH267w25FbZtsVMtj5YtlOR4Ig8P2+CL7ffwODUcBWrWBSN39eH9KiTkX6KyM+q5CVJ6NZfSqW9OK0J5VCxvA2PjzRI5CO/s4mW3A6OoMvd103LbAo5DKGtvbmmd5BZhGGzHwt607H8cvaLK7t9abghhcYbk8eAhrrGfSQjCEPKejcWbSbMplAUk4R6XlaCrQGCrR6inQGCrSiHQ3ysMNdbc+1iyqOHjOyfouei6dLOdlyI4HPhzB1sBdqpZzFR26h1RtRK+S09nU0OXejO/jyyWNtykxmjEaBb/Ze54f9EaZtLz/UlNkDm/He32H835gu9c+xi0rL5+eDEaw/E2/SvpLLoGdjd0a09WFwK+8K9bYsIV+j40hEOmtCYwm5nmp6jQZO1kzpFcjj3QJMRQunozOY/sdpMvK1NHCy5venu1hWjFAOJTNLhVyGUi5DozeWCYUIgnih3HUpuczzh7b25pfJnar1mq+tO8+asDh6N3FnxbRulj9RpxPlB378UZQAuHhRlCG4g9IJzH9O/Wd7yd5JiQyAnVpBp0BXujdypVuQG218ne5LoU6DUWBneBK/HLxJ2Ck5OacaUXjDi5IZpru7wIQJMsaOFetYlEqBm6l5XIzPJjw+h/D4bC4lZJcrJVKCg5WS1r5OtG3oRHN3ZyLPOLJ2DYQdtsG2VRxuQ247wgFutqyb0bNM8/KNZ+N5ee15DEaBEW19+GZ8e7MLQYFWz/gFJ7gYn02PRm78Oa0bcrmMG8m5jPjhiCmcLQP2vNSXJp4OpOZq6PnpPnQGgYVPdLKoWMlgFOj5/lZO/d/IeuvYlRCRkse8v86ZJrSjO/jy3iOtcLRWkVWgZc7qc3g6iPI0NeVsTCaP/XIMowCrpnenR2Pz0N8nO66wICSyzPOaetqz56V+1Xqt5cejeHfTJTwdrDj02gDLUxgMBvjrLxg3DpQVR0xyinQM/+6wmdrB8/0b89qQu5j/e/my2Gv78mW4du12uLaEmTPFVT4QHcKePcXVvYYNRUfvTHF0Ydo0+PZbkyh8idC8rDjNpaL0mz+OR5VbbQ7Qyd+FdTN7lDthupqUwzsbwk39l23VCuY92IxpfYLuyiQ2T6NnZ3gS68/EcTwy3dRGy9vRmsnd/Rnfxd/M5oTHZ/PV7mscKF7RUsplDG7lzYAWHgiCmIuXka8lPquQM9FZ3DxrT/aJxmhib39/mzQ38OxUBRMniqdbqzdyKSGb09GZnInJ5HR0pklNoTJ8nKyLtfAcaGTjTnSoG0uXG0nL1eL0+EFADBs/2SOAM9GZpmKK5l4O3EjJxShA1yBXFkzuVK7Psjs8iZl/nsEgCKZezp9uOsu7j3WuP47dmYh4/ghLYdO5eFM4omuQK4+0b8CQVt7V639qIWl5GlaciGb58WjTDMLP1YavxrY39W2NTs/n6aWhRKbmY2+l5KfHO9KvWc06HpRIkfg62xCfVUgjdzt2zzOXAsjX6Bm34DiXEsxDzp0CXPh7Zs9qvV5sRgEPfHUQnUHgr2e7082CvA1ANKRr14padrduwbBh5iGIUry14SIrT8bg7WjNzhf73LM+heHFPVdbN3C87yRGSiMIArsvpfDhlivcuKQmK6QFmrjboe4RI+DZZ2HIEFFKq6Tkf8PZ+HK1GNVKOfZWSsSFNBlymVj3klWgK7dLS7CPI2PbBNLVz5NTyQksOxZFdHHOh72Vkq/GtWPwHY7WjouJzFl9Fp1BYFBLL36Y1MFsFhqdns+Qbw9TqDPwwSOteKJ4VWbhoZt8vP1254MW3g7sfLEvcLv/pcUitsCp67F0a+5f7x07EC9G3++7wc8HIzAKorbWvAeb8sOBCKLTC7BRKTj59kCTlmBNeGfjRVaciKGdnzMb72j/VaDVM/bXsnbIyUbF+fmDqvU6Gr2BB74MIT6r0OLiAAQBBg4UC7kWLBB/FBVQoNUzbVkYx27erqL0cLDi+BsP/DO2QK8X7WRGhpiXXFgIHh7QqYKJuFYr5u999hk4Ooq6fQEBpodLlAda+zqyqZyVdBBXQteGxbLwcCSxGWXlu74Y05axncvPpTMaBb7ac42fDtw0bbNTKxjVwZdXBjevtQ3X6A2ciMxgw5k4dl5KMqts79HIjSd7BPBQSy+zzyYqLZ/Pd101FcCVFCfsuWy+yGHUKDBqlegy7MgKaYE2UVy9UygFHn9cYO4cOR06iHb26M00Vp2KYd+VlDK2UCmX4WavNikJ2KpFNQGDUZxAl+f4udurGdXBlyHNGpJtKOSjbVdMMlFNPO15qKUXvx+5hUZvxN/VlvQ8DflaA0Hudvw+pQtB5RRVnIxMZ+KiExgFmPNAUzQFebw1qlP9cez8561BphZzzh5o4ckLDzSxWCdNEAQi0/JJzikip1BsjF7SJN1KJSfQzY4gdzsC3GzLnS0W6QxsPpfAd/tuEJ9ViEwmJo2/PEjU88oqEBNQT97KQCGX8enoNhX+aCojNqOAB78OQaM3Ym+lIE9j4KNRrXm8W4DZfknZRYz88TApubdngX6uNhx+7YFqv+bbGy7y58kYejRyY9WzFoZQ9u8XjWrJLFmvhx07RG/jDgq0ekZ8f4TItHyGt/Hhx0lVl+v/VzhzRoxmR0WJt+tJucR5XkanLCLzUHMKb4gOlEIhMGWKjFdegRYtRHX1rRcSWHc6ziwHxUaloFUDR1r7OtHG14nWvk409rAr9+KlNxi5kZLHhbgsLsRlczE+myuJOaZUBEdrJeM6+/FEjwByi/Q8/+cZU1LvuM4N+d/Drcz6he6/msyMFWfQ6o0Mbe3NT5M6mjljJVWvpfNHtXojQ749ZCYXUKLRWFrE9rsJ7ctNNr6Te9nBoTbUZtynozOY99f5MgnXQLm2ozqk5BbR7/ODFOoM5RZSJGUX8chPR8pc5K5ZUPRyJyWpEu72ao68/oBlq3bffQcvviiGOG/cAIeyRRuxGQVM/yOs3HZSlq4G3zMOHBCLNB55xGxzaq6GB746SG6R3myiVB56g5Ht4Un8evCmWf65SiHj+BsDcXcof0GkdOeL0siAlj6OvPBAEwa18raocFBvMBKekMPRCFFBIDQqw8yRauRux+iOvjzS3reM0kRGvpbv991gxYlo9EYBmQweadeAkY2aEX3Jlo//iiUhRoE+2xqrhlnYNU0iJ7QRBdfF76pCZWTOCzJeeklGw4bid3ptWByrQ2PMHF4XWxWdAlzoGOBCJ38X2jZ0rlTJILtQV9xzNpfLCTlsu5hkVu3fzs+ZcZ0aojMY+X5/BBn5WmQymNjVn13hiaTn63C1U6OQyUgtzvnc8HzPcpU2Vp+K4Y31F1HIZIxu7cKXk3vWH8fO78U1DOkQxOwHmlZZxSkIArEZhRy7mcbRm+kcv5ludtIrQiaDBk42NPd2YHgbHwa39ja7eOUW6fhg62VTV4OmnvZ8M749rX2d0OqNvLH+AuvPxCOXwYInOvNQy8qV88vjh303+GrPdeytlORp9Hg4WBHyav8yxRnh8dmM/vmYqQJIpZBx/cOh1XaaErIK6fv5AfRGwfIKWYCHH4atW8XqtJs3xVDshQvlhkQuxGUxurht1Jdj2zHGEs2q/wAffAD/+x/IrXQ49b6OXes4co41JScsEAQ5INCvn4w//xSjNHkaPYsORbLocCQFpcrq+zXzMCv5rylZBVrWhsWx/ES0yVGQyWBwS2/eHNaCladiWHgoEkEQJxJfj2tPl1J9gY/cSOOZpaFoDUZeeqgZcwbe7mtsNApMXHSCk7cy6BbkyqrpoqTPgaspPL001LSfnZWCc/8bhEohN/WDDXSzZc9LVcth/BcdO6NR4NMdV1l4uGxYtI2vE1tm967V2Eraf1UkJBwen81jvxwzu1AfeX0ADV2qJwWlMxjp/8VB4rMK+XhUGyZ1s6BCVquFVq1ETbt33hF/UHdwKy2fV9eeN4UWS9O/uQdLLS0cu5/Yt48/BB/+t/cWDtZK9r/cv0yKxJ0IgsDhG2l8s+c6Z2OzALFic/vcPuUWkty5ml4eSrkMX2cbAt3taOBsg6+zNXZWStLyNKTmireUXA0x6QVmrb1AlB8Z1sabUR18ae/nXOa6VaQzsPRYFD8diCC3WIOuXzMP3hzWghbejuzadXsdQd0gE9dBFymM8CL7eJPiHDqBzl2NbNmkwNtbdPC/2n2NrRcSTelVDtZKRnfwZVwXP1r6ONZqwUFnMBJyLZU1YbHsv5pieo0W3g68ObQFuy4ns/JkDCA6kXlFenRGUV3DzU5NfFYRTTzt+XtGT5xszVfZBUFg5orT7LyUjItSx7mPRtUfx+7UtVi6NKvcIcgp0rH6VAwrTsSUmcGqFDJsVAoMgoAMEBBX8/UGAYMggCB2fyiNtUrOoJbil693U3fThWXv5WTeWH+RtDwNSrmMVwc359m+Yvjgjb8v8ldYLNYqOSund69294XShRQlVbIvP9SM2aUukiWUyIqUcP5/g8p8KSyhpEJ2ZLsGfF+JKKwZV66I/RsNBjFcoNVCSIioyl4OJZWLdmoFOyqo+P2vkZYm0PTBBOz7XkKT4ELGnlYYcsTzolCIKTjPPiuG3VadiuH7fTdMKQFNPe0Z19mPRzo0qHPVeKNRIOR6KsuORxFyPRVBEPPx3hwWTCMPO15ec574rEJUChk/TOxgtpKzJjSW1/4W5UcWPWk+uYlJL2Dwt4co1BnMuqw8veSUKWcG4MkeAbz/SGvyNaIcRnq+ZXIY/3bH7tFv9tCsoSctGzjSsoEjLbwdcKgilGo0Cvx5MpqPtl2hqJzQemW9Xy0aW5GOfp8fILNAV+FnsOtSEs+VskPrn69Z15mSbjyN3O3Y+1I/yzrErF8vFhjY2MD162aVpCUYjAJLjt7ii13XyoTcqupJfN+wcyf8/rsYzt23D8OuXTxyzYbw+BxGd/Tl63HtLT7U+jNxvPH3RbQGIw1dbFg1vXuZlaL3Nl9i6bGoOhu+o7WS7o3c6NXE3SQrVZ4jZTQKbD6fwBe7rpn06oJ9HHl7WLCZxp4gQIcuemKcrqP2ySJjZxt06cUrtjKBDz8SePtNOblFOn4+eJPfigsYADr6OzOpWwDD2/jcFX3RtDwNf5+O45eQm2QV9wMf17khPk7WfLfvdkFEcy97riXnIQMcbVRkF+roFuTKH1O7lpmgp+dpGPTNIVIzsu4PHbtDhw7xxRdfcPr0aRITE9mwYQOPPvqoxc+3xFgnZBWy5OgtVp2KNXUYkMvA2VaNVm8gT1NxArmleDhY8dJDzRjX2Q+FXEZGvpZ3Nl40xfyn9wnirWHB6I0Cz/4RxoFrqbjYqvh7Zk8aeVRP1+jAtRSeXhKKXAZGQcxtCnm1f7l5hKV/gJb01yyP8PhsRvxwBIVcRsir/S2fbc+cCb/+KpZh7tx5uyKsHAxGgQkLRXmEjv7OrHmux32d63a3ScvT8M6GcLafTiNjT2vyL98ONTo6wr590KmTwLaLiXy+85ppohLoZsurg1swrE3FKuZ1yfXkXF7/+4Ip5NujkRvvjgjmh/0R7AhPQiGX8fW4dmah0hLJErHHZU8zXbMSPS4blYKdL/YhwM2OyNQ8Bn1zyDTLVcjg5FsDcXewNslh+DhZc+CV/pWG6O6VY1dXNu7OzhMgFq0Mbe3D4938KxVEj0kv4OW150z6WSVM7ubPh5VUT1pCSeGRt6M1B18t/zMo6WsK8PawYKb3rX5v7TyNnp6f7COnSG95mFQQRJmRo0fFKtMlSyrc9WZqHq+uPW+qSgQY26khX9SiyOQf4dAh6N8fSl+mP/+cs+OnMfqXYwiCKOVSkvdtCZGpeUxadJKknCI8HKxY9nRXWja4/Zt59o8wdhfnr/k4WdOyuBd7qwaOtGrghJejFfFZhSRkFZGQVVj8dyEFWgPu9mo8HKzwdLDGw8EKbydrmnk5VBm2PRaRxsc7rhAeL4aMvR2teWVwc0Z18C3z3GM303j+t3Bu7fcj52QjKF6uUagEtmyS8dAggTVhcXy955qphViPRm68NSzY8qhULcnI1/LZjqv8FRYLiNGP0h+hUi6jT1MPDlxLQSGXoVbIKNQZebhdA74b377MxGbXpSSmLz58fzh2O3bs4OjRo3Ts2JHHHnusTh27pOwiPt95lc3nE0wXBXsrBQYjZgrOSrmM1r5OdAl0oU1DZxytlVirFNioFFirxITIiNQ8riflcjVJFDYuveJX+gNp4+vE/z3Sio7+oi7N70ej+GCrqJg/sasfHz7ahiKdgYmLTnAhLhs/VxvWz+xV5VL5nZT8sOysFORrDDzdK5D5D5eVMxEEgV6f7Schq4gHWnjy+5Qu1XqdEh5ffIKjEelM7R3Eu5YKeSYnQ5MmkJcHf/4JkyZVuntsRgHDvjtMrkbP7Aea8PKg5jUa67+d7RcTeWdjOPGXHEjf3g5Drg3iGrKMoCDYvRtcfbS8uf6CqQLa3d6KuQ82ZUIXv39MfqCEkhWPL3dfo0hnxFol5/UhLQiPz+bvM/HIZPDZY20ZV5xXqjMYeeK3k5yIzCDI3Y6Ns3qZRFGNRoFJi09wIjKDrkGurC4OyX607TKLDt+WZhjQwoMlU7pSpDMw4MuDJGYX8b8RLXmmd8W9Se+VY1dXNm7l4SskFsi4nJjD5YQcs7Z0JY3FJ3cPoH9zz3IvkkajwLLjUXy07YrJHqoUMs7/bxC2NWg/WEKRzsDAr8TihjeGtmBGv8Zl9hEEgX5fHCAmo5BWDRzZNqdPjV7rs51X+eXgTboEurB2hoXFYKVbHp45I2r+VIDBKPDbkUg+3XEVoyAuABx7Y+Bd0QOsNYIAc+eKS/eGOxYnJk2CP//kzfUXWHUqluZeDmyd07tatiE5R2w+fzUpFwcrJYue6mwSPt56IQFnGzUtGzjiWguVCUu4lpTLJzuumLTb7K2UzOzfmGd6BZVZUSvUGvho+2V+35pB2pb26FJuO2n2Dkb27pHjFpTH3NVnTYU9jdzteGtYMAODPe9JfvdvRyL5aNsVs77WJSjlMroEunA8MgNrlRyd3ohBgJn9G/N6qaptQRCQyWQM/WIXO18bcu8dO7MXksnqxLETBIHVobF8vO2KKXbv6WBFZoG5Dp1aIaNVAycGtPCkVxP3MtIWBqNAbpGO7EIdaqUcLwdrk5ccm1HA6tAY1oTFldv4d0ynhrw+pAUeDlasCY3ljfUXMApij8uvx7Uju1DH6J+PEZNRQBtfJ1Y/271avV1jMwoY8OVBMwO976X+5YYwj0SkMnnxKdQKOaFvP1ijcOzBaylMWRKKnVrBsTcHmqmTV8rHH8PBg/DFF6IW09GjYleKxmWNP8Cmc/HMXX0OgMVPdubBGuQh/lvJLtTxzsZwNp9NJOv/uTvr8CjO7v1/ZjXuHoK7u7uVUqfUXal7qXv71oUqdeq0VKC0FHd3J3iUuNv6/P54Zia7yW6yG+j3ffnd19WrYXV25pnzHLnPfdZ2pnKLEJQOCxO+8cCBorn4QFkhM3/dS1GVFaNe4q6xHbl9dPsWzQY+k8gsqeHx3/Zp2lE3DW+LxeHkp60iInUncpdUW7nwww3kltcxtks8X94wSHNGsktFSbbW5uTli3ty7dA2VFrsjH9rtceA7r/vHUmP1Eh+2prFE7/va3ZG8v9CKfZM2TgQGlxbTpbww5Ys1ilSCSA6YB8/tyvn9072ulGdLK7hhi+3kKXIe7RECqkhft2RwyPzlIk3M8d7tTH7ciq44MP1SBJsaqGzVFBpYeTrK7E75cBKulddBdnZYnZrQ004L9ibU85lszdhdbjolBDG3/eN+p+UPeKff+CSS8DaYA/q1g0OHqSsxsb4t1dTVmv36XQ3hYo6O7cpowRNBh0zz+nCTSPandY0JX9xrLCKWSuO8dfeU8iycHKuHdqGe8d39FqdOlpQxd0/7GLHsijKlvdAdugJDZWpqZFITnGxfJnEvppsnv/zIHV2J5HBRu6f0Ilrh7b5r17bdUeLePqPfWR66U4G0fTWISGU/bmVGv0KRPPT1YNbs+pwIW8tOcJPtw/l69UHeHBqv7PPsbNarVjdFnFlZSVpaWnaD2m4uaREBVFabdP4JfFhZop8NEoY9BKRQUbsThcOl6wR0FUEG/W0jQulfZzokh3dOZ6+aZGsTC/ihy2ZHsYVRGv/R1f3Z2SnOP7ae4oH5u7G4ZKZ0DWBj67pT16FhUs/2UhpjY0pPZL45Nr+AUUMj/26l5+3ZxMdYqSs1s5FfVOYdWVjDpwsy0x+V0yj8FsuwMtnTHlvHYcLqgIzEE6nIISBcO5mzhRdXPPn+3yLWqoLNxv4896RxISYWuSMnk3Ym1PO3T/u5GSmi5KF/bFki7LJjBliT3rtNfj2RycfrD2kzTDumBDGe0pzzumg1uZgy8lScsrqKK22UVpjpaRGiG8mRwbRJlYILreOCaV9fGiT5U5Zlvls7Qle/UcQqy/sk0x0iEmbFnFh7xTGdo1nWv9W7M+tYPrsjVjsLu6b0ImHJnXWPkflU8WFmVk7UzQHufPzQHBhfr9rBHani4nvND8j+Wxx7Jqzcd5wsriGH7dkMm9HjsbbGd81gZcu7qmNVXKH0yVz9w+CcA0tp2m4f97UWcI+NDUD+tKPN7Ajq5z7xnfkoRZm5B+dt4d5O3KY2iuJj6/x0yGtqREjVgKwr8cKqzjvfaGl2Jzg738VS5cKm2pxkzOSJBENhoRoY/WCjDqWPjAmYP6yxe7k/rm7tOpA/9ZRvDG9Dx0TzvxoNBAl8fdXHOXPPae0StjUXkk8ek5Xr5IfAPO2Z/P0r4fI/bsbNftFZeCcc+CTT8SQjg8+tfPxtn38vTcPEELZ717et8VDA1SUVFtZe7SIjOJaSmqslNbYKK62UVlnJzGi3namxYTQNSncp+i1xe5k9prjfLjymJasgfpqYHiQgdhQExkltcSEmiitsaHXSXROCOOQ0tH98+1D2ZuRx+0Tep19jt3zzz/PCy+80Ojx8vJyft9fyuuL07HYXZgNOmJCTZp2V//WUcyc0pXD+ZU89+fBRu9vCmaDDofT1ah5AqB1TAjT+qdyaf9WnCyu4en5+z3KtHpJ4vkLu3PdsLasSi/kju93YHW4mNgtgU+vG8jenHIu/3QTdqfMG5f2DmgOX2ZJDePfFtMhVCx7sLFqOMCPW7J48o99tI4JYdUjY1sUcc3bns2jv+4lMcLMupnjA49y3BsqVq6EceO8vszmcHH155vZnllG+/hQaq0Ovrhh0L864Py/BVmW+WZjBq8sOkTVyWhK/xyAvcZEeLjgQk+fLl6XVVzLbd9t53CBuIlvHN6Wx8/t2uJ5s9mltaw6XMjK9EI2Hi/RiMPNIcSk55weSVzcL5URHWJ98iD/2JXDo/P24nDJjOoUR3JkkNYt3rdVJPPvEd2YaoZWr5NYeM9Ijcdjc7gY//ZqcsrqeGxKV+4c28FjuLyKpQ+OpnNiOL/vzOGhX/YQH25mw2Pe1+bZ4tj5snH+HLfF7uTTNSf4cNVR7E6ZUJOeR8/pwnXD2nq95+/5cSd/7c0j1Kxn4T0jA+b7ukMVHDcbdKybOc7rpvn33jzu/nEncWEmNjw+vkVd2kcKqpj87lp0Eqx6ZOyZnRDRAKvSC7l5zjZkTl8e5l/F8uVCicDdudu8GYYMQZZFx/nmE6WM6hTHtzcPDrjkqFbBXvn7ENVWByaDjocmdebWke3OCBdaHen1/eZMlhzI18qS5/RI5P4JnT34fe6osTp4ZsF+fl5ZStHvA7EXRaDTybz8ssRjj4kpbbuyyrnnx53kltdh0Ek8PLkLM0a396/5pgFkWeZwQRUrDhWy4lABu7LLCcQ76pUayUV9U7igTwqJXu6PjOIaHp63hx1uXdpxYSaKq23EhprQSVBUbcOgkzwcQIAXLuyB01LDLRN6nn2Ona9o9u6v1/NXejkgShF5FXW4FE/3sSlduXpwa3Q6yaPU1xDhQQaSI4NxOF2U1tqoqLXT8IfrdRLhQQaMOh0VdXZNTgREFPDgxM6sSC/kszXHPRzB64e14dnzu7M9s4zrv9qKzeHS1M1nrznOa/+kE2LS88/9owIyVA//soffduYQH26iqMrGVYPTeHVa70avq7U5GPofQTz+8oaBTOgWeHRudTgZ9foqCqusvH1ZHy4NRJakqEjMj924EbZvF+WQHTvqs3kNUFhpYer767TSm6+xVWczKi12Hvt1L4v25VO9qw1lK3oguyT69BH6zp2URue9OeXc8s12iqqsxIebefuyPoxuocj1jswy3l12hPXHPLPLqVHBdE+JIDbURIzyX4jJwKnyOjYcL8blksksrdWyQSAMzgV9Urh1VHuvWaHVhwu58/udHnxWFcuVKRIAd/2wg0X78umVGskfdw3XNorfduTw8Lw9RAYbWTtzHJHBxkbyJ0PbxzD39mHYHC5GvL6SoiorH1zVjwv6pDT6zrPFsWsqY7e3wEbP1IhmRWCPFlTx+O/7tA1iUNtoZl87oFEJy+ZwcdXnm9mRWUbHhDD+uGt4s522viDLMpd+spGdWeXcM64jj5zTOCNnd7oY+fpKCiqtfusPesONX29l9eEirUPab5SXi/T3wIH1UVMzUDv2jXqJn24bysC2/jch/J9i5Uo499z6KRZvvAGPPgqIZogps9Zhc7g0LciWILe8jid+38faI4Lv1iE+lGuGtGFa/9QWCROrI71+3JrFSTe9ykndE7l/Qqcmg/mM4hpu/247e7eaKZrfH5fFREKCzNy5kpYzWHogn3t/2oXV4aJNbAizruzncxpHc9h0vIS3lx5uJI3TIyWC3q2iiA8zERtmJjbMRJjZQEGlhazSWjJLaskqreXAqUotCSNJolnj9tHtGdslwePzVCf6mfn7NeetTWwImSW1JEaYfU69uHJQGt1iDdw4rsfZ59g1hHvHmCEohHZxoZqa83m9k3nu/O5a5FhcbeWx3/aywm2Oqtkg0SY2lBqrU2ufdodRLxETakKWxfu9ERzNBp3WJq+T4JohbbiwbzLPLTjAwbx64cuRHeP46Or+rDpcyAM/7wZg1pV9Ob93ClcrGl79WkcxL4CO0BNF1Ux8Z412XCaDjk2Pj/fKQVAJ6KM7x/PtzS3TZ/p49THeWHyYrklC8d/vyO/PP0W5IChIjESoqhJDsG++2atz53C6uPzTTR4das2R488mHC2o4rZvt3OysI7y5T2p3C1kIq6+Gr74on5++dID+dw3dxcWu4uuSeF8deOgFskvNBy1o5NgYJsYxnVNYEK3BDr5kBfYm1POhR9u4IqBabxySU/25FSwYHcuf+3No1SRVgky6rhzTEdmjGnvkUE8UVTNjO92cLSwutHnto0NYfEDowky6imssjDx7TVUWhweHZNOl8w5763lWGG11kwjyzJT31/vMUd23cxxpMWE8O6yI8xacZSBbaL51cuUlbPFsWsI9bjzi0q5/KtdGA16vrl5sFdn2h0ul8wPW7N4/Z90qq0O2saG8M3NgxsFjoVVFi74QAgJT+6eyOxrB7QomwFiysidP+wkOsTIpicmeM0ov7/iKO8sO6KV0luCjceKufqLLQQZdWx6fIL/YyJfew2eeALatxcVBJNJOEIm3++XZZl7ftzF3/vyiAszs+CeEc2e+/8aVq+GSZOEKPyMGUKVQIGq+xgTamLFQ2NaPFpTlmXmbc/hpb8Panwvk0HHeb2SuaRfKl2SwkkIN3u1Jxa7k52ZZWw4XsyGYyXszSnX9q4ws4Fp/VO5ZkgbuiQ1rjq5Y+2RIpGF25Qi+HQuHYMGwR9/CE1PgO82Z/Lcgv24ZBjXJZ73r+rXoqBlR2YZ7yw7zIZjJdpvHdkxjgndEhjfNYHkSP/WQkm1lUX781mwK9fDORzfNYFnzu/eqMxcWGXhko82kFtuIcSkJyrY6NEw1RB9WkVyWe9YrhvT/f8fx67LzF+Jjooir8JCsFHPW5f18Rh+ve5oEQ/+vEcTIo4NNdEpIYztmWWaV2w26BjcLgaLzck25cTrAPcilV6CELNBax7ILavTsnp6naR55DGhJh6c2IlV6YWsdNPg6psWxY+3DeH9FceYveY4ZoOOeXcMIybUxLnviY7QhuKtzeH+ubtYsPsUkcEGKuocPDixM/dPbPz+rJJaxry1ClmGFQ+PoUMLyi4VtXaGvbaCWpuTb24e7P94NFmG0aNh/XqhZbd1q3Do1q4VcxAbwJtOktmgY9UjY88OXakmsORAPg/9vJuqSonKvwZRcTxGdI6+Do88Uk8D+nL9SV7++yCyLMQ3P7w6cMNUXmvjmQUHWLjnFCDW6PT+rbhnfMcm5TFU3DJnGyvSRSB0Ud8U3r6sDwa9DrvTxbqjRXy65gRbTpYCIuv3yDmdubhvKpIkUWmxc/9Puzw06NwxfUAr3pzeG0mSNP5ckFHHkgdGa87H4v153PH9TkJMetbOHEdcmJk/95zivp/qVe9Hd4rj21uGUFBpYcRrK3G4ZK/6bGe7Y+cud6KXoF18GH1aRTGuazyjOsb75KEeL6rmhq+2klNWR1yYia9uHETvVlEer9mVVcYVn27G5nT51MX0B06X6H7NKavj1Wm9uMqLrl1hlbhOdmeAoudukGWZ8z9Yz4FTlYHZy5oa0bhVUADvvits0JtvChHjJpy7WpuDaR9vJD2/inZxofw8Y+gZ14c8Y1i3Toxx7NkTNm3SHrY5XJz/wTqOFFSfERmXKoud+btP8eOWLI9ACwRlo21sKClRQVRZHJTV2iirtVNWY2tUQuyZGiGSIX1Smm0Ak2WZz9ed4NVF6ZSs7EbVNhEEXnMNfP65CIhdLpk3lx7mk9Vi5NmVg9J4+eKeAZeMy2psPPnHPv7ZLyTLjHqJqwa35u5xHb2WUQNBdmkt327KYM7GDOxOGaNe4vphbXlgYicPG19tdXDhB2IyU1pMMMVVNq8VEBBJqmfPac+1o7v5ZeP+1XaR6upqdu/eze7duwE4efIku3fvJisrK6DP0esk8iosJEaYmXfHMM2pszlcvPrPIa77civF1VY6xIdy+cBW2JwuNp8sxeGSGdEhlmuHtqZnSiTrjhZrTh3UO3XqZuuUocriIKesjhw3pw7QnDqDomP3zIIDGA06rhxUX7LcnV3Ond/v5IGJnRjfNQGrw8Xt3+7ApNfx0sWipDBrxVF2K+rf/uCecR2RJKioE9HTd5szsHi5+K1jQxivpH2/U8jsgSIyxKjJVgT0GZIkomUQTh0Irp36mBu+2ZjhVfzS6nBxz487+R/Wy24SLpfMu8uOMOO7HVQUmaj4ZRQVx2MIDYWFC0XVRF1n7684ykt/Cafu6iGt+fKGgQE7dbuyyjjv/fUs3HMKSYKL+6aw/KExvD69t19O3d6ccs2pA1iw+xT3/rQLm8OFUa9jfNdE5t4+lA+v7kdKZBC55XU8+PMebvt2O9VWBxFBRr64YRC3jfKeZVVLMACXDWzF8A6xWOwunvxjn3aNz+mRRK/USGptTj5WZlNO7ZlEGzcC+LqjxZRUW0mMCOLcXuK+b+n6/jdwpmycO5wyHCus5redOdzz4y76vbSU6Z9s5OsNJ7V7/6+9pziUV0mH+DB+v3M43ZMjKK62ceVnm1l1uNDj8/q1juZlN/uTnl/Z6Dv9gV4ncaMiLP3V+pNe79WE8CDOU67Tt5syWvQ9kiRpou8/bMnE4fSPI0poqJhCAfDww3DffaJbNr3pKQohJgNf3TiI1KhgThbXcN0XWymrsTX5nv8aRo0SuqEZGaKBQoHJoOPVab2RJJi3I4eNDegYgSI8yMh1Q9uw6L6RLLh7BFcOSqN1TAg6CWptTg7mVbL8UCFbTpZypKCaoiorDpdMQriZS/ql8tZlfdj0xHj+uncUVw1u3axTZ7E7efDn3by84AiFf/TXnLpXXoHvvhNOndMl88ivezSn7sGJnXl1Wq+AnbodmWWc9/46TYvzioFprHpkLC9e1NNvp67a6qCk2ur1HkiLCeGp87qz+IHRjO0Sj90p8+X6k0x4e43HvRdmNvDT7UNJjgwiu7SO1Cjf3211yJTWND9BS8W/mrFbvXo147yQ6G+44QbmzJnT7Pvdo9k+7ZP5/PqBWht9dmkt9/y0iz2Kk3RBn2QOnqrUSrVdk8Lp3SpScJwUWRQJ4ZnbvHVK+IFgo17zqNUJFu3iQsmvqKPObZjxtH6pPHdBdy6dvYljhdX0bx3Fz7cP5cFf9vDX3jzaxYXyz/2j/CbH3/3DTv7el0eQUYfF7uKN6fW6Ye5Ye6SI67/aSpjZwOYnJ3iMRPMXxwqrmPjOWvQ6iY2Pj/dvoa9bB089Jf7vjqlThYaHGzJLavh2Uya/bM/WUv3ueHxKF+4Y673z8X8VNVYHD/2ymyUHCrAVhlM1fxjVZUZSUsTktX5uzcyfrD7O64vFRvPoOV24a2yHgMjOsiyMxGv/pONwybSJDeHDq/o3mxk5UVTNX3vzOFpYTU6Z4IR4a6roEB/KJ9cOoLNbk853mzJ4ZsEB7d9dEsP54oaBmgP5y/ZsHv9tbyMqg1Ev8de9o+iSFE5GcQ3nvLcWq8Nz/apr1qTXserRsaRGBWvNQCpUdf3tGaVMn70Js0HH5ic8S3T/rYzdmbRxDQWKdRIkRgRpTWIgpJ2Gd4xjwa5cznXrHK2y2Lnrh52sO1qMXifxxfUDGdfVk98z47vtLDlQQN+0KH67c3iLOK2VFjvD/rOCGpuTb28e7JUPujOrjGkfb8Rk0LHliQBKqW6wOpwMe3UlpTU2/6SRXC747Tfh2B054vncd9/Btdc2+52ZJTVc/ukmCiqt9EqN5IfbhhDRQk7iv44HHhC/a/FiGFSvX/rM/P18tzmT1jEhLH5gVKNxlKcLm8NFdlktJ4tqKKiyEBFkJDrERHSokZhQE0kRQQE3b5RUW7n9ux1sTa+m+LeBWHJjMJlkvvlG4sorxWtcLpnHf9/LL9tz0OskXp3Wy+se2BRcLpkv1p/gjcWHcbhk2sWF8uHV/eiR0rTtzCqp5c89uezKKtfEmCuVvcts0JEcGURKVDAd4sOY0jOJIe1iNGczp6yW6Z9sJF/hzoWa9Lx3ZT+PqTyH86uY/slGqqwOjW/nDVO7RPDJzaP/t0qxLYFq9G6YvYpPbhqlCRYeK6zm6s83U1hlJTLYyDVDWvPdpkyqlPmqlw9sxbIDBRxR+D+xYSZcLpkyN3J4S6GTQCeJrhXVuQMY2CaK7Znl2utuH92eqwalcd4H66m1OXni3K5cOag1k95dQ2GVlSfO7coMP2VFDuVVcu6seqepS2I4ix9ozIFzuWQmvruGE0U1HmObAsVlszeyLaOMByZ2omdKJIv25XFB3xTGNSCCKl8qjOZPPzV+btIk0a7vBTVWB3/syuWbjRkePC1Jgj/uGk7ftMDHEv03kFtex63fbOdQXiXO3FhK5w+mtlpHz55Chsp9ypGq4g80Kd3hCw2lCc7rlcxrl/byme0rqbaycM8p/th9SguA/EXXpHDO750ssmlKhAz1lISYUBOfXjdAmxe7LaOUa7/YovFR28eFcqK4hkFto/llxjAkSdIaiaJCRMNERJARWZa58jPBQb1yUBqvXdrbo5EHhIO469nJhJr0nPf+eg7mVTa6f/4XSrEtQVOOnYqxneMY3j6WbzZnNeIKL75/FF2T67uNH5m3hz/3nCLUpOfXO4fTLbn+XORXWJj4zhqqrY7Tsg8qlWJM53i+8cLnlWWZCz/cwL7cCq3ruSVQecPjusRz44h2/L33FO3jw7zLMVVWwsSJsG1b4+cefVQ0G/iBY4VVXPHpZkpqbAxoE803Nw9uUYAcCFwume2ZZVTW2dHpRMYyyKBnYNto36LDN94I33wDEyaIrlkFVRY757y7llMVlsCbT/4LOFZYxU1ztnEyQ6b41yFYi8KIihK07VGKzrUsy7yw8CBzNmagk+CDq/p7ULH8gcXu5L6fdmkTNc7vncyr03zbzvJaG3/symXB7lMBVdhANJ5N6ZnEoLYxvLoonfxKT+6cJMHMc7pyx5j22h6+8VgxN3y9FbtT1poo3P0LAJPLwtE3p///49gVlZQRFxMFiIVw5WdbKK620iUxjNGd4/li/UlkWcietIkN5Y9duYDohI0KNpKtiHWqY7rOBBqedAm4sE8KCxS+EwgSeYbifZsNOv65fxQ7Mst49Ne9hAcZWPPoOL+VvdVOMbUV+rtbBjOqU+NoWR3b1DkxjKUPjgn4d1kdTl7/J52vNmR4/MYmu9wcDrjuOpg71/PxhATBd2kCsiyz8XgJX6w7ofG1go16frtzuM82+P8V7Moq47Zvd1BcbcWYm0L2vL5YrRIjRwrDFO3mm367KYNnlazX/RM68aCbrps/sDqc3P7tDtYcKcKk1/HMBd25dkhrr9Gx3eniq/UnmbXiaCO9xjMBNao06iXeuqx+pNjJomotkAkx6ZFlMQXmrcv6MH1AKxxOF1NmreNYYbXHOdiWUcplszd5ZHgaDiJXX6/y9VpFB7Pm0XFa1un/Z8dORahJT02D65kaFczSB0drpS6bw8UNX21l04kSUiKDmH/PCA++mJp9DTXpWfbQmBZxWjNLahj71mpk2bMD2h2qfFJqVDDrZo4LuGHD4XTx+84cZv62z+PxW0e242lf03HKy2Hy5MbO3eTJsGSJ39998FQlV362iUqLgy6J4Xx+/cB/bb714fwqnp6/r9E4OMDnxCFAlGK7dBHNIUuXiiBawfqjxVz75RYAfrh1CCM6xnn/jP8yNh4rZsb3Oyg9Zabkl6FYK4JISRGXqqfij8qyzBtL6jl1qi0JBFaHkzu+28Gqw0WYDDqeu6A7Vw/2bjudLpmft2XzxpJ0TSVAJ8GIjnFM7JZI69gQUqOCSY4MwmzQU1Bp0bJ42zJK+Wd/voe6QEN0iK9vAL1iYBqvTuul3RtfrT/Bi38dwmzQIUGj+c8ua63fI8X+B+W2G0PVrTpSUMWVn22muNpK16RwOiSE8/k64dRNH9AKu0vWnLq06GCqLA6yy8TAcokz59QBjaRSZGDpwQIGtqnfzTPcUqpWh4vHf9vHJX1T6Z4cQZXFwazlDUoGTeDKQYKobNCLRfDl+pNeX3dxv1RMeh1HCqo5UlDl9TW+UFFnZ9Trq/hqQ4b2m1TYmypfGwyiLKDmzVUUFsL778PFF4vMnhdIksSIjnF8fdNg/rp3JNEhRursTqZ9soGV6U07hf9N/LnnFFcoazEqrx0Zc4VTd8EFws66O3V/783TnLo7x3bgAS/NL03B5nBx1/c7WXOkiCCjjm9vGcx1Q9t4NUxbTpRw3vvrePWfdGptTgxuG6pOEsLHF/RJ4dFzuvD+Vf146aIe3DaqHef2TKJTQphf+oUxISbO65WM3Snz0C97WJlegCzLnCypITEiSOPh9FOkB15ddIjyWhsGvU777V+tP0l5reAxDWwTTc/UCGwOF/N2iEkWVw9p4zEB5ZuNGSIT1DeFqBAjOWV1rEz35JL9/46GTh2IjPGU99ZyWBEyNRl0fHJtf9rFhXKqwsJt3+7w4OReM6QN/VtHUWNz8uyCAy3itLaJDWWiIqmk2oqGuKBPCuFmA7nldezKbuy0NAU1i9vQqQMakfM9EBUlbj630iQAe/YE9P3dUyL4/tYhxIebOVxQxYUfrT9tzlpD1NmcvPZPOue9v45tGWWEmPT0SYuid6tIuitZ1u82ZXK8qHHXOSBmc995p/j7ySc9BpGO7BTHNUPEfjHz171UWU6/UnWm8duOHK7/aislWcGUzB2OtSKIzp2FYlZPtyTjx6uPa07dSxf3DNipszlc3P3DTlYdFrbzm5sGc80Q77ZzV1YZl3y8gSf/2Ed5rZ1OCWE8d0F3Nj85ge9uGcINw9syrksCnRPDCQ8yYjLoSIsJYWj7WKb1b8Wr03qz7amJfHbdAJ9Z3qzSWh6Z3Bm9TuLn7dm8vjgdWZZZfrCAH7ZkERlsxOpwERZ0elnisyJjV1FRQaFF0lLk3ZPD6ZkayS/bczDoJB6Y1JnvN2WSX2khyKgjyKinvNaOhBAx9Ma9DTLqmNQ9ic4JYaREBZMSFYzZqKOw0sKpcgu5ZbUsTy/0We8OFKpsyksX96RDXChXf7EFg05iyYOj/epgtTtdDHt1pdb5C767X2/9ZhvLDxW2SAFeHeHUEK9N68WVXrrgPOAtcxcSArW1omxw/fXCALlcPjXuKmrtzPhuO5tPlqKThAzKjSP+d2RQZFlm1oqjvLf8KACti7ux4et2uFwSV18Nc+YIxRcV+3IquOxTMYHhhmFteP7CHgFxUOxOF3f9sJNlBwswG3R8feMghnuJwJ0umZf+Oqg1puglCadya8eFmbh6SBuuHdK6WTV2WZY5UlDN0gP5fLn+JOV13jeFubcP5Zft2fy+MxeTQUenhDBtPmPHhDCOFVajk6BVdAhZpbVcM6Q1r1zSC5dLZur760jPr9K0HqF+3bWNDWHlw2PR6STeXJLOR6uOe3zn0PaxvLroEJ+uPeEh7XO2Z+xe+HUbHVslkBodzN7sct5eVh/0BRl0jaL3hggy6njrsj6c3zuFtUeKeOqPfeSWC73P83ol8+HV/bR1dzi/ivPeX4fDJTP72v5M6RlYWQtg84kSrvxsc5OSJA/9vJvfd+Vy4/C2PH+hj8yTD+zPreCSjzc0Cij9mhLhLXNXUCAqCAEgv8LCjO+2syenAr1O4smp3bhxuHcxaH9hd7r4dUcOH6w4qslbTO6eyPMX9vDInqod65O6J/L59QO9f1hhoZB2qakR/MJp07SnaqwOznlvLTlldT71T/8bkGWZD1ce4+1lR7DmRVL221CsNQb69hWZOvdLpMrrAB5SSf7C7hRO3VLFdn514yCv2UtZlvlo1THeWiruuXCzgQcndeb6YW1aLNBca3Pw8l8H+WlbdiOR41tHtqNrcgSPzBMBR+uYEG3wQbjZgEuWvQZx/99l7Kosdm7/dgclNULAc2SneH7ZnoMkwYOTOjNnQ4ZWx7bYXVoqVKaxUzewTTTvXN6HHU9P4oOr+nHvhE5cOqAVwzrE0jMlkmHt47hxeFueuaAHax4dx9IHR3Pf+I5EnebYK5XI/NqiQ7SJC2VitwQcLplXFzXdsaXCqNdp0UqsYkQXKNnJhji/txBw/WtvXsAR+ZWD0ji3Z1Kjx+3+pDu9Ze5GKFpWTzwhhnRPmACrVvn8iMgQI9/dOoQrBqbhkuH5hQe596ddXnUI/68hOG67Naeub00/1n3ZHpdL4rbb4NtvPZ26gkoLt367DYvdxdgu8TxzfveAGyUe+3Uvyw4WYDLo+Pz6gV6dujqbkxnf7dCcOp0ETlkmLszEG9N7s+Hx8Tw0qXMjp85bd7UkSXRJCufeCZ3Y/OQEXriwB9Fe1v7bSw9z99gOxIebsTlcmlMHkFdex+Tuibjk+gzzj1uz2J1djk4naePF5mzMoEQJVC5UMjwZJbVsOC6yIw3J0R+tPAagyWxsOFasvf9sxwOTOnP1kNYMbR/D7ztzPJ6zOlw8NKmzEGL3sXwsdhf3/bSLCz9cz/VfbSW7TDh1Bp3E3/vy+G1nva3okhSu8dRe/Scdu79dp24Y0i6GbskRWOwuFu495fU1Kg9q0b48XAGWS3qmRnoMQlfhV4est8zdrl0+X+4LSZFB/DxjGJf0S9UCpws+aFn2zupw8sv2bMa/vZonft/HqQoLqVHBfH79QD67fmCjkvgTU7uh10ksO1jAZmWEZiMkJMBDD4m/n35aKBEoCDUbeHO6kDz5aWs2q/4Hstt2p4snft/H28uOYMmJpmzeMKw1BoYNE1uCu1N34FQFD/0iHJ+bRrQN2KmTZZnHf9vHUjfb6c2psztFJU116qb1S2XFI2O4+TSnboSYDPxnWm/WPDKW/q2jPJ77bnMm3ZLC6aro+blPs6qyOgLmXnvDWeHYPbdgPyeKa0iODGJKjyQ+W3sCELybT9ccp7ja2izBNTzIwNc3DuLXO4czrX8rQs0GThRV89aSw9w8Zxtj31xFt2cX0+fFpXR++h8Gv7Kc895fxy/bshndOZ6Nj43n4cmdMbXwYtdY7AxoE02NzclLCw/y+Lnixl1+qIBNx33cuA1wpTKSrFQpYc3ffcqr4zaxeyJmg44TxTUczAtM2kCSJF6b1puUBkO8/ZYcUJ27888X/96yBdq0gVOnhKFdtUqoqDcBo17Ha5f24vFzuyJJsHDPKca9tZrXF6f/18oKhVUWrvp8M3/uOYVBJzGBYSz4UDjQ994Ln37qmYSsszm57dvtFFRa6ZgQxvtX9QvYUMzdls3vu3LR6yQ+vW6A1w7E0hobV3+xmeWHCjQ5FZcME7slsPiB0Vw+MM3raCeXS2baxxtZvD/P5/cHGfXcMLwtm56YoMlPqNiWUcY3mzKp9nI9amxObhvVjvAgAyeKauiZGoEsi/tYlmUmdU+kdyshczJ7jcjIhZoNXNJfcPV+2CykQtrEhjK4Xf0kgI0nSqi1OWgbF0qv1EicLpnFB/KbOYtnBz5fd5wH5u5i1OurONmgSiAjZEpGdopj8xMTmNav8eQNvcIfdh/JBsJhBnhx4QEK3Ujct45qR0yoicySWv7Y6T1AbAqSJHGpcr3+3O3dsRvZKY7wIAOFVdZGiv7+4OYR7RppaTZJCXGH6typdb3HHw/4+0HcA+9c3ocXLuxBeJCBg3mVXP3FFpFRO1RAXRMcVlmW2ZFZylN/7GPwKyuY+eteskvriAsz8+z53Vnx8BiP7kh3dEwI42olgHn574O+HeOHH4aYGCHpsmGDx1PDOsRy04i2ADwybw8FDUj8/5eotjq49ZvtzN2WjS0nmoo/hmKt0zNmjLhMUVH1ry2utnL7tzuoszsZ1SmOp6Z2C/j75m3P4bedOegk+PRa77azymLn5jnb+Hl7NjoJXrqoB+9c0feMahi2jg3l97tGMPvaAYQozZ9Wh4tnFuzHam+sCgEigze2S8umD6k4Kxy7pQcLMeolbh3VTvOs7x7Xgb/25FFpcRBi0muSJt4wpUcS256ayLiuCThdMn/uOcVVn21m/Ntr+HDVMVamF5JRUqtp1TlcMoVVVg6cquSL9SeZPnsTo99cTZ3NyeL7RzGxW2ApfYBNJ0p5amo3dBIsPpBPnc2p8SDeWnrYr89oGxfKsPaxyEoknlVa67VjJ8xs0DpY/9rre+P2hcgQI+9d2Q/35IDdz3mjgHDu5swRoqCVlaI0AvU8u2YcOxAbxx1jOvDn3SMZ0i4Gm8PFJ6uPM+6tNaw49H/LvdufW8FFH25gV1Y5kcFGpoWM5qvXhcPx0EMwa1bj+eNPzd/H3pwKokKMfHnDwIBlE9LzK3n+T8HLe/ScLl47kourrUz/ZCO7ssox6CRkWZTkXp3Wi8+vH0iclwklKjafLOFgXiV3fL+Tt5Yc9phJ3BBBRj1PTu3G1zcOIiK4PoD6dlMmD07qTKipseN4qsLCM+cJkvuR/CqCjDr25FSw5kgRkiRpjRPfbsrUHA51VueyQwXkK2Wqy9w4NU6XzE+KNp6aDfprT+Dr+38Rs5YfY/7uU1oncEM4XTJ3/bCTKz7bzIiO8Sy8ZyStY+qzPL78ndgwE71SI6m0OHh6/n5OFFXz2j/pTHxnLeOVKsIHq462KGt3fu8UJAm2Z5Z5zaibDWL2MAjdvUCh04nmnCg3rmVAgV1UlJgUD7B7d4uydiBs0Q3D27Lm0XHcMKwNep3EivRCbvlmO31fXMqNX2/lhYUHeGNxOh+sOMqzC/Zz+exN9H5hKZd+sokftmRRUWcnMcLMk1O7sm7mOG4e2a6R3FVdHfz+O9x0k8j+3z+xE2FmA/tzK1mwx4fzHRkJX38Ne/cKkfgGeGxKV7olR1BSY+P+ubuavM//LRRWWrji002sOVKEnBdL2e9DsdTqmDBBqGGFubGJbA4Xd36/g9zyOiFHclX/gAPiIwVVPPvnfgAentylkewPiMD72i+2sO5oMcFGPZ9fP5DrhrU9nZ/pFWriZUrPJHY+PZGhSqC6M6ucEZ3i6ZLYmEq1/1Qlr1/aW3MEW4KzwrEDeGhSZz5dIzJ10/qnsmR/PscUYqna+dewTCFJ8PqlvZh93QCCjHqOF1Vz6Scbue+nXWw6UYIkiZEfL13ckx9vHcLmJyaQ/tIURVhxJB9d3Z9L+qUSHmSguNrKx6uPM/3TTUoU0ZXmimruzztcMv/sz+NipYPwraWHuWd8R0x6HTsyy/xuqb5ysMjaqW3wC3xEy+f3UTa+vd6zes1hcLsYZrhlaTJKa5p4tRfExtZ3alV4ZhHYtq3xYz7Qq1Ukc28fyhfXD6R9XCjF1VZu+WY7j/+2t0ln/kzhr72nmD57I3kVFtrHh3JlxGjefEbcjA8/DG+91dipW7A7l9935qKT4JNrBgQ8yLzG6uDuH3ZidYgS7u2jGpch1IaKE8U1mA06HC6ZIKOOr28czFU+Or7c8fO2bO3vD1cd49ZvtlHhg0+nYlzXBJY8MJo+afW6T28sOcwz53dvlDHfn1vBZQNbMbR9DDanTOto0VX44cpjyLLM2M7xDGgTjdXh4vN14r7ukhTOoLbROF0yc7cJB25qr2QPA6eWm1UR3C0nSyisspBZEuD6PEtxUhkk/vAvu3nqvG5c0q9pftyOzDJevrgnOkk0d41/ew2zlSpH37Qo4sJMZJfW8duOnCY/xxuSIoMYrMjdLNzTXDk2v0VORXy4mfevqheCdC9b+YWRI+vnxqrixS1ETKiJFy7qyZIHRnPd0DakRgVjdbhYfbiIrzdk8PHq47y97Ajfbspka0YpVUrSYVq/VL6/ZQgbH5/A7aM7aLJd7tizR/RDXHqpiIlvuAHmzzVz1zhRMn9z8WGvupMAXHihZ8eBG4KMej66uh8hJj2bT5Tywcqjp3UOAsXRgiou+XgjB05VElQST/FvQ7DU6Zg4UQi3hzYwje8uP8K2jDLCzQY+v36gz4krvlBrc3DXDzux2F2M6hTHnV6kcWRZ5pF5e9iTU0F0iJGfZwxt0Xz15pBXUced3+/Usq1BJgNzZwzjyamCYvD95izO752iNcuo2JdbTmJEELcqdr8lcjtnhWM3pUci+3MrKayyEhFkYMGuXI4VeRpytRShwqiX+OnWoVwxqDVOl8wX604wddY6dmeXE242cN+ETqx/bDxf3TiI64a2YXhHUTY4VlhNfoWFWpuTVtHBvDqtFzuensTsa/vTIT6U0hobz/15kN925vLWZX2a7CKUwYOb99WGDC4f1AqDTmLNkSIyS2q1gea+ulwb4pweSUQGGzWh5L/25nktk47vmkCwUU92aV2j8oy/eOScLpocy8FTgXXYAqJhIshLWtvlEuPG/IQkSUzsnsii+0dx26h2SJIoU547a+2/tqE7nC5eX5zOPT+KWa5jOsdzeeRInnpY/J4HHxTTihr6TzlltTw9X0SL94zvxLAOsQF/97MLDnC8qIbECDNvX9bHq1TE8wsPsDWjFL1OwupwEWQU5GB/vq+81qaN0lGx6nARF324vtlO6uTIYL6/ZQj9FN6Iwynz4l8HG0WY2zJKkSRJ40kdK6rGqJfYnlnGlpPiubsUfbN5O3I0vt+1Q0XWbu7WbBxOF6FmA+e6kfuzS+vIKaslLSaEvmlRuGRYvD9fK+mezeiVGsktI9vxxLldeefyPrw1vTfXDm1Nn1aRBDfI7hwprGbGdzuxOmQen+JbOmdvTjn3/rTTqyJAnc2pce0+WHnMt+PQBC7sK+yXr3LsiA5xRAYbKa62slUZTxcoRneOZ6TCj8prYp6mT7z6quBJLFrUqFzZEnRMCOOli3uy/rFxLHlgNE+f1427xnbgphFtuXJQGjNGt+fdK/rwz/2j2P3sZN65oi8jO8X5bLrIyYHzzhO9EK1awTnniMdvvx2i8tuREG7mVIWl0UQRrzhyRDRTuKF9fJjWcPL+iqN+U39OF+uPFjPtk43kltcRV5tE7txB1NZITJwo5KCCGyjtbD1Zqt3Hb0zvTceEwMdiPv/nAY4VVpMQbubdK/p6tZ3vrzjG3/vyMOolZl87oNEIvjOB3PI6rvh0M4sP5PP3Ps+qwu2jO2h28e1lR7hmaGuP+bm7ssqRZZnbFLpEtdVBsDEwV+2scOyGdYjVTk6lxeG17OD+WLjZwD/3j2Joh1gcThf3z93Fy38fwuoQXvySB0fz0KTOpEYFk1VSy6zlR7l89ib6vLCU8z9YzyUfb+TyTzdx0Ucb6PX8EqbP3siOzDI+u24AL13ck5hQE+n5Vbyw8AAvXtgDcxPOXXmtnaQIURJzumS+35zFZQop/K0lh7l5ZFtAEIxP+dEgEGTUc0k/kfUz6iWKq61s9HKjhpgMTOimlmMDL4MAGPQ6Zp4jumqPFlQFTIAmNlaktLxhxYqAjyfIqOep87rz021DSY0KJru0jqs/33LGGyuKqqxc9+VWrc3+1pHtODdkEHfPMCDLcPfd8PbbjZ06p0vIf1RZHPRrHcV94wMnwW45UaJxQ2Zd2Y9YL+XU7zZn8uOWLO07zQYdX90wiOEd/NOrmr8r1+smnlFSyyUfbWiSdwdi3NA3Nw+mtzKvtdbm5JkF+/nqhoEYlWaJvTkV2OxO+rWOZkLXBFwy2nD1j1aJJoixXRJIjgyivNbOEoUrN6VnEjGhJvIrLaxTSOoNJQ7mKBIb57uVY0d70XQ8m/D3fSNZeO9Injm/OzPGdGBa/1ZMH5jGyxf3YsE9Izn44jn8MmMo5/VO9pCwWbQvn1925PKyDyFahwuuHdLGa3WhrNbGtUPbEB9uJre8TpOaCQRTe4rjOZhXybHCxkGByaBjilKO/Xtfy+wQwFuXia7OKosj8GCuY0e45RbxdwNpkNOB2mh066j2zJzSlecu6MFrl/bmianduKRfK7olRzQrH1RZKejIubnQvTvs2yeEzWfMEIf58IN6Luwt7H3DpppGeOEF8SHvv9/oqYv7pXL5wFa4ZLj7x53/eoZ77tYsbvx6K1UWBx31rTj2XX+qqyXGjoUFCxo7dVUWOw/+vFuTLlPHBwaCbRml/LK93nZ6o6Is2pfHu4rM2MsX92RI+8AD7+aQXVrLFZ9u0rLL7y0/0ihbfceY9tw6Uqg9PLvgADPP6aKNFKu1OdmVVU54kJF7lEYKox8yVO44Kxy7NxUOWq/U5mUMDDqJOTcPpmNCOA6niwd+3s1fe4V3/vLFPfn25sGkRAVTWGXhmfn7Gf/2at5dfoStGWK2bFyYiVbRwbSPCyUm1ITdKbM3p4LP151k4rtrWX+0iLcv60O/1lFUWhw88cc+rh3SxsPYNkR+pRWVJvDX3jzGd43HpNex5WQp5bV2hrWPxemS+cbP2YoX9PFc9D7LsUp37N97A+9KU3FJ/1SCjDpqbE52ZAVOgOa220SNATw9IT94dr4wtH0sf9w9nHZxoeSW13HtF1sorDozxOANx4o5/4N1bDpRQohJz4dX96Mv3bnuOgmXC269VdhNb5XOz9aeYOvJUjE25oq+AXNDXC6Z/ywSkymuGtyaoV6MzoFTFbygcO/UY3jp4p5eu2W9QZZl5m7zvYHX2Jzc8f1Oznt/Hd9vyqTCh9hmRJDoXlY7u0prbHy8+jjf3DRY04x8X3HgVD5dRkktOknMf92dXS7mNCoNQT8ojqrZoGdqL+EILFWcvSHtYmgVXb8T/LYzB1mWmaoY/22ZpXRqQXT/v4Q2saGUVFuZtz2bO7/fweR31zD81RX0fn4JY95cxR3f72Dj8RLuHNOBVY+M9SDdnyiq4T//HOJOH52DO7LKePzcxh2mZbV2gox6LXP68arjAZdLo0NNGjHdV9ZOLcf+sy/f/yasBkiKDGaAohHaMAPiF555BsxmUSlYtqxFx3CmYbeLKvGePZCYKPhmUVHivn7/fdElmp8PkYVtAViZXtj0DNsOHURn7Btv1POa3fDChT3p3SqS0hobN83Z5vPePh04FRv2+O/7cLhkRsW1Z89nvakolxgxQpRfQ7xoPT//50Fyy+toFR3Mcxf4EKBuAi6XrE31uWJQmtfKRX6FhUcViZFbRrbjikHNyHe1AJklNVz52WZyyuqTDceLaliw25MjKUlCPueivik4XTJP/bGfubcP08quL/99EIBrhrYmNSqYyjpHQM7dWeHYVVuc9GkV6VGSUdFwf33ugu4MaBPdyKn7+JoBXKuIuv60NYsxb6zmu82ZOFwyIzvG8Z9LerH20XFsf3oS6x8bz8pHxrLj6YmsmzmO96/qx9gu8cgyLDlQwM3fbGNQ22guH9gKWYYvN5zkykFpTXLu3NvZP11zgqsUrtys5Ue5RfHcf9qSRY0fvLG+adGa0wmw5EC+V+mKsV3iCTXpOVVhCbg7VoXYaMV5/7sFjRiYTPDcc+Lvjh0hXEk579sHBw74fl8zSAgP4odbh2iDu6/+fMtpRaEWu5MXFh7gmi+2aJ2sf94zgrDSFKZPFxJ9V18Ns2cLbcSGyCmr5T0lEnzuwh4B8+oAFu49xZ6cCkJNeh6Y2Li85nLJPLvgAA6XTLBRTHY4v3eyR4NBc3C4ZKYPaEXXpHCvzqmKA6cqeXrBfga9spz75+7yOpIsMtjIFzcMJFwxRmuPFnO4oEqTM/l6QwaVFjs9UyM1CZ1kpdv6Q0W65IpBaegkUYZRMz6Tu4vXLjtYgNMlo9NJHlm7slo7RwurSYkKZmCbaGQZNvmShDhL8Mgvuxnw8nIe/XUv/+zP50hBNacqLFRaHGSW1LLkQAHvLT/K+R+s5+4fd3JOjyQ+u26A1sxSa3Py5caTXK+Ust2x7GABU3slaxlOFapA9FWDWxMZbCS3vI51R4sCPna18/bPPd75vMM6xBIdYqSkxuZ1woK/UNfAopY4dq1a1Qv6fvBBi4/hTEENEpctEzyzv/6qj39BmE01yfjXL8H0TI3A7pR9SssAcNVVImNXXi5KCg0QbNLzxfUDSY4M4kRRDXd8v6NF5XdfqKi1c+PXWzXVimu6d2flu10pLpYYOLBxo4SKVYcL+W2nkC975/K+Psd8NYWFe8XYxFCT3udUn5f+PkiNzUn/1lE84SXQCRR1NidbT5byxboTPDpvD/f8uJNz31vntYI0a0XjBiWdMvO2fVwo+ZUWXv3nEN/fIiR6dmaVszu7HLNBr9nTQCYsnBWOHcCdYztqJZwgt3qz+0+d1j9V4+i8u/yIh1M3qXsiTpfMiwsP8sTv+6izO+nXOoqfbhvK97cO4eohrUmIMLMjs54HIkkSaTEhXNgnhTk3DWbpg6O5qG8KsgyfrT3JvtxKrh8mvu/7LVlc4kWGQEV2aR0hJnHc2zPLGNQ2Br1OYmtGKa1igmkXF0qlxcFvzaXbEfM61S7JULPoCF59uLFBDjLqtazP6fAqVKJ6S/SoADFLds4c2L9fSIvHKBIWd93V4mMC4Sz/eNsQEiPMHCus5vwP1reoY3bV4UKmzlrH10qJ7+ohrVlw9wjKs8K54AKwWgU/ec4cn7rKvKKU+oe2jwnI0VJhdTh5c4nITN8xRujDNcQfu3LZkVmGXidRZxcc0Fcu6eW3Nl6tzcFbSw/z2j/ppOdXIcvQPTmCRyZ35pNr+vPLjGH8cddw3ruiL/eO70jXpHBsThcLdp/i4o838Mz8/VQ26EpsFR3iQW5/+e9DjO+aQOuYEGqsDj5VODMPTuqMJEFuucisrkgv4FR5HcmRwYzvKrJPP24RmcSh7WOVhiUbu5WpBVMblGb+UTZ31VlR5+eerVgcwPHvzangkXl7eHf5Ed6+rA/t4kQQYXPI/LojhzGdPbO3Lhn+s+gQb07vQ5uY+nSJKn/hTu9Qu44DwaTuiQQZdWSU1LIvtzGf16jXaVm9TcdbPsHhnB5J6HUS+3MryShuQRD3xBPC4fnllxYfw5mA0ymctm+/Ffbkl19g4EBYe6SIR+bt4aW/DvLRqmOMvbAKSRJyICMT2gJ46BE2gl4PL70k/n7vPShqvCckRATx5Q2DCDXp2XSihPt+2nVGnLsDpyq48KP1Wpfpi5MGMPeFdpw6JdGzJyxeLBp4G8LmcPHSQpGdunlEOw95I39hsTt5Y7GwnXeO7eBVrmT90WL+3psnZE0u7nlaGnWFlRb+s+gQA19exuWfbuLlvw8xb0cOf+3No9ZLggUgs6TWa4NSiMnAe1f2xaCTWLQvn6OFNdq9+OqiQ8iyzMX9UkmLCfZPS1bBWeHYDe8Yy6J9edTYnHRJDMNqb7wQU6KCeOViscltyyjV+FFvX96XSd0TsTqczPhuO19tEE0KD03qzO93DmdYh1gKKi28uSSdYa+u4PovtzbavFR0Tgxn1pX9mH3tAGJCTRzKq+SvvXlcpBCI5+8+RY/kxnMTVUQE1auz/7E7lwlKG/bcrdncqAzk/mW7fzwXVXJFr2zq6495j7TVlPTG0zCop6tHhcEg2rxMJtG99e234vG1a2HduhYfF4gS1vy7R9CvdRRVFge3fLOdp/7Y56HZ5Q2yLLMrq4wbvtrKTV9v40RxDfHhZr6+cRD/uaQX2ScNTJkC1dUwbhz8/LOn+LA71h8t5p/9+eh1UsCTJVR8uzGTnLI6EiPMWjeUOyotdl79R4hZO10ykiTm97qP3WoKBZUWLvpwA5+uOYHDJTO5eyLLHxrDovtHcc/4TpzbK5nB7WLo1zqai/ul8vDkLvxz/yj+vGeEFsx8tzmTiW+vYUuD7Ni4rgncrXTvCZ7hbi0i/nL9SfIrLHRODOccJROXFGFGltEMnSr789tO0URhMug0KQ7VYeuUEKZl+6BexuccJRO4N6fcr/Pw/xMO5VUx47sdTOqeqJUpa+1OdmaWExvquS7+2Z/PrqwyfrhtiEYbOeHmHKmizysOFQZMawg1GxjbWVyvNV4CTIBhaoB5GpnVmFATwxV71qJyrCro25Dg9X8IWRaJQzVI/PFHmDoVThRVc8f3O/h1Rw5frj/Jm0sOM3PpJiZOEntdwfZk9DqJPdnlHCv0MWYM4JJLYMAAYbhef93rS7qnRPDRNf0x6XUsPpDPjO+2e634+Pd7ZL7ecJJLPtpIZkktqVHBfHXVcN56MIkTJ8RgjKVLBd3aG+ZsPMmJ4hriwkzcH+CoRRVfb8ggt7yO5MggbhnZ2HZaHU6eXSAa2q4f1pYeKV48TD/gdMm8u+wII19fxWdrT1Bjc5IYYWZy90QenNiZR8/pwr3jO3JhnxSvnazvLT+K1dH4PPduFaVlGZ//8wA3Dm8r5mafLGVleiF6ncR1XjLxTeGscOwu699KS0GHBRmRgfhwzxE2T5zbjWCTniqLnQfm7salkDDVMsHzfx5k+aFCzAYdH17dj/smdEKW4ePVxxj5+ko+WnWcslo7ep3ErXO2M/Q/K+j1/BKG/mcF585axwsLD7D6cCE2h4spPZNY/MAoja+wKr2QiQpBPKuszqf+TH6lRdP8WnmokIndhTGctz0bvU4KKBod1Tkeo16i0iJKtxuPeTeYqmO39WRpi7SqQJRj1fJYi8og7rDbhYG96Sbx7zvuEIOsTwPJkcH8fPswblCypz9syWL0m6t4/k9xzWqsDmRZxu50sS+ngq83nOTCDzdwyccbWXOkCKNe4vbR7Vnx8BjGdU0gJ0d0ppWUiEh6wQLvzb0glMufXyhKytcNbUPXpMDHWTmc9ZIfD03q7FUO4b1lRymutmrPXdgnhQFt/Itus0truWz2Jo4q3WKq2n1zXWeSJNG7VRSzruzHj7cOoV1cKIVKY8mfDeQtHprURWvbP1xQTaXFzsA20VjsLt5ZJqJpNZuuToaZtyMHl0tmdOd4UqOCqaizs+ygcOTU9bbkQD6yLCNJkodo57HCamqsDpIjRbb7vyDP9a8g1KRnaLsYxnSOp0N8KCa9pPynIzkyiIQGmVyXLLidMaEmuiSKoLLK6vA64uv5hQdIigjS5BbKa+1aANQlKZz+raNwuETWL1CM6CSyhN4auaDeDu3OLm9S1Lc5qBnaFtFC3OFyQVbg2cnTxTPPwOefCzrHjz/C5ZeLrNX9c3dTa3PSMzGGGWPakxhhFvNKR4rzuehPA2OUBqE/djVxfSSpPmv30UdCGN4LxnZJ4MsbBxJk1LHqcBHXf7k1YAHjrJJabvx6Gy8sPIjN6WJitwTm3TqSmTMi2LcPkpJEqTnZRx9EYZWF91eIKtzMKV0D1voEYX/VZM3Dk7t4tZ1zNmQozqOZhyb77iBvCuW1gpc4a8VRbE4XA9tE8/VNg9j8xAQ+u34g90/sxN3jOvLwZDGDe9/zk5k3Yxid3XTq8istvPzXQa+ff8eYDvRTZjj/sCWTm5Uxmq/+k47D6eLygWkYfVSLvOGscOx2ZJUjyzCobTQ7MsuQgKKqemegf+so7YZ/dN4ecsvrSIkK0kiY32/O5KetWUgSzL5uAOf3TqGk2sqNc7bxxuLD2J0ysaEmdJLout2aUUp+pYUqi4P8SguH8ir5ekMGN369jXFvreaXbdnEhJj4/tYhDGwTTaXFwaaTJXRJCqfK4vAgejeE2jUog5Y+rrE5+WlrVkDRaJjZoJVZJUT0nVfRuLbfLSmCqBAjNTan1zKJvzivd71j1+Lxwnl50K0bjBkDjz4K8fFw8KDvztkAYDLoeOGinvx021D6t47CYncxZ6O4Zj2eW0K7JxbR6al/uODD9byw8CD7ciswGXRM65/KsgfH8OTUbkQEGSktFU5dVhZ06SIUEsJ9J2GZtz2HY4XVxIaafHI7msPK9EIKq6zEhpq4pF/jMm5ZjY3vt2QCgteh10k86IWD5w15FXVah1brmBB+u3N4I7X7ijo7C/ec4sk/9nHBB+uY/O4azn1vLff+uJMft2SRW17H8I5x/HP/KKb0SMLmFOOrvnKT6NErfBEV/1mUrvEEf92RIz6jQyxtY0OwOFyYDTqySmvZclJItqiyP6pjN6ZLPCaDjsySWo4qGQr3KQQyonQFeG0yORsxtks87eJD2XyylDVHijheVIPNKSv/ucirsPgUMF52sIAgo45ExfE7VljD4LbRHq85UlDNT1uzuHlke81GzXNz4tRZ0D9vyw6YcqHarh1ZZV6zP61jQkiODMLulNnRkqy/gsndRTn2YF4Ly7EAhw5Bnz5CZ9Px72thqnj/fXjlFfH37NnCqQN4e9lh9uVWECYFs//9ITi2d+PWESIDfkB/GJNJ5sgRGBjZFoD5u5rRJp0yBYYPF80ie/f6fNmoTvF8c9NgwswGtmaUMuW9tVrDUlOotNiZtfwok95dw5ojRZj0Op6/oDufXD2QO242sX69KLsuWSIydr7w9pIjVFsd9GkVyfT+gdNXAJYfLKCoykpcmFlL4rjD7nRpUmIzp3RpkfNYWGXhoo82sPZIEUFGHe9e0Ydf7xzOuC4JjaozdqdLC0QHtYth6YNjmHvbUGLDRKD13eYs3l56uNH10+sknjlf+CvzduQwvmsCUSFGjhVWs/RgAVEhJiZ19V9r76xw7OYrEYqq5aSeJBVPKzM4P1t7QuOqzLqyH+FBRnZmlWkK/jPP6cq4LgmU19q44rPNrFWyNWaDjpIaGy4ZRnSM5bkLuvPrHcNY8fAY/rp3JB9f05+rBqcRF2Yit7yOmb/t5bz311NQYeHbWwYzuG0MNVYnNVYHYSY9RwqqPVTh3VFeV29IiqvrndP8Cku9fIOf0ahayg0xi/OywUvWTqeTGNru9Hl2IzrGEWTUUVhl5UhBE6WAppCUBHFxQmJ99mx4913x+IsvwmH/pm80h2EdYvntzuF8fdMgLh/YSpPYUBERZGBM53ienNqVzU9M4J3L+9JW4SjV1Qk9qYMHISVFGKb4JlQ0HE6Xprt097iOfpdFG0LlNU0f0MqrPMLP27OxOVxaJvjygWnaMTcFp0vmgbm7OaWIK/8yYxhpbhyrWpuDj1YdY9h/VnDvT7v4cUsW+3IrOVJQzaH8KhbuzePJP/Yx8rWV3PrNNk4U1fDRNf21MUUv/nXQo9urT1qU1uVaUWdnw7FihrWPxSWL4Eqnk7haKbuGmkSpYp5CPVCpBasPF2J3uggzGzTtsiWK5t7wjnEe3ee/KnzUlmgF/q9hSvcEVh8uYn9uJcFGPVcNbs0HV/Vj9SNjWf/YOFY+PIZXLu7ZKGPnro22J6eC1Ohgbezh1owyIoI8S0Kz15zA7nRpUjxzt2ZpTtz5vZMJNxvILKn1PZ/UB9rHhZIYIeYG7/TiuEmS5FaObTktJDrUxCDFYV3XgpmtgGikyMsTmm/ff9/iYwkEP/8MDzwg/n75ZSEWALArq4zP1p5AliFiy3AyM3TMmQNTu7UizGwgo7KCASPEPpG3J5Zgo57c8jqP2cyNIEmi1nvihHDymsCQ9rHMv3sEPVIiKKu1c/t3O5j+yUaWHMj3EIB3OF1szyjllb8PMvzVlby7/AhWh4sRHWP554FR3DC8HbffLrFwoahu/PUX9O7t+3tzymo1PvmzF3T3qjfnD9Ru+isGebed/+zPp7DKSny4WRsOEAjqbE5u+2Y7mSW1tIoO5vc7R3gE3zaHi/m7crn+yy2MeG0lnZ76h05P/cPAl5dxw1db+X5zJh0Swtjw2HhtBN8HK4/x7vLGQtH9W0dzXu9kZFnoDV6jBFqqvNOlA9IavccXzgrHrtrqpHVsCJtPiMYGd4doSo8keqZE8vyfBzSpiG7J4QxqG4PLJfPM/P04XDLn9U7mjjHtsdjFDM9jhdWEmQ3YnTJWh4tBbaNZcPcIfrh1KDeNaEfP1EjKa+1kldZiNui4YlBrVj8ylqfP60ZMqInDBVVc+OEGlh0s4ONr+5MSGUROWR1tlA03t9zS7GQKd5TU2OgYH4ZBJ3Eor5LjRc07T6padq1VRMi+hlOrG9/pOHZmg57BioO4vqUGVZKEVQPh2I0aJQyP1SrYxK4z06ElSaK55I3pfdjw+Hj2PDuZ7U9PZPvTE9n97GS+uXkwt4/uoIkvgwjcR46EzZtF59bixWLEbVP4e18eWaW1xISaNI5SoMgtr2O1knlSnSJ3OF0y320S2bpam+Cf3TfBP3282WuOs+VkKSaDjqsGteZkcQ0ni2uoszk5WlDFhLfX8OaSw40Iv0a95DHFRQaWHypk6vvr+M/fh3hyajetk/vReXs9OHePT+lKqBJofL7uhGZM527NwmJ3Mn1AGia9Tpt3vGh/HpUWO/1ai07vSouD7Urn5Dk9xPpergwwjwgy0r9NfRZq28lSZFnWxvSczVh8UPzG64a2Yc3Msbw6rRcX9EkhyKhnf24FC3af4q2lhxtl7Jwu2eNa7cwqp3+bKO3faoVARW55HX/vzeN8hQeUXVan8d5CTAZtYk1DAevmIEmSpqPoqxw79AzYIUBz+Ne3oIMXECl4dXbsCy+cNhWkOaxcCdddJ/h199wjpPRA8NNeWHgQWYaOJb3ZtCoIk0k0U6QmGLUuYF07ETz9OV+n0REWN3d9OnWqb1JrBh0Twvj9ruHMGN1eExGf8d0Oej2/hFFvrGTEayvp9fxSps/exOfrTlJtddBJmX/9/S1D6BAfxnXXCV9SkoQTO3Jk09/5xbqTOFwyIzrG+k0paYiM4hrWHytGkuBKH9Ilc5Qy7TVDWjerKdgQLpfMgz/v1iZUfH/LELqn1FNtft2Rw6g3VvLAz7tZe7RY64Z1uGSKq22sOVLE0/P3M+qNlcxacZRnL+ihZeXeX3GUD71MAXl8SldMeh3rjxXTOSkcg9JguT+3gi5N8Pcb4qxw7EBEhDany4NADXBuryQu/3STNmoI4PEpYmjw77tyOXCqknCzgRcVUvvjv+1lW0YZZoNOi0huHtGOH28bSp+0KHZnl3PLnG30en4Jl36ykbt+2Mkt32zn4o82MOzVlezKLmfWFX0Z0TGWOruT++fu5p/9+Xx63UDMBh0HTlXSJTEcp0smtYmSrDdsPlnKCMVoLfIja5cWE0L7uFCtM3jD8WKvKXq1TLIto9QredNfjFAbMVrq2AFMmCBKsTabqEt8+qkwQOeee8aEQxsiMsRIXJiZuDCz18hwxw4RxO/cKQzTokXQq5eXD3KDyyXz8SqRrbtpeFuv3A5/8Mu2bGRZkMvbxzfmvK1MLyS3vA6TskFf1CeF5Mjm19W+nAreWSbkV7onR/DKokNc9flmxr21mm7PLmbSu2s9VPzDzPXHb3fKHpw19zP25YaTTHlvLbePaq+VZe/4fodGuI8ONXHfeEGCdrhkMkqqSY0KpqzWzp97ThETauJcRacuMtiIxe5i+cEC9Lp6Dt3KdJF1H6lwivbnVlBrE/eqezm20uLgRHENCRFBtIvzIo51FsFo0PH+Vf2EAHqIid925DDxnTUMfXUFd3y/k1krjlLmRXfMoJNwyZ7XaPOJUo3bU1JjJ6EBH3n2muNI1DtI7p2wE5VgcWV6YcCUi+YatdSM3d6cCr9knXxBXRcbj5e0fPbpXXeJCkJGBnz5ZYuPpTns2SP6Gex2uOwy0ayqVu8W7D7F7uxygiQje/8UTtxLL7s4aM/krSWHuWpwGpIEmWHH0Olk9u6FAXEiUFrsR8kUEDZ18WI43vRkFrNBzxNTu7H+sfHcMaYDSRFByLJQc8gtr6PO7iQqxMh5vZP58oaBLHlgNBf2SSE7W2LAAPjhB/E5H3wgFASaQmmNTRsZeOeYwEXcVajrdkzneI9KhIq9OeXszCrHqK+vFASCuduyWXwgH5Nex6fXDayv7NicPDpvD4/M20NBpZVot+lSl/RLZePj4/jznhE8NqUrvVIjsdjFnPMJb6+hR0qE1lj21tIjjUrfaTEhGhd53vYcTQ3g6w0ZPieXeMNZ4diFmHRaJ5C7QYgPM/Pcgv0ec1YjggyM6RJPrc3Bm0tEF+E94zsSG2ZmVXoh83efQieJUUgAD07szLMXdMfhFN75xR9tYEV6IXanECse2CaaPq0iiQw2UmV18PfePK77aivhZqPWzffM/P3sP1XBU+cJhzKrtBaDDnLK6gikq3pleqEm5ulv11eftChAlGQKKq0cL2rMO+mYEEZcmBmrw8XurPJGz/sL1encfKKkxY0YHlm7r74SqbITJ+Cpp3xrifxLKC4WvRsDB0KBojYxc6ZIJDaH1UcKOVxQRZjZwPUtHB4ty/VE9at8GJ5vNdFqcVNf0t+/csIbS9JxumTO65XMVKVztClUW307/A23zuNFNZz3wTqemNqV7smihPPEb/s0R+CaoW20svG3mzK1TOQ3GzOQZZkLFOFsdVNWpXomKBySFYdE9io1KpjkyCCcLlm7x90bKEAISgMtkkn4X8Ln1w7gwj4pZJbUcP4H63l43h6OFVYjIbpBY0KNmnPvDodLpmdKRKNrdLKoWpuIU1rj6RCm51fR47klmnOw9ECBJnw7vEMcZoOO3PK6gCkXagC5J6fC6xzntJgQWkUH43DJLeuuV9ArNZKIIANVFkfLu6FDQoTNAWGP6s7s9BoQPN2pU8V0idGj6+VNQDgHryld7j0q+lFcJJGU6uSnmpU8M38/H646xt/78hncNgZ9sJ323UWmtu5kHEa9xLHCatbs8mPM4xNPiKBZ1RJtBokRQTx+blc2PzmB7U9P5OfbhzL/7hGsfHgMO56exEdX92dCt0SsVomXXhKJwZ07xXvHjBFTeZrDnI0ZWOwueqVGMqJjy2gULpeslXKv9lEt+WajqHSc3zvFqwRKU6iotWv+w2PndtXsi83h4uY525i3Q0y4eGhSZ01uCIQk1fRPNvHcnwfYk13O1F5JvHxxTzrEiznn13yxBbNBpzVHPDJvD9kN5h/fPLItOklUxsZ1FfZu4Z5TVDYzy9sdZ4Vj1yctipyyOo8uUICiaqsHZw3E6BSAHzZnUVBppVV0MDcMb4vF7uQ5hWtnNuhxyjIX9U3hvgkdKay0cMVnm/hjlxjcPq1fKq9c3JOh7WPJKq3lcH4VTpdMu7gQIeyKiJiWHyrQeHFP/rGP3qmR9G8dRZ3dSaoy9NyX2KLZ0NhI78wqo78ygzM9v4rSplTG1XPTKlL5HsGl2eAlmyZJEkPbi4V5Oga1e3IE0UojhjfBWr8xcqToUHA4RCnEXeCotvZfMbLucDjgww+FUfr00/rHExLgP//x7zN+2SaMyhWD0gIeVK3iWGE1ueV1mA06JndvTIwtqbZqZW81W63yJZvCzqwy1h0txqCTePzcrvT6F2YhFlfbuPSTjbxwUXdMeh0r0gs1In6Y2aCVamtsToIMOkxKNvtQXpXG11Q3/7VHi3C6ZEZ3FpvWieIaTihUBFXGY4dSnu2eHKGtdUCbPzqo7dnt2A1sF8PWk6Vc9NEG0vOrCDXpiQ4RCgClNTZKa+zYvM1SRDjao5WuVNX3s7vQGikcXrJa6kMd4kUlZIVS7g426TUHbWW6H7NJ3dAqOoQ2sSE4XTLbfMyFVbN2W0+2vByr19WXfb3ZO79x222QliY6R90NwRlAebnwp06dEprB8+d7dtb/tDWL/EoLKeEhbP5T/JagQYcps1i1UVifrjmulf7sUWL9P/+0AWumeP19b/ihfah2aPz4Y8CC8HFhZoa0j6VvWhTt48PQ6yRkGf74Q/ymZ5+tr2Lr9fDrr81/psPp4kelEeyOMR1aJA0FcDCvkuJqG6EmPeMUrnnD71l2UAQuLcnWvbv8CGW1djonhmlatbIs8/jve9l0ooQws4HvbxlCm9gQdjZIlpyqsLArq5zFB/J5ffFhnp6/n9YxIUzoGo/TJfP8woMkRwZp06vu/WmXR+a5VXQIU5RgfMuJUnq3ihT3aAAarWeFY6dqwsSGNhZtbYibRrRTxiaJNO3d4zoSZNTz2doTZJXWEmrSU2d30jY2hNcv7Y3V4eLmb7axV6mjvzm9D4fyK3lq/n7+2ptHYZUVi8NFtdXByeJa0vOFaGS4WU9BpZVlBws4p0cid4/tSJ+0KF67tDdGvURmSS3BRp0m7dAQVoensW0bG4Isw+7sCm080raM5odm91Yydqq2394c752vqoFobsh7U9B5GNTTVPpXW/Lz8uo70/bvh0GDhNDTv1SWXbMG+veHe+9tPHXnP//xPlWiISrq7Nqmd2kLu7mgnqs4uF0MQV562dcfK0aW69f/hX1T/CIZv79CcDem9U8lLSaEHn6M4msJiqttPP/nQU1/6j+LDmkakDePaKfxu+ZszNAcj8X78wg26RnZUUSiZoO4R/bkiNmIQxTHdY3COxyoOHZqQCJJkiarAvX6dQPcuHdnI04UV3PznG2U19qJCzNRY3N6Lb16Q53dye7sch6c2InXptUz1rPK6rzqabnjHGWOq1r+BjQNwVUBOnaAFnj4sl29lED0cH7L7RDUy6usO3oajp3ZLPRHAFatOq3jcYfNBuPHiyaspCQx+zXabXnaHPXyRoP1PTiVKxEZ7cTVIZO4MBPrHxvHkHYxWB0u0pXzVJsogqbSUijdq2TgW/lRju3fH6ZNE/b0+edP63cdOiTi8WnTRAXbHTNmiL645rDxeAnF1TZiQk1M7uF/l2dDqNd9aPtYjF7KYntyyqm0OIgMNtK/dWC2Ibu0lu82C+fzuQt6aJ//3eZMft+Zi14n8dE1/emWHMHMX313Hbtj1eEi1h4p0oS6X1l0SGtW2p1dzs8NxjyqGb3fd9Xr3aqVDH9wVjh2pxS1+iprvaFrExvSiBgcG2qiXVwou7LLOV5UQ5BRx/m9k7E6nBoHz6KobD99XnfMBh1P/rGP/bmVxISaeHJqN576Yx+H8uqNTlJEEMM6xDKwTbQ2OsklQ5XViUkvYXW4WHOkiHFd4pEkic6J4VpqODJYcFuifGR03CdoDFQ6vVamFzBISfv6inrd0T05AoMyiQB8O26qxtVpG9SOZyBSBuHA7d4t1CsNyuZTWAjp6fDNN4KMcoZRXQ333y+mmTVEcrIYkOEP/tmXh83poktiON0CILQ2hHoOR/qY87r2iHhe5ZdN8yKF0hDp+ZWsPlyEXidxtzJAOiLISIobN7WFDWheceBUJUXKCLbyWjufrREbVnSoSZtVfKrCQq9UsaGrpPxJioaj6tCq5Vg186YGKAOVf+/MKtO6N90FRnPK6rA7XUSFNNZtO5vwwNzdVFsdxIaaPJrD4sJMzJzShd/uHM6aR8ey4O4RPDW1m8cECRB8wzkbMxjULpohbmVpneQ7QAo165msOHZrjxRrEwjUDMj2zFJt7Ji/qA8gvZdxOyWEN/m8vxil3DM7s8q0+6NFuPFGwUGbP/+0jkfFqVNCJmnXLiFo/s8/0LpBwmj+rlzyKizEh5vZu0xs9KlD85EMQq9sV1Y5D00Wk1o2HS9BL0Fw+0JQrmXdUeEQVegrqPCnPPfCC4IC8+uv4sBaAFkW1VxvY3Z1OqFe5Q/Uuebn9Ur26pD5C1WQf1Qn77ZTtSejOsUFxE0DmLstC6fS2KHud8XVVm0y0FNTuzGkXQyXfboJawBTO+wuIdHUU7lH3lxymOuUbOAbS9I9KnQD2kTTKzXSYyrIjgBoVGeFY6fOOa1x4wFdNqAVf9w1gg5u9W1VhX7edhHdTO2ZTHiQkcX78ymtsRFs1ON0yYzqFMeEbgmsTC/UPPCHJ3fm8d/3aY7foLbR/HP/KDY/OYGfbhvKr3cOZ+/zk/nx1iEaMdnmFB1pFruLu3/cRUm14EHcMbYDJr2O/EoLOgmfWbsgty4dNf2+9kgxA5RyrD8ZuyCjnq5uzsWxwmqvGlSdFcfuRFFNiwdxAwxRSrp7c8tbTlxW0aeP57/Hj4c33xR/P/ww/PTT6X1+A4SFiYzdsGGNn3vwQRHA+4P5isTHRf1SWlxKsDtdWpf3CC+OnSzL2txOlwxpMcF0SWreiVSFW8d3TfCYV+tugMxNdIcZdBJhZgNmg45lD45mxcNjeGRyZ+LCfDtOczZlcJXCo/ty/UlN9PaygfWOaFGVFaNe4mhhNccKqxjfNRFJQtuYVh8W0WhvJaOjZuK6JoUTYtJTZXFoenbunWkuGY4XVXvIoJyNOFFUQ3iQgRI3437loDTWPzaeu8Z2ZECbaNrEhtInLYrbRrdn5SNjeX1aL4xuv7us1s7dP+7k9Ut7a5tZpcWpBZANz5AsQ+/USOLCzFRbHZq9aRUdQqeEMFwybPEjuHSHWm1Q5/42el6xndlltaclVNwmNoSEcDN2p+wRiAcMo1GkoVp4H6twOGDWLGjXrj6bNXs29O3r+TpZlrVs3aWdO7J6lfjeijaH0UmCQ37V55t5YO5u0pTmO4Neh6QDfZi4r1wWM/YScW9v9ef69OwJV14p/vaTa9cQkiSquTff3Pi5q67ynHPrCxa7kyUKr1Od1tQSWOxObeaw2kjTEGrGf2yXxmXapuBwujT/4Zoh9bIIby05TJXFQc/UCG4Y3pZX/j7kdQKINzMU1MDe7j9VSWpUkGgcO1RA50QRFH/g1iUrSZJ2jjYeL9G49P7irHDsZJlGor9D28fSMzWSu8bVd9VcM7g1NoeLvxRV/OnKxvK9klZVHZG7xnbEJcPriwU58tqhrXl36RHt+ZtHtOWXGcPoppR8ZFmmvNZGTlkdA9vGsPj+0dw/QZSfVN8mv9LCQ7/sQZZlkiODuXKw2OhiFYfN6OWKu/MDK2rthJrE3FeV6Ln/VKVf3WO9FQ6VThJlmZyyxhy11KhgQkx6bE4XGSW1jZ73F21jQwk26rHYXZxsqUBoQxQViV55EB7WXXeJi37ttfDJJ2e0LGs0ig41d0REwO23+/f+kmqrttl5E8T0F3tzyqm2OogKMXqUFlWk51dRWGXVHJYBfpYT1IzYeW6zVXdklmkOQ3iQgTovI/lANB45XLJ2XGW1djrEh3HP+E5sf3oSf9w13CPL7I7vt2TSNy2SOnt9dnxou1itY2zRvnytq/qfffnEh5vpnVqfedubU0GVxU5P5bETxTVUWx0Y9Dr6KkZtuzLHuUeK5/nam13RYgf7fwnujs7d4zrw6rReXkv0IHhmVwxuzT8PjCLKTT/xwKkq5mzM0Bq7oN7IN7yLam1O8iotjFcI2u6lHvWcHwhQ1Lyj4rhlldZ6FSqOCzMTE2pCVhzylkKSJG0dHDzVcuF1D1RUwOrVAb9t40bRgPXAA/Wcsz59vDtBe3MqOFooGlucx9OQZejQqw5DZB39WkfzvaLLlldh0SpValBmTqnnR1uyApSOef55kVpbuBC2bAn4N4Lg0TW0neB/tm5VeiHVViHgfzrUia0nS7E5BOe4Q3xjPc/iaquW8R/tI6PnC+5i8WqHeG55HT8repvPX9CDNUcKtVKtCtUuest1qMki98xhbrmFMLOBIwXV2r02d2u2R9buXMWGb80oDfh3nBWOHeChQRNk1GnOjMq9uaB3Mt1TItiXW0GVUtIY2i6WjOIatmWUIUmCgN46JoQh7WKYvyuXIwXVRAYbqbU6KVZO6EV9U3hGETy2O118vvYE495aTd8XlzHqjVV0e3YxN83ZxoA20bx+qacmxpojRVo3q1ojL1ayeHovHW1Q7+FvySilh7KpFVRZSY0KxumS2eVH+rWvci7UTcBbOVank7Ro+nR4dnqdpGWODuU1IZLpL8rLRRfDTTcJ3RFJEj3zt94qdO3uukvoBag8vNJSMWO2BQ0WLhdcfz1s3y4UVq66Sjx+xx3eB1R7w7aMUmRZlLZbRbdcYkM1yCM6xHnlza1XOCRqo0B/PwzhscIqjhVWY9RLjO9WH6n+uqOev+GrbBVmNlBpcWA26Hjugu6seXRco07Tfq2j2fDYeI/mBRUni2s1Ptwv27OxOpzodJKmxVVaa6ObUkJVuYWqQVPH7KXnVxEfbiYlUkgtqE6F+rp0JTPTMSFME+EF2O5HZvt/HVHBBq3JYXyXeB6e1MXDWXU4hSzMa/+k8/yfB/hs7XGOFlTRMSGcP+4e4THGcM7GDM7tmaRRVWrtLi1b19AMbThazDglq+FOr1C5cIFOq4kPMxMVYsQliyykN5wJOwT1mduDZ8IOHT4s0m0XXSRsjB8oLhZmasQIIWvijlmzvL/nj10i239OjyQWzhfXLLqXCMaKq6w4XTLn9kyiU0JYo6aXkG7148FCa8S96beQdOfOwvh17QqWwEaHqXj5ZfjuO+Hg3X23MNVTpjQuvPjCBkUGZ3L3pNMKxLYojTcjOsZ5/Rz1nHRLjiAhIrBu2AVqUshNLH7ediFJNbxDLP1bR/OfReke7zHpJSxuwfLIjnG8cnFPHj+3K9cPbc0gxS421JxUbfGiffl0Tgyjzu7kGzfZttSoYPqkRSHLgdNnzhrHrthNmHNgmxjtpKvR2jk9xWJRjfyANtHodJK2mFR+3GUDWqHTSZoGzhWD0vh9p7jZEsLN/OeSXkiSREm1lemzN/HKokNahsuk1+F0yaw5UsT1X21lw7ES7hrbweM4X/7rEHU2J23jQhncLgZZFqUvi88siYi2TxbVaDy4fTnlWkSzx492/s6Ko+VSMluHfRjMzmeIZ6ca1DPi2EVFwQUXiL+ffVb8X6eDzz6D114T/LuionoeXmWl6KsfMACqAvsdTz0Fv/0GJpPo7PrhByGld//9/n+Gmq0b1O70yPoqx0jdQBviUL44t7VKFscfArAqWjqyY5y2ruzO+gy2QSfhrQpv0ElUWx2EmPTMvV0IdPvKFMWGmdnw2DgSIxrXrf/em09CuOCIqcdyrlvmsELha+3JKcfudGnduirXZk92OdM/2ah1y943dxdTZ63TNsNMRRbAqNfROale8+90RuX9r0DN3hv1Ev+Z1tvD2d+RWcrkd9dy67fbmb3mOHM2ZvCfRelMenctt36znSCjjq9uGOjxeW8vPeyRUVabKBo21m46UaIFDUcLq7Ssocpj3N/UhAMvkKT6APKoj3KsaodOl2enHuPBAI/RKzp1Eh2ylZXw9tvNvnzXLsGl8yaB17+/kDdpCLvTpc1YntCuFVu3isdLYoWIbk6ZWN9PTu2mjdhzR3D7ItS8a4cwkbE7lF/pPw9y1izRoDZmjH+vd8PcufXm+aOPhKrAzz8LNRV/se2kSMKcrjSRWgJtmLlXoa6rPj5sqy/IsswWhR6jiv87XbJWmr1iUBpLDuQ3KsGq3eomvcSsK/vSJjaEF/46yGv/pPPt5iy2ZZYRH24mKtjooTnpkiFEUQdQJyR9vznTgyp1nqL5uSurnJgA1BfOGsfOXeZEXRgOZ33XkHqTq7V3lYStqqCrm8X5fVLILq1le6bI4pVUWXEqDtFTU7sRajZQa3Nw05xt7MkuJyLIwCuX9GT/C+dw+OUprHx4DDeNaIteJ/HnnlNsOFbssVDzKy3MUzIklw8U5Vg1u+CNK+pQpi3IoEXd+3Ir6KCI1WaWNF/uVInxqvN41FcDheIA+jK4/kItUZ+RSBkE70OvF8rAmzaJxyQJHntMNFioAxZBkDni40WLlmpp/MCcOcJPBPjiC2F4JUmowKcEUFFVOS2D/ZAdaQoZynVtG9u4lABoZW6rw0WwUU9XP/h1atu9u4jvhmPFVCncVG+ZNqgPCN6c3od+fjiQEcEmfr9rRKMoMq/SwvD2omSgBku9UyM1Tt/+3EpNlPhQXqVmeNV780hBFeFBBu1eL6i0cjCvUhNSznK7F9zL1w11oM5m3DKyPUlujS6rDhdy1edbOFFcQ3SIkasGt+ausR0Y2yUenQTLDxUwddY6zEY9Nyuj3gC2Z5bTKbF+zVT5oHRsOl5CQriZhHAzLhkO5gknuXtyBDpJcCMDHQ7fUWmQOOqrgSKxaR6ev1DXQHp+1WnxhgERTL7wgvh71iwRTDaBvn1FZ703PPywd8rezswySmtsxIaaqDwWK8qwXRy4QuqICTXhlEWzXqvo4EbznAF0RheSSVzHhMggIU4v46Hj2iQiIlqkFbp5s+gxUX/bjBni78su8+7AekNFrV1LOAxse3pBsWob2/kYq6iW+Dt4EXxvCieKayiutmIy6OiTpvoTpeSW1xEZbOScHkkaP1KFO1/5jem9mbX8KD9sycLmcJEWE0yfVpGEmQ0UVVkprxN0K/fYqlbZs7eeLCUqxEhJjc1jspOqQrErq5zeaf47qmeNY+eO9kpd/XhRDVaHmCvZJiYEl0tmh8LDGdA2GpdLZrPi2LlkiA830zY2RIuahraLYYmiDZMQbtbEgWctP8renApiQk38cfcIzu+dwmdrTzD1/fVc9dlmDp6q5NaR7YgKNrAnpwKzQechtPjpmhM4nC6m9EzCoJM0o2r0oqXhLgyrdrYezKskTZk16w8fLi7M7NEh7CsS7qgRm08vUu6efAZLsQAdO8INN4i/GzprPXrA2LGej337LQD29z9m6Vc5VDZzGGvX1nPonnpKjPdpCSotdu03Dz4N3TRZlps1Tu78xV6tIjH40UGmHltPN+6aSiIGvMpnGPVicsHYLvHa+vcHqVHB3KfwTN1xRNmsNx0voaYBR+5gXiV9FeO0I7OM9vFhhJr0WsnpYF6lJr/hDTllddoG7l4Gr7Y5Wy6Y/T+Gm9ycs5yyWu7/aRc2h4uJ3RJZO3Mcr07rxcwpXZlz02CWPjianqlCIPq6L7dycb9UIoPrnfcNx4qbbJQBEYhmlNS6Na0Ixy7YpNfsxf4AM6LNZezUztijp2mHWseEEGrSY3W4OHEm+L4XXSQqATU18MYbTb5UkoQt6dbN8/HUVOHweIM6um14xzg2bhDXJbWnOLdJSslwQNtoJEmia1J4I145gCm5XPtbDbB9OdA+YbEI53Xt2mZfmpEhTovVKiZKvP56YF+lYkeW2Jfbx4VqjYItgdMla3ti+zjvjptKAWjvhX/XFNRsXb+0KMwG4QCrZd0xneOpqLM30qxT+Y9XD07ji/UnOVFcQ0pkED/eNoS1j47jx9uGsvDeETx9XjeCjXpqbM5GjV5GnUSNzak5ovN31c/f7poUTqhJT5XVERD156xw7KIbpCDVH3hAKcN2Sw5Hp5PIKq2lrNaOyaCjZ0okx4uqKamxaSdykHLTqCNvuiVHUK1kB64a3BqDXkdmSQ1frhep8Ten98ao03Hhh+t5f8VRDuVVUlAlyPOfrj1BRLCJIIOOvTkVXD24voMmt7yOdceKCTMbPLhRlmZao5ceyNcaE1SVeX8ydjqdRKIbl8BXhK02ZfgjfNwUuiRFKN9jpcJPra1m8cwzorNh+fLmDc4551DWezRGl43jt7xCbKyYFvHiiyLh53BLThw75jnS58UXW36I6XlVuGTh1CRFBsbdcEdpjY0qZd21iW18s5bW2Dw6qRtKW/j6TDWzVVJjY+ave5i/K9frQHZ3qON5H57Uxd/D13DPuI7ahqTieFENaTHB2JwuratXJSE7XLJ27+7ILEOvkzReKcCR/GrGdolv1L3ZLSkck0GHwyVrv7Hh5lB2mmv6fwFD28V43MevLkqn0uKgb1oUn1zbv5HYeceEcH6ZMYzB7WKotjq4f+5urakLhNZXdx/lKnfsyiqjV2oUIEbRqXDPiAWCdsqGmukjKE2JEr+xqMHc20Chc+P7BuzceIMk1RuIjz4SGps+IMsiY3fokBAeVsWH77tPmDFvUHm1w9rHamVYQ1I5gBaYqDxV9+YQqJ/5G9xW7F2VlW7UmkC5ii++KDo9Hn+8yca0ykrBkiksFBnKH35o+XAglSt+unqTp8rrsDlcGPWS15GdLpesiZsHmrFTu8KHtI9t9NigdjEsbyAQrO7RJr1EfHgQ+3MriQoxMvf2YSRHBnPLN9vp/cJSxr21hlnLjzKxW4LWoOYOu0vGoJO0vWBFeqHWyGnQ6+irqGToAuAlnh2OXWhDx05cUJUrphogdQhv65gQTAadNl5LLXEObBODyyVrUWmpGzdBFUv8cWsWDkUSZUTHOG77druHgYoOMfL4lC7EhZmY3D2Rz64fyG93DuO83skemjoLFK9b7WZxn8XpC4VVVs3oGZQ7qKDS6pdOU4rb/NDyOrvXOY/qeSyv9f68vwgzG4hUOvHUGaGnjbZtBRMZhJPn4/jWrIFzpkh82OszAG7hS1IdGaxfLyq6EyaIUT4AZWVw/vmCCz1okJDH80eA2BdUDow3ZywQqGXYlMggr1y2k8XCMKlNBYl+EIDVbF2b2BAO5VXyy/YcNp0o0aQgQnzMsnXKMp0Tw3xy/ZqCQa/j97uGezxmdbi0jM1apQHEvVVfvaxaxlIpRRt0EjanC4vdpWX4VEzukURrxblV78X4cE/HTm1SOpvhnjE9VlilNWK9dmkvD82vwioL83flsmB3LtVWB7OvHUByZBAni2vIr7Rq6wbQuDtN4URRDT0VEetDbk5csvLewgBLsdGKpqCvEUiq5mCtzXlas6sBbW7yGbND554r9JDq6uq5G14wa5YYViFJ8MsvsGGDKDzcdpv311sdTnYpJdP+rWLYq+ja1kWK4EeVyurtNiUmzS1DExMqzll4klj/hYX11JqAm1Duuw+Cg0UUvHix15c4naK5bP9+IbK8cKGQi2opshS6hJoFbilUu9EmNtSrPl1ueR1WxfHzlvH057PVipTd6WJnZjkAQ9rFaNp4KlRu3Tk9krQu2aemdsPicHLJxxtYqThoeqVqt3CvEGf35p5N6p7Im9P7EG4Wo/LceaMD2sQov81/yslZ4dhJbqciyKgjVlnkqpBnopI9UaP5ZOXf6kascui6JodzsqSGKqX775gS5YWbDXRPjkCWZX7bIRyy64a24d1lRzyiocsHtuKv+0Zxx9iOrJ05jvsmdmJ053iNU/LAxE7cqTRTLD1YQK3NoXGx/JF80+skzVDVWB2a85TlB4fIPYPkdMleOTWqwXX4eD4QqBvr6UbdHnjySQgPF+VXW+MMTHq6cNSWLoVnf+jCbG7HhJ2neVl7zYsvQvv29Rm6w4cFJ/rPP4UtOx2oMjKBGoyGOFksrmdbH2VYtZSgOn0JXhoVGkLNqnRLiiBPkUkIMuiwKZmAWi+aYaphHO9lJI+/SIkKpmODyFidw6xmf9wlCVSRcZUXp967ZkUuoKTGytRenuXYSd0Ttayl6hQ3duzO/oydO79RFXKd2C2Brkn1mZsft2Qx8rVVPPDzbu6fu5uRr63ixy2ZPH9Bd0DM471xeFvt9YfyKr1uJO44UVytZT/yK+q7zdWRZIUB3uOq/Eq5D8cu3GzQ+Jl+Cew2gfgWHqNPqFk7nU7UH70EmH//LbhmIGQ3L7hANEzs3es5YcIdWSW12Bwu0cRXFYrDAaGhMoWyyAip50EN7AFauwWQajNUcIz4nRkZno5dQJqiSUlCbQAE9cXLb3z4YUF5DgoSTl2rlg/YASBXsZ3esmyBwF8KS5vYUL/oK+5QE0OpUYqtKa6hzu4kzGygY3wY6fneOT9tYkMorbGREhnEBb2Tue+nXZTX2unTKpIVD4/hyMvnMuemQaRGBVNQaSUiuDHXeUV6IRa7U+PrbzpRz7NTdXO9yZj5wlnh2NW56SGlRgVrLc4VdcKYqw6LapTU8pC6eajjtpIjgzVPuFtyuJbR65QYhiSJwcrF1VaCjDpGd4r30Kq5YmAab0zvo0XAISaDdrOpGNAmhpnndOHaoa155/K+GPU6rdNV3VibUsG2O2XNac2vtGg8u5zS5i9osmIQ1LXsrUQaZNRrejvlNadnUFXB2qIzmSlp1QpycuDjjxupBZeUCKeu2q3i8gLPY8eADRMg06+fqDDIsghKV6yA0FBhmJJ8U7f8hhoonI7MCdRnF5IjvRs59Zyq5tafAdZqxJ8UGcQp5T5oztSra3H2mhNc9dnmZr/DF1T1dBWqcT2cX4XN4SI2zKxlDPOUY6u0OKios2tBmF65p4uqbEzpWZ+5ig010SOlXrZApRE0FEwuPpMBxn8BBr3kIUC97KAo+7hn8dYcKeLJP/Zhc7rokRJBz9QIbE4Xby09wp6cCvqkRWF1uAgy6rWs8mUD07Rz7AvHC2tIVNZYWa1dy6Kp5zxQp0kNSGt9cB91Okl7jS/xdn+hOXaVZ/D6T5gAJ04IheEG5a99+4TWr8slCgwPPVT/XFOBo5ppbh0bwokT4jPT2rpwuGShaSeLr3KnGKS5UTDUPdAUJe6f0lKIMoRoAvklNQH+/sceE8Zx+3ZYsMDjqdmz6+VavvtOaPSdLk4pTlOKHxnkplCmVNkSwr0Hu6qD3JSgujdYHU4tSaE616eURFGr6GDq7E6y3fZhdRvXSZClPH5Rv1SWHCwgPb+K6BAjX944iA7KjN2xXRL47c7hJEUEUVHnaMSz65Ycjl4naVOn3EeDqpnbggr/s9L/umP38ccf065dO4KCghgwYADr1q0L+DMsbtkG94WhksHVCDFfKRmo2atsxcNVa9pJEUGakYoLM2s3i1oqUjtq+6VFczCvws0Zg0en1HOQbDYb7733Hvfeey/vvfceNrfskiRJvHxxL6b0TMKo1xEZYvQwrPpm6uSq41VYaSHcLH5XjR+lWHXzV0s2ZT5a4FUn2Nfz/iI+/MzwZBohQmQn3M/xW2+9xyWXODh+HMAGvAfcSz4/04pj3M3HgJ2xY9/jwQfvZdq075k926mppfurs9QczlTGTg00gk3ebz+1u9lqVzfY5jN2qkGLDDaSrxiA5riU7uNqYvwwhL7WfcOM36hO8YSbhRi26uSpAVFumUULXnLKarV7VU0aFFdbSYsJIVjJVnZPiUCSJO2+UEVvG3LsigPd2M4gzoSNax8Xqt27tTaHVilQZ+rKssyriw4BoiLRv3UUtXUW7Hv+onTZbF57822GtRb3zh+7cxmtKPIXVFqa1UDMLK0hKsSoSUipTlKClg0LrMwZ4SaY7Csjp5ZjT9exa+kxNglJgjYiWHFf8y+99AHnn++guhrGjRM0PH9pT6pUT9vYUDKVfEFckrDrKtUiNtSM7HRo37f8l69xOcQ9plINHAY7oUqyqqRY0s5jWaCBeny8iH4Bx5w52nfeeecX3H23OK6XX4bp0wP7WG+wO13a3tzqNB071Tb6kmNS9/RgH8/7gmozg4w6reydpzijSZFBjRp9VL5bm5gQTWJtZMc4rfHh+mFtPWyUzWZj7tezST74I5Xb5uOwe9qrU+UWzAadVv1w14BUHXz3gQbNoekJ0aeJn3/+mQceeICPP/6YESNG8Omnn3Luuedy8OBBWjccoNcE3NPM7hdM1e+J0jJ24uIkapFm/c0eGWwk2KSnVNkAQkz1P72htEjX5HCPevrwDnHaRZo5cybvvPMOTme9s/nII4/w0EMP8YaPTqo2sSFamdjVDLctLKjeSVWzHN4U3BtCJXIadTosuHwazKgQE3kVltN27NSI6N8ogXk7x/A2ktQPWV4E1D9eyCNAfyRpJ+++qz7+IfAEo0c/xIUXPnjGjkt1Yv3hvDUFTUne4N34qBkT1Uj5ik7d4e7YqWvNn6klQQYdFoeL9j5KGyqaWvevv/460cqkCoCrh7RmZ1YZ6flV5Fda6JIUTmKEMI6lNTY6JYZRUmMjv8KiBWpqyVjdwFpFB3O0sJq2SuZJNeTqOQky6gkzGzSplDMeYPiJM2Xj3J33IwXVyLK4x9SMVHp+lVZuz6uw8P6rz1O5bT7I9c75E6u+ImrIxYRf86BW/j5SUMX0Aa34Sxk1Z9BJOBShVNWsWuwubE4XSRFBZJXWUlBpIS0mRAsWCyutyLLst6isXicRHiS4QhV1dq9dkPUZu9OzH2pW8d+4/t7t0BtERb3Gr79egymApJBaPWoVE0xphngsNFJcOzV7U7ziS4KfOweXyy3LKemIGHQx0ePEGIs6m5PoaJmaGonycsG9K62xtawh7pFHeHPXLp5YuBCnR9buBbp3f5onn5wR+Gd6QXG1FZcsfufpdMRC/V7oawKO+nywD06xL9TTuOorgu6PNawIOLVkkZlNij5ft6RwrfP5XDc6ibd1VLbqK4/rWlRlJb/SonXyniyu0e656BCj0hnr/+/5VzN277zzDrfccgu33nor3bp147333iMtLY1PPvkkoM9xuRWV3EuZ6mYWpXTNqt68KsbpcFPjjFUckRLFEXGXAVAjTDX1mhIZ7CEMrHbyzJw5kzfffLPBjQ5Op5M333yTmTNnej3+aLcB5Q07YhpC7X6qs7sIUhanPzMV1cVoUN7vi98SE3pmSiAxWsR9Zh07X+cYcpDlhbg7dQJOYBuy3Pj1a9Y85POatARap9JpziVVHTdfUhRqRk9dKv5En+6Oners+Cr1ukMVwk1rovO2uXX/2GOPefAFjxZWac6v2qGt3qM2p0v7PTZFqgjqz626QakOn3pcQQY1yHGbeetm3E9bx6yFOFM2zt1GqJQSddZvdmmtpogPYlOo3Pq7h1MHgOyifPPvdMn6k95KFeJkUY2HLISvwes1VifRoWo2X6wllQtkdbiatVsNoTpuvjN2TfPwAv2eKsvpcYYbwrcdyqW8/Fpeey0wu6La8HCzgTKlUT04TDym00mUrfqKzNVzPZ06ANlF5dbfKVv1lfZQRKS4FmVl9Xa4JYH6zNdeY+bixTgbfic5HDx4B489dmZsp7oPmww6r1N2AoFqO4N8BMUWt8AvsM9tnAlUbVF8mEmzqSrUu0F16sLNeiotDix2F2aDTpP08bmOvFzXrJJazWbX2Z3UKGtGkiTCfGiQ+sK/5tjZbDZ27NjB5MmTPR6fPHkyGzdubPHnui+MSiU16Z76B5CV0+5ujHQaL8+ufE7969WOVdVJiQ0zeQzjTokKxmaz8c477zR5bO+8845HWVZFVIj/oZ37MYcoi6zWj4yd6vCq//eVrVHFkm3NSK/4izM5otOfcxwofF2TlkBtwmmKJ+kPmsvYNczQ+rOnVro5dtpjluY3TZUaoDpYDeHvuk8Mq/8thZVWTaJI5XqqxyXL9cGLzc0ZU+9ZNaOt6rGp961atra6nRuX24nJD7Bz80zgTNo4dxuhCjRHKMb89cXpzF59HACXwyYydU3gnXfeIcIozltZrV0rLUH9htRwBVdbHI0Ep92LC4FILQCaNIsvhyskgKC1Kajd/f93dkh8X6B2ReUamgw6apVeOL1J/HaD7Gj2mlZum0+wTrzeaBbHYLHU732BNqGczn4WKNR7OtA15A1q0Gv2kbGrsyk0lwAdO1k7RrfHlGutUybzNIWYULNG80qODEKvk/w6x5Xb5mvl9oIqwe9Xj8F9DzcF2Ajyrzl2xcXFOJ1OEhM9FbQTExPJz8/3+h6r1UplZaXHf+BphNw5auoG63R63tyqQXI3/HKDTdk9SAk2em5qOslz9luoycDHH3/sJXrzhNPp5OOPP270uNHHnFhvcM88qOlkix/GT10M6m/2mQ1yNH1j+AvnGbxZVfhzjgOFr2vSos9ynSHHrhnjpDp26qltrnwP9Ru2e8DiT2ZRNV6+DIe/6/7Iyt+0f1daHFoGWf0N7nIranBmc7jqN2RZPWad8j7PY1cjaYubPIa7wxvodIQzgX/LxqnOjnr/u99j1bsWNc7UNYDT6eSnbz4HxPlyP5W+7vo6L8Gj+6oLdMWrWSBfts+mBTenZ4fUNfB/bYcCtStW1bHTN84y525c0Ow1RXZRtv1vwNOJdbUw2Pw3fqMvqNfoTFwh9f4/0xw7uZl11JzkmEEvNcoW+rWfyS5xTwN2hwtJkjSamLuSgTHA++Rfb55oaKCb4mq8+uqrREZGav+lpYmRXO5ZOvcFrDk+DbSQ1Ivknv1S//K2gdkalHFkZA+DY3U4OS6Y+83C2+sCyY658wnVX+pPxkZdkKrD5WvhN5ct8heuM+TkuMPfc/zf+twz9ZubLcUq10inrAB/HDuNg2arX2smP4yB+tFOH9/h77krOpWl/R1m1jfSSXR3HAzKWnW46m2B+mr13DY8w0YvmWb3wM3ecAjq/yHOhI1z/131jSKeHCwAR7l3h7Eh1OtmNug81Sx8LF1vG6H7ugvUb2pug22OBO8/GmdaThenY+t9QXXi9HpdfQJCea6mJNf7mxqgrkSU41VbL8v16ybQjM6/8Rt9wXUGs6rquvFlO9XzEajUiRrg+jrG5tap1eHSjkk9Bn/PnXpPu2QZWZa93zsB6s7+a45dXFwcer2+UeRaWFjYKMJV8cQTT1BRUaH9l50tZq66Z+ncPeog5USqEa6aLm1KfNcbx6RKKVmp5ajKOoeHyntRlZUOHTr4/Ex3eHudu+fd3Np2X0AVXsprvqA5di71c3w5DYpT8T+YsfP3HP+3Pre+jHV6v1l1Xhw+nBH1hlZPrT8aVep73CNLf5x3TTrIB+fS73MXXn9PJ0cGU6rytJT7SOVt6SQ07khDuSCod2Ikt80LGt+j4OmM/jdGip1JG+fu2IUqv1Etxbhr9hmi/NPtiU4SDmNsqNmDf+VrLYUFGbRzrdpPdzPqb+OECjXA8LUhqtmN/8WM3enYel+oL03btaYLySXOjSnav1F+euXaW+oUekKwm2MX4Hn8N36jL9SXy0//GqnrxeojWaLSqvxpHHOHuta9HaFL9k1VUQOK4mqrRqdQBx/4e+4MUUm8dFEPhneMo87u1O5R99neZQGW2v81x85kMjFgwACWLVvm8fiyZcsYPny41/eYzWYiIiI8/gPPDIm7AdfKM4qRKFUaI3IV8rH7KDLV+VNvAPdoVB0rphK+8ystHqKrJ4urueuuu9A3M09Fr9dzlyr86IbssnqB4ebKY6pzGmLUB+TYqedFvYl8kUutzUQ8/sLxL2Ts7rzzLiQpljOTtBfwdU1aAtURKa87Pd6JSpT39TmRDUbo+ROsuXdQq2vcHzuqGhFf5Gt/17218wTt392SIzSpAFVfsVzhrAYbDRopOSbUpI0CU51QNTuv3tPqb1Gbfdy5aO5Oij9ZzTONM2nj3CWNVE6cytlxb2wJ6zcVpKbvXb1eT4/xQqeiY0KYJtPTNSm8UbZIRahZr2mhqd+vBoGBUElUWJrL2DVTUvMXdmWDP5N26MYb7wISacoOBWpX1HNaVmPTRIzttWLjjh98QbPXFEknrj1QoUicxcRArV2sm0Dt+ZgxdwEpnMnf6AvugYorwCachtCabnwEoi3lHKrr1J1Lp9r7ilqbT8dOr9krF8mRZu3YVqYXslLqg+THdW014iKuGdKG1KhgTSsvzGzQbLosy1QG2Oz4r5ZiH3roIb744gu++uorDh06xIMPPkhWVhZ33HFHQJ/jnj1zF2Ks592Im1vdnLYqnSrurdWFVVacLlmTjnAn7aoSC6pjd6ygihy38R3bMsowmUw85K5G6eP3mrz0wGe4DahubrOttYrjSo4K0hZnw+YQb9BERJXP95WRO1OlWFVeIDZAIcim8NZbJmT5szP2eeD7mrQEZ2rahmqcSn1oT0UFi+NV14o/2aj6jJ2TREU6wx9nR037uwcf7vBn3V96wx3YZGH49JIQ+FR1u1RxTVVTMjLEoDUmxYWZNEkBk0H82HjlnlWbIdR7UtOsVM6dyyV7nJdGjX3/RzhTNu5UeT1HUO1izSoV0wp6uc3T1RlMRAy6uNljWnlM2MBhHWK1cXOdE8O1Upb7/hpmNmDU6TS5KFVbsOG//YVHOcmH7ERzPFN/kddA4up04XLB7bebAO/cMtV8B2pXVMeutMauOXbWGqU73KVv9prGD5uGzmBCAsqEbBrR0WiOQCCi6UVFMG2aCfiApmTMz5TtjA0V97TDJZ+2zFZUM13Akc1MPfEFVW7IXYy7vrPf2qgrVePqu9nYE0U12ujDgso69ubVEjn44ia/N2LQxVzQr40W0KrTLTorQxNAOKmBMk3+Vcfuiiuu4L333uPFF1+kb9++rF27lkWLFtGmTZvm3+wGdaMDz03VXbQ0q6RW6yY7eEqENKpjJ0kiulfFT0E4iGqQd1AxfOqMy6OF1R46dseLaiitsfHGG2/w6KOPNspg6PV6Hn30Ua86duW1Nm1TgublTtTNKjkyKKCMnabZp3x8cx2Xp5uxqxfrPb0pDCp+/RWefhpgGpMmvdHoHMcgMQETjZesnoEDB3u/Jg8/7FNbsCWo1+47PccuuhmpGHWmr0ob8EcrMMRcH3GqUwSaK8+4ZznUucs2h4tlBws0oU2gyXX/0MOPUNv3Su2xfq2jOZQnJk7EhZloExuC0yVr43rax4Vq0XZcmFmT9lDto3p/5jcYD9hwykxhldXDOTnNRECLcaZs3Cm3QDIxwkywUY/TJZNVWkPb2FCP+zV63M1ED720UZZHtUNX3P0EG4+XoJPgvF7JbDhWrH2uN6i6gnanjCTVb2jqNUvxQzbHHXanrGVTfZZiz1DGrn6iwZlx7J5/HubNA6NxGlde+UKjNd8K+KJ9+4DtiipLUlpjJU4ZKV5RKj670uIgetzNRAye1uia6nQ6IgZPo9vFInMWpw+ntlZCkiA02qbtEa2bkCtyh9UKl1wiRpJ16DCNe+55wut9/fj9958x22ky6BploVsKdRiBL+pIczI7vqAK7ldZHFrSx72Cl9Zgn1Mtp3vM/dvOHE0/MqOklu7JEUSOvZkJl9/SOCMrieuaOvlW7hrXUXt403Ghg+cezKW7zW/2F/+qQDGIUs7ppnMTI8xQIBaEu2OnGvmiKivZpfU8l7JaO9mltcSFi+eDjXpqbU7yKyza1IDccgtxYaJF+YgyM1YdhJ5ZUktCuNljEc7bns2MMR144403ePnll/n44485fvw4HTp04K677vIZ2USFmNj97CSu+3Ir+3IrvG5AEsIfiww2ar/PfUqGu1yBLxQoavFqpOztPXanyy1bcnpCkdrsv9NUEgcx1eb668Xf990Hs2Y9gs12H4MHf8yePccxkcZe3iaVQu4yfsQndhtwnLi4Dhw4cBcJCSZsNpt2TbrExTHjxAmM6qTtM4QznbFrLupUy/Z5bvM7fSFFm+xQp81fbW6mmF6ScCovSs+vQpZlVh0uZMZ3O0gMN1NtdTB9QCuCjHpt3b/3/gdkZ2bQoUMHzr/iRl5bepR9hwq1z7x/YieWHRT34pB2sUiSxMmiam2jF4FACYkRZqJD6zN2aiY5LSYYh9OlrX01W6Qq66vnLqdBhrGxFtf/Hc6EjSupsVNjdRBqNiBJEj1TI9iWUcb2jDKiQoyNOEURY24ifMQ1VO1aRGtjFZePG8gjD97H8RILt8zZBsC0/q1wumR2ZpUjSb55SV0SwzUnLj7MrAUU9bMzA7vH1XWtkzy7oVXIsqzpifoTtDaF3DM0qgrghx/gpZfE359+Cjfd9AzffPOYZle6hYdz+2uvYThxArZuhcGD/f5s9fgyS2tpq1Tp83L0GKi32dHjbiZy1LXcHHOUkrxsOnToQMLgC3jyz3SNWhPjErPHW7WC/GpxDySEm31mRmVZ/KfTif/fdhts2ACRkfDXX9C16394++3ntd/YOTGRO/bswfjbb/Dqq6c/YFtBQriZ0hobRVVWuvlHKfSK5vQP1YxeZYCOXUSQgSCjDovdRWGVhTaxoZrtKay0kBoVjNmg0+4hb1zVNUeKtbnuv27P4daR7TiYV0l5ryvZ//brXHn/C2RmnMQQlURYv6lEhobw0TX9tftLDaoBJnWv59LuddPU9Rf/umN3JiCieJFVK6u1Y3e6MOp12pDkrNJa9mSXe7xnyYF8zXkRhspJfqWFvopwZ16FhT6tIimsspJdWossyyRGBJEYYaag0kqXpHAPx+6bTRnMGCPIkCaTiQceeMDv43e4ZA4oWURvUJdI71aR2ggmo15HlcWBUS/5HHjsjsJKdbKFcGSTvJQmsktrcbpkgo16n9G7P7A7XZqzkXaa47VycuDCC6GuDs49F95+Wzy+ZImJPXseAMQQsTcwM4sHeMLxGmWXHCUjz8ycOZCgTLPyuCZZWdCxI9jtsHo1jB17WseoQl1PpzttI7qZcUoaj0xJxbuX6XyhTYwaKdbQN03UeppzCN3lW6osDo4WVjO2SzxhZj0FVVaenr8fvU7iqsGt2ZZRSqf4MDaHDCVm4GiSuiUy+f0NHoHK+b2TGdQ2hvt+2gXAJf1SAVh7pN7xU8vLfVpFAWhBlebYRYdQXG3D6ZLRuynVqxlp9dw1HIhdGSBZ+n8RJ4pqtOByaPtYtmWUsflECW9M70OISe/RhAWQGB2ONOhiyoGvKyX+fmd9fWY0PpRnzuvO60vSARjTKZ4lB4TDrZfwKO10SQpnd1aZ9reKls73PF4krmlaTIjXZrXCKiu1Nid6ndQoExIoWup8NsTGjXCzGALAzJlw003i70a2Pi8P5syBZ5+FxYv9/vzOSaIalFFcQ3IrJ6An7xS0ckpIelmboqIzmJh8xc0M7yDSeu+vOCo+QFJkrKrF+ujYEQ4oc887uPHBG2LtWjH67Ntv4Z13xOxXvR5++QW6dvXyG61W6NxZGOZPPxXDt88A4sPNpOdXnXbGLjK46WpHSzN2kiSREC4mrxRWWYVj5zYr2SnLtIsL1bJn3mLm7NJaeiRHcCCvkpIaG3tyymkXF8rJ4hq+33qKPfNmseZoEftyKogOMXJur2SPBMtvO3MoqbERH25mSPsY7fFdyr0ZCP51uZMzgYYcDzXaU9PPxwqq2abMa1Ox9ECBNghbjeazSmqJDzMTahJljg5K6dXqcGlchRHKDdWwVHmq3MLLfx1o0fH/ufsULrm+i9cX+rWOZmj7WAa3i9GEPTsmhPvV8eR+w7SNC/Wq8J2hjExrExtyWh1KuWV1uGSRYj+dzF91NVxwgbCVPXvC3LlgUEKN3r3hk09g2jSIioJPmUEuKaTJ2fw04Qs2bYIuXXx8cOvWIjQFeOaZgFvFfUHlYagbXkvR3LxetelHXbf+ZOzUtZ5ZUkuSQuLNKqltsg1F7SpVicFrjxRhNug5r1eK9ppP1xzn772nuPrzzVz75RZ2Z5ez/FAhj/++z8Op69c6ilen9eLj1ccpq7WTGhXM2C5iXun83UKmwaCTtMaJPmlRyLLMjsz6+zYuzEyo2aCt06QIIfRZZ3NqAY/qeOQ2uAZ2x39P7uRMwf1cDGsvMjMbjpXw2K97sDWQdNJJ4p7vmxZFt+Rw7M76cve5PZP4ZcYwDuRV8NNWIUMzqnOcltVvmGwY1Slem5M9pF39hnIkXzhoagDtL9Q5l74cDvX5tOjggLs5G0KbRXwaAWZGBlx8Mdhs4v+vvtrEi595RhipJUuEN+gn4sPMRIcYcclQJVVjMoHLJeEoF+fW/T7NcRs2vy9XJATUhHR1jmi2GTAAbXyVuxPQEO+8I0rL/frBU0+Jxz74ABpoatfDbFY5MeJE1NT4eGFgUMfTna7eZHQzzRPujl2gjRoq/76et2kmPMiAwyVzpKBK8xd8QQa6JdcHRksPFjDznC5IEvy0NYsftmQyrksC903oxHUNZskWVll4e+lhAO4Y00ELiOpsTlalC1pYIDv2WeHYNXQe1FKYupkdyq9sZKy2ZpRq4zlUeYW9uRXodBJ9W0cBQnhYxcbjgocyoZuQKThWVN2og/WL9RlklQS20OtsTmavEXo2Fi+lkBC3QfC9UiN567I+/DJjGKeUzdx9ofiCxe70cOx8zf08WSzSxP5kAJvCruwy5dgiWjwixumEa66B3btF1m3hQlAaBAExg/uOO+C33wTZd83mIPaeLyyT/MorzRucJ58URmr9emjQtdhSdIwX1+JwQVWTkjrNISZM5dvYvKb0VSOoZmhUQ9MU1HuhpMam8R7r7C4tU9AU1E6wNUeEAblicJr2XEZJLceKqgky6Nl/qpJBbWO4sE+KZmBbx4TwyOTO/HTbUHZnl/PJ6mMAPH1eNwx6HTlltezLEZvTsPaxbDimbEbtYjheVENZrV27zwa3E5nGHZliffVJE9mJdOX+jgszacbXvRRrDlCz6n8V2zPrI/MBbaOJCDJQVG1lb24FDU2HSxbO3e7scox6HV/fOIjf7hzO9qcn8sm1A9iZWcbt3+5AlmH6gFbM256jvdd9xbWPD6VDfChblcB4UFvhJFjsTnYrVRD1MX+hZux82yFx77Y9TTuUX2Ehp6wOneTJSQoEFRVw3nnCxvTrB99/7yny3Qjt28MTT4hs1sCBfn+PJEl0ThT242hhFZHK4VrzxB/uXdGHFAK9LMvsVNaEGgTmHhH39qBBssbHUoOAhjhyRNhVgHSRuOXGG+HOO5s52BtvFL+zsFCk+84AOiSIa90Svpg7YhVfoKDS4tUGx4WZMBl0OF1yo6x+c+iUKGxlusK5lySJ3koGfV9OhV9rLLOkFjVWccmw/FABD0zoDMAzCw7w9tLDjZrhCqss3DxnG8XVNrokhnPNkPoZ0yvSCzS/wRRAo9FZYRHjGnReqpFpa6X85Cu9uzurjNhQk5awUWvV/VuLDcR9cPLKdFEuGt05DqNeIqO4lsHtGhu0O7/fEdCm/v7KoxRWWX1yIFRNNL1OYrCbAT2opNm7J0d4fZ87DpyqwOmStYygOki4ITLOkEHdelJsAoPbRrf4Mx57DP78U/he8+dD27a+X2swwJAhcO6vt0CbNkh5efDoo54vWrlSlBFUpKbWW7AzlLXrlBiGXidRXms/rRFWSRFBBBl12J0ymV4ChcQIM+Hmel0xfzJ24UFG7T5Ro9YTxTVaydMXzIoRBNh8ooTSGhv9W0d7rP2PVh7jtlHtMBl0bDlZyr7cCl6d1pvDL01h7cxx3DyyHd9vzuTWb7Zjd8pc1DeFKT0FR+TjVcc1R6JrcjjVVgepUcH0bx2tZdlVHtYwJVu+XXl8YBtxDGrJqXtKpJZpPunWaa42jpzt2OHm2JkNes7rLchIqjPbMLnlksX125tTwU1ztvHCwgM8/cd+Jr2zhtu/20G11cHwDrG0jgnWNlRTA+mSyd2T2J9bSVGVFZNBRx+FqrI7uxyb00VCuJm2Lc3Y+chwnCwWjt/pBpjq+umWHOGhnOAvHA644go4eBBSUoQTFOrPIb34Itx+OwTYMapmm9PzqzRKQt1xwSVxj+9WHCpElmUySmopqbFh1EsUV9vQWcwcPSTWelKnGoqrrZgNOi1R0RCzZjU2e4sWwY4dzRyo0ShKzQBvvAFVp+eMQf0+drAJSpI/aBMbglEvUWNzarPd3WHQ67SA4mhhYMfdI0Vx4nLrj7FXahQgkkLDO3h3oN2xO7ucKwfVO2a/7cxlco8EZoxpD8AHK48x7q3VvLkkne83Z/LCwgNMeGsN+3MriQk18dE1/bWGIlmWmbMxQ/ssq71xYsgXzgrHrqEjorbvp8UEax2vUSFGYkNNWvQfHmRgR1Y53VPqHaPMkloqau30byMckn25FbSOEVm9TSdKkGWZ8CAjE7qKrF18eOMb90BeFa/8fdCv41645xSfKDMefc1EVLOJozvFafplNoeLzUqaXeUENoWdmeVAvbSAL4OplrjaxZ4Zxy6QSH7VKtglqFd89lk9l+7rr2HYMD8/xGwWb9bpYNOm+serqkRNt08f2LOn/vHHH4eQEEF0/usvv4/VF4KMeq3rSV2DLYFeJ2lDolWOmTskSaKzG9cpzw+OHdQPjS+utmqcI3dxW296ZKpTFxVsxO6UWbBbdMPeO76+U8vmlPlg1THevbwPCeFmThbXcMf3O+j30jLGvLmKfi8u4+W/D2F1uJjUPZE3p/dBkiROFFXz83YhwJsUEcTRQvFbL+qbgk4nsWhfHlB/DwzvEIvLJWsOzkAlcFAdux7KvWx1ONmVVa4dX6ADsv8XYdBJ5FVYPKSRLuorOIp7cytIjgzC4Wo8YcHqcP0/8s46Oqrre/uf0bh7SEKAEIIGD+5eWihaaKlSpy11dy/1Qqm31JBSSlvc3TVYQkiIE3cbve8fZ+Ymk0zIJNB+y+991uoinUxG7z13n70foZW3C0oFxGeWsuFMDkl5FWhVSu4b2pZRHQP5cLPgaakU4rus+5xz+rdm2WExrh3XOVi+qBxMEed4XFu/ZtM2rB27xkax1qK8sY6eoziS2vx1aNkyQf2QJCHU2rhRLBF//y32gs2GweDwprGbZZN1+GIRJSXib2oybV+7AsEZP59bIb8/6+QpsLw1kqSgWzc4kCs6sIPb+9t1QCgqgu++a3AzeXliUtLkhPXmmwXXrrAQPv7Yofd3OVivwykFlU3Gc10OGpVSvr6dz7VfuNV2RhuurZeDtSN3JrtMbt7U7dh1DvWyMQ2uC2vdYTBLxLXxs5n23fXDEeaPjObTWT3wd3cis7iaRduTeWH1ab7fm0q5zkinEE9W3T+AqDqboR2J+RyxUCRcmmkLdE0Udh7OGnzdandkVnsSJ7WKEAvB8dvbenP0xdHcMTASEMTt96fHyjsFDwuPKD6rhJ4WcvnFgkoGtxc8oPIaI/GWkdGc/sKqYOu5fPrY6Up9syeVx3870ejrrdIb+WjzeR5edtzyOu1/zJ7OtSfk5B61q8r+lELKaoz4uzvRI6LprtgxC7my0uKBZz2w68JsluRixNoWbwkKKnQkW3bkzVlQX3oJhg4VG0CrgPDVV2HWrGa+gDFjID4eHn+8dkFNTxdz3MREGDgQtmwRtwcFwbx54ucmwpgdRUfL8XTu0pXtYq1t/8YXp9oTvLBST6EDFitdLIvn8fQSeZGqe82x19Ww2u9YlXkrjlgvGAGM6VSbnmAwSby4+gzL7u7HfUPb4eempUpvIq2wCp3RTGs/V968sQtfzemFVq1EbzRz389H5cJxVt9wdiTmo1TA1F5hZBZXscdiw2EySwR7OtPW342kvArKaoy4alV0CvGkqFLPCcvo31rYxWeW2ig8G0vwuJZgPZfWn65V9/eN9CU6yJ1KnUne4NkTI2SVVOPlomFC12DuHBjJC9d15K0pXTiWVsxra87J96v/MU3p2QofVw1/WTiQN/WpHcHvsAhe7E0tLofiSr08UWlnZ3IgSZJ87rS9DOnfERyyXPQcXYeqq0UxN3Cg4JstXizEPL/8Aj17tuAFLF0qFAgbNzp0934WLtzJzFL0ZnG+mSudbM5R648rjmTw1a4UoHZDpk8RXfCxYyXZjmhKzzC7z/X551BTbz+oUoll8/BhBzqTarXwfgExn75C1XmghzMBHuK9Jl7hONa6Kb5gZ1Msfm+xLWvk942hQ7CHzAO2dgOt62hCThk6o8mGgwq1Gy2POlODpYfTuGdIW/n/s0treODXY1zXNYTdTw3n/emxTO8VxphOQdwcF8GXc3qx5qFBNg2s8hoDr/xVy+lvbtrRNVHYQa1pJ9SOKQG5s2EtyrpadkXW/7fuFKyeXSfSS/By1dCllbjdp46T/W9HRXdhQDs/2ga4UaEz0ifS166p8O9Hs7jlm4MY6pGaVxzOYPC72/lkaxKSBG5aVaM2AxU6q5eTUub2AWw4LToZYzsHNemoLgjoYoHTm8z4uGrk4qMuEnPLKajQ46pVye3llmBPkrgYdwjywMcBGxYQHOM9e0Rj7emnBb9uzhwxIW0ROneGW26plVh27gynT8OoUWIrev31sHu3+N1TT8HLL8Mff7TwyWzRUR4ptLxjB+Lzg8YLO+viZR1TWo/ny6GPZdE5dLFIVldmFFXJi05FI8pRF404RtVKBeculcnd4peu74RbHQpBUZWeKYv3cWOPUA4+N5Ktjw9lxb392f7EMHY8MYyb41qjUIgw7Ht/OiJ3I3u19pa91Kb2DKNdgDsrj2YiSbVj4xt7tkKhULDBUtj0jvRFrVLy0/5UuRCwjmYPWLhFVlwpIfu/AOsUwdrFBJHCcZ9FiX/oYhEdQzzQGc34u9kW6K5aFcVVBtadyuG7vam8sfYcT/wWLxc+CoXo1tX/m3nD2/PrwXTKdUYifF3pZ+FqJeaUczy9BLVSwbjOjkWYWbH7QgGSJI5vPzvCqrTCKrJKqtGoFA5NIxpDRlEV5y6VoVA4Xnz+8IPg0l28WCuQWLBACCZahCNHICXFYapHmI8r4b4umCUJpzCLUEZSostpuF5/u+ciSXkV+Ltrya/QYdarOHtAXAM79C8lu7QGD2c1I2ICG/ytTtdQADJokJiYvP8+eDRN2xaYOVNUv0ePNkE8dAzWJsuZK1w7m9oUW3/f3FGss0ZFe8u6fNoyjg3zcaGVtwsGk8S+C4UMjPK3+7fF1bVr677kIoZ1CCC0juhze0IeDy87jlqlYFqvMBZMj+WrW3vz5o1dGds52IarbjJLPLbipGzy7u6kospgwq0ZlJNrprCr2znLKqmW5c69LQuilXhsrbDPXirDYDLLJ73V98ZKEB/fRfBXTmaWyG73q49nYzCZUSgU3DNYVNzLDmfY7GTrYs+FArq8spG7lhzmaGoRRpMZkyRRWKnH01mNqk4uZn34uKplXsWw6ABZmWgyS2w6k2vzGi+HrJJq8sprzZYHtQ+wWwxaL6xxbXyvSIm22jKqG9vF8QXfns9lr15XJxRahp+fGLded53Yqk6aBElJ4vZXXhHS2qsAmStyBaNYqO2qNjVOsH5GJx3wMrJyNM/llMm71sOpxfLoQt/IBsNK5rUW6p9sEaO7MB9X3pnazea+JdUGxn+ymw82ncffzYm+bXxp4+8mj+tOZpQwadFetlsMvn1cNQyLDuRQajFatZJHR0dToTPyy0Ex/iutNqBQwOy+EZjNEiuPic3VjT2EMndVHaPkL3clU2MwceBibWHn7iTOoysd6/2voTeaUCoEPSSjqFYYcn1sKK28XSis1NM93AelAgoqDXjX6fZbrUPs5UNrLP5l9bt1r9zQGRetSv6uHxjWTr64WJW0ozoG2YzyHcFOy/c+1KKIro/dlnWoZ4SPHDXVEvx1UnQZB7Tzc+g1Go2iqKkLtVqo71uMp58Wra8jRwRh2AH0ayOKZ5fWtcdw5SlxfbF25qzXNBCTp7JqI5qMMHQ1CqKi4ECZEChN7BZq1+D5jjugynIIeXqKgnbXLujatZnvT6kUCjb3K+usWmFtslxpYSevnY2MWqOsHb28imYrY61TD6t9mkKhYGRHUTxvTchjcJTtcV334f3rNDreWneOhbN72PBi18ZfYvKivTbnd32UVhu44/tDsp+dAuS0mKhmdLivmcKubxtb4qK1Y9LLsos/mlqMJEm09nXFw1mN3mjmfG45IV4uxNThKx1NL6awQieTu/cnF8ok5Qqdkd1JYmGa1iuMtgFuFFXq8XGtVePVh84osfVcHlO/2E/U8+t5dtUpQLiJNzYhUimguKq2wg+u4+y+Jj6bwko9vm7ay8rYrdhuEX1YDSyHtLe/o7COvRrbcTiCggoduy0du8ndQ5u4t0BCAvz5Z8Pb58+v7fRfNTg5CW1/v35QXCy24hV1Tn5JgtzcK3qKrq28UCjEGF9O+2gBrJ3mlPxKuwWXVc1qjZhzpGMX6OlMaz9XuXngqlWRU1aDj2vtsevtan8cq1YqyC/XoVYq2J9SyEFL1+762FDuGtTG5v5mCRbvTKbXG5u5YeEenvk9nid+O8nQBduZtGivPGrxc9PwzLgYPrZ4cT09LoZQbxcW77hAfrlO5qsM7xBIuK8rBy8WkVFUjYeTmnGdQyio0JFWWLsIfr83lYmf7ebwxVqRgYelwGntd3WMVP9X2HuhkDjLGmctWkCMXp8aJ3x9/jieyR0DxXdRbZQI8qj9Lk1mSb4A1IU9vvXEbiFM69mKt9ado1xnpFuYFzN6i+KixmDiD0sxfVNf+xvaxmA2S/LGeWi0/cJuj2V9HdzIOuUorOPjSbGOEeNWrRLNtbowGsU+8LffWvgiAgPhkUfEzy+95NC4sr+FgO8cUWttU5MubmtjmUqV1Rj47d5+/HBHH05az/sE0WgYP1nH5nO5KBRw16DIBo+/cqWYEIPgLqemwm23XYVNtNkspiJXgG6WpktdW5+WwEpTudCIO0GkRWBRpTfJ7hKOIs7StbYex4DcFd2WkIve1LBRY+2jFNWxrzqRUUpaURUvTuxsc98z2WUMXbCdp1bGsyepgNIqAzUGEwk5ZSzafoFhC7azy3KNBcEfNpolRnUMwtvNcYHQNVPYdQ61bVdbOybdw71RKxXklNWQVVKNUlkrUbYSD4d1EF+Ml4sGSRIK2HYB7nQI8sBolmxUt9/uuQgIdc2TY8SC+t3ei7w7tWsD+5OWon7BZ82HM5slPtsmdmN3DIi0y6epD2tHo8rCkRpiZ0HVG80yGfpKCrs1J7MxmSViw7wc5se8+6792wcMEMbEVx0uLmIVDwkR3TprYZecLMg1gweLFb2F8HHTyl27/fVGgs1BqJcz7k7ipE21o4wNcHfC21Ujc25OZpQ4pMa2jitPZJQwyPJdV9QhK1sLxfqwjnyt0UxvrTuHyZLHWlypZ2SdkY91JGA0S8RnlrLscAYrj2baFGG9W/swf1Q0L/51BpNZ4sYerbhzYCQZRVV8vVucY5WW0bCVF2ulQkyMDcVFq+KPY7UWHVZcyKtEX8cuwBrXp7/GeXZnL5XJXa6fD6TZWCLcEBtKXBtfagxmLhZUMijKD53RTKXe3OxxZpiPC5/e1INv96Tyx/EsFAp4+frOcrfu2z0XKa0WPoRW/rGjOJdTRkGFDletSha+1IXRZGaf5ZwZ1MzHrouEnDISc8vRqpQOTQ4kCd56y/7vJk1qVoBEQzz+uGiLxcc7VCFaCzttcAkKJ1EIGIvdkCRIL6jG01nN+dwKEnMrCPFy4dDFIkwFnqScdkWlgpp24vowplOQ3JmyYt8+oXkAmD5dJEz4NPwamo+CAkFC7NsXcnKavn8j6N/OD4VCCMauhD7R2s/NAWWsuD41lws9rEMACoUowKyxhv3a+uGqVZFbppOFg3Vh7dqZJQj1qt1EP7vqFCNiAplZb+JnlgSH8pZvDxL72iZiXtzAuI93s2BjoryeKRCCtvIaI2393fhwZiw6/f8xVWylzkigp7MN38faznXRquSiz8o1G2Rpl1otTKxGqToLH27LOdG1sXbtDqUW09MiGd97oVDuOIzrEszg9v7UGMx8uu0CH86I/Ufe35msMsxmiXWnL3EhrwJPZzW3WS52l0NqQSXHLXFBADHBHnbDsI+nF1NtMOHvrpW5XS2BdSdvVes1hawsWLLE9rbgYOGCvmdPCwnLjiAkRDzBtm3iCUHsrpOSxH8//XRFD28tmPbU2Vk1F8LXyrr4NBxNKBQKmVagVAgBRX1TXnuwesEdTi2SRwh1lZZ6k/3FwZqznF5UjatWxcnMUn7cn8pXu1JYdTyL/ckFcpe2UmfC11VD+0B3XOuM/zyc1YyMCeTdqV0J8nTixT/PoDeaGRkTyNtTulJjMPPAL8fQG814OosR6tjOQQxuH8DFgkr+tnSqZvQWhPDlhzPsfC61P2uUCmoMZnxdNVfMefwvQG8U5+il0ho5JQLEsfD65C5oVAq2JeQxKCqAXq19qNCZSMot56Y+4fg5wHdVKeDHO/uy6ngWb60XoornJ3SkV+vapJKFlo3lk2M7NMnvrQ9rvvaAdn52lZrxWaWU1xjxctG02HcOao+LYR0CHIok27DBViwPgpa7dauoxZoZ62sLX1947DHx88svN7lp9Na6oM/xQqEEz4454ng2KzHneVNjMjLL0iVdsDGR278/BIDb+Y4AjB5vZFt6GgAPDIuyedzEREEt1uth4kTRtbtqVBc/PyEdrq5uwr358vB21crfu5Ua1BJoVEpZcX06y/4ko2drbwB58uAo/N2dZIuo7YmWaZhGJa/5uxtZ860fdXapTh6p1xjMTPh0N78fzWBSrGMTLgA/Ny1OaiUl1QYifF359vY+eDpruJDvuBjkmijsjlvm3XXVnocuFskdDOs41tqhG2W5oO1PLqRSZ6RXax88nNTyqGLX+QJqDCZu7NEKhUI47k/vXVtVW2NcFAoF707thoeTmuPpJaQXVbFg2pWQMuyjXGckMaeMjzafB+DOQW3wdMCXyVpoWRW/jXHy1loI2YOi/FtsKHzoYhEnM0vRqpRc7+BBOmNGLadYqRTWc4mJQjhxVfl19tC2bW2MBYhO3jPPiJ9ffVWsgC2Eteu590LBFRkVWxXPB1Lsjyasu3srF+lkRtPj2P5txWs7ll4iP35hpe17re9lZoWVq2Q1BF+wMZFxnYPp39aPKoOZrefyeG5CDAEeThRVGUjKq0BvMtMzwpvRHQMZ2M6PC/kVPP37KdaeEoXJvUPb8tWtvdGqlDy24gSnskpx0SgpqzHiolHx0vViVPHO+nMYTBLDOgTQI8KH/PIaLuTbdjJDvZxt3HWtuc/dwr3lne61jOWHM5nVV3hgWScHVkQHefDcBHGBf39TIvNHtadvpC+VehPLDmcwqlMQr97QmSk9WhEV6E6wl3MDe5tbB7Tm+72pPPHbSSQJ5vRrbTNmf3tdAtUGE71b+zDJQaqFFSazJBdco+oIwerCKowZGOXX7KLRiuJKPcsOiee5uV/TFZnJJPx2rXB3F+4dx4/DiBHiNkmSKK02kFlcRU6pfePby2L+fFHgJSbWKvIbgdkMtwwTm81JD+Uwfry4PahSXH/83J2ICnSntNrApdIaPPXeXNgn1gFNjySMZnGOxNbp1ObkwLhxwuKkb19YvlwoYK8aFAp44w3x8xdfCBeCFsK6du65gsIOaq2QDjRSuFk9Mfe1YKoyUh691kYhjrWIiOonXFlRl7fe2rfW97G8xojRLK7BjYUNuGiU+LhqCHB3Qq1UUFipp8Zopl9bX/58cCBt/N1Yeii9WVGW10RhZ21/juhYOw7KKqmW/ZKsX7JVQBEV6E6Eryt6k5ndSQVoVEr5gHJ3UlFtMLEjMY9IfzeGWUaXiTllhFnGUOtOXSLdMlYK9Xbh5RvExeeDzefxcNawcFaPZo1lm4oSA3hrfQLJ+ZX4u2tlHs3lIEmSLGQos2TKzopryImp1pv445i4X93itbn43JIoMLVXmENk5U8/rU3c6dRJmIC+955tusS/gupqsfBOniwMi0NCIC0Nvv22xQ/ZJ9IXrUpJdmkNqYWNE2GbgtXwcn+y/UXOGm9XYxHgOCKgiPBzpXOoJyaLH1ysnVFdY2PL/HJheJpeVEUbfzeq9Cae+j2exbf0FDF3OiMLNiZyz+C2vHBdR8J9XTCaRRG5+VweG87kklZYhUIhPNHWPTyYZ8d3pNpgYt7SY6w/nYNaqZCd1B8fE00rbxcOphSy8UwuSgVy8fLuhkSb1za6UxDXx4bapCZYEzlqGhEoXUvwdlGTVVJNuI8rWpWS4+klDbhItw+IZELXYIxmiUeXn+DVSZ3lwmz54Qze3ZCAm5OalyZ2YtOjQ9j15HBZmeeiUfHniUv8dEB0fOYNj+KVGzrLopdfD6bz18lsFApsbncU2xPySC+qwstFww12ikKd0cRvFk/DKT3sW3Q4giX7U6k2mOgc6tkon9gKSRKjyTzL9XnCBMHIeOQRUKkkNp/N5fEVJ+n71lZiX93EoHe30+/trfR8fTN3fH+IredyHSPfe3mJhIYdO0SFdRm4ucE9E0SRsC+5gGEjxbFbniSuQ3+eyOajGbGM6RTEWzd2pWN2f0wmBX0H64nXp6BSKnjhuo7y45WVifeVmiryY//+WzTXrjpGjBCZ23o9vPlmix9mcJ1px5Vsiq0b2MboMNY0jrOXyiiubN4mfrilsNuTJBpAAOO7BuPhpKasxsgz42P4/T5b81Wd0UyQ5bp4Ib+ygZjLaJZIaGQsXG0wU1xlIL9Ch9EsER3kzqLZPfl1bj+8XTV8vuOCzN13FNdUYWc1DrbC2vq3qogSLBwPGyWLZexqFUhYDyWrKu+2AZGAsC+Za1HCSsA7G2r9n6b2bMXNcRFIEjyy7DitfFzYMH+wHONUFyqFAheNCg8ntfzh1o0S6xzqydbHhrBh/mB+uKMP707tyqTYULnF+/70WIfGC1vP5VniS8QCPL5LiBxFVRdr4rMp1xlp7efaaPRMUzidVSp7kN03tG2T9//779rs6GnTBOe20VzXfxrp6WKXuXatyCezBia+8YYo+loAF61KbvVfyc6zTxtflAoR22Uvf7ZLKy88ndUYLBcXR0e/E7uJC+va+EuMrrMZcgR1sxbdndQcTSvmvY2JfH97H8Z1DsZgknhz3Tl2JRXw+eye7HxyGB/OiOX1SZ15aWInfrqrLydeGsMXc3rRKdSTo2lFTF60l3WnclApxeZfkoRn2l2D2lClN/LSn8KvaVbfCKKDPNAZTayJF2NZBfDM+BgWze4hZ86C6FLXGM209XezieK6VmHddP1+LJMbLZ6W765PtLn4WScInUI8KajQc+u3h7g5LoKld/cjNtybKr2Jnw6kcet3h+j2yiYGv7ddTkipNpgoqtQT6uXM93f04Yk6o9Y9SQW8+Kcgxs8fGU2XFoxJrQ75N/UJx7VOVKMVG07nUFxlINTLWb5wNhdVeqP8PPcNbddk8fnOO6J7BaIWWbsW/PwlVhzOYNSHO7n7xyP8fixTjqjUqpWolAqKqwxsT8znriVHGPfJrka7Qja46SZh1OkAogLdaR/ojsEk4dFeXMOSTzmj1jtxJruMaoOZr27tjSEhghXLlSiVEvQU38+cfq1lbp1OB1Oniu5jYKAYOQe27KN1DK+/Lv797jtRIbcAPVv74KRWkleu40IzDYTrwiosTMgpt0mQsiLAw0mmHTn0/dVB51BPgjydqDaY5DxeV62aSRal/umsUnpF+jK6k209YnXeAEFrCKhn99NYGRvo4cRdgyJZMK0bWx8fysb5Q7iuWwjZpdU8tPQ471k2ufZU743hmijszl0qo7zGQMcQD1zqyLutypVAT2e6tvJCkmoLOes4YHtiHmazxOhOQXi5aKjUmVAgZuVphZUMaR9AG383yi1E7lZy1y5H3g0oFApevaEzI2IC0RnN3P79YYoqDWx+dCgvT+yEbx1+i0mSqDaYKNcZqctm8nbR8PL1nVj1wADaBXoQE+zJsA6BdA71YqdFKXbXoDay0ONyMJsl3rcEBlsX/tsG2B9LWK0LbuoT0eIxrDU94/rYUDndoDHs3Vs7gr31VlixwnbsWlih47s9F7n/56P0e2srUc+tI/r59XR/bRNzlxzmuz0XKXDAjNdhdOgguC8gtuqTJkFEBGRnC4+mFsLaTdt7BTw7T2eN7Ltob+epUipkbzEQu097BWB9XNdVbGL2JRcw3IHjqS7yynWEeDlTVKmnrb8rCoXo5vx+LJPFt/TkpYmd0KgU7Dqfz/UL9/Lin2eo1Bnp386fyT1a0au1D9kl1aw4ksGML/czdfF+LuRV4OakQpKE0fHwDgG8MbkLAE+tjCcxtxx/dy2PjhaZij/sTaXGYEapgCV39uW+oe345WC6DeHaetxH+rthNEv0csDI+7+MmX3CUSkVHLxYxHVdQ3DWKDmUWsTGM7Yqbg9nDb/MjaNDsAf5FTpuWLgXvdHE6gcGsOTOvszqGy4r+I1mCbMkuI8D2vnx2awe7HxquM0xsSepgPt/OSoLXB4eacvdcgRJueXsuVCAUgG3NDIe/eVAuuV9RrR4DPvrwXRKqgy09nNlfBOiie++E3HRAB99JH4+lVnKjZ/v5anf40kpqMTTWc1dg9rwy9w4zr02jvNvjOfsa2P5a95A7h3SFncnIWSY9fUBFmxMaJDx2Sjy8hq6A9eDld99oiSL2FgwmRRE14jd7/d7L3L2bK2R+6ibC8l1voS3q4b5o9oDYqR7221i8uvmJorWdu0ce3ktxqBBoiNpNAo6SwvgrFHJFmRXsin2d3eSOcqN8eisVJa9jUxEGoNCoZBHr78frRVwWaPCNpzOoahS36DJoTOaibEUk9UGM8GeTg0SI+of+bFhXnx9a2+eHd+RKT3D8HdzYuu5PJ7/4xQj3t/JmvhLwtS9Zyu7qvfGcE0UdiazxJHUYhQKhSxyADh4sUiO6rK65Fs94PpE+uLhpKagQs/JzBKcNSqZ/O1vWfh+PZSOUqngNkvSxHd7U2XOD8Czq+Llk1mtUvLZrB70au1DabWBW745yKazOdwxqA0HnxvJF7f0Yk6/CNoFuOHtqsHbRUMrbxem9GjFgmnd2PPMCO4Y2MaGVHw0rZhZXx+gpMpAbLi3bGvQFP6OzyYhp1yEHUtih9HTzoUtIaeMYxaj0Wm9Wjb+iM8sYZ3FMPn+YZdfOU6dEsTdmhrx77ff1hZ1CTllPLr8BP3f3sZra86y/nQOOWU1GM0SepOZkioDW87l8dqaswx+dzsLNiZQerV4U088IeLGiotFx86ag3gFMWODLSP8PRdq2/UtgTyObWRxslIIrNYgW+vwPhpDhJ8r3cK8MEuCn1r3OuqIhWFZtQGtWkl8VplsW/HSn2f4fm8qdw5qw+ZHh9rwU1/88wyjPtxJz9c30+mljYz/ZDdPrYzn0MUiVArwddNSqTNhloSN0Oc390KtUvLFzhTWxF9CrVTw+c298Hd3Iim3XN60PD0uhiHRAZRU6floy3n59TlrlFTohdDguCV1ZXrvlo/3/gsI9nKRi5Xfj2dyt2V68M76cw3scHzctPw6N47Wfq5U6Izc9v1hHlp6nLhIH96e0o1Dz48i4fVx7H92BIeeG0n8y2P49e5+XB8bKivtJUni8x0XuPW7g5TXGOnbxpd3pnZt9ggWavmAozsFEe7bcIqRlFvOodQiVEpFA4Wgoyis0Mnc5/uHtkN9GceAP/+Eu+8WPz/zDDz4kJkFGxOYtGgP8ZmleDipeW5CDPueHcmLEzsxMMpfjmN0UqvoFubNsxM6sveZEczoHYYkwaLtydz67SFZyd0oPvpI8Hu//vqyd7MWDjvO53H9JLF+VCWJ2zaeyaHUUE3nztB7gJ7EkIMAvDG5C96uIvv8kUdEN1KjEd7rvXtf/mVdNVi7domJLeYpW61urCLGlsI6gWqsI2ddW1vCs7Pa/2w8kyOn/nRp5UUby0by290p9Grt28AcOyG3nGBPUV+cyi5jQJS/TXFXv2t3MrOUSYv2EvX8eto9t47Y1zYx98cj/HIwXeYvx7X14/djWTQH10RhB7Vf3rRetQtD3UzVMZYTZfeFAip0RrRqpWwfYPWFso47rDP3345kojOamN47HH93J9KLqsgurpKjX1ILq/iuDonZzUnNL3PjGNs5CL3JzLxfj/PsqlNU6U2M6xLM65O7svXxYZx4aQwnXh7D3mdG8OHM7kzvHS4bEINYVFcdy2TOt2JR7RPpw0939bWrJKsPg8ksiyys/I/GxhLf70m1fDbNNxq1Pv5Lf55BkoRvXUxw4wS51FQYOxZKSoSVyfLlQrtQUKHj2VWnmPDJbv44noXeZCY2zIunxnVg+T39OPDsSPY/O4I/HxzI0+Ni6NrKi2qDiUXbkxnxwY4rUk/J0Gjgyy9FlfnjjxAeLuRwmze3+CG7tfIixMuZCp2RXXU8j5oL6+K0P7nQLufEWthVWTYwWx1cDK1duzXx2bKoxstFw+OjazcPVk5pfVTqTbL3456kfPmxXltzloXbkmjt58pHM7uz9bGhPD0uhn5tfW066e5OaqIC3HB3UmOSoKhSj4tGxQfTY3l/eizOGiVf7EzmvY0JgOB09W3ji95oZv7yExhMEkPa+8uxPJ9tu0BZHWd3d8tFuLtFNBHq5exQ5Np/HdaUiT9PZDO4vT/+7lpSC6v4cX9qg/v6uTux4ZHB8rhnTfwlur66iTfXnqXGYMJZoyLEy4VAT2ebtcFslthwOofJi/by3oZEzJJQIf94p2PrT32cziplhYU7Z6Wy1Mf3lvHpqI6BBHvZP+aawgebz1NWIzI1L8cV3rlTBCaYzcKo9/4nqpjx5X4WbU/GLAnrmK2PD+WeIe1s1mR78HLR8N60WBbN7om7k5r9KYXM+fYgpdWX2XC6uor0mzffrHUJtoPOoZ60C3CjxmDGp5PYrO3fpaFvq0DMEnx9/DQPfJAGI/aDQnxHVorFq6/CwoW1y9no0Zd9G1cXvXsL8vSBA6B1LHmoPsZ1FuvJ/uTCKzpvrdOMxjbFcW39UCqEV2iOHVuUy6FLKy+6hXlhMEmsqlNUTbRQur7clUJxpZ4Xr+vUQAioVChkitTWc3nM6B2Ojx3/UK1aQai3M9p6m5TWvq4MivJjUJQ/Z7JLW2Srdc0Udtaqe0Q9zpB1HBsd5E6knyt6o1m+0Fq7VL8fzaTGYKJLKy86hXhiNEt4OqspqtSz4XQObk5qucX92fZknhrbQW6Zvr8pkTPZtWpEZ42Kz2/uJZOWlx5KZ+QHO1l2KN2hcOOk3HJmf32Qx1acpEpvYlCUP0vu7OuQChbglwNppBZWoVUpMZol4tr4ygdbXZzPLZd9we50QIxhD78fy+RERgluWhXPTujY6P1ycsTicukSdOkiGmEuLhK/H81k+Ps7WHooHbMEE7oG8+eDA/lz3iAeGBZFXFs/gr2cCfFyITbcm/uHteOveQP5ck4vogLdKazUM+fbgyzafqHZDuINEBcH994rfr7lFuENcAXSMaVSwQRLwVM3Bqq56B3pg0alIKukmoyihmPWdgFuBHk6yZmr+5ILHTrOrK/t0MUinp0QQ6iXM6XVBrxctfJCYs8Dyor4zFJ6t/bBaBbGnFYLkvc3nefOHw6TV15D2wB37h/WjmX39Ofc6+O48OZ4Tr0yhviXxzDfkjDh56bl4ZHt2fnUMKb2CkNvNPPUynjeWZ+AJMHcQW24OU6MOD7YnMiZ7DJ8XDW8Pz0WhULBxYJKllgKA0BOXvByUcsq+NsHRvLd3tT6b+GaQkZRFV1aeclThY+3JMmj6fc3JdrlI7lo1Syc3UP+f4NJ4uvdF+n00gamLt7Hou0XWHoonT+OZ/LD3os8tvwEQ9/fzn0/H+VkZinOGiVv3tiFd6d2s5tg0BTMZokXVp/GLAmahr3M1gt55bJatqXr0OmsUplS8soNnRsd5R47Jk5rnU4wLm55Ip/rF+7heHoJHs5qFs3uyaezehBoxxLqcriuWwi/zI3Dy0XDsfQSZn99oPHi7s47RccuN1dUX41AoVDIOa8HS1KJiRENsPASsfHalpDHK2tPk2+ooI2/Gy9bJkmvvlo7Bf30U0Ht+9fRv/8V2RrUnShsqGPr01xYzYTP51bYpe94uWhkvui+Zo5joXb0uvRwurzpttYURrPELd8epEsrzwbJVNmlNQyKqqXQLNmfxpx+rRuoYvVGieySGtmCykktPtO0oir2XChkz4UCdMaWXfeuicJOYYnaybaEXUfWES3ssHjNKBQKuWtn9YAa3D6AVt4ulNUYWRsvLr7WC5RVnrx4RzJms8TMPuFy0sTWhDzmjRBcE4NJ4p4fj1JWU3siq5QKXpzYieX39KNtgBsFFTqeWXWKvm9u5dlV8fxxPJOTGSXklddwIa+CQxeL+GpXMjcs3MPoj3axP6UQZ42Sp8fF8P0dfeySje0hMaect9eLLofeZEalVPDapC52u3VvrzuHWRLqxN4OhmTXRVmNgXc3iOd6eGR7u/54ICT2Y8fChQvQpo3Iw5a0eu7/+RiP/3aS8hojXVp5suLe/nx+cy+7Ks26sPIb1jw0iOm9wjBLwnbjid9OXnlx99ZbIp0iP184eOr1QkCxd2+LHs5aPG05l9ficayrVi2bzNpbfBQKRR1Ft0hUacxLqS7CfV2Ja+OLWYKfD6Qz07JI/XE8kxl9xDlglrArALLiZGYJfSN9qTaY2XA6hweGtUOrVrI9MZ9xH+9mxeEM2RsSBF3Bw1mD0pIx+uGMWPY+M4LHRkcT4O7E9oQ8bli4h9+OZqJUwKs3dOaFiZ1QKBR8vSuFL3eKaIC3p3Qj0NOZGoOJh5Yew1jne7f+6KZVU1JtICbYA5NJamDpcq1h2WFRuDwxtgMalYJ9yYUEezkzKEr4aM5fftxuQklcWz/ZY8sKsyRoHgs2JvLsqlM8uvwkr/x9llXHs0Syh7OaecOj2Pv0CDnftyX47WiGvPGrq9Ssi7fXJWCyOOfHtUC8ZTZLvPq3mBpcHxvaaC7suXNiHSovh2HDJMY8eJG5Px2itFrQXNY9PFgW0LUEseHeLLunH35uWs5kl/HAL0ftc+40mlpO77vvQmnjFkWTLXSGgxeLmHqTOH53/eXBa5M6c1OfcEZ3CmJodACLb+mJm5Oa99+vTet57z2YN6/Fb+fqoLwcfv21RX9qnQJYr8stga+bVp4sNDaOHWIxwl5/uvkF5A3dQ3HVqkjJr5QFnHWvg2eyy/h0axJPjOlg47ELsON8AVN61Pq9frrtAn0ifXlqXIcGNkRWNFXEuWr/j4kneoYL/pi1M2I9KECMS63JDVae3baEPPRGUfhYDR9/tez4JvdohatWRUGFGA8l5JSz/nSOiO4ZGwPAFztTmN4rjG6txOgxq6SaJ1acbDAqi2vrx/pHBvPchBiZ77L0UAaPLj/JpEV76fvmVkZ9uJMZX+7nrXUJxGeWolBAr9Y+fDWnF/cPa+dQugSIqJ+Hlx5HZzTLY6/b+kfSIdijwX33XShge2I+aqWCp8fHOPT49fHehgQKKvS0DXBr1H6lvFxI7ePjhQ/w5s2QpS9i3Me72HAmB41KwZNjO/Dng4McDuq2wlmj4r1p3Xh7ikj8WHU8i+dXn74iiTw+PvDQQ+Lnv/8W8v127cQVIa9p7lp99Aj3JvRqjGPbXd780nq8W7t228459lrvrNNVvqF7CGqlgsOpxfRv6y9z7dILqxrl3RlMEhnFlcSGeVFWY+TnA2m8fH0nOoZ4UlSp56nf4xn87nYWbb9AYk65/PpAFHlTeoZRWm1g1bFMZn51gDt+OExCTjmezmq+u72PrEj/elcKb64TKvSHR7aXieWv/HWG01n2jYet3cbHx0Tz1e4Uu/e5lrDyaCaFFTrCfFzl8+2FP07z3rRueLtqOJ1VZsMzrIvHxkQ3+rjeLhoGRfkzqmMg80e15/vb+7DvmRE8MbYDfu7Np2dYUVyp5x3LJvPR0dF2N357LxSwNSEPtVLBsxNatg79uD+Vw6nFuGhUPNvIWpaSAqNGWQMSJDrddor3tp6Vx8wr7u1nl/vXXHQM8eTHu/riqlWx90IhL/zRyHp0880QEyN2vR991OjjtfJ2kakYbl0z0WrhyBEFnbWRvDO1G1/f2psld/YlJtiTZcuEDygIta/15/8ZKishOlq81wMHmv3n1k3xgZRCWZXcEgywrJ1Wh4z6sHqu7kzMbzZn291JzQ2Wv7d2jJ01Khv7so+2JHEys4T5oxueg3+dzJIzrwF+3J/GoZRCfru3P7PjIpqlcr2pTzgr6lmsXA7XRGE3rqso2P62VPfX1/NJWnlEKFd6RPjg7+5EeY1RruBn9BZqs6NpxSTmlOPtqpWVW9bczI+2nMdklhjbOYgwHxdMZomZXx3gk5t6yEXUprO5LNp+ocFrc1KruGdIO7Y/Poxf745jsqXKbwySZTe91cGLsxVvrTtHYm45Tmol1QYTAR5OzB/dvsH9zGZJvkjeHBchB8A3B9sScvnZomJ7fVIXG/NFK6qqxNjj4EHhzblpk8T27BRu+uoAeeU6ogLd+eOBgTw4PKrFKjiFQsGsvhF8NLM7CoU4ud5Ye+7Kirv776/9ef9+IaiorGyRo7pSqWC8ZYFa1Uxya11YDbW3JeTZHbMObh+At6uGaktXcGtCnkPdy1Edg4jwdaW02sCeC4WywODnA2ncPkAUDxK2WcX1calUh8Ek0SPcm7IaIy+uPs2ErsE8Mz6GYE9n8sp1LNiYyNiPd9HtlY1MW7yPm77az9TF+xjx/g7i3trKYytOcuhiEVq1knuGtGXnk8MZ1iEQo8nMh5vP2xR1j1ooEcsOpbOsTvKEvU2uAvhyZwrFVQZZIXetolIneKUADw6LQqNScKm0hjfXnuOdKSK9/YudybIbfl30jPBheIeGEV2x4d7sfGo4P8+N45vb+jB/VDTDYwLxcJD20RgMJjPzlh6juMpAhyAPuUCvC5NZ4o214nu9pV9rOSmgOUjKrZ1QPDtB5AzXR3o6jBwpRO4xHc2EzT7C2oQMVErhZPDu1G4t4g42hs6hXiyc3QOlApYfyeDLXXY2FSoVvPaa+PnDD0XF2Qis49jNKelMmybO6S+/tL3Prl1CAQvCRurpp6/0XVwFuLmJXT3Uyo+bgXDf2nHs+iugsozpbBVN5tjtaHcI9qBDkAd6k5kNZ5r/PFbD8LWnLpFZLDiTPvVSXh7+9ThDowNwd7I9zoxm2Hw218bse8f5AuZ8e5COIZ4ceHYkr0/qzMRuIbQLcJPpXxqVAh9XDSNiAnnrxq4cfG4k70zthofT/7Gs2AHt/FEqRF5mRlEVMcHCZ8aK1SeyMFhGk6M7iYukVTAR6OksXzitVffcQW3QqpVcKq3BzUnFhbwK/jqZhUKh4KER4sJyqbSGR5af4PXJtSrZ9zed52t7JzLiIj+gnT8f39SDoy+Mliv9xmAdjTmCpYfS+XG/MBbVGc2olQoWze5pl5e3ZH8qZ7LL8HBS8/DIhoVfUyio0PHUynhAcGLsZcvW1MCNNwqisocHrP7byBenjvPGWpEvOql7KH/NG9giPyx7uD42lHenisSPb/dc5PHfTtqMxpuFNm1sM4SstgSffw6ZDbNJm4J1vLP5XC41DnDf7KFrKy8ifF2pNpjsFvxatVLe4aqVCgoqdBxqxAG9LlRKhZzD+v2eizwwLAqtSsn+lEL6RPrI5PHM4mr8LxNJdfZSGU4aJTN6h2OW4INN59mfXMj3d/Tmo5mxDGjnh5tWRaXexJG0Yg6kFHE0rZiUgkoUCugW5sWDw9ux88lhPDehIz5uWpJyy5myeJ+sdLQWdQqFgt3n83nuD1tDTnueyhLClFyjUrToWP+v4ecDaWQWV+HlqmGchVay9tQlTmWVMqtvOJIED/x8TFYC18VjdUQxAD0jvPnprr4OeWI2F2+sOcveC4W4alV8fFN3u1OHH/alcu5SGR7OLVuHrEIandHM0OgA5tixUcnOFr65qakQ2caM77QDnMzPw92ptiPc0jHz5TAiJogXJ3YC4N0NCfb9JadOhe7dBeHvMlSPcV2CcdGoSCmoZMSNgkf5449ibQUhPp08WbBGpk6FDz64ym/mSvDSS0JAsX27yGdrJiZa1rRv6qWsNAd9In0J9HCirMbIngv2u3ZWw2xrTdAcxIZ7M6CdHwaTJG+8vF1t18oKvYn7fz7KhK4NLXgqdCb2JhXw9Lha38hynYkXV59m8qK9KBQK3rxRiC4T3hhH4hvjSHpzAsdfGsN3t/dhdlwEQZ7OZBRVscSOiKoxXBOF3fncClkBs0bmytUSFgsq9Oy0tGKnWnZAa+Kz5dbr7DixKPx+LJNqvYmYJlFdAACXf0lEQVRAT2eZ8GiNT/p4SxIGk5nxdb6c+MxSVh/PYt7wWm+nN9ed45smRj8uWhWf3NSd5yd0xF6zqluYF51CHYtgWHYovYHr9KuTOtsdbcZnlvCWpfvRklGLJEk8tTKeggo9McEedu1XdDphOrxpk9i0/bhCxztH9rM2/hIaldglfzyzu8O8QUcxo3c4r0/qjEIhumPjP97dIkIsCoXY4teHXi+Iz81Ej3BvNCoFJrPEK3+fbf7rQXQmrQIYqzFvfVizBq2H0wo7Oar2ML13OB5OalIKKknKK2e2Rajwxa4UHqnjWVZ8OaUfIvYsOa+cF67riEalYOf5fCZ+tpcjqcV8NLM78a+MZeP8IXw6qwefzerBF7f0YsmdfTn+4mj+mjeIJ8fGEOLlQlZJNQs2JnDdZ8J6wtNZzYczYnlsdDQKhYIVhzO49btDNNWQ1KhqlWfzR0Xz2baG3fRrCQHuGvSWDibY+sEt2p5MmLcLQ6IDqDaYuP37w1zIs3Wx7xrmxVhL96JPpA8/3hXnsCCrOfj5QBpLLJvMj2Z2p2NIw3XsZEYJ71iyaJ8a28HG59NRfLzlvCykWTCtW4MC7dIlUdQlJ0NomAm3KXvI0hfTytuF3+8fINv0/FO4Y2Abbuojiu35y0+QV15PiKRUwvffi2zqSZMafRx3J7VMPUhSXGTyZLHGTpwounNDh4qhQr9+IuJa2cQVW5IkMoqq2Hw2l893XODTrUl8szuFnw+ksTsp34YTe8Vo3bpWkPb887X5kQ5igmXNSy+qYocDNk72oKojYlvTCF/veouaeH9yYcPvyQFYRUy/Hckgo6jKrsI1Ob+SzGL7j11QqeerXSl8OD3Wxp0itbCKF1afJvbVTYz+cCcvrj7NXyeyOZJaxI7EPFYcyeCTLUlMWrSXwe9t5zuLy4UjuCYKu47BHnJnZO0pceG7vV77f6XFSLBXax9igj2oMZj5/Zi4bXCUP+G+LpTXGOWu3b1D26FWKkgrrMLTRU1aYRUrjmTg6WwrzthzoZBTWSUyVw/gjbXnmlRqKhQK7h7Slh/vjGtwIMxwMNpr+eF0nrEUddaL2Jx+rbk5ruHutazGwLxfj2MwSYzpFMSt/ZvOUayPJftS2ZaQh1at5OObujdQylmLurVrRfTqB1+X8caRXZzJLsPPTcuvd/f7x3bJAHP6R7Li3v5E+LqSVVLN7K8P8uyqU83naFhDIutj82ZhgtUMKBQK/NzEybr8SAbnLrUsjN5qZbA9MZ8KO15ZfSJ9CfVyllMo1p665BBnxN1JzU2WY/fbPRd5YHg7nDUisirCzxU/d3HRNZmlRjNkrTiaXsK3ey7y9a29GdMpCJNZ4peD6fR7eys3fbWf3Un5xAR7MCQ6gLGdBfFbq1ZyJltskO74/hCD3t3Gou3J6I1mhnUIYNOjQ+Vx1Nvrz/HU7/E2Xk/2NkYD2/nRJdQLo1miT6QPKfkVJObYj+u5VpBfIb7LP45nkZhT3qDbvWDTeXqEe9M93JvSagPTv9hPeqFtlu6jo6MZ0M6PH+7o26SVR0uw+Wwur/wlUkKeHNtB9mKri9JqA/OWHsNgkhjXObhRw+LLYeu5XBbvFN2Rt6d0baBizckRp3BiIgQEm3CatJsKdTldW3nxx4MD7PKO/wm8fH1nOgR5UFCh49HlJ2w4poDo2EU0PZmxjvtWHs3krU8rGDECKirgk0+EuDY6Gv76S6y59mAyS+y9UMDjK04S+6pIHLn7xyO8tyGRDzef542153hh9WnmfHuIHq9t5u4fj/DbkQzHDZcvh+eeEy/s4EHBW24GwnxcZXHtoytO2F33HIE8NTmTa1fEFuHnSvdwb8xSy8QafSJ9GRTlj9EssXDbBZnCZfMcvq68M7Vro49RXGXgiZUneWliJ+YOatNAQJGUV8GKI5k8uTKeaV/s5/bvD/PUyng+2nKekxklzX7N10RhF+bryvguIaiUCk5nlZFaUImfuxMd6vBqtibkUlSpR6FQyOHQvxxMQ5IklEoF9w8V3YnPdyRTrTfRyttFju6xZry9uz6BvLIaOQ3Aip3nC8goqmJMHauVBRsTmbvksN04k7oY1N6fv+YNopNlZ+usUdrNUqwLo8nMZ1uTePp3UdQpFUJePTDKj5eu79Tg/pIk8eyqU6QXVdHK24UF02KbXVztSSrgdQsn5tnxMQ0863Q6ISRdswacneHpD/P54PReCir0dAzx5M95A+3aHVxt9In0Zf0jg+XO09JD6QxbsJ2F25Jks+omYa+wc7NwET/8sNmvKcTizSVJ8MAvRx1/HXXQMcSDtv5u6I1mtpxt6FWnVCpkbqm7kxqd0cyfJx3j9d02IBKVUsHeC4WkFlTJnKhPtlzgiTrEe71Joiktz6XSGu7+8QjjugSz/J5+9In0QZLgcGoxb6w9x5iPdhH76iaiX1gvGxZf9+ke5i8/wfbEfCRJGIcuvrkn39/eh2AvZ0qr9UxbvE9WxdaF9VpptWgZEROIl6uG4xkluDupGd4hkN+PZdktAK81qJUKJEmYErtqVUQF2vLSPtmaRO9IH0K9nCmuMjDig51y/ipATLAnP97ZF7d/oKj7cX8q9/50BKOFavGAHbNySZJ4emU8GUXVhPu68K6dTltTSMot55FlJ0TOa1wE47rYKlmzs2H4cEhIAN8gI9rJOzG7VzIiJpBl9/SzG6v4T8FFq2LhbMHD3nuhkMU7LtM1PnJEZFTbQd82voyICcRolvhoewJ//gmzZ4tN9IoVcOIEBNhpQJbXGPh0axID39nGzd8c5PdjmXJueMcQTyZ3D2VW33Amdw9ldKcgAj2cqNKb2Hw2lydXxjP2o11sPpt7ZZzl4GDhlgxwzz1gat7aZz2vi6sMvFiPfuEoekX4EOzpTLnO2KgAzUqNask4FuBRC5995bFM1Eol/u5O3De0HSvu7Y+Hs5r0oio2nM5pkBFbFwaTxENLj+OkVrBh/hCm9GyF6h9qglwThR0IabPVSdo6rrIaeoL40P46IS50VgFDcn4lB1IEF2l67zDCfV0oqNDJhp/3D2uHSqkgKa+SSD9XympEbmXXVg3HC3suFFJUbaBdQO0Xty0xnzEf7ZSl0I0h3NeV3+8fwA2xoVzXNfSyI5L0wipmfnWADzbXKuDMklBGfntbH7t8lm/3XGStxcH/s9k98LKzo7gcUvIreMASKzSlR6sG3VArp+7vv8HZWWLOSxl8n3oIvcnMuM7BrLyvP2E+/0TytH24Oal568aurLi3P7FhXlTqTby/6TxjPt7pWOcmJAQ6WuwZrCfW5Mni3927hZV7M1D3875YUMUba5s/knVsHCs2IlYRxdJDGQ4tymE+rrLj/5trz3LPYBGXdPZSGTqD2UYc48gm3mCSeGzFSV5fc5ZnJ3Rk3zMjeOX6TvRr6yt3igwmSd70+Lpp6dXah3uHtmXb40P59e5+suhk5dEM+r659bJ5r57OavQmM+0D3fFz07LulFBcPz2uAx9bOHpWe6JrGVZbl+2J+fx1Mpuudjiq3+y+yNBof5w1wsfyyZXx3PTVfrl7e7lEhpbAbJZ4c+1ZXvrzDGZLxq/VY7A+vtqVIqvhF87q2Wx+X0mVnrk/HqFCZySuja/s3WZFRoYYTSYkgFeAAedJu1F7VTM7LoKv5vT6RwraptA+SNiTAHy4+TxH7R3Hb78NffrU5lTbwbPjY1ApFWw6m8uZvEJ++UV4qE+f3rBTV6kzsmj7BQa/t50PN58np6wGT2c1s+Mi+O2+/px9bRzrHxnMxzf14O0p3fj4ph58fWtvDj43kjUPDeKx0dH4u2tJKajk7h+PMOvrAw1G+83CU08JN/rcXJHB3QzUFRr+cSKb1cebL0Kr6ym6tpG1c2K3EJQKOJ4uePrNRa/WvgyJDsBkljCazex/dgTPjI+hbxtfXrxONFs+2HSeDsFNi4QW7Ujhxs/3MqxDIMdfGsWIy2QnB7g7MSImkIdGRLFgWjeHX+81U9hB7azcOkufGBuKU52L0krL6NXDWcNkSzfu54Nil6RRKXnYIoz4YmcyFTojbQPcucNSxNQYhChhw5kc2eW/PlQKBQtn95DHoiD4fTO+3M9dSw5zNrvxMZyVd9eY31ONwcRP+1MZ/8kujqYV2zzHnQPb8NmsHnZNRH/anyqrz54ZH2M3WuxyKK0yMHfJEcpqjPSI8OatKbaxQpWVQv26fj24ukqMfjSJTaVCXPHAsHZ8fnPP/8mCCmKn+8cDA/nkpu6EejmTUVTNtMX7ZNPqy2LkSJgyBZYsEf+/fDl07SrabjNnitmHg1DXaxf9cjCdDS3wTZpoleafz7drgNoxxIPoIHdMZgm1UsG5S2XEZzbuk1UXj46Kxk2r4mRmKXsuCDIvwHsbE+kU0jJF6ensMqZ8vo8XV58mzMeVJXf25fSrY0l4fRx7nxnBuocHc+Kl0Rx7cTS/3z+AZ8d3pG2AO1V6I6uPZ3HDwj088Vs8OjtqtrooqzHSPtCdgVF+/HY0E4UCnpvQUR7pjowJZO4g+6kH1ypeXH3ahhJSF8VVBp6vYxh+IKWIPm9u5qtdyQ3HgVeAjKIq7lpymK93C3L7k2M78PaUrnY3lz/uT61VsI7v2KRfZX0YTGYe/PUYaYVVhPm48PnNPW02HCkpMGSI8Mv0CNDhNmU3Gp8qnhzbgTcnd7nqBW1zMK1XGJO7h2KW4InfTjbs2I8dK/799VeRu2gH7YM8ZN73m+vO2aX5SJIwfR+6YDsLNiZSUiUaDZ/c1J3DL4zirRu70ifSt1ELLYVCQZdWXjw8sj3bnxjGg8OFL+WBlCImLdzLppaaBfv4wF13iZ9feUX49zmI+q/1hdWnSatHMXAE8jj2rP1xbKCns5wd+0cLikdAVuxvPJNLUm6tYfj03mEMbu+PzmjmZL312DrNqT9RKKs28vDS40xetI8xnYIYbcm2r4txnYM4/MIovru9D4+P6SBTfhzBNVXYjekchFalJCGnnBMZJWhUSkZ3qv1ATmeVySkRVjf7jadzZA7WjT1a0dbfjeIqA99blDjzR0cT5OlETlkNPSxF0ff1XOzDfcSW6WhaMfnleru8ka3n8pjw6W7mLjnM3gsFdkmqCoWigVQ6p7SGBRsTGPDONhGorjfJo1elAl64riMvXd8JpZ1Z068H03nxT8F5uX9YOzkNw1HojWYe+PUoKQWVhHo589Wc3jbFY0kJjBkjgqZd3SRi554i3pyERqXgg+mxPDUuxu7r+jehVCqY1L0Vax8eTN82vpTrjNzx/SF+PmB/7CHjrbfg999hzhwh2zcaBbEFwGAQcxAHOSNqO4zmZ1bFc6m0YZLE5RAdJAo3g0myu8gqFOK9ArhbsmOXOSiiCPBw4gGLCOi9DYlM7RlG30hfqvQm8suvzNx3a0Iec388QvdXNzN/+QlWHs0kwcI11JvMJOaUsy0hl58OpPHYihP0fmML85ef4FQ9j7q6tBNfN408pugQ5MGwDgH8sE98p4+MbM/iHcnklNXQPtCdD2d0/58fh1cbZTXGBt5c1rzg+MxShncIJMynduyoN0m8tS6B/m9vZU9Syz0VQWwyP9mSxKgPd7I9MR+tSsknN3XnweFRdjt1Px9I4yXLOvTAsHayEttRmM2CSmJV2n59a28b4dfZsyJ/PjUV3AKq8Zy2B1e/Gj6e2fhr+jehUCh49YYuBHk6cbGgkgUbE23v0LOnaL1J0mW7dvMtm6/4zNIGI8MLeRXM+voAj/92koIKPZF+rnw0M5ZNjw5lUvdWzbZ08XDW8OTYGLY/MYz+bf2o1Ju456ejfLY1qWWj2T59an9+5hnhoOwA6hd2FTpR8NizLrkcekZ408rbhUq9qVFPO2tqxC8H05r9+CDs1CZ0DcZklnj2j1PyJkqhUPDO1G74uWnJLhECii6hnvx+/wB2PDmMcZ2DGxWDpRRU8syqU2xJyMXTubZB4qRWcsfANiKr/dQlvtqVzCdb7ftY2oNCuqIB+z+LsrIyvLy8KC0txdNTjEcfW36CVcezmNKjFR/O7M6ZrFKu+2yP/DeTuofyyU0iZufGz/dyPL2EJ8d24EHLRe3PE1k8suwEns5qdj89Ai8XDWvjL/Hgr8fQKEXhlVeuw0mtJCbYg2fGdySujS/zl5/gr5PZOGuUPH9dJ17964yNI359KBUQ6u1Ct1ZeRAd70MbfjQAPJxQouJBXztlL5Zy7VMbprFL5cdRKhfxzjwhv3pjchc6h9i1DVhzO4KnfRefsniFteXZ8TLMWOIPJzIO/HGPT2VxctSpW3jfARqmbmwvjx8Px4+DhJRF+02EqvfPxcdXw5ZzezTYc/jegM5p4btVpWTQzoUswn87q0fRuPiFBjGJHjIDFi2tvV6th1SrRsrwM5v16zK4ia1THQL65rY+dv2gcn25N4sPN5xkaHcCSO/s2+H1hhY4B72yTu1xuWhWHnh/lUNe0xmBixPs7yC6t4cmxHRjfJZjxn+xutGM2vEMA2xtZJK8mFIiJuPV0ivB1Jd0yLhnZMRCzWZJfxx0DI1kTf4n8ch0xwR78PDcOf3cnu2vFtQDr6w6fvwKlk+jQKRUib9K6FnRp5cmz4zvSMcSTaYv3kVJQSVt/N26IDeHjrfZ5Xf3a+vLZrJ7NyoguqNCx7tQlvtl9Uf78+7f147VJnWkfZF+QsOxQrcDr3iFteaaZ65AkiTzqnw6koVTAF7f0khOEAA4fFutQYSG4BVfgPfUAPv4mvpzTSzan/a9ge2Ied3x/GIUClt3dzzZpIzEROncWHLS9e0Wgth0s2n6BBRsT8XPT0rO1D0qFoEfsPJ+HwSThrFHyyMho5g5u47C5fVMwmMy8vuasbKl1XdcQPpgR27yYucOHoW+99eq995p0Uh62YDuphQ1Ho4+OiuaRUc2zyXlz7Vm+3n2Rid1CWDi7Z4Pf641mBr67jfxyHR/P7C5P9ZqD3LIaRn2wk3KdkVeu78Ttdcz7j6YVMevrg+iNZuYObsMLlhGtJEl8vTuFty0xii2FWVdFxsczHFrjrqmOHSATv9fEX6KgQkfnVl6E+9aSEP4+mU265UC5xaIe/eVAbYV+fbdQooPcKasxyrYlE7oGMyQ6AINZItiiwNIZzfi4aYlr44tSqeD96bGMjAmkxmDmxdWnG13orDBLwh9s3ekcPt6SxCPLTjD764PM+voAL/55hqWH0jmRUWJTHBrNEt6uGt6Z0pXf7xtgt6gzmsy8vzGRp1eJou6OgZHNLuqMJjPzl51g09lctColX9zSy6aoS0mBgQNFUefta8J3xl4qvfNpH+jeohSJfwtOahXvT+/Gwxa+1brTOfR8fTOLdyRTfDmRS0yMaAvcfrvt7UajMI9as+ayz1t/gVUq4MMZsXYXl6Zg5dntuVBAdknDjp+fu5OsInW1eMc1xsmrD2eNiictI9jFO5LxdNHIUn4rPJxrF/ODF4vo3/af/a7VCuFHZ403c9GoSC+qQq1UMLtvBCn5FaJrpFby2Oho/j4pirqOIZ78enc/2a6oKRHTtQK1UoFZglBvsQ45q5V8PrsnA6P88XXTsuTOvoR6OZNSUMn3+9Jsdvl1cSCliLi3tjD76wP8fCCNo2nF5JTWyF0Gs1kiv1zHyYwSVhzJ4LbvDhH31lZe+vMM6UVVBHs6s3B2D369O87uWmcyS3y4+TzPWgjvdw1q06Ki7p31Cfx0IA2FAj6YEWtT1G3aJIQShYXg0qoUnxn7aB2m5Pf7B/znijqA4R0CmdlbWKA8uTKeyroqzw4d4I47xM/PPNOoNcidA9sQ6uVMYaWezWdz2Xgmly3ncjGYJIZ3CGDzo0OblVjkCDQqJa9N6sJbN4qUn7WnLnH/z0eb19Xq3LlhfuxTT8GCBU0+d114uWj4/vbePDC8oTinKVhTJjadzaXQTnasVq3kVsu07ds9F1vUmQzydJbTnBZsTLRZo3u19pV5cN/svsgyiwOHQqHgniHt+OGOvtg7O/6JhvM1V9jFhnsTG+6N3mSWP7gnx9T6rZkl+HKXkMpf1y2EAA8nsktrWG5RjymVCh6zXMy+2pXCxYJKFAoFr93QGa1aSXxWKYGWXe6OxHxmfLWfSp0RrVrJV7f2Zq5l3Fnf1kKjVHDvkLaM6xxMM5JCZHQL8+KliZ3Y8cQwbuobYXe0lFtWw+xvDrJw+wUkSSymL1myNh2FySzxxG8nWXtK+M59MacnQ+p4Pp04IYq65GTwDTbgOnUX+JYyNDqA3x8YQMRlskX/C1AoFDw2pgNTe4rdWFmNkXc3JNDv7a08vTK+cR6kUgldujQ8ywwGwcW7THHn5aJhUvdQvrilJ51CPDFLUFJlaFGwetsAd+La+FqsROyPk+8aFAkgc0G/2X3R4RzdSbGt6BbmRYXOyHsbEpg7qA2dLUV9zwhvtj0+jDaW77hKbyI5vxIvO8WDc2M5ZM2EUQIfVw0BHk6kFVZRbTDRM8Kbe4a05e+T2VwsqCLEy5k7BkSycPsFsZkL9eTXuXGyP1pBhY77fjp6VV7P/xpGs4RCAelF1YR6O1NjNHPfz8dkK4hwX1dWzxso256U17OIiAn2YP6o9sRa7B32JRfywurTTF28j35vb6XDC+uJe2sLMS9toM+bW5i0aC9PrYxn5/l8TGaJ2DAvXpzYia2PD2Vit1C7a0teWQ03f3OAT7cmyevQC9d1bPZI9JOtSXJyw5uTu3JjjzD5d7/+KrzcKivBJbIA/+n76d3BjdUPDiS6iU31/xIvTOxIqJcz6UVVcuSajJdfFlnVu3cL0rIduGhVLL+3P+9O7crbU7ry5o1deH1yF36+K47vbu9zVaLRGsPsuAh+vKsvzhqRB/3IsuMYHbVEcXUVviz10URx5+umZUrPViyc1R0ntZLSagNertoWFa5dW3nRLcwLvdEsX+/rY3ZcBE5qJaeySi8r2LocZveNoFdrHyr1Jl760zZWblL3Vsy3dBpfWH3axuFgaHQAcwfbcoEVCKPmJ8dGN7pJs8KpGWvuNVfYAdxm8Wj7+UA6RpOZid1CbRRYvx3NJK+sBmeNiocs3ZvPttbaYYztHCyTHZ9dFY8kSUT6u8kS/pKq2t3/kdRirv9sD5nFVaiUCl6Y2Il3p3a18aFxViv54c6+PDuhI1/M6cWJl8deNuxXpVTQxt+NQVH+zBsexZbHhvLXvEHcOahNA1drK3Yn5TPhk90culiEm1bFp7N68GIzizqjycxTK+NZfSJbTq8YEVPLUVy3DgYPFj5RvuFVuEzdica3itsHRPLtbb3/EcPTfwofzOhuE6ems5zsEz7dzcwv97P+1KWGi5ZWa99XYPhwIetvBC9f34lPburBuC4hzKpjw9JSloNVlbz0UIZdInBUoOCcgTDqTcqrYIODxGelUiG75q84ksmOxHzenx6LVq3kWHoJS/al8eNdcfhb/O3yynWYJPBz08jHs1IBNZbdfHMWm/rwclGjVAgxQH65Dk9nNTfHRVBUqefzHcmU64z0jPAmOsidL3eloDeaGd4hgF/mxslc1YScMiYt3MvZFvoH/hdhPWwuldTg5aLh7KUyHvjlmOw7FujhzLJ7+nFjj1Y2jZ/erX347b7+zB8VzZ8PDmT3U8N5epxQ7rXydkFloXrklunQG80oFBDs6Uyv1j48Oiqa7U8M4895g7hrUJtGR/t7kgqY8OluDqQUieSJmd2bvQ5JksSCjQl8vEUoml+c2Em2L5IkQX+9+Waxp3KNySZg2iGu7xPI0rv7NWu0bEWNwUROaQ3nLpWxL7mAHYl5JOdXtIhn1RQ8nDW8Ny0WgJ8OpNk6JoSFiaxqf38obVz0FO7rysw+EczqG8HNca2Z0681g9r7/ytcwgHt/PlqTm+0KiXrT+fw1Mp4hzeNdLOj2oyNrXUgsIOld/fjwxndmRjbSvbyXHowvSUvHYVCwa39IwH4xVIb1Iefu5Nsc/bt7pYlXiiVCouISMGWc3msryeUe2RkeyZ1D8VolrjnpyNyAwpg3vAoPJzUuKiV9G3ji4SISl2w8TxKpYJQL/t2PW5aFd/e3tvh1/iPcuzefPNN1q5dy4kTJ9BqtZSUlDTr7xvjzeiMJga8vY3CSj2Lb+7J+K4hLNyWxPubasmF9w5py7MTOqI3mhnxwQ4yi6t5dnwM91osUjKKqhjz0S6qDSbemdKVm/pGYDCZufmbg3btS3xdNXx1a296W7zaDl0sYu6Sw5TViB3zDbGhPDtBuOtbce5SGbd8c5DCOmMiTxc1u58cjlcjBVx9nM8t56PN5+WDp2OIJ4tm96BtM7MXK3RG5v16jB2J+SgV8NmsnrKSCAS1bN48MJvBN7oYtwmHcHY188bkLszo45ih8n8NOaXVDH53u2zqWxdqpYKl9/Sz9d4zGMDPD8rrSP9DQ+HiRVH0OYCyGgNxb26l2mBixb39WzS2NprMDHlvO9mlNbw/PVYm/dbFnqQCbvn2oMzLjAn2YN3Dgx0WEbyx5izf7LmIn5uWDfOHsDspn8dWnATgs1k9iAp0Z9oX+6jUicLS3UnNk+M68NnWJAoqbMeeCqCxRUShEF5VZknCYC8XDGEq3iXUkzPZZfIu2s9Ny9jOwWxLyCWnTIdGpeCZ8R25c2CtAfa2hFwe+vU4lXoT/loTR1+f9K9y7K50fQP7HLu68HPTUqk3UmMwc1OfcN6uo1qXJInFO5N5b4Mg63s4q3lkZHtuGxBpt+NhMkvkldeQX67D101LkKezw52RlPwKPt6SxN/x2UiS6AwuurlnszNg9UYzz6yKl7OVnxrXgQeGic23wQAPPADffCPu69knBe/h53hoRBSPjY52+NgurNCxL7mQvRcK2JtcQEaRfRGTSqkgzMeFtv5ujO0czPWxoVdN4f/M7/EsO5xBuwA31j0yuFbcUFYmwl8//FCIs9zcLv9A/yNsOpPD/b8cw2SWmB0XwZuTuzRdWL75JrzwQu3/azRCxuyASTPAkdQipn2xHxeNigPPjmy2bReIIn7AO9soqtTz5Zxedk20z+eWM+ajXSgVsPPJ4S3ugn64KZFPt13A313LmocGE1ynKDOYzDy76pQcnDB/VHseGSkiE7/ZnULP1j70jPDhdFYpX+5KYUdCXoPue10oANN/hWOn1+uZPn0699cNXr8KcFKrZLfuH/alAiJJou546OcDaZRWGdCqlcwfJVrEi3cmyxmj4b6uPG4xZ31z3TnyymrQqJQsnN1DHsXWRVGVgZu+2i8bgvZt48v2J4ZxY/dQFAphfDji/Z18siWJvDKhjOkY4snye/vZPN69Q9o5VNSl5FfwyLLjjP14F+tP56BQwC39IvjjgQHNLuoulQobkB2J+ThrlCy+pZdc1BkMoqB74AFR1Pl0z8T9hv0E+6tYdm+/a7aoAxFu/8JE+7vFN2/s0tBQWaOBG24QP6vVosjLzoavv3b4OT2dNXLoc1PRc41BrVLKJttL9qXa7fwNjPIjJtgDo1mSleJbzjU0Nm4MT4ztQEywB4WVep75PZ4be7Ti3iFiTPDEbycxmiS+v72v3KWr0Bl5/e+zzBve3mZDoFYqbIo6Dyc1kRauHIgOjM5otlvUjeoYyNDoAM5ml7FkfxpH0opxUisZ2M4PsyTx66F0csp0tPF3448HBnLXoDYoFAokSeKb3SnMXXKESr2Jtv5udjk1/zT+qfWtLgor9bQLcEepEAroTyxdLhAdigeGRbHkzj50DvWkvMbIG2vPMe7jXWw5m9vA+kSlVBDi5UK3MG/CfFwdKuoyiqp4auVJRn+0i79OiqJuVt8IVj84sNlFXXmNgbuWHGbVsSxUSgXvTu0qF3UFBUKB/803gELCd/RpQseeZ9HNPXhibIcmi7oKnZFfDqZxw8I99HpjCw8tPc6ywxlyUadSKvBz09IuwI0OQR64aFSYzBJphVVsT8znmVWniHtrK8//cYrTWY5ZCF0Oz47viL+7E8n5lSzekVz7C09PiIsT+aoTJtQq8f9jGNM5mI9mdkehEO4LnzYi0rFBt24QHi7Wy0GDxMXl9dcdfk5ralS1wcQvh5pwNWgEzhqVbBvzYyPZqtFBHgxu749Zqq0fWoIHhkcRE+xBQYWee38+ajNd0aiULJjWTZ4YfrwliWdXncJoMjN3cFvZlqxLKy8+m9WDYy+NZvk9/bh/WDs6h3riXI/PJQFuTo5Te/4VVewPP/zA/Pnzr1rHDkSxMujd7ZjMEhvmDyYm2JO3153ly1217dXHR0fz0Mj2mMwSYz/exYW8Ch4e2V7m2BlNZqYs3kd8ZinjuwSz+JZegFC3TPtiv11+64B2fnx9a2+bnd3prFJe+euM3G1QKmBglD+Tu7dibJdgCsp13PzNQSr1RvY8PaLRuJ/Ugkq2JuSxLSGXAylF8sI8oWsw80dFt4hbcjqrlLuWHCa3TIe/uxPf3tZb9pgqKBAq/B07QKGQ8BqciGe/ZHq29ubLW3o1iPK5FmE2S0z+fK+N39tdg9rI48gGKCqCGTNEqHWPHkJBEhAgSIcejn3+F/LKGfXhLhQK2PrY0GYX4iC6Dv3f2YbeaGbVAwPs+hOuOJLBUyvjcXNSUakz0aWVJ3/PG+TwyCYhp4wbPtuL3mTmrRu7MrNPOHctOcyOxHyCPZ3566GBnM+p4L6fj1Chq120Hhzejj6Rvry+5izJ+cJzSqtSYjJLmOqdNBqlAj93J7xdNRhMZkqrDBTYETqEeDnj4awmraASXZ0i8O7BbXhkVLR8zqQWVPLC6tPsuSAc5jsEu5OYU9EsxdjVRkvXN2i6Y2dFvza+HLBMEuwdvyazxIojGSzYmCgLSQI8nLi+WyiTuofSLczL4eMiv1zH9oQ8tpzLZXtinlyUj4wJ5LEx0Y0q9S+H3LIa7vj+MGcvleGiUfH5zT0ZbjFmPXVK7KdSU0GpNeJ3/XHa9y7nq1t7Nflc5y6V8cvBNFYfz7aJpIoJ9mBQlD8Do/zpHu6Nl4vGpjiUJIm8ch0XCyo5nl7C8sPpNurMgVF+vH1jtyviFP99MpuHlh5Hq1Ky7pFBRAXWWT9atRKbxg4dhKLUwbXl38bSOlnlX9/a28ZerAEqK0GlEtFE+/YJsrZSKb7gTo2st/Ww6lgmj604SYCHE3ueHt5sGxeArJJqBr+7DbMEmx8dYlf8Y1Uwuzup2f/sCDxaSDNKL6zi+oV7KK02MKN3GO9ObZi28svBNF5cfRqzJHKc35nazaFN0QpLpOiYzkG8cn0XXNDh7e3t0Bp3zRZ2IOKb1p3KYXZcBG/d2JVqvYlur26UFyJfNy17nx6Bi1bF+lOXuP+XY7hpVex6arjsk3Q2u4wbFu7BaJb44pZeciDz83+c4hc7s/5erX349rbeDbhwkiTx18lsluxL5Vh67ft01ijpFOKJv7sTEoLf5++upbTaQGGFnqJKPQUVOg5dLCKlwNaYcWRMII+Ojm6QG+kIJEli9Yksnv/jNFV6E+0D3W3ItwcPivolPR3UTiZ8Jh7DNSqP2/q35rnrOrbohPqv4tylMiZ+uhtrvXBjj1Z8OOMysWunTomcR7MZoqJE9fvss81afO/64TBbE/K4OS6CN29sPEPwcnh8xUl+P5ZpY+FTFzqjiYHvbKegQodWrURvNPPd7b1teJNN4ZvdKbyx9hwuGhVrHx6Ev4cTkxftJSW/ku7h3vw8N46c0hru+uEQaXVGWm0D3Hjths6cyS5j0fYLMiUBwNtVg8ksUVFjbHREq1IoCLYUc9kl1TZ/XxcnXx6Dl4sGvdHM17tT+HRrEjqjGa1Kia+7hpxS0am7t18Iz93Y65ot7Lo//wfFxoYXF28XDSUWs+roIHfOW4xRo4PcWXJHX0K8bWMJSqsNLNp+gRVHMiipkyUc6edKbLg3Eb6uhPu6EuHrirerhqJKPYUVegordOSWixFm/WzKQVH+PDYmutnm51ZsT8zjiRUnKazU4++u5bvb+9DNEtu4dCncfbdEZaUCtXclAVOOMCROy6LZPW287OrjWHoxH20+bxMh1dbfjdlxEUzq3qrZXDxJktifUsjSQxlsPJ2D3mTGRaPi6XEduLV/ZIt8EiVJ4s4fDrM9MZ++kb4su6df7eN07w4nBfWBuDghAf6P2vS8/OdpluxPw91JzeoHB9gWqJfDbbeJ9fOxxxweOeuNgoaSU1bDe9O6OZyrXh/3/nSEjWdymdOvNa9P7tLg92azxOiPdpKcX8kL13VsIGpoDnadz+f27w9hluC1SZ1lnl9dbD6byyPLjlOlN6FVKXl4ZBT3DGlnY8JtD9sScmnl7UqHYI9mWTr9pwo7nU6HTlc7UikrKyM8PLzRN3IgpZCbvjqAi0bFvmdG4OOmlQ9CK54ZH8N9Q9shSRI3LNzLqaxS5g5qwwt1drwLNiawaHsyAR5OrHt4MAEeTlTqDHR9ZRNmSRDUnxobw2fbkiirMYpF9c6+Nny6ukgrrOTPE9msPpFFSr7jLtpqpYK4tr4M7xDIyI5BNuT/5qCkSs/zq0/LgceDovxZNLsnXq4aJAk++wyeeEJ0yrW+lfhNPoJfWA3vTusmR7P8X8M76xPYfDaHiwWVlz0BZdx7L3z1FfTqBYcOiZ1nM2A9Np3USvY9M+KyF6nGcCqzlOsX7kGjUrD3mRF2czCtvnc+rhqKqwx0D/fmjwcGONydMZslbvn2IPuSC+kW5sWKe/tzqbSGSQv3UFZjJDbcmyV3CC+++38+xv6UQpu/n9E7jMdGR3MkrZjfj2ay83x+AzNOlQJZ7FCtN1HZjCzdXU8OI72omtfWnJGLmnAfF7JLqjFJQpH85o1dGBLp/j/zsWtOYdfYGjfjs60czLTlgikUYpTdM8Jb3iy6alWyGlqtVPDk2A7cNahNA69GvdHM7qR8/jyRzaazOdQYmicU6BbmxYiYQEZ1DGrRxhLExuPd9Yl8t1dMUWKCPfhyTi9a+7mh04nr/eefi/s6ty7Af9IxHhgXzhNjOjQ6Jj6RUcJHm8/L6TIqpYKxnYO4Ja41/dv5XRWBQVphJU//Hi/HUfaN9OXdad1atB5nFlcx+kNbLjcAzz0nosas6NcPNmwAr5Z91v8k6nLPI/1c+XPeoGbHxTUHX+5M5u31CbQPdGfTo0Na9J3uu1DA7G8O4qpVceC5kXaFf9ZupJ+blp1PDW90kuYIvtqVzFvrElAq4Ke74hgY1dCOJ7O4ihdWn5YNlDsEefDO1K5yMEJT+EcLu1deeYVXX331svc5fPgwvXvXKjgcXfgae+zG3ogkSUz8bA9nssu4d2hbnh3fkdIqAz3f2CyPMd2d1Gx7YiiBHs7sPJ/Pbd8dQqtWsu3xoXK+aY3BxMTP9nAhr4I+kT78MrcfWrWSh5ce43RWGSkFlXg4qXltUmfe2ZBAbpmOUC9nltzZ97J+dpIkcT63guT8CtIKq0gvqiK9qJKiSgPeLhp83bX4u2nxdXMiOsidQe39W9wStmJPUgFP/HaSnLIaVEqFUOhEt+ORh5QsXiy4dKtXi/u6driE3/h4urV1ZdHsnrT2+28Sea8GqvUmKnQiyurNdedQKxUsu6efLIZpgNxcaN9ecGD27GnUULQxSJLEpEViBDx/VHuZ59lcTPl8L8fSSxo17CytNjB0wXZKqgxoVAoMJokf7+xrY2HTFLJLqhn/yW5Kqw2M6xzMopt7cia7lFu/O0RJlYEOQR78NLcvPq5aXvnrTINOtp+bljn9WzOzTzgqpYK/TmRzLL2YiwVVXCyoaLSoUCsVKBQ0KqoAW7NiD2c1LhoVeZYkmQldg3nlhs4EejhfNYPif3J9u9zjv/jbIX48kgeIwjWjuBoXtRKdyYxZEobD1kKjPqKDPHh7Sld6tbZ/gajUGdlzoYDUgkrLGiT+K6s24OfuhJ+bFj93LX5uTnQK9WRETCBBV0jDSM6v4KFfj8tq5dsHRDImKIZ1f6u49Vahej1yRNzXq38Sbcam8tFNsQzrYD83MyGnjPc2JLItQXxGKqWCqT1bMW94+3/EgslssRt6e30CVXoTzholC6bFyl5pzYG1K+7prGbL4+JaxO+/i3SbuujbFzZuBG/vq/MmriIKKnRM/GwPOaU19In0Ydk9/VE1p4tpNoudigNFWlmNgQFvb6NCZ+T7O/owvJFj4nKQJInRHwn6VX0jYSsMJjNjPtrFxYLKK1qjrc93709H2XQ2F5VSwXe39WFoh4ZrsHWy9+rfZ2XKxKAof27pF8HIjkGX5b3+o4VdQUEBBQUFl71PZGQkzs61C8M/1bED2Houl7uWHMFZo2TXk8MJ9HTmhdWn+PlA7cVneq8wFkyPRZIkZn19gAMpRQxu78+Pd/aVdwPJ+RVMXriXcp2RW/pF8MbkrkiSRKXexF0/HObgRSHvf2dKNz7eep6U/Eqc1EoeHxPNnQMb7pj/bZRWGfhoy3mZDNrW342PZnZHW+HN2LEiQNvLS6jsFSoz3sPP4dEzVRgcT4j5PzV6vRwkSWLe0uOsjb9k06G1ixUrhDdT9+7CLf655+DLL4WhsQOwcmx83bTse2ZEi3zt6ialHHlhtN3WvfXCYe3m9Grtw8r7+jdrp7s/uZDbvjuE3mTm9gGRvHx9J87nVjDn24PkleuI9HPl57lxhPm4svlsLq+tOdNAbahUwIiYQGb1jWBYh0BUSgVms0RueQ1phVVoVAq8XDR4umjwctHgpFYhSRLJ+RUcvFjEwZRC9l0obMDBc1Ir8XLRyAWdv7sTb0zuzLgutd3lq1XY/ZPrGzS+xv208yy/ny7iybEd6N3al1u+FR0ST2e1PKYeFOUvcwvtYVbfcJ4aG9MgtvDfRI3BxDe7U1i0PZlqgwlfN60wbc0OYtIkiZoaBVqtRHW1AqWzHv+JJxg2ysSns3rYLSZzSmv4YFMiK49lIkmioLuxRyseGhH1r2xEM4qqePr3ePYlF6JQwMsT7RcJl4PRZObGz/dxKqu0llaRnCzGlPXRu7cYy/q0bOz9T+J0VimTFu7FJEn0jfTll7vjHFNVb9smEihefFEk/DgAa4rEgHZ+/Hp3vxa93p/2p/Lin2fwd9dy6LlRdsfpa+Kzmffrcdy0KnY+NVw2PG8JqvUm+ry5ReZ6zrWYdturDYoq9by59hyrjmfKXP4gTydm9olgeq8wwnxcGqzf1+wotj4ceSOSJDF18T6OpZdwa//WvDapC5U6I73e2GzTKfjzwYHEhnuTnF/BBEuM0ls3dpX9k0DMs+9acgRJgrendJWVt9V6E/f8dITdSQU4qZV8MCOW5YczZH5HbJgX707rRkzwv8+RqDGY+HF/Kou2J8vB8bf0i+C5CR05cUTNhAm2lkka/3L8J56gbYyB96Z1+086uP/TqNQZufHzvZzPrWB4hwC+u71P00XQDTcIe4IbboA//3ToeYwmM0MX7CCrpJo3b+zCzXENM4abgt5oJvbVTVQbTDwwrB1PjWtYVNYYTIz8YCdZJdWy/cnC2T1kXyhHYS1EAdkaKK2wkpu/OUhmcTUhXs78PDeOdgHu1BhMfL0rhYXbk9AZGy4h/u5OdG3lSXSwBzHBHkQHeRDh64rRJFFtMFFjMFFtMJFfruNYWjGHU4s5nlFsc846qZVo1UrKLYWNVqVkWu8wnh4b08AK4X8ZKXY1OHZ5hUX4+3jLx2FJlZ6pi/eRnF+Jn7uWwgo9SgX0a+vHvuRCu4/lplXx89w4h0c7VxNms+hEvLchgexS4QowMMqPD2d0Z9dGJ2bNBpMRsHjvO7cuIHBiPPMnhfHwyPYNuj/lNQa+2JnMt3suysfEdV1DeGJshxZTVBxFtd5EYm45zholMcGemMwSr/59Ro7cstqvNGfjdCqzlBsW7UGS4Ne74xjQxld05upaK4GwVfrsM7jnnqv4jq4ePtlyno8syuzWvq58MacXHUOaON+ef16YE0ZHw+nTwn2gCWSXVDPkve0YzRJrHhrUIjpAhc5I7KubMJklHh3dnkdGNuzImc1isnIqq5TbB0Tyyg2dm/08dfHbkQyeXBkv/3+HIHcWzu7Z6GQvo6iKpYfSWXEkw8ZGys9NS6dQTzqFeNIp1JMwH1dKS0sZGdvmf1/YpaenU1RUxF9//cWCBQvYvXs3AFFRUbi7N60KcXSx3pdcwOyvD6JRKdj2+DDCfV35dk8Kr685J9+nR4Q3v983AKVSIXc43LQqNj46RB7JQm1Wn0alYOndtaO6GoOJeb8eY8u5PLQqJR/M6Ea13szra89SXmNEoxLWAw8Oj2qSEHk1YDJLrDqWyUebz8sLaXSQO89f14mh0QGsXi3EEQaDhHUx9eiTgs+QRG4eGMZzEzpeEafgWkdCThk3LNyL3mjm9UmdmXM5vh0Ip/iJE8VIYft2GDbMoef5bs9FXltzljb+bmx9bGiLSNi3f3eIHeeF/+CGRwYTbWcDYVWTWUUUQZ5ObH18WLO/Y+u5AfDJTd2Z1L0Vl0qrueWbgyTnC0rCKzd0ZkrPVigUCrJKqnlr7TnWnmqYldsSOGuUuGnVlNUY5BGth7OaW/q15o4BkY0qtf8Xhd2Vrm9Q+7rTLxUQHuxn87uMoipu/HwfBRU6Aj2cyCvX4aJR0ifSl11J9jt3QZ5OvDSxMxO6Bv8rhrYg/MdeX3tOFl2EeonYpeu7hbLoc4mHH7K+DgWoTPgMSaT3hEI+nNWtwQXbYDKz9FA6n2xJkv0/+0T68NyEjk0WrJIkkVNWQ16ZjrxyHfmW/0qq9fi7OxHq7Uyolwuh3i4EewkPv6JKPWezyzh7qZQz2WWczS4jOb+iAQ9XkiQ+23aBDzcLr9SZvcN588YuzZrUvLj6ND8dSCMq0J11Dw9GO2KYSKGwIiBA8HkjIx1+zH8bkiTR47XNsqBHrYRHRkZz3+VizsrKBK0lL08UrfPmOfRc85cdZ/WJbG6IDeXTWQ3FY45g/Me7OJdTjlIBGx8dQns7wg+rJ2jd+qGlMJrM9Ht7q02RplYpeHJMB+YObtvo+FpvNLPhTA6/HEjjcGpRA54yNC8r9h8t7G6//XaWLFnS4Pbt27czzIELY3MW61u+OcieCwVM6xXG+9NjMZsl+r61xeYD/nBGLFN6hmEyS8z8cj9H0ooZFOXPT3f1tTH9fPDXY6w7lYO/uxN/PzRQFknojWYeWXZcNgue1iuM+4e25Z0NiWy2RIcEezozOy6Cm/qG2yW7Xynyy3X8eSKLpYfSZauJEC9nHhsdzZSeYaiUiga8XI1fOb5jT6H2qiaqqBs7ljnOv/q/jG/3XOT1NWdxUitZ+/CgxtVeixfDww9D27Zw/nyzBBUVOiMD3t5KWY2Rr+bYBpw7iqWH0nh21WlA7OS2PDa0wbjNZJa47tPdJOSU4+GsprzGKJt0Nxev/X2W7/ZeRKNSsOSOvgyI8qewQsc9Px3lqMXSZ0ynIN6a0lUeXaQVVrL6eDZ/HM9sEOptDWCxUumUCgUqpRirKRUKXLUqymuM6OolAbTyduHOQW2Y2Se8yQJ195k0hnSJ/FcLuytd36B2jbv/u918fsegBr+Pzyxh5pcHqDaYCPJ0IrdMh9pirGv9nN20Kp4e34FvdqfKfMTB7f15eGR7erf2+UcKvCq9kTXxl/j1oMi8tr6OB4ZHcdegNjipVdxxt5El36qwbiy1ocX4jj5N1flgnryuHS88X3v+SJLEprO5vLs+QXYHaOvvxtPjYxjTKajR95BRVMW+5AL2JReyL7mQ/HLH/Qy1KiX6y0RmfXNrb0bVs/f45WAaL/xxGgkhBll6dxw+bo6N70qrDIz4YIfwjhwfw32/fyIKnTFjhPfUwoXQv7/Dr/9/ha93pfDmunM2t3Vt5cX702PpENzIGvrFF3D//cIbNDnZIZHImexSrvt0Dyqlgp1PDrNpwDgK60gXwN9dy+ZHG66dUFs/3NijFR/N7N7s56mL9zcmsnB7Q9+/HhHevD89tkmrE2vHuO6GI79ch9JQze4XJ/7vC7srRXMKuxMZJUxetBelAjY9OpSoQHd2JOZx+/eH5fsEejix7QnRxUjJr2C8ZSRbf0xWqTMydfE+EnLK6Rbmxc9z42RVjdFk5sPN5/liZzJmSVx8PpjejfwKPa+tOSsvLBqVgvFdQrhtQGt6RlzZ4qozmth2Lo+VRzPZYcl0BKEIfHB4O27tH4mzRkVysqAwnBY1AAq1Ca8BSXj0TKXsaBvKDrRDMqg5c8ZhW6H/0zCbJW77/hC7kwro0sqTVfcPtN9tPXIE+ghlKK6uUFUFP/0Et9zi0PO8uyGBxTuS6d3ah5X3N0+EAbU7Sit6t/bh17v7NXit1uPdOo5VKxVsmD/YcXsCC8xmiYeWCR6iq1bFwtk9GBEThNFk5stdKXy85TwGk4Sfm5a3pnS1cXeXJIkTGSWsPp7FlnN5ZJVUX+aZbOHprKZfWz8GtPNjQJQ/7QPdmzxvjqYV8enWC2w/lfY/87G7EtT1sfvqrkE2vEErtp7L5e4fj2CWbC1PQMQZ1hjNeLtqeHdKN85eKmPxzmQ5LqutvxvTeocxtWfYFQsiQNhDLT2UzurjWbJTvlqpYFqvMB4bE02ghzMXL8LwUSbSUgSnVKE14j0kAW1QKUUbumEo9CAgANLSwMVFrN1vrT3HoVQhDvFz0zJ/VHtu6hvRoAskSRInM0v541gmWxPyyCy2Pb7USgUBHk4EeDgRaPnX00VDYYWe7JJqsoqrySypbmDebA/rHh5Mp9CGx9JaCy9LQqzz9w1txx0D28jZxZfDyqOZPPHbSVw0KrYMdKKVl/M1UczVRWm1gd5vbG4getKqlDwyqj33DmnbsJNpNELXrpCQAE8/De+849BzWQuuOwe24aXrm3/RsvLsrOgT6cPPc+MacMqtDgQKhfjemxwvXwYZRVUMfm97g9tVSnj7xm4tNv3/z3HsWormjlfmLjnClnO5XNcthEWzewIwbfE+m7Df+4e142kLT8nasXHTqtgwf4hNCzajqIobFu6huMpAtzAvfryzr4133eHUIh5bcYKMomoUwJz+rXlybAe2nstjyf5Ujtfxsmvj70aPcG+6hXnRNczb4ixtn0gvSRLZpTWczirldFYpp7JKOZZWbOPz1SPCm6k9w7iheyiezhpOnYL33oNffpGQJHEhdOuUhfeQRMwFXvhldqRdkCuRkaLLP3bsZeP7/r9CblkNYz/eRUmVgfuGtuOZ8Y0II26/HZYsEc7qGRni38REcWVy4DkGvbsNg0kS/Jpm8hqTcssZ/dEum9um9gzj/em2ZpiSJDH764PsTykkxMuZS6U1DGjnxy9z45q9sagxmLj7R8ErVSrglRtqx1Jnskt5bPlJEnMFP2hS91AeGhFlt4CsMZhIK6ziYkElFy2qTJVSJHR4OGvwcFbj4aymjb8bnUO9HFLaSZLEgZQiPtuWJPPNFIZqUj+cfk0Xdp6enux4cphdAvcvB9N4/g+xY+sc4skZi9p0WIcACiv0nLKkJQzrEMDtAyJZG3+JtacuydYoSgUM6xDIyI6BRAd50D7QvdFcaiuMJjPnLpVzNK2Io+klHEsrtinUI3xdmdU3gmm9wgjwcCI1Fd57T+KLL0Eyi6A5ty5ZeHRPo/xEBLosH9TeVfTppmXyEG/ixpTz0/Hzcs6xk1rJ3MFtuG9ouwbuAFkl1aw+nsXvxzJtLKTUSgXdw70Z0M6P/u386RHh3aRIyWyWyCiu4rNtF1hX5zOqj5MvjWk01qp+18pJrWBW39bMHdzmsp0lSZKY8eV+DqcWM65zMF/M6dXwTsuWwbhx/0l1rBWPLT/BquNZDW6va63VAGvWwPXXg5OTWDtbN805tjpZOGuU7HpqeLOnYBtO53Dfz0dtbrO3dgI8+Osx1sZfYniHAL6/o2+znqc+rAVpfczsHc5L13dqUXTd/7nCrqSkBC8HWrfnLpUx4dPdSBKsfXgQnUO9yC2tpv872+SZtValZNOjQ4j0d8Nslpj5lTjJBkb58fNdthfAM9mlzPn2EEWVemKCPfh5bpzNolteY+D1NWdZcUTkwTmrlYzuFMQjo9qTm29m9dlU/jqZ3WDEpFIqaBfghotGhQSYJQlJEp5VOWU1sgy6LoI9nZnSsxVTeoYRFeiOwSCU8YsWCfsjK5wj8/EZlkB0tMTzEzozOtavwWP9l2A2S5zPKyfY07nJC80/hQ2nL3Hfz8dEfM7cfvRvZ+czy84WPJGqKvD1FQkVX3wh/O4cgJVfYw1qb06hVVplIPa1TQ1uf3JsBx4cbqusO5lRwqRFe4HaUdNns3q0yKbBYDLzwh+nWW6J0btzYBuev64jKqUCndHER5uT+HJXsqzqGt4hgLmD2zLgKvmJ1UdxpZ4NZ3L4/WimvFlTKxVM7RnGnN4BdG0Tes0WdnGv/EVOtZJIP1c2PzoEjR2V+o/7U3nlrzOYJWgf6E5qYSUGk0TXVp50aeXNb0cyMJolVEoFN/UJ554hbdmfVMTK4xk2m1sr/N2FzVKEryt6k5lqvRC0VOlNVOmNJOdVUm2wLXo0KgVjOgUzOy6C/m3F93z8OCx438yKFQrMJvG9O0UU4jMkAaWLHoXKjMqjBoWliRPk4URcWz85d1ahgCk9wnhibLSNN6jBZGbTmVx+OZhmIxhx1igZ2zmYG2JD6dfW74ryXSVJYt2pS3y6NYnEOp1QlQK2PTHsssrbGz/fa7OBB7G2X98thHuHtmu065OQU8Z1n+7BZJb44Y4+thYvW7bA6NGi6Pn5ZxHN1Rji44UQwdlZ/BcQIKIQ/wUcTClk5lcHbG67Y2Brnp/QqXHeoSTByJGCo/zSS9CErZD4E4kbP9/HiYwS7hgYycvXN0/ccCy9mCmf72twu72182JBJaM/3InRLLHsnn70a9vya6dVbQvQNcyLbq28+PVQOpIkNkQfzezeqD1RY/g/V9i9/vthXpjSu+k/AB5eepy/TmYT18aX5feKFveb687ydZ2osb6Rviy9px8qpYLUgkrGfbKLGoOZp8fFcP+wdjaPdz63nJu/OUh+uY52AW78MrefTdgviJzY+cuOy8WjJEHed8Pw8VQxeYqJgWOryJOKOZVVSnxmSYMQ9fpQKxW0D/KwLNhedG3lJZzaJQVHjsAvv8CyZRL5+ZaLp0LCNfoSnn1T6NdPjAZGdwxqEVH/n4bZLJGQU87Bi4UcSCnk0MUiiqsMbJw/pHF+xr+Ap1aeZMWRTEK9nFk/f4h9A8433hCSfX9/8fPddztsXJxTWsOQBdvRG80subMvQ5vhMydJEjEvbmiwQQBYNLunTXYr1O48rX5oLRVSWJ+7btD8qI5BfDqrO65a8VgnMkr4fPsFNp/LlQu8SD9Xbh0QydQerRzKRb4cSqsMbDybw5r4S+y9UCCP0LQqJTP6hHHf0HaE+bj+T1WxVwLr6955+iK3/iRGRlEBbiy/t79dU+vtCXnM+/UYlXoToV7OVOiMlNUYcXdSc1v/1iTlVbDJwvd1NrmQ/e0QJt0A4yYbyHZK5/SlUi7kVTg8Ivd0VtOztQ+9Inzo1dqH2HBv3JzUXLok1qGvvjORdK62CHWOzMcrLpmwLhV0DPEgyNMZPzetPKbcc6GAvRcK5LVyQtdgHh0VbaMazCurYemhDH49lEZumaC2KBTQr40fU3q2YnzXkH9E+JVeVMnjy09y2FIEO6mVzBsexT1D29q1g8oqqWaoRblZH2qlgr/mDbI7ygV4Y81ZvtlzkdZ+rmycP6S2y3joEMyaBSkpYm154AHR4crKEhvKRYtqH6R1axEdZIVWKzafnTqJsefTT4vb/gFIksTID3fadE8dKrzi4+HcOaHsc3DztzspnznfCv/ZnU8OazQYwB4aG4sC/DK3oZGwNXGqQ5AHfz00sMU2YDqjiX5vbWV0pyBem9QFZ42KAymFPL7iJFkl1SgV8ODwKB4e2d4xyxj+DxZ2EfNXsOKhEcQ5UEFfLKhkxPs7kIAPZsQytWcYNQbxIVuVPABPjIlm3ghh+PrzgTReWC3GHJ/f3LNB+sLFgkpu/voA2aU1RPi68uvdcQ3a7SfSi5n+5X4MJglDiQvZXw8Dc+0XFtahisnXqRk9VENkxxoKzeWYzZLwbERh8W5U4O2ioUOwB84aFWVlgqt/6JCILt2+XaK4uPZkULrqcOuUhUfPNMb1d+e+Ye3+MbJ0XUiSRHGVgcziKjKLq+v8W0213oSHsxpPFzFmc3dSy52AnLIajqYV20QdWbHvmRGEejt+wl5tVOiMXPfpbtIKq5jSsxUfzuje8E7V1SLbMSMDXnkFXn65Wc9hFSXEhnmx+sGBzfqehry3XSbGg6Cj3z4wkrsGNRz9pBdWMebjndQYzPi6aSmq1LdYSGHFmvhsHltxEr3RTJdWnnxxSy+b500tqOT7vRdZdjjDpgDVqBT4uGoJ83WhY3CtdL+VtzNhPq42Y7OSKj2JOeWczy0nMbecxJxyTmSU2HB5OoV4MjE2hCk9wmw2WNd6YVdaWsrkr47JwgE/Ny3f31EbvVUXZ7PLuGvJYS6V1uDtoiHAw4mkPNFt6hjiyay+4fx2JJN96zwp2tBN/jtvfyPTpsH40Wq69jBSpa4gKa+C7JJqnNRKXLQqXDQqXLVqXLRKwnxciQpwR6lUUFYm4j83bTazbpOJ82fUMu0DlQnX9rnEjMni/ml+TOsVJnffJUniSFox3++9yIbTOXJBNyImkMfqxCVKksTRtGKW7E9j/alLcrHk7+7E7L7hzOwbQat/aX04m13KkyvjOZMtxt1t/N345Kbudr8La/JLfTQVh1WhMzLygx3klumYNzyKJ8Z2qP1lWZlQjv70k+0fhYfbFnKTJwvz9JoasTaZ62z8oqLExcO6xuTkQHDzhVuXw1e7kvlhbyp3D27Lq2vOAvDTXX0Z3P7qivMkSWLmVwc4dLFI9ph1FDUGEzEvbrC5zVmj5OtbezMoyr/BGlxUqWf0hzsprNTz8IgoHhvTgZbibHYZHUM8bJ6jrMbAK3+ekcfYMcEePDg8igldQ5qkofyfK+zC56/Azd2DP+cNJPoySQ9W3LBwD/GZpagUCtY+PIiYEE82n83h7h9rZ+0qpYKV9/WXJfSv/HWGH/al4qRWsvSefg1yETOKqrj5m4OkF1UR6uXMTxY/r7qo2341VWuoSgym8lwounQ/rMowK4KDJYKDFQQEiA66SiXOzepqcV4nJUnk5DT8ohVaAy7t8nDvnEVo5zLGdQvijoGRDn0uV4Lskmr2W5RnB1IKm0WKdwSnXx37P7dfOZpWxLQv9iNJNJ65unw5zJ0Lb74plLJVVWIsGxbW5OPnl+sY8t52qg0mu4q7y8HKFe0Y7EFhpZ68ch0Pj2zPY6Ptu6XXVfzqjGbUSgVrHh50RV6LR9OKufvHIxRV6nHRqHh4ZHvuGtTGRsRRWmVg8c4LfLP7ot1ORl34u2tx0apQK5VU6IyNKhpjgj2Y2C2ECV1DaNuIouz/QmH397limUcHoih+c3JXu2Tr3LIa7lpymNNZZWhUCkZ3CmLvhULZy3Jm7zA6B3vz1W/lnNzhSVViCGadbRfaL9BIuw5mwkIURISpCAlSYjZDVZVEaYWZvHwzSRfg4gUlRQUNOxdOocV4dsvkhilm7hoRRr+2vvJFTG80syY+m+/3psr8PxBq3fmj2tOrda2N1F8nsvlhX6qcUgEik/vW/q0Z3yXkX7GPqg9Jkvg7/hKvWwRxLhoVn9zUvYGqXXhI7iCrpEa+zVE/tLXxl3jwV0EB+f72Pg1TN1auFN6Z/v7QqhVERDRMq7DCbBYbzrNnRUcsIADmzBG/q66GNm1EN++ZZ2DCBIe7ZZdDSZUeo1nC391JppqEejmz8dEhjiUolZUJhWyPpq1MrKPflliSxL66CY1KwfReYaw8lkV+uY5Xb+jMbQMi7d7f+r2olQr+nDeQzqFXP+ZtbfwlnvvjlHy+tvZz5e7BbZnWK6xRjuj/ycJO6eRKsKcTqx4Y2GRnZ/XxLOYvPwEICf6ahwfTxt+N+34+ygaLVQmIWfe6Rwbj7qTGZJa496cjbDmXh5+blj8eGNggqiantIbZ3xwgJb8SV62KlyZ2YmafcJuK3NqVqQtjhRPVF4LQZXujz/bGUOhO/UKvMSjdatD6l+PcuhDniELC2tcwPjaIcV2C6Rvp+48lXuiMJvYkFbDlXB77kwsaWFiA8MwK83ElzMfF8p8rrloVZTVGymsMlNeIi/XZ7FIScysaVaIpgJS3J/xrvluXg3VEEuTpxKZHhzYcyUqSsCYICIBdu2D2bJFEsXmzQ4vlO+sT+GJnMp1CPFnz0CCHx+W/HEwjOsiD3q19WH86hwd+OYabVsXup0fYVePV5Y9au3bRQe78NW9QixIwrEgvrOKJ307KCsaoQHden9SlAS+xpErP7d8d5kRmSbMev5W3izA0DvagQ5AHXcO8mrQHgP8bhV0NWvq+tbXBfWbHRfDy9Z0ajIWq9EYeWXZCtlqKCnQj3MeV7ZYsSm9XDTN6hzOsgz+n0ir48bca4ve7ocv2xlDgAVLzzjeVVxXOEYUEx5QyfDiM6u3JiJggObnFbJY4mVnChtM5rDqeJRfqTmolN/Zoxe0DI+WNRWZxFT8dSGP54Qy5g++kVjKpeyi39o9scT7t1UZptYGHlh5n1/l8FAp48bpO3DnINnnCytG1ItDDiTUPD3KI6P/sqlMsPZSOl4uGNQ8NuiIPtUaxc6ewVNFbKEBdu8K778L48VftKSp1RsZ/spv0oipm9Q3n7SndLv8Hx48LgYiTk1DKujb9vq2ChBm9w3hvWqzDr21HYh792/nhpFbJ07kADyd2PTkcF639tfD+n4+y/nQOnUI8+XPeQIfHpc1BcaWeH/en8cO+ixRbzgF/dy13DGzDTX3CG1Ax/s8WdiBIwyvvG9CoWgnExWfIgtq5uq+bht/vH0iQpxP9395KaXWtwnRqzzA+mCEOkkqdkRlf7udMdhntAtxYdf/ABs+TX65j3q/HOHhRXNjGdArinand5IurwWRm1lcHbMjKtw+IZErPVhy6WMSBlCIOJJRSeEmLucoJU5UWU6X4ApUaEwq1CYXGhNqrCtfAatqHOdEuwJ12ge4MjfanR7jPP8adqzGY2J1UwLpTl9hyNle2MwChqusaZlGftfWjd6SPzLNyBGazxF/x2SzZm0p8VqlNkadUwOc392Js58b9qv4tVOtNjP9kF6mFVXIUXaO4eFEUdXo9/PWXUHw1geJKPYPf206Fzsjim3syvmtDe4umYDZLXL9QZCTfM6QtzzUyYr1YUMm4j3ehM5pxd1JToTMyq28Eb09xfJRhD5IksepYFm+tOyebyI7pFMQbk7vYGAjXGEw8/ttJ1sY3NC9+8bqO9Gnji9EsYTJLaFRK2gW4tTgr+Vov7FbsTWT6gGgmLdorG/3WRc8Ib36eG9fgnDObJX47msE76xPki8OwDgFkFFXJPpcglPQzeofTN9KHvcmFHL9QwZlTSjLTlRTkK6gp12Cu0oJCQqExo1CbcHIx4ROsJyjcQOdOCoZ18aFfWz9a+7nK56nRZOZwajEbTl9i45lccspqO1dBnk7c2j+SWX0j8HXTyrZNvx3NZEdinjyWDfNxYU6/1szoHf4/jUNrDAaTmZf+PMPSQ2IMevuASF6c2EkenUmSxC3fHsTbRcP5XDHejmvjyy9z45rceOuMJmZ8sZ+TmaV0aeXJyvsGXNHGq1FkZ8NHHwnBV4VFJDJzJnz88VUb0R5IKeQmi6CiSR5xdbVYO9PT4fXX4YUXmnx8qxBCpVSw5bGhLUog0RvNjPhgB5nF1cJLcGg7u/fLL9cx+qOdlFQZbGhb/wSq9EZWHM7g690XbSZhMcEexLXxpV9bP/q28UVj1v3fLexAeNH8dFdcoyeA2SzR9ZWNVNaRsQd5OLH83v7kl+uY/uV+m/vXVQ3mltUwedFeLpXW0K+tLz/eGddgFGAyS3y9O4UPNiViMEkEeDixYFo3uZWeW1bDdZ/uoaBCR/tAd/5+yLZLYjZLpFlCuKv0JqoNRosSzYTeaKaVtwvtAtxp5ePSvKDlFkBnNLHrfAFr4rPZei5PzrkDsTCP6xzMkOgA+rTxlb38rsZz/nU8m692J5OUV3vx6d3ah2cndGy2Wuhq49DFImZ+JUayDVRrdbF5MzzyiBh9REfDqVMOkZU/3JTIp9suEB3kzvpHhrToO96WkMudPxxBq1Ky7pHBRAXa72pZkyScLIkUErQobsweSqsMLNiUIOcyK4B2Ae5cHxvC5B6tiPB1FfF868/JJqEgxBVbHx921Y7t7JJq1hy5wL2ju12zhV30UyvZ+sx4Vh/P4v1NtpwtrUrB4jm9GGmPGmBBcaWe9zYmsPSQUDB7OKm4vnsr8spq2J5Y631pVZT2jPChfZA70UEe+LlpKa02kFVSjSSBr0XsUH99lSSJzOJqzl0q49ylchJyyjh4schGxe+mVTGiYxDjuwQzulMQaqWCM9ll/HYkgz9PZtvwawdF+XPbgEhGxAT+4+vclUKSJL7clcI76xMAGBkTyKezesiK3KySagLcncgoruKGz/ZQqTdd3j6pDrJKqrn+sz0UVeqZ3iuM96Y1tOK4aiguFoXUJ5+I8a23txjfhjR/g2kPVkpTiGUke9lrxtKlYuLh5ib4gKFNr0l3fH+I7Yn5TO4eysc3tSyNwuol6KZVseXxoY2KMayTP7VSwbpHBv/jdCeDycza+Et8u+eiDX3BirZeCrY/d93/3cJOo1LwzpRuTO3VOK/JnhQ9xMuZZff04+vdKfLFCERk0fpHBstk8HOXypj+xX4qdEam9GzFB9Nj7Z5op7NKmb/8BBcsxOXbB0TyzPgYWQFz+/eHWHnfgP/MWMEKk1niQEohf53IZv3pSzYeeSFezozvEsKErmLx/6eVtcn5FbyzPoHdSflyJuT4LsE8O75jg1H4v4lX/z7D93svs0CVlgpVWmkpeHiIzMcPP4RHH23ysUurDQx+dxtlNUY5tqu5kCSJO384zPbEfOLa+LLsnn52j1GTWfhmHU0rlmOpPJzUrHtk8FUb+5xIL+b2Hw43EMV4OqsZ3D6AIdH+ZBZXs3D7BaR6UU0tgSRJnMkuY8u5XDafzeVMdlmz4nb+S6i7xrUN9WfRzT257tM98u9VCgUmSWJm73Demdq1yQv+sfRiXlx9Wib+B3g4Mb5LMC4aFVsT8uS1qi583bS0D3QnKtAdZ40Kk1nCYDJjNEkYzOLf7JJqEnLKbTZ+Vni7ahjdUdBDBkb546RWkpBTzvbEPP46kU1CTm0eapCnE1N6hjGtV5hDI/b/GtbGX+LRFSdkEdH3t/eVR9F17/Pgr2I062jazN4LBcz59iBmiQYZ5v8Ijh0TVk3R0ULefJVQpRcj2bTCKmb2DufdaZcZyUoSDBwI+/fDrbcKn9AmUNdIeNP8IY1msF4OZrPEdMuaOLZzEF/Ose+4UXeNDfNxYccTw/4x6lN9FFToOHSxiIMphRxIKSIxt/y/Eyl2pbBX2KmVClY9MMCuQqkurNyF+ogJ9uCPBwYy4dPdXCyo7RbVtUABYYx45w+HMZklZvUN5/VJ9nMBawwm3lmfwA/7UgGxcN01qA2z+kaQV677zyxeZrPE8YwS1sRnsyb+kg1RPdDDiYndQrmuWwg9wr3/JzYpOaU1fLg5kZVHMzFLotj+9KYeDI9ppFv2D6NKb2Tcx01wRj7+WBRy1sLOywuSkgT/rgl8tjWJDzafp42/G5sfHdKiBSOjqIrRHwn16+VUeCn5FYz6cCdmSagtCyv1xIZ789u9/a8aMb1ab2LK4r2cu1Te6H3i2viSUlDBzieHN2uMn1+u49ylMhJyRKfoYEqhnI8MgtrYLUDLX4+PuaYLO6WTK71ae5NTWkO1wcybk7ugUSm55yeROnHf0HY8Pa5Dk8WdySzx0/5UPtt2QR6VA/Rp7UO/dn7UGExcLKjkfG4FGcVVNOcKoFUpiQp0JybEg04hnnQO9aJ3pA81BhN7LxSwIzGfHYn5NiNZrVp0Caf1CmNQlP9/vjvXFI6mFXPPj0corNTTMcSTZff0a8DFtXKtPZzV/D1vEJEOjA0X70jm3Q0JaFVKVtzXn+7h3v/QO7DAZBLiLw9LcVRUJAQYsY7z1+yh7sTj+zv6MLyxiQfA4cPQ12IGfOAAxMU1+fj3/nSEjWdyua5rCItu7tmi15iQU8bET/dgNEuXFbLlltUw8J1tGM0SPSO8WX5v/3+Eb9cUiir1bD+VyrT+Hf7vFXZeLhpKqw0OkTN/3J/KS3WiRECIJf6aNxBvVy2ZxVUMf3+HjZVCfb7SisMZPL0qHkkS5qsLZ/ds1AxzR2Iez646xSXLBcfDWc2t/Vtz+4A2DXZ0/xb0RjP7UwrZeCaHzWdzbYo5LxcNE7oGc31sKHFt/P4zi21CThnPrTrFsfQSFAp4YkwHHhjW7n/CvavLGfnxzr4Mqc8ZMRigWzdB/g0IgPx8sQv+4osmH7tCZ2Twu9sorjKwYFo3pl/GGuFy+HJnMm+vT8DbVcPWx4ba9T6D2kBtEB1vg0m6YguU+iirMTDji/02HRp7CPFyJipQjAFDvV0wmc3CJshktvwnycXHuUvlFFQ0VMs6a5QMaR/AqE5BjIgJRNsM/sl/CfY2r238Xfn+9r5yMVDXjmly91DendbNIX8tvdHMtoRclh/OYOf5fJnT5u6kZnB7f2KCPWnj74qTRmT1XiyowGiW0CiVqFUKNColaqUCtUqJn5uWjiHi/mU1RpJyK7iQV86FvArOXSrnWHqxjQraWaOkf1s/RnUKYmLX0Mtyoq9FXCyoZPoX+ymo0NEn0ocf74yzIeLX5Vp3DPHkjwea5s5JksR9Px9l45lcQr2c+fuhQY2ez/VRUKGzZIuWEeTpxI09mlbp28BshokThXnw4sUiaecKYC1sgz3FxMOuL6gVd9wBP/zw/9o77/Aoyq4P31vSew8hlFBDLyGEXgQBKdIEQUBAQFEUENEXK5bPF18FUVGaNEUEBBSQKhZ6DRB6gARCQhLSs6nb5/tjkiWbugmBhDj3de21u5PZyTNbzpznPOf8jujgnThRpjZo+L0MnvravBFBRViw9xorDt2itqsdB+b0KHGy+frmMH7Lkydp6+/KmsnBFrWPq2xqdPEEYNYPtiRO305l9IoTWCvlPN3Gj51hcWgNRhY/28b0pd92NoY3tlw0e927A5sxrUcD0/M/rtxj5qbzqHVGWtV2YfWkDiVWO2n1RraHxbL8UKRJuNFaKWdUkD/TujewaNb2oCRnaTgRmcIfVxM4GJ5oVgDhZKPkiWbePN3Gj+6NvapERsAStHojH/1+hQ2nxIjrUy19WTiqzQMpzFeU+Tsu88OJO9R2tWP/6z2KSrIcOCBWnCkU4gx4zBhxacMC4eLlhyL5bG84/m52/DmnZ4WSpnUGI0OWHCX8XmbJ+ntAcqaGDp/+WWR7qTmEFSBelcvw746bRWxALHrKUOtMgrPlQSaDAA8HmtVyJtDXiZb+LnRu4GH2fj3uxROFbVzh3pibTkfz7vbLGIwCwfXdWDGhQ7kuLvGqXLadvcsvoXfN9BDzsbWS08THiQaeDigVcoxGAYMgYBTEaL/BKJCSreFmYlaxOpQg9qXt2dSLXk29CQlwfzhFANWIq3EZPLvyBJlqPX0CvVk+IcgsmnNPpWbwkiMkZ2l5JsifLyzInctU6xj67TFuJWfjbKukvqcDtV3tqO1qh5+rHbVcbfP203M7OdvkzBWctL/etwmz+pYz2T8rSyym2LNHfP7226KkUwUn1Llag2lV7JkgfxaWVoR2756oDzpsmCjA7Fj2KterP59j1wO2/8rR6um3+DB303JLLUKLTsmmxxcHTc9ru9myemLwA0lHVYQa79gBpa6Ng5jH9NnecGb2aUQtFzu++yeCL/Zfx83eij8LRDZe/DHUpNSez5ej2zCi/f0Zz/noNKb8IOp3+bvZsW5yx1KdSqNR4MC1BJYdjCSsQIVbgKcDnRqIVS6dGng8cFNuo1EgMimL0DtphEalcfZOahFZEi8nG/o196FfC186N/Cots5ccWw8Hc0HOy6jMwg09XFi5fNBpbb4eRhka/QM+PowMam5jAupy6fDi6koHTECfvtNnHGePGmxMczR6um9UBQpfWtAU17p1ajsFxXD+eg0Riw7jiDAz1ND6FJITT2fQd8cMeVe5eNiZ8Ufr/eolAbx+VyLz2D08hOmSUVQPTe2vNQZuVyGKkdHRFImN/OqBxMy1Fgr5GJ0KC9KZK2UY6WQ4e9mT7NazjT1cSpRliCfmubYeTvZsO3lLmZ5kEdvJvPyT2fJ1Oip72HPmknBJer6lYTRKHA2Oo2w6HTC88SgbyRkFtvVpCRkMqjjZm/Ky2vk7UhIgEeV5sRWFWeiUhm/6hQavZER7WqzcFQbs1SW45HJjF8l5s59NqIVYzqWnTt3MyGTsd+fLLNDUUlUeAXAaISPP77f6uull0RHS1ExBz00KpVRK/KWZCcFl55Wk5RkUQpLPreSsui3+DD64tqylYN/whOZvO4MCrmM30vpFNLri3/Mrq12VnIWP9uOAS0rV/S5NP4Vjh3A1umd6VDf3aJjFYxs9GrqxZqJwcjlMjLVOgZ9c4To1Ptlxkq5jO8ndjDLDYhKzmbS2tNEpeTgYmfFqokdCC7jfwuCwKnbqSw/FMnhAksh+eQ7es1qOYvN0G3ym6KL9862VuTqDCRkqMVbpobEvMfxKjUX76pMAocFaeLjSO9Ab/q38KWtf9XkzFUWZ++kMv2ncyRlanCxs+Kbse3K1Y6rMjgekcxzq04BsPnFTkU7oERFQbNmogL8n3+K/RAt5Lfzd3l98wXsrRX8M7dXhR2sD3Zc5scTdwjwdGDvrO7FRkvyJzeFqe9hz+6Z3Ss1Inr0ZjKT1p5GAHa91q3EvpmVRU1w7KztHMyWM+t52LNlemezFYIbCZlMXnuG2PRcXO2tWDE+yKKOPKVhMArcScnmRkKm6eIll4FcJkMhlyGXyZDLZTjbKmnk7UhDL8caH40rD3+HJzDtx7MYjAIvdA3g/cHNzCJzSw9G8Pm+61gr5fz2SheLlg5ztQYik8SuILHpucSl53IrKZvLcSoSMzSUdtGu427HxM71Gdq2dsXSgFauhOnTxeKG0aPFDhgVbE2Wrwtay8WWPywVLi7nsRt6ObBvdo8K5769suEsey7do11dV7ZN71Ls9fLT3VfNKvvzeb1vE157otEjucbWaMeuayNRaPDv8EQCfZ34/bVuFn+gV+JUjFh6HI3eaNYuJCFDTb/Fh82cJDsrBRumhZh1oEjJ0jD1x1DOR6djrZSzaFQbi5urq3J1hEalcjKvyuVKnKqIo1cRbK3ktK3jSod67gTVc6N9Xbcal8+SkKHmpfVnCYtJRy6DdwY2Y0q3gEeadzdv20U2nYkp2XH67jtRD2rECLGv4xdfwGefgV3pYtpGo8DI5cc5H51e6lJqWWSodfRddKjUjhRX4lRmFZcFaeDpwJ4SHMKKsvXsXa7FZ/D+4OZl7/yAPO6O3d8Xb+Pm4sLI5SfMNB6LS85PytQw7cdQwmLSsVLI+N/I1mYrDBKPnl/P3WXOLxeAog3mjUaBF/PE7xt5O/L7q93KjECXhlpn4OdT0aw+esus40VhFHIZPZt4MbK9P32aeZfvt/3LLzB+vJhHPH580fZmFpKrNTDg68PcSckpecWjILdvi90x/vtfaFi8xlw+qlwdTyw8SEq2lg8GFxWOtpSEDDV9Fh0iS6Pn/4a1ZHynekX2ORaRzLi8yX1BlHIZqycFP5JgQ4107Hq2rMusPo3pUN+d1GwtfRYdJC1HV+4lrPwICcCKCUH0zytFv5mQwcBvjpoVU7jaW7F1emcaed8vqc7VGpi56bxJ7X1IGz/mD2mOp4VJrqZzU+c7eqnEpOaQqdaTkdetIVOtI0OtR6s3opDL8HaywdvZFh8nG3ycbfFxtsHbyZamvk4093OukiqdR41Gb+CD7VfYHCrqdI0JrsPHQ1s+sqVlVa6OJ78UHaeXezXkPwNK0KcyGsXo3Y0b4rLG+++XeeywmHSGfXcMgN9e6WJqc1de9lyK55UN57BSyNg7q7vZ9xbECHLnBX8XyX9TyGUYjAJPNvdh6bj2lfp9MhiFR1KY87g7dvnj/utaAlN+CAVEXUABUd9x/RTz5Hy1zsCcX8LYc0nspPNshzrMeyqwWgr8/ltYc/Q2H+f1TP10eEvGhdx3EFKztQz46jCJmZpy9zstCaNR4OCNRL4/fJsTt1JM2z96ugW/nY81SwNytlXyTFAdZvVpbPnEf/9+eOEF2L0b2rat8DiPRybz3PeiU7TpxU50Ki3CPGQI7Nol3u/cWeaxN56O5u1fL+Fkq+Tg3F4WF5sUZt2x23z4+1WcbJX89UbPInn0Gr2B9h8fMNPGlQGLn23LsHbll6uqCDXOsTt0OYoeLcy96PwZko1Szv7ZPcpVmJCvUeZoo2T7jK6mfLnjkUmMW3XarPy/lost217uYtbGzGAU+GL/dVYejsQoiHlK7w5qxqgg/0qNImn0BpRyebWpWK1qBEFgzbEoPt19FaMgymcsHx/0yC5m+6/c46X1Z1HIZeyY0bVkfcJVq2DaNLC1FStm6xWdARZm7pYLbD17l7Z1XPn15eKXA8pCEASm/BDK3+GJdKwvatsVPs7bv140idjm95H1crJGlaNHazAyvJ2o2/i4Ld8/7o7duZt3addIvEDkX2TgvnPXu6kXK5/vYOZ0G40CC/+4ztKDkQC42VvxzsBmPFPJdkjCchb9cZ0lf0cgk8G6yebdF47cTGLC6tMA5e4VXRaXY1WsOnKLM1FpHJv3BAARiVn8eu4uv52PNak1eDra8MGQ5gxpXcuy74haLdqxByRffqy+hz37ZvcoOXoYHi62PNPrRQdv0KBSj2swCgxZcpSr8RmWRQRLOc7wpce4eFfF0238+GZsUfHjaT+GcuBqAlZyGXU97IlMysbbyYadr3bD16XycpRLojw27rEI9bStUzSCMbxdbbo39kSjN/LOb5coj3/6zsBmhAS4k6XR89L6UDLV4hJsl4ZefFNIzTpepeb5NafNqo4Uchnzngpk+4yuNK/ljCpXx1tbLzJ+9SmiCmjjPSg2SoXk1BVAJpMxpVsAqycG42ij5NTtVIYtPUZEYunyGpVF/xa+DGzli8Eo8J9tF9Ebikk437tXXEpwdxeN4htvWHTst/o3xcFaQVhMOtvDYis0PplMxkdPt8DOSsHpqFQ2nLpTZJ/eTb2RycSqy3/m9qKehz1JmVrqedijlMv47Xws83deKdfvSeLBmbkpzJQKMqlrAK/0Epeh8j+Ff64nMXfLBYwFW/HJZbw1IJCt0zvT1MeJtBwdb269yLMrT3Iz4dH8JiTMmfNkE0Z38EcQYObG80QXSLjv3tiLqXnLhW9tu0hiZsnLqOWlZW0XvhrTjj2zupu2NfJ25K0BgRz9zxOsnRRMQy8HkrM0zNx4nolrz5iNrUQKOnUnT8Ls2eKqRDl5e2Agvs62RKXksPjAjZJ3DAy8L/I+a5ZoQ0tBIZcxP696fOPpaK4WKg6zFIVcxn+Ht0Iug50X4sx6yufTu6k3beu4smdWd7bP6EoTH0cSMzW8uD6U3AKRvOrAY+HYFYdMJuPTYa2wtZJzPDKFrWfvWvxaK4Wcb59rTy0XWyKTsnnjl/sGc0gbP94bZF72HJGYxdBvj3IlzrzNR2t/V3a82pV5TwVio5RzLCKF/l8dZtnBSHTFXfQfc1Q5OnK0RZXnHzW9A7359ZUu1HG3405KDsO/O87B64mP5H9/+HQLXOysuBKXUWwyLQ0aQEaGKPYpk8G2bfBX0cbuhfF2tjX1I/xsb3ixCv+WUMfdnrn9xdzRT3Zd43Kh1jRdG3my+cXOfDCkOX6udqye2AEnWyU3E7MIqueGTAbrT94ptshC4uFxJyWHWZvOm/Lr3hoQyJhg87y5HWFxvLbpfJGLSIf67uya2Y23nwoUnfrbqTz19RE+3xde7S44lUF0Sg4nCyw9VidkMhmfDGtJ2zquqHJ1vLg+1MxmvjmgKc1qOZOarWXulotmjnplUJxenEIuo3egN3tmdWfOk02wVso5fCOJJxcfYunBCMuuVamp0L+/2Ips7lzKpWoNONta8X/DWgLw/ZFbXLybXvLO778vtjiLjIRFi8o8dkgDDwa1roVRgI93VXxS2rK2C9O6i1Jnb269UMTxHdbOj20vd6GxjxNOtlasej4YN3srLt5V8ebWC9VqMvzYOnYAdT3seb2vmCT+6Z5rxQqZloSXkw3LxgdhrZDzx9UElh6MMP1tavcGdC6UBxCnUvPMshPsu2ze0NxKIWd6z4b88XoPujbyQKM38r994QxZcpRfz91FrXv8DWtMag4f/X6Fzp/9xbX4is2IKpsmPk7smNGNjvXdydToeWHdGdYdu/3Qf1zeTrYmx/+rP2+YdS8BRD2mN98UHzvkpQe89pqYhFwGL3SrTz0PexIzNSz9J6LM/Us8Ttf69G3mg9Zg5OUNZ1EV0B1zsFHSMeB+NXcjbye+e649CrmMU7dT6dtMXB5aejCSZXlLfBIPH2ulnIPXk/jywH2HesGI1jQvVE28+2I8zyw/btYsHEQ79FLPhhyY04O+zXzQGwWWHozkycWH2Hq2ZtihsJh0Zmw4R6+F/7Al1PKJ/KPGRqlg2fj2eDpaE34vk3nb7q8o2SgVfDOmLTZ5zlV+x6JHNa6ZfRqzb1Z3ujQUr1Wf77vO4G+OcvZOWukvdneHb74RHy9eLGrclZO+zX14uo0fRgHe2noRbUkSO05OsHCh+PjTTyG6aAepwrydF1w5eSu12Gibpczt35T2dV3JVOuZ8fM5NPr7vxt7a6XZClpdD3uWjQ9CKZex62I8n+0NrzbO3WPt2AFM6RZA81rOpOfo+CQvcdVS2tZx5ZNhLQBYdOAG/xSI+qx8PojCefm5OgPTfzrHkr9uFvkA63k48NOUEBaNaoOrvRXh9zKZ88sFOi/4iwV7r1kW9q5mXLqr4rWN5+m18CBrj0WRozVwNy237Bc+ItwdrFk/tSOjgvwxCvDh71f5YMeV4pdIK5FngvxNaQDzthUz6373XTGvLitLrIq9dg1WrCjzuDZKBe8NEpcVVh25XeHvjEwmY9GoNvi72RGTmsvcMmaTPZp48UFe5eqBqwl0biA6fv/bF866Y8VEJSUqnY+fFu3Qd/9EsueSOHmUyWRserFTETt0JS6Dwd8c4fTt1CLH8XezZ9XEDqycEISfiy1303KZu+UCwZ/+yfwdl6vNxMxSjEaBP68mMHrFCYZ9d4zdl+IxChCbXr3taS0XO757rj1KuYydF+JYffT+76ixj5NpcvjZ3vBH/pk08HJkw9QQvhzdBncHa64nZPLM8uOsPBxZumMycaLYRhHEqFoFeszOH9IcdwfR4V1+qJSJ49ix0L075OaK6gJl4O9mz0s9xfSFT/dcq/BEJn81z83eikuxKj7dfa3U/Ts18DBFIlccvsV7eSLiVc1jUTxRVrLgxbtiVaFRqJiS/ru/XWLDqWicbZXsLNDXb8Gea6w4fKvY1wxo6ctXz7YtNgk0NVvLz6fu8POpaFNPS5kMejXxYnynevRq6l1tc+eMRoG/wxNZfiiC0DvpRf4+sJUvfQJ98HKywcvJBm8nG9zsras02V4QBFYevsVn+8IRBOgT6M03Y9s91E4VMak59Ft8mFydoUgFHAA7dohK6gqF2DJn8WKLFNUFQeD5Nac5cjO5TBHusrh0V8XIZcfRGoy8MzCQF3uULh+Qr7cF0LyWM1fzLjjPhdRl/pDmFrWxqioe9+IJlUrFN4fvsurobawUYnFO8zy9s4X7r/NtMRFcuQw+erolEzoXX5yTrdGz7ngUG09Hm03I2tRxZWxwHYa08auSbi5loTMYuZOSzeYzMey8EFdstxJ7awU9m3jham9tskP5NsnLUbyvDlp7+YUwCrmM9VM60qWhKB4uCAJTfwjlr/BEmvo4sePVrlUy3rRsLZ/svsqv58S83uc712P+kBalX5/mzYP//Q9sbODQIYv6uxZkR1gsszaFYaWQsWdmdxr7OBW/48WLYirLvHllykaBKPjeZ9Eh4lVq5vZrYkptqQj/XE9k8tozACwZ265MWbONp6Pzcv3FdK5Fo9pUumJDjauKteREPtl1ldVHb+PvZscfr5fc9604tHojY1ae4Fx0OvU87Nk4rRN+rnZ5DYD/oqSIccvazqx6PrjEihi9wcjf4Yn8dCqawzeSTNtru9oxuE0t2tVxo11d10pV/bcEtU6MvN1Ny8m7zyU6NZvLsRnEpueWe8ahkMvwdLTG28kWLycbmtdy5olm3o9cHHnvpXhmbw5DozfSsrYzayYG4/0Q39vVR2/zya6rONkoOTCnp/n3QBDEkv3du+GJJ0ThYgsrFW8mZDLg6yMYjAIbpobQtYROEpaw/uQd3t9+GYVcjP6UJaq9Kc9AGQWxDVhEUhaCIEa3l41vTy2Xsg1sVVATHDt7B0dGLDvOxbsqrBQy1kwKpntjL9KytXRe8BfqEgzRiHa1+Wxk6xIvJEajwLHIZDadjuGPq/dMkk4O1goGta5FcH13Wvm70MjLEeUjkE4yGAXiVblEp+ZwN7WQHUrLIUGlLlWA11J8nW3pHehNv+Y+dG7oUSWOkyAIvLHlAr+ei8XdwZrfX+tG7TyFheQsDQO+OkJyloZJXerzYV7UtipYffQ2/7f7KoIAfZuJE+MSr6FGIwwfLsqR+PjAmTNQx/JOFwWd2rZ1XNn2cpdKC3TkO412VqLg+4NUq36+L5ylByNxtFGy89WuZXZ52XUxjtc3h6EzCPRq6sWycUEPpFdYmH+lY5etEfu+xabnMq17AO8OKp8oakKGmlHLTxCdmkMddzs2TuuEv5s9b265wJZiCjOUchl6o4C3kw0rJgSVqT0WlZzNhlN32HL2bpFei77OtrSt40rbuq60reNKq9ouDzST1uqNxKtyiUnNJSYth5hU0XCKj3PLlYtYGFd7K1r6uZCUqSEpS0NqdsltbzwdbXgi0Is+zXzo3tizXM52RTkXncbUvPZvtV3tWDs5mCYlzQgfEINRYOSy44TFpNO3mTffP9/BXELg1i2xdH/cODE/xdpa7IvoV7ao9Yc7r7DueBRNfZzYNdNyEe7CCILArE1h7LwQh4+zDbtndi9Tc3Hf5XhmbgxDazDSrJYTsem5ZOTq8XS05tvn2peuQ1VF1ATHztnZmdQsDSEL/jI5X9N7NuDN/oF8sutqqflYHQPcWTqufZmfbXKWhm1n77LpTEyR/FBbKznNajnT0s+FVrVdaFnbhcY+juX67ukNRjLUetJytKTnaEnM0BCdmmO65dsifRmTR5kM5MgwlHJ5ev3JxggCJGZqRHtU4KYtlI7hYK2gZ1MvnmzuQ++m3rjaPzq9P7XOwDPLj3M5NoNWtV3YMr2zyck8eD2RSXmRoaXj2jOwVa1HNq7CFJwYt/Z3YfXE4JI7V2RmQrduoij7zz+DR/lsQrwql35fHiZTo+e9Qc2Y2r1B6S8wGOD8eehQ+gqGIAiMWn6C0DtpDG3rx9djisqWWIreYOS5Vac4fTuVQF8nts8oO6p68Hoi0386i1pnJLi+G6smBhdb0FIR/pWOHdzv+yaXwY4Z3WjlX3brloLEpecy9vuT3EnJobarHZte7ESuzkC/xYdN+8hlmDpG5Au7ymXictUbTzYtU1NNrTOw7/I9Tt1O4Xx0OjcSMot0oJDLwM3eGkdbJY424s3JVomDzf3nGr2RjFwdqlwdGWodGbl60+McCyrhHG2U+LvZ4e9mn3cv3lztrcnS6IlOzeZmQhbh9zK5fi/TdMwGng78PbeX6Tg6g5HkrPsGNV6l5kRkCoduJJlVdlor5XRp6EHfZj4MalXroWrP3UnJZtLaM9xOzsbJVsmKCUGmJZDK5vq9TAYvOYLOIBQfsk9IEGe1t26JDl5GhmigymjRo8rR0WvhP6KERSEl+/KSrdHz9LdHiUzKplsjT354oWOZM+TjEclM+zGUbK2Bpr5OGI0CNxOzkMvgvUHNmdy1frXSSqspjh3AN3/d4MsDN037tPBz5t2BzZiw5nSx0fR8m1TLxZb3BjVnYCvfMj+b/HaHf15N4FKsiitxGSVWYtso5dhZK7C3UmBrrcDeWoGdlQI7ayUyID1HS3qujrRsLRlqy6q5rRVy0ea4F7Q/eY9d7fB0tEEul5GSpeFafCbh9zK4Fp/JtfgMIhKz0BqMxbf3yzs3Va6OsJh0DlxN4M9rCWbLuQq5jI713Rna1o+RQf6PROD9bloOQ5YcJS1Hx8j2/iwc1dr0GeVP4mQyeLV3I2b3bVJlqTpn76Qy9YdQ0nJ0ZfdFT0kR84iHDIHly6FLl3L9r59PiasDdlYK9s/uUXKv4ZQUsSL3yhXx1qB0J/DSXRVPf3cUoYKpWQVJyFAz8OsjpGRrGduxDgtGtC7zNaFRqUxed4ZMtZ7mtZz54YWOFWvtVoh/rWMH8NrG8/x+Ic5iD7sw91Rqxn5/ktvJ2dR2tePnaSF8uPMK/1xPomcTLz4e2oJpP4ZyIyGryGtd7KyY268JYzvWtXhJI1uj51KsirCYdC7EpBMWk24Sk3wQbJRy6uQZzTpu9tRxz78Xt7nYWVl8YTYaBaJTc7gWn8Gt5GyLnAyt3sjp26n8eU00rAVzfJxslEzv1ZAXugZUaqi6IGnZWl5cH8qZqDSsFDI+G9GakUEPp+3SV3/e4Ks/b+LhYM2BOT1xL85pTUsTK2aTksRk4P/8p8zj5ndJsVbI2TWz2wNFHm8kZDL022Pk6gwlthwrzKW7KiauPU1qtpb6nvY09nYydVxpXduFFc8HVZul2Zrk2KXnaAn+9E+zLjjWShlNvJ24HJeBjVLOuwMDWfJPBEmZYsRcJruvQNExwJ0PBjcvWUC7GIxGgaiUbC7FqrgcqxKdvdgMMisou+Nko8TVwQpPRxvquttT1120PfmPfZxtK+y86AxGbidn42pnZVGqhdEocClWxYGrCRy4msD1Ahp/Db0ceGdgM54I9H7oE5XjEcmMX31KlOUY2oLnO9cHRFv5ya6rrD8p6k52aejB12PaVYozUBFu5/VFv5PXF/375zuYVdIXYdgwMad4xAj44QeLcolBdMCf+/4UJ26l0KWhBxumhhT/GQiC2H/7n39g4EBRuLiMzyq/CUFl9Kg9ejOZCWtOIQjw5eg2FrXvuxqXwfNrTpGcpSXA04H1Uzri71aC42oh/2rHLilTw4CvDpOSrWVMcB0+G1m2h12YhAzRubuVlE0tF1ve6h/I0YhkPhvZCiuFHLXOwOzNYWZl1fbWClNUK9DXiQ+fblHhJavETDWp2Vqy1HoyNXqy1HqyNXqyNHoy1eK9jVKOi50VznZW4r1t3r2dEpe8bdUloiIIAjcSsvjzWgK/X4gj/J5oWH2dbZnzZBNGBvk/lBmqWmdg7pYL7LooVhm+3rcJM/s0qvT3Ras3MmTJUa4nZDKsrR9fFRf+j4wU81IuXQJ7e7h6tcyOFAVzUdr4u7Dt5S4PlAOV7yjKZPDD5I70sKC/4a2kLCasPk1sei4+TjYMbu3H6rxKWRnQs6kXL3QNoGsjzyotCKpJjh3ArE3n2REWV2R/hVzG4mfb8HSb2qhydbyw7oyZVEX+KoJMBqOD6jC3f9MKOwhGo0B6rqhdqdYZyNEayNUayNEZUGvF50ZBwNXeGjd7K1ztrXG1F21PdW5zGJ2Sw57L8aw8fMuUStKloQfvDmpGC7/yrfKUl5WHI/nvnnCUchmbX+pEUL37DtOOsFje/vUSOVoD3k42LBnbrtiI5KPArC+6Qs6i0aX0Rd+3D556Snzs6Sn2lR0wwKL/cyclm/5fHUatM7JgRCvGdqxb/I7h4dC6tSgbtW2b6ESWQo5Wz4CvjhCdmsPYjnVZMOLBWrjlT97trBTsfLVryQUfBbidnM34VaeITc+llostKyd0KPcqYkH+1Y4dmHvYi0a1qVCkJjFTzXPfnyIiMQsfZxt+nhpCwwK9NwVB4Ks/b/D1X/er1WyUMpRyuamf3KDWtXhnYDNTsqyEeLHYeSGOL/ZfN2lxNfVxYt5TgfRq6lXpTpfRKPD5/uum0voXezTgnYHNynhV+QmLSWfEUrEye82kDjwRWKhd0AsvwNq1orZddjYMHgy//17mce+p1Dy5+BCZaj3zngpkes/SK1vLIr+1j7uDNdte7kKABa344lW5PL/6NDcTs7BWyOnZxJMD18wFoX2dbRkdXIdRQf7UcX+wmWlFqGmOXcH+mgVxsVOybnJHU06v3mDk411X+fHE/S4jdlZycnVijpmjjZLXnmjEpK71q3VVc1WQodax9J9I1hy9jdZgRCaDke39mduv6UNrESUIAq9uPM/ui/F4O9mwa2Y3s76kEYlZvLLhLDcSxLSHuf2bMr1HwypRHVDrDMzadJ79V8Qo/ddj2jK0bTF9UY1GUedOVUAMfcIEUQnAgty7VUdu8X+7r+Fko+SPOT1KXgV47z1R187HB27eFPXuSuFEZApjvz8J8MBFaAajwMQ1pzkakUxDLwe2TO9S/MpMIeJVuUxYfZqIxCwUchmv9m7Eq080qtDE51/v2IG5h73j1a4VWsZKytQwbtVJbiRk4eVkw8ZpnYrkG1yISeetbRe5fu9+eN/T0ZrUbC1GQUxInta9AWM61pUcvAKodQbWn7jDt/9EmFopdW7gwdsDA2nt71rp/2/9iSje33EFoFIcpOL4dPdVvj9yG19nWw7MKRT+T0yEZs3ud6QQBPjpJzHvrgy2hMbw5taLWCvl7JnZveScFwtQ6wyMWn6CS7Eq/Fxs+WV6Z4uWCNKytby59QJ/5jl0Hg7WpJRQONOloQez+zYpffmmkqlpjp0gCPReeJCoQlqGDjYK1k8JoX2hYq2/riXw9q+XSCzQ+tDVzor0vN9WPQ973hnYjCeb+Tx2fYAfNjGpOXy+/zq/XxAjpHZWCl7s0YCXejZ4KAVf2Ro9w5ce40ZCFsH13fh5WiezC32OVs972y+bJEj6BHqzaHSbR1rwkY/BKPDBjstsOBWNUi7j+4kd6F1cztrnnxdNL/HygiVLYPToUpdODUaBZ5Yf53x0On0CvVk1sUPxE/zcXGjUCOLiYMwY2LixzPG/v/0y60/ewd/Njv2zezxQUWJSpoanvz1KvEpNq9oubJgWgrMFS7zpOVre3X6Z3XkrR61qu/Dl6DYWRf0KIjl2iF+WSWtFPbCGXg7sfLVbhT7UlCwN41adIvxeJp6ONmycFlLkAzEaBX46eYdP91xDU0CSwNlWaUomlsmgU4AHI4P8eaqlb7XUj6oKVDk6lh6MYO3xKJMS+Yj2tfl4aEscK/k9yl8GAfhsRCvGlBT2ryC5WgMDvj7MnZQcngupy38LN6ReswamTBG17QwGUCrh3DmxcrYUBEFg8rozHLyeRLu6rmyd/mDyAEmZGp5deYJbSdnU87Dnl5c6WyS5IwgCv52P5cOdV8hQ600N6gvjaKNg3+weD5xTUh5qmmMH5rqCozv4cyspm9A7aThYK1j3Qsci0jUavYGv/7zJ8kORpoIsGWBjJUedF8Gr5WLL4Na1GNLGj1a1XapNukZ14Fx0Gv+36yrnotMBMQq95Ll2ZUoEVYRbSVkM/fYYmRp9sVIngiCw+UwMH+y8glZvpLarHZ+NbEXnBh6PRJKmIEajwOu/hLEjLA5bKzkbpnYiqF4hFYiUFKhdGzTFKC4MGSKKGZcSYbuZkMmgb46iNRhLjgyCKLEydKj4+PPP73f5KYEsjZ7+eWoZEzvX46OhLUvdvywiErMYveIEqdlaguu78eMLIRbnie+8EMf72y+jytVhrZQzt18TpnRrYLEtlxy7PFKyNAz65ij3MtQ83caPr8e0rZAhS83WMm7VKa7FZ+Bko+S/I1oVm2+QnqNl/s4rRXJjXO2tzCRO7KwUPNXSl5FB/nRq4FFtxYofJbHpuSz64zq/nY9FyNNQWzEhqEztoPLy2d5wlh+KRC4T5QUGtKxceYGC4f+N0zrRuWGBpQhBgB494OjR+9vc3GDPHujUqdTjxqXn0m/xYbIslQcog3hVLqNXnCAmNZdG3o5sfrETHmVIZeRzT6Xm7V8v8s/1pBL3aeLjyLynAund9OEnpUPNdOwSM9X0/Pwg7w9uznMhdcnR6pn6QyjHI1OwUcp5b3BzxofULfL+xqfn8vovYZy8db8zhQxQKmRmBRn1PewZ0saPIW38Hpok0OOGIAjsuXSPz/ZdIyY1FyuFjI+ebslzIZU7CQSxy8u0H0MB+OrZtgxrV9SZuRKn4pUN57iTF7l1slES0sCDbo086NbYk4Zejo/k96XVG5n2YyiHbiThYmfFlumdi35nJk0SiycKIpfDl1/CzJllFjws+esmiw7cwM3eigNzepYs3ePrK6oNAHzxBbzxRqnHPnIziQmrTwOUWEldHi7Hqhj7/Uky1Xq6N/Zk1cQOFqc5JGSo+c+2ixzMs50d67vzxajW1PMoOyVGcuwKEBqVyrMrT2IwCnwyrCUTOpWesF4S6Tlapv4QSmheovKY4DrMH9KiWG/9cqyKt7Ze4Gp8ptl2Rxux11z+0iOIM+jh7WrTvbEXgb5OFZIBEQShxsy8z95J5ZUN50jI0OBko+TLZ9vyZHOfsl9oIYIgMG/bJTaHxmCtkLNucjBdHiD3ojje+e0SP5+Kpr6HPXtn9TD/jly7Bi1amDfRtrUVtaCGDy/1uBtPR/P2r5ewUcrZO6v7Azu9Mak5jFp+gnsZaprXcmbji50s1lwSBIGtZ+/y7vbLZj0f+zTzJjQqzfQdD67vxjNB/vRr7vtQJW5qomMHokxGwcinWmfg1Z/PmZbEn2zuw/9Gti423+f07RTmbrlIdKr5cq6rnRXZWr2Zkxfo68SQNn70bupNAy+HcqsJZGv0RKfm0KzW4/Pel0aOVs+bWy6yO6+927iQuswf0qLSuwnkdxWxtZLz68tdae5X9P3LUOtYsOcaey/fK6KB6uNsQ9dGnnRr5EnXRp4PVew+R6tn/KpTnItOx8fZhq3Tu5jn054+XbQLxebN4lKsBegMRp7+9hjX4jMY3LoW3z7XvvgdP/wQPvro/vNXXoGvvxZXQEpg3raLbDoTQz0Pe/YVtskV4OydVCasPk2O1kD/Fj5i+zgLI6n50dhPdl0lW2vA3lrBOwObMa6YSVpBJMeuEN8fvsWne65hrZCz7eUuFa5M0RuMfPXnTb47GIEgQCNvR759rh2BvkXHZjQK/Ho+lk93XyWt0I+xNHycbQj0dSbQ14nAWk4E+jrTwNMBlVpHTAGV9pjUHGLyHndt5Fl02e8xJjFTzYwN5zgTJTrRM/s0ZnafxpWWG6Q3GHn15/Psu3IPB2sFG1/sVKl5fRlqHf2+PMy9DHXxxRp9+sDff5tvk8lE4/TaayUeVxAEJqwWE3iD67ux+cXOD/yeRCZl8eyKEyRnaWlX15X1U0LKtQQek5rDwG+OkJmXctDG34Up3QK4HJvBuhP3l9eVchldG3kyqHUt+jf3xcW+ckQ786mpjl1xGI0Ca49H8b+94WgNRnycbVg8um2xExSDUWDj6Tt8tjecLE1RfcviltNlQG03Oxp4OdLQy0G893SgnocDBqORW8nZ3ErK5lZylniflM29DDX1POw59Gbv8r8J1RRBEFh6MJKFf1xHEMToytLxZYtAlweDUUyzOHwjibru9vz+arcSfxtGo8DV+AyORiRzLCKZ07dTzVJ/ALo18uSVXg3p3NDjoUz203O0jF5xghsJWQR4OrBleuf774cgQHAwnD0rLrt+951YRFEOLseqGPrdMQxGgZUTgujXwrfoTidPQufO5tsGD4ZNm8TitGIoaJOndgvgvcHla2BQHMcikpm89gxag5ER7WqzcFSbctnjmNQc5m65wKm8ns8dA9yZ0bsRPRp7FvvZVQvHLioqik8++YS///6be/fu4efnx/jx43n33XexLkOcNZ/KMtaCIPDi+rMcuJpAHXc7dr3a/YEuLMcjkpm9OYzETE2pSyIgzrD3X7nHqiO3uRSrKuZoD073xuJszc5KgcEooDca0RkE9IaCj43o8/5mMIrviVEQMApgFASEvPv83BwXOyXu9ta4OVjjnndzs7//+GG359Hqjfx3zzWT2n7vpl58NaZdpal4q3UGXlh3huORKbg7WLNlemcaVuKy79/hCbywLhS5DH57pStt6rje/+PRo2KD6+KYM0dcXpAXP/u7m5ZD/8WHydYamD+kOZO7BjzwWK/FZzBm5UlUuTo6NXBn3eSO5fp8byVlmfTusjX3haxHtK+N3iCw/2qCWaNzK4WMbo08GdTajyeb+1TKZ/qoHbvKsG/wYOO+Eqdi5sbzRCZlI5PB9J4NmfNkk2Ir7jLUOnaGxbH6yC1uFyrIqCy8nWzo3tgLGyvx/+sNou3RGYwmW6TNt0UGAYMgIAgCAqJPICA+yH8O4GSrxMPRBg8HazwdrU2PPRxtTM8rOxe3MH+HJzBrYxiZGj1+LrasfL5DuTQCyyI9R8vgJUe5m5ZL76ZerJ4YbJGDoNYZOHcnzeToXYxVmd63NnVcmdGrIX0fQrHMPZWakcuOE5ueS8vazmyc1ul+odjq1WJR2Nat5e5Gkc//9oWz7GAk3k42HJjTs6h90OnEKtysQlqyHTqISgO+xTiD3G9gIJPB1uldiuYJVoADVxOY/tNZDEaBCZ3q8fHQFuVyqI1GgTXHbvP5/uumSXCgrxPTujdgSBs/swhxtXDs9u3bx+bNmxk7diyNGjXi8uXLTJs2jQkTJrBw4UKLjlGZxlqVq2PwkiPEpObyZHMfVk4IeqAZTUqWhje2XDCtlQ9o4cv/RrYu1WG8eDediWtOlxjBs5LLaO7nTH1PB5MI582ErDLb71QFjjZKWvu7EFzfnZAAd9rVdXsoYsO/nrvL279eQqM3Us/DnhUTgoqNkFaELI2e574/ycW7YoXo1pe74FeJlcv5WmSBvk7sfLXb/R+pwSDqPaWnF//C6dNh2bISj5vf/9XWSs7+2T0sys8oiwsx6YxbdYosjZ6eTbxY+XxQueQxdAYjKVla1h67zc+no00RPFd7K8aF1KVXE29O3U5h18V4k44hiE5exwB3mvo408THkcY+TjT2cbSo2qwgj9qxqwz7Bg8+7hytnk92XWPj6WhAjJh+M7Zdqd+Js3fSmLLujKlitjDWChlt/F2pnyeFE69ScyVOVa6Vh0dJPQ97QgLc6dTAg5AGHg9FfSAiMYsXfwzlVnI2Nko5nz/TuuQE/wpwOVbFyGXH0eiNzOrTmNctEBAvTExqDisP3+KX0BhTJK+xtyMv92rIkDZ+laoteCspi1HLT5CSraVzAw/WTg4WJ4NqtTgpLTi5uX5d1O985hmLjq3WGRj4zRFuJWUzuoM/nz/TpuhOAwfC3r1Ft7drB6dOgVXx9mPOL2H8ei6Whl4O7J7ZvVICFDvCYpm9OQxBECdX/xnQtNy+xd20HNYcjWLTmWiTHq6Psw2TuwbwXEhdnG2tqodjVxxffPEFy5Yt49atWxbtn38iaWnpuLo++Azp0l3xx6M1GHlnYCAv9ngwyYt8b/t/+8LRGQRqu9rx9Zi2dCiliiotW8uE1ae4HJdR4j4FsbOS4+5gTaZaX2K7npHtayMg/iDkMhlWCjlKuQylQo6VQtTWs1LIUCpkKORyFDIZCjnIZDLkMhlymShsKst7LAiYWgSl5mjF+7xbWo7WLDcnH6VcRit/FzrWd6djgDsd6rlX2nLb5VgVL60/S2x6LnZWCj5/pnXJYpnlJCVLw6gVYoVoefSJLCE1W0vfLw+Rmq3l9b5NmNW38f0/Dh8O27cXfdGoUaJTV8ps12gUeG7VSU7eSiUkwJ2N0zpVyqz8TFQqz68+Ta6u/HkjBcnS6NkaGsOaY1Gm/C4rhYwhbfyY0i0AG6WCPZfi2X0x3qwLQEF8nW1p7ONIEx8nmvg4Ut/DASdbKxxtlDjYKHC0VZo5ntVhKba89g0qb9x7L8Uz79dLqHJ1OFgr+GRYy1IV8jPUOl5Ye5rQO+kWHd/Fzgo/V1t0eiPRqTloi7EBg1vXolVtF1MFrpVShpVcjlIh2iLrPFukVIg2Si6TmXLeZYj2SLy/nwufkasnOUtDSraWlCwNKVla8XG2+Li49ol13O0ICfAQHb0A90rTVVTl6pi96bypaOilHg14a0BgpRW/bTt7lze2XABg9cQO9GlWsdzipEwNa47d5qcTd0ydQ/zd7HipRwNGdahTaastl+6KRQRZGj0DWvjy3bj2Rd+LK1egY0dxMnv6tCgybAGhUamMWnECQYD1UzrSvXEhMfUvvoC33jLfNnq0KK/iXXILsfQcLU8uPkxSpobpPRsy76lAi8ZTFvn5z8ADtYBU5ejYcPoO645FmaSLHG2UjAmuwzOtPWhWz7f6OXbvvfce+/btIzQ0tNi/azQaNAXKpVUqFXXr1mX0ot/55vmulRIR2nwmmk92XUMhl7FmUgcz5e+Kcjk2nTe3XiQmNReFXMYrvRoytXvJZcyqXB2v/HSWC3fFpVlrpZw+Tb24Ep9BTGpusRISZWGtlGOjlGGtUIiPreTYKBUo8oynDCDPcOY9NBlTgJd7NbRIwFEQBLI0euJVuZyPTudsVBqhd9LM9LPyj9/Y25EBLX0f2IEG0SF+a9tFTkSmADCxSz1e79ukUkr/49JzmbD6FAkZGlr6ObNqUnClLe/suRTPW1svYqWQ8ctLne9L5axcWXypvoMD7N9fpgRKTGoOw5ceQ60z8t6gQMZ0rFhRUGFORKbwys/n0OmNDGzly4IRrSt84TIYBf4OT2T9iSiThASIuUoz+zaibR03IpMyCYtOJyIpm4jELCITs4p8l0rCSiHD3lqBvbUSO7Qc+ugZ0tPTcXF5uN0DSqIs+wYl27gzl2/SpE7Fe1qCWA0779dLpk4Ug1r58u7g5iVGP3O0emZtCjP9pgDa1XElIUNNXAXaGsploh2yVsixVsqxUsixybtXKmTIKNsW9W3mzaRypBeocnVcuJvOmahUQm+ncTU+o0g/3VoutgTXd+fjoS0e2F4YjAJL/rrJqqNi95UujTz4YmSbSpvEfrr7KhtPx+Boq2Dzi50fKBqfodax6XQ0P524Q2petNXDwYrnu9Tnha4BlZKDd+pWCtN/OofOYGRk+9p8+HShpUijUXS4DhyAxo3h0KES8+AKs2DPNTaciqaWiy3bZ3Q1lwg7dw565+VzWluDVitOiletKvO4f11LYNamMOQyUbi4VSXlV/9w/DZf7L8BwLynmjK+U/0KH0ujN7DnYjw/nIgiIjEbAJkul+jvJlpm44RHREREhODs7Cx8//33Je4zf/58ATHVQrpJN+km3cp9i4mJeVQmzQxL7JsgSDZOukk36fZgN0tsXLkjdh9++CEfFSw1LoYzZ87QoUMH0/O4uDh69uxJz549WVWKR114Nms0GklNTcXDo3IqfDIyMqhTpw4xMTGPVeVceZDOsWZQ08+xss9PEAQyMzPx8/NDXkLhiSU8TPsGko2rDGr6Odb08wPpHCtCeWxcuR275ORkkpOTS92nfv362NqKejpxcXH07t2bkJAQ1q1b90BG90GpDnk4DxvpHGsGNf0cq+v5Pc72Darv+1qZ1PRzrOnnB9I5PmzKnUjk6emJp6dlgq6xsbH07t2boKAg1q5dW+VGT0JCQqI0JPsmISHxuPPQBIDi4uLo1asXdevWZeHChSQl3W8/5FuCzoyEhITE44Bk3yQkJKorD82x++OPP4iIiCAiIgJ/f/Oy+3Ku/lYaNjY2zJ8/HxubylMOr25I51gzqOnn+LifX3W0b/D4v6+WUNPPsaafH0jn+LCp1i3FJCQkJCQkJCQkLEdKCpGQkJCQkJCQqCFIjp2EhISEhISERA1BcuwkJCQkJCQkJGoIkmMnISEhISEhIVFDkBw7RDX4tm3bIpPJCAsLq+rhVApRUVFMmTKFgIAA7OzsaNiwIfPnz0er1Vb10B6IpUuXEhAQgK2tLUFBQRw5cqSqh1RpLFiwgODgYJycnPD29mbYsGFcv369qof1UFmwYAEymYzZs2dX9VBqLDXRvoFk4x5H/m02rqrsm+TYAW+99RZ+fn5VPYxKJTw8HKPRyIoVK7hy5QqLFy9m+fLlvPPOO1U9tAqzefNmZs+ezbvvvsv58+fp3r07Tz31FNHR0VU9tErh0KFDzJgxg5MnT3LgwAH0ej39+vUjOzu7qof2UDhz5gwrV66kdevWVT2UGk1NtG8g2bjHkX+TjatS+/Zgra8ff/bs2SMEBgYKV65cEQDh/PnzVT2kh8bnn38uBAQEVPUwKkzHjh2F6dOnm20LDAwU5s2bV0UjergkJiYKgHDo0KGqHkqlk5mZKTRu3Fg4cOCA0LNnT2HWrFlVPaQayb/JvgmCZOMeN2qqjatq+/avjtglJCQwbdo01q9fj729fVUP56GjUqlwd3ev6mFUCK1Wy9mzZ+nXr5/Z9n79+nH8+PEqGtXDRaVSATy2n1lpzJgxg0GDBtG3b9+qHkqN5d9m30CycY8bNdXGVbV9e2idJ6o7giAwadIkpk+fTocOHYiKiqrqIT1UIiMjWbJkCYsWLarqoVSI5ORkDAYDPj4+Ztt9fHy4d+9eFY3q4SEIAnPmzKFbt260bNmyqodTqWzatIlz585x5syZqh5KjeXfZt9AsnGPGzXVxlUH+1bjInYffvghMpms1FtoaChLliwhIyODt99+u6qHXC4sPb+CxMXFMWDAAEaNGsXUqVOraOSVg0wmM3suCEKRbTWBV199lYsXL7Jx48aqHkqlEhMTw6xZs/jpp5+wtbWt6uE8dtR0+waSjZNs3ONLdbFvNa6lWHJyMsnJyaXuU79+fcaMGcPvv/9u9oMxGAwoFArGjRvHDz/88LCHWiEsPb/8L1VcXBy9e/cmJCSEdevWIZc/nr68VqvF3t6eLVu2MHz4cNP2WbNmERYWxqFDh6pwdJXLa6+9xvbt2zl8+DABAQFVPZxKZfv27QwfPhyFQmHaZjAYkMlkyOVyNBqN2d8kzKnp9g0kGyfZuMeX6mLfapxjZynR0dFkZGSYnsfFxdG/f3+2bt1KSEhIkcbejyOxsbH07t2boKAgfvrpp8f+ghkSEkJQUBBLly41bWvevDlDhw5lwYIFVTiyykEQBF577TV+++03Dh48SOPGjat6SJVOZmYmd+7cMds2efJkAgMD+c9//lOjlmSqkn+DfQPJxj1u1HQbV13s2782x65u3bpmzx0dHQFo2LBhjTB6cXFx9OrVi7p167Jw4UKSkpJMf/P19a3CkVWcOXPmMGHCBDp06EDnzp1ZuXIl0dHRTJ8+vaqHVinMmDGDn3/+mR07duDk5GTKq3FxccHOzq6KR1c5ODk5FTFuDg4OeHh4SE5dJVLT7RtINu5xpKbbuOpi3/61jl1N548//iAiIoKIiIgihvxxDdI+++yzpKSk8PHHHxMfH0/Lli3Zs2cP9erVq+qhVQrLli0DoFevXmbb165dy6RJkx79gCQkqjGSjXv8kGzco+FfuxQrISEhISEhIVHTeDyzTCUkJCQkJCQkJIogOXYSEhISEhISEjUEybGTkJCQkJCQkKghSI6dhISEhISEhEQNQXLsJCQkJCQkJCRqCJJjJyEhISEhISFRQ5AcOwkJCQkJCQmJGoLk2ElISEhISEhI1BAkx05CQkJCQkJCooYgOXYSEhISEhISEjUEybGTkJCQkJCQkKghSI6dhISEhISEhEQN4f8BLSh82CgXum8AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Play around with some paramters to see what happens\n", + "fig, axs = plt.subplots(2, 2)\n", + "for i, kp in enumerate([3, 10]):\n", + " for j, umax in enumerate([0.2, 1]):\n", + " ct.phase_plane_plot(\n", + " clsys, [-1.5 * pi, 1.5 * pi, -2, 2], 8,\n", + " gridspec=[13, 7], plot_separatrices={'timedata': 5},\n", + " params={'kp': kp, 'umax': umax}, ax=axs[i, j])\n", + " axs[i, j].set_title(f\"{kp=}, {umax=}\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "dYeVbfG4kU-9" + }, + "source": [ + "## State space controller\n", + "\n", + "For the proportional controller, we have limited control over the dynamics of the closed loop system. For example, we see that the solutions near the origin are highly oscillatory in both the $k_\\text{p} = 3$ and $k_\\text{p} = 10$ cases.\n", + "\n", + "An alternative is to use \"full state feedback\", in which we set\n", + "\n", + "$$\n", + "u = -K (x - x_\\text{d}) = -k_1 (\\theta - \\theta_d) - k_2 (\\dot\\theta - \\dot\\theta_d).\n", + "$$\n", + "\n", + "To compute the gains, we make use of the `place` command, applied to the linearized system:" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "K=array([[2.01, 1.5 ]])\n" + ] + } + ], + "source": [ + "# Linearize the system\n", + "P = invpend.linearize([0, 0], [0])\n", + "\n", + "# Place the closed loop eigenvalues (poles) at desired locations\n", + "K = ct.place(P.A, P.B, [-1 + 0.1j, -1 - 0.1j])\n", + "print(f\"{K=}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": k_ctrl\n", + "Inputs (4): ['theta', 'thdot', 'theta_d', 'thdot_d']\n", + "Outputs (1): ['tau']\n", + "States (0): []\n", + "\n", + "Update: . at 0x1534e0180>\n", + "Output: \n" + ] + } + ], + "source": [ + "def statefbk_output(t, x, u, params):\n", + " K = params.get('K', np.array([0, 0]))\n", + " return -K @ (u[0:2] - u[2:])\n", + "statefbk = ct.nlsys(\n", + " None, statefbk_output, name=\"k_ctrl\",\n", + " inputs=['theta', 'thdot', 'theta_d', 'thdot_d'], outputs='tau'\n", + ")\n", + "print(statefbk)" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": invpend w/ state feedback\n", + "Inputs (2): ['theta_d', 'thdot_d']\n", + "Outputs (2): ['theta', 'tau']\n", + "States (2): ['invpend_theta', 'invpend_thdot']\n", + "\n", + "Update: .updfcn at 0x1534e20c0>\n", + "Output: .outfcn at 0x1534e0ae0>\n" + ] + } + ], + "source": [ + "clsys_sf = ct.interconnect(\n", + " [invpend, statefbk], name='invpend w/ state feedback',\n", + " inputs=['theta_d', 'thdot_d'], outputs=['theta', 'tau'], params={'kp': 1})\n", + "print(clsys_sf)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "aGm3usQIvmqN" + }, + "source": [ + "### Phase portrait" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[,\n", + " ]" + ] + }, + "execution_count": 27, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ3QUZReAn63Z9F5ISANCL6H33qQqUkQQpAmCoIAoYkVF+UQFLICoSAep0nsJSOgQQq8pBEJII73u7nw/JlkISUjbFGSec/ZkMzvl7uw779y5VSYIgoCEhISEhISExAuKvLwFkJCQkJCQkJAoTyRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGXoBWfZsmXIZDLDS6lUUrlyZUaOHMn9+/dzrXf27NlylLZis2bNGubPn19q+/fy8mLEiBGG/8PDw5k5cyYXLlwo9D4OHjxIkyZNMDc3RyaTsWXLFqPLmU1ISAgymYxly5aV2jEqKh06dKBDhw6lfpxGjRrx3nvvlWgfxhi3CxcuLLXf+dNPP8XDwwOlUomNjU2pHCM/sue9kJAQwzIvLy969+5dpnKU53FfFJTlLYBExWDp0qXUrFmT1NRUjh49yuzZszly5AiXLl3C3Ny8vMV7LlizZg2XL19m8uTJpbL/f/75BysrK8P/4eHhfPnll3h5eeHr61vg9oIgMGjQIKpXr862bdswNzenRo0apSIrQKVKlThx4gRVq1YttWO8yAQHBxMQEFBiRcYY43bhwoU4ODjkUNaNwdatW/nmm2/45JNP6NGjByYmJkbdv4RENpIyJAFA3bp1adKkCQAdO3ZEp9Px9ddfs2XLFoYOHVrO0lVsUlJSMDMzK9I2Op0OrVZbpMm9YcOGRRUtB+Hh4cTGxtKvXz86d+5con1lk5qaikajQSaT5frMxMSEFi1aGOU4ErnZuHEjTk5OtGnTprxFKTUuX74MwLvvvouTk1M5SyPxX0Zyk0nkSfZNLDQ0NMfyxMRExo8fj4ODA/b29rz66quEh4fnWGfdunV069aNSpUqYWpqSq1atfjoo49ITk7OsV5QUBCDBw/G1dUVExMTnJ2d6dy5cy63z7p162jZsiXm5uZYWFjQvXt3AgICCvwO2Sbu/fv3M3LkSOzs7DA3N6dPnz4EBQXlWv+vv/6iQYMGaDQa7Ozs6NevH9euXcuxzogRI7CwsODSpUt069YNS0tLOnfuTIcOHdi5cyehoaE53I7w2F00Z84cZs2ahbe3NyYmJhw+fJi0tDTef/99fH19sba2xs7OjpYtW7J169Zc8j3pJvPz86Np06YAjBw50nC8mTNn5nkuZs6cSeXKlQGYPn06MpkMLy8vw+fHjh2jc+fOWFpaYmZmRqtWrdi5c2ee53Pfvn2MGjUKR0dHzMzMSE9Pz/OYebnJZs6ciUwm48qVK7z++utYW1vj7OzMqFGjiI+PN6zXsGFD2rZtm2ufOp0ONzc3Xn311Vzn9ptvvsHDwwONRkOTJk04ePBgru1v3brFkCFDcHJywsTEhFq1arFgwYIc6/j5+SGTyVi7di2ffPIJrq6uWFlZ0aVLF27cuJFjXUEQmDNnDp6enmg0Gho1asTu3bvzPB9PM3DgQOrUqZNjWZ8+fZDJZGzYsMGw7Pz588hkMrZv355j3U2bNtGvXz/k8vyn8aioKMaOHYu7uzsmJiY4OjrSunVrDhw4APDMcQvw5Zdf0rx5c+zs7LCysqJRo0YsWbKEJ/t7e3l5ceXKFY4cOWLY/smxlZCQwLRp0/D29katVuPm5sbkyZNzzQdP4+XlxaeffgqAs7NzrvFd2Hnh7Nmz9O3bFzs7OzQaDQ0bNmT9+vW51jt58iStW7dGo9Hg6urKjBkzyMzMzFe+f/75h/r166PRaKhSpQo///xzjs+Lcm3r9Xp++eUXfH19MTU1xcbGhhYtWrBt27ZnnqOFCxeiVCr54osvnrmeRCEQJF5oli5dKgDCmTNnciz/6aefBED4/fffc6xXpUoVYdKkScLevXuFP//8U7C1tRU6duyYY9uvv/5amDdvnrBz507Bz89P+O233wRvb+9c69WoUUOoVq2asHLlSuHIkSPCpk2bhPfff184fPiwYZ1vvvlGkMlkwqhRo4QdO3YImzdvFlq2bCmYm5sLV65cKdR3c3d3F0aNGiXs3r1b+P333wUnJyfB3d1dePTokWHdb7/9VgCE119/Xdi5c6ewYsUKoUqVKoK1tbVw8+ZNw3pvvvmmoFKpBC8vL2H27NnCwYMHhb179wpXrlwRWrduLbi4uAgnTpwwvARBEIKDgwVAcHNzEzp27Chs3LhR2LdvnxAcHCzExcUJI0aMEFauXCkcOnRI2LNnjzBt2jRBLpcLy5cvz/F9PD09hTfffFMQBEGIj483fL9PP/3UcLywsLA8z0VYWJiwefNmARAmTZoknDhxQjh//rwgCILg5+cnqFQqoXHjxsK6deuELVu2CN26dRNkMpnw999/5zqfbm5uwtixY4Xdu3cLGzduFLRabZ7HzP7eS5cuNSz74osvBECoUaOG8Pnnnwv79+8X5s6dK5iYmAgjR440rJc9/p4894IgCLt27RIAYdu2bTmO4e7uLrRp00bYtGmTsGHDBqFp06aCSqUSjh8/btj2ypUrgrW1tVCvXj1hxYoVwr59+4T3339fkMvlwsyZMw3rHT58WAAELy8vYejQocLOnTuFtWvXCh4eHoKPj0+O75v9fUaPHm0YX25uboKLi4vQvn37PM9LNr/99psACOHh4YIgCEJmZqZgaWkpmJqaCm+99ZZhve+++05QKpVCQkJCjt9TJpMJ+/bte+YxunfvLjg6Ogq///674OfnJ2zZskX4/PPPDb/rs8atIAjCiBEjhCVLlgj79+8X9u/fL3z99deCqamp8OWXXxrWOX/+vFClShWhYcOGhu2zx1ZycrLg6+srODg4CHPnzhUOHDgg/PTTT4K1tbXQqVMnQa/X5yv7+fPnhdGjRwuAsGfPnhzju7DzwqFDhwS1Wi20bdtWWLdunbBnzx5hxIgRucbllStXBDMzM6F27drC2rVrha1btwrdu3cXPDw8BEAIDg42rOvp6Sm4ubkJHh4ewl9//SXs2rVLGDp0qAAI33//vWG9olzbw4YNE2QymTBmzBhh69atwu7du4VvvvlG+Omnn3Ict1evXoIgCIJerxfef/99QaVS5fgeEsVHUoZecLJvcCdPnhQyMzOFxMREYceOHYKjo6NgaWkpRERE5FhvwoQJObafM2eOAAgPHjzIc/96vV7IzMwUjhw5IgBCYGCgIAiCEB0dLQDC/Pnz85Xt7t27glKpFCZNmpRjeWJiouDi4iIMGjSoUN+tX79+OZb7+/sLgDBr1ixBEATh0aNHgqmpqdCzZ89cxzcxMRGGDBliWPbmm28KgPDXX3/lOl6vXr0ET0/PXMuzb9hVq1YVMjIynimzVqsVMjMzhdGjRwsNGzbM8dmTypAgCMKZM2dyTerPIluOJydsQRCEFi1aCE5OTkJiYmIOOerWrStUrlzZcMPKPp/Dhw8v0vHyUobmzJmTY90JEyYIGo3GcKzo6GhBrVYLH3/8cY71Bg0aJDg7OwuZmZk5juHq6iqkpqYa1ktISBDs7OyELl26GJZ1795dqFy5shAfH59jnxMnThQ0Go0QGxsrCMJjZejp8bB+/XoBMCgLjx49EjQaTb7jqyBl6Pbt2wIgrFixQhAEQTh27JgACB9++KHg7e1tWK9r165Cq1atcmw7f/58wdbW1nAe8sPCwkKYPHnyM9fJb9w+jU6nEzIzM4WvvvpKsLe3z6HI1KlTJ8/vO3v2bEEul+d62Nq4caMACLt27XrmMbPHS1RUlGFZUeaFmjVrCg0bNsx1nnr37i1UqlRJ0Ol0giAIwmuvvSaYmpoa5jtBEK+BmjVr5qkMyWQy4cKFCzn22bVrV8HKykpITk7O87vkd20fPXpUAIRPPvnkmeciWxlKSUkR+vfvL1hbWwsHDhx45jYShUdyk0kAoltMpVJhaWlJ7969cXFxYffu3Tg7O+dYr2/fvjn+r1+/PpDTnRYUFMSQIUNwcXFBoVCgUqlo3749gMHtZGdnR9WqVfn++++ZO3cuAQEB6PX6HPveu3cvWq2W4cOHo9VqDS+NRkP79u3x8/Mr1Hd7OuapVatWeHp6cvjwYQBOnDhBampqruBPd3d3OnXqlKe7pX///oU69pP07dsXlUqVa/mGDRto3bo1FhYWKJVKVCoVS5YsyeWiKw2Sk5M5deoUAwYMwMLCwrBcoVAwbNgw7t27l8s1VJzv/jR5jaO0tDQiIyMBsLe3p0+fPixfvtwwLh49esTWrVsZPnw4SmXOcMdXX30VjUZj+N/S0pI+ffpw9OhRdDodaWlpHDx4kH79+mFmZpZjPPXs2ZO0tDROnjxZoIzweKyfOHGCtLS0fMdXQVStWhUvLy+Dy2r//v3Uq1ePN954g+DgYO7cuUN6ejrHjh2jS5cuObbdtGkTL7/8cq7z8DTNmjVj2bJlzJo1i5MnTz7T7ZMXhw4dokuXLlhbWxuu5c8//5yYmBjDb/UsduzYQd26dfH19c1xzrt3745MJiv0NfwkhZ0Xbt++zfXr1w2/z9O/+YMHDwxj+/Dhw3Tu3DnHfKdQKHjttdfylKFOnTo0aNAgx7IhQ4aQkJDA+fPnDcsKc21nu1XfeeedAr97TEwMnTp14vTp0wbXtoRxkJQhCQBWrFjBmTNnCAgIIDw8nIsXL9K6detc69nb2+f4PzsAODU1FYCkpCTatm3LqVOnmDVrFn5+fpw5c4bNmzfnWE8mk3Hw4EG6d+/OnDlzaNSoEY6Ojrz77rskJiYC8PDhQwCaNm2KSqXK8Vq3bh3R0dGF+m4uLi55LouJiQEw/K1UqVKu9VxdXQ2fZ2NmZpYjq6uw5LX/zZs3M2jQINzc3Fi1ahUnTpzgzJkzjBo1irS0tCIfo6g8evQIQRDy/e5Aru+f17pFpaBxBDBq1Cju37/P/v37AVi7di3p6el5Zizl9xtnZGSQlJRETEwMWq2WX375JddY6tmzJ0Cu8VSQjNnnJb9jF4bOnTsblO0DBw7QtWtX6tWrh7OzMwcOHMDf35/U1NQcylBERAT+/v6FUkrXrVvHm2++yZ9//knLli2xs7Nj+PDhREREFLjt6dOn6datGwB//PEH/v7+nDlzhk8++QTI+Vvlx8OHD7l48WKuc25paYkgCIW+hp/eJxQ8L2SvN23atFzrTZgwAXj8m8fExBTpd3zWutnjorDXdlRUFAqFolBj5ubNm5w6dYoePXpQt27dAteXKDxSNpkEALVq1TJkk5WEQ4cOER4ejp+fn8EaBBAXF5drXU9PT5YsWQKIF/n69euZOXMmGRkZ/Pbbbzg4OABi1kxhnrTzI6+JPyIigmrVqgGPb3oPHjzItV54eLhBjmzyypwqDHltt2rVKry9vVm3bl2Oz/MLSjY2tra2yOXyfL87YLTvX1S6d++Oq6srS5cupXv37ixdupTmzZtTu3btXOvm9xur1WosLCxQqVQGa1d+T+De3t5Fki973OR37CeDiPOjc+fOLFmyhNOnT3Pq1ClDwHCnTp3Yv38/oaGhWFhY5MjK++effzA3N6dr164F7t/BwYH58+czf/587t69y7Zt2/joo4+IjIxkz549z9z277//RqVSsWPHjhxWt6LUpnJwcMDU1JS//vor38+LSmHnhez1ZsyYYQi4f5rs0hL29vb5/o558ax1s8dFYa9tR0dHdDodERERBT5otGzZkoEDBzJ69GgAFi1a9MwAeonCIylDEkYl+6J/OmV88eLFz9yuevXqfPrpp2zatMlgZu7evTtKpZI7d+6UyDWzevXqHNsfP36c0NBQxowZA4gTjKmpKatWrWLgwIGG9e7du8ehQ4cYMGBAoY5jYmJSqKflJ5HJZKjV6hyTZURERJ4ZJ3kdDwr3hJ4f5ubmNG/enM2bN/PDDz9gamoKiNktq1atonLlylSvXr3Y+y8J2crL/Pnz+ffffzl79my+42jz5s18//33hpt2YmIi27dvp23btigUCszMzOjYsSMBAQHUr18ftVpdYvlatGiBRqPJd3wVVhmSyWR89tlnyOVy2rVrB0CXLl344IMPCA0NpV27djncq5s2baJ3795Frrnj4eHBxIkTOXjwIP7+/obl+Y3b7CKsCoXCsCw1NZWVK1fmWje/ffTu3Ztvv/0We3v7Iiub+VHYeaFGjRr4+PgQGBjIt99++8x9duzYkW3btvHw4UODq0yn07Fu3bo8179y5QqBgYE5XGVr1qzB0tKSRo0aAYW/tnv06MHs2bNZtGgRX3311bO/PPDmm29ibm7OkCFDSE5OZvny5Tl+I4niISlDEkalVatW2Nra8vbbb/PFF1+gUqlYvXo1gYGBOda7ePEiEydOZODAgfj4+KBWqzl06BAXL17ko48+AsTU2q+++opPPvmEoKAgXnrpJWxtbXn48CGnT5/G3NycL7/8skCZzp49y5gxYxg4cCBhYWF88sknuLm5GUzlNjY2fPbZZ3z88ccMHz6c119/nZiYGL788ks0Gk2h01br1avH5s2bWbRoEY0bN0YulxdobevduzebN29mwoQJDBgwgLCwML7++msqVarErVu3nrlt1apVMTU1ZfXq1dSqVQsLCwtcXV0N7q3CMnv2bLp27UrHjh2ZNm0aarWahQsXcvnyZdauXVtmlqC8GDVqFN999x1DhgzB1NQ03xgOhUJB165dmTp1Knq9nu+++46EhIQc4+Onn36iTZs2tG3blvHjx+Pl5UViYiK3b99m+/btHDp0qEiy2draMm3aNGbNmpVjfM2cObPQbjInJyfq1q3Lvn376Nixo6FeVZcuXYiNjSU2Npa5c+ca1o+JieHIkSP8/fffBe47Pj6ejh07MmTIEGrWrImlpSVnzpxhz549OSwl+Y3bXr16MXfuXIYMGcLYsWOJiYnhhx9+yFMJq1evHn///Tfr1q2jSpUqaDQa6tWrx+TJk9m0aRPt2rVjypQp1K9fH71ez927d9m3bx/vv/8+zZs3L9S5yqYo88LixYvp0aMH3bt3Z8SIEbi5uREbG8u1a9c4f/68oYTBp59+yrZt2+jUqROff/45ZmZmLFiwIN/0f1dXV/r27cvMmTOpVKkSq1atYv/+/Xz33XeG37Cw13bbtm0ZNmwYs2bN4uHDhwZFNyAgADMzMyZNmpTr+AMGDMDMzIwBAwaQmprK2rVrjaLgv9CUdwS3RPmSX2p9YdfLzrx5Mh3++PHjQsuWLQUzMzPB0dFRGDNmjHD+/PkcmUUPHz4URowYIdSsWVMwNzcXLCwshPr16wvz5s3Llaq9ZcsWoWPHjoKVlZVgYmIieHp6CgMGDCgwkyJb5n379gnDhg0TbGxsDFljt27dyrX+n3/+KdSvX19Qq9WCtbW18PLLL+dK33/zzTcFc3PzPI8XGxsrDBgwQLCxsRFkMpmQfXnll8WVzf/+9z/By8tLMDExEWrVqiX88ccfhiyaJ3k6m0wQBGHt2rVCzZo1BZVKJQDCF198ke/5eJYc//77r9CpUyfB3NxcMDU1FVq0aCFs3749xzqFHStPHy+vbLIns4Oe3PeTWTvZtGrVSgCEoUOH5nuM7777Tvjyyy+FypUrC2q1WmjYsKGwd+/ePNcfNWqU4ObmJqhUKsHR0VFo1aqVIbNQEB6P6Q0bNhT4ffR6vTB79mzB3d1dUKvVQv369YXt27cL7du3LzCbLJspU6YIgPDNN9/kWO7j4yMAwsWLFw3L/vzzT8HMzCzfjKUnSUtLE95++22hfv36gpWVlWBqairUqFFD+OKLL3Jsn9+4FQRB+Ouvv4QaNWoIJiYmQpUqVYTZs2cLS5YsyfVbhYSECN26dRMsLS0FIEd2WlJSkvDpp58KNWrUMFxb9erVE6ZMmZIjeysv8hsvglD4eSEwMFAYNGiQ4OTkJKhUKsHFxUXo1KmT8Ntvv+VYz9/fX2jRooVgYmIiuLi4CB988IHw+++/55lN1qtXL2Hjxo1CnTp1BLVaLXh5eQlz587NJWNhr22dTifMmzdPqFu3ruEctWzZMsc1+GRqfTaHDx8WLCwshJdeeklISUl55rmUeDYyQXiiepaExH+IZcuWMXLkSM6cOWOUeCiJikdISAje3t58//33TJs2rbzFKXV69uyJqakpmzZtKm9RJCT+U0huMgkJCYnnhF27dpW3CBIS/0mkMHQJCQkJCQmJFxrJTSYhISEhISHxQiNZhiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5onhtlaPbs2TRt2hRLS0ucnJx45ZVXuHHjRoHbHTlyhMaNG6PRaKhSpQq//fZbGUgrISEhISEh8bzw3ChDR44c4Z133uHkyZPs378frVZLt27dSE5Ozneb4OBgevbsSdu2bQkICODjjz/m3XffZdOmTWUouYSEhISEhERFRiYIglDeQhSHqKgonJycOHLkCO3atctznenTp7Nt2zauXbtmWPb2228TGBjIiRMnykpUCQkJCQkJiQrMc2MZepr4+HgA7Ozs8l3nxIkTdOvWLcey7t27c/bsWTIzM0tVPgkJCQkJCYnnA2V5C1AcBEFg6tSptGnThrp16+a7XkREBM7OzjmWOTs7o9VqiY6OplKlSrm2SU9PJz093fC/Xq8nNjYWe3t7ZDKZ8b6EhISEhISERKkhCAKJiYm4uroilz/b9vNcKkMTJ07k4sWLHDt2rMB1n1Zgsr2C+Sk2s2fP5ssvvyy5kBISEhISEhLlTlhYGJUrV37mOs+dMjRp0iS2bdvG0aNHC/xyLi4uRERE5FgWGRmJUqnE3t4+z21mzJjB1KlTDf/Hx8fj4eFBq0/XE5YkLnO0UDOufRVebeSOWln+nkZBEPhy+xU2nruPuYmCNWOaU9XJsrzFykFycjKurq4ANJ6xnl3vd0GjUhjvABcvQtu24vs9e6Bly2Lt5vqDBAYuPoEgQGVbDfcepTGspSfTX6ppPFlLiFanp99Cf4KjU2hfw4GbEUkkpWdy/KPOFcp6OX//Tf48Foy3gxn/TGiNUiGHmTNh3jzw9obTp0GtLlcZQ2OS6bfwOBlaPbNfrUufBm7lKk9+rDtzl1k7ryEI0LOeC9/0q4dKUf5zz5NkaPUEhD7i3zvRHLsVxe3InMktdmYqWlVzoK2PAy2rOmBnXva/faZOjyCAPuuhWBBAQMj6K86lQtZystYTslYUnlhfr4cMnZ4MrY50rZ50rY6MTIF0XdZ7rZ70TD0ZuuzP9WRk6knX6cXPtDqS03WEPUolNCaJxDSdQUZ9Rhr3Fw4HwG3CCuRqDTJZlkxP4WajwdfdBl8PGxpUtqG6s6V4nZUBd2OTmbgmgKCoZNRKObNeqUvPerm9LeVFYNgj3l99kjOzB2NpWfD98LkJoBYEgUmTJvHPP//g5+eHj49PgdtMnz6d7du3c/XqVcOy8ePHc+HChUIHUCckJGBtbU1M7CMO3klk/oFb3I9LBaCyrSmTu1SnX0M3FPLyvQllaPW8seQUp4Nj8bQ3Y8uE1tiWw2STH8nJyVhYWADgPmUjH/auz8ROBf+GRWLsWPjjD2jcWLzRFmAWzYugqCTeWHKK8Lg0w7LGnrZsGt/KmJKWmAWHb/P93pylJQ5P64C3g3k5SZSbhLRM2s85zKOUTL7tV48hzT0gMRGqV4eICJg/H957r7zFNJxLO3M1B6a2L5ebdGHYFhjO1HUX0OoFOtV0YsGQRpiqjfhAYWTC41I5cjMKvxuR+N+OISlda/hMJoMGlW3oUMORDjWcqO9mjbyc59DyQhAEfjp4Ew87c/QC3LwXxSevNAKg+of/kC5TFXpfpioF9Stb08jTlsYetrTxcTDuQ+dTJKZl8u7aAA7fiAJgUqdqTOlSvdx/y/txqbw0/yjx8QmEzR9EfHw8VlZWz9zmuVGGJkyYwJo1a9i6dSs1atQwLLe2tsbU1BQQrTr3799nxYoVgJhaX7duXcaNG8dbb73FiRMnePvtt1m7di39+/cv1HGzlaHsk5mu1bHuTBi/HLpNVKIYW1TNyYL3u1bnpbou5fpkHpOUzssL/Ln3KJVWVe1ZPqpZhXl6fFoZsrAw5/C0DjhbaYx3kMhIqFZNvOGuXg1DhhRp8zWn7vL51sto9TkvCROlnEszu1cIK2BUYjrTN5znn5V/AGDVpC8yhThZ/jTYl5d9K5ZlY6l/MF9uv4qDhQlHPuiAuYkSfv8dxo0DOzu4cwdsbMpVxkydnt4/H+PGw0T6N6rMj4MalKs8z+Lw9UjGrz5HWqaeZl52/DmiCVaawt8sS4uMjAx++uknAN577z3UT1n8MrR6zoU+wu9mJEduRHE9IjHH53bmatr5ONChhhO1KlnhZGmCjZmqQlk6S5Pm3x4gMjGd3vVdGdfSlXreLgAkJiaSrFcSFJVMSEwyIdHJBEWLf0NiksnUPfv2bWeu5vVm7rzRwpNK1qaG5XsuP6CmixVeRnh40ukFvttznd+PBgHwUh0X5r7WADN1+TqebkQkMvL3I5z4os9/SxnK76JYunQpI0aMAGDEiBGEhITg5+dn+PzIkSNMmTKFK1eu4OrqyvTp03n77bcLfdynlaFsUjN0LD8RwiK/O8Sniplpdd2smNatBu2rO5bbRXztQQL9Fx0nJUPH8JaefPVy/gHmZcmTylCfufu5+DCdVxu5MXeQr3EP9O238Mkn4OkJt26BqvA3ioS0TMYsO8vpkNhcn22b2Jr6lW2MKGjx0OkFPlh7inlviG5A9ykbkatFhXJ0G28+6127PMXLRYZWT9d5RwiNSWFyFx8md6kOWi00aCBaiBYsgCz3aXly/u4j+i86jiDA6jHNaV3NobxFypczIbGMWnaGxDQttStZsWJ0MxwsTMpVpiev76SkJMzNn32TfRCfypEbUfjdiOLY7egcVqNs1Ao5jpYmOFmZ4GRpgpOlBmcr8a9j1jJnKw12Zupyt0SAaOHR6QUydQKZej0mSjlqhbzAe0FcSga+X+1/vCAzjdC5A4Bnn0udXuBOVBJ7Lkew69KDHAqmDFAp5WRo9QAo5DJequPCm628qF3Jko4/HkGtkLNxfMscSlJJ2HA2jE/+uUyGTk+tSlb8+WYT3GyMs+/icjciGs9Kjv8tZai8yE8ZMnyelsmfR4NYciyY5AzR79vUy5YPutekmXf+af+lyd4rEYxbeQ6Ab/rVZWhzz3KR40nS09MZN24cAO98+h0D/zwLwJZ3WuPrbmO8A6WkwODBMHUqdOhQ5M1TM3RMWH3OYPbN5quX6zC8pZdxZCwhaWlptOg1mNuRSdh3n4hMKSp8TTxt2Di+dTlLl5udFx/wzprzmKkV+H3QASdLDSQkQAGTU1nzxdbLLD8Riqe9GXsntytV90JJuRIez5t/nSY6KYMqDuasHNO8XG88T17fixcvxsSk8MpZpi7LanQjCv/b0YQ9SiEupfClT5RyGQ4W2UqTBntztSHGRkBALzx+zxOxQfqn4oR4In5IqxfI1OnFl1YgI/u9Tk+mTiBD+9T/We+fvpvKZKLrSqNSZP2VP/FefKVkaDl+J8awjaDNJGbvr8iAwVO+ZkafelRxtCjwPGQrRjsvPuDqg4R813OwUBOdlAFAVUdz1o9rib2RlOmzIbG8veoc0UkZOFioWTysMY09y+c+CAXfv59EUoYKoLAnMyYpnUV+d1hxMtSgjbev7si0bjWoV9m6rMQ18OuhW/yw7yZKuYyVo5vTsmreAePlxdT1F9h8/j6NPGzYNL5VhTKHZ2j1TF1/gR0XHxiW9ajjwqJhjctRqpwIgsCP+27y6+HbhmVqhZyrX3UvswDKwiIIAv0WHudCWBxDmnvwbb965S1SniSmZdJ17lEiEtKY0KEqH1agoPm8CIpKYtiS09yPS6WStYaVo5tTzangm+bzQFqmjqjEdCIT04lKTCMyMZ3IhHQeJmS9z1oek5yRZ2Dxfw0LEyWNPGyoV9maGi5W1HSxxNvBPN8wiJDoZHZdfsCuSw+4fD9/xQigurMFG8e3Mpq79d6jFN5acY5rDxJQK+R8068uA5u4G2XfRUVShoxIUU4miObfXw7dZv2ZMEPsSY+6LrzfrUaZTlSCIPDu3xfYHhiOrZmKre+0wcPerMyOXxAPE9Lo+IMfKRm60o11SUkBs6J/b51e4JN/LvH3mTBAnIwuf9nd2NKVmIV+t5mz53Eg9Y5JranrZlN+AuXD6eBYBi0+gUIuY+/ktlTLzna8fx8++wwmTIAmTSAmBhSKcosj2nclgrErz6GUy9g+qQ21KlUs69XTPIhP5Y0/T3EnKhk7czXLRzYrl4ev8iJTpyc6SVSURCUpjUfJotVDJpMhk4GM7L/k/F8me2LZk+uDUiFHpZCjUshQZ79XPvW/Qo5aKTO8VylEt5hKKUMhl5Gh1ZOaqSM9U/ybmqEjNVNHWtZLfK9nw9kwzt+NK/J3VyvkVHWyoKaLJTWyXjVdLHGx0uR4uLwbk8Kuyw/YfekBgffi89yXjamSn19vRFsfB6M8mCana5m6/gJ7rzwEYGy7Kkx/qWaZJxpJypARKaoylE1oTDLzD9xiy4X7CIIYhDvrlbLVkFMzdAxafIJL9+Op4WzJpgmtsDApn6A2QRBISUkBwMzMDJlMZrBeVbLWcPD99sYNuNPp4Ouv4eef4cwZqFQJ/vwTJk0SZ79Cyjx1/QX+CQgHYM2Y5rSqgLEki4/cYfbu6wC84uvK/MENy1mivHlrxVn2X31I19rO/DG8ibhw5EhYtkwsi9C1K/zwg/h/v37lJue4lWfZe+Uhvu6i1bK8M0ULIjY5gxFLT3PxXjwWJkr+GN6kwlmCJfJnwKLj3HuUioedGZXtTKlsY4qTmYzKNhp83BxQKxXcjkziRkQCNx4mcj0ikZsRiYawjKex0iip6WJFzUqWdKrpRFsfRxRyGRfC4nhlgf8zZanhbMGoNt687OtWYjexXi8w/8BNfj4kWq871nDk59cbYlmGAf+SMmREiqsMZXMjIpFZO6/y761oAIY09+CLPrUxUZZNPEJEfBp9fj1GVGI6XWo58/uwxuUSbJhXgGVapo7OPx7hflwq73X2YUrX6sY96Esvwd69Yqr9gwcQHg6hoeDhUaTd9PzpKFcfJFLd2YK9k9uVu0svOTkZNzfRknb//n3Mzc2ZvC6ALQHhmCjlnPm0S4XIMHqa25FJdJ9/FJ1eYP24lmJM3a1bULu2GFSdzWefwVdflZucEfFpdJl7hKR0LV/2rcObrbzKTZbCkpiWyVsrznIyKBa1Us7CIY3oUtu54A2NRF5jUqJwZOr0OdxdhQlG1+sF7selcj0ikRsRCVl/EwmKTkb3VDasm40przV1p35la86FPuJCWBwXwuJITMsdtJ6NjZmKwU09GN7SE9cSxqJtCwzngw2BpGv1+DhZ8OebTfC0L5vxISlDRqSkyhCIA/eXQ7eZf/AmggAN3G1YNLRRiQdZYQm4+4jXfj9JhlZfbrEQ+V3g2cG1GpWcQ+93MN45EQSYOxemTcu5fOtW6Nu3SLsKj0ul/feHydQJLBraiB7lXFgsr3OZqdPT+n+HiExMr9DxLp/8c4nVp+7SwN2GLbZ3kX36CQQH51ypTx/Ytq18BMxi5YkQPtt6BXO1gv1T25fZtVoS0jJ1TFwTwIFrD1HIZfwwsD79Gj67MK2xKGo2mUT+lORcpmt13IlM5sbDBALuxrH1Qrgh21kug041nXi9mQdtqzkQFpfKhbtxnAmJ5dD1SCIT03PtT62U80G3Goxq410iC2lgWBxjV57lYUI6NmYqFg1tXCbWy6LcvytWpOV/FLlcxntdfPhrRFOsTVUEhsXR55djHL8dXSbHb+hhy3f9xaDVhX532HrhfpkctzD0rOdCMy870jL1/C/L1VNikpOhdevcihBAQECRd+dqY8r49lUBmL37OunavM3TZYWpqSk3b97k5s2bhhpbKoWcb7ICk5ccCzYUBq1ovNfFBzO1gsCwOHZFCxASknulCxfKWqxcDG3uSSMPG5IzdHy+9QrPwzOjRqXgtzca8WpDN3R6gSnrAlnmH1zwhkYgrzEpUfaYKBXUdrWiX8PKfPVyXU593Jn5r/nS3NsOvQAHrkUyevlZ2n3vx9aA+zSvYsf/+tfn9CddODytPe2qPw4DkMvEZJJvdl3jtcUnCI5OfsaRn00Ddxu2TWxDg8rWxKVkMmzJKVafCjXGVzYakjJUhnSs4cT2iW2oXcmKmOQM3lhyisVH7pTJRNuvYWXGta8CwIcbLxIYFlfqxywMMpmMz/vURiYTzannQnPX+Cky5uYwebIYiPs0xVCGAMa1r4qTpQl3Y1NY5h9SIvFKilwux8fHBx8fnxzNB7vUcqK5tx3pWj0/PlWduqLgZKlhbDtxHM5Jr0TG0mW5Y7jCwsRA6nJELpcx+9X6KOUyDlx7yN4rEQVvVAFQKuT8MLABI7JcezO3X+WnA7dKfY7Jb0xKlC8alYJXGrqxblxLDr7fnrHtqmBnriYiIY2fD92m7ZzDvPnXafZcjqCyrRkrRjVn6zutaeplS7a3TQacDX3ES/OPsNQ/GL2+eGPJ2UrDunEt6dvAFa1e4JN/LvPF1stodXrjfeESII3aMsbD3ozNE1rRv1Fl9IJoaRi/6jyJaYWvq1FcPuxek041nUjX6nlrxVkeJqQVvFEZUNfNmkGNxcDyL7dfLfbFloNBg2DdOlA+FZRdTGXI3ETJB93Fyue/HrpNdFJuk3J5I5PJ+KRXLQA2B9zn8v28M0fKm7faVsHR0oTQmBRWV2sLK1fmVogqgHWohoslb2dZBL/YdoWEMrhGjYFcLuOLPrWZ3EVsdzPvwE2+2mGk60riuaWqowUf96zFiRmd+OX1hrSuZo8gwJGbUby96hyt/neIOXuuY2umZv24liwc2gh3O1OyR026VuDL7Vd5/Y+T3I1JKZYMGpWCnwb7GubS5SdC+WjzpQpheZWUoXJAo1Lww8D6zHqlLiqFjD1XInhlgT+3IxML3rgEKOQyfhrsi4+TBZGJ6YxdcZa0zPJ1+WQzrXsNLEyUXLwXz+YAI7nx+veHjRtzKkR370Js8axP/RtVpq6bFYnpWubtv2kcGYtBZmYmCxYsYMGCBWRm5rxB169swyu+YkXnWTuvVohJ5mnMTZRM6SIGy/988BYJ/QfBmjU5e8lVAGUIYGKnang7mPMwIZ3v91RMa1teyGQyJnepzhd9xIrkS/1DePfvAOKLUMywKDxrTEpULEyUCvo0cGX1mBYc+aAD4ztUxcHChKjEdBb63aHd94cZtuQ0ekFg17tt+bhnTSyfyEI+FRxLt/lHWHkytFgKtkwm452O1Vg4tBEKuYyN5+7x477ym08NckkB1M/GGAHUz+L83UdMWHWeiIQ0zNUKvh/YoNQ7/4bGJPPyAn/iUjJ52deV+a/5lnqGVGGCAn87cof/7b6Ok6UJh6dl9bEyBjt2iKna2RlLBw9Cp07F2lV2vRy5DHa/144aLgV3QzY2BZ3Le49S6PTjETK0epa82YTOtcouq6iwaHV6XvrpX25HJjG+Q1Wmv1QTNmyA118XyyK88YZoMaoAHL8TzZA/TiGTwca3W5ZrRd3isPn8PT7YeBGdXsDBwoSvXq5DDyP3UZQCqI1HeZzLTJ2eg9cesvZ0GEdvRRkKWfo4WfD9wAa425oy78BN1py6y5P6T3NvW34c5Etl2+LVsPv79F0+2nwJgK9fqcuwFsbtliAFUD9HNPKwZce7bWhRxY7kDB0TVp9n9q5rpepH9bQ3Z+EQUSvfeiGcRUfulNqxslEoFAwYMIABAwagyCuWBxjZ2gtPezMiE9NZ6Hc7z3WKRe/eYnZSdouAYrrKAJp529Gjrgt6ofwsLwWdy8q2Zoxq7Q3At6U8loqLUiHno6yMt7+OBRMelwoDBz52bQYEiAUzKwCtqjowsHFlBAFmbL5kqDD/vPBqo8qsG9uCqo7mRCelM2H1ecauPEdEvPHc5IW5viUKR3mcS5VCzkt1K7F8VDOOftCRdztVw95cza3IJF5d6M/vR4P4tFdt9kxuR/vqjobtTgU/ovOPR1h7KrRYc+HgZh4GK/EXWy+Xa2yeZBkqgNK2DGWj1en5fu8NFmd1/m1RxY5fhzQq1QaM2enDMhn8PqwJXcuwLkl+ZPdVUyvlHJzaHnc7I1bN3rcPXn5Z7Fm2bBk4F+/73o1JocvcI2To9Cwd0ZSONZ2MJ6ORSEjLpP2cwzxKyWTWK3V5w8hPXMZAEARe+/0kp4NjGdC4Mj8MzOoW/9NPYm+5/v1h/fryFTKLR8kZdJ57hNjkDKZ1q87ETj7lLVKRSdfqWHDoNgv97qDVC1iaKPmoZ01eb+pRIRqdSlQsHiVn8OX2K2y5IBadreJozvcD6tPY044jN6P4YutlQp6IHWpdzYEfBtYvcuNXQRD4+J/LrD19FxOlnNVjmtPEyzjWV8ky9ByiVMiZ0bMWC4c2wlyt4GRQLL1/Psb5u49K7ZjDWnoxtLkHggCT/w7gesSze9iUBd1qO9Oqqj0ZWj2zd18z8s67wWuvwZ49YnXqYuJhb8bI1l6AaB3KrICWFyuNSuwQD8w/cLNMAvSLikwm4+OeYsD3pvP3uBqeNf46dAC9XnSblcCKZ0xszdV83luMv/n50G2CopLKWaKiY6JUMLVbDXa82wZfdxsS07V88s9lBv9xkjvP4feRKF1szdXMH9yQP4c3wdnKhKCoZAb8doKvtl+lmZcdB6a259NetcjWo/1vR9Nl7hE2nrtXJCuRTCbj65fr0KWWM+laPaOXn+XWw9KNn80LSRmqYPSsV4mtE1tT1dGciIQ0Xlt8gpUni2eCLAwz+9Z57KJbdb7cA6qzU+3lMth1KYKTQUZOsX7zTfHv4sVwp/juwXeyzMh3opJZc+qukYQzLkOae+DtYE50UgaLjwSVtzh54utuQ+/6lRAE+N+erDpTDRrAkCHi+xkzyk+4p3jZ15W2Pg5kaPV8/E/FyIApDjVdrNg0vhWf966NmVrB6eBYevz0LwsO366Qir1E+dKltjP7prQ3uIr/8g/mpZ+Ocjb0EWPaVmH1mBZYasT4zuR0HdM2BDJm+Vkii5CtrFTI+eX1hjTysCE+NZM3/zptVDduYZCUoQpINSdLtk5sQ4+6LmTqBD7bcplPt1wulclXpZCzcGhjnCxNCIpOLrUsqeTk5KxGiDKSk59dvKumixWvNxNbZny1/Wqu8vIlomNH6N5dDKb+7LNi78ZKozK0D5l34GapZenkRUpKCm5ubri5uRn6veWFSiHnox5iXM4f/wbxIL5iFmL8oHsNVAoZR29G8e+tKHHh11+LsUN798Lhw+UrYBYymYxvXqmHRiXnZFAsG87dK2+Rio1CLmNUG2/2Tm5Hu+qOZGhFN32fX45x8V5ckfdX2DEpUTBFmSvLCmtTFd8PbMCykU2pZK0hNCaFwb+f5POtl6lf2ZrtE9tQ1fFxoPfB65F0nXeUPZcfFPoYpmoFS95sShVHc8Lj0xix9LShenZZIClDFRQLEyULhzZiRo+ayGWw+tRdvtl5rVQUIjtztaF68R//BnGhAhRknNq1OpYaJVcfJLDhbJhxdz57tvh37doSuWEGN3WnurMFcSmZ/HTwlpGEKxhBEAgPDyc8PLzA8dCttjPNvMRCjD/sLf/01bzwtDc3xDTN3nVdTNetUgXGjRNXmDEDKogVxsPezBDw+c3OaxWy3lRRcLczY/nIpsx7rQG2ZiquRyTyygJ/vtl5lZSM/HtXPU1RxqTE80uHGk7sm9LO8LC64kQo3ecf5X5cKpsntKbdE8HV8amZvL3qPOvOFN5ybmuuZvnIZjhamnA9IpFxK8+WWcV/SRmqwMhkMsa1r8p3/esD8OexYH49ZMQsqyfoWtuZl31d0QtkNdUrX3eZvYUJ73UWg1R/2HfDuDEvDRuKKdxQIjeMUiHn015iHMmKEyFlFkei0WgICAggICAAjUbzzHVlMhkfGwox3quwhRjf7eRjUH63ZLeL+ewzsZr4qVNiT7kKwug23tSuZEV8aiZf77ha3uKUGJlMRr+GlTkwtb1hDvjj32C6zz/62FJXAEUZkxLPN5YaFbNfrcfqMc1xszHl3qNUhv55iv/tvs5Prz2ufp7N9E2XWFqEtjDudmYsG9kUCxMlJ4Nimbo+sEwKhkrK0HPAwCbuhuDNH/ffLLV+Q1/0qYODhZhOWVpKV1EY3tKLKlkxL0aXx0humHbVHelYwxGtXuDbXUbqrVYACoUCX19ffH19C5V66+tuQ98GrgiCmGpfEZ/cbc3VTOhQDYAf9t4QY9ecnWHKFHGFFSvKUbqcKBVyZr9aD7kMtl4Ix+9GZHmLZBTsLUz4aXBDlo5oiqu1hrDYVIYtOc376wOJS8l45rZFHZMSzz+tqzmwd0o7hrcUrbprT9+l58/H6FDDkW/61UX5RIbil9uvsuBw4efwOq7W/D6sMSqFjJ0XH/B1GZQxkVLrC6CsUusLw7z9Nw3umLmDGvBqI+N3pN516QETVp8XaxC905q6btZG2W9xC4kduv6QUcvOolLI2D+lPV4ORixANnGiWKF60SKxKGMxuR2ZSPf5/6LTC6wZ05xW1RwK3qiMCYtNofOPFbscQFqmjk4/+BEen8aMHjUZ174qxMfDli1iEcYKdpP9avtV/vIPprKtKXsntzNekdAKQFK6lh/23mD5iRAEQYwZ6dvAlVcautLIw7bUi7T+l0jX6ohNziAmKYOY5Axik9Mfv0/KIEOnx0ytwNxEiZlagUqfwcTuYtjC1jN3cLCxwsxEiYWJAjO1EnO1EjMTBSpFxbFlnAyKYfqmi4RmpdoPaFyZbrWd+WDjxRxxPxM6VOWD7jUKPX62BYbz7loxlOHjnjUZ265qkeQqyv1bUoYKoCIpQ4Ig9oZZdjwEhVzGoqGN6FbHxejHmbD6HLsuRVCrkhXbJrY2ykVXXGVIEATeXHqGozej6FrbmT+GNymxLAbi4kTrUJZcJeGLrZdZfiKUmi6W7Hy3LYpSrNuSmZnJ6tWrARg6dCgqlapQ283edY3FR4PwcbJg93ttUVagyTSbTefu8f6GQCw1So5+0BFbc3V5i5Qvyelaus0T4yXeaOHBrFfqlbdIRudc6CNmbL7IzYePXcCVbU152deVV3zd8HEWK7AXd0w+z2Tq9ITGpBAUlUTYo1RiktKJTc4gOklUeLIVoMT0wsdeAegz0gibNwAA9ykbkavzdjuqFXI87M1o7GFLYy9bGnvaUsXBvNwU1ZQMLT/svcnS48EIArjZmDL71XrM3HaFoCc63o9o5cXnvWsXurbVn/8GMWunWGZl/mu+vNLQrdAyScqQEalIyhCAXi/wwcaLbDp/D7VCzrKRTY1uiYhKTKfbvCM8SslkatfqvNu55AXmSlJi/tbDRF76SbS8rB7TnNYV0PLyKDmD9t8fJiFNy/9ercfgrADD0qC45zI+NZP23x8mLiWTb/vVY0jz0pOxuOj0Ar1/Oca1BwmMbuPNZ1nuYQDS0uDKFWjcuPwEfIpjt6J5Y8kpAJaPapajOu9/Ba1Oz/E7MWy5cJ+9lyNIzngcT1i7khWvNHSlczVrqrmJ3/2/1I5DEARikjMIikomKCqJoGjx752oZO7GphQ601Upl2FnrsbOXI2DhQl25mrsLdTYm6tRK+WkZOhIydCRnK4lPiGJBSNaAdDrx/1kyFQkp+tIztCSkq4j4xnlD+zM1TTyEBWjxp621K9sjUZVthbVsyGxvL8hkNCYFOzN1SwY0ohfD9/m2O1owzqDGldmdv/6hX5onLXjKn8eC0alkLF0RDPa+Ij3AEEQ0OmFfB/sJGXIiFQ0ZQjEyemdNefZe+UhZmoFa95qga+7jVGPsfXCfd77+wIqhYztk9pQ06Vk3z0tLY3+/fsDsGnTpiIHWc7cdoVlx0OoXcmKne+2Me7Tj14vVjpWKmHAgGLvJvsJxsHCBL8POmBRSm6TkpzLpf7BfLn9aqnLWBKO3oxi+F+nUSlkHHq/g1iF/NYt6NwZkpMhOBgqyLUIj8ems5UJeye3w8as4lqzSkpqho4D1x6y9cJ9/G5Eoc1SBgRdBpl7vsfZSsOe7Vtxtiv7nn0lIS1TZ7DyBEUncycqyaAAJaTlb9kxUyvwdjDHy94cR0sT7M3V2FmosTc3MSg79uYmWJkqCz1nFXR9Z2j1pGboSEjL5EZEImdDH3E+9BGB9+JIf6pVjEoho46rNU2ylKPGXrY4WZZ+gHtMUjpvLj3N5fsJWJoo+WN4Y3ZfjmD5iVDDOr3qVWL+YN9CeR70eoH31l1ge2A45moF68a1xM3GlE+2XKJ7HRde9s3bWiQpQ0akIipDIF68o5efwf92DDZmKtaNbWnUpqGCIPDWirMcuBZJ/crWbB7fqlzdKo+SM2jz3SGSM3T89kZjXqprRPfg8uUwYgS4ucHt21DMbJgMrZ7u848SHJ3MxI7VmNa9hvFkNBIZWj3d5h0hJCaFyV18DFWqKxrDlpzi31vRvOzryqRO1fhl33W+mzkUzZ1bMHMmfPFFeYtoIDVDR6+f/yUoOpm+DVz5+fWG5S1SmfAoOYNdlx+wNSCc0yGxhuVqhZwONRx5paEbnWo6lYplYtO5e6Rpdfg4WeLjZFEod2q2whMcnUxoTDIhMcmERKcQEpPMg2cU+JPJRJdPFUcLqjiYU9XRXHzvaI6LlabCxE9laPVcDo/nfOgjzoY84mzoozxLP7jbmdLU047+jSvTqqp9qcmfkJbJmGVnOR0Si0Yl57c3GhMWm8IX264Ymr22r+7I4mGNCzVG0rU6Rvx1hhNBMVibqlDKZcQkZ9CjrguL3sjbWiwpQ0akoipDIMYsDP3zFBfC4nCyNGHj263wsDdeL6+HCWl0nXuEhDQt01+qyfgORQteMzbf773OgsN3qOliya532xqvn1J6Ovj4QFgYzJ37OIOpGOy5HMHbq85hopTj90GHIvfpKQt2XAxn4poALEyU/PthxYzLuXw/nt6/HMuxbK11KC0/fke0CgUFgb19OUmXm4C7j+i/6Dh6AX4d0pDe9V3LW6Qy5d6jFLYHPmDrhftcj3jcSsHSREm9yta4WGtwsdJQyVqDi7Uplaw1OFtpsDdXF+s6zo7Ry8beXE0VR3Pc7cxwtjTBRKVAqxOITkonJCaZ0JiUZyo8AJYaJVUcLajqYE6VJxQeL3vzMnc1GQNBEAiLTeXc3VjOhjziXOgjbjxMzFGyq46rFWPbVaFnvUqlEpCdmqFj/Opz+N2IQqWQMf+1hlibqhi78iwpWe7WZl62LB/VHFN1wec4KjGNbvOO8uiJIremKgUBn3fN8zeSlCEjUpGVIYC4lAxeW3ySGw8TcbczZePbrXC2Mp4ZdMPZMD7YeBG1Us6ud9tSzankwcbFJS4lgzbfHSYpXcuioY3oUa+S8Xa+ZAmMGQMODuKN1rJ4VjZBEHht8UlOh8TyaiM35g7yNZ6MRkKvF+iVFZczrn0VZvSoVd4i5SA4OplfDt5ic8D9HMvHtvHi40+HQmAgfPTR4+KZFYQf993gl0O3sTFTsW9yO5yMeB0+T1yPSGBLQDjbLtwnvAAFRKWQ4WwlKkou1o+VJRcrDRqVnMQ0LQlpmeLf1EwSsv6//iCBO1FFr85spVHi7WCOp705Xg7meNmb4eVgjre9OTZmqgpj5SktEtIyuXA3jgPXHrLh7D1Ss9ovuVprGNXGm9eaumOpMW7we4ZWz9T1F9hx8QFyGXzbrx7NvO14/Y+TPEwQLVeN3G1YPrqZ4dgP4lOx0qhyZGjeepjI+NXnuR2Zu57bH8PzbjQuKUNGpKIrQwCRCWkMXHyC0JgUqjtbsG5sS6M97T+ZzdXIw4YNb7cqVqZUcnIyTk5iOndkZGSxAyyzbzhGtw5ptVC7thib8vXX8Omnxd7VxXtx9P3VH4Adk9oYrTxBNikpKTRoIHZ4DwwMxMys6NbAg9ceMnr5WTQqOUc/6FhhbtyCIDBm+VkOXs9du6djDUeWOjyEvn3BzEzsLedi/GzK4pKh1dNvoT9XwhPoWMORv0Y0/c/fXLPJa0zq9QKB9+IMbqiH8Wk8iE8jIiGNiPg0opLSS62wuEYpp7arFa2qOojWnedI4THWXFkQj5IzWHUylOUnQohOEutIWZooGdLcg5GtvXGxNt6coNMLfLpF7EwPYpp8r/qu9PnlX2KTRStPXTcrVo1uzvWIRCauOc+H3WsyqKm7YR9J6Vqmb7rIzou5W3z0b1SZHwc1yLVcUoaMyPOgDIFYR2bAb8d5mJBOg8rWrH6rhdGCY+/HpdJ93lGS0rV81rs2o9t4F3kfJckme5L4lEzafHeIxHQtC4c2oqcxrUN//y1WprayEoN07eyKvavJfwew5UI4LarYsfatFkadgI1xLgVBoP+i45y/G8fwlp589XJdo8lXUtIydYxadobjd3I26XWzMcV/ekdo0QJOn4b33oP588tHyHy4+TCR3r8cI0OrZ/ar9QxtC/7rFGdMZur0RCamExGfSkR8Og/iU4mIT+NBlrKUodVjZarESqPCUiP+tTIV36dr9fxvd+4ip77u1kzs6EOnmk7Ge1AqY4w1VxaWtEwdWwLu88e/QQZrm1Iuo6+vK2+1rUKtSsa57wmCwHd7bvDbEbFB9jsdq9KzbiUG/HbCYKFytFATk5yBXoCmXrZseLtVrn0s9Q/h213XDMH7ILo4Az7rmiuuVVKGjMjzogyBaEYctPgEj1IyaVnFnqUjmxrN1736VCif/HMZjUrOnvfaFbn4oTEv8Ln7b/LzwVvUcLZk93tGtA7p9WKrjosXS+yGuR+XSqcf/EjX6vM14RYXnU7HyZMnAWjRokWxK/4evxPNkD9O5czaqiCkZGgZ8deZHIG5AFe+7I75v37QtauY+bd+vRjhWoH442gQ3+y6hrlawe732hk1jq+iYqwxWVgydXpqfrbHkNre1seBCR2q0aKKXYW3/BREWStD2ej1AodvRPL70SBOBT++7tr6ODC2XRXaVHMwyrld6HebOXtuADCshSfd6jgzYumZPMsUHHq/PVUcc4dmnAuNZfyqc0QmPq6MvmJkU9rVyFlMtij374pXdU2i2Pg4W7JsZDPM1QpOBMUwaW0Amc+oSVEUhjTzoFVVe9Iy9UzfdLFMesXkx+g23lhqlNx4mMiuInRFLhC5HGbNgqZNoUuXEu3KzcbUYEGbveua0X4HEFsftG7dmtatW5foptOqqgOtq9mTqRP4uQwbzRYGM7WSv0Y2paGHTY7ltyOTxBT7S5dgw4YKpwgBjGrjTTNvO5IzdEzbEFjoWjTPM8Yak4VFpZDjbmtK9zrObH2nNStHN6dlKWZGvQjI5TI613Jm3biWbH2nNb3rV0Iug39vRTNsyWl6/nyMfwLulXgum9ChGrNeqYtMBitPhrLqZCiOFnmHdWw4dy/P5Y097dj1Xjsae9galn2/70aJ5JKUof8YDdxt+PPNpqiVcvZffciHG42juMhkMr7rXx9TlYJTwbGsPhVa8EalhLWpyqBo/HTglnFvNr17i41BO3cu8a7Gd6iKvbmaoOhk1pwqfOfmsmRaNzH9f9P5e3kGJpYnFiZKlo1shs8TQfuHb0SKClDdiuPWexqFXMaPAxtgrlZwOiSWJceCyluk/yQb3m7F4mFNaGDkGmsS4n3k1yGNOPJBR0a08sJMreDagwSmrAuk76/+3HqYWPBOnsEbLTyZ/5ovSrmMvVce5ptJtvFsGNp8lC8HCxPWjWtB9yyr+6X7CZwJjslz3cIgKUP/QVpWtWfhkEYo5DL+CbjPb0fvGGW/7nZmTH9JvHnO3n2dsNgUo+y3OIxq442VRsmtyCR2XjKidUgmM5q1wVKjYnJXsY7P/AM3c/ToKQlarZYNGzawYcMGtNqilfp/moYetnSp5YxegHkHbhpFPmNibapi/biWWGrE+LctT2WYcf8+LFtW9oIVgLudmaF69g97b3IjomQ3j4qOMcdkYXG0NCmT47zIuNuZMbNvHY5/1IkPutfA1kzFtQcJ9P7lGCtOhJSoeerLvm78PrwxJko5wdEp1HW1wtIkp1IUlZTBkZtR+e5DqZCzeHgTWlYRy2xMXBtAYlrx5llJGfqP0qW2M7NeEZ+e5+67yYWwOKPsd3hLL5p62ZKSoePjfy6VWwd0K42KMW2rAPDTgZvGd0UkJMCXX8LkySXazetN3anmZMGjlEwW+hW+a/OzSE9PZ9CgQQwaNIj09NxF1YrK+92qI5PBzosPuBIebwQJjYutuZqlI5oCEBKTwuX7WTI+eCDWhxo1Cq5eLUcJ8+a1pu50qulEhk5MLc7QGs9VWtEw9piUqFjYmKl5p2M19k5pR7vqjqRr9Xy+9Qqjlp0hKrH4v3enms4sH9UMCxMll8MT8LA3x80mZ222ufsKfkhbPLwxLlYmPExI56vtxZsLJGXoP8zgpu70ql8JrV7g3bUBJBWxYWBeyOUy5gxogIlSzr+3oll3JqyQ28lp37497du3Ry43zrAb2doLa1MVd6KS2XEx3Cj7NHD1qljp+Jdf4EbxfdFKhZyPe9YEYOmxEKNY04x9LmtVsqJPVpHAHwsx8ZQHTbzseCmrKfH8bAtWpUrw0ksgCPD55+UoXd7IZDL+178etmYqroQn8MuhihWXZUxK4/p+UanI59LJUsOyEU35ok9t1Eo5h29E8dL8oxy6/rDY+2xRxZ61b7UwXCcaldjiJJsrDxLwu5G71MaTWGlU/Px6I2QyMc5oTzFiSaVssgJ4nrLJ8iI+NZOeP/3L/bhUXm3oxtzXfI2y3+yMGUsTJfumtiu3Ssu/HrrFD/tuUsXRnP1T2hu3W3zfvrB9O7z2mph2X0wEQeCNJafwvx1Dnwau/FIB2zUERyfTZe4RdHqBTeNb0djTtuCNypigqCS6zD2CXoBtE1tTv7INXL4M9euLCtH582I2YAVj16UHTFh9HrkMNo5vRSOPinduJSSKyo2IRN77O8BQcXxYC08+7lmrUJWk8+J2ZCJv/HmaiIQ0mnvbER6XQtgjsWinhYmCw9M6Fuga/d/u6/x25A62Zir2Tm6Hhgwpm0xCxNpUxU+DfZHLYHPA/dwxF8VkVBtvfN1tSEzX8vHm8nOXvdnKCxszFUFRyWwLNM53MzBrlhg/tG6dWPW4mMhkMj7uWQuZDLYHhhNw95ERhTQO3g7mDGhUGRDbnlTEZ6Qqjha8ktWQcf6BLCtL3bpibSgQLXkVkJ71KvGKryt6AaatDyT1ia7vEhLPKzVcLNnyTmtDMsvKk6H0+fXYYzd2EanmZMnSkU0NSTqtqzliZyZWpE5K1zFh9bl8g6mzmdq1OrUrWfEoJZMPN10s0jwmKUMvAE287Hi3sw8An265zN2YkrtqFHIZ3w+oj1ohmkoPXnu2GbO0sNSoeCsrdujng7cLvFiKRP36MGiQ+L6EjUHruFrTP0vZmLXzWoVUNt7t4oNaIedkUCz+t4uflVGaTOrsg0Iu49D1yMdxcJ9/LpZF2LYNzp4tV/ny48u+dXGx0hAUncx3e3IXC5SQeB7RqBR81rs2K0Y1w8nShNuRSfRb6M/iI3eKlcVcq5IVPwwUK0n/fSaMN1t5oVGKasqZkEfM3nXtmdurlXLmD/ZFrZTjdyOKdWcKn8X7XClDR48epU+fPri6uiKTydiyZcsz1/fz80Mmk+V6Xb/+4k1GEztWo4mnLUnpWt792zj1h3ycLRmV9VTw3Z7rzwxiTk5OxtHREUdHR5KTi95T6Fm82coLWzMVwdHJbL1g5NihmTPFG+3WrSW+0U7rVgNTlYJzoY/YfTmi2PtJTU3F19cXX19fUlNTSyTTk7jZmDKkuVgx+ft9NyqkwubtYE6/htnWoazYoRo1YOhQ8X0F6mb/JNZmKuYMqA/AsuMhHLsVXc4SGZfSGpMvIqU5V5YW7ao7smdyO7rXcSZTJzB793XeWHKKB/FFHwu96ldiQlZT8IV+d5jeo4YhwXeJfwjbAp89x1d3tuSjl8Q4ze+LEAP5XClDycnJNGjQgF9//bVI2924cYMHDx4YXj4+PqUkYcVFqRA1ZkuNkgthcfx0wDjBnOM7VMXaVMWtyCQ25VMgK5vo6Giio41/E7AwUfJWO9E69MuhW8a1DtWs+fhG++WXJdqVi7XGIOf/dl8nXVs8d4lerycwMJDAwED0euNmKL3TsRqmKgWBYXEcKCdrX0FM6lQNhVyG340ozoVmuRw/+0xsrlurFugqphuqXXVHhrXwBOCDjYFGK7VQESjNMfkiUlpzZWliZ67mtzca879X62GqUnD8Tgwvzf83z15iBfF+txp0rCFmrf1xNDhHM+n311/gekTCM7cf0cqLNtUcSM8s/Fh8rpShHj16MGvWLF599dUibefk5ISLi4vhVRYVUisilW3NmP1qPQAW+N3mxJ2Su0KsTVVM7FgNENtkpGWWz43ozZZe2JmrCYlJYYuxrUOffw7Dh8O8eSXe1bh2VXC0NOFubAorTxSvcKVGo2Hfvn3s27cPjca4DVYdLU0Y2doLEJvilmel8fzwtDenf6OnrEM+PhAeDj/8ABX4+p7RsyZe9mY8iE9j5rYr5S2O0SjNMSnx/CCTyRjczIOd77ahfmVr4lMzeWfNeT7cGFik0hIKuYz5gxvi7WBOeHwaB6895O32orUoUycwbMnpZz5MyOUyfhjYACtN4ftzPlfKUHFp2LAhlSpVonPnzhw+fPiZ66anp5OQkJDj9V+id31XBjWpjCDAlHUXeJScUfBGBTCspSduNqZEJKSx1D+k5EIWA3MTJWNLyzpUrRosXy7+LSHmJkqmdRMLMf5y6DZxKUU//wqFgq5du9K1a9dSUezHtauKpUbJ9YhEthu7ZIGRmNTJB6Vcxr+3ojkXmtVHySJ3D6OKhplayY+DxISGfwLuG7p4P++U9piUeL6o4mjBpvGtmNixGnIZrD97j/GrzhXJGm5tquKP4Y2xMFFyKjiWlAwtfeqLjbmjEtMZv+rcMx/WXKw1fN6ndqGP959WhipVqsTvv//Opk2b2Lx5MzVq1KBz584cPXo0321mz56NtbW14eXu7l6GEpcNX/SpQxUHcyIS0vhoc9Ei7vNCo1LwftYNfqFf8W7wxmB4S0/szdWExqSw2UhZc3mSWTL3xoDG7tR0sSQ+NZOfDxqnEKMxsTZTMTYrKH3e/ptG7atmLNztzBjYRAxIn7f/KZevvz98/HE5SFU4Gnva8n5WG5Qvtl6pkNmFEhIlRaWQM617DZaObIaJUs7B65GMW3muSN6Dak6WzB0kBlSvOBFKy6r21HCxBOD4nRh+OvjsmKCX6lYq9LH+08pQjRo1eOutt2jUqBEtW7Zk4cKF9OrVix9++CHfbWbMmEF8fLzhFRZWuKKCzxPmJkp+fr0hKoXYF2aNEZ5OX/Z1o6aLJYlpWhYcLp8bvJlaybj2j61DRr+Jh4WJadzduol1bYqJQi6m2gOsPBlCSHTRgiS1Wi07d+5k586dpdb6YGQbb+yz3I4FxYKVF+90rIZKIePY7WhOZ3fZjoiAjh1h9mz499/yFfAZTOhQlZfquJCh0zN+1fkSVfGtCJTFmJR4Pmlf3ZGlI8SUeb8bUby14myRFKJudVyY0kV82J657SrvdfZBpRBVl58O3ubgteIXfHyS/7QylBctWrTg1q38g4dNTEywsrLK8fovUtfNmg+7ixH3X++4WuLGewq5jI96iPtbfjyUe4/Kp2/ZGy08cbBQExabyubzRr6Jy2SweTP4+cHBgyXaVbvqjrSv7kimTuB/u4uW3Zienk7v3r3p3bt3qbU+sDBRMj4ro+Png7eKHexdmlS2NWNgE9FyO29/1hOiiwuMHCm+r6CZZSDGVvwwqAHVnCyISEjjndXnK6QFrrCUxZiUeH5pVc2BpSObYqZW8O+taEYvP1OkeluTOlWjW21nMnR6vtx+handHidBTVobUOQHyrx44ZShgIAAKlUqvOnsv8zoNt609XEgLVPPpLUBJQ5+bl/dkZZV7MnQ6Zm7P6f5Ui6X06RJE5o0aVKqJebN1EpDoN0vh24btx9U5cowbpz4/vPPS2QdAvikVy3kMthzJeKxZaMQlNW5fKOFJy5WGsLj01hzqmLGtmRbh04ExXAyKCsh4JNPQKWCw4fhyJHyFfAZWJgoWTysMZYmSk6HxPLNzmfXUKnIlNWYfBH4r57LFlXsWT6qGeZqBf63Yxi57DTJhWwRJZfLmPuaLz5OFjxMSGf/lYe0reYAQEqGjrErzpKSUTKL5HN1ppOSkrhw4QIXLlwAIDg4mAsXLnD3rjhRz5gxg+HDhxvWnz9/Plu2bOHWrVtcuXKFGTNmsGnTJiZOnFge4lc45HIZPw5qgL25musRiTksFMHRyUWOJZLJHluH/gm4z9Xwx8HnpqamnDlzhjNnzmBqWrqtO4Y298TBwoR7j1LZZGzr0IwZoNHAiROwZ0+JdlXd2ZLXmop1fb7ZebXQmVtldS41KoWhWOeCw7dLPNmUBm42przW9CnrkIcHjBkjvq+APcuepKqjhaFFzrLjIca3ZpYRZXl9/9f5L5/Lpl52rBjdHAsTJSeDYhm59Eyhe2ZamCj5fXgTrDRKzt+Nw85CbcgWuxmZxPRNJeuE8FwpQ2fPnqVhw4Y0zOo/NHXqVBo2bMjnWRPegwcPDIoRQEZGBtOmTaN+/fq0bduWY8eOsXPnziKn5v+XcbLUGCp+LjsewvbAcL7ecZWuc48QVAzTYwN3G3rVr4QgwJy95VPc0lStMLh4fjW2dahSJXjnHfG9EaxDU7tWx1ytIPBefIHFxMqDgU0q42lvRnRSRrllChbEOx2roVbIORUcy/E7WbVZPv4Y1Go4elR0a1ZgutZ25t1OYqbijM2Xit3OQELieaCxpy0rRzfDUiNaRN/86zSJaYVLSvF2MOfn1xsik8HWC+H0qvfYy7M9MJxVJbBgS41aC+B5b9RaWL7YepnlJ0KRAdkD4vsB9Q0xGUUhJKvpp1YvsOat5rSq6mBUWQtDWqaOtnMOE5WYzjf96jK0uafxdh4VBV5ekJIiNnLt3btEu1tw+Dbf772Bi5WGg++3x9yk8LUxyoJ/Au4xZV0gVhol/07vhLWpqrxFykX2+G3mZce6cS2QyWSi0rpwIXToILrMKjB6vcDo5Wc4fCMKNxtTtk9qg525urzFkihH9HqBhLRMEtO0JKVnvdK0JGb9TUrPzPF/coYWvR68HMyp6mhOVScLqjpaVMjrFeDivTje+PMUCWlafN1tWDG6GVaawsm6yO8O3+25jlIuo1VVe45mVXS3UCs4OK0DzlZiraui3L8lZagAXgRl6PjtaGZuv8LNh0k5lr/ezMNQpLGofL71MitOhFK/sjVb32lNamoqtWuLNR+uXr2KmZlZieUuiL+OBfPVjqu4Wmvw+6AjaqURDaHTp8OcOdC1K+zbV6JdpWXq6DrvCGGxqbzTsSofZAW250dqaipdunQB4MCBA6VuStfpBXr8dJSbD5OY2LEa07rXKNXjFYeHCWm0nXOYDK2e1WOa07qag5j917UrTJsGo0djqOlfQYlPyaTvgmOExqTQppoDy0Y2Ral4Poz3ZT0m/4ukZui4EBbH8ev3+eLNl8jQ6nAZvRC5qmRFLB0tTUTlyFFUjkQlyRxXa1Pk8vK9Ji7fj+eNJaeIS8mkQWVrVoxqjrVZwQqRIAhMXBvAzosPsDNXo1LIeJggBu73ql+JBUMaAZIyZFT+68qQIAh8suVyngGyNV0s2TO5XbH2G52UTvs5h0nO0PHrkIZ0rGqNRVZRvKSkJMzNzUskd2FIy9TRbs5hIhPTmTuoAa9mNUo1ClFRsGSJaH2wtCzx7vZdiWDsynOoFXL2T22Hp33+5yc5ObnMz+Weyw94e9V5LEyU+E/vVKgJq6yZue0Ky46H0NjTlo1vtxStQ4JQ4ZWgJ7kRkUi/hf6kZOgY175KjjYEFZnyGJPPO5GJaZwLecTZ0EecDYnlSngCWr2APiONsHkDAHCfshEzczMsTFRYapRYmGS9NEoss/5amCgxN1FiqVGi0wsERydzJyqJO5HJRCSk5Xt8jUqOj5MlvepXon+jyjhampTVV8/B1fAE3lhyitjkDOq6WbFyVHNsC2EVTcnQ8urC41yPSKSKozlBUY/DOpaNbEqHGk6SMmRM/uvKEIgK0Q/7brDg8J0cy2XApS+7Y1FMt838AzeZf+AWnvZmbB3XBFtr8fyV5WSZ7YKqXcmKne+2EW+QFRBBEBj+12n+vRVNl1rO/Plmk3zX1Wq17NixA4DevXujVJa+W02vF+j5879cj0jkvc4+TOlavdSPWVQiE9Jok2Ud+ntsC1pUsS9vkYrFjovhTFwTAMCvQxrSu75rOUtUMOUxJp837sakcOx2NGdDYzkX+ojQmNzlR1ysNNR30fDH6DYAxMYlYGtd/IetpHQtQVFJBuXodqT4PiQmmUzd41u/Ui6jSy1nXmvmTjsfRxRlbDG6EZHIkD9OEpOcQa1KVqwe07xQbuKw2BR6/3KM+NRMmnnZcTpEzMp1tdFwcGoHMtOSJWXIWLwIylA2fxwN4ptdOdN7DS6HYpCcrqX994eJTsrgk27ejO1cByhbZSguJYOWsw+RmqljzZjmtCrmd3kmgiBaipycSrSb25GJvDT/X7R6wfBkU5HYefEB76w5j6VGif9HnQrt3y9LPt1yiVUn79KuuiMrRjUTF2ZmwsqVYmXqJUvKV8BCMnvXNRYfDcJMreCfCa0NVXclni/iUjLYcfEB/wTcf9xUOAuZDGo4W9LEy5YmnnY08bLFzcaUlJSUUreyaXV6wh6lcioohnVnwwi4G2f4zNVaw8Am7gxq6o6bTdm5O289TOT1P04RnZROTRdLVo1pjoNFwdaq9WfC+HDTRUxVChwt1dyNTQVgfPsqjG/tJilDxuJFUoYA1p8NY/rGi4Yg6tGtvfisT51i72/liRA+23oFG5WOwFkvA2VvRv9sy2VWngylU00n/hrR1Lg7v3IFhg0T3587V2KXzNc7rrLkWDBVHM3Z814748Y5lRC9XqD7/KPcikzi/a7VmdTZp+CNypiw2BQ6/OCHTi+wY1Ib6rpZQ2io2Mg1M1OsSt2mTXmLWSBanZ43l57G/3YMXvZmbJ3YpsIGwkrkJEOr58jNKDafv8fBa5FkZBXTlMvE1PJm3nY09rSlkadtng8U5eFyvB6RwN+nw/gn4L6hAapMBu18HHm9mTudazkbqj6XJrcjkxjyx0kiE9Np7GnL32NbFHhcQRAY/PtJTgXH0tjTloC7j9AL4vneONqXxj6VC3X/rjgzrUSFYFATdxa90YjsW/rWEqZ7D27mgbeDObHJJevnVRJGtfFGJoND1yO5HZlU8AZFwcUFbt2CgADYurXEu3uviw8OFmqCopJZcSIkz3V0Oh1+fn74+fmh05VdZWi5XMbErBTwJf7Bha4PUpa425kZmjkuOpLl9vX0hBEjxPdfflk+ghURpULOL683ws3GlJCYFCb/HVDoOlTlQXmNyYqCIAgEhsXxxdbLNP/2AG+tOMvuyxFk6PTUdLHkk561ODmjM+vGteT9bjXoUMOpQllWa7pYMbNvHU593JmfBvvSsoo9ggBHbkbx9qrztJx9kNm7rxFshErPz6KakwVrx7bAUqPkXOijQlXnl8lkfPtqPdQKOedCHxnS7fUCDFtyqtDHlpQhiVy8VLcS3/UXs8iikzLwvx1V7H2pFHI+KOfsI28Hc7rUcgbgL/9g4+7c3h7efVd8/+WXJa47ZKVRGdqkzD9wi8jE3AGQaWlpdOzYkY4dO5KWln+AZGnQu74rVRzMiUvJZOWJ0DI9dmF5O6vG1O5LDx5P3h9/DEolHDggusueA+zM1Swe1hgTpZzDN6KYfzD/NkLlTXmOyfLkflwqCw7fpsvcI7y8wJ/lJ0J5lJKJo6UJb7X1Zte7bdkzuR1vtauCk1XJssLKAo1Kwcu+bqwd24LD0zowvkNVHCxMiE7KYPGRIDr/6MesHVeL1EqjqFR1tODHrNp3S44Fs/vSg0JtM6GjeN3734nBPiveKDGt8HJKylAhuRdbPr22yotBTT3oWc8FgM+2XEFbgr5JPeq6UM/dBpW9Bw7uVcsliHlMG28ANp27R0ySkXsnTZ0qZpRduABbtpR4dwMaV6Z+ZWuS0rV8v+dGrs9lMhm1a9emdu3aZX4uFU9Yh/74N6hCVqWu6WJF55pO6AVYnG0d8vJ67qxDIPYQ/Laf+GDy88FbrD9TMRtHl+eYLGsEQeBUUAyjlp2hzXeH+H7vDe5EJWOilNO3gSvLRjblxEed+KRXbWq7Fj20oqKcS28Hc6a/VJMTMzqxeFhj2ld3RC/An8eC6T7/6OMCp6VAtzoujGsnNt3+YONFgqIKtuiP71AVTzszYpMziEnOKPIxpZihAsiOGXKfvJ5qlR3pUN2JDjUcaeZth0alKG/xSpVHyRm0m3OYxHQts16pyxstil+48GRQDIN/P4lSLmP/1PZ4O5Rt6q0gCPT91Z9L9+OZ2rW6oc2E0fj0U/jmG6hfX3SZlbCn0Pm7j3h14XEAtrzTGl93GyMIaRy0Oj2d5x4hNCaFT3rW4q2sSasicS40lv6LTqBSyPj3w064WGsgOBiqVwetFo4fh5Yty1vMQvPNzqv88W8wMhnM6V+8YqgSJUOnF9h/NYLfjgRxISzOsLxFFTtebVSZHnVdsKxArq/S4PD1SD7+5xIP4kXr3+vN3JnRs1apuPy0Oj1D/jzF6eBYarpY8s+E1piqn33PPR0cy6DFJwz/69NTCJs/SIoZMiYKuYygqGT+8g9m+F+nafjVfkYtO8OKEyHczSNF8r+Arbmaqd3EFOq5+28aAuuKQ4sq9nSs4YhWL/DD3tzWjtJGJpMxpq1oHVpxIqTETWlzkW0dunjRKLFDjTxs6Z9VF+mLbVcqVLyIUiHnnY6idWjx0aBSNZkXl8aedjTzsiNTJ7DkWJC40NsbsnsXfv11+QlXDD7uWYvhLT0RBPhw00U2nXs+e5g9j6Rl6lh7+i5d5x7h7VXnuRAWh1opZ0hzDw69356/x7ZkUBP3CqUIaUvJYNuxphP7prTjjRZiT8W1p8PoOvcIB64+NPqxlAo5v77eEAcLE65HJPLJloJ7jzXztmNw0+I9KEjKUCE5+mFHFg5txKAmlXG2MiE1U8eh65F8vvUK7b4/TKcf/Phy+xWO3oxCV4FuXCXljRaeVHOyIDY5g19KGLMwvUdNZDLYeekBgU88WZUVPetVopK1huikDLZdMHIfMDu7x7FDGzcaZZfTX6qBhYmSwLA44zecLSH9GrpR2daU6KR01p6umB3tx2fFEKw+dZe4lCyz+YwZ0K0bfPRROUpWdGQyGV/2rcMbLTwQBJi2MZB/AirWmPivEZ+ayYLDt2nz3WFmbL5EUHQyVholEztWw396J77tV48qjhblLWYuHj2CmjVh9WrQG7EtYzaWGhWzXqnHurEt8HYw52FCOmNWnGXS2gCjhyA4WWn45fWGyGWw+fx9/i6Em3hGj1o4WIgxQ0UplyS5yQogr9R6QRC49iARv5uRHLkRxbnQR2ifUIB8nCz4oHsNutZ2/k/4z/1uRDJi6RmUchn7prQr1gSQkpJC06ZNiUhIw3zQHHo19GLRG41LQdpns/jIHWbvvk51Zwv2Tm5n3N8nJkZM3e7bt8Rusmx+P3qHb3ddx8HChEPT2mOlUZGamkrfvn0B2LZtW7m1Plhz6i4f/3MJJ0sTjn7YscK5jQVBoNfPx7j6IIEpXarzXpeKVwqgqOj1Ap9tvczqU3eRy2Dea7687OtW3mJVmDFpDB7Ep/LXsWDWnLpLcpbVs5K1htFtvBnczKPYRWgLS/ZcCXDmzJkity7y84OOHcX39erBt99Cr16lU4g9LVPHvAM3+eNoEHoBbM1UzOxbh74NXI06t2b3IlMr5Wwe30osmfEMtgWG8+7aAOSZqQTPHSjVGTIGhakzlJCWyfHb0fjdiGL35QiDO6mxpy3TX6pJM2+7shS5VBi59DSHb0TRuaYTS4pRq+fJ2hnuUzaiNNHgN60jHval36PsSeJTM2k1+yDJGTpWjGpGu+qOZXr8opKh1fPS/KMERSfzVltvPulVu8K0PkjX6uj4vR/h8Wl89XIdhrf0Khc5nsX2wHAmrQ3A1kyF/0edMFM//5WR9XqBT7ZcYu3pMOQymD+4IX0blG+V6ooyJktCaEwyvx66zT8B9w0PtzWcLRnXvgp9GriWSZ0dKPm5/OknmDw557JWrWD2bGhXvO5KBXLxXhwfbrzI9YhEADrVdGLWK3VxNVLRRr1eYOzKsxy4Fom7nSk7JrZ9ZksgQRAYsfQMhy+FSjFDZYmVRsVLdSvxv/71OfphRyZ0qIpGJdY8GLT4BKOWneHag4TyFrNEfNq7Nkq5jIPXIzl6s/ip9gCtfRzQC6WQ5l4IrE1VDMryKf95rBSPn5Qk1h8qIWqlnM/6iA1ul/qHcDsyCRMTE1atWsWqVaswMSmffkIAJkoF47PS2Bf53SFdW/Fih3rUdcHT3oxHKZmsPf2EiT0qCj78EEaOLD/hiolcLuObV+rxWhN39AJM/juA7SWsB1ZSKsqYLA5hsSl8uDGQTj8eYcO5e2j1Ai2q2LF0ZFP2TG7Lq40ql5kiVBSyC9+fPCm6xL76Ct5+G377Lfe6x49D+/ZQu7b4eVTJpvBc1K9sw/ZJbXi/a3XUCjmHrkfSbd7RQqXFFwa5XMaPA31xtzMlLDaV9zdcMMRRCoLAvUc543ZlMhmzXqmLiarwv5tkGSqA4lagfpiQxk8Hb7HuTBg6vYBMBq/4ujG1a3Xc7crWGmIsvtp+lb/8g/FxsmD3e22L1FH7yaedPQHBjPv7CmZqBSc+6lzmTT/vxqTQ4YfD6AXYO7md8Vsd+PnBwIFiOvfp00axT49edoaD1yNp6+PAilHNKoz7NS1TR/vvD/MwIZ1v+9VjSHOP8hYpF9nuvErWGo580FGs6n35suhDkMng0iWoU/wq6+WFXi8wfdNFNpy7h0Iu4+fBDemVVXBSomDuPUphweHbbDh7z2AJ6lDDkfc6+9DQw7bc5MrLMpSUBIcPw7FjcPs23LkDQUGQmFj84zg5QePG4OsLDRqILx8fUJTQ233rYSIfbrpIwN04ZDL4tl89Xm9mnHnh8v14Xl10nAytng9fqkGH6k58se0ylhpVnt0F5u+6wJReDSU3mTEoaTuOoKgkftx/k50XRQ1ZpZAxtLknkzpVw74QfVcqEvEpmXT44TCPUjL5sm8d3mzlVehtn7zAExMTGfDnea5HJPJRj5q83b5qKUmcP+NXnWP35QgGNanMnAENjLvzqChREUpJgZ07oWfPEu8yJDqZbvOOkqHT88fwJnSt7VxyOY3EUv9gvtx+FTcbU/w+6FDhnqLTtTrafneYyMR05gyoz6DstPT+/WHzZnj9dVizpnyFLCZ6vcCHmy6yMUsh+vX1hvSoJylEzyK7UOKGs2GGZqVtfRyY0rU6jcpRCcrmybnyyy+TOHzYHH9/sZtMXlSuDFWrQpUq4OoqusPyCpw2NQWNRtxPUj5le6ysxMti2DDRklTc0EedXuDTLZcNyRXTX6ppsCKXlLWn7zJj8yVDlwQBsNIoufB5N+RPRUzHPorD3s5WUoaMgbF6k128F8ecPTc4dlssVGWuVvBWuyq83b5qhQs8fRYrT4by2ZbL2Jip8JvWARuzgjsLQ+6nnV3XYvlg40VcrDQc/bBjmffgOhf6iP6LjqNWyPH/qBOOlkZWTD/4AH74AZo3hxMnjGId+m7PdRb53cHdxoTZ7S0wUSpo1KgRipI+ypWQtEwdbb47THRSOnP61ze4ISsS2YHoVRzN2T+lvdiVOyAAGjUSZ/xr18QaRM8hOr3ABxsC2RxwH6Vcxq9DGvFSXZeylUGn4/z58wAVYkzmxYP4VBYevsPfZ+4alKA21RyY0tWHxp7lH9eZmirWbN22LZm//85OUkkCxJghb2/o2lU0YlatKr68vEQFJ5vwcLHYuqen+PLwEP+6u+dcLylJNIheuACBgeLfS5fE57dsPDxg6FBRMapVq+jfRxAEvt97g4V+YuHTce2q8FGPmiWyauv1AhvOhvH5tiuka3NqfLvfa0utSjnv0UW5f0vKUAEYu1HrsVvRfLfnOpfuxwNQv7I1v73R2GiBZqWNVqen18/HuPEwkRGtvJjZt3DuhaeVIaWJhjbfHSYqMZ15rzWgX8PKpSl2nvRb6E/A3Tje7VSNqd2M3DLk4UNx9kpNhT17oHv3Eu8yOV1Lpx/9eBAdT9i8AUDFCVb9898gZu28hoedGYfeb18kF2pZkJSupdXsgySkaVk0tNFj60mfPrBjB7z5JixbVq4ylgSdXuD99RfYciEcpVzGwqGN6Fan7BSiihxA/TAhjYWHb7P2dJihaWrLKvZM6Vq9QiS3BAfDokWwZAnExgIkA+K5fOmlJHr1Mqd7d6hWrXQywrLR6cTYopUrYf16iI9//FnjxqJSNGQIOBYx5yT7QQTgtSbufPtqPfFhpBjcjkxk0OKTxOZRYTqvJI6i3L8r1oz1AtDGx4Gt77Tml9cbYmum4uK9ePr+eoxTQTHlLVqhUCrkfJ4V0LvyZCi3HhbOaS2TyfD09MTT0xOZTIaJUsGbLcWK1n/+G1xgMa3SYEwbsXLyypOhxi/C6OwM48eL743QswzA3ETJjB61QAZKayfc3D0qTOzQkOYe2JuruRubwlZj13AyAhYmSoNbd9GRO4/H22efiX9XrRKDMJ5TFHIZPw7y5WVfV7R6gQmrz7P4yJ0yK9b59PVdEQiPS+XzrZdpO+cwy0+EkqHT08zbjr/HtmDt2Bblqgjp9bBvn1iFo2pV+P57URHy8oKpU2U4O4vnctMmGRMnirE8pX1aFQpo2xZ+/x0iImDDBvFZQamEc+fEDDUvL/jii/zdbHkxtl1VvutfD7kM1p0N453V54udbFHNyZKNb7eksm1u48Hp4Nhi7TMbyTJUAMa2DD1JWGwKY1ee49qDBJRyGZ/3qc2wFhVnMnkWb604y/6rD2lX3ZHlI5sWS+ZHyRm0/N9B0jL1rHmrOa2qOpSCpPmj1enp8IMf9x6llk7wb0SEaB1KSxMbhHbuXOJdCoLA0D9PcfxODM297Vj7VotcfvLy4rcjd/jf7ut4O5hzYGr7Yj/9lRYxSem0/u4QaZl6Vo1uThufrPH20kuwdy+MG5d3Ks5zhFan58ONF9kccB8QY2F+HNjguWgSaizCYlNYdOROjpigpl62TOlSnZZV7ct1fo2Ph+XLYcECuHnz8fJu3WDiRDG8sKJ5GKOiYN06+Osv0bMM4OIiFnEfObLw8u65/IB3114gQ6endTV7Fg9rUuyaTZEJaYxYeoarT2Rp25urOPtp1xy/r+QmMyKlqQwBpGbo+HDTRUNq7KAmlfnq5boVPo4oJDqZrvOOkKkTWDqiKR1rOhVrP59uucSqk3fpVNMpz2yA0mbJsWC+3nGVqlmxJEZXLN57D375RbQOZVshSkhYbArd5h0lNVPH16/UZVgJesYZk6R0LW2+O0RcSiY/Da4YxQCfZua2Kyw7HkKrqvaseauFuNDfH/7+W4zz8qh42XBFRRAE1p0JY+b2K6Rl6rE3V/PDwAbFvkafF0Jjkll4+A6bzj/ODmtZxZ53O/vQoopduSpBGRmiAvT112KFaBCDlUeMgAkToEYxvfRanZ7L4Qlcf5BAUrqW5HQdKRlakjO0pKTrSErXkpKhM/yfrtXhaW9ObVcr6rhaUbuSFV725oWa9wQBNm2C6dMfG1Hr1hVDIwsbBXDsVjRjV54lJUNHA3cblo1oiq154eJOnyYxLZO3V53D//Zjr8qRaR3wfKLvpaQMGZHSVoZAnLz++DeI/+2+jl6ABu42LH6jsdhcsgKT3TyyoYcNm8e3KtZkExydTKcf/RAEODC1PdWcyra8fWJaJq1mHyIxXctfI5rQqaaRs7QiIkT7d+3aRt3tMv9gZm6/irlawd4p7ahsWzHKNfx66BY/7LtJNScL9k1uV2GsVtncj0ul/ZzDaPVChWuAa2xuRyYyae0FQ42zka29+KhHTUyUFftBq6gERSWx4PAdtly4b2iF1NbHgUmdfMo9JihbgfjoIzEdHsRWGe++C2+8IbYzLNr+BG5FJuF/Oxr/2zGcCo4hMa1kjcjM1ApqVXqsHNV2taK6s2W+D+Tp6WKM01dfPVbsunUTlaJ69Qo+3oWwOEYsPU1cSiY+ThasHN282Pe6DK2eCavPceBaJABvtPBg1iuPhZCUISNSFspQNv/eimLimgDiUzNxsDDhtzca0cSr/AP88iMyMY023x0mQ6tn3dgWNK9in++6qamptMsqf3r06NEc5fqzXW6vN/Ng9quFuJqMTLZSl8NaUIFJS0vjtdcGczY0FmWXKbSr5Vphag8lpGXS5n+HSEjTsmBIowpZ9+b99YFsOn+PbrWd+X14k9wr6PVGa6dS3qRl6vhuz3WW+ocAUKuSFb+87ks1J+PW1kpLS2Pw4MEA/P3332g0pf8gd+thIgsO32ZbYDjZoVEdajgyqZMPjT3LP0X+xAl4/33xL4iupVmzRGvQs1xLT8+V0akCx++Iys/xOzFEP9X/y0qjxNfDFhtTFeYmSszVCsxMlFiYKDBTK7EwUWKmVmBuokQhl3E7MomrDxK4kmVRejorC8QYtFZV7RnVxpv2Po55PtTExsI334iG78xM8ZKZPl1UkpQFeL9uPUxk2JLTRCSk4WZjyqoxzfF2KF7QvV4vMOC345y/G4epSsHZT7tgnuV+k5QhI1KWyhCIBQHHrjzL9YhEVAoZM/vWYWjziuEGyYuP/7nEmlN36VjDkaUjm+W73rOyTU4HxzJo8QlMlHKOf9SpzOsv3Y9Lpd2cw+j0AjvfbUMd12f3vSk2QUHirFFcm3gWT57Lah9sJlOurlAp7fMP3GT+gVvUdLFk93ttK4SS9iS3IxPpOu9oljWy3WPFIDBQdGXWqSMWa/kPcej6Q6ZtuEhscgYalZwv+tRhcFN3o/02ZZVNptXpOXg9khUnQnK4R7rUcmJSJx8aVABLX1CQ2A94/XrxfzMz0QM7bRpYFMLw/eS5bPX1Tu4n5bxFa1RymnrZ0aqqA62r2VPH1brY8XlanZ7g6GSuPkjgarioIF0Jj+dRyuOiRlUdzRnZ2pv+jSpjqs6txd25I37fDRvE/9u3h7VroVIBz0FhsSkMW3KKkJgUHC1N2PpO62JnVadl6mgx+yBxKZm83b4qH/WoCUjKkFEpa2UIICVDywcbLrIzq5T5683cmdm3ToU0b4dkubn0Qt51HrJ51mQpCAIvL/Dn4r34cmuoOWmt2NLg1YZuzH3N1/gHWLoU3npLdK7v3FmiXWVmZrIsKw1cW7Ut3+27g6VGyf4p7SuEazU+JZNW/xP7vy0d2ZSONSperMq4lWfZe+Uh/RtV5sdBWUU3t28X03ssLCA0FOwqrlW2OEQmpDF1faCh1lnPei7M7lffKBXgnxyTI0aMQKUyblX5mKR0/j4TxuqToYTHpwFiR/JutV2Y2KlagY07ywKtFubMEcMDMzLE7K9Ro0RLiWshW8fdiEhkwb4r/PJmS0Ds46jSmOLrbkOrqva0qupAI0+bUr0XCIJASEwKq06Gsu5MGEnpohvO2lTFkOYeDG/pSSXr3ErLunUwZoyYaebsLIbhdejw7GNFJabzxp+nuPEwkbpuVmwY1ypPhaswHLz2kNHLz6KUy9g7pR1VHS0kZciYlIcyBOKA/O1IEHP2XkcQoF11R/4c3qTMixMWhnfWnGfnxQe84uvK/MEN81ynoCfH7C7DDhZqjk3vVOYB5IFhcby8wB+lXMbxGZ1wsjSyUnH7tmgR0uvh7FmxcIcR0OkFXl10nMCwODrXdOLPN5tUCEvMrB1X+fNYMM297Vg3rmV5i5OLC2FxvJL1ex+b3klUIgUBGjYULUQzZ4o5xP8x9HoxPvH7vTfQ6gVcrTW83aEqrzaqjIWJEkEQKsT4AXEOvBAWx4oToey8+MBQI8jOXM1rTd0Z2tyjwsTKXb0qlqo6e1b8v2tXMYamfv2CtxUEgZNBsSw+ege/G1HoM9IMdcT+OXWbLg08i511VVIS0zLZcPYey46HcDdWrMiokMvoWa8So9t454q5u3EDBgwQu93I5aJbcPr0Z3ud7z1Koe+v/sQmZ9C3gSs/DfYt9hgctewMh55oW5SYmCjVGXrekclkjO9QlaUjmmKqUnD0ZhTTNgSWWd2QojA+q53G9osPCItNKWDtvOlZ1wU3G1OikzLYkpUWXJY0cLehoYcNWr3AxnP3jH+AatXEimUgzhBGQiGX8f2A+qgVcg5ej6wwNX5Gt/VGpZBxKjiW83cflbc4ufB1t6GZtx1avcDyEyHiQplMLN8LYuvvhOe7uXJeyOUyxrWvyqbxrfC0NyM8Po3Pt16hxbcH+XzrZbrOO8Lm8/fI1OXRz6GMSMvUseFsGH1/9affwuP8E3CfDJ2eBu42/DiwAcc/6sT0l2pWCEVIpxOtQQ0bioqQjY1YtHDv3oIVIZ1eYOfFB7y8wJ/X/ziJ340o5DLoXudxEkfXOi7lpggBWGpUjGrjzeFpHfh9WGOae9uh0wtsDwznlQX+vLrQH/8sSyOIz3unTomKoV4vXk59+kDMM8roVbY1Y+HQRijlMrYFhvPbkeLX+/q8d23UCjn/3opm39WHRdpWsgwVQHlZhp7E70YkY5afRasXGNnai897164wT2/ZvPHnKY7djs63KnVhYgr+OBrEN7uuUc3Jgv1T2pX5d1x/JowPN13E096Mw+93MH4m1PXrYlaZIIjWh8I8NuaBXq/n2rVrANSqVQu5XG7I4rIxU7FvSjvjW7aKwQcbAtlw7hmByuXMvisRjF15DiuNkhMzOotBlzqdGDN04wb873/iY+1/lJQMLRvO3mP5iRCCopJzfGZnrubdztUY3NSjUFbavMZkUbgbk8LhG5H43YjkRFAMaZmiMqZWyuldvxLDW3pVuMy/69fFOjsnT4r/9+wJf/xRsEssW9n7499gg7XFRClnYJPKjGlTBUdTKmw1bxCbpS71D2F7YLjBWjeytRfTX6ppGCuCINYlmjhRLLPm4SG2AXyWQTy71ZNMBn+9WfxyLT/svcGvh2/jZmPK5jENcXG0k9xkxqAiKEMAWwLuM3ndBQA+6F6DdzpWM3yWodWjF4RyrU3kfzuaoX+eQqOS4z89dxB0YZShhKw096R0bbnEmqRkaGn2zUGS0rWsGdOcVtVKoQjka6+JkZWDB4tRhsUgr3OZqdPzygJ/roQn0KOuC4veMI4briTkG6hcQdDpBTr/6EdITErOUv7Ll4spP05OEBIidrj8D6PXC/jfiWbu/psE3I3L8ZmZWsGo1t681a4K1qb5xwEVNYA6LVPH6eBY/G5E4XcjkqDonMpYZVtThjb35LWm7tgVsw5NaaHTwfz58MknYpq5lZVoSHzzzYKrRJ+4E8OMzRcJiRGVIFszFcNbejG8padhzqzIrU2eJDIxjZ8P3mLVSbEZq4+TBfNe880RvxUYKLrNbt8Wz9OePdDyGV7z7IQcSxMl/7zTulilVlIzdHSZe4T7camMbVGJT/o1ltxkxkYQhHJzU73S0I3Peou1ar7fe4O/s7oB33yYyMsL/NlfRJOgsWlV1Z56btakZepZfiI0z3UcHBxwcMhfwbDSqBiclRH1579l3xrBTK3kZV/xsW7tmbDSOUi2G2bdupwlaIvI0+dSpZAzZ0B9lHIZuy9HsCsr+L48qeZkSddaosl/cQlM36WFQi5jVBtvAP46FmyoUcOQIWLfgcjI57pfWWGRy2W09XGkf6Pc/QFTMnT8evg2jb/ez8u/HmOR323+vRVFWGwK2qdcaXld33q9QFRiOpfvx3Po+kOW+gczetkZGn61n+F/neYv/2CCopNRyGU097Zj+ks12TO5Lf9+2JHxHapWOEUoOlq0AE2bJipC3bvDlSui7vwsRSghLZMZmy/x+h8nCYlJwdnKhK9ersPxjzozpWv1XA+PBc2VFQEnSw2zXqnH0pFNcbQ04VZkEv0W+rPQ77bhWmrQQHQftm8vep27dYNjx/Lf58w+dWjmZUdiupaxK84Sn5qZ/8r5YKpW8GkvsbPsEv/gQm8nWYYKINsyVO2DjegUGvSCmGro626Lr4cNDd1tqOFiiaqMGlPO2XOdhX53kMtgQOPKbLkQToZWT+/6lfh1SKMykSE/dl58wDtrzmNjpsJ/eidDrYeicO9RCu2/90OnF9j1bltqVbLkSngC1Z0tyyR4/PL9eHr/cgy1Qs7JjzuXzmTcpw8cPSreaPv1M+qu5+67wc+HbmNvrmb/1PblfjM5f/cRry48jkoh4+iHHfPMQilPUjK0tJx9iPjUTH4f1vhxc9O1a8VCKqNG/ectQ9lk19sqLCqFjMq2Znjam+Flb46tmZropHQeJqTxMDGdyIQ0ohLTDdWgn8bJ0oSONZzoUMOR1j4OWGmMm4FmbE6fFq0cYWHikPjpJzF7qiBr0P6rD/l0yyUeJoj1gYY292B6j5oV/vsWhdjkDGZsvsjeK+JDeTMvO34c1AB3OzGuKzlZTNQ8dAjMzcWE2vbt895XdFI6fX85Rnh8Gu2rO/LXiKZFLh0gCALDlpzm6JW7hM0fJLnJjEG2MuQ+eT1yk7wD9kyUcuq5WePrboOvhw2+7ja42ZiWSsyLIAi8+/cFQ/uObMzVCs591rVcXWVPuh0+612b0VlP3UVl4prz7Lj4gLpuVmRo9dx8mMSZT7rgaFk29Yd6//Ivl+8n8GmvWoxpW8X4BwgNBWtrMdrSyKRrdfT55Rg3Hybxsq8rP+WT3VeWvLb4BKeCYxnTxptPexu3Ercx+G7PdRb53aGZtx3rK2DmW1mRXfz0SUxVctxsTDE3UaFWysjQ6olLzeRBXJohXqQgZDJwsDDB2coEFysNDT1s6VjDiVqVLCtc7GNeCIJYcXnyZLFMmI+PWFW6oGrL0UnpzNx2hR0XRSutl70Z/+tfnxbPKE77PCMIAhvO3ePLbVdIztBhYaJkZt869G/khkwmIyUFXnkF9u8XlckdO6BTp7z3dfl+PAN+O05app5x7auIDaqLyO3IRLp9t5fguQMlZcgYZCtDV4If4GBng16Aqw/iuXA3joCwOALD4kjIoxx6TRdL3m5fld71K6E0otXoTEgso5edyfOYpdJOooisOXWXj/+5hKu1hiMfdiySxSwlQ8u+Kw9ZdjyYC2HxOT7zm9YBr2JWKC0qq06G8umWy1R1FBuOPg8T9pMEhsXRb6E/egH+GN6ErrXLd0z43YhkxNIzmKkVHP+oEzZmFcv1ERGfRpvvDqHVC2yb2Jr6lW1yrqDPuun/R6pS58fU9ReQy2T4OFlQ3dkSH2cLXK1N80wk0OsFIhLSCIlJ5m5MCiExKcSlZOBoaYKTlQZnSxOcrTQ4W2lwsFAbdQ4sS5KTxf69q1eL/7/6qlgy7Fn3VUEQ+CfgPl/tuEpcSiYKuYy32lZhchefCt9z0hjcjUlh6voLnA0Vs0h71HXh2371sDVXk5YmnsPdu0Gjga1bRddZXmwPDGfSWrEzbHF7HX6+8QxfD2wmKUPGoKAAar1eIDgmmQt347gQJr6uPUgwmIbd7UwZ264qAxtXNsqFkKHV8+2uayw7HpLrs9eauPPdgOJlKBmLtEwdbb47THRSOj8ObED/xmIcQmpqKj169ABg9+7dOdpxZBMUlUTfX/0NRb6eZMekNmVWWC0xLZNm3xwkNVPHhrdb0rS0WqIIAhw8KD5iOhdeYUlLS2P06NEALFmyJM/WB7N3X2PxkSDszNXsmNSm2JVdjYEgCPT8+RjXHiTwftfqTOpc9kU1C2LKugv8E3A/tzVt40b4/HOxkt7AgeUnYAWnMGPyeePGDejfX4wJUijEFPopU57tFrsfl8on/1zC70YUILY/mdO/PvUqF37uKsxcWdHR6QV+O3KHeftvotULuFhpWDm6GT7OlqSni+7GHTvAxAT++Qeyvm4ussNCTJRyNrzdMveDSgGER8Xi5mQvKUPGoDjZZPEpmaw8GcJf/iHEJmcAopl4VBsv3mjhaRRf8dYL95m+8SJpT/SVsTFTce7TrsUuzW4sFvnd4bs91/FxsmBvVrPOwmZI7L70gPGrz+davn5cyzJtuvjhxkDWn73Hq43cmDvIt3QO8vbbsHixWKt/zpxCb1aYc5mWqaP/ouNcCU+goYcN68a2LNeCnVsv3Oe9vy9gZ67Gf3qnYleZLS2yY8WUcjG2yaA8fvGFWELY1xfOny84QOQF5XnJgCose/bAoEGQmCi2lVi/Htq0efY2x25FM2H1ORLStKiVct7r7MPYdlWKHE/6XzqXl+7F8966AIKiknGwULN6TAtquFiSkSEm1m7ZAmq1wM6dMrp0yb29Xi/w1oqzHLweiYuVhm2TWhepbEhR7t/Ple3y6NGj9OnTB1dXV2QyGVu2bClwmyNHjtC4cWM0Gg1VqlTht99+K3U5rc1UTOzkg//0TszsUzurmGA6c/bcoPX/DjFnz/VczfaKysu+bmyf1AZPu8dPDXEpmRx/ogBWeTG0hQeWJkpuRSZx6HpkkbbtkVXZ9GmS87AWlSaDm3kAsOvSg2JlNBSK3r3Fv4sWPbsq2VOo1WrmzZvHvHnzUKvzdjlpVAoWDW2MlUZJwN04vt11zRgSF5te9SrhbmdKbHIGG86VUqZeCajrZk2LKk8VYQSxvbi5OVy4IN4hJfKkMGPyeWHRIujVS1SE2reHgICCFaGVJ0J4c+lpEtK0NHC3Yde7bXmnY7UyS6ypqNSrbM3m8a2o42pFdFIGr/9xkmsPElCr4fN58djXjSQjQ8agQXDrVu7t5XIZ8wb7UtXRnIiEND7ceJHSst88V79UcnIyDRo04Ndffy3U+sHBwfTs2ZO2bdsSEBDAxx9/zLvvvsumTZtKWVIRU7WCEa298fugAz8ObEA1JwsS07Qs9LtD6/8dYvbua6RrdcXev4+zJTvfa0eHGo6GZf/bc90YopcIK42KIS1EZeK3I3eKvP1HPWrS5Kmu03m5zkqThu421HC2JC1Tz9YLpVQRu1cvMfc0KUls/VxIVCoVkydPZvLkyc/sAeVhb8a8rD5ry46HsC2w/KpTKxVyxmYFo/9+NChXWnZFYEwbUb41p+4+Vr7t7UULHsC335aTZBWfwo7JioxOB1OnwoQJYpjYqFGwb9+zPdiZOj2fbrnEZ1uviK1xGrqxbmyLYtXH+a9iY6ZmzZgW1K9sTWxyBkP+OMkPe2/w2p/HMe9+DluvBB49gpdfhvj43NtbaVQsHtYYtUKO342oUpvHnitlqEePHsyaNYtXX321UOv/9ttveHh4MH/+fGrVqsWYMWMYNWoUP/zwQylLmhOVQk7/xpXZN7kdi4c1poG7DelaPYuPBNF/0XGCnyo4VhQsTJQsHdHUUJ/nSngCx25FGUv0YjO6tTdqhZyzoY84ExJbpG1VCjm/DmmEtenj1PxHWe7GskImkzG4mXhO15y6WzpPI0+2f/j5Z1EpMjKdazkzoYPYLuWjTRe59TDR6McoLAObuGNvrubeo1RDE+KKRKeaTng7mJOYpmXD2SesV1OnglotFkh5VpEUieeW5GQxPmjePPH/b7+FP/8Uf/b8iEvJYMTS06w6eReZDKa/VJMfBzV4IYKki4q1mYqVo5tTz82aRymZ/Hr4NhlaPTKlHrNep3GupOfaNRg6VFRKn6aakyWTOomFhr/afrVU7gfPlTJUVE6cOEG3p0LVu3fvztmzZ8nMzNv1kZ6eTkJCQo6XsZDLZXSv48KWCa1YPKwxtmYqLt9PoPfP//JPQPH7YclkMv7Xvz7dsrKG3vv7AvEppeTaKSROVhr6Nxaj/3/zK7p1yMVaw4In6iadK4f+Vv0aumGilHM9IpHAe3k8shiD/v3FvmWPHom1/AuBXq8nJCSEkJAQ9PqCLSxTu1anVVV7UjJ0jF99vsxdjtloVApGtvYCxLiyihauKH+yCKN/yOMijK6uMHy4+P6778pJuopNUcdkRSI8XHSHbd0qBvT+/TfMmPHs8LA7UUn0W3gc/9sxmKkVLH6jMeM7VK2wmafJ6VqCo5M5FRTD9sBwlhwLZvbua3y4MZC5+26wJeA+F+/FlaoFPjEtk5SM3PtXWqQz+OO7aDRi/aHs58OnGde+KjWcLYlJzuCbUnD7/6eVoYiICJyfsnE6Ozuj1WqJjs47tmb27NlYW1sbXu7u7kaXSyYTlaJd77WlmbcdyRk6pqwL5P31gSW6Uc0f7IuHnRkxyRl8uvWyESUuHm+1rYJMBgevR3KzGBaJNj6OtKoq1uS48FSbgLLAxkxNz3qVAAwVv42OQgEffii+//FHsaxtAaSmpuLt7Y23tzepqakFrq9UyPn59YY4W5lwOzKJjzZfKjdFZFgLL8zVCq5HJOJ3s/wtmE/Tv5EbNmYq7sam5Ky58+GH4t1xxw6xKZVEDoo6JisKly9DixZw7hw4OIhFAV977dnbHL0ZxSsL/AmOTsbNxpRN41s9LtZZAUjN0LHz4gMmrD5Hpx/8qPvFXup8sZeOP/jx2u8nmbQ2gK93XGXxkSDWn73Hz4duM3ndBfr+6k/dL/bS7JsDDP79BJ/8c4klx4I5HRxrlM4LLlYaXvF1I6/8nrPJQfz5p3iMOXNg1arc66iVcmb3r4dMBhvP3ePYLePGx/6nlSEgl6aefRPIT4OfMWMG8fHxhldYWOkFe1ayNmXtWy2Y3MUHuQw2nb9Hn1+OcSW8eFYIM7WSn19viEIuY3tgeOnFuhSSKo4W9KgrThJ//RuMmZkZZmZF6zT9bT+xsllobAoR8WlGl7Egst2P2wLDS++pafhwMWXFwgLuFk7pKuq5dLAwYcEQsTP09sBwludRmqEssDb7P3vnHR5F+X3xz2xL7x0SEmroIYTeOyIivYiCitgboGDvXZBiQZSioigdVECR3nsJvSaQQkJI79k2vz9md9KT3U3D78/zPHlYNjsls+/Me997zz1HzcTOEp/sWxsyhjUNR42KB03nt3R/EQuRpk3hww8lEkloaB2d3d0NW+7vusThw9Crl6Qo3by55LberVv5nxdFkR8PRPPoj8fIytcTEezB7891p0VA9XtWWnstC/QGtl+4zYsrTxHx4Tae/fUkW84mEpWcIz+3HDVKQrwc6RTiydC2ATzaPYQZA5vxQKcgOjX0xNtkCZKUVcDhqFRWHInhg00XGPfdIfrP3cPivVFyd7QtUCkVPN+/Keue7kYDz+JyAXFpeTTtlsZrr0n/nzpVUvwuifYNPJjcJRiQfMzytLZzbkviX9taLwgCGzZsYMSIEeV+plevXoSHh7NgwQL5vQ0bNjBu3Dhyc3MtIvrVllHrkagUXlx5msTMfDRKBW8MbcHkrsE2pV0XbL/KvO1XcLFX8fe0XtSvQ42ZyNh0hn9zAI1SwdE3+tskuDdq4QFOxqTz6pDmPNW7cQ2cZfkQRZH+c/cQdSeHT0a14QFTl1m14/p1aNiwxoX9luyL4sPNF1ErBVY+0ZWIEkT12kBiRj49P9+JziCy7uludXIOFeF2piTCqDOIbHy2+13nlv4fqo5t2yQ15NxcyTh00ybwrEC5QxRFPtx8kaX7JbuSUe3r88moNtip6o4fpDcYOXhdKnv9fT6RrCJCvIEeDgwLq0fPJt74u9nj62qPswX2SBl5OqLuZBN1J4eo5GyuJWVz4FqKHFBplArubePPg12C6RDsYXNZMKdAz1sbz7H+VOGCfUALX76f1JERI+DPP6X14fHjUpW6KLIL9Aycu4eEjHye7NWI1+6V1KkNRpE8naHY3/k/21pvLbp27cq2bduKvffPP//QoUOHu67joXMjL/56sScDWviiNRh554/zPPHzCTLzref+PNu3MeEN3MnK1/PS6tN1Zi4LEBbkTssAV7QGI7+ftq0LYFwHKTuz7kRcrZd3BEGQs0O/1VSpDKBx41pROH6sR0PubeOPziDy3K8nSamixIMt8HezZ2S4iU9mQ7dhTcPP1Z5hYdIT2Dz5lYK+bnhX/6HqWLdOauTMzZXUj7dtqzwQ+nhLYSD06pDmfDE2rM4CIYNR5OfDN+nyyU4mLzvKmhNxZOXr8XWxY0r3hmx4phv7ZvXllXua062JN418nC0KhADcHNSEN/BgdEQgMwc357tJHTjyen8+GdVGskcyGNl4+hZjFx1i8Py9/HTwhk3SI052KuaOb8eCCWGoTHWz7ReTiErO4pdfoFUrSEiACRMKBeDNcLZT8eGI1gAs2R/N2bh0Np25xeD5e6tUDflXBUPZ2dmcPn2a06dPA1Lr/OnTp4kxlRZee+01JpuJjsBTTz3FzZs3mTFjBhcvXmTZsmUsXbqUl19+uS5Ov1J4OGlYPLkD7wxriUapYNuF20xeepQsKwMilVLBvHHtcNQoORyVypKi6f46wLgOkgr16uO2lRzvbRuARqXgalI2529VH6HdUoxuH4haKXAmLsPmEqbFyMuTTEJrKOgTBIHPRrelkbcTCRn5vLjydCFRuBbxRC8pw7f94m2i7lR/F11VYW6z33I2gfj0IhwYnQ7eeAOCguD27XK2/g93K5Ytk8QUdTpJUPyPPyQZqfIgiiKf/X1ZNrD9eGQbnupdd0TpEzdTGfbVft7aeI7k7AI8nTQ82LkBK5/owqHX+vP2sJaEN7A9Y1MWnOxUPNCpAZue78kfz3VnfIcg7NUKrtzO5p0/ztPl4x18s+uaTXIZw9sFsn1GbzlYm/LjcewcDfz+u8Qa2LdPMsQtif4t/BjaJgCDUWTMokM89+spriVlc/W27c+Sf1UwdPz4ccLDwwkPl+TyZ8yYQXh4OG+//TYACQkJcmAE0LBhQ7Zs2cLu3btp164dH3zwAV9++SWjR4+uk/O3BIIg8Gj3hqx9uivujmpOx6bz6A/HrCZWh3g78ZbJFHPO1itcTKj9IMKM4e3qoxL17Fowg179B5Ofbx33x9VeLXfKrT1he9edrfBytpMJkiuP1qBgoF4vLYkmTpRsOspBQUEBjz/+OI8//jgFFhCuS8LFXs23D0XgoFay/1oyH22ufUHGJr7ODGjhiyjCsgOWO6XXFlrWc6V7Ey8MRrE4v0qlgu3bITFRkkP4D0DVx2RtYO5ceOwxKdMwdaq05rCrwPtZFEW++OeKnL38YHgrme9Wk8jPz2fo0KEMHTpUflYmZeUzY/VpRn97iAsJmbjaq3jv/lYceb0/H41sQ5dGXrXiPNA20J3PxrTlyOsDeO/+VjTzcyZPZ2D21suM+vagTY0yId5O/PVCT+zVCmJSc/lo80UaN5b6SUDq7LtY4hG1/cJt+VgFRVwYbDm+Gf9azlBtobY4Q2XhXHwGExcfJjNfT6eGnvz4aEccNZalO0G6mR9ffoLtF28T6ufC7891rzMNjCeWHWDxY5KMqy0S87suJfHoj8fwdNJw5PX+ta7suv9qMg8tPYKLvYqjrw+oOTuJF16QBBgHDJDy92WguuT6ixohvnd/Kx7uFmLTfmzFoespPLD4MPZqBYde7Y+H092lXGwecy52Kg6/3h8nc6lhwwbJbdLdXSK8u7jU6XneDbjbLSTeew/efVd6PXOmpJBQWfJk/vYrzN8uySK/M6wlj3YvrYxfEyh6LdMyMlkbeYf526+SXaBHEGBcRBAz7wmVCc91CbMp7bt/nJdsSJQKXhzQlCd7NbLanHfnpdtM+fE4AF89EM59besxZAhs3QodO8LBg9JaBCR7n+mrTlMyqe3tbMfxNwt9Pf7jDNUArtzOZP3JOD7/+xLzt1/hp4M3+P10PLsvJxEZm87NlBwycnXVys9pXd+Nnx/rjIudiqPRqUz96Tj5OsvZ85L+UBu8nTVcvp3FnK2Xq+3crMWo9oWOw9b8DWb0bOqNt7OG1Bwtey7Xfkt2t8ZeBHk6kJWvr1nBwBkzpHb77dulft8yoFar+fDDD/nwww+rxH0bFlaPmYOlzqj3/jzP9gu1W/bp0siTVvVcydcZ+bUm+Vg2onczH0K8HMkq0LOxKBdh+HCpoyw9Hb7/vs7O725CdY3J6oYoSvZy5kDo44+l1u3KAqGvdlyVA6E3h7aotUCoJEZ+c4APN18ku0BPWKAbG57pzmdj2t4VgRBIc8yo9oFsm9Gb/s0lvuvsrZcZ/e1BqwVe+zUvLhAblZzN0qXSmuPYseISX8Pb1efzMWGl9pGcXWCzION/maFKYI4sg6atRmFXeaujRqWgRxNvhrT2Z2BLP5u6p0rixM00Ji89Qo7WQM+m3iye3MGqDM+Oi7d57Ccp4l71RBc6N/Kq8jlZi8ysbNxcpRX0mkNXGdOlidX7+GDTBZbuj+beNv4sfDCiuk+xUnyz6xqzt16mQ7AHa5+uoAe3qnjoIVixQiI3rFpVc8dBWtm9uu4sq47H4qBWsvrJrlY5bFcVG07FMX1VJD4udux/pW+ddueUhaX7o/lg0wWa+UmmwzIXY+lSqdZSvz5ERVUsVfwf6gTmQOiDD6T/f/GFtNaoDAt3X+Pzv6WFY110sGZlZeNqelYGTV+Lt4crr9wTytiIIBR1bMJdEURRZP3JeN77szBLNG1gU57oaXmWSG8w8uCSIxyJTiXUz4WNz3Zn3WolkyaBWi2127drV/j5347G8Nr6s8X2UXSO+y8zVANwtlPSqaEnk7oEM7FzA4a2CaBbYy9aBrhSz80eR1PZRKs3svNSEjPXnqHDh9uZvOwoK4/GVEmfISLYgx8e7YSDWsm+q8k8s+KkVZ5m/Vv4Md7UkfXB5gt10l1WtJ697pRtjH9zdmn7haQ6UdgeGxGIQoDjN9OITc2tuQOZRRjXrpVa7msQgiDw4cjW9GzqTZ7OwJSfjhUnDNcwhraph7+rPXeyCvgz8u6z6BgTEYiDWsmV29kcjipiK/PQQ1LPb3y8FLj+h7sKoghvv10YCM2da1kgtHhvlBwIzRwcWuuBUL7OwEurI+X/T+gUyK6X+jC+Y4O7OhAC6VkyOiKQf6b3pp8pS/T535cZveiQxc9LlVLBVxPD8XGx4/LtLN7ceI6JE0VGjpRI7w8/XFyX9oFODXh/eKti+zgXb1uTy3/BkIU49Fp/Vj/ZlQ9GtObjkW345sH2/Pp4F7a82JODr/Xnwvv3cOmDe/h7Wk+mD2hGc38X9EaRvVfu8Or6s3T8aDsPLjnMqmMx6Gxg3Xdq6MmyRzpir1aw81ISz/16yqr9zLonFGc7FefiM/k9sm7FGA9eS+aWDRNuq3puNPd3QWswsuls7ZuO+rra09WkiP3nmRo8ftu2MGSIxPQsw0dPFEXu3LnDnTt3qkVqQK1U8M2D7Qn1c+FOVgFTfjhmk6SDLdCoFDJXacm+qLvOosPNQS0H4cuLutnb2cG0adLruXNrrPvv34LqHpNVOxd46y1JIxOkr2f69Mq3+/nwTdnmYfqAZjzb1/rsdVWQkl3AxMWH+ft8ovzeO8Na4+Z495QdLYG/mz1LH+7A7DFtcbFXERmbzrjvDnHdwq5RXxd7vpwQLgsRrzkRy6JFkkL4mTPw/vvFPz+5awivDWku/99WGsN/wZCFsKRV0V6tpLm/Ky8OaMqwsHr8+XwPZg4OpVU9VwxGkQPXUnhl3VmGfrmPg9eslxLv2tiLJZM7olFJbfcv/HbK4nZGL2c7njbVY+dsvWITb6e6IIqSZpAtGN1eatO3dfuqYlhbSX/mDxs1kyzGK69I/yYnl5poc3Nz8fX1xdfXl9zc6slQudqrWfZoR3lF9swvJ20K2m3BxE4NcDRZdBy4llIrx7QGk7uGAPDPhdvFg/gnn5QI7xs3Vk5C+R9HTYxJW2AOhD76SPr/vHmWBUJ7r9zhHZOF0fP9mvDigKY1eJalcS1J8jo7GZOOq73lTTJVRa5Wz+XELP45n8hPB2/wR+QtTsemk5qjrVJQKwgCYzsEsXVaL5r4OpOQkc/47w5Z3NXctbEXLw2S+Ixv/36eZH0m330n/e7TT0urUz/ZuzH3tpE6fs/EZVgtRwP/cYYqhS3dZKdi0hi58CAdgj34cUonnO1U3EzJYdOZBJbsiyLNVOK5t40/r9/bgkAP6yTsd19O4onlJ9AajDzTpzGz7mle+UZInjV95+wmMTO/1mvhRTskgqavJcTfk90v97E69ZuUmU+XT3ZgFGHXy31o6F27XSvpuVo6frQdnUFk2/ReNPWroU4iUYRr1yQbiBKoyc6dc/EZjPvuELlaA+M7BPHp6Da1oqny7h/n+fHgDfqE+vDjo51q/HjWYsL3hzgclcqzfRszc7Bl99v/J9wt3WTvvy/xhADmz4cXX6x8GykQOUBWvp4xEYHMHtO2VnWEDkel8OTPJ8jI0xHk6cA3Y1sR1kia2KvrWoqiyJHoVA5eTyE2NZeY1FxupuSSXIHoqrOdiiBPR4I8HGjg6Uir+q4MbuVvVUczSBmvycuOcv5WJm4OapZP6USYBaruRqPIYz8dY9flO4R4OfLH8z14+jE1v/4qdZcdPlxcp9ZgFOnw4TbScnW8NLAZz/dv+h9nqDagNxjLza7M+UeqOR+/mcYjy46SXaAn2MuJZ/s2YdfLfZjcNRiFAFvOJjJg7h4WbL9qVaamT6gvX4yTmPTf7rnOvquWdVc5aJS8NKgZIJGBbWXd2wInJydEUSS3QI+rizMxqbkciU6tfMMS8HW1p2dTHwA2nKz97JC7o4ZepuP/GVmD2SFBKDMQgsJrKYpitU86reu78dUDUop61fFYFtaSf9ij3UMQBNh9+Y7chZKeq60TQciy8IiplPfb0djy71VD3WVb6xo1OSYtxdy5hYHQvHmWBULpuVqm/iR5jXUM8eCjka1rNRBafzKOSUuPkJGnI7yBOxuf6U7bhn7Vdi3Tc7Us3R/NgLl7mPD9Yb7ccZUNp+I5cTNNDoTcHNS0qe/G4FZ+dArxxN/VHpBsLy4mZPLPhdss2R/N9FWRdPpoB6+tP0tkbLrFmSMvZzt+fbwL7Ru4k5Gn48ElRzhqwbNfoRCYO64d9d0duJGSy7u/n+eLLyQxxmPHSpu5KhUC7w6T+EPf74uyutT/X2aoEpgjy7WHLnPgZi4XEjJJzMgnM1+HUQSFIHEulAoBB7USR42S2LTifJiOIRIBuqgk+sWETN7547w8KAI9HHhzaEsGt/Kz+GZ8fcNZfj0Sg7ezhi0v9sTXxb7SbQxGkfu+2s/FhEwe7R7CO8NaVbpNdeO19Wf57WgMo8LrM3d8O6u3//10PC+uPE2ghwN7Z/atdWLhxlPxTFt1mobeTux8qXfNPzxjY6WOpd69a/Y4RbD80A3e/v08AIseiuCe1jXvyv3kz8fZev4297T2x8NRzYZT8ex+uS/+bpWP65qG3mCk5+e7SMjIZ+64MEaZyrUAXL0Kr78OWi38/nvdneT/Y3z/vVS1BIkr9MYblW+jMxh5eNlRDl5Pob67A78/171WW9bN3akAQ9sE8MW4sGrRgRNFkZMx6aw4cpPNZxJkUUJHjZJ7WvnT1M+FBp6OBHs5EuThWCYnKV9nIC4tT84i3UjJYeelJG6mFJZAm/u7MK5DECPD61ukEZZToGfqT8c5FJWCvVrB95M60KuZT6XbnYxJY/S3BxFFWPNUV3as9OS116T+hcuXpeDIDINR5J75e7malM20AU2Z0snf4szQf8FQJbC2tb48tAxwYfVT3YoFRKIosulMAh9vuUiCyZF9VPv6fDqqLRpV5Um7fJ2BEd8c4FJiFt2beLF8SmeLVEj3Xb3DpKVHUSsFts/oTbBX7a7kzGVEe7WCo28MwNXeOoJgntZAx4+2k12grxOpgJwCPREfbiNfZ+TP53rUbCv67t0wcCD4+0sBUS1quJhLV44aJeuf6UZz/5oTHTUYRRbtuS5PDmb8/mx3i1LqtQHz5BUW5M7vz3Yv/MWVK5LtuSjCuXOSivh/qDX88gtMnixd/ldflbSEKlufiKLImxvPseJIDE4aJetqeHyXRNGW8Kd6N2bW4NAqL+pEUWTNiTiW7Y/mUmKhxk+LAFce7NyA4e3q4WLls7YojEaRw9EprD4Wy5ZziWhNQZZGqeCe1v68PCiUBl4Vz5H5OgNP/3KCXZfvoFEq+HpiuKzuXxFeW3+G347G0iLAlbWP96BNa4HoaHjzzcKOQTM2nbnFc7+ewsVOxZanO9AgwPu/MllNwU6lwEGtwF6lQKMU0Cil16oKBvOFhCzavruVDzedJyFDyhwJgsCwsHrseKk3z/VtglIhsP5kPA8vO2pR67i9WsnXE9vjoFZy4FoK3+6+ZtH592zqQ69mPugMotxGWtPIz89n7NixjB07luY+9jT1dZaCCRtKTQ4apUyW22Bjm35V4GSnon9zyR6kRrvKALp0kdoo4uJg5UpAsj6YNm0a06ZNq1HrgzeGtqBbYy9ytQYeX368xsqqtzPz6TNnV6lAyPy7uwXjOwahUSqIjE3ndGx64S+aNYORI6XXZXT//X9AbY3JktiwAR55RAqEnnvOskAIYPmhm6w4EoMgwIIJ4bUaCO27eoc3N0pk7Rf7N+XVIc2LBUJFn5WWWhclZOQxedlRZq09w6XELOzVCsZGBLLhmW5seaEHD3UJrlIgBFLZqltjb+ZPCOfY6wN4f3grWtWTzFv/iJSMUpfuj66wtG2vVvLdpA7c28YfrcHI0ytOssmCZ+jMwc1xc1BzMSGT9ZE35dtszhy4ebP4Z+9tHUConwtZBXp+LtoBWtnfZ/En/5/DXq2QtYQK9EbydEby9Ua0BhGtQXqtr4TfYBRhyf4bdP1kJ8//elIOeBw1Kl4eHMqyRzripFFyKCqF0YsOWqTN0MTXWdZZmLvtCsduWMbDeW1IcwRBakM8GZNm0TZVgcFgYO3ataxduxaj0Sg70a8+bhvvx+wqvuNSUp3oJpmP/2fkrZo9vr19Ifnh889BFNEnJbFgwQIWLFiAvgbd09VKBd9MbE8DT0diU/N49tea6TDzc7VnbERQmb+7m4Ihb2c77gsLAGB5Ub8yKNSGWrFCCly12gr95f7XoNfra2VMFsU//8D48RJV65FHJENPSwKhfVfv8P6mCwC8ck9zBph8D2sDV0ydmgajyMjw+kwro2ut6LPSUAkPTbLDiGPQvL3su5qMnUrBK/c058hrA5g9NqzaTVvNcHNUM7lrCJtf6Mmfz/WgSyNP8nQGPth0gbGLDnItqXz1aY1KwZcTwhnVvj4Go8iM1ZGciUuv8HieThqZ7zrnnyv0HqSlTx/Izy+89cxQKASmD5Su689HSkRKFeC/YMhC5OuM5Gqlgelir6JtoBv3h9XjhX5NeL5fE0a3D6RrIy9CvBzLLHGVHI5/nkkg4sNtLNhxRSai9W7mw5qnuuHvai93OBRbgZaDMRGBjAyvj1GEF347ZdEKvkWAK2NMvIePN1+sdW2QEeH1USkEImPTuZxovblep4aeOGqU3MkqqBMn+z6hPjjbqUjIyOdETQeTTz0lFcbPnYPhw1GHhvJ6y5a8/vrrNW594OGkYfHkDjhplBy8nlJjpq7P92tSzLLFjNuZd5fp58OmNvtNZxKKd+J07gy9eknKcA8+CI0aSf/+P4Fareb111+vlTEJUmv1qFGF7vNLlhTvLCoP15KyeWaFFIyMal+fJ3s1qvFzNeNOVgGP/nCMrAI9nUI8q9ypmZJdwDMrTjJ9VSRZ+XrCgtzZ/EJPnu7TuFa1idoEuvHr1C58NLI1znYqTsakc++C/Xyz61q5iyeVUsGcMWEMaOGHVm/k6V9OVipMPLFTA5r7u5CRp+OLbZeZP1/6zlevhv37i392UEt/WgS4klNghX3Vf5yhimHmDL2+8gijOjehoY8zHo7qCgexKIqk5GiJSc1l67lE1p+K505WRS2MSpY90pFODSXuS2JGPlN+PMaFhEzs1QoWTAhncCV11ewCPcO+2k90cg4DWvixeHJEpTdaYoZUnsjXGWucJFtW6+0Ty4/zz4XbTO3RkDfva2n1Ps3bTxvQlGkDmlX3KVeKGatPs/5kPJO6BPPBiNY1d6Djx6WJ9cqVwve6dIFDh2rumCXwz/lEnvhZ8kr7bHQbxnesfvfuAr2ByUuPFusyHN2+Pl+Ma1ftx6oKhn9zgMjYdGYODi0U5ouLkzSHNmwo/uHcXHBwqP2T/B/GpUvQowekpEh0uk2bLHNDydVKz8jrd3KICPbg18c715r9S57WwITFh4mMTaehtxPrn+5WLunYEpmCbRdu89r6MyRna1EpBF7s35Sn+zS22hy1unErPY83Npxll8k/smWAK5+PaUvr+oW8SlEUycjT4e6oITNfx/CvDxCdnEOPJt78NKVThbzXI1EpjP/+MIIAfz7Xg6/ed+P77yEiQgqQiwbE/5xPZOqSfcTOH/cfZ6g68cqQ5kSEeOLppKk0yBAEAW9nO9o38OC1e1tw6NV+/PBIR4a2CUBTxmDNLjAw7rvDTP3xGFn5Ovzd7Fn9VFf6hPqQrzPy1C8nWLo/usLsjbOdiq8nhqNRKth+8TY/HLhR6d/k72bP1B7Syuizvy/VmsieGeZS2YZT8TIZzxr0b+ELSO7idYH7TaWyLWcTLBa/tBqffy6JahQNhABu3KiZ45WDQa38mTFQCjjf3HiO4xaWY62BnUrJd5MiCPEsJGFesiFrWNN4pFswAL8cvil97wcPQsOGpQMhKE1o+A9VQlwcDB4sBUIdOsC6dZbbwn2w6SLX7+Tg52rHoociai0QMhpFZqw+TWRsOu6OapY90tGi7qvy9vXWxnM8vvw4ydlamvk5s/HZ7jzfv2mdB0IA9dwdWPZIR+aOC8PdUc2FhExGfHOADackOkS+zsCr687y+gaJPO5qr2bRQxE4qJXsv5bMF/9UzGHt3MiL4e3qSXYrv5/jvfdEXF0lT+uffir+2YEt/WgRYLkOXN1fvf8HUCkV9G3uyzcPtufoG/35YERrGvmUjva3X0qi88fbORefjqNaSXOToJ8oSiallWm+tKrnxpv3tQDgk78ucsGC8tFTfRrj7awhOjmHlbXsHN4n1AcfFztScrTsvmx9QNM3VAqGIuMyKsy81RS6N/HGw1FNSo6Wg9drSDn5+eehe/dib4lATmIiOcnJtVrefL5fE+5t44/OIPLULydtslSpDO6OGn6c0gk7U6k5Ojmn2o9RVdzbJgAvJw0JGflsu3AbunUrX+a4loPWuoIoiuTk5JCTk1NjYzI1Fe65B2JiJM76li3gYuFc9/e5RH47KhGm545rh49L7bXQf771Mn+dS0StFPjuoQibhWKNRpFX1p3h58M3EQR4olcj/niuR7Gsy90A2cl+em8GtfRDbxSZviqSr3deZfz3h1l1PJZtF26TYiozh/q78NmYtgAs3H2drUXsSMrCa0Na4KhRcjImnQPx8bz1lvT+++9LZdOi52GNpcp/wVAtw91Rw6Quwfz1Yk9e6NekVAdartbIsK8OMOKb/SzaGwVIGkQAs7deZvOZin1XJnUJZmBLP3QGkff+PF/pg8nZTsXz/SSy2ff7ompV5E6lVHBfW4mQuu3Cbau393W1p3V9KfVpSzBVVaiVCu5tI51/jQkwOjjAH39Ay8IyYi7gDDj7+NSq9YEgCMwZG0aLAFeSswt48ucTNWLrEuLtxOyx0sMxV2sgykJPo9qCnUrJA52kMuFP5m6VTz8tmyP0/yQYys3NxdnZGWdn5xoZk7m5MGwYnD8v6cv88w/4VC5RA0h0gFfXnwHgiZ6N6N7Eu9rPrzysPhbLoj3SIvbzMW1tlgExB0JrTsShEODLCeG8fm+LatElqin4uEgZOLNg6Zx/rhBp4sDqDGKxTuD7w+oxpXtDAF5aHVmhj5m/m708Z33y1yUmTdHh5yfdaiWFGHtboGNkxn/BUB3BTqVkxqBQ/ny+B2EldGpE4Ex8YVYnLi2PEe0kcumM1ac5VQFhVxAE3r2/FXYqBUeiUyuNskEqV7k7qolNzWPbhco/X50Y2ELq5Nh5KcmmQKyfKTu0qw6CISjsKvv7fCIZuTp2XLxd/Rk2T0/4+2+oX5pgXNtw1KhYPDkCD0c1Z+MzeMckzFjduD+sPq3qSYHusgPRNXKMquDBLg1QKgQOR6Vy5XaWRFZYtkwisRRFVFTdnOD/EAwGmDhRqka6u8PWrRAcbNm2RqPIS2tOk56ro3V9V9nvqjYQk5LL238UttCPDA+sZIuyUTIQWjAhXH7u3O0QBAj2dCjVQASw6lhsscX6a/c2p1OIJ9kFep76+QQ5BeV3JU7pEUJDbyeSswtYcugqL78svf/xx2BrM+N/wVAVkZGn49D1FH4+fJO1J+LYeek2J2PSuJGcQ0aertiXLYoiW0o46rYIcGX9M915c2gLuTRQFpzslPRr7kuB3sjjy49X2HZf391B7pL4aMtFCvQVr94dNEommla6y/bfqOxPtgmOjo5kZ2eTnZ2No2MhJ6RjQ09c7FWk5Gg5HWt9V1bf5lIwtO9Kcq1zngAC3OxxsVeRlS8JMT7203GbslyVIihICojc3HAEsoHsjz4qdi1rC4Eejnz1QHvZsqOmyquvmpyo152It8l4sSYR4OZAf9PY+/WI6e/XaCQSS/v2hR+sRZJ7XaK8+7uqEEWYNk0S9razk5Kkra3oVVi8L4oD11JwUCtZMCHcIjHb6oAoiry6/gz5OiNdGnnyYn/LjV+LXkt7e4d/bSBkhlKpKDODdTUpm1NFuqXVSgVfPxiOr4sdV5OymbXuTLmVDTuVkneGSdnyHw7cYODoLLy9JTvHlSulTrsl+6IYufCAxef5XzBkBfJ1BvZcucM3u67xzIoT9Pp8F2Hv/cMDiw/z1sZzvLwmkik/HmfUwoP0mbObsPf+oekbfzHimwMs3R/Nwl3XeGbFSf4+Vzz7olQITO3ZiL9f7ElIOQqeG07G8fHI1qYShZbHfjpWoffKk70b4+dqR2xqnkVk6sldQ1ApBI7eSOVsXIZV18USCIKAk5MTTk5OxQjoaqVC5v5sv2h9dics0B0vJw1ZBXqLNZaqC9NXnab37N1k5UtLEbPOlCUq4DahdWv4/XcEhQInwGnz5lr1USqKHk29i7lKR1ogAWH1MZp408TXmTydgbUnat+HrjJM7CwtINafjCssF7q4wObN4GbK9kZG1tHZ1S7Ku7+rii++gK+/ljIMP/8MPXtavu25+AzZJ/LtYS1p7ONcyRbVh1XHYjl4XbKd+HRUW6vUpc3X0sHBkVfXn/1XB0KCIDC5awhbXuxJRLBHqd+vPFJ8IeXrYs+3D7VHpRDYfCaB347GlrvvPqG+DGghcZIWH7rKtOnS8/f5Wfl0/mgHH26+yLUkyzmH/wVDFmLp/ih6fLaLh5cdZfbWy2w5m0iMKTsT6CGtEns186FtoBuBHg44mQQa9UaR07HpfLDpArP/kTqCXlx5ilM3S2dBGvo4s21GbwaWIQKWqzOy5WwCSx/ugK+LHVduZ/Pcr6fK7WJyslMxy+Su/fXOa5USjP3d7GX+ztL9tZvaN3eFbbcho6JQCPQxBVM7bQimqoInezdCrSz9kFPXZFdH797SUhmklvta5AyVxDN9GjOopZ+kJPvLiUp1QqyFIAg8bOIb/HTwRp2Ia1aEXk19CPRwIDNfX5zL5+8Pf/4pvc7KgiNH6uYE/+VYtQpmzpRez5kj6QlZilytnhd+O4XOIDK4lR8TOpYt6lkTSMzIl/W4XhoYSogNhGmjUcosmQOh+f/CQKgoGno7sfrJrrx+b3OURYLldafiyS6xqI8I9uSVe6S567O/L8lE64w8XSnOrLnDdcvZBFr0v43CXkt6gj0ZF6yXifkvGLIQ87ZdJTm7AD9XO+4Pq8eMgU15d1hLPhvdhke6hRDi7YSLnQqVQqCemwP3t6vHK/eE8vnotjzftwmO6sJLXaA3MvLbgzyz4oRszWGGWqngu4cimNSldFH8s78v4edix9KHO+KgVrL3yh3erYAkPTK8PmGBbmQX6CttWQSY0kMisG06k1Dtyr8FBQU88sgjPPLII6Xk+vs080WlELialM3NFOu7h/qZyhU7a5k31Nzftcz0d41lhkzQfvghbzg48IZWi3bJkho9VkUQBIE548Jo5O3ErYx8XvjtVLUT8EeF18fFXsWNlFz2XLlTrfuuKhQKQSZS/1qyVNizJwwdKr3+7LNaPrPah1ar5Y033uCNN95Aq616ULxvn+Q3BpJ8U3nNeuXhg00XiErOwd/Vnk9Hta21DKrZ8yyrQE9YoBuPdg+xeh8FBQX0GDqGhe+9hGDQMX9CuCzj8W+GUiHwRK/G/DWtsAJiMIq8su5sqc8+2j2EFgGuZOTpeO/PC3z+9yV6fLqT9zcV5yi2rOdK72Y+GEU4mXCHEQ9Ji8OMg02xtqnxP9HFSmAWXez5wSaeG9yGAHcH1hyP4+/ziTZp45SEk0bJS4NCmdw1uJhOhCiKzNt2hS93Fvcb697YkxWPd2Xr+USe+uUEogjvD2/FZJMybkmcuJnK6G8PIQiw6fketKpXcRvm2EUHOXYjjWf7NmamKbNUHahMSGzi4sMcvJ7CW/e15DFTUGYpMvN1tH9/G3qjyJ6ZfWrVeFZnMDJy4QHOFSG8j2pfn7k1KBRY7Fo2bIjT1augrLuukiu3sxj+9QHydAae6dOYWfdU37gB+HDTBZbsj6ZXMx+WT+lUrfuuKpKy8un2yU70RpGt03oR6l+k1/vcOWjTRiJXX7kCjRvX3YnWMCwRCrQUV65ImqJpaZLl25o11g3vPVfu8PCyowgCrHisM91qsXvsz8hbPP/bKdRKgT+f72GT59mRK7foEio1SyzeeYGpfVtU92nWOXQGI0/+fIKdJo24Xx7rTI+mxb+nv89Jc1xJXHh/MI6aQsPzQ9dTeGDxYexUCjY/2ZdWoWq0eUp8RpzAPiTqP9HF6sbwdvVYuPs6k5Ye5Y/IW2j1RgLc7OkQ7MGwsHo80asRb9/Xkm8fbM+CCe14oX9ThrYJKJcDZEaO1sD7my4w/Jvi1huCIDBjUChvlVBmPnA9lbn/XGZwK39eNU06H22+WK4eS0SwJ8PCJJGq9/+8UGmrvTkQWXEkhjxt9bdNl4f+pq4yW0plrvZqOoRI9eidtSzAqFYqmDM2jKK8zJpeg6pUKl585hletLNDFR0NGzfW8BErRjM/Fz63QifEWkzuGoIgwN4rd7iWdHe12fu62DPANHZ/LemD1Lo1DBkCRiPMm1cHZ1d7UKlUvPjii7z44ouoVKrKNygHyclSQi0tTXI4WbHCukAoX2fg7d+lDq5HuoXUaiCUmqPl3T+kzMUzfZrYFAjlFOiZubaQZ1ab5b3ahFqpYOnDHRhgokg8veJEsaagkzFpPPfryTK3vZlSnBrQpZEnYUHuFOiNbLxwkxnTpCdw+sEmVmWH/guGLMSCHde4kZKLk0bSGPnjue4cfLUfa5/uxlcPSJoPU3o0ZEibAIa3q8+Mgc345sH2bHimO5+PaUv3xl6URyWxVys4fyuTkQsP8NbGc2TkFdZQH+vRkC/GhhWbYL/ceY31J+N4olcjejTxpkBv5JV1Z4pxKoq63r9yT2iRVvuKg42BLf0J9HAgPVdXq47w5pvi6I3UYuduKeRSWR2oUZcsl6XUkLu7GXZ2dsz/5hvmz5yJHcDs2VidE65mDAurJwfSL62OJDo5h+TsAqb+dKzYeLYFDbwc5YBjuRUu1LUFmUh9Kr70AsLc87tsmSSb/D8KOzs75s+fz/z587Gzs03QsKBA8hu7dg1CQqQOMmudTBbtuc7NlFz8XO1kPklt4YNNF0jJkVShrRH7K4p3/zjPjeTCyb6uGiRqA4Ig8PXE9rSu70pWvp4nfz4h3z/tG3jwdJ+yM6k3Siz8BUHg6d5S9/TyQzd46jkjTs4iuiQ38qItD4b/C4YsRNtANz4f3Zajbwzgk1FtaBvobtFA9XDSMK5DECse78K5d+9h4cRwOjf0LCa2mK8z0sTXGVGEnw/fZOQ3B4pFyaMjAlnwQHix/ZqFqT4Z1QZHjZKj0amsOHKTM3HpPPLD0WKri0APR54wtdp/XEmrvVIhyCJZyw5UbAFSnQj2cqKZnzMGo8juK9YHNOZg6EhUaoX6FDWFp/o0wcNkjpiYUUtO6889J/Ub37kj/dQxXh1SqBPy8LKj3LtgL9svJvH3uYqFQi3Bo6YxufZEXIVdlHWBHk28aeDpSFa+nj/PlBDf7NtXMtpdswY8SnfT/AcJoghTp0pcIVdXyW/Mz0oz+ZspObJK/1v3tcTFvvbMSnddSmLDqXgUAnw+JsymFv4/I2+x5kQc/8PxTynYq5V8P6kDXk4aLiRk8vqGs/KcM2NgszK5szdSSjeNDGzpTyNvJzLz9Wy7HsPbbwk8MysH+/qWdxj/FwxZiF8f78K4jkE42dmeAnbQKLm3bT1WPdmVSx/cw2ej2shltGtJ2TTydsLXWUNUcg6jvz3IxYRCHsr9YfV4tm9hpCwC9325Hy9nDbMGSy3O7/55gfu/PsDuy3ckIbgieKp3Y3xd7IhJzeW3IxXrwozvGISznYprSdm1SlqVS2U2dIU19nEmyNMBrcHIgWvJ1X1qlUKtVPCCKTsUn5ZXO0Gkn5+kRHflCvj61vzxKoFaqWDBhHY4aZTEpOaSlCVlyKojw9i1sRfN/JzJ1RpYc/zuarNXKAQmdJLKGb+WvLcEAb79Vqr9WGKr/v8UH34oqQcrlbB2LbRqZd32oijy9u/n0eqN9GzqzVCTMnxtQG8w8o6pPDale0PaBblbvY/Y1FxeXy8RiZ80ZTn+v6CeuwNfT2yPUiGw4VQ8Px68AUgZn/fub8WwtsW/y5KZITCTs6XrtmRfNNNmGPnmMyf6h1mu+P3f3VlHUCkVjO/UgF0v92H++DCc7VREJeeQka/H18WOpKwCxi06xKEinlcvDQyVhd4A8vVG7pm/lyNR0meKdvLcTM0tlrJ3slPxvGmyXnbgRoVdPy72atlEdZkFGkXVBXMpZPflJKvJ6YIg0L95oZp1XWBchyCUgkBWgb5COfmqIicnB0EQEASBnNDQOiVPF0VajpbXN5wlp0Sp6Eh0apV9zARB4JFuUhnup4MVj9+6wNiIIFQKgdOx6RV7Av6P9qsUG5M51nWErlkDb78tvV64sLSItyXYej6RPVfuoFEqeO/+VrVaXvr99C1iUnPxdNIw3YbSnN5g5MWVp8gq0NO+gTvP9rGtxPZvRtfGXrx+r0QU/3DzRVkzTqEQmDu+HRHB7vJnI+PSy9zHyPb18XWxIzEzn42npQXYuyU4txXhv2CojiEIAiPCA9k2o5fM/0nKKsDVXkWWqdzwl0m1WqEQmDehXTGT15jUPHaXkb0RRUqRTUe3r4+7o5qY1NxKVZIf6VZIWr16u3acw9sFuePtrCEr3zYBRbMa9a7LSbVqYGqGk52Kro2llUitB2QFBXDAcrXVmkBkXDonytDPEkX4oxq820aE18PNQRq/deFFVxF8XOwY3ErSNvn1aBlO9ZmZ8M47Usu9sfaV0u9WnDgBDz8svZ4+HZ54wvp95BToee/PCwA81bsRjWpRXNFgFPlml9TxO7VnQ5sqB1/uvMbJmHRc7FQsmBB+V7jP1wWmdA9heLt6GIwir647Iy+I1UoFvzzWBR9niYt2NSm7TLcBO5VSlof5bs91jEYRLxd7i4////OqVyP0BiPHbqSy8mgMn/x1kSd/Ps7geXtp8dbfdPpoO2O+Pcj0VaeZu+0Ka47Hci2p7MAiwM2B5VM68e6wltipFGTm63GxV6E1GHnm15P8fFh6wLraq1k8uQPOmsJsQJ7OiLtD6ZvwcokgxlGj4sHOZtsNye/JaBQ5fiO1lGBeAy9HBpnEH385XMbD3Uo4OjqSlJREUlJSuXL9SoUgc3+2X7S+q6xzQ08c1EpuZxZwvqLVeQ3CLCBZk8FQqWuZkAANG0L//pBUd0FCn1Bf/p7Wi84NPUv9bm01lLYcNSrGdZD8nZYfqvqYrG6YidQbT90qzVsTBPjySylg3bSpDs6uZmHJ/V0St27B/fdDXp7UdDd7tm3H/nLHVRIy8gnydOAZG4nLtmLz2QSiknNwc1CXK29SEW4k58jB1IcjWxPk6WjTtfxfgCAIvH9/a7ydNVy/k8PifYXivw4aJeuf6YZSIWAwiqw6VrYy9cTODXCxU3H9To7Vc8h/wZCNyMjT8d2e6/T6fBdjFx3i1fVn+W5PFFvP3+by7SzydAaSsgo4fjONDafi+XLHVWauPcOAuXsZ/e1B1p6IK9V5olAIPNK9IX881wMfFzuy8vW4OagRRXhr4znWn5QmlMY+znz1YPtS51QyILqUUNpWY3LXENRKyXZj2qpT9PhsJ2MWHSqzjDHBJCi3+WxCuUrXlkIQBHx8fPDx8akwhV3IG7ptdXbHXq2UHal31VGpzBzMHb+RVmNE31LX0t9f8i4rKJC8C+oQ9dwd+PXxLswcHEpRce5rd7I5f6vqNi8PdQlGECQtGVsEOmsSXRt5EeLlSHaBnj9LZsJcXCQiNdg+69/FsPT+NiMvDwYNkgKiFi3gt99sq/ZeTsxiqWlh9/79rWvVxd1oFPnGpAM3pXtDnG3ICs3ddgWDUaRPqA/DTWbc1l7L/yW4Oap5Y6hULvtyx1ViipClgzwd5S69b3dfL7NU7mqv5qGuEul60Z7rVs0h/wVDVuJGcg7v/H6Orp/s4JO/LnErIx8PRzW9mvnwcNdg3hnWkh8f7cjOl3rz+7Pd+XpiOLPuCeWBTg3o0sgTpULgxM00Xl4TSaePt/P27+dKkZ1D/V1Y+UQX/FztyMjT4e4gdUW8uv4sJ02O9X1DfWXJcoD0PD1dG3njYl94Qx6JLl6ySMrM5+dDN9GY0rAbT93ilqnzqaAMjk6PJt64O6pJztZyJLp2fL96NvVGo1IQm5rHldvW827MwUhdqRUHeznRyMcJvVFk35VaInILQmEL98KFdWrRAVKG79m+TVj3THcC3ArT1OZSRlUQ7OVE72Y+gKSFdTehqCL1b2WZ1z7/PKjVsH///2uLjrw86NgRzp8HR0fJucRs5WYtPth0Ab1Rstzo27x2mwj+uSAtfF3sVDxig9L0hVuZcvn4ZZPP33+AEe3q07WRFwV6I2//ca5YQPNEr0a42KuIT88r5fFpxqPdQ9CoFJyMSedcvOULsP+CIQtRoJfEvPp+sZufDt0kV2ugub8Ln49uy6HX+rN8SifeG96aR7s3pE+oL418nAkLcue+tvV4pk8TPhnVhpVPdOXQq/2YOTiUIE8HsvL1LD90k3vm7+XTvy4Vmj0iZX9WPdGVem72pOfpcNQo0eqNPLH8hJzFeap3o2Ilib/OJzJ7TFs0piX5pcTMYgPJ2V7FlnMJpQiuQJmEZbVSwZDWEpP/j9NV43wUFBTw7LPP8uyzz5ay4ygKR42KHqbsji2lMjNn50x8RrUohNuCfqE1WyrTarV89NFHfPTRR4XWByNHSqWylBT46acaOa61aBfkzrYZvWWDxqPRqRy+XnWtHXO77erjscXumbsBoyMCUSkEIuMySi1yqFcPJk6UXn/xRe2fXA2izDFZBg4cgOBgKRACyX/MVmHuw1Ep7L+WjFop8OZQy4my1QFRFPlq51UAHu4WgpuD9W38Zouk+9oG0Lp+YTRo6bOyJpGao2Xr+UQ+2nyBkQsP0P+L3dz31T7GLjrIpKVHeGL5cT7ecpGj0anV3swgCAIfjGiNWimw+/KdYkGPs52KKd0lXtA3u66VmfnxdbFnSGuJv1cqQ1vRcf+z46gYZjuOIbO3ciFZKnv0DfXhsR6N6N7Eq1gaM19n4OTNNFJytGTk6cjI05GZp0NrMNLc34U29d1p5ueMSqnAaBQ5cD2Znw7elCf9Jr7OzBkbVqw1MzY1lwcWHyYuLQ+1UkBnEGlVz5U1T3XFUaPi+p1sBs3bg7mK5eWsYe7YMB7+4RgACya0k9OvIK1GRiw8UCpQ+GlKJ3nFXRQHryczcfERXO1VHH9zoE36GWCdXP+KIzd5Y8M5whu4s+GZ7lYdRxRFwj/YRnqujo3PdrepzbWqOHgtmYlLjuDtrOHo6wOscqy2BOVeyy+/hBdfhKZN4dKlu6aVWxRFxn13iGM30vBwVLNtRm+8nW0T5gOJtNrr813Ep+cxe0xbxna4u1R6H19+nG0XbvNEr0Zyh4yMs2ehbVvpu7l2TQpg/wdQ2f2dlQWvv168itu9u5QkswWiKDL++8McjU5lUpdgPhjR2tZTtwk7L91myo/HcdQo2f9KPzydNFZtf/xGKmMWHUKpENg2vVcx0nd1WptYg7QcLYv2XmfHxSSrlN49HNX0a+7HwJZ+9G7mg4OmeKnywLVkDl1P4eXB1mW/vvjnMl/tvIa/qz3bX+otlyHTcrR0/2wnuVoDPzzakb6hpTOCZksWV4WWs5+M+s+OozpxLj4DNwc1PzzakR8e7USPpt4IgkTm2n81mZfXRNLxw+1MXHKE5387xZsbzzF762W+2xvFDwdu8Mq6s9z75T5av7uVUQsP8Onflwj2dGLJwx34blIE3s52XEvKln5XJEsU5OnIqie70sDTEZ1BRKkQOH8rk5fXRGI0ijT2ceaFfoXtnCnZWi4mZDEyXAqA5m27UkyZumU9V94aWtrrpqCcFXbnhl74utiRma9n39XaKT2ZW+xPx6Zb7YQuCALhpgDoVEzpzqbaQIcQT5ztVCRnazljRZrWUqhUKqZOncrUqVOLWx9MmQLu7nD1aqFr+l0AQRD48dFOBHs5kparY/qq01VyoFcqBB4yZYd+rgZyf3VjbIRE8l5/Mr40165NG4ksYzTC/Pm1f3I1hHLHJPD335IzSUk621df2X68g9dTOBqdikal4Jm+tev5JooiX+6QuEIPdQm2OhASRZHPt0pZobERgbXa/VYW8nUGFu6+Rq/Pd/Hdnig5EGri68wDnRowb3wYK5/owo+PdmTRQ+2ZOy6MD0a0ZmR4fdwc1KTl6lh3Mo6nfjlBr9m7WHsiTr6/Vx6N4eFlR/nhQLTVHMpn+zahgacjiZn5zNt2RX7fw0kjNwIt3HWtzG27N5bmrfQ8ywV4/wuGLETLAFc2Pd9DjkIz8nR8suUiXT/ZwUNLj7D2RBxZBXoC3Ozp3NCTQS39GBsRyNQeDXmsR0O6NvLCxU5Fvs7IyZh0vt8bRZ85u3hx5SkaeDqybXovRrSrh1GUiF8jFx4kyeQcX9/dgRVTO+PmoMZgFFEIsOVsIgt2SGnap/o0opF3YdfB51svMX1AUxzUSm6k5PJ3Ca+oh7oEM6hl8WhaWw5BWqkQGGoSvbIm5VgV+Lna09jHCVG0LaBp30Aqy5yMSa/mM7MMGpWCnk1rjshtZ2fH4sWLWbx4cXHrA2dnePpp6bWtS+4agpOdisWTO2CvVrDvarLcQWMrxnUIRKNUcCYug8ginn53A/o298XLSUNydkHZ3LVXXoHHHy8kVP8PoKwxmZIiOc8PGQIxJShUnTpBeHgZO7IAoigy1zQ5TuzUgAA3Kz07qoj915I5HZuOnUrB1J7WZ/b2Xk2WA7kXitj41DYMRpHVx2PpM3s3n/99mawCPS0DXPl6Yjgn3xrI9hm9+WRUG0aGB9KlkRd9Qn25p3UAo9oHMqlLMPPGt+PEmwP47fEuTOnekHpu9tzJKuDlNZGMWHiAaStP8+r6s+iNIjlag9UdpfZqJe8Pl9Q3fzgQXawBY2rPRmiUCo7dSONoGXxWlVLBiPD6pd6vCP+6YGjhwoU0bNgQe3t7IiIi2LdvX7mf3b17tywEVvTn0qVLVh93+WOdCPKUAo59V+9wz/y9fLc3iqSsAtwd1TzYuQFrnurKgVf6serJrnw/uQOzx4bx5n0teeu+lvz2RBci3xnEjpd6M298GL2a+WAUJcGuIQv2MWP1aR7p3pDvJ0Xg7azhYkIm4747RFyaRIYN8nRk/oR2CAKYF9ULdlzlcFQKdioln44Ok8/VKMJ7f57ncZMi5zxTx4IZgiAwe0y7YnXu/ApMWYeF1QMkwmBtmbcWBjTWB0Phpm3rKjMExTWPahXTpsHp03dlx1IzPxc+HNEGgHnbr3Dwuu0Ecy9nO+4zBel3W3ZIXeRBvPZEGRNAv37w/fdSG9X/MC5ehM2by/7dc8/Zvt+9V5M5cTMNO5WCZ8rxr6pJfG3qIHugUwN8rdCxAakDbfZWaf6Z1CWYeu61G8iZkZGr44HFh5m19gyJmfnUd3dg3vgwNj3fg/va1rM426VSKuja2Iu3h7Vk18w+vDakOU52Ss7EZcjCh2b8dOiG1RnhPqG+3NvGH6MIX/xTmB3yc7VnrElm4+tyFlaj2v8PB0OrVq1i2rRpvPHGG5w6dYqePXsyZMgQYkouO0rg8uXLJCQkyD9Nm1ofjdurleRq9by18RyTlh4lISOfEC9HFj0UwdHXB/DRyDZ0DPGU+SF5WgNXbmdx5XYW15KyuJaUzc3UXBp4OjIyPJDlUzqZBl4ACgF2Xb7DqIUHuJyYxZonuxHo4cCNlFzGLjokqxn3DfXlhX7SuStNx3l13RnydQY6NfQs5nC849Id7g8LwNVexdWkbDaV8Exyc1TzzcTCpVlkXPnlnPAgd+q7O5CrNdSamKCZdFuWiF9lCAtyQxAgLi2PpKxa8gkrgT6hEv/qTFxG7Z6Dry+EhVX+uTrCmIhAxkYEYhThhd9OcyfLdoKouYX2z8hbpNWwOa61GGMqlW2/eNvqUu//Cnr0kJrmvEt4ZXp5wdixtu2zaFZoUpdgfF2tC0aqihvJORyJTkUh2Gab8ff5RM7FZ+KkUdZJIAeQkJHH2O8OcjQ6FRc7FW/c24IdL/VmZHhglfiNdiolT/ZuzH1t6pX5+5spuTb5Ts4c3ByFIDWkFO0Oe7JXY5QKgb1X7nC2jPmrub8rof4uFh/nXxUMzZ07l8cee4ypU6fSokUL5s+fT1BQEN9++22F2/n6+uLv7y//KG0QtDgTl869C/bJq9CHuwaz5cWe3NPaH41KgSiKXL2dxZJ9UUxaeoSw9/9h0Ly9DJq3lwFz9zJg7h76ztlN+PvbeHz5cX4+dANnOxVfT2zPzpf6cH+YVCL7YtsV3vz9LN89FEFjHycSMvIZt+iQLPH/Qv+m9Grmg8Eo8YdupOQyb7v0cHhtSAtci7TWT195WvZrmb/9ain+Qo+mPnQMqTzoEARBzg7VVqmsvSkYiozNsFrjyMVeTTNf6SY4VUelMl8Xe9oGSh0iuy9XL9cqJycHJycnnJycKrY+SEyE29Z35NU03h/emlA/F5KzC5i+6rTN3SjhQe60ru9Kgd7ImhNli7DVFVoEuNK6vis6g8gfp8vxZjt9Gh58EFasqNVzqwmUNyYvXYLkEgnAKVPA3sYYZtflJCJj03FQSxNvbcPcCt+9ibfV5TlRFGXuy9SejfCqQhOBrbiWlMXohQe5cjsbP1c71jzdlcd7NapWfaaPR7Xhg+GtcCxjnz/YYO/U0NtJnn+KltcbeDlyv+n9hbvLzg7dH2a5R92/JhjSarWcOHGCQYMGFXt/0KBBHDx4sMJtw8PDCQgIoH///uzatcum4z/20zFupORSz82eXx7rzHvDW+OoUSGKIlvPJ9Lviz0MnLeXDzdfZN/VZLR6I672KjydNHg4qnFzUOOgVpJdoGfbhdu89ft5+szZzaB5e7iUmMmCCe2YMzYMB7WSA9dSePiHo7w0sBmt6rmSkqNlwveHOBuXgVIhsGB8O+q7O8iTyOK9UZyNy8DNUc279xc6HJ69lUn3xt54OKqJTs4p0zDzLZN3y5XbWWRX4PZuHnQ7LyfVimt4Ex9nXOxV5OkMXEq03g6kvcnLpq6CIUDml9UEbyg3N5fcivSEFiyQepg//rjaj11VOGiUfPNgOA5qJfuvJfNtOQ+yyiAIgtxm/8vhmCqRsmsCYyOkTO2askplIDGLf/0VPvvsf8KzrOSYvHJFivUAnnlGquAKAjz5pG37L5oVmtwtGB+X2g0mRFGUSz8j2llXggGJw3g1KRsHtZLHbOAaVRUnbqZJArsZ+TTycWLd091o7l9xh5UtUCoEJnUNYdfMPgxoUZybuu9qslWdamaYxRb/OpdYTLLiaVN27e/ziTKlpCiGlpOlKgs2BUNTpkwhK6v0BJWTk8OUKVNs2WWlSE5OxmAw4OfnV+x9Pz8/EhPLFl8KCAjg+++/Z926daxfv57Q0FD69+/P3r17yz1OQUEBmZmZxX4A8rRGujfx4u/pvehhIsfeSM7h0R+P8eTPJ4hOzkGjUtCrmQ9v3deS7TN6E/nOIE6+NZBTbw8i8p1BnH9vMJue78HMwaF0aeSJWilw5XY2T/1yktHfHiTYy5E/n+9Oc38XkrO1PPvbKcZEBNIh2IPMfD2PLz/OnawCPJw0fPtQe1k80SjCrHVn0BmMDG9XnwYehSuW51ee4inTCurrXddKTRht6rvRwNMRvVFkewV+ZS0CXGjs44RWb2TbeeuzDQ4ODkRHRxMdHY2DQ+UrKoVCkLk/NvGGgmzftrpg5g0duJZcrRO1RdeyRQvQamHpUkiru2tQHpr4usjt0HO3XSmTBGkJ7g+rj6u9ipjUXPbWUrejpbg/rB4apYLztzLLNm998klwcpLa7bdvr/0TrEaUHJNZWZL0VWamZMc2fz7Mmwe7dtmuK7TjYpJcYnqyV+1nhc7fyiTqTg52KgWDWvlVvkEJrDM5CAxp7Y+rffm6RNY+Ky3BufgMHlxymPRcHe2C3Fn7VDcCPWrW6sPP1Z4lD0sdaA5FskTTV5222l2gmZ8L95i8/4p2kDXzc6FbYy9EETacLL3Y97YiYLYpGPrpp5/Iyytt35CXl8fy5ctt2aXFKClPLopiuZLloaGhPP7447Rv356uXbuycOFChg4dypw5c8rd/yeffIKbm5v8ExQkre7aBrrx/aQOuNqrKdAbmPvPZQbN28vuy5JT8nN9m3DqrYEsn9KJx3o0pImvc6nzUigEWtd349m+TVj5RFdOvDWQ5/s1wUGt5GRMOmMXHeLTvy7z/aQIxnUIRBTh/U0XGB0RSGMfJxIz83n215PoDEbaBrrLLaWCABcTMvl+bxRKhcD0QYWt9nFpeYQ3cMfFXsXNlFz2Xyues5aMYqVVTkUlsGKlsjPWl8oUCgUhISGEhISgsFD/JqKB7byh8AbugFTerKqViK1oXc8VR42SzHw9V21YDZUHi67lwIFSG3dOjkTWvQsxJiKQUe3rm/hDp2zi1jholIw28XN+vcsUqT2cNAwwdW2WSaT28JBqRvCvF2EsOiYFQcGUKXDhgqQzuXq1JLwN0Lu37cf46dANQOKKWdvOXh343ZQVGtDCD5cKgpmykK8zyM9XM5+sPNjyrKwIWfk6nv31JPk6Iz2bevPr452rdP3ydQarnqn3tA7g2Bv9ZcmTs/EZLNpz3erjPtdPyg79EXmLG8mFpVjz9Vx7Mq5KBt1WXenMzEwyMjIQRZGsrKxi2ZO0tDS2bNmCr2/NSKJ7e3ujVCpLZYGSkpJKZYsqQpcuXbh69Wq5v3/ttdfIyMiQf2JjJS7Cwgfb42SnIl9n4InlJ/hy5zW0Bmlw/T2tJy8PDrXasdjVXs1Lg0LZM7MPEzs3QKkQ2H7xNmO/O8TETg14sHMDRBHe3HiOBzsH42yn4mh0Kh9tvgjAU70bE+zlKGfYF2y/yrWkbIa1rUdQkezQS6sjGd2+/AljmKkrZ+/VO6Tnlj8hmYOh/VeTa4UUai512ZLdaWwqs+XrjDaV2aoDKqVCDsqO3agdOxMZggAzZkivv/xSyhLdhfhgeGs50J+x2jb9IbPmyI5LSSRm1A1hvjyYS2UbT8eXrYg+bZokwLh1K5w7V7snV0OYMwfWrpUCoLVrJeu8qiI6OYd9V5MRBHioc3DVd2glDEZR5gvd387y0osZ2y7cJitfT313B7o08qru0ysXoijy2vqz3EzJpb67A18/0B5HjeXzlCiKnLiZxpJ9UUxbeYr+X+ymxdt/0/TNvwh//x8GzN3D+O8O8fGWi5yLzyg3GHG2V7Ph2e48arIt+fzvy+yw0mGgdX03+jX3xShK3mRm3NPaHyeNkpspuRy7YXsW3KpgyN3dHU9PTwRBoFmzZnh4eMg/3t7eTJkyhWeffdbmk6kIGo2GiIgItm3bVuz9bdu20a1bN4v3c+rUKQICyidV2dnZ4erqWuwHwN1RQ57WwNSfjrPnyh0c1Eq+nhjO8imdqiya5etqz8cj27B1Wk+a+jpzO7OAcd8fJiLYgzERgRiMIh9vuSgPpB8P3mDN8Vjs1cpiHCGtwcjnf19CpVTw4oDC7FBsWh7dGku2Hdsu3pb1i8xo6udCc38XdAaJ/1QeGvs409zfRfLdsrIkodVqmTlzJjNnzqxQrr8o2gW5IwgQm2p9V5hCIcjq03XZYt8hWLrutmS3yoNOp2P+/PnMnz8fna4C/tYDD0gz0a1bku/BXQgnUxOBnUrB7st3WLI/qvKNSqCJrwudQjwrdLOuK/Rs6o2vix2pOdqyZRYaNZLqSQBz59buyVUjzGPy2Wfn88or0phcsAC6dq2e/Zu93vo085ElTmoTR6NTuZ1ZgIu9Su4UtQbmzOCo9vUr7diy5VlZHlYei2XTmQRUCoGvJobj5mhZRksUpWf8qG8PMvrbg3y4+SIbT9/i+p0cRFGiuKXl6riWlM2R6FS+3xvFfV/tZ+C8vXy14yoJGaUrRwBv39eS8R2DEIHnfztllXcYFHKH1p2MkzlCjhqVrIW3tgqNFFYFQ7t27WLHjh2IosjatWvZuXOn/LN//35iYmJ44403bD6ZyjBjxgyWLFnCsmXLuHjxItOnTycmJoanTOJlr732GpMnT5Y/P3/+fDZu3MjVq1c5f/48r732GuvWreM5G0Qucgr0PPrjUfZfS8ZRo+THRztyX9t61eoq3MTXhfXPdGNAC1+0eiMzVkfi4ahmaJsA9EaR7/ZGySnBNzae40xcOn1DfRlcpH79z4XbnI3LYES7etR3L2zZmL/9Kh2CPWShrZIo7BZLqPAczb5hh6z0mNLpdMyZM4c5c+ZUPIEXgYu9mlA/qSvs5M10q44HhVpFdUmi7mDq1qvOzJBWq2X69OlMnz694oelnZ1kDgrSRHuXknRbBLjy9jCJyP/535dtElGcaMoOrToWU+1eSVWBSqlgeLtKOjFfekn6d8UKqQPwXwjzmFy4cDqiqOWRR6pPUzJfZ2CN6Zn1YB1khQD+iJRKZPe2DsBOZV3n1e3MfHnxOKp9xSUysO1ZWRYuJWby7h+SCdzMwaHy87AyHIlKYfx3h5m09CinYtKxVysY1NKPlwY244dHOnL09f4ce2MAW6f14tepnflibBj3tpG6qq8lZfPFtiv0m7OH7/deR1einCYIAh+OaE2PJt7kmpIL1mRzI4I96N7ES5oP9xQunMyWPJvPJJCrtVx1uiisCoZ69+5Nnz59iI6OZvjw4fTu3Vv+6dq1K/XqWZ8+tAbjx49n/vz5vP/++7Rr1469e/eyZcsWgoOlGyQhIaGY5pBWq+Xll1+mbdu29OzZk/3797N582ZGjRpl9bGf+eUkh6NScbZTsXxKJzpbkOoURZEbyTn8djSGT/66yNx/LvPNrmss3hvF3+cSy+zecrFX8/2kDjxr4gMt3heNp6OagS390OqNHLiWTK+m3mj1Rl5eE4lWb+TtYa2KEdTmbrssZYf6F2aHLiRkMTJc+n5+OxpbasIwC9gdvJ5cofZLtyZeps9V3XDTEphb7G0TX3S3edvqQngDDxQmzaPqKuEolUomTpzIxIkTK5eJeOopyRr80iXJpuMuxcRODbi3jT96o8jzv50iy8qOxXta++PhqOZWRj67a1voshLcHyZx8rZfvE1OWR2bXbtKwjsffCB9V/9C6PVKvLwmAhNp21bJwoVSpbY68Ne5BNJyddRzs691Z3qQTLq3nJWC1OE2lMg2nIrHKEKHYA8aeteOz1ie1sBzv56iQG+kT6gPj/esXBNJFEW+2nFV8ny7ISlkP9o9hL2z+vL95A48378pfZv74utqj4+LHaH+LnRr4s3oiEAWPhjB8TcHMGdsGOEN3MnTGfh4yyWGfbWfEzeLLwTVSgXfPNiepr7OJGbm8/jy41aZaj/bR8oOrT8ZJ99PHYI9CPZyJEdr4K+zti0orCO5mBAcHEx6ejpLly7l4sWLCIJAy5YtmTJlCm5ubpXvoAp45plneOaZZ8r83Y8//ljs/7NmzWLWrFnVctwTMWm4ubny05ROlUbY5+Iz+OHADQ5eTyahgglQo1TQuZEnA1r4MSysUPVToRCYObg5jbydeWlNJD8fieHF/k25lpRNdHIOof4ueDqquXI7myX7o3imTxNe6N+Uz/6WlE13Xb7DyZg0Rravz+ytl7iTLWUPjt1Ixc1BTXx6Hnuv3Cn2YAn2ciIs0I3IuAz+OpfA5K4hZZ5zxxBPlAqBmNRc4tJya7wjoX0DD349EsNJW0jUpo6yGym5pOZo64R06WynomU9V87FZ3L8Zir3ta36gsHe3p4VlmrTeHpKxI2OHUur391FEASBT0a1JTI2g5jUXN7YcI4FE9pZnHm1VysZExHI4n3RrDgSQ/8W1nf71BRa13clxMuRGym5bL94u5hxsozVq2v/xKoRr79uT0rKCtzdYcMGqKYmKABWHJYWuA90aiCLzdYm9l5JJiNPh6+LnUWL4KIQRZF1phLZ6EqI09WJHw5Gcy0pG18XO74YG1ZpaU5nMPLWxnOsNJWZx3cIYvrAZvi7WS4I5WqvZkxEIKPb12fNiTg+2XKRS4lZjP72EM/2bczLg0Ll+9nNQc2yRzpy/9f7ORufwcLd15hWhNpREbo29pLvpy1nExjbIQhBEBjTPpAvtl1h7Yk4m661TVT148eP07hxY+bNm0dqairJycnMnTuXxo0bc/LkSVt2eddDEOC7SREVBkLJ2QW8uu4Mw77ez7qTcSRk5KNWCnQK8eSRbiFM6hLM+A5B3B9Wj2AvR7QGI/uuJvPOH+fpPXsXS/ZFFYuQR0cE8rZJB2jBjqvcHxaARilxK3qbNGy+3HGV2NRcHuvRkBCvwsBk3rYrqEtwhzadSWSUqXNsRVlEaguEFV3s1bKYoLWlMltgVqI+E59h1eoBJJXtxj7SSuxu4A0drwK5r0oYMuSuDoTMcHNQ8+UD4SgVAn9E3ipfn6ccPNBJKpXtvpxEfHrZnIW6gCAIsk5XbYmW1iZWrICFC6XXv/wi0aCqC5cSMzl+Mw2VQmB8EYX92oS5i+z+sHpWB2Nn4jK4mpSNnUoh81pqGln5Or7fK5WQXru3eaXijtkFeh776Tgrj8WiEOCD4a34bExbqwKhohAEgXEdgtjxUh/GmSwzvtl1nZfWRBYrmwV5OvLecEle4+ud18qWnyhn/+ay2JoifmejIgIRBDgUlUJsagUabOXApmBo+vTp3H///dy4cYP169ezYcMGoqOjue+++5g2bZotu7zr8VCXYLo1LntCEUWRZfuj6Tt7NyuPxSKKUmDx82OdOPPOYFY/1ZV372/FByNa89mYtiyY0I5dL/Vm+4zevH5vc5r7u5CVr+fDzRcZNG8P24ro/YzvGCTLvn+96zqjI6RgZvPZBMIC3cjXGXlz4znUSkEWoAJJ3OpodCojwuujVko3sN4o4uYgJQN3XrpdiuRmvlmP3UjjVgWTSVfT6qg2gqEQL0c8nTRo9cZiRn2W4m7iDR2/WcsdZWWhEuuaukZEsAczBkoB/Du/n7dKoK2RjzNdG3lhFGHV0bvr7zQvNPZcqaBjU6+XMkTjx0uu9v8CnD8PTzwhvX7rLRg6tHr3b84KDWrlV+vWGyDxlbabup5s6SIzawsNblWxtlB1Ytn+G6Tn6mjs4ySXaMtDgd7AQ0uOsNfUFPT9pA5MKqcqUBQ6g5GsfB0p2QXcSs8r07PS00nD52PCmD2mLUqFwPqT8Uz96XixUvGwtgEMbuWH3igyc21kKY5ReRjdPhCFAEdvpBJtarOv7+5Ad9Mcvb4MzaHKYHNm6JVXXkGlKqyyqVQqZs2axfHjx23Z5V2PF8txFzYaRd778wLvb7pAVoGeNvXdWPtUV756IJyOIZ4cikrmlbVn6PrJDlq9/TfN3viLhq9tod372/j0r0soBIHZY8L4bFQbvJ3tuJGSy+PLj/P27+d4afVpPtx8gVfvac6o9vUxGEU2nIync0NPtHojabk61AqBPVfusPlsAiPDAwkoEs3P3XYZZztVsbT8L0di6NTQU5owSnTeBLg5yPYcFXWVmYPCQ1EpVdJ1sASCINDexP2xTW/IFAzF1n1m6MKtzApVvi1FTk4OPj4++Pj4VGzHURQZGZL6XbNmkHR3cWpK4unejenexIs8nYHnfztFvs5yc2AzkXrlsdg605cqCxZ1bObnS0KMq1fDpk21e4I2ICsLRo+G3Fzo1y+Hb7+1ckxWgpwCvayaX1fE6bPxGeTrjHg729GmvnUUEFEU2XxGakiprRJZRq5O7sicNqBZpZmsjzdf5HRsOm4OalY+0YUBLcsvL99Kz2PZ/mjGLTpE6Jt/0ebdf4j4cDvdPt1Jm3e3MnLhAT756yK7LycV46SO7RDEkskdcFAr2XPlDg8sPiy7GAiCwAcjWuPuqOb8rUy+s1B/yN/Nnl7NpK6+oh1k5gajdTZoDtkUDLm6upZpjhobG4uLi+XGaP8mlOXdYjCKvL7hLD8evAHAm0Nb8Puz3Wld341P/7pExAfbmPLjcVYdjyUhI58crQGt6QGdma9n+8XbfLj5IsO+3s+q47F8NroNT5q8xJYfusm6k/H8cz4RowifjW5Lr2Y+jAivz1cPhOPjYkdMai6dGkkT7Xt/XqBAbyhGlDsclcqJm2nF0svJ2VruayMJf/x++lapAWPmEVVEkI4I9kCjVJCQkc+NFOvTkdYivArZHTOJ+nRMep3ZNfi72RPo4YBRrL5yXXJyMsklTZ8qgqurpDVUUFBY07hLoVAIzB3XDk8nDRcTMmUunCUY3MofLycNSVkF1e4JV1WYs0N/lFcqc3Yu9Kq4y0UYRRGmToXLlyEwUBI6t3pMVoLtF2+TXaAnxMuRbo1rT5unKMzK6B1DPKzuHL6alE1KjhZ7tULOptc0luyPIitfT6ifC0PbVFyW23I2gZ8OSV6b88e3I8wkRVIScWm5PPrDUbp9upP3N13g6I1Uij5KVQoBvVHkVEw63+2J4pEfjnHP/L1sOZsgP3P7Nvfl18c74+Go5kxcBi/8dkoOmHxd7Hl3mCQRs2DHVS5bqAs3zlQqW3siTt7X4Fb+2KkUxKTmWm37YVMwNH78eB577DFWrVpFbGwscXFxrFy5kqlTp/LAAw/Ysst/HfQGIy+tPi3XWb8YG8bUno04eiOVe+bvZdGe6+RoDThplHg6aSjvNlIrBZSCwMmYdB776TibzhRvbU/J0bHj4m3USgXfT4rgk1Ft8HW159V7mgNwOjadIA8H7mQVsPzQTSZ0CipGFP7taAwdgj2KWXTsvZqMRqkgOjmH63eKDxhz1udwVEq5LcoOGiXtTEHGweuWPfwcHBw4d+4c586ds1pivioO9k19nVEpBHK0BhIz606Qr2NI9fGGbLqWRUUYv/kGylCQv5vg52rPnLFtAcncceclywTaNCoFo9pLmdCVd5nmkJk3dOh6Svm6Wc89ByoV7N0Ld3GW/euvpQSWSiX926CB7fd3eTDTBe5tE1CtEibW4LhJEqOD6f61BkeipAVl+wYeaFSWT7W2PitTc7Qs2x8NwPSBTSskTd9MyeGVtWcASby3rC49o1Hk58M3GTxvL7su30EQpKDwrftasun57nwwoiWPdguhW2Mv7mvjzyNdgxndXrLHuZqUzTMrTjL0q/2yrEh4Aw+WT+mMvVrivX7610X5WMPb1WNAC190BpGPtlwsdS5loX8LXzwc1dzOLJCteBw0Spnkbu1iyKZgaM6cOYwaNYrJkycTEhJCcHAwjzzyCGPGjOGzzz6zZZf/Osz55wobT9+SxKweaM/I8Pp8sOkCE74/zI2UXFzsVTioFeRoDaTmaBGBIE8Hejb1pmOIBy0DXHG1V6EziBiKZGfKIn6+su4MWfk67NVK+aEwMrw+YYFu5BQYqOcu3TBLTTfCFJM4I8CfkfFkFeiZYCofgNQd0cWUUfqnhB9Z63quuNiryMrXVyiIZV6pWcobUigUtGrVilatWlktMR8W6I5CgMTM/FKCkZVBpVTIIm1FJdxrG+aArjp4QzZfy9GjJfPW5GSJ6XqXo19zP1lo9OU1Z7ht4XdvzoTuupxk8Ta1gSBPR8IbuGMUYcuZcvS8AgNhwgTp9V0qwnjkSKE00pw5kjJAVe7vsqDVG9ljmswGVlC6qUkYjSLHTQswM33AGhw2ZZU6N7QuK2TrtVy8L4ocrYFW9VwZ3Kp82W+t3sizv54kq0BPh2APXhpUuosrK1/HpGVHeGvjOXK0BjqGePDncz1o5OPEnK2Xue+rA7y18QI/HLzB3qvJbDqbyI+maobeKBIW6IaTRsnFhEwe+P4wPxyIRhRF2gS6MWdsmOl8o2X9KEEQePu+VqgUAnuv3OFwVOXzip1KKVNA1hTRzutjKp/tvmIdHcCmUavRaFiwYAFpaWmcPn2aU6dOkZqayrx587Czq10n4brAsRupfLdXqm3OG9+Oe9v48/6mC3IwYg4m8nRGmvu7MG98GIde68e+Wf34+bHOrHmqG1te7MmJtwayYmpnJnUJxs2hfHJdWq6O5349VYwDoVAIslDd0Rup+Lvak5qj5dcjMUzqGoKzyRqkQC/y+6l42Y4DJKXqUH9JNfufEqarKqVCvnkrKpXJvKHrNc8bctAoqW/KbEXbENCYtT2iU+ouGDJnhk7F1J1XGioVvPii9Hru3H8FSffVIc1pGeBKao6Wl1ZHWlTqbOLrIguMlukJVocY1tbs71eBuKk5g7d69V1HeE9JgXHjQKeTYusXXqiZ4xyJTiGrQI+Pix1hge41c5BKcCUpi6x8PY4aJS0DrHN3F0WRI1GmYKiR9Vkla6E3GOWA4Pl+TSvMpP12NIZz8Zl4OKr5amI4amXxMCBfJ4khHriWgoNaybvDWtIuyJ1hX+1n1bE48irh8OVqDUTGZZCrNRDs6YDexKudsTqSPK2B+9rW4wWTz9gbG85x2iSy2sDLkQmdpIXMnK2XLZpXzKWybRduyxZRZoXwo9GpZet6lYMqhfCOjo60adOGtm3b4vgvFQuzFjkFel5aHYkoSoz2YWH1mLvtiswbctQoycrX4+1sx2ej27D5hZ4mYnPpdKdaqaB7E28+GNGa3S/34aEuDcotp+25cod3/zxfbIBEBHsyLKweoigFDADf743CTqWQiaQgtdH7utjRs0nhCuV0bIbp3/RS2RZz1qeiEli7IHfs1QpScrRcuV15bVar1fLuu+/y7rvv2iQxH+IlBTQ3bAhozNtG36m7YKiprzOu9ipytQYuJlTNK02n07F48WIWL15svULtY49J/KFLl+Cvv6p0HrUBO5WSLx8Ix16tYP+1ZIvtOsaZskOrj8fWeLBuDcwdmydj0sovlYWHQ9++YDBIvnJ3CYxGePhhKT5r0kTiCZnn3CqNyTJgLpENaOFbqUZOTeGYKbPTvoEHKqV1U2V0cg7J2QVoVArZFshS2PKsPBKdSnK2FndHNf1blC9Mma8z8I3J9f2lQaGl5iWt3sgzK05yJDoVFzsVSx6OYPG+KBbvi6bkXeRQBo+2KETgZmoeaqWAgCQ+OXnZEfK0BqYNaMbgVn5oDUZmrY2UZVOe79cUO5WC4zfTLCpztaznSosAV3QGUfY6a+jtRANPR3QG0aIMkxkWf8OjRo2y+Od/GR9uvkhMqmR69879LVm8N4qvdkqDy06lIFdrICzQjW3TezG+o+UiYR5OGj4c0YZNL0ipyLLwy+EYfjl8s9h7rw5pjp1K4v94OqpJyipgzfFYxhbpXriUmEVkXAYTi3RknI5Nl2/SbSUM87qbLDeO3UgtV9tHo1LI2Y5DFvCGdDod7733Hu+9955ND0s5u5NsPWG7obepTFaHmSGFQijCfapaqUyr1fLEE0/wxBNPWB9YurrC449Lr2uxVLZ2rVRSsYWq1MTXmXdMBMvZWy9zNq5yiYWhbQJwtlNxMyWXw1F3gaSBCX6u9oQFuiGKsPNiBWn8l16Cbt2gT59aO7fKMGcObN4subysWQNF9XWrNCZLQBRFtsvBUN2JZ5pNPzvYUCI7YgqkpEWjdfYdtjwrzfpVQ1oHlMr0FMUvh2+SlFVAfXcHOatihiiKvLwmkp2XkrBTKfh8TBum/Hic+PTCoF0hwOSuwfz+bHcaeJaxwFcITOnekKa+zrKki84gIgJ2SoFjN9J47teTGEWRT0e1xdNJw5Xb2XIXmZ+rPY90CwGke92STPBAU/C3+4oUPAmCIGeH9l+znNBvcTDk5uYm/7i6urJjx45ibfQnTpxgx44dNa5AXZc4eC1ZNgycMzaMmJRcPjGRwFQKgQK9kU4NPfllamc8bFQ7blXPjQ3PdKdLw+KpVXu19FV9vOUSN4tM6vXdHeS2U3fTMb/dfZ1gLydZHBHgtyMx9Gvhi0pROEDbBUqp320leEPN/JzxctKQrzNW2P1kdl8+WguO7Obszk1bMkNyIFV3wRBIrssAly3IpFUEpVLJ8OHDGT58eOV2HGXhxRfht99g+fIqnYc12LsXZs6UMgqLFkmNbdZgQscg7mnlj84g8sLKU5Wmv53sVHL31qpjd1epycyBKXnfFcO998KBA3DffbV0VhVj/354/XXp9ZdfQrt2xX9f5TFZBOdvZXIrIx8HtVJemNUFzOTpTlUgT5d8jtcEtHojf52T5BqGhZXfQZar1bPIFHS80L9JKVL3upPx/BEp8WC/GBvGiytPU1BkMdyrqTf/TO/N+8Nb80fkrTKfYzqjyB+Rt1j+WCcufzCEB4tUKAoMIgpgx6UkXl1/FndHtSwq/NXOa3Izz1O9G+Nsp+JCQqb8d1WEPiby994rd2QKghwMXa2BYOiHH36Qf/z8/Bg3bhzR0dGsX7+e9evXExUVxYQJE/D+Fyjd2ooFOyRvp8ldg+kY4sFr689iFCWOkN4o0q2xFz892gmXKopruTmo+emxTowoIvKVrzPi72pPns7AK+vOFIuYH+0eglIhEHUnR/Zn+udCYjGe0B+Rt9DqjbI2A8B5U7nm4LWUYvo3giDQtXHlvCGz7sYlC1shq4KGVQhozNvGpubVqYlnE1+Jp3UtqWrXy97eno0bN7Jx40bs7W0QogsKkki66toRgQM4IzWucOsWPP00NG8OP/8sVYIsgSAIfDq6Df6u9kQn5/DBpguVbjPBVCr761wiGblVL91UF8xaLvuvJZdvKllH3VNlITlZGi4GA0ycWJhYLIoqj8kiMIsc9mzqbXVWpboQl5bLrYx8lApB7py1FKIoypkha+07bMH+a3cK7UIqIGv/dPAmydlagr0cSxnGpuZo+WizdE+9OKApb2w8h9ZQ+Kyc0r0hP03pRANPRxbtuc4vh2/iZKfEUV06hEjOLuDRH46hNRj5aGQbVj3RBVOSCHNotfZEHF/vvMbwdvXo1cwHrcEozadGEQ8nDY/1aAjAsgPRlf79YYHueDiqycrXc9Ikv9K1kTcalaJCO6ySsIkztGzZMl5++eViKwClUsmMGTNYtmyZLbu863EqJo0j0amolQLP9GnCT4ducjY+A41KQVa+Hk8nDQsmhMvcnarCTqXki3HtiqWJb2fmY6dUcDgqlRVFFHaDPB2516Qp4eMiEdjXnohjWFg9OVWZpzOw6/KdYvXkc/EZNPR2Qmso7NwwoyhBujyE+kuaUjeSc6wSxrMFwSarkZspuVZzQOq5OaBRKdAajBUqa9c0mvpK1+vK7ey7h8ei00F21TJVlUEUC4MhM6KjYfJkaNsW1q+XPlMZ3B01zBvfDkGQ2ub/rmTV2DbQjeb+LhTojfx55u6xwQj1cyHI04ECvWTHUyFSUuDjj6X6VB3AzBOKj4fQUPjuu5qP02S+UB11kUGhBEbreq44aqyz8IxNzZOtmCx1iq8K/jgtje2hbQPKpWXkaQ1y088L/ZqWKqV9suUiabk6mvu7sOeyFFyZ8UK/Jrx1XwuO30zjnvl7+fSvSxTojeQUGMjVlU2juJSYRe/Zu9h7JYnOjbzYN6ufXJUwY/6Oq0TGZfDRiNY4qJUcjU6VM0EPdmmASiFw4mYaFxMqtulQKgR6mxb5u0wmzQ4aJZ2tzMrZFAzp9XouXiytBXDx4kWM/4IOFVtgjlBHhtfHIIp88c9lAJlT8/HINnIgUl1QKgQWTGhHC1Mngwg42knB1qdbLhaz03i8pxRJXzeRhPdeuYPOYKRvaGHws+PibfoU+X+eziiTqn84GF1sgu5uev9UbFq5q1dfFzvcHNQYRUrpFVU3gjwdUSoE8nQGbmcWWLWtQiEQbGqvj6rDUlkjHycUAmTk6UjOrhqvolqwZg00bgwfflijh4mPh7Ryqq0XLkhdSV5eEkVm0iT4/HM4dKjsZreujb14spdkO/Pq+orb7QVBkBVp76auMkEQ5EVOhaUykAR93ngD3n/fsoixmjFnDmzZAvb2UnObs3PNHi8hI4/ztzIRBOhfBw71Zhyrgr7Q4WhpAdk20L3aFsflIU9rkMeQuSxcFnZdTiI9V0d9dweGl7AVOXQ9hTUn4hAEuLe1vywnAJJMy4xBoey7msxDS46Uen62C3JnctdgPhjeirfva8mDnRvQ0ERpuJ1ZwORlx5i28hQOGiV7ZvYpFqwZjCLTV53Gy1nDEyax4S93XMVoFPF1sZflAUryZMuCeV4rSrouOtdZApuCoUcffZQpU6YwZ84c9u/fz/79+5kzZw5Tp07l0UcftWWXdz12XZJEp57o1ZgF26+QqzXIPJ4xEYHc07p8XYeqwMlOxdKHO+DlLPGB0nJ1eDtryNEaZOI2SDde54aeGIwifq52GEWJvV80HbrrUhLXk7LxcCxc6Sw3ef+cvJlWrB2zgacj9d0d0BnEcoUCBUEg1M+c7ajZUplaqSCwCu31Zt5QXWoN2auVsubR1SqUynJzcwkJCSEkJITc3CoogGs0EBsrLfdrMDtUMitUFtLSpADol1/glVekwCg4GN57TyrTFMWMgc1oXd+V9Fxdpe32w9vVR6kQOB2bXuXyZHXCzBvaeSmp4tLt009LjOWjR+HgwVo6OwkHDxbnCbVtW/5nq2tMmoVVW9dzq9RgtCZhfuZ1tCEYMqtWd6oFvtCuy0nkaA3Ud3cgvIKuNTPBelhYvWKdcaIoyrzXBzoF8dXOq/Lvmvo688qQ5uy+nMTU5ceL84ea+bDu6W5sfLY77w9vzaSuIUzp0ZCPRrZh18w+bJ/Rm0ldglEIsPH0LQbO20tcWh5bp/WUO6YFpGf5R5svMqV7Q1zsVFy+nSXb1TzYReIbbTwVX6mNUa9mPggCXEzIJNFUGuvV1DrKjs2ii6+++irz5s2jV69e9OrVi3nz5jFr1ixmz55tyy7/FRjU0g8vJw0bTWnJfJ0RF3sVb5lIYDWFeu4OzBkTJv/fnFVYfSyWmCJ2GGYrjqx8aeCsPRFH31Af3E0aRpn5enZeuk1abumBZRThTlZhxkUQBNnK4nwFbsLNTHpFlrTXVxVVIVFXhXNUnWgq84Zsv16iKHLz5k1u3rxZtXLbffdJjOb0dPjxR9v3UwmuX4fWraXDPfccPPoomLXknJwkX9J586SY7KOPpEyRiwvExcG770KDBvD224XxmkalYMGEwnb7H0yyFmXBx8VOzo6uuYuyQx1DPHFzUJOao+VkRRYtvr7w0EPS61oUYUxNLeQJPfCAZL1REaprTJ4xdQqGBdVdI06B3sAVU+Dc3kq+ECDr5thCvLYW5jLrkNb+5WoLZRfo2XlJKh/d17Y4wfpUbDpn4kx0jzw95qqXQoAFE8K5npTDEz+fKNZV/ObQFvz0aEe5O7YsNPF15oMRrVn3dDea+jqTnF3A5GVHiUnN5bfHOyOA3Kq/4kgMUcnZssDqAlN2qGsjLxr7OJGjNbDxVMXGq55OGrk7erepVNbYxxlHjeUhjk3BkEKhYNasWcTHx5Oenk56ejrx8fHMmjWryp0EdzOe7N2YVcdj0eqNssZCZYKJJZGZr2PVsRie/fUk3T/dSddPdtB79i6e/uUEa47Hluto3be5r2wzAOBiJ5G252+/Uuwz3s525GoNqJUC15KyuZCQSc8ipGmFIODpWHanW8nOseYmTtDlxPKDITkzVAmJ2t7enqNHj3L06FGbCZZVEU80b1uX7fUgCQICXK1C8Fgd1xIApRKmT5dez5tnOZvZSjz/PJw9C3/+CQ8+CCtXSiWwkSPhyhXp/9OmSe7nr78uteEnJUkNbxERUjv+Bx9IpGuzf2ljH2feHCotQj77+xKXKhij5lLZ+pPxd415q1qpoK+p48U8UZULswjjhg1SZFnDEEUpYI2NLez+q4wnVF1j8kxcOgBt67vbvI+qIj4tT9JuUyutpj4YjSIxqdIC1dwwYS2suZaRpsCrovb/HRdvU6A30tDbiVb1iotHLjctJO5r419MCHT6wGY08XXmpTWFGkBqhcCihyKY2rNRqcArPj2Pg9eS+SPyFjsu3iYxIx9RFAlv4MGfz/dgQAtfCvRGnlh+gtRcHU/3blxs+0+2XOLR7pJY8KXELP65kIggCHKn9C+HKw+y+5YolSkUAi38LQ+qq6yb7urqiqurdeqc/0YEeTrQtr4bP5uM7fJ0BjQqBY92b2jR9qIosuFUHP3m7OaVdWfZfCaB+HSJaHczJZe/ziUyc+0Zen62i+/3XqdAX3pievu+lnIgk2VKG244Hc9VU4lKqRDkyN/PVbqJ1p+Mp2eRdOHuK3d4YUDTMs/xZAkj1Ob+0vdaUbdYM1MwdLmSMplSqaRjx4507NjR5oDZTKK2pdQlCy/eJZmhqpTJquNaynj4YfD0hKgo+OOPqu2rEqSlSVmfvDypc3z1aqhXguZgNIqcuJnG/F2XOKo4Td9XInn4rXjqBRmIj4dhwyTdyJwceLBzA/o190WrNzJt5elySfz9mvvi6aThTlahh9HdAHNnZ0UdmwC0bAlDhkhRyoIFNX5eX30lDQWNRvqOLHm8V8eYNBpFzsVLQW3bOswMxaZJXMwgTwerPdFuZ+Wj1RtRKQQC3GwLCi29lnlag/zcLc9kFQpLZPe1Le7xdiergC1npZJUWpFuS2c7JY/1aMg3u64VIy+/fX+rYnQQo6mNfvx3h+j+6U4mLjnCC7+d4rGfjtPlkx30nr2bHw9EI4rw7UMRDG9XD71RZNqq09zTxp+gIn6ZR2+kcvxmuqwxtGz/DQBGRwSiUSq4lJhVaTbdfD8dji50RWhRz/LYxKZg6Pbt20yaNIl69eqhUqlQKpXFfv4X0TfUl52XkohPz0Nl6tAaGxFo0crBrOo5fVUkydlaGno78WL/pqx8ogt/PteD3x7vwgv9m9LU15msAj0fb7nE0C/3l5r03R01sgUHSNpDoiipTpthJtGZS147LyXRo4jydNSdHLo18kKjLH2Tl0zXm7vFrt/JRlfOitocDMWl5VVa160qCnk/tggvStvGpeWV+7fUBpr6Vb1MVq1wcoKnnpJe17BT+gsvSK31zZrBqlWSO0hRXEzIZMDcPYz+9iCL9lxn/cl41pyIY7f2NMqx/+DdNRpBEFm2DDp2hCtXBD4b3RYvJw2XErOYu+1KmcfVqBQyaXTdyYrT7bUJs3zF2bj0Yt07ZcKcHVq2rHw2ejXgxAl4+WXp9Zw5khh2bSEqOYfsAj32agVNfGqYqV0BYk2ZnSAP610VzLSF+h4OVqtWW4uz8RkyR7QshwOQmjX2mMQI72tbfOWx6lgMWoORsEC3YouEqT0bEZuaJytVS9sG8FARzaC0HC2P/XSMF347xZHoVBQCNPZxonNDT0L9XFAqBGJSc3n3zwv0/HwXB64lM29cO/qbFi9P/nyCL8aFFTufT/+6yIROQSgEKTiKupONm4Oabqb5q6SPZkm0CHBBrRRIz9URZwpoW9VzqewyyrDp23rkkUc4efIkb731FmvXrpW1hsw//4voG+rLr6Z2dr1BNJGpG1W6nc5g5IXfTvHXuUQ0KgWz7gll67ReTB/YjC6NvGgT6EbXxl7MGNiMrdN6MXtMW7yd7biWlM3IhQfkrgYz7g+rR1PTgyLfVOD988wtWUelfQN3Aj2ktl2lIBCfnkeezihnJAD2XUumfxnKrmfi0osFCoEeDjjbSWayUeVYWXg4aeSA8GoF2SGtVsvs2bOZPXu2zQq1DYtYcliiTFoUfq52OKiVGIyi/LCrCzQ2fXfJ2VrZS8da6PV6VqxYwYoVK9DrqyEAfe45SXPowAE4d67q+ysDf/whkaMVCvjpp9JdSVvPJzL624NEJefgbKdieLt6vDakOTMHhzIyvD5+nmqcel3Ad/wRlM75XLwInTqJHN9vx6ejJWbv4n1R5UpBjAqXSmXbLtwmM//u0BwKcHOgkbcTRrGQdFsu+veHDh0KU2s1gMxMib+l08GIEdKwsBTVMSbPxqcDEnm6pgOJihCbZgqGPK0Phm6ani0NbNjWDEufleYSWUXebbsvJ6EziDT1dZYXtyBVKn47KnmZtQtyx/zYVysFHu4awre7r6E3PWP9Xe34ZFQbOat0IzmHoV/uY9flO2hUCl7o35QDr/Zjx0t9WPVkV7ZO78XZdwfxwYjWBHk6kJxdwCM/HGP2P5f5YlwYjXycSMjIZ8GOq9zTqnAeun4nhxM30+QusFUmr7VBLaVsVGXBkJ1KKf+NZpPxljWdGdq/fz8rVqzg6aefZsSIEbLyqPnnfxEtAlyKpbMjGngQ7FW2bUZRvP37ef4+n4hGqeD7SRE806e08qcZCoXA2A5BbHmhB20D3UjL1TF56VF50Js/8/I9ofL/NUqBfJ2RdSclcqggCHJ2yM3UNbbn8h16Ni3kDZ28mcYDnQqjfJCEI/N1Ri4XKYkJgkAzUyajIk6GJR1lOp2OWbNmMWvWLJu9iwI9HGSl79vl+TqVA0EQCjNLdcgbcrJT8jcZcQABAABJREFUUd9dWsXZmh0qKCjgoYce4qGHHqKgwDqZgTIRECDVRo4elZjO1YyMDKkpCqQER5cuxX9/Ji6dZ1acJFdroEcTb/a/0pcFE8J5sndjnu3bhHnj23Hktf4smdyBXr1FAh7Zh11gCpmZAsOGiUTt82NCxyBEEV5eE1lmsNO6vitNfJ0ltd6zFZik1jK6WuADCEiknUOHpEiyZG2xGiCKUoLw+nWJsL5smXV6QtUxJiNNfoltAuuuRAYQlyoFm4EeZWdbKkJsNQRDlj4rzUTtikQhT5q684o+/0FqeIlPz8NerZA9vQAe6NSAfL2BTUX4Q8/1ayoLCWfk6Zjy0zFuZeTT0NuJjc90Z8bAZqUyU44aFZO6BLNtutRVBpIzwpx/LvPdQxHYqxUcuJZC72a+xfSHfjhwQ7YJWXciHp3ByACTNl5kbHqFUhpQKAR8xhQMhXhZnmG0KRgKCgq6e0TjagmRcRlo9UbsTIGMJYJg+67e4bejMQgCLJrU3mLdA19Xe1Y90ZWeTb3J0xl47KdjxbrGBrX0kyNes0roiiOFBDOzM3ZmnrRC23PlDj2bFfKGTsWklaoxtzM9gEqWypqbNI4uW8IbSqzZ0o9KqZBXa7YpUZu0hurQsBUKS2W28oYUCgUDBgxgwIABKBTVtIJ+8kmp9lQDePllqTzWpInUKl8UOoORV9adxWAUGdzKjx8f7Yh7GQR/hUJgQEs/Vj3ZhcVPtiH8yTM4tY7FYBB46ilQnm5FkIcj8el5vP9naXVqQRAYGS41IKy/i0plloibyihZV6xG/PijRFhXKqV/PazUCqyOMXnWNIG1reNgqEqZoZSqB0OWQg6GKsgMRZbTnbfPVBbrEOJJXBHvsQc6NeDHgzfkrFBRDzOjUeS5X08SdSeHem72rHqyS6WZF3u1kg9GtOaLsWEIguSvuepYLC/0l3irs/+5XMxC5HRsOl7OGrydNSRnF7DrUhK+rvaFPpqVZIfMlkfmzJCl3qBgYzA0f/58Xn31VW7cuGHL5v9KHDJ5zZjLSJUZCOYU6Hl13VkAHu4aQr/m1qmpOmiUfPtQBC0DXEnO1vLUL4XtjYIgFGPjKwUpxWiWgG8R4IKPi508oI9Ep9Au0F1Wo76VkY/OYCxG8PN0kkpdJ2+WCIZMaceKSNShcnt9zeu4FJKorS91BZo4AIlWSLTXBGQStY0dZQ4ODmzbto1t27bh4GD96rVSVNFosyj++AOWLJGyDIsXg2OJOWLJvmguJmTi7qjmo5FtKi2PCILAPa392TazJ0+9lYpbN4kn9PGHSupdllp2156Ik7VKimKEKRg6Ep1KXFrdlUqLoksjqf36UmIWydkWZlTOnpU0B6ppQXrxYmFJ7IMPJI0na1HVMak3GDl/yxwMuVt/AtWIKnGGqiEzZAnuZBUQn56HIJSfSdPqjVwwEaBLltLMBqZORexOfFzsCPJw4Ncjhe4Gz/YtrGRsOBXPvqvJOKiVLH64A74ulhPER0cE8pmpnL1kfzQBbvaE+rmQmqPFTqUoZrvyy+GbspXUqmNSqcwiPz8KM0Nn4zOsTthYHAx5eHjg6emJp6cnEyZMYPfu3TRu3BgXFxf5ffPP/yIOmgaPUZTIuI3LcZY3Y9n+aOLT86jv7sDMwaEVfrY8ONupWPZIRzwc1VxIyOTrIoS2wa385ZZ+s4XMFlP6XxAE2UTVSaMkX2fkbHwGreoV3jRn4tKL6UQkZUsBQsmgJ1TO+pQf6JjbxaNqWIUaClPXRdW3LYX5epl1mOoKZt5QXbf5l0J2tlQrCQ6WCCRVxM2bMGWK9Pqll0obsOfrDCzcLY3pN4e2xNsKkT1nOxVzxoWx7CtHfAZJmaDVPzjie74zogivrT9bTDcLpFWuOfj4M/LuKJV5OdvJC47DURZkhzIzoXNnKcW2d2+Vj5+XJ/GEcnNhwABJ8LIucO1OtqTbZqeSuYF1gewCvdxZFVSGK3tlkIMhr5oNhszUiSY+zuV6YV5OzEKrN+LmoJYXkSDpKJnH2sUiz/V7W/uz92qy/Hx00ihlOZc8rYE5JteFaQOaFptLzBBFkQu3Mvl+73Xm/nOZ7/de50xcuszvHNchiOf7NQHgzQ3neKqPxLldf/IWU0waQwCbzyQwpLU/z/drwjvDWgGFwdChqJRimkclEepfmkRtKSzOu86fP9+qHf+v4crtbBR20oAa0MK3wpZLrd7IzyYJ8ZcHN8PJzvb0tr+bPe8Pb83zv53im13XGNLanxYBrmhUCh7o1EB2IQbYfuE2793fSjJabeTFn5G3cNAoydFKg79FgKucWj0dm0HbQDe5NhyTIg2c2FTJ+8v895nb6+PT88jM1+Faxo3n5ypNYsnZ2mLb1gTMx7cloHGxl76HuibQmgnnKXeDJUdRODrCnj2QmCiRRqZNs3lXBQUwZoxkrRURUbbjx1/nEsjK11Pf3YFR4fVLf8ACjGofSJOl6dz/3AVu/t6So5u8CcpsS0qXM7y+4SzfT4ooNh6Ht6vP4ahUfj8dz9N9Glew59pDxxBPLiVmERmbXqrjpxRcXSU5hEWLJBHG3r2rdOyXXpISTb6+knFudVVdrYW5vNTI1xmFFaWN6oY5K+ThqLbacDsrXyc3RdR0ZsjM4ayIXxVp1mwKdCt2D5y4mUa+zoi3sx230gszpP1b+Mlt+CAFIOaMzbID0SRk5FPf3YGHTe3vRXH1dhavrDtTSp4FoEWAK68NaU6vZj682L8pR6JTORqdyupjcXQM8eDYjTRSc7SoFAJ6o4jeKHIlKZuXBhUmEZr6OuPmoCYjT8fFhMxypQTsVEqa+blw/lYm5+Iz6B5seWBt8dB/+OGHLf75X4W5Hb2o83tZ+OtcAklZBfi62DG0TdXJjsPC6nFPK38MRpHP/74kv/9ApyD5tSBI5S+zWrSZmJmWI038529l0jKgsJsgMjZdrq8CpOVqEQTI0RpIKdLl5Oaoxt+kWVReWcfLVGLTGow13l5vfkDZEtC4VmHb6oTZZiDF0rJICeTm5tKqVStatWpVNTuOklAoCkUYFyyokgjjzJlw/LgkYbRuneQoURLmFPi4DkFVmgDbBrqzb1kIoWOllWvs3iCyDjZj24XbpTzJhrT2R60UuJSYVWH3Y22iaGrfIpiD1D//hKtXK/xoRVi3Dr79Vnr988/gXwVHoaqOSTMx1t+17iw4oEiJzIZgxpwV8nTSWB1IWYtE0/UKdC8/e1Vet9kBU5WjQ4g7+iJdZB1DPNh9pbDF3mz+bTCKLD90A4CXBjUrVtICiZM69Kv9nIxJx06lYEALXyZ3DWZACz+cNEouJmQyedlRPv/7EoIg8MXYMOxUCg5FpdC1kcSZ23Aqnm6NCyVgSjY5FHVEKCkOXBIlSdSWwqZ1gFKpJCmptGpqSkrK/6zOEBSSlVsGVEwaW24SZnyoS3C5nWPW4tUhzVEpBHZdviO34QZ7Ocn6Keby6D8mrkSIlyP+rvYYTL84fyuzGNktMi69mBppntYgBz03U4o/zOq5S+8nlcPkd9AocTQZEtZ0tsOc3cm2ITPk6mDKDOXVbZnMy0kiCCfnaG1qRBBFkQsXLnDhwoXqb2SYNElyTb1xQ1I8tgEbNkjNaQDLl0tVt5K4mZLD4ahUBAHGdAgs/QErEeTpyP5lIbQYJWVK0/Y3JfNEMO//eYH49MJ0ubujRna4/qPIKrguYV6UnI/PtEwyIjRU8jYRRbAxY3/jhiReCVJpbNAgm3Yjo6pjsjAYqoKiejVAFly0gS9UlUDKWiRmSAsp3wquV6G1iXux9y+YFsxFx1qHYE+u38mRS8uOaoW86D90PYXbmQW4OagZWsLO43RsOk+Z7Dp6NvVm98w+LHm4I+8Pb82Shzuw/5V+TO4qPQAW7r7OGxvOEujhwJMmWZr1p+JoVc+FAr2xGAdp/7XkUtpb4UESreNUke7qsmAuO1+3slvXppm6vMFeUFCARlO21cP/Cryd7So0EEzOLpDNBsd3DCr3c2Zo9UZWH4tl0tIj9Jm9i9HfHuSLfy6XIvmGeDsxzrS/omZ6CyaEy0x7KNRikHhDEj9CMJ1XURuO9FwdOQUGOYgRgfqmoKekDo+Zy1ERwdNsJJuSU/Zn7O3t2bVrF7t27aqSXL85GLKlTHb3ZIaka6XVG8nRWp99qa5rWSYcHAr74G0QYYyJKZxkX34Zhg4t+3O7TBYUXRt5yVIDVYW3sx0Hfw6i6RBpMZK2vRWJkd7MWhtZ7Jlllp74M/JWnXfFno5NZ+XRGBSCpCr/0NLDTFx8mBHfHJDF8sqEWYTxhx+kWqQV0Olg4kRJ8qBLF4k0XVVUdUxaMrnXBszPvkAb+ELmRWRwFYMhS65lUlbFwaPeYJS7VdvUL15KMzvPF21CaR/sLnt6AfQO9ZUzQOtPSdnV+9oGYKcqTHYU6A3MWH2aPJ2B3s18WPpwx1It9h5OGt4f3pq548JQCLDyWCxf7bzGU30a4+2sIS4tjxam5MK5Wxm4mCglOoPI9hJk6fbB7gCcKqMUVxT1TM+TxEra8EvCKjLLl19+CUgT7ZIlS3AuopxmMBjYu3cvzZs3t+oE/m1oUaTUVBbMKciWAa6yJUZ5SMrM5/Hlx+X2R4AbKbmcuJnG0v3RvDOsJeM7FuoBPd27Mb8djWHf1WRuJOfIujkDWvhyOjYdF3sV/Zr7YjCKKBUCLQJc2Xj6Fk52KrIL9NxIySXYy1G+aePSJIL3VVME7WwnDfSSmSFvE8flTgVZHy8nO2JT82QT2ZJQKpX0KcmgtQEyZ6jAhjLZXUKgdtSocFArydMZSMkuwNlKTll1Xcty8eyz8PnncPiwpG3TtatFm+n10iSblgadOkmmq+XB3PnYvYl1ztKVwd1Rw+HVAbS75xaxB+qRvKkdO5yP8EvrGFnvZEALP+xUCm6k5HIhIbNMMmhtwctJw3ITvxDg4PVC8UVz80KZ6NMH2rWD06clh1uzvbwFeOcd6Wt1c5Pa6NXVUNGp6pisbHKvLcRVITN0y5SBrG+DPlFRWHItzZm08uaY5GwtRlFqLfct4pKg1RvlgK9osBDq78ofpwszpeaOPq3eyN/npGpDUW9MgKX7o4m6k4O3sx1fPhBeYRVkVPtA8nVGXt9wlvnbr9C9iTcPdw3hi21XOBefiVohla67Nfbi4PUUnDRKCkoQpcOC3BEEqRyZnF1QbsOFORi6lW5dMGRVZmjevHnMmzcPURRZtGiR/P958+axaNEicnNzWbRokVUn8G9DhQ8okFdzRXV9ykKuVs+DS44QGZeBu6OaV+5pzm+Pd2HO2DDCG7iTqzXwyrqzxSTRgzwd6WNKXZrVsEEiYIJkLDhzcKisrWDWszFz587fyihW4otPz6VRka64fJ20So6xITPkbc4M1VKZrEqZoTxdnWcEPJ3MmbS7jEQNEnlk4kTptRVeWO+9J4lYu7pKk2x5SWJRFOVSb+eG1d996ums4cgmTzxbJINByZ31Eby74oas1eVkp5JNHbfUsQBjkKdjme7mTXyd8a/I20oQpOyQr68U1ViI7dvh00+l10uWQEiIlSdcQzBnwitbQNY0Mk2lGfP9aQ1yTVleaxc31kJvMMrlLL9yOFbm4NLbWVOMjxeTmotRlDrFilINmvu7cK2I7pk5m3T+Vga5WgMejmraNyjsPi7QG1iyLxqA14Y0t8isfGLnBowMr49RhJlrIxnfKQh7teQ7Zs76mHX8WtVzZWLn4sLArvZqGpkSAOcq4AOZJWOSswvK9PgsD1YFQ9HR0URHR9O7d28iIyPl/0dHR3P58mW2bt1K586drdnlvwbm8dS8Ar6QKIrsvyplhno3rZhk/eHmi1xNysbXxY7fn+3O030a07WxF2MiAln3VDdeNItSbb3MpjOFEftEk4vvH6dvyTXfsCBJQygpq4BYk3rqlrMJLNguldPMgcNPB28UM96LS82TtXcAMk2fi0kt3vJt7n5KzqqgTOZUMSlYp9PxzTff8M0339isQA2FBGqbgiETZ0hvFMkrx9SztlCV4FGv17Nx40Y2btxYPXYcZWHGDHjzTcnN3gLs2lWYCfr+e2hUgVPNtaRsUnK02KsVNaYpE+Buz/6/HXAIyMSYZ0fsyva88PMZ+Z6518R92HI2sc4D4xFldNL1sCRjNmGCpF/w7LMWHef2bYkSJoqSxuaYMdaeafmo6piUOUNudUugLjDpyGlssAMxZzJKEoytRWXPypScwqxPeZSNpExT2bGEFpBZ/iTE2xFz3kUhSAFE0UWwmU9q7g5r38CjWEfa3+cSSc3R4u9qL/NWLcF7w1vh5aQh6k4OW8/fZnAribWvMrUxmoPiU7Hp5JTRjNPIJEtSkaWSp5NGDqrM18ES2MQZ2rVrFx4WSJS6uroSFRVV6ef+DTAPhIoyQ8nZWpKyChAEaB9c/vW5kZwjd9LMn9CulK2HQiEwfWAznuwtzSivrTsrk5d7NfPGSaMkMTNf7j6xVyvlSeWoycusia9zsfIbSGWu2CLaC3FpecWEF7NNpaeSZTIf08RtGWeo7Mldq9Xy3HPP8dxzz9nsTQZFM0PWZ3cc1Eo5a1bXJGrzyjO1HI5VRSgoKGDkyJGMHDmyeuw4ykKbNhKZJCCg0o/euQMPPihNso89JunWVARzzb9dkHu1NRiUhRYNnNj4u4jSOR9dsgv/LAzhp4NSSapfc180SgXRyTlymbiuMLRNQDFLArAwGFKrwUJ+jtEodeQnJkKrVhbHuBajKmMyT2uQF2J1nRkqMC2S7NTWj8t887ZVHNOVPSvNgaOPs125Cst3ss3BUPFgyazc7+daWMqr5+5AbGoeZj51fXd7PEzPJ7MIb8n5zKziPr5jkFU+cq72allr6Ntd1xhq6lgz6x1dSswiwM0enUGUpQGKwixZULJ6URSCIMjzmjUCuzWqKlHXK67qhME0UvwqWLmYo+5AD4cKVwdL9kdhMIq0b+COg1opX6fk7AJ+PRLDoj3XOXAtmZmDQmkb6EZWgZ7Pt0ptw3YqpWzrUVSN00yiNncKNPV1LtNbp3iZLK8YeTWnQLqZ72QXFOs0MJfJ7lQYDFVeSqsOmIMhnUEsVVOuDIIg4HqXaA0VXi/rA0OFQkG3bt3o1q1b9dlxVIZy7mVRhEcfhYQEaNHCsqra9WTpPqms5FwdGNTRjTnfZYPSQN5Vf15+Q0tMSi7Odiq6m9ywt54rrVZdm3BzVNO1cWGpTCFA50ZWlA8NBti4UbKcLwdz58LWrVLstHKlxJOvTlRlTJond0eNssZLTJXBLOhXlChsKfKrKTNUGQpLiuXPRXJmyLXsYEhZJIYK9XMpZg3UIqCw7GpuYy8q0KvVG+Uyt7n93hpM6NQATycNtzLy0eoNuNipSM3R0sDTAZHCAO5SQmnpiyDTnGaugJQHM5E7MdNy4cW6swb+l8Ldofxaspml38i7fHM4g1GUCWn5OiMjFx7kx4M32H05ib6zd/P6hrN8+tcltl24jUqp4L37JQXODafi5dSgWY0zuoiCsVnVONo00QiCUKZlSM+mhSvOuLRcAooEQ+bSkShCfpFaq8wZyip/4q4tzpCTRiVzoGzSGnIo5A3VJbzkzJD118vBwYEDBw5w4MCBmrHjKIqEBLh2TVJRLAMLFsDmzZKO0MqV4GSBxtkN033S0Lt2lIanTfTmgWkSly91b1PGvRWFKIoMMqXot18qLRNS2xjfobDztE19N+t0aubPh2PHoH7ZwpXHj8NrrxV+tAa8eKs0JhOLtNXXpGCrJTAvsGzJWJqzSvY2ZJWswe2syjvvzJwhnxJlsiTTtplFSlABbvZcL+LXaC5V5usM3DIFXkUXLpFx6eTpDHg6aWQjb2tgr1bKndZ/RCbQycQbNHsSmjNrRSkdZpiVvSvKDIFUJgdIuFsyQ/9rcNIoK7xJzLoGjSqw6jgdm0ZythYXOxUXTSqiLQNceeqXE2QV6Gnu78Lo9oFypie8gQc9mngXE74a2NKP/a/05ZuJ7eX9mieWogam/VuUNoYtSliNT8sjoMjKQW8ozLSYs0RQyBnK0xnKrONC0bJPzQZDCoWAs6bqJOq67iiTy4o1nEmrMgICJIfVMsoxJ07ArFnS67lzoW1by3ZpHqMhtRQMAayY7UeTXkmAwLEfm/HZupv0ay7dH2fi0ms8o1kZBrT0xxwGhPpbmTF76SWJsFWGamJmplS21OsljtATT1T9XKsb5gWUNXYsNYUCOTNkQ5msClkla3An04LMkCno8SlRJjM/v7NyC5/THk4a0oo8t83fgzm7ZK9W4O5YGJybS2edG3raHLyazcT3XLkjE7PNZUbzotw8PxaFuUxmdkooD/VMmaGSljwV4b9gyAqU5aZdFDdN0WqjCh7yp2MlHk99DwdEETqFePLb0RjydUY6N/Tkz+d78MW4sGKkyukDm/Le/a2YMVCSJ3eyUxUjPkNhABablienejs19JTNWc2w1xTeqDqjiIOmMC2tN4qy7lCutjBYcLKTWsGh/DJYbXZHVamjzOHuKJOZjXHvym4yC3HwoDTJjhhRKE1UGYxGkRtm64UKMqjVDUEQOPSHp4lQreG96a7kFRhpVc8VUYS9FWn61ALs1UpZwqKkVktVcP68JEMUHCwZ5dZx4qVM6I3S80qtqvuTM3cf2RIM1VZmyCz+W1HQZQ6GSnKGzB1vWUUWu24OarKKPA/NJfxbJv/HADeHYkGPeZ5rWoUyd4sAF+q7O1CgN8oJBvNC2lwGLMldhcK2+awCvfy3lAVHk0xMnhU6bjX6rdVEynPhwoU0bNgQe3t7IiIi2LdvX4Wf37NnDxEREdjb29OoUaMqtf5X1j5oHlAVBU1mZ2YzOoR4sNnU3vvm0JaolQq0Wi3z58/n+eefZ/78+bQJcObhbiE4aMof/L4udmhUCgxGUa7Bm31aiiItRyfzZgCMRaJrUZQ0cKB4ZgiQg6TyeDpmIl9t8MQKO8qqYMlRx2Uyc5CqN1h/vfLy8ujYsSMdO3YkL896w1pbUXJcPvmklp07YelSyyfZbK1eDtZL8hlqGt5uKjauExA0OvLjPOk94Rac20zqtkUsmL+gSsT+6oB5EeXhaLvwT8nvKCJCy+nTsH49uLtXz3mWhaqMSfMjQ6DugyFtVcpktcQZEpEuWEVXy5wBKuklaV7kFn2Ouztqii0svU0LW3NQElBC4sFM17DUf63kmNRqtQiCIJfH7phKemb+pPnfrHy9nC0yw0GtlJ81OdryF8PmbkCdwXJe6b+KQL1q1SqmTZvGG2+8walTp+jZsydDhgwhJiamzM9HR0dz77330rNnT06dOsXrr7/OCy+8wLp162w6vodTxQ8pcwDhZFf+zWDWOjFP5BqVAp1BJNjLkTaBbsyaNQtHR0emT5/O119/zfTp03F0dGSWuR5RDiRycOkSUESJLoB8naGYcazWYJRvKrHIuedWMNDKgvxAq4WlZ3VoDZWUeq8r2MJ/NhqNHD9+nOPHj2M0WkcitxXljcstW2bhaQXX1/yQVimEKnfd2IJBXV2YPDMZWE/Mzr5sWfwZWSc3sffnORbdZzUJczODtY0BZpT3HS1cOIv27SvfviqoypiUJ/c6joVEUSxSJrOBQF1N3WSVwfystcTPr+Q1NWdTii6CpcxQ4bPU01lDRp5O5p+W7PAz83WCLBCXrGg+a2symb2ZmitzThWCNA+Zg5mSZS5BEHBUV571UZu2t2axWaPU/b/++ov65ZD6bMHcuXN57LHHmDp1KgDz589n69atfPvtt3zyySelPr9o0SIaNGjAfJN/T4sWLTh+/Dhz5sxh9OjRVh+/ssyQOVJ10pS+rJOWHiErXy9zRNJNk7F5EIYFujNr1ixmz55daluDwSC///nnn5d7fFd7FcnZBcUyJt2beLP80E0UAhhFKVJWFLlD8rVGlCa3YCiSGbLSJqIwGCr793Z2dmzatEl+XRVUxZ9MZc7IWOIBVYMwP4wUNswA1XktLUFVx2VRmL8zJztVnZFlfQrmAnNKvW/L31OdcJBL1NZrYFXnd2QLqjImzbFTXZOntUWyCFVpra9qZqiya2lOMthytcyLEUOR55+7o7oYbaBAZyDsvX/kbH/Jsp95zvKoRJiysjE5LjUXvIdwMyUXb2c7krO1uDuqSc3R4e6oJimrgKSsglJebw4aFTlaQ6nqRVGYgyGtFYG5xcHQDLMXjgWYO3cuAD169LB4m8qg1Wo5ceIEr776arH3Bw0axMGDB8vc5tChQwwq4UA4ePBgli5dik6nQ22lDr26Ej0F80BzKqM9NDI2ncx8vTyRm79I8zb+TkreNl238jB37lw+/PDDcv3fXMydUkVTnqaIW6kQMBpEDEaxWMCSrzegKhoMmQZ+rpXu88ZKblCVSsXQ8oyqrISxksCrIlRl5VedqErStDqvZWXQarXy/VweKhuXRZFtGld11UKt1WqZV4nIjjV/T3XCXIq2VhC0ur8jW1CVMWm+FSxIdNQotEUycjYRqHWmMlkVny2VXUv52WHl9RJFUQ60iwZD9iplscyQeYFW3oLNzI2qSJjSkjG59odF1J/en9Qcrcx5Nc+x5n/LUpAuvE8qKJOZvr87VoguWvxEOnXqVLH/nzhxAoPBQGioROq9cuUKSqWSiIgIiw9uDZKTkzEYDPj5FW8X9/PzIzGxbJ2QxMTEMj+v1+tJTk4moAxBuYKCgmKiYZmZhYz2yuqP5oFWFrfHvOoxlMhImL/sE1tXYTBU/BA0GAwsXLiQadOmlfl7O3M0XOSmNp+ySqFAZzCgN/mWmZGvM0jZEtO40piDoXJWp5VN4rZkOqxFVVZg2ip0i1QnzMOgNq5XVbBw4cIqj8uiyKvgHqkNVPffU50wNzNYW6K+m/8mS1DZQqq2ULQ8aa0CtVRi+z/2zjs8ivL74p/Z3Wx6Iz0h1BBa6L0XqQIiKKAoil1BURHsBRUbiFjACioqiIIgHem9Q2ghdEhCSO996++P2Znspu5uqt+f53nysOzu7MzOvvPOfe899xz7BRttgcFOjpVGb5AXveZlMo3eYPF/aUqSniop7CgvKCv4ntaMSYNBT27kZvL63IPaFEBK86Fgzt0oARcrMqgSJ/OyDYKqVgdDu3fvlh9/9tlnuLu7s2zZMlmJOiMjg0ceeYR+/fpZvXN7UDKVajQaK0yvlvX+sp6X8NFHH/Huu++W+ZpGV3EkoK6gTimNp5IDS2kijaTEl817Kolr166V+5p0MZqnNaXgS9qvrkSZrGTZTGsngbCyMplWq2X58uUAPPDAAzZn5cxRFaJibU1YlaF4HNq+rV6vZ9euXQAMHjwYpbLmAouKxps973NQSddI7XCdSqK6v091wmhn6bQ+fKcqjcl6sjAwJ0/bWrLT6o1ykFLVzFBlc6XEsbI1k2Z+fs0DKY3OYDGXKgXLudF8N0ajUQ6olBWcI2vHmi4zEZVSIYv8lhwDZd1xrdm/dC822ECHsCtXvWDBArZt22ZhyeHt7c3cuXMZNmwYL730kj0fWyF8fX1RKpWlskDJycmlsj8SAgMDy3y/SqXCx8enzG1ee+01i5JgdnY2oaGiQFRlmSFntRLyyl7ZST+y0iwo0huMctDh6mcdt6p58+blvlZWCchQ4qarMxgtLiIXtcqC6C59RkUk8LJQWYeDRqPhkUceAWDChAlVCoaqQlSURdXs8B6qThircAMoLCyUy7+5ubm4WqN0aCcqGm/2vE+SaLCHF1MdqO7vU52wt4RYH75TVcZkyTmqrlAVjSHzck5VF1qVzZWVLTzLg4NSgVqlEIM+s221eoPFdzaWCEFSzIR0BUHAzVFFbpGO3CIdpZXsRFg71lRegbg7qeR7piT2W7JUZ478CugoEqTFf1nblwe7frXs7GySkpJKPZ+cnExOTmkJ7eqAWq2mS5cubN++3eL57du307t37zK36dWrV6n3b9u2ja5du5Z7M3Z0dMTDw8PiT0JlwZBcyyxjovc0tcu6mThD0oTnbgo6gnvfVelqSqlUMm3atHJfl4IE86yOFEW7qlWM7xxCmL+bBXnY3UllkR6WblIuZZDAK0Ixj6fmZzRNVTJDWinFW8ecITtXdyBaH3To0IEOHTrUuB3HtGnTqjwuzWFNirsmUd3fpzpREeewItSH71SVMSlTYOo4GpLm95I+cdbAfAEqzTE1hWICte3H6aqWylHFz5XMDJX8GSSbKQkeVnTzWjMmFQoFbp3upImPq6wUnWf6zOmDwlg0uVOZAqS5Vlwn0nts6ZOxayYdN24cjzzyCKtXr+bWrVvcunWL1atX89hjjzF+/Hh7PtIqzJw5kyVLlvDjjz8SHR3Niy++SGxsLE8//TQgZnUeeugh+f1PP/00MTExzJw5k+joaH788UeWLl3KrFmz7Np/5Zmh8jux/ExCVq6OYlDkbvohpVrpjXRNpST1mTNnlkuANBqN8oAyF9qSWsgb+bjw2cSODGzpb2GZ4aJWySJeYB4M2ZgZqsXVXWEVxM00VXClrk4UX6S2nzBnZ2dOnz7N6dOna9yOQ61WV2lcloSLnbyY6kLF30cABB546KVaJ0+D/Zmh6v6N7EFVxmR94QxJN1dbO2lBXIBK2ZWaFnQtDh5t31a6/szNVTV6g8VcWjLIKukQL+m8VfQ9rRmT7e98EIVKTZsgD1kbT1LxvrNdIKPbB+Nfwk7EnAReUfUiM9/238CuMtm3337LrFmzePDBB9FqxZ2qVCoee+yxMlvpqguTJk0iLS2N9957j4SEBCIiIti8eTONGzcGICEhwUJzqGnTpmzevJkXX3yRxYsXExwczJdffmlXWz1gETSUBRe5BFB6opdk0Z1MF4yHswoyi2+K11Py+OuduYDIyTInnymVSmbOnFlha2xKThFFOgMKQVS3lpCQKQqgBZuEswq1ennSBUstKIHi1WnJzJAUCJYXQ1TlArUVVZG9rz+cIfHfuu6gqQhHj8I778CPP4rjzp5xWRIScdpgFMdiTQvUlQXpeBcsWFBCEycAWMz6/QMp1BhwUtfuGMkusD0YysyEcePgo4+q7zeqbdQXP28p46HRGewam+5ODhTlFtW41U+xSGX5kF4ryZmRAgjzsljJzFBWgRZXR2Vxx7NGT0xaHo19TKKgJr29yixs5s2bh05v5MsvFpYak09Oe44dHsNAZyDE2xmDUex8Ts3VEOLlXK43X5GumAReUWYoM992AVW7giFRyOtr5s+fz7Vr1zAajYSFhdUod0HCtGnTyk33/vzzz6WeGzBgAKdOnaqWfWsqEUOTdIgyyrBYCDQJV0kRuTSgY9Pzae7nyrWUPA5eS2XevHnMnTuXr7/+mmvXrtG8eXOmTZtW6apOkkgP9nK2kACQskWSIau5/YOLg8LiwlUqBLmt1zzqLtLp5XZ9H9eyNUSqkrq1FVWRvZfLZHXeTVY/eBLlISsL7r8fbtyAd9+F776zb1yWhPlpPxefRbcmNig2ViPmzZvH+++/T9i4F8hKusXUET1waDiBhc83J/OqisEPJHJoVWmvr5qEJGbX0AoxOxDnkCeegD17YOpUiIqqnt+otiHrhtko51HdcFWrZD227EKtHcGQqPNW09/DGj0q6V6UWUJcVlrkmn+3Ip3egvSdlFOEo1JBHsWfvzM6mUf7NgWgiY8rR66ncyO1fLPU2LR85myIIq3pWPLy5vLNN99w+coVQhs35d4pj/H6umg0NzPo2tibq6aOryBPZ1JzNbQJ9ij3cyVVbCcHhexRWRZKfm9rUCWxD1dXV9pb6874P4D0vIojYWkSi8soLUcv2WJIfCLpxzp+I527OgZxLeUGW88nMrp9MGq12uYW2DNxmRb7kVBSUt3cGNTDWW0xaByUCjkYMs8MSfLoaqWlYZ85pLSk5P1VkyisAmdIKpPVdTAkZeCc7fgOBQUFjBw5EhCFTau7VGY0wtNPi4FQkyYgJRVKjUujEc6dg3btrP7sYzcz5MdrTt6qs2AIRH7gfY88zaqTt/Dr1ZQ37gxny/6LRP/emsOrA3jjy1Q+mOFbK8ei0Rm4lSHeXJpaaWD7ww+wejWoVPDrr6BUglJZxtyRmAgBATUaeVdlTMq+hrl1a4eiUIjk4OxCHdkFOvxttN4qVsav2TKZjxU+kJLZakkFZ2mR62y2kEzJKZKNowGSswvJL6F1tfNikhwMlWUKHp9ZwKazt/FyVjOxWyiujkoOXUulUGvgWGw2L7zwAidjMrjnm0N894WoC+juqGLOXW15cOlRoDhr37NZ2c1NANdM/KWmvm4VKnDbUyaz646Ql5fHW2+9Re/evQkLC6NZs2YWf/+rSM4pqpA31Min2FG3JFoFiVeWZH6XkFWIg1IgMbuQzqFiV962C0l2u74fuZ4GQM9mljeXW5nisUiZKfMJJ8Tb2cKWQrpABMGSM5Rsquf6uTuWS3JMMolbBbiXdjevTuj0BlkuwD4zxfohupgoOU972n6+DAYDe/fuZe/evTVix/Hjj7BypXiTXbkSPD3LeFNeHvTvLxqT2VDnOHglVX68u47NUQHuaC32w2y/kIQgwPrPQ3HvGAMIfPyKJxv2l3bOrgnEpudjMIoE15JO42UhKgqef158/NFH0K1bOW+8cQNcXWs8BVmVMelTj0yLPZwr58OUh6rYBNkCyUi1ojKVNIZKvkda5Lo5Fi9q4zMLLKgVV5JzZQFJCUeupclBXhNTMHTTLBg6diONDzdfZOmBG/Ix3tetEQCf/nMJg8Eoz9uCIJqI//FULwI8nOjXwo8QL2cuJ4mBzoiI8jOy11PEfUoijeWh1jJDjz/+OHv37mXKlCkEBQXVeRdAbcBBqUBvhKTswlKO8RJCTc/HlhEMhQe4oxDEiDXQw4nE7EKa+blxKTGH21kFRIR4cD4+m9+PxTJ9UJhNx1ak03P0RjpgGVUXavVcTBC7+6TUY0xa8QBu4e9GkilzBGJqNT1fS7CnZalNckCuaJJOquTm7ujoyJ9//ik/theFZqXKKukM1XFmKLkKwWN1ncuyEB0Nzz0nPn7/fejRo5w3urrCli3gZpvz/IGrxcFQYlYhlxJzyuwYqS30D/fDUaUgNj2fS0k5tAr0YO4nicyemoEmwZuJ9xZx+kQBLUNrlqgurbKb+rlWOp/m58OkSVBYCMOHQ4U81aZNq/Eoy0dVxqSUlcjI12AwGK3y3KopiN6FBXYZObs72m8gbY7KzqV0virKpPmWEzBJAZunmVn3rYwCejUvzoBeTCi9ANAbYd/lVEa1D6K5n3jNX0nOQas34KBUMLhlAEqFwKWkHJlfNG1gc1afvMWZW1n8dOgmj/ZpwtUPRmLE0s3hq/s78dqas/x+LI7ezX1kj76ycN3kl9a8kuxprXGGtmzZwqZNm+jTp489m/8rEeDhyO18MaNTbjDUoDgzVFIM0slBSZi/G5eTcmnu50pidiFeplXI+jMJPNqnKTP/PMP3+67zYI/Gciu+NfgnKomcQh2BHk60DS5exp+9lYXOYMTf3VEeYOfiiwd6mL8bFxOLpRC8XdTcSMsvFXXbFAyVc3NXqVRMmDDB6u9UHsxdjO0JaKriSl2dkDJDgXZkhqrrXJZEQYF4ky0ogKFDoVLPUhsDoZScIovxBrA2Mp5XR7ay8UirDy5qFf1a+LIjOpl/zifRKtCDaXc0Y/20E+z5uD2FyW70G5nKpaOqSo2aq4Lyytxl4cUXxcxQQAAsW2al2a/RCDk54FE+H6MqqMqY9HYRb+56g5GsAm2lnlc1CanMb092Rwo0squYGarsXPrKmbTyM0O+7uI5TMmxDAqke5d5vB2Xnm8RgCSYLZDNsfNiEqPaB9HM1xVPZweyCrRE3c6mY6gXni4O9GjagEPX0tgWlcQT/Zvh7+HEKyNa8ta6KD7aHE2YvxsDwv1Kfe7R62n8cTwOgBl3tCj3OwFEmxb3zfzKn3uMRqNFCc9a2HVH8Pb2poEtVtX/A5DKTLczS/OBJEicoTyNvsxyV29T9C2tfBKzC1AIcDoukw6hXoQHuJFVoOXTbZdsOrblR2IAmNgt1ELh+mSMyM/o0thbDsyibmfJr4f5u1n8X2LnNysRdadkl27ZLwk5GPKoWePQoiqoxJpvX+dlsqzaOV+2YNYskQLk7w+//GLlTRbg0CHYsKHyt11LLfXcutPxNqnE1gSGtxXT8lvOJwBik8O3T7Ym6N6ToNSTEuVLz7tTLALx6sbRG2KZu0fTiufV1avh++/Fm9mvv4oBUaU4dgy6dhUZ8fUQapVC7uSq6AZfG/Cwom28PEgdUDVfJivODBnLKVGXlxlqZFqwZ5uRvBOyCi0c6B2UAq/fKS5QpCaV4W0DGNdJFAZWKAS6NhapHSdupsvbSdfRmsh4+bge7NmYMR2C0RmMPLHsBD8dvGGhPn/oaipP/XYSgxHGdwqpkC+UVaDlXLx4v+pWwXVyO6uQnEKdza08dgVD77//Pm+//Tb5+eWzyf/XIK3gy4uaQcz+SAFRyRWw3pShAbHWqlIIxKQV0LmROKh+OxLDO2PaAvDrkRh2X0q26rh2XUzi6I10VAqB+7qFWrx2zDTBSvso1Oq5YubV0iLAnQtmKVHpsipJ4EwxXVAlNR/MIXOGPMp+j06nY9WqVaxatQqdzv7JQtYYsiOzozXz5qnLMpnRaCQ5RwqGbM8M6fV6Dh48yMGDByv1/7EWa9fC11+Lj5ctg0BrG6nWrIE+feDZZ6GS3/XAldLBUEJWoVzirSsMaxOIg1LgYmKO3NkS5u/Om48E4nvnGQAu7wjmjsdu1YiNSKFWz5k4cZLv3rT8m8HNm/D44+LjV14Rs3dWwdsbIiNh82a4eLFqB1sOqjompZt3XZOoZc5Qgf2ZoaqWySqbKyXCuc5gLPc4pSx+SQJ1Y5nXWryoL9KJCtSSn1dukZ7BrUQuncQd0huM9GshZnWMRqPMGzpuFgyN7RiMo0pBdEI2p2IzAVFIc8GEDtzZLhCN3sC7Gy7Q++NdPL7sBHctOsDkJUfJzNfSIdSLueMiKjwvh66mojcYae7nWmEpTSrzqZS2hUN23REWLFjAP//8Q0BAAO3ataNz584Wf/+LkDJDCRVkhgA6hnoBEBmbYfH8mVuZzPtHzPjEZRTIRGcpQPrjeBwRwZ5M7d0EgBkrIi2yNmUhK1/LO+ujAHisb1OCzQZIep5G5mcMaCkO4uiEbJnE5qpWolYKFqsYKbvTtEQKUuK3+FeQxSjODJV9cy8qKmLixIlMnDjRwgjXVkiTpZeL7an0hEzxGNUqhdx6WhdIz9OgNWlWVRRglofCwkL69u1L3759KSwsPzi3FrGx8Nhj4uPZs2HECBs2vvNO8PMTP+Svv8p9m9FotOALmePvyHgbdlj98HRxoE+YmLXddDZBfv7xfs3oN6IAr/5iAHHo10aMnXWzlNlyVREZm4lGb8Df3ZEmPmWX4LVaMbGTlQW9esF779mwgxYt4K67xMeff17l4y0LVR2TDazokKoNVC0zVD0E6srmSicHpaxFVV4mzc8sM2SePZIyQ7czCyyoAkk5RRb0j/jMQguJB4ncDDBnfZRMlD56I11eIHi5qBnTIRiAZYduyu9XqxQsur8z749ti4+rmuScInZEJ3H2VhZKhcD93UNZ+UTPSl0P9pkWU1JQVh6kRERZHqEVwS7O0N13323PZv9qBHqZymQVZIZAzMJsPJtApCkyltCxoRdBnk5yZkkKGo7dTKdlgDuXknL4Yf91Xh3ZigsJ2Ry7kc7kH46yeHJn+rYo3d6bW6Tj0WXHiUsvINjTqVStdePZ22j1RiJCPGQewjGzFXjvMF+LAe6iVhKTJmb6SpbJpHbG8vRPNDqDPInVdNlHIoBLF7UtiMso1nGpS5KmlEXzcVXbxV0SBIGwsDD5cVWg08HkyZCRAd27wwcf2PgBTk4wbZooRvTZZzBxYpmdSxq9gVdHtsLZQYmzWsmn2y5xJi6LmUPDeaBHoyp9h+rAqHZB7LmUwoazt5lxRxiCIKBUCCyY2JERt/ehy3Ym93RjNn/VmImu1/jj3WYWKr5VwY5o0dqoZzOfcn/Pt9+GI0fEzr4VK8Bma7+ZM2HdOjHtN3cu+FavZEBVx6Rc+qnjYEjm/dhBoPZwqh4CtTXwcVOTW6QjLU9DszJiAynTVqQzkFukk0t4/u6OODkoKNQa8HBUkaoTz3d8RgFNfFxkrk10QjZtgz24ZZKJiU3PJy23CB83Rzo39mbZ4Ri5Iejv07e5p3MIgiAwtXcTVp+8xYazt5k+KExujlAoBKb0asKkbo04cj2NmLQ8vFzUdG3iTZBn5c0JWr2BnabrpCzekTmkYMiIbVp0dgVD77zzjj2b/asRbPrBzLuxykKnRl4ARMZlWpCoFQqBERGB/HTwJiAKzjVwcSA1V8P4zg25lJTD9/uvM7FrKEse7spDS49xOi6TKT8eZVynEKb0bExEiCf5Gj17LiUzb+sl4jML8HBS8eMj3Uqpcf51Slxtj+vUUH5u8/li09pBLf05cyuz+Pt5OXE1OQ+1SmGRYcrM13DTFCS1Cymrx7q4jOagFGQyZE1Bki1oVM4K2pptQ8shwNcWpCyavx0lMhBFT69cuVItxzJnDhw8KPJqf//djpssiMHQxx+L3JRDh8SyWQk4qpSM7VhsRnz4Whpn4rJIyCqQW4XrEsMjAnnj7/NcTc4lOiFH7r5s6uvK63e25m3NeYwFjuRdCmTtvCZMUFzmj7fDq0zE1+gMrDVlxsZ2DC7zPZs3i6cXYMkSUfvJZvTrB507w6lT8O238Oab9h1wOajqmGwgkYIrUTWuaRS31lelTFbz4pE+rmpi0vLLPV/OaiWuaiV5Gj0pOUVyMCQIAo0auHA5KZcGbmpSTcHnhYRs2jf0YvclUe4iOiGbiGBP/olKwsNJ1F46cj2dUe2DGNjSH5VCkCkHs1adobGPC92aNCAixJMRbQPZGpXIp9su8cNDXS2OS61S0D/cD6g4oCmJzecSSM4pwtfNkd5h5ZeSAS4lFlM/Gvu4Yu2otPtKzszMZMmSJbz22mukp4sZh1OnThEfX7cp75pCK1OEezU5t0wjVgltgj1QKxWk52lKtdiPahckP76clCsTzvZfTqFPcx80OgPvbojC3VHFyid7cl+3UIxGWHMqnnFfH6LFG1vo8O42nl95mvjMAhp6O/PLYz1oFWjZIXLgSipn4jJRKQTuMqUtb2Xkyx0rAANb+rHFrCQgtUt2bextQcI+e0ss1TXxcSm3NCXf3N2dajzjIiltVyUzFNqgZtukK4PcSVbH5OkdO+DDD8XHS5aA3RJh/v7w4IPi44ULrdpECqyl8VXX8HByYJCpnLz+zG2L16b0bEzfcB98Rkfi3SIdo1bFuk+aM/qtC1X2odoRLWqL+bs7lrnivXGj+NROnw733mvnjgShuAd/8WKoQqm6JuBrRbt4bcCjCpmh2iJQg7nWUPnnS+puLtlZJc2dAWYNMWfiMukQWrzYjU7Ipm2IeF+RHOQPXxfLVJ7ODqWIzlITD8Cs4eEoBFG7a9fF0obu9kBKIjzYs1GFzS9Z+VqupRR/3y6m5IQ1sCsYOnv2LOHh4XzyySd8+umnZGZmArB27Vpee+01ez6y3sPfwwk/d0cMRixIxyXhqFLKg+iUGW/IaDTSKtDdoiNLoRBwVSuJTsxheFuRxLnzYjLLDt3EyUHJx/e0Z930PtzZLlC+SEEsY824owX/vNBf5ihJMBiMfLg5GhCZ/BKRbsu54qxQq0B3HFUKzt0u/h6SxUXJktxZU/aofUPL/ZhDIp2GWGkjUBVIAWZje4IhE2mwrjNDUkeiPW311YWkJJgypdjSocqd+i++KP67di1cv17p2yNMwdDlpJwa7dKyBXd1EDNXG87ctuhwUygE5t3bAQ9XBW6jj9GwdS5GjQM7PmvJkJfPV5otrggrjopeihO6NixVdtNqxaqjVMJcsMDu3YiYOBFCQkRF6rVrq/hh1YtizlD9yAzZU+qqLQVqKA4eKxJelEpUJZt5GjWQPMaKF7enYjMs5virybkyvUIS5j10LU1+fVhbsY1RWvtuPJsg21CF+bvzaB9R3+rVv87ZpfljjiPX0zgdl4laqeCBHo0rfO+ey8noDUaZDG6un1QZ7AqGZs6cydSpU7ly5QpOTsUT+siRI9m3b589H/mvgLSaPR9f8WpWajvcbyJ8HbqWyojP9/Pa2vMWqfB1p29zb1exjPX78TheGSG2M364+aLcFt8h1IuvH+hC5NvDiHxrKOfmDGPnSwOYOTS8TKO6P0/EcSEhG3dHlcwjMhqNFqvdQa385XQoiJ1ZJ2IyAehfgpx2xrRyb9+w7BIZiNIAQKnArCYQmyZld6qSGarbYEgaPy2t0JQpC4WFhYwaNYpRo0bZRVY1GODhh8V7Ytu21cSpbdtWVABs1Aji4ip9e0NvZwI9nNDqjfJYr2vc0dofN0cV8ZkFnChxTCFezsy5qy0KtR71qINEdCnCqHHgxLftGPhCNDsu2L4C3no+gQNXU1EpBCZ1Lc2bevddOHFCbAZbvRqqrK/p4CDyutavFwOjakRVx6TUoBJfhpVRbaKYQG17dkeiCKTlaWpcLiLQQ1x43qrgfJUXDDXxFec/c5Xm1FwNCkGQeaEGo/hcq0B3ucv4ekqeXAUY0jpAfh+InW1/nbolf96s4S1p5udKck4Rs1adtbvpoFCr5/W15wC4p0vDStXZd0SLXdhavRGVQqiwBb8k7AqGjh8/zlNPPVXq+ZCQEBITE8vY4n8DEVam9u8wDZRdF5PR6Q14ODlwKSmHf84nymUrEEnQtzML8HJxIDohG6PRyLA2AWj0Bqb+dIxzZvtRKgS8XdW4OzmUS1A8HZfJ26busmcHh8mrrb2XU2R9BgG4v1sjtp4vLpG1CHAjt0hHA1c1bYIsS25nrAh0rHlPdUAiDIK9nKG6zwwZjUb5t2hv5/nS6/Vs3ryZzZs329XG/Omn8M8/4OwMf/wBLtV1On75Ba5ehQEDKn2rIAj0bi6m2svSH6oLODkoZSuAtZG3Sr0+vnMIw9sGoFfqCJhwnP6DdRi1Km6u6Mx9r9zmjbXnrDbpzCrQ8vY68Vp9akCzUuP5+HHRZgNEXaHQ0JKfYCcmToQxY2wQkbIOVR2TLQIkVePccrVzagOS92JljuxlIcjLCaVCoEhnICmn6l2eFSHcdL4uJ+WU+57WJvqEOYcGirP8Z29lYc5qOBefRQezOenwtTS5E1nqvj1syg4FeznL16+EZYeKOy2dHJQsnNgRtUrBjugk3tsQZdfv+tWuK1xPycPP3ZFXR1QszqrRGdhjJknTuZE3mTYQ8u26IpycnMjOLl0qunTpEn5+thGj/k2wJTPk7eJAZr6W4zcziAjxpE2QBxq9gRMxGQxtU6yUtjM6medNGZzPtl9h1vBwujXxJqdQx4NLj7LXSv+m6ym5PPHLCTQ6A3e08ufxfiIBxGg0snBHMYVsREQgPm5q9phlhlqbfNN6N/ex4PwkZhWSnFOEUiFYKFubo0Cjl1ceFQVDarWan376iZ9++sluF20pK+Tt4iCv4KxFgUYvT3B1yRm6nVVIaq4GlUIoFXhai6qcy6NH4Y03xMdffCEmdKoN/v6iW6iV6CUHQ2mVvLP2MN4kLLfxbEKp8p0gCHw4rh2+bmquZmQx+LnLTJhoAIOCtI2dWPyZmoHz9vDXyYr1iLLytUxfforknCKa+bry3GDLTlCNRpQ6MBjEdnq7eUKVQVt95ZyqXt+NfVxRKQTyNfpKO3ZrEhKfJjNfS5aNZp8OSoUsXnizAkf3ymDNuQw3ZX0uJ+WUm4WSMkPXU/Jk5X2ANkEeOKoUZOZrUZuVZiNjMuhoVirbfyVF5rFJ22+7UJzskEpWKtM9Iy6jgA1mFYgOoV4snNgRQYBlh2OYuynapgzR6pO3+HrPNQDeHxtRqSvD8Zvp5BTqUJtKZP1a+Fqt1wd2BkNjx47lvffeQ2u6mARBIDY2lldffZV77rnHno/8V0AKhq4k51RIolYpFQxuJQY8203p8/u6i0u7P47HMbV3cd3TYBTNK7s3aUCBVs/ra87z3ZSudG7kRVaBlod/PMaHm6MtDFVLYuPZ29y16CApOUW0DHDni/s7ySToPZdSLIjTj/dryu/HYi3EB8+bLDr6leALSVpJ4QHuOKvLvslF3c5CbzDi5+5IUAUcGAcHB6ZOncrUqVNxsKtlqZgvZA95WnIEd3dU1anG0DkTBys8wN0ubzWw/1xmZIh2Gzqd+K8k4Fft0GjE1rRKbrZSMHT2Vlat8CysQc9mPgR7OpFTqGPXxdITqY+bIx+Pbw/Az0dvMGNuOrNmia9lHWjJhd8iePG3KAbM38N3e69xJSlHXhEXavVsv5DEuK8PcuBqKk4OCubd277UOPj4Y1EJ3MdHDFirHUajaDwXGgoXLlTLR1b1+nZQKmSx1ysVZDtqGq6OKpnXecMOLphsYloFHpk157JxAxfUKrFFXir/l0SQpxPuTip0BqMsjwJiR5d0LzMvMmw6l2CRGTp+I502QR64qJUUmBYGO6OT5Wt1WNsA/Nwd5XsJwIJtlyzMzEe1D+Lt0W0AWHrgBk/9eqJSM3Kj0cifx+OYvfoMRiM83KtxheatErZFiYGadDT9wv3YfdF6M2i7gqFPP/2UlJQU/P39KSgoYMCAAYSFheHu7s4HNguV/HsQ4OGIr1vlJGpAzv5su5CI0WhkbIcQ1CoFFxNzcFWrLLICOy4mM21QM9wdVZyIyeCz7ZdY8URPHuwp8gi+33edPh/vYs76KDadTeDC7WyOXE/j18M3GfPVAZ5dEUlukY7uTRvw62PdZUGunEIt720snuw6NfKifUMvvt17TX6ufwtfLiTkoFYq5DqwhK2mwdWrAol0c75QTRv2FrfVV2zSV+a2ksZQA5c6NRY+awUHqyZgNIrBT0yM2DX23Xc1ZGRuNIqqgJMni0SXCtDQ24XGPi7oDUYLJdu6hEIhMNaUHVpzquzO2CFtAri/u9jp+fLqM7z5npalS0GtNlJwOZCkZf24HuXIR1suMnThPtq/u43uH+yg03vbeeKXE1xPzSPY04nVT/emaxNLTkNkpBinAHz1lahnWe0QBLHFPimpxkQY7YFUKrtqppJfFyjLld3qbX3s39YWqJQKwkwdwJcSyw4eBUGQu6AvliiVSRIw5hmjq8m5hPu74WJa+GoNRiLjMuVymLeLA0U6g7zAd1AqmNRVXORLjgBxGQWsPmlZYn6kT1O+vL+TqWSWzMD5u1my/3qZmbdrKbk8+vNxXv7rLEYjTO7RSHZmqAjZhVr5etXqjYR4OdPI24WTJcSPK4JdwZCHhwcHDhzgr7/+4uOPP+bZZ59l8+bN7N27F1dX229U/xYIgkA7U6dYZaWy/uG+OKoU3Moo4GJiDp4uDow0Rbd/nLjFyyNaWrz/3Q3RfHG/mFL87UgsK4/FMvfudnw3pQstA9zJLdLx86GbTF9xiju/3M993x/hrXVRnIvPQq1UMH1Qc1Y83kPWrjEajby25pzcVikAb41uw/rTty3aMZ1Nq9LRHYIs9F4KtXqZFDq6Q7EkQElYS57W6XRs2rSJTZs22W3HEZMuCS7aXuYq5gvVbVu9FAy1q0IwpNfrOX36NKdPn7aan/HNN6JzhoMDrFwpivfVCAQBJFHWzz4Tg6MKIPOGrta/UtmeS8nl6ri8OaoNjX1cuJ1VyDvrzvPoo7B/v0CTJqDJcCFpRW+cT3XGweBATqGO5JwiCrR6gjydeKRPE9Y/11fmIErIzIQHHhAzd/fcA/fdV4Nf8qWXxH9/+QVSrF89lwd7xmRJhPmLN+4rSXUbDDU1BTT2mH1KCuL2bCvB2rmypVmprLL3lCRRSxZN5iLNRuC7/dcsKgT7L6fKpTIpg2leCru/RyNUCoFCs6BqwbZLpTK9d3UIZtVTvWgd5EF2oY65m6LpPHc7E787zIzfI3l+ZSSDP93DHQv2svtSCg5KgRl3tGDu2Air5FpWHI0lp0gn2yxN6dWY/VdTbCrLVYlFN3jwYGbNmsXLL7/MkCFDqvJR9R4SB0BKIx6rxE9JdMMWB5FkN3B/dzHTs+bULVoHutPHTDzqRmoeV5JzeWloOABzNlzgmz3XGN42kK0v9OOnqd24v3so7Rt60sBVTTM/V3o0bcCbo1pz5PU7mD28lUVr7m9HYthopiP0ZP9mdGzoxZc7L8vPtQlyZ2uUGPA83KuJxfHvvphMnkZPiJcznSoIdKwNhoqKihg9ejSjR4+2244j1hTQNG5gR2Yove47yYxGoyxV0KECqYLKUFhYSKdOnejUqZNVnTunTxd3vn/8MXTrZveurcPTT4vK1CdOwP79Fb5Van09WI94Qy0C3OnQ0BOdwcjfp2+X+R5XRxULJ3VEqRD4+/Rt1p2Op3t3MbMzZQoYDQIXtweR++tQHvW5g7VP9mP7i/05+Mpg3hnTVlYIllBYKMaQ0dEQHCz6xNVoArNPH3EgFBUVm9JVAbaOybLQwl8iUdddmQygqZ/9pa7qKJNZO1dKre+XKggeW8ok6hLBkKnjuSSWHYqhr1lH8b4rKQxtE4hCKPbl3H8lVW6jD/FyZpLJE1OqSKTmavhoS2kPvA6hXmx8ri8fjW9HmL8beoORYzfSWX/mNutO3+Z6ah5KhcCgln5sfaE/M4eGWxUIFWr1sj2I5LM2qWso26Js6/C0OxjauXMno0ePpnnz5oSFhTF69Gh27Nhh78fVe1xPFQdcf1OUvO9KSqWmjdIg+fNEHIVaPT2aNqBLY2+KdAa+23eD10a2tnj/J1suMiIikOmDmov/33qR9zZcQKM3MKiVPx+Nb8/6Z/ty6q2h7HppIH881YvH+zWTu8ZAvOF+t/cab5k6VQCa+7ny4tBwfjp0kxgzg76+LXzR6A10CPWyqBUDciA1un1QuWWl1NwibmUUIAhVy3RYi1jTBFOltvo6zAzFpOWTXahDrVTIE5k9EASB4OBggoODKy355eSIDUQaDYweXRwU1Sj8/OChh8THn31W4Vv7NPdBEESRt4Ssum2rNse9XUTJi5Ipf3N0buTN9EGiBcWbf58nPrMALy8x2bJpEzRvDomJAu+87MTI3h789IU7p08LFn62+fmipVv79rB3L7i7i9saDKL9xpYtNfQFzUUYv/5ajMaq9HHWj8nyUF86yppUITMk8Z5i0vJrvL2+ZaCpo6ycMhlAa1NmqGQwFODhJHfOmSNfoychs0B2fL+anIvBWGzS6uumRmcwsulc8UL72cFhqFUKi07KFUdjOVSGF6HoRdaIHTMHsHf2QD65px1vjW7DayNb8e2DXYh8eyg/PdJdFgG2Bmsj40nJKZKtN8Z2DKZQp7cge1sDu4KhRYsWMWLECNzd3Xn++eeZMWMGHh4e3HnnnSxatMiej6z3iDKRjDs09MLbRUx9nyrhP1YSg1r6EeTpREa+li3nExAEQe4cW340Bn8PR3nSBZFMfffiQ0wf2JxXR4pthD8evMGYrw7IGZiKkFOo5fW15yyicje1ki/u60Rcej4fbirmD/Vu7sOGM+KAfqinpZBVXpGOnSbl0NHty7YIADhoGuxhfm42d3fZiqx8raw+HeZv/YUiQfJha+Jbd2Xcs6bSautgjyrZOLi4uBAfH098fDwuFfTFG41ikubKFWjYEH7+uYazDeaQoq7168UDKAc+bo5yyt4erZ6awpgOwaiVogN3RSXx5waH0SHUi5xCHTP/OC2n5e+8U+Qmf/GFeO6TksRW+S5dxIAnLAwaNxbLlffeK54itRq8vETKVVCQ+G+NUnruvVfUhUpOht9+q9JHWTsmK0JTX1cUAnJZsa4gBTQ3UvNsDspCvJxRmdrrJaX5moK0oLqWkmvB/bF4jykYSsgqLEVc9i9Hs2fdmXgLTuPmcwnyfUrazy+Hb8rnJsjTmSmme4h5gDX7rzMVSk009nFlUrdGPNa3KU8NaM6IiECb7yP5Gh1f77lqcWwP9WrC0v030OqNsuafNbBrRv7oo49YuHAhv//+OzNmzGDGjBmsWLGChQsX8qGk7/8/Bsl4VakQ5OxQZW17KqVCLo39dkRUmu3XwpdOjbwo0hn4fu913hrVxqILK7dIR6+Pd/N436Z8+2AXfN3UXE7K5e7FBxn/9UE2nr1t0clmMBiJTctn4fbL9Pl4F78fKxa883BSsfyJnrQMdGfG75FyfVghQNtgDxKyCgn2dGJUe0tO0I7oJAq1Bpr4uBARUn77txRMSbYiNYnjN9MxGkX17cqEt0oiJaeIG6l5CAJ0CrX+4qhunDIJ+bUvx+OturF0qWjqqVSKekI+FVv6VC9atYJRo8SIrJI7utRssD3a+jbYmoaXi5qhJpXdirJDDkoFn0/qiItaydEb6Xy/r1h9W62GGTNEQe4//xR5QK6uYhLm2jWIjcUiS6TRiHqV5kma9u2r/asVQ6USDxDE36gOszEgqvc3NmVl6pJE3djE+8kp1FXa+VQSKqVCzlzXNIk6xMsZV7USncFYblnOw8lBLj8evZ5W6jWwtOUAmDs2wkL+5a9T8QxtEyB7lDmpFFxOyrWQfXlmYHNc1Eoy87WyEnd8RqF436nBDNkHm6KJSy/AUaXAYIQ+YT409HZmxTHxfvtov6ZWf5ZdwVB2djYjRowo9fywYcPK1B/6X8CBq6lyJDyopT+AhVZPebivWygqhcDJmAyiE7ItskO/HY0hX6vj0wkdLLbJKtDS++NdDGntz/YXB8iq1adiM3l2RSSt395Ku3f+YciCPUTM+Yf+83fzxc4rFqqpXi4OrHiiJ+1CPHnr7/NEm6VJpw1sLnu9vDs2olRrr2QRMLp9+SnvrHwtey+LN6+7yjGYrE4cM3Ub9WhmvaKohJMx4rYtA9wr1aqoKRiNRrkLo6SEQU3g3Dl47jnx8QcfQO/eNb7L0pBIurGxFd5opYn38LXUetNiD8WlsnWn48tdeYOYSZhj6nhZsO2ShVgqiKT1CRPE5rrsbDELtGsX/PBD5fqUNRoMgdhi+PTTYrRch12WEqSsb1221zs5KAkxmVXbxRuSSNRV4A1ZA0EQ5MxPeR1lAH3CxPmmpJ7X3HERAGQUaC3oA3supcjCwSCWsK+n5MnzvGS7tGT/Dfk9vm6OvDhE5Lua00d2XUzmg03Rtn85K7D7YjLLTfeqIp0BtVLBe2Mj+PVwDPkaPa0C3ekXVsN2HHfddRdry/C2WbduHWPGjLHnI+s9knOKZEZ+/3A/meeQWIlAmL+Hk+zjsvyoaGY3INyPbk28KdQaeOvvKHo39+GxvmIEK/HFknOK6PXxLtwcxTLX39N7425mv5FTpONqSh75Gj1KQZC7wkBUyt32Yn9aBboza/UZVh4vzhZ1buTFoWtp6AxGhrcNsFgBABy6msrRG+molQom9yhtESDhn6hEtHojLQPcq8R/sRbSqqZHU9vTG8duiBmZbk1sD6SqCxcTc4jPFFcwJf3fbEVhYSETJkxgwoQJZZJVc3PFm29hIYwcCbNnV2l39mPgQDEq27Chwhttcz83mvm6otUb2Xe5fqhRA/QL88Xf3ZGMfC07oysu4U3o2pCREYHoDEaeXxlJvqbs8oBCIZbIBg0S45A9e+DAgfKDohoPhjw9xVbDKqpvVjYmrUUxibqu2+ulrjDbxROr0ppvKyRLn4o6yiQ9r4MllN5bBrjTqIELGp2Bro295Of/iUqiZYCbHBCC2PRzbxeRA3srowCFICYIom4XB/6P9m1Kp0ZeFGgNhHgVVzt+PHiDnw8WB07VgfQ8DS//dRYAZxNXaNqg5gR7OvPzoZuAmK2yhb9mVzDUunVrPvjgA0aNGsXcuXOZO3cuo0eP5oMPPqBt27Z8+eWX8t//EqRMUANXtdwNtMcKhcsHTUqdq0/eIjm7EEEQ+GBcOxyUAjuik9hyPpHZw1vSpbE3BiOYBDRJySmi3ZxtRN/OomOoNyuf6inrOZhDbzRSoNXjoBT48eGufDaxIy5qFc/+HmmhleLnpmZ420BOxWbiqlYy5y7LCdBoNLJgu9htdn/3UIK9yicbbzgrdtmMqaDtvrqQW6TjvMlUtrsNXjMSTpgyQ12b1F2JbIdZVshFXdpTzhbo9XpWr17N6tWrS7UxSzyhS5dET85ly6rdecF6CAJERFj1VrlUZiPpsSahUiq4x5Qd+uNExX5rgiDw0fh2BHo4cT01j/c2WC9m2KcP7N4N27ZB165m+1eJ1cZahZ2lsorGpC0wJ1HXJYpJ1LYfR1O5o8x+FWprIS1ES7bOm6NnUx8UgqhEbb54FwRBvu4MFAcNidmF3EzLt+Cz/n36Nm2D3GkZ4E6RziDv1zw7pFQIzL+3PWqVgvjMQlzNhHrnbLjAwu2Xq4UYn56n4aEfj5KSU4S7k4oCrYHmfq48M7A5X+26QlqehobezoxqZ9u9ya5pcunSpXh7e3PhwgWWLl3K0qVLiYqKwsvLi6VLl7Jw4UIWLlzI5/VI0Ks6YB742FIq69Xch86NvCjUGvhql0j2Cg9w55kBYtfYO+ujKNIa+PHhbrQMcEdvRJYUL9QZGPnlAV7+6yy3Mwv45N7yl4pTezdhQEt/Vh6Lpd8nu9h6vvjG4qpW8vKIlny8VSRXzx7ekiBPy2Bn35VUTsZk4KhSMM3UJVMWUnOLZPJ0RQRrc6jVahYtWsSiRYtslus/cTMdvcFIaAPnCgO0spBXpCPKFEjVZWZouymzUFLY0h5UdC6XLIHly0We0MqVNSTaZw+SksS+83IwpE2xn5+2ki7N2sREk6jc3ssp3M6suNvNy0XNZ5M6IAiw8ngcm806biqDIMDQoXDsmKgH1batGAhV2ZzVWly5ImoCPPmkXZtX5fo2Rwv/4kxHXXaUyQGNPZmhKgov2nIupS7eUzEZ5Z4vTxcHWdPq8HXL7NAw03W393IKfm7F+9oRncTEbqFypSI1t4gDV9N4ZqB4z4o3XQsbztyWZUtA1Ip6YYhIAylZWv5i5xVmrz5TYcm5MiRlFzLpu8Ocj8/GSaUgp1CHQoAPx7XjfHyWLCj85qjWFlIz1sCuYOjGjRtW/V2/fr3yD/sX4WRMhsxpGNRKvMscuJpa6Y8rCAKzh4tLvN+PxcoeW9MGhdHMz5WUnCI+2hKNp4sDyx7tToiXMxq9ETfH4sj6z+NxPPHLSV5adYYwv9IdUf4mWfTBn+7m1TXnyDBT9/R1UzP/3va8tuY8RiM81KsxD/duYrG90Wjks22XAHiwZ2MCPMq31th8LgGDUVRRtrY7y8HBgenTpzN9+nSb5fqPmjSd7CmRRcZmojeIiqS2BlLVhcSsQs7eykIQsKjF24vyzuWZM8U8oQ8/hL59q7yr6sGWLWLX0sMPl5t56NzImwauarILdfVGjRrEm2LPZg0wGismUkvo3dxXXuS8alrA2AJBgHHjxN9y2TK7Dtk+ZGSIHWXLlsHtsrWVKkJVrm9ztAhwQ60UfbNqI7NSHqrSXi9tG5NuX3u9LeeyQ0MvnB2UpOVp5I7ZstCrHHHTLmY+mv3NyvfLj8QS7OnEQNOiH+CvU7cY3T6Ixj4u5BTqaOrrgs5g5OMSmkJP9mtG/3A/tGV899Un4xm7+KDM47QFZ+IymfDtYa4k5+LmqJKFHj8e356IEE9m/nkGg1EUTR0RYXvFwq5gaO/evfZs9q9GEx/xh5cyIhHBnvi5O5JbpGOfFWaqvZr70K+FLzqDkc9NwodODko+GtcOEFeSq07EEejpxK+PdSe0gTO5RXpUCmRVTQCd3sjVlNIXaHJOET8dtNQRArizXSDv3hXBC3+eQWcwMq5TCHPGtC1VS/0nKokzt7JwdlDytGkyLw+SAukYK7NCVUUxX8j2zI50Y+1WlyUyU1aoY6iXzZ1w1iIrS+yULioSm7gkv6x6gZ49RRbxuXNQjhaZUiEwuJU48f5zvv6UyqBYL+yP43FW3dxeHBpOh4aeZBfqeMGs3d4WKJXQubPNm9mP7t3F6FmrhTqUR3FUKeW27roMis2FF23NUAV7OeGgFNDoDNyuYe0stUohl/8PXSufb9e7eTGJ2vz7qJQKeYHmbFa+j0nP5+ytLO4zjX0Qr8u0PA3TB4pVg8x8LQKip5m5CLFKqWDx5E6yFUhJRCdkc883h5n5x2lirCCZx2cW8MLKSMYuPkhsej4eTiq5Zf/t0W2Y2C2UDzdHE5OWT7CnE+/cZR//za5gaOjQoTRq1IhXX32Vc+fO2bXjfxv6mKJmqSymUAiM7SAGA6tOVswnkDBrmGjBsTYyXia89WjmwwxTd9kba89z4mY6zfzc2PBsX/qH+6EziEz5iGAPuXRmDfzc1Cx7pBsqhYLpK06h0RkY2iaA+fe2L6XqmZBVwOtrxd/xkT5NKrxhn4/P4vjNDASBUi35FUGv17Nnzx727NljE6cgX6OTLSx6VuCRVh6K+UJ1VyLbUY0lMgCDwcCVK1e4cuUKBoMBo1F0Ob96VUzA1ClPqCx4e8Ojj4qPKxBhlGr8m84lVipoWpsYGRGEu5OK+MyCUiTUsuCgVPDFfZ1wVSs5diOdxbuv1sJRVgOk7r9vv4U82zIiJcdkVSBdqydvWu8rVd0I9XZBIYgihLZqHlm219ue3bJ1rpQCncMVqLh3a+KNg1IgPrNANryWIPGG9lxOwcdMwPfPE3EMbuUv6xFpDUaWHrjBuM4hhHg5k5GvlZWs39sYZbFQcHdyYOnUbhZNPyWxJjKeAfP3MPKL/Xyx4wr7r6RwKjaDS4k5nLiZztd7rjL1p2MM/nSPrATv5ewgd02/NDScR/s2ZcXRWLmrbP6EDnYbcds1Zd6+fZuXX36Z/fv306FDB9q3b8+8efO4davyNPK/FZIC555LKXJkPcHEJ9gZnUxqOR5G5ugQ6sWItoEYjTD/n0vy8y/c0YKREYFo9Aae/u2kqGTrouanqd141sTdOX87G73ByMBwX9o39MDDSYV5SKMQRF2hYW0CWP10L6YPCmPmn2dYf+Y2CgGeGtCMRZM7laqj6vQGZvweSXqehogQDzkwKw8LTQTruzoE21R2KiwsZNCgQQwaNMimbpPI2Ex0BiPBnk40tFE9Wqs3yPpQdcUXyivSyanpYW2qJxgqKCggPDyc8PBwCgoK+PJLUcXYwQFWraplPSFr8cILYg1o61aIiirzLX3CfPFycSA1t0gujdYHODkoGWfyKzPvzKwITXxdef9ukTz+xc4rnKhHpb9yMWaMKJudkQE//WTTpiXHZFUgCeUdt6OUUl1QqxQ09LbfZyzcxH0y77ayFrbOlVIJ7Mj1tHKzkC5qlayxVrLFvn8LP5wcRB/NuzoUZ/vXRMaj1RvlzCiINk95RTqeNnGHbqXn46ZWcj4+m9WnLO//IV7OLH6g8vRmdEI2C3dcZsrSY4z/+hDDP9/Hvd8eZt7WS+y5lEKRzoC/hyMKATILtHi5OPDZxA48OziMpQduyAv5ZwY2l2UE7IFdwZCvry/PPvssBw8e5Nq1a0yaNIlffvmFJk2aMHjwYLsPpj6ja2NvnBwUJGYXysz9loHudAj1Ej2MIst2uC6Jl4aFo1QIbL+QxNbzIsFSoRBYMLEDbYI8SM3V8PiyE2Tma1AqBGYNb8m66X0YEO6H3gh7Lqdy9lY2ro4q7uoYzBujWvPOmDa8PKIVU3s3IS1Pw73fHmbOhguk5WkID3Bj7bQ+vDayNY4qZanjWbD9MsdvZuDuqGLx5M6lNIfMERmbwc6LySgEZK2kmoZcImvmY7PM/4Xb2eRr9Hg6FwuP1Tb2XU5BozfQ2MfFLuXs8uDp6YmnpydHjhSXxBYsEKsd9RLNmolkGCg3O6RWKRhpqvWvL8cTrK4gEam3RyVZLcQ3vnNDxnUKQW8w8vzK02QV1B8NpTKhVBYrh3/+OdjYFSaNyaqiiykYup6SV65Rbm1A4kNeL4OWUBkkV/hTNrim24uIYA/cHUVBxAu3y9f5k1vsS9hkOKuV9A0TF/uSYCJAgUbPP1GJTOwaKitj5Gv0/HzoJhO6NCTAw5GknCK6mBaa8/+5RG6RDo3OwN+R8RiNRvqH+9EmqFi4VwAe7dOEsR2DLdQ2FAK4qJW4O6lwclDg7KAk2NMJVxNvNjm7CINRpH1sf3EA4zs3ZPHuq7y/UezafGpAM14ebml+biuqnExv2rQpr776Kh9//DHt2rX7n+UTOTko6WUq02w3sw2Y2NXUens8zqracosAd57q3wwQ/YwkwzsXtYofHu6Kr5ua6IRs7v32sMzY7xDqxbJHu7P66V70D/fDQSmQkFXIutO3+WBTNO9uuMDHWy7y5a6rnDSpHHdq5MXbo9uw4bm+pXzHJOy+mMw3e0T2/cf3tJfVX8vDwh2ircL4zg1pZoN3TFVw5Lq4OrSnpV7iHHRt7G2V4V9NQCLdDm8baLdnU0m4urqSmZnJ5cuZPPywKzqd6D/27LPV8vE1B6kM89tvYndZGZCkGracT6BIZ3+LdnUjIsSTiBAPNHoDa05ZnwF/b2xbGvu4EJ9ZwGtrztZph5RVmDpVLGteuybqQ1kJaUxmZmbi6lo1yxtvV7W8cJDms7pA22DxJi6ZK9sCKaA7GZNZ47+5SqmQxWhLdouZQ8qaHL6WVor7Ntykhbf+zG1aBhTP7SuPxxLawIU7WhVntX86eBOdwcjrd7Y27TONEC8nUnKKeGfdeR7/5QQv/HGa70xq7FJW1d1RhRFYdjgGDycH/niyF3d3DKaBqxqDUQy0cgp1FGoNFGj13M4qJK9Ij7uTirs7BrPs0e58/UAXDEYjL/5xmk+3iVWKF4eE8+qIVmXOr5cSrReBrlIwdPDgQaZNm0ZQUBCTJ0+mbdu2bNy4sSofWa9xp4nTsObULXmAj+kQjKNKwZXkXM7csi4l+vyQFrTwdyM1V8O7G4pLBiFezqx4oidBnk5cTc7lnq8PWSiLdm3SgF8e7c7Zd4az4okePG8qr41uH8Q9nRtyf/dGzBnThsOvDWbttD482rdpmdkggK3nE3j6t5OA2F1WGf/nxM109l1OQaUQmDG4drJCCVkFcqq8rx3pT6nUUld8oVsZ+ewyyTGYp5qrA3o9TJ4M8fFiC/aSJfVCQLhi9O4tkqkVCjh6tMy39Gjqg7+7I9mFOvbXIwFGQLbWWXEs1uobnLuTA1/e1wmVQmDzuUSry2x1BldXePNN0UitMnnsGoTU8FCXwVAn0yLSnuxORIgnDkpBNrOuaUh8ypIlMHN0DPXC3UlFWp6mFDn9znZBuDmquJmWz6RuxWK7R66nE5eeL7fLg+iQsOJoDHd1CKZvmC8anQEfV0cEROsOb5PK/8dbLvLXyVuMiAjk/bFtOfr6HYztGIzeYOTXIzE8tuw4ESGeHHxlENte7M+7d7XlkT5NeKp/M54dFMbMoeH88mh3Tr45lM/v60SPpg1YvPsqgz7dw1pTJea1ka14fkiLMgOhIp2e19ZYz2m2Kxh6/fXXadq0KYMHDyYmJobPP/+cxMREfvvtN0aOHGnPR/4rcGe7IFzUSm6m5csXqYeTAyMjRG+uVZUIs0lwVCmZP6EDCkEUszLPNIUHuPPXM71p4e9GYnYh9357yMIDBsS0Zu/mvrw4NJxvHuzCosmdWTCxAx+Nb8fUPk1L6QeVxNIDN3hm+SmKdAYGt/LnjVGtKz3mz0xcoQldG9LIxz4jRlux5lQ8RqOYFbLVqT6nUCuft/7hNW9/URZWHovDaBRNcW1xYbYG77wDO3eCi4to8+Be8yLg1YMlS0R7jrvuKvNlpUKQtavWn6lfpbKxHUNwVSu5npInZyytQYdQL2aZUvjvboiqUC24XmDmTHj1VTFDVEfo2lhcwNRlR1knk4HwleRcsm20iXFyUNI2WCwZ1kZAJ5Goj91IL1enS61SMMLkIymJ5kpwdVRxdyfxujsZk2EhmPjniTgiQjzl7BHAD/tvUKQzMPfuCNQqBWfjs2SPyh0XkuSKySt/neVaSi5TejXBxVHFF/d14vcnetImyIOcQh1zN0XT6f3tzNt6EbVKwaN9mjJ9cBjP3RHGc4PDaBHgxoYzt5m16gz95+1m/j+XyNfo6Rjqxd/T+/BUBZ3PX+y4UqHcQEnYFQzt2bOHWbNmER8fz6ZNm5g8ebLdTsX/Jrg6quTskLnmiMQnWH/a0kS1InQM9eIJU7ns9bXnyMwv5iEEezmz+unedGviTU6hjod/PMbzKyNJqaKTs95g5N0NUby/8QJGIzzQoxHfT+lSbvZIwoErqRy6loaDUuDZWsoKGY1G/jKdY3MlVGux9XwiGp2BMH83i5p1bUGrN8hZgAdNjs7VhTVrivjgg6nAVL7+uqiqTgq1i7ZtK1WClEpl2y8klWtrURdwc1RxV0cx5S8ZQVqLJ/s1o18LXwq1Bp5dcYpCbf0pAVYHioqKmDp1KlOnTqWoqOo8H6ld/Fx8Vp2dKz93R0IbOGM0iho3tqKzKZiqDd5Qq0B3vF0cyNfo5e7bsjDaRJDeUkbH5uTu4jz1T1QiU3oVz1k/HbxJgUbPi0PD5edScor4+dBNmvi6yk0+J2LS6RzqRZ5GT3RCDne1D0JnMDJt+SmL89eruQ8bnuvLJ/e0I8TLmUKtgR3Ryby25hz95u2m/ZxttHxzK01f20yvj3bx0qozontDThEBHo4snNSBNc/0pmM59A8QTdQlAUZrYVcwdOjQIaZPn46vb92suOsS0o1549kEeaLu2Ux0ys0p0rE1ynrV2ReHhMuii8+uiLSI6D1dHPj1sR5M7d0EhQDrTt9m8II9/HYkxua2Y4PByPoztxm6cK9s0PrqyFbMvTuiUpXO9DwNs1adAeCBHo0t/GpqEpFxmVxPzcPZQSkHoLZAyiqM7VC+2WxNYvuFJFJzi/Bzdyzl/1YVXLsGjzyiA5YBy7j33voTLNiM06ehjDbsjqFehDZwpkCrZ2c9crIHcQEBYpnZmg5SCQqFwGcTO+Lr5sjlpFyZ+Fmv8ddfovbQzZuVvlWn07Fs2TKWLVuGTlf1MdmogQt+7o5o9cYKb+41DSmgkbpSbdrW5PdVG5khhUKQS2WHK9Qb8qGBq5q0PA2HS7jYtwn2oKOpIcjNsbhbObdIx/KjMbQK9LCgU3y58wq3Mwt4akAzmvm5kpqrIdjbGS8XB87FZ9HAzZF+LXzJ1+h5+KdjFjpISoXApG6NOPDKIDbP6MdLQ8PpGOpFSWqnQhAzq08PaM4vj3Zn7+xBjOvUsEIO6I4LSTz1y0kMRiy64yqD3Zyhy5cv8/333zN37lzee+89i7+aQEZGBlOmTJE7FqZMmUJmZmaF20ydOhVBECz+evbsWaXj6N6kgUkQUcc/UaI4nEIhMMFkYvfTwZtW8wmcHJR8dX8nXNRKDlxN5e115y22dXIQ/cP+nt6HdiGe5BTqePPv8/T4cCdvrzvPyZj0CveVVaBl49nbjPhiHzN+j+R6Sh5eLg58dX8nnh5QuYmdwWBk1qozJGYX0tzPldlVYOs7ODgwb9485s2bZ5VCrZR5GxkRiFsFWhVlITmnUO6YkJyWaxu/HRFNeSd1DcXBRln48pCfD/fcA9nZDjRqNI8PP7TuXNZL3H03dOoEmzaVekkQBFnQs76VyiJCPOnQ0BOt3miVIrU5/Nwd+WxiBwCWH421ya6jTvDtt3DwIFjhMWnr9V0ZBEGQW+xP1GGLvcQbirQjuyORqC8m5pBXZH2AaO+57N28ct6Qg1Ih0zo2lHFtSebcf5yIY2DL4mTH4t1XKdTqeXFIC4vOsvc3XsBRpeTDce0QBDFJcJfp2v350E26N21Ap0ZeZOZrmbL0GL8etrw/CoJAm2APnrujBX9P78O1D+/k0twRnJszjBNvDuHcnOGsm96HV0e2on+4X4XdziBWBJ5ZfhKN3sDIiEDeHWt92tyuWfqHH36gTZs2vP3226xevZq1a9fKf3///bc9H1kpJk+ezOnTp9m6dStbt27l9OnTTJkypdLtRowYQUJCgvy3efPmKh2HQiFwb2cx8DGfDB/s2QhnByVnb2Wx74r1xM+2wZ58eV8nFAL8fiyO7/eVtjBp31Csj84Z0wZfNzGq/+VwDPd8c5g+H+9iytKjPL8ykvc2XOCz7ZeZvvwUA+bvpsO723h2RSSXk3Jxd1Ixc2g4+18exBgro+WlB26w62IyapWCRZM742pjUGIOtVrN7NmzmT17dqV+O4VavXyh2lMi23RWtAvpGOpVaYdcTeBaSi6HrqWhEOD+Ho0q38AKGI3w1FOiTYOfn5pDh2bz2muVn8t6i5amwHrBgjJfloLYvZdSLErI9QHSDeP3Y7E22y30D/eTFd5f+eusha9TvYPU/bdkiShxXgFsub6thdT4cKIOxRclUcHIONu7woI8nQnydEJvMHLGho40e89lLxNv6GRMRoWlRWn+33o+sVTH5pj2wbg7qYhLL+CuDiHy8xn5Wn4/FkuYv7ssNgyw5Xwiey+n0LOZDy8OEctoK4/HyRnUBdsuM6pdEHebiNNvrYvi9bXny7WwEgQBR5USdycHfN0cbbrnbD6XwLMrTqHVGxndPogv7+9k00LUrmBo7ty5fPDBByQmJnL69GkiIyPlv1OnTtnzkRUiOjqarVu3smTJEnr16kWvXr344Ycf2LhxI5cuXapwW0dHRwIDA+W/Bg2q3lk0vrM4SA5dS+NWhjiZ+bg5ygPgq51XbLpwhrQJ4M1RbQD4aMtFNp4tHbErFQJT+zTlyGt3sOzR7ozvLJI5b2cVsv9KKutO3+bHgzf4cucVNp1LIMbk69PQ25nnBodx4OXBzLijBe5O1q00ImMz+MRk6vrOmDa0rkXezbYLSeQU6gjxcrZLdXqdSaPm7jrKCq0wqaEOaulfbWXFxYvFjnSlEv78U3Sk/1fjuedEW/a9e+HkyVIvtwr0oFWgOxq9ocwVbF1iTIdg3B1VxKTlV7gKLw8vDQunUyMvcgp1PPt7ZJWMK2sUw4eLHK+cHPjhh1rfvdRRduJmul0eX9WBVoEeOKpErzR7xBflYMqOMputaO7nSoCHI0U6Q4XWHN2aNCDAo+yOTWe1kns6iwvQrVGJtAkq7sz4es81CrV6nh8SjsqsTPXOuvMUavU8OyiMYW0C0OgN7IxO5tE+TQCYuymans18eHVkKwRBXERM/O5wtXGpsgu1vLshimdXnEJnMHJ3x2A+n9QRB6XCpsWGXcFQRkYGEyZMsGdTu3D48GE8PT3p0aOH/FzPnj3x9PTk0KFDFW67Z88e/P39CQ8P54knniA5ueochNAGLvRq5oPRKHY8SXiifzPUKgUnYjJsVtB9pE8THjQFU8+tiOSXwzfLfJ9KqWBAuB+fTezIiTeH8utj3VkwoQNv3NmapwY04/7uobwyohW/PdaDyLeGcuCVwbw0rCWeLtanW7PytTz3eyQ6g5FR7YKY3L3q2Q29Xs/x48c5fvx4pRLzEnF6fOcQm/WBYtLyOB2XiUKAUbXknWaOQq1ezhg+0LN6skIHDhRr4c2bB/37G4iPjyc+Pr7K1gd1hoYNYdIk8XE52SEpK2hrOaqm4aJWMa6zRKSOsXl7B6WCL+/rhIeTijNxmXy6reIFXZ1BEMTOMoAvvhB9y8qBwVD9Y7J1kAfODkqyC3VcTbG+K6g6oVYpZK+0U/bwhiQStQ28IVvmSnMIgiCLlm48U34JVqkQZB5mya4yKM587ohOZu64CPn5lJwiVp2Io6mvK9NMCtQKAW6m5fP9vuuyeHBzP1cSsws5G5/FIyZD8NfWniPAw5GlD3fF3VHF6bhMxn99iGd+O8k1O39bo9HI2shbDP5U5MIajKL8xYKJHVEpFSRlF/L4L8et/jy7gqEJEyawbds2eza1C4mJifj7+5d63t/fn8TE8k0dR44cyfLly9m1axcLFizg+PHjDB48uMJuh6KiIrKzsy3+yoL5RC1lgQI8nJhk6ixbtMs2PyJBEJhzV1ua+rpiBN5eF8UDPxwhp4KWTme1kn4t/LinS0Oe6N+M10a25qPx7XlmYHP6tvDF29X2dHVyTiH3/3CEWxkFhDZw5qN72lULAbmwsJDu3bvTvXv3CiXmE7MK2X9FbImXVii2QMoK9QnzrTFT1Iqw6uQtsgq0hHg5MyC89Ji1Fbdvw4QJoNOJscOLL4rWBw0bNqRhw4ZVtj6oU0hlmD//FNvtS+DuTiGoFAJnbmXVu3Z06YaxLSqJ5Bzr7WUkhDZwYf4EkT/0/b7r7LpYtghlneOBByAgAG7dEn+nclATY9JBqZCVnOtDi31VeEOnYjOsrhZYO1eWBakTc9uFJKtKZdsvJJXqgA4PcKdrY2/0BiO7L6ZYqPd/uesqRTo90weHEebvhpSwW7z7KjdS83B3cuD7h8SA58TNDAq0eh7s0QijEV784wxHrqez+fm+TOjSEIUgltmGLdzHK6vPsudSslXd2Ol5GtadjmfSd0d48Y8zpOYW0czXlV8f685H49uhVAhk5GmYsvQo8RnWnz+7gqGwsDDeeustpk6dyoIFC/jyyy8t/qzFnDlzShGcS/6dOHECoMwbstForPBGPWnSJEaNGkVERARjxoxhy5YtXL58mU1lkDYlfPTRRzJJ29PTk9DQssXyRrYLxFWtJDY930Jz5KkBzVApBA5cTbU5DahSKvjt8e4yo/7gtTR6friTLedu14py7Y3UPO755hAXErLxdVPz/ZSueFhZVqsurI2Mx2AUU+SSHL61MBqN/H1azNSN7Vj7daRCrZ6vTaacT/ZvhtJO1et33oEtW0QH+nvvhcREsVphLqyoUqlQqezncNULdOoEgwaJCpJlzBu+bo4MMjnZ17fsUKtAD7o09kZnMPLHMfuEFIe3DWSqaeU8888zJNSww7ldcHQsljZfsEAkr5WDmhiTkvJ8SQuJ2kSx+GKmzdu2CRLLbBl2ltlsRedG3oR4iQ0+uy+WXwXpFOpFoIcT+Rp9mYH4Y32bAmJD0Kf3tpefT8kpYvXJWziqlHxyT3t5PirSGXjmt5MUaPQ093Nj4aSOCILIH9LoDTxiKpl9v+86z/1+mhl3tGDL8/25o5U/eoORP07EMfWn43R4bxsPLjnKt3uvsfrkLf46eYs1p27xd2Q8n22/zNjFB+kydzvPrzzNsZvpODkomD28JVte6Cf7h0YnZHPf90e4nJSLv7v1CQG7gqHvv/8eNzc39u7dy6JFi1i4cKH89/nnn1v9Oc8++yzR0dEV/kVERBAYGEhSGfL9KSkpBARY37YcFBRE48aNuXLlSrnvee2118jKypL/4uLKnuhc1MWaIz/sLyY9N/R2kTlFtmaHAEK8XBhrxnXJ0+h5Znkkj/18gtuZNTdZnr2Vyb3fHCIuvYDGPi789UzvWuUJgaTNI2YI7MkKRd3O5npKHmqVwkIgrLaw8lgsCVmFBHk62a04nZcnViRGjxbjhMOHwcsL/v4b3EwLNFdXV7RaLVqttsrWB3UOyVhty5Yy2+wnmDKwa07FlysmV1eYYtKPWnEs1ma5Cwmv3dmKdiGeZOZrmfF7pN2fU6N45hlxML7+ernBUE2NyYEtxWB4/+XUOvv9Jd7PpcRsm7rCwLLMVhst9oIgMLpD+SUw8/cNM82RX+8prcczvG0grYM8yC3SsfVCEp1NGToQPciyC7V0aezNw72aAGK57GJiDm/+LXZED2kTwPx7RWHhP0+IGkGLJ4ul4dNxmYz6cj83UvNYOrUbfz7Vi/u6hRLs6YRGZ+DA1VQ+3nKRWavO8NKqM8z88wwv/HGaL3de4UxcJkajqKv01IBm7Jg5gOmDwnBUKdHpDSzefZW7Fh3gUlKOuKB/qKvV586uYOjGjRvl/l2/Xrobqjz4+vrSqlWrCv+cnJzo1asXWVlZHDt2TN726NGjZGVl0bt3b6v3l5aWRlxcHEFB5evWODo64uHhYfEHlHkhPtm/GQoBdl1MtnAnfmZgmPz8+XjbNTIe7dOs1HO7LiUz6NM9LD1wo1xnYnuxMzqJ+74/QprJuX71073rpAtr1YlbxKTl4+OqtrrjzRxSG/aQ1v5WE8WrC4VaPYtNk8r0QWGVtoCWh5UrxcYdg0EMhAB+/hnCwqrpQOsbRowQ9WxOnxZtOkpgUCt/fFzVpOYWsfdSSunt6xAj2wXi46omIauQHXbqITmqlCya3Ak3RxXHb2bISu/1Cj4+sGuXmKYs4zeqSbQP8cTXTU1Oka7OSmUBHk4EezphMGKX5lGx+GJmNR9Z2ZBkKXZGJ5NbQfAm8YaibmfLhtgSFAqBmSaRxZ8P3mT+PcXZocx8LfNMzTWzh7ckxMtZLpf9deoWv5sypfd2acjiyZ1xUApsOpvA6pO3WDutN50aeZFdqOPp304yZelRdAYDH41vx8FXB7Nj5gDeGdOGkRGBDAj3o3+4H/1a+NKvhS9jOgQz7972HH39Dra+0J/XRramobco9nw9JZcJ3x1m/j+X0OqNDG0TwJbn+xPmb700v9Uje+bMmeTl5cmPy/t7SeIBVCNat27NiBEjeOKJJzhy5AhHjhzhiSeeYPTo0bRsWax906pVK9auXQtAbm4us2bN4vDhw9y8eZM9e/YwZswYfH19GSe5Z9uAA2W0yzf1dZVJut+YRddNfV3lm/lXu8rPQpWHdg09LSJxCUU6A0v2X+dGavWQCS8mZvPIT8d4bNkJ8jV6+ob5svLJXnXCtSnU6vlip3gjmD4ozOY2/nyNTi6lmLeE1hZ+OxJDSk4RIV7OsiK5rTAa4euvSz+/YAGk1K84oPqgUMD48VCOnoqDUsHdJqPH+lYqc1Qp5Qzgr0du2v05jX1c+cR0s/l6z7UKyxv/36BQCDL3ri7PSycz7o+tkDJLtpCoq4K2wR4083WlSGdgx4XyuWjtQooz/88sP1WKrzOktT8dGnpSoNXz+/E4C8HF5UdiRdsORxUfjW9nsd2c9VGy4vTIdkEsebgbTg4Kdl9K4fW15/l+SheeGiDSCPZfSWXyD0e5++tD/BOVRDNfVx7p05RvHuzCske788uj3fn1sR78+lgPvrq/ExO7hhLg4QSIjgr7r6Qw88/TjPxiP5Gxmbg7qlgwoQPfT+liEu20PptodTAUGRmJ1tRNYN5KX9ZfTWD58uW0a9eOYcOGMWzYMNq3b8+vv/5q8Z5Lly6RZdLDUCqVnDt3jrFjxxIeHs7DDz9MeHg4hw8fxt0OI6f1Z+LLfF5i1W86l8B1M1b8s4PE7NA/UUkyIdgWTO3TtNRzApCQVcidXx7g038ukZhlO3ETRAPU2avOMPKL/ey+JJqvPtKnCT9O7WazwGF14dfDMSRlFxHs6WRXF9aKo7Gk52lo7OPCkNZVJy7bgnyNTpZ+f25wGGqVfavn48ehLGWK/fth9uzi/xcVFTF9+nSmT59eLdYH9QY6XZlEaqlZYefFJNLz6p/mkEKAg1fTuJps/yJlVPsgHjJZILz45+kaLYnbjYwM+PhjeOONUi/V5Jgc1Erkguyqy2BIFl/MtHlbKTN0OTnHZo8zeyCWysTFeEWyFOY2TOl5Gt5ed77U50gWHL8ciWH2sJYyn9UIvLbmLFq9gf7hftzfXVwUqBQCGr2BactPkWG6VgeE+/HLoz1wd1Rx9EY6d355gK6NG7Bn1kCm9GyMo0rBmbhMnv7tJH0/2cX0Faf4bu81Dl9LI6dQi9FopECjJym7kMtJORy6lsp7Gy7Q86OdTFl6jDWn4inSGegb5ss/L/bnni4NEQSBpOxCHv3J+m4ywVgbzNx/MbKzs/H09KTZS6s5+d4YvFxKE7Ie+/k4Oy8mM7FrQ+bd20F+fs76KNG/xceFrS/0t6l0otUb6PvJLpKyi1ApBD4c3452IZ68t+GChYx6+4aeDGkdwNA2AbQKdC+TUK43GIlOyObYjXSO30xn18VkikzaJqPaBTFreEua2khWthV5eXm4mUgvubm5FryCnEIt/eftJiNfy7x72jPRRr5NoVZPv3m7Sckp4pN72lm4LtcGvtt7jY+2XCS0gTO7Xhpot+L0lCmilpA53N3hk09EwUWpQlHRufzX4uhRmDgRfH3hxIliprgJo7/az/n4bN4Z04ZHylgo1CUeX3aCHdFJTO3dhDl32W8UV6TTc+83hzkXn0XnRl788VSvalMvrxYcOAD9+omk6pgYscvMhJock1kFWjq/vx29wci+2YNqzSjaHKdiMxj/9SF8XNWceHOIzR22/eftJjY9n2WPdmdAeMXefNVxLq8m5zDks304KAWOvzGkzPsWQNNXN2EeAHx1fycLioLRaOSebw5xKjaTCV0a0sTHhfnbiku5s4e3ZPqgMAq1eib/cIRTsZmoFAI6g5E+YT4sfbibfN+Lup3FjN8juZYiVpjGdQrhnTFt0OqN/HzoBr8cjiGnsHRZT61SlKvF5eXiwOj2QdzdMYQujb3l3+XwtTSe+/0UyWmZxH0+kaysLJnyUh7+5e0otQet3sDGswllmm5OGxTGzovJrDkVz/NDwmWhvZeGhbP5XAI30/L5du81XhgSXmrb8uCgVPBgj8b8sP86307pIrsSr3iiB/9EJfH9vmtExmVy9lYWZ29l8dn2y/i7O9LAVY2zWomzg/hXpDNwOi6zVO24e5MGvHpnK3nVUtNwcHDgnXfekR+bY8n+G2Tka2nu5yqTz23BH8fj5BLVuE62E6+rgtyi4qzQjMEt7L55pabCihWWz915p+iIULKhsaJz+a9F8+ZiLTA2VhRiHDjQ4uUJXUI5Hx/FqhO36l0wNKVXY3ZEJ/HXyVu8PKIlLmr7plVHlZLFkztz55f7ORWbybvro5g7rl3lG9YW+vSBHj3EwHXxYjCzXqrJMenp7EDXxt4cvZHOrotJZWbNaxptgz1QKxWk5WmISy+wOSDr2awBsen57LmUXGkwVB3nMszfndZBHkQnZLP1fCL3laMV5+igoFBbHGi89tdZOjT0kr+fIAjMGtaSyUuOsurkLdZP78PSAzdIzxczXF/suMKodkE08XXl2ylduHvRQW5nFcrZ0id+OcEPD3XFyUFJ22BPNs3ox8Idl/lh33XWRsZz4Goq74+NYNawlkwbGEZkbCZn4zM5Z7qvxWcWyIGQQhDHgoezA+1CPLm7Ywj9w/0sMvE5hVp+PHCTL3ZexmCE8AA3rO31/C8zVAmkzFDoC3/StUUwa6b1KfN9931/mCPX00utDjeevc2zKyJRKxX882J/mzIwqblFZOZrCTPTeTBHSk4Ruy4msf1CEvuvpMrZnrLg7qiiSxNvujVpQM9mPnRu5FUnBqYlkZZbRP95u8nT6Pn6gc42m7IW6fQMnL+HhKxC3r87Qu7wqS0s3n2V+f9coqmvK9tf7F+p8W15uPtuWLdOfOzuDt98A5Mnl0qQ/G9j2jTxi48aBRs3WryUkaehx4c70egNbJrRl7bBnnV0kKVhMBgZvGAPN9Py+XBcO1mDyF5sPZ/I07+JqtzPDgpjVhU8Aasdq1aJGTwfHzFwdamdLI2Ufe0f7scvj3avlX2WxLivDxIZm8kX93W0Wbrjn6hEnvr1JKENnNk3e1CtzL1f77nKvK2X6BPmw/LHy/bkbD/nH7JLZGM6hHqx6qlecpBhNBrpOncHaXkaPJxULHmoKxO/PyK/v3dzH5Y/3gNBEDgfn8WEbw9ToNXLGaLezX1Y8nBXi0VCZGwGs1adkbNEzf1cub97I8Z3bkgDM328tNwiCrR6PJ0dRPPYcs5bXHo+Px28yZ8n4uSF//hOIbxyR2MC/RpYlRmqRznY+g2FIHYDlMcLmD5IbPdZeTzWws16VLsg+rXwRaM3lDJirQy+bo7lBkIgGj9O6taIJQ93I/Ltofz1TC9+faw7303pwhf3deTj8e34eHw7Ns3oy+l3hvHzI92ZPijMIp1Y1/h6zzXyNHoiQjwY0TbQ5u3/OhlPQlYh/u6Ocht2bSEtt0j2knv+jhZ2B0JbtxYHQp06ic70Dzzw/ywQAlFRUhBE89YLlq7u3q5qhrQRuWCrTtQvIrVCIcgZ418OW2/UXB5GRATKppuLdl/lhZWRVonR1QrGjYOmTSEtDZYtq7XdDjbpTR25nka+xrb29upCp1Axi25Pi3y/Fr6oVQri0gu4UgVumS2QusoOX0srVxhUrSpN3TgTl2nhgCAIAkNN1152oY5X1pxlqBkv89C1NFaZmhsiQjxlM2KdwYhaKXDoWhpTfzxuUZ3o1MibTTP6MW1gc1zUSq6l5Im2HR/uZMbvkRy4kkpabhENXNU09HbB3cnB4p5lMBhJyCpgz6Vknv71JAPm7+bHgzfILdIR5u/GwkkdWDCxA85q66kp/wVDVqK/KbW5ZH/Z0gF9w3xp39CTQq3B4j2CIPD+2AjUKgX7r6Sy4WzNOFW7qFV0adyAfi38GN42kLEdQ7iveyPu696ItsGedgsAVhcMBgNRUVFERUXJcv23Mwv41eTuPnt4K5utN7R6A1/vEbWcnhrQ3O52dnvxydaLZBVoaR3kYZcUAMDFi2LHMsAdd4g2XX4VZ9ExGo1kZmaSmWm7eWS9RosWYooM4LPPSr0sdemtOXWrQnXdusC9XRriqFJwMTGnWvRkvrivI9LV8Pfp24z6aj8Xbpethl+rUKmKvWEWLhQFM6n5MRnm70ZDb2c0OgMHr9ruB1cd6NFMFIDceznF5u/oolbRxxTgbq+gwwvKnivtQWgDFzqGemEwwpZzZTs1OJbR7PH1A51k0UUJg1sV88NupOZzKyMfV8fi+fbNtedlGZmR7YJk01a9EZxUCo7dTOehpUctCORODkpeHtGKY28M4cNxIidWozew/sxtHlx6lC5zd9D2nX8Y8fk+Hl92grf+Ps/Tv55kxOf7aPPOVnp9tIupPx1na1QiBqMYcP78SDe2vdCfcZ0a2rzg/y8YshKSguaaU/EkZ5eOsgVBYNpAMTu0ZP8N0syyQ018XZlueu39jRdqpaOgvqGgoICIiAgiIiJkuf5Pt11CozPQo2kD+rfwtfkz152+za2MAnzd1NXin2YLTtxM509ThmLu3RF2BZvp6TBmjCi02LOnmBCx5vrNz8/H29sbb29v8vPrseu5PZBEGH/9VZTeNkO/Fn6EeDmTXahjUw0tKuyFl4taFkuVAvyqwM/diT5m18T1lDzuXnyQpQdu1JlpqYxHHgFvb7hyBdavB2p+TAqCIGeH6qqrrG+YL2qlgpi0fK7boSY9pI0YUOyIrjgYKmuutBd3mRZpkjJ/SYQ2cObRPk1ZM603I0wijPsup5YKJFoGWnZgRyfmEmRqcQfQ6A08/ssJuSoy444wxnUKQW8wUqgz4KhScCo2k8k/HOFmiXPn5qhico9GbHiuLxue7cv93RsR5OmEIEC+Rs/FxBx2RCfx65EYtkYlcjExh0KtAZVCoKmvK/d3D+WfF/rz62M9GNjS3+ZFtYT/giEr0aVxA7o09kajN7D04I0y3zOsTQDuTip0BiOTvj9isXp4emAzmvm6kpJTxPyt9dSYsRax+VwCa07FIwjwyshWNkfxeoNRtr54vF8zm9KhVYVOb+DNv8U21Pu6hcr+Q7ZAqxU9x65ehcaNxTKZY+3LO9U/9O4NvXqBRiPKbptBqRDkFt4Vx0q34Nc1pvRsAohj2x6/spIoGeBr9Abe33iBR34+TkpOHUoquLnBjBnw4IPQsvb4TJI1y+5LyXWSEXV1VMnZIXs0j+4wZVdOx2XW2u83ukMQDkpBJCbfyiz1+u9P9OTtMW3o3Mibx/uJYr9rIuMtqB4Aod4uODlYhgtXU/LwcS0meCdmFTJt+Sm0egOCIPDphA48bJKLKNIZcFIpOB+fzcgv9vPbkZgyf8N2DT35aHw7Dr92B9HvjWDnSwP4+ZFuvD+2LdMGNuft0W346ZFu7Jk1kOj3R7B71kA+Gt++VLBmD/4LhmzA0wNETaEVR2LLzO4oFAJDW4sD/mpyLi/9eUb+wR1VSt6/W3QA/vVIDJvP1a+VbW3idmYBr/51FoBnBjS3q6Nt49nbXE/Nw8vFocwOv5rEz4ducjExB28XB14Z0crm7Y1G8V6yaxe4uoqL6zJ8iMuFi4sLGo0GjUaDSy0RWGsVn30GR47A00+Xemli11BUCoGTMRlcSqxf5q3tGnrSqZEXWr2RFUerHqwNbuWPexm6X3svp9jMP6x2zJkjZu/atAFqZ0z2auaDo0pBYlYh0Ql189sPaml/dirQ04l2IZ4YjbUnIOnv7sRoE3do6YHSi3jzRWiXxt50CPVCozPwW4nspkIhEB5QOuBIy9NalNqO3UjnvQ0i30+pEM3HZ5saAAp1BvzcHCnQ6nnz7/M88vPxMqssEpwclDT3c2NgS3+m9GrCyyNa8Wjfpgxq6U8TX9dql534LxiyAXe08qeFvxs5RTqWHyl7sutv1ja5JjJe5rSA6KT+RD+xFjtr1Zl658RdW3hl9VmyC3V0DPWSRb1sQZFOz5c7RWXvR/s0rVWhyMSsQhaaLBNeHdkKb1frjQAlfP652DIvCLB8ObRvX+kmFhAEAQcHBxwcHOoNEb5a0bOn2MJdBvw9nBhiWnCsOFr1clR1QzJeXX40tlxtFGvh5KBkZLvSTQWP9m3CV/d3qle/fW2MSScHJe1MPl9/nbLPHLeqkEp1x26kk2MH3UEau9srKZVVJyT+z6azCRUK9QqCIL/318MxpeRYygqGxncOYedL/VGa/eS/Honhd1PmVhAEpg8KY9497VEqBFJyiwjzc8VBKbDnUgoD5u9heTWUlasD/wVDViIqPovYWIGnTNmhHw/eKJPE2biE/sT8fy5brBJfGdGK3s19yNfoefKXE2QV/P/jD52IycDNUcWX93WyK7r/evc1rqXk4eOq5mHTzae28P6mC+Rp9HRu5MWELrbbbqxfD5Jjzfz5MHZsNR/g/xpSU0VlajNIretrIuPrT5eVCSMjgvB3dyQlp4gt56ue/ZWsSKCYT3Y7o7DOGyJkXLgAjz0m8odqAZIS9MrjcdXu0WgNmvi60szXFZ3BWKZFU2WQOiL3X0mptSaAiBBPujdtgM5gtOgSKwsjIwJp6utKWp6GxbstjcZbmoIhf3dH2Qh7e1QSKoWSn6Z2s3jvW3+f54SZl9zEbqF892AXHFUKrqbk4evmSJCnEwVaPW/8fZ42b2/l2RWnuHA7q9oynknZhXy/r7QJbXn4LxiyEsPu1NOypZEuvsEEeTqRklPE2sjSpLSydIReX3tOJnyqlAq+ur8TIV7O3EzL58U/Ttc9IbIOMPfuCLuUZC8mZssX6btj2+LpXHuig/sup7DpbAIKAd6/O8Jmot6pU3D//WKZ7KmnYOZM+45Do9Ewe/ZsZs+ejUZTv+wpqhVvvQWNGoHJb1BC3zBfGjVwIadQV6Ezd11ArVLIZdufDt6s8uf1bOpDoIcTnRt58cOUrjgoBbZGJbJkf9m8xVrHyy/Djz+imT+/VsZkB1MwlFekZ/Hu2gnASmJQFYjcbYI8CPZ0olBr4NA124MpeyFlfFYci61wAeGgVPD6na0BWLr/BnHpxWT4zo29eHNUa/a9PIivH+hCh1Avcop0vPn3OfqF+zF9ULHBuM5g5IlfThCdUNwBOaRNACue6EGghxMJWYUkZBUSaCJh52v0bDybwJ1fHqDTe9t5c+05Tsak2xzw6vSiH9vjy07Q++NdfLnzauUbmfBfMGQlNFrQaAQWLihOJX6/73qpH8vLRV3mDfqFPyLZd1n0KPNxc+TbB7ugVinYdTGZBfXRqbqaYZ4Bu6tDsMWK11ro9AZeXn0WnUF0JR5lo0BjVVCk0/PO+igAHu7dxGbRv1u3xM6x/HwYOhS++sp+HSGtVsunn37Kp59+KvsF/k9CoYCCAjGFZrZaVCgE7pOI1NXAzalu3N+9EWqlgtNxmUTaYexpDoVC4PP7OvLHU70Y0iaAt0eLHJ2Pt17k8LW6aTG3gKn7T/vLL7UyJr2ci8vSX+68yg07urqqisFmRG5bF7KCIHCHVCq7UHtdcUNaB9CogQuZ+Vr+OlWxTteQ1v70CfNBozfw0ZZo+fkujRvweL9mODkoUSoE5t/bHgelwI7oZNadvs3s4a0Z3KqYJpKRr2XSd4c5GZNu8Rk7XhrAY32bohAgMbsQhxKLyswCLb8djeWebw7Tbs4/vPhHJFeTc0uZrhqNRrILtVxOymHPpWQWbLtEn0928fgvoj2O3mAs0/C8PPwXDFkJjx5iuu2b74wMCm2Ep7MDN1Lz2BZVWr+hSRnZoRAvZ4u0aLuGnnxkktpfvPsqP5ZBbvtfgdFo5L3Nl/DoPp6Q/hN5d5yNJBkTfjp4k7O3snB3UjH37oha5Ux8ZZp4/d0dmWkjzyknRwyEbt+Gtm1FEd+qOBY4ODgwa9YsZs2a9b9jx1EWpk8HJyfRwXb/fouXJnQRidSn4zLrh/6OGfzcHRndQQzUlx26WeXP69nMRy4nP9izMeNNLcvP/X6KhKw6NnQdMAC6dsWhqIhZvXrV+JjUmenu6AxGZq86U+vlsm5NGuDmqCI1V8M5k7aOLZBa7HdGJ5UZTNXE9a1UCDKf7aeDFcszCILAW6PboBBg87lEjl4vO+gOD3DnucEtAHh1zVnO3cpi6cPdaOpbnPHPLtTx4JJj7L1cbFbu5qjirdFtWP9sXzqEeqGt4FjyNXrWRt5myGd7af3WVgYv2MP93x9hyGd7iXjnH9rP2cawhfuY+tNxvtp1laTsIrxdHHi8b1N+fqQbTXysd3z4LxiyEk6h6TgGZ6DTKHhlTpHsMP3t3mulapxNzco/PiaCraujSl5RSLinS0OGmS6M9zZe4L0NUej0VSNd1kcs2X+DrRdS8bvjMTb+9h0+HrYbD95MzePTbaIkwZujWhNgpnFR0zh2I10mws+5qy3uTtZPUFqtKKp4+rTYMbZxI3hW0UlCrVYzf/585s+fj1ptO4H7XwN/f3j4YfHx++9bvOTn7shwk2L57/Wwzf6R3ibS6rmECjtmbIUgCHwwrh2tgzxIzdUwbfmpKhO1q3hAMHs2amB+VBTz3323RsekTm85156IyeDnagg4bYFapaCfSQPKnlJZz2YNcFUrSc4p4vzt0sFUTV3fE7uF4u6o4lpKHnuvpFT43laBHtxvknZ4b+OFcgPOaQObMyDcj0KtgceWHSchq5Atz/fHwYxRXaDV89jPx9lYoqQdEeLJmmd68/7dEeU2wYT5u9IuxBMXtRKdwcj1lDwOX0/janIueaZyn6ezA60C3RnWJoDPJnZg0eROJGYX8ujPx1lTBpWlPPwXDFkJQQDP3mKNes0KR9r7+OOoUnDmVpaFizxAYx9X+of78ceTPdn6Qj88nFRE3c4u1a4Iokuw5AHz48GbjPrqQLmWH/9GLD1wgw82i6nW2cNb0tFU87cFBoORV/46S5HOQJ8wH1mJuDaQVaAVeV1GUWXYFu80iRu0bZto4bRpEzRpUnPH+j8JiVi1YwccPmzxkkSk/jsyvs4sGspDu4aedGnsjVZvZHk1l/Kc1Uq+fbAzHk4qImMzeX/jhco3qkmMHw++vpCdbWHeWhPQlaHIPP+fi7VeLjPXPLIVjiql3HW8oxI16uqEm6OKSd3EudOaSsTMoeG4O4r3rvJKayqlgkWTO9EywJ3knCIeW3YCncHIByUMhnUGI8+tiGR5iQ5QpUJgSs/G7Jo1gIldS9spJWQW0szPlSf7NeOlYeE8OyiMZwY248NxEax4ogfLHunGc4PDaB3kwY3UPGatOsMDS46x8WwCBiMMCLdezPe/YMgGODVLQR2YiVGr4rPPBPmm/M0eS8b6tEHN+eXR7vRo5oOfuxOzTVo08/+5VCrQcXRQMrVXE/n/lxJzGPnFPpbsv/6vJ1YvPXBDnqinDWjGsEYKbt68abPE/O/HYzl6Ix1nByUfjWtfa+Uxo9HIG2vPEZ9ZQGMfFwsDXmvw3nvw008i9eXPP6Fr1+o7Lq1Wi1ar/d+y4ygL4eHiH4i+WIXFWZZezXxo4uNCTpGODWfqF5EailXrlx+NpUhXvZ1DjX1c+fy+joDYyvzXyTr0a1OpME6YgBbQzp+P8VLNicrqypgTC7WGWi+XDWwpBjNnb2XZJbBZ3GJfOpgyGAzcvHnTrrmyMjzcuwkKAfZfSa1Up8vHzZEZd4hlsPn/XCrVai/B3cmBpVO74uvmSHRCNjN+j2Rsh2D83S1VZI3AG2vP8+HmC6XmLX93J+bd24H37hI5cQpB7FrL0+hZd/o2n++8woJtl1m0+yrf7LnO62vPM/mHozz803HmbopmbWQ8V5JzMRhFT8+xHYPZPKMfix/oYvW5+S8YsgG9mjdg5svigDiw3osJEc1QKQT2X0m1WCE4ljC/m9y9ET2bNSBPo+fp306WGlRTTZOmBK3eyNxN0dz3wxFi0/6ddgvmgdCzg8KY1i+UZs2a0bRpU5sk5hOyCvho80UAZg1vaVcHmr3461Q8G88moFIIfHFfJ5v0jH76SdSlg2Ij9upCfn4+arUatVr9v2fHURYkv7KkJJg0SfbDUigEOZVfH4nUw9sGEujhRGpuUY2IrA5uFcDzppvV62vPEVVGyaW2kP/QQ6gBtcFA/ogRkFwz5OCSZTKAtiEe9GvhV+7Nuibg7+5Ee5Pm0Z5LFZecysKgVv4oBIhOyCY+03I+LCgooGnTpjbPldYgtIGLXF7+qRwnBXM83LsJTXxcSMkpkhX/y0JDbxeWPNwVR1NT0MdbLzKlHDHc7/fdYOjCfaVsOQCm9GrCuE4hvH5na468dgd/PdObGYPDuL97I0ZGBNKjaQPCA9zwc3fEQSkQ4uXM8LYBvDQ0nB+nduXY63dw4s0hfHFfJ9oEV+xSXxL/BUNWYtOMvqx8shcfvuBLhw6QmwurlrnIq7/3Nlwod/WnVAh8dX9nAj2cuJqcyyurz1pExsFezhZijRKO3Uhn1Jf7Ldob/w340SwQmj6oOS8NC7crm2MwGHltzTlyi3R0auQlEwBrAzdT83hnnWi58eLQcJvKe1u3whNPiI9ffx2efLIGDvD/E+64o/jx+vXw/PNyd9m9XRrioBQ4cytLNoqsL3BQKphi4hYu2nW1RrJ4z9/RgkEt/SjSGXj6t5Nk5teR1EK4WVPBzZswerQ4SVYztHoD7o4qRrULktuyH+7ZhOeHtKhVmQ0wU6MuI7tTGRq4qmUbn521KMAIxW32ayLjLTw0y4JaVdxqv+TAjQrvRR1DvfhsYkdAbHZRKgQL7pA5ribnMvzzfXy/75oFT1YQBD4a345H+zRFoRDo0tibmcNa8tH4dnzzYBf+eKoX214cwPE3hnDlgzs5+OpgvpvSlefuaMHgVgH4V4FL+l8wZCUam1jpgiDKnwB8+SU81KUFfu6O3EjNK1PuXIKfuyOLH+iMg1Jg07mEUjoh93UrmwcztU8TQhv8eywXfjxwg/fMAqFZw1raXdb6eOtF9lxKQa1UyAqmtQGt3sDzf5wmT6OnR9MGsg2LNTh6FO65R0xePPggzJ1b/cfn4uJCRkYGGRkZ/5t2HCVRkmi1eDF8/DEgpvJHRIg8rl8P1w8lW3Pc1y0UhQDXUvKqRYSxJBQKgYWTOhLawJm49AKe+z2yTpowXLy9yQgMJANwAbEDcOJEsYOgGjGsbSCn3h7K4gc682BPMStYV1pTUkPMgaupdpHY5VJZLfKGwGS70dATjc5gFZ9taJsAejf3QaOzbLUvC6PaB8n2Gwu2X67QaqlIZ+DDzRcZ9/Uhi45QJwel3WarVcF/wZAdGDdObJHOzoYfv3PgVRMnaNGuqxXKnXdp7F2uTsiQ1gE0MLN28HASSzKLd1+tl90yJWEwGFm8+2q1BULLj8bw/b7rAMyf0J4WZUjB1xS+2HGFM3GZeDipWDipo9VBWHQ03HmnqCU0fDgsXWq/llBFEAQBLy8vvLy86pUlQ42hcRnp9tdfh59/BpDNIP8+HV93mZFy4OPmSJifGwCzV5+tkePzclHz3YNdcXZQsv9KKh9vuVjt+6gMgiDg1bw5XoA8IrdsEVOk1ZgR83R2kGUGxpgc2Q9eTa0T49p2IZ74ujmSW6TjuJnasrWQWuyPXE8jK7/29MIEQeBRU3box4M3KnVBKNlqXxk/b9rA5tzbpSF6g5FTZjpbzwxszuzhpWVJzsVncdeiA8z/52KdKsr/FwxZCXNynkJRnB1asAB6BYXQpbE3+Ro9H26uOHJ+sGdjxncWdUKeXVGsE6JWKRhnEiK8u2Mwh169g/u7N8JghNfWnGPa8pN161RdAeLS85m85Ajz/xGJk1UNhEQjSlHg8MUh4YztaLtAo704cj2NxaY2+o/GtyfYy9mq7eLixAAoPR26d4fVq+F/ueu9VuHoCMHBpZ9//HHYsoUujb1pE+RBkc7AH8frxrOqIvRrIZbA84r0PPrz8RpphW8T7MGnEzoAYjmjTgjVZbVKLlsGb75ZI7tr7ONKh4aeGIzUSNatMigUgkyktqfFvrmfG60C3dHqjaw/Y30LeHVgVLsgwvzdyMzXWvhnlofWQR5MGxgGiPejmLTyu/cEQeDDce0Y0tofrYnjdVeHIF4e3pLpg1rw8yPdcHKwDD10BiOLd1+j+wc7eG3NWU7cTK/15pD/giErsfmcZTQ8YQJ06yYK6r39tsC7d7VFEGD9mdvlilRB8UBpE+RBWp6oEyJxjSZ1C+Xt0W1YOKkjbk4qPhwXwcyh4agUApvPJTJ04V7WnLpVbzqIjEYjfx6PY+QX+zlyPR0XtZIPxkVUKRC6lJjD9OWn0BuMjO8Uwow7wqr5qMtHUnYhz6+MxGiEiV0bMqq9dW30aWliIBQXBy1bii30bm41d5wajYY5c+YwZ86c/207DnOUdaPt0AGKihCEYkG5X4/E1IlnVUVoH1osLHUqNpPX1pyrkWt4VPsgnhtsumGtPcfpuMxq30d50Gg0zImNZQ5gMSKDg0VhLV3NkJul7ND603VbKrPXhV7qSP7zRO0GryqlgtdGihWNnw7e5FZG5bzUF4a0oFsTb3KLdDz3e2SFQb1apeDbB7vIenzrzyTw1rrz6PQGBrb0J/KtYQxuWZonm1Ok4/djcdz77WEGL9jLol1XShHMbUFMuvWSC4KxvtxZ6ymys7Px9PSk7/sb2f3aSFRmxqKHDkGfPmIp5ORJWHXzHCuOxtIq0J2Nz/W1eG9JxKblM2bRAbIKtDzYsxFz725X7nujbmfx8uqzRJnqqgNb+vHhuHZWZy1qAsk5hby+5hw7TOTBro29WTCxg8ytKom8vDzcTBFCbm4urq6l35ecU8i4xYeIzyyge9MG/PpY91KdeTWFQq2eSd8d5sytLFr4u/H39D64WtE9lpcHQ4bAkSMQEiKOiUaNavZYrTmX/3N44AFYsaL4/02bwtWrYpoW8ffr+dFOMvO1LHmoq1yCqA84ej2NSd8fsXjupaHhPGfqBKtOGAxGnvz1JDuik/B3d2TDc31rRaDUYkwCrgBKJVy+DM2aVbRplZCYVUivj3diNMLBVwcTUstzYnahls7vbUdnMLJ71sAyvSkrQnqehh4f7kCrN7J5Rj/aBHvU2vVtNBqZ/MNRDl9PY1ynEBZO6ljpNrczC7jzy/1k5mt5rG9T3jLRPirah6Q1ZzTCoJZ+LJrcWZ5bT9xM5+lfT5KaZ7moUwggrWkEAXo0bUDrIA+CPZ0J9nImyMuJEC9n/NwcUSgE8jU6bqbmE5OWx420PC7czub4zXQSUjKI+3wiWVlZeHhU3F32X2bISsSk5fN3idVH797FxpvPPw+zhrbE09mBi4k5rKiE59PIx4XP7+uIIMBvR2L5tQI34bbBnvw9vQ+zh7dErVKw51IKwxbu47cjMXWiRbTlXALDF+5jR3QyaqWCV0e24o+nepUbCAGoVCqmTZvGtGnTUKlKBxkFGj1PLDtBfGYBTX1dTQ7HtRMIGY1GZq8+y5lbWXi7OLD04W5WBUKFhaLr/JEj4O0tiivWdCAElZ/L/0mEh8PUqXDwILi7w40bYtueCU4OSiaZVtnLKnHmrm2UFYws2H6ZdaervzQiEqo70MLfjeScIp789WStuKOrVCqm3XUX00JCUK1bJ9p06PWirkQNItDTie5NGgCwsQ60pjycHOhm2r89pbIGrmqGmgL3P0+IJd7aur4FQZA7xdZGxnPuVuXdmMFezsy/VyzHLj1wo9JOOEEQeLxfM755oDOOKgW7L6Uw4dvDMre2a5MGHH9zCB+Nb4eTqjgcMb+tGY1w5Ho6Px28yQebo5m+4hTjvz5Ejw93Ev7mFjq/v502b//DnV/u55nlp5i39RIbzyaQlG0breS/zFAlkDJDoS/8SdNgX3bMHCAT+KC4NFJQIArrFTa8yVvrovBwUrF71kB83Bwr+HT4cucVPjMZtb41uo3c9lgeribn8spfZzkZIxLTOjT05MGejRnVPggXdc1dOFq9ge0XkvjtSAyHTMTvNkEefDapA60CbdNzKAmDwci05afYGpWIl4sDa6f1sXmFVRVIv4FKIfDb4z3o2cyn0m20WrFrbMMGcHUVBZJ79qyFg/3/CqOxmI0+ezZ8+ql4w92zR35LXHo+/efvxmiEHTMHEOZfg7VKG1Cg0dP67a2lnlcrFax4ogddTTfT6kRMWh53LTpIVoGW8Z1DWDChQ82T7c1/o82bRXEtd3eIjQUvrxrb7W9HYnjz7/NEhHiw8bl+Nbaf8rBk/3XmboqmZ7MGrHyyl83b776UzCM/HcfLxYGjr99Ra4tACS+sjOTv07fp1cyHFU/0sGqcvLship8O3sTLxYEtz/cjyLPyjFxkbAaPLztBWp6GIE8nfnioKxEhxSXk3CIdn2+/zC9HYirl1SkVAkaj0SJocnNU4efuiLujiuxCLfGZBRTl5/2XGapuNHBxICYtn7WnLFdzoaHi3Aziv+M7NKZNkAfZhTrZS6siPDc4jKcGiGnk9zde4KudVyrkE4T5u/HnU714Z0wbnB2UnLmVxezVZ+n+wU5eWyPyBKozvo1Lz2f+Pxfp9dEupi0/xaFraSgEUUjx7+l9qiUQmrMhiq1RiaiVCr6f0rVWA6FNZxPkYHTu3RFWBUJ6PTz0kBgIOTmJfmP/BUI1DPMJ+vnnRafbvXtFLQMTQhu4cEcrcZVdlvVNXcFZrZS7QyWoVQomdQvF27VmWPaNfVxZPLkzSoXAmlPxFcp+VBvMf6ORIyEiQiRVfvddje72znZBKBUC5+OzuZ5S+1ZGkojh0RvpdvFb+rfwI9DDicx8LTtq0clewixTxeHw9TSr7UVeHdmKiBAPMvO1PP/7aavkHDo18mbttD4093MlIauQsYsP8u6GKLmbzc1RxZuj23DxvRHMv7cdqgqiE73BMhACMZi6kZrH2fgsbqbly+Rta/FfMGQlpFbEL3ddQVvih3/5ZZEvEhMDX3wu8O5Y0bZh5fE4zt7KrPBzBUHg1RGtZCf0Bdsv88nWSxUGNEqFwCN9mrJ39kBmD29JYx8Xcot0/H4slrsXH2TE5/v58cAN0vPsI9dq9Qa2RSUy9adj9J+/m8W7r5GaW4SvmyPTBzVn7+xB8gVkLYxGIykpKaSkpMjfrUCj55nlJ/nFpA8z7972dG9a/avk8nDuVhYvrToNwKN9mnJf98prXAaD6De2cqV4P/7rLxg4sGaP8z+UQMOGIocI4PvvLV56uLdI2Fx98latKhJXBqlU5m4KiiKCPXj/7gia+9Vc9qpvC1/eMJVBPtwcbZePlt0wGbjSqRO0qZhXUlU0cFXTN0z0oNpwpva7ykIbuNCjaQOMRtEnz1YoFQL3dBE7Zv88EVfmXFmTaOjtwiOmBoSPNl+0KrBxVClZdH9n3BxVHLuZzpc7r1i1r0Y+Lqx5pg8jIwLRG4z8dPAmgz/dwx/HY2XKh0IhMKFrI7bPHIi/u/2LBQeFQDM/63XY/iuTVQKpTJaYks6ob0+SmlvER+PbyTYAEpYvF0X2XF1FzuC8fWLqsVWgO2un9cFZXXnqU0q3gqid8s6YtlaJTxkMRo7eSOfPE3FsPpdAkVmK0dfNkUYNnGnUwIVGDVwINf0b7OVMVoGWuPR8YtLziU3PFx+n5ROfWWDRkdM3zJcHejRiSJsAixKhLShJCsw3qHj8lxOcictErVQwf0L7Wm2hT84u5K5FB0nMLmRAuB9LH+5aIeEdxCrACy+IYpsKBfzxh+hIX9vIy8vDy1R2yMzM/P9BoC6JixdFtvoDD4it9yYYDEaGLNzL9ZQ83hvblofMfP/qEp/vuExEsCdtgj0YMH83Wr2RddP70MEO42JbYDSKJsd/nriFq1rJqqd722xTYA3KHJMGgxgU1YIW1l8nb/HSqjM093Nlx8wBta6/9efxOF7+66zd+7+ZmsfAT/cgCLD92R60aCh2WtVWg0RWgZYB83eTma8t8/5WHtadjuf5lacRBFj+WA96h1lvjLr/Sgrvbrgg+3W2b+jJnLvaWgg13kjN477vD1vwf2YPa0l4oBsXE3LI1+oo0BjIMy18Wga6ExHiSatAd7xc1PL925oy2X/BUCUwP5mrzqbx/sYLNHBVc+S1OywyI0ajSKg+ckQsocxfVMidX+wnNVfDhC4NmW/SAKkMK47G8sbf5zCaXNI/sVF5OatAy/rT8fxxIo7z8dmVb1AOfFzV3NulIfd3b0STaihbmQdDp68lMO3PC8RnFuDl4sD3U7rWakbIvHMszN+NNdN64+FUsZS/0QivvQaffCL+/+ef4eGHa/5Yy8L/y24yG7Ds0E3eWR9VZzfGyjDzz9OsORXPmA7BfHV/pxrfn0Zn4OEfj3H4ehqBHk6snd7bKo6HLajrMZlTqKXL3B1odAa5K6u299917g6KdAa7g9yJ3x3m2I10nuvXkFmjOwK1ey4l9wA/d0f2zBpoVRMJwCurz/LHiTh83RxZ9XQvm2gOWr2BZYdu8sWOK+SYApp7OjfklZEt8XcXs6nXU3K5/4cjJGUX0cLfja0v9Lf6nvhfMFSNMD+ZamdXury/nTyNnod6Nea9sREW7z16tJg7snUruDdP5cGlRzEYxRKQpClRGdZG3uKlP89gMIraIZ9P6mhXRiYrX0tchpj1iTXL/sSli9kfT2cHQhu40LhE1qixjyv+7o7VKoluPlm2ee1v8gwqmvi48OPUbjSrwVJBSRgMRmasjGTj2QS8XBxYN71PhV1wIAZCr74K8+aJ/1+8GKZNq4WDLQcGg4GEBLEcEBQUhELx/7zarddDURGYrElyCrX0/HAneRo9vz3Wg74trF+t1gYu3M7mzi/3o1QI7Ht5UK20g2fla7nn20NcTc6ldZAHq57uZZPxcGWocEzm5IjlzIgIUZCrhvD0ryfZGpXIMwOb84rJFaA2MeP3SNafuc3DvRrzbol7gzVYffIWs1adIcRN4NBborNzbQZDGp2BoQv3EpOWz/N3tODFoaXVostCgUbP+G8OEZ2QTZCnE38+1ctmC6mUnCLmbb3IKpNYqKNKwYBwP+5sF8Qdrf1JySnivu+P8N7YCEZEBFr9uf8FQ9WIkidz1qozrDb9YD9N7cYgk+iWhBkz4KuvRA7R+fPw68krLNh+GUeVgr+n96F1kHUrli3nEpixMhKt3ki/Fr58OqFDreiF1BTMg6HQF1fTvUUQ3z/U1cKCpKZhMBh5fe05Vh6PQ6UQ+PWxHvRqXjFh2miEV16B+fPF/y9aBNOn18LB/gfrsH49zJwpqqB+9JH89NvrzvPL4RiGtgngh4e61uEBlo0Hlhzh4NU0nujXlDdG1SynRkJcej7jvj5Iaq7G6tJwtWDOHHj3XejRAw4frrGy2aazCUxfcYqG3s7sf3lQrWcE915O4eEfj+Ht4sDR14fYxKkEyNfo6P7BTrJzcolbKNbfazvLJp1DZwcle2cPtNr4NDVXDFauJucS4uXMH0/1pKG37b6JkbEZzNlwgTNmgqFqpYL+4b70bObDhC4N8XSx/p5hSzD0/3xJaTseNuMgPPHLCY6UUJv++GNo0QLi48Wml+mDwhgQLrpKT1t+ipxC6zxoRrYTgwVHlYL9V1IZ+tle/jpZf9SnbYHeYOSLHZfl/9/ZLojfHu9Rq4GQ0WjkrXXnWXk8DoUACyZ2sCoQmj27OBBavPi/QKjewWiEa9dEPZvs4rKwpHy7MzqpQqftusLjfcUO0pXH4qyeE6qK0AYuLHlYtELYezmFd9ZH1c588swzIq/r6FHYt6/GdjO4lT+uaiW3MgqIrEX1bQl9mvvg7+5IRr7WLrK6i1rFmA7Wqd7XFO5sF0inRl4UaPUsNJuzK4OvmyMrHu9BM19X4jMLmPzDUdlqyhZ0auTN39N6s3lGP54bHEYzP1c0egM7opOZuymarh/sYOpPx/hixxV+OXyT9Wdus+9yCmdvZRKXnk92oRaDwUhsWj5bzyewyEpiN/wXDNmMloHuSNUjncHI1J+OcTKm2KTPxUXkkygU8MsvsH696Cod5OnEjdQ8Xv3Lein+QS392fBcX9o39CS7UMdLq87w+LITJGWXbwZb33AyJp27Fh3g273X5efm39seJ4fa09IwGo3MWR/F8qOxCKZAqDKyttEIs2aJ3nMAX39dt6Uxc2g0GubPn8/8+fP//9hxlIcxY6B1a8jKsmjhDvN3p2+YLwYj/Ha0/rTZSxgQ7kdzP1dyinS1asXQMdSLL+7rJBJej8byw/7rlW9kBSockwEB8Mgj4mOJdFcDcFYrZQHDNadq35tNpVRwt8lf0t79T7CSSlFTEARB7kBceTyu1GK/Ivh7OLHiiZ409nEhNj2fyT8cteteJQgCbYI9eGlYS3bOHMC2F/vzwpAWtAwQfdz2XEph4Y7LvL0uihm/R/LQj8e4a9FB+s3bTfs522j2+mb6z9/N07+d4tt91o/v/4IhG6FWKSwIYoVaAw8vPWaR1uvdu1h76KmnQJ+vZtHkzqgUApvOJbDs0E2r9xce4M6aZ3oze3hLHJQCOy8mM/Sz+uVRVhaScwqZ+edp7vnmMFG3sy10VqqTi1QZjEYj7228wLLDMQgCzLunPeM6NaxkG3jpJfjsM/H/33wjLm7rC7RaLS+//DIvv/wyWm3tuV3XSygUxRfbwoUid8gEKTv0x/G4WlFhtgUKhajMCyJx1Zp25urC8LaBvGkqzX24+SKbz1W9Hb3SMTlrlvhbbdkCZ89WeX/lQQom1kXeJl9T+9IK4zuLwdCui8lk2CFt0inUi+Z+ddsQ0bVJAyZ1DRXnwT/PkG1D5jLQUwyIGno7cyM1j8k/HKmSwbggCIQHuPPCkHD+ebE/O2YO4OURLbm/eyNGRgTSq5kPrQLdCfJ0wtlsga1WKWgX4sm4TmUYPJe3r/84QxWjrJrjtOUn2Xwu0eJ9Hk4qVjzRU1bULCqCLl0gKkpUKl61Cn48eIP3N17AQSnw51O96GTWQmgNLiXmMGvVGc7Fi7LpQ1r78+G4dlbXdWsDUnfA5zuukFukQxBgUtdQZgxswusvzQDgu+++w9GxYmXu6oDRaOTDzdH8sF8UnPt4fLtKtYT0ejEDJMnXfPutGNDWJxQVFfGU6aBq61zWa2g0ov9VfDwsWQKPPQaI5dn+83YTn1nAvHvaM7Fb3a66S6JQq6f3x7tIz9OweHJnq42BqwNStnTZ4RgcVQpWPNGTLo1tm4/MYdWYnDRJlOl/4AH47Te791URDAYjAz/dQ2x6PvPvbV8nmZY7v9jPhYRs3h/blil2SDss3nGBV16cQQNXNVf2rq2T6zu3SMedX+wnNj3fat8yc8Sl5zPpu8PcziokPMCN35/oWakbQ3WgUKsnu0CLt6saB6XiP85QTaOFv3up57ILdTz160lZ6M3RUSyTqVSiMN/KlfBonyaMjAhEqzfy1K8nbV45tAx0Z8203swaFo6DUmBHdDJDF+7jl8M364XA3MGrqYz8Yj9zN0WTW6SjQ0NP1k7rw8f3tCfYx4Off/6Zn3/+udYCoU+2XpIDoQ/GRVQaCGk0MHmyGAgpFOJ9tb4FQgCOjo61ei7rPdRqePFF8fG8eWJEiyhmN8WUHfrx4I16l0l1clDyYE/x+JYcqJ5ylbUQBIG3x7RlSGt/inQGnvzlBLer4A5u1Zh85RXx35Ur4eZNu/dVERQKgUmmoHfl8bga2UdlkLJDf52yz3tuYo/mBIyZiWLgdGIz66YM7uaoYuGkjigE0bds41nbfN9CG7iw4omeBHg4cjkplweWHLUrU2YrnByU+Hs42dV9/V8wZAfCA0oHQy383Vj3bB+LdtXOneGtt8TH06dDQoLAJ/e2J8jTieScIiZ9fxi9jelxB6WCZwe3YMNzfYkI8SCrQMvb66Lo8cEO3lh7jqjblZvtVSf0BiOHrqbyzG8neWDJUa4m59LAVc0n97Rj7bQ+dKxhUbmyYDQaWbDtMt/uvQbAe2Pb8kCPxhVuk58vmq7++aeoLP3HH3KC4T/8G/Dkk6L/1eXLsHu3/PT93Rrh7KDkYmIOB69az3+oLUzp2Ri1SkFkbKYF97A2oFQIfHl/J9oEeZCWp2H6ilOVekJVCZ07w4gRolKpoeb2M6FrQ1QKgZMxGVxOyqmx/ZSHsR1DUCoETsdlcs0OexA/d0cGm7qUpVbzukCXxt5MHxQGwBtrz8vmqtaiia8rK57oiZ+7IxcTc5j0/WGuJtf+72Et/jXB0AcffEDv3r1xcXGRlU4rg9FoZM6cOQQHB+Ps7MzAgQOJioqq8rGEB4gt4o4qBWM6BCEAV5JzuXC7tMjha6+J5bKMDFGh2lnpwJKHuiIAl5NyGbhgDyk5tpPMWgV6sHZaH+aMaUMzX1fyNHqWH41l1JcHuHvxQVadiKNAUzM8CYPByMmYdOasj6LHhzuZvOQoW84nohBE5ezdLw1kUrdGFtwgo9FIXl4eeXl5NbpCNxqNLNxxhUW7rwLw9ug2laoQZ2bCsGGiNpSLi+g5VhfK0v+hCnB3F9v99u+HIUPkpz1dHJjYVeSI1Xb2xRr4uTsyzkTm/94Gsmd1wUWt4tsHu+DhpCIyNpMPN0fX7A43bBAzQ82a1dgu/N2duKO1GEz8fiy2xvZTHvzcHRkQLipIl/SytAZGo5ExbRpg0BTy18m4UvZPtYkZd7SgfUNPsgq0zFp1RrbMsBbN/dxY8XgPfN3EDNGYrw7KliP1Df+aYEij0TBhwgSesYHJOm/ePD777DMWLVrE8ePHCQwMZOjQoeTkVC06bezjyiN9mrDv5UF8dX9nHjb5urzx97lSpD0HB7Fc5uoqLlhfegnahnjKwlFx6QX0m7ebXdFJNh+Hg1LB1D5N2fnSAH5/oiej2wfhoBRXJLNXn6XHhzt4d0MU5+OzKNJVLTAyGo2cj8/io83R9Ju3m3u+OczPh26SmluEp7MD93cPZdOMfrw7NgJPl9Jqzvn5+bi5ueHm5kZ+fs20Ohfp9MxefVb2yXlzVGvZU648JCWJ3mIHD4qJhe3ba1QXrlogWR94eXmRl5dX14dTfzB5MvTtW+rpR/o0RRBgz6UUrtRBpqAyPNFfHKPbLiTJ1gS1iUY+Lnw2sSMAPx8S25VthdVjUlV9Qo8VQSqJr42MrxPyvFQqW3Pqls0BRH5+PmO7NSdu4b2kZOSw62Ltm7dKcFAqWDipI04OCg5cTWXZ4Zs2f0aLAHc2P9+XvmG+FGj1vLz6LM+vPF1rkhLW4l9HoP7555954YUXyMzMrPB9RqOR4OBgXnjhBV4x1aqLiooICAjgk08+kcl+lcEaAlZukY7hC/cRn1lQroja2rUwfrz4+Pvv4c4JBfT5eJfFe6b0bMQbo9pUqe08JaeIVSfjWHE0llsZxRwAhSDWcZv5utLMz43mfm4083OlmZ8rfiZiW3aBjuScQpJzisR/s4tMj4s4H5/FjdTiSc7NUcWwNgGM6RBMnzDfSgXG/q+98wyPouzC8D276Z30UFIIJfTQO4QOIlJEpQiiIEWRpqConw0FERBRqdIEadIs9Bp6CyX0EkIKCem9brI7349JltBSN9kF576uvbJtZt/Mzs6cOe85z1Pecv1xadmM++M850ISUQjwZZ962iD1WQQFwUsvwZ07Uvfvvn3QsKFOh1Uu6Nv64LkgNVXKFuUxZm0Ae69FM7hFNWYNMLwvefSaAPZdj+b1ZlX5YWDxrHt0zQ97brLI/y4WJkr+Gd+WGk+pjXwWJd4n79yBBQtg5kwoorC1NBQsnl8wyLdCfQ9BKuRtMmM/GSo1699tSRvv4qugPy5Q265OFda/26q8hlos1p4K4X9/X8PUSMGOD9pR8ymlIkWh0YgsOXqXeftuo9aIeDhY8MvgxjSsaqf7AefxQitQFzcYCg4OxtvbmwsXLtC48UP/n759+2JnZ8fvv//+1OWys7PJLtCem5KSQrVq1YrcmIdvxvD26nMoBPj7/XY0qGr7xHu+/VaqITI2hoMHYeGNU5wOfrROoIaTJQsGN6Ze5SeXLwkajcixoDjWnQ7l5N34QgusrUyNUKk1RdYLmBkr6OLjQp9GbvjVdi5R0FaeJ/CbUSmMXB1ARFIm1mZGLBzShA55aepnceKEVCMUHw8eHlJGqGZNnQ2pXNFoNNy9K9VDeXt7y3YcBcn3Tlm4EPz9oZmkPn0uJIHXlpzCxEjBqU86V0hnS0m4EJbIgEUnMVZKFh269g4rDrlqDcNWSB5mNZyt+Pv9tsX2pyrRPimK0lXH1auS7tC0aboY/hP8dOA2Px24Q6vq9mwc3bpcPqMw8u1BmnlUYsu4NsVeruCx0uvDrWiMTCvE1LcwRFHk7dXn8L8VS103G/56v22JFbbzOR+ayIQNF4lIysRYKfBxTx/eaetVLpIrcjcZEBUltb67uLg88ryLi4v2tacxa9YsbG1ttbdq1YrXmtnJx5k+jSqjEeHjrZefOs/72WeSa0BOjtRu3971yaLeoNh0+v16gr8ulq4TIR+FQqBjLSeWDW/Gla+6c/bTLmx4txXf9qvPO2298KvthLu9BQpBymzlB0K25sbUdLaibQ0H+jeuwpgO1fm8dx2WvNmUgM+7sXBoE3rWd6tQ0cTC2H89mlcXnSQiKRNPBwu2v9e2yEBowwbo3FkKhJo1k8x1n5dACEChUFCzZk1q1qwpB0KPIwjw4AGkp0ty8Hk086hEo6q2qHI1/HG64utIiqKJeyVaetmToxZZkdcBWdEYKRX8PLgxztamBMWkMX1b8QViS7RPCoKkOwSSNlRW+YjIvt6sGgoBTgcnEFyKQuay8nKeVEJAaGKpi+Pz5Rbym0H0hSAI/PBqQ+zMjbn+IIXZe26Wel1NPSqxa0J7bWf1tztv8M7v54hPK70ekS7Q65H0q6++QhCEQm8BAQFl+ozH/WlEUSzUs2b69OkkJydrb+HhxW/P/LJPXewspJ1lxfEnD2iCIKlTN24MsbGw5HM3jDVP1tc425jRsXbhJ/SSIAgCzjZmtPZ24M1WHnzRpy6r327B0WmduP5NTw5M6cCxaZ24OaMngV92Z/+Ujqwb1Yr5b/gy/aU6jGpfnZ71XXVq7FhWRFFkyZG7jF4bQLpKTRtvB/56vy01nJ9t+iqKUnZuyBCpjb5/fzhyBFyL7/sn8zyQ38K9bRvcugVIv4GReSKHa0+HGJwII8BYP29AKvpNytBPS7WTtSmLhkoCsf8ERrLmVDmpdw8eDNWqQVQUPCNLX1Yq25njV1sqpN6khzb7VtXttfdHrzlPcmbJa2RG5tU87rkWpZeAriDONmZ8/6o0xbzi+D22nC/9NrW1MGbR0CZ8268+JkYK/G/F0mvBMf4MCC/fjsZC0GswNH78eG7cuFHorX79krv/ArjmneEezwLFxMQ8kS0qiKmpKTY2No/cioujlalWynz+/tuExj9ZSGhhAX//Dc7OcPWKgMa/OfkXX4IAAhCRlMnMnTdQl7DwrjSYGSup4WxNNXsLg8n2FEV2rpoPNwfy/e6biCIMbenO7++0wK4QAz+VSnIEyJc6+Ogj2LJFa3T+XJGTk8PChQtZuHChrED9NOrVg1dekaLfAvYPveq7UtnWjLg0Ff9cKnmRcHnjV8sJH1dr0lVq1pZXEFIMmnna80kvyfX9253XuRCWWOQyJd4nTUykbhKQtKFyy0cnbVCe5tCW8/cr/CRrZfbwQjc+XcXUzYEl7qKq6WJN1zrOiKJ+ug0fp2d9V5q42wHw0ebLrC+D1Y0gCLzZyiOvPs2KmNRspm25TMc5h1lx/F6FK4jrNRhydHTEx8en0JuZWenUlb28vHB1dWX//v3a51QqFUeOHKFNm+LP35aUgU2r0raGA9m5GqZufvp0WbVqUkG1sTEEn6tE8vGauNqYsXlMaxYMboxSIbD5/H2mbgmskIDoeSI2NZshv51h24UIlAqBb/rW47v+DQoV2UpIkDrEfv8dlErJXmPOHElY8XlEpVIxfvx4xo8fL3uTPYtPPpH+rl0LYdK0mNR96QlIbfaGVi4pCALj8rJDq0+GlJs0RnEY2c6LlxpI0xjvr7tQ5BRGqfbJUaPA0RGCgyVhr3Kgs48zztamxKerOFCKjt2yYGqkoGAZzL7r0aUKaMZ2lPaJbRciiDEAX8p5rz0s8P90+1U+2RZYpm5lH1cb/h3fjum9fHCyNuVBchYzdlyn7feHWHDgToVlSZ+b00FYWBiXLl0iLCwMtVrNpUuXuHTpEmlpD1OHPj4+bN++HZAOLJMmTWLmzJls376dq1evMmLECCwsLBgyZEi5jVMQBGb2b4CVqRFnQxL45t/rT31fmzYPfSWTT9aie05Hmnna80qjyvw8SAqItl2I4MM/LxlkSr+kKJVKBg4cyMCBA1EqS56BEkWRvy9F0OOno5wPTcTGzIjVbzcvUkMoIEDSefL3l5qLdu6EsWNL9z8YCmXdlv8JWreGTp2kjEO+2y7wRnN3LE2U3I5O49idOD0O8On0buBG1UrmxKer2FyGaYiyIggCs19tSHVHSx4kZzFp06VCL8xKtU9aWsKkSdL9mTPLRYjRSKng9TxLjorWHBIE4YkC9B/23uJMEeanj2/LZp72NPOohEqtYcUJ/dSTFcTLyQof14fdZBvP3ue1xSe5n1h6yRRzEyVjOnpzbFonZvZvgIeDBYkZOcw/cJs23x/i2x3XSyz6WFKem26yESNGPLUD7PDhw/j5+QHSzrdq1SpGjBgBSCfQr7/+mqVLl5KYmEjLli1ZuHBhiabeSlKNXpAD16N5d20Aoggz+zdgSMunW0HMmAFffCHd/+abh9M4u6884IMNF8nViPi4WjP/DV/quOm+BfV54EFyJp9vv8rBPL2N2i7WLHqzCd5OhdcHLVsGEyZIU2Te3lI2rkGDihq1jN45cAC6dQNbW4iM1M6Jfv3vNVadCKFDLSfWvNNCz4N8kjWnQvji72tUrWSO/0d+GJXCWkBX3IpKpd/CE2TmqJnSrRYTuui40yApCXx9Yfhw+PRTKOVMQGGEJ2TQ/gdJlfzYtE5Us6+4ufHWsw7y4LGTuJO1KTs/aFciT8kD16MZtSYAK1MjTnzSGVvzJ2tNK5KlR+4ya/ejRdS25kYsGNRYW6dVFnLVGnZdjWKx/11uPJDEjI2VAgMaV6VzHWcaV7Mr1vZ7oVvrK5rSBkMAvx66w9x9tzFWCqx/txXNPe2f+r5Zs6TjAEiB0VdfSfVDR27HMmXTJeLTVZgoFXzUoxaj2lWvUNd3faLRiKw/G8b3u2+Slp2LsVLgg841GdvRu9C2zowMyWV+zRrpcd++UuF6MYXLnwtUuRpEREyNSp4Zys5Vcy8unaqVLAyqKF7niCLMnQuDBklz03mExWfgN/cwGhH2TupAbdeSa6aUJ5kqNe1mHyI+XaUXjZzH2XbhPlP+DMRIIfDvB+10f1GmVkvz1+XIsBVnOHYnjvGdavBRj9rl+lkF6frjkSeENPOP5aM7eBd7PRqNSM8FR7kdnca0nrV5z6+GrodaIkLi0vGb6//E84IAU3vobnyiKOJ/O5bFh+9yNuTRjrwqdub4VrOTbu521K9si7nJo/uRHAzpkPyNeSEogsbelUu0rCiKjF9/kZ1XHuBgacI/H7Sjit3T9UPmzHkot/Hpp1LXkyBIYoKfbL3MgRtSVqRVdXvmve77zPW8KNyLS+fjrZc5e0/6ATR2t+OHVxsWKfZ1544kW3DlilQTNGsWTJ0qbcvnhfi0bO4nZhKdkkV0ajYxKVnS/ZRsolMkUcyEdBWCAJVtzfFwsMi7WeJhn/fXwQIjpcC9uHTuRKdxJzqV29Fp3IlJJSQ+A7VG5OynXUp0dfoiMe6P8+y+GsUbzaoxe6DhiTDmX0j5uFqze2L7QjtgyxtRlIyl912Ppn4VG/56r61es1WlYeflB7y//gIuNqac+LhzhY2/78ITBIYnaR9Xd7Rk23ttCm32eBZbz9/nw82BOFqZcvzjTnpveOn501FuRj2q6O5iY8ofI1uWSpSxKAJCEthy/j4Xw5K4HZPK45GLUiHg42qNbzU7bMyNyc7RkJqazNyhbeRgSBfkB0Ov/3yQjeM7lfiglKHKZeDiU1x/kEK9yjZsGdvmieg1n/nzYcoU6f7UqVIjjCBIB6ON58L55t/rZOaosTYz4tt+9fV+xVgSiiu6mKvWsPz4Pebvv012rgZzYyXTetZmeGtPlEVkxLZvhxEjICVFUpTeuFGy2jB0ctQaLoQm4n87lsM3Y544wDyOJieLyGWjAag8ehkK45IHNObGSq5/00OvJ9kKJzERKlUC4HxoAq8ulkQYT3zcGSdrwxJhTM7Ioc33B0lXqVn1dnM66WDqoSzEpGTRbf5RkjNznpqZyMjIoGaeWNedO3ewKGmbpijC3r2SQeBPP+lo1A9R5WpoPesg8ekqfhvejG51n91RrEumbQnE1caMNjUcGbr8DGqNyM4J7QoV1X3WsTJHraHjD4eJTM7iu/71izSfLm9+3H9ba31UkIrIZqZl53L5fhIXw5K4FC7dYlOfLPLXZGcQ/tPrcjCkC/KDoWqT/mTpO+3o1cCtxOu4n5jBK7+eICFdRZ9Glfl5kO8zT0K//goffCDdnzxZqv3Mf+u9uHQmb7rEpbwrjT6NKvPtM7zADI3iBENXI5L5ZNtlrkZIc8Ttazoys3+DIuf4U1KkLt3ly6XH7dtLzSluJf+qKoyYlCz8b8fifyuGY3fiSM162EYqCOBqY4azjRku1qa42JjhYmMqPbYxw9ool6Z5Wcpj18OIyRQIic8gND6de7Hp3IlJI7OIonsfV2v2TOpQrv+jwRATAyNHwpkzEBICFhaIokj/RSe5FJ7ExC41mdytlr5H+QTf7bzOb8fu0dLLnk1jKl5B+XHyMxMmSgW7JrZ7xK6jzArz0dHg7i4V+B05Ah10v2/O2nWDpUeD6eLjzIoRzXW+/qL4YMNF/g2MZEDjKvz4hu8z31fYtlx5/B7f7LiOp4MFBz/0K/ICsTy5FplM75+PU8XOnB9fb8Tuq1GsPhmCkUJgxYjmWrPaikAURSKTs7gUlsSViGRUuRpMjBRosjP4rH9TORjSBQWDoarO9hz80O+ZmZ3COBMcz9DlZ8jViEXO+S5ZItW8gKSNs3AhmOfNiuWqNfx6OIhfDgWh1oi42Zox97VGtK1RfO8bffCsH7goipy5l8Cyo8FaQ0Jbc2P+93JdXm1SpcjMxf790nkuPPyhsO1330myBYbG9cgUdl6JxP9WLNciUx55zd7ShA41Henk40z7mk7YWz47ja5Wq7ly5QoADRo0eGr3TkxKFqtPhrD+TBhJTxF7a+phx+Yxbf4b9We5uVCrFty7J2UdJk4EYMflSMavv4iDpQknPums92mHx4lKzqL9D4fIUYtse68NTdwr6XU8BS0ZGrvbsWVsG+3JuDj7ZJGMHSu12HbvLmWJdExwbBqd5x1BIcCJTzpXuOXJ5ftJvPLrCYwUAsc/7oyr7dMzuoUFQxmqXNp8f4ikjBwWDmmiVajWB6IoMmfvLcb5eWNtZoxGIzJp0yX+CYzEwkTJ+ndb4atHCxGQa4Z0Sv7GbPHlP0RnKfigcw0+7F66Arw/Tofy+V9XEQRYPrwZXeo8O1W7fDmMHi1lj319YfNmqFEgfroYlsjkTZcIiZfaGV9u6MbIdl401vMB81k8/gM3M7dgz9Uolh29S+D9ZEAKZvo0rMznL9fB2brwqZ/UVGkqMV+eoHp1WLWqXC4oy4QqV8Puqw9YcyqU86EPxesEARpWscWvtjN+tZ1oWNWuXK7yctUa/g2MZN6+29xPynzkteqOlgxr7cHAplWxNjPA6FGXLF0qnWyrVpUcek1NyVVr6DjHn4ikTL4f0EDrdG5ITNsSyJ8B9+le14Vlw5vpezg8SM6k+49HSc3O5fPekjq9zrh3T/LFUaulLF4L3Xf6vbH0FGfuJTC5ay0mdq14D57Xl5zibEgC4/y8+binz1PfU1SWLX96qn4VSZ/HkKa6VbkaRq0J4OjtWCpZGLN5bJtCXQHKGzkY0iH5G3PLqdt8+NdtTJQK9k3ugKdj6YxGP91+hfVnwrAyNeKv99sU6gx94IBkHREbKxk7r1r10PkepKuEb3feYP2Zh/oZTdzteKedFz3ruRpUkWPBH/hvB6+x9nw0oXmBnKmRgoFNqzKqfXW8irFdDx2Cd96B0Dzx0/HjJRsqQzJvj0rOYv2ZUNafDScuT7DOSCHQra4L3eq60KGWE44VaBYqiiKHb8Xw477bXI1MwdRIQXaeIq+liZIhLd35sHttg8uO6IysLElfITJS0lx4910Alh8L5tudN6jhbMX+yR0M6sQCEBSTRrf5RxBFODClQ4mc5MuLDWfDmL7tCmbGCvZMLP2x8KmMGCGpo/bpA//8o7v15vHXxQgmbbpEFTtzjk7rVOHTTPuuRTF67XlszIw4Nb3LU41wiwqGEtJVtPn+IFk5Gv4Y2ZJ2NQ1rViA9O5chy88QGJ5EZVsztr7XRi/GwyAHQzolf2MmJSUxfstNjt2Jo7OPMytLOeesytXw5vIznA1JwMvRkr/ea1tozU9EhNQZfPy49HjSJKmw2qTALMq1yGRWHg/h38BIVHmK15VtzRjexpPBzd0NoqYoLDoBD1cHAKpN3oLCxAw7C2OGt/ZkeGuPYgUGycmS2e3ChdJjT09YuVLS1jMERFHkdHACa0+HsPdatFakztnalCEt3RnSwl0n3Vs5OTmsW7cOgKFDh2JcwjnBcyEJmBoJBIYn8/upUG3rby0XK34Z3MTgWs11xk8/SYV41atLnmVGRqRk5dBm1iHSsnMNolD5aYxZG8Dea9G81rQqcwqo/+oLURR5c8UZTgTF08LLno3vtkKtzi3TPqnl9m2oU0cSYLxwQTJy1CFZOWpazjxIcmYOK0c0o7NPxRRS56PRiHSe509IfAZf9anLiLZeT7ynOPVXX/1zjdUnQ2hXw5E/RrUs93GXlIR0FQOXnCQ4Nh03WzOWvNmURnqYMpODIR1ScGPGZivo+dNRyVn6rcKnuQojLi2bV345TmRyFh1qObHyrWaFZnFycqQgYM4c6XHr1lKBcAHpFABiUrNYdzqMP06HEp8uSZibGysZ2LQqI9p6FipSWB6EJ2Rw8m4cJ4Li2XMphDs/SGmt1jN2MKZzPV5rVhULk6J1bnJypFmOr7+GuDzR4LFjJUsjawM4b2eoctl6IYK1p0K4Hf1QU6SFlz1vtfakez2XQu1CSkqZi1ULIIoiB2/E8Mm2K8SlZWNipODz3nUY1srD4LIkZSY9Hby8pFTr2rXw5psAzNhxnRXH79Gquj0bR+u/UPlxLoYl0n/RSYyVAkemdqKyAchqhCdk0OOno2So1MzoW48BDZ10tk8yZAhs2CClwbdu1dGIH5JfmN62hgPrRrXS+fqLYu2pEP739zXc7S04/NGTRdDF+X2HJ2TgN9cftUbk3/HtaFD12d1p+iIiKZNhK84QHJuOiZGCmf0bMLBp1QodgxwM6ZDHN+as3TdYeiQYFxtTjkwtvdbD1YhkBi45SVaOhh71XFgwqHGR6/r7b3jrLSlD4uAAK1ZIfpSPn7OyctT8ExjJyuP3HmnT7lTbCb/aztStbIOPq7XO60Ti0rI5eTeek0FxnLwbT1jCQ3l2MVdF1u4fpAPAnn+xsiy69VYUpUz5tGnSBSOAjw/88gt07arToZeKtOxc1p4K5bdjwSQUCD77N6nC8NYe+LiWj2J4VlYWr776KgBbt24ttX9fQeLSspm6OZDDt2IB6FrHhR8GNiy0kPu55PvvYfp0KZ146BAg1cF0+OGwwRQqP41By05xOjiBd9p68UWfuvoeDgC/nwzhy3+uYWGi5O+xLZj07jBAB/vktWtSOvyzz6S/OiYiSfq+1RqRXRPaU7dyxSr7Z6rUtP7+IEkZOSx5swk96z9aBF3c3/fkTZfYfjGC3g3cWDi0SbmPuzSkZOUwZdMlrU7eiDaefNa7jk4vDgv9fDkY0h2Pb8z07FxazTpIalYufX0rs2BQ6dO4B65H8966C6jUGtp4O7BseLMiFYGDg+G116QMMkCXLpLIrq/vk+8VRZFTwfGsPH6PgzdjnhCp8nSwoG5lG+pVtqWumw11K9vgbG1aZEZAlashQ5VLWnYut6JSOREUz8m7cU/o4ygVAo2q2tK2hiMdaznR1KNSsbMN585JnWFHj0qPnZwku5JRo8BIz6LJKVk5rDkZwvLj90jKkDq13O0tGNHGk1ebVtW7VH5pEUWRVSdC+H73TVRqDS42psx/w5c23oZVk1AmUlJg3TqpTbPASWbq5kA2n79P1zouLH9L/4XKj3PkdixvrTyLmbGC4x93rtB6s2eh0YgMWnaasyEJtKvhyNqRLXSXTRTFclVKzW9zf7VJVea9XvFTj3P33uLXw0E09ajE1nGlMw6/GZVCz5+OoRDg4Id+xaq31AcajciCg3dYkKdJ1NLLnkVDm+BQAfuwHAzpkKdtzIK+LGWVRj8RFMfoNQGkq9Q0qmrL6rdbUKmIq/GsLMmyY/58SZZDECRrn2+/lZplnsa9uHT+uhjBtchkrkWmPOGXk4+jlQl13GwwM1aSocolPVtNenYuGSo16apc0rNzyVE/e5fxcbWmbQ1H2tZwoIWXQ4ntHoKC4MsvYf166bGZmaQhNG2aVESuT5Izclh18h4rj98jJU8XyMvRkvGdatDXt7JBFayXhasRyUzYeJHg2HQEAd7z82ZS11oVdjWnD+7GptH1R6lQ2RAtOkRRpN+ikwSGJzGmY3Wm96qj7yEB0nGl509Hyc7VMPvVBrzR3PA68p7GpfAk+i08gbFSanN3qWAl9pjULNp9fxiVWlOmbOTbq85y+FYsg1u4M2uAYRsv7r0WxZRNl0hXqaliZ87SYU2pX6V8p/fkYEiHPG1jqtUaav1vj7ZAdlLXmkzsUrPUV0WB4UmMWHWWxIwcajhbsXZki2JV34eESNYdGzZIj83NHwYORdXSJKSruB6ZwvUHUnB0PTKFu7FpFGJM/QQmRgoq25rR2lsKflpXdyhVtK/RSMKzv/4Ku3dLzwkCDBsmBXiP10ZVNInpKlaeuMfqEyGkZktBUA1nKz7oXIOXG1bWq/BZeZGhyuWbf6+z8ZzknO5bzY6fBzXG3aHiTC7LHbVaEmTMU+fMt+goShRPXxy6Gc07qwOwMFFy/OPOBjOF+dvRYL7bdQNrUyP2Temgu86hjAz47TepA3D2bN2sswCvLTnJuZBE3u/kzdQeT29zL08+2hzIlvP3yzTNdfZeAq8vPYWRQmDf5A5Ur+C60JJyJzqV0WvPcy8uHVMjBd+/2oD+jcuvjkgOhnTIszbmoKWnOH3voXHc4BbuzOhbr9TZgaCYVN5cfpaolCyq2JmzdmSLYu/YZ85IU0r5HWcuLlLmaPhwrVF3schUqbkVncrNBymoRRFLEyMsTJRYmRphYWqEpYkSS1Mj6XlTZYkyBenp6Tg7S506MTExWFpakpgoyQUsWgR37z5870svwYwZ0ETP0+DxadksP36PNSdDSFdJis61Xaz5oEsNetV301sQlJGRQaNGUmo/MDCw5NYHJWDn5Qd8su0yqVm5WJka8V3/58sG5pkEBMDQoZI9x6lTIAhcuZ9Mn1+Po1QI+H/kV6Hu5sVBFEX6/HqcqxEpejuBPw21RqTvgkPsnTEMc2MlD4Jvlq2AOp9z5yStIaVSKhqsrkNNI6RMxZi157GzMObkJ52L1cyhSwpOcx2Z2km7vz3tWFkYI1adxf9WrN6UtUtKcmYOkzdd0orsjmznxfRePuWSWS9JMPTi5r3LmU4+j7bgbjgbxrh1F8gqwgbhWdRwtmbLuNZ4OVoSkZTJa0tOcTUiuVjLtmwp1dZs3SoJM0ZHSwrWLi5SacShQ1L2pSjMTZT4VrNjUAt3hrb0oF/jKnSv50qbGo74VrOjpos1le3MsbUwLtWUSUZGBhkZGVy+LAlKVqkiZbLu3pUc5adMkYxWd+7UbyCUkK7i+903af/DYRb73yVdpaaumw1L3mzK7ont9Z4NEkWRoKAggoKCKO9rmd4N3dg9sT1NPSqRlp3LxI2XWHn8Xrl+ZoVQtSqEhUlXEgcPAtCgqi3tazqi1oj8dixYzwN8EkEQ+KCzJBT4+8lQkjJUeh6RhFIh8F3feuQmPiA15j47LkfqZsXNm0OPHlIGb+ZM3ayzAF3ruODhYEFSRg5bz9/X+fqLwsfVhvY1HdGIsOpEyCOv5R8ri8PnvetipBA4eDOGo7djy2GkusXW3Jjlw5vxQWepvGTF8XsMX3lW24SiL+RgqJQ097J/4rn916MZuvxMqQ9SVStZsHlsa+q62RCfrmLwstNa1/aiEASpE/XaNViwQOogTkuD1aulImsPD6mJ5vr1Ug2tTCQlwV9/PXzcpo2U/c7MhAYNJA28+/clH7YapS+/KjNJGSrm7L1J+9mHWHLkLhkqNQ2q2LJ8eDN2TmhHz/quBmFfYWZmxvHjxzl+/LhOOsmKomolCzaNbsW77SVNlG92XGf1iec8IHJ11QovMmOG9ulxHb0B2HQu/KnGj/qmWx0XfFytJV2kx06g+qS+hxOTftqAy9AfmHsgmLTs3KIXKg5ffCH9/f13qS5AhygVAu/k6fysOH4PTUlqBHREvoL3pnNhJD/FNqc41HC2YlhrybR1xo7r5KqLceWrZxQKgQ+712bJm02wMFFy8m483ecfYc2pEFS5+hm/HAyVkvqVbTEzfnLzBYYn8W9g6a+MHK1M2TimFS087UnNzmXYijMcuhld7OVNTGDCBCnbcuyYlIGxs5OCje+/h3r1oGlT6UJr92548IAnuswKIytLCm4KI19N/5tvoG1bcHTUSroAkm/Ya69J2azAQOmcpE/16OSMHObtu0W72YdZeFjKBNWrbMPy4c34Z3xbutZ1MSjNHaVSSdu2bWnbtm3pPKBKgZFSwacv1eE9PylY+Orf66w5FVIhn11uTJsm/WCOHpXMQYHW3g40qmZHdq6G1ScNL+BTKAQmdJGyQytP3CMlq3QnUF2jVCqZ9d5r1G7UjNj0XBYeDtLNitu0kXQ0cnNh1izdrLMAA5tWxcbMiJD4DA7mTdtUJB1qOlLbxZp0lZqNZ8OKXuAZTOpSi0oWxtyJSWN9GdZT0fSs78Zf77elupMlcWkqvvj7Gl1/PMLflyIqPDiVa4aKoLA5x8HLTnMqOP6R5755pR7D23iW+XOzctS8v+4CB2/GYKQQmPtaI/o1Ll2tRlYW7Ngh6czt2iUdVwri5CS15jdsKPlZOjhAdrZUtxgZKZmghoVJ9hfR0fDzzzBmjHShdveu1O7/+N/HM7y1aqVz+7ZUAxUTk4aTk/7bQJMzc1h5XOoOyy+MruNmw6SuNeluYAGQoSCKIrP33GLJEanIa0bfegxr7anfQZWFceMkZ+QuXST/Gx7WklibGXHyk84G59um0Yj0+Okod2LS+LBbLT7oUvEeW8/iwPVoRq0JwESpYO/kDrpp9z5+HNq3l66igoIkd3sdMnvPTRb736WFlz1/jql40c0/A8KZtuUybrZmHJ3WCVVWZqkELPPFHO0sjPH/yA87C8MosC8OqlwNm86FseBgkNa+qK6bDdN61qZjLadSH4vlAmodUtjGzDfMc7M1o7aLNf63Y7ExM2LHB+110nWTo9YwdXMgf12SMk3TetZmTAfvMtWrxMbCn39Kx5fAQMmVoDj1RAWxspLEfAvbc2xtpQu6Hj0kE2pHR92pJpeVlKwcVh0PYcXxYG2LvI+rdV4QZBhTYYWRm5vL9u3bAejfvz9GFSy8JIoi3+++ydKjUl3Nt/3q82Yrjwodg84IDZXmZnNz4cQJaNMGjUak+09HCYpJ4+OePozLy4YZEv8ERjJhw0VszY058UnnEktY6Jr8fVIURf5Nrsqxu4m6Lejt0kUqfhw7FhYv1s0684hKzqLd7EPkakT+Gd+WhlXtdLr+osjOVdP2+8PEpWWzYJAvXWvalepYmavW0Pvn49yKTmVEG0++eqVeeQ67XEjPzmXl8XssOxqsvUBtVd2ej3v6lMqEXA6GdEj+xrwZGkVt90ftN04Hx3P0dizjO9fASKFg0LJTXAhLon4VG7aMbaMT00uNRpRqNE6GAFKL8w8DG1LLRTc6KBkZUp1RYCCcPAl790rZoOJgYSE1eHh7S7eC9728HhVH1KWFRGlJSFex5lQIq06EaOfna7lYMbFLLXoZSD1QcTCEbSmKIjN33eC3Y9JU0sz+DRjS8vnQmHmCUaMkOfcpU6TCNWDL+ft8tDkQRytTjn9ceqX58kKtEek2/wjBsell1jrTBQX3ycv3oui/7Dy5GpFVI5o/0WxSKo4ehR9/lGqIyqG7Il/NuaxCuqXll4N3mLf/NvWr2LDx7cZY52mjlPT3ffxOHG+uOINSIbB3UnuDMPYtDQnpKhYdDmLNqVCt32aPei5M7eFDDefiywfIwZAOyd+YwxYf4vcxfoWm6yKTMnn5l+MkpKsY3KIaswY01MkYRFFk47lwZu68QWp2LsZKgfGdajLOzxsTI92Xfd27Jx1z1q17MvtTpYo0m2BrK9WgFjd7mZmZSa9evQDYvXs35uYV568UnpDB8mPBbAoIJytH+mHVcLZiYpea9G7g9twEQfnoc1sWRBRFZuy4wcq8YurnSXTvEfLnezt31u7QOWoNfnP8iUjKNNjM17YL95nyZyD2liYcm9bpqQ7oFcXj++T8wyEsOxqMl6Mleyd1KJfjlC65GpHMy79IsgrHplW8/1tiuorWeU70q4c34qv3pCLL0vy+R/0ewIEb0XSs5cTv77Qoj+FWGBFJmczff5ttF+6jEUEhwGtNqzGmY/ViSc/IwZAOyd+Y1Sb9ydJ32tGrgVuh7z92J5bhK88iijD3tUY6NaZ7kJzJ59uvagv9fFytmf1qw3JzA752DT7//NFOsH79IG+GxuC5GpHMsqPB7LzyQCuQWb+KDWM6ePNSA/3pBL1IiKLI1/9KmUtBgNkDGvJ6cz2rZOqI1Sfu8dW/16lmb87hD/0MTmE8V62hy49HCI3P4NOXfBjdwXCm81Kzcug09whxadlM7+XDmI6GM7ZnkV8DOqZDdaa/VPEK35//dYU/TofRtY4zy98q/fTivbh0us8/Qo5ah5k5PXM7OpU5e2+x//rDZiIPBwv8akl+m62qO2Bu8mT2VtYZKie+/Odakd0b7Ws6MalLLUDauW9Gpejs891szVn+VjMWDPLF3tKEm1Gp9F90gpm7bpCpKp2+UWHUqycFPqdPS76WAI0q3sanRIiiyPE7cQxbcYaXfznOP4GRqDUi7Ws6sm5US/4d344+jV5M1Wh9IAgCX/apy1utPRBF+HjbZTYHhOt7WKUnMVFqvQTeaO6OvaUJ4QmZ7LzyQM8DexIjpYL3O0nTY8uOBpfLMaC0WJsZ80kvSRTy54N3iEl5uv1Pibl/H957D6ZO1c36CjAqTzpi/dkw3UkDlIB32nohCHDgRgxX7hdPY+5peDla8naeZMCMndfJeQ5a7Yuilos1vw1vxtZxrelQywljpUBofAa/nwrl7dXn8P1mH8NXnmXl8XsEx6aVSn9NzgwVQX5k6Tl5M6KJOcNaeTCjX/1Cl9FoREasPsfR27F4OVry9/i22Oi4IyU+LZtvdlzn77ziak8HC2YNaEhrbwedfk4+oihNj9nYSCKPhkauWsOuq1EsPXKXa5FSAKpUCPRu4MaYjtWpV7l8PXD+64iiyBd/X2Pt6VAEAeYObMSrOsyKVgibN0v1Q926wZYtwMNaDh9Xa3ZPbG9wHYY5ag2d5vpzPzGT/71cl5HtvPQ9JC0ajciAxSe5FJ7EgCZV+PF137Kv9OBBqTPD1FRqW61cuezrzEOjEemaV4f1xct1eUcP23LKpktsuxhB2xoO/DGyZem7qLJy6DTHn/h0lcHtF7ogLTuXE0Fx+N+K5citGCIf89p0t7fAr7YTzauY8UrzmvI0mS4oOE2mMLVAALaMa0NTj8Ir2xPSVbz88zEik7PoVd+VRUOblMuB9MD1aD7/6ypReVdeQ1q680kvH50HX2UlPT0dT09PAEJCQnRW9BuXls3flyJZffIe4QmZAJgZKxjU3J2R7bwMzlJBF2RmZtK6tdQCfOrUKb3VDD2OKIr87++r/HE6DEGAH19vVK6+Qzrn2jWon3ehc+UK1K9PckYObb4/SLpKzcoRzejs41L4OvTAhrNhTN92BWdrU45O00+x97P2yXxDVICtxThuFokoSm32J05IgmoLFpRtfY+x7kwon22/StVK5hyZ2qnCM8jhCRl0mrWXewtHYG1mTER4aKmPlfn7hY2ZEf5TOxmMl52uEUWRoJg0/G/F4n87hrP3ErRm4prsDMJ/el2eJisPRGDSxotFph7tLU1YOLQJxkqB3VejWFFOFgZd67qwb0oHbSfP+jNhdP/xKHuuPqyTMRTi4uKIi4sr83qyctTsvPyAkavP0XLmQWbsuE54Qib2liZM7lqLk5904atX6r2QgRCARqMhMDCQwMBANCXVRShHBEHgm1fqM7iFO6IIH/4ZyLE7hm8PoKVePRg4ULqfp0pta2GsLZ5edPjus5bUK682qUplWzNiUrP5U09TlM/aJ32r2fFaXobwq3+ulV1ITxAk40WApUuL3/paTAY0rkolC2PuJ2ay71qUTtddHKrZWzCkZTU0mSkkJ8aXaXu93qwaddysScnKZdbuGzocpWEhCAI1Xax5t0N11o1qxaUvuvPb8GYMbemOm23xFfrlYKiEGCkEwhMzWXa0aO+ixu6V+Lx3XQC+332TgJDiWWuUFBszY2b2b8D6d1vi4WBBVEoWY/+4QIcfDrPgwB0ikzLL5XMrElEUOReSwPRtl2n+3QHeXy8JUqo1Io2q2jKjX31OfNyZiV1rvrBXQPmYmZmxb98+9u3bVyF2HCVBoRD4rl99BjSugkaEDzZcJDyheB5LBkG+/cPmzVrvmpHtvDBRKggITSy2PU5FYmKkYFxe7dBi/7tk51Z87VBh++S0nj5YmxpxJSKZzed1EKx16QLt2knKsN9/X/b1FcDcRKkNfvXlT1ewEH7HldIHe0qFwJd9JK2hzQH3OX6n7BeizwOWpkZ0q+vCd/0bsG9yh2IvJwdDJeQVX2mO+ueDdwiNTy/y/cNbe9CnUWVyNSLvr7+gVdcsD9p4O7JnYgfe8/PGxsxIaks8cJt2sw/x9qqz7Lka9dwV04XGpzN//206zvHntSWn2HA2nNSsXCrbmvGenzcHpnTg7/HtGNbK46ndBC8iSqWSbt260a1btwqz4ygJCoXAzAENaFjVlqSMHMb+cb7UBsYVToMGksmfKGqzQ842Ztr6p0X+OrKZ0DGvN6uKq40ZD5Kz2KIH09HC9kkna1MmdpVUsn/Yc6vUHlxaCmaHli2DiIiyre8xhrX2wESp4EJYEudDE3W67uJQqcDF3IIDd8oU3Laq7qDV5Rn5+znuxaaVeXzPEyUpTZGDoWKSv03/vRRJE3fJu+iz7VeLrFoXBIHvBzTA28mS6JRsRq8JILUc/YTMTZRM6+nD2c+68tMbvrT0skcjwuFbsYz94zxtvj/E7D03CYkrOpDTFw+SM1l3JpSBi0/ScY4/Cw7eISwhA0sTJQObVmX9uy05/nFnpvX0eW5FxV50zIyVLH6zKfaWJlyLTOHTbVdK1eGhF/KzQ5s2abNDYztWRyGA/61YrkfqrkNUV5gaKRnTUTL9XHT4rt7MLp/F8NaeeDtZEp+u4ueDd8q+ws6dpdqh7GyYM6fs6yuAs7UZffMueleWU3lDcYlMymLtqdAyrSPffDg7V8MrC09wLbL0nWovMnIwVEyG57kC52hE0rJzMTVScDwoju0Xi74qsTQ1YsmbTbE2M+JCWBLDV54td4NFM2Ml/RpXYdOY1hz6sCNjOlbH0cqE2NRsFvvfxW+uP4OXnebvSxF6vWpXa0RuPEhh7akQJm68SNvvD9F61iE+236VgNBEFAK0r+nIT2/4cu7zrsx9rRFtvB2fO6FEXZKbm8vOnTvZuXMnuY8bzRkQVezM+XVIY5QKgW0XI/g9T0Xd4GnUSBLUUiqlQl3Aw8GS3g2lE+TiI4ZZOzS4hTuOVqZEJGWy/WLFZoeK2idNjBTaKZvfT4ZwJzq1bB8oCFLmbto0+Oyzsq3rKYzMa7PfffWB3qd5fz0cVKbzRde6D4v+U7NyeWPpKc6VU8nG84zcTVYE+d1kD2Lj6bfsorZrq423AyfvxmNvacKBKR2LVady5X4yb644Q3JmDo2q2rJmZEtszSuu6ytHreHgjWg2ngvnyO1Yrbq0rbkxnWo7UcPZCm8nK7ydrfBwsMDUSHdTMAXl+g9cDuFajIqA0EQuhiZqPWjyUQhQr7ItfRq50de3Ci42hlUXo28MwY6jJCw/Fsy3O29gpBBY/24rWnjZ63tIRXP3rnTCrV5d+9T1yBRe+vkYCgEOfeiHpy5MSHVM/rauZm/OoQ/9MK4gocji7pPvrglg//Vo2tVwZO3IFgYnVVCQYSvOcOxOHO+09eKLPnUr7HMLbku/mbu5l6zmPT9vpvX0KfU6u8z1526B2QAzYwWLhzZ9IQQZC0NWoNYhBTfm2fuZjFoTAICAVPkflpBB+5qOrBrRvFgKtVcjpIAoKSOHBlVsWTuyhV7chSOSMtkcEM6f58Kf0GgAqfjO3d4CbydLKUByssLbWbr/+HjVGpF0VS5pWbmkZ+eSmi3dT8v7m5qdy72oBH798E2yVGqch3yPwthUu7yliZLG7pVo5lmJZh72+Lrb6d140pDJzMykQwepMPDo0aMG01r/LERRZMLGS/wbGImjlQk7PmiPawm6PAyJEavO4n8rltebVeWHgYanQJqhyqX97MPEp6t0roBfGMXdJ8PiM+g6/wiqXA1LhzWlRz1X3Q0iJ0dyttcRR27H8tbKs1iaKDk5vUuFXbgW3JZfLt3M+D+vYWaswP+jTqX+3Xy85TKbHus0NFIIzHu9EX19q5R5zIaKHAzpkMc35pi1Aey9JkmCV7EzJyFdRWaOukQS7tcjU3hzxRkS0lXUdbNh3aiWjxTNVSRqjcipu/FcjkgiKCaNu7HpBMekPZGtKYiDpQm2Fsak5wU76SVUvnWzNaOpRyWae9rT1KMSPq7WBmd1IKNbMlS5DFh0kptRqfhWs2PTmFY6zTyWK1evgpUVeHpyISyRAYtOolQIHPqwIx4OhpcdWnLkLt/vvomHgwUHpnSssOxQcZm79xa/Hg6iaiVzDkzpWHZdpAsX4KOPoE4dWLhQN4NECuJ7/HSU29FpfNitFh90qamzdZdkDK8tOUVAaCKDmlfj+1dL53e56VwYH2+98sTztubG7JzQjqqVXkwZEjkY0iGPb8wHyZl0metPRp7hZ8eajhzJa1lcMMi32FH2rahUhi4/TVyaCh9Xa9aNaomDlWnRC1YAoigSm5pNUKwUHN2NSeNubBp3Y9KemkXKx1gpYGVqhJWZEVamxlhr7xthb2lCY3c7mnnaU6WCTRBlDIOw+Az6/Hqc5MwcBrdwZ9aABvoeUtHMnStZPwwbBmvWAA+zQwObVmXua4aXHUrPzqXjnMPEpamY2b+BVoPMUMhQ5dJ57hGiUrJ0E2QcOQJ+fmBiAkFBUE133nh/X4pg4sZL2JgZcfyTznoRsz0fmsCri0+hEGDf5A6lahq5HZ1K9/lHH3muYVVbVr/d4oWWIpGDIR3ytI254vg9Zuy4rn3Pyw3d2HH5AWbGCraMbUP9KsWzfgiKSWXwb2eITc2mlosV60a1wsnaMAKiZ5Gencu9uHRSs3KxNjPCOi/YsTIzen6u9GX0hv+tGN5efQ5RhFkDGjC4hWGdqJ/g/Hlo1gwUCrh5E2rW1KoqKwQ4+KEfXgZYO7Ty+D2+2XEdN1szDn/kpxdV6sL4JzCSCRsuYm6s5PBHfmWfNu3cGQ4fhjFjYMkS3QwSKXPe46ejBMWkMblrLa1EQEUzek0A+65H062uC78Nb1bi5TUakUbf7CM1K5eaLlbciU5DIcCfY1rTzPM5qOErJbJRaznzVmsPWlV/uAOdCY6nbQ0HsnI0jFl7nvhiagnVcLZm4+hWOFubcjs6jcG/ndadoWE5YWlqRP0qtrT2dqB+FVs8HCxxsDItMhDKyMjA09MTT09PMjKeIxE+AyQzM5O2bdvStm1bMjOfL0FNv9rOfNS9NgBf/n2Ni2EVr+NSIpo2hd69QaPR6g75VrOjs48zGlHyLjNEhuSp7z5IzmLdmbBy/7yS7pN9GrrR1KMSmTlq5u27VfYBfP219HflSggJKfv68lAqBCbkZa6WHw8uu0ZSMXjasXJaTx8UAuy/Hl0q8V6FQqCfbxWWDWvKvkkd6OdbGY0IEzdeqpD/6XnguQmGvvvuO9q0aYOFhQV2dnbFWmbEiBEIgvDIrVWrVmUei5FSwa9DmuCSl8WJTVNhZWqEl6MlEUmZvL/+QrHFDb2drNg0pjVutmYExaQxaNlpogqZinpeEUWR0NBQQkNDnx+9GQNFo9Fw8uRJTp48aVB2HMXlPT9vetRzQaXWMO6PC8Smlp8QqU7IF/hbtw5uSSfuSXkZgr8uRXDXAIXszIyVTMw7iS86HER6Obuwl3SfFASBz3pLNZZbLtwvu/ZN+/aSwW5OjjZo1RW9G7hR09mK1KxcVp0of92hpx0razhb8UZzafpv1u6bpTqGzuhXn+71XBEEgRn96uNub0FEUiafbX+ONMDKkecmGFKpVLz22muMGzeuRMv17NmTBw8eaG+7du3SyXgcrUxZMqwpRnl6N3uvRTOoeTUsTZScDk7gu53F94LxcrRk0+jWVLEzJzgunUHLTvEg+fm64pepOExNTdm+fTvbt2/H1NSwp1WfhiAIzH2tEd5OlkSlZPH+uuJfPOiFZs2gTx8pO/TNNwA0rGpH1zqGnR16tWlVPB0siE9XlftJvDT7ZBP3Srzc0A1RhJm7bpT9hJz33fD771LtkI5QKgTt9NiK4/f0lkmZ1LUWZsYKzocmsv96dJnWZW1mzIJBvigVAjsuP9CLarmh8dwEQ19//TWTJ0+mQYOSFV2ampri6uqqvdnb625+tLF7JWb0q699vODgHa0exeqTIWwugWmiu4MFG0e3omolc0LiM3hj6WkiXgBPMRndY2RkRL9+/ejXrx9GRs+nBIG1mTHLhjfDytSIsyElu3jQC/nTMBs2wA1prJO61gLg78BIgmLKKCJYDhgrFUzuJo1x6dFgkjPK7yRe2n3y454+mCgVnAiKx/9WGU19W7WCl14CtRoWLSrbuh7jpfpu1HaxJjUrt9xMt4vCxcaMke0kMcjZe26SW8YLiMbulZiSt398+c81gg0ww1mRPDfBUGnx9/fH2dmZWrVq8e677xITE1Po+7Ozs0lJSXnkVhiDW7jzep6WR4ZKzeaA+9r09Gd/XeVSeFKxx1rNXgqI3PP0i95Yekrv6qcyMuWFt5MVP74udWOtPhlS4arJJaJxY0mV2tFREmQE6lexpXtdF0QRFhw0TM+yPg0r4+MqncSXHjU85exq9haMaOsJwHe7bpT5BM9338GKFfDDD2UfXAEUBbJDq47fK9fAsjDGdPSmkoUxd2PT2ayDbM7Yjt60qm5PhkrNxI2XDM7GpSJ5oYOhXr16sW7dOg4dOsS8efM4d+4cnTt3Jjv72TUKs2bNwtbWVnurVow2zW/61ae2i6QYGhCaCIh0q+uCKlfDmLUBxKQWvwaoaiULNo1phaeDBfcTM3lj6SnDLzKVqVDUajX+/v74+/ujVj8nBqjPoHs9VyZ0lhzXP9l6hRsPDM/3S8vChXDvHrz8svap/OzQjsuR3C6rxUQ5oFAI2qv/VSdCyq0+qyz75PudalDJwpigmDQ2niujq72vL7zzDpRDxrRnPVcpsMzOZflx/Tja25gZM76zFJTN33+bzBJqvD2OUiEw/w1f7CyMuRKRrJti9ucUvQZDX3311RMFzo/fAgICSr3+N954g969e1O/fn369OnD7t27uX37Njt37nzmMtOnTyc5OVl7Cw+XfpyJ6apnLmNmrGTV2y2wzHNNX3AwiM559hbRKdmM++NCiSJuN1tzNo1pTXUnSyKTsxi45BS/HLyDWiMXuclAVlYWnTp1olOnTmRlPf/F9pO61sKvthPZuRomb7pUJpfucqVyZXjMZqJuZRt61nPNyw4ZZu1Qt7ouNKpmR2aOmkX+5ZPBKss+aWturM2mz99/W3dG1ioVFDETUBIUCkFbOL/qRAhJGc8+J5Qnb7Zyp2olc2JSs1mpg1owN1tzZueJOS49GsyxO2WcrnxO0WswNH78eG7cuFHorX79+kWvqJi4ubnh4eHBnTvPPmiZmppiY2PzyA3gmx3XCi3wq2xnzm9vPdR/+Pyva4zrWB1rMyPOhyby1b/XSjRWFxszto9ry8sN3VBrRObtv/1cT5sJgkDdunWpW7euQfsRPQ+8aNtSoZAKqh0sTbgZlcpPBwwzqNCi0cDWrXBN+k1P6iadIHddecDNKMPLbAmCwNQ8OYN1p8PKpRaxrPvk0FYeVHeUXO0X++tgOu/QIahVC8aOLfu6CtC9rit13GxIy87lt2Plkx0qaluaGim18hRL/O+SUMiFenHpUc+VoXninFP+DCy2PMyLhF6DIUdHR3x8fAq9mZnpzsMoPj6e8PBw3NzcSrzs/usxbL1QuEN9G29HPu0lmempRZH//X2NqT1qIwiw/kwY686ElugzbS2M+WVwY358vRFWpkYEhCbSa8Extl+8/9y1QlpYWHDt2jWuXbuGhcWLKf1eUbyI29LRypTv+kvNEUuP3C2VlkqFMX06DBwI//sfAD6uNvRuIHVFLTDQQK5tDQdaVbdHpdaUS/dbWfdJY6WCT/KOnSuO3yt7wObqCmFhsH27ZNehIxQKQZvFWn0iRCeByOMUZ1u+0qgydd1sSM3O5ddDusn2fd67LjWdrYhNzWbqlsvP3TmmrDw3NUNhYWFcunSJsLAw1Go1ly5d4tKlS6SlPayA9/HxYfv27YDknPzRRx9x6tQpQkJC8Pf3p0+fPjg6OtK/f/9SjeGrf64VmZl5t0N1etaXzAczVGp+PRTEmA7VtcufK+FBXhAEBjSpyu6J7WnqUYm07FwmbwpkgiyWJfOC0bO+K682qYpGhA83B5a7Nk6peestydF++3a4eBGAiV1rIgiw+2oU1yMNNDvUQ8ombD5/n3sFHMwNhW51XWjpZU92roa5e8tYu1K3LgwZIt3/4ouyD64APeq5UNfNhnSVutyyQ0WhUAja4HHt6RBCdPB9mpso+XlwY0yMFBy6GcOaUyW7eH/eeW6CoS+++ILGjRvz5ZdfkpaWRuPGjWncuPEjNUW3bt0iOVkS71IqlVy5coW+fftSq1Yt3nrrLWrVqsWpU6ewti65t0sTdzvSsnOZ8uelQmt3BEFgXp6GCkBMajYHrkfTvZ4LOWqRcX9cKJWGUDV7CzaNbsWUbrVQKgT+DYzkpQXHOBMcX+J1ycgYKl++UpfKtmaExmcwc5eBttvXrQuDB0v38wQZa7lY07uBlHFecPC2ngZWOE097Ons44xaIzJ/v+GNURAEPu8tSZNsvxjB5ftJZVvhl1+CUgk7d8Lp02UfYB6C8LB26PeT5ZMdKg7tazrSvqYjOWqRT7ZdRqODmtI6bjba2Y3vdt0w7IYGHfPcBEOrV69GFMUnbn5+ftr3iKLIiBEjADA3N2fv3r3ExMSgUqkIDQ1l9erVxeoOexoz+zfAytSIcyGJRbaoWpoasfyt5pgaSfO9QbHpJKarqO1qTVxaNmPXni/VVa+RUsGELjXZPLY1Hg6Seuig307zw56bBt8SmZGRQb169ahXr55sx1FGMjMz6datG926dXvu7DiKwsbMWGt+uu5MGEduG2gx5xdfSH5l//wD584BMLGLlB3aey2aqxFlVFQuJz7sLnWW/Xs5Uqf1TbraJxtUtWVAY8ns+tudZRRirFkThg+X7n/+eenX8xS61XWhfhUbMlRqlh3VbXaouMdKQRD4rl8DzI0lod91Z3Vju/JWG086+zijytUwYcNFsnIMtKFBxzw3wZC+qWpvwZd5gorz998u8mDn5WjJgkGNtY/PhSTiamOKnbkxgfeTGbr8TKm7EZq4V2LnhPa81rQqogiL/O/y6uKTBmkLkI8oily/fp3r16//5+aidY1Go+HAgQMcOHDgubTjKIo2NRwZ0cYTgGlbAvXWtVMotWvDm29K9/Nqh2q6WPNKo8oA/GiAmReAepVttfVN8/bpboy63Cc/6lEbUyMFZ+8lsK+MSst88QUYG8PBg1JRtY4QBIFJXaTAcs2pEJ0WHJfkWOnuYMG0ntL05/e7bnA/sewXmoIgMGdgQ5ysTbkTk8a3O68XvdALgBwMlYCBTavSs54rOWqRiRuLjph71nejcTU77eMjt+OoX8UGOwtjLoUn8cbS0huzWpkaMee1Riwa2gRbc0kj4uWfj7PhbJgcbLzgmJqa8scff/DHH388l3YcxeHjnj5Ud7IkOiWbL/4uWSdmhfHll5Kezd69cOwYABO61EQADt2MMVh9sMndamlNP3U1Rl3uk5XtzBnVXlJa/n53GbPenp6Skz1I35MO6VLHmYZVbcslO1QS3mrtSTOPSqSr1EzfphufMQcrU60g6h+nw9h7LarM6zR05GCoBAiCwMwBDXC0MuFubDpf/nO1yGVmDnjUPuR4UDwe9hY4WZtyKzqV18rYLv9SAzf2TGpPG28HMnOkH8PotedLHWTJGD5GRkYMHTqUoUOHPrd2HEVhbqLkx9cl76R/AiP5NzBS30N6kurVYeRIaNJEqk1BUtVuWV2y/Bmz9nzZFZXLgRrOVgxoIqnm6yo7pOt9cpxfDRytTLgXl17iLtwn+OwzKVidPbvM4ypIwdqhNadCidNTO7pCIfDDwIaYGik4dieOP0tgA1UY7Ws6aZt/pm25bJCiorpEDoZKiL2libamYdO5+ywvopugjpsN9SrbPPJc4P1kQMTFxpTQ+AwGLjnJnTLsaG625vwxsiWfvVQHY6XA/uvRtJt9mGlbAsu0XhkZfeJbzY73O0nq1P/7+yrRhhjg//gjBARAmzbapz7oJJ0gY1KzGfV7gEGKpU7sUhNjpcDxoDhO3o3T93CewMrUSOurtuDgnbLZX7i6Qrt2OhrZo3Sq7awVtFx6RH92J9WdrLT1YN/uuEFUsm5+Kx92r01jdzuSM3MYtuLMc6tzVxzkYKgU+NV2poWXdPX37c4b/HzgTqGpycEt3J94LjZVRWxKNi42pkSnZPP60lMElsDH7HEUCoF3O1Tnr/fb0tSjEiq1hj8D7tNt/lHeWX2OU3fj5emzciJDJZk3lsR2pSyo1WrOnTvHuXPnnns7jqL4oHMN6lexISkjh4+3GqD2iYWF1GZfgNbeDijynvK/Hcun267opNNHl1Szt9Ael+buvVXm7Voe++QbzapR09mKpIwcFupKOfvBAyl41REFs0NrT4dW2DHgaYxsV51G1exIzc7l0+26mS4zMVKwakRzarlIbgpDl595YWcd5GColPyQJ18O8OOB24xde/6ZMvJ9GlXG1OjJTa1QSG34jarZkZiRw5DfTnPqbtla5etVtmXruDZsHdeanvVcEQSpfmHwb6d55dcT/BMYaZCp++eR5Iwcfj54h7bfH2LGjusExVRMAXtWVhYtWrSgRYsWL4QdR2EYKxXMf90XEyMF/rdiy+5dVV6kpkomobt3o1AIeDtbaV/aFBDOl/8UrmCvD8Z3qoGZsYILYUkcvlU224ry2CeNlAo+7V0HkAQOy5yVOHgQvL1h6FDI1Z2GlV8tJ3yr2ZGVo2HpEf3VDikVUuGziVLSCfrrUuEiwcXFzsKEtSNbag3Eh604a5hNDWVEDoZKiaejJTVdHh7w9l6P5pVfT3Ar6slpKVtzY3rlCTEWJFcjMm3rZX56oxFtvB1IV6l5a9VZDpS1gwJJU2TJsKYc/tCPYa08MDNWcCUimQkbLtJxjj8rjt8jrQJF7QRBwMPDAw8Pj+feQiImNYtZu2/Q5vuD/Lj/Nol5KfyQuEcP1lk5amJSswiKSeNiWCJn7yUQGp9e5lbVF2lbFoeaLtZMyxMMnLHjOmHxBpiq//FHqX37449Bo6F+ZdtHXl57OrTsreI6xtnGjLdaewIwd+/tMmWvymuf9KvlRPuajqjUGr7fc7NsK2vRQvKWu30b1qzRzQB5NDv0x+nQMmdOyrIta7lYM6GLNLX81T/XdZapcrEx44+RLXHOq3Udseqc4YqilhJBNKRfpwGSkpKCra0tycnJWp+yfBb732X2Yz9Qc2MlMwfUp3/jqo88fyIojqHLz2BnYczkrrX4cf8tkjOlnamOqzXrRrXk421X2H89GqVCYO5rDZ9YR1lISFex9lSo1AaaJxJmY2bE0FYejGjjiYuN7mxPXkQyVLmcCU5g1Yl7nLgb/9Q6ECdrU6xNjUjJyiElMxdVIRk4e0sTXGzMcLM1w9XWDDcbM1xspcdutma42JhhbWZcnv/Sc4VGIzL4t9OcuZdAc89KbBzdGqXCgALBxETw8oLkZNiwgUWuzfhhz5MqyuP8vJnWo7bBBLGJ6Sra/3CYtOxcfh3SmJcbVtb3kJ7gemQKvX85hijC1nFtaOpRqfQr+/FH+PBDcHeXgiIddWOKosiAxSe5GJbEO229+CJPhkUf5Kg19Ft4gmuRKfSo58KSN5vqbH+7HZ3K60tPkZSRQ9saDqx4qzlmxkqdrLs8KOz8/ThyMFQEhW3M4Ng0Os878tTlJnetxcS8qwWQDubj1p3n8951qWZvwe3oVAYtO61VL21V3Z7lw5vxxT/X2JbngfZN33oMz7ty0xVZOWq2XYhg+bFggvMk3I2VAn19q/Bu++rUdi25OveLQnp2LqHxGYTEp0u3uHRC4jMIikkrtcqsIIC1qRE25sYoFQLRKVlk5RRvmtLK1EgKlGzN6FjLiT6NKv+ng9bwhAx6/nRUaiHu5cOYjt76HtKjzJgh6drUqsWBzYcYtf7SE2+p7mTJ72+3oJq94XjK/XTgNj8duEN1J0v2TeqAkdLwJgymbQnkz4D7NHa3Y9u4NqU/uWdmQo0aEBkJP/8MH3ygszEevR3L8JVnpa6uaZ1w1uNv9XpkCq/8epxcjajzIPdSeBJDfztNuibt5qMAADTwSURBVEpN97ouLBraxCD3GZCDIZ1S1Mbs9uMR7jxWK9KrgSuz+jfAzsKk0HWHxKXz2pJTxOa1ZNarbMPKEc1Z7H+X1SdDAPioey3e71RD51eSGo3IgRvR/HYsmHMhD7VGGla1palHJZp6VKKZhz2uti/WyTcrR01IfDrBsY8GPCFx6cSkFt4aa6QQEEXJhPdpVLEzZ/4bvlibScGPjZkRliZGKApkMERRJDkzhwfJWUSlZBGVnCXdT84kKiWbqORMHiRnkZr1ZApaEKCNtwN9favQs74rNv/BzNGf58KZtvUyJkoF/3zQFh/Xwg9wFUpqqtRuHxdH3M+LaRbxqNr9B529mdS1tmFltIDUrBw6/HCYxIwc5gxsyGvNSqfSX55Ep2ThN8efzBx12U/uS5dKbvbOzhAcLE2d6QBRFBm45BTnQxMZ0caTr16pp5P1lpYf99/m54N3sLc0Yf/kDjhY6U6T7OTdOEasOocqV8OAJlWYO7DRI8c5Q0EOhnRIURtz7t5b/Hr40U6HIS2q8V3/BsUKYCKSMhmw6ATRKdKJ2NnalNVvN2fPtWh+znOXHt2hOtN7+ZRbav1CWCLLjwWz52oUj8/+VLEz1wZHTT0q4eNqXaqrgMzMTDp06ADA0aNHMTc318XQn4ooikSnZBMcm8bduHTuxqQRHJdOcGwaEUmZFLbHV7IwxtPREk+HvJujhfa+rYUxoigSl6biTnQqQbFpBMWkcSc6jTsxaaRm5XDjm546OSikZ+dqg6Xb0ansuPyA86FS0Crmqoj/9wecrExZsGw1PRpVw9TIcFPVukQURUb9HsDBmzHUdbPhr/fbYvKU5gS9MW8efPQRoocHDQb/jIO9NW62ZpwOTqCFlz2bRrcymCmygiw7epeZu25Sxc6cQx91LPH+lJWVxaBBgwDYuHEjZma6v4jKz2BVszfnwJSSj1FLTg74+EiB0MyZMH26zsZ4/E4cb644g4mRgqNTO5XqYlJXx0pVroY+vxznVnQqfRpV5pfBjYteqATsvx7N2D/Oo9aIjGjjyZd96hrcvi0HQzqkqI155X4yfX49Tksve15pVJnP/76KKMKUbrWY0KXmU9b4JDEpWby+9BQheYWhZsYKfhnchLCEDGbskKTQBzWXAqzyvKqMSs7izL14LoQmEhCayI0HKU8ER5YmSnzd7WjqYU9Tj0o0drcrVoYiPT0dKyup4DwtLQ3LMl6NiaJISlYu9xMzuBsrBTrBsekEx6VxLzaddNWzi5RtzIyo7mRFdUdLPJ4S8JSWpAwVNmbG5XaFFJ6QwT+BkWw9HcThT3sBUG3yFuxsrHipgRuv+FamlZeDQV6h6ZKY1Cx6zD9KYkYO4zvV4KO84mqDIDNT6lh68IDbn8/C66tpxKZm4zfXH1WuhhVvNaNLHRd9j/IJsnLUdJxzmOiUbD57qQ7v5ontFRdd/76fRoYql05z/YlOyebTl3wY3aEM06R//AGjRkmB0Jdf6myMoijy+tJTnAtJZGhLd77r36DohR5Dl9vy8v0k+i86iVojsnRYU3rUe7KRpyxsv3ifyZsCAUm7Kl8bylCQgyEdUtTGFEWRDWfDeaN5NZQKgbWnQvhfnn3A7Fcb8EbzJzWGnkZCuoohy09z84HUjSYAH/fywd7CmE+2XUEjQu8Gbsx7vVGFFaylZ+dyKTyJ83nB0cXQRFIf6yAQBKjtYo1vNTsqWZpgZWqEhYkSSxMjLEyVWJpKU0XkZtGylmTAGB2fhKOdzRPTR6nZucSnqUhIzyYuTUVCunSLS8smIV1FfJqK+HTp9YR0FTnqZ++6SoWAu70F1R0t8XaWAp/qTlZUd7LEwdLE4K5gSoJKpWLWgiVcCk8iwqklMekPvxNXGzNe8a1MX9/K1HWzea7/z8LYfeUB49ZdQCHAlnFtaOJehqJaXbN0Kfj7wzffSGahSLYSS47cpaazFbsntjfIGos/A8KZtuUyNmZGHJnaiUqWhU/zFyQnJ4fVq1cDMGLECIyNy2cKd3NAOFO3XMba1Aj/qX6ln/pRqyXNoaq6a1LJ53RwPIOWnUYhwO6JHUpch6nrwHL2npss9r+Lk7Up+yd3KLJ8o6T8fjKEL/+Rznn/e7kuI9t56XT9ZUEOhnRISTZmPnP23mTh4bsoFQK/DW9KZ5/iXQmmZOUwYuVZLoQlaZ97tUlV/Go78uGfl1GpNVR3tGTOaw1p6mFfmn+nTKg1IndiUjkfmsj5kETOhyUSWsw2Z40qi/D5AwEpm6EwMcPCRImFiRFKBSSm5xTaffUsKlkYa7M8BYMed3sLw5o+KSc0GpEz9xL4+1IEu648IKVArVENZytea1qVEW09X8hptMmbLrH9YgRejpbsmtAecxPD/R+TM3PwmyPV5Xw/oAGDniLEqm/UGpHePx/jZlSq3juinoVGI/LKwuNcjUjhzVbufNuv5JmXimDM2gD2XoumXQ1H1o5sUaKLEl0HQ1k5anr/fIy7sekMaFKFH1/3LdP6nsYvB+8wL8+c+IeBDXndQOrO5GBIh5QmGBJFkY82X2brhfuYGSvY8G4rGhfzyjVDlcu7awI4EfRQfLGZRyVGtvPiq3+vEZ2SjSDA2228+KhHLSxM9OtNFZOaxYXQJK5HJpOanUtGtpp0VS4ZKjVp2blkqKTnUtJSOf/1K8DDYOhpWJoosbcywcHSFAdLExysTLB/5L4Jjlam2FtK9w25rbOiyc5V438rlr8vRXDgRozW4NLbyZLvX21Ic8+KD6DLk+TMHHr+dJQHyVmM6Vid6b3q6HtIT0cUQRBYefwe3+y4jrO1Kf5T/fT+230ax+7EMmzFWcnWZ3JHPB11P91VVs4Ex/NGGTIvT67wDJw6BZMm6WR8AGHxGXT98QgqtYbfhjejW93iT42Wx5Tj+dBEBi45iSjCyhHNin2BXlxEUeS7nTdYfvweCgEWDW1Cz/puOv2M0iAHQzqkNMEQSFoPo34P4MjtWOwtTdgytjXVnayKXhApkn9/3QUO3nyoClvFzpwFg3zZdC6czefvA+DhYMHsVxvSqrpDyf4pPVDwBx6bkAzGptrASa0RqWRpgoMc3BQLjUbDjRs3AKhTpw4KxZMZsJSsHHZefsC8fbe1BpLDWnkwrWftF0q/6MD1aEatCZAMXce3pd5jYod6JSQE/vc/cHODH35Alauh649HCEvIKFFNYUXz1sqzHLkdy0sNXFk0tGmxlinOPqlLxq49z55rUbSv6ciad0qWeXmEW7ekYmqFAq5ehTq6C6jzp0Y9HSzYO7lDsbOz5VV/9e2O6yw/fg9XGzP2Temg825UURT5ZOsVNgWEY6JUsGJEM9rXdNLpZ5SUkpy/X/x5BD1hrFSwaGgTGla1JSFdxVurzhZbDdTMWMmSYU3p3fBhZB2RlMlbK8/Ss74rq99ujputGaHxGQxadpr//XX1uVIDNTdR4mhliruDBXXcbKhfxZYqduZyIFRMMjMzqV+/PvXr1yczM/Op77ExM2ZwC3cOTunIG3kp67WnQ+n241GdKJwbCl3rutC7gRtqjcj0bVcMyxT1xg2pUPfnnyE8HBMjBVPzir2XHrlLbBFSDvri05fqoBBg15UozocmFGuZ4uyTumT6Sz6YKCWXdv9bsaVfUe3a0LcvaDSSu70OGd+5Bo5WpoTEZ/B7nlSKPvmwe208HSyISsli5s4bOl+/IAjMHNCAlxq4olJrGL3mvLYD9nlADobKEUtTI1aOaI6HgwXhCZm8s/pcsS0wjJUKfh7UmIFNHxb4pavUjFoTwO3oVPZMas/gFg9Pct3nH+X4HcNzny6Io6Mjjo6O+h7GC0Fxt6WthTGzBzZk/aiWeOQdCEetCWD8+gsGezIuKV/2qYu1mRGX7ycbxElHS8+e0LEjZGfDV18B8HJDNxpVtSVdpWbBwdv6Hd8zqO1qra35KImFSEX+vj0cLBnR1hOAb3deJ6csfoszZ0qZoe3b4fRp3QwQSTQ130bml4NB2gxtcSiPbWluomR2nqfmxnPhHLtThiDyGSgVAvPf8KV9TUcyc9S8veosl+8n6fxzygM5GCpnHK1MWfNOCxwsTbgakcK4P85razmKQqkQ+OHVhgxv7aF9ThRh5q6bfLvjBl+9Uo8/Rrakip05EUmZvLniDNO3XSblGYax+sTS0pLY2FhiY2PLpe32v0RptmWbGo7smdiBMR2ro1QI7Lj8gK4/HmFzQLhB+WWVBmcbM2290Nx9t4hIKv/MRLEQBJg1S7q/ejXcuIEgCEx/SRrrhrPh3I2tGHPfkjKlWy3MjZVcDEti15WoIt+vj9/3+M41sLc04W5sOuvPhJV+RXXrwltvSfc/+YRChchKyMCmValfxYbU7Fzm7Ste8Fue27JldQfeyjuffLL1Srn4U5oaKVk6rClNPSqRkpXLa0tOsTnAQA2WCyAHQxWAh4Mlq95ujoWJkmN34vh46+VimyIqFAJfv1KP+W80wtr04TTS5vP3eXP5Geq4WbN3cgdtwLThbDg95h/Fv4wu1DIvHuYmSqb3qsPf77elrpsNyZk5TN1ymWErzhqm+WkJGNS8Gs09K5GhUvO/v64aToDXuvXDaZjPPwegVXUHutZxRq0R+aGs5qPlhLONGWM6SlpDs/fcJDu3bObC5YGNmbFW12b+gdskZ5ThIvDrryWfsiNHYM8eHY1QOn5/8bKkRL3pXBjXI1N0tu7SMq2nD1UrSRfQX5TTb8XCxIhVbzeni48z2bkapm65zGfbrxjkfpSPHAxVEA2r2rFoaBOUCoHtFyOYvbf4B0FBEOjfuCoHPvSjU+2HBWnnQhLp/fNxIhIz+aZvfTaOboWHgwUPkrMYseocH20OLNsBQuaFpH4VW/4e35aPe/pgaqTgeFAcPX46yvJjweSWZbpBjygUArMGNMBYKXDoZkyxshkVxnffSdMw27bB2bMAfNzTB4UAe69FExBSvLqcimZ0h+o4W5sSlpDB2lOh+h7OUxncvBq1XKxIysjh50N3Sr+iatVg/Hjp/kcfScGrjmjhZU/vhm5oRPhmxzW9B+qWpkbMGdgIpUJg28UIfjsWXC6fY2NmzG/DmzG5ay0EAdadCeONpad5kGwgmdvHkIOhCsSvtjPfD5B0MZYeCWbViXslWt7FxoyVI5rzw8CGWOQVG0elZPHyL8f49dAdfKvZsXtie95p64UgwJbz9+k2/4hBFMxmZmbi5+eHn59fhRRYvshkZWUxdOhQhg4dSlZW8YryH8dYqWCcnzd7JnWgVXV7MnPUfLvzBgMWnzSIq9fSUMPZmvf8agDw5T/XDOdCoF49GD5cup+XHarpYq0VZJ25q/h1ORWJhYkRH3aXMi+/HAoiKePZZsW62CdLg5FSwWe9JT2kNadCuJdnPl0qpk8HV1eIjoZ7JTs2F7nqXtKFx+ngBPZeKzxQr4hjZWtvB/7XW5qunbX7Jodvls9MgkIhMLFrTVaOaI6tuTGXwpN4+efjnAwyvPpWubW+CErbWl8YCw8HMWfvLQQBfhlcOtPByKRMpvx5idPBD68qXWxM+ax3Xfo0dON8aCLTtlzWOtP3863M9Jfq6M31vCLk+v8rlIe1yaZz4Xy36wapWbkYKQTGdKzOB51rPncdftm5anotOEZwbDqDW7gza4CBiPKFhsKAARAeLqlT161LTEoWHfPMRxcPbUKvBvrXZXkctUbkpQXHuBWdyqh2Xnz+8tOFGPX9+x6x6iz+t2LpVteF34Y3K/2KTp6Etm3B3R0OHZKsVXTEvH23+OVQENXszdk/ueMzf1sVtS1FUeTT7VfYcDYca1Mjtr/fhhrOZdRsKoSw+AzG/nGe6w9SUAhSdnR0h+rlqpIvt9YbOO/5eTOslYfkYbYpkNPB8UUv9BiV7czZ8G4rvu1XHxOltDNFp2QzYcNFBiw6iUIhsGtie8Z0qI5CgL8uRdLm+0O8uyaAwzdjDKsFWaZEmJiYMH/+fObPn4+JSdml9QVBYFBeG37Peq7kakQWHr4rnQSjUnUw4orD1EjJzDw/qA1nwzhnKFNQHh6SF1ZsLHTqBFev4mxjpvUAm73nZtk6osoJpULg07wMwu+nQp5ZW6brfbKkfN67DkqFwP7r0Zy8W4asQ6NGUuF7WBh06AB3yjD19hhjO3rjYmNKeEImK0s4K1AeCILA16/Up4WXPanZuYz8PaDQ7F9ZcXewYNt7bXi1SVU0opSRGvfHBVINpOFHzgwVQXlkhkC64np/3QX2XIvC2syIzWNb4+NauvWHJ2Tw4Z+BnH3swP9Ko8pM61mbuDQV3+28zrmQh5oPlW3NeL15NV5vVo3KduXnIJ+Pvq8cZYrPnqsP+OLva8SkZmNrbsyqt5sblvdXMfhk62U2ngunhrMVOye0Mww7klOnoE0b6X6lSuDvT1rtuvjN8ScuLZuvX6nHW2089TrEZzFsxRmO3Ymjd0M3Fg5pou/hPJUv/r7KmlOh1HGzYccH7Upval27NtzO6/xydZUyebV1Ywa87cJ9pvwZiKWJksMf+eH8lEx9RR8r49Oy6bvwBPcTM2lbw4HVb7fAuBy980RRZN2ZML7+9xo5ahFvJ0uWDmtaLlkpOTP0HKBUCPw0yJfmnpVIzcrlzeVnSi1QVc3ego2jW/H1K/UwK+DH9U9gJF3mHWH/9ShWvd2C/ZM7MLKdF3YWxkQmZ/HTgTu0m32Id1afY9+1qOe2eFZGt/Ss78a+yR1o4m5HcmYOQ387Uy6aJOXJ9F51cLQyJSgmjSX+5VMgWmIaFJiyS0yETp2wunGVSV0lJeoFB+8YzFXy43z6Uh0EAXZefsCFMMMU0pvUtRbWZkbceJDClvNlaOX29X14PyoK/Pzg+vWyDg+Afr5VaFTNjnSVmjl7b+lknWXFwcqU34Y3w8JEyYmgeL7doZv/9VkIgsCbrTzYNKY1rjZm3I1Np++vJ9h15UG5fm5RyMGQHjEzVrJ8eHPqutkQl6Zi8LLTbM2z2igpCoXAW2082TOpA809H17FZ+dqWHj4Ln5z/DkfmsinL9Xh9PQuLBjkS6vq9mhEOHQzhtFrz9N29iHm7r1FeMLz3Wb9oqPRaAgJCSEkJASNDrteCmJnYcIfo1pqxdPeWX2O3Xo+WJUEWwtjvswzGl14OIigGAPQ87Gy0rrYA5CQAF268IZRHNWdLElIV7H0iIEEbo9Rx82G1/IEYGc+RYixIvbJorC3NGFinsXJnL23S6+h0/QxC5KoKO3UZllRKATtfrnlwn2u3E8u8zp1QR03G+a/4QvA76dCy6bbVEyauFdix4R2tKpuT7pKzXvrLjBr1w29XZTLwZCesbUwZvPY1vSo54JKreHDzYHM2n2j1DU9no6WbBzdmv+9XFdbSyQIEJeWzSfbrvDSz8cICEmkr28VNo5uzaEPOzKmQ3UcLE2ITsnm18NBdJhzmGErzrD7ygODrGP4r5OZmYmXlxdeXl7l2plnYWLE8rea0buBGzlqkffXX2DTufI/SOqKlxu60am2Eyq1hk+3XSm2tle50uSxKaaEBIy7deWTmpJp6/LjwUQlV1w3VkmY0q025sZKAkITn+iIqqh9siiGt/bE08GCuLRsFh0OKt1KGjd+8rmYGCkguny5bANECgL6+VZGFOHrf/Xfap9Pj3qufJTXPfjF31dLVctaUhytTPljZEvG5NXOLT0azJsrzpRIrVtXyMGQAWBpasTioU2Z0FlqC156JJjRawJKnTJXKgRGtvNi96QONHa30wqqCsCtqFTeXHGGjnMO8/vJEKzMjJj+Uh1OTe/CwiFNaF/TEVGEY3fiGLfuAq1nHeT73TcJKUvLah4WFhZYWFiUeT0yFbctTY2U/Dy4MYNbVEMjwsdbr7Ds6N1y/1xdIAgCM/rVx9xYydmQBP40BBXcglMw+SQl0e3dV2lexZqsHA0/7jeM6ZPHcbV9WPD9zY7rTyjpG8Lv28RIoVX4/u1YcOmy3E/7jkxMYORISY9IB3zcy0cbWO64/GTGVV/b8v1ONejTqDK5GpFxf5yvkFkCI6X0nS0a2gRLEyWngxN4+efjFT4dKxdQF0F5FVA/i38CI5m6OZDsXA21XKxYPrw57g6l/1GoNSIrjgez2P8uic/QXXG1NqWJZyV8q9nhW60SdubG/B0YwZ8B9x/xr/JwsKC2izU+rtbUdrWhtqs1ng4WGJVjsZ2MYSCKIt/vuamdxnnPz5upPWqXa1usrlh+LJhvd97AxsyIAx92xNlaP/ISgKRu3KvXo8/17w8//sgFha3UCSrArontS91QUZ6kZ+fSauZBUrNzGd2hOp++pDuXd10hiiKvLTlFQGgirarbs3F065KvpGpViIiQ0uqiKBW+Hz8uPdYRCw7cYf6B21SxM+fgh89uta9oMlVqXl96iisRydR2sWbre22wMjWqkM8Oikll9NrzBMemY6wU+KJPPd5s6V7q40xJzt9yMFQEFR0MAQSGJ/HumgBiUrOpZGHMoqFNae3tUKZ1ZuWo+Scwkt9PhnCtCFE9pUKgdwM35r3eiIM3Yth4Lowjt2OfatljYqSgprMVtV2lIMnH1QYfV2ucrE2fuQNn5ai5n5hJeGIG9xMyeKmBGw5WpmX6/2QqhsX+d5mdZyExpKU7M/rWL33XTgWRq9bQf9FJrkQk83JDN37VZzdUdLTUoQTg7CxNv7z+OmzaBMB7686z60oUnWo7sertFvobZyEsOHCb+QeklvM17zSnQy1nPY/oSa5FJtP75+OApGczzq+EekGvvCJlg8aNg969JbPdM2eghe6+k0yVmi7z/IlMzmJKt1pM6FKz6IUqiKjkLPr8epzY1Gy61nFh2bCmKCrod56alcO0LZfZfVWaim3ibsfUHj6lOgfKwZAO0UcwBNLOOHptAJfvJ2OkEPimb32GtHQv83pFUSQgNJEl/nc5WIjq6Ng80T3LvCuChHQVNx+kcDMqlVtRqdyMTuV2VCqZOU/3mrE1N6aKnRmVLEwwMVKg1ogkZ+YQmZRJbNpDLQtBgGtf98DCpGKuPGTKzvozYXz21xVEUarL+fF1X0yMDDs7eDUimVd+PY5GhFUjmtPJR48n8Ndfh0mTpIJqX1+pRuXYMbCwICQuna4/HiFXI7J+VEva1KgYF/iSkJ2jxueLPYgiGCkE1rzTwiDH2fGHw4TmTfPMe70hrzYpwRRXcjLY2kr3lyyRzFw7dND5GP8JjGTChouYG0ut9q62esxaPsbFsETeWHYaVa6G9/y8mdbTp8I+WxRFfjsWzI/7b5OVI03HtqvhyEc9auNbza7Y65GDIR2ir2AIpAzK1C2X+TcwEoARbTz5vHcdnU1Lnb0Xz/AVZ8nKfXqRtKmRAr/aTrzUwI0udVyeSJVqNCLhiRnaAOlWVCo3olIIiUvn8VpVMVdF7PaZADj1/xTBSBJmUyoEPOwtMDNWYmaswNxEibmxElNj6a+ZsQJz44fPAahyNeSo828iKrWGnNzHHuffch99nKsW0YgiIlL2WyOK2oyX+Pjz5BtYS+8R895jYWKEk7UpLjamOFub4WxtiouNGU42ptr79hYm5XYllZ2dzfg8H6Vff/0VU9OKz6rtuBzJ5E2XyFGL+NV2YvHQppibGEaa/1l8t/M6vx27RxU7c/ZN7qAN9PXKyZPQqpXkXZbHV/9cY/XJEOpXseGf99tV2BV5Seg+/wi3o6UOPWOlwC9v1GfrLzMA/e2Tj/ProTvMLeAUP6NvPYa19tTfgJ5CwSm9/o2rMP8NX7Kysnj11VcB2Lp1K2Zm+guQtl+8z+RNgQAsGORLX98qFfr50SlZ/HooiI3nwshRSwfqbnVd+LB7rWJNI8vBkA7RZzAE0o9l4eEg7Y+6fU1Hfh3cBFsLY52s/8aDFF5fcpLU7MLdhE2MFHSo6UTvhq50qeOCjdmzPz8rR01QTBpX7ifz16UIzocmosrKJHz+QACqTd6CwsRwroDKAyOFgKOVKc75AVNeoORsbYarrSm+1Sphb1k6pV5DEbD0vxXD2D/Ok5WjoZlHJVbk+Q8ZKhmqXLr9eJSIpMxCrSX0TXxaNn5z/EnNztXLCag4fLvjGsuPh2gfK3KzuTdPOoEbiqhqYHgSfReeeOS5qT1q856fd+lr3SIjwcZGyurpiMv3k3jlV2mc295rQ20HE4P4fecza/cNlh4JxtRIwZ9jWtOoBJkZXRGekMFPB+6w/eJ9NKI0o9C3UWUmda2Fp+Ozt48cDOkQfQdD+ey5GsWUPy+RoVJT3dGS5W81o7qTbn6QF8ISeXP5GTJUarrWccHcRMmuy5HkBeIoFcIjrf4mSgXtazryUgM3utZ1KfIEmJady+L915jWxxd4NBga1KwqA5pWIytHTWaOmqy8W6ZKTVauRvqb/1yOGoUgYKxUSDcjAZP8+0oFxkoBE6PHHmvfKz02UihQCNKPSRAEBAr+BQEh77Vn3AdSs3OJSckmNjWL6JRsYlKziEnNJibvfny66qn1VQURBGhU1Q6/2k741XamYRXbYmcAVCoVc+bMAWDq1Kl6sT/IJyAkgbdXnyM1K5c6bjaseacFTtb6zwo8i8O3Ynh71TkUAvz9fjsaVLXV95Ak0tNh+XJ47z0wNtb6FxpacW0+/wZG8sGGi9rHojqH1LPb6FHPld9/+lav+2Q+qlwN9b7co80o5DO6Q3Wm9/IpeUC0eLHkaP/RR/D11zocKXy0OZAt5+/jW82OtcMbYWMjqTEbQjCk1oi8uyaAQzdjcLY25d8P2unN4zIoJpUf999m1xWpnshIIfBas2pM6FIDN9snnRReuGAoJCSEGTNmcOjQIaKioqhcuTJvvvkmn332WaE/OlEU+frrr1m2bBmJiYm0bNmShQsXUq9evWJ/dv7GjI5LwNlBv5YE1yNTeHdNABFJmdiYGbFwaBPa13TSybqP34ljwsaL7J3UASdrU6JTslh3OpT1Z8OIK1Dj83hgZKwUaFvDkRZe9ng5WOLlZImng+UTB++C2Yxa07aTLUgB1MIhTejd0PAMKstCjlpDfJqKmILBUkp2XsCURWhCxhMigPaWJnSo6YhfbWc61HIqddZIH1yPTGH4yrPEpWXj6WDB2pEtqWZvuBIKEzZc5J/ASOpVtuHv99vqvxtSFCWhv4sX4ZdfYPx4MlVqOs31Jyoli89eqqNtaTcUwuIz6DDn8FNf+3lwY15pVHLz6fJgwKITXAhLeuL5Qc2r8V3/BiUr/t+yBV57DSwsJM+yyrr7H2NSsug01590lZpZr9RkSFvJ/sMQgiGQipoHLDrJnZg0GlW1ZdOY1noN0K9GJDN33y38b0nK+CZGCoa18uA9P+9HmnFeuGBoz549bNq0icGDB1OjRg2uXr3Ku+++y7Bhw5g7d+4zl5s9ezbfffcdq1evplatWnz77bccPXqUW7duYW1dPB+U/I3ZY/YeVo7uUCE+XoURl5bN2LXnCQhNRKkQ+Lx3HUa08dRJi3NsavYTV/XZuWp2Xn7A+jNhXApPIreYwnWVbc3wdLTE09GS6o6WuJjDK82ljo6QqHjWnIti7elQdk1oTw1n3aWcnxceJGdy5FYs/rdiOREUR2oBtVxBgIZV7fCr5YRfbScaVrUz+I6tkLh03lxxhvuJmbjamLF2ZAtqupSfA3ZZiE3NpuuPR0jOzDGcQGPxYikr5OgIQUFga8ufAeFM23IZGzMjjk7rhJ2F4QTIoijSeMZ+kgrIdViYKPmoe23ebOVhMAX13/x7/QlTVE8HCz59qQ7d6rqU7LgpipKj/alTkubQ8uU6HWt+NtDJTCTg6z6A4QRDAKHx6fRdeIKkjBz6+lbmpzd89S6tcS4kgTl7bml9OS1NlIxs58WoDtWxMTN+8YKhpzFnzhwWL15McPDT5etFUaRy5cpMmjSJjz/+GJAKT11cXJg9ezZjxowp1ufkb0zfz7Yzf1gb/Grrv400O1fNZ9uvsiXPumNwi2p8/Ur9cj8AZeWouRKRzIXQRC6EJXIhLOkRHaLC0KiytDVDbb/dibebIy42pvi42uDtbIWXgyWVLI0xM1ZipBD0/iOrSHLUGs6HJuJ/Kxb/WzHcfMwpvpKFMR3yAqMONaWsUVyc5Mzt6OhoMNsqKjmLYSvOcCcmDTsLY35/u4Ve6guKw5/nwpm29TLmxkr2Te6g/0xWTg40bAg3b8K0aTB7NmqNSO+fj3EzKtUgNX3yzVsVgjSV4maaw7b32uDm4mww+2R+t1ZBtr/XhsalNR7ON9sVBDh//ulq1aUkK0dNt/lHCI1K1B4rDSkYAjgZFMewlWdRa0Sm9azNe3419D0kRFHk6J045u69xZUIyd7E1tyYsR29GVDfHlcn+xc7GPr888/Zs2cPAQEBT309ODgYb29vLly4QOMCO2zfvn2xs7Pj999/L9bn5AdD9yJi8KysmykpXSCKIsuP3WPm7huIIrTwsmfJm00rdHpFFEXuJ2ZyISyRi2FJXAhL5FpEMo9N0SMIYKxRceeHAUDRBdQKQVI+NjVWYGqkkO4bKfIe593Pf/6x9xgpFdransdrfXhabRAP64co8NqAJlX0Ni8elZzFkdsx+N+K5fidJ7NGdR1N2PVRd8DwDpaJ6SpGrDpL4P1kLE2U/PZWM9p4G17btSiKDP7tNKeDE+hYy4nVbzfX/wl8xw7o00fSt7l+Hby98b8Vw4hV5zBRKjj4YUf9B20FmLfvFiHxGYz382bQYn8uzegLGNY+GZ6Qgd9cf95s6U50SjZ7rkXRwsueTaNblf77HjIENmyA9u3hyBGdCjHuvvKAMatOGmwwBLD2VAj/+/saggC/DWtG17ou+h4SIP2m916LYu6+29oyBHvjXC5+2+/FDYbu3r1LkyZNmDdvHqNGjXrqe06ePEnbtm2JiIigcoG53dGjRxMaGsrevXufulx2djbZ2Q+zHcnJybi7u7N8zzlea11Lt/+IDjh6O5ZpWwJJy1bT2tuB34Y30+t4MlVqrkUmE3g/icDwJALDk4lPV6FRZRGxaDgA/5y8QkymQGhCBqHx6YTGZxCekGlQPmjr321Jw6p2+h4GOWoNgeFJHL8Tx7GgOG5FpT6yLSMjIw3uYJmWncvEDRc5cy8BU2MFeya0x0lPgWVh3ItLY8DiU+TkapgzsCG9Gui5dk0U4dVX4eBBSehv/XpEUSpePR2cwEsNXPlhYCP9jrEAqlyNNhu95tgtPnhZEiS8GRyKm4OdHkf2EFEUCYlPx8vRisikTF7+5TiqXA3z32hEt7qupVvp/ftSjVdWFqxeLSmI63C8w5Ye5d+PXwEM8/cNMGPHNTadu4+FiYKdE9rjpE9V98dQa0R2Xo5koX8Q4VEJRCweQVJSEra2RTRLiHrkyy+/FMmTb3nW7dy5c48sExERIdaoUUMcOXJkoes+ceKECIiRkZGPPD9q1CixR48eZRqTfJNv8k2+yTf5Jt+ej1t4eHiR8YheM0NxcXHa2odn4enpqRWdioyMpFOnTrRs2ZLVq1ejUDy7Rqa002SPZ4Y0Gg0JCQk4ODjoP41egJSUFKpVq0Z4eLheW/5lno38HRk+8ndk+Mjf0fOBIX5PoiiSmppK5cqVC40XAPQqwero6IijY/HqCSIiIujUqRNNmzZl1apVRf5jXl5euLq6sn//fm0wpFKpOHLkCLNnz37mcqampk+op9rZ2RVrjPrAxsbGYHY8macjf0eGj/wdGT7yd/R8YGjfU5HTY3kYRv9jEURGRuLn50e1atWYO3cusbGxREVFERUV9cj7fHx82L59OyAVxE6aNImZM2eyfft2rl69yogRI7CwsGDIkCH6+DdkZGRkZGRkDBADMOcpmn379hEUFERQUBBVq1Z95LWCs3y3bt0iOTlZ+3jatGlkZmby3nvvaUUX9+3bV2yNIRkZGRkZGZkXn+ciGBoxYgQjRowo8n2Plz8JgsBXX33FV199VT4D0yOmpqZ8+eWXBmGIKPN05O/I8JG/I8NH/o6eD5737+m5bK2XkZGRkZGRkdEVz0XNkIyMjIyMjIxMeSEHQzIyMjIyMjL/aeRgSEZGRkZGRuY/jRwMvUBkZ2fj6ys5CV+6dEnfw5HJIyQkhJEjR+Ll5YW5uTne3t58+eWXqFQqfQ/tP8+iRYvw8vLCzMyMpk2bcuzYMX0PSSaPWbNm0bx5c6ytrXF2dqZfv37cunVL38OSKYRZs2ZpZW2eN+Rg6AVi2rRpj/iwyRgGN2/eRKPRsHTpUq5du8b8+fNZsmQJn376qb6H9p9m06ZNTJo0ic8++4yLFy/Svn17evXqRVhYmL6HJgMcOXKE999/n9OnT7N//35yc3Pp3r076enp+h6azFM4d+4cy5Yto2HDhvoeSqmQu8leEHbv3s2UKVPYunUr9erV4+LFi/j6+up7WDLPYM6cOSxevJjg4GB9D+U/S8uWLWnSpAmLFy/WPlenTh369evHrFmz9DgymacRGxuLs7MzR44coUOHDvoejkwB0tLSaNKkCYsWLeLbb7/F19eXn376Sd/DKhFyZugFIDo6mnfffZe1a9diYWGh7+HIFIPk5GTs7e31PYz/LCqVivPnz9O9e/dHnu/evTsnT57U06hkCiNfUFf+3Rge77//Pr1796Zr1676HkqpeS5EF2WejSiKjBgxgrFjx9KsWTNCQkL0PSSZIrh79y6//PIL8+bN0/dQ/rPExcWhVqtxcXF55HkXF5cnbH5k9I8oikyZMoV27dpRv359fQ9HpgAbN27kwoULnDt3Tt9DKRNyZshA+eqrrxAEodBbQEAAv/zyCykpKUyfPl3fQ/7PUdzvqCCRkZH07NmT1157jVGjRulp5DL5CILwyGNRFJ94Tkb/jB8/nsuXL7NhwwZ9D0WmAOHh4UycOJE//vgDMzMzfQ+nTMg1QwZKXFwccXFxhb7H09OTQYMG8e+//z5yAFer1SiVSoYOHcrvv/9e3kP9z1Lc7yj/IBEZGUmnTp1o2bIlq1evRqGQr0X0hUqlwsLCgs2bN9O/f3/t8xMnTuTSpUscOXJEj6OTKcgHH3zAX3/9xdGjR/Hy8tL3cGQK8Ndff9G/f3+USqX2ObVajSAIKBQKsrOzH3nNkJGDoeecsLAwUlJStI8jIyPp0aMHW7ZsoWXLlk8Y28roh4iICDp16kTTpk35448/npsDxItMy5Ytadq0KYsWLdI+V7duXfr27SsXUBsAoijywQcfsH37dvz9/alZs6a+hyTzGKmpqYSGhj7y3Ntvv42Pjw8ff/zxczWlKdcMPee4u7s/8tjKygoAb29vORAyECIjI/Hz88Pd3Z25c+cSGxurfc3V1VWPI/tvM2XKFIYNG0azZs1o3bo1y5YtIywsjLFjx+p7aDJIRbnr16/n77//xtraWlvLZWtri7m5uZ5HJwNgbW39RMBjaWmJg4PDcxUIgRwMyciUO/v27SMoKIigoKAnAlQ5Mas/3njjDeLj4/nmm2948OAB9evXZ9euXXh4eOh7aDKglTzw8/N75PlVq1YxYsSIih+QzAuNPE0mIyMjIyMj859GruCUkZGRkZGR+U8jB0MyMjIyMjIy/2nkYEhGRkZGRkbmP40cDMnIyMjIyMj8p5GDIRkZGRkZGZn/NHIwJCMjIyMjI/OfRg6GZGRkZGRkZP7TyMGQjIyMjIyMzH8aORiSkZEpE35+fkyaNEnfw9AJZf1fVq9ejZ2dnc7GIyMjUzHIwZCMjEyZ2LZtGzNmzND3MCocT09PfvrpJ52vNyQkBEEQuHTpks7XLSMj83RkbzIZGZkyYW9vr+8hyMjIyJQJOTMkIyNTJgpOLXl6ejJz5kzeeecdrK2tcXd3Z9myZdr3tm7dmk8++eSR5WNjYzE2Nubw4cPadcyYMYMhQ4ZgZWVF5cqV+eWXXx5ZJjk5mdGjR+Ps7IyNjQ2dO3cmMDBQ+/pXX32Fr68va9euxdPTE1tbWwYNGkRqaqr2Penp6QwfPhwrKyvc3NyYN29eif7n0NBQJk+ejCAICILwyOt79+6lTp06WFlZ0bNnTx48ePDI66tWraJOnTqYmZnh4+PDokWLtK95eXkB0LhxYwRB0BqVnjt3jm7duuHo6IitrS0dO3bkwoULxR6zjIzMs5GDIRkZGZ0yb948mjVrxsWLF3nvvfcYN24cN2/eBGDo0KFs2LCBgv7QmzZtwsXFhY4dO2qfmzNnDg0bNuTChQtMnz6dyZMns3//fgBEUaR3795ERUWxa9cuzp8/T5MmTejSpQsJCQnaddy9e5e//vqLHTt2sGPHDo4cOcL333+vfX3q1KkcPnyY7du3s2/fPvz9/Tl//nyx/sdt27ZRtWpVreN9wWAnIyODuXPnsnbtWo4ePUpYWBgfffSR9vXffvuNzz77jO+++44bN24wc+ZM/ve///H7778DcPbsWQAOHDjAgwcP2LZtGwCpqam89dZbHDt2jNOnT1OzZk1eeumlRwI8GRmZUiLKyMjIlIGOHTuKEydOFEVRFD08PMQ333xT+5pGoxGdnZ3FxYsXi6IoijExMaKRkZF49OhR7Xtat24tTp06VfvYw8ND7Nmz5yOf8cYbb4i9evUSRVEUDx48KNrY2IhZWVmPvMfb21tcunSpKIqi+OWXX4oWFhZiSkqK9vWpU6eKLVu2FEVRFFNTU0UTExNx48aN2tfj4+NFc3Nz7f9SFB4eHuL8+fMfeW7VqlUiIAYFBWmfW7hwoeji4qJ9XK1aNXH9+vWPLDdjxgyxdevWoiiK4r1790RAvHjxYqGfn5ubK1pbW4v//vtvscYrIyPzbOTMkIyMjE5p2LCh9r4gCLi6uhITEwOAk5MT3bp1Y926dQDcu3ePU6dOMXTo0EfW0bp16yce37hxA4Dz58+TlpaGg4MDVlZW2tu9e/e4e/eudhlPT0+sra21j93c3LTjuHv3LiqV6pHPsbe3p3bt2mX+/y0sLPD29n7q58bGxhIeHs7IkSMfGfu33377yNifRkxMDGPHjqVWrVrY2tpia2tLWloaYWFhZR6zjMx/HbmAWkZGRqcYGxs/8lgQBDQajfbx0KFDmThxIr/88gvr16+nXr16NGrUqMj15tflaDQa3Nzc8Pf3f+I9BdvaCxuHWGCaTtc87XPzPy//83/77Tdatmz5yPuUSmWh6x0xYgSxsbH89NNPeHh4YGpqSuvWrVGpVDocvYzMfxM5GJKRkalQ+vXrx5gxY9izZw/r169n2LBhT7zn9OnTTzz28fEBoEmTJkRFRWFkZISnp2epxlCjRg2MjY05ffo07u7uACQmJnL79u1HapcKw8TEBLVaXaLPdXFxoUqVKgQHBz+RDSu4XuCJdR87doxFixbx0ksvARAeHk5cXFyJPl9GRubpyMGQjIxMhWJpaUnfvn353//+x40bNxgyZMgT7zlx4gQ//PAD/fr1Y//+/WzevJmdO3cC0LVrV1q3bk2/fv2YPXs2tWvXJjIykl27dtGvXz+aNWtW5BisrKwYOXIkU6dOxcHBARcXFz777DMUiuJXDnh6enL06FEGDRqEqakpjo6OxVruq6++YsKECdjY2NCrVy+ys7MJCAggMTGRKVOm4OzsjLm5OXv27KFq1aqYmZlha2tLjRo1WLt2Lc2aNSMlJYWpU6dibm5e7PHKyMg8G7lmSEZGpsIZOnQogYGBtG/fXpuZKciHH37I+fPnady4MTNmzGDevHn06NEDkKaddu3aRYcOHXjnnXeoVasWgwYNIiQkBBcXl2KPYc6cOXTo0IFXXnmFrl270q5dO5o2bVrs5b/55htCQkLw9vbGycmp2MuNGjWK5cuXs3r1aho0aEDHjh1ZvXq1tqXeyMiIn3/+maVLl1K5cmX69u0LwMqVK0lMTKRx48YMGzaMCRMm4OzsXOzPlZGReTaCWJ6T5zIyMjIlxNPTk0mTJr0wFh8yMjKGj5wZkpGRkZGRkflPIwdDMjIyMo9x7NixR1rfH7/JyMi8WMjTZDIyMjKPkZmZSURExDNfr1GjRgWORkZGpryRgyEZGRkZGRmZ/zTyNJmMjIyMjIzMfxo5GJKRkZGRkZH5TyMHQzIyMjIyMjL/aeRgSEZGRkZGRuY/jRwMycjIyMjIyPynkYMhGRkZGRkZmf80cjAkIyMjIyMj859GDoZkZGRkZGRk/tP8H5y7ry26Xm2DAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ct.phase_plane_plot(\n", + " clsys_sf, [-1.5 * pi, 1.5 * pi, -2, 2], 8,\n", + " gridspec=[13, 7], params={'K': K})\n", + "plt.plot([-pi, -pi], [-2, 2], 'k--', [ pi, pi], [-2, 2], 'k--')\n", + "plt.plot([-pi/2, -pi/2], [-2, 2], 'k:', [ pi/2, pi/2], [-2, 2], 'k:')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "A7UNUtfJwLWQ" + }, + "source": [ + "Note that the closed loop response around the upright equilibrium point is much less oscillatory (consistent with where we placed the closed loop eigenvalues of the system dynamics)." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "eVSa1Mvqycov" + }, + "source": [ + "## Things to try\n", + "\n", + "Here are some things to try with the above code:\n", + "* Try changing the locations of the closed loop eigenvalues in the `place` command\n", + "* Try reseting the limits of the control action (`umax`)\n", + "* Try leaving the state space controller fixed but changing the parameters of the system dynamics ($m$, $l$, $b$). Does the controller still stabilize the system?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.4" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 5d0450b246e7e1ad7067ece88c20da28f061230b Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 7 Jun 2024 22:44:48 -0700 Subject: [PATCH 028/199] change phase_plane_plot to use axes.set_title instead of fig.suptitle --- control/phaseplot.py | 2 +- examples/cds101_invpend-dynamics.ipynb | 66 +++++++++++++------------- 2 files changed, 34 insertions(+), 34 deletions(-) diff --git a/control/phaseplot.py b/control/phaseplot.py index 23de0dc96..a885f2d5c 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -201,7 +201,7 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): raise TypeError("unrecognized keywords: ", str(initial_kwargs)) if fig is not None: - fig.suptitle(f"Phase portrait for {sys.name}") + ax.set_title(f"Phase portrait for {sys.name}") ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) diff --git a/examples/cds101_invpend-dynamics.ipynb b/examples/cds101_invpend-dynamics.ipynb index a50c5cf7e..21a510408 100644 --- a/examples/cds101_invpend-dynamics.ipynb +++ b/examples/cds101_invpend-dynamics.ipynb @@ -63,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 2, "metadata": {}, "outputs": [ { @@ -75,7 +75,7 @@ "Outputs (2): ['theta', 'thdot']\n", "States (2): ['theta', 'thdot']\n", "\n", - "Update: \n", + "Update: \n", "Output: None\n" ] } @@ -114,22 +114,22 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[]" + "[]" ] }, - "execution_count": 17, + "execution_count": 3, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHgCAYAAACmWWlGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hTZfvHPyfpSHfpbimUsjeUvfdeCiKKA8X1Q0VcONBXBUF5xfHiQhwoCqiAbHCA7L2hUDYtpdCWLrp3cn5/PE1K6UrbtEna87muXk2Tk3PuQM4593OP7y3JsiyjoKCgoKCgoFBHUZnbAAUFBQUFBQUFc6I4QwoKCgoKCgp1GsUZUlBQUFBQUKjTKM6QgoKCgoKCQp1GcYYUFBQUFBQU6jSKM6SgoKCgoKBQp1GcIQUFBQUFBYU6jeIMKSgoKCgoKNRpFGdIQUFBQUFBoU6jOEMKChVk6dKlSJJk+LGxsSEwMJCpU6dy8+bNYtsdO3bMjNZaNr/++isLFy6stv03atSIxx9/3PB3dHQ0s2fP5tSpU0bvY/v27XTp0gUnJyckSWL9+vUmt1PPtWvXkCSJpUuXVtsxLJUBAwYwYMAAc5uhUEexMbcBCgrWyk8//UTLli3Jyspiz549zJ8/n927d3PmzBmcnJzMbZ5V8Ouvv3L27Fleeumlatn/unXrcHV1NfwdHR3NnDlzaNSoER07diz3/bIsM2nSJJo3b87GjRtxcnKiRYsW1WIrgL+/PwcPHqRJkybVdgwFBYXiKM6QgkIladu2LV26dAFg4MCBaLVa5s6dy/r163n44YfNbJ1lk5mZiaOjY4Xeo9Vqyc/Px97e3uj3hISEVNS0IkRHR5OUlMT48eMZPHhwlfalJysrC41GgyRJxV6zt7enR48eJjmOgoKC8ShpMgUFE6G/iUVGRhZ5Pi0tjWeffRYvLy88PT2ZMGEC0dHRRbZZuXIlw4YNw9/fHwcHB1q1asWbb75JRkZGke3Cw8N58MEHCQgIwN7eHl9fXwYPHlws7bNy5Up69uyJk5MTzs7ODB8+nJMnT5b7GfSpvW3btjF16lQ8PDxwcnJi7NixhIeHF9v+xx9/pEOHDmg0Gjw8PBg/fjznz58vss3jjz+Os7MzZ86cYdiwYbi4uDB48GAGDBjAli1biIyMLJJ2hMJ00YIFC5g3bx7BwcHY29uzc+dOsrOzefXVV+nYsSNubm54eHjQs2dPNmzYUMy+O9Nku3btomvXrgBMnTrVcLzZs2eX+G8xe/ZsAgMDAXjjjTeQJIlGjRoZXt+3bx+DBw/GxcUFR0dHevXqxZYtW0r899y6dStPPPEE3t7eODo6kpOTU+IxS0qTzZ49G0mSCAsLY/Lkybi5ueHr68sTTzxBSkqKYbuQkBD69u1bbJ9arZb69eszYcKEYv+2H3zwAQ0bNkSj0dClSxe2b99e7P2XL1/moYcewsfHB3t7e1q1asXXX39dZJtdu3YhSRK//fYbb7/9NgEBAbi6ujJkyBAuXrxYZFtZllmwYAFBQUFoNBo6derEX3/9VeK/h4JCTaE4QwoKJuLKlSsAeHt7F3n+qaeewtbWll9//ZUFCxawa9cuHnnkkSLbXL58mVGjRrFkyRL+/vtvXnrpJVatWsXYsWOLbDdq1CiOHz/OggUL2LZtG9988w0hISEkJycbtvnwww+ZPHkyrVu3ZtWqVSxbtoy0tDT69u3LuXPnjPosTz75JCqVylDTc+TIEQYMGFDkOPPnz+fJJ5+kTZs2rF27ls8//5zQ0FB69uzJ5cuXi+wvNzeXcePGMWjQIDZs2MCcOXNYtGgRvXv3xs/Pj4MHDxp+7uSLL75gx44dfPLJJ/z111+0bNmSnJwckpKSmDlzJuvXr+e3336jT58+TJgwgV9++aXUz9SpUyd++uknAP7zn/8YjvfUU0+VuP1TTz3F2rVrAXjhhRc4ePAg69atA2D37t0MGjSIlJQUlixZwm+//YaLiwtjx45l5cqVxfb1xBNPYGtry7Jly/jjjz+wtbUt/z/hLu677z6aN2/OmjVrePPNN/n11195+eWXDa9PnTqVffv2Ffu337p1K9HR0UydOrXI81999RV///03CxcuZPny5ahUKkaOHFnk/+DcuXN07dqVs2fP8umnn7J582ZGjx7NjBkzmDNnTjEb33rrLSIjI/nhhx/47rvvuHz5MmPHjkWr1Rq2mTNnDm+88QZDhw5l/fr1PPvsszz99NPFnCYFhRpFVlBQqBA//fSTDMiHDh2S8/Ly5LS0NHnz5s2yt7e37OLiIsfGxhbZ7rnnnivy/gULFsiAHBMTU+L+dTqdnJeXJ+/evVsG5NOnT8uyLMsJCQkyIC9cuLBU265fvy7b2NjIL7zwQpHn09LSZD8/P3nSpElGfbbx48cXeX7//v0yIM+bN0+WZVm+ffu27ODgII8aNarY8e3t7eWHHnrI8Nxjjz0mA/KPP/5Y7HijR4+Wg4KCij0fEREhA3KTJk3k3NzcMm3Oz8+X8/Ly5CeffFIOCQkp8lpQUJD82GOPGf4+evSoDMg//fRTmfu8246PP/64yPM9evSQfXx85LS0tCJ2tG3bVg4MDJR1Op0sy4X/nlOmTKnQ8e6077333pMBecGCBUW2fe6552SNRmM4VkJCgmxnZye/9dZbRbabNGmS7OvrK+fl5RU5RkBAgJyVlWXYLjU1Vfbw8JCHDBlieG748OFyYGCgnJKSUmSf06dPlzUajZyUlCTLsizv3LlTBop9H1atWiUD8sGDB2VZFt8bjUZT6verf//+Rv07KSiYGiUypKBQSXr06IGtrS0uLi6MGTMGPz8//vrrL3x9fYtsN27cuCJ/t2/fHiiaTgsPD+ehhx7Cz88PtVqNra0t/fv3BzCknTw8PGjSpAkff/wxn332GSdPnkSn0xXZ9z///EN+fj5TpkwhPz/f8KPRaOjfvz+7du0y6rPdXfPUq1cvgoKC2LlzJwAHDx4kKyurSKcWQIMGDRg0aFCJ6Zb77rvPqGPfybhx40qMoqxevZrevXvj7OyMjY0Ntra2LFmypFiKrjrIyMjg8OHDTJw4EWdnZ8PzarWaRx99lBs3bhSLclTms99NSd+j7Oxs4uLiAPD09GTs2LH8/PPPhu/F7du32bBhA1OmTMHGpmiJ6IQJE9BoNIa/9ZGtPXv2oNVqyc7OZvv27YwfPx5HR8ci36dRo0aRnZ3NoUOHyrURCr/rBw8eJDs7u9Tvl4KCuVCcIQWFSvLLL79w9OhRTp48SXR0NKGhofTu3bvYdp6enkX+1hcAZ2VlAZCenk7fvn05fPgw8+bNY9euXRw9etSQotFvJ0kS27dvZ/jw4SxYsIBOnTrh7e3NjBkzSEtLA+DWrVsAdO3aFVtb2yI/K1euJCEhwajP5ufnV+JziYmJAIbf/v7+xbYLCAgwvK7H0dGxSFeXsZS0/7Vr1zJp0iTq16/P8uXLOXjwIEePHuWJJ54gOzu7wseoKLdv30aW5VI/O1Ds85e0bUUp73sEIh138+ZNtm3bBsBvv/1GTk5OMacVSv8/zs3NJT09ncTERPLz8/nyyy+LfZdGjRoFUOz7VJ6N+n+X0o6toGAulG4yBYVK0qpVK0M3WVXYsWMH0dHR7Nq1yxANAorU5+gJCgpiyZIlAFy6dIlVq1Yxe/ZscnNzWbx4MV5eXgD88ccfVVppx8bGlvhc06ZNgcKbXkxMTLHtoqOjDXboKalzyhhKet/y5csJDg5m5cqVRV4vrSjZ1NSrVw+VSlXqZwdM9vkryvDhwwkICOCnn35i+PDh/PTTT3Tv3p3WrVsX27a0/2M7OzucnZ2xtbU1RLuef/75Eo8XHBxcIfv035vSjn1ngbqCQk2iRIYUFMyM/kZ5d8v4t99+W+b7mjdvzn/+8x/atWvHiRMnAHEztLGx4erVq3Tp0qXEH2NYsWJFkb8PHDhAZGSkQRSvZ8+eODg4sHz58iLb3bhxgx07dhjdhm5vb18ksmEMkiRhZ2dXxMGIjY0tsZuspOMBFT7mnTg5OdG9e3fWrl1bZD86nY7ly5cTGBhI8+bNK73/qqB3XtavX8/evXs5duwYTzzxRInbrl27tkgkLS0tjU2bNtG3b1/UajWOjo4MHDiQkydP0r59+xK/S3dHgsqjR48eaDSaUr9fCgrmQokMKSiYmV69elGvXj2mTZvGe++9h62tLStWrOD06dNFtgsNDWX69Oncf//9NGvWDDs7O3bs2EFoaChvvvkmIFrJ33//fd5++23Cw8MZMWIE9erV49atWxw5cgQnJ6cSu4Du5tixYzz11FPcf//9REVF8fbbb1O/fn2ee+45ANzd3XnnnXd46623mDJlCpMnTyYxMZE5c+ag0Wh47733jPrs7dq1Y+3atXzzzTd07twZlUpVrsM2ZswY1q5dy3PPPcfEiROJiopi7ty5+Pv7F+ukupsmTZrg4ODAihUraNWqFc7OzgQEBBjSW8Yyf/58hg4dysCBA5k5cyZ2dnYsWrSIs2fP8ttvv9VYJKgknnjiCT766CMeeughHBwceOCBB0rcTq1WM3ToUF555RV0Oh0fffQRqampRb4fn3/+OX369KFv3748++yzNGrUiLS0NK5cucKmTZvYsWNHhWyrV68eM2fOZN68eUW+X7Nnz1bSZApmRXGGFBTMjKenJ1u2bOHVV1/lkUcewcnJiXvuuYeVK1fSqVMnw3Z+fn40adKERYsWERUVhSRJNG7cmE8//ZQXXnjBsN2sWbNo3bo1n3/+uaFmxM/Pj65duzJt2jSjbFqyZAnLli3jwQcfJCcnh4EDB/L555/j4eFR5Dg+Pj588cUXrFy5EgcHBwYMGMCHH35Is2bNjDrOiy++SFhYGG+99RYpKSnIsowsy2W+Z+rUqcTFxbF48WJ+/PFHGjduzJtvvsmNGzfKdfQcHR358ccfmTNnDsOGDSMvL4/33nuvVK2h0ujfvz87duzgvffe4/HHH0en09GhQwc2btzImDFjKrQvU9O8eXN69erFgQMHePjhh3Fzcytxu+nTp5Odnc2MGTOIi4ujTZs2bNmypUjdW+vWrTlx4gRz587lP//5D3Fxcbi7u9OsWTND3VBFef/993FycmLRokUsW7aMli1bsnjxYj755JNK7U9BwRRIcnlXHgUFhTrD0qVLmTp1KkePHjVJPZSC5XHt2jWCg4P5+OOPmTlzprnNUVCwCJSaIQUFBQUFBYU6jeIMKSgoKCgoKNRplDSZgoKCgoKCQp1GiQwpKCgoKCgo1GkUZ0hBQUFBQUGhTqM4QwoKCgoKCgp1GsUZUlBQUFBQUKjTKM6QgoKCgoKCQp1GcYYUFBQUFBQU6jSKM6SgoKCgoKBQp1GcIQUFBQUFBYU6jeIMKSgoKCgoKNRpFGdIQUFBQUFBoU6jOEMKCgoKCgoKdRrFGVJQUFBQUFCo0yjOkIKCgoKCgkKdRnGGFBQUFBQUFOo0ijOkoKCgoKCgUKdRnCEFBQUFBQWFOo3iDCkoKCgoKCjUaRRnSEFBQUFBQaFOozhDCgoKCgoKCnUaxRlSUFBQUFBQqNMozpCCgoKCgoJCnUZxhhQUFBQUFBTqNIozpKCgoKCgoFCnUZwhBQUFBQUFhTqN4gwpKCgoKCgo1GkUZ0hBQUFBQUGhTqM4QwoKCgoKCgp1GsUZUlBQUFBQUKjTWI0zNH/+fLp27YqLiws+Pj7ce++9XLx4sdz37d69m86dO6PRaGjcuDGLFy+uAWsVFBQUFBQUrAWrcYZ2797N888/z6FDh9i2bRv5+fkMGzaMjIyMUt8TERHBqFGj6Nu3LydPnuStt95ixowZrFmzpgYtV1BQUFBQULBkJFmWZXMbURni4+Px8fFh9+7d9OvXr8Rt3njjDTZu3Mj58+cNz02bNo3Tp09z8ODBEt+Tk5NDTk6O4W+dTkdSUhKenp5IkmTaD6GgoKCgoKBQLciyTFpaGgEBAahUZcd+bGrIJpOTkpICgIeHR6nbHDx4kGHDhhV5bvjw4SxZsoS8vDxsbW2LvWf+/PnMmTPHtMYqKCgoKCgomIWoqCgCAwPL3MYqnSFZlnnllVfo06cPbdu2LXW72NhYfH19izzn6+tLfn4+CQkJ+Pv7F3vPrFmzeOWVVwx/p6Sk0LBhQ+77eCM/PtPfdB9CocKkZudxNS6dq3HpXI4Xv6/EpZOQnlvi9nY2Kka29eOhbg1pU9+tRmzMyMggICAAgOjoaJycnGrkuCYnMRGaNQOtFo4cgRYtirx8ISaViYsPYqtWseu1Abg5FF9YKNQMKZl5JGRkI8ugk+VSf+tkce3U6SA5O4/EjByS0sR7E9NzSUzPJSEjh8T0HDJzdcWOI0nQMdCdAS29GdDCh8ZeTjUWLbem8+rBbw9yNjqVWSNb8HCPRkVf3LEDxo+HevXg0iWwszOLjXUBnU7m6s14urRthouLS7nbW6UzNH36dEJDQ9m3b1+52959suqzgqWdxPb29tjb2xd7/mh0Nsl5NjT0dKyExQqmwNUVAn08udslvZ2Ry6VbaVy6lcbFW2lcupXOpVtpJGfmsel8MpvOJ9OpoTuP9WrEyLb+2NlUX6mcWq2+w15Xi75ol4mrK4wcCZs3w4YNMG9ekZe7urjQqqEvF2+lsS8yg8ndGprJUAVXV2hg4n1m5uaTkJZLbGo2B64m8O/5W5y9mcrpuFxOx93k8z03CfZyYkgrH4a08qVzUD1s1Mp5BTCxZ3PObT7H35fTeHaYa9EXx46FBg2gXTvIzQUvL/MYWUdophL3eWOcdqurGXrhhRdYv349e/bsITg4uMxt+/XrR0hICJ9//rnhuXXr1jFp0iQyMzNLTJPdTWpqKm5ubjR4aRXPDmvLrJGtqvwZFKofWZY5cT2ZZQevseVMDHla8TX3crbnoW4NeKh7EH5uGpMfNyMjA2dnZwDS09Mt+qJdLitXwoMPQqNGEB4uQgN3sHj3Vf771wW6BXuw6v96msdGhRojOjmL7Rfi+PfcLQ5eTSRXWxg9cne0ZWALHyZ3a0i34NJLF3Q6GZWq4tEkazqv4tNy6DF/O1qdzM6ZAwj2usvW7GzQmP7ao1Ac/f07JSUFV1fXMre1mm4yWZaZPn06a9euZceOHeU6QgA9e/Zk27ZtRZ7bunUrXbp0McoRupvVx26Qk6+t8PsUah5JkugcVI+FD4Zw4M3BvDK0Ob6u9iSk5/DFjiv0+WgHz/96giMRSVjZeqDmGDsWnJ3h2jU4cKDYy/d0DECS4EhEElFJmTVvn0KNEuDuwKM9gvj5iW6ceHco3zzciQkh9XF3tCU5M491J28y6duDvLLqFAnpOcXev3R/BIv3XDWD5TWLt4s9vZuKiM/6kzeLb6A4QhaJ1ThDzz//PMuXL+fXX3/FxcWF2NhYYmNjycrKMmwza9YspkyZYvh72rRpREZG8sorr3D+/Hl+/PFHlixZwsyZMyt8fF9Xe5Iycvn7bKxJPo9CzeHtYs+Mwc3Y98Ygvn6oE92CPcjXyWwJjWHStwcZ+fleVh2LQqerulNkY2PDY489xmOPPYaNjVVmoQtxdIT77hOPV6wo9rK/mwM9G3sCsPF0dE1apmBmnO1tGNnOn88e6Mixt4ew8pkePNClAZIEa0/cZPCnu/n18HXDObV0fwSzN51j8a6rpGTmVfh41nZejQ8R9U0bTt0sfbF1/TqEhtagVQplYTVpstJyfj/99BOPP/44AI8//jjXrl1j165dhtd3797Nyy+/TFhYGAEBAbzxxhtMmzbN6OPqw2z/XX+Cbw5G07VRPVZP61WVj6JgAZyLTmXZoWusO3mT7DwR7h/YwpvPJnWknpNS1Ghg2zYYNgz69oU9e4q9vOpYFK//EUoTbyf+faW/Ij9RxzkVlczb684QFp0KQEhDd3oEe/LN7sKI0PMDm/Da8JbmMrFGyMjJp8u8f8nK07LuuV6ENKxXdIOlS2HqVBgyRJxjCtVCRdJkVuMMmQv9P+blqFsMX3QMrU7m75f60tKv7H9YBesgJTOPX49cZ+G/l8jJ1xHgpuHLhzrROahe+W+uC2i1cOYMdOhQrGYIIC07jy7z/iUnX8em6X1oF1gzXXsKlku+VscvByP5bNsl0nPyi73uYKtm9+sD8HGp3emiF38/yYZT0TzeqxGzx7Up+mJ4ODRpIs6pGzegoFNOwbTUypohc+PjqmFYa9Gm/+vh62a2RsFUuDna8uyAJqx7rjfBXk5Ep2TzwLcH+WFveKVqiWRZJiMjg4yMjNpRi6RWQ8eOJTpCAC4aW4YWnBfrSqqPUKhz2KhVPNEnmJeGNCvx9aw8LYt2Vqx2yBrPq3tD6gOw6XQ0edq7pAoaN4bevUGW4fffzWCdwt0ozlAFeKRHECBy4hklrHgUrJfWAa5snN6b0e39ydfJzNtynv9bdrzC9Q2ZmZk4Ozvj7OxMZmYtKyrOzBSdMHcxvuCiv/F0NPl3X/QV6iyTuzVk5rDmONgWv80sP3StQkX31nhe9W3qhaeTHYkZuey7nFB8g4cfFr+XL69ZwxRKRHGGKkDPxp4EezmRnpPPhlNKwWhtw0Vjy1eTQ5h7Txvs1Cq2nrvF6C/3Enoj2dymmZ933gFfX9Fufxf9mnvj4WRHQnoO+66UcNFXqJM42dswfVAzDs4azDN9g7G5o6U+XwczV582o3XVj41axdgOIv21/lQJUdNJk8DGBk6ehHPnatg6hbtRnKEKoFJJPNxdiMstPxRpNeFaBeORJIlHezZizbO9aODhwI3bWUz85iC/HLxWt/+/7ewgPb3EVaytWsXY9kLNXUmVKdyNu6Mdb41uzYFZg7i3YwB6l+hwRBLf763drfb6VNnWsFvFswmenjBqlHhcQremQs2iOEMVZGLnQOxtVJyLSeVkVLK5zVGoJtoFurH5hb4Ma+1LrlbHuxvCmP7rSdKyK94WXCvQh/R37IDo4lHR8Z3E3J9/wmJLLJpVUPBx0bDwwRB2vz6ARgVK/h9uucCmWizL0CHQjUaejmTladl6rgRZFv15tX59jdqlUBzFGaog7o52jGkvQp8rDimF1LUZNwdbvn20M++MaY2NSmLLmRjGfrmPC7Gp5jat5mncGHr2BJ2uxILPDoFuBHs5kZ2nY2uYosWlUDoNPZzY8eoAhrfxQ0Z0XdVWnSpJkgzRoXUnS/iMY8fCsmVw+HANW6ZwN4ozVAke7iFSZZtDo0nOLHlIqELtQJIknuwTzKppPQlw03AtMZNHfjhcNxWX9avY334r9pIkSdzbUX/RV1JlCmWjUkl883An7u8ciE6Gl2qxQ6Q/L/Zdjic+7S5lbgcHeOQRofSuYFYUZ6gShDRwp7W/Kzn5Ov44fsPc5ijUAJ0a1mPLjL609nclIT2XqUuPVkpJ16q5/35QqeDYMbhypdjL+q6y/VcSuJVavOtMQeFOVCqJj+5rz6QuhQ7RhpIKja2cRl5OdGzgjk6m/JRgXa5LNDOKM1QJJEkytNmvuENyXqF2U8/Jjh8f74qfq4YrcelMW36c3PyireRqtZqJEycyceLEIpO2awU+PjB4sHi8alWxlxt6OtI5qB46GTYq3ZYKRqBSSfx3QqFD9PLKUyU6RNZ+Xt3bsYyuMoDFi4We199/15xRCkVQnKFKck/HAJztbYhIyOBgeKK5zVGoIfzcNPw0tSvO9jYcDE/kzbWhRbrMNBoNq1evZvXq1Whq40DG6dNh3jwxzb4ExocoqTKFiqF3iB7o0qBUh8jaz6sxHQJQqyRCb6RwNT69+AZnz8Lp04oAoxlRnKFK4mRvY7jwLz8UaWZrFGqSVv6ufP1wJ9QqibUnbvL59svmNqnmGDcO3n5bFFSXwOh2/tiqJc7FpHIxNq2GjVOwVlQqifkT2hVxiEqc+G6leDnb06+ZmGS/oaTPNXmy+L1uXYnCpgrVj+IMVQF9qmzruVtKjUQdo39zb+be0xaAhf9eLlY7lpieU9Lbaj31nOwY2MIHUKJDChVD7xA92FU4RK+sql0Okb6rbP2p6OKaZT17QoMGkJYGf/5pBusUFGeoCrTwc6Fro3podTK/H4kytzkKNcxD3Rvy7IAmAMxaG8qBqwkkpaQiSRJeLhoSk2tpC35OjlCifu65Egs+9RHTDaduKvV0ChVCpZL4cHxRh+jPMzFkZGQgSRKSJJGRkWFuMyvF0Na+ONqpuZ6UyYnryUVfVKnggQfEYyVVZhYUZ6iK6KNDvx+9rsxlqoO8NqwFY9r7k6eVeernY4z+fK/htVNRt81oWTWSmwuPPw7ffAOnThV7eWBLH1w0NsSkZHMoQqmnU6gYeodocjfhEL3+Ryg3aoGUhaOdDcPb+AGU3DWnr8PbvFlEiBRqFMUZqiIj2vrh4WRHTEo2Oy7EmdschRpGpZJ4a1RLPJ3syMzVcjO5MF16ODzJjJZVIy4uMHq0eFzCrDKNrZoxBeM5alOaQ6HmUKkk5t7Tls5B9UjPyWfW2jPmNskklDnJvlMnaNYMsrJg40YzWFe3UZyhKmJvo+b+LmIUwfLDiiJ1XUOrk3nx91MkZhQX3zxUm7sM9avY338vMVWmF5r760ws2XnamrRMoZZgo1bxv0kdcbJTcyyydkRZezfxxMvZntuZeey5FF/0RUmCJ54Q51YpDQoK1YfiDJmAh7sFIUmw51I8kYnWmc9WqBxqlcQPU7rSs7FnsddCb6TU3jldo0YJ1dzIyBJHCXRt5EF9dwfScvL59/wtMxioUBto6OnIe2PbmNsMkyEm2RdETUvS4nrzTaHw3rNnDVumoDhDJqChpyP9mnkD8MtBpc2+ruHmaMvPT3RjYufAIs/rZDhSW2tmHB3hnnvE4xJSZSqVxL0hQmhu3QklVaZQee7vEsiQ1j6Gv6090qhvMNh2ThlqbEkozpCJmNq7EQArj0aRWlcnm9dh7GxUfDyxPTMGNS3y/JbQGDNZVAPou19WrgRt8RuU/qK/+1J8nZUaUKg6kiQxZ1xbw9+fbr1oRmuqTrv6bjQuGGr8z9lShhqfOwc//lizhtVxFGfIRPRv7k0zH2fSc/JZdVRps6+LSJLE9CEt6NxnEA6NuyCpVPx5Jrb2tpcPGwb16kHDhhBXvHmgqY8L7eq7ka+T2XKmFjuFCtWOt6sD3fsPwaFxF1YcucHey/Hlv8lCuXOSfYnjOaKioE0bePppiC3FWVIwOYozZCL0080Bftp/TWmzr6NoNBqO7d3O6nUbkGzsyMrT8tP+CHObVT3Y28PVq3DoEPj7l7iJ/qK/VkmVKVQBjUbDoV3bePXTn5Bs7Ji5+jTJmcWbFqyFewpmle2/kkBc2l2CvQ0aQPfuoNPBH3+Ywbq6ieIMmZB7Q+rj6WTHzeQs/glTikbrMqPbBxgEGT/ddomE2pomqlevzJfHdvBHJcGpqGSuJ1q/VoyCeXlrVCsaeztxKzWHt9edLa7kbCUEeTrRIdANnQxbS7pX6FPQq1fXrGF1GMUZMiEaWzUPF4gw/rAv3MzWKJibV4c2p4WvM5m5Wj7Yct7c5lQvyckQUzwV5uOioXdTMZNp42klOqRQNRzs1Hz+QAg2KoktZ2KseuTLiLYimvp3SXVDEyeK33v3QnQJXWcKJkdxhkzMoz2CsFOrOHk9meO1RBtDwXgyMjJwcnLCycmJnOwsPprYAUkSc7r2X0kwt3nVw8KF4OMDH3xQ4svjOoiUQIkzmRQUjODO86pxPRteGtIMgPc2hBFlperUI9sKNeqD4YncvlunrEED0V4vy7BmjRmsq3sozpCJ8XaxN7QUL1GiQ3WSzMxMMjPFBbpjA3ceLYgW/mf9WatvCy6RFi0gL09ctEvoKhve1g87GxVX4tI5F1NL57UpVDt3nlfT+jehc1A90nLyeXXVabRW2KTQyMuJln4uaHUy20rS4po0SfxetapmDaujKM5QNfBkH6Ee+vfZWKtdtSiYjpnDW+DjYk9EQgbf7LpqbnNMz+DB4O4uOl/27y/2sqvGliGthE7MxpKE5hQUKsid6tRHriXx3R7rXHiONCZVFhYGqcoiorpRnKFqoIWfC32beaGTYemBa+Y2R8HMuGpseXdsawC+2XWVq/HpZrbIxNjZFQowllLwOa6D6CrbeDq69koNKNQoDT0deW+cUKf+bNtFriVYn/r/yHYiVbbvcgJpd+vTBQaKmqGYGHB1NYN1dQvFGaom9G32igijAsDodv70b+5NrlbHO+uttwumVO6/X/xes0a0BN/FgBbehkn2R67V0gG2CjXO/Z0D6dfcmzytzGfbLpnbnArTzMeZxt5O5Gp1JQ/67tNHSFgoVDuKM1RNKCKMCnciSWIKt72NigNXE626C6ZEhg4FNzexii0hVaaxVRsKRjcoqTIFEyFJEm+MaAGIqGNYdIqZLaoYkiQZzou/zpQhsCjLoi5PodpQnKFqQhFhVLibhp6OzBgsumA+2HLeqkXjimFEqkw/yf7PMzHk5ivng4JpaBPgxtiCjsVP/rG+UR36uqFdl+LIzC1hVtkPP0DTpvD11zVsWd1CcYaqkTtFGP8OU2TV6wIqlYr+/fvTv39/VKrip9fTfRvTzMeZxIxc/vvXBTNYWI383//Bl1+Kydsl0L2xJz4u9qRk5bHnkvWOU1Coeco7r14d2hwblcTOi/EctbI0bJsAVwLrOZCdp2P3xRLOi8xMCA9XBBirGcUZqkaKiDDuraUjGRSK4ODgwK5du9i1axcODg7FXrezUfHhhHYA/H40yuou3GXSqxdMnw4BASW+rFZJhhX8htNKqkzBeMo7rxp5OTGpawMAPvrrglXV5BVJlZXUVXbffSBJcOCAmFumUC0ozlA1oxdhPBWliDAqCLo28uDBggv3+5vOWdWFu6roZzJtOxdLek4JKQEFhUoyY1Az7G1UHIu8zc6LJRQjWzB6NeodF+LIyb9Lq6t+fVFIDYoAYzWiOEPVjCLCqFASr49oiYOtmjM3U9h7uRYpU2dlwXffweTJJXaVtavvRmMvJ7LzdGw7p6SOFUyHn5uGx3s3AmDB3xetSsIhpIE7vq72pOfks6+k64G+W1MRYKw2FGeoBlBEGOsOGRkZeHt74+3tTUZG6bonHk52TO7WEIBFu67UlHnVjyTBq6/C77/D0aMlvCwxriA6pHSVKRiLsefVs/2b4KKx4UJsGptCref7pVJJjGhTTqoM4OBBuFnLOlEtBKtyhvbs2cPYsWMJCAhAkiTWr19f5va7du1CkqRiPxcu1Gzh6p0ijD/tv1ajx1aoeRISEkhIKD/a83S/YGzVEofCk2pPClWjgTFjxONSQvr6WWV7LyeQmJ5TU5YpWDnGnFfujnb8Xz+x+Pxs2yXyrKiLV58q23buVnG7AwKgd2/xeO3aGrasbmBVzlBGRgYdOnTgq6++qtD7Ll68SExMjOGnWbNm1WRh6RSKMF5XRBgVAPB3c2B8iGg3/6Y2RYf0q9g1a4Q+yl009namfaAbWp3MljPFJ90rKFSFqb2D8XK2JzIxk5VWpPHWLdgDTyc7UrLyOBSeWHyDJ54QHZs9etS8cXUAq3KGRo4cybx585gwYUKF3ufj44Ofn5/hR61Wl7ptTk4OqampRX5MgV6EMSNXy7KDkSbZp4L183/9myBJ8O/5OC7GppnbHNMwcqSIEIWHw+nTJW5yT4HmkJIqUzA1TvY2vDCoKQBfbL9MVq51DEdWqySGtfEFSkmVPfEELF4MXbvWsGV1A6tyhipLSEgI/v7+DB48mJ07d5a57fz583FzczP8NGjQwCQ2SJLEcwObAPDdnnAlOqQAQBNvZ0Nbba2JDjk5wYgR4nEpqbKx7f2RJDgeeVupo1MwOZO7NSSwngNxaTlWNR9SL8C4NSwWrRUVgNcGarUz5O/vz3fffceaNWtYu3YtLVq0YPDgwezZs6fU98yaNYuUlBTDT5QJdR3GdahPUx9nUrLyWKLoDikU8NwAsYrdeDqa64m1xDHQp8pKqW/wcdXQq4knID63goIpsbNR8crQ5oBYZKRkWsfis2cTT9wcbElIz+VYSRpkOp3QG1q0qOaNq+XUameoRYsWPP3003Tq1ImePXuyaNEiRo8ezSeffFLqe+zt7XF1dS3yYyrUKomXh4gTdMm+CG5n1KJxDAqVpm19N/o190Ynw7d7rprbHNMwZgw4OIC/P6Snl7jJPR30qbKbdUprSaFmuKdjfZr7OpOanW8155WtWsWQVmWkyiIjRSH1jBkQr6i4m5Ja7QyVRI8ePbh8+bLZjj+yrR+t/F1Jz8nnu72K7lBtQ6VS0aVLF7p06VLi2IDSeG6ASKGuPn6DuLTs6jKv5nB3h7g4+PdfcHYucZMR7fyws1Fx6VY6F2pLvZRCtVCZ80qtkpg5TAxx/Wn/NeJSreO80qfN/wmLLa6VFBwMISGg1cKGDWawrvZS55yhkydP4u/vb7bjq1SSIXy7dP814tOU1uLahIODA0ePHuXo0aMljg0oje7BHnRq6E5uvo4l+2pJCrUUJ0iPq8aWQS18AKWQWqFsKnteDW3tS0hDd7LytCzaZR3RoT7NvHCyUxOTks3pG8nFN5g4Ufz+448atau2Y1XOUHp6OqdOneLUqVMAREREcOrUKa5fvw6Iep8pU6YYtl+4cCHr16/n8uXLhIWFMWvWLNasWcP06dPNYb6BIa186BDoRlaelsW7reMEVaheJEni+YGidmj5wUirqXEwipgYSCp5Bpt+PMem09FWpRisYB1IksSrQ0V0aNWxKKtoXNHYqhlUkCr7u6RUmd4Z2r691PNKoeJYlTN07NgxQkJCCAkJAeCVV14hJCSEd999F4CYmBiDYwSQm5vLzJkzad++PX379mXfvn1s2bKlwq35pkaSJF4tCN8uOxRJbIp1hG+tBVmWScvOIyopkzM3Uth7OZ5Np6NZdiiSr3Zc5qf9EZy9mWJx3RqDWvrQ0s+FjFwtvxy8Zm5zTMNLL4nZSj/+WOLLA1v64GJvw83kLI7VFuFJBYuid1NPmvo4k5mrZe3xG+Y2xyjuHNxarJ6ueXNo1w7y82HjRjNYVzuRZKVysUxSU1Nxc3MjJSXFpMXUsiwz6duDHL12m0d7BDH33rYm23ddJCopkz/PxLDlTAxh0alGOTou9jZ0aVSP7o096RbsQbv6btiqq7Y+yMzMpHXr1gCcO3cOR0fHCr1/w6mbvPj7KTyc7Nj3xkAc7WyqZI/Z+fprMcm+Rw8xSqAEXlt9mtXHb/Bw94Z8ML5dDRuoYA1U9bz65eA13t0QRmNvJ7a/0h9JkqrDTJORmZtPp7nbyM7TsWVGH9oEuBXd4P334b33YPRo2LzZPEZaARW5f1tVZKg2cWd06Pej1xWtlUoQnZzFD3vDuffr/fRdsJP5f10g9EZhxMfeRoWfq4aWfi50D/ZgeBtfJnUJZEALb5ztbUjLyWfnxXj++9cFJiw6QPvZW3n4h0OsOBxZ6aiRLMtERkYSGRlZqQ6p0e38aejhSFJGLr8fsR713FIZP178PnQIokuuC9ILMG45E0NuvvWMT1CoOap6Xk3oFIizvQ3h8Rnsv1KCurOF4WhnQ//m3kApqTK9dMXZsyJCpFBlrHzZad30aOxJ76ae7L+SyJc7LrNgYgdzm2TxpGTmsfbkDTaHxhSZ5yVJ0CPYk9Ht/enf3BtvF3s0tqUrjWt1MudjUjkUnsiRiCSOXEsiOTOP/VcS2X8lkV8PX2fevW0JaVivJj6WARu1imf6NeY/68/y/d5wHukRhJ2NFa9ZAgJEVOjQIdH98uyzxTbp2cQTbxd74tNy2Hs5nsEF9RIKCqbC2d6GCZ3q88vBSH45eI0+zbzMbVK5jGjrxz9ht9h27pZh4WygdWs4fBi6dIEKdK0qlI7yr2hmXiko7ltz4iYRCaVPY67r5ORr+WFvOP0+3smcTec4HnkbSYJujTyYM64Nh98azG/P9OCRHkE08HAs0xEC0Xbbtr4bT/VtzHdTunDiP0P556V+vDmyJa4aG8KiU5nwzQFmrQ2tcT2oiZ0D8XaxJyYlm/WnasGEan10aN26El9WqyTGtheF1OuVrjKFamJKzyAA/j1/i5vJWWa2pnwGtvBBJcGF2DRu3L4rcyBJ0K2b4giZEOVf0sx0DqrHoJY+aHUyn/97ydzmWByyLPPnmRiGfraHeVvOk5KVRzMfZ94Z05qDbw5m1bSePNarET4umiodR6WSaOHnwrT+TdgxcwD3dQpEluG3I1EM+nQXK49er7FuJ42tmqcKBvsu3n3V+gUJ9c7Qzp1wu+Qi6XtDhDO07VwsGTlK2F/B9DT1caFXE090Mqw4ZPnzId0d7egS5AHAzgtxpW+o1SqpMhOgOEMWgF53aMPpaC7fUsTn9ByPvM193xzguRUnuJ6UibeLPf+d0I6/X+rHk32C8XOrmgNUGl7O9nw6qQOr/q8nLXxduJ2ZxxtrzjBx8QHColOq5Zh381D3hjjaqQmPz7D+LqtmzaBtW3HBLqXYs119N4K9nMjO07H1XAk1EgoKJkAfHfr9aBTZeZY/wHVgS6HDtaM0Z2j2bNGtuWVLzRlVS1GcIQugbX03RrTxQ5bhf0p0iMjEDJ5fcYL7vjnAievJONiqeXFwM3bNHMCD3RqiVtVMJ0i3YA82z+jDf0a3wslOzYnryYz9ch8/1IByuIvGllHthDjo6mO1oJD6P/+Bn38WYzpKQJIkg+aQIsCoUF0MaeWLv5uGpIxc/jwTY25zymVwK+EM7b+aSGZuCdGflBS4dQuWLxfzyoYOVbSHKoniDFkILw9tjiTBn2diOR2VbG5zzIJOJ/PD3nCGfraHLWdikCR4oEsDdr02gJeHNsfJvubr/W3VKp7q25jtrw5gdHt/dDLM23Ke70qZdSRJEq1bt6Z169ZVbt+9v3MgAFtCY0q+EFoTDzwAU6ZAvdIL0vVdZXsvJ5CQriizKxRiqvPKRq3i4e4NAfjloOWnypr5OBNYz4HcfB0H7u6Cu3gRsgs06v74A55/Xoy/0Vp+xMsSUZwhC6GFnwvjC24Gb6wJJU9bt1qMb6VmM+XHI8zbcp5crY4+Tb34c0ZfPprYHl/X6kmHVQQ/Nw1fP9SJl4Y0A+DDPy+UGCFydHQkLCyMsLCwCmuh3E23YA+CPB3JyNXy55nanzoK9nKiQ6AbWp1sFat2hZrDlOfVg90aYqdWcSoqmdCSxl1YEJIkMbggVbb9zlTZ9u3QsiUsXlz8TdZeY2gmFGfIgnhrdCvqOdpyITaNb+vQmI6/z8YwfOEe9l1JQGOr4oPxbVn2ZDda+ZtO5NJUvDSkOS8OFg7RvC3nqzVlJkkSEzuJ6FCtSJXFxMDHH8OHH5a6ybiCBcH6k7Wgi07BIvFytmdUO6HwbA3RIf1ojh0XbhU2UwweLCKtJaGrWwtpU6E4QxaEl7M9744VKqtfbL/Clbh0M1tUvWTk5PP6H6eZtvwEyZl5tKvvxpYZfXm4e5BFK8S+PLQ5M2rIIbqvcyCSBIcjkrieaOXCnFeuwOuvC4cor+QZUWPb+6OS4MT1ZOv/vAoWy5RejQDYeDqapBqWzqgo3YM9cLRTcys1h7Do1MIXvvgCgoKKv0GJDFUKxRmyMO7tWJ8BLbzJ1ep4c01orR1eefL6bUZ9sZdVx24gSfDcgCasebYXTbzLnnRuKbw8pBkzBonBqvO2nDdMms/MzKRNmza0adOGzMyq38wD3B3o01QIxP1x3MqjQ716gY8PJCfDrl0lbuLjqqFXE/F5N55WokPWQG6+juuJmRy8msia4zf4dvdV/j13i+RM0zkZpj6vQhq407a+K7n5OlZZeNRVY6s2XAOKdJW5ucEvvxR/g+IMVQpFgdrCkCSJD8a3Y9hnuzkWeZvlhyOZ0rORuc0yGbIss3h3OJ9svYhWJxPgpuGzBzrSo7GnuU2rEJIk8fLQ5uhk+GrnFeZuPodKgkkdfTh37hyAyfSBJnYOZO/lBNacuMlLQ5qjqqFuOpOjVsM998D33wsBxqFDS9zsno4B7LuSwPpT0Tw/sKlFRwnrGjn5Wv46E8u287e4eTuL6OQs4tNzSr3/tvRzoWsjD7oGe9CtkUel5TBkWTbpeSVJElN6NuL1P0JZfiiSp/s2rrEu1cowuJUPW8/dYvuFOENUGoB+/US0dcEC8xlXS1CcIQukvrsDb4xsybsbwvjorwsMbuVLfXcHc5tVZVKy8pi5+jTbzt0CYGyHAObd2xY3B9tqP7ZWKzpQo6Lgxg3xOz1dSOC0aiUGQWsqeJ0W8+WaIyPz9c6rzNl0jvwc0yvbDm/jh4tGTHY/cDXRKkYJlMr48cIZ2rABvvqqRAXd4W39eHv9Wa7EpXMuJrX4kEqFGudmchYrDkWy8mgUiSWklextVAS4OeCjccZFY0t46m3C4zO4EJvGhdg0lhWIHDbwcOCBLg14ul9j7G3KVomvbsZ1CODDP89z43YWOy/EMaS15Y6BGdhCFFGfjkomPi0Hbxf7whfffx/++QdOnxZ/K5GhSqE4QxbKI92D2HgqmmORt3l73Rl+eryrVa+Qz0Wn8uyK40QmZmKnVjHnnjY82LVBtX6mM2dg2TIRhLh2rWyRVpUKGjcWjtHAgfDkk1DSkOP8fPjrLxg7VvwtSRIzh7VAlmHRrqt8+OcFk38Oja2acR0CWHH4OquPR1m3MzRoEDg7i6Gtx46JkQJ34aqxZUgrH/48E8uGU9GKM2QmdDqZ/VcT+OVgJNvP30Kfsfd11tDVsTmxZzxIS7AlNdGG+DiJIzES+gyWvz+0bK3DIzATnUcy8bZx3CCWqKQsPtl6ibUnb/LBve3o2cTzjuPV7HQJja2aSV0a8N2ecH45FGnRzpCPq4b2gW6E3khh58U4JnVpUPiivT2sWAGdO0NOjuIMVRKlZshCUakk/ntfe+zUKnZdjLdqIbo/jt9g/KL9RCZmUt/dgT+e7cnkbg2rxRG6eRM++QQ6dID27UWt7pUrwolRq6FBA+jZEyZNgscfF2Us7u7iQnzlCmzaBK+8IrZ7/XWxPz1ZWWJY9P33iyiTHkmSeG14C+7pGFDpafflcX/Bxe/vs7GkZpdcfGwV2NvDqFHicSmzygDGdRBdZRtPRdfaujlLRZZlNp2OZshnu3l0yRG2nROOUFvH+vRM6kfckkF8/WoD1ix1YutmOw4dVHH1aqEjBKJxcOd2FWt+dmbd/wLZt6AT8sqRDJF74WHnQHh8BpO/P8Srq06TlJHLTz/Bm2/W/Gd9pHsQkgR7LsVzzcJnQw7Sq1GfL0GNuk0bmDdPPP7nnxq0qvagRIaMxQzedlMfZ2YMbsonWy8xZ1MYfZt54elsX/4bLYTsPC1zNp3jtyPXAejf3JuFD3SknpOdyY8VEQGvvgrr1xf+V9naCsHjhx+GFu1yic1NJjQmmZPXbxORkIGPiz1dhzsyvp4jLrIzuQnOJF53YNVyW86fl/j4Y1i4EB56CJ5+WjhHBw6IfX/1FcydW3h8SZJ4/562HLp4k+oox+wQ6EYzH2cux6Wz+XQMDxUIx1kl48cLrzM7W3ihhw+LaFG7doZNBrb0xkVjQ2xqNocjkopEEBSqj8T0HN7ZcNaga+Vka0Pj2225ts+PLacL01ouLjBhAoSEiCjQnT+yDGFhEBpa+HPyJERGSixZUA8v74G0GXqLcJ/TrDlxg80nb3FzSysID+TNNyU8PGru8zb0dKRPUy/2Xk5g0+loXrizHsfCGNzSl4X/Xmbv5Xhy8rXF04w+wlni449FaFuhQkiy1U+BrF5SU1Nxc3MjZedOXAcMqPHj52l1jP1yHxdi0xjXIYAvJofUuA2V4cbtTJ5bcYLQGylIErw0uDkvDGpq8uLfnBxRO/jhh4VirH36wH0PaLFvFs2l5ERORSUTUYFVn6Otmq7qNlz5tz4H9pccPPXwgOvXwcmp6PPbz0QypH0jADYevcrYLo0r87FK5Ls9Ig0X0tCddc/1Ntl+a5zkZNixA/7+GzZuFGG2b7+FZ54pstkbf4Sy8lgUk7s1YP6E9uaxtQ7x99lY3l53hsSMXGxUEmMC2rB3aUNOHBfnrI0NjBgBjzwi0sQV0T7MyoIffxT36cgCaR9HJxmnNjfQ9A5DZacl+7oHj7RozyfvORV7f0ZGBs7OotM0PT0dp7tPvCqw6lgUr/8RSgtfF/55uZ/J9mtqdDqZHvO3E5eWw7Inu9G3mXfRDW7fFg5Rfj5cvgxNm5rHUAvCcP9OScG1pLqHO1DSZMayaZNZDmurVrFgYntUktDEWHfyhlnsqAg7Ltxi9Bf7CL2RgrujLUunduPFIc1M7gj984+Y//nuu8IRGjgQjp7M56G5V/kpcTsf7Qxl3cmbBkeosbcTEzrVZ+69bVn5TA++fqgTb45syUPdG9K3mReNPB2xVUtk5mnZnR1K8qCtPDL7GhrH4iJmSUni4n43PZt44+4TgNrVh/c2hpl0rMS9IfVRqyROXk/mSpwVDvRNTxf5yQYNRL7x+++L5hvv4p6CSfZbQmPIyVdGDFQXKZl5vPT7SaYtP05iRi6NnN0JuT6YL2YEceK4hKurcGKio8Vl8IEHKuYIATg4iGkRly+LMVpt2kBmhkT8kQbcXDyInFsuaBomsTrpAKGRxb/bkiQRFBREUJDpNciGt/bDVi1x8VaaRQ/KVqkkQ6pse0mpsnr1QL9gLyMFrVAySprMWG6YzwlpH+jOswOa8PXOq7y2OpR6jnYMKOgusCTytTo+23aJRbuEenaHBu58/VAIgfWqJp9/N4mJMG2aGMcDIjT/0cc6tI2u8+yWK8SnCQekqY8zY9r7E9KwHh0D3XFzLL9rTauT2Xkhjv/9e4mw6FT2Eob/cxe5taUtmecDgMIL8aefwrPPihWzHkdHR2JvXueer/ZzITaNN9eE8v2ULia5gPu4aBjYwpt/z8ex+vgNZo1sVeV91ijOzuDtLZwiI+ge7Imvqz23UnPYfTGeYW38qtnAusfOC3G8sSaUuLQcJKBzTid2/eBHYqL4vj76qHCEfE1UW2xrK9LW586JVBqALsuO2KV9cR9wHrfuETz47WE2vdyjiOaYo6Mj165dM40Rd+HmaEvfZt7suBDH5tAYXh7qUi3HMQWDWvrw+9Eotl+4xXtjS5jTNn68mE+2di289pp5jLRSlMiQsXz/vVkP/+rQFozrEEC+TubZ5Sc4cf22We25m7jUbB7+4bDBEXq8VyNW/19PkztCFy5A9+7CEVKrYcYMmfm/3mBx1C5mbwojPi2HBh4OfDapA/+81I+XhjSnf3NvoxwhALVKYkhrXza/0IdvH+1MK39XdOp8vMedIuDxfagcCyM9kZGwenXxfdjbqPnfAx2xU6v493wcvx81XRXRxM6ikHrtiZvkW+P8ugULhJ7B3ZTgLKpVEuM6iOjQ+lOKAKMpkWWZj/+5wNSlR4lLyyHI1YXm54ayZqE/iYkSbdvC7t1C089UjtCdzJ0LS5aAp6EUTCJ5V2sSNncgIz+Xyd8dqlBqu6qMae8PwObQaJPpg1UHvZt6YWejIiopi6vxJSwq7rlH/D50SITyFIxGcYasBJVK4pP7O9CvuTdZeVqeWHrUYkK6B68mMuqLfRyOSMLJTs2Xk0OYPa4Ndjam/Xpt3Qo9esDVq9CoEfzxdwbnG+3hvb9PczM5Cx8Xe+be25btrwxgQqfAKomoSZLE8DZ+bHmhD9883IkWvi7Y+qZSf9oONA0Lp0c//3zJLfut/F2ZObw5AHM3nzNZp8qglj54ONkRn5bDnsvxJtlnjeLkJO6wRvZQ6yfZ/3s+jpQsK+6isyDytDpe+yOUr3eKhcuEFk1JW9OXrZvssLUVkaATJ4SeX3WhUsETT4hz+cUXC33hjLBAYpf1IiYGHvr+UI2NZBna2hc7GxVXC7SRLBUnext6FgjUlpgqq19frBZBaHkpGI3iDFWE1NTyt6lG7GxULH6kEx0buJOcmceUH49wM9n0In/GotXJfL3zCg//cIiE9Bxa+Lqw8YU+jC1YzZuSr74SHdkpKaJAev7SW7y1Zy+XbqVTz9GWt0a1ZM/rA3m0R5BJnTCVSmJkO3/+erEvH93XDnuNjM+Dh6g/6Cogc/s2TJxY2MGWlZVF165d6dq1Kw939qdHYw8yc7W8vOqUSSI5djYq7i1wEFYfs/z6sRLp0QPeesuoTdsEuNLC14XcfJ0yyd4EZObm88wvx/jj+A1UEjzVojO/vdWCkyckvLxEhmXmTJHOqgnc3ETHZliYkMMAyI1159avPbkRq2Xy94eISsoscl5lZZn+mueisWVAc1GQvDnUsiMqg1uVMMX+TsaPF78PHaohi2oHijNkLOPHi5iuvhXCTDja2fDT411p6uNMTEo2jy45bJZBg1fi0rl/8QE+/uciOhnu6xTI+ud7m3y2WF6eiL688IJQkZ4yRWbkaxd5869jZOZq6dXEk+2vDuCZfk3Q2Fafoq1KJfFA14b8PLUbLhobbLpeoMUD5wGZDRtg/nyxnU6n49ixYxw7dgyQ+XRSR1zsbTh5PZlv95hmoOv9XcQk+3/P37LeaMk770Dr1oV/l3KDkySJCZ2E87f2hJU6fxZCUkYuD31/mJ0X47G3UTHJvQ/znvUjNlaoGhw9Wr3RoLJo1Uq033/9tUh/59124vba7kTF5fLQD4e4kZRhOK901TSVfUzBIm5zaIxFp8r0atTHI2+XPP/t8ceF4uzSpTVql7WjOEPGkpUl8iEWEHqs52THL090I8BNQ3h8Bo//dISMnDLklU1IvlbH4t1XGfXFXk5cT8bZ3oYF97Xnk/vb42BnWmckL090rixaJMLoc+Zqkfsd5bsDVwB4um8wvzzRDY9q0C0qjV5NvVj5fz3wdrEnu1EEjcZcBuDtt+Gnn4pvX9/dgTn3tAHg651XTNJd1srflWY+zuRpZXZdLGV1aOnY2cGqVYX5kbNnS930no71kSQ4eu22Msm+kty4ncnExQc4FZWMm4Mtg7L789GbbuTkiDKT/ftF6tmcSBI89xwcOSK6zzJuuJH+Z1eux2czdemRaj/+4JY+aGxVRCZmcvamebMAZdHAw5Hmvs5odTK7L5WQKvf1FW22VjyxwBwozpCx6OcvrF9vVjP0BLg78MuT3XF3tCX0Rgrjv95PZGL1FhxeupXGfd8c4L9/XSA3X0e/5t7883I/JlXDWA0RBRIdonZ28MWSTP6128Oey/FobFV8/mBH3h7dGht1zX+F2wS4sfbZXgR7OSG3uYxPHxHxefppMarjbsaH1Kd9oBuZuVq+KSgwrypDC0YHbD1Xemu6xdOmTWErsH6uUgn4uWkMU7vXnVQKqSvK+ZhUJiw6QHh8BgFuGobk9Gfxp6KxYdYs0XjkYkENVJ06wfbtYlbg7YueZG3vRGRC9ZcDONnbMLilOK8sPVU2qMDOEuuG7qSaomi1EcUZMhb9CIE9e0RvtwXQ1MeZV4eJIt1LcekM/GQXC/6+YPIuozytjq92XGbMF/s4fSMFF40NCya25+epXatlgKxOJwRUf/9d1C6887/bLIrYw/WkTALrObD22d6Gwlpz0cDDkT+m9aRDoBuaXudxbX8DrVa0IuvZV1DgrB/XAbDsUCTRJqjz0reZ774Yb90aPHoZ7zNnILf0dO/4kIJU2ckbFp3CsDQu3Urjwe8OEZeWQ3NfZwbl9eOz+ULF/qOPhFhpTc4DM5aePQs7RuNP+pG2t2WNHLewq8yyU2V6vaG9l+NLHleTkiKk84OChDKtQrlY4GlgoQQHi2FXWi1s3mxuawzcziisGdEVDAvt9d8dnDJB631adh7f7wmn34KdfLL1ErlaHYNb+rDt5f5M6lI9Q1ZlWdQI/fyzuBC+81kKv9w8RGaulj5Nvdg0vQ+tA8pWEq0pPJ3t+e2ZHgxs6Y37sFBcmsYbVLAB3lx7xnBB7dPUi+7BHuTm6/hyx+UqH7t9fTd8Xe1Jz8nn4FXLcM4rRc+ewoN8/vkyw/rD2/jhaKcmMjGTE9eTa84+K+bG7UymLDlCSlYeHRu40z+nDx+8JyqjP/hAjJexZEaPLhQ2TTneyPB8VDWmSge29MHJTs3N5CxORiVX23GqSkhDd5ztbbidmUdYdAkpPRcXoY1w44ZQe1coF8UZqgj6Kn0LSZUBHIss7vTEpeVw76IDTFt2jOzcitcSRSdn8eGf5+k1fwcf/HmemJRsvJzt+d8DHfjhsS74uWlMYXoxZBlefhkWLxb3xXc/SWPFrQPkanWMaufH0qldq2WuWVVwtLPhu0e70DHIFfexx7HzLmzLTUjLJSZFeEd3RodWHbtRZQ0VlUpiSKtakCpTqUSr/UcfldnC5GRvw4iCaJhSSF0+iek5TFlyhNjUbJr5ONMzqzv/mSVq+mbPNrqZz+xMmSIGL9/JW+vOVNtAZI2t2jC9fvNpy+1etFWr6FHQYr/3Sgl1QypVoeaQBd2vLBnFGaoI994rfv/zD0VGNJsJrU7mZAnOkJ6/w27Rfs5Wnvr5KCsOR3LpVlqJIdXsPC2XbqXx99kYXl55in4LdvLdnnDScvJp6uPMR/e1Y98bAxkfElgt0SA9778Pn38uHr/3cSarbh8gO0/HwBbeLHwgxCz1QcaQkpWHp7MdKjst9YafBrwALzIvBBB6I9mwXZdGHgxq6YNWJ/O/bZeqfFx9quzfc7esf7K7EbmaCZ1EF91mZTxHmWTk5PPE0qOEJ4gaoeE2PXnzNSGT/p//iPE11sQrr+jXoV4geXLkagpL9pmmM7MkxrQXXWV/nomx6POqX3NRR7f3UkLJG+jvVxs3KrVDRqCM46gIHTqIkH6vXmaZYn83F2PTSCuniyxXK/Pv+Tj+LSi0c3OwpXNQPQLcNUQmZhKRkMHN5KxiH6dnY0+e6deY/s29TT5TrCRWrhQrVoB35mexNn0f6Tn59GjswTePdDa5gKMpcXOwxcFWnEqa+vm4991H8t4W3N6Zx56TkYxoW7jtq8Oas+NCHBtPRzOtf5Mqpfx6NPbA2d6GuLQcTt9IJqRhvap+FPNx6pSo5L3//iLT6++kZxNP/Fw1xKZms/NCHCPa+tesjVZAbr6OacuPc/pGCvUcbXm6cS+eflhEU994Qyw4rK3JSJLg+++dOHQonpgYSD0QwScuF+jf3IcWfqav/O7X3AsXextiU7M5fv02XRt5mPwYpkDfVHA88jaZufk42t11Ox8wAFxdITZWtOj16FHzRloRijNUESRJhPQthOTMXCZ2DqSeoy3ujnbUc7TDw6nwsYOtiitx6ZyKSuZY5G1OXk8mJSuPHSWIdbnY29DY24lW/q483D2IdoFuNfY5jh4V0hgATz2Xy5/5+w11Dj881rVa9YNMgZ2Nii8mh+Bgp+aP4zdw7XGVzCu+5Ma489NHXnzwSOENqE2AG2Pa+7M5NIbPtl3kh8e6Vvq49jZqBrTwZnNoDNvO3bJuZ+iDD0TFrE5XqjOkVkncExLAt7vDWXPipuIM3YVOJ/PKqlPsvZyAo52at3v14Mn7HNBq4bHHhBaWtTlCejw9Rf3QyJGQdjwYhyZxvLzyFOuf723yhZK9jZqhbXxZe+Imm09HW6wzFOzlRH13B24mZ3E4IsmgP2TAzk4UXv32m0iVKc5QmUiyJZfMWwCpqam4ubmRkpKCq6tlFO5WljytjvMxqRy9dpvE9BwaeToR7O1EsJcTnk521ZoCK42bN6FrV4iJgSHDtaT33UVMWjat/F35/ekeRs8UswR0Opn3Npxl2eHr5CU6EbO0L3K+msWLZf7v/wr/bcPj0xn6vz1odTJrnu1F56DKOzEbT0cz47eTNPVx5t9X+pviY5iH5ctF1LVNmzI1hy7GpjF84R5s1RKH3xpSoxpTlowsy8zeGMbPByOxVUt8MqYbL072IjIS+vcXo2zsasE/1XPPwTffgK1rNr5Td/PiyEbMLKjFMyU7L8QxdelRvF3sOTRrcJVG+1Qnb64J5fejUTzZJ5h3xrQuvsGqVUKsrUULMdixjlGR+7fl5h4smRs3hBLgqVPmtqRC2KpVtA9058k+wbw+oiWTujagayMPvJztzeIIZWaKGr+YGGjVWkbb/yAxadk08XZi2ZPdrMoRAlHUPGt4E+TNs0n85wXcegvtnFdfhYiIwu0aezszsaD+5eN/LlSphXdAC29s1RJX4tIJL2lwo7UwerRoHwwLEwOrSqGFnwttAlzJ08oWrwVTkyw/FMnPByORJJg/riMfviQcoWbNYM0a63eEsrKyGDBgAGfODKBJkyzyUjUkbWvLol1XOFkNQ6t7N/XCzcGW+LQcDkdYbrdm32ZihMje0uYUjhghZpU99FDJQxQVDCjOUGX4z39EK7AFpcysDVmGqVPh+HHw9JTp+sw5wlNS8HGxZ/lT3fFytje3iZVClmWuhx0jJ+osziER2AcmkpEh8X//V7TMbMaQZtipVRwKT2L/lcpfbF01toaukm3W3FVWr54IYUC5Ku/6Quq1JxQBRoAjEUnM2XQOgNeGtWTVpwEcOQIeHrBly52T4a0XnU7H7t272bdvNz/8oEOthsxz9Uk778e8LedNrglkZ6MydC9a8ky83k09kSS4dCud2JTs4hu4uooZZe++CzZKVUxZKM5QZRg3TvzesMEiCqmtkY8/FhFcW1t4ek4su2OuYaOS+PrhTvi7mV7I0Rz0auqB56hQJLWObdtg27bC1+q7O/Bwj4YAfLrtYpWOM6w2qFFDYStwOc7QuA4BqFUSp6KSuWrN0TATEJOSxXMrjpOvkxnbIYCk/Y1ZvVqcV+vWichQbaNrV6GcDZC8szVHr6SUPJaiigxvK86rXRfjLVaA0d3Rjvb1RX3nviuldJUpGIVVOUN79uxh7NixBAQEIEkS643QT9i9ezedO3dGo9HQuHFjFi9eXHVDhg0De3sIDxdhfYUKceBAoc7JzNkZrL55EoBZo1pZbLFiZfjmkc74BubjHHINEN08d3a4PjegKbZqiZPXkzl7M6XSx9Hropy4fpv4NCtWm9U7Q/v2QULpF3ZvF3v6NSsYz1GHo0PZeVqmLT9BQnouLf1cGOXZnvfeE+nuxYvNN3S1JnjrLWjQAPJTHUg73ojPtl0yucPSPdgTW7XEjdtZRFrwTLxyU2UAaWmwenWZ51Vdx6qcoYyMDDp06MBXX31l1PYRERGMGjWKvn37cvLkSd566y1mzJjBmjVrqmaIszMMGSIeW8DgVmsiKQkmTxZC3hMmavlXPki+TmZMe3+e6N3I3OaZFHsbNXPvaYtbzyuo7PM4dUqMGNHj7WJv6Ihacfh6pY/j7+ZAh0A3ZBm2n7fi6FBQkJCvcHWFc+fK3LQwVXaj2gT4LBlZlnl3w1lORyXj7mjLB8O7MHWKGp1OpJ+feMLcFlYvDg6iAREg9VBTTl7KYtu5W1xLyOC/f11gwd9VLxZ2srcxNDeU6WiYmT4FC4P9VxJK10UaOhQmTYJNm2rQMuvCqpyhkSNHMm/ePCZMmGDU9osXL6Zhw4YsXLiQVq1a8dRTT/HEE0/wyd2SppVBv4rduLHq+6oj6OuErl+Hpk1l6HOcuLScAmHH9mYp4q5uRrXzo2tLJ1y7i6Lgt98uOiro4e4iVbbh1E3SsvNK2oVR6Ae3WnXdEIjFRVxcuWGNoa19cXOwJTol26JvVNXF8sPXWXXsBioJFk4K4bXnHbl1SwwrN3KtaPU8/DCEhIAux5aUA015aeUpBnyyi8W7r3I5zjTp037NRdRlz2XLjah0algPRzs1Cem5nI8tYTQHCE0CUBbvZWBVzlBFOXjwIMOGDSvy3PDhwzl27Bh5eSXfeHJyckhNTS3yUyJjxojfR45AtNLVYgxffCF8Rzs7GD7jGsdj4nGyU7P4kc442dfO4j5Jknh7dGtcOl9D7ZzNtWvw7beFr3cP9qCJtxOZuVrWn6r890ivRr33SgIZ5QhxWjRBQWWO5dCjsVUbhreuPBpV3VZZFEevJTFno0jPvzGiJTt+9WbnTnByEpkQR0czG1hDqFQwaIoobk47GURKbGHTRXJm6UN/K0K/ghTUwauJ5Jl4ALapsLNR0bOgiWJfaU6bfvG+dStkVX1QdG2kVjtDsbGx+Pr6FnnO19eX/Px8EkrJnc6fPx83NzfDT4MGDUreub+/aFm0sYFjx0xteq3j2DF47TXx+JnXUtl8U6RBPr6/A019nM1omelxdHTE8Y47Uuegeozt7INbbzGCY+5c0PvYkiTxcPcgAFYciqx03UMzH2eCPB3JzdexpxqKSWscWYaMsue3PdBVnJvbzt0iId2Ka6UqQGJ6Ds+vOGFILTfKbsy8eeK1776DljUz3N0s3H1eATx+vyNOTeJApyJ5d+GHT8owjTPU2t8VDyc70nPyOWnBA4L1qbK9pTlDHTpAw4bCEdq+vQYtsx5qtTMEFEu96G82paVkZs2aRUpKiuEnKqqMVedPP0F8fGF3mUKJpKfDgw9CXh6MGafjoOYIAE/0DmZUu9qlIuzk5ERGRgYZGRk4OTkZnn9jREvqhdzExiOdhAT49NPC99zXKRB7GxUXYtMqPZFdkiRDV5nVp8r++AOCg+Gll8rcrJW/Kx0auJOvk1lzvPYPb9XpZF5dfdqQWn6tf3umTJGQZZg2TUjJ1FZKO6/a1nfjw//KIMlkXvIn+4ao8UnOrHzK+U5UKskw9sKS07H6Iuoj15LIzithbp8kFe2CVihGrXaG/Pz8iI2NLfJcXFwcNjY2eJYivmFvb4+rq2uRn1Jp1Qrc3U1oce3kjTeEjl5gIDQYF0ZCeg5NvJ14fYTplWMtlYaejjzeO4h6/UQb/aefytwq8FncHG0NwyF/rUIh9dDWIlW2/UKcdRcVu7lBZCRs3lzugMnJBdGhlUejLLb92VT8uD+CXRfjsbdR8eXkEF5+wYa4OFEn9L//mds68zFjoi9dhiUDcHtnK2QZbmfmmmzIat+CqIsl1w018XbC301Dbr6OIxFJJW80dqz4bcR5VRep1c5Qz5492XanuAuwdetWunTpgq0RdQkVQqtM0S6JbduEWDfAC7Nv8+fl66gkkR6z9JljpuaFQc3w65CInf9tMjIkvv668DW95tDm0OhK1zt0DqqHi70NKVl5nI8ppdbNGujfH1xcxIDJo0fL3HRMhwAc7dSEJ2SUfhOoBZyOSuajgg6pd8e25ug2V9atE+VVy5aBRmNmA83MuiXuqO205EbXIzvSE51MuUOsjUUfdQm9kWyyWiRTI0mSwWkrNYJ153l15kwNWmcdWJUzlJ6ezqlTpzhVMAYjIiKCU6dOcf26WE3PmjWLKVOmGLafNm0akZGRvPLKK5w/f54ff/yRJUuWMHPmTNMZtXWrqB2aNs10+6wlJCcXtvg++YyW1bHHAXi6b2M6WfNQ0TLIzs5m9OjRjB49muzsooqwbo62vDikGa7dwgFY9I1sqGUMaeBOK39XcvJ1rKmkdo5aJdEtWOg0HQq33BEC5WJnV9j9Uk63prO9DWMLomq1tZA6LTuPF347SZ5WZlQ7P/r4NeSFF8Rrc+ZAx45mNa9GKOu8AgisLxmuNalHGwMQn1qCInMl8HPT0NzXGVmmSmrx1U2h3lApESx7e6HtEREhaogUimBVztCxY8cICQkhJCQEgFdeeYWQkBDeffddAGJiYgyOEUBwcDB//vknu3btomPHjsydO5cvvviC++67z3RGqdWio2zTJiX0eBcvvSTGuDVpAg69wohPE+mxl4c2N7dp1YZWq+XPP//kzz//RFtCtPDRHkG07J6G2jWTxASJFSvE86KQWkSHVhyufCG1fjTHwauWe9E2Cn19gxHSFQ92E6myLWdiSMkyTa2IpSDLMm+tO8v1pEzquzvwwb3tmTpVIjUVevYsbEqo7ZR3XgG8MVONJMlkh/uQG+9sUkV2o4QNzUzvpl5IElyITSOuNEdw1Cho1KhG7bIWrMoZGjBgALIsF/tZunQpAEuXLmXXrl1F3tO/f39OnDhBTk4OERERTDN1BKdvXyESd+tWuSH9usSGDfDzz6Jub/rsJDadj6qz6bE7sbNR8WS/IFw7XwPgf/+TDRNd7g2pj5OdmvD4DA6FVy7l07OJcIaORCRZd93QyJFioXH2rFB6L4OODdxp4etCTr6ODadqlyL16mM32HQ6GrVK4suHQvjlB1t27hTt8z//rIybupMmTWD8eNEYk3q0sUlnivW9o1vLUmvTPJzsaBugjOaoLFblDFkkdnZiMjAo6p4FJCbCM8+IxzNe0vJr5AkAnqrF6bGKcF/nQHy7xiDZ5XPunMTWreJ5Z3sb7inQzllxOLJS+27l74qrxoa0nHzCois/4sPseHiIhQaUe15JkmSIDv12pPYUUl+JS+e9Aj2hmcNa4JJTjzffFK998kntnDtWVV59VfzOOBfA6Us5RCWZZoxG92BP7GxU3EzOIjyhbMkHc6JvsT9QVmR482ZRTL1kSQ1ZZR0ozpAp0FfpK2rUAMycKUSEW7cGVZcw4tJyaOztxCtWkB7LztOy6lj11p64aGx5oLcfzu3Ece7sBHqom0iV/RMWWyntHFE3JKJDVl03BPD44zB9OvTqVe6m40PqY2ej4nxMKmeqMOfNUsjN1/HSypNk5Wnp09SLZ/o25plnIDtbTAJSShRLplcvkT5Eqyb1RJDJzmUHOzXdCuYmWrKOlz5NfjiijHP/3DnhEK1eXUNWWQeKM2QKRo4UcqhnzsC1a6JQZvduc1tlFnbsgKVLRXrstbmprA0VF6MF97W3ivTYisPXef2PUJbsi6jW4zzWqxEuna8BMv/8UziKq219N9oHupGnlfn7bGxZuyiVHo3FRdvq64Yeewy+/FKMKS8Hd0c7RrYV0gK/14JC6v/9e4mzN1Nxd7Tl00kdWLpUYtcuMZPr22/F+aVQMvroUPrJIH47cJN8EylH9y1P2NAC6BxUD7VKIiopi5vJpShN6xfvO3eKAa4KgOIMmYZ69aB9e/G4Tx8xTvnLL81rkxnIyipMj02bJrM2OhQQooJdrGAafXpOPl/vvALA3M3n+LEaHaJgLyeG9XDCoZko8ly4sPA1vRDlP2GVdYbE6vDotdsmuxFYA3pF6o2nokm34pEkh8ITWbxbzLL774R2yJka9A2wc+dC48ZmNK4auZWaTeiN5Crv5957IbixjC7bjogDPuy8aJpITt87RnPk5FumlIqzvQ3t6ou6ocOlRYZbthQFVrm5QvtEAVCcoarz5pvg5wcF7f7cLCjgVFt+FMTUvP++EFesXx+6TLxB6I0UnO1teGOkdYgrLtkbUUTG//3N5/hpf/U5RI/3Dsa1q9j/smUy8QXX7OEFc8YOXk2slK5Ja39X3BxsSc/J52y0FesNAeTnw65dsHx5uZv2CPaksZcT6Tn5VqtInZKVxysrTyHLMKlLICPa+jNjhpCp6NwZXnzR3BZWD5GJGdz3zQE+/PN8lfelVsMrL+sLqYNZcajyQqZ30tLPBS9ne7LytJyITDbJPquD7o3LkdeQpKICjAqA4gxVne7dMdzF7qSOtXmcPg0ffyweL/gsn6/2C4G4l4Y0w8fF8hXhkjJy+X5v8a6lOZvOsbQCDpGTk5Ohy/HOsQEl0bepF61CcrDzTSE7WzLc74O9nGjh60K+Tmb7+bgKfQ4QIwRqhd4QiA7NgQPhhRfEPJcyUKkkHu/dCICf9keYTIG4Jnln/VmiU7IJ8nTkvbFt2LBBlHao1fDDD7XzsnI+JpWJiw9y43YWh8KTOB5ZvJOyIucVwNSp4Oomk5/sxD9bdUSXljKqACqVEcKGFkCPYH3dUBkdqfpB41u2KJIwBSjOUFUZPx4efrj487XxqlUKWi08/bT4fd99cElzkaSMXJr6OPNYr0bmNs8ovtl1pdTUyuxN5/jl4DWTH1OlkpjauxHO7UWNy88/F968hxfUv1Q2VdaztugNdesGXl4iNLJvX7mb39cpEFeNDdcSM9l5UTiS1qI9tP7kTTYWtNEvfKAjulwbnn9evDZzpvWKK8qyTFxqNofCE/n9yHXm/3Wer3de4di1JA6FJ/LAtweJTytsFvh659UqH9PJCR5+qCA6dCbQZIXUhaM5LNcZ6tKoHioJIhMziUkpxQnUS8LExSmSMAUozpAp+OILkSq7kzqUJvvhB3E+ubrCjP+kGRyH2WPbYKu2/K+YVqsjJ19HE28n7Eqx990NYUxYtJ+r8ekmPfaEToH4dIwDlY7TpyVOnxbPjyhIle2+FE9mbsXrX/R1Q8euJZFnzXVDajWMHi0eGyFd4WRvw+SCjryvdlzh2eXHeW7F8eq00CREJWXyzvqzALw4uBkhDesxd67IugcHw3vvmdnASnArNZvX/zhN2/f+oduH23nwu0O8ufYM3+4O5+N/LjJx8UEe/O4QqdlFv987LsSZRBbi8cfF76xLfvy6N9okulu9C4a2notOJcNC69JcNLa0NdQNlRIdsrMT51X//uVGXOsKln+nsgY8POC774o+p6ob/7Tx8TBrlng8d67MV4fPopPFzVyveWHJHL2WxODPdvPLwUiuxmeQW+A4eDnb4XBX99uJ68kM/Ww3b/wRWmrYPTs7m/vvv5/777+/xLEBd+Nsb8Pkvn44NhWF1L/8Ip5v5e9CQw9HcvJ17K5EAWhLPxfcHW3JyNVaf6u5vr5h0yYwQkOofwtvJOBkVDJ/nY3lYqxld8xodTKvrjpNWk4+nRq689yAJpw7Vyi58OWXoovMWsjK1fLF9ssM/GQXq47dICNXi0qChh6O9GvuzZSeQYxq54ezfenR80V3RYcqel6BaEJs0UJGzldz9YiHSVrifV01BLhp0MkQesNyzyv9YqjMNPny5aIer0+fmjHKwqk7uZzqZuxYeOSRwkLPpNo7NPJOZs2C27dFCL9Rn1g+W5WEvY2Kt0e3MrdpZZKn1fH5v5dZtOsKOhkc7dT0auJJ/xY+DGjuTQMPR0B0mN28nUVEQjpLD0RyKDyRlceiWHfqJo/2COKFQU1xd7Qz7Fer1fLHH38AGJTRy+OxXkF83e4cmZf8WbZc5qOPJGxsJIa38eX7vRH8HRbLyIIOM2NRqSS6B3vwT9gtDoUnWrfY5bBhYiV75QpcvCi6YUogKimThf9eZt3JG9zpMiWk55KQnoOXs33N2FtBvtsTzpFrSTjZqVn4QAhqlYrp00Xt+LhxhYExS0eWZTaFxvDfP88TnSIclpCG7rw5oiUdG7pjb1N0caHTyYTFpPDFv5fZfiGOOwM3W87E8HJcOk19nIHKnVeSBFOnSrz5JmScDWTF4XAGtvSp8ufs2NCd6DOxnIpKNii+Wxrdgz34bk942XVDdWTBbizKv4Yp+fLLwvHRUdavdVIeBw8Wiph+/oWOz7aLoun/69/E4ExYIuHx6Uz85gBf7RSO0IRO9Tn81mB+eKwrj/YIKmK7s70NLfxcGNHWn9+f6cGaZ3vRPdiD3HwdS/ZFcO/X+7lxu2oqt0GeTvQdqEXlkEN8XKEi9YiCuqEd5+PIza94qqvW1A25uMCAAeJxOamyg1cTKCkbcumWZUaHzt5M4bNtFwF4b1wbGno6snKlkIDRaODzz81sYAX437ZLzPjtJNEp2QS4afhicghrn+1F98aexRwhEA57u/rufP9YV/a/OYgOgW5FXn/9j9NVtumRR0Clksm54cG2Q+mkZFY9JRTSQCwsTl6/XeV9VRddGnmgkiAiIYNb5Q2sjY+HS5dqxjALRnGGTIm7O4aKx8jKjVOwFrRaeO458XjqVLhuG8W1xEw8nex4pp/lCqFsDYtl9Bf7OH0jBTcHW756KITPJnXERWNr1Ps7B9Xj92d68MsT3Qis58C1xEzuX3yQK3FVqyW6p7M/Tq2jgcJUWUiDeni72JOWk8+BqxUXeuvRRF83dNu664agMFV24ECpmzTwcOS3Z3rg51q8e/GSBabKsnK1vPi7mEY/oo0f93cOJC0NXnlFvP7229YzU/OrHZf5YofQ6Jo+sCk7Zg5gXIcAJCPVIf3dHNgwvQ/fPtIZl4L02YnrySz4+0KV7KpfH4YMETakhAYYiuqrQseG7oBIw1rq6Bc3B1taB7gC5aTKfv4ZfH3h5ZdryDLLRXGGTI1+eFB8vFCirqUsXiykldzd4d338/l8+2UApg9qWmYtgDk5cf02L/wmRhz0auLJ3y/1ZUz7gArvR5Ik+jX35o9pvWjq40xMSjaTvj3I2SrU5oxs64drO6FRtW69THKyWDkPb+MLVK6rrLmPCx5OdmTlaU0iZmdWHngAjh2DNWvK3CzI04lfn+6Oj0vRlNi5GMvTW/rvX+e5Gp+Bj4s9H05ohyRJvP8+xMRA06YYhBYtne/3hPPJVhFZmDWyJTOHt6i02vzwtn6cfHcoY9uLtPCiXVf57UjVdIL0hdTpZwP5p5Kq7nfSNsANG5VEfFqOIR1oiXQvaLFfceg6r60+zeBPdxXRUQOgSxdRh7d9O2RY7sy1mkBxhkyNl5fQHgKh4VALSUyEd94Rj+fNgy2XrxGflkNgPQce6t7QvMaVQlRSJk//fIycfB1DWvmw7Mnu+LtVrSrVz03Dymd60La+K0kZuUz+7hDHrlWuVszL2Z4BvW2x9UojN0cyjA0a0UbcFLaG3apwN4y+bgjgUGldJdaCt7dQHTSizqGxtzO/Pt0DT6fCaN+RsmonzMCui3H8fFBEjz++vwMeTnZcvlyYFvv888KMuyXzy8FrfFAglPjK0Ob8X/8mVd6njVrFlw914um+wQC8te4Mf5+pvBNz773g7CKjTXXkz21asvOqph7tYKempb8LAKeuJ1dpX9XBjgu3eHTJYX49JL5fR64lsfr4DSISMnBzuCsC3rq1CD/m5IhZSnUYxRmqDu65R/z++2/z2lFNvPeeKJpu1w4eeDTXMDrg1WHNS6wNMDcpWXlMXXqUxIxc2gS48vmDIahVphnu5Olsz69P96BbIw/ScvL5v2WVb+Me28Efp7Yimvjzz+K57o09cHOwJTEjt1KOlr7A0+rFFytIUx9nfnump6Ej8HpSpsWMJolPy2HmalEP83ivRvRvLsY8vPqq6HIeORJGjTKnhcax/uRN3t0QBsDzA5vwwqCmJt3/W6NaMblbQ2QZXl9T+fohBwd48AHxOPGUP/uvVH22mCXXDTX1duFweBJZd9UZ1nO0K37dk6RCAcY6rkatOEPVwUMPiS/WihXmtsTknD0L33wjHi9cCN/vu0padj4t/VwY16G+WW0ridx8Hc8uP86VuHT83TT8+HhXnEycxnPV2PLzE93oHuxBZm7lV53D2/jh1lbUDe3fL9IltmoVg1uJDph/wm5VeJ/6LrLQGykWW99gNLdviwK1Vq1Eq1U5NPd1YdmT3ZAAnQzLDpm/jk+nk3l19WkS0nNp6efCmyNFZ9y2baI23MYGPvvMzEYaQWxKtkEX6ck+wcwc1sLo+iBjkSSJefe2ZUx7f/K0VfvuPvKIsC3rsi9/h1b8PLqbjg3cATgVlVzlfZmahp6OPFkQVbsTT2e7EramqDNk7deIu6jIvHTFGaoOgoJEP6yj5XZUVQZZhpdeEurtEyZAq85ZLD1wDYDXR7QwWbTFlLy/OYwDVxNxslOz5LGu+JZQXGsKHOzUfDE5BC93Fxq8/Adv/n4Yxwr+/7s72jGwkwt2/slA4UJNP6tsx4WKX8Sb+7pgp1aRkpXHjdtVH0lgVlxdYeNGuHBBtDIaQZdGHjzaMwiAxbuvmj069OP+CPZcisfeRsWXk0PQ2KrJzy+sX50+vVTlAItBlmX+s/4MaTn5dGjgzlujWpncEdKjVkl8Nqkj/dsE0uDlPxg0/29s7Cp+DvfuDa7uOnTZdmz4J7fKAoz6IuozN1Mssjnh+YFN8b6rbs7DqRRnqH9/IdkdHV04Y7MWkJ9fWMJrDIozpGA0GzeKOjt7ezGH7Ivtl8nJ19GtkQcDW1Rdv8PUHI+8zfJD15Ek+PKhEEN3RXXh66rh0wc6orLT8NvJeLaeq7jzMqZ9gEGAccMGccHu2cQTlQTXypLXLwU7GxUt/ER9g9WLL6rVIocERqlR63ljREtcNTbcSs1h7cmb1WRc+Zy9mcJHBd1R74xpTTNf8f/y7bcQFgaenvDuu2Yzz2g2hcbw7/k4bNUSH09sX+2LIDsbFZ8/GIJ3PVeuJuezaFfFx3XY2MC4scLO2DMeHI+sWnor2NMJNwdbcvJ1XIixvE5FZ3sbXh9edEC2p1MpOlsaDQwdKh5X4LyydL7/Hs6dM357xRmqLm7fFm7psGG1IvSYmytqGkD8tvfI4o+CyeCvjTB9iLyq6HQyszeKeob7OwcyqKVvjRx3YAsfQ+Hn63+EcrOCAyKHtvHFtaVo/932L6SnizScXl6/MrU/+vdavTMEhQqEFWhOcLK3YXpBPcvn/16ulGZTVcnIyWfGb6KNflhrXx4uaDRITi4ctTF3LtSzcG3MpIxcw3k1fWAzmhc4dNWNh5Mdc+5pA8DXO69wvhLdgePvLUiVXfGtcleZSiXRoSBVdjLK8uqGQMzpax1Q+P/jZF9GPef06fDjj/B//1cDllU/ycmFTT7GojhD1YWDgxBh3LYNQkPNbU2V+fpruHpVjGCbNQu+232VPK1Mz8aedG3kYW7zirH6eBRnbqbgYm/Da8NrLu+Qk5PDxZUfod35Fclpmbz0+8kKheRdNbYM6+2AjXsGuTmFAoxVEVBsW19ExKrS+m8xDB8uIkTnzkFEhNFve7RHI7xd7LmZnGWyoZ3GItJKZwlPyMDPVcNH97U3LB4+/FB0Z7ZuLYYdWzrvbwojKSOXFr4uPDug6p1jxpKTk8Mfn72F/f5vyMvN5bU/Tlc45TlsGNjaiUn263emV7mGLkRfN2SBHWUgHLa597Q1/F1mF93gwaIez7dmFo3VzQcfiPOqRYvyt9WjOEPVhUYjvmBg9S32SUli1Qrid6aczW9HxQ3F1B0kpiAlK48FfwtV3xeHNCuWO69O8vPzWbbsF24c+RsnW4mj126zvoKpmbEdA3AoSJVt3Cgu2HoBxYOViAy1K4gMnb1ZC4qoPTxEAQhU6LxysFPzXMHN+6sdV6rcXl0Rlh+KZN3Jm6hVEp8/2JF6BbUb164VttJ//LFI5VgyOy/Esf5UNCoJFkxsj51Nzd0+8vPz+fnnn7m0bwuu9irO3kzl2z3hFdqHszMMGiS+/+HHXblQRSFOfd2QJRZR6+kc5EHDAkX9ZBOob1sDERFidjoI6RdjUZyh6qSWtCzOm1fYSj91KvywN4LcfB2dGrpb5GyeL7ZfJjEjlybeTkzp2chsdkzrL5S4P916sUI338EtfXBvKYZKbtgok58PXRt5oFZJRCVlVXj8Rws/F2zVErcz8yqctrNIKpEqA5jcrSH+bhpiU7NZcbhqQn7GcuL6bd7fLAoX3hjRgu6NC8+Xt98W6efBgwtLoSwVWZYN9U5P9gk2pIjMgb4D7/N/L3M1vmLK7xPGi1te5mVftlaiO/NOOga6AxCekEFyZm7ZG5sRvfZbTHljOWJjRSvj++/XgFXVx5tvivNqyBDwamF8ClNxhoykUitqvVjIoUOQUHVtC3Nw5Uqhl/3JJ5CSncvyghblFwY1s7haoStxafxc0OH27tg2Nbp6vZuHewRR392B6JRsftp/zej3OdnbMHSQGpUml+TbKg4cEAWR7Qx1QxXTG7K3URtqO2pFqmzMGGjTBrp1q9DbNLZqXhjUDBBztCpajF5REtNzeH7FCfK0MiPb+vF038IxNUeOwK+/CpmXTz4Rvy2ZXRfjuRCbhpOdmukDm5nVlns6BtCvuTe5Wh0L/71coffqp7rkxtRj48GqCXHWc7Ij2MsJsOzo0KCC4bTXE8vR2oqKEgWhn3wivAkr5OBBWLWq8Lz6ZrfxxfaKM2QkNyvTlhwYKMa5yzL89ZfJbapuZFmot2q1QlR72DD4aX8Embla2gS4MqCFt7lNLMaCvy+Sr5MZ0srHIGZnLjS2al4d1hyARTuvFJfCL4P+Lb1waCIKqTdsEM/po3CVqRtqV5uKqFu3FoJXc+ZU+K0PdG1ASEN30nPy+c+6s9WWNszX6pjx+0liUrJp7O3EgomFdUL5+YW6rGPGiEuEpaO/qTzUvSFujsbN8asuJEnijRGiGGRzaDRX4oxPd/n7Q+euwiE4td+RuPKiJeWgrxs6aaF1QwBNvZ1x0diIzreyUoOdO4uaobQ02Lu35gw0EbJc2OTz+OOg8U2r0LVScYaM5Hxl88uVDOmbG1mGKVNEyy+IWvDU7DyDrtD0gU0tLioUlZTJtvMi9K0PpZubezvWp7W/K2k5+Xy5w/hVbN9m3jg0E59l/XoZWYYejSuvJt3GUDdkeTO6ahK1SuKj+9pjq5bYfiGOzaExJj+GLMu8syGM/VcScbRTs/iRzoZBwPn5oos5tqCZyRqm0h+PvM2RiCRs1RJP9rGMIcxtAtwY2toXWYYvCwbEGst9d6TKDlVxTIs11A2pVJJBJPJEWYrZKlVhNsPK7lcA69aJyJCjoyjtaOHnwrInuxr9fsUZMpKLlR30OHq0mKtkRVX6Op3otFy+XPzt4QFdu4pC0LTsfJr6OBuEAC2JFYevI8vQp6kXTX1qpuW3PFQqibdGtQLEv19konHDEBt5OtKkYzqodISHS0REQJegetioJG4mZxGVVLG6oVpVRK0nKwv++afC0hXNfV14fqAo/J+9MYzbFYjYGcNXO67w2xGhb/XZpI6GFGVODtx/P+zaJbarXx+CiwsFWxz6cTvjQ+rj52Y5A9NeHCzSdZtOR1eodkhfypkT5cH+i1VzhvRjOU5Z8AR7KFSiP1GevpKVLt7z80WXM8Arr0BAwfztkIbGdzorzpCRnI+tpDPUvbtYBlrDEhDxpXriCVi0qPC54cMhT6sz1OJM698ElYWpTWfnaVl5VBTF6hWHLYU+zbzo19ybPK3MpwXTvctDkiQGtquHfYEa9c6dopZIX7ha0VRZSz8XbFQSiRm5xFjwpG2j0WqhYUMYMQJOV3xu1bMDmtDMx5nEjFzmbTlvMrNWH4vi023i/3j22DaMaCsWDZmZIuW8fn3htvqbsiVz+VYa287dQpLgmX4110pvDG3ruzGklQ86WTigxtKmDbjV0yHn2bBtT9Uc4Zb+4rxKycqz6An2nYMKnKHy0nlDh4KtLVy6BJcrVo9lTn78UZjs5QWvvVa5fSjOkJFURuQLEKFHIyZtWwK5ufDgg4VDQvUMHAh/nonhVmoOXs72jO3gbx4Dy2BLaAy3M/MIcNMwuKX51LAdHR2Ji4sjLi6uyDgOfY3DljMxRBvZ0dWnqTeahsLp2blTPNejsVjpVLTFXmOrNige14q6IbUaevUSjyuxirW3UfPf+9ojSbDmxA1Wm0B7aOeFON5cewYQztZjvRoBogRj1Kjic5v79q3yIaudxbtF+/qw1r409XE2yT5lWeZ6YiYbTt1kzqYwnvr5GB/9fYG/z8YSk5JVYoSltPPqxcGiJm/DqZuEGxkdUqlgwADxODzUibi0yjsxtmqVoYj6SlzFOttqko4N3ZEkMbA4IT2n9A1dXQu/mFYSHcrIKBQufecd8REqg3XcpS2AuLTcsr9E5aHTwZkzpjPIxGRliZXrmjXFX+vaVebHfULg7tEeQRY5mf6Xgg63h3sEYaM239dakiS8vb3x9vYuUlPVJsCNno090epkVhw2bmBoryaeaBoJp2f7DlE31LOxFyDqhioalm9Xm8QXoTCkX0npis5B9Xh+gEiXvbn2TKVmv+nZcOomzyw7hlYnMyGkvmEUwu3bYrFd0sDIrsaXM5iF2JRsNpwSGlnT+psmKnTy+m1GLNxLv4938uLvp/hp/zX+PX+Lb3ZdZdry4/Scv4NJ3x7kwl2R+NLOq3aBbgxuWRAd2ml8dGjYEHGNyLnuyeEKdmfejd5JvHzL8sZy6HHV2NKswE6jUmX29lbTAb1woUi+BAfDtGmV34/iDFWAsOhKRodyc6FRI2jfvkKquTXJokUlN7w5OECuazKnb6Rgp1bxcI+GNW9cOYTeSOZ0VDJ2ahUPdG1gbnNKRR8p+O1IlFG6Q/Wc7OjSVQtqLbExEpcvixu4rVoiJiWbyMTK1w3VCvTFnocPQ3x8pXbx6rDmTOhUH61O5rkVJ8ouMC2F7/eE8+Lvp8jTyoxu718QcRI37GXL4OjR4u9xdYWmlqdXWoSNp2+Sr5PpHFSPkIZVmxOSnadl/l/nue+bA1y8lYatWqJDoBuP9Qzi3TGtebBrA1r5u6JWCaHSMV/sY/5f58nMzS933zMKaoc2noo2esE6cKD4nXOzHvuqWDekdzIsOTIEd9QNlZcqe/ppobRbEcVCM5GYCAsWiMcffAB2pcyiNQbFGaoAYdGVvInY2QlnCODPP01mjyl59VXYt0+UYdxJ587w8yHhwN3TMQAv55pTczaWXw6KSMuodn5mty8nJ4fnn3+e559/npycohfmIa18CHDTkJSRa3QXU//WntjXTwZEqszBTm3oDKloqqyNob0+1aKLPY0mMBA6dBAF1HfnoIxEkkR32YAW3mTn6Xhi6VFCbyQb9d7sPC2zN4bxwZ+i5mhq70Z8+WBIEW2rGTNEQLh586Lv7dLF8rPn+u/ovR0DqrSfm8lZjP1yH9/uDkcni0LsI28NYcP0Psy5py1P9Anmv/e1568X+7LvjYGMaONHvk7m293hDF+4h6ikzDLPqw4N3OnQwJ18nczaEzeMsqllS6jnqUXOV7NtV9WUmZsWpJ+txxkqx+F3cREtWVbAf/8LqalCnuKBB6q2Lws/HS2LsKq0JVtBlX779qLQE0QHGUCbrln8XTDUcGpvy2t9ScnMY9PpaAAeNaPatJ78/HwWLVrEokWLyM8vuqq1Uat4pKC4++cD14xySPo280bTUISrt28X23cpmAVn7E1bT+uClXdCeg63UquQ8rUk9OdVFRYZtmoVix7uRIcG7iRn5jF+0QHm/3W+zOjdv+duMfR/uw1SE7NGtuTdMa1LbCzw8YGYAt9X3z1m6SmyyMQMQm+koJJgRNvK1wim5+Tz5NKjXI5Lx9vFnu+ndOF/DxSOJLkbfzcHFj/amR8f70J9dweikrJ48LtDXE9IK/W8AniwICL8+9Eoo84rSYIBBdGhqtYNNfUuSJPFVX3eWXXSKcgdENeNPGPnuqVarhTHzZvw1Vfi8QcfVH1xoThDFaDSkSEovGjv3FnocVgY//ufSBM3bw6RkfDRR5AffA2tTqZXE09aB1SyMq0a2XHxFjn5Opr5ONOpQPPD1By8msgX2y8za20oj/14hKd+PsqyQ5HEVqJ75MGuDbGzUXHmZkr54WrEas69idhu+05RN1RZAUWNrdoQ0q8VRdRQeF79/bdohawkjnY2/Dy1K2Pa+6MtiEqM/HwvP+wN5+DVRJIycgm9kcySfRE8/MMhnvrlGFFJWfi7afju0c78X/8mpepuzZ8viqg7dRIdL8uWCQFTS0YfFerZxLPSs/20OpkZv53kQmwaXs72rH++N0NbGycxMqilL+ue60WwlxM3k7OYuvRImduP7RCAo52a8PgMjpVXE1PA8CGi9jG7inVDjb2dUEliJmJ8VepKq5nGXs64amzIztNxIaac+qYrV8TquFWrCktX1BRz50J2NvTpY5pxNoozVAGuJWaSll3JkGqbNiIHlZ1d2BpkQSQkCPlyEF8yZ2d48RUtx26LLhtLjAoB/HteqDQPa+NrchHIS7fSeOzHI0z+/hCfbbvEb0ei2H0pnn/Px/HO+rP0mL+d+745wLkK1JJ5ONlxTweRdtBLFZSFnY2K/r3VSDZakhJUnDtX6AxdjE0jN79ik7v1Du3FykpFWBrdu4t5SgcOiA6zKuDuaMdXD3Xiu0c74+tqT0RCBvO2nGfy94foNHcb477az9zN59h/JRFbtcSzA5rw7yv9GVaG5taNG/D11+LxBx+IYayPPAKDBlXJ1GpH7wyNaV/5FNmHf55nx4U47G1U/PCYiPSURnaelsS7HAkfVw2/Pt2dBh4OXE8suwPT2d6GMe1FBGvlUeM6Aw11Q9Hu7D1feWdIY6s2DEO9cstyU2UqlWSo/ToeWc7nDQyEq1chOhpOnap+4yrIlSuwZIl4PH9+6eNstDrjHTnFGTISP1exOjpfnkddGpJk0amyBQvE6jUkBCZOFM/9E3aL5Mw8/N00hvk2lkRuvo49F0Xh7OBWphO11Opk5m4+x4iFe9h9KR5btcS9HQN4aUgzPrqvHW+MaEmnglbV45G3uffr/fy4L8LoELm+kPrPMzFGjejo18oT+/ri4rVzJwTWc8DNwZY8rcylCnawNCkI6UckWGZ0ssKo1fDyy2IFayJneFgbP7a+3J/XR7RgeBtfAuuJm7irxoZBLX14bXgLtr7cnzdGtMTJvuxR8x98IMQW+/YVel3WwNX4dM7HpGKjkhhRSXHVTaejWVLQgfrZpI6GOjc9Wp3M32djmbMpjHu+3k+72f/w378uFNuPv5sDvz7VA3+38qNT+uaJLaExpBqxaG3WDDx9tKBV8+/uykcVAYPI65UKDo6taUIKoueh5UWGNRox6RQs8n41e7YIBI8cKSJDpXGyAg0RVucMLVq0iODgYDQaDZ07d2ZvGTNUdu3ahSRJxX4uXCh+0pVHS38TtCXfKXVuQaHHmJjC3Ou8eYW5V72I4f1dGqC2MJFFgKPXkkjLycfL2c4wQbqqyLLMuxvOsmRfBDoZRrTx499X+rPwwRBeGtKcB7o25NkBTVj7XG8OvjmYIa18yNXqeH/zOaYuPUp8Wvlh8rb13WgT4Eq+TuafsNhyt+/U0B1NkCiW3rNHRpIk2layTb6Rp9BEiUiw7Iu2uXFzsOW5AU359tEu7HtjEGFzhnPq3WH8+HhXnh/Y1KAtUxYREfDDD+LxvHmWP4xVz+bTIirUu6lXqbU9ZZGdpzU4NtMHNmV0+6I1R9cTM5n83SGmLT/OT/uvcToqmTytTERCyersDTwc+XxyiOHvP8+U3HzQqWE9mvo4k5WnNdQRloUkwcAB4nH4WQejzt3SKGyvt+zzSh9VNqr+1QT1eNVBWJgYcgzlN7xtvxBn9H6tyhlauXIlL730Em+//TYnT56kb9++jBw5kuvXr5f5vosXLxITE2P4adas4lOXW/mJm0+l2+tBxMZnzoSlSyu/j2pg/nyhM9SzZ2Hu9XpiJvuvJCJJcH/nQPMaWArbzgldmIEtfEymiP3xPxdZcViMUvj8wY4sfrQzQZ4l3/j83DR8P6ULc+9pg72Nil0X49l50biTT3+DKO3Cfiet/F1xDBROz6HDwoluG1C5uiH9TfxaBdvyLZ4VK0Q7SaRxGk4VxcnepsLfsfffF6vXYcOgX79qMata2BwqHIkx7StXOP3T/mvcTBb1VNMHFeoHyLLMb0euM+LzPRy5loSTnZopPYNY+EBH9rw2kNXTepa6z3b13Q2P3998rsSCZ0mSDIXUxqbK+vYWqdXcWHeOXqt8qkxfi3e5AkNjzUHbAmfoclwaWbnlyHvoF++HDlmU5tB774lYwn33iTq80pBlme3njdcOsypn6LPPPuPJJ5/kqaeeolWrVixcuJAGDRrwzTfflPk+Hx8f/Pz8DD/qStQWtArQO0NViAw5OsLHH4tktYUsE69fh2+/FY/vXL2uPCYczD5NvWjgYXltlrIss71AJM9UKbLv94SzaJeYw/TBve24p2P9ct8jSRKP9mzExul9eLpvsNGO4+h24kZzoKA4tyw0tmradxS1QVHXVSQkFF7UzlbQOW/kJf4vkzJySc407Uwus/LNN7BqlcWsYi9ehF9+EY/nzjWvLRXh0q00LselY6dWlVkLVRqJ6TksKhA/fG14CzS2hdfapQeuMWvtGTJztXQL9uDvl/rx/j1tuTekPg09HY2u+UvJzGPWmjMlpqXHh9THRiUReiOFa6VEmu6kSxfxOzfWrUpR/2a+1qE15ONij5ezPTrZiBFTJpCuMDUnTghhYEmCOXPK3vZcTCrRycY3uViNM5Sbm8vx48cZdlcbxrBhwzhw4ECZ7w0JCcHf35/Bgwezs5zi5ZycHFJTU4v8ALTyK9SSMEYwz1qYN09oQg4cWFjUma/VsfqY0OuY3M3yRBZBtLFGJWVhZ6OibzOvKu/vYmwa//1bhPbfGNGSh7pX7HO38HPh7dGtcXR0JCIigoiICBwcSi8YDfJ0om19V7RGpso6N3PGxkNcaI8dKwx3n49JNb5NFtE15ecqhm2WlpawSiwspD97thCdHzcOunUztzXGs7ugBq9XU0/cHGwr/P4vtl8mLSefNgGu3HvHYmLv5Xjmbj4HwIxBTfn96R4VWmQ5ODgQERHBv0fOYK/RsP1CnCEyfCeezvZ0LxhZU9Lrd9OxI0gqGW26hiNhxo3JKQl9LV5Ceq7JB/+akjtT7GHGOH/66JCFnFfvvit+P/SQ6Ekqi3/Oln9dvROrcYYSEhLQarX43jX93dfXl9jYkj+0v78/3333HWvWrGHt2rW0aNGCwYMHs2fPnlKPM3/+fNzc3Aw/DRqIsKufm4Z6jrbk6ypetFoEWYatW+HFFyE5ufL7MQHh4fDTT+LxnavXXRfjiUvLwcPJjiEmLEw2Jf8WhD97NfEst4i1PPR1QlqdzPA2vjw7oPKjB1QqFY0aNaJRo0aoyhG+GFUQHdpihABjh0B37P3ExevoUWjo4YiLvQ25+boKr0YLU2W10Bnavl3kfM1IWBisXCkel7d6tTSOFKSKejb2rPB7ryVksOKwiCi/PaqVIa0YkZDB8ytOoJNhYudAXh7avMIpR/15NbhrW54uGBj72bZL6EroFtJfs4xxhhwdoUlzsbg9dUKqtE6Qk72NoVvO0ouo9Sn2s8bUDY0fD1OmiKGVZubwYVFuq1YXziIri3/CKjZex2qcIT13h1JlWS41vNqiRQuefvppOnXqRM+ePVm0aBGjR4/mE30PeQnMmjWLlJQUw09UVJThuC0L6oaqFAqVJOEIffEFbNtW+f2YgLlzRU3D8OHQu3fh86sKhlbe16l+ETVdS2J7QUu9KVJkm0JjOByRhMZWxTtjWld5f8aiT5UdDC8/VdaxgTt2BRPsjxyRUakk2hSs8CpaN9SowBmKiK9FzlC7diKsn5VV8iCwGmTOnMKaho4dzWpKhdDpZEPdTLdgjwq//7cj18nXyfRr7k2vpiJam5uv45lfjpGanU+nhu58ML5tlSUwnunXGBd7Gy7EpvFXCat/vZbRscgko7o1e3YX17iECCfi6kARtaH5wpiSj65dxeTuceOq2ary0UeFpkwRnYBlcS0hg4u30rCpgNNtmXe6EvDy8kKtVheLAsXFxRWLFpVFjx49uHz5cqmv29vb4+rqWuRHTxMfcRO5WlXP3wJCj5cvF9Y03Ll6TcnKY1dBqPw+Cy2cTsnMM0jKV3VCfXpOPh9sEeH75wc0JbBe1eqjcnNzee2113jttdfIzS37QlyRVFljb2fcG4rv3aEjQnyxcIVXMWeosd4Zqk1F1JJkEedVaCisXi3MmT3bbGZUistx6SRn5uFgqzbUpBlLnlbHmhNiqOsjd6SYfz96nctx6Xg527H40c6VHvJ853nlaANP9BG6Z//791IxLZnAeo608ndFJ8MOI7qJenQrGNoa61almtCmVjKjTP9/e+lWGjn51lHysW+fSKjY2MB//lP+9vrraddGxjv1VuMM2dnZ0blzZ7bdFU3Ztm0bvXr1Mno/J0+exN+/cl0Sjb3El/1qXBVX1PqQ/l9/icICM/D+++LQo0cL3To9W8NiydXqaO7rbIiEWRqhN5ORZZEqCihDyM0Yvtt9lVupOQR5OvJ0v8ZVti0vL49PPvmETz75hLy88rVOjE2VqVWS6JyQdCTEqYiOFhO7oRLt9V61tL3eAqQr9A7QpEnQtq1ZTKg0RyKEfEOnIHds1RW7Ney6GE9Ceg5eznYMLFigZOTk88V2sfB8cXAzfFw0lbbt7vPqyb7BuDnYciUuvcQ2en10aNu58utG7iyiPnOj8t3C1tJRVt/dAXdHoVNmVBRLluHkycJOGzOgT4tNnQqNjbhM652hwa28jT6G1ThDAK+88go//PADP/74I+fPn+fll1/m+vXrTJs2DRAprilTphi2X7hwIevXr+fy5cuEhYUxa9Ys1qxZw/Tp0yt1/CYFX/YqR4b69BESz7duifL4GubixUKdhrtrGjaZQHm2ujkdlQyIAY1VITdfx69HRI3D68NbFul8qSn0onZHIpLKbXXt3MQVWy/x3Tt6FNoURIbOxaSSX4Ei6uA70mSWPEupwgweLMTivLwgpebHjZw6BevWiaiQMTUNlsbhiIIUWaOK1wutLkitjw+pb3CkluyLICE9lyBPRx40cSOGq8aWZwoWL1/uuFzsezyswBnacymh3IaX9u1BrZbRZdlz+Ezl682spaNMkqSKRZUTEsTE7mnTxECwGmbPHtixA2xt4e23y98+NTuPUwX3iP7Njc8cWJUz9MADD7Bw4ULef/99OnbsyJ49e/jzzz8JChLDL2NiYopoDuXm5jJz5kzat29P37592bdvH1u2bGHChAmVOn4T78LC04rcfIphZwdDh4rHZgjp66NC48aJ77iepIxc9l8RehKV1RipCU7fECdwh8CKhfLvZuu5WBLSc/F1tWdYG/MUigd7ORHgpiFXq+NYORL5HQPdsS+oGzp6VKS7nOzUZOfpCK9AZ1hDD0dUEmTkai16llKFcXaG2FhRaenuXuOH1y8sHnxQCGJbE7Jc+Xqh+LQcQzrq/i6i4SQxPYfv9oQD8OqwFhWONBnDlJ5BONqpuRqfwdFrRZWG2wS4EuCmIStPa7imlYZGA01bCofpxPHK1zPpO8piUrLL1/AxM20qUjfk7V3YEvnXX9VoVcnoFxZPPgkFt/oyORKehE4W11b/CmQOrMoZAnjuuee4du0aOTk5HD9+nH53qJktXbqUXbt2Gf5+/fXXuXLlCllZWSQlJbF3715G6UPplSDAzQGNrYo8rcyN21XsWDFTfcOFC/Dbb+Lx3TUNf52NQauTaVvflcYFJ7alIcuyweuvamRoxSHhOD/QtWG1XKyNQZIkejYRxab7rySWuW37Bu7YFXSUHTkqiqj1yugXY40PzdvZqAy1UbWqiBrArWoOcmU5eRLWrxdRoXfeMYsJVeJ6Uia3UnOwVUuGkQ3Gsv7kTfJ1Mh0buNPcV0iQ/LT/GukFLfZj2lXPwspFY8u4gjl/vx0pKrwrSRJDCqJD+vmFZdGzu3CCYq46VFp/y83BFkc7EV2OTa34EOeapEIdZWA26Ypdu8SPrS289ZZx7zkYLq6jPSrYEWl1zpA5Uakkgr1MlCrTO0O3bonhrTXE3LkiBXzPPWIO2Z3oc+9jLThFFpuaTXxaDmqVRJuAytc0XYlL52B4IioJg2qtuejdVJy0B6+WvYINcNPgHSS+K6FnRFpAP17DGIG5O6mV7fV3kpoqhoLVEO+/L35Pnmx9USEoTJG1D3SvcLp43UmROrm/i2i40Olk1p4QOmXT+jcxmTp8SejTb1vOxBRzYvo1E/Uih8PLXmQAdOkkPnNegnOFBi/fiSRJ+LmJuqiYZPPKO5RH2zt0yozKcujvV9u2CWG6GkIfbX3qKWhg5GX64FXx/92zieIMVSv6VFmVnaGAALh0SYj9aCpfWFgR7owK3V3TEJeWbbgg3j1LyJI4HSUiI819XXC0q7y+kH4lOailb5WLsKtKr4LI0JmbKaRklV50LUkSnTqIUzYuVkVqKgQXKEpXdLyG3hmqSHrNanjiCfD0rLFV7KlThVEhYzpdLJEjEZVLkSWk53AuRjgPwwvq3w5FJBKdko2LxsZQyFxddAh0o5W/K7n5OoNTpqdrIw8kSXzHy5s71rKl+J2X6FylkUsBbuJaEpNi2ZGhIA9HnO1tyMk3MsUeEgK+vpCeDmXMAzUlu3cXRoVmzTLuPbczcg3fxx6NK/ZdVpyhCqLPC1e5owyEWEINjuWYN09EhcaNKx4V2nUhHlmG9oFuVW4vr05O30gGoGODyqdD8rU6w8r14QoqTVcHfm4aGns7oZPLX8W2bOiA2klcaM+fL+wMq2iEJ7g2ag3pcXERAlo1VN+gjwo98IB1RoUATkSKmptuFWhFhsJVeEs/F7ycxWT5dQUt9mPa+1d7U4IkSUzuJkIGvx+JKlJI7eZoS4uCtN2xcuaO6f/f8pMdOR1ZeWdIHxmy9DSZSiUZCr6N6ihTqQoHV9bQeaWPCj35pPFRocMFHZHNfJwr3L2oOEMVxGQdZXei1VZ7i/2lS4VRIb141Z3oB4wObFE13Z7qRt9J1r4KU+pP30jhdmYebg629GtufOvlneRpdVxLyChWKOng4MDZs2c5e/ZsmeM47qZ3QXTowNWynaEmPk7YeIrv3vnzhWmyyAo6Q5V1oqyCO+vxqrlbLjS0sIPMGmuFAHLytYbvQesKpp4PFKR2exeILGblag3Dhyd0Mp1OWVnn1T0d66OxVXHxVlqxqI5eZ+ZIOc6Qvz84OulAVnHibPmSGKXup8AZirbwNBlUQgpAf17VgKjpnj2wc6fQFTI2KgSVT5EBVG2OQR2ksanTC88/D7//Dhs3FpWBNjEffij8rTFjinaQgWgx33tZXNQGVVHEsDrR6WTOGDrJ3Cu9nz2XhKhkn6ZeqCtYzxAWncJ3e8LZeSGO1Ox8QOh2PN6rEVN6BWFvo6ZNeUNzSqBXE0+WHYost/OlsZczdl5p5Fz34vx5uO9BEcVLSM8lLTsPF41x86Qa3zG9XqeTq7Wuo8bp3x8cHEQb8Jkzone6mpg3T/y+/35oXXPi5SYlMjETnQzO9jb4uNhX6L37ruidIXHz2XouloxcLQ08HOgSVM/o/cSn5fDLwWusOhZFWnY+akmic6N6PNazEf2be6NSqUo9r9wcbBnQ3Ie/w2LZGhZbRDCyW7AHyw5FGtKApSFJ0KyFzOkTEHFVXelzwr8gTRZr4WkygGY+Imp22VgpgOHDxbibPn2q0SqxfnnsMfF44kRoWIHgvb54ujLjZJTIUAVpXFAzlJSRa5TUe7kkJYmfLVuqvq9SuHoVli8Xj0uKCh2LTCI9Jx8vZzvDAFBLJDwhg7ScfDS2Kpr7Vr7bbc9l4Qz1a16xAa+rj0UxftEBNpyKJjU7H1u1uFjeTM7igz/PM/SzPYQWpPEqSs8mnkiSuDAllNHu3sTbCduCyFBYmA4ZqOcoHKAVh66z7FAkX24vrrtyN35uGiRJOMK3a9P0ehA1eIMHi8fVeF6FhcEff4jH1hoVgkJdnCY+zhUalRGVlElUUhY2KoluweLms+m0iAqNDwk0el//hMXSd8EOvtxxhVupOWTmaknLyWfXxXimLj3Kg98fKvdaq5fG2HrXPDJ9DdT5mFTSssuO+LRrI26HWXFO3EqrnDOjjwxZes0Q3KGYbez4EFdXMc3bzq4arYJnnoFr18Rj/WLDGBLSc7hU8Fm6K85Q9eNoVziQL9wUqbIaaFmcP19k4kaOFKNm7mZngUZI/+Y+Fh0h0Evltwlww6aSrfApmXmGVFtFUmRf77zCa3+EkpuvY1BLH9Y825MLc0dy6t2hLLivPT4u9lxPymTy4n3838tvMHv27HLHcdyJu6OdoR6trFlj3i72uPiJEPyeo7m0n72V25niIv/fvy/wzvqz/HU2ttwbka1ahYejuKjVKq0hPfqQfjXWN3zwQeEMMmtTm74TgzNUsNAzFn0Us0MDd5ztbdDqZEPN21AjZwZuOh3NcytOkJ2no0OgG4se7sSe1wby54y+PNUnGCc7NUcikhj7+U5mvDar1PNqUEsf1CqJC7FpRCUVNhP4umpo6OGITobjkbeLve9O2rQW50x+ojORlRxVYy01Q1DoDIUnpFdNN8+EfPop/PCDeOzhAU0qMDNbf91s4u2Eh1PFHTbFGaoEjU3VUQYi9ChJcPp0tah7Xrsm5uxB6avXnQWzyCw5RQZwveACVdGL9p3su5KAThb5cn1IuzwOhSfy6daLAMwY3IwfpnShc5AHapWEu6Mdk7o2YPur/ekW7EFaZg7fLVzAnDlzjBrHcSdtC+o1zt4o3RmSJInmLcSFKz3BHjm/+ClsrE6Md0FKpLxOG6tE7wwdOAC3y74JVoaLF0V2G6y3g0yP/jqmvzkay/6C+ozeBfUZ52NSScvJx8XexqjaoyMRSbz4+0m0OpkJIfVZ82wvRrXzp6GnI60DXPnPmNb/z955h0dRtW38nu3Z9N5IQiCEFnrvSBOQoqjYQBCs6KeAXV8Vu4IVsTcsWMCCBaR3CBBKqAklvfeebJ/vj7Mzu0m2zMzuJrshv+vKlc1mdvZkM+fMc55yP9j88BjEBimRV16Pj955y+q8ClDK2ORva94he6Ey84qyXIHGEFNNVtmgsat83d5EB3jBSyqGVk8jp5Lj39vURBqN9+8PNDq3t+GnnwJPPGH6edQofq9nJBEYZX6+dBpDAmB28E7JGzJX93SBd2j1alJYM2WK5Ysrv6oRV0vrIRZRGNuDX9iorck1TtgYB6rdmHwhrl6hqgYNVvyaCgMN3DKkC1ZOTbToPfNVSLH+nmEYHm/Kk+CrQsvkOthThe3dTQZKrgVtoBCka139MyiWW65GhzaG4uJI+4C1awGx8yua3niDeIVmz/aszvSWYDxDCTyFVpleZkyH+qNGr9Cw+CC7uXhqnR7P/nEWBhqYPSAKa24dYNHb2yPcF5sfHoOuIaY5b82LwZTx72jR9Jgxkux5hlhjqNIb2eXCbvR+XhJ4GSvo3D1vSCSi+DeXVShIxcC5cyTD2Ul89x2wbFnz5yxFMWzBGEN8iwAYOo0hATBhsqJqJ13s5o1bnUhBAfD11+Sxtd3rcVZszR/+XtySb9sLxhiKDRZuDDEJn1yNoQ92XUZRjQrdQrzx8hzbidFKmQTv32bSLFizPZ3X2FhjyI4qbPcwHzZvaLBfa316zp4hnw5sDAFkq7lsGcl1cCKZmcCGDeSxJ+cKAaQoIdMor9Cdh2eoqkGDklpy3TDX7dFMspZw0Xf5bF8mMsoaEOIjx2tzk2waT0HeMqy93TSvmDYfLWGMoZTsStQ0mrxHTOuJ9OI6m7l03bsDIjENWivBxavCKsooivKovKEefI0hinJ6CHrjRiIN1hK+MhWmNIpOY6jNYOPCzrrYXaTu+c475HTjxpECG0swPX2G8dQXaQ+YXICYIGHGUEW9GgXGktchHCpdyurU+CWFNKB89cYkeMvtF1+ax6p/Pp5ndzdqDrOjKahuspkw2i3UG9JAcgOLFodAYnYj8feSIj6YWxixQ3uGXMhbb5EcvOuv5797dTcKa5rQpNVDKqYQy2NeXS4h5dhdAr3YfCHGUzQi3nbyalmdGh/vuwoAeHF2H/gr7W/Cehj1ggDgy4OZ7Dw2JyZIie5Gva4Us1L6hDAfiEUUapq0rAFnCakUiOxCvLlXrgqXZGBVqGvcv7w+gdUa4t7Oh71fbdnisHTF3r3AXXdZVpbhYwzVq3Ws8GyfyE5jqM1gtSScdbEPGgRMmwasWOG01hylpcDnn5PHtnIaThqbg3IxDtoTtU6PImNSIp9F25x0Y/+uuGCivmqPbw9nQa0zYEBMAEYL0K0AgLe3pXPuDO+nkLJiiBdshMq6h/pA7EeuvbJiMa43azLbN8qPcxI8awx1xARqhtxc4LPPiPy6E8jLA9avJ4893SsEABlGr1BcsDev/nyMMcSIGqYX16JWpYOPXGJ3Z/5rSi40OgMGxgRgtgC1e5XWgDe2pln8HVPVZq4rJJeIWSmJtGLbXldG3C8vn/ewWCI9RIUaEFBeD5gqyrKzHZ5X48YB33zTugGrSAQkJnI/T5pRdTrCT4FgH37yEOx7CnrVNQ7TCbekVgWDwQmibiIRsH07kbJ1kkv//fdJrtuwYcDUqZaPqW7UsKWIfDRB2oOCqibQNKCUiREsoFIAME2YXhG+do4E6lRa/JCcAwB4eGJ3XiXHDDKJCMezKrHPmKfEBeZGYquiLD7EG1J/YgxlZBlwz5h49nd8DEXGGCq1sVv2eFauBB56CPj1V6ecbs0aQKsFJk50qSxYmyE0X+iS0RhKNM6lY8YQ2dCugTYrPXV6AzYcI61wFo2OEzSvRBSw5WwRm6NkzghjsnRLJXemoXF6kW0PSEI8GXtdmcxmaxxbRDo7cuBCzHOG9FzvZT4+ZAIADofKJBJg4UJiFDGnBoBu3QA5D5vmQoFjITKg0xjiBU2TBoT/GhuaavU0HvvlNB784SSe/eNsO4/ORFUV8PHH5PHzz1vv+MGEcLqFegu2ptuKvCpy848NUgpaQAEgzbgQ9ubgRt2TXoo6tQ7xId6YwrFMuCULRhK1sA92XeH8Gib/4oKNvCGFVIywCOJXzs6hMSQuEAopmcp8RPPYnKGO7BkyV6N2kJIS4MsvyWNPryBjEFpJdrmYvM7cMwTYF0PdnV6KohoVgrxlmJEkrAfi/GFdMLJbkMXyaaZy7HxhLerVOvZ5ZgOUbscz1M1oDOnqFIIryjwpTBYbpIREREGtM6CEjxyAE+dVVpapO8LOnSQfb+5cfudg+pE5Ygx1KlDzgKIobD1XhF1ppexz/5wlImNO6XxeV0cUPkeMIPrwAlm3jpwqKYlUu1jjhNEYcnevEGBKnnakbxqzEPaKsD9htp0nFSk39Ivkpb2kUChw/PhxAEBcYm/8dLIUZ/KqcTa/mlMLkSRjWSgzua0RHUMjDUBhgQgURSEuyBuXSuo45V8wXBM5Q0w/pZQUEjsOEy4f8f77JIo9YgSJFHQEmDy8OB5FCTRNmzxDRmOICbfZM6p+P0niT/OHxvDqW2Y+r/r2HwAvmdTipigqwAtdAr2QX9WEUzlVbKEEYwxdKrbtGWLCZLpaL+RUNqBfF/5l2lEBnpNALRZRiAxQIK+yCQXVTdybVs+cSUSB+vQheUMO9NhcvZrk4E2dCowcSb7uvJPfOZj1UmglGdDpGeLNLUMsGz0jBShetmLuXOCmm0jpokDq64EPPySPn3uOROCscZI1hjwneVpovpBWb2AbEtpLsGvS6LHPqL00PSmC1/uIxWIMGzYMw4YNQ5i/EjP7kdf/eDSH0+sZDau8ykabQmixxsuwoY50r2cqZhrV3Mv5mUaGNU1aqHXurYkimMhIkpNH0yQULZCqKuCTT8hjW95WT6O8niTqh/lxb2pZWqdGTZMWYhGFbqHeoGnaTLjRujGk0RlYocZZPHOFzOeVUi6z6R1mvENM007AFCa7WloPjc7GvDK2ftDXegkWXgw3fpa8PC3tCFMdXVDFw5PVoweQk0OkKxyYDIWFwLffksfPPy/sHDRNs1IIfD2c5nQaQzyZ1CvMont2BIdyUrtcfz357kALgS++ACoqgIQEYP5868fRNM3ukpLcuAUHA+Oyjg3i3vzUnKzyBmj0BnjLxOgSaPscB66UoUmrR3SAl0NuVwBYMJJkBv59prBZua81IvwUkElE0BlomzvLLmFSiBTkRpaXR14HABU8WsT4eUkgM+Z3MDfFDol59YtAPvqIeFv79yf9/ToKFcYQKZ88PGbd6BqshEIqRkWDBjVNWlCUyZi3xMmcKjRo9AjxkQmu+OECUxl71ky8NMpfAV+FBDoDbVMslzGGdLUK5PMxDswIMCq71zbp7BzpHkQHkA2mpQo9mzhhR/Dee4BaTfLvxo8Xdo7aJh0bEnUkctBpDPFEJhFh7sCoZs/FBSs5qxnbhFm09+4l2c88UatJOT0APPOMba25lrs7d8dRjSE2eTrSfrXVvkskDDqtbzjv/CSNRoM1a9ZgzZo10Gg0GBIXiF4RvtDoDDia1TrhsyUikanE2VZH+TA/BVtRlpsLhAjI/6Eo6toIlTHzascOokDKk5be1o7iFTIYaFbCIYRHziBTecSGyIw/dwn0shn62s8InvYI5d32p+W8sgWTE5hmlixNURQ7XluaOkyYjNZIUVwmzJjxVZDsE43e4PYq1ADYzWF+lQBPmE4HJCcLKrGvqCCFnoBj3tY847hDfOS8Qq8t6TSGBHBri1AZU8HgMElJQJcuxBDav5/3y7/7DigqAqKjgQULbB/bcnfn7jATVajlz7hRubTyOJ1bDUBY6FOr1eKpp57CU089Ba1WC4qi8NbN/XHw6Um4vi+3kFtXo8Fny00f6iuHxI94jnJzgWAfshst52nUhFwLxtCIEaTRUW0tcPEi75d//jnppZyQQLpodxRqVVrojBVEgd7cc82Y8A8TXrlaZj9EBpiMoQk9ufcEZGg5r2zRM9wXFEUad5pf18xN35YHxNsb8PUnYbSCfGF3Z2+ZKRW3TuX+3qFo1hjiuQHX64H4eGD0aKJIzZOPPgIaGoiC+/TpvF/OwozbnsffHp3GkAD6RPk1++Cdki8EENOYSfjkWbKo0wFvv00eP/mk/bJEVieEQ5l5e6M30Kg1LipCy+qZxokRdjx4jRod+9nYq4zhysCYAPbGwYXYIGKw5djyDPnKITHzDDGVYXzCZMA1oEINEBfp1q1AeTmJc/FApSJ5ooB9b6unwYRGfRUSyCXc/zDmWmG8ihmlxuRpG8ZQnUrLemfHJri27Y+XTMwKj5pXj3HNjYmIIsZQSZGw26NYRLE6ZuYVbe5KlwD7RqJFxGJgwADymOf9qq6OpBsBjntbTRvlTmOoXZjWx1RuPcJZxhAgOL9h40bSJiAkBLj3XvvHM54hRnTLnak32135KoS1DClljCE7iaIXCmthoIFwPzlbItvWMH2Ysm14hsJ8FZAENkAeUg9/f5OHp5xnmTyrNVTnGcmeghkxAggI4P0yxtvapQvRQ+lIMPlCfEJkgOlaCfMzGkOMZ8hG8iqz3kT6CxfF40OvSGMpvVmoLJqDZwgAusQAlESPGtstAm3ChMrqVMK0itoSxttOtNx4hrsE3q8+/5wUJSQmAvPm8XvLlpg8Q8LzhYBOY0gwNw/uwj7ms+u3y+TJRBc+I4NYNxwwGIA33ySPH3uMuHrt4UmeoVrjguIlFUMmEXbJltQxniHbC/GZvGoAzvMKCSHOuKu1pXMS5ieH39BsRCzdjxWPG1iPWXWjFlobVWgtYV5XxdOjdC3Q0tsqE+aUdFsYLyJfbyvrGfIhmwUu5flpRmOIi+CpM+htlM9IE+AZWv+DHjErt4FKyOMuRNgC1jPkAWGyCH8FKApQ6wz8CykYY+jIEaC6mtNLVCqSOA04x9vaGSZrZ2LMJr5Tk+R8fYFffgGuXiUynBzYsgU4f5689OGH7R9P07RZEqTwUsS2glGC9fMSLotVXEMWcKac3BqpjDEUEyD4vRwlzphAnVPZYFXhPEgpY3uSlderEaiUgclJtdXXrCVeMrISNXlAoqfDrF9PREyYfhp2+PVXIgjH1dvqabCVZD78jKFSozHEeIYYb6QtwU8mRMZF8NQZWFKcZj0g1bY9IFHBUlAUyQmuahS2SWA8Q7UeYAzJJCKEG9dF3qGyrl2BXr1I/tCOHZxewnhbY2JIXzJHabcw2aRJk1BtwQKsra3FpI6iRMYBH5kETJiz1tmu0HnzSAtlDtA08Prr5PFDDwGBHPQTa5t0aNSQm5+jrsW2gPl8/QSGyLR6AyoayIJtL/SVVU7yH3qGt5/HjHHnq7QGq4uxSESx4Y3SWjVEIgpB3vxDZV5Sxhji7k3yWLKzgWPHgH/+sXuowUAasgLA8uWA0v2nCW8YLwCfsJVap0e1USIi1EcOrd7A3vCZ688S6WbVnG0BU4SQZ1YhxXiG6tU6m2XvErEIAUbxUj4bC3OYcL4nhMkAIDKAaSEiQE6Ahxq1ubf1iScc97bSNM16+trcGNq3b5/F0kaVSoWDBw86NBhPQiSi2C7m7VkxsG8fWd8VCtKGiQtMMnGAUuoRlWTMwuXnJcwYKqtTg6YBqZhCkNL27GNcrjECxR2dgVQsgr+X/cWY2ZkzO/UQpqKMh6ub9QxprgHPELNo79pFGozZ4N9/+XlbPRFmgxDCI0xWYby2pGIKAUopG14VUUCAlflprmnWu43CZMyGok6lYz3LXmZ9DfOrbZeRM1pyFQL1t3wUnpNADYBdF6s4aKG1gplX27ZZbj9vhrO9rU1aPeqMn7G94hh7cI47nD1r6r118eJFFBcXsz/r9Xps27YN0dHRDg3G0/BTSFCv1rnGGNq0iTRpWbaMdLS3whtvkO9LlgDhHFtoMT1z7CUTuwsmz5CwMBlTChzmq7Cpb1Kr0rILZ7TAXYZCocDevXvZx0IJ9iaNIisaNOhh5RimEqy8WSJsHa/yesYz1GEVqM0ZOhQIDQXKyoDDh03NJltA06Z5tWyZoLxrj6BCgGeolM0XkoOiKDbvKFApszq3qhq1aDAa20J1wvjOK6VMgiBvGSobNCioamI3F9GBXqgwPtc3yrrYbLC3DJllDYI9Q36K9t8o84ERiqwWYgyNHQu89JJJNNgKrvC2MhtlsYiCt8yxjT3nu8vAgQNBURQoirIYDvPy8sJHH33k0GA8DV+FFKhRucYVum8f8NdfpJ2AFWMoJYVscsVikuDJlRK2zNxDjCE2Z0iYZ4g1hvxsL/qMuzVQKWUTIPkiFosx0cpNlg/BPjJkljfY3Jkynkkm5Mm49vl022Y8g9eEZ0gkIoImP/xAXPpW/k/m3tYVK9p0hG2KyRji7hlqWVbP5RzM/AvylvEq4TdHyLzqEuhFjKHqJrZnFRNatpcLxHiGKhuESU54Wpgs0Lh2VAvJkZLLgVWr7B7mCm8r8/n6KiSCG3gzcA6TZWVlISMjAzRN4/jx48jKymK/CgoKUFtbiyVLljg0GE+DSeh1ifVvrjdkJdmPqSC7806Sx8YVJpnYczxDxjCZwJwhZgG319HdWSWazoDLYszm+2jI56NgvTzc83+uqQRqwDSvbOQ3CPG2eiKMx9WfxybDZAwx7V/Iz5ZaFDGUcpx/zobJETJXVmb+VnsbBib/ia9uF4OvB+kMAaaNlNCEcXu4ytvq6L3BHM7b37g40mPJYCcmeC3hUuv/uuuIxZ2TQ1Rz+/Zt9uu0NGDzZvL4mWf4nZrJGQr3FGPIwWoyxnPibcfb44yqBK1Wiy+++AIAcP/990MqFTZJg9kQmPXFqaUhIzfKDvAJeZkSqK8RY+j664mH6MIFolbJNKMycuKEMG+rJ8JIMEjF3FNH69XNQ9aVbHm+dUOnxAnrjZB51cWCsjIzbvvGEOMpEba2+3hQNRlgCpMJyhkCiLXz119kk/HGGyQpyAxXeVtrzTxDjiLoDBkZGfjggw+QlpYGiqLQu3dvPPbYY+jOsQKqo+Dryriwtzdx42/fTrxDLYyht98m19+NNwJ9+vA7tceFyRysJmNu9F52ksWZXa8ji7ZGo8EjjzwCAFi8eLFwY4j1DNk3hhhjjwlB8PEMKaTkRqi6FsJkAGnLMX06SViw0P9PqLfVE2FacUjF3MMLamPVodx43TDXp03PEJuzJ9wzJGReMfPYXF2d8QzZa6IqZC6ZY9ooe4YxFMjmDAn0DFEU8OKLpC3HxIlkApnBzCtne1vrnOgZ4l1Ntn37dvTp0wfHjx9H//79kZSUhGPHjqFv377YuXOnwwPyJFgtCR45Gryw4tLPySG51QDw7LP8T8t4sqxVf7gbjlaTqYwLuL3KOcal7YxdhqMwxlCFjTCZ0vj3MDpXzA1KzaNM/przDAFEmGvTJqBnz2ZPp6UBf/5JHj/9dDuMq43R6vh7hjRGb5LM+JoKDsZQSa3jmwwhWAqJ+XEMkzHirhrBxhAjuuhZOUOCPUOA1VZSJ04AO3e6xtvK3HvbxTP0zDPPYMWKFXiLSQs3e/7pp5/G1KlTHR6Up8BY/y5zhc6cSQQYWyRQv/su0WuYNAkYPpz/aRlPgpeD2fdthaOuUMZYYLwg1mCMIaHJ084kkFWGtr44tfYM8Q+TKa5FY8gKq1cTb+vcua0csR0SrdEzJBHxMIaMxgFjLDCGt621hC3h5ynu6CiOGEOMgchHzd0cZg1pUHvGvHKomoxh9mzg+HFSXWYGYyrccYfzva2sZ8gJG3veq35aWho2btzY6vklS5bggw8+cHhAnoRLw2QA0KMHkJzc7KnSUuCrr8jj554Tdlrm5qmUtf9NnwvMgiS0EoU1huy8npHO93EDz5DJTW99MW2pESTEtc+cQ6U1gKZphysyPJXcXODHH8ljofPK09CxOUM8wmS65nNRZ8whldiQrFBxMJhcgSkkpm31nF3PkPEzEWoMMdOIhrB2Hm0Nk4/pkIDw2LGAUf6AIT0d+OMP8phvbisX6pyYM8Q7TBYaGorU1NRWz6empiIsLMzhAXkSTIhB1YYaLb/+SlIdhg0jniEhNBqrj5Qe4hlyFMYYsrcYu5NniPHyaGwsxi1DXMxr+LSHMc+jEpof0RH48UfHvK2eiFbP5Axxvw2oW3iGdKx3yZYxxHhm29gYsiA14cd687mFyYQaQ54Gcw0I7cVmje++c6231RQ1aAfP0H333Yf7778fmZmZGD16NCiKwqFDh/D222/j8ccfd3hAnkRb7aE1Gg0++eQTZGRkoFu37ti6dRl8fGQQuolnPEOeoD7tDFRs0qfrc4bM1dnXrVuHFStWQCZAc55LzoKyhWdISGm9+TXQpNFfM9cE0Hpebd68DJGRHawbqw2YG72Eh2eoZZhMx57DukFl8iYJb4UpZF4xXqDqJi3r9WTmjL2CAcY4uFY2CIwxqzfQDnuIzedVfHx3bNy4DImJrplXajYf1PE2q7zP8MILL+DFF1/ERx99hAkTJmD8+PFYt24dVq1aheeff97hAdnjk08+QXx8PBQKBYYMGWK3Bcj+/fsxZMgQKBQKdOvWDZ999pnLx+hMnnrqKSiVSqxYsQLr1q3DypUrMHu2Ev/885TgczaxYbJr48bXxIbJ7OQMMWEyOVlEaZqGSqtHo0Zns7Ejw1NPPYUQs5LSZ555BkqlEk89xf9/xcUYYgyX1jlD3BdwsYhi3+tayhuyNK9uvlmJ334TPq88DVM1GR/PELlGmARqnd5+RZopwV/YeiN0XjFSGnoDzXpYRcabvL3ZfK15hszzxnQOeIdazqvHH1+BO+5QYsMG184rygmuCd7GEEVRWLFiBfLz81FTU4Oamhrk5+fjsccec3m+wa+//orly5fj+eefx+nTpzFu3DjMmDEDubm5Fo/PysrCzJkzMW7cOJw+fRrPPfccHn30Ufz+++9OGQ9lCgy7hKeeegpr1qyBXt/8JqXX67FmzRpBN1mNzsBe7NeKMcTVTd9yB6vRG9DrhW3o8+J2u+JpzP+qpQ6X0P8Vc7OxZQx5Wa0m42fUCAmveTKumFeehsFAsyERXtVkzBwxXmtckrAd8Qw5Mq9EZvcjZi/DPGWws7kxJVB7Rs6Po5h7B3UC/+b2nFfOyM1yyLfk6+sLX9+26+793nvvYenSpbj33nvRu3dvfPDBB4iJicGnn35q8fjPPvsMsbGx+OCDD9C7d2/ce++9WLJkCd555502G7NQNBoN3nvvPZvHvPfeexab5to8r9lOR2hCsqeh0nErrW9p25ovprY2S674X8k45AyxGIcpVBvFYPzjxDbyPjoKrppXnobWzLjgEyZjc4bELcNkzs8ZcvR/JW42f8k1zsxpe84PLpuRjoT53NcJEFZur3nlTP8LJ2No0KBBGDx4MKcvV6HRaHDy5ElMa1FmPm3aNBw5csTia5KTk1sdf/311+PEiRPQWularVarUVtb2+yrPfjkk09aWdgt0ev1+OSTT3id13yB0HMI/XQI2IXQ9mGmhbL5wgmYDAZLuOJ/JeMQ8mLDHMZdOROq4LuAs7t7Hh4CT8VV88rTMN/9Sx0orecSatO0MKC44uj/yvxGyXjBmD/VXtjbWWEyT1lizf9/QjxDHWFeccoUvfHGG9nHKpUKn3zyCfr06YNRo0YBAI4ePYoLFy5g2bJlLhkkAJSXl0Ov1yO8hXxleHg4iouLLb6muLjY4vE6nQ7l5eWIjIxs9Zo333wTL7/8MqcxuTIqmJGR4dTjGMx3cPprxAXMVTOEMZZoC8aTLbe6K/5XjNFqywhj/h5mV8clf8MSQkqsPRVXzStPo5kxxOP/zmygTNdc82vQEkIrlRz9X5mPiXlrrp4h6TXmGTL/9wnJGWrveeUMo5OTMfTSSy+xj++99148+uijePXVV1sdk5eX5/iI7NAyL8le5rul4y09z/Dss89i5cqV7M+1tbWIiYmxOSZXaElwbW3CtwWKeQms9hrpM8cubHaMv5YLJUVRoCgy0Wx50Vzxv1JzCO21NH5YdWAeuRl6A83+vXw8BJ6Kq+aVp2EefuUTHpW38JhwaenR8vrkiqP/q+Y5Q803OPZyhphQ0bUQOgbIWieiyNpn77OxRHvNK2ckTjPwXv02bdqEu+++u9XzCxYscFpisiVCQkIgFotbeYFKS0tbeX8YIiIiLB4vkUgQHBxs8TVyuRx+fn7NvtqDZcuWQSy2HWMXi8W8vXEURbET3NmaEu4KV2l9NrnS7HNhq09sfFSu+F+pWmgHWULXIrylaSGIxwVzbxmf3BFPxVXzytNgNnB8vdvyFsrTFOvBtP4aoa0tHP1fiSgg0l/Bdq8n2Pe4AuYl29dGXqVGZ2A3RfbEaS3REeYVb2PIy8sLhw4davX8oUOHoFC4rveMTCbDkCFDWvU/27lzJ0aPHm3xNaNGjWp1/I4dOzB06FDBDTTNceWtQyaTNfNQWWLlypWCNGwY75AjJZSeBPcwWWsXOhOusvVZueJ/xckz1EL9ly175uEZMv+7+FQVeSqunFeeBFOJSNP8PDaMoc0KmUrtyzIINYYc/V9RFIXkZyfj8DOT2HYTXAVYmzi28OkoNJnpLglRCu8I84q3utzy5cvx0EMP4eTJkxg5ciQAkjP0zTff4MUXX3T6AM1ZuXIlFi5ciKFDh2LUqFH44osvkJubiwcffBAACXEVFBTg+++/BwA8+OCDRg2RlbjvvvuQnJyMr7/+Gj///LNTxsPcRlyVJHfTTatx5Eg0kpOfgMFgKu0Wi8VYuXIlVq9eLei8UrEIap2Bjfd3dGQSbtL6LROoAcBbLoam0YAGO6X1zP/i3XffbVYGLPR/xSzatgwbJkwmaZE4zSdRVWt2g7oWjCEAmD59NY4ejcLhw086dV55EuZGtkpj4OxNZOUbjNcNl0a/MgcEDJ09r+pU3FTm20s1u71o1JLPRWKmO8aXCRNWIyUlAgcOPN1m88qZebuCGrV269YNH374IX766ScAQO/evbF+/XrMnz/feSOzwG233YaKigq88sorKCoqQlJSErZu3Yq4uDgAQFFRUTPNofj4eGzduhUrVqzAxx9/jKioKKxduxY333yzU8bj6oanr70GHD78GB54YBl69foYGRkZ6N69O5YtW+aQhS2+xjxDXMtkmf+jueHj7yVFVaPWbi8jgCzczz77LIKCggAAb731lmAFai6eIVZBWNT8ZsNnMWPyxijq2smPeOkl4NCh5Xj88YfRpYvz5pUnIRWLIBFR0BloNGn18Ac3T3lL+Qamv2GTDUVnXjIRFnDmvGJb7thp36C6xsJkjt7LaBr43/+A1NSVWLXq/+Dv3zbzylJqg1AE9R2YP3++yw0fayxbtsxq3HH9+vWtnpswYQJOnTrlkrEwTeL8nNAXpSWpqcDWraQU9IknpEhIWG76JU0Dej1gJ0ZrjWutUsKUQG3777XUxJGV9OfYzdl80j/yyCOCFwEuOUN6g+UEaj7idmx/qmsgeRoADh0iXzIZsGKFFNHRy9t7SO2Gl1SMOrWOl/K4SeW8uefEdpiMHOPIeuOseVWvNvaysuMZanKSZ8hTtpuOdiXYto3cs7y9gUcekSI4eLnplwYD+XLBGsOq8DtBMFbw6DQaDfLz85Gbm9vs61qitonsMvxc0OX8rbfI9/nzgYQEs1+89hoQEwNs2iT43EyHYi7eDneAydvRC6x+kzIVMDrbSxPb5Vpl5hky5hq09WfFNNO1tVNrqf7LJH3yyhm6hsrqAeDNN8n3RYuA6Oj2HUt7o2jR244LJpVzxjPUvCWMJdi8Io3tUHNbUM83TCYwZOTMnlltQSNrDAm7lzHz6oEHgGa1ScuXAxERZAfiAhhHRJ2dxrtc4P2XX7lyBUuWLGkldMiUuNsTXupI1DmxY645V6+abJ1nnmnxy9paoKCAuI1uv13Q+QOVMgANqG70DJVdpsdQnUrYYirjmEBtyUi05C2yhVwux8aNG9nHQimrUwMAQn2sn6NR3dxgElJar9U3r0jryJw5Y/K2Wu0M0NBAtrfXAFzyfVrSMkzGXHu2WrkEeZMNRWWD8BuWs+ZVHRsms33rU3NMtLZGrQujBq6A3XwJ8IQdPgwcPAhIpUCrHOrycqCsjEy88eOdMNLmME21GceEI/A2hhYvXgyJRIJ///0XkZGRLu9H5s4wHgTmJuosVq8mXsUZM4ABA1r8csYMYM0a4pcU6HoMVJIJWsUx9NPeMBe8vf5g1uCas8B6hpoZQ0YDiaPhKJFIcOuttwoZZjNKaokxFO5nvUKzsoGMibnZOFJafy14hhhv6623tvC2AsClS8BttwF1dWQ3cg2sa8yNj08vO2thskYbXh+TMaQWNE7AefOKuWna8ww5GiZj1hBPMYaqjOtbgJL/eG16W2fMADZsAP77zzQBnUi7eoZSU1Nx8uRJ9OrVy+E393Rc4RkqKAC++448fu45CweMHQu88w4wfbrgBZspM63yEM8QYwwJ9Qwxrm5bCzZgmljmxlC4LzFGimpUgt5bKCW15P3C/azvgiusGEP8wmT8m3V6IlevAkbHQmtvKwB06QKkpQEaDTGMroH1TcGhLL4lpqa+3MNkwd7kGi5vaP/1primCQAQ4W9bBoZNoBYYJnPVRtlVFNcQQzXCxubLEmfOAFu22PC2Xn89uU+dPQvk55N55kQcvTeYw/s/3adPH5SXlzv8xh0BZpfh68ScoffeI+vxuHHE7mmFVAo8/jjQt69wY4hnUnB74+ug9c8af3bc9JZCYl2CiGBbQXUTp/fS6XTYtGkTNm3aBJ1O+AQtNYbJwmwsThX15JgQn+bGLZ8cNg2HRpsdAcbbOnMmMHCghQO8vYEJE8jjrVvbcmjtBpfkZ2uvYTxDjHfJVpgs2Hh9VtYLN4acNa/yq8g87hLoZfM4xguttONBsoaneYbYzZcdI7El5t7WHj0sHBASAowYQR7/958DI7SM6d7QRsaQedPSt99+G0899RT27duHiooKt2hq2l44u5qsogL4/HPy2KJXyEkEGj0JnpIzxFR+CA2TsYuxnZ2pJWMoOkAJwLSI2kOtVrPVlmq18LBAKesZ4hImIzvvMg4GVEuYayBQ2XFLyu16WxlmziTfXbBouyNeQhKoJYw3qXnOEBfPkL35ZwtnzSuTMaS0eVxxjX3PrC3YnCEvzzCGihiPGY+1w9zb+uyzNg504bwyeYbaKEwWEBDQLDeIpmlMnjy52THXZgK1cz1DH31E8jcHDiTeRavQNPDjj2QHu3YtEBrK630CPCxniEl2rBVo/ZtyFmwvxsHGZGXGKwOYdpCF1U3QG+g20eIxGGiTZ8jX+mJcbtxpM8Yel6TrllQw5/DuuMaQubd1zBgbB86YAaxYAezfT3KHfH3bbIztARevTksYo5kxon04FDcw86/CgZwhZ6DW6VFSR4wce54h5jhbmxFbMFEDfw8xhoqNOYr2wofmmHtbW+W2mnPTTaTwZ+5cB0fZGmeGyTjdxffu3cs+zs7ORkxMTKs+JAaD4ZoqrdfqDWxlgjOs/7o6YtcAxMq2GQGjKODdd0nA9oYbgAULeL1XywXN3XHUFWpajG3/vdHGBbKopgkGAw2RiEK4n4IVpyutUyHS3/Yi6gxyKxuhM9CQS0Q2jSHGuGMMGZNniLsxVG68QQXzMKA8CXNvq83dKwAkJgLdugGZmcCePS5ZvN0JIdVkjOFdXseEaJt7JS0RYuaZZeZVe1BUrQJNk1wpe8Z/idEzxDeHhsHkGfKMnCG+f29BAcDI+tmdV0lJpOjHBTD33nq1zuFri9N/agITSwcwadIkFBUVISwsrNkxFRUVmDJlChYtWiR4MJ4E40aViUUIckKI4YsvgKoqsh5zEsieOZMYQ//9x9sYYjxD9owDd4GtJhPoCmXc9FWNthfjcF85xCIKWj3xzET4KyAWUYgMUCCvsgn5VU1tYgylFZFwc2K4r9WS90aNSSwvyFuGJo2eNc5DbRhQLalo4V3qaDDe1kGDSM2BTSiKzKt168i86uDGkElniLt+F2P8lDdoQNM0a6yX1qnY6EBLmLC8gQYqGzXsOdqavKpGACREZqsKul6tQ4Mx7CfcM+Q5OUM6vQFl9fw8Q+++C2i1pFreYm5rG8HcG2gA9RqdQ5837wRqaxd8fX29Sxu1uhtM7Dk60MvhnY5KRS4uAHj6aY7C0jNmkO/bthE1ah5E+ZtCP7SrGqs5EV8HdYYCvckE0RtodsdmCYlYhEjjYlBQ3cg+HxdEdGcyy+oFvT9f0orrAAC9IqyHaRgjRiYRwUcuYXfmCqnIrrpu8/MYd/jeHc8zxMvbyjBvHtlczJrl0rG5A0I8Q4who9ERzzjjhVRpDVZz+qRiEetx4Jp75wouFpJNRvdQ2zpSTDKxr1zCapzxxVRN5v7GUGG1CnoDDZlYxMlQraggm3eAg1eIQaMBtm8nosFORC4Rg7n9Ohoq4/yfZjrSUhSFF154AUqlKQFNr9fj2LFjGGixTKNjks/uMhz3FHz3HVBURKoOOTt5Ro0CAgKAykrg+HHyM0ciA8jCpNIaUNmgcfsQiaNhMrlEDB+pFNUVYpw8p8XkEda9INEBXsivIl6gIaTlHXpF+OLQ1XKkFdUJen++pBs9Q70j/aweU8YaMTJQFIWyerKAh/rKeWl/Md7BjugZ+vxzk7d13jyOL7ruOvJ1DcAYQ/aaEDd7jUwMb5kYDRo9Kuo1iA/xhrdUgrpGA0rr1FZlRmKDlSiuVSGnogEDYwKcMXzenM2vAQAMjAm0eRwTMuITbm5JjQd5hi6XkHWte5gPp5zItWtN3labua3mNDSQlA69Hli4EDD2E3UGFCgANM7mVyM6QPj9mLNn6PTp0zh9+jRomsa5c+fYn0+fPo309HQMGDDAYm+wjgrXEk176HQkEQ0AnnyS9EzihERiuhJ5lgLLJWLWvd2eOzWuOCq6CACGrCgUfDoZjz9i+wNm8obMS+l7GY2S9OK2qZZMZzxDkdY9Q1llDQCAuGCyyy2tZRKu+XlnTUnY7m0Q80WlIonTANEVEtjGr0PDGMB8E5tDjGtHeb0aL70EpL0xFTWHe7DXoCW6BpPNc05Fo9VjXE1qXjUAYEAXf5vHMcnTfJKJzaFp2hQm84CcoUtGY6hnuI/dY+vqSOgZIJWZnPddgYHA6NHksROrykpqVdAboxubTxc4dC7O/ykmifqee+7Bhx9+CD8/67vWawGuJZr2+PVXkq8ZEgLcey/PF8+YQU6wZQvw6qu8Xtol0AuldWoUVDdhQDvt1LjiY2YMCa3oCo3UIw1AUYFt+7+LcWdRYGYk9jYaJWlFdVbDxAwymQzffvst+5gvVQ0a5FaSG0bvCOtzLMMYsuseRowhxlPEp5IMMIXJOlo12fr1Jm/rXXfxfDFNE5G4s2fJLraDwuSW2Up+tkSwtww5FY0or1PDzw+gDSLoar1QWmddmJQx2rMrGgSN1dF5VWZc6ygKSLJjDDEChOE8NxYMTVo9dMa+gZ7kGeoRbr968rPPiLe1Z09SJMaLGTNI344tW4AHHxQw0tYczaxgHx++WgGd3iC4tRBvs5W5IK91nBEmMxhMolUrVgBKvnbV9OlE+lMiIVthHjlb0YFKnMqtbnbTd1fMpQvq1TpB5apR0WRxKi8VQacjH5klLHmGEozu45omLYprbVeUSaVSLF68mPf4GA5eJYKmPcN92cRTS1wtJcZQQijZzbGeIR6ufYOBNlWkdaAwmbm39amneHhbGbKzib6FRALMmQP42755eiqhHCrBLGGeRB0bS57T13qhrK7a6mvieHqGaJrG8axKlNWrMat/lMPz6mw+GVv3UB+7BgqjUs1XgJChvM6Uzye0C3xbcqmY8QzZNoYc9rbOnEncSXv28L5fWeNYViX7uF6tw4ErZZjUK1zQuTq2Br8LcUaY7J9/gPPnAT8/YNkyAScIDwdKS0nOEM8Li4mtMkadOyOXiNlmq0LFtaIjKUBkgEFPoajI+nGMpy/XbNGWS8Rs0iVT6eUqDlwuAwBM6GlbO8rkGSLGEFMpw8e1X6vSsjvYoA7kGfr5ZyAri8hvLV0q4ATx8WTrq9MBO3c6fXzuAiPOydsYYsJkdWrWGCKeIVthMjJ/uBpD+y6X4bYvjmLV3xfYNjOOcPgq8SAM4uAFZ8JG3UPth40swczFmEAvt+/dqdMbkGkMufe0UbABAN98AxQXAzExwJ13Cniz/v2BqCigsZFoeTkBc88QAGw6kS/4XJ3GkAB0egOKaxnxLmFhMpoG3niDPH74YZILLYjgYEEvs+QBcWcczRsK9ZdD7EP+Z3l51o/rYTQusisamonRMcnMFwpsG0M6nQ5btmzBli1beLcNoGka+xljKNG6MaTVG9ibCrNgc93dmcPkC/kqJLyau7ozBoOpceTKlQK8rQzXgBo1EyZr0Oh5JVGHmIkosp6hejmKq6yHyWKNnqHyejWnOTwuIQThfnKU12uw7UKxw/Nq+4ViAMCUPra9BjRNm3L27BgH1mDC3LFBjqVQtAXZFY3Q6A1QysQ2k4+1Wge9rYBJugJwyrwqrVWxhhzDrrQSwUrnncaQAIpqTKWIfHM0GHbtMjl0li93wqDq6shOliOMR8sTEqgBwN+ojST0Qo8JVELiR/5WW9qgob5yBHnLYKBNoSjAtKNMyamy+T5qtRqzZs3CrFmzeLcNSCuqQ1mdGl5SMYZ2tV7xklNBRBmVMjEi/RXQmu3uEnkYQ6beZh0neXrzZtJv1d8feOghB05kvmh7gPyEELxlYrairLye+7XKeIbyKpsQHg5IJDRAi5CTb/1z8lNIWe9jDoe8IYlYhDuGE0vrx+Qch+bVhcJaFFQ3QSEVYXwP2x7X4loVqhu1EIsoJIQJ8wx5kjHEhA97RvjalIj56ScgJwcICxPobWVg5tXZsw6chHDULETGoNXT+CtVWCJ1pzEkACbhLC5YyUtjyGDm7X39dfL9/vvJBeYQt99OPERHjnB+iaVEYXeG0f8pFtg9Pi5YCYmffc8QRVGsd8U8JDY8nnjgTmZXQqe37LbX6Ay8Qw7mMJN4TEKITU8NGyIL9QFFUcipaIBGb4C3nd1dS5iwRkdJnqZpk4zJ//2fg6k+48aR5q1FRUBqqjOG53ZQFCUoiZrJg7lcUgeRCAiNIPOhIN/2WshUlJlvMmxx+7BYiEUUjmdXOlTJue088QpNTAxje6lZI72ICZF5s01p+cIYQzEeYAydMG7uhsZZ33zp9c29rV6OFFBPm0ZyQ3bvduAkhGMtQmQMQkNlncaQAC4Yxbv6RvGrqFuyhLgY//2XhEylUlJO7zBSKfFj8iixZ8JkdWqdR7TliPBjWmUIM4Zig5QQGz1DOTm2d/pMSTvjLgfIzslPIUGDRo+LFvKGUvOqcf0HB/DM78J2PCqtHr+eIFba7cNibB7LJk+HMSEy8nOPcNu7u5Yw3qSuIbZF6DyFbduA06eJDfPYYw6eTC4HpkwhjztwF3shxlC1sadhSa0KGp0BMcZQWXGByKaIa98oYp0y66c9IvwVmN43AgDw8d6rnMdnjt5A45+zhQCA6UkRdo9n5nYvG5Wc9sjzIM/QiWziXRnaNcjqMX/8AVy6RFI5HPK2AmRy9u3LoybfOnHBSjx8XXc8MS2Rfe6jOwbh1Rv7wmDg783tNIYEcJE1hvhtPVNSSIsWRuV//nxS+uswjOtxyxbOL1HKJKwqbEaZsHLXtsRRz1BUgBfk/uS1V7NsJ2QyJe2XzIwhsYjCMOOCcdyCezZIKUNBdROOZFjerdjjnzOFqG7UIjrAC9f1su0qPGXczfUx5jGZdEL45TgwHiah4QB3gqZN6hIPPkikKhyGmVd79jjhZO5JqIXmxPZgFJoNNLD1XBF6xJPbSEOlzOZ5kqLJ9Xq+oIbzez02pQdEFLDrYinn15iz7Xwxcioa4aeQ2M0XAkzeYFuCp/Zgw2TB7m0MVTdqcLmErAHWPEM0bYpiPPooKfZxGg6Gn+8f3x1PXt8Lj0zqwfa/6xbqjSFxQYK6QnQaQwK4UEQmMx/PkE4HXLlCHjPhst9+Ax5/nGToO8S0aaTE/vx52zGgFvQwimxdLW0bZWVHYKqkimqEhfXEIgrhUWTyZWXbnoRMVUVL1/yIbsQYOmbBGIoNVuK+cfGCxmYw0PguORsAcNfIWJs6SnoDjePG3RwznitGYyiRZ8In42ESWjXjTuzbByQnE4fO44876aQ33USS+zo9Q83IMAtzfXsoC127kutVV+vFGtiWYDaP5wtqOLcBSgz3xbzBwnaMNE3jk33Eo7R4TDx8OLTW4CJ4aotalZb1nMU4qEHnak4aN1XdQr2tiq5u2UJaYPr4OMHbytDQQMrRunQhj50AI3cidLMMdBpDvKlp0iKvktyQ+/AwhjIzSSTLHLWaiFhlZDg4qOBgYORI8pjHws3cBK+UtE3PLUeICmCMIeEXe7xRAb7QTm5DYrgvKIpUW5nfJJi8oZTsSotu2GUTExDmxz//ZuOJPJwvqIWXVIzbhtoOkaUV1aJOpYOvXOKQZ8hgoJFZ3nE8Q4xXaOlSIDLSSScNDQUmTyYWVgeFrzFE0zRS802enTMFNZAZPa76Wi+bXubEcF/IxCLUqnTsGsqFFVMTIZfwv1XtvVSKC4W1UMrEuGd0V7vHq7R6tv9gH4GeISZEFuwtE9zXrK2wly9knoP30ENAkPVIGj+USrJzKSx0mtfVtFnuNIbaDMaNGh3ghQAe3erT0lo/J5cDf/8NjBnjhIEJCJWxnqE2akDqCEzOkCOWf5+eJCGyvlaMChvRLC+ZGPFGXRTzUFnfKD/4yiWobtTitFHa3xxvuQTPTO/N/rwnrcTumMrq1HhjK7k4Hp+WaLctBqOrMbRrICRiEVRaPbLLjZVkEdyNmoLqJqi0BsjEIsQ4ob9ee3L4MLB3L0mde/rp9h6NZ8G05SnjWE2WW9nYqqLzUiMR7tJWettsZiyTiFiv6/lC7qGy6AAvPDW9J/szU8Bii+pGDZ7/8zwA4K4RsTYFTBlSsithoIFwPzn7ufAlz4OSp1OybOcL7doFHDtGEqad5m0FmpfY87hf2SLKwcgB0GkM8YZJ/uPjFQJaG0NSKUlMmzzZSQO74Qbyffdu4nLiQI8wsjB5gmeIyRmqaNA00//hQ0K0AmJfMlnS020fy+QMnDGWngKk+zaTz7PzomVDZ+6QOEy//zkETX0Qz25Os5kfodLq8cSmM6hV6ZAU7YfFHHavRzPJAjayG/FSnS+ogYEmO1E+Mg9MOKNriFKwfL27wOxeFy0Cq3vjNGpqiDz8qFGkrKaDwdczdDq3utVzJ6pzAAC6am9cKbQtqpgUbQqV8WHR2ASMuOsJBE19EA//cpY1OixB0zSe+u0simpUiA/xxvIpiVaPNYcRPB3XI1SwWKKnlNXXqrRsr7aR8Za16hhv6/33E31fp+Jk6YooVkS40xhqMy4U8s8XAoCjR02PKYqo5DLXg1MYMIDEYd9+m7PeECMwWFDdxEt0rT0IUEqhkJLLlUng5EtcsDekwcQIsOSpM2eI0XWckt08P2iqMQlzx0XLiV5SqRR/ffwqJs1biHodcOtnyWxprzkqrR73/3AS+y+XQS4R4a15/e0aJQYDzY5nhNEYYpR1R3YL5rWAd5R8oZQUUkUmFgPPPuuCN1AqgW+/JRP4xAkXvEH7wt8Yaq2zpZI1QK7UAzSFi5dsFycwSdTneBpDMpkM/3z6GvpPuw2FtVrc/sVRNleu2Vi0ejz9+1nsuFgCqZjCR3cM4hyuOnCZtMIZb0Pw1B6eYgwdulIOnYFGt1Bvi4ne+/eTNmIymZMqnlty3XVEZC83F7h40eHTxRsrYluKMPKh0xjiidBKskOHTI+//x64+WZnjgrEwtqwAXjkEVK+yIFAbxmbhW8r8dEdoCiKTZITGheOC1ayxpA9z9DweOI6PpldBb1ZftDEnqGQiilkljVY1UuRSUT4atEwjOsRgiatHg/+eBJ3fXUUm08XYE96CT7dl4GJa/bhwOUyeEnF+PaeYeyO2RZpxbWoadLCWyZGktEYP5xBFvAxCfzKp5jcDk/PF2J2rwsWAN26ueANpFJSoAA4zaXvToSadaDnUo5sKTwc5ieHfyTZkednSWx6bpMEJFGbj/WX+0eiW4g3CqqbMOPDg1j19wUcz6pEdnkDfjuZj1s+O4KNJ/IhooBX5yZxmlcACb9fKqkDRRH1a6Ewa0Kcm1eS7U0n1XmTelquXH3lFfJ96VIgOtoFA1AqiUEEOGVeMW2JMsrqeV9XDJ3GEA+qGzVssuoAO52PzblyBWyOynPPkYXbXWBuhp4QKmOkAITmDcUGmYyhs+ftlNdH+sFHLkGdWtdMfNFXIcWo7mSxtBQq0+v12LdvH04fO4wvFw7G4tFdIaKIB2f5r6lYsv4E3t6WjuJaFcL95Ph+6XCM7s5t8d1u9DCN7BYMiViERo2O3amPSeDXliWjA3iGTp8m/f1EIjKvXAbjwu2AVWXB3sQY0hloVHHQG3twQnf8dO8IfL9kOABAJhbh6LOTMXMc2YBpynxt9h/rFekLmUSEqkYtL0kPZl6lnTqKDfcOw5TeYdAZaKw/ko35nydj4jv78MSmMzhfUIsApRTfLRmO24dzj5keuEJCZP2j/TnlF1kco4HGeWO7nn487g9tjcFAY+8l8vdakvE4fJjkNUulpCGry3Bia47YICUkIgqNGj3bKosv7p3u7mYcy6oETRN1UqbJIRdeeIF8793bpNngMvLyyMU1YwbpqGeHHmG+OJpZ6RFJ1JHGirJCgUlyCqkYYbFqVAJIS7O9exCLKAyJC8T+y2VIya5stsOc1iccBy6XYcfFYjw0sXuz16lUKlxn3PHU19dj1Zy+WDo2Hj8ey8HRzErQNGmjMW9wF8wdGMW5J5jBQOOP00Shes7AKABE70irpxEd4MXbLd8RNIaY3esddwCJ3NJChDF9Ovl+8iTRwYiwL97nKcgkIoT6ylFWp0Z+VZPdBP6Z/UipHtOOSKM3oLC6Cb17k+tPW+GDzLJ6q00/5RIxhsYF4khGBZIzyjlffy3n1VeLhuHw1XJ8dTATV8vqUVStQmK4L6b0DsMdI2JZLzJXmHwhR0JkmWX1qFfroJSJ2XxMd+RCYS3K69XwlolZ7TRzmHnlkhw8c2bMAIYMASZNcvhUUrEIscFKZJY1IKO0gff/H+g0hniRbBTUG9Wd+y48MxPYtIk8/vZbV4yqBYsWkdKatWtJTwI7eJJnyFHhRYA0I08HUJAnQlOTbWn54fFBrDF0zxiThtDUPuF44a/zOJ1bjZyKBsQF2w5LxgQp8eyM3jaPsceJnCrkVzXBRy7BtD7kZswIPI5J4JcvVNWgQYWxIqhbqGeqT585Q/qQURTw/PMufrOICLJonzxJEpQWL3bxG7Yt8SHeKKtTI7uiAQM4dHUHyGYhJoiU0mdXNDQzhjLKbFdRju4ejCMZFTh8tQILR3UVPO4xCSFseJimacFJz3oDjUNXHc8XYhKSk6L9bWqFtTd7jCGysT1CIGshWXD0KLBjhwtz8Mzp3t2peXjdQ32QWdaAzPJ6jO3BP9TZGSbjAVPWPKob9w/69deJyOL06cCIEa4amRk8SxaZJGrPEF50LGcIAAYlKiFSaEDTFCuCaQ1zxWnzOHS4n4LtKv9LCneRS0f44xTptzOzXwTbX+nwVWH5QkxZc0yQF5Qyz9wPMbvX224jHleX4+RSYHeCkZHgm3zKJK1mVzSiTx/ynLbSG1dLbJ9ntPF6Tc6sENQ2wRJCDSGA5M9UN2oRqJRiIEdj0BJnjfpLfFIo2oM9l4gxdJ2FfKGXXybfFy1yUQ6eC2FC/hkce9+1pNMY4khlvZpVJx3ZjZv6VFYWSZYGgJdectXIWsAs2vv2cVL37GEU6supbESjxr0ryiL9HNeS6NfFD9Ig8rnYqyjr38UfMokI5fUaZJU3/yxvH0b8x5tO5ENrpXGrs1Bp9dhylmi5MGq8lQ0ato8SH08lYNIXGRbnLBW1tuXsWSJLQVGmELTLmTmTZJLGxbXRG7Yd8UbvYMtr3B6MRzS7vAFduwJSGQ3oxTiXbnsd6R/tDx+5BDVNWot9/tqaDceINMCtQ2MgdUBmgpHh4Opdaw/yKhtxJq8aFAVMapEvdPy4qTLT5d5Wc+rqiOCewbF1tLvxOhbaXqrTGOJISjZJVO0V4Ws3rs7w+uukyn3aNJNAtMvp3Rvo2pVoDXFQ9wz1JQJjNN28S7s7wuQMORIm6xvlD4kxifriRdu7UoVUjIFdAgC07kc2uXcYQnzkKK9XYzcHcUVH2HGxBHVqHaIDvDDc6K3aeq4INE0SvcN8ueevAaZ2IkzFnKfBeIVuvRWsR8LljBhB8vHeeaeN3rDt6MoYNRX8biJMg9+cigaIxUD3HuRmlpZGQaOzfmOTiEUYYbz2GO9me5Ff1Yh9xnyhO3gkXLdErdOz6+cA45rhjmw5RzZVI+KDWuW9rlpFvi9c2IZeIb2e3K/mzgVSUx06VbdQU0WZEDqNIY4czzbpuXAhMxNYv548Zi6yNsFc3ZNj9YtJCM3NjSFjmKy8XgO1TpgAXvdQbyjDyWRJTrF/jpFGr8s+Y/UFg1QswvyhxEvz03HXhcr0Bhrr9pB43s1DurANCDcZO9zfPJhf3atap2fLo4d5oDF09izw++/kMn/xxTZ8Y4pySqdtd4TJG8sqa+BVltwyvDZkILmdNBb5NFNutwQTKhPa2NhZ/HI8DzRN8u6YsJ8Q0orqoNXTCPKWoYsbK7r/e7YQADB7QFSz548eJXU3YjHwv/+14YDEYmD8ePLYwWpNxjNUVKMSpJvXaQxxhPEMcA1JvPYaMXqvv56I17Yp5vkNHBY3RrOGrypsWxNoJrxYWC2wfFIsQmJf0iTu1En7N7epvYnI4oErZa30U24bRqr1Dl4pQ66NcmJH+PN0AS6X1MPfS4qlxiTu9OJanMmvgURE4aZB/Iyhs/k10OgMCPGRoZsDi397weQ0zJ8P9O3bDgPQ60lNfwciNkgJigLq1Do2sZ4LTMVYVkUD6tU6DB1K5pOmOACpZsrtlmCkII5nVdr0IrkSrd7A5vzdNcKx8OcZ4wZjQBd/h/KXXElmWT3OF9RCLKIwI6l5Az9mw3733SSvuU1xUj5egNKkm8c35At0GkOcySpvBEVZly43JyPDlCvELN5tCqPuWVhIEpfswHqGCt3bM0RRFLqFMAnfwqvfRg4XA6BRUSpGUZHtY5Oi/RDpr0CjRo8jGc1d+nHB3hifGAqaBtsdWyqVYvXq1Vi9ejWkUqngMQIkV+j9nZcBAMsmdoe/kpxv0wmSTD2ldzjnkC3DcbMQmbsu2tY4c8aUK9SmXiEGlYrkDQ0eTJRzOwgKqRhRRq8rn5tIqK8cEX4KNsQ+bBh5XlPkjzMW2naYkxjmi2BvGZq0epyyoGrdEmfOK4YtZ4tQXq9GqK+cVZYXCmsMuXG+0L/GvMOxCSEIMtNSSk4Gtm8HJJI29goxzJhBvh87BpQ7FjZ1JFTmMcZQVVUVFi5cCH9/f/j7+2PhwoWorq62+ZrFixeDoqhmXyMdSN4ZGBPA3pBs8corZAPZZhVkLVEqSSZcWRmn4C9jDF0pqRPc96utSAhz3Bga1N2HFV88edL2sRRFYYrRO2RJZPGxyQkAgE0n85FT0QCZTIYnn3wSTz75JGQyYeJtDD8ezUFBdRMi/RVYZOxbptEZsNmoNzR/WBfe52Tzhaw0Z3RnmN3rbbe1Ya6QOQoFkED+3x1NgNE8VMYHZu04l1+DQYMAkYiGvkGB4xdse0pFIgoTjdVMltrVtMSZ8woAGtQ6vL2NyNDfPTLOocRpwCx52k3zhWiaxt9nLIfImI3F3Xe3UwVZly5A//4kirF9u0OnYpOoBdwfPMYYuvPOO5Gamopt27Zh27ZtSE1NxcKFC+2+bvr06SgqKmK/tjqwiF3f177Y2qVLwI8/ksdMome7MGECEBjI6dBIfwWCvGXQGWhOHaHbE0YK4IoDUgB9o/whi6wGAKSk2A8jMrvGXWmlrUqBh8QFYUJiKPQGGh/utlOrz4PcikasNZ5vxZREKKSknH5PeikqGjQI85VjfA9+mig6vQEnsxnPEL8KtPbm1CmiKyQStWFlpiU6qBo1k0SdxTOJmuk1dr6gBkol0LM3mR/p56Wot5O3cUN/sp5uPVfktBJ7rqzbexVFNSrEBHnhvvGOWQDFNSpklDWAotzXM5ReXIerpfWQiUWY1tfkBTtwgHSnl0rbsDLTEkyjcYfzhhjPUAcNk6WlpWHbtm346quvMGrUKIwaNQpffvkl/v33X1y6dMnma+VyOSIiItivoCDhO2IuxtArr5AKwTlzwLqN3R2KotjGs+6eRN0j3HHPUK8IXygiyd955Jj9fIWR3YLhK5egrE5tMRdi5VQif7z5dAEuFdUgJSUFKSkp0Avscl6v1uHe71NQq9JhQEwA5hmTpGmaxndHsgGQEnu+3ebTiurQoNHDVyGxqhDsrjBeoTvvBHr1aseBMIv27t0kbNZBYJKH+XqG+rEhdpJvOGoEuSbVRQE4l287B3FsQih8FRKU1qlxIsd2qEyv1zs8rxgyy+rx1cFMAMCLs/qyGw2h7E4nHuNBMQHNwk/uxG8nSWj9ul6h8FOQ6AZNm7xCS5eSoq52g9lkbNtGwioC6d7Rw2TJycnw9/fHCLOY08iRI+Hv748jR47YfO2+ffsQFhaGxMRE3HfffSgtLbV5vFqtRm1tbbMvgHgk7FUbXLxIutEDbVxBZo2vvwZGjyblN3ZIarGouSsJRpn7q6XCG/IppGJ0700SRU+esJ9jLpOIMKEn8cJYCpUNiAnAlN7hMNDAu/+dx/DhwzF8+HCoBNwsDQYay39JxeWSeoT5yvHFwiGs0bPvUhmSMysgE4tw1wj+ZcDHskjlzrCuQW6tkNuSlBTSg0wsbqdcIXP69yd5Q42NpLV3B4HRGuJbXs8YQ1dL69Go0TXLGzprJ4laJhGxaupbjFVO1lCpVA7NKwaDgcZLf1+AVk9jYs9QTOltuVEpH3YZ14TJvR3LO3IVap2eFW1lij4A0qhg/37Smd6lvf24MHIksG4dETsSCzdOzTfLfCuOPcIYKi4uRlhY64s2LCwMxcXW480zZszAhg0bsGfPHrz77rtISUnBpEmToFarrb7mzTffZPOS/P39EWPs7zXZQkO7lrz0ErmxzpsHDBrE4Q9zNWlpJDvu33/tHmreTdqdiQs2NeQrdEBvaMRQEUAZUFUhRkGB/eOZUJklYwgg3iGK4pb/YI0mjR7P/XkOu9JKIJOI8MXdQxFu1ALR6Q14YytRibxnTFfE8OxFBpjKmC31I3JnGPf9ggVAjx7tO5Zm0hUdSI2aKZPPKm/gFbIK81Mg1FcOA008j6wxVOzPtqewBRMq++98MfQuDpXRNI3Xt6bh4JVyyMQivDS7r8NFBI0aHQ4b59UUNzWGdlwoQVWjFhF+CkxIJPcxmjYlS99/P6c2lq5FIgEeftjhUrboAC/4e0mhM9C8W0y1qzG0atWqVgnOLb9OGHuXWLpo7fWjue2223DDDTcgKSkJs2fPxn///YfLly9ji41F7Nlnn0VNTQ37lZdHSi8n2dlBnD4N/PYbWSvbpYLMEub5DXbUPZnYf3pRncsVlR1BKhaxHrorDuQ39e/qC2koeT2X9jgTe4ZBIqJwtbTeooZKnyg/3DdOeO7B6dwq3LD2IFvq+/bN/Zq1Bth4Ih9XSusRoJRi2XUJvM9f06TFQWNn7slO2A23FQcPmipd2t0rxMCEyjhKV3gCXQK9IBFRUOsMvLt+s6Gyghr06wdIpTQMKhmOn7Ffpt8sVJZdafd4gGhvPfjDSVaVnSsf7bmKrw+R6to35vVzSFeI4dCVcmh0BnQJ9EJiuHs2Pf7VuKbMH9qF9Qj/9x/ZJysUbuAVciIURbH3sgs8oxztagw98sgjSEtLs/mVlJSEiIgIlJS03pGXlZUhPJy7NR4ZGYm4uDhcsdGUSi6Xw8/Pr9kXQJR+bcHsXu+4A0hK4jwk1zJ2LODrC5SW2i2big1SwlchgUZvcPumrc7IG+rfJQDyCDJZuCRR+3tJWSNi4wnLIosrpyYigWPj05pGLfZdKsX7Oy9j4dfHcPOnR5BZ3oBwPznW3zMMNw0yVYrVq3V4z1hi/9jkHvD34l9avONCMbR6GonhPkgM94x8IfPd69KlbtQrafJkcgf54Yf2HonTkIhFiDV6G/lqtJjrlMlkwICB5PncS3KU1Vn3wgPNQ2Vbz3EzbjafLsC2C8V4+KdTeOq3M3YF9gwGGp/vz2Dn0Euz++CWIfwrMS2xO42kXUzpHe6WUhW5FY04dLUcFEXajQDN59UjjwCRkTZO0NZ8/TVw441Afr7gU/Rloxz88l/b1RgKCQlBr169bH4pFAqMGjUKNTU1OH78OPvaY8eOoaamBqNHj+b8fhUVFcjLy0OkgP++rQs9OZlsEsViN8kVYpDJgKlTyWM7Lv1mSdTunjcU6gxjyB/KaDJZ9h7kFltm+pH9cSrfYjxaIRXjzZv7sz//ayMP4v4fTmDxtyn4cPcVHLxSDgMNzBkQhe3Lx7Mlxwyrt6WjvF6NrsFKweJwjMbIrP5Rdo50H3bvJtUucjl//ZPyejXO5lfbrWgShI8P6bUzenSHUqVmPCWZfI0hprzeGGIfOYJ8JurCQLt5Q4BZVdn5Yug4eKXnDIzCw9d1B0URj+nsjw5h/+Uyix7to5kVmPPxIbz5HymjXz6lB+4xipc6isFAY7exA7y7eluZjdvYhBA2tP7nnySS4eMDPP10e47OAl99Bfz1l0NVZcx9jK9nyCNaVvfu3RvTp0/Hfffdh88//xwAcP/992PWrFno2bMne1yvXr3w5ptv4qabbkJ9fT1WrVqFm2++GZGRkcjOzsZzzz2HkJAQ3HTTTU4dH7NQL17sBjkNLbnhBqJUt3WrXUstKcofRzMrcS6/BvOHtncQ2ToJRs/GFQeMIYVUjCEjdPjvP+DEcRHUanLTtcX4xFBE+ClQXKvCzoslFg0L5sYAAC9sPo/YsCCLquWD4wJRXKvC4NhADI4NwNCuQRa9jz8czcH3yaSR5Iuz+0Am4b9/qWrQsD2gZvV3p22gdWja1CzywQeJFIk9kjMq8MepfJzIqWK9GxRFysYHdPHHQxMTPK6Kri1hu9DzNIb6Gbu0Xymth0qrx/jxYqxbB6hygnEip9BuYvHYhFAEKqUoq1NjV1oppifZrtqVikV48vpeGJsQihW/piKzvAGLvjkOP4UEk3qFIdxPgcIaFXKNTUkBwFcuwYqpibhnTFdef5stzuRXo7xeDR+5BCPcUKpCpzdg00liDDEbOb3eFMVYsQIICWmv0VnhhhtIb5CtW0kykwAYz1BaUR2vPDSPSKAGgA0bNqBfv36YNm0apk2bhv79++OHFm7qS5cuoaaGWINisRjnzp3D3LlzkZiYiEWLFiExMRHJycnw9XXegrhrF+mHKpO1s06DNRh1z5QUwEKo0RxGI+N0nn1F2PaE1RoqqRNcUQYAU0crIfJWQasW4dgx+8eLRRTbj4yJw9tCpTVg6XcpFnMhnpjWE/ufvA7v3zYQC0d1tWgIHbhchlV/XwAAPHl9T0zqJSxBc9uFYugMNPpE+rEKre7OX3+RwhKlEnjmGdvHFteo8MhPp3DHl0ex6WQ+awgFectA0yTsszm1ELM+OogPdl12TvsHmiadth98EKh1bzkKrjAVZXw9rhF+CgR7y6A30EgvrsPEieR5bbkfdp+qtvt6mUSE24w36++Tszm/76juwfjvsXG4a0QsgrxlqFXpsDm1EJ8fyMQ/ZwpxJq8aIgpYMDIW+56ciCVj450aymJCZBMSQwVtUlzNrrQSlNSqEeQtw5Q+xHO1YQOpeg4MBFaubOcBWoLJc921izQbF0B8iDe8pGI0afW8qiM9wjMEAEFBQfiRUTO0gvmN0cvLC9sdVLO0B02bks8efBCIc6y9jWuIjAQmTgSCgsiibSPHanAcEWlMK6pDo0YHpcw9L4/4EG+IKKBWpUNZvZp313aGUd2DoYipRGN6FPbsoTF+vP2F8tahMfho71UcvFKOvMrGVlVdUqkUL730EnR6AzK7hONIVg0Wf5uCH+8d0Swh2l5p+6XiOjy84RT0BhrzBkdj2UThVRZMuG7WAPf2Cm3bBuzcSYwfxtu6fDkQYcVRQNM0vk/Owdvb0tGo0UNEkdLhaX0iMDg2EP5KKcrr1bhYWIvvk3OwK60EH+y6gv/OFWPdnYPQw5HcKYoCnngCuHKFhKJvvln4udyEXhFMeKHWbnGKOSRp1R/7L5fhXEENBo4MQO++BqRdECE1RYrKBo1d/Z0FI2PxxYEMHMmowOWSulZ5bcy8Yh4zBHrL8PpN/fDK3CScyq3CnvRSqLR6RPl7ITJAgf7RAYgN5l95aQ+aprH9AqkcddcQ2TeHsgEAg/1isWSRGKtWmQRLn34aCAhor5HZYNAgcs8qKiIxcibNgwdiEYXekb44lVuN9CLuGxX3M2c9iD//JA4Xb2+TS98t2bOHaA3ZieFF+SsQ4aeA3kDjrB3BtPZEIRWzyZ5XHUj2HhgTAJ944rXZtotb3lBMkBJjuhPf8iYLidQymQyrVq3Ca6++gq/vGYWR3YJQr9bhts+T8dHuK3a1LwwGGt8ezsLcjw+hTq3DsK6BeHNeP8E72rI6NZKNpb+z+rl3vtDhw8B77xHxtwsXyGL9xBOWj9UbaLz8z0W89PcFNGr0GBwbgH/+byzenNcf1/UKY9vmhPjIMT4xFF/ePQTr7hyEYG8ZLpXU4a6vjiGv0sHmuuZVZR2APpF+EFEk36qklt+uvB/blqMaADB1Mrm1NOWEsCFaW3QJVLLyFYywqDnMvFq1apXFdhxiEYVhXYPw9PReeGl2X9w3vhtm9Y9yiSEEACnZVbhSWg+FVITJAj22ruRcfg2OZ1dCIqKgLIzDTz+RFjbZ2WRz8X//194jtAJFmaIZDswrJl0hzULlrzU6jSGB6PWm3euKFYAFGST3gccOb3BcAABwap7YnjDiiw7nDY00drBPEXMWFGaEyzadzLcZk/aSifH1omGY2DMUap0B7+68jBkfHrSY7EnTNNKKanH7l0fx8j8XodIaMLp7MD5fOBRyiXARsm3ni2CgSTdtV90YnAUjcdBotFFEIuItbxkJVWn1+L+fT2G98ab53Mxe+O3B0WyugCUoisKs/lHYuXICeob7orROjUXfHEcljy7trTBvIWBHusIT8JKJ0cM4r/jqjQ2KDQBAjASA9IoGSN4QI+lgD6b/3h+nClDTpOX1/m0NE867cWA0p36Vbc23h4mEwKz+kTh33KhVZqwlqKsDvv0W0LrrR+yETQaTRN3pGWoDvv+eaBoGBlrfvbodly/b7bY9OJaEyk7lVLfBgITjjPJ6AJg6yhtiHxW0GgrJydxeM61vOAKVUhTVqFqJLBoMBly4cAEXLlyAwWCAt1yCbxcPw9o7BiHER47MMpLsmfTSdsz75DCe//Mc7v7mOAa+shMzPjyI41mVUMrEeO3GJGy4d4TD8v5/Gpu6unsVGU0TL6s5lZXA/PnNdVAa1Dos+uY4tp4rhlRMYe0dg3D/+O4QcVTUDvKW4bslwxEd4IXM8gbcsz4FjRqBFWfjx5OSnJIS0jytA9CyMowrw+KDIKJIflZxjQoTJgAURUNX6YM9J2s55faN6haMnuG+aNLq2fYRDC3nVXtSWmua9wtGul9uRGmtCv8YQ+OLRsW3UlVpaCAl9e3a488WU6YAXl7EhVUnTEuO2RhdLOw0hlxKU5NJAO655wB/6xtS9+GJJ4CePYGPPrJ52CCjMXQ6t8qh5GRX44yGrQDJG5LHkjDSnj3c/l65RIy7R3UFAKzdfaWZYm9TUxOSkpKQlJSEpqYmAMQrMWdAFHY/PgGLRsXBVyGBWmfAqdxqbDiWiwOXy1DTpIVcIsKU3mHYvnw8FoyMczjZMyW7EqdyqyETizB3oHsbQzk5QEVF6+dvuMG0aGv1Bjz80ykcy6qEj1yC9fcMx5wB/P+uCH8FvlsyDAFKKc7kVePRn1OFXes8pCs8BfPGq3zwU0hZQ+poZgUCA4H+A8jvci74cGqcSVEU7h5NjIsfkrPtzqv24ufjedAZaAyODWhWPeou/Hg0B1o9jaFxgZA3BFi0JxYvBl59tc2Hxg0/P6KNd/Ag0ckTQI9wH0hEFGpV3Dc6ncaQANauJZpQsbHEwvYIhg8n3+0s2knRfpCJRaho0CCnwsGcCheSEOYcz9DAmAD4dCV5Q9t3cd9xLhkTD1+5BJdK6thESnv4e0nx8twknHlxGvY8PgEf3DYQD07ojlfn9sU/j4zF+Zevx1eLhglqtWGJz/ZlAABuHhKNMD9hSeZtRUuvEADceitRhVAoSBjx+T/PYd+lMiikIny3ZDjGJAivC04I88XXi4ZBJhFhV1oJNqdy6MliiQ6WN9RPoGcIIA2NAbA5apMnEWNelRuMQxxDZTcNioavQoLsikbssNL6pj3R6g346TiRumA2RO6ESqvHj8eI93/J2HiL8+qRR4i2oQMtwFyPj2NVr3KJmLe4bKcxxJPKSuDNN8njV18lC7VHMG0aufrT0oCsLKuHySVi9DXuDt05b4jpTlxer0FFvbASTIDJGyK7h1MnRGy+ij38lVJWs+TDFt4he4hEFLqF+uDGQdF4ZkYvLBzVFf26+EPKswu9LS4V12F3eikoCrh/vGP9ftqCffua/7xoEfDTT8T5AgDv77qCjSfyIaKAj+4YjCHGykdHGBIXiMcmk6KCV/65KOw6YkqBa2uJy9jD6RNFkqhL69Qo5dmWY5TRGDpqbAjM5g3lBuPgFftJ1ACglEmwyGhkrN6ezkmEsS3ZdZGUqwd7yzCjn209pPbgr9QCVDZoEB3ghWl9wrFzZ/PfP/ss2cyLPOXOX14ueF4xeUNc8ZSPxG144w2gpgbo1w+46672Hg0PAgJIew7A7i52CJM35MbGkLdcgm5GkbizDjaXnTLCG2LfJuh1FA4d4v66JWPj4SOXIL24DjsuCm/Q6go+30+8QjOSIpzSg8nV/P236fGDDwLffEP6kQHArym5WLubtNB57cZ+bNWRM7h/fDf0ivBFVaMWL/9zkf8JIiNJiU56Oslz8HCUMgm70eCrRD+0ayDEIgo5FY0orG7CuHGASERDV+WNA6caOOs7PTChG4K8Zcgsa2B79bkLjADq7cNjHCpscAV6A41Pjd7gxaO7QiIW4b//TL9/4w3y5TGi6QsWECkY8z+CB53GkItQ6/TIzgbWrSM/v/22m7sZLcG49O10sWf0htw9iZrR7TmdW+3QeUZ1D4ZXPHHj//03dw9PgFKGxcYKmA93X+XlHXIl+VWN+OsMSaB8cIL7e4WuXDG1Irr1VuCTT0w719O5Vfjf5vMAgEcnJeDOEbFOfW+pWITVt/SHiAL+PlOIPekCQjNuKTAmHFOZPD8xSV+zvKHkjAr4+wNjxpDfVaSF4DTHzZWvQsp67D7Yddk1LVUEkFZUi+TMCogo4E6BbXFcyb9nC5Fd0YgApRR3jojFkSMkkgEATz5JvEIeRWgoqdK0c7+yBt98rk5jiCNXSurw7LNEFHPSJGD69PYekQAYY2jfPlJSYAWmoiy9uNZuE8T2hCnnTTVK7jtyHt+exBj6YzPNqxH50rHx8JaJkVZUi51p7pHj8NXBLOgNNMYkBKN/l4D2Ho5dHn2UfO/eHfj1V9POtaJejWUbTkGrpzEjKQIrpia65P37dwnA0rGkX9X//jwv/Oar0Zjqlz2Yvg7kDbGhskwSKps7l/wzm66E4xAHvSGGO4bHomuwEuX1Gnx5IJP3OJwNTdN4bQvxHM5IikR0gHt5AQ0GGh/vvQoAWDomHkqZhM1nHTUKWL26HQcnFAelK3pH+vHygnUaQxxRFQXgl1/IQv3uux7kajSnd28gPp5YdLt3Wz0swl+BEB8ZDDTpv+OuDIwhRtuZvGqHvDIKqRhTJgOURI+iAhFSU7m/NtBbxuqjrN6WDpWWm3ijq6hs0OCXFJJA+dCEhHYdCxeSk4nyNEUREVNmXukNNB77JRVFNSp0C/XG6lv6u7Qr+MqpPREbpERhjQof7bnC/wQPPUQaPe3f7/zBtTGMZ4hvo0sAbB++ZKMxNGcOeV6VF4zdqa3b0lhDJhHhqem9AABfHszknb/kbLZfKMHhqxWQSUR42jgud2JnWgkul9TDVy7B3aO74q+/SDNWqRT45Zf2Hp1AHJSu8JZL2PZJXOg0hjjCaJ3cfTcwcGC7DkU4FEWCxn//DUyebPNQJs+E6XbujvSK9IVcIkJNkxZZPHrQWGLmoFAojKGyv/7i99oHxndHiI8cGWUN+OJQNp544gk88cQTzdoGtBXv7LgEldaApGg/jElwv+aR5tC0SaPrnntIHh7Dezsv4dDVcnhJxfhswRD4Klz7WXrJxHhxVh8AwPdHclBWxzOZWqUimigdoKqsbxTZURfVqFDOM6l8aFwgJCIK+VVNyKtsRI8eQI+eBsAgQsohBQqruSfDzkiKwKDYADRq9Pj0QE67zSuVVs96he4f183txEtpmsa6PcQrtGh0VyglUjz1FPndE0+QqmePRCYjhT+A4FDZC7P6cj620xjiyLFjJD/y9dfbeyQOcvvtwOzZpIeIDSL9SZncP2cK3SYXpiVSsYjdxaY6mDc0pU84lD1ImOv3P/m5ZP2VUrx2YxIA4Ksj+Vi0/H9Ys2aNxbYBriQ5owI/Gctq/3dDH5d6UpzBH38AR46QZqyvvGJ6fndaCT7eSxJB376lP+8SWaFM7h2GgTEBaNLq2URUzsyaRb4LXLTdCfPiBL6hMm+5BP27mPSGAODmm8htpvFKOLbw2FxRFIXnZvYGAGxKLcJNDz7dLvPqywOZyK9qQoSfAsuuc78cPKYnnJdUjCVj4/HZZyQPLyzMfpNjt6cN51WnMcSDJ54AoqPbexRtQ6CSLDh1Kh3+OJVv5+j2g8kbOp3nWOVbiI8coyeqAYrG+bMie0LdrZieFIEb+kdCb6DxxKYzzumMzoMmjR7P/HEWAHDXiFhW88Vd0WhIs0ig+bwqrlHhiU1nAJCKGCGiikKhKAorjXlJPx7LQXENj9DM1KkkJnHlClF693CYTcZ5AT0KW4bK5s4lzzdlhuKvU/w8zcO6BuH2YTGgaWD5L6kOyWgIobC6CR/vI16X527o7XbNq2maxkdGr9CCkbEQaWV4+WXyu5dfJvqFHg3Tp+zkSdK81YV0GkMcCQsD63r0eC5eJJ1lv/nG6iESM82bN7amuW0iNZM35GgSNQDMHhECeTQxqsxLvbny8py+CFCIcf7SVbz2y/42bRvw/q7LyKloRKS/As/McL+chpZ89BGQkUEqZ598kjynN9BYuTEVVY1a9I3yw7Mz2/7vGNcjBMO6BkKjM2DdXh65Q35+JMcB6BDeIaFtOQCT+OLRjArQNI3hw4HQMBq0RoqUZAlyeIa0X5rdF91DlCjMz8UDn/4HnZ1mx87kzf/SodIaMLxrEGb3j2yz9+VKckYFTuZUQSYR4b5x3fDyy0TJvU8f4N5723t0TiAiguyWvvrKbjTDUTqNIY68/LLDopjuw5EjJHfoiy+sHlLdaOriV9moxSfG3ZG7wXiG0orq0KRxbJGc2iccXgnGUNkf/A2ZEB85nr2+Owo+W4pXF05CanbbVJedyavGVwdJxc3rNyW5PL/GUUpLTWGxN94wzasvDmTiSEYFvKRirL1jULvouBDvUE8ApO1CfhUPFXbGpd8B8oaS2CRqfuX1ADA0LghSMYXCGhXyKpsgEgFz5xiryq6G885D9JKJsWZeLxR8thS/P3UTPt+TxntMQvjjVD7+OVMIEQW8NMf9ws40TePt7ZcAAHcMi0FFgYKVfvngA5NOl8ezZg2wdKnL3VydxhBHbr+9vUfgRBjV3OPHSaa+BSobmrujvzyYhbxK92vPEemvQJivHHoDzVskriVdQ7zRdyRp73HwIIXqav7nuKGfafe4/JdU3gmofNHoDHj697Mw0MCNA6MwqZfzBAldxQsvEMHmwYNJjySAePbe3UEW9pfn9GWF/9qDUd2D0T/aH3oDjSc3neX+QsYYOnCAKLN6MIxgXUF1EyobNLxe6yUTsxpg+41tOJhQWeOVcPxzhn+4o2e46Ub43s7LOOviKtdjmRV4+nfyv39oYne28ac7sf1CMc7kVUMpE+ORST2wciVRdpgzx9QyrxPudBpDHPEY+XIuREUBQ4aQch4r6p4VLRZAjc6AN/9rmx0ZHyiKMuUNOUExe951fpAE1UOvowRt8M13j9nljbj76+OoVWltvEI4egONp347g/TiOgR5y/DibO6VE+3FmTPE4w2Q3atIBNSrdXjsl9PQGWjc0D8St/Ioh3UVT88g3qHkzAqsP2K9fU0zEhLIrunllwXporgTvgqp4CRqAJjcmxjlO4x9+yZPBpRKGvo6L5w5TSGjTHhPQa2exsM/nUIBj8o0PmSW1eP+H05Cq6cxs18EHjd6Ct0Jnd6A1Uav0L1j45FyUI5t20ja2rvvtvPgXEFmJlkwLDVbcxId6RbfCR/sZOlX1LfeDW49V8xWiLgTzswbmtY3At49yc71+x8cq6IL9pHiYlEtlq5PcTiE1xKDgcazf5zF5tRCSEQU3r11AIK827bKhi80DSxfTuyE+fOBcePI8y/9dQE5FY2IDvDCGzf1c4twxJiEUCikZHl8+e+LnJvx4uefiQ5HoOO909qbAUbvzols7vpADNf3JX27kjMqUN2ogZcXMHs2+b82XIjGvwK8QwxdghTIq2zCrZ8eQaYDRpUlKhs0WLI+BTVNWgyMCcB78wdCJGr/67Elv53MR2ZZAwKVUiwa2Q0rVpDnly8nNnmH4623gBUrgB9+cNlbdBpD1yqMMbR9OyntaUFFizBZVIACd4+K46XO3FY4qy0HQMID8aOIa3/XTqCwUPi5vrh7KHwVEqRkV2HJ+hSnVZjRNI0X/z7PNi798PZBuK5XmFPO7Ur++IOInysUJkXcLWeL8Psp8nd8cPtA+Hu5T74TExqhATy84SR2u4nCeFsxslsQAAjaAMWHeKNXhC90Bhq700oBEI02AGi4GIW/eVaVmfP9PSPQLdQbhTUqzP88WZA4pCVUWj0e+OEEsisa0SXQC1/ePRQKqfv1XFJp9fhgF0nuf/i6BHz7hRSXL5Min//9r50H5yqY+9Wff8JVN6FOY+haZfBgkqlfX09yHMxQ6/QYmxCCp6b3xM2DSc3zsK5BeGVuEls260707+IPkVEkrsRBpVqKojB3gj/k0ZUwGCj8+KPwc/WJ9Me3i4dBIqKQnFmBGR8eQFGNY659mqbx6r9p+PFoLlFDnz8AN7hhlUtLGhrA7l6ffJK08yquUeG5P88BAJZNTMCwrkHtOMLWjIg3eXd0BuChH09h36VS+y+sqiKyv5cuuXB0rmdUtxAAxOMqxLPJeIe2Gb1q06YBYeE0DE1ynDvmhUvFdYLGFRnghY0PjEKfSD+U12tw+xdHcTKHv/fKnAuFNZj90SGkZFfBVyHBt4uHIdRX7tA5XcV3R7JRXKtCdIAXJnaJw6pV5Pm33uoApfTWmDyZNAPNzwfOn3fJW3QaQ9cqIhHp/RIcDBQ3DwHIJWJ8tWgYlk1MwM2DSf7G0UxSJuuOeMslrDCfM7xD0/qEwzuJaCt99x2/XmUtGdo1COvuHAQAyChrwJi39uCVfy4IErIsrVPh8Y1n8M1hksPy1rx+uGlQ++fXcOG114C8PKBrVyIEZzDqMdU0adG/iz8em9KjvYfYip4Rze8sGr0B9/9wEoeu2OmxtWwZcMcdwPffu3B0ricmyAtR/gpo9TRO5vDPx5ueRIyhA5fL0KjRQSIBFtxlDJWd74J/zwp3u4b4yPHz/SMxNC4QdSodFnx1HJ/tz+BttBkMNL44kIEbPz6MK6X1CPWV4+tFw9CjjYQ++VLTpMUnRkHQ5VN64PlnxGhoAEaPBhYtaufBuRJvb9JKCnBZx9lOY+ha5p13SDXZggVWDxkUGwiZWISSWjVyKtyvmoxhkLG5rKPiiwAwPD4IUYPLQUn0uHiRwsmT3F8rkUiwbNkyLFu2DBJjbev0pEi2R46BBr45nI3Br+7EnnQOXgYQt/jHe6/iujX78MfpAgDAq3P74rZhnqGzn55uSur88EOiOP3tkWwculoOhVSE928bCKnY/ZainhGtb4ganQH3fp+CY7ZCR0yDyX/+cdHI2gaKoljNoORM7k1WGXpF+CIuWAm1zoD9l0jomblhN14Nxx/JpZw3WJbmlb+XFD8sHYEJiaFo0urx1n/pmLBmL348mgOt3n5IOru8AQu+PoY3tqZDq6cxrU84ti8fj+Hx7uWhNOeTfVdR06RFYrgP/Cq7YONGsq/9+OMOVuRjiW7dyPetW13ide0oSgSdCCEgwO4hXjIxBsT4IyW7CseyKtA1xLXCV0IZFBOAn4/nOtyWAyCCkzeNCENmj2I0pkVj/Xpg6FBur5XL5fj4449bPf/czN7490whGrVkka5u0mLJ+hTEBSuxZEw8ZiRFIMxPwR6v1umRW9GI03nV+HDXFbZyZkBMAF6c1RtD4tx3wTaHpoH/+z9AqyU2wuzZwKXiOry9LR0AaRvSnmX0tugW4gOJiILOzIvnIxfj/vHd0SfKRjxixgxyZzp3DsjJITFBD2Vk92D8cboARzP5h6EoisL0vhH4/EAmtl0oxox+kejfH+jXn8a5syKkHw7EsaxKTmrp1uaVl0yMbxYPw5+nC/D+zssoqG7C/zafxwe7LmPOwGgM6OKP2CAlogO94KeQ4nhWJfZfLsO+S6XIKCPij15SMV6a3Qe3DYtxi+R9a2SW1eObQ8QrvHJSLzx2Gxnrww97cL9MPnTtSr7TNHDXXaRHlth5OV2dxlAn5OKqrCQhMwuM7BaMlOwqHM2sdFtvBFNefza/Bjq9oZmCthBuHxaLz5PS0JgWjZ9+ovHuuxTkDqQQBChlWDiqKz4/kNns+ZyKRrz09wW89PcFdA/1RqS/F7IrGlBY3QTzSFqkvwJPT++FOQOi3LK6xRqbNgG7dgFyObB2LaDR6/HYL6eh0RkwqVcY7hrhntcTQDqnx4d440qpqWLpkzuHYHzPUNsvDA4GxowBDh4k3qFHHnHxSF3HKKOhciavGg1qHbzl/G4Z04zG0J60Uqh1esglYtyzmMLKlUD9+WisP5zpcOsYsYjCLUO6YPaASPx8LBfv77qC8noNazhYQ0QBYxJC8PKcvujmpgY5A03TeOXfi9DqaUzsGYrTW8Nw6RJJmjbv69ehMVegPnkSeO89k3y9E+jojrVO7LFvHxATA9x4o9VDRsSTxeqYG+cNdQ/1ga9cgiatHukCEzPN6RPlh5HjdBD7qFBVxV1ziKZplJWVoaysrNVntXRcPGSSVDdMFAAAWiVJREFU1lNOLKJAgeQUHbpajvwqYgj5yCVIivbD41MTsefxibhxULRHGUK1tcDKleTxs88SL/eabZeQXlyHYG8Z3r65v1vvxAHiiXtgfDfMHUh6pP16Mo/bC2fPJt89PFQWE6REdIAXdAZheUODYgIQ5itHnVqHIxkktHjnnYBYTENTFIh/D9ZxUvm2Na8Y5BIxFo+Jx5FnJuHuUXEQ27i2QnxkmJkUie/uGe72hhAA7E4rxb5LZZCKKSzp3xevvUb+tjVrODn4Owb6FvlgL7wApDlP+67TGLrWiY8HCgpIi44Ky3kQg+MCIBGZ5PXdEZGIwjBjrP/wVf75DZa4c2QMvPuSHJ3167kZgY2NjQgLC0NYWBgaG5sv8mG+Ctw+LKbZc1H+CmxfPh6nX5yKzxcOweqb+2PjA6Nw/PnJOLdqGv79v3H4v8k94CVzvxJfezz3HLm0uncnff0OXSnHV8bd+upb+rtttY45q2/uj2dn9saDE0i38m3ni7mJ/THG0N69xCr0YEx5Q/xL7EUiiq0qYwQYw8OB6dPJzbzufBf8cDTH7nlszauWeMsleGVuEn68dwSrFdWS8noNuoZ4e8TmQqXV45V/LwIAlozphjee90ZjI2mFt3BhOw+uLdG16I+pVhMJ+5bPC6TTGLrWiYsD+vcnSnhW1KiVMgkrwHY0y/1EFxnG9SClwAftVftwZFb/KIQOJnooW7eSaihHeWBCd0iMC3C3EG9semg0EsJ8EKCU4fq+EZg/LAbD44MQ5qtwe6+JLQ4fBj75hDz+/HNAZdDg8U2pAIC7RsSyCsXuDnOz7B3ph9Hdg6E30Pg+Odv+C3v2JOp3Wi2QnOzaQboYRk5DqOAqU1W240IJ9MbYL6s5dK4LfjqS73RRUoCM+5vFwywaRP5eUtw3vpvT39MVfHUwE7mVjQj3kyO8tAe2bydh5y++ADx4ieCPJaPn+HFSCOQEOo2hTuyqUQPAiHjhAmxtxbgeJJfjeHalUxZXb7kEt031hzy2Ano9hbVrHT4logO8cNOgaPSJ9MPGB0chOsDL8ZO6GWo1cN99JBXtnnuASZNoPPfnOZTUqtEt1Bv/u6FPew9REEvGkNLen4/l2r++KAr47jsgNxe4/vo2GJ3rYMQXz+bXoF7Nfxc+PD4IAUopKho0rJr1jTcCkZE09PUKFKWGYnNqgTOHzDK6ewi+WdTaIFo2sbtbCXxao7C6CR/vJaX0j4zui6efJB7i//2P2NvXFC3DZAAwahTpQeKE9I1OY6gTk0t/2zayk7UA4yo/JqCqpK3oHuqNKH8FNDoDjgtoIWCJO4bHwm84SXr+/AvaKRGP5VMT8fP9IxHi4/5hIiG89RYJ5YeFkU3bppP5+O98MSQiCh/eNsgjQ34AMKlXGGKCvFCr0mHrOQ4KyqNHk3w8D6dLoBIxQV7QG2hBrTmkYhGmGD2BjACjTAY8/LAxVJYSj28PZbssH3F0Qgi+XjQMcmO+XrifHItGd3XJezmb17emoUmrx/CuQdi9PgLl5UBSEgk7X3PodICvLzGAAJLicfgw8PjjTnGRdRpDnQDDh5M7V00NqYCxwJC4QIhFFAqqm9yyez1ASnkZ79DBy2VOOWdStD+Gj1VDElSPulqKbTLqCNEBXh6xKxXCxYvA66+Txx99BNTRDXj57wsAgJXTEtGvi/t1/+aKSEThtqHEuPk1xQkxUw9iZLzwvCEAmG7MG/rvXDF0Rg2gBx4AFAoamhJ/nD0pFXxuLowxM4gendzDLdtstOTQlXJsOVsEEQVcH9Af331HgaKAL78kxuQ1x4svAuXlpIWUTAZkZTlVb6jTGOrEpEYNWK1+8ZZL0N94IzuW5b7eoXGJJG/owBXnGEMAcOfIWPgNI96hDz+krTnPrnn0ehIe02pJ5PXGeQY89ksqGjR6DI8PwgPju7f3EB3mliExEFEkFHu1lEOT0F27gOnTPb5plClvSNjcH5cYgiBvGYprVdhnFGAMCQHuvpvs6GtT4rH+cLZTxmqNsT1CsOHeEZg/1P29dfVqHZ7+/SwA4PaBJGkaICoNI0e258jakW7diBHk6wtMnEiec2K1Zqcx1AnhzjtJy+PbbrN6CFNin5zhvnlDYxNCQFHA5ZJ6FNc41qeMYc7AKAQNLIJIqUZuLoXffnPKaTsc77xDihJ9fUny9Pu7LiM1rxq+Cgnemz8AYg+o3LFHhL8Ck4xNcTee4OAdqqwkO1kPv2hGGMPk5wtqUKfivxuQS8S4dQhRYd9wzFQ9tnw5+d50JRz/Halzudd5aNcgt1Q7b8mbW9NQUN2EmCAvlO7uicxMIDbW5HW95nGBdIX7XxWdtA1TpgDvv29z2zEmgSyIh65a1/pobwKUMvTvEgAAOOgk75CPXIIJvYPgOzgbAGktYe3Pl0gkWLRoERYtWsS2DbgWOHuWyH4ApOVGVlMZPjX2UFp9c390CVS24+icCyM8+vvJfGh0dto+TJ9OEjwvXfLoxq3RAV6IDVIa84aEtby5Yzj53PZdLmONnt69yUcEUKg50dVqmf21NK8OXy3HhmO5AIB5oUPw9ZfkNv3tt2Sj0QlMxtDhw1YlYfjSaQx1wplhXYMgl5A+ZVe4hAjaifFOLrEHgJsGR8N3UA4oiR4nTwIHDlg+Ti6XY/369Vi/fj3kjkhWexBqNdE70WqBuXOBmTersHJjKgBgwchYzOgX2b4DdDLX9QxFmK8cFQ0a7EorsX2wnx9w3XXk8d9/u35wLmSUA3pDANA1xBvjeoSApoFfUnLZ51esIN/rz8bgx/2FqGzQtHrttTKv6tU6PPUbCY/d2i8e775AUhP+7/+ASZPac2RuhrkkzNatTjllpzHUiQmtluQ4vP++xV8rpGK2iaEzDQ1nwyRRH7paLqg7vCVGxgdDrNSy3exffsM5Ql8dgZdeIp6h0FDgs89IN/ryeg16Rfh6bBm9LSRiEW41Nt79hUsi9Zw55LuHG0Mjuzsur8G0X/k1xeRVmzoV6NuXBq2VoOh4FD7cddnxwXooTHisS6AXCrb2QkEB0KMHqdDspAULFpAeZd2coxfVaQx1YqK4mKxMTzwBlFkOMZmEDZ2XoOxsBsUGwFsmRmWDBheLnKP+G6Ak5Rt+w7IA0Ni7Q4L9R1rnTtA0jYaGBjQ0NLhtKNGZHDoErF5NHn/+OfBneiYOXimHl1SMdXcO8oiqHSEwSbgHr5TZz3NhXPpHjlidV57ASLO8oZomYVUEk3uHI8xXjvJ6NXZeJF41igKWLzeW2Z/oih8O5SOjrLnn+VqYV+bhsRt8h+Lnn0QQiYhclbLjRJmdx5NPAj/+SPoAOgGPMYZef/11jB49GkqlEgEcm7HQNI1Vq1YhKioKXl5emDhxIi5cuODagXoyMTGk/bEN1yPjdTmWWQm1zvmqsc5AKhZhVHditO13Uom9WEQhQCmFNKiBbdFx+9Im6PTNF+bGxkb4+PjAx8fHbtsAT6e2Fli0iORPLVoExA6uwjs7SF7My3P6IiGs4yY4xAV7Y0xCMGia6CjZJDbWNK+4NrlzQyL9vdAt1BsGGjggcF5JxSK2JY15IvWCBWT50dd7oepEHN76L73Z6zr6vDIPj93YsxveX+UHgOgJMbI6nbgWjzGGNBoNbr31Vjz00EOcX7N69Wq89957WLduHVJSUhAREYGpU6eirs7xRp4dFjsu/V4RvgjxkaNJqxfUuLGtGJ/ofA9WoNE7FDDuMiDWozjdD/e9budG2EGhaVJGz1S5vPymBo/+fBp6A405A6LYMFJHhkmk3nQij20zYZVbbgEmTyZ6Xh7M1D5EPHHHRTu5Uja4bXgsRBRwJKMCmUYPkEIBvPoq+X3t0QRsO1Xh1mr3zoSmaaz6+wIKqpsQ5eeF1O97oqyMpMSsWtXeo3NzaBo4c4YIBjuIxxhDL7/8MlasWIF+/fpxOp6maXzwwQd4/vnnMW/ePCQlJeG7775DY2MjfvrpJ6uvU6vVqK2tbfZ1TcEYQ9u3A6rWpelE2JAYGoc8IG/oZE4VGgS0ELBEgJIIJUr8m+A3NBsAsGFtADafLHTK+T2JTz8FNm4EJBJgw080/rf1NAqqmxAXrMTrNyV5dF81rkzrE44ApRRFNSr7npLnnyf5eDNnts3gXMS0PkQ8cV96qf1KOitEB3jhup7EKPz5uCmResECoq5sUElRezQBr29Jc1rOnzvz8/E8/HYyHyIKSCofgf37RFAqgV9/JT3IOrHB9u3E6/rAAw635PAYY4gvWVlZKC4uxrRp09jn5HI5JkyYgCNHjlh93Ztvvgl/f3/2K6YDyOnzYvBgIDoaaGgA9uyxeMjYBOdXazmbrsFKdAn0glZP45iTmssGKU2yr/4jr0LkpYG2whfb/uh4/cVsceKEqQJo9WrgUO0lNk/oswVD4KvomOraLVFIxZg3iEmkzrVzdMdgUEwAQnzkqFPrHEukHmn0qp3Mh0pLwu1isSlRuO5EV5xOU+OvM67pWeYunMmrxiqjQvvciAH4+kMirvjpp0CvXu05Mg9hwgSSUJWbSzxEDtBhjaHiYtIDJzy8eXfs8PBw9neWePbZZ1FTU8N+5TmjVbknQVEm79Bff1k8hPEMnS+ssVgG6w5QFIXxicQ7dOCyc4w2JonaWyZGTIQU/qOvAAA2fx2IevdVGnAq1dXA/PmARkOabSZMKsRn+416Qrf0R+9Iv3YdX1tz+3CyWdqdVorSOg4in0VF1nUZPACRiMLUPsSrs9OBUNmExDBEB3ihulGL/86b+rzNnAmMHw/QejGqDyVizbZLrLHU0ahs0GDZhlPQ6A0Y2yUaG1dHw2Ag+Xd3393eo/MQvLwAxuFh5X7FlXY1hlatWgWKomx+nThxwqH3aOmup2napgtfLpfDz8+v2dc1x9y55LsVSzvMT4FeEb6gaVIB4a6Md3Ll27CugXhrXj8cf34Kvlo0FL6DciAJaEBJCVFf7ugwXeizskiPxGffqmWTPh8Y3w2zB0S18wjbnsRwXwyKDYDOQOOv03bCpUePAlFRxJo0CAsxuQNM3tDOiyWCw1hiEYU7jIbkhqMmrxpFAW+/TR43nO+C7KsSfH0o07EBuyF6A43HfjGGlgOVKP23PwoLKfTqBaxb196j8zDsbN650q7G0COPPIK0tDSbX0lJSYLOHRFBYtstvUClpaWtvEWdtGDiROD0aSA52eohTKjMnfOGRnUPgYgCMsoaUFDd5PD5bh8ei9uHx8JbLkHvSD/MGhSBgAmk6mXNGrLp78i88w6weTNpD/T191o88ddJNGn1GNcjBE9Nv3Z9+jcPJqGy30/ZSaYfPJiIMJaUAMeOtcHIXMPo7iFQysQorlXhXEGN4PPMHxoDiYjCiZwqnDc7z8iRwLx5AGgK1Qd64oNdV1Ba65zWOu7Ch7su4+CVciikIgyuGYWd20VQKEiekI9Pe4/Ow5g1i/TXPH2ahMsE0q7GUEhICHr16mXzS6FQCDp3fHw8IiIisHPnTvY5jUaD/fv3Y/To0c76EzomcjlJSrPhQRtnDEEdvOK+rTn8vaQYGBMAQHgpsC1WTOkBn17FkEdVobEReOwxQCQS45ZbbsEtt9wCsbjjaOxs3gw8/TR5/O57NL69fBq5lY2ICfLC2tsHdYi+Y0KZ1T8SMrEI6cV1uFhoo+BCJjMlUDu4i21PFFIxJvYk89+RUFmYnwIzjerkH7QQWnzjDUAsptF0NQK1mUG4/cvjmHfzzR1iXu1JL8HaPVcBADcFD8OHb5F73IcfkgqyTngSGgow93QHhE09JmcoNzcXqampyM3NhV6vR2pqKlJTU1FvlqzRq1cv/PnnnwBIeGz58uV444038Oeff+L8+fNYvHgxlEol7rzzzvb6MzwPveV4/fCuQZCJRSisUSGjrKGNB8Udpmpl23nreWJCSQjzxU2DohE49TwokQGbNgF//KHApk2bsGnTJsGGvLtx8iQReqVp4KGHgLr4SzhwuQwKqQifLxiKQG+Z/ZN0YAKUMrZ565+n7XiHmBC0BxtDgHmJvWPzavmUHhCLKOxKK20m1dGzJ/DAA8TArtjaH0VVFBrGPooNP//q0fPqamk9lv+SCgCYFpGIj/5H2pM8+CCRquhEIMy82rFD8Ck8xhh68cUXMWjQILz00kuor6/HoEGDMGjQoGY5RZcuXUJNjcnd+tRTT2H58uVYtmwZhg4dioKCAuzYsQO+nd3u7EPTwJIlRBcls3XM3ksmxrD4QADAITdWo57Zn+w8D18tR5ULkr2fnN4TIV0b4WdMpn74YaAj5dzn5xMB5cZGkqc45LYsfH6ASZgegD5R12BOnQXmDY4GAGxOLYRObyMfaPp0okeQng5c9ty2E5N6hkMsonC5pB7Z5cI3Q91CfXCLMcy4Znt6My/zW28BsXE09LVKVO3tg/TiOtz2RbLHJlTnVjTirq+OolalQ5/AUGz/IAENDaTn2Nq1Nh3xndjjjjuIIfTbb4JP4THG0Pr160HTdKuviRMnssfQNI3FixezP1MUhVWrVqGoqAgqlQr79+8XnIN0zUFRJFO2stKq63FsAhMqc9+8oe6hPugd6Qedgca2C873DkX6e+HVuUnwH5UBeVQVamqAxYs9Oj+Wpb6ehOOLioC+fYFF/yvEq/9dBACsnJqIOddgwrQ1JvYMQ6BSirI6NQ5n2Cg5DwgwNW71YO+Qv1KKEcY+hY6EygDg0Sk9IBOLcDSzEoevmj47X1/gu/XEQqg/E4umzFCczq3GnV8eRb2TtMPaiuIaFe76+ihKatXoHuSLyr+GIjeHQkICsGkTIG1jNQqaplFer0ZKdiU2puThrf/S8eAPJ/HM72ex6UQesso9rO1JdDRpJSUT7qWWOHE4nXQ0brwR2LePJIwsX97q1+N6hODtbaRxo0ZngEzinrb1rP6RSCuqxb9nC3HH8Finn3/uwChsv1CMv6tTUbR+CPbs8YdYDNTX18Pb29vp79cW6PVks3XmDHEO/m9tBf73XyoAYNGoOPzfpIT2HaCbIZOIMHtAFL5PzsGfp/IxwZhTZ5EbbwR27iSbjCefbLMxOptpfcJxJKMCOy+W4L7xwptlRgd44a6Rsfj2cDbWbE/HmIQxbMXvxInAgOmlOLPNG6WbRgAADCt+w11fHsX3S0bAX+n+mlbl9Wrc9dVR5FU2ITZIibCzo/FLsgj+/sA//wBBQW0zDp3egO0XSvDD0WxcKKxFncqyQck0Hw72lqFftD96hJMNpUIqRlWjBtWNWlQ1aFDVqEV1owaVjRrcMybe4zdHncZQJ9aZO5cYQQcPAuXlQEhIs1/3ifRDsLcMFQ0anM6twghjI0d3Y3b/KKzZfgnJGRUoq1Mj1Ne5sq4UReG1G5OQkn0QTePSUGXUqkxLA4YOdepbtQkGA7B0KfDvv6RNwpovavHKvhToDDRmD4jCS7P7XhMK03yZN7gLvk/OwbYLxahX6+Ajt7K8zptH3B433NC2A3QyU/tGYNU/F3EipxLl9WqE+AifV8smJuDXlDycya/BjosluL5vBPu7+1Y24LFjNPRm3X/O5Nfg9i+P4oelwx16X1dT06jFwq+PI6OsAVH+CgwuG4sPN0ggEgG//NI2wooNah02ncjD14ezkFdpqqqlKGKIxod4o1uIN+KCvVFSp8LJ7Cqcza9BRYMG+y6XYR+H4pNX5rjBpq+hAXjxRWD3blKtyVO+u9MY6sQ6XbuSqrLUVHJnNAtBAkSAbUxCCP4+U4hDV8vd1hiKDVaifxd/nM2vwbbzRVg4qqvT3yPYR4635vXDPRWHWGNo6VIgJcUhz22bYzAA999POmWLxcA7nzTh/TNH0aghJfTv3joAomu4cswWA7r4o1uINzLLG/DfuSLcOtSKen1EBLBwYdsOzgVEB3ihb5QfLhTWYk9aKeYPE67WH+orx5Ix8Vi39yre3XEJU3qHsxWKw3v4I/j6Uyj9hRzbdCUc3n1rkBju47beaIA0X128/jjSimoR4iPHmIaxeOcd4slau5akj7mS0loVvkvOxo9Hc1HTpAUABCqluHtUV8zsF4m4YCUUUsuVeSqtHucLanDoajl+TclDUY11aQOlTIzekW6Qh+vlRSzMwkLSPWHGDF4vd98rqRP34MYbyffNmy3+mlGjPuDGeUMACZUBwD9nXScGNKVPOG4ZEs3+fPYsyUH3lPwhg4FUi339NZHt+OgLDTYUH0FVoxYDYgLw2YIhbn3zaW8oimITqf88zaGNhIXef54G06vMkcatDPeN7wY/hQSXS+rxt1kbjr5RfvCKMhXGVO/pC12NF5IzKtw2mbpRo8N9353A6dxqBCilmKIfi3deJ56Kt94ihRauQqs3YN2eKxi7ei8+3puBmiYtugYr8dqNSTjyzGSsmJqInhG+Vg0hgMgnDO0ahOVTEnHkmUl4cVYfSMWWN0GDYgMgEbvBuiASmarKjFXlvF7u5OF00tFgjKEdO0hJUQuYhqjn8qtR3eierTkA4Ib+JJ6dkl2JEhcKuD09w+T3pkQ0NmwAnnjC4R6CLoemgf/7P+CLL8iasvYzDTZVHUFhjQrdQr3x7eJh8LYW9umEZe5AYgwlZ1ag0JbQp1ZLXHCDB8OTe7kwJfYHr5ShUeNYUrO/lxQPTuwOAHh/5xW2EaxSJkFCmEmJUNcoQ9XvI1FUYsBtnx9FXmXrdak9ya1oxLxPjiA5swI+cglukIzF26uIHMBLL5n0ulzBxcJa3PjxYbyz4zI0OgOGxAXi84VDsPvxiVgwMg5eMv4aTRRFYcnYeBx/bjLGdG/t/R8a10ZJT1y46Sby/a+/rMrCWKPTGOrENv37E3fjE08AanWrX0f4K9AjzAcGGs0qQdyN6AAvDI4NAE0DW8+5zjtk3qQ0cNo5AMD775OGpu4KTZPUsE8+IXkEb37QhB/KDiKzrAGR/gr8sHQEgq5xLSGuxAQpMSI+CDQNbE614R2SSMgG4/Rpj64q6x3piy6BXlDrDE6pKl08uitCfOTIrWzExhMmjYoPbhvIPo6OBhrLlKjePAIZhSrM+/RIMwXr9uTA5TLMXncI6cV1CPGRYZ7PWLzxvBIAMYJeesk176vRGfDezsuYs+4QLhTWIkApxYe3D8RvD47C9X0jnCKKGugtx4b7RuLbxcPg72Va59zKOzdhAuDvD5SW8lZ57zSGOrENRQFbtwKvvAIEBlo8hFGj3ZNe2pYj480so3foXxeGyszx7l2IsKmkXcczzwDffNMmb8sLlYo0hly7lvz8v7fr8WPFARTXqpAQ5oPfHhqN6ACv9h2kh8G05/jjVIH18mSKMmXXv/xyG43M+VAUZRJgvOB4qEwpk7CVimt3X2FvtPGhJs/QX3+RCqz6PH+otg9DabUGt39xFEfasU8iTdP4dF8GFn97HDVNJKw8TzEBrz1NEosfewx4803XaAmdy6/BnHWHsHb3FegMNKb3jcCOFeMxd2C0SwodrusVhuRnJ2H2AJJ68NWhLOxJd/x/7xRkMlNhAs9QWacx1InDTOpFFsN9l0qhF9i4sS24oX8kKAo4mVNlO4ThAGKxGDNnzsT0GTMwNjEUXoMzEDyKiFYuXQp89ZVL3lYQRUWkdPmHH0iy9IpXavBrzUHUqnQYHBuA3x4c1WkICWBGvwjIJSJcLa3H+QIb7TkYY+jKFY/2DjF5Q7vTS2wLTnLk9uExiA7wQmmdGmt3EzFTZl7NnDkTffuK8e+/JF+27GIwcGgo6lQ6LPr2OP45Y6dZrgtoUOvwyE+n8fa2dBho4NZBMYg8PwrPPyljVdvff9/5hpDeQOP9nZdx4yeHkV5chyBvGdbdOQifLhiMMF/XqnQrZRJ8eNsg3DQoGnoDjWUbTuFEdqVL35MzTKjszz955Sd0GkOdcKOhgVxcFy60+tXQroHwVUhQ0aDBmfzqth8bR8L9FBjWlcS3t7jIO6RQKLBlyxb8t3Urvlk6BqO7B8N7XBr8+5OQyX33AXfeCTS5xhbjzMmTwLBhxJMcGAg8/WEJNjceglpnwJTe4dhw70gEKDtDY0LwVUgxzVgabrN5a2Ki6fE99xD5Cg9kWNdABHnLUN2oxQEnqNHLJWK8MKs3AOCz/RlIya5k59WWLVugUCgwahRpakpRQO7RMIiODIFWT+P/fj6Nbw5lOTwGrmSW1WPeJ0ew5VwRpGIKz03phzNf98Pnn4lAUSRZ+uOPnW8Ildercfc3x/Dh7ivQG2jM6h+JnSvGY1b/qDaTvRCJKKy+pT+u6xkKldaAJetTcKm4rk3e2ybXXw/ExxMRRh5FCp3GUCfcePRRoo/yxRetfiUVi1iRuT1p7h4qI67df8+6fgepkIrx1aKhGNEtCP7Xn4GyO/lsfv6ZVFdv3Ng+idUbNwLjxgEFBUCvXjQeej8LG/JOwEADtw+LwWcLBgtKtOzExLxBJJH6nzOF0FrzlojMlt+qKtKgyt0z7S0gEYswdyAJQW86Yac3G0emJ0Vi3uBoGGhg5cZU1Km0rY6ZPRt49VXyOPtQBKo2jQKtE+GVfy/ixb/Ou7Sgo6RWhf9tPodp7x/ApZI6hPrKsWbaaLz3SCx27qSgVAJ//EHyhJxtm6RkV+KGtQdx+GoFvKRifHDbQKy7czCC20FvSSoW4ZO7hmBIXCBqVTrc/c2x9k9o9/UFMjKATz8l7kOOdBpDnXBjzhzyffNmiwv25N6kUeVuN88bmpEUCRFFRNtyK1w/aZUyCb5dPAzD4gMQctMJ+AzIAQDU1gK33QaMHw+cP+/yYQAAqquBRx4h79vUBEyepsfI5anYkEZabDw6KQFvzuvnHmWyHs64HiEI8SGCpPsvcfSW/P478OOPrh2Yi7h1CNEY2pVWgkon9QBcNacvogO8kFfZhFf/vWjxmOefB/r1I49rM4OQ/+l10FZ74fvkHIx7ey/e23mZ1dhxBpUNGryxNQ3jV+/Fj0dzoTPQGJ8YikcTxmPJTQG4dAno0gU4fNhUiOssaJrG5/szcPsXpK1HQpgP/n5kDG4cFG3/xS7ESybGN4uGoWe4L0pq1bj7m+Mor29dbNOmCLBAO1e9TrgxbRqgVAK5ucCpU61+PSExDCIKSCuqdVk+jjMI9ZVjpFEccosLqsoaGhrg7e0Nb29vNDSQBpbecgm+vWcYBsf7I3j6eQRdfxYAMSgPHQIGDCCOt6oqGyd2AJomeUG9ehGXPQDcdHc9Kkbvwd6sQkhEFF69MQkrp/XsVJZ2EhKxCHMGMM1bOWgOMTzyCJljHkafKD/0jfKDVk/jLz5/rw38FFK8N38AKAr45chVKJTKZvOKwdxZbWhUoPDLiag/FYc6tQ5rd1/B2Lf34MNdV1BrwbvElTqVFh/suozxq/fiiwOZUOsMGBoXiPdvGI3av4fj7ttlqKoChg8nQqsDBwp+K4vUNGlx/w8n8eZ/6dAbaNw4MAp/PTwGPcLdQOwQpFfdd0uGIzrAC1nlDVj87XGL3rw2Ra8HkpM5H95pDHXCDS8vk2SqhSz9IG8ZBseSajPPqSpzTaissbERjS00mXwVZLGI9fGH78A8hN+RDEpCdFkMBuCjj4iSvLM5f55Um959N1BSAvToQePG567gVOR+VDVp0CvCF389MgYLR8Y5/82vcW4cRK6zXWkllhuLWgqJ1dZ6bKffW4eQKjpnhcoAYES3YNxv7HumbmpqNa8AYORIYOxYsycMIlTsTELBl+OBKl/UqXR4f9dljHt7L9btuYLMsnqodbbLwTU6A1LzqrH+cBYe++U0xq3eiw92XUG9Woe+UX74/M5hGFQ5CnddH4i//iJKCU88QVo5RkTYPDVvzhfUYNZHB7HzYglkYhFeuzEJ79820O10vyL8Ffhh6XAEe8twvqAWKzeead9mr/Pn85L5dq9PsxP35qabSCD8zz+B115r9etJvcNwIqcKe9JLscCNb67TkyLwwl/ncaGwFlnlDYgPaZu+On4KKf5aMQJDnjgKRWwVujyyCyW/joCmiBiR331HnG/LlwORkcLfh6aJ8+7rr8muWa8n573j/jqcDjiO000qiEUUHprQHY9O7tGpKu0i+kX7Iz7EG1nlDdhxoRjzjCX3Nundm9zda2qsSlm4K3MHRuONrem4WFSLC4U16Bvl75TzrpyaiD3n8sCoDlm6wT71FPGymqOr9EXR+nG485EaZIedRVZVHd7ZcRnv7LgMigLCfRWIDVKiS5AXYgKVCPdT4GppPU7nVeFCYS0r+sjQLdQbyyf1BJUfgcfmU7h0iTw/YQLxuPbt65Q/txm/puTihb8uQKMzICbIC5/cOQT9ujjnc3UF3UJ98O09w3Dzp0ew82IJ/j1bhNnt1cD1uuvI/YojFN2uppv7U1tbC39/f9TU1MDPz6+9h9O+VFWRFuY6HXDpUvNqGACXiutw/QcHIJeIkPriNLdOwr37m+M4cLkMj09NxP9N7uG08zY0NMDHh2iiWOta/9V6HZ768RJ8B2cDFKBJ7wLJhd7IzyDVWzIZcQ6sXEk+Yq6Rq+xsYMMGknaSnm56/vobdIiZeRk7c0mVTUKYD969dQAGxAQI/0M74cQHuy7jg11XMCExFN8tGd78lz//DNx1FzBqFEkwGTgQGDSoVUNkT2LZhpPYeq4Yi0d3xao5zrMOTmcWY3B3skP4cs9F3Htd72a/NxiIMWJ+3YvFJhHisDAaU2+tRUVMGnIaqtGosS8UGKiUYlBsIAbGBMCvMQTn9gXgl18oFBodyuHhwLvvkupQZ0eXVVo9XvzrPDYavWyTe4XhvfkD4a+U2nmle8Bc98HeMuxaOQGB7SHamp+P2pgY+AOc7t+dxpAdOo2hFlx3HfEFf/ghSXQxg6ZpjH17Lwqqm/D1oqGY3Du8fcbIgY0n8vDUb2fRI8wHO1aMd1quDBdjSKsFEhKAMn01Bt57DoWqWtA0EF0XD/WJRJxKMTlsg4OJCHi/fqbvEgnRCCoqIj0Ji4qAc+dI0iaDQkFj5HVqyPpm47IkAzRNFuz7xnXDyqmJNvsSdeI8ssobcN07+yAWUTj23OTmHdYLC8kdOzyciFB98w25u65c2X4DdpC96aW4Z30KApVSHHtuitO8jubzKvGpP/HfE1PQzUyIESAf39Kl5PFNNwGffUY2Bh98AOQZ3UpKJTB/Po3EvjoERqkgD21Ag7ge+VWNKK5VIS5IiT6hQQgVB4Cu98LJkxR+/JHML4bAQKKE8MILQECAU/68ZuRWNOKhDSdxobAWIgp4fFpPPDShu0c1SNboDJj90SFcKqnDvMHReG/+wHYZR+3QofA/ebLTGHIGncZQCw4eJCVQ998PfP55q1+/+Nd5fJ+cgztHxOKNm/q1wwC5UdOkxYg3dkGlNWDjA6MwPN45/XW4GEMA8OWXpOpk6jQDvk/Owbs7LqFBo4dYROE6/964tCMayful0Ou5L4AUBYyfYEDciHJcVqahqNHU82pCYigenZyAIe7UR+gaYe66QziTX4OX5/TFotFdLR/00UdkczF2LJljHopOb8Dot/agtE6NzxYMxvQkB+K9ZpjPq5gVv2FQt3BsfHAU5BKTUa9WE3mZOXNI2Eps/JVWS+Qk1qwBzpxpfW4/P1JcoFYTo6nSgnagTAbMmgUsXAjMnEl+dgW700qw4tdU1Kp0CPKWYe3tgzC2h2d6Ck/nVmHep0dA08D6e4ZhYs+wNh9D7csvw3/Vqk5jyBl0GkMtqK0lvV8A4O+/idiHGfsulWLxtymI8FMg+dlJbl2d9MzvZ/FLSh5m9Y/EujsHO+WcXI2hlhTVNOHlvy9i24Vi9jk5JUU3aQQCVWGgK/xRmq3AhQsURCIgIpJGUIgBPoFayP00kPipoOhWioOFeWyug59CgvlDY7BgZBy6tlFeVCet+eZQFl759yIGxQbgz2VjLB+UmwvExRGLtriYhKM9lLf+S8dn+zMwuVcYvl48zCnnNJ9XfZ/djHqDBNf1DMVnC4c0M4jOnQOSkiyHrWga2LMH2L0buHgRSEsDrl61nKvu4wPExABdu5II5q23ujaFi1GTXrf3KgDSCf7jOwcjysMV4F/55yK+OZyF6AAvbF8xHj5tnPRde/o0/AcP7jSGnEGnMdSCujqylQJIbsOFC80WbpVWj0Gv7ESTVo8tj451WhKlK7hQWIMb1h6CREThyDOTEObnuIR9U1MTZsyYAQD477//4MVD9AsA9qSX4KdjeTiRU4nqxualqRIRhYQwH9Q0aVFSq4K1zid9o/xw96g4zBkQ7dZ5W9cKpXUqjHxjNww0cODJ6xAbrLR84NChRBr8yy+Be+9t20E6kYyyekx+dz/EIgrJz05ySmsI83n10sc/4KFfzkOlNWBSrzB8umBwM4OID2o16YZy6RIJocXEkC8/P9f0EbNEXmUjVm5MRUo20dZYNCoOz9/Qp0MUNjRqdJj2/gHkVzU5PY+MC3zu353GkB06jaEW1NcThU+GOXOIEKPZynHf9yew82KJ05OTXcEtnx7BiZwqLJ/SA8unJNp/QRthMNC4UlqP49mVSMmqxPGsShTXNpeWl4lFiPBXICpAgagAL0QHeOG6XmEYFBPg1h65a5GFXx/DwSvltufEa6+RRJQbbgD+/bdtB+hk5n1yGKdyq/HsjF54YEJ3p5//8NVyLFmfArXOgMm9wvCJAwZRe7L5dAFe2HwedWodvGVivDGvH+YObF8RRWdz6Eo5Fnx9DBQF/PbgqDYN1XcaQ06k0xhqQUMD8SGb02In+8vxXDzzxzkMjAnA5oethAXchL/PFOLRn08jzFeOw89MgtRN1ZdpmkZ+VRMul9Qh2EeOqAAFQrzlHpVUeS2z6UQenvztLLqHemPXygmWjdULF0iMRyYjfcp83UNQTwg/H8/Fs3+cQ0KYD3Y6sUDBHHODaErvMHxy1xCP8abUNGnxwubz+NvYWHZwbAA+uG2Qda+hh/PkpjPYdDIfCWE+2PLo2DYzXPncvz3jyunEvVm+nATfjVzXi4TNzuRXo6yunWXZ7TC9bwRCfOQorVNju1m+jrtBURRigpSY3DscA2MCEOar6DSEPIjpSRGQSUTIKGvAhUIrnez79AF69AA0GuC//9p2gE5mVv9IKKQiXC2tR2petUveY0xCCL5eNAxyiQi70kqxbMOpVtpA7sixzArM/PAg/j5TCLGIwoopidj4wKgOawgBwP9u6IMQHzmultbj4z1X7b+gHeg0hjrhh6UdXkMDKbPQEZXdcD8F+kX7g6ZJQrU7I5OIcOeIWADA98k5Dp+voaEBoaGhCA0NbdU2oJNrF1+FFFOM/fsYb0ArKIqEyv74g5QueTC+CilmGCvJNp10XJHa2rwa2yMEX949FDKJCLvSSvDwT+5rEGl0Bqzelo7bvzyKguomxAUrsenBUXhsSo8O3w/QXynFK3NJvtAn+zKQVmRlQ9COdOz/QCfOx5q7OzW12W52ktE7tNfNjSEAuHN4LMQiCsezKpFe7PgkLS8vR3l5uRNG1klHgskF+Tu1EHpr2e/z5xORHKXnewmY9hz/nCmESmtf5NAe1ubV+MRQfGU0iHZeLMEjbmYQ0TSN3WklmLn2ID7ZRzS/bh3SBVseHce2MLoWmJEUgev7hkNnoPH8n+fat1WHBTqNoU74YW4MiYyXz4oVJMfBrMyeMYYOXC53q4XJEhH+ClzflwhEOsM71EknlpjYMxR+CgmKa1U4nmVBzKaDMbJbMLoEeqFOpXN5CHp8YijrIdpxsQSzPjqIo5kVLn1PLpwvqMGdXx7D0u9O4GppPYK8Zfj0rsFYc+uANi8zb28oisIrc5OgkIpwKrfa7XpYdhpDnfBDLAYefBDYvh14/HHyXEEB0EJPp1+0P0J85KhX65CS7f4L/92jugIA/jxVgJqmdu623EmHRC4RY2Y/Ejqy2dk9O5t07bXQ/8+TEIko3DzY+c1brTHB6CEK8pbhckk9bv/iKFb8morSOpX9FzuZwuomrPw1FbM+OoTkzArIJCI8OKE79j05ETP6OUeI0hMJ91OwwqPv7bwMgzUPaTvQaQx1wg+pFPj0U2DaNOLSHzWKdCpsgUhEYVKvUADA7jT32gFYYkR8EBLDfdCk1eN3J+Q4dNKJJeYMJE0rt54rst45PSMDePVVYO1aU3MtD+UWY6jscEY58ipbd5x3NuMTQ7Hn8Qm4c0QsKAr483QBJr+zH98dybYemnQidSot1mxPx3Xv7MMfp4nBO3dgFPY8PgHPzOgFP4Vn9BZzJQ+M7w5vmRgXCmvdqmil0xjqRDhDhwJHjgDLlln89aReJPS0O73E7eLDLaEoivUO/XA0x612LJ10HEbEByPCT4FalQ77LpVZPmj8eCJ3XFbWvOGcBxITpMS4HiGgaeCLA5lt8p4BShneuKkfNi8bg37R/qhT6/DS3xcwZ90hnM6tcvr7GQw0jmdV4sW/zmP86r34eG8G1DoDhscH4a+Hx+DD2wehS6Dn54A5iyBvGZaOjQcAvL/rcpsYqVzoNIY6cRlje4RAJhYhp6IRmeXuX1l106Bo+MolyCpvwKGrnQnQnTgfsYjC7AF2QmVSqSn/7s8/22hkruOhiUR0ceOJvDaV2hhg1Dl79cYk+CkkuFBYi3mfHsGKX1Pxz5lClNYKD58ZDDRO5lTh5X8uYNRbuzH/82R8n5yDqkYtuoV444uFQ/Dr/SMxICbAeX9QB2LpuG7wU0hwuaQe/561Ul3ZxlxbGVyduIaqKqKYe/vtZCE34iOXYES3IBy8Uo6dF0vQfYKPjZO0P95yCW4e0gXrj2Tj++QcjE8M5X0OkUiEoUOHso876aQlcwdG48uDWdiVVoo6lRa+lkIn8+YB339Pyuzfe6/tekO4gFHdgjEwJgCpedX45nAWnp7ei/c5hM4rsYjCwpFxmJEUgTe3puP3U/n483QB/jSGsLoGKzEiPhjD44MwPD4IXQK9mglE0jSNRo0eVY0aVDdqUdmgwcErZdhytgiFNSZjylcuwbS+EZjVPxJje4S4rXiru+DvJcX947vhnR2X8cGuK7ihX2S7ywt0KlDboVOB2g40TZr5FBQAO3YAU6c2+/UPR3PwwubzHqFGDZj6KlEU6SMVE9Tp3u7EudA0janvH8DV0nqsuaU/bh0a0/qgpibS+6+xEThxAhgypO0H6kR2XizBfd+fgI9cgsPPTIK/V/vkzpzMqcKWs0U4llWBi0W1aHn3i/JXIDLACzVNWlQ3alHTpIFWb/kW6S0TY2qfcNzQPwrjE0M8sh1Ie1Kv1mH86r2obNBg9S39Md/SPHCQTgXqTtoOiiK9lADg999b/fr6vuGgKCA1rxpFNU1tPDj+dA/1YXMcNhzLbe/hdNIBoSgKcweQROq/Uq2ECLy8AGNjUvzxRxuNzHVM7hWGxHAf1Kt1+PFo+8lXDIkLxIuz+2DLo+OQ+uI0fLt4GB6c0B2DYgMgEVEorFHhZE4VrpbWo7xezRpCMrEIYb5y9Ajzwaz+kfhswWCcfGEqPrh9EKb2Ce80hATgI5fgIWPfug93XWl3CZbOMFknjnPLLcAXX5BF++OPSfm9kTBfBYbGBSIluwrbzhfjnjHx7ThQbiwcGYeDV8rxa0oulk/pAYW0c6HrxLnMHRiNd3dexpGMcpTWqSx3dr/5ZmDPnmbzyVMRiSg8NLE7Vvx65v/bu/OwKOv18ePvZwYYhlVklEWRRTRcEwEltUQtFZfUirLSb3rKb5ZW1ulbWeekdln+OumpTp08Wac8J61s0bK0XDKXXFIRN1QMFUFBwQUQZGd+fwyQIwOhMvMwM/fruuYamGeGuRl9hns+y33z0S8n+FP/cPRu6v5evnpXBkW1rWsfdLm8kpTMfApKKmjl4UorvZvp2sMVvatWmh9bwYT4UBZtOc7p/BK+2J3FhPhQ1WKRkSFx4xISoHVr0+6XLVvqHR5eU5b/h4MtZxtlY4Z0CaBdKz0XL1fwTUoj9WAsuHz5MmFhYYSFhXH5svW3Egv71MHfg+gOrag2wqr9OZbvdPfdcPYsvPKKbYOzktE9g2nvp+d8cTlf7M66psfa4rzycHOhf6SBET2C6NfRQNdgH4Jb6fFwc5FEyEr0blqmD4oE4N0N6c1Sqfx6STIkbpyrK4wda/r6q6/qHR7ePRCAXRkXWnzjVjAtupzcPwyAf/z02zWdoEajkZMnT3Ly5MkWX05AqKt2quybhqbK3NzMNiTYOxethkdrpkUWbT5ORVXTp0XkvHJc4/uEEOzrzpnCUj5VcWmC3SRDr776Kv369cPDw4NWrVo16TGTJk1CURSzS3x8vHUDdVZ33226Xr4cqs3f5Nq10nNze1Pj1rWH7GN0aEJ8KEG+7mQXlMraIWEVI3sGo9Uo7MvKJ6Ox0hNGIxw8aLvArCgppj0GLx2n80saXi8lnIrORcsTQzoB8N7GdC6XV6oSh90kQ+Xl5SQlJfHYY49d0+OGDx9OTk5O3WX16tVWitDJDRkCvr5w5gwcOFDvcO1U2Y92MlXm7qrlqZoT9J8/p1NUps4JKhxXG28d/SMNQCOd7MvLoXNn6NED0tNtGJ11uLtq6wruLdyYLsVNBWCqVN6htQfnispV6w9pN8nQnDlzePrpp+nRo8c1PU6n0xEYGFh3ad26tZUidHI6nWmKLDsbbr653uHEmqmy7cfOk3+53NbRXZd7YtoTYfDkQnE5H26xTfVc4Vx+nyo7bXn6x80NQmsWlTrArjKACfEd8HZ34Vhesd2MFAvrctVq6j58/mvTMS6V2r4/pN0kQ9dr48aNtG3bls6dOzNlyhRycxvvk1VWVkZhYaHZRTTR7bdDYKDFQ2EGT6ICvamsNrLu0FkbB3Z9XLQa/jz0JgA+2Hyc80Utf72TsC9DuwWgc9FwPK+Y1OwG3mtqp6AtlK6wR97urjxU0/rmvY3HZA2QAGBsdDs6tvEk/3IFH/2SYfPnd+hkKDExkaVLl7JhwwYWLFjArl27GDx4MGVlDf9RmzdvHr6+vnWXkJDmLwTlFCy8wSXa2VQZmEa0urfzobi8ivc2HlM7HOFgvN1dub2LqYdfg+05xo0z1fPauROyrm0XVks1uX8Y7q4a9p8qYGv6ebXDES2AVqMw4/bOACzedoKSctvuLFM1GZo9e3a9Bc5XX3bv3n3dP/++++5j5MiRdO/endGjR/PDDz9w9OhRVq1a1eBjZs6cSUFBQd0ly0HefGxm/XrT+qEXX6x3KLGHadRoy2/nVBkGvR4ajcJzw0ztAz7ZfpLT+Y0XjlQUha5du9K1a1fZjiuapLaT/cp92ZabVgYGQv+a6u0OMlXm76VjfFwHwLQm74/IeeUcRvQIIqS1qazJ8pRTNn1uVZOh6dOnc/jw4UYv3bt3b7bnCwoKIjQ0lN9++63B++h0Onx8fMwu4hoUFJgKxS1bVm90qFNbLyLaeFJeVc2GI41PV7Ykt3YyEB/RmvKqat5ef7TR+3p4eJCamkpqaioeHtLKQ/yxhJva4OPuwtnCMnaeuGD5Tlfu1nQQU26LwEWjsP34+T/sJi/nlXPQahQm9zMtsP/olxM2XWCvajJkMBiIiopq9OLubqEy63U6f/48WVlZBAUFNdvPFFdJTAQPDzhxAvbsMTukKErdQmp7mipTFIXnappLfpV8ivTcIpUjEo5E56JlRI8/6GR/112m6y1bTIUYHUC7VnrGRrcDkCloUefeuBC8daYF9puO5tnsee1mzVBmZiZ79+4lMzOTqqoq9u7dy969eykq+v0PU1RUFCtWrACgqKiIZ599lu3bt5ORkcHGjRsZPXo0BoOBcePGqfVrOD4PDxgxwvS1hQKMteuGNqbl2XxO+Eb07uDHHV0DqDbCgrVpaocjHEztVNnqAzmUVVo4Lzp0gFdfNU1D+/vbODrrmTqwI4piauR65IxsVhGmnmXj+5jW6n74i+128dpNMvTyyy8THR3NrFmzKCoqIjo6mujoaLM1RWlpaRQUFACg1Wo5cOAAY8aMoXPnzjz00EN07tyZ7du34+3trdav4Rzuvdd0/cUX9abKugX70N5PT0lFFZuO2s9UGcCzQ29CUUxtRfZl5Vu8z+XLl+nWrRvdunWTdhyiyfqG+xPgo6OwtJJNaQ18Gn7xRRg8GFwcp6VkZFsvRtR8QHr529QGd5bJeeVcHuoXhlajsDX9PIca2mXZzOwmGVq8eDFGo7HeJSEhoe4+RqORSZMmAaDX61mzZg25ubmUl5dz8uRJFi9eLLvDbGHECFPX7ePHISXF7NCVU2X20qus1k2B3oyrGdZ/Y43l0SGj0cihQ4c4dOiQbBkWTabVKNxZ28m+oQKMDmrmiCj0rlp2nrjAl8mWF83KeeVc2vt51P2d+PcvJ2zynHaTDAk74ukJo0aZvv7ii3qHa6tRbzica3lKoAV7+vbOuGoVfkk/x9b0c2qHIxzImF6mRHv9obMNVzxPSYGnnjJtUHAQ7f08ePoOU8G9easPc6HYPoqyCut65NYIAFbuO01uYanVn0+SIWEd998PQ4dCXFy9Q9EhrQjw0XGprNLuEoqQ1h482NdUEfhva9LkU6poNt2CfYho40lZZTVrGho1XbsW/vEP+PBD2wZnZZP7hxMV6M3FyxW8tvqw2uGIFqBXSCtiQv2oqDLyyQ7rt+iQZEhYx7hxsGbN71uCr6DRKAzvVjNVdsC+psoApg2KxMNNy76sfNakOsbOHqE+RVEYc7NpdKjBqbKkJNP1zz/DOfv6INEYV62G1+7qgaKYdmzuOC6FGAU8UtPHbsmOk1bfcCPJkFBF7VTZusNnqaiq/oN7tyxtvHX8qb/pJP3bmiN2N9UnWq4xNbvKtqafI++ShUr5ERHQuzdUVUHNzllH0buDHw/0MRVifGnFATmvBEO7BdqsCKMkQ8K6Tp+GRYvq7SrrE94af0838i9X8OvxBgrNtWD/OzACf083jucVs2Bt44UYhWiqMIMnN4e0oqrayOoDOZbvdM89pusvv7RdYDby3PAoDF46juUVs2iTNEd2dlcWYfy3lYswSjIkrKe8HLp0gUcfhavaqmg1CkO7mXoy/XCwgTf9FszH3ZV5d/UA4IMtx9l2zDRloSgKoaGhhIaGStsAcV2u7GRvUe1U2YYNDjVVBuCrd+Wvo7oA8M7P6WScKwbkvHJmtUUYj+cVs9GK5VgkGRLW4+b2ewFGC59ia6fK1qSetdyTqYUb2i2Q8XEhGI3w7Bf7KCipwMPDg4yMDDIyMqRtgLguo3oGoVEgJTOfzPMWaupERkKvXqapsm++sXV4VnfnzcEMiDRQXlnNX789iNFolPPKiV1ZhNGa2+wlGRLW1UgBxlsi/PFxd+FcURnJJxvvTdRS/XVUV0L9PcguKOXlbw+qHY5wAG193OnX0QCYthVblJQE7dqZEiIHoygKc8d2x81Fw5bfzrHSyeouifpsUYRRkiFhXYmJprpDJ0/Crl1mh9xcNNze1X6nygA8dS78/d5eaBT4dm+2vHGLZlG7kPqbvdmWyzc88wxkZpqmoB1QmMGT6YMiAZi1MpWCkgqVIxJqskURRkmGhHXp9TB6tOlrSwUYu/3euNWWHYqbU0yoH9MHm4rGvfjFbnr1jiEuLo6SkhKVIxP2alj3QNxcNKTnFnEox8InYXd30Dj22/ejAyMIbuVO/uUKpv13O3FxcXJeOTFrF2F07LNJtAxXTpVVm2+jv61zG7x0LuQUlJKcaZ9TZQBPDI7k5va+FJZUsC9lD7t376a62r5KBoiWw8fdlSFRbQHTiGODKithzx4bRWVbOhctf7u7JwCb0/LYvXu3nFdO7MoijP/d3vxFGCUZEtaXmAje3nD2LKSZ9/Ryd9UyvGb4c0VKA+sj7ICrVsOb9/VC76pVOxThIMbW9MH7du9pyxsMLl40rRvq0wfyGmjuaucGdGpDgI/O7DZ73GwhmkddEcZfm78IoyRDwvrc3WHVKsjNNW21v0pt89NV+3Mor7TfT30Rbbx4LvGmuu/Tztqm27JwTAk3tcFX78rZwjK2H7NQkdnPD0JCTIuoly+3fYA2cn8f8+baM5alWL0asWiZaosw5luhCKMkQ8I2br0VfH0tHoqP8Kett46Ckgo2plmvjoQt3Bf7+xv3c1/ulyq64rrpXLSM6mkqP9HgqOl995muP//cRlHZ3u1dAs2+X38ol/Ef7LBcoVs4tCuLMH68NaNZe0NKMiRsr8J8Z4hWo1yxe8Z+p8oAs4JwR88WSXVqcUNqR01/PJhjeTSkdj3epk2Q7Zg7GbsE+eCrdzW7bV9WPuPe28pvZy+pFJVQyz2x7dG7aknPLWLniebrXiDJkLCd9eshNhamTq13qHZ9xPrDuRSWOs422g+2HLc8xSFEE8SE+hHSWk9xeRVrD1loahwaCv36mWp4OWB7DjB9WOoT3rre7aculvDnL/fZ9dS6uHY+7q51H56X/JrZbD9XkiFhO66ukJxsWt9QZj7E3TXIh05tvSivrOZHO+xkfyWDwYDBYCApth1GI/z5i71SJ0VcF0VRGNfL9EHhD6fKli2zUVS2Fx/RGo3eB43ep+42L50L79wfjZuL/BlzNhPiQwHTiGlzTZfK/yJhOwMGQHAw5OfD2rVmhxRFqRsdsuddZZ6enuTl5ZGXl8crd8cSVlOd+k+Ld1FUVql2eMIO1Z4XW35roJN9UhIoCmzfbirE6IAGdQ8h5MlPCXnyU+IiAwnx01NUVsnjS/dQLOeV0+nezpebQ1pRUWXky+SsZvmZkgwJ29Fqf1/j8Nln9Q7XDn3uOHGenAL7L6zmqXPhnw/2xsfdheSTF3noo51ccqApQGEbEW286jrZf2epwnlQELz7rqkZckhI/eMOoGMbL6ICvZmfdDNfPdaPpY/E4+/pRmp2IU98lkJllUyVOZsJfTsA8Omvmc1SbkGSIWFb999vuv72WyguNjvU3s+DPmGtMRphZWOF5uxIt2Bflj4SX5cQTfp4lyRE4prdVTM61OAGg8cfh5gY0wiRA1IUhe+eGMA9Me1RFIUO/h58+FAsOhcNG47kMue7Q826s0i0fKN6BuPj7sKpiyVsPnrjdbYkGRK2FRcH4eFw+bKp9tBVxta96dtnMlRSUkJCQgIJCQl1bQN6tDclRL56VxkhEtdlVM8gtBqF/acKSM8tUjscmyspKeGOIYPNzqvoDn68dV8vFAU+2XHSqh3NRcujd9NyT4xpJHTJjhuvSC3JkLAtRYHx401fW6iNMqJHIK5ahcM5hRw5Y39FC6urq9m0aRObNm0yaxtgSoj64qt3ZU9mviRE4pr4e+kY2LkNAN80tKZu1y6YPBnefNOGkdlGQ+dVYo8gXhphKuT66urD/HDAPhs+i+vzYLxpqmxDWi6nLl6+oZ8lyZCwvfvvh7vvhoceqneolYcbg24y9WT6JsU+R4ca0r2dJETi+o27YqrMYlPjQ4dg8WL44APTVnsn8fCAcCbGh2I0woxle9ljxz0OxbXp2MaLfh39MRrh8503tpBakiFhez16wFdfwZgxFg/XTpWtbOhN345dnRD9jyREoonu6BqAl860RmL3SQt/8MeOBTc3OHwYDh60eXxqURSFWaO7MjiqLWWV1Uz5z25SswvUDkvYyIN9TdvsP9+VdUM1pyQZEi3O4Ki2eOtcyC4oZWdG81UYbSmuTIhSMvP5n3/vdKhCk8I63F21JDbW1NjXF0aMMH1tYbemI3PRanjn/mi6Bftwvricce9t47OdmbKo2gkM7RZAG28d54rKLBcmbSJJhoR6fvsNZs+GHPN5fndXLSN6mHoyfWvn7TkaUpsQ+bi7kJKVz5h3t1JQUq52WKKF+72pcTalFRbaczzwgOn600+h2rm2m3vqXFjycF8G3dSG8spqZi4/wDNf7JM6RA7OVathfJxpIfXSHddfZ0uSIaGehx6COXMsLqQeE22qObRqf47DNjvt3s6XT6fEo3PRcOJcMfGvbWDV/mz5NCsaFB/hT5CvO4WllZabGo8aBd7ecPIkbN1q+wBV5ufpxr8fiuP54VFoNQorUk5z57u/cFR6mDm08X06oFFg+/Hz173bUpIhoZ4JE0zXS5bUOxQf/vub/s9HbryGhC15eHjg4eHRpPt2b+fL4klxAJRUVDHt0xTu+Ptmdp6QfmaiPo1G4c6a4qTL91gYNdXrTZsTAJYutWFk1tfU80qjUXgsoSOfTYknwEfHsbxi7nz3F75KPmWDKIUa2rXSMzjKtPFm6a/Xt81ekiGhnnvvBRcX2LPHtOjzChqNwp0313Syt6P2HJ6enhQXF1NcXIynp2eTHnNLpIEJNVtEAdLzirj3/R3c9/52Dp6WhaDC3F3R7QH4OS2X/MsWplYnTIDOnSEqysaRWc/1nFd9wluz6slbubWTgdKKap79ch/PfbWPknLHHGl2dg/W9Cv7OvnUdf0bSzIk1GMwwPDhpq8tfIqt3VW24UguBZcde4HxC4ld8PNwNbvt1xMXGPXOLzz2SbJTFtoTlt0U6E2XIB8qqoysslRXZ/BgOHIEZsyweWwtjcFLx+LJfXjmjs4oCnyx+xTj3tvKsTw5nxzNwE5tCGmtp7C0ku/2X3tZFkmGhLpqp8qWLq1XG6VLkA9Rgd6UV1Xzw0HHLqbmpXNh2qBIi8d+SD3D99dxcgvHNa5mTd0KS1NliuKwbTmuh1aj8OSQTix9uC8GLx1Hzlziznd+cdjNGc5Ko1F4oI9pdGjpdVSklmRIqGv0aPDygowM2Lat3uExveyrk31paSkjR45k5MiRlJaWXtNjJ8SHEuTrbvHYW+t/49kv93G+yELXcuF0xvRqh6LA7pMXyTzfQOXd0lJTPa8C+59qvZHzqla/SAOrnxpAfERrisureOrzvTzxWQr7svKbN1ihmqTY9rhqFfadKuDAqWv7fy/JkFCXh4dpwaePDxw/Xu9wbSf7X09c4HR+y+9kX1VVxerVq1m9ejVVVdc2b+3uquWpIZ3qvtdqFN64pycP1HRn/ir5FIMXbOLznZkOV4xSXJsAH3f6dzQAjTRvTUiApCRYvtx2gVnJjZxXV2rr7c7SR+J5YnAkigLf7ctmzD+3MvafW1mRcsphd646C4OXjsTuprIs19qvTJIhob7XX4czZ2DixHqHglvp6RveGnCcTvaNuSemPeEGT7QahbfH9yIpNoTXxvXg68f6ERXoTUFJBS8sP8C4hdv4ZHsG2XaQIArrqGvPkXLacjmG0aNN1xZ2azozrUbhz0NvYuW0AdwV3Q43rYa9Wfk8vWwf/eZtYP6aNHIK5LyyVxNqFlKv3JdNQUnT15oqRilq0qjCwkJ8fX0pKCjAx8dH7XCc0uc7M3lh+QFuCvBmzdO3qR1Oo4qLi/Hy8gKgqKioyTtfrrT6QA7VRiOjegab3V5ZVc3ibRn8fd1RLl+xW6JbsA+3dwngjq4BdAv2QZH1Ik6hqKyS2LnrKK2o5ptp/ekV0sr8DidOQESEaf1QVha0a6dKnM2hOc6rhpwrKuPznZks2ZHJmULTFJxWozCsWwD/c0sYfcNbyzllR4xGI8Pe2szRs0U8PziEx4fd3KS/33YxMpSRkcHDDz9MeHg4er2ejh07MmvWLMrLG6/YazQamT17NsHBwej1ehISEkhNTbVR1OKaGY0Wp8oSewThptWQdvYSh3Psr5P9tRrRI6heIgSmlgOP3BrBhj8nMDMxirgwPxQFUrMLefun3xj1zi/0+38b+Ms3B9iYlitD/g7OS+fCsG6m9hwWy0+Eh0P//qbzykJhU2Fi8NIxfXAnfnl+EAsf7E18RGuqqo2sPnCG8Yt2MPytLSz99SS5l0qlIKodUBSlrl/Zst1Nry1lFyNDP/74I8uWLeP+++8nMjKSgwcPMmXKFCZOnMj8+fMbfNzrr7/Oq6++yuLFi+ncuTNz585l8+bNpKWl4e3t3aTnlpEhGzl3zvTGffIknD1r6rN0hamfJPNj6hkevS2CmSO6qBTkH7PmJ1hLzheVseFILusPn2Xz0XOUXNGiwdNNy22d29A/0kCQrzsGLx1tvHX4e7mhc9FaNS5hGz+n5TL54134e7qx48UhuGqv+ny7cCE8/jhER5vqedkpW59XR84U8t/tJ1mx57TZOeXn4UqnAG9uCvCmc4AXnQO86RzgjZ+nm1XjEdemsLSCvq/+RHHRJbLeurdJf7/tIhmy5I033mDhwoUctzCSAKZRoeDgYGbMmMHzzz8PQFlZGQEBAbz++us8+uijTXqe2mToTN4FAgx+zRa/uIrRCN27w6FD8NFHMHmy2eEfD55h6pJkAn3c2fbCYDSaljlsbes37SuVVlSx/dh51h0+y0+Hz3K2sOGdZ756VwxebrTx1tUlSQYvHX4ebmg1pk9XGkVBATQaUFBQFEy31VxrFOgU4E3HNl42+x2FucqqauLn/cS5onI+mhTL4KgA8zucPw+BgVBZCamp0LWrOoHeILXOq4KSCr5KPsUXu7I4mnvp6uofddp467gpwJtOAV4119707tBKptdUNHP5fpZuSWtyMuRio7iaXUFBAa1bt27w+IkTJzhz5gxDhw6tu02n0zFw4EC2bdvWYDJUVlZGWdnvf0QKaralZuddQO8mn6at6p574JVX4OOPf28pUCMmWIenUkZ23mV+2p9B3wh/lYJsXHFxcd3XhYWFN7Tz5XrEBLsTExzKc4M6cCingI1H8kjNKeB8UQXnisq4UFxOZbWRi2VwMR9+u8Hne3JIJP97W8fmCF1cpzs6+bB0Ryaf/5JGbLDe/KCrK9xxB/zwA6xaBe3bqxPkDVLrvFKApJ7+JPX0p7SiiuN5RaTnFpGeV0x67iXSc4vIzi/lbNllzp67yOaaVRit9C5seX6wJEMqGtPVj0/Wm8pONGnMx2iH0tPTjT4+PsYPPvigwfts3brVCBhPnz5tdvuUKVOMQ4cObfBxs2bNMgJykYtc5CIXucjFAS5ZWVl/mFeoOjI0e/Zs5syZ0+h9du3aRWxsbN332dnZDB8+nKSkJB555JE/fI6rM3Oj0dhotj5z5kyeeeaZuu+rq6u5cOEC/v7+dpHlFxYWEhISQlZWlqxxQl6Pq8nrYU5eD3PyepiT18Ocvb0eRqORS5cuERxcf0PK1VRNhqZPn8748eMbvU9YWFjd19nZ2QwaNIhbbrmFRYsWNfq4wEDTLoszZ84QFBRUd3tubi4BAQENPQydTodOpzO7rVWrVo0+V0vk4+NjF/9ZbUVeD3PyepiT18OcvB7m5PUwZ0+vh+9Vm3EaomoyZDAYMBgMTbrv6dOnGTRoEDExMXz88cdoNI1XBQgPDycwMJB169YRHR0NQHl5OZs2beL111+/4diFEEII4Rjsos5QdnY2CQkJhISEMH/+fPLy8jhz5gxnzpwxu19UVBQrVqwATNNjM2bM4LXXXmPFihUcPHiQSZMm4eHhwQMPPKDGryGEEEKIFsgudpOtXbuW9PR00tPTaX/VbgjjFavE09LS6nZ/ATz33HOUlJTw+OOPc/HiRfr27cvatWubXGPIHul0OmbNmlVvqs9ZyethTl4Pc/J6mJPXw5y8HuYc+fWw2zpDQgghhBDNwS6myYQQQgghrEWSISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZMjBrVq1ir59+6LX6zEYDNx1111qh6S6srIyevXqhaIo7N27V+1wVJGRkcHDDz9MeHg4er2ejh07MmvWLMrLy9UOzWbee+89wsPDcXd3JyYmhi1btqgdkmrmzZtHXFwc3t7etG3blrFjx5KWlqZ2WC3CvHnz6kq1OLPTp08zYcIE/P398fDwoFevXiQnJ6sdVrORZMiBff3110ycOJHJkyezb98+tm7dKjWWMJVcaEp5dkd25MgRqquref/990lNTeXNN9/kX//6Fy+++KLaodnEsmXLmDFjBi+99BIpKSnceuutJCYmkpmZqXZoqti0aRPTpk1jx44drFu3jsrKSoYOHWrWINUZ7dq1i0WLFtGzZ0+1Q1HVxYsX6d+/P66urvzwww8cOnSIBQsW2GV3hgY1qTOqsDsVFRXGdu3aGT/88EO1Q2lRVq9ebYyKijKmpqYaAWNKSoraIbUYf/vb34zh4eFqh2ETffr0MU6dOtXstqioKOMLL7ygUkQtS25urhEwbtq0Se1QVHPp0iVjp06djOvWrTMOHDjQ+NRTT6kdkmqef/5544ABA9QOw6pkZMhB7dmzh9OnT6PRaIiOjiYoKIjExERSU1PVDk01Z8+eZcqUKXzyySd4eHioHU6LU1BQQOvWrdUOw+rKy8tJTk5m6NChZrcPHTqUbdu2qRRVy1JbvNYZ/j80ZNq0aYwcOZLbb79d7VBUt3LlSmJjY0lKSqJt27ZER0fzwQcfqB1Ws5JkyEEdP34cgNmzZ/OXv/yF77//Hj8/PwYOHMiFCxdUjs72jEYjkyZNYurUqcTGxqodTotz7Ngx3nnnHaZOnap2KFZ37tw5qqqq6jVsDggIqNfixxkZjUaeeeYZBgwYQPfu3dUORxWff/45e/bsYd68eWqH0iIcP36chQsX0qlTJ9asWcPUqVN58skn+e9//6t2aM1GkiE7M3v2bBRFafSye/duqqurAXjppZe4++676xrcKorCl19+qfJv0Xya+nq88847FBYWMnPmTLVDtqqmvh5Xys7OZvjw4SQlJfHII4+oFLntKYpi9r3RaKx3mzOaPn06+/fv57PPPlM7FFVkZWXx1FNPsWTJEtzd3dUOp0Worq6md+/evPbaa0RHR/Poo48yZcoUFi5cqHZozcYuepOJ302fPp3x48c3ep+wsDAuXboEQNeuXetu1+l0REREONQi0aa+HnPnzmXHjh31eurExsby4IMP8p///MeaYdpMU1+PWtnZ2QwaNIhbbrmFRYsWWTm6lsFgMKDVauuNAuXm5tYbLXI2TzzxBCtXrmTz5s31+kA6i+TkZHJzc4mJiam7raqqis2bN/Puu+9SVlaGVqtVMULbCwoKMvtbAtClSxe+/vprlSJqfpIM2RmDwYDBYPjD+8XExKDT6UhLS2PAgAEAVFRUkJGRQWhoqLXDtJmmvh7/+Mc/mDt3bt332dnZDBs2jGXLltG3b19rhmhTTX09wLRVdtCgQXWjhhqNcwwUu7m5ERMTw7p16xg3blzd7evWrWPMmDEqRqYeo9HIE088wYoVK9i4cSPh4eFqh6SaIUOGcODAAbPbJk+eTFRUFM8//7zTJUIA/fv3r1dq4ejRow71t0SSIQfl4+PD1KlTmTVrFiEhIYSGhvLGG28AkJSUpHJ0ttehQwez7728vADo2LGjU34Czs7OJiEhgQ4dOjB//nzy8vLqjgUGBqoYmW0888wzTJw4kdjY2LpRsczMTKdYM2XJtGnT+PTTT/n222/x9vauGzXz9fVFr9erHJ1teXt711sr5enpib+/v9OuoXr66afp168fr732Gvfeey87d+5k0aJFDjWaLMmQA3vjjTdwcXFh4sSJlJSU0LdvXzZs2ICfn5/aoQmVrV27lvT0dNLT0+slg0ajUaWobOe+++7j/PnzvPLKK+Tk5NC9e3dWr17tUJ90r0Xt2o+EhASz2z/++GMmTZpk+4BEixIXF8eKFSuYOXMmr7zyCuHh4bz11ls8+OCDaofWbBSjM7zzCSGEEEI0wDkWCQghhBBCNECSISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZEgIIYQQTk2SISGEEEI4NUmGhBBCCOHUJBkSQgghhFOTZEgI4TA2btyIoijk5+erHYoQwo5IMiSEsFsJCQnMmDGj2X+uoih88803zf5zhRAtkyRDQgghhHBqkgwJIezSpEmT2LRpE2+//TaKoqAoChkZGQAkJycTGxuLh4cH/fr1Iy0tzeyx3333HTExMbi7uxMREcGcOXOorKwEICwsDIBx48ahKErd98eOHWPMmDEEBATg5eVFXFwc69evt9WvK4SwIkmGhBB26e233+aWW25hypQp5OTkkJOTQ0hICAAvvfQSCxYsYPfu3bi4uPCnP/2p7nFr1qxhwoQJPPnkkxw6dIj333+fxYsX8+qrrwKwa9cuwNSxPScnp+77oqIiRowYwfr160lJSWHYsGGMHj2azMxMG//mQojmJl3rhRB2KyEhgV69evHWW28BpgXUgwYNYv369QwZMgSA1atXM3LkSEpKSnB3d+e2224jMTGRmTNn1v2cJUuW8Nxzz5GdnQ2Y1gytWLGCsWPHNvr83bp147HHHmP69OlW+f2EELbhonYAQgjR3Hr27Fn3dVBQEAC5ubl06NCB5ORkdu3aVTcSBFBVVUVpaSmXL1/Gw8PD4s8sLi5mzpw5fP/992RnZ1NZWUlJSYmMDAnhACQZEkI4HFdX17qvFUUBoLq6uu56zpw53HXXXfUe5+7u3uDP/L//+z/WrFnD/PnziYyMRK/Xc88991BeXt7M0QshbE2SISGE3XJzc6OqquqaHtO7d2/S0tKIjIxs8D6urq71fu6WLVuYNGkS48aNA0xriGoXbAsh7JskQ0IIuxUWFsavv/5KRkYGXl5edaM/jXn55ZcZNWoUISEhJCUlodFo2L9/PwcOHGDu3Ll1P/enn36if//+6HQ6/Pz8iIyMZPny5YwePRpFUfjrX//apOcTQrR8sptMCGG3nn32WbRaLV27dqVNmzZNWr8zbNgwvv/+e9atW0dcXBzx8fH8/e9/JzQ0tO4+CxYsYN26dYSEhBAdHQ3Am2++iZ+fH/369WP06NEMGzaM3r17W+13E0LYjuwmE0IIIYRTk5EhIYQQQjg1SYaEEEII4dQkGRJCCCGEU5NkSAghhBBOTZIhIYQQQjg1SYaEEEII4dQkGRJCCCGEU5NkSAghhBBOTZIhIYQQQjg1SYaEEEII4dQkGRJCCCGEU/v/wgQkhfDydkYAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1hT5/uH75MwwkY2iCLurbj33qOt1u7W1q6vXXbZYaettrZ2/OyydtuqbdVqnR1a996K4hYElA2yd3J+f7wkiKwEAknw3NfFRUhOznmiOec87zM+jyTLsoyCgoKCgoKCwk2KytIGKCgoKCgoKChYEsUZUlBQUFBQULipUZwhBQUFBQUFhZsaxRlSUFBQUFBQuKlRnCEFBQUFBQWFmxrFGVJQUFBQUFC4qVGcIQUFBQUFBYWbGsUZUlBQUFBQULipUZwhBQUFBQUFhZsaxRlSUDAzixcvRpIkw4+dnR3BwcFMmzaNq1evltvu8OHDFrTWuvn1119ZsGBBne2/WbNmPPTQQ4a/4+LimD17NsePHzd6H1u2bKFHjx64uLggSRJr1qwxu516Ll++jCRJLF68uM6OYa0MGTKEIUOGWNoMhQaKnaUNUFBoqPz000+0bduWvLw8du7cybx589ixYwcnT57ExcXF0ubZBL/++iunTp3iueeeq5P9//nnn7i7uxv+jouL45133qFZs2Z07dq12vfLssydd95J69atWbduHS4uLrRp06ZObAUIDAxk3759tGjRos6OoaBwM6I4QwoKdUTHjh3p0aMHAEOHDkWr1TJnzhzWrFnDfffdZ2HrrJvc3FycnZ1Neo9Wq6W4uBhHR0ej3xMWFmaqaWWIi4sjLS2NSZMmMXz48FrtS09eXh4ajQZJksq95ujoSJ8+fcxyHAUFhVKUNJmCQj2hv4lFR0eXeT4rK4snnngCHx8fvL29mTx5MnFxcWW2Wb58OaNGjSIwMBAnJyfatWvHq6++Sk5OTpntIiMjufvuuwkKCsLR0RF/f3+GDx9eLu2zfPly+vbti4uLC66urowePZpjx45V+xn0qb3Nmzczbdo0vLy8cHFxYeLEiURGRpbb/scff6RLly5oNBq8vLyYNGkSZ86cKbPNQw89hKurKydPnmTUqFG4ubkxfPhwhgwZwsaNG4mOji6TdoTSdNH8+fOZO3cuoaGhODo6sm3bNvLz83nxxRfp2rUrHh4eeHl50bdvX9auXVvOvuvTZNu3b6dnz54ATJs2zXC82bNnV/hvMXv2bIKDgwF45ZVXkCSJZs2aGV7fvXs3w4cPx83NDWdnZ/r168fGjRsr/PfctGkTDz/8ML6+vjg7O1NQUFDhMStKk82ePRtJkoiIiOCee+7Bw8MDf39/Hn74YTIyMgzbhYWFMXDgwHL71Gq1NG7cmMmTJ5f7t33vvfdo2rQpGo2GHj16sGXLlnLvv3DhAvfeey9+fn44OjrSrl07vvrqqzLbbN++HUmS+O2333j99dcJCgrC3d2dESNGcO7cuTLbyrLM/PnzCQkJQaPR0K1bN/7+++8K/z0UFMyF4gwpKNQTFy9eBMDX17fM848++ij29vb8+uuvzJ8/n+3bt3P//feX2ebChQuMGzeOH374gX/++YfnnnuOFStWMHHixDLbjRs3jiNHjjB//nw2b97M119/TVhYGOnp6YZt3n//fe655x7at2/PihUrWLJkCVlZWQwcOJDTp08b9VkeeeQRVCqVoabn4MGDDBkypMxx5s2bxyOPPEKHDh1YvXo1n332GeHh4fTt25cLFy6U2V9hYSG33HILw4YNY+3atbzzzjssXLiQ/v37ExAQwL59+ww/1/P555+zdetWPv74Y/7++2/atm1LQUEBaWlpzJw5kzVr1vDbb78xYMAAJk+ezC+//FLpZ+rWrRs//fQTAG+88YbheI8++miF2z/66KOsXr0agGeeeYZ9+/bx559/ArBjxw6GDRtGRkYGP/zwA7/99htubm5MnDiR5cuXl9vXww8/jL29PUuWLOGPP/7A3t6++v+EG7j99ttp3bo1q1at4tVXX+XXX3/l+eefN7w+bdo0du/eXe7fftOmTcTFxTFt2rQyz3/55Zf8888/LFiwgKVLl6JSqRg7dmyZ/4PTp0/Ts2dPTp06xSeffMKGDRsYP348M2bM4J133iln42uvvUZ0dDTff/893377LRcuXGDixIlotVrDNu+88w6vvPIKI0eOZM2aNTzxxBM89thj5ZwmBQWzIisoKJiVn376SQbk/fv3y0VFRXJWVpa8YcMG2dfXV3Zzc5MTEhLKbPfkk0+Wef/8+fNlQI6Pj69w/zqdTi4qKpJ37NghA/KJEydkWZbllJQUGZAXLFhQqW0xMTGynZ2d/Mwzz5R5PisrSw4ICJDvvPNOoz7bpEmTyjy/Z88eGZDnzp0ry7IsX7t2TXZycpLHjRtX7viOjo7yvffea3juwQcflAH5xx9/LHe88ePHyyEhIeWej4qKkgG5RYsWcmFhYZU2FxcXy0VFRfIjjzwih4WFlXktJCREfvDBBw1/Hzp0SAbkn376qcp93mjHRx99VOb5Pn36yH5+fnJWVlYZOzp27CgHBwfLOp1OluXSf8+pU6eadLzr7Xv77bdlQJ4/f36ZbZ988klZo9EYjpWSkiI7ODjIr732Wpnt7rzzTtnf318uKioqc4ygoCA5Ly/PsF1mZqbs5eUljxgxwvDc6NGj5eDgYDkjI6PMPp9++mlZo9HIaWlpsizL8rZt22Sg3PdhxYoVMiDv27dPlmXxvdFoNJV+vwYPHmzUv5OCgqkokSEFhTqiT58+2Nvb4+bmxoQJEwgICODvv//G39+/zHa33HJLmb87d+4MlE2nRUZGcu+99xIQEIBarcbe3p7BgwcDGNJOXl5etGjRgo8++ohPP/2UY8eOodPpyuz733//pbi4mKlTp1JcXGz40Wg0DB48mO3btxv12W6seerXrx8hISFs27YNgH379pGXl1emUwugSZMmDBs2rMJ0y+23327Usa/nlltuqTCKsnLlSvr374+rqyt2dnbY29vzww8/lEvR1QU5OTkcOHCAKVOm4OrqanherVbzwAMPcOXKlXJRjpp89hup6HuUn59PUlISAN7e3kycOJGff/7Z8L24du0aa9euZerUqdjZlS0hnTx5MhqNxvC3PrK1c+dOtFot+fn5bNmyhUmTJuHs7Fzm+zRu3Djy8/PZv39/tTZC6Xd937595OfnV/r9UlCoKxRnSEGhjvjll184dOgQx44dIy4ujvDwcPr3719uO29v7zJ/6wuA8/LyAMjOzmbgwIEcOHCAuXPnsn37dg4dOmRI0ei3kySJLVu2MHr0aObPn0+3bt3w9fVlxowZZGVlAZCYmAhAz549sbe3L/OzfPlyUlJSjPpsAQEBFT6XmpoKYPgdGBhYbrugoCDD63qcnZ3LdHUZS0X7X716NXfeeSeNGzdm6dKl7Nu3j0OHDvHwww+Tn59v8jFM5dq1a8iyXOlnB8p9/oq2NZXqvkcg0nFXr15l8+bNAPz2228UFBSUc1qh8v/jwsJCsrOzSU1Npbi4mC+++KLcd2ncuHEA5b5P1dmo/3ep7NgKCnWF0k2moFBHtGvXztBNVhu2bt1KXFwc27dvN0SDgDL1OXpCQkL44YcfADh//jwrVqxg9uzZFBYWsmjRInx8fAD4448/arXSTkhIqPC5li1bAqU3vfj4+HLbxcXFGezQU1HnlDFU9L6lS5cSGhrK8uXLy7xeWVGyuWnUqBEqlarSzw6Y7fObyujRowkKCuKnn35i9OjR/PTTT/Tu3Zv27duX27ay/2MHBwdcXV2xt7c3RLueeuqpCo8XGhpqkn36701lx76+QF1BwZwokSEFBStHf6O8sWX8m2++qfJ9rVu35o033qBTp04cPXoUEDdDOzs7Ll26RI8ePSr8MYZly5aV+Xvv3r1ER0cbRPH69u2Lk5MTS5cuLbPdlStX2Lp1q9Ft6I6OjmUiG8YgSRIODg5lHIyEhIQKu8kqOh5g8jGvx8XFhd69e7N69eoy+9HpdCxdupTg4GBat25d4/3XBr3zsmbNGnbt2sXhw4d5+OGHK9x29erVZSJpWVlZrF+/noEDB6JWq3F2dmbo0KEcO3aMzp07V/hdujESVB19+vRBo9FU+v1SUKgrlMiQgoKV069fPxo1asT06dN5++23sbe3Z9myZZw4caLMduHh4Tz99NPccccdtGrVCgcHB7Zu3Up4eDivvvoqIFrJ3333XV5//XUiIyMZM2YMjRo1IjExkYMHD+Li4lJhF9CNHD58mEcffZQ77riD2NhYXn/9dRo3bsyTTz4JgKenJ2+++SavvfYaU6dO5Z577iE1NZV33nkHjUbD22+/bdRn79SpE6tXr+brr7+me/fuqFSqah22CRMmsHr1ap588kmmTJlCbGwsc+bMITAwsFwn1Y20aNECJycnli1bRrt27XB1dSUoKMiQ3jKWefPmMXLkSIYOHcrMmTNxcHBg4cKFnDp1it9++63eIkEV8fDDD/Phhx9y77334uTkxF133VXhdmq1mpEjR/LCCy+g0+n48MMPyczMLPP9+OyzzxgwYAADBw7kiSeeoFmzZmRlZXHx4kXWr1/P1q1bTbKtUaNGzJw5k7lz55b5fs2ePVtJkynUKYozpKBg5Xh7e7Nx40ZefPFF7r//flxcXLj11ltZvnw53bp1M2wXEBBAixYtWLhwIbGxsUiSRPPmzfnkk0945plnDNvNmjWL9u3b89lnnxlqRgICAujZsyfTp083yqYffviBJUuWcPfdd1NQUMDQoUP57LPP8PLyKnMcPz8/Pv/8c5YvX46TkxNDhgzh/fffp1WrVkYd59lnnyUiIoLXXnuNjIwMZFlGluUq3zNt2jSSkpJYtGgRP/74I82bN+fVV1/lypUr1Tp6zs7O/Pjjj7zzzjuMGjWKoqIi3n777Uq1hipj8ODBbN26lbfffpuHHnoInU5Hly5dWLduHRMmTDBpX+amdevW9OvXj71793Lffffh4eFR4XZPP/00+fn5zJgxg6SkJDp06MDGjRvL1L21b9+eo0ePMmfOHN544w2SkpLw9PSkVatWhrohU3n33XdxcXFh4cKFLFmyhLZt27Jo0SI+/vjjGu1PQcEYJLm6K4uCgoJCCYsXL2batGkcOnTILPVQCtbH5cuXCQ0N5aOPPmLmzJmWNkdBoV5QaoYUFBQUFBQUbmoUZ0hBQUFBQUHhpkZJkykoKCgoKCjc1NhMZGjevHn07NkTNzc3/Pz8uO2224yaVbNjxw66d++ORqOhefPmLFq0qB6sVVBQUFBQULAVbMYZ2rFjB0899RT79+9n8+bNFBcXM2rUqHJTu68nKiqKcePGMXDgQI4dO8Zrr73GjBkzWLVqVT1arqCgoKCgoGDN2GyaLDk5GT8/P3bs2MGgQYMq3OaVV15h3bp1ZeYRTZ8+nRMnTpSbfq2goKCgoKBwc2KzOkMZGRkAZXRNbmTfvn2MGjWqzHOjR4/mhx9+oKioqMIBjwUFBWVk+3U6HWlpaXh7e1tUKE1BQUFBQUHBeGRZJisri6CgIFSqqhNhNukMybLMCy+8wIABA+jYsWOl2yUkJJSbEO7v709xcTEpKSkVDkecN2+eUQq8CgoKCgoKCtZPbGwswcHBVW5jk87Q008/TXh4OLt376522xujOfqsYGVRnlmzZvHCCy8Y/s7IyKBp06bc/tE6fnx8cIXvUagfMvOLuJSUzaWkbC4ki98Xk7JJyS6scHsHOxVjOwZwb6+mdGhcscquucnJyTGMboiLi8PFxaVejmt2UlOhVSvQauHgQWjTpszLZ+MzmbJoH/ZqFdtfGoKHU/koq0L9kJFbREpOPrIMOlmu9LdOFtc/nQ7S84tIzSkgLUu8NzW7kNTsQlJyCkjNLiC3UFfuOJIEXYM9GdLWlyFt/Gju41Jv0XJbOq/u/mYfp+IymTW2Dff1aVb2xa1bYdIkaNQIzp8HBweL2HgzoNPJXLqaTI+OrXBzc6t2e5tzhp555hnWrVvHzp07q/X0AgICyk0/TkpKws7OrtIBgo6OjuUGYgIcissnvciOpt7ONTdeoVa4u0Ownzc3uqTXcgo5n5jF+cQsziVmcT4xm/OJWaTnFrH+TDrrz6TTraknD/ZrxtiOgTjY1V3fgFqtvs5ed6u+aFeJuzuMHQsbNsDatTB3bpmXe7q50a6pP+cSs9gdncM9vZpayFAFd3doYuZ95hYWk5JVSEJmPnsvpfDfmUROXc3kRFIhJ5Ku8tnOq4T6uDCinR8j2vnTPaQRdmrlvAKY0rc1pzec5p8LWTwxyr3sixMnQpMm0KkTFBaCj49ljLxJaKUSzroxTrvNFFDLsswzzzzDn3/+yfbt242abfTKK6+wfv16Tp8+bXjuiSee4Pjx40YXUGdmZuLh4UGT51bwxKiOzBrbrsafQaH+kGWZozHpLNl3mY0n4ynSiq+5j6sj9/Zqwr29Qwjw0Jj9uDk5Obi6ugKQnZ1t1Rftalm+HO6+G5o1g8hIERq4jkU7LvHB32fpFerFiv/1tYyNCvVGXHoeW84m8d/pRPZdSqVQWxo98nS2Z2gbP+7p1ZReoZXXcep0MiqV6dEkWzqvkrMK6DNvC1qdzLaZQwj1ucHW/HzQmP/ao1Ae/f07IyMDd3f3Kre1GWfoySef5Ndff2Xt2rW0uS5k7+HhgZOTEyBSXFevXuWXX34BRGt9x44d+d///sdjjz3Gvn37mD59Or/99hu33367Uce93hny8fJk36xhONqpq3+jgtWQnFXAbwdjWHYgmsRMURxvp5IY3TGAB/s2o2ezRmYL99vSRbtacnPB3x+ys2H3brhuQCdAfEYe/T7YiizDrpeH0sRLiZreLGQXFLPrfDKbTyey9VwS6blFhtcmd2vMa+Pa4eNaNsK+eE8UuUVanhzS0uTj2dp5NfXHg+w8n8yzw1vx/MjWljbnpsUUZ8hmdIa+/vprMjIyGDJkCIGBgYaf5cuXG7aJj48nJibG8HdoaCh//fUX27dvp2vXrsyZM4fPP//caEfoevzdHUnLKeSfUwnVb6xgVfi6OTJjeCt2vzKMr+7tRq9QL4p1MhvD47nzm32M/WwXKw7HotPVfl1gZ2fHgw8+yIMPPoidnc1locvi7Az6c2XZsnIvB3o40be5SDevOxFXn5YpWBhXRzvGdgrk07u6cvj1ESx/vA939WiCJMHqo1cZ/skOfj0QYzinFu+JYvb60yzafomM6xwnY7G182pSmKhvWnv8KpXGG2JiIDy8Hq1SqAqbiQxZCr1n+cGao3y9L46ezRqxcno/S5ulUEtOx2WyZP9l/jx2lfwiEe4f2saXT+/sSiMXpajRwObNMGoUDBwIO3eWe3nF4Vhe/iOcFr4u/PfCYEV+4ibneGw6r/95koi4TADCmnrSJ9Sbr3dcMmzz1NAWvDS6raVMrBdyCorpMfc/8oq0/PlkP8KaNiq7weLFMG0ajBghzjGFOqFBRoYsze3dG6NWSRy6fI2zCZmWNkehlrQPcmfe5M4cmDWCV8a0xdFOxbZzyYz/fBdHoq9Z2jzrYdgwOHYMduyo8OWxHQNwtFNxKTmHU1eV8+Jmp2sTT9Y+1Z+3JrTH1dGOYzHpZRwhgB93XyYpK99CFtYPLo52jOogZF3WHq8gaqoXCt6yBeKUqKo1oDhDRuLnrmFUe/Hl/vVATDVbK9gKHs72PDGkBX8+2Z9QHxfiMvK565t9fL8rsvLwdhXIskxOTg45OTk1er/VoVZD167liqf1uGnsGVlyXvx57Go9GqZgrdipVTw8IJTnRlTc5JJXpGXhtksVvlYZtnhe3RbWGID1J+Io0t4gVdC8uajBk2X4/XcLWKdwI4ozZAL39wkBRE48p6DYwtYomJP2Qe6se7o/4zsHUqyTmbvxDP9bcsTk+obc3FxcXV1xdXUlNze3jqy1ELm5ohPmBiaVXPTXnYij+MaLvsJNyz29mjJzVGuc7MvfZpbuv0xsmvHnhy2eVwNb+uDt4kBqTiG7L6SU3+C++8TvpUvr1zCFClGcIRPo29ybUB8XsguKKw59Ktg0bhp7vrwnjDm3dsBBrWLT6UTGf7GL8CvpljbN8rz5pugsu65hQc+g1r54uTiQkl3A7osVXPQVbkpcHO14elgr9s0azuMDQ7G7rqW+WAczV56woHV1j51axcQuopB6zfEKoqZ33gl2diINfZ38i4JlUJwhE1CpJO7rLcTllu6PtplwrYLxSJLEA32bseqJfjTxcuLKtTymfL2PX/Zdvrn/vx0cRIt9BatYe7WKiZ3FaBslVaZwI57ODrw2vj17Zw3jtq5B6F2iA1FpfLfLtHSZraFPlW2KSCyfTfD2hnHjxOMKujUV6hfFGTKRKd2DcbRTcTo+k2Ox6ZY2R6GO6BTswYZnBjKqvT+FWh1vrY3g6V+PkZVveltwg0Af0t+6tcKCz0ndhBr8vxEJZCspZIUK8HPTsODuMHa8PIRmJUr+7288y/oGLMvQJdiDZt7O5BVp2XS6AlkW/Xm1Zk292qVQHsUZMhFPZwcmdBahz2X7lULqhoyHkz3fPNCdNye0x04lsfFkPBO/2H1zdhM2bw59+4JOV2HBZ5dgD0J9XMgv0rEpQtHiUqicpl4ubH1xCKM7BCADz/5+rMHqVEmSZIgO/Xmsgs84cSIsWQIHDtSzZQo3ojhDNeC+PiJVtiE8jvTcioeEKjQMJEnikQGhrJjelyAPDZdTc7n/+wMmFX82GPSr2N9+K/eSJEnc1lV/0VdSZQpVo1JJfH1fN+7oHoxOhucasEOkPy92X0gmOaug7ItOTnD//VCirq1gORRnqAaENfGkfaA7BcU6/jhyxdLmKNQD3Zo2YuOMgbQPdCclu5Bpiw/VSEnXprnjDlCp4PBhuHix3Mv6rrI9F1NIzGzYOjIKtUelkvjw9s7c2aPUIVpbUaGxjdPMx4WuTTzRyVSfEryZ6xItjOIM1QBJkgxt9suuk5xXaNg0cnHgx4d6EuCu4WJSNtOXHqGwuGwruVqtZsqUKUyZMqXMpO0GgZ8fDB8uHq9YUe7lpt7OdA9phE6GdUq3pYIRqFQSH0wudYieX368QofI1s+r27pW0VUGsGiR0PP655/6M0qhDIozVENu7RqEq6MdUSk57ItMtbQ5CvVEgIeGn6b1xNXRjn2Rqby6OrxMl5lGo2HlypWsXLkSTUOcTP300zB3rphmXwGTwpRUmYJp6B2iu3o0qdQhsvXzakKXINQqifArGVxKzi6/walTcOKEIsBoQRRnqIa4ONoZLvxL90db2BqF+qRdoDtf3dcNtUpi9dGrfLblgqVNqj9uuQVef10UVFfA+E6B2KslTsdnci4hq56NU7BVVCqJeZM7lXGI1jQgh9rH1ZFBrXwAWFvR57rnHvH7zz8rFDZVqHsUZ6gW6FNlm04nKjUSNxmDW/sy59aOACz470K52rHU7IKK3tbgaeTiwNA2foASHVIwDb1DdHdP4RC9sKJhOUT6rrI1x+PKa5b17QtNmkBWFvz1lwWsU1CcoVrQJsCNns0aodXJ/H4w1tLmKNQz9/ZuyhNDWgAwa3U4ey+lkJaRiSRJ+LhpSE1voC34BQVCifrJJyss+NRHTNcev6rU0ymYhEol8f6ksg7RXyfjycnJQZIkJEkiJyfH0mbWiJHt/XF2UBOTlsvRmPSyL6pUcNdd4rGSKrMIijNUS/TRod8PxShzmW5CXhrVhgmdAynSyjz682HGf7bL8Nrx2GsWtKwOKSyEhx6Cr7+G48fLvTy0rR9uGjviM/LZH6XU0ymYht4huqeXcIhe/iOcKw1AysLZwY7RHQIAKu6a09fhbdggIkQK9YriDNWSMR0D8HJxID4jn61nkyxtjkI9o1JJvDauLd4uDuQWarmaXpouPRCZZkHL6hA3Nxg/XjyuYFaZxl7NhJLxHA0pzaFQf6hUEnNu7Uj3kEZkFxQza/VJS5tkFqqcZN+tG7RqBXl5sG6dBay7uVGcoVriaKfmjh5iFMHSA4oi9c2GVifz7O/HSc0pL765vyF3GepXsb//XmGqTC809/fJBPKLtPVpmUIDwU6t4v/u7IqLg5rD0Q0jytq/hTc+ro5cyy1i5/nksi9KEjz8sDi3KmlQUKg7FGfIDNzXKwRJgp3nk4lOtc18tkLNUKskvp/ak77Nvcu9Fn4lo+HO6Ro3TqjmRkdXOEqgZzMvGns6kVVQzH9nEi1goEJDoKm3M29P7GBpM8yGmGRfEjWtSIvr1VeFwnvfvvVsmYLiDJmBpt7ODGrlC8Av+5Q2+5sND2d7fn64F1O6B5d5XifDwYZaM+PsDLfeKh5XkCpTqSRuCxNCc38eVVJlCjXnjh7BjGjvZ/jb1iON+gaDzaeVocbWhOIMmYlp/ZsBsPxQLJk362TzmxgHOxUfTenMjGEtyzy/MTzeQhbVA/rul+XLQVv+BqW/6O84n3zTSg0o1B5Jknjnlo6Gvz/ZdM6C1tSeTo09aF4y1PjfU5UMNT59Gn78sX4Nu8lRnCEzMbi1L638XMkuKGbFIaXN/mZEkiSeHtGG7gOG4dS8B5JKxV8nExpue/moUdCoETRtCknlmwda+rnRqbEHxTqZjScbsFOoUOf4ujvRe/AInJr3YNnBK+y6kFz9m6yU6yfZVzieIzYWOnSAxx6DhEqcJQWzozhDZkI/3Rzgpz2XlTb7mxSNRsPhXVtY+edaJDsH8oq0/LQnytJm1Q2OjnDpEuzfD4GBFW6iv+ivVlJlCrVAo9Gwf/tmXvzkJyQ7B2auPEF6bvmmBVvh1pJZZXsuppCUdYNgb5Mm0Ls36HTwxx8WsO7mRHGGzMhtYY3xdnHganoe/0YoRaM3M+M7BxkEGT/ZfJ6UhpomatSoypcndglEJcHx2HRiUm1fK0bBsrw2rh3NfV1IzCzg9T9PlVdythFCvF3oEuyBToZNFd0r9CnolSvr17CbGMUZMiMaezX3lYgwfr870sLWKFiaF0e2po2/K7mFWt7beMbS5tQt6ekQXz4V5uemoX9LMZNp3QklOqRQO5wc1Hx2Vxh2KomNJ+NteuTLmI4imvpPRXVDU6aI37t2QVwFXWcKZkdxhszMA31CcFCrOBaTzpEGoo2hYDw5OTm4uLjg4uJCQX4eH07pgiSJOV17LqZY2ry6YcEC8POD996r8OVbuoiUQIUzmRQUjOD686p5IzueG9EKgLfXRhBro+rUYzsKNep9kalcu1GnrEkT0V4vy7BqlQWsu/lQnCEz4+vmaGgp/kGJDt2U5ObmkpsrLtBdm3jyQEm08I01p2y+LbhC2rSBoiJx0a6gq2x0xwAc7FRcTMrmdHwDndemUOdcf15NH9yC7iGNyCoo5sUVJ9DaYJNCMx8X2ga4odXJbK5Ii+vOO8XvFSvq17CbFMUZqgMeGSDUQ/85lWCzqxYF8zFzdBv83ByJSsnh6+2XLG2O+Rk+HDw9RefLnj3lXnbX2DOindCJWVeR0JyCgolcr0598HIa3+60zYXnWGNSZRERkKksIuoaxRmqA9oEuDGwlQ86GRbvvWxpcxQsjLvGnrcmtgfg6+2XuJScbWGLzIyDQ6kAYyUFn7d0EV1l607ENVypAYV6pam3M2/fItSpP918jssptqf+P7aTSJXtvpBC1o36dMHBomYoPh7c3S1g3c2F4gzVEfo2e0WEUQFgfKdABrf2pVCr4801ttsFUyl33CF+r1olWoJvYEgbX8Mk+4OXG+gAW4V6547uwQxq7UuRVubTzectbY7JtPJzpbmvC4VaXcWDvgcMEBIWCnWO4gzVEYoIo8L1SJKYwu1op2LvpVSb7oKpkJEjwcNDrGIrSJVp7NWGgtG1SqpMwUxIksQrY9oAIuoYEZdhYYtMQ5Ikw3nx98kqBBZlWdTlKdQZijNURygijAo30tTbmRnDRRfMexvP2LRoXDmMSJXpJ9n/dTKewmLlfFAwDx2CPJhY0rH48b+2N6pDXze0/XwSuYUVzCr7/nto2RK++qqeLbu5UJyhOuR6EcZ/IhRZ9ZsBlUrF4MGDGTx4MCpV+dPrsYHNaeXnSmpOIR/8fdYCFtYh//sffPGFmLxdAb2be+Pn5khGXhE7z9vuOAWF+qe68+rFka2xU0lsO5fMIRtLw3YIcie4kRP5RTp2nKvgvMjNhchIRYCxjlGcoTqkjAjjrgY6kkGhDE5OTmzfvp3t27fj5ORU7nUHOxXvT+4EwO+HYm3uwl0l/frB009DUFCFL6tVkmEFv/aEkipTMJ7qzqtmPi7c2bMJAB/+fdamavLKpMoq6iq7/XaQJNi7V8wtU6gTFGeojtGLMB6PVUQYFQQ9m3lxd8mF+931p23qwl1b9DOZNp9OILuggpSAgkINmTGsFY52Kg5HX2PbuQqKka0YvRr11rNJFBTfoNXVuLEopAZFgLEOUZyhOkYRYVSoiJfHtMXJXs3JqxnsutCAlKnz8uDbb+GeeyrsKuvU2IPmPi7kF+nYfFpJHSuYjwAPDQ/1bwbA/H/O2ZSEQ1gTT/zdHckuKGZ3RdcDfbemIsBYZ9iUM7Rz504mTpxIUFAQkiSxZs2aKrffvn07kiSV+zl7tn5rNRQRxpuHnJwcfH198fX1JSenct0TLxcH7unVFICF2y/Wl3l1jyTBiy/C77/DoUMVvCxxS0l0SOkqUzAWY8+rJwa3wE1jx9mELNaH2873S6WSGNOhmlQZwL59cLWBdaJaCTblDOXk5NClSxe+/PJLk9537tw54uPjDT+tWrWqIwsr5noRxp/2XK7XYyvUPykpKaSkVB/teWxQKPZqif2RaQ0nharRwIQJ4nElIX39rLJdF1JIzS6oL8sUbBxjzitPZwf+N0gsPj/dfJ4iG+ri1afKNp9OLG93UBD07y8er15dz5bdHNiUMzR27Fjmzp3L5MmTTXqfn58fAQEBhh+1Wl1HFlZOqQhjjCLCqABAoIcTk8JEu/nXDSk6pF/Frlol9FFuoLmvK52DPdDqZDaeLD/pXkGhNkzrH4qPqyPRqbkstyGNt16hXni7OJCRV8T+yNTyGzz8sOjY7NOn/o27CbApZ6imhIWFERgYyPDhw9m2bVuV2xYUFJCZmVnmxxzoRRhzCrUs2Rdtln0q2D7/G9wCSYL/ziRxLiHL0uaYh7FjRYQoMhJOnKhwk1tLNIeUVJmCuXFxtOOZYS0B+HzLBfIKbWM4slolMaqDP1BJquzhh2HRIujZs54tuzlo0M5QYGAg3377LatWrWL16tW0adOG4cOHs3PnzkrfM2/ePDw8PAw/TZo0MYstkiTx5NAWAHy7M1KJDikA0MLX1dBW22CiQy4uMGaMeFxJqmxi50AkCY5EX1Pq6BTMzj29mhLcyImkrAKbmg+pF2DcFJGA1oYKwBsCDdoZatOmDY899hjdunWjb9++LFy4kPHjx/Pxxx9X+p5Zs2aRkZFh+Ik1o67DLV0a09LPlYy8In5QdIcUSnhyiFjFrjsRR0xqA3EM9KmySuob/Nw19GvhDYjPraBgThzsVLwwsjUgFhkZubax+OzbwhsPJ3tSsgs5XJEGmU4n9IYWLqx/4xo4DdoZqog+ffpw4cKFSl93dHTE3d29zI+5UKsknh8hTtAfdkdxLacBjWNQqDEdG3swqLUvOhm+2XnJ0uaYhwkTwMkJAgMhO7vCTW7tok+VXb2ptJYU6odbuzamtb8rmfnFNnNe2atVjGhXRaosOloUUs+YAcmKirs5uemcoWPHjhEYGGix44/tGEC7QHeyC4r5dpeiO9TQUKlU9OjRgx49elQ4NqAynhwiUqgrj1whKSu/rsyrPzw9ISkJ/vsPXF0r3GRMpwAc7FScT8zmbEOpl1KoE2pyXqlVEjNHiSGuP+25TFKmbZxX+rT5vxEJ5bWSQkMhLAy0Wli71gLWNVxsyhnKzs7m+PHjHD9+HICoqCiOHz9OTEwMIFJcU6dONWy/YMEC1qxZw4ULF4iIiGDWrFmsWrWKp59+2hLmA0JPQh++XbznMslZSmtxQ8LJyYlDhw5x6NChCscGVEbvUC+6NfWksFjHD7sbSAq1EidIj7vGnmFt/AClkFqhamp6Xo1s709YU0/yirQs3G4b0aEBrXxwcVATn5HPiSvp5TeYMkX8/uOPerWroWNTztDhw4cJCwsjLCwMgBdeeIGwsDDeeustAOLj4w2OEUBhYSEzZ86kc+fODBw4kN27d7Nx40aTW/PNzYh2fnQJ9iCvSMuiHbZxgirULZIk8dRQUTu0dF+0zdQ4GEV8PKRVPINNP55j/Yk4m1IMVrANJEnixZEiOrTicKxNNK5o7NUMK0mV/VNRqkzvDG3ZUul5pWA6NuUMDRkyBFmWy/0sXrwYgMWLF7N9+3bD9i+//DIXL14kLy+PtLQ0du3axbhx4yxj/HVIksSLJeHbJfujSciwjfCtrSDLMln5RcSm5XLySga7LiSz/kQcS/ZH8+XWC/y0J4pTVzOsrltjWFs/2ga4kVOo5Zd9ly1tjnl47jkxW+nHHyt8eWhbP9wc7biansfhhiI8qWBV9G/pTUs/V3ILtaw+csXS5hjF9YNby9XTtW4NnTpBcTGsW2cB6xomdpY24GZlYCsfejZrxKHL1/hq20Xm3NbR0ibZNLFpufx1Mp6NJ+OJiMs0ytFxc7SjR7NG9G7uTa9QLzo19sBeXbv1QW5uLu3btwfg9OnTODs7G/1eSZJ4YkgLnv39OD/tvcwjA0NxdrDxU7RVKyG8uGoVzJxZ7mWNvZoxHQNYeeQKa49fpVeolwWMVLB2anteTe0bwltrI/hlfzQP9muGJEl1ZapZGNLGF429ipi0XE7HZ9IhyKPsBlOmwMmTIlX20EMWsbGhYVORoYbE9dGh3w/FKForNSAuPY/vd0Vy21d7GDh/G/P+Pkv4ldKIj6OdigB3DW0D3Ogd6sXoDv7c2SOYIW18cXW0I6ugmG3nkvng77NMXriXzrM3cd/3+1l2ILrGUSNZlomOjiY6OrpGHVLjOwXS1MuZtJxCfj9oO+q5lTJpkvi9fz/EVVwXpBdg3HgynsJi2xmfoFB/1Pa8mtwtGFdHOyKTc9hzsQJ1ZyvD2cGOwa19gUpSZXrpilOnRIRIodbY+LLTtunT3Jv+Lb3ZczGVL7ZeYP6ULpY2yerJyC1i9bErbAiPLzPPS5KgT6g34zsHMri1L75ujmjsKx+7otXJnInPZH9kKgej0jh4OY303CL2XExlz8VUfj0Qw9zbOhLWtFF9fCwDdmoVjw9qzhtrTvHdrkju7xOCg50Nr1mCgsT4gP37RffLE0+U26RvC2983RxJzipg14VkhpfUSygomAtXRzsmd2vML/ui+WXfZQa08rG0SdUypmMA/0Yksvl0omHhbKB9ezhwAHr0ABO6VhUqR/lXtDAvlBT3rTp6laiUyqcx3+wUFGv5flckgz7axjvrT3Mk+hqSBL2aefHOLR048Npwfnu8D/f3CaGJl3OVjhCIttuOjT14dGBzvp3ag6NvjOTf5wbx6ti2uGvsiIjLZPLXe5m1Orze9aCmdA/G182R+Ix81hxvABOq9dGhP/+s8GW1SmJiZ1FIvUbpKlOoI6b2DQHgvzOJXE3Ps7A11TO0jR8qCc4mZHHl2g2ZA0mCXr0UR8iMKP+SFqZ7SCOGtfVDq5P57L/zljbH6pBlmb9OxjPy053M3XiGjLwiWvm58uaE9ux7dTgrpvflwX7N8HPT1Oo4KpVEmwA3pg9uwdaZQ7i9WzCyDL8djGXYJ9tZfiim3rqdNPZqHi0Z7LtoxyXbFyTUO0PbtsG1ioukbwsTztDm0wnkFChhfwXz09LPjX4tvNHJsGy/9c+H9HR2oEeIqKHbdjap8g21WiVVZgYUZ8gK0OsOrT0Rx4VERXxOz5Hoa9z+9V6eXHaUmLRcfN0c+WByJ/55bhCPDAglwKN2DlBl+Lg68smdXVjxv7608XfjWm4Rr6w6yZRFe4mIy6iTY97Ivb2b4uygJjI5x/a7rFq1go4dxQV7w4YKN+nU2INQHxfyi3RsOl1BjYSCghnQR4d+PxRLfpH1D3Ad2lbocG2tzBmaPVt0a27cWH9GNVAUZ8gK6NjYgzEdApBl+D8lOkR0ag5PLTvK7V/v5WhMOk72ap4d3ortM4dwd6+mqFX10wnSK9SLDTMG8Mb4drg4qDkak87EL3bzfT0oh7tp7BnXSSilrzzcAAqp33gDfv5ZjOmoAEmSDJpDigCjQl0xop0/gR4a0nIK+etkvKXNqZbh7YQztOdSKrmFFUR/MjIgMRGWLhXzykaOVLSHaojiDFkJz49sjSTBXycTOBGbbmlzLIJOJ/P9rkhGfrqTjSfjkSS4q0cTtr80hOdHtsbFsf7r/e3VKh4d2JwtLw5hfOdAdDLM3XiGbyuZdSRJEu3bt6d9+/a1bt+9o3swABvD4yu+ENoSd90FU6dCo8oL0vVdZbsupJCSrSizK5RirvPKTq3ivt5NAfhln/Wnylr5uRLcyInCYh17b+yCO3cO8ks06v74A556Soy/0Vp/xMsaUZwhK6FNgBuTSm4Gr6wKp0h7c7UYJ2bmM/XHg8zdeIZCrY4BLX34a8ZAPpzSGX/3ukmHmUKAh4av7u3GcyNaAfD+X2crjBA5OzsTERFBRESESVooFdEr1IsQb2dyCrX8dbLhp45CfVzoEuyBVifbxKpdof4w53l1d6+mOKhVHI9NJ7yicRdWhCRJDC9JlW25PlW2ZQu0bQuLFpV/k63XGFoIxRmyIl4b345GzvacTcjim5toTMc/p+IZvWAnuy+moLFX8d6kjix5pBftAt0tbVo5nhvRmmeHC4do7sYzdZoykySJKd1EdKhBpMri4+Gjj+D99yvd5JaSBcGaYw2gi07BKvFxdWRcJ6HwbAvRIf1ojq1nE0ubKYYPF5HWitDdXAtpc6E4Q1aEj6sjb00UKqufb7nIxaRsC1tUt+QUFPPyHyeYvvQo6blFdGrswcYZA7mvd4hVK8Q+P7I1M+rJIbq9ezCSBAei0ohJtXFhzosX4eWXhUNUVPGMqImdA1FJcDQm3fY/r4LVMrVfMwDWnYgjrZ6lM0yld6gXzg5qEjMLiIjLLH3h888hJKT8G5TIUI1QnCEr47aujRnSxpdCrY5XV4U32OGVx2KuMe7zXaw4fAVJgieHtGDVE/1o4Vv1pHNr4fkRrZgxTAxWnbvxjGHSfG5uLh06dKBDhw7k5tb+Zh7k6cSAlkIg7o8jNh4d6tcP/PwgPR2umyF4PX7uGvq1EJ933QklOmQLFBbriEnNZd+lVFYducI3Oy7x3+lE0nPN52SY+7wKa+JJx8buFBbrWGHlUVeNvdpwDSjTVebhAb/8Uv4NijNUIxQFaitDkiTem9SJUZ/u4HD0NZYeiGZq32aWNstsyLLMoh2RfLzpHFqdTJCHhk/v6kqf5t6WNs0kJEni+ZGt0cnw5baLzNlwGpUEd3b14/Tp0wBm0wea0j2YXRdSWHX0Ks+NaI2qnrrpzI5aDbfeCt99JwQYR46scLNbuwax+2IKa47H8dTQllYdJbzZKCjW8vfJBDafSeTqtTzi0vNIzi6o9P7bNsCNns286BnqRa9mXjWWw5Bl2aznlZhX1oyX/whn6f5oHhvYvN66VGvC8HZ+bDqdyJazSYaoNACDBolo6/z5ljOugaA4Q1ZIY08nXhnblrfWRvDh32cZ3s6fxp5Oljar1mTkFTFz5Qk2n04EYGKXIObe1hEPJ/s6P7ZWKzpQY2PhyhXxOztbSOC0aycGQWtMvE6L+XKtkZH5atsl3ll/muIC8yvbju4QgJtGTHbfeynVJkYJVMqkScIZWrsWvvyyQgXd0R0DeH3NKS4mZVc8pFKh3rmansey/dEsPxRLagVpJUc7FUEeTvhpXHHT2BOZeY3I5BzOJmRxNiGLJSUih028nLirRxMeG9QcR7uqVeLrmlu6BPH+X2e4ci2PbWeTGNHeesfADG0jiqhPxKaTnFWAr5tj6Yvvvgv//gsnToi/lchQjVCcISvl/t4hrDsex+Hoa7z+50l+eqinTa+QT8dl8sSyI0Sn5uKgVvHOrR24u2eTOv1MJ0/CkiUiCHH5ctUirSoVNG8uHKOhQ+GRR8C9gvrt4mL4+2+YOFH8LUkSM0e1QZZh4fZLvP/XWbN/Do29mlu6BLHsQAwrj8TatjM0bBi4uoqhrYcPi5ECN+CusWdEOz/+OpnA2uNxijNkIXQ6mT2XUvhlXzRbziSiz9j7u2ro6dyahJNeZKXYk5lqR3KSxMF4CX0GKzAQ2rbX4RWci84rnWT7JK6QQGxaHh9vOs/qY1d577ZO9G3hfd3x6ne6hMZezZ09mvDtzkh+2R9t1c6Qn7uGzsEehF/JYNu5JO7s0aT0RUdHWLYMuneHggLFGaohSs2QlaJSSXxwe2cc1Cq2n0u2aSG6P45cYdLCPUSn5tLY04k/nujLPb2a1okjdPUqfPwxdOkCnTuLWt2LF4UTo1ZDkybQty/ceSc89JAoY/H0FBfiixdh/Xp44QWx3csvi/3pycsTw6LvuENEmfRIksRLo9twa9egGk+7r447Si5+/5xKIDO/4uJjm8DREcaNE48rmVUGcEsX0VW27nhcg62bs1ZkWWb9iThGfLqDB344yObTwhHq6NyYvmmDSPphGF+92IRVi13YtMGB/ftUXLpU6giBaBzctkXFqp9d+fP/gtk9vxvy8rGMkPvh5eBEZHIO93y3nxdXnCAtp5CffoJXX63/z3p/7xAkCXaeT+aylc+GHKZXoz5TgRp1hw4wd654/O+/9WhVw0GJDBmLBbztln6uzBjeko83need9REMbOWDt6tj9W+0EvKLtLyz/jS/HYwBYHBrXxbc1ZVGLg5mP1ZUFLz4IqxZU/pfZW8vBI/vuw/adCokoTCd8Ph0jsVcIyolBz83R3qOdmZSI2fcZFcKU1xJjXFixVJ7zpyR+OgjWLAA7r0XHntMOEd794p9f/klzJlTenxJknj31o7sP3eVuijH7BLsQSs/Vy4kZbPhRDz3lgjH2SSTJgmvMz9feKEHDohoUadOhk2GtvXFTWNHQmY+B6LSykQQFOqO1OwC3lx7yqBr5WJvR/NrHbm8O4CNJ0rTWm5uMHkyhIWJKND1P7IMEREQHl76c+wYREdL/DC/ET6+Q+kwMpFIvxOsOnqFDccSubqxHUQG8+qrEl5e9fd5m3o7M6ClD7supLD+RBzPXF+PY2UMb+vPgv8usOtCMgXF2vJpRj/hLPHRRyK0rWASkmzzUyDrlszMTDw8PMjYtg33IUPq/fhFWh0Tv9jN2YQsbukSxOf3hNW7DTXhyrVcnlx2lPArGUgSPDe8Nc8Ma2n24t+CAlE7+P77pWKsAwbA7XdpcWwVx/n0VI7HphNlwqrP2V5NT3UHLv7XmL17Kg6eenlBTAy4uJR9fsvJaEZ0bgbAukOXmNijeU0+VoV8u1Ok4cKaevLnk/3Ntt96Jz0dtm6Ff/6BdetEmO2bb+Dxx8ts9sof4Sw/HMs9vZowb3Jny9h6E/HPqQRe//MkqTmF2KkkJgR1YNfiphw9Is5ZOzsYMwbuv1+kiU3RPszLgx9/FPfp6BJpH2cXGZcOV9D0j0DloCU/xov723Tm47ddyr0/JycHV1fRaZqdnY3LjSdeLVhxOJaX/winjb8b/z4/yGz7NTc6nUyfeVtIyipgySO9GNjKt+wG164Jh6i4GC5cgJYtLWOoFWG4f2dk4F5R3cN1KGkyY1m/3iKHtVermD+lMypJaGL8eeyKRewwha1nExn/+W7Cr2Tg6WzP4mm9eHZEK7M7Qv/+K+Z/vvWWcISGDoVDx4q5d84lfkrdwofbwvnz2FWDI9Tc14XJ3Roz57aOLH+8D1/d241Xx7bl3t5NGdjKh2beztirJXKLtOzIDyd92Cbun30ZjXN5EbO0NHFxv5G+LXzx9AtC7e7H2+sizDpW4rawxqhVEsdi0rmYZIMDfbOzRX6ySRORb/zuu7L5xhu4tWSS/cbweAqKlREDdUVGbhHP/X6M6UuPkJpTSDNXT8JihvP5jBCOHpFwdxdOTFycuAzedZdpjhCAk5OYFnHhghij1aED5OZIJB9swtVFwyhIdEPTNI2VaXsJjy7/3ZYkiZCQEEJCzK9BNrp9APZqiXOJWVY9KFulkgypsi0VpcoaNQL9gr2KFLRCxShpMmO5YjknpHOwJ08MacFX2y7x0spwGjk7MKSku8CaKNbq+HTzeRZuF+rZXZp48tW9YQQ3qp18/o2kpsL06WIcD4jQ/Icf6dA2i+GJjRdJzhIOSEs/VyZ0DiSsaSO6Bnvi4Vx915pWJ7PtbBL/9995IuIy2UUEgU+eI3FjR3LPBAGlF+JPPoEnnhArZj3Ozs4kXI3h1i/3cDYhi1dXhfPd1B5muYD7uWkY2saX/84ksfLIFWaNbVfrfdYrrq7g6yucIiPoHeqNv7sjiZkF7DiXzKgOAXVs4M3HtrNJvLIqnKSsAiSge0E3tn8fQGqq+L4+8IBwhPzNVFtsby/S1qdPi1QagC7PgYTFA/EccgaP3lHc/c0B1j/fp4zmmLOzM5cvXzaPETfg4WzPwFa+bD2bxIbweJ4f6VYnxzEHw9r68fuhWLacTeTtiRXMaZs0ScwnW70aXnrJMkbaKEpkyFi++86ih39xZBtu6RJEsU7miaVHORpzzaL23EhSZj73fX/A4Ag91K8ZK//X1+yO0Nmz0Lu3cITUapgxQ2ber1dYFLud2esjSM4qoImXE5/e2YV/nxvEcyNaM7i1r1GOEIBaJTGivT8bnhnANw90p12gOzp1Mb63HCfood2onEsjPdHRsHJl+X042qn5v7u64qBW8d+ZJH4/ZL4qoindRSH16qNXKbbF+XXz5ws9gxupwFlUqyRu6SKiQ2uOKwKM5kSWZT769yzTFh8iKauAEHc3Wp8eyaoFgaSmSnTsCDt2CE0/czlC1zNnDvzwA3gbSsEk0re3J2VDF3KKC7nn2/0mpbZry4TOgQBsCI8zmz5YXdC/pQ8Odipi0/K4lFzBouLWW8Xv/ftFKE/BaBRnyEZQqSQ+vqMLg1r7klek5eHFh6wmpLvvUirjPt/Ngag0XBzUfHFPGLNv6YCDnXm/Xps2QZ8+cOkSNGsGf/yTw5lmO3n7nxNcTc/Dz82RObd1ZMsLQ5jcLbhWImqSJDG6QwAbnxnA1/d1o42/G/b+mTSevhVN09Lp0U89VXHLfrtAd2aObg3AnA2nzdapMqytH14uDiRnFbDzQrJZ9lmvuLiIO6yRPdT6Sfb/nUkiI8+Gu+isiCKtjpf+COerbWLhMrlNS7JWDWTTegfs7UUk6OhRoedXV6hU8PDD4lx+9tlSXzgnIpiEJf2Ij4d7v9tfbyNZRrb3x8FOxaUSbSRrxcXRjr4lArUVpsoaNxarRRBaXgpGozhDppCZWf02dYiDnYpF93ejaxNP0nOLmPrjQa6mm1/kz1i0Opmvtl3kvu/3k5JdQBt/N9Y9M4CJJat5c/Lll6IjOyNDFEjPW5zIazt3cT4xm0bO9rw2ri07Xx7KA31CzOqEqVQSYzsF8vezA/nw9k44amT87t5P42GXAJlr12DKlNIOtry8PHr27EnPnj25r3sgfZp7kVuo5fkVx80SyXGwU3FbiYOw8rD1149VSJ8+8NprRm3aIcidNv5uFBbrlEn2ZiC3sJjHfznMH0euoJLg0Tbd+e21Nhw7KuHjIzIsM2eKdFZ94OEhOjYjIoQcBkBhgieJv/blSoKWe77bT2xabpnzKi/P/Nc8N409Q1qLguQN4dYdURneroIp9tczaZL4vX9/PVnUMFCcIWOZNEnEdPWtEBbC2cGOnx7qSUs/V+Iz8nnghwMWGTR4MSmbOxbt5aN/z6GT4fZuwax5qr/ZZ4sVFYnoyzPPCBXpqVNlxr50jlf/PkxuoZZ+LbzZ8uIQHh/UAo193SnaqlQSd/Vsys/TeuGmscOu51na3HUGkFm7FubNE9vpdDoOHz7M4cOHAZlP7uyKm6Mdx2LS+WaneQa63tFDTLL/70yi7UZL3nwT2rcv/buSG5wkSUzuJpy/1Udt1PmzEtJyCrn3uwNsO5eMo52KOz0HMPeJABIShKrBoUN1Gw2qinbtRPv9V1+J9HfRNReure5NbFIh936/nytpOYbzSldHU9knlCziNoTHW3WqTK9GfST6WsXz3x56SCjOLl5cr3bZOoozZCx5eSIfYgWhx0YuDvzycC+CPDREJufw0E8HySmoQl7ZjBRrdSzacYlxn+/iaEw6ro52zL+9Mx/f0RknB/M6I0VFonNl4UIRRn9njhZ50CG+3XsRgMcGhvLLw73wqgPdosro19KH5f/rg6+bI/nNomg24QIAr78OP/1UfvvGnk68c2sHAL7adtEs3WXtAt1p5edKkVZm+7lKVofWjoMDrFhRmh85darSTW/t2hhJgkOXrymT7GvIlWu5TFm0l+Ox6Xg42TMsfzAfvupBQYEoM9mzR6SeLYkkwZNPwsGDovss54oH2X/1JCY5n2mLD9b58Ye39UNjryI6NZdTVy2bBaiKJl7OtPZ3RauT2XG+glS5v79os7XhiQWWQHGGjEU/f2HNGouaoSfI04lfHumNp7M94VcymPTVHqJT67bg8HxiFrd/vZcP/j5LYbGOQa19+ff5QdxZB2M1RBRIdIg6OMDnP+Tyn8NOdl5IRmOv4rO7u/L6+PbYqev/K9whyIPVT/Qj1McFucMF/AaIiM9jj4lRHTcyKawxnYM9yC3U8nVJgXltGVkyOmDT6cpb062eDh1KW4H1c5UqIMBDY5ja/ecxpZDaVM7EZzJ54V4ik3MI8tAwomAwiz4RjQ2zZonGIzcraqDq1g22bBGzAq+d8yZvSzeiU+q+HMDF0Y7hbcV5Ze2psmEldlZYN3Q9dRRFa4gozpCx6EcI7NwperutgJZ+rrw4ShTpnk/KZujH25n/z1mzdxkVaXV8ufUCEz7fzYkrGbhp7Jg/pTM/T+tZJwNkdTohoPr776J24c3/u8bCqJ3EpOUS3MiJ1U/0NxTWWoomXs78Mb0vXYI90PQ7g3vnK2i1ohVZz+6SAmf9uA6AJfujiTNDnZe+zXzHuWTb1uDRy3ifPAmFlad7J4WVpMqOXbHqFIa1cT4xi7u/3U9SVgGt/V0ZVjSIT+cJFfsPPxRipfU5D8xY+vYt7RhNPhZA1q629XLc0q4y606V6fWGdl1IrnhcTUaGkM4PCRHKtArVYoWngZUSGiqGXWm1sGGDpa0xcC2ntGZEVzIstN8HWzluhtb7rPwivtsZyaD52/h403kKtTqGt/Vj8/ODubNH3QxZlWVRI/Tzz+JC+OanGfxydT+5hVoGtPRh/dMDaB9UtZJofeHt6shvj/dhaFtfPEeF49Yy2aCCDfDq6pOGC+qAlj70DvWisFjHF1sv1PrYnRt74O/uSHZBMfsuWYdzXiP69hUe5FNPVRnWH90hAGcHNdGpuRyNSa8/+2yYK9dymfrDQTLyiujaxJPBBQN4721RGf3ee2K8jDUzfnypsGnGkWaG52PrMFU6tK0fLg5qrqbncSw2vc6OU1vCmnri6mjHtdwiIuIqSOm5uQlthCtXhNq7QrUozpAp6Kv0rSRVBnA4urzTk5RVwG0L9zJ9yWHyC02vJYpLz+P9v87Qb95W3vvrDPEZ+fi4OvJ/d3Xh+wd7EOChMYfp5ZBleP55WLRI3Bff+jiLZYl7KdTqGNcpgMXTetbJXLPa4Oxgx7cP9KBriDueE4/g4FvalpuSVUh8hvCOro8OrTh8pdYaKiqVxIh2DSBVplKJVvsPP6yyhcnF0Y4xJdEwpZC6elKzC5j6w0ESMvNp5edK37zevDFL1PTNnm10M5/FmTpVDF6+ntf+PFlnA5E19mrD9PoNJ6y3e9FeraJPSYv9rosV1A2pVKWaQ1Z0v7JmFGfIFG67Tfz+91/KjGi2EFqdzLEKnCE9/0Qk0vmdTTz68yGWHYjmfGJWhSHV/CIt5xOz+OdUPM8vP86g+dv4dmckWQXFtPRz5cPbO7H7laFMCguuk2iQnnffhc8+E4/f/iiXFdf2kl+kY2gbXxbcFWaR+iBjyMgrwtvVAZWDlkajTwA+gA+5Z4MIv5Ju2K5HMy+GtfVDq5P5v83na31cfarsv9OJtj/Z3YhczeRuootugzKeo0pyCop5ePEhIlNEjdBou768+pKQSX/jDTG+xpZ44QX9OtQHJG8OXsrgh93m6cysiAmdRVfZXyfjrfq8GtRa1NHtOp9S8Qb6+9W6dUrtkBEo4zhMoUsXEdLv188iU+xv5FxCFlnVdJEVamX+O5PEfyWFdh5O9nQPaUSQp4bo1FyiUnK4mp5X7uP0be7N44OaM7i1r9lnilXE8uVixQrw5rw8VmfvJrugmD7Nvfj6/u5mF3A0Jx5O9jjZi1NJ07gYz4G7Sd/Vhmvbith5LJoxHUu3fXFUa7aeTWLdiTimD25Rq5Rfn+ZeuDrakZRVwIkr6YQ1bVTbj2I5jh8Xlbx33FFmev319G3hTYC7hoTMfLadTWJMx8D6tdEGKCzWMX3pEU5cyaCRsz2PNe/HY/eJaOorr4gFh601GUkSfPedC/v3JxMfD5l7o/jY7SyDW/vRJsD8ld+DWvvg5mhHQmY+R2Ku0bOZl9mPYQ70TQVHoq+RW1iMs8MNt/MhQ8DdHRISRItenz71b6QNoThDpiBJIqRvJaTnFjKlezCNnO3xdHagkbMDXi6lj53sVVxMyuZ4bDqHo69xLCadjLwitlYg1uXmaEdzXxfaBbpzX+8QOgV71NvnOHRISGMAPPpkIX8V7zHUOXz/YM861Q8yBw52Kj6/JwwnBzV/HLmCe59L5F70pzDek58+9OG9+0tvQB2CPJjQOZAN4fF8uvkc3z/Ys8bHdbRTM6SNLxvC49l8OtG2naH33hMVszpdpc6QWiVxa1gQ3+yIZNXRq4ozdAM6ncwLK46z60IKzg5qXu/Xh0dud0KrhQcfFFpYtuYI6fH2FvVDY8dC1pFQnFok8fzy46x5qr/ZF0qOdmpGdvBn9dGrbDgRZ7XOUKiPC409nbianseBqDSD/pABBwdRePXbbyJVpjhDVSLJ1lwybwVkZmbi4eFBRkYG7u7WUbhbU4q0Os7EZ3Lo8jVSswto5u1CqK8LoT4ueLs41GkKrDKuXoWePSE+HkaM1pI9cDvxWfm0C3Tn98f6GD1TzBrQ6WTeXnuKJQdiKEp1IX7xQORiNYsWyfzvf6X/tpHJ2Yz8v51odTKrnuhH95CaOzHrTsQx47djtPRz5b8XBpvjY1iGpUtF1LVDhyo1h84lZDF6wU7s1RIHXhtRrxpT1owsy8xeF8HP+6KxV0t8PKEXz97jQ3Q0DB4sRtk4NIB/qiefhK+/Bnv3fPyn7eDZsc2YWVKLZ062nU1i2uJD+Lo5sn/W8FqN9qlLXl0Vzu+HYnlkQChvTmhffoMVK4RYW5s2YrDjTYYp92/rzT1YM1euCCXA48ctbYlJ2KtVdA725JEBobw8pi139mxCz2Ze+Lg6WsQRys0VNX7x8dCuvYx28D7is/Jp4evCkkd62ZQjBKKoedboFsgbZpP67zN49BfaOS++CFFRpds193VlSkn9y0f/nq1VC++QNr7YqyUuJmUTWdHgRlth/HjRPhgRIQZWVUKbADc6BLlTpJWtXgumPlm6P5qf90UjSTDvlq68/5xwhFq1glWrbN8RysvLY8iQIZw8OYQWLfIoytSQtrkjC7df5FgdDK3u39IHDyd7krMKOBBlvd2aA1uJESK7KptTOGaMmFV2770VD1FUMKA4QzXhjTdEK7AVpcxsDVmGadPgyBHw9pbp+fhpIjMy8HNzZOmjvfFxdbS0iTVClmViIg5TEHsK17AoHINTycmR+N//ypaZzRjRCge1iv2Raey5WPOLrbvG3tBVstmWu8oaNRIhDKhW5V1fSL36qCLACHAwKo131p8G4KVRbVnxSRAHD4KXF2zceP1keNtFp9OxY8cOdu/ewfff61CrIfd0Y7LOBDB34xmzawI52KkM3YvWPBOvf0tvJAnOJ2aTkJFffgN3dzGj7K23wE6piqkKm3KGdu7cycSJEwkKCkKSJNYY0TK4Y8cOunfvjkajoXnz5ixatKj2htxyi/i9dq1VFFLbIh99JCK49vbw2DsJ7Ii/jJ1K4qv7uhHoYX4hR0vQr6UX3uPCkdQ6Nm+GzZtLX2vs6cR9fZoC8Mnmc7U6zqiGoEYNpa3A1ThDt3QJQq2SOB6bziVbjoaZgfiMPJ5cdoRinczELkGk7WnOypXivPrzTxEZamj07CmUswHSt7Xn0MWMisdS1JLRHcV5tf1cstUKMHo6O9C5sajv3H2xkq4yBaOwKWcoJyeHLl268OWXXxq1fVRUFOPGjWPgwIEcO3aM1157jRkzZrBq1araGTJqFDg6QmSkCOsrmMTevaU6JzNn57Dy6jEAZo1rZ7XFijXh6/u74x9cjGvYZUB081zf4frkkJbYqyWOxaRz6mpGjY+j10U5GnON5CwbVpvVO0O7d0NK5Rd2XzdHBrUqGc9xE0eH8ou0TF96lJTsQtoGuDHOuzNvvy3S3YsWWW7oan3w2mvQpAkUZzqRdaQZn24+b3aHpXeoN/ZqiSvX8oi24pl41abKALKyYOXKKs+rmx2bcobGjh3L3LlzmTx5slHbL1q0iKZNm7JgwQLatWvHo48+ysMPP8zHN6p4mYqrK4wYIR5bweBWWyItDe65Rwh5T56i5T95H8U6mQmdA3m4fzNLm2dWHO3UzLm1Ix59L6JyLOL4cTFiRI+vm6OhI2rZgZgaHyfQw4kuwR7IMmw5Y8PRoZAQIV/h7g6nT1e5aWmq7EqdCfBZM7Is89baU5yITcfT2Z73Rvdg2lQ1Op1IPz/8sKUtrFucnEQDIkDm/pYcO5/H5tOJXE7J4YO/zzL/n9oXC7s42hmaG6p0NCzMgJKFwZ6LKZXrIo0cCXfeCevX16NltoVNOUOmsm/fPkaNGlXmudGjR3P48GGKiooqeZeR6Fex69bVbj83Efo6oZgYaNlShgFHSMoqKBF27GyRIu66ZlynAHq2dcG9tygKfv31sqOC7ustUmVrj18lK7/m30n94FabrhsCsbhISqo2rDGyvT8eTvbEZeRb9Y2qrlh6IIYVh6+gkmDBnWG89JQziYliWLmRgXOb5777ICwMdAX2ZOxtyXPLjzPk4+0s2nGJC0nmSZ8Oai2iLjsvWG9EpVvTRjg7qEnJLuRMQgWjOUBoEoCyeK+CBu0MJSQk4O/vX+Y5f39/iouLSakkXFhQUEBmZmaZnwqZMEH8PngQ4pSuFmP4/HPhOzo4wOgZlzkSn4yLg5pF93fHxbFhFvdJksTr49vj1v0yatd8Ll+Gb74pfb13qBctfF3ILdSy5njNv0d6NepdF1PIqUaI06oJCalyLIcejb3aMLx1+aHYurbKqjh0OY131on0/Ctj2rL1V1+2bQMXF5EJcXa2sIH1hEoFw6aK4uasYyFkJJQ2XaTnVj701xQGlaSg9l1KpcjMA7DNhYOdir4lTRS7K3Pa9Iv3TZsgr/aDohsiDdoZAspFG/R55cqiEPPmzcPDw8Pw06RJk4p3HBgoWhbt7ODwYbPa3BA5fBheekk8fvylTDZcFWmQj+7oQks/VwtaZn6cnZ1xvu6O1D2kERO7++HRX4zgmDMH9D62JEnc1zsEgGX7o2tc99DKz5UQb2cKi3XsrINi0npHliGn6vltd/UU5+bm04mkZNtwrZQJpGYX8NSyo4bUcrP85sydK1779ltoWz/D3S3CjecVwEN3OOPSIgl0KtJ3lH74tBzzOEPtA93xcnEgu6CYY1Y8IFifKttVmTPUpQs0bSocoS1b6tEy26FBO0MBAQEkJCSUeS4pKQk7Ozu8K+k3nTVrFhkZGYaf2NgqVp0//QTJyaXdZQoVkp0Nd98NRUUw4RYd+zQHAXi4fyjjOjUsFWEXFxdycnLIycnBxcXF8PwrY9rSKOwqdl7ZpKTAJ5+Uvuf2bsE42qk4m5BV44nskiQZuspsPlX2xx8QGgrPPVflZu0C3enSxJNincyqIw1/eKtOJ/PiyhOG1PJLgzszdaqELMP06UJKpqFS2XnVsbEH738ggySTez6Q/Cuixic9t5ZlECWoVJJh7IU1p2P1RdQHL6eRX1TB3D5JKtsFrVCOBu0M9e3bl83X9zMDmzZtokePHthXEop3dHTE3d29zE+ltGsHnp5mtLhh8sorQkcvOBia3BJBSnYBLXxdeHmM+ZVjrZWm3s481D+ERoNEG/0nn8gklvgsHs72huGQv9aikHpke5Eq23I2ybaLij08IDoaNmyodsDkPSXRoeWHYq22/dlc/Lgniu3nknG0U/HFPWE8/4wdSUmiTuj//s/S1lmOGVP86TEqHYBr29ohy3Att9BsQ1YHlkRdrLluqIWvC4EeGgqLdRyMSqt4o4kTxW8jzqubEZtyhrKzszl+/DjHS5Sfo6KiOH78ODEx4gYya9Yspk6dath++vTpREdH88ILL3DmzBl+/PFHfvjhB2bOnGl+47TKFO2K2LxZiHUDPDP7Gn9diEElifSYtc8cMzfPDGtFQJdUHAKvkZMj8dVXpa/pNYc2hMfVuN6he0gj3BztyMgr4kx8JbVutsDgweDmJgZMHjpU5aYTugTh7KAmMiWn8ptAA+BEbDoflnRIvTWxPYc2u/Pnn6K8askS0GgsbKCF+fMHT9QOWgrjGpEf7Y1Optoh1saij7qEX0k3Wy2SuZEkyeC0VRrBuv68OnmyHq2zDWzKGTp8+DBhYWGEhYUB8MILLxAWFsZbb70FQHx8vMExAggNDeWvv/5i+/btdO3alTlz5vD5559z++23m8+oTZtE7dD06ebbZwMhPb20xfeRx7WsTDgCwGMDm9PNloeKVkF+fj7jx49n/Pjx5OeXVYT1cLbn2RGtcO8VCcDCr2VDLWNYE0/aBbpTUKxjVQ21c9QqiV6hQqdpf6T1jhCoFgeH0u6Xaro1XR3tmFgSVWuohdRZ+UU889sxirQy4zoFMCCgKc88I1575x3o2tWi5tULVZ1XAMGNJcO1JvNQcwCSMytQZK4BAR4aWvu7IsvUSi2+rinVG6okguXoKLQ9oqJEDZFCGWzKGRoyZAiyLJf7Wbx4MQCLFy9m+/btZd4zePBgjh49SkFBAVFRUUw3t9OiVouOsvXrldDjDTz3nBjj1qIFOPWLIDlLpMeeH9na0qbVGVqtlr/++ou//voLbQXRwgf6hNC2dxZq91xSUySWLRPPi0JqER1adqDmhdT60Rz7LlnvRdso9PUNRkhX3N1LpMo2nownI888tSLWgizLvPbnKWLScmns6cR7t3Vm2jSJzEzo27e0KaGhU915BfDKTDWSJJMf6UdhsqtZFdmNEja0MP1b+iBJcDYhi6TKHMFx46BZs3q1y1awKWfIKhk4UIjEJSZWG9K/mVi7Fn7+WdTtPT07jfVnYm/a9Nj1ONipeGRQCO7dLwPwf/8nGya63BbWGBcHNZHJOeyPrFnKp28L4QwdjEqz7bqhsWPFQuPUKaH0XgVdm3jSxt+NgmIda483LEXqlYevsP5EHGqVxBf3hvHL9/Zs2yba53/+WRk3dT0tWsCkSaJLOPNQc7POFBt4XbeWtdamebk40DFIGc1RUxRnqLY4OIjJwKCoe5aQmgqPPy4ez3hOy6/RRwF4tAGnx0zh9u7B+PeMR3Io5vRpiU2bxPOujnbcWqKds+xAdI323S7QHXeNHVkFxUTE1XzEh8Xx8hILDaj2vJIkyRAd+u1gwymkvpiUzdslekIzR7XBraARr74qXvv444Y5d6y2vPii+J1zOogT5wuITTPPGI3eod442Km4mp5HZErVkg+WRN9iv7eqyPCGDaKY+ocf6skq20BxhsyBvkpfUaMGYOZMISLcvj2oekSQlFVAc18XXrCB9Fh+kZYVh+u29sRNY89d/QNw7SSOc30n0L29RKrs34iEGmnniLohER2y6bohgIcegqefhn79qt10UlhjHOxUnInP5GQt5rxZC4XFOp5bfoy8Ii0DWvrw+MDmPP445OeLSUBKiWLF9Osn0odo1WQeDTHbuezkoKZXydxEa9bx0qfJD0RVce6fPi0copUr68kq20BxhszB2LFCDvXkSbh8WRTK7NhhaasswtatsHixSI+9NCeT1eHiYjT/9s42kR5bdiCGl/8I54fdUXV6nAf7NcOt+2VA5t9/S0dxdWzsQedgD4q0Mv+cSqhqF5XSp7m4aNt83dCDD8IXX4gx5dXg6ezA2I5CWuD3BlBI/X//nefU1Uw8ne355M4uLF4ssX27mMn1zTfi/FKoGH10KPtYCL/tvUqxmZSjB1YnbGgFdA9phFolEZuWx9X0SpSm9Yv3bdvEAFcFQHGGzEOjRtC5s3g8YIAYp/zFF5a1yQLk5ZWmx6ZPl1kdFw4IUcEeNjCNPrugmK+2XQRgzobT/FiHDlGojwuj+rjg1EoUeS5YUPqaXojy34iaOkNidXjo8jWz3QhsAb0i9brjcWTb8EiS/ZGpLNohZtl9MLkTcq4GvRrInDnQvLkFjatDEjPzCb+SXuv93HYbhDaX0eU7ELXXj23nzBPJGXjdaI6CYuuUUnF1tKNTY1E3dKCyyHDbtqLAqrBQaJ8oAIozVHtefRUCAqBE+4irJQWcauuPgpibd98V4oqNG0OPKVcIv5KBq6Mdr4y1DXHFH3ZFlZHxf3fDaX7aU3cO0UP9Q3HvKfa/ZIlMcsk1e3TJnLF9l1JrpGvSPtAdDyd7sguKORVnw3pDAMXFsH07LF1a7aZ9Qr1p7uNCdkGxzSpSZ+QV8cLy48gy3NkjmDEdA5kxQ8hUdO8Ozz5raQvrhujUHG7/ei/v/3Wm1vtSq+GF5/WF1KEs219zIdPraRvgho+rI3lFWo5Gp5tln3VB7+bVyGtIUlkBRgVAcYZqT+/eGO5i13OTtXmcOAEffSQez/+0mC/3CIG450a0ws/N+hXh0nIK+W5X+a6ld9afZrEJDpGLi4tB8uH6sQEVMbClD+3CCnDwzyA/XzLc70N9XGjj70axTmbLmSSTPgeIEQINQm8IRIfm0KHwzDNinksVqFQSD/VvBsBPe6LMpkBcn7y55hRxGfmEeDvz9sQOrF0rSjvUavj++4Z5WTkTn8mURfu4ci2P/ZFpHIku30lpynkFMG0auHvIFKe78O8mHXGVpYxMQKUyQtjQCugTqq8bqqIjVT9ofONGRRKmBMUZqi2TJsF995V/viFetSpBq4XHHhO/b78dzmvOkZZTSEs/Vx7s18zS5hnF19svVppamb3+NL/su2z2Y6pUEtP6N8O1s6hx+fnn0pv36JL6l5qmyvo2FL2hXr3Ax0eERnbvrnbz27sF466x43JqLtvOCUfSVrSH1hy7yrqSNvoFd3VFV2jHU0+J12bOtF1xRVmWScrMZ39kKr8fjGHe32f4attFDl9OY39kKnd9s4/krNJmga+2Xar1MV1c4L57S6JDJ4PNVkhdOprDep2hHs0aoZIgOjWX+IxKnEC9JExSkiIJU4LiDJmDzz8XqbLruYnSZN9/L84nd3eY8UaWwXGYPbED9mrr/4pptToKinW08HXBoRJ731obweSFe7iUnG3WY0/uFoxf1yRQ6ThxQuLECfH8mJJU2Y7zyeQWml7/oq8bOnw5jSJbrhtSq2H8ePHYCOkKF0c77inpyPty60WeWHqEJ5cdqUsLzUJsWi5vrjkFwLPDWxHWtBFz5oise2govP22hQ2sAYmZ+bz8xwk6vv0vvd7fwt3f7ufV1Sf5ZkckH/17jimL9nH3t/vJzC/7/d56NsksshAPPSR+550P4NddcWbR3epfMrT1dFwmOVZal+amsaejoW6okuiQg4M4rwYPrjbierNg/XcqW8DLC779tuxzqpvjnzY5GWbNEo/nzJH58sApdLK4mes1L6yZQ5fTGP7pDn7ZF82l5BwKSxwHH1cHnG7ofjsak87IT3fwyh/hlYbd8/PzueOOO7jjjjsqHBtwI66OdtwzMADnlqKQ+pdfxPPtAt1o6uVMQbGOHTUoAG0b4Iansz05hVrbbzXX1zesXw9GaAgNbuOLBByLTefvUwmcS7DujhmtTubFFSfIKiimW1NPnhzSgtOnSyUXvvhCdJHZCnmFWj7fcoGhH29nxeEr5BRqUUnQ1MuZQa19mdo3hHGdAnB1rDx6vvCG6JCp5xWIJsQ2bWTkYjWXDnqZpSXe311DkIcGnQzhV6z3vNIvhqpMky9dKurxBgyoH6OsnJsnl1PXTJwI999fWuiZ1nCHRl7PrFlw7ZoI4TcbkMCnK9JwtFPx+vh2ljatSoq0Oj777wILt19EJ4Ozg5p+LbwZ3MaPIa19aeLlDIgOs6vX8ohKyWbx3mj2R6ay/HAsfx6/ygN9QnhmWEs8nR0M+9Vqtfzxxx8AhjEx1fFgvxC+6nSa3POBLFkq8+GHEnZ2EqM7+PPdrij+iUhgbEmHmbGoVBK9Q734NyKR/ZGpti12OWqUWMlevAjnzolumAqITctlwX8X+PPYFa53mVKyC0nJLsDH1bF+7DWRb3dGcvByGi4OahbcFYZapeLpp0Xt+C23lAbGrB1ZllkfHs8Hf50hLkM4LGFNPXl1TFu6NvXE0a7s4kKnk4mIz+Dz/y6w5WwS1wduNp6M5/mkbFr6uQI1O68kCaZNk3j1Vcg5FcyyA5EMbetX68/ZtakncScTOB6bblB8tzZ6h3rx7c7IquuGbpIFu7Eo/xrm5IsvSsdHx9q+1kl17NtXKmL62ec6Pt0iiqb/N7iFwZmwRiKTs5ny9V6+3CYcocndGnPgteF8/2BPHugTUsZ2V0c72gS4MaZjIL8/3odVT/Sjd6gXhcU6ftgdxW1f7eHKtdqp3IZ4uzBwqBaVUwHJSaWK1GNK6oa2nkmisNj0VFeDqRtyc4MhQ8TjalJl+y6lUFE25HyidUaHTl3N4NPN5wB4+5YONPV2ZvlyIQGj0cBnn1nYQBP4v83nmfHbMeIy8gny0PD5PWGsfqIfvZt7l3OEQDjsnRp78t2DPdnz6jC6BHuUef3lP07U2qb77weVSqbgiheb92eTkVv7lFBYE7GwOBZzrdb7qit6NPNCJUFUSg6J1Q2sTU6G8+frxzArRnGGzImnJ4aKx+iajVOwFbRaePJJ8XjaNIixj+Vyai7eLg48Psh6hVA2RSQw/vPdnLiSgYeTPV/eG8and3bFTWNv1Pu7hzTi98f78MvDvQhu5MTl1FzuWLSPi0m1qyW6tXsgLu3jgNJUWViTRvi6OZJVUMzeS6YLvfVpoa8bumbbdUNQmirbu7fSTZp4OfPb430IcC/fvXjeClNleYVanv1dTKMf0yGAO7oHk5UFL7wgXn/9dduZqfnl1gt8vlVodD09tCVbZw7hli5BSEaqQwZ6OLH26QF8c3933ErSZ0dj0pn/z9la2dW4MYwYIWzICA8yFNXXhq5NPQGRhrXW0S8eTva0D3IHqkmV/fwz+PvD88/Xk2XWi+IMmRv98KDkZKFE3UBZtEhIK3l6wlvvFvPZlgsAPD2sZZW1AJbkaMw1nvlNjDjo18Kbf54byITOQSbvR5IkBrX25Y/p/Wjp50p8Rj53frOPU7WozRnbMQD3TkKj6s81MunpYuU8uoM/ULOustZ+bni5OJBXpDWLmJ1FuesuOHwYVq2qcrMQbxd+faw3fm5lU2Kn461Pb+mDv89wKTkHPzdH3p/cCUmSePddiI+Hli0xCC1aO9/tjOTjTSKyMGtsW2aOblNjtfnRHQM49tZIJnYWaeGF2y/x28Ha6QTpC6mzTwXzbw1V3a+nY5AHdiqJ5KwCQzrQGuld0mK/bH8ML608wfBPtpfRUQOgRw9Rh7dlC+RY78y1+kBxhsyNj4/QHgKh4dAASU2FN98Uj+fOhY0XLpOcVUBwIyfu7d3UssZVQmxaLo/9fJiCYh0j2vmx5JHeBHrUrio1wEPD8sf70LGxO2k5hdzz7X4OX65ZrZiPqyND+ttj75NFYYFkGBs0poO4KWyKSDS5G0ZfNwSwv7KuElvB11eoDhpR59Dc15VfH+uDt0tptO9gVbUTFmD7uSR+3ieixx/d0QUvFwcuXChNi332WWnG3Zr5Zd9l3isRSnxhZGv+N7hFrfdpp1bxxb3deGxgKACv/XmSf07W3Im57TZwdZPRZjrz12Yt+UW1U492clDTNtANgOMx6bXaV12w9WwiD/xwgF/3i+/XwctprDxyhaiUHDycboiAt28vwo8FBWKW0k2M4gzVBbfeKn7/849l7agj3n5bFE136gR3PVBoGB3w4qjWFdYGWJqMvCKmLT5Eak4hHYLc+ezuMNQq8wx38nZ15NfH+tCrmRdZBcX8b0nN27gndgnEpaOIJv78s3iud3MvPJzsSc0prJGjpS/wtHnxRRNp6efKb4/3NXQExqTlWs1okuSsAmauFPUwD/VrxuDWYszDiy+KLuexY2HcOEtaaBxrjl3lrbURADw1tAXPDGtp1v2/Nq4d9/RqiizDy6tqXj/k5AR33yUepx4PZM/F2s8Ws+a6oZa+bhyITCPvhjrDRs4O5a97klQqwHiTq1ErzlBdcO+94ou1bJmlLTE7p07B11+LxwsWwHe7L5GVX0zbADdu6dLYorZVRGGxjieWHuFiUjaBHhp+fKgnLmZO47lr7Pn54V70DvUit7Dmq87RHQLw6CjqhvbsEekSe7WK4e1EB8y/EYkm71PfRRZ+JcNq6xuM5to1UaDWrp1otaqG1v5uLHmkFxKgk2HJfsvX8el0Mi+uPEFKdiFtA9x4dazojNu8WdSG29nBp59a2EgjSMjIN+giPTIglJmj2hhdH2QskiQx97aOTOgcSJG2dt/d++8XtuVd8OefcNPPoxvp2sQTgOOx6bXel7lp6u3MIyVRtevxdnWoYGvKOkO2fo24AVPmpSvOUF0QEiL6YZ2tt6OqJsgyPPecUG+fPBnadc9j8d7LALw8po3Zoi3m5N0NEey9lIqLg5ofHuyJfwXFtebAyUHN5/eE4ePpRpPn/+DV3w/gbOL/v6ezA0O7ueEQmA6ULtT0s8q2njX9It7a3w0HtYqMvCKuXKv9SAKL4u4O69bB2bOildEIejTz4oG+IQAs2nHJ4tGhH/dEsfN8Mo52Kr64JwyNvZri4tL61aefrlQ5wGqQZZk31pwkq6CYLk08eW1cO7M7QnrUKolP7+zK4A7BNHn+D4bN+wc7B9PP4f79wd1Thy7fgbX/FtZagFFfRH3yaoZVNic8NbQlvjfUzXm5VOIMDR4sJLvj4kpnbDYAiotLS3iNQXGGFIxm3TpRZ+foKOaQfb7lAgXFOno182Jom9rrd5ibI9HXWLo/BkmCL+4NM3RX1BX+7ho+uasrKgcNvx1LZtNp052XCZ2DDAKMa9eKC3bfFt6oJLhclbx+JTjYqWgTIOobbF58Ua0WOSQwSo1azytj2uKusSMxs4DVx67WkXHVc+pqBh+WdEe9OaE9rfzF/8s330BEBHh7w1tvWcw8o1kfHs9/Z5KwV0t8NKVznS+CHOxUfHZ3GL6N3LmUXszC7aaP67Czg1smCjsTTnpxJLp26a1Qbxc8nOwpKNZxNt76OhVdHe14eXTZAdneLpXobGk0MHKkeGzCeWXtfPcdnD5t/PaKM1RXXLsm3NJRoxpE6LGwUNQ0gPjt6JXHHyWTwV8aY/4QeW3R6WRmrxP1DHd0D2ZYW/96Oe7QNn6Gws+X/wjnqokDIkd28Me9rWj/3fwfZGeLNJxeXr8mtT/699q8MwSlCoQmNCe4ONrxdEk9y2f/XaiRZlNtySkoZsZvoo1+VHt/7itpNEhPLx21MWcONLJybcy0nELDefX00Fa0LnHo6hovFwfeubUDAF9tu8iZGnQHTrqtJFV20b/WXWUqlUSXklTZsVjrqxsCMaevfVDp/4+LYxX1nE8/DT/+CP/7Xz1YVvekp5c2+RiL4gzVFU5OQoRx82YID7e0NbXmq6/g0iUxgm3WLPh2xyWKtDJ9m3vTs5mXpc0rx8ojsZy8moGbox0vja6/vENBQQHnln+IdtuXpGfl8tzvx0wKybtr7BnV3wk7zxwKC0oFGGsjoNixsYiI1ab132oYPVpEiE6fhqgoo9/2QJ9m+Lo5cjU9z2xDO41FpJVOEZmSQ4C7hg9v72xYPLz/vujObN9eDDu2dt5dH0FaTiFt/N14YkjtO8eMpaCggD8+fQ3HPV9TVFjIS3+cMDnlOWoU2DuISfZrtmXXuoYuTF83ZIUdZSActjm3djT8XWUX3fDhoh7Pv34WjXXNe++J86pNm+q31aM4Q3WFRiO+YGDzLfZpaWLVCuJ3rpzPb4fEDcXcHSTmICOviPn/CFXfZ0e0Kpc7r0uKi4tZsuQXrhz8Bxd7iUOXr7HGxNTMxK5BOJWkytatExdsvYDivhpEhjqVRIZOXW0ARdReXqIABEw6r5wc1DxZcvP+cuvFWrdXm8LS/dH8eewqapXEZ3d3pVFJ7cbly6Wt9B99JFI51sy2s0msOR6HSoL5UzrjYFd/t4/i4mJ+/vlnzu/eiLujilNXM/lmZ6RJ+3B1hWHDxPc/8og7Z2spxKmvG7LGImo93UO8aFqiqJ9uBvVtWyAqSsxOByH9YiyKM1SXNJCWxblzS1vpp02D73dFUViso1tTT6uczfP5lguk5hTSwteFqX2bWcyO6YOFEvcnm86ZdPMd3tYPz7ZiqOTadTLFxdCzmRdqlURsWp7J4z/aBLhhr5a4lltkctrOKqlBqgzgnl5NCfTQkJCZz7IDtRPyM5ajMdd4d4MoXHhlTBt6Ny89X15/XaSfhw8vLYWyVmRZNtQ7PTIg1JAisgT6DrzP/rvApWTTlN8nTxK3vNwL/myqQXfm9XQN9gQgMiWH9NzCqje2IHrtt/jqxnIkJIhWxnffrQer6o5XXxXn1YgR4NPG+BSm4gwZSY1W1HqxkP37IaX22haW4OLFUi/7448hI7+QpSUtys8Ma2V1tUIXk7L4uaTD7a2JHep19Xoj9/UJobGnE3EZ+fy057LR73NxtGPkMDUqTSHp11Ts3SsKIjsZ6oZM0xtytFMbajsaRKpswgTo0AF69TLpbRp7Nc8MawWIOVqmFqObSmp2AU8tO0qRVmZsxwAeG1g6pubgQfj1VyHz8vHH4rc1s/1cMmcTsnBxUPP00FYWteXWrkEMau1LoVbHgv8umPRe/VSXwvhGrNtXOyHORi4OhPq4ANYdHRpWMpw2JrUara3YWFEQ+vHHwpuwQfbtgxUrSs+rr3cYX2yvOENGcrUmbcnBwWKcuyzD33+b3aa6RpaFeqtWK0S1R42Cn/ZEkVuopUOQO0Pa+FraxHLM/+ccxTqZEe38DGJ2lkJjr+bFUa0BWLjtYnkp/CoY3NYHpxaikHrtWvGcPgpXk7qhTg2piLp9eyF49c47Jr/1rp5NCGvqSXZBMW/8earO0obFWh0zfj9GfEY+zX1dmD+ltE6ouLhUl3XCBHGJsHb0N5V7ezfFw9m4OX51hSRJvDJGFINsCI/jYpLx6a7AQOjeUzgEx/c4k1RdtKQa9HVDx6y0bgigpa8rbho70flWVWqwe3dRM5SVBbt21Z+BZkKWS5t8HnoINP5ZJl0rFWfISM7UNL9cw5C+pZFlmDpVtPyCqAXPzC8y6Ao9PbSl1UWFYtNy2XxGhL71oXRLc1vXxrQPdCeroJgvthq/ih3YyhenVuKzrFkjI8vQp3nN1aQ7GOqGrG9GV32iVkl8eHtn7NUSW84msSE83uzHkGWZN9dGsOdiKs4Oahbd390wCLi4WHQxJ5Q0M9nCVPoj0dc4GJWGvVrikQHWMYS5Q5AHI9v7I8vwRcmAWGO5/bpU2f5ajmmxhbohlUoyiEQerUoxW6UqzWbY2P0K4M8/RWTI2VmUdrQJcGPJIz2Nfr/iDBnJuZoOehw/XsxVsqEqfZ1OdFouXSr+9vKCnj1FIWhWfjEt/VwNQoDWxLIDMcgyDGjpQ0u/+mn5rQ6VSuK1ce0A8e8XnWrcMMRm3s606JoNKh2RkRJRUdAjpBF2Komr6XnEpplWN9Sgiqj15OXBv/+aLF3R2t+Np4aKwv/Z6yK4ZkLEzhi+3HqR3w4KfatP7+xqSFEWFMAdd8D27WK7xo0htLxQsNWhH7czKawxAR7WMzDt2eEiXbf+RJxJtUP6Us6CWC/2nKudM6Qfy3HciifYQ6kS/dHq9JVsdPFeXCy6nAFeeAGCSuZvhzU1vtNZcYaM5ExCDZ2h3r3FMtAWloCIL9XDD8PChaXPjR4NRVqdoRZn+uAWqKxMbTq/SMvyQ6IoVq84bC0MaOXDoNa+FGllPimZ7l0dkiQxtFMjHEvUqLdtE7VE+sJVU1NlbQPcsFNJpOYUEm/Fk7aNRquFpk1hzBg4YfrcqieGtKCVnyupOYXM3XjGbGatPBzLJ5vF//HsiR0Y01EsGnJzRcp5zZrSbfU3ZWvmQmIWm08nIknw+KD6a6U3ho6NPRjRzg+dLBxQY+nQATwa6ZCL7Ni8s3aOcNtAcV5l5BVZ9QT77iElzlB16byRI8HeHs6fhwum1WNZkh9/FCb7+MBLL9VsH4ozZCQ1EfkCROjRiEnb1kBhIdx9d+mQUD1Dh8JfJ+NJzCzAx9WRiV0CLWNgFWwMj+dabhFBHhqGt7WcGrazszNJSUkkJSWVGcehr3HYeDKeOCM7uga09EXTVDg927aJ5/o0FysdU1vsNfZqg+Jxg6gbUquhXz/xuAarWEc7NR/c3hlJglVHr7DSDNpD284m8erqk4Bwth7s1wwQJRjjxpWf2zxwYK0PWecs2iHa10e196eln6tZ9inLMjGpuaw9fpV31kfw6M+H+fCfs/xzKoH4jLwKIyyVnVfPDhc1eWuPXyXSyOiQSgVDhojHkeEuJGXV3ImxV6sMRdQXk0zrbKtPujb1RJLEwOKU7ILKN3R3L/1i2kh0KCenVLj0zTfFR6gJtnGXtgKSsgqr/hJVh04HJ0+azyAzk5cnVq6rVpV/rWdPmR93C4G7B/qEWOVk+l9KOtzu6xOCndpyX2tJkvD19cXX17dMTVWHIA/6NvdGq5NZdsC4gaH9WnijaSacni1bRd1Q3+Y+gKgbMjUs36khiS9CaUi/htIV3UMa8dQQkS57dfXJGs1+07P2+FUeX3IYrU5mclhjwyiEa9fEYruigZE9jS9nsAgJGfmsPS40sqYPNk9U6FjMNcYs2MWgj7bx7O/H+WnPZf47k8jX2y8xfekR+s7byp3f7OPsDZH4ys6rTsEeDG9bEh3aZnx0aNQIcY0oiPHmgIndmTeidxIvJFrfWA497hp7WpXYaVSqzNHRZjqgFywQyZfQUJg+veb7UZwhE4iIq2F0qLAQmjWDzp1NUs2tTxYurLjhzckJCt3TOXElAwe1ivv6NK1/46oh/Eo6J2LTcVCruKtnE0ubUyn6SMFvB2ON0h1q5OJAj55aUGtJiJe4cEHcwO3VEvEZ+USn1rxuqEGgL/Y8cACSk2u0ixdHtWZyt8ZodTJPLjtadYFpJXy3M5Jnfz9OkVZmfOfAkoiTuGEvWQKHDpV/j7s7tLQ+vdIyrDtxlWKdTPeQRoQ1rd2ckPwiLfP+PsPtX+/lXGIW9mqJLsEePNg3hLcmtOfunk1oF+iOWiWESid8vpt5f58ht7C42n3PKKkdWnc8zugF69Ch4nfB1UbsrmXdkN7JsObIEFxXN1Rdquyxx4TSrimKhRYiNRXmzxeP33sPHCqZRWsMijNkAhFxNbyJODgIZwjgr7/MZo85efFF2L1blGFcT/fu8PN+4cDd2jUIH9f6U3M2ll/2iUjLuE4BFrevoKCAp556iqeeeoqCgrIX5hHt/Ajy0JCWU2h0F9Pg9t44Nk4HRKrMyUFt6AwxNVXWwdBen2nVxZ5GExwMXbqIAuobc1BGIkmiu2xIG1/yi3Q8vPgQ4VfSjXpvfpGW2esieO8vUXM0rX8zvrg7rIy21YwZIiDcunXZ9/boYf3Zc/139LauQbXaz9X0PCZ+sZtvdkSik0Uh9sHXRrD26QG8c2tHHh4Qyge3d+bvZwey+5WhjOkQQLFO5psdkYxesJPYtNwqz6suTTzp0sSTYp3M6qNXjLKpbVto5K1FLlazeXvtlJlblqSfbccZqsbhd3MTLVk2wAcfQGamkKe4667a7cvKT0frIqI2bck2UKXfubMo9ATRQQbQoWce/5QMNZzW3/paXzJyi1h/Ig6AByyoNq2nuLiYhQsXsnDhQoqLy65q7dQq7i8p7v5572WjHJKBrXzRNBXh6i1bxPY9SmbBGXvT1tO+ZOWdkl1AYmYtUr7WhP68qsUiw16tYuF93ejSxJP03CImLdzLvL/PVBm9++90IiP/b4dBamLW2La8NaF9hY0Ffn4QX+L76rvHrD1FFp2aQ/iVDFQSjOlY8xrB7IJiHll8iAtJ2fi6OfLd1B78312lI0luJNDDiUUPdOfHh3rQ2NOJ2LQ87v52PzEpWZWeVwB3l0SEfz8Ua9R5JUkwpCQ6VNu6oZa+JWmypNrPO6tLuoV4AuK6UWTsXLdM65XiuHoVvvxSPH7vvdovLhRnyARqHBmC0ov2tm2lHoeV8X//J9LErVtDdDR8+CEUh15Gq5Pp18Kb9kE1rEyrQ7aeS6SgWEcrP1e6lWh+mJt9l1L5fMsFZq0O58EfD/Loz4dYsj+ahBp0j9zdsykOdipOXs2oPlyNWM15thDbbdkm6oZqKqCosVcbQvoNoogaSs+rf/4RrZA1xNnBjp+n9WRC50C0JVGJsZ/t4vtdkey7lEpaTiHhV9L5YXcU932/n0d/OUxsWh6BHhq+faA7/xvcolLdrXnzRBF1t26i42XJEiFgas3oo0J9W3jXeLafVicz47djnE3IwsfVkTVP9Wdke+MkRoa19efPJ/sR6uPC1fQ8pi0+WOX2E7sE4eygJjI5h8PV1cSUMHqEqH3Mr2XdUHNfF1SSmImYXJu60jqmuY8r7ho78ot0nI2vpr7p4kWxOm7XzmTpivpizhzIz4cBA8wzzkZxhkzgcmouWfk1DKl26CByUPn5pa1BVkRKipAvB/Elc3WFZ1/Qcvia6LKxxqgQwH9nhErzqA7+ZheBPJ+YxYM/HuSe7/bz6ebz/HYwlh3nk/nvTBJvrjlFn3lbuP3rvZw2oZbMy8WBW7uItINeqqAqHOxUDO6vRrLTkpai4vTpUmfoXEIWhcWmTe7WO7TnaioVYW307i3mKe3dKzrMaoGnswNf3tuNbx/ojr+7I1EpOczdeIZ7vttPtzmbueXLPczZcJo9F1OxV0s8MaQF/70wmFFVaG5duQJffSUev/eeGMZ6//0wbFitTK1z9M7QhM41T5G9/9cZtp5NwtFOxfcPikhPZeQXaUm9wZHwc9fw62O9aeLlRExq1R2Yro52TOgsIljLDxnXGWioG4rzZNeZmjtDGnu1YRjqxUTrTZWpVJKh9utIdDWfNzgYLl2CuDg4frzujTORixfhhx/E43nzKh9no9UZ78jZnDO0cOFCQkND0Wg0dO/enV1VyIZv374dSZLK/Zw9e9bk4wa4i9XRmeo86sqQJKtOlc2fL1avYWEwZYp47t+IRNJziwj00Bjm21gThcU6dp4ThbPD25lP1FKrk5mz4TRjFuxkx/lk7NUSt3UN4rkRrfjw9k68MqYt3UpaVY9EX+O2r/bw4+4oo0Pk+kLqv07GGzWiY1A7bxwbi4vXtm0Q3MgJDyd7irQy503sYGlREtKPSrHO6KTJqNXw/PNiBWsmZ3hUhwA2PT+Yl8e0YXQHf4IbiZu4u8aOYW39eGl0GzY9P5hXxrTFxbHqUfPvvSfEFgcOFHpdtsCl5GzOxGdip5IYU0Nx1fUn4vihpAP10zu7Gurc9Gh1Mv+cSuCd9RHc+tUeOs3+lw/+Ln9dDvRw4tdH+xDoUX10St88sTE8nkwjFq2tWoG3nxa0av7bUfOoImAQeb1o4uDY+iasJHoeXl1kWKMRk07BKu9Xs2eLQPDYsSIyVBnHTGiIqPpMtjKWL1/Oc889x8KFC+nfvz/ffPMNY8eO5fTp0zS9sfL3Os6dO4f7deIDvr6mz6xqG+hO0uUcTl3NoFeo8aqWZRg3Dr7+Wny5ZNlqpjPGx5fmXufOLc296kUM7+jRBLWViSwCHLqcRlZBMT6uDoYJ0rVFlmXeWnvKMNV8TIcAZo1rS4i3S5ntnhjSgoSMfN5Yc5L/ziTx7obT7LyQzOyx1bcIdWzsQYcgdyLiMvk3IoF7elXdodetqSeakETyo33ZuVPm6aclOjZ2Z8/FVE5dzaBjSaTIGJqVfI6oFOu+aFsaDyd7nhxS+n+ZU1CMk73aJLHRqCj4/nvxeO5cqzndq2XDCREV6t/Sp9LanqrIL9IaHJunh7ZkfOeyNUcxqbnMXHmCg5fLRieiUipWZ2/i5cxn94TRd7b4+6+T8dzRp/x51q1pI1r6uXIxKZv1J+K4r3fV4quSBEOHwB8rIPKUE8lZBTVOCbb0c+W/M4lcsOLIEJRGlY2qfx0/HtatE/V4b7xRx5YZT0SEGHIM1Te8bTmbZPR+bSoy9Omnn/LII4/w6KOP0q5dOxYsWECTJk34+uuvq3yfn58fAQEBhh91DcLp7QKEM1Xj9noQsfGZM2Hx4prvow6YN0/oDPXtW5p7jUnNZc/FVCQJ7ugebFkDK2HzaaELM7SNn9kUsT/69xzLDohRCp/d3ZVFD3Qv5wjpCfDQ8N3UHsy5tQOOdiq2n0tm2znjTj79DeKvk9V3lbULdMc5WKzk9h8Q0aeOQTWrG9ILxF02sS3f6lm2TLSTRBun4WQqLo52Jn/H3n1XrF5HjYJBg+rErDphQ7hoSJjQuWaF0z/tuczVdFFP9fSwUqdFlmV+OxjDmM92cvByGi4Oaqb2DWHBXV3Z+dJQVk7vW+k+OzX2NDx+d8PpCgueJUkyFFIbmyob2F/cCwoTPDl0ueapMn0t3gUThsZaAv3C6UJSFnmF1ch76KUr9u+3Ks2ht98WsYTbbxd1eJUhyzJbzhivHWYzzlBhYSFHjhxh1A2Vh6NGjWLv3r1VvjcsLIzAwECGDx/OthrW67QL0jtDtSg8dXaGjz4SyWorWSbGxMA334jH169elx8WkZEBLX1o4mV9bZayLLOlRCTPXCmy73ZGsnC7mMP03m2duLVr42rfI0kSD/RtxrqnB/DYwFCjHcfxncSNZm9JcW5VaOzVdO4qaoNiY1SkpJRe1E6Z6Jw38xH/l2k5haTnmncml0X5+mtYscJqpCvOnYNffhGP58yxrC2mcD4xiwtJ2TioVVXWQlVGanYBC0vED18a3QaNfenCc/Hey8xafZLcQi29Qr3457lBvHtrR24La0xTb2eja/4ycouYtepkhWnpSWGNsVNJhF/J4HIlkabr6dFD/C5M8KiV/lYrf9vQGvJzc8TH1RGdbMSIKTNIV5ibo0eFMLAkwTvvVL3t6fhM4tKNb3KxGWcoJSUFrVaL/w0DT/39/UnQj4C+gcDAQL799ltWrVrF6tWradOmDcOHD2fnzp2VHqegoIDMzMwyPwDtAkq1JIwRzLMV5s4VmpBDh5YWdRZrdaw8LPQ6qkvhWIoLSdnEpuXhYKdiYCufWu/vXEIWH/wjQvuvjGnLvb1N+9xtAtx4fXx7nJ2diYqKIioqCienygtGQ7xd6NjYHa1O5t+Iir+/19O9lSt2XuJCe/hwabj7THym8W2yiK6pAHcxbLOytIRNYoYWe3Mye7YQnb/lFujVy9LWGM+Okhq8fi298XCyN/n9n2+5QFZBMR2C3LntusXErgvJzNlwGoAZw1ry+2N9TFpkOTk5ERUVxX8HT+Ko0bDlbJIhMnw93q6O9C4ZWVPR6zfStStIKhlttoaDEcaNyakIfS1eSnah2Qf/mhNJEil2gAhjnD99dMhKzqu33hK/771X9CRVxb+nqr+uXo/NOEN6blw9yLJc6YqiTZs2PPbYY3Tr1o2+ffuycOFCxo8fz8f6tqkKmDdvHh4eHoafJk1E2DXAQ0MjZ3uKdaYXrd5gMGzaBM8+C+npNd+PGYiMhJ9+Eo+vX71uP5dMUlYBXi4OjDBjYbI5+a8k/NmvhXe1RazVoa8T0upkRnfw54khNR89oFKpaNasGc2aNUNVjfDFuJLo0EYjBBi7BHviGCAuXocOQVMvZ9wc7Sgs1pm8Gi1NlTVAZ2jLFpHztSAREbB8uXhc3erV2tDX8fRt7m3yey+n5Bhq7V4f186QVoxKyeGpZUfRyTClezDPj2xtcspRf14N79mRx0oGxn66+Ty6CrqF9NcsY5whZ2do0Vosbo8flWqsE+TiaGfolrP2Imp9iv2UMXVDkybB1KliaKWFOXBAlNuq1aWzyKri3wjTxuvYjDPk4+ODWq0uFwVKSkoqFy2qij59+nChimm8s2bNIiMjw/ATGytyz5Ik0bakbqhWoVBJEo7Q55/D5s01348ZmDNH1DSMHg39+5c+v6JkaOXt3RqXUdO1JraUtNSbI0W2PjyeA1FpaOxVvDmhfa33Zyz6VNm+yOpTZV2beOJQMsH+4EEZlUqiQ8kKz9S6oWYlzlBUcgNyhjp1EmH9vLyKB4HVI++8U1rT0LWrRU0xCZ1ONtTN1KRJ5LeDMRTrZAa19qVfSxGtLSzW8fgvh8nML6ZbU0/em9Sx1hIYjw9qjpujHWcTsvi7gtW/XsvocHSaUd2afXuLa1xKlAtJWTXXCSqdUWblzpB+RqExJR89e4rJ3bfcUsdWVY8+KjR1qugErIrLKTmcS8zCzgSn2zrvdBXg4OBA9+7d2XyDA7F582b66adXG8GxY8cIDKy8MNDR0RF3d/cyP3pa+ImbyKXaev5WEHq8cKG0puH61WtGXhHbS0Llt1tp4XRGbpFBUr62E+qzC4p5b6MI3z81pCXBjWpXH1VYWMhLL73ESy+9RGFh1RdiU1JlzX1d8Wwqvnf7DwrxxdIVnmnOUHO9M9SQiqglySrOq/BwWLlSmDN7tsXMqBEXkrJJzy3CyV5tUociQJFWx6qjYqjr/delmH8/FMOFpGx8XB1Y9ED3Gg95vv68craDhwcI3bP/++98OS2Z4EbOtAt0RyfDViO6ifr0KhnamuBRq5rQljYyo0z/f3s+MYuCYtso+di9WyRU7OyMa2zTX097NjPeqbcZZwjghRde4Pvvv+fHH3/kzJkzPP/888TExDC9ZFTtrFmzmDp1qmH7BQsWsGbNGi5cuEBERASzZs1i1apVPP300zU6fnMf8WW/lFTLFbU+pP/336KwwAK8+6449PjxQrdOz6aIBAq1Olr7uxoiYdZG+NV0ZFmkioKqEHIzhm93XCIxs4AQb2ceG9S81rYVFRXx8ccf8/HHH1NUVL3WibGpMrVKEp0Tko6UJBVxcWJiN5juDBkiQw2tvV7vDOmlKyyA3gG6807o2NEiJtSYg1Fi1l23EE/s1abdGrafSyYluwAfVweGlixQcgqK+XyLiMI/O7wVfm6aGtt243n1yMBQPJzsDW30N6KPDm0+XX3dyPVF1Cev1Lxb2FY6yhp7OuHpLHTKjIpiyTIcO1baaWMB9GmxadOguRGXab0zNLyd8TI6NuUM3XXXXSxYsIB3332Xrl27snPnTv766y9CQoSeRHx8PDExMYbtCwsLmTlzJp07d2bgwIHs3r2bjRs3Mnny5Bodv0XJl73WkaEBA4TEc2KiKI+vZ86dK9VpuLGmYb0ZlGfrmhOx6YAY0FgbCot1/HpQfF9eHt22TOdLfaEXtTsYlVZtq2v3Fu7Y+4jv3qFD0KEkMnQ6PpNiE4qoQ69Lk1nzLCWTGT5ciMX5+EBG/Y8bOX4c/vxTRIWMqWmwNg5ElaTImpleL7SyJLU+KayxwZH6YXcUKdmFhHg7c7eZGzHcNfY8XrJ4+WLrhXLf41ElztDO8ynVNrx07gxqtYwuz5EDJ2teb2YrHWWSJJkWVU5JERO7p08XA8HqmZ07YetWsLeH11+vfvvM/CKOl9wjBrc2PnNgU84QwJNPPsnly5cpKCjgyJEjDLpOwGPx4sVs377d8PfLL7/MxYsXycvLIy0tjV27djFOv3qsAS18SwtPTbn5lMPBAUaOFI8tENLXR4VuuUV8x/Wk5RSy56LQk6ipxkh9cOKKOIG7BJsWyr+RTacTSMkuxN/dkVEdLFMoHurjQpCHhkKtjsPVSOR3DfbEsaRu6NAhke5ycVCTX6Qj0oTOsKZezqgkyCnUWvUsJZNxdYWEBFFp6elZ74fXLyzuvlsIYtsSslzzeqHkrAJDOuqOHqLhJDW7gG93RgLw4qg2JkeajGFq3xCcHdRcSs7h0OWySsMdgtwJ8tCQV6Q1XNMqQ6OBlm2Fw3T0SM3rmfQdZfEZ+dVr+FiYDqbUDfn6lrZE/v13HVpVMfqFxSOPQEjVOpoAHIxMQyeLa2ugCZkDm3OGLEmQhxMaexVFWpkr12rZsWKh+oazZ+G338TjG2sa/j4Vj1Yn07GxO81LTmxrQ5Zlg9df28jQsv0iKnRXz6Z1crE2BkmS6NtCFJvuuZha5badm3jiUNJRdvCQKKJuG6ifNWZ8aN7BTmWojWpQRdQAHrVzkGvKsWOwZo2ICr35pkVMqBUxabkkZhZgr5YMIxuMZc2xqxTrZLo28aS1v5Ag+WnPZbJLWuwndKqbhZWbxp5bSub8/XYwpsxrkiQxoiQ6pJ9fWBV9ewsnKP6SU431tzyc7HF2ENHlhEzThzjXJyZ1lIHFpCu2bxc/9vbw2mvGvWdfpLiO9jGxI1JxhkxApZII9TFTqkzvDCUmiuGt9cScOSIFfOutYg7Z9ehz7xOtOEWWkJlPclYBapVEh6Ca1zRdTMpmX2QqKgmDaq2l6N9SnLT7LlW9gg3y0OAbIr4r4SdFWkA/XsMYgbnraZDt9deTmSmGgtUT774rft9zj+1FhaA0RdY52NPkdPGfx0Tq5I4eouFCp5NZfVTolE0f3MJs6vAVoU+/bTwZX86JGdRK1IsciKx6kQHQo5v4zEUpriYNXr4eSZII8BB1UfHplpV3qI6O1+mUGZXl0N+vNm8WwnT1hD7a+uij0MTIy/S+S+L/u28LxRmqU/Spslo7Q0FBcP68EPvR1Lyw0BSujwrdWNOQlJVvuCDeOEvImjgRKyIjrf3dcHaoub6QfiU5rK1/rYuwa0u/ksjQyasZZORVXnQtSRLduohTNilBRWYmhJYoSps6XkPvDJmSXrMZHn4YvL3rbRV7/HhpVMiKRjiZxMGomqXIUrILOB0vnIfRJfVv+6NSicvIx01jZyhkriu6BHvQLtCdwmKdwSnT07OZF5IkvuPJ1bTMt20rfhelutZq5FKQh7iWxGdYd2QoxMsZV0c7CoqNTLGHhYG/P2RnQxXD0c3Jjh2lUaFZs4x7z7WcQsP3sU9z077LijNkIvq8cK07ykCIJdTjWI65c0VU6JZbykeFtp9NRpahc7BHrdvL65ITV9IB6Nqk5umQYq3OsHK9z0Sl6bogwENDc18XdHL1q9i2TZ1Qu4gL7ZkzpZ1hpkZ4Qhui1pAeNzchoFVP9Q36qNBdd9lmVAjgaLSouellQisylK7C2wa44eMqhpz+WdJiP6FzYJ03JUiSxD29RMjg94OxZQqpPZztaVOStjtczdwx/f9bcbozJ6Jr7gzpI0PWniZTqSRDwbdRHWUqVengyno6r/RRoUceMT4qdKCkI7KVn6vJ3YuKM2QiZusoux6tts5b7M+fL40K6cWrrkc/YHRom9rp9tQ1+k6yzrWYUn/iSgbXcovwcLJnUGvjWy+vp0ir43JKTrlCSScnJ06dOsWpU6eqHMdxI/1LokN7L1XtDLXwc8HOW3z3zpwpTZNFm+gM1dSJsgmur8er42658PDSDjJbrBUCKCjWGr4H7U1MPe8tSe32LxFZzCvUGoYPT+5mPp2yqs6rW7s2RmOv4lxiVrmojl5n5mA1zlBgIDi76EBWcfRU9ZIYle6nxBmKs/I0GdRACkB/XtWDqOnOnbBtm9AVMjYqBDVPkQHUbo7BTUhzc6cXnnoKfv8d1q0rKwNtZt5/X/hbEyaU7SAD0WK+64K4qA2rpYhhXaLTyZw0dJJ51ng/O88LUckBLX1Qm1jPEBGXwbc7I9l2NonM/GJA6HY81K8ZU/uF4GinpkN1Q3MqoF8Lb5bsj66286W5jysOPlkUxPhw5gzcfreI4qVkF5KVX4Sbxrh5Us2vm16v08l1WtdR7wweDE5Oog345EnRO11HzJ0rft9xB7SvP/FysxKdmotOBldHO/zcHE167+6LemdI3Hw2nU4gp1BLEy8neoQ0Mno/yVkF/LLvMisOx5KVX4xakujerBEP9m3G4Na+qFSqSs8rDyd7hrT245+IBDZFJJQRjOwV6sWS/dGGNGBlSBK0aiNz4ihEXVLX+JwILEmTJVh5mgyglZ+Iml0wVgpg9Ggx7mbAgDq0SqxfHnxQPJ4yBZqaELzXF0/XZJyMEhkykeYlNUNpOYVGSb1XS1qa+Nm4sfb7qoRLl2DpUvG4oqjQ4eg0sguK8XF1MAwAtUYiU3LIKihGY6+itX/Nu912XhDO0KDWpg14XXk4lkkL97L2eByZ+cXYq8XF8mp6Hu/9dYaRn+4kvCSNZyp9W3gjSeLClFJFu3sLXxfsSyJDERE6ZKCRs3CAlu2PYcn+aL7YUl535UYCPDRIknCErzWk6fUgavCGDxeP6/C8ioiAP/4Qj201KgSlujgt/FxNGpURm5ZLbFoediqJXqHi5rP+hIgKTQoLNnpf/0YkMHD+Vr7YepHEzAJyC7VkFRSz/Vwy0xYf4u7v9ld7rdVLY2y6YR6ZvgbqTHwmWflVR3w6dRC3w7wkFxKzaubM6CND1l4zBNcpZhs7PsTdXUzzdnCoQ6vg8cfh8mXxWL/YMIaU7ALOl3yW3oozVPc4O5QO5Is0R6qsHloW580TmbixY8WomRvZVqIRMri1n1VHCPRS+R2CPLCrYSt8Rm6RIdVmSorsq20XeemPcAqLdQxr68eqJ/pyds5Yjr81kvm3d8bPzZGYtFzuWbSb/z3/CrNnz652HMf1eDo7GOrRqpo15uvmiFuACMHvPFRI59mbuJYrLvIf/HOWN9ec4u9TCdXeiOzVKrycxUWtQWkN6dGH9OuwvuG990pnkNma2vT1GJyhkoWeseijmF2aeOLqaIdWJxtq3kYaOTNw/Yk4nlx2lPwiHV2CPVh4Xzd2vjSUv2YM5NEBobg4qDkYlcbEz7Yx46VZlZ5Xw9r6oVZJnE3IIjattJnA311DUy9ndDIcib5W7n3X06G9OGeKU12JruGoGlupGYJSZygyJbt2unlm5JNP4PvvxWMvL2hhwsxs/XWzha8LXi6mO2yKM1QDmpurowxE6FGS4MSJOlH3vHxZzNmDylev20pmkVlzigwgpuQCZepF+3p2X0xBJ4t8uT6kXR37I1P5ZNM5AGYMb8X3U3vQPcQLtUrC09mBO3s2YcuLg+kV6kVWbgHfLpjPO++8Y9Q4juvpWFKvcepK5c6QJEm0biMuXNkpjsjF5U9hY3VifEtSItV12tgkemdo7164VvVNsCacOyey22C7HWR69Ncx/c3RWPaU1Gf0L6nPOBOfSVZBMW6OdkbVHh2MSuPZ34+h1clMDmvMqif6Ma5TIE29nWkf5M4bE9qz5qn+NPVyJjYlmy8+/qDS88rT2cFQ/F1ZdKi6VNn1HWUxNXSG9N1kaTmF1SpfW5rGnk442asp0spEpxn5efPyxKDxzp0h17yzDb/+GmbOLP27b1/T3q+XRNAr85uK4gzVAP0K3ix1Q9ere9ZBdGj+fNFYM2JExV+uK9dyuZiUjVolMaCVaWmj+iam5IRtUotuN329kLFRoWs5hTy//Dg6GaZ0D+aFka0rjJ65aexZPK0nvUJL6yRMVaHV1zpUpwrbrrkDkmMRsk7Cq7h8909YU+NqNRq0MxQSIsYHfP45qM3f0fT++yIqNHGibU2mrwh9ZKiliUKr+llm+gn1+0uiQj1DvaqtxSso1jJrdTg6GSZ2CeKjO7pUGO1t5e/Gmqf608yn9JyvLIqhb+PfdMPQY72TVF1kyOAMpblwOaVmN3p3JzucSjrorL1uSKWSTB8uq9GIjoGTJ0WFs5n4+Wd48smyz1WUxagKvTNkahOAHsUZqgH6NFl8upm+7NcPbjUjV6/CDz+Ix5WtXg8axNY88Ph/9s47vqnq/eOfm91070UXlFKg7L2RJSBDUXGBIDjRnwJu/aq4FRci7oUDBzhwgOwNBcoos2V0773b7Pv74+TepG2a3HuTtEnp+/Xqq2l6c3Oa3nPuc57xeTy4Jd92FIwxFB0o3BhiEj65GkNrdl1GUY0K3YM88fIc64nRSpkEH9xm0ix4Z3s6r7GxxpANVdgeIV5s3tBgn9b69Jw9Q16d2BgCyFZz2TKS6+BAMjOBDRvIY3fOFQJIUUKmUV6hBw/PUFWDBiW15LphrtujmWQt4aLv8tm+TGSUNSDIS47X5iZZNZ4CPGVYe7tpXjFtPlrCGEMp2ZWoaTR5j5jWE+nFdVZz6Xr0AERiGrRWgotXhVWUURTlVnlDPfkaQxTl8BD0xo1EGqwlfGUqTGkUXcZQu8HGhR11sTtJ3fPdd8npxo0jBTaWYHr6DOOpL9IRMLkAUQHCjKGKejUKjCWvQzhUupTVqfFLCmlA+eqNSfCU2y6+NI9V/3w8z+Zu1BxmR1NQ3WQ1YbR7sCek/uQGFikOgsTsRuLrIUVcILcwYqf2DDmRt94iOXjXX89/9+pqFNY0oUmrh1RMIZrHvLpcQsqxu/l7sPlCjKdoRJz15NWyOjU+3ncVAPDi7D7wVdrehPU06gUBwJcHM9l5bE5UgBI9jHpdKWal9PEhXhCLKNQ0aVkDzhJSKRDejXhzr1wVLsnAqlDXuH55fTyrNcS9nQ97v9qyxW7pir17gbvusqwsw8cYqlfrWOHZPuFdxlC7wWpJOOpiHzQImDYNWLHCYa05SkuBzz8nj63lNJw0NgflYhx0JGqdHkXGpEQ+i7Y56cb+XTGBRH3VFt8ezoJaZ8CAKD+MFqBbAQBvb0vn3BneRyFlxRAvWAmV9Qj2gtiHXHtlxWJcb9Zktm+ED+ckeNYY6owJ1Ay5ucBnnxH5dQeQlwesX08eu7tXCAAyjF6hmEBPXv35GGOIETVML65FrUoHL7nE5s7815RcaHQGDIzyw2wBavcqrQFvbE2z+Dumqs1cV0guEbNSEmnF1r2ujLhfXj7vYbGEu4kKNSCgvB4wVZRlZ9s9r8aNA775pnUDVpEISEjgfp40o+p0mI8CgV785CHY9xT0qmscphNuSa0KBoMDRN1EImD7diJl6yCX/gcfkFy3YcOAqVMtH1PdqGFLEflognQEBVVNoGlAKRMjUEClAGCaMIlh3jaOBOpUWvyQnAMAeHhiD14lxwwyiQjHsyqxz5inxAXmRmKtoiwuyBNSX2IMZWQZcM+YOPZ3fAxFxhgqtbJbdntWrgQeegj49VeHnO6ddwCtFpg40amyYO2G0HyhS0ZjKME4l44ZQ2RDY/2tVnrq9AZsOEZa4SwaHSNoXokoYMvZIjZHyZwRxmTplkruTEPj9CLrHpD4ODL2ujKZ1dY41gh3dOTAiZjnDOm53su8vMgEAOwOlUkkwMKFxChiTg0A3bsDch42zYUC+0JkQJcxxAuaJg0I/zU2NNXqaTz2y2k8+MNJPPvH2Q4enYmqKuDjj8nj559vu+MHE8LpHuwp2JpuL/KqyM0/OkApaAEFgDTjQtibgxt1T3op6tQ6xAV5YgrHMuGWLBhJ1MLW7LrC+TVM/sUFK3lDCqkYIWHEr5ydQ2NIjD8UUjKV+YjmsTlDndkzZK5GbSclJcCXX5LH7l5BxiC0kuxyMXmduWcIsC2Guju9FEU1KgR4yjAjSVgPxPnDumFk9wCL5dNM5dj5wlrUq3Xs88wGKN2GZ6i70RjS1SkEV5S5U5gsOkAJiYiCWmdACR85AAfOq6wsU3eEnTtJPt7cufzOwfQjs8cY6lKg5gFFUdh6rgi70krZ5/45S0TGHNL5vK6OKHyOGEH04QWybh05VVISqXZpixNGY8jVvUKAKXnanr5pzEKYGGZ7wmw7TypSbugXzkt7SaFQ4Pjx4wCAmITe+OlkKc7kVeNsfjWnFiJJxrJQZnK3RWQUjTQAhQUiUBSFmABPXCqp45R/wXBN5Awx/ZRSUkjsOES4fMQHH5Ao9ogRJFLQGWDy8GJ4FCXQNG3yDBmNISbcZsuo+v0kiT/NHxrFq2+Z+bzq238APGRSi5uiCD8PdPP3QH5VE07lVLGFEowxdKnYumeICZPpaj2QU9mAft34l2lH+LlPArVYRCHcT4G8yiYUVDdxb1o9cyYRBerTh+QN2dFjc/VqkoM3dSowciT5uvNOfudg1kuhlWRAl2eIN7cMsWz0jBSgeNmKuXOBm24ipYsCqa8HPvyQPH7uORKBa4uTrDHkPsnTQvOFtHoD25DQVoJdk0aPfUbtpelJYbzeRywWY9iwYRg2bBhCfJWY2Y+8/sejOZxez2hY5VU2WhVCizZehg11pHs9UzHTqOZezs80Mqxp0kKtc21NFMGEh5OcPJomoWiBVFUBn3xCHlvztrob5fUkUT/Eh3tTy9I6NWqatBCLKHQP9gRN02bCjW0bQxqdgRVqnMUzV8h8XinlMqveYcY7xDTtBExhsqul9dDorMwrY+sHfa2HYOHFUONnycvT0oEw1dEFVTw8WT17Ajk5RLrCjslQWAh8+y15/Pzzws5B0zQrhcDXw2lOlzHEk0mJIRbdsyM4lJPa5PrryXc7Wgh88QVQUQHExwPz57d9HE3T7C4pyYVbcDAwLuvoAO7NT83JKm+ARm+Ap0yMbv7Wz3HgShmatHpE+nnY5XYFgAUjSWbg32cKm5X7tkWYjwIyiQg6A211Z9ktRAqRgtzI8vLI6wCggkeLGB8PCWTG/A7mptgpMa9+EchHHxFva//+pL9fZ6HCGCLlk4fHrBuxgUoopGJUNGhQ06QFRZmMeUuczKlCg0aPIC+Z4IofLjCVsWfNxEsjfBXwVkigM9BWxXIZY0hXq0A+H+PADD+jsnttk87Gka5BpB/ZYFqq0LOKA3YE778PqNUk/278eGHnqG3SsSFReyIHXcYQT2QSEeYOjGj2XEygkrOasVWYRXvvXpL9zBO1mpTTA8Azz1jXmmu5u3N17NUYYpOnw21XW+27RMKg0/qG8s5P0mg0eOedd/DOO+9Ao9FgSIw/EsO8odEZcDSrdcJnS0QiU4mztY7yIT4KtqIsNxcIEpD/Q1HUtREqY+bVjh1EgZQnLb2tncUrZDDQrIRDEI+cQabyiA2RGX/u5u9hNfS1nxE87RnMu+1Py3llDSYnMM0sWZqiKHa81jR1mDAZrZGiuEyYMeOtINknGr3B5VWoAbCbw/wqAZ4wnQ5IThZUYl9RQQo9Afu8rXnGcQd5yXmFXlvSZQwJ4NYWoTKmgsFukpKAbt2IIbR/P++Xf/cdUFQEREYCCxZYP7bl7s7VYSaqUMufcaNyaeVxOrcagLDQp1arxVNPPYWnnnoKWq0WFEXhrZv74+DTk3B9X24ht1ijwWfNTR/sLYfEh3iOcnOBQC+yGy3nadQEXQvG0IgRpNFRbS1w8SLvl3/+OemlHB9Pumh3FmpVWuiMFUT+ntxzzZjwDxNeuVpmO0QGmIyhCb249wRkaDmvrNEr1BsURRp3ml/XzE3fmgfE0xPw9iVhtIJ8YXdnT5kpFbdO5freoUjWGOK5Adfrgbg4YPRookjNk48+AhoaiIL79Om8X87CjNuWx98WXcaQAPpE+DT74B2SLwQQ05hJ+ORZsqjTAW+/TR4/+aTtskRWJ4RDmXlHozfQqDUuKkLL6pnGiWE2PHiNGh372diqjOHKwCg/9sbBhegAYrDlWPMMecshMfMMMZVhfMJkwDWgQg0QF+nWrUB5OYlz8UClInmigG1vq7vBhEa9FRLIJdz/MOZaYbyKGaXG5GkrxlCdSst6Z8fGO7ftj4dMzAqPmlePcc2NCYsgxlBJkbDbo1hEsTpm5hVtrko3P9tGokXEYmDAAPKY5/2qro6kGwH2e1tNG+UuY6hDmNbHVG49wlHGECA4v2HjRtImICgIuPde28czniFGdMuVqTfbXXkrhLUMKWWMIRuJohcKa2GggVAfOVsi294wfZiyrXiGQrwVkPg3QB5UD19fk4ennGeZPKs1VOceyZ6CGTEC8PPj/TLG29qtG9FD6Uww+UJ8QmSA6VoJ8TEaQ4xnyEryKrPehPsKF8XjQ2K4sZTeLFQWycEzBADdogBKokeN9RaBVmFCZXUqYVpF7QnjbSdabjzDXQLvV59/TooSEhKAefP4vWVLTJ4h4flCQJcxJJibB3djH/PZ9dtk8mSiC5+RQawbDhgMwJtvksePPUZcvbZwJ89QrXFB8ZCKIZMIu2RL6hjPkPWF+ExeNQDHeYWEEGPc1VrTOQnxkcNnaDbClu7HiscNrMesulELrZUqtJYwr6vi6VG6FmjpbZUJc0q6LIwXka+3lfUMeZHNApfy/DSjMcRF8NQR9DbKZ6QJ8Ayt/0GPqJXbQMXncRcibAHrGXKDMFmYrwIUBah1Bv6FFIwxdOQIUF3N6SUqFUmcBhzjbe0Kk3UwUWYT36FJct7ewC+/AFevEhlODmzZApw/T1768MO2j6dp2iwJUngpYnvBKMH6eAiXxSquIQs4U07eFqmMMRTlJ/i97CXGmECdU9nQpsJ5gFLG9iQrr1fDXykDk5Nqra9ZSzxkZCVqcoNET7tZv56ImDD9NGzw669EEI6rt9XdYCvJvPgZQ6VGY4jxDDHeSGuCn0yIjIvgqSOwpDjNekCqrXtAIgKloCiSE1zVKGyTwHiGat3AGJJJRAg1rou8Q2WxsUBiIskf2rGD00sYb2tUFOlLZi8dFiabNGkSqi1YgLW1tZjUWZTIOOAlk4AJc9Y62hU6bx5pocwBmgZef508fughwJ+DfmJtkw6NGnLzs9e12B4wn6+PwBCZVm9ARQNZsG2FvrLKSf5Dr9CO85gx7nyV1tDmYiwSUWx4o7RWDZGIQoAn/1CZh5Qxhrh7k9yW7Gzg2DHgn39sHmowkIasALB8OaB0/WnCG8YLwCdspdbpUW2UiAj2kkOrN7A3fOb6s0S6WTVne8AUIeSZVUgxnqF6tc5q2btELIKfUbyUz8bCHCac7w5hMgAI92NaiAiQE+ChRm3ubX3iCfu9rTRNs56+djeG9u3bZ7G0UaVS4eDBg3YNxp0QiSi2i3lHVgzs20fWd4WCtGHiApNM7KeUukUlGbNw+XgIM4bK6tSgaUAqphCgtD77GJdrlEBxR0cgFYvg62F7MWZ25sxOPYipKOPh6mY9Q5prwDPELNq7dpEGY1b4919+3lZ3hNkgBPEIk1UYry2pmIKfUsqGV0UU4NfG/DTXNOvdTmEyZkNRp9KxnmUPs76G+dXWy8gZLbkKgfpbXgr3SaAGwK6LVRy00FrBzKtt2yy3nzfD0d7WJq0edcbP2FZxjC04xx3OnjX13rp48SKKi4vZn/V6PbZt24bIyEi7BuNu+CgkqFfrnGMMbdpEmrQsW0Y62rfBG2+Q70uWAKEcW2gxPXNsJRO7CibPkLAwGVMKHOKtsKpvUqvSsgtnpMBdhkKhwN69e9nHQgn0JI0iKxo06NnGMUwlWHmzRNg6XuX1jGeo0ypQmzN0KBAcDJSVAYcPm5pNtoCmTfNq2TJBedduQYUAz1Apmy8kB0VRbN6Rv1LW5tyqatSiwWhsC9UJ4zuvlDIJAjxlqGzQoKCqid1cRPp7oML4XN+ItsVmAz1lyCxrEOwZ8lF0/EaZD4xQZLUQY2jsWOCll0yiwW3gDG8rs1EWiyh4yuzb2HO+uwwcOBAURYGiKIvhMA8PD3z00Ud2Dcbd8FZIgRqVc1yh+/YBf/1F2gm0YQylpJBNrlhMEjy5UsKWmbuJMcTmDAnzDLHGkI/1RZ9xt/orpWwCJF/EYjEmtnGT5UOglwyZ5Q1Wd6aMZ5IJeTKufT7dthnP4DXhGRKJiKDJDz8Ql34b/ydzb+uKFe06wnbFZAxx9wy1LKvncg5m/gV4yniV8JsjZF518/cgxlB1E9uzigkt28oFYjxDlQ3CJCfcLUzmb1w7qoXkSMnlwKpVNg9zhreV+Xy9FRLBDbwZOIfJsrKykJGRAZqmcfz4cWRlZbFfBQUFqK2txZIlS+wajLvBJPQ6xfo31xtqI9mPqSC7806Sx8YVJpnYfTxDxjCZwJwhZgG31dHdUSWajoDLYszm+2jI56NgvTzc83+uqQRqwDSvrOQ3CPG2uiOMx9WXxybDZAwx7V/Iz5ZaFDGUcpx/jobJETJXVmb+VlsbBib/ia9uF4O3G+kMAaaNlNCEcVs4y9tq773BHM7b35gY0mPJYCMmeC3hVOv/uuuIxZ2TQ1Rz+/Zt9uu0NGDzZvL4mWf4nZrJGQp1F2PIzmoyxnPiacPb44iqBK1Wiy+++AIAcP/990MqFTZJA9kQWNuLU0tDRm6UHeAT8jIlUF8jxtD11xMP0YULRK2SaUZl5MQJYd5Wd4SRYJCKuaeO1qubh6wr2fL8tg2dEgesN0LmVTcLysrMuG0bQ4ynRNja7uVG1WSAKUwmKGcIINbOX3+RTcYbb5CkIDOc5W2tNfMM2YugM2RkZGDNmjVIS0sDRVHo3bs3HnvsMfTgWAHVWfB2ZlzY05O48bdvJ96hFsbQ22+T6+/GG4E+ffid2u3CZHZWkzE3eg8byeLMrteeRVuj0eCRRx4BACxevFi4McR6hmwbQ4yxx4Qg+HiGFFJyI1RdC2EygLTlmD6dJCxY6P8n1NvqjjCtOKRi7uEFtbHqUG68bpjr06pniM3ZE+4ZEjKvmHlsrq7OeIZsNVEVMpfMMW2U3cMY8mdzhgR6higKePFF0pZj4kQygcxg5pWjva11DvQM8a4m2759O/r06YPjx4+jf//+SEpKwrFjx9C3b1/s3LnT7gG5E6yWBI8cDV604dLPySG51QDw7LP8T8t4stqq/nA17K0mUxkXcFuVc4xL2xG7DHthjKEKK2EypfHvYXSumBuUmkeZ/DXnGQKIMNemTUCvXs2eTksD/vyTPH766Q4YVzuj1fH3DGmM3iSZ8TUVHIyhklr7NxlCsBQS8+EYJmPEXTWCjSFGdNG9coYEe4aANltJnTgB7NzpHG8rc+/tEM/QM888gxUrVuAtJi3c7Pmnn34aU6dOtXtQ7gJj/TvNFTpzJhFgbJFA/d57RK9h0iRg+HD+p2U8CR52Zt+3F/a6QhljgfGCtAVjDAlNnnYk/qwydNuLU2vPEP8wmeJaNIbaYPVq4m2dO7eVI7ZTojV6hiQiHsaQ0ThgjAXG8La2lrAl/DzFHe3FHmOIMRD5qLmbw6whDWr3mFd2VZMxzJ4NHD9OqsvMYEyFO+5wvLeV9Qw5YGPPe9VPS0vDxo0bWz2/ZMkSrFmzxu4BuRNODZMBQM+eQHJys6dKS4GvviKPn3tO2GmZm6dS1vE3fS4wC5LQShTWGLLxekY638sFPEMmN33bi2lLjSAhrn3mHCqtATRN212R4a7k5gI//kgeC51X7oaOzRniESbTNZ+LOmMOqcSKZIWKg8HkDEwhMW2r52x6hoyfiVBjiJlGNIS182hvmHxMuwSEx44FjPIHDOnpwB9/kMd8c1u5UOfAnCHeYbLg4GCkpqa2ej41NRUhISF2D8idYEIMqnbUaPn1V5LqMGwY8QwJodFYfaR0E8+QvTDGkK3F2JU8Q4yXR2NlMW4Z4mJew6c9jHkeldD8iM7Ajz/a5211R7R6JmeI+21A3cIzpGO9S9aMIcYz287GkAWpCR/Wm88tTCbUGHI3mGtAaC+2tvjuO+d6W01Rgw7wDN133324//77kZmZidGjR4OiKBw6dAhvv/02Hn/8cbsH5E601x5ao9Hgk08+QUZGBrp374GtW5fBy0sGoZt4xjPkDurTjkDFJn06P2fIXJ193bp1WLFiBWQCNOe55CwoW3iGhJTWm18DTRr9NXNNAK3n1ebNyxAe3sm6sVqBudFLeHiGWobJdOw52jaoTN4k4a0whcwrxgtU3aRlvZ7MnLFVMMAYB9fKBoExZvUG2m4Psfm8iovrgY0blyEhwTnzSs3mg9rfZpX3GV544QW8+OKL+OijjzBhwgSMHz8e69atw6pVq/D888/bPSBbfPLJJ4iLi4NCocCQIUNstgDZv38/hgwZAoVCge7du+Ozzz5z+hgdyVNPPQWlUokVK1Zg3bp1WLlyBWbPVuKff54SfM4mNkx2bdz4mtgwmY2cISZMJieLKE3TUGn1aNTorDZ2ZHjqqacQZFZS+swzz0CpVOKpp/j/r7gYQ4zh0jpniPsCLhZR7HtdS3lDlubVzTcr8dtvwueVu2GqJuPjGSLXCJNArdPbrkgzJfgLW2+EzitGSkNvoFkPq8h4k7c1m681z5B53pjODu9Qy3n1+OMrcMcdSmzY4Nx5RTnANcHbGKIoCitWrEB+fj5qampQU1OD/Px8PPbYY07PN/j111+xfPlyPP/88zh9+jTGjRuHGTNmIDc31+LxWVlZmDlzJsaNG4fTp0/jueeew6OPPorff//dIeOhTIFhp/DUU0/hnXfegV7f/Cal1+vxzjvvCLrJanQG9mK/Vowhrm76ljtYjd6AxBe2oc+L222KpzH/q5Y6XEL/V8zNxpox5NFmNRk/o0ZIeM2dcca8cjcMBpoNifCqJmPmiPFa45KEbY9nyJ55JTK7HzF7GeYpg43NjSmB2j1yfuzF3DuoE/g3d+S8ckRull2+JW9vb3h7t1937/fffx9Lly7Fvffei969e2PNmjWIiorCp59+avH4zz77DNHR0VizZg169+6Ne++9F0uWLMG7777bbmMWikajwfvvv2/1mPfff99i01yr5zXb6QhNSHY3VDpupfUtbVvzxdTaZskZ/ysZh5whFuMwhWqjGIx/nNhK3kdnwVnzyt3QmhkXfMJkbM6QuGWYzPE5Q/b+r8TN5i+5xpk5bcv5wWUz0pkwn/s6AcLKHTWvHOl/4WQMDRo0CIMHD+b05Sw0Gg1OnjyJaS3KzKdNm4YjR45YfE1ycnKr46+//nqcOHEC2ja6VqvVatTW1jb76gg++eSTVhZ2S/R6PT755BNe5zVfIPQcQj+dAnYhtH6YaaFsvnACJoPBEs74X8k4hLzYMIdxV86EKvgu4OzunoeHwF1x1rxyN8x3/1I7Suu5hNo0LQwortj7vzK/UTJeMOZPtRX2dlSYzF2WWPP/nxDPUGeYV5wyRW+88Ub2sUqlwieffII+ffpg1KhRAICjR4/iwoULWLZsmVMGCQDl5eXQ6/UIbSFfGRoaiuLiYouvKS4utni8TqdDeXk5wsPDW73mzTffxMsvv8xpTM6MCmZkZDj0OAbzHZz+GnEBc9UMYYwl2oLxZM2t7oz/FWO0WjPCmL+H2dVxyd+whJASa3fFWfPK3WhmDPH4vzMbKNM11/watITQSiV7/1fmY2LemqtnSHqNeYbM/31CcoY6el45wujkZAy99NJL7ON7770Xjz76KF599dVWx+Tl5dk/Ihu0zEuylflu6XhLzzM8++yzWLlyJftzbW0toqKirI7JGVoSXFub8G2BYl4Cq71G+syxC5sN46/lQklRFCiKTDRrXjRn/K/UHEJ7LY0fVh2YR26G3kCzfy8fD4G74qx55W6Yh1/5hEflLTwmXFp6tLw+uWLv/6p5zlDzDY6tnCEmVHQthI4BstaJKLL22fpsLNFR88oRidMMvFe/TZs24e677271/IIFCxyWmGyJoKAgiMXiVl6g0tLSVt4fhrCwMIvHSyQSBAYGWnyNXC6Hj49Ps6+OYNmyZRCLrcfYxWIxb28cRVHsBHe0poSrwlVan02uNPtc2OoTKx+VM/5XqhbaQZbQtQhvaVoI4nHB3FvGJ3fEXXHWvHI3mA0cX++2vIXyNMV6MNt+jdDWFvb+r0QUEO6rYLvXE2x7XAHzku1rI69SozOwmyJb4rSW6Azzircx5OHhgUOHDrV6/tChQ1AonNd7RiaTYciQIa36n+3cuROjR4+2+JpRo0a1On7Hjh0YOnSo4Aaa5jjz1iGTyZp5qCyxcuVKQRo2jHfInhJKd4J7mKy1C50JV1n7rJzxv+LkGWqh/suWPfPwDJn/XXyqitwVZ84rd4KpRKRpfh4bxtBmhUyltmUZhBpD9v6vKIpC8rOTcfiZSWy7Ca4CrE0cW/h0FprMdJeEKIV3hnnFW11u+fLleOihh3Dy5EmMHDkSAMkZ+uabb/Diiy86fIDmrFy5EgsXLsTQoUMxatQofPHFF8jNzcWDDz4IgIS4CgoK8P333wMAHnzwQaOGyErcd999SE5Oxtdff42ff/7ZIeNhbiPOSpK76abVOHIkEsnJT8BgMJV2i8VirFy5EqtXrxZ0XqlYBLXOwMb7OzsyCTdp/ZYJ1ADgKRdD02hAg43SeuZ/8d577zUrAxb6v2IWbWuGDRMmk7RInOaTqKo1u0FdC8YQAEyfvhpHj0bg8OEnHTqv3AlzI1ulMXD2JrLyDcbrhkujX5kdAoaOnld1Km4q8x2lmt1RNGrJ5yIx0x3jy4QJq5GSEoYDB55ut3nlyLxdQY1au3fvjg8//BA//fQTAKB3795Yv3495s+f77iRWeC2225DRUUFXnnlFRQVFSEpKQlbt25FTEwMAKCoqKiZ5lBcXBy2bt2KFStW4OOPP0ZERATWrl2Lm2++2SHjcXbD09deAw4ffgwPPLAMiYkfIyMjAz169MCyZcvssrDF15hniGuZLPN/NDd8fD2kqGrU2uxlBJCF+9lnn0VAQAAA4K233hKsQM3FM8QqCIua32z4LGZM3hhFXTv5ES+9BBw6tByPP/4wunVz3LxyJ6RiESQiCjoDjSatHr7g5ilvKd/A9DdssqLozEsmwgKOnFdsyx0b7RtU11iYzN57GU0D//sfkJq6EqtW/R98fdtnXllKbRCKoL4D8+fPd7rh0xbLli1rM+64fv36Vs9NmDABp06dcspYmCZxPg7oi9KS1FRg61ZSCvrEE1LExy83/ZKmAb0esBGjbYtrrVLClEBt/e+11MSRlfTn2M3ZfNI/8sgjghcBLjlDeoPlBGo+4nZsf6prIHkaAA4dIl8yGbBihRSRkcs7ekgdhodUjDq1jpfyuEnlvLnnxHqYjBxjz3rjqHlVrzb2srLhGWpykGfIXbab9nYl2LaN3LM8PYFHHpEiMHC56ZcGA/lywhrDqvA7QDBW8Og0Gg3y8/ORm5vb7OtaoraJ7DJ8nNDl/K23yPf584H4eLNfvPYaEBUFbNok+NxMh2Iu3g5XgMnb0QusfpMyFTA660sT2+VaZeYZMuYatPdnxTTTtbZTa6n+yyR98soZuobK6gHgzTfJ90WLgMjIjh1LR6No0duOCyaVc8Yz1LwljCXYvCKN9VBze1DPN0wmMGTkyJ5Z7UEjawwJu5cx8+qBB4BmtUnLlwNhYWQH4gQYR0Sdjca7XOD9l1+5cgVLlixpJXTIlLjbEl7qTNQ5sGOuOVevmmydZ55p8cvaWqCggLiNbr9d0Pn9lTIADahudA+VXabHUJ1K2GIq45hAbclItOQtsoZcLsfGjRvZx0Ipq1MDAIK92j5Ho7q5wSSktF6rb16R1pk5c8bkbW2zM0BDA9neXgNwyfdpScswGXPtWWvlEuBJNhSVDcJvWI6aV3VsmMz6rU/NMdG6LWqdGDVwBuzmS4An7PBh4OBBQCoFWuVQl5cDZWVk4o0f74CRNodpqs04JuyBtzG0ePFiSCQS/PvvvwgPD3d6PzJXhvEgMDdRR7F6NfEqzpgBDBjQ4pczZgDvvEP8kgJdj/5KMkGrOIZ+OhrmgrfVH6wtuOYssJ6hZsaQ0UDiaDhKJBLceuutQobZjJJaYgyF+rRdoVnZQMbE3GzsKa2/FjxDjLf11ltbeFsB4NIl4LbbgLo6shu5BtY15sbHp5ddW2GyRiteH5MxpBY0TsBx84q5adryDNkbJmPWEHcxhqqM65ufkv94rXpbZ8wANmwA/vvPNAEdSId6hlJTU3Hy5EkkJiba/ebujjM8QwUFwHffkcfPPWfhgLFjgXffBaZPF7xgM2WmVW7iGWKMIaGeIcbVbW3BBkwTy9wYCvUmxkhRjUrQewulpJa8X6hP27vgijaMIX5hMv7NOt2Rq1cBo2OhtbcVALp1A9LSAI2GGEbXwPqm4FAW3xJTU1/uYbJAT3INlzd0/HpTXNMEAAjztS4DwyZQCwyTOWuj7CyKa4ihGmZl82WJM2eALVuseFuvv57cp86eBfLzyTxzIPbeG8zh/Z/u06cPysvL7X7jzgCzy/B2YM7Q+++T9XjcOGL3tEIqBR5/HOjbV7gxxDMpuKPxttP6Z40/G256SyGxbgFEsK2guonTe+l0OmzatAmbNm2CTid8gpYaw2QhVhaninpyTJBXc+OWTw6bhkOjzc4A422dORMYONDCAZ6ewIQJ5PHWre05tA6DS/JzW69hPEOMd8lamCzQeH1W1gs3hhw1r/KryDzu5u9h9TjGC6204UFqC3fzDLGbLxtGYkvMva09e1o4ICgIGDGCPP7vPztGaBnTvaGdjCHzpqVvv/02nnrqKezbtw8VFRUu0dS0o3B0NVlFBfD55+SxRa+Qg/A3ehLcJWeIqfwQGiZjF2MbO1NLxlCknxKAaRG1hVqtZqst1WrhYYFS1jPEJUxGdt5lHAyoljDXgL+y85aU2/S2MsycSb47YdF2RTyEJFBLGG9S85whLp4hW/PPGo6aVyZjSGn1uOIa255Za7A5Qx7uYQwVMR4zHmuHubf12WetHOjEeWXyDLVTmMzPz69ZbhBN05g8eXKzY67NBGrHeoY++ojkbw4cSLyLbULTwI8/kh3s2rVAcDCv9/Fzs5whJtmxVqD1b8pZsL4YBxqTlRmvDGDaQRZWN0FvoNtFi8dgoE2eIe+2F+Ny406bMfa4JF23pII5h2fnNYbMva1jxlg5cMYMYMUKYP9+kjvk7d1uY+wIuHh1WsIYzYwR7cWhuIGZfxV25Aw5ArVOj5I6YuTY8gwxx1nbjFiDiRr4uokxVGzMUbQVPjTH3NvaKrfVnJtuIoU/c+faOcrWODJMxukuvnfvXvZxdnY2oqKiWvUhMRgM11RpvVZvYCsTHGH919URuwYgVrbVCBhFAe+9RwK2N9wALFjA671aLmiujr2uUNNibP3vjTQukEU1TTAYaIhEFEJ9FKw4XWmdCuG+1hdRR5Bb2QidgYZcIrJqDDHGHWPImDxD3I2hcuMNKpCHAeVOmHtbre5eASAhAejeHcjMBPbsccri7UoIqSZjDO/yOiZE29wraYkgM88sM686gqJqFWia5ErZMv5LjJ4hvjk0DCbPkHvkDPH9ewsKAEbWz+a8SkoiRT9OgLn31qt1dl9bnP5TE5hYOoBJkyahqKgIISEhzY6pqKjAlClTsGjRIsGDcScYN6pMLEKAA0IMX3wBVFWR9ZiTQPbMmcQY+u8/3sYQ4xmyZRy4Cmw1mUBXKOOmr2q0vhiHesshFlHQ6olnJsxXAbGIQrifAnmVTcivamoXYyitiISbE0K92yx5b9SYxPICPGVo0uhZ4zzYigHVkooW3qXOBuNtHTSI1BxYhaLIvFq3jsyrTm4MmXSGuOt3McZPeYMGNE2zxnppnYqNDrSECcsbaKCyUcOeo73Jq2oEQEJk1qqg69U6NBjDfsI9Q+6TM6TTG1BWz88z9N57gFZLquUt5ra2E8y9gQZQr9HZ9XnzTqBu64Kvr693aqNWV4OJPUf6e9i901GpyMUFAE8/zVFYesYM8n3bNqJGzYMIX1Poh3ZWYzUH4m2nzpC/J5kgegPN7tgsIRGLEG5cDAqqG9nnYwKI7kxmWb2g9+dLWnEdACAxrO0wDWPEyCQieMkl7M5cIRXZVNdtfh7jDt+z83mGeHlbGebNI5uLWbOcOjZXQIhniDFkNDriGWe8kCqtoc2cPqlYxHocuObeOYOLhWST0SPYuo4Uk0zsLZewGmd8MVWTub4xVFitgt5AQyYWcTJUKyrI5h3g4BVi0GiA7duJaLADkUvEYG6/9obKOP+nmY60FEXhhRdegFJpSkDT6/U4duwYBlos0+ic5LO7DPs9Bd99BxQVkapDzk6eUaMAPz+gshI4fpz8zJFwP7IwqbQGVDZoXD5EYm+YTC4Rw0sqRXWFGCfPaTF5RNtekEg/D+RXES/QENLyDolh3jh0tRxpRXWC3p8v6UbPUO9wnzaPKWONGBkoikJZPVnAg73lvLS/GO9gZ/QMff65yds6bx7HF113Hfm6BmCMIVtNiJu9RiaGp0yMBo0eFfUaxAV5wlMqQV2jAaV16jZlRqIDlSiuVSGnogEDo/wcMXzenM2vAQAMjPK3ehwTMuITbm5JjRt5hi6XkHWtR4gXp5zItWtN3larua3mNDSQlA69Hli4EDD2E3UEFCgANM7mVyPST/j9mLNn6PTp0zh9+jRomsa5c+fYn0+fPo309HQMGDDAYm+wzgrXEk1b6HQkEQ0AnnyS9EzihERiuhJ5lgLLJWLWvd2ROzWu2Cu6CACGrAgUfDoZjz9i/QNm8obMS+kTjUZJenH7VEumM56h8LY9Q1llDQCAmECyyy2tZRKu+XlnTUnYrm0Q80WlIonTANEVEtjGr1PDGMB8E5uDjGtHeb0aL70EpL0xFTWHe7LXoCViA8nmOaeisc1jnE1qXjUAYEA3X6vHMcnTfJKJzaFp2hQmc4OcoUtGY6hXqJfNY+vqSOgZIJWZnPdd/v7A6NHksQOrykpqVdAboxubTxfYdS7O/ykmifqee+7Bhx9+CB+ftnet1wJcSzRt8euvJF8zKAi4916eL54xg5xgyxbg1Vd5vbSbvwdK69QoqG7CgA7aqXHFy8wYElrRFRyuRxqAogLr9n83486iwMxI7G00StKK6toMEzPIZDJ8++237GO+VDVokFtJbhi9w9qeYxnGkF2PEGIMMZ4iPpVkgClM1tmqydavN3lb77qL54tpmojEnT1LdrGdFCa3zFrysyUCPWXIqWhEeZ0aPj4AbRBBV+uB0rq2hUkZoz27okHQWO2dV2XGtY6igCQbxhAjQBjKc2PB0KTVQ2fsG+hOnqGeobarJz/7jHhbe/UiRWK8mDGD9O3YsgV48EEBI23N0cwK9vHhqxXQ6Q2CWwvxNluZC/JaxxFhMoPBJFq1YgWg5GtXTZ9OpD8lErIV5pGzFemvxKnc6mY3fVfFXLqgXq0TVK4aEUkWp/JSEXQ68pFZwpJnKN7oPq5p0qK41npFmVQqxeLFi3mPj+HgVSJo2ivUm008tcTVUmIMxQeT3RzrGeLh2jcYaFNFWicKk5l7W596ioe3lSE7m+hbSCTAnDmAr/Wbp7sSzKESzBLmSdTR0eQ5fa0Hyuqq23xNDE/PEE3TOJ5VibJ6NWb1j7B7Xp3NJ2PrEexl00BhVKr5ChAylNeZ8vmEdoFvTy4VM54h68aQ3d7WmTOJO2nPHt73q7Y4llXJPq5X63DgShkmJYYKOlfn1uB3Io4Ik/3zD3D+PODjAyxbJuAEoaFAaSnJGeJ5YTGxVcaoc2XkEjHbbFWouFZkOAWIDDDoKRQVtX0c4+nLNVu05RIxm3TJVHo5iwOXywAAE3pZ144yeYaIMcRUyvBx7deqtOwONqATeYZ+/hnIyiLyW0uXCjhBXBzZ+up0wM6dDh+fq8CIc/I2hpgwWZ2aNYaIZ8hamIzMH67G0L7LZbjti6NY9fcFts2MPRy+SjwIgzh4wZmwUY9g22EjSzBzMcrfw+V7d+r0BmQaQ+69rBRsAMA33wDFxUBUFHDnnQLerH9/ICICaGwkWl4OwNwzBACbTuQLPleXMSQAnd6A4lpGvEtYmIymgTfeII8ffpjkQgsiMFDQyyx5QFwZe/OGgn3lEHuR/1leXtvH9TQaF9kVDc3E6Jhk5gsF1o0hnU6HLVu2YMuWLbzbBtA0jf2MMZTQtjGk1RvYmwqzYHPd3ZnD5At5KyS8mru6MgaDqXHkypUCvK0M14AaNRMma9DoeSVRB5mJKLKeoXo5iqvaDpNFGz1D5fVqTnN4XHwQQn3kKK/XYNuFYrvn1fYLxQCAKX2sew1omjbl7NkwDtqCCXNHB9iXQtEeZFc0QqM3QCkTW00+1mrt9LYCJukKwCHzqrRWxRpyDLvSSgQrnXcZQwIoqjGVIvLN0WDYtcvk0Fm+3AGDqqsjO1mOMB4td0igBgBfozaS0As9yl8JiQ/5W61pgwZ7yxHgKYOBNoWiANOOMiWnyur7qNVqzJo1C7NmzeLdNiCtqA5ldWp4SMUYGtt2xUtOBRFlVMrECPdVQGu2u0vgYQyZept1nuTpzZtJv1VfX+Chh+w4kfmi7QbyE0LwlInZirLyeu7XKuMZyqtsQmgoIJHQAC1CTn7bn5OPQsp6H3M45A1JxCLcMZxYWj8m59g1ry4U1qKgugkKqQjje1r3uBbXqlDdqIVYRCE+RJhnyJ2MISZ82CvM26pEzE8/ATk5QEiIQG8rAzOvzp614ySEo2YhMgatnsZfqcISqbuMIQEwCWcxgUpeGkMGM2/v66+T7/ffTy4wu7j9duIhOnKE80ssJQq7Moz+T7HA7vExgUpIfGx7hiiKYr0r5iGx4XHEA3cyuxI6vWW3vUZn4B1yMIeZxGPig6x6atgQWbAXKIpCTkUDNHoDPG3s7lrChDU6S/I0TZtkTP7v/+xM9Rk3jjRvLSoCUlMdMTyXg6IoQUnUTB7M5ZI6iERAcBiZDwX51tdCpqLMfJNhjduHRUMsonA8u9KuSs5t54lXaGJCCNtLrS3Si5gQmSfblJYvjDEU5QbG0Anj5m5oTNubL72+ubfVw54C6mnTSG7I7t12nIRwrEWIjEFoqKzLGBLABaN4V98IfhV1S5YQF+O//5KQqVRKyuntRiolfkweJfZMmKxOrXOLthxhPkyrDGHGUHSAEmKjZygnx/pOnylpZ9zlANk5+SgkaNDocdFC3lBqXjWuX3MAz/wubMej0urx6wlipd0+LMrqsWzydAgTIiM/9wy1vrtrCeNNig2yLkLnLmzbBpw+TWyYxx6z82RyOTBlCnncibvYCzGGqo09DUtqVdDoDIgyhsqKC0RWRVz7RhDrlFk/bRHmq8D0vmEAgI/3XuU8PnP0Bhr/nC0EAExPCrN5PDO3E61Uctoiz408QyeyiXdlaGxAm8f88Qdw6RJJ5bDL2wqQydm3L4+a/LaJCVTi4et64IlpCexzH90xCK/e2BcGA39vbpcxJICLrDHEb+uZkkJatDAq//Pnk9Jfu2Fcj1u2cH6JUiZhVWEzyoSVu7Yn9nqGIvw8IPclr72aZT0hkylpv2RmDIlFFIYZF4zjFtyzAUoZCqqbcCTD8m7FFv+cKUR1oxaRfh64LtG6q/CUcTfXx5jHZNIJ4ZfjwHiYhIYDXAmaNqlLPPggkaqwG2Ze7dnjgJO5JsEWmhPbglFoNtDA1nNF6BlHbiMNlTKr50mKJNfr+YIazu/12JSeEFHAroulnF9jzrbzxcipaISPQmIzXwgweYOtCZ7agg2TBbq2MVTdqMHlErIGtOUZomlTFOPRR0mxj8OwM/x8//geePL6RDwyqSfb/657sCeGxAQI6grRZQwJ4EIRmcx8PEM6HXDlCnnMhMt++w14/HGSoW8X06aREvvz563HgFrQ0yiydbW0fZSV7YGpkiqqERbWE4sohEaQyZeVbX0SMlUVLV3zI7oTY+iYBWMoOlCJ+8bFCRqbwUDju+RsAMBdI6Ot6ijpDTSOG3dzzHiuGI2hBJ4Jn4yHSWjVjCuxbx+QnEwcOo8/7qCT3nQTSe7r8gw1I8MszPXtoSzExpLrVVfrwRrYlmA2j+cLaji3AUoI9ca8wcJ2jDRN45N9xKO0eEwcvDi01uAieGqNWpWW9ZxF2alB52xOGjdV3YM92xRd3bKFtMD08nKAt5WhoYGUo3XrRh47AEbuROhmGegyhnhT06RFXiW5IffhYQxlZpJIljlqNRGxysiwc1CBgcDIkeQxj4WbuQleKWmfnlv2EOHHGEPCL/Y4owJ8oY3choRQb1AUqbYyv0kweUMp2ZUW3bDLJsYjxId//s3GE3k4X1ALD6kYtw21HiJLK6pFnUoHb7nELs+QwUAjs7zzeIYYr9DSpUB4uINOGhwMTJ5MLKxOCl9jiKZppOabPDtnCmogM3pc9bUeVr3MCaHekIlFqFXp2DWUCyumJkAu4X+r2nupFBcKa6GUiXHP6Fibx6u0erb/YB+BniEmRBboKRPc16y9sJUvZJ6D99BDQEDbkTR+KJVk51JY6DCvq2mz3GUMtRuMGzXSzwN+PLrVp6W1fk4uB/7+GxgzxgEDExAqYz1D7dSA1B6YnCF7LP8+vUhCZH2tGBVWolkeMjHijLoo5qGyvhE+8JZLUN2oxWmjtL85nnIJnpnem/15T1qJzTGV1anxxlZycTw+LcFmWwxGV2NorD8kYhFUWj2yy42VZGHcjZqC6iaotAbIxCJEOaC/Xkdy+DCwdy9JnXv66Y4ejXvBtOUp41hNllvZ2Kqi81IjEe7SVnpabWYsk4hYr+v5Qu6hskg/Dzw1vRf7M1PAYo3qRg2e//M8AOCuEdFWBUwZUrIrYaCBUB85+7nwJc+NkqdTsqznC+3aBRw7RhKmHeZtBZqX2PO4X1kjws7IAdBlDPGGSf7j4xUCWhtDUilJTJs82UEDu+EG8n33buJy4kDPELIwuYNniMkZqmjQNNP/4UN8pAJibzJZ0tOtH8vkDJwxlp4CpPs2k8+z86JlQ2fukBhMv/85BEx9EM9uTrOaH6HS6vHEpjOoVemQFOmDxRx2r0czyQI2sjvxUp0vqIGBJjtRPjIPTDgjNkgpWL7eVWB2r4sWgdW9cRg1NUQeftQoUlbTyeDrGTqdW93quRPVOQAAXbUnrhRaF1VMijSFyviwaGw8Rtz1BAKmPoiHfznLGh2WoGkaT/12FkU1KsQFeWL5lIQ2jzWHETwd1zNYsFiiu5TV16q0bK+2kXGWteoYb+v99xN9X4fiYOmKCFZEuMsYajcuFPLPFwKAo0dNjymKqOQy14NDGDCAxGHffpuz3hAjMFhQ3cRLdK0j8FNKoZCSy5VJ4ORLTKAnpIHECLDkqTNniNF1nJLdPD9oqjEJc8dFy4leUqkUf338KibNW4h6HXDrZ8lsaa85Kq0e9/9wEvsvl0EuEeGtef1tGiUGA82OZ4TRGGKUdUd2D+S1gHeWfKGUFFJFJhYDzz7rhDdQKoFvvyUT+MQJJ7xBx8LfGGqts6WSNUCu1AM0hYuXrBcnMEnU53gaQzKZDP98+hr6T7sNhbVa3P7FUTZXrtlYtHo8/ftZ7LhYAqmYwkd3DOIcrjpwmbTCGW9F8NQW7mIMHbpSDp2BRvdgT4uJ3vv3kzZiMpmDKp5bct11RGQvNxe4eNHu08UZK2JbijDyocsY4onQSrJDh0yPv/8euPlmR44KxMLasAF45BFSvsgBf08Zm4VvLfHRFaAoik2SExoXjglUssaQLc/Q8DjiOj6ZXQW9WX7QxF7BkIopZJY1tKmXIpOI8NWiYRjXMwhNWj0e/PEk7vrqKDafLsCe9BJ8ui8DE9/ZhwOXy+AhFePbe4axO2ZrpBXXoqZJC0+ZGElGY/xwBlnAx8TzK59icjvcPV+I2b0uWAB07+6EN5BKSYEC4DCXvisRbNaBnks5sqXwcIiPHL7hZEeenyWx6rlNEpBEbT7WX+4fie5BniiobsKMDw9i1d8XcDyrEtnlDfjtZD5u+ewINp7Ih4gCXp2bxGleAST8fqmkDhRF1K+FwqwJMS5eSbY3nVTnTepluXL1lVfI96VLgchIJwxAqSQGEeCQecW0Jcooq+d9XTF0GUM8qG7UsMmqA2x0PjbnyhWwOSrPPUcWbleBuRm6Q6iMkQIQmjcUHWAyhs6et1FeH+4DL7kEdWpdM/FFb4UUo3qQxdJSqEyv12Pfvn04fewwvlw4GItHx0JEEQ/O8l9TsWT9Cby9LR3FtSqE+sjx/dLhGN2D2+K73ehhGtk9EBKxCI0aHbtTHxPPry1LRifwDJ0+Tfr7iURkXjkNxoXbCavKAj2JMaQz0KjioDf24IQe+OneEfh+yXAAgEwswtFnJ2PmOLIB05R5W+0/lhjuDZlEhKpGLS9JD2ZepZ06ig33DsOU3iHQGWisP5KN+Z8nY+K7+/DEpjM4X1ALP6UU3y0ZjtuHc4+ZHrhCQmT9I3055RdZHKOBxnlju55+PO4P7Y3BQGPvJfL3WpLxOHyY5DVLpaQhq9NwYGuO6AAlJCIKjRo92yqLL66d7u5iHMuqBE0TdVKmySEXXniBfO/d26TZ4DTy8sjFNWMG6ahng54h3jiaWekWSdThxoqyQoFJcgqpGCHRalQCSEuzvnsQiygMifHH/stlSMmubLbDnNYnFAcul2HHxWI8NLFHs9epVCpcZ9zx1NfXY9Wcvlg6Ng4/HsvB0cxK0DRpozFvcDfMHRjBuSeYwUDjj9NEoXrOwAgARO9Iq6cR6efB2y3fGTSGmN3rHXcACdzSQoQxfTr5fvIk0cEIsy3e5y7IJCIEe8tRVqdGflWTzQT+mf1IqR7TjkijN6Cwugm9e5PrT1vhhcyy+jabfsolYgyN8ceRjAokZ5Rzvv5azquvFg3D4avl+OpgJq6W1aOoWoWEUG9M6R2CO0ZEs15krjD5QvaEyDLL6lGv1kEpE7P5mK7IhcJalNer4SkTs9pp5jDzyik5eObMmAEMGQJMmmT3qaRiEaIDlcgsa0BGaQPv/z/QZQzxItkoqDeqB/ddeGYmsGkTefztt84YVQsWLSKlNWvXkp4ENnAnz5C9wosAaUaeDqAgT4SmJuvS8sPjAlhj6J4xJg2hqX1C8cJf53E6txo5FQ2ICbQelowKUOLZGb2tHmOLEzlVyK9qgpdcgml9yM2YEXgcE88vX6iqQYMKY0VQ92D3VJ8+c4b0IaMo4PnnnfxmYWFk0T55kiQoLV7s5DdsX+KCPFFWp0Z2RQMGcOjqDpDNQlQAKaXPrmhoZgxllFmvohzdIxBHMipw+GoFFo6KFTzuMfFBbHiYpmnBSc96A41DV+3PF2ISkpMifa1qhXU0e4whsrE9gyBrIVlw9CiwY4cTc/DM6dHDoXl4PYK9kFnWgMzyeoztyT/U2RUm4wFT1jyqO/cP+vXXicji9OnAiBHOGpkZPEsWmSRq9xBetC9nCAAGJSghUmhA0xQrgtkW5orT5nHoUB8F21X+lxTuIpf28Mcp0m9nZr8wtr/S4avC8oWYsuaoAA8oZe65H2J2r7fdRjyuTsfBpcCuBCMjwTf5lElaza5oRJ8+5DltpSeullg/z2jj9ZqcWSGobYIlhBpCAMmfqW7Uwl8pxUCOxqAlzhr1l/ikUHQEey4RY+g6C/lCL79Mvi9a5KQcPCfChPwzOPa+a0mXMcSRyno1q046sjs39amsLJIsDQAvveSskbWAWbT37eOk7tnTKNSXU9mIRo1rV5SF+9ivJdGvmw+kAeRzsVVR1r+bL2QSEcrrNcgqb/5Z3j6M+I83nciHto3GrY5CpdVjy1mi5cKo8VY2aNg+Snw8lYBJX2RYjKNU1NqXs2eJLAVFmULQTmfmTJJJGhPTTm/YfsQZvYMtr3FbMB7R7PIGxMYCUhkN6MU4l259Hekf6QsvuQQ1TVqLff7amw3HiDTArUOjILVDZoKR4eDqXesI8iobcSavGhQFTGqRL3T8uKky0+neVnPq6ojgnsG+dbSH8ToW2l6qyxjiSEo2SVRNDPO2GVdneP11UuU+bZpJINrp9O4NxMYSrSEO6p7B3kRgjKabd2l3RZicIXvCZH0jfCExJlFfvGh9V6qQijGwmx+A1v3IJvcOQZCXHOX1auzmIK5oDzsulqBOrUOknweGG71VW88VgaZJoneIN/f8NcDUToSpmHM3GK/QrbeC9Ug4nREjSD7eu++20xu2H7GMUVPB7ybCNPjNqWiAWAz06EluZmlpFDS6tm9sErEII4zXHuPd7Cjyqxqxz5gvdAePhOuWqHV6dv0cYFwzXJEt58imakRcQKu811WryPeFC9vRK6TXk/vV3LlAaqpdp+oebKooE0KXMcSR49kmPRcuZGYC69eTx8xF1i6Yq3tyrH4xCaG5uDFkDJOV12ug1gkTwOsR7AllKJksySm2zzHS6HXZZ6y+YJCKRZg/lHhpfjruvFCZ3kBj3R4Sz7t5SDe2AeEmY4f7mwfzq3tV6/RsefQwNzSGzp4Ffv+dXOYvvtiOb0xRDum07YoweWNZZQ28ypJbhteGDCS3k8Yir2bK7ZZgQmVCGxs7il+O54GmSd4dE/YTQlpRHbR6GgGeMnRzYUX3f88WAgBmD4ho9vzRo6TuRiwG/ve/dhyQWAyMH08e21mtyXiGimpUgnTzuowhjjCeAa4hiddeI0bv9dcT8dp2xTy/gcPixmjW8FWFbW/8zYQXC6sFlk+KRUjoS5rEnTpp++Y2tTcRWTxwpayVfsptw0i13sErZci1Uk5sD3+eLsDlknr4ekix1JjEnV5cizP5NZCIKNw0iJ8xdDa/BhqdAUFeMnS3Y/HvKJichvnzgb59O2AAej2p6e9ERAcoQVFAnVrHJtZzgakYy6poQL1ah6FDyXzSFPsh1Uy53RKMFMTxrEqrXiRnotUb2Jy/u0bYF/48Y9xgDOjma1f+kjPJLKvH+YJaiEUUZiQ1b+DHbNjvvpvkNbcrDsrH81OadPP4hnyBLmOIM1nljaCotqXLzcnIMOUKMYt3u8KoexYWksQlG7CeoULX9gxRFIXuQUzCt/Dqt5HDxQBoVJSKUVRk/dikSB+E+yrQqNHjSEZzl35MoCfGJwSDpsF2x5ZKpVi9ejVWr14NqVQqeIwAyRX6YOdlAMCyiT3gqyTn23SCJFNP6R3KOWTLcNwsROaqi3ZbnDljyhVqV68Qg0pF8oYGDybKuZ0EhVSMCKPXlc9NJNhbjjAfBRtiHzaMPK8p8sUZC207zEkI8UagpwxNWj1OWVC1bokj5xXDlrNFKK9XI9hbzirLC4U1hlw4X+hfY97h2PggBJhpKSUnA9u3AxJJO3uFGGbMIN+PHQPK7Qub2hMqcxtjqKqqCgsXLoSvry98fX2xcOFCVFdXW33N4sWLQVFUs6+RdiTvDIzyY29I1njlFbKBbLcKspYolSQTrqyMU/CXMYaulNQJ7vvVXsSH2G8MDerhxYovnjxp/ViKojDF6B2yJLL42OR4AMCmk/nIqWiATCbDk08+iSeffBIymTDxNoYfj+agoLoJ4b4KLDL2LdPoDNhs1BuaP6wb73Oy+UJtNGd0ZZjd6223tWOukDkKBRBP/t+dTYDRPFTGB2btOJdfg0GDAJGIhr5BgeMXrHtKRSIKE43VTJba1bTEkfMKABrUOry9jcjQ3z0yxq7EacAsedpF84VomsbfZyyHyJiNxd13d1AFWbduQP/+JIqxfbtdp2KTqAXcH9zGGLrzzjuRmpqKbdu2Ydu2bUhNTcXChQttvm769OkoKipiv7basYhd39e22NqlS8CPP5LHTKJnhzBhAuDvz+nQcF8FAjxl0BloTh2hOxJGCuCKHVIAfSN8IQuvBgCkpNgOIzK7xl1ppa1KgYfEBGBCQjD0Bhof7rZRq8+D3IpGrDWeb8WUBCikpJx+T3opKho0CPGWY3xPfpooOr0BJ7MZzxC/CrSO5tQpoiskErVjZaYlOqkaNZNEncUziZrpNXa+oAZKJdCrN5kf6eelqLeRt3FDf7Kebj1X5LASe66s23sVRTUqRAV44L7x9lkAxTUqZJQ1gKJc1zOUXlyHq6X1kIlFmNbX5AU7cIB0p5dK27Ey0xJMo3G784YYz1AnDZOlpaVh27Zt+OqrrzBq1CiMGjUKX375Jf79919cunTJ6mvlcjnCwsLYr4AA4TtiLsbQK6+QCsE5c8C6jV0diqLYxrOunkTdM9R+z1BimDcU4eTvPHLMdr7CyO6B8JZLUFantpgLsXIqkT/efLoAl4pqkJKSgpSUFOgFdjmvV+tw7/cpqFXpMCDKD/OMSdI0TeO7I9kASIk9327zaUV1aNDo4a2QtKkQ7KowXqE77wQSEztwIMyivXs3CZt1EpjkYb6eoX5siJ3kG44aQa5JdZEfzuVbz0EcGx8Mb4UEpXVqnMixHirT6/V2zyuGzLJ6fHUwEwDw4qy+7EZDKLvTicd4UJRfs/CTK/HbSRJavy4xGD4KEt2gaZNXaOlSUtTVYTCbjG3bSFhFID06e5gsOTkZvr6+GGEWcxo5ciR8fX1x5MgRq6/dt28fQkJCkJCQgPvuuw+lpaVWj1er1aitrW32BRCPhK1qg4sXSTd6oJ0ryNri66+B0aNJ+Y0Nklosaq5KvFHm/mqp8IZ8CqkYPXqTRNGTJ2znmMskIkzoRbwwlkJlA6L8MKV3KAw08N5/5zF8+HAMHz4cKgE3S4OBxvJfUnG5pB4h3nJ8sXAIa/Tsu1SG5MwKyMQi3DWCfxnwsSxSuTMsNsClFXJbkpJCepCJxR2UK2RO//4kb6ixkbT27iQwWkN8y+sZY+hqaT0aNbpmeUNnbSRRyyQiVk19i7HKqS1UKpVd84rBYKDx0t8XoNXTmNgrGFN6W25UyoddxjVhcm/78o6chVqnZ0VbmaIPgDQq2L+fdKZ3am8/LowcCaxbR8SOxMKNU/PNMt+KY7cwhoqLixES0vqiDQkJQXFx2/HmGTNmYMOGDdizZw/ee+89pKSkYNKkSVCr1W2+5s0332Tzknx9fRFl7O812UJDu5a89BK5sc6bBwwaxOEPczZpaSQ77t9/bR5q3k3alYkJNDXkK7RDb2jEUBFAGVBVIUZBge3jmVCZJWMIIN4hiuKW/9AWTRo9nvvzHHallUAmEeGLu4ci1KgFotMb8MZWohJ5z5hYRPHsRQaYypgt9SNyZRj3/YIFQM+eHTuWZtIVnUiNmimTzypv4BWyCvFRINhbDgNNPI+sMVTsy7ansAYTKvvvfDH0Tg6V0TSN17em4eCVcsjEIrw0u6/dRQSNGh0OG+fVFBc1hnZcKEFVoxZhPgpMSCD3MZo2JUvffz+nNpbORSIBHn7Y7lK2SD8P+HpIoTPQvFtMdagxtGrVqlYJzi2/Thh7l1i6aG31o7nttttwww03ICkpCbNnz8Z///2Hy5cvY4uVRezZZ59FTU0N+5WXR0ovJ9nYQZw+Dfz2G1krO6SCzBLm+Q021D2Z2H96UZ3TFZXtQSoWsR66K3bkN/WP9YY0mLyeS3ucib1CIBFRuFpab1FDpU+ED+4bJzz34HRuFW5Ye5At9X375n7NWgNsPJGPK6X18FNKsey6eN7nr2nS4qCxM/dkB+yG24uDB02VLh3uFWJgQmUcpSvcgW7+HpCIKKh1Bt5dv9lQWUEN+vUDpFIaBpUMx8/YLtNvFirLrrR5PEC0tx784SSrys6Vj/ZcxdeHSHXtG/P62aUrxHDoSjk0OgO6+XsgIdQ1mx7/alxT5g/txnqE//uP7JMVChfwCjkQiqLYe9kFnlGODjWGHnnkEaSlpVn9SkpKQlhYGEpKWu/Iy8rKEBrK3RoPDw9HTEwMrlhpSiWXy+Hj49PsCyBKv9Zgdq933AEkJXEeknMZOxbw9gZKS22WTUUHKOGtkECjN7h801ZH5A317+YHeRiZLFySqH09pKwRsfGEZZHFlVMTEM+x8WlNoxb7LpXig52XsfDrY7j50yPILG9AqI8c6+8ZhpsGmSrF6tU6vG8ssX9sck/4evAvLd5xoRhaPY2EUC8khLpHvpD57nXpUhfqlTR5MrmD/PBDR4/EYUjEIkQbvY18NVrMdcpkMmDAQPJ87iU5yura9sIDzUNlW89xM242ny7AtgvFePinU3jqtzM2BfYMBhqf789g59BLs/vgliH8KzEtsTuNpF1M6R3qklIVuRWNOHS1HBRF2o0AzefVI48A4eFWTtDefP01cOONQH6+4FP0ZaMc/PJfO9QYCgoKQmJiotUvhUKBUaNGoaamBsePH2dfe+zYMdTU1GD06NGc36+iogJ5eXkIF/Dft3ahJyeTTaJY7CK5QgwyGTB1Knlsw6XfLIna1fOGgh1hDPlCGUkmy96D3GLLTD+yP07lW4xHK6RivHlzf/bnf63kQdz/wwks/jYFH+6+goNXymGggTkDIrB9+Xi25Jhh9bZ0lNerERuoFCwOx2iMzOofYeNI12H3blLtIpfz1z8pr1fjbH61zYomQXh5kV47o0d3KlVqxlOSydcYYsrrjSH2kSPIZ6Iu9LeZNwSYVZWdL4aOg1d6zsAIPHxdD1AU8ZjO/ugQ9l8us+jRPppZgTkfH8Kb/5Ey+uVTeuIeo3ipvRgMNHYbO8C7qreV2biNjQ9iQ+t//kkiGV5ewNNPd+ToLPDVV8Bff9lVVcbcx/h6htyiZXXv3r0xffp03Hffffj8888BAPfffz9mzZqFXr16scclJibizTffxE033YT6+nqsWrUKN998M8LDw5GdnY3nnnsOQUFBuOmmmxw6PmahXrzYBXIaWnLDDUSpbutWm5ZaUoQvjmZW4lx+DeYP7eggctvEGz0bV+wwhhRSMYaM0OG//4ATx0VQq8lN1xrjE4IR5qNAca0KOy+WWDQsmBsDALyw+TyiQwIsqpYPjvFHca0Kg6P9MTjaD0NjAyx6H384moPvk0kjyRdn94FMwn//UtWgYXtAzervStvAtqFpU7PIBx8kUiS2SM6owB+n8nEip4r1blAUKRsf0M0XD02Md7squvaE7ULP0xjqZ+zSfqW0HiqtHuPHi7FuHaDKCcSJnEKbicVj44Phr5SirE6NXWmlmJ5kvWpXKhbhyesTMTY+GCt+TUVmeQMWfXMcPgoJJiWGINRHgcIaFXKNTUkBwFsuwYqpCbhnTCyvv80aZ/KrUV6vhpdcghEuKFWh0xuw6SQxhpiNnF5vimKsWAEEBXXU6NrghhtIb5CtW0kykwAYz1BaUR2vPDS3SKAGgA0bNqBfv36YNm0apk2bhv79++OHFm7qS5cuoaaGWINisRjnzp3D3LlzkZCQgEWLFiEhIQHJycnw9nbcgrhrF+mHKpN1sE5DWzDqnikpgIVQozmMRsbpPNuKsB0JqzVUUie4ogwApo5WQuSpglYtwrFjto8Xiyi2HxkTh7eGSmvA0u9SLOZCPDGtF/Y/eR0+uG0gFo6KtWgIHbhchlV/XwAAPHl9L0xKFJague1CMXQGGn3CfViFVlfnr79IYYlSCTzzjPVji2tUeOSnU7jjy6PYdDKfNYQCPGWgaRL22ZxaiFkfHcSaXZcd0/6Bpkmn7QcfBGpdW46CK0xFGV+Pa5iPAoGeMugNNNKL6zBxInleW+6D3aeqbb5eJhHhNuPN+vvkbM7vO6pHIP57bBzuGhGNAE8ZalU6bE4txOcHMvHPmUKcyauGiAIWjIzGvicnYsnYOIeGspgQ2YSEYEGbFGezK60EJbVqBHjKMKUP8Vxt2ECqnv39gZUrO3iAlmDyXHftIs3GBRAX5AkPqRhNWj2v6ki38AwBQEBAAH5k1AzbwPzG6OHhge12qlnagqZNyWcPPgjE2NfexjmEhwMTJwIBAWTRtpJjNTiGiDSmFdWhUaODUuaal0dckCdEFFCr0qGsXs27azvDqB6BUERVojE9Anv20Bg/3vZCeevQKHy09yoOXilHXmVjq6ouqVSKl156CTq9AZndQnEkqwaLv03Bj/eOaJYQbau0/VJxHR7ecAp6A415gyOxbKLwKgsmXDdrgGt7hbZtA3buJMYP421dvhwIa8NRQNM0vk/Owdvb0tGo0UNEkdLhaX3CMDjaH75KKcrr1bhYWIvvk3OwK60Ea3ZdwX/nirHuzkHoaU/uFEUBTzwBXLlCQtE33yz8XC5CYhgTXqi1WZxiDkla9cX+y2U4V1CDgSP90LuvAWkXREhNkaKyQWNTf2fByGh8cSADRzIqcLmkrlVeGzOvmMcM/p4yvH5TP7wyNwmncquwJ70UKq0eEb4eCPdToH+kH6ID+Vde2oKmaWy/QCpHXTVE9s2hbADAYJ9oLFkkxqpVJsHSp58G/Pw6amRWGDSI3LOKikiMnEnz4IFYRKF3uDdO5VYjvYj7RsX1zFk34s8/icPF09Pk0ndJ9uwhWkM2YngRvgqE+SigN9A4a0MwrSNRSMVssudVO5K9B0b5wSuOeG227eKWNxQVoMSYHsS3vMlCIrVMJsOqVavw2quv4Ot7RmFk9wDUq3W47fNkfLT7ik3tC4OBxreHszD340OoU+swLNYfb87rJ3hHW1anRrKx9HdWP9fOFzp8GHj/fSL+duECWayfeMLysXoDjZf/uYiX/r6ARo0eg6P98M//jcWb8/rjusQQtm1OkJcc4xOC8eXdQ7DuzkEI9JThUkkd7vrqGPIq7Wyua15V1gnoE+4DEUXyrUpq+e3K+7FtOaoBAFMnk1tLU04QG6K1Rjd/JStfwQiLmsPMq1WrVllsxyEWURgWG4Cnpyfipdl9cd/47pjVP8IphhAApGRX4UppPRRSESYL9Ng6k3P5NTieXQmJiIKyMAY//URa2GRnk83F//1fR4+wDSjKFM2wY14x6QppFip/26LLGBKIXm/ava5YAViQQXIdeOzwBsf4AQCn5okdCSO+aHfe0EhjB/sUMWdBYUa4bNPJfKsxaQ+ZGF8vGoaJvYKh1hnw3s7LmPHhQYvJnjRNI62oFrd/eRQv/3MRKq0Bo3sE4vOFQyGXCBch23a+CAaadNN21o3BUTASB41GG0UkIt7ylpFQlVaP//v5FNYbb5rPzUzEbw+OZnMFLEFRFGb1j8DOlRPQK9QbpXVqLPrmOCp5dGlvhXkLARvSFe6Ah0yMnsZ5xVdvbFC0HwBiJACkVzRA8oYYSQdbMP33/jhVgJomLa/3b2+YcN6NAyM59atsb749TCQEZvUPx7njRq0yYy1BXR3w7beA1lU/YgdsMpgk6i7PUDvw/fdE09Dfv+3dq8tx+bLNbtuDo0mo7FROdTsMSDiOKK8HgKmjPCH2UkGroZCczO010/qGwl8pRVGNqpXIosFgwIULF3DhwgUYDAZ4yiX4dvEwrL1jEIK85MgsI8meSS9tx7xPDuP5P8/h7m+OY+ArOzHjw4M4nlUJpUyM125MwoZ7R9gt7/+nsamrq1eR0TTxsppTWQnMn99cB6VBrcOib45j67liSMUU1t4xCPeP7wERR0XtAE8ZvlsyHJF+Hsgsb8A961PQqBFYcTZ+PCnJKSkhzdM6AS0rw7gyLC4AIorkZxXXqDBhAkBRNHSVXthzspZTbt+o7oHoFeqNJq2ebR/B0HJedSSltaZ5v2Ck6+VGlNaq8I8xNL5oVFwrVZWGBlJS36E9/qwxZQrg4UFcWHXCtOSYjdHFwi5jyKk0NZkE4J57DvBte0PqOjzxBNCrF/DRR1YPG2Q0hk7nVtmVnOxsHNGwFSB5Q/JoEkbas4fb3yuXiHH3qFgAwNrdV5op9jY1NSEpKQlJSUloamoCQLwScwZEYPfjE7BoVAy8FRKodQacyq3GhmO5OHC5DDVNWsglIkzpHYLty8djwcgYu5M9U7IrcSq3GjKxCHMHurYxlJMDVFS0fv6GG0yLtlZvwMM/ncKxrEp4ySVYf89wzBnA/+8K81XguyXD4KeU4kxeNR79OVXYtc5DusJdMG+8ygcfhZQ1pI5mVsDfH+g/gPwu54IXp8aZFEXh7tHEuPghOdvmvOoofj6eB52BxuBov2bVo67Cj0dzoNXTGBrjD3mDn0V7YvFi4NVX231o3PDxIdp4Bw8SnTwB9Az1gkREoVbFfaPTZQwJYO1aogkVHU0sbLdg+HDy3cainRTpA5lYhIoGDXIq7MypcCLxIY7xDA2M8oNXLMkb2r6L+45zyZg4eMsluFRSxyZS2sLXQ4qX5ybhzIvTsOfxCVhz20A8OKEHXp3bF/88MhbnX74eXy0aJqjVhiU+25cBALh5SCRCfIQlmbcXLb1CAHDrrUQVQqEgYcTn/zyHfZfKoJCK8N2S4RgTL7wuOD7EG18vGgaZRIRdaSXYnMqhJ4slOlneUD+BniGANDQGwOaoTZ5EjHlVbiAOcQyV3TQoEt4KCbIrGrGjjdY3HYlWb8BPx4nUBbMhciVUWj1+PEa8/0vGxlmcV488QrQN7WgB5ny87Kt6lUvEvMVlu4whnlRWAm++SR6/+ipZqN2CadPI1Z+WBmRltXmYXCJGX+Pu0JXzhpjuxOX1GlTUCyvBBJi8IbJ7OHVCxOar2MJXKWU1Sz5s4R2yhUhEoXuwF24cFIlnZiRi4ahY9OvmCynPLvTWuFRch93ppaAo4P7x9vX7aQ/27Wv+86JFwE8/EecLAHyw6wo2nsiHiAI+umMwhhgrH+1hSIw/HptMigpe+eeisOuIKQWurSUuYzenTwRJoi6tU6OUZ1uOUUZj6KixITCbN5QbiINXbCdRA4BSJsEio5Gxens6JxHG9mTXRVKuHugpw4x+1vWQOoK/UgtQ2aBBpJ8HpvUJxc6dzX//7LNkMy9ylzt/ebngecXkDXHFXT4Sl+GNN4CaGqBfP+Cuuzp6NDzw8yPtOQCbu9ghTN6QCxtDnnIJuhtF4s7a2Vx2yghPiL2boNdROHSI++uWjI2Dl1yC9OI67LgovEGrM/h8P/EKzUgKc0gPJmfz99+mxw8+CHzzDelHBgC/puRi7W7SQue1G/uxVUeO4P7x3ZEY5o2qRi1e/uci/xOEh5MSnfR0kufg5ihlEnajwVeJfmisP8QiCjkVjSisbsK4cYBIRENX5YkDpxo46zs9MKE7AjxlyCxrYHv1uQqMAOrtw6PsKmxwBnoDjU+N3uDFo2MhEYvw33+m37/xBvlyG9H0BQuIFIz5H8GDLmPISah1emRnA+vWkZ/fftvF3YyWYFz6NrrYM3pDrp5Ezej2nM6ttus8o3oEwiOOuPH//pu7h8dPKcNiYwXMh7uv8vIOOZP8qkb8dYYkUD44wfW9QleumFoR3Xor8Mknpp3r6dwq/G/zeQDAo5PiceeIaIe+t1Qswupb+kNEAX+fKcSedAGhGZcUGBOOqUyen5ikt1neUHJGBXx9gTFjyO8q0oJwmuPmylshZT12a3Zddk5LFQGkFdUiObMCIgq4U2BbHGfy79lCZFc0wk8pxZ0jonHkCIlkAMCTTxKvkFsRHEyqNG3cr9qCbz5XlzHEkSsldXj2WSKKOWkSMH16R49IAIwxtG8fKSloA6aiLL241mYTxI6EKedNNUru23Me717EGPpjM82rEfnSsXHwlImRVlSLnWmukePw1cEs6A00xsQHon83v44ejk0efZR879ED+PVX0861ol6NZRtOQaunMSMpDCumJjjl/ft388PSsaRf1f/+PC/85qvRmOqX3Zi+duQNsaGyTBIqmzuX/DObroTiEAe9IYY7hkcjNlCJ8noNvjyQyXscjoamaby2hXgOZySFI9LPtbyABgONj/deBQAsHRMHpUzC5rOOGgWsXt2BgxOKndIVvcN9eHnBuowhjqiK/PDLL2Shfu89N3I1mtO7NxAXRyy63bvbPCzMV4EgLxkMNOm/46oMjCJG25m8aru8MgqpGFMmA5REj6ICEVJTub/W31PG6qOs3pYOlZabeKOzqGzQ4JcUkkD50IT4Dh0LF5KTifI0RRERU2Ze6Q00HvslFUU1KnQP9sTqW/o7tSv4yqm9EB2gRGGNCh/tucL/BA89RBo97d/v+MG1M4xniG+jSwBsH75kozE0Zw55XpUXiN2prdvStIVMIsJT0xMBAF8ezOSdv+Rotl8oweGrFZBJRHjaOC5XYmdaCS6X1MNbLsHdo2Px11+kGatUCvzyS0ePTiB2Sld4yiVs+yQudBlDHGG0Tu6+Gxg4sEOHIhyKIkHjv/8GJk+2eiiTZ8J0O3dFEsO9IZeIUNOkRRaPHjSWmDkoGApjqOyvv/i99oHxPRDkJUdGWQO+OJSNJ554Ak888USztgHtxbs7LkGlNSAp0gdj4l2veaQ5NG3S6LrnHpKHx/D+zks4dLUcHlIxPlswBN4K536WHjIxXpzVBwDw/ZEclNXxTKZWqYgmSieoKusbQXbURTUqlPNMKh8a4w+JiEJ+VRPyKhvRsyfQs5cBMIiQckiBwmruybAzksIwKNoPjRo9Pj2Q02HzSqXVs16h+8d1dznxUpqmsW4P8QotGh0LpUSKp54iv3viCVL17JbIZKTwBxAcKnthVl/Ox3YZQxw5dozkR77+ekePxE5uvx2YPZv0ELFCuC8pk/vnTKHL5MK0RCoWsbvYVDvzhqb0CYWyJwlz/f4nP5esr1KK125MAgB8dSQfi5b/D++8847FtgHOJDmjAj8Zy2r/d0Mfp3pSHMEffwBHjpBmrK+8Ynp+d1oJPt5LEkHfvqU/7xJZoUzuHYKBUX5o0urZRFTOzJpFvgtctF0J8+IEvqEyT7kE/buZ9IYA4OabyG2m8UootvDYXFEUhedm9gYAbEotwk0PPt0h8+rLA5nIr2pCmI8Cy65zvRw8piech1SMJWPj8NlnJA8vJMR2k2OXpx3nVZcxxIMnngAiIzt6FO2Dv5IsOHUqHf44lW/j6I6DyRs6nWdf5VuQlxyjJ6oBisb5syJbQt2tmJ4Uhhv6h0NvoPHEpjOO6YzOgyaNHs/8cRYAcNeIaFbzxVXRaEizSKD5vCquUeGJTWcAkIoYIaKKQqEoCiuNeUk/HstBcQ2P0MzUqSQmceUKUXp3c5hNxnkBPQpbhsrmziXPN2UG469T/DzNw2IDcPuwKNA0sPyXVLtkNIRQWN2Ej/cRr8tzN/R2uebVNE3jI6NXaMHIaIi0Mrz8Mvndyy8T/UK3hulTdvIkad7qRLqMIY6EhIB1Pbo9Fy+SzrLffNPmIRIzzZs3tqa5bCI1kzdkbxI1AMweEQR5JDGqzEu9ufLynL7wU4hx/tJVvPbL/nZtG/DBrsvIqWhEuK8Cz8xwvZyGlnz0EZCRQSpnn3ySPKc30Fi5MRVVjVr0jfDBszPb/+8Y1zMIw2L9odEZsG4vj9whHx+S4wB0Cu+Q0LYcgEl88WhGBWiaxvDhQHAIDVojRUqyBDk8Q9ovze6LHkFKFObn4oFP/4PORrNjR/Lmf+lQaQ0YHhuA2f3D2+19uZKcUYGTOVWQSUS4b1x3vPwyUXLv0we4996OHp0DCAsju6WvvrIZzbCXLmOIIy+/bLcoputw5AjJHfriizYPqW40dfGrbNTiE+PuyNVgPENpRXVo0ti3SE7tEwqPeGOo7A/+hkyQlxzPXt8DBZ8txasLJyE1u32qy87kVeOrg6Ti5vWbkpyeX2MvpaWmsNgbb5jm1RcHMnEkowIeUjHW3jGoQ3RciHeoFwDSdiG/iocKO+PS7wR5Q0lsEjW/8noAGBoTAKmYQmGNCnmVTRCJgLlzjFVlV0N55yF6yMR4Z14iCj5bit+fugmf70njPSYh/HEqH/+cKYSIAl6a43phZ5qm8fb2SwCAO4ZFoaJAwUq/rFlj0ulye955B1i61Oluri5jiCO3397RI3AgjGru8eMkU98ClQ3N3dFfHsxCXqXrtecI91UgxFsOvYHmLRLXktggT/QdSdp7HDxIobqa/zlu6GfaPS7/JZV3AipfNDoDnv79LAw0cOPACExKdJwgobN44QUi2Dx4MOmRBBDP3ns7yML+8py+rPBfRzCqRyD6R/pCb6Dx5Kaz3F/IGEMHDhBlVjeGEawrqG5CZYOG12s9ZGJWA2y/sQ0HEyprvBKKf87wD3f0CjXdCN/feRlnnVzleiyzAk//Tv73D03swTb+dCW2XyjGmbxqKGViPDKpJ1auJMoOc+aYWuZ1wZ0uY4gjbiNfzoWICGDIEFLO04a6Z0WLBVCjM+DN/9pnR8YHiqJMeUMOUMyed50PJAH10OsoQRt8891jdnkj7v76OGpVWiuvEI7eQOOp384gvbgOAZ4yvDibe+VER3HmDPF4A2T3KhIB9WodHvvlNHQGGjf0D8etPMphncXTM4h3KDmzAuuPtN2+phnx8WTX9PLLgnRRXAlvhVRwEjUATO5NjPIdxr59kycDSiUNfZ0HzpymkFEmvKegVk/j4Z9OoYBHZRofMsvqcf8PJ6HV05jZLwyPGz2FroROb8Bqo1fo3rFxSDkox7ZtJG3tvfc6eHDOIDOTLBiWmq05iM50i++CDzay9CvqW+8Gt54rZitEXAlH5g1N6xsGz15k5/r9D/ZV0QV6SXGxqBZL16fYHcJricFA49k/zmJzaiEkIgrv3ToAAZ7tW2XDF5oGli8ndsL8+cC4ceT5l/66gJyKRkT6eeCNm/q5RDhiTHwwFFKyPL7890XOzXjx889Eh8Pf/t5pHc0Ao3fnRDZ3fSCG6/uSvl3JGRWobtTAwwOYPZv8XxsuROJfAd4hhm4BCuRVNuHWT48g0w6jyhKVDRosWZ+CmiYtBkb54f35AyESdfz12JLfTuYjs6wB/kopFo3sjhUryPPLlxObvNPx1lvAihXADz847S26jKFrFcYY2r6dlPa0oKJFmCzCT4G7R8XwUmduLxzVlgMg4YG4UcS1v2snUFgo/Fxf3D0U3goJUrKrsGR9isMqzGiaxot/n2cbl354+yBclxjikHM7kz/+IOLnCoVJEXfL2SL8for8HWtuHwhfD9fJd2JCIzSAhzecxG4XURhvL0Z2DwAAQRuguCBPJIZ5Q2egsTutFADRaAOAhosR+JtnVZk5398zAt2DPVFYo8L8z5MFiUNaQqXV44EfTiC7ohHd/D3w5d1DoZC6Xs8llVaPNbtIcv/D18Xj2y+kuHyZFPn8738dPDhnwdyv/vwTzroJdRlD1yqDB5NM/fp6kuNghlqnx9j4IDw1vRduHkxqnofFBuCVuUls2awr0b+bL0RGkbgSO5VqKYrC3Am+kEdWwmCg8OOPws/VJ9wX3y4eBomIQnJmBWZ8eABFNfa59mmaxqv/puHHo7lEDX3+ANzgglUuLWloALt7ffJJ0s6ruEaF5/48BwBYNjEew2IDOnCErRkRZ/Lu6AzAQz+ewr5LpbZfWFVFZH8vXXLi6JzPqO5BAIjHVYhnk/EObTN61aZNA0JCaRia5Dh3zAOXiusEjSvczwMbHxiFPuE+KK/X4PYvjuJkDn/vlTkXCmsw+6NDSMmugrdCgm8XD0Owt9yuczqL745ko7hWhUg/D0zsFoNVq8jzb73VCUrp22LyZNIMND8fOH/eKW/RZQxdq4hEpPdLYCBQ3DwEIJeI8dWiYVg2MR43Dyb5G0czSZmsK+Ipl7DCfI7wDk3rEwrPJKKt9N13/HqVtWRobADW3TkIAJBR1oAxb+3BK/9cECRkWVqnwuMbz+CbwySH5a15/XDToI7Pr+HCa68BeXlAbCwRgjMY9ZhqmrTo380Xj03p2dFDbEWvsOZ3Fo3egPt/OIlDV2z02Fq2DLjjDuD77504OucTFeCBCF8FtHoaJ3P45+NNTyLG0IHLZWjU6CCRAAvuMobKznfDv2eFu12DvOT4+f6RGBrjjzqVDgu+Oo7P9mfwNtoMBhpfHMjAjR8fxpXSegR7y/H1omHo2U5Cn3ypadLiE6Mg6PIpPfH8M2I0NACjRwOLFnXw4JyJpydpJQU4reNslzF0LfPuu6SabMGCNg8ZFO0PmViEklo1cipcr5qMYZCxuay94osAMDwuABGDy0FJ9Lh4kcLJk9xfK5FIsGzZMixbtgwSY23r9KRwtkeOgQa+OZyNwa/uxJ50Dl4GELf4x3uv4rp39uGP0wUAgFfn9sVtw9xDZz893ZTU+eGHRHH62yPZOHS1HAqpCB/cNhBSsestRb3CWt8QNToD7v0+BceshY6YBpP//OOkkbUPFEWxmkHJmdybrDIkhnkjJlAJtc6A/ZdI6Jm5YTdeDcUfyaWcN1iW5pWvhxQ/LB2BCQnBaNLq8dZ/6Zjwzl78eDQHWr3tkHR2eQMWfH0Mb2xNh1ZPY1qfUGxfPh7D41zLQ2nOJ/uuoqZJi4RQL/hUdsPGjWRf+/HHnazIxxLdu5PvW7c6xevaWZQIuhCCn5/NQzxkYgyI8kVKdhWOZVUgNsi5wldCGRTlh5+P59rdlgMggpM3jQhBZs9iNKZFYv16YOhQbq+Vy+X4+OOPWz3/3Mze+PdMIRq1ZJGubtJiyfoUxAQqsWRMHGYkhSHER8Eer9bpkVvRiNN51fhw1xW2cmZAlB9enNUbQ2Jcd8E2h6aB//s/QKslNsLs2cCl4jq8vS0dAGkb0pFl9NboHuQFiYiCzsyL5yUX4/7xPdAnwko8YsYMcmc6dw7IySExQTdlZI9A/HG6AEcz+YehKIrC9L5h+PxAJrZdKMaMfuHo3x/o15/GubMipB/2x7GsSk5q6W3NKw+ZGN8sHoY/Txfgg52XUVDdhP9tPo81uy5jzsBIDOjmi+gAJSL9PeCjkOJ4ViX2Xy7DvkulyCgj4o8eUjFemt0Htw2Lconk/bbILKvHN4eIV3jlpEQ8dhsZ68MPu3G/TD7ExpLvNA3cdRfpkSV2XE5XlzHUBbm4KitJyMwCI7sHIiW7CkczK13WG8GU15/Nr4FOb2imoC2E24dF4/OkNDSmReKnn2i89x4FuR0pBH5KGRaOisXnBzKbPZ9T0YiX/r6Al/6+gB7Bngj39UB2RQMKq5tgHkkL91Xg6emJmDMgwiWrW9pi0yZg1y5ALgfWrgU0ej0e++U0NDoDJiWG4K4Rrnk9AaRzelyQJ66UmiqWPrlzCMb3Crb+wsBAYMwY4OBB4h165BEnj9R5jDIaKmfyqtGg1sFTzu+WMc1oDO1JK4Vap4dcIsY9iymsXAnUn4/E+sOZdreOEYso3DKkG2YPCMfPx3Lxwa4rKK/XsIZDW4goYEx8EF6e0xfdXdQgZ6BpGq/8exFaPY2JvYJxemsILl0iSdPmff06NeYK1CdPAu+/b5KvdwCd3bHWhS327QOiooAbb2zzkBFxZLE65sJ5Qz2CveAtl6BJq0e6wMRMc/pE+GDkOB3EXipUVXHXHKJpGmVlZSgrK2v1WS0dFweZpPWUE4soUCA5RYeuliO/ihhCXnIJkiJ98PjUBOx5fCJuHBTpVoZQbS2wciV5/OyzxMv9zrZLSC+uQ6CnDG/f3N+ld+IA8cQ9ML475g4kPdJ+PZnH7YWzZ5Pvbh4qiwpQItLPAzqDsLyhQVF+CPGWo06tw5EMElq8805ALKahKfLHvwfrOKl8W5tXDHKJGIvHxOHIM5Nw96gYiK1cW0FeMsxMCsd39wx3eUMIAHanlWLfpTJIxRSW9O+L114jf9s773By8HcO9C3ywV54AUhznPZdlzF0rRMXBxQUkBYdFZbzIAbH+EEiMsnruyIiEYVhxlj/4av88xsscefIKHj2JTk669dzMwIbGxsREhKCkJAQNDY2CFX1BwAAWShJREFUX+RDvBW4fVhUs+cifBXYvnw8Tr84FZ8vHILVN/fHxgdG4fjzk3Fu1TT8+3/j8H+Te8JD5nolvrZ47jlyafXoQfr6HbpSjq+Mu/XVt/R32Wodc1bf3B/PzuyNByeQbuXbzhdzE/tjjKG9e4lV6MaY8ob4l9iLRBRbVcYIMIaGAtOnk5t53flu+OFojs3zWJtXLfGUS/DK3CT8eO8IViuqJeX1GsQGebrF5kKl1eOVfy8CAJaM6Y43nvdEYyNphbdwYQcPrj3RteiPqVYTCfuWzwukyxi61omJAfr3J0p4bahRK2USVoDtaJbriS4yjOtJSoEP2qr24cis/hEIHkz0ULZuJdVQ9vLAhB6QGBfg7kGe2PTQaMSHeMFPKcP1fcMwf1gUhscFIMRb4fJeE2scPgx88gl5/PnngMqgweObUgEAd42IZhWKXR3mZtk73AejewRCb6DxfXK27Rf26kXU77RaIDnZuYN0MoychlDBVaaqbMeFEuiNsV9Wc+hcN/x0JN/hoqQAGfc3i4dZNIh8PaS4b3x3h7+nM/jqYCZyKxsR6iNHaGlPbN9Ows5ffAG48RLBH0tGz/HjpBDIAXQZQ13YVKMGgBFxwgXY2otxPUkux/HsSocsrp5yCW6b6gt5dAX0egpr19p9SkT6eeCmQZHoE+6DjQ+OQqSfh/0ndTHUauC++0gq2j33AJMm0Xjuz3MoqVWje7An/ndDn44eoiCWjCGlvT8fy7V9fVEU8N13QG4ucP317TA658GIL57Nr0G9mv8ufHhcAPyUUlQ0aFg16xtvBMLDaejrFShKDcbm1AJHDplldI8gfLOotUG0bGIPlxL4bIvC6iZ8vJeU0j8yui+efpJ4iP/3P2JvX1O0DJMBwKhRpAeJA9I3uoyhLkwu/W3byE7WAoyr/JiAqpL2okewJyJ8FdDoDDguoIWAJe4YHg2f4STp+fMvaIdEPJZPTcDP949EkJfrh4mE8NZbJJQfEkI2bZtO5uO/88WQiCh8eNsgtwz5AcCkxBBEBXigVqXD1nMcFJRHjyb5eG5ON38logI8oDfQglpzSMUiTDF6AhkBRpkMePhhY6gsJQ7fHsp2Wj7i6PggfL1oGOTGfL1QHzkWjY51yns5mte3pqFJq8fw2ADsXh+G8nIgKYmEna85dDrA25sYQABJ8Th8GHj8cYe4yLqMoS6A4cPJnaumhlTAWGBIjD/EIgoF1U0u2b0eIKW8jHfo4OUyh5wzKdIXw8eqIQmoR10txTYZtYdIPw+32JUK4eJF4PXXyeOPPgLq6Aa8/PcFAMDKaQno1831un9zRSSicNtQYtz8muKAmKkbMTJOeN4QAEw35g39d64YOqMG0AMPAAoFDU2JL86elAo+NxfGmBlEj07u6ZJtNlpy6Eo5tpwtgogCrvfrj+++o0BRwJdfEmPymuPFF4HyctJCSiYDsrIcqjfUZQx1YVKjBtqsfvGUS9DfeCM7luW63qFxCSRv6MAVxxhDAHDnyGj4DCPeoQ8/pNtynl3z6PUkPKbVksjrjfMMeOyXVDRo9BgeF4AHxvfo6CHazS1DoiCiSCj2aimHJqG7dgHTp7t90yhT3pCwuT8uIQgBnjIU16qwzyjAGBQE3H032dHXpsRh/eFsh4y1Lcb2DMKGe0dg/lDX99bVq3V4+vezAIDbB5KkaYCoNIwc2ZEj60C6dydGkLc3MHEiec6B1ZpdxlAXhDvvJC2Pb7utzUOYEvvkDNfNGxobHwSKAi6X1KO4xr4+ZQxzBkYgYGARREo1cnMp/PabQ07b6Xj3XVKU6O1Nkqc/2HUZqXnV8FZI8P78ARC7QeWOLcJ8FZhkbIq78QQH71BlJdnJuvlFM8IYJj9fUIM6Ff/dgFwixq1DiAr7hmOm6rHly8n3piuh+O9IndO9zkNjA1xS7bwlb25NQ0F1E6ICPFC6uxcyM4HoaJPX9ZrHCdIVrn9VdNE+TJkCfPCB1W3HmHiyIB662rbWR0fjp5Shfzc/AMBBB3mHvOQSTOgdAO/B2QBIa4m2/nyJRIJFixZh0aJFbNuAa4GzZ4nsB0BabmQ1leFTYw+l1Tf3Rzd/ZQeOzrEwwqO/n8yHRmej7cP06STB89Ilt27cGunngegApTFvSFjLmzuGk89t3+Uy1ujp3Zt8RACFmhOxbZbZX0vz6vDVcmw4lgsAmBc8BF9/SW7T335LNhpdwGQMHT7cpiQMX7qMoS44Myw2AHIJ6VN2hUuIoIMY7+ASewC4aXAkvAflgJLocfIkcOCA5ePkcjnWr1+P9evXQ26PZLUboVYTvROtFpg7F5h5sworN6YCABaMjMaMfuEdO0AHc12vYIR4y1HRoMGutBLrB/v4ANddRx7//bfzB+dERtmhNwQAsUGeGNczCDQN/JKSyz6/YgX5Xn82Cj/uL0Rlg6bVa6+VeVWv1uGp30h47NZ+cXjvBZKa8H//B0ya1JEjczHMJWG2bnXIKbuMoS5MaLUkx+GDDyz+WiEVs00MHWloOBomifrQ1XJB3eEtMTIuEGKllu1m//IbjhH66gy89BLxDAUHA599RrrRl9drkBjm7bZl9NaQiEW41dh49xcuidRz5pDvbm4Mjexhv7wG037l1xSTV23qVKBvXxq0VoKi4xH4cNdl+wfrpjDhsW7+HijYmoiCAqBnT1Kh2UULFiwgPcq6O0Yvym2Moddffx2jR4+GUqmEH0f9cZqmsWrVKkRERMDDwwMTJ07EhQsXnDtQd6a4mKxMTzwBlFkOMZmEDR2XoOxoBkX7wVMmRmWDBheLHKP+66ck5Rs+w7IA0Ni7Q4L9R1rnTtA0jYaGBjQ0NLhsKNGRHDoErF5NHn/+OfBneiYOXimHh1SMdXcOcouqHSEwSbgHr5TZznNhXPpHjrQ5r9yBkWZ5QzVNwqoIJvcORYi3HOX1auy8SLxqFAUsX24ssz8Rix8O5SOjrLnn+VqYV+bhsRu8h+Lnn0QQiYhclbLzRJkdx5NPAj/+SPoAOgC3MYY0Gg1uvfVWPPTQQ5xfs3r1arz//vtYt24dUlJSEBYWhqlTp6Kuzv7eVZ2SqCjS/tiK65HxuhzLrIRa53jVWEcgFYswqgcx2vY7qMReLKLgp5RCGtDAtui4fWkTdPrmC3NjYyO8vLzg5eVls22Au1NbCyxaRPKnFi0CogdX4d0dJC/m5Tl9ER/SeRMcYgI9MSY+EDRNdJSsEh1tmldcm9y5IOG+Huge7AkDDRwQOK+kYhHbksY8kXrBArL86Os9UHUiBm/9l97sdZ19XpmHx27s1R0frPIBQPSEGFmdLpyL2xhDL7/8MlasWIF+/fpxOp6maaxZswbPP/885s2bh6SkJHz33XdobGzETz/95OTRujE2XPqJYd4I8pKjSasX1LixvRif4HgPlr/RO+Q37jIg1qM43Qf3vW7jRthJoWlSRs9Uubz8pgaP/nwaegONOQMi2DBSZ4ZJpN50Io9tM9Emt9wCTJ5M9LzcmKl9iHjijos2cqWscNvwaIgo4EhGBTKNHiCFAnj1VfL72qPx2HaqwqXV7h0JTdNY9fcFFFQ3IcLHA6nf90JZGUmJWbWqo0fn4tA0cOYMEQy2E7cxhviSlZWF4uJiTJs2jX1OLpdjwoQJOHLkSJuvU6vVqK2tbfZ1TcEYQ9u3A6rWpelE2JAYGofcIG/oZE4VGgS0ELCEn5IIJUp8m+AzNBsAsGGtHzafLHTI+d2JTz8FNm4EJBJgw080/rf1NAqqmxATqMTrNyW5dV81rkzrEwo/pRRFNSrbnpLnnyf5eDNnts/gnMS0PkQ8cV96qe1KujaI9PPAdb2IUfjzcVMi9YIFRF3ZoJKi9mg8Xt+S5rCcP1fm5+N5+O1kPkQUkFQ+Avv3iaBUAr/+SnqQdWGF7duJ1/WBB+xuydFpjaHiYqZDcvOGkKGhoezvLPHmm2/C19eX/YrqBHL6vBg8GIiMBBoagD17LB4yNt7x1VqOJjZQiW7+HtDqaRxzUHPZAKVJ9tV35FWIPDTQVnhj2x+dr7+YNU6cMFUArV4NHKq9xOYJfbZgCLwVnVNduyUKqRjzBjGJ1Lk2ju4cDIryQ5CXHHVqnX2J1CONXrWT+VBpSbhdLDYlCtediMXpNDX+OuOcnmWuwpm8aqwyKrTPDRuArz8k4oqffgokJnbkyNyECRNIQlVuLvEQ2UGHGkOrVq0CRVFWv06cOGHXe7TcodI0bXXX+uyzz6Kmpob9ynNEq3J3gqJM3qG//rJ4COMZOl9YY7EM1hWgKArjE4h36MBlxxhtTBK1p0yMqDApfEdfAQBs/tof9a6rNOBQqquB+fMBjYY024yfVIjP9hv1hG7pj97hPh06vvbm9uFks7Q7rRSldRxEPouK2tZlcANEIgpT+xCvzk47QmUTEkIQ6eeB6kYt/jtv6vM2cyYwfjxA68WoPpSAd7ZdYo2lzkZlgwbLNpyCRm/A2G6R2Lg6EgYDyb+7++6OHp2b4OEBMNGfNu5XXOlQY+iRRx5BWlqa1a+kpCRB5w4LI+7cll6g0tLSVt4ic+RyOXx8fJp9XXPMnUu+t2Fph/gokBjmDZomFRCuyngHV74Ni/XHW/P64fjzU/DVoqHwHpQDiV8DSkqI+nJnh+lCn5VFeiQ++1Ytm/T5wPjumD0gooNH2P4khHpjULQfdAYaf522ES49ehSIiCDWpEFYiMkVYPKGdl4sERzGEoso3GE0JDccNXnVKAp4+23yuOF8N2RfleDrQ5n2DdgF0RtoPPaLMbTsr0Tpv/1RWEghMRFYt66jR+dm2Ni8c6VDjaGgoCAkJiZa/VIoFILOHRcXh7CwMOzcuZN9TqPRYP/+/Rg9erSj/oTOycSJwOnTQHJym4cwoTJXzhsa1SMIIgrIKGtAQXWT3ee7fXg0bh8eDU+5BL3DfTBrUBj8JpCql3feIZv+zsy77wKbN5P2QF9/r8UTf51Ek1aPcT2D8NT0a9enf/NgEir7/ZSNZPrBg4kIY0kJcOxYO4zMOYzuEQSlTIziWhXOFdQIPs/8oVGQiCicyKnCebPzjBwJzJsHgKZQfaAX1uy6gtJax7TWcRU+3HUZB6+UQyEVYXDNKOzcLoJCQfKEvLw6enRuxqxZpL/m6dMkXCYQt8kZys3NRWpqKnJzc6HX65GamorU1FTUm8UnEhMT8eeffwIgYZLly5fjjTfewJ9//onz589j8eLFUCqVuPPOOzvqz3AP5HKSlGYlnDjOGII6eMV1W3P4ekgxMMoPgPBSYGusmNITXonFkEdUobEReOwxQCQS45ZbbsEtt9wCsbjzaOxs3gw8/TR5/N77NL69fBq5lY2ICvDA2tsHdYq+Y0KZ1T8cMrEI6cV1uFhopeBCJjMlUNu5i+1IFFIxJvYi89+eUFmIjwIzjerka1oILb7xBiAW02i6GobazADc/uVxzLv55k4xr/akl2DtnqsAgJsCh+HDt8iG/8MPSQVZFzwJDgYYB4cdwqZuYwy9+OKLGDRoEF566SXU19dj0KBBGDRoULOcokuXLqGmxrTDeOqpp7B8+XIsW7YMQ4cORUFBAXbs2AHvrgYv3NFbjtcPjw2ATCxCYY0KGWUN7Two7jBVK9vOt500L5T4EG/cNCgS/lPPgxIZsGkT8McfCmzatAmbNm0S7NV0NU6eJEKvNA089BBQF3cJBy6XQSEV4fMFQ+HvKbN9kk6Mn1LGNm/987QN7xATgnZjYwgwL7G3b14tn9ITYhGFXWmlzaQ6evUCHniAGNgVW/ujqIpCw9hHseHnX916Xl0trcfyX1IBANPCEvDR/0h7kgcfJFIVXQiEmVc7dgg+hdsYQ+vXrwdN062+Jk6cyB5D0zQWL17M/kxRFFatWoWioiKoVCrs379fcA7SNQdNA0uWEF2UzNYxew+ZGMPi/AEAh1xYjXpmf7LzPHy1HFVOSPZ+cnovBMU2wseYTP3ww0BnyrnPzycCyo2NJE9xyG1Z+PwAkzA9AH0irsGcOgvMGxwJANicWgid3ko+0PTpRI8gPR247L5tJyb1CoVYROFyST2yy4VvhroHe+EWY5jxne3pzbzMb70FRMfQ0NcqUbW3D9KL63DbF8lum1CdW9GIu746ilqVDn38g7F9TTwaGkjPsbVrrTriu7DFHXcQQ+i33wSfwm2MoS7aGYoimbKVlW26HsfGM6Ey180b6hHshd7hPtAZaGy74HjvULivB16dmwTfURmQR1ShpgZYvNit82NZ6utJOL6oCOjbF1j0v0K8+t9FAMDKqQmYcw0mTLfFxF4h8FdKUVanxuEMKyXnfn6mxq1u7B3yVUoxwtin0J5QGQA8OqUnZGIRjmZW4vBV02fn7Q18t55YCPVnotGUGYzTudW488ujqHeQdlh7UVyjwl1fH0VJrRo9ArxR+ddQ5OZQiI8HNm0CpO2sRkHTNMrr1UjJrsTGlDy89V86HvzhJJ75/Sw2nchDVrmbtT2JjCStpGTCvdQSBw6ni87GjTcC+/aRhJHly1v9elzPILy9jTRu1OgMkElc07ae1T8caUW1+PdsIe4YHu3w888dGIHtF4rxd3UqitYPwZ49vhCLgfr6enh6ejr8/doDvZ5sts6cIc7B/62twP/+SwUALBoVg/+bFN+xA3QxZBIRZg+IwPfJOfjzVD4mGHPqLHLjjcDOnWST8eST7TZGRzOtTyiOZFRg58US3DdeeLPMSD8P3DUyGt8ezsY729MxJn4MK38ycSIwYHopzmzzROmmEQAAw4rfcNeXR/H9khHwVbq+plV5vRp3fXUUeZVNiA5QIuTsaPySLIKvL/DPP0BAQPuMQ6c3YPuFEvxwNBsXCmtRp7JsUDLNhwM9ZegX6YueoWRDqZCKUdWoQXWjFlUNGlQ1alHdqEFlowb3jIlz+81RlzHURdvMnUuMoIMHgfJyICio2a/7hPsg0FOGigYNTudWYYSxkaOrMbt/BN7ZfgnJGRUoq1Mj2Nuxsq4UReG1G5OQkn0QTePSUGXUqkxLA4YOdehbtQsGA7B0KfDvv6RNwjtf1OKVfSnQGWjMHhCBl2b3vSYUpvkyb3A3fJ+cg20XilGv1sFL3sbyOm8ecXvccEP7DtDBTO0bhlX/XMSJnEqU16sR5CV8Xi2bGI9fU/JwJr8GOy6W4Pq+Yezv7lvZgMeO0dCbdf85k1+D2788ih+WDrfrfZ1NTaMWC78+joyyBkT4KjC4bCw+3CCBSAT88kv7CCs2qHXYdCIPXx/OQl6lqaqWooghGhfkie5BnogJ9ERJnQons6twNr8GFQ0a7Ltchn0cik9emeMCm76GBuDFF4Hdu0m1Jk/57i5jqIu2iY0lVWWpqeTOaJaPBRABtjHxQfj7TCEOXS13WWMoOlCJ/t18cTa/BtvOF2HhqFiHv0eglxxvzeuHeyoOscbQ0qVASopdntt2x2AA7r+fdMoWi4F3P2nCB2eOolFDSujfu3UARNdw5Zg1BnTzRfcgT2SWN+C/c0W4dWgb6vVhYcDChe07OCcQ6eeBvhE+uFBYiz1ppZg/TLhaf7C3HEvGxGHd3qt4b8clTOkdylYoDu/pi8DrT6H0F3Js05VQePatQUKol8t6owHSfHXx+uNIK6pFkJccYxrG4t13iSdr7VqSPuZMSmtV+C45Gz8ezUVNkxYA4K+U4u5RsZjZLxwxgUoopJYr81RaPc4X1ODQ1XL8mpKHopq2pQ2UMjF6h7tAUZKHB7EwCwtJ94QZM3i93HWvpC5cgxtvJN83b7b4a0aN+oAL5w0BJFQGAP+cdZ4Y0JQ+obhlSCT789mzJAfdXfKHDAZSLfb110S246MvNNhQfARVjVoMiPLDZwuGuPTNp6OhKIpNpP7zNIc2EhZ6/7kbTK8yexq3Mtw3vjt8FBJcLqnH32ZtOPpG+MAjwlQlXL2nL3Q1HkjOqHDZZOpGjQ73fXcCp3Or4aeUYop+LN59nXgq3nqLFFo4C63egHV7rmDs6r34eG8Gapq0iA1U4rUbk3DkmclYMTUBvcK82zSEACKfMDQ2AMunJODIM5Pw4qw+kIotb4IGRftBInaBdUEkMlWVGSV2eL3cwcPporPBGEM7dpCSohYwDVHP5VejutE1W3MAwA39STw7JbsSJU4UcHt6hsnvTYlobNgAPPGE3T0EnQ5NA//3f8AXX5A1Ze1nGmyqOoLCGhW6B3vi28XD4NlW2KcLlrkDiTGUnFmBQmtCn1otccENHgx37uXClNgfvFKGRo19Sc2+HlI8OLEHAOCDnVfYRrBKmQTxISYlQl2jDFW/j0RRiQG3fX4UeZWt16WOJLeiEfM+OYLkzAp4ySW4QTIWb68icgAvvWTS63IGFwtrcePHh/HujsvQ6AwYEuOPzxcOwe7HJ2LByBh4yPhrNFEUhSVj43D8uckY06O1939oTDslPXHhppvI97/+alMWpi26jKEurNO/P3E3PvEEoFa3+nWYrwI9Q7xgoNGsEsTViPTzwOBoP9A0sPWc87xD5k1K/aedAwB88AFpaOqq0DRJDfvkE5JH8OaaJvxQdhCZZQ0I91Xgh6UjEHCNawlxJSpAiRFxAaBpYHOqFe+QREI2GKdPu3VVWe9wb3Tz94BaZ3BIVeni0bEI8pIjt7IRG0+YNCrW3DaQfRwZCTSWKVG9eQQyClWY9+mRZgrWHcmBy2WYve4Q0ovrEOQlwzyvsXjjeSUAYgS99JJz3lejM+D9nZcxZ90hXCishZ9Sig9vH4jfHhyF6/uGOUQU1d9Tjg33jcS3i4fB18O0zrmUd27CBMDXFygt5a3y3mUMdWEdigK2bgVeeQXw97d4CKNGuye9tD1HxptZRu/Qv04MlZnj2bsQIVNJu45nngG++aZd3pYXKhVpDLl2Lfn5f2/X48eKAyiuVSE+xAu/PTQakX4eHTtIN4Npz/HHqYK2y5MpypRd//LL7TQyx0NRlEmA8YL9oTKlTMJWKq7dfYW90cYFmzxDf/1FKrDq83yh2j4MpdUa3P7FURzpwD6JNE3j030ZWPztcdQ0kbDyPMUEvPY0SSx+7DHgzTedoyV0Lr8Gc9YdwtrdV6Az0JjeNww7VozH3IGRTil0uC4xBMnPTsLsAST14KtDWdiTbv//3iHIZKbCBJ6hsi5jqAu7mZRIFsN9l0qhF9i4sT24oX84KAo4mVNlPYRhB2KxGDNnzsT0GTMwNiEYHoMzEDiKiFYuXQp89ZVT3lYQRUWkdPmHH0iy9IpXavBrzUHUqnQYHO2H3x4c1WUICWBGvzDIJSJcLa3H+QIr7TkYY+jKFbf2DjF5Q7vTS6wLTnLk9uFRiPTzQGmdGmt3EzFTZl7NnDkTffuK8e+/JF+27GIgcGgo6lQ6LPr2OP45Y6NZrhNoUOvwyE+n8fa2dBho4NZBUQg/PwrPPyljVds/+MDxhpDeQOODnZdx4yeHkV5chwBPGdbdOQifLhiMEG/nqnQrZRJ8eNsg3DQoEnoDjWUbTuFEdqVT35MzTKjszz955Sd0GUNdcKOhgVxcFy60+tXQWH94KySoaNDgTH51+4+NI6E+CgyLJfHtLU7yDikUCmzZsgX/bd2Kb5aOwegegfAclwbf/iRkct99wJ13Ak3OscU4c/IkMGwY8ST7+wNPf1iCzY2HoNYZMKV3KDbcOxJ+yq7QmBC8FVJMM5aGW23empBgenzPPUS+wg0ZFuuPAE8Zqhu1OOAANXq5RIwXZvUGAHy2PwMp2ZXsvNqyZQsUCgVGjSJNTSkKyD0aAtGRIdDqafzfz6fxzaEsu8fAlcyyesz75Ai2nCuCVEzhuSn9cObrfvj8MxEoiiRLf/yx4w2h8no17v7mGD7cfQV6A41Z/cOxc8V4zOof0W6yFyIRhdW39Md1vYKh0hqwZH0KLhXXtct7W+X664G4OCLCyKNIocsY6oIbjz5K9FG++KLVr6RiESsytyfN1UNlxLX771nn7yAVUjG+WjQUI7oHwPf6M1D2IJ/Nzz+T6uqNGzsmsXrjRmDcOKCgAEhMpPHQB1nYkHcCBhq4fVgUPlswWFCiZRcm5g0iidT/nCmEti1vichs+a2qIg2qXD3T3gISsQhzB5IQ9KYTNnqzcWR6UjjmDY6EgQZWbkxFnUrb6pjZs4FXXyWPsw+FoWrTKNA6EV759yJe/Ou8Uws6SmpV+N/mc5j2wQFcKqlDsLcc70wbjfcficbOnRSUSuCPP0iekKNtk5TsStyw9iAOX62Ah1SMNbcNxLo7ByOwA/SWpGIRPrlrCIbE+KNWpcPd3xzr+IR2b28gIwP49FPiPuRIlzHUBTfmzCHfN2+2uGBP7k0aVe528byhGUnhEFFEtC23wvmTVimT4NvFwzAszg9BN52A14AcAEBtLXDbbcD48cD5804fBgCguhp45BHyvk1NwORpeoxcnooNaaTFxqOT4vHmvH6uUSbr5ozrGYQgLyJIuv8SR2/J778DP/7o3IE5iVuHEI2hXWklqHRQD8BVc/oi0s8DeZVNePXfixaPef55oF8/8rg2MwD5n14HbbUHvk/Owbi39+L9nZdZjR1HUNmgwRtb0zB+9V78eDQXOgON8QnBeDR+PJbc5IdLl4Bu3YDDh02FuI6Cpml8vj8Dt39B2nrEh3jh70fG4MZBkbZf7EQ8ZGJ8s2gYeoV6o6RWjbu/OY7y+tbFNu2KAAu0a9XrghvTpgFKJZCbC5w61erXExJCIKKAtKJap+XjOIJgbzlGGsUhtzihqqyhoQGenp7w9PREQwNpYOkpl+Dbe4ZhcJwvAqefR8D1ZwEQg/LQIWDAAOJ4q6qycmI7oGmSF5SYSFz2AHDT3fWoGL0He7MKIRFRePXGJKyc1qtLWdpBSMQizBnANG/loDnE8MgjZI65GX0ifNA3wgdaPY2/+Py9VvBRSPH+/AGgKOCXI1ehUCqbzSsGc2e1oVGBwi8nov5UDOrUOqzdfQVj396DD3ddQa0F7xJX6lRarNl1GeNX78UXBzKh1hkwNMYfH9wwGrV/D8fdt8tQVQUMH06EVgcOFPxWFqlp0uL+H07izf/SoTfQuHFgBP56eAx6hrqA2CFIr7rvlgxHpJ8HssobsPjb4xa9ee2KXg8kJ3M+vMsY6oIbHh4myVQLWfoBnjIMjibVZu5TVeacUFljYyMaW2gyeSvIYhHt5QvvgXkIvSMZlIToshgMwEcfESV5R3P+PKk2vftuoKQE6NmTxo3PXcGp8P2oatIgMcwbfz0yBgtHxjj+za9xbhxErrNdaSWWG4taConV1rptp99bh5AqOkeFygBgRPdA3G/se6Zuamo1rwBg5Ehg7FizJwwiVOxMQsGX44Eqb9SpdPhg12WMe3sv1u25gsyyeqh11svBNToDUvOqsf5wFh775TTGrd6LNbuuoF6tQ98IH3x+5zAMqhyFu673x19/EaWEJ54grRzDwqyemjfnC2ow66OD2HmxBDKxCK/dmIQPbhvocrpfYb4K/LB0OAI9ZThfUIuVG890bLPX+fN5yXy71qfZhWtz000kEP7nn8Brr7X69aTeITiRU4U96aVY4MI31+lJYXjhr/O4UFiLrPIGxAW1T18dH4UUf60YgSFPHIUiugrdHtmFkl9HQFNEjMjvviPOt+XLgfBw4e9D08R59/XXZNes15Pz3nF/HU77HcfpJhXEIgoPTeiBRyf37FKVdhL9In0RF+SJrPIG7LhQjHnGknur9O5N7u41NW1KWbgqcwdG4o2t6bhYVIsLhTXoG+HrkPOunJqAPefywKgOWbrBPvUU8bKao6v0RtH6cbjzkRpkh5xFVlUd3t1xGe/uuAyKAkK9FYgOUKJbgAei/JUI9VHgamk9TudV4UJhLSv6yNA92BPLJ/UClR+Gx+ZTuHSJPD9hAvG49u3rkD+3Gb+m5OKFvy5AozMgKsADn9w5BP26OeZzdQbdg73w7T3DcPOnR7DzYgn+PVuE2R3VwPW668j9iiMU3aGmm+tTW1sLX19f1NTUwMfHp6OH07FUVZEW5jodcOlS82oYAJeK63D9mgOQS0RIfXGaSyfh3v3NcRy4XIbHpybg/yb3dNh5Gxoa4OVFNFHa6lr/1XodnvrxErwHZwMUoEnvBsmF3sjPINVbMhlxDqxcST5irpGr7GxgwwaSdpKebnr++ht0iJp5GTtzSZVNfIgX3rt1AAZE+Qn/Q7vgxJpdl7Fm1xVMSAjGd0uGN//lzz8Dd90FjBpFEkwGDgQGDWrVENmdWLbhJLaeK8bi0bFYNcdx1sHpzGIM7kF2CF/uuYh7r+vd7PcGAzFGzK97sdgkQhwSQmPqrbWoiEpDTkM1GjW2hQL9lVIMivbHwCg/+DQG4dw+P/zyC4VCo0M5NBR47z1SHero6LJKq8eLf53HRqOXbXJiCN6fPxC+SqmNV7oGzHUf6CnDrpUT4N8Roq35+aiNioIvwOn+3WUM2aDLGGrBddcRX/CHH5JEFzNomsbYt/eioLoJXy8aism9QztmjBzYeCIPT/12Fj1DvLBjxXiH5cpwMYa0WiA+HijTV2PgvedQqKoFTQORdXFQn0jAqRSTwzYwkIiA9+tn+i6REI2goiLSk7CoCDh3jiRtMigUNEZep4asbzYuSzJA02TBvm9cd6ycmmC1L1EXjiOrvAHXvbsPYhGFY89Nbt5hvbCQ3LFDQ4kI1TffkLvrypUdN2A72ZteinvWp8BfKcWx56Y4zOtoPq8SnvoT/z0xBd3NhBgB8vEtXUoe33QT8NlnZGOwZg2QZ3QrKZXA/Pk0Evrq4B+hgjy4AQ3ieuRXNaK4VoWYACX6BAcgWOwHut4DJ09S+PFHMr8Y/P2JEsILLwB+fg7585qRW9GIhzacxIXCWogo4PFpvfDQhB5u1SBZozNg9keHcKmkDvMGR+L9+QM7ZBy1Q4fC9+TJLmPIEXQZQy04eJCUQN1/P/D5561+/eJf5/F9cg7uHBGNN27q1wED5EZNkxYj3tgFldaAjQ+MwvA4x/TX4WIMAcCXX5Kqk6nTDPg+OQfv7biEBo0eYhGF63x749KOSCTvl0Kv574AUhQwfoIBMSPKcVmZhqJGU8+rCQnBeHRyPIa4Uh+ha4S56w7hTH4NXp7TF4tGx1o+6KOPyOZi7Fgyx9wUnd6A0W/tQWmdGp8tGIzpSXbEe80wn1dRK37DoO6h2PjgKMglJqNerSbyMnPmkLCV2PgrrZbISbzzDnDmTOtz+/iQ4gK1mhhNlRa0A2UyYNYsYOFCYOZM8rMz2J1WghW/pqJWpUOApwxrbx+EsT3d01N4OrcK8z49ApoG1t8zDBN7hbT7GGpffhm+q1Z1GUOOoMsYakFtLen9AgB//03EPszYd6kUi79NQZiPAsnPTnLp6qRnfj+LX1LyMKt/ONbdOdgh5+RqDLWkqKYJL/99EdsuFLPPySkpukvD4K8KAV3hi9JsBS5coCASAWHhNAKCDPDy10Luo4HERwVF91IcLMxjcx18FBLMHxqFBSNjENtOeVFdtOabQ1l45d+LGBTthz+XjbF8UG4uEBNDLNriYhKOdlPe+i8dn+3PwOTEEHy9eJhDzmk+r/o+uxn1Bgmu6xWMzxYOaWYQnTsHJCVZDlvRNLBnD7B7N3DxIpCWBly9ajlX3csLiIoCYmNJBPPWW52bwsWoSa/bexUA6QT/8Z2DEeHmCvCv/HMR3xzOQqSfB7avGA+vdk76rj19Gr6DB3cZQ46gyxhqQV0d2UoBJLfhwoVmC7dKq8egV3aiSavHlkfHOiyJ0hlcKKzBDWsPQSKicOSZSQjxsV/CvqmpCTNmzAAA/Pfff/DgIfoFAHvSS/DTsTycyKlEdWPz0lSJiEJ8iBdqmrQoqVWhrc4nfSN8cPeoGMwZEOnSeVvXCqV1Kox8YzcMNHDgyesQHai0fODQoUQa/MsvgXvvbd9BOpCMsnpMfm8/xCIKyc9OckhrCPN59dLHP+ChX85DpTVgUmIIPl0wuJlBxAe1mnRDuXSJhNCiosiXj49z+ohZIq+yESs3piIlm2hrLBoVg+dv6NMpChsaNTpM++AA8quaHJ5HxgU+9+8uY8gGXcZQC+rricInw5w5RIjRbOW47/sT2HmxxOHJyc7glk+P4EROFZZP6YnlUxJsv6CdMBhoXCmtx/HsSqRkVeJ4ViWKa5tLy8vEIoT5KhDhp0CEnwci/TxwXWIIBkX5ubRH7lpk4dfHcPBKufU58dprJBHlhhuAf/9t3wE6mHmfHMap3Go8OyMRD0zo4fDzH75ajiXrU6DWGTA5MQSf2GEQdSSbTxfghc3nUafWwVMmxhvz+mHuwI4VUXQ0h66UY8HXx0BRwG8PjmrXUH2XMeRAuoyhFjQ0EB+yOS12sr8cz8Uzf5zDwCg/bH64jbCAi/D3mUI8+vNphHjLcfiZSZC6qPoyTdPIr2rC5ZI6BHrJEeGnQJCn3K2SKq9lNp3Iw5O/nUWPYE/sWjnBsrF64QKJ8chkpE+Zt2sI6gnh5+O5ePaPc4gP8cJOBxYomGNuEE3pHYJP7hriNt6UmiYtXth8Hn8bG8sOjvbDmtsGte01dHOe3HQGm07mIz7EC1seHdtuhiuf+7d7XDlduDbLl5Pgu5HrEknY7Ex+NcrqOliW3QbT+4YhyEuO0jo1tpvl67gaFEUhKkCJyb1DMTDKDyHeii5DyI2YnhQGmUSEjLIGXChso5N9nz5Az56ARgP891/7DtDBzOofDoVUhKul9UjNq3bKe4yJD8LXi4ZBLhFhV1oplm041UobyBU5llmBmR8exN9nCiEWUVgxJQEbHxjVaQ0hAPjfDX0Q5CXH1dJ6fLznqu0XdABdxlAX/LC0w2toIGUWOqKyG+qjQL9IX9A0Sah2ZWQSEe4cEQ0A+D45x+7zNTQ0IDg4GMHBwa3aBnRx7eKtkGKKsX8f4w1oBUWRUNkff5DSJTfGWyHFDGMl2aaT9itStzWvxvYMwpd3D4VMIsKutBI8/JPrGkQanQGrt6Xj9i+PoqC6CTGBSmx6cBQem9Kz0/cD9FVK8cpcki/0yb4MpBW1sSHoQDr3f6ALx9OWuzs1tdludpLRO7TXxY0hALhzeDTEIgrHsyqRXmz/JC0vL0d5ebkDRtZFZ4LJBfk7tRD6trLf588nIjlK9/cSMO05/jlTCJXWtsihLdqaV+MTgvGV0SDaebEEj7iYQUTTNHanlWDm2oP4ZB/R/Lp1SDdseXQc28LoWmBGUhiu7xsKnYHG83+e69hWHRboMoa64Ie5MSQyXj4rVpAcB7Mye8YYOnC53KUWJkuE+SpwfV8iEOkI71AXXVhiYq9g+CgkKK5V4XiWBTGbTsbI7oHo5u+BOpXO6SHo8QnBrIdox8USzProII5mVjj1PblwvqAGd355DEu/O4GrpfUI8JTh07sG451bB7R7mXlHQ1EUXpmbBIVUhFO51S7Xw7LLGOqCH2Ix8OCDwPbtwOOPk+cKCoAWejr9In0R5CVHvVqHlGzXX/jvHhULAPjzVAFqmjq423IXnRK5RIyZ/UjoyGpn9+xs0rXXQv8/d0IkonDzYMc3b22LCUYPUYCnDJdL6nH7F0ex4tdUlNapbL/YwRRWN2Hlr6mY9dEhJGdWQCYR4cEJPbDvyYmY0c8xQpTuSKiPghUefX/nZRja8pB2AF3GUBf8kEqBTz8Fpk0jLv1Ro0inwhaIRBQmJQYDAHanudYOwBIj4gKQEOqFJq0evzsgx6GLLiwxZyBpWrn1XFHbndMzMoBXXwXWrjU113JTbjGGyg5nlCOvsnXHeUczPiEYex6fgDtHRIOigD9PF2Dyu/vx3ZHstkOTDqROpcU729Nx3bv78MdpYvDOHRiBPY9PwDMzEuGjcI/eYs7kgfE94CkT40JhrUsVrXQZQ10IZ+hQ4MgRYNkyi7+elEhCT7vTS1wuPtwSiqJY79APR3NcasfSRedhRFwgwnwUqFXpsO9SmeWDxo8ncsdlZc0bzrkhUQFKjOsZBJoGvjiQ2S7v6aeU4Y2b+mHzsjHoF+mLOrUOL/19AXPWHcLp3CqHv5/BQON4ViVe/Os8xq/ei4/3ZkCtM2B4XAD+engMPrx9ELr5u38OmKMI8JRh6dg4AMAHuy63i5HKhS5jqAunMbZnEGRiEXIqGpFZ7vqVVTcNioS3XIKs8gYcutqVAN2F4xGLKMweYCNUJpWa8u/+/LOdRuY8HppIRBc3nshrV6mNAUads1dvTIKPQoILhbWY9+kRrPg1Ff+cKURprfDwmcFA42ROFV7+5wJGvbUb8z9PxvfJOahq1KJ7kCe+WDgEv94/EgOi/Bz3B3Uilo7rDh+FBJdL6vHv2TaqK9uZayuDqwvnUFVFFHNvv50s5Ea85BKM6B6Ag1fKsfNiCXpM8LJyko7HUy7BzUO6Yf2RbHyfnIPxCcG8zyESiTB06FD2cRddtGTuwEh8eTALu9JKUafSwttS6GTePOD770mZ/fvvt19vCCcwqnsgBkb5ITWvGt8czsLT0xN5n0PovBKLKCwcGYMZSWF4c2s6fj+Vjz9PF+BPYwgrNlCJEXGBGB4XgOFxAejm79FMIJKmaTRq9Khq1KC6UYvKBg0OXinDlrNFKKwxGVPecgmm9Q3DrP7hGNszyGXFW10FXw8p7h/fHe/uuIw1u67ghn7hHS4v0KVAbYMuBWob0DRp5lNQAOzYAUyd2uzXPxzNwQubz7uFGjVg6qtEUaSPVFRAl3u7C8dC0zSmfnAAV0vr8c4t/XHr0KjWBzU1kd5/jY3AiRPAkCHtP1AHsvNiCe77/gS85BIcfmYSfD06JnfmZE4VtpwtwrGsClwsqkXLu1+ErwLhfh6oadKiulGLmiYNtHrLt0hPmRhT+4Tihv4RGJ8Q5JbtQDqSerUO41fvRWWDBqtv6Y/5luaBnXQpUHfRflAU6aUEAL//3urX1/cNBUUBqXnVKKppaufB8adHsBeb47DhWG5HD6eLTghFUZg7gCRS/5XaRojAwwMwNibFH3+008icx+TEECSEeqFercOPRztOvmJIjD9enN0HWx4dh9QXp+HbxcPw4IQeGBTtB4mIQmGNCidzqnC1tB7l9WrWEJKJRQjxlqNniBdm9Q/HZwsG4+QLU7Hm9kGY2ie0yxASgJdcgoeMfes+3HWlwyVYusJkXdjPLbcAX3xBFu2PPybl90ZCvBUYGuOPlOwqbDtfjHvGxHXgQLmxcGQMDl4px68puVg+pScU0q6FrgvHMndgJN7beRlHMspRWqey3Nn95puBPXuazSd3RSSi8NDEHljx6xl8cygLS8bEwUPWsX+Xr4cU1yWGsO2DGjU6nM6tRk2TFn5KKfw8ZOS7UgoPqbir+bETWDAyBl8czERBdRM2nsjDgpExHTaWLs9QF/YzcSIQEECqXw4ebPXr6UZZ/v/Ou04ZpTUm9w5FpJ8Hqhq12Hzaih6MBRobGxEbG4vY2Fg0Njq/lLgL9yQ6UIlB0X4w0MCWs0WWD7r5ZqCkBHjllfYdnJOY3T8C3fw9UNGgwcYTebxe2x7zSimTYEx8EGb2C8foHkHoE+GDCD8PKGWSLkPISXjIxHjkungAwLo9Vx2iVC4UtzGGXn/9dYwePRpKpRJ+fn6cXrN48WJQFNXsa+TIkc4d6LWIVArceCN5/NtvrX49PSkMAJCSXenyjVsBknR5z5hYAMDa3Vd4TVCa/v/27j0uqjp94PjnzAAz3EVGuSgiiIbXREBNLVFLxUtqRdlmv3TLX5ZW1ra51pbaq/TXxS5rm2XtaltWdrMsdb1kmpkmIt5QMUREBQVUQJA78/vjADkxGCrMYWae9+t1XgNzZoaHo2d45ny/3+cxc/z4cY4fP97iywkIbdUOlX3d0FCZm5vFggR756LX8WDNsMiSH9OpqGr8sIicV45rYt8Qgn2NnC4s5WMNpybYTTJUXl5OQkICDz300BU9b+TIkWRnZ9dta9asaaYIndztt6u3X30F1ZZvcu1auXN9e7Vx6/qD9nF1aFL/UIJ8jWQVlMrcIdEsRvcKRq9T2Hsin4zLlZ4wm+HAAdsF1owSottj8jJwKr+k4flSwqkYXPQ8MqwzAG9vTuNieaUmcdhNMjRv3jwef/xxevbseUXPMxgMBAYG1m2tW7dupgid3LBh4OsLp0/D/v31dtcOlf3XTobKjK56Hqs5Qf/5QxpFZdqcoMJxtfE2MDDCBFymk315OXTpAj17QlqaDaNrHkZXfV3BvcWb06S4qQDUSuUdWnuQV1SuWX9Iu0mGrtbmzZtp27YtXbp0YerUqeTktPzWEHbJYFCHyLKy4Prr6+2Orxkq2370LPkXy20d3VW5I7o94SZPzhWX8/5W21TPFc7lt6GyU9aHf9zcILRmUqkDrCoDmNS/A95GF47mFtvNlWLRvFz1uroPn+9sOcqFUtv3h3ToZCg+Pp7ly5ezadMmFi5cSGJiIkOHDqWsrOF5K2VlZRQWFlpsopFuvhkCA63u6mjyJDLQm8pqMxsOnrFxYFfHRa/jL8OvA+C9H9M5W9Ty5zsJ+zK8ewAGFx3pucWkZDXwXlM7BG2ldIU98ja6cl9N65u3Nx+VOUACgPFR7ejUxpP8ixX8+6cMm/98TZOhuXPn1pvg/Ptt165dV/36d911F6NHj6ZHjx6MHTuWtWvXcuTIEVavXt3gcxYsWICvr2/dFhLS9IWgnIKVN7h4OxsqA/WKVo92PhSXV/H25qNahyMcjLfRlZu7qj38GmzPMWGCWs9r5044cWWrsFqqKQM7YnTVse9kAdvSzmodjmgB9DqFmTd3AWDZz8coKbftyjJNk6EZM2Zw6NChy249evRosp8XFBREaGgov/76a4OPmT17NgUFBXXbCQd587GZjRvV+UNPP11vV3xP9arR1l/zNLkMejV0OoWnRqjtAz7cfpxT+ZcvHKkoCt26daNbt26yHFc0Sm0n+1V7s6w3rQwMhIE11dsdZKjM38vAxNgOgDon74/IeeUcRvUMIqS1Wtbkq+STNv3ZmiZDJpOJyMjIy25Go5ViZFfp7NmznDhxgqCgoAYfYzAY8PHxsdjEFSgoUAvFrVhR7+pQ57ZehLfxpLyqmk2H7Wfu1o2dTfQPb015VTVvbjxy2cd6eHiQkpJCSkoKHh7SykP8sbjr2uBjdOFMYRk7j52z/qBLV2s6iKk3heOiU9iefvYPu8nLeeUc9DqFKQPUCfb//umYTSfY282coczMTPbs2UNmZiZVVVXs2bOHPXv2UFRUVPeYyMhIVtZ0eS4qKuLJJ59k+/btZGRksHnzZsaOHYvJZGLChAla/RqOLz4ePDzg2DHYvdtil6IodROp7WmoTFEUnqppLvlF0knScor+4BlCNJ7BRc+onn/Qyf6229TbrVvVQowOoF0rd8ZHtQOQIWhR587YELwN6gT7LUdybfZz7SYZeu6554iKimLOnDkUFRURFRVFVFSUxZyi1NRUCgoKANDr9ezfv59x48bRpUsX7rvvPrp06cL27dvx9vbW6tdwfB4eMGqU+rWVAoy184Y2p+bafEz4WvTp4Mct3QKoNsPC9alahyMcTO1Q2Zr92ZRVWjkvOnSAF19Uh6H9/W0cXfOZNrgTiqI2cj18WharCLVn2cS+6lzd93+y3Speu0mGli1bhtlsrrfFxcXVPcZsNjN58mQA3N3dWbduHTk5OZSXl3P8+HGWLVsmE6Jt4c471dvPPqs3VNY92If2fu6UVFSx5Yj9DJUBPDn8OhRFbSuy90S+1cdcvHiR7t270717d2nHIRqtX5g/AT4GCksr2ZLawKfhp5+GoUPBxXFaSka09WJUzQek575JaXBlmZxXzuW+AR3R6xS2pZ3lYEOrLJuY3SRDwo6MGqV23U5Ph+Rki12XDpXZS6+yWtcFejOh5rL+K+usXx0ym80cPHiQgwcPypJh0Wh6ncKttZ3sGyrA6KBmj4rE3VXPzmPn+DzJ+qRZOa+cS3s/j7q/E//66ZhNfqYkQ6LpeXrCmDHq1599Vm93bTXqTYdyrA8JtGCP39wFV73CT2l5bEvL0zoc4UDG9VYT7Y0HzzRc8Tw5GR57TF2g4CDa+3nw+C1qwb0Faw5xrtg+irKK5vXAjeEArNp7ipzC0mb/eZIMieZx990wfDjExtbbFRXSigAfAxfKKu0uoQhp7cE9/dSKwC+vS5VPqaLJdA/2IbyNJ2WV1axr6Krp+vXwj3/A++/bNrhmNmVgGJGB3py/WMH8NYe0Dke0AL1DWhEd6kdFlZkPdzR/iw5JhkTzmDAB1q37bUnwJXQ6hZHda4bK9tvXUBnA9CEReLjp2Xsin3UpjrGyR2hPURTGXa9eHWpwqCwhQb394QfIs68PEpfjqtcx/7aeKIq6YnNHuhRiFPBATR+7j3Ycb/YFN5IMCU3UDpVtOHSGiqrqP3h0y9LG28CfB6on6cvrDtvdUJ9oucbVrCrblpZH7gUr7V/Cw6FPH6iqgpoyIo6iTwc//tRXLcT4zMr9cl4JhncPtFkRRkmGRPM6dQqWLKm3qqxvWGv8Pd3Iv1jBL+kNFJprwf53cDj+nm6k5xazcP3lCzEK0VgdTZ5cH9KKqmoza/ZnW3/QHXeot59/brvAbOSpkZGYvAwczS1myRZpjuzsLi3C+K9mLsIoyZBoPuXl0LUrPPgg/K7HnF6nMLy72pNp7YEG3vRbMB+jKwtu6wnAe1vT+fmoOmShKAqhoaGEhoZK2wBxVS7tZG9V7VDZpk0ONVQG4OvuyrNjugKw6Ic0MvKKATmvnFltEcb03GI2N2M5FkmGRPNxc/utAKOVT7G1Q2XrUs5Y78nUwg3vHsjE2BDMZnjys70UlFTg4eFBRkYGGRkZ0jZAXJUxvYLQKZCcmU/mWSs1dSIioHdvdajs669tHV6zu/X6YAZFmCivrObZbw5gNpvlvHJilxZhbM5l9pIMieZ1mQKMN4T742N0Ia+ojKTjl+9N1FI9O6Ybof4eZBWU8tw3B7QORziAtj5GBnQyAeqyYqsSEqBdOzUhcjCKovDC+B64uejY+mseq5ys7pKozxZFGCUZEs0rPl6tO3T8OCQmWuxyc9Fxczf7HSoD8DS48NqdvdEp8M2eLHnjFk2idiL113uyrJdveOIJyMxUh6AdUEeTJzOGRAAwZ1UKBSUVGkcktGSLIoySDInm5e4OY8eqX1srwNj9t8attuxQ3JSiQ/2YMVQtGvf0Z7vo3Sea2NhYSkpKNI5M2KsRPQJxc9GRllPEwWwrn4SNRtA59tv3g4PDCW5lJP9iBdP/s53Y2Fg5r5xYcxdhdOyzSbQMlw6VVVsuo7+pSxu8DC5kF5SSlGmfQ2UAjwyN4Pr2vhSWVLA3eTe7du2iutq+SgaIlsPH6MqwyLaAesWxQZWVsHu3jaKyLYOLnpdv7wXAj6m57Nq1S84rJ3ZpEcb/bG/6IoySDInmFx8P3t5w5gykWvb0MrrqGVlz+XNlcgPzI+yAq17H63f1xt1Vr3UowkGMr+mD982eU9YXGJw/r84b6tsXchto7mrnBnVuQ4CPweI+e1xsIZpGXRHGX5q+CKMkQ6L5GY2wejXk5KhL7X+ntvnp6n3ZlFfa76e+8DZePBV/Xd33qWds021ZOKa469rg6+7KmcIyth+1UpHZzw9CQtRJ1F99ZfsAbeTumpVEtWauSG72asSiZaotwpjfDEUYJRkStnHjjeDra3VX/3B/2nobKCipYHNq89WRsIW7Yn57437q831SRVdcNYOLnjG91PITDV41vesu9fbTT20Ule3d3DXQ4vuNB3OY+N4O6xW6hUO7tAjj0m0ZTdobUpIhYXsVlitD9DrlktUz9jtUBlgUhDtypkiqU4trUnvV9L8Hsq1fDamdj7dlC2Q55krGrkE++Lq7Wty390Q+E97exq9nLmgUldDKHTHtcXfVk5ZTxM5jTde9QJIhYTsbN0JMDEybVm9X7fyIjYdyKCx1nGW0721Ntz7EIUQjRIf6EdLaneLyKtYftNLUODQUBgxQa3g5YHsOUD8s9Q1rXe/+k+dL+Mvne+16aF1cOR+ja92H549+yWyy15VkSNiOqyskJanzG8osL3F3C/Khc1svyiur+a8ddrK/lMlkwmQykRDTDrMZ/vLZHqmTIq6KoihM6K1+UPjDobIVK2wUle31D2+Nzt0HnbtP3X1eBhcW3R2Fm4v8GXM2k/qHAuoV06YaLpX/RcJ2Bg2C4GDIz4f16y12KYpSd3XInleVeXp6kpubS25uLs/fHkPHmurUf16WSFFZpdbhCTtUe15s/bWBTvYJCaAosH27WojRAQ3pEULIox8T8ujHxEYEEuLnTlFZJQ8v302xnFdOp0c7X64PaUVFlZnPk040yWtKMiRsR6//bY7DJ5/U21176XPHsbNkF9h/YTVPgwv/vKcPPkYXko6f575/7+SCAw0BCtsIb+NV18n+W2sVzoOC4K231GbIISH19zuATm28iAz05tWE6/nioQEsf6A//p5upGQV8sgnyVRWyVCZs5nUrwMAH/+S2STlFiQZErZ1993q7TffQHGxxa72fh707dgasxlWXa7QnB3pHuzL8gf61yVEk5cmSkIkrthtNVeHGlxg8PDDEB2tXiFyQIqi8O0jg7gjuj2KotDB34P374vB4KJj0+Ec5n17sElXFomWb0yvYHyMLpw8X8KPR669zpYkQ8K2YmMhLAwuXlRrD/3O+Lo3fftMhkpKSoiLiyMuLq6ubUDP9mpC5OvuKleIxFUZ0ysIvU5h38kC0nKKtA7H5kpKSrhl2FCL8yqqgx9v3NUbRYEPdxxv1o7mouVxd9NzR7R6JfSjHddekVqSIWFbigITJ6pfW6mNMqpnIK56hUPZhRw+bX9FC6urq9myZQtbtmyxaBugJkT98HV3ZXdmviRE4or4exkY3KUNAF83NKcuMRGmTIHXX7dhZLbR0HkV3zOIZ0aphVxfXHOItfvts+GzuDr39FeHyjal5nDy/MVrei1JhoTt3X033H473HdfvV2tPNwYcp3ak+nrZPu8OtSQHu0kIRJXb8IlQ2VWmxofPAjLlsF776lL7Z3E/YPCuLd/KGYzzFyxh9123ONQXJlObbwY0Mkfsxk+3XltE6klGRK217MnfPEFjBtndXftUNmqht707djvE6L/kYRINNIt3QLwMqhzJHYdt/IHf/x4cHODQ4fgwAGbx6cVRVGYM7YbQyPbUlZZzdQPdpGSVaB1WMJG7umnLrP/NPHENdWckmRItDhDI9vibXAhq6CUnRlNV2G0pbg0IUrOzOd//rXToQpNiuZhdNUTf7mmxr6+MGqU+rWV1ZqOzEWvY9HdUXQP9uFscTkT3v6ZT3ZmyqRqJzC8ewBtvA3kFZVZL0zaSJIMCe38+ivMnQvZluP8Rlc9o3qqPZm+sfP2HA2pTYh8jC4kn8hn3FvbKCgp1zos0cL91tQ4i9IKK+05/vQn9fbjj6HauZabexpc+Oj+fgy5rg3lldXM/mo/T3y2V+oQOThXvY6JsepE6uU7rr7OliRDQjv33Qfz5lmdSD0uSq05tHpftsM2O+3RzpePp/bH4KLjWF4x/edvYvW+LPk0KxrUP9yfIF8jhaWV1psajxkD3t5w/Dhs22b7ADXm5+nGv+6LZdbISPQ6hZXJp7j1rZ84Ij3MHNrEvh3QKbA9/exVr7aUZEhoZ9Ik9fajj+rt6h/225v+D4evvYaELXl4eODh4dGox/Zo58uyybEAlFRUMf3jZG557Ud2HpN+ZqI+nU7h1pripF/ttnLV1N1dXZwAsHy5DSNrfo09r3Q6hYfiOvHJ1P4E+Bg4mlvMrW/9xBdJJ20QpdBCu1buDI1UF94s/+XqltlLMiS0c+ed4OICu3erkz4vodMp3Hp9TSd7O2rP4enpSXFxMcXFxXh6ejbqOTdEmJhUs0QUIC23iDvf3cFd727nwCmZCCos3RbVHoAfUnPIv2hlaHXSJOjSBSIjbRxZ87ma86pvWGtWP3ojN3Y2UVpRzZOf7+WpL/ZSUu6YV5qd3T01/cq+TDp5Vf/GkgwJ7ZhMMHKk+rWVT7G1q8o2Hc6h4KJjTzD+W3xX/DxcLe775dg5xiz6iYc+THLKQnvCuusCveka5ENFlZnV1urqDB0Khw/DzJk2j62lMXkZWDalL0/c0gVFgc92nWTC29s4mivnk6MZ3LkNIa3dKSyt5Nt9V16WRZIhoa3aobLly+vVRuka5ENkoDflVdWsPeDYxdS8DC5MHxJhdd/alNN8dxUnt3BcE2rm1K20NlSmKA7bluNq6HUKjw7rzPL7+2HyMnD49AVuXfSTwy7OcFY6ncKf+qpXh5ZfRUVqSYaEtsaOBS8vyMiAn3+ut3tcb/vqZF9aWsro0aMZPXo0paWlV/TcSf1DCfI1Wt33xsZfefLzvZwtstK1XDidcb3boSiw6/h5Ms82UHm3tFSt51Vg/0Ot13Je1RoQYWLNY4PoH96a4vIqHvt0D498kszeE/lNG6zQTEJMe1z1CntPFrD/5JX9v5dkSGjLw0Od8OnjA+np9XbXdrL/5dg5TuW3/E72VVVVrFmzhjVr1lBVdWXj1kZXPY8N61z3vV6n8ModvfhTTXfmL5JOMnThFj7dmelwxSjFlQnwMTKwkwm4TPPWuDhISICvvrJdYM3kWs6rS7X1NrL8gf48MjQCRYFv92Yx7p/bGP/PbaxMPumwK1edhcnLQHwPtSzLlfYrk2RIaO+ll+D0abj33nq7glu50y+sNeA4newv547o9oSZPNHrFN6c2JuEmBDmT+jJlw8NIDLQm4KSCv721X4mLP6ZD7dnkGUHCaJoHnXtOZJPWS/HMHasemtltaYz0+sU/jL8OlZNH8RtUe1w0+vYcyKfx1fsZcCCTby6LpXsAjmv7NWkmonUq/ZmUVDS+LmmdpEMZWRkcP/99xMWFoa7uzudOnVizpw5lJdfvkid2Wxm7ty5BAcH4+7uTlxcHCkpKTaKWjRaQIC6JLgBl77pOzoXvY6/jriONyf2Zkyv4Lr7o0P9+O6RQfx9dFc83PTsPZHPs9+kMOD/NjH6H1t5fcMRDpwqkBpFTmREj0CMrjrS84rZa21IoLYA4w8/wCnHP3euVM/2vrx2V29+nj2UJ4d3IdDHyNnict76IY1BL/3Aw8uT2JF+Vs4pOxPb0Y8uAV6UVFTx3d7G/7+3i2To8OHDVFdX8+6775KSksLrr7/OO++8w9NPP33Z57388su89tprvPXWWyQmJhIYGMgtt9zChQtSgKtFMputDpXF9wzCTa8j9cwFDmXbXyf7KzWqZ5BFIlTLRa/jgRvD2fSXOGbHRxLb0Q9FgZSsQt78/lfGLPqJAf+3ib9/vZ/NqTlyyd/BeRlcGNFdbc9h9YNCWBgMHKieV1YKmwqVycvAjKGd+WnWEBbf04f+4a2pqjazZv9pJi7Zwcg3trL8l+PkXCiVxMgOKIpS169sxa7G15ZSzHb6r/vKK6+wePFi0q388QT1qlBwcDAzZ85k1qxZAJSVlREQEMBLL73Egw8+2KifU1hYiK+vLwUFBfj4+DRZ/OJ38vLUN+7jx+HMGbXP0iWmfZjEf1NO8+BN4cwe1VWjIP9YcXExXl5eABQVFTW6JsrVOltUxqbDOWw8dIYfj+RRckmLBk83PTd1acPACBNBvkZMXgbaeBvw93LD4KJv1riEbfyQmsOUpYn4e7qx4+lhuOp/9/l28WJ4+GGIilLredkpW59Xh08X8p/tx1m5+5TFOeXn4UrnAG+uC/CmS4AXXQK86RLgjZ+nW7PGI65MYWkF/V78nuKiC5x4485G/f12sVFsTa6goIDWrVs3uP/YsWOcPn2a4cOH191nMBgYPHgwP//8c6OToVol5VVIKtSM/P3VAoxlZeqEzylTLHaPj2rHf1NO882eLGaNjESnk6XDAP5eBhJiQkiICaG0oortR8+y4dAZvj90hjOFZaw9cJq1B+o3L/R1d8Xk5UYbb0NdkmTyMuDn4YZep3660ikKCqDTgYKCoqDeV3OrU6BzgDed2njZ/hcXANwYYcLk5UZeUTlbf81laGSA5QPuvBMefRSSk+HgQejWTZtA7UxkoA/zJ/Rk1shIvkg6yWeJJziSc4HzFyvYeewcO49ZNpBu423gugBvOgd41dx606dDKxQpcaAJH6Mr46OCWb41tdHPsctk6OjRoyxatIiFCxc2+JjTp9U/AAEBlm8OAQEBHD/e8CzzsrIyysp+W75cULMsNSv3HO5u8mm6Wd1xBzz/PCxd+ltLgRrRwQY8lTKyci/y/b4M+oX7axTk5RUXF9d9XVhYeE0rX65GdLCR6OBQnhrSgYPZBWw+nEtKdgFniyrIKyrjXHE5ldVmzpfB+Xz49Rp/3qPDIvjfmzo1RejiKt3S2YflOzL59KdUYoJ/N/fO1RVuuQXWroXVq6F9e22CvEZanVcKkNDLn4Re/pRWVJGeW0RaThFpucWk5VwgLaeIrPxSzpRd5EzeeX6smZLayt2FrbOGSjKkoXHd/Phwo1p2olEDYGYNzZkzxwxcdktMTLR4zqlTp8wRERHm+++//7KvvW3bNjNgzsrKsrj/gQceMI8YMeKaYpJNNtlkk0022exjO3HixB/mI5rOGcrLyyMvL++yj+nYsSNGo1qILisriyFDhtCvXz+WLVuGTtfw/O/09HQ6derE7t27iYqKqrt/3LhxtGrVig8++MDq835/Zai6uppz587h7+9vF1l+YWEhISEhnDhxQuY4Icfj9+R4WJLjYUmOhyU5Hpbs7XiYzWYuXLhAcHDwZfMF0HiYzGQyYTKZGvXYU6dOMWTIEKKjo1m6dOkf/mJhYWEEBgayYcOGumSovLycLVu28NJLLzX4PIPBgMFgsLivVatWjYqxJfHx8bGL/6y2IsfDkhwPS3I8LMnxsCTHw5I9HQ/f3y3GaYhdLK3PysoiLi6OkJAQXn31VXJzczl9+nTdvKBakZGRrFy5ElAngM6cOZP58+ezcuVKDhw4wOTJk/Hw8OBPtfU3hBBCCOH07GIC9fr160lLSyMtLY32v5sAeOkoX2pqat2EZ4CnnnqKkpISHn74Yc6fP0+/fv1Yv3493t7eNotdCCGEEC2bXSRDkydPZvLkyX/4uN9Pf1IUhblz5zJ37tzmCawFMhgMzJkzp95Qn7OS42FJjoclOR6W5HhYkuNhyZGPh90WXRRCCCGEaAp2MWdICCGEEKK5SDIkhBBCCKcmyZAQQgghnJokQ0IIIYRwapIMObjVq1fTr18/3N3dMZlM3HbbbVqHpLmysjJ69+6Noijs2bNH63A0kZGRwf33309YWBju7u506tSJOXPmUF5ernVoNvP2228TFhaG0WgkOjqarVu3ah2SZhYsWEBsbCze3t60bduW8ePHk5ra+CaXjmzBggV1deuc2alTp5g0aRL+/v54eHjQu3dvkpKStA6ryUgy5MC+/PJL7r33XqZMmcLevXvZtm2bFJxErT8VHBysdRiaOnz4MNXV1bz77rukpKTw+uuv88477/D0009rHZpNrFixgpkzZ/LMM8+QnJzMjTfeSHx8PJmZmVqHpoktW7Ywffp0duzYwYYNG6isrGT48OEWDVKdUWJiIkuWLKFXr15ah6Kp8+fPM3DgQFxdXVm7di0HDx5k4cKFdtmdoUF/2L1M2KWKigpzu3btzO+//77WobQoa9asMUdGRppTUlLMgDk5OVnrkFqMl19+2RwWFqZ1GDbRt29f87Rp0yzui4yMNP/tb3/TKKKWJScnxwyYt2zZonUomrlw4YK5c+fO5g0bNpgHDx5sfuyxx7QOSTOzZs0yDxo0SOswmpVcGXJQu3fv5tSpU+h0OqKioggKCiI+Pp6UlBStQ9PMmTNnmDp1Kh9++CEeHh5ah9PiFBQU0Lp1a63DaHbl5eUkJSUxfPhwi/uHDx/Ozz//rFFULUttJX9n+P/QkOnTpzN69GhuvvlmrUPR3KpVq4iJiSEhIYG2bdsSFRXFe++9p3VYTUqSIQeVnp4OwNy5c/n73//Od999h5+fH4MHD+bcuXMaR2d7ZrOZyZMnM23aNGJiYrQOp8U5evQoixYtYtq0aVqH0uzy8vKoqqoiICDA4v6AgIB6/Q6dkdls5oknnmDQoEH06NFD63A08emnn7J7924WLFigdSgtQnp6OosXL6Zz586sW7eOadOm8eijj/Kf//xH69CajCRDdmbu3LkoinLZbdeuXVRXVwPwzDPPcPvttxMdHc3SpUtRFIXPP/9c49+i6TT2eCxatIjCwkJmz56tdcjNqrHH41JZWVmMHDmShIQEHnjgAY0itz1FUSy+N5vN9e5zRjNmzGDfvn188sknWoeiiRMnTvDYY4/x0UcfYTQatQ6nRaiurqZPnz7Mnz+fqKgoHnzwQaZOncrixYu1Dq3J2EVvMvGbGTNmMHHixMs+pmPHjly4cAGAbt261d1vMBgIDw93qEmijT0eL7zwAjt27KjXUycmJoZ77rmHDz74oDnDtJnGHo9aWVlZDBkyhBtuuIElS5Y0c3Qtg8lkQq/X17sKlJOTU+9qkbN55JFHWLVqFT/++GO9ptjOIikpiZycHKKjo+vuq6qq4scff+Stt96irKwMvV6vYYS2FxQUZPG3BKBr1658+eWXGkXU9CQZsjMmkwmTyfSHj4uOjsZgMJCamsqgQYMAqKioICMjg9DQ0OYO02Yaezz+8Y9/8MILL9R9n5WVxYgRI1ixYgX9+vVrzhBtqrHHA9SlskOGDKm7aqjTOceFYjc3N6Kjo9mwYQMTJkyou3/Dhg2MGzdOw8i0YzabeeSRR1i5ciWbN28mLCxM65A0M2zYMPbv329x35QpU4iMjGTWrFlOlwgBDBw4sF6phSNHjjjU3xJJhhyUj48P06ZNY86cOYSEhBAaGsorr7wCQEJCgsbR2V6HDh0svvfy8gKgU6dOTvkJOCsri7i4ODp06MCrr75Kbm5u3b7AwEANI7ONJ554gnvvvZeYmJi6q2KZmZlOMWfKmunTp/Pxxx/zzTff4O3tXXfVzNfXF3d3d42jsy1vb+96c6U8PT3x9/d32jlUjz/+OAMGDGD+/Pnceeed7Ny5kyVLljjU1WRJhhzYK6+8gouLC/feey8lJSX069ePTZs24efnp3VoQmPr168nLS2NtLS0esmg2WzWKCrbueuuuzh79izPP/882dnZ9OjRgzVr1jjUJ90rUTv3Iy4uzuL+pUuXMnnyZNsHJFqU2NhYVq5cyezZs3n++ecJCwvjjTfe4J577tE6tCajmJ3hnU8IIYQQogHOMUlACCGEEKIBkgwJIYQQwqlJMiSEEEIIpybJkBBCCCGcmiRDQgghhHBqkgwJIYQQwqlJMiSEEEIIpybJkBDCYWzevBlFUcjPz9c6FCGEHZFkSAhht+Li4pg5c2aTv66iKHz99ddN/rpCiJZJkiEhhBBCODVJhoQQdmny5Mls2bKFN998E0VRUBSFjIwMAJKSkoiJicHDw4MBAwbU67j97bffEh0djdFoJDw8nHnz5lFZWQlAx44dAZgwYQKKotR9f/ToUcaNG0dAQABeXl7ExsayceNGW/26QohmJMmQEMIuvfnmm9xwww1MnTqV7OxssrOzCQkJAeCZZ55h4cKF7Nq1CxcXF/785z/XPW/dunVMmjSJRx99lIMHD/Luu++ybNkyXnzxRQASExMBtUlpdnZ23fdFRUWMGjWKjRs3kpyczIgRIxg7diyZmZk2/s2FEE1NGrUKIexWXFwcvXv35o033gDUCdRDhgxh48aNDBs2DIA1a9YwevRoSkpKMBqN3HTTTcTHxzN79uy61/noo4946qmnyMrKAtQ5QytXrmT8+PGX/fndu3fnoYceYsaMGc3y+wkhbMNF6wCEEKKp9erVq+7roKAgAHJycujQoQNJSUkkJibWXQkCqKqqorS0lIsXL+Lh4WH1NYuLi5k3bx7fffcdWVlZVFZWUlJSIleGhHAAkgwJIRyOq6tr3deKogBQXV1ddztv3jxuu+22es8zGo0NvuZf//pX1q1bx6uvvkpERATu7u7ccccdlJeXN3H0Qghbk2RICGG33NzcqKqquqLn9OnTh9TUVCIiIhp8jKura73X3bp1K5MnT2bChAmAOoeodsK2EMK+STIkhLBbHTt25JdffiEjIwMvL6+6qz+X89xzzzFmzBhCQkJISEhAp9Oxb98+9u/fzwsvvFD3ut9//z0DBw7EYDDg5+dHREQEX331FWPHjkVRFJ599tlG/TwhRMsnq8mEEHbrySefRK/X061bN9q0adOo+TsjRozgu+++Y8OGDcTGxtK/f39ee+01QkND6x6zcOFCNmzYQEhICFFRUQC8/vrr+Pn5MWDAAMaOHcuIESPo06dPs/1uQgjbkdVkQgghhHBqcmVICCGEEE5NkiEhhBBCODVJhoQQQgjh1CQZEkIIIYRTk2RICCGEEE5NkiEhhBBCODVJhoQQQgjh1CQZEkIIIYRTk2RICCGEEE5NkiEhhBBCODVJhoQQQgjh1CQZEkIIIYRT+38sxf3jJaTLfwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -175,7 +175,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 4, "metadata": {}, "outputs": [ { @@ -187,8 +187,8 @@ "Outputs (1): ['tau']\n", "States (0): []\n", "\n", - "Update: . at 0x15345b560>\n", - "Output: \n" + "Update: . at 0x13c3c37e0>\n", + "Output: \n" ] } ], @@ -217,7 +217,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 5, "metadata": {}, "outputs": [ { @@ -229,8 +229,8 @@ "Outputs (2): ['theta', 'tau']\n", "States (2): ['invpend_theta', 'invpend_thdot']\n", "\n", - "Update: .updfcn at 0x15345af20>\n", - "Output: .outfcn at 0x15345ae80>\n" + "Update: .updfcn at 0x13dc72700>\n", + "Output: .outfcn at 0x13dc728e0>\n" ] }, { @@ -261,7 +261,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 6, "metadata": {}, "outputs": [ { @@ -302,12 +302,12 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 7, "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1deA39mS3fTeAwkESCih994REBEpIigixYK99/apPxR7Q1QEpIoKohTphN57Cx3SSSO9Z+/3xyYLMQlJyKbf93n2STK5M/fM7szsuacqQgiBRCKRSCQSST1FVd0CSCQSiUQikVQnUhmSSCQSiURSr5HKkEQikUgkknqNVIYkEolEIpHUa6QyJJFIJBKJpF4jlSGJRCKRSCT1GqkMSSQSiUQiqddIZUgikUgkEkm9RipDEolEIpFI6jVSGaohLFiwAEVRTC+NRoOPjw+PPPIIERERRcYdOnSoGqWt2SxdupSvvvqq0o7v5+fH5MmTTX9HRkby3nvvcezYsTIfY8uWLXTs2BFra2sURWHVqlVml7OAq1evoigKCxYsqLQ5aip9+/alb9++lT5P+/btefbZZyt9nprIunXreO+994r933/vleokODgYRVEIDg4udWxV3p/FoShKoff0vffeQ1EU4uLiqlSO6pq3OtBUtwCSwsyfP5/AwEAyMjLYsWMHM2fOZPv27Zw8eRJra+vqFq9WsHTpUk6dOsVzzz1XKcf/66+/sLOzM/0dGRnJ+++/j5+fH23bti11fyEE48aNo1mzZvzzzz9YW1sTEBBQKbICeHp6snfvXvz9/SttjvrMlStXOHr0aKUq4DWZdevW8f333xerEP33XqkNVPX9KakZSGWohtGqVSs6duwIQL9+/cjLy+ODDz5g1apVTJw4sZqlq9mkp6djZWVVrn3y8vLIzc1Fp9OVeZ927dqVV7RCREZGkpCQwKhRoxgwYECFjlVARkYGer0eRVGK/E+n09G1a1ezzCMpyp9//ombmxs9e/astDkyMjKwtLSstOPfCWW53yp6r1QHlXF/Smo+0k1Wwyn4Ert27Vqh7SkpKTzxxBO4uLjg7OzMfffdR2RkZKExy5cvZ/DgwXh6emJpaUnz5s157bXXSEtLKzTu8uXLjB8/Hi8vL3Q6He7u7gwYMKCI22f58uV069YNa2trbGxsGDJkCEePHi31HApce5s2beKRRx7ByckJa2trRowYweXLl4uMnzdvHm3atEGv1+Pk5MSoUaM4e/ZsoTGTJ0/GxsaGkydPMnjwYGxtbRkwYAB9+/Zl7dq1XLt2rZDbEW66i2bNmsWHH35Io0aN0Ol0bNu2jczMTF588UXatm2Lvb09Tk5OdOvWjb///ruIfLea/oODg+nUqRMAjzzyiGm+ktwG7733Hj4+PgC8+uqrKIqCn5+f6f+7du1iwIAB2NraYmVlRffu3Vm7dm2x7+fGjRuZMmUKrq6uWFlZkZWVVeycxbnJCszfp0+f5oEHHsDe3h53d3emTJlCUlKSaVy7du3o1atXkWPm5eXh7e3NfffdV+S9/eijj2jYsCF6vZ6OHTuyZcuWIvtfuHCBCRMm4Obmhk6no3nz5nz//feFxhS4NZYtW8abb76Jl5cXdnZ2DBw4kHPnzhUaK4Rg1qxZ+Pr6otfrad++Pf/++2+x78d/GTt2LC1btiy0bcSIESiKwh9//GHaduTIERRFYfXq1YXGrlixglGjRqFSlfw4LXi/jx49yn333YednR329vY8+OCDxMbGFhrr5+fH3XffzcqVK2nXrh16vZ73338fgFOnTjFy5EgcHR3R6/W0bduWX3/9tdj3bfHixbzwwgt4eHhgaWlJnz59ir1f//nnH7p164aVlRW2trYMGjSIvXv3Fiv/kSNHGDNmDI6Ojvj7+zN58mTT53br/Xb16lXTufzXTRYaGsqDDz5Y6LP//PPPMRgMpjEF19Nnn33GF198QaNGjbCxsaFbt27s27ev0PEOHTrE+PHj8fPzw9LSEj8/Px544IEiz8yyUNr9WZbrFiA5OZmXXnqJRo0aYWFhgbe3N88991yRZ29ycjLTp0/H2dkZGxsb7rrrLs6fP1+ifGFhYaVeP2V97gPs37+fESNG4OzsjF6vx9/fv1SLekhICI0bN6ZLly7ExMTcdmytQkhqBPPnzxeAOHjwYKHtX3/9tQDETz/9VGhc48aNxdNPPy02bNgg5s6dKxwdHUW/fv0K7fvBBx+IL7/8Uqxdu1YEBweLOXPmiEaNGhUZFxAQIJo0aSIWLVoktm/fLlasWCFefPFFsW3bNtOYjz76SCiKIqZMmSLWrFkjVq5cKbp16yasra3F6dOny3RuDRo0EFOmTBH//vuv+Omnn4Sbm5to0KCBuHHjhmns//73PwGIBx54QKxdu1YsXLhQNG7cWNjb24vz58+bxj388MNCq9UKPz8/MXPmTLFlyxaxYcMGcfr0adGjRw/h4eEh9u7da3oJIcSVK1cEILy9vUW/fv3En3/+KTZu3CiuXLkiEhMTxeTJk8WiRYvE1q1bxfr168VLL70kVCqV+PXXXwudj6+vr3j44YeFEEIkJSWZzu+tt94yzRcWFlbsexEWFiZWrlwpAPH000+LvXv3iiNHjgghhAgODhZarVZ06NBBLF++XKxatUoMHjxYKIoifvvttyLvp7e3t3j00UfFv//+K/7880+Rm5tb7JwF5z1//nzTtnfffVcAIiAgQLzzzjti06ZN4osvvhA6nU488sgjpnEF19+t770QQqxbt04A4p9//ik0R4MGDUTPnj3FihUrxB9//CE6deoktFqt2LNnj2nf06dPC3t7exEUFCQWLlwoNm7cKF588UWhUqnEe++9Zxq3bds2AQg/Pz8xceJEsXbtWrFs2TLRsGFD0bRp00LnW3A+U6dONV1f3t7ewsPDQ/Tp06fY96WAOXPmCEBERkYKIYTIyckRtra2wtLSUkyfPt007pNPPhEajUYkJycX+jwVRREbN2687RwF8vn6+oqXX35ZbNiwQXzxxRfC2tpatGvXTmRnZ5vG+vr6Ck9PT9G4cWMxb948sW3bNnHgwAEREhIibG1thb+/v1i4cKFYu3ateOCBBwQgPvnkkyLvW4MGDcTIkSPF6tWrxeLFi0WTJk2EnZ2duHTpkmnskiVLBCAGDx4sVq1aJZYvXy46dOggLCwsxM6dO4uV/9VXXxWbNm0Sq1atEhcvXhRjxowRQKH7LTMz03QuBfeKEELExMQIb29v4erqKubMmSPWr18vnnrqKQGIJ554wjSu4Hry8/MTd911l1i1apVYtWqVCAoKEo6OjiIxMdE09o8//hDvvPOO+Ouvv8T27dvFb7/9Jvr06SNcXV1FbGxskffl1ufaf7nd/VnW6zYtLU20bdtWuLi4iC+++EJs3rxZfP3118Le3l70799fGAwGIYQQBoNB9OvXT+h0OvHRRx+JjRs3infffVc0btxYAOLdd9+9o+unrM/99evXC61WK1q3bi0WLFggtm7dKubNmyfGjx9fZN6C9zE4OFg4OjqKkSNHirS0tBLfx9qIVIZqCAVfcPv27RM5OTkiJSVFrFmzRri6ugpbW1sRHR1daNyMGTMK7T9r1iwBiKioqGKPbzAYRE5Ojti+fbsAxPHjx4UQQsTFxQlAfPXVVyXKFhoaKjQajXj66acLbU9JSREeHh5i3LhxZTq3UaNGFdq+e/duAYgPP/xQCCHEjRs3hKWlpRg2bFiR+XU6nZgwYYJp28MPPywAMW/evCLzDR8+XPj6+hbZXvCA9ff3L/TwKI7c3FyRk5Mjpk6dKtq1a1fof/99wB88eLCIsnE7CuT49NNPC23v2rWrcHNzEykpKYXkaNWqlfDx8TE9RAvez0mTJpVrvuKUoVmzZhUaO2PGDKHX601zxcXFCQsLC/HGG28UGjdu3Djh7u4ucnJyCs3h5eUlMjIyTOOSk5OFk5OTGDhwoGnbkCFDhI+Pj0hKSip0zKeeekro9XqRkJAghLj55fXf6+H33383ffkKYbxu9Hp9iddXacrQxYsXBSAWLlwohBBi165dAhCvvPKKaNSokWncoEGDRPfu3Qvt+9VXXwlHR0fT+1ASBe/3888/X2h7gTKyePFi0zZfX1+hVqvFuXPnCo0dP3680Ol0IjQ0tND2oUOHCisrK5OCUPC+tW/f3vQ5CiHE1atXhVarFdOmTRNCCJGXlye8vLxEUFCQyMvLM41LSUkRbm5uhc61QP533nmnyLk9+eSToqR19X/vlddee00AYv/+/YXGPfHEE0JRFNM5F1xPQUFBhZTeAwcOCEAsW7as2PmEMN4zqampwtraWnz99dem7WVRhm6d+7/3Z1mv25kzZwqVSlVkYfvnn38KQKxbt04IIcS///4rgEIyCmFceJakDJXl+rmVkp77Qgjh7+8v/P39C92v/+VWZWjRokXCwsJCPPPMM4Wul7qCdJPVMLp27YpWq8XW1pa7774bDw8P/v33X9zd3QuNu+eeewr93bp1a6CwO+3y5ctMmDABDw8P1Go1Wq2WPn36AJjcTk5OTvj7+/Ppp5/yxRdfcPTo0ULmaoANGzaQm5vLpEmTyM3NNb30ej19+vQpU3YGUCTmqXv37vj6+rJt2zYA9u7dS0ZGRhGzeoMGDejfv3+x7pbRo0eXae5bueeee9BqtUW2//HHH/To0QMbGxs0Gg1arZZffvmliIuuMkhLS2P//v2MGTMGGxsb03a1Ws1DDz1EeHh4EdfQnZz7fynuOsrMzDSZv52dnRkxYgS//vqr6bq4ceMGf//9N5MmTUKjKRx2eN9996HX601/29raMmLECHbs2EFeXh6ZmZls2bKFUaNGYWVlVeh6GjZsGJmZmUXcIKVd63v37iUzM7PE66s0/P398fPzY/PmzQBs2rSJoKAgHnzwQa5cucKlS5fIyspi165dDBw4sNC+K1asYOTIkUXeh5L4r4zjxo1Do9GY7oFbz7FZs2aFtm3dupUBAwbQoEGDQtsnT55Menp6EdfWhAkTCsWQ+fr60r17d9Nc586dIzIykoceeqiQi8/GxobRo0ezb98+0tPTCx2zotfc1q1badGiBZ07dy5yDkIItm7dWmj78OHDUavVpr+Le86lpqby6quv0qRJEzQaDRqNBhsbG9LS0sx275bnul2zZg2tWrWibdu2hcYNGTKkUDZbwefw32tiwoQJJcpRluunLM/98+fPc+nSJaZOnVrofi2Jjz76iMmTJ/Pxxx/z9ddf39YlXFupe2dUy1m4cCEHDx7k6NGjREZGcuLECXr06FFknLOzc6G/CwKAMzIyAOMDolevXuzfv58PP/yQ4OBgDh48yMqVKwuNUxSFLVu2MGTIEGbNmkX79u1xdXXlmWeeISUlBYDr168D0KlTJ7RabaHX8uXLy5x26eHhUey2+Ph4ANNPT0/PIuO8vLxM/y/AysrqjjJVijv+ypUrGTduHN7e3ixevJi9e/dy8OBBpkyZQmZmZrnnKC83btxACFHiuQNFzr+4seWltOsIYMqUKURERLBp0yYAli1bRlZWVrEp0yV9xtnZ2aSmphIfH09ubi7ffvttkWtp2LBhAEWup9JkLHhfSpq7LAwYMMCkbG/evJlBgwYRFBSEu7s7mzdvZvfu3WRkZBRShqKjo9m9e3e5FIT/yqPRaHB2di7TZxsfH1+u66Oi95vBYODGjRulylUeynsOZbk+J0yYwHfffce0adPYsGEDBw4c4ODBg7i6uhYaV1G5y3rdXr9+nRMnThQZZ2trixDCNC4+Pt70+d/K7a7Z0q6fsj73C+KMCuKjSmPx4sV4e3szfvz4Mo2vjchsshpG8+bNTdlkFWHr1q1ERkYSHBxsWhUAJCYmFhnr6+vLL7/8AhhXDL///jvvvfce2dnZzJkzBxcXF8CYNVOWlXZJREdHF7utSZMmwM0HX1RUVJFxkZGRJjkKKC5zqiwUt9/ixYtp1KgRy5cvL/T/koKSzY2joyMqlarEcwfMdv7lZciQIXh5eTF//nyGDBnC/Pnz6dKlCy1atCgytqTP2MLCAhsbG7Rarcna9eSTTxY7X6NGjcolX8F1U9LctwbAlsSAAQP45ZdfOHDgAPv37+ett94CoH///mzatIlr165hY2NTKCvvr7/+wtramkGDBpVZ1ujoaLy9vU1/5+bmEh8fX+QLsbjP1tnZuVzXR0nvR8Fcpd1vKpUKR0fHUuUqD+U9h9JISkpizZo1vPvuu7z22mum7VlZWSQkJFRI1ltxdHQs83Xr4uKCpaUl8+bNK3ZcwTk6OzsX+/kX97nd+r/bXT9lfe67uroCEB4eXuJct7J+/Xruv/9+evXqxZYtWyr0PVBTkZahOkrBQ+u/KeM//vjjbfdr1qwZb731FkFBQRw5cgQwfhlqNBouXbpEx44di32VhSVLlhT6e8+ePVy7ds1UFK9bt25YWlqyePHiQuPCw8NNLoKyoNPpyr0iVBQFCwuLQg/76OjoYrPJipsPqNAq1Nrami5durBy5cpCxzEYDCxevBgfH58ibpOqouBLYNWqVezcuZNDhw4xZcqUYseuXLmykCUtJSWF1atX06tXL9RqNVZWVvTr14+jR4/SunXrYq+l/yoGpdG1a1f0en2J11dZGDBgAIqi8Pbbb6NSqejduzcAAwcOZNu2bWzatInevXsXcq+uWLGCu+++u1xlGf4r4++//05ubm6ZCkMOGDDA9GV3KwsXLsTKyqpI+YRly5YhhDD9fe3aNfbs2WOaKyAgAG9vb5YuXVpoXFpaGitWrDBlmJVGea7/AQMGcObMGdOz5dZzUBSFfv36lXqMW1EUBSFEkc9g7ty55OXlletYt6M81+3dd9/NpUuXcHZ2LnZcgXJecK7/vSaWLl1aohylXT9lfe43a9YMf39/5s2bV6YFn6+vLzt37kSn09GrVy8uXLhQ6j61DWkZqqN0794dR0dHHn/8cd599120Wi1Llizh+PHjhcadOHGCp556irFjx9K0aVMsLCzYunUrJ06cMK20/Pz8+L//+z/efPNNLl++zF133YWjoyPXr1/nwIEDWFtbm1J/b8ehQ4eYNm0aY8eOJSwsjDfffBNvb29mzJgBgIODA2+//TZvvPEGkyZN4oEHHiA+Pp73338fvV7Pu+++W6ZzDwoKYuXKlfzwww906NABlUpVqsJWkMo8Y8YMxowZQ1hYGB988AGenp6l3vj+/v5YWlqyZMkSmjdvjo2NDV5eXibTf1mZOXMmgwYNol+/frz00ktYWFgwe/ZsTp06xbJly6rMElQcU6ZM4ZNPPmHChAlYWlpy//33FztOrVYzaNAgXnjhBQwGA5988gnJycmFro+vv/6anj170qtXL5544gn8/PxISUnh4sWLrF69ukjcSGk4Ojry0ksv8eGHHxa6vt57770yu8nc3Nxo1aoVGzdupF+/fiYlYODAgSQkJJCQkMAXX3xhGh8fH8/27dv57bffyiXrypUr0Wg0DBo0iNOnT/P222/Tpk0bxo0bV+q+7777LmvWrKFfv3688847ODk5sWTJEtauXcusWbOwt7cvND4mJoZRo0Yxffp0kpKSePfdd9Hr9bz++usAqFQqZs2axcSJE7n77rt57LHHyMrK4tNPPyUxMZGPP/64TOcUFBQEwCeffMLQoUNRq9W0bt0aCwuLImOff/55Fi5cyPDhw/m///s/fH19Wbt2LbNnz+aJJ54ot8JvZ2dH7969+fTTT3FxccHPz4/t27fzyy+/4ODgUK5jlUZZr9vnnnuOFStW0Lt3b55//nlat26NwWAgNDSUjRs38uKLL9KlSxcGDx5M7969eeWVV0hLS6Njx47s3r2bRYsWlShDaddPWZ/7AN9//z0jRoyga9euPP/88zRs2JDQ0FA2bNhQROkCo4t0+/btDBkyhN69e7Np0yZatWplpne3BlCd0duSm5SUWl/WccVlSuzZs0d069ZNWFlZCVdXVzFt2jRx5MiRQplF169fF5MnTxaBgYHC2tpa2NjYiNatW4svv/yySKr2qlWrRL9+/YSdnZ3Q6XTC19dXjBkzRmzevLlMMm/cuFE89NBDwsHBwZQ1duHChSLj586dK1q3bi0sLCyEvb29GDlyZJH0/YcfflhYW1sXO19CQoIYM2aMcHBwEIqimDJdSsoSKeDjjz8Wfn5+QqfTiebNm4uff/7ZlE1xK//NkBFCiGXLlonAwECh1WqLZIL8l9vJsXPnTtG/f39hbW0tLC0tRdeuXcXq1asLjSnrtfLf+YrLJrs19fjWY1+5cqXIcbp37y4AMXHixBLn+OSTT8T7778vfHx8hIWFhWjXrp3YsGFDseOnTJkivL29hVarFa6urqJ79+6mzEIhbl7Tf/zxR6nnYzAYxMyZM0WDBg2EhYWFaN26tVi9erXo06dPqdlkBTz//PMCEB999FGh7U2bNhWAOHHihGnb3LlzhZWVVZnTiwve78OHD4sRI0YIGxsbYWtrKx544AFx/fr1QmN9fX3F8OHDiz3OyZMnxYgRI4S9vb2wsLAQbdq0KZLFWPC+LVq0SDzzzDPC1dVV6HQ60atXL3Ho0KEix1y1apXo0qWL0Ov1wtraWgwYMEDs3r27WPn/e70IIURWVpaYNm2acHV1Nd1vBddPcffKtWvXxIQJE4Szs7PQarUiICBAfPrpp4UylG53j/z3/goPDxejR48Wjo6OwtbWVtx1113i1KlTReauaDZZwf9Ku26FECI1NVW89dZbIiAgwPQcCwoKEs8//7wpM1gIIRITE8WUKVOEg4ODsLKyEoMGDRIhISElZpOV5fopy3O/gL1794qhQ4cKe3t7odPphL+/f6GMteI+98TERNGjRw/h5ORU5mdQbUAR4hb7qERSCSxYsIBHHnmEgwcPmiUeSlLzuHr1Ko0aNeLTTz/lpZdeqm5xKp1hw4ZhaWnJihUryjT+vffe4/333yc2NrbccTHlJTg4mH79+vHHH38wZsyYSp1LIqkrSDeZRCKRlJN169ZVtwgSicSMyABqiUQikUgk9RrpJpNIJBKJRFKvkZYhiUQikUgk9RqpDEkkEolEIqnXSGVIIpFIJBJJvUYqQxKJRCKRSOo1UhmSSCQSiURSr5HKkEQikUgkknqNVIYkEolEIpHUa6QyJJFIJBKJpF4jlSGJRCKRSCT1GqkMSSQSiUQiqddIZUgikUgkEkm9RipDEolEIpFI6jVSGZJIJBKJRFKvkcqQRCKRSCSSeo1UhiQSiUQikdRrpDIkkUgkEomkXiOVIYlEIpFIJPUaqQxJJBKJRCKp10hlSCKRSCQSSb1GKkMSiUQikUjqNVIZkkgkEolEUq+RypBEIpFIJJJ6jVSGJBKJRCKR1GukMiSRSCQSiaReI5UhiUQikUgk9RqpDEkkEolEIqnXSGVIIpFIJBJJvabWKEMzZ86kU6dO2Nra4ubmxr333su5c+dK3W/79u106NABvV5P48aNmTNnThVIK5FIJBKJpLZQa5Sh7du38+STT7Jv3z42bdpEbm4ugwcPJi0trcR9rly5wrBhw+jVqxdHjx7ljTfe4JlnnmHFihVVKLlEIpFIJJKajCKEENUtxJ0QGxuLm5sb27dvp3fv3sWOefXVV/nnn384e/asadvjjz/O8ePH2bt3b1WJKpFIJBKJpAZTayxD/yUpKQkAJyenEsfs3buXwYMHF9o2ZMgQDh06RE5OTqXKJ5FIJBKJpHagqW4B7gQhBC+88AI9e/akVatWJY6Ljo7G3d290DZ3d3dyc3OJi4vD09OzyD5ZWVlkZWWZ/jYYDCQkJODs7IyiKOY7CYlEIpFIJJWGEIKUlBS8vLxQqW5v+6mVytBTTz3FiRMn2LVrV6lj/6vAFHgFS1JsZs6cyfvvv19xISUSiUQikVQ7YWFh+Pj43HZMrVOGnn76af755x927NhR6sl5eHgQHR1daFtMTAwajQZnZ+di93n99dd54YUXTH8nJSXRsGFDdh4LIVPoiEvLIjYlk7i0bOKSs4w/U7KIS83iRnr1ud7UKgU/ZyuautnQzMOWpm62NHO3wcvBss5YtJIychj+9Q4SM3J5++7m3N+pYXWLVK/539ozLD0Qhq1eze+PdaeBk1V1i1RvibiRzturTnPgagIAPZo488HIVrjZ6atZsvpHTHImjy06zIWYVGz1ar6f0J72viWHc9QrcnMhKAgiI+Gnn+D++yt1uk3HrzCmd1tsbW1LHVtrAqiFEDz99NP89ddfBAcH07Rp01L3efXVV1m9ejVnzpwxbXviiSc4duxYmQOok5OTsbe3JykpCTs7u9uOzc41EJ+WRUxyFunZeagUowVKUUClABh/VwCVUvC78SdAnkGQlWsgKzeP7FyD6fesHOPv2QV/5/8vNSuXSzGphESnkJRRvCJmq9MQ4GFLgIctgZ52BHnb08bHvkQFKc8g+OtoBGM63F7RrC5+3XOVd/85jbO1BcEv98VWr61ukeot2bkG7v9pL0dDE2nhacfKGd3Ra9XVLVa9xWAQzN9zlVnrQ8jKNWBvqeWDe1txTxuv6hat3pGUnsPUXw9y6NoN9FoVsye2p3+ge+k71gc+/BDefhu6dYM9eyp1qqSkJBwcHMr0/V1rlKEZM2awdOlS/v77bwICAkzb7e3tsbS0BIxWnYiICBYuXAgYU+tbtWrFY489xvTp09m7dy+PP/44y5YtY/To0WWatzzKUHUhhOB6chZno5MJiUrhXHQyIdEpXIpNJSev6Mfr72rNxC6+jO7gg71lYWXi+20X+XTDOeY82J67WhWNqapucvIMDPlyB5fj0niynz8vDwmsbpHqNVFJGQz/ZhcJadmM6+jDrDFtqlukes/FmBSeX36ckxHGJJO7W3vy4b2tcLCyqGbJ6hcZ2XnMWHKYbediUasUPhvbmlHtauYis0qJjoZnnoEnnoC+faESPRfl+f6uNcpQSZaM+fPnM3nyZAAmT57M1atXCQ4ONv1/+/btPP/885w+fRovLy9effVVHn/88TLPWxuUoZLIzjVwOS6VkKgUQqJTCIlO5sCVBNKz8wDQa1Xc08aLB7v60trHgRPhidw3ew+5BoGtTsM/T/ekkYt1NZ9FUTaejubRRYfRaVRse6kvXg6W1S1SvWb3xTge+mU/BgGfjA6S7ssaQE6ege+3XeTbrRfJMwjcbHV8MqY1/QLcqlu0ekVOnoFX/jzBX0cjAHjn7hZM6dmomqWqP9RJZai6qM3KUHGkZOaw6mgEi/eFcu56iml7Ky87opMziUvNNm0L9LDlrxk9sLSoWa4PIQTjf9rH/isJjGrnzZf3t61ukeo9BRZFC42KFY93J8jHvrpFkgAnwhN5fvkxLsUai9NO6NKQN4c1x1pX68JFay0Gg+CDtWeYv/sqAE/1a8KLg5vVmVjOmoxUhsxIXVOGChBCcOjaDRbvu8a/J6PJzjMUO25MBx8+G1vzXB8nwhO557vdAKx+qqf88q1mDAbBo4sOsflsDD6Olqx5uqd0y9QQMnPymLX+HPN2XwGgoZMVX4xrQ0c/GdRbVQgh+H7bRT7beB4wKqUfjGyFWlWPFaJLl2D2bAgMhOnTK2WK8nx/19qii5KKoSgKnfyc+Hp8O2aNDSpx3J+Hw1m2P7QKJSsbrX0cGNXOG4AP155B6vTVi0ql8Pm4tjR0siL8RgbPLz+GwSA/k5qAXqvmnREtWDq9C94OloQmpDP2x73MXHeWmJTM6havXqAoCk/1b8pHo1qhKLB0fyhPLztCVm5edYtWfWzaBF98AZ9+Cnl5EBwMa9ZUmzjSMlQKddUydCsZ2XnsuBDLvyej2HA6moycwlYiBfhuYjuGB9WsrJSIxAz6fxZMVq6Bnx7qwOCWHtUtUr3ndGQS983eQ1augRcGNeOZAaVnfUqqjuTMHP5v9Rn+PBwOGLNcezRx4Z42Xgxp5YFdDcrO3HA6mrSsXPoFuOFoXXesjOtORvHcb8fIzjPQ3d+ZnyZ1xKY+ui1TU8HT0/jT2xsiIuDRR+HHH802hXSTmZH6oAzdSnaugb2X41lxOIxNZ64XUoxeuSuAx3v7o6pBpt1Z60OYHXyJxi7WbHi+N1q1NHZWN38cCuPlP0+gKPDrI53p3cy1ukWS/IdNZ64zO/giR0MTTdssNCoGBLoxsq0XfQPcqr1MwqcbQvh+2yVUCnTwdWRAc3cGNnfD39Wm1sfb7LoQx6OLDpGenUdrH3vmT+6Es42uusWqOnbtgh9+gN9+A8Mti+9Ro2DlSrNNI5UhM1LflKFbyTMINp2J5sO1Zwm/kQFAzyYufD6uDe41pJhbSmYO/T4LJi41m/fvacnD3f2qWyQJ8PrKEyw7EIajlZY1z/TCW2b81UhC49P553gEq45FcjEm1bTdVqfhrlYejGzrTTd/52qJbfli4zm+2XqxyHYvBz1tfRxp5m5DI1djtqtBCAwGyBMCg0FgEDd/zzMIDEKgVik0dbOllbddjYhnOx6WyCMLDpKQlk1jV2uWTOuCp309uU/+9z94882i23v1gh07zDaNVIbMSH1WhgoQQrBo7zU+XHeW7FwDDlZaPr4vqMbUIVq87xpvrTqFo5WW4Jf7FamdJKl6MnPyGDtnLycjkmjjY8/vj3dDp6lZWYmSmwghOBuVwt/HI1h9LJLIpJuxRK62Ou5u7cnwIE/8XKxxtLKoFOUoIzuP6ORMopIyiE7K5M/D4ey5FG/2eQB8HC1p5WVPkI89Lb3saOVtj0s1WGYuxqQy6Zf9RCZl1q/7RAh44AFYvrzw9sBAOHvWbNNIZciMSGXoJhdjUnlu+VFORSQDMK6jD++MaFnt/u7cPAN3fb2TizGpPNanMa8PbV6t8kiMhCWkM+K7XSSm5/Bg14Z8eG/JgfqSmoPBYMw0/ftYBGtPRpH4nzZDigJOVha42OhwtrHA2UaHi03+39Y3t9vqNSRl5JKYnk1ieg438n8mZmRzIz3HtL3gfwX1z8qKvaUWZxsLXKx16LQqFEVBrRhbE6kU40utUlCpjNszcwycjU7mWnx6scfztNfT0sueVt7GSv1B3vZV0s6k3t4n6enQsyccPXpzm7MzxMWZbQqpDJkRqQwVJjvXwJebzzNn+yWEAF9nK768vy3tGzpWq1xbQ64zZcEhLNQqtrzYR/bJqiEEn4vhkQUHEQK+GNeG+9rLCry1iexcA7suxvL3sUh2X4wjPi2byvzGsNSq8XTQ42mvJzE9h9ORyab/6TQqejV1YUQbLwY0d7/jRVhSRg6nI5M4HZHMqcgkTkYkcSUurdjz6t3Mlcd6N6a7v3OlxinV2/skNBQ6doTY2JvbcnNBbR7rmFSGzIhUhopn3+V4Xvz9OBGJGahVCk/1a8LT/ZugqaYAZiEEE+fuZ8+leEa08eLbB9pVixySony56Txfb7mAXqvirxk9aO4p76PaSm6egRvpOcSlZhGfmk18WhaxKVnE5zesjk/LJj41i7jUbFIyc7Cz1OJoZYGDlRYHKwscrbQ4WOb/bq3FwdL4P0crCxytLbDTa0xKxw/Bl5i97SIDmrtxVytP+jRzrbQCsKlZuZyNSuZkeBKn8hWl8zEpJgWppZcdj/ZuzLAgz0pL0qi398muXdCvn1EJAqNi5OJilkNLZciMSGWoZJIycnjn71P8fSwSgLYNHPjq/rb4VVMLj9ORSdz97S6EgL9mdKddNVurJEbyDIJHFhxkx/lYvOz1LJzahSZuNtUtlqSGE5OSib2lttpiaELj0/ll12V+PxRORo7RheftYMmUno24v1MDs4cHGPLvk+3nY/FztuKfp3vWqFIHlcrcuTcLL545A83NE+ogiy5KqgR7Sy1fj2/H1+PbYqvXcCwskWHf7GT18chqkaellz2j883LH609Kwsx1hDUKoWv729LYxdrIpMyGTtnD8fCEqtbLEkNx81WX63BxA2drXh/ZCv2vNafFwY1w9nagojEDD5Yc4buM7fwyfoQYpLNV7RSpVL46v62eDtYcjU+nZd+P15/nmHTpsGTTxp/X7SoWkSQlqFSkJahshF+I50Xfj/OgSsJqBT4bkJ7hgVVfbZZdFImfT/bRmaOgR8mtmdoNcggKZ741CweWXCQE+FJWGrV/PBge/rKxqGSWkJmTh4rjoQzd+cVrsQZe71ZqFXc286LR3s3pombrVnmOR6WyNg5e8nOM/Da0EAe7+NvluPWeDZtgsGDwcrK6Cqzqnjcp7QMSaocH0crlk3vyriOPhgEPPvbUbaFxFS5HB72eh7t1RiAj9eHkJ1bfM81SdXjbKNj6fSu9GrqQkZOHtN+PcSq/G7eEklNR69VM7GLL1te6MOPD3Wgg68j2XkGfj8UzsAvdjB94SGzWIraNHDg3XtaAMaisnsrqbxAjWPAAPD1NWaZ/TflvgqQypDEbKhVCjPva83drT3JyRM8vvhwtdzIj/Xxx8VGx7X4dBbtu1bl80tKxkan4ZeHO3FPGy9yDYLnlh9j7s7L1S2WRFJmVCqFIS09WPFEd1Y80Y3BLdxRFGNV72Hf7GL/5Yo/8yZ0bsjo9saF5dPLjnDdjO64GotKBY8/bvzdjC05yjx9lc8oqdOoVQpf3t+WAYFuZOUamPbrQY6G3qhSGax1Gl4c3AyAb7ZcIDE9u0rnl9weC42Kr+5vyyM9/AD4cO1ZZv4rY7wktY8Ovk78NKkjG57rTaCHLXGpWUyYu5+fdlyq0PWsKAof3tsq/5jZPLnkCDl59cDK/cgjoNHA/v1w/HiVTi2VIYnZ0apVfD+xPd39nUnLzuPheQc4c0u9kKpgXMcGBLjbkpSRw487pOWhpqFSKbxzdwteuSsAgB+3X+alP07Ujwe+pM7RzN2WlTO6M6qdN3kGwf/WhTBjyRFSMnNK37kELC3UzHmwA7Y6DYeu3WDmuhAzSlxDcXc39ieDKrcOSWVIUinotWp+ntSR9g0dSM7M5aFf9nMpNrX0Hc2EWqWYrEOL910jNSu3yuaWlA1FUZjRtwmzxrRGrVJYcSScxxYdJqOclYglkpqAlYWGL8a14YN7W6FVK/x7KpqR3+3m/PWUOz6mn4s1n49rA8C83VdYc6J6MnWrlMceM/5cvNjY0b6KkMqQpNKw1mmY/0hnWnrZEZ+WzYNz9xOWUHwp/MpgYHN3GrtYk5KZy/KDYVU2r6R8jOvYgJ8e6oBeq2JrSAwT5+7jRpp0bUpqH4qi8FBXX35/rBue9noux6Ux8rvd/H3szhMFBrf0MGWUvfrnCS7G3LlyVSvo1w+aNAFPT7h6tcqmlcqQpFKxt9SycEpnmrjZEJWUycS5+6ssGFClUpiWn1k2b9cVcqULpsYyoLk7S6Z1wd5Sy5HQRMb+uJfIxIzqFksiuSPaNXRkzdM96dnEmDn57G/HePfvU3ec3frS4GZ0a2wMO3h88RHS6rKlW6WC7dshJARataq6aatsJkm9xdlGx+KpXWjoZEVoQjoPzt1PQhWt/O9r720qlrbuVHSVzCm5Mzr4OvHH493wsNNzMSaV+2bvYcPpaBlYLamVONvo+HVKZ57q1wSAX/de4/6f9hKVVH4lX6NW8c0D7XC303ExJpXXVp6s2/eFl5exI3AVIpUhSZXgYa9nybQueNjpuRCTyqR5+0muQHBhWdFr1Uzq5gdQ4QwPSeXTzN2WFTO608TNhujkTB5bdJj7f9rHifDE6hZNIik3apXCS0MC+OXhjtjpNRwNTWT4N7vYfbH8ndldbXV8P6E9GpXC6uORbDxzvRIkrmFkZMC+fVUylVSGJFVGAycrFk/rgrO1Baciknlk/kHSsyvf3PtQN1/0WhWnIpLZa4YaIJLKxdvBklVP9uDJfv7oNCoOXEngnu9289xvR4mQrjNJLWRAc3fWPN2LFp52JKRl89Av+1lxOLzcx+no58SjvY2u/w/WnCEzpw4nG1y+DN7eMGgQpFR+nJRUhiRVShM3GxZN7YKdXsPhazd4dOHhSo/lcbK2YGyHBgD8LNPsawU2Og0vDwlk20t9ua+dNwCrjkXS77NgPlkfUqGUZYmkOmjobMXKGd1NxRRfXXGCXRfKbyF6qn8TPO31hN/I4Mftdfh51qgRuLoaM8qqoCK1VIYkVU4LLzt+ndIZaws1uy7GMWf7pUqfc2rPRigKbDsXW6FUV0nV4uVgyRf3t2X1Uz3p0siJ7FwDPwRfou+nwSzae1UGxUtqFXqtmk/HtDZVYH988WHORpWvBpuVhYY3hhm7us8OvlilGbpViqLc7GQ/d26lTyeVIUm10K6hIx/ca8wU+GrzBU5FJFXqfH4u1gxp4QEg2z/UQoJ87Pnt0a78PKkjjV2siU/L5u2/TzPkqx1sOXtdxoJJag0qlcKnY1vTpZETqVm5PDL/YLmDqu9u7UnXxk5k5Rr4aO3ZSpK0BjBp0s2K1CdPVupUsmt9Kciu9ZWHEIIZS47w76lomrrZsPrpnui16kqb7/C1G4z+YQ8WahW7Xu2Hm52+0uaSVB45eQaW7g/lq83nuZFudJc1cbPBzVaHrV6DnV6LrV6LrV5j/NtSi51eg61ei6OVBc09bVGqOFNFIvkvSek5jJ6zh4sxqQR62PL7492w02vLvH9IdDLDv9lFnkGweGoXejZ1qURpq5ExY2DFCnjmGfj663LtWp7vb6kMlYJUhiqXhLRsBn+5g7jULKb2bMTbd7eo1PlG/7CHw9du8GQ/f14eElipc0kql+TMHL7fdpH5u6+Wq37LwOZu/PhQR9QqqRBJqpfwG+mMmr2H2JQsejZxYf4jndCqy+6wee+f0yzYc5Umbjb8+2yvcu1ba1i/HoYOBUdHiIwEfdkXsVIZMiNSGap8toZcZ8qCQwAsnd6F7v6Vt8JZfyqaxxcfxt5Sy57X+mOt01TaXJKq4XpyJqcjk0jJzCU5I4fkzFzj75k5pGTmkpKZQ3KG8fer8Wnk5AmpDEtqDCfDk7j/p72kZ+cxpoMPn45pXWbLZVJGDv0/CyY+LZu3hjc3FZmtU+TlQePGEBpqVIyGDCnzrlIZMiNSGaoaXl95gmUHwvCy17P++d7lMheXhzyDYOAX27kSl8a7I1rwSI9GlTKPpGby97EInv3tGAA/TGzP0CDP6hVIIgG2hcQw9deDGAQ8N7Apzw1sVuZ9lx8M5dUVJ7HRadj6Uh/cbOug+3/zZvD1haZNy7Vbeb6/66BNTVIbeWt4Cxo6WRGZlMl7/5yutHnUKoWpPY0K0C+yRUe9Y2Rbb6blf/4v/nFcZhZKagT9At348N4gwJhQ8vuhsvdSHNuhAW187EnNyuXjf+toZ/uBA8utCJUXqQxJagTWOmPHZ5UCK49EsP5UVKXNNbq9D07WFoTfyGD9admio77x2tBAuvs7k56dx2OLDpOUIWsWSaqfCV0aMqOvsSHrGytPsuN8bJn2U6kU3runJWB8dh6+llBpMtYIsrIq5bBSGZLUGDr6OfFYfnfmN/46RUxK5TR0tbRQ81BXX8BYhFF6iusXGrWKbx9oh7eDJVfi0nh++TEMBnkNSKqfl4cEMLKtsQbRjCVHOBNZthpE7Ro6Mq6jDwDv/nOavLp4PV+/DqNHQ7NmkGP+BYxUhiQ1iucHNqN5fsn611dUXjPCh7r5otOoOB6exIErdXwlJSmCs42OHx/qgE6jYmtIDF9tuVDdIkkkKIrCrDGt6drYWINoyoKy1yB65a5AbPUaTkUks/xg2d1stQZHR9i1yxhIvW6d2Q8vlSFJjcJCo+Kr+9tioVaxJSSm0m5qFxsdozsYV1I/yyKM9ZJW3vbMvM8Yp/HNlgtslC5TSQ1Ap1Hz44MdaZrfrPiR+QfJyi29B5mLjY7n8wOvP90QQmJ6dmWLWrVYWMDDDxt/r4SK1FIZktQ4AjxseWmI8ab+YM0ZQuMrp9z8tPwWHZvPxnAxRgbS1kfua+/D5O5+ALzw+3EuxqRWr0ASCWBvpWX+I51wsbEgJDqF77deLNN+D3XzpZm7DTfSc/h84/lKlrIamDbN+HPdOoiIMOuhpTIkqZFM7dmYzo2cSMvO44Xfj1WKD7yxqw2DmrsDMHfnFbMfX1I7eHN4czrnt0Z4dNEh2QRWUiPwcbTi/0YaWxbNDr5UpvghrVplCqZesv9amWOOag3NmkGvXmAwwMKFZj10rVKGduzYwYgRI/Dy8kJRFFatWnXb8cHBwSiKUuQVElJH0w/rEGqVwudj22Cj03Do2g1+qqRu84/2NhYpW3kkotICtiU1G61axfcT2uNpr+dybBov/n5cBlRLagRDW3kwpKU7uQbBqytOlKkUSHd/F4a39sQgjBWq61yCyNSpxp/z5oEZz61WKUNpaWm0adOG7777rlz7nTt3jqioKNOraSXXK5CYhwZOVrwzwtie44tN5wiJNv8qp4OvI+0aOpCdZ2DR3mtmP76kduBqq2POgx2w0KjYeOY6328rm1tCIqlMFEXhg5GtsNNrOBmRxC+7ymbBfnNYcyy1ag5cTWD1icorU1ItjBkDNjZw8aIxoNpM1CplaOjQoXz44Yfcd9995drPzc0NDw8P00utrrxmoBLzMraDD4NauJOTJyqlO7OiKDyaX8J+0b5rZOaUHqgoqZu0aeDAh/ca3RJfbD7P1pDr1SyRRAJudnreurtgUXieK3Fppe7j5WDJE/k1i77beqFuWTqtreH1141NW1u2NNtha5UydKe0a9cOT09PBgwYwLZt2247Nisri+Tk5EIvSfWhKApvD2+BVq2w80Icuy7EmX2OwS098HawJDE9hw0yo6heM65jAx7q6osQxoDqtKzc6hZJImFsBx96NnEhK9fAaytOlEm5mdzDD1udhvPXU9kaElMFUlYhb7xh7GLv5GS2Q9ZpZcjT05OffvqJFStWsHLlSgICAhgwYAA7duwocZ+ZM2dib29vejVo0KAKJZYUR0NnKyZ2MRZJ/GR9iNlXOWqVwpj8NPs/DoWb9diS2sfbd7fAz9mKxPQcVh0zb8aKRHInKIrCzPuCsNSq2X8lgWUHQ0vdx06vZWJ+cdkftl+qbBFrPXVaGQoICGD69Om0b9+ebt26MXv2bIYPH85nn31W4j6vv/46SUlJpldYWB0sXlULeap/E6wt1JyMSGJdJbTqKFCGdl+KIyKxbEXOJHUTC42KSd38AFi451rdC0CV1EoaOFnx8pAAAGauCyGyDM+pKT38sFCrOHztBgev1rHisunpxiDqGTPMcrg6rQwVR9euXblwoeRqszqdDjs7u0IvSfXjYqNjen7m12cbzpFj5garDZys6NrYCSFg5WFpHarvjO7gg6VWzbnrKeyXFcolNYSHu/vRvqEDqVm5vLXqVKmKupud3lRc9ofgOmYdSk6GRx+FH36AsxWPJ613ytDRo0fx9PSsbjEkd8C0Xo1xsbHganw6v1VCZeqxHYwu0T+PhEtrQD3H3lLLqPbeACzce7V6hZFI8lGrFD4Z3RoLtbGNzD/HI0vd57HejVEpsDUkhrNRdSgG1sMDhg83/j5/foUPV6uUodTUVI4dO8axY8cAuHLlCseOHSM01Og/ff3115k0aZJp/FdffcWqVau4cOECp0+f5vXXX2fFihU89dRT1SG+pILY6DQ83d9YFuHrzRfMHtw6NMgDG52Ga/Hpsl+ZhEndjPEWG05fL3N/KImksmnqbsvT/ZsAxjpC8am37+Lu52LN0CCjAeDHuhY7NGWK8eevv1a4eWutUoYOHTpEu3btaNeuHQAvvPAC7dq145133gEgKirKpBgBZGdn89JLL9G6dWt69erFrl27WLt2bblT8yU1hwc6N6ShkxVxqVnMK2PNjbJiZaFheP5D4w/pKqv3BHrY0aWRE3kGwdL9pQesSiRVxWN9/An0sOVGeg7vrz5T6vgn+hjT7FefiCIsoXLaG1ULw4aBmxvExFS4eWutUob69u2LEKLIa8GCBQAsWLCA4OBg0/hXXnmFixcvkpGRQUJCAjt37mTYsGHVI7zELFhoVLyUH0T4447Lpa6KysvYjkb/+rqTUTKtWsLD+X3Llh0ILVOzTImkKrDQqJg1pjUqBf45HsnmM7evidXK255eTV3IMwjm1qXG1FotFHiD5s2r0KFqlTIkkQDcHeRJSy87UrNy+X6bec2+HXwdaeRiTXp2HmtP1rHKrZJyM6iFOx52euJSs/n3pKxBJak5tPZxYHp+wdg3V50kuZSeegXWoeWHwsy+iKxWHnnE+HPtWrh+54VSpTIkqXWoVAqvDQ0EYPG+a2Y1+yrKzZpDf0pXWb1Hq1YxsUtDQAZSS2oezw9qhp+zFdeTs/iilC713fydaeNjT2aOgV/3XK0aAauCFi2ga1fo3x8S7jzWUypDklpJr6au9GjiTHaegS833f4hUF7ua++NSoEDVxK4Fl966XtJ3WZ854Zo1QpHQhM5GZ5U3eJIJCb0WjUf5LeQWbo/9La1hxRFMbXo+HXvNVLrUhjA9u2wcSM0b37Hh5DKkKTW8updRuvQX8ciOBNpvpRRT3tLejZ1BaR1SGJs4loQWC+tQ5KaRs8mLnRp5ER2noHvSmkwPKiFB41drEnKyOG3A3UoKcDCosKHkMqQpNbS2seB4a09EQJmbQgx67HH5rvKVhwOJ68uNTmU3BEP5Vek/vt4JDfSsqtXGInkFhRF4YVBzQD4/WDYbcMG1CqFx/oY44zm7rxCdq55i9dWOxERsGnTHe0qlSFJrealwQFoVArB52LZeynebMcd1MIdO72GyKRM9lwyf3NYSe2ifUMHWnnbkZ1rYPkh2aJHUrPo0tiZnk1cyDUIvt1acocFgHvbeeNupyM6ObNu9d47eBAaNoTx4yGr/AHiUhmS1GoauVgzvrOxcvTH60PMVjlar1VzT1svQDZvlRhX3wX9yhbtvSathZIax/P51qEVRyK4GldyrKNOo2ZaT6N1aM72SxgMxhI1F2NSq0TOSqN9e2NV6oQEWLOm3LtLZUhS63lmQFMstWqOhyWy/pT50p8L2nNsOB1NUkbFqptKaj/3tPHCwUpLRGIGW0NiqlsciaQQHXwd6RvgSp5B8E0p1qEHujTETq/hcmwaL/95nCFf7WDi3H1VJGkloVbfrDl0B+05pDIkqfW42eqZ1qsRALODL5nNOtTax55m7jZk5RpYc6L0HkCSuo1eq+b+TkYFeeHeq5yNSua5346SmC5jiCQ1g4LYoVVHI0q09GTnGth1IRYna2PQ8YojEZy/nkpKZh3ILps82fhz/XqIKl+dOI35pZFIqp5HejTixx2XORmRxJHQG3TwdarwMRVFYWyHBny07ix/HApnYhdfM0gqqc082KUhP22/zM4LcQz9eicAU3o2wsGq4tkskuohLSuXS7GpJKbnkJiRQ1JGDknp2SRl5JCYbvw7JTMXX2cr2vs60r6hI/6u1iiKUt2iF6G1jwMDm7uz+ex1vtlygW8eaFdkzOaz15mx5EiR7enZeeTmGdCoa7GNJCAAunWDvXthyRJjV/syIpUhSZ3AydqCe9t68fuhcObvvmoWZQiMwYYfrw/hWFgiF2NSaOJma5bjSmoXeQbBhtPR/Lj9Ev+1O4YmpNPax6E6xJLcISmZOWwNiWHtiSi2n48lqwxZVXsvx/PbQWPwvIOVlnYNHOiQrxy1aeCAta5mfJ0+P6gpm89eZ/WJSJ7s14QAj8LPrGFBnkzu7seCYgovpmbl1n7F/pFHjMrQ/PkwfXqZd6sZn55EYgYe7u7H74fC+fdUNFFJGXjaW1b4mK62OvoFuLH57HX+OBTO68PuvKiXpPaSnp3Ld1svciaqaD2rsATZ0b42kJSRw5az11l3Mood5+PIzrupALnY6HCxscDBSou9pRYHS+PvdpZaHKy0WFmoORedypFrNzgenkhieg7bzsWy7VwsACoFOvo68cLgZnRt7FxdpwhASy97hrby4N9T0Xy95TyzJ3YoMuaNYc05GZHE4Ws3Cm1PyawDytC4cfDMM3D5Mly7VubdpDIkqTO09LKncyMnDlxJYMm+UFND14oypoMPm89eZ+XRCF4eElC7zciSO8JWr2XBlE6M/mFPEeUntC51Aa9j5OYZWHMiir+PRbDrYhw5eTfteo1drRke5MnQVp4097Qts9srO9fA2ahkDl+7weHQGxy9doPIpEwOXE1g/E/7GNjcjdeGBlarFfm5gc1YfzqadSejOR2ZREsv+0L/t9ComD2xPcO/2UXcLX3KSutvViuwtzd2sO9QVAm8HYowV7RpHSU5ORl7e3uSkpKws7OrbnEqjBAQHw+hoRAWZvwZGgqRkWBnBz4+0KCB8WfBy8qquqUuO/+ejOKJJUdwsrZgz2v90WvVFT5mdq6BrjO3kJCWzbzJHekf6G4GSSW1katxaYz+YQ/xtxRe7OHvzJLpXatRKklx7LwQy4drznLueoppW1M3G4YFeTIsyJNm7jZmi/sJS0jnxx2XWHYgjDyDQK1SuL9TA54b2BQ3W71Z5igvTy87yurjkQxq4c7PkzoWO2b/5XjG/7yPAi1g2fQudPN3qUIpK5fyfH9Ly1A9ICYG/v4bVqyAnTshvZwL2SZNjHWsJk6EwMDKkdFcDGrhjpe9nsikTFYfj2RsxwYVPqaFRsW9bb2Zt/sKfxwKl8pQPcbPxZoFj3Tm/h/3kJ5jdLOcr+31WeoYF2NS+WjtGZMLy95Sy+Tuftzd2pOm7pVjrWngZMWH9wYxuXsjPlkfwqYz11m6P5RVRyN4rLc/03s3wsqiar9unx3QlLUnItl05jonwhOLjWvr0tiZFwc147P8Jq8nI5LrlDJUHqRlqBRqq2UoPBz++uumAmT4T3ygu7uxWKeXt8DRPQdL+xxi4nOJiVaTlagjMU5DRLhC2n9qd7Vvb1SKxo8HL6+qO5/y8EPwJT5ZH0JLLzvWPN3TLKu/s1HJDP16J1q1wuG3B2Gn15pBUkltZdeFOCbN209B7cVL/xuGWlXzsovqEzfSsvlq83kW7w8lzyDQqIyFMp8Z0KTK42D2X47nf/+GcDwsEQA3Wx0vDm7GuI4NqjQL7YXlx1h5NIJ+Aa7Mf6RzsWOEEPT4ZCuRiZl1y8q5axfJTz2F/fHjZfr+lspQKdQ2ZWjfPnjrLdiypfD29u0FzbsnY9M0hiyrJK6nZRCVlMGN9JJ9xF72lvjbOSLC3Tm/x4mje3Tk5hpvZEWBgQPh44+NClJN4kZaNl1nbiEr18Afj3ejk595MssGfB7Mpdg0vh7flpFtvc1yTEntZfHea7z19ykA5jzYnrtaeVazRPWT7FwDC/de5ZstF0jOr5UzsLk7bwwLpLGrTbXJJYRgzYkoZm0IMcWZjengw8f3BVVZ3OHVuDQGfLGdPINgxRPd6eDrWOy4zWeuM23hIfRaFcfeGWyW8IJq5/Rpklu1wh7K9P0tI0HrCKdOwb33GkssbNliVFZ69ICX383g6R/PkTNiI7usd7E+8jzbLl7nTFSySRGytlDT1M2GPs1c6Rfgipe90ccdmZTBzrBIdomjxHTbgscTm/AZfobGrTIQwtgPr1MneO45SDZf0/gK42htwah2RmVlwe6rZjvukJYegLEitUTyYDdf2jVwAIxNLyVVz9HQGwz5agcfrj1LcmYuzT3tWDqtC3Mf7litihAY65SNaOPF5hf68PrQQNQqhT8Ph/PYosNkZOdViQx+LtaMbm98Fn61+XyJ4/oHuuFmqyMzx8CmM9erRLZKp2VLaNu2zMOlZagUarpl6MoVePddWLzYGBytUsEDEw20vzeSrRFXOBVxU0vxdrBkeGtPGjpZ4e1giZudjrSsPCzUChq1CrVKQaNSUKkUMrLyuBKfRmh8GqEJGZyNTuZcdIqpHodVph3WJ9tyaKvRB+/lBV9/DaNHGxWxW8nMBH0VxxAWuLXUKoWdr/TDy6HiafbHwxIZ+f1urCzUHHl7UN1YPUkqxMWYFAZ+sQMF2PRCH5q4Ve8XcH1BCMH83VeZ+e9ZcvIELjY6Xh7SjDEdGtRYd+XmM9d5cukRsnINtG/owLzJnarEfReWkE6/z4LJNQjWPN2TVt72xY77fOM5vt16kT7NXPl1SvEutdpG8qxZ2L/6qnSTmYOapgwlpmdz/noq0fHZ/PiFNRv+sCEv33XVsEMCdj1CSLW6YcoO0KoVBrf0YHynBvTwdyE2NYvt52PZfj6WXRfiytRzq7mnHXe39mRIC3dORSbz9ZYLXMlvBKiN8iBpS2tiI4wxNEOHwnffQWNjH0B++QV++81oRapqxv+0l32XE5jR159X7qp45LcQgu4fbyUqKZO5kzoysIUMpJbA9IWH2HTmOvd3bMAnY1pXtzh1nqSMHF798wTr8y20Q1t58MmY1rUiju/Q1QSmLDhIcmYuTdxsWDils1kWaqXxzLKj/HM8kvGdGvDx6OKv0WvxafT5NBiVAnteG4CHffVkwZmT5CtXsG/cWCpD5qCmKUNX4tLo8cph4v5pR0680Sqj94vFofc5dJ5JpnHudjoe7dWYu9t4cTk2je3nYwk+F0NIdEqh49nqNNhZaskzCHINgjyDgTyDMP2dnWfg1iukpZcdd7XywEKtYumBUK7Fp2PIUZF7JICYXY3Iy1WwtIR58+DAAfjyS+N+p04ZrZZVyfpT0Ty++DCOVlr2vj7ALJac9/45zYI9VxnbwYdPx7Yxg5SS2s7hawmM/mEvFmoVO1/th7td7f8SqamcikhixpIjhCako1UrvDmsOQ9396uRrTFK4vz1FCb9coDo5Ew87fUsmtq50msSHbiSwLgf92KpVbP/zQElKo7jftzLgSsJvDwkgCf7NalUmaoCmVpfRxEC1iyz5vqinhhyVaisM3EZegJL/1jTGAuNivfvacF97XxYdiCUoV/vJOGWmiiKAq297ekT4EafZq608bG/bTDfjbRsNp6JZs2JKPZciud0ZDKnI42ut5ZeRovR0dAbRHQ5i3uTUNK2tiHpsiMPPFD4OD/8YLQYVSUDm7vh7WBJRGIG/xyLZFyniqfZD27pzoI9V9l89nrt7+MjMQsdfJ3o5OfIwas3mLf7Cq8PlVXKzY0QgsX7Q/lg9Rmy8wx4O1jy/cT2tM2P2apNNHO3ZcWM7jz0y34ux6YxZs5efnm4U4nBzeagk58jzdxtOH89lZWHw5nco1Gx48Z08OHAlQRWHA5nRl//WqVkVhRpGSqFmmIZio01tlxZu9b4t6X/dZyHnkBtfVPRaeRizbLpXTgamsgn60O4Gm8sKORsbUGfZq70CXClZxMXnG10dyRDQlo2G09Hs/akUTHKy88rbu5py+AWHvx+KIzIG5nc2BhEyvGGhfa1tYWICOPPquTH7ZeY+W8IzT3tWPdMxdPsc/MMdPpoMzfSc1g2vSvd/Ku39L6kZlCQjWOr07D79f61wmVTW0jNyuW1FSdYc8LYhXxgc3c+H9sGe6va/R4npGUzZcFBjoUlotcaK0JXZg2zhXuv8s7fp2niZsOm53sX+yxMy8ql00ebSc/OY8UT3czW47G6KM/3t1zW1gK2bIHWrY2KkE4H015JxG30oUKK0JgOPsy8rxVPLj3KE0uOcDU+HRcbCz68txX73xjAF/cb08HvVBECYzPU8Z0bsmhqFw6+OZAPRrbE0UrL2agUZgdfZHR7H7x1jjgOOYl9z3OF9k1JMQZ5VzX3d2qAXqvibFQyB64kVPh4GrWKAc2NDyyZVSYpoH+gG03dbEjJymXp/tDqFqfOEJaQzsjvdrHmRBQaldEt9vOkDrVeEQLj83Tp9C70DXAlM8fAY4sOcyT0Ruk73iGj2nljZaHmYkwq+0t4FlrrNAwLMpaI+ONQeKXJUhORylAN55dfYMgQiI6GgEDBiLfPsEnZDflKvUal8OLgZqRn5zL+p/0cvnYDvVbFM/2bEPxyPx7s6lsprhwnawse6ubHxuf7MLC5Ozl5gu+2XcTF3UBnb1ccelzEeehxuKXH97ffQlXbIR2sLBjVzgeg2C7Nd0JBiv3G09FIw6oEQKVSeLS3MWtg3q4rZOVWTep0XeZMZDL3/bCHS7FpeNjpWf5YV6b3blynXDdWFhp+ntSRQS2Mz9Anlxwh/pZeYYDJAl9RbPVaU320xftKbmA6poPxebnmRFSVlQCoCUhlqIYiBLz/PkybBnl5MGpsLu6TdnIw5QoalcK4jg1wtdEypoMP32y5wLqT0SgKjOvoQ/BL/XhhcAA2usoPCXO11fHzpA58PrYNtnoNJ8KTOBETT88mLti0Dsd1zCFQG2+os2dh/fpKF6kIk7v7AUZLTkRixTuM92rqgpWFmsikTE5GJJW+g6ReMLKtNx52emJSslh1NKK6xanV7LkUx/0/7iU2JYsAd1tWPdmj1rtsSkKrVvHFuDY0drEmKimTZ387Rp5BkJGdxxebzvPKnyfMNteDXY3hC+tPRROTklnsmC6NnGjoZEVqVi7rT0eZbe6ajlSGaiC5ufDoo/Dee8a/pz6VwdVW27iWlIKnvZ5VT/bgzeGBNPe057eDYeTkCfo0c+XfZ3sxa0ybKk+JVBSF0R182Ph8b3o1dSEr18Cui3E0drHGpkkMHhP2ouiMKfxTpxrPryoJ8LClu78zBgFLbrMiKit6rZq+Aa6AdJVJbmKhUTG1pzEw9ccdlzGYaUVf31h7IorJ8w6SkpVL50ZO/P54tzqR5n07bPVafniwA5ZaNbsuxvHkkiMM+DyYb7ZcYPfFOLNZoFt62dOuoQO5BsHvB8OKHaMoisk6VJ9cZVIZqmGkpcHIkTB3rrGA4pNvJbHTPpiE9Gxaetmx6ske6LVqRs3ew44LcVhoVHw6pjW/TulMoEf1pv572luycEpnPhrVCisLNZfj0nC20eHUKBX3+/ejaPKIioIZM6petge7+gLw97FIs3xJ3axGXUeqtUrMwgNdGmKr13A5No2NdaWSbxXy656rPLXsCNl5Bu5q6cHCKZ2xt6z98UFlIcDDlqfy09nXn44mMslouYlOzjT9bg4eyn8WLjsQVqIL7r723igK7LkUT/iNcnb2rqVIZagGERMD/frBunVgaSl47IMo1uTsIivXwIBAN35/rBsnw5O49/vdXI5Nw9Nezx+PdTNLZ3ZzoSgKE7v4sv7Z3vg5WxGbkoWTlQV+gVk4Dz8GwM8/w08/Va1c/QPdsNFpiEjM4GhYxYMU+wW6oVUrXIxJ5VKs7FouMWKj05i+bOZsvyRjysqIEIJPN4Tw7j+nEcLozvl+Yvt6VeX9XHQKX20pvmXGoasVT/4oYFiQJ45WWiISM9gWElPsGB9HK7rnZ8quOFw/XL5SGaohxMZC//5w8CA4OwvGvnOJdclHAHi4my9zHuzA3J1XmLbwEKlZuXT2c+Kfp3rSpobW2WjobMWS6V3xdrAk7EYGVhYaGnZMMGWZPfmkYNu2qpNHr1UzOL9i9D/HIit8PDu9lm7+LoB0lUkKM7mHHxYaFcfCEs2SwVjXyc0z8MqfJ/h+2yUAXhrcjA9GtqqxbTUqiwAPW76b0B6tuuh5H75mviwzvVZtWkAv3l9y2MDYDsYxfx4JqxcuX6kM1QASEmDQIDh9Gjy9BL1eOMn2xHMoCrxzdwteGhLAk0uP8GV+o72Hu/myZHoXXG3vPE2+KvB2sGTJtC642eq4FJuKg6UW554XsWoeQW6uwpgxcPFi1ckzoq0XAGtPRpGbZ6jw8Ya0LEixl+4QyU3cbPWMbm+Mufh2axVe4LWQ3DwDzy0/xh+Hw1Ep8MnoIJ7q37ROZYyVhyEtPVg8tQvWusIWsUNXzZtyP6GzMZB6+/lYwhKKd4MNaemBrU5DWEJGian4dQmpDFUzSUnG1Pnjx8HNXdB6+lGOJoeh16qY82AH7mvvzbgf97HxzHUs1CpmjWnN+yNboa0llY/9XKxZMq0LTtYWXIpNw9vRCuehJ9B53iAhAUaMgMTEqpGlZxMXHK20xKVms+9yxW/uQS3cURRjA9doM/r0JbWfGX390aoVdl2MY9/l+OoWp0ZSoAitORGFVq3ww4MduL9Tw9J3rON0aezMH491LxQrdTYqmdQs82We+LlY06upC0LAkhLqYllaqE01h/49VfezymrHN2odJSUFBg+GQ4fAxUXQ5clThGRGYavX8Nuj3ejm78ykeQc4G5WMi42O3x/vxrgaFB9UVpq627JwSmfs9BpCE9LxdNLict9htHaZhIQYK2tXRWiFVq1iaP7N/c/xivvB3Wz1dGhoLKG/8Yx0lUlu0sDJynSvfrHxvIwd+g+5eQae//24SRGaPbGDKSlBAi287Fj9VE8c8hUiAfx70rwKSUFSye+HwkqsizU43/q9+cz1On8NS2WomkhMhPbtjc1M7ewEfZ87y4m0UCy1auZP7kRTNxsemX+QE+FJOFlbsGx6l1rZh6eAVt72LJjSGWsLNddTsnByycN51EEUtYFVq4yd7auCEa2NrrL1p6LNUhiv4AG+/pRUhiSFeap/Eyw0Kg5cTWDXxbjqFqfGUKAIrT4eaVKEBrWovDYUtZWGzlZseL63yWX23daLZlVIBgS64WmvJyEtu8TnV48mLlhqjTXVCnpS1lWkMlTFCAHLl4O3tzFeRqMR3P3aBQ6mXMFCreKnSR1o5W3PtF8PcfjaDez0GhZN7UxT9ypu6lUJtG/oyC+TO6HTqEjOzMXOJxW7bhcAePppwfUqCL3p3MgJdzsdyZm57Dhf8S+oAmVo/5UEbtzSEFci8bS3ZGIXo9vnc2kdAoyK0Au3KELfT2hfqxShzJw8ToYn8fexCHZdiCMsId0s8Ycl4W5nzBhWgGsJ6WwyY7kGjVrF+Hy3ZEkVqfVaNb2bGRNFzDl3TaRWKUM7duxgxIgReHl5oSgKq1atKnWf7du306FDB/R6PY0bN2bOnDmVL2gJ7NoF3bvD+PGQng4gGPnyFXYnXUCtUvh2Qjs6N3Li0UWH2Xs5HhudhkVTu9DSy77aZDY3XRs7M+ehDigKZOUacOx2Ca1bEvHxCk89Vfnzq1UKd+dbh/45XvGssobOVgR62JJnEKw4Es4fh8J4faX5KsZKajdP9PVHrzVmlm0tIY25vlCgCP1ziyI0uAa7xlIyc9hzMY65Oy/zwvJj3PXVDlq9u4ER3+3i2d+O8eAv++k1axvN31lPv8+CeXjeAd79+xRL9l8jJTPHbHK08LJnen6rlw/XniUzx3wtMsZ3boBGpXDw6g1Coou3/AxqYfyMpDJUg0hLS6NNmzZ89913ZRp/5coVhg0bRq9evTh69ChvvPEGzzzzDCtWrKhkSQtz5gzccw/06gX79t3cHjg0nEOGswB8NrY1/QPdeGrpUXacjzW6yx7pVGNT5ytCvwA3Hu1lvLmt9Cpchp0AxcCff8Kff1b+/CPaGJWhzWeuk55950GJN9KyWXcyypQK++Has7z85wk2yuwyST5utnoezm8H88Wm+msdyjMIXvzDqAhpVDVbEYpPzWLmurN0/mgLE+bu58O1Z1l5NIKQ6BRyDQIHKy0dfR3xd7XGQq0iJ09wJS6N7edj+XXvNd786xQ9Pt7K5xvPkWAma/GzA5ribqcjNCGdX3ZdMcsxwWh5KrDM/VVCC5n+gW6oFDgTlVynCzBWfvMqMzJ06FCGDh1a5vFz5syhYcOGfPXVVwA0b96cQ4cO8dlnnzF69OhKkvImUVHw9tswfz4Y/mNJ1TeKIaO10YLwwb2tGNHai2eXH2PTmevoNCp+ebgjnfzqZi8egBcGN2P7+VhColNo2DSbtK6XSN7blCefFPTtq+DiUnlzt/Gxx9fZimvx6Ww+G8M9+cpReVl5NIIP1pwpst1KV38KxUlK57He/izee43TkclsOB3NXa08q1ukKkUIwRsrT/L3MaMiNHtizVSEEtKy+WnHZRbuvUp6foNSbwdLgrztaeFlRwtPO1p42eFprzel/ucZBNHJmVyLTyM0Pp2r8elsOhPNpdg0vt16kbk7rzC+cwOm92qMl4PlHctmrdPw+tDmPLf8GN9vu8jo9j5ma1Eyoo0X/56KZt3JKF67K7BIWQMnaws6+jpx4GoCW87GmJT7ukatsgyVl7179zJ48OBC24YMGcKhQ4fIySnejJmVlUVycnKh152iVhsDpP+rCGmdU3AfdxCA14YG8lBXX95ffYa1+ZkVPz7Uge5NKlEbqAHoNGq+Gt8WC7WK6ORMPPteRuuSQkyMwrPPVu7ciqKYAqkrUoDx4W6+tPIu2gLF2qJWrTEklYyTtQVT8nuWfbHpvNm6kNcGhBB8sOYsyw+FoVLg2wfa1ThFKDE9m083hNDrk63M2X6J9Ow8grztmTe5I7te7cechzrwzICmDGzhjpeDZSFlQa1S8HawpLu/C+M7N+S1oYFser4Pcx5sT5C3PRk5eczffZU+n27jlT+PExp/55aVkW296ODrSHp2Hh//e9Ycpw4YLfWWWjVhCRmciijJVWa0HtVlV1mdVoaio6Nxdy8cnOfu7k5ubi5xccUHz86cORN7e3vTq0GDO09ld3ODbdsgMPDmNpUuG/dJuwB4rE9jHu/jz/KDoSzadw1FgW8faE/fALc7nrM2Eehhx8tDAgDIU/JwHnYcFMHSpfDPP5U7d4GrbPv5GJLS78y/r1GrmDmqNf8tlGtlIS1DksJM69UYO72G89dTWXOi4rFqtYWvNl9g3m6jW+fTMW1MpS1qCssOhNLzk218v+0Sadl5tPSyY+6kjvzzVA/6B7rfUfFHlUrhrlae/PNUDxZN7UzXxk7k5Al+PxTOsG92sjXkzhQKRVF4b0RLFAVWHYs0W4sOSws1/QON3zlrS0jfH5ivDO27HE9ShvnioWoSdVoZAopczAU++5Iu8tdff52kpCTTKyys+M6+ZSUvD1ILWlepDHg8vAu1hYH+gW68OiSQY2GJvL3qNAAvDGzGXa1q1qqpspnasxHdGjuTkydw9E3FrvNlAJ58EjIyKm/eAA9bAtxtyckTFWqnEeRjz+TujQpts9ZJy5CkMPaWWqbnx8l9vflCpWYg1RR+3nGZr7cYs0X/b2RLRud3Qq8J5OYZePfvU7y+8iSpWbk097Tjx4c6sObpngxscWdK0H9RFIVeTV357dFurHiiOx18HUnNymXqr4f4IfjO+tYF+dgzLr9NxnurT5vNyjg0yPi9s+5kVLFyNXKxpombDbkGQfC5upkIUKeVIQ8PD6KjC3/RxcTEoNFocHZ2LnYfnU6HnZ1dodedkpMD48ZBeDg09hc0nnQIrWMGPvbWfDW+LfFp2Ty+6DDZeQYGt3DnyfyOxfUJlUrhs3FtsNVrSM/Ow77HedS2GYSHw/ffV+7c97Q1T1bZC4Ob4X5La5T62UhAUhqP9GyEo5WWy3FprDJDf7yazNL9oXy0zujKeXlIAJO6+VWvQLeQlJ7D5PkH+XWvMZ385SEBrH26J0NaelRaG5AOvo4sm96VCV0aIgR8sj6E55Yfu6PMsJfvCsBWp+FURDJ/HKrYYr2A/oFu6LUqQhPSS6wnVOAq23xWKkO1jm7durFp06ZC2zZu3EjHjh3RarUl7GU+XnkFtm8HGxsY+OwF8txjsVA0/DqtI5ZaNU8uOUJ0cib+rtZ8Pq4NqnrWmLAAbwdLPhjZCgC11oBDT2MPtv/9T3DDvC15CnF3a6PJfs+lOGJTsu74ODY6DR+OCjL9XRB8KZHcio1Ow+N9/AH4est5snPrpnXo72MRvLnqJGAsLVCTFnkXY1K5d/Zudl2Mw8pCzY8PdeDJfk2q5NlroVHxv1FBfHBvKzQqhb+PRTLux71EJZXPBO5io+PZgU0B+HTDObO4rawsNPQLuL2rrEAZCg6JqZPXbq1ShlJTUzl27BjHjh0DjKnzx44dIzTU2Fvl9ddfZ9KkSabxjz/+ONeuXeOFF17g7NmzzJs3j19++YWXXnqp0mVdvBjyk9iY9lYsGyIuoCgw5+G2+Lva8NHasxy4moCNTsNPkzpiq6985awmM7KtF8NbeyIA26BwtC4p3Lih8MknlTenr7M1bRo4YBBG83BFGNTCnUYuVgBmS6eV1D0mdfPD1VZHWEKGKZamLrH5zHVe+P04QsBDXX15JT8msCYQfC6GUbN3cyUuDW8HS/58vHu1tAB5qKsvi6Z2wdFKy4nwJO75bjdHQsu36nu4ux/+rtbEp2XzTb4rsqKY+pCV4Cpr6+OAi42OlKxc9l+pe/32apUydOjQIdq1a0e7du0AeOGFF2jXrh3vvPMOAFFRUSbFCKBRo0asW7eO4OBg2rZtywcffMA333xT6Wn1R4/C9OnG36c8lcGaZGPm2EuDA+gf6M6fh8NZsOcqAF/eb1SO6juKovDRva1wtdUhFHDoEwLA118LwsMrb96CtPrVZijA+NzAZgBcT86st/VkJLfH0kLNa3cZMyq+2XKh3FaBmsyeS3HMWHqEPIPgvnbevH9PyxrTfX7xvmtMWXCQlMxcOvk58vdTPWjhdechEBWlm78z/zzVk0APW2JTshj/0z4OXyu7QqRVq3j77haA8dziUu/csl1A/0A3dBoVV+PTORNV1FWmUikMbG60HtXFrLJapQz17dsXIUSR14IFCwBYsGABwcHBhfbp06cPR44cISsriytXrvD4449XqoxxcTBqFGRmwoDBeRxz3U1OnmB4kCcz+vpzMjyJN/4ympCfGdC0VpWir2wcrCx4cZBRobBpEovOJ4HMTIX33qu8Oe9u7YmiwKFrNypcUGxwCw/UKoW07DyuxKWZSUJJXeO+9t50zE+R/nCt+VKkq5OjoTeY/ushsnON8Y+zxrSuMW7/9aeiePvvUxgEjO3gw+JpXXCx0ZW+YyXTwMmKFU90p08zV7JzDTy26FC5nkF9mrnSpoEDWbkGFuYvriuCte6mq6wkS7kpbqgONm6tVcpQTScvDyZMgGvXoEkTgc1dh4lPzyLQw5ZPx7YmPTuPJ5ceITvXwIBAN54b0LS6Ra5xjOngg7+rNQaEyTo0f77gbCV9Z7jb6enkayxuue1cbIWOZWmhpqOvsYv97kt1z4wsMQ+KovB/I1uhUmDtiSh2XajdTVzPRacwef5B0rLz6NnEhW8ntEOjrhlfLcfDEnlu+TGT227WmNboNDWn9IW1TsPsie1p7mlHXGo20349RGpW2ariK4rC4/ltOn7de420Mu53O25mlUUXq+zU5catNeOKrSN8/DFs2gRWVjDu9TCOXY/F2kLNnAc7YGWh4X/rzhKakI63gyVf3N+2xqycahIatYpX8t0I1g0SsWwajcGg8MYblTdnnwBXAHacr5gyBNAzv1jmHtmlXHIbWnjZmTKs3vnnVK0NSL0al8aDv+wnKSOHdg0d+PGhDjVG2YhIzGDawkNk5hjoG+DKuyNa1Bi33a1Y6zT88nBHXG11hESn8Myyo2VOmR/c0gM/ZyuSMnL43QyZZQOau2OhUXElLo2zUSlF/l+XG7dKZchM7NgB+aFLvPpBGssvngLg/ZGt8HOxZsf5WJbsN8YzzRrTGnvLmh8wLYTgYkwKx8MSOXwtgf2X49l9MY7t52M5cCWBnEqqlTK4hTvtGzqQJwSOvc+BIli1CvbsqZTp6N3UqAztvRRf4XPq0dT4oNh7OR5DPao0LCk/zw9qhouNBZdj08zab6qqiErKYOLc/cSmGK3fCyZ3rjE1tlIyc5i64KBJtm8fqDnWquLwcrDk50kd0WlUbA2JYea6spnC1SrF1MR17s4rFX5+2eg09G1mfB6W5Cob2LxuVqOuuVdHLSI2Fh54wNh244GJBrbkHSDXILi7tSej23uTlJHDqyuMfcge7uZLjxreauNybCqfbzxHr1nbGPjFDkZ+v5vRP+zl/p/2MXHufh6ed4BxP+6l00ebeW3FCXacjzWrYqQoCq8NbQ6AhUsqNkHGFc+HH5ptikK09LLDydqC1KxcjpQjiLE4WnvbY6vTkJieU2wQokRSgL2lltfzr/Nvt14gMrH2BFPHp2bx4Nz9RCRm4OdsxcKpnbG3qhkLvNw8A08tPUpIdAqutjp+mdypVmTrtm3gwGdj2wAwd9cVfjsQWsoeRka398HFxoKIxIwKZ8UCDM8vOVJSAcYBzd3rZONWqQxVEIMBHn4YIiONbTdchpzmWrzRFfbRqCBjfMDqM0QlZeLnbMWrQwNLP2g1cCMtm4V7rzLy+930/3w73269SPiNDPRaFd4OljR0sqKxqzUB7ra08DQqD4npOfx2MIxJ8w7Q+aPNvL7yBMfCEs0iT+dGTgxs7oYA7LpeAgT//gtnivZFrTAqlWJyb+2sYPyGRq2iS2NjDNIu6SqTlMJ97b3p5GcMpv6olgRTJ6RlM3Hufi7FpuFpr2fxtC642ZqnaWhFEULw/uozbD8fi16rYu6kjnhXoEFqVTOijRfP52elvrXqFHsulf4M0WvVTM5vnjpn++UKBzb3D3TDQqPiclwaIdFFXWUFjVsBttShAoxSGaogn30G//4Lej08+WEM/5wORaXAF+PaYG+pZePpaFYcCUelwOfj2mBVA5t4/nU0nF6ztvHO36c5HpaIWqXQN8CVr8e35ejbg9n9Wn92vNKPrS/2ZcPzvVn3bC8OvDGApdO6MKFLQ5ytLbiRnsOyA2GMmr2b/1t95o4qq/6XV+4KRKWA1jEdy2ZGk+wXX1T4sMXSO980vONCxeOGuvsbFavdUhmSlEJBMLVapbD2ZBQ7zXD9VSaJ6dk8OHe/yeqyeFoXfBytqlssE4v33+zz+NX9bWnTwKG6RSo3zwxowj1tvMg1CJ5ccoT4MqTNP9jVFysLNWejkiu8oLPVa02hA/+WllV2tu64yqQyVAH278cU2Pv+x9n8ePIoADP6NqFLY2cS0rJNafTTezemQ742XVNIzszh2d+O8vzy46Rm5RLoYcvbd7dg3+sDWPBIZ0a29cayhKajGrWK7k1c+N+oIPa/MYAl07owsq0XQsC83VcY9s3OCluJmrnbMia/n5FdJ2PPskWLBNF33kqsRHrnx/qcjEiqcNHEAjfowasJZOXKatSS29Pc046HuvoC8M7fp82SFVQZJGXk8NAvBzgTlYyLjQXLpnepUTXSwhLS+V++de2VIYHc1apiTWGTM3P4cM0Zgs/FkFGFVeUVRWHWmNYEethyIz2H/60LKXUfBysLxndqCMCPOy5VWIbhrY1ZZWtLcJX1yg+iPnT1RqXFjlY1Uhm6Q1JTYeJEYzr9uHGCg7rDpGTm0qaBg6lU+turThGXmk0zdxuT6bOmcPjaDYZ9vZO/j0WiVim8MKgZa57uydSejXC1LV8NDo1aRY8mLnw9vh3zJ3fCzVbH5dg07pu9m882nKtQpsxzA5uh06jQed/AwvMG2dlKpfQsc7PTE+hhixBUeHXezN0GFxsdmTkGjoYmmkdASZ3mhcHNcLfTcSUujTf+OlnjargkZ+Ywad4BTkYk4WRtwdLpXWniZlvdYpkQQvDmqlNk5OTRuZETj+UHFVcEtaIwd9cVJs8/SJv3N/LAT/v4fttFToQnmq1Baknoter8MAtYcSScvWUo1TG1VyPUKoXdF+M5GZ5UofkHNHfHQq3iUmwa56+nFvl/MzdbHK20ZOTkcaKCc9UUpDJ0hzz3HFy6BA0aQO9HQjl4NQFrCzVf398WrVrFupNRrD0ZhUal8PnYtui1NSPdNM8g+GbLBcb9uJfwGxn4OFry+2PdeGZAU7NkW/QLdGPj870Z2dYLg4Dvtl3knu92cS3+zooQejlYMrmHH4qCqaP97B8E6ZUQt1fgKquomVlRFHo0MTYClin2krJgp9fy7QPtUef3rFp2wDwNOM1BalYuk+cd4HhYIo5WWpZM60Iz95qjCAH8dTSCHedjsdCo+Pi+ILOULbn1mZ2dZ2Dv5Xg+3XCOe77bTfsPNjJ69h7GztnDlPkHmbrgIBN+3se93+/mrq92MGPJYVYeCedGBazMHXwdmdDZaO15c9XJUq3M3g6Wpor6cypoHbLTa00p9BtPFzXFq1QKXRoZn3H7LteNmmpSGboD/voLfvkFFAU+n53J93uMptnXhjXHz8Wa9OxcPlhjjPSd0defIB/76hTXhMEgePH3Y3yx6Tx5BsG9bb1Y92wvOuQXCjQXDlYWfD2+HbMntsfRSktIdAoTft5/x5kHT/TxR69VYdUsGo19OgnxCr/+alaRgZsp9jsvxFZ4Zd4jP25IBlFLykrnRk68nN/L673VpzkVUf0r7sT0bCb9sp8joYnYW2pZPK0LzT2rr41FccSlZvF/+c/bZwc0pbGZXHdqlYKFpvivyKSMXA6H3uDg1RtsPRfDlpAY9lyK51hYIiHRKaw7Gc0Lvx+nw4ebGDdnLz/tuERYQvmff6/cFYiLjdHSPif4cqnjH823iP17MuqOF6AF9MlfHO4uIYi7a36iiFSG6imRkTf7jr38smB1zAnSs/Po7OfExHwt/ofgS0QlZeLjaMmMGtKxWQjBR+vOsirfLfb52DZ8Nb4ddpWYcjosyJP1z/WmsYs1EYnGmiTXkzPLfRwHKwtGtfNBUYFtR2M9li++FBjM7Kru6OeIXqvienIW564XzaIoD93zLUPHw5NIyax4V2lJ/eDRXo0ZEOhGdq6BJ5ceIbkar53opEzG/biXI6GJ2Ok1LJ7ahZZeNWNhdyv/t/oMiek5NPe0MykD5sLyNhZ9nUbF0FYevHN3Cz4ZHcTX49vy00MdmP9IJ57u34RAD1sMAg5cTeB/60Lo91kwn288V644QntLLe+MMPYg+z74Ipdji7qsbqW5px19mrliELBo77Uyz1Mc3fNjH49cSyw2Zqqrv/EZV1fihqQyVA4MBnjkEYiPh3btoMPom6bZmaONptnQ+HR+3GHU4N8a3qLGuMd+2nHZVNht1ujWjM4PTC4rQghC49NZdTSC3w+GsediHNfi00qNB3K307NkehcaOFlyLT6dCT/vu6Omgg93NwaY2rQOQ6XL4eIFhdWry32Y26LXqk2m353nK2bR8XG0wtfZijyD4MCVBHOIJ6kHqFQKn49rg7eD8X55bcWJaokfuhSbyugf9nD+eirudjr+eLx7jbFw38rWkOv8czwSlQKfjA5Ca+bCipbaosdr4WnL1+PbcvK9IfzwYAem9GzE/Z0aMrKtN4NbetAvwI0XBwew/rne7Hq1H+/f05IujZzINQi+3XqRu7/ZVa4u9SNae9KrqQvZuQbeWnWq1Ovhwfxg/FXHIsmtgJLS2MUaT3s92XkGDl0r+gyra3FDUhkqBz/8ABs3GtPov/8pm5nrb5pmC7IqPlh7huxcA72aujCkZc1owrricDgz/zVmJLwxLLDMitD56ynM3XmZJxYfpvP/ttD70208t/wYr6w4wYS5++nzaTABb/9L1/9tYdqvh9h3Ob7YG9XT3pKl07riaa/nUmwaD87dT2J6+XzpgR52dG3shMoiD5t2xhXPV1+Z/0uiclLs64YZWVI1OFhZ8N2EdmjVCutORvOrGZpwlofjYYmMnbOXiMQMGrtYs+KJ7gR41KwYITDGMr31l7HS/9SejWjt42DW4yekZZOUcTOz7962Xux6tR/rnu3NyLbeJbrQbsXH0YqHu/ux/LFuzJ7YHhcbCy7EGBXND9acKVOWmqIofHhvK3QaFXsuxbPqWMRtx/dp5oqTtQVxqVnsrICbXlGU2z7D6lrckFSGysilS/DKK8bfZ82C3y6e5kZ6DoEetibT7PbzsWw6cx2NSqkxfXC2hcTwSn716+m9GvFob/9S94lLzeKlP44z+MsdfLj2LP+eiiY2JQutWqFdQwd6N3PF39UanUaFEBCdnMnms9cZ/9M+Rv+why1ni3Y0buBkxdLpXU39dybNO1BuF0BBYTHbdtcAQXCwwuXS3ejloiDFfv+VhAqn05qCqMtQOE0iuZV2DR15Y5ixOvVH686yoZgg1spg54VYHvh5Hwlp2bT2seePx7vVqDpCt/Lp+hAikzJp4GTJ84PMm617LCyRu7/ZSUZOHnqtyhRWUJH3YliQJ5ue78Oodt4IAb/susJdX+/galzpsT2+ztY8k9/Y+8M1Z0lKL/nZaaFRmQKpVx65veJUGgXPsJJqptWluCGpDJWRGTMgPR369YMWA2L4+5jRNDtrTGu0ahXZuQbeX30aMH5p14S002NhicxYcoQ8g2BUO29T6f+SyM0zsGD3Ffp9Fsyfh8MB4yrjlbsC+P2xbpx8bwh/zejBwimd2fJiX0I+uItDbw1k5YzuTOzSEAuNiiOhiUz99RBDv97J+lOFC3Y1crFm6bQuOFlbcCI8ied/O4YQgqT0HD7+N4R/jkfeVr6Bzd3xdrBEY5eJ3s94cy5YcOfvT3E0cbMxmoZzDey/UrEbvGBVFRKdUqGsEkn9ZHJ3P0a29SInT/DE4sOme7IyyDMIvt1ygYfnHSA9v/v80uldcbYpX5mNquJafBqL83s9zhzV2qzFbH8/GMbYOXuITMqkkYs1q57sUe6wgpJwtLbgy/vbMn9yJzzt9VyLT+eBn/cRGl96cPX0Xo1p4mZDfFo283YX7mX338Xn6PZGeTeejq5Q3FlBzbRTkUnFWvPrUtyQVIbKyL59YGMD3/6Qy9t/Gwsp3mqa/XXPVS7HpuFio+OZ/DpD1UlGdh7PLDtKRk4efZq5MmtM69ummx6+lsCI73bz3uozpGTm0srbjpUzuvPrlM7M6NuEzo2cisQ/KYqCi42O9g0d+WhUELte6cdjfRpjo9MQEp3C44uP8H+rzxSqydHU3ZaFUzpjoVaxJSSGxxYdpuesrczZfqnUvmAatcrkDy/oV7ZggXkDqRVFuSWrrGIWHSdrCxq7WANwPDyxoqJJ6hmKYkx0GNPBB4OAl/44zrxKaOgam5LFw/MO8Pmm8xiE8Yv0l8kdsakhTVeL47utF8kzCPoGuNKzqfl6PW45e51XV54gJ09wV0sP/n6qB4Ee5s+e6xfoxj9P9cTf1ZqopEwe+HlfqdlmFhoVz+V/tyzYc5XYlExWHgln4tx97P9PXGIrbzuautmQlWtg3Yk771fmbqeniZsNQhRv/alLcUNSGSoHn38O/1y+UMQ0G5OcyddbLgDw6l0BlZqhVVa+2nye0IR0PO31+fEHJX/U/56MYtyP+zgblYy9pZYP723F30/2pH3D8qXcu9npeX1oc3a/1p/H+xjdcfN2X2HKgoOFVicBHrb0b+4GwMYz10nJNPrly9LYdHynBug0KqyaXUelyyEsTGHr1nKJWSoF1VV3nK943FBBO4Da/qCQVA8atYpZo1sztWcjAP5vzRm+3HTebEHVey7GMeybney6GIelVs1nY9vw+bg26DQ1I/GjOELj01l51Oj+eXaA+RaeIdHJPLPsKELAA50b8MOD7Sv1We5qq2PZ9K6mbNsHft5HRCnNeu9q6YGnvZ6kjBx6fLyVF34/zu6L8SRnFLb+KIrCffnWoQq7yvwLXGXFxw11bVw34oakMlRGBgyAAfemmlZm79/T0mSa/XLzBVKzcmnbwMFknqxOToYn8fNOYzDNh/e2um3H5vWnonl62VHyDILhQZ5se6kvD3b1RV2BomX2llpeGxrI7Int0WtVbD8fy32z95jqXny75QLrTxWNgTgbmVzqQ97R2oKRbb1QNAasWhjdavPm3bGoxdKziQsqBS7EpFa4k3jr/Ayc42ZqYCupf6hUCm8Nb85Lg42Lr6+3XOCNv06RlHHn7o/YlCzeX32aib/sJzYliwB3W/55qoep/U1N5vttRqtQ72autCvngq0k4lKzmLrgEGnZeXT3d+b/RraqkphPNzs9S6d3xc/ZivAbGTzw074SnzlJ6TkM/nIHUUnG8iTZeTeflanFtHAZ1c4bRTGm9pfFDVcSBSn2JdcbkspQveLbb+HDtWfIyRP0C3Clf6AxUywsIZ0/DhldNm8Nb26WyqcVISfPwKsrTmAQcHdrTwY0LzmjbdOZ6zy19Ai5+QUYv3mgHU7WFmaTZViQJ3881h0POz0XY1IZ+f1u9l+O59mBzYp96KZk5RJ+o3Tl4+H8QOoCV9nKlYIbZc9ULRUHKwuT+3NXBV1lBZah4+GJNa7FgqT2oCgKT/Vvyv+NbAnAsgOh9J61jR+CL5Ur0D8+NYuZ687Se9Y25u++ihBGa+uqJ3vQtIZVlS6OsIR0Vhwxxk6ZyyqUmZPHY4sOE5GYQSMXa2ZPbG/2FP3b4WGvZ9mjXWnoZEVoQjoT5+4vVtG1t9IyoUvDYo9RnDLkYa+nZ74i89fRO7cOdW3sjEqBy7FpRCUVfT4XKEO1PW5IKkNl5EJqDNvOxaJVK7wzoqVp+zdbLpCbv0rp6Ff9jVh/3nmZM1HJOFhpee+eliWO23L2Oo8vPkyuQTCijRefjW1TIWtQSQT52PP3Uz1o42NPYnoOU389xKXYVGaNbs39HRsUGX86snR3Uksvezr7OWHhkYTWJZmsLIXffjOv3L3y4xD2VnC108LTDo1KIS41u1QTuERSGpO6+bHgkU40dbMhKSOHT9aH0OfTbSzad42YlMxiFe6kjBz2XIzjf+vO0mvWNn7ccZmMnDzaNHDg1ymd+Xh06xIbMtc0ZgdfJNcg6NXUxSyV84UQvLHyJIev3cBOr2Huwx1xsDLfgrCseNpbsuzRrng7WHIlLo23S6gnNLVnI4YFeRTZXhBq8F/ua+8NwMqj4Xe8GLO31BKUvzgszlXW1M0GJ2uLWh83JJWhMvLJemOdnqk9G9MoPyj2SlyayXf9gplTO++EK3FpfLXZGLv09vAWuJSQCTIn+CLTfj1EnkEwtJUHX45rY5a+ZCXhbqdn+WPd6NzIidSsXKb9eoikjBxm3hfE+E6FLUTHy3gzPdzd2K/MJsi4Spw/37xWl4J4qYq6t/RaNYGexhV3bX5QSGoOfQPcWP9cbz4f2wYfR0tiUrJ4e9UpOn+0haD3NjLi2108vewoTy87Sr/Pgmnz/kYmzN3PTzsuk56dR5C3PfMnd2LVjO6mlgu1gfAb6fxxyLxWoQV7rrLyaARqlcLsiR1M9eKqA28HS76d0A61SuGf45HFWnOMHe3b4OdSOMW/JGVoSEsPrC3UXItP53ApCSq3oyBuqLhei8Z6Q7U/xV4qQ2UkLCEDN1sdT/W/2V7jmy0XyDMIBgS60TbfHVJdGAyC11acMBV8LFgR3MrJ8CTu/3EvH68/h8AYz/LNA+0qVREqQK9VM+fBDvg4WhKakM4TSw6TJwT/G9WaMR1uyrqhmFii4hjYwg1bvQbrlhGgMnDwoMKpU+aTt8C9dTku7bY1Pcp0rPxVlYwbkpgLtUphdAcftrzYh/fvaUljF2sUxeguORmRxOrjkaw+HsmV/Bo2DZwsGRbkwdxJHfnnqR70C3SrEXXQysPs4EvkGgQ9mjibxQofk5zJZxvOAfD28OZmzUq7U9o3dDQpeu/8fbrYWB8bnYafH+qIVn3z80stIX3eykLD0CBPAFZUIJC65y1xQ8VZmOpC3JBUhsrB68MCTemmF2NSWJWvuZu74NedsPZkFPuvJGCpVfO/UUGFHnSXY1N5cukRRny3y5SCaaFRsfzRblXqG3eytuCXhzthbaFm3+UE3l99GpVK4dMxbUzFDq/EpRFfhnYdOo2awS08UFtnY+kfA8CyZeaV1dfZuPo6VsG0+ALF6phUhiRmRqdR83B3P7a+ZKz7tfmF3vz0UAdeHxrIK3cFsHBKZ46+PYidr/Rn9sQODGzhXuuUIICIxAxTbOazA8zzvP343xDSsvNo19CBSd38zHJMc/BkvyZ08nMkNSuXZ347WmwcTlN3Wz4aFWT6+3xMyT3LChbGa05EkplzZ4Vk2/s6otMY+zZeKqY/2q1xQ6W1aKqpSGWojLTxsefetjctGG+tOoXAWAiwlXf19uwRQjA7+BIAj/VpTAMn45d4dFImr688yaAvd7D2P7UmXhzUrFriBAI8bPlqfDsUBRbvC2XR3qsoisL8yZ1wtrZAAF9uOl+mY93d2rjisQ40ntvKleZ1lZnLolNwnFMRSYVqLkkk5kSnUdPEzZbBLT14rI8/M/o2oXczVxzNmBRRXfyy8wo5eYJujZ3p3KjiVqHD1xJYeTQCRYH3RrSs9sSXW1GrFL68vy22eg3HwhL5Jr9sy38Z17EBbfKzVc/epixJ10bOeDtYkpKZS/C5OysXoteq6ehnDB0oLW7oZETiHc1hbnLzDEz/9VCZx0tlqIy8Oby5aUX15+Ew9l02WlheHFz9VqHt52M5G5WMlYXa1LJi/ako+ny6jWUHQot8AbvY6Jjey7zdncvDoBbuvDwkAID3Vp/heFgiarWKL+9vA8BvB8MIv1F6KmiPJi7YW2qNliGVgZAQhZAQ88nZ1kwWnSZuNlhZqEnLzit2VSWRSEomO9dg6sdljq70eQbBO38buwWM69DAZLmtSfg4WpksP99vu8jBq8U3e/5pUkcUjDFDZyKLV4hUKoXB+X0yg8/F3LFMBdWoi2vNcWvc0N5LNcNVplGriEnJLPN4qQyVkRZeRg38SOgNXl1hrEDtbqejuaf5q5OWlx/yrUITOjc0ZUL0C3Qz+Xn/y4f3Vv9K6Ik+/gwP8iTPIHjjr5Pk5hno1dSV7v7O5BqEKRD8dlhoVAxp6Y5Kl4ve13iD/vWX+WRs29ABMCpDFUmLV6sUgvKth9JVJpGUj60hMSSkZeNmqzNleVaE5QfDOB2ZjK1ew8t3BZhBwsrhnjZejG5vrD7+7t+nMRRjVXa309Mv0FjAtqDkQHH0CzCO2XYu5o6fZT38b2bYFmfhLrDYHQ1NvKPjVwZtytG8VypD5eBEeCIPzd1vuhD651+E1cnhazfYfyUBrVphaq9Gpu06jZrZD7Zn4H/qDDVzt2FIy6KpmVWNoii8d09L7PQaTkcms3DvNRRF4ZW7AgFYeSScC9dTSj3O3a2NDQmtml0HYIUZXWUtPO3QqhUS0rLLVP/odpjqDUllSCIpFwU92Ua1965wskdiejafbjCaj18Y1KzEjNuawhvDArHVaTgTlczfx4sPgH6wq7H20KqjESXW+encyAlLrZrryVllqvRfHK287bHTa0q0QhWEi5wuwUJVHbRpUPYQFqkMlZEzkUk8OHc/abcUOCsIGqtOCqxC97XzwdPestD/dBp1fiPZm1agt+9uUWMCKF1tdbyW3zz2843niE7KpG0DB+5q6YFBwGcbz5V6jG7+zjhaabFqch0QHD6kEG6mfpZ6rdpk+TtqprghmV4vkZSd2JQstuW7dsaaoTr2l5vOcyM9h2buNqY+hzUZZxsdj/c1tjb6bMP5YgOgezd1xcVGR3xadokxQXqt2tSB/k7jhtQq5WZ7oWLigpp72qEoEJ2cSVwZkmCqgvJkeUtlqIw8uvAQyf+p5dCsmiu2nr+ewuaz11EUeLRP8b70FYfDyckTWFkYA+BKcp1VF+M7NaB9QwfSsvN4f7XRj//SkGaoFNhw+jpHQ29fG0OrVnFXK0/UNlnovI1jV60yn3ymuKEKmn4LVihno5LvOKNDIqlv/H0sgjyDoG0DB5q4Vex5G5eaxbIDxoy090a0rNJM2oowpUcjPOz0RCRmsHDv1SL/16hVjGpntJD/eTisxOMUuNO2hdx53FCBu/9URNFFnY1OQyNnYw2+mmIdauRS9rpRteNqqAEkZhRWhFQKNHa1riZpjMzZbrQK3dXSo9hiYVm5eaYeZW/f3YLPx7apMVahAlQqhY9GBaFWKfx7KpqtIddp4mZr6vFWkCV3OwqyyqyaGWsU/fWX+VxlbW9pp1ERvB0scbGxINcg7thMLZHUJ4QQpiKL5uiZtmx/KNl5Bto2cDD126oNWFqoeSE/Uee7rRdJTM8uMmZ0/vtTEF9VHH3z44aOhN4o9hhloUAZOlmMMgTQwstoSS9LJ4GqoDyxsVIZukMau9pUa2fn8Bvp/HPM2Kj0iXwz6n9ZcTiCmJQsPO31jG7vg69z9SpvJdHc087Ulfudv0+TkZ3HY/mWri1nr5faLLVLIyecrS2wzFeGtm+HeDMlNBSYhU9FJFWo746iKKZ+ZzJuSCIpndORyZy7noKFRsWI/NjAOyUnz8CS/aEAPNy95rvH/svo9j4EuNuSnJlb7AIx0MOOIG97cvIE/xwrPrbI28GSAHdbDMKYgXwnFMQFnYtOISu3qIXbFDcUUfsWfFIZKiODWxQOlm7mXn1l2wF+OxBmqsbaupiI+dw8g8ly9GjvxlhoavZH/dzApng7WBJ+I4PF+67RxM2Wro2dMAj47UDobffVqFUMDfJA65CB1jWZvDyFNWvMI1cjZ2vs9Bqycg2ERJUe0H07ZNyQRFJ2CgKnB7dwx95KW6FjbTx9nejkTFxsLBiWX5G5NqFWKbw2zJhcsmD3VcISipYeGZ1fXPHP22SV9Q00tl+507ghH0dLHKy05OQJzkcXLRPSsoZZhspDzf6GrEFcTzYGhHXyc8TaQl2t8UJCCFafMFqFxhXT7BSMFalDE9JxsrZgfKfiOx1XhJPhSfzf6jPMWHKYMT/soc+n2+j3WTCvrTjBmhORJZpqS8LKQmMqQ//Tzstk5uTxUFc/AJYdDCvVKnMzq8xoHVq7tpwnVAKqW4IGK16J2rhqkpYhieT2ZOXmmWoLmcNF9uueq4Cx/Eh1WvQrQt9mxtIj2bcsdG/lnrbeaNUKpyKSCYku3jLTP99Vtv187B0VgFUU5bauspb5JWiuxqeTUkKLkJqKVIbKyPHwJCzUKr6f2J6dr/YvVI26qjkVkcy1+HT0WlWR1Hkw9imbvc14s0zp4WfWStOHribw8LwDjPhuF/N2X2HdyWgOXbvBtfh0rsSl8dvBMJ5aepT2H2xi2q8Hi13BlMS97bzxdrAkNiWLPw6FMbilO662OmJTsth4+vpt9+3k54SNToPez1hvaMsWgcFMVeHbmSmIusCCdzkujaSM2vWgkEiqkq1nY0hMz8HdTkevphVrJnsmMpkDVxPQqBQmdKl9LrICFEXh6f7GBePKIxFFniFO1hYMCDR+H6w4XLx1qL2vI7Z6DQlp2Zy4w8Vdq9soQ07WFnjZ6wFKLAJZU5HKUDkY0cYLN1s9TtYW+LlUX/zNmnyr0IBAd6zze6XdytaQGM5dT8FGp+EhM/XcuZGWzaR5BxgzZy/bz8eiVimMbOvFeyNaMHtie/54vBvzJndkas9GBHoYrWabz8Yw6MvtzA6+WKZ4GwuNisfzY4XmbL+MEPBAJ6Pla9G+q7fdV61S6O7vjM4zEcUil4QEhZMnK3bOBdzsLXbnXZ/B+KBomN8q5aR0lUkkJbL+tNHCe29bb9QVLBBbkIE1pJUHHvlf1FVFZk4e1+LTOHzthlnSzbs2diLA3ZaMnDxTr7ZbKQikXn08qtjiilq1it75yuWdZpXdLqMMbhYorikZZWWl1ilDs2fPplGjRuj1ejp06MDOnTtLHBscHIyiKEVeIXfYs6Gg1UV1IoRgTX6fsRFtivd9F2SQPdTNF3vLivnaAaKSMhj74152nI9Fq1Z4oHMDtr7Yh6/Ht2Nyj0YMC/Kkk58T/QPdefvuFqx/rjebX+hDt8bOZOYYmLX+HMO/2cmhEkrK38rYjg1wtdURkZjBqqMRjO/cEJUC+y4ncDHm9jE7PZu6oKgFeh/jPFu2VPjUgZsZZZdi00iuoOm3RX7dovNlKCgpkdRHDAbBzgtGC29FC9smpmeb3G1V9fw+G5XMk0uP0Ob9jQS+vZ4+nwYz+oc9dPxwM3d9tYP3V59m54XYO6oErSgKD+efx8K914q4uno1dcFSqyY6ObPErNW+AfnK0B3GDQXdEkRdXFPWVt4FcUNSGao0li9fznPPPcebb77J0aNH6dWrF0OHDiU09PYBtufOnSMqKsr0atq0abnnbuZuY/qQq5MjoYlEJGZgbaE2pUreSlRShqkz/aRuFTcJX4pNZcwPe7kYk4qHnZ41T/di5n2tS81Ma+Jmw9LpXfh8bBucrC04fz2Vw9dKt6zotWoeze+bNjv4Im62OpMrcPG+23/O3fPLxRe05ti02Twp9s42Oho4GQtangirmEWnoBzD5TjZo0wiKY7TkckkpGVjo9PQ3texQsf641A4mTkGmnva0bGCxyqNUxFJPLrwEEO/3snaE1GF3FgFxq2Q6BTm777KQ78cYPL8g4TGlz2MoIB723lhp9cQmpBepNeYsbii8TlYkuWn4HvjZERSuXp3FeDjaIm9pZbsPEOxi7qWJstQ7bJ+1ypl6IsvvmDq1KlMmzaN5s2b89VXX9GgQQN++OGH2+7n5uaGh4eH6aVWlz+GZkQbzxpRo6fARTaohTt6bdHzKOhO38nPsUhF6vISEp3M2Dl7iUjMoLGLNX8+0Y0Aj7IHjiuKwugOPmx5oQ/P9G/ClJ6NSt8JmNClIY5WWq7Gp7P2ZJSpUuyKw+GkZ+eWuJ+/qzXudjr0vsa8+u07BDlmCs0pyASrqKusoB7UpZi0iookkdRJdlwwWiy6+TtXuDDi2pPG5+GELg0r9fm9aN81Rny3i41nio9tLC5Wefv5WAZ+Ecz328oWRlCAlYWG+/PDBxbkB4bfSoE1bWsJypCrrc4UynD4avmfZ6UHURuNBhdiUmtVgdlaowxlZ2dz+PBhBg8eXGj74MGD2bNnz233bdeuHZ6engwYMIBt27bd0fzDgypW58Ic5BmESdkZ0aZ4eQpcaHdXsC5HRnYeTy45QkJaNkHe9vzxeDd8HK3u6FiO1ha8MDigzA82a53GVHdozvbL9PB3pqGTFSlZuWwLKdm0qygKPZq4oHVLRmWZRUaaigMH7kjkIhQEDZ6/XjGLjr9bvjIku9dLJMWyI78GTu8KNmWNTckyFUsd3KJoook5EELw/baLvL3qFLd6vVxtddzfsQE/PtSBPa/1Z/1zvVg6rQvvjWhRqFhvdp7g0w3neHThoXIpDg919UNRYOeFuCLPkn756fNHwxKJLyFOqcDidqdthm4XRO1pb4yrzTMIzkXXnnCAO1KGpkyZQkpK0ZNMS0tjypQpFRaqOOLi4sjLy8PdvfBF7e7uTnR0dLH7eHp68tNPP7FixQpWrlxJQEAAAwYMYMeOHSXOk5WVRXJycqEXgJtd1QbeFcfBqwnEpGRhp9cUm2ERlpDOsbBEVAoMDapYM9ZP1odwKTYNN1sdC6d0xrmKGxo+1NUPC42Ks1HJnI1OMdUG+fdU1G336+HvgqKAvqHROmSuuCGTRaeCSkzBgzAmJavC8UcSSV0jNSvX5E7v3axiWWTbQmIQwhjj4l4Jz28hBP9bd5ZPN9zsoago8GQ/f/a81p9PxrRmSEsPvBwsCfSwo3sTFyb3aMTm5/swb3JHWvvcbCK67Vwsjy0qu0LU0NnKlDm28D/WIU97S5p72iFuU1yxfUOjMnSkDKELxXG7IGpFUW6pN1R74obuSBn69ddfycgoWhU4IyODhQsXVlio2/FfU6cQokTzZ0BAANOnT6d9+/Z069aN2bNnM3z4cD777LMSjz9z5kzs7e1NrwYNiq/jUx2sPm50kQ1p6VFsEcUCk3CXRs642d75zb/jfKzJ/Prp2DY4Wlvc8bHuFHsrrWk19/uhMO5qZVTutoXE3PaBUeAv1/sZlaHNZoobMsX6xKZhuIP6HAXY6bW42epMx5JIJDfZeymeXIPA19mqwhXzt4QYXVYDmlcsCLskvtlykZ93XjH97e1gyW/Tu/LykMDbWsFVKoX+ge78+Xh3JnS5WQNu+/k4ppXDQlQQEL7iSESRffrnW4dKcpW1b+gAwImIpGKDoEujQBkKiSo+iLqmteUoC+VShpKTk0lKSkIIQUpKSiHryY0bN1i3bh1ubpVz4bm4uKBWq4tYgWJiYopYi25H1/9n77zDoyi7Nn7P1mRTNr33Rugl9N4FQVQs2LAAKmIF/RBsrwXLawN9ERuoiIAoxUaR3jsk1CQE0nvdbJLN9vn+mJJNMrvZMoEE5ndduYBsexJ2nj3POfe5z+DByMrKsnr74sWLUVtby34VFFgffHc9IUmSrUdPtVoiK6Zvd95hVaXR4/82ngMAPDYkGqNcPJ25AmMo+WdaMboEeSJU6YYGvQmH6U4TLkKUbogP9GBF1MeOAxrHNYqtiPJTQCIi0GgwoVTtuOjQkibdkFAqExCw5FAWUyJzbd/RGkxsRxqXF5urnC9U4Ys9V9h/R/sr8PfzwzEozt/u55BJRPjg7p54/+4erH3A4axKzN+Qalen2dB4f4Qp3VCvM7KlRQZGN3TwSgWMHHqk2AAP+Cik0BvNSHdiVmKkn20RdQ9aRH3xZs0M+fj4wM/PDwRBICkpCb6+vuxXQEAAZs2ahWeffbZdFiqTyZCSkoJdu3Y1+/6uXbswdOhQu58nNTUVoaHWgwW5XA5vb+9mXx2BnMoGVNTpIJOIMDjOr9XtuZUNuFikhlhEYHIP54OhD7alo0ytQ1ygBxZN7urQY0mShNZgQq3G4FL2hGFYQgBClW6obTRgd0Y5butOZYcYDxJbj5P4aCD2aoTRQODECZeXAqlYhGh/SjPlaqksPsiDl+cRELjZYPVCLh7CjmdXQaM3IdhbzpZs+EJrMOGlX1NZUbSXmwSrHhsAPycz6A8Pisa3j6SAqW9sv1iGDafaPoSLRAQm0/IBpirA0CfSF74KKdRaI2cXL0EQrJns2XznRNRMdzVXqYz5nWeUqDmDsY6IQ8HQvn37sGfPHpAkiY0bN2Lv3r3s1+HDh5Gfn4/XX3+9vdaKBQsWYOXKlfjhhx+Qnp6O+fPnIz8/H3PnzgVAZXUeffRR9v7Lli3DH3/8gaysLFy6dAmLFy/Gpk2b8Nxzz7XbGtuLU7RHT+8IJaedPJMVGhrv7/RFWVCtwaazlCfHJ/f2tsu5urbRgO8PZmPMp/uR8Pp2JL+5A73f3YmBH+zBa1su4ICVk4k9iEUEO73+9zOFbKlsd3qZze6LYQmUbkgepgIAnDrl1Mu3gq+MDl/6IwGBm4n8Kg1yqzSQiAgMibc/w8LFnnSqPDQ2OZj3LrL/7shAdiWVbhYTBFY83A8JQa7NqhzfLRhvTO3G/vutPy/hqh37DKOl3JPeXD4gFhFsC/3eTGulMlo35KSzvi0RdYy/BzxkYuiMZuRUdg45QGv7YhuMGjUKAJCTk4PIyEiIRNe3GW3GjBmoqqrCu+++i5KSEvTo0QPbtm1DdDTVel1SUtLMc0iv1+OVV15BUVER3N3d0b17d2zduhW33377dV03H5yiWyAHxLTOCgFNXWSuTHf+/lA2TGYSwxMCkNKGJ4fBZManOzOx5lgeNPrWNe7Keh3WncjHuhP5SA7xwmf392b9Jxzh3pQILN93FYeyKvD+XT3g7yFDVYMeJ7KrMdxKt8ngOH8QBCALVUGTGYqTJ0kArm+I8UGewOUyXHNR68MEQ4JmSECgiQN0iaxftC88OZz17YUkSexJpyQF43nWC+28VIofj+Sy/158e7LL40IYZg2LQXZFPdaeyIfeZMbcNWew9cXhNmep9Y30QZjSDcW1Why8UoGJ3ZsaZ8YkB2FLahH2ZZRjMUeWv6+LImpbBrIiEYG4QE9cKKpFbpUGiTdwlqe9OPWOi46OhkqlwqpVq5Ceng6CINCtWzfMmjULSqXjH3iOMG/ePMybN4/ztp9++qnZvxcuXIiFCxe263quF0xmaEBs62Cook6HjNI6EATlP+QMFXU6NjU7b3S8zfvW64x4du1ZtlOhS7AXnhgWg1FdAuEhl0AmFuFUbjV2XCzFP+dLkFFahzuXH8HzYxPx7Jh4SBzwDokJ8MDAWD+czKnGn2lFmNg9GOtPFmDHpRKrwZDSXYquId44G6oCABw/wVMwxFNGh2mvz61qgNFkduj3ISBws3KYDoZc1SlmlNahuFYLN6mIbajgg7P5NXh23Vn239S+Z593mj0QBIF3pnVHRokaZ/JVuFpRj2W7ruBVG3IFplS26nAOtl4oaRYMjUoMBEFQdiDlam2rjujekUoQBFCkauS8vS1iaIF7nhXjyCg/BS4U1SLfgfmUNxKnduHTp08jPj4eS5cuRXV1NSorK/H5558jPj4eZ8+ebfsJBByiXK1FXpUGBAHOjM2ZPCpQ6hLs5XTn149HcqAzmtE70sdmirpcrcWMb6n5ZG5SEZY/1Bc7XhqBBwZGIVTpDm83KdykYoxIDMT7d/fEnpdHYVL3EBjNJJbuvoLn1qU6XDZjhNSbU4tY3dC/l8ps6pJ6RyohC64FQKKoUIQy23Ne7cKyo8wVQr3d4CYVwWAiUVDTuitTQOBWhJnXZy37bS9MVmh4QgCnMa2jkCSJX47n4b5vjsJgatpzXpvS1eW5aS2RiEX47P4+kIqp5/3uUA6KVLb3CGulMqVCii50RoZLF+TlZnm7yuG1MsFQeZ2O0ww3kp7D6Miw7huJU8HQ/PnzMW3aNOTm5mLz5s3YsmULcnJyMHXqVLz00ks8L1HgJJ0V6hriDW+31rPGmBJa/xjn7ObVWgPWHMsDQGWFrNXYdUYTHvvxFC4Vq+HvIcOvTw3B1F5hNmvyAZ5yfP1IPyyb0QcysQg7LpXi/zaed0hgPbF7MCQiAtkVDQhTusPLTYKKOh1nrZqhe5gSIrkJUn8qi8OHbig+gMrolKq1qNdZd8JuC5GIQFyA0FEmIMBQ06BHcS3Vpdk11LWSCjOOaBTHuCJH0RpMWLjxPN744yIsz3AjkwLbrdM2JsADCyYkAaCMdt//57LN+zOlMq6uMubwbG0UUl+6xT7VCRG1UiFlZ19yZX+YodQ3fWbo1VdfhUTSVGWTSCRYuHAhTp8+zdviBChO0Rf3QI4SGQB2AGr/aOdOVL+dKkCdzojEIE9MsNGG+smOTKSXUIHQ5nlD2QGmbUEQBO7qG46vHu4HiYjAltQivP7HRbsHFXq7Sdmf/dDVSgyKpTJXx7OrrD6GEffJ6FIZH07USoUUAZ6MR5DgRC0gwBeMOV+MvwJeHAc+eyFJkj0k9aFH6DhLYY0G935zFL+fKWz2fQLA67c71mkLUK7+maV1SCtQteklNGdEHGLpzMu2i6VWJ8QDtrvK2g6GaCdqJ0XUTIctV6mMCYbyqjqHNtKpYMjb25tzOGpBQQG8vDq+UKqzYSvzo9Eb2Y3E2cwQI75+dEg0RFbSvoezKrHyMGUw9vG9bQ9q5WJCt2AsndEHIgJYfzIfv52238Opad5OGWstYC0YMpjM8JCKISIAeSi1ifz0Zy0eXnncqUnRlsQH8tMWz9fzCAjcDFwuoa7Tbi62wRfWNEKlMUAmFiEpxPkOr0NZFbjjf4dxsai1T87knqF2z2g0mszYcCofoz/Zh65v7cBtyw7irq+OoNfbOzF9xRH8crz15HmAsvJY9kAf9t9v/XnR5uswnbYHr1Q0y7ozB+SLRWrOAIzpKDtfpHJoPhoDm/2xEQwV1DTyYrXS3jgVDM2YMQOzZ8/Ghg0bUFBQgMLCQvz666+YM2cOHnzwQb7XeEuj1hqQXkpdkAM5aulpBSoYzSRClW4I93F8MGuxqhFpBSoQBHBbD+4RHrUaA17+PQ0A8PCgKIxzwcTsjt5hWDgpGQDw7t+X7Z7azLzmiexq1sb+dG4Np/5o/oY0TFh2EGayKTNUdMUd9VqTy222TEbHVd1Qkxi7c5yaBATaE+ZA50zHqSVMVqhLiJfNLixbmMwkfj9diBoN97icR4dE2/U8p3KrMfmLQ3h10wXk0vuct5sE/h4y6E1mnM1X4Y0/LmLq/w7jJJ39t6R3pA9G0E0iZ/NVOGEjE94n0gcKmRg1GgMyLOaBRfq5I8BTDr3JzOkGHRfgAS+5BFqD2amDGZsZqm69j4X6uEEsIqA3mlFexz0jrSPhVDfZp59+CoIg8Oijj8JopLQTUqkUzzzzDD766CNeF3ircyavBiRJvem41P6n2ayRn1Mf9DsuUgaG/aN9rY7wWHk4mzJiDPDAG1O6cd6HJEnszSjHn2nFuFpej4JqDcJ83NEn0gdjkoNwW/cmv48nR8Rhb3o5TuZWY8Fvadjw9JA2hYixAR6IC/BAdmUDytXUfDa11ojLJWr0apEOf3JEHJvtkgWpAbEJZq0MoSLXvEsAavMA+MgMCWUyAQEGJhhyNTN0nhZhM2VyZxCLCHz5YF+M7xaMN/+4iNrGpqDIVyHFICtyBUuOXq3ErNWnoDWY4aOQ4vmxiZjeNxy+HjKQJIn8ag12XS7D//ZeRXqJGjO+O4Yld/XAw4OaB1qvTkrGoazDAID/7b1q1eFaKhZhYKwf9mdW4Oi1Svb3SBAEUqJ98O+lMpzOrUFKCymFSEQgPsgTaQUqZFc0IDnEsd9/tJ/1jjKpWIRwH3fkV2uQX61BiPLGz/e0hVOZIZlMhi+++AI1NTVIS0tDamoqqqursXTpUsjl13eg580Oowey1mFxOo/xH3KuRMYEQ5OsuFbXaQ1YTc8p+7/bunAaMWaW1uGRVScwe/Vp/HWuGJdL1KjTGZFZVocNpwsw95czuOfrozhHT0gWiwh8dn9veMolOJ1Xgx+P5LR6Ti6YUtm+zAoMtKEb6h3pgyH0pkGISSogAoAK17pUAAutT7lrGZ3YAA8QBKDSGFDdoHd5XQICnZVGvYnV4HUPdS0YYrQ1lkNQnWVa7zDsnD8SfoqmDt17UyLaPHQez67C7NWnoTWYMTY5CAf+bwxmD4+FTCLC9gsl+P10Ic4V1iLKT4FtL4zA9L7hIEng9S0XsfJQdrPn6hGuZGUBh69W2uzMYva8lntiW7ohV8xko/xti6Q7k4jaJYMThUKBnj17olevXlAoFHytScCCzFLqDcp1cZvMJGuY1ZZJIhfldVqcotvyJ1kpka07kQ+11oi4QA+2rd2SU7nVuOurIzhytQoyiQhzhsdi5aP9sXP+SHw3MwVzhsfCXSrG2XwV7lpxBGuOU11rkX4KvD6FEiH+b+/VZqcva4ylDdT2Z5ZjYCz18x7Pbp1eBoCnR8Wxf/cZnoWg+05g+jTX22wT6I0jp7KBs9ZvL+4yMcKU7vRzCdkhgVuXjFI1zCTVeeqo140lluLpni5khixxl4mh1jYdVmYNt+0rVKRqxJzVp9FoMGF0l0B8/Ug/1OuMeOnXVPRfshvPrD2LhZvO44X1qXhqzRmQIPHZ/b0xdxTl7bZkazq7RzK8ZiHWXrHvqtXXHhpPldROZFc3kw8wnw1n82s4NZOujAdi2uuLaho5JQuRnSgYsrtMNn36dLufdPPmzU4tRqA1zAcl04ptSWZpHep1RnjKJQ6nNwFg56UykCQ14oNLb6Q1mFjR9DOj4luJq88VqPDEj6fQaDBhaLw//ntPL/bNDwBJwV6Y2D0Ec0bEYcnWy/jnfAne/OMi6rQGzBudgPv7R+KHwznIKq/H9wez8cptXWyud0CMH7zkElQ16OHvQWUgT+VUcxoXjkoKRGKQJ7LK6+EeR7WbpiT2cfh31JIwH3fIJSLojGYU1mhcmqwdonSjDc86fj1dQKC9aNILuZYVKqhuRG0jLZ7myfF4X0Y5mKHsIxIDEKq0rsskSRL/+fMi6nVG9I3ywTePpOBMXg2eW5fKZn+j/RWIC/CA1mCG1miCp1wCgiDw6qQukEtE+GJPFt77+zL6Rvqwpb5eET7oGuqF9JI6bDpbiDfv6AaFrPVHd7cwb1Y+cLFYzXb79ghXQiYWobJej/zq1nuWK/rFIC85ux8Wq7RspoghqhN5DdmdGVIqleyXt7c39uzZ06yN/syZM9izZ0+7O1DfShhNZjaijg1s/aF7hvaG6Bvl45T517+XbJfINp8tQkWdDmFKN9zZJ7zZbaW1Wjz240nU64wYHOeHHx4f0CwQsiRE6Yb/PdgXz41JAAB8vCMTn+3MhFhEsAHQqsM5KK+zPQ1eKhZhMG0IWVGvg5ebBHU6SjfUEoIg8Cz9enwiFhHsaSjXTvG3NYK8qICuM4gLBQTaC770QkxWKDnUCzIJP67uOy81ubVO7xdu456UEezu9HJIxQQ+vqcX/r1UipmrTqK6QY/uYd7YPG8o9r8yGj8+MRDrnxqMLfOGwYcuwREEgZfGJ2Jit2DoTWY8u+4s6rRN2fJ5o6i9TG8iselMEefri0UEqyk6dq2pVCaXiNHToumkJZb6RUe7bUUigg14cjla6DtTe73d75gff/yR/QoODsb999+PnJwcbN68GZs3b0Z2djYeeOABBATwZ39+q1Os0sJgIiGXiBDKkT5marzdnKizG01m9sJgtDgt+TONuugeHxbTanN575/LUGkM6BHujZWPDWjT6ZUgqMDn9du7QiIi0JsWPU/sFow+kT5oNJiwYt+1NtfNpHzT8lWskPGElVLZlF6hcLdYlz2DD+0hmBYClqttB29twQRDZS4+j4BAZ4Y5zLiaGTpfpALgmnjaEq3BhL0ZTcHQsHjrn20NOiPe/usSAODpkfEwk8Crm87DZCZxd99wbHpmKPpF+drUGxEEgU/u7Y1wH3fkVWnw/tZ09raJPYLZvWzN8VyrzzGUPiwevVbZ7PuMzCKd4+AY7a+ARERAozeh1Im9qKmjzJbxYsd32ncqfP7hhx/wyiuvQCxu+qARi8VYsGABfvjhB94Wd6uTTZfIYvw9OP1/mGg7JsDxUk1WeT0aDVSalmvicmW9jp2Hxti9Mxy4UoGtF0ogIoCP7+nt0FDFJ0fGYe/LozGenqFGEARenki5rf5+uqDZaYgLxhfjTH4Nmwa+yNEyClCZpKEWo0WyeAqGAmnjxYp61zI6jD5CyAwJ3KoYTWZk0B/QzhzqLGHF0zwFQ8euVaHRQNXIEoI8beqZNqcWoVStRYSvO54YFoN5a89AazBjRGIAPruvt91jQZQKKesvtOF0AdsOL5eIMbU3tQ9fKau3eoBidEOncqub+QYxZUOuPVAqFrEBjTONIVF0R1m+jcxQZT33yI6OhFPBkNFoRHp6eqvvp6enw2x23LhJgJucSurNFWsl2GHKNNH+jovX0+jOrl4RSs4S267LZTCT1O0Rvk3Przea8R/aAOzxobFOpbZb1pWHJwQgPtADDXoT/kjlTgEz9IpQQiIiUFGnYzMrXKcdhml9wti/85UZCvKmy1suan0ChTKZwC1OsUoLndEMuUTElp+d5TJdbuMrM2Q5z2uIlZZ2gNIKrTmWCwCYNSwWK/Zfw7WKBoR4u2HZjD5WjWytMSDGD3f0DgNJAkv+SWdLV7MtxNu/neI2rE0K9mR9gyz3O+bAa20PdMXqw5YLteXIjoIOnh1yKhh64oknMGvWLHz66ac4fPgwDh8+jE8//RRz5szBE088wfcab1nYYIhDL2Q0mVlRmrVgyRZMm3tvKyM1mJb7lh1kOy6VIrdKgwBPGeZPSHT4dbkgCAIzB1P+GmuO59msW7tJxWw6XUuf2q5VNFi1t7fMevHl6cMEYRUuBjGsZkgokwncopTUUh+QYT7uDgcNltTrjKxJojOZci7OFTZlnIfaGF59PLsaV8rqoZCJMTIpEL/Q3WAf3dMT/p7OWc28OqkLZBIRjmVXYU96OQAgOcQbYXSJ/vcz3MEQQRDoSu+PTHAINHXBFqka0cAxVzG+jWDJFjdLe71TwdCnn36KRYsWYenSpRg5ciRGjhyJpUuXYuHChfjkk0/4XuMti63MUJGqEUYzpScKtmKWaAsmM8Q1X6y20cDWnFu23DMX+kODol2aIdSS6SkRUMjEuFJWzw5atAYzT+dqRT18FVKYzCSyyrgvYktR95WyOs77OEogb8GQGy/PIyDQWSmhh7OGuNBSDwAl9GR3bzeJQ2V7a5AkibSCpsyQNbNDAPiZzgrd1Tcc607kQ2c0IyXa16VBrhG+CjwxLAYAsGJ/Uzs9k+nOr260Os2eKTdesgiGfD1kCPCkxNpc7vmuZIaYjF5elYbzINtZRNROBUMikQgLFy5EUVERVCoVVCoVioqKsHDhwmY6IgHXYIKhOI5giLnNmp7IFg06IxsYcAVD+zPLYTCRSAzyZC8SAMgqq8PJnGqIRQQeHBjp0Gu2hbebFHf1pbo12ppZxoioU/NV6Epf+NZKZd5uTWnaMrWuTU2SPTBBTFvdb20+D11uq2rQOzUXSECgs8MEQ6EuuhMzE+/DnBhJxEVBdSPUjVQGJTnEC34eMs771WoM2HmZEllP7RWKtSeow+JL4xNdHv0ze1gspGICZ/NV7FR5y67ereeKOR/HZM6ZeW8MzF5+taL1odCVWYnM/12jwYR6jqwT4zzd0Q99Lvcfent7w9vbNeGbQGu0BhMb+XNlhnKZYCjAcb3QhaJamEnqNBZsY8THyBYnm7UnqOG845KDbPptMGSUqh2a7n4XfaHvvlwGvdF6cNCPDoYul6iRSKd3udrrGaIsskN8zALjKzPkp5BBQgeylS6KsQUEOiOldJnM1VENxaqmchsfnCtUsX8fYqNEdvhqJUxm6uB4obAWOqMZfSJ9MDzB9a7qIG833NGbygT9cCQXABWYebtRma+tF0o5H8fMd7tcrG6WqUkMpvZKrix6HB0oOXNgdJOK4SalQgkVxzw3X4XU6m0dCaeCobKyMsycORNhYWGQSCQQi8XNvgRcJ79aA5IEvNwknKcSRjztjOjwnI0SGQCcpzcCSz2R2Uzib/ok8tCgKJvPX6xqxIINaZj8xSEs2dpaaG+NlGhfBHrJodYaW7WGWhKmdEOApxwmM8n6dNgSUUf6NW2QTBDpCozWp0Fv4qy/24tIRLCBVZlgvChwC8JkdEJdDGKYMpmrGSaG8xbBUFcbhrYHrlB6nlFJgdh6gZqHaM/IDnthRNPbLpSgTK0FQRAYTg9vvVxcy+n6nBDkCamYgFprRGFNUymN0Q1x6YKU7lL2c8byMfbiS+/DNZrWo4WU9G2qxo49dsip4urjjz+O/Px8vPnmmwgNDeXtP16gCaauGxfgwfn7zXWhrZ7JovTkGPGhN5qRXkKX0CwGoF4uUaOqQQ8PmZht3+TiWkU9HvjuOJs1cZeKoTOa7JogLRYRuK17MH45no/tF0oxugu3/xFBEEgM8kRlvY7NrFwuoU5BXL8rS92Qq6UtAPCQS+AhE6NBb0J5nQ6xLmgUgrzkKKnVCiJqgVuSUiYYclEzVKTit0xmKZ5mxlW0hCRJHLhCudt3DfXCysM5EBHWRxs5Q/cwJVKifXEmrwZ/nyvGnBFxuDclEtsulMJgJnG+UIV+LYavyiSUA/elYjUuFavZ/S8hiGqvtyaSDvKSo7pB71SW2kchQ0mtlhWxN7uNlilw3daRcGoXP3z4MA4dOoQ+ffrwvBwBBqZTzNq4hzwX2uqZyJ8rq5RRqobeZIavQtoso3Ioi8rUDIn3t+ruWl6nxUPfU4FQUrAnPr2vd6uJ8m1xe49Q/HI8Hzsvl+J9U49WYzYY4oM8cCy7CvU6I6RiAnVaI4pUjc1sABgiLb7H1+iLQC85Gqo0qKjTOdXN1/Q8bgBqhfZ6gVsSVkDtYkanqSvN9cyQ2UziokVmyFI3aUlmWR3K1Dq4SUUopoOxIfH+CHCyg8wad/YJw5m8GvxFB0ND4/1BACAB7LhU1ioYAigR9aViNS6XqNngjCmT5VVrOA+o1LrrnCr/N5XCWmd/mKxRbQcPhpwqk0VGRjps2y3gGEy60d+zdYnM1bb6IjoYCvdtfYpiSmg9I3yaZVkOZVEnIFu18Hf/vowytQ4JQZ5Y/+RghwMhABgY6weluxQ1GgNrr88Fs0HlVjWwAWNupe3WToA/Tx++RdRCMCRwq6E3mtkshKsZHVYzZIeWsS0q63XQ0LYd/h4ythTfkoN0VmhInD/2ZFDlspYGtXxwe89QiAjgfGEtciob4CYVs7+vffTrtoTxf8uwkA8EecnhJZfAZCaRz+EJxJTsnckMsWWyhtbBkA8TKHXwMplTwdCyZcuwaNEi5Obm8rwcAQZmijvTCWVJSa0WRjMJmRNt9XqjGWX0BzjXcFYmPdzHooTWqDexouoRVtpFD16pwD/nKVfqZTP6OO2vIRGL2DEb1ibSA03+QdcqGtifo9hKq6llmaxMzY/xV6A3v15DFTyU7wQEOhOMi7JMImIzC85AkiSv3WSWLevxHO78DOfpvbJvlC/rfj0y0fl2emsEeMoxjD6E/kPrNpk9MruyASZz68QEk/UvsND/EASBUDpzxqVRZFrvndnTmICHqxTGfIbdNAJqX19f+Pn5wc/PDw888AD279+P+Ph4eHl5sd9nvgRcR2UjGGKzRh4yh9vqS2obQZKAXCJi3/yWXKAvcMusTmpBDfQmM0KVbpxt/kCTF8ajQ2JcdoAdTHt6nMipsnofJjOUV9XAiiYLrQRDYT5uYH5LpXyVyTz5yeiwGSZBQC1wi2HZVu+K7rSqQQ+90QyCAGd3rKMwJS/AeokMADJLKW2lm1QEo5lEgKccERzZdj5gSl0H6Qz9GHqepMlMsjYrljDrKKxpngGyldF2pUuWyQxxlcmYQElnNFs1x+0I2K0ZWrZsWTsuQ6AlajoY8uE4MTH+F95OmB5alshabkAkSbIuoZbOzcxF3yNcyblpXS2vw/HsaogI4KmRcQ6vqSVMMHQqpxpGk5lTNxTi7QaFTAyN3gQPWsBsLTMkl4jh5yFDVYOeN68LvkZyCJPrBW5VGJ2Pq4aLzHUf6CnnZVq95T4Sz+H+DwA6ownZdBDCeOv0ifRpt2aiEQlUxik1X4V6nRH9Y3zZ287mVbeaL8lIIOq0RtQ2GthDta39pqlM5ng5y1ZmyFMugVhEwGQmUaPR22XLciOwOxh67LHH2nMdAi1gUopcmSE17QPh7e64/p3JnnCVyFQaAxrpyN1S0HiF9qVICuY+JTH+Q+O7BvOSpk4O8YLSXYraRgMuFqs5LQBEIgJxgR64WKRmsz5FNlpCfelgSKM3QWsw2T040Rp8DWsNoDegKsFnSOAWo5Sn0lYxz51kxbVtl8mulVPlKW83CTvctG+UDy+vz0WUvwJRfgrkV2twMqcKY5OD2Y7Wg1mVuH9Ac7sThUwCf3rPK6ppZD9HAm0c4hjhtyuZIa7WeoIg4OMuRVWDHiqNocMGQ06F0WKxGOXlrYVbVVVVgs8QT9jSDKlt3NYWTMDAlc5lNoEAT1mzYCGLdqtmJh+3hJmdc19/flypRSICg2L94CYV2bRwjw2gNio97bVhuYm1xFKTwEdJij1FuZjRcad/z1obJpMCAjcjjG6FybI6C3MgYbIermKZGYqwEmBlllHC5OQQb3a0UXsGQwBY3RDT2TuZFmtbC164SmV2lcmcEVB72NYF+XQC40WngiFrnWQ6nQ4yGbfyXsAxmoKh1r9PNjPkTJnMRmaI64RFkiQ7uoMrGMqrakB+tQZSMWFzmKGjLLm7B87/57Zm9vMtCaYvXiMtICxRaWHmEBMCzX+PFfWui5UVMiorpzW6VgNnnFs7ci1dQKA9aDRQ5SVPmWuzxLR66trx4GEmGdA8w2ytkyyDlg7EB3mwe6otc0Y+GEGbLTI+QY8OoYZbW5u5GM4GQ00/T6CNMhmTGap2YjyQj43MkOXttR24o8yhd8+XX34JgEp7rVy5Ep6eTSlEk8mEgwcPIjk5md8V3oKYzSQb8HBnhmjNkBOZIeaUwOXHw9WeWl6ng1prhJguS7WEOaX0jfLlbTMCmk4wtmBKTBodtT69yYyKeh2niNLy98hHZojRJugMrmV0GK8PnZAZErjFaKSDGFdL1kxp39XnYbDsJuPSbAJAHm3j4Ud/yHvKJVbvyxejkgKx75XRiKG95RJpE8UajaGZLoiB2eMtg6EgGyJpX4WM1fZUN+gdEqM3CaitZIY6QUeZQ59eS5cuBUBlC7755ptmJTGZTIaYmBh88803/K7wFqROawSTfLOpGXJzPPhg3oxc/kVc830YJ+woPwWni/SZPKrlfpgNV+r2gjnJVDXoEeLthiJVIwprGtsOhngQK8uZYMjFIIbJDJnMJAwmM6RWTCYFBG42tPRBgrkGnIUJhtx5CIa0BhMrAvaUS6xej6wXDy1YjOBoSOEbD7mkmdu9u0yMAE8ZKuv1KKzRQOnevIuXKZMVNCuTMZqh1tlxsYiAv4cM5XU6VNRxHyqtwcgQ6nVG6I3mVkJ2pQ2BdUfBoU/TnJwcAMCYMWOwefNm+Pr6tvEIAWdgzKkUMjFndwSjGXImM6ShT2MKWeuNo4gNhpouAuaiD7RSj2c6zbqGcuuJ2hPLVtAATxmKVI2crZ1A82DIWirXEZqCIVfLZE3/D1qDSQiGBG4ZmBKz3NXMEL2nuctcv3Ys9wZb3kfMvqg3UqdWLtnB9SDcV0EHQ43sgFaGQIuyF0MQHeAwcxVbZvP9PeUor9OhisM80RbeblKICMBMUp9fLTP7Pu4dfz6ZU++effv22RUIeXt7Izs725mXuKWxJZ62vN0ZzRATDLlLW8fB7JwgizIZcyFxeRKZzCSuVTCdZtc/GGLWVFmvhyedJau3MjhVadF5p+ehJMVs4K4+l9wi2NW6WHITEOhMaHkqb2l5zAwxgRVAdaBag2k/r9dRe3F7+Qu1RQSHLojBi/58sJxC7ymXsAdhLqdpJkunc1DDKBIR7OGca+wGU0LsyCM52vUYKozscI62giG1ltEMOV4ma9RTj+XKDDGBhOXzMi3ffhwbQ361BjqjGXKJqJnL8/WCyQxVN+jgQf88dVorwZDFKY8PfY5lmcyV9zlBEOxzCSJqgVsJJvh3NYjhUzPUaHENWhNPaw0mdq9kZAdcGszrgTVzRaBpH2+5JzLZII2+9X7DZKb1DgqoAUAioh5r5Ghi8aIPq3VWDqsdASEn3wGx5TEEOF8mI0kSGoP1MhnXCYtJl/p5tC6TMW3vsQEeEDvohM0HfgoZCDo1K6X1a9YzQ5bBkOtBh2VGx5mNwxJmE+djXQICnYWmzJCLmiG2TMaPZojBWpmMyajIxCJ2L7YmI2hvImyMImIyQ8waGWzpHZnbnMl4MxV+M8fhkP106MD5ESEY6oBo6OyNp5XuLGdb66ksBvV3Bcdzc52wbJXJmm67MRuBRCxigxypmLrc6q1lhiyDIR7KUZZicr5E1EKZTOBWgrlu+Oom46dM1nQN+lrJDDElsgBPGRpsaDCvB0p6jUyHsSVMNqZBb2o2v8xWJlomdj4YEtECcq5EOTM2iuzA0ZAQDHVCmLSno8FQg0XWhGvj4DphVdUzmSHrwRDXbdcL5uJlghNrmSHL3xUfZTIm+AL4bK8XMkMCtw5sZoijS9WZ5+ElGLIIEKxl3pkmDR+FjN0zFS56JTkLE/Cota21OF4W3caWh8SmTHTrfYtp2HEm280EQ1yDY5nd0tyBz3vtGgy1R6vhihUrEBsbCzc3N6SkpODQoUM273/gwAGkpKTAzc0NcXFxnaL1n/m9WYuhmTSkyMH/PaZGLJeIOMtaTGbC8pTD1Hi5Aq8qJ4IhvV6PZcuW4fnnn8eyZcug17vWXcBcvHI6u2ItGLIcaMtH0GGp9XG9o0zIDN0I+H4vCjhGI19lMuZ5eMjOWAZDEiulf+bDXiomoKGNIxVy11/bmfcjY6/CpZWUS8TsHmUZLLH7FldmyIUymchGmQzELZ4Z4ltAvWHDBrz00kt4/fXXkZqaihEjRmDy5MnIz8/nvH9OTg5uv/12jBgxAqmpqXjttdfwwgsvYNOmTbyui2/YKNrK709Mv7EcjbIbbeiFjCYzexqwPGEx/4dcwVMNHQz52xkMLVy4EAqFAvPnz8fy5csxf/58KBQKLFy40LEfxAImM8QI/6yVySzhy+CQP68heiSHIKC+brTHe1HAMfjqJmvqkOVBM8QhKm4JIxAWiwhodPyUyZx9P3J1jHHd3jwYspEZckFAzWSGuIYAMJ8eHbmnql2Doe3btyM83Po4BUf5/PPPMXv2bMyZMwddu3bFsmXLEBkZia+//prz/t988w2ioqKwbNkydO3aFXPmzMGsWbPw6aef8ram9oCwUXsFLN90jr2zNDZSupazsSw3J+YUxJXk0ztQ81+4cCE++eQTmEzNNxuTyYRPPvnE6Q8h5iTDBGsaOwIKPjRDQFN7vavPx5QJhMzQ9aG93osC9kOSJPt+l7uYGdLyqNth9Jq2YEb+SESipj2Vw6rEXlx5P3rZyAwBgEzcunTF/L65giGpK5khG59LzOdHB46F7DddXLBggd1P+vnnnwMAhg8f7viKrKDX63HmzBksWrSo2fcnTpyIo0ePcj7m2LFjmDhxYrPv3XbbbVi1ahUMBgOk0va1T3cWNoq2djt9B0eDIeYkxrX5MLVvgmjeKcWW5DiiIea2tqqher2efU9Y4/PPP8eSJUscnm3HBENG+iRjT1MbX9ocvspkcmE+2XWjPd+LAvajs3L4cgZeBdR2HEiM7AGRbHptJwMxV9+PTDu7ycpnARMDWe7ftvYt1wTU9GtyaoZsH/A7AnYHQ6mpqc3+febMGZhMJnTp0gUAcOXKFYjFYqSkpPC7QprKykqYTCYEBwc3+35wcDBKS0s5H1NaWsp5f6PRiMrKSoSGhrZ6jE6ng07XZEalVqt5WL1jsFG0lXcOo39xNBhiauBcb1ZmMJ9UJGqm9WJegqtMxnWhcbFixYpWp56WmEwmrFixAi+99JLN+7WEuXiZ9Vur81v+qlxthWfgq0wmzCe7frTne1HAfiyzqa4KqJl9iA+JqtGOvcFkkRlicPa1XX0/kjYOqwD3gZXdbzgCP1da622WyTpBb73dwdC+ffvYv3/++efw8vLC6tWrWSfqmpoaPPHEExgxYgT/q7SgpSibJEmbQm2u+3N9n+HDDz/EO++84+IqXaOtC0ts401nC6mNqN+yi8Dyd9qUGWr9fLZus+TatWt2rc/e+1kiodPATIBjj9+R0cTPBSltEYg5i8lsO5AT4I/2fC8K2I9l84ejh7qW8HUoAdBs/JG1q5EJhsRiEaRiAgYT6fQe4Or7selAyv04rgMrm8Hh+L3z0U3G9bwi9oDv8NNeN5wq1n722Wf48MMPm43k8PX1xZIlS/DZZ5/xtjhLAgICIBaLW2WBysvLW2V/GEJCQjjvL5FI4O/vz/mYxYsXo7a2lv0qKCjg5wdwgLZSii0DFXux9Ua3ZiLYdOpqfbWRNm6zJD4+3q712Xs/S5gNkLkQ7QmG+DBns3xt18cJ8KOdEGib9nwvCthPy5l8rmBLA+Pwc3HMgmxJU2aIcKmsBLj+fjS3cbjnaoCx5djN/GxtZfu5sFWxYD7TXA182xOndl+1Wo2ysrJW3y8vL0ddXZ3Li+JCJpMhJSUFu3btavb9Xbt2YejQoZyPGTJkSKv779y5E/3797eqF5LL5fD29m72db1pEptZKZPRt3P5OdhCZtN5lNtE0FYrJHMxcdm6WzJv3jyIxbYDBrFYjHnz5tm8DxeM1qkpGGr7Lc2HtsDytV19PmZgJR/jBARs057vRQH7kYqb7D1cbRywVfZx+LnsuAYJi/3XFcEx4Pr7kW1wsfJYE0f23tYYFFuDvNuiKePEcWMnEFA7FQzdfffdeOKJJ7Bx40YUFhaisLAQGzduxOzZszF9+nS+18iyYMECrFy5Ej/88APS09Mxf/585OfnY+7cuQCorM6jjz7K3n/u3LnIy8vDggULkJ6ejh9++AGrVq3CK6+80m5r5AM282Pl+mI2EUeD7Jb6GkukYoK9yC03FaZLgmkhtaRp9o3t4XsymaxNAf6CBQucEqwyFy9TYrKn1MRbMMTboEl+MkwCbdOe70UBx3DjaSYfs6/xPWbHGqyzs87oUis64Pr7kWmZ97JiwGs2t84c2RJ9N7oUDNnKDFF04MSQ/ZohS7755hu88soreOSRR2AwUP8ZEokEs2fPxieffMLrAi2ZMWMGqqqq8O6776KkpAQ9evTAtm3bEB0dDQAoKSlp5jkUGxuLbdu2Yf78+fjqq68QFhaGL7/8Evfcc0+7rZEPmrrJrGWGnEs52hLHMSaCWoO52abS1LrJ5XDKeFy03Y768ccfA6D0ZpaCQbFYjAULFrC3OwoTDDEBovX0btPvig9zNsD2puIIOtaJVyiTXQ/a670o4BhuUjEa9CY2M+osTJnM2exMs+eyQ8ztKaf2vXqd0SWTQgZX3o/VbXi96S0aYxhsOXZr2D3N8dDAZjdZG0bCHQGngiGFQoEVK1bgk08+wbVr10CSJBISEuDh4cH3+loxb948qynDn376qdX3Ro0ahbNnz7bzqvilqZvM9u3OlsnMJNU1IRE3//CVS8R0MNR0YdvysfC2YQXPxccff4wlS5ZgxYoVuHbtGuLj4zFv3jyXTuGMLwjzu7Cmu7GcOcRHZshkJtkN0OUyGY9TtwXsoz3eiwKO4caTTxefAmrLzJC1IM3TYk90pfvKEmffj7ZGImn0Rjbr7OvRlDlisj9c+00jvZ86kxmyleFuygx13HDIpYEqHh4e6NWrF19rEaBhBdRWbhezQjXHnlfWQiTdOhhibNotg6HWDqZNt9k2/OJcg0zGW8sySTb5fDBrsDY0VtXYZG3Pi1OtRWrfdc2QUCa7EfD5XhRwHL78tfi0prDcI2sbuQ95zADtep0RSndqanxbukm7XtuJ9yM7O5JjkDZzm0wiajb021ZG2xXNkK0B4iYOIXdHw6lgqKGhAR999BH27NmD8vJymFuIW7Kzs3lZ3K0K0VQn46RpOrCDmSGL4EdvNKPlUOamrozWZTI1R8Dj70EFHhV1ula3XQ/qdUY2e1ZLX4iBHJsCANRomjY2PrrJLGcY2aMzsIWWpxlNAgKdCdZ53WWfrvbRDNVyTIIHmvbEep0RAfR+U1l/Y/bAktpGAECQV+tDoGUJzVIzZLNM5sLgWTUdPDJaUq7blFaG33YEnAqG5syZgwMHDmDmzJkIDQ1tl4GstzKMCNiaKM/ZMplELIKIoDJKXGldOcdYCGZyM5dmKMKPOhUV1mgcWgdfFKu0AKgLTEUHO1YzQ5qmzBAfGZimVLOo2RBYR6HGEghlMoFbDze+MkM8ldssnwtoOzNkMpPw9WCCoRsz5PdKWT0AICHIs9Vt1kpoGr31w5fGyTKZwWRGA/28XJkhZn++6YKh7du3Y+vWrRg2bBjf6xEA4EOnbKxdjExEb88crpbIaJE0V6DFvFFrLAIHW6WwcB93+v4G1OuMzVKx1wMmCIvwdWdPZv5WgqGaBovMEI9lMlefS28ys+VOV514BQQ6E02HL1fLZO2jGbK2/ypkYhAEpelk9swblR3PKqOsbJKCvVrdxuyJlsGQRm9kgyGflqUBWAy9dTAYsvx8YD4zLGF+lz4dOBhyKi/v6+sLPz8/vtciQOOjoN4wltkMS3zpNzEzNd4RmIBFzZECZlKt5Wot+z0myldpuLvJmLUW1TQ6vBZXKVJRrxnh687WxwOslsmafld8DHTkax6SZRZOMF0UuJVgMhP8CahdL5NZ7g1qK8EQQRDsPsrc/0aUyeq0BhTXUnt1UlDrYIjJDFlmy5lsupdcwpmlcba1nvldecolrbSoAKBiS2g3WTD03nvv4a233oJGc2PKIzc7TPRc22jgbFNkApAajgClLZgLg+viZYMhi1NOqNINQFNtuiURvjeuVFZIB2Ah3m6o19ECao7aOdA8sAyhfyZXaHTyBNUSpq2+5YBcAYGbHaYs7HJrPY8CasvAwdphFACCvak9hNFv3ojM0LmCWgDUHq1UtA4yCug9mVkrABTTB8gwOqtvCUmS7D7q4aBmqEk8zf242ptVM/TZZ5/h2rVrCA4ORkxMTCs3587Wyt7RYKJnMwnU6Yyt3kBMZsjWxWqNQC85MkrruIMh+qKxDIYifBUAmgKPlkT4KHCxSI28KurCu1peh3/OlyBM6Y77B0Q6vD5HYAIwD/oCdJeK4WWlVGcZOIZzbASOwpfHENuOKhEL2juBWwreWut5yjABgIdcAnepCI0GM2obDVZnX4b7uONqeT075/BGZIYOZVUAAIYlBHDezuiJkoKb9ERNwVDrA2GNxsAGlIFWDpXWYCoN1jI/bJmMozTXUXAqGLrrrrt4XoaAJW5SMdylYjQaTKjVGDiCodbaHnsJ9LTeAcZcAJa3hdOZn9pGA+q0hlZOp0nBnthxCbhcTJ1SzuarsGx3FvpG+bR7MJRbSQVDJnpDSgr2tBpQVFuUFLlORY7Cl2aoaRSHkBUSuLXgTUDNOFnzUCYDqENhXpUGZhJo0Js4tZDMHsIIjitsBENagwm708twqViNVycl87JGADiYVQkAGJHYOhgiSZJTT2QrM8RIHQK95A43c9hqqweAWvqz6qbLDP3nP//hex0CLfBVSNFYa4KqUY8oKJrdxkTXTpXJOAIeBq4ymadcAl+FFDUaA4pUjUgOaf5mTg6hZrdtTi3Cq5O7Yjh9SjlXoEJtY+tAji8a9SZk0hc7IwbnEhEyVNRRtXKZmGCDSVdgTjoeLorGGd1XR66lCwi0B6yA2sUgpkkH6fh+yEWQp5zNdNc2GjiDIUYewFiOqGw0kZhJEi/9mgajmcRDA6MQ6adodR9HKajWIL1EDYA7M1RRr0ONxgCCaN5pVkRrhjiDIRX1MzuTObfVVg9YZoY67j7n9HFUpVJh5cqVWLx4MaqrqwFQ5bGioiLeFncro7QR8DBuok6VyZjMEKdmiEqdMoEDA1sqq25dKusZoQRAlfRO5lQjzMcdcYEeMJPA8ewqh9dnLxeLa2EykwjykqOILpd1CeEOhrQGE8rU1M8b6uPOSzmKESKGKl3LMpXUMs/juo5JQKAzwQQOjpi2csGU9/nS7QRZXIu1Vg6cTJmpok7H6oxyKho476uQSdA70gcAf3vi2hPU2KkRiQGcdiJZdIks2k/RLMvDZIa4Ah5GCsEEeo7ABDtcmSGzmewUmiGngqHz588jKSkJ//3vf/Hpp59CpVIBALZs2YLFixfzub5bFkZEzRXwsJmhBmcyQ9ZNwoK8qYuqqkEPo0XrPXPhcImkI3zdWTPHPRllAMBmhw7Tadz2IDW/BgDQJ9KHrY0zWaqW5FQ2sP6VETyUyIAmQXmYi0FMUzDEz7oEBDoLgWz3qmtBjK3SvzNYGhha0wKF+1AHxOLaRsQHUmOorlbUWX3OwXFU9/Xx7GqX16c1mPDb6QIAwMzB0Zz3uUJnzRNbZMsL6ewP1+GLCYbCnQiG2DIZR7BTrzey9iE3XTC0YMECPP7448jKyoKbW9MvdfLkyTh48CBvi7uVYdKJXF4XLgmoPa2fovwUMohFBEiyuYlYU8dY68wQQRCIos0Xz+ZRAQoTDO2/Ut5us2jSClQAgB7h3sirtp0ZulZRz/7dmQudi2Ib6WZHKKWDKiEzJHCrEezNlOW1bdzTNswhjr9gqOlaLLDSJcvsIyUqLeLoYOhaOXdmCAAGxfoD4Ccz9O2BbFQ36BGmdMPY5CDO+5zKpYKuHmFK9nu1GgMK6Ow+l6SAtSpxqkxGC6i5PIbo7JpcIurQxrJOBUOnTp3C008/3er74eHhKC0tdXlRApZeQ1zBkPOt9VwiaQaRiGB9esosvIaYYMjaxpASQ5168qs10BlNGJ4YAHepGAXVjThfWOvwGtuCJEmcoQMvpbsUJElZzlvrgLDcpPgQTwNN6eZQjq4Mh55HKJMJ3KIEerXuXnXueajrvk5nZC0vXMEyM5Rfzb3nBXvJIRYR0JvMCKHLdJaHrpakRPtCIiJQpGpEgZXntIer5fX4at9VAMDi27tyevqYzCSOXKWCruEW4urzRSoAQJSfgnXOtqTIhcwQsx8GerfexzpDiQxwMhhyc3ODWq1u9f3MzEwEBga6vCgBQOnOZH9aBzxMmazRYHK4E4MJdmo0Bhg4XKgZfVCexQUbG0gJ8K6Wc1/sE7tRpxMzCVwqVkMhk2B8t2AAwF/nih1anz2kFahQptZBIROzWqBBcdZNQC03KT6CIZIkUVxrvfbuCKV0MBQilMkEbjEsGzZcySB7ySVsZxof2SEm0wRw6yQBarQREwQxBoW2giEPeZNuaP+VCqfWVVCtwWM/nITeZMbIpEBM7RXKeb8LRbWobTTAy02C3hFNmSHmYNrL4nuWFLF6IscF3rlV1IEz1t+j1W2dQTwNOBkM3XnnnXj33XdhMFA/JEEQyM/Px6JFi3DPPffwusBbFTYz1Ni6FObtJmGn/3IFS7bwpUthQNNUY0sSg1oHPt1CKS1OdmUD20pqyaC4ADCS5N2XKd3QtN5hAIB/zhc7PEOtLbaeLwEAjOsajGN02nlUkvUg3HKTSrZSSnOEGo2B9Qdy1cBREFAL3KowGR290czpiG8vBEGwpS1XS26AfWUyoMm/hxk0m1upaaa1bMkE+oC442KJQ+vRGkz49sA1TP3fYRSpGhEX4IFP7+tltRHkMO0/NDTev1nm6BwtLegd4dPqMfU6Ixu0OJoZMplJtvwWE9A6kGL2OEe9i643TgVDn376KSoqKhAUFITGxkaMGjUKCQkJ8PLywvvvv8/3Gm9JmFIYVzcDQRCswNpRryGRiIA/nSLlOkUlsMFQkxgw0EuOQC85SBJIL2ktEvSUS9gL6N9LVJl0ZFIAvN0kKFPrcPgqf0Jqs5nEtgvUZjImKZC9wEdaCYbMZpINhqQiwqrI2hGYlHCAp5xtD3YGvdHMCjSFYEjgVsNNKmZLJ2UuBjGBHLYgrj4XAORXWQ+GutKHxGJVI9ykIuhNZqvmtAAwuUcIAEpEXe3AKKV3/r6ED7dnoLbRgK6h3lj/1OBmAVtLmvyHmu+J5wpVALgzQ4zgOsBT7vCMyWJVI/QmM2RiEWcjSE4ltf/GBrTOGnUknAqGvL29cfjwYWzatAkfffQRnnvuOWzbtg0HDhyAh0fH/oE7C0yZzFqw4+OC8SJjz841YiOBIzMEAN3DqAv/cknr8igAjO1ClcqyKxpQ22iAXCLG9H4RAIAfj+Q4vEZrpBaoUFyrhYdMDBBUaa5LsJfVbqzi2kY2i9M11AsyHkZeNLWnuhbAMLosmUTUarK0gMCtQBBPHWVBNrSQjuKrkMKN3idUjQa2U6olTDCUXlKHeFpKkG5lfwSAaH8PdA/zhslMYtdl+7W1c0bEIcpPgU/u7YV/nh/ebLxGSwqqNax42jJbXqbWokytg4gAeoS3DobS8lUAgD6R3CU0WzAlsih/BVt1sCSnki6hBXi2uq0j4dInw9ixY/HKK69g4cKFGD9+PF9rEoBlmYz7QmzqKHNcRM1E6NmVrbsfmGAop7KhWcqXKZUxTtMtuZ2uX5MA9meUAwCeGBYDggD2Z1Y0yzS5AhNYTewewmacRiZx29EDTV1nANA70peXNfDVDm9ZIhNGcQjcigTx1FHWlBlyvUxGEATiLYwKrQmemWAos7SOLT2dpS0/rHF7T2qf/Oe8/aWy+EBP7H9lNO7rH8kZbFiy7mQ+SJLyH7I0d2QaThKDvDiNYpmsEVcJrS1y6exZjD+31iib9l+KuxkzQwCwZ88eTJ06FfHx8UhISMDUqVOxe/duPtd2S8MEO1y6HgBsN0CVEzNxmFPMNQ5BdJjSHQqZGAYT2UxE3Z1u0bxczH3y6RvlA5mYulB/P1MIgDoJje9K1cl/OJLr8DpbcqWsDlvpEtmDA6Kw/QJ1uprYPcTqY45ea2pl7WlFOOgotiztHYHJzIXYOOkJCNzMBPHUUcZnZgho7tpcYEVEHRvgATepCI0GU5O9CJ1hscYUOhg6fLXSoa4yURtBEADojCb8doryH3p4UHP/oZ20fIFrdAfQdGjsE+Vj95oYculDdQyHeNpsJtnMUczNGAwtX74ckyZNgpeXF1588UW88MIL8Pb2xu23347ly5fzvcZbEsuZYFxpWqaLqcBGjdoa8UG0LwZH94NIRLDBEuNiCgDd6DJZRmkdp0hQLhFjcBzlpXEyt5q9z+zhsQCAjacLbdbf7eHLPVkgSWBS9xCcL1Kh0WBCcogX+kdbz/gcswiGnDn1cMG0w3MNO3QEQTwtcKvDX5mMn6CKISGwKRjiMpsFALGIQBdag8iU3y8U1kJnY7xITIAHhicEgCSpLA6f7LhYiqoGPUK83TC+a5P/kN5oxp50Kls/uWfrg2NNg54dP9LLmcxQpfVgp1SthdZghkREOOVsfT1xKhj68MMPsXTpUqxfvx4vvPACXnjhBaxbtw5Lly7FBx98wPcab0k85RJW6Mx1goimU5J5VdaNvqzBZoYqGjhbWpmOMstgKdpPAQ+ZGDqjmbO8BgCPDqFOI3qjmW0fHRTrhxGJAdCbzPhoR7rDa2U4lVvNZoWeH5uANcfz6NeMsVpiKq3VsvVqd6mo2WnPFfjKDDFt9aE8eR8JCHQ2+Cpv2fJPc4ZEi0nvjLiYi26hVHdqZb0Ofh4y6E1mXLKSPWd4hHaN3nCqwGbg5AhagwlLd10BADwwMLJZF9nRa5Wo0xkR6CVHXw6pQBpdIosL9HDKC4jN/HBkhpj9N8pPASmHJ1JHwqnVqdVqTJo0qdX3J06cyOk/JOAcTM3XdjDkeLYlNsADBEFlnao4uhqYenmWxSYgEhFsjdyakeLIpCB2NMe3B64BoOrvr0/pChEBbLtQyor7HKGqXofn1p0FSQL39ItARb0OeVUaeLlJcFffMKuPO5bd1MXWM9ynzXq7PZjNJK6UUr8XV7sjmECWLyNIAYHOBjNXzOWRHDx2kwHNy2QncqzvWYyWMqO0Hv3oEhPjxG+N8V2DEKp0Q3WDnu2MdZVvD2Qjt0qDIC85m41nYDp8b+sezFluYzpy+ziRFWqrrb5JPN2xS2SAk8HQtGnTsGXLllbf//PPP3HHHXe4vCgBiig/6wFPNB2F51drHDYsc5OK2ZQll5Ei21HWooyWEkOdKk5YsZSXSUQY04XqYDidV8O2jSeHeGPGgCgAwBtbLjpkFKkzmvDShjSUqXWID/TAm1O74qPtGQCA+/tHQiGz3gZ69GrTOofE+9v9mrbIrWpAnc4IuUTEZtCchTlBMqdLAYFbjSCeMkPM81TV63jxNYv292A/HPOrNZz+akCTiPpScS36MsFQGyJqiViEhwZS++G3B7JhtljvmuN5OGkj+OIir6oBX+2nXKnfnNoNXhbDUk1mEjsvUd5vk7pzmzQyeiHGFNIR2LZ6iQhhnG31N3kw1LVrV7z//vuYMmUKlixZgiVLlmDq1Kl4//330b17d3z55Zfsl4DzMNkfLkv4CF93EASg0ZuazRGzl6ZSWetgiJlbk1VW38ylemg8Jb47eq3KagD2CF0qI0mwwwQB4OWJSQjwlCGzrA7v/H3JrjWW1mox49vjOJRVCTepCCseTsFvpwuQUVoHX4UUz45JsPl4S/H0pB7WRdaOcKGIyop1C/PmtMK3l4o6HcrrdCAI6wNmBQRudpg2cVczOv6ecohoq42qBtezQ1KxCN50Ry9JAj9ZaQDpHqaEVEygTK1DJO3efyavps0D6iODo+EllyCjtA5/n6dc+vdllOPNPy5i5qoT2JdZbtc6q+p1mLP6NPRGM4YnBLRypd6bUY6qBj2U7lJOl36Dycxmsvo4EQxZlsG4sk5sMBR4kwZDq1atgq+vLy5fvoxVq1Zh1apVuHTpEnx8fLBq1SosXboUS5cuxbJly3he7q0FUybjCobkEjEbiedXu6Ab4hguGO2ngNJdCp3R3Kx7bECM5XwdbuH20PgA1hbgpyO57KYQ4CnHshl9QRDA+pMF+DOtqNnjMkvrcLGoFlfL63C+UIUPt6fj9i8PIa1ABaW7FN/N7A+FTIylu7IAAK/d3tWmN09maV3T4EFfd16cpwFKIAkAPTm8OhyB8WuK9ffgbHUVELgVYDI6Gr0J9TrnXajFIoINrKztTY5iOVR01eEczvFF7jIxG0SoG40Qi6jAyJb5IkB1Az81Mg4A8PmuKzCYzBgS74+xyUHQGc14cvXpVntkS2obDXj0h5PIKq9HiLcbPpzes5l+kiRJrKAzRg8MjOTU7BzProJaa0SAp4zTf6gtmKwSkyFryU2fGcrJybHrKzs7m+/13lJE2dAMWd7ujG7IVmZIJCLY+vcZi/q3QiZhU8FHr3G7SotFBGYPiwFAnfYs7zc8MQDP0dmc//v9PNvuCQCvbbmAqf87jPGfH8S05UfYyczJIV74+7nh6B3pg3lrz6LRYMKgWD/cmxJh8+f7mt4EAMr5lS8fHyYz5GowdKm4KcMkIHCr4iGXUAaqAMrVrpXKmOnx2TZmhDmC3tgU/FTZ0PcwXbRn82uQEkVJCezJ7MwaHosATxnyqjTYcKoAblIxvp2Zgmm9w2A0k3jx1zQ8+fNptluLgSRJ/HWuGLd/cQiXitUI8JRh7ZODmvkKAZTTdWq+CjKJqJWOiGH7RWoPntAtxClNJaMBHRjTWphtMJnZg3xcBzdcBJwMhg4cOMD3OgQ4YIKdwppGzjq4KyLq+EDr7fUA0J+eRH+mRf17CH3hH7OiGwKAR4fEshfW+1ubd5C9OC4Rk3uEQG8y45m1Z9nTj5+HDCHeblC6S+HlJsGk7iH4+uF++Ou54fDxkOLRH07iQlEt/Dxk+Oge63N5AGoTYy5yALjNhg+RI5jNJKvzcdWziMm4Mf5NAgK3KqEu2IRYwhzwrHW7OkJNrRlXfu2Gou9HgTRSH5PfHMjmLH8xwdDx7CqMSaY0k0wruy085BL2cPjZzkyU12khFYuwdEYfzB0VD7GIwK7LZRj72X7ctvQgXvn9HJ78+TRGfrIPL6xPRZGqEeE+7lgzexD7s1vCZIXu7x/BOb6D0hNR++RkJ2QERosSW0p06xJcbmUDTGYS7lIxgi2G33ZUnAqGJkyYgKioKCxatAgXLlzge00CNMHebpCJRTCaSc7RGVE2NEVtwXSMFaka0ahvLWjuR59wWnZGDLFDN6RUSDGtN1W7vlxS10xwLRGL8L8H+2J633CY6NPPi7+m4r07e+D4a+Nw7j8TceHt2/DNzBRM7hmKs/k1mPHtcZwrUMFHIcXaOYPaTLnuTi+DzuJUt2LfVV6caXOqGlCvM8JNKmrmQ+IMTDAkZIYEbnXYgxlHM4cjMA7Hrj4PAJRpGtCYEwBjtSf05VSJPb1Ezc79sqRflC+kYgLFtVp0D6UON8euVaHBjrLfQ4Oi0S3UGzUaA17deB4kSUIsIrBocjL+fWkERncJhJkEMsvqsPFMIXZdLkNBdSMUMjFenpCEPS+P4ixRpRWocCirEmIRgadHxnO+9uncalTWU3oiZxpMMkrr0KA3wUsuQRcOGcJp+rOjV4SyUzjsOxUMFRcXY+HChTh06BB69+6NXr164eOPP0ZhYSHf67ulEVsYVXEFPNF+1MWf64TXkL+HDEp3KUiyqa5rSe9IJcQiAiW1WtZXB6CcpuUSESrqdFazSgCaiZv/uyOj2W0SsQif3tcbc4bHgiCAP9OKMfaz/Xh+fSp+OpKDbRdK8PX+a3j8x5N44LvjSC9Rw0chxS+zB1mtTVuy6nDzWWh7Mytw29KDLrexXmTE06GuiacbdEbk0P9n3YVgSOAWpymj41oQE8/hj+YsmWVqyEKp611f6sN+n7EMscRSN1RS24hIP3foTWYcsWNAtUxCZYJkEhH2ZVZg/cmmppOEIC/89MRAnHxtHL6dmYIXxyXinWndsXbOIBxbNA7Pj0tspmti0BpMWLjxHADgzj5hrcpnDEz2fHzXYKc8gBgJRb9oX84SG1tCi22dNeqIOLWjBwQE4LnnnsORI0dw7do1zJgxAz///DNiYmIwduxYvtd4S8Nkf2x5DTnj7EwQBNsazjVcUCGTsB4alrohN6kY/en6sGW3VksSgrwwLIGppatwuoW/kEhE4I2p3fDXs8PRL8oHGr0Jf58rxtt/X8a8tWfx3x0Z2J9ZAbGIwCODo7Bz/ki7BH5lai2nz0eNxoBXN513aaPkSzydUaoGSQLB3nIEeHb89LGAQHtiq5nDmefJq9Jwip0dIbO0DvJQFQBAV+IDAOgR7o1ofwWn0JsplZ3Iqca4ZGoE0d4M+zrCuoR4YeFtXQAA7/1zmT10MQR5u+G27iGYPyEJjw2NwbCEACgV1s0RP9qegStl9QjwlOO127ty3sdsJln/IWdKZEBTsGNtAgB7e8xNHAxZEhsbi0WLFuGjjz5Cz549BT0Rz9gSSTOBUlWD3qlODOY0k1rA7YuRQr/Jz7QILpgW+31tXOz/uaM7+/dXN53n1D31jFBi0zND8etTg/HyhCSMSgpE3ygf3N03HPPHJ2Hn/JFYcldPzpo3F2uO5YGreNclmBJic9XW7eU8I552caxHk7+QkBUSEOAroxPi7QaFTAyjmXRKOmDJmOQgvPE4FdToS6jDz/S+Efhwei94cnR/Doq10A3RXmt7M8qbeQjZYtawWAxL8EejwUR1iNlwvbbF/sxy/HQ0FwDwyX29rB62TuVWo6RWCw+ZGMOtzCuzBUmSNoOd0lotCqobISLANuN0dFwKho4cOYJ58+YhNDQUDz30ELp3745//vmHr7UJoCkY4rq4vd2kbHu5M2M5+rK6IBXn7f3oYKilidjEbtQmcfhqJWobW89NY0gK9sKdvSmH6GsVDezE+ZYQBIHBcf54flwiVs8aiC3zhmHpjD54cXyiQ8FLSW0jvjvUuoPxjt5h2PLsUJcGBZrNJC7x1UlWJIinBQQYmC6w8jod5xxGexGJCIuOMteyTANi/PDoNOr6NFR5wqyT4GIxt/M+APSL9mF1Q2E+1LDr8jpdm6M5LNf+9SMp6BWhRHWDHg+vPNGqi6wtzuRV46UNaQCAx4ZEY0yXIKv3/YYu903rE85ZamuLwppGlKl1kIgITn+ik3Sg1C3Mu5kJZEfGqWDotddeQ2xsLMaOHYu8vDwsW7YMpaWl+OWXXzB58mS+13hLY2skB2ARLDlRKusX7QOAKttwif2YzNClYnUzB9bEYC8kBXvCYCKx63KZzdd4bUpXSOlp9h/vyHRoUrOjfPJvZrN2WBEBvDGlK758oI9Np2p7uFyiRoPeBIVMzAo+XXkuQBBPCwgA1KGOGafhahDDtHDzoRsKCgLCI80ACOhLla3KV5ZQtiPUfnn4aiU7HX7X5VKrj2mJt5sUq58YiOQQL5TX6XDXiiP4+1yxXY/dfqEED31/AiqNAX0ifbDYSnkMoGw99mVWQEQAc0fF2b0+S5hqQfdwJdxlrYOp02wJrXOUyAAng6H9+/fjlVdeQVFREbZu3YqHHnoICgW3SEvANWxlhgCL9nongoxQpTtClW4wk9zzxsJ9qNtNZhLnCprffntPqlusLVFysLcb5tLmYnqTGYs2nXd4fIg9XCyqxeazTSZlXnIx1s4ZjDkj4njpZNidTgV9wxMCXBJPaw0mZNIpcEE8LSBAwVdHWZP+iB+voSGDqL1DV6LE1fJ6zs5bBsbCY/vFUtbxfktakd2lMoAyY1wzexB6hHtDpTHg+fWpeHbtWatZooJqDd7+6xLmrTsLndGM8V2DsO7JQTazPV/vp7JCU3uFsWOdHIUpkQ2wohdiRop0FvE04GQwdPToUTz77LMICHC81ijgGExmqEZj4EwhR7tgvAhYtNBbmafD1INbmixOoYOhQ1kVNktlADB3dALCfSjNz5FrVa26vVyFJEks2XqZ/bdMLMK2l0bwNo8MaBJDju8a7NLznM6tgd5oRpCXnA10BQRudWyZwDr0PEG2/dMcZeBAKhjSl/jATDaZrnLBBECncqvRP9oPnnIJCqobbQ565SLQS44t84bhxXGJkIgIbL1QgtGf7sekZQfxyb8Z+N+eLPx3RwbmrD6NUZ/sw09Hc0GSwMzB0fh2Zn+bWfDcygb2APvMaO6W+7YgSRKH6U45Lr1QbaOBPfAN6CTiacAFzdCVK1fw3XffYcmSJXj33XebfbUHNTU1mDlzJpRKJZRKJWbOnAmVSmXzMY8//jgIgmj2NXjw4HZZX3vhKZcgwJPSBXGVwmJc9NZgHKVTrQRDo5OaxICWJAZ7ITGIKpXtbqNU5iGXYMXDKWC6L9/fmt7mYxxh1eEcHM9u2nC+ergvIn35s38vU2txvrAWBEEJK13hUFYFAGBEYmCn8N4QELgesO31LpbJmoKqBl4y0AMGUH/qSin9kK12+XAfd/SKUIIkgUNZlbiD9lr73WJGo71IxSLMn5CEP54dhhGJARCLCGSU1uGrfdfw2a4r+Hr/NexOL4OZBEYmBeKnJwbg3Tu7t+ki/e3BazCTwNjkILtsSri4WKRGXpUGblIRWw605GxeDUiSGsHBlD87A04JKb7//ns888wzCAgIQEhI81EHBEHgrbfe4m2BDA899BAKCwuxY8cOAMBTTz2FmTNn4u+//7b5uEmTJuHHH39k/y2TWZ9n1VGJD/REZX01MkrrWrWXMyLcS8W1MJtJzmF5tmDq3Kn5KpAk2eoDenSXQBAEpRsqU2vZ+T8AMKVXKJbtzsK2CyW4p43xGL0jffDKxC74+N9MkACeW38WG+cOdWoejiW7L5c1c7l+eFAUJnTjx3GagQkEe0f4uHxxH7hCBUMjk4SsqoAAA18dZbEBHiAIKjtR3aCHv4vWFSkpAEGQMKkVMNXLceRaJeZPSLJ6/9u6h+B8YS12XCrFi+MSsf5kAbZdLME7d3Z3SkjcI1yJNbMHQaXRY096OU7kVEEsIuAulUDpLsWUXiFICLJv7uLlYjU2nqG8AOc5mRUCgH/owbJjk4M45yqebKPlvqPiVGZoyZIleP/991FaWoq0tDSkpqayX2fPnuV7jUhPT8eOHTuwcuVKDBkyBEOGDMH333+Pf/75B5mZmTYfK5fLERISwn75+XWetB0DE/BwCfjiAz3gJhWhQW9yyoa+R7g3ZGIRqhr0nLokf085etOt5C1b6ZlS2UE7SmUAMHdUPAbTk5O1BjOe+OmU0y2kAOWP9OKvqWwrfZSfu1VfDVfYQ+uFxrmYFSpXa5FRWgeCoDJDAgICFIxmKLeqAUYXPILcpGKE0+M9rrmYZQIALy+gWzfq79oiX6Tmq2w6SzOePUevViI+0APxgR7QGsz457xrhq8+ChnuSYnAx/f2xofTe+GtO7rhxfGJdgdCWoMJ8zekwWAiMbFbsNPePyRJsj/L1F5hnPdh9EIDOpFeCHAyGKqpqcF9993H91qscuzYMSiVSgwaNIj93uDBg6FUKnH06FGbj92/fz+CgoKQlJSEJ598EuXl9hlhdSR6hFPpzMscbZoSsYj1q7HV7WANuUTMdjVZ0w2NpYMAW6Uyy6Gr1hCJCHzxQF9E0JtVRZ0Od351xK7HtiSjVI3Zq0+hwULQ+Pn9fXifAK81mNj6+DgX9UKMlX+PMCVriSAgIACEKd3hJhXBYCJ5m1HGl25o3DgqW67NC4DJTLIf9lzEBXoiKdgTRjOJvRnluK9/JADnSmV88tnOTGSW1SHAU4YPp/d0+nlSC1QoUlHjQLha98vUWvZzZFhC58p+OxUM3Xfffdi5cyffa7FKaWkpgoJa/+KDgoJQWmr9g3Ty5MlYu3Yt9u7di88++wynTp3C2LFjodPprD5Gp9NBrVY3+7rRMJmhyyVqzs4ExvfGlrjPFv0sSmVcMMHQ4auV0Bmbd1Pc1TccAPDLiXy7XivY2w2/zR3CjhnR6E14as0ZLNt9xa4TodlM4ofDOZi2/AiKVU3zxhZNTm4Xp9MjVyuhNZgRpnRD11D7TmHWYPRCQolMQKA5IhHR1BbfwTrKmKEK2jyqIaOtMRuTelAZ8x0XSzG9bzjEIgJn81W4Wu58FtwVjl2rwkq6aeW/9/RyqXT4zzkqKzS+azBnS/22CyUgScpokcnQ3UiulNn/+e1UMJSQkIA333wTjz/+OD777DN8+eWXzb7s5e23324lcG75dfr0aQDgFJtyaVwsmTFjBqZMmYIePXrgjjvuwPbt23HlyhVs3brV6mM+/PBDVqStVCoRGRlp98/TXsQHekAuEaFeZ+Rsoe/hajBE+w1Zywx1D/NGkJccGr0JJ7Kbn4pmDIiETCzCuQIV0gpUdr1emI87fp87BNF+TRfLst1ZGP3pfqw6nIM6jq45g8mM49lVeOzHk3j3n8vN/ITemdYdc0c5XwO3xW56+vS4rsEuCZ7NZhKH6MzQSKFEJiDQCsYw0dWMDl/PwzBqFCASkTBWe8KodmMzxdaYRLfYH7hSAQ+5hG1CsZw7dr0ordXild/PgSSBBwdGupTdNptJthNtaq9Qzvu0VUK73vx1zv7ypFM1he+++w6enp44cOBAq/EbBEHghRdesOt5nnvuOTzwwAM27xMTE4Pz58+jrKx191FFRQWCg+3/zw0NDUV0dDSysrKs3mfx4sVYsGAB+2+1Wn3DAyKJWITkUG+cK1DhUnFtq6ntPSPozFGx2ikRNZMZSi+pg0ZvbNWaSRAExnQJwobTBdibUY6RSU0f5gGeckztHYrNZ4uw+mgu+szoY9drhirdseHpoZi9+hTr0lpY04j3/rmMZbuuoE+UD/w8ZPD3kKOiXocDmeVQa5vX6kUEVRpjslN8Q5Ik9mbQeqGurumFLhWrUd2gh4dMzDp7CwgINMF3R1kWT5khHx+gd18SqWcIaPP8keFdhMp6ndVRF11DvRDtr0BelQbbLpTgkcHR2JNRjvUn8/HsmAS7S+Rag8kpd2iG7Ip6zFx1EkWqRkT7K/DGlG5OPxdATaEvVWvh5SbBqC6tD3RFqkacyasBQVDNNTcao8mMf+w0rQSczAzl5ORY/crObj0OwRoBAQFITk62+eXm5oYhQ4agtrYWJ0+eZB974sQJ1NbWYujQoXa/XlVVFQoKChAaav0/Si6Xw9vbu9lXR4Ax6LtY1DrtlxDoCTcplTnKcWIsR6jSDcHecpjMpPVSGR0M7Mssb9Wy+vjQGABUl0F5nbblQ60SonTDn88OwxtTusJd2vRWrNMZcSirEn+mFeOHIzn4+1wx1FojLBMzId5uWPXYgHYLhABKCFim1kEhE7ODGJ3lIF0iGxIf4NSEaAGBmx2+OsoYDWRhTSOq6q1LIhxh0kTqmtXmUSXuYzaGVBMEgRkDqAP0LyfyMbpLILqFekOjN1kdSdQSs5nEIytPYP6GNFQ68TNcKKzFfd8cQ5GqEbEBHvhl9iCX9ZRMF9nEbiGQS1oHaVvp2wfG+DXrOr5RHLlWhcp6vd33t3tXXrBgARoaGti/W/t6+eWXHV91G3Tt2hWTJk3Ck08+iePHj+P48eN48sknMXXqVHTp0oW9X3JyMrZs2QIAqK+vxyuvvIJjx44hNzcX+/fvxx133IGAgADcfffdvK+xvelh0ULfEolYxHpGOCOiJgiCFbsxrd8tGZ4QAJlYhLwqTauutV4RPugb5QODicT6E46lgiViEeaMiMPul0djco8Q2EpqkSTl5bHkrh44sHC0y54/bfHzsTwAwJ19wlw6oQHAQfr3OkrQCwkIcBLPU3lL6S5ln+tcocrVZQEAxo2j/tTm+YMk29YN3d8/ElIxgXMFKlwsUuP5sQkAgJ+O5NrVeZtaUIMz+TXYklqEcZ8dwPqT+XY5WRtNZmw8U4gHvz+OqgY9eoR74/e5Q1jzXmfRGkxNJbLe3MmEv+mS1B29O0aJbBNtI2AvdoeKqampMBgM7N+t0V5GcmvXrsULL7yAiRMnAgCmTZuG5cuXN7tPZmYmamupYEAsFuPChQv4+eefoVKpEBoaijFjxmDDhg3w8nJNCHsjYDJDl4rVnFqpnuFKpOarcKGwFnf2cTxbMjY5CJvPFmFfRjlne7qHXIJBcX44lFWJvenlrQaoPj40Bqn5aVh7Ig/PjI6HTOJY9iPcxx1fP5KCOq0Bp3KrceRqFVLza6CQSRDsTWWuuoR4YXKPUIef2xlKahuxg+5ye3RIjEvPVa8zsrN8LEuMAgICTTAC6hqNwWYZyh76RPriWkUD0vJVGJvsWhcoAAwdCsjkJPT17jBWe7SpGwrwlOP2nqH4M60YvxzPw4fTeyIhyBNXy+ux5lgunhubaPPxKdF++GPeMLy25QIuFauxePMFbDpTiJlDojE0PqCV35nOaMKmM0X4+sBVFFRT3XhD4vzx3aMpvAxK3XimEJX1eoQp3TCco0sst7IBF4pqIRYRrL3AjaSqXod/HexStjsY2rdvH+ffrxd+fn745ZdfbN7Hsnzj7u6Of//9t72Xdd3oEuIFsYhAdYMepWotQpXNlfquiqhHJARCLCKQVV6PgmoN50liQrdgHMqqxF/nivHkyOYD/ib3CMUSr3SU1+mw41Ippjl5OvByk2JscjAvG5grrD2eD5OZxMBYP6edWhl2XS6F0UwiNsDD6VlAAgI3O+4yMeICPZBd0YALhbUuZX77RCqx6WwhUu1s6mhzbe7A8GHA3r1UqazQPw/5VRpE+VvPuDwyOBp/phXjz3NFeO32rnhuTAJe2pCGVYdz8MSw2DbLVr0jffDns8Pw09FcfL7rCk7n1eA0fahKDvFCYrAXqup1qKjToaRWi3ra/8jfQ4bZI2Ixe3gsZznLUYwmM749SM0ze2pkHGeZnymhDY33d9nokg/WnciHzmhG9zBv2FurEMQLnQQ3qRiJdE39EoduiGmvv1TM3X7fFkqFFCm0kHp/JrcX09ReYZCKCVwoqkVGafM1yCQiPDQwCgDww+GcdhnGer3QGU1Yf5KyCmD0UK7AuL7e5UTGTkDgVqIPbfDqanmrTyS1l50rUPG2F40dy/gNUfrBQ1e5JQUM/aN9kRziBa3BjE1nCzG1Vyii/RWo0RjY/aUtWBnBglF4elQc6ymXUVqHv88V4+i1KmSV16NeZ0SwtxxvTe2Gw6+OxbzRCbwEQgDVIVZQ3Qh/DxlmDIiyeh8AuOMGdpGpNHrM35CGK2V1+Pk4JXF4dEi03Y8XgqFOBCMMvMihG0oM8mTb73OdEFEDwOhkqoSzL5P7IvfzkLGeQ1z12IcHR8FNKkJagQq7eJw9dr3Zer4EVQ16hCrdMLGbaxmqwhoNjtJiy3tShGBIQMAWvSN9AFBBjCskh3pBLhFBrTUixwlnfi4mTKD+bMwNAGkUYcdF22UYgiDw8GDqw/iXE3kQiwh2DMa3B7PRqDfZengzwnzcsXhyV2x7cQTOvDEeXz7YF6/f3hXLZvTB2jmDsGv+SBx+dSxmDY/l9P9xFrOZxIr9VwHA6nNfKatDRmkdpGICt3W/cSWyK2X12JJahNuWHURFnQ4BnjKHRjMJwVAnoklEze1EzZRznC2VMYHO0WuV0Bq4L9R7U6guiS2pxa1MEoO83DB7eCwA4KMdGS7Z6t9IVtPC6YcHRUHiYufXlrNFIEkqfRzhK0ypFxCwRS/aJuRcYa1LGR2pWMRKB+z1P2uL/v2BkBASpF4KbZ4/jlytbLNb7e6+4fCQiZFd0YBj16pwd98IhPu4o6JOhy/3Wrd4sYW/pxzTeofhyZFxuKtvOIYlBCAx2KtdulT3ZJTjSlk9vOQSPDKYO8vyA23oOKZLEJQK1/VJzpJJj3Zi3jbVDXp8sC3dxiOaIwRDnQhWRG0l2GFKZc50lAFAl2AvhCrdoDVQBodcjO4SCH8PGSrrdWy7uCVPj4qHn4cM2RUN2HCDLeidIa1AhXMFKsjEIjwwkDslbC8kSWLjWSqDdm8bg2wFBASArqHekIopbWShi2M5mJmKrmaZGEQi4O67qVKZJisEZhJsk4U1POUS3N2PygivPpYLmUSEt6d1BwB8fzAbmaU3xpXaHkiSxPJ9VFZo5pBoKN1bBzqltVpsove4p0fFtbr9etJyzqWZbJIo2IMQDHUimDJZca0WNQ2t/RNcHctBEARG0/NmWg5lZZCKRay3D9cbzdtNihfoNtKlu7JsDjXsiPxE+4BM7R3qUjcLAJzKrUFelQYeMjEmdYAOCwGBjo6bVMxmuF3WDUX5AOAvMwQA06dTf2qygkGam8ZT2ILpRv33UhkuFddiQrdgTOgWDKOZxBt/XHBK49neZFfU440/LuJcgQpyiQiz6Ix/S344kgODicTAGD+kRN/YwaxcgWW4r/1+R0Iw1InwcpMihu5e4CqVMWnhS0XOiagBYEyXJt2QtTT1Pf2oLMfuy+VQaVoHZQ8Nika0vwKV9Tp8f8h+E84bzcWiWvxJO5byI5ymMmNTeoW2cvUWEBDghi2VuRjE9KX1R5dL1FbL/o4yahSg9CFh1sihK/LFiZyqNo1mk4K92O7aT/7NBAC8Pa07FDIxTuXW4PczHS+Dvmz3Fayl500+MCCS82BYqzFgLS1UfmZ0+4xDsheSJJFe0vwzMdzHHaseHWD3cwjBUCeDGdrKKaIOpkTUdS6IqIfR5or51a3NFRm6hXmjW6g39CYz/uawO5dJRFh4WzIA4LuD2Q65Ut8oSJLE239dAklSc3d60Sl2Z9HojdhKd1gwOisBAYG2Yctbhc5luBkifN3h7yGDwUTicknrw6MzSKXAtDvoUtkVulTWhpAaABZMSIJERGB/ZgWOZ1ch3Mcd88cnAQA+3J7Bm1M2H2SW1jWb6eUm5Q4Tfj6Wiwa9CckhXhjNMZ7jelJZr282rinE2w3rnxyMCAfMJoVgqJPRPbzJfLElUrGIPVWdyKludbs9MOaKgPVSGdCkgdlwivtUc3vPEPSO9IFGb8LSXc4JBa8nf6YV43ReDdylYrw+pbXppKPsuFiKBr0JUX4KDIgRZpEJCNhLHzqjc6Gw1qUmDIIgeOtOs4QZYKC5EgKSbGort0VMgAceGEgdij7ekQGSJPH4sBgkh3hBpTHgw+0ZvK3PVd7753Kzf397MAdf7G6+hzfqTfjxaC4AKivUXmbL9nLK4vNO6S7BuicHIcpf4ZAIXwiG7KS+g2hfmI6yVCsT5ofGU+6gbdnF24LVDVnxGwKoERUiArhYrEZmaevAjCAIvE47Wa8/mW91zEdHoF5nZLsOnhub0MrQ0hl+P90knL7RG4WAQGciLtATnnIJGg0mXHVxNAcTWPGpG7rtNkDuRsKkVsBQ7o1TudUoU7ed/X5hbCLcpCKczVdhd3o5pGIRPpjeEwRB6S+5suzXm7R8Fae79tLdV/D5ritscLHhVD6qG/SI9HPHlJ43fijrz8dzAQASEYGNc4cijp6Q8OUe+w/iQjBkJxddTNnyRb9oX4hFBAprGlFYo2l1+/BEKhg6eq3KZd3QyZxq1Gm55+j4e8qRHEJlqV7bcoHzPgNj/VjTq5d/O+fUwMHrwfK9V1Fep0OUn4K1BnCF7Ip6HMuuAkEA9whdZAICDiEWEehBZ8DPF7i277ZHMKRQALdPpv7OZIeYuV22CPJ2wxPDqP3lrT8vwmQm0S/KF0+NoLqwXvn9HM7zNEvNWV7+PY3z+z3CvdkMt8FkxveHqEaTp0bGu2w/4iplai1O5VDJgXemdUdiMDVuK7eyAT8dzbP7eYRgyE4Sgz3bvtN1wFMuYbvGTmS3LoX1jvCBQiZGdYMeGU62bcYFeiIhyBMGE4ntNurh4+hJ9mfyVFbr5q/d3hVJwZ6orNfh1Y3nO5wzdXZFPVYdpkTeb03t5vJAVgBsO+rYLkEI93E9yyQgcKvBlLfSXAwOGP1RXpWGswPXWdgW+ytUl6g9pTIAmDsyHlIxgZJaLd78gzpELpyUjNFdAqEzmvHUz2dQbkeWqT34M60I1yqa60RjAzzw1UP98NezwzEiMRAEQeC30wUoUjUiwFOO+zrAYe/r/ddgIkl0DfXGQ4Oa7FCWbL0MgwNlViEYspOOMG+FYXAcZQfP5QUkk4gwMJbS/By95nyp7G66fX7zWes+Df3o1lUAmL8hFaW1rS9iN6kYXzzQFzKJCHsyyrHmuP2RentDkiTe/ecyDCYSo7sEssGdK+RWNuDPNCrd/cI428MYOzINOiNOZFdh5aFsvLA+FWM+3Y9eb/+LO/53GM+vT8Xnu67gj9SiDiX8FLh56MOTR5BSIUVcADUP0NXAypKpUwGZjISh0gv6Mm+cyatBsaptXySlQspKGdadLMBa2pn6ywf7IiHIE6VqLZ5cc4a37jd7adAZ8bpFhj/QU4YP7u6JnfNHYkqvUIhEVPBXrtbiI1rf9MzoeF4Oj65QrGrEOrrr7c0pXVlJwr7McuxOL4dEZL9EQQiGOiGDaYHz8RxuY8RhPOiG7u4bDoIAjmdXo6C6dTkOALwtTLgaDWY8/ctp6I2tI/Guod5YNInqLnt/azqulHUMo7FVh3OwP7MCUjGBt6Z240Xbs3zfVZjMVHDFnG47E2VqLf7z50X0fW8XZnx3HEu2puOvc8XIqWyAWmvEhaJa/H2uGF/uycJLG9Iw4uN9+GxnJtRWyqkCAs7Qi752MkrrXA4M2FJZvsq1RVng6wtMm0btF/UXqOzIVjuzQw8PbspevL7lIn47VQBvNylWPtofSncpzhWosGjT9cuia/RG3PvNUdTrqN/zM6PicXDhWDw0KKqVq/Vbf15CndaIXhFKPObA3K/24qt9V6E3mTEo1g9D4qkkgd5oxrt/UyLwR4TZZDc3/WP8IBYRKKjm1g0NS6CCoRM51ZzBiT2E+bhjKP3m+iO1iPM+nvLmjqTnCmqt2p8/MSwGo5KoVPAL61Ov+8mnJXszyvA+vdZFk7uygjtXyKtqwBb6d/ViJ8sKlau1eOfvSxjx8T6sPpYHvdGMEG9qNtsrE5OwetZA7HhpBL6bmYLXbk/GgwMjkRziBY3ehP/tvYqRH+/Dtweu3fD/V4GbgzClGwI85TCZSc7OWUdoD/NFAJg1i/qz4XI4SBOBdSfz7dJp9o1s3l26cNN5/HoyHzEBHvj64X4Qiwj8kVaMJVvTYWpnQ8ZGvQlzVp9GekkdZGIR1swaiFcnJ3POINtxsQQ7LpVCIiLw0fReN1wrVFCtwW/0lIMFE5LYw+yPR3KQU9mAAE85nh5pvyu2EAx1QtrSDSWHeMHPQwaN3uSSi+v0vtSJZ3NqEecpxdOttZHgT0dz8Wda6+CJIAh8el9v+HvIkFFah6duQCqYIbO0Ds+vSwVJAg8OjMKsYTG8PO+KfddgMpMYmRSIvlGdo53eYDLj038zMeLjffjxSC70RjP6R/ti3ZxBOLZ4LL57tD+eG5uIUUmBSA7xxsTuIXhqZDw+nN4L218cgW8e6YeEIE+2PXj0J/utdjoKCNgLQRDoE8mX+SJ1LZ7Jq3FIQ9IWEycCoWEkzI0yaK4GI6eyAYfsyMYHeskR6NVcdrFo8wWsO5GPoQkBePdOalzHqsM5eOrn0+3Wyaw1mPDkz6dx9FoVFDIx1j81GCOSuP2CahsNeOvPSwCosRvMNIQbyfK9V2EwkRieEIBBtHSkXK1lO8gWTU7G7u32z0oTgqFOii3dkEhEsClDV0plk3qEwF0qRk5lA1I5NiRPOber8qJNFzhLYYFecnwzMwXuUjEOXqnAM7+cgc54fQOiynodZq8+hQa9CYPj/PDund15KY8VVGvYGT2dJStUWKPBfd8cw/J9V6EzmtE3ygdrZg/E73OHYGhCQJu/F4IgMKlHKHa8OAIf39sL4T7uKFVr8fDKEy697wQEAEvzRZVLz9MtzBu+CinqdUZes0NiMfDYo9Q10kCXylbT3jttrim0dTDx2pYLWHM8Dw8PisaXD/aFnNZZ3rPiqFWpgrMwgdDhq5VQyMRYPWsgUqKtH+A+3JaO8jod4gI88PzYG7+/XauoZ+c+zp+QxH7/ox0ZaNCb0CfSB8PCwjF/vv3PKQRDnRQm2GlLN3T0Kvft9uAhl2AyPVOLS0jNFQyJCMq+3ZpwbUCMH354fADcpCLsy6zAvF/OOl3KcxSd0YS5a86gsKYRMf4KfP1wCm+TnlfsvwqjmcSIxACbm0pH4d9Lpbj9i0NIK1DBy02Crx7qh83PDGU7RhxBIhbh/v6R2Dl/JIYnBECjN+GJH0/Z5cwrIGANRjd03kVbE7GIwPBEKuNxkGe/syeeoP5szA6CsU6OfZnlyLXi3G8JV2aFAHChUAW90YxpvcOw4ekhCPKSI7OsDnd+dQSncp0z0m3JsWtVmLb8MA5lVcJdKsaPjw/AgBjrc8WOXqvEr7S57ofTe95w0TRJknj378swmUmMTQ5i99szedXYfJaqSrx9R3fMm0egxoEktRAMdVL6035D1nRDw2nd0Nn8GpeGpU6n55D9fa6kVRZHLCKgkIkhFROY2DUYvgopzCSQGOxlU4MzJN4fqx4bwJ58nl3X/gFRo96El35Nw+m8Gni5SbDysQHw9ZDx8tyFNRrWZLGjZ4V0RhPe+fsSnl5zBmqtEb0jfbDthRGY0ivU5QyZh1yCVY/3x6TuIdCbzJi39gx+P93x5i4JdA560276OZUNnDMQHWEk7b/GdzCUlAQMG0YCJIGGS+EgSeDnY213zHJlhtykYjw3JhEyCfWx3CfSB38+Nww9wr1R3aDHg98dx6sbzyPHjmCLi9JaLZ5fn4oHvz+OK2X18POQ4YfHB7AlJi5qNQYs3kx1mT08KMrmfa8Xe9LLceAK1fjyBj0tQG80Y9Emap3394/AxYM++OMPQOLASEghGOqkeMgl7OiN4xy6oSh/BSJ83WE0kzjpwoliSLw/QpVuqG00YG96a0fqd+/sgZOvjcd3j1HaEgD45sC1NmvzwxICsPKx/pBJRNh1uQzPrjvbbh1J2RX1uOurI9h+sRRiEYEVD1M6F774ah+VFRqW4I/+Nk5YN5pajQGPrDyBH4/kAgCeHBGL358egkgH5ve0hVwixvKH+uL+/hEwk8D/bTyPVYdzeHt+gVsHH4WMHUzt6pyyEXRm6HxRLa9+QwDwxBNMV1kkSBL4/XRBmwdQJjM0JM4fG+cOwcBYPzQaTHj6lzOo1TTtg6FKd/z29BBM6RUKo5nEhtMFGPvZfjy77iwuFtn3O1Fp9Pju4DWM+2w//j5XDIIAZg6Oxt6XR7EVBi60BhNmrz6FvCoNQpVueHVysl2v155oDSa8S48LmT08jj10r9h/FVnl9fD3kOGx3l3x/PPU/V991f7nFoKhTowt3RBgWSpzXr8hFhG4i/Yc2nS2tTD63pQINsPy4MBI+HvIkF+twQ92fACOSAzEdzNTIBNTAdHEzw9ib0aZ02vlYvuFEkxbfgSZZXUI8JRj7ZxB7MbIB2fza9gU8kvjk9q4942jtFaL+789hlO5dGbs0f54fUo39hTKJxKxCP+9pxeeHEG57b73z+UOMWpAoPPRj25EOGlFDmAvIUo3dAn2AkmCc9yEK9x/P+CuIGGs9oS+2Ad1OiM2W+nAZYjx98Ca2QOx7slB6B/jh8/v740ATznSS9R49MeTzZz/FTKqjL1x7hCMTQ4CSVJt/FP/dxgPfHcMb/91CSsPZWP7hRKcL1Thankdfj9dgMWbz2PC5wfQ591d+GAbpaXpG+WDv58bjvfu6gEfhfXMuNFkxnPrUtlM+o9PDIC3m/1i5PZi1eEc5FdrEOwtx/NjEwAAV8rq8BVtdPufO7rj/16UQaUC+vcHFiyw/7mFYKgT02YwlMj4Dbm2kUyng6H9meU2TfYUMgkW0aeHpbuv2CX6G90lCGufHIQYfwVK1VrM+uk05m9Ic/n0ZjCZseSfy3hm7VnU64zoE6nEtheGs78zPqBSs+dBksA9/SJs1t1vJNkV9bjn66PILKtDkJccv88dgvHdgtv1NQmCwGu3d2VbWxdvvoBsF+dMCdx6NDWCuLaHAcDIJGo/PJTFb6nMywu4/z4qO1R3jvIQWn0016ZPkFhENNPnRfgqsHbOIPgqKJ+hWT+dgkbfPLvUn9Zbbn9xBKb1pmZDHs+uxk9Hc7FkazqeWXsW05YfwfjPD+L/Np7H+pMFyCqnrrn4QA98fG8vbJo7FD3oTmRrkCSJ17dcxO70MsgkIqx6bAA7eulGUqxqxPK9VNCzeHJXeMglMJlJvLrpPAwmEuOSg1B6MhTbtwNyObB6tVAmu2XobzGnjCvwYHyCLpeoXXIKqoqVCwAAYXpJREFUTgz2Qq8IJYxmss0T/r0pERgU6wetwYz//HXJLuOwATF+2P7iSDw5IhYiAtiSWoQJSw/gz7Qih7VEtRoDvj1wDcP/uw8rLbJT/5naHUHebg49V1t8vf8arpRRqdk3eJh03x6cL1Th3m+OoUjViNgAD2x6Zuh129gIgsD/3dYFg2L9UK8zYt7as4IPkYBDMJ5p5wtVLpfRR7Ai6kreDQ2feor6s+FyGEwNMlwtr3c4gOsS4oU1swfBy02CU7k1ePLn05zXS9dQb3z5YF/sf2UM3rurB+aOiscdvcPQN8oHQV5yuElF6B/ti6dHxeG7mSk488Z47Hl5NO7vH8k6Sdvis51XsOF0AUQE8L8H+7ITDW40H27PQKPBhP7RvrizTxgAYM2xXKTmq+Apl2BWr56YP5/6+ZYsAbp1c+z5hWCoE2OpGzqR01oXFOApR3IINbTumJXskb0w2aHfzxTa3EgIgsD7d/eEVExgb0a53R1F7jIxXp/SDZueGYrEIE9U1uvx4q9pSHlvF55ddxZ/pBZZFVGSJIkjWZV48Lvj6PveTny4PaPVFGkDz+ZlWWV1WL6P8rN4e1p33sTYfHLkKvU7qW7Qo2e4Er/P5VcfZA8SsQj/e7AvAjwpf6m3/7p0XV9foHMT5uOO2AAPmEluTzVHGBjrB7lEhFK1ls2Y8MWQIcDgwSRgEqPubAwAynPNUXqEK7F61kB4yMQ4crUK89Zaby6J8ldg5uBoLJqcjP892Bdb5g3DydfHI+O9ydj4zFAsntwVE7uHODRKavXRXHa24vt398Rt3UMc/hnag+PZVaze6e1plB1KkaoRH/+bCQB4eUIyFjzjBo0GGDPGsfIYgxAMdXLaKpUNjeenVDatTzjkEhEuFas5Ay9LEoI88cyoeADA239falb/bou+Ub7454XheGl8IgI85ajTGbH1fAle2pCGlCW7cc/XR/HwyuOYvuIIJi07iMEf7EHymzvw8KoTOJZdBWsxTyOPGQlzi9Ts1F6hvD03XxzOqsQTP1F+SsMS/LH+qcEIuEHz9YK83fDFA31BEMCvpwqw6Yz1eXcCAi0ZluC6ZxpAdWsx3VB8d5URBPDyy3SpLDUaZoMIezLKnPIH6hfli1W0/cjejHI8teZ0u88A1BlNePfvy/gPfVh5eUISHhwY1cajrg9Gk5k9RD00MAo9wpV0Ke8CNHoTBsT4IvvfKJw8Cfj4UOUxkRORjRAMdXLaCoaGJzZtJK6khv08ZLivP9Vm/+2Ba23ef96YBMT4K1Cm1uGznVccei25RIyXxifh5GvjsGXeUDw7Jh5dgr1gMpM4k1eDI1ercDZfhYzSOpSqtdDZUUpr1PMXDK05noezdGp2yd09eDFt5JOj1yox5+dT0BvNGN81GD88PsCqQeb1YlhCAF4aRwnM3/jjYoeZTyfQ8eFj1iID22Kfxb8p6N13AzGxlCN1w8UIkCSc7qQcHOeP72ZS3bb7MyswcelB/HupfXy7ssrqcNdXR/HDEWqtc0fF4zlanNwR+P5QDjJK66B0l+KViV0AUFKK/ZkVkIlFuC+yDz74gNqDv/0WiIx07nWEYKiT05ZuaGCsP2QSEfKrNbhS5lpqeM7wOIgIYF9mBTJKbc8LcpOKseSungCA1cdynbLUF4kI9I3yxf/dlox/54/EoYVj8Pn9vfHFA33w7cwUrJk9EBvnDsE/zw/HjhdH4P27e2ByjxB4c4wJaTTwY2lfpGrExzuoqc2vTuqCUKU7L8/LFyeyqzD7p9PQGswYmxyErx7uC7nkxpqkMTw3NgEjEgPQaDBh3tqzLvlfCdw6DIn3B0EAWeX1KG9R/naUkfS4iRPZVbzr18RiYP5L1Iey+lQsSBJYeyIP+VXOuUePTArE5meGokuwF6oa9Hh6zRks2JCG2kZ+LEhIksQvx/Mw9X+HkV6ipn2H+mPR5OQOc8DLLK3D0l3UYfr1KV3h6yFDQbUG/6FHgzw5OAmLnlfAbAZmzqQ6+5xFCIY6OW3phjzlEoykhYNbL9g3VdkaMQEemNyDKgl9dzC7zfsPTwzA3X0pI7LXtlyA0cW5QJF+CkzvF4E7+4Tjtu4hGJEYiP4xfugRrkRyqDceHhSNrx9JQepbE/HHs8PwysQkDIr1g1RMoFHvuqkjSZJ4Y8sFNOgpEd/Dg2781GZLTudW44mfTqHRYMKopECseLhfhwmEAKqDZumMPgj2luNqeT0+3Zl5o5ck0AnwUcjQnfblOXrNtXJ/YpAnQrzdoDOaeXN0tmTWLMDHh4SxxhONV4NhMJH4bJfz7/Me4Ur89fwwzB0VDxFBzYm8belBl8t8BdUaPLXmDN744yJ0RjNGJAZgx0sjMDa5fbtMHcFgMmPBb2nQm8wYlxyE+1IiYDSZ8dKGNNTpjOgX5YvUX+OQkwPExADLl7v2ekIwdBPAlMqOXuNO/U7pRYngtrkYDAHAU3Sr9F9pxShWNbZ5/9endIXSXYpLxWos253l8uvbg1hEoE+kD54bm4gNTw9B2lsTMYGHVvIv9mRhH52a/eiennZ1ZlwvzubX4PEfT0GjN2FEYgC+nZlyw23zuQjwlOPje3sDoJx600tcm0gucGvAV6mMIAiMaCc3agDw9ATmzqWzQycpn60/04rtNkjkQi4RY9HkZPw+dwhrQfLoDycx+YtDWL43y27LitpGA9afzMf93xzDiI/3YdflMtbFefUTAxHkxW+3rass33sVl4rV8FFI8eH0niAIAsv3XcWZvBp4ySUYYkzB+nUExGLgl18AbxebZIVg6CaAGb1xILMCJg4F8biuwZCJRbhaXu+yVqN3pA+GxPnDaCbtqocHeMrxzjRqCvPyfVfxRxtmZO2Bh1zSakq0o/yRWsQGc+/c2R0JQV58LI0XLhTW4rFVJ1GvM2IIrTXoiIEQw6ikQEzuEQKTmcRbf17kvc1Z4OZjaEJTMOTq+4UplR280j7DhJ9/HpBKSegK/aErprL2/6VL666QEu2HbS+OwONDYyAREUgvUePTnVcw9rMDmPzFIXy17yqOXavC0auVOHClAnszyvDvpVJsSS3Es2vPYsD7u7F48wWczK0GQVDC9C3zhmHOiLgOdbADqD2N6Wp7784eCPJ2w5m8anYi/ZweffCfRdSevmQJMGyY6695Y1WVArwwMNYPXm4SVDXokZpf02okhLebFCMSA7Anoxxbz5cgaYJrH+RPj4rDsewqrD+ZjxfGJkKpsO1MelffcGSU1uGbA9ewcON5RPq5IyW6Y3hX2MOp3Gos3HgeAPD0yLgO02UBUOLHR384gTqdEQNj/bDq8f5wl3XcQIjhjandsD+zAqdya7AltYidgScgwMWAGF/IxCIU12qRW6VBbICH0881PCEABAFkltWhTK1FMM/+Y2FhwEMPEVi9GlCfjEPQXak4lFWJw1mVGE5npZxFIZPg7Wnd8dL4ROy8VIZ/LpTgyNVKpJeo7cqydgn2wt39wnFnn7AOp3dk0BpMWPBbGkxmElN6heKO3mGo0xrw0oY0mElgSnIEvv1PMBobgUmTgIUL+XldITN0EyAVizCmSxAAYFc69ziL23tSWh8+SmWjkgKRHOIFjd6EX060PZQQABbe1gUTuwVDbzLjqZ/PONVyeiPIrWzAUz+fht5kxqTuIXh10o2fz8NQUK3BI6tOoEZjQO8IJX54fAAUss5xvgn3ccfz46iOlQ+2ZbTbXDqBmwOFTIK+UT4AXC+V+XrI0It2YW6PUhkAvPwy9acmMxS6curw+d8dGTDz5Hfmo5Dh/gGR+HnWQJx6fTw+mt4TI5MCERfggaRgT3QL9UavCCX6RflgYKwf5gyPxdYXhmPHSyMwd1R8hw2EAGDprivIKq9HgKcc793ZAwDw1p+XUFDdiAhfd9Tu7Yn0dCro/Pln59rouRCCoZsERhOz6zJ3MDS+WzCkYgJZ5fXIcrFURhAEnh5FaYd+PJJjV1eGSERg2QN90D3MG1UNesxZfdoh/6EbgUqjx6yfTqFGY0CvCCWWzujTYdLJ5WotHl55AmVqHZKCPfHTEwNvePu8o8wZHoe4AA9U1uvYjhEBAWswbtTWtJGOwJbK2qHFHgB69gQeeAAACNQcSIZEROBCUa3LTSxc+HnI8MDAKPw8ayD2vjIaO+ePwrYXR+Cv54Zj87xh+O3pIXhjajd0D1N2mC4xa5zOrcZ3h6jmnA+n94Sfhwx/phVhS2oRRAQwQTIQa9eIIBIB69YBgfyNmRSCoZuF0V0CIRUTyK5owDUOQZ3SXcra0W+74LpfxdReYQj3cUdlvR6bOQa4cqGQSbDysf4I8pIjs6wOL6xP5dQ4dQT0RjPm/nIG2ZUNCFO6YeWjHaf8VNOgxyOrTiC/WoMoPwXWzB7UIR2w20ImEeFtWk+2+mguLhcLYmoB6zDmi8euVbmcYWGCocNZFbxla1qyZAkgkZDQZgehPoeSBXzyb6bDI4ZuFVQaPeb/lsbOepzQLRi5lQ14Y8tFAMD06O7475vUlPq33wZGjeL39YVg6CbBy03KdpVZyw7xWSqTikWYPZzqlvj+ULbdQU2o0h3fP9ofcokI+zIr8P7WdJfXwjd6oxmv/H4Ox7Or4SmXYNXjA3ifa+Ys9TojHv/xJK6U1SPYW461cwbxrnm4noxMCsTtPUNgJiGIqQVs0ivCB+5SMWo0Blx2sQuxT6QPvOQS1GgMOJtfw9MKmxMfDzz9NJWJqTmQDBFBIL9ag/Un89vl9TozJjOJF39NY0thb93RDfU6I578+TTqdEb0DAjE5o+j0dgI3HYb8Npr/K9BCIZuIphS2W4rwdCErlSpLLOsDld5mM0zY0AklO5S5FQ2YKcD7qi9I33w+f19AAA/HMnBW39ehMFFDyK+qKrX4ZGVJ/DXuWJqUOFDfdE19MZPbAYoYeGc1adwrrAWvgopfpk96LrPGmsP3pjSDe5SMU7n1didZRS49ZCKRezEdUf2G2vPNaE7tV+2NXzaFd58E/DwIKEv8UFdOvV6X+7J6vASgevN57syceBKBdykInw7MwVecgkWbEhDVnk9Aj3kqN+egpwcAnFxVHlM3A5JeiEYuokY35W62M7k16CSY5aNUiFl6+58ZIc85BI8OoQyHvxkp2Pp3ym9QvHmVGqs8M/H8vDoqpOobuAexHq9yChVY9ryIziZWw0vuQSrHhvACtNvNAaTGfPWnmWzVatnDURicMdp73eFMAsx9Yfb0wUxtYBVetDmi+tPFrj8XHf0piafb71Q4rIhrDWCg4FXXqGyQ6qDXUCYCVQ16PHBNtdb7W8WdlwswVf7qBFP/72nF7qHKfHl3izsvFwGmViEnqXDsH+vGAoFsGUL4NdOjcidJhh6//33MXToUCgUCvj4+Nj1GJIk8fbbbyMsLAzu7u4YPXo0Ll26eadmh/m4o0e4N0gS2JteznkfPktlAPDkyDgEeMqQXdGAn4/lOvTY2cNj8f2j/eEhE+NYdhXu/Opwm2M+2otdl8twz4qjKFI1ItpfgS3PDsWY5I4RCJnMJOZvSMPejHLIJSKsfKw/ekX43Ohl8UqTmFqPlYecm+ckcPOTEERpRirqddjlYnZoeEIAfBVSVNbrcczKbEc+ePllIDCQcqVWn6cGZ60/mW81g38rkVVWh5d/OweA+jy4s084/k4tZT3dpngNwI8rqM63H34AevVqv7V0mmBIr9fjvvvuwzPPPGP3Yz7++GN8/vnnWL58OU6dOoWQkBBMmDABdXU375DICV0pt2lrLfYTuwVDIiKQUVrHKbR2FG83Kf7vNmp43he7s1BR59h05QndgrHl2WGI8lOgoLoR01ccbbeBhFyQJIkV+6/iqTWn0aA3YWi8P/6YN6zDmCqSJInXNl/AP+dLIBUT+GZmCqsNu5mQSUR4hX4f/XA4BzU3OEso0DHx82jyNFu85QI0eufn20nFIvZw2J6lMi8v4K23qOxQ7eFEmPVUjWfR5vOcGfxbBbXWgKfWnEGD3oTBcX5YPDkZV8rqMH9DGgBgclgXfL+EqmT83/8BM2a073o6TTD0zjvvYP78+ejZs6dd9ydJEsuWLcPrr7+O6dOno0ePHli9ejU0Gg3WrVvXzqu9cYzvRmUzDmVVcE5q91HImkpl5/nJDt2XEoleEUrU6Yz45F/H079JwV7489lhGBrvD43ehKfXnMGXe7LaXUxbpGrEc+tT8fGOTJAkMHNwNFbPGthhOrNIksSSrenYcLoAIgJYNqNvhynbtQeTuoega6g36nVGfGvH7DuBWw+NxYzByno9vnBxxA9TKtt+sRQ6I7+DWy156ikgLg4wNbhBfSIebhIRKuv1WLTpwi3ZNGA2k5j/axpy6G7drx7qh3qdEbN+PA0jTGjICMEvr8ejoQEYPx744IP2X1OnCYYcJScnB6WlpZg4cSL7PblcjlGjRuHo0aNWH6fT6aBWq5t9dSa6hXoj3McdWoMZh62Yk02hT0N8eV6IRAT+cwfVIv37mUKcL1Q5/By+HjKsnjUQjw+NAQB8vusKbv/yMP46V8x7+31JbSPe/OMiRn+yD1vPl0AsIvDeXT3w3l09IBV3nEviiz1Z7MiTj+7phSm9Qm/witoXkYjAgglJAKhWe0ezjAI3P5oWnmYrD+e4ZMkwMMYPwd5y1GmNOJDZPgaMACCTAf/9L/X32uPxUBd7QCwisDu9DL+ddl3/1Nn4Yk8W9mSUQyYR4duZ/aF0l+L59akoVGmgr/BA5V99UV9PwNsbWLsWkFwHC7WOs/PzTGkpVWoJDm4+oDM4OJi9jYsPP/wQSqWS/YqMjGzXdfINQRAWBozcP+eEbsEQ06Uye4f8tUVKtC87of7tvy45ddqRiinfmf/e0xMeMjHSS9R4YX0qxn22H+tP5rt8citTa/GfPy9i1Mf7seZ4HgwmEkPi/LFx7hDMHNyxJtCvPJTN1s3/c0c33N+/c70PnWV81yD0jlCi0WDCNweu3ejlCHQwNLrmZTGTmcTiLRecPjCJRASm9qKyQ3/zlCm3xj33AHffDcAsQtW23pAQ1MfvO39fRl5VQ7u+dkfi15P5+IKeMfb+XT3QI9wbb/55CYeyKmHWiVH6yzCApH43ajUwfz5gdL4aajc3NBh6++23QRCEza/Tp0+79BotHTdJkrTpwrl48WLU1tayXwUFnS9qZ4KhPenlnJuEr4cMQ+Mp3cn2i/zpcxZNToZCJsbZfBX+SHO+RXrGgCgcXTQOCyYkwVchRW6VBos3X8DIj/dh5aFs1OvsvzLUWgNOZFfh7b8uYcTH+7D6WB70JjMGxvrh16cGY/1Tg9E3ytfptbYHa0/kYQntv/TyhCQ8MSz2Bq/o+kEQBBZMpLRDvxzPQ2mt9gavSKAj0cBR+j9XoMJaO8cCcTGNLpXtvlzmkgapLQgCWLEC8PUloS9TovxwDIK85NDoTZi/Ia3dOto6EltSC7F4ywUAwFMj43BvSgQ+2JZOeS+ZgZKfRoDUN591uW4d8P777b+2G+rf/9xzz+EByrPcKjExMU49d0gIJSQuLS1FaGhTeaG8vLxVtsgSuVwOudy1Cec3GsvBrWkFNZxDUaf0DMWhrEpsPV+CZ8ck8PK6wd5ueG5sAj7ekYkPt2VgQrcQp0dEKBVSvDAuEXNGxGL9yQJ8fzAbpWotlmxNx/vb0hGmdEe0v4L+8kC0nwIRvgqUqbW4XKLG5WI1LpXUoqC6sdnzDojxxfzxSRgS798hrenXncjH67Tj6tMj4/DcWH7+bzoTIxMDMCDGF6dya/DVvqt4764eN3pJAh2ElpkhAFDIxDiVW4NHBkU7NS6nV4QS0f4K5FVpsOtyGe7sE87HUjkJCQG++ILAo48CqiOJKEwsgzLUiLP5Knxz4BqeG5vYbq99o9l2oQQv/3aO1WcunpyM/+29iu/p7tHy9UNhVDUfwBsbSwVC7S2eBm5wMBQQEICAANem+FojNjYWISEh2LVrF/r27QuA6kg7cOAA/ssUb29SmMGtf50rxs7LZZzB0MTuIXjjj4ts4NAtjB9jwdnDY7HhVAHyqjT4at9VlwebKmQSzB4ei0cGR+GP1CJ8eyAb2ZUNKFI1okjViKPX2m6JDactB2YOjsGwhI4ZBAFUIPQafWqaNSwWiyYnd9i1ticEQWDBhC548Pvj+PVUPp4eFYcI385vLingOg16EyQiAolBnkgvrYO7VIyTr42Dp5u07QdbgSAI3NErDMv3XcXf50raNRgCgEceATZsALZuFaNqWy94Pn4cALBsdxZGJQWhZ4SyXV//RrD7chleWJ8KMwnc3z8C70zrjh+P5OJzeiZhQHp/5BU2Zej9/SnDyrlzgeuVm+g0mqH8/HykpaUhPz8fJpMJaWlpSEtLQ319k+YlOTkZW7ZsAUC9wV966SV88MEH2LJlCy5evIjHH38cCoUCDz300I36Ma4bbQ1u9fOQ4bbuVPbM3snz9iCXiPHmFMpM8dsD15DDkyZJLhFjxoAo7Hl5FE6/MR6bnhmCz+/vjRfGJeKuPmHoE+mDAE85kkO8ML1fON6Y0hXrnhyEtLcm4Miisfh2Zn8MTwzosMHF+pPNA6E3p3btsGu9HgyJ98fQeH8YTCSW7716o5cj0EF4ckQszv1nIra+MAJBXnI0Gkw4lev6OI1pfahS2YEr5ajVtK/pJ0EA334LeHuT0Jf4ouJYDDzkYhjNJJ5ecxqFNZp2ff3rzcErFZi39iyMZhLTeofhw+m9sPFMId795zIAYKS0D878RX1eicXA4sXAtWvAiy9ev0AIuMGZIUd46623sHr1avbfTLZn3759GD16NAAgMzMTtbW17H0WLlyIxsZGzJs3DzU1NRg0aBB27twJL6+O4SHTnoxqMbg1PtCz1X0eGRyNrRdK8EdqERZPToaXC6crS8Z1DUKPcG9cLFLjkVUncXDhGIh5mvZOEAQCPOUI8JRzZrw6I+tP5mPxZiEQasnLE5Nw9Otj+P1MIeaOikdMgEfbDxK4qYmz2Mdu6x6CNcfz8O+lUpcNUpOCvdAl2AuZZXXYcakEMwZEubpUm4SHA59/TmDOHKD2cBIUiWXwCdGiuFaLh74/gd/nDunUMwcZjmdX4ak1p6E3mXFb92B8dn9v7LhYikWbzwMAxnj2wJq3qUA0NhbYvx+Iat9fvVU6TWbop59+AkmSrb6YQAigxNGPP/44+2+CIPD222+jpKQEWq0WBw4cQI8et4b+wNticKs1p9PBcX5ICPKERm/CH6n8zYQiCAJL7qT8oIpUjbhz+WFoDe3n4dGZ+dUiEHpiWIwQCFmQEu2H0V0CYTKT+HKPa34yAjcfTGZ71+UyXuw3mOzQ3+fat6uMYdYsYOJEgDSKUfVXP9TVA0p3KfKrNXh45QlUdXJDxjN5NZj90yloDWaM6RKI/z3YD4evVuKlDVS5bJhHMn59PwomE4Fx44DMzBsXCAGdKBgScJy2SmUEQeDhQdS7b83xPF7Nv/pE+SDAkzIvvFisxn3fHBWGE7bg15P5WGQRCL01tZsQCLXg5QlUZ9kfaUW8DBcWuHkYFOcHpbsUVQ16nMlzvVR2B91if/RaJcrr2r+LkSCAlSuBwEBAV+aNqq29odIY4KuQ4mp5PR5ZdbLdS3btxZ9pRXh45XE06E0YluCPrx9JwZ70MsxdcwYGE4n+bon4879x0GoJ3H47sHUrIOWnMOE0QjB0E2M5uLVY1ch5n+n9IuAuFeNKWT0vtXeu1weAC0Vq3PfNMcFIj+anIzlCIGQHPSOUmNgtGGYSWLb7yo1ejkAHQioWYRxdHuNjhE+UvwK9I31gJvlz52+LyEhq+KhMBmiuhEJ1KAl6gxm+CinSS9R47MeTDlmJ3GiMJjPe33oZL/6aBq3BjNFdAvHdzBT8fCwX89adhc5oRm95HHZ+noiGBgITJgCbNl1fbZA1hGDoJibMxx2DYv1AksAWK2UwpbuU9dn45Th/QmoA6B/TXNOTUVqHe74+gvyqm0sg6AgkSeLjHRl4+29KPDhrWKwQCLXBfNqVeuuFEuRW3jrmdAJtM5Eulf17qZSXzDazF7a3AaMlw4YB339P/V19LBFlacHwkEvg4y5FWoEKs346xTlaqaNR06DHYz+eZFvlnx0Tj28fScEH2zLwwbYMkCQwyrsrDnyRjLo6AqNHA3/8Abh1EGmUEAzd5NybEgEA+P10gdXN4hHafXn7xRJeBwf2j25tZphf3YjpXx/FpeJajkfc3BhMZvzfxvNYsZ9yVv6/27oIGiE76BrqjbHJQSBJ4LtDwswygSZGJQXCTSpCYU0jLpe4Pjppaq9QEASld7meXV2PPgosWkT9vXp7L1y7KEd8kAc85RKczKnGU2tOt+vsNFe5XKzGHcsP48jVKihkYqx4uB+eGZ2Ap385g7Un8kEQwCRFf/z6TixqawkMHw78/Teg6ECOGUIwdJNze89QKGRi5FZpcNpKXb1nhBK9I5QwmEhe5+RE+yvgzzH01EyaUVTDXba7WdHojXjq59PYeKYQYhGBj+/phWfHJAiBkJ3MHRUPANh4plAotQqwuMvEGJkYCAD4lwc3/WBvNwyKpTLa10tIzfD++8DUqQBpEqN8c3+cuKBFqNIN7lIxDmVVYuaqkyio7nhZ9b/OFWP610dQWNOIaH8Ftswbhr5RPrjvm2PYn1kBN6kIE80j8N3bwdDrCdx1F7BzJ+DZusH5hiIEQzc5HnIJO5h14+lCq/d7mM4OrTuRz9tgVIIgkGKRHWrqriduSmMxa1Q36PHQ9yewj94YvpuZgvsH3BqzxvhiQIwv+kb5QG8046ejOTd6OQIdiEk9mFIZd6OIo0zrTZkubj5beF0nyotEwPr1lKDarJGj/PeByMjTwUMuhptUhJM51Zi07CB+PZnfISbd12kNeOfvS3hhfSq0BjNGJgXir2eHw2g2466vjiC9RA1/hQwDy8fgu4+9QZLAvHnAxo2Au/uNXn1rhGDoFoAplf1zvtjq7J07eoXB202CwppGHLzC3/RmJhia3CMEO18aiW6h3qhu0OPZtWehN978s3gKqjW495ujSCtQwUchxdo5gzGuq/VxMALcEATBZofWHMvrVKJSgfZlXHIwJCICmWV1vGjKpvSisulZ5fU4ZofDPZ94egK//0793VDphdKfh6G0WAQRCHQJ9kKD3oRFmy/giZ9OoUx9Y+b2GUxm/HwsF6M+2Y8fj+QCoD5jnhoeix2XSnD/N8dQptYh3s8LEefGYM13lCjoo4+A5cspY8WOiBAM3QIMjPVDtL8CDXoTtl/gTiW7y8S4N4XKVvAppB6bHIR1cwbh60dSkBDshW8eSYG3mwRn81X4YFs6b6/TEblUXIt7vj6K7IoGhPu4Y+PcIc0yZQKOMaFrMOICPKDWGvHryfwbvRyBDoJS0eSpxkdXmdJdinv6UQfIH4/muvx8jjJqFDB0KPV3o8oDJT8Nh6pYgStldZjaMwwyiQj7Mysw4fMD2JJ6/bJXJElix8VS3Lb0IN768xKqG/SIC/DAnOGx+CutCM//mopXN11Ag96EXsow1G8ejr82SyCRAGvWAK++StkJdFSEYOgWgCAI3Etf3BvP2CqVUZ5DezPLeRMPJgZ7YWhC0/y5KH8FPr+/DwDgp6O5+Grf1Q6R8uUTkiTx68l8TF9xFOV1OnQJ9sKmZ4YiIejmdz5vT0QiAk+NjAMArDqcc0tkFgXs47buVLaVj2AIAB4bSskGdqeX3RCdzsKFTX83N8pR+vNQNOb74Z8LxRgXE4Fe4UqotUbM33AOc385w2vjCxdn82tw3zfHMPeXM8iubIC/hwxv39ENQ+P9sfJwDvQmEjUaA+QSESbI+uPAR31w8oQI3t7A9u3UPLaOjhAM3SJMT4kAQQDHsqusXtzxgZ4YluAPkqRGRLQX47sFYwHdLv3Jv5l495/LMPOkU7rRaPRGvPzbOSzafAE6I+W8+tvcIQhRdpD+0U7O3f3CEeglR0mtFn+dK77RyxHoIEzoRumGzuarUM5D+SghyAsjEgNAksDPx3Jdfj5HmTKF8iBiII0SlP06CA2ZIdh+NR8Rvgo8OzoBEhGBfy+VYcyn+7Fw4znszyyHwcTPIUFnNOHI1Uo8u/Yspq84itN5NXCTivDcmARsmjcUv58pxC8nmj4nzDoxPI4Pwcr3gqFWExgyBDh3Dhg/npfltDtCMHSLEO7jjmHxVIZm01nr2aFHBlEnog2nCtr15P3CuES8MaUrAODHI7l4aUNapz/pXymrw7TlR7A5tQhiEYFXJyVj1WMDoHS/wdaqNxFyiRizhsUCAL47eO2mCaIFXCNE6YY+kT4AgJ1WHPcd5YlhMQCAX08VoOE6a9QkEuDpp1t8kxSh8o9+qD8di60XSvDz8VzcPyASScGeqNMa8dvpQjz+4ykMeH83Xt14HgevVDgcGOVXafDzsVzM/ukU+ryzCw+vPIGtF0pAEMB9KRHY98pojEwKwJQvD+FScZOVga5EiZLVI5C6xwciEYk33wQOHgRiYlz/XVwvCPJmq1HwjFqthlKpRG1tLby9vW/0clziz7QivPhrGiJ83XHw/8ZAxDE81WAyY9hHe1Fep8P/HuyLO2gTsvbij9QivPL7ORjNJEYkBuDrR1LgKe8084NZNp4pxJt/XESjwYRgbzn+92A/DIy9OQbJdjTUWgOGfrgX9TojVj3WXxCkCwAAvt5/Df/dkYERiQFYM3uQy89nNpMY89l+5FVpsOSuHqwf2/WitJSa1WWgJ3L06gWcp+abwie2Fu5j0iALrIeXXIzJPUJBiAjsSS9DZb2efQ4fhRSTuoege7gSEhEBMUFALCIgEVN/igkCJpLE6dwaHLhSgZwWAvRALzlGJQVi1rBYeMjFeOfvy9ibUc7ebtZKUHsiHuqTcYBZBLFXI778Vod5D/q096/HLhz5/BaCoTa4mYKhRr0JA9/fjTqdEeueHISh8QGc9/t81xV8uScLg2L9sOHpIe2+rgNXKvDML2eg0ZvQK0KJHx4fgADPDuDPbgeNehP+89dF/EbbFoxIDMDSGX06zfo7Kx9uS8e3B7MxMMYPv81t//eoQMcnu6IeYz87AImIwJk3JkCpcD0j+8PhHLz7z2UkBHli1/yR190X7MEHqVb0r78GZs+murEWLwYaGgCxhETEiAKY+1yGSGaCj0KK2cNj0T3MG3vSy7HjYimqGvRtv4gFEhFlhzKqSyBGJwUhNkCBHZdK8evJApzIqWbvZ/7/9u47rqr6f+D469zL3rJBQBBFcCO4B5rmqtQ0yxyFKy0rtb5mZqVlaTmqX5blKFdaZq5yZu4cqShOhoIIMgSUvS5wz++PqyS5EO/lXuDzfDzO43rXOe975N77vp/x/hQryAnzJvsfX9SFmlpydZqk0vLFy7zQyYVxt2Z+6ptIhrSoJiVDANM2nuPn4/EMbFW3bCDzfyVnFdDp832UqmV2TepCI1fdD/y9XXb+Zp4KH0dLVo1qg6e9AZUnvYfwhEze3XCWyJQcJAkm9/BjQrcGKO/R4iZo1/XsQjp+tpcStcyGVzuIWXoCAD2/PED09Vy+fKEFzwZ6PPb+sguLaT97D3mqUn4a3ZZODe/9A1JXjh+H/Hzo2vXf2xISYOJEzZpmAE5uJbj2jiDbWTN+x97ShOFtvWjmYUuBqpQTcRmk5RRRopZRyzIlaplStZqSUs31UrVMI1cbujZyooOvA9ZmxpxPzGLdiQQ2hyeSU/hvF6Gfkw2WcQ35+1cn0lM1c+QDGsvM/lSif3/Dmy0mkiEtKjuZN25gY1/9uz1OxWcwcNERzIwVnHz/yft2Sb22Jozt51J4urkb3wxtVSWxxaTl8tIPx0nMLMDJ2pSVI9vQ2N3wEtCkzALm7oxkc7hmAK+jlSlfD2lZbtacoHv/W3+G38KuEeRVhw2vddB3OIIBWPBnFAv3XqZ3E1e+HxGklX3O2HKelUev0iPAmWUvt9bKPrXhjz/gjTfg6q1KKIEdCyisH0OecwKS0b9jhWzNjfF3tSbAzYYAN81lHQsTUrILScosICmzkOQszWVSZgHJWQVk5BeXPb+unTk9vb1RxnuwYokJMZrVhPD2ho8+gmHDDLd2kEiGtKjsZP76KzaDB+s7nMcmyzIh8/YTfzOf2c82ZWjbe/eDRyRn0+f/DgGwc1Jn/F2rJim5nl3Iyz8eJzIlBzNjBWM61WdcSH2szfQ/CDmvqITFB2JYciiWwmLNh82gVh5M7dMIZ2sxW6yqXU7NpccXBwD4dmggTzXX7fg2wfCdT8zi6YV/Y26s5PSHT2Jm/Pjf0jFpuXRfcABJgv3/60o9B0stRKodeXkwaxYsWAAltxpwLKzUeAdnYB5wjZs2iah59K94E6WCdk6eWKV4E37QkqNH/23ycXaGDz6AsWMNY7X5BxHJkBaVncwBA7C53S5ZzX25O5r/23MJFxtT/nnv/vMeJ6w5xbZzyVr9lVURWQXFTFhzir8vpwPgYGnCpB4NGdLGC2Nl1U+AVKtlfjt1jfm7oki9tS5WG297Pni6ca1aVsQQtZr1JzfzNPVNdkzsTH0nA1vwSKhSsizT6fN9JGYWsHhEEL1urWr/uF7+8TgHotMY3cmHD55urJV9alNUFPz4I6xdC9fumCzs7i7T5UkV5k4FFBjnkCFlklh8kwKjPNztzHG1McPeyApzlRVSniUl2Wbk3TAl7KgJZ8LL93l16ACDB8OYMYa3rtj9iGRIi8pO5rlz2DRtqu9wtCIps4AOn+0F4MOnAxjVqf49H3fpeg49vzqILMPWNzrRtG7VffHLssyuC9f5fGdk2QyH+k6WTO3tT8/GLlU2kPFY7A1mbb1YNo3Uy96C9/r606uJq1hk1QCMWXmCvyI0s1vcbM3YPKEjLjaila42+3TbRZYeuqLVH3H7olIZufwE1qZGHHuvO5YGOuNVrYZDhzRJ0fr1kHHvtbkxMpJxcZHIyNCMSboXhUIzVmngQHj2WXCvhg2vIhnSopo2gPo23/e2U6qWMVJIbJ/YGT+Xew+SnvjLabaEJ+mtv7y4VM3Px+P5v78ulc2MaONtz7S+/gR66WbQ7KXrOWw/l8KO88lEpuQAYG1qxBvdG/ByB29MjQy0g7wWWrT/MnN3RpVd93e1Zt249qK2Uy0WmZJN768OYayU+Oe9Hthbmjz2PtVqme5fHOBKeh6z+jdhRHvvxw9Ux4qKYOdO2L9f01p07Zpm8HVysiZpupOLi6bIo5eX5rJ5c+jXDxyr+TBIkQxpUU1Nhlp+9CeZBZpBcj4OFvz+Rqd7jsuJTdOMy1DLsHlCx7LCZlUtp7CY7w/EsOzQFYpuFWfs2diFro2cCapXh4bOVvesm1QRsiwTfT2XbeeS2XEumUupuWX3GSkkhrTxZHIPPxzEdHmD88eZJN74+XS529r42LNqVButjBcRqqdnFv7NucQsPny6MaM6+WhlnysOX2HmHxfxdbJk9+SQSn/e6FtJiSYhSk4Ge3vw8ACzGtqYKpIhLSo7matWYbNuHXzxBfj56Tusx9Z9wX5i0v4tsNWriQvfDw+6Z9fP27+eYcOpa4T4ObFyVJuqDPMuyVkFLPgzmg2nrnHnX661qREtvewIqleHVl51aOllh81/kruiklKy8ovJKigms6CYzPxiziRksv18MrF3nAtjpUTnhk70aepKz8auWqlXIujGmYRM+n97+K7bezVxYdGwIFHmoJZadTSOD7dcIMDNhh0TO2tlnzmFxbS/Vexz1ag2dPFz0sp+Bd15lGTIMDs+DdGqVfDXX9CyJXzyib6jeWz/7UbYdeE6iw/GMv4exbImdm/I5vBEDkSnEXb1JkH19FdiwM3WnPmDWzCmsw9bzyRzKj6D8IRMcopKOHQpnUOXNIOuJQkaOFmhVEhk3kqACopL77tfEyMFXRo60beZK90DXEQ3SzXhdZ9aVAei0zgYnUY3f+cqjkgwBP1auPPJ1ggikrM5n5illfGO1mbGPBfkwYojcaw4EieSoRpGJEMVNWyYJhlauVJTXMFQCytU0L26xObujKR5Xdu76uV4OVgwOMiDX04k8MXuaNaMaVdVYd6Xv6tN2XT/klI1kSk5nI7PIOxqBqfiM4m/mV+uu+s2SdIkgnbmxtiaG+NRx4KeTVx4wt/ZIKbvC4/GzsIYa1Mjcu5YO+qFYE/e6d1IdGvWYnYWJjzZxIVtZ5P5Leya1iZ/vNzBmxVH4tgbmcqV9Dx8HA1nmr3weEQyVFF9+0KdOppRaHv3wpNP6juix2Jtdvd/vamRkv3RafcsHvj6Ew3YcOoahy/f4FjsDdrVd6iKMCvESKmgaV1bmta1LRvYmJZTxPnELIyU0q3kxwTbW1+c1bWvX7ibJEl42luQVVCMg5UJZ69lUVyqFomQwHNBHmw7m8zm8ESm9fXXysQHH0dLujVyYl9UGiuPxDGzXxMtRCoYArFqfUWZmWkWigFYsUKvoWjDf1tBjBQSOyZ15r2+Afd8vEcdC15o7Qlo1i4z9KFmTtamdPN3pnNDJ5p72OHlYIGtubFIhGqgOQObsX9KVz7uryl9sfVsMjdyi/QclaBvXRo64WJjSmZ+MXsjUh/+hAq6PSB77fF4kjILtLZfQb9EMvQoRo7UXG7cCJmZeg3lcTVwtuL1bg3Y93YILT3tKFHLrD+Z8MDnTOjWABMjBcev3OTw5RtVFKkgPFgLTzuMlQpaetrRwsMWVamaX048+G9ZqPmUComBrTTrk60Pu/aQR1dcpwaOtPGxR1Wi5qu/orW2X0G/RDL0KIKCoEkTKCyEX3/VdzSPZXQnH/7XqxE+Tla82lUzaHrV0avkFBbf9zlutuYMbeMFwBe7owy+dUiofV661U265thVSkrVD36wUOMNDtIkQ/ujUknNLtTKPiVJ4t0+/gD8FnaNS9dztLJfQb9EMvQoJAlCQ6FdO3DVTpl3Q/BkgAu+TpbkFJbw8/H4Bz72tW6+mBkrOBWfyf7otCqKUBAq5qnmbthbmpCUVVhWmVqoveo7WRFUrw5qGTaeTtTaflt51aFXExfUMszdFfXwJwgGTyRDj+qtt+DoUU15zhpCoZAYd2tKvaao4f2noDtbmzGinWZx1y+rwdghoXYxM1Yy5NbYtlVH4/QbjGAQnrvVOrT+ZIJWP6+m9PJHIcHui9c5GXdTa/sV9EMkQ49KUTNP2YCWdXG1MSM1p4hNpx78C2p8iC8WJkrOXssSv74FgzOsXT0UEhyJuSG6MASebu6GmbGCmLQ8Tidkam2/DZyteD5Yk3h/vjNS/DCs5mrmN3tVyMiAZcs0tc1rABMjBWM6a2ZJLD4YS6n6/m9sBytTXu7gDWg+BB7UkiQIVa2unTlPNnYBNOPghNrN2syYPk3dAM0YH22a1MMPUyMFJ+Iy2CN+GFZrIhmqDLUamjWDsWM1hRhriBfbeGFrbsyV9Dx2XUh54GPHdamPo5UJl1Nz+XZfTBVFKAgV8/KtgdQbTl0j+wGTAoTa4fZA6j/OJFH4gEr0j8rV1qxsqv3cXZEP/BEpGDaRDFWGQgEDB2r+/eOP+o1FiyxNjXi5vWY80PcHYh7Y7GtnYcJH/TR1XRbtu0xEcnaVxCgIFdHe14EGzlbkq0rZqOXWAKH6aVffAY865uQUljz0h96jGh/ii625MdHXc9l4SvytVVciGaqs2zWHtmyBGzWn5s7LHbwxM1Zw9loWR2Ie/Lr6NnOlZ2MXStQyUzecFVOZBYMhSRIv3UrsVx29ilr8Yq/VFAqJQbdrDp3UbsJia27MhG6aCShf7o7WasuTUHVEMlRZgYGaRVtVKli7Vt/RaI2DlSlDWmtqCX23/8HdX5IkMWtAU6zNjDh7LYvlh+OqIEJBqJiBrTywMjUiNj2PwzHp+g5H0LPbs8oOx6STqOXK0S+198bN1oykrEJWi3Fq1VK1SYY+/fRTOnTogIWFBXZ2dhV6TmhoKJIkldvatdPiIqOjRmkua1BXGcCYzj4oFRJ/X07n3LWsBz7WxcaMD55qDMD8P6OIS8+rihAF4aGsTI0Y1KouACuPiC+o2s7T3oJ29e2RZdig5a5TM2Mlk5/0A+CbfZfJKhDj1KqbapMMqVQqBg8ezKuvvvpIz+vduzfJycll2/bt27UX1NChYGIC4eFw+rT29qtnHnUs6NfCHdCMHXqYwcEedGzgQFGJmqkbzoouCcFg3F64d0/kdRJu5us3GEHvBgdppsL/FnZN61PhB7XywM/FiqyCYhZX4HNTMCzVJhn66KOPmDx5Ms2aNXuk55mamuLq6lq22dvbay8oBwd49llQKuH4ce3t1wCMC6kPwPbzyVx5SGuPJEnMebY55sZK/rlyU6wLJRiMBs5WdGrgiCzDT/+I1qHark8zV6xMjYi/mc/xK9otlKhUSEzppVmm48fDV7iupeU/hKpRbZKhytq/fz/Ozs74+fkxduxYUlMfXAuiqKiI7OzsctsDzZ4N167BuHFajFr//F1t6O7vjCzDkoMP/5Xj5WDB/3o1AmDO9giSs8RqzoJhuD2Qet2JBDG4tZazMDHiqWaamkPaXLz1th4BzgTXq0NhsZqv/rqk9f0LulOjk6E+ffqwZs0a9u7dy4IFCzhx4gRPPPEERUVF933OnDlzsLW1Lds8PT0ffJD69WvUOmV3ur2A64awxAr9ygnt4E1LTztyikp4f9N5UZFVMAjdA1yoa2dOZn4xSw/G6jscQc8GB2sGUm8/l0xekXaL5t65iOuvJxOIScvV6v4F3dFrMjRz5sy7Bjj/dzt58mSl9//CCy/w1FNP0bRpU5555hl27NhBdHQ027Ztu+9zpk2bRlZWVtmWkPAIXT4p2q1foW/B3vYE16uDqlTNj39feejjlQqJuc81x1gpsScylT/OJldBlILwYEqFxKQeDQH44q9o9keJSsG1WVC9Ovg4WpKvKmWTFhdvvS3Y254eAS6UqmXm7ozU+v4F3dBrMvT6668TERHxwK1p06ZaO56bmxv16tXj0qX7N1+amppiY2NTbnsolQp69IC6deFqzRqXcLt1aNXRqyRVYDqqn4s1bzyh+eKZ+fsFbuTevxVOEKrK4GBPXmzjhSzDmz+f5uoNMeuxtpIkqWyx6R/+vqKTCR9TezdCIcGuC9fZcU78KKwO9JoMOTo64u/v/8DNzMxMa8e7ceMGCQkJuLm5aW2fgGZGmVqt2Vau1O6+9ewJf2faeNtTUFzKp9sjKvSc8SG++LtaczNPxcdbL+o4QkGomJn9GhPoZUd2YQnjVoeRr6oZ6woKj+751p7YmBlxJT2PvyKua33/DV2sGR+i+SH53qZzpIrB1Aav2owZio+PJzw8nPj4eEpLSwkPDyc8PJzc3H/7ZP39/dm0aRMAubm5/O9//+Po0aPExcWxf/9+nnnmGRwdHXn22We1H+DtmkPLl2uSohpCkiRm9muCQoJtZ5M5UoHidSZGCj4f1ByFBFvCk9ijgw8bQXhUpkZKvh8ehKOVKZEpObzz21kxrq2WsjI1Ytit1qGlh3QzjmxSDz8au9mQkV/M1A3ib83QVZtk6MMPPyQwMJAZM2aQm5tLYGAggYGB5cYURUVFkZWlKRKoVCo5d+4c/fv3x8/Pj5dffhk/Pz+OHj2KtbW19gMcOBBsbCAuDvbu1f7+9aixuw3D2mo+OGb+foHiCiy70cLTjjGdNdPzp286LxbLFAyCi40Z3w1vhZFCYuvZZJ19EQqGL7SDN8ZKiRNxGZyKz9D6/k2MFHz5QktMlAr2RaXx83FRcsSQVZtkaMWKFciyfNfWtWvXssfIskxoaCgA5ubm7Nq1i9TUVFQqFVevXmXFihUPnx1WWRYWmiKMAD/8oJtj6NHbPf2oY6FZjLCi5eYn9/DD28GClOxCXl97ukJJlCDoWmtve2Y8o6ma/tmOSP6+JJbqqI1cbMzo31JToXyZjpLiRq7WTLlVcuSTbRfFWDUDVm2SoWph7FjN5caNNWrxVtCsUn+7oNiXf0WTXoGB0eYmSr5+MRBzYyUHo9P4YLOYbi8YhuHt6jE4yAO1DK//fEpUp66lxt5qvd55PkVnicroTj609bEnX1XKW7+eoVRU6DdIIhnSplatNAu4qlSwZo2+o9G6F1p70rSuDTmFJRWeMtrcw46vXwxEIcEvJxL4Zu9lHUcpCA93e5Hh5h62ZOYXM251GAUqUZCxtmnkak3XRk6oZc3MMl1QKCQWPN8CK1Mjwq5mVGiJI6HqiWRI22bOhFWrYMwYfUeidUqFxEf9NKUOfj15jdMV7Gd/srELH/VrAsCC3dFaXyRRECrDzFgzoNrB0oSLydlM2ygGudZGr9xqHfr1ZAIZeSqdHMOjjkVZ1+xXf0VzIenBC2ALVU8kQ9rWrx+MGKEZQ1QDBdWrw8BbK4HP/P1ChWt0jGjvXbbe2dQNZzl8WYzTEPTP3c6cb4e1QqmQ2ByexPLDcfoOSahi7X0daOJuQ2Gxmp+O6a5O3HNBHvRs7EJxqczkdeFiaRgDI5Ih4ZG928cfK1MjzlzLYn1YxWdITO3lz9PN3ShRy4xfHUZUSo4OoxSEimlX34HpfQMA+HR7BEdjatZ4P+HBJEnilS6aH2orj8bpLEmRJIk5A5vhaGVC9PVcFvwZpZPjCJUjkiFdKC6GL76ANm0gp+Z94Ttbm5UtbzB3ZxRZBRWbNq9QSMwf3II2PvbkFJUQuvw4KVmiGJmgfyM7evNsYF1K1TKvrz3FnxdSOBl3k6iUHJKzCsgtKhFdaDVY32ZuuNuakZ6rYrMOlui4zcHKlM8GNgdg2d9XOBYrEm9DIcniHf5A2dnZ2NrakpWVVbGlOQBkGQICICoKli6tkeOHikvV9Pm/Q1xOzSW0gzczb40JqojMfBWDvjtCTFoeAW42/DquHdZmxjqMVhAerkBVynPfH+FCUvY971dImmJ91mbG2JgbY21mhEcdc8Z18aWRqw5qlwlVatmhWD7ZFoGvkyW7J4egUEg6O9bU386y7mQCde3M2Tmps/j805FH+f4WLUO6IEn/JkDLluk3Fh0xViqY+YwmAVp97CqRKff+ArkXOwsTVoxsg6OVKRHJ2by25pSoQSTonbmJkqUvBfNUczea1rWhnoMF9pYmGN36UlTLkF1YQmJmARHJ2Ry/cpONpxLp838HmbbxLKk5opWzOhvSxgtrMyNi0vLYG6nbxXw/eKYxnvbmJGYW8NEfYskiQyBahh6iUi1DAKmp4OGh6TI7exaaNdNdkHo0fnUYOy+k0NbHnl9eaYckVfzX1Nlrmbyw+BgFxaU8H+zB54OaP9LzBaEqyLJMYbGanMJisgtLyi6zC4rZfi6ZHedTALAwUTI+xJexnetjbqLUc9RCZczZEcHiA7G08bHn13HtdXqsE3E3eX7xUWQZFo8IolcTV50erzYSLUOGwNkZ+vfX/LuGtg4BTH8qAFMjBf9cucnWs4+2OnNzDzu+GaqpQfTryWt8vUfUIBIMjyRJmJsocbYxo4GzFYFedQjxc+KZFu58NzyI38a3p6WnHfmqUr7YHU3X+ftYfzJBJ6uhC7o1soMPRgqJ41duEp6QqdNjtfa2Z1wXzWKu0zaeE+Mn9UwkQ7p0u6ts9WoorJl/6J72FrzWtQEAs7dHkFf0aCuBdw9wYdYATe2iL/+KZt2JeK3HKAi6FOxtz6bXOvD1i4HUtTPnenYRU347y9ML/+aIKCFRrbjamtGvpTuguwVc7zT5yYYEuNlwM0/FsGXHuFGByv6CbohkSJd69AAvL8jIgA0b9B2NzowLqY9HHXOSswr5dt+jt+4Ma1uPV7tqfiFN3XCOOdsjKBFjiIRqRJIk+rVwZ8/bIUzr44+1mREXk7MZuuwfRq84weXUmjertKa6vUTHjnPJOl+mxdRIydKXgnCzNSMmLY8RPxyv8OxcQbtEMqRLSiW89ho8/zw0aqTvaHTGzFjJB09rqqsuO3SlUh/8U3o2Kqv1sfhgLMOW/SMGpArVjpmxknEhvhyY0o3QDt4YKST2RKbS66tDzPz9AqoSkeQbugA3Gzo3dNTpEh138qhjwZoxbXG00lRCH7n8+CO3sAuPTwygfohKD6CuZWRZZuSKE+yPSqOBsxVbJnTE0tTokfez/VwyU9afIU9VirO1KYuGtSLY214HEQuC7sWm5TJnRyS7L14HoHNDR74fHlSp94ZQdQ5dSmPED8exMFFy5N0nsLMw0fkxI5KzGbLkGFkFxXTwdeDH0NaYGYuB+I9DDKAWqpwkScx7rgXO1qZcTs3l3Y3nKlWkrm8zN35/oxMNna1IzSliyJJj/PD3FVHwTqiW6jtZsfSlYH54ORgLEyWHLqUzdKkYG2LoOjVwJMDNhnxVKWv+qZpxjAFuNqwc1QZLEyVHYm4wQZQcqVIiGaoqkZEwdSoUFOg7Ep1xutWSY6SQ+ONMEiuPxFVqP75OVmye0JFnWrhTopaZtfUir/98mlzRdCxUU90DXFg7th11LIw5cy2Lwd8f1fl4FKHyNEt0+ACw/HAcRSVVs45YS087fghtjamRgj2RqUxeF06pmJVYJUQyVBVkGfr2hblzYf16fUejU8He9rx3a52nT7ZFEHa1Yivb/5elqRFfD2nJzGcaY6SQ2HY2mQHfHhYDUYVqq6WnHb+92oG6dubEpucx6LsjRCRXvFipULWebu6Oq40Z6blFbDmdVGXHbVffge9HBGGslNh6NplpG8+KMg1VQCRDVeHOitSLF+s3liowsqM3T91akHXCmlOkV7JLQJIkQjv6sG5cO1xsNN1v/b85zNazVffBJAja5OtkxYZXO9DIxZrUnCKeX3yUf8T6VAbJWKlgVCdvAL4/EFOlXVbdGjnz9ZB/a7B9vPWiGCqgYyIZqiqjRoGRERw5AufP6zsanZIkic8HNcfXyZKU7ELe/Pn0Y02VD6pnz7Y3O9O+vgN5qlJeX3uaj/+4KPrThWrJ1daMX8e1p7V3HXIKSxjx43F2XUjRd1jCPbzYxgt7SxNi0/P45URClR67TzM35j7XAoAVR+JY8Gd0lR6/thHJUFVxdf23InUtaB2yMjXi++FBmtkYMTf4YvfjvZEdrUxZPboN40M09Yh+PHyFwd8f5WB0mvjFJFQ7thbGrB7dlh4BLqhK1Lz6Uxg/HxcFRw2NtZkxk3o0BOCr3dHkFFZtDaDngjyY1V+zBuQ3+y6zaL+o0q8rIhmqSuPGaS5XrYK8PP3GUgUauljz2aDmACzaH1M2vbiyjJQK3u3jz+IRQVibGhGekMlLPx6n79d/s+n0NdFSJFQrZsZKvh/eiheCPVHLmiUZFu65JJJ7A/NiGy/qO1lyI0/Fov0xVX78Ee29mdrbH4C5O6MqPTFFeDCRDFWl7t3Bxweys+GXX/QdTZXo18Kd0A7eALz1azhXbzx+EtiriSu7JndhZEdvLEyURCRnM3ndGbrM3cfSg7FV/utNECrLSKngs0HNeL2bZkmbBbujmfH7BTGDyIAYKxVM66OZFPLD31e4llH1swBf7epb9jcy4/cLLD0YKwZVa5lIhqqSQvFv69C2bfqNpQq91zeAoHqa8RHjfzpFgerxp6m625kz45kmHHn3Cab0aoSjlSnJWYV8uj2CDp/tZc6OCK5niwrWguGTJIn/9WrEzGcaI0mw6uhV3vzldJVN5xYerkeAM+3q26MqUTN/V5ReYni7px8jO3oD8On2CF5eflx8xmmRqED9EFqvQJ2XB40bw7VrsH079Or1+PusBlKyCnnq60PcyFMxqJUH8wc3R5Ikre2/sLiULeGJLDkYS0yapvXJWCnRv2VdXulSHz8Xa60dSxB05Y8zSbz1azjFpbJO3idC5Z27lsUz3/wNwJYJHWnhaVflMciyzE//xPPptosUFquxszDms4HN6N3UrcpjqQ4e5ftbJEMPoZPlOFq3hpMnwdYWjh8HPz/t7NfAHbmczvAf/kEtw5yBzXixjZfWj6FWy+yNTGXJwViOx90su71rIycGtfKguYctXvYWVfYFU1RSyt+X0om+nlu2GO3DqNUyOYUlZOSryMhXkVlQTGa+CoUk4WhlioOVCY5WptSxMEGpEF+UNc3+qFRGrTiBWobZzzZjaFvtv0+EynlrXTgbTyfSxtuedePa6S1RvZyaw6R14ZxP1NSpej7Ygw+faYKVWOalHJEMaZFOkqG+fWHHDs2/GzT4NzGqBRbtv8zcnVGYKBX89mp7mnvY6exYp+MzWHoolp3nU7ize93azIim7rY0rWtD07q2NK1ri4+DJQotJRb5qhIORKWx43wKeyNTyS0qIcDNmu+HB5GcVUhKViHJWYWk5xZpkp18TbKTmV9MRr6KrIJiKjIcQCGBvaUJDpb/Jki3Lx2tTGjspnmNomWh+vlufwyf74zERKlg/fj2emmFEO6WlFlAt/n7KSpRs3hEEL2auOotFlWJmi//iub7AzHIMtRzsODLF1rSyquO3mIyNCIZ0iKdJEMvvQSrV/97vW9f+P13zSr3NZxaLfPK6jD+irhOXTtztr7RiTqWul0E8eqNPFYdvcqJuJtEJuegusesM0sTJU3cbWlS14am7rY087DF0cqUUrWMWpbLLtVqKL11XZblsn/nFJZwMDqNQ5fSiUjOpkQLgxstTJTUsTDBzsIYOwtj1GpIzy3iRp6mxagi71wfR0v6tXCnX0t3fJ2sHjsmoWrIsuZ9svti1b1PhIqZtyuSb/fF4ONoya5JXTAx0u/Q22OxN3j71zMkZhagVEi88UQDXu/WACOlGBIskiEt0kky9Pbb8MUX5W+bOhU++0w7+zdwWQXF9Pvmb67eyKeDrwPLXg7GwqRqmneLS9Vcup7L+cQszidlcS4xi4jkbAqLdT8t38xYgbutOa62ZrjamuFkrenqsjM3xs7ChDoW/17aWhhjanT/5LikVM3NfBXpOSpu5BVpkqRcFem5KtJzi7ieXciJuJvlXlezurb0b+muWWbA1kznr1d4PNmFxfRb+DdxN/Lp4ufE8tDWolvUAOQWldB13j7Sc1XMeKYxIzv66DsksgqK+XDLebaEa6rzB3rZ8dULLannYKnnyPRLJENapJNkaM4ceO+9u2//6ScYNkw7xzBwF5OyGfTdEQqKS2nlZcePoa2xs9DPL9+SUjWx6Xmcu6ZJkM4nZnEhKZv8W7PeFBIoFRIKSbNp/q25TQZKSmVUpWpUJfdPqHwcLdn7dkiVdlnlFpWw+2IKW8KTOHQpvWy6tiRBOx8H+rd0p09TN2wtjKssJuHRRCRn8+yiwxQWq5nYvSGTn6wd4wsN3Zp/rjJ903nsLIw5MKUbtuaG8R7aEp7I+5vPk1NYgolSwds9/XilS/1a21UukiEt0kkytGwZjB179+1eXnDmDNjZaec4Bi7sagajVpwgq6AYPxcrVo1qazAtFrIsI8uaxKGiHyR5RSUcupTOnojr7ItKJT1XVXZffSdL9r7dVUfRPtyN3CK2n0tmS3gSJ+9YPNdYKdG1kTP9W7rT3d8Fc5Oa31Vb3WwIu8bb688gSfBjaGu6NXLWd0i1Xkmpmj7/d4hLqbm80qV+2eLUhuBaRj5vrD3N6YRMAGzMjRjaxovngz2pX8u6ykUypEU6SYY2b4Znn/33uiTBokWa9ctMate4gOjrOYz44R+uZxdR186c1aPb1Ig3rFotE34tkz0R19kTkUphcSn7p3TTd1gAJNzM54+zSfwenkRkSk7Z7U7Wpnw2sBndA1z0GJ1wL9M3nWPNP/HYmhuz9Y1OeNpb6DukWm9fZCojV5zARKlgz9shBvV/UqqWmb7p3F3rqdW1M2NgYF36NHMnwM26xrcYiWRIi3SSDB0+DAMGQGgoHDgAJ07Ahx/CRx9pZ//VTMLNfF768ThX0vNwsDRhxcg2NPOoWbPr0nKKcLI21XcYd4lKyeH3M4lsPp1EYmYBAENae/L+043FNF0DUlRSyvPfH+XMtSya1bVl/fj2mBmLVjx9kmWZET8c5+/L6Tzd3I1vhrbSd0h3+WDzOVYfu/ead3XtzBnWzovXujao4qiqzqN8f4vh5vrQqpWm6OK8eZrB1KBJkGopT3sL1o9vT9O6NtzIU/Hi0mMciUnXd1haZYiJEEAjV2um9PJnz9shjO3sgyTBLycS6PN/B/kn9oa+wxNuMTVSsmh4EHUsjDmXmMVHf1zUd0i1niRJvNc3AEmCrWeTORWf8fAnVbGP+jWlayOne96XmFnAweg0TsVniPXwEC1DD6WTlqE7qVRw9Ch06aLpLqvFcgqLeWVVGEdjb2CiVPD1iy1FZdUqduc0XUmCsZ3r89aTfqIVwkAciE4jdPlxZBnmPdecwcGe+g6p1puy/gzrw67RysuODa92MLiup4w8FU8v/Lus5fdeGrvZMLxdPfq3dMeyBrUIi5ah6sTEBEJCan0iBGBtZszyka3p3cQVVama19ac4pfj927iFXSjXX0Hdk7qzAvBnsgyLDkYS79v/uZ8Ypa+QxOAED8nJnXXzCh7f/N5LiSJ/xd9e7tnI8yNlZyKz2TH+RR9h3OXOpYmfDusFcbKf79jvOzNWTu2LYNaeWBqpOBicjbvbTpHu9l7+HDLeU7FZ2hlDcnqpFq0DMXFxTFr1iz27t1LSkoK7u7uDB8+nOnTp2PygAHHsizz0UcfsWTJEjIyMmjbti3ffvstTZo0qfCxdd4ydKf8fM3m6Kjb4xi4/w7+e6d3I14N8TW4X1w13V8Xr/PuxrOk56owUkhM6tGQ8SG+opibnqnVMqNWnmB/VBpe9hb88UYng5naXVt9sTuar/dcwsvegt1vdXlgjTB9WXU0jg+3XECpkFg/vn1ZperMfBW/hV1jzT/xXEnPK3u8JIG3gyX+rtY0crXG39UGf1drvOwttFatX9dq3ADqnTt3sm7dOl588UUaNGjA+fPnGTt2LCNGjGD+/Pn3fd7nn3/Op59+yooVK/Dz8+OTTz7h4MGDREVFYW1dsYU7qywZWrUKJk6EoUPh2291d5xqQpZl5u2KYtH+GADGdPLhvb4B1eZNWFPcyC1i+qbz7Lyg+cXb0tOOL55vUSNm/FVnmfkqnvpa0/XRI8CZJSOCxXtDj/KKSug6fz9pOUW8/1QAYzrX13dId5FlmTd/Cae+o+U961Wp1TJHYm6w9vhVjl+5Wa40yJ3MjZX4uVoTcCtJup0o1bEwNrgfrDUuGbqXefPm8d133xEbG3vP+2VZxt3dnUmTJjF16lQAioqKcHFx4fPPP2fcuHEVOk6VJUN790L37mBlBYmJoOtWqGpi2aFYPtkWAcCgVh58NqgZxqJlokrJsszm8EQ+3HKBnMISzIwVvNc3gOFt64kvYD06dy2LQd8fQVWiZkqvRkzoVnNnBVUH607EM3XDOWzMjDj4Tje9FZF9kLyiEkyNFBVq3U3LKSIqJYfIlGwib11GX8+9b3FZSQITpQJTIwWmxkrNpZECE6N//337dhMjBaa3YpAB9a26bjL/1niTuXUp37ofMFJIOFiZ4GytqeDvbG1669IMRyuTu15XrUiG3n//fXbu3MnJkyfveX9sbCy+vr6cOnWKwMDAstv79++PnZ0dK1eurNBxbp/MzMxMbHW5mKosQ+PGEBkJCxfC66/r7ljVzIawa7yz4Sylapnu/s58O6yVGNCrB0mZBUz57QyHL2tmmXVu6Mjc55rjZmuu58hqr1+Ox/PuxnMoJFg9ui0dG9TuLnZ9KlXLPPX1ISJTchjV0YcPn2ms75C0rqRUTdyNfCJTsolKySEiOYeo69kk3Lz/4OyqIklgb2GC0x0JkrWymI+ea11zk6GYmBhatWrFggULGDNmzD0fc+TIETp27EhiYiLu7u5lt7/yyitcvXqVXbt23fN5RUVFFBUVlV3PysrCy8uLX/efplegjps+Fy+Gd94BX1/NSvYK0QJy277IVN5efwZViZrngz348JmKj/sStEetlvnlRDwLdkdTVKymWV1b1o5ta3DN47WFLMt8sPk8m8OTsLcwZuvEztiYifFD+nL4cjrjVodhrJTYPKFjrVkbLF9VQl5RCUXFalRqNapiNUUlpahKNEsVFZWoUZWUoiq549+3FsxW3PrskCQJCc3yR5Ikaar/37odCSQkSkrVt9ZgLCItt4j0HBXpuYXcyCsuW27oTuqifBK/C61YY4asRzNmzJC51TJ2v+3EiRPlnpOYmCg3aNBAHj169AP3ffjwYRmQk5KSyt0+ZswYuVevXo8Vk9jEJjaxiU1sYqseW0JCwkPzEb22DKWnp5Oe/uDiet7e3piZadarSkpKolu3brRt25YVK1ageEDLSWW7yf7bMqRWq7l58yYODg4P/fWbnZ2Np6cnCQkJup95VsOIc1d54txVnjh3lSfOXeWJc1d5j3LuZFkmJycHd3f3B+YLAHqtruTo6IhjBaeRJyYm0q1bN4KCgli+fPlDX5iPjw+urq7s3r27LBlSqVQcOHCAzz///L7PMzU1xdS0fLVgu0dcONXGxkb8gVeSOHeVJ85d5YlzV3ni3FWeOHeVV9FzV9GxvtViUEpSUhJdu3bF09OT+fPnk5aWRkpKCikp5Qtc+fv7s2nTJkDTzzhp0iRmz57Npk2bOH/+PKGhoVhYWDB06FB9vAxBEARBEAxQtai7/eeff3L58mUuX76Mh4dHufvu7OWLiooiK+vfiqzvvPMOBQUFvPbaa2VFF//8888K1xgSBEEQBKHmqxbJUGhoKKGhoQ993H+HP0mSxMyZM5k5c6ZuAvsPU1NTZsyYcVc3m/Bw4txVnjh3lSfOXeWJc1d54txVnq7OXbWcWi8IgiAIgqAt1WLMkCAIgiAIgq6IZEgQBEEQhFpNJEOCIAiCINRqIhnSsW3bttG2bVvMzc1xdHRk4MCB+g6pWikqKqJly5ZIkkR4eLi+wzFocXFxjB49Gh8fH8zNzfH19WXGjBmoVPdefVqARYsW4ePjg5mZGUFBQRw6dEjfIRm8OXPm0Lp1a6ytrXF2dmbAgAFERUXpO6xqZ86cOWUlYISKSUxMZPjw4Tg4OGBhYUHLli0JCwvTyr5FMqRDGzZsYMSIEYwcOZIzZ85w+PBhUePoEb3zzjvl1pYT7i8yMhK1Ws3ixYu5cOECX375Jd9//z3vvfeevkMzSOvWrWPSpElMnz6d06dP07lzZ/r06UN8fLy+QzNoBw4cYMKECRw7dozdu3dTUlJCz549ycvL03do1caJEydYsmQJzZs313co1UZGRgYdO3bE2NiYHTt2cPHiRRYsWPDIRZHv66ELdgiVUlxcLNetW1detmyZvkOptrZv3y77+/vLFy5ckAH59OnT+g6p2pk7d67s4+Oj7zAMUps2beTx48eXu83f319+99139RRR9ZSamioD8oEDB/QdSrWQk5MjN2zYUN69e7ccEhIiT5w4Ud8hVQtTp06VO3XqpLP9i5YhHTl16hSJiYkoFAoCAwNxc3OjT58+XLhwQd+hVQvXr19n7NixrF69GgsLC32HU21lZWVhb2+v7zAMjkqlIiwsjJ49e5a7vWfPnhw5ckRPUVVPtwvdir+zipkwYQJPPfUUPXr00Hco1crvv/9OcHAwgwcPxtnZmcDAQJYuXaq1/YtkSEdiY2MBmDlzJu+//z5bt26lTp06hISEcPPmTT1HZ9hkWSY0NJTx48cTHBys73CqrZiYGBYuXMj48eP1HYrBSU9Pp7S0FBcXl3K3u7i43LXMj3B/sizz1ltv0alTJ5o2barvcAzeL7/8wqlTp5gzZ46+Q6l2YmNj+e6772jYsCG7du1i/PjxvPnmm6xatUor+xfJ0COaOXMmkiQ9cDt58iRqtRqA6dOnM2jQoLIFZiVJYv369Xp+FfpR0XO3cOFCsrOzmTZtmr5DNggVPW93SkpKonfv3gwePJgxY8boKXLDJ0lSueuyLN91m3B/r7/+OmfPnuXnn3/WdygGLyEhgYkTJ/LTTz9hZmam73CqHbVaTatWrZg9ezaBgYGMGzeOsWPH8t1332ll/9ViOQ5D8vrrrzNkyJAHPsbb25ucnBwAGjduXHa7qakp9evXr7UDNCt67j755BOOHTt2V7n14OBghg0bxsqVK3UZpsGp6Hm7LSkpiW7dutG+fXuWLFmi4+iqJ0dHR5RK5V2tQKmpqXe1Fgn39sYbb/D7779z8ODBu9aMFO4WFhZGamoqQUFBZbeVlpZy8OBBvvnmG4qKilAqlXqM0LC5ubmV+z4FCAgIYMOGDVrZv0iGHpGjoyOOjo4PfVxQUBCmpqZERUXRqVMnAIqLi4mLi6NevXq6DtMgVfTcff3113zyySdl15OSkujVqxfr1q2jbdu2ugzRIFX0vIFm6mm3bt3KWiIVCtH4ey8mJiYEBQWxe/dunn322bLbd+/eTf/+/fUYmeGTZZk33niDTZs2sX//fnx8fPQdUrXQvXt3zp07V+62kSNH4u/vz9SpU0Ui9BAdO3a8q4RDdHS01r5PRTKkIzY2NowfP54ZM2bg6elJvXr1mDdvHgCDBw/Wc3SGzcvLq9x1KysrAHx9fcUv0AdISkqia9eueHl5MX/+fNLS0sruc3V11WNkhumtt95ixIgRBAcHl7WixcfHizFWDzFhwgTWrl3Lli1bsLa2Lmtds7W1xdzcXM/RGS5ra+u7xlVZWlri4OAgxltVwOTJk+nQoQOzZ8/m+eef5/jx4yxZskRrrd8iGdKhefPmYWRkxIgRIygoKKBt27bs3buXOnXq6Ds0oQb6888/uXz5MpcvX74raZTFesx3eeGFF7hx4wYff/wxycnJNG3alO3bt9faltuKuj1Go2vXruVuX758OaGhoVUfkFArtG7dmk2bNjFt2jQ+/vhjfHx8+Oqrrxg2bJhW9i9WrRcEQRAEoVYTAwoEQRAEQajVRDIkCIIgCEKtJpIhQRAEQRBqNZEMCYIgCIJQq4lkSBAEQRCEWk0kQ4IgCIIg1GoiGRIEQRAEoVYTyZAgCIIgCLWaSIYEQXgsXbt2ZdKkSfoOQyse97WsWLECOzs7rcUjCELVEMmQIAiPZePGjcyaNUvfYVQ5b29vvvrqK63vNy4uDkmSCA8P1/q+BUG4N7E2mSAIj8Xe3l7fIQiCIDwW0TIkCMJjubNrydvbm9mzZzNq1Cisra3x8vIqt6p0+/bteffdd8s9Py0tDWNjY/bt21e2j1mzZjF06FCsrKxwd3dn4cKF5Z6TlZXFK6+8grOzMzY2NjzxxBOcOXOm7P6ZM2fSsmVLVq9ejbe3N7a2tgwZMoScnJyyx+Tl5fHSSy9hZWWFm5sbCxYseKTXfPXqVSZPnowkSUiSVO7+Xbt2ERAQgJWVFb179yY5Obnc/cuXLycgIAAzMzP8/f1ZtGhR2X0+Pj4ABAYGIklS2YKoJ06c4Mknn8TR0RFbW1tCQkI4depUhWMWBOH+RDIkCIJWLViwgODgYE6fPs1rr73Gq6++SmRkJADDhg3j559/5s71odetW4eLiwshISFlt82bN4/mzZtz6tQppk2bxuTJk9m9ezcAsizz1FNPkZKSwvbt2wkLC6NVq1Z0796dmzdvlu0jJiaGzZs3s3XrVrZu3cqBAwf47LPPyu6fMmUK+/btY9OmTfz555/s37+fsLCwCr3GjRs34uHhUbbi/Z3JTn5+PvPnz2f16tUcPHiQ+Ph4/ve//5Xdv3TpUqZPn86nn35KREQEs2fP5oMPPmDlypUAHD9+HIC//vqL5ORkNm7cCEBOTg4vv/wyhw4d4tixYzRs2JC+ffuWS/AEQagkWRAE4TGEhITIEydOlGVZluvVqycPHz687D61Wi07OzvL3333nSzLspyamiobGRnJBw8eLHtM+/bt5SlTppRdr1evnty7d+9yx3jhhRfkPn36yLIsy3v27JFtbGzkwsLCco/x9fWVFy9eLMuyLM+YMUO2sLCQs7Ozy+6fMmWK3LZtW1mWZTknJ0c2MTGRf/nll7L7b9y4IZubm5e9loepV6+e/OWXX5a7bfny5TIgX758uey2b7/9VnZxcSm77unpKa9du7bc82bNmiW3b99elmVZvnLligzIp0+ffuDxS0pKZGtra/mPP/6oULyCINyfaBkSBEGrmjdvXvZvSZJwdXUlNTUVACcnJ5588knWrFkDwJUrVzh69CjDhg0rt4/27dvfdT0iIgKAsLAwcnNzcXBwwMrKqmy7cuUKMTExZc/x9vbG2tq67Lqbm1tZHDExMahUqnLHsbe3p1GjRo/9+i0sLPD19b3ncdPS0khISGD06NHlYv/kk0/KxX4vqampjB8/Hj8/P2xtbbG1tSU3N5f4+PjHjlkQajsxgFoQBK0yNjYud12SJNRqddn1YcOGMXHiRBYuXMjatWtp0qQJLVq0eOh+b4/LUavVuLm5sX///rsec+e09gfFId/RTadt9zru7ePdPv7SpUtp27ZtuccplcoH7jc0NJS0tDS++uor6tWrh6mpKe3bt0elUmkxekGonUQyJAhClRowYADjxo1j586drF27lhEjRtz1mGPHjt113d/fH4BWrVqRkpKCkZER3t7elYqhQYMGGBsbc+zYMby8vADIyMggOjq63NilBzExMaG0tPSRjuvi4kLdunWJjY29qzXszv0Cd+370KFDLFq0iL59+wKQkJBAenr6Ix1fEIR7E8mQIAhVytLSkv79+/PBBx8QERHB0KFD73rM4cOHmTt3LgMGDGD37t2sX7+ebdu2AdCjRw/at2/PgAED+Pzzz2nUqBFJSUls376dAQMGEBwc/NAYrKysGD16NFOmTMHBwQEXFxemT5+OQlHxkQPe3t4cPHiQIUOGYGpqiqOjY4WeN3PmTN58801sbGzo06cPRUVFnDx5koyMDN566y2cnZ0xNzdn586deHh4YGZmhq2tLQ0aNGD16tUEBweTnZ3NlClTMDc3r3C8giDcnxgzJAhClRs2bBhnzpyhc+fOZS0zd3r77bcJCwsjMDCQWbNmsWDBAnr16gVoup22b99Oly5dGDVqFH5+fgwZMoS4uDhcXFwqHMO8efPo0qUL/fr1o0ePHnTq1ImgoKAKP//jjz8mLi4OX19fnJycKvy8MWPGsGzZMlasWEGzZs0ICQlhxYoVZVPqjYyM+Prrr1m8eDHu7u70798fgB9//JGMjAwCAwMZMWIEb775Js7OzhU+riAI9yfJuuw8FwRBeETe3t5MmjSpxizxIQiC4RMtQ4IgCIIg1GoiGRIEQfiPQ4cOlZv6/t9NEISaRXSTCYIg/EdBQQGJiYn3vb9BgwZVGI0gCLomkiFBEARBEGo10U0mCIIgCEKtJpIhQRAEQRBqNZEMCYIgCIJQq4lkSBAEQRCEWk0kQ4IgCIIg1GoiGRIEQRAEoVYTyZAgCIIgCLWaSIYEQRAEQajV/h9qzgztu3rcBQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gU1deA39mS3fTeAwkESCgBQui9IyAiUkRQQIoFrNi7fuoPxYoFUWlSRQVRinRC772FTnpI7333fn9sshCSkIRsKvM+zz7Jzt6Ze2Z3yplTJSGEQEZGRkZGRkbmPkVR0wLIyMjIyMjIyNQksjIkIyMjIyMjc18jK0MyMjIyMjIy9zWyMiQjIyMjIyNzXyMrQzIyMjIyMjL3NbIyJCMjIyMjI3NfIytDMjIyMjIyMvc1sjIkIyMjIyMjc18jK0MyMjIyMjIy9zWyMlRHWLx4MZIkGV8qlQovLy+efPJJIiMji407evRoDUpbu1mxYgXffvttlW3fx8eHSZMmGd9HRUXx4YcfcvLkyXJvY/v27bRv3x5LS0skSWLt2rUml7OQGzduIEkSixcvrrI5aiu9e/emd+/eVT5Pu3btePHFF6t8ntrIxo0b+fDDD0v87M5zpSYJDg5GkiSCg4PLHFud52dJSJJU5Dv98MMPkSSJ+Pj4apWjpuatClQ1LYBMxVi0aBH+/v5kZWWxe/duZs2axa5duzhz5gyWlpY1LV6dYMWKFZw9e5aXXnqpSrb/999/Y2NjY3wfFRXFRx99hI+PD23bti1zfSEEY8aMoVmzZvz7779YWlri5+dXJbICuLu7c+DAAXx9fatsjvuZ69evc+LEiSpVwGszGzdu5McffyxRIbrzXKkLVPf5KVM9yMpQHaNVq1a0b98egD59+qDT6fj4449Zu3Yt48ePr2HpajeZmZlYWFhUaB2dTkd+fj4ajabc6wQGBlZUtCJERUWRmJjIiBEj6NevX6W2VUhWVhZarRZJkop9ptFo6Ny5s0nmkSnOX3/9hYuLC927d6+yObKysjA3N6+y7d8L5TnfKnuu1ARVcX7K1Dyym6yOU3gTCw0NLbI8LS2NZ599FicnJxwdHXnkkUeIiooqMmbVqlUMHDgQd3d3zM3Nad68OW+++SYZGRlFxl27do2xY8fi4eGBRqPB1dWVfv36FXP7rFq1ii5dumBpaYmVlRWDBg3ixIkTZe5DoWtv69atPPnkkzg4OGBpacmwYcO4du1asfELFy6kTZs2aLVaHBwcGDFiBBcuXCgyZtKkSVhZWXHmzBkGDhyItbU1/fr1o3fv3mzYsIHQ0NAibke45S6aPXs2n3zyCY0aNUKj0bBz506ys7N55ZVXaNu2Lba2tjg4ONClSxf++eefYvLdbvoPDg6mQ4cOADz55JPG+UpzG3z44Yd4eXkB8MYbbyBJEj4+PsbP9+7dS79+/bC2tsbCwoKuXbuyYcOGEr/PLVu2MHnyZJydnbGwsCAnJ6fEOUtykxWav8+dO8djjz2Gra0trq6uTJ48mZSUFOO4wMBAevToUWybOp0OT09PHnnkkWLf7aeffkrDhg3RarW0b9+e7du3F1v/8uXLjBs3DhcXFzQaDc2bN+fHH38sMqbQrbFy5UreeecdPDw8sLGxoX///ly8eLHIWCEEs2fPxtvbG61WS7t27fjvv/9K/D7uZPTo0bRs2bLIsmHDhiFJEn/++adx2fHjx5EkiXXr1hUZu3r1akaMGIFCUfrltvD7PnHiBI888gg2NjbY2try+OOPExcXV2Ssj48PDz74IGvWrCEwMBCtVstHH30EwNmzZxk+fDj29vZotVratm3Lb7/9VuL3tmzZMmbOnImbmxvm5ub06tWrxPP133//pUuXLlhYWGBtbc2AAQM4cOBAifIfP36cUaNGYW9vj6+vL5MmTTL+brefbzdu3DDuy51usrCwMB5//PEiv/1XX32FXq83jik8nr788ku+/vprGjVqhJWVFV26dOHgwYNFtnf06FHGjh2Lj48P5ubm+Pj48NhjjxW7ZpaHss7P8hy3AKmpqbz66qs0atQIMzMzPD09eemll4pde1NTU5k2bRqOjo5YWVnxwAMPcOnSpVLlCw8PL/P4Ke91H+DQoUMMGzYMR0dHtFotvr6+ZVrUQ0JCaNy4MZ06dSI2NvauY2sVQqZOsGjRIgGII0eOFFk+Z84cAYhffvmlyLjGjRuL559/XmzevFnMnz9f2Nvbiz59+hRZ9+OPPxbffPON2LBhgwgODhbz5s0TjRo1KjbOz89PNGnSRCxdulTs2rVLrF69Wrzyyiti586dxjGffvqpkCRJTJ48Waxfv16sWbNGdOnSRVhaWopz586Va98aNGggJk+eLP777z/xyy+/CBcXF9GgQQORlJRkHPu///1PAOKxxx4TGzZsEEuWLBGNGzcWtra24tKlS8ZxEydOFGq1Wvj4+IhZs2aJ7du3i82bN4tz586Jbt26CTc3N3HgwAHjSwghrl+/LgDh6ekp+vTpI/766y+xZcsWcf36dZGcnCwmTZokli5dKnbs2CE2bdokXn31VaFQKMRvv/1WZH+8vb3FxIkThRBCpKSkGPfv3XffNc4XHh5e4ncRHh4u1qxZIwDx/PPPiwMHDojjx48LIYQIDg4WarVaBAUFiVWrVom1a9eKgQMHCkmSxO+//17s+/T09BRPPfWU+O+//8Rff/0l8vPzS5yzcL8XLVpkXPbBBx8IQPj5+Yn3339fbN26VXz99ddCo9GIJ5980jiu8Pi7/bsXQoiNGzcKQPz7779F5mjQoIHo3r27WL16tfjzzz9Fhw4dhFqtFvv37zeue+7cOWFraysCAgLEkiVLxJYtW8Qrr7wiFAqF+PDDD43jdu7cKQDh4+Mjxo8fLzZs2CBWrlwpGjZsKJo2bVpkfwv3Z8qUKcbjy9PTU7i5uYlevXqV+L0UMm/ePAGIqKgoIYQQeXl5wtraWpibm4tp06YZx33++edCpVKJ1NTUIr+nJEliy5Ytd52jUD5vb2/x2muvic2bN4uvv/5aWFpaisDAQJGbm2sc6+3tLdzd3UXjxo3FwoULxc6dO8Xhw4dFSEiIsLa2Fr6+vmLJkiViw4YN4rHHHhOA+Pzzz4t9bw0aNBDDhw8X69atE8uWLRNNmjQRNjY24urVq8axy5cvF4AYOHCgWLt2rVi1apUICgoSZmZmYs+ePSXK/8Ybb4itW7eKtWvXiitXrohRo0YJoMj5lp2dbdyXwnNFCCFiY2OFp6encHZ2FvPmzRObNm0Szz33nADEs88+axxXeDz5+PiIBx54QKxdu1asXbtWBAQECHt7e5GcnGwc++eff4r3339f/P3332LXrl3i999/F7169RLOzs4iLi6u2Pdy+3XtTu52fpb3uM3IyBBt27YVTk5O4uuvvxbbtm0Tc+bMEba2tqJv375Cr9cLIYTQ6/WiT58+QqPRiE8//VRs2bJFfPDBB6Jx48YCEB988ME9HT/lve5v2rRJqNVq0bp1a7F48WKxY8cOsXDhQjF27Nhi8xZ+j8HBwcLe3l4MHz5cZGRklPo91kZkZaiOUHiDO3jwoMjLyxNpaWli/fr1wtnZWVhbW4uYmJgi46ZPn15k/dmzZwtAREdHl7h9vV4v8vLyxK5duwQgTp06JYQQIj4+XgDi22+/LVW2sLAwoVKpxPPPP19keVpamnBzcxNjxowp176NGDGiyPJ9+/YJQHzyySdCCCGSkpKEubm5GDJkSLH5NRqNGDdunHHZxIkTBSAWLlxYbL6hQ4cKb2/vYssLL7C+vr5FLh4lkZ+fL/Ly8sSUKVNEYGBgkc/uvMAfOXKkmLJxNwrl+OKLL4os79y5s3BxcRFpaWlF5GjVqpXw8vIyXkQLv88JEyZUaL6SlKHZs2cXGTt9+nSh1WqNc8XHxwszMzPx9ttvFxk3ZswY4erqKvLy8orM4eHhIbKysozjUlNThYODg+jfv79x2aBBg4SXl5dISUkpss3nnntOaLVakZiYKIS4dfO683j4448/jDdfIQzHjVarLfX4KksZunLligDEkiVLhBBC7N27VwDi9ddfF40aNTKOGzBggOjatWuRdb/99lthb29v/B5Ko/D7fvnll4ssL1RGli1bZlzm7e0tlEqluHjxYpGxY8eOFRqNRoSFhRVZPnjwYGFhYWFUEAq/t3bt2hl/RyGEuHHjhlCr1WLq1KlCCCF0Op3w8PAQAQEBQqfTGcelpaUJFxeXIvtaKP/7779fbN9mzJghSnvuvvNcefPNNwUgDh06VGTcs88+KyRJMu5z4fEUEBBQROk9fPiwAMTKlStLnE8IwzmTnp4uLC0txZw5c4zLy6MM3T73nedneY/bWbNmCYVCUezB9q+//hKA2LhxoxBCiP/++08ARWQUwvDgWZoyVJ7j53ZKu+4LIYSvr6/w9fUtcr7eye3K0NKlS4WZmZl44YUXihwvdQXZTVbH6Ny5M2q1Gmtrax588EHc3Nz477//cHV1LTLuoYceKvK+devWQFF32rVr1xg3bhxubm4olUrUajW9evUCMLqdHBwc8PX15YsvvuDrr7/mxIkTRczVAJs3byY/P58JEyaQn59vfGm1Wnr16lWu7AygWMxT165d8fb2ZufOnQAcOHCArKysYmb1Bg0a0Ldv3xLdLSNHjizX3Lfz0EMPoVariy3/888/6datG1ZWVqhUKtRqNQsWLCjmoqsKMjIyOHToEKNGjcLKysq4XKlU8sQTTxAREVHMNXQv+34nJR1H2dnZRvO3o6Mjw4YN47fffjMeF0lJSfzzzz9MmDABlapoWOIjjzyCVqs1vre2tmbYsGHs3r0bnU5HdnY227dvZ8SIEVhYWBQ5noYMGUJ2dnYxN0hZx/qBAwfIzs4u9fgqC19fX3x8fNi2bRsAW7duJSAggMcff5zr169z9epVcnJy2Lt3L/379y+y7urVqxk+fHix76E07pRxzJgxqFQq4zlw+z42a9asyLIdO3bQr18/GjRoUGT5pEmTyMzMLObaGjduXJEYMm9vb7p27Wqc6+LFi0RFRfHEE08UcfFZWVkxcuRIDh48SGZmZpFtVvaY27FjBy1atKBjx47F9kEIwY4dO4osHzp0KEql0vi+pOtceno6b7zxBk2aNEGlUqFSqbCysiIjI8Nk525Fjtv169fTqlUr2rZtW2TcoEGDimSzFf4Odx4T48aNK1WO8hw/5bnuX7p0iatXrzJlypQi52tpfPrpp0yaNInPPvuMOXPm3NUlXFupexLf5yxZsoQjR45w4sQJoqKiOH36NN26dSs2ztHRscj7wgDgrKwswHCB6NGjB4cOHeKTTz4hODiYI0eOsGbNmiLjJEli+/btDBo0iNmzZ9OuXTucnZ154YUXSEtLA+DmzZsAdOjQAbVaXeS1atWqcqddurm5lbgsISEBwPjX3d292DgPDw/j54VYWFjcU6ZKSdtfs2YNY8aMwdPTk2XLlnHgwAGOHDnC5MmTyc7OrvAcFSUpKQkhRKn7DhTb/5LGVpSyjiOAyZMnExkZydatWwFYuXIlOTk5JaZMl/Yb5+bmkp6eTkJCAvn5+Xz//ffFjqUhQ4YAFDueypKx8Hspbe7y0K9fP6OyvW3bNgYMGEBAQACurq5s27aNffv2kZWVVUQZiomJYd++fRVSEO6UR6VS4ejoWK7fNiEhoULHR2XPN71eT1JSUplyVYSK7kN5js9x48bxww8/MHXqVDZv3szhw4c5cuQIzs7ORcZVVu7yHrc3b97k9OnTxcZZW1sjhDCOS0hIMP7+t3O3Y7as46e81/3COKPC+KiyWLZsGZ6enowdO7Zc42sjcjZZHaN58+bGbLLKsGPHDqKioggODjY+FQAkJycXG+vt7c2CBQsAwxPDH3/8wYcffkhubi7z5s3DyckJMGTNlOdJuzRiYmJKXNakSRPg1oUvOjq62LioqCijHIWUlDlVHkpab9myZTRq1IhVq1YV+by0oGRTY29vj0KhKHXfAZPtf0UZNGgQHh4eLFq0iEGDBrFo0SI6depEixYtio0t7Tc2MzPDysoKtVpttHbNmDGjxPkaNWpUIfkKj5vS5r49ALY0+vXrx4IFCzh8+DCHDh3i3XffBaBv375s3bqV0NBQrKysimTl/f3331haWjJgwIByyxoTE4Onp6fxfX5+PgkJCcVuiCX9to6OjhU6Pkr7PgrnKut8UygU2NvblylXRajoPpRFSkoK69ev54MPPuDNN980Ls/JySExMbFSst6Ovb19uY9bJycnzM3NWbhwYYnjCvfR0dGxxN+/pN/t9s/udvyU97rv7OwMQERERKlz3c6mTZt49NFH6dGjB9u3b6/UfaCmkC1D9ymFF607U8Z//vnnu67XrFkz3n33XQICAjh+/DhguBmqVCquXr1K+/btS3yVh+XLlxd5v3//fkJDQ41F8bp06YK5uTnLli0rMi4iIsLoIigPGo2mwk+EkiRhZmZW5GIfExNTYjZZSfMBlXoKtbS0pFOnTqxZs6bIdvR6PcuWLcPLy6uY26S6KLwJrF27lj179nD06FEmT55c4tg1a9YUsaSlpaWxbt06evTogVKpxMLCgj59+nDixAlat25d4rF0p2JQFp07d0ar1ZZ6fJWHfv36IUkS7733HgqFgp49ewLQv39/du7cydatW+nZs2cR9+rq1at58MEHK1SW4U4Z//jjD/Lz88tVGLJfv37Gm93tLFmyBAsLi2LlE1auXIkQwvg+NDSU/fv3G+fy8/PD09OTFStWFBmXkZHB6tWrjRlmZVGR479fv36cP3/eeG25fR8kSaJPnz5lbuN2JElCCFHsN5g/fz46na5C27obFTluH3zwQa5evYqjo2OJ4wqV88J9vfOYWLFiRalylHX8lPe636xZM3x9fVm4cGG5Hvi8vb3Zs2cPGo2GHj16cPny5TLXqW3IlqH7lK5du2Jvb88zzzzDBx98gFqtZvny5Zw6darIuNOnT/Pcc88xevRomjZtipmZGTt27OD06dPGJy0fHx/+7//+j3feeYdr167xwAMPYG9vz82bNzl8+DCWlpbG1N+7cfToUaZOncro0aMJDw/nnXfewdPTk+nTpwNgZ2fHe++9x9tvv82ECRN47LHHSEhI4KOPPkKr1fLBBx+Ua98DAgJYs2YNP/30E0FBQSgUijIVtsJU5unTpzNq1CjCw8P5+OOPcXd3L/PE9/X1xdzcnOXLl9O8eXOsrKzw8PAwmv7Ly6xZsxgwYAB9+vTh1VdfxczMjLlz53L27FlWrlxZbZagkpg8eTKff/4548aNw9zcnEcffbTEcUqlkgEDBjBz5kz0ej2ff/45qampRY6POXPm0L17d3r06MGzzz6Lj48PaWlpXLlyhXXr1hWLGykLe3t7Xn31VT755JMix9eHH35YbjeZi4sLrVq1YsuWLfTp08eoBPTv35/ExEQSExP5+uuvjeMTEhLYtWsXv//+e4VkXbNmDSqVigEDBnDu3Dnee+892rRpw5gxY8pc94MPPmD9+vX06dOH999/HwcHB5YvX86GDRuYPXs2tra2RcbHxsYyYsQIpk2bRkpKCh988AFarZa33noLAIVCwezZsxk/fjwPPvggTz/9NDk5OXzxxRckJyfz2WeflWufAgICAPj8888ZPHgwSqWS1q1bY2ZmVmzsyy+/zJIlSxg6dCj/93//h7e3Nxs2bGDu3Lk8++yzFVb4bWxs6NmzJ1988QVOTk74+Piwa9cuFixYgJ2dXYW2VRblPW5feuklVq9eTc+ePXn55Zdp3bo1er2esLAwtmzZwiuvvEKnTp0YOHAgPXv25PXXXycjI4P27duzb98+li5dWqoMZR0/5b3uA/z4448MGzaMzp078/LLL9OwYUPCwsLYvHlzMaULDC7SXbt2MWjQIHr27MnWrVtp1aqVib7daqAmo7dlyk9pqfXlHVdSpsT+/ftFly5dhIWFhXB2dhZTp04Vx48fL5JZdPPmTTFp0iTh7+8vLC0thZWVlWjdurX45ptviqVqr127VvTp00fY2NgIjUYjvL29xahRo8S2bdvKJfOWLVvEE088Iezs7IxZY5cvXy42fv78+aJ169bCzMxM2NraiuHDhxdL3584caKwtLQscb7ExEQxatQoYWdnJyRJMma6lJYlUshnn30mfHx8hEajEc2bNxe//vqrMZvidu7MkBFCiJUrVwp/f3+hVquLZYLcyd3k2LNnj+jbt6+wtLQU5ubmonPnzmLdunVFxpT3WLlzvpKyyW5PPb5929evXy+2na5duwpAjB8/vtQ5Pv/8c/HRRx8JLy8vYWZmJgIDA8XmzZtLHD958mTh6ekp1Gq1cHZ2Fl27djVmFgpx65j+888/y9wfvV4vZs2aJRo0aCDMzMxE69atxbp160SvXr3KzCYr5OWXXxaA+PTTT4ssb9q0qQDE6dOnjcvmz58vLCwsyp1eXPh9Hzt2TAwbNkxYWVkJa2tr8dhjj4mbN28WGevt7S2GDh1a4nbOnDkjhg0bJmxtbYWZmZlo06ZNsSzGwu9t6dKl4oUXXhDOzs5Co9GIHj16iKNHjxbb5tq1a0WnTp2EVqsVlpaWol+/fmLfvn0lyn/n8SKEEDk5OWLq1KnC2dnZeL4VHj8lnSuhoaFi3LhxwtHRUajVauHn5ye++OKLIhlKdztH7jy/IiIixMiRI4W9vb2wtrYWDzzwgDh79myxuSubTVb4WVnHrRBCpKeni3fffVf4+fkZr2MBAQHi5ZdfNmYGCyFEcnKymDx5srCzsxMWFhZiwIABIiQkpNRssvIcP+W57hdy4MABMXjwYGFrays0Go3w9fUtkrFW0u+enJwsunXrJhwcHMp9DaoNSELcZv+UkakBFi9ezJNPPsmRI0dMEg8lU/u4ceMGjRo14osvvuDVV1+taXGqnCFDhmBubs7q1avLNf7DDz/ko48+Ii4ursJxMRUlODiYPn368OeffzJq1KgqnUtGpq4gu8lkZGRkTMzGjRtrWgQZGZkKIAdQy8jIyMjIyNzXyG4yGRkZGRkZmfuaOmMZmjVrFh06dMDa2hoXFxcefvjhYhV3S2LXrl0EBQWh1Wpp3Lgx8+bNqwZpZWRkZGRkZOoKdUYZ2rVrFzNmzODgwYNs3bqV/Px8Bg4cWGKn3UKuX7/OkCFD6NGjBydOnODtt9/mhRdeKHdQo4yMjIyMjEz9p866yeLi4nBxcWHXrl3GAmh38sYbb/Dvv/8W6T/zzDPPcOrUqWJ9emRkZGRkZGTuT+psNllKSgpgaCRaGgcOHGDgwIFFlg0aNIgFCxaQl5dXYjPOnJycIhU39Xo9iYmJODo61mhROxkZGRkZGZnyI4QgLS0NDw+PMpvH1kllSAjBzJkz6d69+10rXMbExBTr5u7q6kp+fj7x8fElNgScNWtWuaoly8jIyMjIyNR+wsPDy2w6WyeVoeeee47Tp0+zd+/eMsfeac0p9AqWZuV56623mDlzpvF9SkoKDRs2ZM/JELKFhviMHOLSsonPyCU+NcfwNy2H+PQckjLzKrFXlUOpkPBxtKCpixXN3Kxp6mJNM1crPOzM641FKyUrj6FzdpOclc97Dzbn0Q4Na1qk+5r/bTjPisPhWGuV/PF0Vxo4lN2nSqZqiEzK5L215zh8w9B8tFsTRz4e3goXG20NS3b/EZuazdNLj3E5Nh1rrZIfx7WjnXfpHoz7ivx8CAiAqCj45RcopW2Pqdh66jqjerbF2tq6zLF1Lmbo+eefZ+3atezevbvM7tU9e/YkMDCQOXPmGJf9/fffjBkzhszMzBLdZHeSmpqKra0tKSkp2NjY3HVsbr6ehIwcYlNzyMzVoZAMSpckgUICMPwvAQqp8H/DXwCdXpCTrycnX0duvt74f06e4f/cwvcFn6Xn5HM1Np2QmDRSskpWxKw1KvzcrPFzs8bf3YYAT1vaeNmWqiDp9IK/T0QyKujuWnRN8dv+G3zw7zkcLc0Ifq031tqyf0OZqiE3X8+jvxzgRFgyLdxtWDO9K1q1sqbFum/R6wWL9t9g9qYQcvL12Jqr+fjhVjzUpmI98GQqT0pmHlN+O8LR0CS0agVzx7ejr79r2SveD3zyCbz3HnTpAvv3V+lUKSkp2NnZlev+XWeUISEEzz//PH///TfBwcE0bdq0zHXeeOMN1q1bx/nz543Lnn32WU6ePFnuAOqKKEM1hRCCm6k5XIhJJSQ6jYsxqYTEpHE1Lp08XfGf19fZkvGdvBkZ5IWteVFl4sedV/hi80XmPd6OB1oVdyPWNHk6PYO+2c21+Axm9PHltUH+NS3SfU10ShZDv9tLYkYuY9p7MXtUm5oW6b7nSmwaL686xZlIQ1zlg63d+eThVthZFG+MKlN1ZOXqmL78GDsvxqFUSHw5ujUjAmvnQ2a1EhMDL7wAzz4LvXtDFXouKnL/rjPK0PTp01mxYgX//PMPfn5+xuW2traYm5sDBhdXZGQkS5YsAQyp9a1ateLpp59m2rRpHDhwgGeeeYaVK1cycuTIcs1bF5Sh0sjN13MtPp2Q6DRCYtIIiUnl8PVEMnN1AGjVCh5q48Hjnb1p7WXH6YhkHpm7n3y9wFqj4t/nu9PIybKG96I4W87F8NTSY2hUCna+2hsPO/OaFum+Zt+VeJ5YcAi9gM9HBsjuy1pAnk7Pjzuv8P2OK+j0AhdrDZ+Pak0fP5eaFu2+Ik+n5/W/TvP3iUgA3n+wBZO7392jIWM66qUyVJpbZ9GiRUyaNAmASZMmcePGDYKDg42f79q1i5dffplz587h4eHBG2+8wTPPPFPueeuyMlQSadl5rD0RybKDYVy8mWZc3srDhpjUbOLTc43L/N2s+Xt6N8zNapfrQwjB2F8Ocuh6IiMCPfnm0bY1LdJ9T6FF0UylYPUzXQnwsq1pkWSA0xHJvLzqJFfjDPXYxnVqyDtDmmOpqZPhonUSvV7w8YbzLNp3A4Dn+jThlYHN6k0sZ22mXipDNUV9U4YKEUJwNDSJZQdD+e9MDLk6fYnjRgV58eXo2uf6OB2RzEM/7ANg3XPd5ZtvDaPXC55aepRtF2Lxsjdn/fPdZbdMLSE7T8fsTRdZuO86AA0dLPh6TBva+8hBvdWFEIIfd17hyy2XAINS+vHwVigV97FCdPUqzJ0L/v4wbVqVTFGR+3edqUAtY1okSaKDjwNzxgYye3RAqeP+OhbBykNh1ShZ+WjtZceIQE8APtlwHlmnr1kUComvxrSloYMFEUlZvLzqJHq9/JvUBrRqJe8Pa8GKaZ3wtDMnLDGT0T8fYNbGC8SmZde0ePcFkiTxXN+mfDqiFZIEKw6F8fzK4+Tk62patJpj61b4+mv44gvQ6SA4GNavrzFxZMtQGdRXy9DtZOXq2H05jv/ORLP5XAxZeUWtRBLww/hAhgbUrqyUyOQs+n4ZTE6+nl+eCGJgS7eaFum+51xUCo/M3U9Ovp6ZA5rxQr+yEx1kqo/U7Dz+b915/joWARiyXLs1ceKhNh4MauWGTS3Kztx8LoaMnHz6+Llgb1l/rIwbz0Tz0u8nydXp6erryC8T2mN1P7ot09PB3d3w19MTIiPhqafg559NNoXsJjMh94MydDu5+XoOXEtg9bFwtp6/WUQxev0BP57p6YuiFpl2Z28KYW7wVRo7WbL55Z6olbKxs6b582g4r/11GkmC357sSM9mzjUtkswdbD1/k7nBVzgRlmxcZqZS0M/fheFtPejt51LjZRK+2BzCjzuvopAgyNuefs1d6d/cBV9nqzofb7P3cjxPLT1KZq6O1l62LJrUAUcrTU2LVX3s3Qs//QS//w762x6+R4yANWtMNo2sDJmQ+00Zuh2dXrD1fAyfbLhARFIWAN2bOPHVmDa41pJibmnZefT5Mpj49Fw+eqglE7v61LRIMsBba06z8nA49hZq1r/QA085469WEpaQyb+nIll7MoorsenG5dYaFQ+0cmN4W0+6+DrWSGzL11su8t2OK8WWe9hpaetlTzNXKxo5G7Jd9UKg14NOCPR6gV7c+l+nF+iFQKmQaOpiTStPm1oRz3YqPJknFx8hMSOXxs6WLJ/aCXfb++Q8+d//4J13ii/v0QN27zbZNLIyZELuZ2WoECEESw+E8snGC+Tm67GzUPPZIwG1pg7RsoOhvLv2LPYWaoJf61OsdpJM9ZOdp2P0vAOciUyhjZctfzzTBY2qdmUlytxCCMGF6DT+ORXJupNRRKXciiVyttbwYGt3hga44+Nkib2FWZUoR1m5OmJSs4lOySImJZu/jkWw/2qCyecB8LI3p5WHLQFetrT0sKGVpy1ONWCZuRKbzoQFh4hKyb6/zhMh4LHHYNWqosv9/eG2xuqVRVaGTIisDN3iSmw6L606wdnIVADGtPfi/WEta9zfna/T88CcPVyJTefpXo15a3DzGpVHxkB4YibDfthLcmYej3duyCcPlx6oL1N70OsNmab/nIxkw5loku9oMyRJ4GBhhpOVBkcrMxytNDhZFby3vLXcWqsiJSuf5MxckjPzSCr4m5yVS1JmnnF54WeF9c/Ki625GkcrM5wsNWjUCiRJQikZWhMpJMNLqZBQKAzLs/P0XIhJJTQhs8TtudtqaelhSytPQ6X+AE/bamlnct+eJ5mZ0L07nDhxa5mjI8THm2wKWRkyIbIyVJTcfD3fbLvEvF1XEQK8HS345tG2tGtoX6Ny7Qi5yeTFRzFTKtj+Si+5T1YtIfhiLE8uPoIQ8PWYNjzSTq7AW5fIzdez90oc/5yMYt+VeBIycqnKO4a5Wom7nRZ3Wy3JmXmci0o1fqZRKejR1IlhbTzo19z1nh/CUrLyOBeVwrnIVM5GpXAmMoXr8Rkl7lfPZs483bMxXX0dqzRO6b49T8LCoH17iIu7tSw/H5SmsY7JypAJkZWhkjl4LYFX/jhFZHIWSoXEc32a8HzfJqhqKIBZCMH4+YfYfzWBYW08+P6xwBqRQ6Y432y9xJztl9GqFfw9vRvN3eXzqK6Sr9OTlJlHfHoOCem5JGTkEJeWQ0JBw+qEjFwS0nOIT88lLTsPG3M19hZm2FmosbMww95CjZ15wf+WauzMDZ/ZW5hhb2mGjVZlVDp+Cr7K3J1X6NfchQdaudOrmXOVFYBNz8nnQnQqZyJSOFugKF2KTTMqSC09bHiqZ2OGBLhXWZLGfXue7N0LffoYlCAwKEZOTibZtKwMmRBZGSqdlKw83v/nLP+cjAKgbQM7vn20LT411MLjXFQKD36/FyHg7+ldCaxha5WMAZ1e8OTiI+y+FIeHrZYlUzrRxMWqpsWSqeXEpmVja66usRiasIRMFuy9xh9HI8jKM7jwPO3Mmdy9EY92aGDy8AB9wXmy61IcPo4W/Pt891pV6qBKmT//VuHF8+ehuWlCHeSiizLVgq25mjljA5kzti3WWhUnw5MZ8t0e1p2KqhF5WnrYMrLAvPzphgtyIcZaglIhMefRtjR2siQqJZvR8/ZzMjy5psWSqeW4WGtrNJi4oaMFHw1vxf43+zJzQDMcLc2ITM7i4/Xn6TprO59vCiE21XRFKxUKiW8fbYunnTk3EjJ59Y9T9881bOpUmDHD8P/SpTUigmwZKgPZMlQ+IpIymfnHKQ5fT0QhwQ/j2jEkoPqzzWJSsun95U6y8/T8NL4dg2tABpmSSUjP4cnFRzgdkYK5WslPj7ejt9w4VKaOkJ2nY/XxCObvuc71eEOvNzOlgocDPXiqZ2OauFibZJ5T4cmMnneAXJ2eNwf780wvX5Nst9azdSsMHAgWFgZXmUXl4z5ly5BMteNlb8HKaZ0Z094LvYAXfz/BzpDYapfDzVbLUz0aA/DZphBy80vuuSZT/ThaaVgxrTM9mjqRladj6m9HWVvQzVtGprajVSsZ38mb7TN78fMTQQR525Or0/PH0Qj6f72baUuOmsRS1KaBHR881AIwFJU9UEXlBWod/fqBt7chy+zOlPtqQFaGZEyGUiEx65HWPNjanTyd4Jllx2rkRH66ly9OVhpCEzJZejC02ueXKR0rjYoFEzvwUBsP8vWCl1adZP6eazUtloxMuVEoJAa1dGP1s11Z/WwXBrZwRZIMVb2HfLeXQ9cqf80b17EhI9sZHiyfX3mcmyZ0x9VaFAp45hnD/yZsyVHu6at9Rpl6jVIh8c2jbenn70JOvp6pvx3hRFhStcpgqVHxysBmAHy3/TLJmbnVOr/M3TFTKfj20bY82c0HgE82XGDWf3KMl0zdI8jbgV8mtGfzSz3xd7MmPj2HcfMP8cvuq5U6niVJ4pOHWxVsM5cZy4+Tp7sPrNxPPgkqFRw6BKdOVevUsjIkY3LUSgU/jm9HV19HMnJ1TFx4mPO31QupDsa0b4CfqzUpWXn8vFu2PNQ2FAqJ9x9swesP+AHw865rvPrn6fvjgi9T72jmas2a6V0ZEeiJTi/438YQpi8/Tlp2Xtkrl4K5mZJ5jwdhrVFxNDSJWRtDTChxLcXV1dCfDKrdOiQrQzJVglat5NcJ7WnX0I7U7HyeWHCIq3HpZa9oIpQKyWgdWnYwlPSc/GqbW6Z8SJLE9N5NmD2qNUqFxOrjETy99BhZFaxELCNTG7AwU/H1mDZ8/HAr1EqJ/87GMPyHfVy6mXbP2/RxsuSrMW0AWLjvOutP10ymbrXy9NOGv8uWGTraVxOyMiRTZVhqVCx6siMtPWxIyMjl8fmHCE8suRR+VdC/uSuNnSxJy85n1ZHwaptXpmKMad+AX54IQqtWsCMklvHzD5KUIbs2ZeoekiTxRGdv/ni6C+62Wq7FZzD8h338c/LeEwUGtnQzZpS98ddprsTeu3JVJ+jTB5o0AXd3uHGj2qaVlSGZKsXWXM2SyR1p4mJFdEo24+cfqrZgQIVCYmpBZtnCvdfJl10wtZZ+zV1ZPrUTtuZqjoclM/rnA0QlZ9W0WDIy90RgQ3vWP9+d7k0MmZMv/n6SD/45e8/Zra8ObEaXxoawg2eWHSejPlu6FQrYtQtCQqBVq+qbttpmkrlvcbTSsGxKJxo6WBCWmMnj8w+RWE1P/o+08zQWS9t4NqZa5pS5N4K8HfjzmS642Wi5EpvOI3P3s/lcjBxYLVMncbTS8NvkjjzXpwkAvx0I5dFfDhCdUnElX6VU8N1jgbjaaLgSm86ba87U7/PCw8PQEbgakZUhmWrBzVbL8qmdcLPRcjk2nQkLD5FaieDC8qJVK5nQxQeg0hkeMlVPM1drVk/vShMXK2JSs3l66TEe/eUgpyOSa1o0GZkKo1RIvDrIjwUT22OjVXEiLJmh3+1l35WKd2Z3ttbw47h2qBQS605FseX8zSqQuJaRlQUHD1bLVLIyJFNtNHCwYNnUTjhamnE2MpUnFx0hM7fqzb1PdPFGq1ZwNjKVAyaoASJTtXjambN2Rjdm9PFFo1Jw+HoiD/2wj5d+P0Gk7DqTqYP0a+7K+ud70MLdhsSMXJ5YcIjVxyIqvJ32Pg481dPg+v94/Xmy8+pxssG1a+DpCQMGQFrVx0nJypBMtdLExYqlUzpho1VxLDSJp5Ycq/JYHgdLM0YHNQDgVznNvk5gpVHx2iB/dr7am0cCPQFYezKKPl8G8/mmkEqlLMvI1AQNHS1YM72rsZjiG6tPs/dyxS1Ez/VtgrutloikLH7eVY+vZ40agbOzIaOsGipSy8qQTLXTwsOG3yZ3xNJMyd4r8czbdbXK55zSvRGSBDsvxlUq1VWmevGwM+frR9uy7rnudGrkQG6+np+Cr9L7i2CWHrghB8XL1Cm0aiVfjGptrMD+zLJjXIiuWA02CzMVbw8xdHWfG3ylWjN0qxVJutXJfv78Kp9OVoZkaoTAhvZ8/LAhU+DbbZc5G5lSpfP5OFkyqIUbgNz+oQ4S4GXL70915tcJ7WnsZElCRi7v/XOOQd/uZvuFm3IsmEydQaGQ+GJ0azo1ciA9J58nFx2pcFD1g63d6dzYgZx8PZ9uuFBFktYCJky4VZH6zJkqnUruWl8Gctf6qkMIwfTlx/nvbAxNXaxY93x3tGpllc13LDSJkT/tx0ypYO8bfXCx0VbZXDJVR55Oz4pDYXy77RJJmQZ3WRMXK1ysNVhrVdho1Vhr1VhrVYb35mpstCqstWrsLcxo7m6NVM2ZKjIyd5KSmcfIefu5EpuOv5s1fzzTBRututzrh8SkMvS7vej0gmVTOtG9qVMVSluDjBoFq1fDCy/AnDkVWrUi929ZGSoDWRmqWhIzchn4zW7i03OY0r0R7z3YokrnG/nTfo6FJjGjjy+vDfKv0rlkqpbU7Dx+3HmFRftuVKh+S//mLvz8RHuUClkhkqlZIpIyGTF3P3FpOXRv4sSiJzugVpbfYfPhv+dYvP8GTVys+O/FHhVat86waRMMHgz29hAVBdryP8TKypAJkZWhqmdHyE0mLz4KwIppnejqW3VPOJvOxvDMsmPYmqvZ/2ZfLDWqKptLpnq4mZrNuagU0rLzSc3KIzU73/B/dh5p2fmkZeeRmmX4/0ZCBnk6ISvDMrWGMxEpPPrLATJzdYwK8uKLUa3LbblMycqj75fBJGTk8u7Q5sYis/UKnQ4aN4awMINiNGhQuVeVlSETIitD1cNba06z8nA4HrZaNr3cs0Lm4oqg0wv6f72L6/EZfDCsBU92a1Ql88jUTv45GcmLv58E4Kfx7Rgc4F6zAsnIADtDYpny2xH0Al7q35SX+jcr97qrjoTxxuozWGlU7Hi1Fy7W9dD9v20beHtD06YVWq0i9+96aFOTqYu8O7QFDR0siErJ5sN/z1XZPEqFxJTuBgVogdyi475jeFtPphb8/q/8eUrOLJSpFfTxd+GThwMAQ0LJH0fL30txdFAD2njZkp6Tz2f/1dPO9v37V1gRqiiyMiRTK7DUGDo+KyRYczySTWejq2yuke28cLA0IyIpi03n5BYd9xtvDvanq68jmbk6nl56jJQsuWaRTM0zrlNDpvc2NGR9e80Zdl+KK9d6CoXEhw+1BAzXzmOhiVUmY60gJ6dKNisrQzK1hvY+Djxd0J357b/PEptWNQ1dzc2UPNHZGzAUYZQ9xfcXKqWC7x8LxNPOnOvxGby86iR6vXwMyNQ8rw3yY3hbQw2i6cuPcz6qfDWIAhvaM6a9FwAf/HsOXX08nm/ehJEjoVkzyDP9A4ysDMnUKl7u34zmBSXr31pddc0In+jijUal4FRECoev1/MnKZliOFpp+PmJIDQqBTtCYvl2++WaFklGBkmSmD2qNZ0bG2oQTV5c/hpErz/gj7VWxdnIVFYdKb+brc5gbw979xoCqTduNPnmZWVIplZhplLw7aNtMVMq2B4SW2UntZOVhpFBhiepX+UijPclrTxtmfWIIU7ju+2X2SK7TGVqARqVkp8fb0/TgmbFTy46Qk5+2T3InKw0vFwQeP3F5hCSM3OrWtTqxcwMJk40/F8FFallZUim1uHnZs2rgwwn9cfrzxOWUDXl5qcWtOjYdiGWK7FyIO39yCPtvJjU1QeAmX+c4kpses0KJCMD2FqoWfRkB5yszAiJSePHHVfKtd4TXbxp5mpFUmYeX225VMVS1gBTpxr+btwIkZEm3bSsDMnUSqZ0b0zHRg5k5OqY+cfJKvGBN3a2YkBzVwDm77lu8u3L1A3eGdqcjgWtEZ5aelRuAitTK/Cyt+D/hhtaFs0Nvlqu+CG1UmEMpl5+KLTcMUd1hmbNoEcP0OthyRKTbrpOKUO7d+9m2LBheHh4IEkSa9euvev44OBgJEkq9goJqafph/UIpULiq9FtsNKoOBqaxC9V1G3+qZ6GImVrjkdWWcC2TO1GrVTw47h2uNtquRaXwSt/nJIDqmVqBYNbuTGopSv5esEbq0+XqxRIV18nhrZ2Ry8MFarrXYLIlCmGvwsXggn3rU4pQxkZGbRp04YffvihQutdvHiR6Oho46tpFdcrkDENDRwseH+YoT3H11svEhJj+qecIG97AhvakavTs/RAqMm3L1M3cLbWMO/xIMxUCracv8mPO8vnlpCRqUokSeLj4a2w0ao4E5nCgr3ls2C/M6Q55molh28ksu501ZUpqRFGjQIrK7hyxRBQbSLqlDI0ePBgPvnkEx555JEKrefi4oKbm5vxpVRWXTNQGdMyOsiLAS1cydOJKunOLEkSTxWUsF96MJTsvLIDFWXqJ20a2PHJwwa3xNfbLrEj5GYNSyQjAy42Wt59sPCh8BLX4zPKXMfDzpxnC2oW/bDjcv2ydFpawltvGZq2tmxpss3WKWXoXgkMDMTd3Z1+/fqxc+fOu47NyckhNTW1yEum5pAkifeGtkCtlNhzOZ69l+NNPsfAlm542pmTnJnHZjmj6L5mTPsGPNHZGyEMAdUZOfk1LZKMDKODvOjexImcfD1vrj5dLuVmUjcfrDUqLt1MZ0dIbDVIWY28/bahi72Dg8k2Wa+VIXd3d3755RdWr17NmjVr8PPzo1+/fuzevbvUdWbNmoWtra3x1aBBg2qUWKYkGjpaML6ToUji55tCTP6Uo1RIjCpIs//zaIRJty1T93jvwRb4OFqQnJnH2pOmzViRkbkXJEli1iMBmKuVHLqeyMojYWWuY6NVM76guOxPu65WtYh1nnqtDPn5+TFt2jTatWtHly5dmDt3LkOHDuXLL78sdZ233nqLlJQU4ys8vB4Wr6qDPNe3CZZmSs5EprCxClp1FCpD+67GE5lcviJnMvUTM5WCCV18AFiyP7T+BaDK1EkaOFjw2iA/AGZtDCGqHNepyd18MFMqOBaaxJEb9ay4bGamIYh6+nSTbK5eK0Ml0blzZy5fLr3arEajwcbGpshLpuZxstIwrSDz68vNF8kzcYPVBg4WdG7sgBCw5phsHbrfGRnkhblaycWbaRySK5TL1BImdvWhXUM70nPyeXft2TIVdRcbrbG47E/B9cw6lJoKTz0FP/0EFyofT3rfKUMnTpzA3d29psWQuQem9miMk5UZNxIy+b0KKlOPDjK4RP86HiFbA+5zbM3VjGjnCcCSAzdqVhgZmQKUConPR7bGTGloI/Pvqagy13m6Z2MUEuwIieVCdD2KgXVzg6FDDf8vWlTpzdUpZSg9PZ2TJ09y8uRJAK5fv87JkycJCzP4T9966y0mTJhgHP/tt9+ydu1aLl++zLlz53jrrbdYvXo1zz33XE2IL1NJrDQqnu9rKIswZ9tlkwe3Dg5ww0qjIjQhU+5XJsOELoZ4i83nbpa7P5SMTFXT1NWa5/s2AQx1hBLS797F3cfJksEBBgPAz/UtdmjyZMPf336rdPPWOqUMHT16lMDAQAIDAwGYOXMmgYGBvP/++wBER0cbFSOA3NxcXn31VVq3bk2PHj3Yu3cvGzZsqHBqvkzt4bGODWnoYEF8eg4Ly1lzo7xYmKkYWnDR+FN2ld33+LvZ0KmRAzq9YMWhsgNWZWSqi6d7+eLvZk1SZh4frTtf5vhnexnS7NedjiY8sWraG9UIQ4aAiwvExla6eWudUoZ69+6NEKLYa/HixQAsXryY4OBg4/jXX3+dK1eukJWVRWJiInv27GHIkCE1I7yMSTBTKXi1IIjw593Xynwqqiij2xv86xvPRMtp1TJMLOhbtvJwWLmaZcrIVAdmKgWzR7VGIcG/p6LYdv7uNbFaedrSo6kTOr1gfn1qTK1WQ6E3aOHCSm2qTilDMjIADwa409LDhvScfH7caVqzb5C3PY2cLMnM1bHhTD2r3CpTYQa0cMXNRkt8ei7/nZFrUMnUHlp72TGtoGDsO2vPkFpGT71C69Cqo+Emf4isUZ580vB3wwa4ee+FUmVlSKbOoVBIvDnYH4BlB0NNavaVpFs1h/6SXWX3PWqlgvGdGgJyILVM7ePlAc3wcbTgZmoOX5fRpb6LryNtvGzJztPz2/4b1SNgddCiBXTuDH37QuK9x3rKypBMnaRHU2e6NXEkV6fnm613vwhUlEfaeaKQ4PD1REITyi59L1O/GduxIWqlxPGwZM5EpNS0ODIyRrRqJR8XtJBZcSjsrrWHJEkytuj47UAo6fUpDGDXLtiyBZo3v+dNyMqQTJ3ljQcM1qG/T0ZyPsp0KaPutuZ0b+oMyNYhGUMT18LAetk6JFPb6N7EiU6NHMjV6fmhjAbDA1q40djJkpSsPH4/XI+SAszMKr0JWRmSqbO09rJjaGt3hIDZm0NMuu3RBa6y1cci0NWnJocy98QTBRWp/zkVRVJGbs0KIyNzG5IkMXNAMwD+OBJ+17ABpULi6V6GOKP5e66Tm2/a4rU1TmQkbN16T6vKypBMnebVgX6oFBLBF+M4cDXBZNsd0MIVG62KqJRs9l81fXNYmbpFu4Z2tPK0ITdfz6qjcosemdpFp8aOdG/iRL5e8P2O0jssADwc6ImrjYaY1Oz61XvvyBFo2BDGjoWcigeIy8qQTJ2mkZMlYzsaKkd/tinEZJWjtWolD7X1AOTmrTKGp+/CfmVLD4TK1kKZWsfLBdah1ccjuRFfeqyjRqVkaneDdWjerqvo9YYSNVdi06tFziqjXTtDVerERFi/vsKry8qQTJ3nhX5NMVcrORWezKazpkt/LmzPsflcDClZlatuKlP3eaiNB3YWaiKTs9gRElvT4sjIFCHI257efs7o9ILvyrAOPdapITZaFdfiMnjtr1MM+nY34+cfrCZJqwil8lbNoXtozyErQzJ1HhdrLVN7NAJgbvBVk1mHWnvZ0szVipx8PetPl90DSKZ+o1UrebSDQUFecuAGF6JTeen3EyRnyjFEMrWDwtihtSciS7X05Obr2Xs5DgdLQ9Dx6uORXLqZTlp2PcgumzTJ8HfTJoiuWJ04lemlkZGpfp7s1oifd1/jTGQKx8OSCPJ2qPQ2JUlidFADPt14gT+PRjC+k7cJJJWpyzzeqSG/7LrGnsvxDJ6zB4DJ3RthZ1H5bBaZmiEjJ5+rcekkZ+aRnJVHSlYeKZm5pGTlkZxpeJ+WnY+3owXtvO1p19AeX2dLJEmqadGL0drLjv7NXdl24Sbfbb/Md48FFhuz7cJNpi8/Xmx5Zq6OfJ0elbIO20j8/KBLFzhwAJYvN3S1LyeyMiRTL3CwNOPhth78cTSCRftumEQZAkOw4WebQjgZnsyV2DSauFibZLsydQudXrD5XAw/77rKnXbHsMRMWnvZ1YRYMvdIWnYeO0Ji2XA6ml2X4sgpR1bVgWsJ/H7EEDxvZ6EmsIEdQQXKUZsGdlhqasft9OUBTdl24SbrTkcxo08T/NyKXrOGBLgzqasPi0sovJiek1/3FfsnnzQoQ4sWwbRp5V6tdvx6MjImYGJXH/44GsF/Z2OITsnC3da80tt0ttbQx8+FbRdu8ufRCN4acu9FvWTqLpm5+fyw4wrno4vXswpPlDva1wVSsvLYfuEmG89Es/tSPLm6WwqQk5UGJysz7CzU2JqrsTM3/G9jrsbOQo2FmZKLMekcD03iVEQyyZl57LwYx86LcQAoJGjv7cDMgc3o3NixpnYRgJYetgxu5cZ/Z2OYs/0Sc8cHFRvz9pDmnIlM4VhoUpHladn1QBkaMwZeeAGuXYPQ0HKvJitDMvWGlh62dGzkwOHriSw/GGZs6FpZRgV5se3CTdaciOS1QX5124wsc09Ya9UsntyBkT/tL6b8hNWnLuD1jHydnvWno/nnZCR7r8STp7tl12vsbMnQAHcGt3Knubt1ud1eufl6LkSnciw0iWNhSZwITSIqJZvDNxIZ+8tB+jd34c3B/jVqRX6pfzM2nYth45kYzkWl0NLDtsjnZioFc8e3Y+h3e4m/rU9ZWf3N6gS2toYO9kHFlcC7IQlTRZvWU1JTU7G1tSUlJQUbG5uaFqfSCAEJCRAWBuHhhr9hYRAVBTY24OUFDRoY/ha+LCxqWury89+ZaJ5dfhwHSzP2v9kXrVpZ6W3m5uvpPGs7iRm5LJzUnr7+riaQVKYuciM+g5E/7SfhtsKL3XwdWT6tcw1KJVMSey7H8cn6C1y8mWZc1tTFiiEB7gwJcKeZq5XJ4n7CEzP5efdVVh4OR6cXKBUSj3ZowEv9m+JirTXJHBXl+ZUnWHcqigEtXPl1QvsSxxy6lsDYXw9SqAWsnNaJLr5O1Shl1VKR+7dsGboPiI2Ff/6B1athzx7IrOCDbJMmhjpW48eDv3/VyGgqBrRwxcNWS1RKNutORTG6fYNKb9NMpeDhtp4s3HedP49GyMrQfYyPkyWLn+zIoz/vJzPP4Ga5VNfrs9QzrsSm8+mG80YXlq25mkldfXiwtTtNXavGWtPAwYJPHg5gUtdGfL4phK3nb7LiUBhrT0TydE9fpvVshIVZ9d5uX+zXlA2no9h6/ianI5JLjGvr1NiRVwY048uCJq9nIlPrlTJUEWTLUBnUVctQRAT8/fctBUh/R3ygq6uhWKeHp8DeNQ9z2zxiE/KJjVGSk6whOV5FZIRExh21u9q1MyhFY8eCh0f17U9F+Cn4Kp9vCqGlhw3rn+9ukqe/C9GpDJ6zB7VS4th7A7DRqk0gqUxdZe/leCYsPERh7cWr/xuCUlH7sovuJ5Iycvl22yWWHQpDpxeoFIZCmS/0a1LtcTCHriXwv/9COBWeDICLtYZXBjZjTPsG1ZqFNnPVSdaciKSPnzOLnuxY4hghBN0+30FUcnb9snLu3Uvqc89he+pUue7fsjJUBnVNGTp4EN59F7ZvL7q8XTtB866pWDWNJccihZsZWUSnZJGUWbqP2MPWHF8be0SEK5f2O3Biv4b8fMOJLEnQvz989plBQapNJGXk0nnWdnLy9fz5TBc6+Jgms6zfV8Fcjctgzti2DG/raZJtytRdlh0I5d1/zgIw7/F2PNDKvYYluj/Jzdez5MANvtt+mdSCWjn9m7vy9hB/Gjtb1ZhcQgjWn45m9uYQY5zZqCAvPnskoNriDm/EZ9Dv613o9ILVz3YlyNu+xHHbzt9k6pKjaNUKTr4/0CThBTXOuXOktmqFLZTr/i1HgtYTzp6Fhx82lFjYvt2grHTrBq99kMXzP18kb9gW9lruZVPUJXZeucn56FSjImRppqSpixW9mjnTx88ZD1uDjzsqJYs94VHsFSeI7bIdt2e34jX0PI1bZSGEoR9ehw7w0kuQarqm8ZXG3tKMEYEGZWXxvhsm2+6glm6AoSK1jMzjXbwJbGAHGJpeylQ/J8KSGPTtbj7ZcIHU7Hyau9uwYmon5k9sX6OKEBjqlA1r48G2mb14a7A/SoXEX8cieHrpMbJyddUig4+TJSPbGa6F3267VOq4vv4uuFhryM7Ts/X8zWqRrcpp2RLati33cNkyVAa13TJ0/Tp88AEsW2YIjlYo4LHxeto9HMWOyOucjbylpXjamTO0tTsNHSzwtDPHxUZDRo4OM6WESqlAqZBQKSQUComsHB3XEzIIS8ggLDGLCzGpXIxJM9bjsMi2wfJMW47uMPjgPTxgzhwYOdKgiN1OdjZoqzmGsNCtpVRI7Hm9Dx52lU+zPxWezPAf92FhpuT4ewPqx9OTTKW4EptG/693IwFbZ/aiiUvN3oDvF4QQLNp3g1n/XSBPJ3Cy0vDaoGaMCmpQa92V287fZMaK4+Tk62nX0I6FkzpUi/suPDGTPl8Gk68XrH++O608bUsc99WWi3y/4wq9mjnz2+SSXWp1jdTZs7F94w3ZTWYKapsylJyZy6Wb6cQk5PLz15Zs/tMKXYHrqmFQIjbdQki3SDJmB6iVEgNbujG2QwO6+ToRl57Drktx7LoUx97L8eXqudXc3YYHW7szqIUrZ6NSmbP9MtcLGgGqo91I2d6auEhDDM3gwfDDD9DY0AeQBQvg998NVqTqZuwvBzh4LZHpvX15/YHKR34LIej62Q6iU7KZP6E9/VvIgdQyMG3JUbaev8mj7Rvw+ajWNS1OvSclK483/jrNpgIL7eBWbnw+qnWdiOM7eiORyYuPkJqdTxMXK5ZM7miSB7WyeGHlCf49FcXYDg34bGTJx2hoQga9vghGIcH+N/vhZlszWXCmJPX6dWwbN5aVIVNQ25Sh6/EZdHv9GPH/BpKXYLDKaH3isOt5EY17inGcq42Gp3o05sE2HlyLy2DXpTiCL8YSEpNWZHvWGhU25mp0ekG+XqDT69HphfF9rk7P7UdISw8bHmjlhplSwYrDYYQmZKLPU5B/3I/YvY3Q5UuYm8PChXD4MHzzjWG9s2cNVsvqZNPZGJ5Zdgx7CzUH3upnEkvOh/+eY/H+G4wO8uKL0W1MIKVMXedYaCIjfzqAmVLBnjf64GpT928itZWzkSlMX36csMRM1EqJd4Y0Z2JXn1rZGqM0Lt1MY8KCw8SkZuNuq2XplI5VXpPo8PVExvx8AHO1kkPv9CtVcRzz8wEOX0/ktUF+zOjTpEplqg7k1Pp6ihCwfqUlN5d2R5+vQGGZjdPg05j7xhnHmKkUfPRQCx4J9GLl4TAGz9lD4m01USQJWnva0svPhV7NnGnjZXvXYL6kjFy2nI9h/elo9l9N4FxUKueiDK63lh4Gi9GJsCQiO13AtUkYGTvakHLNnsceK7qdn34yWIyqk/7NXfC0MycyOYt/T0YxpkPl0+wHtnRl8f4bbLtws+738ZExCUHeDnTwsefIjSQW7rvOW4PlKuWmRgjBskNhfLzuPLk6PZ525vw4vh1tC2K26hLNXK1ZPb0rTyw4xLW4DEbNO8CCiR1KDW42BR187GnmasWlm+msORbBpG6NShw3KsiLw9cTWX0sgum9feuUkllZZMtQGdQWy1BcnKHlyoYNhvfmvjdxHHwapeUtRaeRkyUrp3XiRFgyn28K4UaCoaCQo6UZvZo508vPme5NnHC00tyTDIkZuWw5F8OGMwbFSFeQV9zc3ZqBLdz442g4UUnZJG0JIO1UwyLrWltDZKThb3Xy866rzPovhObuNmx8ofJp9vk6PR0+3UZSZh4rp3Wmi2/Nlt6XqR0UZuNYa1Tse6tvnXDZ1BXSc/J5c/Vp1p82dCHv39yVr0a3wdaibn/HiRm5TF58hJPhyWjVhorQVVnDbMmBG7z/zzmauFix9eWeJV4LM3Ly6fDpNjJzdax+tovJejzWFBW5f8uPtXWA7duhdWuDIqTRwNTXk3EZebSIIjQqyItZj7RixooTPLv8ODcSMnGyMuOTh1tx6O1+fP2oIR38XhUhMDRDHduxIUundOLIO/35eHhL7C3UXIhOY27wFUa288JTY4/9oDPYdr9YZN20NEOQd3XzaIcGaNUKLkSncvh6YqW3p1Iq6NfccMGSs8pkCunr70JTFyvScvJZcSispsWpN4QnZjL8h72sPx2NSmFwi/06IajOK0JguJ6umNaJ3n7OZOfpeXrpMY6HJZW94j0yItATCzMlV2LTOVTKtdBSo2JIgKFExJ9HI6pMltqIrAzVchYsgEGDICYG/PwFw947z1ZpHxQo9SqFxCsDm5GZm8/YXw5xLDQJrVrBC32bEPxaHx7v7F0lrhwHSzOe6OLDlpd70b+5K3k6wQ87r+DkqqejpzN23a7gOPgU3Nbj+/vvobrtkHYWZowI9AIosUvzvVCYYr/lXAyyYVUGQKGQeKqnIWtg4d7r5ORXT+p0feZ8VCqP/LSfq3EZuNloWfV0Z6b1bFyvXDcWZip+ndCeAS0M19AZy4+TcFuvMMBoga8s1lq1sT7asoOlNzAdFWS4Xq4/HV1tJQBqA7IyVEsRAj76CKZOBZ0ORozOx3XCHo6kXUelkBjTvgHOVmpGBXnx3fbLbDwTgyTBmPZeBL/ah5kD/bDSVH1ImLO1hl8nBPHV6DZYa1WcjkjhdGwC3Zs4YdU6AudRR0FpOKEuXIBNm6pcpGJM6uoDGCw5kcmV7zDeo6kTFmZKolKyOROZUvYKMvcFw9t64majJTYth7UnImtanDrN/qvxPPrzAeLScvBztWbtjG513mVTGmqlgq/HtKGxkyXRKdm8+PtJdHpBVq6Or7de4vW/Tptsrsc7G8IXNp2NITYtu8QxnRo50NDBgvScfDadizbZ3LUdWRmqheTnw1NPwYcfGt5PeS6LG612EpqShrutlrUzuvHOUH+au9vy+5Fw8nSCXs2c+e/FHswe1abaUyIlSWJkkBdbXu5Jj6ZO5OTr2XslnsZOllg1icVt3AEkjSGFf8oUw/5VJ35u1nT1dUQvYPldnojKi1atpLefMyC7ymRuYaZSMKW7ITD1593X0Jvoif5+Y8PpaCYtPEJaTj4dGznwxzNd6kWa992w1qr56fEgzNVK9l6JZ8by4/T7Kpjvtl9m35V4k1mgW3rYEtjQjny94I8j4SWOkSTJaB26n1xlsjJUy8jIgOHDYf58QwHFGe+msMc2mMTMXFp62LB2Rje0aiUj5u5n9+V4zFQKvhjVmt8md8TfrWZT/91tzVkyuSOfjmiFhZmSa/EZOFppcGiUjuujh5BUOqKjYfr06pft8c7eAPxzMsokN6lb1ajrSbVWGZPwWKeGWGtVXIvLYEt9qeRbjfy2/wbPrTxOrk7PAy3dWDK5I7bmdT8+qDz4uVnzXEE6+6ZzMUSlGCw3ManZxv9NwRMF18KVh8NLdcE90s4TSYL9VxOISKpgZ+86iqwM1SJiY6FPH9i4EczNBU9/HM36vL3k5Ovp5+/CH0934UxECg//uI9rcRm422r58+kuJunMbiokSWJ8J282vdgTH0cL4tJycLAww8c/B8ehJwH49Vf45ZfqlauvvwtWGhWRyVmcCK98kGIffxfUSokrselcjZO7lssYsNKojDebebuuyjFl5UQIwRebQ/jg33MIYXDn/Di+3X1V5f1iTBrfbi+5ZcbRG5VP/ihkSIA79hZqIpOz2BkSW+IYL3sLuhZkyq4+dn+4fGVlqJYQFwd9+8KRI+DoKBj9/lU2ph4HYGIXb+Y9HsT8PdeZuuQo6Tn5dPRx4N/nutOmltbZaOhowfJpnfG0Myc8KQsLMxUN2ycas8xmzBDs3Fl98mjVSgYWVIz+92RUpbdno1XTxdcJkF1lMkWZ1M0HM5WCk+HJJslgrO/k6/S8/tdpftx5FYBXBzbj4+Gtam1bjarCz82aH8a1Q60svt/HQk2XZaZVK40P0MsOlR42MDrIMOav4+H3hctXVoZqAYmJMGAAnDsH7h6CHjPPsCv5IpIE7z/YglcH+TFjxXG+KWi0N7GLN8undcLZ+t7T5KsDTztzlk/thIu1hqtx6diZq3HsfgWL5pHk50uMGgVXrlSfPMPaegCw4Uw0+Tp9pbc3qGVhir3sDpG5hYu1lpHtDDEX3++oxgO8DpKv0/PSqpP8eSwChQSfjwzgub5N61XGWEUY1NKNZVM6YakpahE7esO0KffjOhoCqXddiiM8sWQ32KCWblhrVIQnZpWail+fkJWhGiYlxZA6f+oUuLgKWk87wYnUcLRqBfMeD+KRdp6M+fkgW87fxEypYPao1nw0vBXqOlL52MfJkuVTO+FgacbVuAw87S1wHHwajXsSiYkwbBgkJ1ePLN2bOGFvoSY+PZeD1yp/cg9o4YokGRq4xpjQpy9T95ne2xe1UmLvlXgOXkuoaXFqJYWK0PrT0aiVEj89HsSjHRqWvWI9p1NjR/58umuRWKkL0amk55gu88THyZIeTZ0QApaXUhfL3ExprDn039n6n1VWN+6o9ZS0NBg4EI4eBScnQacZZwnJjsZaq+L3p7rQxdeRCQsPcyE6FScrDX8804UxtSg+qLw0dbVmyeSO2GhVhCVm4u6gxumRY6htsgkJMVTWro7QCrVSweCCk/vfU5X3g7tYawlqaCihv+W87CqTuUUDBwvjufr1lkty7NAd5Ov0vPzHKaMiNHd8kDEpQQZaeNiw7rnu2BUoRAL474xpFZLCpJI/joaXWhdrYIH1e9v5m/X+GJaVoRoiORnatTM0M7WxEfR+6QKnM8IwVytZNKkDTV2seHLREU5HpOBgacbKaZ3qZB+eQlp52rJ4ckcszZTcTMvBwUmH44gjSEo9a9caOttXB8NaG1xlm87GmKQwXuEFfNNZWRmSKcpzfZtgplJw+EYie6/E17Q4tYZCRWjdqSijIjSgRdW1oairNHS0YPPLPY0usx92XDGpQtLP3wV3Wy2JGbmlXr+6NXHCXG2oqVbYk7K+IitD1YwQsGoVeHoa4mVUKsGDb17mSNp1zJQKfpkQRCtPW6b+dpRjoUnYaFUsndKRpq7V3NSrCmjX0J4FkzqgUSlIzc7Hxisdmy6XAXj+ecHNagi96djIAVcbDanZ+ey+VPkbVKEydOh6Ikm3NcSVkXG3NWd8J4Pb5yvZOgQYFKGZtylCP45rV6cUoew8HWciUvjnZCR7L8cTnphpkvjD0nC1MWQMS0BoYiZbTViuQaVUMLbALVlaRWqtWknPZoZEEVPOXRupU8rQ7t27GTZsGB4eHkiSxNq1a8tcZ9euXQQFBaHVamncuDHz5s2rekFLYe9e6NoVxo6FzEwAwfDXrrMv5TJKhcT34wLp2MiBp5Ye48C1BKw0KpZO6URLD9sak9nUdG7syLwngpAkyMnXY9/lKmqXFBISJJ57rurnVyokHiywDv17qvJZZQ0dLfB3s0anF6w+HsGfR8N5a43pKsbK1G2e7e2LVm3ILNtRShrz/UKhIvTvbYrQwFrsGkvLzmP/lXjm77nGzFUneeDb3bT6YDPDftjLi7+f5PEFh+gxeyfN399Eny+DmbjwMB/8c5blh0JJy84zmRwtPGyZVtDq5ZMNF8jOM12LjLEdG6BSSBy5kURITMmWnwEtDL+RrAzVIjIyMmjTpg0//PBDucZfv36dIUOG0KNHD06cOMHbb7/NCy+8wOrVq6tY0qKcPw8PPQQ9esDBg7eW+w+O4Kj+AgBfjm5NX38Xnltxgt2X4gzusic71NrU+crQx8+Fp3oYTm4LrQKnIadB0vPXX/DXX1U//7A2BmVo2/mbZObee1BiUkYuG89EG1NhP9lwgdf+Os0WObtMpgAXay0TC9rBfL31/rUO6fSCV/40KEIqRe1WhBLSc5i18QIdP93OuPmH+GTDBdaciCQkJo18vcDOQk17b3t8nS0xUyrI0wmux2ew61Icvx0I5Z2/z9Ltsx18teUiiSayFr/YrymuNhrCEjNZsPe6SbYJBstToWXu71JayPT1d0Ehwfno1HpdgLHqm1eZkMGDBzN48OByj583bx4NGzbk22+/BaB58+YcPXqUL7/8kpEjR1aRlLeIjob33oNFi0B/hyVV2yiWrNYGC8LHD7diWGsPXlx1kq3nb6JRKVgwsT0dfOpnLx6AmQObsetSHCExaTRsmktG56ukHmjKjBmC3r0lnJyqbu42XrZ4O1oQmpDJtguxPFSgHFWUNSci+Xj9+WLLLTT3T6E4mbJ5uqcvyw6Eci4qlc3nYniglXtNi1StCCF4e80Z/jlpUITmjq+dilBiRi6/7L7GkgM3yCxoUOppZ06Apy0tPGxo4W5DCw8b3G21xtR/nV4Qk5pNaEIGYQmZ3EjIZOv5GK7GZfD9jivM33OdsR0bMK1HYzzszO9ZNkuNircGN+elVSf5cecVRrbzMlmLkmFtPPjvbAwbz0Tz5gP+xcoaOFia0d7bgcM3Etl+Idao3Nc36pRlqKIcOHCAgQMHFlk2aNAgjh49Sl5eyWbMnJwcUlNTi7zuFaXSECB9pyKkdkzDdcwRAN4c7M8Tnb35aN15NhRkVvz8RBBdm1ShNlAL0KiUfDu2LWZKBTGp2bj3vobaKY3YWIkXX6zauSVJMgZSV6YA48Qu3rTyLN4CxdKsTj1jyFQxDpZmTC7oWfb11ksm60JeFxBC8PH6C6w6Go5Cgu8fC6x1ilByZi5fbA6hx+c7mLfrKpm5OgI8bVk4qT173+jDvCeCeKFfU/q3cMXDzryIsqBUSHjamdPV14mxHRvy5mB/tr7ci3mPtyPA05asPB2L9t2g1xc7ef2vU4Ql3LtlZXhbD4K87cnM1fHZfxdMseuAwVJvrlYSnpjF2cjSXGUG61F9dpXVa2UoJiYGV9eiwXmurq7k5+cTH19y8OysWbOwtbU1vho0uPdUdhcX2LkT/P1vLVNocnGdsBeAp3s15plevqw6EsbSg6FIEnz/WDt6+7nc85x1CX83G14b5AeATtLhOOQUSIIVK+Dff6t27kJX2a5LsaRk3pt/X6VUMGtEa+4slGthJluGZIoytUdjbLQqLt1MZ/3pyseq1RW+3XaZhfsMbp0vRrUxlraoLaw8HEb3z3fy486rZOTqaOlhw/wJ7fn3uW709Xe9p+KPCoXEA63c+fe5biyd0pHOjR3I0wn+OBrBkO/2sCPk3hQKSZL4cFhLJAnWnowyWYsOczMlff0N95wNpaTv9y9Qhg5eSyAly3TxULWJeq0MAcUO5kKffWkH+VtvvUVKSorxFR5ecmff8qLTQXph6yqFHreJe1Ga6enr78Ibg/w5GZ7Me2vPATCzfzMeaFW7npqqmindG9GlsSN5OoG9dzo2Ha8BMGMGZGVV3bx+btb4uVqTpxOVaqcR4GXLpK6Niiyz1MiWIZmi2JqrmVYQJzdn2+UqzUCqLfy6+xpzthuyRf9veEtGFnRCrw3k6/R88M9Z3lpzhvScfJq72/DzE0Gsf747/VvcmxJ0J5Ik0aOpM78/1YXVz3YlyNue9Jx8pvx2lJ+C761vXYCXLWMK2mR8uO6cyayMgwMM952NZ6JLlKuRkyVNXKzI1wuCL9bPRIB6rQy5ubkRE1P0RhcbG4tKpcLR0bHEdTQaDTY2NkVe90peHowZAxER0NhX0HjCUdT2WXjZWvLt2LYkZOTyzNJj5Or0DGzhyoyCjsX3EwqFxJdj2mCtVZGZq8O22yWU1llERMCPP1bt3A+1NU1W2cyBzXC9rTXK/dlIQKYsnuzeCHsLNdfiM1hrgv54tZkVh8L4dKPBlfPaID8mdPGpWYFuIyUzj0mLjvDbAUM6+WuD/NjwfHcGtXSrsjYgQd72rJzWmXGdGiIEfL4phJdWnbynzLDXHvDDWqPibGQqfx6t3MN6IX39XdCqFYQlZpZaT6jQVbbtgqwM1Tm6dOnC1q1biyzbsmUL7du3R61Wl7KW6Xj9ddi1C6ysoP+Ll9G5xmEmqfhtanvM1UpmLD9OTGo2vs6WfDWmDYr7rDFhIZ525nw8vBUASrUeu+6GHmz/+58gybQteYrwYGuDyX7/1Xji0nLueTtWGhWfjAgwvi8MvpSRuR0rjYpnevkCMGf7JXLz66d16J+Tkbyz9gxgKC1Qmx7yrsSm8/Dcfey9Eo+FmZKfnwhiRp8m1XLtNVMp+N+IAD5+uBUqhcQ/J6MY8/MBolMqZgJ3stLwYv+mAHyx+aJJ3FYWZir6+N3dVVaoDAWHxNbLY7dOKUPp6emcPHmSkydPAobU+ZMnTxIWZuit8tZbbzFhwgTj+GeeeYbQ0FBmzpzJhQsXWLhwIQsWLODVV1+tclmXLYOCJDamvhvH5sjLSBLMm9gWX2crPt1wgcM3ErHSqPhlQnustVWvnNVmhrf1YGhrdwRgHRCB2imNpCSJzz+vujm9HS1p08AOvTCYhyvDgBauNHKyADBZOq1M/WNCFx+crTWEJ2YZY2nqE9vO32TmH6cQAp7o7M3rBTGBtYHgi7GMmLuP6/EZeNqZ89czXWukBcgTnb1ZOqUT9hZqTkek8NAP+zgeVrGnvoldffB1tiQhI5fvClyRlcXYh6wUV1lbLzucrDSk5eRz6Hr967dXp5Sho0ePEhgYSGBgIAAzZ84kMDCQ999/H4Do6GijYgTQqFEjNm7cSHBwMG3btuXjjz/mu+++q/K0+hMnYNo0w/+Tn8tifaohc+zVgX709Xflr2MRLN5/A4BvHjUoR/c7kiTx6cOtcLbWICSw6xUCwJw5goiIqpu3MK1+nQkKML7UvxkAN1Oz79t6MjJ3x9xMyZsPGDIqvtt+ucJWgdrM/qvxTF9xHJ1e8EigJx891LLWdJ9fdjCUyYuPkJadTwcfe/55rhstPO49BKKydPF15N/nuuPvZk1cWg5jfznIsdDyK0RqpYL3HmwBGPYtPv3eLduF9PV3QaNScCMhk/PRxV1lCoVE/+YG61F9zCqrU8pQ7969EUIUey1evBiAxYsXExwcXGSdXr16cfz4cXJycrh+/TrPPPNMlcoYHw8jRkB2NvQbqOOk8z7ydIKhAe5M7+3LmYgU3v7bYEJ+oV/TOlWKvqqxszDjlQEGhcKqSRwar0SysyU+/LDq5nywtTuSBEdDkypdUGxgCzeUComMXB3X4zNMJKFMfeORdp60L0iR/mSD6VKka5ITYUlM++0oufmG+MfZo1rXGrf/prPRvPfPWfQCRgd5sWxqJ5ysNGWvWMU0cLBg9bNd6dXMmdx8PU8vPVqha1CvZs60aWBHTr6eJQUP15XBUnPLVVaapdwYN1QPG7fWKWWotqPTwbhxEBoKTZoIrB44RkJmDv5u1nwxujWZuTpmrDhObr6efv4uvNSvaU2LXOsYFeSFr7MleoTROrRokeBCFd0zXG20dPA2FLfceTGuUtsyN1PS3tvQxX7f1fpnRpYxDZIk8X/DW6GQYMPpaPZerttNXC/GpDFp0REycnV0b+LE9+MCUSlrx63lVHgyL606aXTbzR7VGo2q9pS+sNSomDu+Hc3dbYhPz2Xqb0dJzylfVXxJknimoE3HbwdCySjnenfjVlZZTInKTn1u3Fo7jth6wmefwdatYGEBY94K5+TNOCzNlMx7PAgLMxX/23iBsMRMPO3M+frRtrXmyak2oVIqeL3AjWDZIBnzpjHo9RJvv111c/bycwZg96XKKUMA3QuKZe6Xu5TL3IUWHjbGDKv3/z1bZwNSb8Rn8PiCQ6Rk5RHY0I6fnwiqNcpGZHIWU5ccJTtPT28/Zz4Y1qLWuO1ux1KjYsHE9jhbawiJSeOFlSfKnTI/sKUbPo4WpGTl8YcJMsv6NXfFTKXgenwGF6LTin1enxu3ysqQidi9GwpCl3jj4wxWXTkLwEfDW+HjZMnuS3EsP2SIZ5o9qjW25rU/YFoIwZXYNE6FJ3MsNJFD1xLYdyWeXZfiOHw9kbwqqpUysIUr7RraoRMC+54XQRKsXQv791fJdPRsalCGDlxNqPQ+dWtquFAcuJaA/j6qNCxTcV4e0AwnKzOuxWWYtN9UdRGdksX4+YeISzNYvxdP6lhramylZecxZfERo2zfP1Z7rFUl4WFnzq8T2qNRKdgREsusjeUzhSsVkrGJ6/w91yt9/bLSqOjdzHA9LM1V1r95/axGXXuPjjpEXBw89pih7cZj4/Vs1x0mXy94sLU7I9t5kpKVxxurDX3IJnbxplstb7VxLS6dr7ZcpMfsnfT/ejfDf9zHyJ8O8OgvBxk//xATFx5mzM8H6PDpNt5cfZrdl+JMqhhJksSbg5sDYOaUjlWA4Ynnk09MNkURWnrY4GBpRnpOPscrEMRYEq09bbHWqEjOzCsxCFFGphBbczVvFRzn3++4TFRy3QmmTkjP4fH5h4hMzsLH0YIlUzpia1E7HvDydXqeW3GCkJg0nK01LJjUoU5k67ZtYMeXo9sAMH/vdX4/HFbGGgZGtvPCycqMyOSsSmfFAgwtKDlSWgHGfs1d62XjVlkZqiR6PUycCFFRhrYbToPOEZpgcIV9OiLAEB+w7jzRKdn4OFrwxmD/sjdaAyRl5LLkwA2G/7iPvl/t4vsdV4hIykKrVuBpZ05DBwsaO1vi52pNC3eD8pCcmcfvR8KZsPAwHT/dxltrTnMyPNkk8nRs5ED/5i4IwKbzVUDw339wvnhf1EqjUEhG99aeSsZvqJQKOjU2xCDtlV1lMmXwSDtPOvgYgqk/rSPB1IkZuYyff4ircRm422pZNrUTLtamaRpaWYQQfLTuPLsuxaFVK5g/oT2elWiQWt0Ma+PBywVZqe+uPcv+q2VfQ7RqJZMKmqfO23Wt0oHNff1dMFMpuBafQUhMcVdZYeNWgO31qACjrAxVki+/hP/+A60WZnwSy7/nwlBI8PWYNtiaq9lyLobVxyNQSPDVmDZY1MImnn+fiKDH7J28/885ToUno1RI9PZzZs7Ytpx4byD73uzL7tf7sOOV3mx+uScbX+zB4bf7sWJqJ8Z1aoijpRlJmXmsPBzOiLn7+L915++psuqdvP6APwoJ1PaZmDczmGS//rrSmy2RngWm4d2XKx831NXXoFjtk5UhmTIoDKZWKiQ2nIlmjwmOv6okOTOXx+cfMlpdlk3thJe9RU2LZWTZoVt9Hr99tC1tGtjVtEgV5oV+TXiojQf5esGM5cdJKEfa/OOdvbEwU3IhOrXSD3TWWrUxdOC/srLKLtQfV5msDFWCQ4cwBvZ+9FkuP585AcD03k3o1NiRxIxcYxr9tJ6NCSrQpmsLqdl5vPj7CV5edYr0nHz83ax578EWHHyrH4uf7Mjwtp6Yl9J0VKVU0LWJE/8bEcCht/uxfGonhrf1QAhYuO86Q77bU2krUTNXa0YV9DOy6WDoWbZ0qSDm3luJlUrPglifM5EplS6aWOgGPXIjkZx8uRq1zN1p7m7DE529AXj/n3MmyQqqClKy8nhiwWHOR6fiZGXGymmdalWNtPDETP5XYF17fZA/D7SqXFPY1Ow8Pll/nuCLsWRVY1V5SZKYPao1/m7WJGXm8b+NIWWuY2dhxtgODQH4effVSsswtLUhq2xDKa6yHgVB1EdvJFVZ7Gh1IytD90h6Oowfb0inHzNGcERzjLTsfNo0sDOWSn9v7Vni03Np5mplNH3WFo6FJjFkzh7+ORmFUiExc0Az1j/fnSndG+FsXbEaHCqlgm5NnJgzNpBFkzrgYq3hWlwGj8zdx5ebL1YqU+al/s3QqBRoPJMwc08iN1eqkp5lLjZa/N2sEYJKP503c7XCyUpDdp6eE2HJphFQpl4zc2AzXG00XI/P4O2/z9S6Gi6p2XlMWHiYM5EpOFiasWJaZ5q4WNe0WEaEELyz9ixZeTo6NnLg6YKg4sqglCTm773OpEVHaPPRFh775SA/7rzC6YhkkzVILQ2tWlkQZgGrj0dwoBylOqb0aIRSIbHvSgJnIlIqNX+/5q6YKRVcjcvg0s30Yp83c7HG3kJNVp6O05Wcq7YgK0P3yEsvwdWr0KAB9HwyjCM3ErE0UzLn0baolQo2nolmw5loVAqJr0a3RauuHemmOr3gu+2XGfPzASKSsvCyN+ePp7vwQr+mJsm26OPvwpaXezK8rQd6AT/svMJDP+wlNOHeihB62JkzqZsPkoSxo/3cnwSZVRC3V+gqq6yZWZIkujUxNAKWU+xlyoONVs33j7VDWdCzauVh0zTgNAXpOflMWniYU+HJ2FuoWT61E81ca48iBPD3iUh2X4rDTKXgs0cCTFK25PZrdq5Oz4FrCXyx+SIP/bCPdh9vYeTc/Yyet5/Ji44wZfERxv16kId/3McD3+5m+vJjrDkeQVIlrMxB3vaM62iw9ryz9kyZVmZPO3NjRf15lbQO2WjVxhT6LeeKm+IVColOjQzXuIPX6kdNNVkZugf+/hsWLABJgq/mZvPjfoNp9s0hzfFxsiQzN5+P1xsifaf39iXAy7YmxTWi1wte+eMkX2+9hE4veLitBxtf7EFQQaFAU2FnYcacsYHMHd8Oews1ITFpjPv10D1nHjzbyxetWoFFsxhUtpkkJkj89ptJRQZupdjvuRxX6SfzbgVxQ3IQtUx56djIgdcKenl9uO4cZyNr/ok7OTOXCQsOcTwsGVtzNcumdqK5e821sSiJ+PQc/q/gevtiv6Y0NpHrTqmQMFOVfItMycrnWFgSR24kseNiLNtDYtl/NYGT4cmExKSx8UwMM/84RdAnWxkz7wC/7L5KeGLFr3+vP+CPk5XB0j4v+FqZ458qsIj9dyb6nh9AC+lV8HC4r5Qg7s4FiSKyMnSfEhV1q+/Ya68J1sWeJjNXR0cfB8YXaPE/BV8lOiUbL3tzpteSjs1CCD7deIG1BW6xr0a34duxgdhUYcrpkAB3Nr3Uk8ZOlkQmG2qS3EzNrvB27CzMGBHohaQA6/aGeixffyPQm9hV3d7HHq1awc3UHC7eLJ5FURG6FliGTkWkkJZd+a7SMvcHT/VoTD9/F3Lz9cxYcZzUGjx2YlKyGfPzAY6HJWOjVbFsSidaetSOB7vb+b9150nOzKO5u41RGTAV5nex6GtUCga3cuP9B1vw+cgA5oxtyy9PBLHoyQ4837cJ/m7W6AUcvpHI/zaG0OfLYL7acrFCcYS25mreH2boQfZj8BWuxRV3Wd1Oc3cbejVzRi9g6YHQcs9TEl0LYh+PhyaXGDPV2ddwjasvcUOyMlQB9Hp48klISIDAQAgaecs0O2ukwTQblpDJz7sNGvy7Q1vUGvfYL7uvGQu7zR7ZmpEFgcnlRQhBWEIma09E8seRcPZfiSc0IaPMeCBXGy3Lp3WigYM5oQmZjPv14D01FZzY1RBgatU6HIUmjyuXJdatq/Bm7opWrTSafvdcqpxFx8veAm9HC3R6weHriaYQT+Y+QKGQ+GpMGzztDOfLm6tP10j80NW4dEb+tJ9LN9NxtdHw5zNda42F+3Z2hNzk31NRKCT4fGQAahMXVjRXF99eC3dr5oxty5kPB/HT40FM7t6IRzs0ZHhbTwa2dKOPnwuvDPRj00s92ftGHz56qCWdGjmQrxd8v+MKD363t0Jd6oe1dqdHUydy8/W8u/ZsmcfD4wXB+GtPRpFfCSWlsZMl7rZacnV6joYWv4bVt7ghWRmqAD/9BFu2GNLof/wll1mbbplmC7MqPt5wntx8PT2aOjGoZe1owrr6WASz/jNkJLw9xL/citClm2nM33ONZ5cdo+P/ttPzi528tOokr68+zbj5h+j1RTB+7/1H5/9tZ+pvRzl4LaHEE9Xd1pwVUzvjbqvlalwGj88/RHJmxXzp/m42dG7sgMJMh1Wg4Ynn229Nf5OomhT7+mFGlqke7CzM+GFcIGqlxMYzMfxmgiacFeFUeDKj5x0gMjmLxk6WrH62K35utStGCAyxTO/+baj0P6V7I1p72Zl0+4kZuaRk3crse7itB3vf6MPGF3syvK1nqS602/Gyt2BiVx9WPd2FuePb4WRlxuVYg6L58frz5cpSkySJTx5uhUalYP/VBNaejLzr+F7NnHGwNCM+PYc9lXDTS5J012tYfYsbkpWhcnL1Krz+uuH/2bPh9yvnSMrMw9/N2mia3XUpjq3nb6JSSLWmD87OkFheL6h+Pa1HI57q6VvmOvHpObz65ykGfrObTzZc4L+zMcSl5aBWSgQ2tKNnM2d8nS3RqBQIATGp2Wy7cJOxvxxk5E/72X6heEfjBg4WrJjW2dh/Z8LCwxV2ARQWFrMODAUEwcES18p2o1eIwhT7Q9cTK51OawyiLkfhNBmZ2wlsaM/bQwzVqT/deIHNJQSxVgV7Lsfx2K8HSczIpbWXLX8+06VW1RG6nS82hRCVkk0DB3NeHmDabN2T4ck8+N0esvJ0aNUKY1hBZb6LIQHubH25FyMCPRECFuy9zgNzdnMjvuzYHm9HS14oaOz9yfoLpGSWfu00UymMgdRrjt9dcSqLwmtYaTXT6lPckKwMlZPp0yEzE/r0gRb9YvnnpME0O3tUa9RKBbn5ej5adw4w3LRrQ9rpyfBkpi8/jk4vGBHoaSz9Xxr5Oj2L912nz5fB/HUsAjA8Zbz+gB9/PN2FMx8O4u/p3VgyuSPbX+lNyMcPcPTd/qyZ3pXxnRpiplJwPCyZKb8dZfCcPWw6W7RgVyMnS1ZM7YSDpRmnI1J4+feTCCFIyczjs/9C+PdU1F3l69/cFU87c1Q22Wh9DCfn4sX3/v2URBMXK4NpOF/PoeuVO8ELn6pCYtIqlVUic38yqasPw9t6kKcTPLvsmPGcrAp0esH32y8zceFhMgu6z6+Y1hlHq4qV2aguQhMyWFbQ63HWiNYmLWb7x5FwRs/bT1RKNo2cLFk7o1uFwwpKw97SjG8ebcuiSR1wt9USmpDJY78eJCyh7ODqaT0a08TFioSMXBbuK9rL7s6Hz5HtDPJuORdTqbizwpppZ6NSSrTm16e4IVkZKicHD4KVFXz/Uz7v/WMopHi7afa3/Te4FpeBk5WGFwrqDNUkWbk6Xlh5gqw8Hb2aOTN7VOu7ppseC01k2A/7+HDdedKy82nlacOa6V35bXJHpvduQsdGDsXinyRJwslKQ7uG9nw6IoC9r/fh6V6NsdKoCIlJ45llx/m/deeL1ORo6mrNkskdMVMq2B4Sy9NLj9F99g7m7bpaZl8wlVJh9IcX9itbvNi0gdSSJN2WVVY5i46DpRmNnSwBOBWRXFnRZO4zJMmQ6DAqyAu9gFf/PMXCKmjoGpeWw8SFh/lq6yX0wnAjXTCpPVa1pOlqSfyw4wo6vaC3nzPdm5qu1+P2Czd5Y81p8nSCB1q68c9z3fB3M332XB9/F/59rju+zpZEp2Tz2K8Hy8w2M1MpeKng3rJ4/w3i0rJZczyC8fMPcuiOuMRWnjY0dbEiJ1/PxtP33q/M1UZLExcrhCjZ+lOf4oZkZagCfPUV/HvtcjHTbGxqNnO2XwbgjQf8qjRDq7x8u+0SYYmZuNtqC+IPSv+p/zsTzZifD3IhOhVbczWfPNyKf2Z0p13DiqXcu9hoeWtwc/a92ZdnehnccQv3XWfy4iNFnk783Kzp29wFgC3nb5KWbfDLl6ex6dgODdCoFFg0u4lCk0d4uMSOHRUSs0wKq6vuvlT5uKHCdgB1/UIhUzOolApmj2zNlO6NAPi/9ef5ZuslkwVV778Sz5Dv9rD3SjzmaiVfjm7DV2PaoFHVjsSPkghLyGTNCYP758V+pnvwDIlJ5YWVJxACHuvYgJ8eb1el13Jnaw0rp3U2Zts+9utBIsto1vtASzfcbbWkZOXR7bMdzPzjFPuuJJCaVdT6I0kSjxRYhyrtKvMtdJWVHDfUuXH9iBuSlaFy0q8f9Hs43fhk9tFDLY2m2W+2XSY9J5+2DeyM5sma5ExECr/uMQTTfPJwq7t2bN50NobnV55ApxcMDXBn56u9ebyzN8pKFC2zNVfz5mB/5o5vh1atYNelOB6Zu99Y9+L77ZfZdLZ4DMSFqNQyL/L2lmYMb+uBpNJj0cLgVlu48J5FLZHuTZxQSHA5Nr3SncRbF2TgnDJRA1uZ+w+FQuLdoc15daDh4WvO9su8/fdZUrLu3f0Rl5bDR+vOMX7BIeLScvBztebf57oZ29/UZn7cabAK9WzmTGAFH9hKIz49hymLj5KRq6OrryP/N7xVtcR8uthoWTGtMz6OFkQkZfHYLwdLveakZOYx8JvdRKcYypPk6m5dK9NLaOEyItATSTKk9pfHDVcahSn2pdcbkpWh+4rvv4dPNpwnTyfo4+dMX39Dplh4YiZ/HjW4bN4d2twklU8rQ55OzxurT6MX8GBrd/o1Lz2jbev5mzy34jj5BQUYv3ssEAdLM5PJMiTAnT+f7oqbjZYrsekM/3Efh64l8GL/ZiVedNNy8olIKlv5mFgQSF3oKluzRpBU/kzVMrGzMDO6P/dW0lVWaBk6FZFc61osyNQdJEniub5N+b/hLQFYeTiMnrN38lPw1QoF+iek5zBr4wV6zt7Jon03EMJgbV07oxtNa1lV6ZIIT8xk9XFD7JSprELZeTqeXnqMyOQsGjlZMnd8O5On6N8NN1stK5/qTEMHC8ISMxk//1CJiq6thZpxnRqWuI2SlCE3Wy3dCxSZv0/cu3Woc2NHFBJci8sgOqX49blQGarrcUOyMlROLqfHsvNiHGqlxPvDWhqXf7f9MvkFTyntfWq+Eeuve65xPjoVOws1Hz7UstRx2y/c5Jllx8jXC4a18eDL0W0qZQ0qjQAvW/55rhttvGxJzsxjym9HuRqXzuyRrXm0fYNi489Fle1OaulhS0cfB8zcUlA7pZKTI/H776aVu0dBHMKBSj7ttHC3QaWQiE/PLdMELiNTFhO6+LD4yQ40dbEiJSuPzzeF0OuLnSw9GEpsWnaJCndKVh77r8Tzv40X6DF7Jz/vvkZWno42Dez4bXJHPhvZutSGzLWNucFXyNcLejR1MknlfCEEb685w7HQJGy0KuZPbI+dhekeCMuLu605K5/qjKedOdfjM3ivlHpCU7o3YkiAW7HlhaEGd/JIO08A1pyIuOeHMVtzNQEFD4clucqauljhYGlW5+OGZGWonHy+yVCnZ0r3xjQqCIq9Hp9h9F3PNHFq571wPT6Db7cZYpfeG9oCp1IyQeYFX2Hqb0fR6QWDW7nxzZg2JulLVhquNlpWPd2Fjo0cSM/JZ+pvR0nJymPWIwGM7VDUQnSqnCfTxK6GfmVWAYanxEWLTGt1KYyXqqx7S6tW4u9ueOKuyxcKmdpDbz8XNr3Uk69Gt8HL3pzYtBzeW3uWjp9uJ+DDLQz7fi/PrzzB8ytP0OfLYNp8tIVx8w/xy+5rZObqCPC0ZdGkDqyd3tXYcqEuEJGUyZ9HTWsVWrz/BmtORKJUSMwdH2SsF1cTeNqZ8/24QJQKiX9PRZVozTF0tG+Dj1PRFP/SlKFBLd2wNFMSmpDJsTISVO5GYdxQSb0WDfWG6n6KvawMlZPwxCxcrDU81/dWe43vtl9Gpxf083ehbYE7pKbQ6wVvrj5tLPhY+ERwO2ciUnj05wN8tukiAkM8y3ePBVapIlSIVq1k3uNBeNmbE5aYybPLj6ETgv+NaM2ooFuybi4hlqgk+rdwwVqrwrJlJCj0HDkicfas6eQtdG9di8+4a02Pcm2r4KlKjhuSMRVKhcTIIC+2v9KLjx5qSWMnSyTJ4C45E5nCulNRrDsVxfWCGjYNHMwZEuDG/Ant+fe5bvTxd6kVddAqwtzgq+TrBd2aOJrECh+bms2Xmy8C8N7Q5ibNSrtX2jW0Nyp67/9zrsRYHyuNil+faI9aeev3Sy8lfd7CTMXgAHcAVlcikLr7bXFDJVmY6kPckKwMVYC3hvgb002vxKaxtkBzN3XBr3thw5loDl1PxFyt5H8jAopc6K7FpTNjxXGG/bDXmIJpplKw6qku1eobd7A0Y8HEDliaKTl4LZGP1p1DoZD4YlQbY7HD6/EZJJSjXYdGpWRgCzeUlrmY+8YCsHKlaWX1djQ8fZ2sZFp8oWJ1UlaGZEyMRqVkYlcfdrxqqPu1bWZPfnkiiLcG+/P6A34smdyRE+8NYM/rfZk7Poj+LVzrnBIEEJmcZYzNfLGfaa63n/0XQkaujsCGdkzo4mOSbZqCGX2a0MHHnvScfF74/USJcThNXa35dESA8f2l2NJ7lhU+GK8/HUV23r0Vkm3nbY9GZejbeLWE/mi3xw2V1aKptiIrQ+WkjZctD7e9ZcF4d+1ZBIZCgK08a7ZnjxCCucFXAXi6V2MaOBhu4jEp2by15gwDvtnNhjtqTbwyoFmNxAn4uVnz7dhAJAmWHQxj6YEbSJLEokkdcLQ0QwDfbL1Urm092NrwxGPpb9i3NWtM6yozlUWncDtnI1OK1FySkTElGpWSJi7WDGzpxtO9fJneuwk9mzljb8KkiJpiwZ7r5OkEXRo70rFR5a1Cx0ITWXMiEkmCD4e1rPHEl9tRKiS+ebQt1loVJ8OT+a6gbMudjGnfgDYF2aoX7lKWpHMjRzztzEnLzif44r2VC9GqlbT3MYQOlBU3dCYy+Z7mMDX5Oj3Tfjta7vGyMlRO3hna3PhE9dexcA5eM1hYXhlY81ahXZfiuBCdioWZ0tiyYtPZaHp9sZOVh8OK3YCdrDRM62Ha7s4VYUALV14b5AfAh+vOcyo8GaVSwTePtgHg9yPhRCSVnQrarYkTtuZqg2VIoSckRCIkxHRytjWRRaeJixUWZkoycnUlPlXJyMiUTm6+3tiPyxRd6XV6wfv/GLoFjAlqYLTc1ia87C2Mlp8fd17hyI2Smz3/MqE9EoaYofNRJStECoXEwII+mcEXY+9ZpsJq1CW15rg9bujA1drhKlMpFcSmZZd7vKwMlZMWHgYN/HhYEm+sNlSgdrXR0Nzd9NVJK8pPBVahcR0bGjMh+vi7GP28d/LJwzX/JPRsL1+GBrij0wve/vsM+To9PZo609XXkXy9MAaC3w0zlYJBLV1RaPLRehtO0L//Np2MbRvaAQZlqDJp8UqFRECB9VB2lcnIVIwdIbEkZuTiYq0xZnlWhlVHwjkXlYq1VsVrD/iZQMKq4aE2HoxsZ6g+/sE/59CXYFV2tdHSx99QwLaw5EBJ9PEzjNl5Mfaer2XdfG9l2JZk4S602J0IS76n7VcFbSrQvFdWhirA6Yhknph/yHgg9C04CGuSY6FJHLqeiFopMaVHI+NyjUrJ3Mfb0f+OOkPNXK0Y1LJ4amZ1I0kSHz7UEhutinNRqSw5EIokSbz+gD8Aa45HcPlmWpnbebC1oSGhRbObAKw2oaushbsNaqVEYkZuueof3Q1jvSFZGZKRqRCFPdlGtPOsdLJHcmYuX2w2mI9nDmhWasZtbeHtIf5Ya1Scj07ln1MlB0A/3tlQe2jtichS6/x0bOSAuVrJzdScclX6L4lWnrbYaFWlWqEKw0XOlWKhqgnaNCh/CIusDJWT81EpPD7/EBm3FTgrDBqrSQqtQo8EeuFua17kM41KWdBI9pYV6L0HW9SaAEpnaw1vFjSP/WrLRWJSsmnbwI4HWrqhF/DllotlbqOLryP2FmosmtwEBMeOSkSYqJ+lVq00Wv5OmChuSE6vl5EpP3FpOewscO2MNkF17G+2XiIpM49mrlbGPoe1GUcrDc/0NrQ2+nLzpRIDoHs2dcbJSkNCRm6pMUFatdLYgf5e44aUCulWe6ES4oKau9sgSRCTmk18OZJgqoOKZHnLylA5eWrJUVLvqOXQrIYrtl66mca2CzeRJHiqV8m+9NXHIsjTCSzMDAFwpbnOaoqxHRrQrqEdGbk6Plpn8OO/OqgZCgk2n7vJibC718ZQKxU80ModpVUOGk/D2LVrTSefMW6okqbfwieUC9Gp95zRISNzv/HPyUh0ekHbBnY0canc9TY+PYeVhw0ZaR8Oa1mtmbSVYXK3RrjZaIlMzmLJgRvFPlcpFYwINFjI/zoWXup2Ct1pO0PuPW6o0N1/NrL4Q52VRkUjR0MNvtpiHWrkVP66UXXjaKgFJGcVVYQUEjR2tqwhaQzM22WwCj3Q0q3EYmE5+Tpjj7L3HmzBV6Pb1BqrUCEKhcSnIwJQKiT+OxvDjpCbNHGxNvZ4K8ySuxuFWWUWzQw1iv7+23Susra3tdOoDJ525jhZmZGvF/dsppaRuZ8QQhiLLJqiZ9rKQ2Hk6vS0bWBn7LdVFzA3UzKzIFHnhx1XSM7MLTZmZMH3UxhfVRK9C+KGjocllbiN8lCoDJ0pQRkCaOFhsKSXp5NAdVCR2FhZGbpHGjtb1Whn54ikTP49aWhU+myBGfVOVh+LJDYtB3dbLSPbeeHtWLPKW2k0d7cxduV+/59zZOXqeLrA0rX9ws0ym6V2auSAo6UZ5gXK0K5dkGCihIZCs/DZyJRK9d2RJMnY70yOG5KRKZtzUalcvJmGmUrBsILYwHslT6dn+aEwACZ2rf3usTsZ2c4LP1drUrPzS3xA9HezIcDTljyd4N+TJccWedqZ4+dqjV4YMpDvhcK4oIsxaeTkF7dwG+OGIuveA5+sDJWTgS2KBks3c625su0Avx8ON1ZjbV1CxHy+Tm+0HD3VszFmqtr9U7/UvymeduZEJGWx7GAoTVys6dzYAb2A3w+H3XVdlVLB4AA31HZZqJ1T0ekk1q83jVyNHC2x0arIydcTEl12QPfdkOOGZGTKT2Hg9MAWrthaqCu1rS3nbhKTmo2TlRlDCioy1yWUCok3hxiSSxbvu0F4YvHSIyMLiiv+dZesst7+hvYr9xo35GVvjp2Fmjyd4FJM8TIhLWuZZagi1O47ZC3iZqohIKyDjz2WZsoajRcSQrDutMEqNKaEZqdgqEgdlpiJg6UZYzuU3Om4MpyJSOH/1p1n+vJjjPppP72+2EmfL4N5c/Vp1p+OKtVUWxoWZipjGfpf9lwjO0/HE519AFh5JLxMq8ytrDKDdWjDhgruUCkobgsarHwlasNTk2wZkpG5Ozn5OmNtIVO4yH7bfwMwlB+pSYt+ZejdzFB6JPe2B93beaitJ2qlxNnIVEJiSrbM9C1wle26FHdPBWAlSbqrq6xlQQmaGwmZpJXSIqS2IitD5eRURApmSgU/jm/Hnjf6FqlGXd2cjUwlNCETrVpRLHUeDH3K5u40nCyTu/mYtNL00RuJTFx4mGE/7GXhvutsPBPD0dAkQhMyuR6fwe9HwnluxQnafbyVqb8dKfEJpjQeDvTE086cuLQc/jwazsCWrjhba4hLy2HLuZt3XbeDjwNWGhVaH0O9oe3bBXoTVYUPNFEQdaEF71p8BilZdetCISNTney4EEtyZh6uNhp6NK1cM9nzUakcvpGISiExrlPdc5EVIkkSz/c1PDCuOR5Z7BriYGlGP3/D/WD1sZKtQ+287bHWqkjMyOX0PT7ctbqLMuRgaYaHrRag1CKQtRVZGaoAw9p44GKtxcHSDB+nmou/WV9gFern74plQa+029kREsvFm2lYaVQ8YaKeO0kZuUxYeJhR8w6w61IcSoXE8LYefDisBXPHt+PPZ7qwcFJ7pnRvhL+bwWq27UIsA77ZxdzgK+WKtzFTKXimIFZo3q5rCAGPdTBYvpYevHHXdZUKia6+jmjck5HM8klMlDhzpnL7XMit3mL33vUZDBeKhgWtUs7IrjIZmVLZdM5g4X24rSfKShaILczAGtTKDbeCG3V1kZ2nIzQhg2OhSSZJN+/c2AE/V2uy8nTGXm23UxhIve5UdInFFdVKBT0LlMt7zSq7W0YZ3CpQXFsyyspLnVOG5s6dS6NGjdBqtQQFBbFnz55SxwYHByNJUrFXyD32bChsdVGTCCFYX9BnbFibkn3fhRlkT3Txxta8cr52gOiULEb/fIDdl+JQKyUe69iAHa/0Ys7YQCZ1a8SQAHc6+DjQ19+V9x5swaaXerJtZi+6NHYkO0/P7E0XGfrdHo6WUlL+dka3b4CztYbI5CzWnohkbMeGKCQ4eC2RK7F3j9np3tQJSSnQehnm2b690rsO3MoouxqXQWolTb8tCuoWXSpHQUkZmfsRvV6w57LBwlvZwrbJmblGd1t1Xb8vRKcyY8Vx2ny0Bf/3NtHri2BG/rSf9p9s44Fvd/PRunPsuRx3T5WgJUliYsF+LDkQWszV1aOpE+ZqJTGp2aVmrfb2K1CG7jFuKOC2IOqSmrK28iyMG5KVoSpj1apVvPTSS7zzzjucOHGCHj16MHjwYMLC7h5ge/HiRaKjo42vpk2bVnjuZq5Wxh+5JjkelkxkchaWZkpjquTtRKdkGTvTT+hSeZPw1bh0Rv10gCux6bjZaFn/fA9mPdK6zMy0Ji5WrJjWia9Gt8HB0oxLN9M5Flq2ZUWrVvJUQd+0ucFXcLHWGF2Byw7e/XfuWlAuvrA1x9Ztpkmxd7TS0MDBUNDydHjlLDqF5Riuxcs9ymRkSuJcVCqJGblYaVS087av1Lb+PBpBdp6e5u42tK/ktsribGQKTy05yuA5e9hwOrqIG6vQuBUSk8aifTd4YsFhJi06QlhC+cMICnk40AMbrYqwxMxivcYMxRUN18HSLD+F940zkSkV6t1ViJe9ObbmanJ1+hIf6loaLUN1y/pdp5Shr7/+milTpjB16lSaN2/Ot99+S4MGDfjpp5/uup6Liwtubm7Gl1JZ8RiaYW3ca0WNnkIX2YAWrmjVxfejsDt9Bx/7YhWpK0pITCqj5x0gMjmLxk6W/PVsF/zcyh84LkkSI4O82D6zFy/0bcLk7o3KXgkY16kh9hZqbiRksuFMtLFS7OpjEWTm5pe6nq+zJa42GrTehrz6XbsFeSYKzSnMBKusq6ywHtTV2IzKiiQjUy/Zfdlgseji61jpwogbzhiuh+M6NazS6/fSg6EM+2EvW86XHNtYUqzyrktx9P86mB93li+MoBALMxWPFoQPLC4IDL+dQmvajlKUIWdrjTGU4diNil/Pyg6iNhgNLsem16kCs3VGGcrNzeXYsWMMHDiwyPKBAweyf//+u64bGBiIu7s7/fr1Y+fOnfc0/9CAytW5MAU6vTAqO8PalCxPoQvtwUrW5cjK1TFj+XESM3IJ8LTlz2e64GVvcU/bsrc0Y+ZAv3Jf2Cw1KmPdoXm7rtHN15GGDhak5eSzM6R0064kSXRr4oTaJRWFeQ5ZGQoOH74nkYtRGDR46WblLDq+LgXKkNy9XkamRHYX1MDpWcmmrHFpOcZiqQNbFE80MQVCCH7ceYX31p7ldq+Xs7WGR9s34Ocngtj/Zl82vdSDFVM78eGwFkWK9ebqBF9svshTS45WSHF4orMPkgR7LscXu5b0KUifPxGeTEIpcUqFFrd7bTN0tyBqd1tDXK1OL7gYU3fCAe5JGZo8eTJpacV3MiMjg8mTJ1daqJKIj49Hp9Ph6lr0oHZ1dSUmJqbEddzd3fnll19YvXo1a9aswc/Pj379+rF79+5S58nJySE1NbXIC8DFpnoD70riyI1EYtNysNGqSsywCE/M5GR4MgoJBgdUrhnr55tCuBqXgYu1hiWTO+JYzQ0Nn+jsg5lKwYXoVC7EpBlrg/x3Nvqu63XzdUKSQNvQYB0yVdyQ0aJTSSWm8EIYm5ZT6fgjGZn6RnpOvtGd3rNZ5bLIdobEIoQhxsW1Cq7fQgj+t/ECX2y+1UNRkmBGH1/2v9mXz0e1ZlBLNzzszPF3s6FrEycmdWvEtpd7sXBSe1p73WoiuvNiHE8vLb9C1NDRwpg5tuQO65C7rTnN3W0Qdymu2K6hQRk6Xo7QhZK4WxC1JEm31RuqO3FD96QM/fbbb2RlFa8KnJWVxZIlSyot1N2409QphCjV/Onn58e0adNo164dXbp0Ye7cuQwdOpQvv/yy1O3PmjULW1tb46tBg5Lr+NQE604ZXGSDWrqVWESx0CTcqZEjLtb3fvLvvhRnNL9+MboN9pZm97yte8XWQm18mvvjaDgPtDIodztDYu96wSj0l2t9DMrQNhPFDRljfeIy0N9DfY5CbLRqXKw1xm3JyMjc4sDVBPL1Am9Hi0pXzN8eYnBZ9WteuSDs0vhu+xV+3XPd+N7Tzpzfp3XmtUH+d7WCKxQSff1d+euZrozrdKsG3K5L8UytgIWoMCB89fHIYuv0LbAOleYqa9fQDoDTkSklBkGXRaEyFBJdchB1bWvLUR4qpAylpqaSkpKCEIK0tLQi1pOkpCQ2btyIi0vVHHhOTk4olcpiVqDY2Nhi1qK70blzZy5fvlzq52+99RYpKSnGV3h46Y3vqhMhhNEf/WCpLrKogs/vvcJqcmYur/11CoCJXbzpVcmns8pQWFDyn5NR+LlY4W6rJSNXx96CTJOScLPV4utsaQyiPnAQMiseo1iMhg4WqBQSWXk6YlIrHnR4O7fihmRXmYzM7ey5XOgiq9x1JztPZ8xIK6kWW2U5HZHMnO2XjO+9HS1Y93x3OjV2LPc2zFQK/jcigE9HtDKWD9h7OZ6XV50oV6ZZV19HPGy1pOfkG12LhRTGDe2+FEd+CfFIjZwssbNQk5uv58I99Eps4HD3IOpWBUHUZ+urZcjOzg4HBwckSaJZs2bY29sbX05OTkyePJkZM2ZUiaBmZmYEBQWxdevWIsu3bt1K165dy72dEydO4O5eurKg0WiwsbEp8qoNXI/PIC4tBzOVgs6NHYp9fiM+g7ORqSgVEoNb3bsy9L+NF7iZmkNjZ0veHNy8QusKIcjO05Hy/+ydd3hT9ffH3zezTffee1D23hsBQRAVBy4UARVxgv4Q3AP3AP0iLlAQAVGWA0T23tAySlsK3XumaZtm398fdzRtb9KMW9rCfT1PH9omubkNuZ+czznv8z5qvVPZE4bh8f4I8XJBTYMee9PLcHt3KjvEeJBYe5zEWw2xRwMMegKnTjl9KpCKRYjyozRTzpbK4gLdeDmOgMDNBqsXcnITdjKrEmqdEUGecrZkwxcavREv/ZbMiqI9XCRY/fhA+DqYQX9kcBS+f7Q/mPrGv5dLselM65twkYjAZFo+wFQFGPpE+MBHIYVKY+Ds4iUIgjWTPZ/nmIia6a7mKpUxr3l6sYozGOuI2BUMHThwAPv27QNJkti8eTP279/Pfh09ehR5eXl4/fXX2+pcsXDhQqxatQo//fQT0tLSsGDBAuTl5WHevHkAqKzOY489xt5/+fLl2L59OzIzM5GamoolS5Zgy5YteO6559rsHNuKM7RHT+9wL047eSYrNCzOz+GLMr9KjS3nKU+Oz+7rbZNzdU2DHj8ezsLYzw8i/vV/kfTmLvR+bzcGfbgPr227hEMWdia2IBYR7PT6P84VsKWyvWmlVrsvhsdTuiF5qBIAcOaMQ0/fAr4yOnzpjwQEbibyKtXIqVRDIiIwNM72DAsX+9Ko8tC4pCDeu8g+2ZWOrAoq3SwmCKx8pB/iA52bVTm+WxDemNqN/fmtP1NxzYZ1htFS7ktrKh8Qiwi2hX5/hqVSGa0bctBZ35qIOtrPDW4yMbQGE7IrOoccoKV9sRVGjx4NAMjOzkZERAREohvbjDZjxgxUVlbivffeQ3FxMXr06IGdO3ciKopqvS4uLm7iOaTT6fDKK6+gsLAQrq6u6N69O3bs2IE77rjjhp43H5yhWyAHRrfMCgGNXWTOTHf+8UgWjCYSI+L90b8VTw690YTPd2dg3YlcqHUta9wVdVpsOJWHDafykBTsgS8e6M36T9jDff3DseLANRzJLMcHd/eAn5sMlfU6nMqqwggL3SZDYv1AEIAsRAl1RghOnyYBOL8gxgW6A1dKcd1JrQ8TDAmaIQGBRg7RJbJ+UT5w53DWtxWSJLEvjZIUjOdZL7Q7tQQ/H8thf15yR5LT40IYZg+PRlZ5HdafyoPOaMK8deew48URVmep9Y3wRqiXC4pqNDh8tRwTuzc2zoxNCsS25EIcSC/DEo4sf18nRdTWDGRFIgKxAe64VFiDnEo1EtpxlqetOPSOi4qKglKpxOrVq5GWlgaCINCtWzfMnj0bXl72f+DZw/z58zF//nzO29asWdPk50WLFmHRokVtej43CiYzNDCmZTBUXqtFekktCILyH3KE8lotm5qdPybO6n3rtAY8u/4826nQJcgDTwyPxuguAXCTSyATi3Ampwq7Lpfgn4vFSC+pxV0rjuH5cQl4dmwcJHZ4h0T7u2FQjC9OZ1fhz5RCTOwehI2n87ErtdhiMOTlKkXXYE+cD1ECAE6e4ikY4imjw7TX51TWw2A02fV6CAjcrBylgyFndYrpJbUoqtHARSpiGyr44HxeNZ7dcJ79mVr3bPNOswWCIPDutO5IL1bhXJ4S18rrsHzPVbxqRa7AlMpWH83GjkvFTYKh0QkBIAjKDqRMpWnREd07wgsEARQqGzhvb41oWuCea8E4MtJXgUuFNcizYz5le+LQKnz27FnExcVh2bJlqKqqQkVFBb788kvExcXh/PnzrR9AwC7KVBrkVqpBEODM2JzLpQKlLkEeDnd+/XwsG1qDCb0jvK2mqMtUGsz4nppP5iIVYcXDfbHrpZF4cFAkQrxc4ekihYtUjJEJAfjgnp7Y9/JoTOoeDIOJxLK9V/HchmS7y2aMkHprciGrG/ovtdSqLql3hBdkQTUASBQWiFBqfc6rTZh3lDlDiKcLXKQi6I0k8qtbdmUKCNyKMPP6LGW/bYXJCo2I9+c0prUXkiTx68lc3P/dceiNjWvOa1O6Oj03rTkSsQhfPNAHUjF13B+OZKNQaX2NsFQq81JI0YXOyHDpgjxczG9X2n2uTDBUVqvlNMONoOcw2jOsuz1xKBhasGABpk2bhpycHGzduhXbtm1DdnY2pk6dipdeeonnUxQ4TWeFugZ7wtOl5awxpoQ2INoxu3mVRo91J3IBUFkhSzV2rcGIx38+g9QiFfzcZPjtqaGY2ivUak3e312Obx/th+Uz+kAmFmFXagn+b/NFuwTWE7sHQSIikFVej1AvV3i4SFBeq+WsVTN0D/WCSG6E1I/K4vChG4rzpzI6JSoN6rSWnbBbQyQiEOsvdJQJCDBU1+tQVEN1aXYNca6kwowjGs0xrsheNHojFm2+iDe2X4b5Hm5UYkCbddpG+7th4YREAJTR7gf/XLF6f6ZUxtVVxmyeLY1C6ku32Cc7IKL2UkjZ2Zdc2R9mKPVNnxl69dVXIZE0VtkkEgkWLVqEs2fP8nZyAhRn6It7EEeJDAA7AHVAlGM7qt/P5KNWa0BCoDsmWGlD/WxXBtKKqUBo6/xh7ADT1iAIAnf3DcM3j/SDRERgW3IhXt9+2eZBhZ4uUvZvP3KtAoNjqMzVyaxKi49hxH0yulTGhxO1l0IKf3fGI0hwohYQ4AvGnC/aTwEPjg2frZAkyW6S+tAjdByloFqN+747jj/OFTT5PQHg9Tvs67QFKFf/jJJapOQrW/USmjsyFjF05mXn5RKLE+IB611lrQdDtBO1gyJqpsOWq1TGBEO5lZ1DG+lQMOTp6ck5HDU/Px8eHh1fKNXZsJb5UesM7ELiaGaIEV8/NjQKIgtp36OZFVh1lDIY+/S+1ge1cjGhWxCWzegDEQFsPJ2H38/a7uHUOG+nlLUWsBQM6Y0muEnFEBGAPIRaRNb8WYNHVp10aFK0OXEB/LTF83UcAYGbgSvF1HXazck2+ILqBijVesjEIiQGO97hdSSzHHf+7yguF7b0yZncM8TmGY0GowmbzuRhzGcH0PWtXbh9+WHc/c0x9HpnN6avPIZfT7acPA9QVh7LH+zD/vzWn5etPg/TaXv4anmTrDuzQb5cqOIMwJiOsouFSrvmozGw2R8rwVB+dQMvVittjUPB0IwZMzBnzhxs2rQJ+fn5KCgowG+//Ya5c+fioYce4vscb2lUGj3SSqgLchBHLT0lXwmDiUSIlwvCvO0fzFqkbEBKvhIEAdzeg3uER41aj5f/SAEAPDI4Erc5YWJ2Z+9QLJqUBAB47+8rNk9tZp7zVFYVa2N/NqeaU3+0YFMKJiw/DBPZmBkqvOqKOo3R6TZbJqPjrG6oUYzdOXZNAgJtCbOhc6Tj1BwmK9Ql2MNqF5Y1jCYSf5wtQLWae1zOY0OjbDrOmZwqTP7qCF7dcgk59Drn6SKBn5sMOqMJ5/OUeGP7ZUz931GcprP/5vSO8MZIuknkfJ4Sp6xkwvtEeEMhE6NarUe62TywCF9X+LvLoTOaON2gY/3d4CGXQKM3ObQxYzNDVS3XsRBvF4hFBHQGE8pquWekdSQc6ib7/PPPQRAEHnvsMRgMlHZCKpXimWeewccff8zrCd7qnMutBklSbzoutf9ZNmvk69AH/a7LlIHhgCgfiyM8Vh3NoowY/d3wxpRunPchSRL708vwZ0oRrpXVIb9KjVBvV/SJ8MbYpEDc3r3R7+PJkbHYn1aG0zlVWPh7CjY9PbRVIWKMvxti/d2QVVGPMhU1n02lMeBKsQq9mqXDnxwZy2a7ZIEqQGyESSNDiMg57xKAWjwAPjJDQplMQICBCYaczQxdpEXYTJncEcQiAl8/1BfjuwXhze2XUdPQGBT5KKQYbEGuYM7xaxWYvfYMNHoTvBVSPD8uAdP7hsHHTQaSJJFXpcaeK6X43/5rSCtWYcYPJ7D07h54ZHDTQOvVSUk4knkUAPC//dcsOlxLxSIMivHFwYxyHL9ewb6OBEGgf5Q3/kstxdmcavRvJqUQiQjEBbojJV+JrPJ6JAXb9/pH+VruKJOKRQjzdkVelRp5VWoEe7X/fE9rOJQZkslk+Oqrr1BdXY2UlBQkJyejqqoKy5Ytg1x+Ywd63uwweiBLHRZncxn/IcdKZEwwNMmCa3WtRo+19Jyy/7u9C6cRY0ZJLR5dfQpz1p7FXxeKcKVYhVqtARmltdh0Nh/zfj2He789jgv0hGSxiMAXD/SGu1yCs7nV+PlYdotjcsGUyg5klGOQFd1Q7whvDKUXDUJMUgERAJQ716UCmGl9ypzL6MT4u4EgAKVaj6p6ndPnJSDQWWnQGVkNXvcQ54IhRltjPgTVUab1DsXuBaPgq2js0L2vf3irm86TWZWYs/YsNHoTxiUF4tD/jcWcETGQSUT491Ix/jhbgAsFNYj0VWDnCyMxvW8YSBJ4fdtlrDqS1eRYPcK8WFnA0WsVVjuzmDWv+ZrYmm7IGTPZSD/rIunOJKJ2yuBEoVCgZ8+e6NWrFxQKBV/nJGBGRgn1BuW6uI0mkjXMas0kkYuyWg3O0G35kyyUyDacyoNKY0BsgBvb1m7OmZwq3P3NMRy7VgmZRIS5I2Kw6rEB2L1gFH6Y2R9zR8TAVSrG+Twl7l55DOtOUl1rEb4KvD6FEiH+b/+1JrsvS4yjDdQOZpRhUAz1957MapleBoCnR8ey33uPyETg/acwfZrzbbbx9MKRXVHPWeu3FVeZGKFervSxhOyQwK1LeokKJpLqPLXX68Ycc/F0TycyQ+a4ysRQaRo3K7NHWPcVKlQ2YO7as2jQGzGmSwC+fbQf6rQGvPRbMgYs3Ytn1p/Hoi0X8cLGZDy17hxIkPjigd6YN5rydlu6I41dIxleMxNrrzxwzeJzD4ujSmqnsqqayAeYz4bzedWcmklnxgMx7fWF1Q2ckoWIThQM2Vwmmz59us0H3bp1q0MnI9AS5oOSacU2J6OkFnVaA9zlErvTmwCwO7UUJEmN+ODSG2n0RlY0/czouBbi6gv5Sjzx8xk06I0YFueHT+7txb75ASAxyAMTuwdj7shYLN1xBf9cLMab2y+jVqPH/DHxeGBABH46mo3Msjr8eDgLr9zexer5Doz2hYdcgsp6HfzcqAzkmewqTuPC0YkBSAh0R2ZZHVxjqXbT/gl97H6NmhPq7Qq5RAStwYSCarVTk7WDvVxow7OOX08XEGgrGvVCzmWF8qsaUNNAi6d5cjw+kF4GZij7yAR/hHhZ1mWSJIm3/7yMOq0BfSO98d2j/XEutxrPbUhms79RfgrE+rtBozdBYzDCXS4BQRB4dVIXyCUifLUvE+//fQV9I7zZUl+vcG90DfFAWnEttpwvwJt3doNC1vKju1uoJysfuFykYrt9e4R5QSYWoaJOh7yqlmuWM/rFQA85ux4WKTVspoghshN5DdmcGfLy8mK/PD09sW/fviZt9OfOncO+ffva3IH6VsJgNLERdUxAyw/dc7Q3RN9Ib4fMv/5LtV4i23q+EOW1WoR6ueCuPmFNbiup0eDxn0+jTmvAkFhf/DRrYJNAyJxgLxf876G+eG5sPADg010Z+GJ3BsQigg2AVh/NRlmt9WnwUrEIQ2hDyPI6LTxcJKjVUrqh5hAEgWfp5+MTsYhgd0M5Noq/LRHoQQV0nUFcKCDQVvClF2KyQkkhHpBJ+HF1353a6NY6vV+YlXtSRrB708ogFRP49N5e+C+1BDNXn0ZVvQ7dQz2xdf4wHHxlDH5+YhA2PjUE2+YPhzddgiMIAi+NT8DEbkHQGU14dsN51Goas+XzR1Nrmc5IYsu5Qs7nF4sIVlN04npjqUwuEaOnWdNJc8z1i/Z224pEBBvw5HC00Hem9nqb3zE///wz+xUUFIQHHngA2dnZ2Lp1K7Zu3YqsrCw8+OCD8Pfnz/78VqdIqYHeSEIuESGEI33M1Hi7OVBnNxhN7IXBaHGa82cKddHNGh7dYnF5/58rUKr16BHmiVWPD2zV6ZUgqMDn9Tu6QiIi0JsWPU/sFoQ+Ed5o0Bux8sD1Vs+bSfmm5ClZIeMpC6WyKb1C4Gp2XrYMPrSFIFoIWKayHry1BhMMlTp5HAGBzgyzmXE2M3SxUAnAOfG0ORq9EfvTG4Oh4XGWP9vqtQa881cqAODpUXEwkcCrWy7CaCJxT98wbHlmGPpF+ljVGxEEgc/u640wb1fkVqrxwY409raJPYLYtWzdyRyLxxhGbxaPX69o8ntGZpHGsXGM8lNAIiKg1hlR4sBa1NhRZs14seM77TsUPv/000945ZVXIBY3ftCIxWIsXLgQP/30E28nd6uTRZfIov3cOP1/mGg72t/+Uk1mWR0a9FSalmvickWdlp2Hxti9Mxy6Wo4dl4ohIoBP7+1t11DFJ0fFYv/LYzCenqFGEARenki5rf5xNr/JbogLxhfjXF41mwa+zNEyClCZpGFmo0UyeQqGAmjjxfI65zI6jD5CyAwJ3KoYjCak0x/QjmzqzGHF0zwFQyeuV6JBT9XI4gPdreqZtiYXokSlQbiPK54YHo35689BozdhZII/vri/t81jQbwUUtZfaNPZfLYdXi4RY2pvah2+WlpncQPF6IbO5FQ18Q1iyoZca6BULGIDGkcaQyLpjrI8K5mhijrukR0dCYeCIYPBgLS0tBa/T0tLg8lkv3GTADfZFdSbK8ZCsMOUaaL87Bevp9CdXb3CvThLbHuulMJEUreH+zQeX2cw4W3aAGzWsBiHUtvN68oj4v0RF+CGep0R25O5U8AMvcK9IBERKK/VspkVrt0Ow7Q+oez3fGWGAj3p8paTWp8AoUwmcItTpNRAazBBLhGx5WdHuUKX2/jKDJnP8xpqoaUdoLRC607kAABmD4/ByoPXcb28HsGeLlg+o49FI1tLDIz2xZ29Q0GSwNJ/0tjS1Rwz8fbvZ7gNaxOD3FnfIPP1jtnwWloDnbH6sOZCbT6yI7+DZ4ccCoaeeOIJzJ49G59//jmOHj2Ko0eP4vPPP8fcuXPxxBNP8H2OtyxsMMShFzIYTawozVKwZA2mzb23hZEaTMt98w6yXaklyKlUw99dhgUTEux+Xi4IgsDMIZS/xrqTuVbr1i5SMZtO19C7tuvl9Rbt7c2zXnx5+jBBWLmTQQyrGRLKZAK3KMU11AdkqLer3UGDOXVaA2uS6EimnIsLBY0Z52FWhlefzKrC1dI6KGRijEoMwK90N9jH9/aEn7tjVjOvTuoCmUSEE1mV2JdWBgBICvZEKF2i/+McdzBEEAS60usjExwCjV2whcoG1HPMVYxrJViyxs3SXu9QMPT5559j8eLFWLZsGUaNGoVRo0Zh2bJlWLRoET777DO+z/GWxVpmqFDZAIOJ0hMFWTBLtAaTGeKaL1bToGdrzs1b7pkL/eHBUU7NEGrO9P7hUMjEuFpaxw5atAQzT+daeR18FFIYTSQyS7kvYnNR99XSWs772EsAb8GQCy/HERDorBTTw1mDnWipB4BierK7p4vErrK9JUiSREp+Y2bIktkhAPxCZ4Xu7huGDafyoDWY0D/Kx6lBruE+CjwxPBoAsPJgYzs9k+nOq2qwOM2eKTemmgVDPm4y+LtTYm0u93xnMkNMRi+3Us25ke0sImqHgiGRSIRFixahsLAQSqUSSqUShYWFWLRoURMdkYBzMMFQLEcwxNxmSU9kjXqtgQ0MuIKhgxll0BtJJAS6sxcJAGSW1uJ0dhXEIgIPDYqw6zlbw9NFirv7Ut0arc0sY0TUyXlKdKUvfEulMk+XxjRtqUrbqibJFpggprXut1aPQ5fbKut1Ds0FEhDo7DDBUIiT7sTMxPtQB0YScZFf1QBVA5VBSQr2gK+bjPN+NWo9dl+hRNZTe4Vg/Slqs/jS+ASnR//MGR4DqZjA+TwlO1XevKt3x4UizscxmXNm3hsDs5ZfK2+5KXRmViLzf9egN6KOI+vEOE939E2f0/2Hnp6e8PR0Tvgm0BKN3shG/lyZoRwmGPK3Xy90qbAGJpLajQVZGfExqtnOZv0pajjvbUmBVv02GNJLVHZNd7+bvtD3XimFzmA5OOhHB0NXilVIoNO7XO31DJFm2SE+ZoHxlRnyVcggoQPZCifF2AICnZESukzm7KiGImVjuY0PLhQo2e+HWimRHb1WAaOJ2jheKqiB1mBCnwhvjIh3vqs60NMFd/amMkE/HcsBQAVmni5U5mvHpRLOxzHz3a4UqZpkahKCqLWSK4seSwdKjmwYXaRiuEipUELJMc/NRyG1eFtHwqFgqLS0FDNnzkRoaCgkEgnEYnGTLwHnyatSgyQBDxcJ566EEU87Ijq8YKVEBgAX6YXAXE9kMpH4m96JPDw40urxi5QNWLgpBZO/OoKlO1oK7S3RP8oHAR5yqDSGFq2h5oR6ucDfXQ6jiWR9OqyJqCN8GxdIJoh0BkbrU68zctbfbUUkItjAqlQwXhS4BWEyOiFOBjFMmczZDBPDRbNgqKsVQ9tDVyk9z+jEAOy4RM1DtGVkh60woumdl4pRqtKAIAiMoIe3Ximq4XR9jg90h1RMQKUxoKC6sZTG6Ia4dEFerlL2c8b8MbbiQ6/D1eqWo4W86NuUDR177JBDxdVZs2YhLy8Pb775JkJCQnj7jxdohKnrxvq7cb6+OU601TNZlJ4cIz50BhPSiukSmtkA1CvFKlTW6+AmE7Ptm1xcL6/Dgz+cZLMmrlIxtAajTROkxSICt3cPwq8n8/DvpRKM6cLtf0QQBBIC3VFRp2UzK1eKqV0Q12tlrhtytrQFAG5yCdxkYtTrjCir1SLGCY1CoIccxTUaQUQtcEtSwgRDTmqGCpX8lsnMxdPMuIrmkCSJQ1cpd/uuIR5YdTQbIsLyaCNH6B7qhf5RPjiXW42/LxRh7shY3Nc/AjsvlUBvInGxQIl+zYavyiSUA3dqkQqpRSp2/YsPpNrrLYmkAz3kqKrXOZSl9lbIUFyjYUXsTW6jZQpct3UkHFrFjx49iiNHjqBPnz48n44AA9MpZmncQ64TbfVM5M+VVUovUUFnNMFHIW2SUTmSSWVqhsb5WXR3LavV4OEfqUAoMcgdn9/fu8VE+da4o0cIfj2Zh91XSvCBsUeLMRsMcYFuOJFViTqtAVIxgVqNAYXKhiY2AAwRZr/ja/RFgIcc9ZVqlNdqHermazyOC4Aaob1e4JaEFVA7mdFp7EpzPjNkMpG4bJYZMtdNmpNRWotSlRYuUhGK6GBsaJwf/B3sILPEXX1CcS63Gn/RwdCwOD8QAEgAu1JLWwRDACWiTi1S4Uqxig3OmDJZbpWac4NKnXetQ+X/xlJYy+wPkzWq6eDBkENlsoiICLttuwXsg0k3+rm3LJE521ZfSAdDYT4td1FMCa1nuHeTLMuRTGoHZK0W/t7fV1Cq0iI+0B0bnxxidyAEAINifOHlKkW1Ws/a63PBLFA5lfVswJhTYb21E+DP04dvEbUQDAncaugMJjYL4WxGh9UM2aBlbI2KOi3UtG2Hn5uMLcU35zCdFRoa64d96VS5rLlBLR/c0TMEIgK4WFCD7Ip6uEjF7Ot1gH7e5jD+b+lm8oFADzk85BIYTSTyODyBmJK9I5khtkxW3zIY8mYCpQ5eJnMoGFq+fDkWL16MnJwcnk9HgIGZ4s50QplTXKOBwURC5kBbvc5gQin9Ac41nJVJD/cxK6E16IysqHqkhXbRw1fL8c9FypV6+Yw+DvtrSMQidsyGpYn0QKN/0PXyevbvKLLQampeJitV8WP8FeDJr9dQOQ/lOwGBzgTjoiyTiNjMgiOQJMlrN5l5y3ochzs/w0V6rewb6cO6X49KcLyd3hL+7nIMpzeh/9C6TWaNzKqoh9HUMjHBZP3zzfQ/BEEghM6ccWkUmdZ7R9Y0JuDhKoUxn2E3jYDax8cHvr6+8PX1xYMPPoiDBw8iLi4OHh4e7O+ZLwHnUVoJhtiskZvM7rb64poGkCQgl4jYN785l+gL3Dyrk5xfDZ3RhBAvF842f6DRC+OxodFOO8AOoT09TmVXWrwPkxnKraxnRZMFFoKhUG8XMK9SCV9lMnd+MjpshkkQUAvcYpi31TujO62s10FnMIEgwNkday9MyQuwXCIDgIwSSlvpIhXBYCLh7y5HOEe2nQ+YUtdhOkM/lp4naTSRrM2KOcx5FFQ3zQBZy2g70yXLZIa4ymRMoKQ1mCya43YEbNYMLV++vA1PQ6A5KjoY8ubYMTH+F54OmB6al8iaL0AkSbIuoebOzcxF3yPMi3PRulZWi5NZVRARwFOjYu0+p+YwwdCZ7CoYjCZO3VCwpwsUMjHUOiPcaAGzpcyQXCKGr5sMlfU63rwu+BrJIUyuF7hVYXQ+zhouMtd9gLucl2n15utIHIf7PwBoDUZk0UEI463TJ8K7zZqJRsZTGafkPCXqtAYMiPZhbzufW9ViviQjgajVGFDToGc31dbWm8Yymf3lLGuZIXe5BGIRAaOJRLVaZ5MtS3tgczD0+OOPt+V5CDSDSSlyZYZUtA+Ep6v9+ncme8JVIlOq9WigI3dzQeNV2pciMYh7l8T4D43vGsRLmjop2ANerlLUNOhxuUjFaQEgEhGIDXDD5UIVm/UptNIS6kMHQ2qdERq90ebBiZbga1irP70AVQo+QwK3GCU8lbaKeO4kK6ppvUx2vYwqT3m6SNjhpn0jvXl5fi4i/RSI9FUgr0qN09mVGJcUxHa0Hs6swAMDm9qdKGQS+NFrXmF1A/s5EmBlE8cIv53JDHG11hMEAW9XKSrrdVCq9R02GHIojBaLxSgrayncqqysFHyGeMKaZkhl5bbWYAIGrnQuswj4u8uaBAuZtFs1M/m4OczsnPsH8ONKLRIRGBzjCxepyKqFe4w/tVDpaK8N80WsOeaaBD5KUuwuysmMjiv9OmusmEwKCNyMMLoVJsvqKMyGhMl6OIt5ZijcQoCVUUoJk5OCPdnRRm0ZDAFgdUNMZ+9kWqxtKXjhKpXZVCZzREDtZl0X5N0JjBcdCoYsdZJptVrIZNzKewH7aAyGWr6ebGbIkTKZlcwQ1w6LJEl2dAdXMJRbWY+8KjWkYsLqMEN7WXpPD1x8+/Ym9vPNCaIvXgMtICxWamDiEBMCTV/H8jrnxcoKGZWV0xicq4Ezzq0duZYuINAWNOip8pK7zLlZYhodde248TCTDGiaYbbUSZZOSwfiAt3YNdWaOSMfjKTNFhmfoMeGUsOtLc1cDGODoca/J8BKmYzJDFU5MB7I20pmyPz2mg7cUWbXu+frr78GQKW9Vq1aBXf3xhSi0WjE4cOHkZSUxO8Z3oKYTCQb8HBnhmjNkAOZIWaXwOXHw9WeWlarhUpjgJguSzWH2aX0jfThbTECGncw1mBKTGotdX46ownldVpOEaX568hHZojRJmj1zmV0GK8PrZAZErjFaKCDGGdL1kxp39njMJh3k3FpNgEgl7bx8KU/5N3lEov35YvRiQE48MoYRNPecgm0iWK1Wt9EF8TArPHmwVCgFZG0j0LGanuq6nV2idEbBdQWMkOdoKPMrk+vZcuWAaCyBd99912TkphMJkN0dDS+++47fs/wFqRWYwCTfLOqGXKxP/hg3oxc/kVc830YJ+xIXwWni/S5XKrlfrgVV+q2gtnJVNbrEOzpgkJlAwqqG1oPhngQK8uZYMjJIIbJDBlNJPRGE6QWTCYFBG42NPRGgrkGHIUJhlx5CIY0eiMrAnaXSyxej6wXDy1YDOdoSOEbN7mkidu9q0wMf3cZKup0KKhWw8u1aRcvUybLb1ImYzRDLbPjYhEBPzcZymq1KK/l3lRagpEh1GkN0BlMLYTsXlYE1h0Fuz5Ns7OzAQBjx47F1q1b4ePj08ojBByBMadSyMSc3RGMZsiRzJCa3o0pZC0XjkI2GGq8CJiLPsBCPZ7pNOsawq0nakvMW0H93WUoVDZwtnYCTYMhS6lce2gMhpwtkzX+P2j0RiEYErhlYErMcmczQ/Sa5ipz/toxXxuseR8x66LOQO1auWQHN4IwHwUdDDWwA1oZAszKXgyBdIDDzFVsns33c5ejrFaLSg7zRGt4ukghIgATSX1+Nc/se7t2/PlkDr17Dhw4YFMg5OnpiaysLEee4pbGmnja/HZHNENMMOQqbRkHs3OCzMpkzIXE5UlkNJG4Xs50mt34YIg5p4o6HdzpLFmdhcGpXmaddzoeSlLMAu7sseRmwa7GyZKbgEBnQsNTeUvDY2aICawAqgPVEkz7eZ2WWovbyl+oNcI5dEEMHvTng/kUene5hN0IczlNM1k6rZ0aRpGIYDfnXGM3mBJiRx7J0abbUGFkh2O0FgypNIxmyP4yWYOOeixXZogJJMyPy7R8+3IsDHlVamgNJsgloiYuzzcKJjNUVa+FG/331GosBENmuzw+9DnmZTJn3ucEQbDHEkTUArcSTPDvbBDDp2aowewatCSe1uiN7FrJyA64NJg3AkvmikDjOt58TWSyQWpdy/WGyUzr7BRQA4BERD3WwNHE4kFvVmstbFY7AkJOvgNizWMIcLxMRpIk1HrLZTKuHRaTLvV1a1kmY9reY/zdILbTCZsPfBUyEHRqVkrr1yxnhsyDIeeDDvOMjiMLhznMIs7HeQkIdBYaM0NOaobYMhk/miEGS2UyJqMiE4vYtdiSjKCtCbcyiojJDDHnyGBN78jc5kjGm6nwmzg2h+ynQwfOjwjBUAdETWdv3C10ZznaWk9lMajvFRzH5tphWSuTNd7WPguBRCxigxypmLrc6ixlhsyDIR7KUeZicr5E1EKZTOBWgrlu+Oom46dM1ngN+ljIDDElMn93GeqtaDBvBF70OTIdxuYw2Zh6nbHJ/DJrmWiZ2PFgSEQLyLkS5czYKLIDR0NCMNQJYdKe9gZD9WZZE66Fg2uHVVnHZIYsB0Nct90omIuXCU4sZYbMXys+ymRM8AXw2V4vZIYEbh3YzBBHl6ojx+ElGDILECxl3pkmDW+FjF0zFU56JTkKE/CoNC21OB5m3cbmm8TGTHTLdYtp2HEk280EQ1yDY5nV0tSB93tt+j/Y1q2GNyvM62YphmbSkCI7Q1mmRiyXiDjLWkxmwnyXw9R4uQKvSgeCIZ1Oh5UrV+L69euIi4vD/PnznTLqZC5eOZ1dsRQMmQ+05SPoYLQ+WoOJh44yITPUHvD9XhSwjwa+ymTMcXjIzpgHQxILpX/mw14qJlBLC6gVcuef25H3I2OvwqWVlEvE7Bql0uhZ3SRbJuPKDDlRJhNZKZOBuMUzQ20hoF65ciViYmLg4uKC/v3748iRI1bvf+jQIfTv3x8uLi6IjY3tFD5IbBRt4fUT028se6PsBit6IYPRxO4GzHdYzP8hV/BUTQdDfjYGQ4sWLYJCocCCBQuwYsUKLFiwAAqFAosWLbLvDzGDyQwxwj9LZTJz+DI45M9riB7JIQiobxht8V4UsA++uskaO2R50AxxiIqbwwiExSICai0/ZTJH349cHWNct5tnjqwZvcqcEFAzmSGuIQDMp0dH7qlq02Do33//RViY5XEK9rJp0ya89NJLeP3115GcnIyRI0di8uTJyMvL47x/dnY27rjjDowcORLJycl47bXX8MILL2DLli28nVNbQFipvQLmbzr73llqKyld89lY5osTswviSvLp7Kj5L1q0CJ999hmMxqaLjdFoxGeffebwhxCzk2GCNbUNAQUfmiGgsb3e2eMxZQIhM3RjaKv3ooDtkCTJvt/lTmaGNDzqdhi9pjWYkT8SkahxTeWwKrEVZ96PHlYyQwAgE7csXTGvN1cwJHUmM2Tlc4n5/OjAsZDtZbKFCxfafNAvv/wSADBixAj7z6iV486ZMwdz584FACxfvhz//fcfvv32W3z00Uct7v/dd98hMjISy5cvBwB07doVZ8+exeeff457772X13PjEzaKtnQ7fQd7gyFmJ8a1+DC1b4Jo2inFluQ4oiHmttaqoTqdjn1PWOLLL7/E0qVL7S5TMMGQgd7J2NLUxpc2hy/jRbkwn+yG0ZbvRQHb0VrYfDkCrwJqGzYkBnaDSDY+t4OBmLPvR6ad3Wjhs4CJgczXb2vrlnMCavo5OTVD1jf4HQGbg6Hk5OQmP587dw5GoxFdunQBAFy9ehVisRj9+/fn9wxpdDodzp07h8WLFzf5/cSJE3H8+HHOx5w4cQITJ05s8rvbb78dq1evhl6vh1TaUgej1Wqh1TaaUalUKh7O3j7YKNrCO4fRv9gbDDE1cK43KzOYTyoSNdF6MU/BVSbjutC4WLlyZYtdT3OMRiNWrlyJl156yer9msNcvMz5W6rzm79UzrbCM/BVJhPmk9042vK9KGA75tlUZwXUzDrEh0TVYMPaYDTLDDE4+tzOvh9JK5tVgHvDyq43HIGfM631VstknaC33uZg6MCBA+z3X375JTw8PLB27VrWibq6uhpPPPEERo4cyf9ZAqioqIDRaERQUFCT3wcFBaGkpITzMSUlJZz3NxgMqKioQEhISIvHfPTRR3j33Xf5O3EHaO3CElt501lDaiXqN+8iIEmSDYgaM0Mtj2ftNnOuX79u0/nZej9zJHQamAlwbPE7Mhj5uSClzQIxRzGarAdyAvzRlu9FAdsxb/6wd1PXHL42JQCajD+ydDUywZBYLIJUTEBvJB1eA5x9PzZuSLkfx7VhZTM4HK87H91kXMcVsRt8uw97w3CoWPvFF1/go48+ajKSw8fHB0uXLsUXX3zB28lx0bxDzfyD29b7c/2eYcmSJaipqWG/8vPznTxj+2ktpdg8ULEVa290SyaCjbuulq8XaeU2c+Li4mw6P1vvZw6zADIXoi3BEB/mbObP7fw4AX60EwKt05bvRQHbaT6TzxmsaWDsPhbHLMjmNGaGCKfKSoDz70dTK59nXA0w1hy7mb+ttWw/F9YqFsxnmrOBb1vi0OqrUqlQWlra4vdlZWWora11+qS48Pf3h1gsbpEFKisra5H9YQgODua8v0QigZ+fH+dj5HI5PD09m3zdaBrFZhbKZPTtXH4O1pBZdR7lNhG01grJXExctu7mzJ8/H2Kx9YBBLBZj/vz5Vu/DBaN1agyGWn9L86EtMH9uZ4/HDKzkY5yAgHXa8r0oYDtScaO9h7ONA9bKPnYfy4ZrkDBbf50RHAPOvx/ZBhcLjzVyZO+tjUGxNsi7NRozThw3dgIBtUPB0D333IMnnngCmzdvRkFBAQoKCrB582bMmTMH06dP5/scAQAymQz9+/fHnj17mvx+z549GDZsGOdjhg4d2uL+u3fvxoABAzj1Qh0FNvNj4fpiFhF7g+zm+hpzpGKCvcjNFxWmS4JpITWncfaN9eF7MpmsVQH+woULHRKsMhcvU2KypdTEWzDE26BJfjJMAq3Tlu9FAftw4WkmH7Ou8T1mxxKss7PW4FQrOuD8+5FpmfewYMBrMrXMHFkTfTc4FQxZywxRdODEkGOmi9999x1eeeUVPProo9Drqf8MiUSCOXPm4LPPPuP1BM1ZuHAhZs6ciQEDBmDo0KH44YcfkJeXh3nz5gGgSlyFhYX45ZdfAADz5s3DihUrsHDhQjz55JM4ceIEVq9ejY0bN7bZOfJBYzeZpcyQYylHa+I4xkRQo29qItjYusnlcMp4XLTejvrpp58CoPRm5oJBsViMhQsXsrfbCxMMMQGi5fRu42vFhzkbYH1RsQct68QrlMluBG31XhSwDxepGPU6I5sZdRSmTOZodqbJsWwQc7vLqXWvTmtwyqSQwZn3Y1UrXm86s8YYBmuO3Wp2TbM/NLDaTdaKkXBHwKFgSKFQYOXKlfjss89w/fp1kCSJ+Ph4uLm58X1+TZgxYwYqKyvx3nvvobi4GD169MDOnTsRFRUFACguLm7iORQTE4OdO3diwYIF+OabbxAaGoqvv/66Q7fVA+bdZNZvd7RMZiKprgmJuOmHr1wipoOhxgvbmo+FpxUreC4+/fRTLF26lFfXX8YXhHktLOluzGcO8ZEZMppIdgF0ukzG49RtAdtoi/eigH248OTTxaeA2jwzZClIczdbE53pvjLH0fejtZFIap2BzTr7uDVmjpjsD9d600Cvp45khqxluBszQx03HHJqHIebmxt69erF17nYxPz58y3WT9esWdPid6NHj8b58+fb+Kz4hRVQW7hdzArV7DuurJlIumUwxNi0mwdDLR1MG2+zbvjFeQ4yGW8tyyTZ6PPBnIOlobHKBh37PS9OtWapfec1Q0KZrD3g870oYD98+WvxaU1hvkbWNHBv8pgB2nVaA7xcqanxrekmbXpuB96P7OxIjkHazG0yiajJ0G9rGW1nNEPWBogbOYTcHQ2HgqH6+np8/PHH2LdvH8rKymBqJm7Jysri5eRuVYjGOhknjdOB7cwMmQU/OoMJzYcyN3ZltCyTqTgCHj83KvAor9W2uO1GUKc1sNmzGvpCDOBYFACgWt24sPHRTWY+w8gWnYE1NDzNaBIQ6EywzutO+3S1jWaohmMSPNC4JtZpDfCn15uKuvZZA4trGgAAgR4tN4HmJTRzzZDVMpkTg2dVdPDIaEm5bvOyMPy2I+BQMDR37lwcOnQIM2fOREhIiDCQlWcYEbAlUZ6jZTKJWAQRQWWUuNK6co6xEMzkZi7NULgvtSsqqFbbdR58UaTUAKAuMCUd7FjMDKkbM0N8ZGAaU82iJkNg7YUaSyCUyQRuPVz4ygzxVG4zPxbQembIaCLh48YEQzrO+7Y1V0vrAADxge4tbrNUQlPrLG++1A6WyfRGE+rp43Jlhpj1+aYLhv7991/s2LEDw4cP5/t8BAB40ykbSxcjE9HbMoerOTJaJM0VaDFv1GqzwMFaKSzM25W+vx51WkOTVOyNgAnCwn1c2Z2Zn4VgqLreLDPEY5nM2WPpjCa23OmsE6+AQGeicfPlbJmsbTRDltZfhUwMgqA0ncya2V7Z8cxSysomMcijxW3MmmgeDKl1BjYY8m5eGoDZ0Fs7gyHzzwfmM8Mc5rX07sDBkEN5eR8fH/j6+vJ9LgI03grqDWOezTDHh34TM1Pj7YEJWFQcKWAm1Vqm0rC/Y6J8pZq7m4w518LqBrvPxVkKldRzhvu4svVxf4tlssbXio+BjnzNQzLPwgmmiwK3Ekxmgj8BtfNlMvO1QWUhGCIIgl1Hmfu3R5msVqNHUQ21VicGtgyGmMyQebacyaZ7yCWcWRpHW+uZ18pdLmmhRQUAJVtCu8mCoffffx9vvfUW1Or2KY/c7DDRc02DnrNNkQlAqjkClNZgLgyui5cNhsx2OSFeLgAaa9PNCfdpv1JZAR2ABXu6oE5LC6g5audA08AymP6bnKHBwR1Uc5i2+uYDcgUEbnaYsrDTrfU8CqjNAwdLm1EACPKk1hBGv9kemaEL+TUAqDXaS9EyyMin12TmXAGgiN5AhtJZfXNIkmTXUTc7NUON4mnux9XcrJqhL774AtevX0dQUBCio6NbGBh2tu6tjgYTPZtIoFZraPEGYjJD1i5WSwR4yJFeUssdDNEXjXkwFO6jANAYeDQn3FuBy4Uq5FZSF961slr8c7EYoV6ueGBghN3nZw9MAOZGX4CuUjE8LJTqzAPHMI6FwF748hhi21ElYkF7J3BLwVtrPU8ZJgBwk0vgKhWhQW9CTYPe4rinMG9XXCurY+cctkdm6EhmOQBgeLw/5+2MnigxqFFP1BgMtdwQVqv1bEAZYGFTaQmm0mAp88OWyThKcx0Fh4Khu+++m+fTEDDHRSqGq1SMBr0RNWo9RzDUUttjKwHuljvAmAvA/LYwOvNT06BHrUbfwuk0Mcgdu1KBK0XULuV8nhLL92aib6R3mwdDORVUMGSkF6TEIHeLAUWVWUmRa1dkL3xphhpHcQhZIYFbC94E1IyTNQ9lMoDaFOZWqmEigXqdkVMLyawhjOC43EowpNEbsTetFKlFKrw6KYmXcwSAw5kVAICRCS2DIZIkOfVE1jJDjNQhwENudzOHtbZ6AKihP6tuuszQ22+/zfd5CDTDRyFFQ40RygYdIqFochsTXTtUJuMIeBi4ymTucgl8FFJUq/UoVDYgKbjpmzkpmJrdtjW5EK9O7ooR9C7lQr4SNQ0tAzm+aNAZkUFf7IwYnEtEyFBeS9XKZWKCDSadgdnpuDkpGmd0Xx25li4g0BawAmong5hGHaT96yEXge5yNtNd06DnDIYYeQBjOaK00kRiIkm89FsKDCYSDw+KRISvosV97CW/So20YhUA7sxQeZ0W1Wo9CKJpp1khrRniDIaU1N/sSObcWls9YJ4Z6rjrnMPbUaVSiVWrVmHJkiWoqqoCQJXHCgsLeTu5WxkvKwEP4ybqUJmMyQxxaoao1CkTODCwpbKqlqWynuFeAKiS3unsKoR6uyI2wA0mEjiZVWn3+dnK5aIaGE0kAj3kKKTLZV2CuYMhjd6IUhX194Z4u/JSjmKEiCFezmWZimuY4zivYxIQ6EwwgYM9pq1cMOV9vnQ7gWbXYo2FDSdTZiqv1bI6o+zyes77KmQS9I7wBsDfmrj+FDVpYWSCP6edSCZdIovyVTTJ8jCZIa6Ah5FCMIGePTDBDldmyGQiO4VmyKFg6OLFi0hMTMQnn3yCzz//HEqlEgCwbds2LFmyhM/zu2VhRNRcAQ+bGap3JDNk2SQs0JO6qCrrdTCYtd4zFw6XSDrcx5U1c9yXXgoAbHboKJ3GbQuS86oBAH0ivNnaOJOlak52RT3rXxnOQ4kMaBSUhzoZxDQGQ/ycl4BAZyGA7V51LoixVvp3BHMDQ0taoDBvaoNYVNOAuABqDNW18lqLxxwSS3Vfn8yqcvr8NHojfj+bDwCYOSSK8z5X6ax5QrNseQGd/eHafDHBUJgDwRBbJuMIdup0BtY+5KYLhhYuXIhZs2YhMzMTLi6NL+rkyZNx+PBh3k7uVoZJJ3J5XTgloHa3vIvyVcggFhEgyaYmYo0dYy0zQwRBIJI2XzyfSwUoTDB08GpZm82iSclXAgB6hHkit8p6Zuh6eR37vSMXOhdFVtLN9lBCB1VCZkjgViPIkynLa1q5p3WYTRx/wVDjtZhvoUuWWUeKlRrE0sHQ9TLuzBAADI7xA8BPZuj7Q1moqtch1MsF45ICOe9zJocKunqEerG/q1HrkU9n97kkBaxViUNlMlpAzeUxRGfX5BJRhzaWdSgYOnPmDJ5++ukWvw8LC0NJSYnTJyVg7jXEFQw53lrPJZJmEIkI1qen1MxriAmGLC0M/aOpXU9elRpagxEjEvzhKhUjv6oBFwtq7D7H1iBJEufowMvLVQqSpCznLXVAmC9SfIingcZ0cwhHV4ZdxxHKZAK3KAEeLbtXHTsOdd3Xag2s5YUzmGeG8qq417wgDznEIgI6ownBdJnOfNPVnP5RPpCICBQqG5Bv4Zi2cK2sDt8cuAYAWHJHV05PH6OJxLFrVNA1wkxcfbFQCQCI9FWwztnmFDqRGWLWwwDPlutYZyiRAQ4GQy4uLlCpVC1+n5GRgYCAAKdPSgDwcmWyPy0DHqZM1qA32t2JwQQ71Wo99Bwu1Iw+KNfsgo0JoAR418q4L/aJ3ajdiYkEUotUUMgkGN8tCADw14Uiu87PFlLylShVaaGQiVkt0OBYyyag5osUH8EQSZIoqrFce7eHEjoYChbKZAK3GOYNG85kkD3kErYzjY/sEJNpArh1kgA12ogJghiDQmvBkJu8UTd08Gq5Q+eVX6XG4z+dhs5owqjEAEztFcJ5v0uFNahp0MPDRYLe4Y2ZIWZj2svsd+YUsnoi+wXeOZXUhjPGz63FbZ1BPA04GAzdddddeO+996DXU38kQRDIy8vD4sWLce+99/J6grcqbGaooWUpzNNFwk7/5QqWrOFDl8KAxqnG5iQEtgx8uoVQWpysinq2ldScwbH+YCTJe69QuqFpvUMBAP9cLLJ7hlpr7LhYDAC4rWsQTtBp59GJloNw80UqyUIpzR6q1XrWH8hZA0dBQC1wq8JkdHQGE6cjvq0QBMGWtpwtuQG2lcmARv8eZtBsToW6idayORPoDeKuy8V2nY9Gb8T3h65j6v+OolDZgFh/N3x+fy+LjSBHaf+hYXF+TTJHF2hpQe9w7xaPqdMa2KDF3syQ0USy5bdo/5aBFLPG2etddKNxKBj6/PPPUV5ejsDAQDQ0NGD06NGIj4+Hh4cHPvjgA77P8ZaEKYVxdTMQBMEKrO31GhKJCPjRKVKuXVQ8Gww1igEDPOQI8JCDJIG04pYiQXe5hL2A/kulyqSjEv3h6SJBqUqLo9f4E1KbTCR2XqIWk7GJAewFPspCMGQykWwwJBURFkXW9sCkhP3d5Wx7sCPoDCZWoCkEQwK3Gi5SMVs6KXUyiAngsAVx9lgAkFdpORjqSm8Si5QNcJGKoDOaLJrTAsDkHsEAKBF1lR2jlN79OxUf/ZuOmgY9uoZ4YuNTQ5oEbM1p9B9quiZeKFAC4M4MMYJrf3e53TMmi5QN0BlNkIlFnI0g2RXU+hvj3zJr1JFwKBjy9PTE0aNHsWXLFnz88cd47rnnsHPnThw6dAhubh37D+4sMGUyS8GOtxPGi4w9O9eIjXiOzBAAdA+lLvwrxS3LowAwrgtVKssqr0dNgx5yiRjT+4UDAH4+lm33OVoiOV+JohoN3GRigKBKc12CPCx2YxXVNLBZnK4hHpDxMPKisT3VuQCG0WXJJKIWk6UFBG4FAnnqKAu0ooW0Fx+FFC70OqFs0LOdUs1hgqG04lrE0VKCNAvrIwBE+bmhe6gnjCYSe67Yrq2dOzIWkb4KfHZfL/zz/Igm4zWak1+lZsXT5tnyUpUGpSotRATQI6xlMJSSpwQA9IngLqFZgymRRfop2KqDOdkVdAnN373FbR0Jpz4Zxo0bh1deeQWLFi3C+PHj+TonAZiXybgvxMaOMvtF1EyEnlXRsvuBCYayK+qbpHyZUhnjNN2cO+j6NQngYHoZAOCJ4dEgCOBgRnmTTJMzMIHVxO7BbMZpVCK3HT3Q2HUGAL0jfHg5B77a4c1LZMIoDoFbkUCeOsoaM0POl8kIgkCcmVGhJcEzEwxllNSypafztOWHJe7oSa2T/1y0vVQWF+COg6+Mwf0DIjiDDXM2nM4DSVL+Q+bmjkzDSUKgB6dRLJM14iqhtUYOnT2L9uPWGmXR/kuxN2NmCAD27duHqVOnIi4uDvHx8Zg6dSr27t3L57nd0jDBDpeuBwDbDVDpwEwcZhdznUMQHerlCoVMDL2RbCKi7k63aF4p4t759I30hkxMXah/nCsAQO2Exnel6uQ/Hcux+zybc7W0FjvoEtlDAyPx7yVqdzWxe7DFxxy/3tjK2tOCcNBerFna2wOTmQu2stMTELiZCeSpo4zPzBDQ1LU534KIOsbfDS5SERr0xkZ7ETrDYokpdDB09FqFXV1lolaCIADQGoz4/QzlP/TI4Kb+Q7tp+QLX6A6gcdPYJ9Lb5nNiyKE31dEc4mmTiWQzR9E3YzC0YsUKTJo0CR4eHnjxxRfxwgsvwNPTE3fccQdWrFjB9znekpjPBONK0zJdTPlWatSWiAukfTE4uh9EIoINlhgXUwDoRpfJ0ktqOUWCcokYQ2IpL43TOVXsfeaMiAEAbD5bYLX+bgtf78sESQKTugfjYqESDXojkoI9MCDKcsbnhFkw5MiuhwumHZ5r2KE9COJpgVsd/spk/ARVDPEBjcEQl9ksAIhFBLrQGkSm/H6poAZaK+NFov3dMCLeHyRJZXH4ZNflElTW6xDs6YLxXRv9h3QGE/alUdn6yT1bbhyr63Xs+JFejmSGKiwHOyUqDTR6EyQiwiFn6xuJQ8HQRx99hGXLlmHjxo144YUX8MILL2DDhg1YtmwZPvzwQ77P8ZbEXS5hhc5cO4goOiWZW2nZ6MsSbGaovJ6zpZXpKDMPlqJ8FXCTiaE1mDjLawDw2FBqN6IzmNj20cExvhiZ4A+d0YSPd6XZfa4MZ3Kq2KzQ8+Pise5kLv2c0RZLTCU1GrZe7SoVNdntOQNfmSGmrT6EJ+8jAYHOBl/lLWv+aY6QYDbpnREXc9EthOpOrajTwtdNBp3RhFQL2XOGR2nX6E1n8q0GTvag0RuxbM9VAMCDgyKadJEdv16BWq0BAR5y9OWQCqTQJbLYADeHvIDYzA9HZohZfyN9FZByeCJ1JBw6O5VKhUmTJrX4/cSJEzn9hwQcg6n5Wg+G7M+2xPi7gSCorFMlR1cDUy/PNFsERCKCrZFbMlIclRjIjub4/tB1AFT9/fUpXSEigJ2XSlhxnz1U1mnx3IbzIEng3n7hKK/TIrdSDQ8XCe7uG2rxcSeyGrvYeoZ5t1pvtwWTicTVEup1cbY7gglk+TKCFBDobDBzxZweycFjNxnQtEx2KtvymsVoKdNL6tCPLjExTvyWGN81ECFeLqiq17Gdsc7y/aEs5FSqEeghZ7PxDEyH7+3dgzjLbUxHbh8HskKttdU3iqc7dokMcDAYmjZtGrZt29bi93/++SfuvPNOp09KgCLS13LAE0VH4XlVarsNy1ykYjZlyWWkyHaUNSuj9Y+mdhWnLFjKyyQijO1CdTCcza1m28aTgj0xY2AkAOCNbZftMorUGox4aVMKSlVaxAW44c2pXfHxv+kAgAcGREAhs9wGevxa43kOjfOz+TmtkVNZj1qtAXKJiM2gOQqzg2R2lwICtxqBPGWGmONU1ml58TWL8nNjPxzzqtSc/mpAo4g6tagGfZlgqBURtUQswsODqPXw+0NZMJmd77qTuThtJfjiIreyHt8cpFyp35zaDR5mw1KNJhK7Uynvt0nduU0aGb0QYwppD2xbvUSEUM62+ps8GOratSs++OADTJkyBUuXLsXSpUsxdepUfPDBB+jevTu+/vpr9kvAcZjsD5clfLiPKwgCUOuMTeaI2UpjqaxlMMTMrcksrWviUj0sjhLfHb9eaTEAe5QulZEk2GGCAPDyxET4u8uQUVqLd/9OtekcS2o0mPH9SRzJrICLVISVj/TH72fzkV5SCx+FFM+Ojbf6eHPx9KQelkXW9nCpkMqKdQv15LTCt5XyWi3KarUgCMsDZgUEbnaYNnFnMzp+7nKIaKuNynrns0NSsQiedEcvSQJrLDSAdA/1glRMoFSlRQTt3n8ut7rVDeqjQ6LgIZcgvaQWf1+kXPoPpJfhze2XMXP1KRzIKLPpPCvrtJi79ix0BhNGxPu3cKXen16GynodvFylnC79eqOJzWT1cSAYMi+DcWWd2GAo4CYNhlavXg0fHx9cuXIFq1evxurVq5Gamgpvb2+sXr0ay5Ytw7Jly7B8+XKeT/fWgimTcQVDcomYjcTzqpzQDXEMF4zyVcDLVQqtwdSke2xgtPl8HW7h9rA4f9YWYM2xHHZR8HeXY/mMviAIYOPpfPyZUtjkcRkltbhcWINrZbW4WKDER/+m4Y6vjyAlXwkvVyl+mDkACpkYy/ZkAgBeu6OrVW+ejJLaxsGDPq68OE8DlEASAHpyeHXYA+PXFOPnxtnqKiBwK8BkdNQ6I+q0jrtQi0UEG1hZWpvsxXyo6Oqj2Zzji1xlYjaIUDUYIBZRgZE180WA6gZ+alQsAODLPVehN5owNM4P45ICoTWY8OTasy3WyObUNOjx2E+nkVlWh2BPF3w0vWcT/SRJklhJZ4weHBTBqdk5mVUJlcYAf3cZp/9QazBZJSZD1pybPjOUnZ1t01dWVhbf53tLEWlFM2R+uyO6IWuZIZGIYOvf58zq3wqZhE0FH7/O7SotFhGYMzwaALXbM7/fiAR/PEdnc/7vj4tsuycAvLbtEqb+7yjGf3kY01YcYyczJwV74O/nRqB3hDfmrz+PBr0Rg2N8cV//cKt/37f0IgBQzq98+fgwmSFng6HUosYMk4DArYqbXEIZqAIoUzlXKmOmx2dZmRFmDzpDY/BTaUXfw3TRns+rRv9ISkpgS2Zn9ogY+LvLkFupxqYz+XCRivH9zP6Y1jsUBhOJF39LwZO/nGW7tRhIksRfF4pwx1dHkFqkgr+7DOufHNzEVwignK6T85SQSUQtdEQM/16m1uAJ3YId0lQyGtBB0S2F2Xqjid3Ix3Zww0XAwWDo0KFDfJ+HAAdMsFNQ3cBZB3dGRB0XYLm9HgAG0JPozzWrfw+lL/wTFnRDAPDY0Bj2wvpgR9MOshdvS8DkHsHQGU14Zv15dvfj6yZDsKcLvFyl8HCRYFL3YHz7SD/89dwIeLtJ8dhPp3GpsAa+bjJ8fK/luTwAtYgxFzkA3G7Fh8geTCaS1fk461nEZNwY/yYBgVuVECdsQsxhNniWul3tobrGhKu/dUPhj6NBGqiPye8OZXGWv5hg6GRWJcYmUZpJppXdGm5yCbs5/GJ3BspqNZCKRVg2ow/mjY6DWERgz5VSjPviIG5fdhiv/HEBT/5yFqM+O4AXNiajUNmAMG9XrJszmP3bzWGyQg8MCOcc30Hpiah1crIDMgKDWYmtf1TLElxORT2MJhKuUjGCzIbfdlQcCoYmTJiAyMhILF68GJcuXeL7nARogjxdIBOLYDCRnKMzIq1oilqD6RgrVDagQddS0NyP3uE074wYaoNuyEshxbTeVO36SnFtE8G1RCzC/x7qi+l9w2Ckdz8v/paM9+/qgZOv3YYLb0/EpXdux3cz+2NyzxCcz6vGjO9P4kK+Et4KKdbPHdxqynVvWim0Zru6lQeu8eJMm11ZjzqtAS5SURMfEkdggiEhMyRwq8NuzDiaOeyBcTh29jgAUKquR0O2PwxV7tCVUSX2tGIVO/fLnH6RPpCKCRTVaNA9hNrcnLheiXobyn4PD45CtxBPVKv1eHXzRZAkCbGIwOLJSfjvpZEY0yUAJhLIKK3F5nMF2HOlFPlVDVDIxHh5QiL2vTyas0SVkq/EkcwKiEUEnh4Vx/ncZ3OqUFFH6YkcaTBJL6lFvc4ID7kEXThkCGfpz45e4V6dwmHfoWCoqKgIixYtwpEjR9C7d2/06tULn376KQoKCvg+v1sasZlRFVfAE+VLXfw5DngN+bnJ4OUqBUk21nXN6R3hBbGIQHGNhvXVASinablEhPJarcWsEoAm4uZPdqU3uU0iFuHz+3tj7ogYEATwZ0oRxn1xEM9vTMaaY9nYeakY3x68jlk/n8aDP5xEWrEK3gopfp0z2GJt2pzVR5vOQtufUY7blx12uo31MiOeDnFOPF2vNSCb/j/rLgRDArc4jRkd54KYOA5/NEfJKFVBFkJd77oSb/b3jGWIOea6oeKaBkT4ukJnNOGYDQOqZRIqEySTiHAgoxwbTzc2ncQHemDNE4Nw+rXb8P3M/njxtgS8O6071s8djBOLb8PztyU00TUxaPRGLNp8AQBwV5/QFuUzBiZ7Pr5rkEMeQIyEol+UD2eJjS2hxbTMGnVEHFrR/f398dxzz+HYsWO4fv06ZsyYgV9++QXR0dEYN24c3+d4S8Nkf6x5DTni7EwQBNsazjVcUCGTsB4a5rohF6kYA+j6sHm3VnPiAz0wPJ6ppStxtpm/kEhE4I2p3fDXsyPQL9Ibap0Rf18owjt/X8H89efxya50HMwoh1hE4NEhkdi9YJRNAr9SlYbT56NarcerWy46tVDyJZ5OL1GBJIEgTzn83Tt++lhAoC2x1szhyHFyK9WcYmd7yCiphTxECQDQFnsDAHqEeSLKT8Ep9GZKZaeyq3BbEjWCaH+6bR1hXYI9sOj2LgCA9/+5wm66GAI9XXB792AsmJCIx4dFY3i8P7wUls0RP/43HVdL6+DvLsdrd3TlvI/JRLL+Q46UyIDGYMfSBAD29uibOBgyJyYmBosXL8bHH3+Mnj17CnoinrEmkmYCpcp6nUOdGMxuJjmf2xejP/0mP9csuGBa7A+0crG/fWd39vtXt1zk1D31DPfClmeG4benhuDlCYkYnRiAvpHeuKdvGBaMT8TuBaOw9O6enDVvLtadyAVX8a5LECXE5qqt28pFRjzt5FiPRn8hISskIMBXRifY0wUKmRgGE+mQdMCcsUmBeGMWFdToiqnNz/S+4fhoei+4c3R/Do4x0w3RXmv708uaeAhZY/bwGAyP90OD3kh1iFlxvbbGwYwyrDmeAwD47P5eFjdbZ3KqUFyjgZtMjBEW5pVZgyRJq8FOSY0G+VUNEBFgm3E6Ok4FQ8eOHcP8+fMREhKChx9+GN27d8c///zD17kJoDEY4rq4PV2kbHu5I2M5+rK6ICXn7f3oYKi5idjEbtQicfRaBWoaWs5NY0gM8sBdvSmH6Ovl9ezE+eYQBIEhsX54/rYErJ09CNvmD8eyGX3w4vgEu4KX4poG/HCkZQfjnb1Dse3ZYU4NCjSZSKTy1UlWKIinBQQYmC6wslot5xxGWxGJCLOOMueyTAOjffHYNOr61Fe6w6SV4HIRt/M+APSL8mZ1Q6He1LDrslptq6M5zM/920f7o1e4F6rqdXhk1akWXWStcS63Ci9tSgEAPD40CmO7BFq873d0uW9anzDOUltrFFQ3oFSlhUREcPoTnaYDpW6hnk1MIDsyDgVDr732GmJiYjBu3Djk5uZi+fLlKCkpwa+//orJkyfzfY63NNZGcgBmwZIDpbJ+Ud4AqLINl9iPyQylFqmaOLAmBHkgMcgdeiOJPVdKrT7Ha1O6QkpPs/90V4Zdk5rt5bP/Mpq0w4oI4I0pXfH1g32sOlXbwpViFep1RihkYlbw6cyxAEE8LSAAUJs6ZpyGs0EM08LNh24oMBAIizABIKAr8WpRvjKHsh2h1suj1yrY6fB7rpRYfExzPF2kWPvEICQFe6CsVou7Vx7D3xeKbHrsv5eK8fCPp6BU69EnwhtLLJTHAMrW40BGOUQEMG90rM3nZw5TLege5gVXWctg6ixbQuscJTLAwWDo4MGDeOWVV1BYWIgdO3bg4YcfhkLBLdIScA5rmSHArL3egSAjxMsVIV4uMJHc88bCvKnbjSYSF/Kb3n5HT6pbrDVRcpCnC+bR5mI6owmLt1y0e3yILVwurMHW840mZR5yMdbPHYK5I2N56WTYm0YFfSPi/Z0ST2v0RmTQKXBBPC0gQMFXR1mj/ogfr6Ghg6m1Q1vshWtldZydtwyMhce/l0tYx/ttKYU2l8oAyoxx3ZzB6BHmCaVaj+c3JuPZ9ectZonyq9R4569UzN9wHlqDCeO7BmLDk4OtZnu+PUhlhab2CmXHOtkLUyIbaEEvxIwU6SziacDBYOj48eN49tln4e9vf61RwD6YzFC1Ws+ZQo5ywngRMGuhtzBPh6kHNzdZnEIHQ0cyy62WygBg3ph4hHlTmp9j1ytbdHs5C0mSWLrjCvuzTCzCzpdG8jaPDGgUQ47vGuTUcc7mVENnMCHQQ84GugICtzrWTGDtOk6gdf80exk0iAqGdMXeMJGNpqtcMAHQmZwqDIjyhbtcgvyqBquDXrkI8JBj2/zhePG2BEhEBHZcKsaYzw9i0vLD+Oy/dPxvXyY+2ZWOuWvPYvRnB7DmeA5IEpg5JArfzxxgNQueU1HPbmCfGcPdct8aJEniKN0px6UXqmnQsxu+gZ1EPA0ADtcOrl69ioMHD6KsrAwmU1Pl/ltvveX0iQlQuMsl8HeXoaJOh7xKdYuOqmgnvTX6Rnpjx6ViJFsIhsYkBuDvC0XYn16Glyd2YX+fEOSBhEB3ZJbVYe+VUtxrxRHaTS7Bykf6456Vx2AiKSPGaD83jO/mXGDBsPpoNk5mNS443zzSFxE+/Nm/l6o0uFhQA4KghJXOcCSzHAAwMiGgU3hvCAjcCNj2eifLZI1BVT1IknT6Ghs4kPpXW0Ktu8euVVjMdoR5u6JXuBcuFtTgSGYF7uwdgo2n8/HH2Xy7N2ZSsQgLJiRiQrcgfLIrHcevVyK9pBbpJS2F1aMSAzB7eDRGJ7a+pnx/+DpMJDAuKdAmmxIuLheqkFuphotUxJYDzTmfWw2SpEZwMOXPzoBDmaEff/wR3bp1w1tvvYXNmzdj27Zt7Nf27dt5PkWK6upqzJw5E15eXvDy8sLMmTOhVCqtPmbWrFkgCKLJ15AhQ9rk/NoS5gLnuhAYEW5qUY1d6VgGps6dnKfkLF+N6RIAgqB0Q6XN7PKn9LKtVAZQE5FfoYMpEsBzG89brcHbyt4rpU1crh8ZHIkJ3fhxnGZgskK9w72dvrgPXaWCoVGJQlZVQICBr46yGH83EASVnaiqt3+AdXP69wcIgoRRpYCxTo5jFsYQMTClsl2pJbivfwQAYOflYtQ6KAzvEeaFdXMG49wb4/HF/b3xwIBwPDQoArOHx2DB+ETsXTgKv8wehDFdAlsNhK4UqbD5HOUFON/BrBAA/EMPlh2XFMg5V/F0Ky33HRWHgqGlS5figw8+QElJCVJSUpCcnMx+nT9/nu9zBAA8/PDDSElJwa5du7Br1y6kpKRg5syZrT5u0qRJKC4uZr927tzZJufXljABD1fwEBfgBhepCPU6o0M29D3CPCETi1BZr+PUJfm5y9GbbiVv3krPlMoO21AqA4B5o+MwhJ6crNGb8MSaMw63kAKUP9KLvyWzrfSRvq4WfTWcYR+tF7rNyaxQmUqD9JJaEASVGRIQEKBgNEM5lfUwOOER5CIVI4we73HdySwTAHh4AN26Ud9rCn2QnKe06izNePYcv1aBuAA3xAW4QaM34Z+Lzhm+eitkuLd/OD69rzc+mt4Lb93ZDS+OT0B8oG0DqDV6IxZsSoHeSGJityCHvX9IkmT/lqm9Qjnvw+iFBnYivRDgYDBUXV2N+++/n+9zsUhaWhp27dqFVatWYejQoRg6dCh+/PFH/PPPP8jIyLD6WLlcjuDgYPbL17dz/QcBVMACoMkEeQaJWMT61TiSaZFLxGxXkyXd0Dg6CGhuIsaUyvRGssnQVUuIRAS+erAvwunFqrxWi7u+OWbTY5uTXqLCnLVnUG8maPzygT68T4DX6I1sffw2J/VCjJV/j1Av1hJBQEAACPVyhYtUBL2R5G1GGV+6odtuozIumlx/GE0k+2HPRWyAOxKD3GEwkdifXob7B1DZoT/O5lt8zI3gi90ZyCithb+7DB9N7+nwcZLzlShUUuNAuFr3S1Ua9nNkeHznyn47FAzdf//92L17N9/nYpETJ07Ay8sLgwcPZn83ZMgQeHl54fjx41Yfe/DgQQQGBiIxMRFPPvkkysqsGwVqtVqoVKomX+0Nkxm6UqziLIUxvjfWxH3W6GdWKuOCCYaOXquA1tC0m+LuvmEAgF9P5dn0XEGeLvh93lB2zIhaZ8RT685h+d6rNu0ITSYSPx3NxrQVx1CkbCzbLZ6c1CZOp8euVUCjNyHUywVdQ2zbhVmC0QsJJTIBgaaIRERjW3wH6yhjhipocindT2tjNib1oDLmuy6XYHrfMIhFBM7nKXGtzPEsuDOcuF6JVXTTyif39oKfE673/1ygskLjuwZxttTvvFQMkqSMFpkMXXtytdT2z2+HgqH4+Hi8+eabmDVrFr744gt8/fXXTb74pqSkBIGBLaPQwMBAlJRYzipMnjwZ69evx/79+/HFF1/gzJkzGDduHLRarcXHfPTRR6wuycvLCxEREbz8Dc4QF+AGuUSEOq2Bs4W+h7PBEO03ZCkz1D3UE4Eecqh1RpzKarormjEwAjKxCBfylUjJV9r0fKHervhj3lBE+TZeLMv3ZmLM5wex+mg2Z31dbzThZFYlHv/5NN7750oTP6F3p3XHvNGO18CtsZeePn1b1yCnxJgmE4kjdGZolFAiExBoAWOY6GxGh6/jMIweDYhEJAxV7jCoXNhMsSUm0bqhQ1fL4SaXYEwidb2bzx27UZTUaPDKHxdAksBDgyKcym6bTCSrD51K60Wb01oJ7Ubz1wXby5MO1RR++OEHuLu749ChQy3GbxAEgRdeeMGm47zzzjt49913rd7nzJkz7HGb01q3wIwZM9jve/TogQEDBiAqKgo7duzA9OnTOR+zZMkSLFy4kP1ZpVK1e0AkEYuQFOKJC/lKpBbVtJja3jOczhwVUZkjEcfQPGswmaG04lqodYYWrZkEQWBsl0BsOpuP/ellGJXY+GHu7y7H1N4h2Hq+EGuP56DPjD42PWeIlys2PT0Mc9aeYV1aC6ob8P4/V7B8z1X0ifSGr5sMfm5ylNdpcSijDCpN01q9iKBKY0x2im9IksT+dFov1NU5vVBqkQpV9Tq4ycSss7eAgEAjfHeUZfKUGfL2Bnr3JZF8joAm1w/pnoWoqNNaHHXRNcQDUX4K5FaqsfNSMR4dEoV96WXYeDoPz46Nt7lErtEbHXKHZsgqr8PM1adRqGxAlJ8Cb0zp5vCxAGoKfYlKAw8XCUZ3abmhK1Q24FxuNQiisbmmPTEYTfjHRtNKwMHMUHZ2tsWvrKyW4xAs8dxzzyEtLc3qV48ePRAcHIzS0pZOx+Xl5QgKsj3SDQkJQVRUFDIzMy3eRy6Xw9PTs8lXR4Ax6Ltc2DLtFx/gDhcplTnKdmAsR4iXC4I85TCaSMulMjoYOJBR1qLrbNawaABUl0FZrab5Qy0S7OWCP58djjemdIWrtPGtWKs14EhmBf5MKcJPx7Lx94UiqDQGmMe9wZ4uWP34wDYLhABKCFiq0kIhE7ODGB3lMF0iGxrn79CEaAGBmx2+OsoYDWRBdQMq6yxXAexh0kTqmtXkUiXuE1aGVBMEgRkDqQ30r6fyMKZLALqFeEKtM1ocSdQck4nEo6tOYcGmFFQ48DdcKqjB/d+dQKGyATH+bvh1zmCn9ZRMF9nEbsGQS1oGaTvo2wdF+yLI07ZZkm3JseuVqKizvaPQ5ldn4cKFeP/99+Hm5tYkc9IcgiDwxRdf2HRMf39/m4wbhw4dipqaGpw+fRqDBg0CAJw6dQo1NTUYNmyYbX8AgMrKSuTn5yMkpP2jVnvpYdZC3xyJWISuIZ5IzlPicmGN3cNICYLA8Hh/bD1fiENXyzmFbyPi/SETi5BbqUZWRX2T5+gV7o2+kd5IzlNi46l8vDg+webnlohFmDsyFpN7hmDpP1fwX2oJLDkEkCTl5fHMmDjcPyCc84Lkk19O5AIA7uoT6tQODQAO0y31owW9kIAAJ3E8lbe8XKWIC3DD9fJ6XChQYlyS835mt90GfPQRpRsiSUo3dGdvy6WgBwZEYNmeq7iQr8TlQhWeHxePZ9afx5pjOZg7MhZertbndSXnV+NcXjXO5lZjf3oZFk9OwowBEa1m/Q1GE7anFOGdv1JRpzWgR5gn1jwxyGIWy1Y0emNjiaw39+fn33RJytrrciPZQtsI2IrNW9Tk5GTo9Xr2e2tffNO1a1dMmjQJTz75JE6ePImTJ0/iySefxNSpU9GlS6MRYFJSErZt2wYAqKurwyuvvIITJ04gJycHBw8exJ133gl/f3/cc889vJ9jW8NkhlKLVJx+QKyImmOshi0wImlLk+jd5BIMptvi96e1vA+THVp/KreJnsdWwrxd8e2j/XHh7Yn4adYAzBkRg36R3hgR7497+4Vj/pg4fPVgHxx4ZQweHRLV5oFQcU0DdtFdbo8NjXbqWHVaAzvLx7zEKCAg0AgjoK5W6x3KhpjTJ4IqRadYyHTby7BhgExOwljnCkOVW6u6IX93OTuy6NeTubi9ezDiA91RqzVg3YmcVp+vf5Qvts8fju6hnqhp0GPJ1kt44PsT+DOlEOW1LV8brcGIDafyMPaLg3jljwuo0xowNNYPG58c4nQgBACbzxWgok6HUC8XjODYLOdU1ONSYQ3EIoK1F2hPKuu0+M/OLmWbM0MHDhzg/P5GsX79erzwwguYOHEiAGDatGlYsWJFk/tkZGSgpoYKBsRiMS5duoRffvkFSqUSISEhGDt2LDZt2gQPD+e6gtqDLsEeEIsIVNXrUKLSIMSrqVLfWRH1yPgAiEUEMsvqkF+lZseAmDOhWxCOZFbgrwtFeHJU0wF/k3uEYKlHGspqtdiVWoJpDu4OPFykGJcUxMtuzhnWn8yD0URiUIyvw06tDHuulMBgIhHj7+bwLCABgZsdV5kYsQFuyCqvx6WCGqfc3vtEeGHL+QIk29jU0eq5uQIjhgP791OlsgK/XORVqhHpZ3mkzqNDovBnShH+vFCI1+7oiufGxuOlTSlYfTQbTwyPabVs1TvCG38+Oxxrjufgyz1XcTaXyhQBQFKwBxKCPFBZp0V5rRbFNRrU0f5Hfm4yzBkZgzkjYnjZNBqMJnx/mJpn9tSoWM4yP1NCGxbn51S3Gl9sOJUHrcGE7qGesFW23mnEC76+vvj111/Zdvdff/0V3t7eTe5DkiRmzZoFAHB1dcV///2HsrIy6HQ65ObmYs2aNe0uhnYUF6kYCXRNPZVDN8RkhlKLuNvvW8NLIUV/Wkh9MIM7OzS1VyikYgKXCmuQXtL0HGQSER4eFAkA+OlodpsMY71RaA1GbDxNWQUwGS9nYFxf7+7TdvomAYGbgT60weuFAqVzx6EzQxfyuZ31HWHcOMZviNIPHrlWbvX+A6J8kBTsAY3ehC3nCzC1Vwii/BSoVuvZ9aU1GBnB3oWj8fToWNZTLr2kFn9fKMLx65XILKtDndaAIE853praDUdfHYf5Y+J5y57/c7EY+VUN8HOTYcbASIv3AYA727GLTKnWYcGmFFwtrcUvJymJw2NDo2x+fKcJhgQahYGXOXRDCYHubPt9jgMiagAYk0SVcA5kcF/kvm4ytpzGVY99ZEgkXKQipOQrsedKS8F7Z2HHxWJU1usQ4uWCiU7OTyuoVuM4Lba8t78QDAkIWKN3hDcAKohxhqQQD8glIqg0BmQ74MzPxYQJ1L8NOf4gDSLsumy9DEMQBB4ZQn0Y/3oqF2IRwY7B+P5wFhp0RmsPb0KotyuWTO6KnS+OxLk3xuPrh/ri9Tu6YvmMPlg/dzD2LBiFo6+Ow+wRMZz+P45iMpFYefAaAFg89tVSamaaVEyw40jag6ulddiWXIjblx9Gea0W/u4yu0YzCcFQJ6JRRM3tRM2UcxwtlTGBzvHrFdDouS9UZt7OtuSiFiaJgR4umDMiBgDw8a50p2z125O1tHD6kcGRkDjZ+bXtfCFIkkofh/sIU+oFBKzRi7YJuVBQ41RGRyoWsdIBW/3PWmPAACA4mASpk0KT64dj1ypa7Va7p28Y3GRiZJXX48T1StzTNxxh3q4or9Xi6/2Wu5qt4ecux7TeoXhyVCzu7huG4fH+SAjyaJMu1X3pZbhaWgcPuQSPDuHOsvxEGzqO7RIIL4V1YXhbkkGPdmLeNlX1Ony4M83KI5oiBEOdCFZEbSHYYUpljg5A7RLkgRAvF2j0lMEhF2O6BMDPTYaKOi3bLm7O06Pj4OsmQ1Z5PTa1swW9I6TkK3EhXwmZWIQHB3GnhG2FJElsPk9l0O7rH87H6QkI3NR0DfGEVExpIwucHMvBzFR0NsvEIBIB99xDlcrUmcEwkWCbLCzhLpfgnn5URnjtiRzIJCK8M607AODHw1nI4Bi+3VEgSRIrDlBZoZlDozg74EpqNNhCr3FPj45tcfuNpPmcSxPZKFGwBSEY6kQwZbKiGg2qOSYyOzuWgyAIjOlivatMKhax3j5cbzRPFyleGBcPAFi2J9PqUMOOyBraB2Rq7xCnuzDO5FQjt1INN5kYkzpAh4WAQEfHRSpmM9xO64YivQHwlxkCAMarV50ZBNLUOJ7CGkw36n+ppUgtqsGEbkGY0C0IBhOJN7Zfckjj2dZkldfhje2XcSFfCblEhNl0xr85Px3Lht5IYlC0L/pHte/cT67AMszHdr8jIRjqRHi4SBFNdy9wlcqYtHBqoWMiagAY26VRN2QpTX1vPyrLsfdKGZTqlkHZw4OjEOWnQEWdFj8esd2Es725XFiDP2nHUn6E01RmbEqvkBau3gICAtywpTIng5i+tP7oSrHKYtnfXkaPBry8SZjUcmgLfXAqu7JVo9nEIA+2u/az/6jB4u9M6w6FTIwzOdX441zHy6Av33sV6+l5kw8OjODcGNao9VhPC5WfGdM245BshSRJpBU3/UwM83bF6scG2nwMIRjqZDBDWzlF1EGUiLrWCRH1cNpcMa+KMlfkoluoJ7qFeEJnNOFvDrtzmUSERbcnAQB+OJxllyt1e0GSJN75KxUkSc3d6UWn2B1FrTNgB91hweisBAQEWoctbznomcYQ7uMKPzcZ9EYSV4pbbh4dQSoFpt1Jl8qu0qWyVoTUALBwQiIkIgIHM8pxMqsSYd6uWDA+EQDw0b/pvDll80FGSW2TmV4uUu4w4ZcTOajXGZEU7IExHOM5biQVdbom45qCPV2w8ckhCOewiLGEEAx1MrqHNZovNkcqFrG7qlPZVS1utwVzc0VLpTKgUQOz6Qz3ruaOnsHoHeENtc6IZXscEwreSP5MKcLZ3Gq4SsV4fUpXp4+363IJ6nVGRPoqMDBamEUmIGArfeiMzqWCGqeaMAiC4K07zRzGs1d9NRgk2dhWbo1ofzc8OIjaFH26K52ygRkejaRgDyjVenz0bzpv5+cs7/9zpcnP3x/Oxld7m67hDTojfj6eA4DKCjkzxJoPzph93nm5SrDhycGI9FPYJcIXgiEbqesg2hemoyzZwoT5YXGUO+ixVhxSrcHqhiz4DQHUiAoRAVwuUiGjpGVgRhAEXr+DCio2ns7DoavWPTnakzqtge06eG5cfAtDS0f442yjcLq9FwoBgc5EbIA73OUSNOiNuObkaA4msOJTN3T77YDchYRRpYC+zBNncqpQqmo9+/3CuAS4SEU4n6fE3rQySMUifDi9JwiC0l9yZdlvNCl5Sk537WV7r+LLPVfZ4GLTmTxU1esQ4euKKT3bf7zVLydzAAASEYHN84Yhlh4X9fU+2zfiQjBkI5edTNnyRb8oH4hFBAqqG1BQrW5x+4gEKhg6fr3Sad3Q6ewq1Gr0nPfxc5cjKZjKUr227RLnfQbF+LKmVy//fsFpi/22YsX+ayir1SLSV8FaAzhDVnkdTmRVgiCAe4UuMgEBuxCLCPSgM+AX851bd9siGFIogDsmU98z2SFmbpc1Aj1d8MRwan1568/LMJpI9Iv0wVMjqS6sV/64gItOisad5eU/Ujh/3yPMk81w640m/HiEajR5alSc0/YjzlKq0uBMNpUceHdadyQEURMmcirqseZ4rs3HEYIhG0kIsm/4aVvhLpewXWOnslqWwnqHe0MhE6OqXod0B9s2YwPcER/oDr2RxL9W6uG30ZPsz+UqLdbNX7ujKxKD3FFRp8Wrmy92OGfqrPI6rD5KibzfmtrN6YGsANh21HFdAhHm7XyWSUDgVoMpb6U4GRww+qPcSjVnB66jsC32V6kuUVtKZQAwb1QcpGICxTUavLmd2kQumpSEMV0CoDWY8NQv51BmQ5apLfgzpRDXy5vqRGP83fDNw/3w17MjMDIhAARB4Pez+ShUNsDfXY77O8Bm79uD12EkSXQN8cTDgxvtUJbuuAK9HWVWIRiykY4wb4VhSCxlB8/lBSSTiDAohtL8HL/ueKnsHrp9fut5yz4N/ejWVQBYsCkZJTUtL2IXqRhfPdgXMokI+9LLsO6k7ZF6W0OSJN775wr0RhJjugSwwZ0z5FTU488UKt39wm0JTh+vvajXGnAqqxKrjmThhY3JGPv5QfR65z/c+b+jeH5jMr7ccxXbkws7lPBT4OahD08eQV4KKWL9qXmAzgZW5kydCshkJPQVHtCVeuJcbjWKlK37InkppKyUYcPpfKynnam/fqgv4gPdUaLS4Ml153jrfrOVeq0Br5tl+APcZfjwnp7YvWAUpvQKgUhEBX9lKg0+pvVNz4yJ42Xz6AxFygZsoLve3pzSlZUkHMgow960MkhEtksUhGCoEzKEFjifzOY2RhzOg27onr5hIAjgZFYV8qtaluMAwNPMhKtBb8LTv57lnFjfNcQTiydR3WUf7EjD1dKOYTS2+mg2DmaUQyom8NbUbrxoe1YcuAajiQqumN1tZ6JUpcHbf15G3/f3YMYPJ7F0Rxr+ulCE7Ip6qDQGXCqswd8XivD1vky8tCkFIz89gC92Z0BloZwqIOAIvehrJ72k1unAgC2V8TTBHgB8fIBp06j1ou4SlR3ZYWN26JEhjdmL17ddxu9n8uHpIsWqxwbAy1WKC/lKLN5y47Loap0B9313HHVa6nV+ZnQcDi8ah4cHR7ZwtX7rz1TUagzoFe6Fx+2Y+9VWfHPgGnRGEwbH+GJoHJUk0BlMeO9vSgT+qDCb7OZmQLQvxCIC+VXcuqHh8VQwdCq7ijM4sYVQb1cMo99c25MLOe/jLm/qSHohv8ai/fkTw6MxOpFKBb+wMfmG73yasz+9FB/Q57p4cldWcOcMuZX12Ea/Vi92sqxQmUqDd/9OxchPD2DtiVzoDCYEe1Kz2V6ZmIi1swdh10sj8cPM/njtjiQ8NCgCScEeUOuM+N/+axj16QF8f+h6u/+/CtwchHq5wN9dDqOJ5OyctYe2MF8EgNmzqX/rr4SBNBLYcDrPJp1m34im3aWLtlzEb6fzEO3vhm8f6QexiMD2lCIs3ZEGYxsbMjbojJi79izSimshE4uwbvYgvDo5iXMG2a7LxdiVWgKJiMDH03u1u1Yov0qN3+kpBwsnJLKb2Z+PZSO7oh7+7nI8Pcp2V2whGOqEtKYbSgr2gK+bDGqd0SkX1+l9qR3P1uRCzl2Ku0tLI8E1x3PwZ0rL4IkgCHx+f2/4ucmQXlKLp9ohFcyQUVKL5zckgySBhwZFYvbwaF6Ou/LAdRhNJEYlBqBvZOdop9cbTfj8vwyM/PQAfj6WA53BhAFRPtgwdzBOLBmHHx4bgOfGJWB0YgCSgj0xsXswnhoVh4+m98K/L47Ed4/2Q3ygO9sePOazgxY7HQUEbIUgCPSJ4Mt8kboWz+VW26UhaY2JE4GQUBKmBhnU14KQXVGPIzZk4wM85AjwaCq7WLz1EjacysOweH+8dxc1rmP10Ww89cvZNutk1uiNePKXszh+vRIKmRgbnxqCkYncfkE1DXq89WcqAGrsBjMNoT1Zsf8a9EYSI+L9MZiWjpSpNGwH2eLJSdj7r+2z0oRgqJNiTTckEhFsytCZUtmkHsFwlYqRXVGPZI4FyV3O7aq8eMslzlJYgIcc383sD1epGIevluOZX89Ba7ixAVFFnRZz1p5Bvc6IIbG+eO+u7ryUx/Kr1OyMns6SFSqoVuP+705gxYFr0BpM6BvpjXVzBuGPeUMxLN6/1deFIAhM6hGCXS+OxKf39UKYtytKVBo8suqUU+87AQHA3HxR6dRxuoV6wkchRZ3WwGt2SCwGHn+Mukbq6VLZWtp7p9VzCmkZTLy27RLWnczFI4Oj8PVDfSGndZb3rjxuUargKEwgdPRaBRQyMdbOHoT+UZY3cB/tTENZrRax/m54flz7r2/Xy+vYuY8LJiSyv/94VzrqdUb0ifDG8NAwLFhg+zGFYKiTwgQ7remGjl/jvt0W3OQSTKZnanEJqbmCIRFB2bdbEq4NjPbFT7MGwkUqwoGMcsz/9bzDpTx70RqMmLfuHAqqGxDtp8C3j/TnbdLzyoPXYDCRGJngb3VR6Sj8l1qCO746gpR8JTxcJPjm4X7Y+swwtmPEHiRiER4YEIHdC0ZhRLw/1Dojnvj5jE3OvAIClmB0QxedtDURiwiMSKAyHod59jt74gnq34asQBhq5TiQUYYcC8795nBlVggAlwqU0BlMmNY7FJueHopADzkySmtx1zfHcCbHMSPd5py4XolpK47iSGYFXKVi/DxrIAZGW54rdvx6BX6jzXU/mt6z3UXTJEnivb+vwGgiMS4pkF1vz+VWYet5qirxzp3dMX8+gWo7ktRCMNRJGUD7DVnSDY2gdUPn86qdGpY6nZ5D9veF4hZZHLGIgEImhlRMYGLXIPgopDCRQEKQh1UNztA4P6x+fCC783l2Q9sHRA06I176LQVnc6vh4SLBqscHwsdNxsuxC6rVrMliR88KaQ1GvPt3Kp5edw4qjQG9I7yx84WRmNIrxOkMmZtcgtWzBmBS92DojCbMX38Of5zteHOXBDoHvWk3/eyKes4ZiPYwivZf4zsYSkwEhg8nAZJAfWoYSBL45UTrHbNcmSEXqRjPjU2ATEJ9LPeJ8Mafzw1HjzBPVNXr8NAPJ/Hq5ovItiHY4qKkRoPnNybjoR9P4mppHXzdZPhp1kC2xMRFjVqPJVupLrNHBkdave+NYl9aGQ5dpRpf3qCnBegMJizeQp3nAwPCcfmwN7ZvByR2jIQUgqFOiptcwo7eOMmhG4r0UyDcxxUGE4nTTuwohsb5IcTLBTUNeuxPa+lI/d5dPXD6tfH44XFKWwIA3x263mptfni8P1Y9PgAyiQh7rpTi2Q3n26wjKau8Dnd/cwz/Xi6BWERg5SOUzoUvvjlAZYWGx/thgJUdVntTo9bj0VWn8POxHADAkyNj8MfTQxFhx/ye1pBLxFjxcF88MCAcJhL4v80XsfpoNm/HF7h18FbI2MHUzs4pG0lnhi4W1vDqNwQATzzBdJVFgCSBP87mt7oBZTJDQ2P9sHneUAyK8UWD3oinfz2HGnXjOhji5Yrfnx6KKb1CYDCR2HQ2H+O+OIhnN5zH5ULbXhOlWocfDl/HbV8cxN8XikAQwMwhUdj/8mi2wsCFRm/EnLVnkFupRoiXC16dnGTT87UlGr0R79HjQuaMiGU33SsPXkNmWR383GR4vHdXPP88df9XX7X92EIw1ImxphsCzEtljus3xCICd9OeQ1vOtxRG39c/nM2wPDQoAn5uMuRVqfGTDR+AIxMC8MPM/pCJqYBo4peHsT+91OFz5eLfS8WYtuIYMkpr4e8ux/q5g9mFkQ/O51WzKeSXxie2cu/2o6RGgwe+P4EzOXRm7LEBeH1KN3YXyicSsQif3NsLT46k3Hbf/+dKhxg1IND56Ec3Ipy2IAewlWAvF3QJ8gBJgnPchDM88ADgqiBhqHKHrsgbtVoDtlrowGWI9nPDujmDsOHJwRgQ7YsvH+gNf3c50opVeOzn002c/xUyqoy9ed5QjEsKBElSbfxT/3cUD/5wAu/8lYpVR7Lw76ViXCxQ4lpZLf44m48lWy9iwpeH0Oe9PfhwJ6Wl6Rvpjb+fG4H37+4Bb4XlzLjBaMJzG5LZTPrPTwyEp4vtYuS2YvXRbORVqRHkKcfz4+IBAFdLa/ENbXT79p3d8X8vyqBUAgMGAAsX2n5sIRjqxLQaDCUwfkPOLSTT6WDoYEaZVZM9hUyCxfTuYdneqzaJ/sZ0CcT6Jwcj2k+BEpUGs9ecxYJNKU7v3vRGE5b+cwXPrD+POq0BfSK8sPOFEexrxgdUavYiSBK4t1+41bp7e5JVXod7vz2OjNJaBHrI8ce8oRjfLahNn5MgCLx2R1e2tXXJ1kvIcnLOlMCtR2MjiHNrGACMSqTWwyOZ/JbKPDyAB+6nskO1FygPobXHc6z6BIlFRBN9XriPAuvnDoaPgvIZmr3mDNS6ptmlAbTe8t8XR2Jab2o25MmsKqw5noOlO9LwzPrzmLbiGMZ/eRj/t/kiNp7OR2YZdc3FBbjh0/t6Ycu8YehBdyJbgiRJvL7tMvamlUImEWH14wPZ0UvtSZGyASv2U0HPksld4SaXwGgi8eqWi9AbSdyWFIiS0yH4919ALgfWrhXKZLcMA8zmlHEFHoxP0JVilVNOwQlBHugV7gWDiWx1h39f/3AMjvGFRm/C23+l2mQcNjDaF/++OApPjoyBiAC2JRdiwrJD+DOl0G4tUY1aj+8PXceITw5glVl26u2p3RHo6WLXsVrj24PXcbWUSs2+wcOk+7bgYoES9313AoXKBsT4u2HLM8Nu2MJGEAT+7/YuGBzjizqtAfPXnxd8iATsgvFMu1igdLqMPpIVUVfwbmj41FPUv/VXQmGsl+FaWZ3dAVyXYA+smzMYHi4SnMmpxpO/nOW8XrqGeOLrh/ri4Ctj8f7dPTBvdBzu7B2KvpHeCPSQw0UqwoAoHzw9OhY/zOyPc2+Mx76Xx+CBARGsk7Q1vth9FZvO5kNEAP97qC870aC9+ejfdDTojRgQ5YO7+oQCANadyEFynhLucglm9+qJ9YrPBgAAYFBJREFUBQuov2/pUqBbN/uOLwRDnRhz3dCp7Ja6IH93OZKCqaF1Jyxkj2yFyQ79ca7A6kJCEAQ+uKcnpGIC+9PLbO4ocpWJ8fqUbtjyzDAkBLqjok6HF39LQf/39+DZDeexPbnQooiSJEkcy6zAQz+cRN/3d+Ojf9NbTJHW82xelllaixUHKD+Ld6Z1502MzSfHrlGvSVW9Dj3DvPDHPH71QbYgEYvwv4f6wt+d8pd656/UG/r8Ap2bUG9XxPi7wURye6rZw6AYX8glIpSoNGzGhC+GDgWGDCEBoxi156MBUJ5r9tIjzAtrZw+Cm0yMY9cqMX+95eaSSD8FZg6JwuLJSfjfQ32xbf5wnH59PNLfn4zNzwzDksldMbF7sF2jpNYez2FnK35wT0/c3j3Y7r+hLTiZVcnqnd6ZRtmhFCob8Ol/GQCAlyckYeEzLlCrgbFj7SuPMQjBUCentVLZsDh+SmXT+oRBLhEhtUjFGXiZEx/ojmdGxwEA3vk7tUn9uzX6RvrgnxdG4KXxCfB3l6NWa8COi8V4aVMK+i/di3u/PY5HVp3E9JXHMGn5YQz5cB+S3tyFR1afwomsSliKeRp4zEiYmqVmp/YK4e3YfHE0swJPrKH8lIbH+2HjU0Pg307z9QI9XfDVg31BEMBvZ/Kx5ZzleXcCAs0ZHu+8ZxpAdWsx3VB8d5URBPDyy3SpLDkKJr0I+9JLHfIH6hfpg9W0/cj+9DI8te5sm88A1BqMeO/vK3ib3qy8PCERDw2KbOVRNwaD0cRuoh4eFIkeYV50Ke8S1DojBkb7IOu/SJw+DXh7U+UxkQORjRAMdXJaC4ZGJDQuJM6khn3dZLh/ANVm//2h663ef/7YeET7KVCq0uKL3Vftei65RIyXxifi9Gu3Ydv8YXh2bBy6BHnAaCJxLrcax65V4nyeEukltShRaaC1oZTWoOMvGFp3Mhfn6dTs0nt68GLayCfHr1dg7i9noDOYML5rEH6aNdCiQeaNYni8P166jRKYv7H9coeZTyfQ8eFj1iID22Kfyb8p6D33ANExlCN1/eVwkCQc7qQcEuuHH2ZS3bYHM8oxcdlh/JfaNr5dmaW1uPub4/jpGHWu80bH4TlanNwR+PFINtJLauHlKsUrE7sAoKQUBzPKIROLcH9EH3z4IbUGf/89EBHh2PMIwVAnpzXd0KAYP8gkIuRVqXG11LnU8NwRsRARwIGMcqSXWJ8X5CIVY+ndPQEAa0/kOGSpLxIR6Bvpg/+7PQn/LRiFI4vG4ssHeuOrB/vg+5n9sW7OIGyeNxT/PD8Cu14ciQ/u6YHJPYLhyTEmpEHPj6V9obIBn+6ipja/OqkLQrxceTkuX5zKqsScNWeh0ZswLikQ3zzSF3JJ+5qkMTw3Lh4jE/zRoDdi/vrzTvlfCdw6DI3zA0EAmWV1KGtW/raXUfS4iVNZlbzr18RiYMFL1Iey6kwMSBJYfyoXeZWOuUePSgzA1meGoUuQByrrdXh63Tks3JSCmgZ+LEhIksSvJ3Mx9X9HkVason2HBmDx5KQOs8HLKKnFsj3UZvr1KV3h4yZDfpUab9OjQZ4ckojFzytgMgEzZ1KdfY4iBEOdnNZ0Q+5yCUbRwsEdl2ybqmyJaH83TO5BlYR+OJzV6v1HJPjjnr6UEdlr2y7B4ORcoAhfBab3C8ddfcJwe/dgjEwIwIBoX/QI80JSiCceGRyFbx/tj+S3JmL7s8PxysREDI7xhVRMoEHnvKkjSZJ4Y9sl1OsoEd8jg9t/arM5Z3Oq8MSaM2jQGzE6MQArH+nXYQIhgOqgWTajD4I85bhWVofPd2e09ykJdAK8FTJ0p315jl93rtyfEOiOYE8XaA0m3hydzZk9G/D2JmGodkfDtSDojSS+2OP4+7xHmBf+en445o2Og4ig5kTevuyw02W+/Co1nlp3Dm9svwytwYSRCf7Y9dJIjEtq2y5Te9AbTVj4ewp0RhNuSwrE/f3DYTCa8NKmFNRqDegX6YPk32KRnQ1ERwMrVjj3fEIwdBPAlMqOX+dO/U7pRYngdjoZDAHAU3Sr9F8pRShSNrR6/9endIWXqxSpRSos35vp9PPbglhEoE+EN54bl4BNTw9FylsTMYGHVvKv9mXiAJ2a/fjenjZ1ZtwozudVY9bPZ6DWGTEywR/fz+zf7rb5XPi7y/Hpfb0BUE69acXOTSQXuDXgq1RGEARGtpEbNQC4uwPz5tHZodOUz9afKUU2GyRyIZeIsXhyEv6YN5S1IHnsp9OY/NURrNifabNlRU2DHhtP5+GB705g5KcHsOdKKevivPaJQQj04Lfb1llW7L+G1CIVvBVSfDS9JwiCwIoD13AutxoecgmGGvpj4wYCYjHw66+Ap5NNskIwdBPAjN44lFEOI4eC+LauQZCJRbhWVue0VqN3hDeGxvrBYCJtqof7u8vx7jRqCvOKA9ewvRUzsrbATS5pMSXaXrYnF7LB3Lt3dUd8oAcfp8YLlwpq8Pjq06jTGjCU1hp0xECIYXRiACb3CIbRROKtPy/z3uYscPMxLL4xGHL2/cKUyg5fbZthws8/D0ilJLQFftAWUVn7T+jSujP0j/LFzhdHYtawaEhEBNKKVfh891WM++IQJn91BN8cuIYT1ytx/FoFDl0tx/70UvyXWoJtyQV4dv15DPxgL5ZsvYTTOVUgCEqYvm3+cMwdGduhNnYAtaYxXW3v39UDgZ4uOJdbxU6kn9ujD95eTK3pS5cCw4c7/5ztq6oU4IVBMb7wcJGgsl6H5LzqFiMhPF2kGJngj33pZdhxsRiJE5z7IH96dCxOZFVi4+k8vDAuAV4K686kd/cNQ3pJLb47dB2LNl9EhK8r+kd1DO8KWziTU4VFmy8CAJ4eFdthuiwASvz42E+nUKs1YFCML1bPGgBXWccNhBjemNoNBzPKcSanGtuSC9kZeAICXAyM9oFMLEJRjQY5lWrE+Ls5fKwR8f4gCCCjtBalKg2CePYfCw0FHn6YwNq1gOp0LALvTsaRzAoczazACDor5SgKmQTvTOuOl8YnYHdqKf65VIxj1yqQVqyyKcvaJcgD9/QLw119Qjuc3pFBozdi4e8pMJpITOkVgjt7h6JWo8dLm1JgIoEpSeH4/u0gNDQAkyYBixbx87xCZugmQCoWYWyXQADAnjTucRZ39KS0PnyUykYnBiAp2ANqnRG/nmp9KCEALLq9CyZ2C4LOaMJTv5xzqOW0PcipqMdTv5yFzmjCpO7BeHVS+8/nYcivUuPR1adQrdajd7gXfpo1EApZ59jfhHm74vnbqI6VD3emt9lcOoGbA4VMgr6R3gCcL5X5uMnQi3ZhbotSGQC8/DL1rzojBNoyavP5ya50mHjyO/NWyPDAwAj8MnsQzrw+Hh9P74lRiQGI9XdDYpA7uoV4ole4F/pFemNQjC/mjojBjhdGYNdLIzFvdFyHDYQAYNmeq8gsq4O/uxzv39UDAPDWn6nIr2pAuI8ravb3RFoaFXT+8otjbfRcCMHQTQKjidlzhTsYGt8tCFIxgcyyOmQ6WSojCAJPj6a0Qz8fy7apK0MkIrD8wT7oHuqJynod5q49a5f/UHugVOswe80ZVKv16BXuhWUz+nSYdHKZSoNHVp1CqUqLxCB3rHliULu3z9vL3BGxiPV3Q0Wdlu0YERCwBONGbUkbaQ9sqawNWuwBoGdP4MEHAYBA9aEkSEQELhXWON3EwoWvmwwPDorEL7MHYf8rY7B7wWjsfHEk/npuBLbOH47fnx6KN6Z2Q/dQrw7TJWaJszlV+OEI1Zzz0fSe8HWT4c+UQmxLLoSIACZIBmH9OhFEImDDBiCAvzGTQjB0szCmSwCkYgJZ5fW4ziGo83KVsnb0Oy8571cxtVcowrxdUVGnw1aOAa5cKGQSrHp8AAI95MgorcULG5M5NU4dAZ3BhHm/nkNWRT1CvVyw6rGOU36qrtfh0dWnkFelRqSvAuvmDO6QDtitIZOI8A6tJ1t7PAdXigQxtYBlGPPFE9crnc6wMMHQ0cxy3rI1zVm6FJBISGiyAlGXTckCPvsvw+4RQ7cKSrUOC35PYWc9TugWhJyKeryx7TIAYHpUd3zyJjWl/p13gNGj+X1+IRi6SfBwkbJdZZayQ3yWyqRiEeaMoLolfjySZXNQE+Llih8fGwC5RIQDGeX4YEea0+fCNzqDCa/8cQEns6rgLpdg9ayBvM81c5Q6rQGzfj6Nq6V1CPKUY/3cwbxrHm4koxIDcEfPYJhICGJqAav0CveGq1SMarUeV5zsQuwT4Q0PuQTVaj3O51XzdIZNiYsDnn6aysRUH0qCiCCQV6XGxtN5bfJ8nRmjicSLv6WwpbC37uyGOq0BT/5yFrVaA3r6B2Drp1FoaABuvx147TX+z0EIhm4imFLZXgvB0ISuVKkso7QW13iYzTNjYAS8XKXIrqjHbjvcUXtHeOPLB/oAAH46lo23/rwMvZMeRHxRWafFo6tO4a8LRdSgwof7omtI+09sBihh4dy1Z3ChoAY+Cil+nTP4hs8aawvemNINrlIxzuZW25xlFLj1kIpF7MR1e9YbS8ea0J1aL1sbPu0Mb74JuLmR0BV7ozaNer6v92V2eInAjebLPRk4dLUcLlIRvp/ZHx5yCRZuSkFmWR0C3OSo+7c/srMJxMZS5TFxGyTphWDoJmJ8V+piO5dXjQqOWTZeCilbd+cjO+Qml+CxoZTx4Ge77Uv/TukVgjenUmOFfzmRi8dWn0ZVPfcg1htFeokK01Ycw+mcKnjIJVj9+EBWmN7e6I0mzF9/ns1WrZ09CAlBHae93xlCzcTUH/2bJoipBSzSgzZf3Hg63+lj3dmbmny+41Kx04awlggKAl55hcoOKQ93AWEiUFmvw4c7nW+1v1nYdbkY3xygRjx9cm8vdA/1wtf7M7H7SilkYhF6lgzHwf1iKBTAtm2Abxs1IneaYOiDDz7AsGHDoFAo4O3tbdNjSJLEO++8g9DQULi6umLMmDFITb15p2aHeruiR5gnSBLYn1bGeR8+S2UA8OSoWPi7y5BVXo9fTuTY9dg5I2Lw42MD4CYT40RWJe765mirYz7aij1XSnHvyuMoVDYgyk+Bbc8Ow9ikjhEIGU0kFmxKwf70MsglIqx6fAB6hXu392nxSqOYWodVRxyb5yRw8xMfSGlGyuu02ONkdmhEvD98FFJU1OlwwsJsRz54+WUgIIBypVZdpAZnbTydZzGDfyuRWVqLl3+/AID6PLirTxj+Ti5hPd2meAzEzyupzreffgJ69Wq7c+k0wZBOp8P999+PZ555xubHfPrpp/jyyy+xYsUKnDlzBsHBwZgwYQJqa2/eIZETulJu05Za7Cd2C4JERCC9pJZTaG0vni5S/N/t1PC8r/ZmorzWvunKE7oFYduzwxHpq0B+VQOmrzzeZgMJuSBJEisPXsNT686iXmfEsDg/bJ8/vMOYKpIkide2XsI/F4shFRP4bmZ/Vht2MyGTiPAK/T766Wg2qts5SyjQMfF1a/Q0W7LtEtQ6x+fbScUidnPYlqUyDw/grbeo7FDN0QSYdFSNZ/HWi5wZ/FsFlUaPp9adQ73OiCGxvlgyOQlXS2uxYFMKAGByaBf8uJSqZPzf/wEzZrTt+XSaYOjdd9/FggUL0LNnT5vuT5Ikli9fjtdffx3Tp09Hjx49sHbtWqjVamzYsKGNz7b9GN+NymYcySznnNTurZA1lsou8pMdur9/BHqFe6FWa8Bn/9mf/k0M8sCfzw7HsDg/qHVGPL3uHL7el9nmYtpCZQOe25iMT3dlgCSBmUOisHb2oA7TmUWSJJbuSMOms/kQEcDyGX07TNmuLZjUPRhdQzxRpzXgextm3wnceqjNZgxW1OnwlZMjfphS2b+XS6A18Du41ZynngJiYwFjvQtUp+LgIhGhok6HxVsu3ZJNAyYTiQW/pSCb7tb95uF+qNMaMPvnszDAiPr0YPz6ehzq64Hx44EPP2z7c+o0wZC9ZGdno6SkBBMnTmR/J5fLMXr0aBw/ftzi47RaLVQqVZOvzkS3EE+EebtCozfhqAVzsin0bogvzwuRiMDbd1It0n+cK8DFAqXdx/Bxk2Ht7EGYNSwaAPDlnqu44+uj+OtCEe/t98U1DXhz+2WM+ewAdlwshlhE4P27e+D9u3tAKu44l8RX+zLZkScf39sLU3qFtPMZtS0iEYGFExIBUK329mYZBW5+1M08zVYdzXbKkmFQtC+CPOWo1RhwKKNtDBgBQCYDPvmE+r7mZBxURW4QiwjsTSvF72ed1z91Nr7al4l96WWQSUT4fuYAeLlK8fzGZBQo1dCVu6Hir76oqyPg6QmsXw9IboCFWsdZ+XmmpIQqtQQFNR3QGRQUxN7GxUcffQQvLy/2KyIiok3Pk28IgjAzYOT+Oyd0C4KYLpXZOuSvNfpH+bAT6t/5K9Wh3Y5UTPnOfHJvT7jJxEgrVuGFjcm47YuD2Hg6z+mdW6lKg7f/vIzRnx7EupO50BtJDI31w+Z5QzFzSMeaQL/qSBZbN3/7zm54YEDneh86yviugegd7oUGvRHfHbre3qcj0MFQa5uWxYwmEku2XXJ4wyQSEZjai8oO/c1TptwS994L3HMPAJMIlTt7Q0JQH7/v/n0FuZX1bfrcHYnfTufhK3rG2Ad390CPME+8+WcqjmRWwKQVo+TX4QBJvTYqFbBgAWBwvBpqM+0aDL3zzjsgCMLq19mzZ516juaOmyRJWnXhXLJkCWpqativ/PzOF7UzwdC+tDLORcLHTYZhcZTu5N/L/OlzFk9OgkImxvk8JbanON4iPWNgJI4vvg0LJyTCRyFFTqUaS7ZewqhPD2DVkSzUaW2/MlQaPU5lVeKdv1Ix8tMDWHsiFzqjCYNifPHbU0Ow8akh6Bvp4/C5tgXrT+ViKe2/9PKERDwxPKadz+jGQRAEFk6ktEO/nsxFSY2mnc9IoCNRz1H6v5CvxHobxwJxMY0ule29UuqUBqk1CAJYuRLw8SGhK/VC2dFoBHrIodYZsWBTSpt1tHUktiUXYMm2SwCAp0bF4r7+4fhwZxrlvWQCiteMBKlrOutywwbggw/a/tza1b//ueeew4OUZ7lFoqOjHTp2cDAlJC4pKUFISGN5oaysrEW2yBy5XA653LkJ5+2N+eDWlPxqzqGoU3qG4EhmBXZcLMazY+N5ed4gTxc8Ny4en+7KwEc70zGhW7DDIyK8FFK8cFsC5o6MwcbT+fjxcBZKVBos3ZGGD3amIdTLFVF+CvrLDVG+CoT7KFCq0uBKsQpXilRILa5BflVDk+MOjPbBgvGJGBrn1yGt6TecysPrtOPq06Ni8dw4fv5vOhOjEvwxMNoHZ3Kq8c2Ba3j/7h7tfUoCHYTmmSEAUMjEOJNTjUcHRzk0LqdXuBei/BTIrVRjz5VS3NUnjI9T5SQ4GPjqKwKPPQYojyWgIKEUXiEGnM9T4rtD1/HcuIQ2e+72ZuelYrz8+wVWn7lkchL+t/8afqS7R8s2DoNB2XQAb0wMFQi1tXgaaOdgyN/fH/7+zk3xtURMTAyCg4OxZ88e9O3bFwDVkXbo0CF8whRvb1KYwa1/XSjC7iulnMHQxO7BeGP7ZTZw6BbKj7HgnBEx2HQmH7mVanxz4JrTg00VMgnmjIjBo0MisT25EN8fykJWRT0KlQ0oVDbg+PXWW2LDaMuBmUOiMTy+YwZBABUIvUbvmmYPj8HiyUkd9lzbEoIgsHBCFzz040n8diYPT4+ORbhP5zeXFHCeep0REhGBhEB3pJXUwlUqxunXboO7i7T1B1uAIAjc2SsUKw5cw98Xits0GAKARx8FNm0CduwQo3JnL7jPOgkAWL43E6MTA9Ez3KtNn7892HulFC9sTIaJBB4YEI53p3XHz8dy8CU9k9A/bQByCxoz9H5+lGHlvHnAjcpNdBrNUF5eHlJSUpCXlwej0YiUlBSkpKSgrq5R85KUlIRt27YBoN7gL730Ej788ENs27YNly9fxqxZs6BQKPDwww+3159xw2htcKuvmwy3d6eyZ7ZOnrcFuUSMN6dQZorfH7qObJ40SXKJGDMGRmLfy6Nx9o3x2PLMUHz5QG+8cFsC7u4Tij4R3vB3lyMp2APT+4XhjSldseHJwUh5awKOLR6H72cOwIgE/w4bXGw83TQQenNq1w57rjeCoXF+GBbnB72RxIr919r7dAQ6CE+OjMGFtydixwsjEeghR4PeiDM5zo/TmNaHKpUdulqGGnXbmn4SBPD994CnJwldsQ/KT0TDTS6GwUTi6XVnUVCtbtPnv9EcvlqO+evPw2AiMa13KD6a3gubzxXgvX+uAABGSfvg3F/U55VYDCxZAly/Drz44o0LhIB2zgzZw1tvvYW1a9eyPzPZngMHDmDMmDEAgIyMDNTU1LD3WbRoERoaGjB//nxUV1dj8ODB2L17Nzw8OoaHTFsyutng1rgA9xb3eXRIFHZcKsb25EIsmZwEDyd2V+bc1jUQPcI8cblQhUdXn8bhRWMh5mnaO0EQ8HeXw99dzpnx6oxsPJ2HJVuFQKg5L09MxPFvT+CPcwWYNzoO0f5urT9I4KYm1mwdu717MNadzMV/qSVOG6QmBnmgS5AHMkprsSu1GDMGRjp7qlYJCwO+/JLA3LlAzdFEKBJK4R2sQVGNBg//eAp/zBvaqWcOMpzMqsRT685CZzTh9u5B+OKB3th1uQSLt14EAIx174F171CBaEwMcPAgENm2L71FOk1maM2aNSBJssUXEwgBlDh61qxZ7M8EQeCdd95BcXExNBoNDh06hB49bg39gafZ4FZLTqdDYn0RH+gOtc6I7cn8zYQiCAJL76L8oAqVDbhrxVFo9G3n4dGZ+c0sEHpieLQQCJnRP8oXY7oEwGgi8fU+5/xkBG4+mMz2niulvNhvMNmhvy+0bVcZw+zZwMSJAGkQo/KvfqitA7xcpcirUuORVadQ2ckNGc/lVmPOmjPQ6E0Y2yUA/3uoH45eq8BLm6hy2XC3JPz2QSSMRgK33QZkZLRfIAR0omBIwH5aK5URBIFHBlPvvnUnc3k1/+oT6Q1/d8q88HKRCvd/d1wYTtiM307nYbFZIPTW1G5CINSMlydQnWXbUwp5GS4scPMwONYXXq5SVNbrcC7X+VLZnXSL/fHrFSirbfsuRoIAVq0CAgIAbaknKnf0hlKth49CimtldXh09ek2L9m1FX+mFOKRVSdRrzNieLwfvn20P/allWLeunPQG0kMcEnAn5/EQqMhcMcdwI4dgJSfwoTDCMHQTYz54NYiZQPnfab3C4erVIyrpXW81N65nh8ALhWqcP93JwQjPZo1x7KFQMgGeoZ7YWK3IJhIYPneq+19OgIdCKlYhNvo8hgfI3wi/RToHeENE8mfO39rRERQw0dlMkB9NQTKI4nQ6U3wUUiRVqzC4z+ftstKpL0xGE34YMcVvPhbCjR6E8Z0CcAPM/vjlxM5mL/hPLQGE3rLY7H7ywTU1xOYMAHYsuXGaoMsIQRDNzGh3q4YHOMLkgS2WSiDeblKWZ+NX0/yJ6QGgAHRTTU96SW1uPfbY8irvLkEgvZAkiQ+3ZWOd/6mxIOzh8cIgVArLKBdqXdcKkZOxa1jTifQOhPpUtl/qSW8ZLaZtbCtDRjNGT4c+PFH6nvViQSUpgTBTS6Bt6sUKflKzF5zhnO0Ukejul6Hx38+zbbKPzs2Dt8/2h8f7kzHhzvTQZLAaM+uOPRVEmprCYwZA2zfDrh0EGmUEAzd5NzXPxwA8MfZfIuLxaO0+/K/l4t5HRw4IKqlmWFeVQOmf3scqUU1HI+4udEbTfi/zRex8iDlrPx/t3cRNEI20DXEE+OSAkGSwA9HhJllAo2MTgyAi1SEguoGXCl2fnTS1F4hIAhK73Iju7oeewxYvJj6vurfXrh+WY64QDe4yyU4nV2Fp9adbdPZac5ypUiFO1ccxbFrlVDIxFj5SD88MyYeT/96DutP5YEggEmKAfjt3RjU1BAYMQL4+29A0YEcM4Rg6Cbnjp4hUMjEyKlU46yFunrPcC/0DveC3kjyOicnyk8BP46hpybShMJq7rLdzYpaZ8BTv5zF5nMFEIsIfHpvLzw7Nl4IhGxk3ug4AMDmcwVCqVWAxVUmxqiEAADAfzy46Qd5umBwDJXRvlFCaoYPPgCmTgVIoxhlWwfg1CUNQrxc4CoV40hmBWauPo38qo6XVf/rQhGmf3sMBdUNiPJTYNv84egb6Y37vzuBgxnlcJGKMNE0Ej+8EwSdjsDddwO7dwPuLRuc2xUhGLrJcZNL2MGsm88WWLzfI3R2aMOpPN4GoxIEgf5m2aHG7nripjQWs0RVvQ4P/3gKB+iF4YeZ/fHAwFtj1hhfDIz2Qd9Ib+gMJqw5nt3epyPQgZjUgymVcTeK2Mu03pTp4tbzBTd0orxIBGzcSAmqTWo5yv4YhPRcLdzkYrhIRTidXYVJyw/jt9N5HWLSfa1Gj3f/TsULG5Oh0ZswKjEAfz07AgaTCXd/cwxpxSr4KWQYVDYWP3zqCZIE5s8HNm8GXF3b++xbIgRDtwBMqeyfi0UWZ+/c2SsUni4SFFQ34PBV/qY3M8HQ5B7B2P3SKHQL8URVvQ7Prj8PneHmn8WTX6XGfd8dR0q+Et4KKdbPHYLbuloeByPADUEQbHZo3YncTiUqFWhbbksKgkREIKO0lhdN2ZReVDY9s6wOJ2xwuOcTd3fgjz+o7/UVHij5ZThKikQQgUCXIA/U64xYvPUSnlhzBqWq9pnbpzea8MuJHIz+7CB+PpYDgPqMeWpEDHalFuOB706gVKVFnK8Hwi+MxbofKFHQxx8DK1ZQxoodESEYugUYFOOLKD8F6nVG/HuJO5XsKhPjvv5UtoJPIfW4pEBsmDsY3z7aH/FBHvju0f7wdJHgfJ4SH+5M4+15OiKpRTW499vjyCqvR5i3KzbPG9okUyZgHxO6BiHW3w0qjQG/nc5r79MR6CB4KRo91fjoKvNyleLeftQG8ufjOU4fz15GjwaGDaO+NyjdULxmBJRFClwtrcXUnqGQSUQ4mFGOCV8ewrbkG5e9IkkSuy6X4PZlh/HWn6moqtch1t8Nc0fE4K+UQjz/WzJe3XIJ9TojenmFom7rCPy1VQKJBFi3Dnj1VcpOoKMiBEO3AARB4D764t58zlqpjPIc2p9Rxpt4MCHIA8PiG+fPRfop8OUDfQAAa47n4JsD1zpEypdPSJLEb6fzMH3lcZTVatElyANbnhmG+MCb3/m8LRGJCDw1KhYAsPpo9i2RWRSwjdu7U9lWPoIhAHh8GCUb2JtW2i46nUWLGr83NchR8sswNOT54p9LRbgtOhy9wryg0hiwYNMFzPv1HK+NL1ycz6vG/d+dwLxfzyGroh5+bjK8c2c3DIvzw6qj2dAZSVSr9ZBLRJggG4BDH/fB6VMieHoC//5LzWPr6AjB0C3C9P7hIAjgRFalxYs7LsAdw+P9QJLUiIi2Yny3ICyk26U/+y8D7/1zBSaedErtjVpnwMu/X8DirZegNVDOq7/PG4pgrw7SP9rJuadfGAI85Ciu0eCvC0XtfToCHYQJ3Sjd0Pk8Jcp4KB/FB3pgZII/SBL45USO08ezlylTKA8iBtIgQelvg1GfEYx/r+Uh3EeBZ8fEQyIi8F9qKcZ+fhCLNl/AwYwy6I38bBK0BiOOXavAs+vPY/rK4zibWw0XqQjPjY3HlvnD8Me5Avx6qvFzwqQVw+3kUKx6PwgqFYGhQ4ELF4Dx43k5nTZHCIZuEcK8XTE8jsrQbDlvOTv06GBqR7TpTH6b7rxfuC0Bb0zpCgD4+VgOXtqU0ul3+ldLazFtxTFsTS6EWETg1UlJWP34QHi5trO16k2EXCLG7OExAIAfDl+/aYJoAecI9nJBnwhvAMBuC4779vLE8GgAwG9n8lF/gzVqEgnw9NPNfkmKULG9H+rOxmDHpWL8cjIHDwyMQGKQO2o1Bvx+tgCzfj6DgR/sxaubL+Lw1XK7A6O8SjV+OZGDOWvOoM+7e/DIqlPYcakYBAHc3z8cB14Zg1GJ/pjy9RGkFjVaGWiLvVC8diSS93lDJCLx5pvA4cNAdLTzr8WNgiBvthoFz6hUKnh5eaGmpgaenp7tfTpO8WdKIV78LQXhPq44/H9jIeIYnqo3mjD84/0oq9Xifw/1xZ20CVlbsT25EK/8cQEGE4mRCf749tH+cJd3mvnBLJvPFeDN7ZfRoDciyFOO/z3UD4Nibo5Bsh0NlUaPYR/tR53WgNWPDxAE6QIAgG8PXscnu9IxMsEf6+YMdvp4JhOJsV8cRG6lGkvv7sH6sd0oSkqoWV16eiJHr17ARWq+KbxjauA6NgWygDp4yMWY3CMEhIjAvrRSVNTp2GN4K6SY1D0Y3cO8IBEREBMExCICEjH1r5ggYCRJnM2pxqGr5chuJkAP8JBjdGIAZg+PgZtcjHf/voL96WXs7SaNBDWn4qA6HQuYRBB7NODr77WY/5B3W788NmHP57cQDLXCzRQMNeiMGPTBXtRqDdjw5GAMi/PnvN+Xe67i632ZGBzji01PD23z8zp0tRzP/HoOap0RvcK98NOsgfB37wD+7DbQoDPi7b8u43fatmBkgj+WzejTac6/s/LRzjR8fzgLg6J98fu8tn+PCnR8ssrrMO6LQ5CICJx7YwK8FM5nZH86mo33/rmC+EB37Fkw6ob7gj30ENWK/u23wJw5VDfWkiVAfT0glpAIH5kPU58rEMmM8FZIMWdEDLqHemJfWhl2XS5BZb2u9ScxQyKi7FBGdwnAmMRAxPgrsCu1BL+dzsep7Cr2fia9CLXnoqE6FQeThvKS8+lehj4PXcOMEUF4mu78bG+EYIhHbqZgCACWbL2EjafzML1fGCtkbk5xTQNGfHIARhOJ/14ahS7BbS/8ZWznq+p1iPF3wy+zByHCtwPZk3KQkq/E4i0XkV5SC4IAFoxPxLNj4yHmyLgJ8EupSoPhH++HwURiyzPDhC49AQDAxGWHcLW0Dstm9MY9fcOdPp5Ko8fQD/ehXmfEr3MGY0QC9wayrTh9GlCrgTFjGn+Xnw+8+CI10wwAAkIMCJ6UBlUgpd/xdZPh0cGR6BnuhQadEWdyqlFeq4XBRMJEkjCYSBhNJhiM1M9GE4kuwZ4Y0yUAw+L84OEixeXCGmw6k4/tKYWo1TSWCBMDPPH/7d13XFX1/8Dx17mXvWWDgCCK4EoE90DTXJVaZpmj0DQtK7UyKystS8tR/bI0R7m+WmaucmY5c6SiOBkKIsgQUPa6wD2/P66S5EK8C/g8H4/zuN51zvseufe+72e8P9YJjfn7Fxcy0zVz5IOaysz8TGLAAOObLSaSIS2qOJnXrmHnWPO7PU4kZvH0gkNYmCo4/sFjd+2SenV1BNvOpPFESw++HdpaL7HFZeTzwg9HSc4uwsXWnBUj29LU0/gS0JTsImbviGZTpGYAr7ONOd8MaVVp1pyge2+vO8WvEVcI8anH+lc7GjocwQjM+yOG+bsv0qeZO9+PCNHKPqdtPsuKw5fpGeTK0hfbaGWf2vD77/D663D5RiWU4E5FFDeMo8A1Ccnk37FC9pamBLrbEuRhR5CH5rKelRlpucWkZBeRkl1Mao7mMiW7iNScIrIKSyueX9/Bkl6+vigTvVi+2Iw4zWpC+PrCxx/DsGHGWztIJENaVHEyf/kFu8GDDR3OQ5NlmbA5e0m8XsjMp5oztN2d+8GjUnPp+38HANgxsQuB7vpJSq7mFvPij0eJTsvDwlTB6M4NGRvWEFsLww9CLigpY9G+OBYfiKe4VPNhM6i1F1P6NsHVVswW07eL6fn0/HIfAN8NDebxlrod3yYYv7PJOTwx/28sTZWc/OgxLEwf/ls6LiOfHvP2IUmw9+1uNHCy1kKk2lFQADNmwLx5UHajAcfKRo1vaBaWQVe4bpeMmgf/ijdTKmjv4o1Nmi+R+605fPjfJh9XV/jwQxgzxjhWm78XkQxpUcXJHDgQu5vtkjXcV7ti+b+/LuBmZ84/79993uP41SfYeiZVq7+yqiKnqJTxq0/w98VMAJyszZjYszFD2vpgqtT/BEi1WubXE1eYuzOG9BvrYrX1deTDJ5rWqWVFjFHrGX9wvUBT32T7hC40dDGyBY8EvZJlmc5f7CE5u4hFI0LofWNV+4f14o9H2RebwUud/fjwiaZa2ac2xcTAjz/CmjVw5ZbJwp6eMl0fU2HpUkSRaR5ZUjbJpdcpMinA08ESdzsLHE1ssFTZIBVYU5ZrQcE1cyIOm3EqsnKfV8eOMHgwjB5tfOuK3Y1IhrSo4mSeOYNd8+aGDkcrUrKL6Pj5bgA+eiKIUZ0b3vFxF67m0evr/cgybHm9M83r6++LX5Zldp67yhc7oitmODR0sWZKn0B6NXXT20DGI/HXmLHlfMU0Uh9HK97vF0jvZu5ikVUjMHrFMf6M0sxu8bC3YNP4TrjZiVa6uuyzredZcuCSVn/E7YlJZ+SyY9iam3Dk/R5YG+mMV7UaDhzQJEXr1kHWndfmxsRExs1NIitLMybpThQKzVilp5+Gp54CzxrY8CqSIS2qbQOob/J/fxvlahkThcS2CV0IcLvzIOkJP59kc2SKwfrLS8vV/HQ0kf/780LFzIi2vo681y+QYB/dDJq9cDWPbWfS2H42lei0PABszU14vUcjXuzoi7mJkXaQ10EL9l5k9o6YiuuB7rasHdtB1Haqw6LTcunz9QFMlRL/vN8TR2uzh96nWi3T48t9XMosYMaAZozo4PvwgepYSQns2AF792pai65c0Qy+Tk3VJE23cnPTFHn08dFctmwJ/fuDcw0fBimSIS2qrclQq4//ILtIM0jOz8mK317vfMdxOfEZmnEZahk2je9UUdhM3/KKS/l+XxxLD1yi5EZxxl5N3ejWxJWQBvVo7Gpzx7pJVSHLMrFX89l6JpXtZ1K5kJ5fcZ+JQmJIW28m9QzASUyXNzq/n0rh9Z9OVrqtrZ8jK0e11cp4EaFmenL+35xJzuGjJ5oyqrOfVva5/OAlpv9+Hn8Xa3ZNCqv2542hlZVpEqLUVHB0BC8vsKiljakiGdKiipO5ciV2a9fCl19CQIChw3poPebtJS7j3wJbvZu58f3wkDt2/bz1yynWn7hCWIALK0a11WeYt0nNKWLeH7GsP3GFW/9ybc1NaOXjQEiDerT2qUcrHwfs/pPclZSVk1NYSk5RKdlFpWQXlnIqKZttZ1OJv+VcmColujR2oW9zd3o1dddKvRJBN04lZTPgu4O33d67mRsLhoWIMgd11MrDCXy0+RxBHnZsn9BFK/vMKy6lw41inytHtaVrgItW9ivozoMkQ8bZ8WmMVq6EP/+EVq3g008NHc1D+283ws5zV1m0P55xdyiWNaFHYzZFJrMvNoOIy9cJaWC4EgMe9pbMHfwIo7v4seVUKicSs4hMyiavpIwDFzI5cEEz6FqSoJGLDUqFRPaNBKiotPyu+zUzUdC1sQv9WrjTI8hNdLPUED53qUW1LzaD/bEZdA901XNEgjHo/4gnn26JIio1l7PJOVoZ72hrYcozIV4sP5TA8kMJIhmqZUQyVFXDhmmSoRUrNMUVjLWwQhXdqUts9o5oWta3v61ejo+TFYNDvPj5WBJf7opl9ej2+grzrgLd7Sqm+5eVq4lOy+NkYhYRl7M4kZhN4vXCSt1dN0mSJhF0sDTF3tIUr3pW9GrmxqOBrkYxfV94MA5Wptiam5B3y9pRz4V6806fJqJbsw5zsDLjsWZubD2dyq8RV7Q2+ePFjr4sP5TA7uh0LmUW4OdsPNPshYcjkqGq6tcP6tXTjELbvRsee8zQET0UW4vb/+vNTZTsjc24Y/HA1x5txPoTVzh48RpH4q/RvqGTPsKsEhOlgub17Wle375iYGNGXglnk3MwUUo3kh8z7G98cdbUvn7hdpIk4e1oRU5RKU42Zpy+kkNpuVokQgLPhHix9XQqmyKTea9foFYmPvg5W9O9iQt7YjJYcSiB6f2baSFSwRiIVeurysJCs1AMwPLlBg1FG/7bCmKikNg+sQvv9wu64+O96lnxXBtvQLN2mbEPNXOxNad7oCtdGrvQ0ssBHycr7C1NRSJUC816ugV7J3fjkwGa0hdbTqdyLb/EwFEJhta1sQtuduZkF5ayOyr9/k+oopsDstccTSQlu0hr+xUMSyRDD2LkSM3lhg2QnW3QUB5WI1cbXuveiD1vhdHK24Eytcy640n3fM747o0wM1Fw9NJ1Dl68pqdIBeHeHvF2wFSpoJW3A4942aMqV/PzsXv/LQu1n1Ih8XRrzfpk6yKu3OfRVde5kTNt/RxRlan5+s9Yre1XMCyRDD2IkBBo1gyKi+GXXwwdzUN5qbMfb/dugp+LDa900wyaXnn4MnnFpXd9joe9JUPb+gDw5a4Yo28dEuqeF250k64+cpmycvW9HyzUeoNDNMnQ3ph00nOLtbJPSZJ4t28gAL9GXOHC1Tyt7FcwLJEMPQhJgvBwaN8e3LVT5t0YPBbkhr+LNXnFZfx0NPGej321uz8WpgpOJGazNzZDTxEKQtU83tIDR2szUnKKKypTC3VXQxcbQhrUQy3DhpPJWttva5969G7mhlqG2Ttj7v8EweiJZOhBvfkmHD6sKc9ZSygUEmNvTKnXFDW8+xR0V1sLRrTXLO76VQ0YOyTULRamSobcGNu28nCCYYMRjMIzN1qH1h1P0urn1eTegSgk2HX+KscTrmttv4JhiGToQSlq5ykb2Ko+7nYWpOeVsPHEvX9BjQvzx8pMyekrOeLXt2B0hrVvgEKCQ3HXRBeGwBMtPbAwVRCXUcDJpGyt7beRqw3PhmoS7y92RIsfhjVc7fxm14esLFi6VFPbvBYwM1EwuotmlsSi/fGUq+/+xnayMefFjr6A5kPgXi1JgqBv9R0seaypG6AZByfUbbYWpvRt7gFoxvho08SeAZibKDiWkMVf4odhjSaSoepQq6FFCxgzRlOIsZZ4vq0P9pamXMosYOe5tHs+dmzXhjjbmHExPZ/v9sTpKUJBqJoXbwykXn/iCrn3mBQg1A03B1L/fiqF4ntUon9Q7vYWFVPtZ++MvuePSMG4iWSoOhQKePppzb9//NGwsWiRtbkJL3bQjAf6fl/cPZt9HazM+Li/pq7Lgj0XiUrN1UuMglAVHfydaORqQ6GqnA1abg0Qap72DZ3wqmdJXnHZfX/oPahxYf7YW5oSezWfDSfE31pNJZKh6rpZc2jzZrhWe2ruvNjRFwtTBaev5HAo7t6vq18Ld3o1daNMLTNl/WkxlVkwGpIk8cKNxH7l4cuoxS/2Ok2hkBh0s+bQce0mLPaWpozvrpmA8tWuWK22PAn6I5Kh6goO1izaqlLBmjWGjkZrnGzMGdJGU0to4d57d39JksSMgc2xtTDh9JUclh1M0EOEglA1T7f2wsbchPjMAg7GZRo6HMHAbs4qOxiXSbKWK0e/0MEXD3sLUnKKWSXGqdVINSYZ+uyzz+jYsSNWVlY4ODhU6Tnh4eFIklRpa99ei4uMjhqluaxFXWUAo7v4oVRI/H0xkzNXcu75WDc7Cz58vCkAc/+IISGzQB8hCsJ92ZibMKh1fQBWHBJfUHWdt6MV7Rs6IsuwXstdpxamSiY9FgDAt3suklMkxqnVNDUmGVKpVAwePJhXXnnlgZ7Xp08fUlNTK7Zt27ZpL6ihQ8HMDCIj4eRJ7e3XwLzqWdH/EU9AM3bofgaHetGpkRMlZWqmrD8tuiQEo3Fz4d6/oq+SdL3QsMEIBjc4RDMV/teIK1qfCj+otRcBbjbkFJWyqAqfm4JxqTHJ0Mcff8ykSZNo0aLFAz3P3Nwcd3f3is3R0VF7QTk5wVNPgVIJR49qb79GYGxYQwC2nU3l0n1aeyRJYtZTLbE0VfLPpetiXSjBaDRytaFzI2dkGf73j2gdquv6tnDHxtyExOuFHL2k3UKJSoXE5N6aZTp+PHiJq1pa/kPQjxqTDFXX3r17cXV1JSAggDFjxpCefu9aECUlJeTm5lba7mnmTLhyBcaO1WLUhhfobkePQFdkGRbvv/+vHB8nK97u3QSAWduiSM0RqzkLxuHmQOq1x5LE4NY6zsrMhMdbaGoOaXPx1pt6BrkS2qAexaVqvv7zgtb3L+hOrU6G+vbty+rVq9m9ezfz5s3j2LFjPProo5SUlNz1ObNmzcLe3r5i8/b2vvdBGjasVeuU3ermAq7rI5Kr9CsnvKMvrbwdyCsp44ONZ0VFVsEo9Ahyo76DJdmFpSzZH2/ocAQDGxyqGUi97UwqBSXaLZp76yKuvxxPIi4jX6v7F3THoMnQ9OnTbxvg/N/t+PHj1d7/c889x+OPP07z5s158skn2b59O7GxsWzduvWuz3nvvffIycmp2JKSHqDLJ0279SsMLdTXkdAG9VCVq/nx70v3fbxSITH7mZaYKiX+ik7n99OpeohSEO5NqZCY2LMxAF/+GcveGFEpuC4LaVAPP2drClXlbNTi4q03hfo60jPIjXK1zOwd0Vrfv6AbBk2GXnvtNaKiou65NW/eXGvH8/DwoEGDBly4cPfmS3Nzc+zs7Cpt96VSQc+eUL8+XK5d4xJutg6tPHyZlCpMRw1ws+X1RzVfPNN/O8e1/Lu3wgmCvgwO9eb5tj7IMrzx00kuXxOzHusqSZIqFpv+4e9LOpnwMaVPExQS7Dx3le1nxI/CmsCgyZCzszOBgYH33CwsLLR2vGvXrpGUlISHh4fW9gloZpSp1ZptxQrt7tvAHg10pa2vI0Wl5Xy2LapKzxkX5k+guy3XC1R8suW8jiMUhKqZ3r8pwT4O5BaXMXZVBIWq2rGuoPDgnm3jjZ2FCZcyC/gz6qrW99/YzZZxYZofku9vPEO6GExt9GrMmKHExEQiIyNJTEykvLycyMhIIiMjyc//t082MDCQjRs3ApCfn8/bb7/N4cOHSUhIYO/evTz55JM4Ozvz1FNPaT/AmzWHli3TJEW1hCRJTO/fDIUEW0+ncqgKxevMTBR8MaglCgk2R6bwlw4+bAThQZmbKPl+eAjONuZEp+Xxzq+nxbi2OsrG3IRhN1qHlhzQzTiyiT0DaOphR1ZhKVPWi781Y1djkqGPPvqI4OBgpk2bRn5+PsHBwQQHB1caUxQTE0NOjqZIoFKp5MyZMwwYMICAgABefPFFAgICOHz4MLa2ttoP8Omnwc4OEhJg927t79+AmnraMayd5oNj+m/nKK3CshuPeDswuotmev7UjWfFYpmCUXCzs2Dh8NaYKCS2nE7V2RehYPzCO/piqpQ4lpDFicQsre/fzETBV8+1wkypYE9MBj8dFSVHjFmNSYaWL1+OLMu3bd26dat4jCzLhIeHA2BpacnOnTtJT09HpVJx+fJlli9ffv/ZYdVlZaUpwgjwww+6OYYBvdUrgHpWmsUIq1puflLPAHydrEjLLea1NSerlEQJgq618XVk2pOaqumfb4/m7wtiqY66yM3OggGtNBXKl+ooKW7ibsvkGyVHPt16XoxVM2I1JhmqEcaM0Vxu2FCrFm8FzSr1NwuKffVnLJlVGBhtaabkm+eDsTRVsj82gw83ien2gnEY3r4Bg0O8UMvw2k8nRHXqOmrMjdbrHWfTdJaovNTZj3Z+jhSqynnzl1OUiwr9RkkkQ9rUurVmAVeVClavNnQ0WvdcG2+a17cjr7isylNGW3o58M3zwSgk+PlYEt/uvqjjKAXh/m4uMtzSy57swlLGroqgSCUKMtY1Tdxt6dbEBbWsmVmmCwqFxLxnH8HG3ISIy1lVWuJI0D+RDGnb9OmwciWMHm3oSLROqZD4uL+m1MEvx69wsor97I81dePj/s0AmLcrVuuLJApCdViYagZUO1mbcT41l/c2iEGuddHLN1qHfjmeRFaBSifH8KpnVdE1+/WfsZxLufcC2IL+iWRI2/r3hxEjNGOIaqGQBvV4+sZK4NN/O1flGh0jOvhWrHc2Zf1pDl4U4zQEw/N0sOS7Ya1RKiQ2Raaw7GCCoUMS9KyDvxPNPO0oLlXzvyO6qxP3TIgXvZq6UVouM2ltpFgaxsiIZEh4YO/2DcTG3IRTV3JYF1H1GRJTegfyREsPytQy41ZFEJOWp8MoBaFq2jd0Ymq/IAA+2xbF4bjaNd5PuDdJkni5q+aH2orDCTpLUiRJYtbTLXC2MSP2aj7z/ojRyXGE6hHJkC6UlsKXX0LbtpBX+77wXW0tKpY3mL0jhpyiqk2bVygk5g5+hLZ+juSVlBG+7ChpOaIYmWB4Izv58lRwfcrVMq+tOcEf59I4nnCdmLQ8UnOKyC8pE11otVi/Fh542luQma9ikw6W6LjJycacz59uCcDSvy9xJF4k3sZCksU7/J5yc3Oxt7cnJyenaktzAMgyBAVBTAwsWVIrxw+Vlqvp+38HuJieT3hHX6bfGBNUFdmFKgYtPERcRgFBHnb8MrY9thamOoxWEO6vSFXOM98f4lxK7h3vV0iaYn22FqbYWZpia2GCVz1Lxnb1p4m7DmqXCXq19EA8n26Nwt/Fml2TwlAoJJ0da8qvp1l7PIn6DpbsmNhFfP7pyIN8f4uWIV2QpH8ToKVLDRuLjpgqFUx/UpMArTpymei0O3+B3ImDlRnLR7bF2cacqNRcXl19QtQgEgzO0kzJkhdCebylB83r29HAyQpHazNMbnwpqmXILS4jObuIqNRcjl66zoYTyfT9v/28t+E06XmilbMmG9LWB1sLE+IyCtgdrdvFfD98sinejpYkZxfx8e9iySJjIFqG7qNaLUMA6eng5aXpMjt9Glq00F2QBjRuVQQ7zqXRzs+Rn19ujyRV/dfU6SvZPLfoCEWl5Twb6sUXg1o+0PMFQR9kWaa4VE1ecSm5xWUVl7lFpWw7k8r2s2kAWJkpGRfmz5guDbE0Uxo4aqE6Zm2PYtG+eNr6OfLL2A46PdaxhOs8u+gwsgyLRoTQu5m7To9XF4mWIWPg6goDBmj+XUtbhwCmPh6EuYmCfy5dZ8vpB1uduaWXA98O1dQg+uX4Fb75S9QgEoyPJElYmilxtbOgkasNwT71CAtw4clHPFk4PIRfx3WglbcDhapyvtwVS7e5e1h3PEknq6ELujWyox8mComjl64TmZSt02O18XVkbFfNYq7vbTgjxk8amEiGdOlmV9mqVVBcO//QvR2teLVbIwBmbouioOTBVgLvEeTGjIGa2kVf/RnL2mOJWo9REHQp1NeRja925Jvng6nvYMnV3BIm/3qaJ+b/zSFRQqJGcbe3oH8rT0B3C7jeatJjjQnysON6gYphS49wrQqV/QXdEMmQLvXsCT4+kJUF69cbOhqdGRvWEK96lqTmFPPdngdv3RnWrgGvdNP8Qpqy/gyztkVRJsYQCTWIJEn0f8STv94K472+gdhamHA+NZehS//hpeXHuJhe+2aV1lY3l+jYfiZV58u0mJsoWfJCCB72FsRlFDDih6NVnp0raJdIhnRJqYRXX4Vnn4UmTQwdjc5YmCr58AlNddWlBy5V64N/cq8mFbU+Fu2PZ9jSf8SAVKHGsTBVMjbMn32TuxPe0RcThcRf0en0/voA0387h6pMJPnGLsjDji6NnXW6RMetvOpZsXp0O5xtNJXQRy47+sAt7MLDEwOo76PaA6jrGFmWGbn8GHtjMmjkasPm8Z2wNjd54P1sO5PK5HWnKFCV42przoJhrQn1ddRBxIKge/EZ+czaHs2u81cB6NLYme+Hh1TrvSHoz4ELGYz44ShWZkoOvfsoDlZmOj9mVGouQxYfIaeolI7+TvwY3gYLUzEQ/2GIAdSC3kmSxJxnHsHV1pyL6fm8u+FMtYrU9WvhwW+vd6axqw3peSUMWXyEH/6+JAreCTVSQxcblrwQyg8vhmJlpuTAhUyGLhFjQ4xd50bOBHnYUagqZ/U/+hnHGORhx4pRbbE2U3Io7hrjRckRvRLJkL5ER8OUKVBUZOhIdMblRkuOiULi91MprDiUUK39+LvYsGl8J558xJMytcyMLed57aeT5IumY6GG6hHkxpox7alnZcqpKzkM/v6wzsejCNWnWaLDD4BlBxMoKdPPOmKtvB34IbwN5iYK/opOZ9LaSMrFrES9EMmQPsgy9OsHs2fDunWGjkanQn0def/GOk+fbo0i4nLVVrb/L2tzE74Z0orpTzbFRCGx9XQqA787KAaiCjVWK28Hfn2lI/UdLInPLGDQwkNEpVa9WKmgX0+09MTdzoLM/BI2n0zR23HbN3Ti+xEhmColtpxO5b0Np0WZBj0QyZA+3FqRetEiw8aiByM7+fL4jQVZx68+QWY1uwQkSSK8kx9rx7bHzU7T/Tbg24NsOa2/DyZB0CZ/FxvWv9KRJm62pOeV8Oyiw/wj1qcySqZKBaM6+wLw/b44vXZZdW/iyjdD/q3B9smW82KogI6JZEhfRo0CExM4dAjOnjV0NDolSRJfDGqJv4s1abnFvPHTyYeaKh/SwJGtb3ShQ0MnClTlvLbmJJ/8fl70pws1kru9Bb+M7UAb33rkFZcx4sej7DyXZuiwhDt4vq0PjtZmxGcW8POxJL0eu28LD2Y/8wgAyw8lMO+PWL0ev64RyZC+uLv/W5G6DrQO2Zib8P3wEM1sjLhrfLnr4d7IzjbmrHqpLePCNPWIfjx4icHfH2Z/bIb4xSTUOPZWpqx6qR09g9xQlal55X8R/HRUFBw1NrYWpkzs2RiAr3fFkles3xpAz4R4MWOAZg3Ib/dcZMFeUaVfV0QypE9jx2ouV66EggLDxqIHjd1s+XxQSwAW7I2rmF5cXSZKBe/2DWTRiBBszU2ITMrmhR+P0u+bv9l48opoKRJqFAtTJd8Pb81zod6oZc2SDPP/uiCSeyPzfFsfGrpYc61AxYK9cXo//ogOvkzpEwjA7B0x1Z6YItybSIb0qUcP8POD3Fz4+WdDR6MX/R/xJLyjLwBv/hLJ5WsPnwT2bubOzkldGdnJFyszJVGpuUxae4qus/ewZH+83n+9CUJ1mSgVfD6oBa911yxpM29XLNN+OydmEBkRU6WC9/pqJoX88PclrmTpfxbgK938K/5Gpv12jiX748Wgai0TyZA+KRT/tg5t3WrYWPTo/X5BhDTQjI8Y978TFKkefpqqp4Ml055sxqF3H2Vy7yY425iTmlPMZ9ui6Pj5bmZtj+JqrqhgLRg/SZJ4u3cTpj/ZFEmClYcv88bPJ/U2nVu4v55BrrRv6IiqTM3cnTEGieGtXgGM7OQLwGfbonhx2VHxGadFogL1fWi9AnVBATRtCleuwLZt0Lv3w++zBkjLKebxbw5wrUDFoNZezB3cEkmStLb/4tJyNkcms3h/PHEZmtYnU6XEgFb1eblrQwLcbLV2LEHQld9PpfDmL5GUlss6eZ8I1XfmSg5Pfvs3AJvHd+IRbwe9xyDLMv/7J5HPtp6nuFSNg5Upnz/dgj7NPfQeS03wIN/fIhm6D50sx9GmDRw/Dvb2cPQoBARoZ79G7tDFTIb/8A9qGWY93YLn2/po/Rhqtczu6HQW74/naML1itu7NXFhUGsvWnrZ4+NopbcvmJKycv6+kEns1fyKxWjvR62WySsuI6tQRVahiuyiUrILVSgkCWcbc5xszHC2MaeelRlKhfiirG32xqQzavkx1DLMfKoFQ9tp/30iVM+bayPZcDKZtr6OrB3b3mCJ6sX0PCaujeRssqZO1bOhXnz0ZDNsxDIvlYhkSIt0kgz16wfbt2v+3ajRv4lRHbBg70Vm74jBTKng11c60NLLQWfHOpmYxZID8ew4m8at3eu2FiY097SneX07mte3p3l9e/ycrFFoKbEoVJWxLyaD7WfT2B2dTn5JGUEetnw/PITUnGLScopJzSkmM79Ek+wUapKd7MJSsgpV5BSVUpXhAAoJHK3NcLL+N0G6eelsY0ZTD81rFC0LNc/CvXF8sSMaM6WCdeM6GKQVQrhdSnYR3efupaRMzaIRIfRu5m6wWFRlar76M5bv98Uhy9DAyYqvnmtFa596BovJ2IhkSIt0kgy98AKsWvXv9X794LffNKvc13JqtczLqyL4M+oq9R0s2fJ6Z+pZ63YRxMvXClh5+DLHEq4TnZqH6g6zzqzNlDTztKdZfTuae9rTwsseZxtzytUyalmuuFSrofzGdVmWK/6dV1zG/tgMDlzIJCo1lzItDG60MlNSz8oMBytTHKxMUashM7+EawWaFqOqvHP9nK3p/4gn/Vt54u9i89AxCfohy5r3ya7z+nufCFUzZ2c03+2Jw8/Zmp0Tu2JmYtiht0fir/HWL6dIzi5CqZB4/dFGvNa9ESZKMSRYJENapJNk6K234MsvK982ZQp8/rl29m/kcopK6f/t31y+VkhHfyeWvhiKlZl+mndLy9VcuJrP2eQczqbkcCY5h6jUXIpLdT8t38JUgae9Je72FrjbW+Biq+nqcrA0xcHKjHpW/17aW5libnL35LisXM31QhWZeSquFZRokqR8FZn5KjLzS7iaW8yxhOuVXleL+vYMaOWpWWbA3kLnr1d4OLnFpfSf/zcJ1wrpGuDCsvA2olvUCOSXlNFtzh4y81VMe7IpIzv5GTokcopK+WjzWTZHaqrzB/s48PVzrWjgZG3gyAxLJENapJNkaNYseP/922//3/9g2DDtHMPInU/JZdDCQxSVltPax4Efw9vgYGWYX75l5WriMws4c0WTIJ1NzuFcSi6FN2a9KSRQKiQUkmbT/FtzmwyUlcuoytWoyu6eUPk5W7P7rTC9dlnll5Sx63wamyNTOHAhs2K6tiRBez8nBrTypG9zD+ytTPUWk/BgolJzeWrBQYpL1Uzo0ZhJj9WN8YXGbvU/l5m68SwOVqbsm9wde0vjeA9tjkzmg01nySsuw0yp4K1eAbzctWGd7SoXyZAW6SQZWroUxoy5/XYfHzh1ChwctHMcIxdxOYtRy4+RU1RKgJsNK0e1M5oWC1mWkWVN4lDVD5KCkjIOXMjkr6ir7IlJJzNfVXFfQxdrdr/VTUfR3t+1/BK2nUllc2QKx29ZPNdUKdGtiSsDWnnSI9ANS7Pa31Vb06yPuMJb604hSfBjeBu6N3E1dEh1Xlm5mr7/d4AL6fm83LVhxeLUxuBKViGvrznJyaRsAOwsTRja1odnQ71pWMe6ykUypEU6SYY2bYKnnvr3uiTBggWa9cvM6ta4gNireYz44R+u5pZQ38GSVS+1rRVvWLVaJvJKNn9FXeWvqHSKS8vZO7m7ocMCIOl6Ib+fTuG3yBSi0/IqbnexNefzp1vQI8jNgNEJdzJ14xlW/5OIvaUpW17vjLejlaFDqvP2RKczcvkxzJQK/norzKj+T8rVMlM3nrltPbX6DhY8HVyfvi08CfKwrfUtRiIZ0iKdJEMHD8LAgRAeDvv2wbFj8NFH8PHH2tl/DZN0vZAXfjzKpcwCnKzNWD6yLS28atfsuoy8ElxszQ0dxm1i0vL47VQym06mkJxdBMCQNt588ERTMU3XiJSUlfPs94c5dSWHFvXtWTeuAxamohXPkGRZZsQPR/n7YiZPtPTg26GtDR3SbT7cdIZVR+685l19B0uGtffh1W6N9ByV/jzI97cYbm4IrVtrii7OmaMZTA2aBKmO8na0Yt24DjSvb8e1AhXPLznCobhMQ4elVcaYCAE0cbdlcu9A/norjDFd/JAk+PlYEn3/bz//xF8zdHjCDeYmShYMD6GelSlnknP4+Pfzhg6pzpMkiff7BSFJsOV0KicSs+7/JD37uH9zujVxueN9ydlF7I/N4ERillgPD9EydF86aRm6lUoFhw9D166a7rI6LK+4lJdXRnA4/hpmSgXfPN9KVFbVs1un6UoSjOnSkDcfCxCtEEZiX2wG4cuOIssw55mWDA71NnRIdd7kdadYF3GF1j4OrH+lo9F1PWUVqHhi/t8VLb930tTDjuHtGzCglSfWtahFWLQM1SRmZhAWVucTIQBbC1OWjWxDn2buqMrVvLr6BD8fvXMTr6Ab7Rs6sWNiF54L9UaWYfH+ePp/+zdnk3MMHZoAhAW4MLGHZkbZB5vOci5F/L8Y2lu9mmBpquREYjbbz6YZOpzb1LM247thrTFV/vsd4+NoyZox7RjU2gtzEwXnU3N5f+MZ2s/8i482n+VEYpZW1pCsSWpEy1BCQgIzZsxg9+7dpKWl4enpyfDhw5k6dSpm9xhwLMsyH3/8MYsXLyYrK4t27drx3Xff0axZsyofW+ctQ7cqLNRszs66PY6R++/gv3f6NOGVMH+j+8VV2/15/irvbjhNZr4KE4XExJ6NGRfmL4q5GZhaLTNqxTH2xmTg42jF7693Npqp3XXVl7ti+eavC/g4WrHrza73rBFmKCsPJ/DR5nMoFRLrxnWoqFSdXaji14grrP4nkUuZBRWPlyTwdbIm0N2WJu62BLrbEehui4+jldaq9etarRtAvWPHDtauXcvzzz9Po0aNOHv2LGPGjGHEiBHMnTv3rs/74osv+Oyzz1i+fDkBAQF8+umn7N+/n5iYGGxtq7Zwp96SoZUrYcIEGDoUvvtOd8epIWRZZs7OGBbsjQNgdGc/3u8XVGPehLXFtfwSpm48y45zml+8rbwd+PLZR2rFjL+aLLtQxePfaLo+ega5snhEqHhvGFBBSRnd5u4lI6+EDx4PYnSXhoYO6TayLPPGz5E0dLa+Y70qtVrmUNw11hy9zNFL1yuVBrmVpamSAHdbgm4kSTcTpXpWpkb3g7XWJUN3MmfOHBYuXEh8fPwd75dlGU9PTyZOnMiUKVMAKCkpwc3NjS+++IKxY8dW6Th6S4Z274YePcDGBpKTQdetUDXE0gPxfLo1CoBBrb34fFALTEXLhF7JssymyGQ+2nyOvOIyLEwVvN8viOHtGogvYAM6cyWHQd8fQlWmZnLvJozvXntnBdUEa48lMmX9GewsTNj/TneDFZG9l4KSMsxNFFVq3c3IKyEmLY/otFyib1zGXs2/a3FZSQIzpQJzEwXmpkrNpYkCM5N//33zdjMTBeY3YpAB9Y26bjL/1niTuXEp37gfMFFIONmY4WqrqeDvamt+49ICZxuz215XnUiGPvjgA3bs2MHx48fveH98fDz+/v6cOHGC4ODgitsHDBiAg4MDK1asqNJxbp7M7Oxs7HW5mKosQ9OmEB0N8+fDa6/p7lg1zPqIK7yz/jTlapkega58N6y1GNBrACnZRUz+9RQHL2pmmXVp7MzsZ1riYW9p4Mjqrp+PJvLuhjMoJFj1Ujs6NarbXeyGVK6WefybA0Sn5TGqkx8fPdnU0CFpXVm5moRrhUSn5RKTlkdUah4xV3NJun73wdn6IkngaGWGyy0Jkq2ylI+faVN7k6G4uDhat27NvHnzGD169B0fc+jQITp16kRycjKenp4Vt7/88stcvnyZnTt33vF5JSUllJSUVFzPycnBx8eHX/aepHewjps+Fy2Cd94Bf3/NSvYK0QJy057odN5adwpVmZpnQ7346Mmqj/sStEetlvn5WCLzdsVSUqqmRX171oxpZ3TN43WFLMt8uOksmyJTcLQyZcuELthZiPFDhnLwYiZjV0VgqpTYNL5TnVkbrFBVRkFJGSWlalRqNapSNSVl5ajKNEsVlZSpUZWVoyq75d83FsxW3PjskCQJCc3yR5Ikaar/37gdCSQkysrVN9ZgLCEjv4TMPBWZ+cVcKyitWG7oVuqSQpIXhletMUM2oGnTpsncaBm723bs2LFKz0lOTpYbNWokv/TSS/fc98GDB2VATklJqXT76NGj5d69ez9UTGITm9jEJjaxia1mbElJSffNRwzaMpSZmUlm5r2L6/n6+mJhoVmvKiUlhe7du9OuXTuWL1+O4h4tJ9XtJvtvy5Bareb69es4OTnd99dvbm4u3t7eJCUl6X7mWS0jzl31iXNXfeLcVZ84d9Unzl31Pci5k2WZvLw8PD0975kvABi0upKzszPOVZxGnpycTPfu3QkJCWHZsmX3fWF+fn64u7uza9euimRIpVKxb98+vvjii7s+z9zcHHPzytWCHR5w4VQ7OzvxB15N4txVnzh31SfOXfWJc1d94txVX1XPXVXH+taIQSkpKSl069YNb29v5s6dS0ZGBmlpaaSlVS5wFRgYyMaNGwFNP+PEiROZOXMmGzdu5OzZs4SHh2NlZcXQoUMN8TIEQRAEQTBCNaLu9h9//MHFixe5ePEiXl5ele67tZcvJiaGnJx/K7K+8847FBUV8eqrr1YUXfzjjz+qXGNIEARBEITar0YkQ+Hh4YSHh9/3cf8d/iRJEtOnT2f69Om6Cew/zM3NmTZt2m3dbML9iXNXfeLcVZ84d9Unzl31iXNXfbo6dzVyar0gCIIgCIK21IgxQ4IgCIIgCLoikiFBEARBEOo0kQwJgiAIglCniWRIEARBEIQ6TSRDOrZ161batWuHpaUlzs7OPP3004YOqUYpKSmhVatWSJJEZGSkocMxagkJCbz00kv4+flhaWmJv78/06ZNQ6VSGTo0o7VgwQL8/PywsLAgJCSEAwcOGDokozdr1izatGmDra0trq6uDBw4kJiYGEOHVePMmjWroh6eUDXJyckMHz4cJycnrKysaNWqFREREVrZt0iGdGj9+vWMGDGCkSNHcurUKQ4ePCgKPj6gd955p9JCu8LdRUdHo1arWbRoEefOneOrr77i+++/5/333zd0aEZp7dq1TJw4kalTp3Ly5Em6dOlC3759SUxMNHRoRm3fvn2MHz+eI0eOsGvXLsrKyujVqxcFBQWGDq3GOHbsGIsXL6Zly5aGDqXGyMrKolOnTpiamrJ9+3bOnz/PvHnzHniFiLu67+plQrWUlpbK9evXl5cuXWroUGqsbdu2yYGBgfK5c+dkQD558qShQ6pxZs+eLfv5+Rk6DKPUtm1bedy4cZVuCwwMlN99910DRVQzpaeny4C8b98+Q4dSI+Tl5cmNGzeWd+3aJYeFhckTJkwwdEg1wpQpU+TOnTvrbP+iZUhHTpw4QXJyMgqFguDgYDw8POjbty/nzp0zdGg1wtWrVxkzZgyrVq3CysrK0OHUWDk5OTg6Oho6DKOjUqmIiIigV69elW7v1asXhw4dMlBUNdPNqv/i76xqxo8fz+OPP07Pnj0NHUqN8ttvvxEaGsrgwYNxdXUlODiYJUuWaG3/IhnSkfj4eACmT5/OBx98wJYtW6hXrx5hYWFcv37dwNEZN1mWCQ8PZ9y4cYSGhho6nBorLi6O+fPnM27cOEOHYnQyMzMpLy/Hzc2t0u1ubm63rXko3J0sy7z55pt07tyZ5s2bGzoco/fzzz9z4sQJZs2aZehQapz4+HgWLlxI48aN2blzJ+PGjeONN95g5cqVWtm/SIYe0PTp05Ek6Z7b8ePHUavVAEydOpVBgwYREhLCsmXLkCSJdevWGfhVGEZVz938+fPJzc3lvffeM3TIRqGq5+1WKSkp9OnTh8GDBzN69GgDRW78JEmqdF2W5dtuE+7utdde4/Tp0/z000+GDsXoJSUlMWHCBP73v/9hYWFh6HBqHLVaTevWrZk5cybBwcGMHTuWMWPGsHDhQq3sv0asTWZMXnvtNYYMGXLPx/j6+pKXlwdA06ZNK243NzenYcOGdXaAZlXP3aeffsqRI0duW3smNDSUYcOGsWLFCl2GaXSqet5uSklJoXv37nTo0IHFixfrOLqaydnZGaVSeVsrUHp6+m2tRcKdvf766/z222/s37//tgW0hdtFRESQnp5OSEhIxW3l5eXs37+fb7/9lpKSEpRKpQEjNG4eHh6Vvk8BgoKCWL9+vVb2L5KhB+Ts7Iyzs/N9HxcSEoK5uTkxMTF07twZgNLSUhISEmjQoIGuwzRKVT1333zzDZ9++mnF9ZSUFHr37s3atWtp166dLkM0SlU9b6CZetq9e/eKlkiFQjT+3omZmRkhISHs2rWLp556quL2Xbt2MWDAAANGZvxkWeb1119n48aN7N27Fz8/P0OHVCP06NGDM2fOVLpt5MiRBAYGMmXKFJEI3UenTp1uK+EQGxurte9TkQzpiJ2dHePGjWPatGl4e3vToEED5syZA8DgwYMNHJ1x8/HxqXTdxsYGAH9/f/EL9B5SUlLo1q0bPj4+zJ07l4yMjIr73N3dDRiZcXrzzTcZMWIEoaGhFa1oiYmJYozVfYwfP541a9awefNmbG1tK1rX7O3tsbS0NHB0xsvW1va2cVXW1tY4OTmJ8VZVMGnSJDp27MjMmTN59tlnOXr0KIsXL9Za67dIhnRozpw5mJiYMGLECIqKimjXrh27d++mXr16hg5NqIX++OMPLl68yMWLF29LGmVZNlBUxuu5557j2rVrfPLJJ6SmptK8eXO2bdtWZ1tuq+rmGI1u3bpVun3ZsmWEh4frPyChTmjTpg0bN27kvffe45NPPsHPz4+vv/6aYcOGaWX/kiw+JQVBEARBqMPEgAJBEARBEOo0kQwJgiAIglCniWRIEARBEIQ6TSRDgiAIgiDUaSIZEgRBEAShThPJkCAIgiAIdZpIhgRBEARBqNNEMiQIwkPp1q0bEydONHQYWvGwr2X58uU4ODhoLR5BEPRDJEOCIDyUDRs2MGPGDEOHoXe+vr58/fXXWt9vQkICkiQRGRmp9X0LgnBnYjkOQRAeiqOjo6FDEARBeCiiZUgQhIdya9eSr68vM2fOZNSoUdja2uLj41NpIcUOHTrw7rvvVnp+RkYGpqam7Nmzp2IfM2bMYOjQodjY2ODp6cn8+fMrPScnJ4eXX34ZV1dX7OzsePTRRzl16lTF/dOnT6dVq1asWrUKX19f7O3tGTJkCHl5eRWPKSgo4IUXXsDGxgYPDw/mzZv3QK/58uXLTJo0CUmSkCSp0v07d+4kKCgIGxsb+vTpQ2pqaqX7ly1bRlBQEBYWFgQGBrJgwYKK+26uAh8cHIwkSRVrgB07dozHHnsMZ2dn7O3tCQsL48SJE1WOWRCEuxPJkCAIWjVv3jxCQ0M5efIkr776Kq+88grR0dEADBs2jJ9++qnSwrFr167Fzc2NsLCwitvmzJlDy5YtOXHiBO+99x6TJk1i165dgGbR2ccff5y0tDS2bdtGREQErVu3pkePHly/fr1iH3FxcWzatIktW7awZcsW9u3bx+eff15x/+TJk9mzZw8bN27kjz/+YO/evURERFTpNW7YsAEvL6+KRV5vTXYKCwuZO3cuq1atYv/+/SQmJvL2229X3L9kyRKmTp3KZ599RlRUFDNnzuTDDz9kxYoVABw9ehSAP//8k9TUVDZs2ABAXl4eL774IgcOHODIkSM0btyYfv36VUrwBEGoJlkQBOEhhIWFyRMmTJBlWZYbNGggDx8+vOI+tVotu7q6ygsXLpRlWZbT09NlExMTef/+/RWP6dChgzx58uSK6w0aNJD79OlT6RjPPfec3LdvX1mWZfmvv/6S7ezs5OLi4kqP8ff3lxctWiTLsixPmzZNtrKyknNzcyvunzx5styuXTtZlmU5Ly9PNjMzk3/++eeK+69duyZbWlpWvJb7adCggfzVV19Vum3ZsmUyIF+8eLHitu+++052c3OruO7t7S2vWbOm0vNmzJghd+jQQZZlWb506ZIMyCdPnrzn8cvKymRbW1v5999/r1K8giDcnWgZEgRBq1q2bFnxb0mScHd3Jz09HQAXFxcee+wxVq9eDcClS5c4fPgww4YNq7SPDh063HY9KioKgIiICPLz83FycsLGxqZiu3TpEnFxcRXP8fX1xdbWtuK6h4dHRRxxcXGoVKpKx3F0dKRJkyYP/fqtrKzw9/e/43EzMjJISkripZdeqhT7p59+Win2O0lPT2fcuHEEBARgb2+Pvb09+fn5JCYmPnTMglDXiQHUgiBolampaaXrkiShVqsrrg8bNowJEyYwf/581qxZQ7NmzXjkkUfuu9+b43LUajUeHh7s3bv3tsfcOq39XnHIt3TTadudjnvzeDePv2TJEtq1a1fpcUql8p77DQ8PJyMjg6+//poGDRpgbm5Ohw4dUKlUWoxeEOomkQwJgqBXAwcOZOzYsezYsYM1a9YwYsSI2x5z5MiR264HBgYC0Lp1a9LS0jAxMcHX17daMTRq1AhTU1OOHDmCj48PAFlZWcTGxlYau3QvZmZmlJeXP9Bx3dzcqF+/PvHx8be1ht26X+C2fR84cIAFCxbQr18/AJKSksjMzHyg4wuCcGciGRIEQa+sra0ZMGAAH374IVFRUQwdOvS2xxw8eJDZs2czcOBAdu3axbp169i6dSsAPXv2pEOHDgwcOJAvvviCJk2akJKSwrZt2xg4cCChoaH3jcHGxoaXXnqJyZMn4+TkhJubG1OnTkWhqPrIAV9fX/bv38+QIUMwNzfH2dm5Ss+bPn06b7zxBnZ2dvTt25eSkhKOHz9OVlYWb775Jq6urlhaWrJjxw68vLywsLDA3t6eRo0asWrVKkJDQ8nNzWXy5MlYWlpWOV5BEO5OjBkSBEHvhg0bxqlTp+jSpUtFy8yt3nrrLSIiIggODmbGjBnMmzeP3r17A5pup23bttG1a1dGjRpFQEAAQ4YMISEhATc3tyrHMGfOHLp27Ur//v3p2bMnnTt3JiQkpMrP/+STT0hISMDf3x8XF5cqP2/06NEsXbqU5cuX06JFC8LCwli+fHnFlHoTExO++eYbFi1ahKenJwMGDADgxx9/JCsri+DgYEaMGMEbb7yBq6trlY8rCMLdSbIuO88FQRAekK+vLxMnTqw1S3wIgmD8RMuQIAiCIAh1mkiGBEEQ/uPAgQOVpr7/dxMEoXYR3WSCIAj/UVRURHJy8l3vb9SokR6jEQRB10QyJAiCIAhCnSa6yQRBEARBqNNEMiQIgiAIQp0mkiFBEARBEOo0kQwJgiAIglCniWRIEARBEIQ6TSRDgiAIgiDUaSIZEgRBEAShThPJkCAIgiAIddr/A8QGSAxQ+u5MAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -350,23 +350,23 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ]" + "[,\n", + " ]" ] }, - "execution_count": 22, + "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3gUxR+H3yvpvVdIIEDovZfQO4ggIqBUAUWxgNgL+LOgqAgWFERAqkiR3kvovYXeCYEkpPdyubv5/bHJkZCEXJILCbLv8+TJZTM7O7s3O/vZmW9RCCEEMjIyMjIyMjJPKcryboCMjIyMjIyMTHkiiyEZGRkZGRmZpxpZDMnIyMjIyMg81chiSEZGRkZGRuapRhZDMjIyMjIyMk81shiSkZGRkZGReaqRxZCMjIyMjIzMU40shmRkZGRkZGSeamQxJCMjIyMjI/NUI4uhCsLChQtRKBSGH7Vaja+vL6NGjeLevXv5yp04caIcW1uxWbZsGTNnziyz+v39/Rk5cqTh7/DwcKZOncqZM2eMrmPXrl00bdoUGxsbFAoFa9euNXk7c7h9+zYKhYKFCxeW2TEqKh06dKBDhw5lfpzGjRvz1ltvlflxKiKbN29m6tSpBf7v4XulPAkODkahUBAcHFxk2cd5fxaEQqHIc02nTp2KQqEgJibmsbajvI5bHqjLuwEyeVmwYAE1a9YkPT2dffv2MW3aNPbu3cu5c+ewsbEp7+Y9ESxbtozz58/z9ttvl0n9//77L/b29oa/w8PD+fzzz/H396dhw4ZF7i+EYNCgQdSoUYP169djY2NDYGBgmbQVwMvLi8OHDxMQEFBmx3iauXXrFqdPny5TAV6R2bx5M7/++muBgujhe+VJ4HHfnzIVA1kMVTDq1q1L06ZNAejYsSM6nY4vvviCtWvX8uKLL5Zz6yo2aWlpWFtbF2sfnU6HVqvFwsLC6H0aNWpU3KblITw8nLi4OPr370/nzp1LVVcO6enpWFpaolAo8v3PwsKCli1bmuQ4MvlZtWoV7u7utG3btsyOkZ6ejpWVVZnVXxKMud9Ke6+UB2Vxf8pUfORlsgpOzkMsNDQ0z/bk5GTGjx+Pq6srLi4uDBgwgPDw8DxlVqxYQbdu3fDy8sLKyopatWrxwQcfkJqamqfczZs3GTx4MN7e3lhYWODh4UHnzp3zLfusWLGCVq1aYWNjg62tLd27d+f06dNFnkPO0t6OHTsYNWoUzs7O2NjY0LdvX27evJmv/Pz582nQoAGWlpY4OzvTv39/Ll26lKfMyJEjsbW15dy5c3Tr1g07Ozs6d+5Mhw4d2LRpE6GhoXmWHeHBctH06dP58ssvqVKlChYWFuzZs4eMjAzeeecdGjZsiIODA87OzrRq1Yp169bla1/uqf/g4GCaNWsGwKhRowzHK2zZYOrUqfj6+gLw/vvvo1Ao8Pf3N/z/wIEDdO7cGTs7O6ytrWndujWbNm0q8Hpu376d0aNH4+bmhrW1NZmZmQUes6Blspzp7wsXLjBkyBAcHBzw8PBg9OjRJCYmGso1atSIdu3a5atTp9Ph4+PDgAED8l3br776isqVK2NpaUnTpk3ZtWtXvv2vXbvG0KFDcXd3x8LCglq1avHrr7/mKZOzrLF8+XI+/vhjvL29sbe3p0uXLly5ciVPWSEE06dPx8/PD0tLSxo3bsyWLVsKvB4P8/zzz1OnTp082/r27YtCoWDlypWGbadOnUKhULBhw4Y8ZVevXk3//v1RKgsfTnOu9+nTpxkwYAD29vY4ODjw0ksvER0dnaesv78/ffr0Yc2aNTRq1AhLS0s+//xzAM6fP0+/fv1wcnLC0tKShg0b8tdffxV43ZYsWcKkSZPw9PTEysqK9u3bF3i/rl+/nlatWmFtbY2dnR1du3bl8OHDBbb/1KlTDBw4ECcnJwICAhg5cqThe8t9v92+fdtwLg8vk925c4eXXnopz3f/ww8/oNfrDWVy+tP333/PjBkzqFKlCra2trRq1YojR47kqe/EiRMMHjwYf39/rKys8Pf3Z8iQIfnGTGMo6v40pt8CJCUlMXnyZKpUqYK5uTk+Pj68/fbb+cbepKQkxo4di4uLC7a2tvTo0YOrV68W2r6wsLAi+4+x4z7A0aNH6du3Ly4uLlhaWhIQEFDkjPrly5epWrUqLVq0ICoq6pFlnyiETIVgwYIFAhDHjx/Ps33WrFkCEHPnzs1TrmrVquKNN94Q27ZtE/PmzRNOTk6iY8eOefb94osvxI8//ig2bdokgoODxe+//y6qVKmSr1xgYKCoVq2aWLx4sdi7d69YvXq1eOedd8SePXsMZb766iuhUCjE6NGjxcaNG8WaNWtEq1athI2Njbhw4YJR51apUiUxevRosWXLFjF37lzh7u4uKlWqJOLj4w1lv/76awGIIUOGiE2bNolFixaJqlWrCgcHB3H16lVDuREjRggzMzPh7+8vpk2bJnbt2iW2bdsmLly4INq0aSM8PT3F4cOHDT9CCHHr1i0BCB8fH9GxY0exatUqsX37dnHr1i2RkJAgRo4cKRYvXix2794ttm7dKiZPniyUSqX466+/8pyPn5+fGDFihBBCiMTERMP5ffLJJ4bjhYWFFXgtwsLCxJo1awQg3njjDXH48GFx6tQpIYQQwcHBwszMTDRp0kSsWLFCrF27VnTr1k0oFArx999/57uePj4+Yty4cWLLli1i1apVQqvVFnjMnPNesGCBYduUKVMEIAIDA8Vnn30mduzYIWbMmCEsLCzEqFGjDOVy+l/uay+EEJs3bxaAWL9+fZ5jVKpUSbRt21asXr1arFy5UjRr1kyYmZmJQ4cOGfa9cOGCcHBwEPXq1ROLFi0S27dvF++8845QKpVi6tSphnJ79uwRgPD39xcvvvii2LRpk1i+fLmoXLmyqF69ep7zzTmfl19+2dC/fHx8hKenp2jfvn2B1yWH33//XQAiPDxcCCFEVlaWsLOzE1ZWVmLs2LGGct9++61Qq9UiKSkpz/epUCjE9u3bH3mMnPb5+fmJd999V2zbtk3MmDFD2NjYiEaNGgmNRmMo6+fnJ7y8vETVqlXF/PnzxZ49e8SxY8fE5cuXhZ2dnQgICBCLFi0SmzZtEkOGDBGA+Pbbb/Ndt0qVKol+/fqJDRs2iCVLlohq1aoJe3t7cePGDUPZpUuXCkB069ZNrF27VqxYsUI0adJEmJubi/379xfY/vfff1/s2LFDrF27Vly/fl0MHDhQAHnut4yMDMO55NwrQggRFRUlfHx8hJubm/j999/F1q1bxYQJEwQgxo8fbyiX05/8/f1Fjx49xNq1a8XatWtFvXr1hJOTk0hISDCUXblypfjss8/Ev//+K/bu3Sv+/vtv0b59e+Hm5iaio6PzXZfc49rDPOr+NLbfpqamioYNGwpXV1cxY8YMsXPnTjFr1izh4OAgOnXqJPR6vRBCCL1eLzp27CgsLCzEV199JbZv3y6mTJkiqlatKgAxZcqUEvUfY8f9rVu3CjMzM1G/fn2xcOFCsXv3bjF//nwxePDgfMfNuY7BwcHCyclJ9OvXT6SmphZ6HZ9EZDFUQch5wB05ckRkZWWJ5ORksXHjRuHm5ibs7OxEZGRknnKvvfZanv2nT58uABEREVFg/Xq9XmRlZYm9e/cKQJw9e1YIIURMTIwAxMyZMwtt2507d4RarRZvvPFGnu3JycnC09NTDBo0yKhz69+/f57tBw8eFID48ssvhRBCxMfHCysrK9GrV698x7ewsBBDhw41bBsxYoQAxPz58/Mdr3fv3sLPzy/f9pwBNiAgIM/gURBarVZkZWWJl19+WTRq1CjP/x4e4I8fP55PbDyKnHZ89913eba3bNlSuLu7i+Tk5DztqFu3rvD19TUMojnXc/jw4cU6XkFiaPr06XnKvvbaa8LS0tJwrJiYGGFubi4++uijPOUGDRokPDw8RFZWVp5jeHt7i/T0dEO5pKQk4ezsLLp06WLY1r17d+Hr6ysSExPz1DlhwgRhaWkp4uLihBAPHl4P94d//vnH8PAVQuo3lpaWhfavosTQ9evXBSAWLVokhBDiwIEDAhDvvfeeqFKliqFc165dRevWrfPsO3PmTOHk5GS4DoWRc70nTpyYZ3uOGFmyZIlhm5+fn1CpVOLKlSt5yg4ePFhYWFiIO3fu5Nnes2dPYW1tbRAIOdetcePGhu9RCCFu374tzMzMxJgxY4QQQuh0OuHt7S3q1asndDqdoVxycrJwd3fPc6457f/ss8/yndvrr78uCnuvfvhe+eCDDwQgjh49mqfc+PHjhUKhMJxzTn+qV69eHtF77NgxAYjly5cXeDwhpHsmJSVF2NjYiFmzZhm2GyOGch/74fvT2H47bdo0oVQq873Yrlq1SgBi8+bNQgghtmzZIoA8bRRCevEsTAwZ039yU9i4L4QQAQEBIiAgIM/9+jC5xdDixYuFubm5ePPNN/P0l/8K8jJZBaNly5aYmZlhZ2dHnz598PT0ZMuWLXh4eOQp98wzz+T5u379+kDe5bSbN28ydOhQPD09UalUmJmZ0b59ewDDspOzszMBAQF89913zJgxg9OnT+eZrgbYtm0bWq2W4cOHo9VqDT+Wlpa0b9/eKO8MIJ/NU+vWrfHz82PPnj0AHD58mPT09HzT6pUqVaJTp04FLrc899xzRh07N8888wxmZmb5tq9cuZI2bdpga2uLWq3GzMyMP//8M98SXVmQmprK0aNHGThwILa2tobtKpWKYcOGcffu3XxLQyU594cpqB9lZGQYpr9dXFzo27cvf/31l6FfxMfHs27dOoYPH45andfscMCAAVhaWhr+trOzo2/fvuzbtw+dTkdGRga7du2if//+WFtb5+lPvXr1IiMjI98ySFF9/fDhw2RkZBTav4oiICAAf39/du7cCcCOHTuoV68eL730Erdu3eLGjRtkZmZy4MABunTpkmff1atX069fv3zXoTAebuOgQYNQq9WGeyD3OdaoUSPPtt27d9O5c2cqVaqUZ/vIkSNJS0vLt7Q1dOjQPDZkfn5+tG7d2nCsK1euEB4ezrBhw/Is8dna2vLcc89x5MgR0tLS8tRZ2j63e/duateuTfPmzfOdgxCC3bt359neu3dvVCqV4e+CxrmUlBTef/99qlWrhlqtRq1WY2trS2pqqsnu3eL0240bN1K3bl0aNmyYp1z37t3zeLPlfA8P94mhQ4cW2g5j+o8x4/7Vq1e5ceMGL7/8cp77tTC++uorRo4cyTfffMOsWbMeuST8pPLfO6MnnEWLFnH8+HFOnz5NeHg4ISEhtGnTJl85FxeXPH/nGACnp6cD0gDRrl07jh49ypdffklwcDDHjx9nzZo1ecopFAp27dpF9+7dmT59Oo0bN8bNzY0333yT5ORkAO7fvw9As2bNMDMzy/OzYsUKo90uPT09C9wWGxsLYPjt5eWVr5y3t7fh/zlYW1uXyFOloPrXrFnDoEGD8PHxYcmSJRw+fJjjx48zevRoMjIyin2M4hIfH48QotBzB/Kdf0Fli0tR/Qhg9OjR3Lt3jx07dgCwfPlyMjMzC3SZLuw71mg0pKSkEBsbi1ar5eeff87Xl3r16gWQrz8V1cac61LYsY2hc+fOBrG9c+dOunbtSr169fDw8GDnzp0cPHiQ9PT0PGIoMjKSgwcPFksgPNwetVqNi4uLUd9tbGxssfpHae83vV5PfHx8ke0qDsU9B2P659ChQ/nll18YM2YM27Zt49ixYxw/fhw3N7c85UrbbmP77f379wkJCclXzs7ODiGEoVxsbKzh+8/No/psUf3H2HE/x84oxz6qKJYsWYKPjw+DBw82qvyTiOxNVsGoVauWwZusNOzevZvw8HCCg4MNbwUACQkJ+cr6+fnx559/AtIbwz///MPUqVPRaDT8/vvvuLq6ApLXjDFv2oURGRlZ4LZq1aoBDwa+iIiIfOXCw8MN7cihIM8pYyhovyVLllClShVWrFiR5/+FGSWbGicnJ5RKZaHnDpjs/ItL9+7d8fb2ZsGCBXTv3p0FCxbQokULateuna9sYd+xubk5tra2mJmZGWa7Xn/99QKPV6VKlWK1L6ffFHbs3AawhdG5c2f+/PNPjh07xtGjR/nkk08A6NSpEzt27CA0NBRbW9s8Xnn//vsvNjY2dO3a1ei2RkZG4uPjY/hbq9USGxub74FY0Hfr4uJSrP5R2PXIOVZR95tSqcTJyanIdhWH4p5DUSQmJrJx40amTJnCBx98YNiemZlJXFxcqdqaGycnJ6P7raurK1ZWVsyfP7/Acjnn6OLiUuD3X9D3lvt/j+o/xo77bm5uANy9e7fQY+Vm69atvPDCC7Rr145du3aV6jlQUZFnhv6j5AxaD7uMz5kz55H71ahRg08++YR69epx6tQpQHoYqtVqbty4QdOmTQv8MYalS5fm+fvQoUOEhoYaguK1atUKKysrlixZkqfc3bt3DUsExmBhYVHsN0KFQoG5uXmewT4yMrJAb7KCjgeU6i3UxsaGFi1asGbNmjz16PV6lixZgq+vb75lk8dFzkNg7dq17N+/nxMnTjB69OgCy65ZsybPTFpycjIbNmygXbt2qFQqrK2t6dixI6dPn6Z+/foF9qWHhUFRtGzZEktLy0L7lzF07twZhULBp59+ilKpJCgoCIAuXbqwZ88eduzYQVBQUJ7l1dWrV9OnT59ihWV4uI3//PMPWq3WqMCQnTt3NjzscrNo0SKsra3zhU9Yvnw5QgjD36GhoRw6dMhwrMDAQHx8fFi2bFmecqmpqaxevdrgYVYUxen/nTt35uLFi4axJfc5KBQKOnbsWGQduVEoFAgh8n0H8+bNQ6fTFauuR1GcftunTx9u3LiBi4tLgeVyxHnOuT7cJ5YtW1ZoO4rqP8aO+zVq1CAgIID58+cb9cLn5+fH/v37sbCwoF27dly7dq3IfZ405Jmh/yitW7fGycmJV199lSlTpmBmZsbSpUs5e/ZsnnIhISFMmDCB559/nurVq2Nubs7u3bsJCQkxvGn5+/vzv//9j48//pibN2/So0cPnJycuH//PseOHcPGxsbg+vsoTpw4wZgxY3j++ecJCwvj448/xsfHh9deew0AR0dHPv30Uz766COGDx/OkCFDiI2N5fPPP8fS0pIpU6YYde716tVjzZo1/PbbbzRp0gSlUlmkYMtxZX7ttdcYOHAgYWFhfPHFF3h5eRV54wcEBGBlZcXSpUupVasWtra2eHt7G6b+jWXatGl07dqVjh07MnnyZMzNzZk9ezbnz59n+fLlj20mqCBGjx7Nt99+y9ChQ7GysuKFF14osJxKpaJr165MmjQJvV7Pt99+S1JSUp7+MWvWLNq2bUu7du0YP348/v7+JCcnc/36dTZs2JDPbqQonJycmDx5Ml9++WWe/jV16lSjl8nc3d2pW7cu27dvp2PHjgYR0KVLF+Li4oiLi2PGjBmG8rGxsezdu5e///67WG1ds2YNarWarl27cuHCBT799FMaNGjAoEGDitx3ypQpbNy4kY4dO/LZZ5/h7OzM0qVL2bRpE9OnT8fBwSFP+aioKPr378/YsWNJTExkypQpWFpa8uGHHwKgVCqZPn06L774In369OGVV14hMzOT7777joSEBL755hujzqlevXoAfPvtt/Ts2ROVSkX9+vUxNzfPV3bixIksWrSI3r1787///Q8/Pz82bdrE7NmzGT9+fLEFv729PUFBQXz33Xe4urri7+/P3r17+fPPP3F0dCxWXUVhbL99++23Wb16NUFBQUycOJH69euj1+u5c+cO27dv55133qFFixZ069aNoKAg3nvvPVJTU2natCkHDx5k8eLFhbahqP5j7LgP8Ouvv9K3b19atmzJxIkTqVy5Mnfu3GHbtm35RBdIS6R79+6le/fuBAUFsWPHDurWrWuiq1sBKE/rbZkHFOZab2y5gjwlDh06JFq1aiWsra2Fm5ubGDNmjDh16lQez6L79++LkSNHipo1awobGxtha2sr6tevL3788cd8rtpr164VHTt2FPb29sLCwkL4+fmJgQMHip07dxrV5u3bt4thw4YJR0dHg9fYtWvX8pWfN2+eqF+/vjA3NxcODg6iX79++dz3R4wYIWxsbAo8XlxcnBg4cKBwdHQUCoXC4OlSmJdIDt98843w9/cXFhYWolatWuKPP/4weFPk5mEPGSGEWL58uahZs6YwMzPL5wnyMI9qx/79+0WnTp2EjY2NsLKyEi1bthQbNmzIU8bYvvLw8QryJsvtepy77lu3buWrp3Xr1gIQL774YqHH+Pbbb8Xnn38ufH19hbm5uWjUqJHYtm1bgeVHjx4tfHx8hJmZmXBzcxOtW7c2eBYK8aBPr1y5ssjz0ev1Ytq0aaJSpUrC3Nxc1K9fX2zYsEG0b9++SG+yHCZOnCgA8dVXX+XZXr16dQGIkJAQw7Z58+YJa2tro92Lc673yZMnRd++fYWtra2ws7MTQ4YMEffv389T1s/PT/Tu3bvAes6dOyf69u0rHBwchLm5uWjQoEE+L8ac67Z48WLx5ptvCjc3N2FhYSHatWsnTpw4ka/OtWvXihYtWghLS0thY2MjOnfuLA4ePFhg+x/uL0IIkZmZKcaMGSPc3NwM91tO/ynoXgkNDRVDhw4VLi4uwszMTAQGBorvvvsuj4fSo+6Rh++vu3fviueee044OTkJOzs70aNHD3H+/Pl8xy6tN1nO/4rqt0IIkZKSIj755BMRGBhoGMfq1asnJk6caPAMFkKIhIQEMXr0aOHo6Cisra1F165dxeXLlwv1JjOm/xgz7udw+PBh0bNnT+Hg4CAsLCxEQEBAHo+1gr73hIQE0aZNG+Hs7Gz0GPQkoBAi1/yojEwZsHDhQkaNGsXx48dNYg8lU/G4ffs2VapU4bvvvmPy5Mnl3Zwyp1evXlhZWbF69Wqjyk+dOpXPP/+c6OjoYtvFFJfg4GA6duzIypUrGThwYJkeS0bmv4K8TCYjIyNTTDZv3lzeTZCRkTEhsgG1jIyMjIyMzFONvEwmIyMjIyMj81QjzwzJyMjIyMjIPNXIYkhGRkZGRkbmqUYWQzIyMjIyMjJPNbIYkpGRkZGRkXmqkcWQjIyMjIyMzFONLIZkZGRkZGRknmpkMSQjIyMjIyPzVCOLIRkZGRkZGZmnGlkMycjIyMjIyDzVyGJIRkZGRkZG5qlGFkMyMjIyMjIyTzWyGJKRkZGRkZF5qpHFkIyMjIyMjMxTjSyGZGRkZGRkZJ5qZDEkIyMjIyMj81QjiyEZGRkZGRmZpxpZDMnIyMjIyMg81chiSEZGRkZGRuapRhZDMjIyMjIyMk81shiSkZGRkZGReaqRxZCMjIyMjIzMU40shmRkZGRkZGSeamQxJCMjIyMjI/NUI4shGRkZGRkZmacaWQzJyMjIyMjIPNXIYkhGRkZGRkbmqUYWQzIyMjIyMjJPNU+MGJo2bRrNmjXDzs4Od3d3nn32Wa5cuVLkfnv37qVJkyZYWlpStWpVfv/998fQWhkZGRkZGZknhSdGDO3du5fXX3+dI0eOsGPHDrRaLd26dSM1NbXQfW7dukWvXr1o164dp0+f5qOPPuLNN99k9erVj7HlMjIyMjIyMhUZhRBClHcjSkJ0dDTu7u7s3buXoKCgAsu8//77rF+/nkuXLhm2vfrqq5w9e5bDhw8/rqbKyMjIyMjIVGCemJmhh0lMTATA2dm50DKHDx+mW7duebZ1796dEydOkJWVVabtk5GRkZGRkXkyUJd3A0qCEIJJkybRtm1b6tatW2i5yMhIPDw88mzz8PBAq9USExODl5dXvn0yMzPJzMw0/K3X64mLi8PFxQWFQmG6k5CRkZGRkZEpM4QQJCcn4+3tjVL56LmfJ1IMTZgwgZCQEA4cOFBk2YcFTM6qYGHCZtq0aXz++eelb6SMjIyMjIxMuRMWFoavr+8jyzxxYuiNN95g/fr17Nu3r8iT8/T0JDIyMs+2qKgo1Go1Li4uBe7z4YcfMmnSJMPfiYmJVK5cmdaf/ENYirTNzdacV9pXZUDjSpiry3+lUQjB5xsusOrkPWwsVCwb04IAd7vyblYeUlNT8fb2BqDJh/+w+Z0uWJqpTHeAy5fBzg58fEpXTUQSz885jBCwaHQzGvsVvgxbKoSAoUNh82b48UcYPboYuwo+WXuedWfCcbBSs2JcK3ydrcumnaUgMT2L+QdusfhIKBqtHoCutd15s3N1qrjalnPrJMIT0hkw+yApmTre7FyNcUEB5d2kAllx/A5fbrqEENCrnidf9a+Hmar8x57caLR6TofGs/9GDAeuRXM9Kq9zi7O1Ga2rudKuuiutAlxxtjF/7G3M0ukRAvTZL8VCgEBk/5buLZG9nexyIrugyFVerweNTo9GqyNTqydTq0OTJcjUZX/W6snM0qPR5fxfjyZLT6ZOL/1PqyM1U0dYfDqhsSkkZ+gMbdRrMrg3ezgAPq8tQmluiUKR3aaH8HG0pGElRxpWdqSBryM1POxQP6Z+cSculQnLTnMzOhVztZIvn61Lr3r5V1vKi7Nh8byz9AjHpw3Gzq7o5+ETY0AthOCNN97g33//JTg4mOrVqxe5z/vvv8+GDRu4ePGiYdv48eM5c+aM0QbUSUlJODg4EBsXz64byczceY17CekA+DpZ8XaXGvRv5INKWb5LaBqtnpf+PMqxW3H4uViz9rU2OJXDYFMYqamp2NpKD8BKE1fxXp/6TOhU9HdYHny4JoTlx8Jo4OvAv6+1QVlW3+1PP8Fbb4G9PVy8WCwhl5GlY9Ccw4TcTaSWlz1rxrfGytyE4tKERCSmM2P7VVafuotegFqpYEjzyrzZuTpudhbl3TxWnbzL5JVnMVMpWPd6W2p725d3kwpk/dlwJq04g1Yv6FTTnV+HNq6w3zlIQnPv1WiCr0Rx8HosKZlaw/8UCmjg60iHQDc6BLpT38eh7O6zCo4Qglm7rlLZ2Qa9gKt3o/n42cYA1HjvXzIVZkbXZWWmor6vA439nGhS2Ym21V1N+9L5EMkZWby5/DR7rkQD8EanakzsUqPcv8t7Cen0mLmPxMQkwmYOIjExEXv7R9/XT4wYeu2111i2bBnr1q0jMDDQsN3BwQErKytAmtW5d+8eixYtAiTX+rp16/LKK68wduxYDh8+zKuvvsry5ct57rnnjDpujhjKuZiZWh0rjofx8+7rRCdLtkXV3G15p2sNetT1LFe7otiUTPr9epC78em0DnDhr9HNK8zb48NiyNbWhj2TO+Bhb2n6gx04IL1GtWtXot2jkzPp+H0wKZlaZgxqwIDGj56BLDE6HbRpA0ePQr9+8O+/0lOiCDQaDbNmzSIpPYtN+obEZQieaeDNrMENK7Rd25XIZL7depndl6MAsDFXMTaoKmPbVcXGovwmqYUQjFt8kh0X71PT0451E9pgoa6YImPP5SjGLz1JRpae5v7OzBvZFHtL4x+WZUVOnwR46623MDfP+yKm0eo5GRpP8NUo9l6J5nJkcp7/O9uYE1TdlQ6B7tTyssfdzgJHa7MK3Z9NSYuvdxKVnEmf+t680sqbelU8AUhOTiZVr+ZmdCq3Y1O5HZPKzRjp9+3YVLJ0j358O9uYM6R5JV5q6YeXg5Vh+9bzEdT0tMff1abUbdfpBd9uvczcfTcB6FHHkxkvNMDavHwXnq5EJjNq7l4OT+n73xJDhd0UCxYsYOTIkQCMHDmS27dvExwcbPj/3r17mThxIhcuXMDb25v333+fV1991ejjPiyGckjX6Pjr8G1+C75BYrrkmVbXx57J3QJpX8Ot3G7iSxFJPPfbIdI0Ooa38uN//Qo3MH+c5BZDfWfsIOR+JgMa+zBjUEPTHmjxYhg+HGrWhJAQMCvZg2J28HWmb72Cp70luye3L7sb+/x5aNQItFpYtQqMEOm5r+Wec6GMWXYerV7wca9ajA2qWjbtNCGHb8TyzZZLnL0reYS62lrwdpfqvNCsUrmJ95iUTLr/uI/YVA3jOwTwfo+a5dIOYzh+O47RC4+TnKGltpc9i15ujqtt+c6w5e6TKSkp2Ng8+iEbkZjO3ivRBF+J5sD1mDyzRjmYq5S42Vngbm+Bu50F7naWeNhLv92yt3nYW+JsbV7uMxEgiWqdXpClE2Tp9ViolZirlEU+CxLSNDT8344HG7IyCJ0xEHj0tdTpBTeiU9h6PpLN5yLyCEwFYKZWGpanVUoFPep4MqK1P7W97Oj4w17MVUpWjW+VRySVhpUnwvj43/NodHpqedkzb0RTfBxNU3dJuRMZg5+X239LDJUXhYkhw/8zspi37yZ/HrhFqkZa923m78S73WvSvEoZ2ZsUwbYLkbyy+CQAX/Wvy4st/MqlHbnJzMzklVdeAeD1T77l+XknAFj7ehsaVnI03YESE6FaNYiJgV9/hddeK1E1GVk6uszYy934dN7uUp23u9QwXRsf5rPP4IsvwNNTWi5zcnpk8dzXcs6cOfx9MoIp6y+gVMCi0S1oW9217NpqIoQQbDoXwXfbrhAamwZAVVcb3usRSPc65TPDuvV8JK8uOYlSAStfbUWTsrIXMwEXwhMZMf8YMSkaqrrasHhMi3J98DzcJy0sjBdnWbrsWaMr0Ry8HkNYfBoJacaHPlErFbja5ogmS1xszA02NgKBXjz4TC7bIP1DdkLksh/S6gVZOr30oxVocj7r9GTpBBrtQ39nf374aapQSEtXlmaq7N/KXJ+lnzSNlkM3Yg37CG0Wsdt+QQEMnvgFH/atR1W3om3scoTRppAILkYkFVrO1dacmBQNAAFuNvzzSitcTCSmT9yO49UlJ4lJ0eBqa86cYU3K9T4q6vmdG1kMFYGxFzM2JZPfgm+wKJexaPsabkzuFkg9X4fH1VwDv+y+xvfbr6JWKlj8cgtaBRRsMF5eTPrnDGtO3aNxZUdWj29t2off7Nnw+uvg6grXr4NDya7/ppAIXl92CkszJXsmdzDZG1Q+MjOhYUPJCHzMGPjjj2LtLoRg8soQVp+6i5O1GesntKVSBTSoLgiNVs/yY3f4adc1YlOlAbpxZUc+7FWLZv6PfxDN6Zd+LtZseatduU/1P4qb0SkM+/MY9xLS8XKwZPHLLajmXjEM00tLRpaO6ORMopIziU7OICo5k6ikTO4nZX/O3h6bqinQsPi/hq2FmsaVHann60Cgpz01Pe2o4mpT6Ezq7ZhUNp+PYPO5CM7fK1wYAdTwsGXV+NYmW269G5/G2EUnuRSRhLlKyVf96/J800omqbu4yGLIhBTnYoI0/fvz7uv8czwMrV66tD3revJOt8DHOlAJIXjz7zNsOBuOk7UZ615vS2WXivOAvJ+UQcfvg0nT6Jg1uCH9GpbOCywPWi3UqyeJi/feg2+/LVE1QggGzTnM8dvxDGjkw4wXGpqujQ9z4IA0izV3LrRsWezdcxtU1/ayZ3UFNqguiOSMLP7Yd5M/9t8iPUuaYe1a24P3ewRS7TF6RiamZ9Fj5j4iEjMY1tKPL56tGMvMhRGRmM5L845yIzoVZxtz/hrVvFxevsqLLJ2emBRJKEkiKYP4bFGtUChQKEBBzm/y/q1Q5NqWuzyoVUrMVErMVArMcz6rH/pbpcRcrTB8NlNJy2JmagUqpQKNVk96lo7MLOl3ukZHepaOjOwf6bOelSfCOHUnodjnbq5SEuBuS01POwKzf2p62uFpb5nn5fJObBqbz0ew5VyEYWn6YRyt1Pw0pDHtqrua5MU0NVPLpH/OsO3CfQDGBVXl/R41H7ujkSyGTEhxxVAOobGpzNx5jbVn7iEEWGS7Hj5OhZyukR6Q5+4lEuhhx+rXWmNbToaqQgjS0qTlEGtraxQKhWH2ysvBkl3vmNguZ9Mm6NMHzM0lUXTzJixbBn/+WaxqQu4m8MwvB4EyWNJ7GL0eiggM9ijCE9Lp+/MBYlM19GvozcwXKrZBdUFEJWXw485r/HMiDJ1eoFRA6wBXutRyp3Mtj8cy43XgWgwv/XkUgEWjmxNUw63Mj1ka4lI1jFxwjJC7idhaqPljeNMKNxMsUzgDfzvE3fh0Kjtb4+tsha+jFe7WCnwdLanu44q5WsX1qBSuRCZx5X4ylyOTuRqZbDDLeBh7SzU1Pe2p6WVHp5rutKvuhkqp4ExYAs/+evCRbQn0sGV02yr0a+hTai80vV4wc+dVftp9HYCOgW78NKQRdo/R4F8WQyakpGIohyuRyXy56SL7r8UAMLRFZab0rf3YvFUiEzPo+8sBopMz6VLLg7nDmpSLsWFBBpYZWTo6/7CXewnpvNW5OhO7mtAuRwjo2hV27QIPD7h/H9RqSEmBYtgzwIOlk6Z+Tqx8tdXjERhRUeDuXuC/UlNT8cl2w793714eA8sjN2N5ad5RtHrBJ71rMaZdxTeoLojrUSlM33qZ7Rfv59le09OOrrU96FLLg3pl6I49Zd15/jociqe9JdveDsLBuvw9th5FckYWYxed4MjNOMzVSmYPbUyX2h5F72giHtUnZR5Nlk6fZ7nLGGN0vV5wLyGdy5HJXIlMyv6dzM2YVHT6vI90H0crXmhWifq+DpwMjedMWAJnwhJIzshvtJ6Do7UZg5tVZngrP7xLaYu2/mw47648S6ZWT3V3W+aNaIqfy+PpH7IYMiGlFUMgddyfd19n5q6rCAENKjny24uNS93JjOX0nXhemHsEjVbPax0CeK8cPGUKu8Fz2+XsfqeD6a7J9euS3dD27Xm3nzwJjRsXq6rIRGlJLz1Lxy9DG9Gnvrdp2lgQQsD06TB1qhSQsWPHfEWKGiwXHrzF1A0XUSpgycstaF2t4htUF8atmFR2XrzPjkv3OXE7jtzjvLudBZ1redC1tjutA0wbTyVdo6PXT/u5FZNK/0Y+/FiWS6QmIiNLx4Rlp9l56T4qpYLvn69P/0ZlFBbiIYrrTSZTOKW5lplaHTeiUrlyP4nTdxJYdybc4O2sVECnmu4MaV6ZdtVcCUtI58ydBI7fjmP35SiikjPz1WeuVvJut0BGt61SqiWus2EJjFt8gvtJmTham/Hbi00ey+ylLIZMiCnEUA57rkTx9t9nSEzPwsXGnJ+HNHpsD6p/T99l4oqzAKa30TGCwm5wIQQvzDnCsdtxPNPAm5+GNCr9we7cgTp1pFmgh5k3D15+udhVztp5jR93XsXH0Ypd77Qv00BmvPoqzJkD/v5SeICHoqfq9Xpu3LgBQEBAQL6cO0+yQfWjiE/VsOdKFDsv3Wfvleg8ywRWZiqCarjSpZYHnWq6m8Q75tSdeAb+dgi9gN9ebEzPChRdtzC0Oj3vrQphzel7AEztW5uRbaqU+XGL6pMyxmNKYZmRpWPr+UiWH7vD0Vtxhu2e9pYMaurLoGaV8HWSxoZbMSlMWX+BfVelVQylAsPLR1M/J757vgFVShGX6H5SBuMWneDs3UTUSgWf96tT5p7OshgyIaYUQyAZs7265CQXI5JQKuD9HjUZF1T1sSy9TNtyiTl7b2KhVvLPK61oUJb2Lw/xqBv8/L1E+v5yACFg9XgTuTTv2AHPPAMZGXm3T5gAP/9c7OrSNTo6/RBMRGIG73YP5PWO1UrfxsJITpYMwENDJWH022/FriIjS8fzv0v2Yk+iQXVRZGp1HLkZx86L99l56T4RiQ++Z4UCmlR2okv2clppHBe+23aZX/fcwMnajG0Tg3C3K4MgoSZGrxf8b+NFFh66DcDELjV4s3O1J85+7GmlrGbZbkSnsOJ4GKtO3iXOYGQOQdXdGNK8Mp1ruWOmUnI2LIEvN13k+O14qQxSCAILtYIPetZiRCv/Ei9PZ2TpeG9VCOvPhgMwopUfn/apXWYpRGQxZEJMLYZA6hAf/3ue1afuAlLEzu+er1/mhmU6vWDsohPsvhyFu50FG95oWzYRoAugqBv8/VUhrDgRRn1fB9aaKgXG7t3Qty9kG24D0KoVHDpUourWnr7H2yvOYGOuYs+7Hcr2wbh7N3TuLH3evl2yfyomuQ2qn23ozY9PoEG1MQghuBCexI5sYXQhPK8rcb+G3nz7XP0SzeZptHr6/XqQSxFJdKnlzh/Dmz4R11BK8XCNmTuvATCqjT+f9q5dIYITyjyasl5yzNTq2H7hPn8fv8PB6w/iG7nZWfB8E18GN6tMJWcrtpyPZNqWS4TFpefZv0UVZ74b2KDE3slCCGYH3+C7bVcAGNjEl+8G1i+T+0oWQyakLMQQSB1i6dE7fL7hAlk6QYCbDXOGNSlzN+LkjCwGzD7EtagUGvg6sOKVVmW75JNNUTd47hQY3z/fgIFNTGTrsG8f9Oz5QBBZWEifSzCNr9cL+v92iLNhCbzQtBLfDqxvmjYWxoQJUuDISpWkSNXZ/S8rK4u5c+cCMG7cOMweEWX7yM1YXpx3FN0TblBdHMIT0tl16T47LkVx8HoMOr2gub8zc4c3wdG6+Pn6Lkcm8czPB9Ho9EwfWJ9B5RQzpSQsOHiLzzdIuRn71Pfiq2frlYkxeHH6pMyjeZz2V6Gxqfx9PIyVJ+4Sk/LAZqhtNVcGN69E+xpuLD92h593XSc5V5RwSzMlH/euzYvNK5dYYG8+F8Eby0+j0wsmdKzG5O6BRe9UTGQxZELKSgzlcOpOPK8tOUVkUgY25iq+e75BmWf+DY1Npd+vB0lIy3psLtjG3OC/773BN1su425nwZ7JHUyXr+rgQWmWJTP7Zj91SkqBUQJOhsbz3G+HUChg4xttqeNdhjFdUlKgQQMpLMDYsVIMIoo/WOY8EFVKBYtHN3+iDaqLy8HrMby6+CTJmVqqutnw16jmJbKfyumbthZqtr7dzmBn8SSw5tRd3l0Vgk4vcLW14H/96tDTxHkUZQNq01Ee1zJLp2fXpfssPxbGvmvRhkCW1d1t+e75BlRysuLHnVdZdvROHieGFlWc+GFQwxLfD38fu8MHa84B8MWzdRnW0rQ2RMV5fstWbuVM48pObHyzLS2rOpOq0fHa0lNM23wJrU5fZsf0c7Fh9tDGqJQK1p0J57e9N8rsWDmoVCoGDhzIwIEDUakKnoka1cYfPxdropIzmR183XQHb9NGsiHKGfy/+abEVTXxc6JvA2+EgC82XqRM3yVsbWHBArC0lFKMCAE3b6KaNKnIa5mbka39GdDYB51e8PqyU9yNTytyn/8Kbaq5snJ8K7wcLLkZnUr/2Qc5G5ZQ7HrGtqtKUz8nUjK1TF55Fr3+yXmHHNDYlxXjWhLgZkNMSiavLT3FuMUniUzMKHpnIzHm/pYxjvK4lmYqJT3qevHX6Obse7cjb3aqhouNOdeiUhgw+yBz993kk9612fp2EO1zxd06eiuezj/sZfnR0BKNhYObV2ZidqqjKevOs+1CpMnOqbjIM0NFUNYzQzlodXq+23aFOdmZf1tWdeaXoY3LNAHj4sO3+XTdBRQKmDusKV0fY1ySwsjJq2auVrJrUnvTekF9+SV8+qkUiPHePSldRwm4G59G5x/2kqnVM2dYE7rX8TRdGwsiJ+bQ0qUwfrxkYH3jBlQ1fskrt0F1HW97Vr363zKoLorIxAxGLTzOpYgkrMxU/DSkUbH7++2YVHrO2k96lo7P+tRmdNuy99IyJZlaHb/uvs7s4Bto9QI7CzUf9KrJkGYlX+qQ+e8Sn6rh8w0XWHtGMnau6mbDdwPr08TPmb1Xo5my7jy3Yx+8WLWp5sr3z9cvdtoiIQQf/Xue5cfuYKFWsnRMC5qaKBWPPDP0BKJWKfmwVy1mv9gYG3MVR27G0eenA5y6E19mxxzWyp8XW1RGCHj779Ncjnx0DpvHQbfaHrQOcEGj1TNtyyXTVv7RRxAYCBoNfP11iavxdbJmbLbtzdebL5GpLTgSrMmwsoIRI+CllyQhBLByZbGqsDRT8fuwJrjYmHMhPIkP14SU7axWBcPTwZKVr7YiqIYb6Vk6Xll8gkWHbxerDn9XGz7uXQuAb7de5npUAaEbKjAWahWTugWy8c22NKzkSHKmlo//Pc/gP45wI/rJOheZssfJxpyZgxsxb3hTPOwtuBmdysDfD/O/DRdp7u/Mzknt+aR3LXJ09MHrMXSZsZdVJ+8Wa2xRKBR80a8OXWp5kKnV8/JfJ7h2P7mMzqpwZDFUwehVz4t1E9oQ4GZDZFIGL8w5zOIjJZuCNIapz9R5sES35BQZWWX8YC8ChULBZ31ro1TA5nORHLkZW/ROxqJUwqxZ0ufZsyE6usRVje8QgJudBaGxaSw6FGqiBhbAiRNSkMhFi/Ju/+efYlfl42jFL9nLo2vPhBtmIZ8WbC3U/DmiKYObVUIv4LN1F/h686ViLXm92KIyQTXcyNTqeeefM2W6nF1W1PSUQi181qc21uYqjt2Ko+es/fy65zpZT+D5yJQtXWp7sH1ie55v4osQMP/gLXrM2seJ0HjGtKvK0jEtsbOU7DtTM3VMXnmWMX+dICrJ+GVYtUrJz0Ma0biyI4npWYyYf8yky7jGIIuhCkg1dzvWTWhLz7qeZOkEn649zydrz5eJIDJTKZn9YhPc7Sy4GZPKjzuumvwYIBkFSokQFaSmpj6ybE1Pe4Y0rwzA/zZczBdevlR06wbvvCO5rruVPOeUjYWad7O9H37afY3YlPzRW03C5s3Sklgu0gCfU6fw8fQ05HszllYBLnzcS5rd+GbLZRYcvGWqlj4RmKmUTBtQj8ndJDuFuftu8sby00a/BCgUCqY/Vx97SzVn7yYyO7js7e3KApVSwei2Vdj2dhBBNdzQaKVl+r4/HyDkbkKx60tLS8PHxwcfH59i90mZvBRnrHxcOFiZ8d3zDVg4qhleDpaExqYxeO4RPlt3nvq+DmyY0JYAtweG3rsuR9H1x31sPR9h9DGszFX8OaIZVd1sCE/MYOSCY4bo2Y8DWQxVUGwt1Mx+sTEf9qyJUgFLj97hq02XykQQOduY81X/egD8sf8mZ0pgYGpqJnWtgZ2lmosRSaw8EWa6ihUK+P57aN261FUNbOxLHW97kjO0/LizbEQkn30G27blyVMmgHAg/P79EvWHUW38ea1DAACfb7jIwqdMECkUCiZ0qs6PLzTATKVg07kIXpp31JDtvCg8HSwN2ex/2nWNc4VkAn8SqORszV+jmvHjCw1wsjbjcmQyz/56kK82XSRNU3juqocRQhAeHk54ePhTtfz6tNEh0J3tE4MML6uLDofSfeY+7iWks+a1NnmSGiemZ/HqklOsOH7H6PqdbMz5a1Rz3OwsuByZzCuLT5S9GUI2shiqwCgUCl5pH8C3z0nxbOYduMUvu03oZZWLrrU96NfQG70gO6le+S6Xudha8Fbn6gB8v/0KyRll9IYQW/JlOKVSwad9agOw7OgdrkSW0Tp3165w5owhT5klcBo47eWFpWXxAz8qFAre7R7I+GxBNHXDRf7Kjlb8NNG/kS9/jWqOnaWaE9khE0JjjXsTf6aBN73reaHVCyb9c6bcl5dLg0KhoH8jX3ZOam8YA/7Yf4vuM/ex/5pxS8mWlpacPn2a06dPl6hPyjw52FmaMW1APZaOaYGPoxV349N5cd5RvtlymVkvNGBka/885d9ffa5YM9CVnK1ZOKoZthZqjtyMY9I/j8d7UxZDTwDPN63EZ9kP3R92XC2zN/kpfevgaiu5U5aV6CoOw1v5U9XVhpgUjenbIwR8/DH4+sKBAyWupmVVF3rU8UQv4MtNZehq7+UlhQeYOhUV0BBoGBGB6uDBElWnUCh4r3sgr7aXBNGU9ReKbVD8X6B1NVdWj2+Nt4MlN2NSGTD7EKeNcFpQKBR88WxdXG0tuBaVwvfZ0XSfZFxsLZg1uBELRjbD28GSsLh0hv15jHf+OUtC2qNnzVQqFQ0bNqRhw4aya/1TQptqrmybGMTwVlJsoOXH7tDrpwN0CHTjq/51UefyUPx8w0V+3WP8GF7H24G5w5pIM7chEXxRlmNrNrJrfRE8Ltd6Y/hxx1Vm7ZLC688Y1IABjU2fkXrzuQheW3pKikH0ehvq+pgmqGBJA4ntvnyf0QtPYKZSsGNie/xLkSgwH+PGwR9/SHGI9u9/EIeomITGptJ1xj40Oj0LRjajY033oncqDdu2QZ8+oNVClSpw7RqU8AEkhOCbrZeZs1cypv6iXx2GtfI3YWOfDO4nZTB64XEuhCdhaabkp8GN6GZEyISc/qlQwLIxLR9LJu7HQUqmlu+3XeGvw7cRQrIZeaaBN8828qZxZacnIiVJRSFTqyMuVUNsiobYVA1xqZkPPqdo0Oj0WJursLFQY22uwkyvYUJ3yWxh3fEbuDraY22hxtZChbW5GhtzNdYWKszKKJ9XSThyM5b3V4cQmu1qP7CJL91qe/DuqpA8dj+vdQjg3e6BRvef9WfDeXP5aQA+6lWTcUEBxWqXHIHahFQkMSSEkGw8Dt1GpVTw24uNjRqwi8trS0+y+VwktbzsWT+hjUluupKKISEEIxYcZ9/VaLrW9uCP4U1L3RYD9+5JwQwzMmD9eimPWQn5evMl5u67SYCbDVvfDirTgSorK4ulU6fCtGm8aG2N2b174FBy0SqE4Jstlw3eZWURCfZJICVTy+tLT7H3ajQKBUztW4cRD035F8SHa0JYfiwMH0crtrzdDvsyzjH4ODkZGs+Ha0K4ev+B672vkxX9GnrzbEMfqntI6YOysrJYunQpAC+++OJTkY4jS6cnNDaNm9EphMWnE5uSSVyqhpgUSfDkCKDcaSyMQa/JIOzHgQBUmrgKpXnBy47mKiWVXaxpUtmJJv5ONPFzoqqrTbkJ1TSNlu+3XWXBoVsIIXmvThtQj6nrL3Az5sHy88jW/nzWx/g8efP23+TLTVKYlZkvNOTZRj5Gt0kWQyakIokhkPJjvbsqhNWn7mKuUrJwVDOTp1eITs6k2497iU/LYlLXGryZbbtTGkoTYv7a/WR6zNqPTi9YOqYFbUx5vh98AN9+C3XqwNmzJZ5hScrIouN3wcSmapjatzYj25RdQL481/LTT7EZNgyql+47EkIwbctl5mYLoi+frctLT6Eg0ur0fLruPMuPSUb744Kq8mHPmo98wKRmauk5az934tJ4rrEvPwxq8Lia+1jQ6vQcuhHL2jP32HY+klTNA/uo2l72PNvIm87VHKjmIxnP/pfScQghiE3VcDM6lZvRKdyMkX7fiE7lTlya0Z6uaqUCZxtznG3McbW1wNnGHBdbc1xszDFXK0nT6EjT6EjN1JKYlMKvIyUHj94/7ECjMCM1U0eqRktapg7NI8IfONuY07iyJIya+DlR39fhseSezM2J23G8s/IsobFpuNiY8+vQxvyy5zoHrscYygxq4su05+qjMlIQfbnxIvMO3MJMpWDByOa0rS49A4QQ6PSi0Kz3shgyIRVNDIE0OL2+7BTbLtzH2lzFsrEtaVjJ0aTHWHfmHm/9fQYzlYINb7Slpmfpzj0jI4PnnnsOgNWrVxfbyHLq+gssPHSb2l72bHqzrenefuLjpUjOCQmwcKEU3LCELDkSyidrz+NobUbw5A4lSgpqDPmupbm5FENJqwV1yfO5CSH4evMl/tgv2aR91b8uL7Z4+gTRw1m1fx7SiL4NvB+5z4nbcQyacxi9gN9fakyPumWbX7C8SNfo2HnpPuvO3CP4SjTabDEgdBqytn6Hh70lWzesw8O5bBNOm5qMLJ1hludmTCo3olMMAigpo/CZHWtzFVVcbfB3scHNzgIXG3Ocbc1xsbEwiB0XGwvsrdRGj1lFjZUarZ50jY6kjCyuRCZzIjSeU6HxnL2bQKY2r1AyUymo4+1A02xx1MTfCXe7sjdwj03JZMSCY5y/l4SdhZo/hjdhy/lI/jr8ICZb73pezBzc0KhZdL1e8NaKM2w4G46NuYoVr7TCx9GKj9eeo3sdT/o1LHi2SBZDJqQiiiGQbt6X/zrOweuxOFqbsWJcKwI9TTcACSEYu+gEOy9FUd/XgTXjWxeqvh8H8aka2n67m1SNjt9fakKPuiZcHpw+Hd5/HypXhitXpFxgJUCr09P7pwNcuZ/M6DZV+KxvbdO18VGkpsJbb0m/ly0rse0TSN/7V5suMe+AJIi+7l+PoS0qm6qlTxQztl/hp93XcbOzYNc77Ytc/pq+9TKzg2/gZG3GtolBj+WhU57Ep2rYfD6CdafDOXY7zrDdXKWkQ6AbzzbyoVNN9zKZmVh98i4ZWh3V3e2o7m6Lk03RLx45gudWTCqhsancjk3ldkwat2NTiXhEgD+FQlryqepmS1VXGwLcbKTPbjZ42ltWGPspjVbP+fBEToXGc+J2PCdC4/Nkos+hkrMVzfycea6JL60DXMqs/UkZWYxZeIJjt+OwNFPy+0tNCItLY8r6C4Zkr+1ruDFnWBOj+kimVsfI+cc5fDMWBysz1EoFsakaetb15LeXmhTcBlkMmY6KKoZAmp5/cd5RzoQl4G5nwapXW1PZxXS5vO4nZdB1xl6SMrS836OmwRW7vPhu22V+3XODmp52bH6znenyKaWnS8tMsbGwfTu0a1fiqvZdjWb4/GOolQq2Twyiqputadr4KE6cgFatpJmh+fNh1KhSVSeE4MtNl/jzKRdEGVk6es7az62YVIa38uN//eo+srxGq+fZXw9yMSKJTjXd+XNE0wrzoCxr7sanseFsBOvO3ONyrhATdhZq6vk64Olgiae9JV4Olng6WOHlYImHvSUuNuYluo+nrDufZ5bBxcacqm42VHK2xsPOAgszFVqdICYlk9uxqYTGpj1S8ADYWaqp6mZLgKsNVXMJHn8Xm8e+1GQKhBCExaVz8k4cJ27HczI0niv3k8n9xK/jbc+4oKr0qudVJnaO6Rod45eeJPhKNGYqBTNfaISDlRnjFp8gLXu5tbm/E3+NbmFUrsTo5Ay6/biP+LQHRtlWZipOf9a1wO9IFkMmpCKLIYCENA0vzDnClfvJVHK2YtWrrfGwN90b6coTYby7KgRztZLNb7ajmvtjeLgXQkKahrbf7iElU8tvLzamZz0TLkXs3y95ZvmW3kNv1IJj7LkSTZdaHswbYUKD70cxbZqUe83aGk6dknKwlYKHBdG0AfUMgdaeJg5dj2HovKMoFPDva22KXI6+EplM358PoNHpn9prdjkyibWnw1l/5h7hRQgQM5UCD3tJKHk6PBBLnvaWWJopSc7QkpSRJf1OzyIp++/LEUnciC5+dGZ7SzVVXG3wc7HB39UGfxdr/F1tqOJig6O12X9evCZlZHHmTgI7L91n5Ym7pGfHx/J2sGR02yq80KwSdiZ2ANBo9Uz65wwbQyJQKqSXq+ZVnBnyxxHuJ0kzV40rOfLXy80Nx45ITMfe0gwbiwfL/tfuJzN+6akCcwL+MbzgROOyGDIhFV0MAUQlZfD8nMOExqZRw8OWFeNaGTVtbAy5vbkaV3Zk5autjTZ6y01qairu2VGUo6KiSmxg+cP2K/y8+7rpZ4dMyPWoZLrPlAy+l41pYXID97S0NBo0kIx0z549i7W1Neh0UqqR3buhUSM4fBgsLEp1HCEEX2y8xPzsuFbfDKjH4Kfw4T5xxRn+PX2POt72rHu9TZHLxX/su8lXmy9hba5iy1vt8HP5bxgTP4qC+qReLzh7N8GwDHU/MYOIxAwikzKITMwgOiWTsnr6WKqV1Pa2p3WAqzS78wQJHlONlUURn6phyZFQ/jp8m5gUKY6UnYWaoS0qM6pNFTwdTPdSrdMLPlkrZaYHyU2+d31v+v68n7hUaZanro89S15uweXIZCYsO8V73WsyqFklQx0pmVreXx3CppD8KT4Kc1yQxZAJeRLEEEBYXBoDfz/E/aRMGvg6sHRsS2wtSm5Mm5t7Cel0/3EfKZlaPu1Tm5fbFt9TqjTeZLlJTMui7be7Sc7UMvvFxvQy5exQDkeOQI0a4Oxc4ipypvFretqx6c12JRKQhVHotQwPh/r1peW+iRNhxoxSH0sIwf82XmTBwdvA0ymIopMz6fxDMEkZxvV/vV4wdN4RjtyMo4mfE/+80sqk339FpCT3d5ZOT1RyJpGJ6UQmZhKRmE5kYgYR2WJJo9Vjb6XG3tIMO0vpt72V9DlTq+ebLZfz1dmwkgMTOlanU033CvmiZAymGiuNJSNLx9rT9/hj/03DbJtaqeCZht6MbVeVWl6mee4JIfh26xV+3yvl83u9YwC96nox8PfDhhkqN1tzYlM16AU083di5aut89Wx4OBtvt58yWC8D9IS5+lPu+Z7UZHFkAl5UsQQSNOIg+YcJj4ti1ZVXVgwqpnJ1rqXHg3l43/PY2mmZOtbQcUOfmjKG3zGjqv8tOsagR52bHnLxLNDkyfDDz9ILvfTppW4mvhUDe2/20NShtbkAkKn03HkyBEAWrZsmTfi74YN8Mwz0ufNm6Fnz1If72FB9O1z9Xih2dMliJYdvcNH/57DxlzFznfa4+Vg9cjyd+PT6DlzP8mZWt7tHsjrHas9ppaWD4/sk2VAlk5PzU+3Glzb21V35bUO1WhZ1bnCz/wUxeMWQzno9YI9V6KYu+8mR289MIhvV92VcUFVaVvN1STXdnbwdaZvlTw1h7X0o1sdD0YuOF5gmILd77Qv0O7yZGgc45ecJCr5QWT0RaOaERSYN+BtcZ7fFSeEpUypqe5hx8JRzbExV3H4ZixvLD9N1iNiUhSHoc0r0zrAhYwsPe+vDnksuWIK4+W2VbCzVHPlfjKbi5EV2SiCgqTfP/0E9++XuBonG3NDfKbvt18lpZiB1x6FSqWiTZs2tGnTJv9Dp29feOMNcHUtlVdZbhQKBZ/1qW3IOfT+6nN8s+UyGq1p+taTwOBmlWji50SqRsfU9ReKLO/rZM2UZ+oAMHPnVS6EP7nJXI3hkX2yDDBTKankZEX3Oh6se70Ni19uQasy9Ix6GlAqFXSu5cGKV1qx7vU29KnvhVIB+6/FMOzPY/T66QD/nr5b6mfKax2q8eWzdVEoYPGRUJYcCcXNtmCzjpUn7xa4vYmfM5vfCqJJZSfDtu+2ly4ljiyG/mM0qOTIvBHNMFcr2XHxPu+tMo1wUSgUfPtcfazMVBy9FcfSo6FF71RGOFiZGZYqZu28ZnTgM6Po2xeaN4e0tFLNDIGUW62Kqw0xKZnMLkZenlIzfTqEhECPHiarUqFQMKVvbcZkX/ff995g4O+HuBVTfCPWJxGlUsFX/euiUirYduE+Oy8WLZSfa+xD9zoeZOkEE1c82clcKyIrX23NnGFNaWDiGGsy0nPkl6GN2ftuR0a29sfaXMWliCQmrjjLM78c5Nr90iWlfqmlHzNfaIg6+34qzJNs1YkwtIWIL1dbC1a80pLu2YbT5+4lcfxWKRJvl3hPmQpLqwAXZg9tjEqp4N/T9/h93w2T1FvJ2Zr3e0heStO2XCYsLs0k9ZaE0W2rYG+p5lpUCpvOmXB2SKGAL7+UPv/2G4SFlbgqc7WSD3vWBGDegVsmu15arZaVK1eycuVKtNoCZpwsLaXErjlERprkuAqFgk/61Oa3FxvjYGVGyN1Eev+0n5Unwso8iWJFoKanvUEMTll/gTTNo2f7FAoFX/evh6utBVfv/zeSuRZGkX2yDHCzK52DgEzRVHK2ZuozdTj0QSfe7R6Ik7UZlyKS6PPzARYdvl2q+75fQx/mDm+ChVrJrZg06nrbY2eRVxRFp2jYezW60DrUKiVzhjelVVUpJ+CE5adJzsgqtPyjkMXQf5QutT348lkpLsqM7Vc5E5ZgknqHt/Knmb8TaRodH/17rtwegvaWZoxpVxWAWTuvmnZ2qEsXablMo4GvvipVVV1re9CqqgsarZ5vt+Y3+CwJmZmZDBo0iEGDBpGZmT+oWh42bpTc7OfONcmxAXrW82LLW+1oUcWZNI2Od1eF8Mby03kSMv5XeatLdXwcrbiXkM6sndeKLO9ia8G3z0lJN/88eIvDN0r+5lqRKVaflHnicLQ25/WO1dg2MYigGm5kavV8tu4CoxceJzq55N93p5oe/DW6ObYWas6HJ1HZxQYfx7z2eDO2Xy2ynjnDm+Bpb8H9pEz+t+Fiidoii6H/MIObVaJ3fS+0esGby0+bxG5FqVQwfWADLNRK9l+LYcVx42ZOlEol7du3p3379iiVpul2o9r442Blxo3oVDaGhJukTiDv7NCff8LNm6WoSsEnfWqhUMDGkAhOhsYVvVMRFOtahoRAUhJMmAAHDpT62Dl4O1qxbGxL3u0eiEqpYGNIBL1m7ef47dKfX0XG2lzN//pJtkDzDtziUkRSkft0ruXBkOaVEAImrzxLUgnfXCsyZXF/P61U5GvpbmfJwpHNmNK3NuZqJXuuRNNj5j52Xy65fWXLqi4sH9sSJ2szLoQnYWkmpTjJ4UJEEsFXoh5Zh72lGT8NaYxCIdkZbS2BLansTVYET5I3WUEkpmfRa9Z+7iWkM6CRDzNeaGiSenNiqdhZqNk+KahI75qy4pfd1/h++1WqutmwY2J707ow9+gBFy7AokXQsWOpqnpv1Vn+OXGXBpUc+Xd868fn9isEvPACrFwJ7u5StOpKlYrerxicvhPPW3+f4U5cGkoFTOhUnTc7VSvX9C1lzauLT7L1QiSNKzuy6tWiv8//ejJXmaePK5HJvPX3aUPE8WEt/fioVy2jIkkXxPWoZF6ad4zIpAxaVHEmPCGNsHgpaKethYo9kzsWuTT6zZbL/L43OyXO20FYopG9yWQkHKzMmDW4IUoFrDl9j7Wn75mk3tFtq9CwkiPJmVo+WlN+y2UjWvvjaG3GzehU1p81zbkZmD8frl0rtRACmNwtEGtzFWfDEthgylmsolAoYMECKf5QVBT07y+lHzEhjSo7sfmtdgxo7INewE+7rvHC3CPlalNW1kx5pjY25ipO3UngbyNmR20s1MwY1AClAlafKtmbq4xMRSLQ0461r7cxOLMsPhJK318OcP5eyTwnq7nbsWBUM4OTTptqbjhbSxGpUzJ1vLb0ZKHG1DlM6lqD2l72xKdl8d7qkGI9l2Qx9BTQ1N/Z4Ob9ydrz3Ikt/UNKpVTw3cD6mKukqdJdlx49jVlW2FmaMTbbduinXdeLvFmKhbd3iZO2Poy7vSWvZed2+3bLZdI1j9GzyMYG1q0DFxc4eRLGjsXUoX9tLdTMGNSQWYMbYmeh5mRoPL1m7WfdGRML1AqCl4MVk7pJzgTfbLlklN1EU39nXmkv9YEP15wjKvnRqSpkZCo6lmYqPu1Tm0Wjm+NuZ8H1qBT6zz7InL03SuTFXMvLnu+fl2ZN/z4exojW/liqJZly/HY80zZfeuT+5molMwc3xFytJPhKNCuO3zH62E+UGNq3bx99+/bF29sbhULB2rVrH1k+ODgYhUKR7+fyZdMYsj5JTOhYjaZ+TqRkannzb9PEH6ruYcfo7LeCb7defqQRc2pqKm5ubri5uZGaalp37BGt/XGyNuNWTCrrzpTBrItOB3/9JdnflIIx7ari42hFeGIG8/aX3A4pPT2dhg0b0rBhQ9KNneXx94dVq0ClgqVLpez2ZUC/hj5sfqsdTfycSM7U8tbfZ5j0zxmTxlmqKIxo5Ucdb3uSMrR8XcQgncPELjWolf3m+sHq8ptRNTUl6pMyBVKWY2VZEVTDja1vBxlCSUzbcpmX/jxKRGLx+0Lv+l6GF8fZwTd4v2egIWTanwdvs/7so8f4Gh52fNBD8uL9zgjj6xyeKDGUmppKgwYN+OWXX4q135UrV4iIiDD8VK9evYxaWHFRqyTFbGep5kxYglGeMMYwvkMADlZmXItKYXUhAbJyiImJISYmxiTHzY2thZqxQdLs0M+7r5l2dgjgvfdg5Ej4+ONSVWNppuK97NAEv+29wf2kks0M6PV6zp49y9mzZ9Hri3GuHTrAzJkwfjw8/3yJjm0MlZytWTGuJW91ri4tz566R69Z+9l7Nfo/8/AH6Z76un89KYnr6XscvF503zZXK5n5QkPMVUp2X45ifnZU7yedEvdJmQIpq7GyLHG2Mef3l5rwzYB6WJmpOHQjlh4z9xeYS6wo3ukWSMdAyWvtj323+LBnrQf/++cMlyMf7bgwsrU/bau5kpllfF98osRQz549+fLLLxkwYECx9nN3d8fT09Pw8zgipFZEfJ2smTZAcvP9Nfi6Sdx8HazMmJCdamDGjqvlFlhuRCt/nG3MuR2bxlpTzw698oo0o7Jxo5S3rBQ808CbRpUdSdPoShx3xtLSku3bt7N9+3Ysi7uM9/rrMHs2mJsmkW9hqFVKJnatwYpXWuHjaMWduDRGzD9G1x/3sfjwbVL/IzNFDSo5MrylHyAtQRvT/wM97fiwl/Tm+vXmSxy68WQ99AqiVH1S5j+DQqFgcPPKbHqzLfV9HUhMz+L1Zad4b9XZYkWsVykVzBzciCquNoQnZrDr0n1ezV5iztIJhv157JGhPJRKBd8/3wB7S+Pzcz5RYqikNGrUCC8vLzp37syePXseWTYzM5OkpKQ8P/8l+tT3ZlBTX4SQsnHHp2qK3qkIhrXyw8fRisikDEP+qseNjYWacWU1O1SjBowYIX3+5JNSVaVQKPi0T20AVp26WyJjQ5VKRdeuXenatWvxhX3udAVarXQ+0YUHNSstzfyd2fxWO0a18cfWQs31qBQ+XXeBll/v4n8bLnL7PxDB+p3ugbjbWXArJpXfgo0LcDqytT/9G/mg0wsmLDvN3fgn29i8VH1S5j9HVTdbVo9vzYSO1VAq4J8Tdxm/5CSZWuNflh2szPhjeBNsLdQcvRVHmkZL3/pSMNno5EzGLzn5SLskTwdLPutb2+jj/afFkJeXF3PnzmX16tWsWbOGwMBAOnfuzL59+wrdZ9q0aTg4OBh+KpnYDbkiMKVvHaq62hCZlMEHa4pncV8QlmYq3ulWA5CS8CWklV5glYThrfxwsTEnNDaNNSbymjPw6adgZga7dkERgrooGld24pkG3ggBX2y8WH5LR2++KQWV7NEDEssud5aDlRlT+tbh8IedmNq3NlVdbUjO1DL/4C06/hDMqAXH2Hs1ulzz3ZUGe0szw6D7W/ANbkanFLmPQqFg2oB61PWxJy5VwyuLTz5eo3oZmTLGTKVkcvdAFoxqjoVaya7LUbyy+GSxVg+qudsxIzsMxaLDobQKcCHQ0w6AQzdimbXr0TZBPep6PfL/uflPi6HAwEDGjh1L48aNadWqFbNnz6Z37958//33he7z4YcfkpiYaPgJK0U6hoqKjYWan4Y0wkwl5YVZdsx4i/vC6NfQh5qediRnaPn1cebhyoW1uZpX2j+YHTJVklpAMkAeO1b6PGVKqb2x3u9ZEwu1kqO34th2oXgBy7RaLZs2bWLTpk2lS33w5pvg5ganTkk52dLKdnbCztKMkW2qsHNSexaOakbHQDeEgD1Xohkx/xhdZuzlr0O3H2lsHZGYXiFnk3rX86J9DTc0Oj2frD1vlMC1NFMxZ1hTXGzMuRCexIcmeDEpL0zWJ2X+c7Sv4caCkZLLfPCVaMYuOlEsQdStjicTu0gv21PXX+StztUxy45hNmvXdXZdKnnAx9z8p8VQQbRs2ZJr1wo3HrawsMDe3j7Pz3+Ruj4OvNddslv4YuPFUifeUykVfJCdh+uvQ6HlNu3/Uks/XG3NCYtLZ82pRxt0F5uPPgILC9i/H3bvLlVVPo5WhpAA07ZcKtb0cWZmJn369KFPnz6lS31QsyZs2wYODtI5DRwopSApY5RKBR0C3Vkwqjl7JndgVBt/7CzU3IxJZcp6aQlt6voLBc6wHLkZS6cfgpmw7FSJ45mUBQqFgi/61cVCreTQjVjWGhlSwMfRil+y8wiuPRPOnwdulXFLywaT9UmZ/yStq7myYFQzrM1V7L8Ww8t/HS/WTOgbnarRrbYHGp2ezzdcYFK3B05Qbyw/bZIXpKdODJ0+fRovL+Onzv7LvNy2Cu2qu5KRpeeN5adLbfzcvoablIdLp2fGjrzTl0qlkqZNm9K0adMyDTFvba42GNr9vPt6sYz2isTHB8aNg3btwAQieXyHANzsLAiNTWPRoVCj9zPptWzUCDZtAisr2LIFhg2TQgk8Jqq42khLaB915ot+dQhwsyElU8vCQ7fp9MNemn21kyFzj/DZuvMsPnybA9di0AsptUmfnw8wfP4xDt+IrRAzKpVdrA3xvD7fcNHoOEKtAlz4pLfkLfP15ktGeaVVNB7X/f008F+9li2ruvDX6ObYmKs4eD2WUQuPGe1IoVQqmPFCQ6q723I/KZMdF+7TrporAGkaHeMWnSgycXJRPFHpOFJSUrh+XVqCadSoETNmzKBjx444OztTuXJlPvzwQ+7du8eiRYsAmDlzJv7+/tSpUweNRsOSJUv45ptvWL16tdEeaU96Oo6iiErOoOfM/cSmahjZ2p+pz0h5l27FpOLvYo1CUby0EWfDEuj360EUCtj0Rjtqez/+a5au0dFu+h5iUjKZNqAeQ5pXNl3lGo1kO1TM61IYK47f4f3V57CzVBM8uQMutuWUiXvbNmmpLCsLXnsNfv21XJohhODA9Rj+OnSbXZejjF6NrOpmw7h2VXm+iS+qckwDkqXT0++Xg1yMSKJrbQ/mDmti1D0khGDyyhBWn7qLk7UZ6ye0pZKz9WNosYzM4+VkaDwj5h8jJVNLc39n5o9qhq2FcV5ft2JS6ffLAZIytPRr6M2ey1EkZUgiqG8Db34a3DDP/Vac5/cTJYaCg4PpWEBqhBEjRrBw4UJGjhzJ7du3CQ4OBmD69OnMnTuXe/fuYWVlRZ06dfjwww/p1auX0cf8r4shgD2Xoxi18DgAPw9pxJmwBP46dJttE4MIcLMtdn2vLzvFppAIOgS6sXBUc1M31yj+PHCLLzZexMfRij2TO2CurphvWDq9oO/PB7gYkcRLLSvz5bP1yq8xq1fDqFFScMZu3cqvHdmkZGq5EZXCtagUrkUlcyMqhf3XYsh8xGyfAsmLpK63A/6u1lR2scHP2Ro/F2t8HK0eS760SxFJPPPLAbJ0gpkvNOTZRj5G7ZeRpWPQnMOE3E2klpc9a8a3LnGeJ5n/JkII9EIaN/RC+tHpBXo96HI+Z293sjbH0qxi9p/Td+IZPv8YyRlamvg5sXBUM+wszYzaN/iK9LwSAoY0q8TyXOlwvni2LsOyQ13Af1gMlQdPgxgCmLLuPH8dDkUB5HSI7wbW5/mmxfemux2TSpcZe9HqBcvGtqB1gKtJ22oMGVnS7FB0ciZf9a/Liy38it6pOMTGwg8/QKdO0KVLqao6cjOWwXOPoFTAxnKaTTMQGyul7aigNP1yJzEpJbNJUSkV+Dha4ediTeVsgdTU35nGlZ1M3MoHCYTtLdXsmNQeD3vjYu+EJ6TzzC8HiEnRFPimK/PfJyVTy+WIJC5GJHExXPp9PSqFjCwdxXG4VCsV1PCwo56PA/V8Hajn40BNLzss1BVDIIXcTeCleUdJytDSsJIji15ujr2Rgui34Bt8u/UyaqWC1gEu7LsmLS3bmqvYNbmD4X6TxZAJeRrE0KHrMUzdcIGr9/MarA5pXtkQpLG4fLbuPIsOh1Lf14F1r7chPT2d2rUl9+OLFy9ibV32SwDzD9zifxsv4u1gSfC7HU07O/T++zB9OrRoAYcPl3rZ7PWlp9h0LoLmVZxZMa7lIx+A6enpdMkWYDt37sTKyqpUxy6Uq1clQ/FXXy2b+otJaqaWOlO2AWBppqS6ux3VPWyp4WFHDQ9b/F1s0AtBWHw6oTGphMalcSc2Tfodl1ao/diswQ3p19C42Rtj0er09J99iHP3EulU050/RzQ1WtQcvRnLi/OOotULPupVk3FBASZtW1nw2PrkfwghBBGJGVwMT+JSjviJSOJWZBzh814DwHvMbJRmxQtiqVSAUqFAW4ByUisVBHpKAqmujwP1fR0I9Cw/gXT+XiIv/XmUhLQsGvg6sGh0CxysixZEQggmLD/NppAInG3MMVMpuJ8kvST1ru/Fr0MbA7IYMin/dTEkhODjtedZdjS/e31NTzu2vh1UonpjUjJpP30PqRodvwxtRMcAB2xtpSW3lJQUbGxsStVuY8jI0hE0fQ9RyZnMGNSAAY19TVf5/ftQpYqUAX7TJijG0mtB3I1Po/MPe8nU6vllaCP61PcutGxqamrZX8vISCnTfXQ0vPOOJPzK2ZgzOSOLozfjqOFhh6+TFUql8QJUrxfcT84gNDZHIKVyJiyBg9djcbAyY/vEIKNnb4zl6v1k+vx0AI1OX+xZ1kWHb/PZugsoFfDX6Oa0q+5m0raZmsfSJ/8D3IlNY/P5CPZdjeZiRBIJafmjKOs1GYT9OBCAr9adomEVTwI97bC1UKNUKFApFagUCpRKabYz7zbpnhBCcC8hnfP3Egm5m8i5e4mcv5dIfAHHM1NJM0itqrowvJU/lV0er63axfAkXvrzKHGpGur62LN4dAucbIqOkJ+m0TJg9iEuRyZT1c2Gm9EPPMoWjmpGh0B3WQyZkv+6GALpxvl++xV+3ZM3eq4COPd5d6ON2x5m5s6rzNx5DT8Xa9a90hQnB+n6Pc7B8tc91/lu2xVqe9mz6c22pl1yePdd+P57aNoUjh0r9ezQjzuuMmvXNbwdLNn1TodC7UW0Wi0bN24EoE+fPqjVJft+HokQkgD64APp78GDYeFCKbTAf4QsnZ4B2bM3HQKlWCimXpLKmc63s1CzfVIQXg7GzZgIIXhvVQgrT97FwcqMDRPaPvaHVHF4LH3yCeVmdApbzkey+VwEF8LzZjRQKRVUd7eltpc9tb3tqeVlT2V7FZU9nAHTjpXGCCSFArrV9uDltlVp5u/02JZor0QmM/SPI8SmaqjlZc/SMS1wNkIQhcWl0efnAySmZ9Hc35ljt+MA8Ha0ZNekDmRlpMpiyFQ8DWIohz/23eSrh7JvLx3TgjbVSmbzk5qppf13e4hJ0fBxtyqM6yx5qj1OMZSQpqHVtN2kZ+lYNqYFrUt4LgUSFSXNDqWlwYYN0KdPqapL1+joMmMv9xLSeatzdSZ2rWGihpaCJUsko2qtVkr0+u+/4OhY3q0yGdfuJ9P75wNotHrTex4iLZcN/P0wZ8ISCKrhxl+jjBdcGVk6Xph7hLNhCdT0tGPNa62xNpdFxpPAtfvJbD4XyZbzEVyOfBDDTaVU0LKqM93reNK4shPV3G3zGTk/zlm2HIF0NiyRlSfDCL7yIDVPfV8HXm5bhV71vAxBDsuSa/eTGfLHUWJSMqnpaceSMS1wNcK79p/jYby3OgQrMxVudubciUsHYHz7qoxv42P087tiutjIlAtjg6oyfWB9cg/Vu0sR3dPGQs1b2XFXyisqtaO1OQObSMtj80wd0M7dHSZMkD5PnVrqqNRW5io+6iXFm/l9742Kka/qpZdg82aws4PgYCnG0l0TB7MsR6p72PFut0AAvtx4kbA4015ztUrJ9883wFytZN/VaFYcNz6ivaWZijkvNcHV1oLLkcm8u+rJjVD9X0cIwaWIJGZsv0KXGXvp+uM+ftx5lcuRyaiVCtrXcOObAfU49lFnlo5pyfBW/tT1cSh3by+FQoGvkzW963uxcFRzdk4KYkjzyliolYTcTeStv88QNH0Pv++9QWIBS2ympLqHHX+Pa4m7ndTfX1l80qgsAs839aVFFWfSs3S42VmSs3o+Z99NrkcZH0xYnhkqgqdpZiiHrecjGL/kFAJwtTXnxCddS1xXlk5Ptx/3cSM81rAO/rhtCm7FpNLph2CEgJ2T2lPNvfjhAgolJkZK1ZGaCuvWwTPPlKo6IQSD5x7h6K04etXzZPaLTfKV0el07N+/H4B27do9nsSYZ85Az56SLdGwYZAdy+u/gE4vGDL3CMdux9GiijPLx7Yslj2SMeTMutpaqNn6djt8nYxf8jp+O44hc4+g1QsmdqnBW12qF73TY6Zc+mQFIDEtixUn7vD3sTBu5oqCbK5S0q66Kz3redG1lodRRsE5PDwzpDK35EJ4EmfDErgSmUxalo4srR6tXo9GJwr8nKUTZOn0mKuUBHraUcfbnjo+DtTxtsfdrmjbuNiUTJYevcOiw6EG701rcxXPN/FlVJsq+LuW3fh9IzqFZ389SHKGlpfbVjEkti5qn54z96PR6elb34sNIREA2CgyufjNc/IymSl4GsUQwD/H7/De6nMALB3TnDbVSm7AuflcBK8uOFRuYghg7KIT7Lh4n6EtKvN1fxPH8pkyBSIipAzwlUu/zHIpIoneP+1HLygwNEG5Gavevi150f3xh0kicFckQmNT6TlrP2kaHZ/2qc3LbauYtH6dXjBozmFOhsbTppoLS15uUSx7jCVHQvlk7XkA3u0eyOsdq5m0faXlaTOgvnY/mQWHbvPvqXukZ0fuN1cr6VDDjV71vOhUy91oN/HcaHV6zt6+T9NqkgNF12+3cTNBW6BnWElxs7Ogrrc9dbwlcVTH24FKzlYF9sdMrY712Wlicpb7FAroUsuDCR2r0aCSo8nalZvtFyIZt/gkAL+92Jie9YrOGpFjo+psY44CiE3VoM9MI2zmIFkMmYIcMXThVgS1/T3LuzmPldeWnmTzuUiqutqwfWJQiQPWCSHoM3M3O74ajYO1GaGXQx6La31ujt6M5YW5R6TcUR90Kr9Iz0by6drzLD4SSk1POza+0TbPtU9LS6NZs2YAHD9+/LFfSwNCSAEan3uu3D3NTEGO4LBQK9n0ZjvTziAiGdL2+mk/GVl6vny2Li+1LF7sq5zYRQDvdK3BG50rzgxRhemTZYheL9hzJYoFB29zIFfKlJqedoxs7U+fBt7FdjaJTMzg6K1YQu4mcjYsgfPhiaSlpRH51yQAPEfMQGlmiautBQ0rOVDH2wFHazPUKiXmKgVmKqXhs1qpxEytxEypwEytRK1UkJqp42JEIhfCk7gQnsSN6JQCV/PtLNXU8bYnqIYbQ5pVzufNJYTg0I1Y5u2/yZ5suyKlQkop9FbnGmUS1Hba5kvM2XcTWws16ye0oWoRAYAztTq6zdhHaK6lblkMmZAcMVTp7X+o5utGhxrudAh0o3kV53Jf7y1r4lM1BE3fQ3KmtkSDd25yAguqlQp2TGpPlTKcZi0IIQTP/HKQc/cSmdS1hiGHVEUlPlVDh++DSUzP4n/96jC8lX95Nyk/v/wCb7whBZ1ctAie8Jx/QgiGzz/G/msxNPB1YPX41iaPWJ0T+8raXMW2t4OKnXIjxzsS4O0u1Xm7SwUwsv+Pk5yRxcoTd/nr8G1CY6UHrVIBXWt7MKpNFVpUcS7WLF+aRsvW85GsPnWXQzdi84kTWws19XwcaFDJkQa+0m8vB0uTeHalabRcikjmYngi5+8lcSEikauRKWhy2eZYqJUMaOzL6Db+VPewy1fH9agUftp1jfVnwwGo62PPzBcaUs09f9nSoNXpGTrvKMduxVHT045/X2tTZET2Y7fiGDTnsOFvWQyZkBwx5D9pJcLsgVuslZmKVgEudAiUBFJFdnstDQsO3uLzDRdxtjFnz+QOOFgVf+o3h1ELjrHnSjS963nx64uNTdhK41h35h5v/X0GV1tzDrzfyfRi9uxZ+OILyej42WdLXV1OrBkHKzOCJ3cwKvbGY2XBAsmAPC0NXF1h/nwpv9kTTERiOt1+3EdyhpbJ3WowoZNpRbNeL9mEHbsdR8uqziwbU3z7pBx3fYA3O1dnYpfqcpTqMuBmdAqLDoey8kQYqdkZ1u0t1QxuXplhLf2KJWT1esGRW7GsPnmPLecjSMuVsb2ejwONKjvSwNeRBpUcqOpqa3KbtUeh0eq5HpXC6bB4lh+7w/l7D9z/21V35eW2VQiq7pavTZtCIvh47TkS0rKwUCv5qFcthrfyM2lfjErKoNdPB4hJyWRAYx9+eL5BkfV/sDqEv7MdFWQxZEJyxNCdyBjORWkIvhLF3qvRhmiXOVR1taF9oBsdA91pU80V1WPszGVJlk5Pz1n7uR6Vwpi2VfjECGO2wrgcmUTPWfsRAta93qbM1psLI0unJ2j6HiISM5j+XH0GNSt+qpFH8skn8NVX0LAhnDpV6rhDWp2ePj8f4HJkMsNa+vHFs3VN005TcvkyDBkiGVgDvP46fPcdPMERiP89fZeJK85iplKw9vU21PF2MGn9obGp9Ji5n/QsHZ8/U4cRrf2LXcfcfTf4erMkiN7oVI1JXWvIgshEnAlL4Jfd19h5KcqwrZq7LSNb+zOgsU+xwhvcjE5hzal7/Hv6HvcS0g3b/VysGdDIl/6NfCrUi7QQguO345l/4BbbL0Ya0n8EuNkwqk2VfOd/PymDySvPsj87HUa76q58/3wDkwYwPXwjlhfnHUEvMCr8RWJaFp1nBBOTogFNGqE/ymLIJBRkQC25USYTfDWKvVeiORkan8fArbq7Le92D6RrbY//xAAVfCWKkQuOo1Yq2D4xqMi124LIsSmITMrAZtB0ejfy57eX8ntKlTVz9t5g2pbL1PCwZdvbQab9fmJjJc+ylBSTeJYBHLoRw9A/jqJUwKY321HLy5709HSeya57/fr15Z/6IDMTPvoIZsyQ/q5bF/7+G+rUKd92lRAhBK8uOcm2C/ep6WnHugltTJ6uIGfWz8pMxZa32pXIO2fe/pt8uUmKC/Z6xwAmdwsst/GmwvXJEnDsVhw/775meLArFNAp0J1RbarQppqL0dc2MS2LDSHhrDl1l1N3Egzb7SzU9GngxXONfWniV3hAw4pifxUWl8bCQ7dZcTyMlEwpM7yDlRlDmldmRGs/QwBRIQSLDofy9eZLZGr1OFqb8XX/evQywujZWHJmQ83VStaMb01dn0e/oKw/G86by0+jzErn1oznZTFkCozxJkvKyOLQ9RiCr0Sz5XwkielSPIYmfk6836Mmzas4P84mlwk5S1yda7rz58hmxd4/t7dJpYmrUFtYEjy542N/K0pMz6L1tF2kanQsGt2coBomTnPw4YfwzTfQpAkcP17q2SF4YMjeooozf49rSVpaWsX03Nm2DUaMkMINHDwo5W17QolJyaT7j/uITdUwvkMA7/eoadL69XrBi/OOcvhmLM38nVgxrlWJlkb+PHCLLzZeBCRj1ve6l48gelK9yYQQHLwey0+7r3HslhS9WKVU0L+RD691CCjWi19UcgZz9t5kyZFQMrPz4CkVEFTDjeca+9K1todRS/PGXEshBInpWcSkZBKVnElMioaY5EyiUzKJSc4kJiWT2FQN9pZmVHKWEhPn/imOq39yRharTt5lwcHb3Mk2TlYpFTzTwJuPe9cyBEa8HpXCxBVnOHcvEYABjXyY2q9OibzqHkavF4xbfIKdl6Ko5GzFxgntHnkOQghGLjjOnnOh8jKZqSiua31iehZz9t5g/sFbZGRJN0Snmu682z2QWl5PrjvyjegUuv+4D61elEhE5L7BB88O5nBoCiNb+zP1mcc/e/D5hgssOHiboBpuLBrd3LSVR0dLs0NpabBxI/TuXeoqc+ct+3VoY7rXdmPFihUAvPDCCxUr9UFUFOzdC88//2Dbhg3QsSPYmtY7q6zZej6SV5ecRKmAla+2pomfabPbh8Wl0WPmPlI1Ot7rEchrHUrmLp9j1wfwSlBVPuhZ87ELIq1WW3H7ZAEIIQi+Es1Pu69xOnv2xkyl4PmmlRjfPqBY9kAFiaCannY819iXfo28jYrrk5uHxZCVlTXn7iWy50oUB67FcDc+ndjUTDRagTbBGm2cDfpMNUKrQp+lQmhViKzsH6FAZZOJyjYTlU0GattMVHYZONiDn6skjHLEUquqLo8Ufzq9YNel+8w/eIsjNyXh6GJjzrfP1adLbQ9Asj/6adc1ZgdfRy/Ax9GKHwY1oGVVl2Jdg4JITMuizy/7CYtLp0std+YOa4pSqTBE0X44dldYXBqdvtnC9e8GymLIFJQ0ztD9pAxm7brGiuNh6PQChQKebejDpK41iu1BUlH434aLzD94i+rutmx5q12xPG1y3+BbT9/ilb8vYG2u4vAHnYv1lmIK7sSm0eH7PegFbHs7iEBP03pB8N57kt1M8+Zw5IhJZody8pb5OFqxc1L7Ir0qKgwXL0K9euDmBp99BmPHgtnj/b5Lw6QVZ1hz+h5VXG3Y9GZbk6fDWHH8Du+vPodSAUvG5I8pZSw5y24AY9tV4aNetf4TS/SmRq8XbL94n1/2XDMYCluolQxpXplX2lc1OnccSCJo7t6bLDkaanjxbVTZkbe71CCoumuJr3/usXLCX4c4FJpC1H0Fmih7NNF2ZMXYkhVjR1aMHUJbsnFAYaZF7ZCOhW8clpVjsawUh8o2kyZ+TjzfxJfe9b2we8SMTsjdBN5bFWKIPTSkeWU+6V0Lm+zQAidD45i44ix34tJQKGBcUFXe616z1La05+8lMuC3Q2i0et7rEUiHGu5MWX8eO0sz5hewYjFz8xkm9m4kiyFTUNqgizejU/hhx1U2ZUfENFMpeLGFH290qlbhY908TGJaFh2+30N8WlaxDT9z3+DJyckMnHeKy5HJfNCzJq+2DyijFhfO+CUn2XI+kkFNfZk+sIFpK8+d0X7rVujevdRVpmt0dP4hmPDEjCfLpXr/fim32Y3sJMDVqsHHH0uxiexMLELLgMT0LLr/uI/IpIwymckUQjB5ZQirT93F1dacjW+0w9OhZManiw/f5tNsQfRy2yp80lsWRDno9IJN5yL4dfd1rtyXHuDW5ipeaunHmHZVijV7U5AIaljJkYldSy6CcuxQ91yJYmdIKGvf7gKAffMzpN/2JyuqYBsZS0sIDARnZ7C2zv+jUEjDUXi4FBc2PBwSEgpug5lzChaVYrGsHIdD9Vj6Nnfl+Sa+tKzqUuASbkaWjh+2X2HegVsIAf4u1sx4oSGNK0szqCmZWr7YcJEVJyTPrgGNfPju+QalFkTLj93hwzXnDGmjBJKX35nPuuVrZ1x8Ai7OTrIYMgWmikAdcjeB6VuvGIJ12ZirGBtUlVfbBzxR8YoWHwnl07XncbSW3L0drY1z93546nfzpTjeXRWCp70l+97rWCZBux7FydB4nvvtEOYqJQc/6ISbnYmF6ddfSx5Vr7wijUomYGNIOBOWncZcKZjR2QEPe0saN25c8VMfaDRS1Or//U9aRgPp2jz7LMyaJc0aVWD2XY1m+PxjAKZP9oskdAf8dohLEUk08XNi+diWJb4fckeqHtysElOfqfNYxhedTsepU6cAKlSfzNLp+ff0PX4LvsGt7HQZdhZqRrT2Z3TbKkZlRs+hLETQrZhUFhy8xfYL9wmPziL9lhtp12xJu5hjo5YC2KBQCGrWVFCvnuSfkPNTtSoU91KnpUmi6Px5Kd3g3r1SVJA8SkCpx7pGJHYN7xDQII2BTXwZ2MS3wFWNQzdimPzPWcITM1ApFbzesRpvdKpmSO667sw9Jv1zFp1e8EwDb2YMalDi+F16vWDliTA+W3/BsCSZw5a32uUzRSnO81sWQ0Vg6nQcB67F8O3WywYjs/q+Dvz+UhO8HZ8M7wutTk/vnw5w5X5ysd6UHxZDagtL2n67h+jkTH58oQH9G/mWZbMLpP/sg5y+k8CbnaoxKTtZZ0UmJ2/Z4Svh5ZrapMQkJ0uBGhcuhKtXpdhE4eEPls3u3QMPDygLexOtVkowGxoKiYnQoUOxUop8/O85lh69QxVXG3aUIhp7YdyOSaXvLwdIztAyqo0/U/qWfAZq2dE7fPSvlEqnmrstM19oWKT3TWmpaAbUGVk6Vp4I4/e9Nw0u7Y7WZoxqXYWRbfyLFS8tOSOLX3Zf56/Dt/OIoLe7VKd9DbcSiaCQuwn8vvcGW85Hoom2Jfm0HynnfREaNZAKSNdywIAUnn3Whh49yvadIT5emsTduxd27hSEhDw4J7VTCrYNwrCtF0abunYMalqJvg2882SyT0zP4rN151l3RgrE2MDXgR9faGiwQdpyLoI3lp9Gqxf0rufFzMEN8+xvLNejkhk05whxqZp8/ysoOK0shkxIWeQm02dP2X627jzxaVm42prz69DGtDCBkdnj4OD1GF6cdxSVUsHWt9oVGKX0YdLS0qhdW4pRdPHiRaytrQ3pBep427PxjbaPfUp/U0gEry87hZO1GYc/7Fx2b9B6vTRfbYLzuxieRK8ZO7j7x2u42llw8+rlJy/1gRBw4gTcuSMtl4F0jfz9JQP0unWlWE0NGki/69cvWrgIIa0D3LghiaxataTtV69KEbLv3ZOOkUO1arB+/YNyRZCSqaX99D3Epmr4ZkA9BhcR66Qk5M7H9POQRvRt4F3iuoKvRPHuqhCikzMxUymY2LUGrwQFlFn8s4Lu7/IgNVPLsqN3mLv/JtHJUiw4V1sLxgVVYWgLv2Kly9DrBf+evse0LZcNyUpLI4KEEBy4HsPve29w4Gos6Tc8SD7pR0boA5UTEAC9eqXxzz+1sbQsv2t5+jTMmQNLlwpSUrLPU6WTZosah9KomY7pz9Wnnm9ekb3+bDif/HuOpAwtVmYqPu5dixdbVEahULD9QiSvLztFlk7QvY4HPw9pXKIZ0JvRKQyff4y78el5tvep78UvQ/MG85XFkAkpy0StYXFpjFt8kksRSaiVCj7rW5thLU0bwbOsyEl8GlTDjb9GNStRm+NTNbT6ZhcZWfoCE5KWNVqdng7fB3M3Pp2v+9djaAvTP+BYs0ZK5DprFnTqZJIqcwzZKzlbsf3tJ8iY+lFcviwZnCcnF/z/CRPg55+lz+np0K2btNSmUkFYGNy8KW0HKUXITz9Jn2NjJXEE0gxU5crSMaKiJIG1aRO0bWtUE3Pc2D3tLQl+t0OZiOdvt17mt+AbWJurWD+hDf4uNkQkZpTI6SIuVcNHa86x9UIkAM39nflhUIMn1oHjUSSmZ7Ho0G3mH7xFfJoU2sTbwZJXOwQwqGmlYn9X5+8lMmX9BU6GxgNQxdWGT3rXolNN92KPdVqdni3nI/l97w3O3Uoj+UxlUk77oU2UvgelUgpJNmGCNERUpOE/OVkKGTZnDpyUdDpODe9h3/0MSgWMbVeVt7vUyDMGRSSm884/Zzl0IxaAjoFufDuwPu52luy6dJ/xS06h0enpUsuDX19sVKIYXlFJGYxccJyLEQ+iZbvYmHHik655vh9ZDJmQss5an67R8d7qEDZk53kZ1NSX//WrW+HtiG7HpNL1x71k6QQLRjajY033EtXzydpzLDlyh0413Qv0Bihrch5wAW427JjY3vRh8CdMgF9/hfbtpQV6E5CSqaXrjL1EJGbwWocA3jNxDJxyQ6+XRM2ZM5IRw5kz0s/duzB+PMyeLZWLiSl4zUCplMTO0KFSJHCQZoyOHAE/P/D0lMpERcHAgZKIOnbM6PWHjCwdnb6XjNg/7lWLsUFVTXHWedDq9Ayff4xDN2Kp6mZDgKsN6Vl6lowpWcwmIQQrT97l8/UXSNXosLVQ8/kzdRjQ2OeJeOkqivtJGSw6fJtFh0JJzg4M6O9izWsdqvFsI59izzwkpGn4fvsVlh29g15IaZfe6FyNl9tWKfZDOyNLx6qTd5m77yahURkkn6lM0uHq6NIkOyVnZ8m58tVXpUnRkqDV6TkfnsTliCRSMrWkZupI02hJ1WhJy9SRkqklTaMz/J2p1eHnYkNtb3vqeNtT28sefxcbo8a9kyclUTRwqIYNERcMzyw/F2um9a+Xx5ZOrxfMP3iL6duuoNHq8XawZNnYlvi72hB8JYpxi0+i0erpGOjGby81KdHzLjkji1eXnOTg9VjDtr2TO+CXK4CpLIZMSFmLIZAGrD/23+SbLZfRC2hQyZE5LzUpsVfJ4+KrTRf5Y/8tGlV2ZM341iU2IOz0QzBCwM5J7U2eKbwokjOyaD1tN8mZWuaPbEqnmh6mPcDdu9Lct0YjiaH27U1S7bYLkbyy+CRqpYJNb7YzfXiAikRsrHT9chLBZmRIMzrp6dJ2Hx/pGvv5Ge+2r9FI9kq5n0JabZH2Sv+cCOO9VSE4WZux772Oj3Q/LikxKZn0mrWfqOQHKX9Wj29FE7+SB2+9E5vGpH/OcCJ7pqN3PS++6l/XaAeIioQQgmO34lh0JJRt5yMN0f8DPex4rWMAvet5FdumS6cXrDgexnfbLhtmlvo28OajXjWNcrfP1Oq4F5/Onbg0bsemsvPifY7diidTqyf1ojfJB2qiSZDqqVEDPvgABg8uftYaIQTXolI4eD2Gg9djOXorluQMbfEqeQhrcxW1vB6Io9re9tTwsCtSoOy6dJ9P1p4nIjEDgBeaVuKj3rXy2GNdiUxm/NKT3IxOxcPeguVjW1LVzZYD12IYs+g4GVl6gmq4MXdYyQSRRqvntaUnDalTXmpZmS+frWf4vyyGTMjjEEM57L8WzYRlp0lMz8LV1oLfX2pMU/+KG706KjmDtt/uQaPVs2Jcy0faPKWnpxMUFATAvn378oTrz1lyG9K8MtMG1CusijIjR9S1DnBh2diWpj/A+PHw++/SHPiuXaWuLiMjg8GDB3MmLAHR8S2aBXjwzysli2Ask838+ZLH25o1D0RXAWh1errP3MeN6FTe7FydSV1NH+IgNVPLC3MP50uYufjl0kX01ukFv++9wY87rqLVCzzsLfj++Qa0q156y9ycPgnw999/Y2lp+he5NI2WtafDWXT4tiG+DUjLfy+3q0LXWh4lugdO3YlnyroLBqeWGh62fP5MXVoFFD6ehcWl8dOua9yJSyMsLo2IpIw83lhCQMYtVxL31iIzSnpueHnB1KkwevSjNffDY2VMuuDQDUn8HLoRa7BfysHeUk3Dyk44WplhY6HGxlyFtYUaWwsV1uZqbC3UWJursLFQo1IquB6VwsWIJC5kzyg97JUFUoTp1gEujG5bhfYFJGnNITkji2+3XmbJkTsAuNlZ8EW/OvSo++Aeik7O5MV5R7h6PwU3OwuWj21BNXc7Dt+IZfTC46Rn6WhbzZU/hjct0ZK/Xi8Y+PshTt1JwMpMxYlPuhjiHcliyIQ8TjEE0hvcuMUnuByZjJlKwdRn6vBiC78yP25J+ejfcyw7eoeOgW4sGFV4NOdHeZscuxXHoDmHsVArOfRBp8cef+leQjpB0/dIsUjebGvyxJzcuSPNXGi1cOgQtGpVqupyX8vA9/8lAzOjEhjKFEJqqmRQHRkpzRSFhDwyBtKWcxGMX3oKG3MV+97raNL+mpSRxagFxw22KrlZPd40UbDP3U3krRWnuRktuZq/2KIy44Kq4udScg+wsvQmuxWTyuLDoaw8GWaYBbEyU/FsIx+Gt/IrcWT/uFQN0zZfYuXJu4Dkcj+xaw2GtfIr0tNJq9PT/rtg7iWkIwTokiwROiVqxzR0yVbEbq1Hxm1JZFpbSzmc33rLuCgbua9l6y82cS8l7yPa0kxJM39nWge40qaaC3W8HUpsGK/V6bkVk8rFiCQuhksC6UJ4omF2DB4kaX2usW+hYuX47TjeXx1i6FM963ryeb86hvhNsSmZvDjvKJcjk3G1NWfpmJYEetpx7FYcIxccI02jo2VVZ+aPbFaiwKYZWTpaTttFQloWr7YP4IOekumALIZMyOMWQyC9Ab27MoRN56RAjUOaS/FCTJ0s0hTczl7m0ouC4zzk8KjBUghBv18PEnI3kYldavBWl+qPpe25eWP5aTacDWdAIx9mvNDQ9Ad4+WVp9qF3bylNRynIyspi4cKFAOiqBfHNtuvYW6rZ9U4H08dLelq4dg26dpVc76dMkV7hCyF3fx3dpgqf9a1tsmb8e/ouH645Z3Dhzk3Lqi78Pc40M5fpGh3Ttlxi0eFQw7agGm4MbV6JLecjGduuarHc8XP3yZEjR2JWyijjGq2efVejWXwklL1Xow3b/V2sGdbKn4FNfIvlHp8bISQvsS82XjQ89Ac28eX9HjWNvn+EgGdHx7N9jxalZRaOHS6jtk8n+WQV4vcGgk4aq595RrrtXYx0FL4Smcyv2y/w8wjphanSxFWYWVrRsJIjrQNcaB3gSmM/xzJ9FgghuB2bxpIjofmStA5tUZnhrfwKXDrMyNLxy+7r/L73Blq9wN5SzfSB9Q2zRPGpGl768ygXwpNwtjFn6ZgW1PKy52RoHCPmHyclU0tzf2fmj2pWLK+/HHZdus/Lf51ArVSwbWIQAW62shgyJeUhhkDqkL/vvcn0bZcRQhqo5g1v+tiDExrD68tOsSkkgmcbejNzcKMCyxT15piTZdjV1pwD73d67AbkZ8MS6PfrQdRKBYc+7FTsfEJFcu0a1KwpGQmfOye5j5sArU5Pv18PciE8iX4NvZlVyPWXMYKVK2HQILCxkVz0PQq3H9t/LZphfx7DXKVk9+T2+fIilYaIxHR+2H6V1afu8vDovOrVViZdOj90PYY5+26y71p0vmM1r+LEW51r0DrA+IztpSE6OZM9V6LYfSmK/deiSdXoAMm7qmOgO8Nb+RH0iCUbY7gTm8bHa88ZMtPX9LTjq/71SjTj9srENNbcvIxNrQg0UXbEbGqQJ1L0Tz9Jjo1FIYTgyM045uy7QfCVaPSaDEMcsX+PXqdLg+KFBDAlyRlZrDxxl4WH8iZp7VXPi5fbVqFhJcd8+1wMT+KDNSGE3E1EoYCv+z+YtU5My2LY/KOE3E3E0dqMJS+3oK6PA6fvxDN8/jGSM7R0re3B3GFNStTnRi88zu7LUbSr7sqi0c1JTk6WxZCpKC8xlEPwlSjGLzlFepaOZxp4M/OFhhXONuT8vUT6/HwAlVJB8OQOBbruFiWGck87l1Ucl6LICcJYmqSZj+Srr6BRI+jZ06T+syF3E3j214PoBSx+uTntqrsRk5JpyCYtYyRCQIsWcPx4Xlf+AosKhv4hZZ1/vokv3z1v4pQuSA+VaVsuGR7cAL5OVux/r6PJxcmd2DSWHgtl2dE7+Qxyq7jY8E73GvSs62XSOEVCCC6EJ7H7chS7LkdxNiwhz//d7Cx4tqE3w1r6U9mldGJTq9Mz78AtZu68SkaWHnO1krc6V2dcUNViB//T6wXLjt3hmy2XSU7Vk3CwOklHA0BI10ahgCVLJKfGR6HTC7aej2TOvhuE3JXslZQK6FzNgXlj2gEVI4AlPEjS+ueBWxy9FWfY3riyI+90C6TNQ1HZtTo9n62/wLKjki1R7rRLielZjJh/jDNhCdhbqlkypgX1fR05fSeeF+YcQaPT81GvmowLKn6aptsxqXT7cR8anZ45w5rQqpK1LIZMRXmLIZAE0Zi/TqDVC0a18eezPrUrnFvsS/OOcuB6TKFRqY2xKfhj302+2nyJau627JgY9NjP8Z/jYby3OgQ/F2v2vNOhwonOHPR6PZcuXQKgVq1aKJVKpq6/wMJDt/FztmZcUFWmbbnM7nfa425fsT0SKxx79kiG7mq1FPsooPAB+fSdePrPPoRSAdsnBlHNvWw8+vZejebDNSGEJ0heO0OaV2LagPplcqxlR0P56N/zBf7P3lJNh0B3+jbwopq7HT6OVoaZ6oL6ZG40Wj1RyRlEJmZwLyGdIzfj2HM5isikjDzl6vk40KmmO51ruVPX28Ek92DI3QQ+WH3OEJOmdYALX/WvRxXX4ouMm9EpvLPyLKfvJKCJsiN+fVMyYvMKtUWLYNiwwuvIiY79x/5bhtkWC7WS55v6MqZtVdysqFDRvB/m/L1EFhy8zYaz4Wh00nLuqDb+vN+jZp4ZfSEE07dd4bdgKS/hq+0DeL9HIAqFguSMLEZm28bZWapZNLo5jSo7GdLJqJQK/h7XkmYlmAX9ftsVftlzHR9HK9aMaYSnm7MshkxBRRBDAGtP3+PtFWcAeLd7IK93fDBzodHq0QtRrrGJcqJSW5opOfh+fiNoY8RQUrabe0qmlgWjmtExsGSxi0pKmkZL8692kZKpLZMcVHnQaMC8ZG7NBV3L5IwsOv2w1xB1F+CLZ+syrGXFNb6vsPToAbt3w59/PvqpBoxbdILtF+/Ts64nv73UpMyapNML3vr7NBuzEz6XVZyjH7Zf4efd140qq1SAl4MVlZ2t8bKBH1+S7FxmbD5LvEZJRKIkfiKTMohJycy3DAeSIXTb6q50rulOx5rueJhQvKdmapmx4yoLDt5CL6R0HB/3qsXAJr4letFad+YeH605R0qmDk1IVWJ2B6LVKFEoBCJ7VujPPyVvscI4fCOWD9eEcDtWEkFO1mYMb+XP8FZ+hjGzoqU2KYyo5Ax+2nXN4ElW3d2WHwtI/fL73ht8s+UyIGW3//LZuqiUClIytYxecJxjt+OwtVCzcFQzmvg58faKM6w7E46HvQWb3mxX7BnudI2OLjP2ci8hnXEtvfi4fxOjnt8VzwClAiOEQK8vH+34bCMfPu0jGWp+t+0Kfx+TOuDV+8n0+/UgOy7eL5d25dA6wIV6Pg5kZOn5K5dRZm5cXV1xdS1cYNhbmjG4WSUA5u2/WSbtfBTW5mr6NZRSICw/HlY2BxFCSljq6/sgk3sJePhangyNJzNLl6fM9uzIwzLF5Oef4cqVIoUQwOTugSgUsOV8JCF3E8qsSSqlgl+GNubNTtJL0FebL7H4SMH3WWnImal4GEu1Enc7C3wcrXCzs8BcpUQvJE/MwzdjWXXyHkore5RW9vy44xqLDoey4+J9zt1LJDpZEkLmKiWVnK1o7u/M8FZ+LBzVjNOfdeWP4U0Z3LyySYXQnitRdPtxH38ekIRQv4be7JzUnuebViq2EMrI0vHRv+d46+8zJCUq0W5rReTWWmg1Svr0ge+/l+r7/ffChVBSRhYfrjnHkD+OcDs2DQ97C/7Xrw6HPujMxK418r08FjVWVgTc7Sz58tl6LBjVDDc7C65FpdB/9kFmB19Hl+s5+Wr7AKYNqIdCIWWcf/Pv02i0ekkAjW5Gq6oupGRqGT7/GMdvx/N1/3pUc7flflImb/99Jk9dxmBlruKT3lKanT8P3jJ6P3lmqAhyZoaqvbsKncoSvZBcDRtWcqJhZUcaVXIk0NOuREnnSsL0rZeZHXwDpULygFh7JhyNVl9gXpbHTU6uL0drMw6+38kQ66E43I1Po/13wej0gs1vtqOWlx0XwpOo4WH3WIzHc+yfzFVKjnzUuVhZrY2md2/YvBnGjJFi25SS34Jv8O3Wy/m2qxRw8tOuT2RgvSeJSf+cYc2peyaJBVQUDy89fP98AwY2MV2S46F/HCElU0sNDzsCPeyo4WlHDQ9bPO0t84gIIQTRyZnciUvjTlwaobFSvJ3olEzc7CzwcrDE08EKL3tLPB2kH2dr8zJfeo5OzuR/Gy8aoiP7Olnx5bN1/8/eWYdHdXVd/DcaVyJAFHeCuzsU15YCxUoptFhbWqi7UaSFlqKltFCKtri7BQhOIAHi7p6M3e+POzNJIDYToX2/rufJQ5iZK7lz7j377L32WvQwM8sckpjFrN8DCIxJJy/CmZwjbUhLVKBUwjffwJw5oNXCzp0wblzR+zh6L4739twmLl3M2r7Y3pu3BzbEvhIEO58VkrNULNp1i8N3xUV5UdYv+2/FMG/bddRagW71XVk9oRXWSjk5Ki0v/3qVcw8TcbRWsO/1LuSotAxdeZ4ctdYsPS9BEJi43p8zd8OJWD72vzJZRcAQDHnN+xOpRdEkPgu5lGYeDrTwcqSFtyMtvBzxcLSqFM6LIAjM+eOG8WY3wEYp49r7fZ9pqUyrE+j93SlCk7J5f3BjpnWpZdZ+XtsSwL5bMTT1sEel0REUl8mVd/tUWdv44B/Ocicqnfeea8T0rhVfiuDiRejUSVRLfvhQtJAoB1KyVMz/8wanHiQ89d53Y/wYVYGT5f87XLsmdgC2Ld4qJiI5m17fnUKtFSq/vIr4DPh47z1+uRCKVALfv9CSwc3NN3V9ct//ND5iWaDTCfx5NYIvDgSSnqtBKoGpnWuxoF99s3RrAPbejOadnbfIzNOivtqAuFN10Okk1Ksn+nW1KmXtmZiZx0d/3zWWNn2rWfPVqOZ0+JcYcpuKoqxfPhrahFEFrF9OByUwc/M1ctRaWvs4seGltjhYK8hVaxn780VuRabR3NOB7TM7cvB2LPO23UAigU1T2tGtvmnioA/jM+j39WFClo75r0xWkTg0tyv+i3tzaVFvNkxuw5xedelazwV7Szl5Gh1Xw1JYdy6E17Zcp8vXJxm44ix7rkeh0T6tF1IeXA1L4fSD+Kdez1JpufAosYgtqg4yqcTYAbD+7GPUJv7tosJsFJEpYqr+TlQ6QXGZgFj/ryo831YMTrb6h1Mpa4WOHUWSrloN335b7t052SjZ8FJbFvSt/1ST2t9PBM3/wQRs2gRt2ojmUbrix7KXszXj9d2PXx9+UDljpgAkEgkfDmnM82290Akw748bHKugMvm/MRB6GJ/B82su8c4u0S29mYcDf7/WhfcGNzZbwO/d3bd5fet1MjJAe7gjMSfqotNJmDRJjI9LCoQEQWBXQCR9lp5m360YZFIJM7vX4dC8bv+zgRCIY2dsGy8Ozu1GGx8nMvM0vLn9JrN+DyAlSwVA9/qu/Da9HfaWcq6FpTBuzUXiM3KxVMhYNb4VDlYKbkWm8em+ewxv6cH49t4IAszbdoOYtJxSzqAw6rrZMaFj2TmT/2WGSkFpBGqdTiAkKYsb4anciBB/AmPSjX45Xs5WzOhWhzGtPSska6PS6PjiQCC/XAh96r1xbbz4enTldJmUFblqLV2+PkliZl6hrEROTg4DBw4E4ODBg4XsOAx4nJDJ0JXnjSJfBbHv9S4micCVBxm5atp9fpwctZbtMzua1dFQKgxdSxYWEBoqmoiWEbm5uUybNg2A9evXF7I+OBucwOtbAkjNEa+hVAJ3Pu5v9ur4/zUSEsRusowM2LpVNJMq7qMZeXT75iQ5ai0/T2xN/yZl/z7NhVYnsOBPkWyqlEnZMLktXeo9G55JSWOyspCn0fLjyUf8eOohaq2AlULGG/3qM7mTr8neZAaE6sti92LS0aRaoznUibgwC5RK0SdY/ycWi6jUHN7dfduYpW1Uw55vRjWnmWfZn11leVb+0/Gk9Ut1e0s2T2tHPXex4zIwJp2J6/1JzMzDt5o1O1/tRDVbC07ej2fKL1cAWD6uBQOaVmf06gvciUqnlbcj217paBIlJTohGQ+3av+VySoC5nSTpWWr2XwplA3nQ0nWR8QuthZM7eLLhA4+FVIr/utGFG/vuEVuAV8ZR2sF197rW6FaIObAwGGp52bL4XndkEolZe6QMFgdPIk/X+lIu1pV59O2cMdN/rwaychWHiwd26LiDyAI0LmzWDJ74w1YsqTMm5Z2LaNTc5i80d+YVZvWxZf3Bz8td/AfyoDPPoP334fatcVW+xKUlQ0tvfXcbDk0r1uV3IcarY7ZWwI4fDcOK4WMX6e1q5zgvRRUdQfUpcdJLN5922j/0KuhG58Ma1Iu8ctDd2J4c/stMvM0yGOrE7+nJRlpUmrUEC3rOpQi/n0uOJFZv18jPVdTLh2jf0s3WVlQ0PqloA0HiIHn+LWXiE7LpX0tZ36b3h6FTGrsaLRSyPjrtc5YymU898NZMnI1TOtSy9hIVBaYMn//q8pkZ86cYciQIdSsWROJRMKePXtK3eb06dO0bt0aS0tLateuzerVqyv9PB2sFbzWqx7n3+7FR0Ma4+FoRWJmHt8cekDnr07wzaH7T5ntmYphLTzY+3oXfJzzVw2p2WouPHy2pTKAFzt4Y2chJzg+kxP3ny7plYSBemXTJ1GVZTLAKPp44HYMaTnqUj5tBiQS0bAIRBJ1dtFdPEVBqVSybNkyli1bhrKI9vyajlbse70rfvrV6K8Xw4hONS3F/B/0mD8fXF3h8WNRoboEvNytNg5WCoLjM9l9PapKTk8uk/L9Cy3pXt+VHLWWKRuvPCVeWBUobUxWFJIy83h7xy2eX3NJP8FasHJ8S9a/1MbsQEgQBFadfMjM3wLIyNXg+KgJIZtbkZEmpV07uHq19EBo88VQXtroT3quBj8vRw7M6crsnnWrrLHmn4pmng7serUTTWrak5ip4oW1lwjU6z1l5mkQELsML4ck89m+ewDM61OfLnVdyFFrmfnbNZxtlXynFzVdfy6EQ3diKuVc/1XfVFZWFn5+fqxcubJMnw8JCWHQoEF07dqV69evs3jxYubMmcPOnTsr+UxFWCllTO5ci1Nv9eC7MX7UdbMlI1fDj6ce0fmrE3x5MJA8jbb0HRWDeu527J/bjR4N8ollXxXRVVTVsLdUML6DGEysPm16+/g7AxvS5gl5/KJKZ5WJll6ONHC3I1et468blTSxDRwIH3wA/v5lc3DUQ6FQMG/ePObNm1esB5RSLmXHq53wdrZGrRVYsO3GM5OF+FfDxkZ02ASxfaiERLqDlYJZPUTO3NIjD8hVm39vmwILuYyfJ7amQ21nMvM0TFh3udImjOJQljFZHqg0OtadfUyPJafYdlWUvXihnTfHF3RncPOaZnOdVBodC3fc4tvDDxC0ElxudOLmDl90OgkvvQSnT0PNErjpaq2O9/bc5v2/7qLVCYxs6cG2GR2o62Zr1vn8L8LRWsmW6R1o7ulAcpaK8WsvseTwA0b+dIGYtFxqOokL+k0Xw/jzSgQyqYQVz7eghoMljxOyeHvHLfo2dmeGXlfrre23CE3MqvDz/FcFQwMHDuSzzz5j5MiRZfr86tWr8fb2Zvny5TRq1Ijp06czdepUlphQkqgIKGRSRrX25Mi8bvw8sTV+Xo7kaXT8fPoxo366QEg5vlhbCzkbJ7c16vPcjU7nXPDTXUVVjWmda6GUSbkalsKV0OTSNygAhUzKyvGtcLDK57kYCHhVBYlEwvPtxGu65XIlEaklEvj4Y2jQoOL3jXgdf5nSFku5lEshyWwwQXPjPxTAq6+KQdHNm3DkSIkffamTLx6OVkSn5Vbp9bZUyFj3Ulva13ImI0/DzN8C+GTvPVSaim3geBY4+SCeASvO8Nn+QDJyNTSpac+OmR35cmQzHKzND7xSs1VM2nBZdK1Xy3A814OAI05IpbBsGWzcCCVRn1KzVUze6M9vl8KRSODtAQ35bqzfM+3o/afCwVrB5mntaebhQEq2mpUnHxrHZmhiFi91EonO7+25Q0B4CtVsLVg5vhVyqYT9t2PYeD6Ut/o3oK2vExl5Gub+cd1k/aHS8K8KhkzFxYsX6devX6HX+vfvz9WrV1Griy595OXlkZ6eXuinoiCVSujfpDp7ZnXi54mtcbJWcCcqncHfn2X39Uiz9yuRSPhqVHP6NRaNJef+cYO07Eoo7ZgAN3tLRrX2AGD1KdOzQ9UdLFlVQDfpWnhKhZ1bWTGipQcWcin3YzO4qfcOqlTklK2UpdPpCA0NJTQ0FF0JXU4AtV1teV/vqv7NoQfGFPV/MAHOzjBjBtSoAaU8DywVMt7sL2qi/HTyEUnlLIebAlsL0efpFf0KesP5EMatuUhUFZRITRmTZcWjhEymbPRnysYrRs7J16Oa8fdrXcptVhuamMXIHy9w6XEyFmprlId6c+uSNVZWsHs3zJtXsn3go4RMRvx4gfMPk7BWyvh5Qmte7VHnH9uNl5WnISQxi8uPk9h7M5r150L48mAgC3fcZOmRB+y5HsWtyNRKzcBn5KrJVhW9fzsLOf2buKPS6pi5+Rpx6bm09nHiXb144hcHArkVmcoPL7TCzkLOzcg0tl+tWGHcfy2BWiKRsHv3boYPH17sZ+rXr8/kyZNZvHix8bULFy7QuXNnoqOjqVGjxlPbfPTRR3z88cdPvV4ZdhwxaTnM/eMG/nrju1GtPPlkWBOzxApBbE0fsPws4cnZDPGryQ8vPFsH88cJmfReehpBgN0zWtOqjni9TSEFjl97iQuPkvBxtub0wp6VebpFYv62G+y+HsXzbb34alQlderFx4tP34sXReXjUjgXphIsBUFg+qarHL8fT8PqduyZ3fm/1aupSEsT0wQWBbSuDI/OJyZAnU5g6Kpz3IlKL9arr7Jx9F4cb/x5g/RcDY7WCpaNa1Gp9jYVSfpNy1Hzw/FgfrkQikYnoJBJmNK5Fq/1qlshzSf+IcnM2HyV1Gw1TqpqJOxoR1SEFFdX2LcP2rUrefszQQnM3iLyizwcrVj3Uhsa1ai4uaG81zJHpeXE/Xj2347mfkwG8Rl5JgU5bnYW1Ha1oY6rLbVdbWnm4UAbH6dyC2ZqtDp+OvWIZceCeDKp4+lkxYE5XRm9+gJBcZm09HbkjxkdUMqkvLb1OvtvxVDd3pJ9c7rw141oPt13D2cbJSff7IGDVfFj4n+WQG0OnozUDbFfcRH8okWLSEtLM/5ERFSSLQOir8/Wlzswr089pBLYGRDJkB/OcTfavCyEtVLO9y+0RCaVsPdmdOVxXcqI2q62DGwqthhvOBuCtbU11iZwYwC+GNEMgLDkbGLTckv5dMXDUH78+2Z05a2a7O3FVvvQUNiypUybmHItJRIJX49ujoutkvuxGSw5/KAcJ/v/FA4O+YGQTgd//SV2A96799RHpVIJiweKK9rfLoWVqwxuLvo2dmf/nK4083AgNVvNlI1XWHL4QYXrnhWEOfd3QeSotPxyPoReS06x7lwIGp1A74ZuHJ7XjcWDGlVIILT7eiQT1l0mNVuNZ54XoRvbExUhpW5dcS1SUiAkCAK/nA9hyi9XyMjV0NrHib9e61yhgZABpl7LPI2WY/fimPvHdVp/dpTZWwI4cDuWx4lZxueWtVKGbzVr2vk681zzGkzp7MuCvvV5oZ0X7Wo5Gz3A4jPyuPQ4md8vh/PpvnuM/fkivZeeZu2Zx8buaHMgl0l5vXc9dr7aCW/nwnIBkSk53I/NYO2kNjhYKbgensr7e0TD4K9HNaeOqw2x6bnM/eM6L7b3pq6bLclZKpYdDTL7fJ7E/3RmqFu3brRs2ZIVK1YYX9u9ezdjx44lOzu7TES/qjJqvfw4ibl/3CA2PRelTMq7zzViUkcfs9KuK44Fs+xYEHaWcg7N64aH47PTqbgZkcqwVedRyqT4v9vbLGuIkT+eJyA8lXcGNmRm9+JdxCsDgiDQe+lpHidk8eXIZrzQrnxq0cXim2/g7behYUO4exekFb9OOR4Yx7RNVwH4fXp7OleyUvL/HPLyYPNm+PBDiNaLWf79NwwZUuTHp2z05+SDhEo3cS0JeRotn+3L9zHrUNuZ719oiZtd5esAlRVp2Wp+vRjKxgv5UiR1XG14f3Bjs200noQgCCw7GsT3ehPaxpr6nFxVl9xcCR06iF+jawkCx4Ig8Nn+QNafE3lgI1t58OXIZljIn12GVaPVceGRWPY6dDeWjNz8xZqnkxVD/GrSta4L1R0scbO3xLYMFYe0HDWPEzJ5nJDF48RMHsZncv5hkjGgUsqkDGpWnRc7+NDGx8nssmBWnob399xhV4Guyz6N3Fj3UlvOBifw0gZ/dAJ8PLQJL3XyFT049fYcC/rWp6W3IxPX+yOTSjgwp6uxXf9J/JcZ0qNjx44cPXq00GtHjhyhTZs2ldLxUB60r12Ng3O70qeRGyqtjg//vsuMzddIzzWd+zO7Zx1aejuSkavhjT+fbReRn5cjjWvYo9Lq+OuGeWrIY9uI2Zmd1yIrXd33SUgkEmN2aKveHLdSMHOmmH24f1/MOlQCejdyZ3x7MZh748+bz5xX9q9Bbq6oA1W7Nrz8cn4gBBBSPEl60aBGSPUmrtfCTGsiqChYyGV8Orwp37/QEhuljEuPk3nu+3NsvxrxzMnVMWk5fLbvHp2+Os53R4NIzlLh5Sx6iR2a163CAiGNVuwYMwRCnSQtOLpCDISGDIHjx0sPhL44kB8IvTOwId+N8XtmgZBWJ7D5UhgdvjzBpA3+bL8WSUauBjc7C6Z2rsXuWZ04u7Anbw9oSKe6LtR2tS1TIARiR2RLbydGtfbkrf4N+XliGy4v7s2XI5uJ9khaHXtuRDNm9UX6Lz/DpguhZkmP2FjIWTquBSue90OuL78dC4znYXwGXeu5skifWf1k3z0uPkqivrsdX4xsCsDKkw/xdramfxN3tDqBj/ferZB54V8VDGVmZnLjxg1u3LgBiK3zN27cIDxcnKQWLVrEpEmTjJ+fOXMmYWFhLFiwgMDAQDZs2MD69et58803n8XplwonGyVrJ7XhwyGNUcqkHL0Xx6T1/mSYGBDJZVKWjW2Btf7ht+5c1TvAF8TYNqIK9Z9mEt4GNa+BUi4lOD6Tu9FVTwAe1coThUzCrcg0s0uYpcLeHmbPFn//8ssSW7jLg/eea0QtFzHl/O6e21UeXP4roVTCrVuFgyADHhd/b9V3tzMG8p/vD3ym13qoX03+fr0LDdztSMjI460dt+j2zUl+Pv3IrAVXefAoIZOFO27S7ZuTrDsXQpZKS8Pqdqx4vgUn3+jBhA4+FabPk6vWMuv3ALZfi0QmldBf3oE/vvZAo5EwfrxosFpSNUoQBL4+9IC1Z8VA6IsRzZjZ/dkRpa+FJTPkh3O8v+cOiZl5ONsoebG9N3/M6MDFRb35YEhjWnqbn7EpCjYWcl5o582+17vy92udGdfGC0uFlKC4TD78+y4dvjjOqpMPzSrBDmvhybEF3Y3B2tRfrpKn0TK9ay1GtPRAqxOYvSWAyJRshrfwoGs9F1QaHR/9fZd3BzXCQi7lwqMkDt6JLfff+a8qk506dYqePZ8m0b700kv88ssvTJ48mdDQUE6dOmV87/Tp08yfP5+7d+9Ss2ZN3n77bWbOnFnmY1ZVmexJ3IpMZdIGf1Kz1bTxcWLT1HYmE6u3+oezaNdtlDJppdW2y4KULBVtPzlI9I7PaOPrzJH9f5ks128wb31WhNTZWwLYfyuGiR18+HR408o5SHw8+PiImYhjx6B37yI/lpeXx2uvvQbAypUrsbAwzcD2RkQqo366gFYnsHxcC4a39Cj3qf/PQ62GYcPg4MHCrw8ZItZYikF8ei7dvz1FjlrLTy+2YmCzp5s2qhI5Ki2bLoay8XyI0UXd1kLO+PbeTOnsSw0H80rqpY3JuPRcjgfGc+ReLKeDEoyxfvtazszsUYce9V0rPMDIzNMw49erXHiUhFIupZe6Mz9/Iz4DX3kFVq0CWQnJHUEQ+O5IECtPihmlT4c1YWJH3wo9x6KQm5vLqFGjANi5cyeWlpbEZ+Ty1cH77AoQy0r2lnLe6NeA8e29n4mwY1qOmj3Xo/j9cphR6b65pwNLxvhR373oklVJiEjKpu/y0+SqdUzq6MMnw5qSq9YyZvVFbkel0cLLkZ2vdiI0KYsBy8+g1gqsndSG21FpfH88GA9HK44t6I6VUvxCdToBqVRi0vz9rwqGngWeVTAEcCcqjfFrL5Geq6FdLWd+mdLWJI8pQRB4+ddrHAuMo4G7nSht/oy6iGZsOM/aaV0A8zokDJ41zjZKLi/uXeUPgHPBiUxYfxk7Szn+i/sYb7oKx2uviU/pYcOgGIX1iujcMfLKLOTsfb0Lvi7/Xsn/KkNWlhigXr6c/1rDhhAYWOJmS48G8f3xYHyrWXNkfneU8mefkFdpRDHRtWcfGyczuVTC0BY1mdGtNg2rm/ase3JMWltbcy8mnWP34jl+P45bT0hT9G3szszudWj9hLhqRSElS9QAuhmZhrVCRqf0rqz/Xhzjb70FX39dcus8wPJjQSw/FgzAh0MaM6Xz08r4lYGC1zIlLZ0dNxNYfiyYzDwNEgmMbe3FWwMaGAnPzxKCILD7ehQf/X1XtCGRSZnbpx6vdKttsj/ciftxTP1F5DT+8EJLhvjVJCo1hwHLzpCRpzF+B18fus9Ppx7h6WTF3te6MPiHc0Sl5jC3dz3GtPFk/bkQ4tPzWPViq/+CoYqE4WJeCYogPAMexmeilEtxslbiaK3AwUph/N3RSomdpbzcLYgFcTMilQnrLpORp6FTnWpsmNzWpIAmMTOPAcvPkJipYnqXWrxngq9LReLQjVAGthQfJokpaVRzNO1hq9Hq6PDlcRIzVayb1IY+ek2lqoJOJ9B9yUkiknNYMsaP0XoD2gpHaChs2yYK/RVz86pUKr7Vu92/9dZbZtkfaLQ6xq25xLWwFOq42rB7ducK6db5n0dSkthF9kDfkadQiMTqEmbWrDwN3b89RWJmHh8NaczkKppUywKdTuBUUDw/n37M5ZB8XpOrnQX13W2p52ZHfXc76rnbUt/N7imRwzyNluQsFbHJmaz6filZeVpq9XyBUw+TiS7Q/SmRgJ+nI30buzOgaXXquFaeQnNMWg4T1/vzMD4TRysFbZO6se4HMRP92WeweHHpgdAPx4P5Tt+p9N5zjZjetXalne+TKBgM9fjiICFpopK5n6cDHw9rSgsvxyo7l7IiLj2Xxbtuc1xvv+SnzxLVMzFL9M2h+/x46hE2Shl/v96FOq62/HYpjPf23MFaKePogu44WSvo/d1pYtJymdu7Hg2q2zHr9wAM065OEAn4x9/o8V8wVJEwXEyveX8itSi91VEpl9KlrgsDm1anb2N3s7qnnsS1sBQmrb9MlkpL13ourJ3UxqSAqGAX0bYZHWhfu1q5z8lUpGdk4mAv3hjbLwYzukNdk/fx6b57rD8XwqBm1fnxxarvzll18iHfHn5AGx8ndrzaqcqPX9GIT89l6MrzxKbn0q2+KxteamO22/f/K4SHg58fpKbm/9/Lq8RNfr8cxru77+BkreD0wp7/yMDzZkQqa8485uCdmKd0YAxws7OgpqMVaTlqEjPzCnUwPQkrhYwu9Vzo28idng3dcLWr/ExGSGIWE9ZdJio1B3c7S1onduGn5eJxly4VreZKw4+nHvLNITHYfRYdrBkZmdjrn5Ve83fg4mTP2wMaMKa1V4UutCsagiCwKyCKj/fmZ4nm9a3HjK5lzxJptDpeXHeZyyHJNHAXNdEs5FLGrbnIldAUejV0Y/1LbThwO5bZWwJQyCQ093DgWnhqof1YyKXc/3QAGRkZ/wVDFQVDMNTo7Z00rVWDBu52aAWBtGw1KdkqUrPVpGarSM1Rk60q7EUkl0roVNeFQU2r069JdZxtzA+M/EOSeWmDPzlqLb0auvHThFYmdTO8veMW265G0NTDnr9nd6nym6rgauf5H0+x9dXuJu/jbnQaz31/DqVMypV3+5RLit8cxKfn0uHL4+gEOLuwJ17O5muqlAmCIPKHrCpPGuFOVBqjV18gV61jSmdfPhzyn7t9mRAQAG3aiN/Rrl0wYkSJH9dodQxYcZaH8ZnM7F6HdwY2rKITNR2ZeRoexmcSFJdBcFwGQXFii3VxStZyqYRqtkqq2VhQzVaJTzVrejd0p2OdalValr8bncZLG/xJzFThW82GZrGdWblUfEYsWybqmpaGtWce8/kBsez5Vv8GzO5p+qKtPMhVa5nz6yXWThcpBW9tvcS7Q1tV+bOuPIhNy2Xx7ttGk24/L0dWvtCyzM/L+Ixcnvv+HAkZeYxq5cmSMc15lJDJoBXnUGl1/PBCSwY3r8GE9Zc5/zAJhUyCWvt0GOP/bm8sBdV/wVBFwRAMpaam4uDgUOJnc9VaQpOyOHwnjoN3Yrgfm2F8TyaV0KG2M0P9ajKyladZnJeLj5KY8os/uWodfRu78+OLrcq8n6TMPLp/e4rMPA3LxvkxomUllXmKQcFgyHvBDi6+P4iaZugfDVh+hvuxGXw+oikvtvep6NMsFS+uu8T5h0ksHNCAWT0q8UF55gwsWCCqwP34Y6G3BEEgMTERABcXl3ITTw/ejuHV3wMAKldL6X8Nf/0F48bBhg0wfnypHz92L47pv15FKZdy8s0ez1T/yxxk5mkIjssgLj0PJ2sF1WwtcLW1wF7vIViRY9JUXAtLZvKGK2TkaWhU3Z4GkR1Z8Z14XsuX53vtloTNl8KMQn/z+9Rnbp96lXjGTyMpM4+Xf73K1YexRCwbDZRfzftZQRAEdlyL5JN998jI1VDDwZLfprcvc3n04qMkXlx3CZ0AX49qxri23kaeo4utkmMLupOYqWLA8jNoiklj7ny1E/WcZP/pDFU0ynJzWypkNKxuz9w+9RjiV5O9r3fhrf4NaFLTHq1O4PzDJN7eeZvnvj/LhYeJJp9DxzrVWDepLUq52HY/Z+v1MrczVrO14FW9o/aSw0FV5qhdFARB1AwyB6NaiUGcuduXF0OaixbWf5upmVRmCAJcuya6RcbHF3orOzsbNzc33NzcyM7OLvehBjarwYK+op/W+3vucPFRUrn3+f8Cw4bBn39CWFiZPt67kRvtazmj0uj49tD9Sj65ioethZyW3k4MaFqd9rWrUdfNFgdrBRKJpMLHpCnwD0kWJUjyNLT1caZxdCeTA6EzQQl8+JcYCL3eq26VB0IP40Wvs4DwVOwtzbNjMgfZKg0PYjM4cjeWTRdC+ftmNDciUknOUpVLCkIikTCmjReH53WjrpstMWm5jPv5Ypm9ETvWqcYb/UQD6w/+usu96HRe7VGHem62JGaqeHf3HZYfCyo2EAKITDFtHP6XGSoF5nSTXQ9PYcSPF2jj48QvU9thayEnLCmLfbdiWHf2MSl6sbtBzaqzeFAjPJ1MK7ecehDPjF+vodLqmNWjDgsHlC3lnqPS0nPJKWLTc6u8Fl4wM+Q1fwe+1Z059WYPk8t1BUtVJ9/sQa0q7oJKzVbR9vNjqLUCR+d3M5kgWGYIAnToAP7+8N578Omnxrcq0gcq/3ACc/64wd6b0ThaK9gzq/N/HWZlRWCg6OUwdWqpH70dmcbQVefEBcGrHWntUz7D0X8KKmNMlgUXHiUy7Zer5Ki1dK5bjTqR7fj0Y3GNv2IFzJlT+j7EQOQ8GbkaRrf25NvRzas0s3XpcRKvbL5GWo4aL2crVo1pgl9t0caoIu/vyyHJXHiURERyNuHJ2YQlZZNYgpGwrYUcL2drvJys8Ha2pomHPf2bVDepoxnEjNekDf7cjU7HwUrBr1Pb4VcGErhOJzBt0xVOPkjAt5o1f7/eheC4DEavvoggQH03W4LiM4vdfm7vekxrX/2/zFBlQ6PVFZtdWXJEJN9dDUth8gZ/MvM0+FSzYXbPupx8sweTOvoglcCB27H0WXqaFceCTcrU9Gjgxndj/QD46fQjzgYnlGk7K6WMN/qJGYBVJx+SUg6fGVNhY2ODIAhk52mwt7MlPDm7UPdKWeFmb0nXeqJc7O6Aqs8OOVor6aY//t6blZgdkkhEew4QW+0z8296w7UUBKHCJh2JRMK3o5vj5yl6WU3/9WqVi/H9K5GTA127wrRpcP58qR9v5unAOL0Q44d/30X7DNXhKxKVMSZLw9ngBKZsvEKOWku3+q40S84PhL77rmyBUGq2iumbRK+xtr5OfD6iaZUGQrsCIpm4/jJpOWpaejuyZ1Znmtdyr7BrmZqtYv25EPosPc3zay7x/fFgdl+P4lpYijEQcrBS0MzDgf5N3Gnn60x1e7HzLjNPQ2BMOkfuxbHuXAjzt92k3efHWbTrNjcjUsucOapma8GWlzvQytuRtBw1L667bDQnLwlSqYSlY1vg4WhFaFI2H/11l9Y+zkzQ0yNy1FrquxdfdjtTxnnRgP8yQ6XAkBnacfEB58OyuReTTmxaLum5anQCSCWgkEmRSSVYKWRYK2VEpBQmGrb1dWLjlHaFJNEDY9L58O+7xkHh6WTFe881pn8T9zLfjIt332bL5XBcbJUcmNu1TH5DWp3A4B/OERiT/swIs4t23WarfzgjW3qwdFwLk7f/60YUc/+4gaeTFWfe6lnlZPA916OYt+0GtVxsOPFG98p7eGq10KgRBAeXvRWmnPivw8wMvPwyrFtXqgCjAYmZefRccoqMXM1/HC0zcfJBPK9svoZKo6NXQzdaZLZm7uviOP30UzGZWhrUWh0vbfDnwqMkPByt+Ou1zlWq3WPoTgV4rlkNvhvrVyGEc0EQCAhP5ffLYey/FUOe3nbFWiljQJPq1HO3w9vZGp9q1ng5WRdJzs5Va4lMyTFmkUKTsjhxP56wpPzSU8PqosL6iJYeOJWhOSgrT8P0TVe5+DgJS4WUNRPb0K1+CT4oegSEpzDqpwsIAmyf2ZGG1e3ou/QMsem5TOrow4n7cUSm5Ms4uNpZkJCRJ6pTv9ERF2en/wjUFQFTW+uLQ+Madvw5s1OhgEgQBPbdiuGLA4HE6DU5Rrby4KuRzcskzJar1jJ81Xnux2bQuW41fp3aHlkZAoOzwQlMXO+PQibh2ILu+FSr2nKIoYxoqZDi/24fk9uMc1Ra2n5+jMw8zTORCsjK09D6s6PkqnXsfa0LzTxLJtaXC2vXwowZ4OkpWj9UgadewQ6zF9p58/nwpv/olt7ScPlxEgduxxgXL1KpBKlEgkwqQSIBG6WciR18yvRALxJBQaL4oiCIJruNS9fy2nAuhE/23cPZRsnJN3r8q7qFnjWO3Ytj1u8BqLQ6+jV2p72mFdOnic/LRYvg889L1xESBIH39tzh98vh2Chl7JzVyWShyfLA4A4AMLN7HRb2b1Due0wQBLZfi2TDuZBCzTuNatjzYntvhrWoiV05JB10OoFLIUn8eSWCA3dijd52SpmUAU2r82a/BnhXK3mOzFVrefW3a5x8kIBSJmXl+Jb0a1K91GMv2nWLrf4RNKphz77Xu3A8MI4Zm68hk0r4eUJr3txxk1Q9/aSuqw3hyTmotDq+HFyH8V0b/VcmqyxYyKVYKaRYyqUoZRKUMvF3eQmD+V5MBs0/Osxn++4SkyZmjiQSCUP8anL8je681rMuMqmEXQFRvLTBv0wmmpYKGSvHt8JKIeP8wyR+OvWwTOfftZ4r3eq7otYKRj2NykZubi5jxoxhzJgxNHS1pJ6brRhMmFFqslLKGNRMvIF2F3A9rirYWMjp3VAUfdx7q5KJ1BMngrs7REYaFanz8vKYN28e8+bNIy+v+Jq/uWjq4cCysS2QSMSH9hvbb5rlO/SskafR8uWBQJ5fe4lNF8PYfCmMTRfD2Hg+lPXnQlhz5jE/n37M0qNBfLLvnvkHql8/v7VeL4ZZGiZ29KGemy3JWSqWHQsy/9j/EFT2mDTg0J0YZv4m8iUHNatOL8tWzHhZnMbmzClbIATw68Uwfr8cjkQCK55vWaWB0NngBN7Td63N7V2PdwY2LBQIFXxW5ubmFrebQohJy2HSBn8W7rjF/dgMLBVSxrT2ZPesThyY04UJHXzKFQiBuIjoVMeF5c+35MriPnwyrAlNaormrX/fjKb/8jOsPxdSYunXUiHj54ltGNSsOiqtjld/D2BfGZ6hb/VviIOVgsCYdLZcDqNfk+oMbFodrU7ghxPB/Dq1HQqZeA3DkrOZ2UMUydxwPrTMf99/maFSYMgM1XtrB3JLm6e0hMzFkOY1+Gx4s0IrwtNBCcz67RpZKi113WzZOLltmbQZtl+N4K0dt5BKYNsrHWnrWzopMzAmnUHfnxVlUmZ1opV35cjiG/AkwXLLtTg+PxCIn5cjf83ubPL+DNktVzsLLi/qXeWZi0N3Ypn52zVqOFhy/u1elXv8LVtEN8mhQ0EqrTKy6l83oljw5020OoG+jd354YWWz8zOxVQ8jM9g7h83jMa+w1rUxKeayGvR6gR0griSzlZp2XwpDJlUwok3ypElvXxZJLzL5aKTvWfp0hXnHyby4rrLyKQS9s/pUqUTckWjKsbk/lsxzPnjOlqdwBC/mgx29mPIEClqNUyfDmvWlC0QOhucwOSNV9DqhCpvJAmKy2DUjxfIyNMwoqUHS8f6PVVmN+VaCoLAnhtRfPDXXTJyNVjIpczrU5/x7byrLNt4OzKNzw/c49JjkfLRytuRb0Y3p65b8c0lGq2OhTtvsSsgCqVcyo6ZHWnu6VjicX69GMoHf93FwUrByTd7oNHq6L30NBm5Gr4a2QwHK4VRIuSnF1sx/88bZGdmErF87H+ZoYpErlpnDITsLOU093RgqF9N5vSqy+u96jKqlScda1fDt5p1kSWuJ+/RvbdiaP3ZUVYcDzIS0brXd2X7zE5Ut7c0djjciEgt9dxGt/ZkREsPdALM2Xq9TMToRjXsGa1vU//iGThqD2/pgVwq4WZEKg8KpHTLina1nLFWykjIyHsmTvY9GrhiayEnJi2Xa+EplXuw8eNh+HCQiuNKoVCweNEiFr/zDopKLJsNa+HBzxNaG6Ucpv5yhay84hWH/wkQBIHfLoUx+Idz3I1Ox8lawZqJrVnxfEsW9K3PG/0asHBAQ94Z2JBFgxrx6fCm9GjgilYn8NOpR+YfuH176NYNNBqxjakM6KxXqtfqBD7++94zdbUvLxQKBYsXL2bx4sWVMiYP3M4PhEa09OAFXz9GjRIDodGjYfXqsgVCD+MzmfV7AFqdwMhWHrzSrepsNhIy8piyUdRCaufrzFejmpWLb5iUmces3wOYv+0mGbka/Lwc2T+nK6/2qFOlZddmng5smd6Bz0c0xdZCTkB4KoNWnGPVyYeoi8koy2VSloz2o08jd1QaHa/+FkByKfPW+HbeNKxuR1qOmiVHHuBmb8nc3qIEwg8nHtK7kTvd6rkAsPF8qLFRoaz4LzNUCgyZocV/XGZk+7rUcrXFSa+tURwEQSApS0V4cjaH78Sy63oUCRkltTDK2DC5Le1qidyX2LRcpv5yhXsx6VgqpKx4viX9S6mrZuZpGPLDOUISs+jTyJ21k1qXeqPFpuXSY8lJctU6Vk9ozYCmpdduzUVRq50Zv17lyL04sz3TDNvP61OPeX3qV/Qpl4oFf95gV0BU5TrZP4mcHNi3TyzHLFkiTsCVjIuPkpi+6QpZKi0tvBz5ZUrbCrGZqWgkZebx9s5bHAsUdZm61nNhyRg/3O1Lbiy4FpbMqJ8uopBJOPVWT/PFEPfvF4PWmTPhhx/KtElEcjZ9lp4mT6Nj1fhWPNf82bra/xNx8HYMr20VA6GRLT2Y2tSPHt0lJCVBnz7i7WBRBt5ztkp8Rj5KyKK1jxNbXm5vkop/eZCj0vL82kvcjEillosNu17tVCxHrSyZoaP34li06xaJmSrkUglze9fj1R51nnmzQ3RqDu/uvs3JB2InV+Ma9nwzujlNPfJ5lYIgkJajxtFaSXqummErzxOSmEWXui5smtquRN7r5cdJjFtzCYkE9r7WhbputnT95iQJGXl8PqIpneu40HPJKQRg4+S2TFlzmrBl/2WGKhRvD2xIa19nnG2UpQYZEokEF1sLWnk7sWhQIy6+04uNk9vyXLMaKIsYrJl5Wsb+fInpv1whI1dNdQdL/pzZkR4NXMlV65j52zXWnwspceVoayFn5fiWKGVSjgXGsbEMtdLqDpZM7yKujL4+dL/YKL6yMFYfue++HmUk45mC3o3cANHR/llgqJ8owHjgdkzlc2qyssSJ1tYWxo6FK1dEU9cqQMc61djycgccrRXciEjl+TWXiM8oG5ehKiAIAofuxDBgxVmOBcajlEl577lGbJrSrtRACKC1jzMda1dDrRVYc7oc2aGBA8XvpIyBEICXs7WxTPP5/nvkVFAZ/n8Fh+7E8vrW/IzQ6+39GDhADITatoXdu8sWCAF8ui+QRwlZuNtbsHpC6yoLhHQ6gQV/3uBmRCqO1go2TG5rNllfpxN4f88dXv71KomZKuq727Jndmde713vmQdCADUdrdgwuS1Lx/rhaK3gXkw6w1edZ/d1UQYlV63lnZ23WbxbJI/bWypYPaE1VgoZ5x4m8t2Rkjms7WtXY1iLmggCfPDXHZQyKbP0YsIrTzykhqOlcUGx63oUfU0w9H72V+//AeQyKT0burHqxVb4v9ubT4c3pbbr09H+sfvxtP/iGHeiUrFWyGioF/QTBNGk9MdS0vhNajrw3uBGAHx5MJB7ZSgfzexRBxdbJSGJWfzhH27GX2c+ejRwxdXOgqQsFacemB7Q9GwgBkM3I9NKzLxVFjrXdcHJWkFSlooLlaXarFbD+++Dt7do/6DTIQBZQFZQUJWVVvy8HPnzlY642VlwPzaDMasv8jiheMGzqkJQXAYT1l9m5m8BJGTkUc9NnBymd61tEo/r9V6itcrWKxHmB3pSKXh4mLzZzO518HC0Ijotl5/KE4w9QwiCQFZWFllZWRU2Jg/fjeW1LQFodALDW9RkcW8/nhskITJSbN47cEBcG5QFh+7EstVfJEwvHduiSkxjDfjm8AMO3olFIRM7n8wVitXpBN7eeYvNl8KQSGBGt9r8/VqXQlmXfwIkEgkjW3lydH53+jV2R6MTmL/tJitPBDNuzSW2XY3g6L04kvQ6Rw2q2/H16OYA/HjqEYfvxpa4/0UDG2GtlBEQnsru61G80M4bd3sLYtJy2XYlwui0sP9WtEnVjv+CoSqGo7WSiR18ODi3K3N61X2qAy1bpWPID+cZvuocq888BkQNIoBvDz9g/62YEvc/sYMPfRu7o9YKfLz3bqkPJlsLOa/3Euuua84+rlIROLlMymB9FH/0XpzJ27vZW9LUQ0x9mhNMlRcKmZRBzcTzrzQBRoVCjIaT80XKsgFbwPbzz6vU+qC+ux07ZnbCy9mKsKRsBq44y+rTj55Jp1lajpqP995l4IqznH+YhFIu5fVeddn7ehca1zSdiNyxTjVaeTui0uhYdzak/Cd49y6cPVumj1opZbz3nLiIWX36ERHJVWtnURHIzs7G1tYWW1vbChmTR+7GMvt3MRAa1qImnw1pwYjhEgIDxXjzyBFwcSnbvmLTcnln1y0AZnStTee6ZdywAvDnlQhW6wPcb0Y3N1sGxBAIbb8WiVQC3z/fksWDGv2jGxpc7cQM3OROvgAsORLETT0HVq0VCnUCD/WrydTOtQB448+bPCphoVXdwdI4Z315UKxovKY31F118iF1XG3p0cAVnQDnH5Z9kfpfMPSMYCGXsaBfA/a+3gW/J3RqBOBWVH5WJzIlh+EtxBXngj9vcL0Ewq5EIuGjoU2wkEu5HJJcapQNYrnK0VpBRHIOR++V/vmKRN9GYhrzxP14swKxXvrs0MlnEAwBDNGXyg7djSUtW83xwLiKz7B9+ilMmVKx+zQT3tWs2TGzE13qupCn0fHVwfsMW3WeO1FpVXJ8rU5gq384PZecYuP5ULQ6gf5N3Dm+oDtv9Gtg9uQgkUh4XU/G/O1SWKlkzhKxfTs0bSpyh3RlCxQHNK1OpzrVUGl0fPR36YuY/2UcuxfHbH1GaIhfTb4Z6cekiRLOnwdHRzh0CLzKyI3V6QTe2H6D1Gw1TT3sjX5XVYHwpGw++Du/hd5cc+wnA6EVz7c0Pnf+6ZBIwMfZ6qkGIoBtVyIKjfNFgxrSzteZzDwNMzdfK7FZY2oXX2q52JCYmcf3x4MZ29aLmg6WxKXnsdU/3Gii/ZcJHpL/BUPlRFqOmouPkth8KYwd1yI5cT+OgPAUQhOzSMtRF/qyBUHgwO3CmZ1GNezZNasz7z3XCIsShBZtLGT0auhGnkbHy79eLXH16OFoZeyS+PxAIHmaknkIVkoZ4/UquBvOhZb2J5sFa2trMjMzyczMxNo6Xy6gbS1n7CzlJGWpuBFheldWz4ZiMHQ2KLHKOU8ANRwssbOUk5ErCjFO23TVrCxXiZBI4OefYdAgAKyBTCDTw6PQtawquNtbsnlaO74d3RwHKwV3o9MZtuo8Xx28X2kGwNkqDVv9w3nu+7Ms2nWb5CwVdd1s2TytHT9PbFMmCYrS0KO+K0097MlWadl4vhzZoX79wM4O7t0TazllgEQi4eOhTVDIJBy/H8/eUjLA/zQUd3+biuOBcbz6+zXUWoHBzWuwdIwfC+ZL2b0blEqxUtzUhF6FtWcfc/5hElYKGSueb1kmMduKgCAIvLPrFrlqHR1qOxu7nsqCgtfS0tLqXxsIGSCTSYtcpATHZ3K9QLe0QiZl5YstcbOzIDg+k4U7bxW7KLCQy/hwiNh0s/F8KBHJ2czWl7p/PPUID0dLPJ2sTJoT/usmKwUFjVqVVjZcDknmTlQad6PTuBOVTngpKW25VEJTDweG+NUkV6Xh2yNBxXZuhSRkMuWXK4QmPb1Pa4WUE2/2YMovVwmMSae+uy07Xu1UrHpzVp6GXt+dIi49r0xaGrFpuXT5+gQanVD5qspPYM7W6/x9M5pXe9Th7TKazhqg0wm0/fwYSVkqtrzcnk51qi4FPn/bjSJFH/s1dmfNpDYVf8CsLOjZUyRPgxgkqVSits0zQkJGHh/tvWss3/pWs2bRoEb0bOBWIRPP44RM40IjI1dcKdpZypnfpz4TO/qgqGDSqEE/ys5Czrl3euFgZWaL8sKFYsdft25w+nSZN1t+LIjlx4KpZqPk2ILu5qti/wtx4n4cMzeLytLPNa/BinEt+G6JlHfeEYf6tm0wZkzZ93cnKo0RP55HrRWq3PbkD/9w3tl1G0uFlENzu5llevxvzgg9iZDELN7cfpNrYYUXvGNbe/LNGL9Cr10LS2bcz5fQ6AS+GNGM8e2L/96mb7rKscA4Bjevwbej/ejy9QmSslRIJaATQJeX/Z/OUEVj/bnHdPn6JC9t8Ofbww84cDvWGAh5OlnRu6Eb3eq70tzTAU8nK2yUYiSs0QnciEjl0333+PaIqDQ794/rXA97OgtSy9WWowu6F8mAz1brOHA7hvUvtcHNzoKguExe23K9WL6GjYWchf3FwGLliYelEoyrO1ga+Tvrzz0u41WpGBi6wo6ZkVGRSiX00JfKTgRWbansle61jaqnBVHRE7QRNjZi+3Z1fSAtCKLA3zOEq50Fq8a3Yu2kNrjbWxCalM0rm6/R5rOjvLn9JqcexJu0OhMEgejUHPbejGbCusv0+u40G8+HkpGrwaeaNe8914hzC3sxtUutSrnO/Rq7U9/dlow8DZsvhpq/o7lzRb7XmTOiIGMZMatHXeq725KUpeLT8qhi/8tw8kF8fiDUTAyEdmwXAyGAZctMC4SyVRrmbL2OWiuWUZ9va5rmTHkQm5bL5/sDAXijbwOzA6F3duUHQsv/xYEQQC0XG/58pSOLBzVEVqAbe+f1KDKfMIRu7eNsXBR/fei+kWidlqN+ijO7oK8oqXLgdgxnguNJzRbL2+ZQX//LDJWCJ73J3O0taF+rGnXdbLC3VGCllJGRqyEmLZfYtFxi0nKQS6XUcbPB29maajYWRCRns/7cY7LVhSeFQc2q8/7gxtRwKKxrotMJfPj3XTZfCiv0uoVcwr2PB3AvJoOxP18kR61lQgdvPh1WtNOyTicw4sfz3IxM4/m2Xnw1qnmJf+utyFSGrjyPXCrh/Du9ytSWXFbk5eXxyiuvAPDzzz9jUaAfNi1bTevPjqLRCZx+q4fJKsD7b8Uwe0sAtV1tOPFGjwo757Jg5YlglhwpbKcw1K8m37/QstKOqbpzh49btgSNhg+PHkXZp0+lHcsUpOeqWXXi4VO6Wo7WCvo3rk4rH0dsLORYK2VYK+XYKOVYKaWEJ2dzMyKN21Fp3IpMM7ppg5gR6N3QjQkdfOhWz7XClL6jomDTJlEjcfHiwsk1gxGwk7WCc2/3wsbCzMzb5MniQUaPFnlEZcT18BRG6o0pf5nS1hjs/5OhUqn4+OOPAfjwww9RKsue0Tr1IJ4ZetPVgU2r8/0LLbl8UUrv3mLic8EC0YXeFBi8rKrbW3Jwbtcqy7AJgsDLv17jWGAcfp4O7Hy1k8kt73l5efQcPp5bkWm4DniNFRPaGWU8/hcQFJfBjF+vGisgzzWrwaoXWxX6jEarY8jK8wTGpDPUryaeTlZsvhiGtYWMy4sLP+9e2uDP6aAEJnTwpp6bHR/+fdf4nimZof+CoVJgCIa6frqP1/o3o4ajFduvRnLobqxZ2jhPwkYp441+DZjU0afQTSMIAsuOBvH9icJ+Y53rOPP7yx05fFdM5wsCfDKsCZM6+ha5f4OgnEQC+17vQpOaJZe/xqy+wJXQFGb3rMNb/U0rWZWE0oTExq+9xIVHSbw/uDHTutQyad/puWpafWJ+MFUeqLU6Rvx4njsFCO8jW3mwdGyLSjtmoWv588/YzJhRaccyB1qdwNXQZPbdiuHgnRgSM00jI8ukEuq729G9visvtveuED4QiFzmfftE79sDB/K5zfPmiZmHguffZ+lpQhKzWDyoITO6mWnXcOcONGsmttwHBUGdsu/nk7332HA+BA9HKw7P71bI4PmfCHPtOM4EJTD916uoNDr6N3Fn5fhWhDyS0rGj2EA5YgTs2GEUXy8TTgcl8NIGfyQS+H1aezpVYffY3pvRvL71OgqZhL2vm2excjkomg4NxIaZtSfuMb1no4o+zWcOtVbHK5uvcUKvEffbtPZ0qVf4ezKUrJ/EvU/6Y63Mvx8uPkrihbWXsJBLOfd2T2b9HsCVULHy8l+ZrBIwrEVNfjz1iInr/fn7ZjQqjY4aDpa08XFiiF9NZnSrzQeDG/PTi61Y8XwL5vSux3PNauBbiotvlkrLJ/vuMWxVYesNiUTCgn4NeP8JZebzj5JZeuQB/ZtU5x19KvHz/YGEJGYVuf/WPs4M8RNFqj7ZW7rkvyEQ+f1yeJUKwPXWd5WZUyqzt1TQxlf0VjtRxQKMCpmUJWP8KEiPqWyXNLlczty5c5k7YgTy2FjQ/rOE+mRSCe1rV+PT4U25vLgPW15uz6SOPvRq6Eb7Ws4093SgjqsNNRwscbBSUNfNlpGtPPhoSGN2vtqJux/35+DcrrwzsGGFBUKCIPpXDRsmBkQ6nSjaB7B8OWzYUPj8DVola86EmL/oadoUBgyAatXEYMgEvNm/Pp5OVkSl5vDtofvmHb8KYRyTc+ciLyOH7WxwAi/rAyHR+64VqclSBg0SA6F27eC330wLhHLVWj74S+zgmtzJt0oDoeQsFR/psxKzetQ1KxDKytPw1o6bxv9XZXmvKqGQSVn/Uhv66CkSr/5+rVBTUEB4Cq9tCShy27AnOLUdajvj5+VInkbHpgthbJzc1iy+4n+ZoVLwZJnMRiljaAsPXmjnRTMPh1LVqFOyVBwNjOOv61FcCkmiKPqEpUJKrlqHRAIT2vvwZv8GhYibO69F8ub2mxT8opaO9WNESw8mrvfn3MNE2tVy5o+XOxjLCGnZaqM/TWRKNr2/EyX/S7Pd0OoEun97ksiUnFLJa6agtJVjWFIW3b89hUwqIeC9viZ766w584gvDtynaz0XNk9rXyHnbAp+OB7Ed0eDAVFM8pcp7Sr/oJGR8MYbEBMjknTL4XP0v47168VgSCqF+fPh5ZehQQP45BP48EOR3nPyJHTWewartTo6fnmCxMw8Nk1tR/f6ruYdODJSDIasTLf4OBecyIT1l5FIYMfMjrT2Kd2A+d+Cs8EJTN90lTyNjj6N3PjxxdYIWrE0dv481KoFFy+Ce9kFhIF8Arq7vQXHFnQvt1O7KTA0VNR3t2Xf613NmpDf2n6TbRcfErFsNFC5Rsz/BOSqtYxefYE7Uek0rmHPzlc7YaXn23535AE/PFEZAdGEdWCzwrY1h+7EMPO3AOwt5VxY1Jtt/uF8uj/wv8xQZaC5pwPfjGqO/7t9+HJkM5p7OpbJZM/JRsnYNl78/nIH7nw0gB/Ht6R9LedCYou5ah113WwRBNh8KYwRq84XipJHtfZkxRMcFIMw1Zcjm2GtlOEfkszvl8O4FZnK5I3+hVYXnk7WzNC32n9RSqu9TCoximRtOF+yBUhFwqeaDfXdbdHqBE4FmZ7d6aVvsb/8OPmZmInO7FEXJ30AF5tWRVYVCoXYa3z2rDiD/IcicesWvPaa+Ptnn4mWbg30cjPvvSdSetRqGDkSwvUSUQqZlP5NxJn40J1yaG95epoVCAF0qefC6NaeCAIs3HGr0mQLqhqnHsQzTR8I9dYr8ytkUqZPF4exg4PYJ2BqIBSWlGVU6X9/cOMqDYRO3o9n9/UopBL4ZrSfWYHQ3pvRbL8W+f9qTWOpkLFmYhuq2Si5F5PO4t23jXPOgr71mdjB56ltiuq27tu4OrVdbEjP1fCHfzgTO/pib2laafm/YKiM2PJyB8a29TKfTImo5zOoeU22vdKR+58O4OuRzYxltIfxmdR2scHNVsnjxCxG/XSBwJh8HspQv5rM7pnPORCAwd+fo5qtkoX9xSf7R3vvMXTleU49SCAorrAT/MzudXCzsyA8OZutl0sWBRzX1gtbCzkP4zM5HZRg9t9rKoylMjO6wuq42uLlbIVKq+P8w8SKPrVSoZBJmaPXEolKyamaINLdHSZNEn9fsqTyj/cvREaG2IWUmytah739duH3pVL45Rdo0QLi48XskQGGDOrRe7HlV2bX6WDvXtFo1wS891wjXGwteJSQxfJjweU7h38ATtyPY8av14ylsR8ntMJCLuPzz8WSmEwmcoQamUiTEQSBD/66i0qjo2s9F55rVnWGtxqtzkjandq5Fi28HE3eR0RyNot3iX5dr3SvXZGn949HTUcrVo5vhUwqYff1KH65EArka28NecK8OLQISohMKjEu+A0K8qZKKfwXDD0jyGVSxrXz5uSbPVg+zg9bCzmPE7NIy9XgZmdBfEYeY1df5GIBz6s3+jagd8P8zpJcjY4By89w+bH4mYIP7LDk7EKcHxsLuVFhd4Neubc42FkqjCaqG8pg+FpR6KMPhk49iDeZpyGRSOjdMF/N+llgbBsvZBIJGXmaEuXky4usrCwkEgkSiYSsV18VX/z7b3hQssnh/zcIArzyikjX8fSEX38tmn9iY5Pf7HX0KEREiL93qF0Ne0s5iZmqp/RRTMbAgTB0KGzebNJmjtZKPhveBICfzzziTBUuTkxBoTGZVTR/8ei9OF7ZfA2VVseAJtVZNV4MhP78U7TfA1i1SnSiNxWH78ZyOigBpUzKx0OblClrX1H460Y04cnZONsoma9v9TYFGq2OuX9cJyNPQytvR2br1ZP/P6FjnWosHiRGwJ/tD+RKqGg/JJVKWDquBa19HI2fvRmZWuQ+RrTywM3Ogtj0XPbciOL5/4KhfxckEgnDW3pydEE3o8VBfEYe9pZyMvI0vLTBn4N61WqpVMKy51sUMnkNT87hVBEPSEEQs00FMaqVB47WCsKTs0tVSZ7cyReJROz2CH4iy1RZaOHliIutkoxcjfFmMAUGNeqTD+KfiZ2BjYWcjnVE76EqC8jq1xcnWUGApUur5pj/EqxeDVu3itmGP/4o2cuqbl1RHxHEz4KY7evTuAJKZSAGQyD2iJfRosOAAU1rML69N4Ig8lLi06uoDFuBOHQnlld/E5Wln2tWgx/Gi2rQV6/CSy+Jn5k/XwxeTUVWnoaP94qaTDO716a2axndWysAWp3AqpMir2V611pmVQ6+P/GQgPBU7CzkrHi+5T/Cff5ZYGpnX4a1qIlWJ/DOzlvGBbFCJuW3aR1wtRXlWILjM4vULrOQy5iqbwD6+fQjfJytaV+r7Dy7/59XvYIhCAJ3o9PYeS2SX86H8P3xYD7ff4+3d9zize03WX8uhKuhySV2Z9VwsOLXqe34aEhjLORS0nM12FnKUWl1zNoSYNQcsrdUsHZSG2yV+fLmOWodjlZP34QPnghirJVyXmxvsN0QU4k6fRv0k15M3tWs6aefCH57Qu/IHFhbWxMfH098fHyxcv0yqcTI/TkWaHpXWftazlgpZMSl53E3Or30DSoBBgHJygyGnrqWb74pvvHrr2Kt5z9w5YrYMg/w1Vf5xOiS8OKL4r9btuS/NqCJWCo7fDe2fAH2tGmisVZQkNjOZiI+GNyYhtXtSMpSMfePG1VqqFwWlHR/77sVXchrbMXzLVDIpERHi919ubmi08y335p37O+PBxOTlouXsxWzelZtVmX/7RgeJ2bhYKUoVt6kJIQmZhmDqc9GNMXL2bpMz8r/RUgkEj4Z2hQXWyWPErJYezZf/NdKKWPXrE7IpBK0OoFtVyKK3Mf49t7YWch5lJDFscA4xrQpux/cf8FQOfAoIZNlR4PovfQ0z31/jje23+SjvfdYejSItWdD2HY1gh3XIvl03z1Gr75I048OM2iF6K10LezpzIdUKmFy51r8/VoXXO0syMjV4GClQBDg/T132BUQCYj8mB+eEKkCngqI7sc8bZ45qaMvCpkE/9Bk5m27TpevTzB69UWiU5/mMhjSjPtvx5TbmVwikeDq6oqrq2uJKex83lCcyZOPpUJmdKQ++YxKZYZg7mpoCulPKKtWFJ66ll26iH3Iubnw00+Vcsx/E5KSRFK0SgXDh4sNd2XBqFEiJ/3GDdFWDKBbfVesFDKiUnMKaUmZDDs70bgVTFcQRBzbK8e3wlop4+LjJFYW0WXzLFHc/b3VP5w5W6+j1QmMaOnBsrF+yGVScnLE7yY6Gho3zs/gmYoHsRms1y/sPhnatEpd3HU6gVX672Fq51pmaUEtPRqEVifQo4Erw/Rm3GV9Vv4vwsFawbvPieWy748HE16ALO3lbM1sfbD706lHRS4I7C0VTOgokq5Xn35ETxMES/8LhkyEView+VIYz31/lt7fnWbF8WAeJ2ShlEtp6eVIu1rOdK5bjW71XOhWz4V2vs7Uc7PF0UqBVidwLyadrf7hjPrpIuN+vsjpoISnJv0G1e34Y0YH3O0tSMtR46hvs39n120C9I71PRu4FfLxSs3R0LG2C3YFGPSXQwrzHOLTc9l8MQylPg2753o00frOp7wiODpd6rrgaK0gMVPF5RDTy1bmoGs9F5RyKRHJOQTFmc67MQQjVUn8LgifajbUdrVBoxM4G1RFRG6JBD74AL74Al5/vWqO+Q+FTidyysPDRY3DjRvLrjhQrZooCwT52SFLhYyeDcW2+kN3y2me+vrr+RYd/v4mb17XzZbPhosupSuOBxXiE/4Tsfr0Ixbtuo1OgBfaeYl6XDIpgiAmyq5cEa/53r1QStdzsfh03z00OtFyo2fDqlXqPnIvjgdxGdhZyJnc2dfk7e9Fp/P3TdFV/c1+DSr47P69GN7Cg461q5Gn0fHB33cKzY8zutXGzlJOVGpOsaXrKZ19UcqlBISnPtVIVBL+C4ZMwMP4TEavvsD7e+5wNzodmVRCh9rORnHF6xGp+Ickc/5hEmeCEzkTnIh/aDLB8Zmk5qiRSSR4OllRy8UGmRQuhyTz0gZ/hqw8x4HbMegKRLp1XG3ZNqMjNR0sSc1RY62UodLomPHrNWMWZ2b32oVqogfvxvLt6OYo9X5Z92PTCw0kW0s5B+7EkFVEua4owrJCJmVgU5HJ//eN6HJdu7y8PGbPns3s2bPJyyveJ81aKaeLPrtjTqnMwNm5FZVWIQrh5qBXg8otlalUKj7//HM+//xzVCp9efO552DRInD+39GiMQfvvy+qS1tail1Jjo6mbV+wVGa4dfrrS2Xl5g3VrAnjx4u/m5EdAhjZypMxrT3RCaLHYUHrkmeJgmMyLy+Prw7e56uDoljkzO51+GJEM2R6OZFvvhEzQXK5+B3VNrN56tLjJM49TEQhk/Dec41L36ACIQgCP5wQu/te6uRrlqHvd0fEhofBzWvQ1CPfGaCsz8rKRHKWisN3Y/l8/z1G/Hie3t+dYvAPZxmz+gIT119mxq9X+eJAIP4hyRVespVIJHw6vCkKmYRTDxIK3Xe2FnKmdhZ5QatOPiyyeuBmZ8lAfSfo3ptln7f+E10sBQbRxeUHrrPqfAwqjQ5bpYyejdyJSM4upBotl4rcH6VcikImNd78GbkaUrJUZDyhf+NgpSBbpUGtFb+CDrWdWfF8y0KeYBHJ2byw9hKRKTkoZBLUWoEmNe3ZPrMj1ko5jxIy6bfstFHMsZqtkqVj/Hhpo+hsvuL5Fsb0K4irkeE/nn8qUChOWO7Co0TGr72MvaWcq+/1NduJ3BS5/t8vh/Hu7ju09HZk96wykD0KQBAEWn56lNRsNXtmdzarzbW8uPAwkfHrLuNiq8R/cZ8K89MyoEzXUhD+34kwrlmTT8D95Zd8Yq4pyM4GNzfIyoILF6BjR8jIVdP602OotDqOLehGXTc780/y9m1o3lyUvz53Dkzw8DKeo0rDsJXnCY7PpFOdavwypZ3Z92VFoeCYXPD7JXbeErOi7wxsyMzu+ZIgBw7A4MHi8Pzpp/zKoakQBIFxay7hH5LMxA4+fKrPmFUVTtyPY+ovV7FWyjj3di+cTfQ+uxqazOjVF5FJJRyd360Q6dtca5PyIiVLxeozjzgeGP9U801JcLJW0KuhO30bu9O9vqtRNNGA8w8TufgoiTf7m5b9MoguVre35Ngb3Y1lyJQsFZ2/PkG2SsvGKW2LLIUZLFnspSpufznyP9HFisR3R4JRaXS09XWmrrsde29GGwOhRtXtaO3thKVCTkRKDo8Ssrgfm8Hd6HTuRqcTnpxtDIQUMgludhYo5VLSctSotQI2FnIUMgmXHiczaMXZQu2zXs7WbHulI97O1qi1AjKphLvR6by5/SY6nUAdV1vm9Mpv50zKVBEYk8GIlmIAtOxoUKGMU+Oa9rz/3NMiHnnFCLq1r1UNNzsL0nM1nA2umtKTocX+RkTqU8Tu0iCRSGipD4Cuh5ezHdpMtPF1xtZCbMm+FfU0b6u8kMvlTJ8+nenTpz9tfXDggMgW/uuvCj/uPxkHDsCsWeLvH3xQfCC071Y0E9dfZu4f1/ls3z1+Pv2I3dcjeRArptOtrUU/LMgvldlZKuhcV8w4ljs71KwZXL8uOtmbEQiBmD1d9aLIH7rwKIk39M+CZwm5XM7kqVNp2H04OwJikEjgy5HNCgVCDx6IiTGD5IG5gRDAhUdJ+Icko5RLmVVAf60qIAgC3x8XuUITOviYHAgJgsA3h8Ws0JjWnlXa/VYUctVafjz1kG7fnOTn04+NgVBdN1teaOfNsnF+/DGjA79MacvqCa1YOtaPT4c3ZURLDxysFKRkq9kZEMnM367R7duT7LgWaRyPf/iH89IGfzaeDzGZQzm7Z128na2JTc9l2dF8OxsnG6WxEejHk0Vz5zrXEeet1JyyC/D+s93//kGwUUrp36ImR+7Fka3SYqWQ0szTgccJWQTG5tclazhY4u1sjYOVwvgjIGZk7kSlkZGnIV7v6C0BLORSo2KyQiYhKUvFpA3+zOpRhwV96yOXSfFwtOL36e0Z/MM50nLUSCVw4HYsK9yCmd+3PjN71OavG5E8ThTJZt8cvs+pN3tw6E4soUnZHLoby6ACImQTOvhwNjiBI/fyyziqYgjSMqmE55rXYOP5UPbejDYSnCsT7vaW1HG14VFCFtfDU0w+ZitvJ04+SCAgPJUppiWWKgRKuZSu9Vw4eCeWk/fjKzw7ZWFhwdq1a4t+8+xZMaWxZInIUP1/gBs3YOxY0aJt8mT46KOiPxeRnM2b22+Sq356rMulEo7oV+jjx4sCgNu2iQaucrkowHjyQQKH7sbyWq965TvhFi3Ktz1Q392O1RNaM23TFfbejMbZWsFHVayvUxApuQIJLSaT45qOhUzKsnEteK6AWF5amtg5lpYm8v2//978YwmCwFL95Di+nTc1HMxT+DYX5x4mciMiFQu5lOldTTOVBkT6hD6QMwi1PgtodQI7AyJZeiSIWL1cQ+Ma9szqWYdOdVxKDfImdvBBo9VxJTSFo/fiOHQnhui0XN7cfpNfL4ZS28WWPTeiANCotOy4GmlsfS8LLBUyPhnWhMkbr7DxfAgjW3kYjcand63NpgthXAlNwT8kmXZPtNDLZVKGt/Rg9dGyL4j/dZmhH3/8kVq1amFpaUnr1q05e/ZssZ89deqUUQis4M/9+6YbH9ZxtWPPjWiyVVoaVrfDzlKBf0gKiZkqHK0VvNjem+0zO3L+7V5se6Ujaya14dsxfrw3uDHvD27M1hkduPlhP46/0Z1l4/zoVt8VAVE4EcSgSK0VMFRUfjz1iOfXXCJBHzh5OVuz/PkWSCRgWASuOB7MpcdJWMhlfDXKz3iuOgE+3nuXl/WKnMv0HQsGSCQSvh3dolCdO7eEtv8hfjUBkTBYVeatrbxF49UAM7I7LfXbPqvMEBTWPKpSGEi658/DpUtVe+xngMREMebLyhLF+tasKbo6KAgC7/91h1y1jpbejrz3XCNmdKvNiJYeeDhaodEJ/HlV7Nbs00fkGiUkiCRfELOVUgnciUovZJVTLqSnm0WkNqBbfVeWjBHv+00Xw55Zh9mtyFSGrjzHnah0nG2U/P5y+0KBkE4HEyeKmSFPT5EnZGZSDBCDiWthKVjIpczqUbVZIcB4nV9o542bnWUpny4MnU7g28Pi/DOxgw81Has2kDMgLVvNC2svsXDHLWLTc/FwtGLZOD/2vd6Fwc1rljnbJZdJ6VinGh8MaczJt3qwaGBDbCxk3IpMMwZCBmy6GGpyBrNHAzcGNauOToDvjuRnh9ztLY1t8yuLyQ6NbOVR5OvF4V8VDG3bto158+bx7rvvcv36dbp27crAgQMJNxgKFYMHDx4QExNj/KlXz/Ro/FZUGhZyCW19nbgfm0F8Rh6+1axZPaE1/ov78PmIZrT1dTbyQ3JUWoLiMgiKy+BhfAYP4zMJS87G29maES09+XVqO/3Aq4FUkt/NZRgrcqmEq2EpTFh32Vgq6tnAjTn6VamBj/TOTtGzqF0t50IOx8fvJzDUrwb2lnKC4zPZd6swkczBWsGq8fl+Zzcjiy/ntPRyxMPRimyVtsrEBFv7iAGNOcq/fl4OSCQQmZJDfMazEajr0UDkX92KTKvac6gAku6/BRoNjBsHYWGiaOL27WIcWBT2347h1ANRoXjJGD+md63N4kGNWDauBe/py8a7AiLRaHUoFNC3r7jd4cPiv9VsLYyrz8N3y1kqA7h2Dby8xEhOZVopuCCGtfDgwyEiefi7o0FsKcVqp6Jx4HYMY3++SHxGHvXdbflrdmfa+hZepX/6qdgxZmEBu3eb7jlWEAWzQhM7+OBmb1owUl6EJmZxOSQZqcQ824xDd2O5E5WOjVL2TAI5gJi0HMb8fAH/kGTsLOS8O6gRx9/ozoiWnuXiN1rIZbzSvQ6Dm9Us8v2wpGyzfCff6t8QqURsSLlTgHbwSrc6yKQSzgQlcLuI+athdXsaVC87v+9fFQwtXbqUadOmMX36dBo1asTy5cvx8vLip1K0Vdzc3KhevbrxR2aGoIWHoyUutpZcCRUn55c6+nBgblcGNK2OUi5FEASC4zJYd/YxE9dfxu+TI/RbdoZ+y87QZ+kZ+iw9Tc8lp2j5yVFe/vUqmy+GYmshZ+X4Vpx4owdD/fIHkATQ6MQs0YO4DCauv0xatlhvndO7Ht3qu6LVifyh0KRslh0THw6LBjYqZE43/48bRr+W5ceCn9IK6lLPlba+pQcdEonEmB0yhZ1fHrTSB0M3I9JM1jiys1RQX09yvR6eWtGnVia42VnS3FNM6Z56ULFcq6ysLGxsbLCxsSna+mDBAvHfXbsgJKRCj/1Pwttvw4kTop3Gnj3Fd46l5aiNCsWzetahzhMcjd6N3HG2URKfkcfZYJH4a2ixP3Qo/3MFBRjLjWbNxBOPiRFbq8qBKZ1r8Zpef+W9Pbf5sxhBuopErlrLp/vuMev3AHLVOjr72nL+vUE09HItNCb//ju/bLl6NbRpU77jnnwQz82IVKwU4sRb1TC0wneu62JyeU4QBCP3ZXrX2lTTKypXJR7GZzDqxwsExWXibm/B9lc78nK32hWqz/TFyGZ8OqwJ1kXsc6MZ9k61XGyM88+qAlkg72rWxnnzx1NFZ4eG+pXdo+5fEwypVCquXbtGv379Cr3er18/Lly4UOK2LVu2pEaNGvTu3ZuTJ0+adfykLBVRqTnUdLDkt2nt+XhYU6yVcgRB4PDdWHp9d5q+y87w2f5AzgYnotLosLeU42yjxMla5A5ZKWRk5mk4ei+O9/+6S48lp+i37DT3Y9NZ8XwLlozxw0ohQwCk+nKYRAJ3o9OZtNGfjFw1MqmEFeNa4OFoZSx9rT3zmNuRaTjoeQMG3I5Op3MdF5ysFYQkZrH7etRTf9f7g8VVZVBcBpkluL0bBt2JB/GVJiZYEHVdbbGzlJOj1nI/tuxaEQa00nvZPKtgCDB2OVSGAGR2djbZ2cWUa5o3h379xPrE8uUVfux/ArZuzXcf2bQJmjQp/rPfHr5PQkYetV1seLWI1bhSLmVYC3F8b78mBhL9+4vv+fuLIo4A/fTB0NWwFGP52mwolTBnjvj7d9/l9/GbiTf61eeFdt7oBFi485aov1NOodTicD82neGrzhvFDqd1qcWP41s9NSYfPBDLYwCvvSbyucqDglmhSZ18cLWr2mBCEARj6Wd4C9NKMAAB4akEx2dipZAxzQyuUXlxLSxFFNhNy6W2qw07X+1Ew+pmCjyVAJlUwsSOvpx8qwd9GhXu9DobnGhSp5oBBrHFg3diC2kHGe7nQ3djiUx5+nn4XDFZqqJgVjA0depUMjKenqCysrKYOnWqObssFYmJiWi1WtyfyLG6u7sTG1v0Sq1GjRqsWbOGnTt3smvXLho0aEDv3r05c+ZMscfJy8sjPT290A8grn7qVuPQ/G50qSfq4IQmZjHllyu8svkaIYmi8GK3+q68P7gxxxZ05+aH/Qh4vy/XP+jHzQ/7cffj/ux7vQtv9W9Ah9rOKGQSguIymflbAKN+uoBPNWv2vt6ZhtXtjOUyQ4f0zYhUpmy8QlaeBicbJT9NaGUUTzQ8ANVaHcNaeODtlL9ief2P68aOjpUnHz5Vs23m4YC3szUancCxEvzKGtWwo46rDSqNjqN3Tdf/sbKyIiQkhJCQEKysSl9RSaUSI/fHLN6Ql/nbVhQMvKHzDxMrtNunTNfSILu8fj2kPLtrUBm4dUsU7QN45x1RObo4XAtL4Xd96ejzEc2wkMtYt06cpBMLaGKOaS2WmI/diyclS4WHh5i8EQTRvBVEd+2mHvYIAhXTWfnKK2J26PZtOHasXLuSSCR8Prwpc/WE3PXnQpi66SppORW3cNHpBNadfczQH85zPzYDF1slGya34f3BjbGztSk0JjMyYORIkRbVpUvF2OYdD4w3lphe6Vb1WaG70ek8TsjCQi6lXxPTa3079Q4CA5tWx96yeF0iU5+VZcGdqDReXHeJ1Gw1Lbwc2TGzE55OlWv14W5vybqXxA40qwJZovnbbpjsLlDf3c6YmS3YQVbf3Y5OdaohCLA74OnFvosJAbNZwdCmTZvIyXnaviEnJ4dff/3VnF2WGU92SwiCUGwHRYMGDXj55Zdp1aoVHTt25Mcff+S5555jyZIlxe7/yy+/xMHBwfjj5SU+JJt7OrBmYhvsLRXkabQsPfKAfsvOGHkIr/Wsy/X3+/Lr1HZM61KLum62T52XVCqhqYcDs3vW5Y8ZHbn2fl9e71UXK4WMgPBUxqy+yFcHH7BmYmvGFvBUEQSxdHY1LIXZWwLQ6QSaezoaW0olEgiMSWfNmcfIpBLm98tvtY9MyaGltyN2lnLCkrI597CwKrJoFCuuckoqgRUqld0yvVQmlUrx9fXF19cXaVHW4UWgtbf5vKGW3o6ASO6srBVyaWha0x5rpYz0XA3BZqyGikOZrmXfvuKMv3GjaAXxP4KUFHGSzckR/8TPPiv+s2qtjsW7biMIMLq1Jx3rVCMqSowTf/utcHWqcU17mtS0R6XV8Zd+9V9UqcygxVUhCudOTmBYPFYAv0sqlTC/b31WjW+FpULKmaAERqw6z/3Y8vv0XXiYyIgfz/PZ/kBUWh29G7pxaF43ejV01x87f0xKJFKmThUtTWrUKJnLZQo2XQwFYEJH09vZKwKGcdGnkTt2JQQzRSFXrTU+X0e3Ltkvy5xnZUnIyFUze4tYzuxaz4UtL7cv1/XLVWtNeqYOaFqDK+/2Nkqe3I5KY/XpRyYf97VeYnbo75vRhCbml2IN13NHQGS5/ANNutLp6emkpaUhCAIZGRmFsicpKSkcOHAAN7fKkUR3cXFBJpM9lQWKj49/KltUEjp06EBwcHCx7y9atIi0tDTjT0SEmDb/8cVW2FjIyVVrmfHrNb4/8RCVVhxch+Z15c3+DUx2LLa3VPBGvwacfqsH49t7I5NKRHO5ny8yvp23UUsBQEAMiE49SGCN3sBuZvc6+FSzNmbYVxwL5mF8JkOa18SrQHbojT9vMqqVOGCKIlgO0Xd+nAlOIDW7eDKnIRg6F5xosv6POTCUuszJ7tTRl9ly1TqzymwVAblMagzKroRWjZ2JERKJaNw6ZozYG/4/AJ0OJkyAR4/A17d0P6sd1yJ5EJeBk7WCxYMaIQjw6qtitqJdu3xdIgPG6B+q26+JK3hDMHT4cH4Vq1s9MRg6G1xB2b5580AqFQ9y50759wc817wGO2Z2oqaDJY8Tsxi04ixvbr9ZZBmhNNyOTGPi+suMX3eZm5FpWCtlfDa8KeteaoNLMZyX998XO8bkcti5E6pXL+9fBCGJWZwNTkQigQntfcq/QxOh1QlGvtDQFmUvvRhw9F4cGbkaPByt6FC7WkWfXrEQBIFFu24TlpSNh6MVK19ohbWy7M8DQRC4FpbCurOPmffHdXp/d4pGHxyi3nsHafnJEfosPc24ny/yxYFA7kSlFRuM2Foq2D27M1P0tiXfHHrAcRMdBpp6ONCroRs6QfQmM2BA0+rYKGWEJWUbOb3mwKRgyNHREWdnZyQSCfXr18fJycn44+LiwtSpU5k9e7bZJ1MSlEolrVu35qghZ63H0aNH6dSpU5n3c/36dWrUKJ5UZWFhgb29faEfAEdrJTkqLdM3XeV0UAJWChkrx7fk16ntyi2a5WZvyRcjmnF4XlfqudkSl57H2DWXaO3jVGgVYRhm3x66T0B4CpYKWSGOkEqr45tD95HLpMztk58dikjJoVMdscPjaGAc8emFu5vqudvRsLodaq1QIjm0jqstDavbib5bJpYJVCoVb731Fm+99Va+hUQpaOHliEQCEcmmd4VJpRKjvs+zbLFv4yNed3OyW8VBrVazfPlyli9fjlpd+fytfwo++yzfamPXLtHXqjioNDpjC/RrverhbKNk2zaxq0mhgA0bng6khrXwQCmTcjc6nXvR6XTuLFaxYmPF0hyIxH5bCznJWSruRFeAoGbt2mKqSyoVFakrCE09HPjrtS70a+yOThADw15LTvPR33cJissoMZCLTs1h4/kQnl9zkSErz3E2WLS8mNzJl9Nv9WRCB5+nst5qtZply5bTp89yPv9cHJPLl4sK3hWBrf7iIq5HfVe8nKveyd0/JJm49DzsLOXGTlFTsEMfYI9s5VFqx5Y5z8ri8MeVCPbdikEulfDD+JY4WJctoyUI4jN+5E8XGPXTBT7bH8ieG9E8SshCEMTFQUq2mofxmVwOSWbNmccM/uEcfZed4YfjwcSkPV05AvhgcGPGtfVCAF7fer1Qd1hZYOAO7QyINAb31kq5UcphxzXzmwdMsuM4ffo0giDQq1cvdu7ciXMBHySlUomPjw81a5oeNZcV27ZtY+LEiaxevZqOHTuyZs0a1q5dy927d/Hx8WHRokVERUUZS3XLly/H19eXJk2aoFKp+O233/jqq6/YuXMnI0eOLNMxDXYc0fFJzN/9gEuPk7FWytg4uS3tKyHCz8hVM3/bDY4FiqTbl7vWIjo1l/23C5tEejpZsX9OVxysFLyy+SqHC/B49r7WhUY17Oj+7UmiUg1iWnZYK+VcDUvhzX71nxKOW3XyId8efkCXui78Nr19sef32b57rDsXwvNtvfhqVPMy/13mSswPWH6G+7EZrJ7QmgFNTVtiLjsaxIrjwYxs6cHScS1M2raicDY4gYnr/fF0suLc270qZJ8mXcuMDNH34MwZMRL4l1p0HDwo2q8JQtmsNrb6h7No121c7Sw4u7AnWekyGjYUeUIffyyqVBeFWb9f48DtWKZ09uXDIU0YOlS8bF99JXavAcb77Y2+9Xm9IkTzHj4U0yi+vuXfVxEICE/h20MPuPg439jVzlJOCy9H/DwdERBIy1GTlqMhNDGL2wUmKIkERrTwYH7f+iUGIaGhWdSqZVgUZtKsmQ03b1bMcMtVa+n45XFSstWsm9SGPo0rX/j1SSzadYut/hGMa+PF16PL/twDiEvPpeOXx9EJcPLNHtRyKfnZV1F2HPdj0xm28jx5Gh2LBjYsc/fd5cdJfHckCH99NttSIaVbPVeaeTjQ1MOBJjXtkUgkJGepSMrMIyYtl+P34zgWGG+0ebJSyJjftx5TOtdCISucc1FrdUzZeIVzDxOpbm/Jntmdqe5QdomEF9dd4vzDpEI2LFdCkxmz+iI2ShlX3utjzH4Z5u+y2HGYlD/v3r07ACEhIXh5eVVIPdMUjBs3jqSkJD755BNiYmJo2rQpBw4cwMdHTJvGxMQU0hxSqVS8+eabREVFYWVlRZMmTdi/fz+DBg0y+dizfgvgelwethZyfpnSljZPaGkUBUEQCEvK5uLjJEKTsrCQSbFQyFDKpHg5W9OlnovRb8UAO0sFaya24bujD1h18hFrz4Ywsb03fRu7c7QAwTkyJYd3dt7ixxdb8cGQJpwJSiRHb6mx9OgDNk5px9ze9Vm4U1zS3ovJ4PPhTbgalsJW/whe7VHXqFUEolngt4cfcOFRIgkZecV2anSqW41150K4UEWO2a18RF2ngPAUk4MhQ4nqWZKoW3o7IdVrHsWm5Zp00xcHmUzGeL2WUKkyEWq1OPtnZ4t96L17l/v4VY2QENFA1VDmKi0QKpgVmtm9DpYKGV/9IAZCTZuKpOviMKa1Fwdux/LXjWgWDWzEgAFS9u6FI0fyg6Fu9V05fDeOM8EJFRMM1a1b/n2UgFbeTmx5uT3nHybx85lHXA1NISNXw9ngRKOUQEFIJNDWx5l+Tdzp36R6qZmYv/6C6dNlgF7fChm//15xcffBOzGkZKup6WBZ5c70AHkaLQduixnzYWaUyHZfj0InQBsfp1IDoYpCjkrLa1uuk6fR0aOBKy93LV0TSRAEVp54yHf6jj2lXMqL7b15tUedIsUlxTlC5COOau1Jeq6aI3fj+P1yGNfDU/niwH12BUTx+YimtPbJny8VMimrXmzF6J8uEByfycu/XmXnq53K7K83u0ddzj9MYldAJO8MbIiNhZw2Pk74VLMmLCmbg7djGVUKL6somEUm8PHxITU1lfXr1xMYGIhEIqFx48ZMnToVBweH0ndQDsyaNYtZTxb79fjll18K/X/hwoUsXLiwQo57LTwFBwd7Nk1tZ1RHLg53otLYeD6UC48SiUkrvryjlElpX9uZPo3cGeKXr/oplUp4q39DarvY8sb2m2y+HM7c3vV4GJ9JSAHi2ME7sWzxD+fF9j7M6V2Prw+JyqaiFUUKI1p5iG3FmWKq9UpoMg5WCqJSczgTlFDoweJTzQY/TwduRqZx8E4Mkzr6FnnObX2dkUklhCdnE5mSXekdCa28ndhyOZwAc0jU+o6y0KRskrNUz4R0aWshp3FNe+5EpXM1LJnBzcufObW0tOT3338v24ednWHKFFi1SiTp/suCodxcsVssJUXk+SxbVvo2uwIiiUrNwdXOghfbe5OXJybHQOSzlKR+3LWeC252FsRn5HHifjw9e4oB+MWLojaiUpnPGwoITyU9V11iZ5DJCA4GDw/RJK0CIZFI6FLPhS71XNBoRR7d9fAU7sWkYyGXYa+3DnKxVdKpjkuZ2tbT0mDuXFHaACwBcUy2aSN24lUUfr8kLnBfaOddaAFXVTgTlEhajho3OwuTqwGCILBTXyIzZ4I2FxsvhPAwPhM3Owu+G+NXamlOrdXx/p47/KHXqBrXxov5feubtHizt1QwurUno1p5sP1aJF8eCOR+bAajfrrI7J51eLNfA2N51cFKwYbJbRm68hy3o9L48dRD5hWgdpSEjnWq4VvNmtCkbA7cjmFMGy8kEgmjW3ny3dEgdlyLNOtam5XauXr1KnXq1GHZsmUkJyeTmJjI0qVLqVOnDgEBAebs8h8PiQR+nti6xEAoMTOPd3beYsjKc+wMiCQmLReFTEI7X2cmd/JlYgcfxrXxYqhfTXyqWaPS6jgbnMiHf9+l+7cnWXf2cSE3+VGtPflArwO04ngwQ/1qoJAVHtRfHggkKTOPaV1q4Vst/wG67GgQiie4Q/tuxTJS3zn2e1FE6jIIK9pZKoxigherIDtkUKK+FZVW6NqUBQ7WCuq4iiuxfwJv6Go5yH3lwrx54gA+eBACA5/NOZiJ118XfU1dXERSrkUpc7RKozPK8xuyQn/+CfHxYoxhMGHV6Qmxg1acZebma0YOjVwmNfIPLjxKpGFDcHUVu9euXhW39XK2prarDVqdwIWHT2dWzMacOdCggSG6qDTIZVKaejgwsaMvX45szkdDm7Cgb32mdanFsBYeZQqETpwQA56iTrUiaaP3Y9O5GpaCXCphXAGF/aqEoYtsqF9Nk4OxW5FpBMdnYiGXFrIoqUxk5KpZc0Zsslk0qGGp4o6ZeRqmbbrKH1cikErg02FN+Hp0c7Oz2BKJhLFtvDj+Rg9jV/Sqk494Y/tN1AW60Lycrfl4mFjmWnniIfeiy9b1KJFIGNNGHAvb9RY6ACNbeyKRwMXHSWZZ5pgVDM2fP5+hQ4cSGhrKrl272L17NyEhIQwePJh58+aZs8t/PCZ08KFTHZci3xMEgQ3nQuj57Sn+uBKBIIiBxeZp7bj1YX/+nNmRj4Y24dPhTfl6dHNWPN+Ck29059iC7iwe1JCG1e3IyNXw2f5A+i07XagcNq6tl1H2feXJR0+1ZWbmaVl6NAilXFpIUO6s3gxweEsPYwCl0Qk4WInJwBP3454iuRlu1iuhKUSnFk2AA+ioXx1VRTDkW80aZxslKo2Ou2YQVlsZfcpSK/jMyo42epXvq2FV3FFmQN26oksmVIzgSxVh40ZYt06M47ZuFd0rSsOugEgiU/KzQoIAK1aI782eDXK5wOmgBIasPMecrde5F5POobuxhRoHDGPmZkQqEgl06ya+fvp0/nEqtMXegHr1xFrgsmVi69w/GKGhYoD5JGxtYfToijuOISvUr4l7lVtvgMhXOqbvejKni8ygLdS/ScnaQhWJDedCSc1WU8fVhqF+JYtD5mm0TFh3mTP6pqA1E9swsZiqQEGotToyctUkZeYRnZpTpGels42Sb0b78e3o5sikEnYFRDF901WjMTmIncz9m7ij0Qm8taNwsFQSRrXyRCoB/9BkY7XEw9GKzvo5elcRmkOlwezM0Ntvv428QMuuXC5n4cKFXDUsn/7HMLcYboBOJ/Dx3nt8su8eGXkamnk4sGNmR354oSVtfZ25+DiRt3fcouOXx2nywSHqv3uQWosO0OKTo3x18D5SiYRvR/vx9chmuNhaEJqUzcu/XuWDv+7wxp83+Gz/Pd4Z0JCRrTzQ6gR2B0TR/gmH3i2XwwmMSWdES09qFIjmlx59gK2FnGEF1FJ/uxxOu1rO6ATY9oRsfw0HK6M9R0ldZYag8OLjpHLpOpQFEomEVnruj3l6Q/pgKOLZZ4buRaeXqPJdVmRlZeHq6oqrq2vRdhxFwSDCuHlz0bPYPww3buS3vn/yiWieWho02qezQhcuiDZglpbw8svw0+lHvLTBn7vR6dhayI330orjwcbskKEL8V5MOrlqbYnB0JmgxIq7B6ZMET1FgoNh376K2WclYepUUX8pfwrIAlzRaFyRSMo4JktBVp7GqJr/4jNopwdREydXrcPF1oJmHqZRQARBYP8tsfGlqkpkadlq1p0Ts0Lz+tQvNZP1xf5AbkSk4mCl4I8ZHUokp0en5rDhXAhjV1+kwXsHafbREVp/doxOX52g2UeHGfHjeb48GMipB/GFjMHHtPFi3aQ2WClknA5K4IW1l4wuBhKJhE+HN8XRWsHd6HR+LqP+UHUHS7rp78GCHWSGZMFOMzSHzAqG7O3tizRHjYiIwO5/SOCtIIrybtHqBBbvvs0vF0IBeO+5Rvw1uzNNPRz46uB9Wn96lKm/XGXb1Qhi0nLJUmlR6SPf9FwNxwLj+Gx/IENWnmPb1Qi+HtWMV/ReYr9eDGNnQBRH7saiE+DrUc3pVt+V4S09+OGFlrgWSH0KwKf77qGQSQoR5S49TuZaWEqh9HJiporBzUQexF83op8aMAYeUUkE6dY+TihlUmLScglNqiAH7xLQshzZHQOJ+kZ4aoWqQJuC6g6WeDpZoRMqrlyXmJhIYqIJJZrOnUXSTV4e/PhjhZxDZSEtTeQJ5ebCoEGweHHZtjtxP57IlBycrBWMbydqdK1eLb43fjw4OOlYf1a0kHixvTdnFvZkzcQ22FnIuR+bYVwAeDpZ4WyjRK0VCIxJR983wvnzojksQPta1VDKpUSl5vAooYIENW1tRVVq+Meb7AqCyMPSaAqWLhPJza24suGxwDgy8zT4VrOmU52q0+YpCP8QMZvb1tepWHHf4hAcn0lSlgpLhdSYTa9srDv3mIxcDQ3c7XiuWclluQO3Y9h0MQyA5eNa4KdfBDyJyJRspmz0p9NXJ/hk3z38Q5Mp+CiVSyVodALXw1P5+fRjJm+8woDlZzhwO8b4zO3Z0I0tL7fHyVrBrcg05my9bgyY3Ows+WiIKBGz4ngwD8qoCzdWXyrbcS3SuK/+TapjIZcSnpxtsu2HWcHQuHHjmDZtGtu2bSMiIoLIyEj++OMPpk+fzgsvvGDOLv910Gh1vPHnDWOd9Tu9E7Z/aDIDlp9h9elHZKm02ChlONsoKe42UsgkyCQSAsJTmbbpKvtuFW6hT8pSczwwDoVMypqJrflyZDPc7C15Z2DDQp+78CiJo/fieL6dVyGi8Fb/cNr4OBWy6DgTnIhSJiUkMeupB7kh63PpcVKh6L4grJQyWuiDjAuPyvbws7Ky4s6dO9y5c8dkifnyONjXc7NFLpWQpdISm148mb2yYXDyrgjekFnXUiKBhQvFtqzhw8t9DpUFQRDLLI8fg7e3mMgqa9Pqb3oe3Ni2XlgpZWRminpEIGaFzgYnkJSlwsXWgo+HNsHZRomDtYIpXUSfqOXHxOyQRJKvUXUzIpWmTcWETWamyF8C8R4wZJVOB1Ugb+i118R0y5kz+SSlfyBWroQ//xRP9ehRePNNK2rXvsPt26bf38XBQBcY1KyGyYFIReGqvr28LN3DT+KyXsqglbdTmTulwPxnZXKWig16v7j5feuVSJoOS8ri7R1ip/HM7nWK7NLT6QQ2Xwqj/7IznHyQIHYZ+jrx/uDG7Hu9M58Ob8yUTr50qlONwc2qM7mjD6NaeWBvKSc4PpNZvwfw3A/njIKzLb2d+HVqeywVUk49SOCrg/n8xWEtatKnkRtqrcDnB8rGa+zdyA0nawVx6Xmc0eveWSllRpK7qQbZZgVDS5YsYeTIkUyaNAlfX198fHyYPHkyo0eP5uuvvzZnl/86LDkSxJ4b0aKY1QutGNHSg0/33eP5NZcITcrGzlKOlUJKlkpLcpYKAfBytqJrPRfa+jrRuIY99pZy1FoBbYHsTFQRXJ23d94iI1eNpUJmfCiMaOmBn2fhtO3nBwKRS6VM1at8Auy9GUVGnobnC6hZnwlKpENt8eY+8oQfWdOa9thZysnI1ZQoiGVYqZWVNySVSmnSpAlNmjQxWZLBz9MRqQRi03OfEowsDXK9jAFQSMK9qmEI6CqCN2T2tRw1SvShaNGi3OdQGRAE8RSPHRMDoO3bxWa4siA0MYszQeID+8V2Ykll925RUaBuXWjfHnZf1ysI+9VEXkD7ZFrnWthZynkQl8EhfXbIz9MRgBsRqchk0LWr+NmiSmWnHlRg2dHTE55/Xvz9H8rvunw5v+q6ZIl4bb79Vsq5c01o2tT0+7soqDQ6Tusns77PQFcIxGDgqn4BZqAPmIJL+qxS+1qmZYXMvb/Xnn1MlkpLk5r29G9SvAyJSqNj9pYAMvI0tPFx4o1+T3dxZeSqmbjhMu/vuUOWSktbXyf2vtaF2q42LDn8gME/nOf9PffYeCGUM8GJ7Lsdyy/6aoZGJDj/rwABAABJREFUJ+Dn6YCNUkZgTDovrLnExvMhCIJAM08Hlozx059vCNuviiUuiUTCB4ObIJdKOBOUwKXHpc8rFnKZkQJi2A+IwpwAp4JMuy/NGrVKpZIVK1aQkpLCjRs3uH79OsnJySxbtgyL0to9/gdwJTSZn8+Itc1l41owqFl1Ptl3z+jibAgmctQ6Gla3Y9k4Py4u6sXZhb3YPK0922d24sDcrlx7vy+/T2/PxA4+OFgVT65LyVbz2pbrhfxgpFIJHwxpXOhzYUnZ7L8dzcSOvkb9ojyNwF/Xo4x2HCAqVTeoLop6HXnCdFUukxpv3pJKZUbe0KPK5w1ZKWV46DNbIWYENAZtj5CkZxcMGTJD18OfnVfaPxmxsaJa8e7d4v9nzRKremXFFr1Ccff6rnjruyp/+018b8IEyMxTc0Qf6IxoWZhU6mCtYGpnMTu0Qp8d8vMSFxo3I8UFQVG8oa76FvtrYSkV+50uWCD+e/w4lJUTVkVIToaxY0X5qlGjxAY4A0oQ9jcZl0OSyMjT4GpnYQxMqxpB8Rlk5GqwVspoXMM0d3dBELj8WB8M1TY9q2QqNFqdMSB4vVe9EjNpW/3DuROVjpO1gh/Gt3xKFDFXLTotnH+YhJVCxkdDGtPCy5EhP5xj25VIo55dcchWabkZmUa2SouPsxUaPa92wZ83yVFpGdy8JnP0PmPv7r7DjYhUALyrWfN8O7H0teTwgzLNK4ZS2dF7cUaLKINCuH9IciGydmkoVwhvbW1Ns2bNaN68OdYVrIvxT0VWnoY3/rwprmJbeTLEryZLjwYZeUPWShkZuRpcbC34elQz9s/pqic2P53uVMikdK7rwqfDm3LqzR5M6OBdbDntdFACH+29W2iAtPZxNrbDG7D2zGPsLeWML5AJ+v1yOG52FnStm79CuRGRpv839alsiyHrU1IJrIWXI5YKKUlZKoLiSq/NqlQqPvroIz766COzJOZ9q4kBTagZAY1h25CEZzex1HOzxd5STrZKS2BM+bzS1Go1a9euZe3atebZcQQGinWjw4fLdR4VhT17oEkTMeMAYGVVNj0hA3LVWv7UTwQG36qYmHwj+AkT4NCdWPI0Ouq42tDU4+mJbWqX/OzQ2YeJxjJZSGIWqdkqYzB08WK+T1k9N1vsLMTvtCz3QJnRsqWoI/D4segH8g+BTicKXoaHi9m29evzhRXLPSafgKFE1qeRW6kaOZWFK/rMTitvp0KZxLIgJDGLxMw8lHKpcSyVFeY8Ky+HJJOYqcLRWkHvRsULU+aqtazSNxm80a/BU/OSSqNj1u8BXA5Jxs5CzrqXWrP27GPWng3hydDEqggebUEIQFhyDgqZBAmi+OSkDZfJUWmZ16c+/Zu4o9LqWLjjplE25fVe9bCQS7kallKmMlfjmvY0qmGPWisYvc5qudjg7WyNWiuUKcNkQJm/4ZEjR5b5538Zn+0PJDxZNL37cGhj1p55zA96tVsLuZRslRY/TweOzu/GuLZlFwlzslHy2fBm7JsjpiKLwm+XwvntUlih194Z2BCLAvXoezEZXHycZDSdBLgfm8HNyDTGF+jIuBGRarxJjz5hmNe5rpj1uRKaXKy2j1IuNWY7LpaBN6RWq/n444/5+OOPzXpYGrM7iaYTtmu56MtkzzAzJJVKCnCfylcqU6lUzJgxgxkzZpjnXbR+vdiz/s035TqP8iIzU4zJRowQMw4GvPKKad6y+2/FkJqtxsPRysh9+OMPcfLu2BHq1MHYlTSylWeRq2YHKwX9GoulhevhKThaK426Xbci0/DzEz3NkpIgTH8LSqUSI3euwlXOR436RwVCIHK69+0TCdPbt0NBfd1yj8kCEASBY8Zg6NmUyACj6WcbM0pkl/WBlLhoLEUl/gmY86w0aMMNbFrjqUxPQfx2KYz4jDw8HK2MWRUDBEHgze03OXE/Hgu5lG9GN2PqL1eNlk4AUglM6ujDX7M74+1cxAJfKmFq51rUc7M1SrqotQICYCGTcCU0hde2BKATBL4a2RxnGyVBcZnGLjJ3e0smd/IF4NvDD8rU9NJXH/yd0stcSCQSY3bonAk6YGUOhhwcHIw/9vb2HD9+vFAb/bVr1zh+/HilK1A/S1x4mGg0DFwyxo/wpGy+1JPA5FIJeRod7Wo589v09jiZqXbcpKYDu2d1psMT7fOWCvGr+uLAfcIKTOoejlZPtZ2uOxtCPXc7ozgiwNbL4fRq5IZcmj9AW3iKK+SjT/CG6rvbUs1GSa5aV2L3k8F92b8KHNkN2Z0wczJDxkDq2ZYcmupbcx+UM4sgk8kYNmwYw4YNK92OoyjMmSO6lJ44IfawPwNcviwmQNate/q96dNN29dm/QJhfPv8xYeh3PbCCxCTlmP05Rqqz6SmZquY/XuAsSwG0KSmeD/c1Yu/GbprbkSkYmEBzfWWVFeu5B+7pdEMONW0ky4rBAEizDefrCicPw+LFom/f//907Szco/JArgbnU50Wi5WCplxYfYsYCBPtysHefrJ53hlQKXRcfCOWAIe4ld8rTJbpWG1PuiY07vuU6TunQFR/H1T5MF+N8aPuX/cIK/AYrhbPReOzO/OJ8Oa8vfN6CKfY2q9mOmv09rx4NOBvFigQpGnFZACx+/H886u2zhaK4yiwj+ceGhs5pnZvQ62FnLuxaQb/66S0EO/ADoTlGAsVxuDoSLsZopDmYOhjRs3Gn/c3d0ZO3YsISEh7Nq1i127dvH48WOef/55XFye3eCtbKw4HgyIkXFbXycW7bqNThA5QhqdQKc61dg0pR125RTXcrBSsGlaO4YXEPnKVeuobm9JjlrL2ztvFYqYp3T2pWAC6sT9eB7GZxTiCf19MxqVRmfUZgC4qy/XXHiYVEj/RiKR0LFO6bwhg+7G/TK2QpYHtcoR0Bi2jUjOKbZDripQ103kaT2ML9/1srS0ZM+ePezZswdLSzOE6Ly9YcwY8fdnQNLNy4P580V/0ifRqpVYMisrHiVkciMiFblUYlzpJiWJkzfA0KEGCQloV8vZSKZfcuQB+2/HsOxYELO3BJCr1hqDIYMSbsGOMhBtJqBwk1el6lg9eCDKPHftmt/T/wyQmAjjxoFWK0oUvPzy058p95gsAIPIYdd6LiZnVSoKkSnZRKflIiuQ/SsrBEEwZoYqw8z7SZx7mJBvF1ICWXvThTASM1X4VLNmZIG5AcROtM/33wNgbp96vLvnDipt/rNyaudabJraDm9na1affsRvl8KwsZBhrXg6hEjMzGPKxiuotDo+H9GMbTM6YDBOMIRWO65FsvLEQ4a1qEm3+q6otDpxPtUJONkomabv8NxwPqTUv9/P0xEnawUZuRoC9IuSjrVdUMqlJdphPQmzOEMbNmzgzTffLLQCkMlkLFiwgA0bNpizy388roencDkkGYVMwqweddl0MYzbUWko5VIycjU42yhZ8XxLrJQVc/NayGV8N7ZFoTRxXHouFjIplx4n87t/vs6Tl7M1zz3hebX+XAhD/GoaU5U5ai0nHyQUqiffiUqjlosNKm1+54YBBQnSxaFBdVFTKjQxi9xSSHXlhY++ZBGWlG0yYbumgxVKuRSVVleisnZlo56beL2C4jIrnXReKgztQFu3QpTpaq3lgYUFnDwpCvc9iUmTTNvXIf3KsVPdfD+tAwfEEpmfH/j45Gc+DSabd6PT2KJvw1fIJBy8E8v4tZeMPntRqTmkZKmMmaGbkakIglBkMGQImB4niNyiCoW3tyiQGRaWrxFQxdDpxO8kKkp0Cvn554ozYC0ORr7QM+oig3wJjKY17Y0O6GVFRHKO0YqpNB/LisDfN8QS2XPNaxRLy8hRaY1NP3N61XuqlPblgUBSstU0rG7H6QdicGXAnF51eX9wI66GpTBg+Rm+OnifPI2OrDwt2eqiaRT3YzPo/u1JzgTF0752Nc4u7GWsShiw/HgwNyPT+Hx4U6wUMvxDko2ZoBc7eCOXSrgWlkJgTMk2HTKpxNjZeVLf2VlQ+qKsMCsY0mg0BBbhcRQYGIjuHy4jby4MEeqIlh5oBYHvjjwAMHJqvhjRrEyePqZAJpWw4vkWNNJ3MgiAtYUYbH11ILCQncbLXWsV2nZXQCRKuZSeDfKDn+OBcfQo8P8ctc5Iqt54IaTQBN1Z//r1iBSyVUWvSt3sLHCwUqATqDjhuWLg5WyNTCohR60lLj3PpG2lUgk++ozA42dYKqvtaoNUAmk5ahIzK3jiNBVt2uRnHFaurPLDKxQiyRnyJ1eZTCxrmQJDh9iAAq3Ef/8t/jt0qEgYva3vCOtS1wVBEPj473voBBjcvAabp7XH3lJOQHgqmy+FGXlCd6PTaVzDHoVMQmKmisiUHGMwdO1avluGk42S2vrMo6ErpsJgZZUvw/3dd/nM7SrEkiWipZ2lpagrZGtbuceLScvhbnQ6Egn0fgYO9QZcKYe+0KUQcQHZ3NOxwhbHxSFHpTUGj0820xTEyQfxRl7dsCdsRS4+SmL7tUgkEhjUtLpRTgBgamdfFvRrwNngRCasu/zU87OFlyOTOvrw6bAmfDC4MS+296aWntIQl57HpA1XmPfHdayUMk6/1aNQsKbVCczfdoNqtkpm6MWGv9crwbvZWRrlAZ7kyRYFw7xWkHRdcK4rC8wKhqZMmcLUqVNZsmQJ586d49y5cyxZsoTp06czZcoUc3b5j8fJ+6KGyYxudVhxLIhsldbI4xnd2pMBTYvXdSgPbCzkrH+pDdVsRQ5SSrYaF1slWSqtkbgN4o1XMBLO04gkxILp0JP343kUn4mTdf5K51e9909AWEohYqm3szUejlaotUKxQoESiYQG7oZsR+WWyhQyKZ7laK838IaepdaQpUJmLNMEl6NUlp2dja+vL76+vmRnl0MB3JAdWr1aZDNXIQpOsrt2QaNGMHAguJnw/IpOzeFmZBoSSb4WTV6eaBMBYjB0JyoNlVaHi60Sb2dr9t6KwT80GUuFlMWDGtGhdjU+HS6aRZ56EE+TmmLp9050GpYKmXEhcjMylSZNxPNNSytc4ssnUaeW65oUiVmzxFSavz9cuFDx+y8BFy7kq39//30+Z6ooVNSYNAirNq3pUKrBaGXC8Mxra0YwZFCtblcFfKGTD+LJUmnxcLQy8teKgoFgPeQJjS1BEIy81xfaefHDiWDje/XcbHl7YENOPYhn+q9XC/OH6ruy89VO7JndmU+GNWViR1+mdqnF5yOacfKtHhxb0J2JHXyQSmDPjWj6LjtDZEoOh+d1NXZMSxCf5Z/vD2Rq51rYWYjdnAYl+Bc7iHyjPdejSrUx6lbfFYkEAmPSidWXxrrVM42yY7bo4jvvvMOyZcvo1q0b3bp1Y9myZSxcuJBvv/3WnF3+K9CvsTvVbJTs0aclc9U67CzlvD+4cSlblg81Ha1YMtrP+H9DVuHPKxGEF7DDMFhxyPRBzd6b0fRq6IajXsMoPVfDiftxpGQ/PbB0AiRk5GdcJBKJ0cribgluwvX1ekUV2lpcDMpDoi4P56giUc/IGzL/egmCQFhYGGFhYeUrtw0ZAp06wdy5VWoM+uQkO3y4ONd//rlp+zFkhdr4OBmzshcvinFd9eoi/8iwym3tI9op/KhvK57Voy41HcXguouepHs/NgNfl/zMEOTz4u5Fp6NQ5BOHDaUyQQA/D4NdTCXwhtzcYOJE8fcq5HclJ4vaj1qtmK0rjdReUWPylj6LZ9B5ehbI02gJ0i9WWpnIF4L8DKE5xGtTcVZPEB7YtHqx2kKZeRpO3BfLR4ObFyZYX49I5Vaknu6Ro8FQ9ZJKYMXzLXkUn8WMzdcKdRW/91wjNk1pa+yOLQp13Wz5dHhTdr7aiXputiRm5jFpgz/hydlsfbk9EjC26v9+OZzHiZlM0YsFG3wCO9auRh1XG7JUWvZcL7mU72yjNJasDSKodVxtsVaWPcQxKxiSSqUsXLiQqKgoUlNTSU1NJSoqioULF5a7k+CfjFe612Hb1QhUGp1RY6E0wcQnkZ6rZtuVcGZvCaDzVyfo+OVxun97kld/u8b2qxHF8g56NnRjZKt8sTg7C5G0vfxYUKHPuNhaGBWtzwQnkK3S0LUAaVoqkeBsXXSn25MP84Z6TtCD2OKDIWNmqBQStaWlJf7+/vj7+5tNsCyPeKJh22fZXg9QV88bCi5H8FgR1xIQZZ7PnYOPPgJ700TlzEVysji5PjnJ2tqWnHkoCga16IJqu6dOif/27Cn+edcKBEOZeRoe6DOYL7TL73KpZmth1B4ydKPcjRYnZcO4ufk4m1WrwNA1/vbbYsu+pSU46RwBcRKsFP+7+fPFf3fvhkdlM7IsDwRB9IyNiBD1hMrCE6qoMXkrMhWA5h6OZu+jvIhKyUEQRB0dU6kPOp1AeLK4QDU0TJgKU66lkdxfQvv/8cA48jQ6arnYGJsEDPhVr483uFl19hawgprftz513Wx5Y3u+BpBCKmH1hNZM71r7qcArKjWHCw8T+ftmNMcD44hNy0UQBFp6O7H39S70aeRGnkbHjF+vkZyt5tXudQpt/+WB+0zpLIoF34/N4Mi9WCQSibFT+rdLpQfZPZ8olUmlEhpVL3tQXW7ddHt7e+yr6EH6LOHlbEVzDwc2643tctRalHIpUzrXKmVLEYIgsPt6JL2WnOLtnbfZfyuGqFSRaBeWlM3BO7G8teMWXb8+yZozj8jTPE1I/mBwY2Mgk6FPG+6+EUWw/gEvk0qMkb+9pQK1VuDgnVi6FkgXngpKYE6fekWe45Np/obVxe+1pG6x+vpg6EEpZTKZTEbbtm1p27at2QGzgURtTqnLKLz4D8kMladMVhHX0ogq9HwSBJE0HR4uBhKrV5t/+OQslbEcUTAYMihEd+8u3nMBxmDImXvR6QgCVLe3fGqS61JXXDBEJIs8vJDELLLyNMZxE5GcxWuvQUCA+PnISFETUSaDfu3ssFSIjRSPEyshQ9q4sVhDFATYsqXi9/8Evv9e5F0plSJPqCze2xUxJnU6gTtR4sKr+TPMDEWkiGPAy9nKZE+0uIxcVBodcqmEGg7mBYVlvZY5Kq3xuVucySrkl8gGNy/s8ZaQkceB2+KCIiU7nzBtayFjWpdarDr5sBB5+YOhTQrRQXT6NvpxP1+k81cnGL/uMnO2Xmfapqt0+PI43b89xS/nQ0RT3wmtGdaiJhqdwLxtNxjQrDpeBfwy/UOTuRqWatQY2nAuFIBRrT1RyqTcj80oNZtu6JS+FJLvitCoZtljE7OCobi4OCZOnEjNmjWRy+XIZLJCP/+L6NnAjRP344lKzUGu79Aa09qzTCsHg6rn/G03ScxUUcvFhrm96/HHjA7sfa0LW1/uwJze9ajnZktGnoYvDtznue/PPTXpO1orC1lwWCqkCAKsOfPY+JqBRJejFoOlvTejCwVDjxOy6FS7GkrZ0zf5k8Jxhm6xRwmZqIuxGzAEQ5EpOaXWdcuLfN6POcKL4raRKTnF/i1VgXru5S+TVTh0OlFNz5CBqCT88AP89Vf+JFueNdTxwDh0gqgNZOBh5eXBpUvi+927iwFNUpYKpVxKUw97buu99pp5Pj3RGvgFV8NSqG5viSCI/AND2SxFnU3DRk+vTJs3B0sLKc31lhGVwhsC+OQTUTH8vfcqZ/96XLsGb70l/v7dd6IWVFXhcWIWmXkaLBVS6rpWMlO7BEToMzteTqa7KhhoCx5OViarVpuK21FpaHUC7vYWRTocgNiscVovRjj4iY7jbVfCUWl1+Hk6GI1OAaZ3rU1Eco5RqVrctgYTCmgGpWSpmLbpCnO2XudySDJSCdRxtaF9LWcauNshk0oIT87mo7336PrNSc4/TGTZ2Bb0buiGSqPjlc3X+G6sX6Hz+epgIM+380IqEYOjxwmZOFgp6KRv5nnSR/NJNKphh0ImITVbTaQ+oG1SswyRvB5mfVuTJ08mICCA999/nx07dhi1hgw//4vo2cDN6H+k0Qp6MnXtUrdTa3XM2Xqdg3diUcqlLBzQgMPzujG/b3061K5GM08HOtapxoK+9Tk8rxvfjm7O/7F33eFRVG/3zNYkm957gRBaIPTepUpTFFRERRFRwIZi72KlKBZEEZFqoar0XkMnBAghCSG99759vj/u3NmS3c2WFPT7nefJQ9jszO7O3rn3ve973nN8XaW4XVyL+1ed4bsaKKbEBaMDN1HIuQLvP9fyUcVF9r3CPRHqRYjPAHD2ThmEAobPSADAqduluMeEsuu13EqDQCHUyxmuUmIme8eMlYWXTMIHhGkWskNKpRJLly7F0qVL7VaojdKz5LC1HBHgLoWzWAiNluUnu7ZAe+67K61V8l46tkKtVmPz5s3YvHkz1M2hP1NUBEybBnz9NSHvtACuXNEtskuXEj6PI6BZISquBpC3LpcDAQGkDZyWyLqHeEAqEvLGw5QHpI/ekV5wEgtQXKPgM5BXsiogEBArgRqFGqNmNJaZoJ+Dlh8s3QMOoU8fYOzYFs3kVVcTPSGVivC4Fiyw/tjmGJPX8yoBEPJ0SwcSlpBTwQVD3rYHQ1nc3BJux7EU1s6VtERmybvteEoxVBoWHfxd+c0tQLKmv10gYp49wjxBp32xkMETAyPxw/HbUHNzbKC7FJ9N68ZnlTJL6zDxm1M4llICiUiAF+7pgDNvjMKRV0bgj3kDceDlYbj+wVh8fF8swrydUVqrwOx1F7H0YAqWz4hDOz8ZCqrkWHkkDeO76tah9JI6XM6q4LvA/uAsdqgyfFPBkFQk5D8jvde7tHRm6PTp09i8eTOee+453HfffbzyKP35L6JzkJuBAGHvcC9E+DQtl//eX0nYn1QIiVCAnx7rjfkjGit/UggEDKb3CcPeF4age6gHKupVeHztBX7Q0+e8Or4j/3+JkIFcpcX2K7kACPGZZofcnERgWdI6SU0lATLJ63Mm6HPlKi1S9EpiDMMghstk3LKGN2RhIVCpVHjttdfw2muv2e1dFOrlzCt9F9XY5l7PMIwus9SGvCGZVIQQjrhrb3ZIoVBg1qxZmDVrFhQK22QGTCIoSNfTbospmJWoqSGLrFIJTJ0KPP+84+dM4O4JfR2XU6fIv8OGkZiB5wtxfArKRzEVDElFQl6wjmqw7EzIw6hlJ3ii5z+1F8BIDRcnGgy1a02Cfl0diViaESwLPPssoSSFhwO//GJb3NUcYzIxx3zmrjWRy5VKQ71MZ1ssIacZgiFr50pK1LYkCknLxPrzP0AaXvIqG+AkFvCeXgDh0snVGuzW4w8tHNWBFxKualDhqfUXkV8lR5SvDLvmD8aiMTGNMlMuEhEeGxCBQy+TrjIA+OF4OpYdTMGPs3rDSSzAmdtlGB7jb6A/tO5MJi+euv1yHlQaLUZz2niJOZUoqrY879N7+xoXDEX6WJ9htCsYCgsLa3vRuFZGYm4VlGot7wNmjSDYqbQS/HYhGwwDrH6sl9W6B/7uTvjjmYEY2sEXDSoN5qy/aNA1NrZLAB/xUpXQzed1BLPJXDq0Xkl4R2fTyzA0RlcqS8iuaFRj7sFNQMalsk5ca3GKNbyhwpYt/YiEAn63Zp8SNac11IaGrYCuVGYvb0ggEGD06NEYPXo0BIJm2kHTEtnWrYTU00xgWdIdfvs2EBpqaO5pL6oaVHwgqW+CmZBA/qVu93wwFE7I01QjJdZEMASALydTwTljvohAxMKtp+G1oWWkdlzGr8V1rJYvB8LCyPfUjFi3juhvCoXkXy8btQKbY0zSMmb3Ng6GHMoMlTkeDFkLPhiykBlKNNOdd4ori/WJ9EaunvfYI/3C8Wt8Jp8V0vcw02pZLNxyBXdK6hDs4YQ/5g1oMvPiJBbi4/tisXx6HBiG+Gv+cTEHL9xDeKtLD6YYWIhczamEj6sEvq4SlNYqcOxWMfzdnXQ+mk1kh+i9TTND1nqDAnYGQ19//TXeeOMNZGZm2nP4vxLU24iWkZoyEKxTqPHG9usAgCcGRmJUJ9vUVJ0lQvwwqze6BLmjtFaJZzfp2hsZhjFg4wsZkmKkEvCdg9zg5yblrSfi08swIMqHV6POr5JDpdEaEPy8ZaTUdSXLKBji0o6WSNQd+fb6lrfl0JGobS91UYXhQhsk2lsCPInazo4yZ2dnHDp0CIcOHYKzs+27V5Po0QMYNYq0eX3zTfOcE8CGDcCmTbpF1qcZ3AlopjTSx8VAiyYxkfwbF0e6wjL0gh9Kng7yaEyepujABfXVXDBULVehj1H7sFuvTIAh95VAAMQSiSKek5ZdVt+ynDS5HKioaFYRxuRkYOFC8vvHHxO1BVvh6JhUa7R8B193C4t7a8AhzlAzZIasQUmNAnmVDWAY85k0pVqLmxwB2riURg1MZXp2J35uUoR5OfPq7ACwYKSukrEzIQ+n0krhLBZizRN94O9mPUH8gd6h+OIB0i768+kMBHk4oWOAG8rrlJCKBAa2K5vOZfFWUn9cJKUyqiPWVDBEM0PX86psTthYHQx5eXnB29sb3t7eePjhh3H8+HG0b98ebm5u/OP057+IeG7waFky8bU34yxP8cvpDORVNiDE0xmLx3W0+FxzcJWK8MvsvvByEeNmQTW+0yO0jesayLf0UwuZvddJapNhGN5ElQG5QcvrlbygHEBKBvo6EcW1JEAwDno68lkf84EObRe/08Iq1IAuda2vvm0t6PWqkbedzxOg4w21dZt/I1ARxjVrSG3LQaSk6ASUP/wQGDLE4VMC0GUve+qVyOrqdEKIcXFAQZUcai0LiUiAQHcnPutgLisEACGeZHIvqyVlnpIaBR7sHWLwHJGbAjGdScbV3Z3oIQKkQ81JLIBay/LkzRbBvHlEmfrKFeDkSYdP19BASpgNDcDo0UQyoC1wu6SW6LZJRTw3sC1Qq1DznVVhJlzZmwIfDPm0bDBENwTRfq5mvTBTCmugVGvh4SzmN5EA0VE6x23uk/Xm9XtjA3EyrZSfH2USIS/n0qDUYBnnuvDS6A4GawkFy7K4mV+Nn06mY8XBFPx0Mh3XcnVyEzP6hOH5UdEAgHd23sCzIwjndseVfDzFaQwBwJ5rBZgQG4jnR0Xj/cnEqJAGQ2fvlBloHhmjY2BjErW1sNp05euvv7bpxP81pBbVQiAlA2p0Z3+LLZdKtZZ30n51XAxkUtu8bfQR6OGEj6bG4vnfEvD9sduYEBuIzkHukIgEeKRfOO9CDACHbxbhwyldidFqOx/8k5gPF6kQdQoNzqaXoXOQO59avZpThe6hHnxtOLuMDJyccuL9RT8fba/Pq2xAtVwFdxM3XoA7WRFKa5UGx7YE6OvbE9C4OZHvoVrevHwLW0EzE2VtbclhjPHjgU6dgFu3SD3rpZfsPpVcThbZ+nqScHrjjeZ7m9QhvqceV+L6dZIoCQwkOoVnbtPdvTMEAgbXef0a88EQ5T3UcuVlhVqLoR38IBYyfEOCs1iIxx8T4K03AZHebS0QMIjydUVyQTUySmv5TFGzw9cXeOIJokuwfDlpm3MAr7xCrp2/P7BxI8l2tQVoeamdvysENpQ2mhs0K+TlIrbZcLtGruKbIlo6M0Q5nJb4VYl0zId6GMzJl7MqIFdp4esqRX6lLsN+T+cAvg0fIAEIzdj8ciYDBVVyhHg64wmu/V0faUU1eH37NZPdlJ2D3PHmhE4YFuOHF+/pgPMZ5biQUY4/L+aib6QXLmZWoLxOCZGAgVrLQq1lkVpci1fG6pIIHfxd4eEsRlWDCskF1WalBKQiIWIC3JCUX40beVUYHGH9fWj10H/iiSes/vmvgraj6zu/m8K+GwUorlHA302Kid3M+8VYi8lxwRjfNRAaLYsv99/iH3+kXxj/O8OQ8hdVzqWu8w16vKEuQbpugsScSoNdckW9EgwD1Ck1KNPrcvJwESPQneyYzZV1fLgSm1KjbfH2ejpB2RPQuDtwbHOClnZoBsJW1NfXo2vXrujatatjdhzGEAhIANSzJ9Cu6U5JS1i8mJSt/Px0ZbLmgFbL8gG9Pnlav0QGNOZu0JJZTKD5VluZVAR3LmCWcR6ADSqtAfm0T6QXxowm06Yxt5WSqFuck0aD1N27gdRUi0+1hO3bgR9+IL9v2EACSXvh6JikxNhA97az4AD0SmR2BDM0K+Qtk9gcSNmKQu56hXqaz16Z6zY7w1U5+kR6Qq3XRdY30gvHU3Ut9vd2I1wejZbFhrOZAIBXxsYYlLQA4ERqCSZ+expXsishFQkwurM/Hh8YgdGdAyCTCJFcUI3Hf7mAL/ffAsMwWD49DlKRAGfvlGFgO8LT25mQh0HtdTX0fdcLDF5D3xGhKaV3YxK1tbBrHyAUClFcXNzo8bKysv+szhCgIyt3CbJMGtvACTPOGhBhtnPMVrwxoRNEAgbHUkr4tuIIHxlvukfLo9SiINLHBYHuTqAd6AnZFQZkt8TcSgM10galhg96ssoMJ7NgrnxQbIbJ7ywRwoUzJGzpbAfN7tTakRlyd+YyQw1tWybzkRHhzNI6pV2NCCzL4ubNm7h582bzNzI8/TQRm5kyxe5T7Nql837dsIE0qzUXcirqUdWgglQkMGgVTiEZfHQlWfVG3A1qYePfhC4YteiggXNJjcJAXyUu1BOhnN1fdbVhQESzQS1Oou7YEZg0idz0dmbss7J06t+vvQaMG+fYW3J0TOqCIQcU1ZsBvOCiHXwhRwIpW1FYRTZS/haul87axNPg8ZvchllfnqRPhDfSS+p4SyYXsYDf9J9NL0NRtQIezmJMNLLzuJpTiWc5u46hHXxxfPEI/PxEX3w0NRY/P9EHp18fhccHkm6yVcfT8fbO6wj1csY8TpZmR0Iuuga7QaHWGnCQTt8u5RsZKHqGcbY3TRgiU55ruo3dunat1OYGu0KhgERi2urhvwJfV6lFA8HSWgXfxfJQ3zCzz6NQqrX482IOHlt7HiOWHsMDP8Rj+cGURiTfSF8ZZnDn0zfTW/lwT4OOGqrFQHhDOv5WZlmdgRRAZb0KdQoNH8Sw0HEmjHV4fF1pGcx8JoMayZbVmX6Ok5MTjh07hmPHjjkk10+DIXvKZHdPZohcK6VaizplY6XxptBc19IkhEKH2r2ys4nKNAC8+iqpvDUn9IMcsZ4WTRZnbB0ZSf7VX5hYlkUJN3Z9mzD/pMEQtdsprpFjREd/0MpNmLcz/P0BsZjEIgV6G1jeLqY1uhUXLSL/btxICFM2QKUiSgqVlUD//sCSJY6/HUfHpDWLe2uAjptQO/hCdBMZ4WAwZM21LK6xHDyqNVq+W9VYSoIG6/pNKL0iPHlPLwAY3tGfzwDtSCCyLZO6B0Eq0iU7FGoNFv15FQ0qDYbH+GHtE30btdh7yST4aGosVsyIg4ABfr+Yg2+P3sazI9rD11WC3IoG3gz5Rn4V3DhKiUpDjMb10SvCE4CuTG4O9B4ubKIN3xg2kVm+4bpMGIbBzz//DFdXXQ+/RqPByZMn0alTJ5vewL8NnYPMp9kBXQqyS5A7Apq4sYur5Zi74RLf/ggAmWX1uJxVgbWnM/D+5C54qK9uV/rc8Pb47UI2TqWVIrO0jtfNGd3ZH1dzKuHmJMKoTv7QaFkIBQw6B7lj19V8nvNQXE0E5ehNm1tBCN5pXATtypUGjDNDvtxuusRC1sdHJkVOeQO/AzeGUCjEiBEjLF4Pa8BzhhR2lMnuEgK1i0QEZ7EQDSoNymoVcLWRU9Zc19IiamqI2MyQIUDv3lYdolYDM2eSZqe+fW03XrUG+ZVk5x5sVB6gwVAE2YTyQVOEjwy1CjVPumwqGKIdllT7pKRGAYGAga+rFMU1Cni5SCAQACEhQGYm8e8K527Rdn40M9QK6uIjRpAoZsYMQGYbP+n994mhrYcH6fATN0NFx9Ex2dTi3lrIdSAzRMdmiB36RPqw5lrSTJq5Naa0VgktS1rL9bOhSrWWD/j0g4WOge74+6qOL0Q7+pRqLfbfINUGfW9MAFh7OgN3Surg6yrFN4/0tFgFmdYrFHKVFm/tvI6vD6dicLQvnhgYieWHUnEjrxpiAYNbhTUY1N4H8ellkEmEUBgRpePCPMEw5N4urVWYvZfp3JBf2YLB0FecIBvLsli9erVBSUwikSAyMhKrV6+26Q3820C7q8yBSp/r6/qYQr1SjUd/Po+04lp4uogxb1h79AjzRF5lAzafz0JCdiVe334dpbVKLBhJGPhh3i4YEeOHYykl2HIhG2/d2xkA0JdzR3YWC7F4XEeeLEf1bEQCEgylFdegS5A7H+zkVdajnZ+MD4bkKpLxy7YjM+RLM0OtVCZzKDPUoGpxondT8JZJkFfZgLI6pVXina2OxYuJQ+f06cQ7wwp8+CFw5gzxsvr9d2K70dzIqzC94FBpJBqYZHGdeuHeLnyALpMI4SyxXManEynNfdOMUqiXM4prFGhQkUxeWBgJhnJzdcfSklxRtQIqjdYgc9XsYBjg7bdtPuzQIeDzz8nva9YAUdZZK7Y4aCa8qQ1kS4PKKnjLbB+8VNfN1s2NrVBrtHw5K8AMx4oGl76uEgNCenZ5PbQsuRf0qQadAt2wQk/3jGaTkvKrUK/UwMtFbMDRU6g1+PlUBgDgzQmdrDIrn9k/HBczy7EzIQ+LtyXi92cG4Pvjt3GrsAb9o7xwPqOC1/HrGuyOmf0NhYHdncRo5ytDekkdbuRVmdXtoxua0lqFSY9Pc7Dpbs3IyEBGRgaGDx+OxMRE/v8ZGRlISUnBgQMH0L9/f1tO+a8BHU+dLPCFWJbF6TSSGRrewTLJesmeZKQV18LfTYq/FgzGcyPaY2B7HzzYOxTbnx2EF6ko1YEU7L6mi9hnci6+f1/N52u+cWGeEAsZFNcoeKPJvdcLsPIwKac1cLYdKw6mGhjv5ZY38No7AFDN3RzZ5YZpd9r9VFpjoUwms0wKVqlU+P777/H999/brUAN6AjUdgVDHGdIrWX5Ra2t4EjwqFarsWvXLuzatat57DhMgXoxbN9OVv0mcOyYLhP0008O86/NIpfuvvUyQ/X1QAnH+4yIAKrqVfxYpnYAACyWtynoREozSSXV5Fh6D9BxR3lDOTm6Y/UXhOqGVi7FWmFxU1QEPPYYKe898wyJc5sLjo5JnjPk0bYEagWnESWxI5ClmQxjgrGtaGquLKvTZX3MjelibtwaawFR+ZNIXxfQvIuAIeNefxNM+aS0O6xXuJfB5nH/jUKU1ykR6O7E81atwYdTu8JHJsGdkjocSCriTZZFXBsjDYoTcipRZ6IZh4qbWrJU8pZJ+KCKXgdrYNfW5dixY/CyQqLU3d0dd+7cafJ5/wbQgWApM1Raq0RxjQIMA/SKMH99MkvreDGprx/u0SgzIBAweHlMDOYNJyvKm9uv8+TlYTG+kEmEKKyW89opTmIhn9a8wHmZRfu7GpTfAOKbk6OnvZBb0WAgvFjLlZ6My2R+3MJtHWfI9KSsVCqxcOFCLFy40G5vMkA/M6SymajpLBbyiqRtTaKmO89yMxwrS1AoFLj//vtx//33N48dhyl060aEZ7Ra4rBqASUlwKOPkkV2zhzg4Ydb5i0BusyQvlUCDUhcXQFPT52CsK+rBC4SER+g0wDUEmhmqE5JxgfNDLlKDYNwP26vU6ZnVyYSCnjOgzH5s8WQnU1KZYMHWxRh1GqB2bNJQNS1q928a7NwZEw2KDV88NrWmSEFt0mSim1fGuX0WAebZpqaK2ng6OcqNauwTMetccMA7aoMcNfdP8Gezsgpb+CbbUI8neDFzU9UhNd4PdtxJQ8A4cXa4iPn7iTmtYZ+OHYbE7mONap3dKuwBkEeTlBpWF4aQB80+2pcvdAHwzD8umaLwG6Lqkr8lyw7qJpzgIWdC426Q72cLe4Ofj59Bxoti17hnnAWC/nrVFqrwJbz2Vh9Ih1nbpdi8diO6B7qgRqFGl8eIO0yUpGQTw/qq3FSEjXtFOjg72rSW0e/E46KQlLUKcjNXFKrMOg0oGWyEovBUNOltOYADYZUGrZRTbkpMAzDt063PYlap81kKwQCAQYNGoRBgwY1nx2HKVCS7po1pHXKBFgWePJJQiTu3BlYubLl3g4A5Fc15gzRrFBAAKke0YCFZmoo160pvhAABHMEUGp8THeW+kE4QPg2QOPL4uFCXrOytYIhmYy02F+6BBw/bvZpX30F7N8PODkBf/xBdBubE46MSbq4u0iELV5iago0I6hPFLYW8mbKDDUFXUnR/HjmM0PupoMhoV4M1THAzcAaqHOQjnBN29j1BXqVai3f0Uzb723Bw/3C4S2TIL9KDqVaAzepCOV1SoR7O4OFLoC7VdBY+DWMW9NoBcQcKJG7sNp64cW2swb+l8LT2fzukrL02/maN4fTaFmekCZXaXH/qnj8Gp+J4ynFGLn0ON7aeR2f77uFQzeLIBIK8OEU0iu8MyGPTw1SNc4MPQVjqmqcwZE3GYYxaRmi7/KdW1GPIL1FhZaOWBaQ69Vaec5QjfmFu7U4QzKJiG92sktryFnHG2pL+PCZIduvl7OzM86cOYMzZ840nx2HKYwbR1rsv/jCLMt25Upgzx6ixPz77zZzeW2CRsuigCNF6gfxVVwClAYodOzSRYmWd60pk1F9IRW3GaDcC3cjrhp9rSrD5CsfgNFgqsXh40N85d56i0SjJnDxok70cuVKnfxAc8KRMVmo11bfljw+QFfqskcShWaVnOzIKtmCopqmO+/ouPUzKpMVc8dW65WggjyckK7XAUlLlXKVBvlc4KVfEUnMrUSDSgNvmYQ38rYFTmIh32n9d2IB+kURzqunC5kTaWZNn9JBQZW9LWWGACCI64wuuFsyQ/81yCRCizcJ1TVoZ8Gq42pOBUprlXCTipDMqYh2CXLHs5suo0ahRqdANzzQK5TP9PQM98KQaF8D4asxXQJw+vWR+H5mL/68USZcs+/p3JhgNrqL7rG8igYE6e0c1HqeSjRLBOj4Eg0qjck6LqBf9mnZYEggYOAqcZxE3dYdZXxZsYUzaQ5BIAD++gt47jmTqYTLl4lGDQCsWAF0796yb6esTgG1loWAMSyn0OwMDVAUKsMdOpV78LOiTGac8qfSB5SrRkVFzQVDni46d+9WwyefkB8TqonV1aRsqVYDDz4IzJ3bem/LWpTZkLlraSj4zJAdZTIHskq2oKTaisxQjSHXjYLO3zX1unnaSyZBhd68Tb8Hml1yEgv4cQ3oSmf9o7ztDl6pmfiJ1BKemE3LjHRTTtdHfdAyGXVKMAea4S2xwHM1RtvmJP9loJGrOWRx0Wo7C1L8V3PI7Bni5YxbhTXoF+mN3y5kQ67Son+UNzY93b9RF8rLYzpgTJcA3j1YJhU1svigAVhORQOUai0kIgH6RXkbWAkAgLeL7uZQaVk4S3TnUWtZuEiEqFdqUK9UA5Dyr0dbwUtrFSbtRWgwZI4z1JxwcxKhRqF2iETd1mUyaozbGterpRAfTxbZ++4j8VJLgwY5UpHQgCthnBmiHSR0QaMZTWsyQyJjDgZ367galcnc3Q1fm4Jmjivr747vNSmJ8JoiIgixvY0TLyah1pLvVSxq+zdnPHZsOraVMkNU/NdS0EWDIWPOEO14q9Hb7Ho4iw0IyfQ+oSXpIA9ng6CHrnMdmuistoTOQW4I8XRGXmUDn2CgG2laBjTmrgK68niNQo16pcas1ZULVZC3QcetRb+1lkh5rlq1ClFRUXByckLv3r1x6tQpi88/ceIEevfuDScnJ7Rr186h1v+m2gfpRGkpaKLOzBR9Ir2wh5Mef2diF4iFAiiVSnz99dd4/vnn8fXXX6NbkCueGBRpsS3Y300KiUgAjZbla/DUp0UfDSoNn/IHAK1edM2yRAMHMMwMAeDFGc3xdOji1Bo8MV1HmQOWHG1cJhNzRXu1xvbr1dDQgL59+6Jv375oaGhBU1AjGI/LefOUOHqU2Ji1xiJL3eBFQsMXa1QmUxmWyWjZbNvlXEz9/gxvOmz8eZRKZaNz0/tD52tnOTNEy7BVbUTQN/5MvXsrcfUqsGMHYEXPi91wZEzSKYNB2wdDSkfKZK3EGWK5CN3S1aIZIGMvyXquMUB/Hvd0kRhsLH1lErzwWwKW7LkJAAZNNoCuk8ta/zVT9xnDMHx5rIQr6VH+JP23Rq7m72UKZ7GQn2tok4Mp0G5AlcZ6XmmLZoaae2H8448/8NJLL2HVqlUYPHgwfvzxR0yYMAE3b95EOBUY0UNGRgbuvfdezJ07F5s2bcKZM2cwf/58+Pn54YEHHrD59b1kloMhGkBQ3oEpZHPRLl3IJSIBVBoWET4u6Bbqgddeew0rVqyARqMbBK+++ioWLVqEL7/80ux5CTlYjNJahcHA7h3hxfuVAST6lklF/KSu1GjBgGyAWe69l9bqbhprwU9orbAqNofWUKuWMSzAHv6zVqvFpUuX+N9bA5bG5YgR5sdlc4JmOI3bno3LZHK+TEaeJ+DGZD6n61QjV5n9PC+//DIgHME/pguGDMurNDNUY8Tx9OQJ1K2fGbJ37mgOODIm+cW9jWMhlmX1ymR2EKibqZusKdC51hpDW+NrSjND+ptgD2exYTDkJsWxlGL+MeMOP8rXCbNCXNLSmOw+9TnsTMhDVnk9fF0lKK1VQsAAWpbc40pOT0nf3oRhGLiIhahTaixmfWh1xZbNZosGQ/v27UNISEjTT7QSK1aswJw5c/A0Z6rz9ddf48CBA/jhhx/w2WefNXr+6tWrER4ejq+5PtLOnTvj0qVLWLZsmV3BUFOZIRqpyiSNL+tja8+jRq7mOSK024QOuLhQT7z22mtYunRpo2M1Gg3/uKVJzd1JxAVDuoV+cLQvNpzN4gdZZb2SXxwAQK7UQsi5BQN6mSEbbSJ0wZDpv0ulUuzevZv/3RE44k9Gd/5qbctnsCyBTkYCO1aA5ryW1sDRcdlcoLs84zIylWKhIo+01OHELWh0zaDX+utP38fmNd81Or9Go8GyZcvg3u8OvEYSTxE6TPgxx8lP0CDWeL/HZ5BaOTPU1t+RI2OSxk5tTZ5W6mURHGmtdzQz1NS1pEkGe64WzRhp9OY/TxexAW3AzUlk0E1sXPaja5ZXE8KUTY3JGeX1gO8EZJXVw9dVitJaJTxdxCivU8HTRYziGgWKjYIhAHCWiFCn1DSqXuiDzhFKGwJzq4OhRbTN1gqsWLECADBkyBCrj2kKSqUSly9fxhu0LYLD2LFjER8fb/KYs2fPYuzYsQaPjRs3DmvXroVKpYLYRh36phRl6UAzVcdMzKlEtVzNT5b0i6THBMqEeI+7buawYsUKLFmyxKz/mxvtlNKP8jnSqIBhoGVZsKxhwCJXayDSD4a4gV9vo/u8tokbVCQSYeLEiTad0/xrkX/tmTsd2fk1JxxJmjbntWwKSqWSv5/Noalx2Vzgg6EmuCU0M0QXNLrICgSAVq3Eb2tXWTy++uIueAydBYGIfB6WZXmvsgal5cmVfq+NuEctiLvhO3JkTNJboRUvmUko9UpHdhGoaUbSwbmlqWvJzx02Xi+WZfnMkH4w5CQSGmSGWBbQ6E1Qxhs2yo2yJExpzZjctm41Ql6+B+V1Sp7zStdY+q8pBWlK2WhQWSiTcd9fiQ2ii1YHQwkJCQb/v3z5MjQaDTp27AgASE1NhVAoRG8rfYxsRWlpKTQaDQICDNvFAwICUFhYaPKYwsJCk89Xq9UoLS1FkAk7bYVCYSAaVq0nJNJU/ZEONFPcHjoha4wyEvTLvnzgD4NUoiloNBqsWrUKL730ksm/S2k0rHdT07cs4FJDAgFjQD6VqzQkW8KNKwkNhsxkhppaxO3JdNgKR3ZgSge6RZoTdBi0xvVyBKtWrXJ4XDYXaJnM3KaEjk1duaJxZqg2YW/TZRxWi9qEvXDvex9/XnNdRsb3Ax1frUkGvpu+I3vQ1EaqtaDPo7FVgZqU2OwXbLQF/GbQxium1Gj5Ta9+mUyp0Rr8X8uy0L9FjIUd+XvBwue0ZkxqtRrUJuxF3eAHIOHvVfJa/LRoYr2hwZC5NQrQcTJTbXCutzoYOnbsGP/7ihUr4ObmhvXr1/NK1BUVFXjyyScxdOhQq1/cHhinUpvymDL1fFOPU3z22Wf48MMPTf5NqbYcCUgs1CnpeDIeWEIu316Sl23x3BTp6elm/8aXB/QGKQ2+6KsKGcZgAVZptIb/t5NA2FSZTKVSYfPmzQCARx991OasnD4cISq21oTVFHTj0PZjNRoNjh49CgAYNWqUgUdgc8PSeLPneY5AZcYqwfgayo1a6+n4FjAM1JWmN07G0H+elmX1AnCabTJzHLeKiFpSDNMId8N35NCYvEs2BvrkaVtLdioNywcpjmaGmporKcfK1kya/vXVD6SUaq3BXGqcGdJ/GZZl+YBKaOEaWTvW1JWFEAkFfFnOeAyYWnGteX06R2htoEPYxRlavnw5Dh48aGDJ4eXlhSVLlmDs2LF45ZVX7DmtRfj6+kIoFDbKAhUXFzfK/lAEBgaafL5IJIKPj4/JY958802DkmB1dTXCwkhLe1OZIWeJEKgzTT6mX7JQLyjSaFk+6JD5Wcetat++vdm/mSoBaY22rkIBY3ATuUhEBkR3eg5LJHBTaKrDQalU4sknnwQATJ8+3aFgyBGiIi+q1pImmlaAdWABkMvlfPm3trYWshZUOrQ03ux5niNQmukmM4bWKNAU6JXJRJ6NtXhMQf95Wtb6bCRP8m7FzOPd8B05MiaNv6+2giMaQ/rlHEc3Wk3NlU1tPM1BLBRAIhKQoE/vWJVGa/CZNVrWoIJRoiekyzAMXKUi1CrUqFWoYdoq1fqxJvIMhJuTiF8zaecnvWeN1y9AR+Ew11YP6JIOpo43B7u+terqahQVFTV6vLi4GDXG7RXNBIlEgt69e+PQoUMGjx86dAiDBg0yeczAgQMbPf/gwYPo06eP2cVYKpXC3d3d4IeiqWCIr2WaSN9RmX6qV0Jl5924oCN40JQmd1NCoRDz5883+3c6YetPxMZEYYEePwggZDn99DBNPbqYIIFbgo7H0/IzmtKRzBDPJ2ljzpCduzuAWB/ExcUhLi6uZe04AMyfP9/hcdlcoDwcVRMZWmOCPR8UgYFrz3ubvmaMAK497+X/qzXoMiLHmptj+TJZEwFbc+Ju+I4cGZM8BaaNoyFeusGOm1J/A0rnmJaCjkBt+/uUSQxLx0DjzJBWjyMH6GymKIzV2E3BmjEpEJD7LNJHxitF13HnXDAyGt/N7ImOgY21jGqtCIboc2zpk7FrJr3//vvx5JNPYtu2bcjNzUVubi62bduGOXPmYNq0afac0iosWrQIP//8M3755RckJyfj5ZdfRnZ2Np599lkAJKvz+OOP889/9tlnkZWVhUWLFiE5ORm//PIL1q5di1dffdWu1286M2S+E8vPlQoYkqCIGjrSWmlGubJJkvqiRYvMEiBZluUHlL7QFm0h12WmGAPLDBeJiBfxAvSDIRszQ624uzMuWdgCpQOu1M0J3U1q+wVzdnbG1atXcfXq1Za14wDZhDgyLpsTVNDQWBaBvrScU97XdX6RCVGXGWIgEEkw5bFnLL5O0JAHefI0wNnTGGWG6jihd+MEiLmOt5bE3fAdOTIm7xbOEF1cbe2kBcgGlAbKLS3oqgsebT+WbnL1ldaVGm0jaoW+jIyxQzyVmbD0Oa0Zk93vJU0KXYLceW08quJ9b7dATOoeDH8jOxF9Eril6kWlHXY4dpXJVq9ejVdffRWzZs2CiutrFYlEmDNnjslWuubCQw89hLKyMnz00UcoKChAbGws9u7di4iICABAQUEBsrN13JuoqCjs3bsXL7/8Mr7//nsEBwfjm2++sautHoBB0GAKLmJK7GocMVNZdCfuhnF3FgGVukXxTkkdtr+/BAAa6TIIhcImtUJKahRQqLUQMETdmqKgkgig9Yvyxrzh7dDeT8YvEoChFhQDXXebcWaITvLm5nhHblBb4Yjs/d3DGSL/tnUHjSWcPw+8/z7wyy9k3NkzLpsT5qwuaPKW9joYi3LSa0zH5qzn30YHfzezn2fM7FdQI1dh0Z+J/N+MLT6MhR4p1E2QvJsbFRXAtGnAZ5/dHd+RPbhb/LxpxkOp1kKu0ticeXZzEkNhpPPWEtCJVJoH/ZsxZ4YGEPplMePMUHmd0iAzVKfUIKusDhE+JPKngVJTptxffvkl1BoW36z8qtGYfGb+8zjsPhZQaxHi5QwtC15rKMTTmb+HjaFQ60jgljJD9ijA2xUMubi4YNWqVVi6dCnS09PBsiyio6NblLtAMX/+fLPp3l9//bXRY8OHD8eVK1ea5bX1u7RMgeoQVZiwWAjkhKtoRE4HdHZ5Pdr7yZBeUocz6aX48ssvsWTJEqxatQrp6elo37495s+f3+SujkqkB3s6G0zENFvUJdgdg9r7Iq9Spw7rIhYY3LhCAcP7wuhH3Qq1hm/X95GZ1hBxJHVrKxyRvddZOrR1Zuju4EmYQ1UV8MgjQEYG8OGHwI8/2jcumxNU3blBpTFYrIzVoGkJupovk+kI1AAhOTd1n9HdsEQkgJNYoGf+KjB4LeNgSJcZavkvlmWBZ54hZvWzZwNJSW3/HdkD40xeW0EmEfF6bNVylR3BENF5a+nP4WxFNxVdiyqNNg50k6v/2RRqjQHpu6hG0WitO5JcjKeGRAEAIn1kOHenHBml5s1Ss8vq8cE/SSiLmoq6uiX44YcfkJqWhrCIKDz42By89VcylJkV6BPhhdtcx1eQhzNKa5XoEuxu9rzUqsNJLOA9Kk3B+HNbA4dEF2UyGbq3tDvjXYTyOsuRcCiXkcmpaCxHT20xKJ+IflkXM8oxpUcQ0ksysP9GISZ1D4ZEIrG5BTYxp9LgdSjo4KGS6vrGoO7OEoNBIxYK+GBIPzNE5dElQkPDPn3QtCT1/mpJyB3gDNEyWVsHQzQD52zHZ2hoaMCECRMAEGHT5i6VsSzw7LMkEIqMJKb1ABqPS5YFrl8HunVr1tc3Bzep3mLVoDIbDBlzhiiZkoYndGdp6T6ju15fmQQMwxj4oum/lnEwVM7tSM3tbJsTa9YA27YBIhGwcSMgFAJCoYnPlJJCvsgWFOh0ZEzyvoa1bevnJhAQcnC1XI3qBjX8bbTecjPyr2sp+FjhA0nNVo2NSukm11lvI1lSo+CNowGguFrOj2OKI7eK+GDIlCl4XmUD9lzLh6ezBDP6hkEmFSI+vRRylRYXsqvx0ksv4XJWBR74IR4/riS6gG5SET6Y0hWz1p4HoMvaD2hnurkJANI5/lKUr6tFBW57ymR2rQh1dXV49913MWjQIERHR6Ndu3YGP/9VFNcoLPKGwn10jrrG6BRE7ixqfldQJYdYyKCwWo5eYaQr7+DNIrtd38/dKQMADGjnbfB4biV5LzQzpT/hhHg5G5QcnPXahvU5Q8VcPdfPTWqW5FjEiVsFGNV4mxtqjZbvdLDPTPHuEF0spM7THrZfL61WixMnTuDEiRMtYsexbh3w++9kkf3tN8DT08ST6uqAXr2AHj1I1NQKEAgYfserP24bB0NcmYxTi6aLBw2CVE1keAHdBsCXK28b89TMBUN53EYoxLNluVxJScCLL5LfP/sM6NvXzBOfeQbo1Il8oS0IR8akz11kWuzu3DQfxhwcsQmyBdRI1VKZitIyjJ9DN7muUl2wnlfZYECtSCuubaTufC69jA/yIrlgKFMvGLqQUYZP997C2tMZ/Ht8uC+xyFp2IAVavQ41hiG0jT/mDUSAuxOGdvBDiKczUotIoDM+1nzH550S8ppUpNEcWi0z9PTTT+PEiRN47LHHEBQU1OZdAK0BsVAADQsUVcsR6mXaoC6MezzbRDAUE+AGAUMi1kB3JxRWy9HOzxUphTXIr2pAbIg7buRV47cL2VgwMtqm96ZQa3A+oxyAYVQtV2lwq4B099HUY1aZbgB38HdFEZc5AkhqtbxehWAPw1IbdUD2czO/syxqYnGXSqX4888/+d/thVxvIXNIZ6iNM0PFDgSPzXUtTSE5GXj+efL7kiXAgAFmniiTAf7+xEthzRrg00+b9X2Yg4ezGBX1KoPJzthB3rjbhY5bWsottSIDQTOodIfdYCTkWFnJvR+9YIhlWeRzZegQK3yb7EV9PfDQQ4QwPm4cYJGnSjenX30FPP54i9VlHRmTNCtRUa+ElhOGbSsQ78IGu4yc3aT2G0jro6lrSa+XpUyar5mAiQZsHnpm3bkVDRjY3pf//62CahhDwwInU0sxsXsQ2vu5AgDSimug0mghFgowqmMAhAIGKUU1PL9o/oj22HY5F4m5VVgXn4mnBkfi9icTwMKQU/ftIz3x5o5r+O1CDga197G4kbhTSgKm9r5NBEOtxRnat28f9uzZg8GDB9tz+L8SAe5S5NeTjI7ZYMhblxkyFoN0EgsR7e+K1KJatPeTobBaDk9uF/J3YgGeGhyFRX8m4qeTdzCrfwTfim8NDiQVoUauRqC7E7oG62bna7lVUGtZ+LtJ+QF2PU830KP9XXGrUCeF4OUiQUZZfaOo26ZgyMziLhKJMH36dKs/kznouxjbE9A44krdnKCZoUA7MkPNdS2NIZcDDz9MFtsxY4DFi5s44L33gJkzyUGtBA8XCVBWb5AGp5krGqC46pXJWJblxy3lktLsrCXwZTJu4SnUy44CQE4OeZ6+9WJVg4rvRGrJzNCiRSQzFBgIbNjQhNnvM88AH38MJCYSctHIkS3ynhwZk14u5BprtCyqGlRNel61JGiZ357sDu9L52BmqKlr6ctn0sxnhnzdyDUsqTEMCujapR8T55TXG4zXAr0Nsj6O3CrCxO5BaOcrg4ezGFUNKiTlV6NHmCc8XMToH+WN+PQyHEwqwtxh7eDv7oTXx3fEu38l4bO9yYj2d8XwGL9G5z1/pwx/XCQ31Av3dDD7mQAgmdvct+MCMlNgWdaghGct7FoRvLy84O3t3fQT/0OgZab8SvMTKeUM1Sk1Jstdg7jom+58CqsbIGCAqzmViAvzREyAK6oaVFh2MMWm97b5XBYAYEbfMAOF68tZFQCIcz0NzJLyq/i/R/u7GvyfsvPbGUXdJdWNW/aNwQdD7i1rHKpwQCVW//g2L5NVtc71sgWvvAJcu0YSPk0usgAweDDwxBMtykUxhqeJMlkgl1WvqCABHS2TqbUs5CotH8DQQLqg0vRkrw+aPaIlCVr6Duc2PFnklkN4uO6YXK5E5usqcdis0xy2bQN+/JEsZhs2kO/KIry9CbsaAJYvb5H35CgkIgGfzbO0wLcG3K1oGzcHXRdjS5fJdJkh1kwrnrnMEB2/1Xok74IquYEDvVjI4JtHegDQ8ezGdQ3A/T1J5C8QMOgTQagdlzLL+ePGdSU34o6EPP59zRoQgclxwVBrWcxdfwnrzmRArUc1ib9dinmbLkPLAtN6hljkC1U1qHA9j6xXfaPMxx/5VXLUyNU2t/LYFQx9/PHHeO+991Bfb55N/l8D3cGbi5oBkv2hAZF+xgUgux4aTGSW1kEkYJBV1oBe4WRQbTqXhfcndwUAbDyXhWMpxVa9r6O3inA+oxwiAYOH+4YZ/O1CBuER0deQqzRI0/Nq6RDghpt6KVF6W0UZB0PcDWWs+aAPnjPkbvo5arUaW7duxdatW6FW2z9Z8NwNOzI7Kj1vnrYsk7Esi+IaGgzZnhnSaDQ4c+YMzpw506T/j7XYsQNYxfmXrl+vCzBseFPkp4VB+T/0+gGAlxdA+bq5uURYjk6ENXIVf9/RLh/bMkPk2GyjYIgqeHCqHgDAd2q2VFYoMxN4+mny++uvk+ydVXjxRRLZCgSAqmXIvY6OSXqd25pEzXOGGuzPDDlaJmtqrvTW48CZe590A2BMoI7gea26e0ChJgrUtAOyVqFB/yhvuElF/Jqg0bIY2oFkdViW5XlDF/WCoak9giEVCZBcUI0r2ZUASCfn8ulxuLdbIJQaLT785yYGfX4UT6+/hCnfncbMn8+jsl6FuDBPLLk/1uJ1ib9dCo2WRXs/mcV7jJb5mlKqN4ZdK8Ly5ctx4MABBAQEoFu3bujVq5fBz38RNDNUYCEzBAA9wjwBAAnZFQaPJ+ZW4ssDJOOTU9HAE53pRP3HxRzEBntg9qBIAMALWxIMsjamUFWvwvt/JwEA5gyJQrDeACmvU+L07VIAwPCOZBAnF1TzJDaZRAiJkDHYxdDsTpRRCpLyW/wtZDF0mSHTi7tCocCMGTMwY8YMAyNcW0EnS08X21PpNCMgEQl4Im5boLxOyds2WAowzUEul2PIkCEYMmQI5PKmsxxNITsbmDOH/L54MTB+vI0nWL8e6NgR2L7d4ffSFKjWiT55k2EAzjEHublkAqbZ14IqOfxcyTWmrcgFVXKzO2oK/TKZXKXhg/1wbxfI5QAV4DcIhih5ugX4QioVkTqoqiI8ro8+suHgmBhS1/v7b8ABGxxLcHRMelvRIdUacCwz1DwE6qbmSiexkJePMJdJ89PLDOmPdRrM51c2GFAFimoUBvSPW4W1iA7QrQOU3AwAH/ydxBOlz2eU85keTxcJJscFAwDWx2fyz5eIBPjukV74eGpX+MgkKK5R4HByEa7lVkEoYPBIvzD8PndAk64HJ9PIekaDMnOgiQhTHqGWYBdn6L777rPnsH81Aj25MpmFzBBAsjC7rxUggYuMKXqEeiLIw4nPLNGg4UJmOToGuCGlqAZrTt3BGxM64WZBNS5klGPmmvP4fmYvDOnga/wyqFWo8dT6i8gpb0Cwh1OjWuvua/lQaVjEhrjz7fYXMnRR/KBoX4MB7iIRIquM7H6Ny2S0nTHUzCSvVGv5Saylyz6UAE5valuQU0E+X6iXc5uSNOnC6iOT2MVdYhgG0dHR/O+OQK0mi2xlJdC/P/DJJ3acJCMDSE8nZZjp01tUPCnKr3FbLwCEhgKpqWTNl6s0vNjcrqt5eG9SF96TiYFuvNJshCnw3WSuUr5E5uYkgqeLGLdvk+e4uJAqFEVLZobeew84d44Qtn/7zY6YJji42d+TPhwdk3zpp42DIZ73YweB2t1I7LMl4eMqQa1CjbI6JdqZiA3o2FaotahVqPkSnr+blOhmqbRwl4pQqibXO6+iAZE+Lvx9lVxQjRh/N34dyy6vR1mtAj6uUvSK8ML6s1l8Q9Cuq/l4oFcIGIbB7EGR2HY5F/9cy8eCkdG8nYZAwOCxgZF4qG84zt0pQ1ZZHTxdJOgT6YUgj6bvF5VGiyPJZAdiinekDxoMsbBNi86uYOj999+357B/NYK5L0y/G8sUeoZ7AgAScioNSNQCAYPxsYFYdyYTAHA9rwreLmKU1ioxrVcoUopq8NOpO5jRJww/P9EHj6+9gKs5lXjsl/O4v2cIHhsQgdgQD9QrNTieUowv96cgr7IB7k4i/PJk30ZqnNuv5AEA7u8Zyj+294bOtHZkR38k5lbqPp+nE24X10EiEhhkmCrrlcjkgqRuIUZ9xBxoGU0sZHgyZEuB52742BEMcceGmSHAtxZoFs3fjhIZQERP09LSmuW9fPABEB9POrLsWmQBYP584PPPgQsXgLNnATNegc0BGqjTFlsKSmTOyQESsiv59P6R5GK8P7kr/FylyKtsgKcL6UYrqJRbDIb0u8n0S2QMw/DBUGSkYdx3M5+k5y2RO+3BwYPk8gLAzz+T17Ub2dlAWhpwzz3N8dZ4ODomvSkpuAlV45aGrrXekTJZy4tH+sgkyCqrN3u9nCVCyCRC1Ck1KKlR8MEQwzAI93ZBalEtvF0lKOWCz5sF1ege6oljKSUASDBEqxz0POfulGNi9yCM6OgPkZ7H5atbExHh44K+kd6IDfHA+K6B2J9UiGUHU7Dm8T4G70siEmBYjB8AywGNMfZeL0BxjQK+rlIMijbPKwKAlEId9SPCRwZrR6XdxInKykr8/PPPePPNN1FeTjIOV65cQV5enr2nvKvRiYtwbxfXmjRipegS7A6JUIDyOmWjFvuJ3YL431OLannC2anUEgxu7wOlWosP/0mCm1SE358ZgIf7hoFlgR1X8nD/qnh0eHsf4j48iBd/v4q8ygaEejljw5z+6BRoqNh5Oq0UiTmVEAkYTOHSlrkV9bwwIwCM6OiHfdcK+P/Tdsk+EV4GJOxruaRUF+njYrY0xS/ubk4tnnHJMuJu2AKaGQrzblkNmKbAd5K1MXn6yBFdR/yaNUBUlJ0n8vcHZs0iv7cwSZfy2crqlKjS6yhz4uLKM2d0mlsA2dFmltbxHAo6hvMslLtrFWpUcOf2d5M24gslci4d+lqTGi3Lby7ohqg5UFhIOuIBYN484MEHHTjZ6dOk1f7RRwEHStUtAV8r2sVbA+4OZIZai0AN6GsNmb9etLvZOItKx3GAXkNMYk4l4sJ0m93kgmqezEybTs7eIWUqD2dxI6IzbeIBgFfHxUDAAIduFuHorcaG7vaAJhFmDQi32PxSVa9Cut5GqbcN96JdwdC1a9cQExODL774AsuWLUMl19O6c+dOvPnmm/ac8q6Hv7sT/Nyk0LIwIB0bQyoSomsICU6u6PGGWJZFp0A3g44sgYCBTCJEcmENxnUNhFjI4MitYqyPz4STWIjPH+iOvxYMxr3dAvmbFCC74xfu6YADLw3jo3cKrZbFp3uTARAmP10E9l3XZYU6BbpBKhLger7uc1CLC+OS3DVugu8eavg6+qBy6i2prUJBF6YIe4IhjjTY1pkh2pFoT1t9c6GoiMQvLAvMnQvMmOHgCV9+mfy7axdw546jb88sZFIRX4rN0MvSUl7whQuGwRAA7LiSy98HVEy0wAKJOonrWAnycIKXTGI2GIqL0x2TWlSDeqUGrlIROtgqXWwGWi0JhIqKgNhYIhXkEPr3J8z4oqIWF2G0FTrO0N2RGbKn1NVaCtSALni0JLxIS1TGzTzh3tRjTLe5vZJdYTDH3y6uRYS3C7xcxHwGKD5dd1+N7RoAQOf7t/taAW9DFe3vhqcGk53VG9uv26X5o49zd8pwNacSEqEAj/aPsPjc46nF0GhZngyur5/UFOwKhhYtWoTZs2cjLS0NTk66CX3ChAk4efKkPaf8V4CWiW7kWSY207bDUxzhKz69FOO/PoU3d97A1B662v1fV/PxYB9SxvrtYg5eH98JAPDp3lt8W3xcmCdWPdobCe+NRcK7Y3D9g7E48spwLBoTY9Ko7s9LObhZUA03qYjnEbEsi78T8/nnjOzkz6dDAdKZdSmrEgAwzIiclshlhrqHmi6RAUQaAECjwKwlkF1GszuOZIbaNhii46djgH2Lplwux8SJEzFx4kS7yKp0kS0sBLp2Bb7+2q63YYiuXYkCoFYLrFzZDCc0D50dgI7zRk1aS0uBc5cNd+bbr+TxhFIq9mapK5S278Zy9ztfXrUQDNGNT1yYh0Fm1RF88QVw6BDplPvzT13HnN0Qi3WKmitWNKtDqqNjkjao5JmwMmpN6AjUtmd3KEWgrE7ZyCC1uRHoTgZDroXrZS4YivQl41hfuLS0VgkBw/C8UC0LpBbXGmSA7pTU8VWA0Z0D+OcBpLNt+5Vc/rmvjuuIdn4yFNco8OrWa3zjjq2QqzR4a+d1AMADvUMtat0BwOFk0oWt0rAQCRiLLfjGsCsYunjxIubNm9fo8ZCQEBQWFpo44r8BOjnS0pE53MMNlKO3iqHWaOHuJEZKUQ0O3Cjky1YAScfnczyG5IJqsCyLsV0CoNRoMXvdBVzXex2hgIGXTAI3J7FZguLVnEq8x3WXLRwVze+2TqSW8BM8A+CRvuHYf0NXIusQ4IpahRreMgm6BBmW3BKtCHSseU5zgBIGAXs5Q22fGWJZlv8uutt5vTQaDfbu3Yu9e/fa1ca8bBnhoTg7A3/8QYjAzQIqhfzLL7ropAUQ5UtKuvq8If3qfGl8pMHz8yobeEkGeuvkVpiXBaHBanfufqevQzvJUjgZMP1giBJNe3LWOo4iPh54913y+3ffAZ07N8tpiQijiwsRlDp6tJlO6viY7BBAVY1rm+z0a0lQ78WmHNlNIcjTCUIBA4Vai6Ia2wNCWxDDXa/Uohqzz+nM0Sf0OTSALst/LbcK+nH79bwqxOnNSWfTyzCwPQmGZFxG9SyXHQr2dMag9oalsvXxmXzQ4yQW4qsZPSARCXA4uQgf/ZNk1/f67dE03CkhZe43uGSBOSjVWhzXk6TpFe6FShsI+XYFQ05OTqg2MdmlpKTAz882YtS/CbZkhrxcxKisV+FiZgViQzzQJcgdSo0Wl7IqMKZLAP/cI8nFeJHL4Kw4lIZXx8Wgb6QXauRqzFp7HidSS8y9jAHulNRi7oZLUKq1uKeTP54eSmT4WZbFV4d1FLLxsYHwcZXguF5mqDPnmzaovY8B56ewSo7iGgWEAsZA2VofDUoNv/OwFAxJJBKsW7cO69ats9tFm2aFvFzE/A7OWjQoNfwE15acofwqOUprlRAJmEaBp7Vw5FqeOwe8/Tb5feVKktBpNowZQzRt9u8H3JqnVGQK7bmOsjscF0KrJYrMFPXJwdDUG44PypugCuSXsyrMTs7XaGYo1APldUr+dbqHeuDGDfJ6Pj6GDVpUSqNXhKdjHw5EPPKRR4hs0yOPAE8+6fApdfDyAp56ivzejPwuR+/vCB8ZRAIG9UpNkx27LQlaCq2sVxlw0qyBWCjgxQszLTi6NwVrrmUMl/VJLaoxm4WimaE7JXUGLvRdgtwhFQlQWa+CRM8WIyGrAj30SmWn0kowkMsMURukgzd1yQ5ashJxa0ZORQP+0atAxIV54qsZPcAwwPqzWViyJ9mmDNG2y7lYdTwdAPDx1NgmXRkuZpajRq6GhCuRDe3ga7VeH2BnMDR16lR89NFHUHGFeoZhkJ2djTfeeAMPPPCAPaf8V4AGQ2nFNRZJ1CKhAKM6kYDn0E1CIHu4HxFC+eNiDmYP0tU9tSxwJq0U/SK90aDS4K0dN/DjY33QK9wTVQ0qPPHLBXy6N9lAcdcYu6/lY8p3Z1BSo0DHADesfKQnn6o/nlJiQJx+emgUfruQbSA+eIOz6BhqxBeiE3xMgBucJaZJa0n5VdBoieVBkAUOjFgsxuzZszF79myI7dQ6MeZu2AKaCXCTitpUY+g6x8GKCXCzW6XY3mtZWUmcM9RqwhGiAn7NBoYhNbfBg1u2vZ6WybiMTXo6UFur9wStEIJb0bywZs8wD75zL7eiHlKRAEXVCgMBUopahZoPnLqFeOAKV66O9neFp4sEp0+T5/Xrp/uIlfVKnrTZw8HMEMsSzafsbKB9e2D16ha4lC+9RE66bx9w82aznNLR+1ssFPDfa5qFbEdLQyYV8bzOjCY6h02BNzG141gKa65lhLcLJCLSIp9jJssZ5OEENycR1FqWl0cBSEcXXcv0x9ae6wUGmaGLGeUI9nSCr6uUD2KOJBfznKixXQPg5ybl1xIAWH4wxcDMfGL3ILw3qQsAYO3pDMzbeKlJM3KWZfHnxRws3pYIlgWeGBhh0byV4mASCdTouxka44djt6xLJgB2BkPLli1DSUkJ/P390dDQgOHDhyM6Ohpubm74xC6hkn8HAtyl8HVtmkQNgM/+HLxZCJZlMTUuBBKRALcKayCTiAyyAodvFWP+yHZwk4pwKasCKw6lYMvcAZg1gGj9/3TyDgZ/fhQf/J2EPdcKcDO/GufulGHj2UxM/vY0Fm5JQK1CjX5R3tg4px8vyFUjV+Gj3brJrme4J7qHemL1iXT+sWEdfHGzoAYSoYCvA1Ps5wbXQAsS6fp8oZY27NW11Vs26TN5LNUY4tqj2wrXrOBgtQRYlgQ/WVmkoeinn1o0XtG9aAuALpp3Smuh0bK4cqXxc5TX22Fwe5KlntYrFN880gMiAYOqBjXiuGtPOX36SMqrAssCwR5kEbhELW04FfcTJ8jzhg/XHXMpkzwn0seFL03bi1WrgJ07Cb3n9991JrTNivbtgfvuA1xdgRs3WuAF7AMtld02EaS2Jky5slt9rAlR0JaASChANNcBnFJoOnhkGIbvgr5lVCqjHY/6GaPbxbWI8XflmwxUWhYXMiswpgvxfHGViqBQa/kNvlgowEN9yCafOgLkVDRg22UddwgAnhwchW8e6cmVzIoxYukx/HzqjsnMW3pJLZ769SJe234NLAvM7B/OOzNYQrVchR2cnIxKwyLE0xnhXi64bCR+bAl26Qy5u7vj9OnTOHr0KK5cuQKtVotevXph9OjR9pzuXwOGYdAtxB3HUkpwI68KvSPM7wKHxfhCKhIgt6IBtwpr0DnIHRNiA/HX1Xz8cSkXr43viNnrLvLP//CfZKx8pAfmrL+ETeeyEe3niiX3dcPQDn5YcTAVKUU1+DU+E7/qKXtSSIQCzB0WhZdHx0DEpT1ZlsWbO67zu1wGwLuTuuDvq/kG7ZjOXHZiUlwQ364JEOLaYW7QT4rTSQIYw1rytFqtxoEDBwAA48aNg0hk+9DLKqfcDdvLXDq+UNu21dNgqJsDwZBGo8H164RU2K1bNwiFTWeYfviBCETTRdajJWOx4mLSs3/tGunfb+aoK8JHBlepCLUKNVKLapCQ0DhiKCwE5CUkg5hZVg+pSIgOAW5ILqhGmLcLLmRW4FRaCeYMMdQTMCZPX84isiG9I72g1QK0P0Q/GKKlg6bE4JpCQoKOdvXll0CfPpaf7xC+/ppEWtTl1kHYMyaNEe3vBqAQaUVtGwxF+chwIaPcLrPPSB/T7ey2wNq5smMgsVNKLarB2K6mMycdA91wMbOiEYmaWDRlQF+kmQXw46l0DO3giwNJZO4/lVqKyd2D8duFHD7j809iPqb1Io0/j/QPx+oT6XwZDSDZoUndg3ipAQCYEheMCG8XvLHjOpILqrFkTzI+23cLvSO8EOjuBIYBrudW8SVpsZDBcyOi8dI9HaySa9lyPhs1CjWkIgEUai0eGxiBU7dLbCrL2RUMUYwaNQqjRo1y5BT/GlDJ8bgwIkx1IaMcT3DWGabgIhFhaAc/HE4uwq6EPHQOcscj/cLx19V87LiSi5fuicbgaB+cuU0IaRmldUgrrsUrY2Kw7GAqPvjnJhpUWjw3oj3GdgnA8ZQSHLxZiKT8auRWENK1n6sUY7oEYFqv0EY70k3nsrBbT0fomWHt0CPUEy//nsA/1iXIDfu5Qf/EQMPPcuxWMeqUGoR4OqOnhUDH2mBIoVBg0qRJAIDa2lq7gqFsLqCJ8LYjM1Te9p1kLMvyUgVxFqQKmoJcLkfPnj0BkGspk1m+Hlev6hbZL74A+va1+6WtA8MQN1G5nGjbDB3arKcXChjEhXngzO0yXMmuwJUrjYMhhgHuXJMBoTqh1K7B7kguqOZ1Ss7fKYdCrTHQLeHJ7aEeUKq1fDdl7wgv3LgBlJcDMhnQuzd5vlqj5TtYxplZkKxBTQ3w0EOAUglMmUKoVy0KfYfZZoCtY9IUOvhTEnXblckAncq5PaWu5iiTWTtXUmeBFAvBY0eeRG0UDJnZyK+Pz8Kb93bmg6GTaSV4e2Jn+LtJUcz5nJ1KK0VFnRJeMglCPJ3xUN8wbD6fzW9QSmuV+GzfLXx6fzeDc8eFeWL380Pw56UcrD2dgdvFtQauCAC5t4d18MU7k7rw2ndNQa7S8PYg1GftoT5heGeXbVlPu0UXjxw5gkmTJqF9+/aIjo7GpEmTcPjwYXtPd9fjDtfGO4zb/Z1MKzFw3zWFhzjj1D8v5UCuIuZ3vSO8oFBr8ePJDLw5wbBF5It9tzA+NhALRrYn/99/Cx/9cxNKjRYjO/njs2nd8ffCIbjy7hgcfWUE/pg3EE8PbWcQCLEsix9PpOPdv3SM0vZ+Mrw8Jgbr4jORpWfQN6SDL5QaLeLCPA1qxQD4QGpS9yCzZaXSWgVyKxrAMI5lOqxFNjfBONRW34aZoayyelTL1ZAIBfxEZg8YhkFwcDCCg4ObLPnRRVahACZNInSRFoefH3GzB1pMhJF2bSVkV2LQIBLkUR0eiYR4eC19X5cZAoDYYLIwFFY1wNdVigaVhpewAEhgQ/8fG+KBG/lVUKq18HIRo52vjC+RDRqkU+q+mFmB8jolPF3E6GdDG68+WBZ47jkiDB0WRprxWq2Sy7LAqVNAg2Mt7baMSXO4WzrKaKnLnuwOLeFmldW3eHt9x0Cuo8xMmQwAOnNlMuNgKMDdie+c00e9UoOCygbe6Ph2cS2KquWY2J1UB9ykQqi1LPZc1220F46KhkQk4I2QAZKpib/duAxNvMjCcXjRcJxYPAJfPNAN707qgjcndMLqWb2R8N4YrHuyn9WBEADsTMhDSY2Ct96Y2iMYcrXGgOxtDewKhr777juMHz8ebm5uePHFF/HCCy/A3d0d9957L7777jt7TnnXI4kjGceFesLLRYwauZp35jWHkR39EOThhIp6FfbdKADDMHzn2ObzWfB3l+LB3jq7DC0L3Pd9PBaMaI83JpA2wl/OZGDyt6f5DIwl1MhVeGvndXy27xb/mKtEiJUP90ROeT0+3aPjDw1q74N/EsmAfnyAoZBVnUKNI5xy6KTu5j2NznCDPdrP1ebuLltRVa/i1aej/W23O6A+bJG+tu9Ymwu0S6lzsLtdnmQULi4uyMvLQ15eHlws9MXTRTY1lXh3/fprKy6yNOr6+2+yyjczaNdWQnYFPvgAeO01kk3x8iLZldRUnS1GZmkd5CoNunKlr5sFNRjCSfqf1uMN/XYxB7kVDfBwFqN3hBcuc1yg3hFeYBgGXOUCI0fq3scBjlc3unMAX6K2BjdvAgsXkiD1l1+AzZsBoZBYovhYdhtoXkyfDgwbRt6AA7B2TFpClK8MAoYoOBfX2N7a3lzQ6VjV2RyUhXg6Q8S111Ol+ZYC3VCll9QacH8MnsMFQwVV8kbEZX8zmj1/JeYZcBr3Xi/gJWFqFKRxaH18Bn9tgjyc8Ri3hugHWIu3JxoESMaI8JHhob7hmDMkCvOGt8f42ECb15F6pRqrjhN/HHoNHh8YibWnMqDSsBarGsawa0b+7LPP8NVXX+G3337DCy+8gBdeeAFbtmzBV199hU+pvv9/DFRHRChg+OxQU217IqEAj/Qj6ehN57IBkI6tnuGeUKi1+OnEHbw7sYtBF1atQo2Bnx/D00OisHpWb/i6SpBaVIv7vj+DaavOYPe1fINONq2WRXZZPb46lIrBnx/Fbxdy+L+5O4mwee4AdAx0wwu/JfD1YQFDSgYFVXIEezjxUT/F4eQiyFVaRPq4IDbEPIOTBlOOlAesxcXMcrAsUd9uSnjLGCU1CmSU1oFhmk8Hxh7QzqTuZjzemhv6i+zvv7fyItupE0lFsWwzqToagnZtpZfU8URMhtHxbC5doiRoCdRaFkn51egc5A6GIXYoPTgC6Z7rBSitVaCiTonlB4mA0CtjY+DmJOazRL0jvFFXR+hPAPlYAMnC0g6W8TbeAxs3At9/T97vwoXksSVLSCNeq4L6yK1YQTQD2hBSkRARXFamLUnUERzvp0aubrLzyRgioYDPXLc0iTrE0xkyCcnUmCvLuTuJ+fLjeSNldhp4BBjNp0umxhrIv2y/koceYZ4I9dKtU2nFdQayL8+NaA8XiRCV9SpeiTuvQk7WnRbMkH2yJxk55Q2QigTQssDgaB+EejljywWy3s7sb3052K5gqLq6GuPHj2/0+NixY03qD/0XcPp2KR8Jj+xI2PX6Wj3m8HDfMIgEDC5nVSC5oNogO7TpfBbqVWosmx5ncExVgwqDPj+K0Z39cejl4bxq9ZXsSizckoDO7+1Ht/cPYPTy44j94ACGLT2GlUfSDFRTPV3E2DJ3ALqFeODdXTeQrJcmnT+iPe/18uHU2EYt3lvOk4E0qbv5lHdVvQonUkkwOKWH+exRc+FCJqkt929neymCkmA7Brg1qVXRUmBZlu/CMJYwaAlcv97GiyygIyqtW0fINs0Ib5mEJ6sm5OhKXfrBEMMwPDcrMacSrlIRorjF1s9VyptdTlsVj7d2XkdlvQqdAt0ws184WJblO8n6RHrh8GFCgYqMJNYYAOEX5VfJ4SIRNrKxsQSNBti0ifx+4wY5b+/eJLvV6nj6aaIJlZwMPvXVhqBZ37Zsr3cSCxHCmVXbxRuiJGoHeEPWgGEYPvNjrqMMAAZHk7Gpb6cBAEvuJwO5okFlQB84nlLCCwcDxKcsuaAG0/RMvwFgzUmd7Y6vqxQvj44BAAP6yNFbxfhkT7JNn8taHLtVjM3cWqVQayERCvDR1FhsPJuFeqUGnQLd0KulvcmmTJmCnTt3Nnr8r7/+wuTJk+055V2P4hoFz8gfFuMHhiGDpLAJgTB/dyfex2XzeWJmNzzGD30jvSBXafHuriQMau/Dd7VQ4nxxjQIDPz8KVykpc+1aMAhuevYbNQo1bpfUoV6pgZBh+K4wAJjWKwQHXx6GToFueHVbIn6/qMsW9Qr3RHx6GdRaFuO6BhjsAAAg/nYpzmeUQyIUWIyqDyQVQqVh0THAzSH+i7Wgu5r+UbanNy5kkEWtb6R9nI7mwK3CGuRVkh2MLQunKcjlckyfPh3Tp083aX1QW0t0hORyYPz4NlpkAWDECKBnT8JHWb262U/fM1zHG6Kg5PCLXKMmJfZTE9UuHG8oq7weW58diHBvF2SX12PfDZLheX9yV4iEAiTkVKK0VgFnsRDdQjzw99/kfFOm6EqN+7ljRnb0t0kz6vhxINew+xiXLwMffEACpVaFuzsxpwMc4nc1NSathY5E3dbt9bQrzHbxREda820FtfSxpERNVaTPpBtyeDoGuCHc2wVKtRZ99MRCDyQVoWOAKx8QAsTf79EBEdCv7p9JL0NSvk6A+KkhUegZ7okGlRYhnros0i9nMvDrmQy7Pp85lNcp8dr2awAAZ44rNH9kewR7OPMd18+NaA+lxvqslF3BUOfOnfHJJ59g4sSJWLJkCZYsWYJJkybhk08+QdeuXfHNN9/wP/8l0EyQt0zC7ziPW6FwOYtT6tx2ORfF1XIwDINP7u8GsZDB4eQi7LtRiMXjOqJ3hBe0LMAJaKKkRoFuHxxEcn4VeoR54fd5A3g9B31oWBYNKg3EQga/PNEHK2b0gItEhIW/JfDaCwDg5yrBuK6BuJJdCZlEiA+mGOo3sCyL5YdSAQCP9AtDsKd5svE/14jS6GQLbffNhVqFGjc4U1l7SKqXuMxQn8i2K5Ed1ssKuUgcauKERqPBtm3bsG3btkbWBywLPPsscOsWEBICbNgACOynJzkGhgHeegt49VXgscea/fR015egx6ejmaEbN0gMRhsDKOeOKqkn5VejnZ8rdswfxOsOTeoexC8cO7n7ZnxsICRCIXbvJuedMoX8q9JoeS+mCd1sK5Ft2GD68R9/JBm9VscLL5Ba6pEjpPXQDlgak7ZAn0TdltCRqG1/H1F8R5n9KtTWgm5EjVvn9TEgygcChihR62/eGYbhN8Na6CoAhdVyZJbVG/BZd13Nh49Mgqk9DLNDP5/SBTlCAYOlD3aHRCRAXqWct/AAgA/+uYmvDqU2CzG+vE6Jx385j5IaBdycRGhQadHeT4bnRrTHt0fTUFanRKiXMyZ2C4LShrFo1zS5du1aeHl54ebNm1i7di3Wrl2LpKQkeHp6Yu3atfjqq6/w1Vdf4esW4Aq0JfQDH1tKZQPb+6BXuCfkKi2+PUrIXjEBbnhuOOkae//vJChUWvzyRF90DHCDhgUvKS5XazHhm9N4bfs15Fc24IsHu5t9ndmDIjG8oz9+v5CNoV8c5XeuAPGWeW18R3y+n5CrF4/riCAPw2DnZFopLmdVQCoSYP7IaLOvU1qr4MnTlgjW+pBIJPjuu+/w3Xff2SzXfymzHBotizBvZ4sBminUKdRI4gKptswMHUomwZCxsKU9sHQtf/7ZkIzb5u44Dz4ILF1K2qSaGTQzdDW7gu/cCQ0F/P1JhiUxUSdhkFVWj4o6Jc+Bo870vq5S/DFvIH59si+WzyDlaqVai91csH9/zxDExxPpJHd3nUrAkeQiFFUr4Osqwdgu1gdDdXXA1q2NH588mQRCPXrYehWaARER5HsCdC15NsKR+1sfHfx1mY627CjjAxp7MkMOCi/aci1pF+8VC/YyHi5iXjfr7B3D7NBYLhg6kVoCP1fdax1OLsKMvmF8paK0VoFTaaV4eqihLtffV/N42RKAaEW9NJrQQIxJ3SuPpGHxtkSzZG9rUFQtx0M/nsWNvGo4iQSokashYIBP7++GG3lVvKDwOxM7QyQU2PRadgVDGRkZVv3cuXOn6ZP9i3A5q4KXIh/Ziawyp2+XNnnBGYbB4nGkO+y3C9m8x9b8kdFo5ydDSY0Cn+1LhoeLGOuf6ocQT2coNSxcpbrI+s+LOZi74TJe2ZqIaL/GHVH+nCz6qGXH8MaO66jQU/f0dZVg6YPd8eaOG2BZ4PGBEY00kliWxQqOQDprQAQC3M1ba+y9XgAtS7RYrO3OEovFWLBgARYsWGCzXP95TovCnhJZQnYlNFqiSGprINVcKKyS41puFRgGBrV4e2HuWiYm6kzJP/mk2eV97jp0DHSDk1iAarmal77QJ1FfvEgWgnbcGE3MreQzQ5ll9Sjmun2cxEKM6OjP6w2dSC1BRb0Kfm5SDGrvw/N77r+ftO0DwMZzpOT9UN8wmzoDt2wx7GJ3diYZob/+IkFcm4Hyuy5dAlS2eXIBjt3f+ugQ4AqJkPhmtUZmxRwcaa+nx2aV29deb8u1jAv1hLNYiLI6Jd8xawo04xl/25A31FvPR3OYXvl+87lsBHs4YURH3aDcfiUXnYPcDTiPGhb4XK97GQCeGdoOw2L8oDLx2bddzsPU78/wPE5bkJhTiemrzyKtuBauUhEv9Pj5tO6IDfHAoj8ToWWBaT1DMD6WVCwULR0MnaCCG/+PEOnjArWW5TMiscEe8HOTolahxkkrzFQHtvfB0A6+UGtZfH2ElKKcxEJ8xglT/X4xB1sv5SDQwwkb5/RDmLczahUaiATgPZYAQK1hcbuk8Q1aXKPAujOGOkIAcG+3QHw4JRYv/ZkItZbF/T1D8MHkro2I0QeSipCYWwVnsRDPchkrc6BmfJOtzAo5Ch1fyPbMzkWOeN23LUtkXFaoR5inzZ1w1qKqimzuFQrg3nuBxYtb5GXsx4kTpA2rGbXIxEIBuod4AoCBzEW/fuTfs2fJv7RUlphTBW+ZhC+v/XjS9GZtVwIpkU2JC4ZGLcCff5LHaaUvvaQWZ26XgWHAd4taA5bVOdEDxPX+6lViJN+GDjEE/foRF/tr13QiSm0AqUjIt3XTe7ctoC+8aGuGKtjTCWIhA6Vai/wqx/SbmoJEJODL//FGnCB9DGqvI1Hrfx6RUMBv0Jz1yvdZ5fW4lluFh/vqMroHbhSiqFreSLV9z/UCA/FEkVCA72f25K1AjJFcUI0HfjiLRX9c5QVRLSGvsgEv/Z6Aqd+fQXZ5PdydRHzL/nuTumBG3zB8ujcZWWX1CPZwwvt69A+VuoU5Q2PGjEF4eDjeeOMNXoL9v47BXDRMy2ICAYOpnPbC1ss5Zo/Tx6tjOwIgIlGU8Na/nQ9e4LrL3t55A5cyy9HOzxX/LByCYTF+UGtJdBsb7M6XzqyBn6sE65/sC5FAgAVbrkCp1mJMlwAsfbB7I3nzgqoGvLWTfI9PDo60uGDfyKvCxcwKMAwateRbgkajwfHjx3H8+HGbOAX1SjVvYTHAgkeaOej4Qm1XIjvcjCUyANBqtUhLS0NaWhq0Wi1v7nn7NhEWblOekDns2AHs2QMsW9asp+3JET/P39FNxjQjdvIkCUAoJ+gq13X2Itf1sulcFoprDMm+1XIVX9K8v2cI9uwhLvIhIYQPDpBdMwDc08kfoV7Wa+p8+ilQRE6NJ54gmauYGKsPb3mMHEnqq3bAeEw6AnqvUp2ntkCYlwsEDBEhtFXzyLC93vbslq1zJQ10zhp1i+mjb6QXxEIGeZUNvOE1BeUNHU8tgY+egO+fl3IwqpM/r0ek0rJYezoDw2P8eOI2xUe7kwyyYG5OYqyd3deg6ccYOxLyMHzpcUxYeQorD6fhVFoJrmRXIKWwBpcyy7Hq+G3MXncBo5Ydx66rZAPu6Szmu6ZfGRODp4ZEYcv5bL6rbOn0OAMjbkUTwsj6sGvKzM/Px2uvvYZTp04hLi4O3bt3x5dffolc4xaJ/xCGdiBlseMpJXxkPZ0zqTuSXIzS2qZvmLgwT4zvGgiWBZYeSOEff+meDpgQGwilRotnN11GXmUDPF0kWDe7LxZy3J0b+dXQaFmMiPFF91B3uDuJoB/SCBiiKzS2SwC2PTsQC0ZGY9Gfifg7MR8CBpg3vB2+m9mzkTCcWqPFC78loJzjU9DAzBy+4gjWU+KCbSo7yeVyjBw5EiNHjrSp2yQhuxJqLYtgDyeE2qgerdJo+U6jtuIL1SnUfGp6bJfmCYYaGhoQExODmJgYNDQ04JtvdL5jW7e2sp6QtXjxRRKhHTjQrOagQ6PJfXkqTXdfDhhArkVeHnDnDtCD4xYl5laBZVkM09P6Wn3cMDu073oBlGotOvi7omuwO18ie/RREic0KDXYxm1+HjUSK7WECxeA998nvz//PBHAbMMEjGUoFISBbwOMx6Qj6MNZRVy0o5TSXJCIBHyga0+pLIbjPul3W1kLW+dKWgI7d6fMrKaPi0TEa6wZt9gP6+AHJzHx0aTiigAJVlQalndSAMgGoqpBhcXjOhqc40ZeNbZdMVz/Qzyd8f2jvZp8/8kF1fjqcCoeW3sB01bFY9zXJ/Hg6rP4cn8KjqeUQKHWwt9dCgEDVDao4OkixooZcVg4KhprT2fwG/nnRrTnZQQoWpwz5Ovri4ULF+LMmTNIT0/HQw89hA0bNiAyMvI/61XWJ8ILTmIBCqvlPHO/Y6Ab4sI8odayfGq9KbwyNgZCAYNDN4uw/wYRLRQIGCyfEYcuQe4orVXi6fWXUFmvhFDA4NVxHfHXgsEYHuMHDQscTy3FtdxqyKQiTOkRjLcndsb7k7vgtfGdMHtQJMrqlHhw9Vl88M9NlNUpERPgip3zB+PNCZ0NPJgolh9KxcXMCrhJRfh+Zi+LLcIJ2RU4cqsYAga8VlJLgy+RtfOxWeb/Zn416pUaeDjrhMdaGydTS6DUaBHh42KXcrY5iMUeADywaBFp1gJIZzQtEd11aNeOkG4Au0m6ptAn0gvOYqGB9IWLi67F/uRJoHOQG8RCBuV1Ss4+hsFLXHZo8/ksnjuk1bLYfpncx/f3CkF5OcN3kc2aRf79JzEf1XI1wrydMbyDdez0sjIi9KzREKL0ypXN9OFbApcvE0L1pEk29/l7eHjAoxkcgKkB9p2SOpRZsclsKVA+5B0TtISmQF3hr9jgmm4vYoPd4SYVoVquxs188zp/fIu9kU2Gs0SIIdymggomAiTwP5BUiBl9wvgybr1Sg1/jM3FPZ/9Gemlf7r+FWoUaSrUWuxLyyMYjxg9dgnTCvQyApwZHYmqPYIPSsIABXCRCuDmJ4CQWwFksRLCHE2Qcb7a4WgEtS2gfh14ejmm9QvH9sdv4eDdxVZg3vB1eMwrQAEDV0sGQPqKiovDGG2/g888/R7du3f6zfCInsRADuTINFc8DgBl9SKvhHxdzrKotdwhww7xh7QAA7+y6gQpO4dRFIsKaJ/rA11WC5IJqPLj6LPIqyQ4rLswT65/qh23PDsSwGD+IhQwKquT462o+PtmTjA//uYnP993CN0dv86q5PcM98d6kLvjn+SGNfMcojt0qxg/HCfv+8we68+qv5vDVYWKrMK1XKG910NI4x5U/7Gmpp5yDPhFeVjkftwS2XSa7pXFdA+32bDJGfb0MLFsJoBI//SSDWg088IBOZPGuBSXpbtqkqxc5CCexEAM4IU59RVzqKn/iBOGh0AmZtuEP6+CLXlx26IcT6TiWUoyJ357mxT2n9gjBzz8TLnGvXkC3biRY+oXTS3m0f4RVY0qrBR5/HMjOBqKjifJ0m/ODLKFTJ+Jnkp4OXlzJCshkMlRWVqKystIuk1Z9eMkk/MZB3zuutdGV06Si5sq2gAZ0l7MqW7wrTiQU8GK0xt1i+qBZk7PpZY2I3eM4Lby/E/PRMUA3t/9+MRth3i64p5Muq73uTCbqlBq8O6mLQXWitFaJ9/+6gac3XMJLf1zlOXn39wwBALhJRWABrD+bBXcnMf54ZiDu6xEMb5kEWpYEWjVyNeQqLRpUGuRXyVGn0MDNSYT7egRj/VP9sOrR3tCyLF7+4yqWHSRVipdHx+CN8Z1Mzq+2iGY6FAydOXMG8+fPR1BQEGbOnImuXbtiN91K/QdxbzfCkdlxJZcf4JPjgiEVCZBWXMs7XDeFF0d3QAd/V5TWKvHhPzpD1RBPZ2yZOwBBHk64XVyLB1bFGyiL9on0xoan+uHa++OwZW5/vMiV1yZ1D8IDvULxSL9wfDC5C86+OQo75w/GU0OiTGaDAGD/jQI8u+kyANJd1hT/51JmOU6mlkAkYPDCqNbJChVUNfCp8iFG6U9rQLvQ2oovlFtRj6OcHIN+qtlRbNoEqI0sf5KSCGforsagQaSGpVQSL4pmwnBqnmwmGAL0xBe5YEg/O7TuTCaeXHcRyQXVcJOK8On93RDg6sy/xRdeIP8eSCrErcIauElFeKSvdcTpTz8F9u4FnJyAbduAZkictCxkMiJUBRCLjjYCbXhoy2CI+lrZk92JDfGAWMjwZtYtDcqnNC6B6aNHmCfcnEQoq1M2Iqff2y0IrlIRMsvq8ZDe2D53pxw55fV8uzxAHBK2nM9CTIAbZhmVirdfyYMXp/L/+b5b2H45F+NjA/Hx1K44/9Y9mNojGBoti43nsjBn/UXEhnjgzOsjcfDlYfhwSlc8OTgS84a1w8KR0Vg0JgYbnuqHy++MwdcP90T/KG98f+w2Ri47jp1cJebNCZ3w4ugOJgMhhVqDPy5mW30N7QqG3nrrLURFRWHUqFHIysrC119/jcLCQmzatAkTJkyw55T/CtzbLQguEiEyy+r5m9TdSYwJsURnZOsl64jUUpEQS6fHQcAQMSv9TFNMgBu2PzcIHfxdUVgtx4Or4w12vABJaw5q74uXx8Tgh1m98d3MXlg+Iw6fTeuG2YOjGukHGWPt6Qw8t/kKFGotRnXyx9sTOzf5nldwXKHpfUIR7mOfEaOt2HElDyxLskK2OtXXyFX8dRsW0/L2F6bw+4UcsCwxxbXFhdkSWBZYu7bx47duAWPGAHe9Gw7NDq1aBdQ3T+s09Qq8mFmOOq7LZNAgwvHJzCRZmTijYAggApi0s0wiEmDu0CicfG0kZvYPx65dQE4O0Wl66CGSFVp5hGRGnxwSZZWty6FDwHvvkd9/+IF0j/0rsHAhITSdPk3ITm2APhFkA9OWHWVUxyqtuBbVctvkBpzEQl7GoTUCOkqivpBRDpUZ0rBEJOA99KhoLoVMKsJ9PQlf6HJWhYFg4p+XchAb4sFnjwBgzakMyFUavDwmBm5Sww33oaRCvmLy+vZrSC+pxWMDI+EiFWHlwz3x29wB6BLkjhq5Gkv2JKPnx4fw5f5bkIgEeGpwFBaMisbz90Tj+VHR6BDgin8S8/Hq1kQM+/IYlh5IQb1Sgx5hnti1YDDmWeh8Xnk4DcU11nvL2RUMHT9+HK+++iry8vKwZ88ezJw5026n4n8TZFIRnx2i5Q8AmMERqf++amiiagk9wjwxlyuXEV8k3ZcW7OmMbc8OQt9IL9TI1Xjilwt48fcElDjo5KzRsvjwnyR8vPsmWBZ4tH84fnqst9nsEcXptFLEp5dBLGSwsJWyQizLYjt3jfWVUK3F/huFUKq1iPZ3NahZtxZUGi1vg2K8e3IEFy8CSUkKALO5HzImxowha5e7jR+VZVnUKdR26aHYhfvvB8aNIykTOzuXjBHlK0OYtzNUGhbnOI6ZmxspbwGEN0QzQ9dyq1DVQI1dGax6tDfemdgZx18dgbcndoEX101DeT3PPkuyOvpZoTmDDVuLTSEnB3jkERK8zp0LzJ7dLB+1dRAcTN48YLVFh0KhwOzZszF79mwoFI7zfGi7+PW8KshVre1RQuDnJkWYtzNY1jCItha9uGCqNXhDnQLd4OUiRr1Sw3ffmsIkjiC973qhgYcYAMzsR+apA0mFeGygbs5adyYTDUoS+FCU1Cjwa3wmvGUSLBpryNWpV2mRXFCDKd2DoNaymL/5isH1G9jeB/88PwRfPNANIZ7OkKu0OJxcjDd3XMfQL4+h+wcH0fGd/Yh6cy8GfnYUr2xNJO4NNQoEuEvx1UNx2PHcIP6eNoVjKcW8AKO1sCsYio+Px4IFC+Dr2zY77rYEXZh3XytAvZLsQge0I065NQo19icVWH2ul0fH8KKLC7ckGET0Hi5ibJzTH7MHRULAAH9dzceo5cex6VxWo0HcFLRaFn8n5mPMVyd4g9Y3JnTCkvtiG3WXGaO8TolXtyYCIDyJkFYSLkzIqcSd0jo4i4V8AGoL/ua0kKbGmTebbUkculmE0loF/NykjfzfHAHhHqsBrAewHs7OaqxaRZq0QpuIGYuq5dh4NhOP/3IBI5YeQ8+PDiL67X3o+v4B9Pz4EGavu4Bvj6Qh/nap2d2lwxCJgP37ibiOtHk0lxiG4Utl5nhDUb4ydAxwg1Kj5XWyACDQwwlPD21n0Bl56RIJLEUi4LnnjLJCgyObzAopFITDVVZGArJ/pSsRzeBt20bSa01ArVZj/fr1WL9+PdTGNVw7EO7tAj83KVQa1uLi3tLoZcL/zupjOdmH1sgMCQQMXyo7a1FvyAfeMgnK6pQ4a+Ri3yXYHT24hiBXqa5buVahxubzWegU6G5Ap/jmSBryKxvw+MBInk9LcT2vCt6uUgzt4It6pQZPrLtgoIMkFDB4qG84Tr8+EntfGIpXxsSgR5gnjGl4AoZkdZ8d3h4bnuqHE4tH4v6eoRb5eodvFmHehsvQskCnIOt9M+02SUpNTcXx48dRXFzcSFfiPZobbkZUVFTghRdewN8cqW/KlCn49ttv4enpafaY2bNnY/369QaP9e/fH+fOnbP7ffSL9EaYtzNyyhtwIKmQ/2Km9w7DV4dTse5MJu7rEWLVAuwkFuLbR3pi+uqzOH27FO/9dQOf3t+NP9ZJTPzDpvUKwds7b+B6XhXe2XUDXx1KxcTuQZjaIxi9wr3MO8s3qHAqrQTfHEnj1Uk9XcT4eGosJsc1LZio1bJ4dWsiCqvlaO8na9ROaQvEYjG+/PJL/vemQDNvE2ID4WpBq8IUimvkfMfElB6tIwxpjE1UobhPGMRNBJzWorQUnACgGMCXCA8H9u0To0sX88co1Br8eTEHOxLyLE7oVQ0qHE8p4XW0wr1dsGhMDKbEBbcZ+dwWDOvgh03nsg14QyNGEFkjovPIYHqfUCzZk4ytl3LMZus0GmDBAvL7ww8DQUFkF02zQk8NaTor9OKLJIPn7U0kD5zMi7nfvYiLA0aPJhdv715g/nyLT7f1/m4KDMOgT4QX9t0oxKWscrsaKJoDPcM88dfVfCTYkd2hJOpbhTWoU6ghs3Ies/daDmrvg303ChGfXmY2gy8WCjAhNhCbz2fjn8R8XjKGYmb/cFzNqcQfl3IwoqMvjqWQefT7Y7cxa0AEXh7dAXuvF4DlCM8f776JH2b1xtcP98C9K0+hrE5X4fg1PhOvjI1BrUKNhOxKPLb2Aj6Y3AWzBkTwaxbDMOgS7I4uwe54/p4OYFkWSo0WSrUWCrUWzmKh1dcNIBWB53+7ApWGxYTYQIS4AIesPNauYGjNmjV47rnn4Ovri8BAwy4ZhmFaJBiaOXMmcnNzsX//fgDAM888g8ceewz//POPxePGjx+PdevW8f93xDcHIBH4g71I4LPtci7u70m247MGhGP1iXRcy63CybRSfqfaFLoGe+Cbh3vimY2X8NuFHET6yBrVQbuHkvroxrOZ+O7YbZTWKrHhbBY2nM1CsIcT2vu7wlsmgY9MClcnEdKLa3EjvwpZenL2bk4izB3aDk8OjoSbk3U32NrTGTh6qxgSkQDfzexl06A0hkQiwWIrZZHlKg2/e7enRLbnGrEL6RHm2WSHXEsgvaQW8ellEDDAI/2tVyi2BJYlFSay75DgrbcW46OPzFeaNJzcw4pDqXxXIkC6DMd3DUTPcC94uojh4SyGTErGzJXsClzJrsSZ26XILq/HS39cxeoT6Vg8riNGdfJv3gxbQwNprbpwgRiqOYhB0b4QCRhkltUjs7QOkb4yjBhB7DMyM4HUVOC+niH4fN8tJOZWIbWohje51MfKleQteXgAX3zROCvk6WJ5/vj1V2KvwTDEIy4y0uGP1nZYupRoQ3U374dIYcv9bS36RHqTYKgNxRd7cQFNQg7pCrPlHgjycEaQhxMKquRIzK3keT1Nwd5rOZA7/+WsCshVGrMyKZPjgrH5fDb23yjEx/fFGtAkJncPxse7byKnvAGLRsfwwVBFvQq/XcjGk4OjMDUumBdB3HejECdSSzA8xg/LZsThyXUXDV5r+cFUvDOxMyK8XbDraj7e/SsJNwtq8OGUriZtbBiGgVQkhFQkhPU5HYK91wvwwm8JUGtZTOoehK8e6oEluy5bfbxdW9YlS5bgk08+QWFhIa5evYqEhAT+58qVK/ac0iKSk5Oxf/9+/Pzzzxg4cCAGDhyINWvWYPfu3UhJSbF4rFQqRWBgIP/j7e34DmNaL9IqGJ9ehtwKEnD4uErxKLfwfXskzaZ2ytFdAvDORLK9/2zfLd4kUh9CAYPZg6Nw7s17sP6pfpjWKwQyiRD5VXKcSivFX1fz8cuZDHxzJA17rhfwgVColzOeHxWN06+Nwgv3dLA6EErIrsAXnKnr+5O7oHMr8m4O3ixCjVyNEE9nu1Sn/+Ju1PvaKCu0hVNDHdnRv9nKiqtWkdINQAjUn3xiPhA6dqsY9648hVe2JiKvsgH+blK8O6kLzr15D3bOJ6TDflHeiAlwQ4C7E1ylIsSFeeLJwVH49pGeOP36SCwe1xFuTiLcKqzBnPWX8NymKzw5uVlQVkZSMGvXEm0bB+EqFfE78ZNpJDskkwHDhpG/799PTFlHdSJeS6aaHdLTgXfeIb8vW0aoM/tuWJ8VunxZ14j14YfA+PEOf6y2RY8eVgVCLQXaUXYps7z1OG1G6BToDqmIeKXZI77IB1N2lNlsRXs/GQLcpVCotRatOfpGeiPAXYpquRqnUhtrDj3Qi2xA9ycVootemWnV8XTIVRq8ODoGIr1s8ft/3YBcpcHIjv54huPB6mPJnmQMaOeDNyZ0AsMQf84ZP55tNi5VtVyFD/9JwsItV6DWsrivRzC+fqgHxEIBymtbmEBdUVGB6dOn23OoXTh79iw8PDzQv39//rEBAwbAw8MD8fHxFo89fvw4/P39ERMTg7lz56K4uNji861BmLcLBrbzAcuSjieKucPaQSIS4FJWBd/WbS2eHByJWVww9fyWBGw4m2nyeSKhAMNj/LBiRg9cemcMNs7ph+XT4/D2vZ0xb3g7PNIvDK+P74RNc/oj4d0xOP36KLwytqNV3S8UVfUqPM9F2BO7BWGmDf5L5qDRaHDx4kVcvHixSYl5Spye1ivE5hJNVlkdruZUQsAAE1vJO00fcpWGL/E9OqB5skJnzgAvvUR+/+wzYPZsLfLy8pCXl2dQoq5TqPHatkQ8+etFpBTVwN1JhDcmdMKJxSMxZ0gUAj2sq9e4SERYMDIap14biWeHt4dEKMD+pEI88EO8gUO1QwgNJW1agNUk3aYwvGPjFnsakHAJZV41fmdCngEvihKdGxqAUaOIvUmtQo0le4io21NDoixmhUpLgWnTCF9o0iTg7beb5SPdPSgosGjgqtWaHpOOoHOQO5zFQlTL1bhdYt6EtCUhEQl4r7Qr9vCGKInaBt6QLXOlPhiGwQTOoHR3onnuqlDA8DxM464ygJTKAOBwcjGW3B/LP15So8DWSzmI8pVh/ghSvRAwxPT4J05T6NWxHfnOTf2Z+40d1xHgLsXaJ/rATSrC1ZxKTFsVj+c2XUa6nd8ty7LYmZCLUcsIF1bLEq/A5TN6QCQUoKhajkPJhVafz65gaPr06Th48KA9h9qFwsJC+JuwdPb390dhofkPO2HCBGzevBlHjx7F8uXLcfHiRYwaNcpit4NCoUB1dbXBjynQ8s22yzrNoQB3JzzETbbfHbVN9IVhGHwwpSuifGVgAbz3VxIeXXMONRZaOp0lQgzt4IcHeodi7rB2eHNCZ3w2rTueG9EeQzr48p0xtqC4Ro5H1pxDbkUDwryd8dkD3ZqlPCKXy9GvXz/069fPosR8YZUcp7idPd2h2AKaFRoc7dtipqiWsPVyLqoaVAjxdMbwGMdtyAsKiAGrWk1ih9dfJ9YHoaGhCA0N5a0PErIrcO83p/DnpVwwDPD0kCicem0Unh3eHs4S+7q2PF0keGNCJ/z2TH/4ukpxq7AGU78/Y2DK6BBeeYX8++efpP/dQQzj+A/x6WW8DD8Nho4fJ4HOiI5+8HWVoLRWyfOjAFJKS0oiLvJr1pAy14qDqSiokiPc28WiebFaTfhF2dlAhw6k+nfXecM5gtdeI6rUW7eafYqpMekoxEIBr+R8N7TYO8IbupJdYXW1wNq50hQmx5Eg5+DNIotdeJQzeuhmUaMO6JgAN/SJ8IJGy+LYrRID9f5vjt6GQq3BglHRiPZ3BU3YfX/sNjJK6yAREZPWIA8nsDAMiF7+IxHn7pRj74tDML13KAQMybyO/eokXt92DcdTiq3qxi6vU+Kvq3l46MdzePmPRJTWKtDOV4aNc/rhs2ndIBQwqKhT4rG151GvaGEF6ujoaLz77ruYPXs2li9fjm+++cbgx1p88MEHYBjG4s+lS5cAwOSC3FQN96GHHsLEiRMRGxuLyZMnY9++fUhNTcWePXvMHvPZZ5/xsvIeHh4ICzMtljehWyBkEiGyy+t5lWSAyIKLBAxO3y61OQ0oEgqw6el+PKP+THoZBnx6BPuu57e4iilAPHge+CEeNwuq4esqwU+P9YG7lWW15sLOhDxoWZIip3L41oJlWey6SjJ1U3uEtMTbswi5SoNVx0gQ/MywdhA6SDxWKkkgVFgIxMaSihId7iKRCCKRCBoti5WH0/Dg6rO8a/NvcwfgnUldbMoGWkLvCG/8vXAwYkPcUV6nxKM/n7NaU8sievYk5qAaTbN4VHQJcoevqxT1Sg0fsHXpQpJQcjlpsRcLBbwirv5niIoCkpOBnTuJc8j13Cr8Gk/UppfcF2sxoHz7beDIEVKW27EDsNDT8e+EuzvJCi1fTlJoZkDHZHOCEqeNLSRaEzrxxUqbj+0SRMpsFXaW2WxFr3AvhHg6o1ahxrFb5qsgPcM8EejuhHqlBkdvNVaDp870685kYtmDulJpSY0C2y7nQioS4osHuvPzkUKtxXObLqNBqUGolws2P90ffm7SRgHRTyfv4PnfruKFezpg34vDcE8nf2i0LP64lIPZ6y4i7qODmPXzeaw+kY5tl3Ox/XIudlzJ5fmPU78/g95LDuHF36/iQmY5nMQCLB7XEfteGsqTwZMLqvHwT+eQWlQLsQ3m5nYFQz/99BNcXV1x4sQJfPfdd/jqq6/4n6+//trq8yxcuBDJyckWf2JjYxEYGIgiE/L9JSUlCAiwvm05KCgIERERSEtLM/ucN998E1VVVfxPTo7pSd9FIsIUbsFdc0pn9hjq5cJzimzNDgFAiKcLpupxXeqUGjy3OQFzfr2E/MqWUzK9lluJB3+IR055AyJ8XLD9uUGtyhMCqDYPyRDYkxVKyq/GnRKyO9EXCGst/H4hGwVVcgR5ODWL4vSLLwLx8YTMu2MHWWwBYn2gUqlQXlOPF7fdxFeHU6HRspgSF4x9Lw2zi2fVFII9nbF13iBM7B4ElYbFa9uv8fIFDoEaq61ZA1Q51kItEDC4h+MEHbxJMsYMQ2SNgMalsqO3DA2Wvb3Jc9UaLd7ceQ1aFpjaI5gXdTSFP/4AuMYf/PILCVr/c3juOZIyu3KFpNhMgI5JlUrlsB2HPkZ0JN/nqdQWlHtoApT3k1JYbTNvTr/M1hot9gzDYFKc+RKY/vPGcnPkquON9XjGdQ1E5yB31CrU2H+ziBcnBYjJeLVchd4RXnhiYCQAUi67VViDd3bdAMuyaOfnii1P94e3TAL98FnAAFdzKjHxm1PIKK3D2tl98ee8gXi4bxiCPZygVGtx+nYpPt93C69uTcQrWxOx6M9EvPTHVXxzJA2JOZVgWaKrNG94OxxeNBwLRkZDKhJCrdHi+2O3MeW700gpquGVsK2FXcFQRkaG2Z87d+40fQIOvr6+6NSpk8UfJycnDBw4EFVVVbigp4Z6/vx5VFVVYdCgQVa/XllZGXJychAUZF63RiqVwt3d3eAHgMkb8Zlh7SBgyKSq70783Iho/vEbebZP8E8NbkxCO5pSjJHLjmPt6QyzzsT24khyER7+6RzKOOf6bc8OapMurK2XcpFVVg8fmcSq1n9j0MV5dGd/q4nizQW5SoPvuUllwchoi4a31uDnn4HVq8livmULKb/oI6e8Hg/8EI9jKSWQigRYMSMO3zzSEx7OLfe5nSVCfPdITzwxMAIsC7zy51W+pGk3xo8HOncGamqapatsPKcGfyCpkCfdGvOGYgLcEBfqYdZgef3ZLNzIq4a7k4hvbDCFa9eAp54iv7/+OjBjhsNv/+6Ejw/w5JPk92bid1mL7iEe8HWVoEahbrNSWYC7E4I9nKBlYZfmkU58sbKZ35lpTOa4kkeSi1FrIXijvKGk/GreEJtCIGCwiBNZ/PVMJpY+oMsOVdar8CXXXLN4XEeEeDrz5bLtV3Lx2wWSQOgQ4IZNc/rzc5JIwEDLkoCoWq7Gs5su47G156HWavHZtG4488YoHF40HO9P7oIJsYEYHuOHYTF+GNrBF0M7+GJyXDC+fLA7zr91D/a/NAxvTuiMUC8i9nynpBbTfzyLpQdSoNKwiAv1AMMwUGmsXyutDoYWLVqEuro6/ndzP69QHkAzonPnzhg/fjzmzp2Lc+fO4dy5c5g7dy4mTZqEjh112jedOnXCzp07AQC1tbV49dVXcfbsWWRmZuL48eOYPHkyfH19cT91z7YBp9Map2mjfGU8SfcHveg6ylfGL+bfHjWfhTKHbqEeBpE4hUKtxc+n7iCjtHnIhLcKq/HkuguYs/4S6pUaDIn2xe/PDGwTro1cpcHKI8TyY8HIaJvb+OuVap64PCWu9Utkm85loaRGgRBPZ16R3F6cP6/Tuvn4Y+Deew3/fimzHFO/P4PUolr4u0nx57yBmGZHJs0eMAyD9yd3xSQuQzRv42W71Hl5CASEO3TvvcS3zEEMivaBq1SEomoFrnIGm6NHk867W7eALCL/xGeHtl7KRUFVA7/ZyatswPKDpEP1zXs7m70XysqI1EF9PTB2LOnu+0/j5ZdJZL5nD6knthIEAobn3lkq+7Q0eupxf2wFzSzZQqJ2BF2D3dHOVwaFWovDNxtXVCi6hegy/89tvtKIrzO6sz/iQj3QoNLgt4s5BoKLm89lE9sOqQifTetmcNwHfyfxc0KXYHdsnNMPbk4iqLUsHxABpHx2Kq0UM9ecx32r4nEgqQjtfGV4cnAUfpjVG+uf6ocNT/XDxjn9sXFOf3z7SE/M6BOGAHfSCKLRsjiVVoJFf17FhJWnkJBdCVeJEL3CPZGYW4XyOiWcJdbne6x+ZkJCAlRcN4F+K72pn5bA5s2b0a1bN4wdOxZjx45F9+7dsXHjRoPnpKSkoIpLtQuFQly/fh1Tp05FTEwMnnjiCcTExODs2bNwc7NVwQD4O7HxDhIAz6rfc70Ad/RY8QtHkuzQgaQiu3bPs01I/jMACqrkuPeb01h2IAWFVbaR6ygKqhqweGsiJqw8hWMpxHz1ycGR+GV2X5sFDpsLG89moahagWAPJ7u6sLacz0Z5nRIRPi4Y3dlx4rItqFeqeen350dFm9TPsBb5+WSRVSrJv2++afj3HVdy8fAPp5G2cyXYMz/jz7l9+O6N1oJAwGD5jDgMiSbqsrPXXbC7IwQASa/s2QMMHuzwe5OKhHz7/IEbpFTm6amLs6gsGTVYTimqwcDPjqLD2/vQ6+NDmPLtadQrNegT4cU3QxhDLgemTgXu3CFcoy1bms1Z5O5FdDT50IBJA1eFQoEFCxZgwYIFzWLHoY+RnUiZ8mhbBkPcPWaXEjWXGUotrrHZ48wekFIZ2Yz/Y6GUra8vVF6nxHt/3Wh0HmrBseFcFhaP7cjzWVkAb+64BpVGi2ExfnikH7lXRAIGSo0W8zdfQQUnwNg91BN/LxyCLkHuUHOREMOdQyxkIGSI3cmzmy5jyBdHsWDLFfx4Ih1n08tQI1eBZVk0KDUoqpYjtagG8eml+Oifmxjw2RE8tvYCdlzJg0KtJfwssRBXskk38eTuQZDYwNtk2NZg5v6LUV1dDQ8PD7R7ZRsufzTZZHvtnF8v4sitYszoE4ovH9S5MX7wdxJ+jc9EpI8L9r80zKbSiUqjxZAvjqKoWgGRgMGn07qhW4gHPvrnpoGMevdQD4zuHIAxXQLQKdDNJKFco2WRXFCNCxnluJhZjqO3iqHgum0mdgvCq+M6IspGsrKtqKurg6sr6Uqora014BXUyFUY9uUxVNSr8OUD3THDRr6NXKXB0C+PoaRGgS8e6Gbgutwa+PFEOj7bdwth3s44+soIuxWn5XKimnz+PNC1K3D2LPHYolhz8g4+2ZsMrVKOnK8eBND4WrYmahVqzFxzDtdyqxDi6Yztzw2yun2/JbH3egHmb76CCB8XHH91BBiGwVdfEYeJQYOIVAFAvrdf4zNRUqPgJ2kAkAgF2P3CEJOijFot6RzbupVwueLjYVEB/D+F06eBoUMJuSo3l/CIOFi6vx1FVYMKvT4+BI2WxcnFI1vNKFofV7IrMG1VPHxkElx6Z7TNHbbDvjyG7PJ6rH+qX5OCvM1xLW8X12D0ipMQCxlcfHu0WVmIqDf2GHB6vn2kpwFFgWVZPPBDPK5kV2J671BE+rhg6cFU/u+Lx3XEgpHRkKs0mLnmHK5kV0IkYKDWshgc7YO1T/Tl1z25SoNP9yZjw1mSnnUSCyBXkXVIKGAgYGCyrCURCfjuUGO4O4vQMcAN1Q1qpBTVkM/kK0O0nwyHkouhVdQj5+sZqKqq4ikv5tA2aYB/IVQaLXZfKzAp4z9/ZDSO3CrGjit5eHF0DC+098rYGOy9XoDMsnqsPpGOl0bHNDrWHMRCAWb1j8CaU3ew+rHevHrplrn9cSCpCD+dTEdCTiWu5VbhWm4VVhxKhb+bFN4yCZwlQjiLyY9CrcXVnMpGteN+kd54495O/K6lpSEWi/H+++/zv+vj51MZqKhXob2fjCef24I/LubwJSqqCN5aqFXoskIvjOpgdyDEssTx4Px5wMsL+OsvXSDEsiyWHUzB98fI6zw9PBoat/fAMEyzWB/YC1epCOtm98X01Wdxp7QO8zdfxh/zBtpvP5KbS4y8Jk8mi66dGB7jB6lIgKyyetwqrEHnIHc89BCpxsXHAxkZJKMzb3h7zBveHloti8oGFUpqFCiuIQT4aH/T2ePXXiOBkEQC7Nr1/ygQAkjm7qefiKCSs6GYqKX721F4OIvRJ8IL5zPKcfRWkcmseUuja7A7JEIByuqUyClvsDkgG9DOG9nl9TieUtxkMNQc1zLa3w2dg9yRXFCN/TcK8bAZrTipXkACAG9uv4a4UE/+8zEMg1fHdsTMn89j6+Vc/L1gMNaezkB5PclwrTychondghDpK8Pqx3rjvu/OIL9KDgEDnLldhrkbLmHN433gJBbCSSzER1NjMbCdD17bfg01cjUEDPl+K+pV0IBUYn1kEkhFQtQq1KhqUPGBEAPipOAsESLQ3Yls8gtrcJFTKBcwhPh9NbsCh5JJFvHR/uH43Mpr9r/MUBOgmaGwl/5Enw7B2DHfdCr/4Z/O4tydcsweFIkPpnTlH999LR8LtyRAIhTgwMvDbMrAlNYqUFmvQrSezoM+SmoUOHqrCIduFuFUWimf7TEFN6kIvSO90DfSGwPa+aBXuGebGJgao6xWgWFfHkOdUoNVj/ay2ZRVodZgxNLjKKiS4+P7YvFYMzrEW4Pvj93G0gMpiPKV4dDLw5o0vjWHb74h3WMCASH6jhlDHtdqWbz39w1sOke67F4b3xHzR0Q319tvFmSX1WPit6dQI1fj2eHt8caETvadaOFC4PvvgYkTgd27HXpPczdcwqGbRXjxng58qn/0aNIC/8knwFtv2X7OX34hYowAsdqYOdOht/g/2ACafR0W44cNT/Vrk/dw/6ozSMiuxMqHe9gs3XEgqRDzNl5GmLczTi4e2Spz76rjt/Hl/hQMjvbB5qdN8/G6f3AA1XLDjXJcmCe2zhvIl/tZlkWfJYdRVqeEu5MIPz/eBzN+0vl7Dmrvg81P9wfDMLiRV4Xpq8+iQaXhM0SD2vvg5yf6wEWiy71kl9Xj7V3XcUqPi+stk6Bcz9vMWnQNdkeUrwxF1XI+MAr3dsHSB7ujs68YHh4eVmWG/kvSYC0KAUO6AW4Xm+ZGLBhJFqjfL2YbtOtO7BaEoR18odRo8d5fN2zSC/J1lZoNhADAz02Kh/qG4+cn+iLhvTHY/txAbJzTDz8+1hsrH+6Bz6d1w+fTumHPC0Nw9f2x+PXJflgwMhq9I8ybu7Y2Vh1PR51Sg9gQd4zvGmjz8dsv56GgSg5/Nymm2+Fj5gjKahW88uqL93SwOxA6eJDwUwHSpk0DIaVaixf/uIpN57LBMMAn98fedYEQAIT7uOBLrttk9Yl0HE+xk9vx0ks6ku7Nmw69JzqWDiTpRFlp8LJ5s0W5HJO4elVHav/oo/8FQgAIi7yVQHlg5+6UoV7ZjLYwNqBnGMmi29MiP7SDLyQiAXLKG5BmZg1pbtCusrPpZSiuMc0vlYgaUzcScyoNHBAYhsGYLuT6V8vVeH3HNYzR42XGp5dhK9e8EhvigRUzCFVErWUhETKITy/D7F8uGlQnwn1csHFOf/y1YDAvg0IDoSAPJ3QKdEO0v6sBh1UsZOAjkyDC2wVdg90xoVsgBrX3QVpRLXZfK+ADodmDIrH/paHob6PEyP+CIStBtUZ+PmVaOmBItC+6h3pArtIaPIdhGHw8NRYSkQCn0krxzzXzMumOwEUiQu8Ibwzt4IdxXQMxtUcIHu4Xjof7haNrsIfDAoCOQqvVIikpCUlJSbxcf35lAzZy7u6Lx3Wy2XpDpdFi1XGi5TRveHuH29ltxRf7b6GqQYXOQe52SQEAQEoKacnWaoHZswmvBSD19XkbL+GfxHyIhQy+ebgnHu1Psl4sy6KyshKVlZWtIsZpDSZ0C8LjA8n7W/Rnon3k/uhowhoHTJJ0bcE9nf0hEjC4VVjDi91Nm0bKWzdvAtevW3+uykoifimXk6TVf85qw1akpwNDhhBWOmcX0dJjMtrfFaFezlCqtThzu/WCMH30b0cEIE+kltj8GV0kIgxuTxbnQxY6vADTc6U9CPN2QY8wT2hZYN91004NUhPNHqse7cmLLlKM6qTTbcsorUduRT1kUt18+87OG7yMzIRuQXiZo4RoWMBJJMCFzHI8vvZ8IwJ5XJgnfnysDw69PAzTeoVAKGBQUCXHrcIa3C6uRa1CDbGAga+rBAIGKKtTIqu8Hkn51dh3vZCozWu0iAlwxatjY3Bi8Qh8MKWrQRbKWvwvGLISTw6OBEC8yIqrG0/0DMPwu/afT2WgTC87FOkrwwLubx/vvtkqHQV3GxoaGhAbG4vY2Fhern/ZwRQo1Vr0j/LGsA7WOTrr46+r+citaICvq6RZ/NNswaXMcvx5ieyGltwXa1ewWVFB6DFVVYTYS3WF5CoN5m64hGMpJXASC7Dm8T4GwVZ9fT28vLzg5eWF+vpm8gprBrx1b2d0CSIq1S/8ngC1PSJ5VIRx40YivW0nPF0kGMgtPjQ75OlJfMMA0gFmDViWSOykpxNHig0b/mNWG/YgIIBElLdvA3//DaDlxyTDMHx2qK26yoZE+0IiJFy0O3aoSY/uQgKKw8mWgyFTc6W9mMLNG1SZ3xhh3s54anAUdswfhPFchuZkammjykHHQEMOXXJhLYLcdc0SSo0WT2+4xFdFXrgnGvf3DIFGy0Ku1kIqEuBKdiVmrjmHTBPXrkOAG1bM6IELb92DtU/0wQujojEsxg+eLmKotCxKa5VQqHUBqEwiRHs/GRaMbI8DLw3DwZeHY+GoDg7p4/1/v62tRq9wL/SO8IJSo8XaMxkmnzO2SwCvp/DQT+cMdg/PjmiHdr4ylNQosHR/Smu97bsWe68XYMeVPDAM8PqETjaX7TRalre+eHpoO7v9t+yBWqPFO7tIG+rDfcN4/yFboFKRjFBaGhAeThSmpVKgQanBnPUXcSqtFC4SIX59sh+vwnu3w0ksxPeP9oJMIsSFjHJ8c8R2jS0MHEh+lErgu+8cej/juFLZ/huNS2VbtpBsXFNYsYIQpSUSYNs20kj1/x6urkSVGgCWLm21lx3JBUPHUorbJCMqk4r47JA9mkf3cNmVqzmVKKlpXvkBc5gUFwSxkEFCdiWucbpb+vht7gC8N7kLeoV74emhROx3R0KeAdUDAMK8XOAkNgwXbpfUwUemI3gXVskxf/MVqDRaMAyDZdPj8ASXLVaotXASCXAjrxoTVp7CpnNZJr9DH1cp7ukcgEVjO2LDU/2Q8O4YnFg8AnteGIJTr41E4ntjkf7pvUj6aDyOvDICi8d1ahSo2Yv/BUNW4nJmBW/WuOVctsnsjkDAYExnMuBvF9filT8T+S9cKhLi4/uIVv/Gc1nYe71lymX/BuRXNuCN7dcAAM8Nb29XR9vua/m4U1oHTxexyQ6/lsSv8Zm4VUjk3l8fbztZmGWB558HDh8mFht//0022/VKNZ789QLO3C6DTCLE+qf6mbTWcHFxgVKphFKphItL67cZW0KUrwyfciJs3x67bVKstEnQ7NAPPwB19vs5je0SAIaT/y+oIjvsiROJ1VZOjq7F3hzi44myNAB8/TXQp4/db+W/h4ULSYR49iwQH98qY3JgOx9IRQIUVsmRXFDTIq/RFEZ2tD87FejhhG4hHmDZ1hOQ9HdzwiSOO7T2dONNvP4mtHeEF+LCPKFUa7GJoy9QCASMSamJsjqVQantQkY5PvqH8P2EAmI+vngcEUaWq7Xwc5WiQaXBO7tu4MlfL5qsshi/vwgfGboGeyDM2wUeLuIWo3z8LxiyEn9ezsE9nfzRwd8VNQo1Np8z7bKt72O0IyGP57QAxEl97lBSi311ayJSi9rmhm5rvL7tGqrlavQI8+Q7fWyBQq3hsw5PDY5qVaHIwio5vjpEdDbemNAJXjLT+h2WsHIl8OOPpCT2229AXBxp0Z/9y0Wcu1MOV6kIG+b0R99I02kI2lIvFovvGiK8Pqb2CMHDfcPAsmSc19haFp46lVyUWbMABwT8/N2d0JsLtA8mkdKEkxPwwAPk70uW8JSXRigtBR56iPz94YeBZ5+1+238NxEURL4fAFi2rFXGpJNYiG6cz9f2K81gFGwHaKnuQka57eMawGhus3yoiVJZc4Lyf/ZcK7DI5WMYhn/uxrNZjeRYTAVD03qF4Mgrw6Dvh7rxXBZ+u5DNn3PByGh8+UB3CAUMSmoViPaTQSxkcDylBMOXHsdmo8CrrfC/YMhKHEwqRFWDCvO47NAvZzIgVzWeSSOM9CeWHkjFlvO6wOn18Z0wqL0P6pUaPLPhEqoa/v/xhy5lVcBVKsI3D/e0S5Nm1bF0pJfUwUcmwRODIpv/DVrAx3tuok6pQa9wT0zvbbvtxu7dOpL0smWEM1QjV2H2LxdwIbMcbk4ibJzTz67S292E9yd3RYSPCwqr5fh83y3bDhYKiSnoypUO16WoV5l+qezll4lMzsGDwBtvND5GqwUef5zIHsXEEGmduzDmbHtQ66Vdu0i9txVAlaB/v5jT7B6N1iDSV4Z2vjKotaxdWc/RXFfWqbQSk+tHSyA2xAP9oryh1rIGXWKmMCE2EFG+MpTVKfH9MUOj8Y5cMOTvJuU7wA4lFUEkEGLd7L4Gz3131w1c0vOSm9E3DD/O6g2pSIDbJXXwdZUiyMMJDSoN3t51A13e24+FW67gZn5Vs5VAi6rl+OlkYxNac/hfMGQl1Fpg0/ksTIkLRpCHE0pqFNhpwuTRlI7QWzuvYw/XRSYSCvDtIz0R4umMzLJ6vPzHVd5Q8v8TltwXa5eS7K3Cav4m/XBq1xY1JjXGydQS7LlWAAEDfHxfrM3db1evAo88Qspkc+eSRblWocbsdRdxKasC7k4ibH66P3o2UTZUKpVYvHgxFi9eDKXSdl2O1oCzRMh7Fm0+n93ICLJJNBNLmfKGzmeU8a273boB69aRvy9bBqxfr3s+ywKffgrs20eySFu3GqqA/w966NKF1B1ZFso1a1plTFLrmTqFBt8fa50AzBgjHSBydwlyR7CHE+QqLeLT7Sgh2wma8dlyIbuRB5k+xEIB3rq3MwBg7akM5JTryPC9IjzxzsTOOPnaSKx6tDfiwjxRo1DjnV3XMTTGDwtG6gzG1VoWczdcQnJBNf/Y6C4B2DK3PwLdnVBQJUdBlRyBHAm7XqnB7msFuPeb0+j50SG8s/M6LmeV2xzwqjXEj+3p9Zcw6POj+ObI7aYP4vC/YMgGfHf0NjQaLT+wfjp5p9GX5ekiMblAv/RHAk6mEo8yH1cpVs/qDYlIgKO3irH8UGqj5//XoJ8BmxIXjPt62q40rdZo8dq2a1BrWYzpEoCJNgo0OgKFWoP3/04CADwxKBJdgz1sOj43l6wbtbXAqFFEW7BOqcbsXy7gclYFPJzF2DJ3ALqHejZ5LpVKhWXLlmHZsmW8X+DdiEHtfXnPojd2XLdvJ3zmDLB4se3CQBzCOE0SLUt83SgeekjXIv/MMyRjt3Qp0KkT8O675PFvvwW6dzdx0maCQq1BYk4ldlzJxd+J+TiSXISz6WVIzKnE7eKaViPZOoQPPgCWL4dq+vRWGZOezrqy9DdHbvOyCa2JUXpEbls3sgzD4B5aKrvZel1xozsHINzbBZX1KmzXuw9MP9cfg6N9oNRo8dk+nSlv7whvPD20HZzEQggFDJY+2B1iIYPDycX462o+Fo/rjFGddDSRinoVHvrxLC5nlRuc4/ArwzFnSBQEDFBYLYfYaFNZ2aDCpvPZeOCHs+j2wQG8/EcCbhfX8mbKFCzLolquQmpRDY6nFGP5wRQM/uIont5wCYeTi6DRsiYNz83hf3YcNkCh1uK5zVfw/aO98O1RciMeTCrEBKNFOdJX1sjJO8TT2WAx6Bbqgc/u74ZXtibi+2O34SOT4CkjbYf/CliWxUd7U+DebxrcnET48H77Vph1ZzJxLbcKbk4iLLkvtlX5Mt9yE6+/mxSLbOQ5VVeTQCg/n2ymt28HlFo1ntLLCG2a0x+xIdYFWGKxGK9yJOO2tOOwBm9M6IwjycXIKK3DyiNpthHOKyqIbLRcTnrihw+36z3MGhCBN3dcx5pTdzBrQASvR/XRR8CNG8T6ZPJk3fNdXUkFiKpNNwdYlsWtwhpcy61EYm4VrudW4VZhtUkvJn10CXLHxO5BmNQ9yKG24RZDnz5AYCDEgwfj1WefBVxdW3RMqvVaANVaFou3JuKPeQNbVUetb6Q3XKUilNYqcT2vymaj5NFdArDxXBaOJBdBq22cYW6J+1soYDB7UCQ+2n0T685kYGa/cLOZbYZh8O6kLrh35SnsvV6I83fKTAoYxgS44flRHbDiUCre2HEN7f1csfaJvhi1/DgySklGqVquxqyfL2D1Y715GxJXqQjvTuqC+3uG4O1dNxqtlfqoV2qwMyEfOxPyIRIwCPdxQYCbE0pqFSiobECdiSyXl4sYD/QKxZAOvth13vrM0P/sOJqAvh2HQErKOqtm9kJyYTW+PXobcaEe2LVgsMHC/NLvCdh1lbgF+8gkKKtTomuwO/5aMLiRSvEzGy7hICfC9dTgSLx1b2e7lYzvVlCDUZGAwbbnBqGHHS7rmaV1GPf1SSjU2lY3Y72QUY6HfzoLLQubLUNUKrLQHjgABAYC584BfkGkNHYhg3CENj/d36qM0L8V1IpAKGDw14LBVgd9AEgL9+rVJBiilvM2Qt+yZcl9sQbdhzU1xAYtMRHo14+ULx96qPlKY7UKNXZeycXGc1lILWqsPOzlIkanQGITUK9Uo06pQb1CjXqVBtUNKugnHrqFeGBi9yBM7BaEMO+7qItQoyEkrE6diN+Jn2XvLUdw+GYRnt5wyeCxdyd1aSQS2NJ4btNl7LtRaGD3Yi0Uag16fXQIdUoN/l44uNXu/VqFGgM/PYIahRrrnuzLd8aZw9s7r2Pz+Wx0DXbH3wuHmAw41Rot5qy/hBOpJfB3k2LXgsHwlknQ7YMDBoG+SMDg64d78J1tFBotiy0XsvHFvluNCNsAEO0vg7NYhPSSWtSbKe95OIsR5OGEcG8XjI8NRIC7FL9dyMHe6wVQy603av1fMNQETAVDUqEAW57pj5lrzkOh1mLL3P68kSoAfHUoFQk5lVgwoj3a+clwz/ITqJar8cHkLo1MBhUqDbp9eJA3o+sY6IbvZ/ayaMPxb8La0xn4eDdptXxzQieegG4LtFoWj6w5h/MZ5Rgc7YNNc/q3WlaoqkGFe1eeQl5lAx7sHYpl0+OsPpZlgXnzgDVrABcX4MQJoEt3NZ76lXSNuUlF2PR0f5t3lv9GLNh8BXuuF5jdFJhFWhrQsSO5mElJdjuj/nomAx/8cxMhns44vniEAXG/oQEoKgIiI+06tUmkFtVg49ks7LiSy+9encQC9Ar3QrdQD3QP8UT3UA+EejmbHcsVdUocSCrE7msFiE8vNQiMHukXhjcmdG5VzpxF+PsDJSWEcX7tGhHNagHsv1GAZzddMXjMSSzAvhdt8310FH9eysFr266he6gH/l44xObjaTD1wqhoLBrbsQXeoWks2X0TP5/OwNAOvtg4p7/F55bVKjBi6XHUKNT48sHumNHHdMNIjVyFB384i5QiYoq89dmB2Hu9AK9tu2bwPAbAkvtjeSV9fRTXyLHsQAovZEshkwgxuksAonxkEAoZKFRaaFgtwrxcEOkrg0qtRVpxLZLyq3EjrwrpJbUG98nQCBdsmj/qf8FQc8BUMMSAGGbmV8qx8VxWo4GlUGsg1fN82XguC+/uugGZRIi/Fg5pFOh8uicZP+lZeIiFDF4f3wlPDY6ymaR7N0E/EJo/vB2md3ICwzAIDw+HwAaC7ObzWXh75w04i4U48NIwu4jX9oBlWTz/WwJ2XytAhI8L9rww1KY2/o8/Bt57j3Qi7doFjBmvwVO/XsTZO2Vwk4qwYU6/JsnS5t6XWk12USKR6K5srzdGSY0Co1ecQFWDCq+P74TnRtgQFE+bBuzcCTz1FLB2rV2vL1dpMOSLoyj9P/bOO6yqwv/jrzvYU/YUUXEgThy4d65Mc5ualqllllpm37ZNLdOytFyZZZbmNvfeuFBcoIBsVPa8F7jr/P44gKAIF7jg+PF6nvsAV865x8MZn/MZ73eOioUjWjDyERf2qnI6IoWfj4RzNvJ+n0R9RwsmBHgx3N8Da9PKBS+pOfnsu3GPXVfuEljQjO5kZcIXQ/yKJuYeJ0KjRmgKJsrkI0ci2bChWqS6C42vH6StV50aLZclZefR/uvDAJz/qDdOVqblLFGSLUHxvLvpCk1drdk7s2uJf9PpdMTGihPIFb1WlkdcmpLuC4+iE2D/rG7lChYWZvUdrUw4OqfHI69/8elKhi47Q0pOPr2aOPHruDZ0/e4oSaX0vU3t5s0HA5qWet3680wUn+4MQSoRvTlLW748HCxN6NzQnmndGuBhSa1Ra3XQrp4tdhbGCIBcKmVqt/rIpRJOhqdwtJg5pckD5ncvta9LQH07FCotr/8V9FA6cFKB1Uchaq3AV7tDGbPqLLGpT47dQkUoHgjN6NmQ6V09qV+/Pt7e3hWSmL+bmcv8PeJo9px+jWssEALYcimBXVfvIpdKWDKmdYUCoTVrxEAIxEbcvv1FZenAyFQsTeT8UclACETrA2NjY4yNjZ8oO46ycLQy4ZPnxazOj4fCiEyugFnl3Lni13XrxMarSmBqJGNKgcLuL8duG3wsOy5NybR1Fxm3+hxnI9OQSSX0b+bC+tc6cPid7rzS2bvSgRCIQxfjOnjxz9QANk4NoL6DBUnZ+bz+VxBv/BX0SCPOmkLZti3GgDGg3LRJbHqvBjSl9Fg1c7emq49jqWWW6sLJypQWBZpHx24lV3j5nk2ckEog9G4WCRklr4e5ubl4e3tX+FqpD5525kUTlr8/wkmhOBM71aOevTnJ2flFiv+l4VHHnNUT22JSMBS0YN9NJjxCDHfliSj6/nCiVFuOCR3r8WJrdz4c2JSzH/RmyxudeLtXQ8a2r8sAPxc6eNvRyNkSRysTjGQS3G3N6NfMmXf7NmLNpLac/7A3Fz/uw5IxrfF1Kzv4eZDaYKgCTOnagP8VNIAuP34be0vjIs+yL/4LIV9Tek1TJpXw89g2uFibEpGUw/ubr5bQUnCzNSsh1ljI+ag0Bv10ssR449PAmmKB0Js9G/Duc40qlb3Q6QQ+2HqNnHwNrevaMqkGNYWiUxR8tkO03Jjdt1GF+pz27BEnlAA++AAmT9Xy2p8XOHO7UFm6XaVUt592hrdxp6uPA/kaHR9tu66/nkhAgGgMqlbDTz9V+vPHB3hha25EVIqCXVcrF1Q9iFKlYdGBW/RefJz9NxKLGlVPvd+T5RP86dzQweCZuw717dkzsytv9myAXCph7/V79Fl0nI0XYh+fcW/DhiV/XrwYFi0y+MeotTqsTOQMau5aNJY9MaAeM/v41HjJsEiNOrTiU2F2FsZFWmKHa1CAEe6P2W+9nFDCQ7M0jOX3R+1Xn4oq817UytOWxaNaAeKwi0wqwUhW+rEfkZRDvx9PsPLE7RIehhKJhPnDmhdVRfy96vDOc42ZP6w5v473Z+O0jhyY3Z0LH/Uh/OuBnP5fL1ZMaMtbvX3o1cQZJ+uKZeiKUxsMVYBfjt1maGs3vOzNSVWo+DMwhrd7++BoZUJUiqJUufNCHK1MWDauDUYyCbuv3WX1yZK/O6Zd6Wn7SZ3rPVnNkuWw5lQUXxQLhOY817jSN4MF+25y7FYyxjJpkYJpTaDW6pi5MRiFSksHb7siGxZ9uHABRo4Ue0pffhk+mafltT8ulrDY8PeqmpCgubk56enppKenP3F2HGUhkUj45sXmmMilBEamsreYEGK5zJ0L3t5i/1AlsTCRM7mgZ2/Z0Ygq6XsJgsDOK3foveg4Px+JQKXR0bmhPXtndmXeC81wtTGr9Lr1wdRIxnv9mrBzRheau9uQlafh/S3XmPJnUI2J+RXH3MeHdCAdKDoi58zR3xFXT55r5sKlT/uybFwbxgeIQxT/GSiwrSiFI/anIlKKej4rQpEadTku9obG36sOLT1sUGl0rC8mCPwo+vo606mBPSpNyVH70hjUwrXIfmPRwbAyH/ryNTq+2XOTF385Q8id+3pEpkayx9IeUhsM6YmxXEpwXAZBMRm83csHgBXHbyORSIqyRUuPRJQpd+7vVYdPC0oFC/bdJPD2fSG6Pk2dsStm7WBtKpZklh2NKJI2f5LR6QSWHY0wWCC0/lwMK0+IfVQLR7bApxQp+OpiyaFwrsRlYG0q54fRrfQOwm7dgoEDQamEfv1g6a9apq67yKmIAtPVV9vT9hEWGxVBIpFga2uLra3tU9EvVBxPO/Oi4PLr3aFlCsCVYNAgCAsTLeSrwMud6mFlIicsMadoirOixKUpGbvqLG//c5m7mXl41DFj+Xh//prcoVTLgurE182abdM78dHAppjIpRwKTWTimvOVsoqoChJvb2wBW8SeyiImTRJH9QyEjZlRUfP74AJH9tMRKY9Fk6m5uw0Olibk5Gu4UExtWV8KXezPRqaSqay5v5dEIimScVlzOqpcF4TCUXupBPZcu8d/V8oOPqf3aMAIfw+0OoFLselF77/RowHv9Xt48u5aQiYvLD3Fwv039b8eVAO1wZCeDCsQCfzlWARDWrnh7WBBulLNH2eiebG1O/5edVCqtHyzp+zIeXyAF8PauKPVCcz4+1KRgaSxXMqLBZ8xtJUbZ/7Xm7Ht66IT4IOt15i+PuiJFWGLS1Py0uqzLNx/C6h6IHQ8LJlPd4gCh7P7NGJIq4oLNFaWs5GpLCvwk5s/rAVutvo94cfHw3PPiZ5W/v6w7m8tb24IKuE+/yivsf9vvN69Ae62ZiRk5LL8uJ5y+VIpyKsui2ZjZlRk4bL0aHiFy0rbLsczYMlJzkamYWok5Z2+jTj0Tnf6+7k8tsBULpMypVt91k3ugJWJnHNRaYxffY50RQ2qk3uXMtrer584QtlS/wnMiuBlb0FLDxt0Auy9XvPG11KphB6NxfaGyqhRN3C0pImLFWqtwM4rD7sZVCeDmrvS0MmSDKW6hH/mo2jqas30HmIp9IOt14hJfbTYZWEGuE9Tp6Lx+hdaujK3X2Pe7OnD2lfaYWpUMvTQ6ASWHb1N+68P8cHWq1yMTqvxkm9tMKQnnRs6ICtolg69m83M3mJ2aOWJSBQqDZ+/0AyJBHZeuVOm9UDhgeLrak2qQsX09ZeKeo1Gt/Pk0+d9+WF0KyxN5Xzzoh/v9G2EXCphz7V79P3hOFsvxT++voAHEASBfy/EFd0czI1lfP2iX5UCoVv3snlz/SW0OoFhrd15u3fD8hcyEIlZeczccBlBgFFtPRjUQj89odRUMRCKjRUni7ft1DJnexAnwpIxNxZ9e9p7Gy4QUqlUzJs3j3nz5j2xdhxlYWYs46NBYh/C8uO3K9YTp1LB2rWiZHQlebWLN2ZGMq4nZHEsTL/m18xcNTM3XGb2xivk5Gvw96rDwdndebu3T5GI4+Omvbcd/0wNwM7CmCvxmYxaEUhiOa7ghkJlb888qZR5MhmqgABx+m/fPujYsVo/tzA7tDP48ZbKKutCXziu/uBIeXUjl0n5YIBY0fj9dDTx6eWfg7P6+NCuXh1y8jW89c/lMkuDxnIpy8f783JHsYl655W7fLLjOhqtjh6Nnbj8yXP0avxwn2x2voZ/zscxYnkgvRYdZ+mR8IcazCtCTJr+CuW1o/XlUDhaP231CUwtLNkefIeuPg6sfaU9z/1wnNvJCt7p24i3e/vw4bZr/H0uliYuVux6q0uZWiqxqUoGLz1FZq6a8QF1+Wpo80f+7o07mczdfJUbBXXVHo0d+ebF5npnLaqDpOw8Ptx6jUMFzYNtveqwaFTLR6rkKhQKLC1FSYGcnBwsLB7+vaTsPF5cdoaEjFzae9uxbnL7hybzqos8tZbRKwK5Ep+Jj5Ml29/sjIUe02M5OaJI8rlz4O4OR45r+eZEEMduJWNmJOP3V9oRUIp6a1XQZ18+6QiCwEurzhEYmUr/Zi4sn+Cv34I//iiauvn5iXo2lQy6v94dwqqTUbSpa8uWNzqVGbyfj0pj9sZgEjJykUklzOztw/QeDZ5YcdSIpGzGrz7Pvaw8PO3MWD85oNqnMB/XMXkvM4+OCw4jCHD6f71wr+FrYlaemjZfHESjEzg6p0eFtY7SFCo6fHMItVZgz9td8XWzrrF9WfwcfLG1Oz+MblXuMncychn400kylGomd/EumhAt6zN+OxXF13tCEQTo2diRpS+1Kbq2XoxO4/V1QaQ8kMWUSijSC5JIoIO3HU1drXGzMcPN1gxXW1Pcbc1wtDRBKpWgVGmITlESk6ogKlVByJ0sLkSncTc5XW/RxSfzbH4C2R+SyLA2YrnmZHgKZ2+nMrOPWP9cdTKSlJx83nuuMTZmRty8l83f5fT51LU358cxrZBI4K+zsawrw024mZuocv1ev8YYy6Ucu5XMcz+c4K+zMY/F5HXvtbv0++EEh0KTMJZJ+d+AJmyc1rFMuwC5XM706dOZPn068lLKHbkqLVP+uEhCRi7eDhYFDsc1EwgJgsB7m69yJT6TOuZG/DaxnV6BUH4+DB8uBkJ2dvDfbi1fHrtYFAitmWT4QAjK35dPAxKJhHkvNEMmlbDvxj39HcAnTRL9Mq5fF91UK8mUrvUxlku5FJtRonevOGqtjkUHbjFmZSAJGbnUtTNn0+sdebu3zxMbCAE0dLJi0+sd8bI3Jy4tlxHLzxCWmF2tn/nIYzKvejNTLjamtC8oP+8qp5elOrA2NSoqf1emVGZnYUzfgt6hfy/GATV3fkskkqJJsW2XE7gWn1nuMm62ZiwcIZY9fzsVVe4knEQi4bWu9fl1XBtM5FKO3kpm5PLAot7atvXsuPBxH+YPa46p/P45Vfy2JghwNjKN309H8/WeUN78+xLDfjlDh28O0+jjvbT58iC+n+5n4E8neWP9Jb7bd4tdV++SmFWxtpLazFA5FBddnNzTl73X73IvKx9LExlH5vRg0poLhNzNYkgrN5aMac26wGg+2XEDa1M5R+f0wN6ybCXWnw6Hs7jAqFUfWfmIpBze33KVoBixMa2lhw3jA7wY1MIVc+PqO3HUWh0HQxL562wMZwpuHr6u1iwe3bLITqCy6HQC09dfYt+Ne9iaG7FteucaVZMt/BvIpRL+eq2DXgGMRgOjRonVAAsL2L1Pw4rQi5y5nYq5sYzfJrajYwPDB0LPGvN23mDtmWh8nCzZM7NrCWXoRzJnjji23aMHHD1a6c/+dMd1/gyMAUT5C6kEpBJJwUu8IOcWTGYNb+PB50OaVUhr6nGTlJXHhN/OcysxG1tzI9a92oHmHhUzGK40CgW88454goSFga1ttX3UX2dj+Hj7dfzcrdn1VtfyFzAwq09G8tXuUALq27FhasXLgkdvJfHK7xewNTfi3Ie9a+whsJBC+6iO9e35e4p+6v6f/3eD309HY2tuxN6ZXfWanrwcm85rf1wkVaHC1caUVS+3LWHNk5Ov4ceDYfx5Nqbc6TyZVIIgCCWCJksTOY5WJliZyMnKU5OQkUu+UlGbGaoO/joXU2RYl5Ov5aWVZ/nk+aZIJbAj+A5HbyXxUgcvfF2tycrT8P2BW+Wu861eDZnWXRSD+3JXCD8fLrups6GTJf9O68hng30xM5JxJT6T9zZfpf3Xh/lg6zWC4zIM2lMUl6Zk4f6bdJx/hOnrL3HmdipSiSikuP3NzgYJhOb9d4N9N+5hLJOyckLbGg2Edl+9WxSMfjXUT69ASKuFiRPF67yJCfzzr5ZlN4rrCLWvDYT0ZHafRthZGBOelMO6gsCkXGbNAiMjOHYMzp+v9Ge/3r0BdcxFbRqtTkCtFcjX6MhVa1GotOSqtVibyvl5bGsWjWr5VAVCAE7WpmycFkArT1sylGpeWXuBO1Xov6gQZmZw+rRo0bF8ebV+1MDmrsikEq4nZFVMzNNAFIoYnotKq1R/SzcfR1ysTclQqjlUg072hcwpqDgERqaWEA8ui/8NaIKfuzUZSjUz/wkuoRX0KFrXrcO26Z1p4GjB3cw8hiw7zef/3SiaZrM0kfPx877c/KI/C0c0R15GdKLVlQyEQAymolIUXE3IJDpVWa4J8oPUZobKoTAz1Obj7aSq5fi5W3M94b4mQvt6dWjqZs0fZ2JwtzXjwOxuhNzNYuTyQCQS2PFm+UZ8giDw85GIopvy690b8H7/8puQk7Ly2BQUz78X44gpplTd2NmK0e08GdravcS4vr6otTqO3kzi7/OxHA9LpvAIcbA0YXQ7D8a0q1th7SNBEEhJEUshDg6iEF2uSsusjZfZf0NMtf44uhVDW9fc5Ni1+ExGrjhDnlrHq529+XRw+b5XgiAKKq5eLQ43rd+oYWPieYJi0rEqUJb+/yioWBX+OR/LB1uvYVWQTXUoJ5sKiCP2a9eKVh1btlT6s/M1WrJyNegEoeAlBuiF37tYm2Jm/GQ0SFeWnHwNI349w8172fi6WrP5jY7VmkUu4s8/xacGFxeIigLTygvilcfENec5HpbM7D6NmNnHp9o+51GMXhHIuag03uvXmDd7VnzoY+H+myw7epvujRxZ+0q7h66V1c38PaGsOBGJj5Mle2d21asMHJ2i4PmfT5GTr6mQx1qmUs3/tl4t0hmztzBmbv/GjPT3LKEvFJWiYPSKMyRlV25IxEgqwd1S4PhHz9d6kxmCwmBo7t+BbLxSem9BzyaOhN3LISEjt+imWph6bOJixbbpnfW6oBamWwEmdvTis8HN9BKf0ukEzkWl8e9F0ak3v1iK0cHShLp2ZtS1M6eunTmeBV/dbM3IzFUTl6YkJk1JbJpS/D5VSUJGbgm7gi4NHRjXoS59fJ31K2OUwoNNgUqdnNf+vMiVuAyMZVIWjmxRoyP0SVl5vLD0NPey8ujeyJHfJrYt9wIgCGJS4qefxEnvNX9q2JZxjuACTaJ1k2vGdFWhUGBbUHbIyMh4Khuoi6PVCQxddpprCZmMbuvJtyNalL9QSAg0ayZ2V4aGVkmM8f8DonfUaVJyVPRr5syv4/wNKmxX6jGpUkGDBqLuxMqVMGWKwT7vQQq9vho4WnDone41LnPw74U45m65WunPj05R0OP7Y0gkcHBGB3w8xEmrmmpGz8xV033hUTKUauYPa87Y9nX1Wm5HcAIzNwQjkcD6yR3o1NCh/IUKOBmezOf/hRCRJGbzWnjYMO+FZiUeJqNSFIxZGVii/+e95xrTyMWSm3ezUao15Kp0KAqsWBq7WOHnbkMTFytszY2L7t+1wZABKNyZR69GMWn9jUf+XteGDpyMSEEqgW3TO+Nqa8rAJSdJyVEx0t+DhXq6nf99LpaPtl9DEGCEvwffVlB5OTNXzc7gBDZejCuRwaoo9hbGjPD3YGz7utQzQNmqeDAUfPsu0/8NISEjF1tzI1ZOaGvQ0fPyKD451tDJkq3TO5XrGyUI8OGHsGCB+PMvKzTsyT/LtYRMbM2N+GtyhxL17+rkWZgme5CgmDSG/ypmU7dP76xfUPnCC2KD7qJF0PzR05i1iATFpDF25TlUWh0zejZkTj/DBZCPPCZ/+EHsHfLxEYNWWfVk2bLz1Ph/dQiVRlc0lVWTZOepafvVIfI1Ona8qefx+wCjVgRyPiqNt7p6MOf5VkDNnt+F7gGOViYcm9NDryESgPc3X2XjxTgcLE3Y9HrHCrU5qLU6/jgTzZJD4WQXBDTD23jw/oDGRea3kck5jF11lsSsfHycLNk3q5ve98TaYMiAFO7MyIQkev5Udn9CMzdrbtzJoomLFf+91YULUWmM/+0cOgG+G9GiSFOiPLZdjufdf6+gE0R58x9Ht6pURiZTqSYuXcz6xBbL/sSlidkfGzMjPO3M8Xoga+Rlb4GTlYnBnxwLL5a+H2xHoZNTz96cNZPaUd/R0mCfUx46ncDbG0QneltzI3a82bnMKTh4OBBa+IOGI5JAQu5mYWdhzF+TO9ToxVen03H3rigy5+rqalBX68fJOxuD2Xo5AX+vOmx+vWP5T9d5eRAZKTZx1QZDerH1Ujzv/CsqQhuyLP3IYzInB+rWhfR0sZw5bJhBPq80Xl8XxL4b93ijRwPeL3AFqEne/ucyO6/cYWJHLz4f4lfh5TcHxTNn0xXcLSWc+WQQULPBkEqjo+8Px4lJVTKztw+z+z6sFl0auSotw349Q+jdLFxtTPl3WscKt1EkZ+fz3b6bbAoS9ZZM5FK6N3JkYHNXejd1Ijk7nzErz/LFED/6+7novd7aYMiAFO7MjIwMOiw8Q94jutzn9mvMMH93Bvx4knSlmrn9GzO9R0N+PhzOooNhmMilbH+zM01d9btp7r12l7c3XEatFejq48D3I1viXAUTusdN8WDIc/Zm2vu4svLltpXqaaosOp3Ah9uuseFCHHKphHWTO5Tb6CwIotnqt9+KP3/5rYqjsjPcTlbgYGnC31Nq3oLhWSUxK48eC4+Rq9by67g2DGiuh+jlvXvQpg2cOQP16lX7Nj4LLNh7k+XHb2Msl7JxagCtq7vH7eOP4euvoVs3UZG6mth99S5v/n0JjzpmnJzbs8ZLZcfDkpm45jx1zI0492EfjMvqAC4FpUpD+68Pk5WdQ9wPI4Caz/wW7kMzIxnH3+uht/FpSo4YrEQk5eBua8bGaQF41Km4ttXl2HTm/RfClbiMoveMZVK6NXIgoL49I/09sDHX/55RGwwZkOI7c/jqy4QnlZxWMJFLydfo6NLQgXWT27P1UgLvbrqCiVzK/lndqGtnzitrL3A8LBlvBwt2zuiMVTklmUKO3kri9XVB5Gt0WJvK+WxwM4a1cX/q/Ki0OoFv/wvmo6FtAJi25jQ/ju9Qo8q9giDw8fbrrD8Xi1QCP4xuVW6P0oOB0Kfz8zkonOJOZh5uNqase60DDWowqwXivoxPV5KSoyI1J59Uhfg1JUdV9L2JXIqPsxUNnSxp5GyFj5Ol3invx83iA7f46UgE9ezNOTC7e/k3FEEAc3PxdfFi6bYQtZRApxOY9lcQB0MScbA0YeeMztUr4JqUBEuXwowZ4ORUbR+Tq9LS9quDKFRatk7vVOODDBqtjk4LjpCUnc+KCf5FU2YV4YOtV1l/KvyxBUOCIDDs1zNcjs1gbHtP5g/To3+vgKSsPMasPEtkioK6duZsnBZQKcNiQRAIvZvN3ut32X3tLpHJ91WkjWQSOjd0oLVnHepYGGFrboytmRG25kbUMTfGxtwIS2M58em5hNzN5FL4HT4a1rY2GDIExYOhWVtvlSqsVahJ8su4Ngzwc+HlNec5GZ5Cpwb2rH+tA+lKNYN+OsndzDwGNXdl6Uut9Q5owhKzmbPpClcLBLF6N3Him2HNn5osUVBMGp/uuMG16KSiEzwrKxsrq5oLIgRBYN7OG/wRGINEAotHteTF1h7lLAP/+x98953484df5bJPd4pUhYr6jhasm9yhxtRus/PUnAxP4VBIIkdvJZGWrSTr4k4ArNu+gERWfnDtbmuGj7MYHPVo7EjH+vZPZFCdk6+hx8KjpOSomDfYl0md9QhuzMzEkpmHh9iXYlmzAerTiCJfw3ADTpipVCqWLFkCwMyZMzE2rrmMb3EKB1fKU/WvLr7ZE8rKE5H0a+bMigltK7z8pdh0hv545LEFQyCqQo8omIb+Z0pAhYRj72XmMXplIDGpSrwdLNgwNaBK9ypBEAhPymHPtbvsvXaPWxUUD9XlK/XWGaoNhsqheDD0/dHYIpG2Qoa1dsfJ2oTlxyNxtTHl0DvdSc1R8dyPx8lT64p6hYJi0hm9IhCNTtD/Il+ARqtjxYlIfjwUhlorYG0qZ94LzXix9ZObJUrKzmPB3ptsvSQaEFpKNdyYPxSo2RNcEAS+2BXC76ejkUjgu+EtGFlO75YgiLp+ixeLP8/5PIe92tPk5Gvwc7fmj1falyumWVXi05UcDk3iUGgiZyNTS2hmGOlURCwUey9eXnEcFztb7C2Nsbc0wd7CGIVKQ3hiDmGJ2YQn5ZRq8Ovnbs3Ubg0Y6OfyxKkpF4ro1TE34vjcnuU2t9Oq1X1n9D59YPdueEw346cJQ06YVaipPz9fFOiqBk5HpDBu9TnRsPaj3jUjIVCMm/ey6P/jSYxkEs5/2Ic6FWwDEASBXgv2c+zDAcDjG5AobIp2tzVj76yu5Z+DxUjIyGX0ikDi03Np4GjBhqkdcbQyzN87IimHAyH3iEvLJUOpIkOpJl2pIjNXTYZSXSSSaiyX0tjZivo2En6a2KU2GDIExYOhDcHJfLPnJk1crKhrZ86BkETcbEzZ/XZXBi89RXx6blHz3orjt5m/9yY2ZkYceqc7jlYm/HYqii93hWAkk/DvtI4VrtXfuidmia4liFmiPk2d+ObF5nrXdWuCwumAHw+Fk5OvQSKB0W09ebtHPT58920AVqxYgUk1XQyLIwgC3+wJZdXJKAAWDGvOmHJGRrVaeOMNWLVK/Pmtj7PYL5wmX6Ojg7cdqye21bvMWVEU+Rr+OR/L5qB4bt4r+QRU38GC3k2d6NPUGT8Xc96c/gag375MV6gITxKDo6vxGey8coc8tdj75lHHjNe6eDOqnWeN3zgehUaro9+PJ7idrNCvGXbGDFi27P7P48aJGjfPSGN5dVJ8wuyzwb68UoGHtOLk5+czbdo0oIxj8vJlePddcHWF9eurstmPRKcT6PH9MWLTlCwcUf6DT3UwcMlJQu5m8eWQZkzoWK/Cyy87FML7s98WxUiPb6uRa+WD5ORrGLjkJLFpSr19y4oTl6Zk9IpA7mTm0cjZkn+mBFT7AySIk8JZuWrqWBhjJJPW9gwZkuI7MzpLR7pSTTcfB/LUOvosPk5CRi5v92qIn7sNU9cFYSSTsG9WN7zszBmy7DQ37mTRs7Ejqye2QyqB6esvsff6PZysTNg/q1uFnxzUWh0rjt9myeFw1FoBGzMj3n2uEcPaeDx2hdzTESl8tvNGkW5ESw8bPh/iR6sa0N55EEEQ+HbfLZYfvw3A1y/6Ma6DV5nLqNUwYQJs3CjeR6d/msae/LNodQJ9mjqx9KU21dLnlKZQsfZMNH+ciS5SY5VKRN+ePk2d6N3U2aC9SWkKFesCY/gjMJq0AoNEW3MjJgR4MbFTPf1ED6uZgyGJTPnzouhnNKdH2T0tS5aIAlDFmT1bHLl/QjOnTxKFFkImcin/vdWl+gYCLl8Wm92lUggPh/r1q+Vjlh2NYOH+W/h71WHLG52q5TPKolAvrpWnLdvf7Fzh5ZOz8wmYfxitTuDg7G74PKYBjaCYdEYuP4NOgKUvteb5Fm4VWj46RcHoAo2gJi5W/DMloML3u6pSkWCo9tGpArTwsKV7I0ckEglmxjI+HiSa3C0/EUkTF7EXQ60V+1NkUgkLR7QsMqdbfPAWEomEb0e0wNXGlKTsfEavDESrh4x5cYxkUmb08uG/t7rg525NZq6aT3fcoMPXh/ho2zVu3CnfbM+QaHUCZyJSeOOvIMatPkdEUg52FsZ8O7w526Z3fmyB0KIDYUWB0BdDmpUbCOXmwosvioGQkRG8/nki/+UGotUJDGvtzq/j/Q0eCMWnK5m38wadFhzmp8PhZOaq8Xaw4OsX/Qj6uC//TuvI1G4NDN6kbWdhzMw+Ppx+vxdfDvXDy96cDKWan49E0GnBEebvDS3XG6i66dPUifbeduRrdOXb2pTWNP3DD/D999Wzcc8Y4wO86NHYkXyNjlkbgsnXaKvng1q3hn79QKer1r/NyLYeyKUSgmLSq92gtjSGtHJHJpUQHJfB7UrYgzhamdCridhoXjhq/jjw96pTpKb90bbrReaq+lLPwYK/pwTgaGXCzXvZjF4ZSERSzf899OWpCYa+/vprOnXqhLm5eZHSaXkIgsC8efNwc3PDzMyMHj16cOPGo4UTK0p/Pxc6NbBHpdHx9Z5Q5g1uhrFMysnwFPZev4evmzXfDhe78Zcdvc3uq3exNjVi9cttkQBhiTn0WHSM5OyKOzs3cbFm2/TOzBvsS30HCxQqLevPxTLop1MMXXaaTRfjyFVVz0VNpxMIiklj3s4bdPjmMC+tPsfe6/eQSkTl7KPv9mB0u7ol+g8EQUChUKBQKAzqnfYggiDww6Fwlh6NAODT5315uZxUdXY2DBwotpqYmQmM+ziW3TkXAZjUqR7fj2xZaeXt0rh1L5t3NgbTY+Ex1p6JJk+to7m7Db+Oa8Ohd7ozroNXjTxBmRnLmBDgxZF3e/DruDa09LRFpdGx4ngkY1YG1pyPVSlIJBI+KuaoXWaQ/6gMw/vviyP3tZSJRCLhuxEtsLMwJuRuVpEtULXwwQfi1zVrILFsx/PK4mRlSu+mYjDxz/nYavmMsnC0MqF7I1FBeltBz2RFEASBwb526FR5bAmKQ13BB2ZD8nZvH1p42JCZq2bOpivoHjQEK4cGjpb8/VoHHCxNCEvMYfDPp/n3Yly13gMqy1MTDKlUKkaOHMkbb7yh9zLfffcdixcvZunSpVy4cAEXFxf69u1LdrZholOJRMJng5shk0rYfyORuHRlkenqx9uvczczl6Gt3ZnSVXxynbPpCiF3smjmblMkHBWXlkvX745yJLTiFwYjmZRJnb05/G53/pkSwPMtXDGSiU8k722+SodvDvH5fze4npBZ5ac9QRC4npDJ/D2hdP3uKMN/DWTtmWhScvKxMTNibHtPdr/dlc+H+GFj/nBPjVKpxNLSEktLS5RKZSmfUHXyNVre23yVnw6HA/DxoKa82qXsHojEROjZU/T8tLIS6PPOLY4qrwHwTt9GfDbY12DikzGpCl5fF0S/H0+w9XICGp1Al4YOrH+tAztndGZAgeFkeRRaH9ja2qJQKMr9/fKQSSUMaO7K9umdWD6+DVamci7FZjDop5N6GzdWBy09bRnc0g1BgPl7bj76AvqgvpBEAi+9JDZVd6r5MsnTiJOVKfOHidNXK09EcjaydOuhR6H3MdmtGwQEiE3UP/5YhS0um8LewG2XE8hTV1OmqwyGtRFlO7Zeiq9wAKFUKhnSrgFxP4wgOT271AnmmsJIJuWH0a0wNZJyKiKFPwKjK7wOH2cr9szsQpeGDuSqtczdfJWZG4LJzlMbfoOrwFPXM7R27VpmzZpFRkZGmb8nCAJubm7MmjWL999/HxCb/Jydnfn222+Lmv3KQ5+a47ydN1h7JpqGTpZsn96J0SvPcuNOFm3q2rJhakekEnhl7QVOhqfgUceMnTO6kKvW0nnBkRLrmRBQl48G+VapHJOcnc+moDj+PhdLfPr9J3upBDztzKnvYEF9R0saOFpS39GC+o4WOBb0iGTlakjKziMpO1/8mpVf8H0+1xMyiUq5f5GzNJHznK8zg1u60bmhQ7l6MNVtIZGSk88bfwVxITodqQQ+G9yMiZ3qlbnMrVswYIDoIWlvL+D76hVipQkYy6R8N6KFwdR5c/I1LDsawW8no1BpdUgkMMDPhde7NyjXxLc0qntfxqYqmf53UJGdy4yeDZndt1GFbGEMRVyakt6LjqPS6lj7Sjt6NH6ETo2zMygUMGkSzJ0rqh7XUmEqO0VUoWNy504YMgSsrSE2FmwMb2Oj1Ql0++4oCRm5LBlTvqaYoclTa2nz5UGUKi1/T+lApwb6e3Y9KFDbpak7f08JqK5N1YvifWW73upSqT4mnU5g+YnbLDoQhlYn4GVvzs9jW1fqGqgvz3QDtb7BUGRkJA0aNODSpUu0bt266P0hQ4Zga2vLH3/8Uepy+fn55OffH0XOysrC09OzzJ2Zmaum5/fHSFOo+HhQU57zdeH5n0+Slafhlc71+GxwMzKUKl5YeprYNCWdGtjz56vtGf/bOc5GppVYV0NHC5aMbU0zt6pdIHQ6gZMRKaw/G8OZ26nkFPi+lIaliRyVVldun4ipkZTeTZwZ3NKVHo2dKhS0VecN/Oa9LCavvUhCRi5WpnKWvdSGbgVp6kdx+rRobZWWBp71dNgPP0u6PJ065kasfLkt7epV3StNpxPYejmBb/fdLBpv7+rjwCfP+1apSVWn03H7ttgP1aBBg2qx48hTa/lqdwh/nRXLDB3r27NkbKsiv6Ca5KtdIaw+FUVjZyv2zOxaelC2fr0Y2drVnMfds0hlp4gqdEzqdKJ9SkiI2Nv1YPO7gfjxUBg/HgonoL4dG6Z2rJbPKItCe5C2XnXYXIFG7uLXSu93t6CTm1Ta78xQCILAK2svcOxWMr6u1mx/s3OFFbYLCYpJ5+1/LpOQkYuRTML7/Zvwamdvg9o/FVIbDAFnzpyhc+fOJCQk4OZ2vwt+6tSpxMTEsH///lKXmzdvHp9//vlD75e3Mzecj+V/W69hZSLnyJweXInL4LU/xb6Twk78W/eyefGX0yhVWl7pXI+mLtbM3XL1oXUZSSUsHNnSYJkJQRBIzs7ndrKC28k5RCYriEwRv8anKymexbUxM8LJygQnaxOcrExxsjLB0coEjzrmdPFxqPTEWnUFQwdDEpm14TIKlZZ69uasntiOhk5lNxxv2SJOX+fnQ9MWarR9TpBvlEd9Rwt+n9SuXK8yfbgUm87nO29wpUAs08venE8G+dK7qdMTqw1VGjuCE/hg6zWUKi2OVib8NKZ1uRYmhiZDqaLbd0fJytPw7fDmjG6nR9bnwgU4fx7efLP6N/AZo/gU0c9jWzO4ZcWmiPRi1y7Rr2zMGHFioRq4k5FLl2+PoBPgyLvda9QDEWDXlTvM+OcyAFve6Ii/l36BevFr5Yw/zvBfSBoD/Fz4dbx/tW2rPiRl5fHcDyfIyFUzuYs3nzzvW+l1ZSrV/G/rVfZevwdAj8aOLBrZ0uDj909NMPSowKM4Fy5coG3b+0qeFQ2G7ty5g6vrfY+jKVOmEBcXx759+0pdrjKZIRDTskOXneZaQibP+TqzYoI/3+2/xa/HbmNhLGPHjC40dLJk3/V7vP5XEABfDm3GV7tCyX8gI+Nua8aut7tQpwIeLJUlT60lPl2JiVyGo5VJtVlkGDoYEgSBFSci+XbfTQQBOjWw55dxbbAtY58JgjiF/c474vetuyhJ63Ac5Do6NbDn13H+pfY7VYR7mXl8u+8m2y4XiE2ayHmrV0Mmda6Hibzm7EcMSURSDtPXBxGWmINUAu8+15g3ujeolie5R7HqRCRf7wnFycqEY+/1KFsTKTQUfH1BLheNXD1rXmvmaafQFsXaVM7+2d0qZavwJPDq2gscuZnEtG71+aCgIb+mSMnOo+3XhwGwtzDmyJwe2JiVf30pfq28fPsuQ1cGIZHA4XdqPqB7kOL3r+9HtmCEf+XPLUEQWH8uli92haDS6HCyMmFOv8YMbeVe6azTgzw1o/UzZswgNDS0zJefX8XdfwFcXMQG5Xv37pV4PykpCWdn50cuZ2JigrW1dYmXPsikEuYPa46xTMqBkER+OxXFu30bEVDfDoVKy/T1QShVGvr7ufB2bx8AvtwVStt694UXJRKQICp4frM7FG0FG+8qg6mRjIZOVnjamdeoV1hVyNdoeXfTFRbsFQOhcR3q8ser7csMhPLzYepUUX5GEKDtgDRSOx4FuY7RbT3549X2VQqECvWfen5/jG2XE5BIYFRbD47M6c607g0MGgip1WqWLVvGsmXLUKurvwmxoZMl29/szLA27ugEWLj/Fp//d6NGJ0Je7uSFRx0zkrLzWV0govlImjYVu+I1GrEMU0uFeau3Dy09bMjK0zDj78vlNgFX6ZhUq0W102pgTDvxZr05KL7G5SIsi/VbpSpUvLfpSoXPGR9nK/o0dUIQxMb2x01/Pxfa1LUFYM6mq/x9LqbsBcpAIpEwPsCLnTM609DJkqTsfOZuvkr3hUf57VQUStWjWzuqg8caDDk4ONCkSZMyX6amletR8Pb2xsXFhYMHDxa9p1KpOH78OJ2qacLEz92GT54Xnz7m771JcFwGP41tjZOVOFb44dZrCILArN4+9PV1RqXRcaOgSdXF2pRN0zqyZGxrZFIJm4LieW/zlRoJiJ4mkrPzeWnVObZeSkAmlfDFkGZ8/WLzMkff792DXr1g9WqQSAT8R8aS1DwQiRT+N6AJC4aXvXx5XInL4IWlp5m/9ya5ai3+XnXY8WZnvhvRslp6bFQqFTNmzGDGjBmoVCqDr780zI3lLBrZkq+G+iGRwB+BMSzYV8aEl4Exkct4r19jAFYcv01qzsMWIyWYO1f8unKlWI6ppUIUThEV6vV8tP16mb9f6WPyjz/Ax0cU+KoGejVxwsnKhFSFikOVmNitCiZyKcWTpwdCEisV0LzevQEAWy8lkJRVcRkWQ7NoZMui7z/cdp3/bb1SpWnlJi7W/DejCx8MaIKjlQl3M/P4clcInRccYcmhcDKUNXONe2pG62NjYwkODiY2NhatVktwcDDBwcHk5NwXtWrSpAnbtm0DxKhz1qxZfPPNN2zbto3r168zadIkzM3Neemll6ptO8cHePFCSze0OoEZf19GJpGw9KU2yKQStgff4a9zsUilEhaPaklDJ0syctXUMTdi8xsdaVvPjhdauvHTGDEg2nopgXf/DX4so6GGRiaTMWLECEaMGIFMVvEsiSAI7AhOoN+PJwiKScfaVM7aV9qVqyF08SK0bSvKzVha6Wg8MZiU+tcwM5ayfHwbXu/eoNI9PDn5GubtvMHQX04TejcLW3MjvhvRgs2vd6zWCYmq7svKUvgk99VQMVu74ngkPx2OqLHPH9zCDT93axQqLb8cu132L/frBy1bihNmixbVzAY+Y9R3tGR6D/FG/M/5WD7efu2RGaJKH5Px8RATA/Pni43VBkYukzKqwJKjpjWHJBIJFg/0WH63/xbnypEteHBftq1nR1uvOqi0On47XU5WtAbwdrSkicv9AZAN5+MZ+esZ4tMrL5liZixjWvcGnJzbk29ebI6XvTnpSjU/HAqj04IjfLUrpMKijxXlqWmgnjRpUqkTYEePHqVHjx6AePD9/vvvTJo0CRBvoJ9//jkrVqwgPT2dDh06sGzZsgqV3ipScyxEka/hhaWnuJ2soKuPA2tfac9vpyL5Zs9NjGVSNr3ekZaetkSlKBiy9BRZeRra17Nj9aS2RaOse6/d5a1/LqPRCTRxseKH0a1o6qrf5z9r3M3M5eNt1zlcoLfR2NmKX8a3KVeZed06mDJFLJG51FUh7x+IrE4O9R0sWDauTZX258GQRD7dcZ27BSfoi63d+XhQ0xrx33kSKLQcAPhoYFOmdKsea4UHOR6WzMQ15zGWSTn6Xg/cy7Lp2L5dlBU3N4eICNETq5YKodPpaPbZgSIDzK4+DiwZ0xo7Q4mCZmSAlxdkZcG2bTB0qGHWW4y4NCVdvzsKwMm5PfG0Mzf4ZzyKjvMPF10jCnG0MmH3W10q5Cl5KCSR1/68iKWJnNP/66VX71F1Uui9WRwbMzlLxrR+tPxFBdBodey5fo9fj90m9K5YPTGSSRjW2oNeTZ1o7Wmr1/57ahqonwYqEwwBhCVmM2TpaXLVWmb29mFWHx9e/yuI/TcSxQbpt7pQx8KYC9FpvPr7BbLzNTRzs+aPV9sXeUMdD0vmnY3BpCpUGMukzOnXiNe61K/RxtXHiU4n8Pf5WBbsvUlOvgYjmYS3evnwevcGZTbY5efD//53X9PNs1U69DiP1ETDCy3d+GZY80pPxSVm5TFv542iKQhPOzO+Htq83FH+Z5GfD4ezqECt+MuhfkwIKNvyxBAIgsCYlWc5F5XGqLYefDeiZVm/DJ07Q2AgvP46/PprtW/fs8gnO66xLvB+VsXd1oxl49oYzmrn44/h66/B31+cAqyGacsJv53jZHgKM3o2ZE5BubUm6LP4eJFXYyGF1/Kp3RrovR6dTqD/khOEJeYwt39jpvdoaOhNrRDRKQp6fH/sofclEnivn+G2TxAEjoUl8+vR25yPLilD425rRitPW/FV1xY/NxvMjEtmJWuDIQNSuDMvRSTQukHFRky3XornnX+viD0Wr7SnVV1bXvj5FNGpSno0dmTNxHZIpRKuJ2Qycc15UhUq6jtYsO61DkVPvCk5+fxvy1UOhYpZkYD6diwa1arsJ+JngKgUBe9vucr5KPEEaF3Xlu+GtyhX7Cs8XJzWvXRJ/Nm9ZxSydiGYGEmZN7gZY9t7VqosptMJrD8fy3d7b5Kdr0EmlTCla31m9vZ56AT8/4IgCEUTkwDfj2zJCH+Pav/coJh0hv96BqkEDszuXraUwsmT4gHx5Zfw6qvVvm3PIpdj03nxl5K2JkYyCZ8+78v4AK+qS0WkpIjZIaUS9u6F/v2rtr5S2H31Lm/+fQlnaxNOv98LuQHtdcpiyLLTXInLKPq5voMFW6d3KnPY41FsCYrn3U1XcLA04dT7PR/7wEv/H09w815JNwdnaxP+mtyhWsxlL0ansTkonsuxGYQlZfNg5CKTSmjiYkUrT1uszYzIV+vIzs7k+3GdnvxpsqeJBWXZATyCYW08GNveE0GAWRuDUeRr+GWcPyZyKcduJRc1oPq527Dp9Y6425oRmaJg5K9nigz+HCxNWPVyW+YPa46ZkYyzkWn0//EEO4Ir7nnzOFEoFEgkEiQSSZly/RqtjuXHb9P/xxOcj0rDzEjGZ4N92fx6p4dOMEEoOYTy11+iKfalS2Bho8VlxEXk7UOo72jB9umdealD3UpduMMSsxm5IpBPtl8nO19DS09b/pvRhf8NaFLjgVCeWsvNuGRc3Nxwd3evkLVJvkbLzXtZ7AhOMEhTokQiYW6/xkwqUPqeu/kKu67eqfJ6y8Pfqw59mjqhE2DxwXJMXLt2FcfrawOhStPSwxZnq5LlX7VW4JMdN5i1UTR2VSqVuLu7V/iYBMDBAQptlr78kofucgagr68z9hbGJGblc/RWssHX/ygaO1vydq+GbJgagEwqITJFQUI5nn+Pula+0MoNNxtTUnLy2XLp8Rm4FvJcM5eH3kvMyiekoKxlaNrWs2PB8Bbsn92Na/P68feUDrzXrzF9fZ1xtDJBqxO4cSeL9edi+fXYbdacjmLjBf33U21mqBwKM0Oes/5lxatdGNC8Yn0HeWotw389w407Wfh71WHD1AB2Bt/h3U1XAJjS1ZsPBzZFIpFwJyOXCb+d43ayAjsLY/58tT1+7veVqKNSFMzeGExwwZPG4JZufPUIL7AnDX10hq4nZPK/rVeLbCC6+jjwzYvNS63xC4KYXXdxgVdeEbX1/vxT/DeXxlnIep9HbpXP4JZuzK9kWSxPreWXoxH8evw2aq2AhbGMuf2bMD7Aq1qsKXQ6gcgUBXczc7mbmUdiZh53s/K4l5nH3cw87mXmkq5Uo1PlEffDCAC6fb2Hei721LUzx8veHE87czzrmCEIEJeu5Na9HMISs7mVmE1UiqJoOvHqvOf0tlrQZ7s/2HqNjRfjkEklrBjvTx/fR8tXGIKb97IYsOQkggD/zehCcw/DWzrUcp/Pdlznj8CSY9SWJnI+G+zLCH+PIu9BqKSO2N274O0t1riDgsSnGgMzf08oK05E0ruJE79Namfw9ZfHW/9c5r8rdxjW2p3FZSh7l3WtXHMqii92hVDP3pzD7/Z4LBY5hdy4k8mgn07hbmvG4lEt2Xv9HmvPRCOXSvhtUrsis9qaQBAE7mTmERybwbWETFQaHcZyKbp8JR+96F9bJjMExYMhDyc7Dr/bo8LZgJhUBc//fIrsPA2vdfHm4+d9+TMwmk933ADglc71+PR5XyQSCak5+Uz6/QLXEjKxNJGzemJbAurfV/zVaHUsPRrBz0ci0OoEXG1M+X5kSzo31N/75nHwqBNcEATORaWx8kRkkSGhjZkRnzzvy/A27o/M5HzxBXz2GdjYCDg4SLh9G6RSAbeeUUjbhGJiLOWzwb681L5y2aCzkal8uO0akcnik1mfps58MaQZbgYuT2bnqTkVnsLhm0kcvZlEqqL8jI2JTCA3MQqNFowcvZBIK3Y81jE34vKnz1V2k0tFqxN4599gdgTfQSqBZS+1qfCDQ0WZvTGYbZcT6OrjwLrJHcr+ZZ0O/v4bDh6EtWurpS/lWeZMRAovrT5X9LOxTMp/b3WmsYt4g9FqtVy7JhocN2/evHJTjqtWiTYdAdXjwxWZnEOvRceRSuD0/3rVuJDk1XhRgkMulXDq/V642JTeAFxWMKRUaei04AgZSjXLXmrDoBaPbyhAEAQW7r/FGz0aYGVqhE4nMGtjMDuv3MHcWMbfUwIM11dWSWp7hgxI4c5s/9lOEvOkvNWrIe8+V/EGvOLKncvHt6G/nyvrz8Xw0TZRv2NCgBefv9AMqVRCdp6a1/64yLmoNEzkUn4Z14beTUs+aV+OTWf2xmCiU8WU9PMtXJncxZvWdevwJPLgCW5qZs6+6/dYeeJ2kWWFRCKOT3/8fNMy9Xnmz4cPPyz5noWdCsv+FzH1TKeevTnLxrWplL9bplLN/L2hbLgQB4iTH1+80Iz+fi4Gs9GISVVwODSJIzeTOBeVilp7/xQ0N5bhWcccFxtTXKxNcbExxdWm8KsZLjamWJvK0QnilF1smpK4NCUxqeLrWkImCem5aMs4rVt62LBjRheD/F+Ko9bqmLTmPKdvi6PDL3esy4cDq2Y8XBaxqUp6LTqGRieUb4YZHw8NG4qZhz17RB+zWvRGo9XR9utDZOeqsTQ1IjNXzZSu3nw0qPKWDI+D0SsCOReVxuw+jZjZx6fGP3/U8kDOR6fxRo8GvN+/Sam/U14WffHBMH46HI6fu6jP8yTZ+6g0Ol778yInwpKpY27Eptc7lWuPVJ3UBkMGpHBnbg4M493tYaLC9Oxu1HOouJ1EoeGklYmc/97qQj0HCzZeED3NBAHGtq/L10P9kEol5Km1zPj7EodCk5BJJSwqxatMqdLw1e5Q/j53f9KjTV1bXu3iTf9mLjXWJKgPxU/wVYdvsC4okZiCQM5ELmWEvwevda2Pdzn79fvv4b33Sr5n3ugudv2vYWSu5tXO3szu2+ghfY/yEASB3dfuMm9nCCkFgn4vdajL+/2bVHmMVRAELkSncyg0kcOhidxOLtkzVd/Bgl5NnOjV1Il29eyqJABZ+HkHbiSy5HAYIXezH/r3hk6W/D6pXbWMGOdrtHT59miRMa2LtSkfDGzC4BZu1TIF+cn266w7G0MrT1u2Te9U9o1hzhxRc6hFC7h8GarB4PZZZtnRCLr5OJKiyOeV3y8gk0rY8WbnEqV8g5GRAba2Bl/t9ssJzNoYjLutGSfm9qzxMtOBG/eYui4Ia1M5gR/0LvU6VV4wlKZQ0WnBYfLUOv6a3IEuPk9WVUCRr+Gl1ee4EpeBm40pW6Z3emx2LrXBkAEp3JkZGRnM2HyTk+Ep9GrixJpK1JzVWh1jVp4lKCadhk6W/DMlAEcrEzYXqE0LgmjhMH9YC2RSCWqtjrmbrxb5XM15rhGvd2/wUJBz404ma05F89+VO6i0onCZm40pL3eqx9h2dZ+InqLYxDS8XMRyn+fszUiNTbE1N+LljvV4uaNXkZxAWTyYEZKa52M/8CrmDZKw1tjw9+zmlbowJ2Tk8sn260VlugaOFswf1oL23lVzQM/OU7P1UgJ/BkaXCIDkUgnt6tnRu6kTvZo4VdhvSK1Ws379egDGjRuHURlGl1fjM/jxYDhHbiWVeF8igZ6NnRgfUJfujZwMelMoLAcUp4WHDR8ObFqi5GsIkrLy6LbwKHlqHSsn+Jfa1FlEaio0aACZmaII1fjxBt2W/0+8+fcldl+9S0sPG7ZO74xOq9H7mCwTQYB334Xly+H0aWjd2oBbLfYBdvjmMJm5atZMakuvJtXb2/YgOp1Ar0XHiE5VMm+wL5M6ez/0O/r0V87beYO1Z6Lp0tCBv14rp0T8GEhTqBix/AyRyQpcbUxZPt6flo+hZFYbDBmQ4jszOV9K/x9PoNYK/Dax7UOlK324m5nL0GWnSczKp4GjBf9MCcDJ2pQdwQnM3hiMToBhrd1ZOLIlMqkEnU7gi10hrD0TDYCfuzXfDm9RagkoKTuP9Wdj+etsTFHviZmRjBH+HkzqXK9ckUJDE5em5MztFE5HpLIvOJrw74YB0PHLXUzr1YyRbT3KNtwsQKcTh4Hua24KWLaJoU63m4CEjBONUVyty80QKT4VyHyrNDp+Px3FksPhKFVajGQS3uzZkDd6VM1LLDwxmz8DY9h6KR6FShx3szCW8VwzF3o3daKrj2OVsk2VMb2NSlGw/NhttlyKp569BRHJ97VP6tqZM39Yc4P2nU36/TzHSpna6dPUif8NaEJDJ8ON3n677ya/HrtNI2dL9s7sVnZgt2ABfPCBOMp98yZU0u7n/ztJWXn0XnSc7HwNXwxpxvAWjoYzYh4/Htavh+HDYfNmA23xfb7eHcKqk1F0bmjP+teqpz+pLNYFRvPJjhvUtTPn6JyHm6D1Ob/j0pT0+P4YWp3wxA4QJBQMBEUmKzCWS/nmxeY1Ir1RnNpgyIA8uDPn7w1lxfFInK1NOP5e5bQeolIUvLTqLHcz86jvYMHfUwJwsTFl19U7zNwQjFYn8EJLNxaPaolcJkUQBDYHxfPV7lAyc9XIpBKmdhM1bkr7/Dy1lp1X7rDmVFQJHYiejR3p0dgJXzdrmrhYYWWgaaJCUnLyOXM7lTMRKZy5nUps2v0RW0GjIm/vd+IFYN9/WFqUX6IRBDhwQFSRjhNbeJDXycFh0BVM3DPIi7UjN9YOozpKHL2UnF/YASsz/cpjJ8OT+WznjaIG6bZedVgwvHmlb9IarY5DoYn8cSaGwGJy+w0cLZjYqR4vtnY32P7Oy8tj+PDhAGzZsqVC/n1J2XnodGKJdf25WDYHxZOZKxprTu7izXv9Ghukx+fWvWz6/Xii1H/r09SJlRPaGqxslqlU0/W7I2TlaVg8qiXD2pRxwVUqRS+sO3egSxfYsgWcqq6Y+/+Rwpu6pYmc3W92YPor44CKH5MPceMGFLoEXL8OzZoZYGvvk5CRS7fvjqLVCex5uyu+bjWr7J+r0tJxwWEylOqi/tHi6Ht+Fw4QDGruyrJxhp++MwRZeWre2RhcpJM3qVM9PhrUtMqtAHp/fm0wZDge3JmKfA0B8w+TnadhSCs3loypXBo3NlXJ2FVnScjIxcvenH+mBOBma1bChmNQc1d+HNOq6MBJys7j850h7L52FwBvBwsWDGtOh0eUHgRBIDAylTWnojh8M+kh+Y569ub4ulnTzM0GX1drfN2scbIyKbchT6XRoVRpyMnXcOteNqcjUjlzO+UhAS6ZVEJLDxs6N3SgeyNH/L3q6N3sd/EivP8+HDki/iwx0mDTMQLrdlEgEUAqPDQQ9Ki0c3Hi05V8tSuUfTdEBWkHS2Pe79+E4W08KnVzTsnJZ8P5WNafiy2S3ZdKRF2TlzvWo1MD+yeqwfFBFPkavtkTyvqCvrPGzqL1iyFuENPXB7Hn2r0S7/Vv5sJPY1uXqSBeGX45FsF3+27haWfG4Xd6lL3+o0dFm468PFGUsV3Nj1k/C2h1AsN/PUNwXAYDm7vwyzh/w618+HDYuhVeeknMEhmYwjH34W08WDSqDBXzauL7/bdYejQCf686bHmjcsbhN+9l0f/Hk0glcPjdHuX2Wz4udDqBJYfDWXI4HIAO3nb8Mq5NjVgX1QZDBqS0nVncl6Uq0uhxaWJAFJ+ei6edGf9MCcCjjjkHbtzjzb8vodYK9GvmzM9j25S4uB+4cY9PdlwnMet+o+//BjQpUzcmKkXB9ssJ3LiTyY07WQ/55RTiYGlMU1drTI1kKFUaFPlaFPkalCotCpUGRb6mxPTTgzRxsaJzQwc6N7Snvbd9hfV9IiLgo4/g33/Fn6VyHRatorHpGIHMXMxgOFmZUM/BQtTWsTOnboG+jre9BXUe4ZmUp9ay8kQky45GkK/RIZNKeLmjF7P6NKpUySouTcmvx2+z+WJ8UZ+WvYUxY9p78lIHr6dOIfxwaCLvb7lKSo7hrF8KL9aFWJnKOTW3JzaVUN8tj1yVlm4LxcbtL4Y0K9fAl1u3IDS0Wryw/j8RcieLwUtPodUJhu3BuXxZ1BqSSiEkBBob1kIjOC6DoctOYyQTx9ydK+ATZgiSsvPosuAoKq2OrdM70aaSU8Cv/H6eo7eSGdu+LvOHNTfwVhqW/Tfu8c7GYBQqLe62ZqyY4F89zffFqA2GDEhpO1Or1dHok31FAnaz+vgws7dPpTIACRm5vLTqLDGpStxtxYCorr05R24m8vq6S6i0Opq72/DD6FYlRhSz8tTM33OzyInZxdqUL4f60dfXmfh48CinNJumUBFyJ4uQu2JwFHIni9vJOTzClLpUjOVS3GxM6dhADH461revVLQvCHDsGCxdCtu3C+h0EpAIWPgmYNs1DCObXNrVs+O1rt50a+RYoTKOIAgcDk3ii10hRWW7Dt52fDHEj8YuFS+JRSTl8MuxCHYE3yn6+7f0tGVSJy8GNnetUq/R46Y6rF9eXxfEvhv3MDWSkqfW8UJLN5aMaVUt2bLCso2DpQkn5vbQqx+tiEuXRCuIDz8sW4MoPV383du377+iokQpdDMzcdRxmNgbR1gY/PKLWPJp1Uos95g9XUGyPnyzJ5SVJyJxtzXj4DvdKrbfy2LIENi5EyZMuK+oakBGLj/Dheh03uzZgPf6lT7mXp3M2XSFzUHxVSpznY9KY9SKQORSCQdmd6vwMEZNE56YzdR1QUSlKDCRS1kwvDkvtq6+PqLaYMiAPGpnjlkRyNmo+8ZxY9vX5cshzSo1zn4vM4+xq84SlaLAzcaUv6cEUM/BghNhybz1z2Uyc9WYGkn5cGBTJjzgBXQ2MpX/bblapDfU08uT9TOb07athGnTYORI0bRbH3JVWm4lZnPzbhZaQcDCWI65sQxLEznmJnIsjGVYmMjF901kFar7KhQKnAp6M5KSkrCwsCAnR7TQWLpUbBMoxLR+EnW638TKTcHIth5M6VofL/uKp4CjUhR88d+NIvl9F2tTPhrUlOdbuFb4ZnzjTia/HL3Nnut3i8qN3Ro5MqNnwypPnVUUpVJJy5Ziav/KlSuY6/sH1gNBENhwIY4v/gshV63FylTOV0P9GNLKvfyFSyHkThabguIY4OfC2FXn0OoEPn+hGRMLLDwMiUqjo/fiY8Sl5fJev8a82VPPjG12Nvj6ilpEI0eKpq4xMfdfEydCjx7i727fLpbYHsWKFTB1qvj9wYPwXDFxS5lMzHC0aiW+Bg40eD/M40Cp0tBrwQGCfnwNGzMjYsNDDXNMXrwoljAtLMSmwTqG1VDbf+Me09YFYWtuxJn/9TJcEKcnxctcx9/rWSR1Udq1siwKhxUel7J2RcnMVTN7Y3DR9O7kLt58MKBJtUjB1AZDBuRRO7N4qayQvr7O/Dy2daUaUJOyxIDodrICZ2sT/pkSQH1HS+5l5jFn0xVORaQA0L2RIwtHtMCpWFo3T63lx0PhrDoZSXaoM8k7W4NOPLBsbQUmTBADo8d53S0+IXHmTA4bN1rw+++QVWBjIzXWYN4sAavW0Th45jGhoxeTOnnjaFXxTFNSdh4rjkeyLjAGlVaHkUzCa13rM6NnwwrrD12KTWfZkQgO37w/mv6crzNv9mz4WEZFoXLTZBWlOqxfVp+M5KvdoRjJJGyY2hF/L8MLhBbqyFiZyjk5t6f+hphr1ohBkFr98L99+y3MnSt+HxIiZn4aNLj/ql8fTEwgN1fUMPIu6FuLiIBff4WrVyE4WDQkLc7PP8OMGeL3gvBUq2LvCopkcFvRhf1ixB38GxhIGXnlShg8GFwNr7SsLRhzj0lV8uWQZkwor7RaDUz47Rwnw1N4tbM3nw4WBSwren5HJOXQ/8cTaHQCf77anm41aINRWXQ6gR8OhfHzkQgAOjWwZ+lLbbB7RJtDZakNhgzIo3bmpdh0hj3g5AyiieRvE9tWypU4OTufl1adJTwpB0crE/6Z0oGGTlbodAJrz0SzYN9NVBoddcyNmD+sBf39SmqqXE/I5NMd17kQkkvONQ+yr9RFm3n/Ca1zZ/GhdcAAcKzB80WphN27FYwaVZjCzQHEE9zYToFF62gs/eJxdZLxWpf6jO1Qt1JeYknZeaw8Hslf52LIU4t9PN0aOTJvsG+F0seCIHA2Mo2lR8M5HSFOhkkl8HwLN6b3bEATl5qdPnkQrVbL2bNnAQgICKic9YEelGb98ut4/0pL7AuCwIy/L7P72l1crE3Z9XYXvYJqKX4AAGZfSURBVPSlKoJOJzDwp5PcvJdd4gajF6dOwVtviUGNl9f9V9++0L591TZMEET/reBg8XXxophFKjwRV60StSPGjYNRo8DesHpM1Y1Wq2X452s5G5lG184d+ff1zk/04EAhf5yJ5rOdN6hnb86Rd3tUizBoWRwPS2bimvNYGMs480FvbMyMKvWw8/l/N/j9dDQ+Tpbsndn1iRLcLYt91+/yzr9XUKq0OFga83ZvH8a0q2uwAYvaYMiAPGpnqjQ6Wny+v+imW4hcKuGzwb6VfspIzcln3Opz3LyXjYOlMX9PCaBRgVt7WGI2szYEF7kCj/T34LMXmj0UOITezWJzUDzbghJIuGFN9hUvcsOdQLh/gDVrBt27i9n/bt3A2YDaY9nZ4gP0xYui88GRIwJ5eUqgICCRZ2BWPxerljGYeqfQwMmC17s1YEhrt0r13JQWBLWua8usPo3o5uOg90VZEASOhyWz9EgEF2PSxU2VShjWxp03ejR8Yqc1qpvi1i+WJnL+eLV9pbM6OfkaXlh6ishkBZ0a2LNucgeDqwAfu5XEpN8vIJHAv9M60q5ezZYxK0X37nCiQIrAyEh8avnkE8OemNVMQkYuvRcdI0+tY+lLrXm+hZthPyAmRgxODYgiX0PH+YfJytOw6uW29K1mg+EHEQSB/j+e5FZiNh8MaMK07g0qFQxlKtX0+P4o6Uq1fgMETxBhidm8/ldQkcxJXTtz3n2ukUFU62uDIQNS1s4cu/JsCU0ZgC9eaMbLVeyHSFOoGL/6HCF3s7CzMGbRqJb0bCzWkFUaHYsPhrHixG0EATztzFg8qlWpF3yVRsfRW0lsuhjPwYuZZF7xQBnqhjrl4cbhJk1Ef0QPD3BzK/lydga5HDQaMctT/JWTI1YDrl+//4qJeWj1SK2S0WWL/wePt7fS2MuOHo0c6dXEiYD69pU66EsLglp52jK7b8WDoIMhiSw9GsHVAp80Y7mUMe08mdqtPh51DG9b8bSRk69h8toLnItKw8JYxh+vtqdtJYOM8MRshiw7jVKlrbbm1cLm1Lp25uyd2bXC5dEa584d2LBBbKK7fFl8z8JCtBB5912wMpxIZXWy5FA4PxwKw83GtFKm1qWSmyv2aR0+DOHhUK9e1ddZjELRzvbedvw7raNB160P/16MY+7mq7jamHJibk9UebmVKoMXDhDYmhtxbE6PSlUnHhcqjY6NF2JZcjiiyA7J19Wauf0b072RY6WzjLXBkAEpa2cWGua52pjS2NmKY2HJWJvK2fVWV+raV+0GmqFU8fKa80U35wkBXnw4sGnRxeVcZCrv/HuFhIxcpBJ4vXsDZvVp9Mj0YnJ2PjuCE9h0MZ6QqHzy4uzIj7MjL9YedXI5B4lEDIZKa6d4FDLLPIwcsjH1SsWsQSLmdmnc/l6csgmNSaJJ3crX6QwVBOl0Anuv3+PnI+FFGklmRjLGdajL1G71S/RlPUloNBq2bdsGwIsvvohcXjM3eqVKw+S1FwmMTMXCWMbaV9tXOuuy88od3v5HvOmvfrktfQz8RJ6Vp6b/Dye4k5nH+IC6fDX0yR47LsHRo6LI1oUL4s+DBsGuXY93m8qh8JhUaXQsi7TjTraKt3v78E7fRob5gL594dAhmDZNtOowIPcy8+jy7RE0OoGdMzrTwsPWoOsvj3yNls4LjpKSk8+SMa3o42NbqWBIo9Ux6KdT3ErMZlKnesx74elrzlfka1hzKoqVJyLJztcA4lTr+/2bVMqEvDYYMiCFO/NmzD0a1y15wT4bmcqJsGRm9GqIXCplzMpALsVm4OduzebXO1VZyTdPrWXB3ptFVhz1HSz4YXSrosbdrDw183beYOsl0busqas1M3o2pF8z50fWjAVB4FpCJpsuxrP3+j1ScvLR5hqRH2eHKtkKrcIUbY5JwUv8vnh5rWAtSIy04kuuRW6di5FjDsYO2Rg5ZmPkkI3MTI2nnRm9GjvRo4kTLZxNcagjakpUtuk3OkXBX2djqhwEabQ6/rt6h2VHbxORJNpSWJrIebmjF5O7eNeIGFhVqIkG6keRq9Iy+Y8LnLmdirmxjN8ntXuk6Gd5FPor2ZgZcWB2N4NrvZwKT2H8b+cAnprG0iIEQbSi+PBDWL1aLKMVvg9PXLN18WNyy9kI3tl2ExO5lEPvdDeMIfCpU9C1q1hCjIiAunWrvs5iFKo5V0VItyr8fDicRQfD8HO3ZsMrrbEqyARW9PwuPOZlUgn7Z3U1qO1NTZKmUPHL0Qj+LBiCAejXzJn3+jUpITFTHrXBkAEp3JkTfj3CH9N6lHnDvZORy/M/nyJNoWJse0/mD2thkG04GZ7MnE1XSMzKRy6V8HZvH6b3uG/YuufaXT7cdo0MpZi6cbMxZWKneozRw6Q1O09NXFousWlK4tKUxBa84tKUxKUrUakFdEoTBJ0EiZEWqZEWZDokErA2leNgZYKjpUnRV8eCr/716lDfwaJof+Xm5jJgwAAA9u7di5meeiuZuWr2XLvLlqD4oj4eEIOgWX18KpRCVWt1bLuUwC/HIoqkCKxN5bzS2ZtXOtd7atLKld2XBvt8lZYpf17kVEQKZkYyfn+lXaUMWFUaHcN/PcO1hEx6N3Fi9cS2Bm+6/XTHdf4MjMHVxpR9s7pVyRPusaDRiGnZQhYuhPPnxSkrA4+aV4Xix+SePXt49a8rnI1MY4CfC7+ON5Ayda9eYtZs+nRYtsww6yzgekImz/98CplUwsm5PXGrYdHUdIWKjgVO9Gtfbsm86aKJcGXO79f+uMih0ES6N3Lkj1er2Pj/mEnIyOWHg2FsvRSPThAHWUb6ezKte329hmJqgyEDUrgzPWf9y4pXuzCgedkjnifDk3l5zXkEAb4f2dJgxnQZShUfbb/O7quiFUfrurb8MKoV9QqaelNy8vkzMIb1xUxazY0LTFo71auUGJdWJ5CYlUdsmpJ7mXlYmcpxKAh8HCyNq01gUKPVcTI8hS2X4jkQkohKIz4ZSCXQuaEDr3bxpkcFgqCcfA2bL8ax6mQUCRm5ANhZGDO5izcTOnqVqdxdS+nkqcWA6GS4GBD9NqktnRpU3Oj11r1sBv98CpVWZ9DzpRClSsPAJSeJTlUyrI07i0e1Muj6a5SUFLGBWKkET0/RpqJr18e9VaVy814WA5ecRCfA31M6VOrYeIjjx8WJD2NjUeyyPGXZClLYAzqtW30+GNjUoOvWh4+3X+Ovs7H0aerE6omV1wuKSlHw3A/HUWsFfp/Ujp5Nnn7vvbDEbBbuv8XBkMSi97zszenRSPTbDKhvX2p/Wm0wZECKB0MuDnU49G73cm+ehU2EpkZStr/Z2WCj2IIgsCP4Dp/suE52ngZzYxmfPO/LmHaeRYFBnlrLzuA7rDld0qS1dxMnXu3i/UR7ZYXezWLrpXi2B98hOTu/6H0fJ0uG+3swtJU7Ljb6l1KiUxT8ERjNpovx5BTUnx0sTZjWrT7jAurWuMjas0aeWsu0dUEcD0vG1EjKbxPb0blhxW96hb5iVqZyDszuhquNYZ/Kg2LSGLk8EJ0AKyb406+ZS/kLPalcvCj6dYWHi1YVH30En35aMnv0hFCYlWvsbMXut7sYZty7cOrurbfgp5+qvr5iHA5NZPIfF7EylRP4Qe9KyXtUhcjkHHovPo4gUGUn+kJV8PqOFuyf1a3GjFGrm6CYNJYcjiDwdkoJWygTuZQO9e0LgiNHvAuqErXBkAEp3Jn1Zm9CMDZjQoAXXw71K3MZnU5g0toLnAhLxtvBgh0zOhs0+5CQkcu7/wZzNlJUwO7T1In5w1qUECgUBIHA26n8VmDSWkhjZyte7VKPIa3cDeJOXhV0OoHIFAXHw5LZEhRfJBkAYubmhZZuDG/jgZ+7dYUmw05FpLD2dDRHbt03p63vaMErneoxsq3nY/9/P0vkqbW8/lcQx24lYyIXA6IuPhULiDRaHcOXB3IlLoPujRxZ+0o7gwfs8/eGsuJ4JA6Wxuyf1e2J7wsrk5wcePtt+P138eeOHcUsUaHY4xNChlJFj++PkaFUG051/MgR6N0bGjUSR1eNDHdd1ekE+vxwnMhkBZ8+78urXWp+f76zMZitlxPo3NCevyZ3qPwUVZ6anguPkapQ8cnzvkx+DP+X6iQnX8PpiBSO3Urm+K0k7jzgtVnXzpwejR1p527KC+18aoMhQ1A8MyQ1MUcCbH6jU7k6K2kKFc//dJI7mXkM8HPhl3FtDHqB1+kEfjsVxcL9t1BpddhbGLNgeItSdTIik3P440w0m4LiUaq0ANQxN8Lfy45mbtb4udvQzM0aVxvTassa5eTk4FXPG41Ox5w1BwlNVnEtPrNoYgDASCahdxNnhvt70L2RY4WEt5QqDVsvJbD2THRRUzRAz8aOTOrsTdeGDjUuqFZd5Obm0rGjOAIcGBhY4z1DD5Kv0fLGX5c4cjMJE7mUVS+3rXCzckRSNgN/OoVKo+Pb4c0Z3c6wDbL5Gi2Dfz5FWGIO/Zu58Ot4w56Pj4WNG8XpqsxMUbwxMhIsH4831aOOycJxbxszcdz7UUbKeiMIopv988+Lqt8GZv25GD7adh2POmYcf6+nwTWwyiMuTUnP+fuJWjYJK1MjEuJiKj0g8c/5WD7Yeg1rUznH3utpcHXnJwVBEIhIyuHYrWSOhSVxPiqtKGuky1cS9+Oo2mDIEDwYDAF41jHjyJwe5aYeL8emM2pFIGqtwMeDmvJa1/oG376b97KYtSG4qCTWqYE9r3X1pkcjp4du/plKNRsvxvLHmZii3pni1DE3ws/dBl83a5q5iQGSt71FpYKIDKWKK/GZXI3L4Ep8Bpci73H5ixcA8Jy9GamxWO4yNZLSwt2WwS1deb6FW4UvlnFpStadjWHD+Viy8sTAysJYxsi2nrzc0euJNy6sDI9zmuxR5Gu0vLn+EodCkzCWS1k5wZ8ejSvWq7DqRCRf7wnF0kTO/tndqmQQWxrXEzIZuuw0Gp3AkjGtKu239kQRHQ3jx8Pw4TB79mPbjEcdkxqtjud/PsXNe9lPhcRBrkpLpwWHSVeq+XVcm3J7RKuDTzdf5MuRYs9QVlY2VlaVu4ZpdQLP/3yS0LvZjGzrwcIRLQ25mU8sinwNZ26ncuxWEoeuRHP+8xdqgyFD8GAwJJdK0OgEvY0gC+Xe5VIJG6YGVFqorizyNVoWHQjjt1NRRU7q9R0teLWzN8PbeDzUWKbR6rgUm8H1BNGx/sadTMKTcoqWLY6FsYymrta42Zqh0elQaQQ0Oh1qrQ61Vij4qkOjFVAVfM1Ta0kq1vMDoFPlEffDCADeWR9I24ZutPSwpZGzZYV7CXLyNRy5mcTO4DscuZlI4WZ72ZszsWM9RrT1eKaborVaLUeOHAGgV69e1WbHUVFUGh1v/n2JgyGJGMukrJrYlu4VyBBpdQKjVgQSFJNOl4YOrJvc3uDZm58Oh7P4YBjWpnIOzO5eoR60JxaNRuwfkhacR3fugIOD2GhcQ5R1TJ6NTGXMyrNIJbDrra74uhnIzkajEXuoAgIMs74CFh24xc9HImhT15at0zsbdN36EJ+UjqezeJ/4+/QtxnaqvFZT4b4H+GtyhwqXsJ92MjMzsbW1rQ2GDMGDwdCwNu5svZSAiVzKgdndynVTFwSBtzcE89+VOzhbm7D77a4G92MqJCEjlz/ORPPP+ViyC7IktuZGjOtQl5c71itTxyVPrSUsMZsbd7KKgqSb97IeshupCN4OFrTwsKGFhy2N7eV09RVLH5XJZmTmqjkcmsiea/c4EZ5cNGEG0NXHgUmd6tGz8cPZsFpqFpVGx4y/L3EgJBErEznbZ3SmQQWyc5HJOQz86SR5ah1fv+jHuA6GtV9Qa8Vx/qvxmdXWn/RYSUkRTQg9PWHLFrCpfBOuIXlz/SV2X7tLe287Nk4NqPo+T04We6Xi4kTdIU9Pw2wooqhrlwVHUWl1bNGjJcLQFM+ydfh8F8c/7F+lyd0+i48TkZSDiVzKvpld8X4Gs+WPoraB2oAU7sy6s/9FYmyOkVRCcw8bLsVm6P30qijwY7qdrKBNXVv+eLU9VtWYucjJ17DpYhy/n44mNk3U0zGSSRjcwo1Xu3jj567fBVKj1RGVouD6nUxSc1QYy6UYyQpfEoxkUuRSCUZyKcYPfO9Zx7yExlFlSjsZShUHQhLZe+0upyJKTg94O1gwsLkLQ1u54+P8dAqLPauoNDrGrT7Lheh0GjhasP3NzhU63teciuKLXSGYG8vYP6ubYUT7ilG8P2n+sOaMbW/Y/qTHyqlT0L8/KBTQogXs3St66jxm4tOV9F50nHyNgXzLBEEcsz9xAt54A375xSDbWch7m66wKSieQc1dWTaujUHXXR7Fr5Weszfz6Yutq9RisSUonnc3XQHAylTOhqkBNHN7MoLk6qY2GDIghTvz43/PsS4oGYBGzpbEpCrJ1+hYPKolw9qUr3cRnpjNsF/PkJ2noXVBQFTdpRytTvTcWnMqivPRaUXvB9S347Uu9enVpOYyKfoGQ6k5+RwISWTPtbsE3k5FU6x05+NkyYDmrgxs7kJjZ6tn64m+Amg0Gvbv3w9Av379asyOoyIkZefxws+nuZeVR5+mzqyc4K/3sabTCYxZeZbz0Wl0rG/P+tc6GPw4XX0ykq92h2JhLGNfNQRcj5WgINHCIzFRVGretw+aVq9ujj7H5I+HwvjxULjhfMuOHYOePatFlfrmvSz6/3gSqQSOv9ezRo+PB4MhO1srTsztWen7RWaumpafHyj62dJExu+vVN5K52miNhgyIIU7825yKkNXXuZeljjC16mBPWdup2JnYcyhd7rr1al/LT6T8b+dEw9ODxv+nNyhxhRxr8Rl8NupKHZfu1vUG+RpZ0a7enY0d7eheUHjdHVp75QWDOWptYQn5hByN5OQO1lcv5NFcFxGid6lJi5WDGzuygA/l9oMUAFPYgN1aQTHZTBqRSAqjY5ZfXyY1Uf/3oeYVAX9fzxJrlpbLS7cOp3AmFVnOR+VRntvOzZMCXi2SqxRUWKGKCxMVKreuRO6dKm2j9PnmMxVaemz+DgJGbmG8y0rVKWuBs+yCb+d42R4Cq929ubTwb4GXXdZFN+XPb7ZS1Smluk9GjC3f+UNjXt/f4zbKYqin02NpPw6zv+ZEGQsi9pgyIAU35nn43N57c+LAEgATztzYtOUdPVx4PdJ7fRqBL6eIAZEGUo1zd1tWDe5fY3aQNzJyOWPwGj+OXd/+qoQqQQaOlni525DC3cbmnvY4OtqYxDn6fjkDPr26kmuWsvzH64gLFXF7WRFqU3bfu7WDPATA6BncRqsquTm5tKtWzcATpw48dhH68ui0JEbYNXLbUuVfngUfwZG8+mOG5gZydg3q2u5/XkVJTZVSf8lJ1CqtLzfvwmvdfV+ZsTpALF/aPBgOHtWHEPfuhUGDqyWj9L3mNx99S5v/n0JE7mUw+92x6NOFTMuJ09Ct25idig8XFToNhDHw5KZuOY8FsYyznzQu8YeXIvvy89WbGLGvzcwNZJybE7PSjf8v7/5KhsvxpV4Ty6VsGhUy2djqvIR1AZDBuTBnTlt3UX23xAlwd1tzUhTqMhVaysk4R5yJ4vxv50jTaHC19Wa9a91qLr+RgVR5Gs4G5nKtYRMridkcjU+86EJMBADJB8nK/zcbWjqaoWRTIpWJ6ATBLQ6Aa0goNMJaHXc/77gq1orEJWSQ+jd7KKM2oPUMTfC180aX1drfN2saetl92yVLGrhsx3X+SMwBksTOdvf7Ky30aJOJzBu9TkCI1NpX8+ODVMNn70p1JUBkEkluNma4mVnQV17c7zszPGyN6eunQVe9uZYPEKROE+tJTJZQXhSNmGJ2YQl5jCouStDWz8BNxmlEsaOhZs34eBBgxucVhRBEEug56LSGNjchV/GGcC3rE8fOHwYpkwRPdsMhCAI9PvxBGGJObzbtxFv9fYx2Lorsg0jlwdyMSadMe08WTC8cn6XGy/E8v6Waw+9b2NmxO63u1Q9KH1CqQ2GDMiDO/NuZi69vz+GsmDKqruPA8fDUwAqpF1y614241afJSVHRRMXK9a/1uGxq+ImZeVxrSAwup6QydWEzBK2GFWlnr15icCnqas1LtbVJ/RYy5OBWqtj3OpznI9Ko76DBdsroMgel6ak/48nUKi01aIKLAgCn+28wb8X48qdnLS3MMbJ2hRLExlSiYQ8tZbUHBUJGbk8eBFdPt6f/n5PiO2HRiMKM9pX3Ey3Ogi9m8WgnwzoW3b6tFgC7NtXbBg3oNTEjuAEZm4IxtpUzqn/9Xoskh1BMWkM/zUQqQQOzO5WKSf6sMRsnvvhRIn3WnjYsPaV9s+sGCPUBkMGpbSd+dupKL7cFVL0O8+3cGXX1buYGknZ/Honvae1IpKyGbvqHMnZ+TRytmT9awElLDWeBBKz8rgWn8m1hEwiknNAAKlUgkxS+FWCTCpBKpUglYBMIinxvnsdM3xdrWnial3jXj+1PDmk5OQz+OdT3M3Mo3cTJ1a93FbvLE9h9sbUSMqet7tWS+lUEASSsvOJSVUSk6ogNk0pfp+mJDZVQbpSXaH1/Ty2NX2aOhukxGxwtm0TrTtatXpsm/DJ9uusOxtDExcrdr/dtepKz5cvQ+vWhtm4Ymh1YnYoIimH2X0aMbNPzWeHAKb+eZEDIYn09XVm1cttK7y8TifQ8osDZOdp8HG2JDwxB6kE/p3WsVq0754UaoMhA1LaztRodYz/7VyRN5ijpTGNXKw4HZGKu60ZO2d01jvLczs5h7Erz5KUnU9DJ0v+fq0DTmXoAT2tKJVKfH3FJsSQkBDMzZ/NtGxNkJubS58+fQA4dOjQE90zVJyr8RmMWC42VL/dqyHvPNdYr+UEQWDCb+c5FZGCv1cd/p3WscZtEjJz1cSmKolOVRR5Ij2q9FuIRAIedczwcbLCx8mSTg0dHr8tzK5dMGSIKMp48qTo8WUAKnpMpitE37LMXDXfvNiclzo8ufIGO6/c4e1/LmNlKufU+72qvXeotGtlRFIOz/1wHJ0Am1+vXADzyfbrdPVxoK+vM7M3BrM9+A7utmbsmdm1xvqhapqKBENPTbfg119/TadOnTA3N8fW1lavZSZNmoREIinxCjCAWqlcJmXpS21wLsjiJOeosDSR4+1gQUJGLm/+fQm1Vj+xwgaOlmyc1hFXG1MiknIYs/Is9zLLvsg+jQiCQExMDDExMdTG31VDp9Nx5swZzpw5g05XeVHMmqaFhy3zXxTtGH46EsG+6/f0Wk4ikfDtiBZYmsgJiklnzamo6tzMUrExM6K5hw2DW7qxYHgLzn7Ym91vd2FQcxceDG3kUgm25kYIAsSl5XLkZhIrTkQycc15ei8+ztrTUWTnVSzTZDC6doWWLSEpSey1iY01yGorekzWsTBmZkEPzuKDtwy3P1JSYPNmw6yrgEHNXfFxsiQ7T8Pvp6v/2CvtWtnQyZLR7URhyfl7b1bqGvrlUD+ea+aCRCLhy6F+1LUzJyEjl4+2Xau9JvMUBUMqlYqRI0fyxhtvVGi5/v37c/fu3aLXnj17DLI9DpYmLJ/gj7zgKW//jUTGtPPEwljG2cg0vt4dqve6vB0s2Di1I+62ZkSmKBizMpC7mQ97h9VSC4CJiQnbtm1j27ZtmFSDWWV1Mtzfg1c61wPg3X+DCU/M1ms5d1szPh4kDigsPhhGfLqyujZRb5q52bBsnD/H3uvBuA51i4yFW3nacvmTvlz8uA//TAngy6F+jGnniZWJnKgUBfP+CyHgm8N8tuM6t5NzyvkUA2NjI+oONW4sqjf37SvqEVWRyhyT4wO88HawICVHxbKjt6u8Ddy9K5b/xowRdYcMhEwqKSqP/XYqiszcxxPIzurTCFMjKUEx6RwMqdrfzMrUiCVjWiGTSth19S6bg+INtJVPL09dmWzt2rXMmjWLjIyMcn930qRJZGRksH379kp/XnlptkJnYABzYxmfDfYt6tpfOKIFI9vqLxMfl6Zk7KqzxKfnUtfOnH+mBhjcrPJx8bRo49RS/ai1OiYUlJm9HUSFan3S9MUnkXo3cWL1xLZPVPN9UnYev5+OJlelZd4LzR7695x8DVsvxfPHmWhuJ9/XfOnWyJFXOtWjeyPHmiuhxcWJTcexsWKm6Ngx0DPjbkgOhiQy5c+LGMvEUfsqT5IOHCg2UU+cCGvXGmQbQey5GbDkJLcSsw2nkfQIyrpWLtx/k2VHb9PA0YL9s7pV2NfxQZYdjWDh/luYG8vY9VaXZ07K5Jksk1WWY8eO4eTkRKNGjZgyZQpJSUll/n5+fj5ZWVklXmUxtn1dRvmLCtRKlZZNF+OL0r8fbb9OcFyG3tvqaWfOhqkB1C3QLxq9IpC4tMf/BFxLLYbESCZl2UttcLc1IypFwawNl0vVm3oQiUTC1y/6YSSTcPhmUpHExZOCk5Up7/dvwmePEOizNJHzcsd6HHqnO+smt6d3EyckEjgRlswray/Qa9ExfjsVRVZNlNA8PeHQIXB2hitXRMXq3JrPRvdp6kSnBvaotDoW7L1Z9RV+/rn4dd06uHWr6usrQFosO/T7qSgyK9hQbyimdW9AHXMjbicr2GSAbM7r3RsQUN8OpUrLzA3BJTwf/7/xTAdDAwYMYP369Rw5coRFixZx4cIFevXqRX7+o8fF58+fj42NTdHLUw8DwC+G+tHYWYyoL8akAwJ9fZ1RaXRMW3eRpGz9e4A86pizcVoA9ezNiU/PZfSKQC7Hpuu9fC3PPlqtlmPHjnHs2DG0Wu3j3pxKYW9pwooJ/pjIpRy9lcwPB8P0Wq6hkxXTujUAYN7OG+Tka8pZouYpL1slkUjo6uPIb5PacWxOD17r4o2VqZzoVCVf7hJLaJ9sv05Ekn4lxErj4wMHDogZIX9/UZixklT2mJRIJHw8yBeJBHZfu8uFYrZBlaJdO3jhBdDpYN68qq3rAfo3c6GJixXZ+RpWn4o06Lr1xdrUiBm9xKDsh4Nh5Kqqdv7LpBJ+GN0KW3MjriVksuiA4QLIp43HGgzNmzfvoQbnB18XL16s9PpHjx7NoEGD8PPzY/Dgwezdu5ewsDB27979yGU++OADMjMzi15xcaJqZ7pC9chlTI1ErxeLgjHaJYcj6NXYkYZOliRm5fPGX5cqFHG72pixcVpH6jtacCczjxHLA/n5cLheT8+1PPvk5eXRs2dPevbsSV7e09ts7+duw7cFInJLj0aw99pdvZab0ashXvbm3MvKY/EB/YKoJxUvews+ft6Xsx/05quhfvg4WaJUaVl3NoY+i08wd/MVFNUZ8LVoIWaGliwBaeVvB1U5Jn3drBld0E7w5a4QdFW9zn3xhfh1wwa4erVq6yqGVCphVmF26HQ0GcpH3xOqk/EBdfGoY0ZSdj5rDNDQ7WpjVnQerjgRycnw5Cqv82nksQZDM2bMIDQ0tMyXn5+fwT7P1dUVLy8vwsPDH/k7JiYmWFtbl3gBfLHrRpkd9262ZqyaeF//4ePtN3ije32sTMUJmHn/3ajQtjpbm7Ltjc4838IVrU5g0cGwp7psJpFI8PX1xdfX94nq83gaeZb25dDW7kwuEFJ8d9MVYlIV5SwhPnx8MUS8Lqw9E8X1hMxq3caawMJEzvgALw7M7sbfr3Wgr68zEgn8ezGe538+xdX4jOr78Lp1RR0AALUagoMrvIqqHpPvPNcIC2MZV+Mz2XElocLLl6BlSxg9Wvz+00+rtq4HeM7Xhaau1uTka1h1snqyQ+XtSxO5jDkFshTLj90mrYwHdX3p18yFcQXyBu/8e4XUHMOJ7T4tPNZgyMHBgSZNmpT5MjU1nOZOamoqcXFxuLq6VnjZgyFJbLlU9knaqYEDHw4QzfS0gsAnO27wXr/GSCTw97lY1p+LqdBn2pgb8fPY1iwe1RJLEzkXY9IZsOQk2y7HP3WjkObm5ty4cYMbN27UagxVkWdtX34woAntvcW+hXf/vaJXBrR7I0eeb+GKToAPt117ZrKmEomETg0dWPVyW/6ZEoCrjSlRKQqG/XKG5cdvVz1rUhaZmdCvnzh+f6NiD29VPSadrEyZ3rMhAN/tu1Xl8g/z5oGpKbi5gQFLyVKppKgndO3paIMEIg+iz758oaUbvq7WZOdrWHrEMJNzHw/yxcfJkuTsfN7bfPWpu8dUlaemZyg2Npbg4GBiY2PRarUEBwcTHBxMTs790dQmTZqwbds2QOzCnzNnDoGBgURHR3Ps2DEGDx6Mg4MDL774YqW2Yd7OG+VmZqZ0q18kw69UaVl6JIJp3eoXLV/RmrhEImFYGw/2zuyKv1cdcvI1zN54hbc3BD+2Ec9aajEkcpmURSPvB/wrTug3Zv3p875Ymci5Gp9Z4QeNp4GA+vbsndmVgc1d0OgEFuy9yYQ156pPh8zcHAQBcnJg6FBIr9lexcldvHG3NeNuZh4rT1Qx69KkCSQkwC+/GNSeA6BfM2d8Xa1RqLTVlh0qD6lUwv8KHrzXnY0mOqX8jGp5mBnL+Glsa4zlUo7cTOLPwGfvnCqLpyYY+vTTT2ndujWfffYZOTk5tG7dmtatW5foKbp16xaZmWLKXCaTce3aNYYMGUKjRo2YOHEijRo1IjAwECurinu7tKlrS06+hnf+DS7zKVQikbBoZEsaOIrjkEnZ+RwKSeS5Zs6otQJv/HWpUhpCnnbmbJwawDt9GyGTSvjvyh0GLjnJucjUCq+rllqeNDztzIumsH44GMaNO+WXvpysTZnbXywXLNx3i8RyFKGfRmzNjVn2Uhu+Hd4cMyMZpyNSGbDkBAdu6CdYWSGMjGDTJtH5PSJC1OvR1FyDuqmRrOgGv/z47aoHfXbVYzMhkdzvHfrjTPVkh/Shq48DXX0cUGsF/rf1qkGyhk1drYuqG1/vCSX0btnT1M8ST00wtHbtWgRBeOjVo0ePot8RBIFJkyYBYGZmxv79+0lKSkKlUhETE8PatWv1mg4rjW9ebI6liZwL0eU/uVqYyFk9sR0mcrHeG5GsIF2horGLFSk5+by+LqhSTZFymZS3e/uw6fWOeNmL6qFjVp3lu303n/iRSKVSSbNmzWjWrBlK5dPZ9/SkkJubS9++fenbty+5j2EcuroY4e/Bc77iQ8M7G6+Qpy6/vPFSBy9aetqSna/hi2J+gc8SEomE0e3qsuvtLvi5W5OuVDN1XRAfbbtW9XLSgzg4wPbtYGYmTpp98IFeixnqmHy+hSv+XnXIVWtZuN9Ak03BwfDhh2LWy0D09XXGz90apUpb9SzWA+h7rZRIJHw9VAySz0amsf68YdTEJ3aqR68mTqJtzj+X9ToPnwWemmDocePxwJNreU2b3g4WLBlz3zjwQnQ6LtYm2JoZcSU+k3Grz1V6GqFN3TrsfrsrI/09EAT45dhthv96pubVbCuAIAiEhIQQEhLy/64WbWh0Oh2HDh3i0KFDT5UdR3lIJBLmD2uOg6UxtxKz9RrzlUklfPOiH1IJ7L56l2O3ytYRe5pp4GjJ1jc6F5Xd15+LZfDSU4TcMfDTe6tW9wULv/8e1q8vdxFDHZMSiYRPnhevs1suxXMtvorN8RkZ0KkTzJ8PBw9WbV3FkEgkzOotCi/+GRht0Ibjilwr69qbF2VHF+wJNYgyu0QiYeGIFjhamRCelMNXu5/Nh4wHqQ2GKsAIfw/6N3NBrRWYuaH8iLm/nyutPW2Lfj4eloKfuzW25kYEx2UwesVZkiqZ2rc0kbNwZEt+GdcGGzNRI+L5n07xz/nY2mDjGcfExIS//vqLv/7666mz4ygPe0sTFgwTx3xXn4rirB5l4GZuNrzSWZxI+2TH9Wf6SdZYLuWDgU1ZN7k9TlYmRCTlMHTZaX47FWXY5upRo+5nhWbPBkXZPSmGPCZbedoytJUbII7aV+l6ZmsLhRZOH31k0OxQ76ZOtPCwqZbsUEWY2LEebb3qoFBp+WCrYXzG7C1NWDyqJQB/nY1lf3WUZZ8waoOhCiCRSPim4Mn1drKCz3ZeL3eZb4Y1L/HzqYhUvOzMcbQy4VZiNiOrOC4/sLkr+2Z1pVMDe3LV4skwdV1QpYOsWp585HI548aNY9y4ccjl8se9OQanj68zY9p5Igjw7r9X9DLxfKdvI1xtTIlLy+XnI4+WznhW6OrjyN6ZXenT1AmVVseXu0J4Ze0FkrMNOBL95ZcwfTocPQrl2OcY+pic278JpkZSzken6W3o+0jef1/c/osXYceOKm9bIcV7h/4MjCHlMY2jS6USvhvRAhO5lJPhKfx7Mc4g6+3q41iUhZy7+SphevoIPq3UBkMVxM7CmO9HihHzxgvxrC5nmqCpqzXN3Ep6olyJzwQEnK1NiElVMmL5Gb0NK0vD1caMvyZ34KOBTTGSSTgYkkiXb48yd/OVKq23lloeFx8/74unnRkJGbl8/l/5aXoLE3mRH9jKE5H/L457e0sTVr3cli+HNMNELuV4WDIDlpzgqKFKhTIZLFsGzR72Watu3GzNmNpVvBHP33uTfE0Vsn1OTjBzpvj9J5+I6tQGomdjJ1p62pKr1rLiuAHMZitJfUdL3n1OLNt9tSvUYBOH7z7XmNZ1bcnMVTPht3NPrc6dPtQGQ5WgR2Mn2nuLkwpf7Q7lp0PhZaYmx7av+9B7ydkqkrPycbY2ITErn1ErArlSAR+zB5FKJUzpVp/tb3bG36sOKq2Ofy/G0/eHE7y69gKBt1Nry2fVhFKl4bdTURWyXakKWq2WCxcucOHChafWjqM8LE3kLB7VCokENgfF65Ud6NfMhT5NxQbsj7Zdr15NnicEiUTChI71+O+tLjRxsSIlR8XktRfYEVxF4cLSOH0ali4t9Z+q45ic1r0BTlYmxKYpWXs6umormzMHbGzg+nXYuNEg2wcls0PrzsbU2DWgNCZ3qV80TPDhNsOUy4zlUn6f1I5GzqKbwrjV557ZqkNtMFRJviuQLwdYfCiM19cFPTKdP7ilGybyh3e1VCqO4bf0tCVdqealVWcJvF21UflmbjZseaMTW97oSP9mLkgkcORmEmNXneWFpafZeeUOGu2z03T7OMlUqvnpcDidFxzhy10hRCTVTAN7Xl4e7du3p3379k+1HUd5tKtnV+RD9uG2a3rdaOa94IuZkYzz0WlsNoCR5dNCI2crtr/ZmRH+HugEmL0x2LAB0fXr0K2bmGE5deqhf66OY9LCRM57/cTm4KVHIqpWhqpTRwyIAD77zKCSAT0aOdLK05Y8tY4Vxx9f75BMKjY+G8tEnaDtBvr725obs25yhyID8Qm/nX9sViTVSW0wVEnqOVjgU2DOCrA/JJEXlp7m1r2H0/M2ZkYMKBBiLI5GJzB3y1V+HN2STg3sUai0TPz9PIdCqu7G7e9lx/IJ/hx9twcTArwwNZJyLSGTt/+5TPeFojt2TZpcSiQSvLy88PLyeuotJJKy85i/N5ROCw6z+GAY6QUO1tEpJVPIeWotSdl5RCTlcDk2nfNRacSkKqrc4Pss7cvymN3Xh6au1qQpVHywpfynXY865szuKz6pf7M39LFpwDwOTI1kfDe8BWPaeRo+IPLzg3HjxBLTSy89JMhYXcfk8DYe+LmLSss/HqqiD93MmeL/Y8YMg5bKimeH/jobU+XMSVX2ZSNnK97uLSp5z9sZYrBMlbO1KX9N7oBTQa/rpN8vVK9n3mNAItTWTsokKysLGxsbMjMzi3zKCvn12G2+3XezxHtmRjK+GebHi609Srx/OiKFcavPYWtuxOw+jVh88BaZueLB1NTFivWvdeD9rdc4GJKITCrh+5EtHlpHVUhTqFgXGCOOgRbcIKxN5YwL8GJSp3o4WxvO9uRZRKnScC4yjd9PR3H6dmqpwpuOViZYmcjJylOTlatBVUYGzs7CGGdrU1xtTHGxMcXV2hRnG/FnVxtTnK1NsTI1qs7/0lPDrXvZDP75FCqtjgXDmjOmlLJzcdRaHYN/PsXNe9mM8Pco6vH7/4JOJ/DhtmtsuBCHVAI/jG7FkFbuVV9xdja0aSMKMg4fLgo01kAwfjYylTErzyKVwL5Z3WjkXHHR3CIEoVq2WRAEhv16hsuxGbza2ZtPC2RYHgdqrY6hy05z404W/Zo5s3y8v8EC1LDEbEatCCRDqaZzQ3t+m9gOUyPDKnwbkrLu3w9SGwyVQ1k7MzI5h16Ljpe63Ow+jZhZ8LQA4gXqjfVBfDzIF087c8ISsxmz8mzRk2tAfTtWv9yWT3feYGuBB9oXQ5rxcsd6Bv3/5Km1bL2UwOqTkUQWSLgbySQMaeXOlK71aexShQvNU44iX0NMqpLoVIX4SlEQnaokIimn0hkGiQSsTORYmxkhk0pIzMojT63fU6mliVwMlGxM6d7IkcEt3f7fBq0rT9zmmz03sTCWsXdmN+ral+1/dSk2neG/nkEQYMPUAALq29fQlj4Z6HQCH2y9xsaLYkD045jWvNDSreorvngROnYUy0wrV8KUKVVfpx5MW3eR/TcS6dbIkT9fbV8jn1lRToQl8/Ka8+JU19yeOD3GczXkThYvLD2FRiew9KXWPN/CAH/7AoLjMhi36iwKlZbnfJ35ZVwb5LIns8hUGwwZkPJ2Zt/Fxwl/oFdkQHMX5r/YHFtz4zLXHZ2iYOTyQJILauHN3KxZM6kdvx67zdoz0QDMea4Rb/ZsaPByiE4ncCg0kVUnI7kQfT/l3cLDBn+vOvh71aGtlx0uNs/WzTdPrSU6VUFkcsmAJzpFQVI5Y8lyqQRBEE14S8Pd1owfRrfCylQMfqxN5VgYy5FK7//tBEEgM1fN3cw87mXlcS8zT/w+M5d7Wfncy8zlbmYe2XkPp6AlEujUwJ4hrdzp7+eC9f+jzJFWJzB21VnOR6XR1qsOG6d1RCYt+5z4aNs11p+LpYGjBXtmdsVE/uQ+wVYHOp1o0/DvxXikElgypjWDDREQLVwIc+eKKtUXL4Jv9WdBolMU9P3hOGqtwO+vtKNnY6fKr0wQYPNm+Okn2LsXLC3LX0av1QqMWB5IUEw6kzrVK5pufFwsPhjGT4fDsbMw5uDsbthbGk6T7MztFCb9fgGVRsewNu58P6Jlievck0JtMGRAytuZ3++/xdKjJV2DX2rvydcvNtcrgEnIyGXYL6dJzBJvxE5WJqx9pR37biTy02FRL2Vqt/p8MKBJtfWHXIpNZ/XJSPZdv8eD1R93W7Oi4Mjfqw5NXKwq9RSQm5tLt27dADhx4gRmZmaG2PRSEQSBxKx8IpNzuJ2i4HZSDpEpCiKTc0jIyC1Td62OuRH1HCyoZ1/wcjAv+t7G3AhBEEjJURGemE1Ecg4RSTmEJ+YQnpRDdp6a0C/6G+SioMjXFAVLYYnZ7Lp6l6AYMWgVNCpS//sOR0sTlqxcS7+Wnv8vbvRxaUoGLDlJTr6Guf0bM71HwzJ/P1OppvfiY6TkqJjzXCNm9PIp8/efRXQ6gfe3XGVTUDwyqYQlY1pVPUug00H//qKi83vvwXffkZeXx5gxYwDYsGEDpqaGf4j6encIq05G0dDJkr0zu2JU2WyEWi0GcBER8Pnn8OmnBtvGU+EpjP/tHMZyKSfe61mph0lDXStVGrFcfCsxm8Et3fh5bOvyF6oAB0MSef2vILQ6gUmd6vHZYN8nroexNhgyIOXtzGvxmQxeeooO3na80NKNj3dcRxBEEbi3e+t38U3KymPUikCiU8UGXFMjKT+PbUNsmpIvC/yWxrQTA6zynoarwr3MPM5FpXIpJp2LMemE3s16KDiyMJbRqq4t/l52+HvVoXVdW70yFAqFAsuCJ7CcnBwsyhFxKw9BEMjK0xCfruR2shjoRCYriEzJISpZgaIMzyZrUzn1HS2p72CBVykBT2XJUKqwNjWqtiekuDQlO6/cYcvZCI5+OAAAz9mbsbW2ZGBzV15o5UaAt/0T+YRmKDZdjOO9zVcxkknY/mZnmrnZlPn7O4ITmLkhGGO5lPWvdaBdveox73yS0RUMamwuCIh+GtOaQS1cq7bSe/fgv//gtddAIjH4+V0amblqen5/jDSFquotBBs3ika0lpYQGQmOjgbZRkEQGLUikAvR6YzrUJevX2xe/kIPYMh9eTU+gxd/OYNWJ7Bigj/9mj08yFMVtl2OZ/bGKwDM7O3D7L6NDLr+qlIbDBmQ8namIAj8cz6O0e08kUklrAuM5pMdNwD4dnhzRrcru9mzkDSFipdWn+XmXXEaTQK8P6AJduZG/G/rNXQCDGruyqJRLWusYU2RryE4LoOgguDockw62Q9MEEgk0NjZilaettSxMMbSRI65sQwLYznmJjIsTMRSEZo8OjQSmzgTUzNwsLV+qHyUna8hNUdFmiKflBwVaQrxlZKTT5pCRWqOilSF+O9pChVq7aMPXZlUQl07c+o7WNDASQx86jtaUt/RAnsL4yfuCaYiqFQq5i9ZTnBcBgmOHUhS3P+buFib8kIrN4a0csPX1fqp/n+WhiAITFsXxIGQRBo7W7FjRucyzwdBEHhl7QWO3UrGWC5l8aiWBu2feFrQ6gTmbr7KlksGDIhALDndvIm6YUPWFviZTZo0CSOj6inhFl5f65gbcWxOz8o/vOh00K4dXLokTpn9+KPBtrF4w/femd0q3Idp6MDy2303+fXYbRytTDg4u1u57RsV5Y8z0Xy2U7znffK8L5O7eBt0/VWhNhgyIBXZmYUs3H+TZUdvI5NKWPWyP72aOOv3WXlqJq05z6XYjKL3hrfxoEdjB9799yoqrY76DhYsHNkCf6+af8LV6gTCk7IJikknKDqdoNh0YlL1UyTVqfKI+2EEIGYzpMammBvLMDeWI5NCukJd5vTVo6hjblSU5Ske9NS1M8e4FG2nZw2dTuBcVBo7ghPYc+0uWcV6jRo6WTLS34NJnes9U2W01Jx8+v14gpQcFVO71efDgU3L/P1clZZZGy+z/4YoWfHBgCZM7Vb/mQsUy0OrE3hv8xW2XkpAJpXw89jWDGxugIBoxAgxU7RhA3gYbgK2NDRaHQOWnCQ8KYfJXbyLTF0rxcGD8NxzYGwMt25BvXoG287Chu8uDR1YN7l9hY41QwdDeWotg346ye1kBcPauLN4VKsqra80fj4czqKDovTBdyNaMKqtp8E/ozLUBkMGpDLBkCAIzNkkPoWZGkn5Z0oArevW0WtZpUrDlD8vcjrivvhiW686TO7izbz/bpCYlY9EAq908mZOv0aYGz9eb6qk7DwuxWQQcieT7HwNynwtCpUGpUpLTr4GpUp8Lysnm6DPXwDuB0OlYWEsw87SGHsLE+wtjLG3NMauxPfGOFiaYGchfv8kj3XWNPkaLcduJbMjOIFDoUmoNGJw2cDRggXDWzxTJaJDIYm89udFJBL4Z0r502JancBXu0P4vUDJeEKAF58N9n1ip2CqC61O4L1NV9h6WQyIlo5tzYCqBkTt28OFC2KpKTQU7Kt3cu94WDIT15xHLpVwYHY36jtWoQG6Tx84fBgmTIA//zTYNsamKumz+DgqrY5VL7elr69+D8Rg+GAIICgmnRHLxenKNZPa6v2Ari+CIPD17lBWn4pCKoFfxrWhv58BAu0qUhsMGZDKBEMgaj289sdFjoclY2dhzObXO+p90uaptby5/hKHb973GHK3NWPJmFZsvBDHpgJlXS97c74d3uKpGBsufoInp2WCkUlR4KTVCdSxMMa+NrjRC51OR2hoKABNmzZFKn34hp6Vp2b31bssOhBWpNw7IcCLuf0bPzP6Rf/bcpUNF+JwtzVj36yuev2/fjsVxVe7QxAE6NPUiZ/Gtn7sDxQ1TfGASC6VsPSl1lW7cV26hM7fn1AAKyuaHjiANCDAUJtbKq/8fp6jt5Lp09SZ1RPbVn5FFy+K5TKJBMLCoGHZTfkVYcHemyw/fpt69ubsn91N7+xsdfVffbUrhNWnonCxNuXAO90MPo0qCAL/2yLKORjLpPw2qS1dfQzTi1VZKnL//v/1WFSDGMmk/DKuDS08bEhTqJj4+3m91UBNjWQsn+BfoqafkJHLxDXn6e/nwtpX2uFqY0pMqpIxK8/yyfbrT5UaqJmxDAdLE+ram9PU1Ro/dxvcbc1qAyE9yc3Nxc/PDz8/P3Jzc0v9HWtTI8a2r8vhd7ozuiBlve5sDH0XnzCIwvmTQHEz18JBg/KY3MWbX15qg4lcyqHQJMasPGtYp/enAJlUwsKRLXmxtTsancCMvy9XzRm+TRtyW7fGD/DLzia3Sxf44QfKHNusIh8NaopMKuFQaCJnIlIqv6K2beHjj2HfPmjQwHAbCMzo1RAHSxOiU5X8USCV8jh597nG1LM3515WHt/sDjX4+iUSCd8Ma87A5i6otDqm/hlUNAH7NFAbDFUjFiZy1kxqh5e9OXFpuby69oLeFhhGMik/jWnNCP/7NXiFSstrf14kLDGbfbO6Mrb9/Zvccz+c4FR4FS4KNYCDgwMODg6PezOeCfTdlzbmRnw7ogV/v9YBr4IL4Wt/XmTG35ee+iDA0kTOopGimeu/F+P1DvIGNHfl7ykB1DE34mp8Ji/+crrGfOWeFESV+5YMbeVWEBBdqlpANGsWDoADgFYL77wDQ4dCWpphNvgBGjpZMb6DOJzyxa6QUhXh9ebLL8XeIQP3kFmayJlb4K328+GKeatVx7XSzFjGtwWemhsuxHEyPNmg6wfxuPphdCu6+jiQq9byyu/nuRqfYfDPqQ5qy2TlUNkyWXFiUhUM++UMqQoVXX0c+G1iO72be3U6gXn/3eDPwJgS74/09+CrF/24EJXO+1uukpAhZgjGtvfkg4FN/18J8tWiH7kqLT8eDmP1ySi0OgEbMyM+HtSUEf4eT3Uz8Td7Qll5IhIHSxMOzO6GnYV+0zJRKQpe+f080alKbMyMWDnBnw5PQcnZkGh1Au/8G8yO4DvIpRKWj/enTwX6W4pQKMSeoQczlXXrio3VHTsaZoOLka5Q0X3hUbLyNMwf1pyx5di06EVammjqaqDzQacTeGHZKa4nZDG2fV3mD6v4qL2h+WzHdf4IjMHd1oz9s7thaWL4MrFSpWHCb+cJiknHRC7lq6F+jHwMTdW1ZbInDC97C35/pR3mxjJOhqf8X3t3HhZl1T5w/DvDvpMg4AKCIIsrCkbkhqWpWWr1miZqlppm5lbY22v9srTM1LTctdKyXNJcWtxzTVMREHcUkUUWWWUTZmDm+f0xMIKisgwMyvlc11ww2zNnZp555p5z7nMfPvjtLOpK/pKRy2V8OqANC4d0wMrkzjDS5rAbDP/uJD5NrNgztTsjA1sAsOFUAn0WHuFQVOr9Nik0UGbGBnzYz4cd73ShdRNrsguKCNlylhHfnyK+krMC66NpvT3xdLQkPU/BjG0PX8y1lJu9Bb+9/TQdXWzJLihixPen+D0yqZZbW78YyGUsGNyBgSU9RJM2RnDl5r2LTT+UhQW8+OK9l8fHw5AhtdJD9ISFMZN7aeraLNgbRW5hUc02uGABuLnB77/roHUacrmM/3tBU4l6U2g8F5NydLbt6pre15vmT2iGl/9v+/lKf16qwtzYkDVvdOZZbwcUxWpCtpxlxrZzKIprtkh1bRLBUB1p39yWZcGdMJDL2BaRyNw9lx9+pxIymYyXOjZn/3tB9PS6k5AWGptF/2//ITGrgM8GtmXjW0/Rws6c5OxCRq0J5f3NkWTfruEBQnjstG1mw46JXfigrzcmhnL+iU6nz6IjfHc0huJqlDfQN1MjA75+1RdDuYxd51PYcabyAY2dpQkbxj5F3zaaPIdJGyJYfuharXxB1FeGBnIWDO5AYEs7bitVvPXT6eodN4YMufey/v0hLAwa1c5MxhFPtcDN3oL0PCVLD16r2cYyMiAnBz74QDPUpyNPujWif/smqCX47M8Let+3LEwMmfefDhjIZWyNSGT10ZhaeRxrUyNWj/Rnai9PZDL45WQ8Q1aeIDm74jxHfRPBUB0K8nLgy5Ju0pWHY1hz7HqV7u9obcoPozrz1X/aY16SbJySU8gLi4+y5MBVfJ1t2TW5G292cUMmgy1hN+i98HC9SJgtKCggKCiIoKCg+yb9CpVTWFhIcHAwwcHBFBZWLin/bkYGct4Ocmf3lO481bIRBUUqZv91iZeXH68Xv16rqm0zG23F9//bcZ6U7Mq/LqZGBiwN7sSbXTTF4ubuvsxH288/koFhdRkayFkyrCPNbM2IzbjN5E0RVcrDKSwsJPjXXwk2MKAQNLV7vvlGU6VaR9WdK2JsKGdGSZ2pH/65TkJmDXo4p0/XVKSOioIlS3TUQo0P+2l+eJyIyWTPhQfnZtXFsTLQ3Y6P+2tetzm7LnPwcu2MJMjlMib3asUPozpjY2bEmYRbvPDtPzVLeq8lImfoIXSRM3S3pQejmbcnCpkMFr9WvRWFk24VMO3XM5yIudP97Ghtwoz+rXmxfRPC4rKYvuWsdmX6Qb5N+fB5H72tel4X5fobitpY2mRTaAKf77xEbmExhnIZ43q05N1nWj1SM/yKVWpeWfEvkQm36NbKnp/erFqxO9B8oc4qmXr/jLcDi1/riEUt5FTUV+cTs3ll+XEUxWom9vTg/ZIE4Icpt0+2aoXFr79Chw6wYQN4empmbdUSSZIY/v1JjkVn0L9dE5YGd6r+xj76CD7/HAwN4epVnRZiXLA3isUHonFuZMa+qT3u+9mqq2OlJEn8b9s5NpxKwMrEkG3vPI2HQ9WqZVdFfMZtxv8cxsXkHOQy+KBv7Rc/FTlD9dyEIHdGPNVCs4bZpkhOxGQ8/E53aWprxoaxTzF7UFuMDTQ7080cBZM2RPDysuPI5TJ2Tu7GuO4tkctg+5kknv7yAGN/Os3By6k1m30h6JWxsTELFy5k4cKFGBvXvLS+TCZjaMk0/L5tnChWSyw9eI3nvzlKVEo18kf0pHS4x8RQztGr6fx8Mr7K23izqxvLg/0wMZRz4LJm6n1lS2I8Dto2s+HLVzS910sORrP7fHKl7qfdJ//7X4xPnQJfX82q8MHB8PrrUM0ezMqQyWR81L81chn8dS6ZU9drkJ80YwbI5VBcrCkmmVy5518Z43u442htQkJmAT9UcVSgNshkMj4d0JYn3RqRqyhm9I+nuXVbWWuP52JnztYJT/NKp+aoJU2P1Ns/h9c810tHRM/QQ9RGzxBoZnG880s4uy+kYGVqyObxgXg7VW/7CZm3ee/XSE7Flj8IDOjQlOl9vUjPU/L5XxcJjb1T86GpjSmvdnbmVX9nmtrW3grypUTP0KNj9/lk/m/HBVJzFdiYGbHmjc50qmQF9frgh3+u89mfFzEzMmDX5G642ld9XwuPz2LMj6fJzFfSzNaML19px1Mt7aq/Uvoj5rM/LvLDseuYGxuw/Z0ueDpWo8cgIwPatIGbNzV5OF9+qfuGlvHh1nNsOBVPu2Y27HinS/UXLG7dWlNJG6BlSzh8WGfLjGwNv8G0XyOxMDbg4PtBOFTQU1/Xx8qMPAUDlx7jRlYBXTzsWPvGk7W6n0uSxC8n4/n0jwsUqSTcG1uwcoRfrfRKiQrUOlRbwRBoKk2P+P4kobFZ2Fsas3KEP34tqvelo1ZLrDsRx5ydlygsvpPrYGIoZ0w3N94O8iD5VgEbQxP4LfwGt0oSJOUyTS7T0M7OPOPtUGvLE4hg6NFy67aSN9eGEh5/CzMjA1aN9NN7NdnKUqslgr87yb8xGfi1eIJfxwViUI0vxtj0fN5YG8r1kqFmK1NDeno50Ku1Iz08G2Nj9viWryhWqRn+/UlOxGTiZm/B9ne6VO/57tihqTckl8OxY1CLlanTchX0nH+IPEUx8wd3KFejrUreew++/vrO+ZYt4eBBTZmAGlKrJV5afpzIhFsM9mvOvMEd7rmNPo6Vl5JzeGX5cW4rVbwe2IJPB7at9ccMj89iws/hpOQUYmFswLzBHXSzVl4ZIhjSodoMhgCybxfx2uoTXEzOwdhAzpyX2/FKdT/EaA7gIVsiy/UCAdhbmvD+c54M9nemSKVmz4UUNpyKvyfnaLCfM0M6O+PcyLzabaiICIZ0R61WEx+vGQJycXGpcDkOXbitLGbcujCOXk3HyECz0nmN17GqIzeybtN30VHyFMV80Nebt4OqV104M1/JvD1R7L2QQkb+nSEEQ7mMgJaN6OXjSC8fR51/XuqDjDwFA5YcI/FWAT29GvP9653v29vywH1y5EhYtw68vCAiAsxqryd6xeFrfLnrMo7WJhx8P6h6S62sX68Z3ivL1VUTEOkghyg8PouXlx1HJoPf3+lKu+Y25a7X17Fyz4UUxq0LA+CLl9oxLEAHdZseIj1PwcT14drvoXHdWxLSx0tnP8pFMKRDtR0MAeQripn26xntqtrjerRkeh/vav2aBc0Q3NrjsczddQmlSkImu1MZ38vJio/7t6ZrK01105i0PDaFJrAl7Ib2YC+TQVcPe4Y96UKv1o466TIVwZDu1OVrqShWMW1TJH+dS0Yugzkvt2NI59o/SOrC5tMJhGw5i5GBjN8ndsWnSfU/vyq1xJmELPZdTGX/pZv3VKz2drLSBEatHWnfzKb6QzT1TNmE6nef8eC95ypOqH7gPpmVpRkuS07W9LrMn19r7VUUq+j19WESMguY9GwrpvX2rPpGLl3SDJXdzcUFDhzQybIdUzZGsP1MEv4tnmDz+MByScT6PFYuOXCV+XuvYCiX8fOYgDpZ97JYpWbenihWHtFM8X+qZSOWDOuEvaVJjbctgiEdqotgCDTdp4v2X+HbA9EAPOvtwKKhvjVaVPNaWh7vb44kIv4WADKg9M1uYWfOm13c6NfOCQcrU5TFavZdvMnG0HiOllnWw97SmP/4OTO0s3O1ci9K5efn4+DgAEBqaqoIhmqgrl9LlVrio+2aWScA/3vem7e663Ydp9ogSRJjfwpj/6WbeDtZsWNil0ovlvkw19Pz+fvSTfZdvElobCZl5yM4WJnwrI8jvVs78LS7/SM1I68ipXkuACuGV7wa+UP3yb/+ghdeAAMDzSwtN7daa+/Oc8lM+CUcUyM5B94LqnpOpEoFVlb3VtP28oLFi6F37xq3MTm7gGfmH6agSMXi1zryYoc7M4r1eayUJIlJG8/wR2QST5gb8fvErnXW67nzXDIhmyPJV6pwsjZl2fBONc5VFMGQDtVVMFTq98gkQjZHoihW4+loyXcjO+NiV/2dUaWW+P6fGJYfukbWfQqpOVmZ0Mn1CXydbfF1fgJbMyN2RCby6+kb5davamFnjpejFd5OVng5WePlZIWrnXmt5RkJ9YckSXy5+zIrD2t+vU0Iciekj1e9X8YjLVdBn0VHyMxXMiHInel9vXX+GFn5Sg5dSWX/xVQORaWSr7xTsM/MyICurewZ4u/Msz4O9f71up9P/7jAmmOxWJQkVLeqTkL1jBnQqxf07Kn7BpYhSRJDVp7gVGwmg3ybsmhox6pv5Kmn4OTJO+c9PeH8eTDSXZ7YN/uvsnD/FZrZmvH3e/efal/XCpQqXl35L+cSs/FytOK3CU/XypIdFYlOzeWtdWHEpOVjZCDj/15sw/AAl2p/bkQwpEN1HQwBRCbcYuxPp0nNVfCEuRHLgv0IdK9Zd2VhkYrfI5P48XgsFx5SVM9ALqN/uyYseLUDf19KZWNoPIevpFW4CLWxoZxWDpZ4OWmCJG8na7ydrGhsZXLfHbiwSMWNrAISsm5zI/M2z7drgp0OukSF2rf80DXm7tZUTx8W4MKsgW2rPZxbV3adS+btX8KRy2Dz+KerPUmhMhTFKk7GZLL/0k32X7xJUpnij51dn+C//Xxq9fFrS5FKzQhdJFTXkXM3shmw9B8kCbZNeJqOVe1hePttzZpq48fDokWa0gDbtmmSwXWkQKni2QWHSMouZFpvT23R0PogJbuQF5f8Q1qugl4+jqwa4VdnQ7+5hUVM33KWXSULB3dysSWkj3e1vgNFMKRD+giGQLMzvrXuNGdvZGMol/HZwLY6SWiTJInTcVmsOHSNvx9QdXR8SdG90oJzmflKLifncDkll6iUXC7fzOVKSi4FRRWXrbcxM6KZrSlPmBtjbChHpZbILigi6VYBaXl3ElFlMrjwaZ/qJToKerH+ZDwztp9DkuCF9k34+lXfSi88rC9TN51hW0QibvYW/DWpa53sb5IkcSEpR/sjRFEyy7NvGydC+nrh3tiy1tugSxl5Cl5c/A9J2YU84+3AdyP9q/8FGRcHubnQtvZmLb2/OZItYTfo5GLLb28/XbXehfPnoVkzzaKtM2bAF19Aq1aay3VQ26vU75FJTNoQgZmRZqq9k41+iuJWJCI+iyGrTqAsVtdar+r9SJLE6qMxfL3vCoVFms9NVw973u/jha+zbaW3I4IhHdJXMASaHpSQLWf5o2TxyFFPu/JRfx+dDUudup7ByO9PlZuKX5aJoZwgr8Y8364Jz/o43tNVqlZLJGTd1gZIUSm5XErJITY9n7trOkrFStK2fQFA45f+h8xQc0AxkMto0cgcUyMDTI3kmBkbYGZkgImR5q+pkRwzozuXASiL1RSpSk8SSpWaouK7zpeeisufL1ZJqCUJCU1SuVqStD1e0t2XU5p4rrmNVHIbc2NDGluZ4GhtgoOVKQ5WJjham9LY2kT7fyNz41r7JaVQKJg4cSIAS5YswcSk7nvV/jybxNRNZyhSSQR5NWZ5sB9mxvWjm78i2QVF9Fl4hJScQkYGtuCzOpg6XFZydgEL911hS9gN1JJmvx/a2ZnJvVrhYFV/vgAf5tyNbP6zQpNQPekZD6aVJFRXaZ/cuxdeflkzZf30aZ0GF2XdzCmk5/xD3Faq+Pa1jgzoUPVK/4AmaPPwgNRUTS/R5Mk6a6MkSQxe8S+n47J4qWMzFg7xpbCwkFdeeQWA3377DVNT/e0f2yJuMHWTJl/sm6G+DPRtVqePfzOnkCUHotkYGk+RSnOg7t3akfee86xUXT4RDOmQPoMh0HxYlh6MZv7eKwB0a2XPktc6YWOumy7qS8k5vLriOLmKBy9MaGwop3urxvRv78SzPo5YPyCxu7BIRXRqHuduZLP9TCJhcVkoCwtIWPgfAJynbkFu/Oh8AVSHoVyGvaUJDqUBU0mg5GBlipONCb7OT9DIonpfAvVlZt6hqFTG/xxGYZEa/xZP8H3J+kP11dGraYz4/hQA60Y/qZe6SVEpuXy1+7K2V9bc2ICx3VoytnvLOsvLqKnyCdV+9G3rVLV9Mj0dfHw0f2fP1vS81JJv/77K1/uu0NTGlAPvB1U/L2fVKhg3TtNTFB2t04Vnz964xYAlxwDYOuFpvOyM68Xnu9ScXZdYeTgGE0M5v44LpEMVemZ0JSHzNov2X2VbhObHhEwGAzs0ZUovzwdO7BHBkA7pOxgqtft8CtN+PcNtpYqW9hZ897o/LXXUzR4en8Xw705yW6mil48jZsYG7DybREkgjoFcVm75DmMDOd1a2fN8uyb0au340C/APEUxy/ddYPqLvkD5YGiof3Ne9nOmsEhFQZGKwpJTgVJFYbFa87f0siIVcpkMIwO55mQow7j0fwM5RgYyjA3vOq+9rea8oVyOXKb5MMlkMmSU/QsyZCXX3ed/IFdRTGqOgrTcQm7mKEjNLSQ1V0Fqyf8Z+coK86vKksmgQ3NbgrwaE+TlUKXp2Eqlknnz5gEQEhKikyU5qut0bCZvrA0lt7AYnybW/PTmkzS2qr/5Xx9vP8+6E3E4WZuyZ2p3vQVvJ2IymLPrMpEJtwDNrM3Jz7Zi6JMuj0SV67IJ1TsmdsHF1qRq+2RpLR9jY4iMBO/aGYIpm5fz/nOeTHymmnk5xcXQsaNmmGzKFFi4UKftLB3S83W2Zd3IDlhbaxLU60MwpFJLjP3pNAcup+JgZcIf73bV2xqX0am5fL3vCjvPafKJDOUyBvs7M+lZD5rY3Dtr8LELhmJjY5k1axYHDhwgJSWFpk2bMnz4cGbMmPHAD50kSXz66aesWrWKrKwsAgICWLp0KW3atKn0Y5e+mDfTM3Gw02/i48WkHMb+dJrEWwVYmxqyNLiTzn7d/nM1nUkbI9gzpTuNrUy4mVPILyfiWH8qnvQyOT53B0ZGBjK6eNjzpFsj3OwscGtsgaudxT2/wMr+cvScvg2FTPMltHRYJ/q3fzQK+VVWkUpNRp6S1LLBUo6iJGAqJC7z9j11ahpZGNO9lT1BXg5092xc7V4jfbiYlMPIH06RnqfA1c6cdaMD6m0RwtvKYp7/5iixGbd5uWMzvh7iq7e2SJLEznMpzNtzmdgMzWrrbvYWhPTxol9bp3o986xIpWb4dyc5eT2TlvYWbJ/Y5YG9xfeQJOjfH3btgm7d4NAhTZXqWrDjTCKTN57BvGQJjGp/ke/ZowngPv9c00ukQ6klQ3r5ShVzBrRiWBfN8GN9CIZAk9T88rLjXE3No0NzGzaNC9Tr7LfzidnM3xvFoag0QDNyMeKpFkwIci83GeexC4Z2797Npk2beO211/Dw8OD8+fOMHTuWESNGMP8BBbzmzp3L559/ztq1a/H09GT27NkcOXKEqKgorKwqNzW09MXsM3c3P7zVvU7W8XqQ9DwF49eFcTouCwO5jI/6+zDqaVedHDjTchX3/KpXFKv462wy60/GcybhFsWVXOC1qY0prvYWuNpb0NLeAkczGNBZU5smNiWDn0JTWHcijp2TuuHh8GglkupCcnYBh6PSOBSVxrHodHIVxdrrZDJo39yWIM/GBHk1pn1z23o/Yys2PZ/h35/kRlYBTtamrBv9ZPWmX9eBsLgsBq84jlq6f92culSkUrPhVDzf7L+qLXza0cWWD/v58KSb7oZjdC09T8GAkoTqZ70dWF3VhOq4OE0xxvx8WLFC5wFGKUmSeGnZcc48YAmMSsvLA8vaOV4tPRjNvD1RNDaVOP3piyUPVz+CIYC4jHwGLj3GrdtFDPRtyqIhvnoP2ENjM5m3O0q7LqeFsQGju7oxpntLrE2NHr9gqCLz5s1j+fLlxMTEVHi9JEk0bdqUKVOm8MEHHwCaJD9HR0fmzp3LuEp+8EpfTN8Z21g44mmCvBx09hyqS1GsYsa282wJuwHAa0868+mAtrU+o6ewSMW5xGzC47IIj88iPP5WuTpED6JWFmpzhrrM/gv3JvY4Wpvg7WSNu4MlbnYWPGFhhKmRAYZymd4/ZHWpSKUmLC6LQ1FpHIpK5fJdK8U/YW5E95LAqHsrTa9RerqmMKa9vX29ea1SsgsZ8f1JrqbmYWtuxI9vPKmX/ILK+Gr3ZZYdukYjC2Ntb6i+5SmKWXUkhtVHYrSzNHv5OPBBX+96G1ieu5HNKyuOoyhSMdrfnreD3Ku2T377rSYh2doaLl7UzOCqBWWXwPhjYlfaNrN5+J3qWGGRit4LDxOXkqU9VtanYAjgeHQ6I344hUotMb2vFxOCPPTdJCRJ4sjVdObvieJcYjagmc08voc7L7dthFPjRo93MPTRRx+xe/duTp8+XeH1MTExuLu7Ex4eTseOd4puDRw4EFtbW3788cdKPU5pMHQ9MRXXpvVnoUpJkvju6HW+2HUJSYIn3RqxYrhfnQ6vSJLEjawCwuOziIi/RXh8FhcSs7W5RqVkMjBSK7n61cvAwxOo5TIwMTTAxEiOiaFc87+hvOR8yf+ll991G0MDuTa35+5cHyrKDeJO/hBlrnu5UzO9jYunZBdy+Eoqh6LS+Ofqvb1Gre2N2fn+c0D9O1hm5SsZteYUkTeysTA2YPXr/jztbq/vZt1DUaxi4JJjXE7JpZePI6tH+tWboDI1p5BFf19lU2gCKrWEXAav+jsztben3vbJB/kt7AZTfzlZvS9wlQqCgqB7d/j4Y6jFmVOTNkTwe2QST7o1YtNbT1X//ZYk2LoVfv0VNmzQ6fDernPJjFtzvN4GQwDr/o3l4x0XkMlg9Qh/erV21HeTAM330Z4LKczfe0WbhtDIqJiI2YMe32Do2rVrdOrUiQULFjBmzJgKb3P8+HG6dOlCYmIiTZvemVL51ltvERcXx549eyq8n0KhQKG409uRnZ2Ni4sL3+0OZXBgNda5qWVHrqQxfUskeQoVge52rB7pr9f2FChVXEjKJvLGLSITbhGZkE1GvhK1spDEZSMB+P34OVILZMRl3iYuI5+4jNskZBZQpKp4ir8+rB8bQPvmtvpuBkUqNZEJt/jnajpHo9OJSskt91omJSXVu4NlnqKYyRsiOHk9ExMjObsndaNxPfwSj0rJYeiqExSpJL58uR0vVHfqdS2JSc/jm/1X+PuSJi+iu6c9y4L99Nyqin26NYyv33gGgMgr13F1rMLwnkqlWaajliXdKuCFxf+gLFazcEgHerd2qt6GMjOhXTvNkNmqVTBkiM7aKEkSI1Ye4Y8PBmjaXA8/3wCz/rzAptAbmBvL+WtSNxrXo/IQKrXEX2eTWHoomoSUTBKXj+LWrVvY2DykN1DSo08++USipHzL/U6hoaHl7pOYmCh5eHhIo0ePfuC2jx07JgFSUlJSucvHjBkj9enTp0ZtEidxEidxEidxEqdH45SQkPDQeESvPUPp6ena3If7cXV11RadSkpKomfPngQEBLB27VrkD+ierO4w2d09Q2q1mszMTOzs7OpNNzpohu+cnZ1JSEjQ65R/4f7Ee1T/ifeo/hPv0aOhPr5PkiSRm5tL06ZNHxgvAOi1ype9vT329pXLJ0hMTKRnz574+fmxZs2ahz4xNzc3nJyc2LdvnzYYUiqVHD58mLlz5973fiYmJvdUT7W1ta1UG/XB2tq63ux4QsXEe1T/ifeo/hPv0aOhvr1PDx0eK1H/q3uh6REKCgrC2dmZ+fPnk5aWRkpKCikpKeVu5+3tzbZt2wBNQuyUKVP44osv2LZtG+fPn2fUqFGYm5szbNgwfTwNQRAEQRDqoUei/vvevXuJjo4mOjqa5s2bl7uu7ChfVFQU2dnZ2vPTp0+noKCACRMmaIsu7t27t9I1hgRBEARBePw9EsHQqFGjGDVq1ENvd3f6k0wmY+bMmcycObN2GqZHJiYmfPLJJ3pZpFOoHPEe1X/iPar/xHv0aHjU36dHcmq9IAiCIAiCrjwSOUOCIAiCIAi1RQRDgiAIgiA0aCIYEgRBEAShQRPB0GNEoVDg66tZSfjMmTP6bo5QIjY2ltGjR+Pm5oaZmRnu7u588sknKJVKfTetwVu2bBlubm6Ympri5+fH0aNH9d0kocScOXPo3LkzVlZWODg4MGjQIKKiovTdLOEB5syZoy1r86gRwdBjZPr06eXWYRPqh8uXL6NWq1m5ciUXLlxg4cKFrFixgv/973/6blqDtmnTJqZMmcKMGTOIiIigW7du9OvXj/j4eH03TQAOHz7MO++8w4kTJ9i3bx/FxcU899xz5Ofn67tpQgVCQ0NZtWoV7du313dTqkXMJntM7Nq1i2nTpvHbb7/Rpk0bIiIi8PX11XezhPuYN28ey5cvJyYmRt9NabACAgLo1KkTy5cv117m4+PDoEGDmDNnjh5bJlQkLS0NBwcHDh8+TPfu3fXdHKGMvLw8OnXqxLJly5g9eza+vr4sWrRI382qEtEz9Bi4efMmY8eOZd26dZibm+u7OUIlZGdn06hRFVb2FnRKqVQSFhbGc889V+7y5557juPHj+upVcKDlBbUFZ+b+uedd96hf//+9OrVS99NqbZHouiicH+SJDFq1CjGjx+Pv78/sbGx+m6S8BDXrl1j8eLFLFiwQN9NabDS09NRqVQ4OjqWu9zR0fGeZX4E/ZMkiWnTptG1a1fatm2r7+YIZWzcuJHw8HBCQ0P13ZQaET1D9dTMmTORyWQPPJ0+fZrFixeTk5PDhx9+qO8mNziVfY/KSkpKom/fvgwePJgxY8boqeVCKZlMVu68JEn3XCbo38SJEzl79iwbNmzQd1OEMhISEpg8eTI///wzpqam+m5OjYicoXoqPT2d9PT0B97G1dWVoUOH8scff5Q7gKtUKgwMDAgODubHH3+s7aY2WJV9j0oPEklJSfTs2ZOAgADWrl2LXC5+i+iLUqnE3NyczZs389JLL2kvnzx5MmfOnOHw4cN6bJ1Q1rvvvsv27ds5cuQIbm5u+m6OUMb27dt56aWXMDAw0F6mUqmQyWTI5XIUCkW56+ozEQw94uLj48nJydGeT0pKok+fPmzZsoWAgIB7FrYV9CMxMZGePXvi5+fHzz///MgcIB5nAQEB+Pn5sWzZMu1lrVu3ZuDAgSKBuh6QJIl3332Xbdu2cejQIVq1aqXvJgl3yc3NJS4urtxlb7zxBt7e3nzwwQeP1JCmyBl6xLm4uJQ7b2lpCYC7u7sIhOqJpKQkgoKCcHFxYf78+aSlpWmvc3Jy0mPLGrZp06YxYsQI/P39CQwMZNWqVcTHxzN+/Hh9N01Ak5S7fv16duzYgZWVlTaXy8bGBjMzMz23TgCwsrK6J+CxsLDAzs7ukQqEQARDglDr9u7dS3R0NNHR0fcEqKJjVn+GDBlCRkYGn332GcnJybRt25adO3fSokULfTdNAG3Jg6CgoHKXr1mzhlGjRtV9g4THmhgmEwRBEAShQRMZnIIgCIIgNGgiGBIEQRAEoUETwZAgCIIgCA2aCIYEQRAEQWjQRDAkCIIgCEKDJoIhQRAEQRAaNBEMCYIgCILQoIlgSBAEQRCEBk0EQ4Ig1EhQUBBTpkzRdzN0oqbPZe3atdja2uqsPYIg1A0RDAmCUCNbt25l1qxZ+m5GnXN1dWXRokU6325sbCwymYwzZ87ofNuCIFRMrE0mCEKNNGrUSN9NEARBqBHRMyQIQo2UHVpydXXliy++4M0338TKygoXFxdWrVqlvW1gYCD//e9/y90/LS0NIyMjDh48qN3GrFmzGDZsGJaWljRt2pTFixeXu092djZvvfUWDg4OWFtb88wzzxAZGam9fubMmfj6+rJu3TpcXV2xsbFh6NCh5Obmam+Tn5/PyJEjsbS0pEmTJixYsKBKzzkuLo6pU6cik8mQyWTlrt+zZw8+Pj5YWlrSt29fkpOTy12/Zs0afHx8MDU1xdvbm2XLlmmvc3NzA6Bjx47IZDLtQqWhoaH07t0be3t7bGxs6NGjB+Hh4ZVusyAI9yeCIUEQdGrBggX4+/sTERHBhAkTePvtt7l8+TIAwcHBbNiwgbLrQ2/atAlHR0d69OihvWzevHm0b9+e8PBwPvzwQ6ZOncq+ffsAkCSJ/v37k5KSws6dOwkLC6NTp048++yzZGZmardx7do1tm/fzp9//smff/7J4cOH+fLLL7XXh4SEcPDgQbZt28bevXs5dOgQYWFhlXqOW7dupXnz5toV78sGO7dv32b+/PmsW7eOI0eOEB8fz/vvv6+9fvXq1cyYMYPPP/+cS5cu8cUXX/Dxxx/z448/AnDq1CkA9u/fT3JyMlu3bgUgNzeX119/naNHj3LixAlatWrF888/Xy7AEwShmiRBEIQa6NGjhzR58mRJkiSpRYsW0vDhw7XXqdVqycHBQVq+fLkkSZKUmpoqGRoaSkeOHNHeJjAwUAoJCdGeb9GihdS3b99yjzFkyBCpX79+kiRJ0t9//y1ZW1tLhYWF5W7j7u4urVy5UpIkSfrkk08kc3NzKScnR3t9SEiIFBAQIEmSJOXm5krGxsbSxo0btddnZGRIZmZm2ufyMC1atJAWLlxY7rI1a9ZIgBQdHa29bOnSpZKjo6P2vLOzs7R+/fpy95s1a5YUGBgoSZIkXb9+XQKkiIiIBz5+cXGxZGVlJf3xxx+Vaq8gCPcneoYEQdCp9u3ba/+XyWQ4OTmRmpoKQOPGjenduze//PILANevX+fff/8lODi43DYCAwPvOX/p0iUAwsLCyMvLw87ODktLS+3p+vXrXLt2TXsfV1dXrKystOebNGmibce1a9dQKpXlHqdRo0Z4eXnV+Pmbm5vj7u5e4eOmpaWRkJDA6NGjy7V99uzZ5dpekdTUVMaPH4+npyc2NjbY2NiQl5dHfHx8jdssCA2dSKAWBEGnjIyMyp2XyWSo1Wrt+eDgYCZPnszixYtZv349bdq0oUOHDg/dbmlejlqtpkmTJhw6dOie25Sd1v6gdkhlhul0raLHLX280sdfvXo1AQEB5W5nYGDwwO2OGjWKtLQ0Fi1aRIsWLTAxMSEwMBClUqnD1gtCwySCIUEQ6tSgQYMYN24cu3fvZv369YwYMeKe25w4ceKe897e3gB06tSJlJQUDA0NcXV1rVYbPDw8MDIy4sSJE7i4uACQlZXFlStXyuUuPYixsTEqlapKj+vo6EizZs2IiYm5pzes7HaBe7Z99OhRli1bxvPPPw9AQkIC6enpVXp8QRAqJoIhQRDqlIWFBQMHDuTjjz/m0qVLDBs27J7bHDt2jK+++opBgwaxb98+Nm/ezF9//QVAr169CAwMZNCgQcydOxcvLy+SkpLYuXMngwYNwt/f/6FtsLS0ZPTo0YSEhGBnZ4ejoyMzZsxALq985oCrqytHjhxh6NChmJiYYG9vX6n7zZw5k0mTJmFtbU2/fv1QKBScPn2arKwspk2bhoODA2ZmZuzevZvmzZtjamqKjY0NHh4erFu3Dn9/f3JycggJCcHMzKzS7RUE4f5EzpAgCHUuODiYyMhIunXrpu2ZKeu9994jLCyMjh07MmvWLBYsWECfPn0AzbDTzp076d69O2+++Saenp4MHTqU2NhYHB0dK92GefPm0b17dwYMGECvXr3o2rUrfn5+lb7/Z599RmxsLO7u7jRu3LjS9xszZgzfffcda9eupV27dvTo0YO1a9dqp9QbGhry7bffsnLlSpo2bcrAgQMB+OGHH8jKyqJjx46MGDGCSZMm4eDgUOnHFQTh/mRSbQ6eC4IgVJGrqytTpkx5bJb4EASh/hM9Q4IgCIIgNGgiGBIEQbjL0aNHy019v/skCMLjRQyTCYIg3KWgoIDExMT7Xu/h4VGHrREEobaJYEgQBEEQhAZNDJMJgiAIgtCgiWBIEARBEIQGTQRDgiAIgiA0aCIYEgRBEAShQRPBkCAIgiAIDZoIhgRBEARBaNBEMCQIgiAIQoMmgiFBEARBEBq0/wfqRp4FpFOl0AAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3hTVRvAf0m6927poIUCZRXK3mVvEEFAhkwBRREFUdzg50BRERwoyJIpMmTvUfZeZe+WQvfeTZOc74/bhpa2NG1TWjS/58mT5Obcc8+9Ofec977nHTIhhMCAAQMGDBgwYOA/iryiG2DAgAEDBgwYMFCRGIQhAwYMGDBgwMB/GoMwZMCAAQMGDBj4T2MQhgwYMGDAgAED/2kMwpABAwYMGDBg4D+NQRgyYMCAAQMGDPynMQhDBgwYMGDAgIH/NAZhyIABAwYMGDDwn8YgDBkwYMCAAQMG/tMYhKHnhGXLliGTybQvIyMjPD09GTNmDI8ePSpQ7uzZsxXY2srN6tWrmTt3brnV7+Pjw+jRo7Xfw8PDmTlzJhcvXtS5jv3799O0aVMsLS2RyWRs2rRJ7+3MJSQkBJlMxrJly8rtGJWVDh060KFDh3I/TuPGjXn77bfL/TiVkR07djBz5sxCf3vyXqlIgoKCkMlkBAUFFVv2Wd6fhSGTyfJd05kzZyKTyYiNjX2m7aio45YHRhXdAAMlY+nSpdSuXZuMjAwOHz7MrFmzOHToEJcvX8bS0rKim/dcsHr1aq5cucI777xTLvX/888/2NjYaL+Hh4fz+eef4+PjQ0BAQLH7CyEYPHgwtWrVYsuWLVhaWuLn51cubQWoUqUKJ06cwNfXt9yO8V/m/v37XLhwoVwF8MrMjh07+PXXXwsViJ68V54HnvX9aeDZYBCGnjPq169P06ZNAejYsSNqtZovvviCTZs2MXz48ApuXeUmPT0dCwuLEu2jVqtRqVSYmprqvE+jRo1K2rR8hIeHEx8fT//+/encuXOZ6solIyMDMzMzZDJZgd9MTU1p2bKlXo5joCDr16/HxcWFtm3bltsxMjIyMDc3L7f6S4Mu91tZ75WKoDzuTwMVj2GZ7DkndxILDQ3Ntz0lJYWJEyfi5OSEo6MjAwYMIDw8PF+ZtWvX0q1bN6pUqYK5uTl16tThgw8+IC0tLV+5e/fuMWTIENzd3TE1NcXV1ZXOnTsXWPZZu3YtrVq1wtLSEisrK7p3786FCxeKPYfcpb29e/cyZswYHBwcsLS0pG/fvty7d69A+SVLltCwYUPMzMxwcHCgf//+XL9+PV+Z0aNHY2VlxeXLl+nWrRvW1tZ07tyZDh06sH37dkJDQ/MtO8Lj5aLZs2fz5ZdfUq1aNUxNTTl48CCZmZm8++67BAQEYGtri4ODA61atWLz5s0F2pdX9R8UFESzZs0AGDNmjPZ4RS0bzJw5E09PTwCmT5+OTCbDx8dH+/vRo0fp3Lkz1tbWWFhY0Lp1a7Zv317o9dyzZw9jx47F2dkZCwsLsrKyCj1mYctkuervq1evMnToUGxtbXF1dWXs2LEkJSVpyzVq1Ih27doVqFOtVuPh4cGAAQMKXNuvvvqKqlWrYmZmRtOmTdm/f3+B/W/fvs2wYcNwcXHB1NSUOnXq8Ouvv+Yrk7ussWbNGj7++GPc3d2xsbGhS5cu3Lx5M19ZIQSzZ8/G29sbMzMzGjduzM6dOwu9Hk8yaNAg6tWrl29b3759kclkrFu3Trvt/PnzyGQytm7dmq/shg0b6N+/P3J50cNt7vW+cOECAwYMwMbGBltbW1555RViYmLylfXx8aFPnz5s3LiRRo0aYWZmxueffw7AlStX6NevH/b29piZmREQEMCff/5Z6HVbuXIlU6dOxc3NDXNzc9q3b1/o/bplyxZatWqFhYUF1tbWdO3alRMnThTa/vPnzzNw4EDs7e3x9fVl9OjR2v8t7/0WEhKiPZcnl8kePHjAK6+8ku+//+GHH9BoNNoyuf3p+++/Z86cOVSrVg0rKytatWrFyZMn89V39uxZhgwZgo+PD+bm5vj4+DB06NACY6YuFHd/6tJvAZKTk5k2bRrVqlXDxMQEDw8P3nnnnQJjb3JyMuPHj8fR0RErKyt69OjBrVu3imxfWFhYsf1H13Ef4NSpU/Tt2xdHR0fMzMzw9fUtVqN+48YNqlevTosWLYiOjn5q2UqFMPBcsHTpUgGIM2fO5Ns+b948AYiFCxfmK1e9enXx1ltvid27d4tFixYJe3t70bFjx3z7fvHFF+LHH38U27dvF0FBQeL3338X1apVK1DOz89P1KhRQ6xYsUIcOnRIbNiwQbz77rvi4MGD2jJfffWVkMlkYuzYsWLbtm1i48aNolWrVsLS0lJcvXpVp3Pz8vISY8eOFTt37hQLFy4ULi4uwsvLSyQkJGjLfv311wIQQ4cOFdu3bxfLly8X1atXF7a2tuLWrVvacqNGjRLGxsbCx8dHzJo1S+zfv1/s3r1bXL16VbRp00a4ubmJEydOaF9CCHH//n0BCA8PD9GxY0exfv16sWfPHnH//n2RmJgoRo8eLVasWCEOHDggdu3aJaZNmybkcrn4888/852Pt7e3GDVqlBBCiKSkJO35ffLJJ9rjhYWFFXotwsLCxMaNGwUg3nrrLXHixAlx/vx5IYQQQUFBwtjYWDRp0kSsXbtWbNq0SXTr1k3IZDLx119/FbieHh4eYsKECWLnzp1i/fr1QqVSFXrM3PNeunSpdtuMGTMEIPz8/MRnn30m9u7dK+bMmSNMTU3FmDFjtOVy+1/eay+EEDt27BCA2LJlS75jeHl5ibZt24oNGzaIdevWiWbNmgljY2Nx/Phx7b5Xr14Vtra2wt/fXyxfvlzs2bNHvPvuu0Iul4uZM2dqyx08eFAAwsfHRwwfPlxs375drFmzRlStWlXUrFkz3/nmns+rr76q7V8eHh7Czc1NtG/fvtDrksvvv/8uABEeHi6EECI7O1tYW1sLc3NzMX78eG25b7/9VhgZGYnk5OR8/6dMJhN79ux56jFy2+ft7S3ee+89sXv3bjFnzhxhaWkpGjVqJJRKpbast7e3qFKliqhevbpYsmSJOHjwoDh9+rS4ceOGsLa2Fr6+vmL58uVi+/btYujQoQIQ3377bYHr5uXlJfr16ye2bt0qVq5cKWrUqCFsbGzE3bt3tWVXrVolANGtWzexadMmsXbtWtGkSRNhYmIijhw5Umj7p0+fLvbu3Ss2bdok7ty5IwYOHCiAfPdbZmam9lxy7xUhhIiOjhYeHh7C2dlZ/P7772LXrl1i0qRJAhATJ07UlsvtTz4+PqJHjx5i06ZNYtOmTcLf31/Y29uLxMREbdl169aJzz77TPzzzz/i0KFD4q+//hLt27cXzs7OIiYmpsB1yTuuPcnT7k9d+21aWpoICAgQTk5OYs6cOWLfvn1i3rx5wtbWVnTq1EloNBohhBAajUZ07NhRmJqaiq+++krs2bNHzJgxQ1SvXl0AYsaMGaXqP7qO+7t27RLGxsaiQYMGYtmyZeLAgQNiyZIlYsiQIQWOm3sdg4KChL29vejXr59IS0sr8jpWRgzC0HNC7gR38uRJkZ2dLVJSUsS2bduEs7OzsLa2FpGRkfnKvfHGG/n2nz17tgBEREREofVrNBqRnZ0tDh06JABx6dIlIYQQsbGxAhBz584tsm0PHjwQRkZG4q233sq3PSUlRbi5uYnBgwfrdG79+/fPt/3YsWMCEF9++aUQQoiEhARhbm4uevXqVeD4pqamYtiwYdpto0aNEoBYsmRJgeP17t1beHt7F9ieO8D6+vrmGzwKQ6VSiezsbPHqq6+KRo0a5fvtyQH+zJkzBYSNp5Hbju+++y7f9pYtWwoXFxeRkpKSrx3169cXnp6e2kE093qOHDmyRMcrTBiaPXt2vrJvvPGGMDMz0x4rNjZWmJiYiI8++ihfucGDBwtXV1eRnZ2d7xju7u4iIyNDWy45OVk4ODiILl26aLd1795deHp6iqSkpHx1Tpo0SZiZmYn4+HghxOPJ68n+8Pfff2snXyGkfmNmZlZk/ypOGLpz544AxPLly4UQQhw9elQA4v333xfVqlXTluvatato3bp1vn3nzp0r7O3ttdehKHKv95QpU/JtzxVGVq5cqd3m7e0tFAqFuHnzZr6yQ4YMEaampuLBgwf5tvfs2VNYWFhoBYTc69a4cWPt/yiEECEhIcLY2FiMGzdOCCGEWq0W7u7uwt/fX6jVam25lJQU4eLiku9cc9v/2WefFTi3N998UxT13P3kvfLBBx8IQJw6dSpfuYkTJwqZTKY959z+5O/vn0/oPX36tADEmjVrCj2eENI9k5qaKiwtLcW8efO023URhvIe+8n7U9d+O2vWLCGXyws82K5fv14AYseOHUIIIXbu3CmAfG0UQnrwLEoY0qX/5KWocV8IIXx9fYWvr2+++/VJ8gpDK1asECYmJmLy5Mn5+svzgmGZ7DmjZcuWGBsbY21tTZ8+fXBzc2Pnzp24urrmK/fCCy/k+96gQQMg/3LavXv3GDZsGG5ubigUCoyNjWnfvj2AdtnJwcEBX19fvvvuO+bMmcOFCxfyqasBdu/ejUqlYuTIkahUKu3LzMyM9u3b6+SdARSweWrdujXe3t4cPHgQgBMnTpCRkVFAre7l5UWnTp0KXW556aWXdDp2Xl544QWMjY0LbF+3bh1t2rTBysoKIyMjjI2NWbx4cYEluvIgLS2NU6dOMXDgQKysrLTbFQoFI0aM4OHDhwWWhkpz7k9SWD/KzMzUqr8dHR3p27cvf/75p7ZfJCQksHnzZkaOHImRUX6zxAEDBmBmZqb9bm1tTd++fTl8+DBqtZrMzEz2799P//79sbCwyNefevXqRWZmZoFlkOL6+okTJ8jMzCyyfxWHr68vPj4+7Nu3D4C9e/fi7+/PK6+8wv3797l79y5ZWVkcPXqULl265Nt3w4YN9OvXr8B1KIon2zh48GCMjIy090Dec6xVq1a+bQcOHKBz5854eXnl2z569GjS09MLLG0NGzYsnw2Zt7c3rVu31h7r5s2bhIeHM2LEiHxLfFZWVrz00kucPHmS9PT0fHWWtc8dOHCAunXr0rx58wLnIITgwIED+bb37t0bhUKh/V7YOJeamsr06dOpUaMGRkZGGBkZYWVlRVpamt7u3ZL0223btlG/fn0CAgLylevevXs+b7bc/+HJPjFs2LAi26FL/9Fl3L916xZ3797l1VdfzXe/FsVXX33F6NGj+eabb5g3b95Tl4QrK89fi//jLF++nDNnznDhwgXCw8MJDg6mTZs2Bco5Ojrm+55rAJyRkQFIA0S7du04deoUX375JUFBQZw5c4aNGzfmKyeTydi/fz/du3dn9uzZNG7cGGdnZyZPnkxKSgoAUVFRADRr1gxjY+N8r7Vr1+rsdunm5lbotri4OADte5UqVQqUc3d31/6ei4WFRak8VQqrf+PGjQwePBgPDw9WrlzJiRMnOHPmDGPHjiUzM7PExygpCQkJCCGKPHegwPkXVrakFNePAMaOHcujR4/Yu3cvAGvWrCErK6tQl+mi/mOlUklqaipxcXGoVCp+/vnnAn2pV69eAAX6U3FtzL0uRR1bFzp37qwVtvft20fXrl3x9/fH1dWVffv2cezYMTIyMvIJQ5GRkRw7dqxEAsKT7TEyMsLR0VGn/zYuLq5E/aOs95tGoyEhIaHYdpWEkp6DLv1z2LBh/PLLL4wbN47du3dz+vRpzpw5g7Ozc75yZW23rv02KiqK4ODgAuWsra0RQmjLxcXFaf//vDytzxbXf3Qd93PtjHLto4pj5cqVeHh4MGTIEJ3KV0YM3mTPGXXq1NF6k5WFAwcOEB4eTlBQkPapACAxMbFAWW9vbxYvXgxITwx///03M2fORKlU8vvvv+Pk5ARIXjO6PGkXRWRkZKHbatSoATwe+CIiIgqUCw8P17Yjl8I8p3ShsP1WrlxJtWrVWLt2bb7fizJK1jf29vbI5fIizx3Q2/mXlO7du+Pu7s7SpUvp3r07S5cupUWLFtStW7dA2aL+YxMTE6ysrDA2NtZqu958881Cj1etWrUStS+33xR17LwGsEXRuXNnFi9ezOnTpzl16hSffPIJAJ06dWLv3r2EhoZiZWWVzyvvn3/+wdLSkq5du+rc1sjISDw8PLTfVSoVcXFxBSbEwv5bR0fHEvWPoq5H7rGKu9/kcjn29vbFtqsklPQciiMpKYlt27YxY8YMPvjgA+32rKws4uPjy9TWvNjb2+vcb52cnDA3N2fJkiWFlss9R0dHx0L//8L+t7y/Pa3/6DruOzs7A/Dw4cMij5WXXbt28fLLL9OuXTv2799fpnmgojBohv6j5A5aT7qML1iw4Kn71apVi08++QR/f3/Onz8PSJOhkZERd+/epWnTpoW+dGHVqlX5vh8/fpzQ0FBtULxWrVphbm7OypUr85V7+PChdolAF0xNTUv8RCiTyTAxMck32EdGRhbqTVbY8YAyPYVaWlrSokULNm7cmK8ejUbDypUr8fT0LLBs8qzInQQ2bdrEkSNHOHv2LGPHji207MaNG/Np0lJSUti6dSvt2rVDoVBgYWFBx44duXDhAg0aNCi0Lz0pGBRHy5YtMTMzK7J/6ULnzp2RyWR8+umnyOVyAgMDAejSpQsHDx5k7969BAYG5lte3bBhA3369ClRWIYn2/j333+jUql0CgzZuXNn7WSXl+XLl2NhYVEgfMKaNWsQQmi/h4aGcvz4ce2x/Pz88PDwYPXq1fnKpaWlsWHDBq2HWXGUpP937tyZa9euaceWvOcgk8no2LFjsXXkRSaTIYQo8B8sWrQItVpdorqeRkn6bZ8+fbh79y6Ojo6FlssVznPP9ck+sXr16iLbUVz/0XXcr1WrFr6+vixZskSnBz5vb2+OHDmCqakp7dq14/bt28XuU9kwaIb+o7Ru3Rp7e3tef/11ZsyYgbGxMatWreLSpUv5ygUHBzNp0iQGDRpEzZo1MTEx4cCBAwQHB2uftHx8fPjf//7Hxx9/zL179+jRowf29vZERUVx+vRpLC0tta6/T+Ps2bOMGzeOQYMGERYWxscff4yHhwdvvPEGAHZ2dnz66ad89NFHjBw5kqFDhxIXF8fnn3+OmZkZM2bM0Onc/f392bhxI7/99htNmjRBLpcXK7DlujK/8cYbDBw4kLCwML744guqVKlS7I3v6+uLubk5q1atok6dOlhZWeHu7q5V/evKrFmz6Nq1Kx07dmTatGmYmJgwf/58rly5wpo1a56ZJqgwxo4dy7fffsuwYcMwNzfn5ZdfLrScQqGga9euTJ06FY1Gw7fffktycnK+/jFv3jzatm1Lu3btmDhxIj4+PqSkpHDnzh22bt1awG6kOOzt7Zk2bRpffvllvv41c+ZMnZfJXFxcqF+/Pnv27KFjx45aIaBLly7Ex8cTHx/PnDlztOXj4uI4dOgQf/31V4naunHjRoyMjOjatStXr17l008/pWHDhgwePLjYfWfMmMG2bdvo2LEjn332GQ4ODqxatYrt27cze/ZsbG1t85WPjo6mf//+jB8/nqSkJGbMmIGZmRkffvghAHK5nNmzZzN8+HD69OnDa6+9RlZWFt999x2JiYl88803Op2Tv78/AN9++y09e/ZEoVDQoEEDTExMCpSdMmUKy5cvp3fv3vzvf//D29ub7du3M3/+fCZOnFhigd/GxobAwEC+++47nJyc8PHx4dChQyxevBg7O7sS1VUcuvbbd955hw0bNhAYGMiUKVNo0KABGo2GBw8esGfPHt59911atGhBt27dCAwM5P333yctLY2mTZty7NgxVqxYUWQbius/uo77AL/++it9+/alZcuWTJkyhapVq/LgwQN2795dQOgCaYn00KFDdO/encDAQPbu3Uv9+vX1dHWfARVpvW1Ad4pyrde1XGGeEsePHxetWrUSFhYWwtnZWYwbN06cP38+n2dRVFSUGD16tKhdu7awtLQUVlZWokGDBuLHH38s4Kq9adMm0bFjR2FjYyNMTU2Ft7e3GDhwoNi3b59Obd6zZ48YMWKEsLOz03qN3b59u0D5RYsWiQYNGggTExNha2sr+vXrV8B9f9SoUcLS0rLQ48XHx4uBAwcKOzs7IZPJtJ4uRXmJ5PLNN98IHx8fYWpqKurUqSP++OMPrTdFXp70kBFCiDVr1ojatWsLY2PjAp4gT/K0dhw5ckR06tRJWFpaCnNzc9GyZUuxdevWfGV07StPHq8wb7K8rsd5675//36Belq3bi0AMXz48CKP8e2334rPP/9ceHp6ChMTE9GoUSOxe/fuQsuPHTtWeHh4CGNjY+Hs7Cxat26t9SwU4nGfXrduXbHno9FoxKxZs4SXl5cwMTERDRo0EFu3bhXt27cv1psslylTpghAfPXVV/m216xZUwAiODhYu23RokXCwsJCZ/fi3Ot97tw50bdvX2FlZSWsra3F0KFDRVRUVL6y3t7eonfv3oXWc/nyZdG3b19ha2srTExMRMOGDQt4MeZetxUrVojJkycLZ2dnYWpqKtq1ayfOnj1boM5NmzaJFi1aCDMzM2FpaSk6d+4sjh07Vmj7n+wvQgiRlZUlxo0bJ5ydnbX3W27/KexeCQ0NFcOGDROOjo7C2NhY+Pn5ie+++y6fh9LT7pEn76+HDx+Kl156Sdjb2wtra2vRo0cPceXKlQLHLqs3We5vxfVbIYRITU0Vn3zyifDz89OOY/7+/mLKlClaz2AhhEhMTBRjx44VdnZ2wsLCQnTt2lXcuHGjSG8yXfqPLuN+LidOnBA9e/YUtra2wtTUVPj6+ubzWCvsf09MTBRt2rQRDg4OOo9BlQGZEHn0nwYMVADLli1jzJgxnDlzRi/2UAYqHyEhIVSrVo3vvvuOadOmVXRzyp1evXphbm7Ohg0bdCo/c+ZMPv/8c2JiYkpsF1NSgoKC6NixI+vWrWPgwIHleiwDBp4XDMtkBgwYMKBnduzYUdFNMGDAQAkwGFAbMGDAgAEDBv7TGJbJDBgwYMCAAQP/aZ4bzdCsWbNo1qwZ1tbWuLi48OKLLxaIuFsYhw4dokmTJpiZmVG9enV+//33Z9BaAwYMGDBgwMDzwnMjDB06dIg333yTkydPsnfvXlQqFd26dSs0024u9+/fp1evXrRr144LFy7w0UcfMXnyZJ2NGg0YMGDAgAED/36e22WymJgYXFxcOHTokDYA2pNMnz6dLVu25Ms/8/rrr3Pp0qUCeXoMGDBgwIABA/9NnltvsqSkJEBKJFoUJ06coFu3bvm2de/encWLF5OdnV1oMs6srKx8ETc1Gg3x8fE4OjpWaFA7AwYMGDBgwIDuCCFISUnB3d292OSxz6UwJIRg6tSptG3b9qkRLiMjIwtkc3d1dUWlUhEbG1toQsBZs2bpFC3ZgAEDBgwYMFD5CQsLKzbp7HMpDE2aNIng4GCOHj1abNkntTm5q4JFaXk+/PBDpk6dqv2elJRE1apVaf3J34SlStucrUx4rX11BjT2wsSo4s2uhBB8vvUq6889wtJUwepxLfB1sa7oZuUjLS1Nm36iyYd/s+PdLpgZK/R3gBs3wNoa8iQpLFU1EckMWnACIWD52GY09i5a81gmhIBhw2DHDvjxRygil1fhuwo+2XSFzRfDsTU3Yu2EVng6FJ8j6lmTlJHNkqP3WXEyFKVKA0DXui5M7lyTak5WFdw6ifDEDAbMP0ZqlprJnWswIdC3optUKGvPPODL7dcRAnr5u/FVf3+MFRU/9uRFqdJwITSBI3djOXo7hjvR+e05HSyMaV3DiXY1nWjl64SDZcF0HOVNtlqDEKDJmQeEAIHIeZfuLZGznZxyIqegyFNeowGlWoNSpSZLpSFLpUaZLchS53xWacjK1qBU5/6uQZmtIUutkX5TqUnLUhOWkEFoXCopmY/zpGmUmTyaPxIAjzeWIzcxQybLadMTeNiZEeBlR0BVOxp62lHL1RqjZ9QvHsSnMWn1Be7FpGFiJOfLF+vTy7+ggqGiuBSWwLurTnJm1hCsrYufD587m6G33nqLTZs2cfjw4WKzVwcGBtKoUSPmzZun3fbPP/8wePBg0tPTC10me5Lk5GRsbW2Ji09g/90U5u67zaNEKeGgp70573SpRf9GHijkFbuEplRpeGXxKU7fj8fb0YJNb7TBvgIGm6JIS0vDykqaAL2mrOf9Pg2Y1KlmBbeqcD7cGMya02E09LTlnzfaIC+v//ann+Dtt8HGBq5dK5Egl5mtZvCCEwQ/TKJOFRs2TmyNuYkehUs9EpGUwZw9t9hw/iEaAUZyGUObV2Vy55o4W+uexLS8WH/uIdPWXcJYIWPzm22p625T0U0qlC2Xwpm69iIqjaBTbRd+Hda40v7nIAmah27FEHQzmmN34kjNUml/k8mgoacdHfyc6eDnQgMP2/K7zyo5Qgjm7b9FVQdLNAJuPYzh4xcbA1Dr/X/IkhU/T+Vibqyggactjb3taVLVnrY1nfT70PkEKZnZTF5zgYM3YwB4q1MNpnSpVeH/5aPEDHrMPUxSUjJhcweTlJSEjc3T7+vnRhgSQvDWW2/xzz//EBQURM2axU+k06dPZ+vWrVy7dk27beLEiVy8eFFnA+pcYSj3Ymap1Kw9E8bPB+4QkyLZFtVwseLdrrXoUd+tQu2K4lKz6PfrMR4mZNDa15E/xzavNE+PTwpDVlaWHJzWAVcbM/0f7OhR6TGqXbtS7R6TkkXH74NIzVIxZ3BDBjR+unq11KjV0KYNnDoF/frBP/9Is0QxKJVK5s2bR3JGNts1AcRnCl5o6M68IQGV2q7tZmQK3+66wYEb0QBYmigYH1id8e2qY2lacUpqIQQTVpxj77UoartZs3lSG0yNKqeQcfBGNBNXnSMzW0NzHwcWjW6KjZnuk2V5kdsnAd5+++0CSViVKg3nQhMIuhXNoZsx3IhMyfe7g6UJgTWd6ODnQp0qNrhYm2JnYVyp+7M+afH1PqJTsujTwJ3XWrnjX01KIJySkkKaxoh7MWmExKUREpvGvVjpPSQujWz106dvB0sThjb34pWW3lSxNddu33UlgtpuNvg4WZa57WqN4NtdN1h4+B4APeq5MeflhliYVOzC083IFMYsPMSJGX3/XcLQG2+8werVq9m8eTN+fn7a7ba2tpibS3/yhx9+yKNHj1i+fDkgudbXr1+f1157jfHjx3PixAlef/111qxZw0svvaTTcZ8UhnLJUKr580QIvwXdJSkjG4D6HjZM6+ZH+1rOFXYTX49I5qXfjpOuVDOylTf/61c5sgbnFYb6ztlLcFQWAxp7MGdwgH4PtGIFjBwJtWtDcDDooP0rjPlBd5i96yZuNmYcmNa+/G7sK1egUSNQqWD9etChX+a9lgcvhzJu9RVUGsHHveowPrB6+bRTj5y4G8c3O69z6aHkBOFkZco7XWrycjOvChPeY1Oz6P7jYeLSlEzs4Mv0HrUrpB26cCYknrHLzpCSqaJuFRuWv9ocJ6uK1bDl7ZOpqalYWj59ko1IyuDQzRiCbsZw9E5sPq1RLiYKOc7WprjYmOJibYqLtRmuNtK7c842VxszHCxMKlwTAZJQrdYIstWCbI0GUyM5Jgp5sXNBYrqSgP/tfbwhO5PQOVLOuKddS7VGcDcmlV1XItlxOSKfgCkDjI3k2uVphVxGj3pujGrtQ90q1nT84RAmCjnrJ7bKJySVhXVnw/j4nyso1RrqVLFh0aimeNjpp+7S8iAyFu8qzv8uYaioDrV06VJGjx4NwOjRowkJCSEoKEj7+6FDh5gyZQpXr17F3d2d6dOn8/rrr+t83KKEIe3vmdksOnyPxUfvk6aU1n2b+djzXvfaNK9WTvYmxbD7aiSvrTgHwFf96zO8hXeFtCMvWVlZvPbaawC8+cm3DFp0FoBNb7YhwMtOfwdKSoIaNSA2Fn79Fd54o1TVZGar6TLnEA8TMninS03e6VJLf218ks8+gy++ADc3abnM3v6pxfNeywULFvDXuQhmbLmKXAbLx7agbc3yTfSpD4QQbL8cwXe7bxIalw5AdSdL3u/hR/d6FaNh3XUlktdXnkMug3Wvt6JJedmL6YGr4UmMWnKa2FQl1Z0sWTGuRYVOPE/2SVNT3YWzbHWO1uhmDMfuxBKWkE5ierbO+xvJZThZ5QpNZjhammhtbAQCjXj8mTy2QZon7ITIYz+k0giy1RrppRIocz+rNWSrBUrVE99zPj85m8pk0tKVmbEi512e57P0SleqOH43TruPUGUTt/sXZMCQKV/wYV9/qjsXb2OXKxhtD47gWkRykeWcrEyITVUC4Otsyd+vtcJRT8L02ZB4Xl95jthUJU5WJiwY0aRC76Pi5u+8PDfCUEWh68WMS83it6C7LM9jLNq+ljPTuvnh72n7rJqr5ZcDt/l+zy2M5DJWvNqCVr6Oz7wNT2Pq3xfZeP4RjavasWFia/1OfvPnw5tvgpMT3LkDtqW7/tuDI3hz9XnMjOUcnNZBb09QBcjKgoAAyQh83Dj4448S7S6EYNq6YDacf4i9hTFbJrXFqxIaVBeGUqVhzekH/LT/NnFp0gDduKodH/aqQzOfZz+I5vZLb0cLdr7drsJV/U/jXkwqIxaf5lFiBlVszVjxagtquFQOw/SykpmtJiYli+iULGJSMolOySI6OYuo5JzPOdvj0pSFGhb/27AyNaJxVTv8PW3xc7Ohtps11Zwsi9SkhsSmseNKBDsuR3DlUdGCEUAtVyvWT2ytt+XWhwnpjF9+jusRyZgo5HzVvz6Dmnrppe6SYhCG9EhJLiZI6t+fD9zh7zNhqDTSpe1Z3413u/k904FKCMHkvy6y9VI49hbGbH6zLVUdK88EGZWcScfvg0hXqpk3JIB+AWXzAsuHSgX+/pJw8f778O23papGCMHgBSc4E5LAgEYezHk5QH9tfJKjRyUt1sKF0LJliXfPa1Bdt4oNGyqxQXVhpGRm88fhe/xx5D4Z2ZKGtWtdV6b38KPGM/SMTMrIpsfcw0QkZTKipTdfvFg5lpmLIiIpg1cWneJuTBoOlib8OaZ5hTx8VRTZag2xqZKgJAlJmSTkCNUymQyZDGTkvpP/u0yWZ1ve8mCkkGOskGOskGGS+9noie8KOSZGMu1nY4W0LGZsJEMhl6FUacjIVpOVLb1nKNVkZKvJzHlJnzWsOxvG+QeJJT53E4UcXxcrartZ45fzqu1mjZuNWb6Hywdx6ey4EsHOyxHapeknsTM34qehjWlX00kvD6ZpWSqm/n2R3VejAJgQWJ3pPWo/c0cjgzCkR0oqDOUSGpfG3H232XTxEUKAaY7r4bOUkDOU0gR5+VESfq7WbHijNVYVZKgqhCA9XVoOsbCwQCaTabVXVWzN2P+unu1ytm+HPn3AxEQSiu7dg9WrYfHiElUT/DCRF345BpTDkt6TaDRQTGCwpxGemEHfn48Sl6akX4A7c1+u3AbVhRGdnMmP+27z99kw1BqBXAatfZ3oUseFznVcn4nG6+jtWF5ZfAqA5WObE1jLudyPWRbi05SMXnqa4IdJWJka8cfIppVOE2ygaAb+dpyHCRlUdbDA08EcTztzXCxkeNqZUdPDCRMjBXeiU7kZmczNqBRuRKZwKzJFa5bxJDZmRtR2s6F2FWs61XahXU1nFHIZF8MSefHXY09ti5+rFWPbVqNfgEeZvdA0GsHcfbf46cAdADr6OfPT0EZYP0ODf4MwpEdKKwzlcjMyhS+3X+PI7VgAhrWoyoy+dZ+Zt0pkUiZ9fzlKTEoWXeq4snBEkwoxNizMwDIzW03nHw7xKDGDtzvXZEpXPdrlCAFdu8L+/eDqClFRYGQEqalQAnsGeLx00tTbnnWvt3o2AkZ0NLi4FPpTWloaHjlu+I8ePcpnYHnyXhyvLDqFSiP4pHcdxrWr/AbVhXEnOpXZu26w51pUvu213azpWteVLnVc8S9Hd+wZm6/w54lQ3GzM2P1OILYWFe+x9TRSMrMZv/wsJ+/FY2IkZ/6wxnSp61r8jnriaX3SwNPJVmvyLXfpYoyu0QgeJWZwIzKFm5HJOe8p3ItNQ63JP6V72JnzcjMvGnjaci40gYthiVwMSyQls6DRei52FsYMaVaVka28cS+jLdqWS+G8t+4SWSoNNV2sWDSqKd6Oz6Z/GIQhPVJWYQikjvvzgTvM3X8LIaChlx2/DW9c5k6mKxceJPDywpMoVRre6ODL+xXgKVPUDZ7XLufAux30d03u3JHshvbsyb/93Dlo3LhEVUUmSUt6GdlqfhnWiD4N3PXTxsIQAmbPhpkzpYCMHTsWKFLcYLns2H1mbr2GXAYrX21B6xqV36C6KO7HprHvWhR7r0dxNiSevOO8i7Upneu40rWuC6199RtPJUOpptdPR7gfm0b/Rh78WJ5LpHoiM1vNpNUX2Hc9CoVcxveDGtC/UTmFhXiCknqTGSiaslzLLJWau9Fp3IxK5sKDRDZfDNd6O8tl0Km2C0ObV6VdDSfCEjO4+CCRMyHxHLgRTXRKVoH6TIzkvNfNj7Ftq5VpietSWCITVpwlKjkLOwtjfhve5JloLw3CkB7RhzCUy8Gb0bzz10WSMrJxtDTh56GNntlE9c+Fh0xZewlA/zY6OlDUDS6E4OUFJzkdEs8LDd35aWijsh/swQOoV0/SAj3JokXw6qslrnLevtv8uO8WHnbm7H+3fbkGMuP112HBAvDxkcIDPBE9VaPRcPfuXQB8fX0L5Nx5ng2qn0ZCmpKDN6PZdz2KQzdj8i0TmBsrCKzlRJc6rnSq7aIX75jzDxIY+NtxNAJ+G96YnpUoum5RqNQa3l8fzMYLjwCY2bcuo9s8PTitPiiuTxrQHX0KlpnZanZdiWTN6Qecuh+v3e5mY8bgpp4MbuaFp700NtyPTWXGlqscviWtYshlaB8+mnrb892ghlQrQ1yiqORMJiw/y6WHSRjJZXzer165ezobhCE9ok9hCCRjttdXnuNaRDJyGUzvUZsJgdWfydLLrJ3XWXDoHqZGcv5+rRUNy9P+5QmedoNfeZRE31+OIgRsmKgnl+a9e+GFFyAzM//2SZPg559LXF2GUk2nH4KISMrkve5+vNmxRtnbWBQpKZIBeGioJBj99luJq8jMVjPod8le7Hk0qC6OLJWak/fi2Xctin3Xo4hIevw/y2TQpKo9XXKW08riuPDd7hv8evAu9hbG7J4SiIt1OQQJ1TMajeB/266x7HgIAFO61GJy5xrPnf3Yf5Xy0rLdjUll7Zkw1p97SLzWyBwCazoztHlVOtdxwVgh51JYIl9uv8aZkASpDFIIAlMjGR/0rMOoVj6lXp7OzFbz/vpgtlwKB2BUK28+7VO33FKIGIQhPaJvYQikDvHxP1fYcP4hIEXs/G5Qg3I3LFNrBOOXn+XAjWhcrE3Z+lbb8okAXQjF3eDT1wez9mwYDTxt2aSvFBgHDkDfvpBjuA1Aq1Zw/Hipqtt04RHvrL2IpYmCg+91KN+J8cAB6NxZ+rxnj2T/VELyGlS/GODOj8+hQbUuCCG4Gp7M3hzB6Gp4flfifgHufPtSg1Jp85QqDf1+Pcb1iGS61HHhj5FNn4trKKV4uM3cfbcBGNPGh097160UwQkNPJ3yXnLMUqnZczWKv8484Nidx/GNnK1NGdTEkyHNquLlYM7OK5HM2nmdsPiMfPu3qObAdwMblto7WQjB/KC7fLf7JgADm3jy3cAG5XJfGYQhPVIewhBIHWLVqQd8vvUq2WqBr7MlC0Y0KXc34pTMbAbMP87t6FQaetqy9rVW5bvkk0NxN3jeFBjfD2rIwCZ6snU4fBh69nwsEJmaSp9LocbXaAT9fzvOpbBEXm7qxbcDG+injUUxaZIUONLLS4pUndP/srOzWbhwIQATJkx4ao69k/fiGL7oFOrn3KC6JIQnZrD/ehR7r0dz7E4sao2guY8DC0c2wc6i5Pn6bkQm88LPx1CqNcwe2IDBFRQzpTQsPXafz7dK6Yj6NKjCVy/6l4sxeEn6pIGn8yztr0Lj0vjrTBjrzj4kNvWxzVDbGk4Mae5F+1rOrDn9gJ/33yElT5RwM2M5H/euy/DmVUstYO+4HMFbay6g1ggmdazBtO5+xe9UQgzCkB4pL2Eol/MPEnhj5XkikzOxNFHw3aCG5Z75NzQujX6/HiMxPfuZuWDrcoP/fugu3+y8gYu1KQenddBfvqpjxyQtS1bOzX7+vJQCoxScC03gpd+OI5PBtrfaUs+9HGO6pKZCw4ZSWIDx46UYRJR8sMydEBVyGSvGNn+uDapLyrE7sby+4hwpWSqqO1vy55jmpbKfyu2bVqZG7HqnndbO4nlg4/mHvLc+GLVG4GRlyv/61aOnnvMoGgyo9UdFXMtstYb916NYczqMw7djtIEsa7pY8d2ghnjZm/PjvlusPvUgnxNDi2r2/DA4oNT3w1+nH/DBxssAfPFifUa01K8NUUnmb4OVWwXTuKo92ya3pWV1B9KUat5YdZ5ZO66jUmvK7ZjejpbMH9YYhVzG5ovh/HbobrkdKxeFQsHAgQMZOHAgCkXhmqgxbXzwdrQgOiWL+UF39HfwNm0kG6Lcwf+bb0pdVRNve/o2dEcI+GLbNcr1WcLKCpYuBTMzKcWIEHDvHoqpU4u9lnkZ3dqHAY09UGsEb64+z8OE9GL3+bfQpoYT6ya2ooqtGfdi0ug//xiXwhJLXM/4dtVp6m1PapaKaesuodE8P8+QAxp7snZCS3ydLYlNzeKNVeeZsOIckUmZxe+sI7rc3wZ0oyKupbFCTo/6VfhzbHMOv9eRyZ1q4Ghpwu3oVAbMP8bCw/f4pHdddr0TSPs8cbdO3U+g8w+HWHMqtFRj4ZDmVZmSk+poxuYr7L4aqbdzKikGzVAxlLdmKBeVWsN3u2+yICfzb8vqDvwyrHG5JmBccSKETzdfRSaDhSOa0vUZxiUpity8aiZGcvZPba9fL6gvv4RPP5UCMT56JKXrKAUPE9Lp/MMhslQaFoxoQvd6bvprY2HkxhxatQomTpQMrO/eheq6L3nlNaiu527D+tf/XQbVxRGZlMmYZWe4HpGMubGCn4Y2KnF/D4lNo+e8I2Rkq/msT13Gti1/Ly19kqVS8+uBO8wPuotKI7A2NeKDXrUZ2qz0Sx0G/r0kpCn5fOtVNl2UjJ2rO1vy3cAGNPF24NCtGGZsvkJI3OMHqzY1nPh+UIMSpy0SQvDRP1dYc/oBpkZyVo1rQVM9peIxaIaeQ4wUcj7sVYf5wxtjaaLg5L14+vx0lPMPEsrtmCNa+TC8RVWEgHf+usCNyKfnsHkWdKvrSmtfR5QqDbN2Xtdv5R99BH5+oFTC11+XuhpPewvG59jefL3jOlmqwiPB6g1zcxg1Cl55RRKEANatK1EVZsYKfh/RBEdLE66GJ/PhxuDy1WpVMtxszVj3eisCazmTka3mtRVnWX4ipER1+DhZ8nHvOgB8u+sGd6ILCd1QiTE1UjC1mx/bJrclwMuOlCwVH/9zhSF/nORuzPN1LgbKH3tLE+YOacSikU1xtTHlXkwaA38/wf+2XqO5jwP7prbnk951yJWjj92JpcucQ6w/97BEY4tMJuOLfvXoUseVLJWGV/88y+2olHI6q6IxCEOVjF7+Vdg8qQ2+zpZEJmfy8oITrDhZOhWkLsx8od7jJbqV58nMLueJvRhkMhmf9a2LXAY7Lkdy8l5c8TvpilwO8+ZJn+fPh5iYUlc1sYMvztamhMals/x4qJ4aWAhnz0pBIpcvz7/9779LXJWHnTm/5CyPbroYrtVC/lewMjVi8aimDGnmhUbAZ5uv8vWO6yVa8hreoiqBtZzJUml49++L5bqcXV7UdpNCLXzWpy4WJgpO34+n57wj/HrwDtnP4fkYKF+61HVlz5T2DGriiRCw5Nh9esw7zNnQBMa1q86qcS2xNpPsO9Oy1Exbd4lxf54lOln3ZVgjhZyfhzaicVU7kjKyGbXktF6XcXXBIAxVQmq4WLN5Ult61ncjWy34dNMVPtl0pVwEImOFnPnDm+Bibcq92DR+3HtL78cAyShQSoQoIy0t7alla7vZMLR5VQD+t/VagfDyZaJbN3j3Xcl13bn0OacsTY14L8f74acDt4lLLRi9VS/s2CEtieUhHfA4fx4PNzdtvjddaeXryMe9JO3GNztvsPTYfX219LnAWCFn1gB/pnWT7BQWHr7HW2su6PwQIJPJmP1SA2zMjLj0MIn5QeVvb1ceKOQyxratxu53Agms5YxSJS3T9/35KMEPE0tcX3p6Oh4eHnh4eJS4TxrIT0nGymeFrbkx3w1qyLIxzahia0ZoXDpDFp7ks81XaOBpy9ZJbfF1fmzovf9GNF1/PMyuKxE6H8PcRMHiUc2o7mxJeFImo5ee1kbPfhYYhKFKipWpEfOHN+bDnrWRy2DVqQd8tf16uQhEDpYmfNXfH4A/jtzjYikMTPXN1K61sDYz4lpEMuvOhumvYpkMvv8eWrcuc1UDG3tSz92GlEwVP+4rHyGSzz6D3bvz5SkTQDgQHhVVqv4wpo0Pb3TwBeDzrddY9h8TiGQyGZM61eTHlxtirJCx/XIEryw6pc12XhxutmbabPY/7b/N5SIygT8PeDlY8OeYZvz4ckPsLYy5EZnCi78e46vt10hXFp276kmEEISHhxMeHv6fWn79r9HBz4U9UwK1D6vLT4TSfe5hHiVmsPGNNvmSGidlZPP6yvOsPfNA5/rtLU34c0xznK1NuRGZwmsrzpa/GUIOBmGoEiOTyXitvS/fviTFs1l09D6/HNCjl1UeutZ1pV+AOxpBTlK9il0uc7Qy5e3ONQH4fs9NUjLL6QkhrvTLcHK5jE/71AVg9akH3Iwsp3Xurl3h4kVtnjIz4AJwoUoVzMxKHvhRJpPxXnc/JuYIRDO3XuPPnGjF/yX6N/LkzzHNsTYz4mxOyITQON2exF9o6E5v/yqoNIKpf1+s8OXlsiCTyejfyJN9U9trx4A/jtyn+9zDHLmt21KymZkZFy5c4MKFC6XqkwaeH6zNjJk1wJ9V41rgYWfOw4QMhi86xTc7bzDv5YaMbu2Tr/z0DZdLpIH2crBg2ZhmWJkacfJePFP/fjbemwZh6DlgUFMvPsuZdH/Ye6vcnuRn9K2Hk5XkTlleQldJGNnKh+pOlsSmKvXfHiHg44/B0xOOHi11NS2rO9KjnhsaAV9uL0dX+ypVpPAAM2eiAAKAgIgIFMeOlao6mUzG+939eL29JBDN2HK1xAbF/wZa13Biw8TWuNuacS82jQHzj3NBB6cFmUzGFy/Wx8nKlNvRqXyfE033ecbRypR5QxqxdHQz3G3NCIvPYMTi07z79yUS05+uNVMoFAQEBBAQEGBwrf+P0KaGE7unBDKylRQbaM3pB/T66Sgd/Jz5qn99jPJ4KH6+9Rq/HtR9DK/nbsvCEU0kzW1wBF+U59iag8G1vhielWu9Lvy49xbz9kvh9ecMbsiAxvrPSL3jcgRvrDovxSB6sw31PfQTVLC0gcQO3Ihi7LKzGCtk7J3SHp8yJAoswIQJ8McfUhyiI0cexyEqIaFxaXSdcxilWsPS0c3oWNul+J3Kwu7d0KcPqFRQrRrcvg2lnICEEHyz6wYLDknG1F/0q8eIVj56bOzzQVRyJmOXneFqeDJmxnJ+GtKIbjqETMjtnzIZrB7X8plk4n4WpGap+H73Tf48EYIQks3ICw3debGRO42r2j8XKUkqC1kqNfFpSuJSlcSlKYlPy3r8OVWJUq3BwkSBpakRFiYKjDVKJnWXzBY2n7mLk50NFqZGWJkqsDAxwtLECAtTBcbllM+rNJy8F8f0DcGE5rjaD2ziSbe6rry3Pjif3c8bHXx5r7ufzv1ny6VwJq+5AMBHvWozIdC3RO0yRKDWI5VJGBJCSDYex0NQyGX8NryxTgN2SXlj1Tl2XI6kThUbtkxqo5ebrrTCkBCCUUvPcPhWDF3ruvLHyKZlbouWR4+kYIaZmbBli5THrJR8veM6Cw/fw9fZkl3vBJbrQJWdnc2qmTNh1iyGW1hg/OgR2JZeaBVC8M3OG1rvsvKIBPs8kJql4s1V5zl0KwaZDGb2rceoJ1T+hfHhxmDWnA7Dw86cne+0w6accww+S86FJvDhxmBuRT12vfe0N6dfgDsvBnhQ01VKH5Sdnc2qVasAGD58+H8iHUe2WkNoXDr3YlIJS8ggLjWL+DQlsamSwJMrAOVNY6ELGmUmYT8OBMBrynrkJoUvO5oo5FR1tKBJVXua+NjTxNue6k6WFSaopitVfL/7FkuP30cIyXt11gB/Zm65yr3Yx8vPo1v78Fkf3fPkLTpyjy+3S2FW5r4cwIuNPHRuk0EY0iOVSRgCKT/We+uD2XD+ISYKOcvGNNN7eoWYlCy6/XiIhPRspnatxeQc252yUJYQ87ejUugx7whqjWDVuBa00ef5fvABfPst1KsHly6VWsOSnJlNx++CiEtTMrNvXUa3Kb+AfPmu5aefYjliBNQs238khGDWzhsszBGIvnyxPq/8BwUilVrDp5uvsOa0ZLQ/IbA6H/as/dQJJi1LRc95R3gQn85LjT35YXDDZ9XcZ4JKreH43Tg2XXzE7iuRpCkf20fVrWLDi43c6VzDlhoekvHsvykdhxCCuDQl92LSuBeTyr1Y6f1uTBoP4tN19nQ1kstwsDTBwdIEJytTHCxNcLQywdHSBBMjOelKNelKNWlZKpKSU/l1tOTg0fuHvShlxqRlqUlTqkjPUqN8SvgDB0sTGleVBKMm3vY08LR9Jrkn83I2JJ53110iNC4dR0sTfh3WmF8O3uHonVhtmcFNPJn1UgMUOgpEX267xqKj9zFWyFg6ujlta0pzgBACtUYUmfXeIAzpkcomDIE0OL25+jy7r0ZhYaJg9fiWBHjZ6fUYmy8+4u2/LmKskLH1rbbUdivbuWdmZvLSSy8BsGHDhhIbWc7ccpVlx0OoW8WG7ZPb6u/pJyFBiuScmAjLlknBDUvJypOhfLLpCnYWxgRN61CqpKC6UOBamphIMZRUKjAqfT43IQRf77jOH0ckm7Sv+tdneIv/nkD0ZFbtn4c2om9D96fuczYknsELTqAR8PsrjelRv3zzC1YUGUo1+65HsfniI4JuxqDKEQaEWkn2ru9wtTFj19bNuDqUb8JpfZOZrdZqee7FpnE3JlUrACVnFq3ZsTBRUM3JEh9HS5ytTXG0NMHBygRHS1OtsONoaYqNuZHOY1ZxY6VSpSFDqSY5M5ubkSmcDU3gfGgClx4mkqXKLygZK2TUc7elaY5w1MTHHhfr8jdwj0vNYtTS01x5lIy1qRF/jGzCziuR/HnicUy23v5VmDskQCctukYjeHvtRbZeCsfSRMHa11rhYWfOx5su072eG/0CCtcWGYQhPVIZhSGQbt5X/zzDsTtx2FkYs3ZCK/zc9DcACSEYv/ws+65H08DTlo0TWxcpfT8LEtKUtP32AGlKNb+/0oQe9fW4PDh7NkyfDlWrws2bUi6wUqBSa+j901FuRqUwtk01PutbV39tfBppafD229L76tWltn0C6X//avt1Fh2VBKKv+/szrEVVfbX0uWLOnpv8dOAOztam7H+3fbHLX7N33WB+0F3sLYzZPSXwmUw6FUlCmpIdVyLYfCGc0yHx2u0mCjkd/Jx5sZEHnWq7lItmYsO5h2Sq1NR0saamixX2lsU/eOQKPPdj0wiNSyMkLo2Q2HRC4tKIeEqAP5lMWvKp7mxFdSdLfJ0tpc/OlrjZmFUa+ymlSsOV8CTOhyZwNiSBs6EJ+TLR5+LlYE4zbwdeauJJa1/Hcmt/cmY245ad5XRIPGbGcn5/pQlh8enM2HJVm+y1fS1nFoxoolMfyVKpGb3kDCfuxWFrboyRXEZcmpKe9d347ZUmhbfBIAzpj8oqDIGknh++6BQXwxJxsTZl/eutqeqov1xeUcmZdJ1ziORMFdN71Na6YlcU3+2+wa8H71LbzZodk9vpL59SRoa0zBQXB3v2QLt2pa7q8K0YRi45jZFcxp4pgVR3ttJPG5/G2bPQqpWkGVqyBMaMKVN1Qgi+3H6dxf9xgSgzW03PeUe4H5vGyFbe/K9f/aeWV6o0vPjrMa5FJNOptguLRzWtNBNlefMwIZ2tlyLYfPERN/KEmLA2NcLf0xY3WzPcbMyoYmuGm605VWzNcLUxw9HSpFT38YzNV/JpGRwtTajubImXgwWu1qaYGitQqQWxqVmExKURGpf+VIEHwNrMiOrOVvg6WVI9j8Dj42j5zJea9IEQgrD4DM49iOdsSALnQhO4GZVC3hm/nrsNEwKr08u/SrnYOWYo1UxcdY6gmzEYK2TMfbkRtubGTFhxlvSc5dbmPvb8ObaFTrkSY1Iy6fbjYRLSHxtlmxsruPBZ10L/I4MwpEcqszAEkJiu5OUFJ7kZlYKXgznrX2+Nq43+nkjXnQ3jvfXBmBjJ2TG5HTVcnsHkXgSJ6UrafnuQ1CwVvw1vTE9/PS5FHDkieWZ5lt1Db8zS0xy8GUOXOq4sGqVHg++nMWuWlHvNwgLOn5dysJWBJwWiWQP8tYHW/kscvxPLsEWnkMngnzfaFLscfTMyhb4/H0Wp1vxnr9mNyGQ2XQhny8VHhBcjgBgrZLjaSIKSm+1jYcnNxgwzYzkpmSqSM7Ol94xsknO+34hI5m5MyaMz25gZUc3JEm9HS3ycLPFxtMDHyZJqjpbYWRj/64XX5MxsLj5IZN/1KNadfUhGTnwsd1szxratxsvNvLDWswOAUqVh6t8X2RYcgVwmPVw1r+bA0D9OEpUsaa4ae9nx56vNtceOSMrAxswYS9PHy/63o1KYuOp8oTkB/xhZeKJxgzCkRyq7MAQQnZzJoAUnCI1Lp5arFWsntNJJbawLeb25Gle1Y93rrXU2estLWloaLjlRlKOjo0ttYPnDnpv8fOCO/rVDeuROdArd50oG36vHtdC7gXt6ejoNG0pGupcuXcLCwgLUainVyIED0KgRnDgBpqZlOo4Qgi+2XWdJTlyrbwb4M+Q/OLlPWXuRfy48op67DZvfbFPscvEfh+/x1Y7rWJgo2Pl2O7wd/x3GxE+jsD6p0QguPUzULkNFJWUSkZRJZHImkUmZxKRmUV6zj5mRnLruNrT2dZK0O8+RwKOvsbI4EtKUrDwZyp8nQohNleJIWZsaMaxFVca0qYabrf4eqtUawSebpMz0ILnJ927gTt+fjxCfJml56nvYsPLVFtyITGHS6vO83702g5t5aetIzVIxfUMw24MLpvgoynHBIAzpkedBGAIIi09n4O/HiUrOoqGnLavGt8TKtPTGtHl5lJhB9x8Pk5ql4tM+dXm1bck9pcriTZaXpPRs2n57gJQsFfOHN6aXPrVDuZw8CbVqgYNDqavIVePXdrNm++R2pRIgi6LIaxkeDg0aSMt9U6bAnDllPpYQgv9tu8bSYyHAf1MgiknJovMPQSRn6tb/NRrBsEUnOXkvnibe9vz9Wiu9/v+VkdLc39lqDdEpWUQmZRCZlEVEUgaRSZlE5AhLSpUGG3MjbMyMsTaT3m3Mpc9ZKg3f7LxRoM4AL1smdaxJp9oulfJBSRf0NVbqSma2mk0XHvHHkXtabZuRXMYLAe6Mb1edOlX0M+8JIfh2101+PyTl83uzoy+96ldh4O8ntBoqZysT4tKUaAQ087Fn3eutC9Sx9FgIX++4rjXeB2mJ88KnXQs8qBiEIT3yvAhDIKkRBy84QUJ6Nq2qO7J0TDO9rXWvOhXKx/9cwcxYzq63A0sc/FCfN/icvbf4af9t/Fyt2fm2nrVD06bBDz9ILvezZpW6moQ0Je2/O0hypkrvAoRarebkyZMAtGzZMn/E361b4YUXpM87dkDPnmU+3pMC0bcv+fNys/+WQLT61AM++ucyliYK9r3bniq25k8t/zAhnZ5zj5CSpeK97n682bHGM2ppxfDUPlkOZKs11P50l9a1vV1NJ97oUIOW1R0qveanOJ61MJSLRiM4eDOahYfvcer+Y4P4djWdmBBYnbY1nPRybecH3WH2LslTc0RLb7rVc2X00jOFhik48G77Qu0uz4XGM3HlOaJTHkdGXz6mGYF++QPelmT+rjwhLA2UmZqu1iwb0xxLEwUn7sXx1poLZD8lJkVJGNa8Kq19HcnM1jB9Q/AzyRVTFK+2rYa1mRE3o1LYUYKsyDoRGCi9//QTREWVuhp7SxNtfKbv99witYSB156GQqGgTZs2tGnTpuCk07cvvPUWODmVyassLzKZjM/61NXmHJq+4TLf7LyBUqWfvvU8MKSZF0287UlTqpm55Wqx5T3tLZjxQj0A5u67xdXw5zeZqy48tU+WA8YKOV725nSv58rmN9uw4tUWtCpHz6j/AnK5jM51XFn7Wis2v9mGPg2qIJfBkduxjFh8ml4/HeWfCw/LPKe80aEGX75YH5kMVpwMZeXJUJytCjfrWHfuYaHbm3g7sOPtQJpUtddu+25P2VLiGIShfxkNvexYNKoZJkZy9l6L4v31+hFcZDIZ377UAHNjBafux7PqVGjxO5UTtubG2qWKeftu6xz4TCf69oXmzSE9vUyaIZByq1VzsiQ2NYv5JcjLU2Zmz4bgYOjRQ29VymQyZvSty7ic6/77obsM/P0492NLbsT6PCKXy/iqf30Uchm7r0ax71rxgvJLjT3oXs+VbLVgytrnO5lrZWTd661ZMKIpDfUcY82ANI/8Mqwxh97ryOjWPliYKLgekcyUtZd44Zdj3I4qW1LqV1p6M/flAIxy7qeiPMnWnw1DVYTw5WRlytrXWtI9x3D68qNkztwvQ+LtUu9poNLSyteR+cMao5DL+OfCI34/fFcv9Xo5WDC9h+SlNGvnDcLi0/VSb2kY27YaNmZG3I5OZftlPWqHZDL48kvp82+/QVhYqasyMZLzYc/aACw6el9v10ulUrFu3TrWrVuHSlWIxsnMTErsmktkpF6OK5PJ+KRPXX4b3hhbc2OCHybR+6cjrDsbVu5JFCsDtd1stMLgjC1XSVc+Xdsnk8n4ur8/Tlam3Ir6dyRzLYpi+2Q54GxdNgcBA8Xj5WDBzBfqcfyDTrzX3Q97C2OuRyTT5+ejLD8RUqb7vl+ABwtHNsHUSM792HTqu9tgbZpfKIpJVXLoVkyRdRgp5CwY2ZRW1aWcgJPWXCAlM7vI8k/DIAz9S+lS15UvX5TioszZc4uLYYl6qXdkKx+a+diTrlTz0T+XK2wStDEzZly76gDM23dLv9qhLl2k5TKlEr76qkxVda3rSqvqjihVGr7dVdDgszRkZWUxePBgBg8eTFZWwaBq+di2TXKzX7hQL8cG6OlfhZ1vt6NFNQfSlWreWx/MW2su5EvI+G/l7S418bAz51FiBvP23S62vKOVKd++JCXdXHzsPifulv7JtTJToj5p4LnDzsKENzvWYPeUQAJrOZOl0vDZ5quMXXaGmJTS/9+darvy59jmWJkacSU8maqOlnjY5bfHm7PnVrH1LBjZBDcbU6KSs/jf1mulaotBGPoXM6SZF70bVEGlEUxec0EvdityuYzZAxtiaiTnyO1Y1p7RTXMil8tp37497du3Ry7XT7cb08YHW3Nj7saksS04XC91Avm1Q4sXw717ZahKxid96iCTwbbgCM6Fxhe/UzGU6FoGB0NyMkyaBEePlvnYubjbmbN6fEve6+6HQi5jW3AEveYd4UxI2c+vMmNhYsT/+km2QIuO3ud6RHKx+3Su48rQ5l4IAdPWXSK5lE+ulZnyuL//q1Tma+libcay0c2Y0bcuJkZyDt6Mocfcwxy4UXr7ypbVHVkzviX2FsZcDU/GzFhKcZLL1Yhkgm5GP7UOGzNjfhraGJlMsjPaVQpbUoM3WTE8T95khZGUkU2veUd4lJjBgEYezHk5QC/15sZSsTY1Ys/UwGK9a8qLXw7c5vs9t6jubMneKe3168LcowdcvQrLl0PHjmWq6v31l/j77EMaetnxz8TWz87tVwh4+WVYtw5cXKRo1V5exe9XAi48SODtvy7yID4duQwmdarJ5E41KjR9S3nz+opz7LoaSeOqdqx/vfj/89+ezNXAf4+bkSm8/dcFbcTxES29+ahXHZ0iSRfGnegUXll0msjkTFpUcyA8MZ2wBClop5WpgoPTOha7NPrNzhv8fignJc47gZihNHiTGZCwNTdm3pAA5DLYeOERmy480ku9Y9tWI8DLjpQsFR9trLjlslGtfbCzMOZeTBpbLunn3LQsWQK3b5dZEAKY1s0PCxMFl8IS2apPLVZxyGSwdKkUfyg6Gvr3l9KP6JFGVe3Z8XY7BjT2QCPgp/23eXnhyQq1KStvZrxQF0sTBecfJPKXDtpRS1Mj5gxuiFwGG86X7snVgIHKhJ+bNZvebKN1ZllxMpS+vxzlyqPSeU7WcLFm6ZhmWiedNjWccbCQIlKnZql5Y9W5Io2pc5natRZ1q9iQkJ7N+xuCSzQvGYSh/wBNfRy0bt6fbLrCg7iyT1IKuYzvBjbARCGpSvdff7oas7ywNjNmfI7t0E/77xR7s5QId/dSJ219EhcbM97Iye327c4bZCifoWeRpSVs3gyOjnDuHIwfj75D/1qZGjFncADzhgRgbWrEudAEes07wuaLehZQKwlVbM2Z2k1yJvhm53Wd7Caa+jjwWnupD3y48TLRKU9PVWHAQGXHzFjBp33qsnxsc1ysTbkTnUr/+cdYcOhuqbyY61Sx4ftBktb0rzNhjGrtg5mRJKacCUlg1o7rT93fxEjO3CEBmBjJCboZw9ozD3Q+9nMlDB0+fJi+ffvi7u6OTCZj06ZNTy0fFBSETCYr8LpxQz+GrM8TkzrWoKm3PalZKib/pZ/4QzVdrRmb81Tw7a4bTzViTktLw9nZGWdnZ9LS9OuOPaq1D/YWxtyPTWPzxXLQuqjV8Oefkv1NGRjXrjoeduaEJ2Wy6Ejp7ZAyMjIICAggICCADF21PD4+sH49KBSwapWU3b4c6BfgwY6329HE256ULBVv/3WRqX9f1GucpcrCqFbe1HO3ITlTxdfFDNK5TOlSizo5T64fbKg4jaq+KVWfNFAo5TlWlheBtZzZ9U6gNpTErJ03eGXxKSKSSt4Xejeoon1wnB90l+k9/bQh0xYfC2HLpaeP8bVcrfmgh+TF+50Oxte5PFfCUFpaGg0bNuSXX34p0X43b94kIiJC+6pZs2Y5tbDyYqSQJGZrMyMuhiXq5AmjCxM7+GJrbszt6FQ2FBEgK5fY2FhiY2P1cty8WJkaMT5Q0g79fOC2frVDAO+/D6NHw8cfl6kaM2MF7+eEJvjt0F2ikkunGdBoNFy6dIlLly6h0ZTgXDt0gLlzYeJEGDSoVMfWBS8HC9ZOaMnbnWtKy7PnH9Fr3hEO3Yr510z+IN1TX/f3l5K4XnjEsTvF920TIzlzXw7ARCHnwI1oluRE9X7eKXWfNFAo5TVWlicOlib8/koTvhngj7mxguN34+gx90ihucSK491ufnT0k7zW/jh8nw971nn8298XuRH5dMeF0a19aFvDiaxs3fvicyUM9ezZky+//JIBAwaUaD8XFxfc3Ny0r2cRIbUy4mlvwawBkpvvr0F39OLma2tuzKScVANz9t6qsMByo1r54GBpQkhcOpv0rR167TVJo7Jtm5S3rAy80NCdRlXtSFeqSx13xszMjD179rBnzx7MSrqM9+abMH8+mOgnkW9RGCnkTOlai7WvtcLDzpwH8emMWnKarj8eZsWJENL+JZqihl52jGzpDUhL0Lr0fz83az7sJT25fr3jOsfvPl+TXmGUqU8a+Ncgk8kY0rwq2ye3pYGnLUkZ2by5+jzvr79Uooj1CrmMuUMaUc3JkvCkTPZfj+L1nCXmbLVgxOLTTw3lIZfL+H5QQ2zMdM/P+VwJQ6WlUaNGVKlShc6dO3Pw4MGnls3KyiI5OTnf699EnwbuDG7qiRBSNu6ENGXxOxXDiFbeeNiZE5mcqc1f9ayxNDViQnlph2rVglGjpM+ffFKmqmQyGZ/2qQvA+vMPS2VsqFAo6Nq1K127di25YJ83XYFKJZ1PTNFBzcpKMx8HdrzdjjFtfLAyNeJOdCqfbr5Ky6/387+t1wj5F0Swfre7Hy7WptyPTeO3IN0CnI5u7UP/Rh6oNYJJqy/wMOH5NjYvU5808K+jurMVGya2ZlLHGshl8PfZh0xceY4sle4Py7bmxvwxsglWpkacuh9PulJF3wZSMNmYlCwmrjz3VLskN1szPutbV+fj/auFoSpVqrBw4UI2bNjAxo0b8fPzo3Pnzhw+fLjIfWbNmoWtra325aVnN+TKwIy+9ajuZElkciYfbCyZxX1hmBkreLdbLUBKwpeYXnYBqzSMbOWNo6UJoXHpbNST15yWTz8FY2PYvx+KEaiLo3FVe15o6I4Q8MW2axW3dDR5shRUskcPSCq/3Fm25sbM6FuPEx92YmbfulR3siQlS8WSY/fp+EMQY5ae5tCtmArNd1cWbMyMtYPub0F3uReTWuw+MpmMWQP8qe9hQ3yaktdWnHu2RvUGDJQzxgo507r7sXRMc0yN5Oy/Ec1rK86VaPWghos1c3LCUCw/EUorX0f83KwBOH43jnn7n24T1KN+laf+npd/tTDk5+fH+PHjady4Ma1atWL+/Pn07t2b77//vsh9PvzwQ5KSkrSvsDKkY6isWJoa8dPQRhgrpLwwq0/rbnFfFP0CPKjtZk1Kpopfn2UerjxYmBjxWvvH2iF9JakFJAPk8eOlzzNmlNkba3rP2pgayTl1P57dV0sWsEylUrF9+3a2b99ettQHkyeDszOcPy/lZEsvX+2EtZkxo9tUY9/U9iwb04yOfs4IAQdvxjBqyWm6zDnEn8dDnmpsHZGUUSm1Sb39q9C+ljNKtYZPNl3RScA1M1awYERTHC1NuBqezId6eDCpKPTWJw3862hfy5mloyWX+aCbMYxffrZEAlG3em5M6SI9bM/cco23O9fEOCeG2bz9d9h/vfQBH/PyrxaGCqNly5bcvl208bCpqSk2Njb5Xv9G6nvY8n53yW7hi23Xypx4TyGX8UFOHq4/j4dWmNr/lZbeOFmZEBafwcbzTzfoLjEffQSmpnDkCBw4UKaqPOzMtSEBZu28XiL1cVZWFn369KFPnz5lS31Quzbs3g22ttI5DRwopSApZ+RyGR38XFg6pjkHp3VgTBsfrE2NuBebxowt0hLazC1XC9WwnLwXR6cfgpi0+nyp45mUBzKZjC/61cfUSM7xu3Fs0jGkgIedOb/k5BHcdDGcxUfvl3NLywe99UkD/0pa13Bi6ZhmWJgoOHI7llf/PFMiTehbnWrQra4rSrWGz7deZWq3x05Qb625oJcHpP+cMHThwgWqVNFddfZv5tW21WhX04nMbA1vrblQZuPn9rWcpTxcag1z9uZXX8rlcpo2bUrTpk3LNcS8hYmR1tDu5wN3SmS0VyweHjBhArRrB3oQkid28MXZ2pTQuHSWHw/VeT+9XstGjWD7djA3h507YcQIKZTAM6Kak6W0hPZRZ77oVw9fZ0tSs1QsOx5Cpx8O0eyrfQxdeJLPNl9hxYkQjt6ORSOk1CZ9fj7KyCWnOXE3rlJoVKo6WmjjeX2+9ZrOcYRa+TrySW/JW+brHdd18kqrbDyr+/u/wL/1Wras7sifY5tjaaLg2J04xiw7rbMjhVwuY87LAdR0sSIqOYu9V6NoV8MJgHSlmgnLzxabOLk4nqt0HKmpqdy5Iy3BNGrUiDlz5tCxY0ccHByoWrUqH374IY8ePWL58uUAzJ07Fx8fH+rVq4dSqWTlypV88803bNiwQWePtOc9HUdxRKdk0nPuEeLSlIxu7cPMF6S8S/dj0/BxtEAmK1naiEthifT79RgyGWx/qx113Z/9NctQqmk3+yCxqVnMGuDP0OZV9Ve5UinZDpXwuhTF2jMPmL7hMtZmRgRN64CjVQVl4t69W1oqy86GN96AX3+tkGYIITh6J5Y/j4ew/0a0zquR1Z0tmdCuOoOaeKKowDQg2WoN/X45xrWIZLrWdWXhiCY63UNCCKatC2bD+YfYWxizZVJbvBwsnkGLDRh4tpwLTWDUktOkZqlo7uPAkjHNsDLVzevrfmwa/X45SnKmin4B7hy8EU1ypiQE9W3ozk9DAvLdbyWZv58rYSgoKIiOhaRGGDVqFMuWLWP06NGEhIQQFBQEwOzZs1m4cCGPHj3C3NycevXq8eGHH9KrVy+dj/lvF4YADt6IZsyyMwD8PLQRF8MS+fN4CLunBOLrbFXi+t5cfZ7twRF08HNm2Zjm+m6uTiw+ep8vtl3Dw86cg9M6YGJUOZ+w1BpB35+Pci0imVdaVuXLF/0rrjEbNsCYMVJwxm7dKq4dOaRmqbgbncrt6FRuR6dwNzqVI7djyXqKtk+G5EVS390WHycLqjpa4u1ggbejBR525s8kX9r1iGRe+OUo2WrB3JcDeLGRh077ZWarGbzgBMEPk6hTxYaNE1uXOs+TgX8nQgg0Qho3NEJ6qTUCjQbUuZ9ztttbmGBmXDn7z4UHCYxccpqUTBVNvO1ZNqYZ1mbGOu0bdFOar4SAoc28WJMnHc4XL9ZnRE6oC/gXC0MVwX9BGAKYsfkKf54IRQbkdojvBjZgUNOSe9OFxKbRZc4hVBrB6vEtaO3rpNe26kJmtqQdiknJ4qv+9Rnewrv4nUpCXBz88AN06gRdupSpqpP34hiy8CRyGWyrIG2alrg4KW1HJaXpl/uITS2dTYpCLsPDzhxvRwuq5ghITX0caFzVXs+tfJxA2MbMiL1T2+Nqo1vsnfDEDF745SixqcpCn3QN/PtJzVJxIyKZaxHJXAuX3u9Ep5KZraYkDpdGchm1XK3x97DF39MWfw9balexxtSocghIwQ8TeWXRKZIzVQR42bH81ebY6CgQ/RZ0l2933cBILqO1ryOHb0tLy1YmCvZP66C93wzCkB75LwhDx+/EMnPrVW5F5TdYHdq8qjZIY0n5bPMVlp8IpYGnLZvfbENGRgZ160rux9euXcPCovyXAJYcvc//tl3D3daMoPc66lc7NH06zJ4NLVrAiRNlXjZ7c9V5tl+OoHk1B9ZOaPnUCTAjI4MuOQLYvn37MDc3L9Oxi+TWLclQ/PXXy6f+EpKWpaLejN0AmBnLqeliTU1XK2q5WlPL1QofR0s0QhCWkEFobBqh8ek8iEuX3uPTi7QfmzckgH4BumlvdEWl1tB//nEuP0qiU20XFo9qqrNQc+peHMMXnUKlEXzUqzYTAn312rby4Jn1yX8RQggikjK5Fp7M9VzhJyKZ+5HxhC96AwD3cfORG5csiKVcBnKZDFUhkpORXIafmyQg1fewpYGnLX5uFScgXXmUxCuLT5GYnk1DT1uWj22BrUXxApEQgklrLrA9OAIHSxOMFTKikqWHpN4NqvDrsMaAQRjSK/92YUgIwcebrrD6VEH3+tpu1ux6J7BU9camZtF+9kHSlGp+GdaIjr62WFlJS26pqalYWlqWqd26kJmtJnD2QaJTspgzuCEDGnvqr/KoKKhWTcoAv307lGDptTAeJqTT+YdDZKk0/DKsEX0auBdZNi0trfyvZWSklOk+JgbefVcS/CrYmDMlM5tT9+Kp5WqNp705crnuAqhGI4hKySQ0LldASuNiWCLH7sRha27MnimBOmtvdOVWVAp9fjqKUq0psZZ1+YkQPtt8FbkM/hzbnHY1nfXaNn3zTPrkv4AHcensuBLB4VsxXItIJjG9YBRljTKTsB8HAvDV5vMEVHPDz80aK1Mj5DIZCrkMhUyGXC5pO/Nvk+4JIQSPEjO48iiJ4IdJXH6UxJVHSSQUcjxjhaRBalXdkZGtfKjq+Gxt1a6FJ/PK4lPEpymp72HDirEtsLcsPkJ+ulLFgPnHuRGZQnVnS+7FPPYoWzamGR38XAzCkD75twtDIN043++5ya8H80fPlQGXP++us3Hbk8zdd4u5+27j7WjB5teaYm8rXb9nOVj+evAO3+2+Sd0qNmyf3Fa/Sw7vvQfffw9Nm8Lp02XWDv249xbz9t/G3daM/e92KNJeRKVSsW3bNgD69OmDkVHp/p+nIoQkAH3wgfR9yBBYtkwKLfAvIVutYUCO9qaDnxQLRd9LUrnqfGtTI/ZMDaSKrW4aEyEE768PZt25h9iaG7N1UttnPkmVhGfSJ59T7sWksvNKJDsuR3A1PH9GA4VcRk0XK+pWsaGuuw11qthQ1UZBVVcHQL9jpS4CkkwG3eq68mrb6jTzsX9mS7Q3I1MY9sdJ4tKU1Kliw6pxLXDQQSAKi0+nz89HScrIprmPA6dD4gFwtzNj/9QOZGemGYQhffFfEIZy+ePwPb56Ivv2qnEtaFOjdDY/aVkq2n93kNhUJR93q8aEzpKn2rMUhhLTlbSadYCMbDWrx7WgdSnPpVCioyXtUHo6bN0KffqUqboMpZoucw7xKDGDtzvXZErXWnpqaBlYuVIyqlappESv//wDdnYV3Sq9cTsqhd4/H0Wp0ujf8xBpuWzg7ye4GJZIYC1n/hyju8CVma3m5YUnuRSWSG03aza+0RoLE4OQ8TxwOyqFHZcj2XklghuRj2O4KeQyWlZ3oHs9NxpXtaeGi1UBI+dnqWXLFZAuhSWx7lwYQTcfp+Zp4GnLq22r0cu/ijbIYXlyOyqFoX+cIjY1i9pu1qwc1wInHbxr/z4TxvsbgjE3VuBsbcKD+AwAJravzsQ2HjrP35XTxcZAhTA+sDqzBzYg71B9oAzRPS1NjXg7J+5KRUWltrMwYWATaXlskb4D2rm4wKRJ0ueZM8scldrcRMFHvaR4M78fuls58lW98grs2AHW1hAUJMVYeqjnYJYVSE1Xa97r5gfAl9uuERav32tupJDz/aCGmBjJOXwrhrVndI9ob2asYMErTXCyMuVGZArvrX9+I1T/2xFCcD0imTl7btJlziG6/niYH/fd4kZkCkZyGe1rOfPNAH9Of9SZVeNaMrKVD/U9bCvc20smk+Fpb0HvBlVYNqY5+6YGMrR5VUyN5AQ/TOLtvy4SOPsgvx+6S1IhS2z6pKarNX9NaImLtdTfX1txTqcsAoOaetKimgMZ2Wqcrc3IXT1fcPged6J1DyZs0AwVw39JM5TLrisRTFx5HgE4WZlw9pOupa4rW62h24+HuRsep10Hf9Y2Bfdj0+j0QxBCwL6p7anhUvJwAUUSGyul6khLg82b4YUXylSdEIIhC09y6n48vfzdmD+8SYEyarWaI0eOANCuXbtnkxjz4kXo2VOyJRoxAnJief0bUGsEQxee5HRIPC2qObBmfMsS2SPpQq7W1crUiF3vtMPTXvclrzMh8QxdeBKVRjClSy3e7lKz+J2eMRXSJysBSenZrD37gL9Oh3EvTxRkE4WcdjWd6Olfha51XHUyCs7lSc2QwsSMq+HJXApL5GZkCunZarJVGlQaDUq1KPRztlqQrdZgopDj52ZNPXcb6nnYUs/dBhfr4m3j4lKzWHXqActPhGq9Ny1MFAxq4smYNtXwcSq/8ftuTCov/nqMlEwVr7atpk1sXdw+PeceQanW0LdBFbYGRwBgKcvi2jcvGZbJ9MF/URgC+PvMA97fcBmAVeOa06ZG6Q04d1yO4PWlxytMGAIYv/wse69FMaxFVb7ur+dYPjNmQESElAG+atmXWa5HJNP7pyNoBIWGJqgwY9WQEMmL7o8/9BKBuzIRGpdGz3lHSFeq+bRPXV5tW02v9as1gsELTnAuNIE2NRxZ+WqLEtljrDwZyiebrgDwXnc/3uxYQ6/tKyv/NQPq21EpLD0ewj/nH5GRE7nfxEhOh1rO9PKvQqc6Ljq7iedFpdZwKSSKpjUkB4qu3+7mXqKqUM+w0uJsbUp9dxvquUvCUT13W7wczAvtj1kqNVty0sTkLvfJZNCljiuTOtagoZed3tqVlz1XI5mw4hwAvw1vTE//4rNG5NqoOliaIAPi0pRostIJmzvYIAzpg1xh6Or9COr6uFV0c54pb6w6x47LkVR3smTPlMBSB6wTQtBn7gH2fjUWWwtjQm8EPxPX+rycuhfHywtPSrmjPuhUcZGedeTTTVdYcTKU2m7WbHurbb5rn56eTrNmzQA4c+bMM7+WWoSQAjS+9FKFe5rpg1yBw9RIzvbJ7fSrQUQypO310xEyszV8+WJ9XmlZsthXubGLAN7tWou3OlceDVGl6ZPliEYjOHgzmqXHQjiaJ2VKbTdrRrf2oU9D9xI7m0QmZXLqfhzBD5O4FJbIlfAk0tPTifxzKgBuo+YgNzbDycqUAC9b6rnbYmdhjJFCjolChrFCrv1sJJdjbCTHWC7D2EiOkVxGWpaaaxFJXA1P5mp4MndjUgtdzbc2M6Keuw2BtZwZ2qxqAW8uIQTH78ax6Mg9DubYFcllUkqhtzvXKpegtrN2XGfB4XtYmRqxZVIbqhcTADhLpabbnMOE5lnqNghDeiRXGPJ6529qeDrToZYLHfycaV7NocLXe8ubhDQlgbMPkpKlKtXgnZfcwIJGchl7p7anWjmqWQtDCMELvxzj8qMkpnatpc0hVVlJSFPS4fsgkjKy+V+/eoxs5VPRTSrIL7/AW29JQSeXL4fnPOefEIKRS05z5HYsDT1t2TCxtd4jVufGvrIwUbD7ncASp9zI9Y4EeKdLTd7pUgmM7P/lpGRms+7sQ/48EUJonDTRymXQta4rY9pUo0U1hxJp+dKVKnZdiWTD+YccvxtXQDixMjXC38OWhl52NPSU3qvYmunFsytdqeJ6RArXwpO48iiZqxFJ3IpMRZnHNsfUSM6Axp6MbeNDTVfrAnXciU7lp/232XIpHID6HjbMfTmAGi4Fy5YFlVrDsEWnOH0/ntpu1vzzRptiI7Kfvh/P4AUntN8NwpAeyRWGfKauQxg/dos1N1bQyteRDn6SgFSZ3V7LwtJj9/l86zUcLE04OK0DtuYlV/3mMmbpaQ7ejKG3fxV+Hd5Yj63Ujc0XH/H2XxdxsjLh6PRO+hdmL12CL76QjI5ffLHM1eXGmrE1NyZoWgedYm88U5YulQzI09PByQmWLJHymz3HRCRl0O3Hw6RkqpjWrRaTOulXaNZoJJuw0yHxtKzuwOpxJbdPynXXB5jcuSZTutQ0RKkuB+7FpLL8RCjrzoaRlpNh3cbMiCHNqzKipXeJBFmNRnDyfhwbzj1i55UI0vNkbPf3sKVRVTsaetrR0MuW6k5WerdZexpKlYY70alcCEtgzekHXHn02P2/XU0nXm1bjcCazgXatD04go83XSYxPRtTIzkf9arDyFbeeu2L0cmZ9PrpKLGpWQxo7MEPgxoWW/8HG4L5K8dRwSAM6ZFcYehBZCyXo5UE3Yzm0K0YbbTLXKo7WdLez5mOfi60qeGE4hl25vIkW62h57wj3IlOZVzbanyigzFbUdyITKbnvCMIAZvfbFNu681Fka3WEDj7IBFJmcx+qQGDm5U81chT+eQT+OorCAiA8+fLHHdIpdbQ5+ej3IhMYURLb754sb5+2qlPbtyAoUMlA2uAN9+E776D5zgC8T8XHjJl7SWMFTI2vdmGeu62eq0/NC6NHnOPkJGt5vMX6jGqtU+J61h4+C5f75AEorc61WBq11oGgUhPXAxL5JcDt9l3PVq7rYaLFaNb+zCgsUeJwhvci0ll4/lH/HPhEY8SM7TbvR0tGNDIk/6NPCrVg7QQgjMhCSw5ep891yK16T98nS0Z06ZagfOPSs5k2rpLHMlJh9GuphPfD2qo1wCmJ+7GMXzRSTQCncJfJKVn03lOELGpSlCmE/qjQRjSC4UZUEtulCkE3Yrm0M0YzoUm5DNwq+lixXvd/eha1/VfMUAF3Yxm9NIzGMll7JkSWOzabWHk2hREJmdiOXg2vRv58NsrBT2lypsFh+4ya+cNarlasfudQP3+P3FxkmdZaqpePMsAjt+NZdgfp5DLYPvkdtSpYkNGRgYv5NS9ZcuWik99kJUFH30Ec+ZI3+vXh7/+gnr1KrZdpUQIwesrz7H7ahS13azZPKmN3tMV5Gr9zI0V7Hy7Xam8cxYduceX26W4YG929GVaN78KG28qXZ8sBafvx/PzgdvaiV0mg05+LoxpU402NRx1vrZJ6dlsDQ5n4/mHnH+QqN1ubWpEn4ZVeKmxJ028iw5oWFnsr8Li01l2PIS1Z8JIzZIyw9uaGzO0eVVGtfbWBhAVQrD8RChf77hOlkqDnYUxX/f3p5cORs+6kqsNNTGSs3Fia+p7PP0BZculcCavuYA8O4P7cwYZhCF9oIs3WXJmNsfvxBJ0M4adVyJJypDiMTTxtmd6j9o0r+bwLJtcLuQucXWu7cLi0c1KvH9ebxOvKesxMjUjaFrHZ/5UlJSRTetZ+0lTqlk+tjmBtfSc5uDDD+Gbb6BJEzhzpszaIXhsyN6imgN/TWhJenp65fTc2b0bRo2Swg0cOyblbXtOiU3NovuPh4lLUzKxgy/Te9TWa/0ajWD4olOcuBdHMx971k5oVaqlkcVH7/PFtmuAZMz6fveKEYieV28yIQTH7sTx04HbnL4vRS9WyGX0b+TBGx18S/TgF52SyYJD91h5MpSsnDx4chkE1nLmpcaedK3rqtPSvC7XUghBUkY2salZRKdkEZuqJDYli5jULGJTsohNzSIuTYmNmTFeDlJi4ryvkrj6p2Rms/7cQ5YeC+FBjnGyQi7jhYbufNy7jjYw4p3oVKasvcjlR0kADGjkwcx+9UrlVfckGo1gwoqz7LsejZeDOdsmtXvqOQghGL30DAcvhxqWyfRFSV3rkzKyWXDoLkuO3SczW7ohOtV24b3uftSp8vy6I9+NSaX7j4dRaUSphIi8N/iQ+UGcCE1ldGsfZr7w7LUHn2+9ytJjIQTWcmb52Ob6rTwmRtIOpafDtm3Qu3eZq8ybt+zXYY3pXteZtWvXAvDyyy9XrtQH0dFw6BAMGvR429at0LEjWOnXO6u82XUlktdXnkMug3Wvt6aJt36z24fFp9Nj7mHSlGre7+HHGx1K5y6fa9cH8FpgdT7oWfuZC0Qqlary9slCEEIQdDOGnw7c5kKO9sZYIWNQUy8mtvctkT1QYUJQbTdrXmrsSb9G7jrF9cnLk8KQubkFlx8lcfBmNEdvx/IwIYO4tCyUKoEq0QJVvCWaLCOESoEmW4FQKRDZOS8hQ2GZhcIqC4VlJkZWWSisM7G1AW8nSTDKFZZaVXd8qvCn1gj2X49iybH7nLwnCY6OliZ8+1IDutR1BST7o5/232Z+0B00AjzszPlhcENaVncs0TUojKT0bPr8coSw+Ay61HFh4YimyOUybRTtJ2N3hcWn0+mbndz5bqBBGNIHpY0zFJWcybz9t1l7Jgy1RiCTwYsBHkztWqvEHiSVhf9tvcaSY/ep6WLFzrfblcjTJu8NvuvCfV776yoWJgpOfNC5RE8p+uBBXDodvj+IRsDudwLxc9OvFwTvvy/ZzTRvDidP6kU7lJu3zMPOnH1T2xfrVVFpuHYN/P3B2Rk++wzGjwfjZ/t/l4Wpay+y8cIjqjlZsn1yW72nw1h75gHTN1xGLoOV4wrGlNKV3GU3gPHtqvFRrzr/iiV6faPRCPZci+KXg7e1hsKmRnKGNq/Ka+2r65w7DiQhaOGhe6w8Fap98G1U1Y53utQisKZTqa9/3rFy0p/HOR6aSnSUDGW0DcoYa7JjrciOtSY71hqhKt04IDNWYWSbgalnPGZV4zDzikdhlUUTb3sGNfGkd4MqWD9FoxP8MJH31wdrYw8NbV6VT3rXwTIntMC50HimrL3Eg/h0ZDKYEFid97vXLrMt7ZVHSQz47ThKlYb3e/jRoZYLM7ZcwdrMmCWFrFjM3XGRKb0bGYQhfVDWoIv3YlL5Ye8ttudExDRWyBjewpu3OtWo9LFuniQpPZsO3x8kIT27xIafeW/wlJQUBi46z43IFD7oWZvX2/uWU4uLZuLKc+y8Esngpp7MHthQv5XnzWi/axd0717mKjOUajr/EER4Uubz5VJ95IiU2+xuThLgGjXg44+l2ETWehZCy4GkjGy6/3iYyOTMctFkCiGYti6YDecf4mRlwra32uFmWzrj0xUnQvg0RyB6tW01PultEIhyUWsE2y9H8OuBO9yMkiZwCxMFr7T0Zly7aiXS3hQmBAV42TGla+mFoFw71IM3o9kXHMqmd7oAYNP8IhkhPmRHF24jY2YGfn7g4AAWFgVfMpk0HIWHS3Fhw8MhMbHwNhg7pGLqFYdZ1Xhsa8bRt7kTg5p40rK6Y6FLuJnZan7Yc5NFR+8jBPg4WjDn5QAaV5U0qKlZKr7Yeo21ZyXPrgGNPPhuUMMyC0RrTj/gw42XtWmjBJKX38XPuhVoZ3xCIo4O9gZhSB/oKwJ18MNEZu+6qQ3WZWmiYHxgdV5v7/tcxStacTKUTzddwc5Ccve2s9DN3ftJ1e+O6/G8tz4YNxszDr/fsVyCdj2Nc6EJvPTbcUwUco590Alnaz0Lpl9/LXlUvfaaNCrpgW3B4UxafQETuWBOZ1tcbcxo3Lhx5U99oFRKUav/9z9pGQ2ka/PiizBvnqQ1qsQcvhXDyCWnAfSf7BdJ0B3w23GuRyTTxNueNeNblvp+yBupekgzL2a+UO+ZjC9qtZrz588DVKo+ma3W8M+FR/wWdJf7OekyrE2NGNXah7Ftq+mUGT2X8hCC7semsfTYffZcjSI8JpuM+86k37Yi/VqujVoqYIlMJqhdW4a/v+SfkPuqXh1KeqnT0yWh6MoVKd3goUNSVJB8koBcg0WtSKwDHuDbMJ2BTTwZ2MSz0FWN43djmfb3JcKTMlHIZbzZsQZvdaqhTe66+eIjpv59CbVG8EJDd+YMbljq+F0ajWDd2TA+23JVuySZy8632xUwRSnJ/G0QhopB3+k4jt6O5dtdN7RGZg08bfn9lSa42z0f3hcqtYbePx3lZlRKiZ6UnxSGjEzNaPvtQWJSsvjx5Yb0b+RZns0ulP7zj3HhQSKTO9Vgak6yzspMbt6yEzfDKzS1SalJSZECNS5bBrduSbGJwsMfL5s9egSurlAe9iYqlZRgNjQUkpKgQ4cSpRT5+J/LrDr1gGpOluwtQzT2ogiJTaPvL0dJyVQxpo0PM/qWXgO1+tQDPvpHSqVTw8WKuS8HFOt9U1YqmwF1ZraadWfD+P3QPa1Lu52FMWNaV2N0G58SxUtLyczmlwN3+PNESD4h6J0uNWlfy7lUQlDww0R+P3SXnVciUcZYkXLBm9QrngilEZAGSNdywIBUXnzRkh49yveZISFBUuIeOgT79gmCgx+fk5F9KlYNw7DyD6NNfWsGN/Wib0P3fJnskzKy+WzzFTZflAIxNvS05ceXA7Q2SDsvR/DWmguoNILe/lWYOyQg3/66cic6hcELThKfpizwW2HBaQ3CkB4pj9xkmhyV7Webr5CQno2TlQm/DmtMCz0YmT0Ljt2JZfiiUyjkMna93a7QKKVPkp6eTt26Uoyia9euYWFhoU0vUM/dhm1vtX3mKv3twRG8ufo89hbGnPiwc/k9QWs0kr5aD+d3LTyZXnP28vCPN3CyNuXerRvPX+oDIeDsWXjwQFouA+ka+fhIBuj160uxmho2lN4bNChecBFCWge4e1cSsurUkbbfuiVFyH70SDpGLjVqwJYtj8sVQ2qWivazDxKXpuSbAf4MKSbWSWnIm4/p56GN6NvQvdR1Bd2M5r31wcSkZGGskDGlay1eC/Qtt/hnhd3fFUFalorVpx6w8Mg9YlKkWHBOVqZMCKzGsBbeJUqXodEI/rnwiFk7b2iTlZZFCBJCcPROLL8fusvRW3Fk3HUl5Zw3maGPpRxfX+jVK52//66LmVnFXcsLF2DBAli1SpCamnOeCrWkLWocSqNmama/1AB/z/xC9pZL4Xzyz2WSM1WYGyv4uHcdhreoikwmY8/VSN5cfZ5staB7PVd+Htq4VBrQezGpjFxymocJGfm292lQhV+G5Q/maxCG9Eh5JmoNi09nwopzXI9Ixkgu47O+dRnRUr8RPMuL3MSngbWc+XNMs1K1OSFNSatv9pOZrSk0IWl5o1Jr6PB9EA8TMvi6vz/DWuh/gmPjRimR67x50KmTXqrMNWT3cjBnzzvPkTH107hxQzI4T0kp/PdJk+Dnn6XPGRnQrZu01KZQQFgY3LsnbQcpRchPP0mf4+Ik4QgkDVTVqtIxoqMlAWv7dmjbVqcm5rqxu9mYEfReh3IRnr/ddYPfgu5iYaJgy6Q2+DhaEpGUWSqni/g0JR9tvMyuq5EANPdx4IfBDZ9bB46nkZSRzfLjISw5dp+EdCm0ibutGa938GVwU68S/1dXHiUxY8tVzoUmAFDNyZJPetehU22XEo91KrWGnVci+f3QXS7fTyflYlVSL3ijSpL+B7lcCkk2aZI0RFSm4T8lRQoZtmABnJPkdOwDHmHT/SJyGYxvV513utTKNwZFJGXw7t+XOH43DoCOfs58O7ABLtZm7L8excSV51GqNXSp48qvwxuVKoZXdHImo5ee4VrE42jZjpbGnP2ka77/xyAM6ZHyzlqfoVTz/oZgtubkeRnc1JP/9atf6e2IQmLT6PrjIbLVgqWjm9Gxtkup6vlk02VWnnxAp9ouhXoDlDe5E5yvsyV7p7TXfxj8SZPg11+hfXtpgV4PpGap6DrnEBFJmbzRwZf39RwDp8LQaCSh5uJFyYjh4kXp9fAhTJwI8+dL5WJjC18zkMslYWfYMCkSOEgao5Mnwdsb3NykMtHRMHCgJESdPq3z+kNmtppO30tG7B/3qsP4wOr6OOt8qNQaRi45zfG7cVR3tsTXyZKMbA0rx5UuZpMQgnXnHvL5lqukKdVYmRrx+Qv1GNDY47l46CqOqORMlp8IYfnxUFJyAgP6OFrwRocavNjIo8Sah8R0Jd/vucnqUw/QCCnt0luda/Bq22olnrQzs9WsP/eQhYfvERqdScrFqiSfqIk6XbJTcnCQnCtff11SipYGlVrDlfBkbkQkk5qlIi1LTbpSRZpSRXqWmtQsFelKtfZ7lkqNt6Mldd1tqOduQ90qNvg4Wuo07p07JwlFA4cp2RpxVTtneTtaMKu/fz5bOo1GsOTYfWbvvolSpcHd1ozV41vi42RJ0M1oJqw4h1KloaOfM7+90qRU811KZjavrzzHsTtx2m2HpnXAO08AU4MwpEfKWxgCacD648g9vtl5A42Ahl52LHilSam9Sp4VX22/xh9H7tOoqh0bJ7YutQFhpx+CEAL2TW2v90zhxZGSmU3rWQdIyVKxZHRTOtV21e8BHj6UdN9KpSQMtW+vl2p3X43ktRXnMJLL2D65nf7DA1Qm4uKk65ebCDYzU9LoZGRI2z08pGvs7a27275SKdkr5Z2FVKpi7ZX+PhvG++uDsbcw5vD7HZ/qflxaYlOz6DXvCNEpj1P+bJjYiibepQ/e+iAunal/X+Rsjqajt38VvupfX2cHiMqEEILT9+NZfjKU3VcitdH//VyteaOjL739q5TYpkutEaw9E8Z3u29oNUt9G7rzUa/aOrnbZ6nUPErI4EF8OiFxaey7FsXp+wlkqTSkXXMn5WhtlIlSPbVqwQcfwJAhJc9aI4TgdnQqx+7EcuxOHKfux5GSqSpZJU9gYaKgTpXHwlFddxtquVoXK6Dsvx7FJ5uuEJGUCcDLTb34qHedfPZYNyNTmLjqHPdi0nC1MWXN+JZUd7bi6O1Yxi0/Q2a2hsBaziwcUTqBSKnS8Maqc9rUKa+0rMqXL/prfzcIQ3rkWQhDuRy5HcOk1RdIysjGycqU319pTFOfyhu9Ojolk7bfHkSp0rB2Qsun2jxlZGQQGBgIwOHDh/OF689dchvavCqzBvgXVUW5kSvUtfZ1ZPX4lvo/wMSJ8Pvvkg58//4yV5eZmcmQIUO4GJaI6Pg2zXxd+fu10kUwNpDDkiWSx9vGjY+FrkJQqTV0n3uYuzFpTO5ck6ld9R/iIC1LxcsLTxRImLni1bJF9FZrBL8fusuPe2+h0ghcbUz5flBD2tUsu2Vubp8E+OuvvzAz0/+DXLpSxaYL4Sw/EaKNbwPS8t+r7arRtY5rqe6B8w8SmLH5qtappZarFZ+/UJ9WvkWPZ2Hx6fy0/zYP4tMJi08nIjkznzeWEJB534mkQ3XIipbmjSpVYOZMGDv26TL3k2NlbIbg+F1J+Dl+N05rv5SLjZkRAVXtsTM3xtLUCEsTBRamRliZKrAwMcLK1AgLEwWWpkYo5DLuRKdyLSKZqzkapSe9skCKMN3a15GxbavRvpAkrbmkZGbz7a4brDz5AABna1O+6FePHvUf30MxKVkMX3SSW1GpOFubsmZ8C2q4WHPibhxjl50hI1tN2xpO/DGyaamW/DUawcDfj3P+QSLmxgrOftJFG+/IIAzpkWcpDIH0BDdhxVluRKZgrJAx84V6DG/hXe7HLS0f/XOZ1ace0NHPmaVjio7m/DRvk9P34xm84ASmRnKOf9DpmcdfepSYQeDsg1Iskslt9Z6YkwcPJM2FSgXHj0OrVmWqLu+19Jv+D5kY65TA0EARpKVJBtWRkZKmKDj4qTGQdl6OYOKq81iaKDj8fke99tfkzGzGLD2jtVXJy4aJ+omCfflhEm+vvcC9GMnVfHiLqkwIrI63Y+k9wMrTm+x+bBorToSy7lyYVgtibqzgxUYejGzlXerI/vFpSmbtuM66cw8ByeV+StdajGjlXaynk0qtof13QTxKzEAIUCebIdRyjOzSUaeYE7fLn8wQSci0sJByOL/9tm5RNvJey9ZfbOdRav4p2sxYTjMfB1r7OtGmhiP13G1LbRivUmu4H5vGtYhkroVLAtLV8CStdgweJ2l9qbFnkcLKmZB4pm8I1vapnvXd+LxfPW38prjULIYvOsWNyBScrExYNa4lfm7WnL4fz+ilp0lXqmlZ3YElo5uVKrBpZraalrP2k5iezevtffmgp2Q6YBCG9MizFoZAegJ6b10w2y9LgRqHNpfiheg7WaQ+CMlZ5tKIwuM85PK0wVIIQb9fjxH8MIkpXWrxdpeaz6TteXlrzQW2XgpnQCMP5rwcoP8DvPqqpH3o3VtK01EGsrOzWbZsGQDqGoF8s/sONmZG7H+3g/7jJf1XuH0bunaVXO9nzJAe4Ysgb38d26Yan/Wtq7dm/HPhIR9uvKx14c5Ly+qO/DVBP5rLDKWaWTuvs/xEqHZbYC1nhjX3YueVSMa3q14id/y8fXL06NEYlzHKuFKl4fCtGFacDOXQrRjtdh9HC0a08mFgE88SucfnRQjJS+yLbde0k/7AJp5M71Fb5/tHCHhxbAJ7DqqQm2Vj1+EGRjYZpJyrRsIhP1BLY/ULL0i3vaOOjsI3I1P4dc9Vfh4lPTB5TVmPsZk5AV52tPZ1pLWvE4297cp1LhBCEBKXzsqToQWStA5rUZWRrbwLXTrMzFbzy4E7/H7oLiqNwMbMiNkDG2i1RAlpSl5ZfIqr4ck4WJqwalwL6lSx4VxoPKOWnCE1S0VzHweWjGlWIq+/XPZfj+LVP89iJJexe0ogvs5WBmFIn1SEMARSh/z90D1m776BENJAtWhk02cenFAX3lx9nu3BEbwY4M7cIY0KLVPck2NulmEnKxOOTu/0zA3IL4Ul0u/XYxjJZRz/sFOJ8wkVy+3bULu2ZCR8+bLkPq4HVGoN/X49xtXwZPoFuDOviOtvQAfWrYPBg8HSUnLRdy3afuzI7RhGLD6NiULOgWntC+RFKgsRSRn8sOcWG84/5MnRef3rrfS6dH78TiwLDt/j8O2YAsdqXs2etzvXorWv7hnby0JMShYHb0Zz4Ho0R27HkKZUA5J3VUc/F0a28ibwKUs2uvAgLp2PN13WZqav7WbNV/39S6Vxe21KOhvv3cCyTgTKaGtitzfMFyn6p58kx8biEEJw8l48Cw7fJehmDBplpjaO2D+n7tClYclCAuiTlMxs1p19yLLj+ZO09vKvwqttqxHgZVdgn2vhyXywMZjgh0nIZPB1/8da66T0bEYsOUXwwyTsLIxZ+WoL6nvYcuFBAiOXnCYlU0XXuq4sHNGkVH1u7LIzHLgRTbuaTiwf25yUlBSDMKQvKkoYyiXoZjQTV54nI1vNCw3dmftyQKWzDbnyKIk+Px9FIZcRNK1Doa67xQlDedXO5RXHpThygzCWJWnmU/nqK2jUCHr21Kv/bPDDRF789RgaAStebU67ms7EpmZps0kb0BEhoEULOHMmvyt/oUUFw/6Qss4PauLJd4P0nNIFaVKZtfO6duIG8LQ358j7HfUunDyIS2fV6VBWn3pQwCC3mqMl73avRc/6VfQap0gIwdXwZA7ciGb/jWguhSXm+93Z2pQXA9wZ0dKHqo5lEzZVag2Ljt5n7r5bZGZrMDGS83bnmkwIrF7i4H8ajWD16Qd8s/MGKWkaEo/VJPmULwjp2shksHKl5NT4NNQawa4rkSw4fJfgh5K9klwGnWvYsmhcO6ByBLCEx0laFx+9z6n78drtjava8W43P9o8EZVdpdbw2ZarrD4l2RLlTbuUlJHNqCWnuRiWiI2ZESvHtaCBpx0XHiTw8oKTKNUaPupVmwmBJU/TFBKbRrcfD6NUa1gwogmtvCwMwpC+qGhhCCSBaNyfZ1FpBGPa+PBZn7qVzi32lUWnOHontsio1LrYFPxx+B5f7bhODRcr9k4JfObn+PeZMN7fEIy3owUH3+1Q6YTOXDQaDdevXwegTp06yOVyZm65yrLjIXg7WDAhsDqzdt7gwLvtcbGp3B6JlY6DByVDdyMjKfaRb9ED8oUHCfSffxy5DPZMCaSGS/l49B26FcOHG4MJT5S8doY292LWgAblcqzVp0L56J8rhf5mY2ZEBz8X+jasQg0XazzszLWa6sL6ZF6UKg3RKZlEJmXyKDGDk/fiOXgjmsjkzHzl/D1s6VTbhc51XKjvbquXezD4YSIfbLisjUnT2teRr/r7U82p5ELGvZhU3l13iQsPElFGW5OwpSmZcfkFteXLYcSIouvIjY79x5H7Wm2LqZGcQU09Gde2Os7mVKpo3k9y5VESS4+FsPVSOEq1tJw7po0P03vUzqfRF0Iwe/dNfguS8hK+3t6X6T38kMlkpGRmMzrHNs7azIjlY5vTqKq9Np2MQi7jrwktaVYKLej3u2/yy8E7eNiZs3FcI9ycHQzCkD6oDMIQwKYLj3hn7UUA3uvux5sdH2sulCoNGiEqNDZRblRqM2M5x6YXNILWRRhKznFzT81SsXRMMzr6lS52UWlJV6po/tV+UrNU5ZKDKh9KJZiUzq25sGuZkplNpx8OaaPuAnzxYn1GtKy8xveVlh494MABWLz46bMaMGH5WfZci6JnfTd+e6VJuTVJrRG8/dcFtuUkfC6vOEc/7LnJzwfu6FRWLoMqtuZUdbCgiiX8+Ipk5zJnxyUSlHIikiThJzI5k9jUrALLcCAZQret6UTn2i50rO2Cqx6F97QsFXP23mLpsftohJSO4+NedRjYxLNUD1qbLz7io42XSc1SowyuTuwBP1RKOTKZQORohRYvlrzFiuLE3Tg+3BhMSJwkBNlbGDOylQ8jW3lrx8zKltqkKKJTMvlp/22tJ1lNFyt+LCT1y++H7vLNzhuAlN3+yxfro5DLSM1SMXbpGU6HxGNlasSyMc1o4m3PO2svsvliOK42pmyf3K7EGu4MpZoucw7xKDGDCS2r8HH/JjrN35XPAKUSI4RAo6kY2fHFRh582kcy1Pxu903+Oi11wFtRKfT79Rh7r0VVSLtyae3riL+HLZnZGv7MY5SZFycnJ5ycihYwbMyMGdLMC4BFR+6VSzufhoWJEf0CpBQIa86Elc9BhJASlnp6Ps7kXgqevJbnQhPIylbnK7MnJ/KwgRLy889w82axghDAtO5+yGSw80okwQ8Ty61JCrmMX4Y1ZnIn6SHoqx3XWXGy8PusLORqKp7EzEiOi7UpHnbmOFubYqKQoxGSJ+aJe3GsP/cIubkNcnMbftx7m+UnQtl7LYrLj5KISZEEIROFHC8Hc5r7ODCylTfLxjTjwmdd+WNkU4Y0r6pXQejgzWi6/XiYxUclQahfgDv7prZnUFOvEgtCmdlqPvrnMm//dZHkJDmq3a2I3FUHlVJOnz7w/fdSfb//XrQglJyZzYcbLzP0j5OExKXjamPK//rV4/gHnZnStVaBh8fixsrKgIu1GV++6M/SMc1wtjbldnQq/ecfY37QHdR55snX2/sya4A/MpmUcX7yXxdQqjSSADS2Ga2qO5KapWLkktOcCUng6/7+1HCxIio5i3f+upivLl0wN1HwSW8pzc7iY/d13s+gGSqGXM1QjffWo1aYoRGSq2GAlz0BVe1o5GWHn5t1qZLOlYbZu24wP+gucpnkAbHpYjhKlabQvCzPmtxcX3YWxhyb3kkb66EkPExIp/13Qag1gh2T21GnijVXw5Op5Wr9TIzHc+2fTBRyTn7UuURZrXWmd2/YsQPGjZNi25SR34Lu8u2uGwW2K2Rw7tOuz2VgveeJqX9fZOP5R3qJBVQcTy49fD+oIQOb6C/J8bA/TpKapaKWqzV+rtbUcrOmlqsVbjZm+YQIIQQxKVk8iE/nQXw6oXFSvJ2Y1CycrU2pYmuGm605VWzMcLOVXg4WJuW+9ByTksX/tl3TRkf2tDfnyxfr06GUWub7sWm8seo81yOSyQpzIGNPU5JijTExgdmzYfJkUKthwwZ4+eXC69h7LYpPNl0mKlnS2g5vUZXpPWtjUw4BOyuK+DQlH24MZvdV6aG8sNQv24MjeGftBbLVgsBazvz+SmMsTIzIUKoZv/wsR+/EYmdhzLa32pKhVPPCL8fIyFaXKp6XEIIRi09z+OoDwuYONiyT6YNcYcjrnb+RmxZuxGdqJMffw5YALzsCqtoR4GWHh515udi8CCGY/NdF7c2ei6WJgnOfdq3QpTK1RtD5hyBC4tL5tE9dXm1brVT1TFp9nm3BEdT3sEGp0nArKpUzH3d5Zm7jfX4+wpVHyXzSuw7j2ul/KYITJ6B1ayla8p07UgqJMpCQpmTK3xcJuhlT4LcfBjXkJT1Olv85zp2TPACbFZ0qJiw+nU4/BJGtFuW/vIo0Bny+9RrLjocgl8FPQxvRp0Hpk7o+WXdls0fUBY3m/+yddXhUV9fFf6NxJQJEcSe4uxaKa0uhxUppabE6dRco0kJL0bYUKEVb3N0CBCeQAHF3T8bu98edmSQQmZkI7ft1PU8ewsxcyZ1z79ln77XXEvjzchRf7gsmM1+DVAJTu9Zh/oCGFunWAOy+Hss722+QXaBFfbkRCSfqodNJaNBA9OtqU87aMzm7gI//vm0sbfrXsOXr0S3p9C8x5DYXJVm/fDysGaOLWL+cDEli5oYr5Km1tPVzYd0L7XGyVZCv1jLu5/PciM6gpbcTW2d2Zv/NeOZuuYZEAr9O6UCPhuaJg95PzGLANwcJWzz2vzJZZeLAnO4ELujLhXf7sm5yO2b3qU/3Bm44Wssp0Oi4HJHGmjNhvLrpKt2+Oc6gZafZdTUGjfZxvZCK4HJEGifvJT72eo5Ky7kHySVsUX2QSSXGDoC1px+iNvNvFxVmY4hOE1P1t2IyCUnIBsT6f3XhmfZicLI5MJIqWSt07iySdNVqWLiwwrtzsVOy7oX2zO/f8LEmtb8fCZr/gxn49Vdo1040j9KVPpZ9XG2ZoO9+/ObgvaoZM0UgkUj4aGhTnmnvg06AuX9c40gllcn/jYHQ/cQsnll1gXd2iG7pLbyc+PvVbrw/pKnFAn7v7bzJa5uvkpUF2oOdiTtWH51OwvPPi/FxWYGQIAjsCIqm3+KT7LkRh0wqYWbPehyY2+N/NhACceyMa+fD/jk9aOfnQnaBhje2XueVjUGk5agA6NnQnd+nd8DRWs6ViDTGrzpPYlY+1goZKya0wclGwY3oDD7bc4cRrb2Y0NEXQYC5W64Rl5FXzhkUR30PByZ2Np0z+V9mqByUR6DW6QTCUnK4FpnOtSjxJzgu0+iX4+Nqw4we9Rjb1rtSsjYqjY4v9wXzy7nwx94b386Hb8ZUTZeJqchXa+n2zXGSswuKZSXy8vIYNGgQAPv37y9mx2HAw6Rshi0/axT5Koo9r3UzSwSuIsjKV9Phi6PkqbVsndnZoo6GcmHoWrKygvBw0UTUROTn5zNt2jQA1q5dW8z64HRoEq9tCiI9T7yGUgnc+mSgxavj/9dIShK7ybKyYPNm0UyqtI9mFdDj2+PkqbX8PKktA5uZ/n1aCq1OYP6fItlUKZOybnJ7ujV4MjyTssZkVaFAo+XH4w/48cR91FoBG4WM1wc0ZHIXf7O9yQwI15fF7sRlokm3RXOgCwkRViiVok+w/k8sFTHpeby386YxS9ukliPfjm5JC2/Tn12mPCv/6XjU+qWmozUbpnWggafYcRkcl8mktYEkZxfgX8OW7S93oYa9FcfvJjLll0sALB3fiqea12TMynPcismkja8zW17qbBYlJTYpFS+PGv+VySoDlnSTZeSq2XAhnHVnw0nVR8Ru9lZM7ebPxE5+lVIr/utaDG9vu0F+EV8ZZ1sFV97vX6laIJbAwGFp4GHPwbk9kEolJndIGKwOHsWfL3WmQ53q82l7a9t1/rwczag2Xiwe16ryDyAI0LWrWDJ7/XVYtMjkTcu7lrHpeUxeH2jMqk3r5s8HQx6XO/gPJuDzz+GDD6BuXbHVvgxlZUNLbwMPew7M7VEt96FGq2PWpiAO3k7ARiHjt2kdqiZ4LwfV3QF14WEKC3beNNo/9GnswafDm1VI/PLArTje2HqD7AIN8viaJO5qTVaGlFq1RMu6TuWIf58JTeaVjVfIzNdUSMfo39JNZgqKWr8UteEAMfCcsPoCsRn5dKzjyu/TO6KQSY0djTYKGX+92hVruYynfzhNVr6Gad3qGBuJTIE58/e/qkx26tQphg4dSu3atZFIJOzatavcbU6ePEnbtm2xtrambt26rFy5ssrP08lWwat9GnD27T58PLQpXs42JGcX8O2Be3T9+hjfHrj7mNmeuRjeyovdr3XDz7Vw1ZCeq+bc/SdbKgN4rpMvDlZyQhOzOXb38ZJeWRikVzZ9FNVZJgOMoo/7bsaRkacu59MWQCIRDYtAJFHnltzFUxKUSiVLlixhyZIlKEtoz6/tbMOe17oToF+N/nY+gth081LM/0GPefPA3R0ePhQVqsvAiz3q4mSjIDQxm51XY6rl9OQyKd8/25qeDd3JU2uZsv7SY+KF1YHyxmRlISW7gLe33eCZVRf0E6wVyye0Zu0L7SwOhARBYMXx+8z8PYisfA3OD5oRtqENWRlSOnSAy5fLD4Q2nA/nhfWBZOZrCPBxZt/s7szqXb/aGmv+qWjh7cSOl7vQrLYjydkqnl19gWC93lN2gQYBscvwYlgqn++5A8Dcfg3pVt+NPLWWmb9fwdVeyXd6UdO1Z8I4cCuuSs71X/VN5eTkEBAQwPLly036fFhYGIMHD6Z79+5cvXqVBQsWMHv2bLZv317FZyrCRiljctc6nHizF9+NDaC+hz1Z+Rp+PPGArl8f46v9wRRotOXvqBQ08HRg75we9GpUSCz7uoSuouqGo7WCCZ3EYGLlSfPbx98Z1Jh2j8jjl1Q6q0q09nGmkacD+Wodf12roolt0CD48EMIDDTNwVEPhULB3LlzmTt3bqkeUEq5lG0vd8HX1Ra1VmD+lmtPTBbiXw07O9FhE8T2oTIS6U42Cl7pJXLmFh+6R77a8nvbHFjJZfw8qS2d6rqSXaBh4pqLVTZhlAZTxmRFoNLoWHP6Ib0WnWDLZVH24tkOvhyd35MhLWtbzHVSaXS8te0GCw/eQ9BKcLvWhevb/NHpJLzwApw8CbXL4KartTre33WTD/66jVYnMKq1F1tmdKK+h71F5/O/CGdbJZumd6KltxOpOSomrL7AooP3GPXTOeIy8qntIi7ofz0fwZ+XopBJJSx7phW1nKx5mJTD29tu0L+pJzP0ulpvbr1BeHJOpZ/nvyoYGjRoEJ9//jmjRo0y6fMrV67E19eXpUuX0qRJE6ZPn87UqVNZZEZJojKgkEkZ3dabQ3N78POktgT4OFOg0fHzyYeM/ukcYRX4Yu2t5Kyf3N6oz3M7NpMzoY93FVU3pnWtg1Im5XJEGpfCU8vfoAgUMinLJ7TByaaQ52Ig4FUXJBIJz3QQr+mmi1VEpJZI4JNPoFGjyt834nX8ZUp7rOVSLoSlss4MzY3/UAQvvywGRdevw6FDZX70hS7+eDnbEJuRX63X21ohY80L7elYx5WsAg0zfw/i0913UGkqt4HjSeD4vUSeWnaKz/cGk5WvoVltR7bN7MxXo1rgZGt54JWeq+L5dRdF13q1DOczvQg65IJUCkuWwPr1UBb1KT1XxeT1gfx+IRKJBN5+qjHfjQt4oh29/1Q42SrYMK0jLbycSMtVs/z4fePYDE/O4YUuItH5/V23CIpMo4a9FcsntEEulbD3Zhzrz4bz5sBGtPd3IatAw5w/rpqtP1Qe/lXBkLk4f/48AwYMKPbawIEDuXz5Mmp1yaWPgoICMjMzi/1UFqRSCQOb1WTXK134eVJbXGwV3IrJZMj3p9l5Ndri/UokEr4e3ZIBTUVjyTl/XCMjtwpKO2bAw9Ga0W29AFh5wvzsUE0na1YU0U26EplWaedmKka29sJKLuVufBbX9d5BVYo800pZOp2O8PBwwsPD0ZXR5QRQ192eD/Su6t8euGdMUf8HM+DqCjNmQK1aUM7zwFoh442BoibKT8cfkFLBcrg5sLcSfZ5e0q+g150NY/yq88RUQ4nUnDFpKh4kZTNlfSBT1l8yck6+Gd2Cv1/tVmGz2vDkHEb9eI4LD1OxUtuiPNCXGxdssbGBnTth7tyy7QMfJGUz8sdznL2fgq1Sxs8T2/Jyr3r/2G68nAINYck5XHyYwu7rsaw9E8ZX+4N5a9t1Fh+6x66rMdyITq/SDHxWvppcVcn7d7CSM7CZJyqtjpkbrpCQmU9bPxfe04snfrkvmBvR6fzwbBscrORcj85g6+XKFcb91xKoJRIJO3fuZMSIEaV+pmHDhkyePJkFCxYYXzt37hxdu3YlNjaWWrVqPbbNxx9/zCeffPLY61VhxxGXkcecP64RqDe+G93Gm0+HN7NIrBDE1vSnlp4mMjWXoQG1+eHZJ+tg/jApm76LTyIIsHNGW9rUE6+3OaTACasvcO5BCn6utpx8q3dVnm6JmLflGjuvxvBMex++Hl1FnXqJieLT9/x5Ufm4HM6FuQRLQRCY/utljt5NpHFNB3bN6vrf6tVcZGSIaQKrIlpXhkfnIxOgTicwbMUZbsVklurVV9U4fCeB1/+8Rma+BmdbBUvGt6pSe5vKJP1m5Kn54Wgov5wLR6MTUMgkTOlah1f71K+U5pPAsFRmbLhMeq4aF1UNkrZ1ICZKirs77NkDHTqUvf2pkCRmbRL5RV7ONqx5oR1NalXe3FDRa5mn0nLsbiJ7b8ZyNy6LxKwCs4IcDwcr6rrbUc/dnrru9rTwcqKdn0uFBTM1Wh0/nXjAkiMhPJrU8XaxYd/s7oxZeY6QhGxa+zrzx4xOKGVSXt18lb034qjpaM2e2d3461osn+25g6udkuNv9MLJpvQx8T9LoLYEj0bqhtivtAj+3XffJSMjw/gTFVVFtgyIvj6bX+zE3H4NkEpge1A0Q384w+1Yy7IQtko53z/bGplUwu7rsVXHdTERdd3tGdRcbDFedzoMW1tbbM3gxgB8ObIFABGpucRn5Jfz6cqHofz49/XYqls1OTqKrfbh4bBpk0mbmHMtJRIJ34xpiZu9krvxWSw6eK8CJ/v/FE5OhYGQTgd//SV2A96589hHpVIJCwaJK9rfL0RUqAxuKfo39WTv7O608HIiPVfNlPWXWHTwXqXrnhWFJfd3UeSptPxyNow+i06w5kwYGp1A38YeHJzbgwWDm1RKILTzajQT11wkPVeNd4EP4es7EhMlpX59cS1SViAkCAK/nA1jyi+XyMrX0NbPhb9e7VqpgZAB5l7LAo2WI3cSmPPHVdp+fphZm4LYdzOeh8k5xueWrVKGfw1bOvi78nTLWkzp6s/8/g15toMPHeq4Gj3AErMKuPAwlY0XI/lszx3G/XyevotPsvrUQ2N3tCWQy6S81rcB21/ugq9rcbmA6LQ87sZnsfr5djjZKLgamc4Hu0TD4G9Gt6Seux3xmfnM+eMqz3X0pb6HPak5KpYcDrH4fB7F/3RmqEePHrRu3Zply5YZX9u5cyfjxo0jNzfXJKJfdRm1XnyYwpw/rhGfmY9SJuW9p5vwfGc/i9Kuy46EsuRICA7Wcg7M7YGX85PTqbgelc7wFWdRyqQEvtfXImuIUT+eJSgynXcGNWZmz9JdxKsCgiDQd/FJHibl8NWoFjzboWJq0aXi22/h7behcWO4fRuklb9OORqcwLRfLwOwcXpHulaxUvL/HAoKYMMG+OgjiNWLWf79NwwdWuLHp6wP5Pi9pCo3cS0LBRotn+8p9DHrVNeV759tjYdD1esAmYqMXDW/nQ9n/blCKZJ67nZ8MKSpxTYaj0IQBJYcDuF7vQltU01Djq+oT36+hE6dxK/RvQyBY0EQ+HxvMGvPiDywUW28+GpUC6zkTy7DqtHqOPdALHsduB1PVn7hYs3bxYahAbXpXt+Nmk7WeDhaY29CxSEjT83DpGweJuXwMDmb+4nZnL2fYgyolDIpg1vU5LlOfrTzc7G4LJhToOGDXbfYUaTrsl8TD9a80J7ToUm8sC4QnQCfDGvGC138RQ9OvT3H/P4Nae3rzKS1gcikEvbN7m5s138U/2WG9OjcuTOHDx8u9tqhQ4do165dlXQ8VAQd69Zg/5zu9GvigUqr46O/bzNjwxUy883n/szqXY/Wvs5k5Wt4/c8n20UU4ONM01qOqLQ6/rpmmRryuHZidmb7legqV/d9FBKJxJgd2qw3x60SzJwpZh/u3hWzDlWAvk08mdBRDOZe//P6E+eV/WuQny/qQNWtCy++WBgIAYSVTpJ+d3ATpHoT1ysR5jURVBas5DI+G9Gc759tjZ1SxoWHqTz9/Rm2Xo564uTquIw8Pt9zhy5fH+W7wyGk5qjwcRW9xA7M7VFpgZBGK3aMGQKhLpJWHF4mBkJDh8LRo+UHQl/uKwyE3hnUmO/GBjyxQEirE9hwIYJOXx3j+XWBbL0STVa+Bg8HK6Z2rcPOV7pw+q3evP1UY7rUd6Ouu71JgRCIHZGtfV0Y3dabNwc25udJ7bi4oC9fjWoh2iNpdey6FsvYlecZuPQUv54Lt0h6xM5KzuLxrVj2TAByffntSHAi9xOz6N7AnXf1mdVP99zh/IMUGno68OWo5gAsP34fX1dbBjbzRKsT+GT37UqZF/5VwVB2djbXrl3j2rVrgNg6f+3aNSIjxUnq3Xff5fnnnzd+fubMmURERDB//nyCg4NZt24da9eu5Y033ngSp18uXOyUrH6+HR8NbYpSJuXwnQSeXxtIlpkBkVwmZcm4VtjqH35rzlS/A3xRjGsnqlD/aSHhbXDLWijlUkITs7kdW/0E4NFtvFHIJNyIzrC4hFkuHB1h1izx96++KrOFuyJ4/+km1HETU87v7bpZ7cHlvxJKJdy4UTwIMuBh6fdWQ08HYyD/xd7gJ3qthwXU5u/XutHI04GkrALe3HaDHt8e5+eTDyxacFUED5KyeWvbdXp8e5w1Z8LIUWlpXNOBZc+04vjrvZjYya/S9Hny1Vpe2RjE1ivRyKQSBso78cc3Xmg0EiZMEA1Wy6pGCYLANwfusfq0GAh9ObIFM3s+OaL0lYhUhv5whg923SI5uwBXOyXPdfTljxmdOP9uXz4c2pTWvpZnbEqCnZWcZzv4sue17vz9alfGt/PBWiElJCGbj/6+Tacvj7Li+H2LSrDDW3lzZH5PY7A29ZfLFGi0TO9eh5GtvdDqBGZtCiI6LZcRrbzo3sANlUbHx3/f5r3BTbCSSzn3IIX9t+Ir/Hf+q8pkJ06coHfvx0m0L7zwAr/88guTJ08mPDycEydOGN87efIk8+bN4/bt29SuXZu3336bmTNnmnzM6iqTPYob0ek8vy6Q9Fw17fxc+HVqB7OJ1ZsDI3l3x02UMmmV1bZNQVqOivaf7id22+e083fl0N6/zJbrN5i3PilC6qxNQey9EcekTn58NqJ51RwkMRH8/MRMxJEj0LdviR8rKCjg1VdfBWD58uVYWZlnYHstKp3RP51DqxNYOr4VI1p7VfjU/+ehVsPw4bB/f/HXhw4VayylIDEzn54LT5Cn1vLTc20Y1OLxpo3qRJ5Ky6/nw1l/Nszoom5vJWdCR1+mdPWnlpNlJfXyxmRCZj5HgxM5dCeekyFJxli/Yx1XZvaqR6+G7pUeYGQXaJjx22XOPUhBKZfSR92Vn78Vn4EvvQQrVoCsjOSOIAh8dyiE5cfFjNJnw5sxqbN/pZ5jScjPz2f06NEAbN++HWtraxKz8vl6/112BIllJUdrOa8PaMSEjr5PRNgxI0/NrqsxbLwYYVS6b+ntxKKxATT0LLlkVRaiUnLpv/Qk+Wodz3f249PhzclXaxm78jw3YzJo5ePM9pe7EJ6Sw1NLT6HWCqx+vh03YzL4/mgoXs42HJnfExul+IXqdAJSqcSs+ftfFQw9CTypYAjgVkwGE1ZfIDNfQ4c6rvwypb1ZHlOCIPDib1c4EpxAI08HUdr8CXURzVh3ltXTugGWdUgYPGtc7ZRcXNC32h8AZ0KTmbj2Ig7WcgIX9DPedJWOV18Vn9LDh0MpCuuV0blj5JVZydn9Wjf83f69kv/VhpwcMUC9eLHwtcaNITi4zM0WHw7h+6Oh+New5dC8nijlTz4hr9KIYqKrTz80TmZyqYRhrWozo0ddGtc071n36Ji0tbXlTlwmR+4kcvRuAjcekabo39STmT3r0fYRcdXKQlqOqAF0PToDW4WMLpndWfu9OMbffBO++abs1nmApUdCWHokFICPhjZlStfHlfGrAkWvZVpGJtuuJ7H0SCjZBRokEhjX1oc3n2pkJDw/SQiCwM6rMXz8923RhkQmZU6/BrzUo67Z/nDH7iYw9ReR0/jDs60ZGlCbmPQ8nlpyiqwCjfE7+ObAXX468QBvFxt2v9qNIT+cISY9jzl9GzC2nTdrz4SRmFnAiufa/BcMVSYMF/NSSBSRWXA/MRulXIqLrRJnWwVONgrj7842Shys5RVuQSyK61HpTFxzkawCDV3q1WDd5PZmBTTJ2QU8tfQUydkqpnerw/tm+LpUJg5cC2dQa/FhkpyWQQ1n8x62Gq2OTl8dJTlbxZrn29FPr6lUXdDpBHouOk5Uah6LxgYwRm9AW+kID4ctW0Shv1JuXpVKxUK92/2bb75pkf2BRqtj/KoLXIlIo567HTtnda2Ubp3/eaSkiF1k9/QdeQqFSKwuY2bNKdDQc+EJkrML+HhoUyZX06RqCnQ6gRMhifx88iEXwwp5Te4OVjT0tKeBhwMNPR1o4GlPQw+Hx0QOCzRaUnNUxKdms+L7xeQUaKnT+1lO3E8ltkj3p0QCAd7O9G/qyVPNa1LPveoUmuMy8pi0NpD7idk42yhon9KDNT+ImejPP4cFC8oPhH44Gsp3+k6l959uwvTudavsfB9F0WCo15f7CcsQlcwDvJ34ZHhzWvk4V9u5mIqEzHwW7LjJUb39UoA+S9TAzCzRtwfu8uOJB9gpZfz9Wjfqudvz+4UI3t91C1uljMPze+Jiq6DvdyeJy8hnTt8GNKrpwCsbgzBMuzpBJOAffb3Xf8FQZcJwMX3m/onUqvxWR6VcSrf6bgxqXpP+TT0t6p56FFci0nh+7UVyVFq6N3Bj9fPtzAqIinYRbZnRiY51a1T4nMxFZlY2To7ijbH1fChjOtU3ex+f7bnD2jNhDG5Rkx+fq/7unBXH77Pw4D3a+bmw7eUu1X78ykZiZj7Dlp8lPjOfHg3dWfdCO4vdvv9fITISAgIgPb3w/z4+ZW6y8WIE7+28hYutgpNv9f5HBp7Xo9JZdeoh+2/FPaYDY4CHgxW1nW3IyFOTnF1QrIPpUdgoZHRr4Eb/Jp70buyBu0PVZzLCknOYuOYiMel5eDpY0za5Gz8tFY+7eLFoNVcefjxxn28PiMHuk+hgzcrKxlH/rPSZtw03F0fefqoRY9v6VOpCu7IhCAI7gmL4ZHdhlmhu/wbM6G56lkij1fHcmotcDEulkaeoiWYllzJ+1XkuhafRp7EHa19ox76b8czaFIRCJqGllxNXItOL7cdKLuXuZ0+RlZX1XzBUWTAEQ03e3k7zOrVo5OmAVhDIyFWTlqsiPVdNeq6K9Dw1uariXkRyqYQu9d0Y3LwmA5rVxNXO8sAoMCyVF9YFkqfW0qexBz9NbGNWN8Pb226w5XIUzb0c+XtWt2q/qYqudp758QSbX+5p9j5ux2bw9PdnUMqkXHqvX4Wk+C1BYmY+nb46ik6A02/1xsfVck0VkyAIIn/IpuqkEW7FZDBm5Tny1TqmdPXno6H/udubhKAgaNdO/I527ICRI8v8uEar46llp7mfmM3MnvV4Z1DjajpR85FdoOF+YjYhCVmEJmQRkiC2WJemZC2XSqhhr6SGnRU17JX41bClb2NPOterUa1l+duxGbywLpDkbBX+NexoEd+V5YvFZ8SSJaKuaXlYfeohX+wTy55vDmzErN7mL9oqgny1ltm/XWD1dJFS8ObmC7w3rE21P+sqgviMfBbsvGk06Q7wcWb5s61Nfl4mZuXz9PdnSMoqYHQbbxaNbcmDpGwGLzuDSqvjh2dbM6RlLSauvcjZ+ykoZBLU2sfDmMD3+mItqP4LhioLhmAoPT0dJyenMj+br9YSnpLDwVsJ7L8Vx934LON7MqmETnVdGRZQm1FtvC3ivJx/kMKUXwLJV+vo39STH59rY/J+UrIL6LnwBNkFGpaMD2Bk6yoq85SCosGQ7/xtnP9gMLUt0D96aukp7sZn8cXI5jzX0a+yT7NcPLfmAmfvp/DWU414pVcVPihPnYL580UVuB9/LPaWIAgkJycD4ObmVmHi6f6bcby8MQigarWU/tfw118wfjysWwcTJpT78SN3Epj+22WUcinH3+j1RPW/LEF2gYbQhCwSMgtwsVVQw94Kd3srHPUegpU5Js3FlYhUJq+7RFaBhiY1HWkU3Zll34nntXRpodduWdhwIcIo9DevX0Pm9GtQhWf8OFKyC3jxt8tcvh9P1JIxQMXVvJ8UBEFg25VoPt1zh6x8DbWcrPl9ekeTy6PnH6Tw3JoL6AT4ZnQLxrf3NfIc3eyVHJnfk+RsFU8tPYWmlDTm9pe70MBF9p/OUGXDlJvbWiGjcU1H5vRrwNCA2ux+rRtvDmxEs9qOaHUCZ++n8Pb2mzz9/WnO3U82+xw616vBmufbo5SLbfezN181uZ2xhr0VL+sdtRcdDKk2R+2SIAiiZpAlGN1GDOIs3b6iGNpStLD+20LNJJMhCHDliugWmZhY7K3c3Fw8PDzw8PAgNze3woca1KIW8/uLflof7LrF+QcpFd7n/wsMHw5//gkRESZ9vG8TDzrWcUWl0bHwwN0qPrnKh72VnNa+LjzVvCYd69agvoc9TrYKJBJJpY9JcxAYlipKkBRoaO/nStPYLmYHQqdCkvjoLzEQeq1P/WoPhO4nil5nQZHpOFpbZsdkCXJVGu7FZ3Hodjy/ngvn7+uxXItKJzVHVSEpCIlEwth2Phyc24P6HvbEZeQz/ufzJnsjdq5Xg9cHiAbWH/51mzuxmbzcqx4NPOxJzlbx3s5bLD0SUmogBBCdZt44/C8zVA4s6Sa7GpnGyB/P0c7PhV+mdsDeSk5ESg57bsSx5vRD0vRid4Nb1GTB4CZ4u5hXbjlxL5EZv11BpdXxSq96vPWUaSn3PJWW3otOEJ+ZX+218KKZIZ952/Cv6cqJN3qZXa4rWqo6/kYv6lRzF1R6ror2XxxBrRU4PK+H2QRBkyEI0KkTBAbC++/DZ58Z36pMH6jCwwnM/uMau6/H4myrYNcrXf/rMDMVwcGil8PUqeV+9GZ0BsNWnBEXBC93pq1fxQxH/ymoijFpCs49SGbaL5fJU2vpWr8G9aI78Nkn4hp/2TKYPbv8fYiByFmy8jWMaevNwjEtqzWzdeFhCi9tuEJGnhofVxtWjG1GQF3Rxqgy7++LYamce5BCVGoukam5RKTkklyGkbC9lRwfV1t8XGzwdbWlmZcjA5vVNKujGcSM1/PrArkdm4mTjYLfpnYgwAQSuE4nMO3XSxy/l4R/DVv+fq0boQlZjFl5HkGAhh72hCRml7r9nL4NmNax5n+ZoaqGRqsrNbuy6JBIvrsckcbkdYFkF2jwq2HHrN71Of5GL57v7IdUAvtuxtNv8UmWHQk1K1PTq5EH340LAOCnkw84HZpk0nY2ShmvDxAzACuO3yetAj4z5sLOzg5BEMgt0ODoYE9kam6x7hVT4eFoTfcGolzszqDqzw452yrpoT/+7utVmB2SSER7DhBb7bMLb3rDtRQEodImHYlEwsIxLQnwFr2spv92udrF+P6VyMuD7t1h2jQ4e7bcj7fwdmK8Xojxo79vo32C6vCViaoYk+XhdGgSU9ZfIk+tpUdDd1qkFgZC331nWiCUnqti+q+i11h7fxe+GNm8WgOhHUHRTFp7kYw8Na19ndn1Slda1vGstGuZnqti7Zkw+i0+yTOrLvD90VB2Xo3hSkSaMRByslHQwsuJgc086eDvSk1HsfMuu0BDcFwmh+4ksOZMGPO2XKfDF0d5d8dNrkelm5w5qmFvxaYXO9HG15mMPDXPrbloNCcvC1KphMXjWuHlbEN4Si4f/3Wbtn6uTNTTI/LUWhp6ll52O2XivGjAf5mhcmDIDG07f4+zEbncicskPiOfzHw1OgGkElDIpMikEmwUMmyVMqLSihMN2/u7sH5Kh2KS6MFxmXz0923joPB2seH9p5sysJmnyTfjgp032XQxEjd7JfvmdDfJb0irExjywxmC4zKfGGH23R032RwYyajWXiwe38rs7f+6FsOcP67h7WLDqTd7VzsZfNfVGOZuuUYdNzuOvd6z6h6eWi00aQKhoaa3wlQQ/3WYWYAXX4Q1a8oVYDQgObuA3otOkJWv+Y+jZSGO30vkpQ1XUGl09GnsQavstsx5TRynn30mJlPLg1qr44V1gZx7kIKXsw1/vdq1WrV7DN2pAE+3qMV34wIqhXAuCAJBkelsvBjB3htxFOhtV2yVMp5qVpMGng74utriV8MWHxfbEsnZ+Wot0Wl5xixSeEoOx+4mEpFSWHpqXFNUWB/Z2gsXE5qDcgo0TP/1MucfpmCtkLJqUjt6NCzDB0WPoMg0Rv90DkGArTM707imA/0XnyI+M5/nO/tx7G4C0WmFMg7uDlYkZRWI6tSvd8bN1eU/AnVlwNzW+tLQtJYDf87sUiwgEgSBPTfi+HJfMHF6TY5Rbbz4elRLk4TZ8tVaRqw4y934LLrWr8FvUzsiMyEwOB2axKS1gShkEo7M74lfjeothxjKiNYKKYHv9TO7zThPpaX9F0fILtA8EamAnAINbT8/TL5ax+5Xu9HCu2xifYWwejXMmAHe3qL1QzV46hXtMHu2gy9fjGj+j27pLQ8XH6aw72accfEilUqQSiTIpBIkErBTypnUyc+kB3qJCAkRxRcFQTTZbVq+lte6M2F8uucOrnZKjr/e61/VLfSkceROAq9sDEKl1TGgqScdNW2YPk18Xr77LnzxRfk6QoIg8P6uW2y8GImdUsb2V7qYLTRZERjcAQBm9qzHWwMbVfgeEwSBrVeiWXcmrFjzTpNajjzX0ZfhrWrjUAFJB51O4EJYCn9eimLfrXijt51SJuWp5jV5Y0AjfGuUPUfmq7W8/PsVjt9LQimTsnxCawY0q1nusd/dcYPNgVE0qeXInte6cTQ4gRkbriCTSvh5Ylve2HaddD39pL67HZGpeai0Or4aUo8J3Zv8VyarKljJpdgopFjLpShlEpQy8Xd5GYP5TlwWLT8+yOd7bhOXIWaOJBIJQwNqc/T1nrzauz4yqYQdQTG8sC7QJBNNa4WM5RPaYKOQcfZ+Cj+duG/S+Xdv4E6Phu6otYJRT6OqkZ+fz9ixYxk7diyN3a1p4GEvBhMWlJpslDIGtxBvoJ1FXI+rC3ZWcvo2FkUfd9+oYiL1pEng6QnR0UZF6oKCAubOncvcuXMpKCi95m8pmns5sWRcKyQS8aH9+tbrFvkOPWkUaLR8tS+YZ1Zf4NfzEWy4EMGv5yNYfzactWfCWHXqIT+ffMjiwyF8uueO5Qdq2LCwtV4vhlkeJnX2o4GHPak5KpYcCbH82P8QVPWYNODArThm/i7yJQe3qEkf6zbMeFGcxmbPNi0QAvjtfAQbL0YikcCyZ1pXayB0OjSJ9/Vda3P6NuCdQY2LBUJFn5X5+fml7aYY4jLyeH5dIG9tu8Hd+CysFVLGtvVm5ytd2De7GxM7+VUoEAJxEdGlnhtLn2nNpQX9+HR4M5rVFs1b/74ey8Clp1h7JqzM0q+1QsbPk9oxuEVNVFodL28MYo8Jz9A3BzbGyUZBcFwmmy5GMKBZTQY1r4lWJ/DDsVB+m9oBhUy8hhGpuczsJYpkrjsbbvLf919mqBwYMkMN3tyG3NruMS0hSzG0ZS0+H9Gi2IrwZEgSr/x+hRyVlvoe9qyf3N4kbYatl6N4c9sNpBLY8lJn2vuXT8oMjstk8PenRZmUV7rQxrdqZPENeJRguelKAl/sCybAx5m/ZnU1e3+G7Ja7gxUX3+1b7ZmLA7fimfn7FWo5WXP27T5Ve/xNm0Q3yWHDQCqtNrLqX9dimP/ndbQ6gf5NPfnh2dZPzM7FXNxPzGLOH9eMxr7DW9XGr4bIa9HqBHSCuJLOVWnZcCECmVTCsdcrkCW9eFEkvMvlopO9d/nSFWfvJ/PcmovIpBL2zu5WrRNyZaM6xuTeG3HM/uMqWp3A0IDaDHENYOhQKWo1TJ8Oq1aZFgidDk1i8vpLaHVCtTeShCRkMfrHc2QVaBjZ2ovF4wIeK7Obcy0FQWDXtRg+/Os2WfkarORS5vZryIQOvtWWbbwZncEX++5w4aFI+Wjj68y3Y1pS36P05hKNVsdb22+wIygGpVzKtpmdaentXOZxfjsfzod/3cbJRsHxN3qh0erou/gkWfkavh7VAicbhVEi5Kfn2jDvz2vkZmcTtXTcf5mhykS+WmcMhBys5bT0dmJYQG1m96nPa33qM7qNN53r1sC/hm2JJa5H79HdN+Jo+/lhlh0NMRLRejZ0Z+vMLtR0tDZ2OFyLSi/33Ma09WZkay90AszefNUkYnSTWo6M0bepf/kEHLVHtPZCLpVwPSqde0VSuqaiQx1XbJUykrIKnoiTfa9G7thbyYnLyOdKZFrVHmzCBBgxAqTiuFIoFCx4910WvPMOiiosmw1v5cXPE9sapRym/nKJnILSFYf/CRAEgd8vRDDkhzPcjs3ExVbBqkltWfZMa+b3b8jrAxrx1lONeWdQY94d3ITPRjSnVyN3tDqBn048sPzAHTtCjx6g0YhtTCagq16pXqsT+OTvO0/U1b6iUCgULFiwgAULFlTJmNx3szAQGtnai2f9Axg9WgyExoyBlStNC4TuJ2bzysYgtDqBUW28eKlH9dlsJGUVMGW9qIXUwd+Vr0e3qBDfMCW7gFc2BjFvy3Wy8jUE+Dizd3Z3Xu5Vr1rLri28ndg0vRNfjGyOvZWcoMh0Bi87w4rj91GXklGWy6QsGhNAvyaeqDQ6Xv49iNRy5q0JHXxpXNOBjDw1iw7dw8PRmjl9RQmEH47dp28TT3o0cANg/dlwY6OCqfgvM1QODJmhBX9cZFTH+tRxt8dFr61RGgRBICVHRWRqLgdvxbPjagxJWWW1MMpYN7k9HeqI3Jf4jHym/nKJO3GZWCukLHumNQPLqatmF2gY+sMZwpJz6NfEk9XPty33RovPyKfXouPkq3WsnNiWp5qXX7u1FCWtdmb8dplDdxIs9kwzbD+3XwPm9mtY2adcLub/eY0dQTFV62T/KPLyYM8esRyzaJE4AVcxzj9IYfqvl8hRaWnl48wvU9pXis1MZSMlu4C3t9/gSLCoy9S9gRuLxgbg6Vh2Y8GViFRG/3QehUzCiTd7Wy6GuHevGLTOnAk//GDSJlGpufRbfJICjY4VE9rwdMsn62r/T8T+m3G8ulkMhEa19mJq8wB69ZSQkgL9+om3g5UJvOdclfiMfJCUQ1s/Fza92NEsFf+KIE+l5ZnVF7gelU4dNzt2vNylVI6aKZmhw3cSeHfHDZKzVcilEub0bcDLveo98WaH2PQ83tt5k+P3xE6uprUc+XZMS5p7FfIqBUEgI0+Ns62SzHw1w5efJSw5h2713fh1aocyea8XH6YwftUFJBLY/Wo36nvY0/3b4yRlFfDFyOZ0redG70UnEID1k9szZdVJIpb8lxmqVLw9qDFt/V1xtVOWG2RIJBLc7K1o4+vCu4ObcP6dPqyf3J6nW9RCWcJgzS7QMu7nC0z/5RJZ+WpqOlnz58zO9GrkTr5ax8zfr7D2TFiZK0d7KznLJ7RGKZNyJDiB9SbUSms6WTO9m7gy+ubA3VKj+KrCOH3kvvNqjJGMZw76NvEAREf7J4FhAaIA476bcVXPqcnJESdae3sYNw4uXRJNXasBnevVYNOLnXC2VXAtKp1nVl0gMcs0LkN1QBAEDtyK46llpzkSnIhSJuX9p5vw65QO5QZCAG39XOlctwZqrcCqkxXIDg0aJH4nJgZCAD6utsYyzRd775BXSWX4/xUcuBXPa5sLM0KvdQxg0FNiINS+PezcaVogBPDZnmAeJOXg6WjFyoltqy0Q0ukE5v95jetR6TjbKlg3ub3FZH2dTuCDXbd48bfLJGeraOhpz65ZXXmtb4MnHggB1Ha2Yd3k9iweF4CzrYI7cZmMWHGWnVdFGZR8tZZ3tt9kwU6RPO5orWDlxLbYKGScuZ/Md4fK5rB2rFuD4a1qIwjw4V+3UMqkvKIXE15+7D61nK2NC4odV2Pob4ah95O/ev8PIJdJ6d3YgxXPtSHwvb58NqI5dd0fj/aP3E2k45dHuBWTjq1CRmO9oJ8giCalP5aTxm9W24n3hzQB4Kv9wdwxoXw0s1c93OyVhCXn8EdgpAV/neXo1cgddwcrUnJUnLhnfkDTu5EYDF2Pzigz81ZV6FrfDRdbBSk5Ks5VlWqzWg0ffAC+vqL9g06HAOQAOSEh1VZaCfBx5s+XOuPhYMXd+CzGrjzPw6TSBc+qCyEJWUxce5GZvweRlFVAAw9xcpjeva5ZPK7X+ojWKpsvRVke6Eml4OVl9mYze9bDy9mG2Ix8fqpIMPYEIQgCOTk55OTkVNqYPHg7nlc3BaHRCYxoVZsFfQN4erCE6GixeW/fPnFtYAoO3Ipnc6BImF48rlW1mMYa8O3Be+y/FY9CJnY+WSoUq9MJvL39BhsuRCCRwIwedfn71W7Fsi7/BEgkEka18ebwvJ4MaOqJRicwb8t1lh8LZfyqC2y5HMXhOwmk6HWOGtV04JsxLQH48cQDDt6OL3P/7w5qgq1SRlBkOjuvxvBsB188Ha2Iy8hny6Uoo9PC3huxZlU7/guGqhnOtkomdfJj/5zuzO5T/7EOtFyVjqE/nGXEijOsPPUQEDWIABYevMfeG3Fl7n9SJz/6N/VErRX4ZPftch9M9lZyXusj1l1XnX5YrSJwcpmUIfoo/vCdBLO393C0prmXmPq0JJiqKBQyKYNbiOdfZQKMCoUYDacWipTlAvaA/RdfVKv1QUNPB7bN7IKPqw0RKbkMWnaalScfPJFOs4w8NZ/svs2gZac5ez8FpVzKa33qs/u1bjStbT4RuXO9GrTxdUal0bHmdFjFT/D2bTh92qSP2ihlvP+0uIhZefIBUanVa2dRGcjNzcXe3h57e/tKGZOHbscza6MYCA1vVZvPh7Zi5AgJwcFivHnoELi5mbav+Ix83tlxA4AZ3evStb6JG1YC/rwUxUp9gPvtmJYWy4AYAqGtV6KRSuD7Z1qzYHCTf3RDg7uDmIGb3MUfgEWHQriu58CqtUKxTuBhAbWZ2rUOAK//eZ0HZSy0ajpZG+esr/aLFY1X9Ya6K47fp567Pb0auaMT4Ox90xep/wVDTwhWchnzBzRi92vdCHhEp0YAbsQUZnWi0/IY0Upccc7/8xpXyyDsSiQSPh7WDCu5lIthqeVG2SCWq5xtFUSl5nH4Tvmfr0z0byKmMY/dTbQoEOujzw4dfwLBEMBQfanswO14MnLVHA1OqPwM22efwZQplbtPC+Fbw5ZtM7vQrb4bBRodX++/y/AVZ7kVk1Etx9fqBDYHRtJ70QnWnw1HqxMY2MyTo/N78vqARhZPDhKJhNf0ZMzfL0SUS+YsE1u3QvPmIndIZ1qg+FTzmnSpVwOVRsfHf5e/iPlfxpE7CczSZ4SGBtTm21EBPD9Jwtmz4OwMBw6Aj4ncWJ1O4PWt10jPVdPcy9Hod1UdiEzJ5cO/C1voLTXHfjQQWvZMa+Nz558OiQT8XG0eayAC2HIpqtg4f3dwYzr4u5JdoGHmhitlNmtM7eZPHTc7krML+P5oKOPa+1DbyZqEzAI2B0YaTbT/MsND8r9gqILIyFNz/kEKGy5EsO1KNMfuJhAUmUZ4cg4ZeepiX7YgCOy7WTyz06SWIzte6cr7TzfBqgyhRTsrGX0ae1Cg0fHib5fLXD16OdsYuyS+2BdMgaZsHoKNUsYEvQruujPh5f3JFsHW1pbs7Gyys7OxtS2UC2hfxxUHazkpOSquRZnfldW7sRgMnQ5JrnbOE0AtJ2scrOVk5YtCjNN+vWxRlqtMSCTw888weDAAtkA2kO3lVexaVhc8Ha3ZMK0DC8e0xMlGwe3YTIavOMvX++9WmQFwrkrD5sBInv7+NO/uuElqjor6HvZsmNaBnye1M0mCojz0auhOcy9HclVa1p+tQHZowABwcIA7d8RajgmQSCR8MqwZCpmEo3cT2V1OBvifhtLub3NxNDiBlzdeQa0VGNKyFovHBjB/npSdO0GpFCvFzc3oVVh9+iFn76dgo5Cx7JnWJonZVgYEQeCdHTfIV+voVNfV2PVkCopeS2trm39tIGSATCYtcZESmpjN1SLd0gqZlOXPtcbDwYrQxGze2n6j1EWBlVzGR0PFppv1Z8OJSs1llr7U/eOJB3g5W+PtYmPWnPBfN1k5KGrUqrSx42JYKrdiMrgdm8GtmEwiy0lpy6USmns5MTSgNvkqDQsPhZTauRWWlM2UXy4RnvL4Pm0VUo690Yspv1wmOC6Thp72bHu5S6nqzTkFGvp8d4KEzAKTtDTiM/Lp9s0xNDqh6lWVH8HszVf5+3osL/eqx9smms4aoNMJtP/iCCk5Kja92JEu9aovBT5vy7USRR8HNPVk1fPtKv+AOTnQu7dIngYxSFKpRG2bJ4SkrAI+3n3bWL71r2HLu4Ob0LuRR6VMPA+Tso0Ljax8caXoYC1nXr+GTOrsh6KSSaMG/SgHKzln3umDk42FLcpvvSV2/PXoASdPmrzZ0iMhLD0SSg07JUfm97RcFftfiGN3E5i5QVSWfrplLZaNb8V3i6S884441LdsgbFjTd/frZgMRv54FrVWqHbbkz8CI3lnx02sFVIOzOlhkenxvzkj9CjCknN4Y+t1rkQUX/COa+vNt2MDir12JSKV8T9fQKMT+HJkCyZ0LP17m/7rZY4EJzCkZS0Wjgmg2zfHSMlRIZWATgBdQe5/OkOVjbVnHtLtm+O8sC6QhQfvse9mvDEQ8naxoW9jD3o0dKeltxPeLjbYKcVIWKMTuBaVzmd77rDwkKg0O+ePq1yNeDwLUsfdnsPze5bIgM9V69h3M461L7TDw8GKkIRsXt10tVS+hp2VnLcGioHF8mP3yyUY13SyNvJ31p55aOJVqRwYusKOWJBRkUol9NKXyo4FV2+p7KWedY2qp0VR2RO0EXZ2Yvt2TX0gLQiiwN8ThLuDFSsmtGH18+3wdLQiPCWXlzZcod3nh3lj63VO3Es0a3UmCAKx6Xnsvh7LxDUX6fPdSdafDScrX4NfDVvef7oJZ97qw9RudarkOg9o6klDT3uyCjRsOB9u+Y7mzBH5XqdOiYKMJuKVXvVp6GlPSo6Kzyqiiv0vw/F7iYWBUAsxENq2VQyEAJYsMS8QylVpmL35KmqtWEZ9pr15mjMVQXxGPl/sDQbg9f6NLA6E3tlRGAgt/RcHQgB13Oz486XOLBjcGFmRbuztV2PIfsQQuq2fq3FR/M2Bu0aidUae+jHO7Pz+oqTKvptxnApNJD1XLG9bQn39LzNUDh71JvN0tKJjnRrU97DD0VqBjVJGVr6GuIx84jPyicvIQy6VUs/DDl9XW2rYWRGVmsvaMw/JVRefFAa3qMkHQ5pSy6m4rolOJ/DR37fZcCGi2OtWcgl3PnmKO3FZjPv5PHlqLRM7+fLZ8JKdlnU6gZE/nuV6dAbPtPfh69Ety/xbb0SnM2z5WeRSCWff6WNSW7KpKCgo4KWXXgLg559/xqpIP2xGrpq2nx9GoxM4+WYvs1WA996IY9amIOq623Hs9V6Vds6mYPmxUBYdKm6nMCygNt8/27rKjqm6dYtPWrcGjYaPDh9G2a9flR3LHGTmq1lx7P5julrOtgoGNq1JGz9n7Kzk2Cpl2Crl2Cnl2CilRKbmcj0qg5sxGdyIzjC6aYOYEejb2IOJnfzo0cC90pS+Y2Lg119FjcQFC4on1wxGwC62Cs683Qc7Kwszb5MniwcZM0bkEZmIq5FpjNIbU/4ypb0x2P8nQ6VS8cknnwDw0UcfoVSantE6cS+RGXrT1UHNa/L9s625eF5K375i4nP+fNGF3hwYvKxqOlqzf073asuwCYLAi79d4UhwAgHeTmx/uYvZLe8FBQX0HjGBG9EZuD/1KssmdjDKePwvICQhixm/XTZWQJ5uUYsVz7Up9hmNVsfQ5WcJjstkWEBtvF1s2HA+AlsrGRcXFH/evbAukJMhSUzs5EsDDwc++vu28T1zMkP/BUPlwBAMdf9sD68ObEEtZxu2Xo7mwO14i7RxHoWdUsbrAxrxfGe/YjeNIAgsORzC98eK+411refKxhc7c/C2mM4XBPh0eDOe7+xf4v4NgnISCex5rRvNapdd/hq78hyXwtOY1bsebw40r2RVFsoTEpuw+gLnHqTwwZCmTOtWx6x9Z+arafOp5cFURaDW6hj541luFSG8j2rjxeJxrarsmMWu5c8/YzdjRpUdyxJodQKXw1PZcyOO/bfiSM42j4wsk0po6OlAz4buPNfRt1L4QCBymffsEb1v9+0r5DbPnStmHoqef7/FJwlLzmHB4MbM6GGhXcOtW9CihdhyHxIC9Uzfz6e777DubBhezjYcnNejmMHzPxGW2nGcCkli+m+XUWl0DGzmyfIJbQh7IKVzZ7GBcuRI2LbNKL5uEk6GJPHCukAkEtg4rSNdqrF7bPf1WF7bfBWFTMLu1yyzWLkYEkunRmLDzOpjd5jeu0lln+YTh1qr46UNVzim14j7fVpHujUo/j0ZStaP4s6nA7FVFt4P5x+k8OzqC1jJpZx5uzevbAziUrhYefmvTFYFGN6qNj+eeMCktYH8fT0WlUZHLSdr2vm5MDSgNjN61OXDIU356bk2LHumFbP7NuDpFrXwL8fFN0el5dM9dxi+orj1hkQiYf6ARnzwiDLz2QepLD50j4HNavKOPpX4xd5gwpJzStx/Wz9XhgaIIlWf7i5f8t8QiGy8GFmtAnB99V1llpTKHK0VtPMXvdWOVbMAo0ImZdHYAIrSY6raJU0ulzNnzhzmjByJPD4etP8soT6ZVELHujX4bERzLi7ox6YXO/J8Zz/6NPagYx1XWno7Uc/djlpO1jjZKKjvYc+oNl58PLQp21/uwu1PBrJ/TnfeGdS40gIhQRD9q4YPFwMinU4U7QNYuhTWrSt+/gatklWnwixf9DRvDk89BTVqiMGQGXhjYEO8XWyISc9j4YG7lh2/GmEck3PmIDeRw3Y6NIkX9YGQ6H3XhvRUKYMHi4FQhw7w++/mBUL5ai0f/iV2cE3u4l+tgVBqjoqP9VmJV3rVtygQyinQ8Oa268b/V2d5rzqhkElZ+0I7+ukpEi9vvFKsKSgoMo1XNwWVuG3EI5zaTnVdCfBxpkCj49dzEayf3N4ivuJ/maFy8GiZzE4pY1grL57t4EMLL6dy1ajTclQcDk7gr6sxXAhLoST6hLVCSr5ah0QCEzv68cbARsWIm9uvRPPG1usU/aIWjwtgZGsvJq0N5Mz9ZDrUceWPFzsZywgZuWqjP010Wi59vxMl/8uz3dDqBHouPE50Wl655DVzUN7KMSIlh54LTyCTSgh6v7/Z3jqrTj3gy3136d7AjQ3TOlbKOZuDH46G8N3hUEAUk/xlSoeqP2h0NLz+OsTFiSTdCvgc/a9j7VoxGJJKYd48ePFFaNQIPv0UPvpIpPccPw5d9Z7Baq2Ozl8dIzm7gF+ndqBnQ3fLDhwdLQZDNuZbfJwJTWbi2otIJLBtZmfa+pVvwPxvwenQJKb/epkCjY5+TTz48bm2CFqxNHb2LNSpA+fPg6fpAsJAIQHd09GKI/N7Vtip3RwYGioaetqz57XuFk3Ib269zpbz94laMgaoWiPmfwLy1VrGrDzHrZhMmtZyZPvLXbDR822/O3SPHx6pjIBowjqoRXHbmgO34pj5exCO1nLOvduXLYGRfLY3+L/MUFWgpbcT345uSeB7/fhqVAtaejubZLLnYqdkXDsfNr7YiVsfP8WPE1rTsY5rMbHFfLWO+h72CAJsuBDByBVni0XJo9t6s+wRDopBmOqrUS2wVcoIDEtl48UIbkSnM3l9YLHVhbeLLTP0rfZfltNqL5NKjCJZ686WbQFSmfCrYUdDT3u0OoETIeZnd/roW+wvPkx9ImaiM3vVx0UfwMVnVJNVhUIh9hqfPi3OIP+hRNy4Aa++Kv7++eeipVsjvdzM+++LlB61GkaNgki9RJRCJmVgM3EmPnCrAtpb3t4WBUIA3Rq4MaatN4IAb227UWWyBdWNE/cSmaYPhPrqlfkVMinTp4vD2MlJ7BMwNxCKSMkxqvR/MKRptQZCx+8msvNqDFIJfDsmwKJAaPf1WLZeif5/taaxVshYNakdNeyU3InLZMHOm8Y5Z37/hkzq5PfYNiV1W/dvWpO6bnZk5mv4IzCSSZ39cbQ2r7T8XzBkIja92Ilx7X0sJ1Mi6vkMblmbLS915u5nT/HNqBbGMtr9xGzqutnhYa/kYXIOo386R3BcIQ9lWEBtZvUu5BwIwJDvz1DDXslbA8Un+8e77zBs+VlO3EsiJKG4E/zMnvXwcLAiMjWXzRfLFgUc394Heys59xOzORmSZPHfay6MpTILusLqudvj42qDSqvj7P3kyj61cqGQSZmt1xKJScurniDS0xOef178fdGiqj/evxBZWWIXUn6+aB329tvF35dK4ZdfoFUrSEwUs0cGGDKoh+/EV1yZXaeD3btFo10z8P7TTXCzt+JBUg5Lj4RW7Bz+ATh2N4EZv10xlsZ+nNgGK7mML74QS2IymcgRamImTUYQBD786zYqjY7uDdx4ukX1Gd5qtDojaXdq1zq08nE2ex9Rqbks2CH6db3Us25lnt4/HrWdbVg+oQ0yqYSdV2P45Vw4UKi9NfQR8+LwEighMqnEuOA3KMibK6XwXzD0hCCXSRnfwZfjb/Ri6fgA7K3kPEzOISNfg4eDFYlZBYxbeZ7zRTyvXu/fiL6NCztL8jU6nlp6iosPxc8UfWBHpOYW4/zYWcmNCrvr9Mq9pcHBWmE0UV1nguFrZaGfPhg6cS/RbJ6GRCKhb+NCNesngXHtfJBJJGQVaMqUk68ocnJykEgkSCQScl5+WXzx77/hXtkmh//fIAjw0ksiXcfbG377rWT+iZ1dYbPX4cMQFSX+3qluDRyt5SRnqx7TRzEbgwbBsGGwYYNZmznbKvl8RDMAfj71gFPVuDgxB8XGZE7J/MXDdxJ4acMVVFodTzWryYoJYiD055+i/R7AihWiE725OHg7npMhSShlUj4Z1sykrH1l4a9rsUSm5uJqp2SevtXbHGi0Oub8cZWsAg1tfJ2ZpVdP/v+EzvVqsGCwGAF/vjeYS+Gi/ZBUKmHx+Fa09XM2fvZ6dHqJ+xjZxgsPByviM/PZdS2GZ/4Lhv5dkEgkjGjtzeH5PYwWB4lZBThay8kq0PDCukD261WrpVIJS55pVczkNTI1jxMlPCAFQcw2FcXoNl442yqITM0tVyV5chd/JBKx2yP0kSxTVaGVjzNu9kqy8jXGm8EcGNSoj99LfCJ2BnZWcjrXE72Hqi0ga9hQnGQFARYvrp5j/kuwciVs3ixmG/74o2wvq/r1RX1EED8LYravX9NKKJWBGAyB2CNuokWHAU81r8WEjr4IgshLScyspjJsJeLArXhe/l1Uln66RS1+mCCqQV++DC+8IH5m3jwxeDUXOQUaPtktajLN7FmXuu4murdWArQ6gRXHRV7L9O51LKocfH/sPkGR6ThYyVn2TOt/hPv8k8DUrv4Mb1UbrU7gne03jAtihUzK79M64W4vyrGEJmaXqF1mJZcxVd8A9PPJB/i52tKxjuk8u/+fV72SIQgCt2Mz2H4lml/OhvH90VC+2HuHt7fd4I2t11l7JozL4alldmfVcrLht6kd+HhoU6zkUjLzNThYy1FpdbyyKcioOeRorWD18+2wVxbKm+epdTjbPH4T3nskiLFVynmuo8F2Q0wl6vRt0I96MfnWsGWAfiL4/RG9I0tga2tLYmIiiYmJpcr1y6QSI/fnSLD5XWUd67hio5CRkFnA7djM8jeoAhgEJKsyGHrsWr7xhvjGb7+JtZ7/wKVLYss8wNdfFxKjy8Jzz4n/btpU+NpTzcRS2cHb8RULsKdNE421QkLEdjYz8eGQpjSu6UBKjoo5f1yrVkNlU1DW/b3nRmwxr7Flz7RCIZMSGyt29+Xni04zCxdaduzvj4YSl5GPj6sNr/Su3qzK3ptxPEzOwclGUaq8SVkIT84xBlOfj2yOj6utSc/K/0VIJBI+HdYcN3slD5JyWH26UPzXRiljxytdkEklaHUCWy5FlbiPCR19cbCS8yAphyPBCYxtZ7of3H/BUAXwICmbJYdD6Lv4JE9/f4bXt17n4913WHw4hNWnw9hyOYptV6L5bM8dxqw8T/OPDzJ4meitdCXi8cyHVCphctc6/P1qN9wdrMjK1+Bko0AQ4INdt9gRFA2I/JgfHhGpAh4LiO7GPW6e+XxnfxQyCYHhqczdcpVu3xxjzMrzxKY/zmUwpBn33oyrsDO5RCLB3d0dd3f3MlPYhbyhBLMnH2uFzOhIffwJlcoMwdzl8DQyH1FWrSw8di27dRP7kPPz4aefquSY/yakpIikaJUKRowQG+5MwejRIif92jXRVgygR0N3bBQyYtLzimlJmQ0HB9G4FcxXEEQc28sntMFWKeP8wxSWl9Bl8yRR2v29OTCS2ZuvotUJjGztxZJxAchlUvLyxO8mNhaaNi3M4JmLe/FZrNUv7D4d1rxaXdx1OoEV+u9hatc6FmlBLT4cglYn0KuRO8P1ZtymPiv/F+Fkq+C9p8Vy2fdHQ4ksQpb2cbVllj7Y/enEgxIXBI7WCiZ2FknXK08+oLcZgqX/BUNmQqsT2HAhgqe/P03f706y7GgoD5NyUMqltPZxpkMdV7rWr0GPBm70aOBGB39XGnjY42yjQKsTuBOXyebASEb/dJ7xP5/nZEjSY5N+o5oO/DGjE56OVmTkqXHWt9m/s+MmQXrH+t6NPIr5eKXnaehc1w2HIgz6i2HFeQ6JmflsOB+BUp+G3XU1llh951NBCRydbvXdcLZVkJyt4mKY+WUrS9C9gRtKuZSo1DxCEszn3RiCkeokfheFXw076rrbodEJnA6pJiK3RAIffghffgmvvVY9x/yHQqcTOeWRkaLG4fr1pisO1KghygJBYXbIWiGjd2Oxrf7A7Qqap772WqFFR2Cg2ZvX97Dn8xGiS+myoyHF+IT/RKw8+YB3d9xEJ8CzHXxEPS6ZFEEQE2WXLonXfPduKKfruVR8tucOGp1oudG7cfUqdR+6k8C9hCwcrORM7upv9vZ3YjP5+7roqv7GgEaVfHb/Xoxo5UXnujUo0Oj48O9bxebHGT3q4mAtJyY9r9TS9ZSu/ijlUoIi0x9rJCoL/wVDZuB+YjZjVp7jg123uB2biUwqoVNdV6O44tWodALDUjl7P4VTocmcCk0mMDyV0MRs0vPUyCQSvF1sqONmh0wKF8NSeWFdIEOXn2HfzTh0RSLdeu72bJnRmdpO1qTnqbFVylBpdMz47YoxizOzZ91iNdH9t+NZOKYlSr1f1t34zGIDyd5azr5bceSUUK4ribCskEkZ1Fxk8v99LbZC166goIBZs2Yxa9YsCgpK90mzVcrpps/uWFIqM3B2bsRkVIpCuCXo06hqS2UqlYovvviCL774ApVKX958+ml4911w/d/RorEEH3wgqktbW4tdSc7O5m1ftFRmuHUG6ktlFeYN1a4NEyaIv1uQHQIY1cabsW290Qmix2FR65IniaJjsqCggK/33+Xr/aJY5Mye9fhyZAtkejmRb78VM0Fyufgd1bWweerCwxTO3E9GIZPw/tNNy9+gEiEIAj8cE7v7Xujib5Gh73eHxIaHIS1r0dyr0BnA1GdlVSI1R8XB2/F8sfcOI388S9/vTjDkh9OMXXmOSWsvMuO3y3y5L5jAsNRKL9lKJBI+G9EchUzCiXtJxe47eys5U7uKvKAVx++XWD3wcLBmkL4TdPd10+et/0QXy4FBdHHpvqusOBuHSqPDXimjdxNPolJzi6lGy6Ui90cpl6KQSY03f1a+hrQcFVmP6N842SjIVWlQa8WvoFNdV5Y907qYJ1hUai7Prr5AdFoeCpkEtVagWW1Hts7sjK1SzoOkbAYsOWkUc6xhr2Tx2ABeWC86my97ppUx/QriamTEj2cfCxRKE5Y79yCZCasv4mgt5/L7/S12IjdHrn/jxQje23mL1r7O7HzFBLJHEQiCQOvPDpOeq2bXrK4WtblWFOfuJzNhzUXc7JUELuhXaX5aBph0LQXh/50I46pVhQTcX34pJOaag9xc8PCAnBw4dw46d4asfDVtPzuCSqvjyPwe1PdwsPwkb96Eli1F+eszZ8AMDy/jOao0DF9+ltDEbLrUq8EvUzpYfF9WFoqOyfkbL7D9hpgVfWdQY2b2LJQE2bcPhgwRh+dPPxVWDs2FIAiMX3WBwLBUJnXy4zN9xqy6cOxuAlN/uYytUsaZt/vgaqb32eXwVMasPI9MKuHwvB7FSN+WWptUFGk5KlaeesDR4MTHmm/Kgoutgj6NPenf1JOeDd2NookGnL2fzPkHKbwx0Lzsl0F0saajNUde72ksQ6blqOj6zTFyVVrWT2lfYinMYMniKFVx86tR/4kuVia+OxSKSqOjvb8r9T0d2H091hgINanpQFtfF6wVcqLS8niQlMPd+Cxux2ZyOzaTyNRcYyCkkEnwcLBCKZeSkadGrRWws5KjkEm48DCVwctOF2uf9XG1ZctLnfF1tUWtFZBJJdyOzeSNrdfR6QTqudszu09hO2dKtorguCxGthYDoCWHQ4plnJrWduSDpx8X8SgoRdCtY50aeDhYkZmv4XRo9ZSeDC3216LSHyN2lweJREJrfQB0NbKC7dAWop2/K/ZWYkv2jZjHeVsVhVwuZ/r06UyfPv1x64N9+0S28F9/Vfpx/8nYtw9eeUX8/cMPSw+E9tyIZdLai8z54yqf77nDzycfsPNqNPfixXS6ra3ohwWFpTIHawVd64sZxwpnh1q0gKtXRSd7CwIhELOnK54T+UPnHqTwuv5Z8CQhl8uZPHUqjXuOYFtQHBIJfDWqRbFA6N49MTFmkDywNBACOPcghcCwVJRyKa8U0V+rDgiCwPdHRa7QxE5+ZgdCgiDw7UExKzS2rXe1dr+VhHy1lh9P3KfHt8f5+eRDYyBU38OeZzv4smR8AH/M6MQvU9qzcmIbFo8L4LMRzRnZ2gsnGwVpuWq2B0Uz8/cr9Fh4nG1Xoo3j8Y/ASF5YF8j6s2Fmcyhn9a6Pr6st8Zn5LDlcaGfjYqc0NgL9eLxk7lzXeuK8lZ5nugDvP9v97x8EO6WUga1qc+hOArkqLTYKKS28nXiYlENwfGFdspaTNb6utjjZKIw/AmJG5lZMBlkFGhL1jt4SwEouNSomK2QSUnJUPL8ukFd61WN+/4bIZVK8nG3YOL0jQ344Q0aeGqkE9t2MZ5lHKPP6N2Rmr7r8dS2ah8ki2ezbg3c58UYvDtyKJzwllwO34xlcRIRsYic/TocmcehOYRlHVQpBWiaV8HTLWqw/G87u67FGgnNVwtPRmnrudjxIyuFqZJrZx2zj68Lxe0kERaYzxbzEUqVAKZfSvYEb+2/Fc/xuYqVnp6ysrFi9enXJb54+LaY0Fi0SGar/D3DtGowbJ1q0TZ4MH39c8ueiUnN5Y+t18tWPj3W5VMIh/Qp9wgRRAHDLFtHAVS4XBRiP30viwO14Xu3ToGIn3KpVxbYHGno6sHJiW6b9eond12NxtVXwcTXr6xRFWr5AUqvJ5LlnYiWTsmR8K54uIpaXkSF2jmVkiHz/77+3/FiCILBYPzlO6OBLLSfLFL4txZn7yVyLSsdKLmV6d/NMpQGRPqEP5AxCrU8CWp3A9qBoFh8KIV4v19C0liOv9K5Hl3pu5QZ5kzr5odHquBSexuE7CRy4FUdsRj5vbL3Ob+fDqetmz65rMQBoVFq2XY42tr6bAmuFjE+HN2Py+kusPxvGqDZeRqPx6d3r8uu5CC6FpxEYlkqHR1ro5TIpI1p7sfKw6Qvif11m6Mcff6ROnTpYW1vTtm1bTp8+XepnT5w4YRQCK/pz9675xof13B3YdS2WXJWWxjUdcLBWEBiWRnK2CmdbBc919GXrzM6cfbsPW17qzKrn27FwbADvD2nKB0OasnlGJ65/NICjr/dkyfgAejR0R0AUTgQxKFJrBQwVlR9PPOCZVRdI0gdOPq62LH2mFRIJGBaBy46GcuFhClZyGV+PDjCeq06AT3bf5kW9IucSfceCARKJhIVjWhWrc+eX0fY/NKA2IBIGq8u8tY2vaLwaZEF2p7V+2yeVGYLimkfVCgNJ9+xZuHCheo/9BJCcLMZ8OTmiWN+qVSVXBwVB4IO/bpGv1tHa15n3n27CjB51GdnaCy9nGzQ6gT8vi92a/fqJXKOkJJHkC2K2UiqBWzGZxaxyKoTMTIuI1Ab0aOjOorHiff/r+Ygn1mF2IzqdYcvPcCsmE1c7JRtf7FgsENLpYNIkMTPk7S3yhCxMigFiMHElIg0ruZRXelVvVggwXudnO/ji4WBdzqeLQ6cTWHhQnH8mdfKjtnP1BnIGZOSqeXb1Bd7adoP4zHy8nG1YMj6APa91Y0jL2iZnu+QyKZ3r1eDDoU05/mYv3h3UGDsrGTeiM4yBkAG/ng83O4PZq5EHg1vURCfAd4cKs0OejtbGtvnlpWSHRrXxKvH10vCvCoa2bNnC3Llzee+997h69Srdu3dn0KBBRBoMhUrBvXv3iIuLM/40aGB+NH4jJgMruYT2/i7cjc8iMasA/xq2rJzYlsAF/fhiZAva+7sa+SF5Ki0hCVmEJGRxPzGL+4nZRKTm4utqy8jW3vw2tYN+4NVCKins5jKMFblUwuWINCauuWgsFfVu5MFs/arUwEd6Z7voWdShjmsxh+Ojd5MYFlALR2s5oYnZ7LlRnEjmZKtgxYRCv7Pr0aWXc1r7OOPlbEOuSlttYoJt/cSAxhLl3wAfJyQSiE7LIzHryQjU9Wok8q9uRGdU7zlUAkn33wKNBsaPh4gIUTRx61YxDiwJe2/GceKeqFC8aGwA07vXZcHgJiwZ34r39WXjHUHRaLQ6FAro31/c7uBB8d8a9lbG1efB2xUslQFcuQI+PmIkpzKvFFwUw1t58dFQkTz83eEQNpVjtVPZ2HczjnE/nycxq4CGnvb8Nasr7f2Lr9I/+0zsGLOygp07zfccK4qiWaFJnfzwcDQvGKkowpNzuBiWilRimW3Ggdvx3IrJxE4peyKBHEBcRh5jfz5HYFgqDlZy3hvchKOv92Rka+8K8Rut5DJe6lmPIS1ql/h+REquRb6Tbw5sjFQiNqTcKkI7eKlHPWRSCadCkrhZwvzVuKYjjWqazu/7VwVDixcvZtq0aUyfPp0mTZqwdOlSfHx8+KkcbRUPDw9q1qxp/JFZIGjh5WyNm701l8LFyfmFzn7sm9Odp5rXRCmXIggCoQlZrDn9kElrLxLw6SEGLDnFgCWn6Lf4FP0Wn6T3ohO0/vQwL/52mQ3nw7G3krN8QhuOvd6LYQGFA0gCaHRiluheQhaT1l4kI1est87u24AeDd3R6kT+UHhKLkuOiA+Hdwc1KWZON++Pa0a/lqVHQh/TCurWwJ32/uUHHRKJxJgdMoedXxG00QdD16MyzNY4crBW0FBPcr0amV7Zp2YSPBysaektpnRP3KtcrlVOTg52dnbY2dmVbH0wf774744dEBZWqcf+J+Htt+HYMdFOY9eu0jvHMvLURoXiV3rXo94jHI2+TTxxtVOSmFXA6VCR+GtosT9woPBzRQUYK4wWLcQTj4sTW6sqgCld6/CqXn/l/V03+bMUQbrKRL5ay2d77vDKxiDy1Tq6+ttz9v3BNPZxLzYm//67sGy5ciW0a1ex4x6/l8j1qHRsFOLEW90wtMJ3re9mdnlOEAQj92V697rU0CsqVyfuJ2Yx+sdzhCRk4+loxdaXO/Nij7qVqs/05agWfDa8GbYl7HO9BfZOddzsjPPPiiJZIN8atsZ588cTJWeHhgWY7lH3rwmGVCoVV65cYcCAAcVeHzBgAOfOnStz29atW1OrVi369u3L8ePHLTp+So6KmPQ8ajtZ8/u0jnwyvDm2SjmCIHDwdjx9vjtJ/yWn+HxvMKdDk1FpdDhay3G1U+JiK3KHbBQysgs0HL6TwAd/3abXohMMWHKSu/GZLHumFYvGBmCjkCEAUn05TCKB27GZPL8+kKx8NTKphGXjW+HlbGMsfa0+9ZCb0Rk46XkDBtyMzaRrPTdcbBWEJeew82rMY3/XB0PEVWVIQhbZZbi9GwbdsXuJVSYmWBT13e1xsJaTp9ZyN950rQgD2ui9bJ5UMAQYuxyqQgAyNzeX3NxSyjUtW8KAAWJ9YunSSj/2PwGbNxe6j/z6KzRrVvpnFx68S1JWAXXd7Hi5hNW4Ui5leCtxfG+9IgYSAweK7wUGiiKOAAP0wdDliDRj+dpiKJUwe7b4+3ffFfbxW4jXBzTk2Q6+6AR4a/sNUX+ngkKppeFufCYjVpw1ih1O61aHHye0eWxM3rsnlscAXn1V5HNVBEWzQs938cPdoXqDCUEQjKWfEa3MK8EABEWmE5qYjY1CxjQLuEYVxZWINFFgNyOfuu52bH+5C41rWijwVAZkUgmTOvtz/M1e9GtSvNPrdGiyWZ1qBhjEFvffii+mHWS4nw/cjic67fHn4dOlZKlKgkXB0NSpU8nKenyCysnJYerUqZbsslwkJyej1WrxfCTH6unpSXx8ySu1WrVqsWrVKrZv386OHTto1KgRffv25dSpU6Uep6CggMzMzGI/gLj6qV+DA/N60K2BqIMTnpzDlF8u8dKGK4Qli8KLPRq688GQphyZ35PrHw0g6IP+XP1wANc/GsDtTway57VuvDmwEZ3quqKQSQhJyGbm70GM/ukcfjVs2f1aVxrXdDCWywwd0tej0pmy/hI5BRpc7JT8NLGNUTzR8ABUa3UMb+WFr0vhiuW1P64aOzqWH7//WM22hZcTvq62aHQCR8rwK2tSy4F67naoNDoO3zZf/8fGxoawsDDCwsKwsSl/RSWVSozcH4t4Qz6Wb1tZMPCGzt5PrtRuH5OupUF2ee1aSHty16AqcOOGKNoH8M47onJ0abgSkcZGfenoi5EtsJLLWLNGnKSTi2hijm0rlpiP3EkkLUeFl5eYvBEE0bwVRHft5l6OCAKV01n50ktidujmTThypEK7kkgkfDGiOXP0hNy1Z8KY+utlMvIqb+Gi0wmsOf2QYT+c5W58Fm72StZNbscHQ5riYG9XbExmZcGoUSItqlu3yrHNOxqcaCwxvdSj+rNCt2MzeZiUg5VcyoBm5tf6tusdBAY1r4mjdem6ROY+K03BrZgMnltzgfRcNa18nNk2swveLlVr9eHpaM2aF8QONJsiWaJ5W66Z7S7Q0NPBmJkt2kHW0NOBLvVqIAiwM+jxxb6bGQGzRcHQr7/+Sl7e4/YNeXl5/Pbbb5bs0mQ82i0hCEKpHRSNGjXixRdfpE2bNnTu3Jkff/yRp59+mkWLFpW6/6+++gonJyfjj4+P+JBs6e3EqkntcLRWUKDRsvjQPQYsOWXkIbzauz5XP+jPb1M7MK1bHep72D92XlKphOZeTszqXZ8/ZnTmygf9ea1PfWwUMoIi0xm78jxf77/HqkltGVfEU0UQxNLZ5Yg0Zm0KQqcTaOntbGwplUggOC6TVaceIpNKmDegsNU+Oi2P1r7OOFjLiUjJ5cz94qrIolGsuMopqwRWrFR2w/xSmVQqxd/fH39/f6QlWYeXgLa+lvOGWvs6AyK5s6pWyOWheW1HbJUyMvM1hFqwGioNJl3L/v3FGX/9etEK4n8EaWniJJuXJ/6Jn39e+mfVWh0LdtxEEGBMW28616tBTIwYJ/7+e/HqVNPajjSr7YhKq+Mv/eq/pFKZQYurUhTOXVzAsHisBH6XVCphXv+GrJjQBmuFlFMhSYxccZa78RX36Tt3P5mRP57l873BqLQ6+jb24MDcHvRp7Kk/duGYlEikTJ0qWprUqlU2l8sc/Ho+HICJnc1vZ68MGMZFvyaeOJQRzJSEfLXW+Hwd07ZsvyxLnpVlIStfzaxNYjmzewM3Nr3YsULXL1+tNeuZ+lTzWlx6r69R8uRmTAYrTz4w+7iv9hGzQ39fjyU8ubAUa7ie24KiK+QfaNaVzszMJCMjA0EQyMrKKpY9SUtLY9++fXh4VI0kupubGzKZ7LEsUGJi4mPZorLQqVMnQkNDS33/3XffJSMjw/gTFSWmzX98rg12VnLy1Vpm/HaF74/dR6UVB9eBud15Y2Ajsx2LHa0VvD6gESff7MWEjr7IpBLRXO7n80zo4GvUUgAQEAOiE/eSWKU3sJvZsx5+NWyNGfZlR0K5n5jN0Ja18SmSHXr9z+uMbiMOmJIIlkP1nR+nQpNIzy2dzGkIhs6EJput/2MJDKUuS7I79fRltny1zqIyW2VALpMag7JL4dVjZ2KERCIat44dK/aG/w9Ap4OJE+HBA/D3L9/PatuVaO4lZOFiq2DB4CYIArz8spit6NChUJfIgLH6h+rWK+IK3hAMHTxYWMXq0UAMhk6HVlK2b+5ckErFg9y6VfH9AU+3rMW2mV2o7WTNw+QcBi87zRtbr5dYRigPN6MzmLT2IhPWXOR6dAa2Shmfj2jOmhfa4VYK5+WDD8SOMbkctm+HmjUr+hdBWHIOp0OTkUhgYke/iu/QTGh1gpEvNKyV6aUXAw7fSSArX4OXsw2d6tao7NMrFYIg8O6Om0Sk5OLlbMPyZ9tgqzT9eSAIAlci0lhz+iFz/7hK3+9O0OTDAzR4fz+tPz1Ev8UnGf/zeb7cF8ytmIxSgxF7awU7Z3Vlit625NsD9zhqpsNAcy8n+jT2QCeI3mQGPNW8JnZKGREpuUZOryUwKxhydnbG1dUViURCw4YNcXFxMf64ubkxdepUZs2aZfHJlAWlUknbtm05bMhZ63H48GG6dOli8n6uXr1KrVqlk6qsrKxwdHQs9gPgbKskT6Vl+q+XORmShI1CxvIJrfltaocKi2Z5OFrz5cgWHJzbnQYe9iRkFjBu1QXa+rkUW0UYhtnCA3cJikzDWiErxhFSaXV8e+AucpmUOf0Ks0NRaXl0qSd2eBwOTiAxs3h3UwNPBxrXdECtFcokh9Zzt6dxTQfRd8vMMoFKpeLNN9/kzTffLLSQKAetfJyRSCAq1fyuMKlUYtT3eZIt9u38xOtuSXarNKjVapYuXcrSpUtRq6uev/VPweefF1pt7Ngh+lqVBpVGZ2yBfrVPA1ztlGzZInY1KRSwbt3jgdTwVl4oZVJux2ZyJzaTrl3FKlZ8vFiaA5HYb28lJzVHxa3YShDUrFtXTHVJpaIidSWhuZcTf73ajQFNPdEJYmDYZ9FJPv77NiEJWWUGcrHpeaw/G8Yzq84zdPkZToeKlheTu/hz8s3eTOzk91jWW61Ws2TJUvr1W8oXX4hjculSUcG7MrA5UFzE9Wrojo9r9Tu5B4alkpBZgIO13Ngpag626QPsUW28yu3YsuRZWRr+uBTFnhtxyKUSfpjQGidb0zJagiA+40f9dI7RP53j873B7LoWy4OkHARBXByk5aq5n5jNxbBUVp16yJAfztB/ySl+OBpKXMbjlSOAD4c0ZXx7HwTgtc1Xi3WHmQIDd2h7ULQxuLdVyo1SDtuuWN48YJYdx8mTJxEEgT59+rB9+3Zci/ggKZVK/Pz8qF3b/KjZVGzZsoVJkyaxcuVKOnfuzKpVq1i9ejW3b9/Gz8+Pd999l5iYGGOpbunSpfj7+9OsWTNUKhW///47X3/9Ndu3b2fUqFEmHdNgxxGbmMK8nfe48DAVW6WM9ZPb07EKIvysfDXztlzjSLBIun2xex1i0/PZe7O4SaS3iw17Z3fHyUbBSxsuc7AIj2f3q91oUsuBnguPE5NuENNywFYp53JEGm8MaPiYcNyK4/dZePAe3eq78fv0jqWe3+d77rDmTBjPtPfh69EtTf67LJWYf2rpKe7GZ7FyYlueam7eEnPJ4RCWHQ1lVGsvFo9vZda2lYXToUlMWhuIt4sNZ97uUyn7NOtaZmWJvgenTomRwL/UomP/ftF+TRBMs9rYHBjJuztu4u5gxem3epOTKaNxY5En9Mknokp1SXhl4xX23YxnSld/PhrajGHDxMv29ddi9xpgvN9e79+Q1ypDNO/+fTGN4u9f8X2VgKDINBYeuMf5h4XGrg7Wclr5OBPg7YyAQEaemow8DeHJOdwsMkFJJDCylRfz+jcsMwgJD8+hTh3DojCbFi3suH69coZbvlpL56+OkparZs3z7ejXtOqFXx/FuztusDkwivHtfPhmjOnPPYCEzHw6f3UUnQDH3+hFHbeyn32VZcdxNz6T4cvPUqDR8e6gxiZ33118mMJ3h0II1GezrRVSejRwp4WXE829nGhW2xGJREJqjoqU7ALiMvI5ejeBI8GJRpsnG4WMef0bMKVrHRSy4jkXtVbHlPWXOHM/mZqO1uya1ZWaTqZLJDy35gJn76cUs2G5FJ7K2JXnsVPKuPR+P2P2yzB/m2LHYVb+vGfPngCEhYXh4+NTKfVMczB+/HhSUlL49NNPiYuLo3nz5uzbtw8/PzFtGhcXV0xzSKVS8cYbbxATE4ONjQ3NmjVj7969DB482Oxjv/J7EFcTCrC3kvPLlPa0e0RLoyQIgkBESi7nH6YQnpKDlUyKlUKGUibFx9WWbg3cjH4rBjhYK1g1qR3fHb7HiuMPWH06jEkdfenf1JPDRQjO0Wl5vLP9Bj8+14YPhzbjVEgyeXpLjcWH77F+Sgfm9G3IW9vFJe2duCy+GNGMyxFpbA6M4uVe9Y1aRSCaBS48eI9zD5JJyiootVOjS/0arDkTxrlqcsxu4yfqOgVFppkdDBlKVE+SRN3a1wWpXvMoPiPfrJu+NMhkMibotYTKlYlQq8XZPzdX7EPv27fCx69uhIWJBqqGMld5gVDRrNDMnvWwVsj4+gcxEGreXCRdl4axbX3YdzOev67F8u6gJjz1lJTdu+HQocJgqEdDdw7eTuBUaFLlBEP161d8H2Wgja8Lm17syNn7Kfx86gGXw9PIytdwOjTZKCVQFBIJtPdzZUAzTwY2q1luJuavv2D6dBmg17dCxsaNlRd3778VR1qumtpO1tXuTA9QoNGy76aYMR9uQYls59UYdAK083MpNxCqLOSptLy66SoFGh29GrnzYvfyNZEEQWD5sft8p+/YU8qlPNfRl5d71StRXFKcI0Q+4ui23mTmqzl0O4GNFyO4GpnOl/vusiMohi9GNqetX+F8qZBJWfFcG8b8dI7QxGxe/O0y21/uYrK/3qxe9Tl7P4UdQdG8M6gxdlZy2vm54FfDloiUXPbfjGd0ObyskmARmcDPz4/09HTWrl1LcHAwEomEpk2bMnXqVJycnMrfQQXwyiuv8MqjxX49fvnll2L/f+utt3jrrbcq5bhXItNwcnLk16kdjOrIpeFWTAbrz4Zz7kEycRmll3eUMikd67rSr4knQwMKVT+lUglvDmxMXTd7Xt96nQ0XI5nTtwH3E7MJK0Ic238rnk2BkTzX0Y/ZfRvwzQFR2VS0okhjZBsvsa04W0y1XgpPxclGQUx6HqdCkoo9WPxq2BHg7cT16Az234rj+c7+JZ5ze39XZFIJkam5RKflVnlHQhtfFzZdjCTIEhK1vqMsPCWX1BzVEyFd2lvJaVrbkVsxmVyOSGVIy4pnTq2trdm4caNpH3Z1hSlTYMUKkaT7LwuG8vPFbrG0NJHns2RJ+dvsCIomJj0PdwcrnuvoS0GBmBwDkc9Slvpx9wZueDhYkZhVwLG7ifTuLQbg58+L2ohKZSFvKCgyncx8dZmdQWYjNBS8vESTtEqERCKhWwM3ujVwQ6MVeXRXI9O4E5eJlVyGo946yM1eSZd6bia1rWdkwJw5orQBWAPimGzXTuzEqyxsvCAucJ/t4FtsAVddOBWSTEaeGg8HK7OrAYIgsF1fIrNkgrYU68+FcT8xGw8HK74bG1BuaU6t1fHBrlv8odeoGt/Oh3n9G5q1eHO0VjCmrTej23ix9Uo0X+0L5m58FqN/Os+s3vV4Y0AjY3nVyUbBusntGbb8DDdjMvjxxH3mFqF2lIXO9WrgX8OW8JRc9t2MY2w7HyQSCWPaePPd4RC2XYm26FpblNq5fPky9erVY8mSJaSmppKcnMzixYupV68eQUFBluzyHw+JBH6e1LbMQCg5u4B3tt9g6PIzbA+KJi4jH4VMQgd/VyZ38WdSJz/Gt/NhWEBt/GrYotLqOB2azEd/36bnwuOsOf2wmJv86LbefKjXAVp2NJRhAbVQyIoP6q/2BZOSXcC0bnXwr1H4AF1yOATFI9yhPTfiGaXvHNtYEpHaBGFFB2uFUUzwfDVkhwxK1DdiMopdG1PgZKugnru4Evsn8IYuV4DcVyHMnSsO4P37ITj4yZyDhXjtNdHX1M1NJOValTNHqzQ6ozy/ISv055+QmCjGGAYTVp2eEDt42Wlmbrhi5NDIZVIj/+Dcg2QaNwZ3d7F77fJlcVsfV1vqutuh1Qmcu/94ZsVizJ4NjRoZoosqg1wmpbmXE5M6+/PVqJZ8PKwZ8/s3ZFq3Ogxv5WVSIHTsmBjwlHSqlUkbvRufyeWINORSCeOLKOxXJwxdZMMCapsdjN2IziA0MRsrubSYRUlVIitfzapTYpPNu4MblyvumF2gYdqvl/njUhRSCXw2vBnfjGlpcRZbIpEwrp0PR1/vZeyKXnH8Aa9vvY66SBeaj6stnwwXy1zLj93nTqxpXY8SiYSx7cSxsFVvoQMwqq03Egmcf5hikWWORcHQvHnzGDZsGOHh4ezYsYOdO3cSFhbGkCFDmDt3riW7/MdjYic/utRzK/E9QRBYdyaM3gtP8MelKARBDCw2TOvAjY8G8ufMznw8rBmfjWjON2NasuyZVhx/vSdH5vdkweDGNK7pQFa+hs/3BjNgycli5bDx7X2Msu/Ljz94rC0zu0DL4sMhKOXSYoJyp/VmgCNaexkDKI1OwMlGTAYeu5vwGMnNcLNeCk8jNr1kAhxAZ/3qqDqCIf8atrjaKVFpdNy2gLDaxuhTll7JZ2Y62ulVvi9HVHNHmQH164sumVA5gi/VhPXrYc0aMY7bvFl0rygPO4KiiU4rzAoJAixbJr43axbI5QInQ5IYuvwMszdf5U5cJgduxxdrHDCMmetR6Ugk0KOH+PrJk4XHqdQWewMaNBBrgUuWiK1z/2CEh4sB5qOwt4cxYyrvOIas0IBmntVuvQEiX+mIvuvJki4yg7bQwGZlawtVJtadCSc9V009dzuGBZQtDlmg0TJxzUVO6ZuCVk1qx6RSqgJFodbqyMpXk5JdQGx6Xomela52Sr4dE8DCMS2RSSXsCIph+q+XjcbkIHYyD2zmiUYn8Oa24sFSWRjdxhupBALDU43VEi9nG7rq5+gdJWgOlQeLM0Nvv/028iItu3K5nLfeeovLhuXT/xjmlMIN0OkEPtl9h0/33CGrQEMLLye2zezMD8+2pr2/K+cfJvP2tht0/uoozT48QMP39lPn3X20+vQwX++/i1QiYeGYAL4Z1QI3eyvCU3J58bfLfPjXLV7/8xqf773DO081ZlQbL7Q6gZ1BMXR8xKF308VIguMyGdnam1pFovnFh+9hbyVneBG11N8vRtKhjis6AbY8Ittfy8nGaM9RVleZISg8/zClQroOpkAikdBGz/2xTG9IHwxFPfnM0J3YzDJVvk1FTk4O7u7uuLu7l2zHURIMIowbNpQ8i/3DcO1aYev7p5+K5qnlQaN9PCt07pxoA2ZtDS++CD+dfMAL6wK5HZuJvZXceC8tOxpqzA4ZuhDvxGWSr9aWGQydCkmuvHtgyhTRUyQ0FPbsqZx9VhGmThX1lwqngBzAHY3GHYnExDFZDnIKNEbV/OeeQDs9iJo4+WodbvZWtPAyjwIiCAJ7b4iNL9VVIsvIVbPmjJgVmtuvYbmZrC/3BnMtKh0nGwV/zOhUJjk9Nj2PdWfCGLfyPI3e30+Ljw/R9vMjdPn6GC0+PsjIH8/y1f5gTtxLLGYMPradD2ueb4eNQsbJkCSeXX3B6GIgkUj4bERznG0V3I7N5GcT9YdqOlnTQ38PFu0gMyQLtlugOWRRMOTo6FiiOWpUVBQO/0MCb0VRkneLViewYOdNfjkXDsD7Tzfhr1ldae7lxNf779L2s8NM/eUyWy5HEZeRT45Ki0of+WbmazgSnMDne4MZuvwMWy5H8c3oFryk9xL77XwE24NiOHQ7Hp0A34xuSY+G7oxo7cUPz7bGvUjqUwA+23MHhUxSjCh34WEqVyLSiqWXk7NVDGkh8iD+uhb72IAx8IjKIki39XNBKZMSl5FPeEolOXiXgdYVyO4YSNTXItMrVQXaHNR0ssbbxQadUHnluuTkZJKTzSjRdO0qkm4KCuDHHyvlHKoKGRkiTyg/HwYPhgULTNvu2N1EotPycLFVMKGDqNG1cqX43oQJ4OSiY+1p0ULiuY6+nHqrN6smtcPBSs7d+CzjAsDbxQZXOyVqrUBwXCb6vhHOnhXNYQE61qmBUi4lJj2PB0mVJKhpby+qUsM/3mRXEEQelkZTtHSZTH5+5ZUNjwQnkF2gwb+GLV3qVZ82T1EEhonZ3Pb+LqWK+5aG0MRsUnJUWCukxmx6VWPNmYdk5Wto5OnA0y3KLsvtuxnHr+cjAFg6vhUB+kXAo4hOy2XK+kC6fH2MT/fcITA8laKPUrlUgkYncDUynZ9PPmTy+ks8tfQU+27GGZ+5vRt7sOnFjrjYKrgRncHszVeNAZOHgzUfDxUlYpYdDeWeibpw4/Slsm1Xoo37GtisJlZyKZGpuWbbflgUDI0fP55p06axZcsWoqKiiI6O5o8//mD69Ok8++yzluzyXweNVsfrf14z1lm/0zthB4an8tTSU6w8+YAclRY7pQxXOyWl3UYKmQSZREJQZDrTfr3MnhvFW+hTctQcDU5AIZOyalJbvhrVAg9Ha94Z1LjY5849SOHwnQSe6eBTjCi8OTCSdn4uxSw6ToUmo5RJCUvOeexBbsj6XHiYUiy6LwobpYxW+iDj3APTHn42NjbcunWLW7dumS0xXxEH+wYe9silEnJUWuIzSyezVzUMTt6VwRuy6FpKJPDWW2Jb1ogRFT6HqoIgiGWWhw/B11dMZJnatPq7ngc3rr0PNkoZ2dmiHhGIWaHToUmk5Khws7fik2HNcLVT4mSrYEo30Sdq6RExOySRFGpUXY9Kp3lzMWGTnS3yl0C8BwxZpZMhlcgbevVVMd1y6lQhSekfiOXL4c8/xVM9fBjeeMOGunVvcfOm+fd3aTDQBQa3qGV2IFJZuKxvLzele/hRXNRLGbTxdTG5Uwosf1am5qhYp/eLm9e/QZmk6YiUHN7eJnYaz+xZr8QuPZ1OYMOFCAYuOcXxe0lil6G/Cx8Macqe17ry2YimTOniT5d6NRjSoiaTO/sxuo0XjtZyQhOzeWVjEE//cMYoONva14XfpnbEWiHlxL0kvt5fyF8c3qo2/Zp4oNYKfLHPNF5j3yYeuNgqSMgs4JRe985GKTOS3M01yLYoGFq0aBGjRo3i+eefx9/fHz8/PyZPnsyYMWP45ptvLNnlvw6LDoWw61qsKGb1bBtGtvbisz13eGbVBcJTcnGwlmOjkJKj0pKao0IAfFxt6N7Ajfb+LjSt5YijtRy1VkBbJDsTUwJX5+3tN8jKV2OtkBkfCiNbexHgXTxt+8W+YORSKVP1Kp8Au6/HkFWg4ZkiatanQpLpVFe8uQ894kfWvLYjDtZysvI1ZQpiGVZqpvKGpFIpzZo1o1mzZmZLMgR4OyOVQHxm/mOCkeVBrpcxAIpJuFc3DAFdZfCGLL6Wo0eLPhStWlX4HKoCgiCe4pEjYgC0davYDGcKwpNzOBUiPrCf6yCWVHbuFBUF6teHjh1h51W9gnBAbeRFtE+mda2Dg7WcewlZHNBnhwK8nQG4FpWOTAbdu4ufLalUduJeJZYdvb3hmWfE3/+h/K6LFwurrosWiddm4UIpZ840o3lz8+/vkqDS6Dipn8z6PwFdIRCDgcv6BZiBPmAOLuizSh3rmJcVsvT+Xn36ITkqLc1qOzKwWekyJCqNjlmbgsgq0NDOz4XXBzzexZWVr2bSuot8sOsWOSot7f1d2P1qN+q627Ho4D2G/HCWD3bdYf25cE6FJrPnZjy/6KsZGp1AgLcTdkoZwXGZPLvqAuvPhiEIAi28nVg0NkB/vmFsvSyWuCQSCR8OaYZcKuFUSBIXHpY/r1jJZUYKiGE/IApzApwIMe++tGjUKpVKli1bRlpaGteuXePq1aukpqayZMkSrMpr9/gfwKXwVH4+JdY2l4xvxeAWNfl0zx2ji7MhmMhT62hc04El4wM4/24fTr/Vhw3TOrJ1Zhf2zenOlQ/6s3F6RyZ18sPJpnRyXVqumlc3XS3mByOVSvhwaNNin4tIyWXvzVgmdfY36hcVaAT+uhpjtOMAUam6UU1R1OvQI6arcpnUePOWVSoz8oYeVD1vyEYpw0uf2QqzIKAxaHuEpTy5YMiQGboa+eS80v7JiI8X1Yp37hT//8orYlXPVGzSKxT3bOiOr76r8vffxfcmToTsAjWH9IHOyNbFSaVOtgqmdhWzQ8v02aEAH3GhcT1aXBCUxBvqrm+xvxKRVrnf6fz54r9Hj4KpN22AygABAABJREFUnLBqQmoqjBsnyleNHi02wBlQhrC/2bgYlkJWgQZ3BytjYFrdCEnMIitfg61SRtNa5rm7C4LAxYf6YKiu+Vklc6HR6owBwWt9GpSZSdscGMmtmExcbBX8MKH1Y6KI+WrRaeHs/RRsFDI+HtqUVj7ODP3hDFsuRRv17EpDrkrL9egMclVa/Fxt0Oh5tfP/vE6eSsuQlrWZrfcZe2/nLa5FpQPgW8OWZzqIpa9FB++ZNK8YSmWH7yQYLaIMCuGBYanFyNrloUIhvK2tLS1atKBly5bYVrIuxj8VOQUaXv/zuriKbePN0IDaLD4cYuQN2SplZOVrcLO34pvRLdg7u7ue2Px4ulMhk9K1vhufjWjOiTd6MbGTb6nltJMhSXy8+3axAdLWz9XYDm/A6lMPcbSWM6FIJmjjxUg8HKzoXr9whXItKkP/b/pj2RZD1qesElgrH2esFVJSclSEJJRfm1WpVHz88cd8/PHHFknM+9cQA5pwCwIaw7ZhSU9uYmngYY+jtZxclZbguIp5panValavXs3q1asts+MIDhbrRgcPVug8Kgu7dkGzZmLGAcDGxjQ9IQPy1Vr+1E8EBt+quLhCI/iJE+HArXgKNDrqudvR3OvxiW1qt8Ls0On7ycYyWVhyDum5KmMwdP58oU9ZAw97HKzE79SUe8BktG4t6gg8fCj6gfxDoNOJgpeRkWK2be3aQmHFCo/JR2AokfVr4lGuRk5V4ZI+s9PG16VYJtEUhCXnkJxdgFIuNY4lU2HJs/JiWCrJ2SqcbRX0bVK6MGW+WssKfZPB6wMaPTYvqTQ6XtkYxMWwVBys5Kx5oS2rTz9k9ekwHg1NbErg0RaFAESk5qGQSZAgik8+v+4ieSotc/s1ZGAzT1RaHW9tu26UTXmtTwOs5FIuR6SZVOZqWtuRJrUcUWsFo9dZHTc7fF1tUWsFkzJMBpj8DY8aNcrkn/9lfL43mMhU0fTuo2FNWX3qIT/o1W6t5FJyVVoCvJ04PK8H49ubLhLmYqfk8xEt2DNbTEWWhN8vRPL7hYhir70zqDFWRerRd+KyOP8wxWg6CXA3Povr0RlMKNKRcS0q3XiTHn7EMK9rfTHrcyk8tVRtH6Vcasx2nDeBN6RWq/nkk0/45JNPLHpYGrM7yeYTtuu46ctkTzAzJJVKinCfKlYqU6lUzJgxgxkzZljmXbR2rdiz/u23FTqPiiI7W4zJRo4UMw4GvPSSed6ye2/EkZ6rxsvZxsh9+OMPcfLu3Bnq1cPYlTSqjXeJq2YnGwUDmoqlhauRaTjbKo26XTeiMwgIED3NUlIgQn8LSqUSI3eu0lXOR4/+RwVCIHK69+wRCdNbt0JRfd0Kj8kiEASBI8Zg6MmUyACj6Wc7C0pkF/WBlLhoLEcl/hFY8qw0aMMNal7rsUxPUfx+IYLErAK8nG2MWRUDBEHgja3XOXY3ESu5lG/HtGDqL5eNlk4AUgk839mPv2Z1xde1hAW+VMLUrnVo4GFvlHRRawUEwEom4VJ4Gq9uCkInCHw9qiWudkpCErKNXWSejtZM7uIPwMKD90xqeumvD/5O6GUuJBKJMTt0xgwdMJODIScnJ+OPo6MjR48eLdZGf+XKFY4ePVrlCtRPEufuJxsNAxeNDSAyJZev9CQwuVRCgUZHhzqu/D69Iy4Wqh03q+3Ezle60umR9nlrhfhVfbnvLhFFJnUvZ5vH2k7XnA6jgaeDURwRYPPFSPo08UAuLRygrbzFFfLhR3hDDT3tqWGnJF+tK7P7yeC+HFgNjuyG7E6EJZkhYyD1ZEsOzfWtufcqmEWQyWQMHz6c4cOHl2/HURJmzxZdSo8dE3vYnwAuXhQTIGvWPP7e9Onm7WuDfoEwoWPh4sNQbnv2WYjLyDP6cg3TZ1LTc1XM2hhkLIsBNKst3g+39eJvhu6aa1HpWFlBS70l1aVLhcdubTQDTjfvpE2FIECU5eaTlYWzZ+Hdd8Xfv//+cdpZhcdkEdyOzSQ2Ix8bhcy4MHsSMJCnO1SAPP3oc7wqoNLo2H9LLAEPDSi9Vpmr0rBSH3TM7lv/MVL39qAY/r4u8mC/GxvAnD+uUVBkMdyjgRuH5vXk0+HN+ft6bInPMbVezPS3aR2499kgnitSoSjQCkiBo3cTeWfHTZxtFUZR4R+O3Tc288zsWQ97Kzl34jKNf1dZ6KVfAJ0KSTKWq43BUAl2M6XB5GBo/fr1xh9PT0/GjRtHWFgYO3bsYMeOHTx8+JBnnnkGN7cnN3irGsuOhgJiZNze34V3d9xEJ4gcIY1OoEu9Gvw6pQMOFRTXcrJR8Ou0DowoIvKVr9ZR09GaPLWWt7ffKBYxT+nqT9EE1LG7idxPzCrGE/r7eiwqjc6ozQBwW1+uOXc/pZj+jUQioXO98nlDBt2Nuya2QlYEdSoQ0Bi2jUrNK7VDrjpQ30Pkad1PrNj1sra2ZteuXezatQtrawuE6Hx9YexY8fcnQNItKIB580R/0kfRpo1YMjMVD5KyuRaVjlwqMa50U1LEyRtg2DCDhAR0qONqJNMvOnSPvTfjWHIkhFmbgshXa43BkEEJt2hHGYg2E1C8yatKdazu3RNlnrt3L+zpfwJITobx40GrFSUKXnzx8c9UeEwWgUHksHsDN7OzKpWF6LRcYjPykRXJ/pkKQRCMmaGqMPN+FGfuJxXahZRB1v71XATJ2Sr8atgyqsjcAGIn2hd77wAwp18D3tt1C5W28Fk5tWsdfp3aAV9XW1aefMDvFyKws5Jhq3g8hEjOLmDK+kuotDq+GNmCLTM6YTBOMIRW265Es/zYfYa3qk2Phu6otDpxPtUJuNgpmabv8Fx3Nqzcvz/A2xkXWwVZ+RqC9IuSznXdUMqlZdphPQqLOEPr1q3jjTfeKLYCkMlkzJ8/n3Xr1lmyy388rkamcTEsFYVMwiu96vPr+QhuxmSglEvJytfgaqdk2TOtsVFWzs1rJZfx3bhWxdLECZn5WMmkXHiYysbAQp0nH1dbnn7E82rtmTCGBtQ2pirz1FqO30sqVk++FZNBHTc7VNrCzg0DihKkS0OjmqKmVHhyDvnlkOoqCj99ySIiJddswnZtJxuUcikqra5MZe2qRgMP8XqFJGRXOem8XBjagTZvhhjz1VorAisrOH5cFO57FM8/b96+DuhXjl3qF/pp7dsnlsgCAsDPrzDzaTDZvB2bwSZ9G75CJmH/rXgmrL5g9NmLSc8jLUdlzAxdj05HEIQSgyFDwPQwSeQWVSp8fUWBzIiIQo2AaoZOJ34nMTGiU8jPP1eeAWtpMPKFnlAXGRRKYDSv7Wh0QDcVUal5Rium8nwsKwN/XxNLZE+3rFUqLSNPpTU2/czu0+CxUtpX+4JJy1XTuKYDJ++JwZUBs/vU54MhTbgckcZTS0/x9f67FGh05BRoyVWXTKO4G59Fz4XHORWSSMe6NTj9Vh9jVcKApUdDuR6dwRcjmmOjkBEYlmrMBD3XyRe5VMKViDSC48q26ZBJJcbOzuP6zs6i0hemwqJgSKPREFyCx1FwcDC6f7iMvKUwRKgjW3uhFQS+O3QPwMip+XJkC5M8fcyBTCph2TOtaKLvZBAAWysx2Pp6X3AxO40Xu9cptu2OoGiUcim9GxUGP0eDE+hV5P95ap2RVL3+XFixCbqr/vWrUWnkqkpelXo4WOFko0AnUHnCc6XAx9UWmVRCnlpLQmaBWdtKpRL89BmBh0+wVFbX3Q6pBDLy1CRnV/LEaS7atSvMOCxfXu2HVyhEkjMUTq4ymVjWMgeGDrGnirQS//23+O+wYSJh9Ka+I6xbfTcEQeCTv++gE2BIy1psmNYRR2s5QZHpbLgQYeQJ3Y7NpGktRxQyCcnZKqLT8ozB0JUrhW4ZLnZK6uozj4aumEqDjU2hDPd33xUyt6sRixaJlnbW1qKukL191R4vLiOP27GZSCTQ9wk41BtwqQL6QhfCxAVkS2/nSlscl4Y8ldYYPD7aTFMUx+8lGnl1wx+xFTn/IIWtV6KRSGBw85pGOQGAqV39mT+gEadDk5m45uJjz89WPs4839mPz4Y348MhTXmuoy919JSGhMwCnl93ibl/XMVGKePkm72KBWtancC8LdeoYa9khl5s+Hu9EryHg7VRHuBRnmxJMMxrRUnXRec6U2BRMDRlyhSmTp3KokWLOHPmDGfOnGHRokVMnz6dKVOmWLLLfzyO3xU1TGb0qMeyIyHkqrRGHs+Ytt481bx0XYeKwM5KztoX2lHDXuQgpeWqcbNXkqPSGonbIN54RSPhAo1IQiyaDj1+N5EHidm42BaudH7Te/8ERaQVI5b6utri5WyDWiuUKhQokUho5GnIdlRtqUwhk+JdgfZ6A2/oSWoNWStkxjJNaAVKZbm5ufj7++Pv709ubgUUwA3ZoZUrRTZzNaLoJLtjBzRpAoMGgYcZz6/Y9DyuR2cgkRRq0RQUiDYRIAZDt2IyUGl1uNkr8XW1ZfeNOALDU7FWSFkwuAmd6tbgsxGiWeSJe4k0qy2Wfm/FZmCtkBkXItej02nWTDzfjIziJb5CEnV6ha5JiXjlFTGVFhgI585V/v7LwLlzherf339fyJkqCZU1Jg3Cqs1rO5VrMFqVMDzz2lsQDBlUqztUA1/o+L1EclRavJxtjPy1kmAgWA99RGNLEAQj7/XZDj78cCzU+F4DD3veHtSYE/cSmf7b5eL8oYbubH+5C7tmdeXT4c2Z1Nmfqd3q8MXIFhx/sxdH5vdkUic/pBLYdS2W/ktOEZ2Wx8G53Y0d0xLEZ/kXe4OZ2rUODlZiN6dBCf65TiLfaNfVmHJtjHo0dEcigeC4TOL1pbEeDcyj7FgsuvjOO++wZMkSevToQY8ePViyZAlvvfUWCxcutGSX/woMaOpJDTslu/RpyXy1DgdrOR8MaVrOlhVDbWcbFo0JMP7fkFX481IUkUXsMAxWHDJ9ULP7eix9GnvgrNcwyszXcOxuAmm5jw8snQBJWYUZF4lEYrSyuF2Gm3BDvV5RpbYWl4KKkKgrwjmqTDQw8oYsv16CIBAREUFERETFym1Dh0KXLjBnTrUagz46yY4YIc71X3xh3n4MWaF2fi7GrOz582JcV7OmyD8yrHLb+ol2Cj/q24pf6VWf2s5icN1NT9K9G5+Fv1thZggKeXF3YjNRKAqJw4ZSmSBAgJfBLqYKeEMeHjBpkvh7NfK7UlNF7UetVszWlUdqr6wxeUOfxTPoPD0JFGi0hOgXK23M5AtBYYbQEuK1uTitJwgPal6zVG2h7AINx+6K5aMhLYsTrK9GpXMjWk/3yNNgqHpJJbDsmdY8SMxhxoYrxbqK33+6Cb9OaW/sji0J9T3s+WxEc7a/3IUGHvYkZxfw/LpAIlNz2fxiRyRgbNXfeDGSh8nZTNGLBRt8AjvXrUE9dztyVFp2XS27lO9qpzSWrA0iqPXc7bFVmh7iWBQMSaVS3nrrLWJiYkhPTyc9PZ2YmBjeeuutCncS/JPxUs96bLkchUqjM2oslCeY+Cgy89VsuRTJrE1BdP36GJ2/OkrPhcd5+fcrbL0cVSrvoHdjD0a1KRSLc7ASSdtLj4QU+4ybvZVR0fpUaBK5Kg3di5CmpRIJrrYld7o9+jBvrOcE3YsvPRgyZobKIVFbW1sTGBhIYGCgxQTLiognGrZ9ku31APX1vKHQCgSPlXEtAVHm+cwZ+PhjcDRPVM5SpKaKk+ujk6y9fdmZh5JgUIsuqrZ74oT4b+/e4p93pUgwlF2g4Z4+g/lsh8Iulxr2VkbtIUM3yu1YcVI2jJvrD3NZsQIMXeNvvy227Ftbg4vOGRAnwSrxv5s3T/x35054YJqRZUUgCKJnbFSUqCdkCk+ossbkjeh0AFp6OVu8j4oiJi0PQRB1dMylPuh0ApGp4gLV0DBhLsy5lkZyfxnt/0eDEyjQ6KjjZmdsEjDgN70+3pAWNdldxApqXv+G1Pew5/WthRpACqmElRPbMr173ccCr5j0PM7dT+bv67EcDU4gPiMfQRBo7evC7te60a+JBwUaHTN+u0JqrpqXe9Yrtv1X++4ypasoFnw3PotDd+KRSCTGTunfL5QfZPd+pFQmlUpoUtP0oLrCuumOjo44VtOD9EnCx9WGll5ObNAb2+WptSjlUqZ0rVPOliIEQWDn1Wj6LDrB29tvsvdGHDHpItEuIiWX/bfieXPbDbp/c5xVpx5QoHmckPzhkKbGQCZLnzbceS2GUP0DXiaVGCN/R2sFaq3A/lvxdC+SLjwRksTsfg1KPMdH0/yNa4rfa1ndYg31wdC9cspkMpmM9u3b0759e4sDZgOJ2pJSl1F48R+SGapImawyrqUR1ej5JAgiaToyUgwkVq60/PCpOSpjOaJoMGRQiO7ZU7zngozBkCt3YjMRBKjpaP3YJNetvrhgiEoVeXhhyTnkFGiM4yYqNYdXX4WgIPHz0dGiJqJMBgM6OGCtEBspHiZXQYa0aVOxhigIsGlT5e//EXz/vci7UipFnpAp3tuVMSZ1OoFbMeLCq+UTzAxFpYljwMfVxmxPtISsfFQaHXKphFpOlgWFpl7LPJXW+NwtzWQVCktkQ1oW93hLyipg301xQZGWW0iYtreSMa1bHVYcv1+MvPzhsGbF6CA6fRv9+J/P0/XrY0xYc5HZm68y7dfLdPrqKD0XnuCXs2Giqe/EtgxvVRuNTmDulms81aImPkX8MgPDU7kckW7UGFp3JhyA0W29Ucqk3I3PKjebbuiUvhBW6IrQpLbpsYlFwVBCQgKTJk2idu3ayOVyZDJZsZ//RfRu5MGxu4nEpOch13dojW3rbdLKwaDqOW/LdZKzVdRxs2NO3wb8MaMTu1/txuYXOzG7bwMaeNiTVaDhy313efr7M49N+s62ymIWHNYKKYIAq049NL5mINHlqcVgaff12GLB0MOkHLrUrYFS9vhN/qhwnKFb7EFSNupS7AYMwVB0Wl65dd2KopD3Y4nworhtdFpeqX9LdaCBZ8XLZJUOnU5U0zNkIKoIP/wAf/1VOMlWZA11NDgBnSBqAxl4WAUFcOGC+H7PnmJAk5KjQimX0tzLkZt6r70W3o9PtAZ+weWINGo6WiMIIv/AUDZLU+fSuMnjK9OWLcHaSkpLvWVElfCGAD79VFQMf//9qtm/HleuwJtvir9/952oBVVdeJicQ3aBBmuFlPruVczULgNR+syOj4v5rgoG2oKXi43ZqtXm4mZMBlqdgKejVYkOByA2a5zUixEOeaTjeMulSFRaHQHeTkajU4Dp3esSlZpnVKoWt63FxCKaQWk5Kqb9eonZm69yMSwVqQTqudvRsY4rjTwdkEklRKbm8vHuO3T/9jhn7yezZFwr+jb2QKXR8dKGK3w3LqDY+Xy9P5hnOvgglYjB0cOkbJxsFHTRN/M86qP5KJrUckAhk5CeqyZaH9A2q21CJK+HRd/W5MmTCQoK4oMPPmDbtm1GrSHDz/8iejfyMPofabSCnkxdt9zt1FodszdfZf+teJRyKW891YiDc3swr39DOtWtQQtvJzrXq8H8/g05OLcHC8e0xM3eivuJ2Yz88ayxq8GAYQG1aaB/UOTrC7y7b8SSoY/s2/g64+0iEp8Bzj9MQSaVGDMSAKfvJ9O3BGXXG9HpxQIFbxcb7K1EM9mHpVhZuNgpjQFhaBnZIZVKxcKFC1m4cKHFCrV1ilhymFuO8HS0wkYhQ6sTjA+7J4F6+u8uOVtl9NIxFxqNho0bN7Jx40Y0laE/k5AAo0bB0qUieacKEBRUOMkuXCjyeSoCQ1bIIK4G4qnn54Onp9gGbiiRtfRywkouMxoPG3hARdHW3wVrhZTErAJjBjIoIg2pVLQSyCrQ0Gfc4zIThr/DUH4o6x6oENq1gwEDqjSTl5kp6gmp1SKPa9Ys07etjDF5MyYdEMnTVR1IlIWoNH0w5Gp+MBShf7b4WrCtAaY+Kw0lsrK8207cS0StFWjgYW9c3IKYNd0cKIp5tvJxxvDYV8gkvNDZn59O3Eejf8bWdLTiq1EtjFml8OQcnv7+NMfvJaGUS5ndtwFn3+nD0dd7seWlzhyc14ObHw/gsxHN8XG1ITm7gMnrL7Hw0L3/Y++6w6Oo3u6ZrUk2vfcCIbRA6L1LlSYoYEHFggVQAQV7xw4qFkQBlS5SVXrvHUKAEJIQ0nvv2+f7486dLdndbElBv995njyEzezs7uyde9/7vuc9B8umx6GNnwz5lXIsP5KKsZ1161BacS2uZJbzXWBbOIsdqgzfWDAkFQn5z0jv9U7NnRk6ffo0Nm7ciBdffBEPPPAArzxKf/6L6BjkZiBA2DPcCxE+jcvlv/dXIvYnFkAiFOCXx3tizrCGyp8UAgGDab3CsPflQega6oHyOhWeWHORH/T0mNfGtuf/LxEykKu02H41BwAhPtPskJuTCCxLWiepqSRAJnl9zgQ9Vq7SIlmvJMYwDGK4TMZta3hDFhYClUqFxYsXY/HixXZ7F4V6OfNK34XVtrnXMwyjyyy1Im9IJhUhhCPu2psdUigUmDlzJmbOnAmFwjaZAZMICtL1tNtiCmYlqqvJIqtUApMnAy+95Pg547l7Ql/H5dQp8u+QISRm4PlCHJ+C8lFMBUNSkZAXrKMaLDvjczFi6Qme6PlPzUUwUsPFiQZDbVqSoF9bSyKWJgTLAi+8QChJ4eHAr7/aFnc1xZhMyDafuWtJ5HCl0lAv09kWS8hugmDI2rmSErUtiULSMrH+/A+Qhpfcino4iQW8pxdAuHRytQa79fhD80a044WEK+tVeHrtJeRVyhHlK8OuOQOxcFRMg8yUi0SEx/tF4NAC0lUGAD8dT8PSg8n4eWZPOIkFOHOnFENj/A30h347k8GLp26/kguVRouRnDZeQnYFCqssz/v03r7OBUORPtZnGO0KhsLCwlpfNK6FkZBTCaVay/uAWSMIdiq1GJsvZoFhgJWP97Ba98Df3QlbnuuPwe18Ua/S4Jm1lwy6xkZ3CuAjXqoSuvGCjmA2kUuH1ikJ7+hcWikGx+hKZfFZ5Q1qzN24Cci4VNaBay1OtoY3VNC8pR+RUMDv1uxToua0hlrRsBXQlcrs5Q0JBAKMHDkSI0eOhEDQRDtoWiLbupWQepoILEu6w+/cAUJDDc097UVlvYoPJPVNMOPjyb/U7Z4PhsIJeZpqpMSaCIYA8OVkKjhnzBcRiFi4dTe8NrSM1IbL+DW7jtWyZUBYGPmemhC//Ub0N4VC8q+XjVqBTTEmaRmzaysHQw5lhkodD4asBR8MWcgMJZjpzjvFlcV6RXojR8977JE+4fj9bAafFdL3MNNqWczbdBV3i2sR7OGELc/3azTz4iQW4uMHYrFsWhwYhvhrbrmUjZfvI7zVrw4mG1iIXMuugI+rBL6uEpTUKHDsdhH83Z10PpqNZIfovU0zQ9Z6gwJ2BkPffvst3njjDWRkZNjz9H8lqLcRLSM1ZiBYq1Djje03AABP9o/EiA62qak6S4T4aWZPdApyR0mNEi9s0LU3MgxjwMYXMiTFSCXgOwa5wc9NyltPnE0rRb8oH16NOq9SDpVGa0Dw85aRUtfVTKNgiEs7WiJRt+fb65vflkNHora91EUVhgtskGhvDvAkajs7ypydnXHo0CEcOnQIzs62715Nols3YMQI0ub13XdNc04A69YBGzboFlmfJnAnoJnSSB8XAy2ahATyb1wc6QpL1wt+KHk6yKMheZqiHRfUV3HBUJVchV5G7cNuPTIAhtxXAgEQSySKeE5aVmld83LS5HKgvLxJRRiTkoB588jvH39M1BZshaNjUq3R8h18XS0s7i0BhzhDTZAZsgbF1QrkVtSDYcxn0pRqLW5xBGjjUho1MJXp2Z34uUkR5uXMq7MDwNzhukrGzvhcnEotgbNYiFVP9oK/m/UE8Qd7huKLB0m76OrT6QjycEL7ADeU1SohFQkMbFc2nM/kraS2XCKlMqoj1lgwRDNDN3IrbU7YWB0MeXl5wdvbG97e3nj44Ydx/PhxtG3bFm5ubvzj9Oe/iLPc4NGyZOJra8ZZnuLX0+nIrahHiKczFo1pb/FYc3CVivDrrN7wchHjVn4VftAjtI3pHMi39FMLmb03SGqTYRjeRJUBuUHL6pS8oBxASgb6OhFFNSRAMA562vNZH/OBDm0Xv9vMKtSALnWtr75tLej1qpa3ns8ToOMNtXabfwNQEcZVq0hty0EkJ+sElD/8EBg0yOFTAtBlL7vrlchqa3VCiHFxQH6lHGotC4lIgEB3Jz7rYC4rBAAhnmRyL60hZZ7iagUe6hlicIzITYGYjiTj6u5O9BAB0qHmJBZArWV58maz4PnniTL11avAyZMOn66+npQw6+uBkSOJZEBr4E5xDdFtk4p4bmBroEah5jurwky4sjcGPhjyad5giG4Iov1czXphJhdUQ6nWwsNZzG8iAaKjdJ7b3Cfpzev3xwbiZGoJPz/KJEJezqVeqcFSznVh/sh2BmsJBcuyuJVXhV9OpuHrg8n45WQarufo5Cam9wrDSyOiAQDv7LyJF4YRzu2Oq3l4mtMYAoA91/MxLjYQL42IxvsTiVEhDYbO3S010DwyRvvAhiRqa2G16cq3335r04n/a0gprIFASgbUyI7+FlsulWot76T92pgYyKS2edvoI9DDCR9NjsVLm+Px47E7GBcbiI5B7pCIBHikTzjvQgwAh28V4sNJnYnRahsf/JOQBxepELUKDc6llaJjkDufWr2WXYmuoR58bTirlAyc7DLi/UU/H22vz62oR5VcBXcTN16AO1kRSmqUBs9tDtDXtyegcXMi30OVvGn5FraCZiZKW9uSwxhjxwIdOgC3b5N61vz5dp9KLieLbF0dSTi98UbTvU3qEN9djytx4wZJlAQGEp3CM3fo7t4ZAgGDG7x+jflgiPIearjyskKtxeB2fhALGb4hwVksxBOPC/DWm4BI77YWCBhE+boiKb8K6SU1fKaoyeHrCzz5JNElWLaMtM05gFdfJdfO3x9Yv55ku1oDtLzUxt8VAhtKG00NmhXychHbbLhdLVfxTRHNnRmiHE5L/KoEOuZDPQzm5CuZ5ZCrtPB1lSKvQpdhv69jAN+GD5AAhGZsfj2TjvxKOUI8nfEk1/6uj9TCary+/brJbsqOQe54c1wHDInxwyv3tcOF9DJcTC/Dn5dy0DvSC5cyylFWq4RIwECtZaHWskgpqsGro3VJhHb+rvBwFqOyXoWk/CqzUgJSkRAxAW5IzKvCzdxKDIyw/j60eug/+eSTVv/8V0Hb0fWd301h3818FFUr4O8mxfgu5v1irMXEuGCM7RwIjZbFl/tv848/0ieM/51hSPmLKudS1/l6Pd5QpyBdN0FCdoXBLrm8TgmGAWqVGpTqdTl5uIgR6E52zObKOj5ciU2p0TZ7ez2doOwJaNwdeG5TgpZ2aAbCVtTV1aFz587o3LmzY3YcxhAISADUvTvQpvFOSUtYtIiUrfz8dGWypoBWy/IBvT55Wr9EBjTkbtCSWUyg+VZbmVQEdy5glnEegPUqrQH5tFekF0aNJNOmMbeVkqibnZNGg9Tdu4GUFIuHWsL27cBPP5Hf160jgaS9cHRMUmJsoHvrWXAAeiUyO4IZmhXylklsDqRsRQF3vUI9zWevzHWbneGqHL0iPaHW6yLrHemF4ym6Fvv7uxAuj0bLYt25DADAq6NjDEpaAHAipRjjvz+Nq1kVkIoEGNnRH0/0j8DIjgGQSYRIyq/CE79exJf7b4NhGCybFgepSIBzd0vRvw3h6e2Mz8WAtroa+r4b+Qavoe+I0JjSuzGJ2lrYtQ8QCoUoKipq8Hhpael/VmcI0JGVOwVZJo2t44QZZ/aLMNs5ZiveGNcBIgGDY8nFfFtxhI+MN92j5VFqURDp44JAdyfQDvT4rHIDsltCToWBGmm9UsMHPZmlhpNZMFc+KDLD5HeWCOHCGRI2d7aDZndq7MgMuTtzmaH61i2T+ciIcGZJrdKuRgSWZXHr1i3cunWr6RsZnn2WiM1MmmT3KXbt0nm/rltHmtWaCtnldaisV0EqEhi0CieTDD46k6x6A+4GtbDxb0QXjFp00MC5uFphoK8SF+qJUM7ur6rKMCCi2aBmJ1G3bw9MmEBuejsz9pmZOvXvxYuBMWMce0uOjkldMOSAonoTgBdctIMv5EggZSsKKslGyt/C9dJZm3gaPH6L2zDry5P0ivBGWnEtb8nkIhbwm/5zaaUorFLAw1mM8UZ2HteyK/ACZ9cxuJ0vji8ahtVP9sZHk2Ox+sleOP36CDzRn3STrTiehrd33kColzOe52RpdsTnoHOwGxRqrQEH6fSdEr6RgaJ7GGd704ghMuW5ptnYrWvXSm1usCsUCkgkpq0e/ivwdZVaNBAsqVHwXSwzeoeZPY5Cqdbiz0vZeHzNBQz76hge/Okslh1MbkDyjfSVYTp3Pn0zveUPdzfoqKFaDIQ3pONvZZTWGkgBVNSpUKvQ8EEMCx1nwliHx9eVlsHMZzKokWxpreljnJyccOzYMRw7dswhuX4aDNlTJrt3MkPkWinVWtQqGyqNN4amupYmIRQ61O6VlUVUpgHgtddI5a0poR/kiPW0aDI5Y+vISPKv/sLEsiyKubHr24j5Jw2GqN1OUbUcw9r7g1Zuwryd4e8PiMUkFsnX28DydjEt0a24cCH5d/16QpiyASoVUVKoqAD69gWWLHH87Tg6Jq1Z3FsCdNyE2sEXopvICAeDIWuuZVG15eBRrdHy3arGUhI0WNdvQukR4cl7egHA0Pb+fAZoRzyRbZnQNQhSkS7ZoVBrsPDPa6hXaTA0xg9rnuzdoMXeSybBR5Nj8fX0OAgY4I9L2fj+6B28MKwtfF0lyCmv582Qb+ZVwo2jlKg0xGhcHz0iPAHoyuTmQO/hgkba8I1hE5nlO67LhGEYrF69Gq6uuh5+jUaDkydPokOHDja9gX8bOgaZT7MDuhRkpyB3BDRyYxdVyTF73WW+/REAMkrrcCWzHGtOp+P9iZ0wo7duV/ri0LbYfDELp1JLkFFSy+vmjOzoj2vZFXBzEmFEB39otCyEAgYdg9yx61oez3koqiKCcvSmzSknBO9ULoJ25UoDxpkhX243XWwh6+MjkyK7rJ7fgRtDKBRi2LBhFq+HNeA5Qwo7ymT3CIHaRSKCs1iIepUGpTUKuNrIKWuqa2kR1dVEbGbQIKBnT6ueolYDjz5Kmp1697bdeNUa5FWQnXuwUXmABkMRZBPKB00RPjLUKNQ86bKxYIh2WFLtk+JqBQQCBr6uUhRVK+DlIoFAAISEABkZxL8rnLtF2/jRzFALqIsPG0aimOnTAZlt/KT33yeGth4epMNP3AQVHUfHZGOLe0shx4HMEB2bIXboE+nDmmtJM2nm1piSGiW0LGkt18+GKtVaPuDTDxbaB7rj72s6vhDt6FOqtdh/k1Qb9L0xAWDN6XTcLa6Fr6sU3z3S3WIVZGqPUMhVWry18wa+PZyCgdG+eLJ/JJYdSsHN3CqIBQxuF1RjQFsfnE0rhUwihMKIKB0X5gmGIfd2SY3C7L1M54a8imYMhr7hBNlYlsXKlSsNSmISiQSRkZFYuXKlTW/g3wbaXWUOVPpcX9fHFOqUajy2+gJSi2rg6SLG80PaoluYJ3Ir6rHxQibisyrw+vYbKKlRYu5wwsAP83bBsBg/HEsuxqaLWXjr/o4AgN6cO7KzWIhFY9rzZDmqZyMSkGAotaganYLc+WAnt6IObfxkfDAkV5GMX5YdmSFfmhlqoTKZQ5mhelWzE70bg7dMgtyKepTWKq0S72xxLFpEHDqnTSPeGVbgww+BM2eIl9UffxDbjaZGbrnpBYdKI9HAJJPr1Av3duEDdJlECGeJ5TI+nUhp7ptmlEK9nFFUrUC9imTywsJIMJSTo3suLckVVimg0mgNMldNDoYB3n7b5qcdOgR8/jn5fdUqIMo6a8VmB82EN7aBbG5QWQVvme2Dl+q62bq5sRVqjZYvZwWY4VjR4NLXVWJASM8qq4OWJfeCPtWgQ6AbvtbTPaPZpMS8StQpNfByERtw9BRqDVafSgcAvDmug1Vm5Y/2DceljDLsjM/Fom0J+OO5fvjx+B3cLqhG3ygvXEgv53X8Oge749G+hsLA7k5itPGVIa24FjdzK83q9tENTUmNwqTHpznYdLemp6cjPT0dQ4cORUJCAv//9PR0JCcn48CBA+jbt68tp/zXgI6nDhb4QizL4nQqyQwNbWeZZL1kTxJSi2rg7ybFX3MH4sVhbdG/rQ8e6hmK7S8MwCtUlOpAMnZf10Xsj3Iuvn9fy+NrvnFhnhALGRRVK3ijyb038rH8MCmn1XO2HV8fTDEw3sspq+e1dwCgirs5ssoM0+60+6mk2kKZTGaZFKxSqfDjjz/ixx9/tFuBGtARqO0KhjjOkFrL8otaa8GR4FGtVmPXrl3YtWtX09hxmAL1Yti+naz6jeDYMV0m6JdfHOZfm0UO3X3rZYbq6oBijvcZEQFU1qn4sUztAABYLG9T0ImUZpKKq8hz6T1Axx3lDWVn656rvyBU1bdwKdYKi5vCQuDxx0l577nnSJzbVHB0TPKcIY/WJVArOI0oiR2BLM1kGBOMbUVjc2VprS7rY25MF3Hj1lgLiMqfRPq6gOZdBAwZ9/qbYMonpd1hPcK9DDaP+28WoKxWiUB3J563ag0+nNwZPjIJ7hbX4kBiIW+yLOLaGGlQHJ9dgVoTzThU3NSSpZK3TMIHVfQ6WAO7ti7Hjh2DlxUSpe7u7rh7926jx/0bQAeCpcxQSY0SRdUKMAzQI8L89ckoqeXFpL59uFuDzIBAwGDBqBg8P5SsKG9uv8GTl4fE+EImEaKgSs5rpziJhXxa8yLnZRbt72pQfgOIb062nvZCTnm9gfBiDVd6Mi6T+XELt3WcIdOTslKpxLx58zBv3jy7vckA/cyQymaiprNYyCuStjaJmu48y8xwrCxBoVBgypQpmDJlStPYcZhCly5EeEarJQ6rFlBcDDz2GFlkn3kGePjh5nlLgC4zpG+VQAMSV1fA01OnIOzrKoGLRMQH6DQAtQSaGapVkvFBM0OuUsMg3I/b65Tq2ZWJhAKe82BM/mw2ZGWRUtnAgRZFGLVaYNYsEhB17mw379osHBmT9UoNH7y2dmZIwW2SpGLbl0Y5fa6DTTONzZU0cPRzlZpVWKbj1rhhgHZVBrjr7p9gT2dkl9XzzTYhnk7w4uYnKsJrvJ7tuJoLgPBibfGRc3cS81pDPx27g/FcxxrVO7pdUI0gDyeoNCwvDaAPmn01rl7og2EYfl2zRWC3WVUl/kuWHVTNOcDCzoVG3aFezhZ3B6tP34VGy6JHuCecxUL+OpXUKLDpQhZWnkjDmTslWDS6PbqGeqBaocaXB0i7jFQk5NOD+mqclERNOwXa+bua9NbR74SjopAUtQpyMxfXKAw6DWiZrNhiMNR4Ka0pQIMhlYZtUFNuDAzD8K3TrU+i1mkz2QqBQIABAwZgwIABTWfHYQqUpLtqFWmdMgGWBZ56ihCJO3YEli9vvrcDAHmVDTlDNCsUEECqRzRgoZkaynVrjC8EAMEcAZQaH9OdpX4QDhC+DdDwsni4kNesaKlgSCYjLfaXLwPHj5s97JtvgP37AScnYMsWotvYlHBkTNLF3UUibPYSU2OgGUF9orC1kDdRZqgx6EqK5scznxlyNx0MCfViqPYBbgbWQB2DdIRr2sauL9CrVGv5jmbafm8LHu4TDm+ZBHmVcijVGrhJRSirVSLc2xksdAHc7fyGwq9h3JpGKyDmQIncBVXWCy+2njXwvxSezuZ3l5Sl38bXvDmcRsvyhDS5SospK87i97MZOJ5chOFfHcdbO2/g8323cehWIURCAT6cRHqFd8bn8qlBqsaZrqdgTFWN0znyJsMwJi1D9F2+c8rrEKS3qNDSEcsCcr1aK88Zqja/cLcUZ0gmEfHNTnZpDTnreEOtCR8+M2T79XJ2dsaZM2dw5syZprPjMIUxY0iL/RdfmGXZLl8O7NlDlJj/+MNmLq9N0GhZ5HOkSP0gvpJLgNIAhY5duijR8q41ZTKqL6TiNgOUe+FuxFWjr1VpmHzlAzAaTDU7fHyIr9xbb5Fo1AQuXdKJXi5frpMfaEo4MiYL9NrqW5PHB+hKXfZIotCskpMdWSVbUFjdeOcdHbd+RmWyIu65VXolqCAPJ6TpdUDSUqVcpUEeF3jpV0QScipQr9LAWybhjbxtgZNYyHda/52Qjz5RhPPq6ULmRJpZ06d0UFBlb0uZIQAI4jqj8++VzNB/DTKJ0OJNQnUN2liw6riWXY6SGiXcpCIkcSqinYLc8cKGK6hWqNEh0A0P9gjlMz3dw70wKNrXQPhqVKcAnH59OH58tAd/3igTrtn3dWxIMBvZSfdYbnk9gvR2Dmo9TyWaJQJ0fIl6lcZkHRfQL/s0bzAkEDBwlThOom7tjjK+rNjMmTSHIBAAf/0FvPiiyVTClStEowYAvv4a6Nq1ed9Oaa0Cai0LAWNYTqHZGRqgKFSGO3Qq9+BnRZnMOOVPpQ8oV42KipoLhjxddO7eLYZPPiE/JlQTq6pI2VKtBh56CJg9u+XelrUotSFz19xQ8JkhO8pkDmSVbEFxlRWZoWpDrhsFnb+r63TztJdMgnK9eZt+DzS75CQW8OMa0JXO+kZ52x28UjPxEynFPDGblhnpppyuj/qgZTLqlGAONMNbbIHnaozWzUn+y0AjV3PI5KLVNhak+K9lk9kzxMsZtwuq0SfSG5svZkGu0qJvlDc2PNu3QRfKglHtMKpTAO8eLJOKGlh80AAsu7weSrUWEpEAfaK8DawEAMDbRXdzqLQsnCW686i1LFwkQtQpNahTqgFI+dejreAlNQqT9iI0GDLHGWpKuDmJUK1QO0Sibu0yGTXGbYnr1Vw4e5Yssg88QOKl5gYNcqQioQFXwjgzRDtI6IJGM5rWZIZExhwM7tZxNSqTubsbvjYFzRxX1N0b32tiIuE1RUQQYnsrJ15MQq0l36tY1Ppvznjs2PTcFsoMUfFfS0EXDYaMOUO0461ab7Pr4Sw2ICTT+4SWpIM8nA2CHrrOtWuks9oSOga5IcTTGbkV9XyCgW6kaRnQmLsK6Mrj1Qo16pQas1ZXLlRB3gYdt2YNhlo75dnUaKx9kE6UloIm6sxM0SvSC6tOEZL5O+M7QSwUQKlUYsWKFUhLS0Pbtm0xZ84c9IywbIDr7yaFRCSAUq1FYZUcYd4uBj4tFPUqDdydRDxhUasXXbMs0cCpU2oMMkMAqefXqzRmeTp0cWoJnpibkxiolPPX2xbot9e3JsRc0V6tsf161dfXY8iQIQCAkydPNm+pTA+mxmWXLhJ07doyiyx1gxcJDV+sQZlMZVgmo2WzbVdysCM+F18+2BXtA91Mfh6RkYI+vT90vnaWM0O0DFvZSgR9U5/p2jUJysoAK3pe7IYjY5JOGQxaf71QOlImayHOEMtF6JauFs0AGXtJ1nGNAfrzuKeLxGBj6SuT4OXN8bxeln6TDaDr5LLWf83UmJRIJOgT5Y2d8bko5kp6lD9J/62WqyFXaQyup7NYCIYhY6ZWqTYbDNFuQJXGel7pv45AvWLFCkRFRcHJyQk9e/bEqVOnLB5/4sQJ9OzZE05OTmjTpo1DOkheMsvBEA0gKO/AFLK4aJcu5BKRACoNiwgfF3QJ9cDixYvh4uKCBQsW4IcffsCCBQvg4uKCxbQeYQaEHNywBNTTqAugrFZpMICUGi1/U7F6753eNNaCn9BaYFVsCq2hFi1jWIA9/GetVovLly/j8uXL0GptI5HbC3Pjcu/exfC2HKc3GWiG07jt2bhMJufLZOQ4ATcm8yrqkZBdgWq5yuzneedNQ0dZXTBkeG/RzFC1EcfTkydQt3xmyNxnWrFiMXr0aPz5jsCRMckv7q0cC7Esq1cms4NA3UTdZI2BzrXWGNoaX1OaGdLfBHs4iw2DITcpjiUX4WYuubGMO/woXyfMCnFJS+tZV85kNrOsjuecChiyDtF73LjMxTAMXMSNZ31odcWWzWazZob27duHkJCQxg+0Elu2bMH8+fOxYsUKDBw4ED///DPGjRuHW7duIZyqrekhPT0d999/P2bPno0NGzbgzJkzmDNnDvz8/PDggw/a/PqNZYZoO65M0vCyPr7mAqrlap4jQrtN6CCMC/XE4sWL8dVXXzV4rkaj4R//8ssvzb6+u5MIJTUKg4zJwGhfrDuXCQEDaFmSvhfo3SFypRZCzi0YIJkh8lls0+HRBUOm/y6VSrF7927+d0fgiD8ZzSqotc2fwbIEOhkJ7FgBmvJaWgNHx2VTge7yjMvIVIqFijzSUocTt6DRNYNe628/fR8bV/3Q4PwajQZLly6Fe5+78BpOPEXoMOHHHCc/QYNY4/0en0Fq4cxQa39HjoxJGju1diVBqZdFcKS13tHMUGPXkiYZ7LlaNGOk0Zv/PF3EBrQBNyeRQTexcdmPrllejQhTNjYmp5fVAb7jkFlaB19XKUpqlPB0EaOsVgVPFzGKqhUoqlY08HpzlohQa6J6oQ86RyhtCMytDoYW0jZbK/D1118DAAYNGmT1c6w97zPPPINnOYfBb7/9FgcOHMBPP/2Ezz77rMHxK1euRHh4OL7lRDU6duyIy5cvY+nSpXYFQ40pytKBZip1l5BdgSq5mp8s6RdJnxMoE+I97rqZw9dff40lS5aY9X9zo51S+lE+H3Ez0LIsWNYwYJGrNRDpB0PcwK+z0X1e28gNKhKJMH78eJvOaf61yL/2zJ2O7PyaEo4kTZvyWjYGpVLJ38/m0Ni4bCrwwVAj3BKaGaILGl1kBQJAq1Zi85oVFp9fdWkXPAbPhEBEPg/LsrxXWb3S8uRKv9cG3KNmxL3wHTkyJumt0IKXzCSUeqUjuwjUNCPp4NzS2LXk5w4brxfLsnxmSD8YchIJDTJDLAto9CYo4w0b5UZZEqa0Zkxu+20lQhbch7JaJc95pWss/deUgjT106xXmV+jaJmz2AbRRauDofj4eIP/X7lyBRqNBu3btwcApKSkQCgUoqeVPka2QqlU4sqVK3jjDcM09ujRo3H27FmTzzl37hxGjx5t8NiYMWOwZs0aqFQqiE20CysUCgPRsCo9IZHG6o90oJmS/KcTssYoI0G/7CsHtkCjsZyN0Wg0WLFiBebPn2/y71IaDevd1PQtC7jUkEDAGJBP5SoNyZZw40pCgyEzmaHGFnF7Mh22wpEdmNKBbpGmBB0GLXG9HMGKFSscHpdNBVomM7cpoWNTV65omBmqid/beBmH1aImfi/cez/An9dcl5Hx/UDHV0uSge+l78geNLaRaino82hsVaAmJTb7BRttAb8ZtPGKKTVaftOrXyZTarQG/9eyLPRvEWNhR/5esPA5rRmTWq0GNfF7UTvwQUj4e5W8Fj8tmlhvaDBkbo0CdJzMFBuc660Oho4dO8b//vXXX8PNzQ1r167llajLy8vx1FNPYfDgwVa/uC0oKSmBRqNBQIChdk5AQAAKCgpMPqegoMDk8Wq1GiUlJQgKaigY9dlnn+HDDz80eT6l2nIkILFQp6TjyXhgCbl8e3FulsVzU6SlpZn9G18e0BukNPiirypkGIMFWKXRGv7fTgJhY2UylUqFjRs3AgAee+wxk4GotXCEqNhSE1Zj4FPddqwAGo0GR48eBQCMGDHCwCOwqWFpvNlznCNQmbFKML6GcqPWejq+BQwDdYXpucIY+sdpWVYvAKfZJjPP41YRUXOKYRrhXviOHBqT98jGQJ88bWvJTqVh+SDF0cxQY3Ml5VjZmknTv776gZRSrTWYS40zQ/ovw7IsH1AJLVwja8eauqIAIqGAL8sZjwFTK641r0/nCK0NdAi7OEPLli3DwYMHDSw5vLy8sGTJEowePRqvvvqqPae1CsaDtDHDTVPHm3qc4s033zQoCVZVVSEsjLS0N5YZcpYIgVrT5GP6JQv1giKNluWDDpmfddyqtm3bmv2bqRKQ1mjrKhQwBjeRi0RkQHSn57BEAjeFxjoclEolnnrqKQDAtGnTHAqGHCEq8qJqzWmiaQVYBxYAuVzOZzxramoga0alQ0vjzZ7jHIHSTDeZMbRGgaZAr0wm8myoxWMK+sdpWeuzkTzJuwUzj/fCd+TImDT+vloLjmgM6ZdzHN1oNTZXNrbxNAexUMB3HOtP1CqN1uAza7SsQQWjWE9Il2EYuEpFqFGoUaNQw7RVqvVjTeQZCDcnEb9m0s5Pes8ar1+AjsJhrpMM0CUdTD3fHOz61qqqqlBYWNjg8aKiIlQbt1c0EXx9fSEUChtkgYqKihpkfygCAwNNHi8SieDj42PyOVKpFO7u7gY/FI0FQ3wt00T6jsr0U70SKjvvxgUdwQMmNbqbEgqFmDNnjtm/0wlbfyI2JgoL9PhBACHL6aeHaerRxQQJ3BJ0PJ7mn9GUjmSGeD5JK3OG7NzdAcT6IC4uDnFxcc1rxwFgzpw5Do/LpgLl4agaydAaE+z5oAgMXLvf3/g1YwRw7X4//1+tQZcRea65OZYvkzUSsDUl7oXvyJExyVNgWjka4qUb7Lgp9TegdI5pLugI1La/T5nEsHQMNMwMafU4coDOZorCWI3dFKwZkwIBuc8ifWS8UnQtd865w6Pxw6Pd0T6woZZRjRXBED3Glj4Zu2bSKVOm4KmnnsK2bduQk5ODnJwcbNu2Dc888wymTp1qzykbhUQiQc+ePXHo0CGDxw8dOoQBAwaYfE7//v0bHH/w4EH06tXLrsxE45kh851Yfq5UwJC8LjV0pLXS9DJloyT1hQsXmiVAsizLDyh9oS3aQq7LTDEGlhkuEhEv4gXoB0M2ZoZacHdnXLKwBUoHXKmbErqb1PYL5uzsjGvXruHatWvNrjEkkUgcGpdNCSpoaCyLQF9azinv6zq/yISoywwxEIgkmPT4cxZfJ2jQQzx5GuDsaYwyQ7Wc0LtxAsRcx1tz4l74jhwZk/cKZ4gurrZ20gJkA0oD5eYWdNUFj7Y/l25y9ZXWlRptA2qFvoyMsUM8lZmw9DmtGZNd7ydNCp2C3Hl/OqrifX+XQEzoGgx/IzsRfRK4pepFhR12OHbdsStXrsT48eMxc+ZMREREICIiAo899hjGjRuHFSssd2o4goULF2L16tX49ddfkZSUhAULFiArKwsvvPACAFLieuKJJ/jjX3jhBWRmZmLhwoVISkrCr7/+ijVr1uC1116z6/WVjWgWUP0DU2UyKovuxN0wVAmZLop3i2vx5vtLsGjRogYRtVAoxKJFiyy2xhZXK6BQayFgiLo1RX4FURHtE+WNTbP7ol2AjF8kAEMtKAa67jbjzBCd5M3N8Y7coLbCEdn7e4czRP5t7Q4aS7hwARg7Fpg//0u7x2VTwpzVBU3e0l4HnSYQ3QiQx+nYnPnS2xY/z9qV3+Hr6XEGfzO2+DAWeqRQN0LybmqUlwPDhwNTp94b35E9uFf8vGnGQ6nW8sGvLTDWomou6EQqzYP+zZgzQwMI/bKYcWaorFZpkBmqVWqQqeeDSQOlxky5v/zySyxY+JrJMfniS/NRG/cwALJeaVld53OIpzN/LY2hUOtI4JYyQ/YowNvFGSJCXivw1VdfIS0tDSzLIjo6ulm5CwAwY8YMlJaW4qOPPkJ+fj5iY2Oxd+9eREREAADy8/ORlaUjIkdFRWHv3r1YsGABfvzxRwQHB+O7776zq60eMOzSMgWqQ1RuwmIhkBOuohE5HdBZZXVo6ydDWnEtzqSV4Msvv8SSJUtMKnZaApVID/Z0NpiIabaoU7A7BrT1RW6FzsXXRSwwuHGFAob3hdGPuhVqDd+u7yMzrSHiSOrWVjgie6+zdGjtzNC9wZMwh8pK4JFHgPR04MMPgZ9/tm9cNiWounO9SmOgTGusBk1L0FV8mUxHoAYIybmx+4zuhiUiAZzEAj3zV4HBaxkHQ7rMUPN/sSwLPPccMaufNQtITGz978geGGfyWgsyiYjXY6uSq2wuw7txOm/N/TmcreimomtRhdHGgW5y9T+bQq0xIH0XVisarHVHkorw9KAoAECkjwzn75YhvcS8WWpWaR0++CcRpVGTUVu7BD/99BNSUlMRFhGFhx5/Bm/9lQRlRjl6RXjhThFVunZGSY0SnYLdzZ6XWnU4iQW8R6UpGH9ua+CQ6KJMJkPX5nZnNMKcOXPM1r5///33Bo8NHToUV69ebZLXLqu1HAmHchmZ7PL6Bn+L4XxcKJ+IflmX0sswqVsQ0orTsf9mASZ0DYZEIrG5BTYhu8LgdSjo4KGS6vrGoO7OEoNBIxYK+GBIPzNE5dElQkPDPn3QtCTNeDUn5A5whmiZrLWDIZqBc7bjM9TX12PcuHEAiLBpU5fKWBZ44QUSCEVGEtN6AA3HJcsCN24AXbo06eubg5tUb7GqV5kNhow5Q5RMScMTurO0dJ/RXa+vTAKGYQx80fRfyzgYKuN2pOZ2tk2JVauAbdsAkQhYvx4QCgGh0MRnSk4mX2QzCnQ6MiZ5X8Oa1vVzEwgIObhKrkZVvRr+NlpvuRn51zUXfKzwgaRmq8YKznST66y3kSyuVvDG0QBQVCXnxzHFkduFfDBkyhQ8t6Iee67nwdNZgum9wyCTCnE2rQRylRYXs6owf/58XMksx4M/ncXPy4kUjptUhA8mdcbMNRcA6LL2/dqY5vMCQBrHX4rydbWowN1iZbLa2lq8++67GDBgAKKjo9GmTRuDn/8qiqoVFnlD4T46R11jdAgidxY1v8uvlEMsZFBQJUePMNKVd/BWod2u7+fvlgIA+rUx9EbIqSDvhWam9CecEC9ng5KDs17bsD5nqIir5/q5Sc2SHAs5casAoxpvU0Ot0fKdDvaZKd4boosF1Hnaw/brpdVqceLECZw4caJZ7Dh++w344w+yyG7eDHh6mjiothbo0QPo1o1ETS0AgYDhd7z647ZhMMSVKzi1aLp40CBI1UiGF9BtAHy58rYxT81cMJTLbYRCPJuXy5WYCLzyCvn9s8+A3r3NHPjcc0CHDuQLbUY4MiZ97iHTYnfnxvkw5uCITZAtoEaqlspUlJZhfAzd5LpKdcF6bkW9AbUitaimgbrz+bRSPsiL5IKhDL1g6GJ6KT7dextrTqfz7/Hh3sQVYumBZGj1OtQYhtA2tjzfHwHuThjczg8hns5IKSSBzthY8x2fd4vJa1KRRnNosczQs88+ixMnTuDxxx9HUFBQq3cBtATEQgE0LFBYJUeol2mDujDu8SwTwVBMgBsEDIlYA92dUFAlRxs/VyQXVCOvsh6xIe64mVuFzRezMHd4tE3vTaHW4EJ6GQDDqFqu0uB2Punuo6lH/dpvO39XFHKZI4CkVsvqVAj2MCy1UQdkPzfzO8vCRhZ3qVSKP//8k//dXsj1FjKHdIZaOTNU5EDw2FTX0hSSkoCXXiK/L1kC9Otn5kCZDPD3J14Kq1YBn37apO/DHDycxSivUxlMdsYO8sbdLnTc0lJuiRUZCJpBpTvseiMhx4oK7v3oBUMsyyKPK0OHWOHbZC/q6oAZMwhhfMwYwCJPlW5Ov/kGeOKJZqvLOjImaVaivE4JLScM21og3oX1dhk5u0kNuWr2orFrSa+XpUyar5mAiQZsHk66pT+nvB792/ry/7+dXwVjaFjgZEoJxncNQls/VwBAalE1VBotxEIBRrQPgFDAILmwGpmltYjwkWHOsLbYdiUHCTmV+O1sBp4eGIk7n4wDC0NO3fePdMebO65j88VsDGjrY3EjQc1j2/o2Egy1FGdo37592LNnDwYOHGjP0/+VCHCXIq+OZHTMBkPeusyQsf6Rk1iIaH9XpBTWoK2fDAVVcnhyu5C/E/Lx9MAoLPwzAb+cvIuZfSP4VnxrcCCxENVyNQLdndA5WDc7X8+phFrLwt9Nyg+wG7m6gR7t74rbBTopBC8XCdJL6xpE3TYFQ2YWd5FIhGnTpln9mcxBn9hoT0DjiCt1U4JmhgLtyAw11bU0hlwOPPwwWWxHjQIWLWrkCe+9Bzz6KHlSC8HDRQKU1hmkwWnmigYornplMpZl+XFLuaQ0O2sJfJmMW3gK9LKjAJCdTY7Tt16srFfxnUjNmRlauJBkhgIDgXXrGjH7fe454OOPgYQEQi4aPrxZ3pMjY9LLhVxjjZZFZb2qUc+r5gQt89uT3eF96RzMDDV2LX35TJr5zJCvG7mGxdWGQQFdu/Rj4uyyOoPxmq+3QdbHkduFGN81CG18ZfBwFqOyXoXEvCp0C/OEh4sYfaO8cTatFAcTCzF7SBv4uzvh9bHt8e5fifhsbxKi/V0xNMavwXkv3C3Flkvkhnr5vnZmPxMAJHGb+zZcQGYKLMsalPCshV0rgpeXF7xbyqr6HgEtM+VVmJ9IKWeoVqkxWe4awEXfdOdTUFUPAQNcy65AXJgnYgJcUVmvwtKDyTa9t43nMwEA03uHGShcX8ksB0Cc62lglphXyf892t/V4P+Und/GKOourmrYsm8MPhhyb17jUIUDKrH6z2/1Mllly1wvW/Dqq8D16yTh0+giCwADBwJPPtmsXBRjeJookwVyWfXychLQ0TKZWstCrtLyAQwNpPMrTE/2+qDZI1qSoKXvcG7Dk0luOej7Q+dwJTJfV4nDZp3msG0b8PPPZDFbt458Vxbh7U3Y1QCwbFmzvCdHIREJ+GyepQW+JeBuRdu4ObRUN5l+Zog104pnLjNEx2+VHsk7v1Ju4EAvFjL47pFuAHQ8uzGdAzClO4n8BQIGvSIIteNyRhn/vDGdyY24Iz6Xf18z+0VgYlww1FoWs9dexm9n0qHWo5qcvVOC5zdcgZYFpnYPscgXqqxX4UYuWa96R5mPP/Iq5aiWq21u5bErGPr444/x3nvvoa7OPJv8vwa6gzcXNQMk+0MDIv2MC0B2PTSYyCiphUjAILO0Hj3CyaDacD4T70/sDABYfz4Tx5KLrHpfR28X4kJ6GUQCBg/3DjP428V0wiOiryFXaZCq59XSLsANt/RSovS2ijIOhrgbyljzQR88Z8jd9DFqtRpbt27F1q1boVbbP1nw3A07MjsqPW+e1iyTsSyLomoaDNmeGdJoNDhz5gzOnDnTqP+PtdixA6CqGGvX6gIMG94U+WlmUP4PvX4A4OUFUL5uTg4RlqMTYbVcxd93tMvHtswQeW6WUTBEm1a5RlYA4Ds1mysrlJEBcB7VeP11kr2zCq+8QiJbgQBQNQ+519ExSa9za5Ooec5Qvf2ZIUfLZI3Nld56HDhz75NuAIwJ1BE8r1V3DyjURIGadkDWKDToG+UNN6mIXxM0WhaD25GsDsuyPG/okl4wNLlbMKQiAZLyq3A1qwIA6eRcNi0O93cJhFKjxYf/3MKAz4/i2bWXMemH03h09QVU1KkQF+aJJVNiLV6Xs3dKoNGyaOsns3iP0TJfY0r1xrBrRVi2bBkOHDiAgIAAdOnSBT169DD4+S+CZobyLWSGAKBbmCcAID6r3ODxhJwKfHmAZHyyy+t5ojOdqLdcykZssAdmDYgEALy8Kd4ga2MKlXUqvP93IgDgmUFRCNYbIGW1Spy+UwIAGNqeDOKk/CqexCaTCCERMga7GJrdiTJKQVJ+i7+FLIYuM2R6cVcoFJg+fTqmT59uYIRrK+hk6elieyqdZgQkIgFPxG0NlNUqedsGSwGmOcjlcgwaNAiDBg2CXN54lqMxZGUBzzxDfl+0iGgL2YS1a4H27YHt2x1+L40hwqcheZNhAM4xBzk5ZAKm2df8Sjn8XMk1pq3I+ZVysztqCv0ymVyl4YP9cG8XyOUAFeA3CIYoeboZ+EIqFZE6qKwkPK6PPrLhyTExpK7399+AAzY4luDomPS2okOqJeBYZqhpCNSNzZVOYiEvH2Euk+anlxnSH+s0mM+rqDegChRWKwzoH7cLahAdoFsHKLkZAD74O5EnSl9IL+MzPZ4uEkyMCwYArD2bwR8vEQnwwyM98PHkzvCRSVBUrcDhpEJcz6mEUMDgkT5h+GN2v0ZdD06mkvWMBmXmQBMRpjxCLcEuztADDzxgz9P+1Qj05MpkFjJDAMnC7L6ej3guMqboFuqJIA8nPrNEg4aLGWVoH+CG5MJqrDp1F2+M64Bb+VW4mF6GR1ddwI+P9sCgdr7GL4MahRpPr72E7LJ6BHs4Nai17r6eB5WGRWyIO99ufzFdF8UPiPY1GOAuEiEyS8nu17hMRtsZQ81M8kq1lp/EmrvsQwng9Ka2Bdnl5POFejm3KkmTLqw+Mold3CWGYRAdHc3/7gjUarLIVlQAffsCn3xix0nS04G0NFKGmTatWcWTovwatvUCQGgokJJC1ny5SsOLze26lov3JnTiPZkY6MYrzUaYAt9N5irlS2RuTiJ4uohx5w45xsWFVKEomjMz9N57wPnzhLC9ebMdMU1wcJO/J304Oib50k8rB0M878cOArW7kdhnc8LHVYIahRqltUq0MREb0LGtUGtRo1DzJTx/NynRzVJp4S4VoURNrndueT0ifVz4+yopvwox/m78OpZVVofSGgV8XKXoEeGFtecy+YagXdfy8GCPEDAMg1kDIrHtSg7+uZ6HucOjeTsNgYDB4/0jMaN3OM7fLUVmaS08XSToFemFII/G7xeVRosjSWQHYop3pA8aDLGwTYvOrmDo/ffft+dp/2oEc1+YfjeWKXQP9wQAxGdXGJCoBQIGY2MD8duZDADAjdxKeLuIUVKjxNQeoUgurMYvp+5ieq8wrH6yF55YcxHXsivw+K8XMKV7CB7vF4HYEA/UKTU4nlyEL/cnI7eiHu5OIvz6VO8Gapzbr+YCAKZ0D+Uf23tT59M2vL0/EnIqdJ/P0wl3imohEQkMMkwVdUpkcEFSlxCjPmIOtIwmFjI8GbK5wHM3fOwIhrjnhpkhwLcUaBbN344SGUBET1NTU5vkvXzwAXD2LOnIsmuRBYA5c4DPPwcuXgTOnQPM2OM0BWigTltsKSiROTsbiM+q4NP7R5KK8P7EzvBzlSK3oh6eLqQbLb9CbjEY0u8m0y+RMQzDB0ORkYZx3608kp63RO60BwcPkssLAKtXk9e1G1lZQGoqcN99TfHWeDg6Jr0pKbgRVePmhq613pEyWfOLR/rIJMgsrTN7vZwlQsgkQtQqNSiuVvDBEMMwCPd2QUphDbxdJSjhgs9b+VXoGuqJY8nFAEgwRKsc9Dzn75ZhfNcgDGvvD5Gex+VrWxMQ4eOC3pHeiA3xwNjOgdifWIClB5Ox6oleBu9LIhJgSIwfAMsBjTH23shHUbUCvq5SDIg2zysCgOQCHfUjwkcGa0el3cSJiooKrF69Gm+++SbKykjG4erVq8jNzbX3lPc0OnAR7p2iGpNGrBSdgt0hEQpQVqts0GI/vksQ/3tKYQ1PODuVUoyBbX2gVGvx4T+JcJOK8Mdz/fBw7zCwLLDjai6mrDiLdm/vQ9yHB/HKH9eQW1GPUC9nrHumLzoEGip2nk4tQUJ2BUQCBpO4tGVOeR0vzAgAw9r7Yd/1fP7/tF2yV4SXAQn7eg4p1UX6uJgtTfGLu5tTs2dcMo24G7aAZobCvJtXA6Yx8J1krUyePnJE1xG/ahUQFWXnifz9gZkzye/NTNKlfLbSWiUq9TrKnLi48swZneYWQHa0GSW1PIeCjuFcC+XuGoUa5dy5/d2kDfhCCQnkOH2tSY2W5TcXdEPUFCgoIB3xAPD888BDDzlwstOnSav9Y48BDpSqmwO+VrSLtwTcHcgMtRSBGtDXGjJ/vWh3s3EWlY7jAL2GmITsCsSF6Ta7SflVPJmZNp2cu0vKVB7O4gZEZ9rEAwCvjYmBgAEO3SrE0dsNDd3tAU0izOwXbrH5pbJOhTS9jVJPG+5Fu4Kh69evIyYmBl988QWWLl2KCq6ndefOnXjzzTftOeU9D393J/i5SaFlYUA6NoZUJETnEBKcXNXjDbEsiw6BbgYdWQIBA5lEiKSCaozpHAixkMGR20VYezYDTmIhPn+wK/6aOxD3dwnkb1KA7I5fvq8dDswfwkfvFFoti0/3JgEgTH66COy7ocsKdQh0g1QkwI083eegFhfGJbnr3ATfNdTwdfRB5dSbU1uFgi5MEfYEQxxpsLUzQ7Qj0Z62+qZCYSGJX1gWmD0bmD7dwRMuWED+3bULuHvX0bdnFjKpiC/FputlaSkv+OJFw2AIAHZczeHvAyommm+BRJ3IdawEeTjBSyYxGwzF6dmXpRRWo06pgatUhHa2ShebgVZLAqHCQiA2lkgFOYS+fQkzvrCw2UUYbYWOM3RvZIbsKXW1lAI1oAseLQkv0hKVcTNPuDfZUOhLGFzNKjeY4+8U1SDC2wVeLmI+A3Q2TXdfje4cAEDn+7f7ej5vQxXt74anB5Kd1Rvbb9il+aOP83dLcS27AhKhAI/1jbB47PGUImi0LE8G19dPagx2BUMLFy7ErFmzkJqaCicn3YQ+btw4nDx50p5T/itAy0Q3cy0Tm2nb4SmO8HU2rQRjvz2FN3fexORuutr9X9fy8FAvUsbafCkbr4/tAAD4dO9tvi0+LswTKx7rifj3RiP+3VG48cFoHHl1KBaOijFpVPfn5Wzcyq+Cm1TE84hYlsXfCXn8McM7+PPpUIB0Zl3OrAAADDEipyVwmaGuoaZLZACRBgDQIDBrDmSV0uyOI5mh1g2G6PhpH2DfoimXyzF+/HiMHz/eLrIqXWQLCoDOnYFvv7XrbRiic2eiAKjVAsuXN8EJzUNnB6DjvFGT1pIS4PwVw5359qu5PKGUir1Z6gql7bux3P3Ol1ctBEN04xMX5mGQWXUEX3wBHDpEOuX+/FPXMWc3xGKdoubXXzepQ6qjY5I2qOSasDJqSegI1LZndyhFoLRW2cAgtakR6E4GQ46F62UuGIr0JeNYX7i0pEYJAcPwvFAtC6QU1RhkgO4W1/JVgJEdA/jjANLZtv1qDn/sa2Pao42fDEXVCry29TrfuGMr5CoN3tp5AwDwYM9Qi1p3AHA4iXRhqzQsRALGYgu+MewKhi5duoTnn3++weMhISEoKCgw8Yz/BujkSEtH5nAfN1CO3i6CWqOFu5MYyYXVOHCzgC9bASQdn8fxGJLyq8CyLEZ3CoBSo8Ws3y7iht7rCAUMvGQSuDmJzRIUr2VX4D2uu2zeiGh+t3UipZif4BkAj/QOx/6buhJZuwBX1CjU8JZJ0CnIsOSWYEWgY80xTQFKGATs5Qy1fmaIZVn+u+hq5/XSaDTYu3cv9u7da1cb89KlhIfi7Axs2UKIwE0CKoX866+66KQZEOVLSrr6vCH96nzJ2UiD43Mr6nlJBnrr5JSblwWhwWpX7n6nr0M7yZI5GTD9YIgSTbtz1jqO4uxZ4N13ye8//AB07NgkpyUijC4uRFDq6NEmOqnjY7JdAFU1rmm00685Qb0XG3NkN4UgTycIBQwUai0Kq20PCG1BDHe9UgqrzR7TkaNP6HNoAF2W/3pOJfTj9hu5lYjTm5POpZWif1sSDMm4jOo5LjsU7OmMAW0NS2Vrz2bwQY+TWIhvpneDRCTA4aRCfPRPol3f6/dHU3G3mJS53+CSBeagVGtxXE+Spke4FypsIOTbFQw5OTmhysRkl5ycDD8/24hR/ybYkhnychGjok6FSxnliA3xQKcgdyg1WlzOLMeoTgH8sUeSivAKl8H5+lAqXhsTg96RXqiWqzFzzQWcSCk29zIGuFtcg9nrLkOp1uK+Dv54djCR4WdZFt8c1lHIxsYGwsdVguN6maGOnG/agLY+Bpyfgko5iqoVEAoYA2VrfdQrNfzOw1IwJJFI8Ntvv+G3336z20WbZoW8XMT8Ds5a1Cs1/ATXmpyhvEo5SmqUEAmYBoGntXDkWp4/D7z9Nvl9+XKS0GkyjBpFNG327wfcmqZUZAptuY6yuxwXQqsliswUdUnB0NQZjg/Km6AK5Fcyy81OztdpZijUA2W1Sv51uoZ64OZN8no+PoYNWlRKo0eEp2MfDkQ88pFHiGzTI48ATz3l8Cl18PICnn6a/N6E/C5H7+8IHxlEAgZ1Sk2jHbvNCVoKrahTGXDSrIFYKODFCzMsOLo3BmuuZQyX9UkprDabhaKZobvFtQYu9J2C3CEVCVBRp4JEzxYjPrMc3fRKZadSi9GfywxRG6SDt3TJDlqyEnFrRnZ5Pf7Rq0DEhXnim+ndwDDA2nOZWLInyaYM0bYrOVhxPA0A8PHk2EZdGS5llKFaroaEK5ENbudrtV4fYGcwNHnyZHz00UdQcYV6hmGQlZWFN954Aw8++KA9p/xXgAZDqUXVFknUIqEAIzqQgOfQLUIge7gPEULZcikbswbo6p5aFjiTWoI+kd6oV2nw1o6b+PnxXugR7onKehWe/PUiPt2bZKC4a4zd1/Mw6YczKK5WoH2AG5Y/0p1P1R9PLjYgTj87OAqbL2YZiA/e5Cw6BhvxhegEHxPgBmeJadJaYl4lNFpieRBkgQMjFosxa9YszJo1C2I7tU6MuRu2gGYC3KSiVtUYusFxsGIC3OxWKbb3WlZUEOcMtZpwhKiAX5OBYUjNbeDA5m2vp2UyLmOTlgbU1OgdoBVCcDuaF9bsHubBd+7llNdBKhKgsEphIEBKUaNQ84FTlxAPXOXK1dH+rvB0keD0aXJcnz66j1hRp+RJm90czAyxLNF8ysoC2rYFVq5shks5fz456b59wK1bTXJKR+9vsVDAf6+pFrIdzQ2ZVMTzOtMb6Rw2Bd7E1I7nUlhzLSO8XSARkRb5bDNZziAPJ7g5iaDWsrw8CkA6uuhapj+29tzIN8gMXUovQ7CnE3xdpXwQcySpiOdEje4cAD83Kb+WAMCyg8kGZubjuwbhvQmdAABrTqfj+fWXGzUjZ1kWf17KxqJtCWBZ4Mn+ERbNWykOJpJAjb6bwTF+OHbbumQCYGcwtHTpUhQXF8Pf3x/19fUYOnQooqOj4ebmhk/sEir5dyDAXQpf18ZJ1AD47M/BWwVgWRaT40IgEQlwu6AaMonIICtw+HYR5gxvAzepCJczy/H1oWRsmt0PM/sRrf9fTt7FwM+P4oO/E7Hnej5u5VXh/N1SrD+XgYnfn8a8TfGoUajRJ8ob65/pwwtyVctV+Gi3brLrHu6JrqGeWHkijX9sSDtf3MqvhkQo4OvAFPu5wdXfgkS6Pl+ouQ17dW31lk36TD6Xagxx7dGthetWcLCaAyxLgp/MTNJQ9MsvzRqv6F60GUAXzbslNdBoWVy92vAY5Y02GNiWZKmn9gjFd490g0jAoLJejTju2lNOnz4ScyvBskCwB1kELlNLG07F/cQJctzQobrnXM4gx0T6uPClaXuxYgWwcyeh9/zxh86EtknRti3wwAOAqytw82YzvIB9oKWyOyaC1JaEKVd2q59rQhS0OSASChDNdQAnF5gOHhmG4bugbxuVymjHo37G6E5RDWL8XfkmA5WWxcWMcozqRDxfXKUiKNRafoMvFgowoxfZ5FNHgOzyemy7ouMOAcBTA6Pw3SPduZJZEYZ9dQyrT901mXlLK67B079fwuLt18GywKN9w3lnBkuokquwg5OTUWlYhHg6I9zLBVeMxI8twS6dIXd3d5w+fRpHjx7F1atXodVq0aNHD4wcOdKe0/1rwDAMuoS441hyMW7mVqJnhPld4JAYX0hFAuSU1+N2QTU6BrljXGwg/rqWhy2Xc7B4bHvM+u0Sf/yH/yRh+SPd8Mzay9hwPgvRfq5Y8kAXDG7nh68PpiC5sBq/n83A73rKnhQSoQCzh0RhwcgYiLi0J8uyeHPHDX6XywB4d0In/H0tz6Ad05nLTkyIC+LbNQFCXDvMDfoJcTpJAGNYS55Wq9U4cOAAAGDMmDEQiWwfeplllLthe5lLxxdq3bZ6Ggx1cSAY0mg0uHGDkAq7dOkCobDxDNNPPxGBaLrIejRnLFZURHr2r18n/ftNHHVF+MjgKhWhRqFGSmE14uMbRgwFBYC8mGQQM0rrIBUJ0S7ADUn5VQjzdsHFjHKcSi3GM4MM9QSMydNXMolsSM9IL2i1AO0P0Q+GaOmgMTG4xhAfr6Ndffkl0KuX5eMdwrffkkiLutw6CHvGpDGi/d0AFCC1sHWDoSgfGS6ml9ll9hnpY7qd3RZYO1e2DyR2SimF1Rjd2XTmpH2gGy5llDcgUROLpnToizSzAH4+lYbB7XxxIJHM/adSSjCxazA2X8zmMz7/JORhag/S+PNI33CsPJHGl9EAkh2a0DWIlxoAgElxwYjwdsEbO24gKb8KS/Yk4bN9t9EzwguB7k5gGOBGTiVfkhYLGbw4LBrz72tnlVzLpgtZqFaoIRUJoFBr8Xj/CJy6U2xTWc6uYIhixIgRGDFihCOn+NeASo7HhRFhqovpZXiSs84wBReJCIPb+eFwUiF2xeeiY5A7HukTjr+u5WHH1RzMvy8aA6N9cOYOIaSll9QitagGr46KwdKDKfjgn1uoV2nx4rC2GN0pAMeTi3HwVgES86qQU05I136uUozqFICpPUIb7Eg3nM/Ebj0doeeGtEG3UE8s+COef6xTkBv2c4P+yf6Gn+XY7SLUKjUI8XRGdwuBjrXBkEKhwIQJEwAANTU1dgVDWVxAE+FtR2aorPU7yViW5aUK4ixIFTQGuVyO7t27AyDXUiazfD2uXdMtsl98AfTubfdLWweGIW6icjnRthk8uElPLxQwiAvzwJk7pbiaVY6rVxsGQwwD3L0uA0J1Qqmdg92RlF/F65RcuFsGhVpjoFvCk9tDPaBUa/luyp4RXrh5EygrA2QyoGdPcrxao+U7WMaYWZCsQXU1MGMGoFQCkyYR6lWzQt9htglg65g0hXb+lETdemUyQKdybk+pqynKZNbOldRZINlC8NieJ1EbBUNmNvJrz2bizfs78sHQydRivD2+I/zdpCjifM5OpZagvFYJL5kEIZ7OmNE7DBsvZPEblJIaJT7bdxufTulicO64ME/sfmkQ/rycjTWn03GnqMbAFQEg9/aQdr54Z0InXvuuMchVGt4ehPqszegVhnd22Zb1tFt08ciRI5gwYQLatm2L6OhoTJgwAYcPH7b3dPc87nJtvEO43d/J1GID911TmMEZp/55ORtyFTG/6xnhBYVai59PpuPNcYYtIl/su42xsYGYO7wt+f/+2/jon1tQarQY3sEfn03tir/nDcLVd0fh6KvDsOX5/nh2cBuDQIhlWfx8Ig3v/qVjlLb1k2HBqBj8djYDmXoGfYPa+UKp0SIuzNOgVgyAD6QmdA0yW1YqqVEgp7weDONYpsNaZHETjENt9a2YGcosrUOVXA2JUMBPZPaAYRgEBwcjODi40ZIfXWQVCmDCBEIXaXb4+RE3e6DZRBhp11Z8VgUGDCBBHtXhkUiIh9dX7+syQwAQG0wWhoLKevi6SlGv0vASFgAJbOj/Y0M8cDOvEkq1Fl4uYrTxlfElsgEDdErdlzLKUVarhKeLGH1saOPVB8sCL75IhKHDwkgzXotVclkWOHUKqHespd2WMWkO90pHGS112ZPdoSXczNK6Zm+vbx/IdZSZKZMBQEeuTGYcDAW4O/Gdc/qoU2qQX1HPGx3fKapBYZUc47uS6oCbVAi1lsWeG7qN9rwR0ZCIBLwRMkAyNWfvNCxDEy+ycBxeOBQnFg3DFw92wbsTOuHNcR2wcmZPxL83Cr891cfqQAgAdsbnorhawVtvTO4WDLlaY0D2tgZ2BUM//PADxo4dCzc3N7zyyit4+eWX4e7ujvvvvx8//PCDPae855HIkYzjQj3h5SJGtVzNO/Oaw/D2fgjycEJ5nQr7buaDYRi+c2zjhUz4u0vxUE+dXYaWBR748SzmDmuLN8aRNsJfz6Rj4ven+QyMJVTLVXhr5w18tu82/5irRIjlD3dHdlkdPt2j4w8NaOuDfxLIgH6in6GQVa1CjSOccuiEruY9jc5wgz3az9Xm7i5bUVmn4tWno/1ttzugPmyRvrbvWJsKtEupY7C7XZ5kFC4uLsjNzUVubi5cLPTF00U2JYV4d/3+ewsusjTq+vtvsso3MWjXVnxWOT74AFi8mGRTvLxIdiUlRWeLkVFSC7lKg85c6etWfjUGcZL+p/V4Q5svZSOnvB4ezmL0jPDCFY4L1DPCCwzDgKtcYPhw3fs4wPHqRnYM4EvU1uDWLWDePBKk/vorsHEjIBQSSxQfy24DTYtp04AhQ8gbcADWjklLiPKVQcAQBeeiattb25sKOh2rWpuDshBPZ4i49nqqNN9coBuqtOIaA+6PwTFcMJRfKW9AXPY3o9nzV0KuAadx7418XhKmWkEah9aeTeevTZCHMx7n1hD9AGvR9gSDAMkYET4yzOgdjmcGReH5oW0xNjbQ5nWkTqnGiuPEH4degyf6R2LNqXSoNKzFqoYx7JqRP/vsM3zzzTfYvHkzXn75Zbz88svYtGkTvvnmG3xK9f3/Y6A6IkIBw2eHGmvbEwkFeKQPSUdvOJ8FgHRsdQ/3hEKtxS8n7uLd8Z0MurBqFGr0//wYnh0UhZUze8LXVYKUwho88OMZTF1xBruv5xl0smm1LLJK6/DNoRQM/PwoNl/M5v/m7iTCxtn90D7QDS9vjufrwwKGlAzyK+UI9nDio36Kw0mFkKu0iPRxQWyIeQYnDaYcKQ9Yi0sZZWBZor7dmPCWMYqrFUgvqQXDNJ0OjD2gnUldzXi8NTX0F9k//mjhRbZDB5KKYtkmUnU0BO3aSiuu5YmYDKPj2Vy+TEnQEqi1LBLzqtAxyB0MQ+xQunEE0j038lFSo0B5rRLLDhIBoVdHx8DNScxniXpGeKO2ltCfAPKxAJKFpR0sY228B9avB378kbzfefPIY0uWkEa8FgX1kfv6a6IZ0IqQioSI4LIyrUmijuB4P9VydaOdT8YQCQV85rq5SdQhns6QSUimxlxZzt1JzJcfLxgps9PAI8BoPl0yOdZA/mX71Vx0C/NEqJdunUotqjWQfXlxWFu4SISoqFPxSty55XKy7jRjhuyTPUnILquHVCSAlgUGRvsg1MsZmy6S9fbRvtaXg+0KhqqqqjB27NgGj48ePdqk/tB/AafvlPCR8PD2hF2vr9VjDg/3DoNIwOBKZjmS8qsMskMbLmSiTqXG0mlxBs+prFdhwOdHMbKjPw4tGMqrVl/NqsC8TfHo+N5+dHn/AEYuO47YDw5gyFfHsPxIqoFqqqeLGJtm90OXEA+8u+smkvTSpHOGteW9Xj6cHNugxXvTBTKQJnQ1n/KurFPhRAoJBid1M589aipczCC15b5tbC9FUBJs+wC3RrUqmgssy/JdGMYSBs2BGzdaeZEFdESl334jZJsmhLdMwpNV47N1pS79YIhhGJ6blZBdAVepCFHcYuvnKuXNLqeuOIu3dt5ARZ0KHQLd8GifcLAsy3eS9Yr0wuHDhAIVGUmsMQDCL8qrlMNFImxgY2MJGg2wYQP5/eZNct6ePUl2q8Xx7LNEEyopCXzqqxVBs76t2V7vJBYihDOrtos3REnUDvCGrAHDMHzmx1xHGQAMjCZjU99OAwCWTCEDubxeZUAfOJ5czAsHA8SnLCm/GlP1TL8BYNVJne2Or6sUC0bGAIABfeTo7SJ8sifJps9lLY7dLsJGbq1SqLWQCAX4aHIs1p/LRJ1Sgw6BbujR3N5kkyZNws6dOxs8/tdff2HixIn2nPKeR1G1gmfkD4nxA8OQQVLQiECYv7sT7+Oy8QIxsxsa44fekV6Qq7R4d1ciBrT14btaKHG+qFqB/p8fhauUlLl2zR0ANz37jWqFGneKa1Gn1EDIMHxXGABM7RGCgwuGoEOgG17bloA/LumyRT3CPXE2rRRqLYsxnQMMdgAAcPZOCS6kl0EiFFiMqg8kFkClYdE+wM0h/ou1oLuavlG2pzcuppNFrXekfZyOpsDtgmrkVpAdjC0LpynI5XJMmzYN06ZNM2l9UFNDdITkcmDs2FZaZAFg2DCge3fCR1m5sslP3z1cxxuioOTwS1yjJiX2UxPVThxvKLOsDltf6I9wbxdkldVh302S4Xl/YmeIhALEZ1egpEYBZ7EQXUI88Pff5HyTJulKjfu55wxv72+TZtTx40COYfcxrlwBPviABEotCnd3Yk4HOMTvamxMWgsdibq12+tpV5jt4omOtObbCmrpY0mJmqpIn0kz5PC0D3BDuLcLlGoteumJhR5ILET7AFc+IASIv99j/SKgX90/k1aKxDydAPHTg6LQPdwT9SotQjx1WaRfz6Tj9zPpdn0+cyirVWLx9usAAGeOKzRneFsEezjzHdcvDmsLpcb6rJRdwVDHjh3xySefYPz48ViyZAmWLFmCCRMm4JNPPkHnzp3x3Xff8T//JdBMkLdMwu84j1uhcDmTU+rcdiUHRVVyMAyDT6Z0gVjI4HBSIfbdLMCiMe3RM8ILWhbgBDRRXK1Alw8OIimvEt3CvPDH8/14PQd9aFgW9SoNxEIGvz7ZC19P7wYXiQjzNsfz2gsA4OcqwZjOgbiaVQGZRIgPJhnqN7Asi2WHUgAAj/QJQ7CnebLxP9eJ0uhEC233TYUahRo3OVNZe0iql7nMUK/I1iuRHdbLCrlIHGrihEajwbZt27Bt27YG1gcsC7zwAnD7NhASAqxbBwjspyc5BoYB3noLeO014PHHm/z0dNcXr8eno5mhmzdJDEYbAyjnjiqpJ+ZVoY2fK3bMGcDrDk3oGsQvHDu5+2ZsbCAkQiF27ybnnTSJ/KvSaHkvpnFdbCuRrVtn+vGffyYZvRbHyy+TWuqRI6T10A5YGpO2QJ9E3ZrQkahtfx9RfEeZ/SrU1oJuRI1b5/XRL8oHAoYoUetv3hmG4TfDWugqAAVVcmSU1hnwWXddy4OPTILJ3QyzQ6tP6YIcoYDBVw91hUQkQG6FnLfwAIAP/rmFbw6lNAkxvqxWiSd+vYDiagXcnESoV2nR1k+GF4e1xfdHU1Faq0SolzPGdwmC0oaxaNc0uWbNGnh5eeHWrVtYs2YN1qxZg8TERHh6emLNmjX45ptv8M033+DbZuAKtCb0Ax9bSmX92/qgR7gn5Cotvj9KyF4xAW54cSjpGnv/70QoVFr8+mRvtA9wg4YFLykuV2sx7rvTWLz9OvIq6vHFQ13Nvs6sAZEY2t4ff1zMwuAvjvI7V4B4yywe2x6f7yfk6kVj2iPIwzDYOZlagiuZ5ZCKBJgzPNrs65TUKHjytCWCtT4kEgl++OEH/PDDDzbL9V/OKINGyyLM29ligGYKtQo1ErlAqjUzQ4eSSDBkLGxpDyxdy9WrDcm4re6O89BDwFdfkTapJgbNDF3LKuc7d0JDAX9/kmFJSNBJGGSW1qG8Vslz4Kgzva+rFFue74/fn+qNZdNJuVqp1mI3F+xP6R6Cs2eJdJK7u04l4EhSIQqrFPB1lWB0J+uDodpaYOvWho9PnEgCoW7dbL0KTYCICPI9AbqWPBvhyP2tj3b+ukxHa3aU8QGNPZkhB4UXbbmWtIv3qgV7GQ8XMa+bde6uYXZoNBcMnUgphp+r7rUOJxVieu8wvlJRUqPAqdQSPDvYUJfr72u5vGwJQLSi5o8kNBBjUvfyI6lYtC3BLNnbGhRWyTHj53O4mVsFJ5EA1XI1BAzw6ZQuuJlbyQsKvzO+I0RCgU2vZVcwlJ6ebtXP3bt3Gz/ZvwhXMst5KfLhHcgqc/pOSaMXnGEYLBpDusM2X8ziPbbmDI9GGz8ZiqsV+GxfEjxcxFj7dB+EeDpDqWHhKtVF1n9eysbsdVfw6tYERPs17Ijy52TRRyw9hjd23EC5nrqnr6sEXz3UFW/uuAmWBZ7oH9FAI4llWXzNEUhn9otAgLt5a429N/KhZYkWi7XdWWKxGHPnzsXcuXNtluu/wGlR2FMii8+qgEZLFEltDaSaCgWVclzPqQTDwKAWby/MXcuEBJ0p+SefNLm8zz2H9oFucBILUCVX89IX+iTqS5fIQtCGG6MJORV8ZiijtA5FXLePk1iIYe39eb2hEynFKK9Twc9NigFtfXh+z5QppG0fANafJyXvGb3DbOoM3LTJsIvd2ZlkhP76iwRxrQbK77p8GVDZ5skFOHZ/66NdgCskQuKb1RKZFXNwpL2ePjezzL72eluuZVyoJ5zFQpTWKvmOWVOgGc+zdwx5Qz31fDSH6JXvN57PQrCHE4a11w3K7Vdz0DHI3YDzqGGBz/W6lwHgucFtMCTGDyoTn33blVxM/vEMz+O0BQnZFZi28hxSi2rgKhXxQo+fT+2K2BAPLPwzAVoWmNo9BGNjScVC0dzB0AkquPH/CJE+LlBrWT4jEhvsAT83KWoUapy0wky1f1sfDG7nC7WWxbdHSCnKSSzEZ5ww1R+XsrH1cjYCPZyw/pk+CPN2Ro1CA5EAvMcSAKg1LO4UN7xBi6oV+O2MoY4QANzfJRAfTorF/D8ToNaymNI9BB9M7NyAGH0gsRAJOZVwFgvxApexMgdqxjfRyqyQo9DxhWzP7FziiNe9W7NExmWFuoV52twJZy0qK8nmXqEA7r8fWLSoWV7Gfpw4QdqwmlCLTCwUoGuIJwAYyFz06UP+PXeO/EtLZQnZlfCWSfjy2s8nTW/WdsWTEtmkuGBo1AL8+Sd5nFb60oprcOZOKRgGfLeoNWBZnRM9QFzvr10jRvKt6BBD0KcPcbG/fl0notQKkIqEfFs3vXdbA/rCi7ZmqII9nSAWMlCqtcirdEy/qTFIRAK+/H/WiBOkjwFtdSRq/c8jEgr4DZqzXvk+s6wO13Mq8XBvXUb3wM0CFFbJG6i277mRbyCeKBIK8OOj3XkrEGMk5VfhwZ/OYeGWa7wgqiXkVtRj/h/xmPzjGWSV1cHdScS37L83oROm9w7Dp3uTkFlah2APJ7yvR/9QqZuZMzRq1CiEh4fjjTfe4CXY/+sYyEXDtCwmEDCYzGkvbL2SbfZ5+nhtdHsARCSKEt76tvHBy1x32ds7b+JyRhna+Lnin3mDMCTGD2otiW5jg9350pk18HOVYO1TvSESCDB301Uo1VqM6hSArx7q2kDePL+yHm/tJN/jUwMjLS7YN3MrcSmjHAyDBi35lqDRaHD8+HEcP37cJk5BnVLNW1j0s+CRZg46vlDrlcgON2GJDAC0Wi1SU1ORmpoKrVbLm3veuUOEhVuVJ2QOO3YAe/YAS5c26Wm7c8TPC3d1kzHNiJ08SQIQygm6xnWdvcJ1vWw4n4miakOyb5VcxZc0p3QPwZ49xEU+JITwwQGyawaA+zr4I9TLek2dTz8FCsmp8eSTJHMVE2P105sfw4eT+qodMB6TjoDeq1TnqTUQ5uUCAUNECG3VPDJsr7c9u2XrXEkDnXNG3WL66B3pBbGQQW5FPW94TUF5Q8dTiuGjJ+D75+VsjOjgz+sRqbQs1pxOx9AYP564TfHR7kSDLJibkxhrZvU2aPoxxo74XAz96jjGLT+F5YdTcSq1GFezypFcUI3LGWVYcfwOZv12ESOWHseua2QD7uks5rumXx0Vg6cHRWHThSy+q+yraXEGRtyKRoSR9WHXlJmXl4fFixfj1KlTiIuLQ9euXfHll18ix7hF4j+Ewe1IWex4cjEfWU/jTOqOJBWhpKbxGyYuzBNjOweCZYGvDiTzj8+/rx3GxQZCqdHihQ1XkFtRD08XCX6b1RvzOO7OzbwqaLQshsX4omuoO9ydRNAPaQQM0RUa3SkA217oj7nDo7HwzwT8nZAHAQM8P7QNfni0ewNhOLVGi5c3x6OM41PQwMwcvuEI1pPigm0qO8nlcgwfPhzDhw+3qdskPqsCai2LYA8nhNqoHq3SaPlOo9biC9Uq1HxqenSnpgmG6uvrERMTg5iYGNTX1+O773S+Y1u3trCekLV45RUSoR040KTmoIOjyX15KlV3X/brR65Fbi5w9y7QjeMWJeRUgmVZDNHT+lp53DA7tO9GPpRqLdr5u6JzsDtfInvsMRIn1Cs12MZtfh4zEiu1hIsXgfffJ7+/9BIRwGzFBIxlKBSEgW8DjMekI+jFWUVcsqOU0lSQiAR8oGtPqSyG4z7pd1tZC1vnSloCO3+31Kymj4tExGusGbfYD2nnBycx8dGk4ooACVZUGpZ3UgDIBqKyXoVFY9obnONmbhW2XTVc/0M8nfHjYz0aff9J+VX45nAKHl9zEVNXnMWYb0/ioZXn8OX+ZBxPLoZCrYW/uxQCBqioV8HTRYyvp8dh3ohorDmdzm/kXxzWlpcRoGh2zpCvry/mzZuHM2fOIC0tDTNmzMC6desQGRn5n/Uq6xXhBSexAAVVcp653z7QDXFhnlBrWT613hheHR0DoYDBoVuF2H+TiBYKBAyWTY9DpyB3lNQo8ezay6ioU0IoYPDamPb4a+5ADI3xg4YFjqeU4HpOFWRSESZ1C8bb4zvi/YmdsHhsB8waEInSWiUeWnkOH/xzC6W1SsQEuGLnnIF4c1xHAw8mimWHUnApoxxuUhF+fLSHxRbh+KxyHLldBAEDXiupucGXyNr42CzzfyuvCnVKDTycdcJjLY2TKcVQarSI8HGxSznbHMRiDwAeWLiQNGsBpDOalojuObRpQ0g3gN0kXVPoFekFZ7HQQPrCxUXXYn/yJNAxyA1iIYOyWiVnH8NgPpcd2nghk+cOabUstl8h9/GUHiEoK2P4LrKZM8m//yTkoUquRpi3M4a2s46dXlpKhJ41GkKUXr68iT58c+DKFUKonjDB5j5/Dw8PeDSBAzA1wL5bXItSKzaZzQXKh7xrgpbQGKgr/FUbXNPtRWywO9ykIlTJ1biVZ17nj2+xN7LJcJYIMYjbVFDBRIAE/gcSCzC9Vxhfxq1TavD72Qzc19G/gV7al/tvo0ahhlKtxa74XLLxiPFDpyCdcC8D4OmBkZjcLdigNCxgABeJEG5OIjiJBXAWCxHs4QQZx5stqlJAyxLax6EFQzG1Ryh+PHYHH+8mrgrPD22DxUYBGgComjsY0kdUVBTeeOMNfP755+jSpct/lk/kJBaiP1emoeJ5ADC9F2k13HIp26racrsANzw/pA0A4J1dN1HOKZy6SERY9WQv+LpKkJRfhYdWnkNuBdlhxYV5Yu3TfbDthf4YEuMHsZBBfqUcf13Lwyd7kvDhP7fw+b7b+O7oHV41t3u4J96b0An/vDSoge8YxbHbRfjpOGHff/5gV1791Ry+OUxsFab2COWtDpob57nyhz0t9ZRz0CvCyyrn4+bAtitktzSmc6Ddnk3GqKuTgWUrAFTgl19kUKuBBx/UiSzes6Ak3Q0bdPUiB+EkFqIfJ8Spr4hLXeVPnCA8FDoh0zb8Ie180YPLDv10Ig3Hkosw/vvTvLjn5G4hWL2acIl79AC6dCHB0q+cXspjfSOsGlNaLfDEE0BWFhAdTZSnW50fZAkdOhA/k7Q08OJKVkAmk6GiogIVFRV2mbTqw0sm4TcO+t5xLY3OnCYVNVe2BTSgu5JZ0exdcSKhgBejNe4W0wfNmpxLK21A7B7DaeH9nZCH9gG6uf2PS1kI83bBfR10We3fzmSgVqnBuxM6GVQnSmqUeP+vm3h23WXM33KN5+RN6R4CAHCTisACWHsuE+5OYmx5rj8e6BYMb5kEWpYEWtVyNeQqLepVGuRVylGr0MDNSYQHugVj7dN9sOKxntCyLBZsuYalB0mVYsHIGLwxtoPJ+dUW0UyHgqEzZ85gzpw5CAoKwqOPPorOnTtjN91K/QdxfxfCkdlxNYcf4BPjgiEVCZBaVMM7XDeGV0a2Qzt/V5TUKPHhPzpD1RBPZ2ya3Q9BHk64U1SDB1ecNVAW7RXpjXVP98H198dg0+y+eIUrr03oGoQHe4TikT7h+GBiJ5x7cwR2zhmIpwdFmcwGAcD+m/l4YcMVAKS7rDH+z+WMMpxMKYZIwODlES2TFcqvrOdT5YOM0p/WgHahtRZfKKe8Dkc5OQb9VLOj2LABUBtZ/iQmEs7QPY0BA0gNS6kkXhRNhKHUPNlMMAToiS9ywZB+dui3Mxl46rdLSMqvgptUhE+ndEGAqzP/Fl9+mfx7ILEAtwuq4SYV4ZHe1hGnP/0U2LsXcHICtm0DmiBx0ryQyYhQFUAsOloJtOGhNYMh6mtlT3YnNsQDYiHDm1k3Nyif0rgEpo9uYZ5wcxKhtFbZgJx+f5cguEpFyCitwwy9sX3+bhmyy+r4dnmAOCRsupCJmAA3zDQqFW+/mgsvTuX/8323sf1KDsbGBuLjyZ1x4a37MLlbMDRaFuvPZ+KZtZcQG+KBM68Px8EFQ/DhpM54amAknh/SBvOGR2PhqBise7oPrrwzCt8+3B19o7zx47E7GL70OHZylZg3x3XAKyPbmQyEFGoNtlzKsvoa2hUMvfXWW4iKisKIESOQmZmJb7/9FgUFBdiwYQPGjRtnzyn/Fbi/SxBcJEJklNbxN6m7kxjjYonOyNbL1hGppSIhvpoWBwFDxKz0M00xAW7Y/uIAtPN3RUGVHA+tPGuw4wVIWnNAW18sGBWDn2b2xA+P9sCy6XH4bGoXzBoY1UA/yBhrTqfjxY1XoVBrMaKDP94e37HR9/w1xxWa1isU4T72GTHaih1Xc8GyJCtkq1N9tVzFX7chMc1vf2EKf1zMBssSU1xbXJgtgWWBNWsaPn77NjBqFHDPu+HQ7NCKFUBd07ROU6/ASxllqOW6TAYMIByfjAySlYkzCoYAIoBJO8skIgFmD47CycXD8WjfcOzaBWRnE52mGTNIVmj5EZIZfWpQlFW2LocOAe+9R37/6SfSPfavwLx5hNB0+jQhO7UCekWQDUxrdpRRHavUohpUyW2TG3ASC3kZh5YI6CiJ+mJ6GVRmSMMSkYD30KOiuRQyqQgPdCd8oSuZ5QaCiX9ezkZsiAefPQKAVafSIVdpsGBUDNykhhvuQ4kFfMXk9e3XkVZcg8f7R8JFKsLyh7tj8+x+6BTkjmq5Gkv2JKH7x4fw5f7bkIgEeHpgFOaOiMZL90XjpRHRaBfgin8S8vDa1gQM+fIYvjqQjDqlBt3CPLFr7kA8b6HzefnhVBRVW+8tZ1cwdPz4cbz22mvIzc3Fnj178Oijj9rtVPxvgkwq4rNDtPwBANM5IvXf1wxNVC2hW5gnZnPlMuKLpPvSgj2dse2FAegd6YVquRpP/noRr/wRj2IHnZw1WhYf/pOIj3ffAssCj/UNxy+P9zSbPaI4nVqCs2mlEAsZzGuhrBDLstjOXWN9JVRrsf9mAZRqLaL9XQ1q1i0FlUbL26AY754cwaVLQGKiAsAs7oeMiVGjyNrlbuNHZVkWtQq1XXoodmHKFGDMGJIysbNzyRhRvjKEeTtDpWFxnuOYubmR8hZAeEM0M3Q9pxKV9dTYlcGKx3rinfEdcfy1YXh7fCd4cd00lNfzwgskq6OfFXpmoGFrsSlkZwOPPEKC19mzgVmzmuSjtgyCg8mbB6y26FAoFJg1axZmzZoFhcJxng9tF7+RWwm5qqU9Sgj83KQI83YGyxoG0daiBxdMtQRvqEOgG7xcxKhTavjuW1OYwBGk990oMPAQA4BH+5B56kBiAR7vr5uzfjuTgXolCXwoiqsV+P1sBrxlEiwcbcjVqVNpkZRfjUldg6DWspiz8arB9evf1gf/vDQIXzzYBSGezpCrtDicVIQ3d9zA4C+PoesHB9H+nf2IenMv+n92FK9uTSDuDdUKBLhL8c2MOOx4cQB/T5vCseQiXoDRWtgVDJ09exZz586Fr2/r7LhbE3Rh3n09H3VKsgvt14Y45VYr1NifmG/1uRaMjOFFF+dtijeI6D1cxFj/TF/MGhAJAQP8dS0PI5Ydx4bzmQ0GcWPQaln8nZCHUd+c4A1a3xjXAUseiG3QXWaMslolXtuaAIDwJEJaSLgwPrsCd0tq4SwW8gGoLfib00KaHGfebLY5cehWIUpqFPBzkzbwf3MEhHusBrAWwFo4O6uxYgVp0gptJGYsrJJj/bkMPPHrRQz76hi6f3QQ0W/vQ+f3D6D7x4cw67eL+P5IKs7eKTG7u3QYIhGwfz8R15E2jeYSwzB8qcwcbyjKV4b2AW5QarS8ThYABHo44dnBbQw6Iy9fJoGlSAS8+KJRVmhgZKNZIYWCcLhKS0lA9q90JaIZvG3bSHqtEajVaqxduxZr166F2riGawfCvV3g5yaFSsNaXNybGz1M+N9Z/VxO9qElMkMCAcOXys5Z1BvygbdMgtJaJc4Zudh3CnZHN64hyFWq61auUaix8UImOgS6G9ApvjuSiryKejzRP5Ln01LcyK2Et6sUg9v5ok6pwZO/XTTQQRIKGMzoHY7Trw/H3pcH49VRMegW5gljGp6AIVndF4a2xbqn++DEouGY0j3UIl/v8K1CPL/uCrQs0CHIet9Mu02SUlJScPz4cRQVFTXQlXiP5ob/g+gT6Y0wb2dkl9XjQGIB/8VM6xmGbw6n4LczGXigW4hVC7CTWIjvH+mOaSvP4fSdErz31018OqUL/1wnMfEPm9ojBG/vvIkbuZV4Z9dNfHMoBeO7BmFyt2D0CPcy7yxfr8Kp1GJ8dySVVyf1dBHj48mxmBjXuGCiVsvita0JKKiSo62frEE7pS0Qi8X48ssv+d8bA828jYsNhKsFrQpTKKqW8x0Tk7q1jDCkMTZQheJeYRA3EnBai5IScAKAYgBfIjwc2LdPjE6dzD9Hodbgz0vZ2BGfa3FCr6xX4XhyMa+jFe7tgoWjYjApLrjVyOe2YEg7P2w4n2XAGxo2jMgaEZ1HBtN6hWLJniRsvZxtNlun0QBz55LfH34YCAoiu2iaFXp6UONZoVdeIRk8b28ieeBkXsz93kVcHDByJLl4e/cCc+ZYPNzW+7sxMAyDXhFe2HezAJczy+xqoGgKdA/zxF/X8hBvR3aHkqhvF1SjVqGGzMp5zN5rOaCtD/bdLMDZtFKzGXyxUIBxsYHYeCEL/yTk8ZIxFI/2Dce17ApsuZyNYe19cSyZzKM/HruDmf0isGBkO+y9kQ+WIzx/vPsWfprZE98+3A33Lz+F0lpdheP3sxl4dXQMahRqxGdV4PE1F/HBxE6Y2S+CX7MYhkGnYHd0CnbHS/e1A8uyUGq0UKq1UKi1cBYLrb5uAKkIvLT5KlQaFuNiAxHiAhyy8rl2BUOrVq3Ciy++CF9fXwQGGnbJMAzTLMFQeXk5Xn75ZfzNdThMmjQJ33//PTw9Pc0+Z9asWVi7dq3BY3379sX58+ftfh8CAYOHepDAZ9uVHEzpTrbjM/uFY+WJNFzPqcTJ1BJ+p9oYOgd74LuHu+O59Zex+WI2In1kDeqgXUNJfXT9uQz8cOwOSmqUWHcuE+vOZSLYwwlt/V3hLZPARyaFq5MIaUU1uJlXiUw9OXs3JxFmD26DpwZGws3Juhtszel0HL1dBIlIgB8e7WHToDSGRCLBIitlkeUqDb97t6dEtuc6sQvpFubZaIdccyCtuAZn00ohYIBH+lqvUGwJLEsqTGTfIcFbby3CRx+ZrzRpOLmHrw+l8F2JAOkyHNs5EN3DveDpIoaHsxgyKRkzV7PKcTWrAmfulCCrrA7zt1zDyhNpWDSmPUZ08G/aDFt9PWmtuniRGKo5iAHRvhAJGGSU1iGjpBaRvjIMG0bsMzIygJQU4IHuIfh8320k5FQipbCaN7nUx/Ll5C15eABffNEwK+TpYtkr6vffib0GwxCPuMhIhz9a6+Grr4g2VFfzfogUttzf1qJXpDcJhlpRfLEHF9DEZ5OuMFvugSAPZwR5OCG/Uo6EnAqe19MY7L2W/bnzX8ksh1ylMSuTMjEuGBsvZGH/zQJ8/ECsAU1iYtdgfLz7FrLL6rFwZAwfDJXXqbD5YhaeGhiFyXHBvAjivpsFOJFSjKExflg6PQ5P/XbJ4LWWHUzBO+M7IsLbBbuu5eHdvxJxK78aH07qbNLGhmEYSEVCSEVCWJ/TIdh7Ix8vb46HWstiQtcgfDOjG5bsumL18+3asi5ZsgSffPIJCgoKcO3aNcTHx/M/V69eteeUjeLRRx/FtWvXsH//fuzfvx/Xrl3D41Y4YY8dOxb5+fn8z969ex1+L1N7kFbBs2mlyCknAYePqxSPcQvf90dSbWqnHNkpAO+MJ9v7z/bd5k0i9SEUMJg1MArn37wPa5/ug6k9QiCTCJFXKcep1BL8dS0Pv55Jx3dHUrHnRj4fCIV6OeOlEdE4vXgEXr6vndWBUHxWOb7gTF3fn9gJHVuQd3PwViGq5WqEeDrbpTr9F3ejPtBKWaFNnBrq8Pb+TVZWXLGClG4AQqD+5BPzgdCx20W4f/kpvLo1AbkV9fB3k+LdCZ1w/s37sHMOIR32ifJGTIAbAtyd4CoVIS7ME08NjML3j3TH6deHY9GY9nBzEuF2QTWeWXsZL264ypOTmwSlpSQFs2YN0bZxEK5SEb8TP5lKskMyGTBkCPn7/v3ElHVEB+K1ZKrZIS0NeOcd8vvSpYQ6s++m9VmhK1d0jVgffgiMHevwx2pddOtmVSDUXKAdZZczylqO02aEDoHukIqIV5o94ot8MGVHmc1WtPWTIcBdCoVaa9Gao3ekNwLcpaiSq3EqpaHm0IM9yAZ0f2IBOumVmVYcT4NcpcErI2Mg0ssWv//XTchVGgxv74/nOB6sPpbsSUK/Nj54Y1wHMAzx55z+87km41JVyVX48J9EzNt0FWotiwe6BePbGd0gFgpQVtPMBOry8nJMmzbNnqfahaSkJOzfvx+rV69G//790b9/f6xatQq7d+9GcnKyxedKpVIEBgbyP97ejqdbw7xd0L+ND1iWdDxRzB7SBhKRAJczy/m2bmvx1MBIzOSCqZc2xWPduQyTx4mEAgyN8cPX07vh8jujsP6ZPlg2LQ5v398Rzw9tg0f6hOH1sR2w4Zm+iH93FE6/PgKvjm5vVfcLRWWdCi9xEfb4LkF41Ab/JXPQaDS4dOkSLl261KjEPCVOT+0RYnOJJrO0FteyKyBggPEt5J2mD7lKw5f4HuvXNFmhM2eA+fPJ7599BsyapUVubi5yc3MNStS1CjUWb0vAU79fQnJhNdydRHhjXAecWDQczwyKQqCHdfUaF4kIc4dH49Ti4XhhaFtIhALsTyzAgz+dNXCodgihoaRNC7CapNsYhrZv2GJPA5L9+8m/VDV+Z3yuAS+KEp3r64ERI4i9SY1CjSV7iKjb04OiLGaFSkqAqVMJX2jCBODtt5vkI907yM+3aOCq1Zoek46gY5A7nMVCVMnVuFNs3oS0OSERCXivtKv28IYoidoG3pAtc6U+GIbBOM6gdHeCee6qUMDwPEzjrjKAlMoA4HBSEZZMieUfL65WYOvlbET5yjBnGKleCBhievwLpyn02uj2fOem/sz9xo4bCHCXYs2TveAmFeFadgWmrjiLFzdcQZqd3y3LstgZn4MRSwkXVssSr8Bl07tBJBSgsEqOQ0kFVp/PrmBo2rRpOHjwoD1PtQvnzp2Dh4cH+vbtyz/Wr18/eHh44OzZsxafe/z4cfj7+yMmJgazZ89GUVGRxeMVCgWqqqoMfkyBlm+2XdFpDgW4O2EGN9n+cNQ20ReGYfDBpM6I8pWBBfDeX4l4bNV5VFto6XSWCDG4nR8e7BmK2UPa4M1xHfHZ1K54cVhbDGrny3fG2IKiajkeWXUeOeX1CPN2xmcPdmmS8ohcLkefPn3Qp08fixLzBZVynOJ29nSHYgtoVmhgtG+zmaJawtYrOaisVyHE0xlDYxy3Ic/PJwasajWJHV5/nVgfhIaGIjQ0lLc+iM8qx/3fncKfl3PAMMCzg6JwavEIvDC0LZwl9nVtebpI8Ma4Dtj8XF/4ukpxu6Aak388Y2DK6BBefZX8++efpP/dQQzh+A9n00p5GX4aDB0/TgKdYe394OsqQUmNkudHAaSUlphIXORXrSJlrq8PpiC/Uo5wbxeL5sVqNeEXZWUB7dqR6t895w3nCBYvJqrUW7eaPcTUmHQUYqGAV3K+F1rsHeENXc0qt7paYO1caQoT40iQc/BWocUuPMoZPXSrsEEHdEyAG3pFeEGjZXHsdrGBev93R+9AodZg7ohoRPu7gibsfjx2B+kltZCIiElrkIcTWBgGRAu2JOD83TLsfWUQpvUMhYAhmdfR35zE69uu43hykVXd2GW1Svx1LRczfj6PBVsSUFKjQBtfGdY/0wefTe0CoYBBea0Sj6+5gDpFMytQR0dH491338WsWbOwbNkyfPfddwY/TY2CggL4+zdcWPz9/VFQYD7yGzduHDZu3IijR49i2bJluHTpEkaMGGGx9fOzzz7jZeU9PDwQFmZaLG9cl0DIJEJkldXxKskAkQUXCRicvlNicxpQJBRgw7N9eEb9mbRS9Pv0CPbdyGt2FVOAePA8+NNZ3Mqvgq+rBL883gvuVpbVmgo743OhZUmKnMrhWwuWZbHrGsnUTe4W0hxvzyLkKg1WHCNB8HND2kDoIPFYqSSBUEEBEBtLKko0LhWJRBCJRNBoWSw/nIqHVp7jXZs3z+6HdyZ0sikbaAk9I7zx97yBiA1xR1mtEo+tPm+1ppZFdO9OzEE1mibxqOgU5A5fVynqlBo+YOvUiSSh5HLSYi8WCnhFXP3PEBUFJCUBO3cS55AbOZX4/SxRm17yQKzFgPLtt4EjR0hZbscOwAKN8d8Jd3eSFVq2jKTQzICOyaYEJU4bW0i0JHTiixU2P7dTECmzldtZZrMVPcK9EOLpjBqFGsdum9/4dw/zRKC7E+qUGhy93VANnjrT/3YmA0sf0pVKi6sV2HYlB1KREF882JWfjxRqLV7ccAX1Sg1CvVyw8dm+8HOTNgiIfjl5Fy9tvoaX72uHfa8MwX0d/KHRsthyORuzfruEuI8OYubqC1h5Ig3bruRg+5Uc7Liaw/MfJ/94Bj2XHMIrf1zDxYwyOIkFWDSmPfbNH8yTwZPyq/DwL+eRUlgDsQ3m5nYFQ7/88gtcXV1x4sQJ/PDDD/jmm2/4n2+//dbq83zwwQdgGMbiz+XLlwHAZHaiMULbjBkzMH78eMTGxmLixInYt28fUlJSsGfPHrPPefPNN1FZWcn/ZGebnvRdJCJM4hbcVad0Zo+hXi48p8jW7BAAhHi6YLIe16VWqcGLG+PxzO+XkVfRfEqm13Mq8NBPZ5FdVo8IHxdsf3FAi/KEAKrNQzIE9mSFEvOqcLeY7E70BcJaCn9czEJ+pRxBHk5Nojj9yivA2bOEzLtjB1lsAWJ9oFKpUFZdh1e23cI3h1Og0bKYFBeMffOH2MWzagzBns7Y+vwAjO8aBJWGxeLt13n5AodAjdVWrQIqHWuhFggY3Mdxgg7eIpskhiGyRkDDUtnR24YGy97e5Fi1Ros3d16HlgUmdwvmRR1NYcsWgGv8wa+/kqD1P4cXXyQps6tXSYrNBOiYVKlUDttx6GNYe/J9nkppRrmHRkB5P8kFVTbz5vTLbC3RYs8wDCbEmS+B6R83mpsjVxxvqMczpnMgOga5o0ahxv5bhbw4KUBMxqvkKvSM8MKT/SMBkHLZ7YJqvLPrJliWRRs/V2x6ti+8ZRLoh88CBriWXYHx351Cekkt1szqjT+f74+He4ch2MMJSrUWp++U4PN9t/Ha1gS8ujUBC/9MwPwt1/DdkVQkZFeAZYmu0vND2+DwwqGYOzwaUpEQao0WPx67g0k/nEZyYTWvhG0t7AqG0tPTzf7cvXu38RNwmDdvHpKSkiz+xMbGIjAwEIUmvIyKi4sREGD9ohcUFISIiAikpqaaPUYqlcLd3d3gB4DJG/G5IW0gYMikqu9O/OKwaP7xm7m2T/BPD2xIQjuaXIThS49jzel0s87E9uJIUiEe/uU8Sjnn+m0vDGiVLqytl3OQWVoHH5nEqtZ/Y9DFeWRHf6uJ4k0FuUqDH7lJZe7waIuGt9Zg9Wpg5UqymG/aRMov+sguq8ODP53FseRiSEUCfD09Dt890h0ezs33uZ0lQvzwSHc82T8CLAu8+uc1vqRpN8aOBTp2BKqrm6SrbCynBn8gsYAn3RrzhmIC3BAX6mHWYHntuUzczK2Cu5OIb2wwhevXgaefJr+//jowfbrDb//ehI8P8NRT5Pcm4ndZi64hHvB1laBaoW61UlmAuxOCPZygZWGX5pFOfLGiid+ZaUzkuJJHkopQYyF4o7yhxLwq3hCbQiBgsJATWfz9TAa+elCXHaqoU+FLrrlm0Zj2CPF05stl26/mYPNFkkBoF+CGDc/05eckkYCBliUBUZVcjRc2XMHjay5ArdXis6ldcOaNETi8cCjen9gJ42IDMTTGD0Ni/DC4nS8Gt/PFxLhgfPlQV1x46z7snz8Eb47riFAvIvZ8t7gG034+h68OJEOlYREX6gGGYaDSWL9WWp3TXLhwIT7++GPIZDIspIJcJsAwDJZZecP4+vpaJdzYv39/VFZW4uLFi+jD2XJfuHABlZWVGDBggHUfAEBpaSmys7MRFGS7iN/p1BJM7uNp8FiUrwzjuwbjn4Q8/HQ8DT882oN/fGJcMP66lofvj6bi58d72fRaXUI90CPcs8HNo1BrsfrUXQyN8UW0v62Nhw1xu6AKX+y7jWMcd2JQtC9WPt7TZl2fpoBcpcHyI8TyY+7waJvb+OuUap64PCmu5UtkG85norhagRBPZ16R3F5cuKDTuvn4Y+D++w3/fjmjDM+tv4KyWiX83aRY9UQvs2a8TQ2GYfD+xM4orVVi9/V8PL/+CjbP7mf/6wsEhDu0YwfxLXMQA6J94CoVobBKgWs5FegR7oWRI0nn3e3bQGYmob9M6xWGhJxKbL2cg/Fdg+DrKoVYKEBuRT2WHSRNGW/e39Es76y0lEgd1NUBo0eT7r7/NBYsIJ4ie/aQemLHxi18mgICAYOhMf7YfjUHx24XWd2e3tToHuGFvOv5uJpVzru/WwuaWbKFRO0IOge7o42vDHdLanH4ViEe6G56PuwSosv8v7jxKs68PsKgHDyyoz/iQj2QkFOJzZeyMb5rEPZcJ8TsjeezMKV7KHpGeOGzqV3wxK8625YP/k5E52B3xIV5olOwO9Y/0wePrb6AarkaIgEDNRc5MQBOpZbgVGoJ4sI88eLQthjdKQDR/q54ygqVd42Wxdm0EuyMz8We6/lQqLVwlQgRE+jGr53OEuvzPVYfGR8fDxXXTaDfSm/qp6nRsWNHjB07FrNnz8b58+dx/vx5zJ49GxMmTED79johwA4dOmDnzp0AgJqaGrz22ms4d+4cMjIycPz4cUycOBG+vr6YMmWKze/h74SGO0gAPKt+z4183NVjxc8bTrJDBxIL7do9zzIxGBgA+ZVy3P/daSw9kIyCStvIdRT5lfVYtDUB45afwrFkYr761MBI/Dqrd6sEQgCw/lwmCqsUCPZwsqsLa9OFLJTVKhHh44KRHR0nLtuCOqWal35/aUS0Sf0Ma5GXRxZZpZL8++abhn/fcTUHD/90Gqk7l4M9sxp/zm65QIhCIGCwbHocBkUTddlZv120uyMEAEmv7NkDDBzo8HuTioR8+/yBm6RU5umpi7P++Yf8Sw2Wkwur0f+zo2j39j70+PgQJn1/GnVKDXpFePHNEMaQy4HJk4G7dwnXaNOmJnMWuXcRHU0+NGDSwFWhUGDu3LmYO3duk9hx6GN4B1KmPGqBA9PcoLwhu5SoucxQSlG1zR5n9oCUykh26B8LpWx9faGyWiXe++tmg/NQC4515zOxaHR7ns/KAnhzx3WoNFoMifHDI33IvSISMFBqtJiz8SrKOQHGrqGe+HveIHQKcjcIhFgAYiEDIUPsTl7YcAWDvjiKuZuu4ucTaTiXVopquQosy6JeqUFhlRwphdU4m1aCj/65hX6fHcHjay5ix9VcKNRaws8SC3E1i3QTT+waBIkNvE2rV75jx46Z/L2lsHHjRrz88ssYPXo0ACK6+MMPPxgck5ycjEqOdyAUCnHjxg2sW7cOFRUVCAoKwvDhw7Flyxa4udmeVTmeXIKKOmWD9tqOQe64r4M/jtwmXihfPkTcGNsFuOGJ/pH4/WwG3t11E/vnD7GpdDIuNhAB7lIUVikgEjD4dGoXdAnxwEf/3MK5u6X44dgd/HDsDrqGemBkxwCM6hSADoFuJjlUGi2LpPwqXEwvw6WMMhy9XQQF120zvksQXhvTHlE2kpWbEtVyFVYcJ/yq+SNjGvVKM4ZcpcHPXGvnnGFtG7UYaWqsP5eJkholwryd8aAdIpEUcjlpz87PBzp3BtauNexKWnXyLj7ZmwStSoWa+D2oAeAn2+D4B7ADUpEQKx/viUdXncf1nEo8seYitr84wOr2fQM0sV3K2NhA/J2Qh/2JBZy2CYMHHyQSBZs3Ex9SD2cxFo6Kwe9nM1BcrYBay6KMm7wlQgE+ndrFpKyDVgs88QQ5l4cHsHs3qSL9v8CrrwK7dpEs3nffER4RB7VajRUrVgAAvvzyS0ibyGoFAAa384NQwCCtuBZZpXUtZhStD51eULnN4ot+blKEe7sgq6wO8VkVVgvyOoJJcUH47kgqTqYWm1y3ANKwQ4MSgHTCDonxM6AoDI3x46sUPx67g1dHxeCrgySDn1JYg19O3sXc4dF4f2JnJBdU42pWBUQCBrkV9Zi3+SrWPNkbTmIhonxl2DFnAD7dm4R15zLBAnASCyBXkXVIKGAgYIC8SjnyrufzGSiA8K5od6gx3J1FaB/ghqp6NW7lk87vKF8Zov1k+Od6PrQK66UJWicNYAe8vb2xYYPliV+/48rZ2RkHDhxostdXabTYfT3fpIz/nOHROHK7CDuu5uKVkTG80N6ro2Ow90Y+MkrrsPJEGuaPjGnwXHMQCwWY2TcCq07dxcrHe/Lp4U2z++JAYiF+OZmG+OwKXM+pxPWcSnx9KAX+blJ4yyRwlgjhLCY/CrUW17IrGtSO+0R64437O/C7luaGWCzG+++/z/+uj9Wn0lFep0JbPxlPPrcFWy5l8yUqqgjeUqhR6LJCL49oZ7f1BssSx4MLFwAvL+Cvv4jZKPkbi6UHk/HjMfI6zw6NhsbtPTAM0yTWB/bCVSrCb7N6Y9rKc7hbUos5G69gy/P97bcfyckhi+zEicDgwXa/r6ExfpCKBMgsrcPtgmp0DHLHjBlkLT97FkhPJxmd54e2xfND20KrZVFRr0JxtQJF1YQAb64MvXgx6TCXSEhcYMkK5T+HgQOBX34hEbuzoZiopfvbUXg4i9ErwgsX0stw9Hahyax5c6NzsDskQgFKa5XILqu3OSDr18YbWWV1OJ5c1Ggw1BTXMtrfDR2D3JGUX4X9NwvwsBmtOKleQAIAb26/jrhQT/7zMQyD10a3x6OrL2DrlRz8PXcg1pxOR1kdyXAtP5yK8V2CEOkrw8rHe+KBH84gr1IOAQOcuVOK2esuY9UTveAkFsJJLMRHk2PRv40PFm+/jmq5GgKGfL/ldSpoQPZFPjIJpCIhahRqVNar+ECIAXFScJYIEejuRDb5BdW4xCmUCxhC/L6WVY5DSSSL+FjfcHxu5TVj2Jbo2f4Xo6qqirTYz/8TvdoFY8cc06n8h385h/N3yzBrQCQ+mNSZf3z39TzM2xQPiVCAAwuG2JSBKalRoKJOhWg9nQd9FFcrcPR2IQ7dKsSp1BI+22MKblIRekZ6oXekN/q18UGPcM9WMTA1RmmNAkO+PIZapQYrHuthsymrQq3BsK+OI79Sjo8fiMXjTegQbw1+PHYHXx1IRpSvDIcWDLE7K/Xdd6R7TCAgRN9Ro8jjWi2L9/6+iQ3nSZfd4rHtMWdYdFO9/SZBVmkdxn9/CtVyNV4Y2hZvjOtg34nmzQN+/BEYP56kXBzA7HWXcehWIV65rx2f6h85krTAf/IJ8NZbtp/z11+JGCNArDYefdSht/g/2ICfT6Ths323MSTGD+ue7tMq72HKijOIz6rA8oe72SzdcSCxAM+vv4Iwb2ecXDS8RebeFcfv4Mv9yRgY7YONz5rm43X94ACq5IYb5bgwT2x9vj9f7mdZFr2WHEZprRLuTiKsfqIXpv+is7Qa0NYHG5/tC4ZhcDO3EtNWnkO9SsPzgwa09cHqJ3vBRaLLvWSV1uHtXTdwKlUnmeAtk/DZWVvQOdgdUb4yFFbJ+cAo3NsFXz3UFR19xfDw8EBlZSXfDGUO/yVpsGaFgCHdAHeKTHMj5g4nC9Qfl7IM2nXHdwnC4Ha+UGq0eO+vmzbpBfm6Ss0GQgBJv87oHY7VT/ZG/HujsP3F/lj/TB/8/HhPLH+4Gz6f2gWfT+2CPS8PwrX3R+P3p/pg7vBo9Iwwb+7a0lhxPA21Sg1iQ9wxtnOgzc/ffiUX+ZVy+LtJMc2BEpU9KK1R8Mqrr9zXzu5A6OBBwk8FSJs2DYSUai1e2XING85ngWGAT6bE3nOBEACE+7jgS67bZOWJNBxPtpPbMX8+2Rru2QPcuuXQe6Jj6UCiToeMBi8bN1qUyzGJa9d0pPaPPvpfIASAsMhbCJQHdv5uKeqUTWgLYwO6h5Esuj0t8oPb+UIiEiC7rB6pZtaQpgbtKjuXVoqiatP8UokJSkJCdoWBAwLDMBjViVz/Krkar++4jlF6vMyzaaXYyjWvxIZ44OvphCqi1rKQCBmcTSvFrF8vGVQnwn1csP6Zvvhr7kBeBoUGQkEeTugQ6IZof1cDDqtYyMBHJkGEtws6B7tjXJdADGjrg9TCGuy+ns8HQrMGRGL//MHoa6PEyP+CIStBtUZWnzItHTAo2hddQz0gV2kNjmEYBh9PjoVEJMCp1BL8c928TLojcJGI0DPCG4Pb+WFM50BM7haCh/uE4+E+4egc7OGwAKCj0Gq1SExMRGJiIi/Xn1dRj/Wcu/uiMR1stt5QabQ81+j5oW0dbme3FV/sv43KehU6BrnbJQUAAMnJpCVbqwVmzQJoo6ZcpcHz6y/jn4Q8iIUMvnu4Ox7rS7JeLMuioqICFRUVLSLGaQ3GdQnCE/3J+1v4Z4J95P7oaMIaB0ySdG3BfR39IRIwuF1QzYvdTZ1Kylu3bgE3blh/rooKIn4pl5Ok1X/OasNWpKUBgwYRVjpnF9HcYzLa3xWhXs5QqrU4c6flgjB99G1DBCBPpBTb/BldJCIM5LrQDt1qKBOjD1NzpT0I83ZBtzBPaFlg3w3T4sRSE80eKx7rzosuUozooJOwSS+pQ055HWRS3Xz7zs6bvIzMuC5BWMBRQjQs4CQS4GJGGZ5Yc6EBgTwuzBM/P94LhxYMwdQeIRAKGORXynG7oBp3impQo1BDLGDg6yqBgAFKa5XILKtDYl4V9t0oIGrzGi1iAlzx2ugYnFg0DB9M6myQhbIW/wuGrMRTAyMBEC+yoqqGEz3DMPyuffWpdJTqZYcifWWYy/3t4923WqSj4F5DfX09YmNjERsby8v1Lz2YDKVai75R3hjSzvaW2b+u5SGnvB6+rpIm8U+zBZczyvDnZbIbWvJArF3BZnk5ocdUVgIDBuh0heQqDWavu4xjycVwEguw6oleBsFWXV0dvLy84OXlhbq6JvIKawK8dX9HdAoiKtUv/xEPtT0ieVSEcf16Ir1tJzxdJHwLNM0OeXoS3zCAdIBZA5YlEjtpaaQlf926/5jVhj0ICCAR5Z07wN9/A2j+MckwDJ8daq2uskHRvpAICRftrh1q0iM7kYDicJLlYMjUXGkvJnHzBlXmN0aYtzOeHhiFHXMGYCyXoTmZUtKgctA+0JBDl1RQgyB3XbOEUqPFs+su81WRl++LxpTuIdBoWcjVWkhFAlzNqsCjq84jw8S1axfghq+nd8PFt+7Dmid74eUR0RgS4wdPFzFUWhYlNUoo1LoAVCYRoq2fDHOHt8WB+UNwcMFQzBvRziF9vP/vt7XV6BHuhZ4RXlBqtFhzJt3kMaM7BcDNSQS1lsWMX84b7B5eGNYGbXxlKK5W4Kv9ls1l/z9g74187LiaC4YBXuc6fmyBRsvy1hfPDm5jt/+WPVBrtHhnF2lDfbh3GO8/ZAtUKpIRSk0FwsNJg45UCtQrNXhm7SWcSi2Bi0SI35/qw6vw3utwEgvx42M9IJMIcTG9DN8dMS9uahb9+5MfpRIw6ha1FWO4Utn+mw1LZZs2kWxcY/j6a0KUlkiAbduISvX/e7i6ElVqAPjqqxZ72eFcMHQsuahVMqIyqYjPDlmyujCH+7jsyrXsChRXN638gDlMiAuCWMggPqsC13MqGvx98+x+eG9iJ/QI98Kzg4nY7474XAOqBwCEebnASWwYLtwproWPTEfwLqiUY87Gq1BptGAYBkunxeFJLlusUGvhJBLgZm4Vxi0/hQ3nM01+hz6uUtzXMQALR7fHuqf7IP7dUTixaBj2vDwIpxYPR8J7o5H26f1I/Ggsjrw6DIvGdGgQqNmL/wVDVuJKRjlv1rjpfJbJ7I5AwGBURzLg7xTV4NU/E/gvXCoS4uMHiFb/+vOZ2Hujecpl/wbkVdTjje3XAQAvDm1rV0fb7ut5uFtSC08XsckOv+bE72czcLuAyL2/PtZ2sjDLAi+9BBw+TCw2/v6bbLbrlGo89ftFnLlTCplEiLVP9zFpreHi4gKlUgmlUgkXl5ZvM7aEKF8ZPp3aBQDw/bE7OJ1qh6cUzQ799BNQa7+f0+hOAWA4+f/8SrLDHj+eWG1lZ5P2eEs4e5YoSwPAt98CvWzTTv1vY948EiGeOwecPdsiY7J/Gx9IRQIUVMqRlF/dLK/RGIa3tz87FejhhC4hHmBZ+4Ipe+Dv5oQJHHdozemGm3j9TWjPCC/EhXlCqdZiA0dfoBAIGMQENAw6SmtVBqW2i+ll+OgfwvcTCoj5+KIxRAtQrtbCz1WKepUG7+y6iad+v2SyymL8/iJ8ZOgc7IEwbxd4uIibjfLxv2DISvx5JRv3dfBHO39XVCvU2HjetMu2vo/RjvhcntMCECf12YNJLfa1rQlIKWydG7q18fq266iSq9EtzJPv9LEFCrWGzzo8PTCqRYUiCyrl+OYQ0dl4Y1wHeMka6nc0huXLgZ9/JiWxzZuBuDjSoj/r10s4f7cMrlIR1j3TF70jTachaEu9WCy+Z4jw+pjcLQQP9w4Dy5JxXm1rWXjyZHJRZs4EHBDw83d3Qk8u0D6YSEoTTk7Agw+Svy9ZwlNeGqCkBJgxg/z94YeBF16w+238NxEURL4fAFi6tEXGpJNYiC6cz9f2q01gFGwHaKnuYnqZ7eMawEhus3yokVJZU4Lyf/Zcz7fI5WMYhj92/bnMBnIspoKhqT1CcOTVIdD3Q11/PhObL2bx55w7PBpfPtgVQgGD4hoFov1kEAsZHE8uxtCvjmOjUeDVWvhfMGQlDiYWoLJehee57NCvZ9IhVzWcSSOM9Ce+OpCCTRd0gdPrYztgQFsf1Ck1eG7dZVTW///jD13OLIerVITvHu5ulybNimNpSCuuhY9MgicHRDb9G7SAj/fcQq1Sgx7hnpjW03bbjd27dSTppUsJZ6harsKsXy/iYkYZ3JxEWP9MH7tKb/cS3p/YGRE+LiiokuPzfbdte7JQSExBly93uC5Fvcr0S2ULFhCZnIMHgTfeaPgcKqyYkwPExBBpnXsw5mx9vPoq+XfXLlLvbQFQJeg/LmU3uUejNYj0laGNrwxqLWtX1nMk15V1KrXY5PrRHIgN8UCfKG+otaxBl5gpjIsNRJSvDKW1Svx4zNBovD0XDPm7SfkOsEOJhRAJhPhtVm+DY9/ddROX9bzkpvcOw88ze0IqEuBOcS18XaUI8nBCvUqDt3fdRKf39mPepqu4lVfZZCXQwio5fjnZ0ITWHP4XDFkJtRbYcCETk+KCEeThhOJqBXaaMHk0pSP01s4bvKKmSCjA9490R4inMzJK67BgyzXeUPL/E5Y8EGuXkuztgir+Jv1wcudmNSY1xsmUYuy5ng8BA3z8QKzN3W/XrgGPPELKZLNnk0W5RqHGrN8u4XJmOdydRNj4bF90b6RsqFQqsWjRIixatAhKpe26HC0BZ4kQn3Hlso0XshoYQTaKJmIpU97QhfRSvnW3Sxfgt9/I35cuJUrfFCwLfPopsG8fySJt3aoTv/wfjNCpE6k7siyUq1a1yJik1jO1Cg1+PNYyAZgxhjtA5O4U5I5gDyfIVVqcTbOjhGwnaMZn08Us1CvNB2FioQBv3U9859acSkd2mY4M3yPCE++M74iTi4djxWM9ERfmiWqFGu/suoHBMX6YO1xnMK7Wspi97jKSOFVogBDIN83ui0B3J+RXypFfKUcgR8KuU2qw+3o+7v/uNLp/dAjv7LyBK5llNge8ao0Wh28V4tm1lzHg86P47sidxp/E4X/BkA344egdaDRafmD9cvJugy/L00VicoGevyUeJ1OIR5mPqxQrZ/aERCTA0dtFWMaVXf7L0M+ATYoLNmseaAlqjRaLt12HWstiVKcAjLdRoNERKNQavP93IgDgyQGR6BzsYdPzc3LIulFTA4wYQbQFa5VqzPr1Iq5klsPDWYxNs/uha6hno+dSqVRYunQpli5dyvsF3osY0NaX9yx6Y8cN+3bCZ84AixbZLgzEIYzTJNGyxNeNYsYMXYv8c8+RjN1XXwEdOgDvvkse//57oGtXEydtIijUGiRkV2DH1Rz8nZCHI0mFOJdWioTsCtwpqm4xkq1D+OADYNkyqKZNa5Ex6emsK0t/d+QOL5vQkhihR+S2dSPLMAzuo6WyWy3XFTeyYwDCvV1QUafCdr37wPSx/hgY7QOlRovP9iXxj/eM8Mazg9vASSyEUMDgq4e6QixkcDipCH9dy8OiMR0xooOOJlJep8KMn8/hSmaZwTkOvzoUzwyKgoABCqrkEBttKivqVdhwIQsP/nQOXT44gAVb4nGnqAYqo+5UlmVRJVchpbAax5OLsOxgMgZ+cRTPrruMw0mF0GhZ9Aj3tPoa/WvsOO4FKNRavLjxKn58rAe+P0puxIOJBRhntChH+sqQkF1h8FiIp7PBYtAl1AOfTemCV7cm4Mdjd+Ajk+BpI22H/wpYlsVHe5Ph3mcq3JxE+HCKfSvMb2cycD2nEm5OIix5ILZF+TLfcxOvv5sUC23kOVVVkUAoL49sprdvB5RaNZ7WywhteKYvYkOsC7DEYjFe40jGrWnHYQ3eGNcRR5KKkF5Si+VHUm0jnJeXE9louZz0xA8datd7mNkvAm/uuIFVp+5iZr8IXo/qo4+AmzeJ9cnEibrjXV1JBYiqTTcFWJbF7YJqXM+pQEJOJW7kVOJ2QRVUGsuLaacgd4zvGoQJXYMcahtuNvTqBQQGQjxwIF574QXA1bVZx6RarwVQrWWxaGsCtjzfv0V11HpHesNVKkJJjRI3cittNkoe2SkA689n4khSIbTahhnm5ri/hQIGswZE4qPdt/DbmXQ82ifcbGabYRi8O6ET7l9+CntvFODC3VKTAoYxAW54aUQ7fH0oBW/suI62fq5Y82RvjFh2HOklJKNUJVdj5uqLWPl4T96GxFUqwrsTOmFK9xC8vetmg7VSH3VKDXbG52FnfB5EAgbhPi4IcHNCcY0C+RX1qDWR5fJyEePBHqEY1M4Xuy5Ynxn6nx1HI9C34xBISVlnxaM9kFRQhe+P3kFcqAd2zR1osDDP/yMeu64Rt2AfmQSltUp0DnbHX3MHNlApfm7dZRzkRLieHhiJt+7v2OJGo80NajAqEjDY9uIAdLPDZT2jpBZjvj0JhVqLLx7sghm9W05X6GJ6GR7+5Ry0LGy2DFGpyEJ74AAQGAicPw/4BZHS2MV0whHa+GxfqzJC/1ZQKwKhgMFfcwdaHfQBIC3cK1eSYIhaztsIfcuWJQ/EGnQfVlcTG7SEBKBPH1K+nDGj6UpjNQo1dl7NwfrzmUgpbKg87OUiRodAYhNQp1SjVqlBnUKNOpUGVfUq6CceuoR4YHzXIIzvEoQw73uoi1CjISSsDh2I34lf8xmRHr5ViGfXXTZ47N0JnRqIBDY3XtxwBftuFhjYvVgLhVqDHh8dQq1Sg7/nDWyxe79GoUb/T4+gWqHGb0/15jvjzOHtnTew8UIWOge74+95g0wGnGqNFs+svYwTKcXwd5Ni19yB8JZJ0OWDAwaBvkjA4NuHu/GdbRQaLYtNF7Pwxb7bDQjbABDtL4OzWIS04hrUmSnveTiLEeThhHBvF4zlDM43X8zG3hv5UMvrkP3tdKvsOP4XDDUCU8GQVCjApuf64tFVF6BQa7Fpdl/eSBUAvjmUgvjsCswd1hZt/GS4b9kJVMnV+GBipwYmgwqVBl0+PMib0bUPdMOPj/awaMPxb8Ka0+n4eDdptXxzXAeegG4LtFoWj6w6jwvpZRgY7YMNz/RtsaxQZb0K9y8/hdyKejzUMxRLp8VZ/VyWBZ5/Hli1CnBxAU6cADp1VePp30nXmJtUhA3P9rV5Z/lvxNyNV7HnRr7ZTYFZpKYC7duTi5mYaLcz6u9n0vHBP7cQ4umM44uGGRD36+uBwkIgMtKuU5tESmE11p/LxI6rOfzu1UksQI9wL3QJ9UDXEE90DfVAqJez2bFcXqvEgcQC7L6ej7NpJQaB0SN9wvDGuI4typmzCH9/oLiYMM6vXyeiWc2A/Tfz8cKGqwaPOYkF2PeKbb6PjuLPy9lYvO06uoZ64O95g2x+Pg2mXh4RjYWj2zfDOzSNJbtvYfXpdAxu54v1z/S1eGxpjQLDvjqOaoUaXz7UFdN7mW4YqZar8NBP55BcSEyRt77QH3tv5GPxtusGxzEAlkyJ5ZX09VFULcfSA8m8kC2FTCLEyE4BiPKRQShkoFBpoWG1CPNyQaSvDCq1FqlFNUjMq8LN3EqkFdcY3CeDI1ywYc6I/wVDTQFTwRADYpiZVyHH+vOZDQaWQq2BVM/zZf35TLy76yZkEiH+mjeoQaDz6Z4k/KJn4SEWMnh9bAc8PTDKZpLuvQT9QGjO0DaY1sEJDMMgPDwcAhsIshsvZOLtnTfhLBbiwPwhdhGv7QHLsnhpczx2X89HhI8L9rw82KY2/o8/Bt57j3Qi7doFjBqrwdO/X8K5u6Vwk4qw7pk+jZKlzb0vtZrsokQi0T3ZXm+M4moFRn59ApX1Krw+tgNeHGZDUDx1KrBzJ/D008CaNXa9vlylwaAvjqKkRomvHuqKaWYmdkdx5k4Jvj+aivN3dTyJNn4yPN4vAg/2DIW7k33BS2mNAvsTC7A7IR/nODK6v5sUH02O5TvmWhNsTAzUXEeZaNo0MH/80SxS3dT42hi9IrxatFxWVC1Hn0+OAAAuvn0f/N2cGnmGIbZfycGrWxPQMcgd+14ZbPA3rVaLrCzSgWzrXNkYssvqMPSrY9CywIH5QxoVLKRZfT83KY69Nszs/JdTXocHfjyLkhoFRnTwx0+P9cDgL4+hyATv7bkhUXhzXEeT89a6s+l47+9bEDDEm9PU8xuDr6sUA6N98PyQtgh1xf+MWpsDvSM94S37P/bOO6yqwo3jnzvYU/YUUXEgThy4d+40t6lpmVlmrsx22dSGmqXlzjJLc5t7b1woLlRANip73gvcdX5/HEBUhAtccPz4PM99gCvn3OPhjPe84/s1RgDkUilvdKqNXCrhRFgyR4qYU5o8ZH73cuuaBNS2Q6HS8uZfQY+kA8fnW30UoNYKfL3rBiNXnCEm5emxWygLRQOhKV3rMrmjJ7Vr18bb27tMEvN3M3KYu1sczZ7Vq36VBUIAmy/Gs/PKXeRSCYtGNi9TILR6tRgIgdiI27O3qCwdGJGCpYmcP8oZCIFofWBsbIyxsfFTZcdREo5WJnzaX8zq/HQwlIikMphVzp4tfl27Vmy8KgemRjIm5ivs/nr0tsHHsmNTlUxae4HRK89yJiIVmVRC70YurHu9DYdmdubV9t7lDoRAHLoY3caLf94IYMMbAdR2sCAxK483/wrirb+CHmvEWVUoW7bEGDAGlBs3ik3vlYCmmB6rRu7WdPRxLLbMUlk4WZnSJF/z6OitpDIv37WBE1IJ3LibSXz6g9fDnJwcvL29y3yt1AdPO/PCCcvfH+OkUJRx7WpRy96cpKy8QsX/4vCoYc7KcS0xyR8Kmrf3JmMfI4a7/HgkPRceL9aWY2zbWrzU3J2P+jbkzIfd2fxWO6Z2q8uo1jXp4+dCG2876jlb4mhlgpFMgrutGb0aOfNuz3qsHt+Scx9158InPVg0sjm+biUHPw9THQyVgYkd6/BBfgPo0mO3sbc0LvQs+/K/EPI0xdc0ZVIJv4xqgYu1KeGJ2by/6coDWgputmYPiDUWcC4ylX4/n3hgvPFZYHWRQOjtrnV494V65cpe6HQCH265SnaehuY1bRlfhZpCUckKPt8uWm7M6FmvTH1Ou3eLE0oAH34IE97Q8vqf5zl9u0BZulW5VLefdYa0cKejjwN5Gh0fb72mv55IQIBoDKpWw88/l/vzxwR4YWtuRGSygp1XyhdUPYxSpWH+/lt0X3CMfdcTChtVT77flaVj/Wlf18Hgmbs2te3ZPa0jb3etg1wqYc+1e/SYf4wN52OenHFv3boP/rxgAcyfb/CPUWt1WJnI6dfYtXAse1xALab18KnykmGhGvWNsk+F2VkYF2qJHapCAUa4P2a/5VL8Ax6axWEsvz9qv/JkZIn3omaetiwY3gwQh11kUglGsuKP/fDEbHr9dJzlx28/4GEokUiYO7hxYVXE36sGM1+oz9zBjfltjD8bJrVl/4zOnP+4B2Hf9OXUB91YNrYl73T3oVsDZ5ysy5ahK0p1MFQGfj16m0HN3fCyNydFoeLPwGimdvfB0cqEyGRFsXLnBThambBkdAuMZBJ2Xb3LyhMP/u7IVsWn7ce3r/V0NUuWwuqTkXxZJBCa9UL9ct8M5u29ydFbSRjLpIUKplWBWqtj2oZgFCotbbztCm1Y9OH8eRg2TOwpfeUV+HSOltf/uPCAxYa/V8WEBM3NzUlLSyMtLe2ps+MoCYlEwrcvNcZELiUwIoU9RYQQS2X2bPD2FvuHyomFiZwJ+T17S46EV0jfSxAEdly+Q/f5x/jlcDgqjY72de3ZM60jc15shKuNWbnXrQ+mRjLe69WAHVM60NjdhsxcDe9vvsrEP4OqTMyvKOY+PqQBaUDhETlrlv6OuHryQiMXLn7WkyWjWzAmQByi+M9AgW1ZKRixPxmeXNjzWRYK1ahLcbE3NP5eNWjqYYNKo2NdEUHgx9HT15l2dexRaR4ctS+Ofk1cC+035h8ILfGhL0+j49vdN3np19OE3LmvR2RqJHsi7SHVwZCeGMulBMemExSdztRuPgAsO3YbiURSmC1afDi8RLlzf68afJZfKpi39yaBt+8L0fVo6IxdEWsHa1OxJLPkSHihtPnTjE4nsORIuMECoXVno1l+XOyj+mFYE3yKkYKvLBYdDONybDrWpnIWjmimdxB26xb07QtKJfTqBYt/0/LG2gucDM83XX2tNS0fY7FRFiQSCba2ttja2j4T/UJF8bQzLwwuv9l1o0QBuAfo1w9CQ0UL+QrwSrtaWJnICU3ILpziLCuxqUpGrTjD1H8ucTcjF48aZiwd489fE9oUa1lQmfi6WbN1cjs+7tsQE7mUgzcSGLf6XLmsIiqCxNsbW8AWsaeykPHjxVE9A2FjZlTY/D4g35H9VHjyE9Fkauxug4OlCdl5Gs4XUVvWlwIX+zMRKWQoq+7vJZFICmVcVp+KLNUFoWDUXiqB3Vfv8d/lkoPPyV3qMNTfA61O4GJMWuH7b3Wpw3u9Hp28uxqfwYuLT/LDvpv6Xw8qgepgSE8G54sE/no0nIHN3PB2sCBNqeaP01G81Nwdf68aKFVavt1dcuQ8JsCLwS3c0eoEpvx9sdBA0lgu5aX8zxjUzI3TH3RnVOua6AT4cMtVJq8LempF2GJTlby88gw/7LsFVDwQOhaaxGfbRYHDGT3qMbBZ2QUay8uZiBSW5PvJzR3cBDdb/Z7w4+LghRdETyt/f1j7t5a31wc94D7/OK+x/zfe7FwHd1sz4tNzWHpMT7l8qRTkFZdFszEzKrRwWXwkrMxlpa2X4uiz6ARnIlIxNZIys2c9Ds7sTG8/lycWmMplUiZ2qs3aCW2wMpFzNjKVMSvPkqaoQnVy72JG23v1Ekcom+o/gVkWvOwtaOphg06APdeq3vhaKpXQpb7Y3lAeNeo6jpY0cLFCrRXYcflRN4PKpF9jV+o6WZKuVD/gn/k4GrpaM7mLWAr9cMtVolMeL3ZZkAHu0dCpcLz+xaauzO5Vn7e7+rDm1VaYGj0Yemh0AkuO3Kb1Nwf5cMsVLkSlVnnJtzoY0pP2dR2Q5TdL37ibxbTuYnZo+fEIFCoNX7zYCIkEdly+U6L1QMGB4utqTYpCxeR1Fwt7jUa08uSz/r4sHNEMS1M5377kx8ye9ZBLJey+eo+eC4+x5WLck+sLeAhBEPj3fGzhzcHcWMY3L/lVKBC6dS+Lt9ddRKsTGNzcnand65a+kIFIyMxl2vpLCAIMb+lBvyb66QmlpIiBUEyMOFm8dYeWWduCOB6ahLmx6NvT2ttwgZBKpWLOnDnMmTPnqbXjKAkzYxkf9xP7EJYeu122njiVCtasESWjy8lrHbwxM5JxLT6To6H6Nb9m5KiZtv4SMzZcJjtPg79XDQ7M6MzU7j6FIo5PmtbedvzzRgB2FsZcjstg+LJAEkpxBTcUKnt75kilzJHJUAUEiNN/e/dC27aV+rkF2aEdwU+2VFZeF/qCcfWHR8orG7lMyod9xIrG76eiiEsr/Ryc3sOHVrVqkJ2n4Z1/LpVYGjSWS1k6xp9X2opN1Dsu3+XT7dfQaHV0qe/EpU9foFv9R/tks/I0/HMulqFLA+k2/xiLD4c90mBeFqJT9Vcorx6tL4WC0fpJK49jamHJtuA7dPRxYM2rrXlh4TFuJymY2bMeU7v78NHWq/x9NoYGLlbsfKdDiVoqMSlKBiw+SUaOmjEBNfl6UOPH/u71OxnM3nSF6/l11S71Hfn2pcZ6Zy0qg8SsXD7acpWD+c2DLb1qMH9408eq5CoUCiwtRUmB7OxsLCwe/b3ErFxeWnKa+PQcWnvbsXZC60cm8yqLXLWWEcsCuRyXgY+TJdvebo+FHtNj2dmiSPLZs+DuDoePafn2eBBHbyVhZiTj91dbEVCMemtF0GdfPu0IgsDLK84SGJFC70YuLB3rr9+CP/0kmrr5+Yl6NuUMur/ZFcKKE5G0qGnL5rfalRi8n4tMZcaGYOLTc5BJJUzr7sPkLnWeWnHU8MQsxqw8x73MXDztzFg3IaDSpzCf1DF5LyOXtvMOIQhw6oNuuFfxNTEzV02LLw+g0QkcmdWlzFpHqQoVbb49iForsHtqR3zdrKtsXxY9B19q7s7CEc1KXeZOeg59fz5BulLNhA7ehROiJX3GqpORfLP7BoIAXes7svjlFoXX1gtRqby5Nojkh7KYUgmFekESCbTxtqOhqzVuNma42ZrhamuKu60ZjpYmSKUSlCoNUclKolMURKYoCLmTyfmoVO4mpektuvh0ns1PIftCEhjcQizXnAhL5sztFKb1EOufK05EkJydx3sv1MfGzIib97L4u5Q+n5r25vw0shkSCfx1Joa1JbgJN3ITVa7f61UfY7mUo7eSeGHhcf46E/1ETF73XL1Lr4XHOXgjEWOZlA/6NGDDpLYl2gXI5XImT57M5MmTkRdT7shRaZn4xwXi03PwdrDIdziumkBIEATe23SFy3EZ1DA3YtW4VnoFQnl5MGSIGAjZ2cF/u7R8dfRCYSC0erzhAyEofV8+C0gkEua82AiZVMLe6/f0dwAfP170y7h2TXRTLScTO9bGWC7lYkz6A717RVFrdczff4uRywOJT8+hpp05G99sy9TuPk9tIARQ18mKjW+2xcvenNjUHIYuPU1oQlalfuZjj8ncys1MudiY0jq//LyzlF6WysDa1Kiw/F2eUpmdhTE983uH/r0QC1Td+S2RSAonxbZeiudqXEapy7jZmvHDULHsuepkZKmTcBKJhNc71ua30S0wkUs5ciuJYUsDC3trW9ay4/wnPZg7uDGm8vvnVNHbmiDAmYhUfj8VxTe7b/D23xcZ/Otp2nx7iHqf7KHFVwfw/WwffX8+wVvrLvL93lvsvHKXhMyytZVUZ4ZKoajo4oSuvuy5dpd7mXlYmsg4PKsL41efJ+RuJgObubFoZHPWBkbx6fbrWJvKOTKrC/aWJSux/nwojAX5Rq36yMqHJ2bz/uYrBEWLjWlNPWwYE+BFvyaumBtX3omj1uo4EJLAX2eiOZ1/8/B1tWbBiKaFdgLlRacTmLzuInuv38PW3Iitk9tXqZpswd9ALpXw1+tt9ApgNBoYPlysBlhYwK69GpbduMDp2ymYG8tYNa4VbesYPhB63piz4zprTkfh42TJ7mkdH1CGfiyzZolj2126wJEj5f7sz7Zf48/AaECUv5BKQCqR5L/EC3JO/mTWkBYefDGwUZm0pp40iZm5jF11jlsJWdiaG7H2tTY09iibwXC5UShg5kzxBAkNBVvbSvuov85E88m2a/i5W7PznY6lL2BgVp6I4OtdNwiobcf6N8peFjxyK5FXfz+PrbkRZz/qXmUPgQUU2Ee1rW3P3xP1U/f/4r/r/H4qCltzI/ZM66jX9OSlmDRe/+MCKQoVrjamrHil5QPWPNl5Gn46EMqfZ6JLnc6TSSUIgvBA0GRpIsfRygQrEzmZuWri03PIUyqqM0OVwV9nowsN67LztLy8/Ayf9m+IVALbg+9w5FYiL7fxwtfVmsxcDT/uv1XqOt/pVpdJnUUxuK92hvDLoZKbOus6WfLvpLZ8PsAXMyMZl+MyeG/TFVp/c4gPt1wlODbdoD1FsalKfth3k7ZzDzN53UVO305BKhGFFLe93d4ggdCc/66z9/o9jGVSlo9tWaWB0K4rdwuD0a8H+ekVCGm1MG6ceJ03MYF//tWy5HpRHaHW1YGQnszoUQ87C2PCErNZmx+YlMr06WBkBEePwrlz5f7sNzvXoYa5qE2j1QmotQJ5Gh05ai0KlZYctRZrUzm/jGrO/OFNn6lACMDJ2pQNkwJo5mlLulLNq2vOc6cC/RdlwswMTp0SLTqWLq3Uj+rb2BWZVMK1+MyyiXkaiAIRw7ORqeXqb+nk44iLtSnpSjUHq9DJvoBZ+RWHwIiUB8SDS+KDPg3wc7cmXalm2j/BD2gFPY7mNWuwdXJ76jhacDcjl4FLTvHFf9cLp9ksTeR80t+Xm1/25oehjZGXEJ1odQ8GQiAGU5HJCq7EZxCVoizVBPlhqjNDpVCQGWrxyTZS1HL83K25Fn9fE6F1rRo0dLPmj9PRuNuasX9GJ0LuZjJsaSASCWx/u3QjPkEQ+OVweOFN+c3OdXi/d+lNyImZuWwMiuPfC7FEF1Gqru9sxYhWngxq7v7AuL6+qLU6jtxM5O9zMRwLTaLgCHGwNGFEKw9GtqpZZu0jQRBIThZLIQ4OohBdjkrL9A2X2HddTLX+NKIZg5pX3eTY1bgMhi07Ta5ax2vtvflsQOm+V4IgCiquXCkON63boGFDwjmCotOwyleW/n8UVKwI/5yL4cMtV7HKz6Y6lJJNBcQR+zVrRKuOzZvL/dl5Gi2ZORp0gpD/EgP0gu9drE0xM346GqTLS3aehqG/nebmvSx8Xa3Z9FbbSs0iF/Lnn+JTg4sLREaCafkF8Upj3OpzHAtNYkaPekzr4VNpn/M4RiwL5GxkKu/1qs/bXcs+9PHDvpssOXKbzvUcWfNqq0eulZXN3N03WHY8Ah8nS/ZM66hXGTgqWUH/X06Snacpk8dahlLNB1uuFOqM2VsYM7t3fYb5ez6gLxSZrGDEstMkZpVvSMRIKsHdUuDYx/2rvckMQUEwNPvvQDZcLr63oGsDR0LvZROfnlN4Uy1IPTZwsWLr5PZ6XVAL0q0A49p68fmARnqJT+l0AmcjU/n3gujUm1ckxehgaUJNOzNq2plT084cz/yvbrZmZOSoiU1VEp2qJCZVKX6foiQ+PecBu4IOdR0Y3aYmPXyd9StjFMPDTYFKnZzX/7zA5dh0jGVSfhjWpEpH6BMzc3lx8SnuZebSuZ4jq8a1LPUCIAhiUuLnn8VJ79V/atiafpbgfE2itROqxnRVoVBgm192SE9PfyYbqIui1QkMWnKKq/EZjGjpyXdDm5S+UEgINGokdlfeuFEhMcb/B0TvqFMkZ6vo1ciZ30b7G1TYrthjUqWCOnVE3Ynly2HiRIN93sMUeH3VcbTg4MzOVS5z8O/5WGZvvlLuz49KVtDlx6NIJHBgSht8PMRJq6pqRs/IUdP5hyOkK9XMHdyYUa1r6rXc9uB4pq0PRiKBdRPa0K6uQ+kL5XMiLIkv/gshPFHM5jXxsGHOi40eeJiMTFYwcnngA/0/771Qn3oulty8m4VSrSFHpUORb8VS38UKP3cbGrhYYWtuXHj/rg6GDEDBzjxyJZLx664/9vc61nXgRHgyUglsndweV1tT+i46QXK2imH+Hvygp9v532dj+HjbVQQBhvp78F0ZlZczctTsCI5nw4XYBzJYZcXewpih/h6Mal2TWgYoWxUNhoJv32XyvyHEp+dga27E8rEtDTp6XhpFJ8fqOlmyZXK7Un2jBAE++gjmzRN//nWZht15Z7gan4GtuRF/TWjzQP27MnkepskeJig6lSG/idnUbZPb6xdUvvii2KA7fz40fvw0ZjUiQdGpjFp+FpVWx5SudZnVy3AB5GOPyYULxd4hHx8xaJVVTpYtK1eN/9cHUWl0hVNZVUlWrpqWXx8kT6Nj+9t6Hr8PMXxZIOciU3mnowez+jcDqvb8LnAPcLQy4eisLnoNkQC8v+kKGy7E4mBpwsY325apzUGt1fHH6SgWHQwjKz+gGdLCg/f71C80v41IymbUijMkZObh42TJ3umd9L4nVgdDBqRgZ0bEJ9L155L7Exq5WXP9TiYNXKz4750OnI9MZcyqs+gE+H5ok0JNidLYeimOd/+9jE4Q5c1/GtGsXBmZDKWa2DQx6xNTJPsTmypmf2zMjPC0M8froayRl70FTlYmBn9yLLhY+n64DYVOTi17c1aPb0VtR0uDfU5p6HQCU9eLTvS25kZsf7t9iVNw8Ggg9MNCDYclgYTczcTOwpi/JrSp0ouvTqfj7l1RZM7V1dWgrtZPkpkbgtlyKR5/rxpserNt6U/XubkQESE2cVUHQ3qx5WIcM/8VFaENWZZ+7DGZnQ01a0JamljOHDzYIJ9XHG+uDWLv9Xu81aUO7+e7AlQlU/+5xI7LdxjX1osvBvqVeflNQXHM2ngZd0sJpz/tB1RtMKTS6Oi58BjRKUqmdfdhRs9H1aKLI0elZfBvp7lxNxNXG1P+ndS2zG0USVl5fL/3JhuDRL0lE7mUzvUc6dvYle4NnUjKymPk8jN8OdCP3n4ueq+3OhgyIAU7Mz09nTY/nCb3MV3us3vVZ7C/O31+OkGaUs3s3vWZ3KUuvxwKY/6BUEzkUra93Z6GrvrdNPdcvcvU9ZdQawU6+jjw47CmOFfAhO5JUzQY8pyxidY+rix/pWW5eprKi04n8NHWq6w/H4tcKmHthDalNjoLgmi2+t134s9ffafiiOw0t5MUOFia8PfEqrdgeF5JyMylyw9HyVFr+W10C/o01kP08t49aNECTp+GWrUqfRufB+btucnSY7cxlkvZ8EYAzSu7x+2TT+Cbb6BTJ1GRupLYdeUub/99EY8aZpyY3bXKS2XHQpMYt/ocNcyNOPtRD4xL6gAuBqVKQ+tvDpGZlU3swqFA1Wd+C/ahmZGMY+910dv4NDlbDFbCE7NxtzVjw6QAPGqUXdvqUkwac/4L4XJseuF7xjIpneo5EFDbnmH+HtiY63/PqA6GDEjRnTlk5SXCEh+cVjCRS8nT6OhQ14G1E1qz5WI87268jIlcyr7pnahpZ86ra85zLDQJbwcLdkxpj1UpJZkCjtxK5M21QeRpdFibyvl8QCMGt3B/5vyotDqB7/4L5uNBLQCYtPoUP41pU6XKvYIg8Mm2a6w7G4NUAgtHNCu1R+nhQOizuXkcEE5yJyMXNxtT1r7ehjpVmNUCcV/GpSlJzlaRkp1HikL8mpytKvzeRC7Fx9mKuk6W1HO2wsfJUu+U95Nmwf5b/Hw4nFr25uyf0bn0G4oggLm5+LpwoXhbiGoeQKcTmPRXEAdCEnCwNGHHlPaVK+CamAiLF8OUKeDkVGkfk6PS0vLrAyhUWrZMblflgwwarY528w6TmJXHsrH+hVNmZeHDLVdYdzLsiQVDgiAw+LfTXIpJZ1RrT+YO1qN/L5/EzFxGLj9DRLKCmnbmbJgUUC7DYkEQuHE3iz3X7rLr6l0iku6rSBvJJLSv60BzzxrUsDDC1twYWzMjbM2NqGFujI25EZbGcuLScgi5m8HFsDt8PLhldTBkCIoGQ9O33CpWWKtAk+TX0S3o4+fCK6vPcSIsmXZ17Fn3ehvSlGr6/XyCuxm59GvsyuKXm+sd0IQmZDFr42Wu5AtidW/gxLeDGz8zWaKg6FQ+236dq1GJhSd4ZmYWVlZVF0QIgsCcHdf5IzAaiQQWDG/KS809SlkGPvgAvv9e/Pmjr3PYqztJikJFbUcL1k5oU2Vqt1m5ak6EJXMwJIEjtxJJzVKSeWEHANYtX0QiKz24drc1w8dZDI661HekbW37pzKozs7T0OWHIyRnq5gzwJfx7fUIbszMxJKZh4fYl2JZtQHqs4giT8MQA06YqVQqFi1aBMC0adMwNq66jG9RCgZXSlP1ryy+3X2D5ccj6NXImWVjW5Z5+YsxaQz66fATC4ZAVIUemj8N/c/EgDIJx97LyGXE8kCiU5R4O1iw/o2ACt2rBEEgLDGb3VfvsufqPW6VUTxUl6fUW2eoOhgqhaLB0I9HYgpF2goY3NwdJ2sTlh6LwNXGlIMzO5OSreKFn46Rq9YV9goFRacxYlkgGp2g/0U+H41Wx7LjEfx0MBS1VsDaVM6cFxvxUvOnN0uUmJXLvD032XJRNCC0lGq4PncQULUnuCAIfLkzhN9PRSGRwPdDmjCslN4tQRB1/RYsEH+e9UU2e7SnyM7T4OduzR+vti5VTLOixKUpOXQjkYM3EjgTkfKAZoaRTkX4D2LvxSvLjuFiZ4u9pTH2libYWxijUGkIS8gmNCGLsMTsYg1+/dyteaNTHfr6uTx1asoFIno1zI04Nrtrqc3tNGt23xm9Rw/YtQue0M34WcKQE2ZlaurPyxMFuiqBU+HJjF55VjSs/bh71UgIFOHmvUx6/3QCI5mEcx/1oEYZ2wAEQaDbvH0c/agP8OQGJAqaot1tzdgzvWPp52AR4tNzGLEskLi0HOo4WrD+jbY4Whnm7x2emM3+kHvEpuaQrlSRrlSTplSRkaMmXakuFEk1lkup72xFbRsJP4/rUB0MGYKiwdD64CS+3X2TBi5W1LQzZ39IAm42puya2pEBi08Sl5ZT2Ly37Nht5u65iY2ZEQdndsbRyoRVJyP5amcIRjIJ/05qW+Za/a17YpboaryYJerR0IlvX2qsd123KiiYDvjpYBjZeRokEhjR0pOpXWrx0btTAVi2bBkmlXQxLIogCHy7+wYrTkQCMG9wY0aWMjKq1cJbb8GKFeLP73ySyT7hFHkaHW287Vg5rqXeZc6yosjT8M+5GDYFxXHz3oNPQLUdLOje0IkeDZ3xczHn7clvAfrtyzSFirBEMTi6EpfOjst3yFWLvW8eNcx4vYM3w1t5VvmN43FotDp6/XSc20kK/Zphp0yBJUvu/zx6tKhx85w0llcmRSfMPh/gy6tleEgrSl5eHpMmTQJKOCYvXYJ33wVXV1i3riKb/Vh0OoEuPx4lJlXJD0NLf/CpDPouOkHI3Uy+GtiIsW1rlXn5JQdDeH/GVFGM9NjWKrlWPkx2noa+i04Qk6rU27esKLGpSkYsC+RORi71nC35Z2JApT9AgjgpnJmjpoaFMUYyaXXPkCEpujOjMnWkKdV08nEgV62jx4JjxKfnMLVbXfzcbXhjbRBGMgl7p3fCy86cgUtOcf1OJl3rO7JyXCukEpi87iJ7rt3DycqEfdM7lfnJQa3VsezYbRYdCkOtFbAxM+LdF+oxuIXHE1fIPRWezOc7rhfqRjT1sOGLgX40qwLtnYcRBIHv9t5i6bHbAHzzkh+j23iVuIxaDWPHwoYN4n108mep7M47g1Yn0KOhE4tfblEpfU6pChVrTkfxx+moQjVWqUT07enR0InuDZ0N2puUqlCxNjCaPwKjSM03SLQ1N2JsgBfj2tXST/SwkjkQksDEPy+IfkazupTc07JokSgAVZQZM8SR+6c0c/o0UWAhZCKX8t87HSpvIODSJbHZXSqFsDCoXbtSPmbJkXB+2HcLf68abH6rXaV8RkkU6MU187Rl29vty7x8UlYeAXMPodUJHJjRCZ8nNKARFJ3GsKWn0Qmw+OXm9G/iVqblo5IVjMjXCGrgYsU/EwPKfL+rKGUJhqofncpAEw9bOtdzRCKRYGYs45N+osnd0uMRNHARezHUWrE/RSaV8MPQpoXmdAsO3EIikfDd0Ca42piSmJXHiOWBaPWQMS+KkUzKlG4+/PdOB/zcrcnIUfPZ9uu0+eYgH2+9yvU7pZvtGRKtTuB0eDJv/RXE6JVnCU/Mxs7CmO+GNGbr5PZPLBCavz+0MBD6cmCjUgOhnBx46SUxEDIygje/SOC/nEC0OoHBzd35bYy/wQOhuDQlc3Zcp928Q/x8KIyMHDXeDhZ885IfQZ/05N9JbXmjUx2DN2nbWRgzrYcPp97vxleD/PCyNyddqeaXw+G0m3eYuXtulOoNVNn0aOhEa2878jS60m1timuaXrgQfvyxcjbuOWNMgBdd6juSp9ExfX0weRpt5XxQ8+bQqxfodJX6txnW0gO5VEJQdFqlG9QWx8Bm7sikEoJj07ldDnsQRysTujUQG80LRs2fBP5eNQrVtD/eeq3QXFVfajlY8PfEABytTLh5L4sRywMJT6z6v4e+PDPB0DfffEO7du0wNzcvVDotDUEQmDNnDm5ubpiZmdGlSxeuX3+8cGJZ6e3nQrs69qg0Or7ZfYM5AxphLJNyIiyZPdfu4etmzXdDxG78JUdus+vKXaxNjVj5SkskQGhCNl3mHyUpq+zOzg1crNk6uT1zBvhS28EChUrLurMx9Pv5JIOWnGLjhVhyVJVzUdPpBIKiU5mz4zptvj3EyyvPsufaPaQSUTn7yLtdGNGq5gP9B4IgoFAoUCgUBvVOexhBEFh4MIzFR8IB+Ky/L6+UkqrOyoK+fcVWEzMzgdGfxLAr+wIA49vV4sdhTcutvF0ct+5lMXNDMF1+OMqa01HkqnU0drfht9EtODizM6PbeFXJE5SZsYyxAV4cfrcLv41uQVNPW1QaHcuORTByeWDV+VgVg0Qi4eMijtolBvmPyzC8/744cl9NiUgkEr4f2gQ7C2NC7mYW2gJVCh9+KH5dvRoSSnY8Ly9OVqZ0bygGE/+ci6mUzygJRysTOtcTFaS35vdMlgVBEBjga4dOlcvmoFjUZXxgNiRTu/vQxMOGjBw1szZeRvewIVgp1HG05O/X2+BgaUJoQjYDfjnFvxdiK/UeUF6emWBIpVIxbNgw3nrrLb2X+f7771mwYAGLFy/m/PnzuLi40LNnT7KyDBOdSiQSPh/QCJlUwr7rCcSmKQtNVz/Zdo27GTkMau7OxI7ik+usjZcJuZNJI3ebQuGo2NQcOn5/hMM3yn5hMJJJGd/em0PvduafiQH0b+KKkUx8Inlv0xXafHuQL/67zrX4jAo/7QmCwLX4DObuvkHH748w5LdA1pyOIjk7DxszI0a19mTX1I58MdAPG/NHe2qUSiWWlpZYWlqiVCqL+YSKk6fR8t6mK/x8KAyAT/o15LUOJfdAJCRA166i56eVlUCPmbc4orwKwMye9fh8gK/BxCejUxS8uTaIXj8dZ8uleDQ6gQ51HVj3eht2TGlPn3zDydIosD6wtbVFoVCU+vulIZNK6NPYlW2T27F0TAusTOVcjEmn388n9DZurAyaetoyoKkbggBzd998/AX0YX0hiQRefllsqm5X9WWSZxEnK1PmDhanr5Yfj+BMRPHWQ49D72OyUycICBCbqH/6qQJbXDIFvYFbL8WTq66kTFcJDG4hynZsuRhX5gBCqVQysFUdYhcOJSktq9gJ5qrCSCZl4YhmmBpJORmezB+BUWVeh4+zFbundaBDXQdy1Fpmb7rCtPXBZOWqDb/BFeCZ6xlas2YN06dPJz09vcTfEwQBNzc3pk+fzvvvvw+ITX7Ozs589913hc1+paFPzXHOjuusOR1FXSdLtk1ux4jlZ7h+J5MWNW1Z/0ZbpBJ4dc15ToQl41HDjB1TOpCj1tJ+3uEH1jM2oCYf9/OtUDkmKSuPjUGx/H02hri0+0/2Ugl42plT28GC2o6W1HG0pLajBbUdLXDM7xHJzNGQmJVLYlae+DUzL//7PK7FZxCZfP8iZ2ki5wVfZwY0daN9XYdS9WAq20IiOTuPt/4K4nxUGlIJfD6gEePa1SpxmVu3oE8f0UPS3l7A97XLxEjjMZZJ+X5oE4Op82bnaVhyJJxVJyJRaXVIJNDHz4U3O9cp1cS3OCp7X8akKJn8d1ChncuUrnWZ0bNemWxhDEVsqpLu84+h0upY82orutR/jE6NszMoFDB+PMyeLaoeV1NmyjtFVKZjcscOGDgQrK0hJgZsDG9jo9UJdPr+CPHpOSwaWbqmmKHJVWtp8dUBlCotf09sQ7s6+nt2PSxQ26GhO39PDKisTdWLon1lO9/pUK4+Jp1OYOnx28zfH4pWJ+Blb84vo5qX6xqoL891A7W+wVBERAR16tTh4sWLNG/evPD9gQMHYmtryx9//FHscnl5eeTl3R9FzszMxNPTs8SdmZGjpuuPR0lVqPikX0Ne8HWh/y8nyMzV8Gr7Wnw+oBHpShUvLj5FTKqSdnXs+fO11oxZdZYzEakPrKuuowWLRjWnkVvFLhA6ncCJ8GTWnYnm9O0UsvN9X4rD0kSOSqsrtU/E1EhK9wbODGjqSpf6TmUK2irzBn7zXiYT1lwgPj0HK1M5S15uQaf8NPXjOHVKtLZKTQXPWjrsh5whTZ5GDXMjlr/Skla1Ku6VptMJbLkUz3d7bxaOt3f0ceDT/r4ValLV6XTcvi32Q9WpU6dS7Dhy1Vq+3hXCX2fEMkPb2vYsGtWs0C+oKvl6ZwgrT0ZS39mK3dM6Fh+UrVsnRrZ2Vedx9zxS3imiMh2TOp1onxISIvZ2Pdz8biB+OhjKTwfDCKhtx/o32lbKZ5REgT1IS68abCpDI3fRa6X3u5vRyU3K7XdmKARB4NU15zl6KwlfV2u2vd2+zArbBQRFpzH1n0vEp+dgJJPwfu8GvNbe26D2TwVUB0PA6dOnad++PfHx8bi53e+Cf+ONN4iOjmbfvn3FLjdnzhy++OKLR94vbWeuPxfDB1uuYmUi5/CsLlyOTef1P8W+k4JO/Fv3snjp11MoVVpebV+Lhi7WzN585ZF1GUkl/DCsqcEyE4IgkJSVx+0kBbeTsolIUhCRLH6NS1NSNItrY2aEk5UJTtYmOFmZ4mRlgqOVCR41zOng41DuibXKCoYOhCQwff0lFCottezNWTmuFXWdSm443rxZnL7Oy4OGTdRoexwnzyiX2o4W/D6+ValeZfpwMSaNL3Zc53K+WKaXvTmf9vOle0Onp1Ybqji2B8fz4ZarKFVaHK1M+Hlk81ItTAxNulJFp++PkJmr4bshjRnRSo+sz/nzcO4cvP125W/gc0bRKaJfRjVnQNOyTRHpxc6dol/ZyJHixEIlcCc9hw7fHUYnwOF3O1epByLAzst3mPLPJQA2v9UWfy/9AvWi18opf5zmv5BU+vi58NsY/0rbVn1IzMzlhYXHSc9RM6GDN5/29y33ujKUaj7YcoU91+4B0KW+I/OHNTX4+P0zEww9LvAoyvnz52nZ8r6SZ1mDoTt37uDqet/jaOLEicTGxrJ3795ilytPZgjEtOygJae4Gp/BC77OLBvrz/f7bvHb0dtYGMvYPqUDdZ0s2XvtHm/+FQTAV4Ma8fXOG+Q9lJFxtzVj59QO1CiDB0t5yVVriUtTYiKX4WhlUmkWGYYOhgRBYNnxCL7bexNBgHZ17Pl1dAtsS9hngiBOYc+cKX7fvIOS1DbHQK6jXR17fhvtX2y/U1m4l5HLd3tvsvVSvtikiZx3utVlfPtamMirzn7EkIQnZjN5XRChCdlIJfDuC/V5q3OdSnmSexwrjkfwze4bOFmZcPS9LiVrIt24Ab6+IJeLRq6eVa8186xTYItibSpn34xO5bJVeBp4bc15Dt9MZFKn2nyY35BfVSRn5dLym0MA2FsYc3hWF2zMSr++FL1WXrp9l0HLg5BI4NDMqg/oHqbo/evHYU0Y6l/+c0sQBNadjeHLnSGoNDqcrEyY1as+g5q5lzvr9DDPzGj9lClTuHHjRokvP7+yu/8CuLiIDcr37t174P3ExEScnZ0fu5yJiQnW1tYPvPRBJpUwd3BjjGVS9ocksOpkJO/2rEdAbTsUKi2T1wWhVGno7efC1O4+AHy18wYta90XXpRIQIKo4Pntrhtoy9h4Vx5MjWTUdbLC0868Sr3CKkKeRsu7Gy8zb48YCI1uU5M/XmtdYiCUlwdvvCHKzwgCtOyTSkrbIyDXMaKlJ3+81rpCgVCB/lPXH4+y9VI8EgkMb+nB4VmdmdS5jkEDIbVazZIlS1iyZAlqdeU3IdZ1smTb2+0Z3MIdnQA/7LvFF/9dr9KJkFfaeeFRw4zErDxW5otoPpaGDcWueI1GLMNUU2be6e5DUw8bMnM1TPn7UqlNwBU6JtVqUe20EhjZSrxZbwqKq3K5CMsi/VYpChXvbbxc5nPGx9mKHg2dEASxsf1J09vPhRY1bQGYtfEKf5+NLnmBEpBIJIwJ8GLHlPbUdbIkMSuP2Zuu0PmHI6w6GYlS9fjWjsrgiQZDDg4ONGjQoMSXqWn5ehS8vb1xcXHhwIEDhe+pVCqOHTtGu0qaMPFzt+HT/uLTx9w9NwmOTefnUc1xshLHCj/achVBEJje3Yeevs6oNDqu5zepulibsnFSWxaNao5MKmFjUBzvbbpcJQHRs0RSVh4vrzjLlovxyKQSvhzYiG9ealzi6Pu9e9CtG6xcCRKJgP+wGBIbByKRwgd9GjBvSMnLl8bl2HReXHyKuXtukqPW4u9Vg+1vt+f7oU0rpcdGpVIxZcoUpkyZgkqlMvj6i8PcWM78YU35epAfEgn8ERjNvL0lTHgZGBO5jPd61Qdg2bHbpGQ/ajHyALNni1+XLxfLMdWUiYIpogK9no+3XSvx98t9TP7xB/j4iAJflUC3Bk44WZmQolBxsBwTuxXBRC6laPJ0f0hCuQKaNzvXAWDLxXgSM8suw2Jo5g9rWvj9R1uv8cGWyxWaVm7gYs1/UzrwYZ8GOFqZcDcjl692htB+3mEWHQwjXVk117hnZrQ+JiaG4OBgYmJi0Gq1BAcHExwcTHb2fVGrBg0asHXrVkCMOqdPn863337L1q1buXbtGuPHj8fc3JyXX3650rZzTIAXLzZ1Q6sTmPL3JWQSCYtfboFMKmFb8B3+OhuDVCphwfCm1HWyJD1HTQ1zIza91ZaWtex4sakbP48UA6ItF+N599/gJzIaamhkMhlDhw5l6NChyGRlz5IIgsD24Hh6/XScoOg0rE3lrHm1VakaQhcuQMuWotyMpZWO+uOCSa59FTNjKUvHtODNznXK3cOTnadhzo7rDPr1FDfuZmJrbsT3Q5uw6c22lTohUdF9WV4KnuS+HiRma5cdi+DnQ+FV9vkDmrjh526NQqXl16O3S/7lXr2gaVNxwmz+/KrZwOeM2o6WTO4i3oj/ORfDJ9uuPjZDVO5jMi4OoqNh7lyxsdrAyGVShudbclS15pBEIsHioR7L7/fd4mwpsgUP78uWtexo6VUDlVbHqlOlZEWrAG9HSxq43B8AWX8ujmG/nSYurfySKWbGMiZ1rsOJ2V359qXGeNmbk6ZUs/BgKO3mHebrnSFlFn0sK89MA/X48eOLnQA7cuQIXbp0AcSD7/fff2f8+PGAeAP94osvWLZsGWlpabRp04YlS5aUqfRWlppjAYo8DS8uPsntJAUdfRxY82prVp2M4NvdNzGWSdn4ZluaetoSmaxg4OKTZOZqaF3LjpXjWxaOsu65epd3/rmERifQwMWKhSOa0dBVv89/3ribkcMnW69xKF9vo76zFb+OaVGqMvPatTBxolgic6mpQt47EFmNbGo7WLBkdIsK7c8DIQl8tv0ad/NP0Jeau/NJv4ZV4r/zNFBgOQDwcd+GTOxUOdYKD3MsNIlxq89hLJNy5L0uuJdk07Ftmygrbm4O4eGiJ1Y1ZUKn09Ho8/2FBpgdfRxYNLI5doYSBU1PBy8vyMyErVth0CDDrLcIsalKOn5/BIATs7viaWdu8M94HG3nHiq8RhTgaGXCrnc6lMlT8mBIAq//eQFLEzmnPuimV+9RZVLgvVkUGzM5i0Y2f7z8RRnQaHXsvnaP347e5sZdsXpiJJMwuLkH3Ro60dzTVq/998w0UD8LlCcYAghNyGLg4lPkqLVM6+7D9B4+vPlXEPuuJ4gN0u90oIaFMeejUnnt9/Nk5Wlo5GbNH6+1LvSGOhaaxMwNwaQoVBjLpMzqVY/XO9Su0sbVJ4lOJ/D3uRjm7blJdp4GI5mEd7r58GbnOiU22OXlwQcf3Nd082yWBl3OITXR8GJTN74d3LjcU3EJmbnM2XG9cArC086MbwY1LnWU/3nkl0NhzM9XK/5qkB9jA0q2PDEEgiAwcvkZzkamMrylB98PbVrSL0P79hAYCG++Cb/9Vunb9zzy6farrA28n1VxtzVjyegWhrPa+eQT+OYb8PcXpwArYdpy7KqznAhLZkrXuszKL7dWBT0WHCv0aiyg4Fr+Rqc6eq9HpxPoveg4oQnZzO5dn8ld6hp6U8tEVLKCLj8efeR9iQTe62W47RMEgaOhSfx25Dbnoh6UoXG3NaOZp634qmmLn5sNZsYPZiWrgyEDUrAzL4bH07xO2UZMt1yMY+a/l8Uei1db06ymLS/+cpKoFCVd6juyelwrpFIJ1+IzGLf6HCkKFbUdLFj7epvCJ97k7Dw+2HyFgzfErEhAbTvmD29W8hPxc0BksoL3N1/hXKR4AjSvacv3Q5qUKvYVFiZO6168KP7s3jUSWasQTIykzBnQiFGtPctVFtPpBNadi+H7PTfJytMgk0qY2LE207r7PHIC/r8gCELhxCTAj8OaMtTfo9I/Nyg6jSG/nUYqgf0zOpcspXDihHhAfPUVvPZapW/b88ilmDRe+vVBWxMjmYTP+vsyJsCr4lIRyclidkiphD17oHfviq2vGHZducvbf1/E2dqEU+93Q25Ae52SGLjkFJdj0wt/ru1gwZbJ7Uoc9ngcm4PieHfjZRwsTTj5ftcnPvDS+6fj3Lz3oJuDs7UJf01oUynmsheiUtkUFMelmHRCE7N4OHKRSSU0cLGimact1mZG5Kl1ZGVl8OPodk//NNmzxLyS7AAew+AWHoxq7YkgwPQNwSjyNPw62h8TuZSjt5IKG1D93G3Y+GZb3G3NiEhWMOy304UGfw6WJqx4pSVzBzfGzEjGmYhUev90nO3BZfe8eZIoFAokEgkSiaREuX6NVsfSY7fp/dNxzkWmYmYk4/MBvmx6s90jJ5ggPDiE8tdfoin2xYtgYaPFZegF5K1DqO1owbbJ7Xm5Tc1yXbhDE7IYtiyQT7ddIytPQ1NPW/6b0oEP+jSo8kAoV63lZmwSLm5uuLu7l8naJE+j5ea9TLYHxxukKVEikTC7V33G5yt9z950mZ1X7lR4vaXh71WDHg2d0Amw4EApJq4dO4rj9dWBULlp6mGLs9WD5V+1VuDT7deZvkE0dlUqlbi7u5f5mATAwQEKbJa++opH7nIGoKevM/YWxiRk5nHkVpLB1/846jtbMrVbXda/EYBMKiEiWUF8KZ5/j7tWvtjMDTcbU5Kz89h88ckZuBbwQiOXR95LyMwjJL+sZWha1rJj3pAm7JvRiatzevH3xDa816s+PX2dcbQyQasTuH4nk3VnY/jt6G1Wn4pkw3n991N1ZqgUCjJDntP/ZdlrHejTuGx9B7lqLUN+O831O5n4e9Vg/RsB7Ai+w7sbLwMwsaM3H/VtiEQi4U56DmNXneV2kgI7C2P+fK01fu73lagjkxXM2BBMcP6TxoCmbnz9GC+wpw19dIauxWfwwZYrhTYQHX0c+PalxsXW+AVBzK67uMCrr4raen/+Kf6bS/1MZN3PIbfKY0BTN+aWsyyWq9by65Fwfjt2G7VWwMJYxuzeDRgT4FUp1hQ6nUBEsoK7GTnczcglISOXu5m53MvI5W5GLvcyckhTqtGpcoldOBSATt/sppaLPTXtzPGyN8fTzhzPGmYIAsSmKbl1L5vQhCxuJWQRmawonE68MucFva0W9NnuD7dcZcOFWGRSCcvG+NPD9/HyFYbg5r1M+iw6gSDAf1M60NjD8JYO1dzn8+3X+CPwwTFqSxM5nw/wZai/R6H3IJRTR+zuXfD2FmvcQUHiU42Bmbv7BsuOR9C9gROrxrcy+PpL451/LvHf5TsMbu7OghKUvUu6Vq4+GcmXO0OoZW/OoXe7PBGLnAKu38mg388ncbc1Y8Hwpuy5do81p6OQSyWsGt+q0Ky2KhAEgTsZuQTHpHM1PgOVRoexXIouT8nHL/lXl8kMQdFgyMPJjkPvdilzNiA6RUH/X06Slavh9Q7efNLflz8Do/hs+3UAXm1fi8/6+yKRSEjJzmP87+e5Gp+BpYmcleNaElD7vuKvRqtj8ZFwfjkcjlYn4Gpjyo/DmtK+rv7eN0+Cx53ggiBwNjKV5ccjCg0JbcyM+LS/L0NauD82k/Pll/D552BjI+DgIOH2bZBKBdy6RiJtcQMTYymfD/Dl5dblywadiUjho61XiUgSn8x6NHTmy4GNcDNweTIrV83JsGQO3UzkyM1EUhSlZ2xMZAI5CZFotGDk6IVEWrbjsYa5EZc+e6G8m1wsWp3AzH+D2R58B6kElrzcoswPDmVlxoZgtl6Kp6OPA2sntCn5l3U6+PtvOHAA1qyplL6U55nT4cm8vPJs4c/GMin/vdOe+i7iDUar1XL1qmhw3Lhx4/JNOa5YIdp0BFSOD1dEUjbd5h9DKoFTH3SrciHJK3GiBIdcKuHk+91wsSm+AbikYEip0tBu3mHSlWqWvNyCfk2e3FCAIAj8sO8Wb3Wpg5WpETqdwPQNwey4fAdzYxl/TwwwXF9ZOanuGTIgBTuz9ec7SMiV8k63urz7Qtkb8Ioqdy4d04Lefq6sOxvNx1tF/Y6xAV588WIjpFIJWblqXv/jAmcjUzGRS/l1dAu6N3zwSftSTBozNgQTlSKmpPs3cWVCB2+a16zB08jDJ7ipmTl7r91j+fHbhZYVEok4Pv1J/4Yl6vPMnQsfffTgexZ2Kix7X8DUM41a9uYsGd2iXP5uGUo1c/fcYP35WECc/PjyxUb09nMxmI1GdIqCQzcSOXwzkbORKai1909Bc2MZnjXMcbExxcXaFBcbU1xtCr6a4WJjirWpHJ0gTtnFpCqJTVUSnSK+rsZnEJ+Wg7aE07qphw3bp3QwyP+lKGqtjvGrz3Hqtjg6/ErbmnzUt2LGwyURk6Kk2/yjaHRC6WaYcXFQt66Yedi9W/Qxq0ZvNFodLb85SFaOGktTIzJy1Ezs6M3H/cpvyfAkGLEskLORqczoUY9pPXyq/POHLw3kXFQqb3Wpw/u9GxT7O6Vl0RccCOXnQ2H4uYv6PE+TvY9Ko+P1Py9wPDSJGuZGbHyzXan2SJVJdTBkQAp25qbAUN7dFioqTM/oRC2HsttJFBhOWpnI+e+dDtRysGDDedHTTBBgVOuafDPID6lUQq5ay5S/L3LwRiIyqYT5xXiVKVUavt51g7/P3p/0aFHTltc6eNO7kUuVNQnqQ9ETfMWh66wNSiA6P5AzkUsZ6u/B6x1r413Kfv3xR3jvvQffM693F7veVzEyV/Nae29m9Kz3iL5HaQiCwK6rd5mzI4TkfEG/l9vU5P3eDSo8xioIAuej0jh4I4FDNxK4nfRgz1RtBwu6NXCiW0MnWtWyq5AAZMHn7b+ewKJDoYTczXrk3+s6WfL7+FaVMmKcp9HS4bsjhca0LtamfNi3AQOauFXKFOSn266x9kw0zTxt2Tq5Xck3hlmzRM2hJk3g0iWoBIPb55klR8Lp5ONIsiKPV38/j0wqYfvb7R8o5RuM9HSwtTX4arddimf6hmDcbc04PrtrlZeZ9l+/xxtrg7A2lRP4Yfdir1OlBUOpChXt5h0iV63jrwlt6ODzdFUFFHkaXl55lsux6bjZmLJ5crsnZudSHQwZkIKdmZ6ezpRNNzkRlky3Bk6sLkfNWa3VMXL5GYKi06jrZMk/EwNwtDJhU77atCCIFg5zBzdBJpWg1uqYvelKoc/VrBfq8WbnOo8EOdfvZLD6ZBT/Xb6DSisKl7nZmPJKu1qMalXzqegpiklIxctFLPd5ztiE1NgUW3MjXmlbi1faehXKCZTEwxkhqXke9n2vYF4nEWuNDX/PaFyuC3N8eg6fbrtWWKar42jB3MFNaO1dMQf0rFw1Wy7G82dg1AMBkFwqoVUtO7o3dKJbA6cy+w2p1WrWrVsHwOjRozEqwejySlw6Px0I4/CtxAfel0iga30nxgTUpHM9J4PeFArKAUVp4mHDR30bPlDyNQSJmbl0+uEIuWody8f6F9vUWUhKCtSpAxkZogjVmDEG3Zb/J97++yK7rtylqYcNWya3R6fV6H1MloggwLvvwtKlcOoUNG9uwK0W+wDbfHuIjBw1q8e3pFuDyu1texidTqDb/KNEpSiZM8CX8e29H/kdffor5+y4zprTUXSo68Bfr5dSIn4CpCpUDF16mogkBa42piwd40/TJ1Ayqw6GDEjRnZmUJ6X3T8dRawVWjWv5SOlKH+5m5DBoySkSMvOo42jBPxMDcLI2ZXtwPDM2BKMTYHBzd34Y1hSZVIJOJ/DlzhDWnI4CwM/dmu+GNCm2BJSYlcu6MzH8dSa6sPfEzEjGUH8PxrevVapIoaGJTVVy+nYyp8JT2BscRdj3gwFo+9VOJnVrxLCWHiUbbuaj04nDQPc1NwUsW0RTo9NNQEL68foortTkZogUnzJkvlUaHb+fimTRoTCUKi1GMglvd63LW10q5iUWlpDFn4HRbLkYh0IljrtZGMt4oZEL3Rs60dHHsULZpvKY3kYmK1h69DabL8ZRy96C8KT72ic17cyZO7ixQfvOxv9+jqPFTO30aOjEB30aUNfJcKO33+29yW9Hb1PP2ZI90zqVHNjNmwcffiiOct+8CeW0+/l/JzEzl+7zj5GVp+HLgY0Y0sTRcEbMY8bAunUwZAhs2mSgLb7PN7tCWHEikvZ17Vn3euX0J5XE2sAoPt1+nZp25hyZ9WgTtD7nd2yqki4/HkWrE57aAYL4/IGgiCQFxnIp377UuEqkN4pSHQwZkId35tw9N1h2LAJnaxOOvVc+rYfIZAUvrzjD3YxcajtY8PfEAFxsTNl55Q7T1gej1Qm82NSNBcObIpdJEQSBTUFxfL3rBhk5amRSCW90EjVuivv8XLWWHZfvsPpk5AM6EF3rO9KlvhO+btY0cLHCykDTRAUkZ+dx+nYKp8OTOX07hZjU+yO2gkZF7p7vxQvA3v+wtCi9RCMIsH+/qCIdK7bwIK+RjUO/y5i4p5MbY0dOjB1GNZQ4eik590MbrMz0K4+dCEvi8x3XCxukW3rVYN6QxuW+SWu0Og7eSOCP09EEFpHbr+Nowbh2tXipubvB9ndubi5DhgwBYPPmzWXy70vMykWnE0us687GsCkojowc0VhzQgdv3utV3yA9PrfuZdHrp+PF/luPhk4sH9vSYGWzDKWajt8fJjNXw4LhTRncooQLrlIpemHduQMdOsDmzeBUccXc/0cKbuqWJnJ2vd2Gya+OBsp+TD7C9etQ4BJw7Ro0amSArb1PfHoOnb4/glYnsHtqR3zdqlbZP0elpe28Q6Qr1YX9o0XR9/wuGCDo19iVJaMNP31nCDJz1czcEFyokze+XS0+7tewwq0Aen9+dTBkOB7emYo8DQFzD5GVq2FgMzcWjSxfGjcmRcmoFWeIT8/By96cfyYG4GZr9oANR7/Grvw0slnhgZOYlcsXO0LYdfUuAN4OFswb3Jg2jyk9CIJAYEQKq09Gcuhm4iPyHbXszfF1s6aRmw2+rtb4ulnjZGVSakOeSqNDqdKQnafh1r0sToWncPp28iMCXDKphKYeNrSv60Dneo74e9XQu9nvwgV4/304fFj8WWKkwaZtONatIkEigFR4ZCDocWnnosSlKfl65w32XhcVpB0sjXm/dwOGtPAo1805OTuP9ediWHc2plB2XyoRdU1eaVuLdnXsn6oGx4dR5Gn4dvcN1uX3ndV3Fq1fDHGDmLwuiN1X7z3wXu9GLvw8qnmJCuLl4dej4Xy/9xaedmYcmtml5PUfOSLadOTmiqKMrap+zPp5QKsTGPLbaYJj0+nb2IVfR/sbbuVDhsCWLfDyy2KWyMAUjLkPaeHB/OElqJhXEj/uu8XiI+H4e9Vg81vlMw6/eS+T3j+dQCqBQ+92KbXf8kmh0wksOhTGokNhALTxtuPX0S2qxLqoOhgyIMXtzKK+LBWRRo9NFQOiuLQcPO3M+GdiAB41zNl//R5v/30RtVagVyNnfhnV4oGL+/7r9/h0+zUSMu83+n7Qp0GJujGRyQq2XYrn+p0Mrt/JfMQvpwAHS2MaulpjaiRDqdKgyNOiyNOgVGlRqDQo8jQPTD89TAMXK9rXdaB9XXtae9uXWd8nPBw+/hj+/Vf8WSrXYdEsCpu24cjMxQyGk5UJtRwsRG0dO3Nq5uvreNtbUOMxnkm5ai3Lj0ew5Eg4eRodMqmEV9p6Mb1HvXKVrGJTlfx27DabLsQV9mnZWxgzsrUnL7fxeuYUwg/dSOD9zVdIzjac9UvBxboAK1M5J2d3xaYc6rulkaPS0ukHsXH7y4GNSjXw5dYtuHGjUryw/p8IuZPJgMUn0eoEw/bgXLokag1JpRASAvUNa6ERHJvOoCWnMJKJY+7OZfAJMwSJWbl0mHcElVbHlsntaFHOKeBXfz/HkVtJjGpdk7mDGxt4Kw3Lvuv3mLkhGIVKi7utGcvG+ldO830RqoMhA1LcztRqddT7dG+hgN30Hj5M6+5TrgxAfHoOL684Q3SKEndbMSCqaW/O4ZsJvLn2IiqtjsbuNiwc0eyBEcXMXDVzd98sdGJ2sTblq0F+9PR1Ji4OPEopzaYqVITcySTkrhgchdzJ5HZSNo8xpS4WY7kUNxtT2tYRg5+2te3LFe0LAhw9CosXw7ZtAjqdBCQCFr7x2HYMxcgmh1a17Hi9ozed6jmWqYwjCAKHbiTy5c6QwrJdG287vhzoR32XspfEwhOz+fVoONuD7xT+/Zt62jK+nRd9G7tWqNfoSVMZ1i9vrg1i7/V7mBpJyVXreLGpG4tGNquUbFlB2cbB0oTjs7vo1Y9WyMWLohXERx+VrEGUlib+7u3b91+RkaIUupmZOOo4WOyNIzQUfv1VLPk0ayaWe8yerSBZH77dfYPlxyNwtzXjwMxOZdvvJTFwIOzYAWPH3ldUNSDDlp7mfFQab3etw3u9ih9zr0xmbbzMpqC4CpW5zkWmMnxZIHKphP0zOpV5GKOqCUvI4o21QUQmKzCRS5k3pDEvNa+8PqLqYMiAPG5njlwWyJnI+8Zxo1rX5KuBjco1zn4vI5dRK84QmazAzcaUvycGUMvBguOhSbzzzyUyctSYGkn5qG9Dxj7kBXQmIoUPNl8p1Bvq6uXJummNadlSwqRJMGyYaNqtDzkqLbcSsrh5NxOtIGBhLMfcWIaliRxzEzkWxjIsTOTi+yayMtV9FQoFTvm9GYmJiVhYWJCdLVpoLF4stgkUYFo7kRqdb2LlpmBYSw8mdqyNl33ZU8CRyQq+/O96ofy+i7UpH/drSP8mrmW+GV+/k8GvR26z+9rdwnJjp3qOTOlat8JTZ2VFqVTStKmY2r98+TLm+v6B9UAQBNafj+XL/0LIUWuxMpXz9SA/BjZzL33hYgi5k8nGoFj6+LkwasVZtDqBL15sxLh8Cw9DotLo6L7gKLGpObzXqz5vd9UzY5uVBb6+ohbRsGGiqWt09P3XuHHQpYv4u9u2iSW2x7FsGbzxhvj9gQPwQhFxS5lMzHA0aya++vY1eD/Mk0Cp0tBt3n6CfnodGzMjYsJuGOaYvHBBLGFaWIhNgzUMq6G27/o9Jq0NwtbciNMfdDNcEKcnRctcx97rWih1Udy1siQKhhWelLJ2WcnIUTNjQ3Dh9O6EDt582KdBpUjBVAdDBuRxO7NoqayAnr7O/DKqebkaUBMzxYDodpICZ2sT/pkYQG1HS+5l5DJr42VOhicD0LmeIz8MbYJTkbRurlrLTwfDWHEigqwbziTtaA468cCytRUYO1YMjJ7kdbfohMTp09ls2GDB779DZr6NjdRYg3mjeKyaR+HgmcvYtl6Mb+eNo1XZM02JWbksOxbB2sBoVFodRjIJr3eszZSudcusP3QxJo0lh8M5dPP+aPoLvs683bXuExkVhfJNk5WVyrB+WXkigq933cBIJmH9G23x9zK8QGiBjoyVqZwTs7vqb4i5erUYBKnVj/7bd9/B7Nni9yEhYuanTp37r9q1wcQEcnJEDSPv/L618HD47Te4cgWCg0VD0qL88gtMmSJ+LwjPtCr2zqAIBrQUXdgvhN/Bv46BlJGXL4cBA8DV8ErL2vwx9+gUJV8NbMTY0kqrlcDYVWc5EZbMa+29+WyAKGBZ1vM7PDGb3j8dR6MT+PO11nSqQhuM8qLTCSw8GMovh8MBaFfHnsUvt8DuMW0O5aU6GDIgj9uZF2PSGPyQkzOIJpKrxrUslytxUlYeL684Q1hiNo5WJvwzsQ11nazQ6QTWnI5i3t6bqDQ6apgbMXdwE3r7Paipci0+g8+2X+N8SA7ZVz3IulwTbcb9J7T27cWH1j59wLEKzxelEnbtUjB8eEEKNxsQT3BjOwUWzaOw9IvD1UnG6x1qM6pNzXJ5iSVm5bL8WAR/nY0mVy328XSq58icAb5lSh8LgsCZiFQWHwnjVLg4GSaVQP8mbkzuWocGLlU7ffIwWq2WM2fOABAQEFA+6wM9KM765bcx/uWW2BcEgSl/X2LX1bu4WJuyc2oHvfSlyoJOJ9D35xPcvJf1wA1GL06ehHfeEYMaL6/7r549oXXrim2YIIj+W8HB4uvCBTGLVHAirlghakeMHg3Dh4O9YfWYKhutVsuQL9ZwJiKVju3b8u+b7Z/qwYEC/jgdxec7rlPL3pzD73apFGHQkjgWmsS41eewMJZx+sPu2JgZleth54v/rvP7qSh8nCzZM63jUyW4WxJ7r91l5r+XUaq0OFgaM7W7DyNb1TTYgEV1MGRAHrczVRodTb7YV3jTLUAulfD5AN9yP2WkZOcxeuVZbt7LwsHSmL8nBlAv3609NCGL6euDC12Bh/l78PmLjR4JHG7czWRTUBxbg+KJv25N1mUvcsKcQLh/gDVqBCQUjrwAAGVQSURBVJ07i9n/Tp3A2YDaY1lZ4gP0hQui88HhwwK5uUogPyCRp2NWOwerptGYeidTx8mCNzvVYWBzt3L13BQXBDWvacv0HvXo5OOg90VZEASOhSax+HA4F6LTxE2VShjcwp23utR9aqc1Kpui1i+WJnL+eK11ubM62XkaXlx8kogkBe3q2LN2QhuDqwAfvZXI+N/PI5HAv5Pa0qpW1ZYxy0XnznA8X4rAyEh8avn0U8OemJVMfHoO3ecfJVetY/HLzenfxM2wHxAdLQanBkSRp6Ht3ENk5mpY8UpLelaywfDDCIJA759OcCshiw/7NGBS5zrlCoYylGq6/HiENKVavwGCp4jQhCze/CuoUOakpp05775QzyCq9dXBkAEpaWeOWn7mAU0ZgC9fbMQrFeyHSFWoGLPyLCF3M7GzMGb+8KZ0rS/WkFUaHQsOhLLs+G0EATztzFgwvFmxF3yVRseRW4lsvBDHgQsZZFz2QHnDDXXyo43DDRqI/ogeHuDm9uDL2RnkctBoxCxP0Vd2tlgNuHbt/is6+pHVI7VKQpcl/h88pm6hvpcdXeo50q2BEwG17ct10BcXBDXztGVGz7IHQQdCElh8JJwr+T5pxnIpI1t58kan2njUMLxtxbNGdp6GCWvOczYyFQtjGX+81pqW5QwywhKyGLjkFEqVttKaVwuaU2vambNnWscyl0ernDt3YP16sYnu0iXxPQsL0ULk3XfBynAilZXJooNhLDwYipuNablMrYslJ0fs0zp0CMLCoFatiq+zCAWina297fh3UluDrlsf/r0Qy+xNV3C1MeX47K6ocnPKVQYvGCCwNTfi6Kwu5apOPClUGh0bzsew6FB4oR2Sr6s1s3vXp3M9x3JnGauDIQNS0s4sMMxztTGlvrMVR0OTsDaVs/OdjtS0r9gNNF2p4pXV5wpvzmMDvPiob8PCi8vZiBRm/nuZ+PQcpBJ4s3Mdpveo99j0YlJWHtuD49l4IY6QyDxyY+3Ii7UjN8YedVIpB4lEDIaKa6d4HDLLXIwcsjD1SsGsTgLmdqnc/lGcsrkRnUiDmuWv0xkqCNLpBPZcu8cvh8MKNZLMjGSMblOTNzrVfqAv62lCo9GwdetWAF566SXk8qq50StVGiasuUBgRAoWxjLWvNa63FmXHZfvMPUf8aa/8pWW9DDwE3lmrpreC49zJyOXMQE1+XrQ0z12/ABHjogiW+fPiz/36wc7dz7ZbSqFgmNSpdGxJMKOO1kqpnb3YWbPeob5gJ494eBBmDRJtOowIPcycunw3WE0OoEdU9rTxMPWoOsvjTyNlvbzjpCcnceikc3o4WNbrmBIo9XR7+eT3ErIYny7Wsx58dlrzlfkaVh9MpLlxyPIytMA4lTr+70blMuEvDoYMiAFO/Nm9D3q13zwgn0mIoXjoUlM6VYXuVTKyOWBXIxJx8/dmk1vtquwkm+uWsu8PTcLrThqO1iwcESzwsbdzFw1c3ZcZ8tF0busoas1U7rWpVcj58fWjAVB4Gp8BhsvxLHn2j2Ss/PQ5hiRF2uHKskKrcIUbbZJ/kv8vmh5LX8tSIy04kuuRW6dg5FjNsYOWRg5ZmHkkIXMTI2nnRnd6jvRpYETTZxNcaghakqUt+k3KlnBX2eiKxwEabQ6/rtyhyVHbhOeKNpSWJrIeaWtFxM6eFeJGFhFqIoG6seRo9Iy4Y/znL6dgrmxjN/Ht3qs6GdpFPgr2ZgZsX9GJ4NrvZwMS2bMqrMAz0xjaSGCIFpRfPQRrFwpltEK3oenrtm66DG5+Uw4M7fexEQu5eDMzoYxBD55Ejp2FEuI4eFQs2bF11mEAjXnigjpVoRfDoUx/0Aofu7WrH+1OVb5mcCynt8Fx7xMKmHf9I4Gtb2pSlIVKn49Es6f+UMwAL0aOfNerwYPSMyURnUwZEAKdubY3w7zx6QuJd5w76Tn0P+Xk6QqVIxq7cncwU0Msg0nwpKYtfEyCZl5yKUSpnb3YXKX+4atu6/e5aOtV0lXiqkbNxtTxrWrxUg9TFqzctXEpuYQk6okNlVJTP4rNlVJbJoSlVpApzRB0EmQGGmRGmlBpkMiAWtTOQ5WJjhamhR+dcz/6l+rBrUdLAr3V05ODn369AFgz549mOmpt5KRo2b31btsDoor7OMBMQia3sOnTClUtVbH1ovx/Ho0vFCKwNpUzqvtvXm1fa1nJq1c3n1psM9XaZn45wVOhidjZiTj91dblcuAVaXRMeS301yNz6B7AydWjmtp8Kbbz7Zf48/AaFxtTNk7vVOFPOGeCBqNmJYt4Icf4Nw5ccrKwKPmFaHoMbl7925e++syZyJS6ePnwm9jDKRM3a2bmDWbPBmWLDHMOvO5Fp9B/19OIpNKODG7K25VLJqaplDRNt+Jfs0rTZkzWTQRLs/5/fofFzh4I4HO9Rz547UKNv4/YeLTc1h4IJQtF+PQCeIgyzB/TyZ1rq3XUEx1MGRACnam5/R/WfZaB/o0LnnE80RYEq+sPocgwI/DmhrMmC5dqeLjbdfYdUW04mhe05aFw5tRK7+pNzk7jz8Do1lXxKTV3DjfpLVdrXKJcWl1AgmZucSkKrmXkYuVqRyH/MDHwdK40gQGNVodJ8KS2Xwxjv0hCag04pOBVALt6zrwWgdvupQhCMrO07DpQiwrTkQSn54DgJ2FMRM6eDO2rVeJyt3VFE+uWgyIToSJAdGq8S1pV6fsRq+37mUx4JeTqLQ6g54vBShVGvouOkFUipLBLdxZMLyZQddfpSQniw3ESiV4eoo2FR07PumtKpab9zLpu+gEOgH+ntimXMfGIxw7Jk58GBuLYpelKcuWkYIe0EmdavNh34YGXbc+fLLtKn+diaFHQydWjiu/XlBksoIXFh5DrRX4fXwrujZ49r33QhOy+GHfLQ6EJBS+52VvTpd6ot9mQG37YvvTqoMhA1I0GHJxqMHBdzuXevMsaCI0NZKy7e32BhvFFgSB7cF3+HT7NbJyNZgby/i0vy8jW3kWBga5ai07gu+w+tSDJq3dGzjxWgfvp9or68bdTLZcjGNb8B2SsvIK3/dxsmSIvweDmrnjYqN/KSUqWcEfgVFsvBBHdn792cHShEmdajM6oGaVi6w9b+SqtUxaG8Sx0CRMjaSsGteK9nXLftMr8BWzMpWzf0YnXG0M+1QeFJ3KsKWB6ARYNtafXo1cSl/oaeXCBdGvKyxMtKr4+GP47LMHs0dPCQVZufrOVuya2sEw494FU3fvvAM//1zx9RXh0I0EJvxxAStTOYEfdi+XvEdFiEjKpvuCYwgCFXaiL1AFr+1owb7pnarMGLWyCYpOZdGhcAJvJz9gC2Uil9Kmtn1+cOSId35VojoYMiAFO7PWjI0IxmaMDfDiq0F+JS6j0wmMX3Oe46FJeDtYsH1Ke4NmH+LTc3j332DORIgK2D0aOjF3cJMHBAoFQSDwdgqr8k1aC6jvbMVrHWoxsJm7QdzJK4JOJxCRrOBYaBKbg+IKJQNAzNy82NSNIS088HO3LtNk2MnwZNaciuLwrfvmtLUdLXi1XS2GtfR84v/v54lctZY3/wri6K0kTORiQNTBp2wBkUarY8jSQC7HptO5niNrXm1l8IB97p4bLDsWgYOlMfumd3rq+8JKJDsbpk6F338Xf27bVswSFYg9PiWkK1V0+fEo6Uq14VTHDx+G7t2hXj1xdNXIcNdVnU6gx8JjRCQp+Ky/L691qPr9OXNDMFsuxdO+rj1/TWhT/imqXDVdfzhKikLFp/19mfAE/i+VSXaehlPhyRy9lcSxW4ncechrs6adOV3qO9LK3ZQXW/lUB0OGoGhmSGpijgTY9Fa7UnVWUhUq+v98gjsZufTxc+HX0S0MeoHX6QRWnYzkh323UGl12FsYM29Ik2J1MiKSsvnjdBQbg+JQqrQA1DA3wt/LjkZu1vi529DIzRpXG9NKyxplZ2fjVcsbjU7HrNUHuJGk4mpcRuHEAICRTEL3Bs4M8fegcz3HMglvKVUatlyMZ83pqMKmaICu9R0Z396bjnUdqlxQrbLIycmhbVtxBDgwMLDKe4YeJk+j5a2/LnL4ZiImcikrXmlZ5mbl8MQs+v58EpVGx3dDGjOilWEbZPM0Wgb8cpLQhGx6N3LhtzGGPR+fCBs2iNNVGRmieGNEBFg+GW+qxx2TBePeNmbiuPfjjJT1RhBEN/v+/UXVbwOz7mw0H2+9hkcNM46919XgGlilEZuqpOvcfUQuGY+VqRHxsdHlHpD451wMH265irWpnKPvdTW4uvPTgiAIhCdmc/RWEkdDEzkXmVqYNdLlKYn9aXh1MGQIHg6GADxrmHF4VpdSU4+XYtIYviwQtVbgk34Neb1jbYNv3817mUxfH1xYEmtXx57XO3rTpZ7TIzf/DKWaDRdi+ON0dGHvTFFqmBvh526Dr5s1jdzEAMnb3qJcQUS6UsXluAyuxKZzOS6dixH3uPTliwB4ztiE1Fgsd5kaSWnibsuApq70b+JW5otlbKqStWeiWX8uhsxcMbCyMJYxrKUnr7T1euqNC8vDk5wmexx5Gi1vr7vIwRuJGMulLB/rT5f6ZetVWHE8gm9238DSRM6+GZ0qZBBbHNfiMxi05BQancCikc3K7bf2VBEVBWPGwJAhMGPGE9uMxx2TGq2O/r+c5Oa9rGdC4iBHpaXdvEOkKdX8NrpFqT2ilcFnmy7w1TCxZygzMwsrq/Jdw7Q6gf6/nODG3SyGtfTgh6FNDbmZTy2KPA2nb6dw9FYiBy9Hce6LF6uDIUPwcDAkl0rQ6AS9jSAL5N7lUgnr3wgot1BdSeRptMzfH8qqk5GFTuq1HS14rb03Q1p4PNJYptHquBiTzrV40bH++p0MwhKzC5ctioWxjIau1rjZmqHR6VBpBDQ6HWqtDrVWyP+qQ6MVUOV/zVVrSSzS8wOgU+USu3AoADPXBdKyrhtNPWyp52xZ5l6C7DwNh28msiP4DodvJlCw2V725oxrW4uhLT2e66ZorVbL4cOHAejWrVul2XGUFZVGx9t/X+RASALGMikrxrWkcxkyRFqdwPBlgQRFp9GhrgNrJ7Q2ePbm50NhLDgQirWpnP0zOpepB+2pRaMR+4ek+efRnTvg4CA2GlcRJR2TZyJSGLn8DFIJ7HynI75uBrKz0WjEHqqAAMOsL5/5+2/xy+FwWtS0Zcvk9gZdtz7EJabh6SzeJ/4+dYtR7cqv1VSw7wH+mtCmzCXsZ52MjAxsbW2rgyFD8HAwNLiFO1suxmMil7J/RqdS3dQFQWDq+mD+u3wHZ2sTdk3taHA/pgLi03P443QU/5yLISs/S2JrbsToNjV5pW2tEnVcctVaQhOyuH4nszBIunkv8xG7kbLg7WBBEw8bmnjYUt9eTkdfsfRRnmxGRo6aQzcS2H31HsfDkgonzAA6+jgwvl0tutZ/NBtWTdWi0uiY8vdF9ockYGUiZ9uU9tQpQ3YuIimbvj+fIFet45uX/BjdxrD2C2qtOM5/JS6j0vqTnijJyaIJoacnbN4MNuVvwjUkb6+7yK6rd2ntbceGNwIqvs+TksReqdhYUXfI09MwG4oo6tph3hFUWh2b9WiJMDRFs2xtvtjJsY96V2hyt8eCY4QnZmMil7J3Wke8n8Ns+eOobqA2IAU7s+aMf5EYm2MkldDYw4aLMel6P70q8v2YbicpaFHTlj9ea41VJWYusvM0bLwQy++noohJFfV0jGQSBjRx47UO3vi563eB1Gh1RCYruHYng5RsFcZyKUaygpcEI5kUuVSCkVyK8UPfe9Ywf0DjqDylnXSliv0hCey5epeT4Q9OD3g7WNC3sQuDmrnj4/xsCos9r6g0OkavPMP5qDTqOFqw7e32ZTreV5+M5MudIZgby9g3vZNhRPuKULQ/ae7gxoxqbdj+pCfKyZPQuzcoFNCkCezZI3rqPGHi0pR0n3+MPI2BfMsEQRyzP34c3noLfv3VINtZwHsbL7MxKI5+jV1ZMrqFQdddGkWvlZ4zNvHZS80r1GKxOSiOdzdeBsDKVM76NwJo5PZ0BMmVTXUwZEAKduYn/55lbVASAPWcLYlOUZKn0bFgeFMGtyhd7yIsIYvBv50mK1dD8/yAqLJLOVqd6Lm1+mQk56JSC98PqG3H6x1q061B1WVS9A2GUrLz2B+SwO6rdwm8nYKmSOnOx8mSPo1d6dvYhfrOVs/XE30Z0Gg07Nu3D4BevXpVmR1HWUjMyuXFX05xLzOXHg2dWT7WX+9jTacTGLn8DOeiUmlb2551r7cx+HG68kQEX++6gYWxjL2VEHA9UYKCRAuPhARRqXnvXmhYubo5+hyTPx0M5aeDYYbzLTt6FLp2rRRV6pv3Mun90wmkEjj2XtcqPT4eDobsbK04Prtrue8XGTlqmn6xv/BnSxMZv79afiudZ4nqYMiAFOzMu0kpDFp+iXuZ4ghfuzr2nL6dgp2FMQdndtarU/9qXAZjVp0VD04PG/6c0KbKFHEvx6az6mQku67eLewN8rQzo1UtOxq729A4v3G6srR3iguGctVawhKyCbmbQcidTK7dySQ4Nv2B3qUGLlb0bexKHz+X6gxQPk9jA3VxBMemM3xZICqNjuk9fJjeQ//eh+gUBb1/OkGOWlspLtw6ncDIFWc4F5lKa2871k8MeL5KrJGRYoYoNFRUqt6xAzp0qLSP0+eYzFFp6bHgGPHpOYbzLStQpa4Ez7Kxq85yIiyZ19p789kAX4OuuySK7ssu3+4hMkPL5C51mN27/IbG3X88yu1kReHPpkZSfhvt/1wIMpZEdTBkQIruzHNxObz+5wUAJICnnTkxqUo6+jjw+/hWejUCX4sXA6J0pZrG7jasndC6Sm0g7qTn8EdgFP+cvT99VYBUAnWdLPFzt6GJuw2NPWzwdbUxiPN0XFI6Pbt1JUetpf9HywhNUXE7SVFs07afuzV9/MQA6HmcBqsoOTk5dOrUCYDjx48/8dH6kihw5AZY8UrLYqUfHsefgVF8tv06ZkYy9k7vWGp/XlmJSVHSe9FxlCot7/duwOsdvZ8bcTpA7B8aMADOnBHH0Ldsgb59K+Wj9D0md125y9t/X8RELuXQu53xqFHBjMuJE9Cpk5gdCgsTFboNxLHQJMatPoeFsYzTH3avsgfXovvy82UbmfLvdUyNpByd1bXcDf/vb7rChguxD7wnl0qYP7zp8zFV+RiqgyED8vDOnLT2Avuui5Lg7rZmpCpU5Ki1ZZJwD7mTyZhVZ0lVqPB1tWbd620qrr9RRhR5Gs5EpHA1PoNr8Rlcict4ZAIMxADJx8kKP3cbGrpaYSSTotUJ6AQBrU5AKwjodAJaHfe/z/+q1gpEJmdz425WYUbtYWqYG+HrZo2vqzW+bta09LJ7vkoW1fD59mv8ERiNpYmcbW+319toUacTGL3yLIERKbSuZcf6NwyfvSnQlQGQSSW42ZriZWdBTXtzvOzM8bI3p6adBV725lg8RpE4V60lIklBWGIWoQlZhCZk06+xK4OaPwU3GaUSRo2CmzfhwAGDG5yWFUEQS6BnI1Pp29iFX0cbwLesRw84dAgmThQ92wyEIAj0+uk4oQnZvNuzHu909zHYusuyDcOWBnIhOo2RrTyZN6R8fpcbzsfw/uarj7xvY2bErqkdKh6UPqVUB0MG5OGdeTcjh+4/HkWZP2XV2ceBY2HJAGXSLrl1L4vRK8+QnK2igYsV615v88RVcRMzc7maHxhdi8/gSnzGA7YYFaWWvfkDgU9DV2tcrCtP6LGapwO1VsfolWc5F5lKbQcLtpVBkT02VUnvn46jUGkrRRVYEAQ+33Gdfy/Eljo5aW9hjJO1KZYmMqQSCblqLSnZKuLTc3j4Irp0jD+9/Z4S2w+NRhRmtC+7mW5lcONuJv1+NqBv2alTYgmwZ0+xYdyAUhPbg+OZtj4Ya1M5Jz/o9kQkO4KiUxnyWyBSCeyf0alcTvShCVm8sPD4A+818bBhzautn1sxRqgOhgxKcTtz1clIvtoZUvg7/Zu4svPKXUyNpGx6s53e01rhiVmMWnGWpKw86jlbsu71gAcsNZ4GEjJzuRqXwdX4DMKTskEAqVSCTFLwVYJMKkEqlSCVgEwieeB99xpm+Lpa08DVusq9fqp5ekjOzmPALye5m5FL9wZOrHilpd5ZnoLsjamRlN1TO1ZK6VQQBBKz8ohOURKdoiAmVSl+n6okJkVBmlJdpvX9Mqo5PRo6G6TEbHC2bhWtO5o1e2Kb8Om2a6w9E00DFyt2Te1YcaXnS5egeXPDbFwRtDoxOxSemM2MHvWY1qPqs0MAb/x5gf0hCfT0dWbFKy3LvLxOJ9D0y/1k5WrwcbYkLCEbqQT+ndS2UrTvnhaqgyEDUtzO1Gh1jFl1ttAbzNHSmHouVpwKT8Hd1owdU9rrneW5nZTNqOVnSMzKo66TJX+/3ganEvSAnlWUSiW+vmITYkhICObmz2datirIycmhR48eABw8ePCp7hkqypW4dIYuFRuqp3ary8wX6uu1nCAIjF11jpPhyfh71eDfSW2r3CYhI0dNTIqSqBRFoSfS40q/BUgk4FHDDB8nK3ycLGlX1+HJ28Ls3AkDB4qijCdOiB5fBqCsx2SaQvQty8hR8+1LjXm5zdMrb7Dj8h2m/nMJK1M5J9/vVum9Q8VdK8MTs3lh4TF0Amx6s3wBzKfbrtHRx4Gevs7M2BDMtuA7uNuasXtaxyrrh6pqyhIMPTPdgt988w3t2rXD3NwcW1tbvZYZP348EonkgVeAAdRK5TIpi19ugXN+FicpW4WliRxvBwvi03N4+++LqLX6iRXWcbRkw6S2uNqYEp6YzcjlZ7iXUfJF9llEEASio6OJjo6mOv6uGDqdjtOnT3P69Gl0uvKLYlY1TTxsmfuSaMfw8+Fw9l67p9dyEomE74Y2wdJETlB0GqtPRlbmZhaLjZkRjT1sGNDUjXlDmnDmo+7smtqBfo1deDi0kUsl2JobIQgQm5rD4ZuJLDsewbjV5+i+4BhrTkWSlVu2TJPB6NgRmjaFxESx1yYmxiCrLesxWcPCmGn5PTgLDtwy3P5IToZNmwyzrnz6NXbFx8mSrFwNv5+q/GOvuGtlXSdLRrQShSXn7rlZrmvoV4P8eKGRCxKJhK8G+VHTzpz49Bw+3nq1+prMMxQMqVQqhg0bxltvvVWm5Xr37s3du3cLX7t37zbI9jhYmrB0rD/y/Ke8fdcTGNnKEwtjGWciUvlm1w291+XtYMGGN9ribmtGRLKCkcsDuZvxqHdYNdUAmJiYsHXrVrZu3YpJJZhVViZD/D14tX0tAN79N5iwhCy9lnO3NeOTfuKAwoIDocSlKStrE/WmkZsNS0b7c/S9LoxuU7PQWLiZpy2XPu3JhU968M/EAL4a5MfIVp5YmciJTFYw578QAr49xOfbr3E7KbuUTzEwNjai7lD9+qJ6c8+eoh5RBSnPMTkmwAtvBwuSs1UsOXK7wtvA3bti+W/kSFF3yEDIpJLC8tiqk5Fk5DyZQHZ6j3qYGkkJik7jQEjF/mZWpkYsGtkMmVTCzit32RQUZ6CtfHZ55spka9asYfr06aSnp5f6u+PHjyc9PZ1t27aV+/NKS7MVOAMDmBvL+HyAb2HX/g9DmzCspf4y8bGpSkatOENcWg417cz5540Ag5tVPimeFW2caioftVbH2Pwys7eDqFCtT5q+6CRS9wZOrBzX8qlqvk/MyuX3U1HkqLTMebHRI/+enadhy8U4/jgdxe2k+5ovneo58mq7WnSu51h1JbTYWLHpOCZGzBQdPQp6ZtwNyYGQBCb+eQFjmThqX+FJ0r59xSbqceNgzRqDbCOIPTd9Fp3gVkKW4TSSHkNJ18of9t1kyZHb1HG0YN/0TmX2dXyYJUfC+WHfLcyNZex8p8NzJ2XyXJbJysvRo0dxcnKiXr16TJw4kcTExBJ/Py8vj8zMzAdeJTGqdU2G+4sK1EqVlo0X4grTvx9vu0ZwbLre2+ppZ876NwKoma9fNGJZILGpT/4JuJpqDImRTMqSl1vgbmtGZLKC6esvFas39TASiYRvXvLDSCbh0M3EQomLpwUnK1Pe792Azx8j0GdpIueVtrU4OLMzaye0pnsDJyQSOB6axKtrztNt/lFWnYwksypKaJ6ecPAgODvD5cuiYnVO1WejezR0ol0de1RaHfP23Kz4Cr/4Qvy6di3culXx9eUjLZId+v1kJBllbKg3FJM616GGuRG3kxRsNEA2583OdQiobYdSpWXa+uAHPB//33iug6E+ffqwbt06Dh8+zPz58zl//jzdunUjL+/x4+Jz587Fxsam8OWphwHgl4P8qO8sRtQXotMAgZ6+zqg0OiatvUBilv49QB41zNkwKYBa9ubEpeUwYlkgl2LS9F6+mucfrVbL0aNHOXr0KFqt9klvTrmwtzRh2Vh/TORSjtxKYuGBUL2Wq+tkxaROdQCYs+M62XmaUpaoekrLVkkkEjr6OLJqfCuOzurC6x28sTKVE5Wi5KudYgnt023XCE/Ur4RYbnx8YP9+MSPk7y8KM5aT8h6TEomET/r5IpHArqt3OV/ENqhctGoFL74IOh3MmVOxdT1E70YuNHCxIitPw8qTEQZdt75YmxoxpZsYlC08EEqOqmLnv0wqYeGIZtiaG3E1PoP5+w0XQD5rPNFgaM6cOY80OD/8unDhQrnXP2LECPr164efnx8DBgxgz549hIaGsmvXrscu8+GHH5KRkVH4io0VVTvTFKrHLmNqJHq9WOSP0S46FE63+o7UdbIkITOPt/66WKaI29XGjA2T2lLb0YI7GbkMXRrIL4fC9Hp6rub5Jzc3l65du9K1a1dyc5/dZns/dxu+yxeRW3wknD1X7+q13JRudfGyN+deZi4L9usXRD2teNlb8El/X8582J2vB/nh42SJUqVl7Zloeiw4zuxNl1FUZsDXpImYGVq0CKTlvx1U5Jj0dbNmRH47wVc7Q9BV9Dr35Zfi1/Xr4cqViq2rCFKphOkF2aFTUaQrH39PqEzGBNTEo4YZiVl5rDZAQ7erjVnhebjseAQnwpIqvM5nkScaDE2ZMoUbN26U+PLz8zPY57m6uuLl5UVYWNhjf8fExARra+sHXgBf7rxeYse9m60ZK8bd13/4ZNt13upcGytTcQJmzn/Xy7StztambH2rPf2buKLVCcw/EPpMl80kEgm+vr74+vo+VX0ezyLP074c1NydCflCiu9uvEx0iqKUJcSHjy8HiteFNacjuRafUanbWBVYmMgZE+DF/hmd+Pv1NvT0dUYigX8vxNH/l5NciUuvvA+vWVPUAQBQqyE4uMyrqOgxOfOFelgYy7gSl8H2y/FlXv4BmjaFESPE7z/7rGLreogXfF1o6GpNdp6GFScqJztU2r40kcuYlS9LsfTobVJLeFDXl16NXBidL28w89/LpGQbTmz3WeGJBkMODg40aNCgxJepqeE0d1JSUoiNjcXV1bXMyx4ISWTzxZJP0nZ1HPioj2impxUEPt1+nfd61Ucigb/PxrDubHSZPtPG3IhfRjVnwfCmWJrIuRCdRp9FJ9h6Ke6ZG4U0Nzfn+vXrXL9+vVpjqII8b/vywz4NaO0t9i28++9lvTKgnes50r+JKzoBPtp69bnJmkokEtrVdWDFKy35Z2IArjamRCYrGPzraZYeu13xrElJZGRAr17i+P31sj28VfSYdLIyZXLXugB8v/dWhcs/zJkDpqbg5gYGLCVLpZLCntA1p6IMEog8jD778sWmbvi6WpOVp2HxYcNMzn3SzxcfJ0uSsvJ4b9OVZ+4eU1GemZ6hmJgYgoODiYmJQavVEhwcTHBwMNnZ90dTGzRowNatWwGxC3/WrFkEBgYSFRXF0aNHGTBgAA4ODrz00kvl2oY5O66XmpmZ2Kl2oQy/UqVl8eFwJnWqXbh8WWviEomEwS082DOtI/5eNcjO0zBjw2Wmrg9+YiOe1VRjSOQyKfOH3Q/4lx3Xb8z6s/6+WJnIuRKXUeYHjWeBgNr27JnWkb6NXdDoBObtucnY1WcrT4fM3BwEAbKzYdAgSKvaXsUJHbxxtzXjbkYuy49XMOvSoAHEx8OvvxrUngOgVyNnfF2tUai0lZYdKg2pVMIH+Q/ea89EEZVceka1NMyMZfw8qjnGcimHbybyZ+Dzd06VxDMTDH322Wc0b96czz//nOzsbJo3b07z5s0f6Cm6desWGRliylwmk3H16lUGDhxIvXr1GDduHPXq1SMwMBArq7J7u7SoaUt2noaZ/waX+BQqkUiYP6wpdRzFccjErDwOhiTwQiNn1FqBt/66WC4NIU87cza8EcDMnvWQSSX8d/kOfRed4GxESpnXVU01TxueduaFU1gLD4Ry/U7ppS8na1Nm9xbLBT/svUVCKYrQzyK25sYsebkF3w1pjJmRjFPhKfRZdJz91/UTrCwTRkawcaPo/B4eLur1aKquQd3USFZ4g1967HbFgz67yrGZkEju9w79cbpyskP60NHHgY4+Dqi1Ah9suWKQrGFDV+vC6sY3u29w427J09TPE89MMLRmzRoEQXjk1aVLl8LfEQSB8ePHA2BmZsa+fftITExEpVIRHR3NmjVr9JoOK45vX2qMpYmc81GlP7lamMhZOa4VJnKx3huepCBNoaK+ixXJ2Xm8uTaoXE2RcpmUqd192PhmW7zsRfXQkSvO8P3em0/9SKRSqaRRo0Y0atQIpfLZ7Ht6WsjJyaFnz5707NmTnCcwDl1ZDPX34AVf8aFh5obL5KpLL2+83MaLpp62ZOVp+LKIX+DzhEQiYUSrmuyc2gE/d2vSlGreWBvEx1uvVryc9DAODrBtG5iZiZNmH36o12KGOib7N3HF36sGOWotP+wz0GRTcDB89JGY9TIQPX2d8XO3RqnSVjyL9RD6XislEgnfDBKD5DMRqaw7Zxg18XHtatGtgZNom/PPJb3Ow+eBZyYYetJ4PPTkWlrTpreDBYtG3jcOPB+Vhou1CbZmRlyOy2D0yrPlnkZoUbMGu6Z2ZJi/B4IAvx69zZDfTle9mm0ZEASBkJAQQkJC/u9q0YZGp9Nx8OBBDh48+EzZcZSGRCJh7uDGOFgacyshS68xX5lUwrcv+SGVwK4rdzl6q2QdsWeZOo6WbHmrfWHZfd3ZGAYsPknIHQM/vTdrdl+w8McfYd26Uhcx1DEpkUj4tL94nd18MY6rcRVsjk9Ph3btYO5cOHCgYusqgkQiYXp3UXjxz8AogzYcl+VaWdPevDA7Om/3DYMos0skEn4Y2gRHKxPCErP5etfz+ZDxMNXBUBkY6u9B70YuqLUC09aXHjH39nOluadt4c/HQpPxc7fG1tyI4Nh0Riw7Q2I5U/uWJnJ+GNaUX0e3wMZM1Ijo//NJ/jkXUx1sPOeYmJjw119/8ddffz1zdhylYW9pwrzB4pjvypORnNGjDNzIzYZX24sTaZ9uv/ZcP8kay6V82Lchaye0xsnKhPDEbAYtOcWqk5GGba4ePvx+VmjGDFCU3JNiyGOymactg5q5AeKofYWuZ7a2UGDh9PHHBs0OdW/oRBMPm0rJDpWFcW1r0dKrBgqVlg+3GMZnzN7ShAXDmwLw15kY9lVGWfYpozoYKgMSiYRv859cbycp+HzHtVKX+XZw4wd+PhmegpedOY5WJtxKyGJYBcfl+zZ2Ze/0jrSrY0+OWjwZ3lgbVO4gq5qnH7lczujRoxk9ejRyufxJb47B6eHrzMhWnggCvPvvZb1MPGf2rIerjSmxqTn8cvjx0hnPCx19HNkzrSM9Gjqh0ur4amcIr645T1KWAUeiv/oKJk+GI0egFPscQx+Ts3s3wNRIyrmoVL0NfR/L+++L23/hAmzfXuFtK6Bo79CfgdEkP6FxdKlUwvdDm2Ail3IiLJl/L8QaZL0dfRwLs5CzN10hVE8fwWeV6mCojNhZGPPjMDFi3nA+jpWlTBM0dLWmkduDniiX4zIAAWdrE6JTlAxdelpvw8ricLUx468Jbfi4b0OMZBIOhCTQ4bsjzN50uULrraaaJ8Un/X3xtDMjPj2HL/4rPU1vYSIv9ANbfjzi/+K4t7c0YcUrLflqYCNM5FKOhSbRZ9FxjhiqVCiTwZIl0OhRn7XKxs3WjDc6ijfiuXtukqepQLbPyQmmTRO///RTUZ3aQHSt70RTT1ty1FqWHTOA2Ww5qe1oybsviGW7r3feMNjE4bsv1Kd5TVsyctSMXXX2mdW504fqYKgcdKnvRGtvcVLh6103+PlgWImpyVGtaz7yXlKWiqTMPJytTUjIzGP4skAul8HH7GGkUgkTO9Vm29vt8feqgUqr498LcfRceJzX1pwn8HZKdfmsklCqNKw6GVkm25WKoNVqOX/+POfPn39m7ThKw9JEzoLhzZBIYFNQnF7ZgV6NXOjRUGzA/njrtcrV5HlKkEgkjG1bi//e6UADFyuSs1VMWHOe7cEVFC4sjlOnYPHiYv+pMo7JSZ3r4GRlQkyqkjWnoiq2slmzwMYGrl2DDRsMsn3wYHZo7ZnoKrsGFMeEDrULhwk+2mqYcpmxXMrv41tRz1l0Uxi98uxzW3WoDobKyff58uUACw6G8ubaoMem8wc0dcNE/uiulkrFMfymnrakKdW8vOIMgbcrNirfyM2GzW+1Y/NbbendyAWJBA7fTGTUijO8uPgUOy7fQaN9fppunyQZSjU/Hwqj/bzDfLUzhPDEqmlgz83NpXXr1rRu3fqZtuMojVa17Ap9yD7aelWvG82cF30xM5JxLiqVTQYwsnxWqOdsxba32zPU3wOdADM2BBs2ILp2DTp1EjMsJ08+8s+VcUxamMh5r5fYHLz4cHjFylA1aogBEcDnnxtUMqBLPUeaedqSq9ax7NiT6x2SScXGZ2OZqBO0zUB/f1tzY9ZOaFNoID521bknZkVSmVQHQ+WkloMFPvnmrAD7QhJ4cfEpbt17ND1vY2ZEn3whxqJodAKzN1/hpxFNaVfHHoVKy7jfz3EwpOJu3P5ediwd68+Rd7swNsALUyMpV+MzmPrPJTr/ILpjV6XJpUQiwcvLCy8vr2feQiIxK5e5e27Qbt4hFhwIJS3fwToq+cEUcq5aS2JWLuGJ2VyKSeNcZCrRKYoKN/g+T/uyNGb09KGhqzWpChUfbi79adejhjkzeopP6t/uufHENGCeBKZGMr4f0oSRrTwNHxD5+cHo0WKJ6eWXHxFkrKxjckgLD/zcRaXlnw5W0Idu2jTx/zFlikFLZUWzQ3+dia5w5qQi+7KesxVTu4tK3nN2hBgsU+VsbcpfE9rglN/rOv7385XrmfcEkAjVtZMSyczMxMbGhoyMjEKfsgJ+O3qb7/befOA9MyMZ3w7246XmHg+8fyo8mdErz2JrbsSMHvVYcOAWGTniwdTQxYp1r7fh/S1XORCSgEwq4cdhTR5ZR0VIVahYGxgtjoHm3yCsTeWMDvBifLtaOFsbzvbkeUSp0nA2IpXfT0Vy6nZKscKbjlYmWJnIycxVk5mjQVVCBs7Owhhna1NcbUxxsTHF1doUZxvxZ1cbU5ytTbEyNarM/9Izw617WQz45SQqrY55gxszspiyc1HUWh0DfjnJzXtZDPX3KOzx+39BpxP4aOtV1p+PRSqBhSOaMbCZe8VXnJUFLVqIgoxDhogCjVUQjJ+JSGHk8jNIJbB3eifqOZddNLcQQaiUbRYEgcG/neZSTDqvtffms3wZlieBWqtj0JJTXL+TSa9Gziwd42+wADU0IYvhywJJV6ppX9eeVeNaYWpkWIVvQ1LS/fthqoOhUihpZ0YkZdNt/rFil5vRox7T8p8WQLxAvbUuiE/6+eJpZ05oQhYjl58pfHINqG3Hylda8tmO62zJ90D7cmAjXmlby6D/n1y1li0X41l5IoKIfAl3I5mEgc3cmdixNvVdKnChecZR5GmITlESlaIQX8kKolKUhCdmlzvDIJGAlYkcazMjZFIJCZm55Kr1eyq1NJGLgZKNKZ3rOTKgqdv/bdC6/Phtvt19EwtjGXumdaKmfcn+Vxdj0hjy22kEAda/EUBAbfsq2tKnA51O4MMtV9lwQQyIfhrZnBebulV8xRcuQNu2Yplp+XKYOLHi69SDSWsvsO96Ap3qOfLna62r5DPLyvHQJF5ZfU6c6prdFacneK6G3MnkxcUn0egEFr/cnP5NDPC3zyc4Np3RK86gUGl5wdeZX0e3QC57OotM1cGQASltZ/ZccIywh3pF+jR2Ye5LjbE1Ny5x3VHJCoYtDSQpvxbeyM2a1eNb8dvR26w5HQXArBfq8XbXugYvh+h0AgdvJLDiRATno+6nvJt42ODvVQN/rxq09LLDxeb5uvnmqrVEpSiISHow4IlKVpBYyliyXCpBEEQT3uJwtzVj4YhmWJmKwY+1qRwLYzlS6f2/nSAIZOSouZuRy73MXO5l5IrfZ+RwLzOPexk53M3IJSv30RS0RALt6tgzsJk7vf1csP4/yhxpdQKjVpzhXGQqLb1qsGFSW2TSks+Jj7deZd3ZGOo4WrB7WkdM5E/vE2xloNOJNg3/XohDKoFFI5szwBAB0Q8/wOzZokr1hQvgW/lZkKhkBT0XHkOtFfj91VZ0re9U/pUJAmzaBD//DHv2gKVl6cvotVqBoUsDCYpOY3y7WoXTjU+KBQdC+flQGHYWxhyY0Ql7S8Npkp2+ncz438+j0ugY3MKdH4c2feA697RQHQwZkNJ25o/7brH4yIOuwS+39uSblxrrFcDEp+cw+NdTJGSKN2InKxPWvNqKvdcT+PmQqJfyRqfafNinQaX1h1yMSWPliQj2XrvHw9Ufd1uzwuDI36sGDVysyvUUkJOTQ6dOnQA4fvw4ZmZmhtj0YhEEgYTMPCKSsrmdrOB2YjYRyQoikrKJT88pUXethrkRtRwsqGWf/3IwL/zextwIQRBIzlYRlpBFeFI24YnZhCVkE5aYTVaumhtf9jbIRUGRpykMlkITsth55S5B0WLQKmhUpPz3PY6WJixavoZeTT3/L270salK+iw6QXaehtm96zO5S90Sfz9Dqab7gqMkZ6uY9UI9pnTzKfH3n0d0OoH3N19hY1AcMqmERSObVTxLoNNB796iovN778H335Obm8vIkSMBWL9+Paamhn+I+mZXCCtORFLXyZI90zpiVN5shFotBnDh4fDFF/DZZwbbxpNhyYxZdRZjuZTj73Ut18Okoa6VKo1YLr6VkMWApm78Mqp56QuVgQMhCbz5VxBancD4drX4fIDvU9fDWB0MGZDSdubVuAwGLD5JG287XmzqxifbryEIogjc1O76XXwTM3MZviyQqBSxAdfUSMovo1oQk6rkq3y/pZGtxACrtKfhinAvI5ezkSlcjE7jQnQaN+5mPhIcWRjLaFbTFn8vO/y9atC8pq1eGQqFQoFl/hNYdnY2FqWIuJWGIAhk5mqIS1NyO0kMdCKSFEQkZxOZpEBRgmeTtamc2o6W1HawwKuYgKe8pCtVWJsaVdoTUmyqkh2X77D5TDhHPuoDgOeMTdhaW9K3sSsvNnMjwNv+qXxCMxQbL8Ty3qYrGMkkbHu7PY3cbEr8/e3B8UxbH4yxXMq619vQqlblmHc+zejyBzU25QdEP49sTr8mrhVb6b178N9/8PrrIJEY/PwujowcNV1/PEqqQlXxFoING0QjWktLiIgAR0eDbKMgCAxfFsj5qDRGt6nJNy81Ln2hhzDkvrwSl85Lv55GqxNYNtafXo0eHeSpCFsvxTFjw2UApnX3YUbPegZdf0WpDoYMSGk7UxAE/jkXy4hWnsikEtYGRvHp9usAfDekMSNaldzsWUCqQsXLK89w8644jSYB3u/TADtzIz7YchWdAP0auzJ/eNMqa1hT5GkIjk0nKD84uhSdRtZDEwQSCdR3tqKZpy01LIyxNJFjbizDwliOuYkMCxOxVIQmlzb1xCbOhJR0HGytHykfZeVpSMlWkarIIzlbRapCfCVn55GqUJGSrSJFIf57qkKFWvv4Q1cmlVDTzpzaDhbUcRIDn9qOltR2tMDewvipe4IpCyqVirmLlhIcm068YxsSFff/Ji7WprzYzI2BzdzwdbV+pv+fxSEIApPWBrE/JIH6zlZsn9K+xPNBEAReXXOeo7eSMJZLWTC8qUH7J54VtDqB2ZuusPmiAQMiEEtON2+irluXNfl+ZuPHj8fIqHJKuAXX1xrmRhyd1bX8Dy86HbRqBRcvilNmP/1ksG0s2vC9Z1qnMvdhGjqw/G7vTX47ehtHKxMOzOhUavtGWfnjdBSf7xDveZ/292VCB2+Drr8iVAdDBqQsO7OAH/bdZMmR28ikEla84k+3Bs76fVaumvGrz3ExJr3wvSEtPOhS34F3/72CSqujtoMFPwxrgr9X1T/hanUCYYlZBEWnERSVRlBMGtEp+imS6lS5xC4cCojZDKmxKebGMsyN5cikkKZQlzh99ThqmBsVZnmKBj017cwxLkbb6XlDpxM4G5nK9uB4dl+9S2aRXqO6TpYM8/dgfPtaz1UZLSU7j14/HSc5W8UbnWrzUd+GJf5+jkrL9A2X2HddlKz4sE8D3uhU+7kLFEtDqxN4b9NltlyMRyaV8Muo5vRtbICAaOhQMVO0fj14GG4Ctjg0Wh19Fp0gLDGbCR28C01dy8WBA/DCC2BsDLduQa1aBtvOgobvDnUdWDuhdZmONUMHQ7lqLf1+PsHtJAWDW7izYHizCq2vOH45FMb8A6L0wfdDmzC8pafBP6M8VAdDBqQ8wZAgCMzaKD6FmRpJ+WdiAM1r1tBrWaVKw8Q/L3Aq/L74YkuvGkzo4M2c/66TkJmHRAKvtvNmVq96mBs/WW+qxKxcLkanE3Ing6w8Dco8LQqVBqVKS3aeBqVKfC8zO4ugL14E7gdDxWFhLMPO0hh7CxPsLYyxtzTG7oHvjXGwNMHOQvz+aR7rrGryNFqO3kpie3A8B28kotKIwWUdRwvmDWnyXJWIDoYk8PqfF5BI4J+JpU+LaXUCX+8K4fd8JeOxAV58PsD3qZ2CqSy0OoH3Nl5myyUxIFo8qjl9KhoQtW4N58+LpaYbN8C+cif3joUmMW71OeRSCftndKK2YwUaoHv0gEOHYOxY+PNPg21jTIqSHguOodLqWPFKS3r66vdADIYPhgCCotMYulScrlw9vqXeD+j6IggC3+y6wcqTkUgl8OvoFvT2M0CgXUGqgyEDUp5gCESth9f/uMCx0CTsLIzZ9GZbvU/aXLWWt9dd5NDN+x5D7rZmLBrZjA3nY9mYr6zrZW/Od0OaPBNjw0VP8KTUDDAyKQyctDqBGhbG2FcHN3qh0+m4ceMGAA0bNkQqffSGnpmrZteVu8zfH1qo3Ds2wIvZves/N/pFH2y+wvrzsbjbmrF3eke9/l+rTkby9a4QBAF6NHTi51HNn/gDRVVTNCCSSyUsfrl5xW5cFy+i8/fnBoCVFQ3370caEGCozS2WV38/x5FbSfRo6MzKcS3Lv6ILF8RymUQCoaFQt+Sm/LIwb89Nlh67TS17c/bN6KR3dray+q++3hnCypORuFibsn9mJ4NPowqCwAebRTkHY5mUVeNb0tHHML1Y5aUs9+//r8eiKsRIJuXX0S1o4mFDqkLFuN/P6a0GamokY+lY/wdq+vHpOYxbfY7efi6sebUVrjamRKcoGbn8DJ9uu/ZMqYGaGctwsDShpr05DV2t8XO3wd3WrDoQ0pOcnBz8/Pzw8/MjJyen2N+xNjViVOuaHJrZmRH5Keu1Z6LpueC4QRTOnwaKmrkWDBqUxoQO3vz6cgtM5FIO3khk5PIzhnV6fwaQSSX8MKwpLzV3R6MTmPL3pYo5w7doQU7z5vgBfllZ5HToAAsXUuLYZgX5uF9DZFIJB28kcDo8ufwratkSPvkE9u6FOnUMt4HAlG51cbA0ISpFyR/5UilPkndfqE8te3PuZeby7a4bBl+/RCLh28GN6dvYBZVWxxt/BhVOwD4LVAdDlYiFiZzV41vhZW9ObGoOr605r7cFhpFMys8jmzPU/34NXqHS8vqfFwhNyGLv9I6Man3/JvfCwuOcDKvARaEKcHBwwMHB4UlvxnOBvvvSxtyI74Y24e/X2+CVfyF8/c8LTPn74jMfBFiayJk/TDRz/fdCnN5BXp/Grvw9MYAa5kZcicvgpV9PVZmv3NOCqHLflEHN3PIDoosVC4imT8cBcADQamHmTBg0CFJTDbPBD1HXyYoxbcThlC93hhSrCK83X30l9g4ZuIfM0kTO7HxvtV8Olc1brTKulWbGMr7L99Rcfz6WE2FJBl0/iMfVwhHN6OjjQI5ay6u/n+NKXLrBP6cyqC6TlUJ5y2RFiU5RMPjX06QoVHT0cWDVuFZ6N/fqdAJz/rvOn4HRD7w/zN+Dr1/y43xkGu9vvkJ8upghGNXakw/7Nvy/EuSrRj9yVFp+OhTKyhORaHUCNmZGfNKvIUP9PZ7pZuJvd99g+fEIHCxN2D+jE3YW+k3LRCYrePX3c0SlKLExM2L5WH/aPAMlZ0Oi1QnM/DeY7cF3kEslLB3jT48y9LcUolCIPUMPZypr1hQbq9u2NcwGFyFNoaLzD0fIzNUwd3BjRpVi06IXqamiqauBzgedTuDFJSe5Fp/JqNY1mTu47KP2hubz7df4IzAad1sz9s3ohKWJ4cvESpWGsavOERSdholcyteD/Bj2BJqqq8tkTxle9hb8/morzI1lnAhL5v3NV9Dp+SQjlUr44sVGLBzRFCuT+2WkjUFxjFl5loauVuyb0YlX2noB8M+5WHotPM7RW4mPW2U1/6eYGcv4sE9Dtr/dHl9XazJy1Ly36QpjV50jRs+pwKeRmT3rUc/ZkuTsPD7eWrqZawHeDhZsfqsdzWvakpGjZuyqc+y4fKeSt/bpQiaVMH9YUwbmZ4imrr9EaMKjZtOlYmEBAwY8+n5MDIwYUSkZohoWxkzrIerazN9/i6xcdcVWOH8+eHvDjh0G2DoRqVTCZ/1FJeoN52MIuZNpsHWXl9m9G+BRQywvf7btmt7nS1kw/197dx4WZdU+cPw7w76TIOACgqDgjoARuWHuWWr1miZqlppm5lbY22v9sjTN1LTctdKyXNJcstxzTVMRkNQURWSRRVbZhBmYeX5/DIygqCwDg3I+1zUXzPbMmZlnnrnnnPvcx9iQdW90oqeXA4oiNcHb/mHmjgsoiqq3SHVNEsFQLWnf1JYVQT4YyGXsCE9g/v4rj75TMZlMxksdm3LovUB6eN5NSAuJyWTAN3+RkJnPZ4PasvmtZ2hmZ05SVgGj14Xw/tYIsu5U8wAhPHHaNrFh16TOfNDPCxNDOX9FpdF3yXG+PRFNURXKG+ibqZEBX73qjaFcxt6Lyew6X/GAxs7ShE3jnqFfG02ew+RN4aw8er1GviDqKkMDOYuGdCCguR13lCre+vFc1Y4bQ4fef9mAARAaCg1qZibjyGea4WZvQVqukuVHrldvY+npkJ0NH3ygGerTkafdGjCgfSPUEnz2+yW971sWJoYs+E8HDOQytocnsPZEdI08jrWpEWtH+TGtV0tkMvj5TBxDV58mKav8PEd9E8FQLQr0dOCL4m7S1ceiWXfyRqXu72htyvejO/Hlf9pjXpxsnJxdwAtLT7Ds8DW8nW3ZO6Urb3Z2QyaDbaE36b34WJ1ImM3PzycwMJDAwMAHJv0KFVNQUEBQUBBBQUEUFFQsKf9eRgZy3g50Z9/UbjzTvAH5hSrm/HGZl1eeqhO/XiurbRMbbcX3/9t1keSsir8upkYGLA/y4c3OmmJx8/dd4aOdFx/LwLCqDA3kLBvekSa2ZsSk32HKlvBK5eEUFBQQ9MsvBBkYUACa2j1ff62pUq2j6s7lMTaUM7O4ztT3f90gPqMaPZwzZmgqUkdGwrJlOmqhxof9NT88TkdnsP/Sw3OzauNYGeBux8cDNK/bvL1XOHKlZkYS5HIZU3q14PvRnbAxM+J8/G1e+Oav6iW91xCRM/QIusgZutfyI1Es2B+JTAZLX6vaisKJt/OZ/st5Tkff7X52tDZh5oDWvNi+EaGxmczY9o92ZfrB3o358PlWelv1vDbK9dcXNbG0yZaQeD7fc5mcgiIM5TLGd2/Ou8+1eKxm+BWp1Lyy6m8i4m/TtYU9P75ZuWJ3oPlCnV089f45LweWvtYRixrIqairLiZk8crKUyiK1Ezq4cH7xQnAj1Jmn2zRAotffoEOHWDTJmjZUjNrq4ZIksSI785wMiqdAe0asTzIp+ob++gj+PxzMDSEa9d0Wohx0YFIlh6OwrmBGQendX/gZ6u2jpWSJPG/HRfYdDYeKxNDdrzzLB4OlauWXRlx6XeY8FMo/yZlI5fBB/1qvvipyBmq4yYGujPymWaaNcy2RHA6Ov3Rd7pHY1szNo17hjmD22JsoNmZbmUrmLwpnJdXnEIul7FnSlfGd2uOXAY7zyfy7BeHGffjOY5cSane7AtBr4yNjVm8eDGLFy/G2Lj6pfVlMhnDiqfh92vjRJFaYvmR6zz/9Qkik6uQP6InJcM9JoZyTlxL46czcZXexptd3FgZ5IuJoZzDVzRT7ytaEuNJ0LaJDV+8oum9XnYkin0Xkyp0P+0++d//Ynz2LHh7a1aFDwqC11+HKvZgVoRMJuOjAa2Ry+CPC0mcvVGN/KSZM0Euh6IiTTHJpIo9/4qY0N0dR2sT4jPy+b6SowI1QSaT8enAtjzt1oAcRRFjfjjH7TvKGns8Fztztk98lld8mqKWND1Sb/8UVv1cLx0RPUOPUBM9Q6CZxfHOz2Hsu5SMlakhWycE4OVUte3HZ9zhvV8iOBtT9iAwsENjZvTzJC1Xyed//EtIzN2aD41tTHm1kzOv+jnT2LbmVpAvIXqGHh/7Libxf7sukZKjwMbMiHVvdMKnghXU64Lv/7rBZ7//i5mRAXundMXVvvL7WlhcJmN/OEdGnpImtmZ88Uo7nmluV/WV0h8zn+3+l+9P3sDc2ICd73SmpWMVegzS06FNG7h1S5OH88UXum9oKR9uv8Cms3G0a2LDrnc6V33B4tatNZW0AZo3h2PHdLbMyPawm0z/JQILYwOOvB+IQzk99bV9rEzPVTBo+UluZubT2cOO9W88XaP7uSRJ/Hwmjk93X6JQJeHe0ILVI31rpFdKVKDWoZoKhkBTaXrkd2cIicnE3tKY1SP98G1WtS8dtVpiw+lY5u25TEHR3VwHE0M5Y7u68XagB0m389kcEs+vYTe5XZwgKZdpcpmGdXLmOS+HGlueQARDj5fbd5S8uT6EsLjbmBkZsGaUr96ryVaUWi0R9O0Z/o5Ox7fZU/wyPgCDKnwxxqTl8cb6EG4UDzVbmRrSw9OBXq0d6d6yITZmT275iiKVmhHfneF0dAZu9hbsfKdz1Z7vrl2aekNyOZw8CTVYmTo1R0GPhUfJVRSxcEiHMjXaKuW99+Crr+6eb94cjhzRlAmoJrVa4qWVp4iIv80Q36YsGNLhvtvo41h5OSmbV1ae4o5SxesBzfh0UNsaf8ywuEwm/hRGcnYBFsYGLBjSQTdr5ZUigiEdqslgCCDrTiGvrT3Nv0nZGBvImfdyO16p6ocYzQE8eFtEmV4gAHtLE97v05Ihfs4UqtTsv5TMprNx9+UcDfF1ZmgnZ5wbmFe5DeURwZDuqNVq4uI0Q0AuLi7lLsehC3eURYzfEMqJa2kYGWhWOq/2Ola15GbmHfotOUGuoogP+nnxdmDVqgtn5ClZsD+SA5eSSc+7O4RgKJfh37wBvVo50quVo84/L3VBeq6CgctOknA7nx6eDfnu9U4P7G156D45ahRs2ACenhAeDmY11xO96th1vth7BUdrE468H1i1pVY2btQM75Xm6qoJiHSQQxQWl8nLK04hk8Fv73ShXVObMtfr61i5/1Iy4zeEAjD3pXYM99dB3aZHSMtVMGljmPZ7aHy35gT39dTZj3IRDOlQTQdDAHmKIqb/cl67qvb47s2Z0derSr9mQTMEt/5UDPP3XkapkpDJ7lbG93Sy4uMBrenSQlPdNDo1ly0h8WwLvak92Mtk0MXDnuFPu9CrtaNOukxFMKQ7tflaKopUTN8SwR8XkpDLYN7L7RjaqeYPkrqw9Vw8wdv+wchAxm+TutCqUdU/vyq1xPn4TA7+m8Khy7fuq1jt5WSlCYxaO9K+iU3Vh2jqmNIJ1e8+58F7fcpPqH7oPpmZqRkuS0rS9LosXFhj7VUUqej11THiM/KZ3LMF03u3rPxGLl/WDJXdy8UFDh/WybIdUzeHs/N8In7NnmLrhIAyScT6PFYuO3yNhQeuYiiX8dNY/1pZ97JIpWbB/khWH9dM8X+meQOWDffB3tKk2tsWwZAO1UYwBJru0yWHrvLN4SgAeno5sGSYd7UW1byemsv7WyMIj7sNgAwoebOb2ZnzZmc3+rdzwsHKFGWRmoP/3mJzSBwnSi3rYW9pzH98nRnWyblKuRcl8vLycHBwACAlJUUEQ9VQ26+lSi3x0U7NrBOA/z3vxVvddLuOU02QJIlxP4Zy6PItvJys2DWpc4UXy3yUG2l5/Hn5Fgf/vUVITAal5yM4WJnQs5UjvVs78Ky7/WM1I688JXkuAKtGlL8a+SP3yT/+gBdeAAMDzSwtN7caa++eC0lM/DkMUyM5h98LrHxOpEoFVlb3V9P29ISlS6F372q3MSkrn+cWHiO/UMXS1zryYoe7M4r1eayUJInJm8+zOyKRp8yN+G1Sl1rr9dxzIYngrRHkKVU4WZuyYoRPtXMVRTCkQ7UVDJX4LSKR4K0RKIrUtHS05NtRnXCxq/rOqFJLfPdXNCuPXifzAYXUnKxM8HF9Cm9nW7ydn8LWzIhdEQn8cu5mmfWrmtmZ4+lohZeTFZ5O1ng6WeFqZ15jeUZC3SFJEl/su8LqY5pfbxMD3Qnu61nnl/FIzVHQd8lxMvKUTAx0Z0Y/L50/RmaekqNXUzj0bwpHI1PIU94t2GdmZECXFvYM9XOmZyuHOv96Pcinuy+x7mQMFsUJ1S2qklA9cyb06gU9eui+gaVIksTQ1ac5G5PBYO/GLBnWsfIbeeYZOHPm7vmWLeHiRTDSXZ7Y14eusfjQVZrYmvHnew+eal/b8pUqXl39NxcSsvB0tOLXic/WyJId5YlKyeGtDaFEp+ZhZCDj/15swwh/lyp/bkQwpEO1HQwBRMTfZtyP50jJUfCUuRErgnwJcK9ed2VBoYrfIhL54VQMlx5RVM9ALmNAu0YserUDf15OYXNIHMeuppa7CLWxoZwWDpZ4OmmCJC8na7ycrGhoZfLAHbigUMXNzHziM+9wM+MOz7drhJ0OukSFmrfy6HXm79NUTx/u78LsQW2rPJxbW/ZeSOLtn8OQy2DrhGerPEmhIhRFKs5EZ3Do8i0O/XuLxFLFHzu5PsV/+7eq0cevKYUqNSN1kVBdSy7czGLg8r+QJNgx8Vk6VraH4e23NWuqTZgAS5ZoSgPs2KFJBteRfKWKnouOkphVwPTeLbVFQ+uC5KwCXlz2F6k5Cnq1cmTNSN9aG/rNKShkxrZ/2Fu8cLCPiy3Bfb2q9B0ogiEd0kcwBJqd8a0N5/jnZhaGchmfDWqrk4Q2SZI4F5vJqqPX+fMhVUcnFBfdKyk4l5Gn5EpSNleSc4hMzuHKrRyuJueQX1h+2XobMyOa2JrylLkxxoZyVGqJrPxCEm/nk5p7NxFVJoNLn/atWqKjoBcbz8Qxc+cFJAleaN+Ir171rvDCw/oybct5doQn4GZvwR+Tu9TK/iZJEpcSs7U/QhTFszz7tXEiuJ8n7g0ta7wNupSeq+DFpX+RmFXAc14OfDvKr+pfkLGxkJMDbWtu1tL7WyPYFnoTHxdbfn372cr1Lly8CE2aaBZtnTkT5s6FFi00l+ugtleJ3yISmbwpHDMjzVR7Jxv9FMUtT3hcJkPXnEZZpK6xXtUHkSSJtSei+ergVQoKNZ+bLh72vN/XE29n2wpvRwRDOqSvYAg0PSjB2/5hd/HikaOfdeWjAa10Nix19kY6o747W2YqfmkmhnICPRvyfLtG9GzleF9XqVotEZ95RxsgRSbncDk5m5i0PO6t6SgVKUndMReAhi/9D5mh5oBiIJfRrIE5pkYGmBrJMTM2wMzIABMjzV9TIzlmRncvA1AWqSlUlZwklCo1hUX3nC85FZU9X6SSUEsSEpqkcrUkaXu8pHsvpyTxXHMbqfg25saGNLQywdHaBAcrUxysTHC0NqWhtYn2/wbmxjX2S0qhUDBp0iQAli1bholJ7feq/f5PItO2nKdQJRHo2ZCVQb6YGdeNbv7yZOUX0nfxcZKzCxgV0IzPamHqcGlJWfksPniVbaE3UUua/X5YJ2em9GqBg1Xd+QJ8lAs3s/jPKk1C9eTnPJhenFBdqX3ywAF4+WXNlPVz53QaXJR2K7uAHguPckep4pvXOjKwQ+Ur/QOaoM3DA1JSNL1EU6borI2SJDFk1d+ci83kpY5NWDzUm4KCAl555RUAfv31V0xN9bd/7Ai/ybQtmnyxr4d5M8i7Sa0+/q3sApYdjmJzSByFKs2BundrR97r07JCdflEMKRD+gyGQPNhWX4kioUHrgLQtYU9y17zwcZcN13Ul5OyeXXVKXIUD1+Y0NhQTrcWDRnQ3omerRyxfkhid0GhiqiUXC7czGLn+QRCYzNRFuQTv/g/ADhP24bc+PH5AqgKQ7kMe0sTHEoCpuJAycHKFCcbE7ydn6KBRdW+BOrKzLyjkSlM+CmUgkI1fs2e4rvi9YfqqhPXUhn53VkANox5Wi91kyKTc/hy3xVtr6y5sQHjujZnXLfmtZaXUV1lE6p96dfWqXL7ZFoatGql+TtnjqbnpYZ88+c1vjp4lcY2phx+P7DqeTlr1sD48ZqeoqgonS48+8/N2wxcdhKA7ROfxdPOuE58vkvM23uZ1ceiMTGU88v4ADpUomdGV+Iz7rDk0DV2hGt+TMhkMKhDY6b2avnQiT0iGNIhfQdDJfZdTGb6L+e5o1TR3N6Cb1/3o7mOutnD4jIZ8e0Z7ihV9GrliJmxAXv+SaQ4EMdALiuzfIexgZyuLex5vl0jerV2fOQXYK6iiJUHLzHjRW+gbDA0zK8pL/s6U1CoIr9QRUHxKV+poqBIrflbclmhCrlMhpGBXHMylGFc8r+BHCMDGcaG95zX3lZz3lAuRy7TfJhkMhkySv8FGbLi6x7wP5CjKCIlW0FqTgG3shWk5BSQkqMgpfj/9DxluflVpclk0KGpLYGeDQn0dKjUdGylUsmCBQsACA4O1smSHFV1LiaDN9aHkFNQRKtG1vz45tM0tKq7+V8f77zIhtOxOFmbsn9aN70Fb6ej05m39woR8bcBzazNKT1bMOxpl8eiynXphOpdkzrjYmtSuX2ypJaPsTFERIBXzQzBlM7Leb9PSyY9V8W8nKIi6NhRM0w2dSosXqzTdpYM6Xk727JhVAesrTUJ6nUhGFKpJcb9eI7DV1JwsDJh97td9LbGZVRKDl8dvMqeC5p8IkO5jCF+zkzu6UEjm/tnDT5xwVBMTAyzZ8/m8OHDJCcn07hxY0aMGMHMmTMf+qGTJIlPP/2UNWvWkJmZib+/P8uXL6dNmzYVfuySF/NWWgYOdvpNfPw3MZtxP54j4XY+1qaGLA/y0dmv27+upTF5czj7p3ajoZUJt7IL+Pl0LBvPxpFWKsfn3sDIyEBGZw97nnZrgJudBW4NLXC1s7jvF1jpX44tZ+xAIdN8CS0f7sOA9o9HIb+KKlSpSc9VklI6WMpWFAdMBcRm3LmvTk0DC2O6tbAn0NOBbi0bVrnXSB/+Tcxm1PdnSctV4GpnzoYx/nW2COEdZRHPf32CmPQ7vNyxCV8N9dZbWyRJYs+FZBbsv0JMuma1dTd7C4L7etK/rVOdnnlWqFIz4tsznLmRQXN7C3ZO6vzQ3uL7SBIMGAB790LXrnD0qKZKdQ3YdT6BKZvPY168BEaVv8j379cEcJ9/rukl0qGU4iG9PKWKeQNbMLyzZvixLgRDoElqfnnFKa6l5NKhqQ1bxgfodfbbxYQsFh6I5GhkKqAZuRj5TDMmBrqXmYzzxAVD+/btY8uWLbz22mt4eHhw8eJFxo0bx8iRI1n4kAJe8+fP5/PPP2f9+vW0bNmSOXPmcPz4cSIjI7GyqtjU0JIXs+/8fXz/VrdaWcfrYdJyFUzYEMq52EwM5DI+GtCK0c+66uTAmZqjuO9XvaJIxR//JLHxTBzn429TVMEFXhvbmOJqb4GrvQXN7S1wNIOBnTS1aWKS0/kxJJkNp2PZM7krHg6PVyKpLiRl5XMsMpWjkamcjEojR1GkvU4mg/ZNbQls2ZBAz4a0b2pb52dsxaTlMeK7M9zMzMfJ2pQNY56u2vTrWhAam8mQVadQSw+um1ObClVqNp2N4+tD17SFTzu62PJh/1Y87aa74RhdS8tVMLA4obqnlwNrK5tQHRurKcaYlwerVuk8wCghSRIvrTjF+YcsgVFhublgWTPHq+VHoliwP5KGphLnPn2x+OHqRjAEEJuex6DlJ7l9p5BB3o1ZMtRb7wF7SEwGC/ZFatfltDA2YEwXN8Z2a461qdGTFwyVZ8GCBaxcuZLo6Ohyr5ckicaNGzN16lQ++OADQJPk5+joyPz58xlfwQ9eyYvpPXMHi0c+S6Cng86eQ1UpilTM3HGRbaE3AXjtaWc+Hdi2xmf0FBSquJCQRVhsJmFxmYTF3S5Th+hh1MoCbc5Q5zl/4N7IHkdrE7ycrHF3sMTNzoKnLIwwNTLAUC7T+4esNhWq1ITGZnI0MpWjkSlcuWel+KfMjehWHBh1a6HpNUpL0xTGtLe3rzOvVXJWASO/O8O1lFxszY344Y2n9ZJfUBFf7rvCiqPXaWBhrO0N1bdcRRFrjkez9ni0dpZmr1YOfNDPq84GlhduZvHKqlMoClWM8bPn7UD3yu2T33yjSUi2toZ//9XM4KoBpZfA2D2pC22b2Dz6TrWsoFBF78XHiE3O1B4r61IwBHAqKo2R359FpZaY0c+TiYEe+m4SkiRx/FoaC/dHciEhC9DMZp7Q3Z2X2zbAqWGDJzsY+uijj9i3bx/nzp0r9/ro6Gjc3d0JCwujY8e7RbcGDRqEra0tP/zwQ4UepyQYupGQgmvjurNQpSRJfHviBnP3XkaS4Gm3Bqwa4VurwyuSJHEzM5+wuEzC424TFpfJpYQsba5RCZkMjNRKrn35MvDoBGq5DEwMDTAxkmNiKNf8bygvPl/8f8nl99zG0ECuze25N9eH8nKDuJs/RKnrXvZpordx8eSsAo5dTeFoZCp/Xbu/16i1vTF73u8D1L2DZWaektHrzhJxMwsLYwPWvu7Hs+72+m7WfRRFKgYtO8mV5Bx6tXJk7SjfOhNUpmQXsOTPa2wJiUellpDL4FU/Z6b1bqm3ffJhfg29ybSfz1TtC1ylgsBA6NYNPv4YanDm1ORN4fwWkcjTbg3Y8tYzVX+/JQm2b4dffoFNm3Q6vLf3QhLj152qs8EQwIa/Y/h41yVkMlg70o9erR313SRA8320/1IyCw9c1aYhNDAqInzO4Cc3GLp+/To+Pj4sWrSIsWPHlnubU6dO0blzZxISEmjc+O6UyrfeeovY2Fj2799f7v0UCgUKxd3ejqysLFxcXPh2XwhDAqqwzk0NO341lRnbIshVqAhwt2PtKD+9tidfqeJSYhYRN28TEX+biPgs0vOUqJUFJKwYBcBvpy6Qki8jNuMOsel5xKbfIT4jn0JV+VP89WHjOH/aN7XVdzMoVKmJiL/NX9fSOBGVRmRyTpnXMjExsc4dLHMVRUzZFM6ZGxmYGMnZN7krDevgl3hkcjbD1pymUCXxxcvteKGqU69rSHRaLl8fusqflzV5Ed1a2rMiyFfPrSrfp9tD+eqN5wCIuHoDV8dKDO+pVJplOmpY4u18Xlj6F8oiNYuHdqB3a6eqbSgjA9q10wyZrVkDQ4fqrI2SJDFy9XF2fzBQ0+Y6+PkGmP37JbaE3MTcWM4fk7vSsA6Vh1CpJf74J5HlR6OIT84gYeVobt++jY3NI3oDJT365JNPJIrLtzzoFBISUuY+CQkJkoeHhzRmzJiHbvvkyZMSICUmJpa5fOzYsVLfvn2r1SZxEidxEidxEidxejxO8fHxj4xH9NozlJaWps19eBBXV1dt0anExER69OiBv78/69evR/6Q7smqDpPd2zOkVqvJyMjAzs6uznSjg2b4ztnZmfj4eL1O+RceTLxHdZ94j+o+8R49Huri+yRJEjk5OTRu3Pih8QKAXqt82dvbY29fsXyChIQEevToga+vL+vWrXvkE3Nzc8PJyYmDBw9qgyGlUsmxY8eYP3/+A+9nYmJyX/VUW1vbCrVRH6ytrevMjieUT7xHdZ94j+o+8R49Hura+/TI4bFidb+6F5oeocDAQJydnVm4cCGpqakkJyeTnJxc5nZeXl7s2LED0CTETp06lblz57Jjxw4uXrzI6NGjMTc3Z/jw4fp4GoIgCIIg1EGPRf33AwcOEBUVRVRUFE2bNi1zXelRvsjISLKysrTnZ8yYQX5+PhMnTtQWXTxw4ECFawwJgiAIgvDkeyyCodGjRzN69OhH3u7e9CeZTMasWbOYNWtWzTRMj0xMTPjkk0/0skinUDHiPar7xHtU94n36PHwuL9Pj+XUekEQBEEQBF15LHKGBEEQBEEQaooIhgRBEARBqNdEMCQIgiAIQr0mgiFBEARBEOo1EQw9QRQKBd7e3shkMs6fP6/v5gjFYmJiGDNmDG5ubpiZmeHu7s4nn3yCUqnUd9PqvRUrVuDm5oapqSm+vr6cOHFC300Sis2bN49OnTphZWWFg4MDgwcPJjIyUt/NEh5i3rx52hp/jxsRDD1BZsyYUWZRWqFuuHLlCmq1mtWrV3Pp0iUWL17MqlWr+N///qfvptVrW7ZsYerUqcycOZPw8HC6du1K//79iYuL03fTBODYsWO88847nD59moMHD1JUVESfPn3Iy8vTd9OEcoSEhLBmzRrat2+v76ZUiZha/4TYu3cv06dP59dff6VNmzaEh4fj7e2t72YJD7BgwQJWrlxJdHS0vptSb/n7++Pj48PKlSu1l7Vq1YrBgwczb948PbZMKE9qaioODg4cO3aMbt266bs5Qim5ubn4+PiwYsUK5syZg7e3N0uWLNF3sypF9Aw9AW7dusW4cePYsGED5ubm+m6OUAFZWVk0aNBA382ot5RKJaGhofTp06fM5X369OHUqVN6apXwMCWrC4jPTd3zzjvvMGDAAHr16qXvplTZY1GBWngwSZIYPXo0EyZMwM/Pj5iYGH03SXiE69evs3TpUhYtWqTvptRbaWlpqFQqHB0dy1zu6Oh435qHgv5JksT06dPp0qULbdu21XdzhFI2b95MWFgYISEh+m5KtYieoTpq1qxZyGSyh57OnTvH0qVLyc7O5sMPP9R3k+udir5HpSUmJtKvXz+GDBnC2LFj9dRyoYRMJitzXpKk+y4T9G/SpEn8888/bNq0Sd9NEUqJj49nypQp/PTTT5iamuq7OdUicobqqLS0NNLS0h56G1dXV4YNG8bu3bvLHMBVKhUGBgYEBQXxww8/1HRT662KvkclB4nExER69OiBv78/69evRy4Xv0X0RalUYm5uztatW3nppZe0l0+ZMoXz589z7NgxPbZOKO3dd99l586dHD9+HDc3N303Ryhl586dvPTSSxgYGGgvU6lUyGQy5HI5CoWizHV1mQiGHnNxcXFkZ2drzycmJtK3b1+2bduGv78/TZs21WPrhBIJCQn06NEDX19ffvrpp8fmAPEk8/f3x9fXlxUrVmgva926NYMGDRIJ1HWAJEm8++677Nixg6NHj9KiRQt9N0m4R05ODrGxsWUue+ONN/Dy8uKDDz54rIY0Rc7QY87FxaXMeUtLSwDc3d1FIFRHJCYmEhgYiIuLCwsXLiQ1NVV7nZOTkx5bVr9Nnz6dkSNH4ufnR0BAAGvWrCEuLo4JEybou2kCmqTcjRs3smvXLqysrLS5XDY2NpiZmem5dQKAlZXVfQGPhYUFdnZ2j1UgBCIYEoQad+DAAaKiooiKirovQBUds/ozdOhQ0tPT+eyzz0hKSqJt27bs2bOHZs2a6btpAmhLHgQGBpa5fN26dYwePbr2GyQ80cQwmSAIgiAI9ZrI4BQEQRAEoV4TwZAgCIIgCPWaCIYEQRAEQajXRDAkCIIgCEK9JoIhQRAEQRDqNREMCYIgCIJQr4lgSBAEQRCEek0EQ4IgVEtgYCBTp07VdzN0orrPZf369dja2uqsPYIg1A4RDAmCUC3bt29n9uzZ+m5GrXN1dWXJkiU6325MTAwymYzz58/rfNuCIJRPLMchCEK1NGjQQN9NEARBqBbRMyQIQrWUHlpydXVl7ty5vPnmm1hZWeHi4sKaNWu0tw0ICOC///1vmfunpqZiZGTEkSNHtNuYPXs2w4cPx9LSksaNG7N06dIy98nKyuKtt97CwcEBa2trnnvuOSIiIrTXz5o1C29vbzZs2ICrqys2NjYMGzaMnJwc7W3y8vIYNWoUlpaWNGrUiEWLFlXqOcfGxjJt2jRkMhkymazM9fv376dVq1ZYWlrSr18/kpKSyly/bt06WrVqhampKV5eXqxYsUJ7nZubGwAdO3ZEJpNp1+YKCQmhd+/e2NvbY2NjQ/fu3QkLC6twmwVBeDARDAmCoFOLFi3Cz8+P8PBwJk6cyNtvv82VK1cACAoKYtOmTWUWqN2yZQuOjo50795de9mCBQto3749YWFhfPjhh0ybNo2DBw8CmsVtBwwYQHJyMnv27CE0NBQfHx969uxJRkaGdhvXr19n586d/P777/z+++8cO3aML774Qnt9cHAwR44cYceOHRw4cICjR48SGhpaoee4fft2mjZtql3ktXSwc+fOHRYuXMiGDRs4fvw4cXFxvP/++9rr165dy8yZM/n888+5fPkyc+fO5eOPP+aHH34A4OzZswAcOnSIpKQktm/fDkBOTg6vv/46J06c4PTp07Ro0YLnn3++TIAnCEIVSYIgCNXQvXt3acqUKZIkSVKzZs2kESNGaK9Tq9WSg4ODtHLlSkmSJCklJUUyNDSUjh8/rr1NQECAFBwcrD3frFkzqV+/fmUeY+jQoVL//v0lSZKkP//8U7K2tpYKCgrK3Mbd3V1avXq1JEmS9Mknn0jm5uZSdna29vrg4GDJ399fkiRJysnJkYyNjaXNmzdrr09PT5fMzMy0z+VRmjVrJi1evLjMZevWrZMAKSoqSnvZ8uXLJUdHR+15Z2dnaePGjWXuN3v2bCkgIECSJEm6ceOGBEjh4eEPffyioiLJyspK2r17d4XaKwjCg4meIUEQdKp9+/ba/2UyGU5OTqSkpADQsGFDevfuzc8//wzAjRs3+PvvvwkKCiqzjYCAgPvOX758GYDQ0FByc3Oxs7PD0tJSe7px4wbXr1/X3sfV1RUrKyvt+UaNGmnbcf36dZRKZZnHadCgAZ6entV+/ubm5ri7u5f7uKmpqcTHxzNmzJgybZ8zZ06ZtpcnJSWFCRMm0LJlS2xsbLCxsSE3N5e4uLhqt1kQ6juRQC0Igk4ZGRmVOS+TyVCr1drzQUFBTJkyhaVLl7Jx40batGlDhw4dHrndkrwctVpNo0aNOHr06H23KT2t/WHtkEoN0+laeY9b8nglj7927Vr8/f3L3M7AwOCh2x09ejSpqaksWbKEZs2aYWJiQkBAAEqlUoetF4T6SQRDgiDUqsGDBzN+/Hj27dvHxo0bGTly5H23OX369H3nvby8APDx8SE5ORlDQ0NcXV2r1AYPDw+MjIw4ffo0Li4uAGRmZnL16tUyuUsPY2xsjEqlqtTjOjo60qRJE6Kjo+/rDSu9XeC+bZ84cYIVK1bw/PPPAxAfH09aWlqlHl8QhPKJYEgQhFplYWHBoEGD+Pjjj7l8+TLDhw+/7zYnT57kyy+/ZPDgwRw8eJCtW7fyxx9/ANCrVy8CAgIYPHgw8+fPx9PTk8TERPbs2cPgwYPx8/N7ZBssLS0ZM2YMwcHB2NnZ4ejoyMyZM5HLK5454OrqyvHjxxk2bBgmJibY29tX6H6zZs1i8uTJWFtb079/fxQKBefOnSMzM5Pp06fj4OCAmZkZ+/bto2nTppiammJjY4OHhwcbNmzAz8+P7OxsgoODMTMzq3B7BUF4MJEzJAhCrQsKCiIiIoKuXbtqe2ZKe++99wgNDaVjx47Mnj2bRYsW0bdvX0Az7LRnzx66devGm2++ScuWLRk2bBgxMTE4OjpWuA0LFiygW7duDBw4kF69etGlSxd8fX0rfP/PPvuMmJgY3N3dadiwYYXvN3bsWL799lvWr19Pu3bt6N69O+vXr9dOqTc0NOSbb75h9erVNG7cmEGDBgHw/fffk5mZSceOHRk5ciSTJ0/GwcGhwo8rCMKDyaSaHDwXBEGoJFdXV6ZOnfrELPEhCELdJ3qGBEEQBEGo10QwJAiCcI8TJ06Umfp+70kQhCeLGCYTBEG4R35+PgkJCQ+83sPDoxZbIwhCTRPBkCAIgiAI9ZoYJhMEQRAEoV4TwZAgCIIgCPWaCIYEQRAEQajXRDAkCIIgCEK9JoIhQRAEQRDqNREMCYIgCIJQr4lgSBAEQRCEek0EQ4IgCIIg1Gv/D/uWbMMN1kEJAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -387,7 +387,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 9, "metadata": {}, "outputs": [ { @@ -435,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -457,7 +457,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": 11, "metadata": {}, "outputs": [ { @@ -469,8 +469,8 @@ "Outputs (1): ['tau']\n", "States (0): []\n", "\n", - "Update: . at 0x1534e0180>\n", - "Output: \n" + "Update: . at 0x13dd50a40>\n", + "Output: \n" ] } ], @@ -487,7 +487,7 @@ }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 12, "metadata": {}, "outputs": [ { @@ -499,8 +499,8 @@ "Outputs (2): ['theta', 'tau']\n", "States (2): ['invpend_theta', 'invpend_thdot']\n", "\n", - "Update: .updfcn at 0x1534e20c0>\n", - "Output: .outfcn at 0x1534e0ae0>\n" + "Update: .updfcn at 0x13dd507c0>\n", + "Output: .outfcn at 0x13dd50860>\n" ] } ], @@ -522,23 +522,23 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ - "[,\n", - " ]" + "[,\n", + " ]" ] }, - "execution_count": 27, + "execution_count": 13, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHhCAYAAABtBbrjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ3QUZReAn63Z9F5ISANCL6H33qQqUkQQpAmCoIAoYkVF+UQFLICoSAep0nsJSOgQQq8pBEJII73u7nw/JlkISUjbFGSec/ZkMzvl7uw779y5VSYIgoCEhISEhISExAuKvLwFkJCQkJCQkJAoTyRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGXoBWfZsmXIZDLDS6lUUrlyZUaOHMn9+/dzrXf27NlylLZis2bNGubPn19q+/fy8mLEiBGG/8PDw5k5cyYXLlwo9D4OHjxIkyZNMDc3RyaTsWXLFqPLmU1ISAgymYxly5aV2jEqKh06dKBDhw6lfpxGjRrx3nvvlWgfxhi3CxcuLLXf+dNPP8XDwwOlUomNjU2pHCM/sue9kJAQwzIvLy969+5dpnKU53FfFJTlLYBExWDp0qXUrFmT1NRUjh49yuzZszly5AiXLl3C3Ny8vMV7LlizZg2XL19m8uTJpbL/f/75BysrK8P/4eHhfPnll3h5eeHr61vg9oIgMGjQIKpXr862bdswNzenRo0apSIrQKVKlThx4gRVq1YttWO8yAQHBxMQEFBiRcYY43bhwoU4ODjkUNaNwdatW/nmm2/45JNP6NGjByYmJkbdv4RENpIyJAFA3bp1adKkCQAdO3ZEp9Px9ddfs2XLFoYOHVrO0lVsUlJSMDMzK9I2Op0OrVZbpMm9YcOGRRUtB+Hh4cTGxtKvXz86d+5con1lk5qaikajQSaT5frMxMSEFi1aGOU4ErnZuHEjTk5OtGnTprxFKTUuX74MwLvvvouTk1M5SyPxX0Zyk0nkSfZNLDQ0NMfyxMRExo8fj4ODA/b29rz66quEh4fnWGfdunV069aNSpUqYWpqSq1atfjoo49ITk7OsV5QUBCDBw/G1dUVExMTnJ2d6dy5cy63z7p162jZsiXm5uZYWFjQvXt3AgICCvwO2Sbu/fv3M3LkSOzs7DA3N6dPnz4EBQXlWv+vv/6iQYMGaDQa7Ozs6NevH9euXcuxzogRI7CwsODSpUt069YNS0tLOnfuTIcOHdi5cyehoaE53I7w2F00Z84cZs2ahbe3NyYmJhw+fJi0tDTef/99fH19sba2xs7OjpYtW7J169Zc8j3pJvPz86Np06YAjBw50nC8mTNn5nkuZs6cSeXKlQGYPn06MpkMLy8vw+fHjh2jc+fOWFpaYmZmRqtWrdi5c2ee53Pfvn2MGjUKR0dHzMzMSE9Pz/OYebnJZs6ciUwm48qVK7z++utYW1vj7OzMqFGjiI+PN6zXsGFD2rZtm2ufOp0ONzc3Xn311Vzn9ptvvsHDwwONRkOTJk04ePBgru1v3brFkCFDcHJywsTEhFq1arFgwYIc6/j5+SGTyVi7di2ffPIJrq6uWFlZ0aVLF27cuJFjXUEQmDNnDp6enmg0Gho1asTu3bvzPB9PM3DgQOrUqZNjWZ8+fZDJZGzYsMGw7Pz588hkMrZv355j3U2bNtGvXz/k8vyn8aioKMaOHYu7uzsmJiY4OjrSunVrDhw4APDMcQvw5Zdf0rx5c+zs7LCysqJRo0YsWbKEJ/t7e3l5ceXKFY4cOWLY/smxlZCQwLRp0/D29katVuPm5sbkyZNzzQdP4+XlxaeffgqAs7NzrvFd2Hnh7Nmz9O3bFzs7OzQaDQ0bNmT9+vW51jt58iStW7dGo9Hg6urKjBkzyMzMzFe+f/75h/r166PRaKhSpQo///xzjs+Lcm3r9Xp++eUXfH19MTU1xcbGhhYtWrBt27ZnnqOFCxeiVCr54osvnrmeRCEQJF5oli5dKgDCmTNnciz/6aefBED4/fffc6xXpUoVYdKkScLevXuFP//8U7C1tRU6duyYY9uvv/5amDdvnrBz507Bz89P+O233wRvb+9c69WoUUOoVq2asHLlSuHIkSPCpk2bhPfff184fPiwYZ1vvvlGkMlkwqhRo4QdO3YImzdvFlq2bCmYm5sLV65cKdR3c3d3F0aNGiXs3r1b+P333wUnJyfB3d1dePTokWHdb7/9VgCE119/Xdi5c6ewYsUKoUqVKoK1tbVw8+ZNw3pvvvmmoFKpBC8vL2H27NnCwYMHhb179wpXrlwRWrduLbi4uAgnTpwwvARBEIKDgwVAcHNzEzp27Chs3LhR2LdvnxAcHCzExcUJI0aMEFauXCkcOnRI2LNnjzBt2jRBLpcLy5cvz/F9PD09hTfffFMQBEGIj483fL9PP/3UcLywsLA8z0VYWJiwefNmARAmTZoknDhxQjh//rwgCILg5+cnqFQqoXHjxsK6deuELVu2CN26dRNkMpnw999/5zqfbm5uwtixY4Xdu3cLGzduFLRabZ7HzP7eS5cuNSz74osvBECoUaOG8Pnnnwv79+8X5s6dK5iYmAgjR440rJc9/p4894IgCLt27RIAYdu2bTmO4e7uLrRp00bYtGmTsGHDBqFp06aCSqUSjh8/btj2ypUrgrW1tVCvXj1hxYoVwr59+4T3339fkMvlwsyZMw3rHT58WAAELy8vYejQocLOnTuFtWvXCh4eHoKPj0+O75v9fUaPHm0YX25uboKLi4vQvn37PM9LNr/99psACOHh4YIgCEJmZqZgaWkpmJqaCm+99ZZhve+++05QKpVCQkJCjt9TJpMJ+/bte+YxunfvLjg6Ogq///674OfnJ2zZskX4/PPPDb/rs8atIAjCiBEjhCVLlgj79+8X9u/fL3z99deCqamp8OWXXxrWOX/+vFClShWhYcOGhu2zx1ZycrLg6+srODg4CHPnzhUOHDgg/PTTT4K1tbXQqVMnQa/X5yv7+fPnhdGjRwuAsGfPnhzju7DzwqFDhwS1Wi20bdtWWLdunbBnzx5hxIgRucbllStXBDMzM6F27drC2rVrha1btwrdu3cXPDw8BEAIDg42rOvp6Sm4ubkJHh4ewl9//SXs2rVLGDp0qAAI33//vWG9olzbw4YNE2QymTBmzBhh69atwu7du4VvvvlG+Omnn3Ict1evXoIgCIJerxfef/99QaVS5fgeEsVHUoZecLJvcCdPnhQyMzOFxMREYceOHYKjo6NgaWkpRERE5FhvwoQJObafM2eOAAgPHjzIc/96vV7IzMwUjhw5IgBCYGCgIAiCEB0dLQDC/Pnz85Xt7t27glKpFCZNmpRjeWJiouDi4iIMGjSoUN+tX79+OZb7+/sLgDBr1ixBEATh0aNHgqmpqdCzZ89cxzcxMRGGDBliWPbmm28KgPDXX3/lOl6vXr0ET0/PXMuzb9hVq1YVMjIynimzVqsVMjMzhdGjRwsNGzbM8dmTypAgCMKZM2dyTerPIluOJydsQRCEFi1aCE5OTkJiYmIOOerWrStUrlzZcMPKPp/Dhw8v0vHyUobmzJmTY90JEyYIGo3GcKzo6GhBrVYLH3/8cY71Bg0aJDg7OwuZmZk5juHq6iqkpqYa1ktISBDs7OyELl26GJZ1795dqFy5shAfH59jnxMnThQ0Go0QGxsrCMJjZejp8bB+/XoBMCgLjx49EjQaTb7jqyBl6Pbt2wIgrFixQhAEQTh27JgACB9++KHg7e1tWK9r165Cq1atcmw7f/58wdbW1nAe8sPCwkKYPHnyM9fJb9w+jU6nEzIzM4WvvvpKsLe3z6HI1KlTJ8/vO3v2bEEul+d62Nq4caMACLt27XrmMbPHS1RUlGFZUeaFmjVrCg0bNsx1nnr37i1UqlRJ0Ol0giAIwmuvvSaYmpoa5jtBEK+BmjVr5qkMyWQy4cKFCzn22bVrV8HKykpITk7O87vkd20fPXpUAIRPPvnkmeciWxlKSUkR+vfvL1hbWwsHDhx45jYShUdyk0kAoltMpVJhaWlJ7969cXFxYffu3Tg7O+dYr2/fvjn+r1+/PpDTnRYUFMSQIUNwcXFBoVCgUqlo3749gMHtZGdnR9WqVfn++++ZO3cuAQEB6PX6HPveu3cvWq2W4cOHo9VqDS+NRkP79u3x8/Mr1Hd7OuapVatWeHp6cvjwYQBOnDhBampqruBPd3d3OnXqlKe7pX///oU69pP07dsXlUqVa/mGDRto3bo1FhYWKJVKVCoVS5YsyeWiKw2Sk5M5deoUAwYMwMLCwrBcoVAwbNgw7t27l8s1VJzv/jR5jaO0tDQiIyMBsLe3p0+fPixfvtwwLh49esTWrVsZPnw4SmXOcMdXX30VjUZj+N/S0pI+ffpw9OhRdDodaWlpHDx4kH79+mFmZpZjPPXs2ZO0tDROnjxZoIzweKyfOHGCtLS0fMdXQVStWhUvLy+Dy2r//v3Uq1ePN954g+DgYO7cuUN6ejrHjh2jS5cuObbdtGkTL7/8cq7z8DTNmjVj2bJlzJo1i5MnTz7T7ZMXhw4dokuXLlhbWxuu5c8//5yYmBjDb/UsduzYQd26dfH19c1xzrt3745MJiv0NfwkhZ0Xbt++zfXr1w2/z9O/+YMHDwxj+/Dhw3Tu3DnHfKdQKHjttdfylKFOnTo0aNAgx7IhQ4aQkJDA+fPnDcsKc21nu1XfeeedAr97TEwMnTp14vTp0wbXtoRxkJQhCQBWrFjBmTNnCAgIIDw8nIsXL9K6detc69nb2+f4PzsAODU1FYCkpCTatm3LqVOnmDVrFn5+fpw5c4bNmzfnWE8mk3Hw4EG6d+/OnDlzaNSoEY6Ojrz77rskJiYC8PDhQwCaNm2KSqXK8Vq3bh3R0dGF+m4uLi55LouJiQEw/K1UqVKu9VxdXQ2fZ2NmZpYjq6uw5LX/zZs3M2jQINzc3Fi1ahUnTpzgzJkzjBo1irS0tCIfo6g8evQIQRDy/e5Aru+f17pFpaBxBDBq1Cju37/P/v37AVi7di3p6el5Zizl9xtnZGSQlJRETEwMWq2WX375JddY6tmzJ0Cu8VSQjNnnJb9jF4bOnTsblO0DBw7QtWtX6tWrh7OzMwcOHMDf35/U1NQcylBERAT+/v6FUkrXrVvHm2++yZ9//knLli2xs7Nj+PDhREREFLjt6dOn6datGwB//PEH/v7+nDlzhk8++QTI+Vvlx8OHD7l48WKuc25paYkgCIW+hp/eJxQ8L2SvN23atFzrTZgwAXj8m8fExBTpd3zWutnjorDXdlRUFAqFolBj5ubNm5w6dYoePXpQt27dAteXKDxSNpkEALVq1TJkk5WEQ4cOER4ejp+fn8EaBBAXF5drXU9PT5YsWQKIF/n69euZOXMmGRkZ/Pbbbzg4OABi1kxhnrTzI6+JPyIigmrVqgGPb3oPHjzItV54eLhBjmzyypwqDHltt2rVKry9vVm3bl2Oz/MLSjY2tra2yOXyfL87YLTvX1S6d++Oq6srS5cupXv37ixdupTmzZtTu3btXOvm9xur1WosLCxQqVQGa1d+T+De3t5Fki973OR37CeDiPOjc+fOLFmyhNOnT3Pq1ClDwHCnTp3Yv38/oaGhWFhY5MjK++effzA3N6dr164F7t/BwYH58+czf/587t69y7Zt2/joo4+IjIxkz549z9z277//RqVSsWPHjhxWt6LUpnJwcMDU1JS//vor38+LSmHnhez1ZsyYYQi4f5rs0hL29vb5/o558ax1s8dFYa9tR0dHdDodERERBT5otGzZkoEDBzJ69GgAFi1a9MwAeonCIylDEkYl+6J/OmV88eLFz9yuevXqfPrpp2zatMlgZu7evTtKpZI7d+6UyDWzevXqHNsfP36c0NBQxowZA4gTjKmpKatWrWLgwIGG9e7du8ehQ4cYMGBAoY5jYmJSqKflJ5HJZKjV6hyTZURERJ4ZJ3kdDwr3hJ4f5ubmNG/enM2bN/PDDz9gamoKiNktq1atonLlylSvXr3Y+y8J2crL/Pnz+ffffzl79my+42jz5s18//33hpt2YmIi27dvp23btigUCszMzOjYsSMBAQHUr18ftVpdYvlatGiBRqPJd3wVVhmSyWR89tlnyOVy2rVrB0CXLl344IMPCA0NpV27djncq5s2baJ3795Frrnj4eHBxIkTOXjwIP7+/obl+Y3b7CKsCoXCsCw1NZWVK1fmWje/ffTu3Ztvv/0We3v7Iiub+VHYeaFGjRr4+PgQGBjIt99++8x9duzYkW3btvHw4UODq0yn07Fu3bo8179y5QqBgYE5XGVr1qzB0tKSRo0aAYW/tnv06MHs2bNZtGgRX3311bO/PPDmm29ibm7OkCFDSE5OZvny5Tl+I4niISlDEkalVatW2Nra8vbbb/PFF1+gUqlYvXo1gYGBOda7ePEiEydOZODAgfj4+KBWqzl06BAXL17ko48+AsTU2q+++opPPvmEoKAgXnrpJWxtbXn48CGnT5/G3NycL7/8skCZzp49y5gxYxg4cCBhYWF88sknuLm5GUzlNjY2fPbZZ3z88ccMHz6c119/nZiYGL788ks0Gk2h01br1avH5s2bWbRoEY0bN0YulxdobevduzebN29mwoQJDBgwgLCwML7++msqVarErVu3nrlt1apVMTU1ZfXq1dSqVQsLCwtcXV0N7q3CMnv2bLp27UrHjh2ZNm0aarWahQsXcvnyZdauXVtmlqC8GDVqFN999x1DhgzB1NQ03xgOhUJB165dmTp1Knq9nu+++46EhIQc4+Onn36iTZs2tG3blvHjx+Pl5UViYiK3b99m+/btHDp0qEiy2draMm3aNGbNmpVjfM2cObPQbjInJyfq1q3Lvn376Nixo6FeVZcuXYiNjSU2Npa5c+ca1o+JieHIkSP8/fffBe47Pj6ejh07MmTIEGrWrImlpSVnzpxhz549OSwl+Y3bXr16MXfuXIYMGcLYsWOJiYnhhx9+yFMJq1evHn///Tfr1q2jSpUqaDQa6tWrx+TJk9m0aRPt2rVjypQp1K9fH71ez927d9m3bx/vv/8+zZs3L9S5yqYo88LixYvp0aMH3bt3Z8SIEbi5uREbG8u1a9c4f/68oYTBp59+yrZt2+jUqROff/45ZmZmLFiwIN/0f1dXV/r27cvMmTOpVKkSq1atYv/+/Xz33XeG37Cw13bbtm0ZNmwYs2bN4uHDhwZFNyAgADMzMyZNmpTr+AMGDMDMzIwBAwaQmprK2rVrjaLgv9CUdwS3RPmSX2p9YdfLzrx5Mh3++PHjQsuWLQUzMzPB0dFRGDNmjHD+/PkcmUUPHz4URowYIdSsWVMwNzcXLCwshPr16wvz5s3Llaq9ZcsWoWPHjoKVlZVgYmIieHp6CgMGDCgwkyJb5n379gnDhg0TbGxsDFljt27dyrX+n3/+KdSvX19Qq9WCtbW18PLLL+dK33/zzTcFc3PzPI8XGxsrDBgwQLCxsRFkMpmQfXnll8WVzf/+9z/By8tLMDExEWrVqiX88ccfhiyaJ3k6m0wQBGHt2rVCzZo1BZVKJQDCF198ke/5eJYc//77r9CpUyfB3NxcMDU1FVq0aCFs3749xzqFHStPHy+vbLIns4Oe3PeTWTvZtGrVSgCEoUOH5nuM7777Tvjyyy+FypUrC2q1WmjYsKGwd+/ePNcfNWqU4ObmJqhUKsHR0VFo1aqVIbNQEB6P6Q0bNhT4ffR6vTB79mzB3d1dUKvVQv369YXt27cL7du3LzCbLJspU6YIgPDNN9/kWO7j4yMAwsWLFw3L/vzzT8HMzCzfjKUnSUtLE95++22hfv36gpWVlWBqairUqFFD+OKLL3Jsn9+4FQRB+Ouvv4QaNWoIJiYmQpUqVYTZs2cLS5YsyfVbhYSECN26dRMsLS0FIEd2WlJSkvDpp58KNWrUMFxb9erVE6ZMmZIjeysv8hsvglD4eSEwMFAYNGiQ4OTkJKhUKsHFxUXo1KmT8Ntvv+VYz9/fX2jRooVgYmIiuLi4CB988IHw+++/55lN1qtXL2Hjxo1CnTp1BLVaLXh5eQlz587NJWNhr22dTifMmzdPqFu3ruEctWzZMsc1+GRqfTaHDx8WLCwshJdeeklISUl55rmUeDYyQXiiepaExH+IZcuWMXLkSM6cOWOUeCiJikdISAje3t58//33TJs2rbzFKXV69uyJqakpmzZtKm9RJCT+U0huMgkJCYnnhF27dpW3CBIS/0mkMHQJCQkJCQmJFxrJTSYhISEhISHxQiNZhiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5oJGVIQkJCQkJC4oVGUoYkJCQkJCQkXmgkZUhCQkJCQkLihUZShiQkJCQkJCReaCRlSEJCQkJCQuKFRlKGJCQkJCQkJF5onhtlaPbs2TRt2hRLS0ucnJx45ZVXuHHjRoHbHTlyhMaNG6PRaKhSpQq//fZbGUgrISEhISEh8bzw3ChDR44c4Z133uHkyZPs378frVZLt27dSE5Ozneb4OBgevbsSdu2bQkICODjjz/m3XffZdOmTWUouYSEhISEhERFRiYIglDeQhSHqKgonJycOHLkCO3atctznenTp7Nt2zauXbtmWPb2228TGBjIiRMnykpUCQkJCQkJiQrMc2MZepr4+HgA7Ozs8l3nxIkTdOvWLcey7t27c/bsWTIzM0tVPgkJCQkJCYnnA2V5C1AcBEFg6tSptGnThrp16+a7XkREBM7OzjmWOTs7o9VqiY6OplKlSrm2SU9PJz093fC/Xq8nNjYWe3t7ZDKZ8b6EhISEhISERKkhCAKJiYm4uroilz/b9vNcKkMTJ07k4sWLHDt2rMB1n1Zgsr2C+Sk2s2fP5ssvvyy5kBISEhISEhLlTlhYGJUrV37mOs+dMjRp0iS2bdvG0aNHC/xyLi4uRERE5FgWGRmJUqnE3t4+z21mzJjB1KlTDf/Hx8fj4eFBq0/XE5YkLnO0UDOufRVebeSOWln+nkZBEPhy+xU2nruPuYmCNWOaU9XJsrzFykFycjKurq4ANJ6xnl3vd0GjUhjvABcvQtu24vs9e6Bly2Lt5vqDBAYuPoEgQGVbDfcepTGspSfTX6ppPFlLiFanp99Cf4KjU2hfw4GbEUkkpWdy/KPOFcp6OX//Tf48Foy3gxn/TGiNUiGHmTNh3jzw9obTp0GtLlcZQ2OS6bfwOBlaPbNfrUufBm7lKk9+rDtzl1k7ryEI0LOeC9/0q4dKUf5zz5NkaPUEhD7i3zvRHLsVxe3InMktdmYqWlVzoK2PAy2rOmBnXva/faZOjyCAPuuhWBBAQMj6K86lQtZystYTslYUnlhfr4cMnZ4MrY50rZ50rY6MTIF0XdZ7rZ70TD0ZuuzP9WRk6knX6cXPtDqS03WEPUolNCaJxDSdQUZ9Rhr3Fw4HwG3CCuRqDTJZlkxP4WajwdfdBl8PGxpUtqG6s6V4nZUBd2OTmbgmgKCoZNRKObNeqUvPerm9LeVFYNgj3l99kjOzB2NpWfD98LkJoBYEgUmTJvHPP//g5+eHj49PgdtMnz6d7du3c/XqVcOy8ePHc+HChUIHUCckJGBtbU1M7CMO3klk/oFb3I9LBaCyrSmTu1SnX0M3FPLyvQllaPW8seQUp4Nj8bQ3Y8uE1tiWw2STH8nJyVhYWADgPmUjH/auz8ROBf+GRWLsWPjjD2jcWLzRFmAWzYugqCTeWHKK8Lg0w7LGnrZsGt/KmJKWmAWHb/P93pylJQ5P64C3g3k5SZSbhLRM2s85zKOUTL7tV48hzT0gMRGqV4eICJg/H957r7zFNJxLO3M1B6a2L5ebdGHYFhjO1HUX0OoFOtV0YsGQRpiqjfhAYWTC41I5cjMKvxuR+N+OISlda/hMJoMGlW3oUMORDjWcqO9mjbyc59DyQhAEfjp4Ew87c/QC3LwXxSevNAKg+of/kC5TFXpfpioF9Stb08jTlsYetrTxcTDuQ+dTJKZl8u7aAA7fiAJgUqdqTOlSvdx/y/txqbw0/yjx8QmEzR9EfHw8VlZWz9zmuVGGJkyYwJo1a9i6dSs1atQwLLe2tsbU1BQQrTr3799nxYoVgJhaX7duXcaNG8dbb73FiRMnePvtt1m7di39+/cv1HGzlaHsk5mu1bHuTBi/HLpNVKIYW1TNyYL3u1bnpbou5fpkHpOUzssL/Ln3KJVWVe1ZPqpZhXl6fFoZsrAw5/C0DjhbaYx3kMhIqFZNvOGuXg1DhhRp8zWn7vL51sto9TkvCROlnEszu1cIK2BUYjrTN5znn5V/AGDVpC8yhThZ/jTYl5d9K5ZlY6l/MF9uv4qDhQlHPuiAuYkSfv8dxo0DOzu4cwdsbMpVxkydnt4/H+PGw0T6N6rMj4MalKs8z+Lw9UjGrz5HWqaeZl52/DmiCVaawt8sS4uMjAx++uknAN577z3UT1n8MrR6zoU+wu9mJEduRHE9IjHH53bmatr5ONChhhO1KlnhZGmCjZmqQlk6S5Pm3x4gMjGd3vVdGdfSlXreLgAkJiaSrFcSFJVMSEwyIdHJBEWLf0NiksnUPfv2bWeu5vVm7rzRwpNK1qaG5XsuP6CmixVeRnh40ukFvttznd+PBgHwUh0X5r7WADN1+TqebkQkMvL3I5z4os9/SxnK76JYunQpI0aMAGDEiBGEhITg5+dn+PzIkSNMmTKFK1eu4OrqyvTp03n77bcLfdynlaFsUjN0LD8RwiK/O8Sniplpdd2smNatBu2rO5bbRXztQQL9Fx0nJUPH8JaefPVy/gHmZcmTylCfufu5+DCdVxu5MXeQr3EP9O238Mkn4OkJt26BqvA3ioS0TMYsO8vpkNhcn22b2Jr6lW2MKGjx0OkFPlh7inlviG5A9ykbkatFhXJ0G28+6127PMXLRYZWT9d5RwiNSWFyFx8md6kOWi00aCBaiBYsgCz3aXly/u4j+i86jiDA6jHNaV3NobxFypczIbGMWnaGxDQttStZsWJ0MxwsTMpVpiev76SkJMzNn32TfRCfypEbUfjdiOLY7egcVqNs1Ao5jpYmOFmZ4GRpgpOlBmcr8a9j1jJnKw12Zupyt0SAaOHR6QUydQKZej0mSjlqhbzAe0FcSga+X+1/vCAzjdC5A4Bnn0udXuBOVBJ7Lkew69KDHAqmDFAp5WRo9QAo5DJequPCm628qF3Jko4/HkGtkLNxfMscSlJJ2HA2jE/+uUyGTk+tSlb8+WYT3GyMs+/icjciGs9Kjv8tZai8yE8ZMnyelsmfR4NYciyY5AzR79vUy5YPutekmXf+af+lyd4rEYxbeQ6Ab/rVZWhzz3KR40nS09MZN24cAO98+h0D/zwLwJZ3WuPrbmO8A6WkwODBMHUqdOhQ5M1TM3RMWH3OYPbN5quX6zC8pZdxZCwhaWlptOg1mNuRSdh3n4hMKSp8TTxt2Di+dTlLl5udFx/wzprzmKkV+H3QASdLDSQkQAGTU1nzxdbLLD8Riqe9GXsntytV90JJuRIez5t/nSY6KYMqDuasHNO8XG88T17fixcvxsSk8MpZpi7LanQjCv/b0YQ9SiEupfClT5RyGQ4W2UqTBntztSHGRkBALzx+zxOxQfqn4oR4In5IqxfI1OnFl1YgI/u9Tk+mTiBD+9T/We+fvpvKZKLrSqNSZP2VP/FefKVkaDl+J8awjaDNJGbvr8iAwVO+ZkafelRxtCjwPGQrRjsvPuDqg4R813OwUBOdlAFAVUdz1o9rib2RlOmzIbG8veoc0UkZOFioWTysMY09y+c+CAXfv59EUoYKoLAnMyYpnUV+d1hxMtSgjbev7si0bjWoV9m6rMQ18OuhW/yw7yZKuYyVo5vTsmreAePlxdT1F9h8/j6NPGzYNL5VhTKHZ2j1TF1/gR0XHxiW9ajjwqJhjctRqpwIgsCP+27y6+HbhmVqhZyrX3UvswDKwiIIAv0WHudCWBxDmnvwbb965S1SniSmZdJ17lEiEtKY0KEqH1agoPm8CIpKYtiS09yPS6WStYaVo5tTzangm+bzQFqmjqjEdCIT04lKTCMyMZ3IhHQeJmS9z1oek5yRZ2Dxfw0LEyWNPGyoV9maGi5W1HSxxNvBPN8wiJDoZHZdfsCuSw+4fD9/xQigurMFG8e3Mpq79d6jFN5acY5rDxJQK+R8068uA5u4G2XfRUVShoxIUU4miObfXw7dZv2ZMEPsSY+6LrzfrUaZTlSCIPDu3xfYHhiOrZmKre+0wcPerMyOXxAPE9Lo+IMfKRm60o11SUkBs6J/b51e4JN/LvH3mTBAnIwuf9nd2NKVmIV+t5mz53Eg9Y5JranrZlN+AuXD6eBYBi0+gUIuY+/ktlTLzna8fx8++wwmTIAmTSAmBhSKcosj2nclgrErz6GUy9g+qQ21KlUs69XTPIhP5Y0/T3EnKhk7czXLRzYrl4ev8iJTpyc6SVSURCUpjUfJotVDJpMhk4GM7L/k/F8me2LZk+uDUiFHpZCjUshQZ79XPvW/Qo5aKTO8VylEt5hKKUMhl5Gh1ZOaqSM9U/ybmqEjNVNHWtZLfK9nw9kwzt+NK/J3VyvkVHWyoKaLJTWyXjVdLHGx0uR4uLwbk8Kuyw/YfekBgffi89yXjamSn19vRFsfB6M8mCana5m6/gJ7rzwEYGy7Kkx/qWaZJxpJypARKaoylE1oTDLzD9xiy4X7CIIYhDvrlbLVkFMzdAxafIJL9+Op4WzJpgmtsDApn6A2QRBISUkBwMzMDJlMZrBeVbLWcPD99sYNuNPp4Ouv4eef4cwZqFQJ/vwTJk0SZ79Cyjx1/QX+CQgHYM2Y5rSqgLEki4/cYfbu6wC84uvK/MENy1mivHlrxVn2X31I19rO/DG8ibhw5EhYtkwsi9C1K/zwg/h/v37lJue4lWfZe+Uhvu6i1bK8M0ULIjY5gxFLT3PxXjwWJkr+GN6kwlmCJfJnwKLj3HuUioedGZXtTKlsY4qTmYzKNhp83BxQKxXcjkziRkQCNx4mcj0ikZsRiYawjKex0iip6WJFzUqWdKrpRFsfRxRyGRfC4nhlgf8zZanhbMGoNt687OtWYjexXi8w/8BNfj4kWq871nDk59cbYlmGAf+SMmREiqsMZXMjIpFZO6/y761oAIY09+CLPrUxUZZNPEJEfBp9fj1GVGI6XWo58/uwxuUSbJhXgGVapo7OPx7hflwq73X2YUrX6sY96Esvwd69Yqr9gwcQHg6hoeDhUaTd9PzpKFcfJFLd2YK9k9uVu0svOTkZNzfRknb//n3Mzc2ZvC6ALQHhmCjlnPm0S4XIMHqa25FJdJ9/FJ1eYP24lmJM3a1bULu2GFSdzWefwVdflZucEfFpdJl7hKR0LV/2rcObrbzKTZbCkpiWyVsrznIyKBa1Us7CIY3oUtu54A2NRF5jUqJwZOr0OdxdhQlG1+sF7selcj0ikRsRCVl/EwmKTkb3VDasm40przV1p35la86FPuJCWBwXwuJITMsdtJ6NjZmKwU09GN7SE9cSxqJtCwzngw2BpGv1+DhZ8OebTfC0L5vxISlDRqSkyhCIA/eXQ7eZf/AmggAN3G1YNLRRiQdZYQm4+4jXfj9JhlZfbrEQ+V3g2cG1GpWcQ+93MN45EQSYOxemTcu5fOtW6Nu3SLsKj0ul/feHydQJLBraiB7lXFgsr3OZqdPT+n+HiExMr9DxLp/8c4nVp+7SwN2GLbZ3kX36CQQH51ypTx/Ytq18BMxi5YkQPtt6BXO1gv1T25fZtVoS0jJ1TFwTwIFrD1HIZfwwsD79Gj67MK2xKGo2mUT+lORcpmt13IlM5sbDBALuxrH1Qrgh21kug041nXi9mQdtqzkQFpfKhbtxnAmJ5dD1SCIT03PtT62U80G3Goxq410iC2lgWBxjV57lYUI6NmYqFg1tXCbWy6LcvytWpOV/FLlcxntdfPhrRFOsTVUEhsXR55djHL8dXSbHb+hhy3f9xaDVhX532HrhfpkctzD0rOdCMy870jL1/C/L1VNikpOhdevcihBAQECRd+dqY8r49lUBmL37OunavM3TZYWpqSk3b97k5s2bhhpbKoWcb7ICk5ccCzYUBq1ovNfFBzO1gsCwOHZFCxASknulCxfKWqxcDG3uSSMPG5IzdHy+9QrPwzOjRqXgtzca8WpDN3R6gSnrAlnmH1zwhkYgrzEpUfaYKBXUdrWiX8PKfPVyXU593Jn5r/nS3NsOvQAHrkUyevlZ2n3vx9aA+zSvYsf/+tfn9CddODytPe2qPw4DkMvEZJJvdl3jtcUnCI5OfsaRn00Ddxu2TWxDg8rWxKVkMmzJKVafCjXGVzYakjJUhnSs4cT2iW2oXcmKmOQM3lhyisVH7pTJRNuvYWXGta8CwIcbLxIYFlfqxywMMpmMz/vURiYTzannQnPX+Cky5uYwebIYiPs0xVCGAMa1r4qTpQl3Y1NY5h9SIvFKilwux8fHBx8fnxzNB7vUcqK5tx3pWj0/PlWduqLgZKlhbDtxHM5Jr0TG0mW5Y7jCwsRA6nJELpcx+9X6KOUyDlx7yN4rEQVvVAFQKuT8MLABI7JcezO3X+WnA7dKfY7Jb0xKlC8alYJXGrqxblxLDr7fnrHtqmBnriYiIY2fD92m7ZzDvPnXafZcjqCyrRkrRjVn6zutaeplS7a3TQacDX3ES/OPsNQ/GL2+eGPJ2UrDunEt6dvAFa1e4JN/LvPF1stodXrjfeESII3aMsbD3ozNE1rRv1Fl9IJoaRi/6jyJaYWvq1FcPuxek041nUjX6nlrxVkeJqQVvFEZUNfNmkGNxcDyL7dfLfbFloNBg2DdOlA+FZRdTGXI3ETJB93Fyue/HrpNdFJuk3J5I5PJ+KRXLQA2B9zn8v28M0fKm7faVsHR0oTQmBRWV2sLK1fmVogqgHWohoslb2dZBL/YdoWEMrhGjYFcLuOLPrWZ3EVsdzPvwE2+2mGk60riuaWqowUf96zFiRmd+OX1hrSuZo8gwJGbUby96hyt/neIOXuuY2umZv24liwc2gh3O1OyR026VuDL7Vd5/Y+T3I1JKZYMGpWCnwb7GubS5SdC+WjzpQpheZWUoXJAo1Lww8D6zHqlLiqFjD1XInhlgT+3IxML3rgEKOQyfhrsi4+TBZGJ6YxdcZa0zPJ1+WQzrXsNLEyUXLwXz+YAI7nx+veHjRtzKkR370Js8axP/RtVpq6bFYnpWubtv2kcGYtBZmYmCxYsYMGCBWRm5rxB169swyu+YkXnWTuvVohJ5mnMTZRM6SIGy/988BYJ/QfBmjU5e8lVAGUIYGKnang7mPMwIZ3v91RMa1teyGQyJnepzhd9xIrkS/1DePfvAOKLUMywKDxrTEpULEyUCvo0cGX1mBYc+aAD4ztUxcHChKjEdBb63aHd94cZtuQ0ekFg17tt+bhnTSyfyEI+FRxLt/lHWHkytFgKtkwm452O1Vg4tBEKuYyN5+7x477ym08NckkB1M/GGAHUz+L83UdMWHWeiIQ0zNUKvh/YoNQ7/4bGJPPyAn/iUjJ52deV+a/5lnqGVGGCAn87cof/7b6Ok6UJh6dl9bEyBjt2iKna2RlLBw9Cp07F2lV2vRy5DHa/144aLgV3QzY2BZ3Le49S6PTjETK0epa82YTOtcouq6iwaHV6XvrpX25HJjG+Q1Wmv1QTNmyA118XyyK88YZoMaoAHL8TzZA/TiGTwca3W5ZrRd3isPn8PT7YeBGdXsDBwoSvXq5DDyP3UZQCqI1HeZzLTJ2eg9cesvZ0GEdvRRkKWfo4WfD9wAa425oy78BN1py6y5P6T3NvW34c5Etl2+LVsPv79F0+2nwJgK9fqcuwFsbtliAFUD9HNPKwZce7bWhRxY7kDB0TVp9n9q5rpepH9bQ3Z+EQUSvfeiGcRUfulNqxslEoFAwYMIABAwagyCuWBxjZ2gtPezMiE9NZ6Hc7z3WKRe/eYnZSdouAYrrKAJp529Gjrgt6ofwsLwWdy8q2Zoxq7Q3At6U8loqLUiHno6yMt7+OBRMelwoDBz52bQYEiAUzKwCtqjowsHFlBAFmbL5kqDD/vPBqo8qsG9uCqo7mRCelM2H1ecauPEdEvPHc5IW5viUKR3mcS5VCzkt1K7F8VDOOftCRdztVw95cza3IJF5d6M/vR4P4tFdt9kxuR/vqjobtTgU/ovOPR1h7KrRYc+HgZh4GK/EXWy+Xa2yeZBkqgNK2DGWj1en5fu8NFmd1/m1RxY5fhzQq1QaM2enDMhn8PqwJXcuwLkl+ZPdVUyvlHJzaHnc7I1bN3rcPXn5Z7Fm2bBk4F+/73o1JocvcI2To9Cwd0ZSONZ2MJ6ORSEjLpP2cwzxKyWTWK3V5w8hPXMZAEARe+/0kp4NjGdC4Mj8MzOoW/9NPYm+5/v1h/fryFTKLR8kZdJ57hNjkDKZ1q87ETj7lLVKRSdfqWHDoNgv97qDVC1iaKPmoZ01eb+pRIRqdSlQsHiVn8OX2K2y5IBadreJozvcD6tPY044jN6P4YutlQp6IHWpdzYEfBtYvcuNXQRD4+J/LrD19FxOlnNVjmtPEyzjWV8ky9ByiVMiZ0bMWC4c2wlyt4GRQLL1/Psb5u49K7ZjDWnoxtLkHggCT/w7gesSze9iUBd1qO9Oqqj0ZWj2zd18z8s67wWuvwZ49YnXqYuJhb8bI1l6AaB3KrICWFyuNSuwQD8w/cLNMAvSLikwm4+OeYsD3pvP3uBqeNf46dAC9XnSblcCKZ0xszdV83luMv/n50G2CopLKWaKiY6JUMLVbDXa82wZfdxsS07V88s9lBv9xkjvP4feRKF1szdXMH9yQP4c3wdnKhKCoZAb8doKvtl+lmZcdB6a259NetcjWo/1vR9Nl7hE2nrtXJCuRTCbj65fr0KWWM+laPaOXn+XWw9KNn80LSRmqYPSsV4mtE1tT1dGciIQ0Xlt8gpUni2eCLAwz+9Z57KJbdb7cA6qzU+3lMth1KYKTQUZOsX7zTfHv4sVwp/juwXeyzMh3opJZc+qukYQzLkOae+DtYE50UgaLjwSVtzh54utuQ+/6lRAE+N+erDpTDRrAkCHi+xkzyk+4p3jZ15W2Pg5kaPV8/E/FyIApDjVdrNg0vhWf966NmVrB6eBYevz0LwsO366Qir1E+dKltjP7prQ3uIr/8g/mpZ+Ocjb0EWPaVmH1mBZYasT4zuR0HdM2BDJm+Vkii5CtrFTI+eX1hjTysCE+NZM3/zptVDduYZCUoQpINSdLtk5sQ4+6LmTqBD7bcplPt1wulclXpZCzcGhjnCxNCIpOLrUsqeTk5KxGiDKSk59dvKumixWvNxNbZny1/Wqu8vIlomNH6N5dDKb+7LNi78ZKozK0D5l34GapZenkRUpKCm5ubri5uRn6veWFSiHnox5iXM4f/wbxIL5iFmL8oHsNVAoZR29G8e+tKHHh11+LsUN798Lhw+UrYBYymYxvXqmHRiXnZFAsG87dK2+Rio1CLmNUG2/2Tm5Hu+qOZGhFN32fX45x8V5ckfdX2DEpUTBFmSvLCmtTFd8PbMCykU2pZK0hNCaFwb+f5POtl6lf2ZrtE9tQ1fFxoPfB65F0nXeUPZcfFPoYpmoFS95sShVHc8Lj0xix9LShenZZIClDFRQLEyULhzZiRo+ayGWw+tRdvtl5rVQUIjtztaF68R//BnGhAhRknNq1OpYaJVcfJLDhbJhxdz57tvh37doSuWEGN3WnurMFcSmZ/HTwlpGEKxhBEAgPDyc8PLzA8dCttjPNvMRCjD/sLf/01bzwtDc3xDTN3nVdTNetUgXGjRNXmDEDKogVxsPezBDw+c3OaxWy3lRRcLczY/nIpsx7rQG2ZiquRyTyygJ/vtl5lZSM/HtXPU1RxqTE80uHGk7sm9LO8LC64kQo3ecf5X5cKpsntKbdE8HV8amZvL3qPOvOFN5ybmuuZvnIZjhamnA9IpFxK8+WWcV/SRmqwMhkMsa1r8p3/esD8OexYH49ZMQsqyfoWtuZl31d0QtkNdUrX3eZvYUJ73UWg1R/2HfDuDEvDRuKKdxQIjeMUiHn015iHMmKEyFlFkei0WgICAggICAAjUbzzHVlMhkfGwox3quwhRjf7eRjUH63ZLeL+ewzsZr4qVNiT7kKwug23tSuZEV8aiZf77ha3uKUGJlMRr+GlTkwtb1hDvjj32C6zz/62FJXAEUZkxLPN5YaFbNfrcfqMc1xszHl3qNUhv55iv/tvs5Prz2ufp7N9E2XWFqEtjDudmYsG9kUCxMlJ4Nimbo+sEwKhkrK0HPAwCbuhuDNH/ffLLV+Q1/0qYODhZhOWVpKV1EY3tKLKlkxL0aXx0humHbVHelYwxGtXuDbXUbqrVYACoUCX19ffH19C5V66+tuQ98GrgiCmGpfEZ/cbc3VTOhQDYAf9t4QY9ecnWHKFHGFFSvKUbqcKBVyZr9aD7kMtl4Ix+9GZHmLZBTsLUz4aXBDlo5oiqu1hrDYVIYtOc376wOJS8l45rZFHZMSzz+tqzmwd0o7hrcUrbprT9+l58/H6FDDkW/61UX5RIbil9uvsuBw4efwOq7W/D6sMSqFjJ0XH/B1GZQxkVLrC6CsUusLw7z9Nw3umLmDGvBqI+N3pN516QETVp8XaxC905q6btZG2W9xC4kduv6QUcvOolLI2D+lPV4ORixANnGiWKF60SKxKGMxuR2ZSPf5/6LTC6wZ05xW1RwK3qiMCYtNofOPFbscQFqmjk4/+BEen8aMHjUZ174qxMfDli1iEcYKdpP9avtV/vIPprKtKXsntzNekdAKQFK6lh/23mD5iRAEQYwZ6dvAlVcautLIw7bUi7T+l0jX6ohNziAmKYOY5Axik9Mfv0/KIEOnx0ytwNxEiZlagUqfwcTuYtjC1jN3cLCxwsxEiYWJAjO1EnO1EjMTBSpFxbFlnAyKYfqmi4RmpdoPaFyZbrWd+WDjxRxxPxM6VOWD7jUKPX62BYbz7loxlOHjnjUZ265qkeQqyv1bUoYKoCIpQ4Ig9oZZdjwEhVzGoqGN6FbHxejHmbD6HLsuRVCrkhXbJrY2ykVXXGVIEATeXHqGozej6FrbmT+GNymxLAbi4kTrUJZcJeGLrZdZfiKUmi6W7Hy3LYpSrNuSmZnJ6tWrARg6dCgqlapQ283edY3FR4PwcbJg93ttUVagyTSbTefu8f6GQCw1So5+0BFbc3V5i5Qvyelaus0T4yXeaOHBrFfqlbdIRudc6CNmbL7IzYePXcCVbU152deVV3zd8HEWK7AXd0w+z2Tq9ITGpBAUlUTYo1RiktKJTc4gOklUeLIVoMT0wsdeAegz0gibNwAA9ykbkavzdjuqFXI87M1o7GFLYy9bGnvaUsXBvNwU1ZQMLT/svcnS48EIArjZmDL71XrM3HaFoCc63o9o5cXnvWsXurbVn/8GMWunWGZl/mu+vNLQrdAyScqQEalIyhCAXi/wwcaLbDp/D7VCzrKRTY1uiYhKTKfbvCM8SslkatfqvNu55AXmSlJi/tbDRF76SbS8rB7TnNYV0PLyKDmD9t8fJiFNy/9ercfgrADD0qC45zI+NZP23x8mLiWTb/vVY0jz0pOxuOj0Ar1/Oca1BwmMbuPNZ1nuYQDS0uDKFWjcuPwEfIpjt6J5Y8kpAJaPapajOu9/Ba1Oz/E7MWy5cJ+9lyNIzngcT1i7khWvNHSlczVrqrmJ3/2/1I5DEARikjMIikomKCqJoGjx752oZO7GphQ601Upl2FnrsbOXI2DhQl25mrsLdTYm6tRK+WkZOhIydCRnK4lPiGJBSNaAdDrx/1kyFQkp+tIztCSkq4j4xnlD+zM1TTyEBWjxp621K9sjUZVthbVsyGxvL8hkNCYFOzN1SwY0ohfD9/m2O1owzqDGldmdv/6hX5onLXjKn8eC0alkLF0RDPa+Ij3AEEQ0OmFfB/sJGXIiFQ0ZQjEyemdNefZe+UhZmoFa95qga+7jVGPsfXCfd77+wIqhYztk9pQ06Vk3z0tLY3+/fsDsGnTpiIHWc7cdoVlx0OoXcmKne+2Me7Tj14vVjpWKmHAgGLvJvsJxsHCBL8POmBRSm6TkpzLpf7BfLn9aqnLWBKO3oxi+F+nUSlkHHq/g1iF/NYt6NwZkpMhOBgqyLUIj8ems5UJeye3w8as4lqzSkpqho4D1x6y9cJ9/G5Eoc1SBgRdBpl7vsfZSsOe7Vtxtiv7nn0lIS1TZ7DyBEUncycqyaAAJaTlb9kxUyvwdjDHy94cR0sT7M3V2FmosTc3MSg79uYmWJkqCz1nFXR9Z2j1pGboSEjL5EZEImdDH3E+9BGB9+JIf6pVjEoho46rNU2ylKPGXrY4WZZ+gHtMUjpvLj3N5fsJWJoo+WN4Y3ZfjmD5iVDDOr3qVWL+YN9CeR70eoH31l1ge2A45moF68a1xM3GlE+2XKJ7HRde9s3bWiQpQ0akIipDIF68o5efwf92DDZmKtaNbWnUpqGCIPDWirMcuBZJ/crWbB7fqlzdKo+SM2jz3SGSM3T89kZjXqprRPfg8uUwYgS4ucHt21DMbJgMrZ7u848SHJ3MxI7VmNa9hvFkNBIZWj3d5h0hJCaFyV18DFWqKxrDlpzi31vRvOzryqRO1fhl33W+mzkUzZ1bMHMmfPFFeYtoIDVDR6+f/yUoOpm+DVz5+fWG5S1SmfAoOYNdlx+wNSCc0yGxhuVqhZwONRx5paEbnWo6lYplYtO5e6Rpdfg4WeLjZFEod2q2whMcnUxoTDIhMcmERKcQEpPMg2cU+JPJRJdPFUcLqjiYU9XRXHzvaI6LlabCxE9laPVcDo/nfOgjzoY84mzoozxLP7jbmdLU047+jSvTqqp9qcmfkJbJmGVnOR0Si0Yl57c3GhMWm8IX264Ymr22r+7I4mGNCzVG0rU6Rvx1hhNBMVibqlDKZcQkZ9CjrguL3sjbWiwpQ0akoipDIMYsDP3zFBfC4nCyNGHj263wsDdeL6+HCWl0nXuEhDQt01+qyfgORQteMzbf773OgsN3qOliya532xqvn1J6Ovj4QFgYzJ37OIOpGOy5HMHbq85hopTj90GHIvfpKQt2XAxn4poALEyU/PthxYzLuXw/nt6/HMuxbK11KC0/fke0CgUFgb19OUmXm4C7j+i/6Dh6AX4d0pDe9V3LW6Qy5d6jFLYHPmDrhftcj3jcSsHSREm9yta4WGtwsdJQyVqDi7Uplaw1OFtpsDdXF+s6zo7Ry8beXE0VR3Pc7cxwtjTBRKVAqxOITkonJCaZ0JiUZyo8AJYaJVUcLajqYE6VJxQeL3vzMnc1GQNBEAiLTeXc3VjOhjziXOgjbjxMzFGyq46rFWPbVaFnvUqlEpCdmqFj/Opz+N2IQqWQMf+1hlibqhi78iwpWe7WZl62LB/VHFN1wec4KjGNbvOO8uiJIremKgUBn3fN8zeSlCEjUpGVIYC4lAxeW3ySGw8TcbczZePbrXC2Mp4ZdMPZMD7YeBG1Us6ud9tSzankwcbFJS4lgzbfHSYpXcuioY3oUa+S8Xa+ZAmMGQMODuKN1rJ4VjZBEHht8UlOh8TyaiM35g7yNZ6MRkKvF+iVFZczrn0VZvSoVd4i5SA4OplfDt5ic8D9HMvHtvHi40+HQmAgfPTR4+KZFYQf993gl0O3sTFTsW9yO5yMeB0+T1yPSGBLQDjbLtwnvAAFRKWQ4WwlKkou1o+VJRcrDRqVnMQ0LQlpmeLf1EwSsv6//iCBO1FFr85spVHi7WCOp705Xg7meNmb4eVgjre9OTZmqgpj5SktEtIyuXA3jgPXHrLh7D1Ss9ovuVprGNXGm9eaumOpMW7we4ZWz9T1F9hx8QFyGXzbrx7NvO14/Y+TPEwQLVeN3G1YPrqZ4dgP4lOx0qhyZGjeepjI+NXnuR2Zu57bH8PzbjQuKUNGpKIrQwCRCWkMXHyC0JgUqjtbsG5sS6M97T+ZzdXIw4YNb7cqVqZUcnIyTk5iOndkZGSxAyyzbzhGtw5ptVC7thib8vXX8Omnxd7VxXtx9P3VH4Adk9oYrTxBNikpKTRoIHZ4DwwMxMys6NbAg9ceMnr5WTQqOUc/6FhhbtyCIDBm+VkOXs9du6djDUeWOjyEvn3BzEzsLedi/GzK4pKh1dNvoT9XwhPoWMORv0Y0/c/fXLPJa0zq9QKB9+IMbqiH8Wk8iE8jIiGNiPg0opLSS62wuEYpp7arFa2qOojWnedI4THWXFkQj5IzWHUylOUnQohOEutIWZooGdLcg5GtvXGxNt6coNMLfLpF7EwPYpp8r/qu9PnlX2KTRStPXTcrVo1uzvWIRCauOc+H3WsyqKm7YR9J6Vqmb7rIzou5W3z0b1SZHwc1yLVcUoaMyPOgDIFYR2bAb8d5mJBOg8rWrH6rhdGCY+/HpdJ93lGS0rV81rs2o9t4F3kfJckme5L4lEzafHeIxHQtC4c2oqcxrUN//y1WprayEoN07eyKvavJfwew5UI4LarYsfatFkadgI1xLgVBoP+i45y/G8fwlp589XJdo8lXUtIydYxadobjd3I26XWzMcV/ekdo0QJOn4b33oP588tHyHy4+TCR3r8cI0OrZ/ar9QxtC/7rFGdMZur0RCamExGfSkR8Og/iU4mIT+NBlrKUodVjZarESqPCUiP+tTIV36dr9fxvd+4ip77u1kzs6EOnmk7Ge1AqY4w1VxaWtEwdWwLu88e/QQZrm1Iuo6+vK2+1rUKtSsa57wmCwHd7bvDbEbFB9jsdq9KzbiUG/HbCYKFytFATk5yBXoCmXrZseLtVrn0s9Q/h213XDMH7ILo4Az7rmiuuVVKGjMjzogyBaEYctPgEj1IyaVnFnqUjmxrN1736VCif/HMZjUrOnvfaFbn4oTEv8Ln7b/LzwVvUcLZk93tGtA7p9WKrjosXS+yGuR+XSqcf/EjX6vM14RYXnU7HyZMnAWjRokWxK/4evxPNkD9O5czaqiCkZGgZ8deZHIG5AFe+7I75v37QtauY+bd+vRjhWoH442gQ3+y6hrlawe732hk1jq+iYqwxWVgydXpqfrbHkNre1seBCR2q0aKKXYW3/BREWStD2ej1AodvRPL70SBOBT++7tr6ODC2XRXaVHMwyrld6HebOXtuADCshSfd6jgzYumZPMsUHHq/PVUcc4dmnAuNZfyqc0QmPq6MvmJkU9rVyFlMtij374pXdU2i2Pg4W7JsZDPM1QpOBMUwaW0Amc+oSVEUhjTzoFVVe9Iy9UzfdLFMesXkx+g23lhqlNx4mMiuInRFLhC5HGbNgqZNoUuXEu3KzcbUYEGbveua0X4HEFsftG7dmtatW5foptOqqgOtq9mTqRP4uQwbzRYGM7WSv0Y2paGHTY7ltyOTxBT7S5dgw4YKpwgBjGrjTTNvO5IzdEzbEFjoWjTPM8Yak4VFpZDjbmtK9zrObH2nNStHN6dlKWZGvQjI5TI613Jm3biWbH2nNb3rV0Iug39vRTNsyWl6/nyMfwLulXgum9ChGrNeqYtMBitPhrLqZCiOFnmHdWw4dy/P5Y097dj1Xjsae9galn2/70aJ5JKUof8YDdxt+PPNpqiVcvZffciHG42juMhkMr7rXx9TlYJTwbGsPhVa8EalhLWpyqBo/HTglnFvNr17i41BO3cu8a7Gd6iKvbmaoOhk1pwqfOfmsmRaNzH9f9P5e3kGJpYnFiZKlo1shs8TQfuHb0SKClDdiuPWexqFXMaPAxtgrlZwOiSWJceCyluk/yQb3m7F4mFNaGDkGmsS4n3k1yGNOPJBR0a08sJMreDagwSmrAuk76/+3HqYWPBOnsEbLTyZ/5ovSrmMvVce5ptJtvFsGNp8lC8HCxPWjWtB9yyr+6X7CZwJjslz3cIgKUP/QVpWtWfhkEYo5DL+CbjPb0fvGGW/7nZmTH9JvHnO3n2dsNgUo+y3OIxq442VRsmtyCR2XjKidUgmM5q1wVKjYnJXsY7P/AM3c/ToKQlarZYNGzawYcMGtNqilfp/moYetnSp5YxegHkHbhpFPmNibapi/biWWGrE+LctT2WYcf8+LFtW9oIVgLudmaF69g97b3IjomQ3j4qOMcdkYXG0NCmT47zIuNuZMbNvHY5/1IkPutfA1kzFtQcJ9P7lGCtOhJSoeerLvm78PrwxJko5wdEp1HW1wtIkp1IUlZTBkZtR+e5DqZCzeHgTWlYRy2xMXBtAYlrx5llJGfqP0qW2M7NeEZ+e5+67yYWwOKPsd3hLL5p62ZKSoePjfy6VWwd0K42KMW2rAPDTgZvGd0UkJMCXX8LkySXazetN3anmZMGjlEwW+hW+a/OzSE9PZ9CgQQwaNIj09NxF1YrK+92qI5PBzosPuBIebwQJjYutuZqlI5oCEBKTwuX7WTI+eCDWhxo1Cq5eLUcJ8+a1pu50qulEhk5MLc7QGs9VWtEw9piUqFjYmKl5p2M19k5pR7vqjqRr9Xy+9Qqjlp0hKrH4v3enms4sH9UMCxMll8MT8LA3x80mZ222ufsKfkhbPLwxLlYmPExI56vtxZsLJGXoP8zgpu70ql8JrV7g3bUBJBWxYWBeyOUy5gxogIlSzr+3oll3JqyQ28lp37497du3Ry43zrAb2doLa1MVd6KS2XEx3Cj7NHD1qljp+Jdf4EbxfdFKhZyPe9YEYOmxEKNY04x9LmtVsqJPVpHAHwsx8ZQHTbzseCmrKfH8bAtWpUrw0ksgCPD55+UoXd7IZDL+178etmYqroQn8MuhihWXZUxK4/p+UanI59LJUsOyEU35ok9t1Eo5h29E8dL8oxy6/rDY+2xRxZ61b7UwXCcaldjiJJsrDxLwu5G71MaTWGlU/Px6I2QyMc5oTzFiSaVssgJ4nrLJ8iI+NZOeP/3L/bhUXm3oxtzXfI2y3+yMGUsTJfumtiu3Ssu/HrrFD/tuUsXRnP1T2hu3W3zfvrB9O7z2mph2X0wEQeCNJafwvx1Dnwau/FIB2zUERyfTZe4RdHqBTeNb0djTtuCNypigqCS6zD2CXoBtE1tTv7INXL4M9euLCtH582I2YAVj16UHTFh9HrkMNo5vRSOPinduJSSKyo2IRN77O8BQcXxYC08+7lmrUJWk8+J2ZCJv/HmaiIQ0mnvbER6XQtgjsWinhYmCw9M6Fuga/d/u6/x25A62Zir2Tm6Hhgwpm0xCxNpUxU+DfZHLYHPA/dwxF8VkVBtvfN1tSEzX8vHm8nOXvdnKCxszFUFRyWwLNM53MzBrlhg/tG6dWPW4mMhkMj7uWQuZDLYHhhNw95ERhTQO3g7mDGhUGRDbnlTEZ6Qqjha8ktWQcf6BLCtL3bpibSgQLXkVkJ71KvGKryt6AaatDyT1ia7vEhLPKzVcLNnyTmtDMsvKk6H0+fXYYzd2EanmZMnSkU0NSTqtqzliZyZWpE5K1zFh9bl8g6mzmdq1OrUrWfEoJZMPN10s0jwmKUMvAE287Hi3sw8An265zN2YkrtqFHIZ3w+oj1ohmkoPXnu2GbO0sNSoeCsrdujng7cLvFiKRP36MGiQ+L6EjUHruFrTP0vZmLXzWoVUNt7t4oNaIedkUCz+t4uflVGaTOrsg0Iu49D1yMdxcJ9/LpZF2LYNzp4tV/ny48u+dXGx0hAUncx3e3IXC5SQeB7RqBR81rs2K0Y1w8nShNuRSfRb6M/iI3eKlcVcq5IVPwwUK0n/fSaMN1t5oVGKasqZkEfM3nXtmdurlXLmD/ZFrZTjdyOKdWcKn8X7XClDR48epU+fPri6uiKTydiyZcsz1/fz80Mmk+V6Xb/+4k1GEztWo4mnLUnpWt792zj1h3ycLRmV9VTw3Z7rzwxiTk5OxtHREUdHR5KTi95T6Fm82coLWzMVwdHJbL1g5NihmTPFG+3WrSW+0U7rVgNTlYJzoY/YfTmi2PtJTU3F19cXX19fUlNTSyTTk7jZmDKkuVgx+ft9NyqkwubtYE6/htnWoazYoRo1YOhQ8X0F6mb/JNZmKuYMqA/AsuMhHLsVXc4SGZfSGpMvIqU5V5YW7ao7smdyO7rXcSZTJzB793XeWHKKB/FFHwu96ldiQlZT8IV+d5jeo4YhwXeJfwjbAp89x1d3tuSjl8Q4ze+LEAP5XClDycnJNGjQgF9//bVI2924cYMHDx4YXj4+PqUkYcVFqRA1ZkuNkgthcfx0wDjBnOM7VMXaVMWtyCQ25VMgK5vo6Giio41/E7AwUfJWO9E69MuhW8a1DtWs+fhG++WXJdqVi7XGIOf/dl8nXVs8d4lerycwMJDAwED0euNmKL3TsRqmKgWBYXEcKCdrX0FM6lQNhVyG340ozoVmuRw/+0xsrlurFugqphuqXXVHhrXwBOCDjYFGK7VQESjNMfkiUlpzZWliZ67mtzca879X62GqUnD8Tgwvzf83z15iBfF+txp0rCFmrf1xNDhHM+n311/gekTCM7cf0cqLNtUcSM8s/Fh8rpShHj16MGvWLF599dUibefk5ISLi4vhVRYVUisilW3NmP1qPQAW+N3mxJ2Su0KsTVVM7FgNENtkpGWWz43ozZZe2JmrCYlJYYuxrUOffw7Dh8O8eSXe1bh2VXC0NOFubAorTxSvcKVGo2Hfvn3s27cPjca4DVYdLU0Y2doLEJvilmel8fzwtDenf6OnrEM+PhAeDj/8ABX4+p7RsyZe9mY8iE9j5rYr5S2O0SjNMSnx/CCTyRjczIOd77ahfmVr4lMzeWfNeT7cGFik0hIKuYz5gxvi7WBOeHwaB6895O32orUoUycwbMnpZz5MyOUyfhjYACtN4ftzPlfKUHFp2LAhlSpVonPnzhw+fPiZ66anp5OQkJDj9V+id31XBjWpjCDAlHUXeJScUfBGBTCspSduNqZEJKSx1D+k5EIWA3MTJWNLyzpUrRosXy7+LSHmJkqmdRMLMf5y6DZxKUU//wqFgq5du9K1a9dSUezHtauKpUbJ9YhEthu7ZIGRmNTJB6Vcxr+3ojkXmtVHySJ3D6OKhplayY+DxISGfwLuG7p4P++U9piUeL6o4mjBpvGtmNixGnIZrD97j/GrzhXJGm5tquKP4Y2xMFFyKjiWlAwtfeqLjbmjEtMZv+rcMx/WXKw1fN6ndqGP959WhipVqsTvv//Opk2b2Lx5MzVq1KBz584cPXo0321mz56NtbW14eXu7l6GEpcNX/SpQxUHcyIS0vhoc9Ei7vNCo1LwftYNfqFf8W7wxmB4S0/szdWExqSw2UhZc3mSWTL3xoDG7tR0sSQ+NZOfDxqnEKMxsTZTMTYrKH3e/ptG7atmLNztzBjYRAxIn7f/KZevvz98/HE5SFU4Gnva8n5WG5Qvtl6pkNmFEhIlRaWQM617DZaObIaJUs7B65GMW3muSN6Dak6WzB0kBlSvOBFKy6r21HCxBOD4nRh+OvjsmKCX6lYq9LH+08pQjRo1eOutt2jUqBEtW7Zk4cKF9OrVix9++CHfbWbMmEF8fLzhFRZWuKKCzxPmJkp+fr0hKoXYF2aNEZ5OX/Z1o6aLJYlpWhYcLp8bvJlaybj2j61DRr+Jh4WJadzduol1bYqJQi6m2gOsPBlCSHTRgiS1Wi07d+5k586dpdb6YGQbb+yz3I4FxYKVF+90rIZKIePY7WhOZ3fZjoiAjh1h9mz499/yFfAZTOhQlZfquJCh0zN+1fkSVfGtCJTFmJR4Pmlf3ZGlI8SUeb8bUby14myRFKJudVyY0kV82J657SrvdfZBpRBVl58O3ubgteIXfHyS/7QylBctWrTg1q38g4dNTEywsrLK8fovUtfNmg+7ixH3X++4WuLGewq5jI96iPtbfjyUe4/Kp2/ZGy08cbBQExabyubzRr6Jy2SweTP4+cHBgyXaVbvqjrSv7kimTuB/u4uW3Zienk7v3r3p3bt3qbU+sDBRMj4ro+Png7eKHexdmlS2NWNgE9FyO29/1hOiiwuMHCm+r6CZZSDGVvwwqAHVnCyISEjjndXnK6QFrrCUxZiUeH5pVc2BpSObYqZW8O+taEYvP1OkeluTOlWjW21nMnR6vtx+handHidBTVobUOQHyrx44ZShgIAAKlUqvOnsv8zoNt609XEgLVPPpLUBJQ5+bl/dkZZV7MnQ6Zm7P6f5Ui6X06RJE5o0aVKqJebN1EpDoN0vh24btx9U5cowbpz4/vPPS2QdAvikVy3kMthzJeKxZaMQlNW5fKOFJy5WGsLj01hzqmLGtmRbh04ExXAyKCsh4JNPQKWCw4fhyJHyFfAZWJgoWTysMZYmSk6HxPLNzmfXUKnIlNWYfBH4r57LFlXsWT6qGeZqBf63Yxi57DTJhWwRJZfLmPuaLz5OFjxMSGf/lYe0reYAQEqGjrErzpKSUTKL5HN1ppOSkrhw4QIXLlwAIDg4mAsXLnD3rjhRz5gxg+HDhxvWnz9/Plu2bOHWrVtcuXKFGTNmsGnTJiZOnFge4lc45HIZPw5qgL25musRiTksFMHRyUWOJZLJHluH/gm4z9Xwx8HnpqamnDlzhjNnzmBqWrqtO4Y298TBwoR7j1LZZGzr0IwZoNHAiROwZ0+JdlXd2ZLXmop1fb7ZebXQmVtldS41KoWhWOeCw7dLPNmUBm42przW9CnrkIcHjBkjvq+APcuepKqjhaFFzrLjIca3ZpYRZXl9/9f5L5/Lpl52rBjdHAsTJSeDYhm59Eyhe2ZamCj5fXgTrDRKzt+Nw85CbcgWuxmZxPRNJeuE8FwpQ2fPnqVhw4Y0zOo/NHXqVBo2bMjnWRPegwcPDIoRQEZGBtOmTaN+/fq0bduWY8eOsXPnziKn5v+XcbLUGCp+LjsewvbAcL7ecZWuc48QVAzTYwN3G3rVr4QgwJy95VPc0lStMLh4fjW2dahSJXjnHfG9EaxDU7tWx1ytIPBefIHFxMqDgU0q42lvRnRSRrllChbEOx2roVbIORUcy/E7WbVZPv4Y1Go4elR0a1ZgutZ25t1OYqbijM2Xit3OQELieaCxpy0rRzfDUiNaRN/86zSJaYVLSvF2MOfn1xsik8HWC+H0qvfYy7M9MJxVJbBgS41aC+B5b9RaWL7YepnlJ0KRAdkD4vsB9Q0xGUUhJKvpp1YvsOat5rSq6mBUWQtDWqaOtnMOE5WYzjf96jK0uafxdh4VBV5ekJIiNnLt3btEu1tw+Dbf772Bi5WGg++3x9yk8LUxyoJ/Au4xZV0gVhol/07vhLWpqrxFykX2+G3mZce6cS2QyWSi0rpwIXToILrMKjB6vcDo5Wc4fCMKNxtTtk9qg525urzFkihH9HqBhLRMEtO0JKVnvdK0JGb9TUrPzPF/coYWvR68HMyp6mhOVScLqjpaVMjrFeDivTje+PMUCWlafN1tWDG6GVaawsm6yO8O3+25jlIuo1VVe45mVXS3UCs4OK0DzlZiraui3L8lZagAXgRl6PjtaGZuv8LNh0k5lr/ezMNQpLGofL71MitOhFK/sjVb32lNamoqtWuLNR+uXr2KmZlZieUuiL+OBfPVjqu4Wmvw+6AjaqURDaHTp8OcOdC1K+zbV6JdpWXq6DrvCGGxqbzTsSofZAW250dqaipdunQB4MCBA6VuStfpBXr8dJSbD5OY2LEa07rXKNXjFYeHCWm0nXOYDK2e1WOa07qag5j917UrTJsGo0djqOlfQYlPyaTvgmOExqTQppoDy0Y2Ral4Poz3ZT0m/4ukZui4EBbH8ev3+eLNl8jQ6nAZvRC5qmRFLB0tTUTlyFFUjkQlyRxXa1Pk8vK9Ji7fj+eNJaeIS8mkQWVrVoxqjrVZwQqRIAhMXBvAzosPsDNXo1LIeJggBu73ql+JBUMaAZIyZFT+68qQIAh8suVyngGyNV0s2TO5XbH2G52UTvs5h0nO0PHrkIZ0rGqNRVZRvKSkJMzNzUskd2FIy9TRbs5hIhPTmTuoAa9mNUo1ClFRsGSJaH2wtCzx7vZdiWDsynOoFXL2T22Hp33+5yc5ObnMz+Weyw94e9V5LEyU+E/vVKgJq6yZue0Ky46H0NjTlo1vtxStQ4JQ4ZWgJ7kRkUi/hf6kZOgY175KjjYEFZnyGJPPO5GJaZwLecTZ0EecDYnlSngCWr2APiONsHkDAHCfshEzczMsTFRYapRYmGS9NEoss/5amCgxN1FiqVGi0wsERydzJyqJO5HJRCSk5Xt8jUqOj5MlvepXon+jyjhampTVV8/B1fAE3lhyitjkDOq6WbFyVHNsC2EVTcnQ8urC41yPSKSKozlBUY/DOpaNbEqHGk6SMmRM/uvKEIgK0Q/7brDg8J0cy2XApS+7Y1FMt838AzeZf+AWnvZmbB3XBFtr8fyV5WSZ7YKqXcmKne+2EW+QFRBBEBj+12n+vRVNl1rO/Plmk3zX1Wq17NixA4DevXujVJa+W02vF+j5879cj0jkvc4+TOlavdSPWVQiE9Jok2Ud+ntsC1pUsS9vkYrFjovhTFwTAMCvQxrSu75rOUtUMOUxJp837sakcOx2NGdDYzkX+ojQmNzlR1ysNNR30fDH6DYAxMYlYGtd/IetpHQtQVFJBuXodqT4PiQmmUzd41u/Ui6jSy1nXmvmTjsfRxRlbDG6EZHIkD9OEpOcQa1KVqwe07xQbuKw2BR6/3KM+NRMmnnZcTpEzMp1tdFwcGoHMtOSJWXIWLwIylA2fxwN4ptdOdN7DS6HYpCcrqX994eJTsrgk27ejO1cByhbZSguJYOWsw+RmqljzZjmtCrmd3kmgiBaipycSrSb25GJvDT/X7R6wfBkU5HYefEB76w5j6VGif9HnQrt3y9LPt1yiVUn79KuuiMrRjUTF2ZmwsqVYmXqJUvKV8BCMnvXNRYfDcJMreCfCa0NVXclni/iUjLYcfEB/wTcf9xUOAuZDGo4W9LEy5YmnnY08bLFzcaUlJSUUreyaXV6wh6lcioohnVnwwi4G2f4zNVaw8Am7gxq6o6bTdm5O289TOT1P04RnZROTRdLVo1pjoNFwdaq9WfC+HDTRUxVChwt1dyNTQVgfPsqjG/tJilDxuJFUoYA1p8NY/rGi4Yg6tGtvfisT51i72/liRA+23oFG5WOwFkvA2VvRv9sy2VWngylU00n/hrR1Lg7v3IFhg0T3587V2KXzNc7rrLkWDBVHM3Z814748Y5lRC9XqD7/KPcikzi/a7VmdTZp+CNypiw2BQ6/OCHTi+wY1Ib6rpZQ2io2Mg1M1OsSt2mTXmLWSBanZ43l57G/3YMXvZmbJ3YpsIGwkrkJEOr58jNKDafv8fBa5FkZBXTlMvE1PJm3nY09rSlkadtng8U5eFyvB6RwN+nw/gn4L6hAapMBu18HHm9mTudazkbqj6XJrcjkxjyx0kiE9Np7GnL32NbFHhcQRAY/PtJTgXH0tjTloC7j9AL4vneONqXxj6VC3X/rjgzrUSFYFATdxa90YjsW/rWEqZ7D27mgbeDObHJJevnVRJGtfFGJoND1yO5HZlU8AZFwcUFbt2CgADYurXEu3uviw8OFmqCopJZcSIkz3V0Oh1+fn74+fmh05VdZWi5XMbErBTwJf7Bha4PUpa425kZmjkuOpLl9vX0hBEjxPdfflk+ghURpULOL683ws3GlJCYFCb/HVDoOlTlQXmNyYqCIAgEhsXxxdbLNP/2AG+tOMvuyxFk6PTUdLHkk561ODmjM+vGteT9bjXoUMOpQllWa7pYMbNvHU593JmfBvvSsoo9ggBHbkbx9qrztJx9kNm7rxFshErPz6KakwVrx7bAUqPkXOijQlXnl8lkfPtqPdQKOedCHxnS7fUCDFtyqtDHlpQhiVy8VLcS3/UXs8iikzLwvx1V7H2pFHI+KOfsI28Hc7rUcgbgL/9g4+7c3h7efVd8/+WXJa47ZKVRGdqkzD9wi8jE3AGQaWlpdOzYkY4dO5KWln+AZGnQu74rVRzMiUvJZOWJ0DI9dmF5O6vG1O5LDx5P3h9/DEolHDggusueA+zM1Swe1hgTpZzDN6KYfzD/NkLlTXmOyfLkflwqCw7fpsvcI7y8wJ/lJ0J5lJKJo6UJb7X1Zte7bdkzuR1vtauCk1XJssLKAo1Kwcu+bqwd24LD0zowvkNVHCxMiE7KYPGRIDr/6MesHVeL1EqjqFR1tODHrNp3S44Fs/vSg0JtM6GjeN3734nBPiveKDGt8HJKylAhuRdbPr22yotBTT3oWc8FgM+2XEFbgr5JPeq6UM/dBpW9Bw7uVcsliHlMG28ANp27R0ySkXsnTZ0qZpRduABbtpR4dwMaV6Z+ZWuS0rV8v+dGrs9lMhm1a9emdu3aZX4uFU9Yh/74N6hCVqWu6WJF55pO6AVYnG0d8vJ67qxDIPYQ/Laf+GDy88FbrD9TMRtHl+eYLGsEQeBUUAyjlp2hzXeH+H7vDe5EJWOilNO3gSvLRjblxEed+KRXbWq7Fj20oqKcS28Hc6a/VJMTMzqxeFhj2ld3RC/An8eC6T7/6OMCp6VAtzoujGsnNt3+YONFgqIKtuiP71AVTzszYpMziEnOKPIxpZihAsiOGXKfvJ5qlR3pUN2JDjUcaeZth0alKG/xSpVHyRm0m3OYxHQts16pyxstil+48GRQDIN/P4lSLmP/1PZ4O5Rt6q0gCPT91Z9L9+OZ2rW6oc2E0fj0U/jmG6hfX3SZlbCn0Pm7j3h14XEAtrzTGl93GyMIaRy0Oj2d5x4hNCaFT3rW4q2sSasicS40lv6LTqBSyPj3w064WGsgOBiqVwetFo4fh5Yty1vMQvPNzqv88W8wMhnM6V+8YqgSJUOnF9h/NYLfjgRxISzOsLxFFTtebVSZHnVdsKxArq/S4PD1SD7+5xIP4kXr3+vN3JnRs1apuPy0Oj1D/jzF6eBYarpY8s+E1piqn33PPR0cy6DFJwz/69NTCJs/SIoZMiYKuYygqGT+8g9m+F+nafjVfkYtO8OKEyHczSNF8r+Arbmaqd3EFOq5+28aAuuKQ4sq9nSs4YhWL/DD3tzWjtJGJpMxpq1oHVpxIqTETWlzkW0dunjRKLFDjTxs6Z9VF+mLbVcqVLyIUiHnnY6idWjx0aBSNZkXl8aedjTzsiNTJ7DkWJC40NsbsnsXfv11+QlXDD7uWYvhLT0RBPhw00U2nXs+e5g9j6Rl6lh7+i5d5x7h7VXnuRAWh1opZ0hzDw69356/x7ZkUBP3CqUIaUvJYNuxphP7prTjjRZiT8W1p8PoOvcIB64+NPqxlAo5v77eEAcLE65HJPLJloJ7jzXztmNw0+I9KEjKUCE5+mFHFg5txKAmlXG2MiE1U8eh65F8vvUK7b4/TKcf/Phy+xWO3oxCV4FuXCXljRaeVHOyIDY5g19KGLMwvUdNZDLYeekBgU88WZUVPetVopK1huikDLZdMHIfMDu7x7FDGzcaZZfTX6qBhYmSwLA44zecLSH9GrpR2daU6KR01p6umB3tx2fFEKw+dZe4lCyz+YwZ0K0bfPRROUpWdGQyGV/2rcMbLTwQBJi2MZB/AirWmPivEZ+ayYLDt2nz3WFmbL5EUHQyVholEztWw396J77tV48qjhblLWYuHj2CmjVh9WrQG7EtYzaWGhWzXqnHurEt8HYw52FCOmNWnGXS2gCjhyA4WWn45fWGyGWw+fx9/i6Em3hGj1o4WIgxQ0UplyS5yQogr9R6QRC49iARv5uRHLkRxbnQR2ifUIB8nCz4oHsNutZ2/k/4z/1uRDJi6RmUchn7prQr1gSQkpJC06ZNiUhIw3zQHHo19GLRG41LQdpns/jIHWbvvk51Zwv2Tm5n3N8nJkZM3e7bt8Rusmx+P3qHb3ddx8HChEPT2mOlUZGamkrfvn0B2LZtW7m1Plhz6i4f/3MJJ0sTjn7YscK5jQVBoNfPx7j6IIEpXarzXpeKVwqgqOj1Ap9tvczqU3eRy2Dea7687OtW3mJVmDFpDB7Ep/LXsWDWnLpLcpbVs5K1htFtvBnczKPYRWgLS/ZcCXDmzJkity7y84OOHcX39erBt99Cr16lU4g9LVPHvAM3+eNoEHoBbM1UzOxbh74NXI06t2b3IlMr5Wwe30osmfEMtgWG8+7aAOSZqQTPHSjVGTIGhakzlJCWyfHb0fjdiGL35QiDO6mxpy3TX6pJM2+7shS5VBi59DSHb0TRuaYTS4pRq+fJ2hnuUzaiNNHgN60jHval36PsSeJTM2k1+yDJGTpWjGpGu+qOZXr8opKh1fPS/KMERSfzVltvPulVu8K0PkjX6uj4vR/h8Wl89XIdhrf0Khc5nsX2wHAmrQ3A1kyF/0edMFM//5WR9XqBT7ZcYu3pMOQymD+4IX0blG+V6ooyJktCaEwyvx66zT8B9w0PtzWcLRnXvgp9GriWSZ0dKPm5/OknmDw557JWrWD2bGhXvO5KBXLxXhwfbrzI9YhEADrVdGLWK3VxNVLRRr1eYOzKsxy4Fom7nSk7JrZ9ZksgQRAYsfQMhy+FSjFDZYmVRsVLdSvxv/71OfphRyZ0qIpGJdY8GLT4BKOWneHag4TyFrNEfNq7Nkq5jIPXIzl6s/ip9gCtfRzQC6WQ5l4IrE1VDMryKf95rBSPn5Qk1h8qIWqlnM/6iA1ul/qHcDsyCRMTE1atWsWqVaswMSmffkIAJkoF47PS2Bf53SFdW/Fih3rUdcHT3oxHKZmsPf2EiT0qCj78EEaOLD/hiolcLuObV+rxWhN39AJM/juA7SWsB1ZSKsqYLA5hsSl8uDGQTj8eYcO5e2j1Ai2q2LF0ZFP2TG7Lq40ql5kiVBSyC9+fPCm6xL76Ct5+G377Lfe6x49D+/ZQu7b4eVTJpvBc1K9sw/ZJbXi/a3XUCjmHrkfSbd7RQqXFFwa5XMaPA31xtzMlLDaV9zdcMMRRCoLAvUc543ZlMhmzXqmLiarwv5tkGSqA4lagfpiQxk8Hb7HuTBg6vYBMBq/4ujG1a3Xc7crWGmIsvtp+lb/8g/FxsmD3e22L1FH7yaedPQHBjPv7CmZqBSc+6lzmTT/vxqTQ4YfD6AXYO7md8Vsd+PnBwIFiOvfp00axT49edoaD1yNp6+PAilHNKoz7NS1TR/vvD/MwIZ1v+9VjSHOP8hYpF9nuvErWGo580FGs6n35suhDkMng0iWoU/wq6+WFXi8wfdNFNpy7h0Iu4+fBDemVVXBSomDuPUphweHbbDh7z2AJ6lDDkfc6+9DQw7bc5MrLMpSUBIcPw7FjcPs23LkDQUGQmFj84zg5QePG4OsLDRqILx8fUJTQ233rYSIfbrpIwN04ZDL4tl89Xm9mnHnh8v14Xl10nAytng9fqkGH6k58se0ylhpVnt0F5u+6wJReDSU3mTEoaTuOoKgkftx/k50XRQ1ZpZAxtLknkzpVw74QfVcqEvEpmXT44TCPUjL5sm8d3mzlVehtn7zAExMTGfDnea5HJPJRj5q83b5qKUmcP+NXnWP35QgGNanMnAENjLvzqChREUpJgZ07oWfPEu8yJDqZbvOOkqHT88fwJnSt7VxyOY3EUv9gvtx+FTcbU/w+6FDhnqLTtTrafneYyMR05gyoz6DstPT+/WHzZnj9dVizpnyFLCZ6vcCHmy6yMUsh+vX1hvSoJylEzyK7UOKGs2GGZqVtfRyY0rU6jcpRCcrmybnyyy+TOHzYHH9/sZtMXlSuDFWrQpUq4OoqusPyCpw2NQWNRtxPUj5le6ysxMti2DDRklTc0EedXuDTLZcNyRXTX6ppsCKXlLWn7zJj8yVDlwQBsNIoufB5N+RPRUzHPorD3s5WUoaMgbF6k128F8ecPTc4dlssVGWuVvBWuyq83b5qhQs8fRYrT4by2ZbL2Jip8JvWARuzgjsLQ+6nnV3XYvlg40VcrDQc/bBjmffgOhf6iP6LjqNWyPH/qBOOlkZWTD/4AH74AZo3hxMnjGId+m7PdRb53cHdxoTZ7S0wUSpo1KgRipI+ypWQtEwdbb47THRSOnP61ze4ISsS2YHoVRzN2T+lvdiVOyAAGjUSZ/xr18QaRM8hOr3ABxsC2RxwH6Vcxq9DGvFSXZeylUGn4/z58wAVYkzmxYP4VBYevsPfZ+4alKA21RyY0tWHxp7lH9eZmirWbN22LZm//85OUkkCxJghb2/o2lU0YlatKr68vEQFJ5vwcLHYuqen+PLwEP+6u+dcLylJNIheuACBgeLfS5fE57dsPDxg6FBRMapVq+jfRxAEvt97g4V+YuHTce2q8FGPmiWyauv1AhvOhvH5tiuka3NqfLvfa0utSjnv0UW5f0vKUAEYu1HrsVvRfLfnOpfuxwNQv7I1v73R2GiBZqWNVqen18/HuPEwkRGtvJjZt3DuhaeVIaWJhjbfHSYqMZ15rzWgX8PKpSl2nvRb6E/A3Tje7VSNqd2M3DLk4UNx9kpNhT17oHv3Eu8yOV1Lpx/9eBAdT9i8AUDFCVb9898gZu28hoedGYfeb18kF2pZkJSupdXsgySkaVk0tNFj60mfPrBjB7z5JixbVq4ylgSdXuD99RfYciEcpVzGwqGN6Fan7BSiihxA/TAhjYWHb7P2dJihaWrLKvZM6Vq9QiS3BAfDokWwZAnExgIkA+K5fOmlJHr1Mqd7d6hWrXQywrLR6cTYopUrYf16iI9//FnjxqJSNGQIOBYx5yT7QQTgtSbufPtqPfFhpBjcjkxk0OKTxOZRYTqvJI6i3L8r1oz1AtDGx4Gt77Tml9cbYmum4uK9ePr+eoxTQTHlLVqhUCrkfJ4V0LvyZCi3HhbOaS2TyfD09MTT0xOZTIaJUsGbLcWK1n/+G1xgMa3SYEwbsXLyypOhxi/C6OwM48eL743QswzA3ETJjB61QAZKayfc3D0qTOzQkOYe2JuruRubwlZj13AyAhYmSoNbd9GRO4/H22efiX9XrRKDMJ5TFHIZPw7y5WVfV7R6gQmrz7P4yJ0yK9b59PVdEQiPS+XzrZdpO+cwy0+EkqHT08zbjr/HtmDt2Bblqgjp9bBvn1iFo2pV+P57URHy8oKpU2U4O4vnctMmGRMnirE8pX1aFQpo2xZ+/x0iImDDBvFZQamEc+fEDDUvL/jii/zdbHkxtl1VvutfD7kM1p0N453V54udbFHNyZKNb7eksm1u48Hp4Nhi7TMbyTJUAMa2DD1JWGwKY1ee49qDBJRyGZ/3qc2wFhVnMnkWb604y/6rD2lX3ZHlI5sWS+ZHyRm0/N9B0jL1rHmrOa2qOpSCpPmj1enp8IMf9x6llk7wb0SEaB1KSxMbhHbuXOJdCoLA0D9PcfxODM297Vj7VotcfvLy4rcjd/jf7ut4O5hzYGr7Yj/9lRYxSem0/u4QaZl6Vo1uThufrPH20kuwdy+MG5d3Ks5zhFan58ONF9kccB8QY2F+HNjguWgSaizCYlNYdOROjpigpl62TOlSnZZV7ct1fo2Ph+XLYcECuHnz8fJu3WDiRDG8sKJ5GKOiYN06+Osv0bMM4OIiFnEfObLw8u65/IB3114gQ6endTV7Fg9rUuyaTZEJaYxYeoarT2Rp25urOPtp1xy/r+QmMyKlqQwBpGbo+HDTRUNq7KAmlfnq5boVPo4oJDqZrvOOkKkTWDqiKR1rOhVrP59uucSqk3fpVNMpz2yA0mbJsWC+3nGVqlmxJEZXLN57D375RbQOZVshSkhYbArd5h0lNVPH16/UZVgJesYZk6R0LW2+O0RcSiY/Da4YxQCfZua2Kyw7HkKrqvaseauFuNDfH/7+W4zz8qh42XBFRRAE1p0JY+b2K6Rl6rE3V/PDwAbFvkafF0Jjkll4+A6bzj/ODmtZxZ53O/vQoopduSpBGRmiAvT112KFaBCDlUeMgAkToEYxvfRanZ7L4Qlcf5BAUrqW5HQdKRlakjO0pKTrSErXkpKhM/yfrtXhaW9ObVcr6rhaUbuSFV725oWa9wQBNm2C6dMfG1Hr1hVDIwsbBXDsVjRjV54lJUNHA3cblo1oiq154eJOnyYxLZO3V53D//Zjr8qRaR3wfKLvpaQMGZHSVoZAnLz++DeI/+2+jl6ABu42LH6jsdhcsgKT3TyyoYcNm8e3KtZkExydTKcf/RAEODC1PdWcyra8fWJaJq1mHyIxXctfI5rQqaaRs7QiIkT7d+3aRt3tMv9gZm6/irlawd4p7ahsWzHKNfx66BY/7LtJNScL9k1uV2GsVtncj0ul/ZzDaPVChWuAa2xuRyYyae0FQ42zka29+KhHTUyUFftBq6gERSWx4PAdtly4b2iF1NbHgUmdfMo9JihbgfjoIzEdHsRWGe++C2+8IbYzLNr+BG5FJuF/Oxr/2zGcCo4hMa1kjcjM1ApqVXqsHNV2taK6s2W+D+Tp6WKM01dfPVbsunUTlaJ69Qo+3oWwOEYsPU1cSiY+ThasHN282Pe6DK2eCavPceBaJABvtPBg1iuPhZCUISNSFspQNv/eimLimgDiUzNxsDDhtzca0cSr/AP88iMyMY023x0mQ6tn3dgWNK9in++6qamptMsqf3r06NEc5fqzXW6vN/Ng9quFuJqMTLZSl8NaUIFJS0vjtdcGczY0FmWXKbSr5Vphag8lpGXS5n+HSEjTsmBIowpZ9+b99YFsOn+PbrWd+X14k9wr6PVGa6dS3qRl6vhuz3WW+ocAUKuSFb+87ks1J+PW1kpLS2Pw4MEA/P3332g0pf8gd+thIgsO32ZbYDjZoVEdajgyqZMPjT3LP0X+xAl4/33xL4iupVmzRGvQs1xLT8+V0akCx++Iys/xOzFEP9X/y0qjxNfDFhtTFeYmSszVCsxMlFiYKDBTK7EwUWKmVmBuokQhl3E7MomrDxK4kmVRejorC8QYtFZV7RnVxpv2Po55PtTExsI334iG78xM8ZKZPl1UkpQFeL9uPUxk2JLTRCSk4WZjyqoxzfF2KF7QvV4vMOC345y/G4epSsHZT7tgnuV+k5QhI1KWyhCIBQHHrjzL9YhEVAoZM/vWYWjziuEGyYuP/7nEmlN36VjDkaUjm+W73rOyTU4HxzJo8QlMlHKOf9SpzOsv3Y9Lpd2cw+j0AjvfbUMd12f3vSk2QUHirFFcm3gWT57Lah9sJlOurlAp7fMP3GT+gVvUdLFk93ttK4SS9iS3IxPpOu9oljWy3WPFIDBQdGXWqSMWa/kPcej6Q6ZtuEhscgYalZwv+tRhcFN3o/02ZZVNptXpOXg9khUnQnK4R7rUcmJSJx8aVABLX1CQ2A94/XrxfzMz0QM7bRpYFMLw/eS5bPX1Tu4n5bxFa1RymnrZ0aqqA62r2VPH1brY8XlanZ7g6GSuPkjgarioIF0Jj+dRyuOiRlUdzRnZ2pv+jSpjqs6txd25I37fDRvE/9u3h7VroVIBz0FhsSkMW3KKkJgUHC1N2PpO62JnVadl6mgx+yBxKZm83b4qH/WoCUjKkFEpa2UIICVDywcbLrIzq5T5683cmdm3ToU0b4dkubn0Qt51HrJ51mQpCAIvL/Dn4r34cmuoOWmt2NLg1YZuzH3N1/gHWLoU3npLdK7v3FmiXWVmZrIsKw1cW7Ut3+27g6VGyf4p7SuEazU+JZNW/xP7vy0d2ZSONSperMq4lWfZe+Uh/RtV5sdBWUU3t28X03ssLCA0FOwqrlW2OEQmpDF1faCh1lnPei7M7lffKBXgnxyTI0aMQKUyblX5mKR0/j4TxuqToYTHpwFiR/JutV2Y2KlagY07ywKtFubMEcMDMzLE7K9Ro0RLiWshW8fdiEhkwb4r/PJmS0Ds46jSmOLrbkOrqva0qupAI0+bUr0XCIJASEwKq06Gsu5MGEnpohvO2lTFkOYeDG/pSSXr3ErLunUwZoyYaebsLIbhdejw7GNFJabzxp+nuPEwkbpuVmwY1ypPhaswHLz2kNHLz6KUy9g7pR1VHS0kZciYlIcyBOKA/O1IEHP2XkcQoF11R/4c3qTMixMWhnfWnGfnxQe84uvK/MEN81ynoCfH7C7DDhZqjk3vVOYB5IFhcby8wB+lXMbxGZ1wsjSyUnH7tmgR0uvh7FmxcIcR0OkFXl10nMCwODrXdOLPN5tUCEvMrB1X+fNYMM297Vg3rmV5i5OLC2FxvJL1ex+b3klUIgUBGjYULUQzZ4o5xP8x9HoxPvH7vTfQ6gVcrTW83aEqrzaqjIWJEkEQKsT4AXEOvBAWx4oToey8+MBQI8jOXM1rTd0Z2tyjwsTKXb0qlqo6e1b8v2tXMYamfv2CtxUEgZNBsSw+ege/G1HoM9IMdcT+OXWbLg08i511VVIS0zLZcPYey46HcDdWrMiokMvoWa8So9t454q5u3EDBgwQu93I5aJbcPr0Z3ud7z1Koe+v/sQmZ9C3gSs/DfYt9hgctewMh55oW5SYmCjVGXrekclkjO9QlaUjmmKqUnD0ZhTTNgSWWd2QojA+q53G9osPCItNKWDtvOlZ1wU3G1OikzLYkpUWXJY0cLehoYcNWr3AxnP3jH+AatXEimUgzhBGQiGX8f2A+qgVcg5ej6wwNX5Gt/VGpZBxKjiW83cflbc4ufB1t6GZtx1avcDyEyHiQplMLN8LYuvvhOe7uXJeyOUyxrWvyqbxrfC0NyM8Po3Pt16hxbcH+XzrZbrOO8Lm8/fI1OXRz6GMSMvUseFsGH1/9affwuP8E3CfDJ2eBu42/DiwAcc/6sT0l2pWCEVIpxOtQQ0bioqQjY1YtHDv3oIVIZ1eYOfFB7y8wJ/X/ziJ340o5DLoXudxEkfXOi7lpggBWGpUjGrjzeFpHfh9WGOae9uh0wtsDwznlQX+vLrQH/8sSyOIz3unTomKoV4vXk59+kDMM8roVbY1Y+HQRijlMrYFhvPbkeLX+/q8d23UCjn/3opm39WHRdpWsgwVQHlZhp7E70YkY5afRasXGNnai897164wT2/ZvPHnKY7djs63KnVhYgr+OBrEN7uuUc3Jgv1T2pX5d1x/JowPN13E096Mw+93MH4m1PXrYlaZIIjWh8I8NuaBXq/n2rVrANSqVQu5XG7I4rIxU7FvSjvjW7aKwQcbAtlw7hmByuXMvisRjF15DiuNkhMzOotBlzqdGDN04wb873/iY+1/lJQMLRvO3mP5iRCCopJzfGZnrubdztUY3NSjUFbavMZkUbgbk8LhG5H43YjkRFAMaZmiMqZWyuldvxLDW3pVuMy/69fFOjsnT4r/9+wJf/xRsEssW9n7499gg7XFRClnYJPKjGlTBUdTKmw1bxCbpS71D2F7YLjBWjeytRfTX6ppGCuCINYlmjhRLLPm4SG2AXyWQTy71ZNMBn+9WfxyLT/svcGvh2/jZmPK5jENcXG0k9xkxqAiKEMAWwLuM3ndBQA+6F6DdzpWM3yWodWjF4RyrU3kfzuaoX+eQqOS4z89dxB0YZShhKw096R0bbnEmqRkaGn2zUGS0rWsGdOcVtVKoQjka6+JkZWDB4tRhsUgr3OZqdPzygJ/roQn0KOuC4veMI4briTkG6hcQdDpBTr/6EdITErOUv7Ll4spP05OEBIidrj8D6PXC/jfiWbu/psE3I3L8ZmZWsGo1t681a4K1qb5xwEVNYA6LVPH6eBY/G5E4XcjkqDonMpYZVtThjb35LWm7tgVsw5NaaHTwfz58MknYpq5lZVoSHzzzYKrRJ+4E8OMzRcJiRGVIFszFcNbejG8padhzqzIrU2eJDIxjZ8P3mLVSbEZq4+TBfNe880RvxUYKLrNbt8Wz9OePdDyGV7z7IQcSxMl/7zTulilVlIzdHSZe4T7camMbVGJT/o1ltxkxkYQhHJzU73S0I3Peou1ar7fe4O/s7oB33yYyMsL/NlfRJOgsWlV1Z56btakZepZfiI0z3UcHBxwcMhfwbDSqBiclRH1579l3xrBTK3kZV/xsW7tmbDSOUi2G2bdupwlaIvI0+dSpZAzZ0B9lHIZuy9HsCsr+L48qeZkSddaosl/cQlM36WFQi5jVBtvAP46FmyoUcOQIWLfgcjI57pfWWGRy2W09XGkf6Pc/QFTMnT8evg2jb/ez8u/HmOR323+vRVFWGwK2qdcaXld33q9QFRiOpfvx3Po+kOW+gczetkZGn61n+F/neYv/2CCopNRyGU097Zj+ks12TO5Lf9+2JHxHapWOEUoOlq0AE2bJipC3bvDlSui7vwsRSghLZMZmy/x+h8nCYlJwdnKhK9ersPxjzozpWv1XA+PBc2VFQEnSw2zXqnH0pFNcbQ04VZkEv0W+rPQ77bhWmrQQHQftm8vep27dYNjx/Lf58w+dWjmZUdiupaxK84Sn5qZ/8r5YKpW8GkvsbPsEv/gQm8nWYYKINsyVO2DjegUGvSCmGro626Lr4cNDd1tqOFiiaqMGlPO2XOdhX53kMtgQOPKbLkQToZWT+/6lfh1SKMykSE/dl58wDtrzmNjpsJ/eidDrYeicO9RCu2/90OnF9j1bltqVbLkSngC1Z0tyyR4/PL9eHr/cgy1Qs7JjzuXzmTcpw8cPSreaPv1M+qu5+67wc+HbmNvrmb/1PblfjM5f/cRry48jkoh4+iHHfPMQilPUjK0tJx9iPjUTH4f1vhxc9O1a8VCKqNG/ectQ9lk19sqLCqFjMq2Znjam+Flb46tmZropHQeJqTxMDGdyIQ0ohLTDdWgn8bJ0oSONZzoUMOR1j4OWGmMm4FmbE6fFq0cYWHikPjpJzF7qiBr0P6rD/l0yyUeJoj1gYY292B6j5oV/vsWhdjkDGZsvsjeK+JDeTMvO34c1AB3OzGuKzlZTNQ8dAjMzcWE2vbt895XdFI6fX85Rnh8Gu2rO/LXiKZFLh0gCALDlpzm6JW7hM0fJLnJjEG2MuQ+eT1yk7wD9kyUcuq5WePrboOvhw2+7ja42ZiWSsyLIAi8+/cFQ/uObMzVCs591rVcXWVPuh0+612b0VlP3UVl4prz7Lj4gLpuVmRo9dx8mMSZT7rgaFk29Yd6//Ivl+8n8GmvWoxpW8X4BwgNBWtrMdrSyKRrdfT55Rg3Hybxsq8rP+WT3VeWvLb4BKeCYxnTxptPexu3Ercx+G7PdRb53aGZtx3rK2DmW1mRXfz0SUxVctxsTDE3UaFWysjQ6olLzeRBXJohXqQgZDJwsDDB2coEFysNDT1s6VjDiVqVLCtc7GNeCIJYcXnyZLFMmI+PWFW6oGrL0UnpzNx2hR0XRSutl70Z/+tfnxbPKE77PCMIAhvO3ePLbVdIztBhYaJkZt869G/khkwmIyUFXnkF9u8XlckdO6BTp7z3dfl+PAN+O05app5x7auIDaqLyO3IRLp9t5fguQMlZcgYZCtDV4If4GBng16Aqw/iuXA3joCwOALD4kjIoxx6TRdL3m5fld71K6E0otXoTEgso5edyfOYpdJOooisOXWXj/+5hKu1hiMfdiySxSwlQ8u+Kw9ZdjyYC2HxOT7zm9YBr2JWKC0qq06G8umWy1R1FBuOPg8T9pMEhsXRb6E/egH+GN6ErrXLd0z43YhkxNIzmKkVHP+oEzZmFcv1ERGfRpvvDqHVC2yb2Jr6lW1yrqDPuun/R6pS58fU9ReQy2T4OFlQ3dkSH2cLXK1N80wk0OsFIhLSCIlJ5m5MCiExKcSlZOBoaYKTlQZnSxOcrTQ4W2lwsFAbdQ4sS5KTxf69q1eL/7/6qlgy7Fn3VUEQ+CfgPl/tuEpcSiYKuYy32lZhchefCt9z0hjcjUlh6voLnA0Vs0h71HXh2371sDVXk5YmnsPdu0Gjga1bRddZXmwPDGfSWrEzbHF7HX6+8QxfD2wmKUPGoKAAar1eIDgmmQt347gQJr6uPUgwmIbd7UwZ264qAxtXNsqFkKHV8+2uayw7HpLrs9eauPPdgOJlKBmLtEwdbb47THRSOj8ObED/xmIcQmpqKj169ABg9+7dOdpxZBMUlUTfX/0NRb6eZMekNmVWWC0xLZNm3xwkNVPHhrdb0rS0WqIIAhw8KD5iOhdeYUlLS2P06NEALFmyJM/WB7N3X2PxkSDszNXsmNSm2JVdjYEgCPT8+RjXHiTwftfqTOpc9kU1C2LKugv8E3A/tzVt40b4/HOxkt7AgeUnYAWnMGPyeePGDejfX4wJUijEFPopU57tFrsfl8on/1zC70YUILY/mdO/PvUqF37uKsxcWdHR6QV+O3KHeftvotULuFhpWDm6GT7OlqSni+7GHTvAxAT++Qeyvm4ussNCTJRyNrzdMveDSgGER8Xi5mQvKUPGoDjZZPEpmaw8GcJf/iHEJmcAopl4VBsv3mjhaRRf8dYL95m+8SJpT/SVsTFTce7TrsUuzW4sFvnd4bs91/FxsmBvVrPOwmZI7L70gPGrz+davn5cyzJtuvjhxkDWn73Hq43cmDvIt3QO8vbbsHixWKt/zpxCb1aYc5mWqaP/ouNcCU+goYcN68a2LNeCnVsv3Oe9vy9gZ67Gf3qnYleZLS2yY8WUcjG2yaA8fvGFWELY1xfOny84QOQF5XnJgCose/bAoEGQmCi2lVi/Htq0efY2x25FM2H1ORLStKiVct7r7MPYdlWKHE/6XzqXl+7F8966AIKiknGwULN6TAtquFiSkSEm1m7ZAmq1wM6dMrp0yb29Xi/w1oqzHLweiYuVhm2TWhepbEhR7t/Ple3y6NGj9OnTB1dXV2QyGVu2bClwmyNHjtC4cWM0Gg1VqlTht99+K3U5rc1UTOzkg//0TszsUzurmGA6c/bcoPX/DjFnz/VczfaKysu+bmyf1AZPu8dPDXEpmRx/ogBWeTG0hQeWJkpuRSZx6HpkkbbtkVXZ9GmS87AWlSaDm3kAsOvSg2JlNBSK3r3Fv4sWPbsq2VOo1WrmzZvHvHnzUKvzdjlpVAoWDW2MlUZJwN04vt11zRgSF5te9SrhbmdKbHIGG86VUqZeCajrZk2LKk8VYQSxvbi5OVy4IN4hJfKkMGPyeWHRIujVS1SE2reHgICCFaGVJ0J4c+lpEtK0NHC3Yde7bXmnY7UyS6ypqNSrbM3m8a2o42pFdFIGr/9xkmsPElCr4fN58djXjSQjQ8agQXDrVu7t5XIZ8wb7UtXRnIiEND7ceJHSst88V79UcnIyDRo04Ndffy3U+sHBwfTs2ZO2bdsSEBDAxx9/zLvvvsumTZtKWVIRU7WCEa298fugAz8ObEA1JwsS07Qs9LtD6/8dYvbua6RrdcXev4+zJTvfa0eHGo6GZf/bc90YopcIK42KIS1EZeK3I3eKvP1HPWrS5Kmu03m5zkqThu421HC2JC1Tz9YLpVQRu1cvMfc0KUls/VxIVCoVkydPZvLkyc/sAeVhb8a8rD5ry46HsC2w/KpTKxVyxmYFo/9+NChXWnZFYEwbUb41p+4+Vr7t7UULHsC335aTZBWfwo7JioxOB1OnwoQJYpjYqFGwb9+zPdiZOj2fbrnEZ1uviK1xGrqxbmyLYtXH+a9iY6ZmzZgW1K9sTWxyBkP+OMkPe2/w2p/HMe9+DluvBB49gpdfhvj43NtbaVQsHtYYtUKO342oUpvHnitlqEePHsyaNYtXX321UOv/9ttveHh4MH/+fGrVqsWYMWMYNWoUP/zwQylLmhOVQk7/xpXZN7kdi4c1poG7DelaPYuPBNF/0XGCnyo4VhQsTJQsHdHUUJ/nSngCx25FGUv0YjO6tTdqhZyzoY84ExJbpG1VCjm/DmmEtenj1PxHWe7GskImkzG4mXhO15y6WzpPI0+2f/j5Z1EpMjKdazkzoYPYLuWjTRe59TDR6McoLAObuGNvrubeo1RDE+KKRKeaTng7mJOYpmXD2SesV1OnglotFkh5VpEUieeW5GQxPmjePPH/b7+FP/8Uf/b8iEvJYMTS06w6eReZDKa/VJMfBzV4IYKki4q1mYqVo5tTz82aRymZ/Hr4NhlaPTKlHrNep3GupOfaNRg6VFRKn6aakyWTOomFhr/afrVU7gfPlTJUVE6cOEG3p0LVu3fvztmzZ8nMzNv1kZ6eTkJCQo6XsZDLZXSv48KWCa1YPKwxtmYqLt9PoPfP//JPQPH7YclkMv7Xvz7dsrKG3vv7AvEppeTaKSROVhr6Nxaj/3/zK7p1yMVaw4In6iadK4f+Vv0aumGilHM9IpHAe3k8shiD/v3FvmWPHom1/AuBXq8nJCSEkJAQ9PqCLSxTu1anVVV7UjJ0jF99vsxdjtloVApGtvYCxLiyihauKH+yCKN/yOMijK6uMHy4+P6778pJuopNUcdkRSI8XHSHbd0qBvT+/TfMmPHs8LA7UUn0W3gc/9sxmKkVLH6jMeM7VK2wmafJ6VqCo5M5FRTD9sBwlhwLZvbua3y4MZC5+26wJeA+F+/FlaoFPjEtk5SM3PtXWqQz+OO7aDRi/aHs58OnGde+KjWcLYlJzuCbUnD7/6eVoYiICJyfsnE6Ozuj1WqJjs47tmb27NlYW1sbXu7u7kaXSyYTlaJd77WlmbcdyRk6pqwL5P31gSW6Uc0f7IuHnRkxyRl8uvWyESUuHm+1rYJMBgevR3KzGBaJNj6OtKoq1uS48FSbgLLAxkxNz3qVAAwVv42OQgEffii+//FHsaxtAaSmpuLt7Y23tzepqakFrq9UyPn59YY4W5lwOzKJjzZfKjdFZFgLL8zVCq5HJOJ3s/wtmE/Tv5EbNmYq7sam5Ky58+GH4t1xxw6xKZVEDoo6JisKly9DixZw7hw4OIhFAV977dnbHL0ZxSsL/AmOTsbNxpRN41s9LtZZAUjN0LHz4gMmrD5Hpx/8qPvFXup8sZeOP/jx2u8nmbQ2gK93XGXxkSDWn73Hz4duM3ndBfr+6k/dL/bS7JsDDP79BJ/8c4klx4I5HRxrlM4LLlYaXvF1I6/8nrPJQfz5p3iMOXNg1arc66iVcmb3r4dMBhvP3ePYLePGx/6nlSEgl6aefRPIT4OfMWMG8fHxhldYWOkFe1ayNmXtWy2Y3MUHuQw2nb9Hn1+OcSW8eFYIM7WSn19viEIuY3tgeOnFuhSSKo4W9KgrThJ//RuMmZkZZmZF6zT9bT+xsllobAoR8WlGl7Egst2P2wLDS++pafhwMWXFwgLuFk7pKuq5dLAwYcEQsTP09sBwludRmqEssDb7P3vnHR5F+X3xz2xL7x0SEmroIYTeOyIivYiCitgboGDvXZBiQZSioigdVECR3nsJvSaQQkJI79k2vz9md9KT3U3D78/zPHlYNjsls+/Me997zz1HzcTOEp/sWxsyhjUNR42KB03nt3R/EQuRpk3hww8lEkloaB2d3d0NW+7vusThw9Crl6Qo3by55LberVv5nxdFkR8PRPPoj8fIytcTEezB7891p0VA9XtWWnstC/QGtl+4zYsrTxHx4Tae/fUkW84mEpWcIz+3HDVKQrwc6RTiydC2ATzaPYQZA5vxQKcgOjX0xNtkCZKUVcDhqFRWHInhg00XGPfdIfrP3cPivVFyd7QtUCkVPN+/Keue7kYDz+JyAXFpeTTtlsZrr0n/nzpVUvwuifYNPJjcJRiQfMzytLZzbkviX9taLwgCGzZsYMSIEeV+plevXoSHh7NgwQL5vQ0bNjBu3Dhyc3MtIvrVllHrkagUXlx5msTMfDRKBW8MbcHkrsE2pV0XbL/KvO1XcLFX8fe0XtSvQ42ZyNh0hn9zAI1SwdE3+tskuDdq4QFOxqTz6pDmPNW7cQ2cZfkQRZH+c/cQdSeHT0a14QFTl1m14/p1aNiwxoX9luyL4sPNF1ErBVY+0ZWIEkT12kBiRj49P9+JziCy7uludXIOFeF2piTCqDOIbHy2+13nlv4fqo5t2yQ15NxcyTh00ybwrEC5QxRFPtx8kaX7JbuSUe3r88moNtip6o4fpDcYOXhdKnv9fT6RrCJCvIEeDgwLq0fPJt74u9nj62qPswX2SBl5OqLuZBN1J4eo5GyuJWVz4FqKHFBplArubePPg12C6RDsYXNZMKdAz1sbz7H+VOGCfUALX76f1JERI+DPP6X14fHjUpW6KLIL9Aycu4eEjHye7NWI1+6V1KkNRpE8naHY3/k/21pvLbp27cq2bduKvffPP//QoUOHu67joXMjL/56sScDWviiNRh554/zPPHzCTLzref+PNu3MeEN3MnK1/PS6tN1Zi4LEBbkTssAV7QGI7+ftq0LYFwHKTuz7kRcrZd3BEGQs0O/1VSpDKBx41pROH6sR0PubeOPziDy3K8nSamixIMt8HezZ2S4iU9mQ7dhTcPP1Z5hYdIT2Dz5lYK+bnhX/6HqWLdOauTMzZXUj7dtqzwQ+nhLYSD06pDmfDE2rM4CIYNR5OfDN+nyyU4mLzvKmhNxZOXr8XWxY0r3hmx4phv7ZvXllXua062JN418nC0KhADcHNSEN/BgdEQgMwc357tJHTjyen8+GdVGskcyGNl4+hZjFx1i8Py9/HTwhk3SI052KuaOb8eCCWGoTHWz7ReTiErO4pdfoFUrSEiACRMKBeDNcLZT8eGI1gAs2R/N2bh0Np25xeD5e6tUDflXBUPZ2dmcPn2a06dPA1Lr/OnTp4kxlRZee+01JpuJjsBTTz3FzZs3mTFjBhcvXmTZsmUsXbqUl19+uS5Ov1J4OGlYPLkD7wxriUapYNuF20xeepQsKwMilVLBvHHtcNQoORyVypKi6f46wLgOkgr16uO2lRzvbRuARqXgalI2529VH6HdUoxuH4haKXAmLsPmEqbFyMuTTEJrKOgTBIHPRrelkbcTCRn5vLjydCFRuBbxRC8pw7f94m2i7lR/F11VYW6z33I2gfj0IhwYnQ7eeAOCguD27XK2/g93K5Ytk8QUdTpJUPyPPyQZqfIgiiKf/X1ZNrD9eGQbnupdd0TpEzdTGfbVft7aeI7k7AI8nTQ82LkBK5/owqHX+vP2sJaEN7A9Y1MWnOxUPNCpAZue78kfz3VnfIcg7NUKrtzO5p0/ztPl4x18s+uaTXIZw9sFsn1GbzlYm/LjcewcDfz+u8Qa2LdPMsQtif4t/BjaJgCDUWTMokM89+spriVlc/W27c+Sf1UwdPz4ccLDwwkPl+TyZ8yYQXh4OG+//TYACQkJcmAE0LBhQ7Zs2cLu3btp164dH3zwAV9++SWjR4+uk/O3BIIg8Gj3hqx9uivujmpOx6bz6A/HrCZWh3g78ZbJFHPO1itcTKj9IMKM4e3qoxL17Fowg179B5Ofbx33x9VeLXfKrT1he9edrfBytpMJkiuP1qBgoF4vLYkmTpRsOspBQUEBjz/+OI8//jgFFhCuS8LFXs23D0XgoFay/1oyH22ufUHGJr7ODGjhiyjCsgOWO6XXFlrWc6V7Ey8MRrE4v0qlgu3bITFRkkP4D0DVx2RtYO5ceOwxKdMwdaq05rCrwPtZFEW++OeKnL38YHgrme9Wk8jPz2fo0KEMHTpUflYmZeUzY/VpRn97iAsJmbjaq3jv/lYceb0/H41sQ5dGXrXiPNA20J3PxrTlyOsDeO/+VjTzcyZPZ2D21suM+vagTY0yId5O/PVCT+zVCmJSc/lo80UaN5b6SUDq7LtY4hG1/cJt+VgFRVwYbDm+Gf9azlBtobY4Q2XhXHwGExcfJjNfT6eGnvz4aEccNZalO0G6mR9ffoLtF28T6ufC7891rzMNjCeWHWDxY5KMqy0S87suJfHoj8fwdNJw5PX+ta7suv9qMg8tPYKLvYqjrw+oOTuJF16QBBgHDJDy92WguuT6ixohvnd/Kx7uFmLTfmzFoespPLD4MPZqBYde7Y+H092lXGwecy52Kg6/3h8nc6lhwwbJbdLdXSK8u7jU6XneDbjbLSTeew/efVd6PXOmpJBQWfJk/vYrzN8uySK/M6wlj3YvrYxfEyh6LdMyMlkbeYf526+SXaBHEGBcRBAz7wmVCc91CbMp7bt/nJdsSJQKXhzQlCd7NbLanHfnpdtM+fE4AF89EM59besxZAhs3QodO8LBg9JaBCR7n+mrTlMyqe3tbMfxNwt9Pf7jDNUArtzOZP3JOD7/+xLzt1/hp4M3+P10PLsvJxEZm87NlBwycnXVys9pXd+Nnx/rjIudiqPRqUz96Tj5OsvZ85L+UBu8nTVcvp3FnK2Xq+3crMWo9oWOw9b8DWb0bOqNt7OG1Bwtey7Xfkt2t8ZeBHk6kJWvr1nBwBkzpHb77dulft8yoFar+fDDD/nwww+rxH0bFlaPmYOlzqj3/jzP9gu1W/bp0siTVvVcydcZ+bUm+Vg2onczH0K8HMkq0LOxKBdh+HCpoyw9Hb7/vs7O725CdY3J6oYoSvZy5kDo44+l1u3KAqGvdlyVA6E3h7aotUCoJEZ+c4APN18ku0BPWKAbG57pzmdj2t4VgRBIc8yo9oFsm9Gb/s0lvuvsrZcZ/e1BqwVe+zUvLhAblZzN0qXSmuPYseISX8Pb1efzMWGl9pGcXWCzION/maFKYI4sg6atRmFXeaujRqWgRxNvhrT2Z2BLP5u6p0rixM00Ji89Qo7WQM+m3iye3MGqDM+Oi7d57Ccp4l71RBc6N/Kq8jlZi8ysbNxcpRX0mkNXGdOlidX7+GDTBZbuj+beNv4sfDCiuk+xUnyz6xqzt16mQ7AHa5+uoAe3qnjoIVixQiI3rFpVc8dBWtm9uu4sq47H4qBWsvrJrlY5bFcVG07FMX1VJD4udux/pW+ddueUhaX7o/lg0wWa+UmmwzIXY+lSqdZSvz5ERVUsVfwf6gTmQOiDD6T/f/GFtNaoDAt3X+Pzv6WFY110sGZlZeNqelYGTV+Lt4crr9wTytiIIBR1bMJdEURRZP3JeN77szBLNG1gU57oaXmWSG8w8uCSIxyJTiXUz4WNz3Zn3WolkyaBWi2127drV/j5347G8Nr6s8X2UXSO+y8zVANwtlPSqaEnk7oEM7FzA4a2CaBbYy9aBrhSz80eR1PZRKs3svNSEjPXnqHDh9uZvOwoK4/GVEmfISLYgx8e7YSDWsm+q8k8s+KkVZ5m/Vv4Md7UkfXB5gt10l1WtJ697pRtjH9zdmn7haQ6UdgeGxGIQoDjN9OITc2tuQOZRRjXrpVa7msQgiDw4cjW9GzqTZ7OwJSfjhUnDNcwhraph7+rPXeyCvgz8u6z6BgTEYiDWsmV29kcjipiK/PQQ1LPb3y8FLj+h7sKoghvv10YCM2da1kgtHhvlBwIzRwcWuuBUL7OwEurI+X/T+gUyK6X+jC+Y4O7OhAC6VkyOiKQf6b3pp8pS/T535cZveiQxc9LlVLBVxPD8XGx4/LtLN7ceI6JE0VGjpRI7w8/XFyX9oFODXh/eKti+zgXb1uTy3/BkIU49Fp/Vj/ZlQ9GtObjkW345sH2/Pp4F7a82JODr/Xnwvv3cOmDe/h7Wk+mD2hGc38X9EaRvVfu8Or6s3T8aDsPLjnMqmMx6Gxg3Xdq6MmyRzpir1aw81ISz/16yqr9zLonFGc7FefiM/k9sm7FGA9eS+aWDRNuq3puNPd3QWswsuls7ZuO+rra09WkiP3nmRo8ftu2MGSIxPQsw0dPFEXu3LnDnTt3qkVqQK1U8M2D7Qn1c+FOVgFTfjhmk6SDLdCoFDJXacm+qLvOosPNQS0H4cuLutnb2cG0adLruXNrrPvv34LqHpNVOxd46y1JIxOkr2f69Mq3+/nwTdnmYfqAZjzb1/rsdVWQkl3AxMWH+ft8ovzeO8Na4+Z495QdLYG/mz1LH+7A7DFtcbFXERmbzrjvDnHdwq5RXxd7vpwQLgsRrzkRy6JFkkL4mTPw/vvFPz+5awivDWku/99WGsN/wZCFsKRV0V6tpLm/Ky8OaMqwsHr8+XwPZg4OpVU9VwxGkQPXUnhl3VmGfrmPg9eslxLv2tiLJZM7olFJbfcv/HbK4nZGL2c7njbVY+dsvWITb6e6IIqSZpAtGN1eatO3dfuqYlhbSX/mDxs1kyzGK69I/yYnl5poc3Nz8fX1xdfXl9zc6slQudqrWfZoR3lF9swvJ20K2m3BxE4NcDRZdBy4llIrx7QGk7uGAPDPhdvFg/gnn5QI7xs3Vk5C+R9HTYxJW2AOhD76SPr/vHmWBUJ7r9zhHZOF0fP9mvDigKY1eJalcS1J8jo7GZOOq73lTTJVRa5Wz+XELP45n8hPB2/wR+QtTsemk5qjrVJQKwgCYzsEsXVaL5r4OpOQkc/47w5Z3NXctbEXLw2S+Ixv/36eZH0m330n/e7TT0urUz/ZuzH3tpE6fs/EZVgtRwP/cYYqhS3dZKdi0hi58CAdgj34cUonnO1U3EzJYdOZBJbsiyLNVOK5t40/r9/bgkAP6yTsd19O4onlJ9AajDzTpzGz7mle+UZInjV95+wmMTO/1mvhRTskgqavJcTfk90v97E69ZuUmU+XT3ZgFGHXy31o6F27XSvpuVo6frQdnUFk2/ReNPWroU4iUYRr1yQbiBKoyc6dc/EZjPvuELlaA+M7BPHp6Da1oqny7h/n+fHgDfqE+vDjo51q/HjWYsL3hzgclcqzfRszc7Bl99v/J9wt3WTvvy/xhADmz4cXX6x8GykQOUBWvp4xEYHMHtO2VnWEDkel8OTPJ8jI0xHk6cA3Y1sR1kia2KvrWoqiyJHoVA5eTyE2NZeY1FxupuSSXIHoqrOdiiBPR4I8HGjg6Uir+q4MbuVvVUczSBmvycuOcv5WJm4OapZP6USYBaruRqPIYz8dY9flO4R4OfLH8z14+jE1v/4qdZcdPlxcp9ZgFOnw4TbScnW8NLAZz/dv+h9nqDagNxjLza7M+UeqOR+/mcYjy46SXaAn2MuJZ/s2YdfLfZjcNRiFAFvOJjJg7h4WbL9qVaamT6gvX4yTmPTf7rnOvquWdVc5aJS8NKgZIJGBbWXd2wInJydEUSS3QI+rizMxqbkciU6tfMMS8HW1p2dTHwA2nKz97JC7o4ZepuP/GVmD2SFBKDMQgsJrKYpitU86reu78dUDUop61fFYFtaSf9ij3UMQBNh9+Y7chZKeq60TQciy8IiplPfb0djy71VD3WVb6xo1OSYtxdy5hYHQvHmWBULpuVqm/iR5jXUM8eCjka1rNRBafzKOSUuPkJGnI7yBOxuf6U7bhn7Vdi3Tc7Us3R/NgLl7mPD9Yb7ccZUNp+I5cTNNDoTcHNS0qe/G4FZ+dArxxN/VHpBsLy4mZPLPhdss2R/N9FWRdPpoB6+tP0tkbLrFmSMvZzt+fbwL7Ru4k5Gn48ElRzhqwbNfoRCYO64d9d0duJGSy7u/n+eLLyQxxmPHSpu5KhUC7w6T+EPf74uyutT/X2aoEpgjy7WHLnPgZi4XEjJJzMgnM1+HUQSFIHEulAoBB7USR42S2LTifJiOIRIBuqgk+sWETN7547w8KAI9HHhzaEsGt/Kz+GZ8fcNZfj0Sg7ezhi0v9sTXxb7SbQxGkfu+2s/FhEwe7R7CO8NaVbpNdeO19Wf57WgMo8LrM3d8O6u3//10PC+uPE2ghwN7Z/atdWLhxlPxTFt1mobeTux8qXfNPzxjY6WOpd69a/Y4RbD80A3e/v08AIseiuCe1jXvyv3kz8fZev4297T2x8NRzYZT8ex+uS/+bpWP65qG3mCk5+e7SMjIZ+64MEaZyrUAXL0Kr78OWi38/nvdneT/Y3z/vVS1BIkr9MYblW+jMxh5eNlRDl5Pob67A78/171WW9bN3akAQ9sE8MW4sGrRgRNFkZMx6aw4cpPNZxJkUUJHjZJ7WvnT1M+FBp6OBHs5EuThWCYnKV9nIC4tT84i3UjJYeelJG6mFJZAm/u7MK5DECPD61ukEZZToGfqT8c5FJWCvVrB95M60KuZT6XbnYxJY/S3BxFFWPNUV3as9OS116T+hcuXpeDIDINR5J75e7malM20AU2Z0snf4szQf8FQJbC2tb48tAxwYfVT3YoFRKIosulMAh9vuUiCyZF9VPv6fDqqLRpV5Um7fJ2BEd8c4FJiFt2beLF8SmeLVEj3Xb3DpKVHUSsFts/oTbBX7a7kzGVEe7WCo28MwNXeOoJgntZAx4+2k12grxOpgJwCPREfbiNfZ+TP53rUbCv67t0wcCD4+0sBUS1quJhLV44aJeuf6UZz/5oTHTUYRRbtuS5PDmb8/mx3i1LqtQHz5BUW5M7vz3Yv/MWVK5LtuSjCuXOSivh/qDX88gtMnixd/ldflbSEKlufiKLImxvPseJIDE4aJetqeHyXRNGW8Kd6N2bW4NAqL+pEUWTNiTiW7Y/mUmKhxk+LAFce7NyA4e3q4WLls7YojEaRw9EprD4Wy5ZziWhNQZZGqeCe1v68PCiUBl4Vz5H5OgNP/3KCXZfvoFEq+HpiuKzuXxFeW3+G347G0iLAlbWP96BNa4HoaHjzzcKOQTM2nbnFc7+ewsVOxZanO9AgwPu/MllNwU6lwEGtwF6lQKMU0Cil16oKBvOFhCzavruVDzedJyFDyhwJgsCwsHrseKk3z/VtglIhsP5kPA8vO2pR67i9WsnXE9vjoFZy4FoK3+6+ZtH592zqQ69mPugMotxGWtPIz89n7NixjB07luY+9jT1dZaCCRtKTQ4apUyW22Bjm35V4GSnon9zyR6kRrvKALp0kdoo4uJg5UpAsj6YNm0a06ZNq1HrgzeGtqBbYy9ytQYeX368xsqqtzPz6TNnV6lAyPy7uwXjOwahUSqIjE3ndGx64S+aNYORI6XXZXT//X9AbY3JktiwAR55RAqEnnvOskAIYPmhm6w4EoMgwIIJ4bUaCO27eoc3N0pk7Rf7N+XVIc2LBUJFn5WWWhclZOQxedlRZq09w6XELOzVCsZGBLLhmW5seaEHD3UJrlIgBFLZqltjb+ZPCOfY6wN4f3grWtWTzFv/iJSMUpfuj66wtG2vVvLdpA7c28YfrcHI0ytOssmCZ+jMwc1xc1BzMSGT9ZE35dtszhy4ebP4Z+9tHUConwtZBXp+LtoBWtnfZ/En/5/DXq2QtYQK9EbydEby9Ua0BhGtQXqtr4TfYBRhyf4bdP1kJ8//elIOeBw1Kl4eHMqyRzripFFyKCqF0YsOWqTN0MTXWdZZmLvtCsduWMbDeW1IcwRBakM8GZNm0TZVgcFgYO3ataxduxaj0Sg70a8+bhvvx+wqvuNSUp3oJpmP/2fkrZo9vr19Ifnh889BFNEnJbFgwQIWLFiAvgbd09VKBd9MbE8DT0diU/N49tea6TDzc7VnbERQmb+7m4Ihb2c77gsLAGB5Ub8yKNSGWrFCCly12gr95f7XoNfra2VMFsU//8D48RJV65FHJENPSwKhfVfv8P6mCwC8ck9zBph8D2sDV0ydmgajyMjw+kwro2ut6LPSUAkPTbLDiGPQvL3su5qMnUrBK/c058hrA5g9NqzaTVvNcHNUM7lrCJtf6Mmfz/WgSyNP8nQGPth0gbGLDnItqXz1aY1KwZcTwhnVvj4Go8iM1ZGciUuv8HieThqZ7zrnnyv0HqSlTx/Izy+89cxQKASmD5Su689HSkRKFeC/YMhC5OuM5Gqlgelir6JtoBv3h9XjhX5NeL5fE0a3D6RrIy9CvBzLLHGVHI5/nkkg4sNtLNhxRSai9W7mw5qnuuHvai93OBRbgZaDMRGBjAyvj1GEF347ZdEKvkWAK2NMvIePN1+sdW2QEeH1USkEImPTuZxovblep4aeOGqU3MkqqBMn+z6hPjjbqUjIyOdETQeTTz0lFcbPnYPhw1GHhvJ6y5a8/vrrNW594OGkYfHkDjhplBy8nlJjpq7P92tSzLLFjNuZd5fp58OmNvtNZxKKd+J07gy9eknKcA8+CI0aSf/+P4Fareb111+vlTEJUmv1qFGF7vNLlhTvLCoP15KyeWaFFIyMal+fJ3s1qvFzNeNOVgGP/nCMrAI9nUI8q9ypmZJdwDMrTjJ9VSRZ+XrCgtzZ/EJPnu7TuFa1idoEuvHr1C58NLI1znYqTsakc++C/Xyz61q5iyeVUsGcMWEMaOGHVm/k6V9OVipMPLFTA5r7u5CRp+OLbZeZP1/6zlevhv37i392UEt/WgS4klNghX3Vf5yhimHmDL2+8gijOjehoY8zHo7qCgexKIqk5GiJSc1l67lE1p+K505WRS2MSpY90pFODSXuS2JGPlN+PMaFhEzs1QoWTAhncCV11ewCPcO+2k90cg4DWvixeHJEpTdaYoZUnsjXGWucJFtW6+0Ty4/zz4XbTO3RkDfva2n1Ps3bTxvQlGkDmlX3KVeKGatPs/5kPJO6BPPBiNY1d6Djx6WJ9cqVwve6dIFDh2rumCXwz/lEnvhZ8kr7bHQbxnesfvfuAr2ByUuPFusyHN2+Pl+Ma1ftx6oKhn9zgMjYdGYODi0U5ouLkzSHNmwo/uHcXHBwqP2T/B/GpUvQowekpEh0uk2bLHNDydVKz8jrd3KICPbg18c715r9S57WwITFh4mMTaehtxPrn+5WLunYEpmCbRdu89r6MyRna1EpBF7s35Sn+zS22hy1unErPY83Npxll8k/smWAK5+PaUvr+oW8SlEUycjT4e6oITNfx/CvDxCdnEOPJt78NKVThbzXI1EpjP/+MIIAfz7Xg6/ed+P77yEiQgqQiwbE/5xPZOqSfcTOH/cfZ6g68cqQ5kSEeOLppKk0yBAEAW9nO9o38OC1e1tw6NV+/PBIR4a2CUBTxmDNLjAw7rvDTP3xGFn5Ovzd7Fn9VFf6hPqQrzPy1C8nWLo/usLsjbOdiq8nhqNRKth+8TY/HLhR6d/k72bP1B7Syuizvy/VmsieGeZS2YZT8TIZzxr0b+ELSO7idYH7TaWyLWcTLBa/tBqffy6JahQNhABu3KiZ45WDQa38mTFQCjjf3HiO4xaWY62BnUrJd5MiCPEsJGFesiFrWNN4pFswAL8cvil97wcPQsOGpQMhKE1o+A9VQlwcDB4sBUIdOsC6dZbbwn2w6SLX7+Tg52rHoociai0QMhpFZqw+TWRsOu6OapY90tGi7qvy9vXWxnM8vvw4ydlamvk5s/HZ7jzfv2mdB0IA9dwdWPZIR+aOC8PdUc2FhExGfHOADackOkS+zsCr687y+gaJPO5qr2bRQxE4qJXsv5bMF/9UzGHt3MiL4e3qSXYrv5/jvfdEXF0lT+uffir+2YEt/WgRYLkOXN1fvf8HUCkV9G3uyzcPtufoG/35YERrGvmUjva3X0qi88fbORefjqNaSXOToJ8oSiallWm+tKrnxpv3tQDgk78ucsGC8tFTfRrj7awhOjmHlbXsHN4n1AcfFztScrTsvmx9QNM3VAqGIuMyKsy81RS6N/HGw1FNSo6Wg9drSDn5+eehe/dib4lATmIiOcnJtVrefL5fE+5t44/OIPLULydtslSpDO6OGn6c0gk7U6k5Ojmn2o9RVdzbJgAvJw0JGflsu3AbunUrX+a4loPWuoIoiuTk5JCTk1NjYzI1Fe65B2JiJM76li3gYuFc9/e5RH47KhGm545rh49L7bXQf771Mn+dS0StFPjuoQibhWKNRpFX1p3h58M3EQR4olcj/niuR7Gsy90A2cl+em8GtfRDbxSZviqSr3deZfz3h1l1PJZtF26TYiozh/q78NmYtgAs3H2drUXsSMrCa0Na4KhRcjImnQPx8bz1lvT+++9LZdOi52GNpcp/wVAtw91Rw6Quwfz1Yk9e6NekVAdartbIsK8OMOKb/SzaGwVIGkQAs7deZvOZin1XJnUJZmBLP3QGkff+PF/pg8nZTsXz/SSy2ff7ompV5E6lVHBfW4mQuu3Cbau393W1p3V9KfVpSzBVVaiVCu5tI51/jQkwOjjAH39Ay8IyYi7gDDj7+NSq9YEgCMwZG0aLAFeSswt48ucTNWLrEuLtxOyx0sMxV2sgykJPo9qCnUrJA52kMuFP5m6VTz8tmyP0/yQYys3NxdnZGWdn5xoZk7m5MGwYnD8v6cv88w/4VC5RA0h0gFfXnwHgiZ6N6N7Eu9rPrzysPhbLoj3SIvbzMW1tlgExB0JrTsShEODLCeG8fm+LatElqin4uEgZOLNg6Zx/rhBp4sDqDGKxTuD7w+oxpXtDAF5aHVmhj5m/m708Z33y1yUmTdHh5yfdaiWFGHtboGNkxn/BUB3BTqVkxqBQ/ny+B2EldGpE4Ex8YVYnLi2PEe0kcumM1ac5VQFhVxAE3r2/FXYqBUeiUyuNskEqV7k7qolNzWPbhco/X50Y2ELq5Nh5KcmmQKyfKTu0qw6CISjsKvv7fCIZuTp2XLxd/Rk2T0/4+2+oX5pgXNtw1KhYPDkCD0c1Z+MzeMckzFjduD+sPq3qSYHusgPRNXKMquDBLg1QKgQOR6Vy5XaWRFZYtkwisRRFVFTdnOD/EAwGmDhRqka6u8PWrRAcbNm2RqPIS2tOk56ro3V9V9nvqjYQk5LL238UttCPDA+sZIuyUTIQWjAhXH7u3O0QBAj2dCjVQASw6lhsscX6a/c2p1OIJ9kFep76+QQ5BeV3JU7pEUJDbyeSswtYcugqL78svf/xx2BrM+N/wVAVkZGn49D1FH4+fJO1J+LYeek2J2PSuJGcQ0aertiXLYoiW0o46rYIcGX9M915c2gLuTRQFpzslPRr7kuB3sjjy49X2HZf391B7pL4aMtFCvQVr94dNEommla6y/bfqOxPtgmOjo5kZ2eTnZ2No2MhJ6RjQ09c7FWk5Gg5HWt9V1bf5lIwtO9Kcq1zngAC3OxxsVeRlS8JMT7203GbslyVIihICojc3HAEsoHsjz4qdi1rC4Eejnz1QHvZsqOmyquvmpyo152It8l4sSYR4OZAf9PY+/WI6e/XaCQSS/v2hR+sRZJ7XaK8+7uqEEWYNk0S9razk5Kkra3oVVi8L4oD11JwUCtZMCHcIjHb6oAoiry6/gz5OiNdGnnyYn/LjV+LXkt7e4d/bSBkhlKpKDODdTUpm1NFuqXVSgVfPxiOr4sdV5OymbXuTLmVDTuVkneGSdnyHw7cYODoLLy9JTvHlSulTrsl+6IYufCAxef5XzBkBfJ1BvZcucM3u67xzIoT9Pp8F2Hv/cMDiw/z1sZzvLwmkik/HmfUwoP0mbObsPf+oekbfzHimwMs3R/Nwl3XeGbFSf4+Vzz7olQITO3ZiL9f7ElIOQqeG07G8fHI1qYShZbHfjpWoffKk70b4+dqR2xqnkVk6sldQ1ApBI7eSOVsXIZV18USCIKAk5MTTk5OxQjoaqVC5v5sv2h9dics0B0vJw1ZBXqLNZaqC9NXnab37N1k5UtLEbPOlCUq4DahdWv4/XcEhQInwGnz5lr1USqKHk29i7lKR1ogAWH1MZp408TXmTydgbUnat+HrjJM7CwtINafjCssF7q4wObN4GbK9kZG1tHZ1S7Ku7+rii++gK+/ljIMP/8MPXtavu25+AzZJ/LtYS1p7ONcyRbVh1XHYjl4XbKd+HRUW6vUpc3X0sHBkVfXn/1XB0KCIDC5awhbXuxJRLBHqd+vPFJ8IeXrYs+3D7VHpRDYfCaB347GlrvvPqG+DGghcZIWH7rKtOnS8/f5Wfl0/mgHH26+yLUkyzmH/wVDFmLp/ih6fLaLh5cdZfbWy2w5m0iMKTsT6CGtEns186FtoBuBHg44mQQa9UaR07HpfLDpArP/kTqCXlx5ilM3S2dBGvo4s21GbwaWIQKWqzOy5WwCSx/ugK+LHVduZ/Pcr6fK7WJyslMxy+Su/fXOa5USjP3d7GX+ztL9tZvaN3eFbbcho6JQCPQxBVM7bQimqoInezdCrSz9kFPXZFdH797SUhmklvta5AyVxDN9GjOopZ+kJPvLiUp1QqyFIAg8bOIb/HTwRp2Ia1aEXk19CPRwIDNfX5zL5+8Pf/4pvc7KgiNH6uYE/+VYtQpmzpRez5kj6QlZilytnhd+O4XOIDK4lR8TOpYt6lkTSMzIl/W4XhoYSogNhGmjUcosmQOh+f/CQKgoGno7sfrJrrx+b3OURYLldafiyS6xqI8I9uSVe6S567O/L8lE64w8XSnOrLnDdcvZBFr0v43CXkt6gj0ZF6yXifkvGLIQ87ZdJTm7AD9XO+4Pq8eMgU15d1hLPhvdhke6hRDi7YSLnQqVQqCemwP3t6vHK/eE8vnotjzftwmO6sJLXaA3MvLbgzyz4oRszWGGWqngu4cimNSldFH8s78v4edix9KHO+KgVrL3yh3erYAkPTK8PmGBbmQX6CttWQSY0kMisG06k1Dtyr8FBQU88sgjPPLII6Xk+vs080WlELialM3NFOu7h/qZyhU7a5k31Nzftcz0d41lhkzQfvghbzg48IZWi3bJkho9VkUQBIE548Jo5O3ErYx8XvjtVLUT8EeF18fFXsWNlFz2XLlTrfuuKhQKQSZS/1qyVNizJwwdKr3+7LNaPrPah1ar5Y033uCNN95Aq616ULxvn+Q3BpJ8U3nNeuXhg00XiErOwd/Vnk9Hta21DKrZ8yyrQE9YoBuPdg+xeh8FBQX0GDqGhe+9hGDQMX9CuCzj8W+GUiHwRK/G/DWtsAJiMIq8su5sqc8+2j2EFgGuZOTpeO/PC3z+9yV6fLqT9zcV5yi2rOdK72Y+GEU4mXCHEQ9Ji8OMg02xtqnxP9HFSmAWXez5wSaeG9yGAHcH1hyP4+/ziTZp45SEk0bJS4NCmdw1uJhOhCiKzNt2hS93Fvcb697YkxWPd2Xr+USe+uUEogjvD2/FZJMybkmcuJnK6G8PIQiw6fketKpXcRvm2EUHOXYjjWf7NmamKbNUHahMSGzi4sMcvJ7CW/e15DFTUGYpMvN1tH9/G3qjyJ6ZfWrVeFZnMDJy4QHOFSG8j2pfn7k1KBRY7Fo2bIjT1augrLuukiu3sxj+9QHydAae6dOYWfdU37gB+HDTBZbsj6ZXMx+WT+lUrfuuKpKy8un2yU70RpGt03oR6l+k1/vcOWjTRiJXX7kCjRvX3YnWMCwRCrQUV65ImqJpaZLl25o11g3vPVfu8PCyowgCrHisM91qsXvsz8hbPP/bKdRKgT+f72GT59mRK7foEio1SyzeeYGpfVtU92nWOXQGI0/+fIKdJo24Xx7rTI+mxb+nv89Jc1xJXHh/MI6aQsPzQ9dTeGDxYexUCjY/2ZdWoWq0eUp8RpzAPiTqP9HF6sbwdvVYuPs6k5Ye5Y/IW2j1RgLc7OkQ7MGwsHo80asRb9/Xkm8fbM+CCe14oX9ThrYJKJcDZEaO1sD7my4w/Jvi1huCIDBjUChvlVBmPnA9lbn/XGZwK39eNU06H22+WK4eS0SwJ8PCJJGq9/+8UGmrvTkQWXEkhjxt9bdNl4f+pq4yW0plrvZqOoRI9eidtSzAqFYqmDM2jKK8zJpeg6pUKl585hletLNDFR0NGzfW8BErRjM/Fz63QifEWkzuGoIgwN4rd7iWdHe12fu62DPANHZ/LemD1Lo1DBkCRiPMm1cHZ1d7UKlUvPjii7z44ouoVKrKNygHyclSQi0tTXI4WbHCukAoX2fg7d+lDq5HuoXUaiCUmqPl3T+kzMUzfZrYFAjlFOiZubaQZ1ab5b3ahFqpYOnDHRhgokg8veJEsaagkzFpPPfryTK3vZlSnBrQpZEnYUHuFOiNbLxwkxnTpCdw+sEmVmWH/guGLMSCHde4kZKLk0bSGPnjue4cfLUfa5/uxlcPSJoPU3o0ZEibAIa3q8+Mgc345sH2bHimO5+PaUv3xl6URyWxVys4fyuTkQsP8NbGc2TkFdZQH+vRkC/GhhWbYL/ceY31J+N4olcjejTxpkBv5JV1Z4pxKoq63r9yT2iRVvuKg42BLf0J9HAgPVdXq47w5pvi6I3UYuduKeRSWR2oUZcsl6XUkLu7GXZ2dsz/5hvmz5yJHcDs2VidE65mDAurJwfSL62OJDo5h+TsAqb+dKzYeLYFDbwc5YBjuRUu1LUFmUh9Kr70AsLc87tsmSSb/D8KOzs75s+fz/z587Gzs03QsKBA8hu7dg1CQqQOMmudTBbtuc7NlFz8XO1kPklt4YNNF0jJkVShrRH7K4p3/zjPjeTCyb6uGiRqA4Ig8PXE9rSu70pWvp4nfz4h3z/tG3jwdJ+yM6k3Siz8BUHg6d5S9/TyQzd46jkjTs4iuiQ38qItD4b/C4YsRNtANz4f3Zajbwzgk1FtaBvobtFA9XDSMK5DECse78K5d+9h4cRwOjf0LCa2mK8z0sTXGVGEnw/fZOQ3B4pFyaMjAlnwQHix/ZqFqT4Z1QZHjZKj0amsOHKTM3HpPPLD0WKri0APR54wtdp/XEmrvVIhyCJZyw5UbAFSnQj2cqKZnzMGo8juK9YHNOZg6EhUaoX6FDWFp/o0wcNkjpiYUUtO6889J/Ub37kj/dQxXh1SqBPy8LKj3LtgL9svJvH3uYqFQi3Bo6YxufZEXIVdlHWBHk28aeDpSFa+nj/PlBDf7NtXMtpdswY8SnfT/AcJoghTp0pcIVdXyW/Mz0oz+ZspObJK/1v3tcTFvvbMSnddSmLDqXgUAnw+JsymFv4/I2+x5kQc/8PxTynYq5V8P6kDXk4aLiRk8vqGs/KcM2NgszK5szdSSjeNDGzpTyNvJzLz9Wy7HsPbbwk8MysH+/qWdxj/FwxZiF8f78K4jkE42dmeAnbQKLm3bT1WPdmVSx/cw2ej2shltGtJ2TTydsLXWUNUcg6jvz3IxYRCHsr9YfV4tm9hpCwC9325Hy9nDbMGSy3O7/55gfu/PsDuy3ckIbgieKp3Y3xd7IhJzeW3IxXrwozvGISznYprSdm1SlqVS2U2dIU19nEmyNMBrcHIgWvJ1X1qlUKtVPCCKTsUn5ZXO0Gkn5+kRHflCvj61vzxKoFaqWDBhHY4aZTEpOaSlCVlyKojw9i1sRfN/JzJ1RpYc/zuarNXKAQmdJLKGb+WvLcEAb79Vqr9WGKr/v8UH34oqQcrlbB2LbRqZd32oijy9u/n0eqN9GzqzVCTMnxtQG8w8o6pPDale0PaBblbvY/Y1FxeXy8RiZ80ZTn+v6CeuwNfT2yPUiGw4VQ8Px68AUgZn/fub8WwtsW/y5KZITCTs6XrtmRfNNNmGPnmMyf6h1mu+P3f3VlHUCkVjO/UgF0v92H++DCc7VREJeeQka/H18WOpKwCxi06xKEinlcvDQyVhd4A8vVG7pm/lyNR0meKdvLcTM0tlrJ3slPxvGmyXnbgRoVdPy72atlEdZkFGkXVBXMpZPflJKvJ6YIg0L95oZp1XWBchyCUgkBWgb5COfmqIicnB0EQEASBnNDQOiVPF0VajpbXN5wlp0Sp6Eh0apV9zARB4JFuUhnup4MVj9+6wNiIIFQKgdOx6RV7Av6P9qsUG5M51nWErlkDb78tvV64sLSItyXYej6RPVfuoFEqeO/+VrVaXvr99C1iUnPxdNIw3YbSnN5g5MWVp8gq0NO+gTvP9rGtxPZvRtfGXrx+r0QU/3DzRVkzTqEQmDu+HRHB7vJnI+PSy9zHyPb18XWxIzEzn42npQXYuyU4txXhv2CojiEIAiPCA9k2o5fM/0nKKsDVXkWWqdzwl0m1WqEQmDehXTGT15jUPHaXkb0RRUqRTUe3r4+7o5qY1NxKVZIf6VZIWr16u3acw9sFuePtrCEr3zYBRbMa9a7LSbVqYGqGk52Kro2llUitB2QFBXDAcrXVmkBkXDonytDPEkX4oxq820aE18PNQRq/deFFVxF8XOwY3ErSNvn1aBlO9ZmZ8M47Usu9sfaV0u9WnDgBDz8svZ4+HZ54wvp95BToee/PCwA81bsRjWpRXNFgFPlml9TxO7VnQ5sqB1/uvMbJmHRc7FQsmBB+V7jP1wWmdA9heLt6GIwir647Iy+I1UoFvzzWBR9niYt2NSm7TLcBO5VSlof5bs91jEYRLxd7i4////OqVyP0BiPHbqSy8mgMn/x1kSd/Ps7geXtp8dbfdPpoO2O+Pcj0VaeZu+0Ka47Hci2p7MAiwM2B5VM68e6wltipFGTm63GxV6E1GHnm15P8fFh6wLraq1k8uQPOmsJsQJ7OiLtD6ZvwcokgxlGj4sHOZtsNye/JaBQ5fiO1lGBeAy9HBpnEH385XMbD3Uo4OjqSlJREUlJSuXL9SoUgc3+2X7S+q6xzQ08c1EpuZxZwvqLVeQ3CLCBZk8FQqWuZkAANG0L//pBUd0FCn1Bf/p7Wi84NPUv9bm01lLYcNSrGdZD8nZYfqvqYrG6YidQbT90qzVsTBPjySylg3bSpDs6uZmHJ/V0St27B/fdDXp7UdDd7tm3H/nLHVRIy8gnydOAZG4nLtmLz2QSiknNwc1CXK29SEW4k58jB1IcjWxPk6WjTtfxfgCAIvH9/a7ydNVy/k8PifYXivw4aJeuf6YZSIWAwiqw6VrYy9cTODXCxU3H9To7Vc8h/wZCNyMjT8d2e6/T6fBdjFx3i1fVn+W5PFFvP3+by7SzydAaSsgo4fjONDafi+XLHVWauPcOAuXsZ/e1B1p6IK9V5olAIPNK9IX881wMfFzuy8vW4OagRRXhr4znWn5QmlMY+znz1YPtS51QyILqUUNpWY3LXENRKyXZj2qpT9PhsJ2MWHSqzjDHBJCi3+WxCuUrXlkIQBHx8fPDx8akwhV3IG7ptdXbHXq2UHal31VGpzBzMHb+RVmNE31LX0t9f8i4rKJC8C+oQ9dwd+PXxLswcHEpRce5rd7I5f6vqNi8PdQlGECQtGVsEOmsSXRt5EeLlSHaBnj9LZsJcXCQiNdg+69/FsPT+NiMvDwYNkgKiFi3gt99sq/ZeTsxiqWlh9/79rWvVxd1oFPnGpAM3pXtDnG3ICs3ddgWDUaRPqA/DTWbc1l7L/yW4Oap5Y6hULvtyx1ViipClgzwd5S69b3dfL7NU7mqv5qGuEul60Z7rVs0h/wVDVuJGcg7v/H6Orp/s4JO/LnErIx8PRzW9mvnwcNdg3hnWkh8f7cjOl3rz+7Pd+XpiOLPuCeWBTg3o0sgTpULgxM00Xl4TSaePt/P27+dKkZ1D/V1Y+UQX/FztyMjT4e4gdUW8uv4sJ02O9X1DfWXJcoD0PD1dG3njYl94Qx6JLl6ySMrM5+dDN9GY0rAbT93ilqnzqaAMjk6PJt64O6pJztZyJLp2fL96NvVGo1IQm5rHldvW827MwUhdqRUHeznRyMcJvVFk35VaInILQmEL98KFdWrRAVKG79m+TVj3THcC3ArT1OZSRlUQ7OVE72Y+gKSFdTehqCL1b2WZ1z7/PKjVsH///2uLjrw86NgRzp8HR0fJucRs5WYtPth0Ab1Rstzo27x2mwj+uSAtfF3sVDxig9L0hVuZcvn4ZZPP33+AEe3q07WRFwV6I2//ca5YQPNEr0a42KuIT88r5fFpxqPdQ9CoFJyMSedcvOULsP+CIQtRoJfEvPp+sZufDt0kV2ugub8Ln49uy6HX+rN8SifeG96aR7s3pE+oL418nAkLcue+tvV4pk8TPhnVhpVPdOXQq/2YOTiUIE8HsvL1LD90k3vm7+XTvy4Vmj0iZX9WPdGVem72pOfpcNQo0eqNPLH8hJzFeap3o2Ilib/OJzJ7TFs0piX5pcTMYgPJ2V7FlnMJpQiuQJmEZbVSwZDWEpP/j9NV43wUFBTw7LPP8uyzz5ay4ygKR42KHqbsji2lMjNn50x8RrUohNuCfqE1WyrTarV89NFHfPTRR4XWByNHSqWylBT46acaOa61aBfkzrYZvWWDxqPRqRy+XnWtHXO77erjscXumbsBoyMCUSkEIuMySi1yqFcPJk6UXn/xRe2fXA2izDFZBg4cgOBgKRACyX/MVmHuw1Ep7L+WjFop8OZQy4my1QFRFPlq51UAHu4WgpuD9W38Zouk+9oG0Lp+YTRo6bOyJpGao2Xr+UQ+2nyBkQsP0P+L3dz31T7GLjrIpKVHeGL5cT7ecpGj0anV3swgCAIfjGiNWimw+/KdYkGPs52KKd0lXtA3u66VmfnxdbFnSGuJv1cqQ1vRcf+z46gYZjuOIbO3ciFZKnv0DfXhsR6N6N7Eq1gaM19n4OTNNFJytGTk6cjI05GZp0NrMNLc34U29d1p5ueMSqnAaBQ5cD2Znw7elCf9Jr7OzBkbVqw1MzY1lwcWHyYuLQ+1UkBnEGlVz5U1T3XFUaPi+p1sBs3bg7mK5eWsYe7YMB7+4RgACya0k9OvIK1GRiw8UCpQ+GlKJ3nFXRQHryczcfERXO1VHH9zoE36GWCdXP+KIzd5Y8M5whu4s+GZ7lYdRxRFwj/YRnqujo3PdrepzbWqOHgtmYlLjuDtrOHo6wOscqy2BOVeyy+/hBdfhKZN4dKlu6aVWxRFxn13iGM30vBwVLNtRm+8nW0T5gOJtNrr813Ep+cxe0xbxna4u1R6H19+nG0XbvNEr0Zyh4yMs2ehbVvpu7l2TQpg/wdQ2f2dlQWvv168itu9u5QkswWiKDL++8McjU5lUpdgPhjR2tZTtwk7L91myo/HcdQo2f9KPzydNFZtf/xGKmMWHUKpENg2vVcx0nd1WptYg7QcLYv2XmfHxSSrlN49HNX0a+7HwJZ+9G7mg4OmeKnywLVkDl1P4eXB1mW/vvjnMl/tvIa/qz3bX+otlyHTcrR0/2wnuVoDPzzakb6hpTOCZksWV4WWs5+M+s+OozpxLj4DNwc1PzzakR8e7USPpt4IgkTm2n81mZfXRNLxw+1MXHKE5387xZsbzzF762W+2xvFDwdu8Mq6s9z75T5av7uVUQsP8Onflwj2dGLJwx34blIE3s52XEvKln5XJEsU5OnIqie70sDTEZ1BRKkQOH8rk5fXRGI0ijT2ceaFfoXtnCnZWi4mZDEyXAqA5m27UkyZumU9V94aWtrrpqCcFXbnhl74utiRma9n39XaKT2ZW+xPx6Zb7YQuCALhpgDoVEzpzqbaQIcQT5ztVCRnazljRZrWUqhUKqZOncrUqVOLWx9MmQLu7nD1aqFr+l0AQRD48dFOBHs5kparY/qq01VyoFcqBB4yZYd+rgZyf3VjbIRE8l5/Mr40165NG4ksYzTC/Pm1f3I1hHLHJPD335IzSUk621df2X68g9dTOBqdikal4Jm+tev5JooiX+6QuEIPdQm2OhASRZHPt0pZobERgbXa/VYW8nUGFu6+Rq/Pd/Hdnig5EGri68wDnRowb3wYK5/owo+PdmTRQ+2ZOy6MD0a0ZmR4fdwc1KTl6lh3Mo6nfjlBr9m7WHsiTr6/Vx6N4eFlR/nhQLTVHMpn+zahgacjiZn5zNt2RX7fw0kjNwIt3HWtzG27N5bmrfQ8ywV4/wuGLETLAFc2Pd9DjkIz8nR8suUiXT/ZwUNLj7D2RBxZBXoC3Ozp3NCTQS39GBsRyNQeDXmsR0O6NvLCxU5Fvs7IyZh0vt8bRZ85u3hx5SkaeDqybXovRrSrh1GUiF8jFx4kyeQcX9/dgRVTO+PmoMZgFFEIsOVsIgt2SGnap/o0opF3YdfB51svMX1AUxzUSm6k5PJ3Ca+oh7oEM6hl8WhaWw5BWqkQGGoSvbIm5VgV+Lna09jHCVG0LaBp30Aqy5yMSa/mM7MMGpWCnk1rjshtZ2fH4sWLWbx4cXHrA2dnePpp6bWtS+4agpOdisWTO2CvVrDvarLcQWMrxnUIRKNUcCYug8ginn53A/o298XLSUNydkHZ3LVXXoHHHy8kVP8PoKwxmZIiOc8PGQIxJShUnTpBeHgZO7IAoigy1zQ5TuzUgAA3Kz07qoj915I5HZuOnUrB1J7WZ/b2Xk2WA7kXitj41DYMRpHVx2PpM3s3n/99mawCPS0DXPl6Yjgn3xrI9hm9+WRUG0aGB9KlkRd9Qn25p3UAo9oHMqlLMPPGt+PEmwP47fEuTOnekHpu9tzJKuDlNZGMWHiAaStP8+r6s+iNIjlag9UdpfZqJe8Pl9Q3fzgQXawBY2rPRmiUCo7dSONoGXxWlVLBiPD6pd6vCP+6YGjhwoU0bNgQe3t7IiIi2LdvX7mf3b17tywEVvTn0qVLVh93+WOdCPKUAo59V+9wz/y9fLc3iqSsAtwd1TzYuQFrnurKgVf6serJrnw/uQOzx4bx5n0teeu+lvz2RBci3xnEjpd6M298GL2a+WAUJcGuIQv2MWP1aR7p3pDvJ0Xg7azhYkIm4747RFyaRIYN8nRk/oR2CAKYF9ULdlzlcFQKdioln44Ok8/VKMJ7f57ncZMi5zxTx4IZgiAwe0y7YnXu/ApMWYeF1QMkwmBtmbcWBjTWB0Phpm3rKjMExTWPahXTpsHp03dlx1IzPxc+HNEGgHnbr3Dwuu0Ecy9nO+4zBel3W3ZIXeRBvPZEGRNAv37w/fdSG9X/MC5ehM2by/7dc8/Zvt+9V5M5cTMNO5WCZ8rxr6pJfG3qIHugUwN8rdCxAakDbfZWaf6Z1CWYeu61G8iZkZGr44HFh5m19gyJmfnUd3dg3vgwNj3fg/va1rM426VSKuja2Iu3h7Vk18w+vDakOU52Ss7EZcjCh2b8dOiG1RnhPqG+3NvGH6MIX/xTmB3yc7VnrElm4+tyFlaj2v8PB0OrVq1i2rRpvPHGG5w6dYqePXsyZMgQYkouO0rg8uXLJCQkyD9Nm1ofjdurleRq9by18RyTlh4lISOfEC9HFj0UwdHXB/DRyDZ0DPGU+SF5WgNXbmdx5XYW15KyuJaUzc3UXBp4OjIyPJDlUzqZBl4ACgF2Xb7DqIUHuJyYxZonuxHo4cCNlFzGLjokqxn3DfXlhX7SuStNx3l13RnydQY6NfQs5nC849Id7g8LwNVexdWkbDaV8Exyc1TzzcTCpVlkXPnlnPAgd+q7O5CrNdSamKCZdFuWiF9lCAtyQxAgLi2PpKxa8gkrgT6hEv/qTFxG7Z6Dry+EhVX+uTrCmIhAxkYEYhThhd9OcyfLdoKouYX2z8hbpNWwOa61GGMqlW2/eNvqUu//Cnr0kJrmvEt4ZXp5wdixtu2zaFZoUpdgfF2tC0aqihvJORyJTkUh2Gab8ff5RM7FZ+KkUdZJIAeQkJHH2O8OcjQ6FRc7FW/c24IdL/VmZHhglfiNdiolT/ZuzH1t6pX5+5spuTb5Ts4c3ByFIDWkFO0Oe7JXY5QKgb1X7nC2jPmrub8rof4uFh/nXxUMzZ07l8cee4ypU6fSokUL5s+fT1BQEN9++22F2/n6+uLv7y//KG0QtDgTl869C/bJq9CHuwaz5cWe3NPaH41KgSiKXL2dxZJ9UUxaeoSw9/9h0Ly9DJq3lwFz9zJg7h76ztlN+PvbeHz5cX4+dANnOxVfT2zPzpf6cH+YVCL7YtsV3vz9LN89FEFjHycSMvIZt+iQLPH/Qv+m9Grmg8Eo8YdupOQyb7v0cHhtSAtci7TWT195WvZrmb/9ain+Qo+mPnQMqTzoEARBzg7VVqmsvSkYiozNsFrjyMVeTTNf6SY4VUelMl8Xe9oGSh0iuy9XL9cqJycHJycnnJycKrY+SEyE29Z35NU03h/emlA/F5KzC5i+6rTN3SjhQe60ru9Kgd7ImhNli7DVFVoEuNK6vis6g8gfp8vxZjt9Gh58EFasqNVzqwmUNyYvXYLkEgnAKVPA3sYYZtflJCJj03FQSxNvbcPcCt+9ibfV5TlRFGXuy9SejfCqQhOBrbiWlMXohQe5cjsbP1c71jzdlcd7NapWfaaPR7Xhg+GtcCxjnz/YYO/U0NtJnn+KltcbeDlyv+n9hbvLzg7dH2a5R92/JhjSarWcOHGCQYMGFXt/0KBBHDx4sMJtw8PDCQgIoH///uzatcum4z/20zFupORSz82eXx7rzHvDW+OoUSGKIlvPJ9Lviz0MnLeXDzdfZN/VZLR6I672KjydNHg4qnFzUOOgVpJdoGfbhdu89ft5+szZzaB5e7iUmMmCCe2YMzYMB7WSA9dSePiHo7w0sBmt6rmSkqNlwveHOBuXgVIhsGB8O+q7O8iTyOK9UZyNy8DNUc279xc6HJ69lUn3xt54OKqJTs4p0zDzLZN3y5XbWWRX4PZuHnQ7LyfVimt4Ex9nXOxV5OkMXEq03g6kvcnLpq6CIUDml9UEbyg3N5fcivSEFiyQepg//rjaj11VOGiUfPNgOA5qJfuvJfNtOQ+yyiAIgtxm/8vhmCqRsmsCYyOkTO2askplIDGLf/0VPvvsf8KzrOSYvHJFivUAnnlGquAKAjz5pG37L5oVmtwtGB+X2g0mRFGUSz8j2llXggGJw3g1KRsHtZLHbOAaVRUnbqZJArsZ+TTycWLd091o7l9xh5UtUCoEJnUNYdfMPgxoUZybuu9qslWdamaYxRb/OpdYTLLiaVN27e/ziTKlpCiGlpOlKgs2BUNTpkwhK6v0BJWTk8OUKVNs2WWlSE5OxmAw4OfnV+x9Pz8/EhPLFl8KCAjg+++/Z926daxfv57Q0FD69+/P3r17yz1OQUEBmZmZxX4A8rRGujfx4u/pvehhIsfeSM7h0R+P8eTPJ4hOzkGjUtCrmQ9v3deS7TN6E/nOIE6+NZBTbw8i8p1BnH9vMJue78HMwaF0aeSJWilw5XY2T/1yktHfHiTYy5E/n+9Oc38XkrO1PPvbKcZEBNIh2IPMfD2PLz/OnawCPJw0fPtQe1k80SjCrHVn0BmMDG9XnwYehSuW51ee4inTCurrXddKTRht6rvRwNMRvVFkewV+ZS0CXGjs44RWb2TbeeuzDQ4ODkRHRxMdHY2DQ+UrKoVCkLk/NvGGgmzftrpg5g0duJZcrRO1RdeyRQvQamHpUkiru2tQHpr4usjt0HO3XSmTBGkJ7g+rj6u9ipjUXPbWUrejpbg/rB4apYLztzLLNm998klwcpLa7bdvr/0TrEaUHJNZWZL0VWamZMc2fz7Mmwe7dtmuK7TjYpJcYnqyV+1nhc7fyiTqTg52KgWDWvlVvkEJrDM5CAxp7Y+rffm6RNY+Ky3BufgMHlxymPRcHe2C3Fn7VDcCPWrW6sPP1Z4lD0sdaA5FskTTV5222l2gmZ8L95i8/4p2kDXzc6FbYy9EETacLL3Y97YiYLYpGPrpp5/Iyytt35CXl8fy5ctt2aXFKClPLopiuZLloaGhPP7447Rv356uXbuycOFChg4dypw5c8rd/yeffIKbm5v8ExQkre7aBrrx/aQOuNqrKdAbmPvPZQbN28vuy5JT8nN9m3DqrYEsn9KJx3o0pImvc6nzUigEWtd349m+TVj5RFdOvDWQ5/s1wUGt5GRMOmMXHeLTvy7z/aQIxnUIRBTh/U0XGB0RSGMfJxIz83n215PoDEbaBrrLLaWCABcTMvl+bxRKhcD0QYWt9nFpeYQ3cMfFXsXNlFz2Xyues5aMYqVVTkUlsGKlsjPWl8oUCgUhISGEhISgsFD/JqKB7byh8AbugFTerKqViK1oXc8VR42SzHw9V21YDZUHi67lwIFSG3dOjkTWvQsxJiKQUe3rm/hDp2zi1jholIw28XN+vcsUqT2cNAwwdW2WSaT28JBqRvCvF2EsOiYFQcGUKXDhgqQzuXq1JLwN0Lu37cf46dANQOKKWdvOXh343ZQVGtDCD5cKgpmykK8zyM9XM5+sPNjyrKwIWfk6nv31JPk6Iz2bevPr452rdP3ydQarnqn3tA7g2Bv9ZcmTs/EZLNpz3erjPtdPyg79EXmLG8mFpVjz9Vx7Mq5KBt1WXenMzEwyMjIQRZGsrKxi2ZO0tDS2bNmCr2/NSKJ7e3ujVCpLZYGSkpJKZYsqQpcuXbh69Wq5v3/ttdfIyMiQf2JjJS7Cwgfb42SnIl9n4InlJ/hy5zW0Bmlw/T2tJy8PDrXasdjVXs1Lg0LZM7MPEzs3QKkQ2H7xNmO/O8TETg14sHMDRBHe3HiOBzsH42yn4mh0Kh9tvgjAU70bE+zlKGfYF2y/yrWkbIa1rUdQkezQS6sjGd2+/AljmKkrZ+/VO6Tnlj8hmYOh/VeTa4UUai512ZLdaWwqs+XrjDaV2aoDKqVCDsqO3agdOxMZggAzZkivv/xSyhLdhfhgeGs50J+x2jb9IbPmyI5LSSRm1A1hvjyYS2UbT8eXrYg+bZokwLh1K5w7V7snV0OYMwfWrpUCoLVrJeu8qiI6OYd9V5MRBHioc3DVd2glDEZR5gvd387y0osZ2y7cJitfT313B7o08qru0ysXoijy2vqz3EzJpb67A18/0B5HjeXzlCiKnLiZxpJ9UUxbeYr+X+ymxdt/0/TNvwh//x8GzN3D+O8O8fGWi5yLzyg3GHG2V7Ph2e48arIt+fzvy+yw0mGgdX03+jX3xShK3mRm3NPaHyeNkpspuRy7YXsW3KpgyN3dHU9PTwRBoFmzZnh4eMg/3t7eTJkyhWeffdbmk6kIGo2GiIgItm3bVuz9bdu20a1bN4v3c+rUKQICyidV2dnZ4erqWuwHwN1RQ57WwNSfjrPnyh0c1Eq+nhjO8imdqiya5etqz8cj27B1Wk+a+jpzO7OAcd8fJiLYgzERgRiMIh9vuSgPpB8P3mDN8Vjs1cpiHCGtwcjnf19CpVTw4oDC7FBsWh7dGku2Hdsu3pb1i8xo6udCc38XdAaJ/1QeGvs409zfRfLdsrIkodVqmTlzJjNnzqxQrr8o2gW5IwgQm2p9V5hCIcjq03XZYt8hWLrutmS3yoNOp2P+/PnMnz8fna4C/tYDD0gz0a1bku/BXQgnUxOBnUrB7st3WLI/qvKNSqCJrwudQjwrdLOuK/Rs6o2vix2pOdqyZRYaNZLqSQBz59buyVUjzGPy2Wfn88or0phcsAC6dq2e/Zu93vo085ElTmoTR6NTuZ1ZgIu9Su4UtQbmzOCo9vUr7diy5VlZHlYei2XTmQRUCoGvJobj5mhZRksUpWf8qG8PMvrbg3y4+SIbT9/i+p0cRFGiuKXl6riWlM2R6FS+3xvFfV/tZ+C8vXy14yoJGaUrRwBv39eS8R2DEIHnfztllXcYFHKH1p2MkzlCjhqVrIW3tgqNFFYFQ7t27WLHjh2IosjatWvZuXOn/LN//35iYmJ44403bD6ZyjBjxgyWLFnCsmXLuHjxItOnTycmJoanTOJlr732GpMnT5Y/P3/+fDZu3MjVq1c5f/48r732GuvWreM5G0Qucgr0PPrjUfZfS8ZRo+THRztyX9t61eoq3MTXhfXPdGNAC1+0eiMzVkfi4ahmaJsA9EaR7/ZGySnBNzae40xcOn1DfRlcpH79z4XbnI3LYES7etR3L2zZmL/9Kh2CPWShrZIo7BZLqPAczb5hh6z0mNLpdMyZM4c5c+ZUPIEXgYu9mlA/qSvs5M10q44HhVpFdUmi7mDq1qvOzJBWq2X69OlMnz694oelnZ1kDgrSRHuXknRbBLjy9jCJyP/535dtElGcaMoOrToWU+1eSVWBSqlgeLtKOjFfekn6d8UKqQPwXwjzmFy4cDqiqOWRR6pPUzJfZ2CN6Zn1YB1khQD+iJRKZPe2DsBOZV3n1e3MfHnxOKp9xSUysO1ZWRYuJWby7h+SCdzMwaHy87AyHIlKYfx3h5m09CinYtKxVysY1NKPlwY244dHOnL09f4ce2MAW6f14tepnflibBj3tpG6qq8lZfPFtiv0m7OH7/deR1einCYIAh+OaE2PJt7kmpIL1mRzI4I96N7ES5oP9xQunMyWPJvPJJCrtVx1uiisCoZ69+5Nnz59iI6OZvjw4fTu3Vv+6dq1K/XqWZ8+tAbjx49n/vz5vP/++7Rr1469e/eyZcsWgoOlGyQhIaGY5pBWq+Xll1+mbdu29OzZk/3797N582ZGjRpl9bGf+eUkh6NScbZTsXxKJzpbkOoURZEbyTn8djSGT/66yNx/LvPNrmss3hvF3+cSy+zecrFX8/2kDjxr4gMt3heNp6OagS390OqNHLiWTK+m3mj1Rl5eE4lWb+TtYa2KEdTmbrssZYf6F2aHLiRkMTJc+n5+OxpbasIwC9gdvJ5cofZLtyZeps9V3XDTEphb7G0TX3S3edvqQngDDxQmzaPqKuEolUomTpzIxIkTK5eJeOopyRr80iXJpuMuxcRODbi3jT96o8jzv50iy8qOxXta++PhqOZWRj67a1voshLcHyZx8rZfvE1OWR2bXbtKwjsffCB9V/9C6PVKvLwmAhNp21bJwoVSpbY68Ne5BNJyddRzs691Z3qQTLq3nJWC1OE2lMg2nIrHKEKHYA8aeteOz1ie1sBzv56iQG+kT6gPj/esXBNJFEW+2nFV8ny7ISlkP9o9hL2z+vL95A48378pfZv74utqj4+LHaH+LnRr4s3oiEAWPhjB8TcHMGdsGOEN3MnTGfh4yyWGfbWfEzeLLwTVSgXfPNiepr7OJGbm8/jy41aZaj/bR8oOrT8ZJ99PHYI9CPZyJEdr4K+zti0orCO5mBAcHEx6ejpLly7l4sWLCIJAy5YtmTJlCm5ubpXvoAp45plneOaZZ8r83Y8//ljs/7NmzWLWrFnVctwTMWm4ubny05ROlUbY5+Iz+OHADQ5eTyahgglQo1TQuZEnA1r4MSysUPVToRCYObg5jbydeWlNJD8fieHF/k25lpRNdHIOof4ueDqquXI7myX7o3imTxNe6N+Uz/6WlE13Xb7DyZg0Rravz+ytl7iTLWUPjt1Ixc1BTXx6Hnuv3Cn2YAn2ciIs0I3IuAz+OpfA5K4hZZ5zxxBPlAqBmNRc4tJya7wjoX0DD349EsNJW0jUpo6yGym5pOZo64R06WynomU9V87FZ3L8Zir3ta36gsHe3p4VlmrTeHpKxI2OHUur391FEASBT0a1JTI2g5jUXN7YcI4FE9pZnHm1VysZExHI4n3RrDgSQ/8W1nf71BRa13clxMuRGym5bL94u5hxsozVq2v/xKoRr79uT0rKCtzdYcMGqKYmKABWHJYWuA90aiCLzdYm9l5JJiNPh6+LnUWL4KIQRZF1phLZ6EqI09WJHw5Gcy0pG18XO74YG1ZpaU5nMPLWxnOsNJWZx3cIYvrAZvi7WS4I5WqvZkxEIKPb12fNiTg+2XKRS4lZjP72EM/2bczLg0Ll+9nNQc2yRzpy/9f7ORufwcLd15hWhNpREbo29pLvpy1nExjbIQhBEBjTPpAvtl1h7Yk4m661TVT148eP07hxY+bNm0dqairJycnMnTuXxo0bc/LkSVt2eddDEOC7SREVBkLJ2QW8uu4Mw77ez7qTcSRk5KNWCnQK8eSRbiFM6hLM+A5B3B9Wj2AvR7QGI/uuJvPOH+fpPXsXS/ZFFYuQR0cE8rZJB2jBjqvcHxaARilxK3qbNGy+3HGV2NRcHuvRkBCvwsBk3rYrqEtwhzadSWSUqXNsRVlEaguEFV3s1bKYoLWlMltgVqI+E59h1eoBJJXtxj7SSuxu4A0drwK5r0oYMuSuDoTMcHNQ8+UD4SgVAn9E3ipfn6ccPNBJKpXtvpxEfHrZnIW6gCAIsk5XbYmW1iZWrICFC6XXv/wi0aCqC5cSMzl+Mw2VQmB8EYX92oS5i+z+sHpWB2Nn4jK4mpSNnUoh81pqGln5Or7fK5WQXru3eaXijtkFeh776Tgrj8WiEOCD4a34bExbqwKhohAEgXEdgtjxUh/GmSwzvtl1nZfWRBYrmwV5OvLecEle4+ud18qWnyhn/+ay2JoifmejIgIRBDgUlUJsagUabOXApmBo+vTp3H///dy4cYP169ezYcMGoqOjue+++5g2bZotu7zr8VCXYLo1LntCEUWRZfuj6Tt7NyuPxSKKUmDx82OdOPPOYFY/1ZV372/FByNa89mYtiyY0I5dL/Vm+4zevH5vc5r7u5CVr+fDzRcZNG8P24ro/YzvGCTLvn+96zqjI6RgZvPZBMIC3cjXGXlz4znUSkEWoAJJ3OpodCojwuujVko3sN4o4uYgJQN3XrpdiuRmvlmP3UjjVgWTSVfT6qg2gqEQL0c8nTRo9cZiRn2W4m7iDR2/WcsdZWWhEuuaukZEsAczBkoB/Du/n7dKoK2RjzNdG3lhFGHV0bvr7zQvNPZcqaBjU6+XMkTjx0uu9v8CnD8PTzwhvX7rLRg6tHr3b84KDWrlV+vWGyDxlbabup5s6SIzawsNblWxtlB1Ytn+G6Tn6mjs4ySXaMtDgd7AQ0uOsNfUFPT9pA5MKqcqUBQ6g5GsfB0p2QXcSs8r07PS00nD52PCmD2mLUqFwPqT8Uz96XixUvGwtgEMbuWH3igyc21kKY5ReRjdPhCFAEdvpBJtarOv7+5Ad9Mcvb4MzaHKYHNm6JVXXkGlKqyyqVQqZs2axfHjx23Z5V2PF8txFzYaRd778wLvb7pAVoGeNvXdWPtUV756IJyOIZ4cikrmlbVn6PrJDlq9/TfN3viLhq9tod372/j0r0soBIHZY8L4bFQbvJ3tuJGSy+PLj/P27+d4afVpPtx8gVfvac6o9vUxGEU2nIync0NPtHojabk61AqBPVfusPlsAiPDAwkoEs3P3XYZZztVsbT8L0di6NTQU5owSnTeBLg5yPYcFXWVmYPCQ1EpVdJ1sASCINDexP2xTW/IFAzF1n1m6MKtzApVvi1FTk4OPj4++Pj4VGzHURQZGZL6XbNmkHR3cWpK4unejenexIs8nYHnfztFvs5yc2AzkXrlsdg605cqCxZ1bObnS0KMq1fDpk21e4I2ICsLRo+G3Fzo1y+Hb7+1ckxWgpwCvayaX1fE6bPxGeTrjHg729GmvnUUEFEU2XxGakiprRJZRq5O7sicNqBZpZmsjzdf5HRsOm4OalY+0YUBLcsvL99Kz2PZ/mjGLTpE6Jt/0ebdf4j4cDvdPt1Jm3e3MnLhAT756yK7LycV46SO7RDEkskdcFAr2XPlDg8sPiy7GAiCwAcjWuPuqOb8rUy+s1B/yN/Nnl7NpK6+oh1k5gajdTZoDtkUDLm6upZpjhobG4uLi+XGaP8mlOXdYjCKvL7hLD8evAHAm0Nb8Puz3Wld341P/7pExAfbmPLjcVYdjyUhI58crQGt6QGdma9n+8XbfLj5IsO+3s+q47F8NroNT5q8xJYfusm6k/H8cz4RowifjW5Lr2Y+jAivz1cPhOPjYkdMai6dGkkT7Xt/XqBAbyhGlDsclcqJm2nF0svJ2VruayMJf/x++lapAWPmEVVEkI4I9kCjVJCQkc+NFOvTkdYivArZHTOJ+nRMep3ZNfi72RPo4YBRrL5yXXJyMsklTZ8qgqurpDVUUFBY07hLoVAIzB3XDk8nDRcTMmUunCUY3MofLycNSVkF1e4JV1WYs0N/lFcqc3Yu9Kq4y0UYRRGmToXLlyEwUBI6t3pMVoLtF2+TXaAnxMuRbo1rT5unKMzK6B1DPKzuHL6alE1KjhZ7tULOptc0luyPIitfT6ifC0PbVFyW23I2gZ8OSV6b88e3I8wkRVIScWm5PPrDUbp9upP3N13g6I1Uij5KVQoBvVHkVEw63+2J4pEfjnHP/L1sOZsgP3P7Nvfl18c74+Go5kxcBi/8dkoOmHxd7Hl3mCQRs2DHVS5bqAs3zlQqW3siTt7X4Fb+2KkUxKTmWm37YVMwNH78eB577DFWrVpFbGwscXFxrFy5kqlTp/LAAw/Ysst/HfQGIy+tPi3XWb8YG8bUno04eiOVe+bvZdGe6+RoDThplHg6aSjvNlIrBZSCwMmYdB776TibzhRvbU/J0bHj4m3USgXfT4rgk1Ft8HW159V7mgNwOjadIA8H7mQVsPzQTSZ0CipGFP7taAwdgj2KWXTsvZqMRqkgOjmH63eKDxhz1udwVEq5LcoOGiXtTEHGweuWPfwcHBw4d+4c586ds1pivioO9k19nVEpBHK0BhIz606Qr2NI9fGGbLqWRUUYv/kGylCQv5vg52rPnLFtAcncceclywTaNCoFo9pLmdCVd5nmkJk3dOh6Svm6Wc89ByoV7N0Ld3GW/euvpQSWSiX926CB7fd3eTDTBe5tE1CtEibW4LhJEqOD6f61BkeipAVl+wYeaFSWT7W2PitTc7Qs2x8NwPSBTSskTd9MyeGVtWcASby3rC49o1Hk58M3GTxvL7su30EQpKDwrftasun57nwwoiWPdguhW2Mv7mvjzyNdgxndXrLHuZqUzTMrTjL0q/2yrEh4Aw+WT+mMvVrivX7610X5WMPb1WNAC190BpGPtlwsdS5loX8LXzwc1dzOLJCteBw0Spnkbu1iyKZgaM6cOYwaNYrJkycTEhJCcHAwjzzyCGPGjOGzzz6zZZf/Osz55wobT9+SxKweaM/I8Pp8sOkCE74/zI2UXFzsVTioFeRoDaTmaBGBIE8Hejb1pmOIBy0DXHG1V6EziBiKZGfKIn6+su4MWfk67NVK+aEwMrw+YYFu5BQYqOcu3TBLTTfCFJM4I8CfkfFkFeiZYCofgNQd0cWUUfqnhB9Z63quuNiryMrXVyiIZV6pWcobUigUtGrVilatWlktMR8W6I5CgMTM/FKCkZVBpVTIIm1FJdxrG+aArjp4QzZfy9GjJfPW5GSJ6XqXo19zP1lo9OU1Z7ht4XdvzoTuupxk8Ta1gSBPR8IbuGMUYcuZcvS8AgNhwgTp9V0qwnjkSKE00pw5kjJAVe7vsqDVG9ljmswGVlC6qUkYjSLHTQswM33AGhw2ZZU6N7QuK2TrtVy8L4ocrYFW9VwZ3Kp82W+t3sizv54kq0BPh2APXhpUuosrK1/HpGVHeGvjOXK0BjqGePDncz1o5OPEnK2Xue+rA7y18QI/HLzB3qvJbDqbyI+maobeKBIW6IaTRsnFhEwe+P4wPxyIRhRF2gS6MWdsmOl8o2X9KEEQePu+VqgUAnuv3OFwVOXzip1KKVNA1hTRzutjKp/tvmIdHcCmUavRaFiwYAFpaWmcPn2aU6dOkZqayrx587Czq10n4brAsRupfLdXqm3OG9+Oe9v48/6mC3IwYg4m8nRGmvu7MG98GIde68e+Wf34+bHOrHmqG1te7MmJtwayYmpnJnUJxs2hfHJdWq6O5349VYwDoVAIslDd0Rup+Lvak5qj5dcjMUzqGoKzyRqkQC/y+6l42Y4DJKXqUH9JNfufEqarKqVCvnkrKpXJvKHrNc8bctAoqW/KbEXbENCYtT2iU+ouGDJnhk7F1J1XGioVvPii9Hru3H8FSffVIc1pGeBKao6Wl1ZHWlTqbOLrIguMlukJVocY1tbs71eBuKk5g7d69V1HeE9JgXHjQKeTYusXXqiZ4xyJTiGrQI+Pix1hge41c5BKcCUpi6x8PY4aJS0DrHN3F0WRI1GmYKiR9Vkla6E3GOWA4Pl+TSvMpP12NIZz8Zl4OKr5amI4amXxMCBfJ4khHriWgoNaybvDWtIuyJ1hX+1n1bE48irh8OVqDUTGZZCrNRDs6YDexKudsTqSPK2B+9rW4wWTz9gbG85x2iSy2sDLkQmdpIXMnK2XLZpXzKWybRduyxZRZoXwo9GpZet6lYMqhfCOjo60adOGtm3b4vgvFQuzFjkFel5aHYkoSoz2YWH1mLvtiswbctQoycrX4+1sx2ej27D5hZ4mYnPpdKdaqaB7E28+GNGa3S/34aEuDcotp+25cod3/zxfbIBEBHsyLKweoigFDADf743CTqWQiaQgtdH7utjRs0nhCuV0bIbp3/RS2RZz1qeiEli7IHfs1QpScrRcuV15bVar1fLuu+/y7rvv2iQxH+IlBTQ3bAhozNtG36m7YKiprzOu9ipytQYuJlTNK02n07F48WIWL15svULtY49J/KFLl+Cvv6p0HrUBO5WSLx8Ix16tYP+1ZIvtOsaZskOrj8fWeLBuDcwdmydj0sovlYWHQ9++YDBIvnJ3CYxGePhhKT5r0kTiCZnn3CqNyTJgLpENaOFbqUZOTeGYKbPTvoEHKqV1U2V0cg7J2QVoVArZFshS2PKsPBKdSnK2FndHNf1blC9Mma8z8I3J9f2lQaGl5iWt3sgzK05yJDoVFzsVSx6OYPG+KBbvi6bkXeRQBo+2KETgZmoeaqWAgCQ+OXnZEfK0BqYNaMbgVn5oDUZmrY2UZVOe79cUO5WC4zfTLCpztaznSosAV3QGUfY6a+jtRANPR3QG0aIMkxkWf8OjRo2y+Od/GR9uvkhMqmR69879LVm8N4qvdkqDy06lIFdrICzQjW3TezG+o+UiYR5OGj4c0YZNL0ipyLLwy+EYfjl8s9h7rw5pjp1K4v94OqpJyipgzfFYxhbpXriUmEVkXAYTi3RknI5Nl2/SbSUM87qbLDeO3UgtV9tHo1LI2Y5DFvCGdDod7733Hu+9955ND0s5u5NsPWG7obepTFaHmSGFQijCfapaqUyr1fLEE0/wxBNPWB9YurrC449Lr2uxVLZ2rVRSsYWq1MTXmXdMBMvZWy9zNq5yiYWhbQJwtlNxMyWXw1F3gaSBCX6u9oQFuiGKsPNiBWn8l16Cbt2gT59aO7fKMGcObN4subysWQNF9XWrNCZLQBRFtsvBUN2JZ5pNPzvYUCI7YgqkpEWjdfYdtjwrzfpVQ1oHlMr0FMUvh2+SlFVAfXcHOatihiiKvLwmkp2XkrBTKfh8TBum/Hic+PTCoF0hwOSuwfz+bHcaeJaxwFcITOnekKa+zrKki84gIgJ2SoFjN9J47teTGEWRT0e1xdNJw5Xb2XIXmZ+rPY90CwGke92STPBAU/C3+4oUPAmCIGeH9l+znNBvcTDk5uYm/7i6urJjx45ibfQnTpxgx44dNa5AXZc4eC1ZNgycMzaMmJRcPjGRwFQKgQK9kU4NPfllamc8bFQ7blXPjQ3PdKdLw+KpVXu19FV9vOUSN4tM6vXdHeS2U3fTMb/dfZ1gLydZHBHgtyMx9Gvhi0pROEDbBUqp320leEPN/JzxctKQrzNW2P1kdl8+WguO7Obszk1bMkNyIFV3wRBIrssAly3IpFUEpVLJ8OHDGT58eOV2HGXhxRfht99g+fIqnYc12LsXZs6UMgqLFkmNbdZgQscg7mnlj84g8sLKU5Wmv53sVHL31qpjd1epycyBKXnfFcO998KBA3DffbV0VhVj/354/XXp9ZdfQrt2xX9f5TFZBOdvZXIrIx8HtVJemNUFzOTpTlUgT5d8jtcEtHojf52T5BqGhZXfQZar1bPIFHS80L9JKVL3upPx/BEp8WC/GBvGiytPU1BkMdyrqTf/TO/N+8Nb80fkrTKfYzqjyB+Rt1j+WCcufzCEB4tUKAoMIgpgx6UkXl1/FndHtSwq/NXOa3Izz1O9G+Nsp+JCQqb8d1WEPiby994rd2QKghwMXa2BYOiHH36Qf/z8/Bg3bhzR0dGsX7+e9evXExUVxYQJE/D+Fyjd2ooFOyRvp8ldg+kY4sFr689iFCWOkN4o0q2xFz892gmXKopruTmo+emxTowoIvKVrzPi72pPns7AK+vOFIuYH+0eglIhEHUnR/Zn+udCYjGe0B+Rt9DqjbI2A8B5U7nm4LWUYvo3giDQtXHlvCGz7sYlC1shq4KGVQhozNvGpubVqYlnE1+Jp3UtqWrXy97eno0bN7Jx40bs7W0QogsKkki66toRgQM4IzWucOsWPP00NG8OP/8sVYIsgSAIfDq6Df6u9kQn5/DBpguVbjPBVCr761wiGblVL91UF8xaLvuvJZdvKllH3VNlITlZGi4GA0ycWJhYLIoqj8kiMIsc9mzqbXVWpboQl5bLrYx8lApB7py1FKIoypkha+07bMH+a3cK7UIqIGv/dPAmydlagr0cSxnGpuZo+WizdE+9OKApb2w8h9ZQ+Kyc0r0hP03pRANPRxbtuc4vh2/iZKfEUV06hEjOLuDRH46hNRj5aGQbVj3RBVOSCHNotfZEHF/vvMbwdvXo1cwHrcEozadGEQ8nDY/1aAjAsgPRlf79YYHueDiqycrXc9Ikv9K1kTcalaJCO6ySsIkztGzZMl5++eViKwClUsmMGTNYtmyZLbu863EqJo0j0amolQLP9GnCT4ducjY+A41KQVa+Hk8nDQsmhMvcnarCTqXki3HtiqWJb2fmY6dUcDgqlRVFFHaDPB2516Qp4eMiEdjXnohjWFg9OVWZpzOw6/KdYvXkc/EZNPR2Qmso7NwwoyhBujyE+kuaUjeSc6wSxrMFwSarkZspuVZzQOq5OaBRKdAajBUqa9c0mvpK1+vK7ey7h8ei00F21TJVlUEUC4MhM6KjYfJkaNsW1q+XPlMZ3B01zBvfDkGQ2ub/rmTV2DbQjeb+LhTojfx55u6xwQj1cyHI04ECvWTHUyFSUuDjj6X6VB3AzBOKj4fQUPjuu5qP02S+UB11kUGhBEbreq44aqyz8IxNzZOtmCx1iq8K/jgtje2hbQPKpWXkaQ1y088L/ZqWKqV9suUiabk6mvu7sOeyFFyZ8UK/Jrx1XwuO30zjnvl7+fSvSxTojeQUGMjVlU2juJSYRe/Zu9h7JYnOjbzYN6ufXJUwY/6Oq0TGZfDRiNY4qJUcjU6VM0EPdmmASiFw4mYaFxMqtulQKgR6mxb5u0wmzQ4aJZ2tzMrZFAzp9XouXiytBXDx4kWM/4IOFVtgjlBHhtfHIIp88c9lAJlT8/HINnIgUl1QKgQWTGhHC1Mngwg42knB1qdbLhaz03i8pxRJXzeRhPdeuYPOYKRvaGHws+PibfoU+X+eziiTqn84GF1sgu5uev9UbFq5q1dfFzvcHNQYRUrpFVU3gjwdUSoE8nQGbmcWWLWtQiEQbGqvj6rDUlkjHycUAmTk6UjOrhqvolqwZg00bgwfflijh4mPh7Ryqq0XLkhdSV5eEkVm0iT4/HM4dKjsZreujb14spdkO/Pq+orb7QVBkBVp76auMkEQ5EVOhaUykAR93ngD3n/fsoixmjFnDmzZAvb2UnObs3PNHi8hI4/ztzIRBOhfBw71Zhyrgr7Q4WhpAdk20L3aFsflIU9rkMeQuSxcFnZdTiI9V0d9dweGl7AVOXQ9hTUn4hAEuLe1vywnAJJMy4xBoey7msxDS46Uen62C3JnctdgPhjeirfva8mDnRvQ0ERpuJ1ZwORlx5i28hQOGiV7ZvYpFqwZjCLTV53Gy1nDEyax4S93XMVoFPF1sZflAUryZMuCeV4rSrouOtdZApuCoUcffZQpU6YwZ84c9u/fz/79+5kzZw5Tp07l0UcftWWXdz12XZJEp57o1ZgF26+QqzXIPJ4xEYHc07p8XYeqwMlOxdKHO+DlLPGB0nJ1eDtryNEaZOI2SDde54aeGIwifq52GEWJvV80HbrrUhLXk7LxcCxc6Sw3ef+cvJlWrB2zgacj9d0d0BnEcoUCBUEg1M+c7ajZUplaqSCwCu31Zt5QXWoN2auVsubR1SqUynJzcwkJCSEkJITc3CoogGs0EBsrLfdrMDtUMitUFtLSpADol1/glVekwCg4GN57TyrTFMWMgc1oXd+V9Fxdpe32w9vVR6kQOB2bXuXyZHXCzBvaeSmp4tLt009LjOWjR+HgwVo6OwkHDxbnCbVtW/5nq2tMmoVVW9dzq9RgtCZhfuZ1tCEYMqtWd6oFvtCuy0nkaA3Ud3cgvIKuNTPBelhYvWKdcaIoyrzXBzoF8dXOq/Lvmvo688qQ5uy+nMTU5ceL84ea+bDu6W5sfLY77w9vzaSuIUzp0ZCPRrZh18w+bJ/Rm0ldglEIsPH0LQbO20tcWh5bp/WUO6YFpGf5R5svMqV7Q1zsVFy+nSXb1TzYReIbbTwVX6mNUa9mPggCXEzIJNFUGuvV1DrKjs2ii6+++irz5s2jV69e9OrVi3nz5jFr1ixmz55tyy7/FRjU0g8vJw0bTWnJfJ0RF3sVb5lIYDWFeu4OzBkTJv/fnFVYfSyWmCJ2GGYrjqx8aeCsPRFH31Af3E0aRpn5enZeuk1abumBZRThTlZhxkUQBNnK4nwFbsLNTHpFlrTXVxVVIVFXhXNUnWgq84Zsv16iKHLz5k1u3rxZtXLbffdJjOb0dPjxR9v3UwmuX4fWraXDPfccPPoomLXknJwkX9J586SY7KOPpEyRiwvExcG770KDBvD224XxmkalYMGEwnb7H0yyFmXBx8VOzo6uuYuyQx1DPHFzUJOao+VkRRYtvr7w0EPS61oUYUxNLeQJPfCAZL1REaprTJ4xdQqGBdVdI06B3sAVU+Dc3kq+ECDr5thCvLYW5jLrkNb+5WoLZRfo2XlJKh/d17Y4wfpUbDpn4kx0jzw95qqXQoAFE8K5npTDEz+fKNZV/ObQFvz0aEe5O7YsNPF15oMRrVn3dDea+jqTnF3A5GVHiUnN5bfHOyOA3Kq/4kgMUcnZssDqAlN2qGsjLxr7OJGjNbDxVMXGq55OGrk7erepVNbYxxlHjeUhjk3BkEKhYNasWcTHx5Oenk56ejrx8fHMmjWryp0EdzOe7N2YVcdj0eqNssZCZYKJJZGZr2PVsRie/fUk3T/dSddPdtB79i6e/uUEa47Hluto3be5r2wzAOBiJ5G252+/Uuwz3s525GoNqJUC15KyuZCQSc8ipGmFIODpWHanW8nOseYmTtDlxPKDITkzVAmJ2t7enqNHj3L06FGbCZZVEU80b1uX7fUgCQICXK1C8Fgd1xIApRKmT5dez5tnOZvZSjz/PJw9C3/+CQ8+CCtXSiWwkSPhyhXp/9OmSe7nr78uteEnJUkNbxERUjv+Bx9IpGuzf2ljH2feHCotQj77+xKXKhij5lLZ+pPxd415q1qpoK+p48U8UZULswjjhg1SZFnDEEUpYI2NLez+q4wnVF1j8kxcOgBt67vbvI+qIj4tT9JuUyutpj4YjSIxqdIC1dwwYS2suZaRpsCrovb/HRdvU6A30tDbiVb1iotHLjctJO5r419MCHT6wGY08XXmpTWFGkBqhcCihyKY2rNRqcArPj2Pg9eS+SPyFjsu3iYxIx9RFAlv4MGfz/dgQAtfCvRGnlh+gtRcHU/3blxs+0+2XOLR7pJY8KXELP65kIggCHKn9C+HKw+y+5YolSkUAi38LQ+qq6yb7urqiqurdeqc/0YEeTrQtr4bP5uM7fJ0BjQqBY92b2jR9qIosuFUHP3m7OaVdWfZfCaB+HSJaHczJZe/ziUyc+0Zen62i+/3XqdAX3pievu+lnIgk2VKG244Hc9VU4lKqRDkyN/PVbqJ1p+Mp2eRdOHuK3d4YUDTMs/xZAkj1Ob+0vdaUbdYM1MwdLmSMplSqaRjx4507NjR5oDZTKK2pdQlCy/eJZmhqpTJquNaynj4YfD0hKgo+OOPqu2rEqSlSVmfvDypc3z1aqhXguZgNIqcuJnG/F2XOKo4Td9XInn4rXjqBRmIj4dhwyTdyJwceLBzA/o190WrNzJt5elySfz9mvvi6aThTlahh9HdAHNnZ0UdmwC0bAlDhkhRyoIFNX5eX30lDQWNRvqOLHm8V8eYNBpFzsVLQW3bOswMxaZJXMwgTwerPdFuZ+Wj1RtRKQQC3GwLCi29lnlag/zcLc9kFQpLZPe1Le7xdiergC1npZJUWpFuS2c7JY/1aMg3u64VIy+/fX+rYnQQo6mNfvx3h+j+6U4mLjnCC7+d4rGfjtPlkx30nr2bHw9EI4rw7UMRDG9XD71RZNqq09zTxp+gIn6ZR2+kcvxmuqwxtGz/DQBGRwSiUSq4lJhVaTbdfD8dji50RWhRz/LYxKZg6Pbt20yaNIl69eqhUqlQKpXFfv4X0TfUl52XkohPz0Nl6tAaGxFo0crBrOo5fVUkydlaGno78WL/pqx8ogt/PteD3x7vwgv9m9LU15msAj0fb7nE0C/3l5r03R01sgUHSNpDoiipTpthJtGZS147LyXRo4jydNSdHLo18kKjLH2Tl0zXm7vFrt/JRlfOitocDMWl5VVa160qCnk/tggvStvGpeWV+7fUBpr6Vb1MVq1wcoKnnpJe17BT+gsvSK31zZrBqlWSO0hRXEzIZMDcPYz+9iCL9lxn/cl41pyIY7f2NMqx/+DdNRpBEFm2DDp2hCtXBD4b3RYvJw2XErOYu+1KmcfVqBQyaXTdyYrT7bUJs3zF2bj0Yt07ZcKcHVq2rHw2ejXgxAl4+WXp9Zw5khh2bSEqOYfsAj32agVNfGqYqV0BYk2ZnSAP610VzLSF+h4OVqtWW4uz8RkyR7QshwOQmjX2mMQI72tbfOWx6lgMWoORsEC3YouEqT0bEZuaJytVS9sG8FARzaC0HC2P/XSMF347xZHoVBQCNPZxonNDT0L9XFAqBGJSc3n3zwv0/HwXB64lM29cO/qbFi9P/nyCL8aFFTufT/+6yIROQSgEKTiKupONm4Oabqb5q6SPZkm0CHBBrRRIz9URZwpoW9VzqewyyrDp23rkkUc4efIkb731FmvXrpW1hsw//4voG+rLr6Z2dr1BNJGpG1W6nc5g5IXfTvHXuUQ0KgWz7gll67ReTB/YjC6NvGgT6EbXxl7MGNiMrdN6MXtMW7yd7biWlM3IhQfkrgYz7g+rR1PTgyLfVOD988wtWUelfQN3Aj2ktl2lIBCfnkeezihnJAD2XUumfxnKrmfi0osFCoEeDjjbSWayUeVYWXg4aeSA8GoF2SGtVsvs2bOZPXu2zQq1DYtYcliiTFoUfq52OKiVGIyi/LCrCzQ2fXfJ2VrZS8da6PV6VqxYwYoVK9DrqyEAfe45SXPowAE4d67q+ysDf/whkaMVCvjpp9JdSVvPJzL624NEJefgbKdieLt6vDakOTMHhzIyvD5+nmqcel3Ad/wRlM75XLwInTqJHN9vx6ejJWbv4n1R5UpBjAqXSmXbLtwmM//u0BwKcHOgkbcTRrGQdFsu+veHDh0KU2s1gMxMib+l08GIEdKwsBTVMSbPxqcDEnm6pgOJihCbZgqGPK0Phm6ani0NbNjWDEufleYSWUXebbsvJ6EziDT1dZYXtyBVKn47KnmZtQtyx/zYVysFHu4awre7r6E3PWP9Xe34ZFQbOat0IzmHoV/uY9flO2hUCl7o35QDr/Zjx0t9WPVkV7ZO78XZdwfxwYjWBHk6kJxdwCM/HGP2P5f5YlwYjXycSMjIZ8GOq9zTqnAeun4nhxM30+QusFUmr7VBLaVsVGXBkJ1KKf+NZpPxljWdGdq/fz8rVqzg6aefZsSIEbLyqPnnfxEtAlyKpbMjGngQ7FW2bUZRvP37ef4+n4hGqeD7SRE806e08qcZCoXA2A5BbHmhB20D3UjL1TF56VF50Js/8/I9ofL/NUqBfJ2RdSclcqggCHJ2yM3UNbbn8h16Ni3kDZ28mcYDnQqjfJCEI/N1Ri4XKYkJgkAzUyajIk6GJR1lOp2OWbNmMWvWLJu9iwI9HGSl79vl+TqVA0EQCjNLdcgbcrJT8jcZcQABAABJREFUUd9dWsXZmh0qKCjgoYce4qGHHqKgwDqZgTIRECDVRo4elZjO1YyMDKkpCqQER5cuxX9/Ji6dZ1acJFdroEcTb/a/0pcFE8J5sndjnu3bhHnj23Hktf4smdyBXr1FAh7Zh11gCpmZAsOGiUTt82NCxyBEEV5eE1lmsNO6vitNfJ0ltd6zFZik1jK6WuADCEiknUOHpEiyZG2xGiCKUoLw+nWJsL5smXV6QtUxJiNNfoltAuuuRAYQlyoFm4EeZWdbKkJsNQRDlj4rzUTtikQhT5q684o+/0FqeIlPz8NerZA9vQAe6NSAfL2BTUX4Q8/1ayoLCWfk6Zjy0zFuZeTT0NuJjc90Z8bAZqUyU44aFZO6BLNtutRVBpIzwpx/LvPdQxHYqxUcuJZC72a+xfSHfjhwQ7YJWXciHp3ByACTNl5kbHqFUhpQKAR8xhQMhXhZnmG0KRgKCgq6e0TjagmRcRlo9UbsTIGMJYJg+67e4bejMQgCLJrU3mLdA19Xe1Y90ZWeTb3J0xl47KdjxbrGBrX0kyNes0roiiOFBDOzM3ZmnrRC23PlDj2bFfKGTsWklaoxtzM9gEqWypqbNI4uW8IbSqzZ0o9KqZBXa7YpUZu0hurQsBUKS2W28oYUCgUDBgxgwIABKBTVtIJ+8kmp9lQDePllqTzWpInUKl8UOoORV9adxWAUGdzKjx8f7Yh7GQR/hUJgQEs/Vj3ZhcVPtiH8yTM4tY7FYBB46ilQnm5FkIcj8el5vP9naXVqQRAYGS41IKy/i0plloibyihZV6xG/PijRFhXKqV/PazUCqyOMXnWNIG1reNgqEqZoZSqB0OWQg6GKsgMRZbTnbfPVBbrEOJJXBHvsQc6NeDHgzfkrFBRDzOjUeS5X08SdSeHem72rHqyS6WZF3u1kg9GtOaLsWEIguSvuepYLC/0l3irs/+5XMxC5HRsOl7OGrydNSRnF7DrUhK+rvaFPpqVZIfMlkfmzJCl3qBgYzA0f/58Xn31VW7cuGHL5v9KHDJ5zZjLSJUZCOYU6Hl13VkAHu4aQr/m1qmpOmiUfPtQBC0DXEnO1vLUL4XtjYIgFGPjKwUpxWiWgG8R4IKPi508oI9Ep9Au0F1Wo76VkY/OYCxG8PN0kkpdJ2+WCIZMaceKSNShcnt9zeu4FJKorS91BZo4AIlWSLTXBGQStY0dZQ4ODmzbto1t27bh4GD96rVSVNFosyj++AOWLJGyDIsXg2OJOWLJvmguJmTi7qjmo5FtKi2PCILAPa392TazJ0+9lYpbN4kn9PGHSupdllp2156Ik7VKimKEKRg6Ep1KXFrdlUqLoksjqf36UmIWydkWZlTOnpU0B6ppQXrxYmFJ7IMPJI0na1HVMak3GDl/yxwMuVt/AtWIKnGGqiEzZAnuZBUQn56HIJSfSdPqjVwwEaBLltLMBqZORexOfFzsCPJw4Ncjhe4Gz/YtrGRsOBXPvqvJOKiVLH64A74ulhPER0cE8pmpnL1kfzQBbvaE+rmQmqPFTqUoZrvyy+GbspXUqmNSqcwiPz8KM0Nn4zOsTthYHAx5eHjg6emJp6cnEyZMYPfu3TRu3BgXFxf5ffPP/yIOmgaPUZTIuI3LcZY3Y9n+aOLT86jv7sDMwaEVfrY8ONupWPZIRzwc1VxIyOTrIoS2wa385ZZ+s4XMFlP6XxAE2UTVSaMkX2fkbHwGreoV3jRn4tKL6UQkZUsBQsmgJ1TO+pQf6JjbxaNqWIUaClPXRdW3LYX5epl1mOoKZt5QXbf5l0J2tlQrCQ6WCCRVxM2bMGWK9Pqll0obsOfrDCzcLY3pN4e2xNsKkT1nOxVzxoWx7CtHfAZJmaDVPzjie74zogivrT9bTDcLpFWuOfj4M/LuKJV5OdvJC47DURZkhzIzoXNnKcW2d2+Vj5+XJ/GEcnNhwABJ8LIucO1OtqTbZqeSuYF1gewCvdxZFVSGK3tlkIMhr5oNhszUiSY+zuV6YV5OzEKrN+LmoJYXkSDpKJnH2sUiz/V7W/uz92qy/Hx00ihlOZc8rYE5JteFaQOaFptLzBBFkQu3Mvl+73Xm/nOZ7/de50xcuszvHNchiOf7NQHgzQ3neKqPxLldf/IWU0waQwCbzyQwpLU/z/drwjvDWgGFwdChqJRimkclEepfmkRtKSzOu86fP9+qHf+v4crtbBR20oAa0MK3wpZLrd7IzyYJ8ZcHN8PJzvb0tr+bPe8Pb83zv53im13XGNLanxYBrmhUCh7o1EB2IQbYfuE2793fSjJabeTFn5G3cNAoydFKg79FgKucWj0dm0HbQDe5NhyTIg2c2FTJ+8v895nb6+PT88jM1+Faxo3n5ypNYsnZ2mLb1gTMx7cloHGxl76HuibQmgnnKXeDJUdRODrCnj2QmCiRRqZNs3lXBQUwZoxkrRURUbbjx1/nEsjK11Pf3YFR4fVLf8ACjGofSJOl6dz/3AVu/t6So5u8CcpsS0qXM7y+4SzfT4ooNh6Ht6vP4ahUfj8dz9N9Glew59pDxxBPLiVmERmbXqrjpxRcXSU5hEWLJBHG3r2rdOyXXpISTb6+knFudVVdrYW5vNTI1xmFFaWN6oY5K+ThqLbacDsrXyc3RdR0ZsjM4ayIXxVp1mwKdCt2D5y4mUa+zoi3sx230gszpP1b+Mlt+CAFIOaMzbID0SRk5FPf3YGHTe3vRXH1dhavrDtTSp4FoEWAK68NaU6vZj682L8pR6JTORqdyupjcXQM8eDYjTRSc7SoFAJ6o4jeKHIlKZuXBhUmEZr6OuPmoCYjT8fFhMxypQTsVEqa+blw/lYm5+Iz6B5seWBt8dB/+OGHLf75X4W5Hb2o83tZ+OtcAklZBfi62DG0TdXJjsPC6nFPK38MRpHP/74kv/9ApyD5tSBI5S+zWrSZmJmWI038529l0jKgsJsgMjZdrq8CpOVqEQTI0RpIKdLl5Oaoxt+kWVReWcfLVGLTGow13l5vfkDZEtC4VmHb6oTZZiDF0rJICeTm5tKqVStatWpVNTuOklAoCkUYFyyokgjjzJlw/LgkYbRuneQoURLmFPi4DkFVmgDbBrqzb1kIoWOllWvs3iCyDjZj24XbpTzJhrT2R60UuJSYVWH3Y22iaGrfIpiD1D//hKtXK/xoRVi3Dr79Vnr988/gXwVHoaqOSTMx1t+17iw4oEiJzIZgxpwV8nTSWB1IWYtE0/UKdC8/e1Vet9kBU5WjQ4g7+iJdZB1DPNh9pbDF3mz+bTCKLD90A4CXBjUrVtICiZM69Kv9nIxJx06lYEALXyZ3DWZACz+cNEouJmQyedlRPv/7EoIg8MXYMOxUCg5FpdC1kcSZ23Aqnm6NCyVgSjY5FHVEKCkOXBIlSdSWwqZ1gFKpJCmptGpqSkrK/6zOEBSSlVsGVEwaW24SZnyoS3C5nWPW4tUhzVEpBHZdviO34QZ7Ocn6Keby6D8mrkSIlyP+rvYYTL84fyuzGNktMi69mBppntYgBz03U4o/zOq5S+8nlcPkd9AocTQZEtZ0tsOc3cm2ITPk6mDKDOXVbZnMy0kiCCfnaG1qRBBFkQsXLnDhwoXqb2SYNElyTb1xQ1I8tgEbNkjNaQDLl0tVt5K4mZLD4ahUBAHGdAgs/QErEeTpyP5lIbQYJWVK0/Y3JfNEMO//eYH49MJ0ubujRna4/qPIKrguYV6UnI/PtEwyIjRU8jYRRbAxY3/jhiReCVJpbNAgm3Yjo6pjsjAYqoKiejVAFly0gS9UlUDKWiRmSAsp3wquV6G1iXux9y+YFsxFx1qHYE+u38mRS8uOaoW86D90PYXbmQW4OagZWsLO43RsOk+Z7Dp6NvVm98w+LHm4I+8Pb82Shzuw/5V+TO4qPQAW7r7OGxvOEujhwJMmWZr1p+JoVc+FAr2xGAdp/7XkUtpb4UESreNUke7qsmAuO1+3slvXppm6vMFeUFCARlO21cP/Cryd7So0EEzOLpDNBsd3DCr3c2Zo9UZWH4tl0tIj9Jm9i9HfHuSLfy6XIvmGeDsxzrS/omZ6CyaEy0x7KNRikHhDEj9CMJ1XURuO9FwdOQUGOYgRgfqmoKekDo+Zy1ERwdNsJJuSU/Zn7O3t2bVrF7t27aqSXL85GLKlTHb3ZIaka6XVG8nRWp99qa5rWSYcHAr74G0QYYyJKZxkX34Zhg4t+3O7TBYUXRt5yVIDVYW3sx0Hfw6i6RBpMZK2vRWJkd7MWhtZ7Jlllp74M/JWnXfFno5NZ+XRGBSCpCr/0NLDTFx8mBHfHJDF8sqEWYTxhx+kWqQV0Olg4kRJ8qBLF4k0XVVUdUxaMrnXBszPvkAb+ELmRWRwFYMhS65lUlbFwaPeYJS7VdvUL15KMzvPF21CaR/sLnt6AfQO9ZUzQOtPSdnV+9oGYKcqTHYU6A3MWH2aPJ2B3s18WPpwx1It9h5OGt4f3pq548JQCLDyWCxf7bzGU30a4+2sIS4tjxam5MK5Wxm4mCglOoPI9hJk6fbB7gCcKqMUVxT1TM+TxEra8EvCKjLLl19+CUgT7ZIlS3AuopxmMBjYu3cvzZs3t+oE/m1oUaTUVBbMKciWAa6yJUZ5SMrM5/Hlx+X2R4AbKbmcuJnG0v3RvDOsJeM7FuoBPd27Mb8djWHf1WRuJOfIujkDWvhyOjYdF3sV/Zr7YjCKKBUCLQJc2Xj6Fk52KrIL9NxIySXYy1G+aePSJIL3VVME7WwnDfSSmSFvE8flTgVZHy8nO2JT82QT2ZJQKpX0KcmgtQEyZ6jAhjLZXUKgdtSocFArydMZSMkuwNlKTll1Xcty8eyz8PnncPiwpG3TtatFm+n10iSblgadOkmmq+XB3PnYvYl1ztKVwd1Rw+HVAbS75xaxB+qRvKkdO5yP8EvrGFnvZEALP+xUCm6k5HIhIbNMMmhtwctJw3ITvxDg4PVC8UVz80KZ6NMH2rWD06clh1uzvbwFeOcd6Wt1c5Pa6NXVUNGp6pisbHKvLcRVITN0y5SBrG+DPlFRWHItzZm08uaY5GwtRlFqLfct4pKg1RvlgK9osBDq78ofpwszpeaOPq3eyN/npGpDUW9MgKX7o4m6k4O3sx1fPhBeYRVkVPtA8nVGXt9wlvnbr9C9iTcPdw3hi21XOBefiVohla67Nfbi4PUUnDRKCkoQpcOC3BEEqRyZnF1QbsOFORi6lW5dMGRVZmjevHnMmzcPURRZtGiR/P958+axaNEicnNzWbRokVUn8G9DhQ8okFdzRXV9ykKuVs+DS44QGZeBu6OaV+5pzm+Pd2HO2DDCG7iTqzXwyrqzxSTRgzwd6WNKXZrVsEEiYIJkLDhzcKisrWDWszFz587fyihW4otPz6VRka64fJ20So6xITPkbc4M1VKZrEqZoTxdnWcEPJ3MmbS7jEQNEnlk4kTptRVeWO+9J4lYu7pKk2x5SWJRFOVSb+eG1d996ums4cgmTzxbJINByZ31Eby74oas1eVkp5JNHbfUsQBjkKdjme7mTXyd8a/I20oQpOyQr68U1ViI7dvh00+l10uWQEiIlSdcQzBnwitbQNY0Mk2lGfP9aQ1yTVleaxc31kJvMMrlLL9yOFbm4NLbWVOMjxeTmotRlDrFilINmvu7cK2I7pk5m3T+Vga5WgMejmraNyjsPi7QG1iyLxqA14Y0t8isfGLnBowMr49RhJlrIxnfKQh7teQ7Zs76mHX8WtVzZWLn4sLArvZqGpkSAOcq4AOZJWOSswvK9PgsD1YFQ9HR0URHR9O7d28iIyPl/0dHR3P58mW2bt1K586drdnlvwbm8dS8Ar6QKIrsvyplhno3rZhk/eHmi1xNysbXxY7fn+3O030a07WxF2MiAln3VDdeNItSbb3MpjOFEftEk4vvH6dvyTXfsCBJQygpq4BYk3rqlrMJLNguldPMgcNPB28UM96LS82TtXcAMk2fi0kt3vJt7n5KzqqgTOZUMSlYp9PxzTff8M0339isQA2FBGqbgiETZ0hvFMkrx9SztlCV4FGv17Nx40Y2btxYPXYcZWHGDHjzTcnN3gLs2lWYCfr+e2hUgVPNtaRsUnK02KsVNaYpE+Buz/6/HXAIyMSYZ0fsyva88PMZ+Z6518R92HI2sc4D4xFldNL1sCRjNmGCpF/w7LMWHef2bYkSJoqSxuaYMdaeafmo6piUOUNudUugLjDpyGlssAMxZzJKEoytRWXPypScwqxPeZSNpExT2bGEFpBZ/iTE2xFz3kUhSAFE0UWwmU9q7g5r38CjWEfa3+cSSc3R4u9qL/NWLcF7w1vh5aQh6k4OW8/fZnAribWvMrUxmoPiU7Hp5JTRjNPIJEtSkaWSp5NGDqrM18ES2MQZ2rVrFx4WSJS6uroSFRVV6ef+DTAPhIoyQ8nZWpKyChAEaB9c/vW5kZwjd9LMn9CulK2HQiEwfWAznuwtzSivrTsrk5d7NfPGSaMkMTNf7j6xVyvlSeWoycusia9zsfIbSGWu2CLaC3FpecWEF7NNpaeSZTIf08RtGWeo7Mldq9Xy3HPP8dxzz9nsTQZFM0PWZ3cc1Eo5a1bXJGrzyjO1HI5VRSgoKGDkyJGMHDmyeuw4ykKbNhKZJCCg0o/euQMPPihNso89JunWVARzzb9dkHu1NRiUhRYNnNj4u4jSOR9dsgv/LAzhp4NSSapfc180SgXRyTlymbiuMLRNQDFLArAwGFKrwUJ+jtEodeQnJkKrVhbHuBajKmMyT2uQF2J1nRkqMC2S7NTWj8t887ZVHNOVPSvNgaOPs125Cst3ss3BUPFgyazc7+daWMqr5+5AbGoeZj51fXd7PEzPJ7MIb8n5zKziPr5jkFU+cq72allr6Ntd1xhq6lgz6x1dSswiwM0enUGUpQGKwixZULJ6URSCIMjzmjUCuzWqKlHXK67qhME0UvwqWLmYo+5AD4cKVwdL9kdhMIq0b+COg1opX6fk7AJ+PRLDoj3XOXAtmZmDQmkb6EZWgZ7Pt0ptw3YqpWzrUVSN00yiNncKNPV1LtNbp3iZLK8YeTWnQLqZ72QXFOs0MJfJ7lQYDFVeSqsOmIMhnUEsVVOuDIIg4HqXaA0VXi/rA0OFQkG3bt3o1q1b9dlxVIZy7mVRhEcfhYQEaNHCsqra9WTpPqms5FwdGNTRjTnfZYPSQN5Vf15+Q0tMSi7Odiq6m9ywt54rrVZdm3BzVNO1cWGpTCFA50ZWlA8NBti4UbKcLwdz58LWrVLstHKlxJOvTlRlTJond0eNssZLTJXBLOhXlChsKfKrKTNUGQpLiuXPRXJmyLXsYEhZJIYK9XMpZg3UIqCw7GpuYy8q0KvVG+Uyt7n93hpM6NQATycNtzLy0eoNuNipSM3R0sDTAZHCAO5SQmnpiyDTnGaugJQHM5E7MdNy4cW6swb+l8Ldofxaspml38i7fHM4g1GUCWn5OiMjFx7kx4M32H05ib6zd/P6hrN8+tcltl24jUqp4L37JQXODafi5dSgWY0zuoiCsVnVONo00QiCUKZlSM+mhSvOuLRcAooEQ+bSkShCfpFaq8wZyip/4q4tzpCTRiVzoGzSGnIo5A3VJbzkzJD118vBwYEDBw5w4MCBmrHjKIqEBLh2TVJRLAMLFsDmzZKO0MqV4GSBxtkN033S0Lt2lIanTfTmgWkSly91b1PGvRWFKIoMMqXot18qLRNS2xjfobDztE19N+t0aubPh2PHoH7ZwpXHj8NrrxV+tAa8eKs0JhOLtNXXpGCrJTAvsGzJWJqzSvY2ZJWswe2syjvvzJwhnxJlsiTTtplFSlABbvZcL+LXaC5V5usM3DIFXkUXLpFx6eTpDHg6aWQjb2tgr1bKndZ/RCbQycQbNHsSmjNrRSkdZpiVvSvKDIFUJgdIuFsyQ/9rcNIoK7xJzLoGjSqw6jgdm0ZythYXOxUXTSqiLQNceeqXE2QV6Gnu78Lo9oFypie8gQc9mngXE74a2NKP/a/05ZuJ7eX9mieWogam/VuUNoYtSliNT8sjoMjKQW8ozLSYs0RQyBnK0xnKrONC0bJPzQZDCoWAs6bqJOq67iiTy4o1nEmrMgICJIfVMsoxJ07ArFnS67lzoW1by3ZpHqMhtRQMAayY7UeTXkmAwLEfm/HZupv0ay7dH2fi0ms8o1kZBrT0xxwGhPpbmTF76SWJsFWGamJmplS21OsljtATT1T9XKsb5gWUNXYsNYUCOTNkQ5msClkla3An04LMkCno8SlRJjM/v7NyC5/THk4a0oo8t83fgzm7ZK9W4O5YGJybS2edG3raHLyazcT3XLkjE7PNZUbzotw8PxaFuUxmdkooD/VMmaGSljwV4b9gyAqU5aZdFDdN0WqjCh7yp2MlHk99DwdEETqFePLb0RjydUY6N/Tkz+d78MW4sGKkyukDm/Le/a2YMVCSJ3eyUxUjPkNhABablienejs19JTNWc2w1xTeqDqjiIOmMC2tN4qy7lCutjBYcLKTWsGh/DJYbXZHVamjzOHuKJOZjXHvym4yC3HwoDTJjhhRKE1UGYxGkRtm64UKMqjVDUEQOPSHp4lQreG96a7kFRhpVc8VUYS9FWn61ALs1UpZwqKkVktVcP68JEMUHCwZ5dZx4qVM6I3S80qtqvuTM3cf2RIM1VZmyCz+W1HQZQ6GSnKGzB1vWUUWu24OarKKPA/NJfxbJv/HADeHYkGPeZ5rWoUyd4sAF+q7O1CgN8oJBvNC2lwGLMldhcK2+awCvfy3lAVHk0xMnhU6bjX6rdVEynPhwoU0bNgQe3t7IiIi2LdvX4Wf37NnDxEREdjb29OoUaMqtf5X1j5oHlAVBU1mZ2YzOoR4sNnU3vvm0JaolQq0Wi3z58/n+eefZ/78+bQJcObhbiE4aMof/L4udmhUCgxGUa7Bm31aiiItRyfzZgCMRaJrUZQ0cKB4ZgiQg6TyeDpmIl9t8MQKO8qqYMlRx2Uyc5CqN1h/vfLy8ujYsSMdO3YkL896w1pbUXJcPvmklp07YelSyyfZbK1eDtZL8hlqGt5uKjauExA0OvLjPOk94Rac20zqtkUsmL+gSsT+6oB5EeXhaLvwT8nvKCJCy+nTsH49uLtXz3mWhaqMSfMjQ6DugyFtVcpktcQZEpEuWEVXy5wBKuklaV7kFn2Ouztqii0svU0LW3NQElBC4sFM17DUf63kmNRqtQiCIJfH7phKemb+pPnfrHy9nC0yw0GtlJ81OdryF8PmbkCdwXJe6b+KQL1q1SqmTZvGG2+8walTp+jZsydDhgwhJiamzM9HR0dz77330rNnT06dOsXrr7/OCy+8wLp162w6vodTxQ8pcwDhZFf+zWDWOjFP5BqVAp1BJNjLkTaBbsyaNQtHR0emT5/O119/zfTp03F0dGSWuR5RDiRycOkSUESJLoB8naGYcazWYJRvKrHIuedWMNDKgvxAq4WlZ3VoDZWUeq8r2MJ/NhqNHD9+nOPHj2M0WkcitxXljcstW2bhaQXX1/yQVimEKnfd2IJBXV2YPDMZWE/Mzr5sWfwZWSc3sffnORbdZzUJczODtY0BZpT3HS1cOIv27SvfviqoypiUJ/c6joVEUSxSJrOBQF1N3WSVwfystcTPr+Q1NWdTii6CpcxQ4bPU01lDRp5O5p+W7PAz83WCLBCXrGg+a2symb2ZmitzThWCNA+Zg5mSZS5BEHBUV571UZu2t2axWaPU/b/++ov65ZD6bMHcuXN57LHHmDp1KgDz589n69atfPvtt3zyySelPr9o0SIaNGjAfJN/T4sWLTh+/Dhz5sxh9OjRVh+/ssyQOVJ10pS+rJOWHiErXy9zRNJNk7F5EIYFujNr1ixmz55daluDwSC///nnn5d7fFd7FcnZBcUyJt2beLP80E0UAhhFKVJWFLlD8rVGlCa3YCiSGbLSJqIwGCr793Z2dmzatEl+XRVUxZ9MZc7IWOIBVYMwP4wUNswA1XktLUFVx2VRmL8zJztVnZFlfQrmAnNKvW/L31OdcJBL1NZrYFXnd2QLqjImzbFTXZOntUWyCFVpra9qZqiya2lOMthytcyLEUOR55+7o7oYbaBAZyDsvX/kbH/Jsp95zvKoRJiysjE5LjUXvIdwMyUXb2c7krO1uDuqSc3R4e6oJimrgKSsglJebw4aFTlaQ6nqRVGYgyGtFYG5xcHQDLMXjgWYO3cuAD169LB4m8qg1Wo5ceIEr776arH3Bw0axMGDB8vc5tChQwwq4UA4ePBgli5dik6nQ22lDr26Ej0F80BzKqM9NDI2ncx8vTyRm79I8zb+TkreNl238jB37lw+/PDDcv3fXMydUkVTnqaIW6kQMBpEDEaxWMCSrzegKhoMmQZ+rpXu88ZKblCVSsXQ8oyqrISxksCrIlRl5VedqErStDqvZWXQarXy/VweKhuXRZFtGld11UKt1WqZV4nIjjV/T3XCXIq2VhC0ur8jW1CVMWm+FSxIdNQotEUycjYRqHWmMlkVny2VXUv52WHl9RJFUQ60iwZD9iplscyQeYFW3oLNzI2qSJjSkjG59odF1J/en9Qcrcx5Nc+x5n/LUpAuvE8qKJOZvr87VoguWvxEOnXqVLH/nzhxAoPBQGioROq9cuUKSqWSiIgIiw9uDZKTkzEYDPj5FW8X9/PzIzGxbJ2QxMTEMj+v1+tJTk4moAxBuYKCgmKiYZmZhYz2yuqP5oFWFrfHvOoxlMhImL/sE1tXYTBU/BA0GAwsXLiQadOmlfl7O3M0XOSmNp+ySqFAZzCgN/mWmZGvM0jZEtO40piDoXJWp5VN4rZkOqxFVVZg2ip0i1QnzMOgNq5XVbBw4cIqj8uiyKvgHqkNVPffU50wNzNYW6K+m/8mS1DZQqq2ULQ8aa0CtVRi+z/2zjs8ivL74p/Z3Wx6Iz0h1BBa6L0XqQIiKKAoil1BURHsBRUbiFjACioqiIIgHem9Q2ghdEhCSO996++P2Znspu5uqt+f53nysOzu7MzOvvPOfe899xz7BRttgcFOjpVGb5AXveZlMo3eYPF/aUqSniop7CgvKCv4ntaMSYNBT27kZvL63IPaFEBK86Fgzt0oARcrMqgSJ/OyDYKqVgdDu3fvlh9/9tlnuLu7s2zZMlmJOiMjg0ceeYR+/fpZvXN7UDKVajQaK0yvlvX+sp6X8NFHH/Huu++W+ZpGV3EkoK6gTimNp5IDS2kijaTEl817Kolr166V+5p0MZqnNaXgS9qvrkSZrGTZTGsngbCyMplWq2X58uUAPPDAAzZn5cxRFaJibU1YlaF4HNq+rV6vZ9euXQAMHjwYpbLmAouKxps973NQSddI7XCdSqK6v091wmhn6bQ+fKcqjcl6sjAwJ0/bWrLT6o1ykFLVzFBlc6XEsbI1k2Z+fs0DKY3OYDGXKgXLudF8N0ajUQ6olBWcI2vHmi4zEZVSIYv8lhwDZd1xrdm/dC822ECHsCtXvWDBArZt22ZhyeHt7c3cuXMZNmwYL730kj0fWyF8fX1RKpWlskDJycmlsj8SAgMDy3y/SqXCx8enzG1ee+01i5JgdnY2oaGiQFRlmSFntRLyyl7ZST+y0iwo0huMctDh6mcdt6p58+blvlZWCchQ4qarMxgtLiIXtcqC6C59RkUk8LJQWYeDRqPhkUceAWDChAlVCoaqQlSURdXs8B6qThircAMoLCyUy7+5ubm4WqN0aCcqGm/2vE+SaLCHF1MdqO7vU52wt4RYH75TVcZkyTmqrlAVjSHzck5VF1qVzZWVLTzLg4NSgVqlEIM+s221eoPFdzaWCEFSzIR0BUHAzVFFbpGO3CIdpZXsRFg71lRegbg7qeR7piT2W7JUZ478CugoEqTFf1nblwe7frXs7GySkpJKPZ+cnExOTmkJ7eqAWq2mS5cubN++3eL57du307t37zK36dWrV6n3b9u2ja5du5Z7M3Z0dMTDw8PiT0JlwZBcyyxjovc0tcu6mThD0oTnbgo6gnvfVelqSqlUMm3atHJfl4IE86yOFEW7qlWM7xxCmL+bBXnY3UllkR6WblIuZZDAK0Ixj6fmZzRNVTJDWinFW8ecITtXdyBaH3To0IEOHTrUuB3HtGnTqjwuzWFNirsmUd3fpzpREeewItSH71SVMSlTYOo4GpLm95I+cdbAfAEqzTE1hWICte3H6aqWylHFz5XMDJX8GSSbKQkeVnTzWjMmFQoFbp3upImPq6wUnWf6zOmDwlg0uVOZAqS5Vlwn0nts6ZOxayYdN24cjzzyCKtXr+bWrVvcunWL1atX89hjjzF+/Hh7PtIqzJw5kyVLlvDjjz8SHR3Niy++SGxsLE8//TQgZnUeeugh+f1PP/00MTExzJw5k+joaH788UeWLl3KrFmz7Np/5Zmh8jux/ExCVq6OYlDkbvohpVrpjXRNpST1mTNnlkuANBqN8oAyF9qSWsgb+bjw2cSODGzpb2GZ4aJWySJeYB4M2ZgZqsXVXWEVxM00VXClrk4UX6S2nzBnZ2dOnz7N6dOna9yOQ61WV2lcloSLnbyY6kLF30cABB546KVaJ0+D/Zmh6v6N7EFVxmR94QxJN1dbO2lBXIBK2ZWaFnQtDh5t31a6/szNVTV6g8VcWjLIKukQL+m8VfQ9rRmT7e98EIVKTZsgD1kbT1LxvrNdIKPbB+Nfwk7EnAReUfUiM9/238CuMtm3337LrFmzePDBB9FqxZ2qVCoee+yxMlvpqguTJk0iLS2N9957j4SEBCIiIti8eTONGzcGICEhwUJzqGnTpmzevJkXX3yRxYsXExwczJdffmlXWz1gETSUBRe5BFB6opdk0Z1MF4yHswoyi2+K11Py+OuduYDIyTInnymVSmbOnFlha2xKThFFOgMKQVS3lpCQKQqgBZuEswq1ennSBUstKIHi1WnJzJAUCJYXQ1TlArUVVZG9rz+cIfHfuu6gqQhHj8I778CPP4rjzp5xWRIScdpgFMdiTQvUlQXpeBcsWFBCEycAWMz6/QMp1BhwUtfuGMkusD0YysyEcePgo4+q7zeqbdQXP28p46HRGewam+5ODhTlFtW41U+xSGX5kF4ryZmRAgjzsljJzFBWgRZXR2Vxx7NGT0xaHo19TKKgJr29yixs5s2bh05v5MsvFpYak09Oe44dHsNAZyDE2xmDUex8Ts3VEOLlXK43X5GumAReUWYoM992AVW7giFRyOtr5s+fz7Vr1zAajYSFhdUod0HCtGnTyk33/vzzz6WeGzBgAKdOnaqWfWsqEUOTdIgyyrBYCDQJV0kRuTSgY9Pzae7nyrWUPA5eS2XevHnMnTuXr7/+mmvXrtG8eXOmTZtW6apOkkgP9nK2kACQskWSIau5/YOLg8LiwlUqBLmt1zzqLtLp5XZ9H9eyNUSqkrq1FVWRvZfLZHXeTVY/eBLlISsL7r8fbtyAd9+F776zb1yWhPlpPxefRbcmNig2ViPmzZvH+++/T9i4F8hKusXUET1waDiBhc83J/OqisEPJHJoVWmvr5qEJGbX0AoxOxDnkCeegD17YOpUiIqqnt+otiHrhtko51HdcFWrZD227EKtHcGQqPNW09/DGj0q6V6UWUJcVlrkmn+3Ip3egvSdlFOEo1JBHsWfvzM6mUf7NgWgiY8rR66ncyO1fLPU2LR85myIIq3pWPLy5vLNN99w+coVQhs35d4pj/H6umg0NzPo2tibq6aOryBPZ1JzNbQJ9ij3cyVVbCcHhexRWRZKfm9rUCWxD1dXV9pb6874P4D0vIojYWkSi8soLUcv2WJIfCLpxzp+I527OgZxLeUGW88nMrp9MGq12uYW2DNxmRb7kVBSUt3cGNTDWW0xaByUCjkYMs8MSfLoaqWlYZ85pLSk5P1VkyisAmdIKpPVdTAkZeCc7fgOBQUFjBw5EhCFTau7VGY0wtNPi4FQkyYgJRVKjUujEc6dg3btrP7sYzcz5MdrTt6qs2AIRH7gfY88zaqTt/Dr1ZQ37gxny/6LRP/emsOrA3jjy1Q+mOFbK8ei0Rm4lSHeXJpaaWD7ww+wejWoVPDrr6BUglJZxtyRmAgBATUaeVdlTMq+hrl1a4eiUIjk4OxCHdkFOvxttN4qVsav2TKZjxU+kJLZakkFZ2mR62y2kEzJKZKNowGSswvJL6F1tfNikhwMlWUKHp9ZwKazt/FyVjOxWyiujkoOXUulUGvgWGw2L7zwAidjMrjnm0N894WoC+juqGLOXW15cOlRoDhr37NZ2c1NANdM/KWmvm4VKnDbUyaz646Ql5fHW2+9Re/evQkLC6NZs2YWf/+rSM4pqpA31Min2FG3JFoFiVeWZH6XkFWIg1IgMbuQzqFiV962C0l2u74fuZ4GQM9mljeXW5nisUiZKfMJJ8Tb2cKWQrpABMGSM5Rsquf6uTuWS3JMMolbBbiXdjevTuj0BlkuwD4zxfohupgoOU972n6+DAYDe/fuZe/evTVix/Hjj7BypXiTXbkSPD3LeFNeHvTvLxqT2VDnOHglVX68u47NUQHuaC32w2y/kIQgwPrPQ3HvGAMIfPyKJxv2l3bOrgnEpudjMIoE15JO42UhKgqef158/NFH0K1bOW+8cQNcXWs8BVmVMelTj0yLPZwr58OUh6rYBNkCyUi1ojKVNIZKvkda5Lo5Fi9q4zMLLKgVV5JzZQFJCUeupclBXhNTMHTTLBg6diONDzdfZOmBG/Ix3tetEQCf/nMJg8Eoz9uCIJqI//FULwI8nOjXwo8QL2cuJ4mBzoiI8jOy11PEfUoijeWh1jJDjz/+OHv37mXKlCkEBQXVeRdAbcBBqUBvhKTswlKO8RJCTc/HlhEMhQe4oxDEiDXQw4nE7EKa+blxKTGH21kFRIR4cD4+m9+PxTJ9UJhNx1ak03P0RjpgGVUXavVcTBC7+6TUY0xa8QBu4e9GkilzBGJqNT1fS7CnZalNckCuaJJOquTm7ujoyJ9//ik/theFZqXKKukM1XFmKLkKwWN1ncuyEB0Nzz0nPn7/fejRo5w3urrCli3gZpvz/IGrxcFQYlYhlxJzyuwYqS30D/fDUaUgNj2fS0k5tAr0YO4nicyemoEmwZuJ9xZx+kQBLUNrlqgurbKb+rlWOp/m58OkSVBYCMOHQ4U81aZNq/Eoy0dVxqSUlcjI12AwGK3y3KopiN6FBXYZObs72m8gbY7KzqV0virKpPmWEzBJAZunmVn3rYwCejUvzoBeTCi9ANAbYd/lVEa1D6K5n3jNX0nOQas34KBUMLhlAEqFwKWkHJlfNG1gc1afvMWZW1n8dOgmj/ZpwtUPRmLE0s3hq/s78dqas/x+LI7ezX1kj76ycN3kl9a8kuxprXGGtmzZwqZNm+jTp489m/8rEeDhyO18MaNTbjDUoDgzVFIM0slBSZi/G5eTcmnu50pidiFeplXI+jMJPNqnKTP/PMP3+67zYI/Gciu+NfgnKomcQh2BHk60DS5exp+9lYXOYMTf3VEeYOfiiwd6mL8bFxOLpRC8XdTcSMsvFXXbFAyVc3NXqVRMmDDB6u9UHsxdjO0JaKriSl2dkDJDgXZkhqrrXJZEQYF4ky0ogKFDoVLPUhsDoZScIovxBrA2Mp5XR7ay8UirDy5qFf1a+LIjOpl/zifRKtCDaXc0Y/20E+z5uD2FyW70G5nKpaOqSo2aq4Lyytxl4cUXxcxQQAAsW2al2a/RCDk54FE+H6MqqMqY9HYRb+56g5GsAm2lnlc1CanMb092Rwo0squYGarsXPrKmbTyM0O+7uI5TMmxDAqke5d5vB2Xnm8RgCSYLZDNsfNiEqPaB9HM1xVPZweyCrRE3c6mY6gXni4O9GjagEPX0tgWlcQT/Zvh7+HEKyNa8ta6KD7aHE2YvxsDwv1Kfe7R62n8cTwOgBl3tCj3OwFEmxb3zfzKn3uMRqNFCc9a2HVH8Pb2poEtVtX/A5DKTLczS/OBJEicoTyNvsxyV29T9C2tfBKzC1AIcDoukw6hXoQHuJFVoOXTbZdsOrblR2IAmNgt1ELh+mSMyM/o0thbDsyibmfJr4f5u1n8X2LnNysRdadkl27ZLwk5GPKoWePQoiqoxJpvX+dlsqzaOV+2YNYskQLk7w+//GLlTRbg0CHYsKHyt11LLfXcutPxNqnE1gSGtxXT8lvOJwBik8O3T7Ym6N6ToNSTEuVLz7tTLALx6sbRG2KZu0fTiufV1avh++/Fm9mvv4oBUaU4dgy6dhUZ8fUQapVC7uSq6AZfG/Cwom28PEgdUDVfJivODBnLKVGXlxlqZFqwZ5uRvBOyCi0c6B2UAq/fKS5QpCaV4W0DGNdJFAZWKAS6NhapHSdupsvbSdfRmsh4+bge7NmYMR2C0RmMPLHsBD8dvGGhPn/oaipP/XYSgxHGdwqpkC+UVaDlXLx4v+pWwXVyO6uQnEKdza08dgVD77//Pm+//Tb5+eWzyf/XIK3gy4uaQcz+SAFRyRWw3pShAbHWqlIIxKQV0LmROKh+OxLDO2PaAvDrkRh2X0q26rh2XUzi6I10VAqB+7qFWrx2zDTBSvso1Oq5YubV0iLAnQtmKVHpsipJ4EwxXVAlNR/MIXOGPMp+j06nY9WqVaxatQqdzv7JQtYYsiOzozXz5qnLMpnRaCQ5RwqGbM8M6fV6Dh48yMGDByv1/7EWa9fC11+Lj5ctg0BrG6nWrIE+feDZZ6GS3/XAldLBUEJWoVzirSsMaxOIg1LgYmKO3NkS5u/Om48E4nvnGQAu7wjmjsdu1YiNSKFWz5k4cZLv3rT8m8HNm/D44+LjV14Rs3dWwdsbIiNh82a4eLFqB1sOqjompZt3XZOoZc5Qgf2ZoaqWySqbKyXCuc5gLPc4pSx+SQJ1Y5nXWryoL9KJCtSSn1dukZ7BrUQuncQd0huM9GshZnWMRqPMGzpuFgyN7RiMo0pBdEI2p2IzAVFIc8GEDtzZLhCN3sC7Gy7Q++NdPL7sBHctOsDkJUfJzNfSIdSLueMiKjwvh66mojcYae7nWmEpTSrzqZS2hUN23REWLFjAP//8Q0BAAO3ataNz584Wf/+LkDJDCRVkhgA6hnoBEBmbYfH8mVuZzPtHzPjEZRTIRGcpQPrjeBwRwZ5M7d0EgBkrIi2yNmUhK1/LO+ujAHisb1OCzQZIep5G5mcMaCkO4uiEbJnE5qpWolYKFqsYKbvTtEQKUuK3+FeQxSjODJV9cy8qKmLixIlMnDjRwgjXVkiTpZeL7an0hEzxGNUqhdx6WhdIz9OgNWlWVRRglofCwkL69u1L3759KSwsPzi3FrGx8Nhj4uPZs2HECBs2vvNO8PMTP+Svv8p9m9FotOALmePvyHgbdlj98HRxoE+YmLXddDZBfv7xfs3oN6IAr/5iAHHo10aMnXWzlNlyVREZm4lGb8Df3ZEmPmWX4LVaMbGTlQW9esF779mwgxYt4K67xMeff17l4y0LVR2TDazokKoNVC0zVD0E6srmSicHpaxFVV4mzc8sM2SePZIyQ7czCyyoAkk5RRb0j/jMQguJB4ncDDBnfZRMlD56I11eIHi5qBnTIRiAZYduyu9XqxQsur8z749ti4+rmuScInZEJ3H2VhZKhcD93UNZ+UTPSl0P9pkWU1JQVh6kRERZHqEVwS7O0N13323PZv9qBHqZymQVZIZAzMJsPJtApCkyltCxoRdBnk5yZkkKGo7dTKdlgDuXknL4Yf91Xh3ZigsJ2Ry7kc7kH46yeHJn+rYo3d6bW6Tj0WXHiUsvINjTqVStdePZ22j1RiJCPGQewjGzFXjvMF+LAe6iVhKTJmb6SpbJpHbG8vRPNDqDPInVdNlHIoBLF7UtiMso1nGpS5KmlEXzcVXbxV0SBIGwsDD5cVWg08HkyZCRAd27wwcf2PgBTk4wbZooRvTZZzBxYpmdSxq9gVdHtsLZQYmzWsmn2y5xJi6LmUPDeaBHoyp9h+rAqHZB7LmUwoazt5lxRxiCIKBUCCyY2JERt/ehy3Ym93RjNn/VmImu1/jj3WYWKr5VwY5o0dqoZzOfcn/Pt9+GI0fEzr4VK8Bma7+ZM2HdOjHtN3cu+FavZEBVx6Rc+qnjYEjm/dhBoPZwqh4CtTXwcVOTW6QjLU9DszJiAynTVqQzkFukk0t4/u6OODkoKNQa8HBUkaoTz3d8RgFNfFxkrk10QjZtgz24ZZKJiU3PJy23CB83Rzo39mbZ4Ri5Iejv07e5p3MIgiAwtXcTVp+8xYazt5k+KExujlAoBKb0asKkbo04cj2NmLQ8vFzUdG3iTZBn5c0JWr2BnabrpCzekTmkYMiIbVp0dgVD77zzjj2b/asRbPrBzLuxykKnRl4ARMZlWpCoFQqBERGB/HTwJiAKzjVwcSA1V8P4zg25lJTD9/uvM7FrKEse7spDS49xOi6TKT8eZVynEKb0bExEiCf5Gj17LiUzb+sl4jML8HBS8eMj3Uqpcf51Slxtj+vUUH5u8/li09pBLf05cyuz+Pt5OXE1OQ+1SmGRYcrM13DTFCS1Cymrx7q4jOagFGQyZE1Bki1oVM4K2pptQ8shwNcWpCyavx0lMhBFT69cuVItxzJnDhw8KPJqf//djpssiMHQxx+L3JRDh8SyWQk4qpSM7VhsRnz4Whpn4rJIyCqQW4XrEsMjAnnj7/NcTc4lOiFH7r5s6uvK63e25m3NeYwFjuRdCmTtvCZMUFzmj7fDq0zE1+gMrDVlxsZ2DC7zPZs3i6cXYMkSUfvJZvTrB507w6lT8O238Oab9h1wOajqmGwgkYIrUTWuaRS31lelTFbz4pE+rmpi0vLLPV/OaiWuaiV5Gj0pOUVyMCQIAo0auHA5KZcGbmpSTcHnhYRs2jf0YvclUe4iOiGbiGBP/olKwsNJ1F46cj2dUe2DGNjSH5VCkCkHs1adobGPC92aNCAixJMRbQPZGpXIp9su8cNDXS2OS61S0D/cD6g4oCmJzecSSM4pwtfNkd5h5ZeSAS4lFlM/Gvu4Yu2otPtKzszMZMmSJbz22mukp4sZh1OnThEfX7cp75pCK1OEezU5t0wjVgltgj1QKxWk52lKtdiPahckP76clCsTzvZfTqFPcx80OgPvbojC3VHFyid7cl+3UIxGWHMqnnFfH6LFG1vo8O42nl95mvjMAhp6O/PLYz1oFWjZIXLgSipn4jJRKQTuMqUtb2Xkyx0rAANb+rHFrCQgtUt2bextQcI+e0ss1TXxcSm3NCXf3N2dajzjIiltVyUzFNqgZtukK4PcSVbH5OkdO+DDD8XHS5aA3RJh/v7w4IPi44ULrdpECqyl8VXX8HByYJCpnLz+zG2L16b0bEzfcB98Rkfi3SIdo1bFuk+aM/qtC1X2odoRLWqL+bs7lrnivXGj+NROnw733mvnjgShuAd/8WKoQqm6JuBrRbt4bcCjCpmh2iJQg7nWUPnnS+puLtlZJc2dAWYNMWfiMukQWrzYjU7Ipm2IeF+RHOQPXxfLVJ7ODqWIzlITD8Cs4eEoBFG7a9fF0obu9kBKIjzYs1GFzS9Z+VqupRR/3y6m5IQ1sCsYOnv2LOHh4XzyySd8+umnZGZmArB27Vpee+01ez6y3sPfwwk/d0cMRixIxyXhqFLKg+iUGW/IaDTSKtDdoiNLoRBwVSuJTsxheFuRxLnzYjLLDt3EyUHJx/e0Z930PtzZLlC+SEEsY824owX/vNBf5ihJMBiMfLg5GhCZ/BKRbsu54qxQq0B3HFUKzt0u/h6SxUXJktxZU/aofUPL/ZhDIp2GWGkjUBVIAWZje4IhE2mwrjNDUkeiPW311YWkJJgypdjSocqd+i++KP67di1cv17p2yNMwdDlpJwa7dKyBXd1EDNXG87ctuhwUygE5t3bAQ9XBW6jj9GwdS5GjQM7PmvJkJfPV5otrggrjopeihO6NixVdtNqxaqjVMJcsMDu3YiYOBFCQkRF6rVrq/hh1YtizlD9yAzZU+qqLQVqKA4eKxJelEpUJZt5GjWQPMaKF7enYjMs5virybkyvUIS5j10LU1+fVhbsY1RWvtuPJsg21CF+bvzaB9R3+rVv87ZpfljjiPX0zgdl4laqeCBHo0rfO+ey8noDUaZDG6un1QZ7AqGZs6cydSpU7ly5QpOTsUT+siRI9m3b589H/mvgLSaPR9f8WpWajvcbyJ8HbqWyojP9/Pa2vMWqfB1p29zb1exjPX78TheGSG2M364+aLcFt8h1IuvH+hC5NvDiHxrKOfmDGPnSwOYOTS8TKO6P0/EcSEhG3dHlcwjMhqNFqvdQa385XQoiJ1ZJ2IyAehfgpx2xrRyb9+w7BIZiNIAQKnArCYQmyZld6qSGarbYEgaPy2t0JQpC4WFhYwaNYpRo0bZRVY1GODhh8V7Ytu21cSpbdtWVABs1Aji4ip9e0NvZwI9nNDqjfJYr2vc0dofN0cV8ZkFnChxTCFezsy5qy0KtR71qINEdCnCqHHgxLftGPhCNDsu2L4C3no+gQNXU1EpBCZ1Lc2bevddOHFCbAZbvRqqrK/p4CDyutavFwOjakRVx6TUoBJfhpVRbaKYQG17dkeiCKTlaWpcLiLQQ1x43qrgfJUXDDXxFec/c5Xm1FwNCkGQeaEGo/hcq0B3ucv4ekqeXAUY0jpAfh+InW1/nbolf96s4S1p5udKck4Rs1adtbvpoFCr5/W15wC4p0vDStXZd0SLXdhavRGVQqiwBb8k7AqGjh8/zlNPPVXq+ZCQEBITE8vY4n8DEVam9u8wDZRdF5PR6Q14ODlwKSmHf84nymUrEEnQtzML8HJxIDohG6PRyLA2AWj0Bqb+dIxzZvtRKgS8XdW4OzmUS1A8HZfJ26busmcHh8mrrb2XU2R9BgG4v1sjtp4vLpG1CHAjt0hHA1c1bYIsS25nrAh0rHlPdUAiDIK9nKG6zwwZjUb5t2hv5/nS6/Vs3ryZzZs329XG/Omn8M8/4OwMf/wBLtV1On75Ba5ehQEDKn2rIAj0bi6m2svSH6oLODkoZSuAtZG3Sr0+vnMIw9sGoFfqCJhwnP6DdRi1Km6u6Mx9r9zmjbXnrDbpzCrQ8vY68Vp9akCzUuP5+HHRZgNEXaHQ0JKfYCcmToQxY2wQkbIOVR2TLQIkVePccrVzagOS92JljuxlIcjLCaVCoEhnICmn6l2eFSHcdL4uJ+WU+57WJvqEOYcGirP8Z29lYc5qOBefRQezOenwtTS5E1nqvj1syg4FeznL16+EZYeKOy2dHJQsnNgRtUrBjugk3tsQZdfv+tWuK1xPycPP3ZFXR1QszqrRGdhjJknTuZE3mTYQ8u26IpycnMjOLl0qunTpEn5+thGj/k2wJTPk7eJAZr6W4zcziAjxpE2QBxq9gRMxGQxtU6yUtjM6medNGZzPtl9h1vBwujXxJqdQx4NLj7LXSv+m6ym5PPHLCTQ6A3e08ufxfiIBxGg0snBHMYVsREQgPm5q9phlhlqbfNN6N/ex4PwkZhWSnFOEUiFYKFubo0Cjl1ceFQVDarWan376iZ9++sluF20pK+Tt4iCv4KxFgUYvT3B1yRm6nVVIaq4GlUIoFXhai6qcy6NH4Y03xMdffCEmdKoN/v6iW6iV6CUHQ2mVvLP2MN4kLLfxbEKp8p0gCHw4rh2+bmquZmQx+LnLTJhoAIOCtI2dWPyZmoHz9vDXyYr1iLLytUxfforknCKa+bry3GDLTlCNRpQ6MBjEdnq7eUKVQVt95ZyqXt+NfVxRKQTyNfpKO3ZrEhKfJjNfS5aNZp8OSoUsXnizAkf3ymDNuQw3ZX0uJ+WUm4WSMkPXU/Jk5X2ANkEeOKoUZOZrUZuVZiNjMuhoVirbfyVF5rFJ22+7UJzskEpWKtM9Iy6jgA1mFYgOoV4snNgRQYBlh2OYuynapgzR6pO3+HrPNQDeHxtRqSvD8Zvp5BTqUJtKZP1a+Fqt1wd2BkNjx47lvffeQ2u6mARBIDY2lldffZV77rnHno/8V0AKhq4k51RIolYpFQxuJQY8203p8/u6i0u7P47HMbV3cd3TYBTNK7s3aUCBVs/ra87z3ZSudG7kRVaBlod/PMaHm6MtDFVLYuPZ29y16CApOUW0DHDni/s7ySToPZdSLIjTj/dryu/HYi3EB8+bLDr6leALSVpJ4QHuOKvLvslF3c5CbzDi5+5IUAUcGAcHB6ZOncrUqVNxsKtlqZgvZA95WnIEd3dU1anG0DkTBys8wN0ubzWw/1xmZIh2Gzqd+K8k4Fft0GjE1rRKbrZSMHT2Vlat8CysQc9mPgR7OpFTqGPXxdITqY+bIx+Pbw/Az0dvMGNuOrNmia9lHWjJhd8iePG3KAbM38N3e69xJSlHXhEXavVsv5DEuK8PcuBqKk4OCubd277UOPj4Y1EJ3MdHDFirHUajaDwXGgoXLlTLR1b1+nZQKmSx1ysVZDtqGq6OKpnXecMOLphsYloFHpk157JxAxfUKrFFXir/l0SQpxPuTip0BqMsjwJiR5d0LzMvMmw6l2CRGTp+I502QR64qJUUmBYGO6OT5Wt1WNsA/Nwd5XsJwIJtlyzMzEe1D+Lt0W0AWHrgBk/9eqJSM3Kj0cifx+OYvfoMRiM83KtxheatErZFiYGadDT9wv3YfdF6M2i7gqFPP/2UlJQU/P39KSgoYMCAAYSFheHu7s4HNguV/HsQ4OGIr1vlJGpAzv5su5CI0WhkbIcQ1CoFFxNzcFWrLLICOy4mM21QM9wdVZyIyeCz7ZdY8URPHuwp8gi+33edPh/vYs76KDadTeDC7WyOXE/j18M3GfPVAZ5dEUlukY7uTRvw62PdZUGunEIt720snuw6NfKifUMvvt17TX6ufwtfLiTkoFYq5DqwhK2mwdWrAol0c75QTRv2FrfVV2zSV+a2ksZQA5c6NRY+awUHqyZgNIrBT0yM2DX23Xc1ZGRuNIqqgJMni0SXCtDQ24XGPi7oDUYLJdu6hEIhMNaUHVpzquzO2CFtAri/u9jp+fLqM7z5npalS0GtNlJwOZCkZf24HuXIR1suMnThPtq/u43uH+yg03vbeeKXE1xPzSPY04nVT/emaxNLTkNkpBinAHz1lahnWe0QBLHFPimpxkQY7YFUKrtqppJfFyjLld3qbX3s39YWqJQKwkwdwJcSyw4eBUGQu6AvliiVSRIw5hmjq8m5hPu74WJa+GoNRiLjMuVymLeLA0U6g7zAd1AqmNRVXORLjgBxGQWsPmlZYn6kT1O+vL+TqWSWzMD5u1my/3qZmbdrKbk8+vNxXv7rLEYjTO7RSHZmqAjZhVr5etXqjYR4OdPI24WTJcSPK4JdwZCHhwcHDhzgr7/+4uOPP+bZZ59l8+bN7N27F1dX229U/xYIgkA7U6dYZaWy/uG+OKoU3Moo4GJiDp4uDow0Rbd/nLjFyyNaWrz/3Q3RfHG/mFL87UgsK4/FMvfudnw3pQstA9zJLdLx86GbTF9xiju/3M993x/hrXVRnIvPQq1UMH1Qc1Y83kPWrjEajby25pzcVikAb41uw/rTty3aMZ1Nq9LRHYIs9F4KtXqZFDq6Q7EkQElYS57W6XRs2rSJTZs22W3HEZMuCS7aXuYq5gvVbVu9FAy1q0IwpNfrOX36NKdPn7aan/HNN6JzhoMDrFwpivfVCAQBJFHWzz4Tg6MKIPOGrta/UtmeS8nl6ri8OaoNjX1cuJ1VyDvrzvPoo7B/v0CTJqDJcCFpRW+cT3XGweBATqGO5JwiCrR6gjydeKRPE9Y/11fmIErIzIQHHhAzd/fcA/fdV4Nf8qWXxH9/+QVSrF89lwd7xmRJhPmLN+4rSXUbDDU1BTT2mH1KCuL2bCvB2rmypVmprLL3lCRRSxZN5iLNRuC7/dcsKgT7L6fKpTIpg2leCru/RyNUCoFCs6BqwbZLpTK9d3UIZtVTvWgd5EF2oY65m6LpPHc7E787zIzfI3l+ZSSDP93DHQv2svtSCg5KgRl3tGDu2Air5FpWHI0lp0gn2yxN6dWY/VdTbCrLVYlFN3jwYGbNmsXLL7/MkCFDqvJR9R4SB0BKIx6rxE9JdMMWB5FkN3B/dzHTs+bULVoHutPHTDzqRmoeV5JzeWloOABzNlzgmz3XGN42kK0v9OOnqd24v3so7Rt60sBVTTM/V3o0bcCbo1pz5PU7mD28lUVr7m9HYthopiP0ZP9mdGzoxZc7L8vPtQlyZ2uUGPA83KuJxfHvvphMnkZPiJcznSoIdKwNhoqKihg9ejSjR4+2244j1hTQNG5gR2Yove47yYxGoyxV0KECqYLKUFhYSKdOnejUqZNVnTunTxd3vn/8MXTrZveurcPTT4vK1CdOwP79Fb5Van09WI94Qy0C3OnQ0BOdwcjfp2+X+R5XRxULJ3VEqRD4+/Rt1p2Op3t3MbMzZQoYDQIXtweR++tQHvW5g7VP9mP7i/05+Mpg3hnTVlYIllBYKMaQ0dEQHCz6xNVoArNPH3EgFBUVm9JVAbaOybLQwl8iUdddmQygqZ/9pa7qKJNZO1dKre+XKggeW8ok6hLBkKnjuSSWHYqhr1lH8b4rKQxtE4hCKPbl3H8lVW6jD/FyZpLJE1OqSKTmavhoS2kPvA6hXmx8ri8fjW9HmL8beoORYzfSWX/mNutO3+Z6ah5KhcCgln5sfaE/M4eGWxUIFWr1sj2I5LM2qWso26Js6/C0OxjauXMno0ePpnnz5oSFhTF69Gh27Nhh78fVe1xPFQdcf1OUvO9KSqWmjdIg+fNEHIVaPT2aNqBLY2+KdAa+23eD10a2tnj/J1suMiIikOmDmov/33qR9zZcQKM3MKiVPx+Nb8/6Z/ty6q2h7HppIH881YvH+zWTu8ZAvOF+t/cab5k6VQCa+7ny4tBwfjp0kxgzg76+LXzR6A10CPWyqBUDciA1un1QuWWl1NwibmUUIAhVy3RYi1jTBFOltvo6zAzFpOWTXahDrVTIE5k9EASB4OBggoODKy355eSIDUQaDYweXRwU1Sj8/OChh8THn31W4Vv7NPdBEESRt4Ssum2rNse9XUTJi5Ipf3N0buTN9EGiBcWbf58nPrMALy8x2bJpEzRvDomJAu+87MTI3h789IU7p08LFn62+fmipVv79rB3L7i7i9saDKL9xpYtNfQFzUUYv/5ajMaq9HHWj8nyUF86yppUITMk8Z5i0vJrvL2+ZaCpo6ycMhlAa1NmqGQwFODhJHfOmSNfoychs0B2fL+anIvBWGzS6uumRmcwsulc8UL72cFhqFUKi07KFUdjOVSGF6HoRdaIHTMHsHf2QD65px1vjW7DayNb8e2DXYh8eyg/PdJdFgG2Bmsj40nJKZKtN8Z2DKZQp7cge1sDu4KhRYsWMWLECNzd3Xn++eeZMWMGHh4e3HnnnSxatMiej6z3iDKRjDs09MLbRUx9nyrhP1YSg1r6EeTpREa+li3nExAEQe4cW340Bn8PR3nSBZFMfffiQ0wf2JxXR4pthD8evMGYrw7IGZiKkFOo5fW15yyicje1ki/u60Rcej4fbirmD/Vu7sOGM+KAfqinpZBVXpGOnSbl0NHty7YIADhoGuxhfm42d3fZiqx8raw+HeZv/YUiQfJha+Jbd2Xcs6bSautgjyrZOLi4uBAfH098fDwuFfTFG41ikubKFWjYEH7+uYazDeaQoq7168UDKAc+bo5yyt4erZ6awpgOwaiVogN3RSXx5waH0SHUi5xCHTP/OC2n5e+8U+Qmf/GFeO6TksRW+S5dxIAnLAwaNxbLlffeK54itRq8vETKVVCQ+G+NUnruvVfUhUpOht9+q9JHWTsmK0JTX1cUAnJZsa4gBTQ3UvNsDspCvJxRmdrrJaX5moK0oLqWkmvB/bF4jykYSsgqLEVc9i9Hs2fdmXgLTuPmcwnyfUrazy+Hb8rnJsjTmSmme4h5gDX7rzMVSk009nFlUrdGPNa3KU8NaM6IiECb7yP5Gh1f77lqcWwP9WrC0v030OqNsuafNbBrRv7oo49YuHAhv//+OzNmzGDGjBmsWLGChQsX8qGk7/8/Bsl4VakQ5OxQZW17KqVCLo39dkRUmu3XwpdOjbwo0hn4fu913hrVxqILK7dIR6+Pd/N436Z8+2AXfN3UXE7K5e7FBxn/9UE2nr1t0clmMBiJTctn4fbL9Pl4F78fKxa883BSsfyJnrQMdGfG75FyfVghQNtgDxKyCgn2dGJUe0tO0I7oJAq1Bpr4uBARUn77txRMSbYiNYnjN9MxGkX17cqEt0oiJaeIG6l5CAJ0CrX+4qhunDIJ+bUvx+OturF0qWjqqVSKekI+FVv6VC9atYJRo8SIrJI7utRssD3a+jbYmoaXi5qhJpXdirJDDkoFn0/qiItaydEb6Xy/r1h9W62GGTNEQe4//xR5QK6uYhLm2jWIjcUiS6TRiHqV5kma9u2r/asVQ6USDxDE36gOszEgqvc3NmVl6pJE3djE+8kp1FXa+VQSKqVCzlzXNIk6xMsZV7USncFYblnOw8lBLj8evZ5W6jWwtOUAmDs2wkL+5a9T8QxtEyB7lDmpFFxOyrWQfXlmYHNc1Eoy87WyEnd8RqF436nBDNkHm6KJSy/AUaXAYIQ+YT409HZmxTHxfvtov6ZWf5ZdwVB2djYjRowo9fywYcPK1B/6X8CBq6lyJDyopT+AhVZPebivWygqhcDJmAyiE7ItskO/HY0hX6vj0wkdLLbJKtDS++NdDGntz/YXB8iq1adiM3l2RSSt395Ku3f+YciCPUTM+Yf+83fzxc4rFqqpXi4OrHiiJ+1CPHnr7/NEm6VJpw1sLnu9vDs2olRrr2QRMLp9+SnvrHwtey+LN6+7yjGYrE4cM3Ub9WhmvaKohJMx4rYtA9wr1aqoKRiNRrkLo6SEQU3g3Dl47jnx8QcfQO/eNb7L0pBIurGxFd5opYn38LXUetNiD8WlsnWn48tdeYOYSZhj6nhZsO2ShVgqiKT1CRPE5rrsbDELtGsX/PBD5fqUNRoMgdhi+PTTYrRch12WEqSsb1221zs5KAkxmVXbxRuSSNRV4A1ZA0EQ5MxPeR1lAH3CxPmmpJ7X3HERAGQUaC3oA3supcjCwSCWsK+n5MnzvGS7tGT/Dfk9vm6OvDhE5Lua00d2XUzmg03Rtn85K7D7YjLLTfeqIp0BtVLBe2Mj+PVwDPkaPa0C3ekXVsN2HHfddRdry/C2WbduHWPGjLHnI+s9knOKZEZ+/3A/meeQWIlAmL+Hk+zjsvyoaGY3INyPbk28KdQaeOvvKHo39+GxvmIEK/HFknOK6PXxLtwcxTLX39N7425mv5FTpONqSh75Gj1KQZC7wkBUyt32Yn9aBboza/UZVh4vzhZ1buTFoWtp6AxGhrcNsFgBABy6msrRG+molQom9yhtESDhn6hEtHojLQPcq8R/sRbSqqZHU9vTG8duiBmZbk1sD6SqCxcTc4jPFFcwJf3fbEVhYSETJkxgwoQJZZJVc3PFm29hIYwcCbNnV2l39mPgQDEq27Chwhttcz83mvm6otUb2Xe5fqhRA/QL88Xf3ZGMfC07oysu4U3o2pCREYHoDEaeXxlJvqbs8oBCIZbIBg0S45A9e+DAgfKDohoPhjw9xVbDKqpvVjYmrUUxibqu2+ulrjDbxROr0ppvKyRLn4o6yiQ9r4MllN5bBrjTqIELGp2Bro295Of/iUqiZYCbHBCC2PRzbxeRA3srowCFICYIom4XB/6P9m1Kp0ZeFGgNhHgVVzt+PHiDnw8WB07VgfQ8DS//dRYAZxNXaNqg5gR7OvPzoZuAmK2yhb9mVzDUunVrPvjgA0aNGsXcuXOZO3cuo0eP5oMPPqBt27Z8+eWX8t//EqRMUANXtdwNtMcKhcsHTUqdq0/eIjm7EEEQ+GBcOxyUAjuik9hyPpHZw1vSpbE3BiOYBDRJySmi3ZxtRN/OomOoNyuf6inrOZhDbzRSoNXjoBT48eGufDaxIy5qFc/+HmmhleLnpmZ420BOxWbiqlYy5y7LCdBoNLJgu9htdn/3UIK9yicbbzgrdtmMqaDtvrqQW6TjvMlUtrsNXjMSTpgyQ12b1F2JbIdZVshFXdpTzhbo9XpWr17N6tWrS7UxSzyhS5dET85ly6rdecF6CAJERFj1VrlUZiPpsSahUiq4x5Qd+uNExX5rgiDw0fh2BHo4cT01j/c2WC9m2KcP7N4N27ZB165m+1eJ1cZahZ2lsorGpC0wJ1HXJYpJ1LYfR1O5o8x+FWprIS1ES7bOm6NnUx8UgqhEbb54FwRBvu4MFAcNidmF3EzLt+Cz/n36Nm2D3GkZ4E6RziDv1zw7pFQIzL+3PWqVgvjMQlzNhHrnbLjAwu2Xq4UYn56n4aEfj5KSU4S7k4oCrYHmfq48M7A5X+26QlqehobezoxqZ9u9ya5pcunSpXh7e3PhwgWWLl3K0qVLiYqKwsvLi6VLl7Jw4UIWLlzI5/VI0Ks6YB742FIq69Xch86NvCjUGvhql0j2Cg9w55kBYtfYO+ujKNIa+PHhbrQMcEdvRJYUL9QZGPnlAV7+6yy3Mwv45N7yl4pTezdhQEt/Vh6Lpd8nu9h6vvjG4qpW8vKIlny8VSRXzx7ekiBPy2Bn35VUTsZk4KhSMM3UJVMWUnOLZPJ0RQRrc6jVahYtWsSiRYtslus/cTMdvcFIaAPnCgO0spBXpCPKFEjVZWZouymzUFLY0h5UdC6XLIHly0We0MqVNSTaZw+SksS+83IwpE2xn5+2ki7N2sREk6jc3ssp3M6suNvNy0XNZ5M6IAiw8ngcm806biqDIMDQoXDsmKgH1batGAhV2ZzVWly5ImoCPPmkXZtX5fo2Rwv/4kxHXXaUyQGNPZmhKgov2nIupS7eUzEZ5Z4vTxcHWdPq8HXL7NAw03W393IKfm7F+9oRncTEbqFypSI1t4gDV9N4ZqB4z4o3XQsbztyWZUtA1Ip6YYhIAylZWv5i5xVmrz5TYcm5MiRlFzLpu8Ocj8/GSaUgp1CHQoAPx7XjfHyWLCj85qjWFlIz1sCuYOjGjRtW/V2/fr3yD/sX4WRMhsxpGNRKvMscuJpa6Y8rCAKzh4tLvN+PxcoeW9MGhdHMz5WUnCI+2hKNp4sDyx7tToiXMxq9ETfH4sj6z+NxPPHLSV5adYYwv9IdUf4mWfTBn+7m1TXnyDBT9/R1UzP/3va8tuY8RiM81KsxD/duYrG90Wjks22XAHiwZ2MCPMq31th8LgGDUVRRtrY7y8HBgenTpzN9+nSb5fqPmjSd7CmRRcZmojeIiqS2BlLVhcSsQs7eykIQsKjF24vyzuWZM8U8oQ8/hL59q7yr6sGWLWLX0sMPl5t56NzImwauarILdfVGjRrEm2LPZg0wGismUkvo3dxXXuS8alrA2AJBgHHjxN9y2TK7Dtk+ZGSIHWXLlsHtsrWVKkJVrm9ztAhwQ60UfbNqI7NSHqrSXi9tG5NuX3u9LeeyQ0MvnB2UpOVp5I7ZstCrHHHTLmY+mv3NyvfLj8QS7OnEQNOiH+CvU7cY3T6Ixj4u5BTqaOrrgs5g5OMSmkJP9mtG/3A/tGV899Un4xm7+KDM47QFZ+IymfDtYa4k5+LmqJKFHj8e356IEE9m/nkGg1EUTR0RYXvFwq5gaO/evfZs9q9GEx/xh5cyIhHBnvi5O5JbpGOfFWaqvZr70K+FLzqDkc9NwodODko+GtcOEFeSq07EEejpxK+PdSe0gTO5RXpUCmRVTQCd3sjVlNIXaHJOET8dtNQRArizXSDv3hXBC3+eQWcwMq5TCHPGtC1VS/0nKokzt7JwdlDytGkyLw+SAukYK7NCVUUxX8j2zI50Y+1WlyUyU1aoY6iXzZ1w1iIrS+yULioSm7gkv6x6gZ49RRbxuXNQjhaZUiEwuJU48f5zvv6UyqBYL+yP43FW3dxeHBpOh4aeZBfqeMGs3d4WKJXQubPNm9mP7t3F6FmrhTqUR3FUKeW27roMis2FF23NUAV7OeGgFNDoDNyuYe0stUohl/8PXSufb9e7eTGJ2vz7qJQKeYHmbFa+j0nP5+ytLO4zjX0Qr8u0PA3TB4pVg8x8LQKip5m5CLFKqWDx5E6yFUhJRCdkc883h5n5x2lirCCZx2cW8MLKSMYuPkhsej4eTiq5Zf/t0W2Y2C2UDzdHE5OWT7CnE+/cZR//za5gaOjQoTRq1IhXX32Vc+fO2bXjfxv6mKJmqSymUAiM7SAGA6tOVswnkDBrmGjBsTYyXia89WjmwwxTd9kba89z4mY6zfzc2PBsX/qH+6EziEz5iGAPuXRmDfzc1Cx7pBsqhYLpK06h0RkY2iaA+fe2L6XqmZBVwOtrxd/xkT5NKrxhn4/P4vjNDASBUi35FUGv17Nnzx727NljE6cgX6OTLSx6VuCRVh6K+UJ1VyLbUY0lMgCDwcCVK1e4cuUKBoMBo1F0Ob96VUzA1ClPqCx4e8Ojj4qPKxBhlGr8m84lVipoWpsYGRGEu5OK+MyCUiTUsuCgVPDFfZ1wVSs5diOdxbuv1sJRVgOk7r9vv4U82zIiJcdkVSBdqydvWu8rVd0I9XZBIYgihLZqHlm219ue3bJ1rpQCncMVqLh3a+KNg1IgPrNANryWIPGG9lxOwcdMwPfPE3EMbuUv6xFpDUaWHrjBuM4hhHg5k5GvlZWs39sYZbFQcHdyYOnUbhZNPyWxJjKeAfP3MPKL/Xyx4wr7r6RwKjaDS4k5nLiZztd7rjL1p2MM/nSPrATv5ewgd02/NDScR/s2ZcXRWLmrbP6EDnYbcds1Zd6+fZuXX36Z/fv306FDB9q3b8+8efO4davyNPK/FZIC555LKXJkPcHEJ9gZnUxqOR5G5ugQ6sWItoEYjTD/n0vy8y/c0YKREYFo9Aae/u2kqGTrouanqd141sTdOX87G73ByMBwX9o39MDDSYV5SKMQRF2hYW0CWP10L6YPCmPmn2dYf+Y2CgGeGtCMRZM7laqj6vQGZvweSXqehogQDzkwKw8LTQTruzoE21R2KiwsZNCgQQwaNMimbpPI2Ex0BiPBnk40tFE9Wqs3yPpQdcUXyivSyanpYW2qJxgqKCggPDyc8PBwCgoK+PJLUcXYwQFWraplPSFr8cILYg1o61aIiirzLX3CfPFycSA1t0gujdYHODkoGWfyKzPvzKwITXxdef9ukTz+xc4rnKhHpb9yMWaMKJudkQE//WTTpiXHZFUgCeUdt6OUUl1QqxQ09LbfZyzcxH0y77ayFrbOlVIJ7Mj1tHKzkC5qlayxVrLFvn8LP5wcRB/NuzoUZ/vXRMaj1RvlzCiINk95RTqeNnGHbqXn46ZWcj4+m9WnLO//IV7OLH6g8vRmdEI2C3dcZsrSY4z/+hDDP9/Hvd8eZt7WS+y5lEKRzoC/hyMKATILtHi5OPDZxA48OziMpQduyAv5ZwY2l2UE7IFdwZCvry/PPvssBw8e5Nq1a0yaNIlffvmFJk2aMHjwYLsPpj6ja2NvnBwUJGYXysz9loHudAj1Ej2MIst2uC6Jl4aFo1QIbL+QxNbzIsFSoRBYMLEDbYI8SM3V8PiyE2Tma1AqBGYNb8m66X0YEO6H3gh7Lqdy9lY2ro4q7uoYzBujWvPOmDa8PKIVU3s3IS1Pw73fHmbOhguk5WkID3Bj7bQ+vDayNY4qZanjWbD9MsdvZuDuqGLx5M6lNIfMERmbwc6LySgEZK2kmoZcImvmY7PM/4Xb2eRr9Hg6FwuP1Tb2XU5BozfQ2MfFLuXs8uDp6YmnpydHjhSXxBYsEKsd9RLNmolkGCg3O6RWKRhpqvWvL8cTrK4gEam3RyVZLcQ3vnNDxnUKQW8w8vzK02QV1B8NpTKhVBYrh3/+OdjYFSaNyaqiiykYup6SV65Rbm1A4kNeL4OWUBkkV/hTNrim24uIYA/cHUVBxAu3y9f5k1vsS9hkOKuV9A0TF/uSYCJAgUbPP1GJTOwaKitj5Gv0/HzoJhO6NCTAw5GknCK6mBaa8/+5RG6RDo3OwN+R8RiNRvqH+9EmqFi4VwAe7dOEsR2DLdQ2FAK4qJW4O6lwclDg7KAk2NMJVxNvNjm7CINRpH1sf3EA4zs3ZPHuq7y/UezafGpAM14ebml+biuqnExv2rQpr776Kh9//DHt2rX7n+UTOTko6WUq02w3sw2Y2NXUens8zqracosAd57q3wwQ/YwkwzsXtYofHu6Kr5ua6IRs7v32sMzY7xDqxbJHu7P66V70D/fDQSmQkFXIutO3+WBTNO9uuMDHWy7y5a6rnDSpHHdq5MXbo9uw4bm+pXzHJOy+mMw3e0T2/cf3tJfVX8vDwh2ircL4zg1pZoN3TFVw5Lq4OrSnpV7iHHRt7G2V4V9NQCLdDm8baLdnU0m4urqSmZnJ5cuZPPywKzqd6D/27LPV8vE1B6kM89tvYndZGZCkGracT6BIZ3+LdnUjIsSTiBAPNHoDa05ZnwF/b2xbGvu4EJ9ZwGtrztZph5RVmDpVLGteuybqQ1kJaUxmZmbi6lo1yxtvV7W8cJDms7pA22DxJi6ZK9sCKaA7GZNZ47+5SqmQxWhLdouZQ8qaHL6WVor7Ntykhbf+zG1aBhTP7SuPxxLawIU7WhVntX86eBOdwcjrd7Y27TONEC8nUnKKeGfdeR7/5QQv/HGa70xq7FJW1d1RhRFYdjgGDycH/niyF3d3DKaBqxqDUQy0cgp1FGoNFGj13M4qJK9Ij7uTirs7BrPs0e58/UAXDEYjL/5xmk+3iVWKF4eE8+qIVmXOr5cSrReBrlIwdPDgQaZNm0ZQUBCTJ0+mbdu2bNy4sSofWa9xp4nTsObULXmAj+kQjKNKwZXkXM7csi4l+vyQFrTwdyM1V8O7G4pLBiFezqx4oidBnk5cTc7lnq8PWSiLdm3SgF8e7c7Zd4az4okePG8qr41uH8Q9nRtyf/dGzBnThsOvDWbttD482rdpmdkggK3nE3j6t5OA2F1WGf/nxM109l1OQaUQmDG4drJCCVkFcqq8rx3pT6nUUld8oVsZ+ewyyTGYp5qrA3o9TJ4M8fFiC/aSJfVCQLhi9O4tkqkVCjh6tMy39Gjqg7+7I9mFOvbXIwFGQLbWWXEs1uobnLuTA1/e1wmVQmDzuUSry2x1BldXePNN0UitMnnsGoTU8FCXwVAn0yLSnuxORIgnDkpBNrOuaUh8ypIlMHN0DPXC3UlFWp6mFDn9znZBuDmquJmWz6RuxWK7R66nE5eeL7fLg+iQsOJoDHd1CKZvmC8anQEfV0cEROsOb5PK/8dbLvLXyVuMiAjk/bFtOfr6HYztGIzeYOTXIzE8tuw4ESGeHHxlENte7M+7d7XlkT5NeKp/M54dFMbMoeH88mh3Tr45lM/v60SPpg1YvPsqgz7dw1pTJea1ka14fkiLMgOhIp2e19ZYz2m2Kxh6/fXXadq0KYMHDyYmJobPP/+cxMREfvvtN0aOHGnPR/4rcGe7IFzUSm6m5csXqYeTAyMjRG+uVZUIs0lwVCmZP6EDCkEUszLPNIUHuPPXM71p4e9GYnYh9357yMIDBsS0Zu/mvrw4NJxvHuzCosmdWTCxAx+Nb8fUPk1L6QeVxNIDN3hm+SmKdAYGt/LnjVGtKz3mz0xcoQldG9LIxz4jRlux5lQ8RqOYFbLVqT6nUCuft/7hNW9/URZWHovDaBRNcW1xYbYG77wDO3eCi4to8+Be8yLg1YMlS0R7jrvuKvNlpUKQtavWn6lfpbKxHUNwVSu5npInZyytQYdQL2aZUvjvboiqUC24XmDmTHj1VTFDVEfo2lhcwNRlR1knk4HwleRcsm20iXFyUNI2WCwZ1kZAJ5Goj91IL1enS61SMMLkIymJ5kpwdVRxdyfxujsZk2EhmPjniTgiQjzl7BHAD/tvUKQzMPfuCNQqBWfjs2SPyh0XkuSKySt/neVaSi5TejXBxVHFF/d14vcnetImyIOcQh1zN0XT6f3tzNt6EbVKwaN9mjJ9cBjP3RHGc4PDaBHgxoYzt5m16gz95+1m/j+XyNfo6Rjqxd/T+/BUBZ3PX+y4UqHcQEnYFQzt2bOHWbNmER8fz6ZNm5g8ebLdTsX/Jrg6quTskLnmiMQnWH/a0kS1InQM9eIJU7ns9bXnyMwv5iEEezmz+unedGviTU6hjod/PMbzKyNJqaKTs95g5N0NUby/8QJGIzzQoxHfT+lSbvZIwoErqRy6loaDUuDZWsoKGY1G/jKdY3MlVGux9XwiGp2BMH83i5p1bUGrN8hZgAdNjs7VhTVrivjgg6nAVL7+uqiqTgq1i7ZtK1WClEpl2y8klWtrURdwc1RxV0cx5S8ZQVqLJ/s1o18LXwq1Bp5dcYpCbf0pAVYHioqKmDp1KlOnTqWoqOo8H6ld/Fx8Vp2dKz93R0IbOGM0iho3tqKzKZiqDd5Qq0B3vF0cyNfo5e7bsjDaRJDeUkbH5uTu4jz1T1QiU3oVz1k/HbxJgUbPi0PD5edScor4+dBNmvi6yk0+J2LS6RzqRZ5GT3RCDne1D0JnMDJt+SmL89eruQ8bnuvLJ/e0I8TLmUKtgR3Ryby25hz95u2m/ZxttHxzK01f20yvj3bx0qozontDThEBHo4snNSBNc/0pmM59A8QTdQlAUZrYVcwdOjQIaZPn46vb92suOsS0o1549kEeaLu2Ux0ys0p0rE1ynrV2ReHhMuii8+uiLSI6D1dHPj1sR5M7d0EhQDrTt9m8II9/HYkxua2Y4PByPoztxm6cK9s0PrqyFbMvTuiUpXO9DwNs1adAeCBHo0t/GpqEpFxmVxPzcPZQSkHoLZAyiqM7VC+2WxNYvuFJFJzi/Bzdyzl/1YVXLsGjzyiA5YBy7j33voTLNiM06ehjDbsjqFehDZwpkCrZ2c9crIHcQEBYpnZmg5SCQqFwGcTO+Lr5sjlpFyZ+Fmv8ddfovbQzZuVvlWn07Fs2TKWLVuGTlf1MdmogQt+7o5o9cYKb+41DSmgkbpSbdrW5PdVG5khhUKQS2WHK9Qb8qGBq5q0PA2HS7jYtwn2oKOpIcjNsbhbObdIx/KjMbQK9LCgU3y58wq3Mwt4akAzmvm5kpqrIdjbGS8XB87FZ9HAzZF+LXzJ1+h5+KdjFjpISoXApG6NOPDKIDbP6MdLQ8PpGOpFSWqnQhAzq08PaM4vj3Zn7+xBjOvUsEIO6I4LSTz1y0kMRiy64yqD3Zyhy5cv8/333zN37lzee+89i7+aQEZGBlOmTJE7FqZMmUJmZmaF20ydOhVBECz+evbsWaXj6N6kgUkQUcc/UaI4nEIhMMFkYvfTwZtW8wmcHJR8dX8nXNRKDlxN5e115y22dXIQ/cP+nt6HdiGe5BTqePPv8/T4cCdvrzvPyZj0CveVVaBl49nbjPhiHzN+j+R6Sh5eLg58dX8nnh5QuYmdwWBk1qozJGYX0tzPldlVYOs7ODgwb9485s2bZ5VCrZR5GxkRiFsFWhVlITmnUO6YkJyWaxu/HRFNeSd1DcXBRln48pCfD/fcA9nZDjRqNI8PP7TuXNZL3H03dOoEmzaVekkQBFnQs76VyiJCPOnQ0BOt3miVIrU5/Nwd+WxiBwCWH421ya6jTvDtt3DwIFjhMWnr9V0ZBEGQW+xP1GGLvcQbirQjuyORqC8m5pBXZH2AaO+57N28ct6Qg1Ih0zo2lHFtSebcf5yIY2DL4mTH4t1XKdTqeXFIC4vOsvc3XsBRpeTDce0QBDFJcJfp2v350E26N21Ap0ZeZOZrmbL0GL8etrw/CoJAm2APnrujBX9P78O1D+/k0twRnJszjBNvDuHcnOGsm96HV0e2on+4X4XdziBWBJ5ZfhKN3sDIiEDeHWt92tyuWfqHH36gTZs2vP3226xevZq1a9fKf3///bc9H1kpJk+ezOnTp9m6dStbt27l9OnTTJkypdLtRowYQUJCgvy3efPmKh2HQiFwb2cx8DGfDB/s2QhnByVnb2Wx74r1xM+2wZ58eV8nFAL8fiyO7/eVtjBp31Csj84Z0wZfNzGq/+VwDPd8c5g+H+9iytKjPL8ykvc2XOCz7ZeZvvwUA+bvpsO723h2RSSXk3Jxd1Ixc2g4+18exBgro+WlB26w62IyapWCRZM742pjUGIOtVrN7NmzmT17dqV+O4VavXyh2lMi23RWtAvpGOpVaYdcTeBaSi6HrqWhEOD+Ho0q38AKGI3w1FOiTYOfn5pDh2bz2muVn8t6i5amwHrBgjJfloLYvZdSLErI9QHSDeP3Y7E22y30D/eTFd5f+eusha9TvYPU/bdkiShxXgFsub6thdT4cKIOxRclUcHIONu7woI8nQnydEJvMHLGho40e89lLxNv6GRMRoWlRWn+33o+sVTH5pj2wbg7qYhLL+CuDiHy8xn5Wn4/FkuYv7ssNgyw5Xwiey+n0LOZDy8OEctoK4/HyRnUBdsuM6pdEHebiNNvrYvi9bXny7WwEgQBR5USdycHfN0cbbrnbD6XwLMrTqHVGxndPogv7+9k00LUrmBo7ty5fPDBByQmJnL69GkiIyPlv1OnTtnzkRUiOjqarVu3smTJEnr16kWvXr344Ycf2LhxI5cuXapwW0dHRwIDA+W/Bg2q3lk0vrM4SA5dS+NWhjiZ+bg5ygPgq51XbLpwhrQJ4M1RbQD4aMtFNp4tHbErFQJT+zTlyGt3sOzR7ozvLJI5b2cVsv9KKutO3+bHgzf4cucVNp1LIMbk69PQ25nnBodx4OXBzLijBe5O1q00ImMz+MRk6vrOmDa0rkXezbYLSeQU6gjxcrZLdXqdSaPm7jrKCq0wqaEOaulfbWXFxYvFjnSlEv78U3Sk/1fjuedEW/a9e+HkyVIvtwr0oFWgOxq9ocwVbF1iTIdg3B1VxKTlV7gKLw8vDQunUyMvcgp1PPt7ZJWMK2sUw4eLHK+cHPjhh1rfvdRRduJmul0eX9WBVoEeOKpErzR7xBflYMqOMputaO7nSoCHI0U6Q4XWHN2aNCDAo+yOTWe1kns6iwvQrVGJtAkq7sz4es81CrV6nh8SjsqsTPXOuvMUavU8OyiMYW0C0OgN7IxO5tE+TQCYuymans18eHVkKwRBXERM/O5wtXGpsgu1vLshimdXnEJnMHJ3x2A+n9QRB6XCpsWGXcFQRkYGEyZMsGdTu3D48GE8PT3p0aOH/FzPnj3x9PTk0KFDFW67Z88e/P39CQ8P54knniA5ueochNAGLvRq5oPRKHY8SXiifzPUKgUnYjJsVtB9pE8THjQFU8+tiOSXwzfLfJ9KqWBAuB+fTezIiTeH8utj3VkwoQNv3NmapwY04/7uobwyohW/PdaDyLeGcuCVwbw0rCWeLtanW7PytTz3eyQ6g5FR7YKY3L3q2Q29Xs/x48c5fvx4pRLzEnF6fOcQm/WBYtLyOB2XiUKAUbXknWaOQq1ezhg+0LN6skIHDhRr4c2bB/37G4iPjyc+Pr7K1gd1hoYNYdIk8XE52SEpK2hrOaqm4aJWMa6zRKSOsXl7B6WCL+/rhIeTijNxmXy6reIFXZ1BEMTOMoAvvhB9y8qBwVD9Y7J1kAfODkqyC3VcTbG+K6g6oVYpZK+0U/bwhiQStQ28IVvmSnMIgiCLlm48U34JVqkQZB5mya4yKM587ohOZu64CPn5lJwiVp2Io6mvK9NMCtQKAW6m5fP9vuuyeHBzP1cSsws5G5/FIyZD8NfWniPAw5GlD3fF3VHF6bhMxn99iGd+O8k1O39bo9HI2shbDP5U5MIajKL8xYKJHVEpFSRlF/L4L8et/jy7gqEJEyawbds2eza1C4mJifj7+5d63t/fn8TE8k0dR44cyfLly9m1axcLFizg+PHjDB48uMJuh6KiIrKzsy3+yoL5RC1lgQI8nJhk6ixbtMs2PyJBEJhzV1ua+rpiBN5eF8UDPxwhp4KWTme1kn4t/LinS0Oe6N+M10a25qPx7XlmYHP6tvDF29X2dHVyTiH3/3CEWxkFhDZw5qN72lULAbmwsJDu3bvTvXv3CiXmE7MK2X9FbImXVii2QMoK9QnzrTFT1Iqw6uQtsgq0hHg5MyC89Ji1Fbdvw4QJoNOJscOLL4rWBw0bNqRhw4ZVtj6oU0hlmD//FNvtS+DuTiGoFAJnbmXVu3Z06YaxLSqJ5Bzr7WUkhDZwYf4EkT/0/b7r7LpYtghlneOBByAgAG7dEn+nclATY9JBqZCVnOtDi31VeEOnYjOsrhZYO1eWBakTc9uFJKtKZdsvJJXqgA4PcKdrY2/0BiO7L6ZYqPd/uesqRTo90weHEebvhpSwW7z7KjdS83B3cuD7h8SA58TNDAq0eh7s0QijEV784wxHrqez+fm+TOjSEIUgltmGLdzHK6vPsudSslXd2Ol5GtadjmfSd0d48Y8zpOYW0czXlV8f685H49uhVAhk5GmYsvQo8RnWnz+7gqGwsDDeeustpk6dyoIFC/jyyy8t/qzFnDlzShGcS/6dOHECoMwbstForPBGPWnSJEaNGkVERARjxoxhy5YtXL58mU1lkDYlfPTRRzJJ29PTk9DQssXyRrYLxFWtJDY930Jz5KkBzVApBA5cTbU5DahSKvjt8e4yo/7gtTR6friTLedu14py7Y3UPO755hAXErLxdVPz/ZSueFhZVqsurI2Mx2AUU+SSHL61MBqN/H1azNSN7Vj7daRCrZ6vTaacT/ZvhtJO1et33oEtW0QH+nvvhcREsVphLqyoUqlQqezncNULdOoEgwaJCpJlzBu+bo4MMjnZ17fsUKtAD7o09kZnMPLHMfuEFIe3DWSqaeU8888zJNSww7ldcHQsljZfsEAkr5WDmhiTkvJ8SQuJ2kSx+GKmzdu2CRLLbBl2ltlsRedG3oR4iQ0+uy+WXwXpFOpFoIcT+Rp9mYH4Y32bAmJD0Kf3tpefT8kpYvXJWziqlHxyT3t5PirSGXjmt5MUaPQ093Nj4aSOCILIH9LoDTxiKpl9v+86z/1+mhl3tGDL8/25o5U/eoORP07EMfWn43R4bxsPLjnKt3uvsfrkLf46eYs1p27xd2Q8n22/zNjFB+kydzvPrzzNsZvpODkomD28JVte6Cf7h0YnZHPf90e4nJSLv7v1CQG7gqHvv/8eNzc39u7dy6JFi1i4cKH89/nnn1v9Oc8++yzR0dEV/kVERBAYGEhSGfL9KSkpBARY37YcFBRE48aNuXLlSrnvee2118jKypL/4uLKnuhc1MWaIz/sLyY9N/R2kTlFtmaHAEK8XBhrxnXJ0+h5Znkkj/18gtuZNTdZnr2Vyb3fHCIuvYDGPi789UzvWuUJgaTNI2YI7MkKRd3O5npKHmqVwkIgrLaw8lgsCVmFBHk62a04nZcnViRGjxbjhMOHwcsL/v4b3EwLNFdXV7RaLVqttsrWB3UOyVhty5Yy2+wnmDKwa07FlysmV1eYYtKPWnEs1ma5Cwmv3dmKdiGeZOZrmfF7pN2fU6N45hlxML7+ernBUE2NyYEtxWB4/+XUOvv9Jd7PpcRsm7rCwLLMVhst9oIgMLpD+SUw8/cNM82RX+8prcczvG0grYM8yC3SsfVCEp1NGToQPciyC7V0aezNw72aAGK57GJiDm/+LXZED2kTwPx7RWHhP0+IGkGLJ4ul4dNxmYz6cj83UvNYOrUbfz7Vi/u6hRLs6YRGZ+DA1VQ+3nKRWavO8NKqM8z88wwv/HGaL3de4UxcJkajqKv01IBm7Jg5gOmDwnBUKdHpDSzefZW7Fh3gUlKOuKB/qKvV586uYOjGjRvl/l2/Xrobqjz4+vrSqlWrCv+cnJzo1asXWVlZHDt2TN726NGjZGVl0bt3b6v3l5aWRlxcHEFB5evWODo64uHhYfEHlHkhPtm/GQoBdl1MtnAnfmZgmPz8+XjbNTIe7dOs1HO7LiUz6NM9LD1wo1xnYnuxMzqJ+74/QprJuX71073rpAtr1YlbxKTl4+OqtrrjzRxSG/aQ1v5WE8WrC4VaPYtNk8r0QWGVtoCWh5UrxcYdg0EMhAB+/hnCwqrpQOsbRowQ9WxOnxZtOkpgUCt/fFzVpOYWsfdSSunt6xAj2wXi46omIauQHXbqITmqlCya3Ak3RxXHb2bISu/1Cj4+sGuXmKYs4zeqSbQP8cTXTU1Oka7OSmUBHk4EezphMGKX5lGx+GJmNR9Z2ZBkKXZGJ5NbQfAm8YaibmfLhtgSFAqBmSaRxZ8P3mT+PcXZocx8LfNMzTWzh7ckxMtZLpf9deoWv5sypfd2acjiyZ1xUApsOpvA6pO3WDutN50aeZFdqOPp304yZelRdAYDH41vx8FXB7Nj5gDeGdOGkRGBDAj3o3+4H/1a+NKvhS9jOgQz7972HH39Dra+0J/XRramobco9nw9JZcJ3x1m/j+X0OqNDG0TwJbn+xPmb700v9Uje+bMmeTl5cmPy/t7SeIBVCNat27NiBEjeOKJJzhy5AhHjhzhiSeeYPTo0bRsWax906pVK9auXQtAbm4us2bN4vDhw9y8eZM9e/YwZswYfH19GSe5Z9uAA2W0yzf1dZVJut+YRddNfV3lm/lXu8rPQpWHdg09LSJxCUU6A0v2X+dGavWQCS8mZvPIT8d4bNkJ8jV6+ob5svLJXnXCtSnU6vlip3gjmD4ozOY2/nyNTi6lmLeE1hZ+OxJDSk4RIV7OsiK5rTAa4euvSz+/YAGk1K84oPqgUMD48VCOnoqDUsHdJqPH+lYqc1Qp5Qzgr0du2v05jX1c+cR0s/l6z7UKyxv/36BQCDL3ri7PSycz7o+tkDJLtpCoq4K2wR4083WlSGdgx4XyuWjtQooz/88sP1WKrzOktT8dGnpSoNXz+/E4C8HF5UdiRdsORxUfjW9nsd2c9VGy4vTIdkEsebgbTg4Kdl9K4fW15/l+SheeGiDSCPZfSWXyD0e5++tD/BOVRDNfVx7p05RvHuzCske788uj3fn1sR78+lgPvrq/ExO7hhLg4QSIjgr7r6Qw88/TjPxiP5Gxmbg7qlgwoQPfT+liEu20PptodTAUGRmJ1tRNYN5KX9ZfTWD58uW0a9eOYcOGMWzYMNq3b8+vv/5q8Z5Lly6RZdLDUCqVnDt3jrFjxxIeHs7DDz9MeHg4hw8fxt0OI6f1Z+LLfF5i1W86l8B1M1b8s4PE7NA/UUkyIdgWTO3TtNRzApCQVcidXx7g038ukZhlO3ETRAPU2avOMPKL/ey+JJqvPtKnCT9O7WazwGF14dfDMSRlFxHs6WRXF9aKo7Gk52lo7OPCkNZVJy7bgnyNTpZ+f25wGGqVfavn48ehLGWK/fth9uzi/xcVFTF9+nSmT59eLdYH9QY6XZlEaqlZYefFJNLz6p/mkEKAg1fTuJps/yJlVPsgHjJZILz45+kaLYnbjYwM+PhjeOONUi/V5Jgc1Erkguyqy2BIFl/MtHlbKTN0OTnHZo8zeyCWysTFeEWyFOY2TOl5Gt5ed77U50gWHL8ciWH2sJYyn9UIvLbmLFq9gf7hftzfXVwUqBQCGr2BactPkWG6VgeE+/HLoz1wd1Rx9EY6d355gK6NG7Bn1kCm9GyMo0rBmbhMnv7tJH0/2cX0Faf4bu81Dl9LI6dQi9FopECjJym7kMtJORy6lsp7Gy7Q86OdTFl6jDWn4inSGegb5ss/L/bnni4NEQSBpOxCHv3J+m4ywVgbzNx/MbKzs/H09KTZS6s5+d4YvFxKE7Ie+/k4Oy8mM7FrQ+bd20F+fs76KNG/xceFrS/0t6l0otUb6PvJLpKyi1ApBD4c3452IZ68t+GChYx6+4aeDGkdwNA2AbQKdC+TUK43GIlOyObYjXSO30xn18VkikzaJqPaBTFreEua2khWthV5eXm4mUgvubm5FryCnEIt/eftJiNfy7x72jPRRr5NoVZPv3m7Sckp4pN72lm4LtcGvtt7jY+2XCS0gTO7Xhpot+L0lCmilpA53N3hk09EwUWpQlHRufzX4uhRmDgRfH3hxIliprgJo7/az/n4bN4Z04ZHylgo1CUeX3aCHdFJTO3dhDl32W8UV6TTc+83hzkXn0XnRl788VSvalMvrxYcOAD9+omk6pgYscvMhJock1kFWjq/vx29wci+2YNqzSjaHKdiMxj/9SF8XNWceHOIzR22/eftJjY9n2WPdmdAeMXefNVxLq8m5zDks304KAWOvzGkzPsWQNNXN2EeAHx1fycLioLRaOSebw5xKjaTCV0a0sTHhfnbiku5s4e3ZPqgMAq1eib/cIRTsZmoFAI6g5E+YT4sfbibfN+Lup3FjN8juZYiVpjGdQrhnTFt0OqN/HzoBr8cjiGnsHRZT61SlKvF5eXiwOj2QdzdMYQujb3l3+XwtTSe+/0UyWmZxH0+kaysLJnyUh7+5e0otQet3sDGswllmm5OGxTGzovJrDkVz/NDwmWhvZeGhbP5XAI30/L5du81XhgSXmrb8uCgVPBgj8b8sP86307pIrsSr3iiB/9EJfH9vmtExmVy9lYWZ29l8dn2y/i7O9LAVY2zWomzg/hXpDNwOi6zVO24e5MGvHpnK3nVUtNwcHDgnXfekR+bY8n+G2Tka2nu5yqTz23BH8fj5BLVuE62E6+rgtyi4qzQjMEt7L55pabCihWWz915p+iIULKhsaJz+a9F8+ZiLTA2VhRiHDjQ4uUJXUI5Hx/FqhO36l0wNKVXY3ZEJ/HXyVu8PKIlLmr7plVHlZLFkztz55f7ORWbybvro5g7rl3lG9YW+vSBHj3EwHXxYjCzXqrJMenp7EDXxt4cvZHOrotJZWbNaxptgz1QKxWk5WmISy+wOSDr2awBsen57LmUXGkwVB3nMszfndZBHkQnZLP1fCL3laMV5+igoFBbHGi89tdZOjT0kr+fIAjMGtaSyUuOsurkLdZP78PSAzdIzxczXF/suMKodkE08XXl2ylduHvRQW5nFcrZ0id+OcEPD3XFyUFJ22BPNs3ox8Idl/lh33XWRsZz4Goq74+NYNawlkwbGEZkbCZn4zM5Z7qvxWcWyIGQQhDHgoezA+1CPLm7Ywj9w/0sMvE5hVp+PHCTL3ZexmCE8AA3rO31/C8zVAmkzFDoC3/StUUwa6b1KfN9931/mCPX00utDjeevc2zKyJRKxX882J/mzIwqblFZOZrCTPTeTBHSk4Ruy4msf1CEvuvpMrZnrLg7qiiSxNvujVpQM9mPnRu5FUnBqYlkZZbRP95u8nT6Pn6gc42m7IW6fQMnL+HhKxC3r87Qu7wqS0s3n2V+f9coqmvK9tf7F+p8W15uPtuWLdOfOzuDt98A5Mnl0qQ/G9j2jTxi48aBRs3WryUkaehx4c70egNbJrRl7bBnnV0kKVhMBgZvGAPN9Py+XBcO1mDyF5sPZ/I07+JqtzPDgpjVhU8Aasdq1aJGTwfHzFwdamdLI2Ufe0f7scvj3avlX2WxLivDxIZm8kX93W0Wbrjn6hEnvr1JKENnNk3e1CtzL1f77nKvK2X6BPmw/LHy/bkbD/nH7JLZGM6hHqx6qlecpBhNBrpOncHaXkaPJxULHmoKxO/PyK/v3dzH5Y/3gNBEDgfn8WEbw9ToNXLGaLezX1Y8nBXi0VCZGwGs1adkbNEzf1cub97I8Z3bkgDM328tNwiCrR6PJ0dRPPYcs5bXHo+Px28yZ8n4uSF//hOIbxyR2MC/RpYlRmqRznY+g2FIHYDlMcLmD5IbPdZeTzWws16VLsg+rXwRaM3lDJirQy+bo7lBkIgGj9O6taIJQ93I/Ltofz1TC9+faw7303pwhf3deTj8e34eHw7Ns3oy+l3hvHzI92ZPijMIp1Y1/h6zzXyNHoiQjwY0TbQ5u3/OhlPQlYh/u6Ocht2bSEtt0j2knv+jhZ2B0JbtxYHQp06ic70Dzzw/ywQAlFRUhBE89YLlq7u3q5qhrQRuWCrTtQvIrVCIcgZ418OW2/UXB5GRATKppuLdl/lhZWRVonR1QrGjYOmTSEtDZYtq7XdDjbpTR25nka+xrb29upCp1Axi25Pi3y/Fr6oVQri0gu4UgVumS2QusoOX0srVxhUrSpN3TgTl2nhgCAIAkNN1152oY5X1pxlqBkv89C1NFaZmhsiQjxlM2KdwYhaKXDoWhpTfzxuUZ3o1MibTTP6MW1gc1zUSq6l5Im2HR/uZMbvkRy4kkpabhENXNU09HbB3cnB4p5lMBhJyCpgz6Vknv71JAPm7+bHgzfILdIR5u/GwkkdWDCxA85q66kp/wVDVqK/KbW5ZH/Z0gF9w3xp39CTQq3B4j2CIPD+2AjUKgX7r6Sy4WzNOFW7qFV0adyAfi38GN42kLEdQ7iveyPu696ItsGedgsAVhcMBgNRUVFERUXJcv23Mwv41eTuPnt4K5utN7R6A1/vEbWcnhrQ3O52dnvxydaLZBVoaR3kYZcUAMDFi2LHMsAdd4g2XX4VZ9ExGo1kZmaSmWm7eWS9RosWYooM4LPPSr0sdemtOXWrQnXdusC9XRriqFJwMTGnWvRkvrivI9LV8Pfp24z6aj8Xbpethl+rUKmKvWEWLhQFM6n5MRnm70ZDb2c0OgMHr9ruB1cd6NFMFIDceznF5u/oolbRxxTgbq+gwwvKnivtQWgDFzqGemEwwpZzZTs1OJbR7PH1A51k0UUJg1sV88NupOZzKyMfV8fi+fbNtedlGZmR7YJk01a9EZxUCo7dTOehpUctCORODkpeHtGKY28M4cNxIidWozew/sxtHlx6lC5zd9D2nX8Y8fk+Hl92grf+Ps/Tv55kxOf7aPPOVnp9tIupPx1na1QiBqMYcP78SDe2vdCfcZ0a2rzg/y8YshKSguaaU/EkZ5eOsgVBYNpAMTu0ZP8N0syyQ018XZlueu39jRdqpaOgvqGgoICIiAgiIiJkuf5Pt11CozPQo2kD+rfwtfkz152+za2MAnzd1NXin2YLTtxM509ThmLu3RF2BZvp6TBmjCi02LOnmBCx5vrNz8/H29sbb29v8vPrseu5PZBEGH/9VZTeNkO/Fn6EeDmTXahjUw0tKuyFl4taFkuVAvyqwM/diT5m18T1lDzuXnyQpQdu1JlpqYxHHgFvb7hyBdavB2p+TAqCIGeH6qqrrG+YL2qlgpi0fK7boSY9pI0YUOyIrjgYKmuutBd3mRZpkjJ/SYQ2cObRPk1ZM603I0wijPsup5YKJFoGWnZgRyfmEmRqcQfQ6A08/ssJuSoy444wxnUKQW8wUqgz4KhScCo2k8k/HOFmiXPn5qhico9GbHiuLxue7cv93RsR5OmEIEC+Rs/FxBx2RCfx65EYtkYlcjExh0KtAZVCoKmvK/d3D+WfF/rz62M9GNjS3+ZFtYT/giEr0aVxA7o09kajN7D04I0y3zOsTQDuTip0BiOTvj9isXp4emAzmvm6kpJTxPyt9dSYsRax+VwCa07FIwjwyshWNkfxeoNRtr54vF8zm9KhVYVOb+DNv8U21Pu6hcr+Q7ZAqxU9x65ehcaNxTKZY+3LO9U/9O4NvXqBRiPKbptBqRDkFt4Vx0q34Nc1pvRsAohj2x6/spIoGeBr9Abe33iBR34+TkpOHUoquLnBjBnw4IPQsvb4TJI1y+5LyXWSEXV1VMnZIXs0j+4wZVdOx2XW2u83ukMQDkpBJCbfyiz1+u9P9OTtMW3o3Mibx/uJYr9rIuMtqB4Aod4uODlYhgtXU/LwcS0meCdmFTJt+Sm0egOCIPDphA48bJKLKNIZcFIpOB+fzcgv9vPbkZgyf8N2DT35aHw7Dr92B9HvjWDnSwP4+ZFuvD+2LdMGNuft0W346ZFu7Jk1kOj3R7B71kA+Gt++VLBmD/4LhmzA0wNETaEVR2LLzO4oFAJDW4sD/mpyLi/9eUb+wR1VSt6/W3QA/vVIDJvP1a+VbW3idmYBr/51FoBnBjS3q6Nt49nbXE/Nw8vFocwOv5rEz4ducjExB28XB14Z0crm7Y1G8V6yaxe4uoqL6zJ8iMuFi4sLGo0GjUaDSy0RWGsVn30GR47A00+Xemli11BUCoGTMRlcSqxf5q3tGnrSqZEXWr2RFUerHqwNbuWPexm6X3svp9jMP6x2zJkjZu/atAFqZ0z2auaDo0pBYlYh0Ql189sPaml/dirQ04l2IZ4YjbUnIOnv7sRoE3do6YHSi3jzRWiXxt50CPVCozPwW4nspkIhEB5QOuBIy9NalNqO3UjnvQ0i30+pEM3HZ5saAAp1BvzcHCnQ6nnz7/M88vPxMqssEpwclDT3c2NgS3+m9GrCyyNa8Wjfpgxq6U8TX9dql534LxiyAXe08qeFvxs5RTqWHyl7sutv1ja5JjJe5rSA6KT+RD+xFjtr1Zl658RdW3hl9VmyC3V0DPWSRb1sQZFOz5c7RWXvR/s0rVWhyMSsQhaaLBNeHdkKb1frjQAlfP652DIvCLB8ObRvX+kmFhAEAQcHBxwcHOoNEb5a0bOn2MJdBvw9nBhiWnCsOFr1clR1QzJeXX40tlxtFGvh5KBkZLvSTQWP9m3CV/d3qle/fW2MSScHJe1MPl9/nbLPHLeqkEp1x26kk2MH3UEau9srKZVVJyT+z6azCRUK9QqCIL/318MxpeRYygqGxncOYedL/VGa/eS/Honhd1PmVhAEpg8KY9497VEqBFJyiwjzc8VBKbDnUgoD5u9heTWUlasD/wVDViIqPovYWIGnTNmhHw/eKJPE2biE/sT8fy5brBJfGdGK3s19yNfoefKXE2QV/P/jD52IycDNUcWX93WyK7r/evc1rqXk4eOq5mHTzae28P6mC+Rp9HRu5MWELrbbbqxfD5Jjzfz5MHZsNR/g/xpSU0VlajNIretrIuPrT5eVCSMjgvB3dyQlp4gt56ue/ZWsSKCYT3Y7o7DOGyJkXLgAjz0m8odqAZIS9MrjcdXu0WgNmvi60szXFZ3BWKZFU2WQOiL3X0mptSaAiBBPujdtgM5gtOgSKwsjIwJp6utKWp6GxbstjcZbmoIhf3dH2Qh7e1QSKoWSn6Z2s3jvW3+f54SZl9zEbqF892AXHFUKrqbk4evmSJCnEwVaPW/8fZ42b2/l2RWnuHA7q9oynknZhXy/r7QJbXn4LxiyEsPu1NOypZEuvsEEeTqRklPE2sjSpLSydIReX3tOJnyqlAq+ur8TIV7O3EzL58U/Ttc9IbIOMPfuCLuUZC8mZssX6btj2+LpXHuig/sup7DpbAIKAd6/O8Jmot6pU3D//WKZ7KmnYOZM+45Do9Ewe/ZsZs+ejUZTv+wpqhVvvQWNGoHJb1BC3zBfGjVwIadQV6Ezd11ArVLIZdufDt6s8uf1bOpDoIcTnRt58cOUrjgoBbZGJbJkf9m8xVrHyy/Djz+imT+/VsZkB1MwlFekZ/Hu2gnASmJQFYjcbYI8CPZ0olBr4NA124MpeyFlfFYci61wAeGgVPD6na0BWLr/BnHpxWT4zo29eHNUa/a9PIivH+hCh1Avcop0vPn3OfqF+zF9ULHBuM5g5IlfThCdUNwBOaRNACue6EGghxMJWYUkZBUSaCJh52v0bDybwJ1fHqDTe9t5c+05Tsak2xzw6vSiH9vjy07Q++NdfLnzauUbmfBfMGQlNFrQaAQWLihOJX6/73qpH8vLRV3mDfqFPyLZd1n0KPNxc+TbB7ugVinYdTGZBfXRqbqaYZ4Bu6tDsMWK11ro9AZeXn0WnUF0JR5lo0BjVVCk0/PO+igAHu7dxGbRv1u3xM6x/HwYOhS++sp+HSGtVsunn37Kp59+KvsF/k9CoYCCAjGFZrZaVCgE7pOI1NXAzalu3N+9EWqlgtNxmUTaYexpDoVC4PP7OvLHU70Y0iaAt0eLHJ2Pt17k8LW6aTG3gKn7T/vLL7UyJr2ci8vSX+68yg07urqqisFmRG5bF7KCIHCHVCq7UHtdcUNaB9CogQuZ+Vr+OlWxTteQ1v70CfNBozfw0ZZo+fkujRvweL9mODkoUSoE5t/bHgelwI7oZNadvs3s4a0Z3KqYJpKRr2XSd4c5GZNu8Rk7XhrAY32bohAgMbsQhxKLyswCLb8djeWebw7Tbs4/vPhHJFeTc0uZrhqNRrILtVxOymHPpWQWbLtEn0928fgvoj2O3mAs0/C8PPwXDFkJjx5iuu2b74wMCm2Ep7MDN1Lz2BZVWr+hSRnZoRAvZ4u0aLuGnnxkktpfvPsqP5ZBbvtfgdFo5L3Nl/DoPp6Q/hN5d5yNJBkTfjp4k7O3snB3UjH37oha5Ux8ZZp4/d0dmWkjzyknRwyEbt+Gtm1FEd+qOBY4ODgwa9YsZs2a9b9jx1EWpk8HJyfRwXb/fouXJnQRidSn4zLrh/6OGfzcHRndQQzUlx26WeXP69nMRy4nP9izMeNNLcvP/X6KhKw6NnQdMAC6dsWhqIhZvXrV+JjUmenu6AxGZq86U+vlsm5NGuDmqCI1V8M5k7aOLZBa7HdGJ5UZTNXE9a1UCDKf7aeDFcszCILAW6PboBBg87lEjl4vO+gOD3DnucEtAHh1zVnO3cpi6cPdaOpbnPHPLtTx4JJj7L1cbFbu5qjirdFtWP9sXzqEeqGt4FjyNXrWRt5myGd7af3WVgYv2MP93x9hyGd7iXjnH9rP2cawhfuY+tNxvtp1laTsIrxdHHi8b1N+fqQbTXysd3z4LxiyEk6h6TgGZ6DTKHhlTpHsMP3t3mulapxNzco/PiaCraujSl5RSLinS0OGmS6M9zZe4L0NUej0VSNd1kcs2X+DrRdS8bvjMTb+9h0+HrYbD95MzePTbaIkwZujWhNgpnFR0zh2I10mws+5qy3uTtZPUFqtKKp4+rTYMbZxI3hW0UlCrVYzf/585s+fj1ptO4H7XwN/f3j4YfHx++9bvOTn7shwk2L57/Wwzf6R3ibS6rmECjtmbIUgCHwwrh2tgzxIzdUwbfmpKhO1q3hAMHs2amB+VBTz3323RsekTm85156IyeDnagg4bYFapaCfSQPKnlJZz2YNcFUrSc4p4vzt0sFUTV3fE7uF4u6o4lpKHnuvpFT43laBHtxvknZ4b+OFcgPOaQObMyDcj0KtgceWHSchq5Atz/fHwYxRXaDV89jPx9lYoqQdEeLJmmd68/7dEeU2wYT5u9IuxBMXtRKdwcj1lDwOX0/janIueaZyn6ezA60C3RnWJoDPJnZg0eROJGYX8ujPx1lTBpWlPPwXDFkJQQDP3mKNes0KR9r7+OOoUnDmVpaFizxAYx9X+of78ceTPdn6Qj88nFRE3c4u1a4Iokuw5AHz48GbjPrqQLmWH/9GLD1wgw82i6nW2cNb0tFU87cFBoORV/46S5HOQJ8wH1mJuDaQVaAVeV1GUWXYFu80iRu0bZto4bRpEzRpUnPH+j8JiVi1YwccPmzxkkSk/jsyvs4sGspDu4aedGnsjVZvZHk1l/Kc1Uq+fbAzHk4qImMzeX/jhco3qkmMHw++vpCdbWHeWhPQlaHIPP+fi7VeLjPXPLIVjiql3HW8oxI16uqEm6OKSd3EudOaSsTMoeG4O4r3rvJKayqlgkWTO9EywJ3knCIeW3YCncHIByUMhnUGI8+tiGR5iQ5QpUJgSs/G7Jo1gIldS9spJWQW0szPlSf7NeOlYeE8OyiMZwY248NxEax4ogfLHunGc4PDaB3kwY3UPGatOsMDS46x8WwCBiMMCLdezPe/YMgGODVLQR2YiVGr4rPPBPmm/M0eS8b6tEHN+eXR7vRo5oOfuxOzTVo08/+5VCrQcXRQMrVXE/n/lxJzGPnFPpbsv/6vJ1YvPXBDnqinDWjGsEYKbt68abPE/O/HYzl6Ix1nByUfjWtfa+Uxo9HIG2vPEZ9ZQGMfFwsDXmvw3nvw008i9eXPP6Fr1+o7Lq1Wi1ar/d+y4ygL4eHiH4i+WIXFWZZezXxo4uNCTpGODWfqF5EailXrlx+NpUhXvZ1DjX1c+fy+joDYyvzXyTr0a1OpME6YgBbQzp+P8VLNicrqypgTC7WGWi+XDWwpBjNnb2XZJbBZ3GJfOpgyGAzcvHnTrrmyMjzcuwkKAfZfSa1Up8vHzZEZd4hlsPn/XCrVai/B3cmBpVO74uvmSHRCNjN+j2Rsh2D83S1VZI3AG2vP8+HmC6XmLX93J+bd24H37hI5cQpB7FrL0+hZd/o2n++8woJtl1m0+yrf7LnO62vPM/mHozz803HmbopmbWQ8V5JzMRhFT8+xHYPZPKMfix/oYvW5+S8YsgG9mjdg5svigDiw3osJEc1QKQT2X0m1WCE4ljC/m9y9ET2bNSBPo+fp306WGlRTTZOmBK3eyNxN0dz3wxFi0/6ddgvmgdCzg8KY1i+UZs2a0bRpU5sk5hOyCvho80UAZg1vaVcHmr3461Q8G88moFIIfHFfJ5v0jH76SdSlg2Ij9upCfn4+arUatVr9v2fHURYkv7KkJJg0SfbDUigEOZVfH4nUw9sGEujhRGpuUY2IrA5uFcDzppvV62vPEVVGyaW2kP/QQ6gBtcFA/ogRkFwz5OCSZTKAtiEe9GvhV+7Nuibg7+5Ee5Pm0Z5LFZecysKgVv4oBIhOyCY+03I+LCgooGnTpjbPldYgtIGLXF7+qRwnBXM83LsJTXxcSMkpkhX/y0JDbxeWPNwVR1NT0MdbLzKlHDHc7/fdYOjCfaVsOQCm9GrCuE4hvH5na468dgd/PdObGYPDuL97I0ZGBNKjaQPCA9zwc3fEQSkQ4uXM8LYBvDQ0nB+nduXY63dw4s0hfHFfJ9oEV+xSXxL/BUNWYtOMvqx8shcfvuBLhw6QmwurlrnIq7/3Nlwod/WnVAh8dX9nAj2cuJqcyyurz1pExsFezhZijRKO3Uhn1Jf7Ldob/w340SwQmj6oOS8NC7crm2MwGHltzTlyi3R0auQlEwBrAzdT83hnnWi58eLQcJvKe1u3whNPiI9ffx2efLIGDvD/E+64o/jx+vXw/PNyd9m9XRrioBQ4cytLNoqsL3BQKphi4hYu2nW1RrJ4z9/RgkEt/SjSGXj6t5Nk5teR1EK4WVPBzZswerQ4SVYztHoD7o4qRrULktuyH+7ZhOeHtKhVmQ0wU6MuI7tTGRq4qmUbn521KMAIxW32ayLjLTw0y4JaVdxqv+TAjQrvRR1DvfhsYkdAbHZRKgQL7pA5ribnMvzzfXy/75oFT1YQBD4a345H+zRFoRDo0tibmcNa8tH4dnzzYBf+eKoX214cwPE3hnDlgzs5+OpgvpvSlefuaMHgVgH4V4FL+l8wZCUam1jpgiDKnwB8+SU81KUFfu6O3EjNK1PuXIKfuyOLH+iMg1Jg07mEUjoh93UrmwcztU8TQhv8eywXfjxwg/fMAqFZw1raXdb6eOtF9lxKQa1UyAqmtQGt3sDzf5wmT6OnR9MGsg2LNTh6FO65R0xePPggzJ1b/cfn4uJCRkYGGRkZ/5t2HCVRkmi1eDF8/DEgpvJHRIg8rl8P1w8lW3Pc1y0UhQDXUvKqRYSxJBQKgYWTOhLawJm49AKe+z2yTpowXLy9yQgMJANwAbEDcOJEsYOgGjGsbSCn3h7K4gc682BPMStYV1pTUkPMgaupdpHY5VJZLfKGwGS70dATjc5gFZ9taJsAejf3QaOzbLUvC6PaB8n2Gwu2X67QaqlIZ+DDzRcZ9/Uhi45QJwel3WarVcF/wZAdGDdObJHOzoYfv3PgVRMnaNGuqxXKnXdp7F2uTsiQ1gE0MLN28HASSzKLd1+tl90yJWEwGFm8+2q1BULLj8bw/b7rAMyf0J4WZUjB1xS+2HGFM3GZeDipWDipo9VBWHQ03HmnqCU0fDgsXWq/llBFEAQBLy8vvLy86pUlQ42hcRnp9tdfh59/BpDNIP8+HV93mZFy4OPmSJifGwCzV5+tkePzclHz3YNdcXZQsv9KKh9vuVjt+6gMgiDg1bw5XoA8IrdsEVOk1ZgR83R2kGUGxpgc2Q9eTa0T49p2IZ74ujmSW6TjuJnasrWQWuyPXE8jK7/29MIEQeBRU3box4M3KnVBKNlqXxk/b9rA5tzbpSF6g5FTZjpbzwxszuzhpWVJzsVncdeiA8z/52KdKsr/FwxZCXNynkJRnB1asAB6BYXQpbE3+Ro9H26uOHJ+sGdjxncWdUKeXVGsE6JWKRhnEiK8u2Mwh169g/u7N8JghNfWnGPa8pN161RdAeLS85m85Ajz/xGJk1UNhEQjSlHg8MUh4YztaLtAo704cj2NxaY2+o/GtyfYy9mq7eLixAAoPR26d4fVq+F/ueu9VuHoCMHBpZ9//HHYsoUujb1pE+RBkc7AH8frxrOqIvRrIZbA84r0PPrz8RpphW8T7MGnEzoAYjmjTgjVZbVKLlsGb75ZI7tr7ONKh4aeGIzUSNatMigUgkyktqfFvrmfG60C3dHqjaw/Y30LeHVgVLsgwvzdyMzXWvhnlofWQR5MGxgGiPejmLTyu/cEQeDDce0Y0tofrYnjdVeHIF4e3pLpg1rw8yPdcHKwDD10BiOLd1+j+wc7eG3NWU7cTK/15pD/giErsfmcZTQ8YQJ06yYK6r39tsC7d7VFEGD9mdvlilRB8UBpE+RBWp6oEyJxjSZ1C+Xt0W1YOKkjbk4qPhwXwcyh4agUApvPJTJ04V7WnLpVbzqIjEYjfx6PY+QX+zlyPR0XtZIPxkVUKRC6lJjD9OWn0BuMjO8Uwow7wqr5qMtHUnYhz6+MxGiEiV0bMqq9dW30aWliIBQXBy1bii30bm41d5wajYY5c+YwZ86c/207DnOUdaPt0AGKihCEYkG5X4/E1IlnVUVoH1osLHUqNpPX1pyrkWt4VPsgnhtsumGtPcfpuMxq30d50Gg0zImNZQ5gMSKDg0VhLV3NkJul7ND603VbKrPXhV7qSP7zRO0GryqlgtdGihWNnw7e5FZG5bzUF4a0oFsTb3KLdDz3e2SFQb1apeDbB7vIenzrzyTw1rrz6PQGBrb0J/KtYQxuWZonm1Ok4/djcdz77WEGL9jLol1XShHMbUFMuvWSC4KxvtxZ6ymys7Px9PSk7/sb2f3aSFRmxqKHDkGfPmIp5ORJWHXzHCuOxtIq0J2Nz/W1eG9JxKblM2bRAbIKtDzYsxFz725X7nujbmfx8uqzRJnqqgNb+vHhuHZWZy1qAsk5hby+5hw7TOTBro29WTCxg8ytKom8vDzcTBFCbm4urq6l35ecU8i4xYeIzyyge9MG/PpY91KdeTWFQq2eSd8d5sytLFr4u/H39D64WtE9lpcHQ4bAkSMQEiKOiUaNavZYrTmX/3N44AFYsaL4/02bwtWrYpoW8ffr+dFOMvO1LHmoq1yCqA84ej2NSd8fsXjupaHhPGfqBKtOGAxGnvz1JDuik/B3d2TDc31rRaDUYkwCrgBKJVy+DM2aVbRplZCYVUivj3diNMLBVwcTUstzYnahls7vbUdnMLJ71sAyvSkrQnqehh4f7kCrN7J5Rj/aBHvU2vVtNBqZ/MNRDl9PY1ynEBZO6ljpNrczC7jzy/1k5mt5rG9T3jLRPirah6Q1ZzTCoJZ+LJrcWZ5bT9xM5+lfT5KaZ7moUwggrWkEAXo0bUDrIA+CPZ0J9nImyMuJEC9n/NwcUSgE8jU6bqbmE5OWx420PC7czub4zXQSUjKI+3wiWVlZeHhU3F32X2bISsSk5fN3idVH797FxpvPPw+zhrbE09mBi4k5rKiE59PIx4XP7+uIIMBvR2L5tQI34bbBnvw9vQ+zh7dErVKw51IKwxbu47cjMXWiRbTlXALDF+5jR3QyaqWCV0e24o+nepUbCAGoVCqmTZvGtGnTUKlKBxkFGj1PLDtBfGYBTX1dTQ7HtRMIGY1GZq8+y5lbWXi7OLD04W5WBUKFhaLr/JEj4O0tiivWdCAElZ/L/0mEh8PUqXDwILi7w40bYtueCU4OSiaZVtnLKnHmrm2UFYws2H6ZdaervzQiEqo70MLfjeScIp789WStuKOrVCqm3XUX00JCUK1bJ9p06PWirkQNItDTie5NGgCwsQ60pjycHOhm2r89pbIGrmqGmgL3P0+IJd7aur4FQZA7xdZGxnPuVuXdmMFezsy/VyzHLj1wo9JOOEEQeLxfM755oDOOKgW7L6Uw4dvDMre2a5MGHH9zCB+Nb4eTqjgcMb+tGY1w5Ho6Px28yQebo5m+4hTjvz5Ejw93Ev7mFjq/v502b//DnV/u55nlp5i39RIbzyaQlG0breS/zFAlkDJDoS/8SdNgX3bMHCAT+KC4NFJQIArrFTa8yVvrovBwUrF71kB83Bwr+HT4cucVPjMZtb41uo3c9lgeribn8spfZzkZIxLTOjT05MGejRnVPggXdc1dOFq9ge0XkvjtSAyHTMTvNkEefDapA60CbdNzKAmDwci05afYGpWIl4sDa6f1sXmFVRVIv4FKIfDb4z3o2cyn0m20WrFrbMMGcHUVBZJ79qyFg/3/CqOxmI0+ezZ8+ql4w92zR35LXHo+/efvxmiEHTMHEOZfg7VKG1Cg0dP67a2lnlcrFax4ogddTTfT6kRMWh53LTpIVoGW8Z1DWDChQ82T7c1/o82bRXEtd3eIjQUvrxrb7W9HYnjz7/NEhHiw8bl+Nbaf8rBk/3XmboqmZ7MGrHyyl83b776UzCM/HcfLxYGjr99Ra4tACS+sjOTv07fp1cyHFU/0sGqcvLship8O3sTLxYEtz/cjyLPyjFxkbAaPLztBWp6GIE8nfnioKxEhxSXk3CIdn2+/zC9HYirl1SkVAkaj0SJocnNU4efuiLujiuxCLfGZBRTl5/2XGapuNHBxICYtn7WnLFdzoaHi3Aziv+M7NKZNkAfZhTrZS6siPDc4jKcGiGnk9zde4KudVyrkE4T5u/HnU714Z0wbnB2UnLmVxezVZ+n+wU5eWyPyBKozvo1Lz2f+Pxfp9dEupi0/xaFraSgEUUjx7+l9qiUQmrMhiq1RiaiVCr6f0rVWA6FNZxPkYHTu3RFWBUJ6PTz0kBgIOTmJfmP/BUI1DPMJ+vnnRafbvXtFLQMTQhu4cEcrcZVdlvVNXcFZrZS7QyWoVQomdQvF27VmWPaNfVxZPLkzSoXAmlPxFcp+VBvMf6ORIyEiQiRVfvddje72znZBKBUC5+OzuZ5S+1ZGkojh0RvpdvFb+rfwI9DDicx8LTtq0clewixTxeHw9TSr7UVeHdmKiBAPMvO1PP/7aavkHDo18mbttD4093MlIauQsYsP8u6GKLmbzc1RxZuj23DxvRHMv7cdqgqiE73BMhACMZi6kZrH2fgsbqbly+Rta/FfMGQlpFbEL3ddQVvih3/5ZZEvEhMDX3wu8O5Y0bZh5fE4zt7KrPBzBUHg1RGtZCf0Bdsv88nWSxUGNEqFwCN9mrJ39kBmD29JYx8Xcot0/H4slrsXH2TE5/v58cAN0vPsI9dq9Qa2RSUy9adj9J+/m8W7r5GaW4SvmyPTBzVn7+xB8gVkLYxGIykpKaSkpMjfrUCj55nlJ/nFpA8z7972dG9a/avk8nDuVhYvrToNwKN9mnJf98prXAaD6De2cqV4P/7rLxg4sGaP8z+UQMOGIocI4PvvLV56uLdI2Fx98latKhJXBqlU5m4KiiKCPXj/7gia+9Vc9qpvC1/eMJVBPtwcbZePlt0wGbjSqRO0qZhXUlU0cFXTN0z0oNpwpva7ykIbuNCjaQOMRtEnz1YoFQL3dBE7Zv88EVfmXFmTaOjtwiOmBoSPNl+0KrBxVClZdH9n3BxVHLuZzpc7r1i1r0Y+Lqx5pg8jIwLRG4z8dPAmgz/dwx/HY2XKh0IhMKFrI7bPHIi/u/2LBQeFQDM/63XY/iuTVQKpTJaYks6ob0+SmlvER+PbyTYAEpYvF0X2XF1FzuC8fWLqsVWgO2un9cFZXXnqU0q3gqid8s6YtlaJTxkMRo7eSOfPE3FsPpdAkVmK0dfNkUYNnGnUwIVGDVwINf0b7OVMVoGWuPR8YtLziU3PFx+n5ROfWWDRkdM3zJcHejRiSJsAixKhLShJCsw3qHj8lxOcictErVQwf0L7Wm2hT84u5K5FB0nMLmRAuB9LH+5aIeEdxCrACy+IYpsKBfzxh+hIX9vIy8vDy1R2yMzM/P9BoC6JixdFtvoDD4it9yYYDEaGLNzL9ZQ83hvblofMfP/qEp/vuExEsCdtgj0YMH83Wr2RddP70MEO42JbYDSKJsd/nriFq1rJqqd722xTYA3KHJMGgxgU1YIW1l8nb/HSqjM093Nlx8wBta6/9efxOF7+66zd+7+ZmsfAT/cgCLD92R60aCh2WtVWg0RWgZYB83eTma8t8/5WHtadjuf5lacRBFj+WA96h1lvjLr/Sgrvbrgg+3W2b+jJnLvaWgg13kjN477vD1vwf2YPa0l4oBsXE3LI1+oo0BjIMy18Wga6ExHiSatAd7xc1PL925oy2X/BUCUwP5mrzqbx/sYLNHBVc+S1OywyI0ajSKg+ckQsocxfVMidX+wnNVfDhC4NmW/SAKkMK47G8sbf5zCaXNI/sVF5OatAy/rT8fxxIo7z8dmVb1AOfFzV3NulIfd3b0STaihbmQdDp68lMO3PC8RnFuDl4sD3U7rWakbIvHMszN+NNdN64+FUsZS/0QivvQaffCL+/+ef4eGHa/5Yy8L/y24yG7Ds0E3eWR9VZzfGyjDzz9OsORXPmA7BfHV/pxrfn0Zn4OEfj3H4ehqBHk6snd7bKo6HLajrMZlTqKXL3B1odAa5K6u299917g6KdAa7g9yJ3x3m2I10nuvXkFmjOwK1ey4l9wA/d0f2zBpoVRMJwCurz/LHiTh83RxZ9XQvm2gOWr2BZYdu8sWOK+SYApp7OjfklZEt8XcXs6nXU3K5/4cjJGUX0cLfja0v9Lf6nvhfMFSNMD+ZamdXury/nTyNnod6Nea9sREW7z16tJg7snUruDdP5cGlRzEYxRKQpClRGdZG3uKlP89gMIraIZ9P6mhXRiYrX0tchpj1iTXL/sSli9kfT2cHQhu40LhE1qixjyv+7o7VKoluPlm2ee1v8gwqmvi48OPUbjSrwVJBSRgMRmasjGTj2QS8XBxYN71PhV1wIAZCr74K8+aJ/1+8GKZNq4WDLQcGg4GEBLEcEBQUhELx/7zarddDURGYrElyCrX0/HAneRo9vz3Wg74trF+t1gYu3M7mzi/3o1QI7Ht5UK20g2fla7nn20NcTc6ldZAHq57uZZPxcGWocEzm5IjlzIgIUZCrhvD0ryfZGpXIMwOb84rJFaA2MeP3SNafuc3DvRrzbol7gzVYffIWs1adIcRN4NBborNzbQZDGp2BoQv3EpOWz/N3tODFoaXVostCgUbP+G8OEZ2QTZCnE38+1ctmC6mUnCLmbb3IKpNYqKNKwYBwP+5sF8Qdrf1JySnivu+P8N7YCEZEBFr9uf8FQ9WIkidz1qozrDb9YD9N7cYgk+iWhBkz4KuvRA7R+fPw68krLNh+GUeVgr+n96F1kHUrli3nEpixMhKt3ki/Fr58OqFDreiF1BTMg6HQF1fTvUUQ3z/U1cKCpKZhMBh5fe05Vh6PQ6UQ+PWxHvRqXjFh2miEV16B+fPF/y9aBNOn18LB/gfrsH49zJwpqqB+9JH89NvrzvPL4RiGtgngh4e61uEBlo0Hlhzh4NU0nujXlDdG1SynRkJcej7jvj5Iaq7G6tJwtWDOHHj3XejRAw4frrGy2aazCUxfcYqG3s7sf3lQrWcE915O4eEfj+Ht4sDR14fYxKkEyNfo6P7BTrJzcolbKNbfazvLJp1DZwcle2cPtNr4NDVXDFauJucS4uXMH0/1pKG37b6JkbEZzNlwgTNmgqFqpYL+4b70bObDhC4N8XSx/p5hSzD0/3xJaTseNuMgPPHLCY6UUJv++GNo0QLi48Wml+mDwhgQLrpKT1t+ipxC6zxoRrYTgwVHlYL9V1IZ+tle/jpZf9SnbYHeYOSLHZfl/9/ZLojfHu9Rq4GQ0WjkrXXnWXk8DoUACyZ2sCoQmj27OBBavPi/QKjewWiEa9dEPZvs4rKwpHy7MzqpQqftusLjfcUO0pXH4qyeE6qK0AYuLHlYtELYezmFd9ZH1c588swzIq/r6FHYt6/GdjO4lT+uaiW3MgqIrEX1bQl9mvvg7+5IRr7WLrK6i1rFmA7Wqd7XFO5sF0inRl4UaPUsNJuzK4OvmyMrHu9BM19X4jMLmPzDUdlqyhZ0auTN39N6s3lGP54bHEYzP1c0egM7opOZuymarh/sYOpPx/hixxV+OXyT9Wdus+9yCmdvZRKXnk92oRaDwUhsWj5bzyewyEpiN/wXDNmMloHuSNUjncHI1J+OcTKm2KTPxUXkkygU8MsvsH696Cod5OnEjdQ8Xv3Lein+QS392fBcX9o39CS7UMdLq87w+LITJGWXbwZb33AyJp27Fh3g273X5efm39seJ4fa09IwGo3MWR/F8qOxCKZAqDKyttEIs2aJ3nMAX39dt6Uxc2g0GubPn8/8+fP//9hxlIcxY6B1a8jKsmjhDvN3p2+YLwYj/Ha0/rTZSxgQ7kdzP1dyinS1asXQMdSLL+7rJBJej8byw/7rlW9kBSockwEB8Mgj4mOJdFcDcFYrZQHDNadq35tNpVRwt8lf0t79T7CSSlFTEARB7kBceTyu1GK/Ivh7OLHiiZ409nEhNj2fyT8cteteJQgCbYI9eGlYS3bOHMC2F/vzwpAWtAwQfdz2XEph4Y7LvL0uihm/R/LQj8e4a9FB+s3bTfs522j2+mb6z9/N07+d4tt91o/v/4IhG6FWKSwIYoVaAw8vPWaR1uvdu1h76KmnQJ+vZtHkzqgUApvOJbDs0E2r9xce4M6aZ3oze3hLHJQCOy8mM/Sz+uVRVhaScwqZ+edp7vnmMFG3sy10VqqTi1QZjEYj7228wLLDMQgCzLunPeM6NaxkG3jpJfjsM/H/33wjLm7rC7RaLS+//DIvv/wyWm3tuV3XSygUxRfbwoUid8gEKTv0x/G4WlFhtgUKhajMCyJx1Zp25urC8LaBvGkqzX24+SKbz1W9Hb3SMTlrlvhbbdkCZ89WeX/lQQom1kXeJl9T+9IK4zuLwdCui8lk2CFt0inUi+Z+ddsQ0bVJAyZ1DRXnwT/PkG1D5jLQUwyIGno7cyM1j8k/HKmSwbggCIQHuPPCkHD+ebE/O2YO4OURLbm/eyNGRgTSq5kPrQLdCfJ0wtlsga1WKWgX4sm4TmUYPJe3r/84QxWjrJrjtOUn2Xwu0eJ9Hk4qVjzRU1bULCqCLl0gKkpUKl61Cn48eIP3N17AQSnw51O96GTWQmgNLiXmMGvVGc7Fi7LpQ1r78+G4dlbXdWsDUnfA5zuukFukQxBgUtdQZgxswusvzQDgu+++w9GxYmXu6oDRaOTDzdH8sF8UnPt4fLtKtYT0ejEDJMnXfPutGNDWJxQVFfGU6aBq61zWa2g0ov9VfDwsWQKPPQaI5dn+83YTn1nAvHvaM7Fb3a66S6JQq6f3x7tIz9OweHJnq42BqwNStnTZ4RgcVQpWPNGTLo1tm4/MYdWYnDRJlOl/4AH47Te791URDAYjAz/dQ2x6PvPvbV8nmZY7v9jPhYRs3h/blil2SDss3nGBV16cQQNXNVf2rq2T6zu3SMedX+wnNj3fat8yc8Sl5zPpu8PcziokPMCN35/oWakbQ3WgUKsnu0CLt6saB6XiP85QTaOFv3up57ILdTz160lZ6M3RUSyTqVSiMN/KlfBonyaMjAhEqzfy1K8nbV45tAx0Z8203swaFo6DUmBHdDJDF+7jl8M364XA3MGrqYz8Yj9zN0WTW6SjQ0NP1k7rw8f3tCfYx4Off/6Zn3/+udYCoU+2XpIDoQ/GRVQaCGk0MHmyGAgpFOJ9tb4FQgCOjo61ei7rPdRqePFF8fG8eWJEiyhmN8WUHfrx4I16l0l1clDyYE/x+JYcqJ5ylbUQBIG3x7RlSGt/inQGnvzlBLer4A5u1Zh85RXx35Ur4eZNu/dVERQKgUmmoHfl8bga2UdlkLJDf52yz3tuYo/mBIyZiWLgdGIz66YM7uaoYuGkjigE0bds41nbfN9CG7iw4omeBHg4cjkplweWHLUrU2YrnByU+Hs42dV9/V8wZAfCA0oHQy383Vj3bB+LdtXOneGtt8TH06dDQoLAJ/e2J8jTieScIiZ9fxi9jelxB6WCZwe3YMNzfYkI8SCrQMvb66Lo8cEO3lh7jqjblZvtVSf0BiOHrqbyzG8neWDJUa4m59LAVc0n97Rj7bQ+dKxhUbmyYDQaWbDtMt/uvQbAe2Pb8kCPxhVuk58vmq7++aeoLP3HH3KC4T/8G/Dkk6L/1eXLsHu3/PT93Rrh7KDkYmIOB69az3+oLUzp2Ri1SkFkbKYF97A2oFQIfHl/J9oEeZCWp2H6ilOVekJVCZ07w4gRolKpoeb2M6FrQ1QKgZMxGVxOyqmx/ZSHsR1DUCoETsdlcs0OexA/d0cGm7qUpVbzukCXxt5MHxQGwBtrz8vmqtaiia8rK57oiZ+7IxcTc5j0/WGuJtf+72Et/jXB0AcffEDv3r1xcXGRlU4rg9FoZM6cOQQHB+Ps7MzAgQOJioqq8rGEB4gt4o4qBWM6BCEAV5JzuXC7tMjha6+J5bKMDFGh2lnpwJKHuiIAl5NyGbhgDyk5tpPMWgV6sHZaH+aMaUMzX1fyNHqWH41l1JcHuHvxQVadiKNAUzM8CYPByMmYdOasj6LHhzuZvOQoW84nohBE5ezdLw1kUrdGFtwgo9FIXl4eeXl5NbpCNxqNLNxxhUW7rwLw9ug2laoQZ2bCsGGiNpSLi+g5VhfK0v+hCnB3F9v99u+HIUPkpz1dHJjYVeSI1Xb2xRr4uTsyzkTm/94Gsmd1wUWt4tsHu+DhpCIyNpMPN0fX7A43bBAzQ82a1dgu/N2duKO1GEz8fiy2xvZTHvzcHRkQLipIl/SytAZGo5ExbRpg0BTy18m4UvZPtYkZd7SgfUNPsgq0zFp1RrbMsBbN/dxY8XgPfN3EDNGYrw7KliP1Df+aYEij0TBhwgSesYHJOm/ePD777DMWLVrE8ePHCQwMZOjQoeTkVC06bezjyiN9mrDv5UF8dX9nHjb5urzx97lSpD0HB7Fc5uoqLlhfegnahnjKwlFx6QX0m7ebXdFJNh+Hg1LB1D5N2fnSAH5/oiej2wfhoBRXJLNXn6XHhzt4d0MU5+OzKNJVLTAyGo2cj8/io83R9Ju3m3u+OczPh26SmluEp7MD93cPZdOMfrw7NgJPl9Jqzvn5+bi5ueHm5kZ+fs20Ohfp9MxefVb2yXlzVGvZU648JCWJ3mIHD4qJhe3ba1QXrlogWR94eXmRl5dX14dTfzB5MvTtW+rpR/o0RRBgz6UUrtRBpqAyPNFfHKPbLiTJ1gS1iUY+Lnw2sSMAPx8S25VthdVjUlV9Qo8VQSqJr42MrxPyvFQqW3Pqls0BRH5+PmO7NSdu4b2kZOSw62Ltm7dKcFAqWDipI04OCg5cTWXZ4Zs2f0aLAHc2P9+XvmG+FGj1vLz6LM+vPF1rkhLW4l9HoP7555954YUXyMzMrPB9RqOR4OBgXnjhBV4x1aqLiooICAjgk08+kcl+lcEaAlZukY7hC/cRn1lQroja2rUwfrz4+Pvv4c4JBfT5eJfFe6b0bMQbo9pUqe08JaeIVSfjWHE0llsZxRwAhSDWcZv5utLMz43mfm4083OlmZ8rfiZiW3aBjuScQpJzisR/s4tMj4s4H5/FjdTiSc7NUcWwNgGM6RBMnzDfSgXG/q+98wyPouzC8D276Z30UFIIJfTQO4QOIlJEpQiiIEWRpqConw0FERBRqdIEadIs9Bp6CyX0EkIKCem9brI7349JltBSN9kF576uvbJtZt/Mzs6cOe85z1Pecv1xadmM++M850ISUQjwZZ962iD1WQQFwUsvwZ07Uvfvvn3QsKFOh1Uu6Nv64LkgNVXKFuUxZm0Ae69FM7hFNWYNMLwvefSaAPZdj+b1ZlX5YWDxrHt0zQ97brLI/y4WJkr+Gd+WGk+pjXwWJd4n79yBBQtg5kwoorC1NBQsnl8wyLdCfQ9BKuRtMmM/GSo1699tSRvv4qugPy5Q265OFda/26q8hlos1p4K4X9/X8PUSMGOD9pR8ymlIkWh0YgsOXqXeftuo9aIeDhY8MvgxjSsaqf7AefxQitQFzcYCg4OxtvbmwsXLtC48UP/n759+2JnZ8fvv//+1OWys7PJLtCem5KSQrVq1YrcmIdvxvD26nMoBPj7/XY0qGr7xHu+/VaqITI2hoMHYeGNU5wOfrROoIaTJQsGN6Ze5SeXLwkajcixoDjWnQ7l5N34QgusrUyNUKk1RdYLmBkr6OLjQp9GbvjVdi5R0FaeJ/CbUSmMXB1ARFIm1mZGLBzShA55aepnceKEVCMUHw8eHlJGqGZNnQ2pXNFoNNy9K9VDeXt7y3YcBcn3Tlm4EPz9oZmkPn0uJIHXlpzCxEjBqU86V0hnS0m4EJbIgEUnMVZKFh269g4rDrlqDcNWSB5mNZyt+Pv9tsX2pyrRPimK0lXH1auS7tC0aboY/hP8dOA2Px24Q6vq9mwc3bpcPqMw8u1BmnlUYsu4NsVeruCx0uvDrWiMTCvE1LcwRFHk7dXn8L8VS103G/56v22JFbbzOR+ayIQNF4lIysRYKfBxTx/eaetVLpIrcjcZEBUltb67uLg88ryLi4v2tacxa9YsbG1ttbdq1YrXmtnJx5k+jSqjEeHjrZefOs/72WeSa0BOjtRu3971yaLeoNh0+v16gr8ulq4TIR+FQqBjLSeWDW/Gla+6c/bTLmx4txXf9qvPO2298KvthLu9BQpBymzlB0K25sbUdLaibQ0H+jeuwpgO1fm8dx2WvNmUgM+7sXBoE3rWd6tQ0cTC2H89mlcXnSQiKRNPBwu2v9e2yEBowwbo3FkKhJo1k8x1n5dACEChUFCzZk1q1qwpB0KPIwjw4AGkp0ty8Hk086hEo6q2qHI1/HG64utIiqKJeyVaetmToxZZkdcBWdEYKRX8PLgxztamBMWkMX1b8QViS7RPCoKkOwSSNlRW+YjIvt6sGgoBTgcnEFyKQuay8nKeVEJAaGKpi+Pz5Rbym0H0hSAI/PBqQ+zMjbn+IIXZe26Wel1NPSqxa0J7bWf1tztv8M7v54hPK70ekS7Q65H0q6++QhCEQm8BAQFl+ozH/WlEUSzUs2b69OkkJydrb+HhxW/P/LJPXewspJ1lxfEnD2iCIKlTN24MsbGw5HM3jDVP1tc425jRsXbhJ/SSIAgCzjZmtPZ24M1WHnzRpy6r327B0WmduP5NTw5M6cCxaZ24OaMngV92Z/+Ujqwb1Yr5b/gy/aU6jGpfnZ71XXVq7FhWRFFkyZG7jF4bQLpKTRtvB/56vy01nJ9t+iqKUnZuyBCpjb5/fzhyBFyL7/sn8zyQ38K9bRvcugVIv4GReSKHa0+HGJwII8BYP29AKvpNytBPS7WTtSmLhkoCsf8ERrLmVDmpdw8eDNWqQVQUPCNLX1Yq25njV1sqpN6khzb7VtXttfdHrzlPcmbJa2RG5tU87rkWpZeAriDONmZ8/6o0xbzi+D22nC/9NrW1MGbR0CZ8268+JkYK/G/F0mvBMf4MCC/fjsZC0GswNH78eG7cuFHorX79krv/ArjmneEezwLFxMQ8kS0qiKmpKTY2No/cioujlalWynz+/tuExj9ZSGhhAX//Dc7OcPWKgMa/OfkXX4IAAhCRlMnMnTdQl7DwrjSYGSup4WxNNXsLg8n2FEV2rpoPNwfy/e6biCIMbenO7++0wK4QAz+VSnIEyJc6+Ogj2LJFa3T+XJGTk8PChQtZuHChrED9NOrVg1dekaLfAvYPveq7UtnWjLg0Ff9cKnmRcHnjV8sJH1dr0lVq1pZXEFIMmnna80kvyfX9253XuRCWWOQyJd4nTUykbhKQtKFyy0cnbVCe5tCW8/cr/CRrZfbwQjc+XcXUzYEl7qKq6WJN1zrOiKJ+ug0fp2d9V5q42wHw0ebLrC+D1Y0gCLzZyiOvPs2KmNRspm25TMc5h1lx/F6FK4jrNRhydHTEx8en0JuZWenUlb28vHB1dWX//v3a51QqFUeOHKFNm+LP35aUgU2r0raGA9m5GqZufvp0WbVqUkG1sTEEn6tE8vGauNqYsXlMaxYMboxSIbD5/H2mbgmskIDoeSI2NZshv51h24UIlAqBb/rW47v+DQoV2UpIkDrEfv8dlErJXmPOHElY8XlEpVIxfvx4xo8fL3uTPYtPPpH+rl0LYdK0mNR96QlIbfaGVi4pCALj8rJDq0+GlJs0RnEY2c6LlxpI0xjvr7tQ5BRGqfbJUaPA0RGCgyVhr3Kgs48zztamxKerOFCKjt2yYGqkoGAZzL7r0aUKaMZ2lPaJbRciiDEAX8p5rz0s8P90+1U+2RZYpm5lH1cb/h3fjum9fHCyNuVBchYzdlyn7feHWHDgToVlSZ+b00FYWBiXLl0iLCwMtVrNpUuXuHTpEmlpD1OHPj4+bN++HZAOLJMmTWLmzJls376dq1evMmLECCwsLBgyZEi5jVMQBGb2b4CVqRFnQxL45t/rT31fmzYPfSWTT9aie05Hmnna80qjyvw8SAqItl2I4MM/LxlkSr+kKJVKBg4cyMCBA1EqS56BEkWRvy9F0OOno5wPTcTGzIjVbzcvUkMoIEDSefL3l5qLdu6EsWNL9z8YCmXdlv8JWreGTp2kjEO+2y7wRnN3LE2U3I5O49idOD0O8On0buBG1UrmxKer2FyGaYiyIggCs19tSHVHSx4kZzFp06VCL8xKtU9aWsKkSdL9mTPLRYjRSKng9TxLjorWHBIE4YkC9B/23uJMEeanj2/LZp72NPOohEqtYcUJ/dSTFcTLyQof14fdZBvP3ue1xSe5n1h6yRRzEyVjOnpzbFonZvZvgIeDBYkZOcw/cJs23x/i2x3XSyz6WFKem26yESNGPLUD7PDhw/j5+QHSzrdq1SpGjBgBSCfQr7/+mqVLl5KYmEjLli1ZuHBhiabeSlKNXpAD16N5d20Aoggz+zdgSMunW0HMmAFffCHd/+abh9M4u6884IMNF8nViPi4WjP/DV/quOm+BfV54EFyJp9vv8rBPL2N2i7WLHqzCd5OhdcHLVsGEyZIU2Te3lI2rkGDihq1jN45cAC6dQNbW4iM1M6Jfv3vNVadCKFDLSfWvNNCz4N8kjWnQvji72tUrWSO/0d+GJXCWkBX3IpKpd/CE2TmqJnSrRYTuui40yApCXx9Yfhw+PRTKOVMQGGEJ2TQ/gdJlfzYtE5Us6+4ufHWsw7y4LGTuJO1KTs/aFciT8kD16MZtSYAK1MjTnzSGVvzJ2tNK5KlR+4ya/ejRdS25kYsGNRYW6dVFnLVGnZdjWKx/11uPJDEjI2VAgMaV6VzHWcaV7Mr1vZ7oVvrK5rSBkMAvx66w9x9tzFWCqx/txXNPe2f+r5Zs6TjAEiB0VdfSfVDR27HMmXTJeLTVZgoFXzUoxaj2lWvUNd3faLRiKw/G8b3u2+Slp2LsVLgg841GdvRu9C2zowMyWV+zRrpcd++UuF6MYXLnwtUuRpEREyNSp4Zys5Vcy8unaqVLAyqKF7niCLMnQuDBklz03mExWfgN/cwGhH2TupAbdeSa6aUJ5kqNe1mHyI+XaUXjZzH2XbhPlP+DMRIIfDvB+10f1GmVkvz1+XIsBVnOHYnjvGdavBRj9rl+lkF6frjkSeENPOP5aM7eBd7PRqNSM8FR7kdnca0nrV5z6+GrodaIkLi0vGb6//E84IAU3vobnyiKOJ/O5bFh+9yNuTRjrwqdub4VrOTbu521K9si7nJo/uRHAzpkPyNeSEogsbelUu0rCiKjF9/kZ1XHuBgacI/H7Sjit3T9UPmzHkot/Hpp1LXkyBIYoKfbL3MgRtSVqRVdXvmve77zPW8KNyLS+fjrZc5e0/6ATR2t+OHVxsWKfZ1544kW3DlilQTNGsWTJ0qbcvnhfi0bO4nZhKdkkV0ajYxKVnS/ZRsolMkUcyEdBWCAJVtzfFwsMi7WeJhn/fXwQIjpcC9uHTuRKdxJzqV29Fp3IlJJSQ+A7VG5OynXUp0dfoiMe6P8+y+GsUbzaoxe6DhiTDmX0j5uFqze2L7QjtgyxtRlIyl912Ppn4VG/56r61es1WlYeflB7y//gIuNqac+LhzhY2/78ITBIYnaR9Xd7Rk23ttCm32eBZbz9/nw82BOFqZcvzjTnpveOn501FuRj2q6O5iY8ofI1uWSpSxKAJCEthy/j4Xw5K4HZPK45GLUiHg42qNbzU7bMyNyc7RkJqazNyhbeRgSBfkB0Ov/3yQjeM7lfiglKHKZeDiU1x/kEK9yjZsGdvmieg1n/nzYcoU6f7UqVIjjCBIB6ON58L55t/rZOaosTYz4tt+9fV+xVgSiiu6mKvWsPz4Pebvv012rgZzYyXTetZmeGtPlEVkxLZvhxEjICVFUpTeuFGy2jB0ctQaLoQm4n87lsM3Y544wDyOJieLyGWjAag8ehkK45IHNObGSq5/00OvJ9kKJzERKlUC4HxoAq8ulkQYT3zcGSdrwxJhTM7Ioc33B0lXqVn1dnM66WDqoSzEpGTRbf5RkjNznpqZyMjIoGaeWNedO3ewKGmbpijC3r2SQeBPP+lo1A9R5WpoPesg8ekqfhvejG51n91RrEumbQnE1caMNjUcGbr8DGqNyM4J7QoV1X3WsTJHraHjD4eJTM7iu/71izSfLm9+3H9ba31UkIrIZqZl53L5fhIXw5K4FC7dYlOfLPLXZGcQ/tPrcjCkC/KDoWqT/mTpO+3o1cCtxOu4n5jBK7+eICFdRZ9Glfl5kO8zT0K//goffCDdnzxZqv3Mf+u9uHQmb7rEpbwrjT6NKvPtM7zADI3iBENXI5L5ZNtlrkZIc8Ttazoys3+DIuf4U1KkLt3ly6XH7dtLzSluJf+qKoyYlCz8b8fifyuGY3fiSM162EYqCOBqY4azjRku1qa42JjhYmMqPbYxw9ool6Z5Wcpj18OIyRQIic8gND6de7Hp3IlJI7OIonsfV2v2TOpQrv+jwRATAyNHwpkzEBICFhaIokj/RSe5FJ7ExC41mdytlr5H+QTf7bzOb8fu0dLLnk1jKl5B+XHyMxMmSgW7JrZ7xK6jzArz0dHg7i4V+B05Ah10v2/O2nWDpUeD6eLjzIoRzXW+/qL4YMNF/g2MZEDjKvz4hu8z31fYtlx5/B7f7LiOp4MFBz/0K/ICsTy5FplM75+PU8XOnB9fb8Tuq1GsPhmCkUJgxYjmWrPaikAURSKTs7gUlsSViGRUuRpMjBRosjP4rH9TORjSBQWDoarO9hz80O+ZmZ3COBMcz9DlZ8jViEXO+S5ZItW8gKSNs3AhmOfNiuWqNfx6OIhfDgWh1oi42Zox97VGtK1RfO8bffCsH7goipy5l8Cyo8FaQ0Jbc2P+93JdXm1SpcjMxf790nkuPPyhsO1330myBYbG9cgUdl6JxP9WLNciUx55zd7ShA41Henk40z7mk7YWz47ja5Wq7ly5QoADRo0eGr3TkxKFqtPhrD+TBhJTxF7a+phx+Yxbf4b9We5uVCrFty7J2UdJk4EYMflSMavv4iDpQknPums92mHx4lKzqL9D4fIUYtse68NTdwr6XU8BS0ZGrvbsWVsG+3JuDj7ZJGMHSu12HbvLmWJdExwbBqd5x1BIcCJTzpXuOXJ5ftJvPLrCYwUAsc/7oyr7dMzuoUFQxmqXNp8f4ikjBwWDmmiVajWB6IoMmfvLcb5eWNtZoxGIzJp0yX+CYzEwkTJ+ndb4atHCxGQa4Z0Sv7GbPHlP0RnKfigcw0+7F66Arw/Tofy+V9XEQRYPrwZXeo8O1W7fDmMHi1lj319YfNmqFEgfroYlsjkTZcIiZfaGV9u6MbIdl401vMB81k8/gM3M7dgz9Uolh29S+D9ZEAKZvo0rMznL9fB2brwqZ/UVGkqMV+eoHp1WLWqXC4oy4QqV8Puqw9YcyqU86EPxesEARpWscWvtjN+tZ1oWNWuXK7yctUa/g2MZN6+29xPynzkteqOlgxr7cHAplWxNjPA6FGXLF0qnWyrVpUcek1NyVVr6DjHn4ikTL4f0EDrdG5ITNsSyJ8B9+le14Vlw5vpezg8SM6k+49HSc3O5fPekjq9zrh3T/LFUaulLF4L3Xf6vbH0FGfuJTC5ay0mdq14D57Xl5zibEgC4/y8+binz1PfU1SWLX96qn4VSZ/HkKa6VbkaRq0J4OjtWCpZGLN5bJtCXQHKGzkY0iH5G3PLqdt8+NdtTJQK9k3ugKdj6YxGP91+hfVnwrAyNeKv99sU6gx94IBkHREbKxk7r1r10PkepKuEb3feYP2Zh/oZTdzteKedFz3ruRpUkWPBH/hvB6+x9nw0oXmBnKmRgoFNqzKqfXW8irFdDx2Cd96B0Dzx0/HjJRsqQzJvj0rOYv2ZUNafDScuT7DOSCHQra4L3eq60KGWE44VaBYqiiKHb8Xw477bXI1MwdRIQXaeIq+liZIhLd35sHttg8uO6IysLElfITJS0lx4910Alh8L5tudN6jhbMX+yR0M6sQCEBSTRrf5RxBFODClQ4mc5MuLDWfDmL7tCmbGCvZMLP2x8KmMGCGpo/bpA//8o7v15vHXxQgmbbpEFTtzjk7rVOHTTPuuRTF67XlszIw4Nb3LU41wiwqGEtJVtPn+IFk5Gv4Y2ZJ2NQ1rViA9O5chy88QGJ5EZVsztr7XRi/GwyAHQzolf2MmJSUxfstNjt2Jo7OPMytLOeesytXw5vIznA1JwMvRkr/ea1tozU9EhNQZfPy49HjSJKmw2qTALMq1yGRWHg/h38BIVHmK15VtzRjexpPBzd0NoqYoLDoBD1cHAKpN3oLCxAw7C2OGt/ZkeGuPYgUGycmS2e3ChdJjT09YuVLS1jMERFHkdHACa0+HsPdatFakztnalCEt3RnSwl0n3Vs5OTmsW7cOgKFDh2JcwjnBcyEJmBoJBIYn8/upUG3rby0XK34Z3MTgWs11xk8/SYV41atLnmVGRqRk5dBm1iHSsnMNolD5aYxZG8Dea9G81rQqcwqo/+oLURR5c8UZTgTF08LLno3vtkKtzi3TPqnl9m2oU0cSYLxwQTJy1CFZOWpazjxIcmYOK0c0o7NPxRRS56PRiHSe509IfAZf9anLiLZeT7ynOPVXX/1zjdUnQ2hXw5E/RrUs93GXlIR0FQOXnCQ4Nh03WzOWvNmURnqYMpODIR1ScGPGZivo+dNRyVn6rcKnuQojLi2bV345TmRyFh1qObHyrWaFZnFycqQgYM4c6XHr1lKBcAHpFABiUrNYdzqMP06HEp8uSZibGysZ2LQqI9p6FipSWB6EJ2Rw8m4cJ4Li2XMphDs/SGmt1jN2MKZzPV5rVhULk6J1bnJypFmOr7+GuDzR4LFjJUsjawM4b2eoctl6IYK1p0K4Hf1QU6SFlz1vtfakez2XQu1CSkqZi1ULIIoiB2/E8Mm2K8SlZWNipODz3nUY1srD4LIkZSY9Hby8pFTr2rXw5psAzNhxnRXH79Gquj0bR+u/UPlxLoYl0n/RSYyVAkemdqKyAchqhCdk0OOno2So1MzoW48BDZ10tk8yZAhs2CClwbdu1dGIH5JfmN62hgPrRrXS+fqLYu2pEP739zXc7S04/NGTRdDF+X2HJ2TgN9cftUbk3/HtaFD12d1p+iIiKZNhK84QHJuOiZGCmf0bMLBp1QodgxwM6ZDHN+as3TdYeiQYFxtTjkwtvdbD1YhkBi45SVaOhh71XFgwqHGR6/r7b3jrLSlD4uAAK1ZIfpSPn7OyctT8ExjJyuP3HmnT7lTbCb/aztStbIOPq7XO60Ti0rI5eTeek0FxnLwbT1jCQ3l2MVdF1u4fpAPAnn+xsiy69VYUpUz5tGnSBSOAjw/88gt07arToZeKtOxc1p4K5bdjwSQUCD77N6nC8NYe+LiWj2J4VlYWr776KgBbt24ttX9fQeLSspm6OZDDt2IB6FrHhR8GNiy0kPu55PvvYfp0KZ146BAg1cF0+OGwwRQqP41By05xOjiBd9p68UWfuvoeDgC/nwzhy3+uYWGi5O+xLZj07jBAB/vktWtSOvyzz6S/OiYiSfq+1RqRXRPaU7dyxSr7Z6rUtP7+IEkZOSx5swk96z9aBF3c3/fkTZfYfjGC3g3cWDi0SbmPuzSkZOUwZdMlrU7eiDaefNa7jk4vDgv9fDkY0h2Pb8z07FxazTpIalYufX0rs2BQ6dO4B65H8966C6jUGtp4O7BseLMiFYGDg+G116QMMkCXLpLIrq/vk+8VRZFTwfGsPH6PgzdjnhCp8nSwoG5lG+pVtqWumw11K9vgbG1aZEZAlashQ5VLWnYut6JSOREUz8m7cU/o4ygVAo2q2tK2hiMdaznR1KNSsbMN585JnWFHj0qPnZwku5JRo8BIz6LJKVk5rDkZwvLj90jKkDq13O0tGNHGk1ebVtW7VH5pEUWRVSdC+H73TVRqDS42psx/w5c23oZVk1AmUlJg3TqpTbPASWbq5kA2n79P1zouLH9L/4XKj3PkdixvrTyLmbGC4x93rtB6s2eh0YgMWnaasyEJtKvhyNqRLXSXTRTFclVKzW9zf7VJVea9XvFTj3P33uLXw0E09ajE1nGlMw6/GZVCz5+OoRDg4Id+xaq31AcajciCg3dYkKdJ1NLLnkVDm+BQAfuwHAzpkKdtzIK+LGWVRj8RFMfoNQGkq9Q0qmrL6rdbUKmIq/GsLMmyY/58SZZDECRrn2+/lZplnsa9uHT+uhjBtchkrkWmPOGXk4+jlQl13GwwM1aSocolPVtNenYuGSo16apc0rNzyVE/e5fxcbWmbQ1H2tZwoIWXQ4ntHoKC4MsvYf166bGZmaQhNG2aVESuT5Izclh18h4rj98jJU8XyMvRkvGdatDXt7JBFayXhasRyUzYeJHg2HQEAd7z82ZS11oVdjWnD+7GptH1R6lQ2RAtOkRRpN+ikwSGJzGmY3Wm96qj7yEB0nGl509Hyc7VMPvVBrzR3PA68p7GpfAk+i08gbFSanN3qWAl9pjULNp9fxiVWlOmbOTbq85y+FYsg1u4M2uAYRsv7r0WxZRNl0hXqaliZ87SYU2pX6V8p/fkYEiHPG1jqtUaav1vj7ZAdlLXmkzsUrPUV0WB4UmMWHWWxIwcajhbsXZki2JV34eESNYdGzZIj83NHwYORdXSJKSruB6ZwvUHUnB0PTKFu7FpFGJM/QQmRgoq25rR2lsKflpXdyhVtK/RSMKzv/4Ku3dLzwkCDBsmBXiP10ZVNInpKlaeuMfqEyGkZktBUA1nKz7oXIOXG1bWq/BZeZGhyuWbf6+z8ZzknO5bzY6fBzXG3aHiTC7LHbVaEmTMU+fMt+goShRPXxy6Gc07qwOwMFFy/OPOBjOF+dvRYL7bdQNrUyP2Temgu86hjAz47TepA3D2bN2sswCvLTnJuZBE3u/kzdQeT29zL08+2hzIlvP3yzTNdfZeAq8vPYWRQmDf5A5Ur+C60JJyJzqV0WvPcy8uHVMjBd+/2oD+jcuvjkgOhnTIszbmoKWnOH3voXHc4BbuzOhbr9TZgaCYVN5cfpaolCyq2JmzdmSLYu/YZ85IU0r5HWcuLlLmaPhwrVF3schUqbkVncrNBymoRRFLEyMsTJRYmRphYWqEpYkSS1Mj6XlTZYkyBenp6Tg7S506MTExWFpakpgoyQUsWgR37z5870svwYwZ0ETP0+DxadksP36PNSdDSFdJis61Xaz5oEsNetV301sQlJGRQaNGUmo/MDCw5NYHJWDn5Qd8su0yqVm5WJka8V3/58sG5pkEBMDQoZI9x6lTIAhcuZ9Mn1+Po1QI+H/kV6Hu5sVBFEX6/HqcqxEpejuBPw21RqTvgkPsnTEMc2MlD4Jvlq2AOp9z5yStIaVSKhqsrkNNI6RMxZi157GzMObkJ52L1cyhSwpOcx2Z2km7vz3tWFkYI1adxf9WrN6UtUtKcmYOkzdd0orsjmznxfRePuWSWS9JMPTi5r3LmU4+j7bgbjgbxrh1F8gqwgbhWdRwtmbLuNZ4OVoSkZTJa0tOcTUiuVjLtmwp1dZs3SoJM0ZHSwrWLi5SacShQ1L2pSjMTZT4VrNjUAt3hrb0oF/jKnSv50qbGo74VrOjpos1le3MsbUwLtWUSUZGBhkZGVy+LAlKVqkiZbLu3pUc5adMkYxWd+7UbyCUkK7i+903af/DYRb73yVdpaaumw1L3mzK7ont9Z4NEkWRoKAggoKCKO9rmd4N3dg9sT1NPSqRlp3LxI2XWHn8Xrl+ZoVQtSqEhUlXEgcPAtCgqi3tazqi1oj8dixYzwN8EkEQ+KCzJBT4+8lQkjJUeh6RhFIh8F3feuQmPiA15j47LkfqZsXNm0OPHlIGb+ZM3ayzAF3ruODhYEFSRg5bz9/X+fqLwsfVhvY1HdGIsOpEyCOv5R8ri8PnvetipBA4eDOGo7djy2GkusXW3Jjlw5vxQWepvGTF8XsMX3lW24SiL+RgqJQ097J/4rn916MZuvxMqQ9SVStZsHlsa+q62RCfrmLwstNa1/aiEASpE/XaNViwQOogTkuD1aulImsPD6mJ5vr1Ug2tTCQlwV9/PXzcpo2U/c7MhAYNJA28+/clH7YapS+/KjNJGSrm7L1J+9mHWHLkLhkqNQ2q2LJ8eDN2TmhHz/quBmFfYWZmxvHjxzl+/LhOOsmKomolCzaNbsW77SVNlG92XGf1iec8IHJ11QovMmOG9ulxHb0B2HQu/KnGj/qmWx0XfFytJV2kx06g+qS+hxOTftqAy9AfmHsgmLTs3KIXKg5ffCH9/f13qS5AhygVAu/k6fysOH4PTUlqBHREvoL3pnNhJD/FNqc41HC2YlhrybR1xo7r5KqLceWrZxQKgQ+712bJm02wMFFy8m483ecfYc2pEFS5+hm/HAyVkvqVbTEzfnLzBYYn8W9g6a+MHK1M2TimFS087UnNzmXYijMcuhld7OVNTGDCBCnbcuyYlIGxs5OCje+/h3r1oGlT6UJr92548IAnuswKIytLCm4KI19N/5tvoG1bcHTUSroAkm/Ya69J2azAQOmcpE/16OSMHObtu0W72YdZeFjKBNWrbMPy4c34Z3xbutZ1MSjNHaVSSdu2bWnbtm3pPKBKgZFSwacv1eE9PylY+Orf66w5FVIhn11uTJsm/WCOHpXMQYHW3g40qmZHdq6G1ScNL+BTKAQmdJGyQytP3CMlq3QnUF2jVCqZ9d5r1G7UjNj0XBYeDtLNitu0kXQ0cnNh1izdrLMAA5tWxcbMiJD4DA7mTdtUJB1qOlLbxZp0lZqNZ8OKXuAZTOpSi0oWxtyJSWN9GdZT0fSs78Zf77elupMlcWkqvvj7Gl1/PMLflyIqPDiVa4aKoLA5x8HLTnMqOP6R5755pR7D23iW+XOzctS8v+4CB2/GYKQQmPtaI/o1Ll2tRlYW7Ngh6czt2iUdVwri5CS15jdsKPlZOjhAdrZUtxgZKZmghoVJ9hfR0fDzzzBmjHShdveu1O7/+N/HM7y1aqVz+7ZUAxUTk4aTk/7bQJMzc1h5XOoOyy+MruNmw6SuNeluYAGQoSCKIrP33GLJEanIa0bfegxr7anfQZWFceMkZ+QuXST/Gx7WklibGXHyk84G59um0Yj0+Okod2LS+LBbLT7oUvEeW8/iwPVoRq0JwESpYO/kDrpp9z5+HNq3l66igoIkd3sdMnvPTRb736WFlz1/jql40c0/A8KZtuUybrZmHJ3WCVVWZqkELPPFHO0sjPH/yA87C8MosC8OqlwNm86FseBgkNa+qK6bDdN61qZjLadSH4vlAmodUtjGzDfMc7M1o7aLNf63Y7ExM2LHB+110nWTo9YwdXMgf12SMk3TetZmTAfvMtWrxMbCn39Kx5fAQMmVoDj1RAWxspLEfAvbc2xtpQu6Hj0kE2pHR92pJpeVlKwcVh0PYcXxYG2LvI+rdV4QZBhTYYWRm5vL9u3bAejfvz9GFSy8JIoi3+++ydKjUl3Nt/3q82Yrjwodg84IDZXmZnNz4cQJaNMGjUak+09HCYpJ4+OePozLy4YZEv8ERjJhw0VszY058UnnEktY6Jr8fVIURf5Nrsqxu4m6Lejt0kUqfhw7FhYv1s0684hKzqLd7EPkakT+Gd+WhlXtdLr+osjOVdP2+8PEpWWzYJAvXWvalepYmavW0Pvn49yKTmVEG0++eqVeeQ67XEjPzmXl8XssOxqsvUBtVd2ej3v6lMqEXA6GdEj+xrwZGkVt90ftN04Hx3P0dizjO9fASKFg0LJTXAhLon4VG7aMbaMT00uNRpRqNE6GAFKL8w8DG1LLRTc6KBkZUp1RYCCcPAl790rZoOJgYSE1eHh7S7eC9728HhVH1KWFRGlJSFex5lQIq06EaOfna7lYMbFLLXoZSD1QcTCEbSmKIjN33eC3Y9JU0sz+DRjS8vnQmHmCUaMkOfcpU6TCNWDL+ft8tDkQRytTjn9ceqX58kKtEek2/wjBsell1jrTBQX3ycv3oui/7Dy5GpFVI5o/0WxSKo4ehR9/lGqIyqG7Il/NuaxCuqXll4N3mLf/NvWr2LDx7cZY52mjlPT3ffxOHG+uOINSIbB3UnuDMPYtDQnpKhYdDmLNqVCt32aPei5M7eFDDefiywfIwZAOyd+YwxYf4vcxfoWm6yKTMnn5l+MkpKsY3KIaswY01MkYRFFk47lwZu68QWp2LsZKgfGdajLOzxsTI92Xfd27Jx1z1q17MvtTpYo0m2BrK9WgFjd7mZmZSa9evQDYvXs35uYV568UnpDB8mPBbAoIJytH+mHVcLZiYpea9G7g9twEQfnoc1sWRBRFZuy4wcq8YurnSXTvEfLnezt31u7QOWoNfnP8iUjKNNjM17YL95nyZyD2liYcm9bpqQ7oFcXj++T8wyEsOxqMl6Mleyd1KJfjlC65GpHMy79IsgrHplW8/1tiuorWeU70q4c34qv3pCLL0vy+R/0ewIEb0XSs5cTv77Qoj+FWGBFJmczff5ttF+6jEUEhwGtNqzGmY/ViSc/IwZAOyd+Y1Sb9ydJ32tGrgVuh7z92J5bhK88iijD3tUY6NaZ7kJzJ59uvagv9fFytmf1qw3JzA752DT7//NFOsH79IG+GxuC5GpHMsqPB7LzyQCuQWb+KDWM6ePNSA/3pBL1IiKLI1/9KmUtBgNkDGvJ6cz2rZOqI1Sfu8dW/16lmb87hD/0MTmE8V62hy49HCI3P4NOXfBjdwXCm81Kzcug09whxadlM7+XDmI6GM7ZnkV8DOqZDdaa/VPEK35//dYU/TofRtY4zy98q/fTivbh0us8/Qo5ah5k5PXM7OpU5e2+x//rDZiIPBwv8akl+m62qO2Bu8mT2VtYZKie+/Odakd0b7Ws6MalLLUDauW9Gpejs891szVn+VjMWDPLF3tKEm1Gp9F90gpm7bpCpKp2+UWHUqycFPqdPS76WAI0q3sanRIiiyPE7cQxbcYaXfznOP4GRqDUi7Ws6sm5US/4d344+jV5M1Wh9IAgCX/apy1utPRBF+HjbZTYHhOt7WKUnMVFqvQTeaO6OvaUJ4QmZ7LzyQM8DexIjpYL3O0nTY8uOBpfLMaC0WJsZ80kvSRTy54N3iEl5uv1Pibl/H957D6ZO1c36CjAqTzpi/dkw3UkDlIB32nohCHDgRgxX7hdPY+5peDla8naeZMCMndfJeQ5a7Yuilos1vw1vxtZxrelQywljpUBofAa/nwrl7dXn8P1mH8NXnmXl8XsEx6aVSn9NzgwVQX5k6Tl5M6KJOcNaeTCjX/1Cl9FoREasPsfR27F4OVry9/i22Oi4IyU+LZtvdlzn77ziak8HC2YNaEhrbwedfk4+oihNj9nYSCKPhkauWsOuq1EsPXKXa5FSAKpUCPRu4MaYjtWpV7l8PXD+64iiyBd/X2Pt6VAEAeYObMSrOsyKVgibN0v1Q926wZYtwMNaDh9Xa3ZPbG9wHYY5ag2d5vpzPzGT/71cl5HtvPQ9JC0ajciAxSe5FJ7EgCZV+PF137Kv9OBBqTPD1FRqW61cuezrzEOjEemaV4f1xct1eUcP23LKpktsuxhB2xoO/DGyZem7qLJy6DTHn/h0lcHtF7ogLTuXE0Fx+N+K5citGCIf89p0t7fAr7YTzauY8UrzmvI0mS4oOE2mMLVAALaMa0NTj8Ir2xPSVbz88zEik7PoVd+VRUOblMuB9MD1aD7/6ypReVdeQ1q680kvH50HX2UlPT0dT09PAEJCQnRW9BuXls3flyJZffIe4QmZAJgZKxjU3J2R7bwMzlJBF2RmZtK6tdQCfOrUKb3VDD2OKIr87++r/HE6DEGAH19vVK6+Qzrn2jWon3ehc+UK1K9PckYObb4/SLpKzcoRzejs41L4OvTAhrNhTN92BWdrU45O00+x97P2yXxDVICtxThuFokoSm32J05IgmoLFpRtfY+x7kwon22/StVK5hyZ2qnCM8jhCRl0mrWXewtHYG1mTER4aKmPlfn7hY2ZEf5TOxmMl52uEUWRoJg0/G/F4n87hrP3ErRm4prsDMJ/el2eJisPRGDSxotFph7tLU1YOLQJxkqB3VejWFFOFgZd67qwb0oHbSfP+jNhdP/xKHuuPqyTMRTi4uKIi4sr83qyctTsvPyAkavP0XLmQWbsuE54Qib2liZM7lqLk5904atX6r2QgRCARqMhMDCQwMBANCXVRShHBEHgm1fqM7iFO6IIH/4ZyLE7hm8PoKVePRg4ULqfp0pta2GsLZ5edPjus5bUK682qUplWzNiUrP5U09TlM/aJ32r2fFaXobwq3+ulV1ITxAk40WApUuL3/paTAY0rkolC2PuJ2ay71qUTtddHKrZWzCkZTU0mSkkJ8aXaXu93qwaddysScnKZdbuGzocpWEhCAI1Xax5t0N11o1qxaUvuvPb8GYMbemOm23xFfrlYKiEGCkEwhMzWXa0aO+ixu6V+Lx3XQC+332TgJDiWWuUFBszY2b2b8D6d1vi4WBBVEoWY/+4QIcfDrPgwB0ikzLL5XMrElEUOReSwPRtl2n+3QHeXy8JUqo1Io2q2jKjX31OfNyZiV1rvrBXQPmYmZmxb98+9u3bVyF2HCVBoRD4rl99BjSugkaEDzZcJDyheB5LBkG+/cPmzVrvmpHtvDBRKggITSy2PU5FYmKkYFxe7dBi/7tk51Z87VBh++S0nj5YmxpxJSKZzed1EKx16QLt2knKsN9/X/b1FcDcRKkNfvXlT1ewEH7HldIHe0qFwJd9JK2hzQH3OX6n7BeizwOWpkZ0q+vCd/0bsG9yh2IvJwdDJeQVX2mO+ueDdwiNTy/y/cNbe9CnUWVyNSLvr7+gVdcsD9p4O7JnYgfe8/PGxsxIaks8cJt2sw/x9qqz7Lka9dwV04XGpzN//206zvHntSWn2HA2nNSsXCrbmvGenzcHpnTg7/HtGNbK46ndBC8iSqWSbt260a1btwqz4ygJCoXAzAENaFjVlqSMHMb+cb7UBsYVToMGksmfKGqzQ842Ztr6p0X+OrKZ0DGvN6uKq40ZD5Kz2KIH09HC9kkna1MmdpVUsn/Yc6vUHlxaCmaHli2DiIiyre8xhrX2wESp4EJYEudDE3W67uJQqcDF3IIDd8oU3Laq7qDV5Rn5+znuxaaVeXzPEyUpTZGDoWKSv03/vRRJE3fJu+iz7VeLrFoXBIHvBzTA28mS6JRsRq8JILUc/YTMTZRM6+nD2c+68tMbvrT0skcjwuFbsYz94zxtvj/E7D03CYkrOpDTFw+SM1l3JpSBi0/ScY4/Cw7eISwhA0sTJQObVmX9uy05/nFnpvX0eW5FxV50zIyVLH6zKfaWJlyLTOHTbVdK1eGhF/KzQ5s2abNDYztWRyGA/61YrkfqrkNUV5gaKRnTUTL9XHT4rt7MLp/F8NaeeDtZEp+u4ueDd8q+ws6dpdqh7GyYM6fs6yuAs7UZffMueleWU3lDcYlMymLtqdAyrSPffDg7V8MrC09wLbL0nWovMnIwVEyG57kC52hE0rJzMTVScDwoju0Xi74qsTQ1YsmbTbE2M+JCWBLDV54td4NFM2Ml/RpXYdOY1hz6sCNjOlbH0cqE2NRsFvvfxW+uP4OXnebvSxF6vWpXa0RuPEhh7akQJm68SNvvD9F61iE+236VgNBEFAK0r+nIT2/4cu7zrsx9rRFtvB2fO6FEXZKbm8vOnTvZuXMnuY8bzRkQVezM+XVIY5QKgW0XI/g9T0Xd4GnUSBLUUiqlQl3Aw8GS3g2lE+TiI4ZZOzS4hTuOVqZEJGWy/WLFZoeK2idNjBTaKZvfT4ZwJzq1bB8oCFLmbto0+Oyzsq3rKYzMa7PfffWB3qd5fz0cVKbzRde6D4v+U7NyeWPpKc6VU8nG84zcTVYE+d1kD2Lj6bfsorZrq423AyfvxmNvacKBKR2LVady5X4yb644Q3JmDo2q2rJmZEtszSuu6ytHreHgjWg2ngvnyO1Yrbq0rbkxnWo7UcPZCm8nK7ydrfBwsMDUSHdTMAXl+g9cDuFajIqA0EQuhiZqPWjyUQhQr7ItfRq50de3Ci42hlUXo28MwY6jJCw/Fsy3O29gpBBY/24rWnjZ63tIRXP3rnTCrV5d+9T1yBRe+vkYCgEOfeiHpy5MSHVM/rauZm/OoQ/9MK4gocji7pPvrglg//Vo2tVwZO3IFgYnVVCQYSvOcOxOHO+09eKLPnUr7HMLbku/mbu5l6zmPT9vpvX0KfU6u8z1526B2QAzYwWLhzZ9IQQZC0NWoNYhBTfm2fuZjFoTAICAVPkflpBB+5qOrBrRvFgKtVcjpIAoKSOHBlVsWTuyhV7chSOSMtkcEM6f58Kf0GgAqfjO3d4CbydLKUByssLbWbr/+HjVGpF0VS5pWbmkZ+eSmi3dT8v7m5qdy72oBH798E2yVGqch3yPwthUu7yliZLG7pVo5lmJZh72+Lrb6d140pDJzMykQwepMPDo0aMG01r/LERRZMLGS/wbGImjlQk7PmiPawm6PAyJEavO4n8rltebVeWHgYanQJqhyqX97MPEp6t0roBfGMXdJ8PiM+g6/wiqXA1LhzWlRz1X3Q0iJ0dyttcRR27H8tbKs1iaKDk5vUuFXbgW3JZfLt3M+D+vYWaswP+jTqX+3Xy85TKbHus0NFIIzHu9EX19q5R5zIaKHAzpkMc35pi1Aey9JkmCV7EzJyFdRWaOukQS7tcjU3hzxRkS0lXUdbNh3aiWjxTNVSRqjcipu/FcjkgiKCaNu7HpBMekPZGtKYiDpQm2Fsak5wU76SVUvnWzNaOpRyWae9rT1KMSPq7WBmd1IKNbMlS5DFh0kptRqfhWs2PTmFY6zTyWK1evgpUVeHpyISyRAYtOolQIHPqwIx4OhpcdWnLkLt/vvomHgwUHpnSssOxQcZm79xa/Hg6iaiVzDkzpWHZdpAsX4KOPoE4dWLhQN4NECuJ7/HSU29FpfNitFh90qamzdZdkDK8tOUVAaCKDmlfj+1dL53e56VwYH2+98sTztubG7JzQjqqVXkwZEjkY0iGPb8wHyZl0metPRp7hZ8eajhzJa1lcMMi32FH2rahUhi4/TVyaCh9Xa9aNaomDlWnRC1YAoigSm5pNUKwUHN2NSeNubBp3Y9KemkXKx1gpYGVqhJWZEVamxlhr7xthb2lCY3c7mnnaU6WCTRBlDIOw+Az6/Hqc5MwcBrdwZ9aABvoeUtHMnStZPwwbBmvWAA+zQwObVmXua4aXHUrPzqXjnMPEpamY2b+BVoPMUMhQ5dJ57hGiUrJ0E2QcOQJ+fmBiAkFBUE133nh/X4pg4sZL2JgZcfyTznoRsz0fmsCri0+hEGDf5A6lahq5HZ1K9/lHH3muYVVbVr/d4oWWIpGDIR3ytI254vg9Zuy4rn3Pyw3d2HH5AWbGCraMbUP9KsWzfgiKSWXwb2eITc2mlosV60a1wsnaMAKiZ5Gencu9uHRSs3KxNjPCOi/YsTIzen6u9GX0hv+tGN5efQ5RhFkDGjC4hWGdqJ/g/Hlo1gwUCrh5E2rW1KoqKwQ4+KEfXgZYO7Ty+D2+2XEdN1szDn/kpxdV6sL4JzCSCRsuYm6s5PBHfmWfNu3cGQ4fhjFjYMkS3QwSKXPe46ejBMWkMblrLa1EQEUzek0A+65H062uC78Nb1bi5TUakUbf7CM1K5eaLlbciU5DIcCfY1rTzPM5qOErJbJRaznzVmsPWlV/uAOdCY6nbQ0HsnI0jFl7nvhiagnVcLZm4+hWOFubcjs6jcG/ndadoWE5YWlqRP0qtrT2dqB+FVs8HCxxsDItMhDKyMjA09MTT09PMjKeIxE+AyQzM5O2bdvStm1bMjOfL0FNv9rOfNS9NgBf/n2Ni2EVr+NSIpo2hd69QaPR6g75VrOjs48zGlHyLjNEhuSp7z5IzmLdmbBy/7yS7pN9GrrR1KMSmTlq5u27VfYBfP219HflSggJKfv68lAqBCbkZa6WHw8uu0ZSMXjasXJaTx8UAuy/Hl0q8V6FQqCfbxWWDWvKvkkd6OdbGY0IEzdeqpD/6XnguQmGvvvuO9q0aYOFhQV2dnbFWmbEiBEIgvDIrVWrVmUei5FSwa9DmuCSl8WJTVNhZWqEl6MlEUmZvL/+QrHFDb2drNg0pjVutmYExaQxaNlpogqZinpeEUWR0NBQQkNDnx+9GQNFo9Fw8uRJTp48aVB2HMXlPT9vetRzQaXWMO6PC8Smlp8QqU7IF/hbtw5uSSfuSXkZgr8uRXDXAIXszIyVTMw7iS86HER6Obuwl3SfFASBz3pLNZZbLtwvu/ZN+/aSwW5OjjZo1RW9G7hR09mK1KxcVp0of92hpx0razhb8UZzafpv1u6bpTqGzuhXn+71XBEEgRn96uNub0FEUiafbX+ONMDKkecmGFKpVLz22muMGzeuRMv17NmTBw8eaG+7du3SyXgcrUxZMqwpRnl6N3uvRTOoeTUsTZScDk7gu53F94LxcrRk0+jWVLEzJzgunUHLTvEg+fm64pepOExNTdm+fTvbt2/H1NSwp1WfhiAIzH2tEd5OlkSlZPH+uuJfPOiFZs2gTx8pO/TNNwA0rGpH1zqGnR16tWlVPB0siE9XlftJvDT7ZBP3Srzc0A1RhJm7bpT9hJz33fD771LtkI5QKgTt9NiK4/f0lkmZ1LUWZsYKzocmsv96dJnWZW1mzIJBvigVAjsuP9CLarmh8dwEQ19//TWTJ0+mQYOSFV2ampri6uqqvdnb625+tLF7JWb0q699vODgHa0exeqTIWwugWmiu4MFG0e3omolc0LiM3hj6WkiXgBPMRndY2RkRL9+/ejXrx9GRs+nBIG1mTHLhjfDytSIsyElu3jQC/nTMBs2wA1prJO61gLg78BIgmLKKCJYDhgrFUzuJo1x6dFgkjPK7yRe2n3y454+mCgVnAiKx/9WGU19W7WCl14CtRoWLSrbuh7jpfpu1HaxJjUrt9xMt4vCxcaMke0kMcjZe26SW8YLiMbulZiSt398+c81gg0ww1mRPDfBUGnx9/fH2dmZWrVq8e677xITE1Po+7Ozs0lJSXnkVhiDW7jzep6WR4ZKzeaA+9r09Gd/XeVSeFKxx1rNXgqI3PP0i95Yekrv6qcyMuWFt5MVP74udWOtPhlS4arJJaJxY0mV2tFREmQE6lexpXtdF0QRFhw0TM+yPg0r4+MqncSXHjU85exq9haMaOsJwHe7bpT5BM9338GKFfDDD2UfXAEUBbJDq47fK9fAsjDGdPSmkoUxd2PT2ayDbM7Yjt60qm5PhkrNxI2XDM7GpSJ5oYOhXr16sW7dOg4dOsS8efM4d+4cnTt3Jjv72TUKs2bNwtbWVnurVow2zW/61ae2i6QYGhCaCIh0q+uCKlfDmLUBxKQWvwaoaiULNo1phaeDBfcTM3lj6SnDLzKVqVDUajX+/v74+/ujVj8nBqjPoHs9VyZ0lhzXP9l6hRsPDM/3S8vChXDvHrz8svap/OzQjsuR3C6rxUQ5oFAI2qv/VSdCyq0+qyz75PudalDJwpigmDQ2niujq72vL7zzDpRDxrRnPVcpsMzOZflx/Tja25gZM76zFJTN33+bzBJqvD2OUiEw/w1f7CyMuRKRrJti9ucUvQZDX3311RMFzo/fAgICSr3+N954g969e1O/fn369OnD7t27uX37Njt37nzmMtOnTyc5OVl7Cw+XfpyJ6apnLmNmrGTV2y2wzHNNX3AwiM559hbRKdmM++NCiSJuN1tzNo1pTXUnSyKTsxi45BS/HLyDWiMXuclAVlYWnTp1olOnTmRlPf/F9pO61sKvthPZuRomb7pUJpfucqVyZXjMZqJuZRt61nPNyw4ZZu1Qt7ouNKpmR2aOmkX+5ZPBKss+aWturM2mz99/W3dG1ioVFDETUBIUCkFbOL/qRAhJGc8+J5Qnb7Zyp2olc2JSs1mpg1owN1tzZueJOS49GsyxO2WcrnxO0WswNH78eG7cuFHorX79+kWvqJi4ubnh4eHBnTvPPmiZmppiY2PzyA3gmx3XCi3wq2xnzm9vPdR/+Pyva4zrWB1rMyPOhyby1b/XSjRWFxszto9ry8sN3VBrRObtv/1cT5sJgkDdunWpW7euQfsRPQ+8aNtSoZAKqh0sTbgZlcpPBwwzqNCi0cDWrXBN+k1P6iadIHddecDNKMPLbAmCwNQ8OYN1p8PKpRaxrPvk0FYeVHeUXO0X++tgOu/QIahVC8aOLfu6CtC9rit13GxIy87lt2Plkx0qaluaGim18hRL/O+SUMiFenHpUc+VoXninFP+DCy2PMyLhF6DIUdHR3x8fAq9mZnpzsMoPj6e8PBw3NzcSrzs/usxbL1QuEN9G29HPu0lmempRZH//X2NqT1qIwiw/kwY686ElugzbS2M+WVwY358vRFWpkYEhCbSa8Extl+8/9y1QlpYWHDt2jWuXbuGhcWLKf1eUbyI29LRypTv+kvNEUuP3C2VlkqFMX06DBwI//sfAD6uNvRuIHVFLTDQQK5tDQdaVbdHpdaUS/dbWfdJY6WCT/KOnSuO3yt7wObqCmFhsH27ZNehIxQKQZvFWn0iRCeByOMUZ1u+0qgydd1sSM3O5ddDusn2fd67LjWdrYhNzWbqlsvP3TmmrDw3NUNhYWFcunSJsLAw1Go1ly5d4tKlS6SlPayA9/HxYfv27YDknPzRRx9x6tQpQkJC8Pf3p0+fPjg6OtK/f/9SjeGrf64VmZl5t0N1etaXzAczVGp+PRTEmA7VtcufK+FBXhAEBjSpyu6J7WnqUYm07FwmbwpkgiyWJfOC0bO+K682qYpGhA83B5a7Nk6peestydF++3a4eBGAiV1rIgiw+2oU1yMNNDvUQ8ombD5/n3sFHMwNhW51XWjpZU92roa5e8tYu1K3LgwZIt3/4ouyD64APeq5UNfNhnSVutyyQ0WhUAja4HHt6RBCdPB9mpso+XlwY0yMFBy6GcOaUyW7eH/eeW6CoS+++ILGjRvz5ZdfkpaWRuPGjWncuPEjNUW3bt0iOVkS71IqlVy5coW+fftSq1Yt3nrrLWrVqsWpU6ewti65t0sTdzvSsnOZ8uelQmt3BEFgXp6GCkBMajYHrkfTvZ4LOWqRcX9cKJWGUDV7CzaNbsWUbrVQKgT+DYzkpQXHOBMcX+J1ycgYKl++UpfKtmaExmcwc5eBttvXrQuDB0v38wQZa7lY07uBlHFecPC2ngZWOE097Ons44xaIzJ/v+GNURAEPu8tSZNsvxjB5ftJZVvhl1+CUgk7d8Lp02UfYB6C8LB26PeT5ZMdKg7tazrSvqYjOWqRT7ZdRqODmtI6bjba2Y3vdt0w7IYGHfPcBEOrV69GFMUnbn5+ftr3iKLIiBEjADA3N2fv3r3ExMSgUqkIDQ1l9erVxeoOexoz+zfAytSIcyGJRbaoWpoasfyt5pgaSfO9QbHpJKarqO1qTVxaNmPXni/VVa+RUsGELjXZPLY1Hg6Seuig307zw56bBt8SmZGRQb169ahXr55sx1FGMjMz6datG926dXvu7DiKwsbMWGt+uu5MGEduG2gx5xdfSH5l//wD584BMLGLlB3aey2aqxFlVFQuJz7sLnWW/Xs5Uqf1TbraJxtUtWVAY8ns+tudZRRirFkThg+X7n/+eenX8xS61XWhfhUbMlRqlh3VbXaouMdKQRD4rl8DzI0lod91Z3Vju/JWG086+zijytUwYcNFsnIMtKFBxzw3wZC+qWpvwZd5gorz998u8mDn5WjJgkGNtY/PhSTiamOKnbkxgfeTGbr8TKm7EZq4V2LnhPa81rQqogiL/O/y6uKTBmkLkI8oily/fp3r16//5+aidY1Go+HAgQMcOHDgubTjKIo2NRwZ0cYTgGlbAvXWtVMotWvDm29K9/Nqh2q6WPNKo8oA/GiAmReAepVttfVN8/bpboy63Cc/6lEbUyMFZ+8lsK+MSst88QUYG8PBg1JRtY4QBIFJXaTAcs2pEJ0WHJfkWOnuYMG0ntL05/e7bnA/sewXmoIgMGdgQ5ysTbkTk8a3O68XvdALgBwMlYCBTavSs54rOWqRiRuLjph71nejcTU77eMjt+OoX8UGOwtjLoUn8cbS0huzWpkaMee1Riwa2gRbc0kj4uWfj7PhbJgcbLzgmJqa8scff/DHH388l3YcxeHjnj5Ud7IkOiWbL/4uWSdmhfHll5Kezd69cOwYABO61EQADt2MMVh9sMndamlNP3U1Rl3uk5XtzBnVXlJa/n53GbPenp6Skz1I35MO6VLHmYZVbcslO1QS3mrtSTOPSqSr1EzfphufMQcrU60g6h+nw9h7LarM6zR05GCoBAiCwMwBDXC0MuFubDpf/nO1yGVmDnjUPuR4UDwe9hY4WZtyKzqV18rYLv9SAzf2TGpPG28HMnOkH8PotedLHWTJGD5GRkYMHTqUoUOHPrd2HEVhbqLkx9cl76R/AiP5NzBS30N6kurVYeRIaNJEqk1BUtVuWV2y/Bmz9nzZFZXLgRrOVgxoIqnm6yo7pOt9cpxfDRytTLgXl17iLtwn+OwzKVidPbvM4ypIwdqhNadCidNTO7pCIfDDwIaYGik4dieOP0tgA1UY7Ws6aZt/pm25bJCiorpEDoZKiL2libamYdO5+ywvopugjpsN9SrbPPJc4P1kQMTFxpTQ+AwGLjnJnTLsaG625vwxsiWfvVQHY6XA/uvRtJt9mGlbAsu0XhkZfeJbzY73O0nq1P/7+yrRhhjg//gjBARAmzbapz7oJJ0gY1KzGfV7gEGKpU7sUhNjpcDxoDhO3o3T93CewMrUSOurtuDgnbLZX7i6Qrt2OhrZo3Sq7awVtFx6RH92J9WdrLT1YN/uuEFUsm5+Kx92r01jdzuSM3MYtuLMc6tzVxzkYKgU+NV2poWXdPX37c4b/HzgTqGpycEt3J94LjZVRWxKNi42pkSnZPP60lMElsDH7HEUCoF3O1Tnr/fb0tSjEiq1hj8D7tNt/lHeWX2OU3fj5emzciJDJZk3lsR2pSyo1WrOnTvHuXPnnns7jqL4oHMN6lexISkjh4+3GqD2iYWF1GZfgNbeDijynvK/Hcun267opNNHl1Szt9Ael+buvVXm7Voe++QbzapR09mKpIwcFupKOfvBAyl41REFs0NrT4dW2DHgaYxsV51G1exIzc7l0+26mS4zMVKwakRzarlIbgpDl595YWcd5GColPyQJ18O8OOB24xde/6ZMvJ9GlXG1OjJTa1QSG34jarZkZiRw5DfTnPqbtla5etVtmXruDZsHdeanvVcEQSpfmHwb6d55dcT/BMYaZCp++eR5Iwcfj54h7bfH2LGjusExVRMAXtWVhYtWrSgRYsWL4QdR2EYKxXMf90XEyMF/rdiy+5dVV6kpkomobt3o1AIeDtbaV/aFBDOl/8UrmCvD8Z3qoGZsYILYUkcvlU224ry2CeNlAo+7V0HkAQOy5yVOHgQvL1h6FDI1Z2GlV8tJ3yr2ZGVo2HpEf3VDikVUuGziVLSCfrrUuEiwcXFzsKEtSNbag3Eh604a5hNDWVEDoZKiaejJTVdHh7w9l6P5pVfT3Ar6slpKVtzY3rlCTEWJFcjMm3rZX56oxFtvB1IV6l5a9VZDpS1gwJJU2TJsKYc/tCPYa08MDNWcCUimQkbLtJxjj8rjt8jrQJF7QRBwMPDAw8Pj+feQiImNYtZu2/Q5vuD/Lj/Nol5KfyQuEcP1lk5amJSswiKSeNiWCJn7yUQGp9e5lbVF2lbFoeaLtZMyxMMnLHjOmHxBpiq//FHqX37449Bo6F+ZdtHXl57OrTsreI6xtnGjLdaewIwd+/tMmWvymuf9KvlRPuajqjUGr7fc7NsK2vRQvKWu30b1qzRzQB5NDv0x+nQMmdOyrIta7lYM6GLNLX81T/XdZapcrEx44+RLXHOq3Udseqc4YqilhJBNKRfpwGSkpKCra0tycnJWp+yfBb732X2Yz9Qc2MlMwfUp3/jqo88fyIojqHLz2BnYczkrrX4cf8tkjOlnamOqzXrRrXk421X2H89GqVCYO5rDZ9YR1lISFex9lSo1AaaJxJmY2bE0FYejGjjiYuN7mxPXkQyVLmcCU5g1Yl7nLgb/9Q6ECdrU6xNjUjJyiElMxdVIRk4e0sTXGzMcLM1w9XWDDcbM1xspcdutma42JhhbWZcnv/Sc4VGIzL4t9OcuZdAc89KbBzdGqXCgALBxETw8oLkZNiwgUWuzfhhz5MqyuP8vJnWo7bBBLGJ6Sra/3CYtOxcfh3SmJcbVtb3kJ7gemQKvX85hijC1nFtaOpRqfQr+/FH+PBDcHeXgiIddWOKosiAxSe5GJbEO229+CJPhkUf5Kg19Ft4gmuRKfSo58KSN5vqbH+7HZ3K60tPkZSRQ9saDqx4qzlmxkqdrLs8KOz8/ThyMFQEhW3M4Ng0Os878tTlJnetxcS8qwWQDubj1p3n8951qWZvwe3oVAYtO61VL21V3Z7lw5vxxT/X2JbngfZN33oMz7ty0xVZOWq2XYhg+bFggvMk3I2VAn19q/Bu++rUdi25OveLQnp2LqHxGYTEp0u3uHRC4jMIikkrtcqsIIC1qRE25sYoFQLRKVlk5RRvmtLK1EgKlGzN6FjLiT6NKv+ng9bwhAx6/nRUaiHu5cOYjt76HtKjzJgh6drUqsWBzYcYtf7SE2+p7mTJ72+3oJq94XjK/XTgNj8duEN1J0v2TeqAkdLwJgymbQnkz4D7NHa3Y9u4NqU/uWdmQo0aEBkJP/8MH3ygszEevR3L8JVnpa6uaZ1w1uNv9XpkCq/8epxcjajzIPdSeBJDfztNuibt5qMAADTwSURBVEpN97ouLBraxCD3GZCDIZ1S1Mbs9uMR7jxWK9KrgSuz+jfAzsKk0HWHxKXz2pJTxOa1ZNarbMPKEc1Z7H+X1SdDAPioey3e71RD51eSGo3IgRvR/HYsmHMhD7VGGla1palHJZp6VKKZhz2uti/WyTcrR01IfDrBsY8GPCFx6cSkFt4aa6QQEEXJhPdpVLEzZ/4bvlibScGPjZkRliZGKApkMERRJDkzhwfJWUSlZBGVnCXdT84kKiWbqORMHiRnkZr1ZApaEKCNtwN9favQs74rNv/BzNGf58KZtvUyJkoF/3zQFh/Xwg9wFUpqqtRuHxdH3M+LaRbxqNr9B529mdS1tmFltIDUrBw6/HCYxIwc5gxsyGvNSqfSX55Ep2ThN8efzBx12U/uS5dKbvbOzhAcLE2d6QBRFBm45BTnQxMZ0caTr16pp5P1lpYf99/m54N3sLc0Yf/kDjhY6U6T7OTdOEasOocqV8OAJlWYO7DRI8c5Q0EOhnRIURtz7t5b/Hr40U6HIS2q8V3/BsUKYCKSMhmw6ATRKdKJ2NnalNVvN2fPtWh+znOXHt2hOtN7+ZRbav1CWCLLjwWz52oUj8/+VLEz1wZHTT0q4eNqXaqrgMzMTDp06ADA0aNHMTc318XQn4ooikSnZBMcm8bduHTuxqQRHJdOcGwaEUmZFLbHV7IwxtPREk+HvJujhfa+rYUxoigSl6biTnQqQbFpBMWkcSc6jTsxaaRm5XDjm546OSikZ+dqg6Xb0ansuPyA86FS0Crmqoj/9wecrExZsGw1PRpVw9TIcFPVukQURUb9HsDBmzHUdbPhr/fbYvKU5gS9MW8efPQRoocHDQb/jIO9NW62ZpwOTqCFlz2bRrcymCmygiw7epeZu25Sxc6cQx91LPH+lJWVxaBBgwDYuHEjZma6v4jKz2BVszfnwJSSj1FLTg74+EiB0MyZMH26zsZ4/E4cb644g4mRgqNTO5XqYlJXx0pVroY+vxznVnQqfRpV5pfBjYteqATsvx7N2D/Oo9aIjGjjyZd96hrcvi0HQzqkqI155X4yfX49Tksve15pVJnP/76KKMKUbrWY0KXmU9b4JDEpWby+9BQheYWhZsYKfhnchLCEDGbskKTQBzWXAqzyvKqMSs7izL14LoQmEhCayI0HKU8ER5YmSnzd7WjqYU9Tj0o0drcrVoYiPT0dKyup4DwtLQ3LMl6NiaJISlYu9xMzuBsrBTrBsekEx6VxLzaddNWzi5RtzIyo7mRFdUdLPJ4S8JSWpAwVNmbG5XaFFJ6QwT+BkWw9HcThT3sBUG3yFuxsrHipgRuv+FamlZeDQV6h6ZKY1Cx6zD9KYkYO4zvV4KO84mqDIDNT6lh68IDbn8/C66tpxKZm4zfXH1WuhhVvNaNLHRd9j/IJsnLUdJxzmOiUbD57qQ7v5ontFRdd/76fRoYql05z/YlOyebTl3wY3aEM06R//AGjRkmB0Jdf6myMoijy+tJTnAtJZGhLd77r36DohR5Dl9vy8v0k+i86iVojsnRYU3rUe7KRpyxsv3ifyZsCAUm7Kl8bylCQgyEdUtTGFEWRDWfDeaN5NZQKgbWnQvhfnn3A7Fcb8EbzJzWGnkZCuoohy09z84HUjSYAH/fywd7CmE+2XUEjQu8Gbsx7vVGFFaylZ+dyKTyJ83nB0cXQRFIf6yAQBKjtYo1vNTsqWZpgZWqEhYkSSxMjLEyVWJpKU0XkZtGylmTAGB2fhKOdzRPTR6nZucSnqUhIzyYuTUVCunSLS8smIV1FfJqK+HTp9YR0FTnqZ++6SoWAu70F1R0t8XaWAp/qTlZUd7LEwdLE4K5gSoJKpWLWgiVcCk8iwqklMekPvxNXGzNe8a1MX9/K1HWzea7/z8LYfeUB49ZdQCHAlnFtaOJehqJaXbN0Kfj7wzffSGahSLYSS47cpaazFbsntjfIGos/A8KZtuUyNmZGHJnaiUqWhU/zFyQnJ4fVq1cDMGLECIyNy2cKd3NAOFO3XMba1Aj/qX6ln/pRqyXNoaq6a1LJ53RwPIOWnUYhwO6JHUpch6nrwHL2npss9r+Lk7Up+yd3KLJ8o6T8fjKEL/+Rznn/e7kuI9t56XT9ZUEOhnRISTZmPnP23mTh4bsoFQK/DW9KZ5/iXQmmZOUwYuVZLoQlaZ97tUlV/Go78uGfl1GpNVR3tGTOaw1p6mFfmn+nTKg1IndiUjkfmsj5kETOhyUSWsw2Z40qi/D5AwEpm6EwMcPCRImFiRFKBSSm5xTaffUsKlkYa7M8BYMed3sLw5o+KSc0GpEz9xL4+1IEu648IKVArVENZytea1qVEW09X8hptMmbLrH9YgRejpbsmtAecxPD/R+TM3PwmyPV5Xw/oAGDniLEqm/UGpHePx/jZlSq3juinoVGI/LKwuNcjUjhzVbufNuv5JmXimDM2gD2XoumXQ1H1o5sUaKLEl0HQ1k5anr/fIy7sekMaFKFH1/3LdP6nsYvB+8wL8+c+IeBDXndQOrO5GBIh5QmGBJFkY82X2brhfuYGSvY8G4rGhfzyjVDlcu7awI4EfRQfLGZRyVGtvPiq3+vEZ2SjSDA2228+KhHLSxM9OtNFZOaxYXQJK5HJpOanUtGtpp0VS4ZKjVp2blkqKTnUtJSOf/1K8DDYOhpWJoosbcywcHSFAdLExysTLB/5L4Jjlam2FtK9w25rbOiyc5V438rlr8vRXDgRozW4NLbyZLvX21Ic8+KD6DLk+TMHHr+dJQHyVmM6Vid6b3q6HtIT0cUQRBYefwe3+y4jrO1Kf5T/fT+230ax+7EMmzFWcnWZ3JHPB11P91VVs4Ex/NGGTIvT67wDJw6BZMm6WR8AGHxGXT98QgqtYbfhjejW93iT42Wx5Tj+dBEBi45iSjCyhHNin2BXlxEUeS7nTdYfvweCgEWDW1Cz/puOv2M0iAHQzqkNMEQSFoPo34P4MjtWOwtTdgytjXVnayKXhApkn9/3QUO3nyoClvFzpwFg3zZdC6czefvA+DhYMHsVxvSqrpDyf4pPVDwBx6bkAzGptrASa0RqWRpgoMc3BQLjUbDjRs3AKhTpw4KxZMZsJSsHHZefsC8fbe1BpLDWnkwrWftF0q/6MD1aEatCZAMXce3pd5jYod6JSQE/vc/cHODH35Alauh649HCEvIKFFNYUXz1sqzHLkdy0sNXFk0tGmxlinOPqlLxq49z55rUbSv6ciad0qWeXmEW7ekYmqFAq5ehTq6C6jzp0Y9HSzYO7lDsbOz5VV/9e2O6yw/fg9XGzP2Temg825UURT5ZOsVNgWEY6JUsGJEM9rXdNLpZ5SUkpy/X/x5BD1hrFSwaGgTGla1JSFdxVurzhZbDdTMWMmSYU3p3fBhZB2RlMlbK8/Ss74rq99ujputGaHxGQxadpr//XX1uVIDNTdR4mhliruDBXXcbKhfxZYqduZyIFRMMjMzqV+/PvXr1yczM/Op77ExM2ZwC3cOTunIG3kp67WnQ+n241GdKJwbCl3rutC7gRtqjcj0bVcMyxT1xg2pUPfnnyE8HBMjBVPzir2XHrlLbBFSDvri05fqoBBg15UozocmFGuZ4uyTumT6Sz6YKCWXdv9bsaVfUe3a0LcvaDSSu70OGd+5Bo5WpoTEZ/B7nlSKPvmwe208HSyISsli5s4bOl+/IAjMHNCAlxq4olJrGL3mvLYD9nlADobKEUtTI1aOaI6HgwXhCZm8s/pcsS0wjJUKfh7UmIFNHxb4pavUjFoTwO3oVPZMas/gFg9Pct3nH+X4HcNzny6Io6Mjjo6O+h7GC0Fxt6WthTGzBzZk/aiWeOQdCEetCWD8+gsGezIuKV/2qYu1mRGX7ycbxElHS8+e0LEjZGfDV18B8HJDNxpVtSVdpWbBwdv6Hd8zqO1qra35KImFSEX+vj0cLBnR1hOAb3deJ6csfoszZ0qZoe3b4fRp3QwQSTQ130bml4NB2gxtcSiPbWluomR2nqfmxnPhHLtThiDyGSgVAvPf8KV9TUcyc9S8veosl+8n6fxzygM5GCpnHK1MWfNOCxwsTbgakcK4P85razmKQqkQ+OHVhgxv7aF9ThRh5q6bfLvjBl+9Uo8/Rrakip05EUmZvLniDNO3XSblGYax+sTS0pLY2FhiY2PLpe32v0RptmWbGo7smdiBMR2ro1QI7Lj8gK4/HmFzQLhB+WWVBmcbM2290Nx9t4hIKv/MRLEQBJg1S7q/ejXcuIEgCEx/SRrrhrPh3I2tGHPfkjKlWy3MjZVcDEti15WoIt+vj9/3+M41sLc04W5sOuvPhJV+RXXrwltvSfc/+YRChchKyMCmValfxYbU7Fzm7Ste8Fue27JldQfeyjuffLL1Srn4U5oaKVk6rClNPSqRkpXLa0tOsTnAQA2WCyAHQxWAh4Mlq95ujoWJkmN34vh46+VimyIqFAJfv1KP+W80wtr04TTS5vP3eXP5Geq4WbN3cgdtwLThbDg95h/Fv4wu1DIvHuYmSqb3qsPf77elrpsNyZk5TN1ymWErzhqm+WkJGNS8Gs09K5GhUvO/v64aToDXuvXDaZjPPwegVXUHutZxRq0R+aGs5qPlhLONGWM6SlpDs/fcJDu3bObC5YGNmbFW12b+gdskZ5ThIvDrryWfsiNHYM8eHY1QOn5/8bKkRL3pXBjXI1N0tu7SMq2nD1UrSRfQX5TTb8XCxIhVbzeni48z2bkapm65zGfbrxjkfpSPHAxVEA2r2rFoaBOUCoHtFyOYvbf4B0FBEOjfuCoHPvSjU+2HBWnnQhLp/fNxIhIz+aZvfTaOboWHgwUPkrMYseocH20OLNsBQuaFpH4VW/4e35aPe/pgaqTgeFAcPX46yvJjweSWZbpBjygUArMGNMBYKXDoZkyxshkVxnffSdMw27bB2bMAfNzTB4UAe69FExBSvLqcimZ0h+o4W5sSlpDB2lOh+h7OUxncvBq1XKxIysjh50N3Sr+iatVg/Hjp/kcfScGrjmjhZU/vhm5oRPhmxzW9B+qWpkbMGdgIpUJg28UIfjsWXC6fY2NmzG/DmzG5ay0EAdadCeONpad5kGwgmdvHkIOhCsSvtjPfD5B0MZYeCWbViXslWt7FxoyVI5rzw8CGWOQVG0elZPHyL8f49dAdfKvZsXtie95p64UgwJbz9+k2/4hBFMxmZmbi5+eHn59fhRRYvshkZWUxdOhQhg4dSlZW8YryH8dYqWCcnzd7JnWgVXV7MnPUfLvzBgMWnzSIq9fSUMPZmvf8agDw5T/XDOdCoF49GD5cup+XHarpYq0VZJ25q/h1ORWJhYkRH3aXMi+/HAoiKePZZsW62CdLg5FSwWe9JT2kNadCuJdnPl0qpk8HV1eIjoZ7JTs2F7nqXtKFx+ngBPZeKzxQr4hjZWtvB/7XW5qunbX7Jodvls9MgkIhMLFrTVaOaI6tuTGXwpN4+efjnAwyvPpWubW+CErbWl8YCw8HMWfvLQQBfhlcOtPByKRMpvx5idPBD68qXWxM+ax3Xfo0dON8aCLTtlzWOtP3863M9Jfq6M31vCLk+v8rlIe1yaZz4Xy36wapWbkYKQTGdKzOB51rPncdftm5anotOEZwbDqDW7gza4CBiPKFhsKAARAeLqlT161LTEoWHfPMRxcPbUKvBvrXZXkctUbkpQXHuBWdyqh2Xnz+8tOFGPX9+x6x6iz+t2LpVteF34Y3K/2KTp6Etm3B3R0OHZKsVXTEvH23+OVQENXszdk/ueMzf1sVtS1FUeTT7VfYcDYca1Mjtr/fhhrOZdRsKoSw+AzG/nGe6w9SUAhSdnR0h+rlqpIvt9YbOO/5eTOslYfkYbYpkNPB8UUv9BiV7czZ8G4rvu1XHxOltDNFp2QzYcNFBiw6iUIhsGtie8Z0qI5CgL8uRdLm+0O8uyaAwzdjDKsFWaZEmJiYMH/+fObPn4+JSdml9QVBYFBeG37Peq7kakQWHr4rnQSjUnUw4orD1EjJzDw/qA1nwzhnKFNQHh6SF1ZsLHTqBFev4mxjpvUAm73nZtk6osoJpULg07wMwu+nQp5ZW6brfbKkfN67DkqFwP7r0Zy8W4asQ6NGUuF7WBh06AB3yjD19hhjO3rjYmNKeEImK0s4K1AeCILA16/Up4WXPanZuYz8PaDQ7F9ZcXewYNt7bXi1SVU0opSRGvfHBVINpOFHzgwVQXlkhkC64np/3QX2XIvC2syIzWNb4+NauvWHJ2Tw4Z+BnH3swP9Ko8pM61mbuDQV3+28zrmQh5oPlW3NeL15NV5vVo3KduXnIJ+Pvq8cZYrPnqsP+OLva8SkZmNrbsyqt5sblvdXMfhk62U2ngunhrMVOye0Mww7klOnoE0b6X6lSuDvT1rtuvjN8ScuLZuvX6nHW2089TrEZzFsxRmO3Ymjd0M3Fg5pou/hPJUv/r7KmlOh1HGzYccH7Upval27NtzO6/xydZUyebV1Ywa87cJ9pvwZiKWJksMf+eH8lEx9RR8r49Oy6bvwBPcTM2lbw4HVb7fAuBy980RRZN2ZML7+9xo5ahFvJ0uWDmtaLlkpOTP0HKBUCPw0yJfmnpVIzcrlzeVnSi1QVc3ego2jW/H1K/UwK+DH9U9gJF3mHWH/9ShWvd2C/ZM7MLKdF3YWxkQmZ/HTgTu0m32Id1afY9+1qOe2eFZGt/Ss78a+yR1o4m5HcmYOQ387Uy6aJOXJ9F51cLQyJSgmjSX+5VMgWmIaFJiyS0yETp2wunGVSV0lJeoFB+8YzFXy43z6Uh0EAXZefsCFMMMU0pvUtRbWZkbceJDClvNlaOX29X14PyoK/Pzg+vWyDg+Afr5VaFTNjnSVmjl7b+lknWXFwcqU34Y3w8JEyYmgeL7doZv/9VkIgsCbrTzYNKY1rjZm3I1Np++vJ9h15UG5fm5RyMGQHjEzVrJ8eHPqutkQl6Zi8LLTbM2z2igpCoXAW2082TOpA809H17FZ+dqWHj4Ln5z/DkfmsinL9Xh9PQuLBjkS6vq9mhEOHQzhtFrz9N29iHm7r1FeMLz3Wb9oqPRaAgJCSEkJASNDrteCmJnYcIfo1pqxdPeWX2O3Xo+WJUEWwtjvswzGl14OIigGAPQ87Gy0rrYA5CQAF268IZRHNWdLElIV7H0iIEEbo9Rx82G1/IEYGc+RYixIvbJorC3NGFinsXJnL23S6+h0/QxC5KoKO3UZllRKATtfrnlwn2u3E8u8zp1QR03G+a/4QvA76dCy6bbVEyauFdix4R2tKpuT7pKzXvrLjBr1w29XZTLwZCesbUwZvPY1vSo54JKreHDzYHM2n2j1DU9no6WbBzdmv+9XFdbSyQIEJeWzSfbrvDSz8cICEmkr28VNo5uzaEPOzKmQ3UcLE2ITsnm18NBdJhzmGErzrD7ygODrGP4r5OZmYmXlxdeXl7l2plnYWLE8rea0buBGzlqkffXX2DTufI/SOqKlxu60am2Eyq1hk+3XSm2tle50uSxKaaEBIy7deWTmpJp6/LjwUQlV1w3VkmY0q025sZKAkITn+iIqqh9siiGt/bE08GCuLRsFh0OKt1KGjd+8rmYGCkguny5bANECgL6+VZGFOHrf/Xfap9Pj3qufJTXPfjF31dLVctaUhytTPljZEvG5NXOLT0azJsrzpRIrVtXyMGQAWBpasTioU2Z0FlqC156JJjRawJKnTJXKgRGtvNi96QONHa30wqqCsCtqFTeXHGGjnMO8/vJEKzMjJj+Uh1OTe/CwiFNaF/TEVGEY3fiGLfuAq1nHeT73TcJKUvLah4WFhZYWFiUeT0yFbctTY2U/Dy4MYNbVEMjwsdbr7Ds6N1y/1xdIAgCM/rVx9xYydmQBP40BBXcglMw+SQl0e3dV2lexZqsHA0/7jeM6ZPHcbV9WPD9zY7rTyjpG8Lv28RIoVX4/u1YcOmy3E/7jkxMYORISY9IB3zcy0cbWO64/GTGVV/b8v1ONejTqDK5GpFxf5yvkFkCI6X0nS0a2gRLEyWngxN4+efjFT4dKxdQF0F5FVA/i38CI5m6OZDsXA21XKxYPrw57g6l/1GoNSIrjgez2P8uic/QXXG1NqWJZyV8q9nhW60SdubG/B0YwZ8B9x/xr/JwsKC2izU+rtbUdrWhtqs1ng4WGJVjsZ2MYSCKIt/vuamdxnnPz5upPWqXa1usrlh+LJhvd97AxsyIAx92xNlaP/ISgKRu3KvXo8/17w8//sgFha3UCSrArontS91QUZ6kZ+fSauZBUrNzGd2hOp++pDuXd10hiiKvLTlFQGgirarbs3F065KvpGpViIiQ0uqiKBW+Hz8uPdYRCw7cYf6B21SxM+fgh89uta9oMlVqXl96iisRydR2sWbre22wMjWqkM8Oikll9NrzBMemY6wU+KJPPd5s6V7q40xJzt9yMFQEFR0MAQSGJ/HumgBiUrOpZGHMoqFNae3tUKZ1ZuWo+Scwkt9PhnCtCFE9pUKgdwM35r3eiIM3Yth4Lowjt2OfatljYqSgprMVtV2lIMnH1QYfV2ucrE2fuQNn5ai5n5hJeGIG9xMyeKmBGw5WpmX6/2QqhsX+d5mdZyExpKU7M/rWL33XTgWRq9bQf9FJrkQk83JDN37VZzdUdLTUoQTg7CxNv7z+OmzaBMB7686z60oUnWo7sertFvobZyEsOHCb+QeklvM17zSnQy1nPY/oSa5FJtP75+OApGczzq+EekGvvCJlg8aNg969JbPdM2eghe6+k0yVmi7z/IlMzmJKt1pM6FKz6IUqiKjkLPr8epzY1Gy61nFh2bCmKCrod56alcO0LZfZfVWaim3ibsfUHj6lOgfKwZAO0UcwBNLOOHptAJfvJ2OkEPimb32GtHQv83pFUSQgNJEl/nc5WIjq6Ng80T3LvCuChHQVNx+kcDMqlVtRqdyMTuV2VCqZOU/3mrE1N6aKnRmVLEwwMVKg1ogkZ+YQmZRJbNpDLQtBgGtf98DCpGKuPGTKzvozYXz21xVEUarL+fF1X0yMDDs7eDUimVd+PY5GhFUjmtPJR48n8Ndfh0mTpIJqX1+pRuXYMbCwICQuna4/HiFXI7J+VEva1KgYF/iSkJ2jxueLPYgiGCkE1rzTwiDH2fGHw4TmTfPMe70hrzYpwRRXcjLY2kr3lyyRzFw7dND5GP8JjGTChouYG0ut9q62esxaPsbFsETeWHYaVa6G9/y8mdbTp8I+WxRFfjsWzI/7b5OVI03HtqvhyEc9auNbza7Y65GDIR2ir2AIpAzK1C2X+TcwEoARbTz5vHcdnU1Lnb0Xz/AVZ8nKfXqRtKmRAr/aTrzUwI0udVyeSJVqNCLhiRnaAOlWVCo3olIIiUvn8VpVMVdF7PaZADj1/xTBSBJmUyoEPOwtMDNWYmaswNxEibmxElNj6a+ZsQJz44fPAahyNeSo828iKrWGnNzHHuffch99nKsW0YgiIlL2WyOK2oyX+Pjz5BtYS+8R895jYWKEk7UpLjamOFub4WxtiouNGU42ptr79hYm5XYllZ2dzfg8H6Vff/0VU9OKz6rtuBzJ5E2XyFGL+NV2YvHQppibGEaa/1l8t/M6vx27RxU7c/ZN7qAN9PXKyZPQqpXkXZbHV/9cY/XJEOpXseGf99tV2BV5Seg+/wi3o6UOPWOlwC9v1GfrLzMA/e2Tj/ProTvMLeAUP6NvPYa19tTfgJ5CwSm9/o2rMP8NX7Kysnj11VcB2Lp1K2Zm+guQtl+8z+RNgQAsGORLX98qFfr50SlZ/HooiI3nwshRSwfqbnVd+LB7rWJNI8vBkA7RZzAE0o9l4eEg7Y+6fU1Hfh3cBFsLY52s/8aDFF5fcpLU7MLdhE2MFHSo6UTvhq50qeOCjdmzPz8rR01QTBpX7ifz16UIzocmosrKJHz+QACqTd6CwsRwroDKAyOFgKOVKc75AVNeoORsbYarrSm+1Sphb1k6pV5DEbD0vxXD2D/Ok5WjoZlHJVbk+Q8ZKhmqXLr9eJSIpMxCrSX0TXxaNn5z/EnNztXLCag4fLvjGsuPh2gfK3KzuTdPOoEbiqhqYHgSfReeeOS5qT1q856fd+lr3SIjwcZGyurpiMv3k3jlV2mc295rQ20HE4P4fecza/cNlh4JxtRIwZ9jWtOoBJkZXRGekMFPB+6w/eJ9NKI0o9C3UWUmda2Fp+Ozt48cDOkQfQdD+ey5GsWUPy+RoVJT3dGS5W81o7qTbn6QF8ISeXP5GTJUarrWccHcRMmuy5HkBeIoFcIjrf4mSgXtazryUgM3utZ1KfIEmJady+L915jWxxd4NBga1KwqA5pWIytHTWaOmqy8W6ZKTVauRvqb/1yOGoUgYKxUSDcjAZP8+0oFxkoBE6PHHmvfKz02UihQCNKPSRAEBAr+BQEh77Vn3AdSs3OJSckmNjWL6JRsYlKziEnNJibvfny66qn1VQURBGhU1Q6/2k741XamYRXbYmcAVCoVc+bMAWDq1Kl6sT/IJyAkgbdXnyM1K5c6bjaseacFTtb6zwo8i8O3Ynh71TkUAvz9fjsaVLXV95Ak0tNh+XJ47z0wNtb6FxpacW0+/wZG8sGGi9rHojqH1LPb6FHPld9/+lav+2Q+qlwN9b7co80o5DO6Q3Wm9/IpeUC0eLHkaP/RR/D11zocKXy0OZAt5+/jW82OtcMbYWMjqTEbQjCk1oi8uyaAQzdjcLY25d8P2unN4zIoJpUf999m1xWpnshIIfBas2pM6FIDN9snnRReuGAoJCSEGTNmcOjQIaKioqhcuTJvvvkmn332WaE/OlEU+frrr1m2bBmJiYm0bNmShQsXUq9evWJ/dv7GjI5LwNlBv5YE1yNTeHdNABFJmdiYGbFwaBPa13TSybqP34ljwsaL7J3UASdrU6JTslh3OpT1Z8OIK1Dj83hgZKwUaFvDkRZe9ng5WOLlZImng+UTB++C2Yxa07aTLUgB1MIhTejd0PAMKstCjlpDfJqKmILBUkp2XsCURWhCxhMigPaWJnSo6YhfbWc61HIqddZIH1yPTGH4yrPEpWXj6WDB2pEtqWZvuBIKEzZc5J/ASOpVtuHv99vqvxtSFCWhv4sX4ZdfYPx4MlVqOs31Jyoli89eqqNtaTcUwuIz6DDn8FNf+3lwY15pVHLz6fJgwKITXAhLeuL5Qc2r8V3/BiUr/t+yBV57DSwsJM+yyrr7H2NSsug01590lZpZr9RkSFvJ/sMQgiGQipoHLDrJnZg0GlW1ZdOY1noN0K9GJDN33y38b0nK+CZGCoa18uA9P+9HmnFeuGBoz549bNq0icGDB1OjRg2uXr3Ku+++y7Bhw5g7d+4zl5s9ezbfffcdq1evplatWnz77bccPXqUW7duYW1dPB+U/I3ZY/YeVo7uUCE+XoURl5bN2LXnCQhNRKkQ+Lx3HUa08dRJi3NsavYTV/XZuWp2Xn7A+jNhXApPIreYwnWVbc3wdLTE09GS6o6WuJjDK82ljo6QqHjWnIti7elQdk1oTw1n3aWcnxceJGdy5FYs/rdiOREUR2oBtVxBgIZV7fCr5YRfbScaVrUz+I6tkLh03lxxhvuJmbjamLF2ZAtqupSfA3ZZiE3NpuuPR0jOzDGcQGPxYikr5OgIQUFga8ufAeFM23IZGzMjjk7rhJ2F4QTIoijSeMZ+kgrIdViYKPmoe23ebOVhMAX13/x7/QlTVE8HCz59qQ7d6rqU7LgpipKj/alTkubQ8uU6HWt+NtDJTCTg6z6A4QRDAKHx6fRdeIKkjBz6+lbmpzd89S6tcS4kgTl7bml9OS1NlIxs58WoDtWxMTN+8YKhpzFnzhwWL15McPDT5etFUaRy5cpMmjSJjz/+GJAKT11cXJg9ezZjxowp1ufkb0zfz7Yzf1gb/Grrv400O1fNZ9uvsiXPumNwi2p8/Ur9cj8AZeWouRKRzIXQRC6EJXIhLOkRHaLC0KiytDVDbb/dibebIy42pvi42uDtbIWXgyWVLI0xM1ZipBD0/iOrSHLUGs6HJuJ/Kxb/WzHcfMwpvpKFMR3yAqMONaWsUVyc5Mzt6OhoMNsqKjmLYSvOcCcmDTsLY35/u4Ve6guKw5/nwpm29TLmxkr2Te6g/0xWTg40bAg3b8K0aTB7NmqNSO+fj3EzKtUgNX3yzVsVgjSV4maaw7b32uDm4mww+2R+t1ZBtr/XhsalNR7ON9sVBDh//ulq1aUkK0dNt/lHCI1K1B4rDSkYAjgZFMewlWdRa0Sm9azNe3419D0kRFHk6J045u69xZUIyd7E1tyYsR29GVDfHlcn+xc7GPr888/Zs2cPAQEBT309ODgYb29vLly4QOMCO2zfvn2xs7Pj999/L9bn5AdD9yJi8KysmykpXSCKIsuP3WPm7huIIrTwsmfJm00rdHpFFEXuJ2ZyISyRi2FJXAhL5FpEMo9N0SMIYKxRceeHAUDRBdQKQVI+NjVWYGqkkO4bKfIe593Pf/6x9xgpFdransdrfXhabRAP64co8NqAJlX0Ni8elZzFkdsx+N+K5fidJ7NGdR1N2PVRd8DwDpaJ6SpGrDpL4P1kLE2U/PZWM9p4G17btSiKDP7tNKeDE+hYy4nVbzfX/wl8xw7o00fSt7l+Hby98b8Vw4hV5zBRKjj4YUf9B20FmLfvFiHxGYz382bQYn8uzegLGNY+GZ6Qgd9cf95s6U50SjZ7rkXRwsueTaNblf77HjIENmyA9u3hyBGdCjHuvvKAMatOGmwwBLD2VAj/+/saggC/DWtG17ou+h4SIP2m916LYu6+29oyBHvjXC5+2+/FDYbu3r1LkyZNmDdvHqNGjXrqe06ePEnbtm2JiIigcoG53dGjRxMaGsrevXufulx2djbZ2Q+zHcnJybi7u7N8zzlea11Lt/+IDjh6O5ZpWwJJy1bT2tuB34Y30+t4MlVqrkUmE3g/icDwJALDk4lPV6FRZRGxaDgA/5y8QkymQGhCBqHx6YTGZxCekGlQPmjr321Jw6p2+h4GOWoNgeFJHL8Tx7GgOG5FpT6yLSMjIw3uYJmWncvEDRc5cy8BU2MFeya0x0lPgWVh3ItLY8DiU+TkapgzsCG9Gui5dk0U4dVX4eBBSehv/XpEUSpePR2cwEsNXPlhYCP9jrEAqlyNNhu95tgtPnhZEiS8GRyKm4OdHkf2EFEUCYlPx8vRisikTF7+5TiqXA3z32hEt7qupVvp/ftSjVdWFqxeLSmI63C8w5Ye5d+PXwEM8/cNMGPHNTadu4+FiYKdE9rjpE9V98dQa0R2Xo5koX8Q4VEJRCweQVJSEra2RTRLiHrkyy+/FMmTb3nW7dy5c48sExERIdaoUUMcOXJkoes+ceKECIiRkZGPPD9q1CixR48eZRqTfJNv8k2+yTf5Jt+ej1t4eHiR8YheM0NxcXHa2odn4enpqRWdioyMpFOnTrRs2ZLVq1ejUDy7Rqa002SPZ4Y0Gg0JCQk4ODjoP41egJSUFKpVq0Z4eLheW/5lno38HRk+8ndk+Mjf0fOBIX5PoiiSmppK5cqVC40XAPQqwero6IijY/HqCSIiIujUqRNNmzZl1apVRf5jXl5euLq6sn//fm0wpFKpOHLkCLNnz37mcqampk+op9rZ2RVrjPrAxsbGYHY8macjf0eGj/wdGT7yd/R8YGjfU5HTY3kYRv9jEURGRuLn50e1atWYO3cusbGxREVFERUV9cj7fHx82L59OyAVxE6aNImZM2eyfft2rl69yogRI7CwsGDIkCH6+DdkZGRkZGRkDBADMOcpmn379hEUFERQUBBVq1Z95LWCs3y3bt0iOTlZ+3jatGlkZmby3nvvaUUX9+3bV2yNIRkZGRkZGZkXn+ciGBoxYgQjRowo8n2Plz8JgsBXX33FV199VT4D0yOmpqZ8+eWXBmGIKPN05O/I8JG/I8NH/o6eD5737+m5bK2XkZGRkZGRkdEVz0XNkIyMjIyMjIxMeSEHQzIyMjIyMjL/aeRgSEZGRkZGRuY/jRwMvUBkZ2fj6ys5CV+6dEnfw5HJIyQkhJEjR+Ll5YW5uTne3t58+eWXqFQqfQ/tP8+iRYvw8vLCzMyMpk2bcuzYMX0PSSaPWbNm0bx5c6ytrXF2dqZfv37cunVL38OSKYRZs2ZpZW2eN+Rg6AVi2rRpj/iwyRgGN2/eRKPRsHTpUq5du8b8+fNZsmQJn376qb6H9p9m06ZNTJo0ic8++4yLFy/Svn17evXqRVhYmL6HJgMcOXKE999/n9OnT7N//35yc3Pp3r076enp+h6azFM4d+4cy5Yto2HDhvoeSqmQu8leEHbv3s2UKVPYunUr9erV4+LFi/j6+up7WDLPYM6cOSxevJjg4GB9D+U/S8uWLWnSpAmLFy/WPlenTh369evHrFmz9DgymacRGxuLs7MzR44coUOHDvoejkwB0tLSaNKkCYsWLeLbb7/F19eXn376Sd/DKhFyZugFIDo6mnfffZe1a9diYWGh7+HIFIPk5GTs7e31PYz/LCqVivPnz9O9e/dHnu/evTsnT57U06hkCiNfUFf+3Rge77//Pr1796Zr1676HkqpeS5EF2WejSiKjBgxgrFjx9KsWTNCQkL0PSSZIrh79y6//PIL8+bN0/dQ/rPExcWhVqtxcXF55HkXF5cnbH5k9I8oikyZMoV27dpRv359fQ9HpgAbN27kwoULnDt3Tt9DKRNyZshA+eqrrxAEodBbQEAAv/zyCykpKUyfPl3fQ/7PUdzvqCCRkZH07NmT1157jVGjRulp5DL5CILwyGNRFJ94Tkb/jB8/nsuXL7NhwwZ9D0WmAOHh4UycOJE//vgDMzMzfQ+nTMg1QwZKXFwccXFxhb7H09OTQYMG8e+//z5yAFer1SiVSoYOHcrvv/9e3kP9z1Lc7yj/IBEZGUmnTp1o2bIlq1evRqGQr0X0hUqlwsLCgs2bN9O/f3/t8xMnTuTSpUscOXJEj6OTKcgHH3zAX3/9xdGjR/Hy8tL3cGQK8Ndff9G/f3+USqX2ObVajSAIKBQKsrOzH3nNkJGDoeecsLAwUlJStI8jIyPp0aMHW7ZsoWXLlk8Y28roh4iICDp16kTTpk35448/npsDxItMy5Ytadq0KYsWLdI+V7duXfr27SsXUBsAoijywQcfsH37dvz9/alZs6a+hyTzGKmpqYSGhj7y3Ntvv42Pjw8ff/zxczWlKdcMPee4u7s/8tjKygoAb29vORAyECIjI/Hz88Pd3Z25c+cSGxurfc3V1VWPI/tvM2XKFIYNG0azZs1o3bo1y5YtIywsjLFjx+p7aDJIRbnr16/n77//xtraWlvLZWtri7m5uZ5HJwNgbW39RMBjaWmJg4PDcxUIgRwMyciUO/v27SMoKIigoKAnAlQ5Mas/3njjDeLj4/nmm2948OAB9evXZ9euXXh4eOh7aDKglTzw8/N75PlVq1YxYsSIih+QzAuNPE0mIyMjIyMj859GruCUkZGRkZGR+U8jB0MyMjIyMjIy/2nkYEhGRkZGRkbmP40cDMnIyMjIyMj8p5GDIRkZGRkZGZn/NHIwJCMjIyMjI/OfRg6GZGRkZGRkZP7TyMGQjIyMjIyMzH8aORiSkZEpE35+fkyaNEnfw9AJZf1fVq9ejZ2dnc7GIyMjUzHIwZCMjEyZ2LZtGzNmzND3MCocT09PfvrpJ52vNyQkBEEQuHTpks7XLSMj83RkbzIZGZkyYW9vr+8hyMjIyJQJOTMkIyNTJgpOLXl6ejJz5kzeeecdrK2tcXd3Z9myZdr3tm7dmk8++eSR5WNjYzE2Nubw4cPadcyYMYMhQ4ZgZWVF5cqV+eWXXx5ZJjk5mdGjR+Ps7IyNjQ2dO3cmMDBQ+/pXX32Fr68va9euxdPTE1tbWwYNGkRqaqr2Penp6QwfPhwrKyvc3NyYN29eif7n0NBQJk+ejCAICILwyOt79+6lTp06WFlZ0bNnTx48ePDI66tWraJOnTqYmZnh4+PDokWLtK95eXkB0LhxYwRB0BqVnjt3jm7duuHo6IitrS0dO3bkwoULxR6zjIzMs5GDIRkZGZ0yb948mjVrxsWLF3nvvfcYN24cN2/eBGDo0KFs2LCBgv7QmzZtwsXFhY4dO2qfmzNnDg0bNuTChQtMnz6dyZMns3//fgBEUaR3795ERUWxa9cuzp8/T5MmTejSpQsJCQnaddy9e5e//vqLHTt2sGPHDo4cOcL333+vfX3q1KkcPnyY7du3s2/fPvz9/Tl//nyx/sdt27ZRtWpVreN9wWAnIyODuXPnsnbtWo4ePUpYWBgfffSR9vXffvuNzz77jO+++44bN24wc+ZM/ve///H7778DcPbsWQAOHDjAgwcP2LZtGwCpqam89dZbHDt2jNOnT1OzZk1eeumlRwI8GRmZUiLKyMjIlIGOHTuKEydOFEVRFD08PMQ333xT+5pGoxGdnZ3FxYsXi6IoijExMaKRkZF49OhR7Xtat24tTp06VfvYw8ND7Nmz5yOf8cYbb4i9evUSRVEUDx48KNrY2IhZWVmPvMfb21tcunSpKIqi+OWXX4oWFhZiSkqK9vWpU6eKLVu2FEVRFFNTU0UTExNx48aN2tfj4+NFc3Nz7f9SFB4eHuL8+fMfeW7VqlUiIAYFBWmfW7hwoeji4qJ9XK1aNXH9+vWPLDdjxgyxdevWoiiK4r1790RAvHjxYqGfn5ubK1pbW4v//vtvscYrIyPzbOTMkIyMjE5p2LCh9r4gCLi6uhITEwOAk5MT3bp1Y926dQDcu3ePU6dOMXTo0EfW0bp16yce37hxA4Dz58+TlpaGg4MDVlZW2tu9e/e4e/eudhlPT0+sra21j93c3LTjuHv3LiqV6pHPsbe3p3bt2mX+/y0sLPD29n7q58bGxhIeHs7IkSMfGfu33377yNifRkxMDGPHjqVWrVrY2tpia2tLWloaYWFhZR6zjMx/HbmAWkZGRqcYGxs/8lgQBDQajfbx0KFDmThxIr/88gvr16+nXr16NGrUqMj15tflaDQa3Nzc8Pf3f+I9BdvaCxuHWGCaTtc87XPzPy//83/77Tdatmz5yPuUSmWh6x0xYgSxsbH89NNPeHh4YGpqSuvWrVGpVDocvYzMfxM5GJKRkalQ+vXrx5gxY9izZw/r169n2LBhT7zn9OnTTzz28fEBoEmTJkRFRWFkZISnp2epxlCjRg2MjY05ffo07u7uACQmJnL79u1HapcKw8TEBLVaXaLPdXFxoUqVKgQHBz+RDSu4XuCJdR87doxFixbx0ksvARAeHk5cXFyJPl9GRubpyMGQjIxMhWJpaUnfvn353//+x40bNxgyZMgT7zlx4gQ//PAD/fr1Y//+/WzevJmdO3cC0LVrV1q3bk2/fv2YPXs2tWvXJjIykl27dtGvXz+aNWtW5BisrKwYOXIkU6dOxcHBARcXFz777DMUiuJXDnh6enL06FEGDRqEqakpjo6OxVruq6++YsKECdjY2NCrVy+ys7MJCAggMTGRKVOm4OzsjLm5OXv27KFq1aqYmZlha2tLjRo1WLt2Lc2aNSMlJYWpU6dibm5e7PHKyMg8G7lmSEZGpsIZOnQogYGBtG/fXpuZKciHH37I+fPnady4MTNmzGDevHn06NEDkKaddu3aRYcOHXjnnXeoVasWgwYNIiQkBBcXl2KPYc6cOXTo0IFXXnmFrl270q5dO5o2bVrs5b/55htCQkLw9vbGycmp2MuNGjWK5cuXs3r1aho0aEDHjh1ZvXq1tqXeyMiIn3/+maVLl1K5cmX69u0LwMqVK0lMTKRx48YMGzaMCRMm4OzsXOzPlZGReTaCWJ6T5zIyMjIlxNPTk0mTJr0wFh8yMjKGj5wZkpGRkZGRkflPIwdDMjIyMo9x7NixR1rfH7/JyMi8WMjTZDIyMjKPkZmZSURExDNfr1GjRgWORkZGpryRgyEZGRkZGRmZ/zTyNJmMjIyMjIzMfxo5GJKRkZGRkZH5TyMHQzIyMjIyMjL/aeRgSEZGRkZGRuY/jRwMycjIyMjIyPynkYMhGRkZGRkZmf80cjAkIyMjIyMj859GDoZkZGRkZGRk/tP8H5y7ry26Xm2DAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHFCAYAAADxOP3DAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydZ3QUZReAn63Z9F4gHQi9hN57k6p0BEGaIAgKiCJWVBRBpaiAKEjvvXcISOgQQq8pBEJI73V35/sxyUJIQtqm4LfPOXuymZ1yd/add+7cKhEEQcCAAQMGDBgwYOD/FGlZC2DAgAEDBgwYMFCWGJQhAwYMGDBgwMD/NQZlyIABAwYMGDDwf41BGTJgwIABAwYM/F9jUIYMGDBgwIABA//XGJQhAwYMGDBgwMD/NQZlyIABAwYMGDDwf41BGTJgwIABAwYM/F9jUIYMGDBgwIABA//XGJQhA69k5cqVSCQS3Usul+Pi4sLIkSN58uRJjvUuXbpUhtKWb9avX8+CBQtKbP8eHh6MGDFC939oaCgzZ87k6tWrBd7HsWPHaNSoEaampkgkEnbu3Kl3ObMICgpCIpGwcuXKEjtGeaVdu3a0a9euxI/ToEEDPvroo2LtQx/jdvHixSX2O3/55Ze4ubkhl8uxsrIqkWPkRda8FxQUpFvm4eFBz549S1WOsjzufwV5WQtg4PVgxYoVVK9enZSUFE6dOsXs2bM5efIk169fx9TUtKzFey1Yv349N27cYPLkySWy/x07dmBhYaH7PzQ0lG+//RYPDw+8vb3z3V4QBAYOHEjVqlXZvXs3pqamVKtWrURkBahQoQJnz56lcuXKJXaM/2cCAwPx8/MrtiKjj3G7ePFi7Ozssinr+mDXrl388MMPfPHFF3Tr1g0jIyO97t/A/w8GZchAgahduzaNGjUCoH379mg0Gr7//nt27tzJ0KFDy1i68k1ycjImJiaF2kaj0aBWqws1udevX7+womUjNDSU6Oho+vTpQ8eOHYu1ryxSUlJQqVRIJJIcnxkZGdGsWTO9HMdATrZu3YqDgwOtWrUqa1FKjBs3bgDw4Ycf4uDgUMbSGHidMbjJDBSJrJtYcHBwtuUJCQmMHz8eOzs7bG1t6du3L6GhodnW2bRpE126dKFChQoYGxtTo0YNPvvsM5KSkrKtFxAQwODBg6lYsSJGRkY4OjrSsWPHHG6fTZs20bx5c0xNTTEzM6Nr1674+fnl+x2yTNxHjhxh5MiR2NjYYGpqSq9evQgICMix/j///EO9evVQqVTY2NjQp08fbt++nW2dESNGYGZmxvXr1+nSpQvm5uZ07NiRdu3asW/fPoKDg7O5HeG5u2ju3LnMmjULT09PjIyMOHHiBKmpqXz88cd4e3tjaWmJjY0NzZs3Z9euXTnke9FN5uPjQ+PGjQEYOXKk7ngzZ87M9VzMnDkTFxcXAKZPn45EIsHDw0P3+enTp+nYsSPm5uaYmJjQokUL9u3bl+v5PHz4MKNGjcLe3h4TExPS0tJyPWZubrKZM2cikUi4efMmb7/9NpaWljg6OjJq1Cji4uJ069WvX5/WrVvn2KdGo8HZ2Zm+ffvmOLc//PADbm5uqFQqGjVqxLFjx3Jsf//+fYYMGYKDgwNGRkbUqFGDRYsWZVvHx8cHiUTChg0b+OKLL6hYsSIWFhZ06tSJu3fvZltXEATmzp2Lu7s7KpWKBg0acODAgVzPx8sMGDCAWrVqZVvWq1cvJBIJW7Zs0S27cuUKEomEPXv2ZFt327Zt9OnTB6k072k+IiKCsWPH4urqipGREfb29rRs2ZKjR48CvHLcAnz77bc0bdoUGxsbLCwsaNCgAcuXL+fF/t8eHh7cvHmTkydP6rZ/cWzFx8czbdo0PD09USqVODs7M3ny5Bzzwct4eHjw5ZdfAuDo6JhjfBd0Xrh06RK9e/fGxsYGlUpF/fr12bx5c471zp07R8uWLVGpVFSsWJEZM2aQkZGRp3w7duygbt26qFQqKlWqxG+//Zbt88Jc21qtlt9//x1vb2+MjY2xsrKiWbNm7N69+5XnaPHixcjlcr755ptXrmcAEAwYeAUrVqwQAOHixYvZli9cuFAAhL/++ivbepUqVRImTZokHDp0SFi2bJlgbW0ttG/fPtu233//vTB//nxh3759go+Pj/Dnn38Knp6eOdarVq2aUKVKFWHNmjXCyZMnhW3btgkff/yxcOLECd06P/zwgyCRSIRRo0YJe/fuFbZv3y40b95cMDU1FW7evFmg7+bq6iqMGjVKOHDggPDXX38JDg4OgqurqxATE6Nb98cffxQA4e233xb27dsnrF69WqhUqZJgaWkp3Lt3T7feu+++KygUCsHDw0OYPXu2cOzYMeHQoUPCzZs3hZYtWwpOTk7C2bNndS9BEITAwEABEJydnYX27dsLW7duFQ4fPiwEBgYKsbGxwogRI4Q1a9YIx48fFw4ePChMmzZNkEqlwqpVq7J9H3d3d+Hdd98VBEEQ4uLidN/vyy+/1B0vJCQk13MREhIibN++XQCESZMmCWfPnhWuXLkiCIIg+Pj4CAqFQmjYsKGwadMmYefOnUKXLl0EiUQibNy4Mcf5dHZ2FsaOHSscOHBA2Lp1q6BWq3M9Ztb3XrFihW7ZN998IwBCtWrVhK+//lo4cuSIMG/ePMHIyEgYOXKkbr2s8ffiuRcEQdi/f78ACLt37852DFdXV6FVq1bCtm3bhC1btgiNGzcWFAqFcObMGd22N2/eFCwtLYU6deoIq1evFg4fPix8/PHHglQqFWbOnKlb78SJEwIgeHh4CEOHDhX27dsnbNiwQXBzcxO8vLyyfd+s7zN69Gjd+HJ2dhacnJyEtm3b5npesvjzzz8FQAgNDRUEQRAyMjIEc3NzwdjYWHjvvfd0682ZM0eQy+VCfHx8tt9TIpEIhw8ffuUxunbtKtjb2wt//fWX4OPjI+zcuVP4+uuvdb/rq8atIAjCiBEjhOXLlwtHjhwRjhw5Inz//feCsbGx8O233+rWuXLlilCpUiWhfv36uu2zxlZSUpLg7e0t2NnZCfPmzROOHj0qLFy4ULC0tBQ6dOggaLXaPGW/cuWKMHr0aAEQDh48mG18F3ReOH78uKBUKoXWrVsLmzZtEg4ePCiMGDEix7i8efOmYGJiItSsWVPYsGGDsGvXLqFr166Cm5ubAAiBgYG6dd3d3QVnZ2fBzc1N+Oeff4T9+/cLQ4cOFQDh559/1q1XmGt72LBhgkQiEcaMGSPs2rVLOHDggPDDDz8ICxcuzHbcHj16CIIgCFqtVvj4448FhUKR7XsYyBuDMmTglWTd4M6dOydkZGQICQkJwt69ewV7e3vB3NxcCAsLy7behAkTsm0/d+5cARCePn2a6/61Wq2QkZEhnDx5UgAEf39/QRAEITIyUgCEBQsW5Cnbo0ePBLlcLkyaNCnb8oSEBMHJyUkYOHBggb5bnz59si339fUVAGHWrFmCIAhCTEyMYGxsLHTv3j3H8Y2MjIQhQ4bolr377rsCIPzzzz85jtejRw/B3d09x/KsG3blypWF9PT0V8qsVquFjIwMYfTo0UL9+vWzffaiMiQIgnDx4sUck/qryJLjxQlbEAShWbNmgoODg5CQkJBNjtq1awsuLi66G1bW+Rw+fHihjpebMjR37txs606YMEFQqVS6Y0VGRgpKpVL4/PPPs603cOBAwdHRUcjIyMh2jIoVKwopKSm69eLj4wUbGxuhU6dOumVdu3YVXFxchLi4uGz7nDhxoqBSqYTo6GhBEJ4rQy+Ph82bNwuATlmIiYkRVCpVnuMrP2XowYMHAiCsXr1aEARBOH36tAAIn376qeDp6albr3PnzkKLFi2ybbtgwQLB2tpadx7ywszMTJg8efIr18lr3L6MRqMRMjIyhO+++06wtbXNpsjUqlUr1+87e/ZsQSqV5njY2rp1qwAI+/fvf+Uxs8ZLRESEbllh5oXq1asL9evXz3GeevbsKVSoUEHQaDSCIAjCoEGDBGNjY918JwjiNVC9evVclSGJRCJcvXo12z47d+4sWFhYCElJSbl+l7yu7VOnTgmA8MUXX7zyXGQpQ8nJyUK/fv0ES0tL4ejRo6/cxsBzDG4yAwWiWbNmKBQKzM3N6dmzJ05OThw4cABHR8ds6/Xu3Tvb/3Xr1gWyu9MCAgIYMmQITk5OyGQyFAoFbdu2BdC5nWxsbKhcuTI///wz8+bNw8/PD61Wm23fhw4dQq1WM3z4cNRqte6lUqlo27YtPj4+BfpuL8c8tWjRAnd3d06cOAHA2bNnSUlJyRH86erqSocOHXJ1t/Tr169Ax36R3r17o1AocizfsmULLVu2xMzMDLlcjkKhYPny5TlcdCVBUlIS58+fp3///piZmemWy2Qyhg0bxuPHj3O4hory3V8mt3GUmppKeHg4ALa2tvTq1YtVq1bpxkVMTAy7du1i+PDhyOXZwyH79u2LSqXS/W9ubk6vXr04deoUGo2G1NRUjh07Rp8+fTAxMck2nrp3705qairnzp3LV0Z4PtbPnj1LampqnuMrPypXroyHh4fOZXXkyBHq1KnDO++8Q2BgIA8fPiQtLY3Tp0/TqVOnbNtu27aNN998M8d5eJkmTZqwcuVKZs2axblz517p9smN48eP06lTJywtLXXX8tdff01UVJTut3oVe/fupXbt2nh7e2c75127dkUikRT4Gn6Rgs4LDx484M6dO7rf5+Xf/OnTp7qxfeLECTp27JhtvpPJZAwaNChXGWrVqkW9evWyLRsyZAjx8fFcuXJFt6wg13aWW/WDDz7I97tHRUXRoUMHLly4oHNtGygYBmXIQIFYvXo1Fy9exM/Pj9DQUK5du0bLli1zrGdra5vt/6wA4JSUFAASExNp3bo158+fZ9asWfj4+HDx4kW2b9+ebT2JRMKxY8fo2rUrc+fOpUGDBtjb2/Phhx+SkJAAwLNnzwBo3LgxCoUi22vTpk1ERkYW6Ls5OTnluiwqKgpA97dChQo51qtYsaLu8yxMTEyyZXUVlNz2v337dgYOHIizszNr167l7NmzXLx4kVGjRpGamlroYxSWmJgYBEHI87sDOb5/busWlvzGEcCoUaN48uQJR44cAWDDhg2kpaXlmrGU12+cnp5OYmIiUVFRqNVqfv/99xxjqXv37gA5xlN+Mmadl7yOXRA6duyoU7aPHj1K586dqVOnDo6Ojhw9ehRfX19SUlKyKUNhYWH4+voWSCndtGkT7777LsuWLaN58+bY2NgwfPhwwsLC8t32woULdOnSBYC///4bX19fLl68yBdffAFk/63y4tmzZ1y7di3HOTc3N0cQhAJfwy/vE/KfF7LWmzZtWo71JkyYADz/zaOiogr1O75q3axxUdBrOyIiAplMVqAxc+/ePc6fP0+3bt2oXbt2vusbeI4hm8xAgahRo4Yum6w4HD9+nNDQUHx8fHTWIIDY2Ngc67q7u7N8+XJAvMg3b97MzJkzSU9P588//8TOzg4Qs2YK8qSdF7lN/GFhYVSpUgV4ftN7+vRpjvVCQ0N1cmSRW+ZUQchtu7Vr1+Lp6cmmTZuyfZ5XULK+sba2RiqV5vndAb19/8LStWtXKlasyIoVK+jatSsrVqygadOm1KxZM8e6ef3GSqUSMzMzFAqFztqV1xO4p6dnoeTLGjd5HfvFIOK86NixI8uXL+fChQucP39eFzDcoUMHjhw5QnBwMGZmZtmy8nbs2IGpqSmdO3fOd/92dnYsWLCABQsW8OjRI3bv3s1nn31GeHg4Bw8efOW2GzduRKFQsHfv3mxWt8LUprKzs8PY2Jh//vknz88LS0Hnhaz1ZsyYoQu4f5ms0hK2trZ5/o658ap1s8ZFQa9te3t7NBoNYWFh+T5oNG/enAEDBjB69GgAlixZ8soAegPPMShDBkqVrIv+5ZTxpUuXvnK7qlWr8uWXX7Jt2zadmblr167I5XIePnxYLNfMunXrsm1/5swZgoODGTNmDCBOMMbGxqxdu5YBAwbo1nv8+DHHjx+nf//+BTqOkZFRgZ6WX0QikaBUKrNNlmFhYblmnOR2PCjYE3pemJqa0rRpU7Zv384vv/yCsbExIGa3rF27FhcXF6pWrVrk/ReHLOVlwYIF/Pvvv1y6dCnPcbR9+3Z+/vln3U07ISGBPXv20Lp1a2QyGSYmJrRv3x4/Pz/q1q2LUqkstnzNmjVDpVLlOb4KqgxJJBK++uorpFIpbdq0AaBTp0588sknBAcH06ZNm2zu1W3bttGzZ89C19xxc3Nj4sSJHDt2DF9fX93yvMZtVhFWmUymW5aSksKaNWtyrJvXPnr27MmPP/6Ira1toZXNvCjovFCtWjW8vLzw9/fnxx9/fOU+27dvz+7du3n27JnOVabRaNi0aVOu69+8eRN/f/9srrL169djbm5OgwYNgIJf2926dWP27NksWbKE77777tVfHnj33XcxNTVlyJAhJCUlsWrVqmy/kYHcMShDBkqVFi1aYG1tzfvvv88333yDQqFg3bp1+Pv7Z1vv2rVrTJw4kQEDBuDl5YVSqeT48eNcu3aNzz77DBBTa7/77ju++OILAgICeOONN7C2tubZs2dcuHABU1NTvv3223xlunTpEmPGjGHAgAGEhITwxRdf4OzsrDOVW1lZ8dVXX/H5558zfPhw3n77baKiovj2229RqVQFTlutU6cO27dvZ8mSJTRs2BCpVJqvta1nz55s376dCRMm0L9/f0JCQvj++++pUKEC9+/ff+W2lStXxtjYmHXr1lGjRg3MzMyoWLGizr1VUGbPnk3nzp1p374906ZNQ6lUsnjxYm7cuMGGDRtKzRKUG6NGjWLOnDkMGTIEY2PjPGM4ZDIZnTt3ZurUqWi1WubMmUN8fHy28bFw4UJatWpF69atGT9+PB4eHiQkJPDgwQP27NnD8ePHCyWbtbU106ZNY9asWdnG18yZMwvsJnNwcKB27docPnyY9u3b6+pVderUiejoaKKjo5k3b55u/aioKE6ePMnGjRvz3XdcXBzt27dnyJAhVK9eHXNzcy5evMjBgwezWUryGrc9evRg3rx5DBkyhLFjxxIVFcUvv/ySqxJWp04dNm7cyKZNm6hUqRIqlYo6deowefJktm3bRps2bZgyZQp169ZFq9Xy6NEjDh8+zMcff0zTpk0LdK6yKMy8sHTpUrp160bXrl0ZMWIEzs7OREdHc/v2ba5cuaIrYfDll1+ye/duOnTowNdff42JiQmLFi3KM/2/YsWK9O7dm5kzZ1KhQgXWrl3LkSNHmDNnju43LOi13bp1a4YNG8asWbN49uyZTtH18/PDxMSESZMm5Th+//79MTExoX///qSkpLBhwwa9KPj/aco6gttA+Sav1PqCrpeVefNiOvyZM2eE5s2bCyYmJoK9vb0wZswY4cqVK9kyi549eyaMGDFCqF69umBqaiqYmZkJdevWFebPn58jVXvnzp1C+/btBQsLC8HIyEhwd3cX+vfvn28mRZbMhw8fFoYNGyZYWVnpssbu37+fY/1ly5YJdevWFZRKpWBpaSm8+eabOdL33333XcHU1DTX40VHRwv9+/cXrKysBIlEImRdfnllcWXx008/CR4eHoKRkZFQo0YN4e+//9Zl0bzIy9lkgiAIGzZsEKpXry4oFAoBEL755ps8z8er5Pj333+FDh06CKampoKxsbHQrFkzYc+ePdnWKehYefl4uWWTvZgd9OK+X8zayaJFixYCIAwdOjTPY8yZM0f49ttvBRcXF0GpVAr169cXDh06lOv6o0aNEpydnQWFQiHY29sLLVq00GUWCsLzMb1ly5Z8v49WqxVmz54tuLq6CkqlUqhbt66wZ88eoW3btvlmk2UxZcoUARB++OGHbMu9vLwEQLh27Zpu2bJlywQTE5M8M5ZeJDU1VXj//feFunXrChYWFoKxsbFQrVo14Ztvvsm2fV7jVhAE4Z9//hGqVasmGBkZCZUqVRJmz54tLF++PMdvFRQUJHTp0kUwNzcXgGzZaYmJicKXX34pVKtWTXdt1alTR5gyZUq27K3cyGu8CELB5wV/f39h4MCBgoODg6BQKAQnJyehQ4cOwp9//pltPV9fX6FZs2aCkZGR4OTkJHzyySfCX3/9lWs2WY8ePYStW7cKtWrVEpRKpeDh4SHMmzcvh4wFvbY1Go0wf/58oXbt2rpz1Lx582zX4Iup9VmcOHFCMDMzE9544w0hOTn5lefy/x2JILxQHcuAgf8jVq5cyciRI7l48aJe4qEMlD+CgoLw9PTk559/Ztq0aWUtTonTvXt3jI2N2bZtW1mLYsDAa4XBTWbAgAED/xH2799f1iIYMPBaYggzN2DAgAEDBgz8X2NwkxkwYMCAAQMG/q95bSxDs2fPpnHjxpibm+Pg4MBbb72Vo/Jtbpw8eZKGDRvqmuX9+eefpSCtAQMGDBgwYOB14bVRhk6ePMkHH3zAuXPnOHLkCGq1mi5duryys3FgYCDdu3endevW+Pn58fnnn/Phhx8aggsNGDBgwIABAzpeWzdZREQEDg4OnDx5UleI7GWmT5/O7t27s/V5ef/99/H39+fs2bOlJaoBAwYMGDBgoBzz2maTxcXFAWJDz7w4e/asrndOFl27dmX58uVkZGTk2hQzLS0tWzl0rVZLdHQ0tra2ZVpczoABAwYMGDBQcARBICEhgYoVK+bbluS1VIYEQWDq1Km0atXqlc3owsLCcnRVd3R0RK1WExkZmWufl9mzZxeoarEBAwYMGDBgoPwTEhKCi4vLK9d5LZWhiRMncu3aNU6fPp3vui9bc7K8gnlZeWbMmMHUqVN1/8fFxeHm5kaLLzcTkiguszdTMq5tJfo2cEUpL/uwK0EQ+HbPTbZefoKpkYz1Y5pS2cG8rMXKRlJSkq4NRMMZm9n/cSdUCj32y7l2DVq3Ft8fPAjNmxdpN3eexjNg6VkEAVysVTyOSWVYc3emv1Fdf7IWE7VGS5/FvgRGJtO2mh33whJJTMvgzGcdy5X1csGReyw7HYinnQk7JrRELpPCzJkwfz54esKFC1DGLQKCo5Los/gM6Wots/vWplc95zKVJy82XXzErH23EQToXseJH/rUQSEr+7nnRdLVWvyCY/j3YSSn70fwIDx7PKeNiYIWVexo7WVH88p22JiW/m+fodEiCKDNvA8IAggImX/FuVTIXE7mekLmisIL62u1kK7Rkq7WkKbWkqbWkJ4hkKbJfK/WkpahJV2T9bmW9AwtaRqt+JlaQ1KahpCYFIKjEklI1ehk1Kan8mTxcACcJ6xGqlQhkWTK9BLOViq8Xa3wdrOinosVVR3NxeusFHgUncTE9X4ERCShlEuZ9VZtutd5dSPZ0sQ/JIaP153j4uzBmJvnfz987WKGJk2axM6dOzl16lS+jf3atGlD/fr1WbhwoW7Zjh07GDhwIMnJybm6yV4mPj4eS0tLoqJjOPYwgQVH7/MkVmw46GJtzOROVelT3xmZtGxvQulqLe8sP8+FwGjcbU3YOaEl1mUw2eRFUlISZmZmALhO2cqnPesysYOXfg8ydiz8/Tc0bCjeaIvQrTkgIpF3lp8nNDZVt6yhuzXbxrfQp6TFZtGJB/x8KHs25Ylp7fC0My0jiXISn5pB27kniEnO4Mc+dRjS1A0SEqBqVQgLgwUL4KOPylpM3bm0MVVydGrbMrlJF4Td/qFM3XQVtVagQ3UHFg1pgLGy/DbgDI1N4eS9CHzuhuP7IIrENLXuM4kE6rlY0a6aPe2qOVDX2RJpGc+hZYUgCCw8dg83G1O0Atx7HMEXb4nNXKt+uoM0Sf73qSyMFTLquljSwN2ahm7WtPKy0+9D50skpGbw4QY/TtyNAGBShypM6VS1zH/LJ7EpvLHgFHFx8YQsGEhcXBwWFhav3Oa1UYYEQWDSpEns2LEDHx8fvLzyv5FOnz6dPXv2cOvWLd2y8ePHc/Xq1QIHUGcpQ1knM02tYdPFEH4//oCIBDG2qIqDGR93rsobtZ3K9Mk8KjGNNxf58jgmhRaVbVk1qkm5eXp8WRkyMzPlxLR2OFqo9HeQ8HCoUkW84a5bB0OGFGrz9ecf8fWuG6i12S8JI7mU6zO7lgsrYERCGtO3XGHHmr8BsGjUG4lMnCwXDvbmTe/yZdlY4RvIt3tuYWdmxMlP2mFqJIe//oJx48DGBh4+BCurMpUxQ6Ol52+nufssgX4NXPh1YL38NyojTtwJZ/y6y6RmaGniYcOyEY2wUBX8ZllSpKen6x46P/rooxxNQdPVWi4Hx+BzL5yTdyO4E5aQ7XMbUyVtvOxoV82BGhUscDA3wspEUa4snSVJ0x+PEp6QRs+6FRnXvCJ1PMVGvgkJCSRp5QREJBEUlURQZBIBkeLfoKgkMjSvvn3bmCp5u4kr7zRzp4KlsW75wRtPqe5kgYceHp40WoE5B+/w16kAAN6o5cS8QfUwUZat4+luWAIj/zrJ2W96/beUoQkTJrB+/Xp27dpFtWrVdMstLS0xNhZ/5BkzZvDkyRNWr14NiKn1tWvXZty4cbz33nucPXuW999/nw0bNtCvX78CHfdlZSiLlHQNq84GscTnIXEpGQDUdrZgWpdqtK1qX2YX8e2n8fRbcobkdA3Dm7vz3Zt5x1SVJi8qQ73mHeHaszT6NnBm3kBv/R7oxx/hiy/A3R3u34cCWP+yiE/NYMzKS1wIis7x2e6JLanrYqVHQYuGRivwyYbzzH9HdAO6TtmKVCkqlKNbefJVz5plKV4O0tVaOs8/SXBUMpM7eTG5U1VQq6FePdFCtGgRZLpPy5Irj2Lot+QMggDrxjSlZRW7shYpTy4GRTNq5UUSUtXUrGDB6tFNsDPL2Sm+NHnx+k5MTMTU9NU32adxKZy8G4HP3QhOP4jMZjXKQimTYm9uhIOFEQ7mRjiYq3C0EP/aZy5ztFBhY6Isc0sEiA/sGq1AhkYgQ6vFSC5FKZPmey+ITU7H+7sjzxdkpBI8rz/w6nOp0Qo8jEjk4I0w9l9/mk3BlAAKuZR0tRYAmVTCG7WceLeFBzUrmNP+15MoZVK2jm+eTUkqDlsuhfDFjhuka7TUqGDBsncb4Wyln30XlUdhkbhXsP9vKUN5DagVK1YwYsQIAEaMGEFQUBA+Pj66z0+ePMmUKVO4efMmFStWZPr06bz//vsFPm5eypDu89QMlp0KYPnpQJLSRb9vYw9rPulanSaeeWe6lSSHboYxbs1lAH7oU5uhTd3LRI4XSUtLY9y4cQB88OUcBiy7BMDOD1ri7WqlvwMlJ8PgwTB1KrRrV+jNU9I1TFh3WWf2zeK7N2sxvLmHfmQsJqmpqTTrMZgH4YnYdp2IRC4qfI3crdg6vmUZS5eTfdee8sH6K5goZfh80g4HcxXEx0M+k1Np882uG6w6G4y7rQmHJrcpUfdCcbkZGse7/1wgMjGdSnamrBnTtExvPC9e30uXLsXIqODKWYYm02p0NwLfB5GExCQTm5xR4O3lUgl2ZllKkwpbU6UuxkZAQCs8f88LsUHal+KEeCF+SK0VyNBoxZdaID3rvUZLhkYgXf3S/5nvX76bSiSi60qlkGX+lb7wXnwlp6s58zBKt42gziDq0B9IgMFTvmdGrzpUsjfL9zxkKUb7rj3l1tP4PNezM1MSmZgOQGV7UzaPa46tnpTpS0HRvL/2MpGJ6diZKVk6rCEN3cvmPgj5379f5LVRhsqKgp7MqMQ0lvg8ZPW5YJ023raqPdO6VKOOi2Vpiavjj+P3+eXwPeRSCWtGN6V5ZdtSl+FVTN18le1XntDAzYpt41uUK3N4ulrL1M1X2XvtqW5Zt1pOLBnWsAylyo4gCPx6+B5/nHigW6aUSbn1XddSC6AsKIIg0GfxGa6GxDKkqRs/9qlT1iLlSkJqBp3nnSIsPpUJ7SrzaTkKms+NgIhEhi2/wJPYFCpYqlgzuilVHPK/ab4OpGZoiEhIIzwhjYiEVMIT0giPT+NZfOb7zOVRSem5Bhb/1zAzktPAzYo6LpZUc7KgupM5nnameYZBBEUmsf/GU/Zff8qNJ3krRgBVHc3YOr6F3tytj2OSeW/1ZW4/jUcpk/JDn9oMaOSql30XFoMypEcKczJBNP/+fvwBmy+G6GJPutV24uMu1Up1ohIEgQ83XmWPfyjWJgp2fdAKN1uTUjt+fjyLT6X9Lz4kp2tKNtYlORlMCv+9NVqBL3ZcZ+PFEECcjG5821Xf0hWbxT4PmHvweSD13kktqe1sVXYC5cGFwGgGLj2LTCrh0OTWVMnKdnzyBL76CiZMgEaNICoKZLIyiyM6fDOMsWsuI5dK2DOpFTUqlC/r1cs8jUvhnWXneRiRhI2pklUjm5TJw1dZkaHREpkoKkqikpRKTJJo9ZBIJEgkICHrL9n/l0heWPbi+iCXSVHIpChkEpRZ7+Uv/S+TopRLdO8VMtEtppBLkEklpKu1pGRoSMsQ/6aka0jJ0JCa+RLfa9lyKYQrj2IL/d2VMimVHcyo7mROtcxXdSdznCxU2R4uH0Uls//GUw5cf4r/47hc92VlLOe3txvQ2stOLw+mSWlqpm6+yqGbzwAY26YS09+oXuqJRgZlSI8UVhnKIjgqiQVH77Pz6hMEQQzCnfVW6WrIKekaBi49y/UncVRzNGfbhBaYGZVNUJsgCCQnJwNgYmKCRCLRWa8qWKo49nFb/QbcaTTw/ffw229w8SJUqADLlsGkSeLsV0CZp26+yg6/UADWj2lKi3IYS7L05ENmH7gDwFveFVkwuH4ZS5Q7762+xJFbz+hc05G/hzcSF44cCStXimUROneGX34R/+/Tp8zkHLfmEoduPsPbVbRalnWmaH5EJ6UzYsUFrj2Ow8xIzt/DG5U7S7CBvOm/5AyPY1JwszHBxcYYFytjHEwkuFip8HK2QymX8SA8kbth8dx9lsCdsATuhSXowjJexkIlp7qTBdUrmNOhugOtveyRSSVcDYnlrUW+r5SlmqMZo1p58qa3c7HdxFqtwIKj9/jtuGi9bl/Nnt/ero95KQb8G5QhPVJUZSiLu2EJzNp3i3/vRwIwpKkb3/SqiZG8dOIRwuJS6fXHaSIS0uhUw5G/hjUsk2DD3AIsUzM0dPz1JE9iU/iooxdTOlfV70HfeAMOHRJT7Z8+hdBQCA4GN7dC7ab7wlPceppAVUczDk1uU+YuvaSkJJydRUvakydPMDU1ZfImP3b6hWIkl3Lxy07lIsPoZR6EJ9J1wSk0WoHN45qLMXX370PNmmJQdRZffQXffVdmcobFpdJp3kkS09R827sW77bwKDNZCkpCagbvrb7EuYBolHIpi4c0oFNNx/w31BO5jUkDBSNDo83m7ipIMLpWK/AkNoU7YQncDYvP/JtAQGQSmpeyYZ2tjBnU2JW6LpZcDo7hakgsV0NiSUjNGbSehZWJgsGN3Rje3J2KxYxF2+0fyidb/ElTa/FyMGPZu41wty2d8WFQhvRIcZUhEAfu78cfsODYPQQB6rlasWRog2IPsoLi9yiGQX+dI12tLbNYiLwu8KzgWpVCyvGP2+nvnAgCzJsH06ZlX75rF/TuXahdhcam0PbnE2RoBJYMbUC3Mi4sltu5zNBoafnTccIT0sp1vMsXO66z7vwj6rlasdP6EZIvv4DAwOwr9eoFu3eXjYCZrDkbxFe7bmKqlHFkattSu1aLQ2qGhonr/Th6+xkyqYRfBtSlT/1XV93VF4XNJjOQN8U5l2lqDQ/Dk7j7LB6/R7Hsuhqqy3aWSqBDdQfebuJG6yp2hMSmcPVRLBeDojl+J5zwhLQc+1PKpXzSpRqjWnkWy0LqHxLL2DWXeBafhpWJgiVDG5aK9bIw9+/yFWn5H0UqlfBRJy/+GdEYS2MF/iGx9Pr9NGceRJbK8eu7WTOnnxi0utjnIbuuPimV4xaE7nWcaOJhQ2qGlp8yXT3FJikJWrbMqQgB+PkVencVrYwZ37YyALMP3CFNnbt5urQwNjbm3r173Lt3T1dWQiGT8kNmYPLy04G6wqDljY86eWGilOEfEsv+SAGCgnKudPVqaYuVg6FN3WngZkVSuoavd93kdXhmVClk/PlOA/rWd0ajFZiyyZ+VvoH5b6gHchuTBkofI7mMmhUt6FPfhe/erM35zzuyYJA3TT1t0Apw9HY4o1ddos3PPuzye0LTSjb81K8uF77oxIlpbWlT9XkYgFQiJpP8sP82g5aeJTAy6RVHfjX1XK3YPbEV9VwsiU3OYNjy86w7H6yPr6w3DMpQKdK+mgN7JraiZgULopLSeWf5eZaefFgqE22f+i6Ma1sJgE+3XsM/JLbEj1kQJBIJX/eqiUQimlMvB+es8VNoTE1h8mQxEPdliqAMAYxrWxkHcyMeRSez0jeoWOIVF6lUipeXF15eXtmaD3aq4UBTTxvS1Fp+fak6dXnBwVzF2DbiOJybVoH0FStzxnCFhIiB1GWIVCphdt+6yKUSjt5+xqGbYWUqT0GRy6T8MqAeIzJdezP33GLh0fslPsfkNSYNlC0qhYy36juzaVxzjn3clrFtKmFjqiQsPpXfjj+g9dwTvPvPBQ7eCMPF2oTVo5qy64OWNPawJsvbJgEuBcfwxoKTrPANRKst2lhytFCxaVxzeteriFor8MWOG3yz6wZqjVZ/X7gYGEZtKeNma8L2CS3o18AFrSBaGsavvUJCasHrahSVT7tWp0N1B9LUWt5bfYln8an5b1QK1Ha2ZGBDMbD82z23inyxZWPgQNi0CeQvBWUXURkyNZLzSVex2Ocfxx8QmZjTpFzWSCQSvuhRA4Dtfk+48ST3zJGy5r3WlbA3NyI4Kpl1VVrDmjU5FaJyYB2q5mTO+5kWwW923yS+FK5RfSCVSvimV00mdxKr9M8/eo/v9urpujLw2lLZ3ozPu9fg7IwO/P52fVpWsUUQ4OS9CN5fe5kWPx1n7sE7WJso2TyuOYuHNsDVxpisUZOmFvh2zy3e/vscj6KSiySDSiFj4WBv3Vy66mwwn22/Xi4srwZlqAxQKWT8MqAus96qjUIm4eDNMN5a5MuD8IT8Ny4GMqmEhYO98XIwIzwhjbGrL5GaUbYunyymda2GmZGca4/j2O6nJzdev36wdWt2hejRI4gumvWpXwMXajtbkJCmZv6Re/qRsQhkZGSwaNEiFi1aREZG9ht0XRcr3vIWKzrP2nerXEwyL2NqJGdKJzFY/rdj94nvNxDWr8/eS64cKEMAEztUwdPOlGfxafx8sHxa23JDIpEwuVNVvuklViRf4RvEhxv9iCtEMcPC8KoxaaB8YSSX0ateRdaNacbJT9oxvl1l7MyMiEhIY7HPQ9r8fIJhyy+gFQT2f9iaz7tXx/yFLOTzgdF0WXCSNeeCi6RgSyQSPmhfhcVDGyCTSth6+TG/Hi67+VQnlyGA+tXoI4D6VVx5FMOEtVcIi0/FVCnj5wH1Srzzb3BUEm8u8iU2OYM3vSuyYJB3iWdIFSQo8M+TD/npwB0czI04MS2zj5U+2LtXTNXOylg6dgw6dCjSrrLq5UglcOCjNlRzyr8bsr7J71w+jkmmw68nSVdrWf5uIzrWKL2sooKi1mh5Y+G/PAhPZHy7ykx/ozps2QJvvy2WRXjnHdFiVA448zCSIX+fRyKBre83L9OKukVh+5XHfLL1GhqtgJ2ZEd+9WYtueu6jaAig1h9lcS4zNFqO3X7GhgshnLofoStk6eVgxs8D6uFqbcz8o/dYf/4RL+o/TT2t+XWgNy7WRatht/HCIz7bfh2A79+qzbBm+u2WYAigfo1o4GbN3g9b0aySDUnpGiasu8Ls/bdL1I/qbmvK4iGiVr7raihLTj4ssWNlIZPJ6N+/P/3790eWWywPMLKlB+62JoQnpLHY50Gu6xSJnj3F7KSsFgFFdJUBNPG0oVttJ7RC2Vle8juXLtYmjGrpCcCPJTyWiopcJuWzzIy3f04HEhqbAgMGPHdt+vmJBTPLAS0q2zGgoQuCADO2X9dVmH9d6NvAhU1jm1HZ3pTIxDQmrLvC2DWXCYvTn5u8INe3gYJRFudSIZPyRu0KrBrVhFOftOfDDlWwNVVyPzyRvot9+etUAF/2qMnByW1oW9Vet935wBg6/nqSDeeDizQXDm7iprMSf7PrRpnG5hksQ/lQ0pahLNQaLT8fusvSzM6/zSrZ8MeQBiXagDErfVgigb+GNaJzKdYlyYusvmpKuZRjU9viaqPHqtmHD8Obb4o9y1auBMeifd9HUcl0mneSdI2WFSMa0766g/5k1BPxqRm0nXuCmOQMZr1Vm3f0/MSlDwRBYNBf57gQGE3/hi78MiCzW/zChWJvuX79YPPmshUyk5ikdDrOO0l0UjrTulRlYgevshap0KSpNSw6/oDFPg9RawXMjeR81r06bzd2KxeNTg2UL2KS0vl2z012XhWLzlayN+Xn/nVp6G7DyXsRfLPrBkEvxA61rGLHLwPqFrrxqyAIfL7jBhsuPMJILmXdmKY08tCP9dVgGXoNkcukzOheg8VDG2CqlHEuIJqev53myqOYEjvmsOYeDG3qhiDA5I1+3Al7dQ+b0qBLTUdaVLYlXa1l9oHbet55Fxg0CA4eFKtTFxE3WxNGtvQAROtQRjm0vFioFGKHeGDB0XulEqBfWCQSCZ93FwO+t115zK3QzPHXrh1otaLbrBhWPH1ibark655i/M1vxx8QEJFYxhIVHiO5jKldqrH3w1Z4u1qRkKbmix03GPz3OR6+ht/HQMlibapkweD6LBveCEcLIwIikuj/51m+23OLJh42HJ3ali971CBLj/Z9EEmneSfZevlxoaxEEomE79+sRacajqSptYxedYn7z0o2fjY3DMpQOaN7nQrsmtiSyvamhMWnMmjpWdacK5oJsiDM7F3ruYtu7ZUyD6jOSrWXSmD/9TDOBeg5xfrdd8W/S5fCw6K7Bz/INCM/jEhi/flHehJOvwxp6oannSmRieksPRlQ1uLkirerFT3rVkAQ4KeDmXWm6tWDIUPE9zNmlJ1wL/Gmd0Vae9mRrtby+Y7ykQFTFKo7WbBtfAu+7lkTE6WMC4HRdFv4L4tOPCiXir2BsqVTTUcOT2mrcxX/4xvIGwtPcSk4hjGtK7FuTDPMVWJ8Z1Kahmlb/Bmz6hLhhchWlsuk/P52fRq4WRGXksG7/1zQqxu3IBiUoXJIFQdzdk1sRbfaTmRoBL7aeYMvd94okclXIZOyeGhDHMyNCIhMKrEsqaSkpMxGiBKSkl5dvKu6kwVvNxFbZny351aO8vLFon176NpVDKb+6qsi78ZCpdC1D5l/9F6JZenkRnJyMs7Ozjg7O+v6veWGQibls25iXM7f/wbwNK58FmL8pGs1FDIJp+5F8O/9CHHh99+LsUOHDsGJE2UrYCYSiYQf3qqDSiHlXEA0Wy4/LmuRioxMKmFUK08OTW5Dm6r2pKtFN32v309z7XFsofdX0DFpIH8KM1eWFpbGCn4eUI+VIxtTwVJFcFQyg/86x9e7blDXxZI9E1tR2f55oPexO+F0nn+KgzeeFvgYxkoZy99tTCV7U0LjUhmx4oKuenZpYFCGyilmRnIWD23AjG7VkUpg3flH/LDvdokoRDamSl314r//DeBqOSjIOLVzVcxVcm49jWfLpRD97nz2bPHvhg3FcsMMbuxKVUczYpMzWHjsvp6Eyx9BEAgNDSU0NDTf8dClpiNNPMRCjL8cKvv01dxwtzXVxTTN3n9HTNetVAnGjRNXmDEDyokVxs3WRBfw+cO+2+Wy3lRhcLUxYdXIxswfVA9rEwV3whJ4a5EvP+y7RXJ63r2rXqYwY9LA60u7ag4cntJG97C6+mwwXRec4klsCtsntKTNC8HVcSkZvL/2CpsuFtxybm2qZNXIJtibG3EnLIFxay6VWsV/gzJUjpFIJIxrW5k5/eoCsOx0IH8c12OW1Qt0runIm94V0QpkNtUrW3eZrZkRH3UUg1R/OXxXvzEv9euLKdxQLDeMXCblyx5iHMnqs0GlFkeiUqnw8/PDz88PlUr1ynUlEgmf6woxPi63hRg/7OClU353ZrWL+eorsZr4+fNiT7lywuhWntSsYEFcSgbf771V1uIUG4lEQp/6Lhyd2lY3B/z9byBdF5x6bqnLh8KMSQOvN+YqBbP71mHdmKY4WxnzOCaFocvO89OBOywc9Lz6eRbTt11nRSHawrjamLByZGPMjOScC4hm6mb/UikYalCGXgMGNHLVBW/+euReifUb+qZXLezMxHTKklK6CsPw5h5Uyox50bs8enLDtKlqT/tq9qi1Aj/u11NvtXyQyWR4e3vj7e1doNRbb1creteriCCIqfbl8cnd2lTJhHZVAPjl0F0xds3REaZMEVdYvboMpcuOXCZldt86SCWw62ooPnfDy1okvWBrZsTCwfVZMaIxFS1VhESnMGz5BT7e7E9scvorty3smDTw+tOyih2HprRheHPRqrvhwiO6/3aadtXs+aFPbeQvZCh+u+cWi04UfA6vVdGSv4Y1RCGTsO/aU74vhTImhtT6fCit1PqCMP/IPZ07Zt7AevRtoP+O1PuvP2XCuitiDaIPWlLb2VIv+y1qIbHjd54xauUlFDIJR6a0xcNOjwXIJk4UK1QvWSIWZSwiD8IT6LrgXzRagfVjmtKiil3+G5UyIdHJdPy1fJcDSM3Q0OEXH0LjUpnRrTrj2laGuDjYuVMswljObrLf7bnFP76BuFgbc2hyG/0VCS0HJKap+eXQXVadDUIQxJiR3vUq8lb9ijRwsy7xIq3/JdLUGqKT0olKTCcqKZ3opLTn7xPTSddoMVHKMDWSY6KUodCmM7GrGLaw6+JD7KwsMDGSY2Ykw0Qpx1Qpx8RIhkJWfmwZ5wKimL7tGsGZqfb9G7rQpaYjn2y9li3uZ0K7ynzStVqBx89u/1A+3CCGMnzevTpj21QulFyFuX8blKF8KE/KkCCIvWFWnglCJpWwZGgDutRy0vtxJqy7zP7rYdSoYMHuiS31ctEVVRkSBIF3V1zk1L0IOtd05O/hjYoti47YWNE6lClXcfhm1w1WnQ2mupM5+z5sjawE67ZkZGSwbt06AIYOHYpCoSjQdrP332bpqQC8HMw48FFr5OVoMs1i2+XHfLzFH3OVnFOftMfaVFnWIuVJUpqaLvPFeIl3mrkx6606ZS2S3rkcHMOM7de49+y5C9jF2pg3vSvylrczXo5iBfaijsnXmQyNluCoZAIiEgmJSSEqMY3opHQiE0WFJ0sBSkgreOwVgDY9lZD5/QFwnbIVqTJ3t6NSJsXN1oSGbtY09LCmobs1lexMy0xRTU5X88uhe6w4E4gggLOVMbP71mHm7psEvNDxfkQLD77uWbPAta2W/RvArH1imZUFg7x5q75zgWUyKEN6pDwpQwBarcAnW6+x7cpjlDIpK0c21rslIiIhjS7zTxKTnMHUzlX5sGPxC8wVp8T8/WcJvLFQtLysG9OUluXQ8hKTlE7bn08Qn6rmp751GJwZYFgSFPVcxqVk0PbnE8QmZ/BjnzoMaVpyMhYVjVag5++nuf00ntGtPPkq0z0MQGoq3LwJDRuWnYAvcfp+JO8sPw/AqlFNslXn/a+g1mg58zCKnVefcOhGGEnpz+MJa1aw4K36FelYxZIqzuJ3/y+14xAEgaikdAIikgiISCQgUvz7MCKJR9HJBc50lUsl2JgqsTFVYmdmhI2pElszJbamSpRyKcnpGpLTNSSlqYmLT2TRiBYA9Pj1COkSBUlpGpLS1SSnaUh/RfkDG1MlDdxExaihuzV1XSxRKUrXonopKJqPt/gTHJWMramSRUMa8MeJB5x+EKlbZ2BDF2b3q1vgh8ZZe2+x7HQgCpmEFSOa0MpLvAcIgoBGK+T5YGdQhvRIeVOGQJycPlh/hUM3n2GilLH+vWZ4u1rp9Ri7rj7ho41XUcgk7JnUiupOxfvuqamp9OvXD4Bt27YVOshy5u6brDwTRM0KFuz7sJV+n360WrHSsVwO/fsXeTdZTzB2Zkb4fNIOsxJymxTnXK7wDeTbPbdKXMbicOpeBMP/uYBCJuH4x+3EKuT370PHjpCUBIGBUE6uRXg+Nh0tjDg0uQ1WJuXXmlVcUtI1HL39jF1Xn+BzNwJ1pjIgaNLJOPgzjhYqDu7ZhaNN6ffsKw6pGRqdlScgMomHEYk6BSg+NW/LjolShqedKR62ptibG2FrqsTGTImtqZFO2bE1NcLCWF7gOSu/6ztdrSUlXUN8agZ3wxK4FBzDleAY/B/HkvZSqxiFTEKtipY0ylSOGnpY42Be8gHuUYlpvLviAjeexGNuJOfv4Q05cCOMVWeDdev0qFOBBYO9C+R50GoFPtp0lT3+oZgqZWwa1xxnK2O+2HmdrrWceNM7d2uRQRnSI+VRGQLx4h296iK+D6KwMlGwaWxzvTYNFQSB91Zf4ujtcOq6WLJ9fIsydavEJKXTas5xktI1/PlOQ96orUf34KpVMGIEODvDgwdQxGyYdLWWrgtOERiZxMT2VZjWtZr+ZNQT6WotXeafJCgqmcmdvHRVqssbw5af59/7kbzpXZFJHarw++E7zJk5FNXD+zBzJnzzTVmLqCMlXUOP3/4lIDKJ3vUq8tvb9ctapFIhJimd/TeesssvlAtB0brlSpmUdtXseau+Mx2qO5SIZWLb5cekqjV4OZjj5WBWIHdqlsITGJlEcFQSQVFJBEUmExSVxNNXFPiTSESXTyV7MyrZmVLZ3lR8b2+Kk4Wq3MRPpau13AiN40pwDJeCYrgUHJNr6QdXG2Mau9vQr6ELLSrblpj88akZjFl5iQtB0agUUv58pyEh0cl8s/umrtlr26r2LB3WsEBjJE2tYcQ/FzkbEIWlsQK5VEJUUjrdajux5J3crcUGZUiPlFdlCMSYhaHLznM1JBYHcyO2vt8CN1v99fJ6Fp9K53kniU9VM/2N6oxvV7jgNX3z86E7LDrxkOpO5uz/sLX++imlpYGXF4SEwLx5zzOYisDBG2G8v/YyRnIpPp+0K3SfntJg77VQJq73w8xIzr+fls+4nBtP4uj5++lsyzZYBtP88w9Eq1BAANjalpF0OfF7FEO/JWfQCvDHkPr0rFuxrEUqVR7HJLPH/ym7rj7hTtjzVgrmRnLquFjiZKnCyUJFBUsVTpbGVLBU4WihwtZUWaTrOCtGLwtbUyWV7E1xtTHB0dwII4UMtUYgMjGNoKgkgqOSX6nwAJir5FSyN6OynSmVXlB4PGxNS93VpA8EQSAkOoXLj6K5FBTD5eAY7j5LyFayq1ZFC8a2qUT3OhVKJCA7JV3D+HWX8bkbgUImYcGg+lgaKxi75hLJme7WJh7WrBrVFGNl/uc4IiGVLvNPEfNCkVtjhQy/rzvn+hsZlCE9Up6VIYDY5HQGLT3H3WcJuNoYs/X9Fjha6M8MuuVSCJ9svYZSLmX/h62p4lD8YOOiEpucTqs5J0hMU7NkaAO61amgv50vXw5jxoCdnXijNS+alU0QBAYtPceFoGj6NnBm3kBv/cmoJ7RagR6ZcTnj2lZiRrcaZS1SNgIjk/j92H22+z3JtnxsKw8+/3Io+PvDZ589L55ZTvj18F1+P/4AKxMFhye3wUGP1+HrxJ2weHb6hbL76hNC81FAFDIJjhaiouRk+VxZcrJQoVJISUhVE5+aIf5NySA+8/87T+N5GFH46swWKjmedqa425riYWeKh60JHnameNqaYmWiKDdWnpIiPjWDq49iOXr7GVsuPSYls/1SRUsVo1p5MqixK+Yq/Qa/p6u1TN18lb3XniKVwI996tDE04a3/z7Hs3jRctXA1YpVo5vojv00LgULlSJbhub9ZwmMX3eFB+E567n9PTz3RuMGZUiPlHdlCCA8PpUBS88SHJVMVUczNo1trren/RezuRq4WbHl/RZFypRKSkrCwUFM5w4PDy9ygGXWDUfv1iG1GmrWFGNTvv8evvyyyLu69jiW3n/4ArB3Uiu9lSfIIjk5mXr1xA7v/v7+mJgU3hp47PYzRq+6hEoh5dQn7cvNjVsQBMasusSxOzlr97SvZs8Ku2fQuzeYmIi95Zz0n01ZVNLVWvos9uVmaDztq9nzz4jG//mbaxa5jUmtVsD/cazODfUsLpWncamExacSFpdKRGJaiRUWV8ml1KxoQYvKdqJ15zVSePQ1V+ZHTFI6a88Fs+psEJGJYh0pcyM5Q5q6MbKlJ06W+psTNFqBL3eKnelBTJPvUbcivX7/l+gk0cpT29mCtaObcicsgYnrr/Bp1+oMbOyq20dimprp266x71rOFh/9Grjw68B6OZYblCE98jooQyDWken/5xmexadRz8WSde8101tw7JPYFLrOP0VimpqvetZkdCvPQu+jONlkLxKXnEGrOcdJSFOzeGgDuuvTOrRxo1iZ2sJCDNK1sSnyriZv9GPn1VCaVbJhw3vN9DoB6+NcCoJAvyVnuPIoluHN3fnuzdp6k6+4pGZoGLXyImceZm/S62xljO/09tCsGVy4AB99BAsWlI2QeXDvWQI9fz9NulrL7L51dG0L/usUZUxmaLSEJ6QRFpdCWFwaT+NSCItL5WmmspSu1mJhLMdCpcBcJf61MBbfp6m1/HQgZ5FTb1dLJrb3okN1B/09KJUy+porC0pqhoadfk/4+98AnbVNLpXQ27si77WuRI0K+rnvCYLAnIN3+fOk2CD7g/aV6V67Av3/PKuzUNmbKYlKSkcrQGMPa7a83yLHPlb4BvHj/tu64H0QXZx+X3XOEddqUIb0yOuiDIFoRhy49CwxyRk0r2TLipGN9ebrXnc+mC923EClkHLwozaFLn6ozwt83pF7/HbsPtUczTnwkR6tQ1qt2Krj2rViu2GexKbQ4Rcf0tTaPE24RUWj0XDu3DkAmjVrVuSKv2ceRjLk7/PZs7bKCcnpakb8czFbYC7AzW+7YvqvD3TuLGb+bd4sRriWI/4+FcAP+29jqpRx4KM2eo3jK6/oa0wWlAyNlupfHdSltrf2smNCuyo0q2RT7i0/+VHaylAWWq3Aibvh/HUqgPOBz6+71l52jG1TiVZV7PRybhf7PGDuwbsADGvmTpdajoxYcTHXMgXHP25LJfucoRmXg6MZv/Yy4QnPK6OvHtmYNtWyF5MtzP27/FVdM1BkvBzNWTmyCaZKGWcDopi0wY+MV9SkKAxDmrjRorItqRlapm+7Viq9YvJidCtPzFVy7j5LYH8huiLni1QKs2ZB48bQqVOxduVsZayzoM3ef1tvvwOIrQ9atmxJy5Yti3XTaVHZjpZVbMnQCPxWio1mC4KJUs4/IxtT380q2/IH4Yliiv3167BlS7lThABGtfKkiacNSekapm3xL3AtmtcZfY3JgqKQSXG1NqZrLUd2fdCSNaOb0rwEM6P+H5BKJXSs4cimcc3Z9UFLetatgFQC/96PZNjyC3T/7TQ7/B4Xey6b0K4Ks96qjUQCa84Fs/ZcMPZmuYd1bLn8ONflDd1t2P9RGxq6WeuW/Xz4brHkMihD/zHquVqx7N3GKOVSjtx6xqdb9aO4SCQS5vSri7FCxvnAaNadD85/oxLC0lihUzQWHr2v35tNz55iY9COHYu9q/HtKmNrqiQgMon15wveubk0mdZFTP/fduVxroGJZYmZkZyVI5vg9ULQ/om74aICVLv8uPVeRiaV8OuAepgqZVwIimb56YCyFuk/yZb3W7B0WCPq6bnGmgHxPvLHkAac/KQ9I1p4YKKUcftpPFM2+dP7D1/uP0vIfyev4J1m7iwY5I1cKuHQzWd5ZpJtvRSCOg/ly87MiE3jmtE10+p+/Uk8FwOjcl23IBiUof8gzSvbsnhIA2RSCTv8nvDnqYd62a+rjQnT3xBvnrMP3CEkOlkv+y0Ko1p5YqGScz88kX3X9Wgdkkj0Zm0wVymY3Fms47Pg6L1sPXqKg1qtZsuWLWzZsgW1unCl/l+mvps1nWo4ohVg/tF7epFPn1gaK9g8rjnmKjH+bedLGWY8eQIrV5a+YPngamOiq579y6F73A0r3s2jvKPPMVlQ7M2NSuU4/8+42pgws3ctznzWgU+6VsPaRMHtp/H0/P00q88GFat56pvezvw1vCFGcimBkcnUrmiBuVF2pSgiMZ2T9yLy3IdcJmXp8EY0rySW2Zi4wY+E1KLNswZl6D9Kp5qOzHpLfHqed/geV0Ni9bLf4c09aOxhTXK6hs93XC+zDugWKgVjWlcCYOHRe/p3RcTHw7ffwuTJxdrN241dqeJgRkxyBot9Ct61+VWkpaUxcOBABg4cSFpazqJqheXjLlWRSGDftafcDI3Tg4T6xdpUyYoRjQEIikrmxpNMGZ8+FetDjRoFt26VoYS5M6ixKx2qO5CuEVOL09X6c5WWN/Q9Jg2UL6xMlHzQvgqHprShTVV70tRavt51k1ErLxKRUPTfu0N1R1aNaoKZkZwbofG42ZribJW9Ntu8w/k/pC0d3hAnCyOexafx3Z6izQUGZeg/zODGrvSoWwG1VuDDDX4kFrJhYG5IpRLm9q+HkVzKv/cj2XQxpIDbSWnbti1t27ZFKtXPsBvZ0gNLYwUPI5LYey1UL/vUceuWWOn499/hbtF90XKZlM+7VwdgxekgvVjT9H0ua1SwoFdmkcBfCzDxlAWNPGx4I7Mp8YIsC1aFCvDGGyAI8PXXZShd7kgkEn7qVwdrEwU3Q+P5/Xj5isvSJyVxff+/Up7PpYO5ipUjGvNNr5oo5VJO3I3gjQWnOH7nWZH32aySLRvea6a7TlQKscVJFjefxuNzN2epjRexUCn47e0GSCRinNHBIsSSGrLJ8uF1yibLjbiUDLov/JcnsSn0re/MvEHeetlvVsaMuZGcw1PblFml5T+O3+eXw/eoZG/KkSlt9dstvndv2LMHBg0S0+6LiCAIvLP8PL4PouhVryK/l8N2DYGRSXSadxKNVmDb+BY0dLfOf6NSJiAikU7zTqIVYPfEltR1sYIbN6BuXVEhunJFzAYsZ+y//pQJ664glcDW8S1o4Fb+zq0BA4XlblgCH23001UcH9bMnc+71yhQJenceBCewDvLLhAWn0pTTxtCY5MJiRGLdpoZyTgxrX2+rtGfDtzhz5MPsTZRcGhyG1SkG7LJDIhYGitYONgbqQS2+z3JGXNRREa18sTb1YqENDWfby87d9m7LTywMlEQEJHEbn/9fDcds2aJ8UObNolVj4uIRCLh8+41kEhgj38ofo9i9CikfvC0M6V/AxdAbHtSHp+RKtmb8VZmQ8YFRzOtLLVri7WhQLTklUO616nAW94V0QowbbM/KS90fTdg4HWlmpM5Oz9oqUtmWXMumF5/nH7uxi4kVRzMWTGysS5Jp2UVe2xMxIrUiWkaJqy7nGcwdRZTO1elZgULYpIz+HTbtULNYwZl6P+ARh42fNjRC4Avd97gUVTxXTUyqYSf+9dFKRNNpcduv9qMWVKYqxS8lxk79NuxB/leLIWibl0YOFB8X8zGoLUqWtIvU9mYte92uVQ2PuzkhVIm5VxANL4Pip6VUZJM6uiFTCrh+J3w53FwX38tlkXYvRsuXSpT+fLi2961cbJQERCZxJyDOYsFGjDwOqJSyPiqZ01Wj2qCg7kRD8IT6bPYl6UnHxYpi7lGBQt+GSBWkt54MYR3W3igkotqysWgGGbvv/3K7ZVyKQsGe6OUS/G5G8GmiwXP4n2tlKFTp07Rq1cvKlasiEQiYefOna9c38fHB4lEkuN1587/32Q0sX0VGrlbk5im5sON+qk/5OVozqjMp4I5B++8Mog5KSkJe3t77O3tSUoqfE+hV/FuCw+sTRQERiax66qeY4dmzhRvtLt2FftGO61LNYwVMi4Hx3DgRliR95OSkoK3tzfe3t6kpKQUS6YXcbYyZkhTsWLyz4fvlkuFzdPOlD71s6xDmbFD1arB0KHi+3LUzf5FLE0UzO1fF4CVZ4I4fT+yjCXSLyU1Jv8fKcm5sqRoU9Weg5Pb0LWWIxkagdkH7vDO8vM8jSv8WOhRtwITMpuCL/Z5yPRu1XQJvst9g9jt/+o5vqqjOZ+9IcZp/lyIGMjXShlKSkqiXr16/PHHH4Xa7u7duzx9+lT38vLyKiEJyy9ymagxm6vkXA2JZeFR/QRzjm9XGUtjBffDE9mWR4GsLCIjI4mM1P9NwMxIznttROvQ78fv69c6VL368xvtt98Wa1dOliqdnD8duEOaumjuEq1Wi7+/P/7+/mi1+s1Q+qB9FYwVMvxDYjlaRta+/JjUoQoyqQSfuxFcDs50OX71ldhct0YN0JRPN1SbqvYMa+YOwCdb/fVWaqE8UJJj8v+RkporSxIbUyV/vtOQn/rWwVgh48zDKN5Y8G+uvcTy4+Mu1WhfTcxa+/tUYLZm0h9vvsqdsPhXbj+ihQetqtiRllHwsfhaKUPdunVj1qxZ9O3bt1DbOTg44OTkpHuVRoXU8oiLtQmz+9YBYJHPA84+LL4rxNJYwcT2VQCxTUZqRtnciN5t7oGNqZKgqGR26ts69PXXMHw4zJ9f7F2Na1MJe3MjHkUns+Zs0QpXqlQqDh8+zOHDh1Gp9Ntg1d7ciJEtPQCxKW5ZVhrPC3dbU/o1eMk65OUFoaHwyy9Qjq/vGd2r42FrwtO4VGbuvlnW4uiNkhyTBl4fJBIJg5u4se/DVtR1sSQuJYMP1l/h063+hSotIZNKWDC4Pp52poTGpXLs9jPebytaizI0AsOWX3jlw4RUKuGXAfWwUBW8P+drpQwVlfr161OhQgU6duzIiRMnXrluWloa8fHx2V7/JXrWrcjARi4IAkzZdJWYpPT8N8qHYc3dcbYyJiw+lRW+QcUXsgiYGskZW1LWoSpVYNUq8W8xMTWSM62LWIjx9+MPiE0u/PmXyWR07tyZzp07l4hiP65NZcxVcu6EJbBH3yUL9MSkDl7IpRL+vR/J5eDMPkpmOXsYlTdMlHJ+HSgmNOzwe6Lr4v26U9Jj0sDrRSV7M7aNb8HE9lWQSmDzpceMX3u5UNZwS2MFfw9viJmRnPOB0SSnq+lVV2zMHZGQxvi1l1/5sOZkqeLrXjULfLz/tDJUoUIF/vrrL7Zt28b27dupVq0aHTt25NSpU3luM3v2bCwtLXUvV1fXUpS4dPimVy0q2ZkSFp/KZ9sLF3GfGyqFjI8zb/CLfYp2g9cHw5u7Y2uqJDgqme16yprLlYziuTf6N3SlupM5cSkZ/HZMP4UY9YmliYKxmUHp84/c02tfNX3hamPCgEZiQPr8Iy+5fH194fPPy0CqgtHQ3ZqPM9ugfLPrZrnMLjRgoLgoZFKmda3GipFNMJJLOXYnnHFrLhfKe1DFwZx5A8WA6tVng2le2ZZqTuYAnHkYxcJjr44JeqN2hQIf6z+tDFWrVo333nuPBg0a0Lx5cxYvXkyPHj345Zdf8txmxowZxMXF6V4hIQUrKvg6YWok57e366OQiX1h1uvh6fRNb2eqO5mTkKpm0YmyucGbKOWMa/vcOqT3m3hIiJjG3aWLWNemiMikYqo9wJpzQQRFFi5IUq1Ws2/fPvbt21dirQ9GtvLENtPtmF8sWFnxQfsqKGQSTj+I5EJWl+2wMGjfHmbPhn//LVsBX8GEdpV5o5YT6Rot49deKVYV3/JAaYxJA68nbavas2KEmDLvczeC91ZfKpRC1KWWE1M6iQ/bM3ff4qOOXihkouqy8NgDjt0uesHHF/lPK0O50axZM+7fzzt42MjICAsLi2yv/yK1nS35tKsYcf/93lvFbrwnk0r4rJu4v1VngnkcUzZ9y95p5o6dmZKQ6BS2X9HzTVwige3bwccHjh0r1q7aVLWnbVV7MjQCPx0oXHZjWloaPXv2pGfPniXW+sDMSM74zIyO347dL3Kwd0niYm3CgEai5Xb+kcwnRCcnGDlSfF9OM8tAjK34ZWA9qjiYERafygfrrpRLC1xBKY0xaeD1pUUVO1aMbIyJUsa/9yMZvepioeptTepQhS41HUnXaPl2z02mdnmeBDVpg1+hHyhz4/9OGfLz86NChYKbzv7LjG7lSWsvO1IztEza4Ffs4Oe2Ve1pXsmWdI2WeUeymy+lUimNGjWiUaNGJVpi3kQp1wXa/X78gX77Qbm4wLhx4vuvvy6WdQjgix41kErg4M2w55aNAlBa5/KdZu44WagIjUtl/fnyGduSZR06GxDFuYDMhIAvvgCFAk6cgJMny1bAV2BmJGfpsIaYG8m5EBTND/teXUOlPFNaY/L/gf/quWxWyZZVo5pgqpTh+yCKkSsvkFTAFlFSqYR5g7zxcjDjWXwaR24+o3UVOwCS0zWMXX2J5PTiWSRfqzOdmJjI1atXuXr1KgCBgYFcvXqVR4/EiXrGjBkMHz5ct/6CBQvYuXMn9+/f5+bNm8yYMYNt27YxceLEshC/3CGVSvh1YD1sTZXcCUvIZqEIjEwqdCyRRPLcOrTD7wm3Qp8HnxsbG3Px4kUuXryIsXHJtu4Y2tQdOzMjHseksE3f1qEZM0ClgrNn4eDBYu2qqqM5gxqLdX1+2HerwJlbpXUuVQqZrljnohMPij3ZlATOVsYMavySdcjNDcaMEd+Xw55lL1LZ3kzXImflmSD9WzNLidK8vv/r/JfPZWMPG1aPboqZkZxzAdGMXHGxwD0zzYzk/DW8ERYqOVcexWJjptRli90LT2T6tuJ1QnitlKFLly5Rv3596mf2H5o6dSr169fn68wJ7+nTpzrFCCA9PZ1p06ZRt25dWrduzenTp9m3b1+hU/P/yziYq3QVP1eeCWKPfyjf771F53knCSiC6bGeqxU96lZAEGDuobIpbmmslOlcPH/o2zpUoQJ88IH4Xg/Woamdq2KqlOH/OC7fYmJlwYBGLrjbmhCZmF5mmYL58UH7KihlUs4HRnPmYWZtls8/B6USTp0S3ZrlmM41Hfmwg5ipOGP79SK3MzBg4HWgobs1a0Y3wVwlWkTf/ecCCakFS0rxtDPlt7frI5HArquh9Kjz3Muzxz+UtcWwYBsatebD696otaB8s+sGq84GIwGyBsTP/evqYjIKQ1Bm00+1VmD9e01pUdlOr7IWhNQMDa3nniAiIY0f+tRmaFN3/e08IgI8PCA5WWzk2rNnsXa36MQDfj50FycLFcc+boupUcFrY5QGO/weM2WTPxYqOf9O74ClsaKsRcpB1vht4mHDpnHNkEgkotK6eDG0aye6zMoxWq3A6FUXOXE3AmcrY/ZMaoWNqbKsxTJQhmi1AvGpGSSkqklMy3ylqknI/JuYlpHt/6R0NVoteNiZUtnelMoOZlS2NyuX1yvAtcexvLPsPPGparxdrVg9ugkWqoLJusTnIXMO3kEuldCisi2nMiu6myllHJvWDkcLsdZVYe7fBmUoH/4flKEzDyKZuecm954lZlv+dhM3XZHGwvL1rhusPhtMXRdLdn3QkpSUFGrWFGs+3Lp1CxMTk2LLnR//nA7ku723qGipwueT9ijlejSETp8Oc+dC585w+HCxdpWaoaHz/JOERKfwQfvKfJIZ2J4XKSkpdOrUCYCjR4+WuCldoxXotvAU954lMrF9FaZ1rVaixysKz+JTaT33BOlqLevGNKVlFTsx+69zZ5g2DUaPRlfTv5wSl5xB70WnCY5KplUVO1aObIxc9noY70t7TP4XSUnXcDUkljN3nvDNu2+QrtbgNHoxUkXxiljamxuJypG9qByJSpIpFS2NkUrL9pq48SSOd5afJzY5g3oulqwe1RRLk/wVIkEQmLjBj33XnmJjqkQhk/AsXgzc71G3AouGNAAMypBe+a8rQ4Ig8MXOG7kGyFZ3Mufg5DZF2m9kYhpt554gKV3DH0Pq076yJWaZRfESExMxNTUtltwFITVDQ5u5JwhPSGPewHr0zWyUqhciImD5ctH6YG5e7N0dvhnG2DWXUcqkHJnaBnfbvM9PUlJSqZ/Lgzee8v7aK5gZyfGd3qFAE1ZpM3P3TVaeCaKhuzVb328uWocEodwrQS9yNyyBPot9SU7XMK5tpWxtCMozZTEmX3fCE1K5HBTDpeAYLgVFczM0HrVWQJueSsj8/gC4TtmKiakJZkYKzFVyzIwyXyo55pl/zYzkmBrJMVfJ0WgFAiOTeBiRyMPwJMLiU/M8vkohxcvBnB51K9CvgQv25kal9dWzcSs0nneWnyc6KZ3azhasGdUU6wJYRZPT1fRdfIY7YQlUsjclIOJ5WMfKkY1pV83BoAzpk/+6MgSiQvTL4bssOvEw23IJcP3brpgV0W2z4Og9Fhy9j7utCbvGNcLaUjx/pTlZZrmgalawYN+HrcQbZDlEEASG/3OBf+9H0qmGI8vebZTnumq1mr179wLQs2dP5PKSd6tptQLdf/uXO2EJfNTRiymdq5b4MQtLeHwqrTKtQxvHNqNZJduyFqlI7L0WysT1fgD8MaQ+PetWLGOJ8qcsxuTrxqOoZE4/iORScDSXg2MIjspZfsTJQkVdJxV/j24FQHRsPNaWRX/YSkxTExCRqFOOHoSL74OiksjQPL/1y6USOtVwZFATV9p42SMrZYvR3bAEhvx9jqikdGpUsGDdmKYFchOHRCfT8/fTxKVk0MTDhgtBYlZuRSsVx6a2IyM1yaAM6Yv/B2Uoi79PBfDD/uzpvTqXQxFISlPT9ucTRCam80UXT8Z2rAWUrjIUm5xO89nHScnQsH5MU1oU8bu8EkEQLUUODsXazYPwBN5Y8C9qraB7silP7Lv2lA/WX8FcJcf3sw4F9u+XJl/uvM7ac49oU9We1aOaiAszMmDNGrEy9fLlZStgAZm9/zZLTwVgopSxY0JLXdVdA68Xscnp7L32lB1+T543Fc5EIoFqjuY08rCmkbsNjTyscbYyJjk5ucStbGqNlpCYFM4HRLHpUgh+j2J1n1W0VDGgkSsDG7vibFV67s77zxJ4++/zRCamUd3JnLVjmmJnlr+1avPFED7ddg1jhQx7cyWPolMAGN+2EuNbOhuUIX3x/6QMAWy+FML0rdd0QdSjW3rwVa9aRd7fmrNBfLXrJlYKDf6z3gRK34z+1c4brDkXTIfqDvwzorF+d37zJgwbJr6/fLnYLpnv995i+elAKtmbcvCjNvqNcyomWq1A1wWnuB+eyMedqzKpo1f+G5UyIdHJtPvFB41WYO+kVtR2toTgYLGRa0aGWJW6VauyFjNf1Bot7664gO+DKDxsTdg1sVW5DYQ1kJ10tZaT9yLYfuUxx26Hk55ZTFMqEVPLm3ja0NDdmgbu1rk+UJSFy/FOWDwbL4Sww++JrgGqRAJtvOx5u4krHWs46qo+lyQPwhMZ8vc5whPSaOhuzcaxzfI9riAIDP7rHOcDo2nobo3foxi0gni+t472pqGXS4Hu3+VnpjVQLhjYyJUl7zQg65a+q5jp3oObuOFpZ0p0UvH6eRWHUa08kUjg+J1wHoQn5r9BYXBygvv3wc8Pdu0q9u4+6uSFnZmSgIgkVp8NynUdjUaDj48PPj4+aDSlVxlaKpUwMTMFfLlvYIHrg5QmrjYmumaOS05mun3d3WHECPH9t9+WjWCFRC6T8vvbDXC2MiYoKpnJG/0KXIeqLCirMVleEAQB/5BYvtl1g6Y/HuW91Zc4cCOMdI2W6k7mfNG9BudmdGTTuOZ83KUa7ao5lCvLanUnC2b2rsX5zzuycLA3zSvZIghw8l4E76+9QvPZx5h94DaBeqj0/CqqOJixYWwzzFVyLgfHFKg6v0Qi4ce+dVDKpFwOjtGl22sFGLb8fIGPbVCGDOTgjdoVmNNPzCKLTEzH90FEkfelkEn5pIyzjzztTOlUwxGAf3wD9btzW1v48EPx/bffFrvukIVKoWuTsuDofcITcgZApqam0r59e9q3b09qat4BkiVBz7oVqWRnSmxyBmvOBpfqsQvK+5k1pg5cf/p88v78c5DL4ehR0V32GmBjqmTpsIYYyaWcuBvBgmN5txEqa8pyTJYlT2JTWHTiAZ3mneTNRb6sOhtMTHIG9uZGvNfak/0ftubg5Da816YSDhbFyworDVQKGW96O7NhbDNOTGvH+HaVsTMzIjIxnaUnA+j4qw+z9t4qVCuNwlLZ3oxfM2vfLT8dyIHrTwu0zYT24nXv+zAK28x4o4TUgstpUIYKyOPosum1VVYMbOxG9zpOAHy18ybqYvRN6lbbiTquVihs3bBzrVwmQcxjWnkCsO3yY6IS9dw7aepUMaPs6lXYubPYu+vf0IW6LpYkpqn5+eDdHJ9LJBJq1qxJzZo1S/1cyl6wDv39b0C5rEpd3cmCjtUd0AqwNMs65OHx2lmHQOwh+GMf8cHkt2P32XyxfDaOLssxWdoIgsD5gChGrbxIqznH+fnQXR5GJGEkl9K7XkVWjmzM2c868EWPmtSsWPjQivJyLj3tTJn+RnXOzujA0mENaVvVHq0Ay04H0nXBqecFTkuALrWcGNdGbLr9ydZrBETkb9Ef364y7jYmRCelE5WUXuhjGmKG8iErZsh18maquNjTrqoD7arZ08TTBpVCVtbilSgxSem0mXuChDQ1s96qzTvNil648FxAFIP/OodcKuHI1LZ42pVu6q0gCPT+w5frT+KY2rmqrs2E3vjyS/jhB6hbV3SZFbOn0JVHMfRdfAaAnR+0xNvVSg9C6ge1RkvHeScJjkrmi+41eC9z0ipPXA6Opt+SsyhkEv79tANOlioIDISqVUGthjNnoHnzshazwPyw7xZ//xuIRAJz+xWtGKqB4qHRChy5FcafJwO4GhKrW96skg19G7jQrbYT5uXI9VUSnLgTzuc7rvM0TrT+vd3ElRnda5SIy0+t0TJk2XkuBEZT3cmcHRNaYqx89T33QmA0A5ee1f2vTUsmZMFAQ8yQPpFJJQREJPGPbyDD/7lA/e+OMGrlRVafDeJRLimS/wWsTZVM7SKmUM87ck8XWFcUmlWypX01e9RagV8O5bR2lDQSiYQxrUXr0OqzQcVuSpuDLOvQtWt6iR1q4GZNv8y6SN/svlmu4kXkMikftBetQ0tPBZSoybyoNHS3oYmHDRkageWnA8SFnp6Q1bvw++/LTrgi8Hn3Ggxv7o4gwKfbrrHt8uvZw+x1JDVDw4YLj+g87yTvr73C1ZBYlHIpQ5q6cfzjtmwc25yBjVzLlSKkLiGDbfvqDhye0oZ3mok9FTdcCKHzvJMcvfVM78eSy6T88XZ97MyMuBOWwBc78+891sTThsGNi/agYFCGCsipT9uzeGgDBjZywdHCiJQMDcfvhPP1rpu0+fkEHX7x4ds9Nzl1LwJNObpxFZd3mrlTxcGM6KR0fi9mzML0btWRSGDf9af4v/BkVVp0r1OBCpYqIhPT2X1Vz33AbGyexw5t3aqXXU5/oxpmRnL8Q2L133C2mPSp74yLtTGRiWlsuFA+O9qPz4whWHf+EbHJmWbzGTOgSxf47LMylKzwSCQSvu1di3eauSEIMG2rPzv8yteY+K8Rl5LBohMPaDXnBDO2XycgMgkLlZyJ7avgO70DP/apQyV7s7IWMwcxMVC9OqxbB1o9tmXMwlylYNZbddg0thmedqY8i09jzOpLTNrgp/cQBAcLFb+/XR+pBLZfecLGAriJZ3SrgZ2ZGDNUmHJJBjdZPuSWWi8IArefJuBzL5yTdyO4HByD+gUFyMvBjE+6VqNzTcf/hP/c5244I1ZcRC6VcHhKmyJNAMnJyTRu3Jiw+FRMB86lR30PlrzTsASkfTVLTz5k9oE7VHU049DkNvr9faKixNTt3r2L7SbL4q9TD/lx/x3szIw4Pq0tFioFKSkp9O7dG4Ddu3eXWeuD9ecf8fmO6ziYG3Hq0/blzm0sCAI9fjvNrafxTOlUlY86lb9SAIVFqxX4atcN1p1/hFQC8wd586a3c1mLVW7GpD54GpfCP6cDWX/+EUmZVs8KlipGt/JkcBO3IhehLShZcyXAxYsXC926yMcH2rcX39epAz/+CD16lEwh9tQMDfOP3uPvUwFoBbA2UTCzdy1616uo17k1qxeZUi5l+/gWYsmMV7DbP5QPN/ghzUghcN4AQ50hfVCQOkPxqRmceRCJz90IDtwI07mTGrpbM/2N6jTxtClNkUuEkSsucOJuBB2rO7C8CLV6Xqyd4TplK3IjFT7T2uNmW/I9yl4kLiWDFrOPkZSuYfWoJrSpal+qxy8s6Wotbyw4RUBkEu+19uSLHjXLTeuDNLWG9j/7EBqXyndv1mJ4c48ykeNV7PEPZdIGP6xNFPh+1gET5etfGVmrFfhi53U2XAhBKoEFg+vTu17ZVqkuL2OyOARHJfHH8Qfs8Huie7it5mjOuLaV6FWvYqnU2YHin8uFC2Hy5OzLWrSA2bOhTdG6K+XLtcexfLr1GnfCEgDoUN2BWW/VpqKeijZqtQJj11zi6O1wXG2M2Tux9StbAgmCwIgVFzlxPdgQM1SaWKgUvFG7Aj/1q8upT9szoV1lVAqx5sHApWcZtfIit5/Gl7WYxeLLnjWRSyUcuxPOqXtFT7UHaOllh1YogTT3AmBprGBgpk952ekSPH5iolh/qJgo5VK+6iU2uF3hG8SD8ESMjIxYu3Yta9euxciobPoJARjJZYzPTGNf4vOQNHX5ix3qVtsJd1sTYpIz2HDhBRN7RAR8+imMHFl2whURqVTCD2/VYVAjV7QCTN7ox55i1gMrLuVlTBaFkOhkPt3qT4dfT7Ll8mPUWoFmlWxYMbIxBye3pm8Dl1JThApDVuH7c+dEl9h338H778Off+Zc98wZaNsWatYUP48o3hSeg7ouVuyZ1IqPO1dFKZNy/E44XeafKlBafEGQSiX8OsAbVxtjQqJT+HjLVV0cpSAIPI7JHrcrkUiY9VZtjBQF/90MlqF8KGoF6mfxqSw8dp9NF0PQaAUkEnjL25mpnavialO61hB98d2eW/zjG4iXgxkHPmpdqI7aLz7tHPQLZNzGm5goZZz9rGOpN/18FJVMu19OoBXg0OQ2+m914OMDAwaI6dwXLujFPj165UWO3QmntZcdq0c1KTfu19QMDW1/PsGz+DR+7FOHIU3dylqkHGS58ypYqjj5SXuxqveNG6IPQSKB69ehVtGrrJcVWq3A9G3X2HL5MTKphN8G16dHZsFJA/nzOCaZRScesOXSY50lqF01ez7q6EV9N+sykys3y1BiIpw4AadPw4MH8PAhBARAQkLRj+PgAA0bgrc31Ksnvry8QFZMb/f9Zwl8uu0afo9ikUjgxz51eLuJfuaFG0/i6LvkDOlqLZ++UY12VR34ZvcNzFWKXLsLLNh/lSk96hvcZPqguO04AiIS+fXIPfZdEzVkhUzC0KbuTOpQBdsC9F0pT8QlZ9DulxPEJGfwbe9avNvCo8DbvniBJyQk0H/ZFe6EJfBZt+q837ZyCUmcN+PXXubAjTAGNnJhbv96+t15RISoCCUnw7590L17sXcZFJlEl/mnSNdo+Xt4IzrXdCy+nHpihW8g3+65hbOVMT6ftCt3T9Fpag2t55wgPCGNuf3rMjArLb1fP9i+Hd5+G9avL1shi4hWK/DptmtszVSI/ni7Pt3qGBSiV5FVKHHLpRBds9LWXnZM6VyVBmWoBGXx4lz57beJnDhhiq+v2E0mN1xcoHJlqFQJKlYU3WG5BU4bG4NKJe4nMY+yPRYW4mUxbJhoSSpq6KNGK/Dlzhu65Irpb1TXWZGLy4YLj5ix/bquS4IAWKjkXP26C9KXIqajY2KxtbE2KEP6QF+9ya49jmXuwbucfiAWqjJVynivTSXeb1u53AWevoo154L5aucNrEwU+Exrh5VJ/p2FIefTzv7b0Xyy9RpOFipOfdq+1HtwXQ6Ood+SMyhlUnw/64C9uZ4V008+gV9+gaZN4exZvViH5hy8wxKfh7haGTG7rRlGchkNGjRAVtxHuWKSmqGh1ZwTRCamMbdfXZ0bsjyRFYheyd6UI1Pail25/fygQQNxxr99W6xB9Bqi0Qp8ssWf7X5PkEsl/DGkAW/UdipdGTQarly5AlAuxmRuPI1LYfGJh2y8+EinBLWqYseUzl40dC/7uM6UFLFm6+7dSWzcmJWkkgiIMUOentC5s2jErFxZfHl4iApOFqGhYrF1d3fx5eYm/nV1zb5eYqJoEL16Ffz9xb/Xr4vPb1m4ucHQoaJiVKNG4b+PIAj8fOgui33Ewqfj2lTis27Vi2XV1moFtlwK4evdN0lTZ9f4DnzUmhoVst+jC3P/NihD+aDvRq2n70cy5+Adrj+JA6CuiyV/vtNQb4FmJY1ao6XHb6e5+yyBES08mNm7YO6Fl5UhuZGKVnNOEJGQxvxB9ehT36Ukxc6VPot98XsUy4cdqjC1i55bhjx7Js5eKSlw8CB07VrsXSalqenwqw9PI+MImd8fKD/Bqsv+DWDWvtu42Zhw/OO2hXKhlgaJaWpazD5GfKqaJUMbPLee9OoFe/fCu+/CypVlKmNx0GgFPt58lZ1XQ5FLJSwe2oAutUpPISrPAdTP4lNZfOIBGy6E6JqmNq9ky5TOVctFcktgICxZAsuXQ3Q0QBIgnss33kikRw9TunaFKlVKJiMsC41GjC1aswY2b4a4uOefNWwoKkVDhoB9IXNOsh5EAAY1cuXHvnXEh5Ei8CA8gYFLzxGdS4Xp3JI4CnP/Ll8z1v8Brbzs2PVBS35/uz7WJgquPY6j9x+nOR8QVdaiFQi5TMrXmQG9a84Fc/9ZwZzWEokEd3d33N3dkUgkGMllvNtcrGi97N/AfItplQRjWomVk9ecC9Z/EUZHRxg/Xnyvh55lAKZGcmZ0qwESkFs64OzqVm5ih4Y0dcPWVMmj6GR26buGkx4wM5Lr3LpLTj58Pt6++kr8u3atGITxmiKTSvh1oDdveldErRWYsO4KS08+LLVinS9f3+WB0NgUvt51g9ZzT7DqbDDpGi1NPG3YOLYZG8Y2K1NFSKuFw4fFKhyVK8PPP4uKkIcHTJ0qwdFRPJfbtkmYOFGM5Snp0yqTQevW8NdfEBYGW7aIzwpyOVy+LGaoeXjAN9/k7WbLjbFtKjOnXx2kEth0KYQP1l0pcrJFFQdztr7fHBfrnMaDC4HRRdpnFgbLUD7o2zL0IiHRyYxdc5nbT+ORSyV83asmw5qVn8nkVby3+hJHbj2jTVV7Vo1sXCSZY5LSaf7TMVIztKx/ryktKtuVgKR5o9ZoafeLD49jUkom+DcsTLQOpaaKDUI7diz2LgVBYOiy85x5GEVTTxs2vNcsh5+8rPjz5EN+OnAHTztTjk5tW+Snv5IiKjGNlnOOk5qhZe3oprTyyhxvb7wBhw7BuHG5p+K8Rqg1Wj7deo3tfk8AMRbm1wH1XosmofoiJDqZJScfZosJauxhzZROVWle2bZM59e4OFi1ChYtgnv3ni/v0gUmThTDC8ubhzEiAjZtgn/+ET3LAE5OYhH3kSMLLu/BG0/5cMNV0jVaWlaxZemwRkWu2RQen8qIFRe59UKWtq2pgktfds72+xrcZHqkJJUhgJR0DZ9uu6ZLjR3YyIXv3qxd7uOIgiKT6Dz/JBkagRUjGtO+ukOR9vPlzuusPfeIDtUdcs0GKGmWnw7k+723qJwZS6J3xeKjj+D330XrUJYVopiERCfTZf4pUjI0fP9WbYYVo2ecPklMU9NqznFikzNYOLh8FAN8mZm7b7LyTBAtKtuy/r1m4kJfX9i4UYzzcit/2XCFRRAENl0MYeaem6RmaLE1VfLLgHpFvkZfF4Kjklh84iHbrjzPDmteyZYPO3rRrJJNmSpB6emiAvT992KFaBCDlUeMgAkToFoRvfRqjZYbofHceRpPYpqapDQNyelqktLVJKdpSExTk5yu0f2fptbgbmtKzYoW1KpoQc0KFnjYmhZo3hME2LYNpk9/bkStXVsMjSxoFMDp+5GMXXOJ5HQN9VytWDmiMdamBYs7fZmE1AzeX3sZ3wfPvSonp7XD/YW+lwZlSI+UtDIE4uT1978B/HTgDloB6rlasfSdhmJzyXJMVvPI+m5WbB/fokiTTWBkEh1+9UEQ4OjUtlRxKN3y9gmpGbSYfZyENDX/jGhEh+p6ztIKCxPt3zVr6nW3K30DmbnnFqZKGYemtMHFunyUa/jj+H1+OXyPKg5mHJ7cptxYrbJ4EptC27knUGuFctcAV988CE9g0oaruhpnI1t68Fm36hjJy/eDVmEJiEhk0YmH7Lz6RNcKqbWXHZM6eJV5TFCWAvHZZ2I6PIitMj78EN55R2xnWLj9CdwPT8T3QSS+D6I4HxhFQmrxGpGZKGXUqPBcOapZ0YKqjuZ5PpCnpYkxTt9991yx69JFVIrq1Mn/eFdDYhmx4gKxyRl4OZixZnTTIt/r0tVaJqy7zNHb4QC808yNWW89F8KgDOmR0lCGsvj3fgQT1/sRl5KBnZkRf77TgEYeZR/glxfhCam0mnOCdLWWTWOb0bSSbZ7rpqSk0Caz/OmpU6eylevPcrm93cSN2X0LcDXpmSylLpu1oByTmprKoEGDuRQcjbzTFNrUqFhuag/Fp2bQ6qfjxKeqWTSkQbmse/PxZn+2XXlMl5qO/DW8Uc4VtFq9tVMpa1IzNMw5eIcVvkEA1Khgwe9ve1PFQb+1tVJTUxk8eDAAGzduRKUq+Qe5+88SWHTiAbv9Q8kKjWpXzZ5JHbxo6F72KfJnz8LHH4t/QXQtzZolWoNe5Vp6ea6MTBE481BUfs48jCLypf5fFio53m7WWBkrMDWSY6qUYWIkx8xIholSjpmRHBOlDFMjOTKphAfhidx6Gs/NTIvSy1lZIMagtahsy6hWnrT1ss/1oSY6Gn74QTR8Z2SIl8z06aKSJM/H+3X/WQLDll8gLD4VZytj1o5piqdd0YLutVqB/n+e4cqjWIwVMi592QnTTPebQRnSI6WpDIFYEHDsmkvcCUtAIZMws3cthjYtH26Q3Ph8x3XWn39E+2r2rBjZJM/1XpVtciEwmoFLz2Ikl3Lmsw6lXn/pSWwKbeaeQKMV2PdhK2pVfHXfmyITECDOGkW1iWfy4rms8sl2MqTKcpXSvuDoPRYcvU91J3MOfNS6XChpL/IgPIHO809lWiPbPFcM/P1FV2atWmKxlv8Qx+88Y9qWa0QnpaNSSPmmVy0GN3bV229TWtlkao2WY3fCWX02KJt7pFMNByZ18KJeObD0BQSI/YA3bxb/NzERPbDTpoFZAQzfL57LFt/v40li9lu0SiGlsYcNLSrb0bKKLbUqWhY5Pk+t0RIYmcStp/HcChUVpJuhccQkPy9qVNnelJEtPenXwAVjZU4t7uFD8ftu2SL+37YtbNgAFfJ5DgqJTmbY8vMERSVjb27Erg9aFjmrOjVDQ7PZx4hNzuD9tpX5rFt1wKAM6ZXSVoYAktPVfLLlGvsyS5m/3cSVmb1rlUvzdlCmm0sr5F7nIYtXTZaCIPDmIl+uPY4rs4aakzaILQ361ndm3iBv/R9gxQp47z3Rub5vX7F2lZGRwcrMNHB15dbMOfwQc5WcI1PalgvXalxyBi1+Evu/rRjZmPbVyl+syrg1lzh08xn9Grjw68DMopt79ojpPWZmEBwMNuXXKlsUwuNTmbrZX1frrHsdJ2b3qauXCvAvjskRI0agUOi3qnxUYhobL4aw7lwwoXGpgNiRvEtNJyZ2qJJv487SQK2GuXPF8MD0dDH7a9Qo0VJSsYCt4+6GJbDo8E1+f7c5IPZxVKiM8Xa1okVlW1pUtqOBu1WJ3gsEQSAoKpm154LZdDGExDTRDWdprGBIUzeGN3engmVOpWXTJhgzRsw0c3QUw/DatXv1sSIS0nhn2XnuPkugtrMFW8a1yFXhKgjHbj9j9KpLyKUSDk1pQ2V7M4MypE/KQhkCcUD+eTKAuYfuIAjQpqo9y4Y3KvXihAXhg/VX2HftKW95V2TB4Pq5rpPfk2NWl2E7MyWnp3co9QBy/5BY3lzki1wq4cyMDjiY61mpePBAtAhptXDpkli4Qw9otAJ9l5zBPySWjtUdWPZuo3JhiZm19xbLTgfS1NOGTeOal7U4ObgaEstbmb/36ekdRCVSEKB+fdFCNHOmmEP8H0OrFeMTfz50F7VWoKKlivfbVaZvAxfMjOQIglAuxg+Ic+DVkFhWnw1m37WnuhpBNqZKBjV2ZWhTt3ITK3frlliq6tIl8f/OncUYmrp1899WEATOBUSz9NRDfO5GoE1P1dUR23H+AZ3quRc566q4JKRmsOXSY1aeCeJRtFiRUSaV0L1OBUa38swRc3f3LvTvL3a7kUpFt+D06a/2Oj+OSab3H75EJ6XTu15FFg72LvIYHLXyIsdfaFuUkJBgqDP0uiORSBjfrjIrRjTGWCHj1L0Ipm3xL7W6IYVhfGY7jT3XnhISnZzP2rnTvbYTzlbGRCamszMzLbg0qedqRX03K9Raga2XH+v/AFWqiBXLQJwh9IRMKuHn/nVRyqQcuxNebmr8jG7tiUIm4XxgNFcexZS1ODnwdrWiiacNaq3AqrNB4kKJRCzfC2Lr7/jXu7lybkilEsa1rcy28S1wtzUhNC6Vr3fdpNmPx/h61w06zz/J9iuPydDk0s+hlEjN0LDlUgi9//Clz+Iz7PB7QrpGSz1XK34dUI8zn3Vg+hvVy4UipNGI1qD69UVFyMpKLFp46FD+ipBGK7Dv2lPeXOTL23+fw+duBFIJdK31PImjcy2nMlOEAMxVCka18uTEtHb8NawhTT1t0GgF9viH8tYiX/ou9sU309II4vPe+fOiYqjVipdTr14Q9Yoyei7WJiwe2gC5VMJu/1D+PFn0el9f96yJUibl3/uRHL71rFDbGixD+VBWlqEX8bkbzphVl1BrBUa29ODrnjXLzdNbFu8sO8/pB5F5VqUuSEzB36cC+GH/bao4mHFkSptS/46bL4bw6bZruNuacOLjdvrPhLpzR8wqEwTR+lCQx8Zc0Gq13L59G4AaNWoglUp1WVxWJgoOT2mjf8tWEfhkiz9bLr8iULmMOXwzjLFrLmOhknN2Rkcx6FKjEWOG7t6Fn34SH2v/oySnq9ly6TGrzgYREJGU7TMbUyUfdqzC4MZuBbLS5jYmC8OjqGRO3A3H5244ZwOiSM0QlTGlXErPuhUY3tyj3GX+3bkj1tk5d078v3t3+Pvv/F1iWcre3/8G6qwtRnIpAxq5MKZVJeyNKbfVvEFslrrCN4g9/qE6a93Ilh5Mf6O6bqwIgliXaOJEscyam5vYBvBVBvGsVk8SCfzzbtHLtfxy6C5/nHiAs5Ux28fUx8nexuAm0wflQRkC2On3hMmbrgLwSddqfNC+iu6zdLUWrSCUaW0i3weRDF12HpVCiu/0nEHQBVGG4jPT3BPT1GUSa5KcrqbJD8dITFOzfkxTWlQpgSKQgwaJkZWDB4tRhkUgt3OZodHy1iJfbobG0622E0ve0Y8brjjkGahcTtBoBTr+6kNQVHL2Uv6rVokpPw4OEBQkdrj8D6PVCvg+jGTekXv4PYrN9pmJUsaolp6816YSlsZ5xwEVNoA6NUPDhcBofO5G4HM3nIDI7MqYi7UxQ5u6M6ixKzZFrENTUmg0sGABfPGFmGZuYSEaEt99N/8q0WcfRjFj+zWCokQlyNpEwfDmHgxv7q6bM8tza5MXCU9I5bdj91l7TmzG6uVgxvxB3tnit/z9RbfZgwfieTp4EJq/wmuelZBjbiRnxwcti1RqJSVdQ6d5J3kSm8LYZhX4ok9Dg5tM3wiCUGZuqrfqO/NVT7FWzc+H7rIxsxvwvWcJvLnIlyOFNAnqmxaVbanjbElqhpZVZ4NzXcfOzg47u7wVDAuVgsGZGVHL/i391ggmSjlveouPdRsuhpTMQbLcMJs2ZS9BW0hePpcKmZS5/esil0o4cCOM/ZnB92VJFQdzOtcQTf5Li2H6LilkUgmjWnkC8M/pQF2NGoYMEfsOhIe/1v3KCopUKqG1lz39GuTsD5icruGPEw9o+P0R3vzjNEt8HvDv/QhCopNRv+RKy+361moFIhLSuPEkjuN3nrHCN5DRKy9S/7sjDP/nAv/4BhIQmYRMKqGppw3T36jOwcmt+ffT9oxvV7ncKUKRkaIFaNo0URHq2hVu3hR151cpQvGpGczYfp23/z5HUFQyjhZGfPdmLc581pEpnavmeHjMb64sDziYq5j1Vh1WjGyMvbkR98MT6bPYl8U+D3TXUr16ovuwbVvR69ylC5w+nfc+Z/aqRRMPGxLS1IxdfYm4lIy8V84DY6WML3uInWWX+wYWeDuDZSgfsixDVT7ZikamQiuIqYbertZ4u1lR39WKak7mKEqpMeXcg3dY7PMQqQT6N3Rh59VQ0tVaetatwB9DGpSKDHmx79pTPlh/BSsTBb7TO+hqPRSGxzHJtP3ZB41WYP+HralRwZybofFUdTQvleDxG0/i6Pn7aZQyKec+71gyk3GvXnDqlHij7dNHr7ued/guvx1/gK2pkiNT25b5zeTKoxj6Lj6DQibh1Kftc81CKUuS09U0n32cuJQM/hrW8Hlz0w0bxEIqo0b95y1DWWTV2yooCpkEF2sT3G1N8LA1xdpESWRiGs/iU3mWkEZ4fCoRCWm6atAv42BuRPtqDrSrZk9LLzssVPrNQNM3Fy6IVo6QEHFILFwoZk/lZw06cusZX+68zrN4sT7Q0KZuTO9Wvdx/38IQnZTOjO3XOHRTfChv4mHDrwPr4WojxnUlJYmJmsePg6mpmFDbtm3u+4pMTKP376cJjUulbVV7/hnRuNClAwRBYNjyC5y6+YiQBQMNbjJ9kKUMuU7ejNQo94A9I7mUOs6WeLta4e1mhberFc5WxiUS8yIIAh9uvKpr35GFqVLG5a86l6mr7EW3w1c9azI686m7sExcf4W9155S29mCdLWWe88SufhFJ+zNS6f+UM/f/+XGk3i+7FGDMa0r6f8AwcFgaSlGW+qZNLWGXr+f5t6zRN70rsjCPLL7SpNBS89yPjCaMa08+bKnfitx64M5B++wxOchTTxt2FwOM99Ki6zipy9irJDibGWMqZECpVxCulpLbEoGT2NTdfEi+SGRgJ2ZEY4WRjhZqKjvZk37ag7UqGBe7mIfc0MQxIrLkyeLZcK8vMSq0vlVW45MTGPm7pvsvSZaaT1sTfipX12avaI47euMIAhsufyYb3ffJCldg5mRnJm9a9GvgTMSiYTkZHjrLThyRFQm9+6FDh1y39eNJ3H0//MMqRlaxrWtJDaoLiQPwhPoMucQgfMGGJQhfZClDN0MfIqdjRVaAW49jePqo1j8QmLxD4klPpdy6NWdzHm/bWV61q2AXI9Wo4tB0YxeeTHXY5ZIO4lCsv78Iz7fcZ2KlipOftq+UBaz5HQ1h28+Y+WZQK6GxGX7zGdaOzyKWKG0sKw9F8yXO29Q2V5sOPo6TNgv4h8SS5/FvmgF+Ht4IzrXLNsx4XM3nBErLmKilHHmsw5YmZQv10dYXCqt5hxHrRXYPbEldV2ssq+gzbzp/0eqUufF1M1XkUokeDmYUdXRHC9HMypaGueaSKDVCoTFpxIUlcSjqGSCopKJTU7H3twIBwsVjuZGOFqocLRQYWem1OscWJokJYn9e9etE//v21csGfaq+6ogCOzwe8J3e28Rm5yBTCrhvdaVmNzJq9z3nNQHj6KSmbr5KpeCxSzSbrWd+LFPHaxNlaSmiufwwAFQqWDXLtF1lht7/EOZtEHsDFvUXodfb73I9wOaGJQhfZBfALVWKxAYlcTVR7FcDRFft5/G60zDrjbGjG1TmQENXfRyIaSrtfy4/zYrzwTl+GxQI1fm9C9ahpK+SM3Q0GrOCSIT0/h1QD36NRTjEFJSUujWrRsABw4cyNaOI4uAiER6/+GrK/L1InsntSq1wmoJqRk0+eEYKRkatrzfnMYl1RJFEODYMfER07HgCktqaiqjR48GYPny5bm2Pph94DZLTwZgY6pk76RWRa7sqg8EQaD7b6e5/TSejztXZVLH0i+qmR9TNl1lh9+TnNa0rVvh66/FSnoDBpSdgOWcgozJ1427d6FfPzEmSCYTU+inTHm1W+xJbApf7LiOz90IQGx/MrdfXeq4FHzuKshcWd7RaAX+PPmQ+UfuodYKOFmoWDO6CV6O5qSlie7GvXvByAh27IDMr5uDrLAQI7mULe83z/mgkg+hEdE4O9galCF9UJRssrjkDNacC+If3yCik9IB0Uw8qpUH7zRz14uveNfVJ0zfeo3UF/rKWJkouPxl5yKXZtcXS3weMufgHbwczDiU2ayzoBkSB64/Zfy6KzmWbx7XvFSbLn661Z/Nlx7Tt4Ez8wZ6l8xB3n8fli4Va/XPnVvgzQpyLlMzNPRbcoabofHUd7Ni09jmZVqwc9fVJ3y08So2pkp8p3cocpXZkiIrVkwuFWObdMrjN9+IJYS9veHKlfwDRP5PeV0yoArKwYMwcCAkJIhtJTZvhlatXr3N6fuRTFh3mfhUNUq5lI86ejG2TaVCx5P+l87l9cdxfLTJj4CIJOzMlKwb04xqTuakp4uJtTt3glIpsG+fhE6dcm6v1Qq8t/oSx+6E42ShYvekloUqG1KY+/drZbs8deoUvXr1omLFikgkEnbu3JnvNidPnqRhw4aoVCoqVarEn3/+WeJyWpoomNjBC9/pHZjZq2ZmMcE05h68S8ufjjP34J0czfYKy5vezuyZ1Ap3m+dPDbHJGZx5oQBWWTG0mRvmRnLuhydy/E54obbtllnZ9GWScrEWlSSDm7gBsP/60yJlNBSInj3Fv0uWvLoq2UsolUrmz5/P/PnzUSpzdzmpFDKWDG2IhUqO36NYftx/Wx8SF5kedSrgamNMdFI6Wy6XUKZeMajtbEmzSi8VYQSxvbipKVy9Kt4hDeRKQcbk68KSJdCjh6gItW0Lfn75K0Jrzgbx7ooLxKeqqedqxf4PW/NB+yqlllhTXqnjYsn28S2oVdGCyMR03v77HLefxqNUwtfz47CtHU56uoSBA+H+/ZzbS6US5g/2prK9KWHxqXy69RolZb95rX6ppKQk6tWrxx9//FGg9QMDA+nevTutW7fGz8+Pzz//nA8//JBt27aVsKQixkoZI1p64vNJO34dUI8qDmYkpKpZ7POQlj8dZ/aB26SpNUXev5ejOfs+akO7ava6ZT8dvKMP0YuFhUrBkGaiMvHnyYeF3v6zbtVp9FLX6dxcZyVJfVcrqjmak5qhZdfVEqqI3aOHmHuamCi2fi4gCoWCyZMnM3ny5Ff2gHKzNWF+Zp+1lWeC2O1fdtWp5TIpYzOD0f86FZAjLbs8MKaVKN/684+eK9+2tqIFD+DHH8tIsvJPQcdkeUajgalTYcIEMUxs1Cg4fPjVHuwMjZYvd17nq103xdY49Z3ZNLZZkerj/FexMlGyfkwz6rpYEp2UzpC/z/HLobsMWnYG066XsfaIJyYG3nwT4uJybm+hUrB0WEOUMik+dyNKbB57rZShbt26MWvWLPr27Vug9f/880/c3NxYsGABNWrUYMyYMYwaNYpffvmlhCXNjkImpV9DFw5PbsPSYQ2p52pFmlrL0pMB9FtyhsCXCo4VBjMjOStGNNbV57kZGs/p+xH6Er3IjG7piVIm5VJwDBeDogu1rUIm5Y8hDbA0fp6aH5PpbiwtJBIJg5uI53T9+Ucl8zTyYvuH334TlSI907GGIxPaie1SPtt2jfvPEvR+jIIyoJErtqZKHsek6JoQlyc6VHfA086UhFQ1Wy69YL2aOhWUSrFAyquKpBh4bUlKEuOD5s8X///xR1i2TPzZ8yI2OZ0RKy6w9twjJBKY/kZ1fh1Y7/8iSLqwWJooWDO6KXWcLYlJzuCPEw9IV2uRyLWY9LiAYwUtt2/D0KGiUvoyVRzMmdRBLDT83Z5bJXI/eK2UocJy9uxZurwUqt61a1cuXbpERkburo+0tDTi4+OzvfSFVCqhay0ndk5owdJhDbE2UXDjSTw9f/uXHX5F74clkUj4qV9dumRmDX208SpxySXk2ikgDhYq+jUUo///9Cm8dcjJUsWiF+omXS6D/lZ96jtjJJdyJywB/8e5PLLog379xL5lMTFiLf8CoNVqCQoKIigoCK02fwvL1M5VaVHZluR0DePXXSl1l2MWKoWMkS09ADGurLyFK0pfLMLoG/S8CGPFijB8uPh+zpwykq58U9gxWZ4IDRXdYbt2iQG9GzfCjBmvDg97GJFIn8Vn8H0QhYlSxtJ3GjK+XeVym3malKYmMDKJ8wFR7PEPZfnpQGYfuM2nW/2Zd/guO/2ecO1xbIla4BNSM0hOz7l/uVkagz9/hEol1h/Kej58mXFtK1PN0ZyopHR+KAG3/39aGQoLC8PxJRuno6MjarWayMjcY2tmz56NpaWl7uXq6qp3uSQSUSna/1FrmnjakJSuYcomfz7e7F+sG9WCwd642ZgQlZTOl7tu6FHiovFe60pIJHDsTjj3imCRaOVlT4vKYk2Oqy+1CSgNrEyUdK9TAUBX8VvvyGTw6afi+19/Fcva5kNKSgqenp54enqSkpKS7/pymZTf3q6Po4URD8IT+Wz79TJTRIY188BUKeNOWAI+98regvky/Ro4Y2Wi4FF0cvaaO59+Kt4d9+4Vm1IZyEZhx2R54cYNaNYMLl8GOzuxKOCgQa/e5tS9CN5a5EtgZBLOVsZsG9/iebHOckBKuoZ9154yYd1lOvziQ+1vDlHrm0O0/8WHQX+dY9IGP77fe4ulJwPYfOkxvx1/wORNV+n9hy+1vzlEkx+OMvivs3yx4zrLTwdyITBaL50XnCxUvOXtTG75PZeSAli2TDzG3Lmwdm3OdZRyKbP71UEiga2XH3P6vn7jY//TyhCQQ1PPugnkpcHPmDGDuLg43SskpOSCPStYGrPhvWZM7uSFVALbrjym1++nuRlaNCuEiVLOb2/XRyaVsMc/tORiXQpIJXszutUWJ4l//g3ExMQEE5PCdZr+sY9Y2Sw4OpmwuFS9y5gfWe7H3f6hJffUNHy4mLJiZgaPCqZ0FfZc2pkZsWiI2Bl6j38oq3IpzVAaWJooGNJUjCdbUgSLYUljopQzNFO+5adfaCHi5QWzZolBJNWqlZF05ZuiXN9lyblz0KaNWFG6enWx23qLFnmvLwgCK30DGbnyIgmpahq6W7NrYktqVNB/z8rCnss0tYajt57x0UY/Gs46wgfrr7D/ehgBkUm6ectEKcPD1oQmHjb0qFuBkS09mNq5Km83caWJpw12mS1BwhPSOBcQzbrzj/h+7y0GLj1Lx3kn+ftUgC47uijIZVImdfRi2/gWuNlkLxfwOCYFrxYxzJgh/j9mjFjx+2UauFkzvJk7IPYxS0kveszty7y2qfUSiYQdO3bw1ltv5blOmzZtqF+/PgsXLtQt27FjBwMHDiQ5OblAgX6l1aj1fEAUH228Slh8KkqZlC961GB4c/cimV0XHr3P/KP3MFfJOTi5Dc5lWGPGPySWNxf5opRJufBFxyIV3Ou72Jcrj2L5rFt13m9buQSkzBtBEOg47yQBEUnM7luHtzOzzPTOw4fg6Vnihf2W/RvArH23Ucgk/2PvvMOjKL8v/plt6b0CCQm9E3rvIKiINCmioGDHRhHsvQtSLIhSFBSlg4oovffeO4EUEkJ6z7b5/TE7k03f3TT8/jzPk4cl2Sk7+86897333HNY/nRn2hYiqlcF4tNy6f7FdgwmkTXPdamWcygNt9MlEUaDSWT9813vOrf0/1B+bNkiqSFnZ0vGoRs2gG8pyh2iKPLRXxdYtFeyKxnWphafDmuBk6b6+EFGk5n916Sy1z/n4smwEuIN8XFhUERNutf3J9jLmUBPZ9xtsEdKyzFw/U4m1+9kcT0xk6sJmey7mqQEVDq1ivtbBPNIpzDahfk4XBbMyjPy9vqzrD2Rv2Dv1ySQH8a2Z8gQ+PNPaX149KhUpbZGZp6Re2btIi4tl2d61OX1+yV1apNZJMdgKvA5/2db6+1F586d2bJlS4Hfbd68mXbt2t11HQ8d6/rx98vd6dckEL3JzLt/nOPpn4+Rnms/9+f53vVoXdubjFwjU1eerDZzWYCIUG+a1vBEbzLz+0nHugBGtpOyM2uOxVR5eUcQBCU79FtllcoA6tWrEoXjJ7rV4f4WwRhMIi/8epykcko8OIJgL2eGtrbwyRzoNqxsBHk6MyhCegLLk18RGKuHd/Ufyo81a6RGzuxsSf14y5ayA6FPNuYHQq/d15gvR0RUWyBkMov8fPAmnT7dzrjFh1l1LIaMXCOBHk5M6FqHdRO7sGd6b169tzFd6vtTN8DdpkAIwMtFS+vaPgxvG8K0AY35fmw7Dr3Rl0+HtZDskUxm1p+8xYj5BxgwZzdL9t9wSHrEzUnDrFGtmDs6Ao2lbrb1QgLXEzP45Rdo1gzi4mD06HwBeBnuTho+GtIcgIV7IzkTk8qG07cYMGd3uaoh/6pgKDMzk5MnT3Ly5ElAap0/efIkUZbSwuuvv844megIPPvss9y8eZMpU6Zw4cIFFi9ezKJFi3jllVeq4/TLhI+bjgXj2vHuoKbo1Cq2nL/NuEWHybAzINKoVcwe2QpXnZqD15NZaJ3urwaMbCepUK886ljJ8f6WNdBpVFxJyOTcrYojtNuK4W1C0KoFTsekOVzCtBk5OZJJaCUFfYIg8PnwltT1dyMuLZeXl5/MJwpXIZ7uIWX4tl64zfU7Fd9FV17IbfYbz8QRm2rFgTEY4M03ITQUbt8uYev/cLdi8WJJTNFgkATF//hDkpEqCaIo8vk/lxQD20+GtuDZntVHlD52M5lBX+/l7fVnSczMw9dNxyMda7P86U4ceL0v7wxqSuvajmdsioObk4aHO9Rmw4vd+eOFroxqF4qzVsXl25m8+8c5On2yjW93XHVILmNwqxC2TumpBGsTfjqKk6uJ33+XWAN79kiGuIXRt0kQA1vUwGQWeWj+AV749QRXEzK5ctvxZ8m/Khg6evQorVu3pnVrSS5/ypQptG7dmnfeeQeAuLg4JTACqFOnDhs3bmTnzp20atWKDz/8kK+++orhw4dXy/nbAkEQGN+1Dquf64y3q5aT0amM//GI3cTqcH833raYYs7cdJkLcVUfRMgY3KoWGtHIjrlT6NF3ALm59nF/PJ21Sqfc6mOOd905Cj93J4UgufxwJQoGGo3SkmjMGMmmowTk5eXx1FNP8dRTT5FnA+G6MDyctXz3aFtctGr2Xk3k47+qXpCxfqA7/ZoEIoqweJ/tTulVhaY1Pela3w+TWSzIr9JoYOtWiI+X5BD+A1D+MVkVmDULnnhCyjQ8+aS05nAqxftZFEW+3HxZyV5+OLiZwnerTOTm5jJw4EAGDhyoPCsTMnKZsvIkw787wPm4dDydNbz/YDMOvdGXj4e2oFNdvypxHmgZ4s3nD7Xk0Bv9eP/BZjQMcifHYGLGpksM+26/Q40y4f5u/P1Sd5y1KqKSs/n4rwvUqyf1k4DU2Xeh0CNq6/nbyrHyrFwYHDm+jH8tZ6iqUFWcoeJwNjaNMQsOkp5rpEMdX34a3x5XnW3pTpBu5qeWHmPrhds0CvLg9xe6VpsGxtOL97HgCUnG1RGJ+R0XExj/0xF83XQceqNvlSu77r2SyKOLDuHhrOHwG/0qz07ipZckAcZ+/aT8fTGoKLl+ayPE9x9sxmNdwh3aj6M4cC2JhxccxFmr4sBrffFxu7uUi+Ux5+Gk4eAbfXGTSw3r1kluk97eEuHdw6Naz/NuwN1uIfH++/Dee9LradMkhYSykidztl5mzlZJFvndQU0Z37WoMn5lwPpapqSls/rUHeZsvUJmnhFBgJFtQ5l2byOF8FydkE1p3/vjnGRDolbxcr8GPNOjrt3mvNsv3mbCT0cB+Prh1jzQsib33QebNkH79rB/v7QWAcneZ/KKkxROavu7O3H0rXxfj/84Q5WAy7fTWXs8hi/+ucicrZdZsv8Gv5+MZeelBE5Fp3IzKYu0bEOF8nOa1/Li5yc64uGk4XBkMk8uOUquwXb2vKQ/1AJ/dx2Xbmcwc9OlCjs3ezGsTb7jsD2fQUb3Bv74u+tIztKz61LVt2R3qedHqK8LGbnGyhUMnDJFarffulXq9y0GWq2Wjz76iI8++qhc3LdBETWZNkDqjHr/z3NsPV+1ZZ9OdX1pVtOTXIOZXyuTj+UgejYMINzPlYw8I+utuQiDB0sdZamp8MMP1XZ+dxMqakxWNERRspeTA6FPPpFat8sKhL7edkUJhN4a2KTKAqHCGPrtPj766wKZeUYiQrxYN7Ernz/U8q4IhECaY4a1CWHLlJ70bSzxXWdsusTw7/bbLfDap3FBgdjriZksWiStOY4cKSjxNbhVLb54KKLIPhIz8xwWZPwvM1QG5MgydNJKVE5ltzrqNCq61ffnvubB3NM0yKHuqcI4djOFcYsOkaU30b2BPwvGtbMrw7Ptwm2eWCJF3Cue7kTHun7lPid7kZ6RiZentIJedeAKD3Wqb/c+PtxwnkV7I7m/RTDzHmlb0adYJr7dcZUZmy7RLsyH1c+V0oNbXjz6KCxbJpEbVqyovOMgrexeW3OGFUejcdGqWflMZ7sctsuLdSdimLziFAEeTux9tXe1ducUh0V7I/lww3kaBkmmwwoXY9EiqdZSqxZcv166VPF/qBbIgdCHH0r///JLaa1RFubtvMoX/0gLx+roYM3IyMTT8qwMnbwafx9PXr23ESPahqKqZhPu0iCKImuPx/L+n/lZokn3NODp7rZniYwmM48sPMShyGQaBXmw/vmurFmpZuxY0GqldvtWrfLf/9vhKF5fe6bAPqznuP8yQ5UAdyc1Her4MrZTGGM61mZgixp0qedH0xqe1PRyxtVSNtEbzWy/mMC01adp99FWxi0+zPLDUeXSZ2gb5sOP4zvgolWz50oiE5cdt8vTrG+TIEZZOrI+/Ot8tXSXWdez15xwjPEvZ5e2nk+oFoXtEW1DUAlw9GYK0cnZlXcgWYRx9Wqp5b4SIQgCHw1tTvcG/uQYTExYcqQgYbiSMbBFTYI9nbmTkcefp+4+i46H2obgolVz+XYmB69b2co8+qjU8xsbKwWu/+GugijCO+/kB0KzZtkWCC3YfV0JhKYNaFTlgVCuwcTUlaeU/4/uEMKOqb0Y1b72XR0IgfQsGd42hM2Te9LHkiX64p9LDJ9/wObnpUat4usxrQnwcOLS7QzeWn+WMWNEhg6VSO+PPVZQl/bhDrX5YHCzAvs4G+tYk8t/wZCNOPB6X1Y+05kPhzTnk6Et+PaRNvz6VCc2vtyd/a/35fwH93Lxw3v5Z1J3JvdrSONgD4xmkd2X7/Da2jO0/3grjyw8yIojURgcYN13qOPL4sfb46xVsf1iAi/8esKu/Uy/txHuThrOxqbz+6nqFWPcfzWRWw5MuM1qetE42AO9ycyGM1VvOhro6UxniyL2n6cr8fgtW8J990lMz2J89ERR5M6dO9y5c6dCpAa0ahXfPtKGRkEe3MnIY8KPRxySdHAEOo1K4Sot3HP9rrPo8HLRKkH4Ums3eycnmDRJej1rVqV1//1bUNFjsnznAm+/LWlkgvT1TJ5c9nY/H7yp2DxM7teQ53vbn70uD5Iy8xiz4CD/nItXfvfuoOZ4ud49ZUdbEOzlzKLH2jHjoZZ4OGs4FZ3KyO8PcM3GrtFAD2e+Gt1aESJedSya+fMlhfDTp+GDDwq+f1zncF6/r7Hyf0dpDP8FQzbCllZFZ62axsGevNyvAYMiavLni92YNqARzWp6YjKL7LuaxKtrzjDwqz3sv2q/lHjnen4sHNcenUZqu3/ptxM2tzP6uTvxnKUeO3PTZYd4OxUFUZQ0gxzB8DZSm76j25cXg1pK+jN/OKiZZDNefVX6NzGxyESbnZ1NYGAggYGBZGdXTIbK01nL4vHtlRXZxF+OOxS0O4IxHWrjarHo2Hc1qUqOaQ/GdQ4HYPP52wWD+GeekQjv69eXTUL5H0dljElHIAdCH38s/X/2bNsCod2X7/CuxcLoxT71eblfg0o8y6K4miB5nR2PSsXT2fYmmfIiW2/kUnwGm8/Fs2T/Df44dYuT0akkZ+nLFdQKgsCIdqFsmtSD+oHuxKXlMur7AzZ3NXeu58fU/hKf8Z3fz5FoTOf776W/ffZZUXXqZ3rW4/4WUsfv6Zg0u+Vo4D/OUJlwpJvsRFQKQ+ftp12YDz9N6IC7k4abSVlsOB3Hwj3XSbGUeO5vEcwb9zchxMc+CfudlxJ4eukx9CYzE3vVY/q9jcveCMmzpvfMncSn51Z5Ldy6QyJ08mrCg33Z+Uovu1O/Cem5dPp0G2YRdrzSizr+Vdu1kpqtp/3HWzGYRLZM7kGDoErqJBJFuHpVsoEohMrs3Dkbm8bI7w+QrTcxql0onw1vUSWaKu/9cY6f9t+gV6MAfhrfodKPZy9G/3CAg9eTeb53PaYNsO1++/+Eu6Wb7IMPJJ4QwJw58PLLZW8jBSL7yMg18lDbEGY81LJKdYQOXk/imZ+PkZZjINTXhW9HNCOirjSxV9S1FEWRQ5HJ7L+WRHRyNlHJ2dxMyiaxFNFVdycNob6uhPq4UNvXlWa1PBnQLNiujmaQMl7jFh/m3K10vFy0LJ3QgQgbVN3NZpEnlhxhx6U7hPu58seL3XjuCS2//ip1lx08WFCn1mQWaffRFlKyDUy9pyEv9m3wH2eoKmA0mUvMrszcLNWcj95M4fHFh8nMMxLm58bzveuz45VejOschkqAjWfi6TdrF3O3XrErU9OrUSBfjpSY9N/tusaeK7Z1V7no1Ezt3xCQyMCOsu4dgZubG6Iokp1nxNPDnajkbA5FJpe9YSEEejrTvUEAAOuOV312yNtVRw/L8f88VYnZIUEoNhCC/GspimKFTzrNa3nx9cNSinrF0WjmVZF/2Piu4QgC7Lx0R+lCSc3WV4sgZHF43FLK++1wdMn3qqn6sq3Vjcock7Zi1qz8QGj2bNsCodRsPU8ukbzG2of78PHQ5lUaCK09HsPYRYdIyzHQurY36yd2pWWdoAq7lqnZehbtjaTfrF2M/uEgX227wroTsRy7maIEQl4uWlrU8mJAsyA6hPsS7OkMSLYXF+LS2Xz+Ngv3RjJ5xSk6fLyN19ee4VR0qs2ZIz93J359qhNtanuTlmPgkYWHOGzDs1+lEpg1shW1vF24kZTNe7+f48svJTHGI0eKmrmqVQLvDZL4Qz/suW53qf+/zFAZkCPL1Qcuse9mNufj0olPyyU914BZBJUgcS7UKgEXrRpXnZrolIJ8mPbhEgHaWhL9Qlw67/5xThkUIT4uvDWwKQOaBdl8M76x7gy/HorC313Hxpe7E+jhXOY2JrPIA1/v5UJcOuO7hvPuoGZlblPReH3tGX47HMWw1rWYNaqV3dv/fjKWl5efJMTHhd3Telc5sXD9iVgmrThJHX83tk/tWfkPz+hoqWOpZ8/KPY4Vlh64wTu/nwNg/qNtubd55btyP/PzUTadu829zYPxcdWy7kQsO1/pTbBX2eO6smE0men+xQ7i0nKZNTKCYZZyLQBXrsAbb4BeD7//Xn0n+f8YP/wgVS1B4gq9+WbZ2xhMZh5bfJj915Ko5e3C7y90rdKWdbk7FWBgixp8OTKiQnTgRFHkeFQqyw7d5K/TcYoooatOzb3NgmkQ5EFtX1fC/FwJ9XEtlpOUazARk5KjZJFuJGWx/WICN5PyS6CNgz0Y2S6Uoa1r2aQRlpVn5MklRzlwPQlnrYofxrajR8OAMrc7HpXC8O/2I4qw6tnObFvuy+uvS/0Lly5JwZEMk1nk3jm7uZKQyaR+DZjQIdjmzNB/wVAZsLe1viQ0reHByme7FAiIRFFkw+k4Ptl4gTiLI/uwNrX4bFhLdJqyk3a5BhNDvt3HxfgMutb3Y+mEjjapkO65coexiw6jVQtsndKTML+qXcnJZURnrYrDb/bD09k+gmCO3kT7j7eSmWesFqmArDwjbT/aQq7BzJ8vdKvcVvSdO+GeeyA4WAqIqlDDRS5duerUrJ3YhcbBlSc6ajKLzN91TZkcZPz+fFebUupVAXnyigj15vfnu+b/4fJlyfZcFOHsWUlF/D9UGX75BcaNky7/a69JWkJlrU9EUeSt9WdZdigKN52aNZU8vgvDuiX82Z71mD6gUbkXdaIosupYDIv3RnIxPl/jp0kNTx7pWJvBrWriYeez1hpms8jByCRWHolm49l49JYgS6dWcW/zYF7p34jafqXPkbkGE8/9cowdl+6gU6v4ZkxrRd2/NLy+9jS/HY6mSQ1PVj/VjRbNBSIj4a238jsGZWw4fYsXfj2Bh5OGjc+1o3YN///KZJUFJ40KF60KZ40KnVpAp5Zea0oZzOfjMmj53iY+2nCOuDQpcyQIAoMiarJtak9e6F0ftUpg7fFYHlt82KbWcWetmm/GtMFFq2bf1SS+23nVpvPv3iCAHg0DMJhEpY20spGbm8uIESMYMWIEjQOcaRDoLgUTDpSaXHRqhSy3zsE2/fLAzUlD38aSPUildpUBdOoktVHExMDy5YBkfTBp0iQmTZpUqdYHbw5sQpd6fmTrTTy19GillVVvp+fSa+aOIoGQ/Le7BaPah6JTqzgVncrJ6NT8PzRsCEOHSq+L6f77/4CqGpOFsW4dPP64FAi98IJtgRDA0gM3WXYoCkGAuaNbV2kgtOfKHd5aL5G1X+7bgNfua1wgELJ+VtpqXRSXlsO4xYeZvvo0F+MzcNaqGNE2hHUTu7DxpW482imsXIEQSGWrLvX8mTO6NUfe6McHg5vRrKZk3vrHKckoddHeyFJL285aNd+Pbcf9LYLRm8w8t+w4G2x4hk4b0BgvFy0X4tJZe+qmcpvNnAk3bxZ87/3Na9AoyIOMPCM/W3eAlvX5bH7n/3M4a1WKllCe0UyOwUyu0YzeJKI3Sa+NZfAbzCIs3HuDzp9u58VfjysBj6tOwysDGrH48fa46dQcuJ7E8Pn7bdJmqB/orugszNpymSM3bOPhvH5fYwRBakM8HpVi0zblgclkYvXq1axevRqz2aw40a886hjvR3YV33YxoVp0k+Tj/3nqVuUe39k5n/zwxRcgihgTEpg7dy5z587FWInu6Vq1im/HtKG2ryvRyTk8/2vldJgFeTozom1osX+7m4Ihf3cnHoioAcBSa78yyNeGWrZMClz1+lL95f7XYDQaq2RMWmPzZhg1SqJqPf64ZOhpSyC058odPthwHoBX721MP4vvYVXgsqVT02QWGdq6FpOK6VqzflaayuChSXYYMfSfvZs9VxJx0qh49d7GHHq9HzNGRFS4aasML1ct4zqH89dL3fnzhW50qutLjsHEhxvOM2L+fq4mlKw+rdOo+Gp0a4a1qYXJLDJl5SlOx6SWejxfN53Cd525+TI9++vp1Qtyc/NvPRkqlcDke6Tr+vOhQpFSKfgvGLIRuQYz2XppYHo4a2gZ4sWDETV5qU99XuxTn+FtQuhc149wP9diS1yFh+Ofp+No+9EW5m67rBDRejYMYNWzXQj2dFY6HAqsQEvAQ21DGNq6FmYRXvrthE0r+CY1PHnIwnv45K8LVa4NMqR1LTQqgVPRqVyKt99cr0MdX1x1au5k5FWLk32vRgG4O2mIS8vlWGUHk88+KxXGz56FwYPRNmrEG02b8sYbb1S69YGPm44F49rhplOz/1pSpZm6vtinfgHLFhm30+8u08/HLG32G07HFezE6dgRevSQlOEeeQTq1pX+/X8CrVbLG2+8USVjEqTW6mHD8t3nFy4s2FlUEq4mZDJxmRSMDGtTi2d61K30c5VxJyOP8T8eISPPSIdw33J3aiZl5jFx2XEmrzhFRq6RiFBv/nqpO8/1qlel2kQtQrz49clOfDy0Oe5OGo5HpXL/3L18u+NqiYsnjVrFzIci6NckCL3RzHO/HC9TmHhMh9o0DvYgLcfAl1suMWeO9J2vXAl79xZ8b/+mwTSp4UlWnh32Vf9xhkqHzBl6Y/khhnWsT50Ad3xctaUOYlEUScrSE5Wczaaz8aw9EcudjNJaGNUsfrw9HepI3Jf4tFwm/HSE83HpOGtVzB3dmgFl1FUz84wM+novkYlZ9GsSxIJxbcu80eLTpPJErsFc6STZ4lpvn156lM3nb/Nktzq89UBTu/cpbz+pXwMm9WtY0adcJqasPMna47GM7RTGh0OaV96Bjh6VJtbLl/N/16kTHDhQeccshM3n4nn6Z8kr7fPhLRjVvuLdu/OMJsYtOlygy3B4m1p8ObJVhR+rPBj87T5ORacybUCjfGG+mBhJc2jduoJvzs4GF5eqP8n/YVy8CN26QVKSRKfbsME2N5RsvfSMvHYni7ZhPvz6VMcqs3/J0ZsYveAgp6JTqePvxtrnupRIOrZFpmDL+du8vvY0iZl6NCqBl/s24Lle9ew2R61o3ErN4c11Z9hh8Y9sWsOTLx5qSfNa+bxKURRJyzHg7aojPdfA4G/2EZmYRbf6/iyZ0KFU3uuh60mM+uEgggB/vtCNrz/w4ocfoG1bKUC2Dog3n4vnyYV7iJ4z8j/OUEXi1fsa0zbcF183XZlBhiAI+Ls70aa2D6/f34QDr/Xhx8fbM7BFDXTFDNbMPBMjvz/Ikz8dISPXQLCXMyuf7UyvRgHkGsw8+8sxFu2NLDV74+6k4ZsxrdGpVWy9cJsf990o8zMFeznzZDdpZfT5PxerTGRPhlwqW3ciViHj2YO+TQIByV28OvCgpVS28UyczeKXduOLLyRRDetACODGjco5Xgno3yyYKfdIAedb689y1MZyrD1w0qj5fmxbwn3zSZgXHcgaVjYe7xIGwC8Hb0rf+/79UKdO0UAIihIa/kO5EBMDAwZIgVC7drBmje22cB9uuMC1O1kEeTox/9G2VRYImc0iU1ae5FR0Kt6uWhY/3t6m7quS9vX2+rM8tfQoiZl6Gga5s/75rrzYt0G1B0IANb1dWPx4e2aNjMDbVcv5uHSGfLuPdSckOkSuwcRra87wxjqJPO7prGX+o21x0arZezWRLzeXzmHtWNePwa1qSnYrv5/l/fdFPD0lT+slSwq+956mQTSpYbsOXPVfvf8H0KhV9G4cyLePtOHwm335cEhz6gYUjfa3Xkyg4ydbORubiqtWTWOLoJ8oSialZWm+NKvpxVsPNAHg078vcN6G8tGzverh764jMjGL5VXsHN6rUQABHk4kZenZecn+gKZ3IykYOhWTVmrmrbLQtb4/Pq5akrL07L9WScrJL74IXbsW+JUIZMXHk5WYWKXlzRf71Of+FsEYTCLP/nLcIUuVsuDtquOnCR1wspSaIxOzKvwY5cX9LWrg56YjLi2XLedvQ5cuJcscV3HQWl0QRZGsrCyysrIqbUwmJ8O990JUlMRZ37gRPGyc6/45G89vhyXC9KyRrQjwqLoW+i82XeLvs/Fo1QLfP9rWYaFYs1nk1TWn+fngTQQBnu5Rlz9e6FYg63I3QHGyn9yT/k2DMJpFJq84xTfbrzDqh4OsOBrNlvO3SbKUmRsFe/D5Qy0BmLfzGpus7EiKw+v3NcFVp+Z4VCr7YmN5+23p9x98IJVNrc/DHkuV/4KhKoa3q46xncL4++XuvNSnfpEOtGy9mUFf72PIt3uZv/s6IGkQAczYdIm/TpfuuzK2Uxj3NA3CYBJ5/89zZT6Y3J00vNhHIpv9sOd6lYrcadQqHmgpEVK3nL9t9/aBns40ryWlPh0JpsoLrVrF/S2k8680AUYXF/jjD2iaX0bMBtwB94CAKrU+EASBmSMiaFLDk8TMPJ75+Vil2LqE+7sxY4T0cMzWm7huo6dRVcFJo+bhDlKZcIncrfLZZ8VzhP6fBEPZ2dm4u7vj7u5eKWMyOxsGDYJz5yR9mc2bIaBsiRpAogO8tvY0AE93r0vX+v4Vfn4lYeWRaObvkhaxXzzU0mEZEDkQWnUsBpUAX41uzRv3N6kQXaLKQoCHlIGTBUtnbr7MKQsH1mASC3QCPxhRkwld6wAwdeWpUn3Mgr2clTnr078vMnaCgaAg6VYrLMTY0wYdIxn/BUPVBCeNmin9G/Hni92IKKRTIwKnY/OzOjEpOQxpJZFLp6w8yYlSCLuCIPDeg81w0qg4FJlcZpQNUrnK21VLdHIOW86X/f6KxD1NpE6O7RcTHArE+liyQzuqIRiC/K6yf87Fk5ZtYNuF2xWfYfP1hX/+gVpFCcZVDVedhgXj2uLjquVMbBrvWoQZKxoPRtSiWU0p0F28L7JSjlEePNKpNmqVwMHryVy+nSGRFRYvlkgs1rh+vXpO8H8IJhOMGSNVI729YdMmCAuzbVuzWWTqqpOkZhtoXstT8buqCkQlZfPOH/kt9ENbh5SxRfEoHAjNHd1aee7c7RAECPN1KdJABLDiSHSBxfrr9zemQ7gvmXlGnv35GFl5JXclTugWTh1/NxIz81h44AqvvCL9/pNPwNFmxv+CoXIiLcfAgWtJ/HzwJquPxbD94m2OR6VwIzGLtBxDgS9bFEU2FnLUbVLDk7UTu/LWwCZKaaA4uDmp6dM4kDyjmaeWHi217b6Wt4vSJfHxxgvkGUtfvbvo1IyxrHQX771R1kd2CK6urmRmZpKZmYmraz4npH0dXzycNSRl6TkZbX9XVu/GUjC053JilXOeAGp4OePhrCEjVxJifGLJUYeyXGUiNFQKiLy8cAUygcyPPy5wLasKIT6ufP1wG8Wyo7LKq69ZnKjXHIt1yHixMlHDy4W+lrH36yHL59fpJBJLmzb5b6xCknt1oqT7u7wQRZg0SRL2dnKSkqTN7ehVWLDnOvuuJuGiVTN3dGubxGwrAqIo8tra0+QazHSq68vLfW03frW+ls7OLv/aQEiGWq0qNoN1JSGTE1bd0lq1im8eaU2ghxNXEjKZvuZ0iZUNJ42adwdJ2fIf993gnuEZ+PtLdo7Ll0uddgv3XGfovH02n+d/wZAdyDWY2HX5Dt/uuMrEZcfo8cUOIt7fzMMLDvL2+rO8suoUE346yrB5++k1cycR72+mwZt/M+TbfSzaG8m8HVeZuOw4/5wtmH1RqwSe7F6Xf17uTngJCp7rjsfwydDmlhKFnieWHCnVe+WZnvUI8nQiOjnHJjL1uM7haFQCh28kcyYmza7rYgsEQcDNzQ03N7cCBHStWqVwf7ZesD+7ExHijZ+bjow8o80aSxWFyStO0nPGTjJypaWIrDNliwq4Q2jeHH7/HUGlwg1w++uvKvVRska3Bv4FXKVP2SABYfcx6vtTP9CdHIOJ1ceq3oeuLIzpKC0g1h6PyS8XenjAX3+BlyXbe+pUNZ1d1aKk+7u8+PJL+OYbKcPw88/Qvbvt256NTVN8It8Z1JR6Ae5lbFFxWHEkmv3XJNuJz4a1tEtdWr6WLi6uvLb2zL86EBIEgXGdw9n4cnfahvkU+fvyQwUXUoEeznz3aBs0KoG/Tsfx2+HoEvfdq1Eg/ZpInKQFB64wabL0/H1xei4dP97GR39d4GqC7ZzD/4IhG7Fo73W6fb6DxxYfZsamS2w8E0+UJTsT4iOtEns0DKBliBchPi64WQQajWaRk9GpfLjhPDM2Sx1BLy8/wYmbRbMgdQLc2TKlJ/cUIwKWbTCz8Uwcix5rR6CHE5dvZ/LCrydK7GJyc9Iw3eKu/c32q2USjIO9nBX+zqK9VZval7vCtjqQUVGpBHpZgqntDgRT5cEzPeuiVRd9yGkrs6ujZ09pqQxSy30VcoYKY2KvevRvGiQpyf5yrEydEHshCAKPWfgGS/bfqBZxzdLQo0EAIT4upOcaC3L5goPhzz+l1xkZcOhQ9ZzgvxwrVsC0adLrmTMlPSFbka038tJvJzCYRAY0C2J0++JFPSsD8Wm5ih7X1HsaEe4AYdpsljJLciA0518YCFmjjr8bK5/pzBv3N0ZtFSyvORFLZqFFfdswX169V5q7Pv/nokK0TssxFOHMyh2uG8/E0aTvbVTOelLjnEk7b79MzH/BkI2YveUKiZl5BHk68WBETabc04D3BjXl8+EteLxLOOH+bng4adCoBGp6ufBgq5q8em8jvhjekhd718dVm3+p84xmhn63n4nLjinWHDK0ahXfP9qWsZ2KFsU//+ciQR5OLHqsPS5aNbsv3+G9UkjSQ1vXIiLEi8w8Y5ktiwATukkEtg2n4ypc+TcvL4/HH3+cxx9/vIhcf6+GgWhUAlcSMrmZZH/3UB9LuWJ7FfOGGgd7Fpv+rrTMkAX6jz7iTRcX3tTr0S9cWKnHKg2CIDBzZAR1/d24lZbLS7+dqHAC/rDWtfBw1nAjKZtdl+9U6L7LC5VKUIjUvxYuFXbvDgMHSq8//7yKz6zqodfrefPNN3nzzTfR68sfFO/ZI/mNgSTfVFKzXkn4cMN5ridmEezpzGfDWlZZBlX2PMvIMxIR4sX4ruF27yMvL49uAx9i3vtTEUwG5oxurch4/JuhVgk83aMef0/Kr4CYzCKvrjlT5L3ju4bTpIYnaTkG3v/zPF/8c5Fun23ngw0FOYpNa3rSs2EAZhGOx91hyKPS4jBtfwPsbWr8T3SxDMiii90/3MALA1pQw9uFVUdj+OdcvEPaOIXhplMztX8jxnUOK6ATIYois7dc5qvtBf3GutbzZdlTndl0Lp5nfzmGKMIHg5sxzqKMWxjHbiYz/LsDCAJseLEbzWqW3oY5Yv5+jtxI4fne9ZhmySxVBMoSEhuz4CD7ryXx9gNNecISlNmK9FwDbT7YgtEssmtaryo1njWYzAydt4+zVoT3YW1qMasShQILXMs6dXC7cgXU1ddVcvl2BoO/2UeOwcTEXvWYfm/FjRuAjzacZ+HeSHo0DGDphA4Vuu/yIiEjly6fbsdoFtk0qQeNgq16vc+ehRYtJHL15ctQr171nWglwxahQFtx+bKkKZqSIlm+rVpl3/DedfkOjy0+jCDAsic60qUKu8f+PHWLF387gVYt8OeL3RzyPDt0+RadGknNEgu2n+fJ3k0q+jSrHQaTmWd+PsZ2i0bcL090pFuDgt/TP2elOa4wzn8wAFddvuH5gWtJPLzgIE4aFX8905tmjbToc9QEDDmGc/j1/0QXKxqDW9Vk3s5rjF10mD9O3UJvNFPDy5l2YT4MiqjJ0z3q8s4DTfnukTbMHd2Kl/o2YGCLGiVygGRk6U18sOE8g78taL0hCAJT+jfi7ULKzPuuJTNr8yUGNAvmNcuk8/FfF0rUY2kb5sugCEmk6oM/z5fZai8HIssORZGjr/i26ZLQ19JV5kipzNNZS7twqR69vYoFGLVqFTNHRGDNy6zsNahGo+HliRN52ckJTWQkrF9fyUcsHQ2DPPjCDp0QezGucziCALsv3+Fqwt3VZh/o4Uw/y9j9tbAPUvPmcN99YDbD7NnVcHZVB41Gw8svv8zLL7+MRqMpe4MSkJgoJdRSUiSHk2XL7AuEcg0m3vld6uB6vEt4lQZCyVl63vtDylxM7FXfoUAoK8/ItNX5PLOqLO9VJbRqFYsea0c/C0XiuWXHCjQFHY9K4YVfjxe77c2kgtSATnV9iQj1Js9oZv35m0yZJD2BU/fXtys79F8wZCPmbrvKjaRs3HSSxsgfL3Rl/2t9WP1cF75+WNJ8mNCtDve1qMHgVrWYck9Dvn2kDesmduWLh1rStZ4fJVFJnLUqzt1KZ+i8fby9/ixpOfk11Ce61eHLEREFJtivtl9l7fEYnu5Rl271/ckzmnl1zekCnApr1/tX721k1WpferBxT9NgQnxcSM02VKkjvHxTHL6RXODcbYVSKqsGNerC5bKkSnJ3l+Hk5MScb79lzrRpOAHMmIHdOeEKxqCImkogPXXlKSITs0jMzOPJJUcKjGdHUNvPVQk4ltrhQl1VUIjUJ2KLLiDknt/FiyXZ5P9RODk5MWfOHObMmYOTk2OChnl5kt/Y1asQHi51kNnrZDJ/1zVuJmUT5Omk8EmqCh9uOE9SlqQKbY/YnzXe++McNxLzJ/vqapCoCgiCwDdj2tC8licZuUae+fmYcv+0qe3Dc72Kz6TeKLTwFwSB53pK3dNLD9zg2RfMuLmLGBK8yIm0PRj+LxiyES1DvPhieEsOv9mPT4e1oGWIt00D1cdNx8h2oSx7qhNn37uXeWNa07GObwGxxVyDmfqB7ogi/HzwJkO/3VcgSh7eNoS5D7cusF9ZmOrTYS1w1ak5HJnMskM3OR2TyuM/Hi6wugjxceVpS6v9J2W02qtVgiKStXhf6RYgFYkwPzcaBrljMovsvGx/QCMHQ4euJ5eqT1FZeLZXfXws5ojxaVXktP7CC1K/8Z070k8147X78nVCHlt8mPvn7mbrhQT+OVu6UKgtGG8Zk6uPxZTaRVkd6Fbfn9q+rmTkGvnzdCHxzd69JaPdVavAp2g3zX+QIIrw5JMSV8jTU/IbC7LTTP5mUpai0v/2A03xcK46s9IdFxNYdyIWlQBfPBThUAv/n6dusepYDP/D8U8ROGvV/DC2HX5uOs7HpfPGujPKnDPlnobFcmdvJBVtGrmnaTB1/d1IzzWy5VoU77wtMHF6Fs61bO8w/i8YshG/PtWJke1DcXNyPAXsolNzf8uarHimMxc/vJfPh7VQymhXEzKp6+9GoLuO64lZDP9uPxfi8nkoD0bU5Pne+ZGyCDzw1V783HVMHyC1OL/353ke/GYfOy/dkYTgrPBsz3oEejgRlZzNb4dK14UZ1T4UdycNVxMyq5S0qpTKHOgKqxfgTqivC3qTmX1XEyv61MqEVq3iJUt2KDYlp2qCyKAgSYnu8mUIDKz845UBrVrF3NGtcNOpiUrOJiFDypBVRIaxcz0/Gga5k603sero3dVmr1IJjO4glTN+LXxvCQJ8951U+7HFVv3/KT76SFIPVqth9Wpo1sy+7UVR5J3fz6E3munewJ+BFmX4qoDRZOZdS3lsQtc6tAr1tnsf0cnZvLFWIhI/Y8ly/H9BTW8XvhnTBrVKYN2JWH7afwOQMj7vP9iMQS0LfpeFM0Mgk7Ol67ZwTySTppj59nM3+kbYrvj9391ZTdCoVYzqUJsdr/RizqgI3J00XE/MIi3XSKCHEwkZeYycf4ADVp5XU+9ppAi9AeQazdw7ZzeHrkvvse7kuZmcXSBl7+ak4UXLZL14341Su348nLWKiepiGzSKKgpyKWTnpQS7yemCINC3cb6adXVgZLtQ1IJARp6xVDn58iIrKwtBEBAEgaxGjaqVPG2NlCw9b6w7Q1ahUtGhyORy+5gJgsDjXaQy3JL9pY/f6sCItqFoVAIno1NL9wT8H+1XKTAms+zrCF21Ct55R3o9b15REW9bsOlcPLsu30GnVvH+g82qtLz0+8lbRCVn4+umY7IDpTmjyczLy0+QkWekTW1vnu/lWInt34zO9fx4436JKP7RXxcUzTiVSmDWqFa0DfNW3nsqJrXYfQxtU4tADyfi03NZf1JagL1XiHNbGv4LhqoZgiAwpHUIW6b0UPg/CRl5eDpryLCUG/62qFarVAKzR7cqYPIalZzDzmKyN6JIEbLp8Da18HbVEpWcXaZK8uNd8kmrV25XjXN4q1Bv/N11ZOQ6JqAoq1HvuJRQpQamMtycNHSuJ61Eqjwgy8uDfbarrVYGTsWkcqwY/SxRhD8qwLttSOuaeLlI47c6vOhKQ4CHEwOaSdomvx4uxqk+PR3efVdquTdXvVL63Ypjx+Cxx6TXkyfD00/bv4+sPCPv/3kegGd71qVuFYormswi3+6QOn6f7F7HocrBV9uvcjwqFQ8nDXNHt74r3OerAxO6hjO4VU1MZpHX1pxWFsRatYpfnuhEgLvERbuSkFms24CTRq3Iw3y/6xpms4ifh7PNx///edUrEEaTmSM3kll+OIpP/77AMz8fZcDs3TR5+x86fLyVh77bz+QVJ5m15TKrjkZzNaH4wKKGlwtLJ3TgvUFNcdKoSM814uGsQW8yM/HX4/x8UHrAejprWTCuHe66/GxAjsGMt0vRm/BSoSDGVafhkY6y7Ybk92Q2ixy9kVxEMK+2nyv9LeKPvxws5uFuJ1xdXUlISCAhIaFEuX61SlC4P1sv2N9V1rGOLy5aNbfT8zhX2uq8EiELSFZmMFTkWsbFQZ060LcvJFRfkNCrUSD/TOpBxzq+Rf62ugJKW646DSPbSf5OSw+Uf0xWNGQi9foTt4ry1gQBvvpKClg3bKiGs6tc2HJ/F8atW/Dgg5CTIzXdzZjh2LG/2naFuLRcQn1dmOggcdlR/HUmjuuJWXi5aEuUNykNNxKzlGDqo6HNCfV1deha/i9AEAQ+eLA5/u46rt3JYsGefPFfF52atRO7oFYJmMwiK44Ur0w9pmNtPJw0XLuTZfcc8l8w5CDScgx8v+saPb7YwYj5B3ht7Rm+33WdTeduc+l2BjkGEwkZeRy9mcK6E7F8te0K01afpt+s3Qz/bj+rj8UU6TxRqQQe71qHP17oRoCHExm5RrxctIgivL3+LGuPSxNKvQB3vn6kTZFzKhwQXYwraqsxrnM4WrVkuzFpxQm6fb6dh+YfKLaMMdoiKPfXmbgSla5thSAIBAQEEBAQUGoKO583dNvu7I6zVq04Uu+oplKZHMwdvZFSaUTfItcyOFjyLsvLk7wLqhE1vV349alOTBvQCGtx7qt3Mjl3q/w2L492CkMQJC0ZRwQ6KxOd6/oR7udKZp6RPwtnwjw8JCI1OD7r38Ww9f6WkZMD/ftLAVGTJvDbb45Vey/FZ7DIsrD74MHmVeribjaLfGvRgZvQtQ7uDmSFZm25jMks0qtRAIMtZtz2Xsv/JXi5anlzoFQu+2rbFaKsyNKhvq5Kl953O68VWyr3dNbyaGeJdD1/1zW75pD/giE7cSMxi3d/P0vnT7fx6d8XuZWWi4+rlh4NA3iscxjvDmrKT+Pbs31qT35/vivfjGnN9Hsb8XCH2nSq64taJXDsZgqvrDpFh0+28s7vZ4uQnRsFe7D86U4EeTqRlmPA20Xqinht7RmOWxzrezcKVCTLAVJzjHSu64+Hc/4NeSiyYMkiIT2Xnw/cRGdJw64/cYtbls6nvGI4Ot3q++PtqiUxU8+hyKrx/erewB+dRkV0cg6Xb9vPu5GDkepSKw7zc6NugBtGs8iey1VE5BaE/BbuefOq1aIDpAzf873rs2ZiV2p45aep5VJGeRDm50bPhgGApIV1N8Fakfq34sxrX3wRtFrYu/f/tUVHTg60bw/nzoGrq+RcIlu52YsPN5zHaJYsN3o3rtomgs3npYWvh5OGxx1Qmj5/K10pH79i8fn7DzCkVS061/Ujz2jmnT/OFghonu5RFw9nDbGpOUU8PmWM7xqOTqPieFQqZ2NtX4D9FwzZiDyjJObV+8udLDlwk2y9icbBHnwxvCUHXu/L0gkdeH9wc8Z3rUOvRoHUDXAnItSbB1rWZGKv+nw6rAXLn+7Mgdf6MG1AI0J9XcjINbL0wE3unbObz/6+mG/2iJT9WfF0Z2p6OZOaY8BVp0ZvNPP00mNKFufZnnULlCT+PhfPjIdaorMsyS/GpxcYSO7OGjaejStCcAWKJSxr1Sruay4x+f84WT7OR15eHs8//zzPP/98ETsOa7jqNHSzZHccKZXJnJ3TsWkVohDuCPo0qtxSmV6v5+OPP+bjjz/Otz4YOlQqlSUlwZIllXJce9Eq1JstU3oqBo2HI5M5eK38Wjtyu+3Ko9EF7pm7AcPbhqBRCZyKSSuyyKFmTRgzRnr95ZdVf3KViGLHZDHYtw/CwqRACCT/MUeFuQ9eT2Lv1US0aoG3BtpOlK0IiKLI19uvAPBYl3C8XOxv45ctkh5oWYPmtfKjQVuflZWJ5Cw9m87F8/Ff5xk6bx99v9zJA1/vYcT8/YxddIinlx7lk40XOByZXOHNDIIg8OGQ5mjVAjsv3SkQ9Lg7aZjQVeIFfbvjarGZn0APZ+5rLvH3imRoSzvuf3YcpUO247hvxibOJ0plj96NAniiW1261vcrkMbMNZg4fjOFpCw9aTkG0nIMpOcY0JvMNA72oEUtbxoGuaNRqzCbRfZdS2TJ/pvKpF8/0J2ZIyIKtGZGJ2fz8IKDxKTkoFULGEwizWp6surZzrjqNFy7k0n/2buQq1h+7jpmjYjgsR+PADB3dCsl/QrSamTIvH1FAoUlEzooK25r7L+WyJgFh/B01nD0rXsc0s8A++T6lx26yZvrztK6tjfrJna16ziiKNL6wy2kZhtY/3xXh9pcy4v9VxMZs/AQ/u46Dr/Rzy7HaltQ4rX86it4+WVo0AAuXrxrWrlFUWTk9wc4ciMFH1ctW6b0xN/dMWE+kEirPb7YQWxqDjMeasmIdneXSu9TS4+y5fxtnu5RV+mQUXDmDLRsKX03V69KAez/AMq6vzMy4I03ClZxu3aVkmSOQBRFRv1wkMORyYztFMaHQ5o7euoOYfvF20z46SiuOjV7X+2Dr5vOru2P3kjmofkHUKsEtkzuUYD0XZHWJvYgJUvP/N3X2HYhwS6ldx9XLX0aB3FP0yB6NgzARVewVLnvaiIHriXxygD7sl9fbr7E19uvEuzpzNapPZUyZEqWnq6fbydbb+LH8e3p3ahoRlC2ZPFU6Tnz6bD/7DgqEmdj0/By0fLj+Pb8OL4D3Rr4IwgSmWvvlUReWXWK9h9tZczCQ7z42wneWn+WGZsu8f3u6/y47wavrjnD/V/tofl7mxg2bx+f/XORMF83Fj7Wju/HtsXf3YmrCZnS36yyRKG+rqx4pjO1fV0xmETUKoFzt9J5ZdUpzGaRegHuvNQnv50zKVPPhbgMhraWAqDZWy4XUKZuWtOTtwcW9brJK2GF3bGOH4EeTqTnGtlzpWpKT3KL/cnoVLud0AVBoLUlADoRVbSzqSrQLtwXdycNiZl6TtuRprUVGo2GJ598kieffLKg9cGECeDtDVeu5Lum3wUQBIGfxncgzM+VlGwDk1ecLJcDvVol8KglO/RzBZD7Kxoj2kok77XHY4ty7Vq0kMgyZjPMmVP1J1dJKHFMAv/8IzmTFKazff2148fbfy2Jw5HJ6DQqJvauWs83URT5apvEFXq0U5jdgZAoinyxScoKjWgbUqXdb8Uh12Bi3s6r9PhiB9/vuq4EQvUD3Xm4Q21mj4pg+dOd+Gl8e+Y/2oZZIyP4cEhzhrauhZeLlpRsA2uOx/DsL8foMWMHq4/FKPf38sNRPLb4MD/ui7SbQ/l87/rU9nUlPj2X2VsuK7/3cdMpjUDzdlwtdtuu9aR5KzXHdgHe/4IhG9G0hicbXuymRKFpOQY+3XiBzp9u49FFh1h9LIaMPCM1vJzpWMeX/k2DGNE2hCe71eGJbnXoXNcPDycNuQYzx6NS+WH3dXrN3MHLy09Q29eVLZN7MKRVTcyiRPwaOm8/CRbn+FreLix7siNeLlpMZhGVABvPxDN3m5SmfbZXXer653cdfLHpIpP7NcBFq+ZGUjb/FPKKerRTGP2bFoym9SUQpNUqgYEW0St7Uo7lQZCnM/UC3BBFxwKaNrWlsszxqNQKPjPboNOo6N6g8ojcTk5OLFiwgAULFhS0PnB3h+eek147uuSuJLg5aVgwrh3OWhV7riQqHTSOYmS7EHRqFadj0jhl5el3N6B340D83HQkZuYVz1179VV46ql8QvX/AIobk0lJkvP8ffdBVCEKVYcO0Lp1MTuyAaIoMssyOY7pUJsaXnZ6dpQTe68mcjI6FSeNiie725/Z230lUQnkXrKy8alqmMwiK49G02vGTr745xIZeUaa1vDkmzGtOf72PWyd0pNPh7VgaOsQOtX1o1ejQO5tXoNhbUIY2ymM2aNaceytfvz2VCcmdK1DTS9n7mTk8cqqUwyZt49Jy0/y2tozGM0iWXqT3R2lzlo1HwyW1Dd/3BdZoAHjye510alVHLmRwuFi+KwatYohrWsV+X1p+NcFQ/PmzaNOnTo4OzvTtm1b9uzZU+J7d+7cqQiBWf9cvHjR7uMufaIDob5SwLHnyh3unbOb73dfJyEjD29XLY90rM2qZzuz79U+rHimMz+Ma8eMERG89UBT3n6gKb893YlT7/Zn29SezB4VQY+GAZhFSbDrvrl7mLLyJI93rcMPY9vi767jQlw6I78/QEyKRIYN9XVlzuhWCALIi+q5265w8HoSTho1nw2PUM7VLML7f57jKYsi52xLx4IMQRCY8VCrAnXu3FJMWQdF1AQkwmBVmbfmBzT2B0OtLdtWV2YICmoeVSkmTYKTJ+/KjqWGQR58NKQFALO3Xmb/NccJ5n7uTjxgCdLvtuyQ1upBvPpYMRNAnz7www9SG9X/MC5cgL/+Kv5vL7zg+H53X0nk2M0UnDQqJpbgX1WZ+MbSQfZwh9oE2qFjA1IH2oxN0vwztlMYNb2rNpCTkZZt4OEFB5m++jTx6bnU8nZh9qgINrzYjQda1rQ526VRq+hcz493BjVlx7RevH5fY9yc1JyOSVOED2UsOXDD7oxwr0aB3N8iGLMIX27Ozw4FeTozwiKz8U0JC6thbf6Hg6EVK1YwadIk3nzzTU6cOEH37t257777iCq87CiES5cuERcXp/w0aGB/NO6sVZOtN/L2+rOMXXSYuLRcwv1cmf9oWw6/0Y+Ph7agfbivwg/J0Zu4fDuDy7czuJqQwdWETG4mZ1Pb15WhrUNYOqGDZeDVQCXAjkt3GDZvH5fiM1j1TBdCfFy4kZTNiPkHFDXj3o0CeamPdO5qy3FeW3OaXIOJDnV8Czgcb7t4hwcjauDprOFKQiYbCnkmeblq+XZM/tLsVEzJ5ZzWod7U8nYhW2+qMjFBmXRbnIhfWYgI9UIQICYlh4SMKvIJK4RejST+1emYtKo9h8BAiIgo+33VhIfahjCibQhmEV767SR3MhwniMottH+eukVKJZvj2ouHLKWyrRdu213q/V9Bt25S05x/Ia9MPz8YMcKxfVpnhcZ2CiPQ075gpLy4kZjFochkVIJjthn/nIvnbGw6bjp1tQRyAHFpOYz4fj+HI5PxcNLw5v1N2Da1J0Nbh5SL3+ikUfNMz3o80KJmsX+/mZTtkO/ktAGNUQlSQ4p1d9gzPeqhVgnsvnyHM8XMX42DPWkU7GHzcf5VwdCsWbN44oknePLJJ2nSpAlz5swhNDSU7777rtTtAgMDCQ4OVn7UDghanI5J5f65e5RV6GOdw9j4cnfubR6MTqNCFEWu3M5g4Z7rjF10iIgPNtN/9m76z95Nv1m76TdrF71n7qT1B1t4aulRfj5wA3cnDd+MacP2qb14MEIqkX255TJv/X6G7x9tS70AN+LSchk5/4Ai8f9S3wb0aBiAySzxh24kZTN7q/RweP2+JnhatdZPXn5S8WuZs/VKEf5CtwYBtA8vO+gQBEHJDlVVqayNJRg6FZ1mt8aRh7OWhoHSTXCimkplgR7OtAyROkR2XqpYrlVWVhZubm64ubmVbn0QHw+37e/Iq2x8MLg5jYI8SMzMY/KKkw53o7QO9aZ5LU/yjGZWHStehK260KSGJ81reWIwifxxsgRvtpMn4ZFHYNmyKj23ykBJY/LiRUgslACcMAGcHYxhdlxK4FR0Ki5aaeKtasit8F3r+9tdnhNFUeG+PNm9Ln7laCJwFFcTMhg+bz+Xb2cS5OnEquc681SPuhWqz/TJsBZ8OLgZrsXs80cH7J3q+Lsp8491eb22nysPWn4/b2fx2aEHI2z3qPvXBEN6vZ5jx47Rv3//Ar/v378/+/fvL3Xb1q1bU6NGDfr27cuOHTscOv4TS45wIymbml7O/PJER94f3BxXnQZRFNl0Lp4+X+7intm7+eivC+y5kojeaMbTWYOvmw4fVy1eLlpctGoy84xsOX+bt38/R6+ZO+k/excX49OZO7oVM0dE4KJVs+9qEo/9eJip9zSkWU1PkrL0jP7hAGdi0lCrBOaOakUtbxdlElmw+zpnYtLwctXy3oP5DodnbqXTtZ4/Pq5aIhOzijXMfNvi3XL5dgaZpbi9y4Nu+6WEKnENrx/gjoezhhyDiYvx9tuBtLF42VRXMAQo/LLK4A1lZ2eTXZqe0Ny5Ug/zJ59U+LHLCxedmm8faY2LVs3eq4l8V8KDrCwIgqC02f9yMKpcpOzKwIi2UqZ2VXGlMpCYxb/+Cp9//j/hWVZ4TF6+LMV6ABMnShVcQYBnnnFs/9ZZoXFdwgjwqNpgQhRFpfQzpJV9JRiQOIxXEjJx0ap5wgGuUXlx7GaKJLCblkvdADfWPNeFxsGld1g5ArVKYGzncHZM60W/JgW5qXuuJNrVqSZDFlv8+2x8AcmK5yzZtX/OxSuUEmsMLCFLVRwcCoYmTJhARkbRCSorK4sJEyY4sssykZiYiMlkIigoqMDvg4KCiI8vXnypRo0a/PDDD6xZs4a1a9fSqFEj+vbty+7du0s8Tl5eHunp6QV+AHL0ZrrW9+OfyT3oZiHH3kjMYvxPR3jm52NEJmah06jo0TCAtx9oytYpPTn1bn+Ov30PJ97pz6l3+3Pu/QFseLEb0wY0olNdX7Rqgcu3M3n2l+MM/24/YX6u/PliVxoHe5CYqef5307wUNsQ2oX5kJ5r5KmlR7mTkYePm47vHm2jiCeaRZi+5jQGk5nBrWpR2yd/xfLi8hM8a1lBfbPjapEJo0UtL2r7umI0i2wtxa+sSQ0P6gW4oTea2XLO/myDi4sLkZGRREZG4uJS9opKpRIU7o9DvKFQx7etKMi8oX1XEyt0orbpWjZpAno9LFoEKdV3DUpC/UAPpR161pbLxZIgbcGDEbXwdNYQlZzN7irqdrQVD0bURKdWce5WevHmrc88A25uUrv91q1Vf4IViMJjMiNDkr5KT5fs2ObMgdmzYccOx3WFtl1IUEpMz/So+qzQuVvpXL+ThZNGRf9mQWVvUAhrLA4C9zUPxtO5ZF0ie5+VtuBsbBqPLDxIaraBVqHerH62CyE+lWv1EeTpzMLHpA40F6ss0eQVJ+12F2gY5MG9Fu8/6w6yhkEedKnnhyjCuuNFF/v+dgTMDgVDS5YsISenqH1DTk4OS5cudWSXNqOwPLkoiiVKljdq1IinnnqKNm3a0LlzZ+bNm8fAgQOZOXNmifv/9NNP8fLyUn5CQ6XVXcsQL34Y2w5PZy15RhOzNl+i/+zd7LwkOSW/0Ls+J96+h6UTOvBEtzrUD3Qvcl4qlUDzWl4837s+y5/uzLG37+HFPvVx0ao5HpXKiPkH+OzvS/wwti0j24UgivDBhvMMbxtCvQA34tNzef7X4xhMZlqGeCstpYIAF+LS+WH3ddQqgcn981vtY1JyaF3bGw9nDTeTstl7tWDOWjKKlVY5pZXACpTKTttfKlOpVISHhxMeHo7KRv2btrUd5w21ru0NSOXN8lqJOIrmNT1x1alJzzVyxYHVUEmw6Vrec4/Uxp2VJZF170I81DaEYW1qWfhDJxzi1rjo1Ay38HN+vcsUqX3cdPSzdG0WS6T28ZFqRvCvF2G0HpOCoGLCBDh/XtKZXLlSEt4G6NnT8WMsOXADkLhi9razVwR+t2SF+jUJwqOUYKY45BpMyvNV5pOVBEeelaUhI9fA878eJ9dgpnsDf359qmO5rl+uwWTXM/Xe5jU48mZfRfLkTGwa83dds/u4L/SRskN/nLrFjcT8Uqx8PVcfjymXQbddVzo9PZ20tDREUSQjI6NA9iQlJYWNGzcSGFg5kuj+/v6o1eoiWaCEhIQi2aLS0KlTJ65cuVLi319//XXS0tKUn+hoiYsw75E2uDlpyDWYeHrpMb7afhW9SRpc/0zqzisDGtntWOzprGVq/0bsmtaLMR1ro1YJbL1wmxHfH2BMh9o80rE2oghvrT/LIx3DcHfScDgymY//ugDAsz3rEebnqmTY5269wtWETAa1rEmoVXZo6spTDG9T8oQxyNKVs/vKHVKzS56Q5GBo75XEKiGFyqUuR7I79SxltlyD2aEyW0VAo1YpQdmRG1VjZ6JAEGDKFOn1V19JWaK7EB8Obq4E+lNWOqY/JGuObLuYQHxa9RDmS4JcKlt/MrZ4RfRJkyQBxk2b4OzZqj25SsLMmbB6tRQArV4tWeeVF5GJWey5koggwKMdw8q/QzthMosKX+jBVraXXmRsOX+bjFwjtbxd6FTXr6JPr0SIosjra89wMymbWt4ufPNwG1x1ts9Toihy7GYKC/dcZ9LyE/T9cidN3vmHBm/9TesPNtNv1i5GfX+ATzZe4GxsWonBiLuzlnXPd2W8xbbki38usc1Oh4Hmtbzo0zgQsyh5k8m4t3kwbjo1N5OyOXLD8Sy4XcGQt7c3vr6+CIJAw4YN8fHxUX78/f2ZMGECzz//vMMnUxp0Oh1t27Zly5YtBX6/ZcsWunTpYvN+Tpw4QY0aJZOqnJyc8PT0LPAD4O2qI0dv4sklR9l1+Q4uWjXfjGnN0gkdyi2aFejpzCdDW7BpUncaBLpzOz2PkT8cpG2YDw+1DcFkFvlk4wVlIP20/warjkbjrFUX4AjpTWa++OciGrWKl/vlZ4eiU3LoUk+y7dhy4baiXySjQZAHjYM9MJgk/lNJqBfgTuNgD8l3y86ShF6vZ9q0aUybNq1UuX5rtAr1RhAgOtn+rjCVSlDUp6uzxb5dmHTdHclulQSDwcCcOXOYM2cOBkMp/K2HH5Zmolu3JN+DuxBuliYCJ42KnZfusHDv9bI3KoT6gR50CPct1c26utC9gT+BHk4kZ+mLl1moW1eqJwHMmlW1J1eBkMfk88/P4dVXpTE5dy507lwx+5e93no1DFAkTqoShyOTuZ2eh4ezRukUtQdyZnBYm1pldmw58qwsCcuPRLPhdBwalcDXY1rj5WpbRksUpWf8sO/2M/y7/Xz01wXWn7zFtTtZiKJEcUvJNnA1IZNDkcn8sPs6D3y9l3tm7+brbVeISytaOQJ454GmjGofigi8+NsJu7zDIJ87tOZ4jMIRctVpFC281eVopLArGNqxYwfbtm1DFEVWr17N9u3blZ+9e/cSFRXFm2++6fDJlIUpU6awcOFCFi9ezIULF5g8eTJRUVE8axEve/311xk3bpzy/jlz5rB+/XquXLnCuXPneP3111mzZg0vOCBykZVnZPxPh9l7NRFXnZqfxrfngZY1K9RVuH6gB2sndqFfk0D0RjNTVp7Cx1XLwBY1MJpFvt99XUkJvrn+LKdjUundKJABVvXrzedvcyYmjSGtalLLO79lY87WK7QL81GEtgojv1ssrtRzlH3DDtjpMWUwGJg5cyYzZ84sfQK3goezlkZBUlfY8Zupdh0P8rWKqpNE3c7SrVeRmSG9Xs/kyZOZPHly6Q9LJyfJHBSkifYuJek2qeHJO4MkIv8X/1xySERxjCU7tOJIVIV7JZUHGrWKwa3K6MScOlX6d9kyqQPwXwh5TM6bNxlR1PP44xWnKZlrMLHK8sx6pBqyQgB/nJJKZPc3r4GTxr7Oq9vpucricVib0ktk4NizsjhcjE/nvT8kE7hpAxopz8OycOh6EqO+P8jYRYc5EZWKs1ZF/6ZBTL2nIT8+3p7Db/TlyJv92DSpB78+2ZEvR0Rwfwupq/pqQiZfbrlMn5m7+GH3NQyFymmCIPDRkOZ0q+9PtiW5YE82t22YD13r+0nz4a78hZNsyfPX6Tiy9barTlvDrmCoZ8+e9OrVi8jISAYPHkzPnj2Vn86dO1Ozpv3pQ3swatQo5syZwwcffECrVq3YvXs3GzduJCxMukHi4uIKaA7p9XpeeeUVWrZsSffu3dm7dy9//fUXw4YNs/vYE385zsHrybg7aVg6oQMdbUh1iqLIjcQsfjscxad/X2DW5kt8u+MqC3Zf55+z8cV2b3k4a/lhbDuet/CBFuyJxNdVyz1Ng9Abzey7mkiPBv7ojWZeWXUKvdHMO4OaFSCozdpyScoO9c3PDp2Py2Boa+n7+e1wdJEJQxaw238tsVTtly71/SzvK7/hpi2QW+wdE1/0dnjbikLr2j6oLJpHFVXCUavVjBkzhjFjxpQtE/Hss5I1+MWLkk3HXYoxHWpzf4tgjGaRF387QYadHYv3Ng/Gx1XLrbRcdla10GUZeDBC4uRtvXCbrOI6Njt3loR3PvxQ+q7+hTAa1fj5jQHG0LKlmnnzpEptReDvs3GkZBuo6eVc5c70IJl0bzwjBamDHSiRrTsRi1mEdmE+1PGvGp+xHL2JF349QZ7RTK9GATzVvWxNJFEU+XrbFcnz7YakkD2+azi7p/fmh3HteLFvA3o3DiTQ05kADycaBXvQpb4/w9uGMO+Rthx9qx8zR0TQurY3OQYTn2y8yKCv93LsZsGFoFat4ttH2tAg0J349FyeWnrULlPt53tJ2aG1x2OU+6ldmA9hfq5k6U38fcaxBYV9JBcLwsLCSE1NZdGiRVy4cAFBEGjatCkTJkzAy8ur7B2UAxMnTmTixInF/u2nn34q8P/p06czffr0CjnusagUvLw8WTKhQ5kR9tnYNH7cd4P91xKJK2UC1KlVdKzrS78mQQyKyFf9VKkEpg1oTF1/d6auOsXPh6J4uW8DriZkEpmYRaNgD3xdtVy+ncnCvdeZ2Ks+L/VtwOf/SMqmOy7d4XhUCkPb1GLGpovcyZSyB0duJOPloiU2NYfdl+8UeLCE+bkREeLFqZg0/j4bx7jO4cWec/twX9QqgajkbGJSsiu9I6FNbR9+PRTFcUdI1JaOshtJ2SRn6auFdOnupKFpTU/OxqZz9GYyD7Qs/4LB2dmZZbZq0/j6SsSN9u2Lqt/dRRAEgU+HteRUdBpRydm8ue4sc0e3sjnz6qxV81DbEBbsiWTZoSj6NrG/26ey0LyWJ+F+rtxIymbrhdsFjJMVrFxZ9SdWgXjjDWeSkpbh7Q3r1kEFNUEBsOygtMB9uENtRWy2KrH7ciJpOQYCPZxsWgRbQxRF1lhKZMPLIE5XJH7cH8nVhEwCPZz4ckREmaU5g8nM2+vPstxSZh7VLpTJ9zQk2Mt2QShPZy0PtQ1heJtarDoWw6cbL3AxPoPh3x3g+d71eKV/I+V+9nLRsvjx9jz4zV7OxKYxb+dVJllRO0pD53p+yv208UwcI9qFIggCD7UJ4cstl1l9LMaha+0QVf3o0aPUq1eP2bNnk5ycTGJiIrNmzaJevXocP37ckV3e9RAE+H5s21IDocTMPF5bc5pB3+xlzfEY4tJy0aoFOoT78niXcMZ2CmNUu1AejKhJmJ8repOZPVcSefePc/ScsYOFe64XiJCHtw3hHYsO0NxtV3gwogY6tcSt6GnRsPlq2xWik7N5olsdwv3yA5PZWy6jLcQd2nA6nmGWzrFlxRGpbRBW9HDWKmKC9pbKHIGsRH06Ns2u1QNIKtv1AqSV2N3AGzpaDnJfuXDffXd1ICTDy0XLVw+3Rq0S+OPUrZL1eUrAwx2kUtnOSwnEphbPWagOCIKg6HRVlWhpVWLZMpg3T3r9yy8SDaqicDE+naM3U9CoBEZZKexXJeQusgcjatodjJ2OSeNKQiZOGpXCa6lsZOQa+GG3VEJ6/f7GZYo7ZuYZeWLJUZYfiUYlwIeDm/H5Qy3tCoSsIQgCI9uFsm1qL0ZaLDO+3XGNqatOFSibhfq68v5gSV7jm+1Xi5efKGH/cllslZXf2bC2IQgCHLieRHRyKRpsJcChYGjy5Mk8+OCD3Lhxg7Vr17Ju3ToiIyN54IEHmDRpkiO7vOvxaKcwutQrfkIRRZHFeyPpPWMny49EI4pSYPHzEx04/e4AVj7bmfcebMaHQ5rz+UMtmTu6FTum9mTrlJ68cX9jGgd7kJFr5KO/LtB/9i62WOn9jGofqsi+f7PjGsPbSsHMX2fiiAjxItdg5q31Z9GqBUWACiRxq8ORyQxpXQutWrqBjWYRLxcpGbj94u0iJDf5Zj1yI4VbpUwmnS2ro6oIhsL9XPF106E3mgsY9dmKu4k3dPRmFXeUFYcyrGuqG23DfJhyjxTAv/v7ObsE2uoGuNO5rh9mEVYcvrs+p7zQ2HW5lI5No1HKEI0aJbna/wtw7hw8/bT0+u23YeDAit2/nBXq3yyoyq03QOIrbbV0PTnSRSZrCw1oVrq2UEVi8d4bpGYbqBfgppRoS0Ke0cSjCw+x29IU9MPYdowtoSpgDYPJTEaugaTMPG6l5hTrWenrpuOLhyKY8VBL1CqBtcdjeXLJ0QKl4kEtazCgWRBGs8i01aeKcIxKwvA2IagEOHwjmUhLm30tbxe6WubotcVoDpUFhzNDr776KhpNfpVNo9Ewffp0jh496sgu73q8XIK7sNks8v6f5/lgw3ky8oy0qOXF6mc78/XDrWkf7suB64m8uvo0nT/dRrN3/qHhm39T5/WNtPpgC5/9fRGVIDDjoQg+H9YCf3cnbiRl89TSo7zz+1mmrjzJR3+d57V7GzOsTS1MZpF1x2PpWMcXvdFMSrYBrUpg1+U7/HUmjqGtQ6hhFc3P2nIJdydNgbT8L4ei6FDHV5owCnXe1PByUew5Susqk4PCA9eTyqXrYAsEQaCNhfvjmN6QJRiKrv7M0Plb6aWqfNuKrKwsAgICCAgIKN2OwxppaZL6XcOGkHB3cWoK47me9eha348cg4kXfztBrsF2c2CZSL38SHS16UsVB5s6NnNzJSHGlSthw4aqPUEHkJEBw4dDdjb06ZPFd9/ZOSbLQFaeUVHNry7i9JnYNHINZvzdnWhRyz4KiCiK/HVaakipqhJZWrZB6cic1K9hmZmsT/66wMnoVLxctCx/uhP9mpZcXr6VmsPivZGMnH+ARm/9TYv3NtP2o610+Ww7Ld7bxNB5+/j07wvsvJRQgJM6ol0oC8e1w0WrZtflOzy84KDiYiAIAh8OaY63q5Zzt9L53kb9oWAvZ3o0lLr6rDvI5AajNQ5oDjkUDHl6ehZrjhodHY2Hh+3GaP8mFOfdYjKLvLHuDD/tvwHAWwOb8PvzXWley4vP/r5I2w+3MOGno6w4Gk1cWi5ZehN6ywM6PdfI1gu3+eivCwz6Zi8rjkbz+fAWPGPxElt64CZrjsey+Vw8ZhE+H96SHg0DGNK6Fl8/3JoADyeikrPpUFeaaN//8zx5RlMBotzB68kcu5lSIL2cmKnngRaS8MfvJ28VGTAyj6g0gnTbMB90ahVxabncSLI/HWkvWpcjuyOTqE9GpVabXUOwlzMhPi6YxYor1yUmJpJY2PSpNHh6SlpDeXn5NY27FCqVwKyRrfB103EhLl3hwtmCAc2C8XPTkZCRV+GecOWFnB36o6RSmbt7vlfFXS7CKIrw5JNw6RKEhEhC53aPyTKw9cJtMvOMhPu50qVe1WnzWENWRm8f7mN35/CVhEySsvQ4a1VKNr2ysXDvdTJyjTQK8mBgi9LLchvPxLHkgOS1OWdUKyIsUiSFEZOSzfgfD9Pls+18sOE8h28kY/0o1agEjGaRE1GpfL/rOo//eIR75+xm45k45Znbu3Egvz7VER9XLadj0njptxNKwBTo4cx7gySJmLnbrnDJRl24kZZS2epjMcq+BjQLxkmjIio5227bD4eCoVGjRvHEE0+wYsUKoqOjiYmJYfny5Tz55JM8/PDDjuzyXwejyczUlSeVOuuXIyJ4sntdDt9I5t45u5m/6xpZehNuOjW+bjpKuo20agG1IHA8KpUnlhxlw+mCre1JWQa2XbiNVq3ih7Ft+XRYCwI9nXnt3sYAnIxOJdTHhTsZeSw9cJPRHUILEIV/OxxFuzCfAhYdu68kolOriEzM4tqdggNGzvocvJ5UYouyi05NK0uQsf+abQ8/FxcXzp49y9mzZ+2WmC+Pg32DQHc0KoEsvYn49OoT5GsfXnG8IYeupbUI47ffQjEK8ncTgjydmTmiJSCZO26/aJtAm06jYlgbKRO6/C7THJJ5QweuJZWsm/XCC6DRwO7dcBdn2b/5RkpgaTTSv7VrO35/lwSZLnB/ixoVKmFiD45aJDHaWe5fe3DourSgbFPbB53G9qnW0WdlcpaexXsjAZh8T4NSSdM3k7J4dfVpQBLvLa5Lz2wW+fngTQbM3s2OS3cQBCkofPuBpmx4sSsfDmnK+C7hdKnnxwMtgnm8cxjD20j2OFcSMpm47DgDv96ryIq0ru3D0gkdcdZKvNfP/r6gHGtwq5r0axKIwSTy8cYLRc6lOPRtEoiPq5bb6XmKFY+LTq2Q3O1dDDkUDM2cOZNhw4Yxbtw4wsPDCQsL4/HHH+ehhx7i888/d2SX/zrM3HyZ9SdvSWJWD7dhaOtafLjhPKN/OMiNpGw8nDW4aFVk6U0kZ+kRgVBfF7o38Kd9uA9Na3ji6azBYBIxWWVniiN+vrrmNBm5Bpy1auWhMLR1LSJCvMjKM1HTW7phFlluhAkWcUaAP0/FkpFnZLSlfABSd0QnS0ZpcyE/suY1PfFw1pCRayxVEEteqdnKG1KpVDRr1oxmzZrZLTEfEeKNSoD49NwigpFlQaNWKSJt1hLuVQ05oKsI3pDD13L4cMm8NTFRYrre5ejTOEgRGn1l1Wlu2/jdy5nQHZcSbN6mKhDq60rr2t6YRdh4ugQ9r5AQGD1aen2XijAeOpQvjTRzpqQMUJ77uzjojWZ2WSaze0op3VQmzGaRo5YFmEwfsAcHLVmljnXsywo5ei0X7LlOlt5Es5qeDGhWsuy33mjm+V+Pk5FnpF2YD1P7F+3iysg1MHbxId5ef5YsvYn24T78+UI36ga4MXPTJR74eh9vrz/Pj/tvsPtKIhvOxPOTpZphNItEhHjhplNzIS6dh384yI/7IhFFkRYhXswcEWE530hFP0oQBN55oBkalcDuy3c4eL3secVJo1YoIKustPN6WcpnOy/bRwdwaNTqdDrmzp1LSkoKJ0+e5MSJEyQnJzN79mycnKrWSbg6cORGMt/vlmqbs0e14v4WwXyw4bwSjMjBRI7BTONgD2aPiuDA633YM70PPz/RkVXPdmHjy9059vY9LHuyI2M7heHlUjK5LiXbwAu/nijAgVCpBEWo7vCNZII9nUnO0vProSjGdg7H3WINkmcU+f1ErGLHAZJSdaNgSTV7cyHTVY1apdy8pZXKFN7QtcrnDbno1NSyZLYiHQhoZG2PyKTqC4bkzNCJqOrzSkOjgZdfll7PmvWvIOm+dl9jmtbwJDlLz9SVp2wqddYP9FAERov1BKtGDGop+/uVIm4qZ/BWrrzrCO9JSTByJBgMUmz90kuVc5xDkUlk5BkJ8HAiIsS7cg5SBi4nZJCRa8RVp6ZpDfvc3UVR5NB1SzBU1/6skr0wmsxKQPBinwalZtJ+OxzF2dh0fFy1fD2mNVp1wTAg1yCJIe67moSLVs17g5rSKtSbQV/vZcWRGHLK4PBl602cikkjW28izNcFo4VXO2XlKXL0Jh5oWZOXLD5jb647y0mLyGptP1dGd5AWMjM3XbJpXpFLZVvO31YsomSF8MORycXrepWAcoXwrq6utGjRgpYtW+L6LxULsxdZeUamrjyFKEqM9kERNZm15bLCG3LVqcnINeLv7sTnw1vw10vdLcTmoulOrVpF1/r+fDikOTtf6cWjnWqXWE7bdfkO7/15rsAAaRvmy6CImoiiFDAA/LD7Ok4alUIkBamNPtDDie7181coJ6PTLP+mFsm2yFmf0kpgrUK9cdaqSMrSc/l22bVZvV7Pe++9x3vvveeQxHy4nxTQ3HAgoJG3jbxTfcFQg0B3PJ01ZOtNXIgrn1eawWBgwYIFLFiwwH6F2ieekPhDFy/C33+X6zyqAk4aNV893BpnrYq9VxNttusYackOrTwaXenBuj2QOzaPR6WUXCpr3Rp69waTSfKVu0tgNsNjj0nxWf36Ek9InnPLNSaLgVwi69cksEyNnMrCEUtmp01tHzRq+6bKyMQsEjPz0GlUii2QrXDkWXkoMpnETD3erlr6NilZmDLXYOJbi+v71P6NisxLeqOZicuOcygyGQ8nDQsfa8uCPddZsCeSwneRSzE8WmuIwM3kHLRqAQFJfHLc4kPk6E1M6teQAc2C0JvMTF99SpFNebFPA5w0Ko7eTLGpzNW0pidNanhiMImK11kdfzdq+7piMIk2ZZhk2PwNDxs2zOaf/2V89NcFopIl07t3H2zKgt3X+Xq7NLicNCqy9SYiQrzYMrkHo9rbLhLm46bjoyEt2PCSlIosDr8cjOKXgzcL/O61+xrjpJH4P76uWhIy8lh1NJoRVt0LF+MzOBWTxhirjoyT0anKTbqlkGFeV4vlxpEbySVq++g0KiXbccAG3pDBYOD999/n/fffd+hhqWR3Eu0nbNfxt5TJqjEzpFIJVtyn8pXK9Ho9Tz/9NE8//bT9gaWnJzz1lPS6Cktlq1dLJRVHqEr1A91510KwnLHpEmdiypZYGNiiBu5OGm4mZXPw+l0gaWBBkKczESFeiCJsv1BKGn/qVOjSBXr1qrJzKwszZ8Jff0kuL6tWgbW+brnGZCGIoshWJRiqPvFM2fSznQMlskOWQEpaNNpn3+HIs1LWr7qveY0imR5r/HLwJgkZedTydlGyKjJEUeSVVafYfjEBJ42KLx5qwYSfjhKbmh+0qwQY1zmM35/vSm3fYhb4KoEJXevQINBdkXQxmEREwEktcORGCi/8ehyzKPLZsJb4uum4fDtT6SIL8nTm8S7hgHSv25IJvscS/O28LAVPgiAo2aG9V20n9NscDHl5eSk/np6ebNu2rUAb/bFjx9i2bVulK1BXJ/ZfTVQMA2eOiCAqKZtPLSQwjUogz2imQx1ffnmyIz4Oqh03q+nFuold6VSnYGrVWSt9VZ9svMhNq0m9lreL0nbqbTnmdzuvEebnpogjAvx2KIo+TQLRqPIHaKsQKfW7pRBvqGGQO35uOnIN5lK7n2T35cNV4MguZ3duOpIZUgKp6guGQHJdBrhkQyatNKjVagYPHszgwYPLtuMoDi+/DL/9BkuXlus87MHu3TBtmpRRmD9famyzB6Pbh3Jvs2AMJpGXlp8oM/3t5qRRurdWHLm7Sk0yB6bwfVcA998P+/bBAw9U0VmVjr174Y03pNdffQWtWhX8e7nHpBXO3UrnVlouLlq1sjCrDsjk6Q7lIE8Xfo5XBvRGM3+fleQaBkWU3EGWrTcy3xJ0vNS3fhFS95rjsfxxSuLBfjkigpeXnyTPajHco4E/myf35IPBzfnj1K1in2MGs8gfp26x9IkOXPrwPh6xqlDkmURUwLaLCby29gzerlpFVPjr7VeVZp5ne9bD3UnD+bh05XOVhl4W8vfuy3cUCoISDF2phGDoxx9/VH6CgoIYOXIkkZGRrF27lrVr13L9+nVGjx6N/79A6dZRzN0meTuN6xxG+3AfXl97BrMocYSMZpEu9fxYMr4DHuUU1/Jy0bLkiQ4MsRL5yjWYCfZ0Jsdg4tU1pwtEzOO7hqNWCVy/k6X4M20+H1+AJ/THqVvojWZFmwHgnKVcs/9qUgH9G0EQ6FyvbN6QrLtx0cZWyPKgTjkCGnnb6OScajXxrB8o8bSuJpTvejk7O7N+/XrWr1+Ps7MDQnShoRJJV1s1InAAp6XGFW7dgueeg8aN4eefpUqQLRAEgc+GtyDY05nIxCw+3HC+zG1GW0plf5+NJy27/KWbioKs5bL3amLJppLV1D1VHBITpeFiMsGYMfmJRWuUe0xaQRY57N7A3+6sSkUhJiWbW2m5qFWC0jlrK0RRVDJD9tp3OIK9V+/k24WUQtZesv8miZl6wvxcixjGJmfp+fgv6Z56uV8D3lx/Fr0p/1k5oWsdlkzoQG1fV+bvusYvB2/i5qTGVVs0hEjMzGP8j0fQm8x8PLQFK57uhCVJhBxarT4WwzfbrzK4VU16NAxAbzJL86lZxMdNxxPd6gCweF9kmZ8/IsQbH1ctGblGjlvkVzrX9UenUZVqh1UYDnGGFi9ezCuvvFJgBaBWq5kyZQqLFy92ZJd3PU5EpXAoMhmtWmBir/osOXCTM7Fp6DQqMnKN+LrpmDu6tcLdKS+cNGq+HNmqQJr4dnouTmoVB68ns8xKYTfU15X7LZoSAR4SgX31sRgGRdRUUpU5BhM7Lt0pUE8+G5tGHX839Kb8zg0Z1gTpktAoWNKUupGYZZcwniMIs1iN3EzKtpsDUtPLBZ1Ghd5kLlVZu7LRIFC6XpdvZ949PBaDATLLl6kqC6KYHwzJiIyEceOgZUtYu1Z6T1nwdtUxe1QrBEFqm/+njFVjyxAvGgd7kGc08+fpu8cGo1GQB6G+LuQZJTueUpGUBJ98ItWnqgEyTyg2Fho1gu+/r/w4TeELVVMXGeRLYDSv6Ymrzj4Lz+jkHMWKyVan+PLgj5PS2B7YskaJtIwcvUlp+nmpT4MipbRPN14gJdtA42APdl2SgisZL/Wpz9sPNOHozRTunbObz/6+SJ7RTFaeiWxD8TSKi/EZ9Jyxg92XE+hY14890/soVQkZc7Zd4VRMGh8PaY6LVs3hyGQlE/RIp9poVALHbqZwIa50mw61SqCnZZG/w2LS7KJT09HOrJxDwZDRaOTChaJaABcuXMD8L+hQcQRyhDq0dS1MosiXmy8BKJyaT4a2UAKRioJaJTB3dCuaWDoZRMDVSQq2Ptt4oYCdxlPdpUj6moUkvPvyHQwmM70b5Qc/2y7cppfV/3MMZoVU/eP+yAITdFfL709Ep5S4eg30cMLLRYtZpIheUUUj1NcVtUogx2DidnqeXduqVAJhlvb669VYKqsb4IZKgLQcA4mZ5eNVVAhWrYJ69eCjjyr1MLGxkFJCtfX8eakryc9PosiMHQtffAEHDhTf7Na5nh/P9JBsZ15bW3q7vSAIiiLt3dRVJgiCssgptVQGkqDPm2/CBx/YFjFWMGbOhI0bwdlZam5zd6/c48Wl5XDuVjqCAH2rwaFexpFy6AsdjJQWkC1DvCtscVwScvQmZQzJZeHisONSAqnZBmp5uzC4kK3IgWtJrDoWgyDA/c2DFTkBkGRapvRvxJ4riTy68FCR52erUG/GdQ7jw8HNeOeBpjzSsTZ1LJSG2+l5jFt8hEnLT+CiU7NrWq8CwZrJLDJ5xUn83HU8bREb/mrbFcxmkUAPZ0UeoDBPtjjI85o16dp6rrMFDgVD48ePZ8KECcycOZO9e/eyd+9eZs6cyZNPPsn48eMd2eVdjx0XJdGpp3vUY+7Wy2TrTQqP56G2IdzbvGRdh/LAzUnDosfa4ecu8YFSsg34u+vI0psU4jZIN17HOr6YzCJBnk6YRYm9b50O3XExgWsJmfi45q90llq8f47fTCnQjlnb15Va3i4YTGKJQoGCINAoSM52VG6pTKtWEVKO9nqZN1SdWkPOWrWieXSlHKWy7OxswsPDCQ8PJzu7HArgOh1ER0vL/UrMDhXOChWHlBQpAPrlF3j1VSkwCguD99+XyjTWmHJPQ5rX8iQ121Bmu/3gVrVQqwRORqeWuzxZkZB5Q9svJpReun3uOYmxfPgw7N9fRWcnYf/+gjyhli1Lfm9FjUlZWLV5Ta8yDUYrE/Izr70DwZCsWt2hCvhCOy4lkKU3UcvbhdaldK3JBOtBETULdMaJoqjwXh/uEMrX268of2sQ6M6r9zVm56UEnlx6tCB/qGEAa57rwvrnu/LB4OaM7RzOhG51+HhoC3ZM68XWKT0Z2ykMlQDrT97intm7iUnJYdOk7krHtID0LP/4rwtM6FoHDycNl25nKHY1j3SS+EbrT8SWaWPUo2EAggAX4tKJt5TGejSwj7LjsOjia6+9xuzZs+nRowc9evRg9uzZTJ8+nRkzZjiyy38F+jcNws9Nx3pLWjLXYMbDWcPbFhJYZaGmtwszH4pQ/i9nFVYeiSbKyg5DtuLIyJUGzupjMfRuFIC3RcMoPdfI9ou3SckuOrDMItzJyM+4CIKgWFmcK8VNuKFFr8iW9vryojwk6vJwjioSDRTekOPXSxRFbt68yc2bN8tXbnvgAYnRnJoKP/3k+H7KwLVr0Ly5dLgXXoDx40HWknNzk3xJZ8+WYrKPP5YyRR4eEBMD770HtWvDO+/kx2s6jYq5o/Pb7X+0yFoUhwAPJyU7uuouyg61D/fFy0VLcpae46VZtAQGwqOPSq+rUIQxOTmfJ/Tww5L1RmmoqDF52tIpGBFafY04eUYTly2Bcxs7+UKAopvjCPHaXshl1vuaB5eoLZSZZ2T7Ral89EDLggTrE9GpnI6x0D1yjMhVL5UAc0e35lpCFk//fKxAV/FbA5uwZHx7pTu2ONQPdOfDIc1Z81wXGgS6k5iZx7jFh4lKzua3pzoigNKqv+xQFNcTMxWB1bmW7FDnun7UC3AjS29i/YnSjVd93XRKd/ROS6msXoA7rjrbQxyHgiGVSsX06dOJjY0lNTWV1NRUYmNjmT59erk7Ce5mPNOzHiuORqM3mhWNhbIEEwsjPdfAiiNRPP/rcbp+tp3On26j54wdPPfLMVYdjS7R0bp340DFZgDAw0kibc/ZernAe/zdncjWm9CqBa4mZHI+Lp3uVqRplSDg61p8p1vhzrHGFk7QpfiSgyElM1QGidrZ2ZnDhw9z+PBhhwmW5RFPlLetzvZ6kAQBAa6UI3isiGsJgFoNkydLr2fPtp3NbCdefBHOnIE//4RHHoHly6US2NChcPmy9P9JkyT38zfekNrwExKkhre2baV2/A8/lEjXsn9pvQB33hooLUI+/+ciF0sZo3KpbO3x2LvGvFWrVtHb0vEiT1QlQhZhXLdOiiwrGaIoBazR0fndf2XxhCpqTJ6OSQWgZS1vh/dRXsSm5EjabVq13dQHs1kkKllaoMoNE/bCnmt5yhJ4ldb+v+3CbfKMZur4u9GsZkHxyKWWhcQDLYILCIFOvqch9QPdmboqXwNIqxKY/2hbnuxet0jgFZuaw/6rifxx6hbbLtwmPi0XURRpXduHP1/sRr8mgeQZzTy99BjJ2Qae61mvwPafbrzI+K6SWPDF+Aw2n49HEASlU/qXg2UH2b0LlcpUKoEmwbYH1eXWTff09MTT0z51zn8jQn1daFnLi58txnY5BhM6jYrxXevYtL0oiqw7EUOfmTt5dc0Z/jodR2yqRLS7mZTN32fjmbb6NN0/38EPu6+RZyw6Mb3zQFMlkMmwpA3XnYzliqVEpVYJSuQf5CndRGuPx9LdKl248/IdXurXoNhzPF7ICLVxsPS9ltYt1tASDF0qo0ymVqtp37497du3dzhglknUjpS6FOHFuyQzVJ4yWUVcSwWPPQa+vnD9OvzxR/n2VQZSUqSsT06O1Dm+ciXULERzMJtFjt1MYc6OixxWnaT3q6d47O1YaoaaiI2FQYMk3cisLHikY236NA5EbzQzafnJEkn8fRoH4uum405GvofR3QC5s7O0jk0AmjaF++6TopS5cyv9vL7+WhoKOp30HdnyeK+IMWk2i5yNlYLaltWYGYpOkbiYob4udnui3c7IRW80o1EJ1PByLCi09Vrm6E3Kc7ckk1XIL5E90LKgx9udjDw2npFKUilW3ZbuTmqe6FaHb3dcLUBefufBZgXoIGZLG/2o7w/Q9bPtjFl4iJd+O8ETS47S6dNt9Jyxk5/2RSKK8N2jbRncqiZGs8ikFSe5t0UwoVZ+mYdvJHP0ZqqiMbR47w0AhrcNQadWcTE+o8xsunw/HYzMd0VoUtP22MShYOj27duMHTuWmjVrotFoUKvVBX7+F9G7USDbLyYQm5qDxtKhNaJtiE0rB1nVc/KKUyRm6qnj78bLfRuw/OlO/PlCN357qhMv9W1Ag0B3MvKMfLLxIgO/2ltk0vd21SkWHCBpD4mipDotQybRySWv7RcT6GalPH39ThZd6vqhUxe9yQun6+VusWt3MjGUsKKWg6GYlJwy67rlRT7vxxHhRWnbmJScEj9LVaBBUPnLZBUKNzd49lnpdSU7pb/0ktRa37AhrFghuYNY40JcOv1m7WL4d/uZv+saa4/HsupYDDv1J1GP2Ix/50gEQWTxYmjfHi5fFvh8eEv83HRcjM9g1pbLxR5Xp1EppNE1x0tPt1clZPmKMzGpBbp3ioWcHVq8uGQ2egXg2DF45RXp9cyZkhh2VeF6YhaZeUactSrqB1QyU7sURFsyO6E+9rsqyLSFWj4udqtW24szsWkKR7Q4hwOQmjV2WcQIH2hZcOWx4kgUepOZiBCvAouEJ7vXJTo5R1GqlratwaNWmkEpWXqeWHKEl347waHIZFQC1Atwo2MdXxoFeaBWCUQlZ/Pen+fp/sUO9l1NZPbIVvS1LF6e+fkYX46MKHA+n/19gdEdQlEJUnB0/U4mXi5auljmr8I+moXRpIYHWrVAaraBGEtA26ymR1mXUYFD39bjjz/O8ePHefvtt1m9erWiNST//C+id6NAfrW0sxtNooVMXbfM7QwmMy/9doK/z8aj06iYfm8jNk3qweR7GtKprh8tQrzoXM+PKfc0ZNOkHsx4qCX+7k5cTchk6Lx9SleDjAcjatLA8qDItRR4/zx9S9FRaVPbmxAfqW1XLQjEpuaQYzArGQmAPVcT6VuMsuvpmNQCgUKIjwvuTpKZ7PUSrCx83HRKQHillOyQXq9nxowZzJgxw2GF2jpWlhy2KJNaI8jTCRetGpNZVB521YF6lu8uMVOveOnYC6PRyLJly1i2bBlGYwUEoC+8IGkO7dsHZ8+Wf3/F4I8/JHK0SgVLlhTtStp0Lp7h3+3nemIW7k4aBreqyev3NWbagEYMbV2LIF8tbj3OEzjqEGr3XC5cgA4dRI7udeKz4RKzd8Ge6yVKQQxrLZXKtpy/TXru3aE5VMPLhbr+bpjFfNJtiejbF9q1y0+tVQLS0yX+lsEAQ4ZIw8JWVMSYPBObCkjk6coOJEpDdIolGPK1Pxi6aXm21HZgWxm2PivlEllp3m07LyVgMIk0CHRXFrcgVSp+Oyx5mbUK9UZ+7GvVAo91Due7nVcxWp6xwZ5OfDqshZJVupGYxcCv9rDj0h10GhUv9W3Avtf6sG1qL1Y805lNk3tw5r3+fDikOaG+LiRm5vH4j0eYsfkSX46MoG6AG3FpuczddoV7m+XPQ9fuZHHsZorSBbbC4rXWv6mUjSorGHLSqJXPKJuMN63szNDevXtZtmwZzz33HEOGDFGUR+Wf/0U0qeFRIJ3dtrYPYX7F22ZY453fz/HPuXh0ahU/jG3LxF5FlT9lqFQCI9qFsvGlbrQM8SIl28C4RYeVQS+/55V7Gyn/16kFcg1m1hyXyKGCICjZIS9L19iuS3fo3iCfN3T8ZgoPd8iP8kESjsw1mLlkVRITBIGGlkxGaZwMWzrKDAYD06dPZ/r06Q57F4X4uChK37dL8nUqAYIg5GeWqpE35OakoZa3tIpzNDuUl5fHo48+yqOPPkpenn0yA8WiRg2pNnL4sMR0rmCkpUlNUSAlODp1Kvj30zGpTFx2nGy9iW71/dn7am/mjm7NMz3r8Xzv+swe1YpDr/dl4bh29OgpUuPxPTiFJJGeLjBokMj1PUGMbh+KKMIrq04VG+w0r+VJ/UB3Sa33TCkmqVWMzjb4AAISaefAASmSLFxbrACIopQgvHZNIqwvXmyfnlBFjMlTFr/EFiHVVyIDiEmWgs0Qn+KzLaUhugKCIVuflTJRuzRRyOOW7jzr5z9IDS+xqTk4a1WKpxfAwx1qk2s0scGKP/RCnwaKkHBajoEJS45wKy2XOv5urJ/YlSn3NCySmXLVaRjbKYwtk6WuMpCcEWZuvsT3j7bFWati39UkejYMLKA/9OO+G4pNyJpjsRhMZvpZtPFORaeWKqUB+ULApy3BULif7RlGh4Kh0NDQu0c0ropwKiYNvdGMohrvggABAABJREFUkyWQsUUQbM+VO/x2OApBgPlj29isexDo6cyKpzvTvYE/OQYTTyw5UqBrrH/TICXilVVClx3KJ5jJztjpOdIKbdflO3RvmM8bOhGVUqTG3MryACpcKmts0Ti6ZAtvKL5ySz8atUpZrTmmRG3RGqpGw1bIL5U5yhtSqVT069ePfv36oVJV0Ar6mWek2lMl4JVXpPJY/fpSq7w1DCYzr645g8ksMqBZED+Nb493MQR/lUqgX9MgVjzTiQXPtKD1M6dxax6NySTw7LOgPtmMUB9XYlNz+ODPourUgiAwtLXUgLD2LiqV2SJuqqBwXbEC8dNPEmFdrZb+9bFTK7AixuQZywTWspqDoXJlhpLKHwzZCiUYKiUzdKqE7rw9lrJYu3BfYqy8xx7uUJuf9t9QskLWHmZms8gLvx7n+p0sano5s+KZTmVmXpy1aj4c0pwvR0QgCJK/5ooj0bzUV+Ktzth8qYCFyMnoVPzcdfi760jMzGPHxQQCPZ3zfTTLyA7JlkdyZshWb1BwMBiaM2cOr732Gjdu3HBk838lDli8ZuQyUlkGgll5Rl5bcwaAxzqH06exfWqqLjo13z3alqY1PEnM1PPsL/ntjYIgFGDjqwUpxShLwDep4UGAh5MyoA9FJtEqxFtRo76VlovBZC5A8PN1k0pdx28WCoYsacfSSNSNlPb6ytdxySdR21/qCrFwAOLtkGivDCgkagc7ylxcXNiyZQtbtmzBxcX+1WuZKKfRpjX++AMWLpSyDAsWgGuhOWLhnkguxKXj7arl46EtyiyPCILAvc2D2TKtO8++nYxXF4kn9MlHampeklp2Vx+LUbRKrDHEEgwdikwmJqX6SqXW6FRXar++GJ9BYqaNGZUzZyTNgQpakF64kF8S+/BDSePJXpR3TBpNZs7dkoMhb/tPoAJRLs5QBWSGbMGdjDxiU3MQhJIzaXqjmfMWAnThUppsYOpmZXcS4OFEqI8Lvx7Kdzd4vnd+JWPdiVj2XEnERatmwWPtCPSwnSA+vG0In1vK2Qv3RlLDy5lGQR4kZ+lx0qgK2K78cvCmYiW14ohUKrPJz4/8zNCZ2DS7EzY2B0M+Pj74+vri6+vL6NGj2blzJ/Xq1cPDw0P5vfzzv4j9lsFjFiUybr0SnOVlLN4bSWxqDrW8XZg2oFGp7y0J7k4aFj/eHh9XLefj0vnGitA2oFmw0tIvW8hstKT/BUFQTFTddGpyDWbOxKbRrGb+TXM6JrWATkRCphQgFA56GilZn5IDHbld/Holq1BDfuraWn3bVsjXS9Zhqi7IvKHqbvMvgsxMqVYSFiYRSMqJmzdhwgTp9dSpRQ3Ycw0m5u2UxvRbA5vib4fInruThpkjI1j8tSsB/aVM0MofXQk81xFRhNfXnimgmwXSKlcOPv48dXeUyvzcnZQFx8HrNmSH0tOhY0cpxbZ7d7mPn5Mj8YSys6FfP0nwsjpw9U6mpNvmpFG4gdWBzDyj0lkVWowre1lQgiG/yg2GZOpE/QD3Er0wL8VnoDea8XLRKotIkHSU5LF2weq5fn/zYHZfSVSej246tSLnkqM3MdPiujCpX4MCc4kMURQ5fyudH3ZfY9bmS/yw+xqnY1IVfufIdqG82Kc+AG+tO8uzvSTO7drjt5hg0RgC+Ot0HPc1D+bFPvV5d1AzID8YOnA9qYDmUWE0Ci5KorYVNudd58yZY9eO/9dw+XYmKidpQPVrElhqy6XeaOZni4T4KwMa4ubkeHo72MuZDwY358XfTvDtjqvc1zyYJjU80WlUPNyhtuJCDLD1/G3ef7CZZLRa148/T93CRacmSy8N/iY1PJXU6snoNFqGeCm14agkaeBEJ0veX/Lnk9vrY1NzSM814FnMjRfkKU1iiZn6AttWBuTjOxLQeDhL30N1E2hlwnnS3WDJYQ1XV9i1C+LjJdLIpEkO7yovDx56SLLWatu2eMePv8/GkZFrpJa3C8Na1yr6BhswrE0I9Rel8uAL57n5e1MOb/AnNL0lSZ1O88a6M/wwtm2B8Ti4VS0OXk/m95OxPNerXil7rjq0D/flYnwGp6JTi3T8FIGnpySHMH++JMLYs2e5jj11qpRoCgyUjHMrqupqL+TyUt1Ad1R2lDYqGnJWyMdVa7fhdkauQWmKqOzMkMzhLI1fdUrWbArxKnAPHLuZQq7BjL+7E7dS8zOkfZsEKW34IAUgcsZm8b5I4tJyqeXtwmOW9ndrXLmdwatrTheRZwFoUsOT1+9rTI+GAbzctwGHIpM5HJnMyiMxtA/34ciNFJKz9GhUAkaziNEscjkhk6n985MIDQLd8XLRkpZj4EJceolSAk4aNQ2DPDh3K52zsWl0DbM9sLZ56D/22GM2//yvQm5Ht3Z+Lw5/n40jISOPQA8nBrYoP9lxUERN7m0WjMks8sU/F5XfP9whVHktCFL5S1aLlomZKVnSxH/uVjpNa+R3E5yKTlXqqwAp2XoEAbL0JpKsupy8XLUEWzSLSirr+FlKbHqTudLb6+UHlCMBjWc5tq1IyDYDSbaWRQohOzubZs2a0axZs/LZcRSGSpUvwjh3brlEGKdNg6NHJQmjNWskR4nCkFPgI9uFlmsCbBnizZ7F4TQaIa1co3eHkrG/IVvO3y7iSXZf82C0aoGL8Rmldj9WJaxT+zZBDlL//BOuXCn1raVhzRr47jvp9c8/Q3A5HIXKOyZlYmywZ/VZcIBVicyBYEbOCvm66ewOpOxFvOV6hXiXnL0qqdtsn6XK0S7cG6NVF1n7cB92Xs5vsZfNv01mkaUHbgAwtX/DAiUtkDipA7/ey/GoVJw0Kvo1CWRc5zD6NQnCTafmQlw64xYf5ot/LiIIAl+OiMBJo+LA9SQ615U4c+tOxNKlXr4ETOEmB2tHhMLiwIVRmERtKxxaB6jVahISiqqmJiUl/c/qDEE+WblpjdJJY0stwoyPdgorsXPMXrx2X2M0KoEdl+4obbhhfm6KfopcHt1s4UqE+7kS7OmMyfKHc7fSC5DdTsWkFlAjzdGblKDnZlLBh1lNb+n3CSUw+V10alwthoSVne2QszuZDmSGPF0smaGc6i2T+blJBOHELL1DjQiiKHL+/HnOnz9f8Y0MY8dKrqk3bkiKxw5g3TqpOQ1g6VKp6lYYN5OyOHg9GUGAh9qFFH2DnQj1dWXv4nCaDJMypSl7G5B+LIwP/jxPbGp+utzbVac4XP9htQquTsiLknOx6bZJRjRqJHmbiCI4mLG/cUMSrwSpNNa/v0O7UVDeMZkfDJVDUb0CoAguOsAXKk8gZS/i06SFVGAp1yvf2sS7wO/PWxbM1mOtXZgv1+5kKaVlV61KWfQfuJbE7fQ8vFy0DCxk53EyOpVnLXYd3Rv4s3NaLxY+1p4PBjdn4WPt2PtqH8Z1lh4A83Ze4811ZwjxceEZiyzN2hMxNKvpQZ7RXICDtPdqYhHtrdahEq3jhFV3dXGQy87X7OzWdWimLmmw5+XlodMVb/XwvwJ/d6dSDQQTM/MUs8FR7UNLfJ8MvdHMyiPRjF10iF4zdjD8u/18uflSEZJvuL8bIy37szbTmzu6tcK0h3wtBok3JPEjBMt5WdtwpGYbyMozKUGMCNSyBD2FdXhkLkdpBE/ZSDYpq/j3ODs7s2PHDnbs2FEuuX45GHKkTHb3ZIaka6U3msnS2599qahrWSxcXPL74B0QYYyKyp9kX3kFBg4s/n07LBYUnev6KVID5YW/uxP7fw6lwX3SYiRlazPiT/kzffWpAs8sWXriz1O3qr0r9mR0KssPR6ESJFX5RxcdZMyCgwz5dp8illcsZBHGH3+UapF2wGCAMWMkyYNOnSTSdHlR3jFpy+ReFZCffSEO8IXkRWRYOYMhW65lQkbpwaPRZFa6VVvUKlhKk53nrZtQ2oR5K55eAD0bBSoZoLUnpOzqAy1r4KTJT3bkGU1MWXmSHIOJng0DWPRY+yIt9j5uOj4Y3JxZIyNQCbD8SDRfb7/Ks73q4e+uIyYlhyaW5MLZW2l4WCglBpPI1kJk6TZh3gCcKKYUZ42aludJfBlt+IVhF5nlq6++AqSJduHChbhbKaeZTCZ2795N48aN7TqBfxuaWJWaioOcgmxaw1OxxCgJCem5PLX0qNL+CHAjKZtjN1NYtDeSdwc1ZVT7fD2g53rW47fDUey5ksiNxCxFN6dfk0BORqfi4ayhT+NATGYRtUqgSQ1P1p+8hZuThsw8IzeSsgnzc1Vu2pgUieB9xRJBuztJA71wZsjfwnG5U0rWx8/NiejkHMVEtjDUajW9CjNoHYDCGcpzoEx2lxCoXXUaXLRqcgwmkjLzcLeTU1ZR17JEPP88fPEFHDwoadt07mzTZkajNMmmpECHDpLpakmQOx+71rfPWboseLvqOLiyBq3uvUX0vpokbmjFNvdD/NI8StE76dckCCeNihtJ2ZyPSy+WDFpV8HPTsdTCLwTYfy1ffFFuXigWvXpBq1Zw8qTkcCvby9uAd9+VvlYvL6mNXlsBFZ3yjsmyJveqQkw5MkO3LBnIWg7oE1nDlmspZ9JKmmMSM/WYRam1PNDKJUFvNCsBn3Ww0CjYkz9O5mdK5Y4+vdHMP2elaoO1NybAor2RXL+Thb+7E1893LrUKsiwNiHkGsy8se4Mc7Zepmt9fx7rHM6XWy5zNjYdrUoqXXep58f+a0m46dTkFSJKR4R6IwhSOTIxM6/Ehgs5GLqVal8wZFdmaPbs2cyePRtRFJk/f77y/9mzZzN//nyys7OZP3++XSfwb0OpDyhQVnPWuj7FIVtv5JGFhzgVk4a3q5ZX723Mb091YuaICFrX9iZbb+LVNWcKSKKH+rrSy5K6lNWwQSJggmQsOG1AI0VbQdazkblz526lFSjxxaZmU9eqKy7XIK2SoxzIDPnLmaEqKpOVKzOUY6j2jICvm5xJu8tI1CCRR8aMkV7b4YX1/vuSiLWnpzTJlpQkFkVRKfV2rFPx3ae+7joObfDFt0kimNTcWduW95bdULS63Jw0iqnjxmoWYAz1dS3W3bx+oDvBpXlbCYKUHQoMlKIaG7F1K3z2mfR64UIID7fzhCsJcia8rAVkZSPdUpqR7097kG3J8tq7uLEXRpNZKWcFlcCxkoNLf3ddAT5eVHI2ZlHqFLOmGjQO9uCqle6ZnE06dyuNbL0JH1ctbWrndx/nGU0s3BMJwOv3NbbJrHxMx9oMbV0LswjTVp9iVIdQnLWS75ic9ZF1/JrV9GRMx4LCwJ7OWupaEgBnS+EDyZIxiZl5xXp8lgS7gqHIyEgiIyPp2bMnp06dUv4fGRnJpUuX2LRpEx07drRnl/8ayOOpcSl8IVEU2XtFygz1bFA6yfqjvy5wJSGTQA8nfn++K8/1qkfnen481DaENc924WVZlGrTJTaczo/Yx1hcfP84eUup+UaEShpCCRl5RFvUUzeeiWPuVqmcJgcOS/bfKGC8F5Oco2jvAKRb3heVXLDlW+5+SswopUzmVjop2GAw8O233/Ltt986rEAN+QRqh4IhC2fIaBbJKcHUs6pQnuDRaDSyfv161q9fXzF2HMVhyhR46y3Jzd4G7NiRnwn64QeoW4pTzdWETJKy9DhrVZWmKVPD25m9/7jgUiMdc44T0cvb8NLPp5V75n4L92HjmfhqD4yHFNNJ182WjNno0ZJ+wfPP23Sc27clSpgoShqbDz1k75mWjPKOSYUz5FW9BOo8i46czgE7EDmTUZhgbC/KelYmZeVnfUqibCSkW8qOhbSAZPmTcH9X5LyLSpACCOtFsMwnlbvD2tT2KdCR9s/ZeJKz9AR7Oiu8VVvw/uBm+LnpuH4ni03nbjOgmcTa11jaGOWg+ER0KlnFNOPUtciSlGap5OumU4Iq+TrYAoc4Qzt27MDHBolST09Prl+/Xub7/g2QB0JpmaHETD0JGXkIArQJK/n63EjMUjpp5oxuVcTWQ6USmHxPQ57pKc0or685o5CXezT0x02nJj49V+k+cdaqlUnlsMXLrH6ge4HyG0hlrmgr7YWYlJwCwouZltJT4TJZgGXito0zVPzkrtfreeGFF3jhhRcc9iYD68yQ/dkdF61ayZpVN4laXnkml8CxKg15eXkMHTqUoUOHVowdR3Fo0UIik9SoUeZb79yBRx6RJtknnpB0a0qDXPNvFepdYQ0GxaFJbTfW/y6ids/FkOjB5nnhLNkvlaT6NA5Ep1YRmZillImrCwNb1ChgSQA2BkNaLdjIzzGbpY78+Hho1szmGNdmlGdM5uhNykKsujNDeZZFkpPW/nGZK29bzjFd1rNSDhwD3J1KVFi+kykHQwWDJVm5P8gzv5RX09uF6OQcZD51LW9nfCzPJ1mEt/B8Jqu4j2ofapePnKezVtEa+m7HVQZaOtZkvaOL8RnU8HLGYBIVaQBryJIFhasX1hAEQZnX7BHYrVRViepecVUkTJaRElTKykWOukN8XEpdHSzcex2TWaRNbW9ctGrlOiVm5vHroSjm77rGvquJTOvfiJYhXmTkGflik9Q27KRRK7Ye1mqcMola7hRoEOherLdOwTJZTgHyalaedDPfycwr0Gkgl8nulBoMlV1KqwjIwZDBJBapKZcFQRDwvEu0hvKvl/2BoUqlokuXLnTp0qXi7DjKQgn3sijC+PEQFwdNmthWVbuWKN0nZZWcKwL923sx8/tMUJvIuRLMK2/qiUrKxt1JQ1eLG/ams0XVqqsSXq5aOtfLL5WpBOhY147yockE69dLlvMlYNYs2LRJip2WL5d48hWJ8oxJeXJ31akrvcRUFmRBP2uisK3IraDMUFnILymWPBcpmSHP4oMhtVUM1SjIo4A1UJMa+WVXuY3dWqBXbzQrZW65/d4ejO5QG183HbfSctEbTXg4aUjO0lPb1wWR/ADuYlxR6YtQy5wmV0BKgkzkjk+3XXix+qyB/6Xwdim5liyz9Ov6l2wOZzKLCiEt12Bm6Lz9/LT/BjsvJdB7xk7eWHeGz/6+yJbzt9GoVbz/oKTAue5ErJIalNU4I60UjGVV40jLRCMIQrGWId0b5K84Y1KyqWEVDMmlI1GEXKtaq8IZyih54q4qzpCbTqNwoBzSGnLJ5w1VJ/yUzJD918vFxYV9+/axb9++yrHjsEZcHFy9KqkoFoO5c+GvvyQdoeXLwc0GjbMblvukjn/VKA1PGuPPw5MkLl/y7gaMfPs6oijS35Ki33qxqExIVWNUu/zO0xa1vOzTqZkzB44cgVrFC1cePQqvv57/1krw4i3XmIy3aquvTMFWWyAvsBzJWMpZJWcHskr24HZG2Z13MmcooFCZLMGybbpVCaqGlzPXrPwa5VJlrsHELUvgZb1wORWTSo7BhK+bTjHytgfOWrXSaf3HqTg6WHiDsiehnFmzpnTIkJW9S8sMgVQmB4i7WzJD/2tw06lLvUlkXYO6pVh1nIxOITFTj4eThgsWFdGmNTx59pdjZOQZaRzswfA2IUqmp3VtH7rV9y8gfHVP0yD2vtqbb8e0UfYrTyzWBqZ9mxQ1hrUmrMam5FDDauVgNOVnWuQsEeRzhnIMpmLruGBd9qncYEilEnDXlZ9EXd0dZUpZsZIzaeVGjRqSw2ox5Zhjx2D6dOn1rFnQsqVtu5THaHgVBUMAy2YEUb9HAiBw5KeGfL7mJn0aS/fH6ZjUSs9oloV+TYORw4BGwXZmzKZOlQhbxagmpqdLZUujUeIIPf10+c+1oiEvoOyxY6ks5CmZIQfKZOXIKtmDO+k2ZIYsQU9AoTKZ/PzOyM5/Tvu46Uixem7L34OcXXLWqvB2zQ/O5dJZxzq+Dgevspn4rst3FGK2XGaUF+Xy/GgNuUwmOyWUhJqWzFBhS57S8F8wZAeKc9O2xk1LtFq3lIf8yWiJx1PLxwVRhA7hvvx2OIpcg5mOdXz588VufDkyogCpcvI9DXj/wWZMuUeSJ3dz0hQgPkN+ABadkqOkejvU8VXMWWU46/JvVINZxEWXn5Y2mkVFdyhbnx8suDlJreBQchmsKrujytVR5nJ3lMlkY9y7spvMRuzfL02yQ4bkSxOVBbNZ5IZsvVBKBrWiIQgCB/7wtRCqdbw/2ZOcPDPNanoiirC7NE2fKoCzVq1IWBTWaikPzp2TZIjCwiSj3GpOvBQLo1l6Xmk11X9ycveRI8FQVWWGZPHf0oIuORgqzBmSO94yrBa7Xi5aMqyeh3IJ/5bF/7GGl0uBoEee5xqUo8zdpIYHtbxdyDOalQSDvJCWy4CFuauQ3zafkWdUPktxcLXIxOTYoeNWqQXa6k55VjTKah+UB1RpQZPszCyjXbgPC/ZIJPO3BjZFq1ah1+uZN28e165do169ekycOJG2YaVzCAI9nNBpVOiNZm6n5xLq61rAp0VGSpYBT2eNQlg0W0XXoihp4GTrTQUyQyDV83MMphJ5OjKRryp4Yh7OWkjLLXAD2wrr9vrqhBykGk32X6+cnBx69OgBwO7duyu/VGZBceOyRQsdLVvaPslm6o1KsF6Yz1DZ8PfSsH6NwL29DOTG+NJz9FWa1/uL5GPnmHurMQ8s/LhaRWPr+rtxJyMPH1fHhX+K+45OntSRnAze3hV3roVRnjEpPzIEqn++0JenTFZFnCER6YKVdrXkDFBhL0l5kWv9HPd21RVYWPpbFrZyUFKjkMSDTNew1X+tuDGp0+noUMeXdSdiuWMp6cn8SfnfjFwjuQZTgevpolUjCNKYydIbS/T9lLsBDSbbeaX/OgL1vHnzqFOnDs7OzrRt25Y9e/aU+v5du3bRtm1bnJ2dqVu3brl0kHzcSn9IyQGEm1PJN4OsdSJP5DqNCoNJJMzPlRYhXkyfPh1XV1cmT57MN998w+TJk3F1dWW6XI8oARI5uGgJqG2hLoBcg6nAANKbzMpNJVqdu3VmyBYoD7QqCIArQmuosNR7dcER/rPZbObo0aMcPXoUs9k+ErmjKGlcbtw4HV87uL7yQ1qjEsrddeMI+nf2YNy0RGAtUdt7s3HB52Qc38Dun2fadJ9VJuRmBnsbA2SU9B3NmzedNm3K3r48KM+YVCb3ao6FRFG0KpM5QKCuoG6ysiA/a23x8yt8TeVsivUiWMoM5T9Lfd11pOUYFP5p4Q4/ma8TaoO4ZGnzWUuLyezN5GyFc6oSpHlIDmYKl7kEQcBVW3bWR2vZ3p7FZqVmhv7++29qlUDqcwQrVqxg0qRJzJs3j65du/L9999z3333cf78eWrXrl3k/ZGRkdx///089dRT/PLLL+zbt4+JEycSEBDA8OHD7T5+WZmhLEsA4aYrelnHLjpERq5R4YikWiZjeRBGhHgzffp0ZsyYUWRbk8mk/P6LL74o8fiezhoSM/MKZEy61vdn6YGbqAQwi1KkrLK6Q3L1ZtQWt2CQMkPSZ7FPhyc/GCr+705OTmzYsEF5XR6Ux59MI2dkbPGAqkTIDyOVAzNARV5LW1DecWkN+Ttzc9JUW+Y4IG8WMLPI7x35PBUJF6VEbb8GVkV+R46gPGNSjp2qu5Kgt8oilKe1vryZobKupZxkcORqyYsRk9Xzz9tVW4A2kGcwEfH+ZiXbX7jsJ89ZPmUIU5Y1JkcmZ4P/fdxMysbf3YnETD3erlqSswx4u2pJyMgjISOviNebi05DVjHVC2vIwZDejsDc5mBoiuyFYwNmzZoFQLdu3Wzextb9PvHEEzz55JMAzJkzh02bNvHdd9/x6aefFnn//PnzqV27NnMsZoZNmjTh6NGjzJw506FgSFuGnoI80IpL3Z2KTiU916hM5PIXKW8T7KbmHct1KwmzZs3io48+KjGV7yF3SlmnPC0Rt1olYDaJmMxigYAl12hCYx0MWQZ+tp3u8+YyblCNRsPAkoyq7IS5jMCrNJRn5VeRKE/StCKvZVnQ6/XK/VwSyhqX1si0jKvqaqHW6/XMLkNkx57PU5GQ+Xr2CoJW9HfkCMozJuVbwYZER6VCb5WRc4hAbbCUycr5bCnrWirPDjuvlyiKSqBtHQw5a9QFMkPyAq2kBZvMjSpNmNKWMbn6x/nUmtyX5Cy9wnmV51j53+IUpPPvk5LnKLnMeacyRBdPnDhR4GfhwoV8//337Ny5k507d/LDDz+waNEiTp48afPB7YFer+fYsWP0L2Sv3L9/f/bv31/sNgcOHCjy/gEDBnD06NESVZDz8vJIT08v8COjrPqjPNBcdEVvBnnVYyqUkZC/7GObVmAylf4QNJlMzJs3r8S/O8nRsNVNLZ+yrPBptPiWycg1mJRsCYBODoZKWJ2WNYk7kumwF+VZgenL0S1SkZCHQVVcr/Jg3rx55R6X1sgp5R6pClT056lIyM0M9pao7+bPZAvKWkhVFazLk/YqUEslNscFG+2B2UGOld5kVha91mUyvclc4P/yI0n+VWFhR2VBWcrntGVMms0mMk9sJCvPiM4SQMrPQ8Gau1EIrjZkUGVO5mU7BFVtXp7t2LFDeT1r1iw8PDxYsmSJokSdkpLC+PHj6d69u80HtweJiYmYTCaCggpq5wQFBREfX7xoWnx8fLHvNxqNJCYmUqMYdd1PP/2U999/v9j96Y2lRwK6UuqU8ngqPLDUliDlTmxU4U2KxbVr10r8m3wzWqc15eBLPq6xUJmscNnM4CCBsKwymcFgYNmyZQA88sgjaMvhDlkeomJVPbDKgpLqdmAGMJlMbN++HYA+ffqgVldeYFHaeHPkfVqNfI9UDdepMCr681QkRAdLp3fDZyrXmLxLFgbW5Gl7S3YGk6gEKeXNDJX1rJQ5VvZm0qyvr3UgpTeaCzxL1ULBZ6P1YURRVAIqdSnXyNaxZkyNR6NWKSK/hcdAcTOuLceX52KzHXQIh3LVX375JZs3by5gyeHj48NHH31E//79mTp1qiO7tQmFB6koiqUO3OLeX9zvZbz++usFSoLp6emEhkoCUWVlhlx0asgqfmUnf8lqq6DIZBaVoMMtwDZuVb169Ur8W3ElIHOhSddoFgvcRK46TQGiu7yP0kjgxaGsDge9Xs/48eMBGDFiRLmCofIQFRVRNQe8hyoSYjkmgNzcXCXjmZmZiZstSocOorTx5sj7ZIkGR3gxFYGK/jwVCUdLiHfDZyrPmCz8jKoulEdjyLqcU96FVlnPyrIWniVB+3/snXd4U+X7xj8nSdO96G4pZZSyCmXvLcgGQQFFUVxfFRQVwT1QcYGIA5wg4kAUBNl771lWKbuL0r1nmvX74ySnSWeSLvTnfV29CMk5ycnJe97zvM9zP/ctl0kdx6YTtVqrM/vO+jIhSJqJkK4gCLjYK8hXachXaSivZCfC0rGm8PDH1UEh3TONYr9lS3WmKKyCjmKEcfFf0f6VwaZfLTc3l5SUlHLPp6amkpdXXkK7NuDt7Y1cLi+XBUpNTS2X/THC39+/wu0VCgVeXl4V7mNvb4+bm5vZnxHVBUNSLbOCid7d0C7rYuAMGSc8V0PQEdh7bLWrKblczvTp0yt93RgkmGZ1jFG0s1LBhM5BhPq6mJGHXR0UZulh403KqQISeFUo5fHU/YxWUpPMkNqY4m1gzpCNqzsQrQ8iIiKIiIioczuO6dOn13hcmsKSFHddora/T22iKs5hVbgTvlNNxqREgWngaMg4v5f1ibMEpgtQ4xxTVyglUFt/nM5KYzmq9LmymaGyP4PRZsoINwu6eS0ZkzKZDJdOI2nq5SwpRRcY3nPGoFAWT+lUoQBpvgXXiXEba/pkbJpJx48fz6OPPsqaNWu4desWt27dYs2aNTz++ONMmDDBlresFkqlki5durBz506z53fu3Env3r0r3KdXr17ltt+xYwddu3a1KTNRfWao8k4sH4OQlbO9+Lmuhh/SWCuNySyplqQ+a9asSgmQer1eGlCmQlvGFvImXk58NqkjA1v5mllmOCkVkogXmAZDVmaG6nF1V1wDcbOSGrhS1yZKL1LrT5ijoyNnz57l7Nmzda4xpFQqazQuy8LJRl5MbaHq7yMAAg8+/FKD6A3Zmhmq7d/IFtRkTN4pnCHjzdXaTloQF6DG7EpdC7qWBo/W72u8/kzNVUu0OrO5tGyQVdYh3mgVU9X3tGRMdhj5EDKFkrYBbpI/nVHFe2R7f0Z3CMS3jJ2IKQm8qupFdqH1v4FNd4Rvv/2WUaNG8dBDDxESEkJISAgPPvggI0aMqFOS3qxZs1i6dCk//vgj0dHRvPjii8THx/P0008DYonr4YcflrZ/+umniYuLY9asWURHR/Pjjz+ybNkyZs+ebdPnl1SjWeAklQDKT/RGWXQHwwVjVEI23hRvphXw2jvzmDNnTrmIWi6XM2fOnCpbY9PyVKg0OmSCqG5tRFK2qCIaaBDOKlZrpUkXzLWgBEpXp2UzQ8ZAsLIYoiYXqLWoiez9ncMZEv9t6A6aqnD8OAwfDi+8MN/mcVkWRuK0Tl8a1NY35s8Xv0/5DIYfsIYNB1+huKT+OU25RdYHQ9nZMGgQTJhQe79RfeNO8fM2ZjxKNDqbxqZrPVn9lIpUVg7ja2U5M8YAwrQsVjYzlFOkNgs0Ckq0xJn4YBr19qqzsJk/fz4vzppd4Zh85rkXKIi4HxDvVzp9aedzkIdjpd58Kk0pCbyqzFB2ofXK/jZxhkQhr69ZsGABN27cQK/XExoaWqfcBYDJkyeTkZHBe++9R1JSEuHh4WzZsoWQkBAAkpKSiI8vJSI3a9aMLVu28OKLL7JkyRICAwP58ssvbWqrB/MurYpg1CHKqsBiwd8gXGWMyI0DOj6zkBY+ztxIK+DwjXTmz5/PvHnzKlTsrApGifRAD0czCQBjtshoyGpq/+BkJzO7cOUyQWrrNb0YVBqt1K7v5VyxhkhNUrfWoiay91KZrMG7ye4MnkRlyMmBBx6AmBh491347jvbxmVZmJ72C4k5dGtqhWJjLWL+/Pm8//77hI5/gZyUW0wb3gO7xhNZ9HwLsq8rGPxgMkdWl/f6qksYxewaWyBmB+Ic8uSTsG8fTJsGUVG18xvVNyTdMCvlPGobzkqFpMeWW6y2ugzvatB5q+vvYYkelfFelF1GXNa4yDX9biqN1oz0nZKnwl4uo4DS998dncpjfZsB0NTLmWM3M4lJr9wsNT6jkLkbo8hoNo6Cgnl88803XL12jeCQZtw39XFeXx9NSWwWXUM8uW7o+ApwdyQ9v4S2gW6Vvq9RFdvBTiZ5VFaEst/bEtRI7MPZ2ZkOlroz1hKmT59eae37p59+KvfcgAEDOHPmTK18dmZB1ZGwcRJLyCoq91qYwcfFyCcy/lgnYzIZ2zGAG2kxbLuYzOgOgSiVSl544QWrju1cQrbZ5xhRVlLd1BjUzVFpNmjs5DIpGDLNDBnl0ZVyc8M+UxjTksaMV12iuAacIWOZrKGDIWMGztGG71BUVMSIESMAUdi0tktlej08/bQYCDVtCsakQrlxqdfDhQvQvr3F730iNkt6vPb0rQYLhkDkB97/6NOsPn0Ln17NeGNkGFsPXib69zYcXePHG1+m88FM73o5lhKNjltZ4s2lmYUGtj/8AGvWgEIBv/wCcjnI5RXMHcnJ4OdXp5F3Tcak5GuY37A+fTKZSA7OLdaQW6TB10rrrVJl/Lotk3lZ4ANpNFstq+BsXOQ6miwk0/JUknE0QGpuMYVlMmO7L6dIwVBFpuCJ2UVsPn8bD0clk7oF42wv58iNdIrVOk7E5/LCCy9wOi6Le785wndfiFI4rvYK5o5tx0PLjgOlWfuezSvm8wLcMPCXmnm7VKnAXW9lsoKCAt566y169+5NaGgozZs3N/v7tyI1T1Ulb6iJV6mjblm0DhCvLKP5XVJOMXZygeTcYjoHi115Oy6l2Oz6fuxmBgA9m5vfXG5li8dizEyZTjhBno5mthTGC0QQzDlDqYZ6ro+rfaUkxxSDuJWfa3l389qERquT5AJsM1O8M0QXk43O0+7Wny+dTsf+/fvZv39/ndhx/PgjrFol3mRXrQJ39wo2KiiA/v1h2TKr6hyHr6VLj/c2sDkqwF1txH6YnZdSEATY8Hkwrh3jAIGPX3Fn48Hyztl1gfjMQnR6keBa1mm8IkRFwfPPi48/+gi6datkw5gYcHau8xRkTcak1x1kWuzmWD0fpjLUxCbIGhiNVKsqUxnHUNltjItcF/vSRW1idpEZteJaar4kIGnEsRsZUpDX1BAMxZoEQydiMvhwy2WWHYqRjvH+bqIrxKfbr6DT6aV5WxBEE/E/nuqFn5sD/Vr6EOThyNUUMdAZHl55RvZmmviZRpHGylBvmaEnnniC/fv3M3XqVAICAhq8C6A+YCeXodVDSm5xOcd4I4INz8dXEAyF+bkiE8SI1d/NgeTcYpr7uHAlOY/bOUWEB7lxMTGX30/EM2NQqFXHptJoOR6TCZhH1cVqLZeTxO4+Y+rRtPbb0teFFEPmCMTUamahmkB381Kb0QG5qkk6pZqbu729PX/++af02FYUm5Qqa6Qz1MCZodQaBI+1dS4rQnQ0PPec+Pj996FHj0o2dHaGrVvBxTrn+UPXS4Oh5JxiriTnVdgxUl/oH+aDvUJGfGYhV1LyaO3vxrxPkpkzLYuSJE8m3afi7KkiWgXXLVHduMpu5uNc7XxaWAiTJ0NxMQwbBlXyVJs1q8WjrBw1GZPGrERWYQk6nd4iz626guhdWGSTkbOrvZEzVLPMUHXn0ni+qsqkeVcSMBkDNneH0lv/rawierUozYBeTiq/ANDq4cDVdEZ1CKCFj3jNX0vNQ63VYSeXMbiVH3KZwJWUPOIyCgjxcmb6wBasOX2Lc7dyWH4klsf6NOX6ByPQY+7m8NUDnXht7Xl+P5FA7xZekkdfRbhp8EtrUU32tN44Q1u3bmXz5s306dPHlt3/kfBzs+d2oZjRqTQYalSaGSqrf+RgJyfU14WrKfm08HEmObcYD8MqZMO5JB7r04xZf57j+wM3eahHiNSKbwm2R6WQV6zB382BdoGly/jzt3LQ6PT4utpLA+xCYulAD/V14XJyqRSCp5OSmIzCclG3VcFQJTd3hULBxIkTLf5OlcGU2GhLQFMTV+rahDEz5G9DZqi2zmVZFBWJN9miIhg6FKr1LLUyEErLU5mNN4B1kYm8OqK1lUdae3BSKujX0ptd0alsv5hCa383pt/VnA3TT7Hv4w4Up7rQb0Q6V44rqjVqrgkqK3NXhBdfFDNDfn6wYoWFZr96PeTlgVvlfIyaoCZj0tNJvLlrdXpyitTVel7VJYxlfluyO8ZAI7eGmaHqzqW3lEmrPDPk7Sqew7Q886DAeO8yjbcTMgvNApAkkwWyKXZfTmFUhwCaezvj7mhHTpGaqNu5dAz2wN3Jjh7NGnHkRgY7olJ4sn9zfN0ceGV4K95aH8VHW6IJ9XVhQJhPufc9fjODP04mADDzrpaVfieAaMPivrlP5XOPXq83K+FZCpvuCJ6enjSyxqr6XwBjmel2dnk+kBFGzlBBibbCcldvQ/RtXPkk5xYhE+BsQjYRwR6E+bmQU6Tm0x1XrDq2347FATCpW7CZwvXpOJGf0SXEUwrMom7nSK+H+rqY/d/Izm9eJupOyy3fsl8WUjDkVrfGoaoaqMSa7t/gZbKc+jlf1mD2bJEC5OsLP/9s4U0W4MgR2Lix+s1upJd7bv3ZRKtUYusCw9qJafmtF5MAscnh2/+1IeC+0yDXkhblTc970uq0++14jFjm7tGs6nl1zRr4/nvxZvbLL2JAVC1OnICuXUVG/B0IpUImdXJVdYOvD7hZ0DZeGeqrm8w0M6SvpERdWWaoiWHBnmtC8k7KKTZzoLeTC7w+UlygGJtUhrXzY3wnURhYJhPoGiJSO07FZkr7Ga+jtZGJ0nE91DOEMRGBaHR6nlxxiuWHY8zU549cT+epX0+j08OETkFV8oVyitRcSBTvV92quE5u5xSTV6yxupXHpmDo/fff5+2336awsHI2+b8NxhV8ZVEziNkfY0BUdgWsNWRoQKy1KmQCcRlFdG4iDqpfj8Xxzph2APxyLI69V1ItOq49l1M4HpOJQiZwf7dgs9dOGCZY42cUq7VcM/FqaennyiWTlKjxsipL4EwzXFBlNR9MIXGG3CreRqPRsHr1alavXo1GY/tkIWkM2ZDZUZt48zRkmUyv15OaZwyGrM8MabVaDh8+zOHDh6v1/7EU69aBURVjxQrwt7SRau1a6NMHnn0WqvldD10rHwwl5RRLJd6Gwt1t/bGTC1xOzpM6W0J9XXnzUX+8R54D4OquQO56/Fad2IgUq7WcSxAn+e7NKr8ZxMaCwaOaV14Rs3cWwdMTIiNhyxa4fLlmB1sJajomjTfvhiZRS5yhItszQzUtk1U3VxoJ5xqdvtLjNGbxyxKoQyRea+miXqURFaiNfl75Ki2DW4tcOiN3SKvT06+lmNXR6/USb+ikSTA0rmMg9goZ0Um5nInPBkQhzYUTIxjZ3p8SrY53N16i98d7eGLFKcYuPsSUpcfJLlQTEezBvPHhVZ6XI9fT0er0tPBxrrKUZizzmXpuWgKb7ggLFy5k+/bt+Pn50b59ezp37mz292+EMTOUVEVmCKBjsAcAkfFZZs+fu5XN/O1ixichq0giOhsDpD9OJhAe6M603k0BmLky0ixrUxFyCtW8syEKgMf7NiPQZIBkFpRI/IwBrcRBHJ2UK5HYnJVylHLBbBVjzO40K5OCNPJbfKvIYpRmhiq+uatUKiZNmsSkSZNQqWxf/RknSw8n61PpSdniMSoVMqn1tCGQWVCC2qBZVVWAWRmKi4vp27cvffv2pbi48uDcUsTHw+OPi4/nzBG1hSzGyJHg4yO+yV9/VbqZXq834wuZ4u/IRCs+sPbh7mRHn1Axa7v5fJL0/BP9mtNveBEe/cUA4sgvTRg3O7ac2XJNERmfTYlWh6+rPU29Ki7Bq9ViYicnB3r1gvfes+IDWraEsWPFx59/XuPjrQg1HZONLOiQqg/ULDNUOwTq6uZKBzu5pEVVWSbNxyQzZJo9MmaGbmcXmVEFUvJUZvSPxOxiM4kHI7kZYO6GKIkofTwmU1ogeDgpGRMRCMCKI7HS9kqFjMUPdOb9ce3wclaSmqdiV3QK52/lIJcJPNA9mFVP9qzW9eCAYTFlDMoqgzERUZFHaFWwiTN0zz332LLbPxr+HoYyWRWZIRCzMJvOJxFpiIyN6NjYgwB3BymzZAwaTsRm0srPlSspefxw8CavjmjNpaRcTsRkMuWH4yyZ0pm+Lcu39+arNDy24iQJmUUEujuUq7VuOn8btVZPeJCbxEM4YbIC7x3qbTbAnZRy4jLETF/ZMpmxnbEy/ZMSjU6axOq67GMkgBsvamuQkFWq49KQJE1jFs3LWWkTd0kQBEJDQ6XHNYFGA1OmQFYWdO8OH3xg5Rs4OMD06aIY0WefwaRJFXYulWh1vDqiNY52chyVcj7dcYVzCTnMGhrGgz2a1Og71AZGtQ9g35U0Np6/zcy7QhEEAblMYOGkjgy/fQBNriP5Z0PY8lUIk5xv8Me7zc1UfGuCXdGitVHP5l6V/p5vvw3HjomdfStXgtUC+rNmwfr1Ytpv3jzwrl3JgJqOSan008DBkMT7sYFA7eZQOwRqS+DloiRfpSGjoITmFcQGxkybSqMjX6WRSni+rvY42MkoVutws1eQrhHPd2JWEU29nCSuTXRSLu0C3bhlkImJzywkI1+Fl4s9nUM8WXE0TmoI+vvsbe7tHIQgCEzr3ZQ1p2+x8fxtZgwKlZojZDKBqb2aMrlbE47dzCAuowAPJyVdm3oS4F59c4Jaq2O34TqpiHdkCmMwpMc6LTqbgqF33nnHlt3+0Qg0/GCm3VgVoVMTDwAiE7LNSNQymcDwcH+WH44FRMG5Rk52pOeXMKFzY66k5PH9wZtM6hrM0ke68vCyE5xNyGbqj8cZ3ymIqT1DCA9yp7BEy74rqczfdoXE7CLcHBT8+Gi3cmqcf50RV9vjOzWWnttysdSnbVArX87dyi79fh4OXE8tQKmQmWWYsgtLiDUESe2DKuqxLi2j2ckFiQxZVzDKFjSpZAVtyb7BlRDg6wvGLJqvDSUyEEVPr127VivHMncuHD4s8mp//92GmyyIwdDHH4vclCNHxLJZGdgr5IzrWGpGfPRGBucSckjKKZJahRsSw8L9eePvi1xPzSc6KU/qvmzm7czrI9vwdslF9EX2FFzxZ938pkyUXeWPt8NqTMQv0ehYZ8iMjesYWOE2W7aIpxdg6VJR+8lq9OsHnTvDmTPw7bfw5pu2HXAlqOmYbGQkBVejalzXKG2tr0mZrO7FI72clcRlFFZ6vhyVcpyVcgpKtKTlqaRgSBAEmjRy4mpKPo1clKQbgs9LSbl0aOzB3iui3EV0Ui7hge5sj0rBzUHUXjp2M5NRHQIY2MoXhUyQKAezV58jxMuJbk0bER7kzvB2/myLSubTHVf44eGuZselVMjoH+YDVB3QlMWWC0mk5qnwdrGnd2jlpWSAK8ml1I8QL2csHZU2X8nZ2dksXbqU1157jcxMMeNw5swZEhMbNuVdV2htiHCvp+ZXaMRqRNtAN5RyGZkFJeVa7Ee1D5AeX03JlwhnB6+m0aeFFyUaHe9ujMLVXsGq//Xk/m7B6PWw9kwi478+Qss3thLx7g6eX3WWxOwiGns68vPjPWjtb94hcuhaOucSslHIBMYa0pa3sgqljhWAga182GpSEjC2S3YN8TQjYZ+/JZbqmno5VVqakm7urg51nnExKm3XJDMU3Khu26Srg9RJ1sDk6V274MMPxcdLl4LNEmG+vvDQQ+LjRYss2sUYWBvHV0PDzcGOQYZy8oZzt81em9ozhL5hXniNjsSzZSZ6tYL1n7Rg9FuXauxDtSta1BbzdbWvcMUbE1N6amfMgPvus/GDBKG0B3/JEqhBqbou4G1Bu3h9wK0GmaH6IlCDqdZQ5efL2N1ctrPKOHf6mTTEnEvIJiK4dLEbnZRLuyDxvmJ0kD96UyxTuTvalSM6G5t4AGYPC0MmiNpdey6XN3S3BcYkwkM9m1TZ/JJTqOZGWun37WJITlgCm4Kh8+fPExYWxieffMKnn35KdnY2AOvWreO1116z5S3vePi6OeDjao9OjxnpuCzsFXJpEJ0x4Q3p9Xpa+7uadWTJZALOSjnRyXkMayeSOHdfTmXFkVgc7OR8fG8H1s/ow8j2/tJFCmIZa+ZdLdn+Qn+Jo2SETqfnwy3RgMjkNxLptl4ozQq19nfFXiHjwu3S72G0uChbkjtvyB51aGz+OaYwkk6DLLQRqAmMAWaILcGQgTTY0JkhY0eiLW31tYWUFJg6tdTSocad+i++KP67bh3cvFnt5uGGYOhqSl6DeZSVxdgIMXO18dxtsw43mUxg/n0RuDnLcBl9gsZt8tGX2LHrs1YMeflitdniqrDyuGgfNLFr43JlN7VarDoaS5gLF9r8MSImTYKgIFGRet26Gr5Z7aKUM3RnZIZsKXXVlwI1lAaPVQkvGktUZZt5mjQSaRCmEgZn4rPM5vjrqfkSvcIozHvkRob0+t3txDZG49p30/kkyYYq1NeVx/qI+lav/nXBJs0fUxy7mcHZhGyUchkP9gipctt9V1PR6vQSGdxUP6k62BQMzZo1i2nTpnHt2jUcHEon9BEjRnDgwAFb3vIfAeNq9mJi1atZY9vhQQPh68iNdIZ/fpDX1l00S4WvP3ub+7qKZazfTybwynCxnfHDLZeltviIYA++frALkW/fTeRbQ7kw9252vzSAWUPDKjSq+/NUApeScnG1V0g8Ir1eb7baHdTaV0qHgtiZdSouG4D+Zchp5wwr9w6NKy6RgSgNAJQLzOoC8RnG7E5NMkMNGwwZx08rCzRlKkJxcTGjRo1i1KhRNpFVdTp45BHxntiuXS1xatu1ExUAmzSBhIRqN2/s6Yi/mwNqrV4a6w2Nu9r44mKvIDG7iFNljinIw5G5Y9shU2pRjjpMeBcV+hI7Tn3bnoEvRLPrkvUr4G0Xkzh0PR2FTGBy1/K8qXffhVOnxGawNWugxvqadnYir2vDBjEwqkXUdEwaG1QSK7Ayqk+UEqitz+4YKQIZBSV1Lhfh7yYuPG9Vcb4qC4aaeovzn6lKc3p+CTJBkHihOr34XGt/V6nL+GZagVQFGNLGT9oOxM62v87ckt5v9rBWNPdxJjVPxezV521uOihWa3l93QUA7u3SuFp19l3RYhe2WqtHIROqbMEvC5uCoZMnT/LUU0+Vez4oKIjk5OQK9vh3INzC1P5dhoGy53IqGq0ONwc7rqTksf1islS2ApEEfTu7CA8nO6KTctHr9dzd1o8SrY5py09wweRz5DIBT2clrg52lRIUzyZk87ahu+zZwaHSamv/1TRJn0EAHujWhG0XS0tkLf1cyFdpaOSspG2AecntnAWBjiXb1AaMhEGwlTPU8JkhvV4v/RYdbDxfWq2WLVu2sGXLFpvamD/9FLZvB0dH+OMPcKqt0/Hzz3D9OgwYUO2mgiDQu4WYaq9If6gh4GAnl6wA1kXeKvf6hM5BDGvnh1auwW/iSfoP1qBXK4hd2Zn7X7nNG+suWGzSmVOk5u314rX61IDm5cbzyZOizQaIukLBwWXfwUZMmgRjxlghImUZajomW/oZVY3zK9XOqQ8YvRerc2SvCAEeDshlAiqNjpS8mnd5VoUww/m6mpJX6TZtDPQJUw4NlGb5z9/KwZTVcCExhwiTOenojQypE9nYfXvUkB0K9HCUrl8jVhwp7bR0sJOzaFJHlAoZu6JTeG9jlE2/61d7rnEzrQAfV3teHV61OGuJRsc+E0mazk08ybaCkG/TFeHg4EBubvlS0ZUrV/DxsY4Y9U+CNZkhTyc7sgvVnIzNIjzInbYBbpRodZyKy2Jo21KltN3RqTxvyOB8tvMas4eF0a2pJ3nFGh5adpz9Fvo33UzL58mfT1Gi0XFXa1+e6CcSQPR6PYt2lVLIhof74+WiZJ9JZqiNwTetdwsvM85Pck4xqXkq5DLBTNnaFEUlWmnlUVUwpFQqWb58OcuXL7fZRduYFfJ0spNWcJaiqEQrTXANyRm6nVNMen4JCplQLvC0FDU5l8ePwxtviI+/+EJM6NQafH1Ft1AL0UsKhjKq2bL+MMEgLLfpfFK58p0gCHw4vj3eLkquZ+Uw+LmrTJykA52MjE2dWPKZkoHz9/HX6ar1iHIK1cz47QypeSqaezvz3GDzTtCSElHqQKcT2+lt5glVB3XtlXNqen2HeDmjkAkUlmir7ditSxj5NNmFanKsNPu0k8sk8cLYKhzdq4Ml5zLMkPW5mpJXaRbKmBm6mVYgKe8DtA1ww14hI7tQjdKkNBsZl0VHk1LZwWtpEo/NuP+OS6XJDmPJSmG4ZyRkFbHRpAIREezBokkdEQRYcTSOeZujrcoQrTl9i6/33QDg/XHh1boynIzNJK9Yg9JQIuvX0ttivT6wMRgaN24c7733HmrDxSQIAvHx8bz66qvce++9trzlPwLGYOhaal6VJGqFXMbg1mLAs9OQPr+/u7i0++NkAtN6l9Y9dXrRvLJ700YUqbW8vvYi303tSucmHuQUqXnkxxN8uCXazFC1LDadv83YxYdJy1PRys+VLx7oJJGg911JMyNOP9GvGb+fiDcTH7xosOjoV4YvZNRKCvNzxVFZ8U0u6nYOWp0eH1d7AqrgwNjZ2TFt2jSmTZuGnU0tS6V8IVvI00ZHcFd7RYNqDF0wcLDC/Fxt8lYD289lVpZot6HRiP8aBfxqHSUlYmtaNTdbYzB0/lZOvfAsLEHP5l4EujuQV6xhz+XyE6mXiz0fT+gAwE/HY5g5L5PZs8XXcg614tKv4bz4axQDFuzju/03uJaSJ62Ii9Vadl5KYfzXhzl0PR0HOxnz7+tQbhx8/LGoBO7lJQastQ69XjSeCw6GS5dq5S1ren3byWWS2Ou1KrIddQ1ne4XE64yxgQsmmZjWgEdmybkMaeSEUiG2yBvL/2UR4O6Aq4MCjU4vyaOA2NFlvJeZFhk2X0gyywydjMmkbYAbTko5RYaFwe7oVOlavbudHz6u9tK9BGDhjitmZuajOgTw9ui2ACw7FMNTv5yq1oxcr9fz58kE5qw5h14Pj/QKqdK81YgdUWKgZjyafmE+7L1suRm0TcHQp59+SlpaGr6+vhQVFTFgwABCQ0NxdXXlA6uFSv458HOzx9ulehI1IGV/dlxKRq/XMy4iCKVCxuXkPJyVCrOswK7LqUwf1BxXewWn4rL4bOcVVj7Zk4d6ijyC7w/cpM/He5i7IYrN55O4dDuXYzcz+OVoLGO+OsSzKyPJV2no3qwRvzzeXRLkyitW896m0smuUxMPOjT24Nv9N6Tn+rf05lJSHkq5TKoDG7HNMLh6VSGRbsoXqmvD3tK2+qpN+irc16gx1MipQY2Fz1vAwaoL6PVi8BMXJ3aNffddHRmZ6/WiKuCUKSLRpQo09nQixMsJrU5vpmTbkJDJBMYZskNrz1TcGTukrR8PdBc7PV9ec44331OzbBkolXqKrvqTsqIfN6Ps+WjrZYYuOkCHd3fQ/YNddHpvJ0/+fIqb6QUEujuw5unedG1qzmmIjBTjFICvvhL1LGsdgiC22Kek1JkIoy0wlsqum6jkNwQqcmW3eF8v2/e1Bgq5jFBDB/CV5IqDR0EQpC7oy2VKZUYJGNOM0fXUfMJ8XXAyLHzVOj2RCdlSOczTyQ6VRict8O3kMiZ3FRf5RkeAhKwi1pw2LzE/2qcZXz7QyVAyS2Xggr0sPXizwszbjbR8HvvpJC//dR69Hqb0aCI5M1SF3GK1dL2qtXqCPBxp4unE6TLix1XBpmDIzc2NQ4cO8ddff/Hxxx/z7LPPsmXLFvbv34+zs/U3qn8KBEGgvaFTrLpSWf8wb+wVMm5lFXE5OQ93JztGGKLbP07d4uXhrcy2f3djNF88IKYUfz0Wz6oT8cy7pz3fTe1CKz9X8lUafjoSy4yVZxj55UHu//4Yb62P4kJiDkq5jBmDWrDyiR6Sdo1er+e1tRektkoBeGt0WzacvW3WjuloWJWOjggw03spVmslUujoiFJJgLKwlDyt0WjYvHkzmzdvttmOIy7TKLhofZmrlC/UsG31xmCofQ2CIa1Wy9mzZzl79qzF/IxvvhGdM+zsYNUqUbyvTiAIYBRl/ewzMTiqAhJv6PqdVyrbdyW1Uh2XN0e1JcTLids5xbyz/iKPPQYHDwo0bQolWU6krOyN45nO2OnsyCvWkJqnokitJcDdgUf7NGXDc30lDqIR2dnw4INi5u7ee+H+++vwS770kvjvzz9DmuWr58pgy5gsi1Bf8cZ9LaVhg6FmhoDGFrNPo4K4LfsaYelc2cqkVFbdNmVJ1EaLJlORZj3w3cEbZhWCg1fTpVKZMYNpWgp7oEcTFDKBYpOgauGOK+UyvWMjAln9VC/aBLiRW6xh3uZoOs/byaTvjjLz90ieXxXJ4E/3cdfC/ey9koadXGDmXS2ZNy7cIrmWlcfjyVNpJJulqb1COHg9zaqyXI1YdIMHD2b27Nm8/PLLDBkypCZvdcfDyAEwphFPVOOnJLphi4PIaDfwQHcx07P2zC3a+LvSx0Q8Kia9gGup+bw0NAyAuRsv8c2+Gwxr58+2F/qxfFo3HugeTIfG7jRyVtLcx5kezRrx5qg2HHv9LuYMa23WmvvrsTg2megI/a9/czo29uDL3Vel59oGuLItSgx4HunV1Oz4915OpaBES5CHI52qCHQsDYZUKhWjR49m9OjRNttxxBsCmpBGNmSGMhu+k0yv10tSBRFVSBVUh+LiYjp16kSnTp0s6tw5e7a08/3jj6FbN5s/2jI8/bSoTH3qFBw8WOWmxtbXw3cQb6ilnysRjd3R6PT8ffZ2hds42ytYNLkjcpnA32dvs/5sIt27i5mdqVNBrxO4vDOA/F+G8pjXXaz7Xz92vtifw68M5p0x7SSFYCOKi8UYMjoaAgNFn7g6TWD26SMOBJWq1JSuBrB2TFaElr5GEnXDlckAmvnYXuqqjTKZpXOlsfX9ShXBYyuJRF0mGDJ0PJfFiiNx9DXpKD5wLY2hbf2RCaW+nAevpUtt9EEejkw2eGIaKxLp+SV8tLW8B15EsAebnuvLRxPaE+rrglan50RMJhvO3Wb92dvcTC9ALhMY1MqHbS/0Z9bQMIsCoWK1VrIHMfqsTe4azI4o6zo8bQ6Gdu/ezejRo2nRogWhoaGMHj2aXbt22fp2dzxuposDrr8hSj5wLa1a00bjIPnzVALFai09mjWiS4gnKo2O7w7E8NqINmbbf7L1MsPD/ZkxqIX4/22XeW/jJUq0Oga19uWjCR3Y8Gxfzrw1lD0vDeSPp3rxRL/mUtcYiDfc7/bf4C1DpwpACx9nXhwaxvIjscSZGPT1belNiVZHRLCHWa0YkAKp0R0CKi0rpeeruJVVhCDULNNhKeINE0yN2uobMDMUl1FIbrEGpVwmTWS2QBAEAgMDCQwMrLbkl5cnNhCVlMDo0aVBUZ3Cxwceflh8/NlnVW7ap4UXgiCKvCXlNGxbtSnu6yJKXpRN+ZuicxNPZgwSLSje/PsiidlFeHiIyZbNm6FFC0hOFnjnZQdG9HZj+ReunD0rmPnZFhaKlm4dOsD+/eDqKu6r04n2G1u31tEXNBVh/PprMRqr0dtZPiYrw53SUda0BpkhI+8pLqOwztvrW/kbOsoqKZMBtDFkhsoGQ35uDlLnnCkKS7QkZRdJju/XU/PR6UtNWr1dlGh0ejZfKF1oPzs4FKVCZtZJufJ4PEcq8CIUvciasGvWAPbPGcgn97bnrdFteW1Ea759qAuRbw9l+aPdJRFgS7AuMpG0PJVkvTGuYyDFGq0Z2dsS2BQMLV68mOHDh+Pq6srzzz/PzJkzcXNzY+TIkSxevNiWt7zjEWUgGUc09sDTSUx9nynjP1YWg1r5EODuQFahmq0XkxAEQeoc++14HL5u9tKkCyKZ+p4lR5gxsAWvjhDbCH88HMOYrw5JGZiqkFes5vV1F8yichelnC/u70RCZiEfbi7lD/Vu4cXGc+KAfrinuZBVgUrDboNy6OgOFVsEABw2DPZQHxeru7usRU6hWlKfDvW1/EIxwujD1tS74cq45w2l1TaBbjWycXByciIxMZHExEScquiL1+vFJM21a9C4Mfz0Ux1nG0xhjLo2bBAPoBJ4udhLKXtbtHrqCmMiAlHKRQfuqkrizw0OJSLYg7xiDbP+OCul5UeOFLnJX3whnvuUFLFVvksXMeAJDYWQELFced994ilSKsHDQ6RcBQSI/9Yppee++0RdqNRU+PXXGr2VpWOyKjTzdkYmIJUVGwrGgCYmvcDqoCzIwxGFob3eqDRfVzAuqG6k5Ztxf8y2MQRDSTnF5YjLvpVo9qw/l2jGadxyIUm6Txk/5+ejsdK5CXB3ZKrhHmIaYM3561yVUhMhXs5M7taEx/s246kBLRge7m/1faSwRMPX+66bHdvDvZqy7GAMaq1e0vyzBDbNyB999BGLFi3i999/Z+bMmcycOZOVK1eyaNEiPjTq+//LYDRelcsEKTtUXdueQi6TSmO/HhOVZvu19KZTEw9UGh3f77/JW6PamnVh5as09Pp4L0/0bca3D3XB20XJ1ZR87llymAlfH2bT+dtmnWw6nZ74jEIW7bxKn4/38PuJUsE7NwcFvz3Zk1b+rsz8PVKqD8sEaBfoRlJOMYHuDozqYM4J2hWdQrFaR1MvJ8KDKm//NgZTRluRusTJ2Ez0elF9uzrhrbJIy1MRk16AIECnYMsvjtrGGYOQX4dKPN5qG8uWiaaecrmoJ+RVtaVP7aJ1axg1SozIqrmjG5sNdkZb3gZb1/BwUjLUoLJbVXbITi7j88kdcVLKOR6TyfcHStW3lUqYOVMU5P7zT5EH5OwsJmFu3ID4eMyyRCUlol6laZKmQ4da/2qlUCjEAwTxN2rAbAyI6v0hhqxMQ5KoQwy8n7xiTbWdT2WhkMukzHVdk6iDPBxxVsrR6PSVluXcHOyk8uPxmxnlXgNzWw6AeePCzeRf/jqTyNC2fpJHmYNCxtWUfDPZl2cGtsBJKSe7UC0pcSdmFYv3nTrMkH2wOZqEzCLsFTJ0eugT6kVjT0dWnhDvt4/1a2bxe9kUDOXm5jJ8+PByz999990V6g/9G3DoeroUCQ9q5QtgptVTGe7vFoxCJnA6LovopFyz7NCvx+MoVGv4dGKE2T45RWp6f7yHIW182fniAEm1+kx8Ns+ujKTN29to/852hizcR/jc7fRfsJcvdl8zU031cLJj5ZM9aR/kzlt/XyTaJE06fWALyevl3XHh5Vp7jRYBoztUnvLOKVSz/6p48xpbicFkbeKEoduoR3PLFUWNOB0n7tvKz7VarYq6gl6vl7owykoY1AUuXIDnnhMff/AB9O5d5x9ZHkaSbnx8lTda48R79Eb6HdNiD6WlsvVnEytdeYOYSZhr6HhZuOOKmVgqiKT1iRPF5rrcXDELtGcP/PBD9fqUdRoMgdhi+PTTYrTcgF2WRhizvg3ZXu9gJyfIYFZtE2/ISKKuAW/IEgiCIGV+KusoA+gTKs43ZfW85o0PByCrSG1GH9h3JU0SDgaxhH0zrUCa5422S0sPxkjbeLvY8+IQke9qSh/ZczmVDzZHW//lLMDey6n8ZrhXqTQ6lHIZ740L55ejcRSWaGnt70q/0Dq24xg7dizrKvC2Wb9+PWPGjLHlLe94pOapJEZ+/zAfieeQXI1AmK+bg+Tj8ttx0cxuQJgP3Zp6UqzW8dbfUfRu4cXjfcUI1sgXS81T0evjPbjYi2Wuv2f0xtXEfiNPpeF6WgGFJVrkgiB1hYGolLvjxf609ndl9ppzrDpZmi3q3MSDIzcy0Oj0DGvnZ7YCADhyPZ3jMZko5TKm9ChvEWDE9qhk1Fo9rfxca8R/sRTGVU2PZtanN07EiBmZbk2tD6RqC5eT80jMFlcwZf3frEVxcTETJ05k4sSJFZJV8/PFm29xMYwYAXPm1OjjbMfAgWJUtnFjlTfaFj4uNPd2Rq3Vc+DqnaFGDdAv1BtfV3uyCtXsjq66hDexa2NGhPuj0el5flUkhSUVlwdkMrFENmiQGIfs2weHDlUeFNV5MOTuLrYa1lB9s7oxaSlKSdQN3V5v7AqzXjyxJq351sJo6VNVR5lRz+twGaX3Vn6uNGnkRIlGR9cQD+n57VEptPJzkQJCEJt+7usicmBvZRUhE8QEQdTt0sD/sb7N6NTEgyK1jiCP0mrHj4dj+OlwaeBUG8gsKOHlv84D4GjgCk0f1IJAd0d+OhILiNkqa/hrNgVDbdq04YMPPmDUqFHMmzePefPmMXr0aD744APatWvHl19+Kf39m2DMBDVyVkrdQPssULh8yKDUueb0LVJzixEEgQ/Gt8dOLrArOoWtF5OZM6wVXUI80enBIKBJWp6K9nN3EH07h47Bnqx6qqek52AKrV5PkVqLnVzgx0e68tmkjjgpFTz7e6SZVoqPi5Jh7fw5E5+Ns1LO3LHmE6Ber2fhTrHb7IHuwQR6VE423nhe7LIZU0XbfW0hX6XhosFUtrsVXjNGnDJkhro2bbgS2S6TrJCTsrynnDXQarWsWbOGNWvWlGtjNvKErlwRPTlXrKh15wXLIQgQHm7RplKpzErSY11CIZdxryE79Mepqv3WBEHgownt8Xdz4GZ6Ae9ttFzMsE8f2LsXduyArl1NPl8hVhvrFTaWyqoak9bAlETdkCglUVt/HM2kjjLbVagthXEhWrZ13hQ9m3khE0QlatPFuyAI0nWnozRoSM4tJjaj0IzP+vfZ27QLcKWVnysqjU76XNPskFwmsOC+DigVMhKzi3E2Eeqdu/ESi3ZerRVifGZBCQ//eJy0PBWuDgqK1Dpa+DjzzMAWfLXnGhkFJTT2dGRUe+vuTTZNk8uWLcPT05NLly6xbNkyli1bRlRUFB4eHixbtoxFixaxaNEiPr+DBL1qA6aBjzWlsl4tvOjcxINitY6v9ohkrzA/V54ZIHaNvbMhCpVax4+PdKOVnytaPZKkeLFGx4gvD/HyX+e5nV3EJ/dVvlSc1rspA1r5supEPP0+2cO2i6U3FmelnJeHt+LjbSK5es6wVgS4mwc7B66lczouC3uFjOmGLpmKkJ6vksjTVRGsTaFUKlm8eDGLFy+2Wq7/VGwmWp2e4EaOVQZoFaFApSHKEEg1ZGZopyGzUFbY0hZUdS6XLoXffhN5QqtW1ZFony1ISRH7zivBkLalfn7qaro06xOTDKJy+6+mcTu76m43Dycln02OQBBg1ckEtph03FQHQYChQ+HECVEPql07MRCqsTmrpbh2TdQE+N//bNq9Jte3KVr6lmY6GrKjTApobMkM1VB40ZpzaeziPROXVen5cneykzStjt40zw7dbbju9l9Nw8el9LN2RacwqVuwVKlIz1dx6HoGzwwU71mJhmth47nbkmwJiFpRLwwRaSBlS8tf7L7GnDXnqiw5V4eU3GImf3eUi4m5OChk5BVrkAnw4fj2XEzMkQSF3xzVxkxqxhLYFAzFxMRY9Hfz5s3q3+wfhNNxWRKnYVBr8S5z6Hp6tT+uIAjMGSYu8X4/ES95bE0fFEpzH2fS8lR8tDUadyc7VjzWnSAPR0q0elzsSyPrP08m8OTPp3lp9TlCfcp3RPkaZNEHf7qXV9deIMtE3dPbRcmC+zrw2tqL6PXwcK8QHund1Gx/vV7PZzuuAPBQzxD83Cq31thyIQmdXlRRtrQ7y87OjhkzZjBjxgyr5fqPGzSdbCmRRcZno9WJiqTWBlK1heScYs7fykEQMKvF24rKzuW5c6U8oQ8/hL59a/xRtYOtW8WupUceqTTz0LmJJ42cleQWa+4YNWoQb4o9mzdCr6+aSG1E7xbe0iLnVcMCxhoIAowfL/6WK1bYdMi2IStL7ChbsQJuV6ytVBVqcn2boqWfC0q56JtVH5mVylCT9nrjvnGZtrXXW3MuIxp74GgnJ6OgROqYrQi9KhE37WLio9nfpHz/27F4At0dGGhY9AP8deYWozsEEOLlRF6xhmbeTmh0ej4uoyn0v37N6R/mg7qC777mdCLjlhyWeJzW4FxCNhO/Pcq11Hxc7BWS0OPHEzoQHuTOrD/PodOLoqnDw62vWNgUDO3fv9+W3f7RaOol/vDGjEh4oDs+rvbkqzQcsMBMtVcLL/q19Eaj0/O5QfjQwU7OR+PbA+JKcvWpBPzdHfjl8e4EN3IkX6VFIUNS1QTQaPVcTyt/gabmqVh+2FxHCGBke3/eHRvOC3+eQ6PTM75TEHPHtCtXS90elcK5Wzk42sl52jCZVwajAukYC7NCNUUpX8j6zI7xxtqtIUtkhqxQx2APqzvhLEVOjtgprVKJTVxGv6w7Aj17iiziCxegEi0yuUxgcGtx4t1+8c4plUGpXtgfJxMsurm9ODSMiMbu5BZreMGk3d4ayOXQubPVu9mO7t3F6FmthgaUR7FXyKW27oYMik2FF63NUAV6OGAnFyjR6Lhdx9pZSoVMKv8fuVE53653i1ISten3Uchl0gLN0aR8H5dZyPlbOdxvGPsgXpcZBSXMGChWDbIL1QiInmamIsQKuYwlUzpJViBlEZ2Uy73fHGXWH2eJs4BknphdxAurIhm35DDxmYW4OSiklv23R7dlUrdgPtwSTVxGIYHuDrwz1jb+m03B0NChQ2nSpAmvvvoqFy5csOmD/2noY4iajWUxmUxgXIQYDKw+XTWfwIjZd4sWHOsiEyXCW4/mXsw0dJe9se4ip2Izae7jwsZn+9I/zAeNTmTKhwe6SaUzS+DjomTFo91QyGTMWHmGEo2OoW39WHBfh3Kqnkk5Rby+TvwdH+3TtMob9sXEHE7GZiEIlGvJrwparZZ9+/axb98+qzgFhSUaycKiZxUeaZWhlC/UcCWyXbVYIgPQ6XRcu3aNa9euodPp0OtFl/Pr18UETIPyhCqCpyc89pj4uAoRRmONf/OF5GoFTesTI8IDcHVQkJhdVI6EWhHs5DK+uL8Tzko5J2IyWbL3ej0cZS3A2P337bdQYF1GpOyYrAmM1+rpWMt9pWobwZ5OyARRhNBazSPz9nrrs1vWzpXGQOdoFSru3Zp6YicXSMwukgyvjTDyhvZdTcPLRMD3z1MJDG7tK+kRqXV6lh2KYXznIII8HMkqVEtK1u9tijJbKLg62LFsWjezpp+yWBuZyIAF+xjxxUG+2HWNg9fSOBOfxZXkPE7FZvL1vutMW36CwZ/uk5TgPRztpK7pl4aG8VjfZqw8Hi91lS2YGGGzEbdNU+bt27d5+eWXOXjwIBEREXTo0IH58+dz61b1aeR/KowKnPuupEmR9UQDn2B3dCrplXgYmSIi2IPh7fzR62HB9ivS8y/c1ZIR4f6UaHU8/etpUcnWScnyad141sDduXg7F61Oz8Awbzo0dsPNQYFpSCMTRF2hu9v6sebpXswYFMqsP8+x4dxtZAI8NaA5i6d0KldH1Wh1zPw9ksyCEsKD3KTArDIsMhCsx0YEWlV2Ki4uZtCgQQwaNMiqbpPI+Gw0Oj2B7g40tlI9Wq3VSfpQDcUXKlBppNT03W1rJxgqKioiLCyMsLAwioqK+PJLUcXYzg5Wr65nPSFL8cILYg1o2zaIiqpwkz6h3ng42ZGer5JKo3cCHOzkjDf4lZl2ZlaFpt7OvH+PSB7/Yvc1Tt1Bpb9KMWaMKJudlQXLl1u1a9kxWRMYhfJO2lBKqS0oFTIae9ruMxZm4D6ZdltZCmvnSmMJ7NjNjEqzkE5KhaSxVrbFvn9LHxzsRB/NsRGl2f61kYmotXopMwqizVOBSsPTBu7QrcxCXJRyLibmsuaM+f0/yMORJQ9Wn96MTspl0a6rTF12gglfH2HY5we479ujzN92hX1X0lBpdPi62SMTILtIjYeTHZ9NiuDZwaEsOxQjLeSfGdhCkhGwBTYFQ97e3jz77LMcPnyYGzduMHnyZH7++WeaNm3K4MGDbT6YOxldQzxxsJORnFssMfdb+bsSEewhehhFVuxwXRYv3R2GXCaw81IK2y6KBEuZTGDhpAjaBriRnl/CEytOkV1YglwmMHtYK9bP6MOAMB+0eth3NZ3zt3JxtlcwtmMgb4xqwztj2vLy8NZM692UjIIS7vv2KHM3XiKjoIQwPxfWTe/DayPaYK+QlzuehTuvcjI2C1d7BUumdC6nOWSKyPgsdl9ORSYgaSXVNaQSWXMvq2X+L93OpbBEi7tjqfBYfePA1TRKtDpCvJxsUs6uDO7u7ri7u3PsWGlJbOFCsdpxR6J5c5EMA5Vmh5QKGSMMtf4NlXiCNRSMROqdUSkWC/FN6NyY8Z2C0Or0PL/qLDlFd46GUoWQy0uVwz//HKzsCjOOyZqiiyEYuplWUKlRbn3AyIe8WQEtoToYXeHPWOGabivCA91wtRcFES/drlznT2qxL2OT4aiU0zdUXOwbBRMBikq0bI9KZlLXYEkZo7BEy09HYpnYpTF+bvak5KnoYlhoLth+hXyVhhKNjr8jE9Hr9fQP86FtQKlwrwA81qcp4zoGmqltyARwUspxdVDgYCfD0U5OoLsDzgbebGquCp1epH3sfHEAEzo3Zsne67y/SezafGpAc14eZm5+bi1qnExv1qwZr776Kh9//DHt27f/1/KJHOzk9DKUaXaa2AZM6mpovT2ZYFFtuaWfK0/1bw6IfkZGwzsnpYIfHumKt4uS6KRc7vv2qMTYjwj2YMVj3VnzdC/6h/lgJxdIyilm/dnbfLA5mnc3XuLjrZf5cs91ThtUjjs18eDt0W3Z+Fzfcr5jRuy9nMo3+0T2/cf3dpDUXyvDol2ircKEzo1pboV3TE1w7Ka4OrSlpd7IOega4mmR4V9dwEi6HdbO32bPprJwdnYmOzubq1ezeeQRZzQa0X/s2Wdr5e3rDsYyzK+/it1lFcAo1bD1YhIqje0t2rWN8CB3woPcKNHqWHvG8gz4e+PaEeLlRGJ2Ea+tPd+gHVIWYdo0sax544aoD2UhjGMyOzsbZ+eaWd54OiulhYNxPmsItAsUb+JGc2VrYAzoTsdl1/lvrpDLJDHast1ipjBmTY7eyCjHfRtm0MLbcO42rfxK5/ZVJ+MJbuTEXa1Ls9rLD8ei0el5fWQbw2dmEOThQFqeinfWX+SJn0/xwh9n+c6gxm7MqrraK9ADK47G4eZgxx//68U9HQNp5KxEpxcDrbxiDcVqHUVqLbdziilQaXF1UHBPx0BWPNadrx/sgk6v58U/zvLpDrFK8eKQMF4d3rrC+fVKsuUi0DUKhg4fPsz06dMJCAhgypQptGvXjk2bNtXkLe9ojDRwGtaeuSUN8DERgdgrZFxLzefcLctSos8PaUlLXxfS80t4d2NpySDIw5GVT/YkwN2B66n53Pv1ETNl0a5NG/HzY905/84wVj7Zg+cN5bXRHQK4t3NjHujehLlj2nL0tcGsm96Hx/o2qzAbBLDtYhJP/3oaELvLquP/nIrN5MDVNBQygZmD6ycrlJRTJKXK+9qQ/jSWWhqKL3Qrq5A9BjkG01RzbUCrhSlTIDFRbMFeuvSOEBCuGr17i2RqmQyOH69wkx7NvPB1tSe3WMPBO0iAEZCsdVaeiLf4BufqYMeX93dCIRPYciHZ4jJbg8HZGd58UzRSq04euw5hbHhoyGCok2ERaUt2JzzIHTu5IJlZ1zWMfMqyJTBTdAz2wNVBQUZBSTly+sj2AbjYK4jNKGRyt1Kx3WM3M0nILJTa5UF0SFh5PI6xEYH0DfWmRKPDy9keAdG6w9Og8v/x1sv8dfoWw8P9eX9cO46/fhfjOgai1en55Vgcj684SXiQO4dfGcSOF/vz7th2PNqnKU/1b86zg0KZNTSMnx/rzuk3h/L5/Z3o0awRS/ZeZ9Cn+1hnqMS8NqI1zw9pWWEgpNJoeW2t5Zxmm4Kh119/nWbNmjF48GDi4uL4/PPPSU5O5tdff2XEiBG2vOU/AiPbB+CklBObUShdpG4OdowIF725VlcjzGaEvULOgokRyARRzMo00xTm58pfz/Smpa8LybnF3PftETMPGBDTmr1bePPi0DC+eagLi6d0ZuGkCD6a0J5pfZqV0w8qi2WHYnjmtzOoNDoGt/bljVFtqj3mzwxcoYldG9PEyzYjRmux9kwier2YFbLWqT6vWC2dt/5hdW9/URFWnUhArxdNca1xYbYE77wDu3eDk5No8+Ba9yLgtYOlS0V7jrFjK3xZLhMk7aoN5+6sUtm4jkE4K+XcTCuQMpaWICLYg9mGFP67G6OqVAu+IzBrFrz6qpghaiB0DREXMA3ZUdbJYCB8LTWfXCttYhzs5LQLFEuG9RHQGUnUJ2IyK9XpUipkDDf4SBpFc41wtldwTyfxujsdl2UmmPjnqQTCg9yl7BHADwdjUGl0zLsnHKVCxvnEHMmjctelFKli8spf57mRls/UXk1xslfwxf2d+P3JnrQNcCOvWMO8zdF0en8n87ddRqmQ8VifZswYHMpzd4Xy3OBQWvq5sPHcbWavPkf/+XtZsP0KhSVaOgZ78PeMPjxVRefzF7uuVSk3UBY2BUP79u1j9uzZJCYmsnnzZqZMmWKzU/E/Cc72Cik7ZKo5YuQTbDhrbqJaFToGe/CkoVz2+roLZBeW8hACPRxZ83RvujX1JK9YwyM/nuD5VZGk1dDJWavT8+7GKN7fdAm9Hh7s0YTvp3apNHtkxKFr6Ry5kYGdXODZesoK6fV6/jKcY1MlVEux7WIyJRodob4uZjXr+oJaq5OyAA8ZHJ1rC2vXqvjgg2nANL7+WlVTJ4X6Rbt21SpBGktlOy+lVGpr0RBwsVcwtqOY8jcaQVqK//VrTr+W3hSrdTy78gzF6junBFgbUKlUTJs2jWnTpqFS1ZznY2wXv5CY02DnysfVnuBGjuj1osaNtehsCKbqgzfU2t8VTyc7Cku0UvdtRRhtIEhvraBjc0p3cZ7aHpXM1F6lc9byw7EUlWh5cWiY9FxanoqfjsTS1NtZavI5FZdJ52APCkq0RCflMbZDABqdnum/nTE7f71aeLHxub58cm97gjwcKVbr2BWdymtrL9Bv/l46zN1Bqze30ey1LfT6aA8vrT4nujfkqfBzs2fR5AjWPtObjpXQP0A0UTcKMFoKm4KhI0eOMGPGDLy9G2bF3ZAw3pg3nU+SJuqezUWn3DyVhm1RlqvOvjgkTBJdfHZlpFlE7+5kxy+P92Ba76bIBFh/9jaDF+7j12NxVrcd63R6Npy7zdBF+yWD1ldHtGbePeHVqnRmFpQwe/U5AB7sEWLmV1OXiEzI5mZ6AY52cikAtQbGrMK4iMrNZusSOy+lkJ6vwsfVvpz/W01w4wY8+qgGWAGs4L777pxgwWqcPQsVtGF3DPYguJEjRWotu+8gJ3sQFxAglpkt6SA1QiYT+GxSR7xd7Lmaki8RP+9o/PWXqD0UG1vtphqNhhUrVrBixQo0mpqPySaNnPBxtUet1Vd5c69rGAMaY1eqVfsa/L7qIzMkkwlSqexolXpDXjRyVpJRUMLRMi72bQPd6GhoCHKxL+1Wzldp+O14HK393czoFF/uvsbt7CKeGtCc5j7OpOeXEOjpiIeTHRcSc2jkYk+/lt4Ulmh5ZPkJMx0kuUxgcrcmHHplEFtm9uOloWF0DPagLLVTJoiZ1acHtODnx7qzf84gxndqXCUHdNelFJ76+TQ6PWbdcdXBZs7Q1atX+f7775k3bx7vvfee2d+/Gd2bNjIIImrYHiWKw8lkAhMNJnbLD8dazCdwsJPz1QOdcFLKOXQ9nbfXXzTb18FO9A/7e0Yf2ge5k1es4c2/L9Ljw928vf4ip+Myq/ysnCI1m87fZvgXB5j5eyQ30wrwcLLjqwc68fSA6k3sdDo9s1efIzm3mBY+zsypAVvfzs6O+fPnM3/+fIsUao2ZtxHh/rhUoVVREVLziqWOCaPTcn3j12OiKe/krsHYWSkLXxkKC+HeeyE3144mTebz4YeWncs7EvfcA506webN5V4SBEES9LzTSmXhQe5ENHZHrdVbpEhtCh9Xez6bFAHAb8fjrbLraBB8+y0cPgwWeExae31XB0EQpBb7Uw3YYm/kDUXakN0xkqgvJ+dRoLI8QLT1XPZuUT1vyE4uk2gdGyu4tozm3H+cSmBgq9Jkx5K91ylWa3lxSEuzzrL3N13CXiHnw/HtEQQxSTDWcO3+dCSW7s0a0amJB9mFaqYuO8EvR83vj4Ig0DbQjefuasnfM/pw48ORXJk3nAtz7+bUm0O4MHcY62f04dURrekf5lNltzOIFYFnfjtNiVbHiHB/3h1nedrcpln6hx9+oG3btrz99tusWbOGdevWSX9///23LW9ZLbKyspg6darUvjl16lSys7Or3GfatGkIgmD217Nnzxodh0wmcF9nMfAxnQwf6tkERzs552/lcOCa5cTPdoHufHl/J2QC/H4ige8PlLcw6dBYrI/OHdMWbxcxqv/5aBz3fnOUPh/vYeqy4zy/KpL3Nl7is51XmfHbGQYs2EvEuzt4dmUkV1PycXVQMGtoGAdfHsQYC6PlZYdi2HM5FaVCxuIpnXG2MigxhVKpZM6cOcyZM6dav51itVa6UG0pkW0+L9qFdAz2qLZDri5wIy2fIzcykAnwQI8m1e9gAfR6eOop0abBx0fJkSNzeO216s/lHYtWhsB64cIKXzYGsfuvpJmVkO8EGG8Yv5+It9puoX+Yj6Tw/spf5818ne44GLv/li4VJc6rgDXXt6UwNj6cakDxRaOoYGSC9V1hAe6OBLg7oNXpOWdFR5qt57KXgTd0Oi6rytKicf7fdjG5XMfmmA6BuDooSMgsYmxEkPR8VqGa30/EE+rrKokNA2y9mMz+q2n0bO7Fi0PEMtqqkwlSBnXhjquMah/APQbi9Fvro3h93cVKLawEQcBeIcfVwQ5vF3ur7jlbLiTx7MozqLV6RncI4MsHOlm1ELUpGJo3bx4ffPABycnJnD17lsjISOnvzJkztrxltZgyZQpnz55l27ZtbNu2jbNnzzJ16tRq9xs+fDhJSUnS35YtW2p8LBM6i4PkyI0MbmWJk5mXi700AL7afc2qC2dIWz/eHNUWgI+2XmbT+fIRu1wmMK1PM469dhcrHuvOhM4imfN2TjEHr6Wz/uxtfjwcw5e7r7H5QhJxBl+fxp6OPDc4lEMvD2bmXS1xdbBspREZn8UnBlPXd8a0pU098m52XEohr1hDkIejTarT6w0aNfc0UFZopUENdVAr31orKy5ZInaky+Xw55+iI/0/Gs89J9qy798Pp0+Xe7m1vxut/V0p0eoqXME2JMZEBOJqryAuo7DKVXhleOnuMDo18SCvWMOzv0fWyLiyTjFsmMjxysuDH36o9483dpSdis20yeOrNtDa3w17heiVZov4ohRM2VBmsxYtfJzxc7NHpdFVac3RrWkj/Nwq7th0VMq5t7O4AN0WlUzbgNLOjK/33aBYreX5IWEoTMpU76y/SLFay7ODQrm7rR8lWh27o1N5rE9TAOZtjqZncy9eHdEaQRAXEZO+O1prXKrcYjXvbozi2ZVn0Oj03NMxkM8nd8ROLrNqsWFTMJSVlcXEiRNt2dUmREdHs23bNpYuXUqvXr3o1asXP/zwA5s2beLKlStV7mtvb4+/v7/016hRzdusgxs50au5F3q92PFkxJP9m6NUyDgVl2W1gu6jfZrykCGYem5lJD8fja1wO4VcxoAwHz6b1JFTbw7ll8e7s3BiBG+MbMNTA5rzQPdgXhneml8f70HkW0M59MpgXrq7Fe5OlqdbcwrVPPd7JBqdnlHtA5jSvebZDa1Wy8mTJzl58mS1EvNG4vSEzkFW6wPFZRRwNiEbmQCj6sk7zRTFaq2UMXywZ+1khQ4dKtXCmz8f+vfXkZiYSGJiYo2tDxoMjRvD5Mni40qyQ8asoLXlqLqGk1LB+M5GInWc1fvbyWV8eX8n3BwUnEvI5tMdVc9hDQZBEDvLAL74QvQtqwQ6Xe2PyTYBbjjayckt1nA9zfKuoNqEUiGTvNLO2MIbMpKoreANWTNXmkIQBEm0dNO5ykuwcpkg8TDLdpVBaeZzV3Qq88aHS8+n5alYfSqBZt7OTDcoUMsEiM0o5PsDNyXx4BY+ziTnFnM+MYdHDYbgr627gJ+bPcse6YqrvYKzCdlM+PoIz/x6mhs2/rZ6vZ51kbcY/KnIhdXpRfmLhZM6opDLSMkt5omfT1r8fjYFQxMnTmTHjh227GoTjh49iru7Oz169JCe69mzJ+7u7hw5cqTKffft24evry9hYWE8+eSTpKZWTchUqVTk5uaa/VUE04namAXyc3NgsqGzbPEe6/yIBEFg7th2NPN2Rg+8vT6KB384Rl4VLZ2OSjn9Wvpwb5fGPNm/Oa+NaMNHEzrwzMAW9G3pjaez9enq1LxiHvjhGLeyighu5MhH97avFQJycXEx3bt3p3v37lVKzCfnFHPwmtgSb1yhWANjVqhPqHedmaJWhdWnb5FTpCbIw5EBYb7V71ANbt+GiRNBoxFjhxdfFK0PGjduTOPGjWtsfdCgMJZh/vxTbLcvg3s6BaGQCZy7lXPHtaMbbxg7olJIzbPcXsaI4EZOLJgo8oe+P3CTPZcrFqFscDz4IPj5wa1b4u9UCepiTNrJZZKS853QYl8T3tCZ+CyLqwWWzpUVwdiJueNSikWlsp2XUsp1QIf5udI1xBOtTs/ey2lm6v1f7rmOSqNlxuBQQn1dMCbsluy9Tkx6Aa4Odnz/sBjwnIrNokit5aEeTdDr4cU/znHsZiZbnu/LxC6NkQlime3uRQd4Zc159l1JtagbO7OghPVnE5n83TFe/OMc6fkqmns788vj3floQnvkMoGsghKmLjtOYpbl58+mYCg0NJS33nqLadOmsXDhQr788kuzv9pGcnIyvr7lbyy+vr4kJ1fucD1ixAh+++039uzZw8KFCzl58iSDBw+usvXzo48+knhJ7u7uBAdXLJY3or0/zko58ZmFZpojTw1ojkImcOh6utVpQIVcxq9PdJcY9YdvZNDzw91svXC7XpRrY9ILuPebI1xKysXbRcn3U7viZmFZrbawLjIRnV5MkRvl8C2FXq/n77Nipm5cx/qvIxWrtXxtMOX8X//myG1UvX7nHdi6VXSgv+8+SE4WqxWmwooKhQKFwnYO1x2BTp1g0CBRQbKCecPbxZ5BBif7Oy071NrfjS4hnmh0ev44YZuQ4rB2/kwzrJxn/XmOpDp2OLcJ9val0uYLF4rktUpQF2PSqDxf1kKiPlEqvpht9b5tA8QyW5aNZTZr0bmJJ0EeYoPP3suVL/w7BXvg7+ZAYYm2wkD88b7NALEh6NP7OkjPp+WpWHP6FvYKOZ/c20Gaj1QaHc/8epqiEi0tfFxYNLkjgiDyh0q0Oh41lMy+P3CT534/y8y7WrL1+f7c1doXrU7PH6cSmLb8JBHv7eChpcf5dv8N1py+xV+nb7H2zC3+jkzks51XGbfkMF3m7eT5VWc5EZuJg52MOcNasfWFfpJ/aHRSLvd/f4yrKfn4ulqeELApGPr+++9xcXFh//79LF68mEWLFkl/n3/+ucXvM3fu3HIE57J/p06dAqgwO6HX66vMWkyePJlRo0YRHh7OmDFj2Lp1K1evXmVzBR0sRrz22mvk5ORIfwkJFU90TspSzZEfDpaSnht7OkmcImuzQwBBHk6MM+G6FJRoeea3SB7/6RS3s+tusjx/K5v7vjlCQmYRIV5O/PVM73rlCYFRm0fMENiSFYq6ncvNtAKUCpmZQFh9YdWJeJJyiglwd7BZcbqgQKxIjB4txglHj4KHB/z9N7gYFmjOzs6o1WrUanWNrQ8aHEZjta1bK2yzn2jIwK49k1ipmFxDYapBP2rliXir5S6MeG1ka9oHuZNdqGbm75E2v0+d4plnxMH4+uuVBkN1NSYHthKD4YNX0xvs9zfyfq4k51rVFQbmZbb6aLEXBIHREZWXwEy3u9swR369r7wez7B2/rQJcCNfpWHbpRQ6GzJ0IHqQ5Rar6RLiySO9mgJiuexych5v/i12RA9p68eC+0Rh4T9PiRpBS6aIpeGzCdmM+vIgMekFLJvWjT+f6sX93YIJdHegRKPj0PV0Pt56mdmrz/HS6nPM+vMcL/xxli93X+NcQjZ6vair9NSA5uyaNYAZg0KxV8jRaHUs2XudsYsPcSUlT1zQP9zV4nNnUzAUExNT6d/Nm+W7oSrDs88+S3R0dJV/4eHh+Pv7k1KBl1FaWhp+fpbf9AICAggJCeHatWuVbmNvb4+bm5vZH1Dhhfi//s2RCbDncqqZO/EzA0Ol5y8mWq+R8Vif5uWe23MllUGf7mPZoZhKnYltxe7oFO7//hgZBuf6NU/3bpAurNWnbhGXUYiXs9LijjdTGNuwh7TxtZgoXlsoVmtZYphUZgwKrbYFtDKsWiU27uh0YiAE8NNPEBpaSwd6p2H4cFHP5uxZ0aajDAa19sXLWUl6vor9V9LK79+AGNHeHy9nJUk5xeyyUQ/JXiFn8ZROuNgrOBmbJSm931Hw8oI9e8Q0ZQW/UV2iQ5A73i5K8lSaBiuV+bk5EOjugE6PTZpHpeKL2bV8ZBXDKEuxOzqV/CqCNyNvKOp2rmSIbYRMJjDLILL40+FYFtxbmh3KLlQz39BcM2dYK4I8HKVy2V9nbvG7IVN6X5fGLJnSGTu5wObzSaw5fYt103vTqYkHucUanv71NFOXHUej0/HRhPYcfnUwu2YN4J0xbRkR7s+AMB/6h/nQr6U3/Vp6MyYikPn3deD463ex7YX+vDaiDY09RbHnm2n5TPzuKAu2X0Gt1TO0rR9bn+9PqK/l0vwW5zRnzZrF+++/j7OzM7OMpLoKIAgCCyshRJaFt7e3RcKNvXr1IicnhxMnTtDdYMt9/PhxcnJy6N27t2VfAMjIyCAhIYGAAOtF/A5dS2dcdw+z55p5OzOqQyAbz93mm303WDyls/T8mIhA1p+9zVd7rvHdVMujU4D2jd3p3MSj3MWj0uhYevAmA8K8rfqRK8Pl5Fw+2XqZvYabTN9Qb76d2sVqXZ/aQLFayxe7xRvBjEGhVrfxF5ZopFKKaUtofeHXY3Gk5akI8nCUFMmthV4PX39d/vmFC0Vbr2qEm/+ZkMlgwoRKX7aTy7inUxDLDsWw5vQthtSigGVNYa+QM7lbMF/vu8Evx2IZbtBvsRYhXs58cm8HZqw8w9f7btCtaSOpPPj/HTKZwIAwX/46c4u9l1Ml24n6RqcQT26fT+JMfJbk/m4pjJkla0jUNUG7QDeaeztzM72AXZdSuKdTxfNh+6DSzP8zv53h8CuDcTSx4RjSxpeIxu6cu5XD7ycTGNUhgM3nRWL2b8fiGd+pMV1CPPloQnse/vGEtN/cDVG0C3QjItiDEe0DWGqv4KlfTrH3ShqFJVq+n9qFpYdiWHowhoPX0jl4LZ2IYA+eGdCCu9v6EerrwqN9mlX7PbU6PUdupLMuMpHN55NQaXS42iuYO7YdEzoHIQgCGVb4wlkc5kdGRqI2dBOYttJX9FfbaNOmDcOHD+fJJ5/k2LFjHDt2jCeffJLRo0fTqlWpEGDr1q1Zt24dAPn5+cyePZujR48SGxvLvn37GDNmDN7e3owfP97qY9hwLrHC542s+s0Xkrhpwop/dpCYHdoelSIRgq3BtAoGgwAk5RQz8stDfLr9Csk51hM3QTRAnbP6HCO+OMjeK6L56qN9mvLjtG4NEggB/HI0jpRcFYHuDjZ1Ya08Hk9mQQkhXk4MaVO/N5LCEo0k/f7c4FCUCttWzydPQkXKFAcPwpw5pf9XqVTMmDGDGTNm1Ir1wR0DjaZCIrWxWWH35RQyC+48zSGZAIevZ3A91faOp1EdAnjYYIHw4p9n67QkbjOysuDjj+GNN8q9VJdjclBrcRWwpwoOTF2jVHwx2+p9jZmhq6l5Vnuc2QKxVCZmh6qSpTC1YcosKOHt9RfLvY/RguPnY3HMubuVxGfVA6+tPY9aq6N/mA8PdBcXgAqZQIlWx/TfzpBluFYHhPnw82M9cLVXcDwmk5FfHqJrSCP2zR7I1J4h2CtknEvI5ulfT9P3kz3MWHmG7/bf4OiNDPKK1ej1eopKtKTkFnM1JY8jN9J5b+Mlen60m6nLTrD2TCIqjY6+od5sf7E/93ZpjCAIpOQW89hyy7vJBH19MHNrAZmZmcycOZMNGzYAMHbsWBYvXoyHh4e0jSAILF++nGnTplFUVMQ999xDZGQk2dnZBAQEMGjQIN5///1KSdEVITc3F3d3d5q/tIbT743Bw6k8Ievxn06y+3Iqk7o2Zv59EdLzczdEif4tXk5se6G/VaUTtVZH30/2kJKrQiET+HBCe9oHufPexktmMuodGrszpI0fQ9v60drftUIOlVanJzoplxMxmZyMzWTP5VRUBm2TUe0DmD2sFc2sJCtbi4KCAlwMpJf8/HwzXkFesZr+8/eSVahm/r0dmGQl36ZYraXf/L2k5an45N72Zq7L9YHv9t/go62XCW7kyJ6XBtqsOD11qqglZApXV/jkE1Fw0VihqOpc/mNx/DhMmgTe3nDqVClT3IDRXx3kYmIu74xpa9GqsT7xxIpT7IpOYVrvpswda7tRnEqj5b5vjnIhMYfOTTz446letaZeXis4dAj69RNJ1XFxYpeZAXU5JnOK1HR+fydanZ4DcwbVm1G0Kc7EZzHh6yN4OSs59eYQqzts+8/fS3xmISse686AsKpTvLVxLq+n5jHkswPYyQVOvjGkwvsWQLNXN2MaAHz1QCczioJer+feb45wJj6biV0a09TLiQU7Sku5c4a1YsagUIrVWqb8cIwz8dkoZAIanZ4+oV4se6SbdN+Lup3DzN8juZEmEsnHdwrinTFtUWv1/HQkhp+PxpFXXL6sp1TIKtXi8nCyY3SHAO7pGESXEE/pdzl6I4Pnfj9DakY2CZ9PIicnR6K8VIZ/TDtKo0aN+LXsnaIMTOM6R0dHtm/fXmufr9bq2HQ+qULTzemDQtl9OZW1ZxJ5fkiYJLT30t1hbLmQRGxGId/uv8ELQ8LK7VsZ7OQyHuoRwg8Hb/Lt1C5Senjlkz3YHpXC9wduEJmQzflbOZy/lcNnO6/i62pPI2cljko5jnbin0qj42xCdrnacfemjXh1ZGtp1VLXsLOz45133pEem2LpwRiyCtW08HGWyOfW4I+TCVKJanwn64nXNUG+qjQrNHNwS5tvXunpsHKl+XMjR4qOCGVj96rO5T8WLVpAWpqYGdq/HwYONHt5YpdgLiZGsfrUrTsuGJraK4Rd0Sn8dfoWLw9vhZPStmnVXiFnyZTOjPzyIGfis3l3QxTzxrev5aOtAfr0gR49xMB1yRIwsV6qyzHp7mhH1xBPjsdksudySoVZ87pGu0A3lHIZGQUlJGQWWR2Q9WzeiPjMQvZdSa02GKqNcxnq60qbADeik3LZdjGZ+yvRirO3k1GsLg00XvvrPBGNPaTvJwgCs+9uxZSlx1l9+hYbZvRh2aEYMgvFDNcXu64xqn0ATb2d+XZqF+5ZfJjbOcVStvTJn0/xw8NdcbCT0y7Qnc0z+7Fo11V+OHCTdZGJHLqezvvjwpl9dyumDwwlMj6b84nZXDDc1xKzi6RASCaIY8HN0Y72Qe7c0zGI/mE+Zpn4vGI1Px6K5YvdV9HpIczPBUt7Pf8xmaGGgjEzFPzCn3RtGcja6X0q3O7+749y7GZmudXhpvO3eXZlJEq5jO0v9rcqA5OeryK7UE2oic6DKdLyVOy5nMLOSykcvJYuZXsqgqu9gi5NPenWtBE9m3vRuYlHgxiYlkVGvor+8/dSUKLl6wc7W23KqtJoGbhgH0k5xbx/T7jU4VNfWLL3Ogu2X6GZtzM7X+xfrfFtZbjnHli/Xnzs6grffANTppRLkPy7MX26+MVHjYJNm8xeyioooceHuynR6tg8sy/tAt0b6CDLQ6fTM3jhPmIzCvlwfHtJg8hWbLuYzNO/iqrczw4KZXYNPAFrHatXixk8Ly8xcHWqnyyNMfvaP8yHnx/rXi+fWRbjvz5MZHw2X9zf0Wrpju1RyTz1y2mCGzlyYM6gepl7v953nfnbrtAn1IvfnqjYhqrD3O3klsnGRAR7sPqpXlKQodfr6TpvFxkFJbg5KFj6cFcmfX9M2r53Cy9+e6IHgiBwMTGHid8epUitlTJEvVt4sfSRrmaLhMj4LGavPidliVr4OPNA9yZM6NyYRib6eBn5KorUWtwd7UTz2ErOW0JmIcsPx/LnqQRp4T+hUxCv3BWCv08jizJDd1AO9s6GTBC7ASrjBcwYJLb7rDoZb+ZmPap9AP1aelOi1ZUzYq0O3i72lQZCIBo/Tu7WhKWPdCPy7aH89Uwvfnm8O99N7cIX93fk4wnt+XhCezbP7MvZd+7mp0e7M2NQqFk6saHx9b4bFJRoCQ9yY3g76wmof51OJCmnGF9Xe6kNu76Qka+SvOSev6ulzYHQtm2lgVCnTqIz/YMP/j8LhEBUlBQE0bz1krmru6ezkiFtRS7Y6lN3luaQTCZIGeOfj1pu1FwZhof7S6abi/de54VVkRaJ0dULxo+HZs0gIwNWrKi3jx1sIJQfu5lBYYl17e21hU7BYhbdlhb5fi29USpkJGQWca0G3DJrYOwqO3ojo1JhUKWiPHXjXEK2mQOCIAgMNVx7ucUaXll7nqEmvMwjNzJYbWheCQ9yl8yINTo9SrnAkRsZTPvxpFl1olMTTzbP7Mf0gS1wUsq5kVYg2nZ8uJuZv0dy6Fo6GfkqGjkraezphKuDndk9S6fTk5RTxL4rqTz9y2kGLNjLj4djyFdpCPV1YdHkCBZOijAjhFeH/4IhC9HfkNpcerBi6YC+od50aOxOsVpnto0gCLw/LhylQsbBa+lsPF83TtVOSgVdQhrRr6UPw9r5M65jEPd3b8L93ZvQLtDdZgHA2oJOpyMqKoqoqChJrv92dhG/GNzd5wxrbbX1hlqr4+t9opbTUwNa2NzObis+2XaZnCI1bQLcbJICALh8WexYBrjrLtGmq7quMb1eT3Z2NtnZ1ptH3tFo2VJMkQF89lm5l41demvP3KpSXbchcF+XxtgrZFxOzqsVPZkv7u+I8Wr4++xtRn11kEu3K1bDr1coFKXeMIsWiYKZ1P2YDPV1obGnIyUaHYevW+8HVxvo0VwUgNx/Nc3q7+ikVNDHEODuvFS12nhFc6UtCG7kRMdgD3R62HqhYnFi+wqaPb5+sJMkumjE4Nal/LCY9EJuZRXibF8637657qIkIzOifYBk2qrVg4NCxonYTB5edtyMQO5gJ+fl4a058cYQPhwvcmJLtDo2nLvNQ8uO02XeLtq9s53hnx/giRWneOvvizz9y2mGf36Atu9so9dHe5i2/CTbopLR6cWA86dHu7Hjhf6M79TY6gX/f8GQhTAqaK49k0hqbvkoWxAEpg8Us0NLD8aQYZIdaurtzAzDa+9vulQvHQV3GoqKiggPDyc8PFyS6/90xxVKNDp6NGtE/5bWt8yuP3ubW1lFeLsoa8U/zRqcis3kT0OGYt494TYFm5mZMGaMKLTYs6eYELHk+i0sLMTT0xNPT08KC+9g13NbYBRh/OUXUXrbBP1a+hDk4UhusUZq8b1T4OGklMRSjQF+TeDj6kAfk2viZloB9yw5zLJDMQ1mWirh0UfB0xOuXQNDQ0tdj0lBEKTsUEN1lfUN9UYplxGXUchNG9SkjbIQu6KrDoYqmittxVjDIs2ozF8WwY0ceaxPM9ZO781wgwjjgavp5QKJVv7mUi7RyfkEuDlI/y/R6nji51NSVWTmXaGM7xSEVqenWKPDXiHjTHw2U344RmyZc+dir2BKjyZsfK4vG5/tywPdmxDg7oAgQGGJlsvJeeyKTuGXY3Fsi0rmcnIexWodCplAM29nHugezPYX+vPL4z0Y2MrX6kW1Ef8FQxaiS0gjuoR4UqLVsexwTIXb3N3WD1cHBRqdnsnfHzNbPTw9sDnNvZ1Jy1OxYNsdasxYj9hyIYm1ZxIRBHhlRGuro3itTi9ZXzzRr7lV6dCaQqPV8ebfYhvq/d2CJf8ha6BWi55j169DSIhYJrOvfyu1Ow+9e0OvXlBSIspum0AuE6QW3pUnyrfgNzSm9mwKiGPbFr+ysigb4Jdodby/6RKP/nSStLwGlFRwcYGZM+Ghh6BV/fGZjNpLe6+kNkhG1NleIWWHqrK6qAx3GbIrZxOy6+33Gx0RgJ1cEInJt7LLvf77kz15e0xbOjfx5Il+otjv2shEM6oHQLCnEw525uHC9bQCvJxLCd7JOcVM/+0Maq0OQRD4dGIEjxjkIlQaHQ4KGRcTcxnxxUF+PRZX4W/YvrE7H01oz9HX7iL6veHsfmkAPz3ajffHtWP6wBa8Pbotyx/txr7ZA4l+fzh7Zw/kowkdygVrtuC/YMgKPD1A1BRaeSy+wuyOTCYwtI044K+n5vPSn+ekH9xeIef9e0QH4F+OxbHlwp21sq1P3M4u4tW/zgPwzIAWNnW0bTp/m5vpBXg42VXY4VeX+OlILJeT8/B0suOV4a2t3l+vF+8le/aAs7O4uK7Aeq9SODk5UVJSQklJCU71RGCtV3z2GRw7Bk8/Xe6lSV2DUcgETsdlcSX5zjJvbd/YnU5NPFBr9aw8XvNgbXBrX1wr0P3afzXNav5hrWPuXDF717YtUD9jsldzL+wVMpJziolOapjfflAr27NT/u4OtA9yR6+3LZiyBb6uDow2cIeWHSq/iDddhHYJ8SQi2IMSjY5fy2Q3ZTKBML/yAUdGgdqs1HYiJpP3Nop8P7lMNB+fY2gAKNbo8HGxp0it5c2/L/LoTycrrLIY4WAnp4WPCwNb+TK1V1NeHt6ax/o2Y1ArX5p6O9e67MR/wZAVuKu1Ly19XchTafjtWMWTXX+Ttsm1kYkSpwVEJ/Un+4m12Nmrz91xTtz1hVfWnCe3WEPHYA9J1MsaqDRavtwtWqo81qdZvQpFJucUs8hgmfDqiNZ4Oles31EVPv9cbJkXBPjtN+jQodpdzCAIAnZ2dtjZ2d0xRPhaRc+eYgt3BfB1c2CIYcGx8njNy1G1DaPx6m/H4yvVRrEUDnZyRrQv31TwWN+mfPVApzvqt6+PMelgJ6e9wefrrzO2mePWFMZS3YmYTPJsoDsYx+7OakpltQkj/2fz+aQqhXoFQZC2/eVoXDk5loqCoQmdg9j9Un/kJj/5L8fi+N2QuRUEgRmDQpl/bwfkMoG0fBWhPs7YyQX2XUljwIJ9/FYLZeXawH/BkIWISswhPl7gKUN26MfDMRWSOEPK6E8s2H7VbJX4yvDW9G7hRWGJlv/9fIqcov9//KFTcVm42Cv48v5ONkX3X++9wY20AryclTxiuPnUF97ffImCEi2dm3gwsYv1thsbNsBLL4mPFyyAceNq+QD/bUhPF5WpTWBsXV8bmXjndFkZMCI8AF9Xe9LyVGy9WPPsr6mVgjHGuJ1V3OANERIuXYLHHxf5Q/UAoxL0qpMJte7RaAmaejvT3NsZjU7PoWvpVu9v7Ig8eC2t3poAwoPc6d6sERqd3qxLrCKMCPenmbczGQUlLNlrbjTeyhAM+braS0bYO6NSUMjkLJ/WzWzbt/6+yCkTL7lJ3YL57qEu2CtkXE8rwNvFngB3B4rUWt74+yJt397GsyvPcOl2Tq1lPFNyi/n+QHkT2srwXzBkIe4eqaVVKz1dvAMJcHcgLU/FusjypLSKdIReX3dBInwq5DK+eqATQR6OxGYU8uIfZxueENkAmHdPuE1KspeTc6WL9N1x7XB3rD/RwQNX09h8PgmZAO/fE241Ue/MGXjgAbFM9tRTUIXFX5UoKSlhzpw5zJkzh5KSO8ueolbx1lvQpAkYLHaM6BvqTZNGTuQVa6p05m4IKBUyqWy7/HBsjd+vZzMv/N0c6NzEgx+mdsVOLrAtKpmlByvmLdY7Xn4ZfvyRkgUL6mVMRhiCoQKVliV76ycAK4tBNSBytw1wI9DdgWK1jiM3rA+mbIUx47PyRHyVCwg7uYzXR7YBYNnBGBIyS8nwnUM8eHNUGw68PIivH+xCRLAHeSoNb/59gX5hPswYVGowrtHpefLnU0QnlXZADmnrx8one+Dv5kBSTjFJOcX4G0jYhSVaNp1PYuSXh+j03k7eXHeB03GZVge8Gq2OXZdSeGLFKXp/vIcvd1+vficD/guGLESJGkpKBBYtLE0lfn/gZrkfy8NJWeEN+oU/IjlwVfQo83Kx59uHuqBUyNhzOZWFd6JTdS3DNAM2NiKwUvPAqqDR6nh5zXk0OtGVeJSVAo01gUqj5Z0NUQA80rup1aJ/t26JnWOFhTB0KHz1le06Qmq1mk8//ZRPP/1U8gv8V0Img6IiMYVmslqUyQTuNxKpa4GbU9t4oHsTlHIZZxOyiYyvWZu9TCbw+f0d+eOpXgxp68fbo0WOzsfbLnP0RsO0mJvB0P2n/vnnehmTHo6lZekvd18nxoaurppisAmR29qFrCAI3GUslV2qv664IW38aNLIiexCNX+dqVqna0gbX/qEelGi1fHR1mjp+S4hjXiiX3Mc7OTIZQIL7uuAnVxgV3Qq68/eZs6wNgxuXUoTySpUM/m7o5yOyzR7j10vDeDxvs2QCZCcW4xdmUVldpGaX4/Hc+83R2k/dzsv/hHJ9dR81FrzsrNerye3WM3VlDz2XUll4Y4r9PlkD0/8LNrjaHV6OjfxsPgc/RcMWQi3HmK67Zvv9AwKboK7ox0x6QXsiCqv39C0guxQkIejWVq0fWN3PjJI7S/Ze50fKyC3/Vug1+t5b8sV3LpPIKj/JN4dbyVJxoDlh2M5fysHVwcF8+4Jr1fOxFeGidfX1Z5ZVvKc8vLEQOj2bWjXThTxrYljgZ2dHbNnz2b27Nn/HjuOijBjBjg4iA62Bw+avTSxi0ikPpuQfWfo75jAx9We0RFioL7iSGyN369ncy+pnPxQzxAmGFqWn/v9DEk5DWzoOmAAdO2KnUrF7F696nxMakx0dzQ6PXNWn6v3clm3po1wsVeQnl/CBYO2jjUwttjvjk6pMJiqi+tbLhMkPtvyw1XLMwiCwFuj2yITYMuFZI7frDjoDvNz5bnBLQF4de15LtzKYdkj3WjmXZrxzy3W8NDSE+y/WmpW7mKv4K3RbdnwbF8igj1QV3EshSVa1kXeZshn+2nz1jYGL9zHA98fY8hn+wl/Zzsd5u7g7kUHmLb8JF/tuU5KrgpPJzue6NuMnx7tRlMvyx0f/guGLIRDcCb2gVloSmS8MlclOUx/u/9GuRpnM5Pyj5eBYOtsr5BWFEbc26UxdxsujPc2XeK9jVFotDUjXd6JWHowhm2X0vG563E2/fodXm7WGw/Gphfw6Q5RkuDNUW3wM9G4qGuciMmUiPBzx7bD1cHyCUqtFkUVz54VO8Y2bQL3GjpJKJVKFixYwIIFC1AqrSdw/2Pg6wuPPCI+fv99s5d8XO0ZZlAs//0ObLN/tLeBtHohqcqOGWshCAIfjG9PmwA30vNLmP7bmRoTtWt4QDBnDkpgQVQUC959t07HpEZrPteeisvip1oIOK2BUiGjn0EDypZSWc/mjXBWyknNU3Hxdvlgqq6u70ndgnG1V3AjrYD919Kq3La1vxsPGKQd3tt0qdKAc/rAFgwI86FYrePxFSdJyilm6/P9sTNhVBeptTz+00k2lSlphwe5s/aZ3rx/T3ilTTChvs60D3LHSSlHo9NzM62AozczuJ6aT4Gh3OfuaEdrf1fubuvHZ5MiWDylE8m5xTz200nWVkBlqQz/BUMWQhDAvbdYo1670p4OXr7YK2Scu5Vj5iIPEOLlTP8wH/74X0+2vdAPNwcFUbdzy7UrgugSbPSA+fFwLKO+OlSp5cc/EcsOxfDBFjHVOmdYKzoaav7WQKfT88pf51FpdPQJ9ZKUiOsDOUVqkdelF1WGrfFOM3KDduwQLZw2b4amTevuWP+VMBKrdu2Co0fNXjISqf+OTGwwi4bK0L6xO11CPFFr9fxWy6U8R6Wcbx/qjJuDgsj4bN7fdKn6neoSEyaAtzfk5pqZt9YFNBUoMi/Yfrney2WmmkfWwl4hl7qOd1WjRl2bcLFXMLmbOHdaUomYNTQMV3vx3lVZaU0hl7F4Sida+bmSmqfi8RWn0Oj0fFDGYFij0/Pcykh+K9MBKpcJTO0Zwp7ZA5jUtbydUlJ2Mc19nPlfv+a8dHcYzw4K5ZmBzflwfDgrn+zBike78dzgUNoEuBGTXsDs1ed4cOkJNp1PQqeHAWGWi/n+FwxZAYfmaSj9s9GrFXz2mSDdlL/ZZ85Ynz6oBT8/1p0ezb3wcXVgjkGLZsH2K+UCHXs7OdN6NZX+fyU5jxFfHGDpwZv/eGL1skMx0kQ9fUBz7m4iIzY21mqJ+d9PxnM8JhNHOzkfje9Qb+UxvV7PG+sukJhdRIiXk5kBryV47z1Yvlykvvz5J3TtWnvHpVarUavV/y47jooQFib+geiLVVyaZenV3IumXk7kqTRsPHdnEamhVLX+t+PxqDS12zkU4uXM5/d3BMRW5r9ON6Bfm0KBfuJE1IB6wQL0V+pOVFZTwZxYrNbVe7lsYCsxmDl/K8cmgc3SFvvywZROpyM2NtamubI6PNK7KTIBDl5Lr1any8vFnpl3iWWwBduvlGu1N8LVwY5l07ri7WJPdFIuM3+PZFxEIL6u5iqyeuCNdRf5cMulcvOWr6sD8++L4L2xIidOJohdawUlWtafvc3nu6+xcMdVFu+9zjf7bvL6uotM+eE4jyw/ybzN0ayLTORaaj46vejpOa5jIFtm9mPJg10sPjf/BUNWoFeLRsx6WRwQhzZ4MDG8OQqZwMFr6WYrBPsy5ndTujehZ/NGFJRoefrX0+UG1TTDpGmEWqtn3uZo7v/hGPEZ/0y7BdNA6NlBoUzvF0zz5s1p1qyZVRLzSTlFfLTlMgCzh7WyqQPNVvx1JpFN55NQyAS+uL+TVXpGy5eLunRQasReWygsLESpVKJUKv99dhwVwehXlpICkydLflgymSCl8u9EIvWwdv74uzmQnq+qE5HVwa39eN5ws3p93QWiKii51BcKH34YJaDU6SgcPhxS64YcXLZMBtAuyI1+LX0qvVnXBXxdHehg0Dzad6XqklNFGNTaF5kA0Um5JGabz4dFRUU0a9bM6rnSEgQ3cpLKy8srcVIwxSO9m9LUy4m0PJWk+F8RGns6sfSRrtgbmoI+3naZqZWI4X5/IIahiw6Us+UAmNqrKeM7BfH6yDYce+0u/nqmNzMHh/JA9yaMCPenR7NGhPm54ONqj51cIMjDkWHt/HhpaBg/TuvKidfv4tSbQ/ji/k60Dazapb4s/guGLMTmmX1Z9b9efPiCNxERkJ8Pq1c4Sau/9zZeqnT1J5cJfPVAZ/zdHLiems8ra86bRcaBHo5mYo1GnIjJZNSXB83aG/8J+NEkEJoxqAUv3R1mUzZHp9Pz2toL5Ks0dGriIREA6wOx6QW8s1603HhxaJhV5b1t2+DJJ8XHr78O//tfHRzg/yfcdVfp4w0b4Pnnpe6y+7o0xk4ucO5WjmQUeafATi5jqoFbuHjP9TrJ4j1/V0sGtfJBpdHx9K+nyS5sIKmFMJOmgthYGD1anCRrGWqtDld7BaPaB0ht2Y/0bMrzQ1rWq8wGmKhRV5DdqQ6NnJWSjc/uehRghNI2+7WRiWYemhVBqShttV96KKbKe1HHYA8+m9QREJtd5DLBjDtkiuup+Qz7/ADfH7hhxpMVBIGPJrTnsT7NkMkEuoR4MuvuVnw0oT3fPNSFP57qxY4XB3DyjSFc+2Akh18dzHdTu/LcXS0Z3NoP3xpwSf8LhixEiIGVLgii/AnAl1/Cw11a4uNqT0x6QYVy50b4uNqz5MHO2MkFNl9IKqcTcn+3inkw0/o0JbjRP8dy4cdDMbxnEgjNvruVzWWtj7ddZt+VNJRymaRgWh9Qa3U8/8dZCkq09GjWSLJhsQTHj8O994rJi4cegnnzav/4nJycyMrKIisr699px1EWZYlWS5bAxx8DYip/eLjI4/rl6J2hZGuK+7sFIxPgRlpBrYgwloVMJrBockeCGzmSkFnEc79HNkgThpOnJ1n+/mQBTiB2AE6aJHYQ1CLubufPmbeHsuTBzjzUU8wKNpTWlLEh5tD1dJtI7FKprB55Q2Cw3WjsTolGZxGfbWhbP3q38KJEY95qXxFGdQiQ7DcW7rxapdWSSqPjwy2XGf/1EbOOUAc7uc1mqzXBf8GQDRg/XmyRzs2FH7+z41UDJ2jxnutVyp13CfGsVCdkSBs/GplYO7g5iCWZJXuv35HdMmWh0+lZsvd6rQVCvx2P4/sDNwFYMLEDLSuQgq8rfLHrGucSsnFzULBockeLg7DoaBg5UtQSGjYMli2zXUuoKgiCgIeHBx4eHneUJUOdIaSCdPvrr8NPPwFIZpB/n01suMxIJfBysSfUxwWAOWvO18nxeTgp+e6hrjjayTl4LZ2Pt16u9c+oDoIg4NGiBR6ANCK3bhVTpLWYEXN3tJNkBsYYHNkPX09vEOPa9kHueLvYk6/ScNJEbdlSGFvsj93MIKew/vTCBEHgMUN26MfDMdW6IJRtta+Onzd9YAvu69IYrU7PGROdrWcGtmDOsPKyJBcScxi7+BALtl9uUEX5/4IhC2FKzpPJSrNDCxdCr4AguoR4Ulii5cMtVUfOD/UMYUJnUSfk2ZWlOiFKhYzxBiHCezoGcuTVu3igexN0enht7QWm/3a6YZ2qq0BCZiFTlh5jwXaROFnTQEg0ohQFDl8cEsa4jtYLNNqKYzczWGJoo/9oQgcCPRwt2i8hQQyAMjOhe3dYswb+zV3v9Qp7ewgMLP/8E0/A1q10CfGkbYAbKo2OP042jGdVVejXUiyBF6i0PPbTyTpphW8b6ManEyMAsZzRIITqilolV6yAN9+sk48L8XImorE7Oj11knWrDjKZIBGpbWmxb+HjQmt/V9RaPRvOWd4CXhsY1T6AUF8XsgvVZv6ZlaFNgBvTB4YC4v0oLqPy7j1BEPhwfHuGtPFFbeB4jY0I4OVhrZgxqCU/PdoNBzvz0EOj07Nk7w26f7CL19ae51RsZr03h/wXDFmILRfMo+GJE6FbN1FQ7+23Bd4d2w5BgA3nblcqUgWlA6VtgBsZBaJOiJFrNLlbMG+PbsuiyR1xcVDw4fhwZg0NQyET2HIhmaGL9rP2zK07poNIr9fz58kERnxxkGM3M3FSyvlgfHiNAqEryXnM+O0MWp2eCZ2CmHlXaC0fdeVIyS3m+VWR6PUwqWtjRnWwrI0+I0MMhBISoFUrsYXexaXujrOkpIS5c+cyd+7cf7cdhykqutFGRIBKhSCUCsr9ciyuQTyrqkKH4FJhqTPx2by29kKdXMOjOgTw3GDDDWvdBc4mZNf6Z1SGkpIS5sbHMxcwG5GBgaKwlqZuyM3G7NCGsw1bKrPVhd7YkfznqfoNXhVyGa+NECsayw/Hciurel7qC0Na0q2pJ/kqDc/9HlllUK9UyPj2oS6SHt+Gc0m8tf4iGq2Oga18iXzrbga3Ks+TzVNp+P1EAvd9e5TBC/ezeM+1cgRzaxCXabnkgqC/U+6sdyhyc3Nxd3en7/ub2PvaCBQmxqJHjkCfPmIp5PRpWB17gZXH42nt78qm5/qabVsW8RmFjFl8iJwiNQ/1bMK8e9pXum3U7RxeXnOeKENddWArHz4c397irEVdIDWvmNfXXmCXgTzYNcSThZMiJG5VWRQUFOBiiBDy8/Nxdi6/XWpeMeOXHCExu4juzRrxy+Pdy3Xm1RWK1Vomf3eUc7dyaOnrwt8z+uBsQfdYQQEMGQLHjkFQkDgmmjSp22O15Fz+6/Dgg7ByZen/mzWD69fFNC3i79fzo91kF6pZ+nBXqQRxJ+D4zQwmf3/M7LmXhobxnKETrDah0+n53y+n2RWdgq+rPRuf61svAqVmYxJwBpDL4epVaN68ql1rhOScYnp9vBu9Hg6/Opigep4Tc4vVdH5vJxqdnr2zB1boTVkVMgtK6PHhLtRaPVtm9qNtoFu9Xd96vZ4pPxzn6M0MxncKYtHkjtXuczu7iJFfHiS7UM3jfZvxloH2UdVnGLXm9HoY1MqHxVM6S3PrqdhMnv7lNOkF5os6mQDGNY0gQI9mjWgT4EaguyOBHo4EeDgQ5OGIj4s9MplAYYmG2PRC4jIKiMko4NLtXE7GZpKUlkXC55PIycnBza3q7rL/MkMWIi6jkL/LrD569y413nz+eZg9tBXujnZcTs5jZTU8nyZeTnx+f0cEAX49Fs8vVbgJtwt05+8ZfZgzrBVKhYx9V9K4e9EBfj0W1yBaRFsvJDFs0QF2RaeilMt4dURr/niqV6WBEIBCoWD69OlMnz4dhaJ8kFFUouXJFadIzC6imbezweG4fgIhvV7PnDXnOXcrB08nO5Y90s2iQKi4WHSdP3YMPD1FccW6DoSg+nP5r0RYGEybBocPg6srxMSIbXsGONjJmWxYZa+oxpm7vlFRMLJw51XWn6390ohIqI6gpa8LqXkq/vfL6XpxR1coFEwfO5bpQUEo1q8XbTq0WlFXog7h7+5A96aNANjUAFpTbg52dDN8vi2lskbOSoYaAvc/T4kl3vq6vgVBkDrF1kUmcuFW9d2YgR6OLLhPLMcuOxRTbSecIAg80a853zzYGXuFjL1X0pj47VGJW9u1aSNOvjmEjya0x0FRGo6Y3tb0ejh2M5Plh2P5YEs0M1aeYcLXR+jx4W7C3txK5/d30vbt7Yz88iDP/HaG+duusOl8Eim51tFK/ssMVQNjZij4hT9pFujNrlkDJAIflJZGiopEYb3ixrG8tT4KNwcFe2cPxMvFvop3hy93X+Mzg1HrW6PbSm2PleF6aj6v/HWe03EiMS2isTsP9QxhVIcAnJR1d+GotTp2Xkrh12NxHDEQv9sGuPHZ5Aha+1un51AWOp2e6b+dYVtUMh5Odqyb3sfqFVZNYPwNFDKBX5/oQc/mXtXuo1aLXWMbN4KzsyiQ3LNnPRzs/1fo9aVs9Dlz4NNPxRvuvn3SJgmZhfRfsBe9HnbNGkCobx3WKq1AUYmWNm9vK/e8Ui5j5ZM96Gq4mdYm4jIKGLv4MDlFaiZ0DmLhxIi6J9ub/kZbtojiWq6uEB8PHh519rG/Hovjzb8vEh7kxqbn+tXZ51SGpQdvMm9zND2bN2LV/3pZvf/eK6k8uvwkHk52HH/9rnpbBBrxwqpI/j57m17NvVj5ZA+Lxsm7G6NYfjgWDyc7tj7fjwD36jNykfFZPLHiFBkFJQS4O/DDw10JDyotIeerNHy+8yo/H4urllcnlwno9XqzoMnFXoGPqz2u9gpyi9UkZhehKiz4LzNU22jkZEdcRiHrzpiv5oKDxbkZxH8nRITQNsCN3GKN5KVVFZ4bHMpTA8Q08vubLvHV7mtV8glCfV3486levDOmLY52cs7dymHOmvN0/2A3r60VeQK1Gd8mZBayYPtlen20h+m/neHIjQxkgiik+PeMPrUSCM3dGMW2qGSUchnfT+1ar4HQ5vNJUjA6755wiwIhrRYeflgMhBwcRL+x/wKhOobpBP3886LT7f79opaBAcGNnLirtbjKrsj6pqHgqJRL3aFGKBUyJncLxtO5blj2IV7OLJnSGblMYO2ZxCplP2oNpr/RiBEQHi6SKr/7rk4/dmT7AOQygYuJudxMq38rI6OI4fGYTJv4Lf1b+uDv5kB2oZpd9ehkb8RsQ8Xh6M0Mi+1FXh3RmvAgN7IL1Tz/+1mL5Bw6NfFk3fQ+tPBxJimnmHFLDvPuxiipm83FXsGbo9ty+b3hLLivPYoqohOtzjwQAjGYikkv4HxiDrEZhRJ521L8FwxZCGMr4pd7rqEu88O//LLIF4mLgy8+F3h3nGjbsOpkAudvZVf5voIg8Orw1pIT+sKdV/lk25UqAxq5TODRPs3YP2cgc4a1IsTLiXyVht9PxHPPksMM//wgPx6KIbPANnKtWqtjR1Qy05afoP+CvSzZe4P0fBXeLvbMGNSC/XMGSReQpdDr9aSlpZGWliZ9t6ISLc/8dpqfDfow8+/rQPdmtb9KrgwXbuXw0uqzADzWpxn3d6++xqXTiX5jq1aJ9+O//oKBA+v2OP9DGTRuLHKIAL7/3uylR3qLhM01p2/VqyJxdTCWylwNQVF4oBvv3xNOC5+6y171benNG4YyyIdbom3y0bIZBgNXOnWCtlXzSmqKRs5K+oaKHlQbz9V/V1lwIyd6NGuEXi/65FkLuUzg3i5ix+yfpxIqnCvrEo09nXjU0IDw0ZbLFgU29go5ix/ojIu9ghOxmXy5+5pFn9XEy4m1z/RhRLg/Wp2e5YdjGfzpPv44GS9RPmQygYldm7Bz1kB8XW1fLNjJBJr7WK7D9l+ZrBoYy2TJaZmM+vY06fkqPprQXrIBMOK330SRPWdnkTM4/4CYemzt78q66X1wVFaf+jSmW0HUTnlnTDuLxKd0Oj3HYzL581QCWy4koTJJMXq72NOkkSNNGjnRpJETwYZ/Az0cySlSk5BZSFxmIfGZheLjjEISs4vMOnL6hnrzYI8mDGnrZ1YitAZlSYGFOgVP/HyKcwnZKOUyFkzsUK8t9Km5xYxdfJjk3GIGhPmw7JGuVRLeQawCvPCCKLYpk8Eff4iO9PWNgoICPAxlh+zs7P8fBOqyuHxZZKs/+KDYem+ATqdnyKL93Ewr4L1x7XjYxPevIfH5rquEB7rTNtCNAQv2otbqWT+jDxE2GBdbA71eNDn+89QtnJVyVj/d22qbAktQ4ZjU6cSgqB60sP46fYuXVp+jhY8zu2YNqHf9rT9PJvDyX+dt/vzY9AIGfroPQYCdz/agZWOx06q+GiRyitQMWLCX7EJ1hfe3yrD+bCLPrzqLIMBvj/egd6jlxqgHr6Xx7sZLkl9nh8buzB3bzkyoMSa9gPu/P2rG/5lzdyvC/F24nJRHoVpDUYmOAsPCp5W/K+FB7rT2d8XDSSndvy0pk/0XDFUD05O5+nwG72+6RCNnJcdeu8ssM6LXi4TqY8fEEsqCxcWM/OIg6fklTOzSmAUGDZDqsPJ4PG/8fQG9wSX9EyuVl3OK1Gw4m8gfpxK4mJhb/Q6VwMtZyX1dGvNA9yY0rYWylWkwdPZGEtP/vERidhEeTnZ8P7VrvWaETDvHQn1dWDu9N24OVUv56/Xw2mvwySfi/3/6CR55pO6PtSL8v+wmswIrjsTyzoaoBrsxVodZf55l7ZlExkQE8tUDner880o0Oh758QRHb2bg7+bAuhm9LeJ4WIOGHpN5xWq6zNtFiUYndWXV9+d3nbcLlUZnc5A76bujnIjJ5Ll+jZk9uiNQv+fS6B7g42rPvtkDLWoiAXhlzXn+OJWAt4s9q5/uZRXNQa3VseJILF/sukaeIaC5t3NjXhnRCl9XMZt6My2fB344Rkquipa+Lmx7ob/F98T/gqFahOnJVDo60+X9nRSUaHm4VwjvjQs32/b48VLuyLZt4NoinYeWHUenF0tARk2J6rAu8hYv/XkOnV7UDvl8ckebMjI5hWoSssSsT7xJ9ichU8z+uDvaEdzIiZAyWaMQL2d8Xe1rVRLddLJs+9rfFOgUNPVy4sdp3Wheh6WCstDp9MxcFcmm80l4ONmxfkafKrvgQAyEXn0V5s8X/79kCUyfXg8HWwl0Oh1JSWI5ICAgAJns/3m1W6sFlQoM1iR5xWp6fribghItvz7eg74tLV+t1gcu3c5l5JcHkcsEDrw8qF7awXMK1dz77RGup+bTJsCN1U/3ssp4uDpUOSbz8sRyZni4KMhVR3j6l9Nsi0rmmYEteMXgClCfmPl7JBvO3eaRXiG8W+beYAnWnL7F7NXnCHIROPKW6Oxcn8FQiUbH0EX7icso5Pm7WvLi0PJq0RWhqETLhG+OEJ2US4C7A38+1ctqC6m0PBXzt11mtUEs1F4hY0CYDyPbB3BXG1/S8lTc//0x3hsXzvBwf4vf979gqBZR9mTOXn2ONYYfbPm0bgwyiG4ZMXMmfPWVyCG6eBF+OX2NhTuvYq+Q8feMPrQJsGzFsvVCEjNXRaLW6unX0ptPJ0bUi15IXcE0GAp+cQ3dWwbw/cNdzSxI6ho6nZ7X111g1ckEFDKBXx7vQa8WVROm9Xp45RVYsED8/+LFMGNGPRzsf7AMGzbArFmiCupHH0lPv73+Ij8fjWNoWz9+eLhrAx5gxXhw6TEOX8/gyX7NeGNU3XJqjEjILGT814dJzy+xuDRcK5g7F959F3r0gKNH66xstvl8EjNWnqGxpyMHXx5U7xnB/VfTeOTHE3g62XH89SFWcSoBCks0dP9gN7l5+SQsEuvv9Z1lM55DRzs5++cMtNj4ND1fDFaup+YT5OHIH0/1pLGn9b6JkfFZzN14iXMmgqFKuYz+Yd70bO7FxC6NcXey/J5hTTD0/3xJaT0eMeEgPPnzKY6VUZv++GNo2RISE8WmlxmDQhkQJrpKT//tDHnFlnnQjGgvBgv2ChkHr6Uz9LP9/HX6zlGftgZanZ4vdl2V/j+yfQC/PtGjXgMhvV7PW+svsupkAjIBFk6KsCgQmjOnNBBasuS/QOiOg14PN26Ieja5pWVho/Lt7uiUKp22GwpP9BU7SFedSLB4Tqgpghs5sfQR0Qph/9U03tkQVT/zyTPPiLyu48fhwIE6+5jBrX1xVsq5lVVEZD2qbxvRp4UXvq72ZBWqbSKrOykVjImwTPW+rjCyvT+dmnhQpNayyGTOrg7eLvasfKIHzb2dScwuYsoPxyWrKWvQqYknf0/vzZaZ/XhucCjNfZwp0erYFZ3KvM3RdP1gF9OWn+CLXdf4+WgsG87d5sDVNM7fyiYhs5DcYjU6nZ74jEK2XUxisYXEbvgvGLIarfxdMVaPNDo905af4HRcqUmfk5PIJ5HJ4OefYcMG0VU6wN2BmPQCXv3Lcin+Qa182fhcXzo0die3WMNLq8/xxIpTpORWbgZ7p+F0XCZjFx/i2/03pecW3NcBB7v609LQ6/XM3RDFb8fjEQyBUHVkbb0eZs8WvecAvv66YUtjpigpKWHBggUsWLDg/48dR2UYMwbatIGcHLMW7lBfV/qGeqPTw6/H75w2eyMGhPnQwseZPJWmXq0YOgZ78MX9nUTC6/F4fjh4s/qdLECVY9LPDx59VHxsJN3VARyVcknAcO2Z+vdmU8hl3GPwl7T18ydaSKWoKwiCIHUgrjqZUG6xXxV83RxY+WRPQryciM8sZMoPx226VwmCQNtAN166uxW7Zw1gx4v9eWFIS1r5iT5u+66ksWjXVd5eH8XM3yN5+McTjF18mH7z99Jh7g6av76F/gv28vSvZ/j2gOXj+79gyEooFTIzglixWscjy06YpfV69y7VHnrqKdAWKlk8pTMKmcDmC0msOBJr8eeF+bmy9pnezBnWCju5wO7LqQz97M7yKKsIqXnFzPrzLPd+c5So27lmOiu1yUWqDnq9nvc2XWLF0TgEAebf24HxnRpXsw+89BJ89pn4/2++ERe3dwrUajUvv/wyL7/8Mmp1/bld35GQyUovtkWLRO6QAcbs0B8nE+pFhdkayGSiMi+IxFVL2plrC8Pa+fOmoTT34ZbLbLlQ83b0asfk7Nnib7V1K5w/X+PPqwzGYGJ95G0KS+pfWmFCZzEY2nM5lSwbpE06BXvQwqdhGyK6Nm3E5K7B4jz45zlyrchc+ruLAVFjT0di0guY8sOxGhmMC4JAmJ8rLwwJY/uL/dk1awAvD2/FA92bMCLcn17NvWjt70qAuwOOJgtspUJG+yB3xneqwOC5ss/6jzNUNSqqOU7/7TRbLiSbbefmoGDlkz0lRU2VCrp0gagoUal49Wr48XAM72+6hJ1c4M+netHJpIXQElxJzmP26nNcSBRl04e08eXD8e0truvWB4zdAZ/vuka+SoMgwOSuwcwc2JTXX5oJwHfffYe9fdXK3LUBvV7Ph1ui+eGgKDj38YT21WoJabViBsgoX/Ptt2JAeydBpVLxlOGg6utc3tEoKRH9rxITYelSePxxQCzP9p+/l8TsIubf24FJ3Rp21V0WxWotvT/eQ2ZBCUumdLbYGLg2YMyWrjgah71Cxsone9IlxLr5yBQWjcnJk0WZ/gcfhF9/tfmzqoJOp2fgp/uIzyxkwX0dGiTTMvKLg1xKyuX9ce2YaoO0w5Jdl3jlxZk0clZybf+6Brm+81UaRn5xkPjMQot9y0yRkFnI5O+OcjunmDA/F35/sme1bgy1gWK1ltwiNZ7OSuzksv84Q3WNlr6u5Z7LLdbw1C+nJaE3e3uxTKZQiMJ8q1bBY32aMiLcH7VWz1O/nLZ65dDK35W103sz++4w7OQCu6JTGbroAD8fjb0jBOYOX09nxBcHmbc5mnyVhojG7qyb3oeP7+1AoJcbP/30Ez/99FO9BUKfbLsiBUIfjA+vNhAqKYEpU8RASCYT76t3WiAEYG9vX6/n8o6HUgkvvig+nj9fjGgRxeymGrJDPx6OueMyqQ52ch7qKR7f0kO1U66yFIIg8PaYdgxp44tKo+N/P5/idg3cwS0ak6+8Iv67ahXExtr8WVVBJhOYbAh6V51MqJPPqA7G7NBfZ2zznpvUowV+Y2YhGziD+OyGKYO72CtYNLkjMkH0Ldt03jrft+BGTqx8sid+bvZcTcnnwaXHbcqUWQsHOzm+bg42dV//FwzZgDC/8sFQS18X1j/bx6xdtXNneOst8fGMGZCUJPDJfR0IcHcgNU/F5O+PorUyPW4nl/Hs4JZsfK4v4UFu5BSpeXt9FD0+2MUb6y4Qdbt6s73ahFan58j1dJ759TQPLj3O9dR8Gjkr+eTe9qyb3oeOdSwqVxH0ej0Ld1zl2/03AHhvXDse7BFS5T6FhaLp6p9/isrSf/whJRj+wz8B//uf6H919Srs3Ss9/UC3JjjaybmcnMfh65bzH+oLU3uGoFTIiIzPNuMe1gfkMoEvH+hE2wA3MgpKmLHyTLWeUDVC584wfLioVKqru8+Z2LUxCpnA6bgsrqbk1dnnVIZxHYOQywTOJmRzwwZ7EB9XewYbupSNreYNgS4hnswYFArAG+suSuaqlqKptzMrn+yJj6s9l5PzmPz9Ua6n1v/vYSn+McHQBx98QO/evXFycpKUTquDXq9n7ty5BAYG4ujoyMCBA4mKiqrxsYT5iS3i9goZYyICEIBrqflcul1e5PC118RyWVaWqFDtKLdj6cNdEYCrKfkMXLiPtDzrSWat/d1YN70Pc8e0pbm3MwUlWn47Hs+oLw9xz5LDrD6VQFFJ3fAkdDo9p+Mymbshih4f7mbK0uNsvZiMTBCVs/e+NJDJ3ZqYcYP0ej0FBQUUFBTU6Qpdr9ezaNc1Fu+9DsDbo9tWq0KcnQ133y1qQzk5iZ5jDaEs/R9qAFdXsd3v4EEYMkR62t3JjkldRY5YfWdfLIGPqz3jDWT+760ge9YWnJQKvn2oC24OCiLjs/lwS3TdfuDGjWJmqHnzOvsIX1cH7mojBhO/n4ivs8+pDD6u9gwIExWky3pZWgK9Xs+Yto3QlRTz1+mEcvZP9YmZd7WkQ2N3corUzF59TrLMsBQtfFxY+UQPvF3EDNGYrw5LliN3Gv4xwVBJSQkTJ07kGSuYrPPnz+ezzz5j8eLFnDx5En9/f4YOHUpeXs2i0xAvZx7t05QDLw/iqwc684jB1+WNvy+UI+3Z2YnlMmdnccH60kvQLshdEo5KyCyi3/y97IlOsfo47OQypvVpxu6XBvD7kz0Z3SEAO7m4Ipmz5jw9PtzFuxujuJiYg0pTs8BIr9dzMTGHj7ZE02/+Xu795ig/HYklPV+Fu6MdD3QPZvPMfrw7Lhx3p/JqzoWFhbi4uODi4kJhYd20Oqs0WuasOS/55Lw5qo3kKVcZUlJEb7HDh8XEws6ddaoLVyswWh94eHhQUFDQ0Idz52DKFOjbt9zTj/ZphiDAvitpXGuATEF1eLK/OEZ3XEqRrAnqE028nPhsUkcAfjoititbC4vHpKL2hB6rgrEkvi4ysUHI88ZS2dozt6wOIAoLCxnXrQUJi+4jLSuPPZfr37zVCDu5jEWTO+JgJ+PQ9XRWHI21+j1a+rmy5fm+9A31pkit5eU153l+1dl6k5SwFP84AvVPP/3ECy+8QHZ2dpXb6fV6AgMDeeGFF3jFUKtWqVT4+fnxySefSGS/6mAJAStfpWHYogMkZhdVKqK2bh1MmCA+/v57GDmxiD4f7zHbZmrPJrwxqm2N2s7T8lSsPp3AyuPx3Moq5QDIBLGO29zbmeY+LrTwcaG5jzPNfZzxMRDbcos0pOYVk5qnEv/NVRkeq7iYmENMeukk52Kv4O62foyJCKRPqHe1AmN1Ldefnq/imV9PczI2C5kA74xpJwWpleH6dRg5Eq5dE7t/d+yADh1q9bDqBA1tffCPQF6emC0y4KlfTrE9KoUHugfz0YQ770f+38+n2HEphUldGzP/Psuse2ob87dd5ut9N3BSytnwbB9CK+BGVgarx+S1a/DFF/Dhh1ANsdUWmJLnv7i/Y736HoJI5O38/k4KS7SsfLIHvVtYroJeVqC2b5sgVj7Zs64O1SL8cjSWt9ZHYa+Qsem5vrSsgCpSHXQ6Pd8euMHCHVfR6vSEeDnx1QOd6NDYo/YP2IB/tQK1pcHQzZs3adGiBWfOnKFTp1L/n3HjxuHh4cGKFSsq3E+lUqEyac/Nzc0lODi42pO593Iqj/50EpkA62f8X3vnGR5F2YXhe3bTO+mhpBBK6KH3EDqISBGVIoiCgIo0BUX9bCiIgNio0gRp0iz0GnoLJfQSQgoJ6b1usjvfj0mW0FI32QXnvq69sm1m38zOzpw57znP04FG1W0fe88330g1RMbGcOAALLh+klMhD9cJ1HKy5KchTWlQ9fHlS4NGI3I0OJ61p8I4cSehyAJrK1MjVGpNsfUCZsYKuvq40LeJG/51nUsVtFXkCfxGdCqjVgUSmZyFtZkRC4Y2wy8/Tf00jh+XaoQSEsDDQ8oI1a6tsyFVKBqNhjt3pHoob29v2Y6jMAXeKQsWQEAAtJDUp8+GJvLK4pOYGCk4+XGXSulsKQ3nw5MYuPAExkrJokPX3mElIU+tYfhyycOslrMVf7/XvsT+VKXaJ0VRuuq4ckXSHZo2TRfDf4wf99/ix/23aVPTng1j2lbIZxRFgT1IC48qbH6nXYmXK3ys9PpgCxoj00ox9S0KURR5c9VZAm7GUd/Nhr/ea19qhe0CzoUlMWH9BSKTszBWCnzUy4e32ntViOSK3E0GREdLre8uLi4PPe/i4qJ97UnMmjULW1tb7a1GjZK1Znb2caZvk6poRPhoy6UnzvN++qnkGpCbK7Xbd3R9vKg3OC6D/r8e568LZetEKEChEOhUx4mlI1pw+csenPmkK+vfbsM3/RvyVnsv/Os64W5vgUKQMlsFgZCtuTG1na1oX8uBAU2rMdavJp/1qcfi15sT+Fl3FgxrRq+GbpUqmlgU+67F8PLCE0QmZ+HpYMG2d9sXGwitXw9dukiBUIsWkrnusxIIASgUCmrXrk3t2rXlQOhRBAHu34eMDEkOPp8WHlVoUt0WVZ6GP05Vfh1JcTRzr0JrL3ty1SLL8zsgKxsjpYKfhzTF2dqU4Nh0pm8tuUBsqfZJQZB0h0DShsquGBHZV1vUQCHAqZBEQspQyFxeXsyXSggMSypzcXyB3EJBM4i+EASB719ujJ25MdfupzJ7940yr6u5RxV2Tuio7az+Zsd13vr9LAnpZdcj0gV6PZJ++eWXCIJQ5C0wMLBcn/GoP40oikV61kyfPp2UlBTtLSKi5O2ZX/Stj52FtLMsP/b4AU0QJHXqpk0hLg4Wf+aGsebx+hpnGzM61S36hF4aBEHA2caMtt4OvN7Gg8/71mfVm604Mq0z177uxf4pfhyd1pkbM3oR9EUP9k3pxNrRbZj/mi/TX6jH6I416dXQVafGjuVFFEUWH77DmDWBZKjUtPN24K/32lPL+emmr6IoZeeGDpXa6AcMgMOHwbXkvn8yzwIFLdxbt8LNm4D0GxiVL3K45lSowYkwAozz9wakot/kTP20VDtZm7JwmCQQ+09QFKtPVpB695AhUKMGREfDU7L05aWqnTn+daVC6o16aLNvU9Nee3/M6nOkZJW+RmZUfs3j7qvRegnoCuNsY8Z3L0tTzMuP3WXzubJvU1sLYxYOa8Y3/RtiYqQg4GYcvX86yp+BERXb0VgEeg2Gxo8fz/Xr14u8NWxYevdfANf8M9yjWaDY2NjHskWFMTU1xcbG5qFbSXG0MtVKmc/fd4uwhMcLCS0s4O+/wdkZrlwW0AS0pODiSxBAACKTs5i54zrqUhbelQUzYyW1nK2pYW9hMNme4sjJU/PBpiC+23UDUYRhrd35/a1W2BVh4KdSSY4ABVIHH34Imzdrjc6fKXJzc1mwYAELFiyQFaifRIMG8NJLUvRbyP6hd0NXqtqaEZ+u4p+LpS8Srmj86zjh42pNhkrNmooKQkpAC097Pu4tub5/s+Ma58OTil2m1PukiYnUTQKSNlRexeikDc7XHNp87l6ln2StzB5c6CZkqJi6KajUXVS1XazpVs8ZUdRPt+Gj9GroSjN3OwA+3HSJdeWwuhEEgdfbeOTXp1kRm5bDtM2X6DTnEMuP3a10BXG9BkOOjo74+PgUeTMzK5u6speXF66uruzbt0/7nEql4vDhw7RrV/L529IyqHl12tdyICdPw9RNT54uq1FDKqg2NoaQs1VIOVYbVxszNo1ty09DmqJUCGw6d4+pm4MqJSB6lohLy2Hob6fZej4SpULg634N+HZAoyJFthITpQ6x338HpVKy15gzRxJWfBZRqVSMHz+e8ePHy95kT+Pjj6W/a9ZAuDQtJnVfegJSm72hlUsKgsA7+dmhVSdCK0waoySM6uDFC42kaYz31p4vdgqjTPvk6NHg6AghIZKwVwXQxccZZ2tTEjJU7C9Dx255MDVSULgMZu+1mDIFNOM6SfvE1vORxBqAL+W8Vx4U+H+y7Qofbw0qV7eyj6sN/47vwPTePjhZm3I/JZsZ26/R/ruD/LT/dqVlSZ+Z00F4eDgXL14kPDwctVrNxYsXuXjxIunpD1KHPj4+bNu2DZAOLJMmTWLmzJls27aNK1euMHLkSCwsLBg6dGiFjVMQBGYOaISVqRFnQhP5+t9rT3xfu3YPfCVTTtShR24nWnja81KTqvw8WAqItp6P5IM/LxpkSr+0KJVKBg0axKBBg1AqS5+BEkWRvy9G0vPHI5wLS8LGzIhVb7YsVkMoMFDSeQoIkJqLduyAcePK9j8YCuXdlv8J2raFzp2ljEOB2y7wWkt3LE2U3IpJ5+jteD0O8Mn0aeRG9SrmJGSo2FSOaYjyIggCs19uTE1HS+6nZDNp48UiL8zKtE9aWsKkSdL9mTMrRIjRSKng1XxLjsrWHBIE4bEC9O/33OR0Meanj27LFp72tPCogkqtYflx/dSTFcbLyQof1wfdZBvO3OOVRSe4l1R2yRRzEyVjO3lzdFpnZg5ohIeDBUmZuczff4t23x3km+3XSi36WFqemW6ykSNHPrED7NChQ/j7+wPSzrdy5UpGjhwJSCfQr776iiVLlpCUlETr1q1ZsGBBqabeSlONXpj912J4e00goggzBzRiaOsnW0HMmAGffy7d//rrB9M4uy7f5/31F8jTiPi4WjP/NV/quem+BfVZ4H5KFp9tu8KBfL2Nui7WLHy9Gd5ORdcHLV0KEyZIU2Te3lI2rlGjyhq1jN7Zvx+6dwdbW4iK0s6JfvXvVVYeD8WvjhOr32ql50E+zuqToXz+91WqVzEn4EN/jMpgLaArbkan0X/BcbJy1UzpXocJXXXcaZCcDL6+MGIEfPIJlHEmoCgiEjPp+L2kSn50Wmdq2Ffe3HjbWQe4/8hJ3MnalB3vdyiVp+T+azGMXh2IlakRxz/ugq3547WmlcmSw3eYtevhImpbcyN+GtxUW6dVHvLUGnZeiWZRwB2u35fEjI2VAgObVqdLPWea1rAr0fZ7rlvrK5uyBkMAvx68zdy9tzBWCqx7uw0tPe2f+L5Zs6TjAEiB0ZdfSvVDh2/FMWXjRRIyVJgoFXzYsw6jO9SsVNd3faLRiKw7E853u26QnpOHsVLg/S61GdfJu8i2zsxMyWV+9Wrpcb9+UuF6CYXLnwlUeRpEREyNSp8ZyslTczc+g+pVLAyqKF7niCLMnQuDB0tz0/mEJ2TiP/cQGhH2TPKjrmvpNVMqkiyVmg6zD5KQodKLRs6jbD1/jyl/BmGkEPj3/Q66vyhTq6X56wpk+PLTHL0dz/jOtfiwZ90K/azCdPvh8GNCmgXH8jF+3iVej0Yj0uunI9yKSWdar7q8619L10MtFaHxGfjPDXjseUGAqT11Nz5RFAm4FceiQ3c4E/pwR141O3N8a9hJN3c7Gla1xdzk4f1IDoZ0SMHGPB8cSVPvqqVaVhRFxq+7wI7L93GwNOGf9ztQze7J+iFz5jyQ2/jkE6nrSRAkMcGPt1xi/3UpK9Kmpj3zXvV96nqeF+7GZ/DRlkucuSv9AJq62/H9y42LFfu6fVuSLbh8WaoJmjULpk6VtuWzQkJ6DveSsohJzSYmLYfY1GzpfmoOMamSKGZihgpBgKq25ng4WOTfLPGwz//rYIGRUuBufAa3Y9K5HZPGrZh0bsemEZqQiVojcuaTrqW6On2eeOePc+y6Es1rLWowe5DhiTAWXEj5uFqza2LHIjtgKxpRlIyl916LoWE1G/56t71es1VlYcel+7y37jwuNqYc/6hLpY2/34LjBEUkax/XdLRk67vtimz2eBpbzt3jg01BOFqZcuyjznpveOn14xFuRD+s6O5iY8ofo1qXSZSxOAJDE9l87h4XwpO5FZvGo5GLUiHg42qNbw07bMyNycnVkJaWwtxh7eRgSBcUBEOv/nyADeM7l/qglKnKY9Cik1y7n0qDqjZsHtfusei1gPnzYcoU6f7UqVIjjCBIB6MNZyP4+t9rZOWqsTYz4pv+DfV+xVgaSiq6mKfWsOzYXebvu0VOngZzYyXTetVlRFtPlMVkxLZtg5EjITVVUpTesEGy2jB0ctUazoclEXArjkM3Yh87wDyKJjebqKVjAKg6ZikK49IHNObGSq593VOvJ9lKJykJqlQB4FxYIi8vkkQYj3/UBSdrwxJhTMnMpd13B8hQqVn5Zks662DqoTzEpmbTff4RUrJyn5iZyMzMpHa+WNft27exKG2bpijCnj2SQeCPP+po1A9Q5WloO+sACRkqfhvRgu71n95RrEumbQ7C1caMdrUcGbbsNGqNyI4JHYoU1X3asTJXraHT94eISsnm2wENizWfrmh+2HdLa31UmMrIZqbn5HHpXjIXwpO5GCHd4tIeL/LX5GQS8eOrcjCkCwqCoRqT/mTJWx3o3cit1Ou4l5TJS78eJzFDRd8mVfl5sO9TT0K//grvvy/dnzxZqv0seOvd+Awmb7zIxfwrjb5NqvLNU7zADI2SBENXIlP4eOslrkRKc8Qdazsyc0CjYuf4U1OlLt1ly6THHTtKzSlupf+qKo3Y1GwCbsURcDOWo7fjSct+0EYqCOBqY4azjRku1qa42JjhYmMqPbYxw9ooj+b5Wcqj18KJzRIITcgkLCGDu3EZ3I5NJ6uYonsfV2t2T/Kr0P/RYIiNhVGj4PRpCA0FCwtEUWTAwhNcjEhmYtfaTO5eR9+jfIxvd1zjt6N3ae1lz8axla+g/CgFmQkTpYKdEzs8ZNdRboX5mBhwd5cK/A4fBj/d75uzdl5nyZEQuvo4s3xkS52vvzjeX3+Bf4OiGNi0Gj+85vvU9xW1LVccu8vX26/h6WDBgQ/8i71ArEiuRqXQ5+djVLMz54dXm7DrSjSrToRipBBYPrKl1qy2MhBFkaiUbC6GJ3M5MgVVngYTIwWanEw+HdBcDoZ0QeFgqLqzPQc+8H9qZqcoTockMGzZafI0YrFzvosXSzUvIGnjLFgA5vmzYnlqDb8eCuaXg8GoNSJutmbMfaUJ7WuV3PtGHzztBy6KIqfvJrL0SIjWkNDW3Jj/vVifl5tVKzZzsW+fdJ6LiHggbPvtt5JsgaFxLSqVHZejCLgZx9Wo1Ides7c0wa+2I519nOlY2wl7y6en0dVqNZcvXwagUaNGT+zeiU3NZtWJUNadDif5CWJvzT3s2DS23X+j/iwvD+rUgbt3pazDxIkAbL8Uxfh1F3CwNOH4x130Pu3wKNEp2XT8/iC5apGt77ajmXsVvY6nsCVDU3c7No9rpz0Zl2SfLJZx46QW2x49pCyRjgmJS6fLvMMoBDj+cZdKtzy5dC+Zl349jpFC4NhHXXC1fXJGt6hgKFOVR7vvDpKcmcuCoc20CtX6QBRF5uy5yTv+3libGaPRiEzaeJF/gqKwMFGy7u02+OrRQgTkmiGdUrAxW33xDzHZCt7vUosPepStAO+PU2F89tcVBAGWjWhB13pPT9UuWwZjxkjZY19f2LQJahWKny6EJzF540VCE6R2xhcbuzGqgxdN9XzAfBqP/sDNzC3YfSWapUfuEHQvBZCCmb6Nq/LZi/Vwti566ictTZpKLJAnqFkTVq6skAvKcqHK07Dryn1WnwzjXNgD8TpBgMbVbPGv64x/XScaV7erkKu8PLWGf4OimLf3FveSsx56raajJcPbejCoeXWszQwwetQlS5ZIJ9vq1SWHXlNT8tQaOs0JIDI5i+8GNtI6nRsS0zYH8WfgPXrUd2HpiBb6Hg73U7Lo8cMR0nLy+KyPpE6vM+7elXxx1Gopi9dK951+ry05yem7iUzuVoeJ3Srfg+fVxSc5E5rIO/7efNTL54nvKS7LVjA91bCapM9jSFPdqjwNo1cHcuRWHFUsjNk0rl2RrgAVjRwM6ZCCjbn55C0++OsWJkoFeyf74elYNqPRT7ZdZt3pcKxMjfjrvXZFOkPv3y9ZR8TFScbOK1c+cL4H6Srhmx3XWXf6gX5GM3c73urgRa8GrgZV5Fj4B/7bgausORdDWH4gZ2qkYFDz6ozuWBOvEmzXgwfhrbcgLF/8dPx4yYbKkMzbo1OyWXc6jHVnIojPF6wzUgh0r+9C9/ou+NVxwrESzUJFUeTQzVh+2HuLK1GpmBopyMlX5LU0UTK0tTsf9KhrcNkRnZGdLekrREVJmgtvvw3AsqMhfLPjOrWcrdg32c+gTiwAwbHpdJ9/GFGE/VP8SuUkX1GsPxPO9K2XMTNWsHti2Y+FT2TkSEkdtW9f+Ocf3a03n78uRDJp40Wq2ZlzZFrnSp9m2ns1mjFrzmFjZsTJ6V2faIRbXDCUmKGi3XcHyM7V8Meo1nSobVizAhk5eQxddpqgiGSq2pqx5d12ejEeBjkY0ikFGzM5OZnxm29w9HY8XXycWVHGOWdVnobXl53mTGgiXo6W/PVu+yJrfiIjpc7gY8ekx5MmSYXVJoVmUa5GpbDiWCj/BkWhyle8rmprxoh2ngxp6W4QNUXhMYl4uDoAUGPyZhQmZthZGDOirScj2nqUKDBISZHMbhcskB57esKKFZK2niEgiiKnQhJZcyqUPVdjtCJ1ztamDG3tztBW7jrp3srNzWXt2rUADBs2DONSzgmeDU3E1EggKCKF30+GaVt/67hY8cuQZgbXaq4zfvxRKsSrWVPyLDMyIjU7l3azDpKek2cQhcpPYuyaQPZcjeGV5tWZU0j9V1+Iosjry09zPDiBVl72bHi7DWp1Xrn2SS23bkG9epIA4/nzkpGjDsnOVdN65gFSsnJZMbIFXXwqp5C6AI1GpMu8AEITMvmyb31Gtvd67D0lqb/68p+rrDoRSodajvwxunWFj7u0JGaoGLT4BCFxGbjZmrH49eY00cOUmRwM6ZDCGzMuR0GvH49IztJvFD3NVRTx6Tm89MsxolKy8avjxIo3WhSZxcnNlYKAOXOkx23bSgXChaRTAIhNy2btqXD+OBVGQoYkYW5urGRQ8+qMbO9ZpEhhRRCRmMmJO/EcD05g98VQbn8vpbXaztjO2C4NeKVFdSxMite5yc2VZjm++gri80WDx42TLI2sDeC8nanKY8v5SNacDOVWzANNkVZe9rzR1pMeDVyKtAspLeUuVi2EKIocuB7Lx1svE5+eg4mRgs/61GN4Gw+Dy5KUm4wM8PKSUq1r1sDrrwMwY/s1lh+7S5ua9mwYo/9C5Ue5EJ7EgIUnMFYKHJ7amaoGIKsRkZhJzx+PkKlSM6NfAwY2dtLZPsnQobB+vZQG37JFRyN+QEFhevtaDqwd3Ubn6y+ONSdD+d/fV3G3t+DQh48XQZfk9x2RmIn/3ADUGpF/x3egUfWnd6fpi8jkLIYvP01IXAYmRgpmDmjEoObVK3UMcjCkQx7dmLN2XWfJ4RBcbEw5PLXsWg9XIlMYtPgE2bkaejZw4afBTYtd199/wxtvSBkSBwdYvlzyo3z0nJWdq+afoChWHLv7UJt257pO+Nd1pn5VG3xcrXVeJxKfnsOJOwmcCI7nxJ0EwhMfyLOLeSqyd30vHQB2/4uVZfGtt6IoZcqnTZMuGAF8fOCXX6BbN50OvUyk5+Sx5mQYvx0NIbFQ8DmgWTVGtPXAx7ViFMOzs7N5+eWXAdiyZUuZ/fsKE5+ew9RNQRy6GQdAt3oufD+ocZGF3M8k330H06dL6cSDBwGpDsbv+0MGU6j8JAYvPcmpkETeau/F533r63s4APx+IpQv/rmKhYmSv8e1YtLbwwEd7JNXr0rp8E8/lf7qmMhk6ftWa0R2TuhI/aqVq+yfpVLT9rsDJGfmsvj1ZvRq+HARdEl/35M3XmTbhUj6NHJjwbBmFT7uspCancuUjRe1Onkj23nyaZ96Or04LPLz5WBIdzy6MTNy8mgz6wBp2Xn0863KT4PLnsbdfy2Gd9eeR6XW0M7bgaUjWhSrCBwSAq+8ImWQAbp2lUR2fX0ff68oipwMSWDFsbscuBH7mEiVp4MF9ava0KCqLfXdbKhf1QZna9NiMwKqPA2ZqjzSc/K4GZ3G8eAETtyJf0wfR6kQaFLdlva1HOlUx4nmHlVKnG04e1bqDDtyRHrs5CTZlYweDUZ6Fk1Ozc5l9YlQlh27S3Km1Knlbm/ByHaevNy8ut6l8suKKIqsPB7Kd7tuoFJrcLExZf5rvrTzNqyahHKRmgpr10ptmoVOMlM3BbHp3D261XNh2Rv6L1R+lMO34nhjxRnMjBUc+6hLpdabPQ2NRmTw0lOcCU2kQy1H1oxqpbtsoihWqFJqQZv7y82qM+/Vyp96nLvnJr8eCqa5RxW2vFM24/Ab0an0+vEoCgEOfOBfonpLfaDRiPx04DY/5WsStfayZ+GwZjhUwj4sB0M65Ekbs7AvS3ml0Y8HxzNmdSAZKjVNqtuy6s1WVCnmajw7W7LsmD9fkuUQBMna55tvpGaZJ3E3PoO/LkRyNSqFq1Gpj/nlFOBoZUI9NxvMjJVkqvLIyFGTkZNHpkpNhiqPjJw8ctVP32V8XK1pX8uR9rUcaOXlUGq7h+Bg+OILWLdOemxmJmkITZsmFZHrk5TMXFaeuMuKY3dJzdcF8nK0ZHznWvTzrWpQBevl4UpkChM2XCAkLgNBgHf9vZnUrU6lXc3pgztx6XT7QSpUNkSLDlEU6b/wBEERyYztVJPpvevpe0iAdFzp9eMRcvI0zH65Ea+1NLyOvCdxMSKZ/guOY6yU2txdKlmJPTYtmw7fHUKl1pQrG/nmyjMcuhnHkFbuzBpo2MaLe65GM2XjRTJUaqrZmbNkeHMaVqvY6T05GNIhT9qYarWGOv/brS2QndStNhO71i7zVVFQRDIjV54hKTOXWs5WrBnVqkTV96GhknXH+vXSY3PzB4FDcbU0iRkqrkWlcu2+FBxdi0rlTlw6RRhTP4aJkYKqtma09ZaCn7Y1HcoU7Ws0kvDsr7/Crl3Sc4IAw4dLAd6jtVGVTVKGihXH77LqeChpOVIQVMvZive71OLFxlX1KnxWUWSq8vj632tsOCs5p/vWsOPnwU1xd6g8k8sKR62WBBnz1TkLLDqKE8XTFwdvxPDWqkAsTJQc+6iLwUxh/nYkhG93Xsfa1Ii9U/x01zmUmQm//SZ1AM6erZt1FuKVxSc4G5rEe529mdrzyW3uFcmHm4LYfO5euaa5ztxN5NUlJzFSCOyd7EfNSq4LLS23Y9IYs+Ycd+MzMDVS8N3LjRjQtOLqiORgSIc8bWMOXnKSU3cfGMcNaeXOjH4NypwdCI5N4/VlZ4hOzaaanTlrRrUq8Y59+rQ0pVTQcebiImWORozQGnWXiCyVmpsxady4n4paFLE0McLCRImVqREWpkZYmiixNDWSnjdVlipTkJGRgbOz1KkTGxuLpaUlSUmSXMDChXDnzoP3vvACzJgBzfQ8DZ6QnsOyY3dZfSKUDJWk6FzXxZr3u9aid0M3vQVBmZmZNGkipfaDgoJKb31QCnZcus/HWy+Rlp2HlakR3w54tmxgnkpgIAwbJtlznDwJgsDleyn0/fUYSoVAwIf+lepuXhJEUaTvr8e4EpmqtxP4k1BrRPr9dJA9M4ZjbqzkfsiN8hVQF3D2rKQ1pFRKRYM1dahphJSpGLvmHHYWxpz4uEuJmjl0SeFprsNTO2v3tycdK4ti5MozBNyM05uydmlJycpl8saLWpHdUR28mN7bp0Iy66UJhp7fvHcF09nn4Rbc9WfCeWftebKLsUF4GrWcrdn8Tlu8HC2JTM7ilcUnuRKZUqJlW7eWamu2bJGEGWNiJAVrFxepNOLgQSn7UhzmJkp8a9gxuJU7w1p70L9pNXo0cKVdLUd8a9hR28Waqnbm2FoYl2nKJDMzk8zMTC5dkgQlq1WTMll37kiO8lOmSEarO3boNxBKzFDx3a4bdPz+EIsC7pChUlPfzYbFrzdn18SOes8GiaJIcHAwwcHBVPS1TJ/Gbuya2JHmHlVIz8lj4oaLrDh2t0I/s1KoXh3Cw6UriQMHAGhU3ZaOtR1Ra0R+Oxqi5wE+jiAIvN9FEgr8/UQYyZkqPY9IQqkQ+LZfA/KS7pMWe4/tl6J0s+KWLaFnTymDN3OmbtZZiG71XPBwsCA5M5ct5+7pfP3F4eNqQ8fajmhEWHk89KHXCo6VJeGzPvUxUggcuBHLkVtxFTBS3WJrbsyyES14v4tUXrL82F1GrDijbULRF3IwVEZaetk/9ty+azEMW3a6zAep6lUs2DSuLfXdbEjIUDFk6Smta3txCILUiXr1Kvz0k9RBnJ4Oq1ZJRdYeHlITzbVrZRpauUhOhr/+evC4XTsp+52VBY0aSRp49+5JPmy1yl5+VW6SM1XM2XODjrMPsvjwHTJVahpVs2XZiBbsmNCBXg1dDcK+wszMjGPHjnHs2DGddJIVR/UqFmwc04a3O0qaKF9vv8aq4894QOTqqhVeZMYM7dPvdPIGYOPZiCcaP+qb7vVc8HG1lnSRHjmB6pOGHk5M+nE9LsO+Z+7+ENJz8opfqCR8/rn09/ffpboAHaJUCLyVr/Oz/NhdNKWpEdARBQreG8+Gk/IE25ySUMvZiuFtJdPWGduvkacuwZWvnlEoBD7oUZfFrzfDwkTJiTsJ9Jh/mNUnQ1Hl6Wf8cjBURhpWtcXM+PHNFxSRzL9BZb8ycrQyZcPYNrTytCctJ4/hy09z8EZMiZc3MYEJE6Rsy9GjUgbGzk4KNr77Dho0gObNpQutXbvg/n0e6zIriuxsKbgpigI1/a+/hvbtwdFRK+kCSL5hr7wiZbOCgqRzkj7Vo1Myc5m39yYdZh9iwSEpE9Sgqg3LRrTgn/Ht6VbfxaA0d5RKJe3bt6d9+/Zl84AqA0ZKBZ+8UI93/aVg4ct/r7H6ZGilfHaFMW2a9IM5ckQyBwXaejvQpIYdOXkaVp0wvIBPoRCY0FXKDq04fpfU7LKdQHWNUqlk1ruvULdJC+Iy8lhwKFg3K27XTtLRyMuDWbN0s85CDGpeHRszI0ITMjmQP21TmfjVdqSuizUZKjUbzoQXv8BTmNS1DlUsjLkdm866cqynsunV0I2/3mtPTSdL4tNVfP73Vbr9cJi/L0ZWenAq1wwVQ1FzjkOWnuJkSMJDz339UgNGtPMs9+dm56p5b+15DtyIxUghMPeVJvRvWrZajexs2L5d0pnbuVM6rhTGyUlqzW/cWPKzdHCAnBypbjEqSjJBDQ+X7C9iYuDnn2HsWOlC7c4dqd3/0b+PZnjr1Mng1i2pBio2Nh0nJ/23gaZk5bLimNQdVlAYXc/NhkndatPDwAIgQ0EURWbvvsniw1KR14x+DRje1lO/gyoP77wjOSN37Sr53/CglsTazIgTH3cxON82jUak549HuB2bzgfd6/B+18r32Hoa+6/FMHp1ICZKBXsm++mm3fvYMejYUbqKCg6W3O11yOzdN1gUcIdWXvb8ObbyRTf/DIxg2uZLuNmacWRaZ1TZWWUSsCwQc7SzMCbgQ3/sLAyjwL4kqPI0bDwbzk8HgrX2RfXdbJjWqy6d6jiV+VgsF1DrkKI2ZoFhnputGXVdrAm4FYeNmRHb3++ok66bXLWGqZuC+OuilGma1qsuY/28y1WvEhcHf/4pHV+CgiRXgpLUExXGykoS8y1qz7G1lS7oevaUTKgdHXWnmlxeUrNzWXkslOXHQrQt8j6u1vlBkGFMhRVFXl4e27ZtA2DAgAEYVbLwkiiKfLfrBkuOSHU13/RvyOttPCp1DDojLEyam83Lg+PHoV07NBqRHj8eITg2nY96+fBOfjbMkPgnKIoJ6y9ga27M8Y+7lFrCQtcU7JOiKPJvSnWO3knSbUFv165S8eO4cbBokW7WmU90SjYdZh8kTyPyz/j2NK5up9P1F0dOnpr23x0iPj2Hnwb70q22XZmOlXlqDX1+PsbNmDRGtvPky5caVOSwK4SMnDxWHLvL0iMh2gvUNjXt+aiXT5lMyOVgSIcUbMwbYdHUdX/YfuNUSAJHbsUxvkstjBQKBi89yfnwZBpWs2HzuHY6Mb3UaESpRuNEKCC1OH8/qDF1XHSjg5KZKdUZBQXBiROwZ4+UDSoJFhZSg4e3t3QrfN/L62FxRF1aSJSVxAwVq0+GsvJ4qHZ+vo6LFRO71qG3gdQDlQRD2JaiKDJz53V+OypNJc0c0IihrZ8NjZnHGD1aknOfMkUqXAM2n7vHh5uCcLQy5dhHZVearyjUGpHu8w8TEpdRbq0zXVB4n7x0N5oBS8+RpxFZObLlY80mZeLIEfjhB6mGqAK6KwrUnMsrpFtWfjlwm3n7btGwmg0b3myKdb42Sml/38dux/P68tMoFQJ7JnU0CGPfspCYoWLhoWBWnwzT+m32bODC1J4+1HIuuXyAHAzpkIKNOXzRQX4f619kui4qOYsXfzlGYoaKIa1qMGtgY52MQRRFNpyNYOaO66Tl5GGsFBjfuTbv+HtjYqT7sq+7d6Vjztq1j2d/qlWTZhNsbaUa1JJmL7OysujduzcAu3btwty88vyVIhIzWXY0hI2BEWTnSj+sWs5WTOxamz6N3J6ZIKgAfW7LwoiiyIzt11mRX0z9LInuPUTBfG+XLtodOletwX9OAJHJWQab+dp6/h5T/gzC3tKEo9M6P9EBvbJ4dJ+cfyiUpUdC8HK0ZM8kvwo5TumSK5EpvPiLJKtwdFrl+78lZahom+9Ev2pEE758VyqyLMvve/Tvgey/HkOnOk78/larihhupRGZnMX8fbfYev4eGhEUArzSvAZjO9UskfSMHAzpkIKNWWPSnyx5qwO9G7kV+f6jt+MYseIMoghzX2miU2O6+ylZfLbtirbQz8fVmtkvN64wN+CrV+Gzzx7uBOvfH/JnaAyeK5EpLD0Swo7L97UCmQ2r2TDWz5sXGulPJ+h5QhRFvvpXylwKAswe2JhXW+pZJVNHrDp+ly//vUYNe3MOfeBvcArjeWoNXX84TFhCJp+84MMYP8OZzkvLzqXz3MPEp+cwvbcPYzsZztieRkEN6Fi/mkx/ofIVvj/76zJ/nAqnWz1nlr1R9unFu/EZ9Jh/mFy1DjNzeuZWTBpz9txk37UHzUQeDhb415H8NtvUdMDc5PHsrawzVEF88c/VYrs3OtZ2YlLXOoC0c9+ITtXZ57vZmrPsjRb8NNgXe0sTbkSnMWDhcWbuvE6Wqmz6RkXRoIEU+Jw6JflaAjSpfBufUiGKIsduxzN8+Wle/OUY/wRFodaIdKztyNrRrfl3fAf6Nnk+VaP1gSAIfNG3Pm+09UAU4aOtl9gUGKHvYZWdpCSp9RJ4raU79pYmRCRmsePyfT0P7HGMlAre6yxNjy09ElIhx4CyYm1mzMe9JVHInw/cJjb1yfY/pebePXj3XZg6VTfrK8TofOmIdWfCdScNUAreau+FIMD+67Fcvlcyjbkn4eVoyZv5kgEzdlwj9xlotS+OOi7W/DaiBVveaYtfHSeMlQJhCZn8fjKMN1edxffrvYxYcYYVx+4SEpdeJv01OTNUDAWRpefkTYgm5gxv48GM/g2LXEajERm56ixHbsXh5WjJ3+PbY6PjjpSE9By+3n6Nv/OLqz0dLJg1sDFtvR10+jkFiKI0PWZjI4k8Ghp5ag07r0Sz5PAdrkZJAahSIdCnkRtjO9WkQdWK9cD5ryOKIp//fZU1p8IQBJg7qAkv6zArWils2iTVD3XvDps3Aw9qOXxcrdk1saPBdRjmqjV0nhvAvaQs/vdifUZ18NL3kLRoNCIDF53gYkQyA5tV44dXfcu/0gMHpM4MU1OpbbVq1fKvMx+NRqRbfh3W5y/W5y09bMspGy+y9UIk7Ws58Meo1mXvosrOpfOcABIyVAa3X+iC9Jw8jgfHE3AzjsM3Y4l6xGvT3d4C/7pOtKxmxksta8vTZLqg8DSZwtQCAdj8TjuaexRd2Z6YoeLFn48SlZJN74auLBzWrEIOpPuvxfDZX1eIzr/yGtranY97++g8+CovGRkZeHp6AhAaGqqzot/49Bz+vhjFqhN3iUjMAsDMWMHglu6M6uBlcJYKuiArK4u2baUW4JMnT+qtZuhRRFHkf39f4Y9T4QgC/PBqkwr1HdI5V69Cw/wLncuXoWFDUjJzaffdATJUalaMbEEXH5ei16EH1p8JZ/rWyzhbm3Jkmn6KvZ+2TxYYogJsKcFxs1hEUWqzP35cElT76afyre8R1p4O49NtV6hexZzDUztXegY5IjGTzrP2cHfBSKzNjImMCCvzsbJgv7AxMyJgameD8bLTNaIoEhybTsDNOAJuxXLmbqLWTFyTk0nEj6/K02QVgQhM2nCh2NSjvaUJC4Y1w1gpsOtKNMsryMKgW30X9k7x03byrDsdTo8fjrD7yoM6GUMhPj6e+Pj4cq8nO1fNjkv3GbXqLK1nHmDG9mtEJGZhb2nC5G51OPFxV758qcFzGQgBaDQagoKCCAoKQlNaXYQKRBAEvn6pIUNauSOK8MGfQRy9bfj2AFoaNIBBg6T7+arUthbG2uLphYfuPG1JvfJys+pUtTUjNi2HP/U0Rfm0fdK3hh2v5GcIv/znavmF9ARBMl4EWLKk5K2vJWRg0+pUsTDmXlIWe69G63TdJaGGvQVDW9dAk5VKSlJCubbXqy1qUM/NmtTsPGbtuq7DURoWgiBQ28Wat/1qsnZ0Gy5+3oPfRrRgWGt33GxLrtAvB0OlxEghEJGUxdIjxXsXNXWvwmd96gPw3a4bBIaWzFqjtNiYGTNzQCPWvd0aDwcLolOzGffHefy+P8RP+28TlZxVIZ9bmYiiyNnQRKZvvUTLb/fz3jpJkFKtEWlS3ZYZ/Rty/KMuTOxW+7m9AirAzMyMvXv3snfv3kqx4ygNCoXAt/0bMrBpNTQivL/+AhGJJfNYMggK7B82bdJ614zq4IWJUkFgWFKJ7XEqExMjBe/k1w4tCrhDTl7l1w4VtU9O6+WDtakRlyNT2HROB8Fa167QoYOkDPvdd+VfXyHMTZTa4Fdf/nSFC+G3Xy57sKdUCHzRV9Ia2hR4j2O3y38h+ixgaWpE9/oufDugEXsn+5V4OTkYKiUv+Upz1D8fuE1YQkax7x/R1oO+TaqSpxF5b915rbpmRdDO25HdE/14198bGzMjqS1x/y06zD7ImyvPsPtK9DNXTBeWkMH8fbfoNCeAVxafZP2ZCNKy86hqa8a7/t7sn+LH3+M7MLyNxxO7CZ5HlEol3bt3p3v37pVmx1EaFAqBmQMb0bi6LcmZuYz741yZDYwrnUaNJJM/UdRmh5xtzLT1TwsDdGQzoWNebVEdVxsz7qdks1kPpqNF7ZNO1qZM7CapZH+/+2aZPbi0FM4OLV0KkZHlW98jDG/rgYlSwfnwZM6FJel03SWhSqGLuZ/23y5XcNumpoNWl2fU72e5G5de7vE9S5SmNEUOhkpIwTb992IUzdwl76JPt10ptmpdEAS+G9gIbydLYlJzGLM6kLQK9BMyN1EyrZcPZz7txo+v+dLayx6NCIduxjHuj3O0++4gs3ffIDS++EBOX9xPyWLt6TAGLTpBpzkB/HTgNuGJmViaKBnUvDrr3m7NsY+6MK2XzzMrKva8Y2asZNHrzbG3NOFqVCqfbL1cpg4PvVCQHdq4UZsdGtepJgoBAm7GcS1Kdx2iusLUSMnYTpLp58JDd/Rmdvk0RrT1xNvJkoQMFT8fuF3+FXbpItUO5eTAnDnlX18hnK3N6Jd/0buigsobSkpUcjZrToaVax0F5sM5eRpeWnCcq1Fl71R7npGDoRIyIt8VOFcjkp6Th6mRgmPB8Wy7UPxViaWpEYtfb461mRHnw5MZseJMhRssmhkr6d+0GhvHtuXgB50Y26kmjlYmxKXlsCjgDv5zAxiy9BR/X4zU61W7WiNy/X4qa06GMnHDBdp/d5C2sw7y6bYrBIYloRCgY21HfnzNl7OfdWPuK01o5+34zAkl6pK8vDx27NjBjh07yHvUaM6AqGZnzq9Dm6JUCGy9EMnv+SrqBk+TJpKgllIpFeoCHg6W9GksnSAXHTbM2qEhrdxxtDIlMjmLbRcqNztU3D5pYqTQTtn8fiKU2zFp5ftAQZAyd9Omwaeflm9dT2BUfpv9riv39T7N++uh4HKdL7rVf1D0n5adx2tLTnK2gko2nmXkbrJiKOgmux+XQP+lF7RdW+28HThxJwF7SxP2T+lUojqVy/dSeH35aVKycmlS3ZbVo1pja155XV+5ag0Hrsew4WwEh2/FadWlbc2N6VzXiVrOVng7WeHtbIWHgwWmRrqbgiks17//UihXY1UEhiVxISxJ60FTgEKABlVt6dvEjX6+1XCxMay6GH1jCHYcpWHZ0RC+2XEdI4XAurfb0MrLXt9DKp47d6QTbs2a2qeuRaXyws9HUQhw8AN/PHVhQqpjCrZ1DXtzDn7gj3ElCUWWdJ98e3Ug+67F0KGWI2tGtTI4qYLCDF9+mqO343mrvRef961faZ9beFv6z9zF3RQ17/p7M62XT5nX2XVuAHcKzQaYGStYNKz5cyHIWBSyArUOKbwxz9zLYvTqQAAEpMr/8MRMOtZ2ZOXIliVSqL0SKQVEyZm5NKpmy5pRrfTiLhyZnMWmwAj+PBvxmEYDSMV37vYWeDtZSgGSkxXeztL9R8er1ohkqPJIz84jIyePtBzpfnr+37ScPO5GJ/LrB6+TrVLjPPQ7FMam2uUtTZQ0da9CC88qtPCwx9fdTu/Gk4ZMVlYWfn5SYeCRI0cMprX+aYiiyIQNF/k3KApHKxO2v98R11J0eRgSI1eeIeBmHK+2qM73gwxPgTRTlUfH2YdIyFDpXAG/KEq6T4YnZNJt/mFUeRqWDG9OzwauuhtEbq7kbK8jDt+K440VZ7A0UXJietdKu3AtvC2/WLKJ8X9excxYQcCHncv8u/lo8yU2PtJpaKQQmPdqE/r5Viv3mA0VORjSIY9uzLFrAtlzVZIEr2ZnTmKGiqxcdakk3K9FpfL68tMkZqio72bD2tGtHyqaq0zUGpGTdxK4FJlMcGw6d+IyCIlNfyxbUxgHSxNsLYzJyA92MkqpfOtma0Zzjyq09LSnuUcVfFytDc7qQEa3ZKryGLjwBDei0/CtYcfGsW10mnmsUK5cASsr8PTkfHgSAxeeQKkQOPhBJzwcDC87tPjwHb7bdQMPBwv2T+lUadmhkjJ3z01+PRRM9Srm7J/Sqfy6SOfPw4cfQr16sGCBbgaJFMT3/PEIt2LS+aB7Hd7vWltn6y7NGF5ZfJLAsCQGt6zBdy+Xze9y49lwPtpy+bHnbc2N2TGhA9WrPJ8yJHIwpEMe3Zj3U7LoOjeAzHzDz061HTmc37L402DfEkfZN6PTGLbsFPHpKnxcrVk7ujUOVqbFL1gJiKJIXFoOwXFScHQnNp07cenciU1/YhapAGOlgJWpEVZmRliZGmOtvW+EvaUJTd3taOFpT7VKNkGUMQzCEzLp++sxUrJyGdLKnVkDG+l7SMUzd65k/TB8OKxeDTzIDg1qXp25rxhedigjJ49Ocw4Rn65i5oBGWg0yQyFTlUeXuYeJTs3WTZBx+DD4+4OJCQQHQw3deeP9fTGSiRsuYmNmxLGPu+hFzPZcWCIvLzqJQoC9k/3K1DRyKyaNHvOPPPRc4+q2rHqz1XMtRSIHQzrkSRtz+bG7zNh+TfueFxu7sf3SfcyMFWwe146G1Upm/RAcm8aQ304Tl5ZDHRcr1o5ug5O1YQRETyMjJ4+78RmkZedhbWaEdX6wY2Vm9Oxc6cvojYCbsby56iyiCLMGNmJIK8M6UT/GuXPQogUoFHDjBtSurVVVVghw4AN/vAywdmjFsbt8vf0abrZmHPrQXy+q1EXxT1AUE9ZfwNxYyaEP/cs/bdqlCxw6BGPHwuLFuhkkUua8549HCI5NZ3K3OlqJgMpmzOpA9l6LoXt9F34b0aLUy2s0Ik2+3ktadh61Xay4HZOOQoA/x7alheczUMNXRmSj1grmjbYetKn5YAc6HZJA+1oOZOdqGLvmHAkl1BKq5WzNhjFtcLY25VZMOkN+O6U7Q8MKwtLUiIbVbGnr7UDDarZ4OFjiYGVabCCUmZmJp6cnnp6eZGY+QyJ8BkhWVhbt27enffv2ZGU9W4Ka/nWd+bBHXQC++PsqF8IrX8elVDRvDn36gEaj1R3yrWFHFx9nNKLkXWaIDM1X372fks3a0+EV/nml3Sf7NnajuUcVsnLVzNt7s/wD+Oor6e+KFRAaWv715aNUCEzIz1wtOxZSfo2kEvCkY+W0Xj4oBNh3LaZM4r0KhUB/32osHd6cvZP86O9bFY0IEzdcrJT/6VngmQmGvv32W9q1a4eFhQV2dnYlWmbkyJEIgvDQrU2bNuUei5FSwa9Dm+GSn8WJS1dhZWqEl6MlkclZvLfufInFDb2drNg4ti1utmYEx6YzeOkpoouYinpWEUWRsLAwwsLCnh29GQNFo9Fw4sQJTpw4YVB2HCXlXX9vejZwQaXW8M4f54lLqzghUp1QIPC3di3clE7ck/IzBH9djOSOAQrZmRkrmZh/El94KJiMCnZhL+0+KQgCn/aRaiw3n79Xfu2bjh0lg93cXG3Qqiv6NHKjtrMVadl5rDxe8bpDTzpW1nK24rWW0vTfrF03ynQMndG/IT0auCIIAjP6N8Td3oLI5Cw+3fYMaYBVIM9MMKRSqXjllVd45513SrVcr169uH//vva2c+dOnYzH0cqUxcObY5Svd7PnagyDW9bA0kTJqZBEvt1Rci8YL0dLNo5pSzU7c0LiMxi89CT3U56tK36ZysPU1JRt27axbds2TE0Ne1r1SQiCwNxXmuDtZEl0ajbvrS35xYNeaNEC+vaVskNffw1A4+p2dKtn2Nmhl5tXx9PBgoQMVYWfxMuyTzZzr8KLjd0QRZi583r5T8j53w2//y7VDukIpULQTo8tP3ZXb5mUSd3qYGas4FxYEvuuxZRrXdZmxvw02BelQmD7pft6US03NJ6ZYOirr75i8uTJNGpUuqJLU1NTXF1dtTd7e93NjzZ1r8KM/g21j386cFurR7HqRCibSmGa6O5gwYYxbahexZzQhExeW3KKyOfAU0xG9xgZGdG/f3/69++PkdGzKUFgbWbM0hEtsDI14kxo6S4e9ELBNMz69XBdGuukbnUA+DsoiuDYcooIVgDGSgWTu0tjXHIkhJTMijuJl3Wf/KiXDyZKBceDEwi4WU5T3zZt4IUXQK2GhQvLt65HeKGhG3VdrEnLzqsw0+3icLExY1QHSQxy9u4b5JXzAqKpexWm5O8fX/xzlRADzHBWJs9MMFRWAgICcHZ2pk6dOrz99tvExsYW+f6cnBxSU1MfuhXFkFbuvJqv5ZGpUrMp8J42Pf3pX1e4GJFc4rHWsJcCIvd8/aLXlpzUu/qpjExF4e1kxQ+vSt1Yq06EVrpqcqlo2lRSpXZ0lAQZgYbVbOlR3wVRhJ8OGKZnWd/GVfFxlU7iS44YnnJ2DXsLRrb3BODbndfLfYLn229h+XL4/vvyD64QikLZoZXH7lZoYFkUYzt5U8XCmDtxGWzSQTZnXCdv2tS0J1OlZuKGiwZn41KZPNfBUO/evVm7di0HDx5k3rx5nD17li5dupCT8/QahVmzZmFra6u91ShBm+bX/RtS10VSDA0MSwJEutd3QZWnYeyaQGLTSl4DVL2KBRvHtsHTwYJ7SVm8tuSk4ReZylQqarWagIAAAgICUKufEQPUp9CjgSsTukiO6x9vucz1+4bn+6VlwQK4exdefFH7VEF2aPulKG6V12KiAlAoBO3V/8rjoRVWn1WeffK9zrWoYmFMcGw6G86W09Xe1xfeegsqIGPaq4GrFFjm5LHsmH4c7W3MjBnfRQrK5u+7RVYpNd4eRakQmP+aL3YWxlyOTNFNMfszil6DoS+//PKxAudHb4GBgWVe/2uvvUafPn1o2LAhffv2ZdeuXdy6dYsdO3Y8dZnp06eTkpKivUVESD/OpAzVU5cxM1ay8s1WWOa7pv90IJgu+fYWMak5vPPH+VJF3G625mwc25aaTpZEpWQzaPFJfjlwG7VGLnKTgezsbDp37kznzp3Jzn72i+0ndauDf10ncvI0TN54sVwu3RVK1arwiM1E/ao29Grgmp8dMszaoe71XWhSw46sXDULAyomg1WefdLW3FibTZ+/75bujKxVKihmJqA0KBSCtnB+5fFQkjOffk6oSF5v4071KubEpuWwQge1YG625szOF3NcciSEo7fLOV35jKLXYGj8+PFcv369yFvDhg2LX1EJcXNzw8PDg9u3n37QMjU1xcbG5qEbwNfbrxZZ4FfVzpzf3nig//DZX1d5p1NNrM2MOBeWxJf/Xi3VWF1szNj2TntebOyGWiMyb9+tZ3raTBAE6tevT/369Q3aj+hZ4HnblgqFVFDtYGnCjeg0ftxvmEGFFo0GtmyBq9JvelJ36QS58/J9bkQbXmZLEASm5ssZrD0VXiG1iOXdJ4e18aCmo+RqvyhAB9N5Bw9CnTowblz511WIHvVdqedmQ3pOHr8drZjsUHHb0tRIqZWnWBxwh8QiLtRLSs8GrgzLF+ec8mdQieVhnif0Ggw5Ojri4+NT5M3MTHceRgkJCURERODm5lbqZfddi2XL+aId6tt5O/JJb8lMTy2K/O/vq0ztWRdBgHWnw1l7OqxUn2lrYcwvQ5ryw6tNsDI1IjAsid4/HWXbhXvPXCukhYUFV69e5erVq1hYPJ/S75XF87gtHa1M+XaA1Byx5PCdMmmpVBrTp8OgQfC//wHg42pDn0ZSV9RPBhrIta/lQJua9qjUmgrpfivvPmmsVPBx/rFz+bG75Q/YXF0hPBy2bZPsOnSEQiFos1irjofqJBB5lJJsy5eaVKW+mw1pOXn8elA32b7P+tSntrMVcWk5TN186Zk7x5SXZ6ZmKDw8nIsXLxIeHo5arebixYtcvHiR9PQHFfA+Pj5s27YNkJyTP/zwQ06ePEloaCgBAQH07dsXR0dHBgwYUKYxfPnP1WIzM2/71aRXQ8l8MFOl5teDwYz1q6ld/mwpD/KCIDCwWXV2TexIc48qpOfkMXljEBNksSyZ54xeDV15uVl1NCJ8sCmowrVxyswbb0iO9tu2wYULAEzsVhtBgF1XorkWZaDZoZ5SNmHTuXvcLeRgbih0r+9Cay97cvI0zN1TztqV+vVh6FDp/uefl39whejZwIX6bjZkqNQVlh0qDoVC0AaPa06FEqqD79PcRMnPQ5piYqTg4I1YVp8s3cX7s84zEwx9/vnnNG3alC+++IL09HSaNm1K06ZNH6opunnzJikpkniXUqnk8uXL9OvXjzp16vDGG29Qp04dTp48ibV16b1dmrnbkZ6Tx5Q/LxZZuyMIAvPyNVQAYtNy2H8thh4NXMhVi7zzx/kyaQjVsLdg45g2TOleB6VC4N+gKF746SinQxJKvS4ZGUPli5fqU9XWjLCETGbuNNB2+/r1YcgQ6X6+IGMdF2v6NJIyzj8duKWngRVNcw97uvg4o9aIzN9neGMUBIHP+kjSJNsuRHLpXnL5VvjFF6BUwo4dcOpU+QeYjyA8qB36/UTFZIdKQsfajnSs7UiuWuTjrZfQ6KCmtJ6bjXZ249ud1w27oUHHPDPB0KpVqxBF8bGbv7+/9j2iKDJy5EgAzM3N2bNnD7GxsahUKsLCwli1alWJusOexMwBjbAyNeJsaFKxLaqWpkYse6MlpkbSfG9wXAZJGSrquloTn57DuDXnynTVa6RUMKFrbTaNa4uHg6QeOvi3U3y/+4bBt0RmZmbSoEEDGjRoINtxlJOsrCy6d+9O9+7dnzk7juKwMTPWmp+uPR3O4VsGWsz5+eeSX9k//8DZswBM7Cplh/ZcjeFKZDkVlSuID3pInWX/XorSaX2TrvbJRtVtGdhUMrv+Zkc5hRhr14YRI6T7n31W9vU8ge71XWhYzYZMlZqlR3SbHSrpsVIQBL7t3whzY0nod+0Z3diuvNHOky4+zqjyNExYf4HsXANtaNAxz0wwpG+q21vwRb6g4vx9t4o92Hk5WvLT4Kbax2dDk3C1McXO3JigeykMW3a6zN0IzdyrsGNCR15pXh1RhIUBd3h50QmDtAUoQBRFrl27xrVr1/5zc9G6RqPRsH//fvbv3/9M2nEUR7tajoxs5wnAtM1BeuvaKZK6deH116X7+bVDtV2sealJVQB+MMDMC0CDqrba+qZ5e3U3Rl3ukx/2rIupkYIzdxPZW06lZT7/HIyN4cABqahaRwiCwKSuUmC5+mSoTguOS3OsdHewYFovafrzu53XuZdU/gtNQRCYM6gxTtam3I5N55sd14pf6DlADoZKwaDm1enVwJVctcjEDcVHzL0autG0hp328eFb8TSsZoOdhTEXI5J5bUnZjVmtTI2Y80oTFg5rhq25pBHx4s/HWH8mXA42nnNMTU35448/+OOPP55JO46S8FEvH2o6WRKTmsPnf5euE7PS+OILSc9mzx44ehSACV1rIwAHb8QarD7Y5O51tKafuhqjLvfJqnbmjO4oKS1/t6ucWW9PT8nJHqTvSYd0redM4+q2FZIdKg1vtPWkhUcVMlRqpm/Vjc+Yg5WpVhD1j1Ph7LkaXe51GjpyMFQKBEFg5sBGOFqZcCcugy/+uVLsMjMHPmwfciw4AQ97C5ysTbkZk8Yr5WyXf6GRG7sndaSdtwNZudKPYcyac2UOsmQMHyMjI4YNG8awYcOeWTuO4jA3UfLDq5J30j9BUfwbFKXvIT1OzZowahQ0aybVpiCpareuKVn+jF1zrvyKyhVALWcrBjaTVPN1lR3S9T75jn8tHK1MuBufUeou3Mf49FMpWJ09u9zjKkzh2qHVJ8OI11M7ukIh8P2gxpgaKTh6O54/S2EDVRQdaztpm3+mbb5kkKKiukQOhkqJvaWJtqZh49l7LCumm6Cemw0Nqto89FzQvRRAxMXGlLCETAYtPsHtcuxobrbm/DGqNZ++UA9jpcC+azF0mH2IaZuDyrVeGRl94lvDjvc6S+rU//v7CjGGGOD/8AMEBkK7dtqn3u8snSBj03IY/XugQYqlTuxaG2OlwLHgeE7cidf3cB7DytRI66v204Hb5bO/cHWFDh10NLKH6VzXWStoueSw/uxOajpZaevBvtl+negU3fxWPuhRl6budqRk5TJ8+elnVueuJMjBUBnwr+tMKy/p6u+bHdf5ef/tIlOTQ1q5P/ZcXJqKuNQcXGxMiUnN4dUlJwkqhY/ZoygUAm/71eSv99rT3KMKKrWGPwPv0X3+Ed5adZaTdxLk6bMKIlMlmTeWxnalPKjVas6ePcvZs2efeTuO4ni/Sy0aVrMhOTOXj7YYoPaJhYXUZl+Itt4OKPKfCrgVxydbL+uk00eX1LC30B6X5u65We7tWhH75GstalDb2YrkzFwW6Eo5+/59KXjVEYWzQ2tOhVXaMeBJjOpQkyY17EjLyeOTbbqZLjMxUrByZEvquEhuCsOWnX5uZx3kYKiMfJ8vXw7ww/5bjFtz7qky8n2bVMXU6PFNrVBIbfhNatiRlJnL0N9OcfJO+VrlG1S1Zcs77djyTlt6NXBFEKT6hSG/neKlX4/zT1CUQabun0VSMnP5+cBt2n93kBnbrxEcWzkF7NnZ2bRq1YpWrVo9F3YcRWGsVDD/VV9MjBQE3Iwrv3dVRZGWJpmE7tqFQiHg7WylfWljYARf/FO0gr0+GN+5FmbGCs6HJ3PoZvlsKypinzRSKvikTz1AEjgsd1biwAHw9oZhwyBPdxpW/nWc8K1hR3auhiWH9Vc7pFRIhc8mSkkn6K+LRYsElxQ7CxPWjGqtNRAfvvyMYTY1lBM5GCojno6W1HZ5cMDbcy2Gl349zs3ox6elbM2N6Z0vxFiYPI3ItC2X+PG1JrTzdiBDpeaNlWfYX94OCiRNkcXDm3PoA3+Gt/HAzFjB5cgUJqy/QKc5ASw/dpf0ShS1EwQBDw8PPDw8nnkLidi0bGbtuk677w7ww75bJOWn8EPjHz5YZ+eqiU3LJjg2nQvhSZy5m0hYQka5W1Wfp21ZEmq7WDMtXzBwxvZrhCcYYKr+hx+k9u2PPgKNhoZVbR96ec2psPK3iusYZxsz3mjrCcDcPbfKlb2qqH3Sv44THWs7olJr+G73jfKtrFUryVvu1i1YvVo3A+Th7NAfp8LKnTkpz7as42LNhK7S1PKX/1zTWabKxcaMP0a1xjm/1nXkyrOGK4paRgTRkH6dBkhqaiq2trakpKRofcoKWBRwh9mP/EDNjZXMHNiQAU2rP/T88eB4hi07jZ2FMZO71eGHfTdJyZJ2pnqu1qwd3ZqPtl5m37UYlAqBua80fmwd5SExQ8Wak2FSG2i+SJiNmRHD2ngwsp0nLja6sz15HslU5XE6JJGVx+9y/E7CE+tAnKxNsTY1IjU7l9SsPFRFZODsLU1wsTHDzdYMV1sz3GzMcLGVHrvZmuFiY4a1mXFF/kvPFBqNyJDfTnH6biItPauwYUxblAoDCgSTksDLC1JSYP16Frq24Pvdj6sov+PvzbSedQ0miE3KUNHx+0Ok5+Tx69CmvNi4qr6H9BjXolLp88tRRBG2vNOO5h5Vyr6yH36ADz4Ad3cpKNJRN6YoigxcdIIL4cm81d6Lz/NlWPRBrlpD/wXHuRqVSs8GLix+vbnO9rdbMWm8uuQkyZm5tK/lwPI3WmJmrNTJuiuCos7fjyIHQ8VQ1MYMiUuny7zDT1xucrc6TMy/WgDpYP7O2nN81qc+NewtuBWTxuClp7TqpW1q2rNsRAs+/+cqW/M90L7u14AR+VduuiI7V83W85EsOxpCSL6Eu7FSoJ9vNd7uWJO6rqVX535eyMjJIywhk9CEDOkWn0FoQibBsellVpkVBLA2NcLG3BilQiAmNZvs3JJNU1qZGkmBkq0Zneo40bdJ1f900BqRmEmvH49ILcS9fRjbyVvfQ3qYGTMkXZs6ddi/6SCj11187C01nSz5/c1W1LA3HE+5H/ff4sf9t6npZMneSX4YKQ1vwmDa5iD+DLxHU3c7tr7Truwn96wsqFULoqLg55/h/fd1NsYjt+IYseKM1NU1rTPOevytXotK5aVfj5GnEXUe5F6MSGbYb6fIUKnpUd+FhcOaGeQ+A3IwpFOK25jdfzjM7UdqRXo3cmXWgEbYWZgUue7Q+AxeWXySuPyWzAZVbVgxsiWLAu6w6kQoAB/2qMN7nWvp/EpSoxHZfz2G346GcDb0gdZI4+q2NPeoQnOPKrTwsMfV9vk6+WbnqglNyCAk7uGAJzQ+g9i0oltjjRQCoiiZ8D6JanbmzH/NF2szKfixMTPC0sQIRaEMhiiKpGTlcj8lm+jUbKJTsqX7KVlEp+YQnZLF/ZRs0rIfT0ELArTzdqCfbzV6NXTF5j+YOfrzbATTtlzCRKngn/fb4+Na9AGuUklLk9rt4+OJ/3kRLSIfVrt/v4s3k7rVNayMFpCWnYvf94dIysxlzqDGvNKibCr9FUlMajb+cwLIylWX/+S+ZInkZu/sDCEh0tSZDkrhSKAAADO7SURBVBBFkUGLT3IuLImR7Tz58qUGOllvWflh3y1+PnAbe0sT9k32w8FKd5pkJ+7EM3LlWVR5GgY2q8bcQU0eOs4ZCnIwpEOK25hz99zk10MPdzoMbVWDbwc0KlEAE5mcxcCFx4lJlU7EztamrHqzJbuvxvBzvrv0GL+aTO/tU2Gp9fPhSSw7GsLuK9E8OvtTzc5cGxw196iCj6t1ma4CsrKy8PPzA+DIkSOYm5vrYuhPRBRFYlJzCIlL5058Bndi0wmJzyAkLp3I5CyK2uOrWBjj6WiJp0P+zdFCe9/WwhhRFIlPV3E7Jo3guHSCY9O5HZPO7dh00rJzuf51L50cFDJy8rTB0q2YNLZfus+5MCloFfNUJPz7PU5Wpvy0dBU9m9TA1MhwU9W6RBRFRv8eyIEbsdR3s+Gv99pj8oTmBL0xbx58+CGihweNhvyMg701brZmnApJpJWXPRvHtDGYKbLCLD1yh5k7b1DNzpyDH3Yq9f6UnZ3N4MGDAdiwYQNmZrq/iCrIYNWwN2f/lNKPUUtuLvj4SIHQzJkwfbrOxnjsdjyvLz+NiZGCI1M7l+liUlfHSlWehr6/HONmTBp9m1TllyFNi1+oFOy7FsO4P86h1oiMbOfJF33rG9y+LQdDOqS4jXn5Xgp9fz1Gay97XmpSlc/+voIowpTudZjQtfYT1vg4sanZvLrkJKH5haFmxgp+GdKM8MRMZmyXpNAHt5QCrIq8qoxOyeb03QTOhyURGJbE9fupjwVHliZKfN3taO5hT3OPKjR1tytRhiIjIwMrK6ngPD09HctyXo2Jokhqdh73kjK5EycFOiFxGYTEp3M3LoMM1dOLlG3MjKjpZEVNR0s8nhDwlJXkTBU2ZsYVdoUUkZjJP0FRbDkVzKFPegNQY/Jm7GyseKGRGy/5VqWNl4NBXqHpkti0bHrOP0JSZi7jO9fiw/ziaoMgK0vqWLp/n1ufzcLry2nEpeXgPzcAVZ6G5W+0oGs9F32P8jGyc9V0mnOImNQcPn2hHm/ni+2VFF3/vp9EpiqPznMDiEnN4ZMXfBjjV45p0j/+gNGjpUDoiy90NkZRFHl1yUnOhiYxrLU73w5oVPxCj6DLbXnpXjIDFp5ArRFZMrw5PRs83shTHrZduMfkjUGApF1VoA1lKMjBkA4pbmOKosj6MxG81rIGSoXAmpOh/C/fPmD2y414reXjGkNPIjFDxdBlp7hxX+pGE4CPevtgb2HMx1svoxGhTyM35r3apNIK1jJy8rgYkcy5/ODoQlgSaY90EAgC1HWxxreGHVUsTbAyNcLCRImliREWpkosTaWpIvKyaV1HMmCMSUjG0c7msemjtJw8EtJVJGbkEJ+uIjFDusWn55CYoSIhXUVChvR6YoaKXPXTd12lQsDd3oKajpZ4O0uBT00nK2o6WeJgaWJwVzClQaVSMeunxVyMSCbSqTWxGQ++E1cbM17yrUo/36rUd7N5pv/Poth1+T7vrD2PQoDN77SjmXs5imp1zZIlEBAAX38tmYUi2UosPnyH2s5W7JrY0SBrLP4MjGDa5kvYmBlxeGpnqlgWPc1fmNzcXFatWgXAyJEjMTaumCncTYERTN18CWtTIwKm+pd96ketljSHquuuSaWAUyEJDF56CoUAuyb6lboOU9eB5ezdN1gUcAcna1P2TfYrtnyjtPx+IpQv/pHOef97sT6jOnjpdP3lQQ6GdEhpNmYBc/bcYMGhOygVAr+NaE4Xn5JdCaZm5zJyxRnOhydrn3u5WXX86zrywZ+XUKk11HS0ZM4rjWnuYV+Wf6dcqDUit2PTOBeWxLnQJM6FJxFWwjZnjSqbiPmDACmboTAxw8JEiYWJEUoFJGXkFtl99TSqWBhrszyFgx53ewvDmj6pIDQakdN3E/n7YiQ7L98ntVCtUS1nK15pXp2R7T2fy2m0yRsvsu1CJF6Oluyc0BFzE8P9H1OycvGfI9XlfDewEYOfIMSqb9QakT4/H+VGdJreO6KehkYj8tKCY1yJTOX1Nu5807/0mZfKYOyaQPZcjaFDLUfWjGpVqosSXQdD2blq+vx8lDtxGQxsVo0fXvUt1/qexC8HbjMv35z4+0GNedVA6s7kYEiHlCUYEkWRDzddYsv5e5gZK1j/dhualvDKNVOVx9urAzke/EB8sYVHFUZ18OLLf68Sk5qDIMCb7bz4sGcdLEz0600Vm5bN+bBkrkWlkJaTR2aOmgxVHpkqNek5eWSqpOdS09M499VLwINg6ElYmiixtzLBwdIUB0sTHKxMsH/ovgmOVqbYW0r3Dbmts7LJyVMTcDOOvy9Gsv96rNbg0tvJku9ebkxLz8oPoCuSlKxcev14hPsp2YztVJPpvevpe0hPRhRBEFhx7C5fb7+Gs7UpAVP99f7bfRJHb8cxfPkZydZncic8HXU/3VVeTock8Fo5Mi+Pr/A0nDwJkybpZHwA4QmZdPvhMCq1ht9GtKB7/ZJPjVbElOO5sCQGLT6BKMKKkS1KfIFeUkRR5Nsd11l27C4KARYOa0avhm46/YyyIAdDOqQswRBIWg+jfw/k8K047C1N2DyuLTWdrIpfECmSf2/teQ7ceKAKW83OnJ8G+7LxbASbzt0DwMPBgtkvN6ZNTYfS/VN6oPAPPC4xBYxNtYGTWiNSxdIEBzm4KREajYbr168DUK9ePRSKxzNgqdm57Lh0n3l7b2kNJIe38WBar7rPlX7R/msxjF4dKBm6jm9Pg0fEDvVKaCj873/g5gbff48qT0O3Hw4TnphZqprCyuaNFWc4fCuOFxq5snBY8xItU5J9UpeMW3OO3Vej6VjbkdVvlS7z8hA3b0rF1AoFXLkC9XQXUBdMjXo6WLBnsl+Js7MVVX/1zfZrLDt2F1cbM/ZO8dN5N6ooiny85TIbAyMwUSpYPrIFHWs76fQzSktpzt/P/zyCnjBWKlg4rBmNq9uSmKHijZVnSqwGamasZPHw5vRp/CCyjkzO4o0VZ+jV0JVVb7bEzdaMsIRMBi89xf/+uvJMqYGamyhxtDLF3cGCem42NKxmSzU7czkQKiFZWVk0bNiQhg0bkpWV9cT32JgZM6SVOwemdOK1/JT1mlNhdP/hiE4Uzg2FbvVd6NPIDbVGZPrWy4Zlinr9ulSo+/PPEBGBiZGCqfnF3ksO3yGuGCkHffHJC/VQCLDzcjTnwhJLtExJ9kldMv0FH0yUkkt7wM24sq+obl3o1w80GsndXoeM71ILRytTQhMy+T1fKkWffNCjLp4OFkSnZjNzx3Wdr18QBGYObMQLjVxRqTWMWX1O2wH7LCAHQxWIpakRK0a2xMPBgojELN5adbbEFhjGSgU/D27KoOYPCvwyVGpGrw7kVkwauyd1ZEirBye5HvOPcOy24blPF8bR0RFHR0d9D+O5oKTb0tbCmNmDGrNudGs88g+Eo1cHMn7deYM9GZeWL/rWx9rMiEv3UgzipKOlVy/o1AlycuDLLwF4sbEbTarbkqFS89OBW/od31Oo62qtrfkojYVIZf6+PRwsGdneE4Bvdlwjtzx+izNnSpmhbdvg1CndDBBJNLXARuaXA8HaDG1JqIhtaW6iZHa+p+aGsxEcvV2OIPIpKBUC81/zpWNtR7Jy1by58gyX7iXr/HMqAjkYqmAcrUxZ/VYrHCxNuBKZyjt/nNPWchSHUiHw/cuNGdHWQ/ucKMLMnTf4Zvt1vnypAX+Mak01O3Mik7N4fflppm+9ROpTDGP1iaWlJXFxccTFxVVI2+1/ibJsy3a1HNk90Y+xnWqiVAhsv3Sfbj8cZlNghEH5ZZUFZxszbb3Q3L03iUyu+MxEiRAEmDVLur9qFVy/jiAITH9BGuv6MxHciascc9/SMqV7HcyNlVwIT2bn5ehi36+P3/f4LrWwtzThTlwG606Hl31F9evDG29I9z/+mCKFyErJoObVaVjNhrScPObtLVnwW5HbsnVNB97IP598vOVyhfhTmhopWTK8Oc09qpCanccri0+yKdBADZYLIQdDlYCHgyUr32yJhYmSo7fj+WjLpRKbIioUAl+91ID5rzXB2vTBNNKmc/d4fdlp6rlZs2eynzZgWn8mgp7zjxBQThdqmecPcxMl03vX4+/32lPfzYaUrFymbr7E8OVnDNP8tBQMblmDlp5VyFSp+d9fVwwnwGvb9sE0zGefAdCmpgPd6jmj1oh8X17z0QrC2caMsZ0kraHZu2+Qk1c+c+GKwMbMWKtrM3//LVIyy3ER+NVXkk/Z4cOwe7eORigdvz9/UVKi3ng2nGtRqTpbd1mZ1suH6lWkC+jPK+i3YmFixMo3W9LVx5mcPA1TN1/i022XDXI/KkAOhiqJxtXtWDisGUqFwLYLkczeU/KDoCAIDGhanf0f+NO57oOCtLOhSfT5+RiRSVl83a8hG8a0wcPBgvsp2YxceZYPNwWV7wAh81zSsJotf49vz0e9fDA1UnAsOJ6ePx5h2dEQ8soz3aBHFAqBWQMbYawUOHgjtkTZjErj22+laZitW+HMGQA+6uWDQoA9V2MIDC1ZXU5lM8avJs7WpoQnZrLmZJi+h/NEhrSsQR0XK5Izc/n54O2yr6hGDRg/Xrr/4YdS8KojWnnZ06exGxoRvt5+Ve+BuqWpEXMGNUGpENh6IZLfjoZUyOfYmBnz24gWTO5WB0GAtafDeW3JKe6nGEjm9hHkYKgS8a/rzHcDJV2MJYdDWHn8bqmWd7ExY8XIlnw/qDEW+cXG0anZvPjLUX49eBvfGnbsmtiRt9p7IQiw+dw9us8/bBAFs1lZWfj7++Pv718pBZbPM9nZ2QwbNoxhw4aRnV2yovxHMVYqeMffm92T/GhT056sXDXf7LjOwEUnDOLqtSzUcrbmXf9aAHzxz1XDuRBo0ABGjJDu52eHartYawVZZ+4seV1OZWJhYsQHPaTMyy8Hg0nOfLpZsS72ybJgpFTwaR9JD2n1yVDu5ptPl4np08HVFWJi4G7pjs3Frrq3dOFxKiSRPVeLDtQr41jZ1tuB//WRpmtn7brBoRsVM5OgUAhM7FabFSNbYmtuzMWIZF78+Rgngg2vvlVurS+GsrbWF8WCQ8HM2XMTQYBfhpTNdDAqOYspf17kVMiDq0oXG1M+7VOfvo3dOBeWxLTNl7TO9P19qzL9hXp6cz2vDLn+/woVYW2y8WwE3+68Tlp2HkYKgbGdavJ+l9rPXIdfTp6a3j8dJSQugyGt3Jk10EBE+cLCYOBAiIiQ1Knr1yc2NZtO+eaji4Y1o3cj/euyPIpaI/LCT0e5GZPG6A5efPbik4UY9f37HrnyDAE34+he34XfRrQo+4pOnID27cHdHQ4elKxVdMS8vTf55WAwNezN2Te501N/W5W1LUVR5JNtl1l/JgJrUyO2vdeOWs7l1GwqgvCETMb9cY5r91NRCFJ2dIxfzQpVyZdb6w2cd/29Gd7GQ/Iw2xjEqZCE4hd6hKp25qx/uw3f9G+IiVLamWJSc5iw/gIDF55AoRDYObEjY/1qohDgr4tRtPvuIG+vDuTQjVjDakGWKRUmJibMnz+f+fPnY2JSfml9QRAYnN+G36uBK3kakQWH7kgnweg0HYy48jA1UjIz3w9q/ZlwzhrKFJSHh+SFFRcHnTvDlSs425hpPcBm775Rvo6oCkKpEPgkP4Pw+8nQp9aW6XqfLC2f9amHUiGw71oMJ+6UI+vQpIlU+B4eDn5+cLscU2+PMK6TNy42pkQkZrGilLMCFYEgCHz1UkNaedmTlpPHqN8Di8z+lRd3Bwu2vtuOl5tVRyNKGal3/jhPmoE0/MiZoWKoiMwQSFdc7609z+6r0VibGbFpXFt8XMu2/ojETD74M4gzjxz4X2pSlWm96hKfruLbHdc4G/pA86GqrRmvtqzBqy1qUNWu4hzkC9D3laNMydl95T6f/32V2LQcbM2NWflmS8Py/ioBH2+5xIazEdRytmLHhA6GYUdy8iS0ayfdr1IFAgJIr1sf/zkBxKfn8NVLDXijnadeh/g0hi8/zdHb8fRp7MaCoc30PZwn8vnfV1h9Mox6bjZsf79D2U2t69aFW/mdX66uUiavrm7MgLeev8eUP4OwNFFy6EN/nJ+Qqa/sY2VCeg79FhznXlIW7Ws5sOrNVhhXoHeeKIqsPR3OV/9eJVct4u1kyZLhzSskKyVnhp4BlAqBHwf70tKzCmnZeby+7HSZBapq2FuwYUwbvnqpAWaF/Lj+CYqi67zD7LsWzco3W7Fvsh+jOnhhZ2FMVEo2P+6/TYfZB3lr1Vn2Xo1+ZotnZXRLr4Zu7J3sRzN3O1Kychn22+kK0SSpSKb3roejlSnBseksDqiYAtFS06jQlF1SEnTujNX1K0zqJilR/3TgtsFcJT/KJy/UQxBgx6X7nA83TCG9Sd3qYG1mxPX7qWw+V45Wbl/fB/ejo8HfH65dK+/wAOjvW40mNezIUKmZs+emTtZZXhysTPltRAssTJQcD07gm+26+V+fhiAIvN7Gg41j2+JqY8aduAz6/XqcnZfvV+jnFoccDOkRM2Mly0a0pL6bDfHpKoYsPcWWfKuN0qJQCLzRzpPdk/xo6fngKj4nT8OCQ3fwnxPAubAkPnmhHqemd+Wnwb60qWmPRoSDN2IZs+Yc7WcfZO6em0QkPttt1s87Go2G0NBQQkND0eiw66UwdhYm/DG6tVY87a1VZ9ml54NVabC1MOaLfKPRBYeCCY41AD0fKyutiz0AiYnQtSuvGcVT08mSxAwVSw4bSOD2CPXcbHglXwB25hOEGCtjnywOe0sTJuZbnMzZc6vsGjrNH7EgiY7WTm2WF4VC0O6Xm8/f4/K9lHKvUxfUc7Nh/mu+APx+Mqx8uk0lpJl7FbZP6ECbmvZkqNS8u/Y8s3Ze19tFuRwM6RlbC2M2jWtLzwYuqNQaPtgUxKxd18tc0+PpaMmGMW3534v1tbVEggDx6Tl8vPUyL/x8lMDQJPr5VmPDmLYc/KATY/1q4mBpQkxqDr8eCsZvziGGLz/Nrsv3DbKO4b9OVlYWXl5eeHl5VWhnnoWJEcveaEGfRm7kqkXeW3eejWcr/iCpK15s7Ebnuk6o1Bo+2Xq5xNpeFUqzR6aYEhMx7t6Nj2tLpq3LjoUQnVJ53VilYUr3upgbKwkMS3qsI6qy9sniGNHWE08HC+LTc1h4KLhsK2na9PHnYmOlgOjSpfINECkI6O9bFVGEr/7Vf6t9AT0buPJhfvfg539fKVMta2lxtDLlj1GtGZtfO7fkSAivLz9dKrVuXSEHQwaApakRi4Y1Z0IXqS14yeEQxqwOLHPKXKkQGNXBi12T/GjqbqcVVBWAm9FpvL78NJ3mHOL3E6FYmRkx/YV6nJzelQVDm9GxtiOiCEdvx/PO2vO0nXWA73bdILQ8Lav5WFhYYGFhUe71yFTetjQ1UvLzkKYMaVUDjQgfbbnM0iN3KvxzdYEgCMzo3xBzYyVnQhP50xBUcAtPwRSQnEz3t1+mZTVrsnM1/LDPMKZPHsXV9kHB99fbrz2mpG8Iv28TI4VW4fu3oyFly3I/6TsyMYFRoyQ9Ih3wUW8fbWC5/dLjGVd9bcv3Oteib5Oq5GlE3vnjXKXMEhgppe9s4bBmWJooORWSyIs/H6v06Vi5gLoYKqqA+mn8ExTF1E1B5ORpqONixbIRLXF3KPuPQq0RWX4shEUBd0h6iu6Kq7UpzTyr4FvDDt8aVbAzN+bvoEj+DLz3kH+Vh4MFdV2s8XG1pq6rDXVdrfF0sMCoAovtZAwDURT5bvcN7TTOu/7eTO1Zt0LbYnXFsqMhfLPjOjZmRuz/oBPO1vqRlwAkdePevR9+bsAA+OEHzitspU5QAXZO7FjmhoqKJCMnjzYzD5CWk8cYv5p88oLuXN51hSiKvLL4JIFhSbSpac+GMW1Lv5Lq1SEyUkqri6JU+H7smPRYR/y0/zbz99+imp05Bz54eqt9ZZOlUvPqkpNcjkyhros1W95th5WpUaV8dnBsGmPWnCMkLgNjpcDnfRvwemv3Mh9nSnP+loOhYqjsYAggKCKZt1cHEpuWQxULYxYOa05bb4dyrTM7V80/QVH8fiKUq8WI6ikVAn0auTHv1SYcuB7LhrPhHL4V90TLHhMjBbWdrajrKgVJPq42+Lha42Rt+tQdODtXzb2kLCKSMrmXmMkLjdxwsDIt1/8nUzksCrjD7HwLiaGt3ZnRr2HZu3YqiTy1hgELT3A5MoUXG7vxqz67oWJipA4lAGdnafrl1Vdh40YA3l17jp2Xo+lc14mVb7bS3ziL4Kf9t5i/X2o5X/1WS/zqOOt5RI9zNSqFPj8fAyQ9m3f8S6kX9NJLUjbonXegTx/JbPf0aWilu+8kS6Wm67wAolKymdK9DhO61i5+oUoiOiWbvr8eIy4th271XFg6vDmKSvqdp2XnMm3zJXZdkaZim7nbMbWnT5nOgXIwpEP0EQyBtDOOWRPIpXspGCkEvu7XkKGt3cu9XlEUCQxLYnHAHQ4UoTo6Ll90zzL/iiAxQ8WN+6nciE7jZnQaN2LSuBWdRlbuk71mbM2NqWZnRhULE0yMFKg1IilZuUQlZxGX/kDLQhDg6lc9sTCpnCsPmfKz7nQ4n/51GVGU6nJ+eNUXEyPDzg5eiUzhpV+PoRFh5ciWdPbR4wn81Vdh0iSpoNrXV6pROXoULCwIjc+g2w+HydOIrBvdmna1KscFvjTk5Krx+Xw3oghGCoHVb7UyyHF2+v4QYfnTPPNebczLzUoxxZWSAra20v3FiyUzVz8/nY/xn6AoJqy/gLmx1GrvaqvHrOUjXAhP4rWlp1DlaXjX35tpvXwq7bNFUeS3oyH8sO8W2bnSdGyHWo582LMuvjXsSrweORjSIfoKhkDKoEzdfIl/g6IAGNnOk8/61NPZtNSZuwmMWH6G7LwnF0mbGinwr+vEC43c6FrP5bFUqUYjEpGUqQ2QbkancT06ldD4DB6tVRXzVMRtmwmA04BPEIwkYTalQsDD3gIzYyVmxgrMTZSYGysxNZb+mhkrMDd+8ByAKk9DrrrgJqJSa8jNe+RxwS3v4cd5ahGNKCIiZb81oqjNeImPPk+BgbX0HjH/PRYmRjhZm+JiY4qztRnO1qa42JjhZGOqvW9vYVJhV1I5OTmMz/dR+vXXXzE1rfys2vZLUUzeeJFctYh/XScWDWuOuYlhpPmfxrc7rvHb0btUszNn72Q/baCvV06cgDZtJO+yfL785yqrToTSsJoN/7zXodKuyEtDj/mHuRUjdegZKwV+ea0hW36ZAehvn3yUXw/eZm4hp/gZ/RowvK2n/gb0BApP6Q1oWo35r/mSnZ3Nyy+/DMCWLVswM9NfgLTtwj0mbwwC4KfBvvTzrVapnx+Tms2vB4PZcDacXLV0oO5e34UPetQp0TSyHAzpEH0GQyD9WBYcCtb+qDvWduTXIc2wtTDWyfqv30/l1cUnSMsp2k3YxEiBX20n+jR2pWs9F2zMnv752blqgmPTuXwvhb8uRnIuLAlVdhYR8wcBUGPyZhQmhnMFVBEYKQQcrUxxLgiY8gMlZ2szXG1N8a1RBXvLsin1GoqAZcDNWMb9cY7sXA0tPKqwPN9/yFDJVOXR/YcjRCZnFWktoW8S0nPwnxNAWk6eXk5AJeGb7VdZdixU+1iRl8PdedIJ3FBEVYMikum34PhDz03tWZd3/b3LXusWFQU2NlJWT0dcupfMS79K49z6bjvqOpgYxO+7gFm7rrPkcAimRgr+HNuWJqXIzOiKiMRMftx/m20X7qERpRmFfk2qMqlbHTwdn7595GBIh+g7GCpg95Vopvx5kUyVmpqOlix7owU1nXTzgzwfnsTry06TqVLTrZ4L5iZKdl6KIj8QR6kQHmr1N1Eq6FjbkRcaudGtvkuxJ8D0nDwW7bvKtL6+wMPB0OAW1RnYvAbZuWqyctVk59+yVGqy8zTS34LnctUoBAFjpUK6GQmYFNxXKjBWCpgYPfJY+17psZFCgUKQfkyCICBQ+C8ICPmvPeU+kJaTR2xqDnFp2cSk5hCblk1sWg6x+fcTMlRPrK8qjCBAk+p2+Nd1wr+uM42r2ZY4A6BSqZgzZw4AU6dO1Yv9QQGBoYm8ueosadl51HOzYfVbrXCy1n9W4GkcuhnLmyvPohDg7/c60Ki6rb6HJJGRAcuWwbvvgrGx1r/Q0IprC/g3KIr311/QPhbVuaSd2UrPBq78/uM3et0nC1DlaWjwxW5tRqGAMX41md7bp/QB0aJFkqP9hx/CV1/pcKTw4aYgNp+7h28NO9aMaIKNjaTGbAjBkFoj8vbqQA7eiMXZ2pR/3++gN4/L4Ng0fth3i52XpXoiI4XAKy1qMKFrLdxsH3dSeO6CodDQUGbMmMHBgweJjo6matWqvP7663z66adF/uhEUeSrr75i6dKlJCUl0bp1axYsWECDBg1K/NkFGzMmPhFnB/1aElyLSuXt1YFEJmdhY2bEgmHN6FjbSSfrPnY7ngkbLrBnkh9O1qbEpGaz9lQY686EE1+oxufRwMhYKdC+liOtvOzxcrDEy8kSTwfLxw7ehbMZdaZtI0eQAqgFQ5vRp7HhGVSWh1y1hoR0FbGFg6XUnPyAKZuwxMzHRADtLU3wq+2If11n/Oo4lTlrpA+uRaUyYsUZ4tNz8HSwYM2o1tSwN1wJhQnrL/BPUBQNqtrw93vt9d8NKYqS0N+FC/DLLzB+PFkqNZ3nBhCdms2nL9TTtrQbCuEJmfjNOfTE134e0pSXmpTefLoiGLjwOOfDkx97fnDLGnw7oFHpiv83b4ZXXgELC8mzrKru/sfY1Gw6zw0gQ6Vm1ku1Gdpesv8whGAIpKLmgQtPcDs2nSbVbdk4tq1eA/QrkSnM3XuTgJuSMr6JkYLhbTx419/7oWac5y4Y2r17Nxs3bmTIkCHUqlWLK1eu8PbbbzN8+HDmzp371OVmz57Nt99+y6pVq6hTpw7ffPMNR44c4ebNm1hbl8wHpWBj9py9mxVj/CrFx6so4tNzGLfmHIFhSSgVAp/1qcfIdp46aXGOS8t57Ko+J0/Njkv3WXc6nIsRyeSVULiuqq0Zno6WeDpaUtPREhdzeKml1NERGp3A6rPRrDkVxs4JHanlrLuU87PC/ZQsDt+MI+BmHMeD40krpJYrCNC4uh3+dZzwr+tE4+p2Bt+xFRqfwevLT3MvKQtXGzPWjGpFbZeKc8AuD3FpOXT74TApWbmGE2gsWiRlhRwdITgYbG35MzCCaZsvYWNmxJFpnbGzMJwAWRRFms7YR3IhuQ4LEyUf9qjL6208DKag/ut/rz1miurpYMEnL9Sje32X0h03RVFytD95UtIcWrZMp2MtyAY6mYkEftUXMJxgCCAsIYN+C46TnJlLP9+q/Piar96lNc6GJjJn902tL6eliZJRHbwY7VcTGzPj5y8YehJz5sxh0aJFhIQ8Wb5eFEWqVq3KpEmT+OijjwCp8NTFxYXZs2czduzYEn1Owcb0/XQb84e3w7+u/ttIc/LUfLrtCpvzrTuGtKrBVy81rPADUHaumsuRKZwPS+J8eBLnw5Mf0iEqCo0qW1sz1P6bHXi7OeJiY4qPqw3ezlZ4OVhSxdIYM2MlRgpB7z+yyiRXreFcWBIBN+MIuBnLjUec4qtYGOOXHxj51ZayRvHxkjO3o6OjwWyr6JRshi8/ze3YdOwsjPn9zVZ6qS8oCX+ejWDalkuYGyvZO9lP/5ms3Fxo3Bhu3IBp02D2bNQakT4/H+VGdJpBavoUmLcqBGkqxc00l63vtsPNxdlg9smCbq3CbHu3HU3LajxcYLYrCHDu3JPVqstIdq6a7vMPExadpD1WGlIwBHAiOJ7hK86g1ohM61WXd/1r6XtIiKLIkdvxzN1zk8uRkr2Jrbkx4zp5M7ChPa5O9s93MPTZZ5+xe/duAgMDn/h6SEgI3t7enD9/nqaFdth+/fphZ2fH77//XqLPKQiG7kbG4llVN1NSukAURZYdvcvMXdcRRWjlZc/i15tX6vSKKIrcS8rifHgSF8KTOR+exNXIFB6ZokcQwFij4vb3A4HiC6gVgqR8bGqswNRIId03UuQ/zr9f8Pwj7zFSKrS1PY/W+vCk2iAe1A9R6LWBzarpbV48OiWbw7diCbgZx7Hbj2eN6juasPPDHoDhHSyTMlSMXHmGoHspWJoo+e2NFrTzNry2a1EUGfLbKU6FJNKpjhOr3myp/xP49u3Qt6+kb3PtGnh7E3AzlpErz2KiVHDgg076D9oKMW/vTUITMhnv783gRQFcnNEPMKx9MiIxE/+5Abze2p2Y1Bx2X42mlZc9G8e0Kfv3PXQorF8PHTvC4cM6FWLcdfk+Y1eeMNhgCGDNyVD+9/dVBAF+G96CbvVd9D0kQPpN77kazdy9t7RlCPbGeVz4pv/zGwzduXOHZs2aMW/ePEaPHv3E95w4cYL27dsTGRlJ1UJzu2PGjCEsLIw9e/Y8cbmcnBxych5kO1JSUnB3d2fZ7rO80raObv8RHXDkVhzTNgeRnqOmrbcDv41oodfxZKnUXI1KIeheMkERyQRFpJCQoUKjyiZy4QgA/jlxmdgsgbDETMISMghLyCQiMcugfNDWvd2axtXt9D0MctUagiKSOXY7nqPB8dyMTntoW0ZFRRncwTI9J4+J6y9w+m4ipsYKdk/oiJOeAsuiuBufzsBFJ8nN0zBnUGN6N9Jz7Zoowssvw4EDktDfunWIolS8eiokkRcaufL9oCb6HWMhVHkabTZ69dGbvP+iJEh4IyQMNwc7PY7sAaIoEpqQgZejFVHJWbz4yzFUeRrmv9aE7vVdy7bSe/ekGq/sbFi1SlIQ1+F4hy85wr8fvQQY5u8bYMb2q2w8ew8LEwU7JnTESZ+q7o+g1ojsuBTFgoBgIqITiVw0kuTkZGxti2mWEPXIF198IZIv3/K029mzZx9aJjIyUqxVq5Y4atSoItd9/PhxERCjoqIeen706NFiz549yzUm+Sbf5Jt8k2/yTb49G7eIiIhi4xG9Zobi4+O1tQ9Pw9PTUys6FRUVRefOnWndujWrVq1CoXh6jUxZp8kezQxpNBoSExNxcHDQfxq9EKmpqdSoUYOIiAi9tvzLPB35OzJ85O/I8JG/o2cDQ/yeRFEkLS2NqlWrFhkvAOhVgtXR0RFHx5LVE0RGRtK5c2eaN2/OypUri/3HvLy8cHV1Zd++fdpgSKVScfjwYWbPnv3U5UxNTR9TT7WzsyvRGPWBjY2Nwex4Mk9G/o4MH/k7Mnzk7+jZwNC+p2Knx/IxjP7HYoiKisLf358aNWowd+5c4uLiiI6OJjo6+qH3+fj4sG3bNkAqiJ00aRIzZ85k27ZtXLlyhZEjR2JhYcHQoUP18W/IyMjIyMjIGCAGYM5TPHv37iU4OJjg4GCqV6/+0GuFZ/lu3rxJSkqK9vG0adPIysri3Xff1You7t27t8QaQzIyMjIyMjLPP89EMDRy5EhGjhxZ7PseLX8SBIEvv/ySL7/8smIGpkdMTU354osvDMIQUebJyN+R4SN/R4aP/B09Gzzr39Mz2VovIyMjIyMjI6MrnomaIRkZGRkZGRmZikIOhmRkZGRkZGT+08jBkIyMjIyMjMx/GjkYkpGRkZGRkflPIwdDzxE5OTn4+voiCAIXL17U93Bk8gkNDWXUqFF4eXlhbm6Ot7c3X3zxBSqVSt9D+8+zcOFCvLy8MDMzo3nz5hw9elTfQ5LJZ9asWbRs2RJra2ucnZ3p378/N2/e1PewZIpg1qxZWo2/Zw05GHqOmDZt2kOmtDKGwY0bN9BoNCxZsoSrV68yf/58Fi9ezCeffKLvof2n2bhxI5MmTeLTTz/lwoULdOzYkd69exMeHq7vockAhw8f5r333uPUqVPs27ePvLw8evToQUZGhr6HJvMEzp49y9KlS2ncuLG+h1Im5Nb654Rdu3YxZcoUtmzZQoMGDbhw4QK+vr76HpbMU5gzZw6LFi0iJCRE30P5z9K6dWuaNWvGokWLtM/Vq1eP/v37M2vWLD2OTOZJxMXF4ezszOHDh/Hz89P3cGQKkZ6eTrNmzVi4cCHffPMNvr6+/Pjjj/oeVqmQM0PPATExMbz99tusWbMGCwsLfQ9HpgSkpKRgb2+v72H8Z1GpVJw7d44ePXo89HyPHj04ceKEnkYlUxQF7gLy78bweO+99+jTpw/dunXT91DKzDOhQC3zdERRZOTIkYwbN44WLVoQGhqq7yHJFMOdO3f45ZdfmDdvnr6H8p8lPj4etVqNi4vLQ8+7uLg85nkoo39EUWTKlCl06NCBhg0b6ns4MoXYsGED58+f5+zZs/oeSrmQM0MGypdffokgCEXeAgMD+eWXX0hNTWX69On6HvJ/jpJ+R4WJioqiV69evPLKK4wePVpPI5cpQBCEhx6LovjYczL6Z/z48Vy6dIn169freygyhYiIiGDixIn88ccfmJmZ6Xs45UKuGTJQ4uPjiY+PL/I9np6eDB48mH///fehA7harUapVDJs2DB+//33ih7qf5aSfkcFB4moqCg6d+5M69atWbVqFQqFfC2iL1QqFRYWFmzatIkBAwZon584cSIXL17k8OHDehydTGHef/99/vrrL44cOYKXl5e+hyNTiL/++osBAwagVCq1z6nVagRBQKFQkJOT89BrhowcDD3jhIeHk5qaqn0cFRVFz5492bx5M61bt6Z69ep6HJ1MAZGRkXTu3JnmzZvzxx9/PDMHiOeZ1q1b07x5cxYuXKh9rn79+vTr108uoDYARFHk/fffZ9u2bQQEBFC7dm19D0nmEdLS0ggLC3vouTfffBMfHx8++uijZ2pKU64ZesZxd3d/6LGVlRUA3t7eciBkIERFReHv74+7uztz584lLi5O+5qrq6seR/bfZsqUKQwfPpwWLVrQtm1bli5dSnh4OOPGjdP30GSQinLXrVvH33//jbW1tbaWy9bWFnNzcz2PTgbA2tr6sYDH0tISBweHZyoQAjkYkpGpcPbu3UtwcDDBwcGPBahyYlZ/vPbaayQkJPD1119z//59GjZsyM6dO/Hw8ND30GRAK3ng7+//0PMrV65k5MiRlT8gmecaeZpMRkZGRkZG5j+NXMEpIyMjIyMj859GDoZkZGRkZGRk/tPIwZCMjIyMjIzMfxo5GJKRkZGRkZH5TyMHQzIyMjIyMjL/aeRgSEZGRkZGRuY/jRwMycjIyMjIyPynkYMhGRmZcuHv78+kSZP0PQydUN7/ZdWqVdjZ2elsPDIyMpWDHAzJyMiUi61btzJjxgx9D6PS8fT05Mcff9T5ekNDQxEEgYsXL+p83TIyMk9GtuOQkZEpF/b29voegoyMjEy5kDNDMjIy5aLw1JKnpyczZ87krbfewtraGnd3d5YuXap9b9u2bfn4448fWj4uLg5jY2MOHTqkXceMGTMYOnQoVlZWVK1alV9++eWhZVJSUhgzZgzOzs7Y2NjQpUsXgoKCtK9/+eWX+Pr6smbNGjw9PbG1tWXw4MGkpaVp35ORkcGIESOwsrLCzc2NefPmlep/DgsLY/LkyQiCgCAID72+Z88e6tWrh5WVFb169eL+/fsPvb5y5Urq1auHmZkZPj4+LFy4UPual5cXAE2bNkUQBK0319mzZ+nevTuOjo7Y2trSqVMnzp8/X+Ixy8jIPB05GJKRkdEp8+bNo0WLFly4cIF3332Xd955hxs3bgAwbNgw1q9f/5BB7caNG3FxcaFTp07a5+bMmUPjxo05f/4806dPZ/Lkyezbtw+QzG379OlDdHQ0O3fu5Ny5czRr1oyuXbuSmJioXcedO3f466+/2L59O9u3b+fw4cN899132tenTp3KoUOH2LZtG3v37iUgIIBz586V6H/cunUr1atX15q8Fg52MjMzmTt3LmvWrOHIkSOEh4fz4Ycfal//7bff+PTTT/n222+5fv06M2fO5H//+x+///47AGfOnAFg//793L9/n61btwKQlpbGG2+8wdGjRzl16hS1a9fmhRdeeCjAk5GRKSOijIyMTDno1KmTOHHiRFEURdHDw0N8/fXXta9pNBrR2dlZXLRokSiKohgbGysaGRmJR44c0b6nbdu24tSpU7WPPTw8xF69ej30Ga+99prYu3dvURRF8cCBA6KNjY2YnZ390Hu8vb3FJUuWiKIoil988YVoYWEhpqamal+fOnWq2Lp1a1EURTEtLU00MTERN2zYoH09ISFBNDc31/4vxeHh4SHOnz//oedWrlwpAmJwcLD2uQULFoguLi7axzVq1BDXrVv30HIzZswQ27ZtK4qiKN69e1cExAsXLhT5+Xl5eaK1tbX477//lmi8MjIyT0fODMnIyOiUxo0ba+8LgoCrqyuxsbEAODk50b17d9auXQvA3bt3OXnyJMOGDXtoHW3btn3s8fXr1wE4d+4c6enpODg4YGVlpb3dvXuXO3fuaJfx9PTE2tpa+9jNzU07jjt37qBSqR76HHt7e+rWrVvu/9/CwgJvb+8nfm5cXBwRERGMGjXqobF/8803D439ScTGxjJu3Djq1KmDra0ttra2pKenEx4eXu4xy8j815ELqGVkZHSKsbHxQ48FQUCj0WgfDxs2jIkTJ/LLL7+wbt06GjRoQJMmTYpdb0Fdjkajwc3NjYCAgMfeU7itvahxiIWm6XTNkz634PMKPv+3336jdevWD71PqVQWud6RI0cSFxfHjz/+iIeHB6amprRt2xaVSqXD0cvI/DeRgyEZGZlKpX///owdO5bdu3ezbt06hg8f/th7Tp069dhjHx8fAJo1a0Z0dDRGRkZ4enqWaQy1atXC2NiYU6dO4e7uDkBSUhK3bt16qHapKExMTFCr1aX6XBcXF6pVq0ZISMhj2bDC6wUeW/fRo0dZuHAhL7zwAgARERHEx8eX6vNlZGSejBwMycjIVCqWlpb069eP//3vf1y/fp2hQ4c+9p7jx4/z/fff079/f/bt28emTZvYsWMHAN26daNt27b079+f2bNnU7duXaKioti5cyf9+/enRYsWxY7BysqKUaNGMXXqVBwcHHBxceHTTz9FoSh55YCnpydHjhxh8ODBmJqa4ujoWKLlvvzySyZMmICNjQ29e/cmJyeHwMBAkpKSmDJlCs7Ozpibm7N7926qV6+OmZkZtra21KpVizVr1tCiRQtSU1OZOnUq5ubmJR6vjIzM05FrhmRkZCqdYcOGERQURMeOHbWZmcJ88MEHnDt3jqZNmzJjxgzmzZtHz549AWnaaefOnfj5+fHWW29Rp04dBg8eTGhoKC4uLiUew5w5c/Dz8+Oll16iW7dudOjQgebNm5d4+a+//prQ0FC8vb1xcnIq8XKjR49m2bJlrFq1ikaNGtGpUydWrVqlbak3MjLi559/ZsmSJVStWpV+/foBsGLFCpKSkmjatCnDhw9nwoQJODs7l/hzZWRkno4gVuTkuYyMjEwp8fT0ZNKkSc+NxYeMjIzhI2eGZGRkZGRkZP7TyMGQjIyMzCMcPXr0odb3R28yMjLPF/I0mYyMjMwjZGVlERkZ+dTXa9WqVYmjkZGRqWjkYEhGRkZGRkbmP408TSYjIyMjIyPzn0YOhmRkZGRkZGT+08jBkIyMjIyMjMx/GjkYkpGRkZGRkflPIwdDMjIyMjIyMv9p5GBIRkZGRkZG5j+NHAzJyMjIyMjI/KeRgyEZGRkZGRmZ/zT/B72ZtOgKvB91AAAAAElFTkSuQmCC", "text/plain": [ "
" ] From 57e3e4efc8e1c7c676a642dc484352fc6b67a0ea Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 7 Jun 2024 23:22:44 -0700 Subject: [PATCH 029/199] fix bug in the way dir=-1 arrows are handled at endpoint --- control/freqplot.py | 1 - examples/pvtol-nested.py | 4 +--- 2 files changed, 1 insertion(+), 4 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 82c9d62f1..eb30a8108 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1991,7 +1991,6 @@ def _add_arrows_to_line2D( elif dir == -1: # Orient the arrow in the other direction on the segment - n = s.size - 2 if n == s.size - 1 else n # move backward at end arrow_tail = (x[n + 1], y[n + 1]) arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2])) diff --git a/examples/pvtol-nested.py b/examples/pvtol-nested.py index 040b4a1f4..eeb46d075 100644 --- a/examples/pvtol-nested.py +++ b/examples/pvtol-nested.py @@ -61,8 +61,6 @@ Hi = ct.parallel(ct.feedback(Ci, Pi), -m * g *ct.feedback(Ci * Pi, 1)) plt.figure(4) -plt.clf() -plt.subplot(221) ct.bode_plot(Hi) # Now design the lateral control system @@ -129,7 +127,7 @@ # plt.figure(7) plt.clf() -ct.nyquist_plot(L, (0.0001, 1000)) +ct.nyquist_plot(L) # Add a box in the region we are going to expand plt.plot([-2, -2, 1, 1, -2], [-4, 4, 4, -4, -4], 'r-') From b34f72e5b4fb57af4f339f4005d7e099f76b2f02 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 8 Jun 2024 06:15:52 -0700 Subject: [PATCH 030/199] using hanging indent for import (isort -m2) --- control/nlsys.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index fbb58918d..c18f991b5 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -25,10 +25,10 @@ import scipy as sp from . import config -from .iosys import (InputOutputSystem, _parse_spec, _process_iosys_keywords, - _process_signal_list, common_timebase, isctime, isdtime) -from .timeresp import (TimeResponseData, _check_convert_array, - _process_time_response) +from .iosys import InputOutputSystem, _parse_spec, _process_iosys_keywords, \ + _process_signal_list, common_timebase, isctime, isdtime +from .timeresp import TimeResponseData, _check_convert_array, \ + _process_time_response __all__ = ['NonlinearIOSystem', 'InterconnectedSystem', 'nlsys', 'input_output_response', 'find_eqpt', 'linearize', From d6432ca74be0340bb98ffb461b09b33ff1fbce86 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 8 Jun 2024 06:38:13 -0700 Subject: [PATCH 031/199] revert unneeded change on find_eqpt checks for arg lengths --- control/nlsys.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index c18f991b5..358c4b125 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1767,9 +1767,9 @@ def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, # Make sure the input arguments match the sizes of the system if len(x0) != nstates or \ - (u0 is not None and iu is None and len(u0) != ninputs) or \ - (y0 is not None and iy is None and len(y0) != noutputs) or \ - (dx0 is not None and idx is None and len(dx0) != nstates): + (u0 is not None and len(u0) != ninputs) or \ + (y0 is not None and len(y0) != noutputs) or \ + (dx0 is not None and len(dx0) != nstates): raise ValueError("length of input arguments does not match system") # Update the parameter values @@ -2572,7 +2572,7 @@ def interconnect( return newsys -# Utility function to allow lists states, inputs +# Utility function to allow lists of states, inputs def _concatenate_list_elements(X, name='X'): # If we were passed a list, concatenate the elements together if isinstance(X, (tuple, list)): From c72fa915408591197dd49cd1696a1ea42513722a Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 8 Jun 2024 08:56:27 -0700 Subject: [PATCH 032/199] final tweaks of arrow code --- control/freqplot.py | 34 ++++++++++++---------------------- 1 file changed, 12 insertions(+), 22 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index eb30a8108..f7bf60fba 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1919,7 +1919,7 @@ def _parse_linestyle(style_name, allow_false=False): # Internal function to add arrows to a curve def _add_arrows_to_line2D( axes, line, arrow_locs=[0.2, 0.4, 0.6, 0.8], - arrowstyle='-|>', arrowsize=1, dir=1, transform=None): + arrowstyle='-|>', arrowsize=1, dir=1): """ Add arrows to a matplotlib.lines.Line2D at selected locations. @@ -1930,7 +1930,6 @@ def _add_arrows_to_line2D( arrow_locs: list of locations where to insert arrows, % of total length arrowstyle: style of the arrow arrowsize: size of the arrow - transform: a matplotlib transform instance, default to data coordinates Returns: -------- @@ -1939,13 +1938,13 @@ def _add_arrows_to_line2D( Based on https://stackoverflow.com/questions/26911898/ """ + # Get the coordinates of the line, in plot coordinates if not isinstance(line, mpl.lines.Line2D): raise ValueError("expected a matplotlib.lines.Line2D object") x, y = line.get_xdata(), line.get_ydata() - arrow_kw = { - "arrowstyle": arrowstyle, - } + # Determine the arrow properties + arrow_kw = {"arrowstyle": arrowstyle} color = line.get_color() use_multicolor_lines = isinstance(color, np.ndarray) @@ -1960,9 +1959,6 @@ def _add_arrows_to_line2D( else: arrow_kw['linewidth'] = linewidth - if transform is None: - transform = axes.transData - # Figure out the size of the axes (length of diagonal) xlim, ylim = axes.get_xlim(), axes.get_ylim() ul, lr = np.array([xlim[0], ylim[0]]), np.array([xlim[1], ylim[1]]) @@ -1979,33 +1975,27 @@ def _add_arrows_to_line2D( elif len(arrow_locs) and frac < 0.2: arrow_locs = [0.5] # single arrow in the middle + # Plot the arrows (and return list if patches) arrows = [] for loc in arrow_locs: n = np.searchsorted(s, s[-1] * loc) - # Figure out what direction to paint the arrow - if dir == 1: - n = 1 if n == 0 else n # move arrow forward if at start - arrow_tail = (x[n - 1], y[n - 1]) - arrow_head = (np.mean(x[n - 1:n + 1]), np.mean(y[n - 1:n + 1])) - - elif dir == -1: - # Orient the arrow in the other direction on the segment - arrow_tail = (x[n + 1], y[n + 1]) - arrow_head = (np.mean(x[n:n + 2]), np.mean(y[n:n + 2])) + if dir == 1 and n == 0: + # Move the arrow forward by one if it is at start of a segment + n = 1 - else: - raise ValueError("unknown value for keyword 'dir'") + # Place the head of the arrow at the desired location + arrow_head = [x[n], y[n]] + arrow_tail = [x[n - dir], y[n - dir]] p = mpl.patches.FancyArrowPatch( - arrow_tail, arrow_head, transform=transform, lw=0, + arrow_tail, arrow_head, transform=axes.transData, lw=0, **arrow_kw) axes.add_patch(p) arrows.append(p) return arrows - # # Function to compute Nyquist curve offsets # From 951e17126e589fd1744a4dd77243fb5189109ade Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 26 Jun 2024 08:22:48 -0700 Subject: [PATCH 033/199] updates to address @slivingston review comments --- control/timeresp.py | 7 +++++++ ...-dynamics.ipynb => cds110_invpend-dynamics.ipynb} | 12 ++++++------ 2 files changed, 13 insertions(+), 6 deletions(-) rename examples/{cds101_invpend-dynamics.ipynb => cds110_invpend-dynamics.ipynb} (99%) diff --git a/control/timeresp.py b/control/timeresp.py index a4fa2a63f..81b2030b3 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -169,6 +169,13 @@ class TimeResponseData: input_labels, output_labels, state_labels : array of str Names for the input, output, and state variables. + success : bool, optional + If ``False``, result may not be valid (see + :func:`~control.input_output_response`). Defaults to ``True``. + + message : str, optional + Informational message if ``success`` is ``False``. + sysname : str, optional Name of the system that created the data. diff --git a/examples/cds101_invpend-dynamics.ipynb b/examples/cds110_invpend-dynamics.ipynb similarity index 99% rename from examples/cds101_invpend-dynamics.ipynb rename to examples/cds110_invpend-dynamics.ipynb index 21a510408..0543452dd 100644 --- a/examples/cds101_invpend-dynamics.ipynb +++ b/examples/cds110_invpend-dynamics.ipynb @@ -8,7 +8,7 @@ "source": [ "# Inverted Pendulum Dynamics\n", "\n", - "CDS 110/ChE 105, Winter 2024
\n", + "CDS 110, Winter 2024
\n", "Richard M. Murray\n", "\n", "In this lecture we investigate the nonlinear dynamics of an inverted pendulum system. More information on this example can be found in [FBS2e](https://fbswiki.org/wiki/index.php?title=FBS), Examples 3.3 and 5.4.\n" @@ -56,7 +56,7 @@ " y = \\theta,\n", "$$\n", "\n", - "where $m$ and $J_t = J + m l^2$ are the mass and (total) moment of inertia of the system to be balanced, $l$ is the distance from the base to the center of mass of the balanced body, $b$ is the coefficient of viscous friction, and $g$ is the acceleration due to gravity.\n", + "where $m$ and $J_t = J + m l^2$ are the mass and (total) moment of inertia of the system to be balanced, $l$ is the distance from the base to the center of mass of the balanced body, $b$ is the coefficient of rotational friction, and $g$ is the acceleration due to gravity.\n", "\n", "We begin by creating a nonlinear model of the system:" ] @@ -155,7 +155,7 @@ "source": [ "We see that the vertical ($\\theta = 0$) equilibrium point is unstable, but the downward equlibrium points ($\\theta = \\pm \\pi$) are stable.\n", "\n", - "Note also the *separatrices* for the equilibrium point, which gives insighs into the regions of attraction (the red dashed line separates the two regions of attraction)." + "Note also the *separatrices* for the equilibrium point, which gives insights into the regions of attraction (the red dashed line separates the two regions of attraction)." ] }, { @@ -210,7 +210,7 @@ "id": "AvU35WoBMFjt" }, "source": [ - "Note that the input to the controller is the reference value $r$ (which will will always take to be zero), the measured output $y$, which is the angle $\\theta$ for our system. The output of the controller is the system input $u$, corresponding to the force applied to the wheels.\n", + "Note that the input to the controller is the reference value $r$ (which we will always take to be zero), the measured output $y$, which is the angle $\\theta$ for our system. The output of the controller is the system input $u$, corresponding to the force applied to the wheels.\n", "\n", "To connect the controller to the system, we use the [`interconnect`](https://python-control.readthedocs.io/en/latest/generated/control.interconnect.html) function, which will connect all signals that have the same names:" ] @@ -297,7 +297,7 @@ "source": [ "### Phase portrait\n", "\n", - "To study the resuling dynamics, we try plotting a phase plot using the same commands as before, but now for the closed loop system (with appropriate proportional gain):" + "To study the resulting dynamics, we try plotting a phase plot using the same commands as before, but now for the closed loop system (with appropriate proportional gain):" ] }, { @@ -574,7 +574,7 @@ "\n", "Here are some things to try with the above code:\n", "* Try changing the locations of the closed loop eigenvalues in the `place` command\n", - "* Try reseting the limits of the control action (`umax`)\n", + "* Try resetting the limits of the control action (`umax`)\n", "* Try leaving the state space controller fixed but changing the parameters of the system dynamics ($m$, $l$, $b$). Does the controller still stabilize the system?" ] }, From ad6b49e09034166ba972bbd5d3c080495f3b23b1 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 26 Jun 2024 08:49:20 -0700 Subject: [PATCH 034/199] updates for NumPy 2.0 compatibility in CI tests (#1013) --- control/bdalg.py | 4 ++-- control/descfcn.py | 6 +++--- control/lti.py | 2 +- control/modelsimp.py | 2 +- control/robust.py | 8 ++++---- control/statefbk.py | 4 ++-- control/sysnorm.py | 2 +- control/xferfcn.py | 2 +- examples/tfvis.py | 7 +------ 9 files changed, 16 insertions(+), 21 deletions(-) diff --git a/control/bdalg.py b/control/bdalg.py index 6ab9cd9ca..63cd9354d 100644 --- a/control/bdalg.py +++ b/control/bdalg.py @@ -201,11 +201,11 @@ def negate(sys): -------- >>> G = ct.tf([2], [1, 1]) >>> G.dcgain() - 2.0 + np.float64(2.0) >>> Gn = ct.negate(G) # Same as sys2 = -sys1. >>> Gn.dcgain() - -2.0 + np.float64(-2.0) """ return -sys diff --git a/control/descfcn.py b/control/descfcn.py index 6586e6f20..f52b43a2c 100644 --- a/control/descfcn.py +++ b/control/descfcn.py @@ -525,11 +525,11 @@ class saturation_nonlinearity(DescribingFunctionNonlinearity): -------- >>> nl = ct.saturation_nonlinearity(5) >>> nl(1) - 1 + np.int64(1) >>> nl(10) - 5 + np.int64(5) >>> nl(-10) - -5 + np.int64(-5) """ def __init__(self, ub=1, lb=None): diff --git a/control/lti.py b/control/lti.py index e631a6213..65a500121 100644 --- a/control/lti.py +++ b/control/lti.py @@ -525,7 +525,7 @@ def dcgain(sys): -------- >>> G = ct.tf([1], [1, 2]) >>> ct.dcgain(G) # doctest: +SKIP - 0.5 + np.float(0.5) """ return sys.dcgain() diff --git a/control/modelsimp.py b/control/modelsimp.py index cbaf242c3..06c3d350d 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -87,7 +87,7 @@ def hsvd(sys): >>> G = ct.tf2ss([1], [1, 2]) >>> H = ct.hsvd(G) >>> H[0] - 0.25 + np.float64(0.25) """ # TODO: implement for discrete time systems diff --git a/control/robust.py b/control/robust.py index 75930e59e..d5e5540fb 100644 --- a/control/robust.py +++ b/control/robust.py @@ -73,7 +73,7 @@ def h2syn(P, nmeas, ncon): -------- >>> # Unstable first order SISI system >>> G = ct.tf([1], [1, -1], inputs=['u'], outputs=['y']) - >>> max(G.poles()) < 0 # Is G stable? + >>> all(G.poles() < 0) # Is G stable? False >>> # Create partitioned system with trivial unity systems @@ -87,7 +87,7 @@ def h2syn(P, nmeas, ncon): >>> # Synthesize H2 optimal stabilizing controller >>> K = ct.h2syn(P, nmeas=1, ncon=1) >>> T = ct.feedback(G, K, sign=1) - >>> max(T.poles()) < 0 # Is T stable? + >>> all(T.poles() < 0) # Is T stable? True """ @@ -154,7 +154,7 @@ def hinfsyn(P, nmeas, ncon): -------- >>> # Unstable first order SISI system >>> G = ct.tf([1], [1,-1], inputs=['u'], outputs=['y']) - >>> max(G.poles()) < 0 + >>> all(G.poles() < 0) False >>> # Create partitioned system with trivial unity systems @@ -167,7 +167,7 @@ def hinfsyn(P, nmeas, ncon): >>> # Synthesize Hinf optimal stabilizing controller >>> K, CL, gam, rcond = ct.hinfsyn(P, nmeas=1, ncon=1) >>> T = ct.feedback(G, K, sign=1) - >>> max(T.poles()) < 0 + >>> all(T.poles() < 0) True """ diff --git a/control/statefbk.py b/control/statefbk.py index 19fec5d29..a385516ee 100644 --- a/control/statefbk.py +++ b/control/statefbk.py @@ -1011,7 +1011,7 @@ def ctrb(A, B, t=None): >>> G = ct.tf2ss([1], [1, 2, 3]) >>> C = ct.ctrb(G.A, G.B) >>> np.linalg.matrix_rank(C) - 2 + np.int64(2) """ @@ -1053,7 +1053,7 @@ def obsv(A, C, t=None): >>> G = ct.tf2ss([1], [1, 2, 3]) >>> C = ct.obsv(G.A, G.C) >>> np.linalg.matrix_rank(C) - 2 + np.int64(2) """ diff --git a/control/sysnorm.py b/control/sysnorm.py index f5e583dcf..6737dc5c0 100644 --- a/control/sysnorm.py +++ b/control/sysnorm.py @@ -117,7 +117,7 @@ def norm(system, p=2, tol=1e-6, print_warning=True, method=None): >>> round(ct.norm(Gc, 2), 3) 0.5 >>> round(ct.norm(Gc, 'inf', tol=1e-5, method='scipy'), 3) - 1.0 + np.float64(1.0) """ if not isinstance(system, (ct.StateSpace, ct.TransferFunction)): diff --git a/control/xferfcn.py b/control/xferfcn.py index de38a4a30..63aeff8f9 100644 --- a/control/xferfcn.py +++ b/control/xferfcn.py @@ -1241,7 +1241,7 @@ def dcgain(self, warn_infinite=False): -------- >>> G = ct.tf([1], [1, 4]) >>> G.dcgain() - 0.25 + np.float64(0.25) """ return self._dcgain(warn_infinite) diff --git a/examples/tfvis.py b/examples/tfvis.py index 0cb789db4..c9e9872de 100644 --- a/examples/tfvis.py +++ b/examples/tfvis.py @@ -45,13 +45,8 @@ import Pmw import matplotlib.pyplot as plt from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg -from numpy.lib.polynomial import polymul -from numpy.lib.type_check import real -from numpy.core.multiarray import array -from numpy.core.fromnumeric import size -# from numpy.lib.function_base import logspace from control.matlab import logspace -from numpy import conj +from numpy import array, conj, polymul, real, size def make_poly(facts): From b9acc9951f43986657c1c7d91bbc9b6b8b3edff9 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 1 Jun 2024 13:57:36 -0700 Subject: [PATCH 035/199] allow label keyword in bode_plot() to override default labels --- control/freqplot.py | 44 ++++++++++++++++++++++++++-- control/tests/freqplot_test.py | 53 ++++++++++++++++++++++++++++++++++ 2 files changed, 94 insertions(+), 3 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index ea0e7fae1..016a9784d 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -93,7 +93,7 @@ def bode_plot( data, omega=None, *fmt, ax=None, omega_limits=None, omega_num=None, plot=None, plot_magnitude=True, plot_phase=None, overlay_outputs=None, overlay_inputs=None, phase_label=None, - magnitude_label=None, display_margins=None, + magnitude_label=None, label=None, display_margins=None, margins_method='best', legend_map=None, legend_loc=None, sharex=None, sharey=None, title=None, **kwargs): """Bode plot for a system. @@ -149,6 +149,10 @@ def bode_plot( value specified. Units are in either degrees or radians, depending on the `deg` parameter. Default is -180 if wrap_phase is False, 0 if wrap_phase is True. + label : str or array-like of str + If present, replace automatically generated label(s) with the given + label(s). If sysdata is a list, strings should be specified for each + system. If MIMO, strings required for each system, output, and input. omega_limits : array_like of two values Set limits for plotted frequency range. If Hz=True the limits are in Hz otherwise in rad/s. @@ -624,6 +628,9 @@ def _share_axes(ref, share_map, axis): for j in range(ncols): out[i, j] = [] # unique list in each element + # Process label keyword + line_labels = _process_line_labels(label, len(data), ninputs, noutputs) + # Utility function for creating line label def _make_line_label(response, output_index, input_index): label = "" # start with an empty label @@ -664,7 +671,10 @@ def _make_line_label(response, output_index, input_index): phase_plot = phase[i, j] * 180. / math.pi if deg else phase[i, j] # Generate a label - label = _make_line_label(response, i, j) + if line_labels is None: + label = _make_line_label(response, i, j) + else: + label = line_labels[index, i, j] # Magnitude if plot_magnitude: @@ -824,7 +834,7 @@ def _make_line_label(response, output_index, input_index): # on shared axes. It needs to come *after* the plots are generated, # in order to handle two things: # - # * manually generated labels and grids need to reflect the limts for + # * manually generated labels and grids need to reflect the limits for # shared axes, which we don't know until we have plotted everything; # # * the loglog and semilog functions regenerate the labels (not quite @@ -2641,6 +2651,34 @@ def _get_line_labels(ax, use_color=True): return lines, labels + +# Turn label keyword into array indexed by trace, output, input +def _process_line_labels(label, nsys, ninput, noutput): + if label is None: + return None + + if isinstance(label, str): + label = [[[label]]] + + # Convert to an ndarray, if not done aleady + try: + line_labels = np.asarray(label) + except: + raise ValueError("label must be a string or array_like") + + # Turn the data into a 3D array of appropriate shape + # TODO: allow more sophisticated broadcasting + try: + line_labels = line_labels.reshape(nsys, ninput, noutput) + except: + if line_labels.shape[0] != nsys: + raise ValueError("number of labels must match number of traces") + else: + raise ValueError("labels must be given for each input/output pair") + + return line_labels + + # # Utility functions to create nice looking labels (KLD 5/23/11) # diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 5383f28a7..297b9915b 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -346,6 +346,59 @@ def _get_visible_limits(ax): _get_visible_limits(ax.reshape(-1)[0]), np.array([1, 100])) +def test_freqplot_trace_labels(): + sys1 = ct.rss(2, 1, 1, name='sys1') + sys2 = ct.rss(3, 1, 1, name='sys2') + + # Make sure default labels are as expected + out = ct.bode_plot([sys1, sys2]) + axs = ct.get_plot_axes(out) + legend = axs[0, 0].get_legend().get_texts() + assert legend[0].get_text() == 'sys1' + assert legend[1].get_text() == 'sys2' + plt.close() + + # Override labels all at once + out = ct.bode_plot([sys1, sys2], label=['line1', 'line2']) + axs = ct.get_plot_axes(out) + legend = axs[0, 0].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + # Override labels one at a time + out = ct.bode_plot(sys1, label='line1') + out = ct.bode_plot(sys2, label='line2') + axs = ct.get_plot_axes(out) + legend = axs[0, 0].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + # Multi-dimensional data + sys1 = ct.rss(2, 2, 2, name='sys1') + sys2 = ct.rss(3, 2, 2, name='sys2') + + # Check out some errors first + with pytest.raises(ValueError, match="number of labels must match"): + ct.bode_plot([sys1, sys2], label=['line1']) + with pytest.raises(ValueError, match="labels must be given for each"): + ct.bode_plot(sys1, label=['line1']) + + # Now do things that should work + out = ct.bode_plot( + [sys1, sys2], + label=[ + [['line1', 'line1'], ['line1', 'line1']], + [['line2', 'line2'], ['line2', 'line2']], + ]) + axs = ct.get_plot_axes(out) + legend = axs[0, -1].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) def test_freqplot_errors(plt_fcn): if plt_fcn == ct.bode_plot: From 0b6348f4481994d2c41f0e14b08682bdbfec8989 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 1 Jun 2024 16:21:08 -0700 Subject: [PATCH 036/199] add label keyword to singular_value_plot and nyquist_plot --- control/freqplot.py | 37 +++++++++++++++++----- control/tests/freqplot_test.py | 57 ++++++++++++++++++---------------- 2 files changed, 59 insertions(+), 35 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 016a9784d..ad8d9dd89 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1501,7 +1501,7 @@ def nyquist_response( def nyquist_plot( - data, omega=None, plot=None, label_freq=0, color=None, + data, omega=None, plot=None, label_freq=0, color=None, label=None, return_contour=None, title=None, legend_loc='upper right', **kwargs): """Nyquist plot for a system. @@ -1590,6 +1590,11 @@ def nyquist_plot( imaginary axis. Portions of the Nyquist plot corresponding to indented portions of the contour are plotted using a different line style. + label : str or array-like of str + If present, replace automatically generated label(s) with the given + label(s). If sysdata is a list, strings should be specified for each + system. + label_freq : int, optiona Label every nth frequency on the plot. If not specified, no labels are generated. @@ -1739,6 +1744,9 @@ def _parse_linestyle(style_name, allow_false=False): if not isinstance(data, (list, tuple)): data = [data] + # Process label keyword + line_labels = _process_line_labels(label, len(data)) + # If we are passed a list of systems, compute response first if all([isinstance( sys, (StateSpace, TransferFunction, FrequencyResponseData)) @@ -1804,12 +1812,14 @@ def _parse_linestyle(style_name, allow_false=False): reg_mask, abs(resp) > max_curve_magnitude) resp[rescale] *= max_curve_magnitude / abs(resp[rescale]) + # Get the label to use for the line + label = response.sysname if line_labels is None else line_labels[idx] + # Plot the regular portions of the curve (and grab the color) x_reg = np.ma.masked_where(reg_mask, resp.real) y_reg = np.ma.masked_where(reg_mask, resp.imag) p = plt.plot( - x_reg, y_reg, primary_style[0], color=color, - label=response.sysname, **kwargs) + x_reg, y_reg, primary_style[0], color=color, label=label, **kwargs) c = p[0].get_color() out[idx] += p @@ -2211,7 +2221,7 @@ def singular_values_response( def singular_values_plot( data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None, - title=None, legend_loc='center right', **kwargs): + label=None, title=None, legend_loc='center right', **kwargs): """Plot the singular values for a system. Plot the singular values as a function of frequency for a system or @@ -2257,6 +2267,10 @@ def singular_values_plot( grid : bool If True, plot grid lines on gain and phase plots. Default is set by `config.defaults['freqplot.grid']`. + label : str or array-like of str + If present, replace automatically generated label(s) with the given + label(s). If sysdata is a list, strings should be specified for each + system. omega_limits : array_like of two values Set limits for plotted frequency range. If Hz=True the limits are in Hz otherwise in rad/s. @@ -2306,6 +2320,9 @@ def singular_values_plot( responses = data + # Process label keyword + line_labels = _process_line_labels(label, len(data)) + # Process (legacy) plot keyword if plot is not None: warnings.warn( @@ -2385,11 +2402,14 @@ def singular_values_plot( with plt.rc_context(freqplot_rcParams): out[idx_sys] = ax_sigma.semilogx( omega, 20 * np.log10(sigma), *fmt, - label=sysname, **color_arg, **kwargs) + label=label, **color_arg, **kwargs) else: with plt.rc_context(freqplot_rcParams): out[idx_sys] = ax_sigma.loglog( - omega, sigma, label=sysname, *fmt, **color_arg, **kwargs) + omega, sigma, label=label, *fmt, **color_arg, **kwargs) + + # Get the label to use for the line + label = sysname if line_labels is None else line_labels[idx] # Plot the Nyquist frequency if nyq_freq is not None: @@ -2653,7 +2673,7 @@ def _get_line_labels(ax, use_color=True): # Turn label keyword into array indexed by trace, output, input -def _process_line_labels(label, nsys, ninput, noutput): +def _process_line_labels(label, nsys, ninputs=0, noutputs=0): if label is None: return None @@ -2669,7 +2689,8 @@ def _process_line_labels(label, nsys, ninput, noutput): # Turn the data into a 3D array of appropriate shape # TODO: allow more sophisticated broadcasting try: - line_labels = line_labels.reshape(nsys, ninput, noutput) + if ninputs > 0 and noutputs > 0: + line_labels = line_labels.reshape(nsys, ninputs, noutputs) except: if line_labels.shape[0] != nsys: raise ValueError("number of labels must match number of traces") diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 297b9915b..052221305 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -346,12 +346,14 @@ def _get_visible_limits(ax): _get_visible_limits(ax.reshape(-1)[0]), np.array([1, 100])) -def test_freqplot_trace_labels(): +@pytest.mark.parametrize( + "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) +def test_bode_trace_labels(plt_fcn): sys1 = ct.rss(2, 1, 1, name='sys1') sys2 = ct.rss(3, 1, 1, name='sys2') # Make sure default labels are as expected - out = ct.bode_plot([sys1, sys2]) + out = ct.plt_fcn([sys1, sys2]) axs = ct.get_plot_axes(out) legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'sys1' @@ -359,7 +361,7 @@ def test_freqplot_trace_labels(): plt.close() # Override labels all at once - out = ct.bode_plot([sys1, sys2], label=['line1', 'line2']) + out = ct.plt_fcn([sys1, sys2], label=['line1', 'line2']) axs = ct.get_plot_axes(out) legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'line1' @@ -367,36 +369,37 @@ def test_freqplot_trace_labels(): plt.close() # Override labels one at a time - out = ct.bode_plot(sys1, label='line1') - out = ct.bode_plot(sys2, label='line2') + out = ct.plt_fcn(sys1, label='line1') + out = ct.plt_fcn(sys2, label='line2') axs = ct.get_plot_axes(out) legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'line1' assert legend[1].get_text() == 'line2' plt.close() - # Multi-dimensional data - sys1 = ct.rss(2, 2, 2, name='sys1') - sys2 = ct.rss(3, 2, 2, name='sys2') - - # Check out some errors first - with pytest.raises(ValueError, match="number of labels must match"): - ct.bode_plot([sys1, sys2], label=['line1']) - with pytest.raises(ValueError, match="labels must be given for each"): - ct.bode_plot(sys1, label=['line1']) - - # Now do things that should work - out = ct.bode_plot( - [sys1, sys2], - label=[ - [['line1', 'line1'], ['line1', 'line1']], - [['line2', 'line2'], ['line2', 'line2']], - ]) - axs = ct.get_plot_axes(out) - legend = axs[0, -1].get_legend().get_texts() - assert legend[0].get_text() == 'line1' - assert legend[1].get_text() == 'line2' - plt.close() + if plt_fcn == ct.bode_plot: + # Multi-dimensional data + sys1 = ct.rss(2, 2, 2, name='sys1') + sys2 = ct.rss(3, 2, 2, name='sys2') + + # Check out some errors first + with pytest.raises(ValueError, match="number of labels must match"): + ct.bode_plot([sys1, sys2], label=['line1']) + with pytest.raises(ValueError, match="labels must be given for each"): + ct.bode_plot(sys1, label=['line1']) + + # Now do things that should work + out = ct.bode_plot( + [sys1, sys2], + label=[ + [['line1', 'line1'], ['line1', 'line1']], + [['line2', 'line2'], ['line2', 'line2']], + ]) + axs = ct.get_plot_axes(out) + legend = axs[0, -1].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) From 606cf482e43dd4347853a355743f33daf03decaf Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 1 Jun 2024 17:44:58 -0700 Subject: [PATCH 037/199] add additional tests for freqplot label override + small fixes --- control/freqplot.py | 15 +++++---- control/tests/freqplot_test.py | 56 ++++++++++++++++++++++++++++------ control/tests/kwargs_test.py | 4 +-- 3 files changed, 57 insertions(+), 18 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index ad8d9dd89..461a4baf7 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -2397,6 +2397,9 @@ def singular_values_plot( sysname = response.sysname if response.sysname is not None \ else f"Unknown-{idx_sys}" + # Get the label to use for the line + label = sysname if line_labels is None else line_labels[idx_sys] + # Plot the data if dB: with plt.rc_context(freqplot_rcParams): @@ -2408,9 +2411,6 @@ def singular_values_plot( out[idx_sys] = ax_sigma.loglog( omega, sigma, label=label, *fmt, **color_arg, **kwargs) - # Get the label to use for the line - label = sysname if line_labels is None else line_labels[idx] - # Plot the Nyquist frequency if nyq_freq is not None: ax_sigma.axvline( @@ -2678,7 +2678,7 @@ def _process_line_labels(label, nsys, ninputs=0, noutputs=0): return None if isinstance(label, str): - label = [[[label]]] + label = [label] # Convert to an ndarray, if not done aleady try: @@ -2687,10 +2687,13 @@ def _process_line_labels(label, nsys, ninputs=0, noutputs=0): raise ValueError("label must be a string or array_like") # Turn the data into a 3D array of appropriate shape - # TODO: allow more sophisticated broadcasting + # TODO: allow more sophisticated broadcasting (and error checking) try: if ninputs > 0 and noutputs > 0: - line_labels = line_labels.reshape(nsys, ninputs, noutputs) + if line_labels.ndim == 1: + line_labels = line_labels.reshape(nsys, 1, 1) + line_labels = np.broadcast_to( + line_labels,(nsys, ninputs, noutputs)) except: if line_labels.shape[0] != nsys: raise ValueError("number of labels must match number of traces") diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 052221305..69352d40b 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -346,33 +346,66 @@ def _get_visible_limits(ax): _get_visible_limits(ax.reshape(-1)[0]), np.array([1, 100])) +def test_gangof4_trace_labels(): + P1 = ct.rss(2, 1, 1, name='P1') + P2 = ct.rss(3, 1, 1, name='P2') + C = ct.rss(1, 1, 1, name='C') + + # Make sure default labels are as expected + out = ct.gangof4_response(P1, C).plot() + out = ct.gangof4_response(P2, C).plot() + axs = ct.get_plot_axes(out) + legend = axs[0, 1].get_legend().get_texts() + assert legend[0].get_text() == 'None' + assert legend[1].get_text() == 'None' + plt.close() + + # Override labels + out = ct.gangof4_response(P1, C).plot(label='line1') + out = ct.gangof4_response(P2, C).plot(label='line2') + axs = ct.get_plot_axes(out) + legend = axs[0, 1].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + @pytest.mark.parametrize( "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) -def test_bode_trace_labels(plt_fcn): +def test_freqplot_trace_labels(plt_fcn): sys1 = ct.rss(2, 1, 1, name='sys1') sys2 = ct.rss(3, 1, 1, name='sys2') # Make sure default labels are as expected - out = ct.plt_fcn([sys1, sys2]) + out = plt_fcn([sys1, sys2]) axs = ct.get_plot_axes(out) - legend = axs[0, 0].get_legend().get_texts() + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'sys1' assert legend[1].get_text() == 'sys2' plt.close() # Override labels all at once - out = ct.plt_fcn([sys1, sys2], label=['line1', 'line2']) + out = plt_fcn([sys1, sys2], label=['line1', 'line2']) axs = ct.get_plot_axes(out) - legend = axs[0, 0].get_legend().get_texts() + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'line1' assert legend[1].get_text() == 'line2' plt.close() # Override labels one at a time - out = ct.plt_fcn(sys1, label='line1') - out = ct.plt_fcn(sys2, label='line2') + out = plt_fcn(sys1, label='line1') + out = plt_fcn(sys2, label='line2') axs = ct.get_plot_axes(out) - legend = axs[0, 0].get_legend().get_texts() + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, 0].get_legend().get_texts() assert legend[0].get_text() == 'line1' assert legend[1].get_text() == 'line2' plt.close() @@ -385,8 +418,11 @@ def test_bode_trace_labels(plt_fcn): # Check out some errors first with pytest.raises(ValueError, match="number of labels must match"): ct.bode_plot([sys1, sys2], label=['line1']) - with pytest.raises(ValueError, match="labels must be given for each"): - ct.bode_plot(sys1, label=['line1']) + + with pytest.xfail(reason="need better broadcast checking on labels"): + with pytest.raises( + ValueError, match="labels must be given for each"): + ct.bode_plot(sys1, overlay_inputs=True, label=['line1']) # Now do things that should work out = ct.bode_plot( diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index 8180ff418..79c556c0d 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -193,9 +193,9 @@ def test_matplotlib_kwargs(function, nsysargs, moreargs, kwargs, mplcleanup): def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): # Create a system for testing if mimo: - response = data_fcn(control.rss(4, 2, 2)) + response = data_fcn(control.rss(4, 2, 2, strictly_proper=True)) else: - response = data_fcn(control.rss(4, 1, 1)) + response = data_fcn(control.rss(4, 1, 1, strictly_proper=True)) # Make sure that calling the data function with unknown keyword errs with pytest.raises( From 5e405cc47745889eb491aa04fa8811e556d7c48d Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 3 Jun 2024 21:13:10 -0700 Subject: [PATCH 038/199] don't strip common parts of labels if given explicitly --- control/freqplot.py | 4 +++- control/tests/freqplot_test.py | 8 ++++---- control/timeplot.py | 2 +- 3 files changed, 8 insertions(+), 6 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 461a4baf7..d44149bef 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1046,7 +1046,9 @@ def gen_zero_centered_series(val_min, val_max, period): # Get the labels to use, removing common strings lines = [line for line in ax.get_lines() if line.get_label()[0] != '_'] - labels = _make_legend_labels([line.get_label() for line in lines]) + labels = _make_legend_labels( + [line.get_label() for line in lines], + ignore_common=line_labels is not None) # Generate the label, if needed if len(labels) > 1 and legend_map[i, j] != None: diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 69352d40b..0a105502f 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -361,12 +361,12 @@ def test_gangof4_trace_labels(): plt.close() # Override labels - out = ct.gangof4_response(P1, C).plot(label='line1') - out = ct.gangof4_response(P2, C).plot(label='line2') + out = ct.gangof4_response(P1, C).plot(label='xxx, line1, yyy') + out = ct.gangof4_response(P2, C).plot(label='xxx, line2, yyy') axs = ct.get_plot_axes(out) legend = axs[0, 1].get_legend().get_texts() - assert legend[0].get_text() == 'line1' - assert legend[1].get_text() == 'line2' + assert legend[0].get_text() == 'xxx, line1, yyy' + assert legend[1].get_text() == 'xxx, line2, yyy' plt.close() diff --git a/control/timeplot.py b/control/timeplot.py index 58f7d8382..29691ec6a 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -808,7 +808,7 @@ def _make_legend_labels(labels, ignore_common=False): suffix_len -= 1 # Strip the labels of common information - if suffix_len > 0: + if suffix_len > 0 and not ignore_common: labels = [label[prefix_len:-suffix_len] for label in labels] else: labels = [label[prefix_len:] for label in labels] From eeebec32603586cbf4c7d682471b3181d6578784 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 5 Jun 2024 22:07:49 -0700 Subject: [PATCH 039/199] BUG: indent_radius not handled properly when passed to nyquist_plot --- control/freqplot.py | 8 +++++--- control/tests/nyquist_test.py | 9 +++++++++ 2 files changed, 14 insertions(+), 3 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index d44149bef..b176154eb 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1536,9 +1536,6 @@ def nyquist_plot( color : string, optional Used to specify the color of the line and arrowhead. - return_contour : bool, optional - If 'True', return the contour used to evaluate the Nyquist plot. - **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords (passed to `matplotlib`) @@ -1630,6 +1627,10 @@ def nyquist_plot( max_curve_magnitude). Default linestyle (['-', '-.']) is determined by config.defaults['nyquist.mirror_style']. + return_contour : bool, optional + (legacy) If 'True', return the encirclement count and Nyquist + contour used to generate the Nyquist plot. + start_marker : str, optional Matplotlib marker to use to mark the starting point of the Nyquist plot. Defaults value is 'o' and can be set using @@ -1760,6 +1761,7 @@ def _parse_linestyle(style_name, allow_false=False): omega_num=kwargs.pop('omega_num', None), warn_encirclements=kwargs.pop('warn_encirclements', True), warn_nyquist=kwargs.pop('warn_nyquist', True), + indent_radius=kwargs.pop('indent_radius', None), check_kwargs=False, **kwargs) else: nyquist_responses = data diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index a687ee61b..3ab9b374f 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -300,6 +300,15 @@ def test_nyquist_indent_do(indentsys): np.testing.assert_allclose(contour[:50].real**2 + contour[:50].imag**2, 0.01**2) + # Make sure that the command also works if called directly as _plot() + plt.figure() + with pytest.warns(DeprecationWarning, match=".* use nyquist_response()"): + count, contour = ct.nyquist_plot( + indentsys, indent_radius=0.01, return_contour=True) + assert _Z(indentsys) == count + _P(indentsys) + np.testing.assert_allclose( + contour[:50].real**2 + contour[:50].imag**2, 0.01**2) + def test_nyquist_indent_left(indentsys): plt.figure(); From 402b45f90ee1d11f8386efc8b50c740dd6892ee4 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 9 Jun 2024 08:13:35 -0700 Subject: [PATCH 040/199] restore [wmin, wmax] functionality + documentation updates --- control/freqplot.py | 195 ++++++++++++++++++------------- control/lti.py | 18 +-- control/tests/freqplot_test.py | 24 ++++ control/tests/freqresp_test.py | 22 ++++ control/tests/nyquist_test.py | 27 +++++ doc/freqplot-nyquist-custom.png | Bin 0 -> 43720 bytes doc/freqplot-nyquist-default.png | Bin 0 -> 41758 bytes doc/freqplot-siso_bode-omega.png | Bin 0 -> 44834 bytes doc/plotting.rst | 115 +++++++++++++----- 9 files changed, 282 insertions(+), 119 deletions(-) create mode 100644 doc/freqplot-nyquist-custom.png create mode 100644 doc/freqplot-nyquist-default.png create mode 100644 doc/freqplot-siso_bode-omega.png diff --git a/control/freqplot.py b/control/freqplot.py index b176154eb..2c82bf55e 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -107,7 +107,7 @@ def bode_plot( List of LTI systems or :class:`FrequencyResponseData` objects. A single system or frequency response can also be passed. omega : array_like, optoinal - List of frequencies in rad/sec over to plot over. If not specified, + Set of frequencies in rad/sec over to plot over. If not specified, this will be determined from the proporties of the systems. Ignored if `data` is not a list of systems. *fmt : :func:`matplotlib.pyplot.plot` format string, optional @@ -126,8 +126,6 @@ def bode_plot( graphs and display the margins at the top of the graph. If set to 'overlay', the values for the gain and phase margin are placed on the graph. Setting display_margins turns off the axes grid. - margins_method : str, optional - Method to use in computing margins (see :func:`stability_margins`). **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords passed to `matplotlib` to specify line properties. @@ -153,12 +151,16 @@ def bode_plot( If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. If MIMO, strings required for each system, output, and input. + margins_method : str, optional + Method to use in computing margins (see :func:`stability_margins`). omega_limits : array_like of two values - Set limits for plotted frequency range. If Hz=True the limits - are in Hz otherwise in rad/s. + Set limits for plotted frequency range. If Hz=True the limits are + in Hz otherwise in rad/s. Specifying ``omega`` as a list of two + elements is equivalent to providing ``omega_limits``. Ignored if + data is not a list of systems. omega_num : int Number of samples to use for the frequeny range. Defaults to - config.defaults['freqplot.number_of_samples']. Ignore if data is + config.defaults['freqplot.number_of_samples']. Ignored if data is not a list of systems. plot : bool, optional (legacy) If given, `bode_plot` returns the legacy return values @@ -179,6 +181,10 @@ def bode_plot( The default values for Bode plot configuration parameters can be reset using the `config.defaults` dictionary, with module name 'bode'. + See Also + -------- + frequency_response + Notes ----- 1. Starting with python-control version 0.10, `bode_plot`returns an @@ -1182,12 +1188,6 @@ def nyquist_response( curves for each system are plotted on the same graph. omega : array_like, optional Set of frequencies to be evaluated, in rad/sec. - omega_limits : array_like of two values, optional - Limits to the range of frequencies. Ignored if omega is provided, and - auto-generated if omitted. - omega_num : int, optional - Number of frequency samples to plot. Defaults to - config.defaults['freqplot.number_of_samples']. Returns ------- @@ -1208,23 +1208,25 @@ def nyquist_response( Define the threshold for generating a warning if the number of net encirclements is a non-integer value. Default value is 0.05 and can be set using config.defaults['nyquist.encirclement_threshold']. - indent_direction : str, optional For poles on the imaginary axis, set the direction of indentation to be 'right' (default), 'left', or 'none'. - indent_points : int, optional Number of points to insert in the Nyquist contour around poles that are at or near the imaginary axis. - indent_radius : float, optional Amount to indent the Nyquist contour around poles on or near the imaginary axis. Portions of the Nyquist plot corresponding to indented portions of the contour are plotted using a different line style. - + omega_limits : array_like of two values + Set limits for plotted frequency range. If Hz=True the limits are + in Hz otherwise in rad/s. Specifying ``omega`` as a list of two + elements is equivalent to providing ``omega_limits``. + omega_num : int, optional + Number of samples to use for the frequeny range. Defaults to + config.defaults['freqplot.number_of_samples']. warn_nyquist : bool, optional If set to 'False', turn off warnings about frequencies above Nyquist. - warn_encirclements : bool, optional If set to 'False', turn off warnings about number of encirclements not meeting the Nyquist criterion. @@ -1257,6 +1259,10 @@ def nyquist_response( response object can be iterated over to return `count, contour`. This behavior is deprecated and will be removed in a future release. + See Also + -------- + nyquist_plot + Examples -------- >>> G = ct.zpk([], [-1, -2, -3], gain=100) @@ -1504,7 +1510,8 @@ def nyquist_response( def nyquist_plot( data, omega=None, plot=None, label_freq=0, color=None, label=None, - return_contour=None, title=None, legend_loc='upper right', **kwargs): + return_contour=None, title=None, legend_loc='upper right', + ax=None, **kwargs): """Nyquist plot for a system. Generates a Nyquist plot for the system over a (optional) frequency @@ -1521,18 +1528,10 @@ def nyquist_plot( List of linear input/output systems (single system is OK) or Nyquist ersponses (computed using :func:`~control.nyquist_response`). Nyquist curves for each system are plotted on the same graph. - omega : array_like, optional - Set of frequencies to be evaluated, in rad/sec. - - omega_limits : array_like of two values, optional - Limits to the range of frequencies. Ignored if omega is provided, and - auto-generated if omitted. - - omega_num : int, optional - Number of frequency samples to plot. Defaults to - config.defaults['freqplot.number_of_samples']. - + Set of frequencies to be evaluated, in rad/sec. Specifying + ``omega`` as a list of two elements is equivalent to providing + ``omega_limits``. color : string, optional Used to specify the color of the line and arrowhead. @@ -1563,90 +1562,84 @@ def nyquist_plot( a 2D array is passed, the first row will be used to specify arrow locations for the primary curve and the second row will be used for the mirror image. - arrow_size : float, optional Arrowhead width and length (in display coordinates). Default value is 8 and can be set using config.defaults['nyquist.arrow_size']. - arrow_style : matplotlib.patches.ArrowStyle, optional Define style used for Nyquist curve arrows (overrides `arrow_size`). - encirclement_threshold : float, optional Define the threshold for generating a warning if the number of net encirclements is a non-integer value. Default value is 0.05 and can be set using config.defaults['nyquist.encirclement_threshold']. - indent_direction : str, optional For poles on the imaginary axis, set the direction of indentation to be 'right' (default), 'left', or 'none'. - indent_points : int, optional Number of points to insert in the Nyquist contour around poles that are at or near the imaginary axis. - indent_radius : float, optional Amount to indent the Nyquist contour around poles on or near the imaginary axis. Portions of the Nyquist plot corresponding to indented portions of the contour are plotted using a different line style. - label : str or array-like of str If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. - label_freq : int, optiona Label every nth frequency on the plot. If not specified, no labels are generated. - max_curve_magnitude : float, optional Restrict the maximum magnitude of the Nyquist plot to this value. Portions of the Nyquist plot whose magnitude is restricted are plotted using a different line style. - max_curve_offset : float, optional When plotting scaled portion of the Nyquist plot, increase/decrease the magnitude by this fraction of the max_curve_magnitude to allow any overlaps between the primary and mirror curves to be avoided. - mirror_style : [str, str] or False Linestyles for mirror image of the Nyquist curve. The first element is used for unscaled portions of the Nyquist curve, the second element is used for portions that are scaled (using max_curve_magnitude). If `False` then omit completely. Default linestyle (['--', ':']) is determined by config.defaults['nyquist.mirror_style']. - + omega_limits : array_like of two values + Set limits for plotted frequency range. If Hz=True the limits are + in Hz otherwise in rad/s. Specifying ``omega`` as a list of two + elements is equivalent to providing ``omega_limits``. + omega_num : int, optional + Number of samples to use for the frequeny range. Defaults to + config.defaults['freqplot.number_of_samples']. Ignored if data is + not a list of systems. plot : bool, optional (legacy) If given, `bode_plot` returns the legacy return values of magnitude, phase, and frequency. If False, just return the values with no plot. - primary_style : [str, str], optional Linestyles for primary image of the Nyquist curve. The first element is used for unscaled portions of the Nyquist curve, the second element is used for portions that are scaled (using max_curve_magnitude). Default linestyle (['-', '-.']) is determined by config.defaults['nyquist.mirror_style']. - return_contour : bool, optional (legacy) If 'True', return the encirclement count and Nyquist contour used to generate the Nyquist plot. - start_marker : str, optional Matplotlib marker to use to mark the starting point of the Nyquist plot. Defaults value is 'o' and can be set using config.defaults['nyquist.start_marker']. - start_marker_size : float, optional Start marker size (in display coordinates). Default value is 4 and can be set using config.defaults['nyquist.start_marker_size']. - warn_nyquist : bool, optional If set to 'False', turn off warnings about frequencies above Nyquist. - warn_encirclements : bool, optional If set to 'False', turn off warnings about number of encirclements not meeting the Nyquist criterion. + See Also + -------- + nyquist_response + Notes ----- 1. If a discrete time model is given, the frequency response is computed @@ -1787,6 +1780,12 @@ def _parse_linestyle(style_name, allow_false=False): # Return counts and (optionally) the contour we used return (counts, contours) if return_contour else counts + # Get the figure and axes to use + if ax is None: + fig, ax = plt.gcf(), plt.gca() + else: + fig = ax.figure + # Create a list of lines for the output out = np.empty(len(nyquist_responses), dtype=object) for i in range(out.shape[0]): @@ -1912,7 +1911,6 @@ def _parse_linestyle(style_name, allow_false=False): prefix + 'Hz') # Label the axes - fig, ax = plt.gcf(), plt.gca() ax.set_xlabel("Real axis") ax.set_ylabel("Imaginary axis") ax.grid(color="lightgray") @@ -2080,7 +2078,8 @@ def _compute_curve_offset(resp, mask, max_offset): # # Gang of Four plot # -def gangof4_response(P, C, omega=None, Hz=False): +def gangof4_response( + P, C, omega=None, omega_limits=None, omega_num=None, Hz=False): """Compute the response of the "Gang of 4" transfer functions for a system. Generates a 2x2 frequency response for the "Gang of 4" sensitivity @@ -2089,9 +2088,9 @@ def gangof4_response(P, C, omega=None, Hz=False): Parameters ---------- P, C : LTI - Linear input/output systems (process and control) + Linear input/output systems (process and control). omega : array - Range of frequencies (list or bounds) in rad/sec + Range of frequencies (list or bounds) in rad/sec. Returns ------- @@ -2119,8 +2118,8 @@ def gangof4_response(P, C, omega=None, Hz=False): # Select a default range if none is provided # TODO: This needs to be made more intelligent - if omega is None: - omega = _default_frequency_range((P, C, S), Hz=Hz) + omega, _ = _determine_omega_vector( + [P, C, S], omega, omega_limits, omega_num, Hz=Hz) # # bode_plot based implementation @@ -2144,9 +2143,12 @@ def gangof4_response(P, C, omega=None, Hz=False): title=f"Gang of Four for P={P.name}, C={C.name}", plot_phase=False) -def gangof4_plot(P, C, omega=None, **kwargs): +def gangof4_plot( + P, C, omega=None, omega_limits=None, omega_num=None, **kwargs): """Legacy Gang of 4 plot; use gangof4_response().plot() instead.""" - return gangof4_response(P, C).plot(**kwargs) + return gangof4_response( + P, C, omega=omega, omega_limits=omega_limits, + omega_num=omega_num).plot(**kwargs) # # Singular values plot @@ -2164,15 +2166,9 @@ def singular_values_response( List of linear input/output systems (single system is OK). omega : array_like List of frequencies in rad/sec to be used for frequency response. - omega_limits : array_like of two values - Limits of the frequency vector to generate, in rad/s. - omega_num : int - Number of samples to plot. Default value (1000) set by - config.defaults['freqplot.number_of_samples']. Hz : bool, optional If True, when computing frequency limits automatically set - limits to full decades in Hz instead of rad/s. Omega is always - returned in rad/sec. + limits to full decades in Hz instead of rad/s. Returns ------- @@ -2180,6 +2176,20 @@ def singular_values_response( Frequency response with the number of outputs equal to the number of singular values in the response, and a single input. + Other Parameters + ---------------- + omega_limits : array_like of two values + Set limits for plotted frequency range. If Hz=True the limits are + in Hz otherwise in rad/s. Specifying ``omega`` as a list of two + elements is equivalent to providing ``omega_limits``. + omega_num : int, optional + Number of samples to use for the frequeny range. Defaults to + config.defaults['freqplot.number_of_samples']. + + See Also + -------- + singular_values_plot + Examples -------- >>> omegas = np.logspace(-4, 1, 1000) @@ -2247,14 +2257,14 @@ def singular_values_plot( Hz : bool If True, plot frequency in Hz (omega must be provided in rad/sec). Default value (False) set by config.defaults['freqplot.Hz']. - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to supress. **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords passed to `matplotlib` to specify line properties. Returns ------- + legend_loc : str, optional + For plots with multiple lines, a legend will be included in the + given location. Default is 'center right'. Use False to supress. lines : array of Line2D 1-D array of Line2D objects. The size of the array matches the number of systems and the value of the array is a list of @@ -2276,11 +2286,12 @@ def singular_values_plot( label(s). If sysdata is a list, strings should be specified for each system. omega_limits : array_like of two values - Set limits for plotted frequency range. If Hz=True the limits - are in Hz otherwise in rad/s. - omega_num : int + Set limits for plotted frequency range. If Hz=True the limits are + in Hz otherwise in rad/s. Specifying ``omega`` as a list of two + elements is equivalent to providing ``omega_limits``. + omega_num : int, optional Number of samples to use for the frequeny range. Defaults to - config.defaults['freqplot.number_of_samples']. Ignore if data is + config.defaults['freqplot.number_of_samples']. Ignored if data is not a list of systems. plot : bool, optional (legacy) If given, `singular_values_plot` returns the legacy return @@ -2290,6 +2301,10 @@ def singular_values_plot( Override the default parameters used for generating plots. Default is set up config.default['freqplot.rcParams']. + See Also + -------- + singular_values_response + """ # Keyword processing dB = config._get_param( @@ -2474,24 +2489,32 @@ def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num, on omega_num points according to a default logic defined by _default_frequency_range and tailored for the list of systems syslist, and omega_range_given is set to False. + If omega_in is None but omega_limits is an array-like of 2 elements, then omega_out is computed with the function np.logspace on omega_num points within the interval [min, max] = [omega_limits[0], omega_limits[1]], and omega_range_given is set to True. - If omega_in is not None, then omega_out is set to omega_in, - and omega_range_given is set to True + + If omega_in is a list or tuple of length 2, it is interpreted as a + range and handled like omega_limits. If omega_in is a list or tuple of + length 3, it is interpreted a range plus number of points and handled + like omega_limits and omega_num. + + If omega_in is an array or a list/tuple of length greater than + two, then omega_out is set to omega_in (as an array), and + omega_range_given is set to True Parameters ---------- syslist : list of LTI - List of linear input/output systems (single system is OK) + List of linear input/output systems (single system is OK). omega_in : 1D array_like or None - Frequency range specified by the user + Frequency range specified by the user. omega_limits : 1D array_like or None - Frequency limits specified by the user + Frequency limits specified by the user. omega_num : int - Number of points to be used for the frequency - range (if the frequency range is not user-specified) + Number of points to be used for the frequency range (if the + frequency range is not user-specified). Hz : bool, optional If True, the limits (first and last value) of the frequencies are set to full decades in Hz so it fits plotting with logarithmic @@ -2500,22 +2523,34 @@ def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num, Returns ------- omega_out : 1D array - Frequency range to be used + Frequency range to be used. omega_range_given : bool True if the frequency range was specified by the user, either through omega_in or through omega_limits. False if both omega_in and omega_limits are None. - """ - omega_range_given = True + """ + # Special processing for FRD systems + # TODO: allow different ranges of frequencies if omega_in is None: for sys in syslist: if isinstance(sys, FrequencyResponseData): # FRD already has predetermined frequencies if omega_in is not None and not np.all(omega_in == sys.omega): - raise ValueError("List of FrequencyResponseData systems can only have a single frequency range between them") + raise ValueError( + "List of FrequencyResponseData systems can only have " + "a single frequency range between them") omega_in = sys.omega + # Handle the special case of a range of frequencies + if omega_in is not None and omega_limits is not None: + warnings.warn( + "omega and omega_limits both specified; ignoring limits") + elif isinstance(omega_in, (list, tuple)) and len(omega_in) == 2: + omega_limits = omega_in + omega_in = None + + omega_range_given = True if omega_in is None: if omega_limits is None: omega_range_given = False diff --git a/control/lti.py b/control/lti.py index 65a500121..ec65af407 100644 --- a/control/lti.py +++ b/control/lti.py @@ -386,16 +386,18 @@ def frequency_response( sysdata : LTI system or list of LTI systems Linear system(s) for which frequency response is computed. omega : float or 1D array_like, optional - A list of frequencies in radians/sec at which the system should be - evaluated. The list can be either a Python list or a numpy array - and will be sorted before evaluation. If None (default), a common - set of frequencies that works across all given systems is computed. + Frequencies in radians/sec at which the system should be + evaluated. Can be a single frequency or array of frequencies, which + will be sorted before evaluation. If None (default), a common set + of frequencies that works across all given systems is computed. omega_limits : array_like of two values, optional - Limits to the range of frequencies, in rad/sec. Ignored if - omega is provided, and auto-generated if omitted. + Limits to the range of frequencies, in rad/sec. Specifying + ``omega`` as a list of two elements is equivalent to providing + ``omega_limits``. Ignored if omega is provided. omega_num : int, optional - Number of frequency samples to plot. Defaults to - config.defaults['freqplot.number_of_samples']. + Number of frequency samples at which to compute the response. + Defaults to config.defaults['freqplot.number_of_samples']. Ignored + if omega is provided. Returns ------- diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 0a105502f..5cdc8b074 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -181,6 +181,12 @@ def test_basic_freq_plots(savefigs=False): if savefigs: plt.savefig('freqplot-siso_bode-default.png') + plt.figure() + omega = np.logspace(-2, 2, 500) + ct.frequency_response([sys1, sys2], omega).plot(initial_phase=0) + if savefigs: + plt.savefig('freqplot-siso_bode-omega.png') + # Basic MIMO Bode plot plt.figure() sys_mimo = ct.tf( @@ -213,6 +219,24 @@ def test_basic_freq_plots(savefigs=False): if savefigs: plt.savefig('freqplot-siso_nichols-default.png') + # Nyquist plot - default settings + plt.figure() + sys = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys') + ct.nyquist(sys) + if savefigs: + plt.savefig('freqplot-nyquist-default.png') + + # Nyquist plot - custom settings + plt.figure() + sys = ct.tf([1, 0.2], [1, 0, 1]) * ct.tf([1], [1, 0]) + nyqresp = ct.nyquist_response(sys) + nyqresp.plot( + max_curve_magnitude=6, max_curve_offset=1, + arrows=[0, 0.15, 0.3, 0.6, 0.7, 0.925], label='sys') + print("Encirclements =", nyqresp.count) + if savefigs: + plt.savefig('freqplot-nyquist-custom.png') + def test_gangof4_plots(savefigs=False): proc = ct.tf([1], [1, 1, 1], name="process") diff --git a/control/tests/freqresp_test.py b/control/tests/freqresp_test.py index 18c59384d..555adf332 100644 --- a/control/tests/freqresp_test.py +++ b/control/tests/freqresp_test.py @@ -709,3 +709,25 @@ def test_singular_values_plot_mpl_superimpose_nyq(ss_mimo_ct, ss_mimo_dt): assert(len(nyquist_line[0]) == 2) assert(nyquist_line[0][0] == nyquist_line[0][1]) assert(nyquist_line[0][0] == np.pi/sys_dt.dt) + + +def test_freqresp_omega_limits(): + sys = ctrl.rss(4, 1, 1) + + # Generate a standard frequency response (no limits specified) + resp0 = ctrl.frequency_response(sys) + + # Regenerate the response using omega_limits + resp1 = ctrl.frequency_response( + sys, omega_limits=[resp0.omega[0], resp0.omega[-1]]) + np.testing.assert_equal(resp0.omega, resp1.omega) + + # Regenerate the response using omega as a list of two elements + resp2 = ctrl.frequency_response(sys, [resp0.omega[0], resp0.omega[-1]]) + np.testing.assert_equal(resp0.omega, resp2.omega) + assert resp2.omega.size > 100 + + # Make sure that generating response using array does the right thing + resp3 = ctrl.frequency_response( + sys, np.array([resp0.omega[0], resp0.omega[-1]])) + np.testing.assert_equal(resp3.omega, [resp0.omega[0], resp0.omega[-1]]) diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index 3ab9b374f..9eb9e88c0 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -438,6 +438,33 @@ def test_discrete_nyquist(): ct.nyquist_response(sys) +def test_freqresp_omega_limits(): + sys = ct.rss(4, 1, 1) + + # Generate a standard frequency response (no limits specified) + resp0 = ct.nyquist_response(sys) + assert resp0.contour.size > 2 + + # Regenerate the response using omega_limits + resp1 = ct.nyquist_response( + sys, omega_limits=[resp0.contour[1].imag, resp0.contour[-1].imag]) + assert resp1.contour.size > 2 + assert np.isclose(resp1.contour[0], resp0.contour[1]) + assert np.isclose(resp1.contour[-1], resp0.contour[-1]) + + # Regenerate the response using omega as a list of two elements + resp2 = ct.nyquist_response( + sys, [resp0.contour[1].imag, resp0.contour[-1].imag]) + np.testing.assert_equal(resp1.contour, resp2.contour) + + # Make sure that generating response using array does the right thing + resp3 = ct.nyquist_response( + sys, np.array([resp0.contour[1].imag, resp0.contour[-1].imag])) + np.testing.assert_equal( + resp3.contour, + np.array([resp0.contour[1], resp0.contour[-1]])) + + if __name__ == "__main__": # # Interactive mode: generate plots for manual viewing diff --git a/doc/freqplot-nyquist-custom.png b/doc/freqplot-nyquist-custom.png new file mode 100644 index 0000000000000000000000000000000000000000..7c91208c5780f3d06a96c6561470d19decbad686 GIT binary patch literal 43720 zcmdSBWmJ@J^e#Mr(lLO9^w1qjw?m4QK?q1ncXzk6q|zlIASD9QEuwUHcXxB{@%KOH zto43-*LuIaYv~%+%=0{R$G-Qz_I2$&;i}4VIGALZ5C{b4xxDl%2n5*=0zq0pM+NWj z4bH597a=DZO{dqkCQhyf4#p5A11CExTPG`XLmC%j2S;;To2Q%toKM(k%$%I;9EG{K ztpCpioVE_8TrBTaeZfO8?Bw4%LLhhsi2q215(VZE$XCAS($C(wrR~hRy1h2OMmyN= z(S5f$7Y}Dit*o(ni>qo+!`zfph`xvOySQv4;!cOTu$D*<4fnybSTW<6A^5qjc`E<& zr^kk+C67iAltCGIYkKa`pGyFs$b z%b_olIXf$iy0yIjj+JW1ef)@At%Va}Q0{Yk#pa^}M>l5!U$lh!$K+{-@11*gdu@sL z^_jul&83FZUuxeQf8*Yy>etd51>i}&NgS5W$iM6WAPWQQq3ZubN?HZGClx}-@dHI$E zme&_X!NI|`t4Z1mtE&&Gsi|i?wo50PeI>vOm}Yu+WeRwlm_<^F{hT!Vn=V4a!^5N8 z%}L?FM;7IFbJ&efPL34}M=Dj1NJx0(b-i12j+%)hv}v@r#?|{>$ka+xciD6kx<_ ze^a}=ohq_d@?Rt$J>P$=BK9!EAZ^O{d~cRi#D%?~p&{#45x3KZs?|h!>!vta$d!QY zT%_k-9h$$tziQDN?$o~=;$LQMx{p?S2dgbLm=hH)uC8)4%5*Q9@2@2wE#KbNw{T<6 z_bGWFc9Q6mqK4v9B17Jrm@NI6wvp1*BwcY33J473aoL$*BfDb^s-+4aK!U=*r6(to zAoiDC>pS}N59@a4@pt1(?h(WsZIO?kmOF2&N0JLfOElRp%f5gAej(j;4ryWI9hra) z1tu2O;gn?=jE4uGoZqUYv}SJVi#^xd$_IKrmkdcUa4?Z%>BZE?1K)4BAoI^_nOW6BFI`8_zjC z-f3x(h2T!(DM$ib6n5K%X^?Aeo23Ix*b|=Ic_-D;O=&Jxqg{< zX(*O@yxuRjKi6nKtR%1qzOie!W*)ar2Nwct2CXZGI!3qAV=-Pu++T;Y8;#n_&wTjH z;~4zIS%(R2V)?;(YgEJ=2$pPA)oV)S`2;%Jik0 z+CvB_kKu!>v)zdEd0*-((|(tqXN~7`?S4oo7xd@g5TNx|YJ!_{a&lC4b)y?S&yUV! z&^Pl0;qnF5F1uQ|5Z8?XSf3TYqrJVoj)DTFY0b1y^m6UXTv_{`o}Qaa_Ff0@$qd+v zv^~?Kl^z{0FHzswuWH4DkQp$-C8s&>^Vx2sg|Tn%da23zEFKA1j1-zw%z}4yoSeQ7 z^FU@^a5Z-L&gaVE?S+ur)UG({)Y`#Z8En;ZWutzY?a;=B_4f4CnTgiSx{xy^_twqK z=oDBosbu^qdc*qd>(>v_Kqd1<#;{!`a7L>!l%j62C@tP#k0`qBb==*B z(EL2XDbqf!4T|jx4DrLTCw%e=yEmDuTjKsEaKHJ!snb!K7N5#v19o$Fz5na)--i%j zg!;o@l-v$l(OS8&Aq(KD5MaSyR5JIRZowwcec{2Q5QLHo*mMl5NJQ;U*R;QXQr&Z_ z%kEM?8=WrVs(bR&disaK&O}96WTca@xa*z{X_Rb%?k`JYZc@927NkFELWE>dArhR# z5%%NnTwxLt)aK^q%HuO$$A3$I?)#&lEnOTgBL;8?>;YajE+Arhwlj&2iMbRyfwVB| zIxnNIPcwg9IBJ1UO&udJ=Z3Ke0Iq}Z*R^reHuX5SSEucc{bFdv zqf<*l2-8bYU=Y7Kkb<;a?>FP+zX}HqAXK6tCkMH;we{~e91INeVYhkrbxP6Gk=L5d zK4M*wk5Pcb0y~Se-j`ng<+}0B4o-V7M^Ry+nZ273JNr)MxNgz!-wJjVt}-#Mb=mu< z{i4U%b6&?vJM+!d@k}Zq&CL>B(UcLscbB0Oa-7M_V5z$W=Dh;Heq~KaOk4y5>Atx< zzJytT*Z};2Vwxa6n|g_4v(GJ*lr&6^%KZT!AD_nc2nLMP4}`H9^mcBy+tcy5xH$jO zVvQQN=$IJ1y{2m$FW_PaHk~xoNAmWvCIkV!dc&}^mObHN`? zzgp{Xvmn#(?`OX9Nh{5Aeg9!^89BLS;2fR--!wEdRPJ_Y=moahZ7H1T+X)LHTn8Po zf1m7^y9{nF4iR4KrMC9;l2DB35&G}mULMCa#W!kdi`k)64nMvBr0^6L6}6T%-)%YF zq}n!_yXb+iBd?<3s({SK%3AKaKgae#L{N~_alNk-%r-75sf&pfr}3r66H%{<2^m^^ z*=P#)!EMAA0mD7S&2 zIN6ybl#8aQTbn?KwPmZd1l4Ab>-kdNUZ2aEo3nh3k58S=NJ$BM9?xj7+!aMC?j`7P zzPIaiohIaXFs5y5(3d83ao&6%#rf{%LX5;+OQ!GL#!;KS|bz0b3O zNdqhLtEo9RUZ&tRgMLv?{{WnFYkxmpQBl#wQ7;$I`(Mz)H>?oJ{tU6pbzb+Q_hFre zCtIUfPd@GBoNw>%$DmQULF(%2l-*tcR!LdUPx-7-UhX1_lN<1J;&}XH%A>5{>kGX*3%)t1{Z+cHGKuk%n9F6 zV-AWf9(N)-2u7R@T)$z~g)idQJ5Pbb1slK%*`%k6t-j)o!-lbsd1Y@vmwvDiXK6$sa$qU0z<=JJh8`L_{nTbLsv`Oin&t zPx)(N1Av?ka8%vg*l2#ezkmNUOXV%`nrreFLEO}{>cGj%o8WmiX)07a>e1sS7`?2V zA=;yq${%%nc(@2AF<$SwPpon613b7+jm@lJ(VMBITVCf1wHDyr>s@x2zSZvuE0?M} zD&&782jSuz#8;to$D&Nf7kAh5_YP8_xU0y>$bz2~yJTc!?9b;sxsubQ&V;0|Ud%Or2w$&FoKmi|WtAX1qFOx{b9pa~=^@lUAi4f}u;FNuzUL9R<1NfRpw3 z`g~u`#pO(9yXPIVhzNN_MFqmwto5Z&HzDcf0|%Vj&_Ge3oK7H|puE@-PPj2!FEHnO z?=5<<5C{*ILf@p}eV`bI#*_M2&|w7~mr67Y*zRNCysey%z2vAe@}n!IzxzfHd%;w zV`HNjBhrW&@4?xbOSqms?4`D#st9k+4{+b2dB%M`9U$9Kg?xCXxVPQKfkAdVEn;5g8dTcoKPxK<+Cy;Kfio)yIQ+rG zhcG%il%}R8c&IEQH5~dT%8%p)LM~X3aDar5x(y8tgRsI7-;fvRW`%qKe4pV`M|cXK zB{9JN{s#wk2%E3nZ@T96h?=wtnY3DK9^XENP-xGTvrq5wV3jTkd9*n;QdnT2S%k`t z5JweqP!v*<)oE$hDp0@;fj0=kg`;BzBSXsH_YnN~%!h@BN7a!VBmN;q{0iN1?T`84 zXOQR^PF5QKjozQG!6S?M@@|;{Oi6yau(Y%@7AB?o?j4S;t!;KYeo!}~AMmm)EG!fC zu3Wx5adK3x;5>mWp^3Q6yaW6C{MV|(uhk=y?oPvs z7Y$h=9}2|gUu6F?ixFMxR(p!Ck?I#k#y1s0nN%HpCr`XYnI10xM5D_sAs%I9%lXdw z!0dCghBL3nJA_du1qCJkDvFxCeVCgl5f-U6e|&CRgrXkunsu!-+$1aSM(SPNzM zjZ=A+Z^e|?FUFYyFB4@UEl2bH3t#Zg45ufDqOlU7LoDuA$h81)Ai!B!(-mu9rbLWw z(b6m+Ro-MYV}{NAcP`P%Wq2;WCxW7~@P+qb|$!{rzWp(3{EWsL)ZNwB53W^F5_lP(FM6d;)6SXb8Oab z$D@>2y4=-vn#es%#E^4jyEJNIeSGKTM6b+|ik?_vzouLmLm4XxG4FpBvI*%Y+%HZLkvK+JPLk>D^Z0rbFuybp8F>2p=viu=Vfz z>EpwoYq@^X?C?DG9%_k%QmL>S+0%|m3SzeGZew~m`lyV8_KVXwpBH)mppF; zquYliG9+a`Az7~F>3f~)`{&XJxe1dYGlCg067Yl_Sng~V^Grk6ih~pwyA}jFd~eKb z819tWf=i!MwphmLnRiSYihYet;;)l{hh66&oYB;$8u$mUeafKQ{^;Q3oC>?+Yv0W7 zhU(CRy&uQcM}l1UE~xQybHNhI#5Fy)`0yDLfNP;c&l*zceJQ$O{E|4OS|LS^@XO`( z7nX;I-xL$ZM&6w+tHR9Szg7n*z%1|~0PEW*xQg->k<%}A^)GGXt{VRR#(oq3E*x)v z%QyIZa_l7me1_;0P*!1npBa5219UTJw>e(+j`!$yn$?3JOnrpI1K$eUl@=Z;24`Ww zlBLAJAeP`JCm7w4;)}}Rb0P6E7iapM(QE34%Q^TYjY-*m7tmp)(*Ldt_)HwV_joT* z`xUKScNX(q?QGwoe;Mv_DoR~pRi*OyD>NF|ibEk9SPmVXest=Rl*#GM34eA<{tVWx zz2nu|B0WLKXB4o}VhA=Zk8q2iq_t|?H862CEA|5tWVs%Vt}zc4?Fk$A4{d0hS7LG< z2|TPI2c{24-wZ`v) zrEz?F=9Lv9ad#`>j(+-5-wp0JJOhV^t^eDr8R^8q4?&V#c^$kq0tIDNONsM+SzT7` zO`Au0E!*CB<@rf;RZ^IIk;|l4xJnnw_+ak4; ziZRFy7h#N0f#L5VS(#cP$zK@SZPsZB_>yAl?t9w{pJiXYAOgJ^rgo~3(!2~QxG>LuUvJOA=9O=V|FPZcV!uCmY$>$;^1{p%Rl)L4a>I|3 zuE=_Eala_0h;PE`@UZfK{H8$ryG~uZLw^f|$Hj|zE;$b6y1QtK#C$_us=R(TKjuWr z&Yp35Nv~kJ^^H#l9tQdEHhT`DJ3#W)?zL(@$!7B{nR?&Z+;oH1u3^<)_mK<|J=#7` z^#=v=hOE?Wtvg;hLKz*Fj`H{48u8@3fZV)!<%D(m^QNa%Rp(tOH#LKxotMGpxIo53 zOIyW@9~m5-Kc(Djt@YoeiZa6TjQ(-5Hiqg7^d|YzKPGRTaSq$MWaw12j6#5i(oe!o z?N8tp*<7)ila+v@=g@!n*ON_cYzL+TY zjYRVlzpRI^`KC2XCK6mGkMF7u*_Br`syB@Y|M#UPQywq(G_D=vil6G<*&~UbEc@MPsjcrmp-T|ae$yWpNHRXWaW%g1V09z;e$kyVj@dG1z^1GbaO`{ZS|6bz(J%L?!OAbE!P5?pc1f?y3o zcFm11<|QtX*q?%~=+HOisqV=&w6!Bd_G(cq$4dM&=ZXF}Fa|+M9H(2D8+eKZ zx}0!8N_|PyTMRSf?S1pdqo7udcSvj*B=LU&5d8ZlZV&BfGl+&Xpe3 za-sNRwP(q050Nh6x30SCd2wt1-3#r!D81QIdD<`H?^dR98T$oYIGzw)9bUb={c*4!y{m!i<(FBVwDs7@2z z`utyPh>-<&N&vkUofJ#e+vn$-C+$H9Q53$ejRsgDrR?Lq&us;AL;bF3lTd7gn2H|S zLk?2d%4Yxwfp^{uv9DGbu%>4jAxAN)CY|Mr{U`yS0z{OO)qK;t4JbhRudhT(A3cZ7 zp&y#h=KN%fd$bkhd{2fwHaAi2-t-;yg|ArP`WJc_%gEDpJA4NY(I#AktHF|O!EKq3 zAu+ho7C8W+$t}?IEkElrP{jIeN?x=Q6P=EP1`qr*-n|k_fMC@ z#qxU|{!Es&7@!TNw+5tP(w!)M6u_nUZOOr0RxNn?D{(X>PR&L#vFK2z>TfjVrtyT+ zPtqL5c+7io?GOzgi9j4C^5s=QTsqx*^2Q`<|I+7%JySwncIC(=>FwVfS5wLz(3-?! zQQ|vYWUO5oRtR|bIm!Ij3+N3L`c?1TY=ZGk$gQtseg&H$Y(eK?Ra9`F{$O`6KD?>>w2FEY|2q6|Ht^C&T!E#77L_0l z9ia9im6ni>Ybj2mT+fu6;X1B<`4F8Uw>`&gl|_KbYON*dZOEaWncMlX2sEcpD!5z1 zW2=eHc#i!n%ys$qyNa;Z)GCkm_r~c8-<&{LJ()Aupj_;wF0Pu|j+b6H&=oP9OnC2+0MFnXUeXxhf=v_S-NLuZOlw z36=b;qW&2?U||3!`xnEL?Y^kSybc}(iAXyW)Vz}~<>IVw?fJX>hayjKNJ+Q*nf&~9 z9fGb|@i!PkXZsH8oq+*kE`JOdeA-~&KS#qQ)OYXsB=dqVC6OTfElZqocfu2%HSBP6 zo;6kK{MSOn6=CKTZxr&>gXK$)4RJn62YtGw`Pq_M6xWhiYU=3u#hxl>#^vTC zU!4v}&FM+2is{$EfpbQ}r{(1oCyZ=2qfsKPw+s1@#n@^|`D(tseCykG07$tj5?1s|CFbf2R7o zu#opq2Y~`+s4UmhLd2V=G6Sh`*O$NeEP8Q$mhM=HzX~SowcSBV{Bw9V!8Al-%x4mG z$$wVp&c+~kb0cUr`lKMQ)HRIY`E&e$-KSc*mZ*@C&!x#iRo3rnf8}}>l0fvgjdJm~ zwrAQm@?(X)C2Td>*Ki`7g}bJNX2h8>J>o};&iBWcgD32A&<*3lR3JDedaM${XHdKCxu~w_Q*#ybENki#5d@NNuU>wA?`Ecm9KbcvW7rp)Vj@+F-QJ={7g{Xz zNe>5dQP5);7pu=iRSY*7irdU`?s>;#N)eOxVBp7@dzB3)=w@$_Ed}q9{E6`N zG8~WgCa~TBt`2kiMMc`LVt7##?z1`TW)AHaNy;j+I+8{?ot3*)TP`N|VJ63fYEO7< zwn%XIu{?QrAgdrJ;5X%>&w)({=Sr({#cV+xM}hh zy7Uc!>uW{HE!SOL7X)zyyvj)mFuzt9AIf)(?t3hPP3W?c@_259BL-wC6J^YR#z!DY z)_D+1x)a=?Uj|0GyL0~|W4YNxNPjdMyMdRZPKru9EM1O_KJ-$5mBTwNy21q)c&-%! z{8yj6YJY)@e1V}^L;&(h`-Tl(@)EtJi1Sif98DY zp@y)hW<-KSdNJ3EVogk2CvZ5}L%tImmG6`GMQ;T%#jl~oaEy101!sT8iR^6=r}W#~ zW@d>U(Sml{Zmh%ULpa2*OyNU<83)K9c(~OgR=92DJ7^K!=Uj#Ah%M?yM+_pU@hWin za#S$wbq|x@tW@LSr5MT}+e~+nYaHekzi^yhu(jz6?S|ddz-ZkTD0Tn#L#uFrkM`yD z3XB}W(Ot1W1f(xt$iRtHDI=OhP$A5tWeS?(s+pJTsh~a{* z`hlNOrO&;Y#7X!`XZ>^^3WSP$exlytI?GHa`B9|5Qizo?0lq8)>W_QEjgC3Hg)_$6~_VIeiSAs_i6MHu|=e@8)us2`l^XB;} zDHL##h*;%dfTMm974d48FTThBZTZ*DEz)R|zMcEvr99VXNc1joP>t>OuoVfq!>LsX zw9m5M2s?PQ7lO9H*KizjLmwvi3TI13!a4wbx zj@a5%!u4&16i!SYn5}4v6-WTe#d#;52Ey4$8u~r`TCS5$Ts08A^dlFneM%@{{42|K(~c1Fj*$3!IikQS+Vs@Cuu3$qo1nI|*^5N=i;sDwE8BX2F{ zV+UA>K`cS3j7uia;tN!AKhuKeI$eEVYz~lqb zB@$mBnO2s6_eenxn9IjFgs6|LsG$OyqT8_YsaMjUlNQpDz?5$%(%_co=@5rZ8CgT`8-*$Y%ioEFhs$|ROZ25CE!Z-;l|{ki*z zyZck!d8e}@rg&WZk~sb0oJCC$TL|2XjId=mcoc-jMmldmVJ-WNiwyN1bT(1^xxb;_ zP~wNd8L0xmb_%nM^|cyWmb4dq43B$l&@nbbP_ASV^H(8Unw|sm0Nq)gSWT8K(nNtm zCtQK?nS$c7?s$=m#~(LaytQv)58^xB&(k;BDYSuAOo?}OJHW)-N&cN*NE}EyW5JWa>!%nvJX?rj`5wepx0NBuQ(q9a; z%z1sc+>1>L4WhZB!xb}_bT*e})U-EmE^gx%Z@!5J>0kkWu^D8sZS`yT(?M?qTpa09 zc#4U3Ab$T)?8R%jILrEMTS1Q?&vrSM<@JkC*6d%E)E~IBd`{1Nsfz^yT?LYb!kv67 zqKcB_+*ON3d?v#mO}5*}Nuzr%N8mKV54fI_xrBo_SsaY4^dHoY?ikPd*be3=J#h7? ze|7rWY=u7;OFOrx8sT?5sTOFuF>Isu#9G?Uy; z{koT-)>-lqQ7nV98G5Z_Wu?oGxSl_2?rF~S1&gs^!L0M#6&vMva~0P8HB(t&4*gz; z2L!_&R&7GwB$5*GTnr9fT-U7S@s*}{1hNR+D13gwrK2rN@7H+xOmsvM2kil{i)}>= z#&fHk+hTsLbm9PB{auPa;?Wkvs^L&chf#o;I)d5Xx?%(Vk*0YlD1SH}@J4l_PlcW@ z{E|0??vzS`K&o{*i}AdZwqT|Iy#XSp8{nG4dr`n7LiB++g0$pQe8B8_FVB;TiXd#u zbu%PVb3U*a_^Q=CnE7w8KXnW`JC4VirEwL@?8{U8)6u050-F9i^q103e~Bb;Kd2En z>Zz2qS&;?u9fAzLvJp5nUf=O*zDO_iwGO_K{H&AI-G}4__&aX>7Kod>JB*nbU0}uz z1ytGu;YPT{a-A6)U2IPuG`B}Nx`i-3SSahvwKJMWN1~$(Lbq0|q47E|gCVS|O@(7Q z#*yR`{l#szXd3GPg1sy9<25G&a+fPmIfJoC4Dau5Cn}AxK!qBkVhSX%mBz`eLkd7N zz*$&{ziXp5B1NSoYl8(rNJ)!37X*FpuDu@<)t=_w{u+Lqn(lc%Kq@N1fMGj7R?z7l z7^L&dDAZ5DdTQn5cBdm0xklGBPuXQPs=!Qtlgsn-Nrt(TlT_D7ny; z{FXc_7_yw)OlKKDNK@2Bq!~~@0h3c=VTz#;z(8=_dSGrcR3k|7r1^p2O_vY@ZeQuN z;R?XorE!*Y&1CcN(kp&GoOo~m9~~WqKuXm;2OU94F8Fufs9S~xDQCw@GUjsmG;Q`D zFSxESZP@vRw`49c*q_Je!sJep8ylqvJtcwSft`!f7-RmpG@XVSmQgy9%&0SS86Or| zDBuv;%(h)Ly-g(=8c#(t(qi2vuSZf#+*YRPn8#9q8oEbCFw4lJ!=d4+^iTh-jZk7f zprPnC07Wu|B_$o8_LS3O4%8S|SWQ-%bf51|qeX>$uqQADFgEk&3miZYnex~upLLzS zYcR{FGAGe~YH>K$gn5GZT7S~H6%=0xw{R7CV1IZ+E4?hb(`!%Rqf*?Oxo&yb)d6MB zrxIB%mZ`3;CVlcA{cCaY;_fa7Q1P=KKwE$$il`XfnQJ7+$0y13ntz3-4|IGd;dHqM zKOp;icnA{^62gc*U3QCJR0DFORYbdADmQlF5F`A?p3O4!&5o{Z+sS9M6-?`jJ53nX z^*jc)%0c(~F)BI%$^x17BIZ;*C4V|=SDS52s~k(GUWAOJyebNkaZ#TqWDP8Dy)&S!HJS*=_c8%k=Lyz3?U@6aPseNXN zlc=N4EKT1B9&Fm81)Iw@AZvc8N7;I@*Lrc#cNY*TUHjXzjmQxC88EvP-T&%d`z7up zK@lV!Kfn4$tUQy+kBZnA6t>K{^{9q(<)o4ORDYO!gPejwBsSQ0A1vV`T=3l;Ou5_Q zZ}d-pAC42$t!=B==h9(Vs>8gGmg+DTz=|LK6_{U0*7NZPgyx5c2qcKOxVS2-_8mPS zk`#%F_ia=Vk^1KDz>Yc3kQ+M?s83jwWQUT509~jIJ85A6;x2=oGa_8vCRn8u2KWje9fIl{H0kL}f zL}7zFOcJ?q<-&QeBrUl`zN!(JS`e9i+>^?UE|CfxoTCuCH|?iX}duO6SBJ1a){0_A=WR&|87-Zb#jO92xO|+D*OUQ*QyPe>)Ji zWZX;ZI*-E<)kxrOCyyt(X;YN@Gh=cas_5p7HEm(`Y_9rS^(0(oDxzpWv0b~OcfvVq zizlrAvGuvYSJ;0(nq&z`dA92tVFRKrfD24Es&Txq14`Z3?Q$zwJcyqHW2;!ZkvTbR zsS=PjaE4qm(~fMt1Zu!1E`I-AGo)``p@{9v1)ao$T2HPxs%+nXq^bK@E}8?Z|^CoQTS{47LObdA_R z0o$cy+|&o@l>@$a?oGLw6$#L9vAoR#csC!AeTbVDYLTsmJjc2dd>iyxm>j%#4SK{W z)r5=aX$3yiqv|@nufdvJ4T;8#cY**dJuhRjYw5Q6soj3L=0za|c`+ANrrW1tbbCq% z^JP5lE#A_SdS_vLU|2Hd4P?xWBD^h$VduXuY%k4 zE6csw%xWA#4v9YSON8EJNPJ@%20JB=c_Cd}M)34nPUr4DTn7qrGIe2(vSKB5|6Evl zYgfEX?Ru3|O8ptlRtX1}&1?Bi$fsOC-LefB1KL3niob!e%g~ZtrDRG(PJa?AF>!BZ#)nk~{pAyE&>f_QI~+z#L|z zo%i7J4WjAzZ&y(x6|tp3?qTt%qsYroglBr^;?fKWh{YGDZZM#+Lxt%<;e;ziclK{H z8SwZtOcV#U$X|nxd1$)uYH-7lyX_HybZ*k4sdGEu5LG>?or5I~;s?^K?3}RxCSSpD zR~tejGq|LjIHdy);(L>QB?3826}Y)&0cd=LKuzMRQD(k;pu$J`iiPIMXBxahnKynR zTtb77S@I0M9L^zD&pBGt19O6aU# zChfQVn7ztp<8D~;Xd@M{rLFu>2k%&=E!Dz~G+-lgo8LX$EXue`=05o!X+6!j+I-N| zXvFxKo2!ML zxi;|32nmwSVHQCKYm|NR@i!UxKt9Y3q3MttwBn8KKdv!S6^)*eO)|I-!!(_ zv7+x)!9@;;4Shgas(0E0d^9pPscLD0zm{tiQ=l+~#NhV;LW3W1F!cRBJ4L)7B#Htd z*lY;{mGeR%dB*`|2+Nt7X9DQUpv)jU>vxd%CnCr~f@0}}6S3!0Rseq3zno#BEKHY2)9$?m-|`%bsA8CiQ6*f=o$_Hfrba8P2ZOo}=)HrlYVQl6_wCV4>%Xu#us%Yqx& z#4B4A`^`8~)jW5sqE7Ef?izf(-D^7o`l7S7MD81<+1sYvQ2;EHOi+KgD)R$N5&fv` zN4Kn$_d|vtppGOdn$7CAcQ^xWAdPp#`D2(&*vMCCk(z<@ttSr9Ap!jgN?o&_PEy#) zpV}$_^4X1V^H$`oYLt&@a0)DDP!V);enwL~@Lz|GXVzdD*_yQ(#r zVx4poARe{gX!Vy#1e=zrz{jCw>hIdQu>%?&p&z}XVUPty>s-pa(T@4m2myqet(Zru z10stRQPs&OsI4=+BOD&)FW->`{QS=c<`)80A<~D2nOaeuK=I--Et;koU)yoDZ>7Trpm*kSIZzUGEa?1ar3b*}i#t6$EG<)fEk44;;te8mA){TY!;vA>v#=Tb{FDL7(dszvbHQ>$8 z&D>F+wKt%rY1>p-+{&f_gE5g=)J_>_*7UtT`@ulqEm*F&uP7m5=W zeM67+jfDV3Yl0VPGuo7_wEBkB;Cs2--umkaub&Uf=4Y^Ayk3erX>e9q5L@$zHv#7Q zOwhs)gbA5%eH9)qfPeSB8H+hv1d3#Hc}@`^tNgki*nzx#LrGoQLMs@1$D~G6=V;88$(nw!qDFhBPhe%R7rdkH6X+ zp0VcUKYwLrrvQyObuQ$Yw)?3X14!k9?F>C%GOqii59kucx1x`Ua&AV$zWEYHk9^g- zNl1Tfu+lt-AR2A=J9?jfw!5`NK_#M`52v2x!`E~5T3>|LRU5v zCYrvimp@ohstc;^t}`inGkdxH{`Ng%B!BRvi&D(4wI5$E5u{{L>4tOGSgMRH7P;`{DA8l~FNdTDi5h|6qSbiQ*HFjpIJ`hmg z0m=hDeimL)CymoEcc6Dkj9Ps)#$`1lwpx5EB$$$K=|Zhljh)?uS?&@|t>kvvl>tO_ z^s`srHF-0Qwdb^Js=o4S+6|+5#uh(aTCRV6@lh+!kw6q_=DRr|FBwh<9yKn+?f&+> z!sIWR)BYSK=!_D-xzQKN-E+{KahB>XGi2LkS7>V9PK!gDaw6gQO zr&dy_UX)s6wfLiWLC_0!j*^_~_;hsYk0bfC)op z&Q{?g1A&?b9pM42X>4_Fl+~45SZjAWki#ov5Y_O>v(`MJxwn*hBAAx1UF3x`>KS}+ znhUh5BPGr{o2+((HKIk+jbf(0FuW#31>*Ii_XKj!i&XU<0@2N&NkQ5o@$`B6vMcYa z;(*%cp0gsNKbA8znShH;nx8-cWyyD^4DIsk3~tCNiHX5`vy@m+pPNHDP$x@-DDFkn z`GC@F-Gz;r{adJ+Vubcmyh%Rg||r2;3>Qi?wUrqxNxQf46x2-Qv@5 z$9Dg@$#VXc&_@nkG(bVJheqIX)O^>*)GO%KTOF$Z0zGfBrx>IB-F`WwB`Uzsv+6sq zLZZHG^)f2=msdVU@M!cs)>eUiUgMKbDqGR3>IS`^2nx0X8&*ymT@+H-*?spaH+wYg z9m`ybc(%;*4C7uOB^NxU9eBZcVPWjB`alI@{N!<@Z1?-?=DRB_Q0@qZu52h|Hy&iw7xP||r;(2TAkJePL;fFLNWYFc%%|`g(i`Q8D1Eeb&qe8Zw zZ|PZ&G!VtC-kf zF6PSxnlr)N|eq0J2>9$gG|4ZsdJ(Z zEZuoXAT=p#OCMamBqLHP{Z}ziMEd2?zx5u>Din`88ewu1BtF zB=X?(kI7^DJq`xh2mzC`t}2Q24j?p4e9{d$1ky_iMF0Q;K+V-1rM4dH16bG}Aot+x zyL+vttk}c}V=0F>D_vwND)&yv5|rjbMJRqtTf$8f9zekc1-!5sjc@=&fNG6??s!AJ zmAgVH10nrH8Wv|Z+ee(|&5f;U`D0PXoI_Fl?1N<~fdR(dum|YGJy;0DTMDK2X#uTx zP%0|WNn2}A$Efs~-p*-{u6ZcTwI&?}^E*_1@RY~W=PSiYK!&0I5xv7nLhniFQ)+J>V$kYAr~TT#3Xi-gaLBPb+70krfx!6@0mSJFWj}B@)3@-PJK$`83!}OtiQ5yfBvJcg3jy0Ig z)&a~bQc)OEuRS10cPP+ugJrDKaWeld{iJBnTg^bC^LFzwq~p12TUeHg04rR@8>BEjW|W{d}-g<&MI`to-6QT?E#8|4Ld$ z2GM3_>v99yp9yHl&a0m`QkbMtf)cHi!EP~PpBWKaVzf#pHzys#R6MbgbOAqV3ky85 zx(BoE4TEBT>L;z$$D#uiUPqkbIy#|(S^p~Ig#qGL%uM_{MOK`Ub>{d)V4MEwD~(rZsj$N<#WQ|iTIb%-Gh`G>&U8qW#0h+P($RAFbq``v%57dbt4;g z(_z*9a-XobrsY`;V~6|lHfmMZ>OCDwAK}io+>Xm@hf1LnVb`0F7Xvd+uN?(AypbWp z9>FkiRTPo#XC2&79&AuRr0|K9tS(693Zg$a!KwK~{4nP=KH%`)-j0tvU3m-uu>hK5 z#nVRY;=K(O3|}T1dE|}t_0XIgTF?>GIzC?08I-s9I;fs#=+Ube4--UEK}bt@#p9(G zEg_q6)*TEC&YcaqQrZI4c&XkiVawZrO2@|bkf`-2Vq((>OS>PnUnZ+*QPEHB6MD?# zG082mWz5wMG+ys#i_{&snwr5OA&d{cZ)s^AKIeR+YTVY_obEqq(oJ3Pfx9}{Gm^LN z=`(^B(4+aRc=Skbm^$&S3RvaOPEeoz%6P%JmJ*~6V;UE73aO*sA-{UaorjPJueC^H;{2QA=ZepPha@$J^HLD?q3 zwX|<~Yih_n9jl>tz$ZQ+MlcnP=v5#oG`Bww=u+#AZdBpAX_nVR92TwTI714b Kq zX~8Ka_r%@C+TlN;4RNb!P$PzQc>kdyWpF}Y!9;IDUkN7BZ2{CTtVv&@bZg6kU9%hl zx=czX9|Mcw6Dgb8^BIP*<4 z+|76QKntquwbU;cUSmueO|cg&sGK}~QV}-qoV^Kk45B9LWbB{>g&UqvfAi#EC2rZP z1u*&Pc^y9dVKo^5nrz7q4-X-Jfblc}eW+f~NgbSNt69CoZ6Owa`D-4VkVK>q6FwSh z0=b?c%E;d@1iT|s*b&bqpCwKX8fk9M1Zt{oPIN9BihO}Yi^=9*cx#Y{rjQdCsLq0- zc07=wfqtNtJ4MQ-23Hyee@=yi2M3^$uonDE#9)C6b%{Dl?9Nq4Ckwt$bWRJtm%Tnw+ie2+v6|bAAq`yTlOiqLu$%MuL@*(t$A|_X*+|ks zSj?=h_*9(#4klej+Qev)la%S{Y^zSgL9aQWEjrfEu>p1G5KM0f_+g6n#xPr-dLx?x zBSE3Ep^kG3e)=#I?d7FM@2hV}XH_HWnC?0bS!&uu_&>~xSDVZ`?YA)o~Ki4)BqR*y5hj(S`?cM{n&mgYS7J3&7^5(KgO zcQ?l>C0f;(WsPTA^?v5I)ZgrkKr&H|L%aVMS#JT9)f%;bKZJC*(k0TMfTVN?sDPAoC?!aDN+T^2iXaFI zNOw1gs5DB6v~)`&{MSD3`~SXg=9_WOoHJ*T{p@G&`@Yv&*Y&&R6`a&9gJB$=JcQ?; zL3qj{r4`L*;`Q5@+wIUuTfOiriL~q1!X&SkfX^plv#K)&4|3*a}rc`xs1&Xcw6C2r=g*vciFmN zYOX^MT|iL!w0F4V3+QW@moZhZ3=isYgDfq# zivsGg-~egx0|q4<4rjD1qXYOtQAUJbw9=0%6@( zzg&^h&qLRTM@IMqwP=r7o3VOjT@=n5wirj^?C|wC6eKYHchG`$i(SO8H(Ul>tPf)| z$gGAC@6AM@aCWgyy)hzRVkBTV@o4pqOeH*gB5P7j$X=~Gs=tAwt(JAGB442VOG#DG z65Y{5>*}0-J7=F?55r=mqCF4p5ErCTaije`8){3MVlFJInGlS_xT*Ry;msQ^83m&1 z>b`|NA^4c7WF&(P4pAlDVN05P)rkkU1|&n^`P`XVKk!jdQhNV%tR#5*(fLrn`r^6+ zbftIpik@%YT+Mj$C^s*URZy_}(e&pUkCrMbMutg3)Odv#rp38&;f||vO&B+M6@8{Z z)kc#yP;OQiyILy}p-9%v@~u@+VdMMv zb8>6tsPp+GS|sr>GYEd~1$NV5so?C%X=%MQa~6)7^}g9Y^FcqQ+t9H&460y;`uh4Z z{kPJO*4_GQbM5fa(9lStyZe03RMphd5AZ}1zAeF@zPRXa3)#SW{6cjvPeUx!EU1BY zbhsxEcE#sUJ}qjgs}rF;T_#~%Y>-I9`B&*l8C)f=fLXWW)Pr4f+H;|HHIDuSug4%ZXUr2~o7$YbIVZpTfG*ZP=_ zA1LOdU$NNbN8LzNSrOKZhlf_Oo}Phz>HQ^5)im_gH)$;DllWg7u{F+ z*i4If@|&>@T(oK6KVe`Xgdipu@CBzy`HBF8VW?1#A2GWEJVT{X>hLAIniE1@VQ0T0 zA5PG|_Mn}Ij`r1oXkan_z7(vtW znMv(-Ic}6jFP-#dC=(%Gp?aLL%v(H32@iBll`dE_%iK6W)}B>@j=xxik@MLq<8w#i zCHS)Y&Hi5l%**fn;GEGd?x#IZ19PEEhEuN{13IlxqTWpko%EeWVve$PBQdg& zDUT%|182g13LVzkj;?Low|TeT!)zoDqrXWq@xhwvUw6@w-0P+ZsZG5MZCv9Uu@66| z-hc3HL==~~!`saWJwVJP5|p9inY!VE)1ll~7FOXn!J!`OG=i8EaU2FwtG@;Er!dk9~!sVNX-z8NKax7FJ*EpHi0)Kd)4#=Cf` z*$<`V{oC5_D=aJ{Da;B(6Yoz77Vbin3D zS_1E@;&|s@-F%a9FOmaphV$~Q4a{qzjxO%R4;f<=P-`&3lYMzI5O`c_-TyY~%NG?m z&0yo=;-=lnz;fdYH>dFv_e9m?C7WwoWDU+$;ex=U-ulM%qujL}hXPQTfrTMT`a!BF zeQD*Srh%mrD7#@KSKdMdJ?6jhhYQPCEw!6;cc#)~_a>=ybx}|t?wTG&?#Pz(N2(OR z-0ppPJY&l1>XWohIX89q0I`sNXJm*TIDCw_Oo*&j1#a|T?olU-z!}9W8?YqigITh2 z5ks5;1Pdb5%f*{fEP7TW1uT+h`3>2&UUMF+`ommto@m5uG}B6dZPyDW1a!l_kBL0t2_!FGOitQZTJzi2CNm6dx?=!`Mv zbwp;)-PzF;ds$I>xI8OOJ0Q;PSS$#F(m(Mr@}R#rb5yKk>4A11Ok1XS0_MdDtY}@_ zm5>99d0CrHO}ot#^I8d?g>Dusi}2@K*Ta?go-1vQqjjq>KQC3q3#@+o=h@3bDiG{~ znMFUah@`N_diI~hDK7oXo@~srq*d@Q*P(>}#7DYDFA}3t)Kx+a_&&Q&=O2|8fCL|2 zh!@Z<5~GY$r1lnPZIwHOCWJskA*(r5*!jX!Z30NsB7o~Ej|f%R5BKx?G`yPJY&7bf z{0xB2Kn7CV&>%T866;U>Au@%&t;+eq0(=t3Pah9{qQCra7WA_H8!BGYq`EXCu$48V$T<;sXVE69bq2U?Is)#~VA&5VkK z-MGz#PG15$DJ-nrLLS;X)mA;NsyURP48P93KK}Z{*U>$UZ625w$wP{GGvt%RVExF5Ka9p-{X6eV7g8w0PbO+Z=EB`he))im1;td%jF9Ze( z%NfvoI?(9_^QCa3G&q|ELs10xaN1y~QNHXa79gz|D*b>m2aF8QuCNDfZ8e6}d(EXj zEUTacQ$or1)fZ8{%q!HJ(M+Xr z(~>+}+cCVaKO21271wTo)55Unfu{eqd)>QXPC)|4J$HHfyP$X_Kd&wL_z{czy1EP~ zr4Z|5<8}+}+}u|AI|swlC4Dr!!Zm>wkPYMY^#lFwyGbSET#Krt^aqJ|OzuiobgrL! zf2s?}{}}||_lY<;Pmv|#LLhXzJqcWj;tn)bPZs&d4dZNzCpp{K88>@o9FGLHMKY*C zzbMe~ltjssu%p#+<9WvF(($HOwjsxS=2m=?qSt9&5-O-yN)9&mo57Q2rk3I6a188F zV^*wcZJ5{u@Q1K4<=wk?&1guGCg;k!#`{uam1GAITTzL;x&OAgrVc$%(X?|>1Ch*= zeQZU`_$MQa0v)C1Pa4Qfo>d6+kAQ}}liIgZkeeOmM;cel;#j=Uj{%thbUt)b{{u>d zx774^Sd9kghFi@?CV=k3(Bk|jhtcMVyqDdXYZ2}PbnT~S-ouEtZ)6* zaHwKYww_&{h3Om2W-JbaRJz7mh4$T)n$FK&TaBr96Tp*Ba{Kkz_^n^q>D2KGxozF? zOJstdJ&8Yqb}P7BW>W7_?A3u$jzCZ1sL#;R3I1MA8TG&Y(bg5!2aOr>-o;l>bgnCF z>948~oLm;F=NGsVNa4F=a-rZglV*pmN2uxJ2R1BCusM$V z)KGZD5YU}$&d_YX#CBH*@tsIucj3@~Gz0yA z&we2a_3yp^mDmr(AV2F2k5Ha9vL!@so(%lf8eKjm2K{DG70V>l2G5ipDg;n&oh~wc zy7!Z+be()I&)4N7XB8YTG=4|Uj4Jc7#sbk0 zTZH$*Nx`(S&+}xJE~YPr&zT&rfLy-XE3Tz~?Jb?|Ye00!we*)u#6r6pmK!ch;rmqD zw;MCfgUt99qkGMBb$`r{;tdOeCBLH|4OBEZ^e>d1qcF>4H8l~3b4*|QZFwH51;8@) ztd8UjHT!xN>6dp{)`qL`7laLU$g!qosU@7T5&v&*wv(ZB*sPtu2QMMV)!sJcVe6-# z_8^nsqaz>SSK1x>0uMTzh~54PI8?Q=wyP2SXfxUxKjitM_FTvFaJy_-_RA8?Qd*=| zy!`Ln$u2Z3YCF(XnWJY>tW8Lnxdjz2jO7yZT=U1-SM;bvuMB4%Rs7lE~-=_z;j(L}%22X3+KTjGOl{xX+trgu1x25N{ zbLEObEEKQ@Ein47I`&1_!EOfc{f%@2;xHd>WD5nYiN?3|%QsLSkM4>1XzRr>m;%7)@o1z6hURDBt3o&Joz*ge8U)M{Jwtk-jSA{a=>(5f zh4$FV7prAFHI_P$-Bi<4x<^cx^v_C+MsJr2k?VJMuAwpW;VFsq4KQ>7BJ|C=L)#Uj(hIkZSvq<$*2)_%wVL`XePdFmYQXRL-G}q!X`e=iGhhVxB zr1j@MO(gLTR$izStFAcx%7i`TYcjX8wDO6dcVqG*y7h0|vd)}>tgy>h!gD8wl75_|ADV;5;djiv&T3jvsKDwNQ=RqF z6yZmj>nb~Mt~d-Mq8SFkFLwle+* zEOu?W{o~PQ+(~5e^$l6Y%60z$?q|PU_21p75z-rfSUiy&_3yR#UxK4KnZARirqa++mj9w*r2C;gxX1+~sDB3I2ASZodAo)^xUgXrgN;eQlAFB20N>=@ zM6~pFwEqO6-rAtv&>Gy~Y+T(b2k{MKv=Y;(vMf6j&U4mBVtNMnsFka-XN5Ia!n9*T zneIhX(p*#Gc(XM=vcsR(5wvH359`8P9vg4x7YbcW?*jx?-I6c`KeZ^l`WVJ}W6MtN zh-716)cmO(CwmaR%%EP10*kDhn~?tDyrGVFLymXc+)SN}d-_27x{B%6x6j1NcmkEC zqFdLG;N~yuUBmc~1BKfONcdrZ*O{{ZtujF7fXO zD7$<@xn0c7%-pAd!64;Jxob(nU}!js1vgYF**%G~XN(kKQ`kel6F_WwuG&*$4>f$> zr7Id<6pk^7q@=#rPB;*{61#HI!9U#N)-a*->B3ErFJzE?OVs0$EzM6y)$61%kdFeP z+dB&JJ3@t|1v+wkt48j`KvYt}8J_jC<@Lzm?u2ojT*Tr}D8mrsC`d&ZfRPAPt8jx& zBb|#ciLB^~f3E#9NBeRzd<`mPG}IRD>aXIucBs17-@KM^~SOTaDd}$$29y??0S>x>z>%RBzLmc7h#Y zew5$N2_|dvxDNG8C*f@zKv7t1(#4GhuC0HU3c_AXYHf^AV7*hezilBG$<3Yb@)xCa ztc5;4;mw^36Rf#H2B9aGn>UI+xlR`3XSdjbI0*~?n`3dU^uw_YAJgPf+jb-EB!fIz z6PNbzl!(t~3nNmG##4v<1PN^op}6C3{`+!}xvuE%%WE`i_%fblos82bbz{;@l z{R!a=wf1W>P$QO9rI_CP{VEbo&i|EPuuVn9%GEz145W8(_BC0?mA8bB25rjCHv&Dg zKx^d0kNYRC)op{YIgg2YAf8kvk<#)4vKUW!@*#oDw*xi9xqW%K0Ta&FasPA(&RB1-t*w!547M+DW+ zz}b^`26Z)z%8??b`&9hZ&m&dp(QyMx)0rElh)Q(m7uOr?@i=%0Q+W-;fhbCY0A2C< zn}T3vBAS?(Krpx_e!Gg@YF+6fph|)11r(pzb(5j+ALL2$2_*S)c6K_240)cR{HR&C zY=)wY_0fk}Mz8;WjVC{gG+-;6c+Fj5mM0&To=8qRnqcm_@~M2YeCR)pB_`A=KB}lF z8Nk8o@`mX0%Evn`Cx6qcn3Jz+y@po+o-YX(E`rFMHPX%buPJ*~A(4?dFcU&Uk&%&= z!9fDm2K+sy)Nf$~_cXvCCV27bzVSsE$#6MOQO1m%=8~*oBxPjsrrOu^PyX1zNb6sq74Pv`BMd+ zPu$#X&cBxUndsr%v?B-b+|RS^Az?%zfZ@*wXOLO@$6BJmnmSu>*EsRbo5{6*1+i4L z_o>%34Xr!Vp2=>~Wm~&MVG00#5SZ==33tO|nfbv3o-3A?n=}WXJ-&QkDKZr$_>K4G z`#qfcCiok}wEbS+!gY4I`T^_vsS_i*(9QGx^CzE_lM12kr~{Rj*Nc*B6^G6CFv}MV@^`)ETx26Iu8ks z@!wrr>N}WDCwoi(A$RjKeV|r1Qp%`yu9s|1B$qSzW;BDLvQ69d!>HDUV}q_tx}IC^ zaVq1Fy@%h*Hg|_M8Pl-I&yC*$V6xJxk4&5()uKl1PWQJimeWyr9NX%KQwAB(&6j*M z*L<1GWmrehPTuyY(rUN*GE!ciILnCZI6i`8I7)+<$yo<{bYLw`Wj-cxg3coHbRunC zDc{3T?X_RRzZeYLpIBQjB91O8S6W^ZL>0tolgYpZ^lDGArqts)y+gD?BRZfL^K zN}(7A(BK-ysBh5pRa6x7W9*L~^&mBK%Khy)Fv?AF3&n$~s?O)Y&PM1O3^y?(JT{yf zV$IV$?xKJfj1RDHghUCAI8paC3YawBp&`I(I{B0CaN(u*Nf0gfwzHhddijCyPlaNh zYFQO!+kD%n)zvN7Ws{F(p{`6;dg>dtGz6 zz%WVT;=V!09@Hf)%!h9KkEAT-4`B_rtPd)c=TR`iWwfil21{K1Vm*SMJ@UGF^X7k} z($>r7zkFdo-|E=55>ib!l;O-;?c?b2IhY-r~IA2&QdHIVu{C||c(GsWk9UtOKx(%syg8No9% z%ZHmCto=xBzJxQ>=Yk%s(lJ(Gg&H?{gaKDtr^i2geRMI4=tGrGa{6klQUOm?D%5_x<+(c zn+zK}dzGyuA*)xW`i>%#11A#`3ID9g_=vdGj0$o`QAqJu&~X@RaR7kTUMzm8n)M}y`cGaM$9XA6TsI#A{?B|<0W z68Zo$osTON&sM?qUPc=!>F|o3F51JpRfp_eh2f#0vxifT%2rm_5j7-2 zF8}i7OB-ZML>(V{<$nA)5AW+|NXYnM6)y&SekZ!Id1<)%7;xE!7*sA0f6TzR^ZUoH zur6+W8g<_Fxr}vrK|ap>A7d-)bok0ml*8ZN-Yp4-+6(eRf|VKlM{S8RRoFT@iKSzJ z0T*IUBMHwFtP8J#G(C#Mxud~HE&8gM{J$*->REH(h2&X+X6Nn=&~D&bpVmo#*1JI?kbPm8)CkUD*FXb|L5FB%oWQ|NP}kGL#Jb zI|2tEI7=5W4<7m5yv5h0{JfJthFY8ewq*pWV7F%Qo4fjBe>nfqlG$8ZO>wr;m*mNp z2Ep5Lddy53V{4c@9|K4?>5{F;nhD8+kZh4Qws;;W9XU9B4QipwZua7$(8*-ee!?` zM}ULiK*pobG=p&gm<_(iARIhlvJ8A%eysJLjWY=!!}zuF$!z zrjmfp&~ZLrYh?rsTwu`G5OL}zgM4euvk0>v0Rj7NH)Fq64@c5)K)%q<8ZQ|P!mI2~ za&@qeq4LktNrvq_8gtT`^%bQ2yQ+&OlEbE2209A^h4{~Yz62ZmLMeNW(;1Ti#-Iu8 zaIUVdf)Me63eqZ2xOa~brR<#s+7#U{gP4?C%PJ^*E>1x4RNe0sDP(~|WprXBed*nG z%8e`Plc{hvRZ+p=;-aHXQ&v{CgvAdP1Ti7;zu)i{!Csp6b#Z7@2B+TT)di^@Yh!S8 z&^;!Oc98Y0t{kZxU#wL$i5`2h=taLF-v|ac z`i?o2u~93uOH;qiy@lGzWl;Hrg@~R;!@%I{5tc~W9sdRyP25t)SNw=J7CZRgHs>$o7{eO#Y_bX$76MsdHC9g1grj{kY53YKL3@oc zsM@!poWD{IT%HI5^E#z)5qgW;?SrlTI3qJ~b^sVLm9tK`-S7yaC_0KBRcdH!V>V82 z{T)b3l13cwVUcJs5{ z?>gL^3M1-#LKx-hhc}r%`t`;u*hvLPS~xAxVHoq*qVs`usYZlmKtmYel9v0TIAqe6 zdkY#Lpj-s+!RLe8(1hq5B8quckxZTr09gx)4#wr?{;7>tB)HQeapi{+x1V;^rK2+R8YI2<*dWyi zABAj^BMzg48vsMz-P!=+yey8hvyhC8(a@>omE(Ok+$J9*pJ$Bhf%Iyyt$^BwN*r+6 z&iI5UjGI@~je6xR8<-3VM$`4PK3$_WYMkRWSv@fGx{shqCT(iTnhW-;W z*nK1MbK1%0RS}*LlwqWs+)q8GKxEs#a=Uf`;6vyNe3(VA92rW?5bhOcI{Khcdr z?I(Q?xbVltW)sVe5m)BC1)Ql+HyGnlH=bCiuaje;fJ`f78cZ^L6Ufs>?H?a1{x|!2qjPY4p~28+O-+MLTX{L- zxYh#S@&vc^BP$?@o}4Qxs!(7`A3CmAQ0iN&O|{!m=UkE}3%D@>t`e#TeR^0)ak98( z93v7P*ir4*(i}X_J(@IDoFHK&(k`DYdsECb?ph^b`)?O8+q*Vw9^A7=Lp}5fXNe3C zydn=j2*#Be{9`FX405?QSqw7sTwtjtKmj{qzRJw`=)`41%oGhs1?&stVR-RDWNr6X z!&~OSBu6(;C}-dti)^Pj%#xrK0hBuOk>pPn07Uteb_9j;B!~kbI=hNr7s$_LDkoy@ z_@4%u)6hwHsINE~u*`5Q27A(vSW}1?8I_jv(kLuyu5Fgc2>h5GKI5bgM$S>*~(h;4qhj!W+x%P-OZ~ zf>{i6{&a2zT(&LZCSY*&v(U5o(dT)Enf@CDFd+I^*tNYNUL}lZ=|wC!bzvU`JMRqL z7fM*2Bk^HnRImY^ZeJdKXX_Xc4KIv$t;Gp+iF(a{*ZG^h(wIxUj>(P5TLp)yU+@+q zEh+6!Kl|hXX$ybOk9?XLP;C`F`Zbomb2KR8xVTOLVp@U=af@O2qE&-%pgiYYA@~2} zQUHpgUHEYj9fu8F$skop8~GICVT7sYG1mu`s6(`G72~cgbkYo*kg4Y7uNPD)zjA#y z_g!zd*JC7t5AseBy%ZBDsGvDk+^|(WX3|;laVhbQ+{sC>;*z{IWDinH<#P~}eYyt9A|%uS$QYU4e_nGp zAe9;xRJU_T-UK9YDU6jE1JA=>N6@q|vzPuz|Nn`20F55~Q5)a?Msxt9WZ-oY{Bk@z zsO8==38G4d;NFZ(0;=43Hg6LZ)Tr#Kto2qJC`$yYggh*MlxbsQ15cp-#T-bg*Fisq z2%b5J!fRX$X!EX5d0vRjMs!4(7(nQD2sCa9qOtf3qTC= zo+_NyoLSa)?7LI`4}Lh*0lz2IH&JDgOqv)HAiPv1Y+hN|n@HldzPr&?7AgZrgq;J~ z9=e0EXKT10K8!w@{Ex~3w*^W?==juacyBlD6G2E`f1s(pek7a_ETG7u5wg+n4Ik$N zQs!*UkF$2P@q?B}; zBfwyb@MYCtRj!ggKsDS{MNNPAH$4vl6z-P-fmr}GA}jvz^L&g19QIFlD~_gHu{yuH znAz|JtL5NYKC|jiutBx;G*&u&Ojx5MosU}C=3B*ysBjlG)+a=XzBcV+OjYX|)DXr? zRmROq2UlYZh!6l23v#HtWgctfOkEG%4(q???t|J9Agyd4n<{B*1FDEeeow_xruXB~ zQ`MutLN#Oq<3t|1hd}oP-Y%<~C?uWy`u;$9&$(r^JYy0FQ78?<$@>66xeX?xwxpy6 zbd;{Ws(e(-{n(3uBcFg#UAu*Elzd_!3r5v5(2~- z&^Mt8L<&jUcYRNN0{Ot=aeidkcx5j6YVY5Mb)YG@J%pJc^5lWwb^hN^wKZH&v`_D7H;oSkqc0 zUiAdFZkfuHWF_L$kk(Vd4H8RM4~C)%g({j(TGB3zBAL&$;i9sA3T|gWyGLFI96huI zC_ae*i%T&Wa#8S{nHy{iz^=Y9{TgX%+j3}QCsakiKqS2N;`Ze~;AoJ{DNi-Idk8sg zGlS4P?nW^gsLEIXnUdf!oN%Fu&19?Qc=^3rr5(pC`+uM>JQwwOnuj-b*UNG;C#qGmbH#FQNPFt}?Q-WdrPiEEbg{;&Q_< z0&M!=g@6|jb^8FnXR7vqRGeox94=c1QJi_!WOjBq#sQNHA30XX!iCgR89r2V>Uo1v zXT8b1vR)L4KZ+no;ZOyEE>+B`D5=5bPD@hi{LieGjWXA>Q&G%Y!8v>~!&t!JFgM=> zyQ4hU`&QDe7XcLvH(;;)qpWNJfh0(Cp$Y@;yWXc&JeR;&;CphqVIe#eHZ$#9DR{@S z-#nXosB5WY^{6;#2tEV4&U0qH9BtDGL%r>u&!>;$t6kx=Lj%rZaJS*m(cAJ@;f;4@ zd@ubh^^P$ZDo|6#Yf6TvB=bZzWK6anj}J&+{l}$lTPcx+C>DLe%G;2}K(eUV zojDCjA3k;9k5wRW0 zS&IYBaItfcr_mJXEByteVc>=RcKdDpxnd{@a>`%Sf-0K9*puK}fCNT*MrYM;^W)v; z*+88mbRA=mgC^4;^GhP2X2`0>P;oo15~B1QIcOQT-*3)C;|R_Y^=}uvb<+0w`4F2w zydapgfyD&CHgI zP=uf z(8!rm7vk&VKU|s}a_<2~ukxi$@t`@WoI%td)XNmm5|%-;i0+Gv{i?_Zy&ERY*&Ke_ zT1CQo8Q7wtq|r1@5{>*m z%BSy#ZMuI|N5HU*N}NYdgG*Dshr8BsD$+UxAn=eq}j`L362o2sKVyR4!cb6R{TO zV!=e%Ps9-g-vb&8dr6QkT9TS-)R4u!Dn_IVuK@I-$WNm3v^#=i^FI0bgGoS#43N-_ z#GRJUdKCp(89Rr?{@Jghz({KEaRH0&XDCzhpICqk6h#`qh4%h>Nw5#9_le*E`3o>N zF86#Yn_bTln6kOg#9Z>?52~RRp4d9uA0|AfTQs_xUuNSuFl`OgFHmM%gEU>og=K5~ z7ck&n&DV&Ee$OB?Y$qnp8X#qefnV6u|JMc3UOa9pp$XS*h_cSUl?u%l^Dgf!B>JI( z46cXASGaf9;mVqfS3IVWW=!xBQAOP?>^?5sonMg|*S>glPCDO_4?o8V!0Lak0}JaI zVr3O^>X#o|=Dh4&Ze#j#8#IM4h@N}8iUZNa!v5ugRQgNlVTk{9Q9KRhN_<7p7ij8G zCC5iO#C2272<47ycxRVH36zC-7_JNaOkKEkZ95(WqKY#&TGdR>fJxqTbmR?SNc%tw zAvu2ohHKX|d*NtKNGmc65qh8Dgp>t2moAGcNVixn;)kvFRo=S&B#fPhy=7KJ$z)7j zPc*R2@~j1>c9t&aiY7Ck!|y{4LLu}(eItC%7~Q~~apWx29Qp)68OmLZ7g{LCMe->l z&$b$g5i>p#R|raRNJPb>*Uftg*nO+lXiCuxu)K6Bdw!_$;e&*dO=lt8L0-Rlep<(8 z_m|0A;VENymk9n& zW89vsE)3FizXMFG9eBFaY7dzXt=9zBJDUORIjg9b1-rFgXH6_+mA_@)X8{6`jC4V` zh?6?{vkh7zXKs%*NQS9{AfL#chx0#ZeS^(uR4=|LdN0}!LOgL6Od_Ct1!3Kako9@} zL1xTI-UEDkgS=aSWZtGGkWEOX1Lk1e?msC}9SvSL{ZOya7Y4WPj0Z4Gji{obVD$`P zq#|hlevt_2DF*9)wuB647ow2RFu<5TA&n09+lbbbn2zrkq{XTif8BMzpDZ$gT%_kT zCk((CRo3HOgkFz{&8$9J8df49a7$m4Bcr0)124}^W3CC~!2kwyYrH1bBI)KLw*xAE zLhu|ab<6vmqIw3=hIfGe>bM>Pg8ML>N_nFqUP;1g zc~<7h`H|^IUV*+?SUt9aEbWZWXt81bVdt+0A^bylvrM=eQ<|Z-XXuxz`ZgtcV&rpe zO!XB8pdeO##N{TS`hK>-_?B<9Q;oTu!}XL^snD(9(6bt{Lb{mQ!d-LjvO)>d4RsTr zcRvin6EZX7kN_A)|G%Uc2c>~%PHdi}q@+k4vDJEc0fi0RZ;((Losq9B5>QE)Og{== z=yoR&Yzx7tP8;o3TPcICh%V9flH<;%>DM zA)N+hVOb3g*C6pwE`k-ORu%Q_+c!-UlYm}VNKQclw~aif-N&n+QUfTYe?|lnVidnrD8NdA3G3m^aA0~Yu)ra)t!EYfu zec67$-Nf7ss1*F%qQ>~uF#bYVAGS%?0AQHsxmG3iK1 zf`Wp+@yBn^v`RyaIgmn+5$PifgnSMS4N*7W=S!96bG*R4_rGjKqqP&RZj1AylskZL z+6^=ufQgPea#Zd9Zjzw(t29<}(>hRalqj~Onir%Jmy6o-wFvRQ0!KU~thLzm6+f_H zHiaBEdrPCwRat*B_VqMiD1IsIUy479-s=XY56F-eiqob%1rg@%&TZwa(n{t@)3DMl z`cReP_3h1du2NjRNLia_$*7u?+S=RDlnzP-`w@g9gMJDkw42aSkj9wOHsl^a&}p`N ztPpy}xx4XzV;2-LUfj7}OW_QV?ii^yFG|F*SBS9H&ja4$fIjA;1~L|&ZBajmAc+K$ z#W&3oUD*Km1{3zAHx|X(JIOY9!DP zF}e>TK;g!lh!qPMV&~5M^_b)@Wbs@lHSbTLNh{`oZ#6D=@bi@` z4#swi?L)YL$Y_VK9CI`KZ%bbxs?evFnf}wT&2#-OAiv4>GCHeSaYwVhP9AqJA&7#{ zRUZg&Ho-1@CGKc&2*8}lW-+dICd|^tCsc#WuFq?+F$Y>p!O|X|1~q4XJX?19s1mQ5 zbA`1*)b5SlkDGM;1))P7^U#2Mx50b$-8kPah}y&;~;X!0Uicz2+N(_522oecmTmAeE(+zrvib|xZKlfaK|q>6KY`iU zd9ndsn0DxL$%FZL>61=pI1`Kd5Ml_yGt9~-6I&-E%u7~}ZjE;^o@w$TREF?6TLcq? z0UiYe;CPFVJSmOc)yoNV>q)^ZEU27cn(3E;cM(n~=uYaiICa4X8=QeY2I#6u3 zqMLTdFXI*HKimwqS`2a542ZbEb?RC@x#dvF+CE@4KQuSkzm9 zr|&=6|Mf0IP3gD4(&#>8+mLMKxfwWYa{_!8(YkUGz`bkd#b6;>TNvl?Uar511j2DP z%Lzgs7zS&wk@Y|jL{5hp1UB)NGzU!39souPyEiWM6@^zAW9;y5zx^ifEQawkQmv1PU?&h zfY@gkI}6aI7*7A(5P8Sf4lbp+!k4)8EX6;+~!Sb%}VPTueyj2IBs zi6D?Nz;XbwI3L>4rQOe(mvbq{kb*kFU{OWH`XIh7dZeND(U8r5DXa4?WFgHv`yrh> zTR&Zqb0X+OBQYLPA`J`3`@o}TU=H5V=^d0d_{mdXzDcL=Yk8Ec&}F6{EY0FaOZ^a5 zH$XngnOZNzN6{z`_=5G~`86>G0*u5j<*BuiXbJ=&kN&Yj9GYOLKh(tU;whLQ9y23^ z)|XFuG7&8)+1+SBw4_%5(POF=raSKFkR1F;U00iS{qpvs^7%g|e%^0EdE#|Em9uhn ztCJ%LmU>g`koJyX^B@h!E07uqA-5!(r6rd$yZ(lL0)HQVgDn=xjl$@0M(9Ys_hf6P z!~$|VEh^;;Q;^rpV|>lxzho<;m)blXFL8~XjkN?)iX_6nyI^cx{AGfogb_^6l;VOSu58{^jyPG+>oU|`~4_@rXbG{TEp@P=-5DATgZK<%?lj98;!!1_h}Yyr5svHWD- zqAIw`yII5gK2OU~}xb$Sq z84!!t@!r|^cv~z^{!#3NV6Kr#G!%7oW1^BzOE0Ab>jX((5Na%#vMxYqoLj?o`k8W8 zO+S`IpcFPKMwyb-JgYpUmCfb6gaDkd|8Ra3EuTJ{_ivg1*7v+juo66q`s;8OPJ#p2 z*coYW82sIW1P@tGO0Xf_t@CHvTv7{#6fI|O)z>r#9)FX@;>o7|;gs#KTRc?GLgsH0 zxH}M*CMC|Eu4wYd`d7Icj(PsiXo0q0Fd>-o1Z1Qya&z?~yR~O_S`GV=Gbk#q>#*4H z4B)%GPTE}~LpAuhBR1j$ey@E5|lkAB$l_uI?l+C+W_^ySt;g&%k3rqIwaj z2J^UK&U-3ENNOzt(YlH29|u!qthj}psVElUBJLi0^_2O7U$yx`{D*0iNHqvQa8n(+ zu!AN>&`9|`I3WTqu}M_;D)Swof;S|?yZuySvx$!J=%~-`_zInO7@+RggHOC#_2zzN zO}PipOu`FT4Lx#`=jO_dK_H_ZQNjSR#Mc`EdFOf;@8I)W<{=PoCsNFZecx9E%)QDt zn~j*dD^dEPKRiDGHk6-$it2L0i)yU-258ceU9;}K@dx3O|Zkyc-MO#=iFgUlzJQMD50HEG)t9l<~DK zVi5yz)NL%Nn^&DoLm8>2Dbb6u15*c!BhV6jggmW%oBSToSjFSCt@~D#Nj1}4-sSFy z`%c!hza#L={mG^#%loGV_5x;`o?_!~U4}%KSB%YnACDZPWz;;T)6_FVvE3c?5uMwN zU`Z4ZC*k(YXn&w69J#jqtkIMNldo4nLFB-P{3Y=s^GTcc==wcW5KRVlW;)5_nkV*9 z@e8yBwkKt+w0G1aWzBWSCEsp3Y{omND`tJZiocB${8`aGM2aMlLh@t|*Dv)+vzL8B zDL4G^il@NKL zf=&HBD% zXK2W;tK^i5HsDKTbu2ht(z`9421rc9rPmTg(N$h@B=rh#>4#{xUo$kcGAGpCkPM-e z7-*Z)xf1BfAv(crMvAG=6C}rHwz_HeUH!gnQf~uU+q-ST&K(pnsVOdL_1KT)e+?27 z*(DR9A!1AVetMC`#_hApQZyJ$L&Boty@EGYLg0VgDE^UCr8~10pe%9Ksqxxsn6S-F zJe-Zq7;}Gb3sFta)D+XOgR^}B?J4{RG1ZxS&U*Tc_HU)=EaiOm>7-v0V9C6H3Ua=M znSINhi)?)TmVesmXR%gj2R@aXhr#8tbi7P!A2DUyjvl4%Ze1ABiJ9V}5Ey&tkoXNs zmm7;WyTW{;jMz2DEKqC>&wG?Gv);D{)wW8FeVTrZ#&Gt4R6Q8QcpFb{jQ!LpMeph;~v zn2tQ)j10ZXR+_QJQf0Nb7+Q+?KPo+)`(wjl5vDMWkHMrV;nk48)BjyX-Si!LQn$~+ zteGQr6Aj}FL5!wdW8JH;1~^Pzu2#Akm5eMr@FbQAtx5F?Bfr}fbEIY8J^*iP=*}H4 z(U1HVZVXLjAuHEtP*IbdpWb1cq=}N0Zi+fQZIm7+zE5=MB_z`J^QVn~`OyP*8xe!D z#Vxd&L#v#tTp!*tDk-#TCAG(7yk>Uu(PDCJ^Z5qR9B37QU0U zpn6serwuvwmI1CSsQePYW23%alc?tC&t}`JS_Hd}VjNB$NA#uM^W4q6L3{hx z9;|%c|>Tw<<9kZ>l928^k*f zq|8lKJ}JA5r)$L@GMhJJjKR00VO#yuY!tuA5xx7wM{uviAjEJpt1DF2KkLBebwl^u zwLB9N%^sDTsFc)HRt^sA%hRz|fyZAUsmt_YkGjaXkt*+gh6O73KJ`ZN=Ucz+ByaIy zPJD15f2|n|&%hVX!k*jKUw8Um-^_pILg(*H_v@SanDKZNRM5r0Lqkz_I1B#_OFZ2=ENkd~JnvD%V)wR6kx3u+_Q|rjc2s!E>$C#g6 zydyThe{<$-n7A!euf-g4id@2L1R=k+X(QG~3n$n1mRTTM&txY~J{NM>clc#kBo+r>LEm5%>^mGjtPZZq0 z@n*?2V8DEZIq5nxrSh6!J3tS^yOTubKrIi%mNvGxJHZzP4p8q-bpfJ&252D;gMlCd zS5s5tg{u^n4CT)pIMqBp?N?Z9;nvxf!QLu}>b`k@psPdnjIoJZsL9F5B%ad6>~Ak} z`=WBxv^d5`X*orl3MW&{BP%t|&fr8fl1nLEe|oCGlbJsEa!!e^rDgosnDNliQ1kHc z)&kQ~h@U>H!9uCt#L@8#fak?-zdy!7PzU>K`nb3_O>ON?z%D`)N5{vP;iRx_A{1;= zd^{y3CDDf>z4wl-ot==dFeP2Yn;_kLcuS~(qzjFdcA~>GDPJPTCs?KUxG+ z|HVSyPu>FN+^f2&u(&uPGBPrk!YW>tvcY{u1%wIa9!yeFQd)g!3K%Q5Ir8%5OJ_w= zrPC-gHCS@x>2 zUQy)0IikD8NybG3-0-(^_GW8n)}`o4Ja3JBKdZ6@_8BkD?sI#A$|m~@f8Slhoz(kr z#{FV7dAge9MN$J^iYh`Sgyhawm`wL;dES1N-A!7=r(P!dmUmj>g#WC1-8DpB$%!L&z*lgrCvW(-!_d!pBZ<})3r5k(w$f>%ih)?xT?5VT z;^vtKI-m_c82G%Wq-PQ+`Mcz||KXC-2RJM|{Xoj+_LY@ot%7b*9_pG$i6XwcodQZXvyvPlWd+l;P0oBVFULB&uP} z?jj`O)kV!9IRA`oTI`R%ezHIOg?Vxg_y5(8z z@^+!#bIfar{P_v?P^!Dis8@rYsNm3?@ai|A@6|8u_);@2-U4xKgE=j}!A$9_!a7=k zX-Ct^_G+d~XigmE+>BBrH>msstKN$2`CY7(?F}|EX2Ay~(g&lMd3XrG?TRv|)-BLG z&Bnn?44EP0HTH?bU#Tm)QKx7*jmo*D~DDE z%zS5#^V5(kTzVXzBKI+~rJtpp?&V_>7dr{l{zB==h4f1XW?}wDe`uKO{ByBfcKf$9 z?EM7_Uh!T&@E17K%u^onyx*bjn~IR&3U?wyu&Um#p0il#OPqw(mzWyas_RnEpx00j zJE0+}Kf4rh)wI5%kz9G&G2ExtN{LT0v~hT;^sWliV@+bJk^WS8o~gJy(aiVBzTQWp z*<`11ENq}-J0P7UD4hATt)_J@lQuzKC;l6a`d;8JMn-@0@u^P zVQOj+M&=sl-7uCLLlYVtfAi<&M4DZ{eZ%(5=$lZ-+=E%Ww3{QZ_a1~jBiBeHgmtA5 zcf=n+pBqh<5M`qK?l#SKRosRaVT8Pl7u#Sw5d7-e);nx*TkUIENa=I;eJMC&$yc5b zinq_-URO>Yl9(G*Y!_6SJc@G9&ppn5mNRS1UDc9Fq_DPc^N+JX6uGmUNO2@kv!=TC zwjZwbNZ*fD!L%i7Du(;i^S7H4tlZd1TOQ7py`pV==q)q)U{$Z1-gGjd4MSilVZ&mA zx#~8=RsP)`bHDPy+2wdl@TZA89M_NgnB!e%wtwMX?JJCWPfm3+nlOpjPdy{fzf^In zq-!)Ux&QXZ{PL^BcADfCTV=H{-g!KA^62W_TJ89rEx+UushrH$Xij!Ei;M}6kcmI* zmk6Isy4$8NMsCVlQ9vWRym8YWMM;|OC)A>H}Jh~V=WZkF9gIfLMO_f4;SL&>4 zZIFa-UwvOV`teVReSdYG>^Kfxc5!3E~{h9_7gQ`#?b=*68 z{SKLW1r>vzIOi|S5Z85@wcGKfZKkO!`-67NHO2!`#W&gop%F$AacVg(iQfzZFljA= z9lY>iNf@cCG!C7ymw(#-ojqXp{nrh{YM!-Ye{;`7cB2CeU8H7X*zML}<^Nr^pkl6tQOm-%sPlqiw@mwl6Ct96oEb9TLo&Mh}3(XLd_VQ5v* zYxALXcUV^*6RKX^pvN42zsfNBxq40%({#A)eBuljz0V!9sN!`MHHxO5x=mmF+aY^r z`5(s@=I9`+oGLZJFKsK`K(@+$MF#yfV>vr1%{!*%5_2n7kq!eU*JDOzJ)ZH(i9ald z9R_?6r>o=pvld2&wEu;sdS|}6*E&vc`sZ;6adQpbsfQ$6b>$V=s_MvAFJ@?&Q0OG3 z?Do3ZwyN2xDsCeET&mP!OXJ16{G1FJAInPpiJFkb^s86gx3?Q6XGF@nq1 zDB)~gHG#C2-tIo{K6C#|9P?lD|N8uqVJ2{0(acfmiSBgAB9C|YNZX5EYhS^{l5hKy z4}n7+C5wa^8vUqU48;P^SLpw9m$7s&e)dBn%dt!Jbq(qE5Z!hTQPHy zoOJfxya#E2KgL`=%@dDbKmI4Ao?<(KZ9j`@Kbva5_2EH(w%k^PzQ$o7rg!X`s;a86 zHRL>au(Y8x*YovWl-=L;CF{=EokB( zY~We=0VJsZd3k6jcki1jkXxY@$r`YC2YrPY^Ta~HO$!PN@+WnJI_;J6o@EbqtXXq| z@6XJ^W#ZCO)ZxLt4UoUZIOuU{Bg)41@6K5lc(U@*d{i@d`WZa^teV1HY%Tc)CBN zF2#RX%N^{N$Lil`Z*_}g5Yz3Rw*aCdAvN{EK#qoxf&%aE?kN{85s#rpPutRJ=F=;l;QpTIx|BrZjz&bxvjO9SQqgYARM9E1+4Y4+W1MA zYTD@N=;8^WvPJ-0<)Oarj*g)r2E`1c67@cv4ID1k(6F$GM*kf;VECe+2ktqPUt942 zYsCgJ$Dvc@J(;US8h-p3Li7TLRjpYZfGJ2M5+Y(CkH|%da z30xvDp7Evtx$K;r^B_Ko*rx*FnM=xHC@U;|KZP!FgDkO33c zGni$iBtulC3Uzb9_yOxJWBv_9(-25j8OTFJ+#6U}@Ir`0f?hHrehHK5v+|+<(UB;> zCM1UXWRRGc2qElB!mo{;HwMe4W(We%K49WMbB2yf+BN(-rp+!R0P~}Wh@#c9@uCH#&>Oc81fkB6_PIG88Ry-`B@o$2j3lnZu=A^j^b`$kx`D2m;|O z^~qQx9i8BUj6hCA>ztdLyB({ce>{e&?Eym@C^4Z=oQPKZJ;S7_so7kIUv0+{P^UVu z!FBP7SuD(x^k)nZx* z)4!zO_Kx1(?)V5sm}qwPNZ4RD>`ePVGkaD8raZ^!)Se79y?*^#DkoHL^J~%#-2V1D zX(p17`2D*mGLi6cpE`T?vc7(Daj&z~9Ku?CEa{Xvx|*ePO7&IQDn!wny{D+)5Q-zX z)sbRB163m%lrR@TodRh0gX^$s&D4950NygXIqGC6*d$=hYJx%074MyHp4}L*2{db) zj)!bjlN}u$HGp*6gk{K&!Q_iyTf4BnezaM3{<4|bQx|<>?Dz2_C)U>2;p_kj^x3BU zZxxl_r|Q`O4|lx$b%_WKIcS()xxd-LPCDHGo;A4Kj=gg1-n6gC1#xlH%3eqfSy@>= zK%qFv3J66IP;|*Bf8W>l?R*AnwJe-&iy0Xi0jLNE=?b7bOQWTH7C{GiR5PqgwUQF2 zEs*RVc422{hc5f@;H31PE+|Bl+jM2SeQ6?1emQ*5lO{U(ZFR69J}L!Y(hm@_xsFglZA5c)`60NqOC1%fpzb7Y$+;SubAD0%K&X+Kmsk zj2&2l>W{5aOXRpmMn=Y^wUnPm&|r8s|3*gK!-sSYdn-k!PM=ox@ww=|K5?>EH!kDj zDyN*cbI~@!GJ>^dZpj?&O4^tq&BlmAgo_e~jVvRy3)%qP5}ht?_t2b^EP+;jS6UqE z2D);f;zqv!RDf)$|F?4duR`))mnHB`zX~Ms0)?)8ttb7!8`chB6wH2t^a-wRFcQfA z@B`?YrO9g1=RUKvK>CR`H;L5BP~ZXP5H3wwm8C0>7`2otX5C8Z{J92=NumW^woXvV z)HOFJfWC(2+9%oefdO4Tr#Tkgop!X6VBJZmg>d9{JWsF;{Ali~+Oz@y5}b_dpcoEHOH zH}Wo&URN0)&yrS(O0Ded?3^actSNwd6DR33!VlRK@M(|^f-5S-dHvVU13tF66DEwf zx*GH0!*yX{VWncjIUsmDjs7$_cN|)UxxpKX5$ZWDfC@y0($>{=WH4VVEG&%T@Zfup z5C%idDx%#EK+hP69sw+t5kyEvKQBV{M6wUq8YpM!5W&fy*n%CcYX{%7WSh3e@yHQp zXUTyUx3B=}J74}B-kUrCjSWtuxP1=#182FX>+i*RfQsbx+Xea#Y98XT=7vM z1{iR;Q)K;peT=0IKOU}EK{O#_TQ11J0RtKp4B|c@bVv@v@L9@=OaMJ?1ok&NWfvHz zkP4b3@Npmt0PgjU0)l&z5NJ!OaB>?7Bh4x=M}zdhyS~28q#FvfsG9q`7wG8d#N4JE z424`E99&&pt0pso4rQkA|J3^W^=oER6EFO^q@;xBGqbP(ZY?3P+@!y^(r#t#`8-K`(R0sk&u{3j?%nxr6u-+I5Qt#Jdd0=KPa_; zR(e>AmHj=2jKICqi0);r=i)3Z?@l<5JP(@9Qu{~-HZ(jAx*BjMd9N)10|%0jmXMMQ zCxDSq2#~bLv&<=&%{WKHkDf|Iq6efZE`ebg(o1G!@csDlLkvjTPOd>4MCD(rqfGF& z6_w^7b9DKmFR_^{mg78m(C;}u7Z<3wE>%zD?qOTo+7Rs`-=7OJpdp}YY&?eF;bLJ4 zO-Nuq2kD7P{ui^9>t_U?Tza_@jmA?#Up|%C8OIZYAoKuKi)d0oY26sQd81``m<^my z`d7CudarRnk5uNfi33|40YybV&>=q$pwBqCH*cTZzhD}lNV|1Dm-mMzvJ9pi1UFO) z2FI&Fi|3v@9Kk{@RVo_BL3j1Hj3)*>%Exc@NcbkE1HRBq0 zB(u3gw}UKv9>1pcc2y+Qfh8}C!{Kyvbq5?JHlU;UxBc7EV#A}&oHRv6MWwrDbP?oi zY-~Qi1~kwxWe$V+0tyOE!x0!&)o02WnoxdkG}5CF;o(a?coshY-#z<(>hk9w^jb*# TYLQet3LaO~v{g$~tU~_2~kp7x&;a8PHCi(ZYc!>Nl9sxMkJ(_1_5d51_9~rhP$@^ zbI*M^W8A0va>o!i1NQ!XwPLQh=Er+Qc}W~>5^Mwlfg|-?Oc{Yd^+h01{$QfRPdNJ~ z|H2Eelengnimj=WtD%DlLe9|1&f3<=+QR68i;07yg{=)cGdJ@S#s}t3PIiubEG)17 z`wh&t4rVO$x(hz=5G=drT8;<=t|9UZC097d0)a>mkrES8bxU5Ka&?PdIBnRmjjC9g ze*KJ4(PgYeFD&4O96ciMEL;R@;%UE^USLNmDYKx?r zdSUFyj@C@6=rc#%+VL9qwiH?mhoywa;z|Vmc%qn;{!@xC_z;xH@B6B#PzaDeDrS#D zU?YDtN-Tv4K)!1|l*$+R8$1_@J5T?;ng0>ir+=SMiM+0e{7qBOb5uIyV+_sUG3i(@ ziVaX6$6}kAnaQULxKCerogHR5uMOV|T5nQ)e3#vI_uS?b{HBF#Tw~9_kX#c8JTF8TLJMyeO%w9!x}S+Bs`D0> zGwR#uhq1TtQNP4>OHU@yL2BxU^CJO)$$mqQA21#48#lh6EG7}N8X({o&24Q<6e*=& zzF=#0=wjLzz!IC#1ul>0k55i^e&Q?WIMkzDL;syF93B88wR=s`O{-yjCVEx7`-*w0tqwvXOKCpg(pg4l zhZ_h|VejM#+xnE>zZJ{0nM6cHZW6Kn`I1;4fH&OM*pGrqdC7~5i<|0os73C5Y^YwO zCwFyu!BRETj4RyrEAr9Fe1tF&kKHHxv!eRTj&H_oZf6^nZ%)Uv-dw|of)D}5gk zu>=z~?22cj3449Izrv_f^?^{|Gx8Q0pQ4gdBfOK2jt*e}=b);py1h|3Q)1G2Z{D7g zlJcW~t&0m+<%~DKg3t*SOU*WF{rT<I~+7zW@98@AmP0#K1RW$;IBZUfA3g*lsJ?L>Bc@_pREa{z6@To9_$v$UV13 zTEp%Ks^_B_z^Uo@TpX0Wnuvn|uNSCy*0}Ex33>8_5V8mr)oj(B+1S+VNZe!Ac`h!F z79Ji>ShJX4RM*j!!0vuHX0|d_&0StzPAcRXKR0KD@Hki%54=U@b~NQm%`n?>x+BV=6pWYNo+#{7he|h5X$vQs(qH55 zn5B{jvUVW7x7ZyE7RANW`+@RVOnf}iygjTe6_pO0)!6R> zEJFxQ5ms+IIh>8u>#V?a{O>B)xDZh34hj)PjPwjo+TVyQ!q3s~ZbTgm`5FMzj>$oR!RD zFNzW~qW8L>@z7@K2mPBjZ=|)f66{~->ZbI=2-M)j$DYYvskE~3cH$%Vxvb;+>%7in zHXRR>t6jIaY$hsRC85%#c^xLC(*?tp6d^j2c^wOve~1QUKTGrtD84N(FJE&!7qUM3 z%@2(2^zB*hkY%=fN=L8om8^#cAEGUs%(x}^u57{+v{-4hhD1)Q?d@%YpFy{A!YR0I zlBJ9{`?GGq2N{sYWHnNl_2o+k)l#kII=bJRgS8R;{i>mS4R(VD#KVUVNvzYr`(tBc zaV#mX@`8i0FVFWBB*I7ns;jH*t0giF&yRPKg}f4DVq(zSCOy^)G@Le>b$=8?)XJ7k zXzGY%pl4zdv`qt#xI;u_Zf%6&2K$bQiOD)FaC&-r2Oq!Ls;CyCQBC9KR5csX&5>QZ z06cYMAh-Sn+bs`^abHX@%PlCV{UhW$&N06$Bb_h0mYXdtYoH93T&N4*c|Lx#nZ=h4tQU009AkPO&>L2giO% zn_fYB`a=To?_bt*3s=s*=A?QAkLdfP6uhW>^70qn`T02!1X_NVb=J*{A$2ha5Ukn*?0Hd4u&*VM!!8mK|vAN|NSf`Hdc4-8KI~q z3Z$%J%Ez(68hY*l#%U2`E0Hs#IS@BGC8Zmt&<4?)Sjh9(B%(G(re$+! z$+d4D=KiargU|N0sVNQO^78VEuF&!1`1q50e$lFjnUy(9TVvy!m4Td6s}W`xTC2v5 zEk{0O?%jQxPbDS&RWpCvqw@+176ufA7cwG*(hCd2rJ`v#c{Eg23DP`wvBt*6GBYz- zUyXBs{Sw7wcnJBI%k)pf8)O)%*>1WK^YNp;U0NWyN6`7XC)kg;y*(Q^ z^D8?aI3GF&hWVT{Z_DC~PL_IsEgeWUnc3M~&rxq+V~;}QQEMS1Ao%(7JwAjFMtXYs zRpQPI-Y7Wnt?OJvkN+MKd?c1HUom&DcD#sN0U zL4t#PM|=B9`qIJPp7HMA_RO3ddM{A9>@scAl!3Emf{JClyR zvukUe01J)*Xdq2?XLlF%0Syg0AtB*CCT+3KI3{~nS6U8^!BMBzS*E?I-3KH33UFX< z>)+b!92|_MYuu5^yd{KC-#%<+28Ti@8EkMMPlXm06_v+*m&$Rmi}LZ~VDMA)GokbC zW~YtuyS^uTOWakq054=y_+tAqB=HFe1EZty^EHZ0;fDezf1^hTlJJ_OH9ZJ|@#e-; z__2?-AT#A4a3oODtQy~Q9pR_6krhcCkW?fA_}AtzrT7(Zffuu&|U;y-zK&Dk=`6cIblB*JtYW z!SAZ(78bI2czNkJ#>=b!n9snjFfeJCDUyRJ;Nr_*%+_=vf@IAZ|s4Gswj z=`VP}Z8BD3f^+zNaL<$S>TKpJhFs8t4qP=jIy(9eF>xLolc2P=_Bh&6M0mKmc7?V3 z^kH%`sR`tE>5zL&1l-)*EmKpv784Z(yNgM-kDZ;JH3&lRn)vbv#IvIao5-giEL%_g zh%GBC3+bUfa<#Cq;IJAFg=1j1pA*|dcMCf`+>r717Q(niTI@t8*97^9)hjL))w^QWX!1hNgUfrMZxe~Ok*=fB?>(f+0%I^{yO{=iGKcIkr=Z;Z1 zRxMtW01}0Uzcev{6UGHoMutuI?M4hHvZ&$@SC>ciNca=S^kTQ0dxq#t2b*%;j|1h# ze}H`gy2SrP?f;L!|Np0tnKxKLBtG$LdU(3M>CECa@@L3SLIeC{YCoqdlj^_v;*Mx3_ncaakp>Z z9w8|~)=P}bgLx|cfq^ghZiW;mTrW;ff9tX_Za<>yYQI)cskdVf!Pm{hgTxl&`gNV1 zZ!nLi7dMtC9pm5X712^t2l)G6=O77_>V4Ilsnh+eV@Tk?UJ{kR$Hm3nxqaL4oU~Gs zD;jZ&_=!K|vv)cN_JEJvUcc5K;Oyl(^YHLUq(*Uab!{6M7+AfEOuR#{vG>7&6Zbza z5!srBhm&5NLig)>`#wLz5ET_g=4GqluSgR`8jPtKJEyM(0~M7&Wd08jlAZX-ZV)oR zZ16?-s#_g5UHe*pnr~ON=lw9C~!~f z!-tF`1SKRS&;gvmQve**vpOyRmWa?ro=Q5~m@MjOrL8_QXQ~N=ZyXzd<@3n;)HGcB zpP!$OUI_fBgg^Yhl<=cn5Afh|2CQ^3Y9mUjTF;bBa9Y&LRaf_ySNE&eRfuy&yD0mr~Dd=Boz!7ZlVXA2U|V~$^Z2@?f1 z{S5h4W#W4O>Wx%d=HIm^^?&MSg_v>fG-Opj8BJ4iX!NSRibGtU?U7jv zsr%+fqbrz6*65J#IN3K$482!mF-xUL4bm<^{ghd9kGlXJL+W0Dx#~ZXBY-|wR6Z}< z*nNStx2QoX!$@}N`TWI5?T@(0CsSwZEMDIRBJe^BoqE ztBSDlGnS+dP|;NK8x{$RmI#aXBPo{_PZ4Rp%7r~YswObTDb|GOd^^pTx%n%UpI8gFhv zHn;M|wHN50d7~MzDP<**^h>cX?g+)afhm34-eaCr4SDgfX*YdY-xq$@f6q+4KX)K& zOg+F-4$|-{`MZ`)Jvi~b(Y?N|p1)8VM?0{S#hEitq3dqjYulnljhZc7mBI`i4M__% zGHSK*81)flZ8aGYaU5rlXMSFL9Zp09a40nSnI!!oVMp#f{KZ=*BCQh?wmjj5Jx@J9 zVC;x&iXB&xSltQ0)A%_R`^js2)%^1tUux4$l_|Js2Lywx{(e%L-&pmpTw5^Kx>RJ@?R0(_ry8xM zBi_o}J(=1Qo~!CZ?G|z=yCmivuu~C|@ow~~>)hK(i~EZ$Ki3iy7IrWVL;mqt_*%s) z*YAh_b$n3jpWOdWu0o!Kv)sea-r#3dVI-J$pFl%cJi_&%m#)1-mEGH=`Bnc`iL+mM zLyu7fQ?T}(vc3F|sE=xE9j^zLc0O-so;TOyRV(*6G>a(~&hUT4y8!0L?JYyyF!erM zNvI6-Fvj#H<>f!;s>1g0YnokGc1dBJQ&cBrnVB5dlqqK__#k|13H6h*2)i)%o#vY7 zHxH=T21^^=H<#}XEq~*7K1v&SS-?$~%$WOtGbed4`H80vS=f=<$f~>ThLYvML8spj zE3#$06*=V?+>~@r3;e~tRJ!-__Jlk^3A|JfgpllyRM)#Yre93? zo{HSnO*)ArT9xX=Q`@NsSezVdvi|DNM?q&)kC}Bq^_+c)l{hPO}#1Ge~o^ zib*EBBC+nP7gwA|d(7N1Fcv9^-g@nz*G$@lm|x*u$^6UP{QbepL@PLh5wh|uUo(5H ztSs(tieKG(bJP5`m{D%dP3GHN3P=;5l3~exscXrc6n?MxL{n&MCQ>Xy(+5!)axlN- zmEdH%DXCn>0(%gIyZb@NM9yELAYCn&wm?*nct()KH*uU#S>@KX4~Z(mxN~&_)a(4Z zP02G6cz-@;`G`Kac!A!}KCEx)5Fi(&QI6NNIk}hz5dR0b+5sN@_2Lg|=dW!$*w=K8`3wH$Ghe<- z__V0XcW?7Ww6gvSPmaoD++hk@%3ppj_}{55C61t_IQM$=ezXd_(p4c}%P^ zg1P-Wotv)g*51qKYk2V7&tnO^r~a(eEQFG+&S5WgMxOWYGW=%n@mc`~HvU_k6twL; zyLfAMa-1!cPS~9cdktAer%UlB>vnMS%kRyn%0j^L6!?sP?Zr@Uy{p-gIh+n9MMb)j z_|=9?Yu}{9WcjV+$6x0*gu}NFDI}NsyFR{t&1G!R`5^Bufw~CNc83^7hIaO*W$VVh zg9USf!zR3@lIgyFWt+Yg6Mo!;Jvqwdf60WZ1&4>sUT#zouV}H6C%<@Uu%;uq*-_x%%hzNZ5WjX()F6*3vn6Fx%xtiwu)6d8#q+rCw2Je4snw;MAsrX<8#f^_Y9k`kGP3Gfj{`OzGeVN~_$jk|6U)9vEmo26lE@=l{m8x*5y9Ml{vvx?P1+{SZ5wTX;-iEs8jgrazi4rCh8Eqmz|%j(infTH(!V{0G51exd7I{s zHIDMr(?~MdG52Dhud==jKh;R4=-)!{uc;A8NTCgJGdobaXDhQb`(|fynpbqOiC{zw zX~$9pGTrlqCljp6#C;RB-ziki+WH^0Dr8sS&5=-xpKNbrZhjSrZ)RY)<@m7vEwM1E z!E78yoZ#pHPvs{(4QY79PvPwRq5D^xcQ!(blH#}wQ)M?OWRzoy&>rD8xj=n|UU|#( zY3I|r@wgrc&mRaD7~0dSXpn|qIM)6ad-|LyHfH^a9`T=RgDh_j&i1F>s`<2d_$aNT zGbFl?H~S_BDQ{kkeQ|jJ)-n_27(e<*J6q|_M{4ltxi1Sb>U-d!nkBW~L$`dNeJ`Y{ z_)@PQB~01XJD+S}2&l8|L@Ua-O?6c|d1|OT}e+t(UrCxoidVusc4JxMkx3gQ; znX(!fPr=SF9iO4D8v|$+ZByFq+A>*xs$prmLxbIPYuK{UOA= z!{`+`ceVLA3{5i86*29}#g#OpqdGCx!uNJkQnu|}#Ilrk`uydOfAF=V9*AnP#Y(qq z=ssMzOVOY*vq77anOHHa7k5iW^Iy9UhqQxnA!{LU)Ts>N8^N7y0LJ|Z?IVv9(9go=-2A<{^gF>)VAx015b76tRpw%?bNL1JNF)djkwTp=7e_5 zJ)Ym74J`YU@{LTB?>h$BBQHjx1iYq6h?cv1eu5T+vvN{uOs?KP!T@zYQ;O-NVEmWh zMJxz<1 zVzEb2LeP0c@e`SyNXc<`UNGG4v|6pChvJ}?k&4AX#ldB8do{PB4C|<=dF&0HFt(nFx$j=qWVw8UOnUzOC;t~*e5YGQvZ2s?qT48^@rB0R+`>Upuzi}&WHku5Z>$hL6 zeDF{B*JWKJBYYZPd1ET^Z0F~n>i~#>Q^IQshM>MYJsGj(Vzzy*fI$y=?rFWIOdxev zgXtHP;UfLs?b&85oPw=im(aA+IgE#fZ)8l2KlC8Glem|FCE@n@BpTlrUM5O@X3FC6 z?800KQWyjIO3Rgv6>WPO-dssC8Rz*{g^R3k>1nSOgNobQ(W86e((!&ky4<~cx6EoJ z{JZ0lUf(6He6qpv@6Y?ILm^Yuu6w|X?frg+`^{-ZnO*X+|H{J0HMjMo+E5Rl8#9{% z-6Q<+#9MoIE@cKU!Hy-sAAbAtq!LY{`f~dyEQG1iKamR!`<6iS2PhNPm%lzROkcrl zX`eia;&og^{4Oz(aakX2Tq~;Y0W#Dwn=XL0fUowAxKH-p=@){IFKY;*0s6Nh1#cNi z6Y$dWk|w#)CBuRVeWVsQh9seuSPZvO0tbr^f>mf(0qJ{_gd?}H;=WDQ8|V=EkB@7U zl4T8xX;!At-bmPK7P(~-i~5_dE1FQEBJO>103MAaRBKRBdrwBU2OWNnyCoU_VT#5V zdIQ(dIKNV3VPhlv2Eh9RVbjAeku&glU?sFtMrKXe?Z89OqjoxTCq*zVuh(kJI!ouS z_-soWu035ofr1$Z`F(=kjg&{fbJgy-TURI-4om#wl!|)%Z6ZTANW(KEUNN$ZEA=Gt z)X~RUsRZ>+u5+PW?|HqGx-nz-Z3quZSwp+MXCgH!>MeAvR<2zKhNIg-@AU{lr<$!I zE8U;mJRdK4^9@no=v01wxA_Gf5z7w48PuNxZ+Pl) z1voIVuv9u>-ZQJjGO)8_g@xi&EG#b0{rTgYmNtVH;l7%e6EEcTW5>n9f*#m4Dk`c! zD=QZL$NL_Fd3kw1+uAbveo5nG_p5d~FSS23W#$)4J4TS-R~6$Unzerx*=P&(Co$bdID@TSeO}-Lar##E)NEhTDR;f zO+8;ce<-z5H={3pqs6AjaiTO^x$tCxPw(V_b!J@v=c!FXI0nYg+0~aRS3l&kbdpH^ zacs37Sd@C_wod#=50G(5mMBo)+3kKsQkKja;81>eOybuqdrd`8uLracqoroJio)HU z@Ga0l7^_xWG_vsqlRo{KQpp1DQP5P1PEPKEzD@^inr9ObM5gbz1I(Y=Dr#0yhg}vG zankr?L^o;eJh#o4yY$C9oCUmB!<#K=d6#k8C0Kzgwb<$T9LZ=GZF@Kw|MEyt+Rouv z_Bj7mO*Gn#dmmzBO=Qtgptsoy4UPn^S0qTb`t#?{H5Z2yPtZb(tDr*7_NfiLMtmSg zP#`LBvL#m_6&%%9D~h?s3XnA5E@zjvOVG!UwD|Xz<%>pdxTf71Za2Nt0OYrxLsSQh zkz82-o#OTJ^3G5tEc=7WvRkB`1q~4St|mV;)c=t9tfcQ|5QQhI+3}OSkF@8paeKIm zK$RPJK6yoyeEVGRs4Oa-m`WBmoi$&g!qzbY3Am887&3m&T$~H#0KbF-$$@1u=DD^A z+B0noe5e5%`bFL|&_DvXSH@o(L@Z4H=cxpJ$kv*~QT!=Qj5iZ16L_(xPU^5o^W52w z&lSH(Gv~&U;1G=)6`t`cv=kn@=RMDE$wV(gwt{YFZnhhH!kXq4lH( z`F62K{r3s#CgXb67*y!;zMvTZa#y%zLD^jkWlRA;a$|-P9$gP?3=Eu%s3r)oRo4MO zn2Q~;Og3({e{UG;t9=jHTbt)GrT_7gPBO=Su!Hf=<(2G^)g@S%qL_Nta>@Np1H?VB^gO{&tWj(*DbAs+yMu=l~N0KBIi znUGZC*xqkCz1pAeA@Acc|2w0AY4~FB@!g^b%V!}5xKIiS9ClC3$oJ7ON(#O4XZ4#} z5ue=Oq)EM)MX>wunXhld0f@1<*ew$?D{{jG|({YSJY=GpCyt=9duc@#IF4YqysJhU>dCzxWG__;&( zHLDh=Y%f!#wVcTil}&y|#5!L0@csE^kt?pmg$fLocGK<}9>J3By ztMYOu7XWu-zhMw^@j+IqS}KA0Di`&N6Lz+nD`TO+06`)2!M0iy z)BYCVCi@3TYjfv2PA+9mJg6(z=zgl@7Y?y69jX54)syoO$+ABSH7p<+;Zz17>3^K0 z)p?7}y^k4uzBudIZ8ON7Kkt6ILQiV(y(%#7*^-2FUw}-{NEQc1TzmhHAByI_8J`b1 zOR*gXDpW0V!KCf<#^{)!tkC*{2OapAZ)%2Y6GO+M0U8cyG)%@rK% zkV}DfD+Xn{fuW+gKES+Rv;{Y{PY7>|Vydiu#Cu-v|5WvH!jsOZzXNik<=2R*1@@KE0|UWS6AsXH%|A0D&0q^Eopz*i;uQSC8A3b(O?^sN~uh2fw3L_Jp*9`P5%)If$%0Y(QCLj!k7{3^7A0_@6p$=OA|3>9|;&MW^Q=%MK_3A-{~ z(?(}Y*QMj^$1U!Aj`PX9-}I(c`;S2Zh%n8n=W-`=!#xcShM{p{9YqD)K){kZbMM6 zx(B>vlx}NJw0PXD7G`kG#LQJ~K?SeMG|9O2&m|HHP@D-Q-#;{u=Y6OY=Zp_gc`hj> z=euE#hn`-l^@`#;$OO~d+aKo{bz!{FtYIRH#U>}gYl}LoW_NT;w@)*C^=x@~viGeL z*j^P$?K~=C)V(AKw)uvn@fp~mT+imd5!h)XEDc$*L7eN$Rh#T*3x!SM;s4_9VJ;&R zNbip~_xSp2-e`h_YYoBIwC;ts9zsM*O#b{zG@kQeq>0Mw{)Vz5X0;`RNcWYk z86S@B;j?jnM6qDO2jKW%niDWh^@1Pjy?!CCd#k|&n`hP-&QGLrLHqd?K9_!>qeQ?H zuVu7iXPpR-x4f${yj>J=_4nh27LTQ>Yz;FBMp(_u0KBHSa_oca4|wwjn<7WKw6Mf9 zvmlVrc$S1UkD0jf@NYLBQvqf7f{zi|Lv%s%6@8q+KNVSI0*wZcbD+(r3g#EOjK)8? z3yjpsTxucJ_1BvJ-X8YpS!P7mv*H_2oagVQ*&aFo-2jujH#HG!?t`q5z+y%TRurkf z_ApddWSM;xo{`^VhH64|^z&Vel7w1;gn9P`FalF4oKMBr&d>z#mGm!S(4U+bYC@Vy zaZE2)&bI|O6t*|Oh}%^<@o-65A_7_#VpoU`dnD9<{Y-<+{t(#^1_Ym>(!vkE&GRzv zvaQa}=)R#9WN9RddBchrxWw;pa*WwPQLcWh=7~`YuCK;Vo0&o@@N4ZiL=IFOM|r?5 z3>7x$*74rg)`Yuc?oI^FW4{R zTyz-iv5^(u8Cgs7}$ zJ*4V|I_*e-6{t8_Jah~U9!yV9hY@5U>;`j@ZgLYHgmxw?c5u>~lv=2RHP#PNzUJi_ zLjN79X2GezCE*By8dHCF6sh&p)s+LisvA-$IZ`wuel)b=wCuz;ztP`+I=kXgOI|x& zrZ#BSYqq+l-GBPX-N|Y(FuGY^5SQd^cFgFz_O<`h6#w5X>ZIq0y}dn9QeHr7jgcJr)QzngVVh^}?F5iu5^9JpX5P#IY=C zj_pyK3gd$+xX(QCaMF#_8J+yh>jpYnV&L)bI=S=~qiw5h%$nHrE#{R&1zK+^Ok#O!D?%cJx2S@JoBOCnyHRFkxZu9N=T3|G)`(@fdHMKW zg%t-$Y3=*?y~(hJX3jPs+2294lO@#p)!m4;dmTe0QvX>ha>aQaL%J{0(p5)@WdRKA z**qF(0HF_%2S07=FNO`y;D3n-a>2r50g!OgP*MFHoE<9%a&WPb7qy}5_WR@Nw6v#4 zZHv#63k}NG4;BVpO*EDWlx&5xp5vYQmBBoGDB_loXC)|@0t!2ngYHUVVq(wBlclE@ zbhFFL=Ae{>(s33k>Rsv2V$}UH7=_!sSaaM-X?cJRE!ZdNy17}+080AAl66t!MdIGF zV15-I2U_3Ibtqyv8b z6!Sh=AbfX=%rY;~z;QTd@!RZkp>UGBy*M&4^!mu`_w8-)sTTM7ROZ4jQfnHN>+w%a zut6sD{g2m;dyM9GXFF{aOYmjupS%7str}l9@uZ)oE9AMb#y`PIIu<=$5z4BtjQ`4* zDk|Mq8KYc6naim#?ON3t*r6&uw1opsU+;d`Nk#}irdi5)b`Br1^2n0qeYoQSw&ARanEn+lm_a}{?+ zaj-rLKSc@-!a6ed5QUoG-iF=hCb6vt&0U%8Osf5StCFhf%MKYVhH@yqfP4o3j{hy# z@h?u8zm@;1!Fo3GvToYGqyO_LWArfMa!L4VHdaFq#Q?LR{@ zaY%4*J{h#{Ox-^cODC)WUFK~^$Ef#9NmbAqM~EH&A}v`o>c3uW)|-kvvbDnMaF9=a zd)a;m0R#~iE-v>%mjB&T6a9M#K#7su`jm`Ml?WW9ok_bGXBAE9152c(+UXwwv;U)0 zbpp-99Bapcrr}vgTGBlq+#L4$HLF<=me>vO{rOyQwK10~QgFF+wN&nLZDGh6DPGam zm9cPUYKbi;P#sj%)O#i(?)B=WOvgdQBPcQM%4Uf@up za8N|k_(n!Xo`V``>6Oo3H@BQSv0>KbYZWU%;Q<*EmRJ6)oWM&zx8dcNzgP08Ac&0i z2Ctf?^Rzce1x69B&{mFuK}3r&*ibgFzvfHIZ0+eEw7d(eMinS4!#NV#x`grCb~|_z zU-U#KpU%+pnk4@!dXS%)2%8R_JG4J7&Q@3l4%x;rxKc_&PNDmsp=lr9U;jJ(*2@_1 z($MbnCV@+PR84K|;GCSCoh=#O>a=2A`CGfK^!|A-?`eEnH7DLX+%(+#h8oOZb$_x* zT_nUnflth1fUhg$r=r4~p8#;YvaeD(p?my+XjR6g7*FHV-uXLh)lHrq#I6XcF zI!yc@EFttRArKeIQig`k)yjf@YzJfE!=Ig6ms$bG7*M`l3h4dXYUc$JMccQUVDzJE z9!sQTBgb5yPyFOJW&eF#Gszp`6J-F3`?C^QAa$1u4RI{fx4`WB+e>x1iDa%H1sm(GP(&y$NGLkg@Tw#XIPxWIg+4am9n8Q|rN5 zS6A0szd+G^sXDT{a(r$gbzu>Z^+p$_k(sYR+GlyMosC08)Z_&BD{DNtR=<>3}^mr+&x`r zKdr>f^yz&1gZrp-ZCu@P*Kwr7?0v$;{PkiW^;+xUy2hD;0&U_aubj0rD`2lZi;5pr z;vIg4a$`J3$9puTeKkhMa`iItT?^=z-Z1$sC*eIEF{gOaAKqVLLP`=wMY5Q!o*#s> z|A6ba-_BGzD-l6dsmz$eSKlznJ>*O1+~a#Tg6&NOwD$IccDi4Mk!hNaO>_E6EZV4F z>Bm%(CJ!cwhLY)lNRML*R&7CmcZ%J{bB#P;BV)4z(KR%Et!9__q}HhKZ0gk*4^ zbI;XSG5-NNHF}>=6GnGJBMG3Un=)vOiur1-m;OhGmhx(0sZ4EqCy#hPf>@*XCSCjN z(O=TklUW2D579JNjL3Ttw`%DpZcLZYdkinLIiSr64SC`bo9fom6C3k+u%W&o2=GK(a!r-Ag23Gs4^F6yIFIjXX>S%IH*W$tnr(03jB6r zyc0F7<)oSKM=atm(BeN$N|M5FfJ=Gy(C8Sb^Ljn)Hje{=*&S4D{}IcM#8B1hW26@fTS7sFcrL?CEpikPcMR3m%dQ zGe~cpogqbar@>~a?(fdF>M1ZVFuX4gG|+Dn8FX}FGDN%6pxiu+I!W~R0#E~q`npcL2XfDNM#H_D62~QZa*t)o zy7OHbkg1!k0)C0qRi62Jca;e!EFol7Jhm9kIGHHn?S3Imx~Yu;3`r}nPRJsbN3<^< zL>=ztPf2kPBTRsk0eq8a@|qo@Ys>xmtlh<}y#3IFrJl{ceXHB%>w6Yk-s90&4aF6o zd48F@maL4)_mO$?B&M~zQc_PNptgy=%u;2CS<`@ zY}i}{cQC0@%9M)2qsDa&^`#$MoxGg4U$m9ZSeKm}c{u9V?qv*FQEYJ)f63my-_9}6 z&Sn!&-a~{MN&L;dTFE3--f%D#)#&RKTaY$} zyy3LJ?__CdNiwOgscDW3QGKS1UrwcL(#W5F$hmp_b_F%a3e0?X8d@_>o?b|k4HPN- zsgR%TSJI95msS(DH2_}+_`H2NZp=94jAYSLviI-E1kzSN<0>W)(Q-BJqnff1Jy~IUOX7$-%^gW z#g*bK56%6g`o-s2SNKPfmto+x%)bjRc6J7E$IkP7r%m8!(h+V@48?rBqfXV3;oZ1d ziZ6PjZ;~yd81wn@v!62YCuoZFbR(NS@UG<*4k2yGsGsJ~`nomTGP>qlT@3>A1D4;0 z&F|QZTW_l9Noz)ecnX+!9$i%_<(P=9W(y~DKT+@RNZ<&V3kdxz5Loqp(SB^TnmfcW zI7pn^cVCeJElfMWPdh9_BA_$_smlN^r;4Bd&(@;Yr<^#1s~M!>%^&-KyxOc+SfTI-Fk zO>KD8u{t6N(D5iiYeBskjgxmjADGVc-_z%&y&*|+9pp?%b_R;WIiGyx6YwsGvwue} z#()`2#5ir8TNp2!CafT3G0^Z}lfPxTxi&P}KRZeWmJepn?sL9_pWI|zGD=SdxdI{nEt9*~G_MyZ8Jig*S5`txy z;pLCJ@u+qMZ&psUIIv6b2p1OGa4p0|Nm0o!Kl)ulGd}SYy^iID{}6H~yV*9r=a{hr zLEN=yjD{3x$yB7xMZU3@T_&G;seUh^`jie)=^Fk(5gm_<57v2g>e&B&jgh5GBSvFofGUHe3GeNd@!k$0QTM|#3$eJW00tnn(lWeG(BvUO_h z%ioPU2^BZZ&&~h@Zh;hjF#v6#{F8s>{}J;>qs4w4>SOj%-I1~At+D%EaDS5Aw6{60 zLn&(K&sU=Ho|mQNQ?Y13c?Cu_-=ZG{9YE~>wYr1~BDO(X&Asuk2BfR6 z%4~;w!bu=OvQ#~MD)K$NHYa2(TCZ!9oioN{$oZ>Ka_4IE_u_TD$hyLt=ET21Ckkji z?&UV>>OQ*Zx!Z@9iGGx-JTE#>=Y@ns??1aE=O>+&t{?IgWP^KfU7+U29P1goG||bX z1V~)EGyLw@jc|=S)oUzRZ_E^sHDdvjVaIXU&ZkeDF7^J#?w^78pmu3B8Ct=y7E0_* zFF>=tvcU;3Q+GgsN&?2tHcJ+UKm_t@5d1rH<(+=FTA6tmbjkDqdkXZ522G- z!(MR>3ElX<-mrv=JTapl-wQzx+!}$wk(q=F5(#&WrIZ|bdCfqQR zo*~NCrzjz=~#Z2BUNEQt%X`sbj-^fedDi<53C<= z1|hm>n5=afi+5njsu>$3S)z#nY`(;nD;C`hTD6?!kRDx+9(lmqt zmil6O@RcWiXnCZUDIeJb&^hX`oYwO~%DzQwlHFe#kS3+B_qMsZAiXH*>rS;Yq$UBL z2jK@1NAnN>gKjwGeEkvr-736)ZHTi=*XyUL*_;MJKwI5dCj`YRUJIlU81#45c!Yl& zxsP0zAU@`*ZC`BOeAhMBa9GyVNnwq;ByU_USP%q2CH}mHd3B#KO_ zZ?ikz0#8^|@mPorU6?V#5|jA-OLrruYkVZ{6f_IueeDCWmg;GJT^z;H%h5sY41}Y% za8vJDiJfBp@p6y6Q)pTJU8{eR0oVh98QE2Nf7^==Ib)$w2h*1Odo)HE?7jLW%tf+o zU_8bj4(6FUGO_-^MJ|}5!Rlb1C$K7Fl9KEI*6S_~UszgMvG}0&Wlkj$giE8nh#+(* zX{d2TRUcY*2T|MpYcHlWTV5%-lsDm#(_Lw!3Hs!#?Z3GwU34d0sexC4rp(^JH9_~a z!$W@$UZl}9>u(s&oo~Dx|24OskGr%zoUo9s_v1S!l$}hZk$7>D1Ph(JfgbiUZLBx3 zYf4Y)GNxyYDvs8m6V03TW3Pgt0nD!IXpf9QBUO0mi#aLHmH$5c84G0kg==rt6BS{j zqnfP|6bk0%bOYIP^KhF#yDqc%4#ckg(1I(w3zsE}Qk`c?1m5FG?Vxa2=$=u@E9Cr5 z-w_Dr+R@)GxIFUk_m^ybb8J`uDAT{4eybDk@DhO3Kb*B_-<-6jRU%j`HG;kvr@lAJ zeTD$ZZX#RCqkq$1m|g#Mzp{J@gqYh-E(Tk9MiO09Ki@rar>P(QeB-N;Qz4Yw-*+~` z)&{5N=8@Z{p zb>I{;W@eh6g}B0A%7M7ivCa8UlGN17?Rl2>Gs1t@b7vb->=}J>3CSMT(hm&n{OrGw zJvE{=8ImhP*H+!#4R}}=0iOhm=ki*C1xNen}`@59xefWBHT}wfXn?eo_jd3$&VNqLVAVHLIJpa zvzrywbDKp|(NouqTzi3bdv!q;f+f%CTH2R^`|;JMn2%$xYM54cDg&h?7|V9Maa~YInV&t zA`MuHh~N(dz#q`a0P0|A!?78M`_IP4tBy`=hIHrOtXtt!>7KgKqCah0;s=>-hW?gG zZvqWc85z&{L#zTH^G2)en&=9gk6ylQb>X%A#p<92ay{Z| zb4o}3>Fv3PAP24C`oi@7b85}8%oAk!uBpdM5xON-{Bcj1?`S5;H-&UCbcLYtZylRy zT8y?1)b0)3({6sqKmB926jE>Q>FEhE5bzemSJ^YnEg#QYz;c!{S=5xwu@04^1Bs06 zvO}zp3e$gNNio~qi+fC77%G%xeGhzy`Zv(R}WV zpHE}Q#g(L-PbT(;+RSR2zFNfn^^M-xTixzoU*q($DHB<$tKURe8%S=npFxZ$^*+wZ ztDXB9rRDM(@IE@$k+v*7A1Gw}X6%ap60*Ah*1fP(<@c~^$4~Zpe>d|;@1bv2GP{poqS1Td1m_r|7yDDI z2@B^!ox_{pL8qLM3=?M5$;bE&n2NNt`@2q~vCkFMs=yYfRi8QV!s z5W>!C_nqF-95p01QWSDGr)I`oikQ#*Lk1~{Q(UV;-uPJmC0=WP^;G5hl=f)mRjxO5 zH!-$X3%a-aUdhTU4e@dW;;wLm@%{mcOVuo=37)2q@{kK>JmH4Y5-!k{_w$g;J)H4m#jn7>4OKeQX#5TP1?!k-5;57R~hz(U)C=hj#Em=0l$+i+Q zx7B}s99jb#+&iARS+NpWAI5BYrBejH{m7M z(LrZ<2xqlt#^za(U@_vK<$HMgEeK++Qx|T69k_S0W@FCx3q_2VuX;iK;1-RL$mt!( z$$%HWwzuhnqT&z4jt`}jt+70XwEkS+ns0bXQGD8euhTKABX1_jynu1+}Slp#-}!R_SW#_caw? z;c|8lg%s!i?Y4PVc&&~?e|y9>pZxuL=h>X?T`xbWCCUJwf;-)34(~6=^xn_TneSH} zrHB~qV9wMByWRbata}54em8i2{aBIy(8=_*912s^j&p=@jte*JHYTKVHLA$jb+0Tf zk*!xc%`{@e(jp1}-%yn^kF4++C%)h=!HWnMv$8Wt?lo98T!_qGK1?mrPKjQOr9HVUFv&`gT{y*w4K*pS zcY}Dur(SMD%galysX2)$ys-N}%oQM{zW@dNsi-Ihl&mH$!)f&Fz%MXRw=4Ehq3LiK zNO%zy8`UvT#~RPF8p#yT4KYv}B|vqVjh@~rpsNo!E zW+ZlZ@r^1|FznY6^CDt`Z)NOdTMAGQ!@$uN;jzE6c*Y+FDUc&QcT(g&#KN8pL~=N2 z#8TC^h=tXp)c=sK1)s_cAbs>fhXQPuC!+io7IL~BPGiM6uRnUFk?|oqn!;{AwcXYNr6EKs-mzau+>j~m^{XM+WY9p3HIJMpy zWabH)1|6lW0{b74dA`MiJ8AC=#(PN~CudB$xwbzJXw=2ob^>_9pvjE7M-w>f=UqrwJ^_IYVyC`B^4K*;&QB(6P3sM zlka$?;!IEZ?YDKUQ>Bht27mr=9q#Wqyo2=~!=1kT_;qNk%lr;Tw4`yyd<>JBSgh)q z=%mk%Eh*!mPMO}Rt7&3lpG8UIN_*ej9>O~qq?644{orx?cY&LFe1fma57{}-bDt=R z2UGpjvQbQ_tQ`A8s}u_h@Bfz78tQzmQ37j?L&`B7_t^P@O-!C;ICWLzMAPs@Syph5 zxHlEp20)3pcl)*nFd6`1lFPMPBXGufT(O=JqPHkRMJJmAxEQ&6_byG5UH8x=%D#m0 zoH1>xKUuYhanD2~Wp41{h1|{Du|Fe2QA1<@!~FmJl{bR}hT_Y`Sicu$eoeo)=<+^& zUi~PMAbI)c2WlAk`8~62B#u?!wOJ`*%*oQ;#Zr9~ccEx9RB7hzQdvM?PtO%UN%7>v zNJJd=lL+2``ELjz0-iWv`L+G}bsM4~uvu2fRuKbg!*I1Lze@IzKH9;-fp}6+tm0@y zOpLPz^Q3ZJT^-rjWL@1QVc{BFYG7Nj9`XXf!)QXZz9Hz2TepHtW?0y7oAuM~ZZmC& z;E$D9k^yl6Boh6%A%@gv`mDmMZKAogF(pMNg?9<04r7PQ8itbv4rZTF{~e{O8Bq!N zvT_G~7I_3`%}Bu5fsbDpgzxa5U)KL9QoeqT#ynZd-i^p2i29ewRTR}PhE!R`6%AIk zIC~;|Gz4;pp!HA=htob$Y&w`$R#sAx4?n=9F#0*dxE2ftKYrYG1L7U#sQbwpkJIj7 zt2&)>`wh2=bJ%$&g6oKE^@2XX%7#Ww`Y^Bq1!VWsI$$v1*md?B=zUloP8 z_917yt}y(;IQ6^iNH7~}Ig*!b%k@#5?v2MlwN9d4W&s3Q$}aYYrp zag*zOu61)8Srmd)%)dip^;{V-{C1)WF*h&HH!cF*LnyfXK>_8qn2<6xWxDe$@Zo%N z7vc^<&M^Sm`U{K@8n;7Q#EIj0_P>}MoJQB*Eq3W43OH=VU`Ti)VH|)8#c*{ol3o{C zpKFsYZ#&4+JIPn77N*21^2cwszx_MO?a5|cwx{EUri7GoVSpySF2_-TI--WK$ZU6J zF&yeI8iAN6zLK!e^Tg`)yvC8!_XQwlT%pH(5Oubq9hT^F?}(^g6xax(6wW1HUIEyeHFe_>h&w zq*7wu3E>Pse}A-FjEtFevF|&hxe)4=R19|z{H6%luS~d|n3-4Y4LtKZ$QKc5{l=c$ zM*qG{uOEicB~;3ONV0UPqUQ-#G0sc_w#2FPv<#B5&4zgM96^+5-$=4<#MWsD)+Glx z68E^7-_>+0GbmUY%W^AEhoaGMN@7mqD8-k)?vmMPMJnDZmvhHPzV;X_Tu==Q1#0da zu-WeszI^vf{*w0_C;v=FhK#Jbmj1T<4*@UO9nm7Aqklm?t*x`ONy~8Phe21m77Ah7 zeGUi=Q_s_?a~y?xgP_2=CY2+-68qdum~yi2u|aw9xJkpZrW*SLQ)LCN#hH~C)`_MA zjkX{Tqj9PGG#&^XNI|VyqjRc~t@LXTcLy#+og_1i!H@C0WPxnGo6)P(`oWvC@>)n< zP-gYy$Y+v6byeF;M9J}COo^K;ZFWM~GM_h@yHFz}(=5son)Hy`?SCj=?0}BKz{27o zm(F~d-VukwS=k0@11?*WeA0}2Nm0Yrbx(nE?gJfp4$WDUXY$0wRE!DYS?)UCj5&`H z2@SG@g&vYfIM~?~i;B}YGwN0QlO%n}utOI0c2XK*hw9P&qA8)|=sbFEEZ*p1KtT*$ip=LIXmC5_xJ zOvKKBTIsU?vEBqVHGz1*RJ&~WyLGaUkpEvqHiBtCEaPY$GbK)3Y8Te5GZTf3+X%W8K@| ztmQ4lQ@qdyYN68C(+Yl2m34^~+18VUqmFu?WEf{9rT4_G3ai(zYK8|9CG#8iiJnv_ z^JcWaBKFqY*9%oOF5~j|Hhe%VHa&Z-C5qRbGP&OtnXQLC1p&}dep=_AWZU=9LhU+r z7v8E2>jGS2(~rJQ!g^43f&~K@t#tr!GwMz0blh2rGGXA=Ru>wNd?v5Q44IzNBAr97 z_|z91nr^P8WUS1x3+=+a%6X51_R<}Z;1)>c(qwt1X}QJ8J7cm~>FFF(iwli4&MiuO zKN$BRM~p<&%a@b`PhDjhHb)M>ZTFHw0{sS}mjozc>7!M{R-4i*XaT^a1-mFbp zES+8$*wC`v2V>AA-h6_5W~7zQ3()3W+w@-N_9ZlGff61F=`^iod@L~75R zxGXtzM9d(Sra~yyz}cYOuQPp+dn|^(LcBoh9Yu&+K?Di@L4CJ6T^h;E zM)Xm|R#zz=6g27L9jAMqY(dbyb1Ct`!fD(u4xVE6rK6@IlgcJVZ}meb@v|^3oeI%t z0qsp|TV2bQny_DUSuX)BAXYOtuw7TK^I7w)-)$?si9_Zu4FAeXPendqP0B9S^_^Qu zvmEiSz}^}pReI1BcXJOCd6ZgQyhW5=f-pGT9VPYe2 zrM9&!Mkyk?1q|;|Y*NOzyw3QdRhvPNoCaGPf>Ky>Kb|&U&>x2I+>H^sNT8B99-o{s zeH(kKu=Eq{;!t@K4o(29ZLVQ$CO*UVvOPKO;0uKylJV!GX;=`I9%b_guXZ8C0_5Ap z)TD0re4ItfAn9j1o#)L1pJ8Af+Vo=YVg|Nv6kR*e?BEQ^^@#WbtnP}x9`W^cw(pjt+jb7O`fCt6$Yfx41kF;0S8h@HMkVa z68GkWm=y9xhe3!OvQx28iUK)wYA#`6J+24CsgK^Z`19#Et}L_rfafU0*@K$-&^J(H zWnC&lgz*MhhsHtNxd<{JOuJY?BzErmaZ&AfNVse46S=NSH{n;>{yX(|A=Ul8G@q14 zQQWD8>)h}KjAE#QjSbOxffEN#vTWR%6jyO{ghwPH`2Dfun)&Wf)`y9Nyz}SO0mUf= z$Ch{o74>k#ED-RvIFd>D*`zX!P+7cI_7sbzO zCbq_tj?C>bPh=uCC*#8%4YH)VbtULr4=P~C$U4*qYabFYfSNP7dP6^b0*4L`W8R*_ zB@|SYlnX6;O#;PqRVZ>9GX+w<(ciykRocr~YN9)0D6 zVxw;5IKr4XZu-qJFv(J3@MB)_;jt$(tbQ`liC)q>cD9N3mBLsYl8z>(CyXjzd(}9N zNr0^Mkq|=trWSOw<)VKCo4em`4e`U0v%kIlc5k^KNtPad&v!mBM{v?0xj~xYJ5-#Z z_}}(9f<$3z4CD8RjnP7TER=Ow2Jnk;f=LE8N1#ejS^Sl9azZO`oD`u02`INh$v$u9 zak142*m7VsDmy9HKNYItL1ZTlt4nrKry0d-x8SUakuX64RrdyuITh?j#j{!{M(lFjOKMzk!BOEz|WmO$?@UnY2FZbTA)@zZDg=mC_F zr{K9%@u{iCGLvPTd;ARhTav59mHpZ+8W~+Pb1;l4$hGYgd1t-o)M*G6kjz|3ZCJXo z(mge>SM(kHoW(-@7c{aRWxA&vB3FUjQma>tkS2SM|hW~qqz1j6hR{@X=1&+Xb^7mGxcQ>0@8+h~9nw@`;g z^8>Wc%G2$3gi#7oQPg&Ref_=x@vAqPErXqYrH@zEwKiaNo8rY!2{M$hdUF$M9)GyU zMjbBxd`mqtc0M!Ihp6d*wnicDL5jK;8Fn3Y<7FqMEI(CwV)#h_KjNHNKl&AoIk|fY zJOWEM7P}J^u0^Pa&26xP&IKVj2m{ZT(co_b_9uAm^A2Q`Zo8;6-;5(rya$sp+;Q^B ziqo-Ja^rfxLuqEPQK|BOEYNLXK|x(;^pTb zH7f|umTY6eN>DFV43B;|)UED3;X98PIsrhl0{SXn@FLj7F}($I{p=Z*{K{R#S>gp^k< zuH!tPijUJDMwa&zTbJO9gz0YJoMoC2gOf@i&yWo4)Hj6e?@W$OR@E7Eh$vR=Y&B z#IrRWtxtx>q-N5KP^`KHNTSX_O4UCMvXb z;L{_}^trh{RyHDFBNrO=I?VXdqsTc82|Tgzx##t~y}v!ku<*EgV04TCyP#Hrmb2;W+_d3n=tYnG> zSDi*zBSvXY$7GQH`8wEe?$r+#)h$y!;pR1nzvtytu?Y|uu=P=#xDNE);0;rK_BO3g z>dFeBNkKJe9;xCl7u!;`#)GwtEz9hAxQV(mm>-4LJ9V4tOyL0L8xei*Oz#hdTvE?w z2S+#ZubhfX%|v{vL4&+F7{gO4f8?PVn4lV5)tIOxW~2Y`6xXc*<05~V4|aY*oooi< zlk^`6*F<_4ae|Gx@F+;|AU}b{1>4;FII*r9Ze}(W%}!Tls8q17J&AL_H~7v?cK*z^ z1=1bSkn8;P2;E!E44gHpH8kJT@;^ec)B9O=eUn7P;DLRKjo}~@ORFbs_DY1Wvwf%h zM7jFHWm74AXYmu~8G6&fC4i3ZPdH9INosEC#E!>h@*JeE-lA_I9qiJQYh}sK?NNtK zGLTN9pp*lZGp;ff(jFVg+yciA>eHXijP}MwVmXcR^uKbFR}Op@{LT6m_9)85JmD}6 z^h%X$aZ-fSzn^qFVb*j%;{vUqudk1@)B?;cDb=xgXksLL-39R#w)T9aGm=0E1aVdn z1kTy04g60UN^Lb{>pviM*gZBB_LX+~vSMUN;(f%pGMX8JSPJCg4}+Gd>V8zSc{z^C zm>_wav+HPp=xI?L?R7MM4k1uo9;uOcr(g?S$f;Pr{qW%@2rKm_zaRs+IIr6&FM#mb z5HHswe(#)T#?QQhmPp8Ie~CMBBwJjCf(&?i-_4Fv9v*ktP>Mu0z)D-TSa1`{q=5xV z(G|HS&0vt*nv78yeZ6fz5ZSd?z{WHh?pJp!JfDXYhC8tRXCWA+yFOM1nJdIjx&wIk zEx@VBzkK-?u>`*5t?>7lbFarN<27<{vBW)hD8z@XzsMN2>MB&Nuap|Wh>eSrfkYR|(#q<4 zR@T+Dc(Iq3 z-vET$<{@na(Pwm!q?u*$Yt>iY0}Q99N_{P*CcPl(BM3D|pvM3>)VB2rVz8Y8XA-6bQ1X4GDy1%T38PB@yhrwnq(e*wGUION3C0>dXtv?jC z=VvDcro-%fcB`#|2V)H|kst|@;h#EKC1chBhz|@jGO=t8Fa)_DeFJzs_7iFsULn6n zH8j(53Jf$B0(GaIMpw;<>LH>%-0@smo5JLkbyTq~J`liAQ0&5_$K=>5H-vn_koq6{ z94LVR?%>CIk7c0HMz~lS^?J+#c33Ve23?s zQaMrsGFln3i__Z@yi2J75(P)G91D_0Fq$B{TX1S9!2<)vX5Q5ngx5jJV*Z(QR6{2Bv?!x|)LvAu;w}L^?kZe6D1v@)tLg`sCz8-wO z!p&db^HcB?>7zhrlhP>f@9$q7EeRPLQ`0e}y{&ziFyA z`G!*vm?3S=?^3Lc);F5-ifON!QHlg;MRA@=g4-Lp0}~@US<-Fc7{5E9m$ODk;tU@@~2FS!qqwe8*s zDR9HLUGuAJcD4IKvON}pwG=~8Ys*$$x~zx8{6g-ZITSdRS`Z2}FP`EH>LO0?=>+*+?y-RE7Tn=48USV>P+S^| zPJ&aqA>nErtZ+c#OiD=n2%`_m@90`hcd7!39_3mF-~g|~sU2FMfOtuD z1Kr*pwBY$KL^OwkWLd-Q_&Yn*QYs%EkUUwY94mNH|FAbcP5E8=K7UySd|kI-&k2;b z;3tpzr_RS0clmeT4dz=c+>*#)PSE+x1A>G3rpuLHjwSv^XtdLg%UW6cuR197So;K? zjM;In7Emh!CK6hy6h$K8xRF>ELc~*S+C0Z0-L&ZTQ-(1uK_NG9!v-4;x2QerAjvm1 zl5Jp}x)BrbPBL@L&Q^3qD+W6#@jmgJ0c(g)-YJ_0PRk+?fJ3WUDji;(p(uIivEV)f zRuJz!%AOgn14IaZv;B%`l*`3j{5;pq&L`R@`{mBrug>-#*jm!k*Fd=so$JN}qDuqt zAWpX_;86S+E<3_6=sY^P<+(w3Fl8f80$<4zqH0f-lfkA8=Mb#lQ=U73VT83#5}*a3 z5?(p50utYshcpPEA=_=ZyZ~E6L4pM0+0ha>Zry?yS#Saj{Y2A9zotn*k!6h+Y=Yu;Q7 zAAl7FUW}OP(>W6OcV6XWK23Vr!?B*bQ@z_x3&kZlIr*ngyn|z3ezWqJuW3JR4;-i7>m7oX!3;+R>OE%{9AA= z?5VT{s4Ph209A?(Oni`dMwv5xw&*7UOChVnI^=Jeobyt*_FL_FtTQ(2!)sfx$_k8C zXlBZ`mNjrv(@)7MX|cOiBP9;j9}j;DP8fXu;;+;dyH7lF|s zFnw{E3`B0*B>I8-v@G3~9G5#4JkLN3fi_dX&&+X{yxEP{s3rHC5yz<^ibkwXi`N}( z4;!m?k~QdCG#NExUGFb; zT*jXEhJX=&0i;u+j_Ty>}ncJ>DS@L(y#%P8{hrQPlA@>7|5^Rdy)NATJ_ z8%4|zJjvRN4xUGlXrGacHA5Tdzmb;KGn?~e$w{j7?ma&DbC*}K&xU+ufB+t_sSln- zL>&ZqQHAd=yhqwMGaMaO704XSMJ(OD#EA}!94Q&V55_;iMgeLk4C*NWbpnEa`lC^& z*K)MzPdX6B2q}P;mWXH`e|s|B|HTJ5MbL(VZXq|cmYtxH3Q6tn^!+AHdjt77ZXjzT zRy5?p;$s3axak2^5#aAnF6<_tp`qd6=*Z@F>Hv*USRFe+J_q{fHMerm^?5Ii`jOVf z!EOx;(b?1bHC^hJke{hmZJ^-7@R?4lAkPoOa;($}kQ_cFj0$;gn{dE!&;T?AR_C#) zI!~yAv!6rfy-LEwBG!wt@1Pw7BT46my_Wy_!ih4P!cnD3OpL~)(r!x9*4FIEhG%6U z`(Kk9!~_8yslvm;fLd5D7SeBAgjCfO((D*&pSJHbsIr;0X-piSUGY@8+*UsU1QwRe z#1uS~;*CqDq|()|OH7A7A|fK#j?n)Cc>;bb(w8O-dkQLw*jKMMj*i9%xgKvqA&d~( z)Xld;qYA!p%{M*C$;l{~8+M(lu&FyWyW+b07K^;5%{-2bWa&&^ZXb4+I3FEPj{jCN z6ho;#P&B#y-z^_fSO#&%qcDEUn-zB}ISR1_3_I^DP8FVU&0msL;62W`-F5BB5n79)}e2R`X{<_0m%&+=rYtf3t zS?0^;>7eS7BELmIvkv3DvDtrjs%UsUAFZi|_gLGUw5{zP-J?b2`T2P|LCsgXMc7l| zw_=Sn{bqtR+9OlDykPVFRg+l}vqPJv}uJNe?!U!j*tb%BN4C z-lwK6-qWd4`5$}`PCCJoJf7DX({Qd)*!*kT7!doq8`tA^hmvdZ^u8kJ!?i*ZFfxgd{_`Zaz1)gS#| ze3bt{LyGc?tD^?So7(2O!v!`JAgO(FGP~h^6jYM~>OgoFe( zv@|T8Ss@`Nwp{LGfMJ*ONZ-n_8(&s;BmFu+H`({v)mxJrI8us!!H+;KCv;e~@lckRIbANBv0@!>ztJcTT8YyZG5ctpk`( zXw>)QG%?y<23v z@OustsA2)6Jt@+ZnAa#8!S;kWgrL)kX`Za4Bo2huzCGunxCX0%0bD}hUA}{sA=jZ9 z6?942-2B8K*})7sE|~fsXM2Ee~7M1@YnG_O44hA`yU!ogQbISwu zD+R*YrMZe6sPmmpA&>z|EJfjQ&8q9EJT^kkguMKcXoh&eZwhb%x#MFYUJ7&^nCP|x z5Y_KLwEw_Jb6N0Gm5-5j{#;vRz(EuPnPp*YA`VblultwFOwR3qSX6AI1b;8n-%oen z>(gT=hck&|yR$8kOeZz?vacT|fj- z4~Fy%JtQ4S+gS%VEPF6vG$`x6??Xk0BYdk;qnk)}!NzYt84?a#@urAA4uD&jpb3Gf zosgjr0+NdUx%pST7Jb+dW%+~2Fn)a8d&1xtW1>I{3pNk`xkN#8rWZ9{TC$wRU%Zok zsw3>G*_j{HN!Sw2J#|RPHN+HG~KL>ko;w-~dK! zolc%il)%p`UX@D;M44YjUItau9jLxKytTwdLC{tQ{L1OS`;~dwVFq7-#sfdGm7bwu zBH$-wzzLAb#HYN7669D($^pN=)%7DKb&NFVZ|vg*^4<4{T@EA z0f2ZOc00ZHyzl&U4MX|U-2=${y^HnczdtOm;+#(A`jjDQgg1Rke4OybFKR<$ z*&%5&nqPOAqT3X9NIg6!XVz@PD_x1}PI#{nLm?t$gPX-xT zP|)-Rm|FkHYhfS)0sX%^{*R}jup*RSO4rVqD=QY#q)4Epll1Rg1G+PsKPu7gl%5Dd z?#0!;w@|>p0nBMW&w5Bnke~D@Kt~#;o6#@}FxoKX#zMsp7%6I#lK=IdHlPX5!9{g& zwc#I&WZKO7(9{R6(wQpB%z~Z6x?D5Pt-e z@)@#obVkCe#tx2TtY2gzbq8qUq2#82Om^dJ)B#p`?tAbIThQAs{(Q0pru@^m*oHj| zNi%4?tCSgjnFP)UVo3^Cu8a~W$^f|43%tgCkoIlK$8!Dyh6un@r(XkJ4`Y#Ky95eO zchf6$oi#yXu)Qb%SNQhX=M{=ROgx8o=$RoAuU>x-r+9)8${+nKJBc95yIk@T<+1WSTC!dvu)jmIfx5k0pfz$g$b(P=-9=@1s)In4viU-ow zgS;PLF1e{vx_1|%gN>Nw@17=Jg(Ma{F%^jlnOF8K=Uy^bJRqs$%edJU{O6Pr9u~Pb zNsHmv=uwe>crf?otH0oe!$UBX95dphxm%sn>0(5--tXH3NF!G$Iq_X4;X>E}|42|j zUm$<)Zfh;?7|Y9RrF#yv;QgNgm_!iO7x?Mb(R}DMIl_3g;OFKwyi4*EgTYoi0<n5})lH3P9Qv?ye6UQ_*!e7e@~gcPKjg6#*XlFJn=>I}UJ5|=W2DIF}v*-+=> z6=l0c#R!>x+}c`>L&t#;1rxG>tIi9Q%UG<#(gHVA%t$!o#9@|2Qr4amYTX+?*1Bj$ zfQots8+ohzgzHdxhR8RZ@9p4`*B(5+hkFg!B zMgcq<#9Y|-gTxvK76^vS9J9H9KT4h$9CMShw%H#*<0S8eGZF2uAo9z0pwY=H!k>k| z-s4NJQ!jkGA}4PsZlzva3~Y_(^paow!^Gr8Kvn>odXUSLY~?skzH;X;`;Z`5*v#Kh zcaf#HTY&7R@BTZa`Uh4F_T{rqumZhZ+5{Nr^4yoD!wmq;M%uXw^ekSjCi;rBz#dF+ z54fcuv*MaU6YvqRErAa9cK|UN;$i(Q838V4vY8A&fs-M4gXSjUI^hZ6eF~isazX(v z43U*A$1GN!B78AjD7hUnqSk4uF6QBp{yud>ey6lE{b4= z24~wwziaL0q5eyN@;JOyQE%zc^C1UN;lC~b0`L&~B035{dQk^^#xg4pmEZP813%Eq z&n9?Z59T??t&{<1rGOyudp0bzj|ZJw8N>CpVT?QKHEHL+$n@KPHy`?8F}LzA6A->= zrJlny1A5$mz(~YT^<_n(BXdQ}GfmBQ7b8+qks&|k790dih+>7bfx>B?2s{_sm_p_< zaMHR4=)YiSFYtM3Ir3g-y~q`Q$eTCyvD#nSdttioy9GOi84(x?^?@Ve4m&U=*!aM@{tt2XeC9fQT4JcJ@9wk@R?aMBMQ7*#J+?_dl$EaZcx3}4 zHdZ(oZF7>)&&Geh2!4+>^8L^Ple}qG+Sd$7#e_$hPKOsbk!!_yqfI$k>cR;hbw|Yk zI4Grh=+_mIZW~O9?0Hd9#5^gz^kn6sEZFH0A5~yvh2J;&WcVcQahzYaV<*FSaF$df zn{5%i=?WRN(tp?bGT*b~%~^E8pw4>Ghs*Y=n1S1@v8`tYx0ECUEC`N02wWIO_WauD z=y!Qo*S`Meo%g!9adX`Y@pbt6d2rn;b~ur{x~TdGe4V)B_q_=Ah{d!Q@;za7^M&MX z$i}KyNoF|oPf)C*yIvci;p7LMG^duA{Yy#?NNy$p$kL$eE+;23>>{DzWjkc?Iw{i# z6l=TH+ZmIVW4wu;t_+g8t+#kybvH=j#Kom$l94Aq-xzFgIWhpMCE}q4cQ$N`)b7D4 z7Pxujf=-;!_Og0L2Wi)eFlrV6!UYTxY&^ULfE}i0WpxCG;#kciSD?2q?(_ggHXlEE zjQ7PIWVGSJlyPw$+W~=1^v!x-QKTGV`FciWNED6NWPl0$2+u%n%`tQbNCmX$>lWC# z3fciKv?X2uWibg_v9s2k{^{s}Pk`|@+Z{++z1GoMZqdbw%la9f7|}Z~iM^wQZvvT^ z9tA^pAaH})Y&fBjtDv2s9D&9`Q*lTsu$%W97eOmkA3#*Tg8+u+CNI(>@j$Wj1@P-p z2$535;tzTEzr(1#bdg$>I#s0WJCkSh-fTOmx_J6u*k@ZjU5eI-Im8Qp=={(VpWy1Z zF0%WFYINFzUM7nXH)q<-Qo&0(AEWY4HFXnHZ|L){B8EmobGs;%zJUQc0aU!SoaN*Q z=w;(7|5_Cobn6dfDKDDIN=Vd=kB=8Vi3|OA79FWbQORMcZ9l72wrc#)eL(u|Vdm!^ zn$xyDHgl=fDbI+4=ESZ4@#%V3{p-hsag}WgsYo`T^9YZWehH0@b*Vdx5h?o`5uwV5 z5l}FKVF@7=GO6OOBG(f;Xbx-BIVhJ-fv2cQJYQ+H==6W{DuL$j*lDHa3tca{xV}KU zUrvg4x3tmgstkhzeh;k@f*}&Ly_R#;jbEWI{std)l~CMI_1hG#4=`036ix2@JF_dw zSja&%>nw{;B^Zp!A;#@M(jc2C!Tz!`Oe)~4565O`##si@F4i(x8=GCOZ~VNx^B>-SAr#S})6A@oU=&Q`3xP)6n|5R}=Ux58zxqdJO|B}$ z{O8cRVe$1H4>XOPn$iNdJrAGFUsPYnU5yg+o4J+S{>nKFUS+V=&ReaEV>;fso0}~) z4b*xhJQ*oNC?LdpN%&x=rVyCn$$iV$q*U{LfbTw?ps)ppiK|9L)<@`K;o3w=?*R-j z3|$4F!VMY-BIiJF0gA${62l&kjhYMUG>c=`xlnN=czpz|nIBnBp@`^Z8llxQn7ovi zwXaxp!gD}WE?%(kvpP^FgNC^h{4mE=EGFDb-yMq zZQBnbDb%rvdq|6+EDO@}rCSi9=XfW28}XU(iNX}eul~C24AT0<=_E*!6;|XaHMFfwske6zjZJ)7ADcy;)0=cWT}+fV%?i zVWs+gS$wl6z7YXNxq9OBBa#2~m%Vzha8G?;wTGgZCqytI*YNxxlJVjXJY)T_@srZt z(nx3BE`wN6&~?GKc)bYc>ssfJi-oJ#h&(#aAd7XBQd+c#5V|(*>b#eJmpkf_gU~1RQmjoJ5wb z59wavb}#YkUDcRxMnB|$eNY}zc0=Xi@%ehCt+O-i^1!h*H_>fxIq0!Q)g3M& z@14g3G{L|lEu<$(kjmxmiJ>r_mco{%w(=MYZzE)ja1&`yWJ=Ra6SA-OGM=1@>%lNgwOsy@qF527APe4h&jNBuS8Cm;%kX|!jCSs&n zlAiQJL0ya{OIT(S?6BbVGu9g+r!^fQQSq(J%Lvu;|+b+p9@q+n&j?jQ< z5cE}qi&iy*cDQ^oTCtOsvVLkYwLu_Ke;v)^L!Kv2>1TgNrEFD`rs9^2S%np?HzRx@ zy|dPTtsBZyvEKTYB&IgpO`M!M z?X*5Mnj|59%`I{lO~d&Cac664;p5wAsOOE`O5``*zcNt?!7nT*dLm+XIc|I# zU18%4dpWu}4lmS~FTFbb@=8s$|DwH`=o7s=mFlZo!(ly2+}~*egc)1lZ!vCArmGuC zlVc)Z^RcgPuPqTK(Vm=F<#kBD(xZd6`RmZ_@2ufqulDsG^w^3XzGeH&jJ=joj~=(f zox%^6VNl6eLS63>Jlwac6<+kw+0wamcrv~6yd%55#UOvHsmY}=5Vtci=6TK1{;Ux{`JcP@-^Os=Sq|$IO69@Nt)Urw-T|g`-w)9 zXEYv8Rr7w%XkM6&YGuf6q4deo8N`32B=nO8lYcW%J2CEMX8&|&!{Amt4K4~*?Yg?P zpY2iaHmrw!C7+RgLXsPy+PTp?ZN|Y%e8P!^UE-Xc}9MsLaFq;&v zeE-kiykqy=DNiDvJW~C6@kV!96o`->cQp7V9-e!YY`9jDraFC>alwr8oU zi;Z03r{NNfO6=SOHIxh9_7^c;o>6U}Fuy{g%@>BBq+ltDHzJ3*p-!1!9OI|8LkHx~>qNZ3{oUAAzH0Lm!pR=ai{w763 zhh`MTv6UZ^XFWDWylCdwC1iahb$@cI+$@f-_EQ(0dz@)fr9RuM{h)IH^%eMv&b)m2 zoJ=Ucw07R1;kQerx0nKVTNESAwMWxqO5gPRmV~6}oGisCanhk!g-B6kSQ_G=(vobP z(5p)$A&0E{J-_+}>LGhANv_8tND>yum4ArQ z+dG^RCAEv|Y#s}BbJ+Tcn(+MmR|w-tZBJ&C!(zqNxzB^>D34>lw`+ZJ0*_if?Y9#q zy)NG(j0zMr^;B+f-Bc^(3D#h4{(4ARnv>IX!5`sSy7S1FA`uy#ic@1T0pWon5@4;sAgS9(9m8A~tldqJF>79D`^-|7_M5!F@c`H6tv7HZEzQ5+e zOU_{H=)U}-8B_b07XI_Y`DY4}1Q>U96}4KTOdAaf{2sZ^GyK6|{55L@bf=hT_s-omsC2^VelbWyUo1nu@QBom+P;X0NvW_bU%^cbqV`5VJ$dB3AWNGAK z@V=jGQsq!E^vugBB#nTBg+N<~MUe8AvLNYuQC-514vY^QRX+%eUu(1<^tZZIMqp6z z>r<>|(A=r<>7+&PLt0V4#rmp;46oaq6JM4v_8V?VTNCc9S9|Zi4YI0^NxG@;<$TBK zDyy5!f~PyJUu)vfsNWWh>^R(mXX(!ZEZkqtKHg@A0n&6Z_+s;H?|SQ9?nr{H#=?gr zbUqKJTUSy;{S0lLsAL)Is@qE}=?bov;IDap8^V;m`tq%QDSorh?))Be+v;ZSZ9-+H zWVMg?bkKk5n%>Hn4xsY)4$zaEg<@H&z>!%K~BX(_L*9^2#n zkIDzDH7>YVxoO{fipeK&58l;fX$v{fNi{iZge&V@dM;X3kHUYX5kuk6CF?zrF`z~>wbYPxH*mwFb4Z6sLDoEu1+vzwvtq7q7Cw9z z$#WacQTcYh05a1J!tz2sHy`*!qf1Hf9>$~jJzlFS4Eo*|TRJlL%)j=}>ML^#358!P z>mUt%V(ySt!%w}k5e%Q^h;^Ou&J{FvxQpO8`r7W0_*T=%vf=7mEzRU0rivWPNx0 z3L0F^>6aQLVb+!@#{!gFERjC6b zL-V@+dKGy6%u90;mU+eR0l)EW z@P4T6Tey9F5-@uQ$H@HzmdN0^`j3KJ=a`wc@Cd)@;=no9CbiL%h| zPQtU#!B?#9*@dw7Z0CHZSz!g4`#N~1;0NA~dlb4~3_r;yKG6_E-^Khsu6O(^nS6S~ zf4YRmvx+#cz|7f^rb=V-<}^_h7tCCuHKEV%dPD>WR;sOT&E3MEJ%z{R$2bd4E=m9G zBqh&Se<#io@=sP3kw;v~YB&~(&JGN#)9Ih;pQ#48JY{n^<`qfK^NC4P&n;buy>%tc zsPB84N`BM zJ{94GF~ZoPddRiVz3oc1HbV8{3JL~tea5pfrrd_kKYY3ogOu^@oYMEJ&YnNp>t>Y9 zV6QGD8m)ar>nTb5lt!Gtly|7E{|TBR7W~)qz+U?}lKtyLb`6(vVpOlD^)JhfrahHT z!Ydm2s#!Vkz4+(lFMHB*gN39nV*M(d%hUqb7Y*r~Ve0a*Aakgrw)S%P_5Je;$1&<2 zi&|KP(kT7RL;-65K0XE=7L(CR#on~1=8mo=A6_SkX}=L<$N444`dsdHwwSUyQS=_> zoFezFn*3>M)zX+M(W~i=m@o*2hDRP7GoClC3@q{IirpsM#Y9)xMcc)^#Qc%J`(tsh z)1^))bk321+p?J)0=%E>N*|3pnZNBBk!XwYCi&AiwX~V*{-<`QCSUr{GHv8S(Gl-o zM@E*ot2(NXI@9iq@1fFk8W~j$)40yUsiMVv4E2yTEnj{*MAFG%~CYZ0m^udA#3yuVTn5(W>e z@e4KnJTujKccP4;y0x}wx4_@-#L|c9@vqe`j5VhZFu`L^cHQ$G>*{(JX zd)(T!AyB`^!h#3hm&dlYd+4LParRgK6{p!l7iXQ)g^dSCgkBL+NMU+04w-c-!}RZHZOG% zzXxVx<}|cr0nPF{D6ys`($06@LwP?fD{FNd@5kUuXjGIR=u5s$mC8`zDNG3fv(Jp{0;+_A;1Dk|3Z07bPt_d!F?ROXL5!2@i8qv?Uy?cB;%$#OrJW zG~`j|d%5mSH5X?Vvo;P6yr^43LexZbQYe(Ju5JQc+s7-vEsTvH2p!E4y;f9wn*36G zrqK`S!Z~N{=u?u}V+e=K>T2~}3HT9d6+oQ3PwXFumn0s!CUNU)t=7YYw6rVMWmLCA z(_Rd^E@Fgxc%WqpKJF*}-&cqs*W=dXq@LRLc3f`ms+l`;uYGkCzPK9JcJP2>adeziz9R z1~aZK8tuR5it5t;^ZCj{aT38eua9KYnVOnHka6&#j^tl&6j*dUH z=j9418SMP3Ha=HEMf)u*=y${kQi9KBWs@Det9Sqb31n6+zQx8y7#A0ZVC;hq?$b>j zEyjz3XC|0h&_78$|fT!lMxyyVet(E9kth)#Oj21d?l5csQH+ z7%w=KXaU?ZzW?aaqe$q0+8jjbGdHJOd49a&0J+Sc7L(QH!DE%S+`0BJf(n=7(J`<7 zP4Vs2bafS^cHNZ+rbzPBwP8j6lmf>pPuKoHY+VJQOEJT+!7An;zv=;9E;a{L|G&bn zJRHh>kH1bx>11Y-kWMp3iO3c)L?k*zo2-@4bKC=ea%4{5Qk%F2C>h`+48rXYrL8_AGTU&ORX4^VoNrYwUHV zs;VVHcYNYkqpQYX7!!0{lz#tmgcOl}-My6T_tM&4*FHCG<~+K&MpjlCAp&K+)10T% z=@ePn?&Ezg)T&glMsBE>?QQR>BR6jR49ICE431u&F&LkRofwjZCOig!WA23ii$IU`N zG(|Emtc#!{^ZMl1V&m_xwFRL`_c%h;NJ$yLSr5a&if*H+cB|cc_OSQmY1#jFeaQ7| zh&d_`y1|Y6ZztfrzSa4zkrGb2)ck`vHzAK~5EX?8$XUmEQC$CV}_&sRqMe%yI~Nl2@|Z>>lib8MhouMU{QI8vZDG_&~GpsDt&K3 z$(SImF_`_BLA%gxAWP z`e#;P;8~lP@Y4BWPWl?DsEtG8<12%Lf>M6dN2#K0NWEEYU7gUQU#tSYfAb{Mem8dA zEC1->#AGrLT3N-cj}%aI%r5^#I98seYHMp_B3r~gwmo<-8WpW`u1vdx%dLa5=#*gg z6fC{!bQeJxMObr4#S4tEK}gGdv?k!7M_xAt+J#@=l}bvabWFpl_=r#c=d{0xWy4)*1Nt^rXW9`BBf$SZ+L&&cuSf%GQ*yXJQS{K zKCyFWjJkW1WH#Cs+f<$kabYZ43fbZ2W439n5C4`tFfpOl+10fS8CR?JWf}T}sj*lN zpc04Onnumjur5UO_4OHa`i{;rpCjAMy=7P_9SCGNLZ(O4QyPVBZEam)A2cN=1Rh(!s6nKZNt)~J!GIfH+9giJ9J{=%! zdh9()o{+zrc!L$FjK+K!Jp;GU^~)eHzo>{GxiFb^du5^3=-8O6uW$crS4wi~J25)d zUiiO=advjr1ugT2e$W;KXurAF0y?t>;CRC^&Ditj-M|p_>05lAwGa!;rK_t;-?T|= zq=OT;FK@(e1t1H|2#gUag#S*Z(by7(v(>ZDYzlawR(}C&S!VeC&=A_K3;e~1@jej& zR2d{3x$@#Yd>8mAFr?$P-)yH)17*#L3k`#yAiw+AmUCsd0zX*)%xE=yW{cflNX5p* zG4=FhkTnBU5f;)`V#k&=Ch#a2(2Oi6uCHGT?(8`vBeZ52 zC1H<$nR4oK{}0X478~o3Kaz+^a1_}ImD8+)vcNO zBrG;UVl>U2FQ7?n)zP_IUOrc(6=%zFx(xle=%QfQ2<&Dmz-qsLIGoaIVHEx4ue>aX$ZuDJ zQ{TpMuG+^lHEp*y5WNzw!p_NIexI30DlS$JgA<#FmzQQDUuK0UQCJaeb?8t+60XD` zkQNaI@Zthw9)Iy-EeICaYfk{3KfAoVyiQ}Zw_*)O#PdPkrBkDw8o9Z-1H3iPl_%C= zgdlz}%1#CLoNvNAWY(^|1Rd8~91g!RMUk}IMti!Wb)O;sX=@@uOWxI8?79RrcCu_B zA*ku;S=-gsWmoKCTru`CQ-3L@4z&KQx@u}_9IGCK&}kI_@)#q*TM2$JrdVY`FAhNi zM%d4vKPRsyIc&jW4tO~wx^yWMyX@pq3g#wDV9kLUkz-YYha6FIsq6+GuO>@irfPBB zkuq;%xVn+t4>&3?m6exUT3P~4m{?n{hPTr>NNbr!M(dp;<~Eom%3VM+2n@+B1m}Ks zC}sa=tSts+T2{n&B>)Agw6ur!WScoT`-NX0#LI?kA)~O6muVn>sqmk?x`7 zvm*TS_=DbnX?EqOH(Xb9PDCq2Y{{fuRYZ7R*$gln8A(O<3#U-Oc8QmtpIbooz) iKZN!_K>q*tYe8hL(tfmU1-#!Qh+lW@Gc7W4VgDO~t5^R3 literal 0 HcmV?d00001 diff --git a/doc/freqplot-siso_bode-omega.png b/doc/freqplot-siso_bode-omega.png new file mode 100644 index 0000000000000000000000000000000000000000..7e7398bf1e9b169b8bc84a8575957ae57ca57499 GIT binary patch literal 44834 zcmd43WmuI_+cro@NC-%SfQW>2cSwVjpn!CDcXvvMbcb|zr+_p_cXxNgto=Oie80Y# zW9FDY!vXFsTlc;0b*-z;>pb_*ud?E(NCZewP*A9n5+VvvP%z$5P|&N0@ZdLWhy6DzLwhG3TLUN=9eZnYD|>Sj-S>_Lwss~~mMruf^vtyHjqUBN?YJ2jEdJL& zptrI$V)&%7AKp@`)3aTtpQbh2(bL!!elQWjVOvl=ad4Jx` zG9tNsF796Ir{E6?A|1ZEC#_J9mALLJa$0brA=w`ka&MO1&?F@!gxW?loiANxg@E$xtBrS@^@&*t7=xkyC z-=734^oA4mMUe_0wvmX+-yW2=oAZ|!74bfvcHiFLXHy}$T_0B7@%y8%i&4U5qH|>0 zZ1iSPed+HW9gTc`dZ@Nq;TI1wQ;gl1u3adO-)S<)5Fb4zR_rULqo&r&Q4!9nt-&dtZct)Z2up- zQNE!1dJa!d&z8%7QUyh-rUFGp%mxEk;QD@{p~%B296L8FUhSsl^78U67b84j1Z+r7 zPEJC?!gu!v<>gJoQ@UxaCT|6vE-^25Mj5#F8x4n(X}0k=EZ@oT-+j!NO%syG%FfP) zqN1hUEX+^;z{rShWMstcbUbu@v>;WdR&9tHl3iiHr!Ze*;@7FI{d9k&Jf!vg`yWg> zUO@>7#F3E^5mC{zP6QID(+*fPb$M@GTwKg|?}j1;o)J4v+FxX=4Trxh>zypO_74xk zWm+uMxj&xuh2b&5_;p%OtxQcxC$s+i`&R-59yTj0i}z~s8&u2F^#ZHe^kK+ZsapMZ zY5g+w9bb*v%o`34j+WNey~#q%v$HcO_p=^c$gb2_EX42b8ZUdjcx30~s8ncoI`mQd zTfbLCwCTp@aV&A|BXaunn3|SW%76Zs%(T_@>U(T|Zc$Ou_V#uWxa7Wu)6(zbm3A$S zM%&-2&5jlhhqIOB3m%u_;zbDw3HJ{t?ZrWFh!jZNPX(vCyK^QN%UiFL=PPuC9r|O) zO{Jy7xGm;cr?eRh%%)2|akQz{nidih6YnFCxMvdcxqg4zFE0OHs#Hv`R#&2rk~xyX zFPkHF& ztdFD^0|R5f$>CtKp@Gu@m~X#CrTV*~;#4>xN0Dl&lFXMc)c68k&+b#h!!pAoBTBI` zG2hc<^F6QUj7-hVOPYY+Ie_D4>ged0)ZRWS@Y1rlV&$?ul2+{M>RJ?v%b>Keu`vZK zRkY%9lLq!RIVvjCl$F3?q0WMQw_%P!Org6(&FOx o%R3z}sxWUi zpR|4RaCe_fO-+q42*sgOU?T`mj)}xQJEj8NZBNf=#*vz=2&8R_n-tXm`0)tEe|6`s(!(;pmIdf8; zp4&-AlOT2!gIfV%LD8oe=Q<%7Ty6j0pg5h&F0ac5iS(UZ8w}1m{1gZ^*N1c6;KH*_ z4m2JQ*9MTA(3&IScTe0NPTAPrR;rQ#ZqAr8{EpA{*U*qOh;@)aC^dax&kdaV+xZ1B z1QiukCJ0~+&CLnCp3iqiy1Ke$1S`KUG#~Fy*SZZNT9r!TFfcLw#*K5o<;#)}Ub^xf z&DS=6NS9i1Q-Q>FumIz+OlUd2E3CnII-1(&tRP}t@b*x-d3jaF;~$8fSD~SjIjm&M zHCv6ROYpk`Q8$2R?L6LH#JO4}5VD)&-QC?y7Jdsl+vsDlT5eI;VU8dXNS~`V`u6p! z_qehC_D~Y}+1>p;v*jY^{nbHVrl8;L`5=R&tSr5qK(*1R;lEtTM-cR0!NbpA@`2

utY!EEu6<|jhM5;Rv3?G$LQLP zrt`hyw%<+OfmYIQuM4i_-4C!MV93ZX@z7NDj{mJ#tn{b1_k4usBq}3gl<#J-d&y}< zqsntAktvneB?biKi$R8VbZl(V1bPjqG1FRFt+rIJ=er=VNf%c$S`(Rqu)2DBG*{2` z*ccd{<2m9<+z!vka52L`0;lvOIWHdgWZB4 zg~KXOuP*{}pOfWU8FXrOzvlbO+n)#g(D?sawLgi0IBS8^jGk>O3384M2=1%|s9J)a1Y~bHR$!x{?ONVpS_#nxF>EFLRG8Iew-bZ)KR?5Wc;Y2vDWc=!dt>GJ`#o-!#J_$;hmsR` zVg*5kbbNfA)pRm=l>Z?Ne8qS;J3F6tAv2sFR*&kkr|c~@vZ$!2n9tX|25GoAf=JEM z9c-!oz^_jz_{{!Wg9$87$LctAs^7PNnCXUxgy`=5`wbiuOF%%NrKM%;;A-ZPud%W5 zY&R$Jd_9z5{op`KU;pE`JZVw}hDeZ7#)?+1L^Hgexj=PNV>}KMF4n!+X!rWfo8EyG`>Ga^(ztm`qWnsb08wnD3|40t+WBBsB$<^`uFeOmyj_Kz}^sXe?JE`)CAZk z1hCTmsbV8V_lbPDK7Ho#HV-#-4UHrwJ$P^~CyNw|zq{k!G=g$0W~;KY(*0)135A$9 zact~s1To(Lh|qW}hA7&fo_oXayA!lLB|)tUfI2`CSpP<01JoJ$*Sq7w4vvmW9v&W3!2c7P_9u;5i@=uG?C1y)gTpHpcFk!CB^jQ57`0n~@5NmCNbvRuZ&cfwYmFkx|Znw;5a1 z-rjD?h&Kt&WLy)$^}6W$ozV=28@|G#E!{X^xdKZ|%cA`J{P|*K28Wq4jo-asL69`D z-{Au*MJHgt8#Q09B>-6#8y*TIz)NWe5)u-sQRm~5ECG|?vw(Wx%GAqZG=)RXVx_GW za*s`ojfF(q_Ft7te%SOh&}%dmfD}SsOG{2JO2n)mOz`$?Ha8bnVXf(u!iwubX-x4z zGq9(jdxEASy?=uZRgtU81OusmK`y9&(_OalAwS|l3R~yr=ZL7NTfqM|%bJg?_7-C) zWORp<*$l2f*TfeUv6|0Di4(i{@1(npICj1!wWK=7u0R)>^`0}QASVw17QkX)V1P#> zHox$o)oA*~(EfPdR4*qZV*sq3%I|R>a)B9u&K3%34|HHbp2-GQ@DB=N@wmS{Xo6d+ zHD7LNR9HZOgIhZ}8FgCm2m(b*c=lVN#o$dEZAiNjOdvMj@!!USQ2`3+KOM;b@1Agr zBUtBv6#9{zd~I#bCz~qbjrf21qQs&ieIp}G0)h~+Z)Y1W3Q($_K7INb9E>O)1i2GL z`46DTKRrD~vI6x?94{{~)F8wB#6-1zBgklTRR)(w3%ISCTBa%I(~9Sia-p#PubymvKqnO$&MR`>?#Y?EB+otcne2{o z!U?hM>_=61AHNr!c)x&8zKm(=1aEQ06|IFxS{4M(LU8gY0a(Y!V9P#MSN(L~9E0#r zzK<8iBRym2s|oEL{jmG?eqw%^o?c^(iYBw*=paK(ZyF!=YWAFD_6iegD-)_G1T)!{ zZ(PK|e^sr63@>$&P8`~9MElFK+`otbe_UemeyJcbWID8PVv8e75dt$oO@vb<+skH5 zA;eWG2%N!VrF2d}fMIWga`Z<{AGrRZdeux*Z&G_$Bha^JlM1 z6NJ@S1+ z*3fLGv3DofzY?OO@BP&<+jNJ8>R(&O>)HZuBF;pVD1Kd+T$?SSB&o>N2hirOZ|gBkB@#3On z*z`}w8`NKMvytE$-Q+q8^6J&_)J3Kw>{&Vp~ZG3!>3;`BS^cE0eU zCr2@fvb`p=^_#|$(gsHt>v9y;NwH@H*9?4tO2v)lL+uNR!xXZ; zW}G#LoXN-=^l07Y?3i|6x}&!eBIM~0`$UF5p^7V~Qq_`F&kgvOH!65>0j zzwYcCh*>O~Ik7)Rl{rpDg=CD?b6%aDseZ1SW4*Q`HKX+-zf!kld%(hh0F}Gc_qnUu zls!5b?dQ&g4O8NnDb}SbT$+-fY)6h(NB_w8@85D4C>{Wg`Ll-Th{+{v}TVpyc zG-&sDnD!YNRVCipfEZ(YJL7CP)aP3Y9opyo@$sHU90CLER~!ME6zH>f>McjODdj zP`PSRCBJ7l6MT1r?oXP}<+z@G9mG@Pu+5i3ODo?!e8QIu!keR-%3nR`5`I`4aF zUe<53r&TUtNm2|mWa**6&XN2*tDl!yfXJ#EB17G?UG>69AVVz{`#Q{^j6NuExDcD+ z-hlwFHG8XD_~6ufdTpa*L&<>Q$?iE@XJk6YW{%i_YvNYW_F$#IEN$WEq|5qPnMZoo z*fr^(up(1lhW<&{i821ZKl>A6D%UHOpHW`R=Mr;T&*~vKi!ijJS>lYZSZmzVG@5A| z?v$6@Kyo|Hg(?v{K0yDu(g=%ks7mOeqD;me3_`w5Clma2k>tg9V@xhHUs}{JUpeC;T66qJ=R3nT7ZbLzW6h`r|^I5)w zCuX9J$Yj~>{e0*H&0pUkk-yU3Vc+6sxC*0UZP)HlHuKcVG)E*Wc@?fZ&kS%W1A`sM z+&?Zdze`m=dI0zz2RNhw=rg%g@pe#Gs!&G`qk60aDya?yLZa>cB{2!Hg5%G3Smuum zIxay{)7X2woLH=hGM-Lvjo$oW8#%?5MZHXcnK1ia+tQyjh$`YT=NHcC*!>GfP zI*0aJjV=;9Hgf~h`T#T2sZwuDD3~w_lIQjdsc<9cMBS{3iTe@+ZJ?p3k-nr^j-B(T z5-f`$w<6OG%q|+Uf(BTZ`)XHM%;#s#q0m2DB)U;t;=;LrT>b4>YxW?a>aMxP4U@RqNf7zlni8*?EAlb$dpPQ<2~_)gFScT#osgL-`QA7wq{vn-IQBQ z*@wU^m$|~UsQ-L(PGvXLBUEWO%AeZLWP9(R0leGS(UqQ}3ulWin#F(1dEI)}t8#<#9Ye1Y`CwGT zeLP9LJ6l71F@zQoAw>pfM3L%<0Z-kKEx+2j;}?yt4NN$hV}A-Kg~OR(y_ZK}zH;l7 zpe(A@t?a&)i8zWZP2~~}g7C-Z8{KR*hYzGV-m^98vUxkU%ybE}m+#KQ4P|q;Y(LN? zz`4CFjffU+C2U%-qMYTbB;pQ}wG?hyRJc5nv#K^2;IX!#PPd??wE1WVsI^fLa}EA0 z5>7V1Y-0_li_fdXY3t&F#v#jfsy% zQ|5n{*U?c^>rQLEpfBgr^-Y{}#l-ZC|1y`&-Hx*IB|5`D3?8MzKgpg!UoSBzxBZ1v z>uv)6V{Un|g&Q?@qtJ>|mZ#V42B`!O%F30u&P1lA+`^GKKq_OvQgj50kalEM>1Bf# zyy+c@JeV<8$H?_AEx+bB|K1HfM%L7c2)S;e3h|AEZkj^Nbc*$2Fz+8`*xYfELM&K` z(JO2`lp50Z(xqq=rI01SmbDBCl8NV!2bNY9zaOisW3b3^H^JEsh#i4{dd}wVzMVQf zFy?H9^~6Vl&HLPZ7MG!hXd@g8SqYEJ&gvz-RAqES_j#&Un|>`!;<%8r8Eb8`&=Ebl z3(fA~ZEb-c=N_wnQ)kCEDY-Il$`G}9EK6deGvBSK&HGQG-Tia=oA@d&ALHW06`-xB z&5SYDWSXh8=BKW6401Uv0}mb#=2>3#()k9Ab}g$^+`|2p^+~t-<t{zSB_rf*Re8~J= zjquLtZl?pMPCD=9Xpi(QUtns^N4?S6qTSB}(6_!RN{u#NZdhM)<`O;BuMP?*U$eJ4 zkhXwouaXym4K6L#fIA0cBDzQM7QRTpPgZJBf<#s9p0Ul0Xvi=wvF2S}Pnw?FAy-{r z+K#;#KhMT!HOn)vRw-{pN^JbK!{e?xSkCyf2tt$A!#g2SA4>+6;}2D*DzkjB=ObNX zB)K*<=xkAtChPC0cbKyj8d!|+M8r6`AwpBPoRFXj-&w_C{E)!B!YUj`t$GW_G?KbU zG4pv!gjfzb(Wan%6v9niIo#*BaMq6l!zn^rUJ^tVEIt&i%CA0 zi}~0`yy4a}s7_hrb8-YOQ=aa!XqL$M<4Kdp;S9HtKX zRyFJVA?>PfVh+bGV)9UE`&e54ctqq7TX?L74N)r|K=ebj}ZI@Vmx5tI{wS>eh z%mjQ#@Ji8h_-oR4Vvt3MwyQ=I$lsO_;rxYDr{=F--@WDw|@AN zhG57}AUUEcJ=oFv6_#PTA)51`);^*x75R4iD4Z)P{@eN0Y2B<{eBczJ?%hh@50H8< zEwTQ1=XKggT=#Jmyyk5{F+=|-1mE8)`hnn>aTj;2k8dG;Ea*&Og#2K&aW8y z6pq=xsOk}O>+yS3jb!m$^I~oJFyTV+jbX0-y=wUcr{2;zb+QuVhVJbD1F1DeJlG&j z%&d4Nub>yCtZ$SZX+cesq{SV712^_ccvA=Va|%-j>DD7Pem+*xU~o{1YnNo? z6JzLdIF?9_am*fRK|a2Fy?Qj}Rue4X?YQ<&>fWyK(M@<9d9=uN z&P**VXVId@5cBBUXy%hcZ@Y~mHTQz+X~S})DA zM(pDp0%%K>xU?4uB`gU{L9h9!ouCdsT_|e_q1nT7Dm~*7jlFxnHsC<;{@weWOItW= zI4bH^^(g`>g;eYFQ*kC|?`m8;UV2{M7Y`4UXs5Habvn_s25LDYKG>81#tIcgit2&u z20L1=sIGs0pFSGlR2XY9hhCF!!y z-DjuLk1TC-PvT@U-TBx@H6-0RcEn|ZNB2iY0yIm17SHe_j#ote0#V0JSrZ3Ac4;OMqfA+CsZE$?WO2BJZT<<($9LAQWdTaG}!3hBdb<*CqAu{$7sscLW9o=0~k5ws0VdjXf2>m*_+h znkG1h5NdDoKbDxug1JS5MspnC7Hr(`j%vBZoZ61FRH!gI)uH5D{2Hx25&Ga?;AlGO zwFU;FXV=$`_ITh;jy{D5iPTpb_l<}agSvTc;cdgt3;V>?#*};A zAywsGW5gR3M0x0`Ca6?Sn-2h_6w4WBG#W`&H~`>s!%^LWwS&WNK|lBs^~QgK@<^nA zWN3?6283xk%ZZmojS>r!{;os2EG}`s0}f<8m>~QU2rRb|VttY+qbmxxs)*Z?;0`&!0b#*+?)3*_Ut!Cnuw| zt^h^sI&`5$^~e1#zrnS7CMuf)la_5A{=FOM6BN&2gP>7Hs~eMP5;-F|A$Yg9%+79| zq)i-%n`KHm_N50KySoAC1_je_tGnYl(9S2VH(%&R`}=jCAMgJ3^sMdg4*>GQEx`GI zRA@u%^@iyH7&UI$Nk@kiOm4{qj0{vuVib*fu`yL?kKOT58RNNu5BGd5S)ah8kaw_>(hi*l(l5K6rF=Q26BTU{z^rAzj>1 z*f4%d!44X&SU<(*O>P)?N5%5$BUB1N~MW_9-z@= z|HH!i zq|Iilw0PH6yjod3E~!3yL6v7Y*(S!WZwO$b}e7k?NW}F0>a{^K1p!-HMFwdcNIn>o7Dowa|G|`3_k8$lV{i+^nLG3 z)p|5McU_8t%WQ6bz_#M0p+N?-k(8ruZANWIys{rf!K0s|1NGNaRO|P56E~t9@hJ&t5w)O_OLJAN-TbTAQj5 ztqJU$K30)E^O{BcuHOE^-DW9^VuI0I!M?_d^yz^r@PFC%7qG2bX*mqNoV`73Qc_ZG zZtgGIg=QxPnPgTQ?eD;MK@}emr1UwbQ=7f3%V_l^KeOR9B<`h79crXO54LAp@SD zn3OSK#<}A4GVBA3fX8Yal_QJ;pxvHT=$l8B)@2whfYeG8LhWn}F6CN!^Dx|4{moN$ zWwuaPgJ(q*D_5NL;*PD~CdplLqjAxlrk~D`=uiA2_G2c;)D4S zm^78B)xYruGt78@|5sp6=)4wydkbb+r)SZQu;50wu;7|_(QcmKj4WHbQa)!ZxU!;b3goC&U)3(RIJoISno@n{YHKZKw8xszdMA@RS49*_{5!=9P5%PYqAMvoC`(WJE;mv-RSatq=a_*+`-{fv*pAjya_;IE_9gzmdxzB7bo^i~d(B|n@#`@_9s^-15O3f_GsE}m3TZ{>|dqO?-&&Ep(-m%hFUz2bfA| zB(cdRBDkY;=lNA9Y{5joIQq2OQL|b3m(z@1S#$&@xSe*-vR|6wdBewnwwqVLiQ#Bj zt24!mXjNMw&tf?kodW{`BME&Er*P`>4@aNF2(i^(COhqOrYcbP$(u0UouUeUSzd^d zES2G%X(q;Kqu0m9V$qZ0t@o();mNbytUr3aiH*ImJB(nd z!Ld6t2rYK}XWSxR%c{D2{dV#g-i!Yg{@JOX!0s8fz2`_(TUGNI6{zj=?P>(}xB?#A zSU?Vz#qeT}#8<L~n^sZ9E)TonDuiw$`3@17&HIJOZ>0!Cs-f8ETWew+G(43|mD+lj`egRCZ zA~p^U?(UubdUf^_$y)fn*!!jl_?RvbLYuK7flB1oP#>A1mi^4U+|}QuIV##{(~D4d z?`ls~%+qL(=EryQy1ll50?Yr7_9A{$jp=@zY{K5=0~jSPZ@~4b5XwmXf%dO5F<#Wa={vA+9r4d;9 zoM7yAY(XMfE+%M;rfV}1CD0GNvj{C5hno)$ty~n9=y2@~QF z1y-P6T3~vMxR7wyHU^}g2&?wuG^L5ALLwZV7>lh>TLQ&B=VTHhmCmLHHd6azdVSY> zb*o`cEBlDaxVVx6ka4r8RPR460n*sxP5Vpj6g`Ce`PtN2O{zJO9ZeMywjS$QQs-3- zm;lhT=qQC)-Rq=1H<7lBq1(G4DyLuwok1rc)`zBiHe15?uKz3JpuC_BY=sJR10ei( z-mW14YGz0_6_mffe^hF!d9em$+E|#nxOzRhx-8H^_G%=(f;Cd}o*QdR(S!=b9K5#% zhTWkWce>8V^I~_}%*C_%2yYCjWsl%m$L%=0=kB($iRaFZO03*Ra zFmT=!7wnN~)9&)=ERL}aLuS{u6|Fez28Xf>6^M?cblr(OS!9FhM*|*2A8e+JQn?dG zA3`I?p8eu@Zw`nZGX^Rgq=ZSShYjIYC*%Z%A><;!U13U+hOkTlSL_^6WoQ3$kyj1Q z-BDILlj^640d`D`7EsAsoU>xq^o9AYY@PYyuwXdtTmDKw$|n%J7H>w3&tfTyN-vke%R6*}E`?B1S+VG%9j*Hba()G48x*H_^tS42Hr`O5zhaG z^V_6)95qzFbdv5=LxQGjA#*cis$53j#L(HxZWQ&F1ISmbHT2A-U!RHYHNO+JT!mD$j>J~ z-|!GPM`u&n7wyR9yFRD(Q)`dZy)v}o5d}HuMT4;Wr8M+EIlR7HG&0b~m@Pzj1Dm7% z3${1lDABm^+3$V@RL4Ogr$zayLqKQU-pTMP8-ln>Fp~Vib&Iv-Dq+Qe(d@NXe2$M_ zn|~AEJ0fBz!SoT{C7$Fyw@HJo=J|(}xOh_LrvBx)_&YzH1 zS04gIJvqP|F|S1iDI!~U|H`+ozGI+XXW^z|2iLwY0pl&_JG|Z9-7f&M+o<&kcP^9j zz&VoIPAEM);&R)zeZ`-ne8|a_o68!C1uc`KO&RN$@E11&$ep&w|Hhik0Dc|H;S42Xr?78f^3o zM^a7x6Isx)jZVG69AqNv^d^>Sug@6wfo*$5PW7069pi8pQOai841bW6{dtnrRQp+xZ*1)wrhNPLKQJ+2C@U+2e!GmSX~>WTFh~JA zGH3kP63m^c-T#io(K&-WDPs&%1 z;DUlB2W{*N-q@U(t)yJNlXPog04J!kvlGO8z;;(Zzh4)IM19#Rbuy-9etLautc#7_AFduv@$xHHI%m)N zVHDLl-PlT;4*OVX+zwrHb4f4HH|>gbS}7iI=Ija2e(^CeU4RrU^>BS;@t=d*<;cpt zdx-@`KRCRoHV1U2dT$cE>WluWlA_O@(IsS)3mgnb(6Y8b%;Rq;AdQQ$n2nA4C%VSEj8KRY-9xbO2 z)6m|-G(Ppu)!6mimF(UW$ZQxJAJ>Rg${EYic`p!VHh7=ldg>h6blc1moviU!xmb4W zE=Mu!#Rb7E^0yAVmPm+ePDx{~U@=Q(MK1su!@!(oDC zHZw8s`tD@EZ4iN#mDPN`Rivg?t+M07rDjLM0w9@z6LP%>N>)U9mk^lJK0$k}AD1u# zIUeT_1h`=Ug)A$$EyDHr#nB6Pe@=5d8!&Yznw_jDB zQ#z5+r;pez3Gol5z0aWzK4;i4BeK65X{m z9UPbxv2X(UA3r4A-Fc-F=(hlGP*5I=+wt%(O?gXKgUv?6!*TP`+x%K{B`8hL_3V@s zLI`tqVq!w+KXyNqlmAM%)LFCvcd5*tImbch_y{GAqjLXR49(i!ANwuQW@m1vjB}wE z?DKN$9|pAzE^F@4JGWS9BB_7uEceq?fi)=IOWHFG@K&mT9jFIr)sLX^Kp|iahV;T1 zWMYhV+tTs0DqVn#_o}0~yluc68a7eDiyu(#4FSFW_U?}BqhX4HD>(QqfQqV2`vNd3 zXMm@e*AhbF^%pz`;zW4Q@Vp+0AGcw@WrnP7vPuQejXbo(gOqj3WVu2As_(pjcuiq= zev$VB=a6eSnuV+7YzCVDaR`oeg8b=vxhrUFOyzI@khRVJSioBK1vJVE-5#X3 zZ{J!z!kmI8pS~K(9RP0sX^m_)iY8ErmtGz42Zn29bJZoLCo39vA!j`~k1hT{O~e+> z67}bhIX3-5c=X8@CK+_69{?;lH2ZcmjP9%^^xOdSN4qN@@hH=l%5ZDBMCGk*nyP95 z83l{S#Kz&DMlBRAWW^N4nU8i9GbJkBlo{^6fOZTG4Ly{~h1sep2Ux>+oTn>lZy+Lw z63teEQYCOSG>n&9xIh^KAzqi1(AKEZWw@Werj$)>7+LYYqSkT)ePr$A_|It_MwqEqD5DAaw=zJtwFR`}_mXw-J}f7v z*^(e!Xvf%#Tl^t5My2D>B0sV92n%o-q&0}Ty{7++RqMRZ;hD@fvxg!W9(IDOq&r$_ zP5=snbHKdcI66AowI2As2V)KR_)smtvs%u23FF@U1)!uafOKIA!UF;91Q84bq7rWJ zR)DQrlweiWg>{|S9l;%AaKnzE_r1!<<~gN&_U!iYnMuv&M!vS)p5woA$u{DPC*ke} z!5k9Bv4g&;*l^Z0{X)78cQ*FoVcl9O=kw2u z4aFR%tHY2qRbp6Yd)nEvy(DhvXjll(!;DT<%z35eX0264aeruJzSbK=4H%V zSD94KXdnm388=R3F_JBGFflP%bX>4#XlnWguB=q1ZZee$1QD6QV@iHh`T{|bhLbr+ zF|VM);X60fm})(tuzUWoZ>O+VoNzQqx*kp;+Z(NCQkZ*`;*y|Rh{b-D3key1Y0OE2O!wu1ahd{{QPS3 zIcBi^Vn722kZmB<%AWiIa8Mk2b;Qp*BWZJucEDrKUkg0nl7SppGQ5EU!67-_bdCiA z!c}za`x8TB9A7=ZLvu3{ZvPY!F=D8mW)GSE@>zVCjg9IAwO6IK)?0+wD(9=wr6}qUrFJI_glP^^ z;6Q45MFqNFCzN+W0xm^tf7ux*vkFv3n#I5I+GF2ataQysk{V(+oiu%Aux3nrfKha7 zS9X)f3W$&9uL-+c3tu2$ax#KpsZam#Y);HlmkMKFGB7`qsAe`%FNyAY6h84KFAwyZ ziBVAZ?-0B7(>`%4FK#oy2j|$ZnNdgoU#gj9G5FH-KZOTiQkRbege_+f?;O^l8 zDD+~DddSGgpJ*R%C{}?m017f75Yy{F4=rcVa4dDe);Ko)-@(Y_T=kwqY<6Z!w92n$ z+KG+?Mst3yNW|u9F}+wvtuOG4qgt3uJyde2Z7nWIu05-f;V3ZH8i@(ogX=9bR_yhD&sg}OI;lB-j*eZCP~Et#O)z{M1wVC~pW?n-;cQiGm~1{7 zD82y2IyKd@geKPMXkHZLOdulD0SX~NH@^$<^br*m{rK@?R7{MJP30EvAP{VVBrj@c zxb2`}VO~wikGU6ACVHe|@C3k81(Q zXKn6WfY2^j&fsC(-tvEIH0d6@<%GCUwSRpzZ}c`MA}fwpty@#G)RTia&-*Y+b0~l&?^zaRPB@}L*L~{P`aIg#b4JAD_>qeXANXEs zS~+crq9QpD4gm8mfItgKD|^h@Cko`rn(X(wz?cWXE{hH`8oW1) zc38N$7nc)qIa8)Kc6NF|j$jWoLi%l>k-mV4?c~R>v9MOx*M)$TL27wr%i*i&TnW_S zO1pqsop~0}8r3CNsRPlAzM)|Z*iX=%mXGzKu5yz+Z9xs=6}u|G!oKZpN7Shc@@j|t{vGBAcE+hDWHmww z;~h`z@DSbEW90#>jnT!ec0UupnvE~0^cu^B>5|2rwVb3u-V&7`qe4nvrz!so&a?KA zFq3JyD^0^WM2_)Qagd*0#p&!|iOX(#?0;L80wo-fuY3V%9go+UQOn~Bo6q&~Jqyc4 z$P>_V`DwPgYE-J{jAv4PDO`~n9HE}#!B!zi?vJ$#r4b^7V!#ppzd z3JXZeU--&qZqGJ=Xi*0o9ngWpMh7S-=1q& zf)$Bae{;6xI!uM9p#Z%4+cKUSFD$^_hhIpW(If&h@dH)Y17R>a7-oZlADYwU{3B3=XNrd6K(aj;egST9cMzHp2xtC* zN=t=M>@)yh`_w%CyHgti6oR9vxIp*;0x7)78vne2khNw}v8l*;OKF~j6tvyl5t+3X z?xCe)cGpOlI95u(!7Xw+cS!zD+3$xPZCW_xNEI05`0}OUkJI}`AANXz-ZC&X5u(f0 z<;qo!e@QXebWX3-I*(V4k2KJ}3(*R>gYhvZ7Z(OPddE-_%lN?+5NC(^z`hKx0lcyo zNXN!aYwh>`1%L!{0W@p2+e7%oKr9UfUg-mnndY-w4F*63njMdHms?zFtX9&2xcMz6 zCPbeGly@J1Vg@MNq6A(ZV}Xox-ZTN&=Fe~^8D5}_A5M<;xLuSD(sr1CV7(gs+cTu* z>vtT`fUxp2av&5|Ejq?R|GMtmV-ugxuM!vt?gc^Dtv22tAAAi}JGkfKUVICJ*cNEr z8SduH+3kQ}S~iul69i4Ec&+7SxK$wXTLV9ZF`Ntr)pk&!p`mvhkpe&JEr~!IpbIPn z`49oBkghzLltjR6FRY^m%kyuLwkL5mr?Gd1XXWOsLeH!7qkDm~8*Xw_1QRNTE660& z?R+a32av})^_A{+J|pEk*T-pQlp5S`JD(S=9R-2b4T4oPp0qs_9o1*B^T0H?-`RQs zF|ooRMBfU==TMO5Ka&5xpwy8PQVFM~s%MSrH*69AI7Rtr=||3>c1**&i(EkA^tO;1 zJ}sU{)!#-ulrbV#{|t2U+eh5P{Wa>#YVKIAVuLnEua67VJP1B>{I?F)Q1;s{(gnE? zP&l?h&Su#AYQdaz3#xRJ$pQ@RMn!dpQeV)92b)p?l34|o<;y!1&8QZHwi6RB;9w4tiM6{wK%LRIYAZEq9&brPts@a|ndP&+|gbnFr+w3$k^`Tj`j( zaaR2WR|{(vgg9O0=}$G6B1xvDY*;8NDr$-|cVa*%loyY_UG9A_ zQ$89kAEx&aRDD+GjZfb0-+1xf{o4!CYU4T6o>Ilt;$5>Taot8)8J|4(4|wJsN*Rn zE#Zk&hvRNwl@#M1AKlf})dyN|tyK=Fn;u<3ymEHtR4qL^#?q@6_yj&w!U!a?!-aaZ z%uQ4tF0SZ=1f$|5NPK2XiKV$rM;s39>@s?nR+)t`>QGCY!i5PipqOl^#c z8P!v3L4C6Upij~9ys7xsvh2ZPOb}}j(1`Uxz9L_7;Nju9IBq_Hh*XGOHZjzWAQnK! zHDMideaDK2D5d51WT$iB_1qdOk+VQVq*JRsW@bW|$!w$T7V&!v_|dna6}#k(LN4jY zhxa6OTwR%JLcz4Q_PL6EhRV=xZf>#B(a@iN{J?X&Io<*%ZF6&xlfw>jo0byCK41#Y zcrSPQ)A#V>?UiOC-&^Ll?}#*N|NRfz8$aX9F z0gj^|`_ERT3N)nHf@DIdbkBPeP~Qnb;0XcGmQqJ>BSOK&g)@V;(Gm$ebWU%%nr8no z8(w^8RP0tW$?S4H(`x@{jZN}sm-x-dYUBXV z{2Kd|(5glL-1YJH3}_M)Qd8f7l3n+|!1}uCCH>d|-Js|P|G z<)}D(jMJ)1*IlY)ohFtuqEp53YDT{PLkN*@%sBJvhcP2meA}A`FF%VHgrFC(y$9%mb1O#`doZU>c?Eht#{Yx0w}8s3 z?b>z;1qCIPP7wtJDd|QKP-!XYEzZ+%$FxQ2NE98bdA5n&4AVa|qz(<5*g?#qZ#2fXY7-H{ zsJM*A#>Ewd993}~ruW?cI6$J@T)jWp!CX3S5OjdNmZCcHxx1OM_uJ8jZ5J(_l1RDr z5WRE3J{Y!j@EcT(tR*klu@)6Kyt1&l&^hT5FLasoxSHop?LHm;Y}#$w8{U;;4`!{( zY{_iZ{@ldF#l;05c?WPkkcSCjqyWSKPGFguKZLN#vLh;lW{SFccO{gAlc#fqmQD+< zTOMDNX|}M|_2o04$&c1Q-gTxY66}kcd43ag_z%0)Vn0u_txajxlY6c$K71UVF8(F3 zD<2I5m;(rdW_4BO{(V%FlF{h%wnbVoeEQp01F1E{E8Nft43jg$cFtb-Drr(uPF#Jj zUIwOScWiRq)#fBcx?cyC;hILXG0d4uXHBk>r`F^G1B6&XIo6a=^C<-1eYyRj9q?Fe z;C9(e*Fk}CQyeG{a*%I6$4`fQM`OvHib}pxE%|#**E@*y1C<~3QG-t=%|;@Wo@ksa zmX@i~is!QAI$b}3==NgzAOjdKrWb$ycs3#Sv0qmejK=r?pJ@%Fb%8o^-|}50tFfgeE7ISvP4gY6q|_*f3LiMpl|XU`nzX~^%oGLIN(xCu0=Z;C_0jWS<{uUTr|$wO^ye z3!ls6dIM^O>xR%CIV&gR7r{(QxmaD2PD{XTFc2h)tSnpK0lxdg#CO%Ohu1ECy!rHq z<~Wl!Q455Ne!=Hb1hD|7!y)fJ&$@|$I-yJ5O?5p^b<{s;=)3y*-aJMuCU6Igl?cpS zi3N)$?6CO=Iwl^}m|qq6=>6HPQvY0N0UL__9{7nG52Em1ViOo4qOukbn}yW$^y|a- z&qX3)Pw8{H-s)aG5xGF`^l%*GYz?hr(l1R*N{XIQ^q=pL&+)|xZTLBs+IK@iHah23 zrlVK7GzDc+VL0MqfHRP{fQ{r7`|UAd)lHghf=;TCz5OCy;@287Hx2zhc*2iSbvtD_1Y3TvqU(fP`dEWB-DWx-EFJc?V-g6MAYM)}foI=0m z#Lv&Ki1GL5=#$@HDA?VAA7%h z5^d~e(!i6axYrpO^dS3TFe3^G>MmhnrNL1IoA_|w4Dxw%#RTDA`GZEKg>zq)=1j0c zLVjTR;OL#>_rAV~ooC9ZmwGehsfVBp4m%75C6c7l-274BXp!0@@X1x}*giDvNZ0A< zAveK1AAd!HYA_QD)Xc>pZ$5x5k@D|9K>6$nowlY>%Uh!*w*yBnt%&$r3)KB43<+8P zh-m#F2}63dKpnAP=)CiVg_${c%&PJ#^jFC^&Fb2tmD$iqE zz+XL*mp27}{S|WVx3RG#SlHO4>;@0AilE>Ff)1z|de!TpOheYX2npFZNMKa9bdV=Z z|DweG=WKXsZVkV1^;SHmrv-V7uDRA+eolQMc&JZtax)teHrE|96gXe1pLE#U*&&@6 z$c~|Sd(Ws94`~w;-F;dY%WeqF64|(IV^h%QhQ&1#OF_$#un(oPmHaz3h@P9bLBhJv%@{3!|?U)P7>fSZjZEU zkpmc4TLiss(Mwnn@Sap>&o{O-F=Yfq3+vP)_7?3;|)0I@s50`WeF4*02Yf_1G zVXDac@-vT=p3kYX3YZJwiJBskc2>169TP)5XzOt}^pcHfi+zcq>Dt}Hv5S-v_G9$Z zN;&=P6AXL>t5t)47^k-$NJ&M+#XWlb_;Fitwc9>WiLPTxf_zgffKjo4NAT-KrOZWk zCJj#dXmyQd%L6o-!4<8JU)lc$5?pB8tMpdtt)DXHkkoq+%sLi)|mXn^I zvxlrvk7H-Z4xZL}2!T?)9x7MROh83CZQ<|Ud8MRKvsP`Q)t>B;3kwV5gdl=TJe4~w zd{+jR4%y~Jrf0FUUQf5wZ0;+)bL#G!QPD)?{=)A3+1b&qP(Gye0-zodtB#D04pmDC zWxCVGWXM%jX0;Zr&>wtcUQI$Dtetrjl{55r7xWv{a-RvwvN;pM z>&4sZ*Po;{GoA2v^B#XR_v9}CWOm_64y|A@6*SEFO*w5>mObWPa9W65F!Y9ZNA!2k z{?;Y6ctJb)b<0=1{4w%8jkk`C^qVOmcqKm|RZRT5BbT`x4mESWlR1Tj$OG*tDYc^z zlPR(dhe~2o($!su6H$*~@PWfG5hPNhP>0iORqpS#eAj}8_e+eX{mz@iZPd4!@S*6z zw=ZS_Si2JPzlWLP&#XRo^@$~PnNs14WRw)@m!>}Z%1(KekMzxq{`0o+ydD|Wjc+qc zUtbQu(d+a#E=WHr!ksK<55ejA_|J(~rmSGtu?A(ji`|n9rh5asBV%T#F8Es%sbAMpD_Z|{nsm5zRMqC2VzrF>iGZjP5M`p zP%El0gg$@8KcOh&&-wWD`ovkq{Z)QA9%=r54r0oFy4qzMtbwnOsW0-gMwZY|XWnPC zMw|O6z|Viq{D2)?Q8CcxhYh<3jX=j16GuC?HdKB z4V}#{Uf}Zex#AF%lCk}JfBI!&dLt9?;*bypFN$yygGvY8eM)?=az^pp1v#sbkZi4g zu4TkW6_YY0)wzMr@qrMA6>3Pxr+@ubxG9Nwau)?XP3cb=P{4}+abr=av16cq&Gt7o%2s|Y8Ce*7MK8<8krqSIFH{-`^TnwGD0 z3U;X#?OZ9AA$mfHGNOu0N>E`_wXwN%{tk#nM@OAqTvVI|B&sL-i(WxZ@?Qv>jG-?; zPFx!+jVaf5S!vgR%~9gPg9{*80`2J!7H9IZA8roc|I_P&1j*5n8!{3zPC}7%`4AM1 zN9lba+0t3y&r{X3^6AiY`tlsOn>iD@*VKZB75{gy1k&U>-^w3%=Q#;Uow9@niCRtr zvan#YA_qt*qfC?kiH1`^wnb>e6%Ka_+J7J?8C>^#(;$3nkt=krY9TCfSdd4od;XFh zmjN3|ELfE=eCzw(2Qc2`D{%Sed&=?cSfmh*I4DO+_|QPg3(My}eNzA7L;U~vSFi@W zs-bxm2h^$GP^;W-XDVQW?2^iLi3WT!(#?=A2S5QSXMyA2KEgdLu;@UWI$jy+3?%@O zi!(lux~K9EwkS|nN_vE)K_n^7yfIP91I*O&d_G`1!s;lLa6Vrh++pwDi2{tvzZCvO z9n>L1peY1rmw5@F(EpF5q6vqK(~$QaKxr7sV4-Dfne_soXx{+r3UsbyKwHwu#44-{ zLbI8Gh$tFibzb!Xx+#d;Zg;%krv%CyfuP!vXbMNROtRo%;5-ys8U_ak zC#?|;8(x|gh(7?Z8ra#{`D98)W91_w3Y>gh2zn2092CJbuowm;EVS7T*+?LNSGzm>e-PE&UK~~(b+OJy+njk#Z369;+af@U z9e@aC8<2K|Ms3%iu_6mHLr9-zL3uO_OUhpFv)FeOI@(xSFRX0RK&-yFE!Mj^9%p!1 zAW^qfBJ@I-eBC|vwzl;X6O^D$LwaBk4!3r6Kuh^80OH~x`fKs-!?N{NRB08!jLW=1 zPiWVz<*enLlz`)}t`K{&(WtEa3`@v{yskz{bP-L?N^cV-6mJs?y+>g)(8~)0?>m8( zJLPXVf4td`PVka33BvBKZ7U#do#I!HxT~ zzv?roWp;-F`yPz|={Dq& zOX1{KnAVbv-pN<9m+1=C7Vll9G-{Fu`C`hGxZX0xa>bh&#y#v_<0+UMca2Iq`uGgp z5Er`o#=wMy-Y1mU>D*Byc0a`1-r)~2tv46MlKZLnF2MBEd>lKXH!i4s{M(16Hb

zV|;Hd7ukxn8sHDKJ#Dp}KJ9%DP33+@>o-@ARndxZQ|qsYew4oTT6}%st*QOHBL{4n zXP1`IpGv^FxVg0zF6`CM)Lz7=rqasqJ`*sBANe``o#TbuCnSOFrK_@^F*buFubO$0 z_2LaqZM}73?lmho+P4w1jNU$0<`nP{EwLbb{C=KAXrZE-eK!SdGK}zt+Ls;|!mK^M zf=4Oaa4?j5$h_z*-$Bha=*LuWl~CvS*blGPacE=ynt5>{N|4$=ZM7J^f2m%C42?`o zFCDulSn*|=XwFa9kYJUu#7fEgwN9xWC51EgBY$)`*_nD@4wL@zM9FJbb=Jk{ap6*Y zZtub2(VcU-t$f!oTd6w(7ckfN2H#5SleNE@w^{egsFN0X=EBm+=tdrlbNowNb%_gY zia#~aq`<9oN*#3R5 zz?&N06gd?7$JQSa(A$sHR}9|4b+y75IKM3^#dv}BCpXb95?P>4ZpE%aP z(F$CCu{W_<_oO^007zY8San#iCI$_4Dt7}J8NZb;QG6T;W+;EeKzf-0HWd!k+dm16 z=+bz|L2h>3zNR7}ogX2>qA$z5xO_Nte>cy!k2c(R3}+zIx|S)QKq<;F++NdqMJaSv zaeJoawCn?Q<8jAC?E1-o-AegNteP<5+;wdjJ?HTavM=^y_I7{3o$eA>3}PqYuw_qf z8Fi+Lx!F---_~Pl%atsV9-q%2O3HjFS2IWE)5?A!#VV@@PKk0+}Pd2Tp4b~ZcMCH?39#o zpKKgo55wwVNKH#P%xk->>-#Dw9SA6$-W2MU8=6xM4&sFVi z(m%6-TgJcRG1x-EoMtYvRxPJITPm8WT!FiF7Q`jA^E1WADEl*j|=~0nd zB)aO$Cf6{GP0ZG6OaC-fQ)`>w<(p-jKbQ+Yv@$vF8UIW+bXax6bnVfzsc3eIlce?k zGcdSCRhovyfHi*VpK*U@^k<RVb``rg0)mQTxTNZnLhUZH>Hi4@LiXS&CGTV5B_;!L62iz9UUDo5=7p$0Oc*T^r{Rj|IKZ` z-tnwQ*emmDUo5szU!`l>vm^!ZjDC@WW9}1ia-W7yjs|@%ndqWlHdm@ylBnsSdLO9* zi%TB-cZbC+QLC4?JPp43DpLmq-VZPU7>GaEMlh8CSeg+nX zIg7h0b4Q1U=d#_^B?7|gS9Vm4axu)62PLXyr->~cUN~dw;DI=C7ht|;<;U25<7qW|{ zNf^F5z9n)&CGcOJpqvOIwdz-^+sohIfSz4FG$8^;Gwzk8r4Sbb`-4XmT=qKyw*Mo3l;vr(PE&_rC2DW(kV(w`& z!3qrIONa{|Y6GU8ecPWPxKHDN%#)yNXL-c6Dx9F@?UeiT3#El^p9PqjelDjq4yb$1 ze3>8Zdepdl%fIR*>!3m)CU@U%@aM`ezo3Y(MqkM@)Rc|KKcCd^)bySZK0QYJ!>pVB z-DUsdFI-hpp6A^K_K9=j?66}N$o@f5^{T8C@WsS60WdW(@BpESBeHt4-WyV{7w`hp zQU@59ScW*~DM(<+-f|PmtnlDI)194d3L@n#)NHHD&VKS#ORmq1Gt3mIe`YtCYTvC@ z?>zpdL0cx&Zo*AikA}kq%&hRew={M1&EVW-i)KE$^^w2h(i@(>-ZF>4}K0oh=Y# zC8(1qXd0FcZT>VLx|0MZmY*vNexV81!M5kjXYr=%Rar^7-(khiU&`si20YQx`vB8Y zERG1^Ekz|+T?&8@qy2lCXA-jSLQ69U%8)?QMYLmsX&2uXDiB;WttNsm)_f1%DK2AH z^vc1aKNdb0v55yVOsTPC-o;tpVwy5@VJX{8)RmFcp?PgMYrB8-R%L2zu8%?SRxkj^ z?%a!O7LvkjYRzB6TZoV1`pXCP}jNow^?22k}kq19?-_9=OV(W)9qI zpvgImSXD*vt%SUx@!ToCH-lihLp0x zO3|kkktSx=s99f6u^cx_$}s4Nyn&0tvK1nbs0VK7L@Mn!CHe5s_BvI4<79>^xKfNO zOVaPvX~1gCp?>jJQjg)up3uRoK^o@F0Dx^hDZv7Fv}jFV=b<3&;`Y5!PyUk5lS)4G z%loz&(J4$|#0}VTqHXU9X7Gf&l-L*9S0nWlfWP*Ym(7N&f*e;oQ|B3ST%Q8mC0Guk zuwqkc(Pcv8+UGeHYRa~@?A@+HVUrj)tFMxXYxSk5E)P`hs11Q6_qf{V;#G~w$In8- z2I4N>GM)oU&D3H^xx^e%9Iq=~Lb_>j!ANF_jySWf+D&)uthJ5D)hJFNj>saPR{fP0 z75GV!&zc*oI7+=qqw=<^7~cbM2;-%N7xxlMD?GbzFMdq{w2II&x|!+!NKj0Mg}uZg zGg>b!22E>ui)o;K(B68PkJ35+c}`K`H0u)ZKg7RE751uRh}V`Jl)`FROf*NTZhD31#mj-I=f>;>M7@4RJ9fak;= zQ&!^g?c<`YAlGXUjU@Ik9eKXi2o}@!7sZu0pXf^c&WsgFTM;sVg;)6>)bOBLC0Sfp~<^M&sO7JJC3%xe|A zcCE+wbK6Wz40{FZ`e`_wv|xSQ5%=uy0$0?#j?kPkA*`WK>GBV{wNfnemnr z&-8{>s-gB-xN&y29bL{l^h^%Ecad%01L_nq?YHgg>nCrad=88z%`ENZ zZ;w$0v3>Tu_@|g{SvRiY^0h{@S)RJ?<=!>p-b!BnTQq)!NNxMmeF6!Zk&ZY$R#R6V z97grzWTn>n4|j1AyNz@WFe+zZ3sU-4GoZdIkks@!*cRo28~;FdG|!sFQD0F$^)A|k zb-a&4@H*yX7>EV;PB8LX`2Y2@@eV4A~GYg$PAGbMzU)Ih-Tf{2wr_^)LQu5Lp-_72yIX^w6vpl2H2o8&86AMT{GOhq7 z05PU;T(P8T=;aPW0a8Q>D|-Yb@CILQ-4&Saj(|7N0LIsGQ@$9sk%2gtzEcNlyoZaf zr_SZ7wcAPg+4E*kPpCeuzWzpu*EiIM4*{X}L)54D`!Ne$JDIA}R&#P8EBG9;`Qe2h zeW=5mw8D|j$!}M_CJXjNkJy76>c;IHuX2Iwag`kSAcvGFBi2qoSyr7&k*ueRm1$Dz z)QpR@WUu+oTaEdn*(nX2Y1>~n*e;fqEokxBcT)-#yzE~4?=-;76ms56D+F=VMqe9d zu5|pA@mMa97usQzbyto*%;wyD(x)<@<2PAOzwBsvjZUJam`+#WLxHo~Mfd=DkSrb2 z2w0XTZ|9D6!G)~u1i+$}{?V6P6y*{h!(Uj*X;cj3rpo^mtr*;A9rW#0WmlnF{6T$` z`e-sZt3@+bK=?MFQ*YH4U+Lc*!4T48J;I3dq(2_`=K)x~*9oWFVnbdqFmeMd1zc|O z1~cmyiUVct^1o|HL%+jo&IR0z#XU{2rLkKF@lASBb5#@0v1cSdCIGgFmG7Fqjd;G+{Ymr?9f6(?XFUefj8gc|nz)_u^^>ahgyRQ@6(t?79^v|cX z>zO=P4V7g0P3#F%veKN2wD7M0^HrtN8srmbJQMhJAZq3SM}?2CZ^2U@7Fr;?*}f_E#F<(;Op{ne+2e-qwc*6z{t2U-r`@W@oHA{sek$!!pM4B9O>T$vR!w1l6nQ)?6FO6;M_IGz>*T(Tr%liM*7@WPqtUma9gHc1&V= zCYKgu(Ykqo`dci_z}tzCI10aWms{JdzkM?Y`-K}SWBi23sFN-f)|;%dX}w@X5{-~h z5@KZq?eJdUF16<|JM!x)8Rs;3u|6P0&TbX3W9rY;z9xst4+^X;?S&{E#XS{DyGic; zps!&%RYSF4SIxNRB!#B=^WIa>*}E(9iA^mkJ(OMIB%|Cu{HRvL)de}hN*cl9#3k3d zl68B(TeI*L%>HiyI(A@CkonkGW)73iRG1tBgRIz1yPb5OezL@cXcTg+M74eAFuF40kcWzQWZ{(p%mVZ#I-lM!qLr5wM`AxNu-0qK7h2E z$yc)sx9@6Z?agpzNuW8* z4s%IR{z14M%tgqTot+*PkQDT3o$N^Y)+;Qy`2AB9JMV|HT8)*OGq@+b3b$bi)&2U7 z!_*D!4e3Q0b=O2zwPv=ZXuMxUV>cGps2)rl@aY_8GRTel<=;=idd|vMaQxp7xl%Wi zz=o_nKBB1Nb6CQI5peo2fCqpc_Y9k_yuzi%se{FF-^z*w{LIME8_SVG?_{Bj(il9R zic7j`I+P;;%msS}?Y)|26tj=?i{hr7k`~h4`KgXw=o1Y3%hy>2wA|TC%ZO3Bq6?mr z!0qSlenE|T42|$yvdqC}r0`+yt~WoMoSal!9UdMooqJggBd!uLshp7o4-<{ROF+xW z*uHKHtj||L5z%g74bPS31%&H%?Jm8#E1Um|mY(AE1NC@+m)|zS{8!A#-pXkfogKxG z$%>Aiif|TL(73Srah48%T{s}ycH-hRD7%+_d|BZ-Q>zA<3*#LWRv5pd_G|GfIk&RQ z75Ju12CV0401jTL@9|7t_)x=LyTRXeIuIww=f(q^BEgX?ZlHV3&Kk`pNmkK5+A^0q zIAkt7a5H z8`JaQ;_CyG-OJ5RS&f@R?^U~A+%$uCd&`7ivtC5%peLS$ACqA`J|Z;K z?a1X~XGmJ+#Ya=n>TL|4-t5`fu%w#6*3p4rgLX|&yt618J(dzEtmAXbNjWkTnE?bOJLm{7m>$C zOs6H>(Ga@DRV>^RvF2;?vwA@~%#M|bJ+`vz%2_?>M~mJ2E&u-YN~~Wy6~8=gEk>pM z_eHe37%zT#gn9r=7x7htU_d$=5FYMtDfq&{M25JqL8t1dgv2cgp_1O-T|T7aHxrFt zKRGaHvIW1u_V505nK6y=)HOct}G01DZG79P&S13s2;PeT3^M(fT z1s1=1hX*bSR8i2>Ka`d(Y03vnpA{#W|Ea9_(_>}g8j3z21`)M>`#@)>--?r?dB#BZ z4U{!m+7c|g*icTwIaX`$0CPVS^||k$fC-`l>R!l*DY$W#qs9Jk<9cg7JyE_sACrU$ zZI(q$5M&4hOU{H4>EHFtC#N1Ce0xJ4om2v=;N(R>O-g}beIG?<^f5A8^Z4^T^9`B!D7 zJbFJX^QYDGQtrfRHk1n1O7mWJGr`V$j)Q#GhhYK(r;sIh`8wSuY@6uQGc)xtvC(#b zz>63z(wtDQ3$FWQArFTScc*`QA@$?i73J5VXP5O(!m1tmsBTy+@S1!*iIZ~WuHOwG zVh`UY7g;1!r$=`0@NJ8n)hh1tOLGann8$=b{hqT|Ly9VmUz7jR zRUSKJ*ezBjm^e7nxuI0%<4UB;aT$Av!Sb+I|# zaSObo*C;82|CT-$z)pXAWovtzRLGSRPRa+8lK0@8U<{VMWV^k!z1RF=xhuYkh#vyk}C9_>9@_laA#Rlu4JxB&7WdMOG9$J3D76q`=1iiTPt`JJ6O~ z=E9_4HX1jKdCG(_PUr7t1$_0baPsrI|KSA5;!K|uHPU-kAxgoUrBf^5c}y+6=-Vd8 zQP#C~X%UMsIiWIzX3EOQzEd3&6LbV;#qcn;(WgMzCkG3-wYBvI1H+{xxfUSlSO+cV z6~jY{i1J`$8I1g@+WTPvEGTLiOozq>=N_G0VnAjlJv_KZo745+DadS}y$(%RC{Jig zrYg$5Og{>@rFm1vXFeJe+t#{Kx>>igMj_v2>ktVF#)KeIL^1Fq<3mOU3|-RQQn68~ z*zqv|+bfNRAm{l3)6ms}3u~j- z&Ez(wC3X#)MG6C~oe1xlO5H@TZ3||MYv`Pxd1J&sSq~=D*>fTF&sHRb1Xagkp|F=4 zQ!>k7zINqGTulRv9s36JJlnVCJItY^i-^#WOdZC@J$Udy0cLMPKqlRc%mq7!S$TIg zK7Z;wq?3(T?r;6`1c|n6nK2CMl0vI}-4q$syJsu|Jdz%ylVi)9k2rO2H3daTW=MT{ zT%f>#k>`s}BsOkCF@#wN1F6pB(im>h(ZP&a@GB+?xe=+TT*k#+1hexn#|a_Wd^^DZ z*sitTOm4jizt|wAh9yJUoh;OWz`!E!D2%uC@337Su;++lX3<=EF?UC)y* zoqQeqXe9XfH0~&HCeDrD-<~w%W0ecKe^^A_-9#GO_``r~SAe&?=r&z2kLQ$xR>-{O zHBTq{wruF1Rk*PrhqH~z0hex2eDtTYhn1J z!pzksyMI4~cx1ZKe-+nEO78?D_$=%=a(ce?4YOZT;PEnzkMI5dtSOU84iDgirKiH3 zJ(|~?Gd#szxv(5s?{Lo7gg#^2xEis&qP1>zUi8jPR0|UJf?L7`C=V*QU=)yTY{IC- zO_+B3!@xBM%vabTOo5@F$TR0WAEnm&jCm^WEtOEb)1=Gm)m2Nxi;4h8!Je1HDGZ~h z!q={an17?_t*mbw1le!wTLvtMusXL)E7@%o3}0&P0(xQQeToy?Y$fxmY^#mK5}a^} zvRIs%|h|^Y_lq2LN2bq{S#Oq*WMAfU!Rq^h01$LbSpN zas@{BDx1Fq(5ci_3-t5_uWr(i6JN*E3kuAXX-N)b>l?}mUs!ji`_^BuFL7E13$;)J zyLfJO0{E8pHaqb0QL_1HrvNT4halc;szwMVc7Xvb5TsTdfO654vHk++mgvgvrlySc zpFm4PdFJFlQ(LzhW`@&~nX#d+fEk^;=P`uan$MJdTgh|jc#6!)*6PT}L#Z^8( zNFMVtY3r~V<#N`aWO?Z*k4+>zij*b@;yRD5#qVlo<}OseU?(7v#lh0KWLr|yhA)cZ z>FEi;1;d=>Y-Y&C;Gl$D?7TGPZ>L!xvM^TDU_Nu*%t^NKgH!#u#XT*@KB*HFH4ln` zKmhz7nk}=3B)83+G)WzpD^c|9hAixv)SGdBtyXvd#}&z8;+Qq)*>>ScwE>RF{8xqY z?+_oy0x4j3HBF;zWcr8EJ=@h0c38B2pFX#iSeU!~!bAzVfIDN>sy!dVl~c$pt8eS` zs`I9FAMrxAo#uzQ=E-04UtsLuE1Rd(q7Ygmky-wiLr5=WBqf`XAKM0o|Bepn^ZH#| zx$i>tsGV@#K7kz56iVIqpUj<;r(g7O1~N_D`wn;91*-v;x9plbh!|0hb|=g%kEo+RFR&(HNQv4X*tdv`&BF z_&2A(u2r3T>Ci&$iUD$Cz?M~R{R4-8aQml!%~dnfW&2Gy1O6>h%Y@TI0E+B5U$t^?*!r`PIbD~c`kZKKxpPh+zWCSS`V|Yx z5J_)F z?3^+zOR=AE6M=d;HE-n2WFIPv4CQDd?VZtMr{{Nra6c9v_mTn|M!eL_lWIlhwQATT zp=)Rq4PQ)8xln0d8=n(=e$w-ci-<`PNrXWUF9lUsga-vXk>GYGM^w_}dn6l4V=O01 zet#5J+MBS=N99cZy5W`Dvl@=WLP5pGZikB;(I370l1={jWqscd7xobw{{#zr^9j-f z1i-SIj*CBxcCMJG4eLQFX^Fa;ka)C7+<^QU!i^{m zB64zRGc$;+h++TC+z^;1zRG8+*T%%1z}-3K|HwC?@Nh7>YNP-a7{^bFv0{sNc&`JY zc{(K>cF&U0Q;@Sn$YRyO)*KHE`QH#O8QzOS!ehvyJ|7->LKy(D&leW5LAm($?Tqh# zz*=$*AKx3|CFl>zByi^$O~8)dYsLw*z8Jxw0$u9?aOE|a?682aJ=IKas=&smNH%ld z@x|VA5e}#w}}ATfN^6AbME1=1{_w$XY+wF$g7?gVdo%!^wFQuolit&RbR*${QKcUWF->6c9g;|& ztr8zX^@%^}X@h#61ecBPj1bLNC|laMj+vBtlh69LU7{QH^#DHH z0AVk7c6K8pBfX-hfLtZnpLAn2DTxC(>KmBA%;|IhR_z9$Rlww5>7?h`*~Q?{;kFuY zt#aA!U3P%GsHm*`0LEnV+Ra^py2}Do0jJ;4Cx3D}ZVDnUF=`9vUqO^(X@gme;_|sS zvgh#1@x@05*7}A#+~lI`_Uy^_h#5vy_D4m6)A|dl+jkWi&+y-;MMe0CeUA59LMH*J z=HRn=Xc6x$_4xvw4?t9fPwx^CyPa)|!}wCjz%wSF1C$D$=o8N07+7`EfT9q8^5jW1 z1h2qFK!(5?PZiW~cmZ|iyejyp`-Ib~cTrFTeIkceL7`}>7C#NswYGq`DksJjk6u-s~T<;H?9-968{KVMUyxDD4f0`ts=@-$oEDMG05 zfCFo25WDi~73r2ImH<7emrW2XbB(gtJaRF`joD z9*Li|6`r~8Xr5kCTB#+?FVE*J2yqqSu=>^gHlf0vv%n9xR-o(b_~^=_bdIyV6p{6M zYnnxi0^LsNOo%tT!;0S4v+;$_tgPRtDch65b;S~Cla z(D-e}Db`{J<9Li;iW@r-B6oE%m-=x~vzjOpul7;9#SfL;Z|RE>VdQrIut@mUI8k%$ zXWtzP|4yHKp7Ls!6vcxQQL6wrHCk?On)d?cMC(K5&&>Xk8LUTip#Sg!o=DwEl86^T z3t_CfAk366TZp%Ch8goDFdrKQf^8uf=u8dmS)}|8lZl@wDQUj+01*xcWkqA^^5z8j zW><>d0`X}wJ_<(CtH^IGA8t9m?_AI`Y~~Z5is@J|T;y}jk4!f^+&Wy_d3!G+d?YTi zM*Cslm(;%27!3c-7$OVw66+~p5L(NDv6!n?_29M0@%xNPG@Ge5H$Fg#wHcRoB?-hp zzWsGc3seGwSEc={H$)dydAEhW=`3!L4qh|)Zo63bbe)1k+O|B2b$@YlZy1wLF>T)2 z<4()AwEFJuH%E0s=lpK@wxeeoK2H0G{tO0!mf155De*XQJ*59WkJ zSAV`e>KG=9Ftb-dRaW}uEKOF$;;*lZC;U-NMSj2H9JDEFmse)Trb1`^b+675KkD-% z{XD16}8G%z*N<;ijqh&eUcC?LSm7B1Z+_BoJ<553H8{xSFSAKw5T4Jvy*$aX9z zDx!dGQFQwiE<-;i8(TBP&Na9B_Jx~S`D#z`caA2-yACL%CiVBNF?b>h?5WaxZQm%q zm44f>U{kbWgsN+tXgUz~vO7k#h@CbinDh`uYk#;5MGTwQR$TWOWan_5k)4N zE_5(_``LO~1~+D<98vLZ3$`VnqjzFjyT%v*+`q*-YNhmguT)5~u?aV9TijA}>(W1OUWeq58U_bmf1_<4sFh6xGw~G+xnFp&E72zM z_H-JPZHGse8U&GpowiU$9iJ459y@9=C>=Z8I8zTT9~0d(B81yaGwMIT+EY|4($bzY zHh$!=M$+!tEY&N*ow)TxG`*VNex3HT+eLcSZIEj5s@ZxOGgOpp8m}fVLiOGltn19| zxv+>j6bVSSZoG`ca?|l$Ib+p&U+=E@z5dcqjAl0ThiWL@1S*?rZD@{3cc-UDB`A7W zZ|9^Y=K9zPpU@EZ{_YQx-3bl8ai?3%K!*1XJ5he{74gjKKd0_~X4&xgL?k730aoe` zGjrY-4`|9U?;?PSXTLmgEw!%r(@)P0_Zoh#HJ!6B!lxPMVhE|kXhK!c(l?!2zPV?j zYhvapsBad50gXM@6{vHLZ4(I~b;gEaE)BneTo{DE&uYNy+F5iSb9NNK)U# zy98?GM0Zf27pT6sIx22pU?6=3bTsj6s7{~aUp~F<^&Aq%?_9i}ylz--z>*_YEnI%+k!Nc_EAzB>(>lcFxw1fo;}zQX zh9vCxABWBq#12GZRymx;76sK`Z@JQ4o;@QqwG-4U%ww~-nNQZCV z<`NPU5)S5G{*$l+Lpm;0ETswEO8LXYtu1gGb%2)rv8iT~GO~U3of@hOA=V-j0gH0O z;p6>u@#hEoL9!ZAdl+Wc%I4O7I9ycB7?*~94*PzVm|IBpZ=WgW`5)GG9Sg+qRRK0v&=s6husAfKkc#-nTl*@6Qiz<)wYahkdG2G zwK3=4DE$;3G(VXX_U2OG^}+6kMgp{oYgZnqifm||kc@UeY+*y!$6yZZx2Yec2)Exb zM4RP3Bdy&?~uHRmn058zo_NfHIFs)PuYxs-e*LJF)$Bp z9Ey)!@o(XIrX%B|{3?tcr#aJLyYziviUW)PJqBfxxSn&5+>36EJl)#lF>Cqvoj8ZL zxwoVl`AlDkEDXCkh!lLT{A5?wTA~_mnrAt!ZNXv2<@b8&5^mpht9~_+p_h5I;~!eC zrP0e2*koS_S%}iR%z^)`7Y;bCtN?=N@+DYxNXHrc9<; ztQXoJZ-i=UYggAi(2@bW)l_l<)}`Y=!?g$v7~DZf4||~}Wn=Udve~d`7#;X*KBo5g zc8*#>vmV=lWsTUSzGpXQ-`1mp$+COAb=ZrY*8<01#MPNorC~Ec4%~ODLu5m+Rdp3c-W9kl`Vfv zfW+1W!dMDk8!zC%^$!dzkCxD1rSzkMlGpJH~wP7c{1- z^jdI{2##@m88Rn~ir~X4AG>#%eW`barRkV6SuV$`qp8opKO_^2opk41e%yTWNd*R+ zE5}5Lkwdh>PO7!UiKUU}qpGNoB$vo|b#lLVh%*P}vqs*|>T*pdLT&)GK|!I^_L2j? z$I;l7j-wmYE$kP&B?^WI@-%r6It{cqkk$#JtN>AgKC~22kf9cUTmv~9&9}ky#XLMJ z%pnTiW6~>SEmIuV@*bosf*xp~`vX1q&2KsGEZXr@JXQp*)l`|%8CC7~U7{kMB>37T zL=-b(&a2?GTgtUt;I;jQp6&Y=J4OKhYMg zpw`A=_7vOP#Vz5Gf?aIXjHqM9G^QvT1;3#wQYQ=~Q zIGNX`uoN>z4!X5z*Du=~+}-e4LBI6w-MijtVhKWt8R%`uQr6rLO#6O_GY!FBL82dZJZ%hBmjRDzYfT&5a z?%a^Cd}@8uM`3xTYu6Sx?p*GpEC2o@Na-RmSMu4*1T4lc)RkZC&-jB`IZJW%O1e=@ zOiZ{<_xT}Z94XE?RVw(KOlmvoLMRGI^;jNjsuI&4I+*_e4a11o*j8v(2aj6rB{un{ zbT7qqEx5KM09PX`E9=WFFvTA|dIYW*RJQz`z%AxB$i-0O?A`b&PQt?$BFdVDS0`A) z?F$Ui?k&pRfY=(sVV#nX=7C<%h*Of2C+FM&zzcv>V~8(cp#XCnaRVb=3WR?RA>2G5 zK#~vOH+@i+cV#_8`^)G}+C5KgU9Qve?N5}2+p}JAK?(7Avsd@pOexxjrgKI6_TpsA z1?BF9`*!Q@GB@U{%71<>r~XhhYN@QMI^;q{O8N+x^2pi35)%YKE##mFgepqxJ!35D zmz$`dV9zKki=FR?abv;6run9lan#i-jB43rvw7XKNAeQB*AFe!5rCKWs8@muLc??u zxE-{U?)%z+`|p8Sge34(;{wMX1?~@wTMUP0FF?no;6<^C?rwINLW?z}-)y=fZhdj8 zc6m7K5)GP?s5aW3r1+Eo#XX}-0*_a~m zqNRC&Vs3AWn53QSDK4L}*Pp!Xu{cc%!n-;Bxtzo66wH6n0aJzfB9{1@0)m_1P*p$Q(<#%m|<}KB5+-c`)`q`-;fd zNSt|k-XRw>Quc`RSI0KDq87b_Qf>4_qv$DYTQ>LqpkUOMffKOw7IOPtyQ64z(~g`m zvfF$NyK(g_)vQ52507V0`QL9a=+0ARf{77Z^0Z5Ox6TXm|CK6OfB1HJQx-SUhq`Y= z7n`TsoJ|Y4#JYv5u=Ah&q}w+i3N2y*lD%d#%`M|SrL`z3#-~Z4csFmH`@PjFQTHpz z#bf3hOLHJ~hkJDnd&qa>M}O zIv#J%@c&ViGMDC4lN9z}Phb8dpxY3(!?e^pvA7+c2vK8)yDuMNIXjoc%x1sO9=DlQ z=Z~S7)^hfAe3613IJ=>KnI>NJ56ahT=UG_Qo3O+qE3Gyc>^p+q>rpcd-Ha4YwZ1>x z66F_f^Wl0W>cW&kxKD`T(bD*TEcI=ZU*jzkL?$aGOWeme6<2)=LxfXe=CnfWb=S$? z@*&&8B^ol*ZxQR{Vvl?3iEA&G*A*}9~#&@yIcHaHwJ3gv~u!QCT zlZDbnJrI>6m9TGbt^ICL;U_G8f$)l(O;)p6M8S#qQPJjhB9SdD*grUcmB}NfD+DY7zr_AMzZ*$jm)U z-OpzDKmrzpsix-rw?Ht$>$nCf*^%=jhU!fH)#`I+5*{)g@z zbn4&5#y;Kn3Q%Dwi@v389bSeeYk}*>mAVr>eK>d1DGJ z6!WjH_ZYA~@^(zpuyk&7L0PDZr$83ELAUQ$+-Y2qV`Sfk;6^&>X0KH#C>Kd2Lnzvy zl!yur>-0~b0ss$d3k7JH!_kS3D_94r55ApLL%(O)7+Yu;{ zxH1d4b~a{l9lB|V1z>2YxT7dNdGc(cOi@WggA6uq6r^{Fgki(Ar%_OC9|}}biGoiS z`52%+A1bMIrm_wK!r##G)ZIJzC4f#sP0jjGFI@iT<8Jr=)!LOuQ?>VRjzl9BqDV?e z0})cFh>}bzWV%R-l)1=wT$CbIDrGDhWUO!<T>rWV-U z-F@PE6+}RgwVsBS>&3ABfrmx?Z@08qqQ~ai_=U&8b$uYi;f=%YPi8-_|Fo4&w|2k9ujH1# z^qj==;udwlp~tkM8X*>9rka@n0WnBBZ)493rL0ObSd=(QG5w*hP--DaBGETF2KIm0 z1KFPs9^sgwf5-0^t{x3}>37MObl!KRr5>4njGGZe>RCN>hd}V44QlD>t6^;)zt3wY z61%bTTr4B>eEf5p$|V16r{SK-UFZP_S(m;kIcO(Crt5JtNKHoUg4~Z*9J9H;EtBM@ z1E==hIL@P-&1+WVaW8l7`Wge8U+DD2Ns9CAj;!??*fmURDx7HX=2BMf0}>0p&U+&d zoH%OC0f#Avr$)&rywCGkQz^GtP~@|;z~38PJ{H*RXS-9#EtfpFsi>3Nps7~rS_s9_ z(%8v{bidBA-1fy00%nAGT!YxzRtP}~{wx;*@Q*~b7;=O)loiv(t09UK|P8gRa}|kB{iRz z$@|5AfklUL!CZB;=v^^iVuR(bmO9K{qn=Y!8E-1jY7brkY6ylQFM zsR=U$F{uF!x+3cpB&)nT-?|Y=N|)s{+w?u6wQyD7QK7>L@4G8cSAI9}jK`N<&9u7p zjx~8HZ}>Ex?P@B%S7_kar(UpYweii7wVNo~qNOJPY_(17DCv6DM>;w$cH4u?fF^QC z*^76l@L|JV*4#9@s!TJI4 z&pfs;hj+0RXa2b!Ym^oNRo;hkeY+L9o?aYZDqO(Tkl%f3aYg9E;!D;3r?ktK@cAn9 zB_7zSVt7taL{`8+J|J}U29EyZvX;i;-1LCmUhK!Yu8(gTHP>{H6lO+TTkpZrI(9k{r=+XI$^-n^e7xcR$J$MWh`lJ_>Z_Ua1AUM?a_nq5`QLP#M9>;_s2 z`hauMG!%rNAA@3HlF-lf%RAiQZj85S3e2YT;6>2`6ike#d%#IEE0K z2|l>ePAtShe)qcPZwh0Q+#32bSi{RIR+OytZ#0vl2H)}+sQlH=j|e z)CHOSDV&Q*@c}tBMUkbQxnke-F1W4@sc@COoKhFcU|Ft;)%D%@hNQJj@Gpa0t>iGC z6g#tx;w`NjhN7ftS=o>v+M=-0qkNg^xB<*pL4AU<;M0SeZh$ZZ^wp-si6JIi=t_~{ zHv)Woyld9H23^V$B+Xn$bal4?%@5LUIYeJ#e;ILTZrBV&I+KCPzYjTlH)ZL6JQ$(w z_LXompRFR_nS_n0Z@6n95>`y=`(|LgQqN+H zvNKisqRi>c(J43UrJ_8~OMEVCajh#Z+Ee>IO*GxwH?gpC4uyTvo)cy=bbyNqObolKJs zxuqg2c&@xx~a>H)5 z9Om=6+^CuXD@#wlI^zkABH@8@Lq>Z^+Z~6%OM&70))i+9eCN8+``fFPlnw2*cRH`I z&t94mRCSdvWlZNsu)j?$3fNxyu&}q1{agNZ_HrfN|4gl9<>jN1NZpK%)-W>SV}l~i z8H92InC{AYEwp?w;HX5iR(>8+RI`_M+6%=ZK=yG@3qPdl@zt4iGCI67iZaK?lRhaM zx>ic1E#r)tF*HuEueW5XAIyA_)#aIIB5Xv@-kTWPS-Xz@+gq!3Gao$+*zoylqvFGiSvB)$*f&Cx#_0LhtM5fM2 zp{9F4`Mv2sp2ajDHhyuUv4OHHVORd=E1wT5#eK>+8@uVj($dk<(QOr&Tf6mU=D&39 zPzQe1)a5-ikM4uvJ@ew^4gL4bO{t5}O_i6=(R15#x|&aIvYlfbjQXe)-o?mF zSgs@nBq7`qPHAkjP(NubA@AR2l2LkI(f4jFL3Rokrfq6!nmP90YG(&(H=(Yez9=NH zaFO2@B-u7Vz^$ktfIu;=iU9FJb+YlVoYllr^l)6z%}@YDhlvH6RSv(VOFA`t$VF_YJ*^&yk`&HZLvoDK>rgMe}0YZ_OU z6ZA7CEB1!M`|SLIPU#N&k4-sL&0K@7%hz8ae9+ zhjpw7HD!+PTOzbHEG_3sgr3zo%EYz5b2{gcG&D36I1_b9V`QwJ646@Ue97gDICEZz z2--yX|0{qOKZ&0zI^;|`%O0gNd?Y1bAyPIpVLqysZEJ2-9D*8rRVj@k9Z zS^}6aAtE$1aXTbRQ%mdR*%}FFO2=ZdzUJgx$V6dKcN$okhJMeaS-D{D?f-U>HS5>+ z7Gzpx*F%tJPGxh)If>|N;36UGYfOFs?2JG?uz|AkBrF%Nd`Lk#3%$3wxx1tfl?1A* z?N5I!^AoFMpZ)-JV7Zw)^)Y)sQ^{&0I1 zVYi zLNx5Bk>aQo*#Tqe<}WZmgUkvk5X7$=eEW8(0sn6@wLIC)@1_UCbN3b&0I#N*CZ%)B zNbYA+oz5PmVYy*2^nTdgkG1h!wQVlOxnXGWrvW9L$h@enea%r;uoh(=y%4SHbU<)D zgFB6kj8dUXmV>r|RT9-W_xjyxZ|aXePv3C*@ky;y!+?mlrK1{t4nV_R-|_Qf!0|eb zO@(!xtKKD3d9nG^y?CysHkX1$eUgMsm+cE)5s`i~C7V($iQ=3PFk#HSVH)o4FGcO8&5vp* z$8=8j)Edw@`UmqZN#oJj=h(ZSS7gHmJ#+wqXQ+v)acEA@xSsjzL~N`F_L@Ki?7v5z zu`cU23u3~5j!ACuOM8eOkN-tSDdz9v6BabK>1*)TeoW@-^tv#7S93iiTbmXf_jUi| z5n8amMRfsRV8F*5dwuvsRLmn8c)p_8oe7A)Gqk13+ckRjr{U-*$KcrXdF}%&g<_dy zPN$xc_iAzDf^=wda&i!Pwo_DC<XN48IZ2rBp>G3^plUj2V`e=Gc2Tp72(@ zea0)d4} zsqZB)RN)cIj{KH@gLAm$E2l6)5pl^@D+8xPK!dq5oQ2jy(_dO(k({Yu0oWqNO z^8>V>S8w$W3^x6B@gclU!Nek&;$WpHSsdI&XywZRT9oKFtc?Sy?Aa%XPFfctY{v+F zKbH;qPJDcP_%JF`0&jqgiUX3cZM#ZTln(D}296v!GJE`biT%XlG$Abr+EQYD0rw~x zNWkVX(KN}n(nWA5egdQ+E$H3*VF#n(ydpuHy2o!)7K_#+K6->WG@>QZ(`O?9{buAYN5w z2gR}$f=JVCRBLze-mnBraDKCa_jDEt#D}x%!E5e4LRB&=aNh#Y2)gkz^h7E?Vi6@g z7anvqTmcRS(y%Kh2IFF4Dsfc3@w;Ok2hlln>+vVGdo3m)^5I5RsOMd^s!S%}$1;7l zNdk)u&*og%Edk7{5#RIJ`^`xcfy*$BN`g6B2U*Ov0aUf)Jm@-5fEl+Y3c8E=`l|Y{Cb`}eM_fv zwPPUtrn1tvB7N$W7+&G+J9ii_P93IGFnK1nxDxNBrb^LA5U!5u=&(E=-T%_RpOX!I>UmZKTP7isg{SB4E{8PgKr1~{>S(4vXsa!V&Vu$Y) z;FYgNKkC3{+;Fy{^{;7V_ z_?vpa4FUpM-rfbwi`0G2gmlQ&t3%h#aKFg1$gG*R>^&vW@4^L)2mjEHmbjUiNW*4$ z6`jt!YvKH3KKS@djtf{@>(Wn*(8=@BU%uFS4u0-$6c7>7)zj0<^gjn;_o<0n;2nK| z6amjZxXR8J&CQ6|7~V}-f0GKKq(Lk4%=>#~Fj#FoWz33jX7zVnz|BAm*&Qh%VcdhS zMk4LoP?A7$s1!n5m@>`&h$4@k508jA{q}~~YzGhd!K+uoKnNfKQ1+V~;%8!W?b!Ty ze#r|Drk;`UH}s8(-KRhVKw0;%N07o+VM?fKFBg~m=+UACy~D7Dt=qPpLUTFMNh5US zW4JF^ya?bu=mDyD1U4xJq6ry^&>s{QwiGI5FaauYBSVBor}WI$ljqjrm4ITH@lb;c zO0zV0X?9a|)CIyXQz&}|iYKh#PrDlFwl9VNE0)7H6V96!X8D9oTv5@tZaLi!EC7cxA!pS^y)#j&q2}iZGv{GbP^DS_p70~4DZpzz+biU=d0Wv1wB>?Qu(&50aTl z0uyYAKwcZ@S(E^;SA&=XY)5;H@+^F9GG<`t zKQzb;%7i%h??8;6Zj6!suXI5{}o5(*^~Xc_gx2|C8f>mEa|^-v1pMLwNsR gBJBTtnfolBQ0-5T#4VR7u;Gukrrx0}b(^4n0c~fPz5oCK literal 0 HcmV?d00001 diff --git a/doc/plotting.rst b/doc/plotting.rst index 8eb548a85..a948a3978 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -107,13 +107,13 @@ each other). The following plot shows the use of `plot_inputs='overlay'` as well as the ability to reposition the legends using the `legend_map` keyword:: - timepts = np.linspace(0, 10, 100) - U = np.vstack([np.sin(timepts), np.cos(2*timepts)]) - ct.input_output_response(sys_mimo, timepts, U).plot( - plot_inputs='overlay', - legend_map=np.array([['lower right'], ['lower right']]), - title="I/O response for 2x2 MIMO system " + - "[plot_inputs='overlay', legend_map]") + timepts = np.linspace(0, 10, 100) + U = np.vstack([np.sin(timepts), np.cos(2*timepts)]) + ct.input_output_response(sys_mimo, timepts, U).plot( + plot_inputs='overlay', + legend_map=np.array([['lower right'], ['lower right']]), + title="I/O response for 2x2 MIMO system " + + "[plot_inputs='overlay', legend_map]") .. image:: timeplot-mimo_ioresp-ov_lm.png @@ -122,17 +122,17 @@ instead of plotting the outputs on the top and inputs on the bottom, the inputs are plotted on the left and outputs on the right, as shown in the following figure:: - U1 = np.vstack([np.sin(timepts), np.cos(2*timepts)]) - resp1 = ct.input_output_response(sys_mimo, timepts, U1) + U1 = np.vstack([np.sin(timepts), np.cos(2*timepts)]) + resp1 = ct.input_output_response(sys_mimo, timepts, U1) - U2 = np.vstack([np.cos(2*timepts), np.sin(timepts)]) - resp2 = ct.input_output_response(sys_mimo, timepts, U2) + U2 = np.vstack([np.cos(2*timepts), np.sin(timepts)]) + resp2 = ct.input_output_response(sys_mimo, timepts, U2) - ct.combine_time_responses( - [resp1, resp2], trace_labels=["Scenario #1", "Scenario #2"]).plot( - transpose=True, - title="I/O responses for 2x2 MIMO system, multiple traces " - "[transpose]") + ct.combine_time_responses( + [resp1, resp2], trace_labels=["Scenario #1", "Scenario #2"]).plot( + transpose=True, + title="I/O responses for 2x2 MIMO system, multiple traces " + "[transpose]") .. image:: timeplot-mimo_ioresp-mt_tr.png @@ -146,11 +146,11 @@ Additional customization is possible using the `input_props`, `output_props`, and `trace_props` keywords to set complementary line colors and styles for various signals and traces:: - out = ct.step_response(sys_mimo).plot( - plot_inputs='overlay', overlay_signals=True, overlay_traces=True, - output_props=[{'color': c} for c in ['blue', 'orange']], - input_props=[{'color': c} for c in ['red', 'green']], - trace_props=[{'linestyle': s} for s in ['-', '--']]) + out = ct.step_response(sys_mimo).plot( + plot_inputs='overlay', overlay_signals=True, overlay_traces=True, + output_props=[{'color': c} for c in ['blue', 'orange']], + input_props=[{'color': c} for c in ['red', 'green']], + trace_props=[{'linestyle': s} for s in ['-', '--']]) .. image:: timeplot-mimo_step-linestyle.png @@ -196,7 +196,7 @@ overlaying the inputs or outputs:: .. image:: freqplot-mimo_bode-magonly.png -The :func:`~ct.singular_values_response` function can be used to +The :func:`~control.singular_values_response` function can be used to generate Bode plots that show the singular values of a transfer function:: @@ -213,16 +213,69 @@ plot, use `plot_type='nichols'`:: .. image:: freqplot-siso_nichols-default.png Another response function that can be used to generate Bode plots is -the :func:`~ct.gangof4` function, which computes the four primary +the :func:`~control.gangof4` function, which computes the four primary sensitivity functions for a feedback control system in standard form:: - proc = ct.tf([1], [1, 1, 1], name="process") - ctrl = ct.tf([100], [1, 5], name="control") - response = rect.gangof4_response(proc, ctrl) - ct.bode_plot(response) # or response.plot() + proc = ct.tf([1], [1, 1, 1], name="process") + ctrl = ct.tf([100], [1, 5], name="control") + response = rect.gangof4_response(proc, ctrl) + ct.bode_plot(response) # or response.plot() .. image:: freqplot-gangof4.png +Nyquist analysys can be done using the :func:`~control.nyquist_response` +function, which evaluates an LTI system along the Nyquist contour, and +the :func:`~control.nyquist_plot` function, which generates a Nyquist plot:: + + sys = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys') + nyquist_plot(sys) + +.. image:: freqplot-nyquist-default.png + +The :func:`~control.nyquist_response` function can be used to compute +the number of encirclement of the -1 point and can return the Nyquist +contour that was used to generate the Nyquist curve. + +By default, the Nyquist response will generate small semicircles around +poles that are on the imaginary axis. In addition, portions of the Nyquist +curve that far from the origin are scaled to a maximum value, with the line +style is changed to reflect the scaling, and it is possible to offset the +scaled portions to separate out the portions of the Nyquist curve at +\infty. A number of keyword parameters for both are available +for :func:`~control.nyquist_response`and :func:`~control.nyquist_plot` to +tune the computation of the Nyquist curve and the way the data are +plotted:: + + sys = ct.tf([1, 0.2], [1, 0, 1]) * ct.tf([1], [1, 0]) + nyqresp = ct.nyquist_response(sys) + nyqresp.plot( + max_curve_magnitude=6, max_curve_offset=1, + arrows=[0, 0.15, 0.3, 0.6, 0.7, 0.925], label='sys') + print("Encirclements =", nyqresp.count) + +.. image:: freqplot-nyquist-custom.png + +All frequency domain plotting functions will automatically compute the +range of frequencies to plot based on the poles and zeros of the frequency +response. Frequency points can be explicitly specified by including an +array of frequencies as a second argument (after the list of systems):: + + sys1 = ct.tf([1], [1, 2, 1], name='sys1') + sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') + omega = np.logspace(-2, 2, 500) + ct.frequency_response([sys1, sys2], omega).plot(initial_phase=0) + +.. image:: freqplot-siso_bode-omega.png + +Alternatively. frequency ranges can be specified by passing a list of the +form ``[wmin, wmax]``, where ``wmin`` and ``wmax`` are the minimum and +maximum frequencies in the (log-spaced) frequency range:: + + response = ct.frequency_response([sys1, sys2], [1e-2, 1e2]) + +The number of (log-spaced) points in the frequency can be specified using +the ``omega_num`` keyword parameter. + Pole/zero data ============== @@ -288,7 +341,7 @@ The default method for generating a phase plane plot is to provide a 2D dynamical system along with a range of coordinates and time limit:: sys = ct.nlsys( - lambda t, x, u, params: np.array([[0, 1], [-1, -1]]) @ x, + lambda t, x, u, params: np.array([[0, 1], [-1, -1]]) @ x, states=['position', 'velocity'], inputs=0, name='damped oscillator') axis_limits = [-1, 1, -1, 1] T = 8 @@ -310,7 +363,7 @@ an inverted pendulum system, which is created using a mesh grid:: m, l, b, g = params['m'], params['l'], params['b'], params['g'] return [x[1], -b/m * x[1] + (g * l / m) * np.sin(x[0]) + u[0]/m] invpend = ct.nlsys(invpend_update, states=2, inputs=1, name='invpend') - + ct.phase_plane_plot( invpend, [-2*pi, 2*pi, -2, 2], 5, gridtype='meshgrid', gridspec=[5, 8], arrows=3, @@ -318,7 +371,7 @@ an inverted pendulum system, which is created using a mesh grid:: params={'m': 1, 'l': 1, 'b': 0.2, 'g': 1}) plt.xlabel(r"$\theta$ [rad]") plt.ylabel(r"$\dot\theta$ [rad/sec]") - + .. image:: phaseplot-invpend-meshgrid.png This figure shows several features of more complex phase plane plots: @@ -341,7 +394,7 @@ are part of the :mod:`~control.phaseplot` (pp) module:: -x[0] + x[1] * (1 - x[0]**2 - x[1]**2)] oscillator = ct.nlsys( oscillator_update, states=2, inputs=0, name='nonlinear oscillator') - + ct.phase_plane_plot(oscillator, [-1.5, 1.5, -1.5, 1.5], 0.9) pp.streamlines( oscillator, np.array([[0, 0]]), 1.5, From 6b61ed06a4ca77a046d4996d916ba18464592aca Mon Sep 17 00:00:00 2001 From: Vaibhav Gupta Date: Mon, 17 Jun 2024 14:35:30 +0200 Subject: [PATCH 041/199] Add slicing access for state-space models with tests --- control/statesp.py | 12 ++++++------ control/tests/statesp_test.py | 22 ++++++++++++++++++---- control/xferfcn.py | 7 +++++++ 3 files changed, 31 insertions(+), 10 deletions(-) diff --git a/control/statesp.py b/control/statesp.py index 0c2856b15..6e4e5d43d 100644 --- a/control/statesp.py +++ b/control/statesp.py @@ -50,6 +50,7 @@ import math from copy import deepcopy from warnings import warn +from collections.abc import Iterable import numpy as np import scipy as sp @@ -1215,17 +1216,16 @@ def append(self, other): def __getitem__(self, indices): """Array style access""" - if len(indices) != 2: + if not isinstance(indices, Iterable) or len(indices) != 2: raise IOError('must provide indices of length 2 for state space') - outdx = indices[0] if isinstance(indices[0], list) else [indices[0]] - inpdx = indices[1] if isinstance(indices[1], list) else [indices[1]] + outdx, inpdx = indices + if not isinstance(outdx, (int, slice)) or not isinstance(inpdx, (int, slice)): + raise TypeError(f"system indices must be integers or slices") sysname = config.defaults['iosys.indexed_system_name_prefix'] + \ self.name + config.defaults['iosys.indexed_system_name_suffix'] return StateSpace( self.A, self.B[:, inpdx], self.C[outdx, :], self.D[outdx, inpdx], - self.dt, name=sysname, - inputs=[self.input_labels[i] for i in list(inpdx)], - outputs=[self.output_labels[i] for i in list(outdx)]) + self.dt, name=sysname, inputs=self.input_labels[inpdx], outputs=self.output_labels[outdx]) def sample(self, Ts, method='zoh', alpha=None, prewarp_frequency=None, name=None, copy_names=True, **kwargs): diff --git a/control/tests/statesp_test.py b/control/tests/statesp_test.py index 59f441456..0fc43ce11 100644 --- a/control/tests/statesp_test.py +++ b/control/tests/statesp_test.py @@ -463,8 +463,22 @@ def test_append_tf(self): np.testing.assert_array_almost_equal(sys3c.A[:3, 3:], np.zeros((3, 2))) np.testing.assert_array_almost_equal(sys3c.A[3:, :3], np.zeros((2, 3))) - def test_array_access_ss(self): - + def test_array_access_ss_failure(self): + sys1 = StateSpace( + [[1., 2.], [3., 4.]], + [[5., 6.], [6., 8.]], + [[9., 10.], [11., 12.]], + [[13., 14.], [15., 16.]], 1, + inputs=['u0', 'u1'], outputs=['y0', 'y1']) + with pytest.raises(IOError): + sys1[0] + + @pytest.mark.parametrize("outdx, inpdx", + [(0, 1), + (slice(0, 1, 1), 1), + (0, slice(1, 2, 1)), + (slice(0, 1, 1), slice(1, 2, 1))]) + def test_array_access_ss(self, outdx, inpdx): sys1 = StateSpace( [[1., 2.], [3., 4.]], [[5., 6.], [6., 8.]], @@ -472,7 +486,7 @@ def test_array_access_ss(self): [[13., 14.], [15., 16.]], 1, inputs=['u0', 'u1'], outputs=['y0', 'y1']) - sys1_01 = sys1[0, 1] + sys1_01 = sys1[outdx, inpdx] np.testing.assert_array_almost_equal(sys1_01.A, sys1.A) np.testing.assert_array_almost_equal(sys1_01.B, @@ -480,7 +494,7 @@ def test_array_access_ss(self): np.testing.assert_array_almost_equal(sys1_01.C, sys1.C[0:1, :]) np.testing.assert_array_almost_equal(sys1_01.D, - sys1.D[0, 1]) + sys1.D[0:1, 1:2]) assert sys1.dt == sys1_01.dt assert sys1_01.input_labels == ['u1'] diff --git a/control/xferfcn.py b/control/xferfcn.py index 63aeff8f9..d0295194f 100644 --- a/control/xferfcn.py +++ b/control/xferfcn.py @@ -47,6 +47,8 @@ """ +from collections.abc import Iterable + # External function declarations import numpy as np from numpy import angle, array, empty, finfo, ndarray, ones, \ @@ -758,7 +760,12 @@ def __pow__(self, other): return (TransferFunction([1], [1]) / self) * (self**(other + 1)) def __getitem__(self, key): + if not isinstance(key, Iterable) or len(key) != 2: + raise IOError('must provide indices of length 2 for state space') + key1, key2 = key + if not isinstance(key1, (int, slice)) or not isinstance(key2, (int, slice)): + raise TypeError(f"system indices must be integers or slices") # pre-process if isinstance(key1, int): From 4dff6495121c923f150bf600c73bd68265215297 Mon Sep 17 00:00:00 2001 From: Vaibhav Gupta Date: Thu, 27 Jun 2024 12:15:02 +0200 Subject: [PATCH 042/199] Correct typos and column length issue --- control/statesp.py | 6 ++++-- control/xferfcn.py | 2 +- 2 files changed, 5 insertions(+), 3 deletions(-) diff --git a/control/statesp.py b/control/statesp.py index 6e4e5d43d..d775263f4 100644 --- a/control/statesp.py +++ b/control/statesp.py @@ -1219,13 +1219,15 @@ def __getitem__(self, indices): if not isinstance(indices, Iterable) or len(indices) != 2: raise IOError('must provide indices of length 2 for state space') outdx, inpdx = indices - if not isinstance(outdx, (int, slice)) or not isinstance(inpdx, (int, slice)): + if not isinstance(outdx, (int, slice)) \ + or not isinstance(inpdx, (int, slice)): raise TypeError(f"system indices must be integers or slices") sysname = config.defaults['iosys.indexed_system_name_prefix'] + \ self.name + config.defaults['iosys.indexed_system_name_suffix'] return StateSpace( self.A, self.B[:, inpdx], self.C[outdx, :], self.D[outdx, inpdx], - self.dt, name=sysname, inputs=self.input_labels[inpdx], outputs=self.output_labels[outdx]) + self.dt, name=sysname, + inputs=self.input_labels[inpdx], outputs=self.output_labels[outdx]) def sample(self, Ts, method='zoh', alpha=None, prewarp_frequency=None, name=None, copy_names=True, **kwargs): diff --git a/control/xferfcn.py b/control/xferfcn.py index d0295194f..ba9af3913 100644 --- a/control/xferfcn.py +++ b/control/xferfcn.py @@ -761,7 +761,7 @@ def __pow__(self, other): def __getitem__(self, key): if not isinstance(key, Iterable) or len(key) != 2: - raise IOError('must provide indices of length 2 for state space') + raise IOError('must provide indices of length 2 for transfer functions') key1, key2 = key if not isinstance(key1, (int, slice)) or not isinstance(key2, (int, slice)): From c6ef9b494d91e6f55704af04f0c409086e67a8e8 Mon Sep 17 00:00:00 2001 From: Vaibhav Gupta Date: Thu, 27 Jun 2024 14:27:24 +0200 Subject: [PATCH 043/199] Fixed bug in statespace initilisation --- control/statesp.py | 13 +++++++++---- 1 file changed, 9 insertions(+), 4 deletions(-) diff --git a/control/statesp.py b/control/statesp.py index d775263f4..717fc9a73 100644 --- a/control/statesp.py +++ b/control/statesp.py @@ -290,9 +290,9 @@ def __init__(self, *args, **kwargs): raise ValueError("A and B must have the same number of rows.") if self.nstates != C.shape[1]: raise ValueError("A and C must have the same number of columns.") - if self.ninputs != B.shape[1]: + if self.ninputs != B.shape[1] or self.ninputs != D.shape[1]: raise ValueError("B and D must have the same number of columns.") - if self.noutputs != C.shape[0]: + if self.noutputs != C.shape[0] or self.noutputs != D.shape[0]: raise ValueError("C and D must have the same number of rows.") # @@ -1219,9 +1219,14 @@ def __getitem__(self, indices): if not isinstance(indices, Iterable) or len(indices) != 2: raise IOError('must provide indices of length 2 for state space') outdx, inpdx = indices - if not isinstance(outdx, (int, slice)) \ - or not isinstance(inpdx, (int, slice)): + + # Convert int to slice to ensure that numpy doesn't drop the dimension + if isinstance(outdx, int): outdx = slice(outdx, outdx+1, 1) + if isinstance(inpdx, int): inpdx = slice(inpdx, inpdx+1, 1) + + if not isinstance(outdx, slice) or not isinstance(inpdx, slice): raise TypeError(f"system indices must be integers or slices") + sysname = config.defaults['iosys.indexed_system_name_prefix'] + \ self.name + config.defaults['iosys.indexed_system_name_suffix'] return StateSpace( From a0fc6bcdcf0857998fb3efb1d9f945610817799c Mon Sep 17 00:00:00 2001 From: Vaibhav Gupta Date: Thu, 27 Jun 2024 14:27:36 +0200 Subject: [PATCH 044/199] Added more test cases for slicing of statespace model --- control/tests/statesp_test.py | 23 +++++++++++++++++------ 1 file changed, 17 insertions(+), 6 deletions(-) diff --git a/control/tests/statesp_test.py b/control/tests/statesp_test.py index 0fc43ce11..6ddf9933e 100644 --- a/control/tests/statesp_test.py +++ b/control/tests/statesp_test.py @@ -477,28 +477,39 @@ def test_array_access_ss_failure(self): [(0, 1), (slice(0, 1, 1), 1), (0, slice(1, 2, 1)), + (slice(0, 1, 1), slice(1, 2, 1)), + (slice(None, None, -1), 1), + (0, slice(None, None, -1)), + (slice(None, 2, None), 1), + (slice(None, None, 1), slice(None, None, 2)), + (0, slice(1, 2, 1)), (slice(0, 1, 1), slice(1, 2, 1))]) def test_array_access_ss(self, outdx, inpdx): sys1 = StateSpace( [[1., 2.], [3., 4.]], - [[5., 6.], [6., 8.]], + [[5., 6.], [7., 8.]], [[9., 10.], [11., 12.]], [[13., 14.], [15., 16.]], 1, inputs=['u0', 'u1'], outputs=['y0', 'y1']) sys1_01 = sys1[outdx, inpdx] + + # Convert int to slice to ensure that numpy doesn't drop the dimension + if isinstance(outdx, int): outdx = slice(outdx, outdx+1, 1) + if isinstance(inpdx, int): inpdx = slice(inpdx, inpdx+1, 1) + np.testing.assert_array_almost_equal(sys1_01.A, sys1.A) np.testing.assert_array_almost_equal(sys1_01.B, - sys1.B[:, 1:2]) + sys1.B[:, inpdx]) np.testing.assert_array_almost_equal(sys1_01.C, - sys1.C[0:1, :]) + sys1.C[outdx, :]) np.testing.assert_array_almost_equal(sys1_01.D, - sys1.D[0:1, 1:2]) + sys1.D[outdx, inpdx]) assert sys1.dt == sys1_01.dt - assert sys1_01.input_labels == ['u1'] - assert sys1_01.output_labels == ['y0'] + assert sys1_01.input_labels == sys1.input_labels[inpdx] + assert sys1_01.output_labels == sys1.output_labels[outdx] assert sys1_01.name == sys1.name + "$indexed" def test_dc_gain_cont(self): From 2e872f8da254a839e3e5488770cb040f9da76b44 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 29 Jun 2024 10:52:38 -0700 Subject: [PATCH 045/199] fix interconnect() issue #1015 --- control/nlsys.py | 57 ++++++++++++++++++++++-------- control/tests/interconnect_test.py | 16 +++++++++ 2 files changed, 59 insertions(+), 14 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 358c4b125..68b744759 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2219,7 +2219,7 @@ def interconnect( ... inplist=['C'], outlist=['P']) A feedback system can also be constructed using the - :func:`~control.summing_block` function and the ability to + :func:`~control.summing_junction` function and the ability to automatically interconnect signals with the same names: >>> P = ct.tf(1, [1, 0], inputs='u', outputs='y') @@ -2425,15 +2425,22 @@ def interconnect( elif not found_system: raise ValueError("could not find signal %s" % sname) else: - # Regular signal specification - if not isinstance(connection, list): - dprint(f" converting item to list") - connection = [connection] - for spec in connection: - isys, indices, gain = _parse_spec(syslist, spec, 'input') + # TODO: refactor code to remove duplication + if isinstance(connection, list): + # Passed a list => create input map + dprint(f" detected input list") + new_inplist.append([]) + for spec in connection: + isys, indices, gain = _parse_spec(syslist, spec, 'input') + for isig in indices: + new_inplist[-1].append((isys, isig, gain)) + dprint(f" adding input {(isys, isig, gain)}") + else: + # Passed a single single => single input + isys, indices, gain = _parse_spec(syslist, connection, 'input') for isig in indices: - dprint(f" adding input {(isys, isig, gain)}") new_inplist.append((isys, isig, gain)) + dprint(f" adding input {(isys, isig, gain)}") inplist, inputs = new_inplist, new_inputs dprint(f" {inplist=}\n {inputs=}") @@ -2499,14 +2506,36 @@ def interconnect( elif not found_system: raise ValueError("could not find signal %s" % sname) else: - # Regular signal specification - if not isinstance(connection, list): - dprint(f" converting item to list") - connection = [connection] - for spec in connection: + # TODO: refactor code to remove duplication + if isinstance(connection, list): + # Passed a list => create input map + dprint(f" detected output list") + new_outlist.append([]) + for spec in connection: + try: + # First trying looking in the output signals + osys, indices, gain = _parse_spec( + syslist, spec, 'output') + for osig in indices: + dprint(f" adding output {(osys, osig, gain)}") + new_outlist[-1].append((osys, osig, gain)) + except ValueError: + # If not, see if we can find it in inputs + isys, indices, gain = _parse_spec( + syslist, spec, 'input or output', + dictname='input_index') + for isig in indices: + # Use string form to allow searching input list + dprint(f" adding input {(isys, isig, gain)}") + new_outlist[-1].append( + (syslist[isys].name, + syslist[isys].input_labels[isig], gain)) + else: + spec = connection try: # First trying looking in the output signals - osys, indices, gain = _parse_spec(syslist, spec, 'output') + osys, indices, gain = _parse_spec( + syslist, spec, 'output') for osig in indices: dprint(f" adding output {(osys, osig, gain)}") new_outlist.append((osys, osig, gain)) diff --git a/control/tests/interconnect_test.py b/control/tests/interconnect_test.py index f4b0c59a8..604488ca5 100644 --- a/control/tests/interconnect_test.py +++ b/control/tests/interconnect_test.py @@ -689,3 +689,19 @@ def test_interconnect_params(): timepts = np.linspace(0, 10) resp = ct.input_output_response(sys, timepts, 0, params={'a': -1}) assert resp.states[0, -1].item() < 2 * math.exp(-10) + + +# Bug identified in issue #1015 +def test_parallel_interconnect(): + sys1 = ct.rss(2, 1, 1, name='S1') + sys2 = ct.rss(2, 1, 1, name='S2') + + sys_bd = sys1 + sys2 + sys_ic = ct.interconnect( + [sys1, sys2], + inplist=[['S1.u[0]', 'S2.u[0]']], + outlist=[['S1.y[0]', 'S2.y[0]']]) + np.testing.assert_allclose(sys_bd.A, sys_ic.A) + np.testing.assert_allclose(sys_bd.B, sys_ic.B) + np.testing.assert_allclose(sys_bd.C, sys_ic.C) + np.testing.assert_allclose(sys_bd.D, sys_ic.D) From 6f6c70d58f1b23ec8d59c3af992deb8df3a51947 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 13 Jun 2024 22:19:47 -0700 Subject: [PATCH 046/199] refactoring/regularization of ax keyword processing --- control/freqplot.py | 116 ++++++++++++++++----------------- control/tests/freqplot_test.py | 31 +++++++++ 2 files changed, 89 insertions(+), 58 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 2c82bf55e..afacc7f77 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -458,47 +458,13 @@ def bode_plot( (noutputs if plot_phase else 0) ncols = ninputs - # See if we can use the current figure axes - fig = plt.gcf() # get current figure (or create new one) - if ax is None and plt.get_fignums(): - ax = fig.get_axes() - if len(ax) == nrows * ncols: - # Assume that the shape is right (no easy way to infer this) - ax = np.array(ax).reshape(nrows, ncols) - - # Clear out any old text from the current figure - for text in fig.texts: - text.set_visible(False) # turn off the text - del text # get rid of it completely - - elif len(ax) != 0: - # Need to generate a new figure - fig, ax = plt.figure(), None - - else: - # Blank figure, just need to recreate axes - ax = None - - # Create new axes, if needed, and customize them if ax is None: - with plt.rc_context(_freqplot_rcParams): - ax_array = fig.subplots(nrows, ncols, squeeze=False) - fig.set_layout_engine('tight') - fig.align_labels() - # Set up default sharing of axis limits if not specified for kw in ['share_magnitude', 'share_phase', 'share_frequency']: if kw not in kwargs or kwargs[kw] is None: kwargs[kw] = config.defaults['freqplot.' + kw] - else: - # Make sure the axes are the right shape - if ax.shape != (nrows, ncols): - raise ValueError( - "specified axes are not the right shape; " - f"got {ax.shape} but expecting ({nrows}, {ncols})") - ax_array = ax - fig = ax_array[0, 0].figure # just in case this is not gcf() + fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), squeeze=False) # Get the values for sharing axes limits share_magnitude = kwargs.pop('share_magnitude', None) @@ -1780,11 +1746,8 @@ def _parse_linestyle(style_name, allow_false=False): # Return counts and (optionally) the contour we used return (counts, contours) if return_contour else counts - # Get the figure and axes to use - if ax is None: - fig, ax = plt.gcf(), plt.gca() - else: - fig = ax.figure + fig, ax = _process_ax_keyword( + ax, shape=(1, 1), squeeze=True, rcParams=_freqplot_rcParams) # Create a list of lines for the output out = np.empty(len(nyquist_responses), dtype=object) @@ -2235,7 +2198,7 @@ def singular_values_response( def singular_values_plot( data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None, - label=None, title=None, legend_loc='center right', **kwargs): + ax=None, label=None, title=None, legend_loc='center right', **kwargs): """Plot the singular values for a system. Plot the singular values as a function of frequency for a system or @@ -2364,22 +2327,8 @@ def singular_values_plot( else: return sigmas, omegas - fig = plt.gcf() # get current figure (or create new one) - ax_sigma = None # axes for plotting singular values - - # Get the current axes if they already exist - for ax in fig.axes: - if ax.get_label() == 'control-sigma': - ax_sigma = ax - - # If no axes present, create them from scratch - if ax_sigma is None: - if len(fig.axes) > 0: - # Create a new figure to avoid overwriting in the old one - fig = plt.figure() - - with plt.rc_context(_freqplot_rcParams): - ax_sigma = plt.subplot(111, label='control-sigma') + fig, ax_sigma = _process_ax_keyword(ax, shape=(1, 1), squeeze=True) + ax_sigma.set_label('control-sigma') # TODO: deprecate? # Handle color cycle manually as all singular values # of the same systems are expected to be of the same color @@ -2475,7 +2424,7 @@ def singular_values_plot( # Utility functions # # This section of the code contains some utility functions for -# generating frequency domain plots +# generating frequency domain plots. # @@ -2742,6 +2691,57 @@ def _process_line_labels(label, nsys, ninputs=0, noutputs=0): return line_labels +def _process_ax_keyword(axs, shape=(1, 1), rcParams=None, squeeze=False): + """Utility function to process ax keyword to plotting commands. + + This function processes the `ax` keyword to plotting commands. If no + ax keyword is passed, the current figure is checked to see if it has + the correct shape. If the shape matches the desired shape, then the + current figure and axes are returned. Otherwise a new figure is + created with axes of the desired shape. + + Legacy behavior: some of the older plotting commands use a axes label + to identify the proper axes for plotting. This behavior is supported + through the use of the label keyword, but will only work if shape == + (1, 1) and squeeze == True. + + """ + if axs is None: + fig = plt.gcf() # get current figure (or create new one) + axs = fig.get_axes() + + # Check to see if axes are the right shape; if not, create new figure + # Note: can't actually check the shape, just the total number of axes + if len(axs) != np.prod(shape): + with plt.rc_context(rcParams): + if len(axs) != 0: + # Create a new figure + fig, axs = plt.subplots(*shape, squeeze=False) + else: + # Create new axes on (empty) figure + axs = fig.subplots(*shape, squeeze=False) + fig.set_layout_engine('tight') + fig.align_labels() + else: + # Use the existing axes, properly reshaped + axs = np.asarray(axs).reshape(*shape) + else: + try: + axs = np.asarray(axs).reshape(shape) + except ValueError: + raise ValueError( + "specified axes are not the right shape; " + f"got {axs.shape} but expecting {shape}") + fig = axs[0, 0].figure + + # Process the squeeze keyword + if squeeze and shape == (1, 1): + axs = axs[0, 0] # Just return the single axes object + elif squeeze: + axs = axs.squeeze() + + return fig, axs + # # Utility functions to create nice looking labels (KLD 5/23/11) # diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 5cdc8b074..a13547bfa 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -462,6 +462,37 @@ def test_freqplot_trace_labels(plt_fcn): plt.close() + +@pytest.mark.parametrize( + "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) +@pytest.mark.parametrize( + "ninputs, noutputs", [(1, 1), (1, 2), (2, 1), (2, 3)]) +def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): + if plt_fcn == ct.nyquist_plot and (ninputs != 1 or noutputs != 1): + pytest.skip("MIMO not implemented for Nyquist") + + # System to use + sys = ct.rss(4, ninputs, noutputs) + + # Create an initial figure + out1 = plt_fcn(sys) + + # Draw again on the same figure, using array + axs = ct.get_plot_axes(out1) + out2 = plt_fcn(sys, ax=axs) + np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out2)) + + # Pass things in as a list instead + axs_list = axs.tolist() + out3 = plt_fcn(sys, ax=axs) + np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) + + # Flatten the list + axs_list = axs.squeeze().tolist() + out3 = plt_fcn(sys, ax=axs_list) + np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) + + @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) def test_freqplot_errors(plt_fcn): if plt_fcn == ct.bode_plot: From 404fbdff02cfbc1bd30dee26166dd1ef145d5bdf Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 14 Jun 2024 16:30:39 -0700 Subject: [PATCH 047/199] regularize processing of rcParams --- control/freqplot.py | 63 +++++++++++++++++++++++++---------------- examples/steering.ipynb | 14 ++++----- 2 files changed, 43 insertions(+), 34 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index afacc7f77..232ef2884 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -227,7 +227,7 @@ def bode_plot( 'freqplot', 'wrap_phase', kwargs, _freqplot_defaults, pop=True) initial_phase = config._get_param( 'freqplot', 'initial_phase', kwargs, None, pop=True) - freqplot_rcParams = config._get_param( + rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) # Set the default labels @@ -464,7 +464,8 @@ def bode_plot( if kw not in kwargs or kwargs[kw] is None: kwargs[kw] = config.defaults['freqplot.' + kw] - fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), squeeze=False) + fig, ax_array = _process_ax_keyword(ax, ( + nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True) # Get the values for sharing axes limits share_magnitude = kwargs.pop('share_magnitude', None) @@ -787,7 +788,7 @@ def _make_line_label(response, output_index, input_index): axes_title = ax.get_title() if axes_title is not None and axes_title != "": axes_title += "\n" - with plt.rc_context(_freqplot_rcParams): + with plt.rc_context(rcParams): ax.set_title( axes_title + f"{sysname}: " "Gm = %.2f %s(at %.2f %s), " @@ -907,7 +908,7 @@ def gen_zero_centered_series(val_min, val_max, period): new_title = old_title + separator + new_title[common_len:] # Add the title - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): fig.suptitle(new_title) # @@ -927,7 +928,7 @@ def gen_zero_centered_series(val_min, val_max, period): # If we have more than one column, label the individual responses if (noutputs > 1 and not overlay_outputs or ninputs > 1) \ and not overlay_inputs: - with plt.rc_context(_freqplot_rcParams): + with plt.rc_context(rcParams): ax_array[0, j].set_title(f"From {data[0].input_labels[j]}") # Label the frequency axis @@ -973,7 +974,7 @@ def gen_zero_centered_series(val_min, val_max, period): fig.text( 0.8 * xpos, ypos, f"To {data[0].output_labels[i]}\n", rotation=90, ha='left', va='center', - fontsize=_freqplot_rcParams['axes.titlesize']) + fontsize=rcParams['axes.titlesize']) else: # Only a single axes => add label to the left ax_array[i, 0].set_ylabel( @@ -1024,7 +1025,7 @@ def gen_zero_centered_series(val_min, val_max, period): # Generate the label, if needed if len(labels) > 1 and legend_map[i, j] != None: - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): ax.legend(lines, labels, loc=legend_map[i, j]) # @@ -1586,6 +1587,9 @@ def nyquist_plot( the second element is used for portions that are scaled (using max_curve_magnitude). Default linestyle (['-', '-.']) is determined by config.defaults['nyquist.mirror_style']. + rcParams : dict + Override the default parameters used for generating plots. + Default is set by config.default['freqplot.rcParams']. return_contour : bool, optional (legacy) If 'True', return the encirclement count and Nyquist contour used to generate the Nyquist plot. @@ -1661,6 +1665,8 @@ def nyquist_plot( 'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True) max_curve_offset = config._get_param( 'nyquist', 'max_curve_offset', kwargs, _nyquist_defaults, pop=True) + rcParams = config._get_param( + 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) start_marker = config._get_param( 'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True) start_marker_size = config._get_param( @@ -1747,7 +1753,7 @@ def _parse_linestyle(style_name, allow_false=False): return (counts, contours) if return_contour else counts fig, ax = _process_ax_keyword( - ax, shape=(1, 1), squeeze=True, rcParams=_freqplot_rcParams) + ax, shape=(1, 1), squeeze=True, rcParams=rcParams) # Create a list of lines for the output out = np.empty(len(nyquist_responses), dtype=object) @@ -1888,7 +1894,8 @@ def _parse_linestyle(style_name, allow_false=False): # Add the title if title is None: title = "Nyquist plot for " + ", ".join(labels) - fig.suptitle(title) + with plt.rc_context(rcParams): + fig.suptitle(title) # Legacy return pocessing if plot is True or return_contour is not None: @@ -2276,7 +2283,7 @@ def singular_values_plot( 'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True) grid = config._get_param( 'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True) - freqplot_rcParams = config._get_param( + rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) # If argument was a singleton, turn it into a tuple @@ -2327,7 +2334,8 @@ def singular_values_plot( else: return sigmas, omegas - fig, ax_sigma = _process_ax_keyword(ax, shape=(1, 1), squeeze=True) + fig, ax_sigma = _process_ax_keyword( + ax, shape=(1, 1), squeeze=True, rcParams=rcParams) ax_sigma.set_label('control-sigma') # TODO: deprecate? # Handle color cycle manually as all singular values @@ -2370,14 +2378,12 @@ def singular_values_plot( # Plot the data if dB: - with plt.rc_context(freqplot_rcParams): - out[idx_sys] = ax_sigma.semilogx( - omega, 20 * np.log10(sigma), *fmt, - label=label, **color_arg, **kwargs) + out[idx_sys] = ax_sigma.semilogx( + omega, 20 * np.log10(sigma), *fmt, + label=label, **color_arg, **kwargs) else: - with plt.rc_context(freqplot_rcParams): - out[idx_sys] = ax_sigma.loglog( - omega, sigma, label=label, *fmt, **color_arg, **kwargs) + out[idx_sys] = ax_sigma.loglog( + omega, sigma, label=label, *fmt, **color_arg, **kwargs) # Plot the Nyquist frequency if nyq_freq is not None: @@ -2392,23 +2398,23 @@ def singular_values_plot( # Add a grid to the plot + labeling if grid: ax_sigma.grid(grid, which='both') - with plt.rc_context(freqplot_rcParams): - ax_sigma.set_ylabel( - "Singular Values [dB]" if dB else "Singular Values") - ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]") + + ax_sigma.set_ylabel( + "Singular Values [dB]" if dB else "Singular Values") + ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]") # List of systems that are included in this plot lines, labels = _get_line_labels(ax_sigma) # Add legend if there is more than one system plotted if len(labels) > 1 and legend_loc is not False: - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): ax_sigma.legend(lines, labels, loc=legend_loc) # Add the title if title is None: title = "Singular values for " + ", ".join(labels) - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): fig.suptitle(title) # Legacy return processing @@ -2691,7 +2697,8 @@ def _process_line_labels(label, nsys, ninputs=0, noutputs=0): return line_labels -def _process_ax_keyword(axs, shape=(1, 1), rcParams=None, squeeze=False): +def _process_ax_keyword( + axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False): """Utility function to process ax keyword to plotting commands. This function processes the `ax` keyword to plotting commands. If no @@ -2725,6 +2732,12 @@ def _process_ax_keyword(axs, shape=(1, 1), rcParams=None, squeeze=False): else: # Use the existing axes, properly reshaped axs = np.asarray(axs).reshape(*shape) + + if clear_text: + # Clear out any old text from the current figure + for text in fig.texts: + text.set_visible(False) # turn off the text + del text # get rid of it completely else: try: axs = np.asarray(axs).reshape(shape) diff --git a/examples/steering.ipynb b/examples/steering.ipynb index 217e3b2db..ebad51185 100644 --- a/examples/steering.ipynb +++ b/examples/steering.ipynb @@ -90,9 +90,7 @@ { "cell_type": "code", "execution_count": 3, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "data": { @@ -452,9 +450,7 @@ { "cell_type": "code", "execution_count": 8, - "metadata": { - "scrolled": false - }, + "metadata": {}, "outputs": [ { "name": "stdout", @@ -1067,7 +1063,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -1081,9 +1077,9 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.1" + "version": "3.12.2" } }, "nbformat": 4, - "nbformat_minor": 2 + "nbformat_minor": 4 } From 1a94f4e50c3d2021cc56c3f24632da2e91e6d63f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 14 Jun 2024 22:45:26 -0700 Subject: [PATCH 048/199] add suptitle() function for better centered titles --- control/__init__.py | 1 + control/freqplot.py | 142 ++++++++++++++++----------------- control/nichols.py | 22 ++--- control/plotutil.py | 74 +++++++++++++++++ control/tests/freqplot_test.py | 74 +++++++++++++++-- control/tests/kwargs_test.py | 2 + 6 files changed, 224 insertions(+), 91 deletions(-) create mode 100644 control/plotutil.py diff --git a/control/__init__.py b/control/__init__.py index 45f2a56d6..35d5b4d5b 100644 --- a/control/__init__.py +++ b/control/__init__.py @@ -92,6 +92,7 @@ from .modelsimp import * from .nichols import * from .phaseplot import * +from .plotutil import * from .pzmap import * from .rlocus import * from .statefbk import * diff --git a/control/freqplot.py b/control/freqplot.py index 232ef2884..755084192 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -8,24 +8,26 @@ # charts is in nichols.py. The code for pole-zero diagrams is in pzmap.py # and rlocus.py. -import numpy as np -import matplotlib as mpl -import matplotlib.pyplot as plt +import itertools import math import warnings -import itertools from os.path import commonprefix -from .ctrlutil import unwrap +import matplotlib as mpl +import matplotlib.pyplot as plt +import numpy as np + +from . import config from .bdalg import feedback -from .margins import stability_margins +from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented -from .statesp import StateSpace -from .lti import LTI, frequency_response, _process_frequency_response -from .xferfcn import TransferFunction from .frdata import FrequencyResponseData +from .lti import LTI, _process_frequency_response, frequency_response +from .margins import stability_margins +from .plotutil import suptitle, _find_axes_center +from .statesp import StateSpace from .timeplot import _make_legend_labels -from . import config +from .xferfcn import TransferFunction __all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response', 'nyquist_plot', 'singular_values_response', @@ -33,6 +35,7 @@ 'bode', 'nyquist', 'gangof4'] # Default font dictionary +# TODO: move common plotting params to 'ctrlplot' (in plotutil) _freqplot_rcParams = mpl.rcParams.copy() _freqplot_rcParams.update({ 'axes.labelsize': 'small', @@ -57,6 +60,7 @@ 'freqplot.share_magnitude': 'row', 'freqplot.share_phase': 'row', 'freqplot.share_frequency': 'col', + 'freqplot.suptitle_frame': 'axes', } # @@ -229,6 +233,8 @@ def bode_plot( 'freqplot', 'initial_phase', kwargs, None, pop=True) rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + suptitle_frame = config._get_param( + 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) # Set the default labels freq_label = config._get_param( @@ -803,7 +809,7 @@ def _make_line_label(response, output_index, input_index): # # Finishing handling axes limit sharing # - # This code handles labels on phase plots and also removes tick labels + # This code handles labels on Bode plots and also removes tick labels # on shared axes. It needs to come *after* the plots are generated, # in order to handle two things: # @@ -867,50 +873,6 @@ def gen_zero_centered_series(val_min, val_max, period): for i, j in itertools.product(range(nrows), range(ncols)): ax_array[i, j].set_xlim(omega_limits) - # - # Update the plot title (= figure suptitle) - # - # If plots are built up by multiple calls to plot() and the title is - # not given, then the title is updated to provide a list of unique text - # items in each successive title. For data generated by the frequency - # response function this will generate a common prefix followed by a - # list of systems (e.g., "Step response for sys[1], sys[2]"). - # - - # Set the initial title for the data (unique system names, preserving order) - seen = set() - sysnames = [response.sysname for response in data \ - if not (response.sysname in seen or seen.add(response.sysname))] - if title is None: - if data[0].title is None: - title = "Bode plot for " + ", ".join(sysnames) - else: - title = data[0].title - - if fig is not None and isinstance(title, str): - # Get the current title, if it exists - old_title = None if fig._suptitle is None else fig._suptitle._text - new_title = title - - if old_title is not None: - # Find the common part of the titles - common_prefix = commonprefix([old_title, new_title]) - - # Back up to the last space - last_space = common_prefix.rfind(' ') - if last_space > 0: - common_prefix = common_prefix[:last_space] - common_len = len(common_prefix) - - # Add the new part of the title (usually the system name) - if old_title[common_len:] != new_title[common_len:]: - separator = ',' if len(common_prefix) > 0 else ';' - new_title = old_title + separator + new_title[common_len:] - - # Add the title - with plt.rc_context(rcParams): - fig.suptitle(new_title) - # # Label the axes (including header labels) # @@ -949,26 +911,16 @@ def gen_zero_centered_series(val_min, val_max, period): ax_mag.set_ylabel("\n" + ax_mag.get_ylabel()) ax_phase.set_ylabel("\n" + ax_phase.get_ylabel()) - # TODO: remove? - # Redraw the figure to get the proper locations for everything - # fig.tight_layout() + # Find the midpoint between the row axes (+ tight_layout) + _, ypos = _find_axes_center(fig, [ax_mag, ax_phase]) # Get the bounding box including the labels inv_transform = fig.transFigure.inverted() mag_bbox = inv_transform.transform( ax_mag.get_tightbbox(fig.canvas.get_renderer())) - phase_bbox = inv_transform.transform( - ax_phase.get_tightbbox(fig.canvas.get_renderer())) - - # Get the axes limits without labels for use in the y position - mag_bot = inv_transform.transform( - ax_mag.transAxes.transform((0, 0)))[1] - phase_top = inv_transform.transform( - ax_phase.transAxes.transform((0, 1)))[1] # Figure out location for the text (center left in figure frame) xpos = mag_bbox[0, 0] # left edge - ypos = (mag_bot + phase_top) / 2 # centered between axes # Put a centered label as text outside the box fig.text( @@ -981,6 +933,49 @@ def gen_zero_centered_series(val_min, val_max, period): f"To {data[0].output_labels[i]}\n" + ax_array[i, 0].get_ylabel()) + # + # Update the plot title (= figure suptitle) + # + # If plots are built up by multiple calls to plot() and the title is + # not given, then the title is updated to provide a list of unique text + # items in each successive title. For data generated by the frequency + # response function this will generate a common prefix followed by a + # list of systems (e.g., "Step response for sys[1], sys[2]"). + # + + # Set the initial title for the data (unique system names, preserving order) + seen = set() + sysnames = [response.sysname for response in data \ + if not (response.sysname in seen or seen.add(response.sysname))] + if title is None: + if data[0].title is None: + title = "Bode plot for " + ", ".join(sysnames) + else: + title = data[0].title + + if fig is not None and isinstance(title, str): + # Get the current title, if it exists + old_title = None if fig._suptitle is None else fig._suptitle._text + new_title = title + + if old_title is not None: + # Find the common part of the titles + common_prefix = commonprefix([old_title, new_title]) + + # Back up to the last space + last_space = common_prefix.rfind(' ') + if last_space > 0: + common_prefix = common_prefix[:last_space] + common_len = len(common_prefix) + + # Add the new part of the title (usually the system name) + if old_title[common_len:] != new_title[common_len:]: + separator = ',' if len(common_prefix) > 0 else ';' + new_title = old_title + separator + new_title[common_len:] + + # Add the title + suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) + # # Create legends # @@ -1671,6 +1666,8 @@ def nyquist_plot( 'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True) start_marker_size = config._get_param( 'nyquist', 'start_marker_size', kwargs, _nyquist_defaults, pop=True) + suptitle_frame = config._get_param( + 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) # Set line styles for the curves def _parse_linestyle(style_name, allow_false=False): @@ -1894,8 +1891,7 @@ def _parse_linestyle(style_name, allow_false=False): # Add the title if title is None: title = "Nyquist plot for " + ", ".join(labels) - with plt.rc_context(rcParams): - fig.suptitle(title) + suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) # Legacy return pocessing if plot is True or return_contour is not None: @@ -2285,6 +2281,8 @@ def singular_values_plot( 'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True) rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + suptitle_frame = config._get_param( + 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) # If argument was a singleton, turn it into a tuple data = data if isinstance(data, (list, tuple)) else (data,) @@ -2398,7 +2396,7 @@ def singular_values_plot( # Add a grid to the plot + labeling if grid: ax_sigma.grid(grid, which='both') - + ax_sigma.set_ylabel( "Singular Values [dB]" if dB else "Singular Values") ax_sigma.set_xlabel("Frequency [Hz]" if Hz else "Frequency [rad/sec]") @@ -2414,8 +2412,7 @@ def singular_values_plot( # Add the title if title is None: title = "Singular values for " + ", ".join(labels) - with plt.rc_context(rcParams): - fig.suptitle(title) + suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) # Legacy return processing if plot is not None: @@ -2755,6 +2752,7 @@ def _process_ax_keyword( return fig, axs + # # Utility functions to create nice looking labels (KLD 5/23/11) # diff --git a/control/nichols.py b/control/nichols.py index 1a5043cd4..dea8bc667 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -13,17 +13,18 @@ nichols.nichols_grid """ -import numpy as np import matplotlib.pyplot as plt import matplotlib.transforms +import numpy as np +from . import config from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults, \ - _get_line_labels + _get_line_labels, _process_ax_keyword from .lti import frequency_response +from .plotutil import suptitle from .statesp import StateSpace from .xferfcn import TransferFunction -from . import config __all__ = ['nichols_plot', 'nichols', 'nichols_grid'] @@ -34,7 +35,7 @@ def nichols_plot( - data, omega=None, *fmt, grid=None, title=None, + data, omega=None, *fmt, grid=None, title=None, ax=None, legend_loc='upper left', **kwargs): """Nichols plot for a system. @@ -67,7 +68,7 @@ def nichols_plot( """ # Get parameter values grid = config._get_param('nichols', 'grid', grid, True) - freqplot_rcParams = config._get_param( + rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) # If argument was a singleton, turn it into a list @@ -83,6 +84,8 @@ def nichols_plot( if any([resp.ninputs > 1 or resp.noutputs > 1 for resp in data]): raise NotImplementedError("MIMO Nichols plots not implemented") + fig, ax_nichols = _process_ax_keyword(ax, rcParams=rcParams, squeeze=True) + # Create a list of lines for the output out = np.empty(len(data), dtype=object) @@ -102,8 +105,7 @@ def nichols_plot( else f"Unknown-{idx_sys}" # Generate the plot - with plt.rc_context(freqplot_rcParams): - out[idx] = plt.plot(x, y, *fmt, label=sysname, **kwargs) + out[idx] = ax_nichols.plot(x, y, *fmt, label=sysname, **kwargs) # Label the plot axes plt.xlabel('Phase [deg]') @@ -117,19 +119,17 @@ def nichols_plot( nichols_grid() # List of systems that are included in this plot - ax_nichols = plt.gca() lines, labels = _get_line_labels(ax_nichols) # Add legend if there is more than one system plotted if len(labels) > 1 and legend_loc is not False: - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): ax_nichols.legend(lines, labels, loc=legend_loc) # Add the title if title is None: title = "Nichols plot for " + ", ".join(labels) - with plt.rc_context(freqplot_rcParams): - plt.suptitle(title) + suptitle(title, fig=fig, rcParams=rcParams) return out diff --git a/control/plotutil.py b/control/plotutil.py new file mode 100644 index 000000000..c192db55f --- /dev/null +++ b/control/plotutil.py @@ -0,0 +1,74 @@ +# plotutil.py - utility functions for plotting +# Richard M. Murray, 14 Jun 2024 +# +# Collection of functions that are used by various plotting functions. + +import matplotlib.pyplot as plt +import numpy as np + +from . import config + +__all__ = ['suptitle'] + + +def suptitle( + title, fig=None, frame='axes', **kwargs): + """Add a centered title to a figure. + + This is a wrapper for the matplotlib `suptitle` function, but by + setting ``frame`` to 'axes' (default) then the title is centered on the + midpoint of the axes in the figure, rather than the center of the + figure. This usually looks better (particularly with multi-panel + plots), though it takes longer to render. + + Parameters + ---------- + title : str + Title text. + fig : Figure, optional + Matplotlib figure. Defaults to current figure. + frame : str, optional + Coordinate frame to use for centering: 'axes' (default) or 'figure'. + **kwargs : :func:`matplotlib.pyplot.suptitle` keywords, optional + Additional keywords (passed to matplotlib). + + """ + rcParams = config._get_param('freqplot', 'rcParams', kwargs, pop=True) + + if fig is None: + fig = plt.gcf() + + if frame == 'figure': + with plt.rc_context(rcParams): + fig.suptitle(title, **kwargs) + + elif frame == 'axes': + # TODO: move common plotting params to 'ctrlplot' + rcParams = config._get_param('freqplot', 'rcParams', rcParams) + with plt.rc_context(rcParams): + plt.tight_layout() # Put the figure into proper layout + xc, _ = _find_axes_center(fig, fig.get_axes()) + + fig.suptitle(title, x=xc, **kwargs) + plt.tight_layout() # Update the layout + + else: + raise ValueError(f"unknown frame '{frame}'") + + +def _find_axes_center(fig, axs): + """Find the midpoint between axes in display coordinates. + + This function finds the middle of a plot as defined by a set of axes. + + """ + inv_transform = fig.transFigure.inverted() + xlim = ylim = [1, 0] + for ax in axs: + ll = inv_transform.transform(ax.transAxes.transform((0, 0))) + ur = inv_transform.transform(ax.transAxes.transform((1, 1))) + + xlim = [min(ll[0], xlim[0]), max(ur[0], xlim[1])] + ylim = [min(ll[1], ylim[0]), max(ur[1], ylim[1])] + + return (np.sum(xlim)/2, np.sum(ylim)/2) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index a13547bfa..4bc45c9f6 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -7,7 +7,7 @@ import matplotlib.pyplot as plt import numpy as np -from control.tests.conftest import slycotonly +from control.tests.conftest import slycotonly, editsdefaults pytestmark = pytest.mark.usefixtures("mplcleanup") # @@ -55,15 +55,19 @@ (True, True, None, 'row', True, False, False, False), (True, True, 'row', None, None, False, False, True), ]) +@pytest.mark.usefixtures("editsdefaults") def test_response_plots( sys, pltmag, pltphs, shrmag, shrphs, shrfrq, secsys, ovlout, ovlinp, clear=True): + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + # Save up the keyword arguments kwargs = dict( plot_magnitude=pltmag, plot_phase=pltphs, share_magnitude=shrmag, share_phase=shrphs, share_frequency=shrfrq, - overlay_outputs=ovlout, overlay_inputs=ovlinp + overlay_outputs=ovlout, overlay_inputs=ovlinp, ) # Create the response @@ -121,12 +125,12 @@ def test_response_plots( # Update the title so we can see what is going on fig = out[0, 0][0].axes.figure - fig.suptitle( + ct.suptitle( fig._suptitle._text + f" [{sys.noutputs}x{sys.ninputs}, pm={pltmag}, pp={pltphs}," f" sm={shrmag}, sp={shrphs}, sf={shrfrq}]", # TODO: ", " # f"oo={ovlout}, oi={ovlinp}, ss={secsys}]", # TODO: add back - fontsize='small') + frame='figure', fontsize='small') # Get rid of the figure to free up memory if clear: @@ -150,7 +154,11 @@ def test_manual_response_limits(): @pytest.mark.parametrize( "plt_fcn", [ct.bode_plot, ct.nichols_plot, ct.singular_values_plot]) +@pytest.mark.usefixtures("editsdefaults") def test_line_styles(plt_fcn): + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + # Define a couple of systems for testing sys1 = ct.tf([1], [1, 2, 1], name='sys1') sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') @@ -254,7 +262,11 @@ def test_gangof4_plots(savefigs=False): (ct.nyquist_response, ct.freqplot.NyquistResponseData), (ct.singular_values_response, ct.FrequencyResponseData), ]) +@pytest.mark.usefixtures("editsdefaults") def test_first_arg_listable(response_cmd, return_type): + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + sys = ct.rss(2, 1, 1) # If we pass a single system, should get back a single system @@ -286,7 +298,11 @@ def test_first_arg_listable(response_cmd, return_type): assert isinstance(result[0], return_type) +@pytest.mark.usefixtures("editsdefaults") def test_bode_share_options(): + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + # Default sharing should share along rows and cols for mag and phase lines = ct.bode_plot(manual_response) axs = ct.get_plot_axes(lines) @@ -345,7 +361,11 @@ def test_freqplot_plot_type(plot_type): assert lines.shape == (1, ) @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) +@pytest.mark.usefixtures("editsdefaults") def test_freqplot_omega_limits(plt_fcn): + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + # Utility function to check visible limits def _get_visible_limits(ax): xticks = np.array(ax.get_xticks()) @@ -396,10 +416,14 @@ def test_gangof4_trace_labels(): @pytest.mark.parametrize( "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) +@pytest.mark.usefixtures("editsdefaults") def test_freqplot_trace_labels(plt_fcn): sys1 = ct.rss(2, 1, 1, name='sys1') sys2 = ct.rss(3, 1, 1, name='sys2') + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + # Make sure default labels are as expected out = plt_fcn([sys1, sys2]) axs = ct.get_plot_axes(out) @@ -462,14 +486,20 @@ def test_freqplot_trace_labels(plt_fcn): plt.close() - @pytest.mark.parametrize( - "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) + "plt_fcn", [ + ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot, + ct.nichols_plot]) @pytest.mark.parametrize( "ninputs, noutputs", [(1, 1), (1, 2), (2, 1), (2, 3)]) +@pytest.mark.usefixtures("editsdefaults") def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): - if plt_fcn == ct.nyquist_plot and (ninputs != 1 or noutputs != 1): - pytest.skip("MIMO not implemented for Nyquist") + if plt_fcn in [ct.nyquist_plot, ct.nichols_plot] and \ + (ninputs != 1 or noutputs != 1): + pytest.skip("MIMO not implemented for Nyquist/Nichols") + + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') # System to use sys = ct.rss(4, ninputs, noutputs) @@ -493,6 +523,34 @@ def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) +def test_suptitle(): + sys = ct.rss(2, 2, 2) + + # Default location: center of axes + out = ct.bode_plot(sys) + assert plt.gcf()._suptitle._x != 0.5 + + # Try changing the the title + ct.suptitle("New title") + assert plt.gcf()._suptitle._text == "New title" + + # Change the location of the title + ct.suptitle("New title", frame='figure') + assert plt.gcf()._suptitle._x == 0.5 + + # Change the location of the title back + ct.suptitle("New title", frame='axes') + assert plt.gcf()._suptitle._x != 0.5 + + # Bad frame + with pytest.raises(ValueError, match="unknown"): + ct.suptitle("New title", frame='nowhere') + + # Bad keyword + with pytest.raises(AttributeError, match=".* no property 'unknown'"): + ct.suptitle("New title", unknown=None) + + @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) def test_freqplot_errors(plt_fcn): if plt_fcn == ct.bode_plot: diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index 79c556c0d..36477cb0d 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -21,6 +21,7 @@ # List of all of the test modules where kwarg unit tests are defined import control.tests.flatsys_test as flatsys_test import control.tests.frd_test as frd_test +import control.tests.freqplot_test as freqplot_test import control.tests.interconnect_test as interconnect_test import control.tests.optimal_test as optimal_test import control.tests.statefbk_test as statefbk_test @@ -269,6 +270,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'ss2io': test_unrecognized_kwargs, 'ss2tf': test_unrecognized_kwargs, 'summing_junction': interconnect_test.test_interconnect_exceptions, + 'suptitle': freqplot_test.test_suptitle, 'tf': test_unrecognized_kwargs, 'tf2io' : test_unrecognized_kwargs, 'tf2ss' : test_unrecognized_kwargs, From 28995f143be05c2316668ec76b9c3bd367559f53 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 15 Jun 2024 10:25:32 -0700 Subject: [PATCH 049/199] updated freqplot documentation + figures --- control/tests/freqplot_test.py | 3 +++ doc/control.rst | 1 + doc/freqplot-gangof4.png | Bin 41695 -> 41638 bytes doc/freqplot-mimo_bode-default.png | Bin 53147 -> 53368 bytes doc/freqplot-mimo_bode-magonly.png | Bin 48186 -> 48091 bytes doc/freqplot-mimo_svplot-default.png | Bin 32370 -> 33004 bytes doc/freqplot-nyquist-custom.png | Bin 43720 -> 44066 bytes doc/freqplot-nyquist-default.png | Bin 41758 -> 41581 bytes doc/freqplot-siso_bode-default.png | Bin 46693 -> 46492 bytes doc/freqplot-siso_bode-omega.png | Bin 44834 -> 45851 bytes doc/freqplot-siso_nichols-default.png | Bin 69964 -> 96394 bytes doc/plotting.rst | 2 ++ 12 files changed, 6 insertions(+) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 4bc45c9f6..41894c69b 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -610,6 +610,9 @@ def test_freqplot_errors(plt_fcn): for args in test_cases: test_response_plots(*args, ovlinp=False, ovlout=False, clear=False) + # Reset suptitle_frame to the default value + ct.reset_defaults() + # Define and run a selected set of interesting tests # TODO: TBD (see timeplot_test.py for format) diff --git a/doc/control.rst b/doc/control.rst index ce5073e07..efd643d8a 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -51,6 +51,7 @@ Frequency domain plotting gangof4_plot nichols_plot nichols_grid + suptitle Note: For plotting commands that create multiple axes on the same plot, the individual axes can be retrieved using the axes label (retrieved using the diff --git a/doc/freqplot-gangof4.png b/doc/freqplot-gangof4.png index 538284a0f2123c93792ef09c10d5172a4c192d96..f911e7207d5f0fadf23f6c40fa7a189f6c1665a8 100644 GIT binary patch literal 41638 zcmb@uby!qi`z}6!($X;?DJm);-5r92fFdp3-QChsBGM(Ph?I0UgLHRy4BdU!_<7&= ze9!s)t`paF{y>;<&)$2jz1H*G&wby|geuBQJ-{T#gg_tv;lZSmYr>d z5b%c>x*a1Q(qqIQX2u)$K7-%1*@+p1B8bC28wbflFc3#2k^LVZq*jobi5&Cv&Bvl5 zW}ZlKJG+tzW%Hqr_p$H@2#_O}i}hMjOY+5E`)6ill^FgZD9IQ7K#>X|SkiTKb8}rw zG#O~{@^E!^rFs1Lp396Kn$XR$();)CL$n0LereZ}*E;XC%+-5DCnsYG3pct?|I#SO zq=1cHT`q+&Q)thZn)K^0wgjq`=-;<@a9}m=fr_3{Q&L)8dcKIo)T(i8{zS}h&ns%} z5i>Kcg5U|!RD~6mi;Ihdq@;dJ0LDaxRq}+g#lTPH{Dr+eW@k?Hl26GK#5CEw)sCA4 zsJK+vK0ZEmM}7PoQ{@cD?t(+Z!v~|PIyDG#bHhEYiz9E z=uhPYP79Ljn;TZQL&Lc}lZYUpTJ}FZJsjmxXY)SPvo%is^50w2eQrZ1OHGz%svY!I z2cH)1^FMkSfG8hd1?|8_dKo-VCrUO zdCz@TyJCC#`=f3SVAQ`1V39rD-C+?_f=R0@D+v{Yn~w0j?`itp-rkHXET8L-hh#0M z%FN(t9=m2`Y1`vPCU$mqa(VB6|M>CjbTODZ=`iTQ!wyJ71Ndd^OkKG>{`uE0M(49x z7j|Z5=C$SJRssS7HEr#*=RTLmn?u~k_K_y@mrR!-Pk@xT4FUb%O9`i`Q zI9eb7xwm88ugg*#h(-Ear9gu<=iQ$gm%TpkyBim!>h5@Eb_hI}+FQ3Z=z+oR?k+sP zsDbTDJu@?N!sqU4Uc-!)mDRHA>+=WRw;eOLAHcfcy4hXpO;+7L5Bc;--=^W>X|j+P z-_gm5(Qxh?gK*BocjEyy} zt6||}ts3R#MipK&b#B8;HzQ7$$7Wp4a5cp2)YaEdQo77EztpblgqB|OoNsq(kIKwV3FS*>2UC;ORp2qx{cxY4C3|4c$3OJ2`px|UzECZQA zI59DCNg}(+Z$A{Y-!n5GRNlWgbQX?Cg^))`j+L4yIKwDiid%zmOK+~uO110VNBOEt zkM9jkPbc>#vInQ~yF`MERm^$B#>M@PWl&{na>gwvo z1}ds=-{OOZSC3da)*jWB2dg7@ zXLx7`3US_F5C!*4?Ur@@mK?8{G|Fo!Wj#C13ovV%dC0TK57_9vZp?+CyGRw_74;jz;% zaOXIwMa&0EQ-$TE{;5OV>6C@#$d9+>L%&N)$so?R*KW=$o%pCtaOL{U%txrcI};^Y zdA5m83r$F+JFO}CszqF2>eu>GyFr|5Ez>BN^ip@H7^#=RY&u4h68C}cUr^4zl%n@- zn={3xp~X>g!JcaNN7LgVKNt|l70nt<7*bMFI_TryTj)t-SIi$B*gpC3^QV}b8*g1* z9Rvb0(9Tpjdn^VPmbkaK5ae5S_Py~U9jQj|8@UVnYKnS~v!Fp!%VKYn{G zao};hISgB}vQf$(?fmnnd7;_gA_tdB07@^PvQU1Po&C7(aw~tpltb}FYy!Ip4wVO- z72^B-JN;Cpjg2xT8a7mMTaApzmPY7uBTJ*vzsAX8%f;pT+^%!g9{V9z58Q)_*Zy8! zUf%xcX<>YPbhO{wEXhSMYKieeEmrW1!^t@@L7oyuMn=YiLPOfxB*Li#$?2pb+d}Z^ z_QBSoVPx#d?C*x6C^mW}4F6PS2s_1qz@n&OpJ~N=B4^9ics9lgk~i0<)1M0qQ&aLg zTOQvO+)%0yH=vi???ryvCJJs9H*$IFfuYTG1ry?hf`WpQhKdSFM7+iVq+ow@f7D{-boX|dr|%fothX#_Yi+z8T3RC~ZpcQ481tq1bcL1w-dk?1r!k`* z^GWG971Q*so(WeePQ#3|cPYFMwqW#zMn)OGeqrx5-Zg9nxPYO8;aeYXr@G9Q)Z994 zkB#gVuCW?N4w|+FU=V^29BAl}zWmTMkReVR-(6zVO>%vEwHFc=*81D18}H%6Fp$Ae zARv~8dR?9B4SW+l2RRfRj0T@?oX_khAS49%!1feA`LvRf-B>Q>pzN3(C5{q}b9!p0 zuH*J|P4Cn^K5e9!Dg?vs^S5s_;S{_Ch|s@3qNKp-u5Sl|_Qr|3=kcIaZcGTZ&-LKX zv!kOU@z<}>ai|1BXvKpd5U{EuDfxq_1l>8*UV=4L>#|oETj8>&?YJ=@TAWV^@_Uv2 zDkj)HZ&Z=`Q+WNqd?9e$8o_`J{5FzJ5%Q{0sa}Rfar0n}lQ%RppyT4gc4uo@9XAw} zE&)Qb&|)o@3?pG8uj?BBu0Ty8>|Hl_=;!BG4&sH~RHKiuzP>*B4JFvL+W<_3OVZum zUfG00Su?dSK%Q6x4^Yg}kz;12=kBPaIn{wPsVkmK&yFP;WrU`mv zg8h=f@A48Aha!a2VobNm7b(K~bUNJ!0HN3N@*Tqp!dgXMM5Lt2aT*sOohz!VPp%00 zZ85kYwmiST=8t8Oy!S1-ENW#1bW^0Xao+&?r7*oXT!jj_vH-B+e;sG;p8I1<*!kSC<$FQ&g@CNIhwS4*@XXrSjYt1)&WMAdRN>Fwzo`57&%;ZTT(iXtIkFj(ZvrTs#!vo7-y`}?*j!ah_WeJ5~PCAFu!Atso^6z}q6 zJD7XU6$JrnwTobJOq%iOTlAb$TMcG8M+5JZX)C<-oyS)aYV{X~p{&>uuh2k7VM^wjv~^2C7J zb03L;nVH+F5+rOA5|R!CqyZB*Ij-Z=3rUD;W#Qhh+ciW>m4~Hy9!jqPm;mCL8b~>^ zuV0(myM3ANe*cUJbF9W`TZ2#6kd1Y;|-d-satb-b(R*jU!) zO7rHmjEtTj&ZDNLmS9Gfkkmb${r!8X$6kH>#nlx%2zz5C22!W+(tftA!Op%E-d4#d zs$Pu>%Re)-v+BV(loMd~pa$WqtE(lUg!D&ucXxK`h9B_bSkKj| z@0IodoCt9Hs3vMq|6a&bKRl@gXjU^?00*gL7Je$9Qws{NfG_vFrxJYYGiniB{!%S z@F^*ooMX{xUw*tKee}c;`Sokc=}H?Zb#=0?uCC9CiR#RtyyVTMigc$I3t4`h<3k$& zCd{k_th)iQYI>5naS=P2f3ME}A-Ar@>ieeAip zxdc9^7l((3Ec$Ke=NA`?8NpN^n{`>PvV#S8yL|hPw^_voFdWOdIx-9ljE&L!_$=X<(dYmaXGa2jAoemI1w!R> zZHGW80G}~8UbC&(^8#SteYr^wh9HvjE&~yeSE8l%Z_ehE`8NK<&}V^K8RC0>?&|8{ zkzBYj>$aZC1A@6fy>GwZ8O29`f69Gn4BE)2DtBLEV*`i3D;NN{fIwS3c8@O4_V$_- zPBzoJl zv^3Mn-$n)FU@t#t@aerF5c?3Ob|Y(T{SsU<_X3^2nEnX~3jtCwH%a+3AvKj<= zkhQAZPkuh%0gxOdY0~R@blSpx{2N&{HR$2dQO2nG8?(vDNv@q39&Ru%Z889gf~uVw z6wAR~T{0lilk0e2Jjs(n)AjlL&&oIh*q+f|Nh$ z`(zN#TEZZTpr^zrf(s!82nvdW9dSkkW7RW&L4)|O*X-h;oI&tZz1V;^`kxOf^}Vml zK^`3wgF;PB?fwac_8z1ODsE=>9F!ZhF_X8ITqo=SpOY+i3^wj5LO?lpEcZ$*L>-UwkG=`^_m)lb zq_ZY42>CUI(gm04CE@37T~qxkYHFR3VgTl9kJ(4$f23B4@!RDZ^iK)oov}J%sfmE( zG-otjW9H;j0efPvd1hl)om*k?Z2k*RqHNa0Bnf{WOd)(CQI_G0dlT)GPZ33sidSl$F z#bZP)Mf^*pm0o_eok(lV`1VQs2Ystnw4{V|>{4ym7+23iyZ?rI{AF`(JbA%5*#v7tZ z>eN+l$X7rfWG73zIe^~E)#5qC|Kv{kBg9BpTlV)O-NgHa++M&uMEV_Y?T_sUbdpe z)HG>z*z)8 z=l!vMh9xr=ztO1s;Ffyb)+CswiecqVgK)34W5Z+w2Uda)Z^;$Zoc_UgegpWg=TfD< zp|4DxsaV-)ID^Hzh{?hi20DTl2h~vO9+D+xa6)XTuw@KV2~Kc*E{V@3qfRtNzY>@V0T*A^O#moZ?-qTfvT(KPb+$Om zdSA=}Bq~fYZOUoe4nGFS2lC5>-=)={#9T@EE;G)@ zf9O~Y)TH;)*{uo4WQ#~Oe*>b@h?FYC!WBSZyNvtBwEp50AFL-QE_#r^143+bsFEc?roHd0uD4C|EF)?^s#Ps~kc=l|RChHr8iTx-~OjbwY2hNvk@nR-b zUM(;r-3_9(uv)%geYtT(NA!adSubmy`*nB2Ugrn<%GV}}7PWP_AUV8?kxheiw6*DO z4&}J+l#g$%_JY!7adGh(BV(J6&rM)Jz&()Fo95@K&CAIl-&FD!_xAP{Gzc|WI}|@; zh>Iqo-p{%7T+Pe>to+`OfxF9YRr3B%N6FGvaWBDv#y1cF*&_Wl!PbG7ZT++-yM&Y> zK2F#jrw$itznM_7>L?E@z`jjljTb=j1ob=;#HR7ax#0NsZ#K)BD*VL6M8&-K2oONR ztR4O)nM-e>$q%7aAWAID*&5=|(9lOCGn}j)x`w`zHUS-wuPU1~!>k(-*u=^jE2_xr zM=}|~*yO25tI8TFHOu9kkNSqjHT z&C9Q5IB*9ya3Un2&L;|xhxULT1*ne}FgIVv>OEYtb8_@RMYVr?+y+RS0r1W-kOZ1< zOgYF+Iqn#z?XJ2qa-u$J99VR@{djpmMz zd}%LF1k2`$#${DjU?oAb&~6C!zQnc&u?E^tytQ?t9L<{x1^0UGG8lGy*>PJ{VaEB+ zdn)hlINE3`JEIflcOGrA1+3OT(=()+2eTH=E$Pdh^_kp>KHQwGbmvgtC#9y2QZF@5 z?11b}m1D6R_aI8-H`54|4QNt8L{zvoVv#U5wFF{q=V)Groc>^lw!_9G z`?jEXQ{NGv96st^@D(Y|zNs~$SqaCr28qhPskFmF=f3XROy6^`48kJ2_3j0m@NEyq z-3_;f+?%*ec&d2?fQvP*)M!Y zf$E%vXO4@Kj2oSei!BM44T)+`u@n6F|K z?0R5n73S@bcX7vCOKUiMnjL+(3QhKexOXfb1=kqZ);6Jbt3Tv-C<^Q_xznd`SsMzB zOw}lm1d#R)tvq>Br`J1|x02A~lyyX&V*0;;F0eC4HXT`@*icS$BICZ4P!JHF#maOV zvORwMn1+P~Pd1LR8KCmd2?>B+#lCm%p4yENfV1H71vTr6xV!VsCeeO8f1(sbSz1qIiTlap)P8qK%J$;r)qBqT%yf?xtro1Ebjejy>~ zj5-Z7We^S>$NK}nJ!_Cn)!|$>v7agxYO=&Entb;5!Uye|9gSK)?qoX~`4>VCnL(Dh zh_|Z%%dH0a9JdDf*`v$ul!@*&OS0R#7vjEO^sI4FW&%CV(e3bR09r1g2Ztd2`|NJ; zOI)f?9>T&OX9yk`<5)+04|+8i`+&aow$!7Yyu|5Q+kZ8N!Lf&4Lxzdu=ApTEtcC+W;n*^&95f& zs7MU^f$W3sZ;dqVYu$?{buOqGBwX0Fkfob2JquwDoZx&E_f7LJ9MJ@Dq|*0dULU-E zvmUSVzGRWw5^+E9%{?3}_ij?&wYR zF5tbRKCdQC6=rzKE*ZW=j4lH*S6_+s)W;k0P+@IxZZ0|`>VdVR&YC{`$$6;V%>M^0 zr$D{JN0!&k0Xk%j60|tVo`MZveDihWqjcm;-CXZz7{5{9aNnP7%=vqr>kj<^HS%_x z4T816j0|j_bvxJ9b*1y2JW<>D68C8h_iO3r-v8bQf(Dk-ItF`u;M1kYU;~iLyL3#b zD;1XP{DYhgAXXv<4k2`A*i9bvE6;{(tLWN70xBd+@+HVc4S?Q%Dq#S5;@bf^q&5&U zfE0wyjwwwtzIYypz-m_Ci-snirokxF)dry=>t^&Er~__Oh^NGX`k5o7qeMMU!2ogr zvo^Ivr-F}@&r{cZbZbm&9i}w3jLEqGN8ci9g$Se-oeuRW3?1;P4u}k91d^pddItoP zur~YcPRY7HQsK;xw*Gjds^AVT&LnWg9VIlOE0;L1D5P6A`=I<5UEuQi_~gmrZT8hf zYVI01s5tC=&;h!Tq>_;VC}O3812Dd^`d-5l!0X!*50l~NB(YyxYM9RbwU}O%cS8xK z+WM7YT;Mpf>q0Z^Z)Ja1+kYKLVCd|yOUFW`L1L9gA*?RKq?oP5#(y2wu@aQj^$BC z6o*m9NHM5`aw^@2W+cU4`lR!$M0ecT4^-ea;p5z?Qt1`V=m#nZO!V#N)l&%QZt1}b zhT@n=xqfsobQ#mhJPLta3ldi~at4>k56Pc{+5nUpc<)--T`I)Ca{JfFM460H1<#38 ze#Ed-_Q_qWx5yw>=2qY1YRMfeteXcl1;IZ!1A^HrIFQADI@ zJWPvH>{ssRZWh4~h>Z(3#h;qcC?$5poVVe;lV8(4b&<+oX9?dX37VC@Yl$RXwo^D` zVX<}fo|RsSd;dx6%_BWWWHoWX)0cQ%Ib%avMBqR1S~NeS?T-oCL3|Zlv?bj!=n>CJ z>~eKNSpYaQ04O^Yw}}sFL1UGMiLfI)@6&`we03Pl=X|d&Q`@xVYz6 zS7BNY#4NcAEuK9+3%zI1#7%1Wtcp`81aE0(jIugt-A4e44uxui&<~fOruEHjzwqj= zHJhB3iEnavYr5HZ$!d=izJ+XdPo4r~y+1t)uxub-{nDzfP|*fFdq>1Wv{;!yz=vB- zSG>vAAb1pc-^E2zu9$SBW@}m$m9F4iB7}W97Pc7sz)Tn0^@oo|orey0r_o8#ey|4; zJL)SW$lPmb@z}nFjh_Vc3nTQtz&oK<ssncV^Q(0Ne+6Bdx(CIdJhFrleq=rGw8$T9b_DWX$P=Hj zNMAPf_v7m6>E)IIEsKt+-~g#aSy>rDJIbf<_<^#_p!wr{KxVzJ-{ByCz>(zB@jh?V z9CG}uD)(^nt?g1C=7>4x_4W1Vno7FaFVoz5THpeZ7y0Z>^`l0?)++1Bm8C_>8ts1f-o1VA9ue@ zZYnxHKW#T>MQXX*yFCL5UL^QH21?VB@Vq(a^%>+no;J`vC^1x!D3t}CjEC+TqAZy*bqWGUNuDsst6EbI=_~z~iJ$Y^v z%OUYo`*Z+!Rc|`h&yvTr~mzOyXgC;g{|V2H)&l8A02^gx0)dioTia zb#rP(uXY;=20A`87LMO#>Aig<4(G?eDA*!t^OBJ=9HG3N$yZQGOOZvF8eJ!AXIC1{5h;t{rx-4Fc}%W#`LNe z8rN+hspTb0N0XRXSY!}zPW^aq1fm8!^f{=~oZEab#j#5_Lr*nrBg z<0>NJX4onk9IFV#baBS+C_Y7c#^ZvXB~>0QmSJm}szW|X#m`Kn-=C8_;av!EamIAs zxFX!NonTrZV>eFlF8uMM2?#bHfv<^_&l!rG++Bu@<$}i#u&Dpvpe0s zT@r=55ru{atH5wOgj<7F63-E9!i^QxG+ZPR=h-NdIg{#*mg-Ht1QwC9-LoMGU)F_3 z1qD=0(66Ead&iRuM8UncAuGZ*XpOtUGo^(%NUFZ#R^xDFyMZ0ps@gyzaWL$sfF!a>s`?sej+fbZ; z&5)+)H6aKArq0t5N+_EnlqRNC*Kkzl*JZ6_e(P@i)j*}royLVmD%BM(rR0ZkssVN! z@_HmqzZoII0>=pmPZW(NF!< ziYeb9UrSEWgt5tf?FvvTAXrqm>s7KXm~zR}XltelvU&8isZ&mh$8!opWC z$Ue^akx*eH$%uTDKE`n>xpzLFxJ4guts{lPho+e9!X@u^-xe66puF~vwY^T1ht>BG z%BAq_ISOzqI5|35I$tp#fo(I)3`kQw5a19;5@Ejj|Kk+M+vO7`5mMwJnv){_CqhgjC|GoL7ZsPAY{pQe zFP719lL*Bpmj68_4ryOXTd|+l;@&D!>_c1Ie)(`pL1dYncl-S`vCfChW3p=1+*nNY zu@gM`)Hpkni~9f$uwI$|-GCv#iB^EH?w_aheF^wD#6a=`avnY@X)sWX<-@noB{LL9 zu5w1--HXhZU*^H7j89p%&Ovb+t|E8y6}4$f z6RfoZu1}GSs`|Svwv@@UA9G?w;|A+}jrhWrP+-BZ)>*IBl6;CXW5~vmMU^*Qu~;}r zx42js@S&sm%~SvI{K7D>69C8r`E0|To?&#;-{OYuL+V(){FG5R^sJ1|tU-^@&$)d*v0;R;<2^5FaaX0!EtFS+JVuuZG<8F7T0Yu-`QJakz70TZCXFFLLW#%-&`zJ5Nb;2qyk5YCr=(0 zfe^p1)jH+^VY}W}|7jq4!Ltewq8D8k(*nRKs7D|DQ%z*}B9I;zZg^q@EA(|XH7#bG zq8?jF8~C4pQ*UZhhxaWP@7kXr5B589(P%VD4d7qdbp?LojWl3O47UT)@Wp97duHG_ zrta^7-%?HdrlW2Jx`8sL22~O%umh6^iE6Q+a!%~-_NM(uq^>DNvJoiw6_X4g7VgFpjFCq1 zy5oUj0yoRjmMMZz?cF#RQvE0^^IZeT!>&>nt$>&GC(il|&&y+6c6UCul1+cs%xrep zme)H8_qNSvtq08NVSkJ{b?f%M{quumVActKWAj1D)btsGPX{i6rTM$tO5H0b4sw(U zSD^?bB4Ot-&j#G5PR)YdXNy1z(!SliCsfmDQI9sFso_K0H2`h$IkosVS;A03D3m=R zFR+3g)keO5pzZ>%Rtw%fL*SDsF@`tP0|#71WC7K%6fRF>cmAT@{q*i@1uAwn z7qfb11QIau)BpA5gRrFz451TWp2(^Je)N?QzcaiOSg8yzK>*eVI2sPzvn!gEZ^5ZR zHIDtwA<{}_&N~gk%_O)bPnPtEB@3m$*9VjuATp*x6Al~<;nq<|)^}Ytmg|!i;7t>R z`aEX<3C1S-2#kQbz*KM!T*0is_+AGfT1ZqB%;)xqS}sk1j4knEbr6`Whc$}o>*^5p zL{So1V!{Z6Qbxem@QqL8s<-Of9?M`6F1ts48R({b^D1DmmySz4FTnm$; za=VxAefj*Ue9DAwwRkX&-bArpZjq4JWz+aLX&5PUMGjv89zRgjJiiX0;3K6~*=Hd$ z7w}`OosVXr)8ageu{&qU;IEOo%&K}9tkB;DC6% z<55tAE9a{mQCvv2GPITf5R@`fz%TyTfa*vEzFVLH?o68rnlC3jGq zUkMHq3f+zK5Rr*F{h|=&wGKUs5byW4LaabnyBq27L%Tx2Cq{zfN@z{JFq6V?G}shQbCqPt10u?I4rcSOW*#%N>rC_lt0p)wJ%xQ#UXr-_7tr9cO` zDI_j;Bs$NfGg7bJ8I#N1c>hw9)!R|55t7S9C4?`$%doK(tftCDf$zh2i{8hULe=Ie zEzAxO|B*kxESNqg1bc@Jx~?;qsktpuXQyED_{I@4tWsMfol6utz}1<1112gi!$>!& zFJ6Y<>{DrZ42Iw%#T<6sK85ckYXh9;KLz%$Q>}XAV)TJTK28zmx9EkO07}b~?QuGK zdNiOpR)IV`0N4uD%0{n4v=JZRZfm;`7@#LWW1eqQkSbcr+l$gW8WvyJ(;M!37l0R< zJV8f+7M0di({1m0>4GXS!^3gSEF8_IUGD_E{-Ed&0w!u;Rb2w1Z)38Qp37?LvEvQJ z7Vso@H2I+*vhD)l14wK60$!8D>|7o6O@LM^DVm4c|4R_nKY9%9aogxDe%Jn?79|8C zTcOpKu4=~ejeW`KzAflyn5eR&TUuUzV+Oh{+Loh)BQXe{a;OXO^MlTh15^b6@%#60 z4L8ufu&DGzw9ICn3dAPg+FE|#&HDt*Dj62zg_)zlczH_CXN#{hw5zUsJc_xq(C=h> zMZzay9|cUz()nlU=~4)t9|>@obPsxapr%pJz6EQT0j%LV=N)oj^ZmeJ1!PfRTrc@? z4QecWLPCGg0VHG2r3p-aa>5Kmn81gQZy_GyU`h@5e|6^6&TbJ!cd;j%FdE&eR>JTK zy`*-sb=sdS;@r0TzGq4jQm3J-y;>P?ACdgtBH16!S4Dz=ZWI{kNHZ@`FST71JKme0 z&%8kxod7gwOJFrH7bLI-kw!(?`}X<*c((oJp0)zBuf-~8`q2fv0+4Y-A|l#B%3++_ zLumDCY9WA?%ij`z?ck&krGnttSWrE^M1y9&ya2R1*xIn5ie|yLqcPmVbIwS2v(EU( z*{|1iM==(52s4QpRCGZ@2Rb&k1Q5j$6*}nO(JT|;fXq0JYXQS+<4Jh|-P5P2prz*( zNDlvlstv55!9c_U9Yus7_kiGCbi(O*AfFC85n z(_9qj64~SiYOqPy+}{H_sAO#ua;?~Xj+m^Wj%=T;<3+x?%jBkNN4eLs7I#V z)7MtI!7e9Ux1{$xV?J>{w4JxLrPx1RJDPBR6IAKLALh2q=eHb?N+YI#oOhSzsebYp z4_Lu~jX!sg{c5a0le;<{tSGJoZl7CE*?a?ne{|b_NHgH<(*w5g&i;OGt0Q2g7tMLM zSbsKWVJnOXtRyc#ghW#2qy2sf+Z+%j*$x>t?=N0Mk*E6 z78NH2h|A7YASiGbmfFK|tq?9eU=MsuPd|O_y>`nM1)4q(x@r8k@$KlOq)&^j!L7Z$ z1!ESF^1}d?v--f7|54o{^y%f`J@q70J2%u^5{t?H;|tr1K_~22G>@7}|FA`d|MgjY zSINf*_UBp$gtG0tbiLD-bi=R2?{*eUspcV#LxZ4R;lEV1X$W%`sr5# zvYLaaNyD7aomc55=)VgI326eo5E!6AGVF|ggjmF4kev^MRl(+7T+W|p^$yyhu*J!j zs8yV$oSB>IP1(Hs+HH&5Sfl+okw@J6l4x{a%Zh`(QMlh902WRToOTjK7XEj2|L74i zFn_j#9y1obmU}BJD~JZ0a}eqdihORmGjB!(k$`PjTu~7ZL?}FR(8voi?lUT{gt~%9XvkRw5#?FO!zrB5(HbktwThSg<2)S*2UIYO%a08gMUz}H` z04cPB*3n{Mf$;^P%RY>3x;5&hrcSOTf9q8)Mo}oW^@`QyvV*l*S=Fr^W|A=AJ z62b)p8zUgtxcV6$%2w#KnADbjd)HOsZA>kJmY2k6u-U-$2TbFLd`dJzk-%CLX=< z)qrIL^0zMAp_c9A)vEOMf~S!C{ks7GZYKO5c}x^{mOgW{m<+@;hf*<(JbKU@ZGIb zBmy%{sB)JMPrk}*2L{Jq5n4dPL1_Xfg%2T=h*{@Hu@jT|sYG#KORt0h8w!fQp1NLm z<+5t((nKkj!WQ6d861FzA5+ldGyu3^LC5xBg_UNR)%4i$JsjXSarZQRh;2q4@FEpo zp+L~jK0+J*0(2nvj4SyS<({;JL^5TJK0H{NT1L3EO7chHA@*3V|E6%fFN^{L18G4e zUetKY2hwXWjLM^DaC9*O2>JT;Y?S-A(!4TdAS95nGIgN)QIo#FaKuXZ+(8E27Z1Wl z!~9wFD#FI9Da3Z|%Z;BP&nlCyu(0sozJ_o_Z$t+aRII-M_SJt6GX@{LV?wRD53ib- zJiG{qY`qP;_%%B-uLi2wtHV9V`08@yqcCeEC4PK1??Okcs%K&{Rf~) zNaSgZ9_Z*ngb)fX$~iz}(q6Nodb()`DRCR2+nczSBqP08RGq=&FYB9hua~M`W6E?* zF1*r2l=N5qs#l4Ut#@NlBi2^nKy!Mrj(%kur16_6AO`a_)cghEwedUp<6+&89pJzi zp&NW#Pf1ETz5-gNQ|v_Ez{N8ZMKTmQl2p#tYo@1bg~a|b_%emYR0D&wRY{EgwZ=1| zb5|Lc$G;|`tk$s(PWPAM ziEUx*uG{fboX4*Go>Bu(z$p7AEnD%avdzEU6FkTF_JLO$Fgl!6?i;k&lzc=KZ%$~l zC%31%aL*(kmfZfP*t_+{5!6Kc=JMVb;YAP0Hra;!O6SBIZV(8Oy}z1p{73s&(jczg zVukSA;Oo{5df$tSi@#|G^e-XW@g!%(N|yt-RsK-1jH?ZI@^ttH8`$h&I!QE7mV@_EXX{+%|KD3@X3=cGm+iYVut^l_38G zSC%x*H5%FQV?0=UUtGUQ|M@7R!4XzKK`1je2-cQZe_arE&n3IOcMG8 zkc(faw<5Te`gBL<`c0bV&UOPs7qmcvK#ibp9zB1KVQoEX z;{!UBhq*vkn1dnEtO<@p(qB{5d7^AbeP|!H_*WJMAbyPwGl1h>edodOd0u zRz~%+b(mWngehQKcLUTx0UR#C*Hn^W_1WWs!n;Q8w;*{7t)$1&}%vwSL)ZaP#@e?7!m-va(}g`|{r z&k7M@f5BRWC!51PYuo>;)r6(jx-7Q`m-OZy@W1>$V=)^+4x>naNc5iyw>J+H}r>gel z=Hoc4T1A_3{6kzmq+g)&xd&QpJ3t%hV6BVIHP`_NBFVnHUa)nrF$Z4~RiN~g2UCU< z@$Ms9%xY}vCyp?}1K^gXwvvYBKa_9P&5jXqK-f#FKj0+(;(JU1qvhgKSs}+4Gp}ik zz-MjN23G2YYU)TOm^^x3;4)90qpB2RT`fBg&iQT=vB2#P{`*aAebqPiDVO(b|F<>n z)H*OjAnp}mQhxjP?dcCL+5q|-igQJOgZNGsp!=3L zbVO0xyl_FV8Q_Zs5PoUIS06}uQ;3D!pF;CkE(p~^uot<*uE6D`ZcrPvxGie^%l3ciCrOx1m(233^*E7P0;Y5pXpaut*x%}u%qLqVA88;)B&q8= zy@C270=FQ39wwnFPK4MU<_TG9( zT`paLpXj2fCHFj3Tu)~_9r^9R2}SDsGX(|Y=x?Bt475>VfreBc~DA2;Cy*NQ}I;0Zq_SjhbSfNz71 z@zdYZ)8*RNhefj-sj=q*QO{A8xLAx7w9X~6M0Uw%XozGv{3&8h> z1E93TpU*(XnU~pjYd!}38`)A8kcR4Kt$!Y}+3F@htt31XI4-d*CZ}MaFX4Y-{P@_| zs8J9E-1}>_i@GQ%vHpMLN_l_*NXV0(a4m|GOFx z4}P=B>>!pcY5^fh|3arKwv4oiNkco-4lVxMgu@H@rurElx177BH*`$WY)lnGNJv=X zezK)u2ELjB&_Gha8kVb&4oGch8c;ujPHY%x`GCIz_F+?XAuXhAhKChj&CF}D+{_<) z+Ceqwg6V@_Er;q^ku%YsH2ycv&I26lzWx7~O-7{b5sD%+nHeEzS%tE>>`hk4$j(ZH z60$>9Hd&e3D@1m(S7zq_{Hpu8pWpNQJ^%mn`ya=B9QS=2m+ShD&-Zhl=llJ7ceF2s zK>--Au;i12QrB1>hP!V)Jlmcb)y z!s-E)@SD0aeG;9x=xgZjq&fOAUp}KGQU{C7)C;OGFP! zho$*;U;^WUH|nG?XppIj$cN<;y81d&OboYGU=y@>q}EUCRN*sxtfA$j+_)_x9#1i=%Pwh(Vn8UK~l#`eD977jMYsWcg6ex=3J1x?6%cnRlYH^l+_Ny!lM1GiLU7#Rx>MO;P zbiht^;x%0{ z#~4bP9g7y9{t-4aTbf@s7>wrj4tqM0YK6NaVxudF?ED{7Q{^4LAaY&L%8dvyF|6N_ zV-X@a;JjG^l20p)_38$YJkwMD7Frv34rahstT{{>+3>rLM~u7&N1UiC)J8*rS;ge$ zJ#oB_Zd2*qCWDg_ogdz%oJN!%@rTPidvnI+ICt=wUd$vuN3R{kB}VenHD7A{NgsWz zvAk(R2NzFCohZ4eG}lz#ngN5jD4TSdEVttq>}w^SmXak#__icSjWRX9i7^L#@En#U zR)3W_K9dkS=8sei3$uev=YMo@>Jor9d*7ND{_C#|rZBrB_j|EVNO8I%c%(n@?ACb? z*R%|fvJe!JyEZ{#n?fa;I9Vbg7VQwPCMNB?nv}ih)^Yb**yS7Byq`d<9DMQg39xO- z_Rb$_I=Q+I+-UxNrqA2*Ma$+Fa5^f7B~+pXJ*4R5XQC!FwJ$<-#$WZizjbj-s-Z)B zttiEvc=~GvmsE7JQ(%zIUxm?FXnp$p88t~Mt?(6@Y!CN!b*V!n@Lp7?)iz~xH^*ACpGCJQ`nG;*=m&|80__op04`1GNV=qf{#Udl_}f{lW&mm8xt zu59ICB^=xnH7%8wdU-5ofb-iQX>L(5Y+AL<=N30e+qrLZ%0uTu{n3+0RJmax*HIRt z9dsj2UFS$?yT&b~-bAqUr*P=O|~=f0x7z!(?Uae^zZmg^`C(6oRW-?+&RgY zcJu6CJ3n$3#~=N8kwd7ZG-P_*C%;G!HNgx0MW1I0WmiLF>qd_bf=#n)W(FAa&b(A1 z2?T*jI4NSZ1eHu;?NV_h8MEUFU(D9DjT)b$rADtdeYX#n$rTz)cs1fdkfKeQc)a2F z1COODXxit0w3lU(OSz5k9t~XHnR~!xb$>Q|UoltxfcP#Z+;D;5c_fS&rolilT335k zQeS5t0O9R>hDF-I8~P!uip|f##Cg)anDM$H4YVjOfCbuzU*m~7-<{>&6TukV?mfnEhW&r&R;BvizW0#`t?v9x+KImTxS`8e-u;_4PcW zb<)v!u9qZhUQE}HnWF_N_H@S{n>ZhK=>ktn4&%?ToBvtv^H^^w`Czqq;Kp-@WXvO# z*6vg_GPt_BkN4K=__o9Y9A4lTO1xr6MXy&sD3{#62R=q0ejPK;yva9oYOTT-42eMh zPDXilagL%LGYa(@r_CdZx*gL|bJ60L+g5PGeIvocyrWZyK&%^j8k-h5vzIqs&mS*f zWXW+tXygnPJ^m$lYw(?u`|;L&>D$<#peq*?5^C2kKLn`&$hIrGqxiO7k2qWB;#&+p zqH$d}gqh$)3pf3@U+tibnE0!3=O-L2w(D=hw7SqaM!QoTD!cgJ%r}J1Zf!nyhDYE< z9hIOUR2BG4%68U;Wc1P>m7v~PUy%PKhh>1zBw!PP!FXr>Y17m&1`0++YrAO$U9=XA zM*1AEgGNKC2JW2G6*NAiWEZAudOnX#q()BFOvmm_u{(rAWeW>Z3MgAPZRu;h^p+B{ zVm6nQ?wb)O^#{3>&`_ZfssLEWdxDEB=X{-(7fzsd7TEp83dPSd$)JuHx@h1?A{LW{ zuM06%^E@p}mmdx>gF?IxX-L~nHC|&)&Li!4Gt!%U1{B>WEPu-WIH@Z2PeG62GLhXr z>-QzFa$+WtZ>8Hk89%8I;TWpl(at|v!7bug z8rU0;0ts&&qO*cIhFNMfpjf6FL!1F-_*OZC$97W2ey#^6R=`pUL>gdzQd-~uZ7}M2 zRFoeKmnL#5mZj9yX@I!J(b&Z7BPSQYw)z7R+)sPxd@9qIM+zEEL?#};Y*FJWfN^1f zhG#uCS?KGh@d*hpr#h^R(gUS0Bnk=%24tIzDxC@y%>$qXZpoi1 zQ*!|_WeR(0&Yr-4!{)x2vJ=CaAu&0hBhP8`Rsq{x$nDIS=5xK4c0M0GXN~=`9W!Ji zBDLhx>9}!0Xixk^$Iw(;FEJwYb#~}|obsln4s_?UPV9K-azBmzS37pQH)WTc6%QubxpLdDjgLgZo=@_kb$Kv|X?sU8tpZ9)O6Ityhe5Rb zu`>2BXhivckW??lk}`|k5?-~S#99t4Ui_|r-`7dnVC%^a}B|HcIyDRVbu`ND)Gdu3V?Y2M60eRQ|_2#&cv`!d_1U)&Dr{sI6RL`iq%l5 zo-mj2;fLMuDXGQJKg9jWV!^7$gL)5JLDM32km^1J&f9RF9u|1va<|K^;=6R*{((;T zM@a;2S7T7-f_v)W-hWl*!gfZ@1OX2`jAh$|%NtadSQQRrMTLcZk!ihiib_ftMe4-9 zQcC|;js8QMFytTj1g8oKUCa@KjA3Z?CpvyI7R@LkHxGRL`_+N!YH73AAFP^%g972I zEOMizq!kvPhP&xw>pcl+d{d$^aX;{5)tK-zgPK8HTztILgJG(t#9D_A#4MxcMd~2{ zNHj1uCgcr$KOcDEwcF)0qJJvF+ox*AN<4^e*l}l>Act2RCC= zHhl)fZpi6)1)l0;-?Te#zuT;RO%C1b3-0^E_ZHt|W4LbL2E`uE&doMvZ zs~j2Lo3XhSN2rVDNBuQV7HXuLQh9M!SeP1aY*6XIAg}556?1rs)aOtz$zZaxv-1G- zF)}g|lwZ-??(Y(qd}7d#80!Ms|No|BUoX4s*CS)G0}JRv5uu<&%)foiX$j;gM2Hi= zy^92oO@y3#U@3z=_iUUzu*HDTlfUBNK~c`&w)F?IQk_r59|i6bE=MtG1Xh?A>`6Y9;s5g{q(ZNltr_^aLY6h4}W`^XL#JSz2mJGxROikC)Shc3+!=AYX< z^&@o7;LBd`xZ@1j~(XYk)UhCL=lBq5=b~b%$}<2C61BEA&=iV6cQhPOn?@}V-e`{k1EO26V2eX zzSdf^%FX7;C=DbUd*k4^E7K;_RQhD<@m~D(y4XJ$UnbvgLVzgcxUa2^blyZv^xdTf zS4{kzzGrZhpDi`W(U|Jv;dcn$8tU$FUmnkFt=YGor$IL3Vq-fIF9#khr!G4JB!yyo zcLkX@W`B#j)~X>iTRKI~p^huN<2V`cPc#&2s-ClIS}i^+j_r@BV{}5NF;UA))EF=Q zUA>2ktP*S9DCIxMn*nJ@-q?#r z$(liyGdWnOMCa$>{F@Pk9tzIv1!%uik@MLIErX94k{Mlf&uyW%Ro^ z{x`=JJ{>3a-Ahu0g)d&qkB+ZSKNfa7LqzC8dv-=R+M9QLkBFM&bn`fqv2#ukxOW~1 z)2rjZ2If#9X(4tOXs0P@98!JXHdXI&AZOXyO2qQfqE+VYuPM_N#~SMWWdTRw6~4E<9@y_rmnwHmjB%Wtk}Xs1+CB?+;64K85)g5jX5~5)1qM*6;q&)b51L>! zqM~o@T)~?%9XaWBX79P0^7)-TIP<3B$Q43+U~_>M1%7Sl+>6(lO?`4(v!}$8dNN|m zTTK)p{xxX*ajN5EZdeO)!hl+rf9;iQSY*T(^CMz>fuYSxsjJ9jG|`ff8~8f)-#brE zZrpXT;(;q*0a*|Pz?VnDUWi+0nJA^9_rsk(6Hq7a?)s#-MTAmi{hl!QT%C@;!=v62 zK`Iq+=J*Z07k=<$&q+B~b)3$gw?ikje*S2q?z=b{2soA*=bR@ik`;T2^xzFqB$3x> z{Hp&)c2s?lfy6xEm*(KYQ`{?!sqwp6ED^0vC&O{P}@IRx3C zuYSeYk87PD*H2^!A1j3w_!q%} zfweuUx4Uz7s$CufdtKJqSqOY+Yv3S8MDj3QKAjj<|8S02_PwwTj^~crk=djW$;nOY z5aAJ`+5Q&Fd3LdQ9j6mnJ%$&O(*5D0$*2|2>VLKfkX&5U$AhimqMp{4mOR@jSpy>@ zsZ?dX$@;(t01O97tdD7L+QW|?A+lH@vS^oVRkf2J2mYBo#`MaS8+?=qA1$QeZ9acS z!*W>R0zy(ky~IowE#ld8ovH9((x;pxaEllu*IBN7_MJZ3=DnOBFXKwB`ILyhebd>X z`OlOI=wl38$(HLqixAs;2f=;Aft<(!vg0m(8)ni9e-$`%k0x;HL0QXd-hb)ND?S{Q z4NSZd;vmQi(k$a$<}U&Z5z0YQ0Jb&(m9Ptp?Ux?pp+M!rTQLUkSzQ2=Z}tqle~9(+ zmSMt4>2qGZwv)Q6qcj5T09+i%buuAx*Zdv^u}LPNAqbw%?TbKL*3 zcN&=g2}Ph34NQKpetZIMTw~SIp=<8~px8e+E)9Jd`T=lFJ%y`lJ}P_JnVI^~?Lx%-XCcl^}^@^c;23NqP4&V`Ec z>JRkU8hu_!tNP2W_$liM%I|PH(eR#?p&{|csLmTpGOrP7_iq}=XN?--wXH3I5!tf4 z*{XHJ!^4>er4ehWB`<0(_A45x@sEe_|`9_X0pu7ZBw!!jD+NoBQ@YJ5$7GWEu(szDo~3 zU~3dxT!Si>kB<)+sWp2Ce_NDy&jTAcB`r-Kxbwiy%-W=p%)XlV<%xCT-{ilDTZ=yq zTqvsPI_sK4IrBHXxG16vj6iCV^J5_<9&4?ikurZ3Dvj&fCX0DZxw zuB52wIoF#Ga$0&s84AiAUZ9R?uSk2m5@bBDt~;S5OcY%ANNXcti>yMn7)>N}zj-41 z4mJA*oe&QZA)1QT)TcsoaY$GKshINFUSl(3z@-SXm6@|><5$=pbf=DC9;}>WONII7 z@9r$O^KJDx-9YqQ$m7(zMv);%>b;;MH zQks#sM=>2wmtX0<3JR0DP|f3=-jY75DNu`LubaxV{VN}=(OzEO(X@4y-Le~|wVJz+ zhOuB=<1=jcnQs>i^K-3?KmcK3&Qfwcj>)mVZ+$ftQ@~}7q}OsH zBVh?mJrJ~H2cIIF696GV#Df<&-XnB=vBD6{azHKJ{lBQLc=b!{#;)I=3!Y_|3-fR| zfiqBV$aAr&|*I4Mda@xAd?Ey6A2N+~lZL12by4RY6&A^9o5AN7rBl7U ziHPdzsF$DdNZq{M7<2t!AU4cjcs---tYIRT*>rgDc>eWm81JE{wg!rll(%*S{qLZ$ zR-Bz^hiwH0fP?uz6Jg{srv?{QI$k!Rat0safZ6s*5+=`wM-L*65 ztL{nOW}Cyu;x+yc)~founJh7V9GJPG3)t4FPqz=XEG@|4(^S4GC?-c95Mhm|9xBP3 ziM*a6Gor0jHT$=8M*?AwODS7yZNI29vMVR%C>7F4O+g;eu0Z^0l9O_Esn%lOeuG`P zQ>W=$H?JZO*sR(e`vFAL(JM~_u%2IlquCsb;HJSc!J>(sdaat;iafc5JXjbO3{F>w zyl?_oPAt<6ZNp8K9{B31AsVt-F1rR9*?&D|MZBJP+~4z&DPUaWCwc9Qb{T_T?JW2= zRaBK4D2^USAp}iiKqykRE4sJ1LI}e|md}H0foI?&9y+o5juk}?1#$vY$#L>d69ae^ ziC+u}38>K}pe^aMi|m^WQ8gnYbzN8Zy5@f>Lk!4Nx+1DGWIljbON!TZ+R7l31`+kk z2|LiQ+?{_Gnt1ofVcrZK3pL!*v?i3k$_j}s#{|cJaCgcKR~n>1*@P|Jw7O9}6sSd? z-j|a~8NX;zL+j-9G^~PF-hdLl-&C^4e4NFOY9Zued52p|nD!2m>`LtxV z>J+FR>Y;hG2F|KyO6RY2oqOK6o_dv_Uf00+@-z`jSCL0LCQRxlR$;10sa7M#_BMV) zwZ6t=$XLfj?&V){^6fR&Y>(D}A2U0~nx{>Dd;YtH_b}AXM|SOraStjy)GVR7c=IfB zvXof8AY2AZB#s2;3w(ZH%R|&KAdCelS`)zA5Cy1-P4U8DLg&ODk?_@NqTDV1nqhY* zuGewo*XjCoqON6U#h>Hj84RdM4puDNL7fKVD6E?4Z?JoS)vv0e(m;j2boOjbeIRBw5ey_cY;C-&hu7vwy~CgV=*0Vabu#KR)@B>$G1XHdt~fN8>X#C z6VhmS+!pvP4gJkZB9K8r^aP+9BxPiLE-t}3k06GVMV^MY$lz*hb5COo_4jw5(y^-c zdCJF`^z?p=_&eg_1BcP`Xtp2ulmNbYeGxl1ET||` zzT*!{HK(kIoar}YiPcMJ?i^ScALEj<-l+jX4e~U8@!}~Sqgz)-(-GN>eRk=ogq3n^ zRE%gE`L_`h?MSgrbGU&ziE07mB*`?Bx4GyL{ID3W;-?T*Na4AQz+QTGK@9~V0wLq$ zx^BOwqmd^TV8(+XlZYgOO@Sg=B!${_W&2UrYzUl8(qvKp2OE7S^=X|1h2t5&VoX)| z0=89ta`vS@fNq*nxlc}1-W)-yEJr9w>!$++h(ux23$lOxN--uOsFU2q!m&cJv}qZQ z*Vf$wc|@R8I(UEWLFM+T(GfR_8@Z>^-{2zMh+A44%yU$1o-@0|gXI}-w>06JZ zLnLm*(NO@2kJwwTI0C|@lr*H-qLyDZ_`BUE>z>`rz>QAc*kv+{1doa z74^o?PEpAg@#!0I;2P7tzS&v>t*FlzqrJ*N?>Pt?P_tCaZ>8aPU-RD#o*xVbA6<2u zCsk{WCN~#ajN%ZX^$tFxr+j_)c#L^^?nP3mP1#eLECJD=pZ;=(=|q)MtK1= zt`piMgThJ29jn$Fd|mKZBDor7sUcuKI6B;}KK3P3Q?>qV(8m2yJ=}rJ-|3~FtR{#K zeQIxea9J%lt}m=|*zgn983f9k@}{j}U#Hh**@c=lTgdZ>_EgB0?94;tujT)iA0oix z>#a3Hb9_8VyqJb{rQvJajDdwUU}L|9nT-B@e|{F|OyzHNok7*mZrk&^{=8A&WJ||t zf3hiR#!p|fgoi4aC}IBzHRGGesqbGP5bZ|5Inzy9Sjc?dD|-qbGU?QR4)~cnhM4^k z+5rXz2AGcNf!ne=Y+XG8fdj}D`U;U64%^TKV{C7l`MNvA-@Ki|2By)^_gp6;{9Twp zU-R)62|)sVP10Cr(k)}s3Kt(a*{zTh!MiJCG5Ndr6bX)XecUIRbhOSp76teO+F?Q* zng(LffVtX(0wdy{o*o;>$^qk_cJTajBmMST4k3qZY;guFxYZ(ndaFv+dxfZ4LJYrB zgG$e!=2qI_U!qz>4X6i;Ci)TOZZ&WT;_N zVO0%2p+-k7*Vneu>Z^s2`e${`=U?4qMvYJN#*t1gcnvQbiLiCvix=Wa#sK^Xhindm z=tZuc7B)wAU(A(JTK@`>lKL##&a(yYFi$>tOeHOCNCoAGL~a_G;I6CF4s%1ZYUz8i zga3!boStNdw`{ET1On3~1RFK6+w~I-o9U}-TS2p@mc1wPIib^~jz8oxAk_ul7z-Y# z(%nC@Cw(zP+#Q;gE-%#{^LAlo_oyY}QP4+AXaA`(X=Ax$-rP!M7>qezSG7M+OLJ|R z=wvY{gcZIGYZsF8=LEC#{(ND2Dd`j^&s(IzrP~hs)cS%`sqzs_f z8EJdg_hUg@U8#Zf((v(OQkp9IHRRM4PVDwaqU!iGH2_XBuN0sndQfOW7I~{RKK)C^ zJvM;nyJ#sXc|lOrC9U#E1&4Fq6i(1-(@*zHOVJcht*%y=6-KnDXR*nL zF4H}eWPJH`>GX;52>(4@*qPXf+z4?xYNX`F^wD2q%HEkyhL-HV?R(*sR zzPnaOkPX-GvNSyni14(jLmQ{#y4e?OpT3D|ifcx)Xy!!7HODZc4<- zY=zv~H{Mht!jICEdr9KuxQ`b|dZULnSWfsA7OFJ;MwV=eB{Z2*@44vjws`MMtX?rm z5(;*ZIUkrpaC`wz0`12?I$Eul77IziftA~6cfL3MB=G6;Awz{JQ~I@VBNg%-$4RBB z$9A2X=A{Qsux;M8CH3(zV?SnFMShg7M->q|dZ}S-4rfv|nAB_W^93orR}|od_(s;7 z^m)nO(IhaXB6IH(@k2X{tMTX+_EUjV4w$oZb3lPJ+_iIZYU0TKsJzmmEjY4>=(2e9rF9}|t!S(eGD|E9k(Ktu)UK^KVE}DPet?x0b)~SiLavV2sNB<@u zBwg?I@Y;tsJyd4GK?V3g)H~VR+S+7v&yJ+A6qm*5_~BHiVW8rnkFBNtD^Qb#xwxtu z!x?Zv>4uhTn}-|^Trbdiq*IPBxlY#S&@g=jRm#p~&XXvfeB;uFX`#@%Zx#BsTl%cf zT3+1`W3wrc@;@R9Exva*Fmg=4FK0MdBrUm=5NzA=4erP*4TX9=)GxhMrB+=hp|DDhF0!P7tpIg zSV2lQ9;ls-^`4z0!ZxO-BOr7sIp1aM%*R)DxTeDAAMk|wweSm)XyJKdr!~YtQ3NQ)cC>K__#Iao269 zrndrz`f6dMK^7uPV(!*%C9CQjW)E&PVyrjTC#iUzKs-7UpsFVS+7Ls^Y!4q>co91< zFR#l!cIW7D<%q^@+1kb?FF8|2vw5b1Yhr+0_<5_)If=fY_|4liDaxv0#B^UXaN>V$ zJvX%&$EwswjJ|NP>0G^?A&r=Fr`pk;aH8l@Q@S0U{}JsFiI&E%DRAL40d@Q~;rC{> zxY`01G})pwhb*wh9h`t5zPy;Bs>XPaL`osY_0)KZ&nyPuZfrEF6qz zZ+Vm6E^YN1XmqGQc_fI+#u8I{KfRg&igehyCPf;ZASc*ey3d8ub#rnr@n|PlRi3Qe zD_e>$ls!xiG1iab{)ASf3F%8uyfyyTDUT2bplUQcpp; z&-KoDv3%2B*2IMwp1rN5I#3;>P%N^+HNfe*obz+S@v2+V$ww6#F`MmVZm#1e>^Kz7&zzim1GJVm5DbQBoIqoLZwM?GYjE$P zA+76fRA)y=BajWe008p#{rmT-qYz`cb3Y>rruk^dq7s70Nf7dQU%ZzV^Ai{q2oV}Y z??_TCpfyU@J4BTrxy5lQ(>P=o!04Qu?LS;d_rAs|`LOlV-GC88?UHxiVr@MCocCZo zz%id#20L45dbEu^_j{jo!Ywmus?m@Cqe$ZAtER#?nLk7b3e6G`!B!ON26XiHxDW~O z&T8Z0q-=PrPmeJ+f8zGPY%7hfXEc4h!@_yelUDrhn3ud>)hy{Gj-|N&`1{xZvk7lW zvkUUx0|evH%;y24rMfAY)MeyD4LO1ofaZc=Jxgtv?z5}(;=Df%U8JjUPjVa1I?N;b^=Q6+Ly@Ex{VBY)poAY<}b6nWs?@p_zHm{9sXq9SV;rc!M>CtoP z3H`7}h$GWoh1LAco$oPc1b>2(Cs8%acDm)vRj{-|SkgI&EDBFZ2!l0CA3`y~w&@VD z_jue3Zx#A2`j8tXpi*@a%s>!?95qL=3J^#hmyKEV+g(>T`|bgL1F;PuKRO8xp;<_N zgVOHkO6h-@m7u%Nw2u`SmL_Is2i^3W_wL#lS?nbGpn>;cQMJ4*VVZ6n5M*XgjE_F% zMB`mB_+psa*6hjROQ)REtoT0LiWSWqLiOdD*CEfjt+Xqsi)sdgubOHV2tIxrK`9U( z+9UKq2p?5aR>suPSui#q8tNn+_#hfq2lN&M3_p1HH921}(S>eIL4Hs5)cx8; zKJNXa(*j^eOQA=cygzUTbRn)bEi0u&CwFI`wBvN-l|onldl#oc^Er_bS@$kO(&V|s z$E&ATRm-nUYsbwjBzjh7?zY~zSXUNtgGc0$q;OTGc34Y$Avdu+p)!A?v1fOLEKH(< zViGXd&y^H0P!Ow7pQ4(&Q@v-lqH%%vi`F}k2C>~=Y@>JjTcWn%ryW*devXy>^q^Bd z3hyL+;|TiFo<&LS;M$k_61@)&FyxlEE$#}Nv2A8+<}-TIMBo)S4eAj~Ov}A@R6g3o z&q6m*d5<>h^6x7FN zCm#k2;#=!#_vaO57-@V(xn6UdE+A;b2LdgC31S-_i(G!}P*Sq7d4N8`(NXDL;29cf zdLV|&BPv>Gd>i@2 z&A)F`jlU=seOg6cU z0*;&5H%0e*e&|JJ%*v6wbECJYb6#SVomW{^QPFwax3GC(00YpQ7kYU$FJ{)1T?LG6 z)Ktr%7|%D6e&{ELHI+cY%be%h0?ZV65u; z;=njiYfE?9j^u>!cy~=%vV6Lv-wBhkp4NE@@tRgXH}ogNW7 zxsemDCfMFH5Pza6*tBGxBJU2Xx4-`l@7`+RQ0eQ}eRW?JsElaT7#bSlpEw}}A+Au5 zW1xWc)d2gRXUH_S@(2=%0fADd%X3ytY$U^~or>yhwZkth^t;1MzWX|_b2GzL<2n+R zbt=qg*3UAc<`V2Pq4__`3ek397vo?H&`mmf; zn$3g7$l;XH$IG_v#aq0paj4y$oj&!hSGka3J7!T1rxHYoHZyTfL;Qql|ErOm?g&QvQ>-=&hp6ZTOe2V%DiA z-$zT@`ZAnAE0KYiYRr#ZDksU2n#5&!l_CmvA869&5V0+nLKVAdMsy=juGG9i$c=2hu`p6y9xX0Z0I2T4ME6%P= zBcv0M@m;!Ppq?ECid-;vbwDa$4aB1@ROZC8ZBULKXsG`qRODExjPw$yC3q27-oNHg z^jsbKTrkF{2cx;g2FB2G14NheJ0nf?fRm|yN$0JL;}F7%N)3TYKC){i18HqCm_atZ?k;a3vvNDp!1aT>P z&Ci+AUNtCR2h$W2aiT^|y{c>OBQW34af(s>*yQOdPfwxnAB7i!jq1ad(aKjq<^b{* z{rcLP-jm%8JtQBUw~>TSs0PU}L}W6!f(;` zqWYKsaqh~9;c-_#$C2g|C7)>DH!9b!~AIkAP;SQRkg|f8r)Rn ziy6Ktu~O(q$kFEY^vOLT#&Z-v2Y$$O(S`1gEyHtxgmx{wp5C~``s*{D#xGyKY#SR( z02KQN;YUC66eJGrBYo??(lY)s+s$MikE;0H2Ra7jtG+!x4muN+xMK)ol+-^t6N)J4 ztPU2LQyP4jS1|zx1yWZh!ea#iV%NWWarO^EGw*Sj<%go+g5ckY6Xu~yKD>Tc{Btl- z3^b%TsmfmssBdpu-UQ;Mg^MUM`Gbu+#2vFhoDD>|egd!}!W28^ldw?z&Bj!wOPD%- zmuF!nRTj5ct{4#X%MkVfwhASrSqtASV8qXln|J8?^Lz_c4br)U4qYSAu!4{fA?}Z> zm>}3jGIUOg@6;gNmc}0-EP){;0b|0O@CnU8qB^ON(%cZG#d%VKM{o!o42_IFKpZB- zAs`9rN4%^M2V$EK%o&VBVD+V zN`2Sr(T_H2yuNzze;lAt%Tt+uA0Vrx@3B~4Q3#LPgmThY2{}Bbe;uCYI_UUyL#p}J zjV@_~%xL>KtX8s8o)7;9A$*vT zzxv4F$|9K1_~R8KBUL z%;DA`h{d)$*mZya2MQRXh`|E2R(De3fql?}TP8LFOesvDa(Hmd7@LCOSXMd#TvyAB zEfTHupM{prJ%`cY2LQ(9>DBq=Z!HZM0C+D@mhkY+iT|x$!0ZY@brA58&gmyX^W1tvl`$^bOZnL(QDnphY4ClU{gF{5> z*IMtCJ=+>Z;uh4RBS0k&mB^L<|G^Z}#7Z zk=K1u1ib*h6D<={6Mp`9g%lMq79pE{Sd;TC%FFa>LX;Po1Tqz?Rf#S^bhy#xBycB< zM^tC6I3HAam^(MqdPp44Wq(h>k~p!ZPMAE#m6DSN>26OWHFB9aWFVmdxMG#P@4$4Cq@8Gzg!10LnM_TWTkUv*5Xm3qP zISm01&WY7~H41r4@H-lz3MoM;JoHg9~mb)qi5x)ZJo zFN&u*0OA9nu)td!bplvtecyhzeCaaYj<$H~0f6E*D=)pm^#yf@5X*wK|K_ z<~HHAVeO7HLpQB%o>yIN$3(T!4->>QET?HW^~vuf`@V%K2plb$4-`i)N#Is>@AiVp z^8;9{^bxf)C?x6MwBAD>bZ4PF%g~}vr-Wee)GYDmuy|jO?eyZ+)g0j2u%Jict22B- zr3%N`D>c5g3EJB*&WX7!0+TIL<&&Ughrfi`GavF>I{*qBnUd90WwH<;`TI|KsxDOq z-}aq0nOF)H_ZPaN{XqT0?Dg^+7Jx?IFK;| zN}K#FknYxh{&>{%7yz`h3={r)uGa$~7>7m%yv&}Q9y_7;BPyYS|j8rXNR zaB-19>^5vWvR|r!)C=)MrYZx3gaVS-$upwh=xL4!?(x}9ni05t8+mR|$+;($(wUL_ zAA~bPHwB5JE-K#K+LFC>>sfLpByHCFLQu~n%&##}+#z!Tx;o_%GVpo|C`R`kJyZ?M zLA5w4LAeLw4H+XNRtSOzW^e!m@S%It?joUc;6Bvr-7`bt32Bh3m>7k$YW&>2Yl^BZOwMi_GqXSG=Bphqy)y5})?ZR+a+Olc#_=c^n6r z1ODfKhxEwE%=`o-YuoS5WE=Be2$6I^NK>4*EcweGxcl1!gS{i;Lu#xB^C*D5C#9rd z1F1tbI^Dfd7-AqNg4XSth5UrIi1E{}Bm{bc`^~e=6L~xU7j|^RWu_wz9yN|d#gC_7 zstuAWTxDwBgG`%zh(+mDgG&gj1~ivQ&IIh60WDWROe>HFIo~e13qJ@B8l3*JyZj^c zn+r6lD9(41rF$B_F+|4j5p9L;~5C-_=-CHBpmV5krw z@+2iay*C@85ChvwjI9#gWncGL+3hU8p`)V$6_BLsVYR-LbAC~n?L4_87;qqWSt(f- z0j&Yq3!u|JcUYw%ECmw_E8pPrDT}Wka3GSixw%c6r_U| zJL$$TG(=7s+;rypL=ON!i@wh13DG;?0}^hIfd}@VngFr< z42wusAY_F=p{4H&V$q0}(p+>~(DAz+MiDvNEE@dbSzzL+)o{32LRvgDJRb6?6MYifz5&^h!KWZz3}BU;Hz7lRvRk-`-A~Yc1j{Mtyx1nwXPgPr7;( zVmR{PnLxgdU=K5&K&<$QfOsT|O^oot{@~3u;kcaL;Crr(G4TKpbo_AX3f3578*UQ> zEWhQ@_f`>Tdik$%MF=j3{8o|b>KwZrP7M-N%xTM-E}q?)7jk$Z7?CI%tY(j3f)EV* zzs&hrp~&7IEFkNqY^jEZi{W7&hyx!v0Gz`v+8aBtDL``A8c{EByM+Xf$?yD)0yjC` za|Dom^N_ZDuw&8{yO{O$hZdEpmA8i8bmzy2eJf{s^57Y~IY3eTQ_S8oM$wC*owi@{ z@50w1?0M*O;%#5&$5RhA%ajN}Jl8*BTUxDglkY zOFipe>67r0JjWO}bGJSlQkQ)-^p(57lj@@EV65-ZS*_S?7}|(Rbl-x?P<}SFY*2hv8H*Um(XcbhCv~dQ zIjw?r)7B##o^QM9tD_8hax`B^@En)kI_k5IQ14NhxBQjQ1e8V3OO@MWgTKQf>!}dg z<1af<3j8UFkJOSchRDC$3LNAqKVt2A; zvOgsMy?}04r0Mfl8mNvDLTGbE-k;Ysko4_Ga=nGmtDp=@-*pJC=h(Tqt~poozfs7F zXk=opA!nJAdfs)JjxuynrUc)mm>aPbDN05WwWVPU?cS!rpU;YYX_#t4Pve7nDawo`)-BMCCCDeQ zKksu0fM2+ROLc!dy2<3;A9bAF`d4rZq*2lWVFjrwU|kLzyt^bb^e1Nnwz;f)52B#pgt&T6!#9RD6)_Q#G{3_$erxy;TOTkH_oxVR+hmUI zri)&`H>Th_Mc5{Y0m}$Pw5Y-Cz&^90q5m&)`JS^OCTF2y$zOZ~WpK)$I$k~Jk5|vP z;3Y?qQd3{FgT0&bJ$3aH5)#9dRB7&hr1~V_EC+MDXSazA^ba9Ku*UYy#Y*e3Do~Xu zRt`YiPI!2Db4Lfock09+egAMY9F2`0G|6Zk*`ho!*=^{Y1bI&hu_gwvybYly^u8A2 z`!!7Bb?MD#4>)ho)G=nixR|Qc&FFhDD0nE>OQ9?OBQrH^4IO!oQ=sr{W;SXQRVg&S z+J)XeJnY`BKhNy8yt*zd-r4k{@yTccW3KDy%=*uEf6*9|U-zSUMLP?y-VW_YHd`f4 zkG9F_`eS;@2l4x?g@ep>FYN-TwFW)J3-p)hqh$KY2xeSvfg=#F7Jxcna@d z|9*oyMMg$uO2p;~UzVY%BY1mjb7SKyz&^lALq$t_ubeI+&vIA*ve)0fdnY%i>~^B_ z$}bvP+HgRDY;4#g$(3_8+lF5b?a@HFMlx>!nmIyx?GCo;NXBnDMWHLuoV^; zf3hk`&d4B;Prui19XP-qZ~l`LoHE43#0W~Xdw4hqnsgjmJ%y`92_jomzntSA8>Q{S z8)FA{KX%0D6nkp%{aLs)7tmMSAH2>U# zzWk=63gEeS&BS^jzDs!~o4NMEZrs%ve z<)`6=l+ob@RjhdbpO0T?nVWMU335Q||I#maq#qU@HuKiFuMa-x#tVoKSR5`n3G6n( zV9U{u)Nl`!+D)H;=1_QSY><~1#>UnbGhm^Y#t<=xkj?*k&ktPiqVuV|4Ez%WIvvPpeS`{k=w7c;Z6Qk&}P>hys}G6^2N zo)5vnM798BzPQpkXYW!eufr2}$zy-*2BLh2O7X&_OQ%5_UAeTG8Te*hv2|w1x%YF& zgiQb*gR>-@kIdr6jAezOTrt;Rw?*D~CFz6-`Wk9D7uB`Ej$me%Qg?)0v~dv6#M@VN zcPjxhA~`!70cx6X5 zsYC%xD#Vt6T`i7gD?6~$W7+PB&zeS zo08|oub4RF`!5sJB$Si%AYz*o_3iM>zyKkW&+N(yB}6ae;ggV1KvQ%QhS4n)S$1v8 z;zn!<+y*m*S9URfTwp9%4}Se~om?v5Rjf90lZFqi-l+L=m!3ubztINs_s#s@ZsLFY zZT8g`j$B<3#etk8abW8e#Gbr<{o2&>9w=f!Lw`x5xXs*wH2mivdbU~!X03BIV-NV2D8=^9JUfq$qd9xNYLHTymw@RLb%*@QN zJ-M+zpyR;=BvJ@)K{7sSz41~vAypvHxRU{L+v#w^kq%_ADa=!BmR4XN8ZIZZ(-m5|#G4{99gen)X?C_a1` zSX+Ay(R#sgP!Ruh4#`Y{t zImpSO^`@_{FLUo+1iz}XGBf-M*aYGwnl~0`$NZXj5DoW_4m@Hr?dJO~4q6DnKOff`X;Ge#_==5*NBLLIt~-L|k;^x4xYv5MQcSeBW|{(XA-?v)b|oowOgiZoszFt!Fp?;!nD z%{o&P(mCAO*=acpzHVl?{6S9zo^JR|jUW&XTV1sQA1DoU?O&^E$y7ZPYovD#c0_LE zTFx;U%;+6um ze*XSz;NlqlP&GSivJd%LM8kfury0;YAuJ?!j67*w@Dyi?(%XG&5zDxusMP8+d$zw^Xt2V=)*>aWX?CJ z7Yb|J+f5*E&V%GxIOL_8T=w?%av^4$^Is5|;I>`S9@U-4_aeKQqZZrf|l8g54{X5MR*aCS_|NpoAtl6^_TO5Gp z1u)k#Bmj?JJ^@@o3_PwCxZF_rZt8^OiV6wf1eYUlX96&7e7Kdp-ZL3EQ3$FkfD1w& zlvsTPPOW&DGQ7(_2i(qe7?{jBfr$XPWf*wtZ$HE(=Q3Z)gS`8g%sNQJ@pHuSo}9Xtn~l_$k=mmK8XFcIQqEa2ti^W8hXBXLtAGTk1_d z#{;iXaseLf2D;;8$r6<{5gVPPK*zH6$=P<5->YN?W(wfy$~h)^TcZ*;MgSeh!ced? zMnhl!IPeCUPGAZG#SL&3&&L&Ji*B}na=!4CI$@=YK2`+}8osdQE(PA@;|6q<->!4O zAa@0x8`sg*_378g)vHz=0bUute9JrFK0eosj1?Y!e&4EOT{a6=^Hle&|0L|hu~dDb zi}6$7h_+Wd;Kc zUg7PZ_zhnKU8FT#p4ywcxEnc{As!pKIM~>`*gP|)cQbQxer9jS&Bn{d$wF`G;^N>e z#LjN}A8%l@cd}p~G1{qvgJ3#5)N)23@QsjvQ9g<1JVPKpC_H*_U)3XJZPHznxZ@Ii z>u|&I4JzJMX$bPpO1jx*P|A9{-RiWYMVJ3Bj38N)5;^+m*DqC3OgF}-n8h(MhS&95v{FLtq&Q! z8wx)M2BJGUgg0x0Dk}vn%eBugPB#;U-PwB5#o65m3+Aw<2^si0FdR`cWulD<2?_H* ze*8G)5!7UO=6k&JC*OIoMtnnoXHgW~ zD{pplbJ9NV`$>i17{R5P^@{A`VB_JL2chE^?utc{u@|aMt!&5?4VPxgCww7g)#gxA zQW`3^);L%#YM>m*%F5zI*bHPpw)qyv(AC))>AT%Vw(l4J>C>G9|I0)F^5zejnWJy+ zKBYW6%U1O-ta4tYY^afrBptM(d-CMT+MtGk8Mk?tp>mwHFzUEQl&I>p-yFJ25MMdn`n3zUzUX$bFC&E5VQzbS zds1TJ)(~7ObDQ2rj~?Z_Z%!dsJ0JkTXV{2{PfN2qSgeO5Xho8;u84|ZVPkjqEUJJ1 z{@rG8slRJ_IvoyI0?{6=SM3tcY3?U{wB13c<>Mo=yS;7X=;&wzA>ZEXV|}V!>%nQF zaOAFP;C-W2tsfCrS^NC?m3BvJ@7-?x?y<|ui_OcCbpMO*YzFmRZktox#>U1Y^ReP~ zQI|WN>`A(87A>Lp7NPib=CZN0W;DWXrcZMec{g^)tcyzCzo-9d)=BENF(Jt3ePENV zdhanFB9>aP*(1%OGoICij7`_j!0(t5c}>W#uwtvjMWtG$<|P;Br=_sp+|Ez-y>>Zy z5j^BL`QC>cYhTChOk`uIjnMI^4Mn~7KJiv^yCaqs7dsYu(|aLudtvo77V9D+BS(?J zh$x1G#J_&sLT+Ny7D1wrtNLZL{xl|4+&`^us~KB?Eur+y8{+m6fBz$$a;rAKvu#;u@Fb=8gJOyLNID|I2g!-Ti&uW3Ti5;Z>hPNG%b_1Np*2A)k$s z*zw09?|X0M4mN5wzd*zx|MHzoa<-4u9Zq%LxOsClo>fQF%Ie;Dxi#5%rQ=Pw-?cTH zp|WRBzdFoHBA3Z+ZG@B0xD|uXWl7njHZ&Anr^NW0yu7?gj$*2Do<@;*TU(n#-ryIA zgM+i(-ctDlwvtkd-Y>4JLnTpBQC_QS>cd3_7StUj{8Jv8{l1%(^D#23rDJcIHISPw zndjMcVV@(88i&~{r*o0)Bgeao6ebH5L3lJm#jULm+-94vx%G-37DL!)4_YP3WEwGR z6q?Fq{T!+PeEEdvga#QPM3B@I+-Dk5&;o2nzhtRnm<9kk$rb%(Xghs4;v4!gh9ecE@pvS46Y6P`Z=1KidRnJDrn%r+Ni$1Hq&LzTX( z68U0-fAWrHtEz4M&$iKDe>Y{}<{qfLOyag6N4PEZF|;Qhqc+-2RwuEbn?#-O4JfS* zVdKuu&X%L;MR5+*xZCqt^icnOrW%F1qm~!Emxk8m+Vd6$rRKP>_OiVB z%a<>3707kkTY7@_eyY?9x!{PAG*NHLyh1M;5s%`j`Aji5^RqIsJXYPxxN^J6cWUbD zL&*tM>oY^89}!WP4m^9kF>#xpglKRP;Wh6C16pk-gwWUfGNd@jaVjq_PBZ!~qh?{> zd(21kI~=TOeHye{auHHhRefJpMqFQCk3hVT4E$<4PB{?#;spacJ3ivQN^V?oa-^8= z3HiJk7lqfs8fH*apW!j=hfqwS+rO}=1RUtq3w1H;^zoAv%nvN~4-Y#^Ogf^*MS7{G zZ*p;6fBEudd*#T8=2bMbIjDL|lQk8ioBeqj?4^eV+3I;OQ&Xb@QPGF6=-@z#X(D&; zTwcQ_oykhje=d_5n3KZv6DI8oepQ*vZl-}Ho4yv4}a)Z1I6s0&*|CWboPs3jx=0-K!IiWvD{?~N+-$M1OV zL;RZeq=Y}olrd@zBP18|5!k3Z)Q9^|+V`X|L9Ecy?LX`P@IuS;N@F+?6NhErd#^=1 z?Vosab8}G*8vfa}wIVJ{eNDelbxvrsoO}r9uq;V996bRYpmsRA-u_bYYyb@j6=Gv! zIazMrM9q|qm09db-G*d0x744hS?9$Y@c9MCpxt?9yJN~W{MUruPY#Dwt}WXT0RTZVd`}Mq9A*Nv(iw$>D5*PU z;fY3XcrT{9^J%9q_?b7>x+(8!=EZRD$ExzmH{6t*z)eND#l|imKz>susu9X@80^_3 zYE5cEr>jD#cz{;;@ov;#UU)}NvD4Edpip&WNQJ^G(<1`(i#oRFJNg0SpbfOOw;NB_ z`<6E!Y);1>tdEbctv#@@Vd3KDe);yTnFzKAGMZKIAt4Q-FJFuM78BF3ocmmBIGV<+ zwq&mA4G|IQ(}VSvnWmuV+0(<#BG>j`*Wre2w^$5{^y?hvS}|WQ2R(moWjih8AmlKE zfV%wH4?Wt~9V%U5lVPKQ|M`pAmeAox)0wjPX8=ts2S1aDh^%bJ3&ylG2BLC0%t+Mk z{9q1?h-g+4KM#h2Op55M^LBUHoT9-dV|xIVvBanaZEtnB_qRpS#Tme#=9R&`?ccAJ zh6KeTA|j$Hw2#+HdzJO|r!3PX29s*`SBHmdo{y`qHx3LCdDTtj`_ec$$tNkZk`!uLjay2CCT63@R}x>ATvlg9+!}41fe4`-2*so;#*zr<)B&TP^q{ z=G~M{>8I*Yl4apU8x5C!`MOot;rTf)bTvV?i%RISYdCkSJ>94|TFEQwYw-8?f%5fG zQBme_W71Y71PX%5_FS9g_*d3y*VPbYR52;0G*(ReS-(EBzV3u6z|4%@D|X64>%GQF zE$oIv=d*`>gBKvXj+|Mle5vYV>=X+0)kyhir+5YY2O~UKfp965aAudh_h~j~^Hl^6{Z=xtV zaau_8l~BA?R8%;8Ph3jHcah5rhzO7*I+PSCxN8?78YrdVv0^9RJly(T$u}yAY+psL zok9}VHRJ=9kU-#33j{!_gx%AAd;LAY`8#*-Hf>DSAg}liG1eX82(Lre)@|vqr-UYR z3=GEKdV0)}hq0cl=6&7yr>nO&c7J&wv<}uWzpU(6<#YrIv!ihuH@z@#0Qm}kOls#JrC7ov)?+P>xiYZ z=keE38l&Sf#YpD1h;bZrdwu)y$mPXhgHT0a?xrZ!>Bf)F&Qb1Ok(TD><|ug0(>ob} zkK3@GdkN5jh57jwBwkPRJ9%c#K|V5CYVjAhmzsAcCM1wqPuGi{&II9;n?yk$?$Gq#Aed7WXt%t6mEi!cr?13B zcEWqJ4jJxkYDK#DK#?G<5eOy-e=pw{JaS(~2JPZ# z9v_E->nde58lB$}!_S{TIb2s%OCn_^x`3jDkQw;AMDq`h(}s;2MzbXn3ovT-crhK_ z1PAC=J21K^Y*q}%Hx*M}@@qE;ByWYWp%DGUYpe0;|B~M143z&nzL^U_7SF$TVodO| z4-prKR%SJbh4tc!pP%2>?yeN<-Bz~i46Wf$(j`9zqXh&fZY`$!fB5+EDp1IWN=ijU zMT1r}DtNMW_zbP}AAjZ$NTNzevJ_kN(n4890Uja=G-eyB*bETgL@qO|cYL-HfCFYr zd&RgnfbuAa09b>vk8yT(hI|gXHEy`bOa=Q9nW>icPrRn{U@v+=l_DS_3IZ%5>-#`5 z3{~)p(xb< zGek^^51`P}9DNV})yHTksW4LI%mmd*SyeTdf7*u#K|o4szSg+AyPGk*3iRDbfry0U z1@Mh|w{Db_*jRkXoa)v!Wo2beheb*346VoEgE_x{|E9ln>niNs_Tq2f9*+BR%();p z#|wcN?u#iX*RV-|5sd-B?9RHz8$=?;{?Tiez#Y=19)^R8zn<4=4hT$ctnIG0E8)zd0Y@7Y^LjJU_rh- z$qncJfINUUz^;4u?hz0Y1_H(~8U12L&SM!j(sm`joVNP-!Nc|xV4dSBRfdu^RnQn3;S` zipk7uY%&mz(Z0{iS(bHlkI74T6yV z-wTu)!x9L2bms!qPM| zV`OG!HPflEGXpKe^{ah!>At+>#X|OfT-o})ee-9NNklTXiYa^=%F2xhj<<4uw(8s7 z#uCcUfBaQ}(Vc!mYURvpFm%A`f;rOj+sU)wY1O_hKe5H;ml2`V+;hqZZvKg%wmR2K zrxe(Y@DEa^6DVUJ3Ue~r7k-c3IF-oRpY-#B&nQfyR)s9dkM8!A?Z zU$0~gy6kXr-`O)ljPj~??AljvIF@0wx}@Z>U-`~FIGe#9J0oewNu0(dBK$#A#uck= ztl{Z)cc6kzb=UmH1lOL`Iu}BguN@GK>f0R?cM@!35uhUKh0M z2TEKD!l0-f&WUd5$C=DdT3yH@eB>1!R@q z7`QIEV;(iz>Hl+U)RPv+3&)Zw7(d75MMH&bs?VD=>h^LT!+A3bbtb*$$w{f%&GYHI zzS_A=HsZPEg4)+uL{hm6zLgOdTp|oW2c&`xk+a% zA!&_jdb_7|m167Q5rtEyV3dtfV`99^-I2k*dxnx>qVR9{2erodB0lHV&v(5C$BUSX ziv8@@jGtg%*BXBzUYa95)-ER}*Y(4Hyx)bioc^V&$1<7QzE{cn>dd!ZKW&}MutrLz zOXKF7`uA`1_-kKNuq|AOR7a7gF1W%+v$&QQz`j5_pE}KMxHzhdkWekYa+%O~O^fLg zXl;&`S#_o}dG)#XHKs2STi@$(SSY5y=O5<0^+G-+l49gjlFn8x!_q`PC9Fh(Cn=pz z=93;XaX9^%9`WQOqZJA5m>-|3$U)1Lk8Yz~m=VC+m2E>H_^7*D2R}G@6DL8M;{3oJ z5bbd=YT1x%oS21BEt`SjE32qHhoT{wH#oO7+hR->E|B>7 z`iR>Ns#rhQtD^do;W_-Njk9}_9$VDyP%vYd>{>eT_jvFwg69PAdSmm2uq%(3NIsIi z8T)VqdGui&Y)DKb*9^g@!$Tm6I1)|+kB!v5XUr~Chmx=(@38QhvZEBM7f-#@KK`qh%*BnvwPOeWR37Rk3VGWkMG8D5M=E7 zQ9v^1&yIITij7dS6_SjjI(vINx{|n&85D|BzE&w3Bsr-kPYB1p+F~OxFfbZHBWk@T zR>GiGMVd6+8Ru6=oW%blPG33V&4h7EgE~%h;lUprJe-nQIh^QcG5vbYeVko%)E%P* zHodV?O=;N2BW_$&rFM~D#!r!b3~0e1qGDp&Kda?!f!aA7js&-m{+}o-2Z&!Bp<-fU zK79OG+R%{xmlZEUqCov72S;C1*6ry272G@hS19;@C>LIfU@lYEu*@jzo0WOSxbuth zH;D#)gQkfOiM0#v!s6nez!45cp$ZI%qIeW#J)!5`?S~bsR$t%2OO2_iQrp%$y!j{G zBql66O2}%K*k+3s06+^BQG0Q+THY)#Cs%Ac&i64VM=C?v5O}mED25;-27-cW0+K`} zFs~BpVYaRm!P2HPUP@dZ%4o+LuNljp$&=j(-b!_}lwP*yT`j1Up4N6~XzfwS{Qeg0 z)7Iy;RrZ6MYDynJDdr5U#Hr&@SL-5@6x_J$?W%Ql2drExm0Oz*CD}~5@aMgQ&JSrJ z8kZfjCbo~{f><^AKQ2CX5dnPx=SJkq%R_=N{({5y_4w{5q^ldO;CZD{AJ`zB9V zCwm9et{Oj{zVWd(K5p)CLYZ0=^W(P1icU&icmHb%7GgTOSRf!&>?m~Ne$+tVB=z;v z9MeGoxu2mtvtBXXKA)}Eq(WdHh|Ne>*8bi-g9h^6YF88HrWw9(pV|Z&l z(CqOWWzmj25Mo?t2KW-on0G`e-Z)9zwb(kmdPNk4J!yoIub}#|3l5K=o2-{m7vMLpOg zZgiHIjb62+{fXn0gu_J}w@vMVs2X-6py1o>@OGn}$xni!@fo zTmCw~l5_uglv?8zeH4u{JqYcHwBbiKW>4?Mo_mUDpKyr`NaIiWSu2In^p^%;G8`Df zLLZV?qc7I!`+)ew{U=*HKs z;)13OrQx#VtG#0~%6s*^7oeAc$iZnn#B%G_Eu>~7(t8v5#QppCHLIK$k>Um9u^YU+ zB*17(j(nFIT#V&wikwE$?gpv!6o0Crow}Z0^Kb=91`?of2bjMTbiNI}Oao??yLT~x zN_>Mv2~9C1H+%5lfnoPM-gYVpY-tO`N$Ia$^|%W~6|$Uk7Y zZ-Id2l(0ZBM)V-w#bj~^ELmkVT~Vm4+)s|8guD8x0$gzQRhB1!e|O|@V+71LSoY2DT^v7_ z)%x}P0qJE=x`LiI+tLmy0N--K>Z@xbn_AztXO_H(-ihm7$>!78l}-r2bmZ>Ev&PO! zVOaN~xUe5)EQtgt+=|)HXh@aW$ML+o_)yB3F{uwuouj&4# zyse^UWx-fV=2%t@?alc1N4Zn*FgEMkQoQom6;}4m9|>7lIu8x8<096faYbn`IKF>g zyYH@(aR1?dA{QqE@vZp)&IiY*xI*}Ew;Q)tXC56WlU@;WB7dUf{ejOytFmA`MRau} zrM^w=KlsM<6W_>OI8oQ+X?)1s$Ek`wY6+@LPodU+zsfEXd$w2!r4X{Yy{+ zcYnj_9qOGYJm`HpRkvdjxo6?&Jfb0a`=+GHe$yQAMtI<&nq_?R;IWStQ-r=tAC z|BweB^tdtIZnAEaHv;caErnth5ZdBOOcHDzKfG(^(#kLAVx5nVmVfgqY)pP>+WWO& ziTA#)(|FaThl5W34xALHTyXW26sa4ry?4fDY=1zBK*)bhm$vc?|HgPDnBayPu+vs) z99)Z~>Dw58v_;d#JgDCa1&v4}e~1jI9zdIA>ZaO~D|rF-w!$LlwVd^+w|$++ziSL? zUUXb@DX{QILeP>>Jc#L1u~w5Tw};!~7_vtANC;#`u6=Kfv+- zHb+=!)r4e%cKc$J9L~y!y$(d@6*JbkpAl2M6Jk9^*?P+5{{fJ#sP9KxhPBgZNZW-M(+Lwhj zQyJEXq?q-mU`vEThD{09QAei6)=IC%6IFHBN5!tiS1?)O=e)})8QpLs$%iyzX1C%8&Mn_`Ds&1wys@c-cS!8E*qH%6@IC;H490VIw*X9T@Gg01S z0xL%fKDBjq83W6$YR`o)<;g8m0g}?Jjjh{d77*!nK=-tt8zn)2f>p8D$)_C8T~~D;w6!iVf4Q5I41@& zuaTpsP5Mx-$U%O@C?Pe$>AZZ{bXt>#=8wI(7GNRU-YC_6Q+YOADcdzP9lhmv;(C6y zpv0};>Tt-W@o}nu*+lYcxw28m_z$J-KVqz}ZR~70`Aa!J^UH z(J|~5O(U!x{FBI7d|mRa#6_0{F%$Gr^&S4hu-E;|xE{|=wa$DCR(cPtiG=5y0t+5z zdv3>&10}f-Ne}&q?HP0Dw&M*pUPKC?EhTh}QS9wEwP!(@9QkTX1#NXS=!ZgU?E_dp zpo@zxDJ4~6(VM1S1WoOiVkis;&Kidfd$#89j{|}QD1aT{7l=RamMwaY+9Lc~$V9v0 zlgvQ*vxP`>^siSCweLJgwM9i~U!8TZZlHQ>&q-gsdX=7qrHdTt7fBIxZa1w4XGau` zFe#H#S}TZs#irk{<52Q^n)3Y@z}6{HM}05b^k}_AH{Ri^Y!fdjw9_4xtWgVF=ztw< z4@%P#@g7iIQ%TNCZcqljq|htsA@a>!{Fm6n5!=7BUsviXqtOY*o@!fjes$)4y==8` zel(+gv^_$i+r!?LaLP8{gz{wXjzHk)qk`_L*321D__u#B7a8s@bXPjgqX8rFyF7PK z5q8Ierb}7daa%`+$-&wvQkg{S z=4Hpn53CB`qI4>CDnFay`0@h9MEj=}iuacT$H%`aDw$AG4}Lp5?E0NyL48G(!rZm* zX7lh)?ZKkch>I2)9Yu@$Ed3$4uWU$%~Y+IBRVp&1%y$X z*8n@uqAqzgp5_gL2wM8+0#OWp21hOfk*5x1vx8IC&CXf3b= zU&=pF$f$2S*HzazfBltJ3QcsruPPj+w*!;v3`L@WAcPbv#7Q*N;LELTi}Z&9w|WpE z!NK&=X;JmZ9F&p@H)Pc`NGrQ&Yf_uXw4%ySXps_z_eF6FR&X7Ta|-S zPA=$l%e?#D3-D2akL>xPC!kUKJ9jXEaI}JLfD;t^kJ;HDKyT+eX94p`I|z)RCBJ<2 zN;2VDnCUW3<7ZO}E_uNR0I(;u@bQHN4V{PdvvXy9BdxhO=%w3?HhJ;BzfeP`M-TC1 zz%kLLoUw1|EH}`daoj7 z#TPrGN46VFca#37I2Y82$^!8S!c-I<8i2BG;;4zB79`T1a~?;|E5BXk$kGtdr=T%8 zSS*vK!Far=U>nnez*1UNurOh1BA5EX%R6-8MV=Eu@=aZhb!Qea(SP@9>=fyX#0A%! zJ6byS8d#m2Zru#3E4Us4GO;-uF*)1;q)6Pnc-;blg4}yY;H!yCN(u+bdj@$I(D-U& zi*ExEKWEcJ3b;)K9}N$`Y#>vE`;iMKTTl<;I-+kWaL*WzOqE)3awg7TdwQ9ljzX#^ z8z-m*2cu+CAKIw3{^_HDfs?w;OQ(>~hMojlyFuRH>7FE?tPM(G+9q@2aylikvPX zmlqR1%&0${?e^z-ARBQRaH-bow$d@0X<=T3l1Zm@b@ z8#0Q)P4(^1j`ldhs%>KZN57+eckq+$07Dm4Zgm-6P=*m~3_*(P^bavLvN zItT~rZ(?=s-?`II-%$Bw#p2OmFP3e~Vc*`%-7w63*-&MFmslK$boKjTmOIn?dJL`> zo%LqzvNetZ>9Q_i>|e#E=+bCwCr?OqoU-_s+@^1gy_Tpy+mWB&1m6@tvU>$q9`cs2 z_R}%Yw~~wcKsXow+*fqF>33n`$+6MdtCUDuR&LHr|M}SD8$Z=lv)lIPoPH;uf)F(` zJB!l(xkq2^a|!srx5OfrF7d}Fr(fT{i~goPJzyd{@9?)Pp20^|J*+e;YYCTt zr4|%pl$^S&x&ui22*gwE-cR}V@HqS0Z8X2rb^f*K27|RZOvwZ!=4CWo*1J;JPL2eN zv%}m~7;0Wdt0@;42m3syyE-c9lE{t?(eCvvS#R#G(Rv*6z3R{Y#exB-=rMWKe;)3W zT&!?R;LJA;9?{HHCNs33J34zIg0eqcnVJ%tu{Zz5nWTD+>zd@FyDY(zZF8wZ(_mdGbbvDgJ` z|A>eP(EpjB*xTqQsh>*Q3P53srD>W8JSSXQ#HFJszTCVOMfvQq{u;sMbqCk8SLsi; z&inJ=c4l)ryypArMO`ox*-(Ugh7J6qbD!oIgC`gR6Z5{lJ}uIk1o$sPk0^uWg z-*Mcw(HfSoiWXK4A#+{06)xld(7pW^$wcOgb#<@%NXVQnoBljk>AK{kSfyRNx#UDz zE{Jh*w!o3&(;K}K#$<0F3Kr38P{O`+ia%2G#Q%B}>!?;87=6K6I9B9d=kJg=H%A#J z-?3!WUw%P;sS+0@ToX)nIYO#;RY;nL({4A#IgKmPkD}o&_;O!F%FPzpAh& z7YFM)HqsHk@<58$b#DFj0plViZD=7Q8=@>MIIKEfiEA|ZpnVrzw6cEUH+51|&`E#G z-+3TutSCdkxrO!o+26*U$5Y!5)kH?y9vw6v4o1Age9^EvGVCpX|CElWEnWU-tmReJ z$K&s+d?WMzq09D!?;1o;NR_InHzy}4UW9(emFKt`6;f=)@F5l?s z>51D8rCOl))=(xG2H#TmEN*pYeHN6Ab>(<(LeyV_og-Bd$k0Q7H@Rg9=iTY5LjHzM z;#CLg4shF2cTo5j`3W+=m1{#3gTGf@OY6Iwy!IEbgYs(73K?n?HZt&dh%@=zX( zoJc`~?8fT(7~R^+zVUt6yKP?1gM1dY)5fpm8^KW|QDHZEHHV+vYFd7ItlZjTy?nT@ z!rp*c{(Zwb}2RO7qb0YU*sM6&_JZCUVDnFHC(?B`KEi z&4@F?y1junmpdkBUB=FlF>T6+a$4*s*M3b54gy><_^@RrAd@Bvx!!}8 zfwh_+=zd7O99(-r=(HYyw@{Bt&I@*kume%HIYt{yu zA__&r{E6968uLv$V%jyps{=j&699u%1(Ay!Ab+?}ccZwZ2?p>Q*q{4^NV7gPr7^g8 zn_A~2^~x2g0{)dgumx$U_3R~g-A$)=mJP^|3f2%jRh^S#KDhZNKBjQNfI+Z=h69qG z14DxpxQ@1lbnG(#!5uAS#%@izPaA=mZ$JAKe0bKjrza;Lz?aBZ_3ZNq$Ro=jq}(}& zYY_F9l})Mr+J73JBCg?W--kh z?`gI|6VmwuHYVQ03+RS{9VKjg5KOLj-pb``mNb*L-3%THi&`wUl5e7%5v-b3~VF@X-$0`VH$uEj!;B9!Yc7u@W%Xh>U%$;b~xUqu4XbTK5^n83@)oZ~= z`dzjfGDrT@79`2ZzlT=l_GkAIC`UIH2`ymyvc2A<0EG;r1Qnkm_U&Oi!_S0_VueU_ zG2yVa4^AbK(l)KP69UAKf4`PF%-!VUoc6yIMZlPd5#Y@7o?FoLxq0W#H_|pDl7cJo zLlFw{efMTUTw}L7c5i;zKG?jgSv`+qEalsuB`uL@W*^1;_1|sTH^dq!!( zWARMxqaJ%pSuft)YSQG&l%#|4^>WrPrs^2rR*jpwP zy*!fLg_Vt&Ug=z8Y0WFDzvo716Qhoj+%VRqT3J)*P*%18gtw|G3m zSDn_Y9*VJ)Tk0sN65u-nL*(CZ1J|sqw)VU4=U}U_Jrm{OAqJiYo4#NlgppFUZ43st zpH?8jDYNQxABCq>^zCLk^NMEGoqLZIvHSZ=g#M;B@AVfh$UGR0M24}$EFnmqRin^^SD+&&UwK~lJK`KQFYl0fpRuw)9 z1e*tdUixd~tngLn{ zbU`8Q0g6qZ)f(ZBKvzKK4&X0hSFc@T0Q(ix`X#ue)ccxJuU@|{v7Z*(s&%!%0jG0` z)!;qkEW-aoYl{`XkboMZ^7JW;4RDzKc%yxKa(v9d$w`QC0P#%((g$+-r{EqH!-lbf zE;(LSdFzQk_jYr#Q z>tVmrei&lHSBKt-DN6s;9tp2-yjXwltI4#>sO+BePw(iKbZhB!{CE8<7bo5+o+&U< zCt>|f<08IGOXhUi1MLz#d>_ZF20d%xx3QFV#Zrg$ z#przZ2;q$jfHRYOwF@+dV(q=-!i4K!aff`mfvCOX#k;pX zZ^v}^DTFif|6e||=n>yY^n~DE6_Rgvb6XdeFOGb)`Gc={B7T?ZJ$wK%B9TfDi&h1c2}`(7IeI@u&~BrqZR^ka!WVA3OoeZAqc3cVH64{ zI7B@)kX*!rgVysmp+dUY2T**M9V z@~1T)o>n%Dx|%-zM_B3^tCt2*C`TdbdAi>TCIBDl2M?|m>Q*7G?Zz=a?$1IW5uJG)7sX3Mj6r2%>@QaU)+7+s8*S zggJ}4))c4I7$*$xeNF55^G_BC+dpaE8%aw=#{&i) zUWi=Q^Cm+HL&Nuv+4#q)Kz4fA0%G*hT|G34jxAFrQEe@E-fwsNC?q5i1t>==H)5ai zdpH;-PP7MHbW79u3GgNeppHOMjG`5#gqZ+HW#~{dk(>9{?b~y}^S^!j*7*K@5GZ+f z-JW#I{Ht}oe4bz@kNY;2GsMDAAV|FD&rQ|k7p$=dGVdj)EQOqR`AI+<(_1BfIW|fz zUo}7>VRC_n8h?@UoGx||fk>koLc_<8;#w`$(f&sWa0U(U?%lgcLIR$TD5dM+;o(hC zVF{qE0_c4fa3$DhUyVrH62m=)JtGmCsT<(>t>LglZrPYggEOP&Ax00+`L}o!iZGYw zT2Ge_yWz6nO1k@#9SO)zA#2vSBs1T+V~9wU z%X0FVp8L@emi13Zc~j1}Q})qaTZ%>g`(%D2eFOV-kn*loK89D9x`_S~-ZI@PQHWYkvjsRBu+QhdB38gR&p{}prgPbQ7 zyErl_iM&m&cjfDuO3+QkBw=|ZC+=~>tUSqLW3_NUn>P51P|LjNm{rJXbd#YGe;^31 z55XQn*Tv7ioq_V6`Kzy{k<5wjcdEFSl^tQZAh+0SdEF~wFaxab`G>^ATSJt&4;p_( zbqAFCzWZt~*N~*nm+h3WNf|_+MVWfopdaEb zE*Q)``m>Q5H zBnN#Z=&XulhYkB{7?Z*C8JsAqhM6zQ)H2A02e4C$6U_y~CAGeBNEbRc0M&ndwHa+D zH(7hFBxZDRalt}QA0T>pwtFK%L7@7o&2bi*YzmiqyjN-2M#}zmhwkAo>p6cd54&@C zZhXwsW@FT_jJ=#U$~zrnJ_)-o=@jP4kG?5C{mUxdW_xXRXK}2YaclEIjPZAuN746M zW}M%I2^3^CegYOoaK(pf-W!K;8TfO%f-0iaUCZXbu3w*RH~ceA9CsqHWVs@?y6`PZ zTsI^4sO%>P9xh`X%n@OGQ=8v5nTS-COGRD9I% z?O)Tf0$|&=ph*Tjc?I<3ls6|JP1VRxH=}ykt1$8GzMYRer|{Sv-u=dQuO-sGRibDZ z^T#yFcuKkL(_exCVq#*JqhA=2QxiC}B9%i+^w8#u<_7oEB3Rydb`LV3|^@{oFSJYwLIR(~*l-i8~^z zZW=v(NQ(v1eGBRU4|=hq`=M2MpTsrV(~~=RX2cB41|fmlUJtMYP&ed|!ob_Ea8-78 z_M@YtM%Zj5BqT6ui)1J_u2b|H{dr@Dv3=N_ReQa5?v&x z-3N*kq2JS~;SI(mk$-+Ypg~yiP})q@QV`u%kbs#pfa%*He9X?ZMJ`QLl_pBx3=YfB zO(zqpEIRGBc%k2x-JoK;?p~Ez@5qr@#yGLbA*7+=42muEa)b~3! zgAsmIDt^0Gm?dr86#-aj>O&|wp)t+Z`-!IBbSp`D^$EmrR8*h@#decI`34R3J&d$5^A5*foW&_4>`-qO=s0OU zhp#EDs~Z^?F9kfR5Z)?S9E-^&N6XuOTk$1my9wIKnd6NZ&>pM!T}(WQCPQAJjx8>@ zbzD}cxiuiTCX^m4NEI{NCTzk{>i_1u%fg$^q_LEz(`fA^{RNa5C3PySTN`&Nu$Tp1 zu=xzl%TV?wc;#L#@o@x?ga)FBf80J|s#q~L_en${`hYW&`q92P9{I~}`)v(b8YTm7 z#&`ddaaAhSg6dW`l&#XX)d|vX={daPldT9WL1q&jCxH(epX_r_fjflw7O!4GRvl#2 zbu@@|MaXwfe&`n5w>6wVnM7-Mp@x54?FNr6X`82(2un#oUr4%lc78a$G+N5!cX4b1#5_!AUI1_NR%?b?9KM~U zK<$*iDl;ElY)&`DG~4JUw?1hRa0wqq=t`cc)&); z@L-v>(xrpej89#~vpGxLGtQP2f zj^YGNDZ^M%3@FsK=Lh2tA3l^YGGah}vI=Zl?IMsmCj(?%R{hUIzwZZ<*`F{gb0Px$TbxS>6bTfleE9A9M0$_>q^V?} zvun^PWExAJ%hW*72@p$<=vBP$1u??cX2H)JAUosVc5nOm_pzZ&O}nDRP7ZyU5=q&A zME{>i@du_rjGG^)(&(n}9{ZYl%vTWGi1=KqTEWV%<;TP7t(Kw(6T;rDI4|(&{8ttc z#(6R1cpn(;)r<6PUmxmzF~tPJtId?MF{BiBPV-}a%l0$45ou$2>2FI2O};C4U(Kn1 zK`<`hnc6Z;=4nY08efkS>-MW<+OOhXnXvUKX@vkPd}@cqSy9zH?Shc>^z`m2liB7M zNPWus4;=+XIC4ZPS5*=|5(g};0EJ(KhRPP$BFg7%)`t$iB7MXEa(jNgWnPyQQN%ux z!l7a3d=sI%CJ+l~+t8$%KW#%ZCOq?F|AO7RH;dWhf5TLkTvUc#6d7!M73Zm z7SyFeGn9Q|vi?h;3`_mjSg+Pt3fK~KQc%ECd*8u<1E%i?DB<&*{xhY_-hAAGoXJGlFX=UN;%xcq?CAz5gaire8PN2h; zzgQj?sKcNv7CBCccEjm0v~Q2Lk!ln8cuIUv-C$PE1W2MWSrUQq%`~o=rUNgJZJdN( z)PCJgxf{{&Vz+NVj_@ksa;Ng=`K?(k3dQNTM*m2>1r-Z~1P)3tD$=1^~~M_Ml|Z41FYjAD52?T=aCNM^dfUR7wm zfdX^z%o%D&!O=g4VPx%iv}tGYV#WA-g&>6LyIWEij)Jrz#d8~q%3j_x|Bbh|fU0U; z+x{1#pfo7G0Kou}6r@8*1q757q(w?f5NT0TDU%KnlrHIRP`W|7yE_E__r$&T+2_3H zyx;r&$N0W696N-y)|_)a^O?_c-`DlKB!Y037mJzf-a>`3#u^<((MM)E*mVYMKC!2S z9$E5vj^XSNG$=B|rSWewq!No8-vHsX)*B2I?eTiM?%6YFof1u3r}r4CIdOQtwQB+KlOlZe7i?5{@s8)Dl9zgcu79O&N%$~t7 z$2Ky&b#;npv|+{8NO*!E;+Gi6xUEHcuDaz+8-8b<9=Tv(&sXbad`4LBH2B}%{lotT zqT-m`pvs(YKSv%o2QewZ0`L4)I$ z^~b78)_CHxW4^gf&Wl4+3-{}$HW1a`u~G}Xg60#Vl#T@ z*Gh$pu+@QeRLQbLgL!o$!%jVOo+N02&pTfK zi=aZCaw)Vmr%*UQ1NX@E_Eo%}T8;+#XYGx=O%E7-a`VcP#yX)$VY+OjEi?g}T7_uD zBHUkKL`NX^jr1SVqJBLQ!X}K1)z=f5kEdCU+KTr^AwP%QFYd{UV-cT3WSV zUDw!=1*HaiZ$R+BD?u>jjtc@2Lmi2iyClr=;-Gq(Xxli{7Dw zSr=@bA3FO71_#4p3)*oN%mrS#1gBlNLoZ(T;?iltHPC*i1*pyuj}>2&b^G|^+6<-l ztGkYP_<5yHaVq5=`O%Fex{D5!GTG=b`)km7luqy`RD<`t3##?Cu15jt*C#=dZ!*{> zBix@;(6SYmflM5WmC-+;lJYsdGwZ9R^`wD^DhBQ_jGDUaf^{_<_4FFSW0AVys^vm@ zmKvOoV9f6ZA4h6u*5ydyz5&dG*f;hwLIFC{s~g+#8JnxFn_uBr@ez{)^Z_%t!M&_t zhEuQ&+_;I0B3kS5|l#t)6QV#F~(D(0kk>tg{Yj?{@31z?n#3<~XYB;AoYg z1hus5laXX>Cq3o(sn$8l?l0e0CJ*s4eNVYzxjoti1t1Y65)AR&mte8X5?WEeY zLWiaHG(}nbNYBms-p~`u?t$U6gd3?;(#5Our&tE9u^itXWyN9WUZ61OEq36-huN8n zM(kj9&Z8OS7R}{=mMfx1c7M$>wKnz+a@cY{Nrmi_cj;u6p$G_1@A%;B)5hFanEC`Ku$~@RsKCJE>Jf`iAcpsCI za__@herLiXAi?e5Ewx2jB4Ns|)=7ajVn_w_mjPW17^UzdAdfzRz2a)+T^m zhLp6lL06K>46L;y^8u@e0Dz!rYrnsk_x8;jx5`Q}gcAX#rW|e1GMqv^?$5;shu%wX zY}TO5)mm4CgjaN(gq$Os^pz(83PE%FraPKDzyCAS%W zYWu}2dMh=J>PJWH$jn_UvF+Hp>u35~w9PGS;~()ww4DeKcmNK12cb`F;#`K~d0Tn8 z0jZ0c4>l=cq$|!KH;3N-&)B9@_9t|jX1wB`^SK`+@~+G}(4I|8B%-0x-7+GnzeIP6 z9IRTxMC%5NXpg#d{Ws8>06hHU;aJ32l%OP>~dk1$2#s(2X@ z=AI{q)uUfo7K`Iy36}KLo1h7Q9s7ytX}EnUk*+!e149O|o$%;H z1}qH0GWT_S2JbxdBJLpaap+~)3mAbr@rnRqGb%WOw#TcOqxLiO*P+*f80g{u?114k-kZh@k)_540LR+}vs{7h5T0_Yi|40&N)9zfE)c zwm2*{Y@0i$U;#TYCgK*Le4yiKXxNo?(3fY)j!ahf6dycz+=Y6xM<#a51<)9_SgrDS zSeW0kvPPGe374i07#z2k{DId(y`4Cun%w2%=O>}68gyssbl3FXw|t4_PCb!`9j&y~ z%BC`*iNCaovlial53DCEU@aT^7H3I(Ph0l(s*?p1urg%D4YO6K!0i@q6ND(xV6nUC zG3@}x$W9!93+9w|YUX{E`7%flqB-2~m*>sj9CIsKkaNCC+1X`u%HwYM+4!cPW9^pL z>0NL~!v1J?P&tZfeu*iSgv)Pg1M3G1>kGz-z)(&5VJ=;om-?qTa4_c&+(k%HXCzl1 zKmCjo54*f65DB(pOFjD{Qi0!cCZROdJ=NmusC>ebM~vgy=AU!TKkKiODqB`6mYkWM zDFkmN$;jlSC(I&M4GppjpZRE#1oaYzJZy3cZF1LSPIZNIz%TO`F2T_FgH41OM8Py} z;RQIK|I7bTE52|dpV_^_4TJ$Z`}^+We28h0_>2J_Xi`oS5@NS#9*Ob-7KNyMuhbLE z&F&rW1i{6h>3j3^Tc4B^7Wh8YBMJW>b5lks4CEAL?xlkQ%m6r*V2ZeP`!>>mgXcjt z8yUUCMd-RC-8tZ-01arw8D=?;PNc2oqXqty|7|1fm`w5?_o1CrrloNAz`ijO(apv` zneYGaHb$m40p>OVrol_UHzA0Fbd$AnDrq|lYY@u|`MRr{;LaE9FwLn|+q82LwLBQ? z24~>kM4pG)mz=sa?}m~UB;BJ>uiC$V4+NjThk8~()2wF1CWXmk(LdlW!(?#JMeUJI z!%*+$WId6|8J2K|>ivf%J?YDY!sA3=bwemqrJ1f12g82xG`NC&Z(Mv$_Cj6cXD{*l zM>T1AP2TOt9U<7O|N9Lj}ya(~dIfcvgyuj@S%~_N|f8QRPBvgHQ}o3-*MHs1+Y*Vrah7m>aUWe`oSGFfDJt@E?B>&l7al`;TKZAg%WcNGQ0M0wiPLCv(C%qQH&d!U#DOFC1j}r)+nKlA?l1J#+pePAJfhxS z-u}3X9*Q`JP1!QqGhx>Il&ytW5+F=tUdPNe8kw>ejnsxK>ucqaT4L0LqC5{?Nn-=4 zi{-YEH%?@U>@66@2y~W6u+KSeZeh4LpMy!LDcpLsGs9To)YUi1-MX>@G@s$ScpP|G zNTkmQY64gONKDkN8NU?H5&j>gl>I{cPS+C?M)2L#jb_gl+SNGL|fmDLi6$)V75^p@7>< zF_;>SDi6S;E&AqQYpM_3|2dJ}Dw5Dk<@-htTdDZ)2(IhiyNY=-Lh&L4;Gl?LY{0wS z-MC29u*|pYBN#9Ec}TgYCZ$34c(;^0ZXY!A%dFN?FzCl;GG*aA6D2w=z{-eBK!_OV zec?aFzwwMOpmnzkhj0t182~f7DspC`1$S4`jGz1Ncg}A%d=s=^97AdUfLH0Yj z-65jPaDTCidns&x`N?7l6W9_wC_H)v&ay53xu8X zSui$1Jh}d^2_@TutGWC8@Cs{J!x%e(Yh5z+HsJL;mYJ6 z&L|SrhrgZIRn^jfS;yte;o4NTbJg3u;s$TPWe=if(>yIFqClyL8rkg8Nhj3?fq{8{ zF1@fY4Qy|Ltyc|1&kTb)0z^5s@FzD1vGt;|HBwhqO0f8G3OM71HFqcU-zuA0YmB&3HmwB z)AXCL!^5!QLYVu*F58jTfT2Bl1eY;2r^T1O^!rp}sKMP*Xtm3Ixksr39(+6$A{zSm z@gqP}KbQ{|e*72|)cv#cdUH2>%x-x2KeUJ!<`>26=*>3EB#_Ex>RS<+j+l<6M4meBMwvk6p994Pp#Gjmy>QG^Rwy%WXCPg|YD8?!50 zU}-&FW~85kl=SloP7V-(8D#v@M^o4|y1E7l*L6XE4+Mp|EL3mvTaJF949Z(WzWP{L zL{A^~X}lpvIw3ogaV~?uehAub#*InR)4}~P^j&fKu;~-k2=@U5Yey)18>x3qkJ-R-< z5DPu?<4tRyTk}neu1md#i80FjlW!3vr+1d$CS0(yFS48S%*vlgIK zh`Sl2W0^M7^1yvMo0ynr+#dI8WE%|D|2qrw*R{j4!Ni@7XgOP7#j$>DC%19FtoG3G zvfqS4vxFv^dS!#z7IJW9V4x^|W>RVwU!bBttZWgu8@`V)bkx;Dx-iSbc0>E~d>s6G z86w{-7sT*g*<=mseDQ|+-mGREv=riOz9KubF&<2W;H3|KzMM)>w-P~h0%}e$iC{Wy zE!+h4WOvGacVH*uI@0a24{oZ=xLvAy$kbzlcyam2`3zJOu|ZIJ;YzqW2D;b~Z(M_l z;}bt-%k`)zZa?tZ!XptDl(3HfEP0+xp2w~_?!Kn;p^9M3aSvmr==rzTIR09Q<}IsB zV(~p?&(D0qLmoDg(4A53popiDeGxuqb5dbs2}o7{itGnaRC!5u`s zB*HzXHnUPA3JXX6Rr89X-r39my~7<>RUHK9;4Ey&7xksm<2rVR^R%S0@uog`Agnn3 z^P4W|N`rDOZ87jF+O_!|eRa5=9&d@P4lQdt3RDt&TI!q6^_AGYocgJV&fd`Sx->(= z0fP;83KC#AY+%36H};|6dh}6Ypbp4~%^OG|&ch_s^uUaxh&!xqRS?p+ob%y!$=>&b&Sbng6SrL1B$f z4Gi;Hqb#0Cu55m%JlUB3Ef#qDGrLjLuaB{h!zz1ZW{Tlizj2y?Y5KDHKvlN0u_#~6 z7q}K!s79K0EUXd&FRZWC1!L<1C5Gj)u?8HuvNpxVi!9C4LC4R-@irC~>S5y4moBV( zkMXT*c#K-c!=g^HL{5JLCe$ewsE!maUpe=?3o{<(+Ay{TJ5Y|+*+=AU}}?B42q?{*;kg@^Ay9OkHGc< zX(-ru@w-JYwTPK~p^emJ;*4>M`3T_nTsy%a)sa?Yf{)`?h|f=XS#n@=&1}6a zsc?R0E&cIgly6E(aV2X%;#vF0#$|YLA84aFI^gjegZG~0yV8R3;Nu4@ECPc|U$T7G3DYk{NhV4$+JVuhI`#G#-UtvdfCc_GB*X{YR2V1(2HdHnFghC_ zO_pb+3e!@1*c(fNk{5bE1F}$VFPbPTKRyXdFprsY-gKl{nx*xkUwpZ;mrlO2K5Mq~ zSceL>I_{Uo1@w*OvK%`KU>r!E2PABVhqEjINnsoyMu&@;rvdD65+1)uE)k?CSPbN2 zAhbj`nJ**-wn5NiZnk{R=6xsFQ1Ls3_FS5G`azn0eq@#>nkRlWKPFM*V!Lp!+wD|5 zMaS0#;?v?zuKmDl#n@g(YYy->VHW7j5ce`4x&xS&`&NwWWL0*OC)j^B*Fo60oT0@y8^q z1aoZKRKq2*7ebqzN(d((3g;(Fv;)BmRlL<_CjWew99q@>HMh-)zt;(}k4hzynTPF; zy*RwvySvYS7wUM$S@N9(ZyHwD@|#0CxkzyHB5D(_G8Y#gu(-;Xdi7kc)=*{xR@J|j z4#*3LHxOA8An8FPj|TY!g0^36`l?9JjOD%@ zTu7HlBIR-1Fcw-V$7J~U-40rUvwWFq7&=#2s=S@n_`09$Xr-ZfBMBiEVRQ$r*jw8dl z`yNyM+c=teLq9lxNGu{4I4>X*yN+-OxJ}wm!s1&Jap3}&Y8*t{Bt^#6o{J*EzM{=j zmG09k&_Emka|pv*EWAMT0MRHKzx_Rl6R1+*51zaV-&eM4PJsH{$M%EDT*kwF%7LvV z9rceaRR|tS>mq|52=52Le}q`QK)jD6ra|O^M(*P)c9}l7$*psl59=sV64@Gt3Wm9G-Y^SL*88{{qeF)k{Z@ zPJ2_%2aH7)jlXHVdav^vvB|q?%5unUnV6hJ&{z;K;+2<|$LUApv@_D;`@QgPKnBWE zh@VAcVT=eD&$#E@D}@bdP?MsM_qJ7PzdUv1r+u`z#U!$JjmZvWes~8y@S5DVy&3%o zivx>gXI0t%CO!Sp+iDcYU*62?huQ}W)!oexlUG)Cg5j&Ld-^gx_@cbWSzIO|VJo$( zm^@8$?lVN9=RPRwH|N!H?9a!3XYcmW5)wlv72gYd=30b8*;_nx@>{0zN;Jn0=@dp| zVF~4|@_n=T@almK!}WI*C@MTGz;sjKVZomVC61(E;o}44HKSddk1w!e?MJ`VF-RTJq$l1UX;+VOnv|AXWLdN4*oBNNx+2-+V`WV9lJdXA3qMYUQCAilNjVaK!rY)6_Yf zS-e|KdbO{*`84hdPiS7}a-+UFBU`dSBLnAImoot6#2aSHnE=x#Bfrh|I2pwZ#YJtWi1I&}q zGtJ7iCy;zLADlMuWF+$awHXTU{r=guc*;onC)XXZeuXxT_OQ@8)>dfNa&XqW0dz>8 zb?qw@!<=MPFqflO-N;)qvg2t*HY2+Eb*e|lZGC!U^ll<@+)UhE@`TUBOeHO~;VE zt%a`!m$x-{>l~0huO$1PCrzQf{~j5+vCTVY5+AwCRnT}QrlNWc^8A>#1JT2sagBb+ zf-)X1Em1jQl|6M_or{gCUuhdAw-%B;^_-osnDYujRMgb)H4o%FRDVjIgyIqIBOgW= zzI^t)%nf?N9INA1`B|sD1s~EvZB7soL_~}x;)&f~zxYNb5~D2g$0?ND9I?q-Rx@=s zZG2W2lyC_ZEaYn!azQgOsK9J4|4!iqaPkoV&&d3|S@$7?!PO#JGZ5F~cr#HM8DLvX zwANg8T)3I0+mfjAZ?7VW+C1383oxN73;^?${tovx@aoE3-Q1zS<25@U0Cl#+-kJ;5 zrcP`VH&xOkeagu9a?bD+u(#N#yIS&Qo6Py5RZfWrFpA#|b(xwap4NSj@d+{w&f$2j zPC}Cml07n;Lrc6^{_eiFNKuZh;tH3)VW~^ea~*xQsBL^`;LiNl(%v0o(PE*mm>{Qh zH}Ry%S+jI5Wyg2KZ1QAiHk*HyjB*2RHT^hs^aRz&g*wnN+yu~I+D9AvndI2~yBa3T z`XsNu{kSv&YsH?vt<6nI#HD#>8${fg365LK;FdQVJT5H(;WZbogpwa;@wY|1_Vi$S zp>pcd#Vl*(i%Z0vmwHhg+Hq4@nIq6jaVyMsg)RU~JSw)yd@8zkZ zUMcRoBMq~{Z&y}D`CL@|Jp#AKlfCypOMVJ0c`b9X9z5a@;C6FXWN+pI>IRVgVcTqg zH_b-?MFLy88~PuY2@FT;4AjbP%3uE&BpNX&+hwZe=ibEXZdvebs|e6fH$bk>E*Ww5qvwU3m`A7{H10qd`rXcjl0z;eIA0nFi_e~i`Nlgjy{=Ze#qJTlIq_|=I)oROFuQXb;Yx$6Kc`ZC}YA~ zBzk#tV2|U(PNwVh6>m10w%X~;V5`7)O<3TxC(tlvVW7r~yl@M@wGCh+{t5eq{n=4Xqt?HyQLmLf#wgNQ2@?Gs_=wt~^n^ z+7W?qYladG^CEkK_?FQhM$%*GSD9(ny(D9G&S{a^sqhG5hCm%^vLSf9U^=P_QrO-G1wDFlG*>~VxP8C8 zi#-$jIbvUjlGWDIATDebq5tlyL94IvrP&Rh8dX2h*TeQ4^g-YEY2)jCtvKr!+U1NL zh2uw;pGmp}VyAt060)(1@oTvGobud^?fJJs)g3Ad->EEXewJwtw(*}U6X8dRSK+O! zjaXldCE_aO^B_*%(%V)cQ1h)f-_n+#0>i(YoSX!BXrN$;1DTv?2$cdnB^;IDm_AbUWgIGlH^VC8XRg5<52u`O2P?iSOb{P6?5#b`sSLAP+2j+3s=IzQRzq-!KE zk@Zb1sC*~e=>XV)@O-kwLOb!jFSjsZ19$@E_X;=5Wax0{iQHqu@+BjSDsfEBs^NZ2 zV8v$&D|ziqI&mIWxu|DyojTGk4Un;JX(6J{fcqO5-1@L4^$85*^*Vs>(;i~FIAJ#> z)nR04s0Yy`d=6_DWn@gZv%wRQBT1ZTzp9Uzgr-}f>!7C$*8Fn@4_sYEkR+bCxQmE8 z8!YA&koW@hMI;6c1qrl>48-95H=_RbnHL4ak>$`kgsZpuVFOJo?J!~vm7s%F^LlGXZrbs^Ct z;aqf6WntXI2W(T;bFXpY(-KgqYw}*3YEYI4A!(y8Wnvy{ot2`j{E+Qaf4}!3%6@ZB z1rN=ap{fq4XpjJCuDbW*J>vz4l!HogPJdO?AMTC+hDiY3gwr`1_=si(1Sr|EKYgtD zlWGFcedA_!bXdxz!d*oR@bd&)!_k6 zuj|uWFUC<{yz%DK&=N||Eum-CR^4;<&bcV#&u^+)WC`dLXhoh7?%3CVTKP~R&E}r> z084?AFx1Z-TW9m#D!OSj_d+t38{|16^~XP$5lB%TOo*+fIY>4z{H2+y2xPDJ=2_C& z54rljL%b!QmO3OMl;ZyvoF8QQe{rT*ySBA+<^J&G@@}p}7uDWypa0xPo6}n#$72%* z+e!@Gn&$2zC_Brf#SolW9wUcvCC4ADLviXJs*eo%RV<-lT`{3RsCSDg@TMW@3h(%l zirIWG_|s>e=@DFUZNaa(uc5G&0>w<7dKLQQ5AJ^B9G}INeD?!t$L@56xBJ!&4pvz` z+vZSKRn<2bW8*gO!4Jl%w_=m_SDM{boPF3jgQsZ14{Bfx#n6MFRQH65Hb(gEzbAKh)ayXvv;Q0*%(s|Ytg^oz+>_EI6=?xJ+& zAyZRjuG$aY8h!Mtyj)RZO(%rE|D)kGKMFnV@QhsZCylRjhM;xye6D-@(K`+tD;@2gND`N4!eZ~DsM(NPL;JxH)o zSety&fUb4mg;PRe#gtQZv!f=pn0`EgfCK!}hciUF<>Q&{ni16$ zik~qpjNQcWy-8RVzhcTfMa$&eNF->T;a8?o+-z4n=%jL!aj!mF;qzf^S+USrzpSnS z?1iUT8IB9R-wb6TG*%S$>SAD7gB%NDN=g$uFq4WvOspWslZjh!5j$Te??QbC0`U@+ ztl=ty2oU84`LSUiTVVaU3c-g|d4T5t`XVR10I*4r+JuBsLTn^Q)TPv+q1}%A=+X$Y z>&7RsfE#rDzl0p(B1F81S25e< z65XJcx)a{=rFhdujf=O~(P<__kI(MQNoqpF(ZH+%4mZpej4Ujvm=Ye+X8}o(fvnuh zQkq}PK%z3&9FY;$k2>kXWAp0%vs|dPS}34}Pn>zeZx{8WqGn>8!p7SnI(5%4QW11o zo96xR&XrAjjj^OMI(3I%daCHp=|y^V8-uA1Q(T|3@L3h3TJ@Z!RKTxvONWWHQL-*- z13Upt_aVhirFf%O>LfA)m9h;-uh;c5zp{>WHs*Wit`Yuh%H}wHsLT6Yb@B(w4MQW6 z0D`Q<(uYdu-#buj7k!kEuX=ky8Uj@n02v!X6W=vw1>vU~3%fcI@@j&O5sL=WfgyvJ zp#_){g&FekqssiD3*dru{ph*4&Y~KDuJ9-OgG>^dS7ibp6I7Ft=+L_&(6?GyBeBCV zm5V1@NqU@ZPL6LSwBc8w3rBOpv9?^j>qU%F08NOw~4=@w^syr~t% z$oPwT658iMQQ~i+)l~Au2%aktBub(+CeFpaisrRXGX+T1tW_!=U(kII>Pg4A2TJ4V z>q6QBTZFH#7ltp_jBbT|wYQMq*1&c!m~K|Sxhd~Mw7M8B7CxH44H|FyG*Bnt0JU=T z2Nx{bF56i@4jAYAZit@nk5K6`6@I&f3v|e=o#=p<>o;1000P(%Q~13#Ugf>xQ6>jz zd}(!S-qZIQn3G|8Q|93ZZ&Mz1UDA!39$j1<9HFV=4-mh9KXjz>XH{yj+uwm9UMEmk zgtUIrv<@dhjhx4K^iQ%d>#zoHEUX!esMqPOm{j6ja~l3pMY~zdDPxb+L(}#;MHE%X zH%f&S#;-oa6Art!VQF#0)&`}<`2)ZzCW7Fx#J;zKdE^WG0l>WtZg zLrN7Nb#QQCHrRSU;n|Qw{E!vcl#$p5$h}cbFYo$aLP1^*EBr+{`KN>s|9HpbJdDoQ zSvi`+{oS*sOGYR{AYn^RYMlFMVjZjO?q2tvn5v7chDtm&KY3TOwV_xsrHxvli<-h6 zjdk*>3sKyPgz_8SPxTcO{Z0&Q3`C8eEHh}$wVnl}bOipS_a7;o4!s0K%$=d%#W2HMEX?zR&II$9s-zx$3(E;+7bYribVa>31d2`F6@dGoPzWUovMzsKUY10n?T}sY z;q4LvR0t6{^Ai)FtC@2o8L7Y@qC;5EFkb^|0|Tn$NFX4b4kQAjz{iNB_Kw%Vs?1h<^Xo(S<34mCEFWf#BPbTDT`+%&ENVYgjya|$$& zbM0quBmRV>6+f9c-QLmh7DB9BTNNcFB`L@EH)h=-rPW7WY!u0o+dtKnH>enKoT~6= z_}kwZzMWHGIQyF+tXuuCh<)OGp1S*2*C+~_o)hQ}P36nSLSQdwHy_C8qtscUGjc7o zag6%5Y-mBt{GZ7b_ng?0`9**8fi0VD;;6teFq1ATs*voP{}}Y(H8*iL{?<{@*mB!tj_Q+Po>vw!k-<* zrifp`&`v>0X(#T%Wv(8Jc_lNc#Y9kr2&n zE`J#2%%9OKTpy2G7}F4^5sSqS%anw;#;MImvz%fszP9}lN-Y@w#Qpfs7fN$o=h>$@ zGUM%Se=)c8!22eRP5lE%Fi|WJ2+-x(+1%NWf0AquKNp3E%;Vw%T##IiS;%W$sf@{{ z2DwlpMXLMYL=io(AqP(^F8k*>j~lj2-f>$ z?hmR4GqKVya}7uD%b;5kE9lMeUHXw7H4meu%~+zPbs7u--y5j&yu9QHR{{{I-ar<6 z+?V|$MYj5$_}Lu9D!@RbAMg@qBxn2@hgAq&ytqet?L|j%q%pLB?e~00rf{idriF{G|1A2K z3#Epz_;B~lnJ(sAaItym;bL=e5WxXK4W|m8A{7>)0pG3BNa6Y3ERsLD&&<@OJ3gAE zS=Lx2tTE9}^o#*sBP^`dnD^}TAJX4XD&>`Tktl~$NGdUb&_m^?rP0fG#67#+@=ssd zlelu{_o2=?K|3}Jr&py_Mp*3D9Y|i`j#I{E5oU9jfTaN)_eXajwb;QOZ*OrZz$ z_b`_K5@e_vc~q60d#qgPd@Y>vS#11`W7Y-*xDg7?n-kSAiZFp*DF6c94jEyyc7AcB z1BPe>K&f2M-aWExrlL^hXrYX4@8A#?8H5CPBB7gk%-7+Z#aMFfEUB3B(PIoBD26yC zkSiqta!F`ozxd``pE;^Xh8hXgYlB|W1PSr8KYt{$vrdxj=w&D4^}>9%^tl8YM3C@i z=!@fyS9s_W1@?Ib?kN}@`51%z7I}Jouh$|6gg9ORft2Rxvr`P!rhmL(4UC{ZZ6f@!f&~6O3a#y?;cmbnv^z438&DY7FHUpm;!$+)pQ8~w z_x&3OSb^bJwxh&A%=*|5FaemKH1Lm@ zqD{^B00KpXvY;neQN~irMK?=8^vwz93HvAZPRZ-QMF5JPYd18j;nMg-BCWPxf#+aA z_xIB)>K$Gf2KW=CcEYu`Tl+c0Jwa+lL^I#j<8uacrxDia7+ z*515=^qNEQ-`^0y(9R^fo_TYIwCkk7cqNi{lLL9rUH%32qtGFdD04liW;+&?T9rt+Pd4E00$=-5aie!_e;H36SO6;wkBy>J%>GzGVv*z|4ozS#@nKgi<^n$j?+os%Bt? z!UT|HNC?HkPzlJ!5SgtcHk(e}*9-SiZiZ)p6xLBm$e_jc6pI52R3O@@grMdJj224+ z1z277=HH36eFC{)nCn8&R8G%Z=$1-7 z8g{=JPffp?_Rh=M+sV89kHFsm{#uGGX6!Ss0|V;->fmp*g%FPK#!At%v$y286g#XV z`O~mG<_%E*$R-kW4GY50(t)(FNin+qxT%V|XpqOiv3KUd9Ep`U#Ebg{-$_dBGTqtT{kb3vtXMEk8D{-DO@H!JspMSg zK=g~)P|20e4|+d(12(D&$G8W^{#mxEh$7Rm| z-zl#^^S7tb3e>vlWv(u%8Bm%A5X=Q2-Euu@EC>D#625)itXmi0;ymn_K#_pSv>8?S zb&*oY&S-sQQ+G#4P58q`IpLTtgcW}VuN1h0tiEMlxZEUgObr8D4m_0l0A_LQvG?Jp ze{Qs^j}mfu|G19;dl z_{nOW2tt4&a1d-5MFfC%9Pz`Wyo5$_9=nhj8hiz$jGzT}XLH}Rj zcV|-bp1BGJM!!$L$u_>ymK|l>)woAG=>KuJ@7Q3@=*eRwPnimN@q)2N7_##PDM6o% zFmR>K(<}~irCLtd4cOclJz}IW+lo7Z(heu`9b&~yNmFnn%ivgQpK83>aw3T0&!w+G zo@f^T;|8FLNJ-CeGQT{0NMiEo-vSTbS|IYkfCEIZx@n&5E8E-nvEM(>$zeG!>vIp> zJ86T+F2WZ84*wddxC?k z>aCAS@mfRxlR%jH2s`2TgBjj$aoT_r>(>)z>h!~~moMMR*jwQtn3S`H(!Irp@N84>z3$=rXIe8A{zSzYN-Gcop-eVUVs`N(*ou5vwKaYipc~2RQ2!T`clZawO@CYU5 ziAS%>hn_a^%Q@y##O=LUgzY#|9x=`7EwEuk62%H0Xq)}_T-@VnT0T`Z)}-UBDj~{j z%E)5)+qEnB5R{g;CrtBV8lp3?!5(sYCFsHpdhd2wuXofAKIY_}x}ugRcfJ!t)$E2R zy7UP_d;q#Ugjk$-W*$GScBU<2eALmJvQ*|5ZdiHu&cOqbv~xj_?<;IC#K(aXNZ?mJ zeEYe~9I~_vI}WK>KK2NP+N75Kk<;kW7|Ovrpf$}K`a0f006=E23!d+f;^L;--tsGt zcG}Wy{ZuhxNDKW#yp%bWgQ6j~Bo0jXQmOn3)Qp)2HH9t*2XxCcN-!p=SmiHA-|U~E zn4!Q<9deV=^6zOf_isk|%LlH>2t$XSDY5l)MjW2wckrN~5(IG7KDWh4#EPeBD2=~g z;|q!Iy1{C%JDXWD!e2hD8GxeW{~$uE=;-h%+ovwtaGHMH!3`775tHrFn)>rizBICr z!_I`1ZgMEMvOMfUY}GM;Y^)0my~FkncV5?>-ehfG(4>0(-gFo->zuZ}`vON{r=FjC z8>7#2=jSiNZ>q_XEB+7tXxnSYvN#dYzf>UYDeWmBh0?$Zh^d4hr5rr3sI2{JzJ`>~ zmVq*cwf}}zjI>@TS<;#el)dh%tG@bt58u`g&?11(Q=Ys&EwReyaA7*=+0=_lhH=$T zj8(0@R@Kjp17g}LZuM;nLNhHj>8x19DZrdG4!r97Gmk#%{i7!Qyv?}#vOWk#+2nJs zO%A_PcP77!Z)YGef6~+m$Nld_6BjT?RLsiCUv^M%rYxbd_MZG4iOGwVtGlU{=2<9) z4PAcEOH^n9YpT@#9PE~c@^VnkSWP~`+1p-topBjQ;*{fP`Orl_ina>--PF>Si(d>p z_Q*`OSn+Ehj|uKz9x23oc^wv6h+LWXWe`&#arPuH`f0U4*B{g1{bbvI^x)~fzqu`s z7t7A@qD#OD3JCz|CHLL_Fk3(@RzEm7Mo{OYe0c&FT%BM?GjbWO)chER*h@Y5XnwCA zJ@P350m`^A)kg)LzE7q(@*oa`ho5!L{muWuQ|rM~7cT15ysS8c?SXJP|1bw2Ob!U> z0**4`7rqA#b`*HR&lSL);tCTRo79aPZguabI4mx$Z)>F2~4Gf6-A$!n`QK zh{BCi0pm-TrB2kHKWBY1o6}H_BO#Mxe^vS{?``7b$y)|Hu_^*zxS982Gw7}!-s&LJ zm7hxb@^#hV!$mfp?DI*fs7Zni;MWrh+bu8CHMjK0mXBYsie6uLer&P5TP!N7y}eiL zusc?DFtfNQX>6RZK`IGt(Ha0Md@;9R>3_^4AuSynA8#a6%52JVB)qM>%-d!+?(b0O z`gwA;Ig)psr)@`lUif|;KkvGY{OK1lG4#+At{gsU)_KYm+Q+~+^yA*xQ(8;8+c}2C z6!E5X-DJD_yY&%89etI8ZXMOb!*o)yZRT2VA^If`mcPlzhv(9T97UNWZHF5dt=0-@ zJufoU-Fq_KRD6e9q}x%U+q&7osQFG!WEu5DC)vo-FUrt`kawmH_S4}>F6x>S%hR$p zOY)|;!zZt~1MZ%0bWJYG>903S@BZ^`5-&X~6`GzHdAjvj&ZOsl^RBuk-}G0UqmwBp zo^X7}lEZ+qD>wW@1RX+ncb!?Em6E03wNENsM9z|cj%Si?H%M-~7pxVgDUpakpj^KtF&`g93Rd)!K)lUI(U zNHeFy*R0$Oj16Lt_W)FMh@gs*o0sRg;0v5yIq3~+;S#2L}{)ve;U5@fcSs3|;Kjusi zQkCSFZn+M@Z@u>QMIe=uwcq!~0^kC4lR2DI(>!?xmiH`owX|4S3Gwk?@!L%K3=L_U zXgzxL70S+Tb#*oZkxI1j?RPE*!bI(BKk7*i8{l)Kq_3cU-)LVf!(c>^^fYSl@ihk< zKJ*xzDjA&4YyY;6@x;Z#tlaN#I)V30ahFle8IX8$*0F>Z#zT7{qaBIU7@y97pE;d|zL zI@if9HKl10TnE~XP{Mj?xetQPS*v$G28b>gxu6jN>}2ds2K1;QtU<@V-vd!2px5YHWO*laKFo)=!pH zGc&U)P@62*BsdeUGtt>F2C`2yk?Si9Oeu;?$~jR(n8)higH1Ig24aZd{@W1gUAW<#=`Bl%V%s^r*EpZ8F|k=H9p;k2hB^~a zu^8oxIxa3Hur)tCbY1N=2z)g%qDxFi#|}w9vxB;%eh$ZnNxn9P%gIb*b9_MUYg3FK zL>>M5$UXY@-HJjvG_WL?tFZpVy?YCO8h7n63bHAEl)doJBd@B@z_XWkq8Bm?vNcIf*KUAWGy|Ds;;s`sVf0l7-1Wu&Ws^ zT{*bT;t;1Go7z6lSnEKSq}pgWQ2u<5sl~yQr=HZy+bAHyu)E?X4W=1=ntvAqpdOGz_tQp6{zvWK(mO2 zjcpAyRJaU6>y2Cp@ik4m1P3)UHz(%gB&eFAK58uo^$fVr&o)Pk5~2Xue?wXt8|EiJ zsS7YgVW8mBRdpzc`Uh(}o+0x+b^G>hK9{}h{!FA)0_bTxLc&-8KmkJj<)DQ$eEH99 z7*+Jm^~~?m+>E;cge$S+E}Rl=_6^4p`^_#jNw_DFye?2Y!P@5mTQG2l$Xr}p+Fj{f zcVd{Bm|#f+L+&a(IpQ*D1nqp_BcNKgxw#42<%-1!l*f;UB$wa+SQLWW4ASc}&3f42 z=U~gxhcMpuUZ_>EfbD@93T(U6(c}OSLa*~1K78oY*QWu$2ZijGfZJkVYQ`MM!nMq=r@UKGAaB)XlPNW9BQ6iE%M{Y~1Y+u`s`(GtY;A3Coic;7LhkO?Rw4mGLF<)~n+7Cu!3kxrz6EIhBgu?C$0johN*VEHe zJ;(H;ZQjiQSZp?iUB?B52?Z@}ZMbFW6@N&Gs2a5z$!ZaChm>?!cd*o;^2=@&rKb}P zyY92139w<|2J`C@6Wiw^3^QCaUn-chqql~fmXX*ZXtx3Thz+WC&{9F6m{?gowbQ-Z zjH@9xIMZ%X!$cH1(MZ-0Qkr$y9`uHmSl+nn?qo1>Q-cB&Mhk%cPk2{Z_uC^GZUDy> z+F!_m$PZYexHmm|U)uxz-++LC+efda%8-z)jSXAK$2kv^VnYz?`&uYrxnGbD7=fpy zG+0x>Y{TfU$wC$)cNu89nE&4xV)Vp;hwB!;-}@bO$eg%-+!0_|`(DEg;+fO2=Wpvf zsm#*+{r&y)xD{`8m;28bD=aJ&&I1;ka=`sxO2FpZvOj-9LqkD3l;v`F1Dg%N_4uHh zJC@n-E!xcq3K4za(a;?E<_len9|D(Jx%>L^0*jk>Q$JhJ^#k6Et^hpD7+7U|@Ztg8 zfe3WsG@ZytQ$Gve?Tv_zh_1P)lh5w3gbi3&xh)n1-U|ZU1@R?H#(clS?2a1wZ0?gs xt)W$;c_VO44!JQ*WQ7WDQDd~E@oAp{Axm%ac1 diff --git a/doc/freqplot-mimo_bode-default.png b/doc/freqplot-mimo_bode-default.png index 99520333639d3c6386d77fb29ad6e9dc4a586e7e..86414d91612ae91d1704fad0fe487c910a2d4dc2 100644 GIT binary patch literal 53368 zcmb@uby$^ew=Oy{01*KNDG3n-q+1$A0Tl$1?hfhhQa}Wx1*8#vbW3-Gbc3{XclRFC zZ>?|bbM{)-Ie%=gYbrA5eB*gW+~XeiczxeVirv8=#y}ttcV54G`5u9|=7B(<{6R;B z-*EO#%)>uCHX@2PGUoa=_F7hYh__lc7AEF4CLgpP+UZ$Ye=s*=XX0jJXLx96V`E{> z%gk*0?+-AUTNyC7E-K2vL2g;RQnE%Mu(gmclysrA4+uoh!t0mMWgTMIC+!{ZhED5t zwoKYmkG!a;_Hmr@-v8s7{^h3h%lh0Atf?&ZoojvJWBl;j(Nl8F4`OI*t9&yXMfLM@8wf&4Je z+pm}iZ{&N?gvbL;Ozp1>L~&bcSDTAT(J9th~RfFaPoV`*-S#6K@L|gwy~H@i_f zoof@SofeckOp^(NybT?JDWwrlV3yzkS?_ohjaW1?Pvz-3aFei0gakIZHJ`6Eh7`0zjQ z^{V4pf5e1kD=ER9x*U0WxJQ@somPa)(WJf2#@Nsfkyrq+$n)pVQ-mU|6O3n@e5ZT7?UQCwzbX3?*N&qYO1YcEgf zN%`!Wrl%8P%xj_=8id98C>)9aZZ2gP!78J zwq!5P&)bVGw%o5&HhO<}o{pQ>X0!&8D+ry;;|^)Eq^}L@k=Ryf+4&V!45dj|vKePLmt9NbH>@kpk} zSdPk5+lBV<)dHQ?!R+j8|1tN2A%&su-wACmP7jQPg+EnjHKN+iGqrr*BVHgC3tndw;DnzHn{x^>&nC+(lPj#3B#YH5?N%2eHF5)q*hMGHt%gVTIe+5$n9?56P9qjB#gKZnj$KO3( z>sI(v(4F|)Gk<)8M9}4XRTY1Ke?K9&MWRl*WLmORf?(hg8Wu@nS=sl#WU;xmwKWHq z%abJ%A-AgjV|*$P7nnwp4W!xcSZLV8!NOr=g5n{dW8<25MDBnqf*Ld>fr1=koq=; zO>b!|y{$(QU78h{24Y)UTYc;{#`<#A_)ZVjTE)m+Up{}1LhiDS^3G{9K8bcAS4H|{ zdUV4M0Y17&XtD{bbsY^$){#u}ZOPhKMf#+8fwY~ijc=u0x6u+8R)(?&Xr$uj%a`Jl z)6>6zyM{b4E2}R!FBvzRYx2c487uN-u00QhFw3g@3n$UWqr_;4&JFB~*LJlDg2P)? zRT4Nr_V7~g+JW8_z2AGY(Q?5oNj|w^>9B-2oFr{zA{l%jBHe4qfp`BtN-vm<-PV+v zerP?or>|)857)E98#iv?5D~R4cEyl(Kpf?>Teqm%8qB~&_528-x>a*;f|8m#wcp|I z24Ru%enV~$3O_%8{;0{&`G?pMSPuB#Z*aThPVItx*E2h$@ys2bUtC1-JF+3yXWC`& z&b0fL01poj0x}DWj{gWeX81-vykxV8?X2V|jG-^>=$;U|T{| z?9WzWN02$r-&J>7d91CYv+}!ua&M`J=IPUsf;&P&LS*jemSoQBtm}4sV0bNt9J}C+ zGiz%dMIQ#}zHaphUCo07YC-DARxb8y_9rMb8U1OsCQmaATT-CijDbZiC;^s(f`US@ zQB4Pt1N&&&y;i5h#2=s0VIf?BmVsd&t~7hN=QI`$9S2$4X@B{nXtLJMZ1c;PFL4M7 zm(#7mdM$_K6toIQ+s|D}Ohy}`IgJU~^)Y8=X5f6@ot+Y;WUqMk3}{};P$QAb!1>|0 z`AbpJYbn=@VL$R6cCx+XCcK1scu?MhZRDdH^ z2GWxI43X|pb~t9-*3n@-=(t(FgpQ59)J&i;4>orL6}3N0f%y`WkOJ{^XB7KrfexDW zQg?GtPtb_Ea{z>Xa8TZYDc7UPY?abLLDy5*2gOReoVh~zg_KD32D4IYSo+X}1aNm( z#RBb{5Iu*KuShgBG}PTr^a9BQ{N%Gz-~t&mYN|TR9g{@^910CU=t4I;VGcdN%*%~yD#GZNw~U4|?*|E<(!wh} z>%|8PZ*T9HA|g9Gt>o5|wj<@dBotl`f&~E7S^EAQ-}omjZEwst?=B8bo!2c~RnkzL zhPQvwAd|GOuWymrWc2c~q2R^-0P*Cfu91<_20e(8Svu4OI7ybFFX{jfGFh$vF2IQ7 zG@l}2X3j(XDvCa1@^6GW&->q^M&F;F>Tz}R#Ut~0dVQy{?Z|@u&qyXm1#me}~w^dar(ZEPYr@cCu zaeQ*pmn3q#269R3&$YZ-GC+}jEZ#Wo1HY|0KHa>%+?R~T8y6U+*2WkqNQCgC zUI8y@)n(ISi+c6yRheOVv-XGML^>AdLlY}2t5>gIYr!EW+^;T3c&wU+v~E$f_kFh# zmzBlaTkO(l@Vb?YB~s=Ac^fgDqap?n!Qpfz?be+;3*H3k4{2z8V$3RhdwbuF6&trg zhFDG)g3L(fx-ZRCdu|1H62+#6v9hxAm6+4d!vkSfzJPDSrBXhQw4|7)=1c>_)3vS| z%a9E<0SX?Uomr3SMY3u&+`wm4p0C1Y_DX-c8LL7q8T(64LCw3iwsuc2-;l!wS$Wu7 zuK#AOs;+)5F5akLXnD3#nmn-bN^L$wLv$%N}cUteFKEqLo|BcseYR|ki(xnd|4w6wJJ zrU>xx26-gG{o!NapMh-2eP8nO%;U!Kg}F8U9vkuQOCc0WRam!gzew&2j*VTX6_=2p zqNB^~9^cv7dBUEUwSMn5#1ROY`Sx4tVoEM9{BeBtxz;4YUp~(SmW!Z6ewN0{k?*h_ zQEMHL5_&5wefR8eV=g&Ja5go@EYo^iz-j*v*k_A=VS&?u(dF@6(3>@>INor;l7Z*v zE?nkQolucA!Q!lu_~0bXl*^bEDCgi25a>WyuEKxo2?m#52S8Qa(vlVKR^mI$M}q{{ z2#Ob<2g@gsKLG&3B_#X>s6ck1oF6bY1LOq=(`+C5sqh&TpQ);<#?9dfmwm3Bk8s>u zoLN|Cj?{2#WAEWdR#h4|76C892vQ3 znV1#_Gi0EU$wo=S6XxIwRcV@T`*%(IH%$E>73}{MI;uU^d?(FlI63bN3DvSGd?XO& zV9d-!25)dT;Ph1t3P?bVdlpUXV zbiK}Lc4-N%t}Tq_78aJ>Hx&ka`CQdDC?^4&$VF5NyEeU#P%5t;BTLrn+S!Pc%6MN(nK^bow^NZetlMf9o=t+Baqy5HjSo0Bu5X7!WVuygRI7 zF6Ufr?W2Ewe!hKlWRE-(c-_v?QSEZ%k18vL^dQC6e*L$@Ig*o^tKUjh<>b2Ylwa}c z%s3Qa3z2p{7O3?qn$Ygw^Ls*D5FEMG8X0xAbF}|(u;*ENP<)aL`RuM-#mlqVAJ!XB zN;e1dIMwoMPKz`37Q#mk+4ykLxVkthG#%$UJ=|DZ&3`HIi@78?LP6q<+1<9$nDE(ZSh}=r^_3kB!E%B=H+Fm+=SZzDSnBuMLrZFNVuh zdoW!Zfs89%F;6=X`5^_r*XQxR1;;B$R1|#2)M3pqz!=%N$>HuTB#4OoMTFck zhFV=eFo#LnH8*?Chz6OytvQQWi;SRS@|rfDvmmdiFuD_A0r7)Dz3Tf5AFKk48DX=E z73$WX5F1jZ61pK2Lw?n&|8(;!2~Q|Qkg*ce+s~doL!2FL*~=ZjRrVbUY`gZ_0OLss z9o{!Z*83`~Q91JjDm*fZ4N;%&Sz(C(VvXX7%3LUJd;ph2QG2{~z0#T^I7%j!s!m)= z*MsKnB`Sj>(f-z0{IVwbqw7^)F!re))!_yh8Jz4cd?lZrOPV}MO{Qxc^9dh~t5p@~ zF0*Xpj#ukEO^(X`ozR`zq{>CorQO)au*kTl`KA_sf-UiJmu?>LLtjw)bx}PE3JR)D z7GwDLI@t*ro&S79`{L*Kh@Rdb$`7P_2a*d(YHB_dO}M7SO2468?c(u*vBAQvp4yV%awZ1TDm}x+qZ^7Q zbn-E83YtZKj5gFzd0(dwdatd(skk8l&i}!9H}8-(MC)}zY-nd^L9n>?+)Vk}i!+-v$9(Lra{*t>?WWdur%Rdzif_;y zBTJtwxnS{eru5O;`0b|2d=olSn~IPby~!{d-jI~@`kx2>j%!Cc42t%#w;=G)LQoyBHWn=hHt9Qasr# zFo(PE^uFon#vYS>gJyMDNFSSL?N)tzB!h@_T~T8oJTuXIKCD=MTs*J7HL>w%y|Fd1 zc_fjtS4Aqg6z%zx)A=1@Nm8D={Ex2adq>ppYmZ2>oW=9kKk@y&<+3E%D#U-^yv~1+ zR8yWG#H3nU1s<*-`?P)96OGBdOTbg*=cy)Yg1MybS%#|H@9>7u$tPbo3ALbPkcISX^lQ{ z#6wc%blo8*U2j_BINRfS)@;U2PyE)x!+SN08&7bvCHwMemd+(+uu$wopOy{`lg~TV z1}JE0QOKl9PyoE`%${7$M8<#Biq&Y9=uWaazwZ*M{%#hRmzVR4i`TYW9+=B!#ihkN z`4O?}b5A8y3ifQzG~T*(%ko>~rmJ!@fIm{_gwv=_Rm-toho=hqKkYzOyFB@upmD z!3q8q)MZPml92IupM4seq>E*z_JHQZ(VW+3mxH8zpf^k8;n5w_uKdFvwiVxAsh!r1 z{zrycI{ZB(uVy7~I-4W4xzDFKVEbTiOVial%`JT5y(`lL1pfW|JHQG0K&clN7UtP! zsN3v!pM>8b7`CLSes=rdpnBQIkb@Y|aE>$|swawPy@hnSdLDBrB{M@1W%>Zn!FF%UWonVh@pqo>h0+KZQQE})i52_&)HSY_>H5#J zk{5L4DMn0{Y#TzCJJ`Ur90MQJYb1{CZnriZfTVGr&wU99c+AWkw7+ljpRmcSm)ooC zokafAJ!(6>Io!tbqg}3J2Sc83@jZ^Kul87Be&BPn!}CpRv@#~m@Uzz zacA7(`E5nSE}g8X*hNcez!`<@D5Ng)BY)&&FErkvp=HQee*YB7#-FHiAuus9so2>I zB}M^E0Ii%ExiJa#rh}tn0T7I4l^a}DRaJ_$H8v4zP-47#^9D&_149;TUV9Odn3(9~ z`{K(O`u6bN_AkXt7wsE`x$CdIYH88}^cNZVekDe_Ep-ivwJ|bS+J1*K65oovgCGZ% zAh+h!2t1PyaBA)O?(L`3F4om?S4S&p3Gvk&?I*4IT8#(*?K+TB@bK}i=6~I7ofPu2 zcq)iWYJcZLBl#6^i};9bir$x}1{jQ0HK*vF>Zfr_k)#hFm!_|NMnbR;Offfhf!M?$ zBkKl}dTC?BVP1WJA0%){7)B#yC-+L2gBUd~BIdOC&*!N=hUv)ePsOd=urFv2BzJcb zZmIS?{#5z7=!cj@V%CfM!ss)fRh@{wzYe2jg(Rf#`Qgjt)B&UKy#jt&l_Eb6El|nL zxZ5;Z3s3Zvan1jw#9qmj`+7L)KKns>*mG zS}%R{zb^NFy`CW|IOY(VFe~%haut(LGLC}xm;X3w(Zgqp{?H{!{D|g(hD~Nu#l*m% z+ZOtGe``7c02~0r-xap>Kx(MH_)OLG7@1h|CV$7#v^4KDFUq)-pWw9__&LmsG&&d+ zuMd!EkLl%nAW$zfRs%-8%!Xqbu^lEQXjug%<(g8J1M7&YbwKiZT7ui`UXPIZuVAk- zUGFnzHfsrzE5hMGa=XWSeV@Z(f6@K%@A7pi;0bxYAzWtrj9%0hQ!LGP)P)7o71N)e z*|mWBbE|gS+4SaGgA9f;<(T|leGw0f^odY8EuA0nVVb)P4AX zxqT>ARxj-1$)g_R=qfzubP}C!B}>eBbD96T5<~ zHmnf7skp9&UkF(3$rHiwi25m;J-Ou=b80%pt<_*}LyOEz?cyv&Q#uiS`kVM~3lQq$2(#Zhq7L$CoeY zi#-WafWgZShE>!^194`rxy3uBVi~p#qA-p|hPIBV;3`${h0E}G$F}$VJii)d&vqpY zJAKKX^n#t=#!9We<)xgQ?EOLOJQTT`XQPxHDIM*3GJO?vDc*D`8|idFeOq+~yQHGW zb-zzltIX6EIx{KGNa?Y=KYlaFTF>t6MDH>FZN5T0hMf0!r!u?A>2NevyI|}|!RV8MF_!2e{!;tN(S;OK zr49E4);!M*ciG*6;hobO#`{dpM&ooY{6)vkE4Q}$aTnJ<4yDf=kIlVAJL%=^^ck*? zw_P!#Ks+TzTmzD_*;0v+!pnKJpWkCCZ==1o)n0ccS65K6FevOKfAJlvF_s?A`dmGy zKvLNcdycr|YpSGXVI>aE_X^!6e7aH>c5+fi6y>hCXpJ3s7dI#V%ySi6*qAep3_a6V z=3JwD_x^oOv{TL}$>is0jFXLN14g|c@H(4C2>Gi?Je6CY9j@2mCMGtCKKBhMs?x@a z3$Ps6YV9c6${X2z+hSKCipG05=yO7pd6D4_2AL0_ORxKko`Hdik1qzo{D2(AEefN$ z)?oWoB4_I2ieqItOjO#W4yF=T0@eKAgSO3?qVbE950KtjWZWX$86@t|^t8F;afU7Rwt+mhQ%` zdRJ!nFg2F(#S?cN`%UM{_k9)Ns&vce2t$+d>;H^#PwQ_HmwqTvR8)8QzT>GZSDxFf zP2o!3ByudLIHE1xH#qa=HSZm-V~1}arnPT1E!ptTwc6W#Tbd`>Y3>jAD%oh68g#Lv zj-N67?E6pbqfo0*r7B7yk&n4u*9nOqwEXVAYx7}~Inwf;UYQA^3`%uq2JHB^FZCq! zd?jL6#RT{aL`KjJRj8Yvl-^Dt)nN+ZiLC~2?WQ=*L{A;(B;_r7E8C(- zK@Cr=7r_Mes8D%YjU|egMI@vJ%Db`DNO6?LZpi2qc&quApF1-6ABeFbV{iOC{~^`V zPWPA&2ll?U$r5^tt#2aa=OSC83_tNt9jG2aAi+x1EhV_CgDOGw8pPD^c1rZAYQuh> zA4KuZr50N!pXkoVoM`G?OVn{Z#LwL#Z5*0>bZbANQBHU;qBbqQW8BBm@r>nCpoWsD zMSGaMYxd|xnvyeZ*tdyCf|q+#JUcdgvTrFBM)Nk=6|xB++hY^BxE_9tAaPWsa1E!S=NupQf}JX*st$me?!H2K<*|7Z_I z)CPU2LcNO!pMa_Gi+6gmg}ap5GHKVH>f|RSzZKo7!ln~12HF1od6Yx_G1h4UD(U3+!GjClO`F@s`$opdfO2DC$5fa$#hw0+V?@RhG? z_v(L@;ox7C#Wv(io)ac?*K<(TZb&VaUaZ`3T#Eu2Wb7<5Ai(?V5IT5b@lK37ykab= z);I8D;sRQKDpt^Y-#?SGrmGAt9VS`G;S^gTBdy~Uh_-$kL@Vr~C%Ti8TaV@e?Zcaz zQ&o<@*k=8B%Isxr1>2DE7Z@{` zr?GbBusaVyTZ`eqA9 zY)T>lPs0VK#QJEgu`^eiT6$#G3;fy8-kK=#E3)Yj_rQR;pvEYMsgR~Py-+AnOrFeEtm>cW1d;{NF> zN9ef^x)3iR-sxhDFGfT)uJB;EdX|=Kn*P_-!LKG^QRMb%KOtH9^zZ!#l%{N$4)Yaw zbSq@diHjGY3H9U0JL`o#_sGeE+H~m(*XurBXYzZ4KGO|K7iWowlRDQNPunH4`C{us z)t+SYe6Rnp?}GJXAx+^*)53&sjsa=B|LkmkNv>PK%{K!xOCO_s?Vk7^dQz z`j2J%1DdN!FR2peN@H^%v^IuMK3d?P6s^;XvIJE@Q%eh*{iZ6gplbI&<0OUb_I@CV zEcwOApoPrBO3ofP!WvE~qq2oUeIwn-b$FlZX!k5)8WR0MBBFh`M)5sF1qb$@X$3po zu6oRx(THF0@%2}odScp4)^1Zh_thSiL*l+Z?v)s_XEPZJ@d@a4ow=3(Lk_lTRdng6 zAE(G9RtR2b4y*HG6Sn-UCOR+U^A1zG8Mt@zg$w`kdKv{UPmp?!@cii~;lYsSX?iXr zuSD(97uLul!^rzXz)G$73+pVE(qN}lr?YrQjsjElz68OB6IhHc8&8y30=gZQi^+=+ zx;*y$cpZ%mS}ElMaX0}lJ2cJ7i0*f6u`@5VqM@>0{FH~Z5UlpD;ne2NNNufmNZv)g zig94*ceUkJ3-2FO&UTh%*7oSO7aHX z62R&oZyzC?935HBCb)rvw(hgNVyb%ag&qVkfwpVIS}cU$p`QfZnG^^Vxme=p(s%rl zdMT-c$yh(~yXuJzlfGH1*09ePk^-B)wwTA;a4sjdJoG5|*5spJ6;;v#oPdNR+I^F| zFMIHx^IOZ&$dhq*+4F^tT5yEr&{+R=V)Nk0yGGiT9@w=#*fCv+V>^>E!uG=%54S=rBtoGHn@{H0O^l7^C&sax0o(MJ1U1xr zYtG?Qh1}GNi`O}*-~tSK;?T%`aJ(=v=5I zeSLl}L3B6j(Uhw7x2Gc{de34ssSg5Y{BrLu>!oQ{TaO~Pp>6-9bV8E_hm^GIR|w@T zOw4TQnE!7QH*nO1iT<CX;YaYK11AP|QXnQYZw)rc0LQ%q=-)zTnK{UQ`rm-9(0 ztLxe)AEbDnl#4(N>YOEQyWwCsn#b30P_45}xbnB$7zF2nwC+@jIV+@KtH1Ekre-{( zvqeYAL@=ar5trxOU`4RS_JgQ3JHaHQ1a}ZP7N7m*f0onGjt&hA8~v$wTS3E>Gb1Bo z0{Fo5?MCdcgse$prqH^(?*RazMxwk;R~s}|R8&-dHa5DTj~^xEE+}+$&R#lc_W(*b z`qJvzS?yGbs0O5Lq)@-h=t9XGXOp?%!6qSThfu36keuvD-uI_K#{7Mi6APVdjR^4bQ9iivpeRrp@CQ=z?i%yrQP44BoO&y~gY2qC+`yz}jUv!+J-E-V->G@DIcYmJ3?0l{=;#mG z*!rc1f$u!rn$}oxN^se|1v;TW1+8S)|9~(-_fOr&g<(!4Z@hFx53&FR1O9FNj+4TU zp6Z(X?4SRymJhIl)E7&Vt{9s`$mY$DvtolHa)D&N?WXkMs)NZbst=D8?K%7#)Ao3( z=*Vv}o-V&MTOUsvD;SBGk2w9?dE%yww;(4y!ursRRL7K3gQ&?!1g zpEP*iUJxDu42Y3~laP}yAl_(6*}3|GaRKzHRrx({e~Ry!`in)lz6Ar47L#r4&s2OrY07bV+&BWk}UjX z)8$#6_6_%)T*DV~-;o#mKPb<)r#*3}MK!Y-ra+bVsGS~sF4UW5R%t#^kY_#|bMdVX z{?An(G^o9FZl~RM5?E=`cAE-o399Vp4%O1O4{X>ZLEjy=mK#B*KKznoZ0!ze*W^yd zp@0Qp+b%{(z;1`51`<(h-ry(U+uIgwY;0fr{dIsYN5l%cMn9c$XnZp6_irW?WV47b zK|xEom77*?&ff7lHfyq|%I1!&b!_~K{vTSEG8TDmIV(<^{dt#ULqXNKLdI>32h*w0 z3{3BF3%J#{7c}EGA;b^?Wl+Sr#7ygChHg}+OTlAb<`Swt>P{cuNy;7er&AN}Cl$Mg zvTh>-d8v61kfg6)z4`*931|D zHVKp~NVSuB)edTwe2(^XjjO8b!BF?5B2byYLqYc8q4VgLM&Wl9LE|FpnDvQ!lFc97 z?b`|2M-X-SnA70F)7a{Nz9yudVTMlnLcm$_^6>!~fwWvWkVgpRqV&_I)!hjoTwP#M zpRG8$BZCN}H@)BaS^&m9J`AMZy?0L-$V(uv7@;jMc}9Xfxgj@i&Sx#l8BG7%G=LlP zkhoFoUW`<{ma*{4TvW;#;Q-Gk089q2OlT`oof5%*XFlFZpgB422`e&R>?jsUF8?WBmepuW1iJ?+*&guT zUc)!`txir(Z01w^Ah&F+KAKv~%m=a;)JdRXHtYLn1@0Hq&ng~Kw_ z#@AV)P@m6PaisM@Kf$At{sINfG0As)72&Nqk_+582XUERzX62TC=Xcic zfEMgG*E55Wx8LXW63vm7T6y7so@wrt{#~KXH(DQD=%P;aYsNx%+UrbVPCeKx8_G72MIs5%39Al9Oj6#WHmOE@_HN($%_WtX-IO}f1t|z7uK|54|>}*W`tcp&)^TbB5v#}k6 z_~LjqEAM!JKq`vk!@bf8tJ{-MH7&nG-YNy%{KAig_T0O)ukBD(1wVzOu`B(g_m1-| zH{p(M{+z7ju*zw(Kk{dkE9@>QW$)8a|F=(%5xpR(16N`N?XhHnU{{iee;J5TXlZHx zfYdx=m_i%5-(NoC0dJObUBz;(PCmAsNfSyUw~6ou0F!ol#$`txYB$atxT%AH09{@U zreEk+sVBljh4#qy{ywl<4=N`&+b#ZHW9A@RlaG&B%Wm%%yLI01t{5RRZH*e5(VLH5 z3Qq7eOaw*zHO+H3@t;2n$x3F_0O|p{DJ9DE#>L9HAcG?|?KR;-I^_;Pqo2kjOh^e7 z$Wxj;P_7#d1|nC%iyp|>kwp~Mk+E)P9iN|^eZPV#-zydf#WlqWPpR2o>)o+l)X&`@ z>Kd9%M&DyE<26bAg!1Rx6B$BY8`{iF`HI~V({UqygvoF=5y<%`T=u&7cbagQZBi&e z{4^w;rcvw0X(R(@!f6Nxawf7Adv5no3ok-Z$@UM2(E2O=#y*L|RKn31E03ifNwTQk zVj{a3|2f9I-i{7`(4SVfhkJf9aubM!5r9s8b|fT$DTPrHPYDreZqTF#j04vUF$Qgl zj5l|sFLo!c@kD>csKZy2uX|}r63?M1yu~N|GFR!L5A-;_hOM-)084Aji-E4@1DE*E5bc!K5WIc zJk$6FYEJuh+2_%6`58UUc!$|rNbwm`6kB1x6iRBVi07_1O$IxUzGxLc4d(+azdRqh*ApeegNo4(qG2s!fPkGL9$pCC2pftH@u@4dbf zwta5P)-E!>~&WQU(UV#k)o91VLbQ?1NH$J)%qvHE^xu7^yIe)HzpG-fN-BvM_p&}R89-&Z_on&Rd@*fZ- zpj;!aU}=j4WK^dAC8LUevvrf-?c9NAd8qz6HvhY1EBp84ti%6XbGm##%X%z(#i>7U zi8EF4syogN&A1}>98114?o`f7{D9Vo#{e5N@B=W-LZ>iQXn+kNFe|byni$pv)I5%k zj%IrSl7j*JD=8TT2gW-73bJoc_xlHXFO)YW0zoM!YrLS<_?d@2g1SqS1*!MML_I2d zU6jtZG9WIavo_L#pO+qu{5D|r2>}mCP@tKVtpG_J)#Jw?7hPrKMg~Rn8JC6l>t!It zH_Bm%{B#%TvxYA1lh+-7fV~bRiv^)#{B=O#!BRRj4@TvpI#^eTs!>m5QhOoBeD-^b z^iSbIPr9HPYHI4;%d@Sph=>+QJS)?+LgqCm)F2VPb2s5{ShM&^cZ5*?1YgH#;(^LA3K0jv+)?H|!1GWbFc=nOz-$AsOlX6b<+#d7u zx>N2~uCOf1n^rKU1U*vbG&JhJ0e)31pd00{cLJx-Iq~<>4gZ_5w+yR$=yhiLJQ9rT z=s;q=>uR4{CTi8VvUr;xnEtL2KFqN zRqcp^Pde;%Jyj~VdTc*oi3T!N8d}=){sR!=Ly-%C;s@=U>mu~fTmMfn;y0Pi?^K}k zM6vB*l*2-JdV2D>o^m)R2&~MC>sSBw8SG{V1d5M4+slFL6RXF-})Wohz=xMH?)jT>3lLcD&H#dOd zjY!btSj2O6w_WXrpmv6M45v~luPw-gMt7t46Zj53xHij-a~W5t>uiodj8HB$3rI-N z2)FH^EKj-o&rk=t!n_6n5765{(R&XUw;VKRqu_Tyh3o3-_QLQA*xE}NHZUsgYtaT} z(F8E}Bz$(A(uV+4!eU}N0N|;lZpQLh!%b|8m@=rA;h39my(tZo!=%}}zfa8MkiN{B zDAOIe!tv(^O3pQ_d9g1o5T1jcq$uLV>s>pyGrGQoB z6FnAMe>3Atp6M=_lH~C`jpwYFSKWEFr)JoAd#871?nm=@V)OV5pHiQa{R{8BJIXHI z)lXxY6*fxzwX?H!1?^q`Evgae08{KR$i+UmD`h$k5ey&1$&Ax%@`M*>LBum+RMw*Z(O93Rg#^e)7ckcB>DJgQaJ_ z(bj(SEa32Ob7UwpZOEt`yf16g%=N#mD=X4->ox2CtE{};5p&alJ>3-j1Ci44F`8z{ z7_<-ZR7_Ix{>u8gZM`#v3z{Vhnz0n)jz0G6?(`;!b$r4dN8jG9n-)h(*W8)aRtgPP z&JfH3C{s?tF8t^_oPV}5vUU?*i3kO)rvFzqNYgOBC;lQc$iZk_|LutJ*9+y51Y0$$ zjv5Z!y^&Z%5rd#(euJqY9&(-69PQp2_Rbje&KT2P#9;3a&$%D+^ma5#+ii}HygQh7 zv(?VK-Nu-^^e?RuWUbp67*Ja$C-FS;OM0iMsJL@1cE zsp1)*s+i&_nc#gl1!&hJ6#1K$BT|sydrvJhLxJ==?UY`VxUp&;K;{#WyuA)CO!P#M}q|BK}Kqy-lI#SvDQzijx ztKCaZqIFotrYL^JGe1vI;L^ogakwh=u{p5d*BkW^@2W?)TV@M;49Lqx z@U0{s&&T9|8WhM7p#SfiJnwMFzP$C!BQpLMqNiUhkw6+H9=f&zfa`}T1aCN0_LM49 z5NCCaeeN$6L3BjYu(`P;_}8drX1)n&{+#jK$xhRda@yoao$9FwYwhn(1;5{zY27OK zPI2FI^iJV8(w1FScimVdS#HVAPFy^NWckOzqwKQ2cP+nw=?@b=kAI1)WO4g3E?vd<;6(`je5?Oc;<0XA2g*(On~|R3iGWc^sLD$a zXa}p9Rq_T{*?BC#hJr{L6}i4K`1R^Vn1?OXYv+zK;jT69gS!8cc2bpcbWgnBc>OTR z2_~Y{kT2lT!~#h|qMR0JOB$l?{o0EK0n(wD0z3TJvyP z@^E}XI@X$$!hgIi#BAd-?7LG!Ro<8cn?G@#kNCET5M$y#i&eNr7ry1S-Iw9zB%Gf1 z#w+s8KTlseWOzA5#1GImrQ}ZOql~1{=awZ+2z-U9Jz$MY=sv5AkT+H}Qxz2^TA}oi;}UmEHmtJ-!!n4bb}+O^|<1 zXhT3gWmQU~c1J{il`}WWDZJP@V-dfaOxc0h@b0RZV<`zOiwaM;+AD2IlvYR|W+Pe{ z2Ph;R42i$B4cv_c&ty8t>W#o0N0y&eaAGGK+aT0p(EeC*p+?;K z)H_%mg8m$DyIJ*tyjjhOeu?>XH%#L6{PQ}D$rmNjf-Fb$hiy7`&I{MFB;%DyC0V)0 zClYr-Zl`51OH>lqIiu-RGq-a|PP5IqOgO|EyQ4-)G$#0UEN+F$%Yp#JhjB^gD|ib* zkD0y^4m@uOBL5n1f!88B(RZ7OYY(cFft*S>&J&CO*y;%e1rsNM+iQ}M#|_eMsfk|I zPaN0Zw&_S&F*%3sz3QOXm->0Pcl#`|@*UnX;Y?5P?{}Y@y$90daGY{tRT-Gnn1~QC zx&0Z`jXRy}J=|C*Juy#%EazHK@@?1TVbo~FuQxWAwdV{E3fMFLS7OR-#fsp^xj z%`)6#YRE9ItDv#v+dh1ETKo8M>6fn7LdDY&xA!@MvF%T0pGAiNyE~j5op%V???25)kR)R#t5Kg;7w2 zaM>8z+GTVOR^pAyaYtdtuyd@pzt2xk!3}XaplhVuz%)ypeKL}UFG*eK@xZ6*9(Qz_ z1+Bu&vs~ei2j?$EZid@k(h0nft3b;-ZV%C(K_y;b_>-FWq;t?Xooh`eb*f)OK?`&9 z*OE%;t2V}J3){rVcr>3Eqb}%Cc zbYQqcG>B~SPeIjwzc{k9fE;2*xsHlpfhjzYbQ+7%6q$^M0-PQx+Yon5Rew>s(i!D6 z#apIjVZ2E=76{rzrTk4o8n)ZtOV3$umr}D*%W7414rU!8w`t?GnWcKnLe6-aEv>7v z51Tau)dJp68wEE1OI~3s6chf4t`?oq8%}HGxdt3hkNhc0qBM$iLX_%|OnpRV`8?(b z=v}>$Q3WPf^DXB@6Zabiko~Z2#rN;uE0$SM0P#e?7z2=>I_y?hn`~Bnf`z+N&gTbC zVuibXKRRQ6d*hH}OX}X=ouXirI?oTPdUV9y3Ui>m052x^ia4*<^>r2~Jsli$8A4Fv z=kb+~fj<7~<|+_2J>4|c81;MMd$b{yDjUKDM)DMkjqYRfZ+pyr>b11ABoS~bs@I9) zv8F~&+-kCL9G7^X^?u-#Angq;z9MPah%A2je8ER8pE$)*cg45PtIS^#X{=IBj<{tH~DGQ$l5ktShoGKkB2GO1DH#zJ8{N(5FiTk zkPkSJjqH%{@aEzXb(Kv{G-%Mtsl#h_cGdx&lmOhEp|@#Nmwu;y;aqi}qEq)5*bV0x z&bXVZa+B?=4j*O`lE?le*vFC&oO6fEGz|uou;|D#9ASR&9x`IISBuJ^VL!<9%Ysp{ zL5&z_*LaSjvX+_Rd~j@bDOthuFL@lMt~)m^w7IlV-0EoP@E~{NuD4`XMt(r1HdJRY zXH{m@@i^=m^64MI?l^7~j~GtZ2*5-UP|nxM$;s8Bt%&MdZ&ci0YOYapJbN3Sry>l! z5yc|IkU0`$G1`|YNAKd|q6l*0tK(Lo-=*f{P?Ri`JpIoWTRAvQ)fjeXSFpfS4E85u6(eY#)InKQ{lE-X6nypm0y|*_9BcWB$_d^ieL0p-E zxM9L!E&%x~lLaQ`EfpsTiLaf5*1|CdthdW5*eh&!NvBPuW=8eU3VzEvm7@RotUs!1 z?G4)?j`ZNuzYBX1uJRd+yna?K?PQCbhFeClA~Mz42606;9=Ly9MHk;fpyWw;%BiXq z`ft$CTE5MK;Vj`7FGzhp#p%IAJ;IsbDH4z18Vz7H9RWl1Rxk~-i=_ULH6_8&h#}qd zh7Jp1yFk!8{Z*d4w+7wUawX%eJIt%IIX9wDtb3NmM?=1g8AU{BQLevq>X4|eD0u=K zPYw0#xQ(6J&cW_HDAHK)435pS%dVa-n=fY>qmzKs|cDM$5fogeA z79&s}AYg2@xIqt?e4DDxkvxqTUX7pve`9G`Fy{)4oFi}wM9@e@AfGD$LX<{LmhFq9 z=|b>nn6~VFSa9ozJ>L|4dV()_CBft|<82!by4$1Ad(e6P|6Z(d^bU_@TG6J5@<~epY{|vM^P6bd6t) zG|BK2F?6zK)N3G-yjN8G1ywyfz9$JD9f8a&b8`dlW>l%*5k#G5)+038^idfKM_doA z@GayzlFtwLd)r#h#HxQsYR_->lP0?m)~^coj-a(^wsSGTVG=+WG7CzLrp;+McgcdE_ckTjVc(%tYJdAZ>2j(h!Oub zRLQz}oSVkEZ5O;TpTAvmu&%`~eEUP=d)yP#jsHd2TYz=Bb!)$fVt|Aopp+s8-JJr0 zL5Y+!f^>I-3W$P$fOH8+m$Y=ZG)Q-Mcb)O5>)r1;XYX&n-*qjQE_Laj`OIg|5%>KY zjs7IkWJQGEDWx39X?ZhezNE04Z)4rY;?DQ-B9C7us_|v?ebHSE>VqS9 zE^lEGiBXXk!CrU7eA!^(p4Mnd#w}H?chtt+zq`@?!xkUgP+g!3RRkF-QuTuq;qLwW zIdCtRA1=};xXWa{PK@3fwCbfD_X_q|zTOmhCF-EP>!dV$_rjhv<=JV~YERO*+6gtw zj)4?XpSF@S>0EkM-;bq2KwMAZZDT&DH=F2Z%eWR!KitoeIBab|Y%Bby`pXug(q(hJ zzX9lzNTldj?(B$!hk%@^2kFX!mzjHV{?NsON$AHtm)k#1exFx5nW}&ba=EK|c-2y8 zH=fMh=D8=&b9U&0og1=RqnTU6&1!zdvWe^=B_H-W)VnNuXFbfq2NZ1Y@Go4w)U|29 zJ;di^x%O~dsYvw$PTb);XWkz)ZIbV7X-!XEB0+^Y`P_luRC0B8v7`20svyI8SeY?d zMbqXlR8Tbfe(sLJ4LE96jf=Z!$2WuZ-yZbY>P)(FWV0}ZD7f-83N+-|rtzcgEh@ma zvkg#Q98D~lA@D)n!!i+UxGbRKQV~M;!1Bj#MMUV}3rJV`93;33S^MweKoJwTK9;G2 z!+d+g!X_pr!tSyR@Ho5iV=~q^uF;`WW836((pUCgyJCAg_l=10H^OR9&-~W}GFJ!qCT34pQsCWNU)KQN7ADR$XdrQbaMK$YTaXP^A;*WA86%2_ zhzQc&rd2Ke0@e$JN&#{CtU)0i%T8opVw&!vobEu;rhu2`{wrG|NU~{*3K=3e(yhJu z%NRv%=aDbb5vuupi6wIcTK*oM1S_*yc)A^wjD}8^Oh`MbGY+p0ry-s{bvIH}wL%kB zVdGRKEHd6kXb!h5_NFZWng%2=U?U|%Jn0vaI?43(^yh$p>T>6!8v-u8P+?DmiV54G zFWdua5v%MNKT5URReJqbKHA@%y}nuPrS)muChMOC|NCiXgK^5Du}zm+qcG%isDx{B zTd@2i4QJK0275VI-;e*P;7II>?;u`GK(rigF8~H&ZtU!o135&|(9lqvz}OESE@D?# zSA;KiUp%xD8j~s{`DV7|7fG|ER((a^CT!?0HwUB%V~`t2W%V)^`9w85Za`g!PPzU1 z(nzQ=J(f7D1APSAG8R4WVMZ!72t=SH-v#1^zc>Redl3H&K>PIH;tIVB(~pdG^A=1V z7=#oqS8tj~y9{&WVPc$eRuw*A9S)9?691qcl-AwI+$ zP+1iQkrep-eGd^@4JZsLz=;E*DK5)dM%&e4@8+3DD~U}yo_%}zPpO~l-O`vl^|fKm zVfp?vb?M_EIPg6rXKOBb=3Re@|BhF7bwPuoxuIA3ih>?%;6tK8@W8*UaB(hbfyP)J z1OP~w+0M5|GB7Z}yV*zqt|Xe}f!s^5=5T>fQBs=S?MGNEfFhE&ql(xpPiUyEZTvVW zsnbGY>Sy@ z>Lo-}1GQijGhkbcx*QopL95ds|1XH)aBmI!;a?WRcRIJKH&q%xl2s&oY+%be#My|< ztWcZ}?eA)v3{+B6w*C}r-a3CnaZmB9^$hIA2L=jI2RJDl=(i9X(mCZFtgG)@W-N&0 zt>IH&)ogQb8|MD1ozE}qZ2r4p#ug%ude9(nDyXDHgxK?xG6>#4gs?H{xW=YO0@dwW zlfpoFgOGO&3}g!*bOBGo3yi+$xw%~XEgi&?cwZ`d`0K{Udei4DK@;Y&U;3AMi}g6_ z2)HbjFH76s~2% z-gW=+2;}Ug4#FI#Tm{>%-H(Z-EY=8lC~33hvlDUXxi661xbZ|s=RU&N$bnD<7aza( zt2wxC5~{VK@aP0(RqN6Bzk_lg?ZnYBP{r+X=-Iu})LlKWAiQPF+cXZzstKWxFyeF# zbFhXzvTDq}J8ZFf5M4#5Po^=hF0ib%Q`If*u*NW2k^px4XgL>p-9LAgGkw^FP3RSE zf(Bv}+6tDCw`_v3lL-_r0B^Ecg%y8~)sQl6BN2CJEV^TTP9O8sA;{IbaAJ-uN$aD- z{la&6m^0NktKnxCR*dtkPxKq&qFDzOD`Dr&f+*!a6O%vCE|5Q1?ZsSw(@J<`pN>{k z%HCd194;~5SxFe4BHFeoX>C%sLwq;;u;LA91OF>^6}wlcLJ9Sbql&>+|EqXPKGk?y zLoCi3-UcIH`2~N?*DdrH_`oB1Um|=uwUy%rr2VDr#6#j`6(I{d4yU%trkVD0QpnyT zu80{=*&t2Z(2s0^wkHHeNI;Q4&~Mq|G02WF-f-#C#`K;eA|EGo;rj_D6SeYkno+Wy zBZjfxZPH#9<}1@a9HY1S`N`leW?*LzMj%ZfJW_C{c;u!}xZ02wSbTo{^bn7BsQWu! zj5|&UzbQ7U>1dA|T-QQL()(QeL08s}n@)Rp6+G_`e}KwNR_P`>&{t43fZW4-I3JH> z*1RAD&Aj~h!$r1o!@GM|jn7wpGPTW}lJ)hbz!g$4xGplWE0}R`7=6zD=q6|IE6vFg z*UgHZhU}IE%?q%pjF`hNU%osJeKW-1e6&_^%SY7mDHaM+3>hkw)mc=X&%S2N=`h$h zSfe<+GhkC*RB|grcxlf?^3Uq8LfTQ*D#lcJtm-%Ga(rC*P=}7MGS%&7>GxwCLu~E! zO>5N;SIydJU%`>xMAthP@bq?>!_K7o*&(4P_N`fHwj%d4Tzoi$gpYM}bc8*pWSM28 zWJ3lnt}XWky!?uz`P@D^*XOIZ>HcjZt}ry(;kT*PvsXQC;j(_|$G=Jxl%~{wlO(p; zxtTZxaxgnMvysJtcKJH&Ra^)rK{=^d?!*P0O>JRM8Hg(&pewzuyBHN{%xpPz>31RY zexovvZK<$AFjz#mWzB{J@a=8sUUOyiMv+5mB+k z@2^X^66zThdesdcdo$JqAbf?U@Ia|O3-mIP#@DrL6EFFp+0B2tuLVL)Jy5rt0avgH z^1pL03r$EVL_bk(VICp1Lg4eUc?lxcMJx%f5l(ovdSr5Bt-+nFnh+CJSTl9*frFPAVVO z;J|}}mf~zqOJ!|C!xkuq1EQi@J$T5^wqnjWt$C1kDT2g=Te4Jd03b65eHEu3;Qe~+ zM>Ycm9z=hG(DUAaYSD7OgFLC8qIOIK%^`a}`rPn#MVH`sKE~;EjlT2zz@5h4*em4p zfTNR5`{b6~8kN+msU-E5UtJKn*eI9T3-UHZl$|;ucn;U+3msqD z-u1pjxT@KmO&d+rN9I<(I#xgOd)w_m6|#ao0?KR8#t6Qn;Ki05syX75S{RCQQGWSFR-)kF){thvy%olAwOty z`*dVl>3Uxk^zWPKqMr?Yeh6-C6mFmD{m=C zx?wkL{wFRj{K)4w=xJ*XqKP63fz1X`${G4@J!%2fE)7QL?H>0&`TedYvdUm4V5$s`4{v2Z*2x`UYUwv(mr+sql%%`R+b(dtE^P8+;v&$ykj;yz?bTgR*q#F?07}jf>DEB= z9dS^DG$o^u(}PkfH0G^s;beE~2t94{U5IpuBK#rD-}0OL=GzAAHw*yYX( z^La#>^F&SfsuTk;;SGclk{j@K23UC6S++_eUW`#X)Q{5Fi=(LGtbaHwKEdxY^^I#_GGSvv|G z6}T&?=opM3hu$#^vJG}{U<*9|`3+*Z4DpS4?9AWk69Y;D1ju8RM z29J{}_uD2ut&vDVf1+YVY-*?i%kqwT&FB|iXxMBldeuPNnGqBNZbKesibFWn$EgBt zk3ff|l|=`!@D*%q-Ic+7UkrNnXVWfGaS+XF7$#QV(kEi}YRBFex=KCrPOjLqUw^@S zc&@u{TCFlJg;7z%)VDgC#6wHe1J`k28gC+@t6nO>r{bBRKoHLPMy%>V!!NmS5Qh;s ztVrf2RlVSk1{jylqMW3h9O5Ff(?zdX<&k*Rbl_e1{^;fnT;ghNW1;z>>KN6CQ!{TQ zzRZ76RA+De%*5Pxa}q=j%g=slPh}gileKHQ8k~wOc^o((h!$v*qO z&|_=(5zUg{>&>BZt6wBPZ&Qr@+~bisaM4{*6}eNEZ&Y|I-Zl-#q4q)-bL|k-+W zS@Tp1_V4^1BD)`qWMyRUYuU7(sIZ_wTeu*GyJpv&1o^J~3oo<8y>!mcRbJ=8S=M^K zY`$wa#`l^_sKs?|V!Ax6z0?gk?7IM8h7uv%@}L!*Ew8{Jq^FeuOt=wy(atBF{F#+l zEtQZbVDJ4_YoNRJ(dZO5A^3lmrPu=Glh^Bl@0RxmTzL4oFglv<-8}A$l#086`8Ah3 z^o`)KI-$!+;09zYu)Ltf6Qbr_*sn>!PZa{8$g)_gmg_UJD+3hOrl^wD7@W9QkZ)WyzE$6`o8UOm zZHZyGcEpw(n=ufm`P$XXA4C8y0$-}uJlkB)bIh~WvTxnX3=;rztKQ8?i8P#BN*;%e z;#%bHGIopk+opIzXY6xQT3|Bg{A}=A{TZ2KpyhxIYfw5aolaU5;2}t!wO{IL&cj<= z5`>0&0|j;E!_;eCn_eH$yP87=p0Vn&E64>QcwQ)Yz}bYo3Y5F|!=+;Ipo$COIY-uv z3CHRtH_vw(cP{M!)c`B;=0|YRJ}>@A0T!O{S8z)D&_8ih{1Yc1wnEnVyPtuIv<{tK7J&D%8}(O4*^V}q+HVmVY+(xNEPky2 znJHw$^o@Y}8=;_1wvc?bkj}NxbUEy0URLV2WaDeGlSy;S!gYJ^`sSJq?H`wjKGr#h zAuWKOk#Imgl>S-n>OdX3;%wI(%RLQ+G~3ayo{2`jo4uC1CkIY5@iH4-Z~d@%Sy!1H zi=|XR-I}BL|v%NBf#&ax1ROthS(%3%FzGppntLAWAwtc~FVPmf=sC=&nZ#U`AkxGsAL1<>ZIq5@43`5j%eT2Ov6!=6Zi+GS?1b5* zqy<*=b7~1()Rkg>F@j>RObE=4H81Znjjts%w0{MzSB)6P(UdKt(Yp491BXe_hQUvn zXT3j@E)^0)cL{x`_ZheVRe)Aoy$4l?STb`5f3)a3w z3RV=|HYMu!FwZuWUX{N z;bTwV^TXwp*o4~(HOrsGJZ-n=xZAS0l5FrrYb$@1(M^ zXw}F`-d|w7VMWy7vr2Oq){ci`d^eCbjoDg)W zvS9hxgg_B$h){LK>yE!0-QzpLj;o9dP~){Y zVg8l0uXN<@B{J8c8s__4YW^nP%Z2C>(4bk?;cI=51wzxbks5WY)WAWV(Llaua_~wc zL$<#%um<~|y&dpM=@$|;;ZOZ_K5)RR&W7G~;GD;CWOaqHgs_QplL%9fCwSW5dw2vD z^(vd0nT73n#hFdkUP&^RO6uNdr0|pdaSVCN&qyx3GBqivG~VR3V+4bv#&n}U6xTlk z<*FOduPD*>vo~Q{00CmI*zNf;ye!sJYIleLCYEX-}^UNZGI~qW^WczWxH^dOlSA-rQ*j2!CaR* zIJB_I)dnv%(a{&-N77JwS#)x}0bANDs3VeanxRCr)+0Jv@ZO<-(PJ7^eMp7z;R5y` zc-B6B`sBT;hWanhCNz}s;`Gy&#Q6Z8`(d*OE`-IjVnojZa_Eo}aJVQ!VDWAbK2{U68wlrDYa-0S()-29pE)eoOm_m~$1@M~A_#LJKlde04x4fpHU1M(B(~ zgPJ2bCuhI332;(MZ0Kq{u`Bcv73}{P4`vqAo}r7&0^f7PBUNRnz~)mG)gkMRG%Vs_ z9Dqtu&ab6e=tqQyHzUPOK=(rfQ#_K>A6)Mi@Uak#Jj@SSN`~e;vYlJ_jxjVCZ!q4t z>bp00@e`0@vaCM|eGq#LDHLc8*wmmsh7-pO%kJZV@{$zES-9CFTEV(81%xTE_d)B; zX}#*wFu-QMB_`&;I21Cw@pCAMUm2ilKaN&Q^oI)QfX7}sWoBlLkdncUVYA$C-Whcb z5UVYa*))H-=_3mAZlJ+gH0M_@rk37N9rysG!)#P8twZ}ibJvEA2$PJAY{s`aU&+`bYH4k4jli`dsBYft-|)BibZN=Ms=pgW ze?;JePCQv3ARvV<{Xb8m{hk0yy3wpTbh{7WZlYEJ&59KORn?Y^V}>GLj{ILcI9S6J zD_2*CSE3@VODHECx{^W?>wjhW(5XqYAr1`Ty|l#9!rQ4JJppsZGV=pR@A}^cj{d{^ z>^hp%`_2yf2Ji5n zg^bL`)|RmJm&2r7s{519LZ6!;4+#g25T^rg$#+J_|}Dy!1$|x+7K?Ij?~* z-jq$t!V(BP{al+BCD?W^ziXU>Q{gTLM+p4&s5pR_KRr20D=X{ik%eE5Jmqr7@sWA) z0vC$-)+S(Q!kH9;_W>}fH=s-jN=JkPZP}S~iOlW|e1M#soR?sZ2)r+W48i~?za}fu zIYuHM_>sJ$BTRomiR85p7$4U_+*GeXz5%Dg#WFQ@?IN0<$F$b^x%ZdklT75Ssg>0N zPc4)9GqV0_!GE3@uo8iE#(dhnIAD0Pl>J^Irzg}*rh^v^na?A(5Y%-5w}w!0goz{l zQFr$X$aV*52n>}(^sGoG=9j|1#JZs4M9Jq@Q4Sf-aWdu3O6L_a z_rG-};q^F;lG5v)=(*M+U7txi=LzPSYHnBMwQ6ncA(|5LG`S9agqp?e^X_8MH(K?8 zf^Wc^?f^iR5+?lI>bqhk34P}>`KjcolgMdEe`^dj~ zgoN}e9|{W#w*;WSE)CwD*U&o$-~Ytgn)=kvQh+jhl>AF8A>}D!c6M}X2TWhjh9X_M z8?4mP-0MBT{8yFMdr}F@_PX8`VmWOmETK=V{s+`mI5lq}-!yUukV0u-JiZVs8(1Dx z-Q?m*Gm_t+_xE<`%E^5{4^;L6-N$9#RSI^;L-_I}}#YB0#p zffwgJ_AOt@q_mv>eRrHVx};Dw(ap%n0q!{JT^z29dWHY!$wdu0d@nkipYl9)1jHf) zJZSgi#dV0$0PUwkoEVVX4*%A~&>tw$!yE;kbQ4XEri|RPWppl`MkZmo^H0z&?{3^4 zZg*o;$EK~Pb+Fb$6t10bqrtg+ZE@+Xs5I!iAHv0un$>g*mHoH1$ZWBP3c&{;mQ~vk zYeMj@EBg$&0?xr6zGV*>!O((7FfXUGws(iIl?#**F{wiSnCKZAIS=2;#a5!D5tg$ZnP^lTuF)F}w`U(7xZ9_?I|{O7by@f<3trE^?fE9HNi!RsEezCw zgU!p^dt-ea@v>dPyN}rCM(w6BVH8Ons0NTxD5|762(bDaWrC-3nKjPhm4r(@4xHzNONakxIhR@cF9QI?Va#A!My4+S0|0}7)=UMZxS)+R@#(W?23?-| zk)4Sos5V%(i+zbUq4$}YbJ`qH7>pnWupBh{0A#uWE@RffNM&(Nn{%#pw=Pzg;aYe- zX{3*pGkyKc@nQu~&b!j+U$B)B(FT&79H*kK{x%4aiP+0wPRVZXaXNj zDW^l*U039vf82ae8PgS5yh9X(>Miu_)dIJCex6CPptg`057Y(+DEc2Yl0BTDt;c;r z{rpLz!V|_Ss=#*x^6dVREh5Gza)VLM`#(;VI^)P#2l?JWqXRKvGTyk1g@wokD9h$d zp!XB|jZ4+5+xH`$bljU+kgR%ww;bkUl*ACD3xh z-e*{;5xmkq=_Y{JL{E8gQ6N$4M*AmIsSkdSeOw5vC!nu2)@ArdQPs!yruT%D#NmJu z*HWxMFyOIMj(^lsd%(Sx>Xn$cI?Z=8e?FJtcB6y(@+~(@SL{DgYz#mx;EJDvT>b$! z_aGArul?p-B+4GIa?8BjL^ZAKFr}kFo`B*@gpU;|%^97gq0sJHv)h?sh4o^AARU+R z>!h?>1Z}ACcW#lI#hxy9XDe!%!GQ(byGavj&9AY)>OHB)_LNe=~|3JNuT>Qv+#AEq?=$oq{+iI>nA?g2Tk5jkOn*V=W2N}|3jAS@J z>%2Dg^3S-!WhB;E_qrfBW$b>Br$1>ml(9dxT^mhT%}rD~QIMtuav1MM4L?>4J)h}% zn;=~n7dL@3UkvfQb;TxEZ#Cl63uL*y^CVly>#EP%c3*hUdlwg^ zXglVZBJ5}k8O?Mn%T}1d0!?BcNl*z^n+-ez570d=@Uf<;zYzpWIKknm3U&931Nsv* zo?aso@!S`V!JR0ZHd+CUWe4AHr%kWIiwpI0(?WmBTWoso8?T5CS}#0}9*`_ZagTi0 z_1H%6N?0N;jHhU#OLba{R7>liu8sIbJ~}VHAbw*wkc{pf82@B>ejWBl#W*E?cwFwI zD`m0ZOlnHn@$Nx=t!78x_=Oq+vk;ezRtJd#MhSaFG%pz;F@a+yaW{ra6NWiJdAI48 zJIl+JInPV4%E>-0-)P&XZ=D}vzC41Kl>TSzM)^g)3r-W$zA*DJm{w5;OtBC)l7k-- zWJwk{cFOZ zyu=hI>)7T4Hb?X{a1x9Jf?9ZF9J<(l7B;u5$n0$J$p7};S}!WdCB+`@R6FcUy!c6% zX#g=ZLRDWhAkCc1G;>`g8uTp{!dUWs{T%>~r<{>b6I0wph7jm+7(g=-0Ah2dKh(dg zi!T2;b}|Gny#Y)A$Eh8}-ZNR}4P$%^Nwft{w((%vn!WJ*X@cGRbJi z!a5eU3Y09acj$*&%RRW5kD)y~X$OV$qQey*UPlSS%(Y$;5qcs@cfE&TE=AZEh7PPr ze>xT}BO&#GTmfs>dT;O}ptn3p&bp+4Iz?$a(UmHY}Ff$K1Xraq% zE&XVxMl<_M7^m6lj)(S4#U)__5tFw~xA52NJM&u&w7SsL$CBg*ODhidOek{h18MgdJ z9GGaGlBUz3-RS53{5Ipfy^a$}gw*W%P7&(Wz@Y+h2Z(yw=4_22%0 zmE28;NLu{L3RKvyyzcla_=$`!TrpQCwmWEa_z(tBjTer&Ol4J^T8KQ6l#am5mzt^B zrN#7map;+Nu3;&sojSY%G9#$%6ZTeoZ7afaV0*SucDG$XHZOc@hLAzvtb_8)FOgO2 zC2<>k`6SBY@NZSVLf-|opDFWXpJNvMmhJ!a_T&rg+?s3g)vHDxd;{nngu_91d%kw@ zh$l!TN0}A<5G>P^4SYy%1%*hYkOJu_vaXFLD|e$pd~7q!rHW4GgLYp9ANLmk3{Nj*JasDP^2cn* zIjDF#GC#unWAUN^j-x94=AZ_dTfZ$$iJ{7o5@~ONxN~EO?tL{b4K&$xfYr(llU}5} z{Q0Ov)s9z?=BkBp`|PKM;j5;8sh+q0_SxA{el|9uRCadg}3kY|e_^7@kN&B<7mF3&RvOU>*kXZn{2LuQ$V7Y!G^K^h={|r*mk3ctT4QI1Hxh%w*44|iUJ0nU!@YQElgL;tJ;q+Ge zaLnpr2e2GeV#_Zk!pG{mbTNB(;}tJ6b8s;ED4en{ODV#ht{H3A8oI8p4r+ay!IvBP zYDN^Y!VTGm_GnU45(_B&K;o&s#14uZd(djx&xYyJEA1i^4Dj(q{senRYv#%bc0tZsFFT7miJf9OSXpc#Ii_R z&~Skb!+>B zXg!8z>(3a07naMl8T+8gU13Wf(O z(8!9tZC6V`y^%naD)mpn)BsNkWN+JgqaR)U4BJhQq_$2nWee^_zB=(2|8=XWc1-4R zAqu8{QqDr>ogagqACM6+$|D$dP@_WTk#27nlXemP1p#Wck7lZt+~BcEpCS={15;iv z!_+;{rO%)bQNg&c)U-@ZV9{(Z_Ie}521o)dmfFHtJi+#%CQBb;fU`rFk5kSUJM-E_ z|J~I+*|7d*$+_Ew2i+!Jiw-GJ(2h%Kq<&9#lc+$4dOA4r*1Cv8%2hp`B-3OsKgXZ; z<``hgq8~aBMvDe!ibJ^Yb89>;pQDXJxg%>(5yXSGkDmNue;Q&?TB&)R37FvXD26c zeU-^%2F|4Oy|Ff5RZ;~G&xK1d0wLi1`dds;n=O8aAN1di8dKQTcgYUgW4{X>_t)t* z_)(%0!R4(*XPfeNOVBs;(saQ7}!oHB#q<4XC?nXMQZswKgYJ^P1+ zHNlKkMEnT#P=qNc9WUB@>Lx3Q)yD6@f zf96(wBZqaag?v2x^RR{fOt7WOK-Q)1tpgKXB7rrDhS&6ECy}DkH%Ixu5Ib_r<*--j z(G1Y_!$ayMMTK$MoX@$Z_Ns5@gP|FQun1%G)xz9aBIdhE0X3}EszLo4!o}68*D*zO zO$SGRNzJ4Zun+b)tK6Z6T8u}ss}AvUoBaM#-unyP2j|qk3(n-|*j#i^+gH_O`G8P0 zZLr3n!x_qE7)--Ha(i027^qdI3vCmeDGrqy`~v~agvtR_*+FWbou5bCCL{S3zS?;% z-#}&;MP7UtCHg_pOjjG-YDboQT2NMS#=WOw@6>m-HE0V^zjjlC2e%$73{W3LF0`6Uri`9u5h*R4xGpx;ogH=JNJ2nd?N+1IP1ThpZ~TirxVXo* z59t%kJvGr+DyqXbmd_h~o99$M;9t$)C?)fnif?lwp^v%T@`mwp)3Afw)DrULe5d+s zx)7J$O#2R>il{)BI{Ax>@+#45U6oH!dbbEK^?d+)6Z!CCfBXV%>SKE)VTaCxvUhaO zau+#ryD1*k2`^Qn7=D#rIcM~&%~?!JOpN00-P+&1F>u*}14T5ePeE}Nedn5(>c6qG z`o5ik3C<9=9SE5Kse2c*muODUgLu0I=uL&&3Et)#6O@k69D{Ie!Bg#FH zK7;nR4T=>?BRjHk+CwQUPWfE^_?INLcpQnu!D_waAZl(|p{L}rFPqj{j}TYaI3asN zCPe}xO8mY|m^QRT&7@_8KCr*yFJ(`m*;5}4xBV40-silK&J$2qOrdyHkF@qAr0|tS z#Nt?_DgcOmfE8_sFWx@ua&=q$9?w@kZ`;Ix0Og+zu2GXy6_QM#7Lz#?VfkkKHLWIt z5YBWvm|l7fIt*|%TXnwr1XJgS@yWS7ND{Awgnzp8GAizs@~?xYJ9N%sYqVWlPlArj z2>>@S&& zo2Kw?6xDQuF%|7-n7HIyG?a`u#$p*xnWKh|EV<89luxwaa^ktb3jl6pNT+s)>TD_w zk^AqVTZT&i!{dzI-N?Jzy)~Ra0+nk=ewbp!z!5dMzJQ7q^DF1HLb=HGB~RwUO%FkZ z6P9E{A~CJyzQaYwf15k`i>)y43ifyk&G}F!c3RnLw{=1nYx|mI(*>v7VMS<0+ z8Fg%?Y~AZjb(y|-vj9&u>Q2Oj(au)Av&5h3G$AAYV(&U(Dfd70f3HX0^7B)hC?}`W zQ!@({KjQ@D+0O+h7KRgt4~4D*&8^N_q3qw$!2DtDn*cpx=bZ|~6Z*Fw31y+YD;uv@ zCABAl?@H1WgHeZ83>^#*X2l{X6UynZzfz+lG=Y%^^?7CL*qimXut7kBd0GW@mYeoPRhR$4(+qRen zA60{%-nJ(HE2>25>hIg=$fM1c@Ja2Cy(E!nc`gDM87z^+mvoLa&BBIxB}X1&ZV=cM zbg?rWJiQGU3P8-GL0Zr(4HL$hVaT-%!j40nu0U?BS{*4-#lHiCL~TodE$!&#`%IrQ z3jO#9lEnSBp3%sk)Z=cL5B5zSGne36+TUghF_WUJ|9%&!*|=Ht7Hjt)*Kto$YuPD_ zFDkcXEeW(ZSZ>EV1|Dy@EXCQe33fY!K;tw&llUs$%;IzN0g-*AX@Si2PBa2Z2*`tQ z-ypCTFjMy=w*ug-8w3V0!Wh72)VWBX6*RfH5D^2B;AO6kME=kS3|duGRI~#9h3Lj* z@@EJq)5EZ2a}JNfPVW&9YN-|UG=82Q+&-_aRCAWWDgHkDnq)kl5DaJeaAi7Zsf4+( z&<9M5UA!IM!$KHqSprp!eH@z=!bDI#tTwT2mAwk@GmrIREf^8r^ctX5>f~;K0iZKm z>+#oZd2=?tON`*_fzd&MKxJ4kS_{ zbv^_tv2?~3iEXk}1CSJ1{N0#Nv$;8*n;V1N{KIDNO5@%~^{(UyR|3lPCX8;JfZYBb zFK^_hPgjuz1Fs=Ul2ptrh_92SBmVPTso6LSm$-Ke+lvbqLU1p96O*F2LiH`A>C4d(1vBoGu&0Ul=eD51 zJ-pd=Yi&sBokNddt%t`)$ApaDQ~Lb?!T zw#yTt+syr6;%AeD@C(#Ul5p_8F;b7#S5l(6mWh8)C^Yyyc<0fQc22b)8g;>RYEw#j zhNG=*VHZQrLW-i8p?BY{T4FG*g7uO*$O|4cbg5NNiDqVI2v4SNT)o)b(n3693K}CA z)0qR#GbB+SpT-`C4$`-8-`p!sR!rghjtpgvkXrgj%AHhK6RiuGvMPc)&Dr0vqTBaU z^Yf>?sxrY$WA6F#%Z}$+dm!?861pq#SMbT!3}<512;S!xcJfrSG|ZIRpxZ%pco;@+ zFAo)BSDrqf0lY3X4UOud5+L|?yYJ6^2@b|3B3jJp>sYV?)I5|mS|J-**@JxCi4&6f z-4$8_3}OzGX~=Z%0IaHMW^~;5r4n-@%Mo{uvCI%_!D!g=!3)U|d@0KYBZG>k4?UWy zlLThIzkW=hSl64*m!YYZ`F_c)4#Avf5VX z4DDAIs|F|YWhxa^%+cVYo&ep|ZF+j&$VifCmqUHP!8U`qUzv5+Bk2u*J3c}!24+Bj zb`b^fk0bI?Roju?$(R`@i$WK2m6pWH(_Cuy*<>!c#2kh-lRPGB$%z0nwER^6bEV?Z z7w)*5c?SO?$SSi&Y_%{2K`ex!s$EQB6POz%KO^jt+{IGqX3g*I^h zsp~?!iufidWB}2Nptztg=l}V0B_c~<>rE1M}4^FgV&yuk5Y{`WN4c55EDtXWh(x?oKz9;X< z-Dtc9C|I8Tk!ue@=m{m8A{f|?SjA3u8Rm$&EWSMuw!p9tSuJLoQ7tyyf1$>=L0|Tx z>*s@#T*cEVeG4(em~XMtR4RRGeBJM@z9~4p44gWuF4;b;4;-8fXG$pe0jHpxFA8_t z6kcUc&hKkHm|nGcW2zyH@f9kvZzO%RFhCGQQz?o9bg`Hdtw8 zlHX0;-_`r{U1|R3lU8m;K|>i@-AFfunwollKHiUnTVxr#txT-Fsfip$bCeGovFDnM zaD$ZBO+L-oqKM-MMR4$^g`efVMngU9J{h+6UCY17*w%FqGewQG%h@|0fj6=eWpc`;{(Z>HLdNq8 zPKh0dckkYTh^AI2*Pexh{1Htb)%8`-c9-zUg2tso1s)A)qE`x zTkH;3y|vU8T%pVAvTN5W{RB??W1~Qd2kxOX83w4r?1P2z0F+}0K^4*=Jh&?nSDK{H zR2s6+PHT+ZRMDu}=aRWp50>o5ugClN(>pYOh=eg!Kirfh&t1B3fl;&eayU0nspXs` zoUu_3RnYO&)Y3xafN+|m>X3Zp)k?ckuSZ|+XcTZ2xdVA0k*J~f` znoiWVpz?1|_(D8`wramgyL&E1;Fm&(>h; zWo(}{DU-0Uy~4ze&NlHb^t2~5J>O?%jKzsU8}nkH*51sMtXs_-7Be;<`THg;isdI{ zThlceik)RFMWJwWpW|`ZPVQz14Gx~&<_8=z)yHd9Kg(htVEZk!HKZ)Skd;@PX>_Gq zHB_S~V^pF^j{@W5&7(|*h1D;UhbN3)(Xg`06XxM5R#n#d9a31A3!GWXw3JnmX6L;Y z*WI;#J(O6WZ&b!|u$2(`&UB`C;H1=FA&SVPg4fr^(b@Zx*7WA8$AZ$ankqLV5&E#Rj4PQ zw1!)&a7czfjGPgxaBEv#GOTbb4?x}kdAOV-9-;t-Z){wWdBbq9$llu8nhoTpyEA}& zYi@p)nwt9kC9MSg-bLHmt^lT}fj)oZh{43{own)r5R1i3yKtVw+@k{}HN#X=zmwsy zinP@thWt8ft!KvOzyJC^0$oj0ePewy)E~e#fT1i@+*b2uoyFndM8C4s$I=OnXquaw zQRat>77X3paWd2u6>o~hcix+N(?dZ1C}Z|l@I|R}ek5E0(6BOxNq_2jZLgVQ`<7;! zNPVD?i@-5px5d8bEek{jnGFPBfNBqRVGCm<|rA)xyaot*loQIhU3XVQU!6k{Ug zv5sPlkRv6@s>031WtY=%1rcdV8X5|4z~?KCOz%qg4^9sLb9xzgYZ39H{s8&%MFvK! zt5;tGyGgR*rE;8n8ZxHIRz9;+k4PNgx$7SV=Ib@L>qFa?ml_KsjJx{}-~VFE8&w z{E6=7e|>5Od+XNFw$%srCqV*r4&>^Gq*gZS2c$-!aK^%?T;xMT!0?b=_D#3Jw6l2A zv2v3u=^0#o19Pd8f)maG-M^Z~HWy7dyb_;EDnF2#%ZHIQKBOl+W69F-DmTR<61x{d zVGa{_RNGMOWkUbR0?E^01y^qcRtbwiZhP*m9kO$>X}wS!jqfDI7a@m4XLHk{5bZbo zpIjwt)DVT#c->6oal~(y_j>yMmur*lh>BkPgZS_Sy$~`sP0fA=-@?+8?;pN-_I*E;=ys^0>$DP) zIW9B#lJPaemw@Q5Vc1203N|J3XH7gHiAI4$G34)E0S3tiC~7Zs#3B}H#6JUlpRSQ? z7~>4Tn^4aJbsxBm$gPr^mWG^=5JM-x?6BP(co`mvioQ@(T-g0fH*aCvr~F}ws9pil z27dTt+cLE*U67X3V~hVLwg2#x=|lPRC!altBL1yEHvS}z@*9pmcq8o3ujMgGu)jt5 zmXx#wOq&pZbO9BsXeL-0UWMEeExh0Vmr2L;wMyvBhJ$DhnPY)^{`^3hBS(m;%}p@N z20fVk^V{fuy(Tn^;de$X=%5|`;yeI^3dARbjJ&pWQVWTRX@{vj13%0uKo?O8oo{3e zkHo5O?m%N(+kINvt3l6Z-ahfbDSsk;9bQKmH)Pv{7x=BQPqiO7~z#Q0#J_PY4OqV&@)7I8TxqyZSr`1Z!c~n%;qCr)62rp9pW!0}K z5fVCV^6^Jhf^U`bi16PMv7IBrSMoUw@f*xqq8BhNQ}R$6*_095she;8w__JGBh9pk z=af{rI^_516{(OraJ6H(JD)CvuJvPIl+%K3$AI(6fo;bKWDzfvN&3dGRet}@=otHU zQ25ha@tdLM1y4F!#C+wS%En9}6XiSREZKa5B9Dc&{ADBh)bj;WNdd3HL9J@d}k^`PU8WCqT+x3@9p zT@K8uoMb-8XXNArKuQktkl$5lm^qw5enb9fskdveYyQGIsMA?(K59VNN$L{&JN#LJ zA_@}z)Jzq3NAo!%)k#?AUG0BMSFH=m)>RLSgmbyLxL`{RhD5aLK*6d34EoC~$7fNL z(8S1Mc|wwkaa$#;?gq)jmtVtW9%C_CfVAM|_Kh8->K!Gk!NdpUJ0}tOf3A9G;iX08 zRq^5Iao@l9-|w9SaiW2ZzX@FGlBKKDf3Dj03b)l+G5esw$scf!DagtKH>+#>!t;a| z(r}`zV<0s0YZRia+_4w>i!77c#ZdwS1F5K}$U&QrWOCqKX@N}6v9o|X3M)#|w$ma* zUfJ|cyE=dBV_F3(AEd(xCiKP>b(^$|)o&d}`O;e1yuwCv(KG`$2gy*k9bvs?UU zIX_<)42CHD3Vqt%e4m$@C{QGJP%}QYUdW^AnTU_arU3?lvN2iOPxjQGY}cPpJM2QP-+9Y`}CFI0D#d4+(~bgpJnysLZj_| zpMb} z_6WtLuZt59<0lS2eO1)-f`^G!(M3@wcKCHd>7dZlps>kiqBi-^CoOG{Nv{i;2YJAM z8==ca7*B_%HPL05+(|`I8$Fx zo~&n^^SOmv1eai%XU*4RJ#RQ*u!8)#zjfZ%PU9M@bB{b1^h__`;a8FJTpw(&aJg`e zWWJ*&-W|u~YgNT;qGT^O4QNmkhU}k#SUT_J*5NVN+=8ok#-|v3Uz2E)oo=48%IUwx4)|zvU@s2k% z^R4$zK>#(C>9BFMEiO-TKCb$d4T? zdAG7N_UN{w!unA7)qO!D5eDZh_SeL#RWcJT)p5Ouf_LOOxhovb=_kJg3_Il1Gvws> zZ!w7%|211=&%xv+{ik6OKf6>F z`?qGAkEyv@BBBSp_+9F!1Ivz(M`;T@0v^Z)RQ6xIhGfN{ zD<4ZBD)Gzb;ZsEwQ>){gw|IWIH>7ZwrEu=;a3qYcT8e+Yf$eL{R_=sZ4Pk2A z2vZ@N---hGAtt7#g(e->5dSK57Lv`H?Mupcx6Yvt`xEZoi1`Y56$oxp)p~G@`ODSv zTTF~?G%k7+%Z-Gqe#;9s`Zi>Up2X%u$vB4@d2a6MP13b_6Mk@9sYEL*4_J!X3`Q2A zc!cN&O`_Btsw!gor5}Gz$i1CX@P4N_Lj9u^;RfaP#58$zT>X?CCVC+~krEo_LK$J1 zpBKNEtZljW;oK=rr9V1wFqj;|SyP(!+$IEDR!|0x)~!J zpV4ROL3;dZn`4<82fLQMUbRZzdOxO576ohOGxJf;1p>o$IlBC@wyI_~2q5-X%{OgY zyf`6LLbUa|fx%E&cvp`n&2fbC5mS3_P(i?epcZSF%d(?Zn82dp`_a|>SXG~xB( zu?j^PHo^k}TY~sf{9b0e(SZFel@Fp!xUp_ zYdtDRlfj2k=~E(j3pqtXis7hD#Y8J1;2UDw=66*&b>se@{KL9ir-< z4@xNNV9Al{~xgH)W8Mr_k^GE3-Ugq>iu z?p{`!-7k2waJpm0c3bHp7X@74lu_MCS>2HdH(aZCq^=)6sWmb@=j+1q49c zgU}-2xmZj0A%n~w(DC6*pinGv!cMc_T05ve>AqKjN9= zbJ@kD;6RHu`_e)Y1)=|F`~3W)Hw1%&qvds5i;`BAD%F`4dR+-9`A_%cKheHSifejs zM;z!NQ7OIW-s(Tpe!`2u{SXugb}DwT#)<)OhHbv1v$M&B zyB9okl>LW{`p(TwD`_^YDDYhfMCHrlT~gV%Vx)YPLbAaBDp|<0_F~JhdbDM1MG*^1 z+*~8$OMYJZGnL%$T<*B$wo951PT@5m*PrksmXylM4<_eF)Zf{k9r$)@sfp|JQT zI`dA`8S5{(7A4nzSO%4*W)%I1GRwQ>-N|AGONWHPGR_KXfaQ?k zI{7D%1?k_axC6zZ7k=u+7QWAA`{q_#V-ZS-;VTmQ4j`oG$?otP1P4QCEr3q*TUzlR z8$yWo62x_FZ)xviM2mR|gA%`-F$uZ~FfjYRTnInQ$=Ln3ij&U!IP-n!P!^dq+`{X0s1M;_N)tDFfQR^$%x5>5ok#7OAfM+Kn=N%Ivj3|(h& zfF|8UbNcH7c(h?lfT|TS_HJkN0g%-UB7FDEPvUI=|3^HSs6%A;Loq^P#Dmv56T7e8 zEpQZg<`<#hEfPVlUvuN*6{}d8+*|bg!5>CAt*h^ZKEC&H=LUZu4UgQYchTE*M!XL8 z%pdJLx4acN<_0%IpAJ}7a#uQY3l@3st`pvyI_2{H#e%#h^obKF90Ni^Od*6B0}y}2 z#4)U$8D#`vU%8QD5JqhI--M?yb~NcJn_@nzB*%(tn&RNAXxLQn(7Q%9 zG$RH8B!FCSsLX#Za`b29(Do&e-E+&(z6^kgJ)Q7V9yF5#(Zj&K{EIlK;F_XQ1V~7cC85s zjtgsfQmA!Z(Do)`@9eTU1=1KK9qfn?QH&!jdB}bdJ6Iq>#Du`Cm4NoHcAgE0PJZ}g z1|>D6&MT#l`7~U&3tp?4vJmL_$sXx&b*^_v(dmq3!oIoN*=74#smbneBo9g4oe$X&OL4^4319%!$(*`XRi0>V0 zS0O}L9v(+XcUXcg4!gnv%QXqfBM2a3v8N>j>Vpsd4U)bSDJTMxXx}=Ue5xZP=Y=Y_9Dh7{-%Yf2wQA z$0Fkt_Tx~jP;Zp})0tO&BM17zWEX(xrLA@bZZ<^3#3uFWk3ko%s;auD)|dyxy)l{L zX~%v=h}EOv0t2hy-0aMJyBue_cMK-Hi!&1_1vL8?;v{q%nQk{ULrl}ZlNL9;!1}{`3O@@$8ZOlP&^IUxG!>4D< z*M_L?HVa&^7kp><6s`B!AUn5Yn_f}li&;y&g(-y($O?{NR?){Brih`Yrbemf z0+PR@;aBGge@hA0K;xjUsX1Ox1NRMwc?Wa-WYKH{{a>MnmAKA4+CZBRm zl#^nPBG06v*?kIYjVepg7hXFCNKH1ZoBIATrH;i=is9`zEtN~X#mb5wAtwz!q<(&W zur|Sr4oc*m2X{fK1uAHOeS1;1)NvA&Qr5ln6)4~o5ReTC|-T7XHAgM=XuQ5mTUKBfxI*U{(wBqx9n(@!TKhmj@iadRtYh$W>bc4ue_e$QReN_&o;7fBUxXm%=B}_tVSzjvW0HT5j}ti zMSo zLGR;=^k%!Dvi%w*myl&k{RXl;HDbTz&66)f;nKlM0Y+N`r);MmCmUfY#JP9D5_dAL zDk}TLocp7AQroj)_ndi_cifg!0G?T&&pGS5JMk*Ha#cQ)cLCXKcT2_J2V3x`b1eY` z)OVvHr5WbE(AzS?Ja1P<(3(EZJ&&?qv&v^xS77r{zT$NEtZ?=LW;KsI`2>AYqg5@k z0RQt_lgn;Pp$?ietZ!>j(I-ulhv0ayBO+P!h<`a;iz&)k++L$eBT4dWY95>?o2#L7e%Py$ zxHO56?$w{8L)WHqWIE){atQoM)2w+x5fsAlXYtocBSxNw73=1)Z6LIcHvX(*ocWXU zcY#Jxy;1d5mxIIiYsmT&WAhiUZ=`n@?Ml(U5+<*`@%~Cvkfaml1Xl%-+Ic4vSkPh< zk!?#JMX;b7iw$Y!{A|!a+Pt?EC?lohg7tcs?|w}we{ldqt(XaGKu5u(<{S1^x7Us< zrJf3g8(3m!H<23(HFx7vGt&>oV-gN*4^1z%uU`bt0MznA$b_mtymayX9_^iqI+3XC z{>(QU9gNiuf}eET7^{o+O*BcP=&%3G*5oQ0lX^g8eE0}K!IABb+7b)=st{ib#dwON zlTEZTL>Dkh+T+8|9hXDRj80N~3k($BDX@PiB1AGV^pLC|BP>}$N9cLC>UO_234dyt zT}$HQ>qAp*1$%*a&GmRYZK`}^Lns!%&rbnr3Fv*ugIh zZ{A=eW@QB;gH*)N8=%8bQ0~VA*d}tf4B8ZH1;b6OI@^PwRps9axyyQyPoC&BX}5*$ zdMj}R_l~&ywm_REg_G+I|v^I z00=-?;(?L)2|#6$UE#jWCHRe%`1{9;#WGID&rl2=MRMe3Dt5J(7l}Pt^ZPP~Jpt<% zNGrFL_s3R!<2g$d9v<-smoKTy5MM&(hVP|G!U_9w~PY(lknpceth~o%=CEA5Xeo-l;r#IWK zv@E;`z{u%%FVcWVOGT9Un)0x1Yg)T`|FDtuqu@>dJQ8JZ=eJ4dlhCEQgO6)- zEH?fuI+*!Rm`5+Sd%Rf#U&46_2Qo000wyN(z@1GGzee=U(0e@G zUzUDrqJ4VX_#y5n{owKT5z(>b_C@z{HRGR=?Iaz&m-G!5mEe&^Hpk9z3C~8D1Rx4_ zK!Q>LU`1SWk)S?s6ut~oo<5lP+#wC}Izod1CKAt;qf?qSwFR*n4d98&p~FswD%Yop zQz_ik~qsMe}&`lUsQokHRmBXj;r zZs;`c3)iv#UYdNJsC3YVAR)vu8xFGLtuXWg2&kTb=?O4dfVhy6kx@W45@p~X07KOC zHl}LR)jO~SR;rBS7#~7G9|HKTn~pd0yutWuMb)jX%?ozgMipw}<=HSsg?_9ZX8P07 zr#iZq%*nQo)5k}>G~^>j@g%fVFv@o~8*aQJS|*+y6*&K2mxp;KD~knTgCO-=cf6?l zvuDhfLpihXSR~0}|hx1oP78bqp52I~G*cE}Ly;#de1~&k!R^BIUbJ!~XiDgTDVm zL`0$2k#ikrcMzNG-hJOQ%KpaJIyjVJ3&rBuE#tGev^rN`8GIGhbT(^VQ$036l#of4 zN?|IPUAmigX3nU2cH(imU9a}xvB%k=@~lSMsiuMuzs@(juhYbe0ySxG5Wb{+`w zq!3gGxlqVJ{S+d3#)d_=zwrR%50tfNpfVs4ynxwKhbZsYTZkT~*-&BRTM7PHw19c$ zJDuFQENZSA0plx_G&fpNOKj*f;6B~)_zA)ZL zKE(I3`n-#Yx*RVBSseA=-{IsZ%@_&9vjH*Ehc2-hA}^YO1*BbKaTWYc5p(bOOYNx( zc8bYjn>QX8r>k_OzT-D@j0&A8lcL69ta+$9WAV`H&o8J^@Jhq$aO0XH)~yHvRB^XL zt6|4CU0wYdM^3n(H#< z(JJYugnIwIEGc_EHutUP(_{74z5xZX(Fo~>kJqibVW48{QMR;)d68gaB2W7d@y=}@N2Y0*?bWAN%=Jl}<$0#|toj%n|Y*y4U3K=pvq z{NQsLUuU#r01-0J8KmxPAhR_LTH>}>L zWG?Xntw<{Yn>qAnV8$|9?ZTnral-&2)kNKQo{X1SP2tMohPm20a$^{7bp24j2V3}6 z$&$y15`^WKSH5KVzuq3i*5o#|m6gQeLzdEUxj4^G{xsKWv%V*qmnJs%@f3^JOzOoM zAbv`KT@OaFdCw1oxCzv`1@O81Eh8xDDz$k@M&{3(#C?4!Ti+`$#V*R6ZvGJa z++F#4$!5JdHDFfjIo>qY7t^uoOak;%I<%q72VS@Su@%=vVp{-kU|I?p&zES#zCrb< zl0BGfkHr+{&PG$r=d^ONypjhmCcy^qr9BCL%~UCYQ|!vOu)Lvi{>!9#u2`CyiZy8a zHPsF@FjNR0w-u(1)W`j;k82JmxeQJ=uAhj!cIZ#F3*NjDq-yxbonNz^uC#S)B=#$- z;!W@?UjqL=9!RR3g|U$*nA(8HQRIgY!~o2R-UyX{m>zG@N%joIzmO5|o%!x)k6hy2 z`r^mo>`!L%Q8@*hIe~EpETJEc$L{5*GVeS~=e((tWM1*IjdkgopP@76=1Acye;V&- zAOa%KIus|!77yt6kLJtbJC1_Zv`EQXTaV=xziN|$D&;_GIw`Jb`rz$orN z1#4N^*qoA^DMQ^@RI|B9k&u1bL|u)3L1bZ+6p?;J$2Z+Ph6iLn-w%h6^~qKHze|nA-+0lY?igH}APb^Y5Kpyh4A4rqR;Ug4izj z9i1$<#rK=;yDK;nkf(BRU|y+ZSTXfwqj$o?)O_l6mN@Lxg~M)v7+{EJG5C$!vkSCW(a}X27RO(Ri`8&ArZH9WWXdORN4IpydrmY9FNYa;JUc4 zjS)Mi#hC*B$1^qFVP2fqaD9zZ7IyGtW=sk`x++_(e``7XBEVT> zhA~-8T4eg#-*y z>aPwxqV1qNlQ%V`hi2Ufcoln25Yf@n((;6t0lfy@`pdJ@Iz_ zW@A~nUyhjV>k!%B%vrqK2g;+Kr)vB$K>{^BRg%DbWU|20~+UmhS*6w=4cr~3Y+DD$V8%D&fSR^ep=Yrel|lJq`LHr6v! z+nJmgY-yI?S*r$QBL?~3n={^C%lqDy_+Z`PB`n#?6ufWHC#!~f?#rpcH$);~1sL;E zxWT0rg66h)9{GPD5E!nu1~3t9;)hSYjENc?5TiaQXPbdG%b`;a5ZDv|d*==F|ACaC zrhmybE}1^H5p1+^@I+vd0pCmHx~oHHYKg!(zN)Zdn5e_|2xhWvP!_WdkSg0U#D^b{ zJQsZ5<08IPD3TJrO~ac!nDKL(>l16W4EJs3PdV7*N%)5FWNVMo2PM(rkkJ^C-SaLXX3Mp& zDpx1f_u|+WBhec(xtUQ8Zt2b;8^cupG=MR1+rvg<7$v0&k=Tj@V`4`pjSuW(Qv8{A@}5N?7(gPxp*1PryKAnwu$>Ah-Y@4U2m0 znZWaF?E%VKlTB`*H2|7KM6B*%vIs6eKOndZa_kCBzmg)fPB2G*F*e=+gq{c}c#&{0 zV9Z7fJ7tZ}5hoiO2_kE|{%A%PMj$-13A&Xw>H^eN!XFzjmJ^92OW50+z)RoWL6?8<>pR33?(cMAP%^YY!z+)q5# z?D>=D8K8)OEC>~_`7u8L4vPMvFw|r~ufZNk5cjl}tN_mkYV@%k3WfSPQb@;9w|@)F zA1*u@&eKQo@8Fpw0>630_Lwg0?p)u9Z-vSub=-t0f#Avn8aV8W+`Q)PhN!-ocJD@U zve37U&jM>nH$$C8Sk~{m5R0#fKZB~a)!h1-cTm}VWoJ|3aQBrvse`2aG+pM~y<-=j z`shf9RdBK^5~LeS3Pw2*F!s7`_1de7{|m@N!y*9`o)x{8oJW~@Vwei@@|L!fAb=g4 zsRH1X2cTNg`Z@#&_*OQQN%r|g{p46|wpw!Z+2B*;nx2S@R2J#p{u8p+xmJT&2q+` zRpLDLXD|4)QP4>hu$1E5VOD=?@+m~@DxQuI&)W8ac7tR^e6oZp;peFAFHCCh4DxOj zW1*gtDeqtn;%zm4rT4b;lE@a^{e-AT`S}w zRaf@Rmyh-e^#k9wGu7W-$xD}4=ZyL7nMd(G{DT&@e)4_Jl^b6}=vKWd%UsupZ4C_K zPgaraRq*+YLjL>n=TG7B)|QgI)lZ+*dYp{Q7L{tP!H@*4D{dAhKih1zeC(o03LWho z`7R@1{lc@V7jdomCp8zr#xkh)Pm665$?a4W^mCkgE~Y zilT!d=Bv?Es&3|aTP0?HdpS6f-)XB$o2il{nl)?Ii|z5TsLPf|U#XJue@{#6 z(P?xt%kwEWR&6#^;QX63YWhh^)MmqR z;^cO(GQilpQz%Ba$wlO{5n;d&lY2NYKPLVV%fuv5c(O3MEj#DuMfnDg@HW>i7{NC> z2IHm~o8T5c)xpbZG%1|DzrDra_8iM~qYiBqqL(rG8yUnM60Vq-s4&u*tdHX&wqpPf7W3bo+k}i3NA7(zZ}IcA=PrWMd?#!X^hl zmz8(|s+u<|@8;wvo}$#{6MFuzb@?L4NKZ7E7leU*h`sZPB_lV1ahvrEQ`W7Nf|ucL zsp?wl#2b@fNiR;Zz6}E!|ma!W>>G!2@dy|A= z5}c61MqPVeMV0sz&@uTjF+aiV5t-dk*l%BY%4CO=} zT47wH9lWc;xR=!}(qB0X`#Hb3LZ#x78*Cx=4C^XnL$746`X} zQZ}81%&0$1fINVzz;BGrxRm)bnMRR#_M5@+%Za`+;Tl>V>p`tU`w8_1*$my+rA#tH zGv5AX`Vd^a4NsWKgPXIk{?9&i?pw-Sy_#k7O9P+mJ;U37(6)c*{e!xtrt4!)1U2@z zaUwMA<+3{1G8xiaq@3;O{rerbp6x6|3=WLHwNEN%__G)jPbgltM^*m}3v(Yh0f^ah zM@PpoICxIjHWOOMVd&f;Mbu~z*wfM7UH4PF0qjJKpw9%GUEm2eVPC%603G8q!!sBn zak*^h$;r!C?hff{0}T^|mP)NR$xzkS3NX@kE0K`%ya`MC`;Rr_`<<^ox-^IBZdH1y&FSZC>-EcH|H(Z9{e=+LhyPzW~Hh-Y_s`yF3K3qDkplt2H- z%|}*cr@z_DVw&)Xa7-ESIxU%UINupMZxjdAyq7~gXCcOs%Vztaq5I`?=L=lk8YjWs zxl|NM;|mH&^v5eJ*nB^EQJr!Fp5D#^jW2W@F;R{>guoc9@)_&FWD)$BlDyV_=cSX* z%aYRYj+?o!F-q}B__@E%KCmV~Oq9UlLt*ivEl_`T6`6jG=6!Yz`#b^0lc^dv#Kf5!lh{h;t;T&g z?H{Vr5?VXtJ<;dc(_vv#d1RXQxl>`8BZ1?%YQhA_WJygXwB?DoA?(qe6s#nCq*-01 z=`uO|enlvJ)4@o51I4c1_b(ZehkiX9OOhG7@T>e}oI>x9){48&HiJLQb5cUI=)UL+ zObWm!Fi|8VixgvjSd1Q&4>^sq&`OQZ_99vX$2i$qX(_3J1B28@cE1-MhP67Jo%|_= zVimL%GC+?WFSjv=myQ7^1oxP{i^vdyj-ms=m7{9IY{f$5^Q?**N5hZJSR)3_yeA-{HEO5j zxtgj~p%M2ur#4DFt4kvbb?39WDG@dKtI;$StFoayf$@To=L1^LKWJ(s^`18>V}bj3 zhaabScW(8jWez`T&E@kWRWpA50>8kbEQ)k*##s6Pt#BOv;oNspv$H2qK2WDq-QBmJ4oexZ&|F#K0w?brk zFmn3a4*aVNN-Y!YPD%ICw}NHYHT4H%gC^$YJeEUuu&}Ve>w7LO*4hXZ1QX8VRy%8> zKpOZnUOo-IbexDwp3CnGiT%spm%T-IovaP?L0$KFFrTai7_OjB%*@JaGAiV){7b-- zZ*w#=lr6JD#kLKJgo_(?W>(KV+W>LEQjeSHpFh(Rf5!e!z5gRKc-hzaSW}Y~hMahb zknzS0pX@mSrl=0>k76sTl;z{ck8+z+wGlwSl~*N}h76>HYgex(t&Nq+Gqba6$b?bn zev1|8nH}!>_Dvn*;O%AjgQLRD!=wMG|8v}W!95pGlyUX%>$nFX0>@bxeT0~S5kUi zdxb+}`k&Yno`0o$d{2NhMc}_(X@Qcwq(zX;{3A{hUn;E={;v0b$T_}FhX$UXM4z1~ zvHhXncvDDkEL@yVH_l(GXuL|FpGV$5dU89z{&%_-$3OI7*7{e30HPyGkZceda&(JM z_do8zCz)atvWh!q%ReQ}w}@FNar*6Ou!x%&27*)=`%KST68LR~|6c+Pd%!V3&5#`O zj_x1J^Z!Y5z>T>>2X`BRBp^*V!Sy)IqE43D%@-<%?eF(5yNM9b-a0-0v)oe{R0Xw^ z*v8?}hl`0c0T9Uooge`@#1bXFAsqn?0L1IYXkoY9KM6!0Ob7I8?P;rAd|zci*Fdi7XDQLz&(fTZN0{XGqDpP=PlMuw%qXQQ!!Jl zpE6+Foer{#j6sw}j+UyqK9DZ}&=G})2N*%W04sK5mg~LN)nNzY$rFZze~`(rb~cKo zRdjV7b%F&9L36`7PS(o~%`rXH0Bc3031FjMZ7~V)0Lmaj20jmT+>zi)jKp3jFc5+J zokyJ2{rmS14p;LeOH43wr2vEFD&u)D)EB-o9+_j_->asqTdJM8rO=4+P z2-ZynCxPbqExdN#C7a=JbiyND9r3>}e1KF4XAK8f@y!;z*T~4s4FOpZhcxDqpWcIm zgL)2Ke8`{%w*5k=^IZH{VloS<{%lUufb-gW{>kie8H z9diF+8Vtnm_t4D$ik&`g8>hu*d>E?BXxNjT-_EF`WIrK%pl+Z)q;!iNadyVZ*eLt^_d&G01VC=wXF<;kI=_viAS+LSfrxf$#pK$njT?OPE(ShOs z`I?2X3D#d-QE%Iq|17hMpj*bJm7=600v#=QS@X*<_(<+2!qJpChyo&;(`Yo};ScHF zO6%J&tV|hRUG7cs|2hY9=db}%yHHRB^#HPaOHeQxjFEs437*uyogYv;!60P7jk7{z zXJaxJ$SCKBk$Z#Wk6MS^!&L@(d#NoEY zOHO_XstqulQUam8+e&77#on0ZYOs@7gq$hb+;eYD8yp%X0SnZxa-4-VRc<4I8el?7 z%ku=+AyoMZaDHLefPAMbB#6~ct%KoVK9DcAlhI*tYbuh^?2ADC(6~iMhx~QW^)rLC zvoybW^tqg*<6jeU_*|yWxy9`XcaG)OU)|Y1b7s&IDli#*Vh+O9U1`r z6@GTbdf7NA@|;=NX^%q&B9S9l6t*C5+0;j)^`U`*x0smTz{tXbi-V1=)Flci>flcI zZ2I&#|GuPTMovx%8ttvA=YQ!2?&ZtnVcL3n3LvLFJ6;lx4d#H{Y8c84R$DjuUPKN+ zc>E#Y_qwQi$-KCr6M7Hv+-VIWgI#7CBwLawRF;=M2<`y!ciIy@J90?3=q4BUzDvpf zd|~Ub`$Qcwc?(!VW*!^+ei5>wZ*p_L4-CWu7{tU- z0Bj6F$m|Lk7@VVGEM#E?{qt^am8O=4UrhYvflx|7 zf03k|AO`$I+hKhdRdw}q2r&rO6|7cHx8EikHQP!@-cX1@+Z_QcRixvDR55k)33xW% z$Hyy0vFpDH2$+SrEc~LZ4p(U7+JH#(4WT*0ZV7h-6dYs2%5lOGkclMX75GCEvVGY= zgMb*hAUZ?PMvV^RoIhV=zbJPK4ek|k@($Q})>iTH@nK0KFAoDM=y>pL9xJy|hOHUl zEPXVOf2R6evgG_DU3iR8Q+2qixXOnxlQXVY8P|mxI1AVWsl8V5UVGZ~w{J^YR-_EaItnU%Xjnpl?yLYUIp}+tlxN zu0p4RctyJZ+313erRG|544)dl2(dy7;vO)Ev=u?h;B{>%+hqq~IUm&tp z*Da&`R=ZQ2F-hDr#!_ise^|KxoVlMbO8r~W{*Om3^0oiD#{GYu*#~I1TL0ICZyWhA P;Gc)mN>X`}PhS2n#6@Nw literal 53147 zcmb@ubyQXH_bqxb009*#kra`VMmiMYm^8hAmJ7eZ?z1@2Fl3O+})!rfyclD4zDA__;rU*nI`YVy=ip~ieGfwV`N|Q}H zzY-%}$-bn#b;}p$+E+@^XP+L4e$sDlNlls0T~{Y?7{R~)I=}W?4O3OaTF`Ad#TzL2 zBG`Cz^1{rweC-Ec%2F$Aor&u{Os9Dod&{MPe7CEIXC>+EO|Q*zPyNbtUUqKoBVTM` zbPDy`A*I)mFMP3oN}_uIdr|Na3*q-KHYtRar7J4#Bd@jveb6rPxrPl{b#2nW!|!+o1H zW1(LE`t_^thYy35);dY9YjhExKX?83@hytS`R~It@vx58R-dM(XP3vFLh_1=Z@Md0 z8F~`=?t6K8UAun$WL@VfC^t9iFfI21?(emy zMmYTIe|a2{&eS?}j*Z3eZB_Y1MBr!$IMh1|2N1l(7cP5QYV=b+OD56GO(9Y*ujDmJw}4wOdv z`eZM5yO~EQ#Y3}?X5EU`78Vq8wi+)st<5T}W`?&Lue7CKzI-io{QLTdE=#sXg+&f) z!yQuIY(YW6wQlCdd@>*8`KW25V>-Rv3qX zfEEW)h|*zvOiY&G)%l*8h=^}oQc|Ijkr7;LZW#Y=01+8kVWCc=wt)L_F|YY3LpiKE zGZ~psc)P}B&j|mu+tF5m)p+sqkgzb7($dnr;j1vO^A{l>KPtl2=2BBr=T22vD#S4B z6v9U?PuGibmGhK_1_v#cREo3I@;y+M20VnW=HeBO)Zs zZrJ@nU*R!!FnNnYo$NmwHI74a#H>6wCMITWX({8HnX2lS8sk1Pjo7QR#w&%XGSf5y zeEf;Q(E^PuGj<{lO3D{XN=mmeG4uBItl46R0|L;e5XITqFCCnmR4T21X`5al=hL;5 z)M=Pd$NvuL@GV?wMTy$YimBoCqQ=?7^Fb6{5B+-gevQvw7wbA^aEL`;a8Qt9y>^l3 z>1tL*+3v0#2S2~2$7cDMqEbCK_bEgjvw}0&RLbIEWCiL4qh@;s1_mQ4Ivyj3?vrJv zYa0`#a8V-yZim_4abLcuuKcp8Rx35iA?39%zP$x+8R+W|&$aqbCB^?V8tLwqyx1u1 zQ&cK&K^!lH2~AeGoGisCJ%a^ToG}ASdF^;-K}o6LmpP5EiOV8hF$AP+xipA$LT5+Y z#w)#vABnj_;bxMa8uub>_W#J8?yvg509wZDwSLemSLg9O=RP?(Nzcl9`sO>fMuSY2 zL6bL1#fo?+$=Ce+k0l13^P8KNXD5Hs!d||7na$B4xnBSG{LetzNOS@HXeRuw=?xpJ z#W;&boOY3Mf68;E`RaY^qF%Vo3AhMWR#yJq@01qf#b4zw6L{Vp|Mt0y_}=K?aJDP)Bc}<>mkefl`|EV8puH5RybmI3k&P< z)2F4QuC7O0S~+)QWo3CC))eVBg-LI_Z2Dp|`u~fjb#--r1~V|VYV7skdg`t&&+zWw z-`lF)zJ~wy2v0P}aVl<**|=OCMYYl@(XzPO>&i2fghzgbzv;uq7+J}vh=5Sm&aP|j z)Jn$n{U&%vRvU@F<%&*nee-u>C{$Q+}*6(gyFRbNuSi@_)I3!MX-@OH)5{q1r zB%3hBa=I#fyWuQ!d|VYaH>1A3KDWoIef{N~dTpK6>Qvg1Of8er(_sab|K+Ny-qQxX z7fbtER)*&dpF7AmCQi3x%;l8QP+VKAD1{tSUl*B))e7JGbg z^lNpt-pyxy@8DpmV#;b^#_8A6UZ2oPUQxp%F0T9DkZv-i<2%sE-J6g<@V1tzhNv7N zrv)MAeWo|R8a%41t4kn?p?3CbZd|}7)%4LMeilH`W5OO09*)ukvv}O+b@@V0?%rn_ zS=8Tmy^gQ%t@If~nXItHY)T6g{6Sw-Cv0!e4pG5)XTE)L zX=&ncZegJnSC+q7=W_RczB2uo=G)shZ{D={)j(=(ZEf^3PRYQ%@$!@&nfD-d7%X&z z42swB8l6IX||AM7guKmuI)1%d4%e%@6CaV&vQAROL$fn08uv zy06=IeWiBM!Og4Fu|{-E%rxs?4JPbF%7vP*OiXAmFE1JBnoz4y4fIP&%LL&3jZZZ%U=Vz(qA7D{r< zJ1dJu==|^XFu_w=fEsN>L!aZV8)6~QPOUkg?{vPBl{JPO3@6{JULmup+Y#H{+p{#( zcAmQlDcBiyKM$-rxFY1jL?)r~jw6T+r4R=Rm^1^z!tTPV;a%tqE2^-7*aZu5{F@=> zbyTdB?CgM_@my1vqcwF9T2%{_k%NzciTQv<7lFJY%gM5wvBUe$Zf<*Pc|~@+i?7Pm z8Q~J&T$~<6EiY?1%{ajA45W$Q1$<$-+R)HoF;f%8HS6s2{{1yx`#(((W_l0Cbbh4} z#>Llb^HKP&zg9f>hUs~W!k1J8refS64Ee*u7ipv-FE8xu%zbtC>#AxsGd_Vd6kAx4 zLL5L~iww;3g9i`lAT`0NXEpqRXYBvj7keZE3Hrug$;;!A@;N?!^ys}|cQnTz0*l$% zS&n6oqZy})s5W7Ay}Nc8s^}D&&)nVJLtHi|%UfGp(;lSV6V_b)Zyf3H{~c^1f$0A) zsP+Hqi-OgQbx~aFlluGnU8AmGcK#k7ipk-zv9XbmBx0v#gbRvlN}zhDDnW8;85+Wc z%~4lh9~cy5=lC*e8rF6c@9f~9yispLAS@8%vM=ouEM1y$-}{M&kIzFXMbYNMSRkub zV^8OCb_if~2R5VP6MByyQPS|WBWJ5w$+SJ#LkSS&BNShklg?Js%Z87o94>rRN9G@C=V8N|cZPl#*-P>D0 zMiK~XlOCd?qL80LB^<(ql)LWe8kQD5WzXRgr_sGb4y-}{K);cmOWXV{{OF_D&q@?uGu6Lan zggo0?s8t)MScKiOqgf(*uK=*VXdaj2hAM0;#9hJThpq^Q~()Icpr&QJcPpQ|=rdQgd<=ctg^(`Q7x6+G!Mq!K7TB zUqHap6!s*WxH$U#A^B6hftoHl-GMb^Hma-R-`(9s#tsySZKV#s)zs8f83-OddSo$W z|EK?5SsDA(-ltF4QwD&k-~0H`3otV=S=lAP)`G(%BqS_MA?m_Ra8+AT_+FGn3W}Cl zL4B4=6qGtnhK7cgHemAd)vJ;WDi}I4vf0H8XBQVGqW%%b96wIWNo)Z9%|2+Brna`W zkk-?>Y|$x5y7AADmk5i37p~r_W|cb0<4{dPQj*914>n+GL0A-SpVzmhDw&f#4j&K% z`@sZL_}`Da-2I^Nj5(IJ11RugnV^%c>%S?-sRc$7*Ey;{HC+7FRZwj z1&K!nGb95815NEngaekBo_PF76%GFT_wVn|vVwEfD@hPre8Pk-tKf#lvY^1_<%6PB zDVTt9K1xNq`PZ+;!JO1M_ltuuB-DwFin3kqc>vjN3QG=yLLFmOp)KRTV-lV2e^;{q zr@%Pz@>i#xWt?my3`(}-k7bA_q;gW+4j1sot@I+7Fbwa z4J<0M&gf|1FQ~9Lwh>_nDJcCqHIn77WwR2yU**CuB4B zC0S06dy1lZACx(5YX=1djaOI_BR65K)3y=pqux7`++POXP~_n`CiPO4eiw1|e6V_w zk)BAuxdnln!0{R0`$GBEvA(kLIa952jhMg=AM8CxMYrXMTVf z9kOn`=z!>f)&ze+am4oqG5$U$SK@hW?C|uX&?UOaEorLSaS^fSv708^aGvV+CGR_j zP(?Cgyk}ma)>VFg;;<-Y)2)QP4+>K)#4$6LB2%ke2@5 zcT!uVy~ku<*$9Cv8OT>(LfBlMpCBO+#KjW#6FaNM3r7uYWn}`u2S$6#KLI6vvtO0( z`1s(3wl-NJpA%{mEcRCayL|NSa<_w(GODJfJOcyaWOkB2x|nDU-D+A&$YmpRjOH|L z+jSXA`(KKAKFFZ%J}D@-DO)}qHdlN!>3nZ_`}vn-G(FEP-{U{8cx(f@3<@dO`iX_^ z3IwIR46aB!~B{2wAiaXI|%%NnTJ?W}T8TD&2g;xu;A%|3O=? zhh*@bXZYo}R0Y@ut>r&ZbO94uH=I!S2^?ug)%laT1^|cgt+aHaSnoO@a~g=4z=U96 zV0Z@w#sDz-N#f9LP?GzlK$$@q|FdYjz7lI3BVJ7OXXR^X^1CG|%_bGP>}qs;S5qbx z`s^CCPnFJ@IMir4ntmgJG#ClA z(a|bD&Zcl)z8o&LzF@@*K~*Z?HZ)awzI1M_B&yVGcBU1sQf(nB81*A3TeCu7_;prL zyBQUqc=y>WJ{Aq;J8M14_OjWzce7hJoU7-yb7~d;mPz6d zOim`()6=Uc15(T8_^%!S0VaNaenLTasI2ypRUXHv0Xq>ZQAowg{ZJC&cJKM!&X`QY zMf|yY*)=itbQ((`xcBiyXNe9O~_piO2mwWoTtF0r1_yJ#q zPeYV)O4Hc4s<&Y(b?ZyvQ8p+>6Jg!Ef zX)M>OHr4IoIS&q$70VA7*ndK~7}CG z`8UcGNfQuiwt$gw$;qwh_W*rG#Kd$)P)V+7ZNI;Xsaj>D7q!3C9Rm?rZN0)p?3hQ( zfNw3G_Wt%*7A=1F9X!RU1)}bRzI>+o)X?r9n$e!C1_jsRBt6T5)WcCtIPe>pmz9`` z>NhIIGAl>AEc^r}FoZHpzta{tH|VUwRc^(bE?=xw|otDZQzpsgJ0#n&Ac7mX#2z z;%*tBhrywtc#hCNe@vi!>-zrvAv-&scU2Yla!>3~iYpMls6JmO`GFD0(94s|W1M+F za!=A=-Qthq0iBLY?1zf*`bm5DKAVmsEMuKPo=fX>x(12~Lp;TN0 zgBJsw^ZjO$mP4?9GC0dS*EJOy2R~J%%a-(2gl;I9b${k`n090=k&ZuApIRwglwRE4 zmQ_|(&M1SxiAzSd_30v3iW&)))C;1>+yH6=Y+mk5mNhk{Gat>L1M*rbiGPB^7F|x~ zVzP2>Ggf71Xn`^oHmMcw?X!qo=ii^}H7k#eqqn6}dlZKxOaR2Bvc(W01Yz3Xqp{45 z=QzRbEtBQu)eE6~B#x&?4QE?O+yo19g1`wXNPO=M$(V?Q1SwtJhqC-TH+0;0ZbB() z`;tVMU9s~avvy6%{YF8KIH9n$_sRZALlf=imLty#T@Gk2_l92WO8iJ9%>*^z{t8Z( zH@WK{3S^ZGm3Lr3!0%sImt0;a-8xmk=#hMDgo3dI3J|kBfVgUnp7k#d>3!>OoDn+f zyJOuA-RN1V{p@lTGnBp@wcB@_Mzx0O-4v=Ao0|z9>9zU<(p=<87ICgW^IjdwdJ2q= zu|I`K@VsHaZ660|_1l+dqogla5(~1pT7pWNN6yw~M zh-2V7NAjk1u1;0Z#2<-tXN{SC87(4JIQxLifmde->>8oQC9A5`@u7x;JmbL=FVd=V zylz-AvF^NpnD~^(65$Lq-qZrH+{y*&?Z2CS0zZCy%)=9_RqJRwB+bP`&rhNL7^s>7 zjxYDLe0ZXi+Qb_Z=eh;x9>2lgn_g?JJG`*9+9H<`$tk787e=3xk|9QT{%uC9=;Zq4 z{*+#&@XgwAPDL4q`6#l;;h|)wC`3+?Tw$V};f(RtO~$F9 zqh0?zK9(8{blw6I0zBb>(Kf1O#3hgt?w2PkQG?Vn3EvZ)W>?b#e5>r7iS2uch}siX zoOCtZ;dYnsgp$86uYATAf{-}P%Mvk#CWf=MJ-1;4S&;pD%<<%}Qe#;HMs?o_3)ChH z&b>iNW+VkcBTn5G^&(BKs=}OQduAfp#pCC+lQiBtZL2qUkvrScG}X%^$yH7hR-B{) z!R>4Nd?Fw#**t`m=?Nr@J1h_oiazuv@&Ro`41_UFmbahHC*8Zp>&Jx_UPkQJGXr51 ziPuVUi(x8`JdgRt>P~U3&z;}zyT>ws9;NaqhWqApjslJ2#`tsKBvw~fk>p5&ha1$t zZTNjDLu}Qu+@H^U-#*C;=yRmnSxUki-0OB;==^-{HuOrY-IvAV+2gcYzu%c}1Ghf{ zc8vQ@h3Xv}8;hu_tsR28R>BmRC7EE!fYEe?Vy-@!prsvK)^i(fA6X~rl6CvSO?fsH zZL8_=BGMr=k$%SEv57gjMU!iAiyuCGNTtQdRcGD)Gl)5=&S2-IKoR%3R=az+Ve`vm zCFxGAsCzYyU(sRaCnb}`3muugOXjRq(z(uklyIq4($M5A^XUL>sAVpy+YtR`<;t!} z;o(p-2NUu;7k_?)BaE=WwX?jsUc1v)Re0|HC^)Jy>+ixqDap&Om1h!y%=rQ>zGPpg z$GNc7xIpw{^q0g!FyDtNaK1fwbvWmC#y^Yox)Z|-)%0DwY3ZUC+@~7L9N-Jy*X% zc`?36d611gzjwwzUM5&3FJ;WE-xQA>BSCt^#_a7i%Q~!Mm$jX}e%#+*)4uy|GQ?sZ z{*Hj{52$&P36s*-hVQ;Rw_%l&@Saf9hxJpQ|iWnVZnZ zr=xQFKzUKg!n{QFmE=(I*S`pp$i1_CS_38KbJXCGprsb;yr2<`WeHP!+qk}!`vj&g z2j55ct``Q?^bpW1m+RMJPN{gMtE0Jj6|Cgt_$i35)26*Er7K@17mQIdn2p}|H5+uO z!>$Zu5xUEJ!*!77`{zL^zko=0SCO)2t)c>*W8s7qoa;?UMJDbDN!Q89+yNAxiJOKa zJPh2EtLX6neM?wl=w^$M;8YVGhp!H<-T2#O61U!jg%j&AWIW(HwC>C%R1@7`Am4sD zZy$;(F9YP?9{Z=ydMmv6EYTd!^aWzieej*Q1gz9=yB45wC8A!OP`+>YqYr`>!Y2OBBvyiDDg1UoE^3PPC+KzWuu(Z9dh26McVbnPl({wje;er z+k*z)EdMR}e8W#%{!N+uYokX+Z6acxbZVkYk+Jy+y-dsYj;tD?*G<%tig6RgC^)BM zE;pz8i|U20r(Ii2-Aa{VVnv)onX0i`9TRgO;%fVtiZT(#01n~4`YBpYPrNh!iUec+ zY;wognLH1~`y>CS$Coy!mi!0P{d@_;XO(F>>0TMk9xWx*M|TXi!#|6NIy}o87}s_a zMY*|jz8$m@wQXinsE=Fm8*n{sgM!TQ)! z+j-~x)5-hnu~M0PhG(Oy6{$V1s6*E@Egt}CJg?Q1o0Mob}^PkRz{iMe0-cMCRU6L^nT&zrVPXk;jBBwakY0%EQh9;3C%d?mV@9iB{VVfSB8j z&{h1Hqe{jcv%23`=KAJ!{?%#azW(0l_(f^U>|;7Y5v8I=hg2&iM?E};REZ0^W`eiW z+9BhWLLPQ4XcWLZwN|2C!Ls~c{4X0r~Z?UYWz`uUo#cq+S!{W7S zc=A5JDCi+w?I$nKl2`*n&xG#``WMYuqvSnJKyS2Z>q)H=_x=ujXTrgz^E#m8HJ+bL z^DMtj0oPs4so0O_Y@8%rzx`VuoJW6pp(!C~OLtONwT1qI7mcl4mJi@{no{9`^JlvTiC~x?Et(7{z>Z^&&Dq%nFx#-4Qg?l|P;+m0iRK z>6JCdSYwgRM3`MVJDJbvcHn#=h1?r_A~i3T#E~(>pQHu8Y~KD z6$bW|*wt-4_&-dqH*IWKynp{5q*d}OliH*0rA6%~Va*df(XZlF5(dsUHSvO|S>E1PjUrKEf_uj5=y>-aS&1XTO zUiKX!i!7`C#T@2T#ole2xSMIyC0`}=tTfW#ZmskVdu}2VQBB2xt>gF9zywZ29m}y# z?$I>@VRVF#OgB(SAGhyGSn1If6^(y?K;^r6i)TZ&*TBn;44KS}nVw5+PKE9WOwKbI z=lPmMSbc4Pt6lYBeX8#Ikd?+1ZGuDGi)}+j~nLo||6=xe^d}Ph`h% zs@n{8p)g<)+~P&`%Vzij@$&~mKHsNaNc#bjy`@_7^Ak!$Vx2dJdh=O2EZVzb>Tpv< zhfJOnk~=$OJtL4>ZC*Brb+2cRV(fg%1B^lV{x$8(E!r2nH*qp(KeEJ`QeLg9V*&J` zrlHw8-|NG@e_tFF*^D|cZE({)q43Sa*s)#N(j%>QQx!*&F!hc4TZ1_p`VD;U1pT}1 zc^Y5F=|ARp7;Z&iOD`3U*?APP6mH{pRL|Rul1i<_d*qyZE|WA;FaD)hZ*X;$QX_=}PJ=Oa=LgnPUEWCDzmq{wY-Y`- zvn7+B(xYigwUa&zI|of>p&9^?51_9@2U}U~C zJu#j*6p6N!1>kv~>(H{Z%yTmU>l3qXVGBT1Txu!g!o?!x9iI3)ytb0;wG8TzSl$Sm zN&iCvX6=oQPoUQI)3T&1JfzeYR^u*51BkCLtw|IgnzSTkb<4QFc&=d69`is?;+GBN zN19>rWu{vLszLI$%*%Pas5=|!Tjw~*KXdDIEVv_@bMp1Ie>uM&<4V$f=Fcg$J{J0_ zzQtr=X?deqg9C=$)!CUvujK|%F)B+nUNN&2Z4)*2t1Z!t8Z3lZJzrRTe9-O=g1rE# zOJ(~3b0aaYpBB4)H*=>^+Lokm%#I=Llff_YmGbSdA+EtN8FjyReqt@x->}e%7_62P zA(8qMYTrj`vE+9Q|NgvG^bF}+K6<)xe9^;0;OX`yoRwmFxQH}uQGZBg4gix(BJU2A zK74#1dCSemdJk2L#?nT95Gw~nw{@o&NF=k^=bRDp+F=Qi^%?!VWOq#H)$_6wJR8{k zDdcJNa^+d({w-tSFcyA823nCc7ahCx&eEHP`4h<gqU_;cyZkYWa%A z^9OlH8GlzR3=-(%pUmKxi`Zk|Bk&7fGCE(xxi8GFuA$?E%;;xg_VdnS6u&lP4S~ZP z+-06U-Dzphq&YHM->@li1_g zjP%rL=%}dyAs4CldljNZ8i8#^kq_g{|+z=wUFjd9wKI8Cl zdmy?Z!!B1MAhTc7alJD+)NuD;7A`ysueJME^6wFH8J2uWY_3D|P6*u24>a}v49-`# z<(Y8CpMW-uG$2}-u8$TNfOiqB5{a@x7m;Ac_y$Io+KuhSuFwB*lNd>^4`to;ze`@| zPzy?kH-yT+F^%Upy}_~<3%s%-o$-Hhsv!PVbb{vlV?lDrOwtKeylrrtm$*jD5tL}M`Y(@ZwJ)VnXRcv zQ7a@~1l3(_lon8)MNaOjOU9eME17vuIK>#ybFM#oY(~G6$+;m(S3I-X`NHeddW}Cz zxh!ETFPd`ocp1Hi%y6`E7^mghdI6|zoH?j`pbJxSaa9hcVw6rGi6pQzfx!V59R2Nd zBK^hh;rxG_u2(43g7s|yoIuoqg0srY6UNC@%*6iT!5BiNpzLvifoI<|q7-muZ?_6H^T_j;cGvFBwVz$~iU#Q>uV+7m1M zu`fK{93bl!vVCEor3H`X6w`qa90(TAO8J@a@NmROQa*xd|lCzWI=eDU|2!@_2@)PqTNkZZ@ZE(U^+q_}bwA zVF7KfX^ciq4wDtVmA;U8F&}Z1{67^uI;=m0ZQh~J&pqt!RwVZ5k2J7zlJx#obi8G4 z5wsE_y<@*S5J8^M9NBR1*ll!Mf9OAiXKfpz7_3w0And}$+QD@Szj(3Q|J8@l3lsw^ zBKGX&gE%Q_m<(lL7P>@Wms(j_A^isbAwm0yt?Qa0tsn(yurO7uBvT=M$Y}lM93Qtv zqX%XtS; z2{@b_~|pcR?;*V5_+g;MWKiDT7u`BzOVu5fZ+H@be!c^t;D%q#hLA)~VIU zs3L09t#t443f^uXGw0jsKYb-1g*i!hx<61F?>LOH<~RYwtT0H?v>>txM*(IKts3c4 zv-yp9ZL8pf;Ns!}EuTnh8vwp)g@szVOLKE`zD{GqfCDD*wk_qpr!`M`HJ6fc{XczD zfLd)(wO%M{|C~*5Dyql0Ho|meySdDB4oNwYPL|ECW7f1G{=P#a(*?fp9O?)lz`~P~ zdVzIy;&s~E*y#Uf+rH+2d9bv)?s2kyObFR-4zQHF6N}GqoqV)~jBeNR4UoV7q^kUh zSCR179s43Vp$TldGpIZulz$LYuoWP8a&iI!Py{TzRbb{z1jh?fYJCzSrf0J9@Pp%> z`I8)h348X>N@wy&z)ZR7NAkQoZmg0uL9jW1lH6L>;*^*SM9c-u|GA^qE7$X zJBIivs_1;O$0yHLvC=scf?pjO_hKTfYxlm_DftuLBYnvi+>&h<+^uQXNd{xUZ9U6B zwE&)!Fx!O=IYmX0FfxGz!l-{Y@53VGw2ZagmN1w2vWICI^2TUehAmrZ0C|`pin?+` zjo*4r<$oo?4(Y6%Qf-yxVH8~p3yVZUFgp%ng#(w2E&NRJ)BU?)fy;BO10>zFzvJua z@~2&bNYeZ`R?t2)Z1EOuKj?^TnA60csG8#AjfXM~%)pso5jvl{>!sTkaId1f@!uD5 zYgE40AtNW2uH5}xwk{C4eaE=u@EK98pP1m4Ky06vEcN%P5LN5jdaqotHt>e^JJ@7M z5#Vax1;5xHz{hVE6KqJo1^MM)Gyo@?J;lhiLt%k;^Hl8gX|V!JpUhfs?+}kWaZIn1 z|6mtDRP*o;1>0MxiH&Gb20n$zHPh;zKC=5+0g@^VNV=KFzDXj^xHB1S?4u1 zdti#Rixj{o26z8c)UC_VkU(a&IojaC`L824ZuJxzj-tq`%Y-H`FPRh|J3hPm%`2>J z1mvyY1V2le7h54CBLjN&^XJb#BW4bcFaLcHhux4VAwI5@>H8?Tv5+?!Ej-9np0yB* zf~#O@#NoMzmsU_q|a1~+gHN3Lqb&Mo?Pjl<1xkBd+UBep`#O^804&H=c=!F zfN{cV5YhkZ7kS#icZev+c$T*zD~AUNc;wINzjlsJr8CB)l|fH=Tz3|Fg7}Bd>$n9Fz7D~NImPWr=oV}pCKiagwZ%9bKtX`_to;b zhnyml+wTQ*N59MPyK1R~CNnO=I^PhCc=jcE0nO`mD}sfayGomQtTF*P?7rC&a(GiW zv&Q0OIHx?#6YZ*CX(DIo4!NKdm|4LS1s*0JzU{it5UM#;J~GbwRfmA_2@el%ymvER zD)WhHc?O>krM{^};_aD2!KL*lL;ai)oDQ1tqm}ve6{gRhqdZI8%O#!{)&i%!!~fYg zlR8?wq#!HM4k*}VK9J@Qpf$i9aGqj7a+e21UbaXh8nh;GnPnA7OGsbBJC8XAr) zM@2%Ln zUmNLm#5jf|S$AQ54mo~zKfSN)8w!yS*Cn>VN1`&-*#o|9_Mp@(ckB^LOgYEIc)s^?f z2Q0n6znkk$mgAvoie23OKS%Yh@n3VM16la4(0LPh>AK*i33==uA5Fi#TRGzx--Gs_ z)-Q@R0mR4PV1xD`eD}i%W29mS<2eXYD9h!2jhR}g=}y@#~6 zra|ihvJ(i7R<03|0yP^%{K&{iZhlo{BtajrFQ3J@^N@g{yWzk z!hsA$6C4dNL(rfmfb`9S1?}`;y%Q{sQzSdpk>DMtmX7lUXE^jrSWK36O;8}gh%mcq zVxG6#!CJe9b$vT{KP^o)Dy^29(a0D7&b5Yy_GL^%^AHqsJJ5CVO|KOd=@`es!7%|% zvtUZCKzVR*5Ila*a0hYy+BI&sLk8FS zS!8bj`mI}Yz~J8wtMYsD33Cc-w{jh(A|vr0QBuZ(b=VhE zQbvaQ(W4e7hgXe{e7!r4=s9{(q+Y$E0FyRg&{EyzYfxNyYZrBb-~j9xl-JYg-WqWL zs^?c$jET=tpbI2xGA%_c?HOiDw=F466*|jJJ-Tc3;|T}|2BCEeoZn`QD)DirQMfcR*x1;w%{6x~OaG@K!ZJ1) zw|r>=Y=e_U!_GJQ!7mK{b-?CTU{F9}WsqIp7#SfcBQOv@KRetcE+6`rU6;VP3ljO; zv_n1X|D}+OKKyS#&66lCaB4$`M816I?ov0HwelT=OsR_Z0|@F-?J@pv;0y7Fs7p^$ zHR6|_+TSK*|DCDScU9)8BiCODtkhc?f{wEeT52ghi?Ffw~|;pW)-tD98ENvl1~|MJ{GV9Qn7XZfMhkrSVO z?P+9Do|N>-p~OF~fW%TAa>RHh&gpEQYF%yX1ol1Ykj`s{ zlXN5PRVq6MZu#xqoAcJztta+eq_bPN;u9hVmByx-tH;Y62Xt3$_OcfsB`(JCmBXf&Mw(8{oe#n-h@hUC3{#*xm8 z%70E+ZLMVT-en2PH3{VU=K%Zcsrnc$((Hp$U(3r6W+x``I^=3E$s}+O zWS^2YL(3?gLMDsXr8~09=d_ys4(|Fd{4U?Ljuz%JGc>aAX1VLWR`h;xX%Npay64jp zgrXO?)AGAts$@WT^`u$9WI#&$6_3AcLJKqZ$46;?=kmBW4XH6Cr12tSOH`G9Fe-lw z2CM0lA}6d_UdHXmmts|oG)ODyNv+EH;T}>30y7~NZ^6u!BZYceNSIbDmwBV{pYk*o zb-bXD_*ad=A0OPYZ>&DURn6&1W8CO^vE zb+E+)iuhm-z@LbIu=nu%{K|veX^gNR-IglP7V&3kNof_YSl}ia+ElsbTVzWF^p7IL zAhZu6n;TKdGeA~VBGZXe)~FG1S!+_r%5#2=3A(D7B)>sthw_7uxw#Uy)qX8(Pj6;W z?{-TqMt%8C$3&BrjWqGv1xqjD5qI%i9c#YgQN|DI!4MzB1W9AhjREfT4hoq)`hMz* z6tsJusDlzI#pzhdlUe)|`i=We20z%#LJ}r250(N{i8PE~ROBI@Y6{{NwOwy=YjsN0 z{|>$gh$-ySdD1OKuq#2|a6>uaIZNV|zVnXl>`AkpsE+RA$~NEj+{xYN6qkP|h>qqA z`*D^vz_NDWK-1F)co+?IRTJ{xuQbT76a8#g=$CepojMa3A3xHubQ#HzOx92SF9TxX z+j{|NT3#0iBfV7cc>tR>3n5%=03rQ5=g=ji8T7g$sGxTMR*_s$*Q5$>9!9$nEvp>gj@tEOYrj80O^Uw6P<$=xD|*B%gkOU!L0_ik&pxcQLL4t zrz5@S9gEsZN?nYs;gJe0vC}v>ZzZ@tD+ue$u--Dpq%D}c-qNWh{tI2`RP=NRd;z=Lxp4wz>zABB06Z%w)MIWD5w?! zKL|A*6zSw$gkobR7>^D4|zJ9qXiakVknHt@v1Yy`rX7ORk5#|Cf@$ak|g5Ct-lY!_*FP2 zXoz3zu@l7O{ojH+)_d5}J_h_^2 zca&Di(+ByUwNG(m&IBs==mA0+g5D`4K8Hst=tD;!vJVA1qM(^}eWQOvSQ%w1OGZ3@ zi!C~4FPWLkc5pKKC(XC&;wl@}m1jwW#L`j${`uD&brZi~RP7WFD>XqODm@h)U$F6t zx3iDt8>|-29kuof{(@AN^tT9Hw-0t6eHGwybQo1hc2~POz0YfiZ*#$Of%n(EsJ^3< z+^gsMUH&GhQZN-Y-!DUtY^egOH&PGi+`QI_GvjwnuW#JnmELp#snJU?Zsqp4!cgKgd%qbOp(s4ZECF zxC(p>xMe6JMcaq+iiZlc#Fn5Vb0#()@HN2*kuHJha(E$AnX?*kRH;(mb{7Dv~-sVs_tg!=TP9O~X&Mg8in>KyZHkq=7?=5J7;42hyO{ zl+hie&I)RKihIRK*5}R0Oe!j)j8*hy zg6}*WraG@QXS?|_ykS3Vqq%g<2|0cYQ=T6_UZcF4#Ow2_Oq##zGqu+_Cs)SfH6sVJ zKK`GD=5g;ONEy(V#@!vwm1cf0VyjkZPw8 z8D%cK6j_{2?v{To+B3tjSXECav_;mGNM7`g9n-OTl=j{^AfhA`PUjA z($fd0q@d=D7r*O(}7=j!}pvpSTTWFGu;n^bfLrGAQt zfakE>Kt+Y-1Ly@rA~BF-i~^Alu7Q@ri6nS*$0sDq5l$(7?Jqotf)z#;*d-m01N_GG zT};UsCd=q?UvoJ;KcTSD%n<)jm%O`s?MaGK%FZ6HiH(q70$m=2)9u0#gDi;tKs5g?U1YP1BW;)-{7k_-2b~8w> zXd@T+-nql8yeSFoIK{s|Y<>B;Y}PFq&*@P++JHnPhW7&Y04t^UkfVySWSSEvL5axs zlmqE*E};45>?z^YVUHOu`p_|ZC`yn9`XNLgJ_8~YioZYhQAO!w1O#G^jup6+=DgL0 zLs8b&6)oa49NDy*_pJ==(5ew%vL&o;(l9yIU`KbFcQNE~zqL{N6cwMA@7&e=Oiq^3 z^WICaGhChYc@YYE)-hTl10_6Kpsll$kCp8#T%&m+OGYJb+RgNI%+@#-YlNmk!OwE@6s&HJ?emfX>=fJs+rCBiL*D3Bw_A3@waB zBTUz-hv8uXUC4(}{Fm>ajxG>nWTb?`3lA;&B>E6CL=^SW+JURloz<7h;elLSiHj!( zG|nl+QjwevIcBC&5}TIQNJ=J)yDNhNTH`}*F1KJr&%g<92sL7|`Acrg7{?;Ys?S2uep zcF@iAzGa_pS4F2!;~*RNO(;&wty?F>KRhjvCH#MQdkdf}->%)85JVIcR9ZxlM(Gex z5Ks`1xaks*?ru;)5Gkb_K|nydyQE9}>GOY|XU~53{`Q`4=9^LHo{{0M z>pIVMu5}#0gB~9yw)*qVd~=<`b)RG0&RnLS#~cTnB($x4M0*VgPaGvEKUw)ABLeF9 zrj7o$^%iL3Sn{aLi8$+=KlhuMD%a_yUZOscR>!u!+*GYz-)%qHzF>T!n&it6-^+}> z1r0#7vKjar88xdah;JJSy5!=yuGp$_Ku_m6Ao*%}EZKZbfgZKj_euy>nTyH-B^p&*UAC>RQWcEtB9 zaOhKJcibd+0`}^P`E#w9x`i6cHnTBxd`siW*>Y=0@2`%Xpvbz^IlN)+g>4E->ByD@B+*06Y+>XMD zk^)AGcoh8vI62=9-lwEEHeqoN-YPw)<~yh^$Gv=QdT6qQyaNXOe{MtL{tOTGTJUj{ z!a(-`+GpJMt7JgHnf&ZckvG>BFBlJYHd#42tX#H4#qD#k+ldtLux0m+H0nBZ^z z9WrsI$sPZDvE-jFCwh?(U2E5LQvP}K=Q9;I;^N=-e9IU0xcL~n>sl}_?{73w5(~OL z1O&#TZ1h%f^|3$n!F;EuwK0&>Ah?~N*Ty33eeqRm2;DcO+`1N-^NKg-7itB~7qM&3 zj&xb<$BZ&4;dOJH@=vxMowYVaYqdUCpg5YwFb-x{%4BU)Vh@l|!)+u|<0X4E^UDY(y>&rU!h_V2=!TPRiZx| zy@;BTeOR6E83H{NRiE%HDL*f*OZsAWqvYg{h*Bvr8JU>oKtRt2y5>7vTu6fzuI#e` z6#T6^f&6;mt_YO~Ff|Gwd>DTSdwkPsH~b1$-q1oO(;1V(tQiPq;9$Ii~Ot*ns8F#fP; z%wV|W|4V+YdSo1K@}h01sZes&tVVsb$~Z1waN97sertKsj3zyp^}9#xHCJIf8p~zA zT%XhVnw?A0NKWw(F^+4%o?Zu60x~p;cuq5rrQQbJcg&w-zB}0Mq=}{B}QL zwulEhxELE78x=bPs<06!0I`UGU=CL53ltA;BJMvYaBk_SN^?i-ewQ*2g2 zSw_`j_h+}~Yr1p24ov2zQd&wj_rZy3LT zGY+CXFXokYHKME;yx*}$_YH`5cgnN7(zw_{T4x9kt z&gU{F14dYbQQ@bks8(nnboELL`YWhfKA3(Wp$VjeIqpPjA z>{{=@2gNGE&Twbhr_GGIE#$7}cGFHwLikH%qsw|0o|ro3;d%OwkbtJo`Qg#8d<2o= z0zfZDILO285DnnJiOA0!k)wIf*ClBK z+Ctj>QWWDw!?n@#m+;OSek^`dKH3_}Z~!tGF))U~fpZ3i8I_4rxviO#zvNOGBv(z1 z4q;tc@3C*P>@`$6XnOqp-O$3W)=oE!MUz>upl;|Vi)ULlNrShPaqmHD#F5}o7l@TF z@Di{{F4u+#yxei(C#nBuHO)ug4!Um7P|_wDFAxh|3DBPEQ9+MI+G3YB=Xa7F^9*G0q>1$`+=0H*A(6i>vE zMP3d7LGlOl6^T?WmY&VFh^_9mkdWx*aX>gO)uPqA%IygzYd^+f?*A-idw$ZzLMGl} zZ>3v@;&%OGk-S1ggi`~}u1;7l8rixY)>8*QoF1+5w74%Q%}?1*@f6xh&<$}kX>e=5 zo{?XFRY;AhfW!-NZVZiKgD(DZyz+N{3HMivVGfJNo?CwgpHmA9O|Wzz25DqhA@QI0 zCC7lxpFzhqyt1d>bxg@gjB@q&q&=dkx~BPSp+DLw(Q-0V=s#+NOlPPO-q{+}4|~76 zZ@zPdlcHl5q{I2Ek4QeGY$xcKr*u67FRpDe;ttj&y8olv-TefhQdR(=Le^tYphyAo z1_pgdhl{O%Cb-`zvFhS1y^Dp~TOuziDh0EZJH;Q$KQ+^9P2tNE+3C@_1S{o=D?NVo zB%<}pQwH27Ndm%)J=2PqYamW-qHw+dbpu>s{E10P%2h5r%joO{n5pKDxB)s5?q5LhE0~jkWxSt+Tf<&^wbR-NxNR0wM2?Ig%z>ciAq+5No$~O`#u>_5P z6}VnASFOJLcH5q1izwg3P#{X#IX9C`>YRWcb`KMkFqKorQ7e@C)8@$j4hN_fdiKp} z`zA01V0#o*;m&KIy$oIJNNsm(|G8YDf~tWvF@tfxWV^^@mmNk|aW0$B-d!M;y=xBs z=-;4hXlQHu0OLU`P!J=s@)4$qGP{*la79Luz5Qp|Y>Q(MP2CB6f+CDla`Z5t?rCA- z*xIE$oOxx@?%w-fl?kc_DidfkRmwYf#NBl-@m*|Ub2Qtb`eZHPxU^jFvaiazMPsXP z5T1bBj}B2HL#6&%Jr~;Hm_>;p)KF;)ZEi&?E31-ik6E~>?aNn$Q+rWm?Z)9AqxIX76N-dhyy<3rxP_wIa{k0l# zurqn7)?`$t>HdBk=ICjQK)@?Pt9mG-1EZZ-Q=Fg1jtqz)I}V(!V8^-s8kXObA6R=A zO}qSEg$}yr&j^gf)(u=!HsSx+&`&NEk>lm@(O%QU zL_GA`K+4w$paOH?sVxS%()-H3x;TlGo}LH&Qn2HSA;?o3UUE2o+_@0-0=jn+Yo};5xleZ5M zk{b-yGdaznJVrc7yA?&4lQ`}tTk(s~DlOcj)___R4$GOA?)|QEfqs4=uw;Hi&RV=y zwKd5w_XC&0r%P^pZ_|aoX1`vbvDGoz3sR~6h)zi^GBnmaBP&;Z`@`d7q z_U_Mg=i=o3=6#KEi#GbKM?CP%O4G^7v6$T!E&gl$xPpiDlz=(42plBPVa&k+z5(9A ztyQ@OnqNFTb6l6n@ zneOBb?)tm>4mOubaF7E_WcDRii|)YRh6iqT`gF75yzT*M070h2L`bBjfdJ?{fCDsH zQFcVc&CVDeY_0O+Q7^VhWF<{YjZ3Vkhyi8D7GPB0!VQU)1E{@|b#K9-@NluGPw}9) za?g69(^e@)NWQ6F5=>F$mQ4w}h|3-{nHyuDFI4e`)UN-$rFY3+TlYDhO6i+|%XOVL zDg-d6c<@>OCh@^5mwds{?APvudBkX0Jq@p$X#40a9@2}wVL(qE-Tm>*g9n5FLie~ zdt$D7+xU`R4uA&0nRsoc0=lW|@9S5If5dz7I8RrKVp^1~&MsnL1ovOG{VAk#1zuQ>3n zn#>!;?-clROr2N38NDo;AL=jGnP+8A57&rx<*fT|^2GOS-|d$RMNCXtlB!4alS@k> zsc)k2W1)+wc@pU+=mGSj>Zk4?O$IL;m;qTHkG~^XHZft8 zWLir%9fr-<+1a_b)LLKPyW2#U$f9={Ijje0z|%YNk2;{7%_`FQc|=4xDR|lrg^5i9 zyJ+Z&L*~k5m8uwU{IRCuRP2Cd%pfNzkm#?svvtXr zZc9A%ab0z}^~CtvPt(cW$1A0-FP!n)p8w(wZDYBYKX^U91Dsg0zC;3Jq3x;V^a{mi zol38eu1XZYpe*w`yn1a(IQ;S&u6>yho=j{})#~#l@g1h@2^YIrMs!LSnlV)`OxUd%lM=Ka zMMO2N&d|l=msn|-(jr@wsXVHvm&hfwB>VQn`Ust zLuz@OVZ8KCDzvQC_OdxX{W;e&Ltn-${gyP-F&3&(1AVSiBe2_K&HzTQUDr{+bqTG0 zn^1v7#S0 zLc9;iwiD;PYAJg2BDDXXNF=8RX^UHs`qg2%R_v016A>l< zLVU(TZ;eFubQ-oa)6D|KRo_R-IE%f5y837*j?uX3n$aCW3OFeE*eDDz!EzLb&U=P>rFXP%0FQ?GF#P3Ey6v#iue&=qC)}x8IeaD;Y>;@ZFy&$oGKL}5% zSJJy*+pd%o2Cg?sW#fB(n5u62%7|Gdb5`2$Wh#hCS@IC$yn>tAswlzFZ>zfN`b|*9 z+)EvNYG%np?|-zr_!&L9oF%5iO#N^$o-@vD-|6QD>(6z&-svp4rvk2@GMx6lH`R9x zXcDvM*rV-e{D|LIhx74frtEyfI+^~!GFWEI(B0il#%Je;?5UptWdX{^_1R!)R^8?x zdPfjr-UoO*hy`q+eSaUA&PaI)Jq>Q4(8I_73ee@?Z)GzbW(PaQcW5O}Oy2yjwJ)mx zzvMH?@ga7s(CAM>s||tg&_~@_4vyfqqy=&*jInhH$>N@*R z3$!8pUt({~`{y`2N*6U&%}SOz9DWuW$UI|s-S@`o;TX|q0m-NhNr6F5I@~w8YH8Aj zKZ}?w8w{+Wx~j}kFRArk$5?`n6-u3Rt?cGHd@1z+4%HbhUvl6ffi!ss@*wbN$hD@M-9 z$eJY&8f5L$6~j`dBj7$&FB?qsg0`IrN8ETY|D9%6TpEpf+omUW|CeP4j#V^$S|v97 z=>4<-K^eTMX?A=dw{;I_O52R2AKW-hdw^;8O`3osKJwEx5f zgw})$p1sL#@FKrq3nbRLV99uQkz5?g891Fz!h8>V5}M$kR~%O;l8zUM5pazHUhTt& z>Eqh9$Q+f#wCg-RzDXd=dl<1SIYIWsq=5Bs`;3DD<{n9#*=R)jV6JPr%N7b1YLy?F zXm$Re;g!kZ!40Q9N}uj@cx9j4O&Sc+_tj+;I;Unf3XCa5N<)2ZflKI2RT?!!>Fp)h4QLf2hCn{ z#0*Gl{~8?cj~l4A+rHVFiQmxZTeZBP>0Yn>K!>&8RlKZ$84G~C>9$@8iL^1iwyji0 z3WUk6WHq3+zi&PN9C`z9;KPFUYkRyPk;4;_n zAAw;y!em0M1#d4206-j{Yt#ap-)Va?Ow|kof8{+g73TvhD>LF1k=o$C{i@o?7Rc6z zi_N8 zz2-RjEYM9g*e)t9Ed@`)1~7#adl!9teYJsk2<2X+s#&QQ0Mai~JTzdS1d~5F(KGmu z&uiVk32two|Ka+9MA^{B4;*vZ@YJBeDm$-`l;V~QPC&c&l6c*$97UR?+Q0#Q2^SUh ztE6sZSiZWtdgkoeYsADYNHZLIqS7iVBv8H1!#n~@3#LhkYXEU#f!2KsmeOIVvuH6e zJAlu^kAgo6(hn+S$7^0=4^=wbCl^4s8>G>2hAA4kOC6Q?f8d&Mh|NVS!taAF8X^%# zrSz&%WP?4n_^&Tot1#U5aVZm#tno8j(8W<&#r^pHFM7m{1*SW{)*v2YIlzA{}*>fPdctgVFw=> z=n6)P&9fi4gY~05j=%ibQMJXB+$?s*8K0Y^AX@x~$2alAMzIIlomHfOj%H}5LP#asBqS-Dy8h12v|uJ7STc+74e&AY*Dmq>&A_BC|1 z6ruci{golJ_76vX4RugM=b< zUKBx|JF#0ALrEGs^2tEg26qnd4+krqi}QuABDMwt!q|Ll13I^(6)w=-^I{u%zmT0OiTnIn}9QxZUpe@zNFKGr^wUWJE?nc!MPY#g90<)6aIey!=jzt4Gj%p zUNn5X1|BTN|H)c}x`>gKl;pV8!Q}`-jr3W5Pzu2d2#$^Ict=1QA>hh;?%X*5EX%!k zf$<1xFCet;jK>417h|n*j{>X;!r5qS5akU5&K2h8`N{oZs}}-%l5=f2|D}f(9(fAF zhkuL6kr#7_o}t^#40BBl53d1_lq!q`PFR3tq5$@pNFi4^Roxf-Q zd;7H{&9z6tQvCyc+29nMnVOO@R?E1ko3{{igXbvk$8rG@^nlrMFhSJC;_Bk4(O}&W z<|ZI5r>@bTr{e!cDk%XC#W!8I!zab8$^}>L=12~CIp+9HVP>y0;a)h0 z3TH+j$HpzD!+mZdGANX3Uznl?^iMWxurCctVXlFgX9H++k&%WBTVTxtv}X$-6p;B_ zBTR!3GZ~^=F#2Zy&&2QWuVJC!l=8Nxg&{cF5OWVK`!24oq$n}D!_XUhhAoW7JX>ct ze0>!#{jrAI+_s~9DY*!Ka?ta3G!#f|*^u<_jwax|#T~Vs%tBeBwT~=&J)VCiWRj6P z3RQ4ClS2cra+JmsFm(Zt90SydTuZ1fq`eQ06H^!hq~P2H;wGg~GikBDB1Sir?0S+1tP!PX;~%uhPe)PObt1cEd{s;HcF`lW-38@>HbAw2O?1d9vq zs^7H!;DOt(69uChl+1)s>=8^vBbuG*3g4BAQvyc`YZ6c!TkMl7S@lf`^%KH@)u|_W z6TB{C>|}xkftKit)Xh!gl|@V6j~c5^joLDp)ei}eOct8|4FsLV)4~qG;Oqm$s#2cr zIiQz=7p3{iBPta-XEMx+N%3VxdR#xP((NXvjoh726M95YGUzcxFdxtfo{pHH(j{4n zA4Q6MZpRWm9};^i6Mf%9{>4Vm+jxrKqw>E;YtRHPJ4AuUqw-i6CX<7y{pudT;zlka zCKenYFAZ8xh?Bzj-p~M*BpHwr0ar-VaUfT@b9z60B|_vlQ2(n@!{mCM)(;1_ASLa0 zSJ?<7KY#xs|C>`dSNZecnFct((Go@`G@nVk%MrLf%1(q``^Y}@5%!sz%mSC}vbp)0 zJlP6bF%w#J>$G!$Nd6%5IcSZh=I7rP7jpq&{UuPSD?l7)0`PelggHKMSTzBUZ*GqaQ4F|lI5eOLr=_jl=dS)ey(T2raHY*p7TB?FK|j}0u1E4tr0+m-((b;>Y)!|U*42%N_3`Bi6HwkxTp}B8;BZwe0;PPdyLGAO?L12;#Q; z6_H zjnvdSkC&$qPKHx%e!nqd4`{BOcG3|&uNzKx=f>MP7ao?_))G91`jK>b>$~SHy*^TV zB&Nw1YRA14&lNIyaEFKvFgCRJQRF`zm*ja5Kp~vDZ@7TU{UNHRoaIC90d&7PNMJx_ z)SMU(fn^Uj>MYDuIxl9oz&!;joO!PDDRjW>3#SLFQo8wbx=4qRK6IIIwx#*!qpZcz zcNP1UYFuST(ODBEk%={CE)@)+Y^BKXx9`kq^L7$drR+p;Aim zA(qlal8E4OL8O@?!IXvQIYinWq*61reY=%uKz!%$rj1(vcpxVEZ{oq)_|=!=KiPMW z<`>10?_jwLFihaFn1b>343u?qF#Vf@A^t1Cry--fQOJdYm)|`b?bMbGmkOcOb=vO> z3^BAXXiI0eKZwdK{z~d$dz9>5EuJIB6sq2+?M1GP4`P;(2qN~ce*Q0rDPM{(O!QfZ zAZ1zH;)v(h-vrl8w){Ysa8qG-t>5bP_8?k8JChN$wW17W{_^JL^UDFbCqI-i4vY5| zc2u3Nbf;h@wTK#|A(et{sPWHJKIh+pOkj1RrEP|6ncm*sa~Cdr<6vHt`;~7h4E>&?C%a*dQyHir3kTv?dHg#if!F{cKrheyw(m{QKlrPJ+1jU*Mf;?mDMv z*n2)|IJ>0X76Up>onT#zC4W~^M?~5Ipg=0B3?I*5+S6UvbJq&OeoeTg$qpp+{$S|| z#IWXMYrHU-{`HZ~!o6SWCFktr&Nz}fY!wOkt;BU&8wccZ(FM{;xa)L>DADZVn_3+U z;em1CXMbm)#>(#!dnLl_8Ld+VSYXyzmvG@c`n2_@v6t!@Xit-broZs>$2*w^wSJ4& zpC4iHl({5Z!2uBZ@R=HO$n=?)`)boiIgSnq6hqd}c+HCoe)y#~+(@aqz6R-dR%}Lf z<>Hda4?AZ(ae_re=KUtFIvdlEX1ce5Qbx}h(|yb>azdl|ROXm574djLAB0LP)lP5A zt?-Q})0q=s?Mu>5m&oQ+7*Vx!L43yw=$g) zZ8i;!JZn)0ySu3#qzb9&=|JTqBm*08x?aZm7o+kV`FskRCw_#}GE<}=ts1f!)lb_e9X(gW^n zHokcKi}@G#Sa&($g1%l3EBq3pSomkrR$~#KS_p;eoDIu4aNraqZ`0k2e8@QP!PN*X z3Q6TSY`ioPz-@-^6VQ5ia9nWWu}S!Np|sat6DJ zEqMP&KBT8Fn19dGMxo@P!9|o0(Aq-nqOT#L(Jk~|Yzuw~4@NeTXoBQKzab;&(3%Ez zg!xuLhfG$kVU0B(XXc>kt|;4kI+ChZ0gvu)vU(6xpiIl0eRG{CH1dI}F-f!GR9~9P zDKn)#IdrA*w%D{<+jO7C-@J`o35*u0)LZ7m4y8k_0Jj;)78K3N*3Zng6(0Hez%(6Q zubI8p=@W5z-mNO0t@Q5b$+#H>`L&LCQM;m8x1t+j71jT;mJOA)a)?E1s5HuuTn$e; z3VHYUfR%i>sGz83Jw9CA76UzmtC8j69vJ@>lx9ItLD@p&2e~_ITzmnPD4O_3Ul0=he*-;(H#gq z3NiGUOqi{`7TYpxSBss!y}$4{{API4W04FGQEZjYQ-$;s1A6|fLD5vq<5z-aQNADU zXvVowbxEpPPU&7^Dp{^cFdQqEltbd(8e$(*8j_`Am?R`e|#hPr84i|fyAH86);Wrf_U=51cn-^92% z#No4$`u*xWy5xg>VIOBGj|XZwgvUcNTMkMt|MYaSrvgpx=#^=Qv>Q;knL6UezUzKa z3t=gZK3R`%lH{bX{#8_?x-cu`fhz-8YsfS@*PXAa2Mc62#ExOqcWfE z^x0MkKFZeDEiMX)ktH7I_`VpsgTq>!bTI!xJxj+Yu4|356`(Pb9hA~}b5A(0O$>MT zqV07W6Lt+qN*S}0i_+RLzfGLHx|lFiWcq%qfh2!qBxCvW@E*r$tG=eX7e2%`(~ zb`K`V1={SryQY`3bO2lg{Gx@WfY&>##aW)n@j~U83>n^GjE;>#7g;B{0Aia`8*J%- zku*9sXSGFhg1x&y zK5lBVowHEE%-BmsP?PyMq6)vH^cq%mg-h7{39^m(e zb$rY&igf(YYx(+Vdo@?=9iHMZtKwejrQfeS$|&6Q&tPL^Rf3o?pgfw{#KL?7flWLF zk_2j#0@46La@f+@sRyHr=OB&)?K)^;kYuUkJRn$nQ!g*-w#0jB4$xJ8w2dxI5>JYj zZozDPYd$3yaHC!aT-%dngGHSeWdKG5pX}$@w>O7*e7xkG*I}VkSd*SWKKz0rn`1Eu=?op1h`Rtr! zb9lLO1!PN+prwOysP1=5t_@yDZyhiZwSO2AqXBQsF9cg??$o+6SSIGso+c1x^lD*I zZ9ZF|y=3t6a3mp3pM#`Qw>&cs#+kuV>w9|nrK@iUY#{3oysz}J8mrJ2_)7%L%VRYw znZgA?7FZh|p1;nh1#PSTFo>sxK;V%r=y8tB9I9=JWevTGUmSxB|142p@!FuT?)`PnO(dFJYlP6bX_DdAiL-p2_W_dk!KK$VT!Xqp4NBYJljH@aL zg-Fh+_%467Uq8U$3kCh_$ zadAX8+`%<53u8({*)aea&H|P!Cw3UZLrFo{&IOv>BGxW}BSs*9F)HVMd3IE$^-tTQ zOf6f2dw588f2rWz%mLAYbcGE)T1Ytg z4^NBbd$N579?9HlJ)7wAZS*FNw-u4yD>||cxu=Y>PZ@hQcML-{FzJPbB+4t8^RSp~45SL<%cKvUg1m!FBTKA!e4x!CrN!^oJXO%@55@~kG31tQ(^v0##Ua4$UKY)o?#nP9glp`Zf^l*a+=|a5S-qf% zD+dv)Q5?pI?+n`3X4_Ss79uJHYS+>?)dbJ$j3{?A(4X_dHz(`a=#(L#Yv>F>WN7GX8B3pI8u-xIAT}p2FE4___&S6+BNP+RBU_ExqB%}3rPU`F zzlmly{ItSp1(Rpwr;Yl)iWi4v(EZODE)2zn5bq^XOtaZ>V#By_n&H1p(H<{m_eH{@ zSK$Je*uQ~LpnJYpN~8uQ@}CLG9R6DM@U*pF?5^7-&Rrxn`n#yD?i^r09K0auoOjUd55F!ou(u;}|L^QfWDPeQSe-d6|&O2}Ln)<0_n2T2+( z(;Hc|`Gi%{X%SkPi3tf-sGwF)Jce3|&Vbcc-9V9BH=b7Ceu9cj&S8_Q&tmk#lAH6Q zR`gZ^Q?2$7-UpA)8X!SE86G!a01We_81i@Z(A7HXgQmdBj1c1$e%y@-%}+xPjOQ`H z4qIxkdg35?HW7=IGa-oD!|F^<)xYMj2L>OhVUiXW8tvfR-xX7Uo6mGY7Pci!Ce6i! z-ou-kuX?%tzQp0EG;B15X%|lmShWxkS<`TIqR@m|#TmW1DXCs?rbQ%&S-HNu!k4ZV zpB~X!h$x*4F3wO#8f{UUZalv_W%rrngzbhJlHPo#pcfuiA-?%#IypNT>jqjo5aV!v zAEfSh9->Kr$f3^|CKRdFHaytl3Z?egO@nj#u$W}-_vG2F<Dwo=6=D(h;VJBX9d# zoZog|)x*&^0AnDWVTX=jtmrN!lhqwXqu!+=IaDbBvjdk>7JmY7?>m$kpX?Je~;ur0_ARev@z%Lr4_Q-5W7Q=wb#poyu85n@W0}|gdw>y$j z{_{``L3$*^qKdN7aSv6$kElxLu4>`lFl*u|ki*y`SZmJd#0*^>@BJV7EIiP=1a#A% z)T92Z6Yd?T)XIss|4N`TIu!trC4vui(Z6bZ>5Gh6=Fct|vu6Ra7Lr>mP|of!iWuTF zMJ|&YZ=|H8=Apj72P{w+R*5^pz}r$*9%d5Vrj^PME4c#wR@)IR;m(OoQGDyGqcpWL z??a1;bz1m+*JDR@r0}}yXnlp^@dUL;>~w+zB0o(kRSiaW0`^j&DLEeyrp&b(qn!8O zJmY^8OP(cM^8HE;;7LG<-T^9fjXC*7i1%Io@-<3Is^5p9 zS?$#4tndc~Y+LEHjtq<#7sOi+Z1hc}^ay61rj2dNkfu!J?@pO-JE}xf!_CG5ol5ZuAzh=fSB5QVTBGq7UbKZQE_tqyKv`wNbcGlg& zAf>;E)sLp*K_yw9d+|w#@iZqFmYPju!Z{)%G-uS$*ltSF(Ct zR+OWQp^E8Z=j2~r$=}f*FiceBfc86*jj!)ieIJV68O;gu+ogl8NJ>#Kx&BSckuU`B ztm*7t{$2JDI4HoxKDb3*zuM|<)#UTw^O!I@nu(>0*DU%}#!O84#nu zitntA+uoJEDgQz!$b62aD!>F@?>Mt1zQa_V7sq@@ykIpkbuLR}2DQpHl-E9%m!zTZ zN@5QNc?C-Jo$}(fuZgxFOW8Uk=P~dt=U$+=<<5+-L^FIEn$m9Re#^JS(1(hFa9z-&>* z?e)y2(a6Te6<2TF0FKIf&0=BB`V~bCxCISta*tY?cPdHU&Mi3w} zk1=3=%BtCJ`Cl&#z3{|Cqf1>l3Gbo3=emZla_+s*!m~X*Q8LXFXtKHfwZd)Fq|Z8b z#FZn8{IU~E3mCwq3P)uqJaAaof=(-B#lD2BTqGY1qGwkt_cW?b4vj?vDOUQpM+%Mg zoxh=%yN%|`ZV2_!3^vthHrmaBRYW;o(0|XJr(+}Ei*Y2b*}M8KD-BJ=DoOe%t}O6i zuZp~OTRA4~C^n=IHBZmGu^0-ESq->>D6W z3gpzew#y1(ESjAlus=9l&ITVeh9tRL7#$*8B>LkG6Oe`w@ua7;~J^cJGP&m$BsR9KwZWHwr<5XIF z^pmrek~Wt&BE2e#R|qv%p3OgXqOz{`nF(DB*zm3;kAT>>S^->rZw7#>q|o9k+T&~4 zDKcPt2Wq3#aNF!@K1M0Fg0TsMm-EK&&i0I?o1`OQ^BUAhju2=zG@KUiBB_0#^oMyE z;$ncS0-LDV*SMVwLFi$vgR(+FoQ0lV8!lGRHBZCH65L>LJ3W|iJ7PjW$xx4_6;(mq zh`^|UiYEdbHd3;{%hQR>R00+E?}m*V-5xp_+t-CW8!yq5otblCCIR}gYxhBXohbdK zI$xLwl%HS^TL1Bt`JsiWJ_NN)&rDn$a(Ng$AvL!-lBNc@ndfViQWnZv4UqO$1JzRy z+(YY#`Ww#LtZZyBK7M(yIfoI$?;Hl{=k;bse2$xUV8{ggO8K}1c6 zi2-wRE?iTuIfx3?idaCAsq*8;uUB%_&i*LOTATGn`&qLq8q2ZpKPM$=sjN@jKUr56 z7?1pZGV1~dxmW#F@_@m$T$tSTdw=dLT0kvVa%DpW-Iv{Li!sOR@ekFDV@|!dl;G`% z^VY$zzpj(*e8w@c?sXDJ=Ve2}f(sSAfo4-DI{}rsYD=v5;Y}c~|HqFP0Ibm}c7mO` z1>AUAe1+wvBb=*MM`l1`Fnxt&GQ*@6W|+@{_W%O%#wgpA7QK8m(XErPw#bIS*_x2i zsNww;P1lA>Ztp@APqjly!@o{U)2+I>b+y*`)p00VPP&IfBeL1Xcu0-<9?DE`t6YZ6 z;zU|V+x{35G8=RZ;B7@-`m;n6aFbN7$ezMfSQt2Mh!qB2>}RlE*rh4@3?#ngYWFM3 zOQ`l*re@q`Ib&gModo96)uRsq0W^Yw@o-N-X9Lp*kdt5ouuGfxk26v8U1m>% zJDOY(m(#4&`OaIG;;Z&@+__Hot3_cjIP>${;#Qv*46fKH8|EF`ffG0xO}8!#_@TWm z-!pIhi;+!u&w0}>*IYh>#V9G0hEJ=YAoG}zZ#mKU zrMk$Ynmps7wI(e*L)F$QYhd>v-q3wl)MCyAKGU)xHwA<(8I=OgL35vk7pq5y2Ns1C!I!eSzYV zZ$2TARej=gORa*snZ?5Pr^T$?jqgO0Ez;E*n#4HTC(@=yo^vE~#0ALX zQMtTTjKRK1K_LZX6r;i@priSI_>h*C_8Dw6U~MaO97UXz$T4fY2$C>Z;ZOxpn324; z^uYU|25tegVWKm#%36mglVuhr@K+%iQ6wXiZ{4U+MHz6JAT!G|w=NjFHhM)uwaLV^ z8pbK30+}5jXZu`vDlI1Jd`ZGqnqO}0nryZ$E4aa&A@_z@a7yc39BIY9R5)Gk?>iKa z;xn_c1w&S~w`I##7l-Q@Pb#-jaLnQSvS$*f;%wiLV*|r=kADR{z>guR?GOThBr5Xr z$AZI3+8eEB)oVvJnmr&oHd60sBoz|N=SaizJ~|Fr`cbCB7U(h%YrPZi!_<~5kI;ULlBYv|A1o!YRL_QN zY=m7<_{C?MO>yy3kL8y6G$`<~-cLP-lSZ7o>FRQu*oV=UXsad3>}vtTP^4djiJFL` zBM)>zc5P^-KA!e@t@~M>H{ng1PJPJHz+rp-F%flp)QBHxo~4XZOhICPwP-R=H7C_DVw=5>_TM>0T8r?pXJ!b!nWw07;)%XS&@?_e-0Z$>znK!_)Qfzg)q+?z2??LT-j1-zAfLD7c#~y; z^nteL+1u6x2h!?zYnEmBZtZgU9GW7wE7{>uvJ4meviKD5Kltt%$Rvj0bvbLkR}2Go z*?mayQ7*Bd5(}hwHU0fP0-N1l89~cYl{OrRVVHv>&Zex4`XXG`5LAhziyU!^jqul! z=N8zu59}JZoOG=84wF5T8Vm0YTOAp7yGw+sD6=6K4EMI2eeUIYWW z)=ozNI%*JvJFt(M@nA(nM@z`dht!wM9xOyvt;Wca6+V-4-LkEdiDs}``c(muK1jqO ztL>7!LbgT+6ai14K1Ft7xMnJaD|Q$>*9E9BRhZYltj`tHGFF&ho;k7+%23E<%MZB} zXi&1WBUy2BEVKE1#X->yBwqR&a%W^^W$Pebe9^+azIKp~W9=F&zJLQLvRFbv^l+z7 zZZ|y~JpIFa#H_kLsdd)pW2Mlya{W#J7x(b7N}0K;Rk}?5{>l5%humIo9ccuHZG2hm z^gb%SnkfzSKB!&`v~H`plcF~4#eC)Pdecm2O!0gvO_v~g+jb#l`m3bXQk7d(gq*%R znnE4powv6R1fal>4k3|~0ze{J))Gv&mqhM)uIuy9)a`G1+UThb#ooB?+LV>|LW)pf zv$iqVC1>MKxb25o?O5N9xQno^4JUNtOu|>8+NYeh7th*5IcU&j@jWd?ID zXKPzqEPeuYaB!j5&j{c4b-B2x4}SPJyt&*-3JG81QK@w>iQEFM4~TC#MtGo61?^hB zy)Ap$Gt*HIDi>!p=&&q1BE}V9ju|6>hHUlwuz*A)#6U6_d_=834z6u4>__F_TU=q7xFo8aFl zKEyo!*r7*#@18ffM zU5eIld-tTY)$|PvY(kWFD^`wIpAiSVN`t~-+-Lm;?2Z-vcTzidjTfuNBjiAQ`AZ=4vqA=l6Af%eQ>H@~;|>1G z!@|%+XqQ&v{jJNSXe038tg@!r-Fh)p3RC@RRUtBhY|Mk});o-eNPVpuu68W5x z(#Z7q4-Ok|&(H?51h^pAZSDGrR{kUmJUKEf!qWw-&-U6xb!^=q-2dg(fnQiTP~P0U zfD2r0WDQ(|*WlcM1aaU|jV283Ss+s*AT@&;3xdo-B$!J*A=@byNItth(ugWos6;6v z3tLH5wJjZ$;Q&Z?9+&<5$Y24{+7ykL1#e;gd488CA8sIBc0B;AFltmpKpB+sJW@zo z`!?b)5>5IDF}C5mWvk)Q#m9V5gl0LFXJ)L9I6>E(Y64i<)a7JX=XY$B16!+8-IS_TGcDyrI7 z=;xu1B6z3s+ZBoIGXR@Y0BCp!i0|lU_84W9I&r7w<-`0|v_MLPA!*^1v4v>A4h{x7W!*G}NK3wEr zYAJg>33GBd2NW+ph8E3m;xXhMAV|Sziu!&|lffGPz0rDD?N&xW$tVI|3v}$=ACp|JKlcZi_Ki6#pR~OQ80bdP#F~jWd*tUExC(c;H>$Ad)fOQ$nIEX0;I7wRI z75N)e1+WNx7>EDft3EZA`=OE<21nc8_TgaAsmo|+jHfhN6e7JZ2&l1~Zznz~5~FbR zoSf9sa66cDI?~vWFKf}g4bkM_)UyPw?||w`wsQWv2Re;|#Vf6hFQ==Eit45NI8_Sq zE2SiJq=bDmBz!c4Ej+@4Jj&JxoCv5eZAXN+RfMn#&YU&C>o&$C=(|esh5AXV_EF=G zA0<~x|LKtW{*jg4>HMx?`WWiJ3c&5Z3o)cR+1M1wov%rm4~2pNdeCHz|BL-8lx6~J z6&w?Aa6s-jV9$ex17_QEFs=n%05pU?DF_ZK!xRFp)Jq+!Xf;a_XK_i%rr+@4Nj0_g5Cb*ou500qD^q65nOdXDSA!U{VR$;%3Lv1Z}umHj6BJ=LVS)wPR7C_ zTuoIY)4rHJ+cB~F?94(=BO@ZCZ=CG|D(woS{b4HUOtuq>s!Qg4r_TBPdV&2$aye1P zY4_2eG&N?vo6EPw#GX<=#PjEUT%60-((iG~o1c=AUVrMLFfzOL zae1Kp(r=FmfS$!V+u?hV9RT|Tc5k^$PQUjzuCGAN@G_O6DHLde|2j|3LAzb2BZ}kK zNO9NP!sGOQdZBHVH-(o?e>nfXG@_lm-r*an#$iWR_;uw&9lkXa5r+bR6X@NJX}QpG zdpkHIM&CkEs&tuoFJzV9O1`H5;Gf=OWF?WIN+=N|CF!G5-^8Q(%ny%-=XS(wbAqPe z*=yz(o@9JvAU$XKc|nnEHayA5&fVEZs_~Y#(9RRmrIT9UbN$z@ka>tQE!g8tNt0cF z4QT%X=V(p=0SXZrh!(_Hy6$ay<=VBGp5x&*1VRO>6|iaDhVv;5{haz`#O-A=ZoNpg z9MbMH$(q_SuX@!?M4gsH8zQelo0j)NMOpY+vR7g&_-ET==-A}emlv$^3(abMeBa33 zH4#MhXsP+Dh-f=pPRqr0`tH@kPw&%9^ujc4XJ1GKPg=#9Hoje(gAZSdV>nCUamZt7 zzsJ%x24f4{NpYU*x32m<{_cJDs`-W6j4v3%W3D8=HL$`|l973=qM{PKu$U%KPtU** zdvP+#ILpvR2=;4erXYAnq?5WmQzG>I`2_%Q*%)2;(9kovyj9FIyn1fcC%I@qJm>nf zu&SF+RbHdGlqJqY*7190{-ckI3c?DO{iT7Q=ot&~iA6$n2~nHJwfPH1Mh7F~Yl~Nm z6EyQax;>lPmgel?=RH%X(*LUqJxq3BEH%Qb_qX6`PvhG%1A}&~A_eJK=+4OA)yNr% zwTg%a(X2vxbH=x$vby1Q96F_pAU*k?#92Rjzg`~Sr;8RU@nlH%=(5_WkTrg5#So%g zBcD{Kn|4(8{aa$m{OCff=t%%GVS<7WzNbN@kjvwDIt=BA_xl7NFxYHNK2Q1 zAP7iHBO%@K(J3G*A<~UVO1Dz?+0M*4XWezyxp&<^?yQ+vE)~Ab-tT_j=lMOq$d7Iq zz0PiF@pH}HF3I=GZ)RI-H=3=EX49*xc|LkK-m77vCr4eg8uENNEDL_bBy)i^k3;cG2KSMBf2 zC)F0>SJx<1R3jcda`*2Spt<0n^=fDU&FY)f)M@V0iohYYV>zd|of9>7xz_@3`q^G= zovfso4QXGgE0;f`ib8emXM%&0H`9XbKo?S$dC2PXEeRzEPsUbgu5s_Q#J!oF^8{Lx+wU ztK!{5Q8HGy^gq6z3t*BtZ@2M8k9RELsw%EGMVk6It_~?QX&K|Xg%Br8g-k7HmSA}G`?Nv{P+gMAet9Oh2dEHnBxCraoDKoVn;Zi)^ z*RWmRhe~q`tP%O)C;|vJ2#hvi$hOZh#d7`nHq0$tZ^{oxFc5Eu)(ofl@io0N-hN|Z zFQ2DX&lSQvUIv~5-)m4fuLdkjuAA`B3g6pjy!@vt%)WcbS_=cuD1vb9 zvb@SDCWst^H1e5yO%}|(L}V4?9Il~XpMx9RU7VJa{_<)#`R3eLtRqT#OzM8pwxv`W z#WNGpUk(~^uAKkgk@gA!l=^Fwr5e8MSiGM zazf3p-j~qjQn&?ebPSz|jFxk254=?`RZr%7vsZI5I(B`dP{c`xM9$q6V%iRYx%vxQtWK~j^r=!sL8h+pT78q-4rAu0&qu z)@j6_hs7$a^T@f{$0_jV)GeW+igDnd(dH z5zlO4r7YkvL_5p-R{Q?>H5LV^jJW%a(uav9QnZ?xcOC8pM-;{2P&x0hhLNk4{&JyD z45ujFyF>rpg5xLAeEIrA37#{G^oy8qaYioT<}b543VA7YhMRgq_W#Wj>{ znKI!w;uR=hazMk#1<4#qtzW9Jm8{fmXViS(&+_%-2F3b}6yC&13z0_!%4C z?16v<%JXvQ?mYqfvyx{6V`M}N@gpAfK@U3dM_dZtyx690JQPXf@#?vd<}A&+#V*Ll z5>k`t{#uQSplNnXvkvYT zALKmEWyR?~2FT<=*b|{dzQpeRjozlTDmBa_FQ;MDB%_Osy!ZNoNS*(%r*K5#TACTJdK;g9GUr>u$E@5Zcl<<8Xk znH`=sQNx=;Y@zj=@l-`9&#XNXda{$X!$?s&)qLby~&po$YH_r@fIBbsJPN_`_ zrkk;(PM_=u3Xw(6S_uO)Tk z<>7GS*#EJ;w@$M^|MqZMi(ZnJ!(@o!h%%PCd+%h0+>c&`@VZBkY)awc)%iq8ZwY8V z5ktGQv}<{Jd2iu2z`kjXTnR+A4I7|IhxT}X$Kn(^bO%rcr>o>58&e2RBSf@iJqTx( zxkfwpV~POX+f>9du0&>6RuXB0HK5BO;^Zpn&4XnpP(|ij;rS(Ycg>^^PUPeo2V1d_ z*y4Ab3^D3QJ0dQ%NtJ=ykD%DTHmTpSxAMVhxpahVgX6!zpivCO*C4+bI=PB52TSFU zc4-d}F$k<8a&wdPu6`1Ab5W`^*qd%3P1@+L8&}twH#6gG)(;I^+HcG3BahM^%lal9 zuQ)6g1>&$025V5#7&9uWFiw0}43PpGV?-QHCHySOa~!yhE=%tM!GSUdhtYwy29;#l zvHL#CJ#p-GB)jfW>4w0$$WTsK!=Q$=d-f|H$Pf3_>b`d^Dygo+vEAXJGTHMdvD@uM zG#abjZEDt)=)DJobMH^_bf<+=HVu>EAauQNnUgjXM&-rWCk94#x~ERY&`cfbrDYTcLtSJ0tOrKB13xYD&G+RZHuliWde9LZoOy zxvzFDH^|i!yEc}#IK@$G z-#gE?+Qa^&Yltv*qi6QM6IXG;t=8!#(NAynldC;#&5Ek!h}?qq=Sx2~Bg%&Ebz#7; z!1-o?h@|prF4j6F7=Bg#9N4Tg(tCTQfRknoG36LeI>kik%^1ae`XrrCQRKez?j?%+S zRLmdMPfK4J9`AdqhJV6Q zfRI4v*bV-?QYI!$80zZkNNPHA>VcUtk~4baX@4epIG6gLIZ|Goc9~~8&o8lGqY|(G z(jGcCVoe+>j!C-pRVmNs3R20#qFGrq)JgGH7p(L+QlKM1o0PGPn@kHAM)`K#j-;CA zNC>6)ay3$QcsGiD<~g{O+)@&=iUL%+8E7Ae5T3j=TzpkYZ0r2DY$Y>jmM|a^JuW?+ z0iriX(Kc7-I>XIontdUTHDfTG`OoJ)K%U9jb3?P!n$z>0+ZBz>R{ryR|)M z`RMCWt153B{$$Zip1=3a*k@Or?Fc8+{Y3O1cKsGZ4J#;)PxMZMMPz~|l&i7i)Dd%*j|u=-;WJ_wk*z=qLCr7lv;w1k3wBCca!) zTS7+%8)i#=@1Pid>2>mZ3-QE9Pq~Fau@Uj(hY2{h1`oQeZ+0WzDscv0T@W`yP5Z}Z z6DW8s&qW@MOIr78Zfz-FY@rUQIcI?v?Ok^q#t|%KqEFJkP@5j{z)TIgh{dn@%1flV zwyrDzba$~U$wCh=!dR)vg^gPDIVYUXHWk)?n~o$RaTmF&*^o&45g-A10103&0>c0c zOUvAXf(oUw>rr@q@0PDL0LvqaCB>!nwBZj>{le)32I1IgeTUQq`^q!AY;KnqB z+}>TFRdto_x{14a&S^TwF%U08)fDBfQ>KRlhDxG0PRrvi37c&<2dPP)6HnDN=+13| z2o1qvIg%hai~v+o81H#Dygc*r^p&~8^Qc?4H&fR?F6<@1T^t5c+;S_7P$r2a^V~x{gwZMMW#2 zD=^`PQBx=|CdcS{quEql!2O$zgTojK&VRhH3iakl8`s8mZ$3VUlFu*js9289ZX=O) zB+gAH{L)lHK+D?W)ImtNsXSuK=J;bPS2nA#0xBV=caESLD0`dG zMng*O)gx~%U z9;$RG6sp}`omrdL;4Dm&T`;!8GDkpvD~z}y_TKGVJKc<6v%CAb=855Dx59*THP=l& zOT!h;j>XHHCO)@_Eh@0k0l zCjQ&naq1H&_Dvxs9f^Jb%l|isr!b_k1U~)t-j!b4kqC}rM7X|L;eGmrj0#e1Uj~}n`@kM|I zLGkTmV;1xa2N*@GO%4vNWfa#3UpcFZnZu3|vm2D56Tx4~7unlmHv|d9w=Gxu`v!Sf z&t(*QqvIb{F(xXZ%_4NPt*57Wx;{dAQ6to#njbRopD&Plvjmu*6Fh*&28FxZt=G@# z|2+!|C+Tu7&3w&w+gys&t8dyOQ|0;jl5gaO$UfXm%fD~t$S*$6T>R?F(j*=}l}=;h zeis)xEB8q0lwkg zlbUpO0S?se>L>yNxZdQapO~v{#LMiUX3eeG93Bi5qYWc&z4TPjqG)CCmG`7z(1RPr zCPRlIHLOEYm03kET>9%0seTPR9nT#xn#8HO-qM}DKxcr_xc!L(O!+W)jXMYt&j?6h z>AHHliPL-Gx__ei0DDSZ=_QO*E0Ol80+ma$Oh9kEbZ;jS z-OZM?Tk50V-HqOZAo*n z$Quhr2t^6hR#_iL>A9{aNi}G{v&n32HV;tCcri4$!S=k!laA=U2EjtiZ{+F8)_ao-TydXaTd}Fsxy9cQ*Mb)gqQY^(hBP9RaAKNbG zI04qfn`e#nMFJ2A_s2Ayh;}T^8ivTn%Szr1(8NP`#|wjaFjIfrv}hAfCl2O~Y2Wzd zP$fIYZmLdk<>M@bt6yGb$RK-WIM-yG<~JS|A@J_dX;K^d$exY0*yvZvH_mB?gc*#B8U2rIYL#d*+&Uijp*?fI z{<&J$GW?M_0x2IPnh1<3l;I%$g~J3T(xW)>mm2wn&hBV}toQGSj;2h@?N$cZj<6o$ zI>&n(+W@X@E7tS^M`Ele5-0F7+060auK?m!J!owKh~)=7w!CP$Wn7`Doopy{@Tm8V zs&;p9LruX*qJob`_xxlA<>ZZ6WpU$s!Ee5y>I0x5fK%u?Wa*j0#0p_m-G9sL3#S5- zR$ArG$_1Q)ObH;YBR+PDa+5IBCBz^!_5(;p$*uLX zl_3fG!qGa+ivL5Sg{Pf;pCVsG`2zl8u-pp)eDOAv8|6=l^zp^jIHES_apB<1%5ob1 zDaI^c)+p9s$l_kF9QgD`R*GjYI5krWa)$?pI`Z365d{L3ZuBs(Q3 zi4(lT!?qo1v;O7;I)=L~Z+C}(@Y*?6(i4Ivj6yQyt z?R|Dy4>SSLvw~V#Td-$kFkg>4uG@4Dgw>%{xr1SsJ}>-^Iz7v~dPxV!&)?xYUq z###m~4ES2R&n8-RoC(vs?W@}k$6KK~ECy%zZjLEk-kBg_@iXo5VG4o^W49ejKTtZ| zryPmLJ144YsX7w#sP%UnFvB#Od#RXBV${m5WQ9IIH#tX4k!h5;#_Cshm+vNXBuoM0 z+WTWq8o07049;(NT(L1MAJjWrh4W?(2uklE=-&I}rvbM&6#iB``~XF&X=;*EYB_&F z0!W0>6ZQm9=~#`F_(Do!8DP-@a%TC%`Y9`=e&he*4LR$V`$xZ*LGD9=$vU+zka#=YS5iiwMx>;cERI_JvHA=YNU0#Bv)B(Qss zL?E=d1~@GOjS#D3+G~CFh3)*O7=%hVFfh;u?%MjEd+HtGS1&aKe1OEWv$C<#3kk&{ zFD6p9TifB=DO<4`JZO3`YOprx86nG`X$7lE>7sS4)jOe%GIvRyIigb54cU z-K=&j+uF<*-d?BTRXIhgUs#{ORVVdZK>u&_Yn=vz(2Z;P)!pCMsqQK9_Y3nSRX+^p zvGjPUdHkNApML~8&iVQIy(%P~fZH<(3UQ&)eSlAeM}^>220_AXBxNRkwXvFWP5I;9 z0z=y4X)aI7NygwsO}Za0e_+rDSP!EZI|{(Icr~0qnk^wW z{R5XfjDT5$0oRFC7T;3@mI?OpCyruX2v+L<_U)&78H|b1bQi5I*?+!1%RZ=~m0W15 zR}`$B^^8FQSEITdl~bg4V|!3P8qx3&8aph?jM!2s5);YRk~fDz%cmel{A>4k(hwx@h+&&+M;H)pW*n z?P|p*nvb#L9sU5{kSLj(F(W4urVaR?EHMNn3nkp1(S!!~M6@`D@bz)s^8a8fUc=1J z&0Y9T;Wb@D)mEaE9LkmevO_vf_kd)AM4`otIGFk=G<^VDb7ynu!}G=^VMl>ZbB!Fe zWx{pQD0c@09q!!WfGL5`MOl0dT%tbS5{2`gQLlIJ@%D?hu(I4Epg(?jw=muPweLFL zg^ujbakS=;mWW4fQd><{!Dt!I0~awC0uB-7ht3~1wY;zaBk8&N%9-fcUmm;kom(X1 zi+jPi3?lq*4@)r0D z4x(&Wup4XERjcAsIM)VA>N}CZWgbpPU{$5CJ|53~3{Bh~x&K4wNXOTTZQ%o>9=n8NEKVRPrA&Bhs?4{^gw#dp3R0+wI# zoqwpDbKQFm?|YlyG8ws?RZdC?hPvO)lOo*AKkQnTWbu2yUE+gR@lmky?Gta_qn0XE z3BvW+#0cu+@c&8AAVn{IX%-XT2os_RYgRRW-XjSjZd6iEYsC*3d}yMfY<{}uAV@Zx z!<|M|y+{g=se7&+w>a`bgJ{8x7Fk;sk1MOt=50|MZxswjSP%cv^% zrZvCA`+@|xSt9K*R@2^Oo-UkbpDf|GRkif}28VY0Er)L~;^J8xKYP5mGs=KypGx4^ z04vW9z;|wX9pB`s-+VDn*K1K}KW>dKb=@(AY#izdfD`=&~mRzF+U4ry3 z^@~027ZnygKXOE>*O{Qdkj7f63OsL)H)OdY0Sq#tzBF~VXq~i<_Y6{nPwkam*Uk1) zfEg`!drBa?qNMchRI>Lw~58QCrwMWv>-@$YYqpZHwo^mdoPQy5ZIqK&v2A7ssav+GJ!yeK2@n2*L2@{Vas_nQ z^7D*(ecL{;WIwd7RNnfzADp1gZdsrP%(}xphssKFg|!;=1B4YSSh+7_>d77!gAyt` z;S`)+6sTGnC|Uh*dKZ1R)4YE{=SVg${>O|m7+dPNT45q=VMsb!jcKOvy2J~f`p-km zKu`pRBmSSc>t2Jp4AO;wAK-v7(&R0Pc-?M{7aK?_Cf)o?T^$8b|HTgefB34`qqVH-Nj_0x{|_g1j|v?uFtD3dx6e)a7B>tsvz|hY9I{e6$)8!3VqQ? zJURNbLS3~sA){R^p@l*LPsT!F^7~h9%Z#zd^CMePOiV1ss%lymC{Cao7F3!nE|5^6 z{M0cm3oj}ZN{3d)re7xgi~d4^P@H zraIOBR$8FNs^qgQY>8&TU-m8k6MTS$v#Y8Q4=X;f5XUI0-N4N*wqz_p%)i6KTGx*<3E#C?51fNJT*Z!@Be^ztHj$t zTU#FFNdNt0SIZWXQs|2kfR=2-9r+m9(5wR&G$o6y`W1zikG z`4%Rfr=NgZIzSkI;+{Q!J7Qc{O8Ejb57!xAoTaG-QJ%)b^pmxjSdcAU19{vZd4>B4 zX&25Vx-YPRSFCTu-)CZB0q@}DGRv1D8Ksosf~J;7l_q~^whe;g%-KcD!~LGnlmw?g z1Uj^|v~+nXT1{FS3t9^^@MOQJm|erG?|NEOR4lqkCTkt3dawro<}K0U!$B-wNTUPx zIi}O%wbq*3*@z9X3k`9%p52tF|L6E520ir1n>Qy7(EGs`R(EP8u|C+ z<)!lnh2-+?W<2Hp3f+zVR^S?I$39(o<%xEgx5JUZ;MCaKH4!HeXB_NxBvtKwG*AT< z2f#j|VdHA`z|wB~FIP36bn6CkRefJw0}*`*yq6EE5dT8NN>fq%bd)i;+j>W6J*c$s zzYxN8>LwEpEfjTXi<^E741X8@oS5QWxb~llo@2pmdmcj`$9;08qI&D-P0p^TopTBz zds$jCpXC%qQ}%mu=iJ%w!ux*i!L$fHg*V-bzNaWkXYeT(x^3;d_G4QW&WiJYJC^&W zB6c7M>EG)v`G4~Z33hmjz{De_qzoFg*mJy@9-89v9S=FP5s*+RkU_UO?u^@0!PvK!tn_SnZ(2|KGR$%soYw8mkI2x*tKOn> zKGg#WO)@eM({FGCLChl%5;s(VsdQ1pzBVw~5h@LYZ5}*~PA?pboCaLus9hrTE@OLp z`x+hEJOOTq*fN#IKX$$GR51p}HM1FtQ8;kq~YK`JBr3JESdI$N= zIVXo;hOxmQ62|EE5Q_085MQW5tr86aiK8k=foHqwb!ZgQ3FixUxN5}%%k4VjPNI2` z{i%`3C?jww%x<{W=!(ttbxuvkcQ#ZOqQf4*f1NrDWUd4wZU2oxf#^tGQ`2EkU9;5v z;8{oLl}@<#6SR5e=VX7;LRtbG34~XK2rIR_!Ju4>GS{3{Tdb+c`g zmjuSd#R*q0JAj@B2E;^1*cUEr!yZt>$3KhTJ%0d5f#q46zbeiAz?D<(CyL7>CW^~0 zVuIP=l5^<>CE>n@o~1mj4^2u~HzX_Fw&Z&J-zqJ zydQW=sI;lhu}Vu61V6#f%?h%F(92|GnNSw7gXQLyRZ03FQxk1CdU0TUjoVwvYza4H!> zh(?+PB2ba=&@VOim=nn#aB3lc3VZY z?1#x3NapV;DJ}NByN$T)L%AxxN4EiNfkj9NviaJZ5*gVFrJFS1JPmGpSTi6c5eIb< zL)#Ff3jDX%-kmd?jjWF5U9#B>KGkgY#3(-}HF9;M0_2ePAdSD`yBS=Po zNbVBQ&_M9_9Jyo~IXceleStQz3GyQtvY_C`hKizios_4g{cuBObH*doagM+Zhb7 zo&#d~R-oiDrcXiwwb#-3G=xBeg9DWuk`G>OXWUSF3S$X=2y9_zXLngG?L;ULtUNr6 zunyjw%>)=kh{!CEHKpUu&I6w`9c~GtsJfe>jGUY?ps{BMDQNJZg*xmb~=UIWBy}Ck38{ zOyu+oT^EMJ4=F}2dR>KwXuUF=MI+|&5Cj$~@a6D)vK=?3CSeFL8V#e-CqVIlFGqd? zkkdrNLd~kL*To|sP?b1Zy^&R0Tia3{dIG`-8UE~#NepB%VHo(SC8pif^78WVbItO2 z{~|!*x6K8pF@PwXo0pdk>Ty_Tq;zyWNXP(OD#pj|Ze|gYQHiNv2BMJ>5r4_ZU;}Ax z-;RP)s~O@X){X#t8EYaUB6?q6Pm?2h={?XYLc>G>BXu8~NS6tDE9Ppi;Elq7XE}Iu z+D>8cBRzzhfs^w!{q2{Co0!0HjXJw}LnAnqyn`eoc>BR1we@>@2toow^h8jb(zCE+ ztJ~qta+oOQ!s&Cy2rW!G^7{P*QWVy?b0SVF(Vi;8@%Q)H%fZC}JV(}!QqP>g%MAt< zKs7B6Q@DR0IfNxlK_dnNh~u5qGb^D+AX`8)@zs1BTJc8^bOD!+$d@3ZrgmQP=AQTd z*~x}CvV?7#PGVsh1LMZRCL}zZg@Yqse|o1$@<^lm5wL2I1$RwUG!be_!Bkq*gXKfVjJOkz=;h5eHpw!@N=(1YHn?IRo_l67)sTapvW*!?<4@_%R@yixt0+ z<6X874;7(|=j7!{7Y~!t(5$NIN+0qgo9yxuY@4@UpB*)wF~aB!0+K=URr9l`j+LAH zf+39kU@`z+=5Ga_UPio$8&bcTBYD>|FiJtJZ1;*EB&n9-&3-mf zj1bAXy|a5SNZO_K?8y79*Q>QE8v+=Vmxl@y+dRQ}(UqBr>CV0T_Z@%D@n~1bLF$&f zcEtv8Ka2cdzGMfMhLbCewBvc?<@#=^25(}DzCZrgDT%|Gb3kEgg#-hGaIwbr$FmSZ zlMZY9OM>8MMn1&hJ12(~4u>BRofPSee>N$Dj6FvTV28K1O2Zvog78{!5Z%T}u$}*Z|HYRx9PQ|t{G1_-Yz+A4o{Zw1B5A`H{|ooE Bl)?Z2 diff --git a/doc/freqplot-mimo_bode-magonly.png b/doc/freqplot-mimo_bode-magonly.png index 106620b9599953853250ccf22a04b2124a8ba223..7fd5538ed0576d5ec62fc6ed9f24564cd460fc55 100644 GIT binary patch literal 48091 zcmd43WmH^U&@~7#0)#+tCj@tQ4ek=$-Q68RaCZyt&;)JVo#0O6?(Qyg$@9H4Yvk9g z`7vt+=yYH1ty5K}YS*qhgviN=BEVt8K|w(wh>HpRfP#AS6AB7?_2UQN9hULMP2dNI zqp+%@f{n4Gi=Mp^l(e3st)-2lrJ4R$XCr$DGaG9rT6S6{>aV7bj${MRDbpGUSu~2Y?=iR2v$Vf>1{QOW6IBeTJ7&^p^jIs6g^@m>9 zM+<#CH;aB@Veo)>+>fVSd3kw;Hg$8B+z*FfS2wq{gM&eMy5^rC5XZc{QUW61W3>4+ zXl;F6AXg+pwc2!C+Mwh|J{+J7R=*DjotCU9sHojLnLgf=jBH^}>)jzk>0C)9l8J^o zSDJO!OHNMVm<+$jGCgA_3uSZ3;gmp%&|jID;tDg|LqpN1^cho3A!T?AwN`_)z}1|n z!fT^^FL`bk+n5m|GvzuyT2E?fYTRetDDOUe04^>99(~esgAWA=(?|GaYPkLXf)^LeOxp$wiA;3E4WC}dM} zV3QJ&TzM@(D+n9#2nb3`OH0!?%O0{k_M5@?b0(R^>ZQtBHRej!ygwUV&(^tney64V zxjul%9?g`dVxytuiwFxBr=+AnYEq-4vs$laG|X*nD_%e7?d=6b1yG|)Kqjd($$L3 zixSbdZ&OzXkPXaNeO{gl&1=-J78@Mq9_ZAngq$246yoCIrX6-hiaFC|(ix3H zvGMWCj+dHL(s{ia0g*ksHeBaU*SeHkTwJcs`Uq4I33&gEq;V*`pDNR80-dxzl(}E- z%3mGTttel)x47S5nkgwMv2b&1zMs-+a^AX)bXj&QY}D)e;IuQ6ZXSWnGW8jcvq-Da zQQqZvvH1DnqzzPFUVaa}Fsbt@F(C6N$9~--)@HY-YarzkrKQD1MK(4zG`Y8L-%jIk zIUAl_0M7y~FE5)*NJv~a8Vx2EV@HTYL`EtD4+buBcr>u7RGnH~T|In9PeLNhk|MR= z8-e3c%?DW1X|>&#Eu4;-SrIUUMx@iz!;K2yD;ZCB`|s%KDz#HDm;X)`D@>1#jUA3s zP*8xh%T+L_Rij&Isi-6o;NX7nJ)R0GDU}n8wmn@hNFR8g_mfR~95;y8EF3jhm#dU# z+;_kb82TJf7DjOb(FqXAsV@?bGD}2AXz`p&(*jtPxv8nCvwb-Tq~7Fgbye1MJn(E; zqpk!j@+yeHTTbb!7k2eGi$&F7GvH5@SsCnh-#nIH{n+_vUP)=X8IOxlXgpe@T_Bjd z;o-PxuEm25Sc36jB8}tTL;zqrhy5uEC_u|Xz%I0Pa2TYWthLfObmkI`#3f{4h$$)} zSFf{9Z_z589B+2JI2?sR#3v>q@*7F#GGI*w>i~|!Lnf0}Z|122@wmIl77Vgqx>2q~ z?*;t6LY2DOYJt@wUAw#x&^)Ba;mT!nIQR?EEFeXV1!TLpFhhSDq{LAhg~b#IY?8OH z8@9@55R=6m6$-F^jzXafv+3ARVDp_XxvYF4AjsS~k#F<%V*X9_B6R!kFq!q;?{HMT z6kSJ0N8iA}MqRcm5W!(;ZGT^)#(diTPm`vocVs$Jjx8}Xs=#JQYAOzk`Bauj1a`IM zTx<%HN$l_611>9GFzgvi3aBKIDmHZ=nx>`C?SKqbal=bZE)J)w9U8na$(hb!-)3;+ z>3Akxt#}%0+??M0PA!m5MaIV;S+Hr7c6aA|y1&}U4#FQ;=Cz!qm&xGn2R=^b^Wg=8 z3;72H?d*B%Ufttnq6zmqEp270Y40~E;oWgK z3j}w@yp#JV|1~rxYur>!Ru(2pyT$!*xrIxV%41;dO`hM!x13z>U^VP7vE~&oPfYR&p+zyr4$ZM5}EfwbfEd`AX2cn1W6AuBt2P^P`rJ3JgAO5nxZRA&i9 z?Yq-1L~%(;gUj72%J7_I7@3HtTSaT)nl<03cDVZfzyBj3zS}?2hNcu%^=V zoy}Dl!M|pCAY5hZ_k>!`RRsWf=tsI3+Eyisz+xKlPhbtC!RyYrS@Gcu z2??2dXa=H+;vdx*VCP50k;$%aZ3#~nNV{z%s90mKIE?ZDv4ks`*$nyk_}CK&J&s57 zED)~?=&WD)lrHMdxuJF7&#~s~X@;GS$a`_KnNB;Wts|w=b>Uw(8_QGg2&m0>Y z`w;CgROl*tF#Xm?iH8myZu?hW|UNIT~ zFy%-7vj2PqpGaHbfRXSRHk_EDUwzgjm}(VQwG-0VjWsH52#LdJb(N^ z2B7Yoo22*a0|)E8w6wI&PEY?r=tQ*#H%)ZpS)-De3}{1Y!x|%UipsN`Q1djs2jhEI z^h_wj`Xop0V#{Sm+=71bmXW6O{}c27Ey~A&IVGh=mu$TmmP~m(q#D>hvo{_h8F!Yi zlSjQmtB(8?KWLLub<1@qWpw7+&!KaEm2l(GTH!h9_yTG=9jZWaNSo{^COTsRJ7QqKtFR`)A&PM71f z!W91V#&Yu1zQGiRB%uZ2B@y{4l`&4ZAGB>o1M4RhObI<3Bs-q{5S8W8ySzN&$Hzyw zG^hcZ)zqF-*R;b&nIJ7(4Z2iUzd+5XJ|g-OoYI+CVvASBc*srKb{kc*tMY8VXZP}$C;7uF>-cL2JSXi zO}XtOY`xzh9(5`n_LKG-H;>PG{w?q^hU^~{)ey%*pTP?;81BHF!4Dzf==$9HEr?%Z<;AO5iuNA83FS zzE$ZF#zG2~7k%JQ5bs(z>#7BNKHo5W7A3n_Rl&hpDx(~AE~BXn2tXo{0BT&J6yv&* zL%yWHnGdju}qlsNBP#*fJ*K#0k(W}dF1xNi(D%gtn4N=(VoxAlFxEOBWRqu zC{)n$0o^xnu*@vp)?+2lw=wYGyg#3ydtk>;6*$?$aV@#QyR^VxKRgA(@z2+s$w){_ z;n()L=Nyua$%@M-TQHr`GCZ7>uZ5sPX()WAxFVx?N$n-BV|`q_F?xQc&3!RxJww1X z3LkcDziRod{H7>K=0gIy04mWdjgTMPV{9U8_~r$lYjnP=@{lVv*}#K@4uf;LRICtC zquMY`gt^Jxxr1vHb{eW($8Ac)5Z+wuo<-C}|9s zR7sTpQ4#Y7hM(0<2Q{?IwU*7BM=YjrFuX?LW`MB$s3pH%UthhlLj2>yGV(Q z$7@%Oz@gdBkb1>?FL20-XibiGbP!k&05T%4U>Y^-Q&@zby!c^=l&*{6n}tp~ds+sf zKHktbS8sSszw8GP@}~9S?}sO;S-X93Z#=yqD#c>8pn@48VOU*|9>SmdWt`1B@>%+$ zUFtvmnL0N~+y+b?8rlH1fys@nn4Q9X*kgu6_{C$UHXX!OazF7WlntM>#ejZ$i_DH` zATw{!b6BLace#I;V`0{tGDDB4?)+(2nHfGIMbIB9fXv4#0O>APuhQ<+@>{AtYAqet zP|PmsXJN9fWaA@70=Bn+W1Hfx3r`L#Gb3DePJi`rJ|CDA9&H{k#k_c8edhA^{Q|Ci zRU~$RD+i!RAuKYVkN~8Hs`G8rSwE5LRa zB^f>RFSiTE0Ad-3`+n%71A}P_!=Lv=#x_Qhx59xVivqK=Tn)Lgg|8}&*8@U_{7Al` zItNw~pmN~G1-9Q<6E^H9(i)@PmuMCTo3*YK$4n;5yp@hWUgub6!LU&N9v@uo>FMmr zGMWiS|CCvia8$UC#pnRf7v2)r=sUq6^iiH3xUXF*cupxNj*;DqFye2RSz7Bpnj1p| ze6boE^+68gN9iw|X{zL6yj7VNe#HIvZmU)k75Y7J#|PRtE!rQbXko2I@W7(Ay1PTA zhmlgi4;pG*NP(h^6Ht6V0iKZaNkJ*WpBY|01WSl4A0;8VV=m0hlCNy7kYgc4VrWy! za~`35Q)}CVRj%b%%0AlgRDJUwQ_`_6f6^p9RUmQOd6C$m9Fy`mh}Ia6xukN~(uQO+ z)twIJTAkj||EG6{1=63Rybsg>wUi4~8J^d3CII>g_N<&e)RY=t_mm*rQK(|iOzRI& z?0cx+l*&P#43Qc7N(ne*TD^+t*JJ%_vKD2+*@Xlo0u{=Kdbzp2glNf3K~K#y$CwgV zqkzJ&3=SfViJOB6Ax$xZ+drj`mtq!oSOELBRVxJra1Y`V5^x8Q@||%}0wX{QfI91( z(+ja5Fjf(lsEdxaCM2W@^LK;~F^jx8GeZZGY!Y&d6m1@RZ0l|Hqn6%<6BE*^*|)Jt zAz_!d;^T$8V>w?sc#Q?Tw9anm6PlnCY)sG=BZhF6LSb6x|E}#C_6{xe0**+(SM$0@ zTj9lZJ$H-SVjJroI+eba8Cziyr3PYd}QG7FKfn2wJ8??eup#AQK z<#X)Lg|z`8Z2E!#!CTVGys2fg_GK?IE-BOe%sw@M7e?XTJ`y7klWt6!$ zYhJlFVB(%=UAi{zp4lD|DML@lc7|iJYHv`Ba_DNo0Nnh zE-nrQl$2{*TS}esN!B2cz6zd7-QoTg#;heEJYLCCjHa5EGc_w(s#cFa*Z{0EZ|z{& z)_i=Cir+}Z* z<|oWGg0#8S2~M}*;G!lJqEOjKX(tp6ggOPP^=;M6*x1fk5=nr`Zl9h`0DwNd(E#f6 z?FJ&iD{oS~nKl~4e_v(Itr?=6t2<_H%V26ZZc$Esr7rb> zhSq&p>AHC4Oqpj)`*_$LY?ac0j)}+WQSi$u@4GB4>6Hv{ zVX;H9?RW#+7Ww7yNT6+-aOAV(NBPi%`*)`zKouKUSV#s`&2tCXEau(5Z(%T5Eiq|n zX&0R!TFmBC!HF~)%M}?zLs9_A0Or$awf}gBv%h}c>P9iSAI7#9j~t~nuIWxOOG^WW z*lo2O?O%od`rYC)@bN0DMXb0u6Wlfunn*;gteW{3_Oi9)xyS947ukVE&MU(nt9IUpx+aiFtHtR8mNJpIA}!mEPhnTe#pZqb{iTIR5nDSq*+mKemtsL;-Q-+1 zj$bBScCEyx%WVtdrD!`jSr%whS)-Dc=Jt#l|6d)z2h;&|IUu7AcR8Tc$6~YAyk`0d zL@ATazcILc-rOFUDmq>X{{HWP@+M=)9iZv{=84CZX%L{J2bPprti2r-&UabqqoK%F z-KUjS6#hPKiYuO{><608-glalY?6rrP3G)h79}AM4AMO)J!~x&v>B)3H+_#Xr`K(} z{BiZ+@B@!&zGxn~jw0GN9;9NU`9rRn4}qje|L=

fGo?*0z zRIG?Ogwi>@p2NW2;qaNI@ZMpBh`I3f{m`8L1qaW&J1=tc|7%?t`{-2Mh`|2lZ^D2uVJ4lR!b>L zNttD0k_T7GF@fd4WiNk>jW}kEjP)dC$r!oQB+w{-_Sl=XNgV=LVx`PZPF5BcW*3;~ z%F4FI+Nzh%#>EkGq33MF2TTQ*Z#_#U3FRp|Sc7l3!$v0zAwh{_UGUkZXZC{cieRBvj zD&o|L)Wu{S359BbWC8@H#0H0*H<3Hffe1Lg^EDQG0R5`teMbV2kbMwH((0%$27U*+$u*x2pFD{MW-)CK&2_GEzjr3ty z^}y{uJ~=cqL%2&Q5&e@!VLHpvR?Bvp2&FNZ9jFeX(s#CWt{EF-TNoKcbk!blDAM^Q zT3gS(N0L%yzV=uF-BGDbUcA)d-tk<~uo{$La+5=6=Dj`B$%(N7j>O-W%+(adyFV1h zNDH$h#lNS<{$l08(lQ5a%=L3urAVpr@ZixQMjhUu%gX*)URL#NmLHt8VwQKj?xPxF z|MOjVtrZDJ%Wq4z6{*gz)A>ydz(xUy*45n|8692ZWVt153wpfj_9yt2C{apIR#NK8 zi1$D06t={m)ornbUdT^kq5W(j^{IAN^$!EXtiq3T#lo3UM6Y~_T}mYZonqwsRjLyw zXz06ECpuvHtuUQ7q?Q)MHqUk+e?}2B`z=TKNpJ@~+FqYge%yQa;~x>kOF;q4$Jcfa zfv+b0|u0478&A**yM1Ga{+rmC44 z5%IrWtY)XZcj6Ry^5m#r(XlRQL1Rn-dBnHn0qJB7yB>A##rqOW&<`K$62}Xic%#GFdv-c7DcRR55DB$SKdykreNQi=*{@%^qsHjmZ7$i@DWS z0_91EzvK+X$b1!+0v5*$EN*E8(Z2*FA!10ZfkB(o8pJh&Le|ge9R4Sc%pv{DhZcN; zQgzIO=`PiB+JgHlhN+?$16@nEug!+(jnN`2Hg!mu#@Pz#a8d-b^{zXUBZU*r&FAaR zygOmJ2pl``vYfuCM1c5>@jV+(O}t2Die*yfOPse_EbMjWmC;W7s92(r(Qdm)doZ7) z?N+~D=Mgg^;(ono_odppau0VpSf9^hppC%EZQF?a7S_Fs6q1__%h;)s(Pe~_hQ+Or(F%bz9_f`n=@F4f{ggmuP^5_!b-d(DC9Zd$(UNyEFMNNzWQfc0 zi(B*gOZ*#mnQ!SHB7v^RqX z2#VqhRRPsB8tgB3804fV1wi-GZ0=1GIt~4jU7yqF7j)u+g?v%n?-BJ({t7z^Y85Q8 zXMD%T&*XTogci1f8Lu|mxBtb)y6wH!6w1S>K*|pW=?6!2ZEcEc%4T$Lb;CLq7jrmQ z9$e+A6bqP_s^?9Y2`l%6M!IDQx6Uah+o^VSyhAWfA7DbTyiG~NOF&vT&cm?%5~tms zFRR9_Jwa4qdH|Hie^AK8R%+8Ptu(|}YVkY-1R}kvp`SHB6-!-td)e7cez3xS`MONY z^9G)ZWpZFuZGqjEHU-pL_V{Q^)vTG0Vxh*a4f%&9fICmX*UyU4txn`q67gp;j*}vV(~;@M59XPP?QhU!G{lrKZbsln2vd zy3q&`QngG}QPF(qZX9LW|DXZB3jp-=d%3OH~-FcDfks?W?sIbO@2h2 zqw`0SDKKSDHivY&bbq8AP5WL-lM4H|FS))@E3A_bH*1-9vM9b-nE7S736YG`h0y)n z@CTdC_hG9)0?_=zh$sM&(7se;V9_m1Nkx@#gQ2~v-1q8Hp~O?{G{qpqAy)^`#?_yUi9+r;O`+a1_;B4P|F%Re|7d z#IUQLRCV4l2?(h4<%c-o051 z!`N_F;TqCvTAyj<`JEd6Mh-j3pWM6!=iXu8lZ98uBNpPlAS(>cxMq2h$U6e|01yZ7 z?hP?9u|5=t0Z$W%X99&1l76`1@vvKI!sxoYm`go$=P7pDk6tVy1b$>CRz`jl7FN>h zfJInXXU1fq+&HO_?;oC%hb80>^rf(8{3Nxf0CW*P!OEXsp_z*XE0ydbVN3Mt_{21y z%liyHyIqyquprpFtAvM=aA>yiv_R88r3ivFUzo|HwU)`#RMSMeH#P2!oX7h zPah}HH%3o4G~&}+h1Z}*A}A2=>Gd8YC~w=e@wxdobH_`=4iJ5!HxsDDG;47!6j8;) z&||7izuZS7aeLhK9<@HeO)1Yk;surmu@;^HXc9Z_|3H&HFFZg?2XOwpgE&21IFUf# zF9N|OqIEo>>jab{31*I?>v%-)9n zvJiS_7q`5w`tUi;z5|lpM2;PvfSv>xF#mFUCMVY|Z>v6Br+ICmP23zd z9F@U27b*Eh-Lt;a?G3bTeY)|FBSIEH^?&UT1q%cht#{7*CUAI~D0n{4i7p%!`=^b5 z-GlTHKQ$)96XMU}9|rc+)q(|S7;o5MNohIa`Uer2-0t)qheYsAu@7JSV0T|%-JO5z zKX)g$1R7Yeex0NRWK|RnC@arrG=&N>I&)+1ysiG^YA)TOfqDS8sc>CTVV*OUL5 zYyCA7CEZO^bT|rPsB$vOL77OYIYXrb0zjd-hT&V`K@Oe!dD@em=1=duaN>Nk0+8xr zi;b%Y4c?}LS>wtI-ew7kT6tN4_CR0$AoNOZ1Za=P6&u?#+@Y3fu*sWPu(ygwYJ*u3 zx~IwmYqV4t1*rUT*e|HiLbU?!`dALx%R92<-EvwZk6YPw%wuUwzfD zGttwlhlBjjw6#%xKZ$3{jRmctCRDr1#^7#m?w(o;ne~0DY*b9*@1agJl%jewE*4oM zqjI*XlAxPt!sI3=VG5$Q1;{|vyqoJY?K77hw2cZ6UxbyoQd_4q29RI&ESj3rF9K+Y z-hNNAV?=V?`|-K~;WU5^c$HP*v2o34Hz^d^L-01M%EJiX;ucfw0lX_;D4H>E@8nP@ z5T{-3vxZ{)^86uC2Qqg26AlIu`C@=d^Y+ofQ}k2cL3YqseL`u&%%%ISv8uxd@1_(l z6BMkgCmCpE2M#y^{HIIw}CHWb(Xbjb$7dx$qE(7kzc(ZkCx$HQ7uOFI8JpXiCZ!(2c%X zX8xx#F3gtN(-*dtLJ@-H1CI0ryhT^nv~-rY<~fL^;XDj6@H#$SXH6%B=IcULGU=4R zY!ny)hioO7M&<+i0(3j~2{t8xOiuxv@4PwD6uJV7)YOO{Z&An^opy#MN2BdF z#bRo;GzGktl9{SVjB_J_PTTn=VpGMu;Q%|K#J?8ORt5+}ji4iOvf>Wr_T<18?mBhv zx~qYdSHqesSRS#K%_hs9JfpUVjQ(cwxk!M}f*vo4vM*Zu7PH?LQT9`*AOq>qB*QZ{ z+z%#iO{^fZa&X?-~tIb44U1nIfm zPl)#(bMN6A%|kO_ys?pP5{5;%ME=%kM{QZ%{j@gqi*Rt2%)iGO)@Y=7=+b&6U2WB0 zv5S<(6sGbHBl37>wdy<}N8~%0nq-(hzJofka*HaJ*MO!608u`LLQ(A{BDeeXyNJN} z8jFzKg{Vmb0#YkT8FB;@A1CBuXG2n* zQYL3)H^Evdjg8&zIw2HjA9TLfLhxg$kaMg7ZzB;0zE4_0q4N16-{_ga z4MFj)`WGnatpUZfM_O&fD3a$UEMhthk^TFtyfU3A$%C0&-n(}N9}vz_CB^scg7`2L z_D`>?x;*b83_~IaMCw7yRcZhBN0s*oMs3>AJA0hC6n_8uCpATQ3#OSWLWj4`hsmfY zOHxaw#-@Qk;EXpbiqKo7?-I#1P_yUdL{dbvm8u~}g>AObnKcKevz2dqj&}`Xew5?y zG&vGd(P!m#wdNv#Kk{`#AfPQ>Vb@1@{B%e?^Imuj_Xy;e6%-W|pj9 zqW{K=L2;@a5BVFToKCqVg4Cd8$kL5Z2Ric96|j_iP-U6j*L$xrcm{jQTS@Pt_}Z;u zggX{nxOk)Z0<-P+QfyR}lt|0jJJX~K0fLhEWF>gyigMZ3hhs-lXTj(!jc&l65k-uH zh{-pe_H`uU4-|>cN{y2csp$DyEutDm!{?u&v}kTuBPtDr=REBR3*`Am%0Ks8r&DH~ zzo9&*wEuYvHpQBatxcHU*49a&toJ_UO^M=`S~SUwYqlq$7)*)-hM8P>PNBS`ctUyU z>2+3$>zl_fKL4mXq@K46Ec96(OpBp0Rp>e?Faki1msL`LLo53rpbuacXTV66>DK-x z>GG}=@!%UITfy;DIa?ZuSE3=APrgze<w`wVN$7I2eD~OKm z!5F?JD>6FmrVzxsyZHux=Jq!B<3j<^ZM`8d;Qzw_p5B0@>SOGMgA{09$1 zwQ9hJn~d%+GpXg*p2CSdVamRxs#6wUM(bSh!5xQ(NEe0zVX#w|W&J(jVN#3C46A#p68 z$XC2Pr3s$rt#JeOD?oWx9KHP(_w7PcSsr!hX#U4llJL9M8+=Y5AL^YEJL^t(q01xD z{cV~av}>A_2+r+DOL3rqI8tcH;M!{}qb25~&i%iVz`!3rjL(eECuf%$^HIa&spC0D za!22(eRMeta3X19Qn*7G#@q$Xj#ttgEja0HT(L@)ewUwzDu+Ryyoy@w-=k%CV*`90 z7R+Z`_wJA1`gkO^Lr{89?}ptP_fyy!Nm!_UhlmdVy+aN5)ac`QRe$oRR}IH=c&uNa z&i?M(ZL8+<5q*yMC2%u#9PUCedNG{Qx3GD1h!h4)yKF5vpR5j!BY9cwPdzeM+)m1F zinf)8=k(B+qC5e2{T@VuqMxmlcx7=Lhkn z>f+#>k<_nr7~Ys3WYGAekv#?U`XiqwBv=vAau)y1r&6X%a}1hr@#PNY&^FiX(Z~>I zv@7ilL^lfFZank3HXSYayDz$H&n*PxkT);iJ9$d+;>xm*BsH~B$GR`6*XHfhg?&uE zB~_=RV~oPvx%?}i=5{V#_3dJLFRuciA7F77;P}8XUE}?pUSg8=frh>Us2KkSIRbl( z*G7Z++zhXX9AEOeR*oJb{fFLBrcj*;gkh*ox**WiddBG9=$ZuWqwOFdLl9KXqXhZV^Uh#FA14m7e7e(9zv_!n$xfx#H+R9t%^Vc9TzZaF|EI%Fnpv0 zlm)J96Q61JR7wc&D4qCA#+R#yfAuOx+uzYB#P^kW>3Te?Z23@!srHuOXm14_^R4DM zP&l>#!=URAo$rPa7f0_9d5OI)jA=bD5MY7&k!{Tls2|ZEqB*BMr9Ii|zX+OG89Wrf z>m8cwWfT0ZJ7E!4v())t&w*~|v2>oCTzGi!^n9xwnAlALrh!>gBXUKf0Jb%-#A1#> zKp=Qx|JTtQ4;qiT)S4uA56x?Lm!9;3zyf9_<|ZpHCsgG|p7hZ;J~DCXb(ya8OWPy) z%ZMUMYZ$~IdV7qYFzDVytLJ{G^l~>SmdoBOG+QFIojRINI;sK zn3%w1Hbnv^R$X0PH=CM?e?r70BswQ2<0>lX-EWT5clr}){xy6GfVssw>bOiV;W=*Y zk?;oMd0JDP!Z_KB(G(w5Cv!9yTKvD-He;AY*`*ytiMgf(6Zq+*FKlFR*b3hVw(6wp z9;H}?t=7+KqTZff@#su4W*Nmy0jo16g#{a<@ELqCS4Q8xa*e_bxtV1!l`7CTyEs2P zFPr`)+IbyqT{)SZNH7V*+FL}Gu9o#*hmC8eJRv^bKQmLu7lps!y(fx$3-1bF{bM|Z z*wYqpmgPSwTa|E}r$?6STmFP;_RasTNt5DEX^}25HA9;XeE==@Y5BTTdJnrF!?qNT zF<@MJVBFkkkFi?kd2L-^mP|)wMm-PZ(Zt>6L+I*p7Q^z6aWCB;Gu@F-cw0ieAMk!a z%E_J=Y{b=CabFcZ7ctr zdn=gPt?bUhlDjU3iNfU8bV0Ov`npu#VoxO*WgX_!b z0M)MFuh9G@*6F8Ymge_FJC++KU6tIex@40uNyo%;!BzaPz%n~eZDJOyDQ12TGXjyM_AcmT^HThLM!aTvsnnH3o ze62=Z>xIO6y0*>r#S?M03k*Op!7Bz)>s+4fp&fFYN43RkeSaiX-av3ex6a---P+qK ze9FIcu0S&Kea-cr4as&fc=BATDXp;qCFu62>))xb(^O8)Js{g7?ObLG#RxQy8d;FU zQjHrUai$mJPbF;O4KO>eH5$5#YB*3ys4h&^H>~mLy~$|tKzW+c$g^4bzDTAZcK?L< zX2lIBNhBh)c^IIMk~x~+=k8b=3}<8FBQEq`evbth0=ZXXSpPMzL(ae)X}x%uMQaLM zs%#1o3$3pbEHD5t0RKVzO!a4T>A|0gb9K(b{jODeaew%lGU7tW+*}5mJg3%jk0x#Q1Et+6nzxi@SR~OtinkNVCp{Wz^iY&|?y8CaeCg z_G>p!-fUkG3Y+m1cFLkPqhAuDu~D}Kr_!-d9cW1+&q`SSw6P6wI}$J0>%|K>=~3pf z*^RhdO|U)H2Gxx$=DLRRbg5!H{K=ck2S0eNze3BCwVoMdF#9r)3n)QOS^H zY`NE5ug_H)nSk-|%mo`d$)L#_sOW)HLwS zl~xzBhh1+U@cwWk4J+^+u7iC6)5H(}rm;(vs4GCpK$bE5L0lLsYxiyK-K$`XXT*Cm zmzsmX<}BV(h;nbeDmu_eYUFh)K9t9bh`k_C-mB5zNO(atRlH9<3X zoyq#G!eZ_^omDGq^=r7po~rKCq{U_P!m-vp-O(tY$@5y>Mw^|_@Pj1x=ZF%jR}nT^ zAA;RCoL>7k`_mAyN5F;2q`T$vC1R=_T+%~5d8#QkwvPf)n9t;N#ugLfnmMi zAC$wfB97|JbD<5CyI#mRJGg?1?PCSa}GzVYY@$cbLcbEQcgA$1U8nz_hDZ;%oIqJas#EmgQ z$DW9VQKpfkFW#?^4&;5&*d6&400vMtD1WoJA%1GQ?i>yZ@n>>5lnu5r6|iU_bNv&9Tp0s zd^)9Y8;+^HTjJ{iDgGNS+2Z#a8P`r+P64M&zI=5v9C0Y&hHMZedQ*U-g?pq5Fodco zN!hQ~pQrkxYGtQZsxpuLx?iFPq;9jc+i;*_hKkTis`IG%cxrdnF}fL)Ihc@C9!3Y` z4@KKzIc|rhQ2XpEQKJm2Yw8ngw+WEuhD{UK~W>d z8zw!cYjQUvX`ISq&*;2UYe&Y>mAMqVrn7Ilukv|eH(d=#I#F9WFC`XHpq(h8pOuj2Ayy*B>m|O*XAr*H<}CH*C*a%m61n zxXn3kl#=Yu{Vz;W5p3$bQeVpj0J#kD(x);Y^a4kdS0|t*5PAGH7HWlB&Pa<7ASe%K zWW=TF(mi#gXrN=|Y0uZ1s|!G$7yV(cQ>Sx88mrc^4)Vc+#L&$lkKsA#o`2BbYYdk#0!KLC!ksBzK z^|r?fTOQ|K~7ZW(Cxqjn;IFv52ZOy)Z;nwv@{M6p3~lU6b^TM={bTyv>wGu z)pL@BLT7SH3Ga*H*)4gbevtt2mAHZ*iBLox8yK z#SEJjHEMKVutpjEs z{mEZ*xfQs7e@}ZNDPa7@U_WZDQY4ClBvJ!7QSPtfLvr16Gj430Q=fe5@$ANZe@%0` z(k&?8|0xrke#;E+^cGj;gV*9GVeGp98Cr{rjXk}%pt60VdjE`3fja)*;g|gIwkAH~ z2rNFZPKvmxgx{}6?zG|m(?Od5rjCS3_zBt%Tv|sQUby=X{lE=mm-yI@VGERHFormlGHOvPa0ue@*4Bcu5r+deedwnR8%nyWds`b)k2H`K{K-YNt*$81 zG%1k)=x5Tz>)_1JmT$^@8;SXSTF0kDu^hj)TWEy$g4!fA^Ct}h!^+ikk?D4!s5;87 z*}AJG959J1wAoXwAFLTXA^YDAxg#>9ESbLiyo1>R?`eLCELW5YXEB%C>LWPyIFtuU zTJ^^GxEA-g^A(@FvJy}x4jy7LjncdcosJcSSFPw34 ztjiZ;l%Sm0PzrlO39{GvJO}spnEo4Ho47)u5#TqP;`78M*n@ zBLE~QJK!WZH3NfNSr>3P;BmavRBJeCiW;ZO#AYiq*RBV%1}Wd~pMa4(au?8zN_&Ay zHRqjebkXrjwHX1EZXODI;L(q+7RaGt@Mfv3D9a^m;w36O4WHR^BZ1gyE1Mo_sCpQl z(iD;KkQ>HePMG$eefxmFpAa!)BiFAP0;VuYskTElvie2-FNH>d+B8`-hvHiF?fvnKR)IRhtjQuHG=KkoczT@DvNE`pkukLfuE)5S{EoV9=F z2+@Ko)s;Yxw{KewMEr81D{KkZ5V^(fpWnJs+Kidq0yq@k5<7gj?EG-lWSJ?FOJA(w)$3IBxt(k9GlSLeIHQY&W^n4i6~2Q4+Ay2W zaj>@VtBMm8%eN;HjOmw#E=X<vu!>Jr|O^E##GmBM!03K?#ly%gl_T-dZS>xW_Vb>n}!iV*~q<(l0C4<)t4kdV&6 zm5wXFhE<}JKY*xr8;%Rh|M++(^a+#S*!7lXFw#;ZLH3?iphRA^dgD_R&8&D}kMbfR zy!@Yk_p(ceu7MeAF?X>9MeMw|wMq?Pcv6LS{QTeedJCwm*7n^OkWf;k1PKwOq`R>Q z1yLGlq>=6pk&qM#X$g@o>F$t5q`SMj&;73To&Wy!KC#ANjWyO#-uce?JkPx2x_{So zAnWamLuI3y>UJSV{~ZjsX8e~_Rj_$p%P-s5+<&k!?o*I(6tjta($ zp82l>2&H)lKXd6_aQOkB=EbpC&e1satkw2NSeBG~Q;8TBsJnV>&ii$AiAce|&C~AG7s<7HWFoEu)@E7fyG>0FbDLR)y)iEkgGL$62X_Nh{Zpv_ zxx)KdONzl|W7TN&L2jHU>jzpgAsH+5s?3Cmj`1Bf27;~F*m!g)S{{godhxMMlQt_+ z$cNW3*f3wnAapQD`;cYgVlDZ0TJS$l);vpX&>TBc5Y1_2Ob3YD5bk{fJ=L;XvP8CQ82W-KtOYDDYz4Z>`eAN6&^w0l&6jHrB9#KTd%#uYv zcmGbm35$qa*!U6<(K8-5lV6uIC&l_v^9__sK22XE8CTg)7DyMAJ;rJ)`Kg(NK`d8v zGUpiu<2q7oCRCXJG~PykW@(psF=OQl<8y>Je8uI-){UdT3z1T&psVy3wcCg?*jyd! z`=V*h=ZM9)?SDt%7S?mhyB`-P_+@ZNI!?E1t7f^Z-3_QkMXc$%pVvs1F$Bd|d6)R< zO7U4!?Y&vvKtc>SXFXG5)T4bWepin+`9~{0K^>a@uv3A04fE-r^JcPh-IoqDZuXBe zLTFy#9UzU^*y&;#;e68+U@Q0j&Dkb3Kli$1#4+MI(GDhZ=!2aMRMOMy`46YjuF>|# zT)w&YT78S|pS(XN9^J>7mQg32cskfpclWY2j)qxF22my%uT4lgo|ahNbep`QpcO9i z<<_lV&gPFs(yg2Bp}QpQud+(}il^x>RLP8A-`*|>^}+52Zw!!$K25J;uKRiWQLniJ zjdtd4dAdZ(3v=`jV`c`6p@3uq#(?pk*1YN#e5 z*XQdfqb;D+4mRY|o(z2ouuGPc-@!x^V_1988Btkl7xUNPE^D4g7|FT8+wpXs$t+tN zdlfO64?Oq>zuU^EMgyW9=)%u>>pqF@JZO+lpZQb1Yj<9CuQ({v%+SpFw#P>B(&~5n z@CY6Km4xI+l-0MLEY%Fe2^ke;U?3j!_fYm1^Z)Zyu_4xqfxjvuNx$w*Ev;A8(b~A; z`me9ZZG)vQNaiB%Te}%l*_=H4$p>c|e7LYgycGM&9liRgUE=0zmKE29>Sr)X6H;-5 zak*5PcmzH2t^)HWD^rI}>Z8zjutu0ej)$1qBHMyc+X!2NUbIWrM-jX}=ube6CFEj| z{X&2?Wa~e=?WoZ`Nc=H2>6VG_n*dzX!7qpnYh97NjGx&!B_BK5bfmRsQ6ClBIg%UBDghD$0Q017R5&aX%JSD!uzTmj!A*91U`1 zw={Y{J!l$Ku?$Af^b55IVxMe(&HvG5URW?`tvJr}m?r+?e%nkVyT9O^Bx>sM^D#8O zTJ+6b?g_Mv@6z6VLvJrBGWJDx^5hCeI+J!^x7pBK-Mrsxrgt&6dvQ`nxy#|iFPQUQ zCrjRsv5x8CTFLNB&5Ezl$5V7>=k_SmZp68M5+QEfq&_ce*5(&emW%2__jj{WVU~I> znBuU{2vXKGiA+hPY1jSNL@es@hUOD%-Njd# z1Oa|_RauryMiowS<$m*ut|z~xQ#(${jY<>k)x9dKyT7_C-gQv4Hhft}+b?wkbI9xI zjT4jw0U94`29nOrNVPfp!M&_wrQ)3Gh=Ns%vd7x03G+w!7IrgPYH>r-5)U2i>5lwy zR6?$N`oChg4fAPw)S@8cB%8m<7{1Rq;jY}A_jAzbwBXVYTb<`i`+{WR^|Dj#+6AF= zx7pFT<>w*OpMU-`G?y94be&UvsdmO8@e6%xJf@(&Hr!j7pF%G*p2jm}j!t`N^@aaF zHMFK$=-lq>^!+YMOR=RVyrtb8%YAw<@W$!#a5#Vb=wv<=ftotqUw&6&Lg;pWwAlO^ zU(di`Ns<5=7#>pJSeP>lT1r@sTNPM^yHV7NxI%3$CkL2(eeDZpzep~VD&xU2JVI`%t}Pf(MIuGZ(Um^f`U zbE%S-C2&Q@v!A%@en!F+78Xy+cKcdct6|d%BX8V8Z#)YIpdH<3DG;*7lfO*06l2&$ zg$fq~k2@;lcGdXw{B=G1flkBQb_TSRD5iJMUc5ks#1nyEVUYj1(?;pR2CNxC6D@x- z!g{lRti~l$gRx2Z_-QKNSE|7+$t0FKi5i2;?otiSH&<(wvcjX|e<#*E!um7@@%OE< z#iTJNZdv|P$znxn35!?_;#D6j5l`u*yM3E1pmoOD_%hASn#N|B#?JX${H??(Las4a zv2<0Y7YQ06s=2xqt|Gb3^rSoacn!hHhx1>Ykwfx4z3ZAj*Ue1Gw5|6l_YJLjDJxy7 zDZL{agxe;%LKDr+~jVD-^B$B zk-~o=DN2GGZfvb=JEpZJkJjDno}zsF9xr9I&L5Ylk;jmKNRaY*uANpb{`sGr*H7*z z8lPdy+sn+Rno-LBE`ej95+Tm78Vtp>LEd+%G$zHH<7di7{kx@pw2-S@wzS+x`jd z%gE#5{9$#IH(ndZ!)0!EBzYmoIP@VedSqqhRT#$}!<{yM+b>Ytly*qJHxWqhr$Cs0 zV42mLOU37oA1l=~{ezUz@^2koSncN9NV&`FS*M>_j8cET6$pP2M8_7|xMD*dLo)PJ zd?kzC;DaU{W|oTG^Q?R0@B`z5VC`Gjs4$ zZ}hO}X#Y0ugs{C7h3iH3xNiQucCUHNgi%wLUp)Uans(^-=@Zhz`dVd5y6oo{1`#Ua~D=f9D z<+t|_Y}CV8<|{|4cACfNMu>`n#Y)AxsvIbwdU~3d&Xl-Mf+yS_CPCS>xgv`~#GLZ8 z<(ZGN*3cXkn8C>oDHV=E>ANUpUCV4E%rj{#lzvY^5vn2S^t{(d9<( zT?7R6pt^F;J3Dot{iLREk=*jo`@~X(kIcZquShVSTqoI)RQNPyfY|Y#5Ty9uczJ4{ zGC2Rqa5UyR2_lzT94+cUI}LN%xHpS;_{ga{maNLDas^79gvUdNbe$&4{ilK_R_n%e zXv`hia#m=TK-dB*BC(~=F)!lq&C`&AQ|NTBlNEum0yq{b2F5h7)v<^ITYXyHRwvM3~%hk!o_|M$W!d7nKw~tf=a=sDzJlr03B63L6 zk(T+gq<;DG{!S~U0MQm-Ck)h5^Drb>ZDudI+#}~-?ri7RYBtZ7dC&#rs z_9-!T`STSGRa$6nqp`~unFep}#NFxKrgL9z!C~b{A17No8|s!H9bb$;-r5yaUmu$7 zlAr%AVD+(xT4MHkF3=H=B;KvcLHe9jVaIaz)W=1olr^^5_Cu{9P8edDPs$`bK_rs? zf5cOLl<)+X2sKadl3n2NxTCizHC$>ve~WJ@5p5Wd!d7_r;{BiZBX>)D+OD1B(T?F2(nFnL1{U(9-JC6S~0tWZzYyNhr>w}3FyshtEa@S9b zJHJ2wEEsgALASA)*fMqWuC0q(zuC`BRPP|RAED_f=bn!qbRwegov=`wEM2bdf6{^{ zQa_S}yqqrm$as{41DBFkdyN2FF&m|#i*#>M+yK|&RYq^{_m`}Xmt9Rv7-eN;GqM7* zvH-7U3FUT_UUH59@RI`O&NW`k5}@3;VP#XrVO?&E!tn49EL+)FlAPaMLGe;)pK_6C z$`y1ZA|)i*6|JrHoW2>oS%_P(kdzD0$ja`pESp_15081f*GWL}wC^L@%GdBhlHle8 zH~$E9<;4AJ=b_t0GK*oAJdDJXWH%ql$P!#!UheMhHZ(P*N`6h*d#0!eNHYWhkDZ-; zw22XJ&qE+rz50$AR>GGAO}r+>O=Vmb@v1$vhyzE3n#ZLq+sQnn3I^z3L`Xd%*gv#> zdH*um#mHgGe4i)wgERlPZ#GlTS3>>xnh$i(?UAZ|@tTfT(~JB9K1=oJbyX*j1-)t= zOj<0u!dZQr{Vc3FLCeRC8fdG~i@+x(4FKrtKj5#Rsw$V{JS3tY|AMYkPTZBH-n>}` zE~P@AI={;vCTy=DxWa#g=WyFj&&4DPHxdC%>m*oM_y7ZP_`0J|6auj`-1LnS_p(m?FvObK!RwxN^p8 z1h#~Xw-@H4xfkHHRPopl3S}DUKF8xqve^IftW4uAnpu-UQ8GOyfEt6vf!K!uJpu06 zk2p38|NVHg2UF-V1rk`!PXyg)zZ@Lc(n?1^0Z800&OXuWi*VzCpM<3*Ks>9k!t+e7 zdz#Msq`&b>Yi7M_MtU?_?1$ak540r-sP&M)f`U0OoZ6Z~EWOF25tY&Hh=G)s_fM(C z^1=g-C!6|s9;eV~pd16lC9Mm$oQtkJxvr(I7;gZ~;?qhaktuHh3RD6D zOQWf3eh7S!W&pjH4%Y!B*@7pVIcjCN78Vxhcogw9Te)RZDZrKdo3HgfSB*T>-gLS) z!TE5_YB|AyXfJM3H5tFYjlv}eaGFsp8nKhl(*U^W3dxWUuFOrUW*j3f%V8TflSht9 zzMtgTvaw9h{;*eCG7M)svnHA?mG2$z9)+G>HgC&>v{wiLU$7&^=iY~*dLoBJ`6dZV zt0`9n#g?Q2wlpnjicJ-A&roIZ#luJEg`-l}y%kLN_^oLu-45;`L0C`FV8nKOM8iTFf$`S=@DXPr#aQ?ZWxFJR_%dnLR=?d`P)xQ! zW>qT-_M@CexYxKI zwL!wxSf$smZ#-Y!;%57CbbC&2KH9;N!s6l>-5@unig8lWyw~ZqC0pcDFP;4yjhs@> zgQZD_m*Z7_m=@Jut$K5#GJ}~jKbJQb{bK4)x!6CGNUx3~F&{lEb9?M_=}r`grl<%E zLuk|e`IYm-aJ0`r74r~#X3(yDrGz(U9grkHAvg*m<;GN0B;nAz2~Qb<3&S?FkjHM` z7oH&pGR5}l|%8F7>%b6zxV#)58XYfHi ziNaFa+S*4V%4Iec)h+LT*N!NSe0NC3f5OVj3VHrbT-+W_VhReGw{PF-WV6UBAEVTo z0+I4Gk4{t{Q_kZbtlR$%%KJwhw%2v=V35)2?ezwp5$=_E$8R&!>@xy}pMQj>G+&p{ z1|J5GnvHhvUkml#+`swEF8K+lFa(R+q_UG6_XugO3nQQ(&d+OmQ;Cw&)$0y7;28!A z&fYTB{LIraHM?(q_Q$Pf-Bthv1x51ZODgt92}ANc#8!F*tD}Ne>+S^CH+>5}_0=fZK$m7T!c5_P>7p0=(%mkYrm-N>D;H z>wRQbP%SS`b`Lg2!+~Hy2m|SV(xjYVDOqTo!)Y^s+(_0Ij9@G zlOw}drc)0fTqhxUAuj%&C$8{AK>BrNm7idq@5H(}92X$9JUMYxf`sh5h}+K2PQ4z7 z4i{cqr^wd)c5zso-t-Oe>vKZVU%hnKguWUQ?@NQ2Sw@bJ_%G;AUU*AIao zs^>AZY8%~cAS5Kj7S}zxsTma(<^_j8fLh!1th>-{i(YWCVqVHS!tKaZDSXIj*h9m| z7Y(?iAj3o_U*IVamzty_CQ_w9uL#4V3+q*zF38ibN~*LcoK^VlE*^;6)?xeE_tp#N z3mV*G@HtqCu|6iC&^%haw1Kr(o-1o4d z9ZxP{U_eV6yyUy7e&q_Z5JttUh??z^O?4KJ!(9hwR&4|<_!j`IaLM@UvlO$<0~g-F z%oEcw(!DFeiPQ4=ec#NTCZu-y2}19=g%q3FKpCyKP1)#Ht5#jFW29WgtBabf1>CeB zBx5bjpU&LSF2g_XZ;N+Zdbg38`FGD@dAM!tZFWiwO<-eE%=pRniIbt9t5iS=%mU87 z@0&B}BV4nyBQJA~vV=-sS3EzyXVy0Z%?c%`Nc<8sL3~rCT-8O@?YWjfr_;r6`D&D; zq#cmPAdQrKAcoL_*K`>U-DZQLLXT^A0x^bNiDgV%G{Dh{b`7|*R_{D}nneuFP!&~S z+c@mV*v7AI!%ZbsikZK1L$Tjj1#VEJ!VMH-%rPwG@{g{Tcs;61KL$HW|H@IJN zMsR!PPZDzfwhXP);;V-;WOOI{y|;4Yd?;Isldg$9Y=nLzW))7$EvTJ&Sp+$oBM9Ii zBjqub9M03QD1QUrL#5J|0YMFh$_u5(1^e(N(2ir)b7z2OJPUZ%aN5^K{V;_@RS`Nm zQlRr(z;5jYFrnB^}t9!f8ggrsftjG>0nu*Ht)?(eMIr(dZ$eJw$~nRs#jvbOqI3Is4c zxZRlqVht|!NI@kgHue{epeCoQwh;X&a)A_Tzj;r2xK)cGQpM_lFN}fH0#UHgK{1?R zIPZO-3W94}WYAqXD?%FV3o!hnD7($cs&7DtI;lJiNZEmO&d}isHgWkZ^E_~^IjrWI zh1#_KVn!gr@h^COi8w5QhP4WUi=#?7#}c6CU%S)K9|I$?0*Eogrg|8OU9`U!U7az4 zB%b%I%IIFKjiBuEWN1yN%Sc?PwTw{N+uvz-n&`)Pvg^SU4MyjCF;%Nv;om5i)Lltg9kPSP z5DZgnr!mqH7d!(eZ{Ha5Kpk)3re)oamqsfdg7rkubHtJw+_AKsA@Qrs@>< z>id7BSo@QoV{F*F*i+c1+UEzqP9G@L?<7LUA#J`m-M1L&0owr*VP`JDzqW{AOD8X* z9331iz}H`~RknVaJs6Om&kAC1AIv-&4PopqK#4%zyJ@h*k@6=H_rLxqH0(b)V0t#k zi*kF*0q^{yUlL=QjZ)vu52!ZsOYa+=xw*NWRUAFfj_3(tdemc*Hup#0(QFL$$*Y>m z7su4 zcLBc@Q;66SBCt}k@jn$dhMF+RYb!vmlpXmyoUX`v@fDBxgi3T)!rUGkf@TK!sTzz+ zqakp&I@+&lMM%(TLlp?SmwNjzE_pB+j~E?vTr6cWV=Un+jX|^}oPD^^ ztz?lR8z0}j(D+Vt{s%C)+}6$7JDw4fzUoUKU{lEN*>*{BG~RWGCcTnk&8fAvu8=w= zg|aNp4f(WJgwnM5|0||P|HvZwFMJn~qQR;E6w1GF)A@b9cK?;ntXyx#@mf%TQ^FjA zvkbuF=GIm@z$0&Ha_J-1-aq5m|E@iESbIj-WGBOZTH>jnRYDE6+}Iqc9Q_0Ye}UXw zc=K`Da_SM~E@G~(?YF2UZ~4Al=eJjzMP`pKIgi{{sIa+B?uwX`!8rRuQUmJi#4hj2 z%DXd*9n|~w1&@Rhy*SI*4fUixR%0GB>C0l@NbNWJWnrNy%=OCs|3>g4GLy%VP4x=d zO2L4hwwb9%29Xk<@jQdVe5gxE59@6>)m_654 zJL;?Cn354W&*(f03k%`)AbclOOBiXx8C(*e1un;wgdFtl#ud&3Zrr5{JlxCKjSTC- zBIh@n9}Y>85F;fq=davHg8pSv^^O=+Q}%a5WaX2SnYSbDd>A|wPDX?@jBHh{82=5t2oH5-cnVj59K0ua<^H#fT> zhDC0RZ!#M%ZPDY{g}FJy?J~D>dw|ooB{)pIYqzlf;3I>yX)g#+^QsTW0D5;i=$AmC zweNhQ`*b^Hgk(~u9dvq8Qt@Q6tMdSI zP&nPiIA~~4c}V^F9^dW7>5?w;!LK60-UVZdFgM>>%q_v7C)zjO*d9iG3T6~Yh?mQ) zTekpT77uTd-MK(kl)h|bRuM2Xc~&w2tn!VkJK*IZ9mCk%C` zQ>L^#ovi$#`i!6Vm#k*9^IwYE`tNSnNO<~refA)GKO4gN;?d9jch}cwT0$JQfSXhOQg(Q2Hbz}->BgY9u9ljI6&|X_3Tgp3;_z3_r>CV^ z%{HQmTpkQGDruzTQQSQHH3+Jxs>J_ew&uUf(oe@Nad9*UHD`Ll<=I*{sMoV`P4h&& z2;_f@jJsve556#KWN2crH`rWQ#9=LJv%@>YK72)AIT6`ma}{z{e!T5>&06=hbc+)A za4mRxM<*y#BaB~y8@fwgiSpNTQ2Y_HU>CP}S~tDul_W1G*DjaiBXeaP9ubf2td=(p zhdJ4>iB5y{ER7m1FW^2o`_{ldsERbd(( zx3;OMUC?Wb-0zfcOiN2!RONvhPEb$~**bhe!Kf)v+w}Fr5)*ssuCL;BAFMRe+oCug zHU%P?o16cI0QQOZU4eo5P|+UvNff@#_15%8Q&iSdolZ~4cVK-0M;(?5`mXR>j}<>P zSH9yHuAaFb_e|23TBc0hLzEp{9B9oG+kg4%U&QZnQkI=WA4QH4y95n09xh+F9fw(6 zU%m+SAbtNnva@PnewC#n%LxY zLKmQ=#Rnpf<$E_P*)S83%*RWE!7<^g@({NBELi9;n;yzM0?5KYBh63x09pf#hfj<{ zAN#YZa#%YmG**_T@!SlbZ*D#MP>X5~LBgbE*;nN}h$wp$Yk#eTS=VnI@ zp|q3uVeoqBWDVrwyfXgdu<>B+GhN2T!2pxHDI4{Y>Aapg;|&AT`MBh6Bl*evCuS3p zAzn!(svF{*dSkLdON}_F384ZIF};8^<`yPq3b-zf?y3u`*z_g}pTcD4%4iW?=Qq}L zppF`qjFFY;LXHHc83yY^xdFokO>qavHE3C0SC}@+{f*P zMw5y7|Be5ng$bn0!M(?8)D&1tq}5kv>(yXGQnBT*xA0p%AGP$uFfK%uv0TQDP(`|V z>(=iQS5;NghK7dG1cL;2CvmTQq^pblUL=)VCD21e&wI7```>hRb;YEF7xB$y&RCrp zyn+Mc5pK$>dw4Hp`*zdfrmP>o1Q{OQn1`oXLU0}R^-^Zt_qk3Ptv?(EX+_T;+kpnR z{xd%NV6Mc0;Pw|7J_iA4SL_i3s~JZjAkN-g7snOdS``{9bk0n$XRU(@I21BE`|qEq z{(ndMqUT_J61G10QdwCUyo2dx}xo5=hx1`&%?)$13|IDalQ`>*>14G(I-Rj zV-k!G`_{3Hu0PK2i*7eW*6%F0#n7dSwa*mFEUtrivu{M<33Fa(2dwU(4+jDb` z5Ul^g_*ff;$TDF4i&SlZKNE~!K1&?uy@w5+Ba1(kDI3^t+rmn-IS^oBL90b62lpqW zDW_#}2z*N(Vo5@j#gImC*_%Cc=VoW3x5oa1M?<^nGdRA}^v2G)i45fFh;?$|uq8@y zzRq5|dBGg~n8)7UDDCTqfu9N*#b5p@0o1z1lL$shXhlCsqi|q19;I?0agJSSw*7fz zHnZ^-D@`_49Nyw&?fliR;K*E^uDfRLJYE|Ngf25tx%Y=S9uPD3}+I4 zs0|=SfHwjr7dHxCF}poMO5R_d9j)RWF$D;Kh{n}Pl*QSUmu$MuW*DDu*O-i4R1r0y zSmu*k+ECIfn${8|-Wjw(f&EkddhnDI`}&4@_3Q?2^e7t3)ETD4OZHW1SNmSWVoW2k zSngm6CDF!^X!0K1?7x5R1*6tpQ(Wa&W2-WMmWq07v$ua?>A~$ffekqQ=D(M!GRH?+C+5ljnr%SPcd1?pr#|u;q7!N5yyPMZ{+v6QxKv$bW4KTrD^^nQzz(@B zx2-?bFk}2})@n9LrQ}{a>^_Wy8=|Ygm8B%LaP7RCC~^Ox96@nF2c&7SXN$sa5*h`Bxt1%cvY7sAN7t*u1ep~(MA1M%Dcweeu; zEBXxKEj2Z@(|T?hLL>slUHqlwLXHJ&ih?bRF;D)ToG9x;mBWP8U2)A2jb7gjMz+el zf@q4d{F3-#- zbG_H{@QzT-Mk*iqMQAe?s(-kPiln)r8rX04e4k6Y3qCPRA@k#JsO8Ot#Ur{ovj!*( zPso+O#esYTOp1O}^qp>u7D05yZnvg@j!Py9{!G6*5v3#uEqCE&EeMuEY`+U=XT5Ke zP`wWoKDq~Q5=6B+2oR;P!ES^kA0QI=)?nqndXW;&35 z0CyfC9ROdw)zYf>wEv-lL@vEUex-XKfFUG5kA0E@XNTG8{jQ!Icha9s)AhZ#ZOCS7 zoKG8GKg}616e>C*8Tzi#J8&)3ZFuY|9+$);CU-r!Il;4Bole*AU1q+qZ2Atb8L5a` z+0L)QXC)M&``uHHA}9Ow%Xc}QiVTHq$Ko6q+F?nGhr6k9m5s9RF^bw%LwF65P#_#A zI%VUCx;@mv8tpi30W*I4?%j_{+1>2V+e$dSCfeiqZTJ954rWN`NzmBM z9xhzv_y-AC-Qq}$OfE!2 zHF#+YFH<{fyamx6Xa=HwhkFSB_AtB#acEj>3jK-j9-Ehzt5>%Xjm@$QMeMFX_CP82y^yme!|?RAsl`y3`#9eJ7)9)>m+Nll?}{C8kx z2xx77fLDTXTq>wpWfEp-%JfQp%rhJiJ|QM1u7qoZRzb6FsBqLgxI3kg$q|&F6P9o5 zKJhZ+)b5uoFc1*rsApF>0LV$Q{Gtp@@!hMl7rK6NH4mq@uvAL`Dyxd8S{x6M(iATA z9%8*d-?bUEno+-d{N_5essCjU?!GUAvJ3Br|L7=N{`ktIcUo2PadI9{pTd1xET3~Y z+8Dh{DUuJjEn6|W6*?Ho1chLeQ=U*vhLu;lv)*KBdFw~p^J_G1#t~CYv6uOS`?7wa zjzErj=VrqFCf_BNf&8bX!(vqexoYOm!-EG4;}-q^Sz+l(2z0+*- zE*rZ*Z!6AT1^OQpAWcaN7^=cw=p-UnSK<;UbiO{OWYb1^9mn&Co}RwVu@$Y*arb?x z`DE;*)50%=WuRJjmHp;JT3XuSJz?jA892xcC(5nJ1Z;1L$=<}oWK@toRa`;cfo;tc zzy~XHB4o=EN!@Lxt>N|+YZtt!PSLsu6Ua$GB#wxX_VOFE^CyT15uiPq?R@XNA zUU5SU^m_3d+fbI+LG$O4t9PA-%RPItRqQzdWgPF1lxU}?J>8j~S+nNTm#=9QuI0eL zu_BR{(sBQ%>dSj|O2Kda2^6Z}zt;=Sco|xCB5=G^nb*NSTN>Lhg+mu0zJGqa#0T@T zr;?IeZAs88vR(W88IZ`jT%ulLKl`N7*k^hL@`6szJKq}!2%Qhw^f3F zxRwnX|EJ#HYu{hh)Z8;OZ~HpA?Ek8LCh+Pofm9dFCHdSh_`cXk*Fi^Wpw8o3EovL| zTrjlD)aTiWWHwezC3G=lqt9zG6%Tq~!i?Yx#sk87s0j>!=PubgqC1@>MeTGfAab@s&8Uy?&?3EML|`W_g6D2*7zH@+`iaDma<-@UadrWCA(t?GBp zi0$r+$!a}ar=+YR-wPYPsQ$VZkFYU5jI(C@Ersc&F;tzm(oG z{kx-Ey(jkDWk2-OcBR7&%}0`-_MASJc9;}PL)-uCyvG0}(4C<*W2QB3+&I-R&fQfb zTl9(Gkf#lbirrRHJfbXgi>Lpp9e*YjPWn%pODHPBMpMn5A0a$i&dm@zsN;ryZ*z0= zZ7?o2GBT1?c$We*5Ivw=1}PGmuyaH~LBY5=*o=Ilw^N7|=&zF#biRc|ce$mnwR8I| zrki(`q-oDY*Pnwlq++h(AAVAJTxm3=e`LaAUx9X~Jdy9SFx!`imlnEN>iA-Y^_@st z&TY}Nb3@Qd_74i85fBhK5BUJuCzQrPuT%J>mzL-qN;G)6`Ct)StJCJIS6Is`Xrw?N z8{wbH#1u4DNncdjjcB?=)_-AaEaciHQB29uCi6@s-YM!8 zkqRVYK7nGw9{D)DejRrjFjm1Gbbq;b8SXPSg-|qXE`;+3h*&V75F83l*3eppZ6B?n z1!XIELJ&Y{bMXHhmjWJ7Z*PA6Eo~5YY>$_P!tq_`ke@1ey-4}7K^w%fxdnrQk(&9v z$G;=KbD(9`2|W({KWy#-&RtoJ?k|eRNi?KByg0jAN$p{oev0aRF1%vFR`%iLnp!$* z9=fvT!Jvot4b8qnp5;KUmSnr1CmUImL7(1JO(1>^!b6z zjd@?C@N1f#y<9~x**)&)gOWus9sLchD!eD)dB|zdr46>AMqIHQ&Mt>*J~HXLQ`JsR zChKE7T%VZltLNE`1XW0nhL<>@uc;p-C3q}&D{Ymt%LguwbzS|||>xM%0 z99BYjY;1s^9|j}_2p?_f1c8!&$}9A5wj6Jxv%cUim!(>KP++DWL=Nt9$-)3h0uC>mL7 z4&*|Rll-tr8X>O98_$-wT_gs=EFO=pI48*s4&1#G#wD7=nUOH3C3UQ;na zeGqylQ;ze&8&Y3s!#{&(vR~P>dsSZpWXtr1S<}I0I~ICt6S67CjX8OiyF>Hok)K?i zZ!Zp1iMAxM7w}j!zqvR>HIDk_mYz*x93*}~MMW=84f?yM%hbECYM(gEVYa<#35$&m z5@u%h$UivPIOcUpF>Cg}Gir0t+SXr9Z!pddTT{SE~P?@o1VsfPf*yqV?>$ ztvjG4Kw<+c)vd~P7E&&wdhk2NB9Dh|&mO}dfxq1eM}`We+kg9Nid#pRu6r|s(t7lZW-GBM}cQhedXN8S+neMYNO+-lRdOeB7RyTLksqw|+}U1|~A(Ov@-gDMZ@AD+sb zhVXng%UD$I98Hci0b61#J2Bmol>MD2%d0PkRtJojh@R#Cj<-3a>dDgn{r2XO)l-{P znm%(0-4cPdj_2t({}WPzkf0Z2RV#lp@j+tA1ZuLg!}THvcGiyso%Zzdp63_;Pc`uw zoO1tE6BCMyxuA|J2C*8L&>}h#E_ribN5&~k zH07)1(_?~Cv1oox@1JlyGKVqpZnpC zvcmmOku)mq(`B@E9o;>h#+wb@)wa2s_;qD|)m83*{&eiYT@L(vm&-=>%^Q~XD*6E_ z13DRUXt`y)Nbak*P=BcTwV0NH%Hi(eVYkgBn&Ql3PpIQ# zQ;NjH_!>SweiPjGcBnW=!(kzMc_5!?eh0C7oPN^x?LJ~twpGWO;3t;rZFqH?}uhTyTyO@5+m{GdRk^6qWzTennAsjEe zztlYnPu^>+J^x`$U!M^d2=Abx0uq2!Nm>yi=)PJHx<<@L6%5^!h-#=lrxKnTmDQ1x zcJ1HA8p9}~gS=keL$sx1Clav-WeLy{zEk@4y(I`nPvs8pTTtPOl9ow)^N8v-`ZNn8 znhX*rC+E9zODYIVf5Mv*F^B*W`FAjKwrV4HAkYtj4}2kG=hE2MqJ8jbAWmD!K~iXa zBZF;KTDr=GbTZq%ElbsDcA8kl);0|4!QAFND*J=QTU+l@2ekonxi{WxKO zc)W7BEm|$w#`g9b=y2Y^z+Gq|)_Rd{qfi2mdc#e%)b!oSO$bl@Clrja zQkCkfF&=E)?%F_k?%{)3l0X`znYvtKzdf7hu)Lfq$_ad`uSH);oZ2MQTNkCF0V5{s z9~hVl%K;iRN=if^YvbK)$VNxg`5e-k80BkW%|x0iD67OPH*kP3i^~l8FuHl<`VEYA zKNee2XJy?bCjKT&Y$?lNiLwGN)F9DGN}Q*6Z`hStD}th3RR?R(eJ_%_Qod{~B8jj#+j~k@IJDN{pj1$$#N72d@gq zGy92VAB@3Mqki}>fC*uloKj!S*pwkkl|vaniEHEXw65aqdh2{mB6Ef<`ep1^u}@T5@kaK|lm}f&Oyp^vOpPG@O`}hGuvPVN4uvrJ|%glK$QGTGA@ec$4hq)+l@D5Ej&M*_PD+e^Cv!!op2GY*%ZEv6*?B_XCaoD z|LR!Ujr2_Sp_6@|&)+v0N?T-8K^px$Q$bd=_EnSVEtDrSG7l7E23B)+K6DQJe3(yY z)AKDX=90ZMzimg%W9n%3byYwqJ2(V{RmbM{-IH{|7_Xu(*wXMZoGmFotM*JcQ+<>s zG#SH@UM5Y~LDUkimbj3sVPTcBgNn}@E1AJu{HN`RP%A{IXwk~6KD{irKAi6!AvBxszUMJGz0Et4xY^q{ zcdPUK9)X*$u8^z|ov|@*lN=HBHT2c9_E9xBaW7OuRuzk?`xPhyp~)_U`V(HAhlH&$@X_KL6n0N6?go#8i1@a~6um(8j&~^;%5x@lrf1HRrjm zsaEK0;8pczQ=C1anQrT}4t2tztCNt*u!yhOycANoz=Wru-9r^u>%CD*MvJA_qjBZy z^Hucp3^Vbh%R6!%Qh#se&weYsVH{Mn*&De&voq-+e=ur@)FraaF=ga_%OQHhZ|>wPvz2)v;tCqzvQ6Z)DuaU8ym7amjcm~ z7<-}j5(0b+abjFX)ni+^7ma3R|0w_1Ukqan4$*&Acq2dMsw-yXy{@s<91^P=S0uGs znbqRs@76QlP*Ug7mBU(pH@O)s@qFf%xg?LOu1rQ24Z z;LWM_3dM6bwPlhII8&1#tv#eoejRsPE4s62oik&9kq*247wSZrVnXC2PH<0Mg zVD4ib7P|S;uGHaWDap7i21-}AkrhW|3A7}Ce^kE{TDFH+YsFsS5>leLSMCY@nf^CF zYp*?$UmY)JWeE+my5Gva9LF!-#_>qamh156>(o}ew6e+jdm2OzrtzH#Hln&?mBLRQ z@Mbw>k?9{kY)Dl#yH|@%YVRd~%66Ug2j?Mrk=my8n$YLuTwj!(jpber{dEFDCe4Bo z)4#Rbns@15fBbU0lHx4ZaLABtz2^1Ab&q{K%dwWjUDSUbjpeOSFRJY)*~l~YjpNkX z1GcI1IwdL<%Z)DOxszr{T@&o#x4z3HHEX=LOb zF5Ywb5#@Cz<`dY*&!}`P2bosbFn8+rTyzGhwRZ%~!3r+SOngr=U7|oWr@CxecuU=Z zPVAAG?-ECL`_ZQH$x_@WZVQ>@l9~_H@!-NG`UIJ82tJRr5U*RKZ9Q5g_iZL4*S4~G1owXceW zV{=6<9=SOQhbAxWW$B|UGDvIz3F0eL`vQn!KC!KWUDfK?2V9@AkC*h-0hjq z+^l=;AHbV-aw=)uG8M4|QIp=8ta|m!a#Ohoc1ilARt3q31(GsH54%v{=#qYQ!qT-ZXH2^S+XO8D6G*;~;r{2S^fwv1VR%7)^hB(_pp;)U7KflK7{&wQI3SwWhZv*1%?5@!i)~kS-?&Jb} z-+%W-hv-jBv7*P8E)zmmqx02ghuKdZE@SgmsHtDZ?xF1Jir=v8-r`m-qVawzKdf*{ z-pGg~_Tt5rq!EF75z<(icN-4n1X?yF=S5Ea?GHCYZJj^$n@I&md2F5#2VxPg*Bi0E z%TY3!w7+ln-3k5K^9uU&`xGiyD7(%81>B-$Bu`o zSrz~JjWH@rU#uzBujE$Wd5sf2TjG8jZ)nSrXKuyaYwPZN``O7!dMHVWH37dE;vmTN z-|tP|RkOGYJ`dah`_a|2gd*q4wDZ%~QCX!=|G9sXPQ~}phgncuXf`x(iq4-T?qYCW zr%s8Mvz!UMf2KQPZ+rjwH@wBSS5&FGF;O+<8l?Ix56=Ebb#9T}<#9m29=qivrfB$| z)w^dhm3oj~t)R~~}| zRw##Si)E>v1-n3$@uliy@b<=Xgli1?&>;lBnRGS^IVAGv=kTX zXF8^%W%3B|OH|i8bNP2e?26mImej)RcGhNK_%VMhU+B(0zM|0lsg+IGP9PIU&Z;tD z;=I3xX{4eaHa(G50~%Sm6BE_z*t=Q_+H;lIM6VO|*IaHY|3=wK4HZd|PnQ8F(-^_+ z>VXwLcpoYHh&3hol#k=Ke#98xtJ3NIzdHNMuqxYi+etTwN=ZqHfgp{v3J8K=0MZ~J zA>Ex)N(p|Xq@bw81VKU?q)SBUZlytDlIMQmTWha%owN7a*YTHJbG|X37g*UQFyYkU{7f6~Ibe)+Wr8e7K{MjP*8B%KIGknB|V9 zpHOx=zoLDGa{rdI0 z_}qDyiaqucsj8Q`d)~aFT4lI0Sp7Mg{O^>L??7wN(Oek>mk&y;b>VT1(=D&);M6>* z2_a()E^g1^!cd8gX8GcxrFG?|I#kPNx@-Vs{B=Y1jwG&JV8s73g z%cpWbj8!_B@OkLl^UgHR@f9|cGn(yoYWJTLypY~pyOZ;wLSRCl3nRMfLP#KkC1Tus z3cODu3JR&E1q=p*P$UrEAh7N5A;|+}H_cDRL{7hdJRbStlyy)7=Lw-+ym$dRkW{lw|A>u1jYoVF$ zj_Sy`&UFTqCk<~8FbJu5`cY7v`X&}|D~#OsLOD>1g@j@um;VX<*=i^j2>7#MOL{&B zPE`k6+RLR=r0|l%>Uj`iYBsB|VylB%(fER&Il;)1M7H|J`@3 zFn`o7WU|jF6iqj`K*8ViBlyou|0qM)<~Mb5hrOxaQe<7%53cwu^2-w{8kqc6THf8^ zE@m2NjaM^@Uo9c}WB#Mb)M!8Ea>;Ccy@ET2BSLbIAp*0ZFjnS&7jIx%wr%Dc?WYarwYO%S*>kZdZ0+#npR(^K(YcMp+JFP;ra<-!0+4PqJ-G_+} zj${ij8pd@@Xv)pc2p(0^-tL)YD6^*3xH4DY`_Hh0FsI5$;A*C{Tg{)QRRg>tigKVv6WLaHZj(Bn~Lfio&nHe zAXMUj+JLSAT+X^jZONR*H0O)%@o4!ZXET;reeq)QlJHrjJ1)&DbR z#T-*PTFJ;3pI}#YC|=08D^4PKuC6sW-|O&P@qWE+gT<-euT@@GB%?u$^wxvV>?wo$ zXKhy8UK`0a#Sc62MQt5*ycN{168b6XSmX7_?Cl|Ws#P`CeUxajvJN+mbqRe|kHY=? zlD0V2C*{rs-FEd$*}|_x(O6JqEA#>zwq_HqE_09Lz=S ze7-5q7%_)n5EeXBaJ7o4%_nv;WrU{hC&~HC>FZ6B&;0HZoMxu(DphGJSRNOZ^Az#F zH1h5qTSZV;ZFmba7}=?IQYL@V^}$;4N-S zn?_yLfWfY4_4E{GAwkzhmouvvi|6@mtg*YScJ-U)cNIix_m0%n?mzn)*ueXC=xpb6 ziQ5*EHN6$}6X#i2(w|ym^CsqDk#d~>05N4AYg(;DM&>8@N#={!+t#M+fyx0Pg=HM>(q zAtCbjUgY7`OZm=LrezY2(h{duf}c3aHkmNsaA736{QlzQ+2u`_4b1}bu)I4+{1HNX zNq{&{6Gfv(;cC#}l|OmIwwx@S$~@8-e8Fq^7-?}=4Xx6@KIkhqEb$7(?F30;OX4hH zlas>xFJW)__|#Uh#jE`OT=tTC)#}W-GIhpT(+nKQ|T$M3V^cnhczoce?m89(KQx zBccAICtdivLqy#*Y~o7L##(J;cmxO4aWu?+uYtYJsV&Xi<>I9PVf^~pKJW{{A#DF8 z7_9s}`6Ab)=~%&%)kdGuYof8LzW?34s692Y5YZ8&7<%E6?=8q2I}*O|RdV=CV5bAI2BConG-dk~|}P*SOk9swBndih5hZnEv-fDHxGOwn02DR#vQzsdP-2 zqR8Cp5Q-sePfTBkHgM?aqEj?eWUy1if`)F=yNNL1+wx_m1yvVTn7>%L9sutlX*=HdHCl%T7L3 z&C}V=ex(sd+Gi zOn(C>k>dQN3(tpoM;nWchDyDEZYq^Kp4&9~?eQ~}hY#~b_k6C~5;ir&%|hWYy%a1L z=-SpK97i@U#->UNi&8QEb~HGAvZ3%o*)Y|J`B@y^R7ON=UHvsHm3~xwd^^r2fyFiwtBrNm;4esAZC(bMc{X<50&B<;YWn*I7XbQ zqeK4#`4D7@KbcP~2`DIAThcMX(C)>d>s#$gBUTzlrik))XS*td$5I)^x^(tQyS&yI zLY=QpmgRO8j1{DM430f(n)zUh460SRw9bYoe&cON(y)+__{64LQyI+Pce4UDR$nsq z#CFj~G&~^z=QB9GfnHOuh=GDhE1+on_xo(3!T`F&wnexs@)vDhpg+w^Ra0th**dQ4H??{#&E+o?qTLvAAR*0~rC4=JF3*3*WL$)> z(7kq4P%i6@RYx(`e5Eh`&vP#qT4uiFEc83NzUnUUk3LQ)e0(p*Mq6@ zt)!%*!BC$O+*5c%<<2li*wD3zM^)~!O<#ASPM*TWPI`Eq@yn?8uIoYJ>M|rVg#=

Y!w{>Fs00c996CVqf+0=VkidH;-+!nNE*c!?% zcYs+FtgV`LI#m=of8GrC4)srBiuLWvF3Mlx%69UCfZ54s?stSmG)zR-w@X})6IWsC zjx`ICCCjju*Ud1(V`s!&G7=>eML-+-*F6pXu=HnXGbONW-sx<(4InP6pa*@*OIw`- z{o0;SsWwfktPWc(mevRJ>RZ!`EUfJQS=`<)xD|9gV?TV%abv{QeeQV55kUpKuj%<0 z&fOxo0c8`rDy7e}7C)XX#MKY68@c|_3G_|pP|`J!)>$n zeP7D^U0vB+JUt1vT`E#7wDlHxluYzDLiywv-NY-*QmnI8KZBC;Y^(Obyag!J^*ryukH^`o#uW z_>+=Bx6B^4;ofB-)a*)9*V2M@R*j~CS>DH+NMa_WW~`}3aD#;%+Zi3u=ixW?GCc}X zA8bQm(+SpHry$oh;^#!F&zr=Ccbl|Bjp{uTrbj)P`x7|9EUkLCd6b<0%dIVPFfQ4T zc}%vF6gKmJFYZ6#1n4qx>9mGyMB*_BVSHMa9#3DEH^YiZHBjf_8bb?;QqA>=rs7r7 ze7p9JWq`A=%zI{Y(fK3cpV;FouIp|FU7NgR){mz=^H^ITWVfl8F8PH!?`Hg%ha}+S zxN(cZY;sc5Q2CgUXzV3G1^#cz(%8=coCRF)2w(C#a-PCmNZz(8X=DgaaECdE-Gi4}Dmj6`3Fa);}zg`j)y5l^az$wUGlR zbQyQj=*t=Taabq`>v<^rh;%W(W@MrGKkhg(?Z)L6*%75KIpgwxKnG{;hN^$x0p@8( zd186|4n`))nlpDwd*fywO-N+O_OE`hMoyeB?_`Sk;ZnoS`mjuV3S~5}e12WqBnkbo zVwU2o%WOqnC6SvLqBR{Nds)A!mlM8@sKJ@0?QQ zUX@;uWEOkbTd|A_pvCGvVg8LyE{}VJ-G1_R`~ai(PXD|{5qcyArs!U^mKS-l_}6bw zZVkAaWpo!{pG@ne>Hw3svIdpaH|}${?{RuUDn(Tw#JpyIbi@2nHltgoxV4tknUy8) zu6YeC#p4C1s-%id>cOm~Pqchm!}CmzH^Z>?Eh9Awbf<-cUWQA?=wGgPTz7hc6LuR^ zhnb8V@K}+YFzW-mE!$E70M9b53Z%?FpLgRI`2^j_MDQknzLDW=@S#;6IG!fhpy2bIv8{6PhFU`X zF|tyQy&qtZ%k`U%xcApXI9V@S33ic4F>itw-*xn?+w}E~cn5oO#cKVhj$F6?zT){E z-#;9-%T$oNuWqVId~UEB-t;t}&%h)yA+uMdAuu#p$|F7u%}3Zv|K{&YJ_Xmu@Ta%w zBDo{{QC{z0TUU7z6}^3S-TE)stG|mMmH8YTB-tnP3B*x4UMc0b6-}n{{?GBfqQ#+# zqZdli634P_`Rk`CtKsVewz`4@re--V2blA(vcJkkhA=sr_XM_Ra~3WJKVfK<`U*Xi zoZMWUoJN=p)5)u$oEl?$`^g|)2H})#na<+i=TH!tfeJtPq^zul?nG{5-zS1;h@7Zi zLPT}Qpo3^Wz5zgCMJfI37fERTzq^yamgdB z9Wki7_4jK)mpd?(e9CN!7ac`gT3cBK1vhzy{zLvk(V~hWVu^J++@fH5vHlEG6K9K& znM*@1IE|IpJ<2vSw6A-vUn@v25bxW(KKS#gi@FhJ%5>6J1gJ2pUr;}8*O(fV3|-lO zmMu?jvrAzD&eXqF9Wy@lm6sUd^21K<-KS$u(RQbpknJB^mBv%Ez)4OdI{H z&-toFF?*rP1;pWCY;w6~(m~5qy<@j4uU zk*!4Vc?R3c$m4cpiFd6!1mnD1Q^Tk5T0f;6=O)Ca7H|yAYdoPb$xZ|hzMDS%B@s|k zjkkec(=rv*_(>~g*l9vH>}b!`lA3;H#VeKm(TKdYU0!0fySRde59pKSJ0+m(M|p)MPcmsIy@+ss z?F{UZ>mT?X+&j{hRT;NtmWfhI)bdPWI9snkO|u!W2`GWcMs-Z+dAO03T@S`QWN95 zCXT5$u6SgBVyr`3dNlkI3s6JiS9yc{+cj$FTXSM}n0*B3Mk}%Iynq0f@^o!l^9@o7 z(~GE{s>H@pvMD7misNz?>uHf3_4z|Wox|@wE`-&ZyHU2N#Zy&N{$j1pggh8;q73y2 z)~t(7-*iSFAQeAWzpRmKwEJ5}E2mNhBn+GhRUm}u-ZHBaS;xB-OYu0>D7CxbveNO7 z#eH|-Xy=HruG&*y3m3nJd?GZO+i>}b!v}h`IIjpVQaz#gu0kncQT4zR!(F46{RAfM z6?Z`0nWGVweJI12saMjG>~f{uy-9B$>OdDG_=3YD4))XVv70Gx5DM{q+|BGm__`-f zZzL!E$*M|_FpVBOA9LD;h{D?SWn8uAz}bHc(0CyXP~pVn5LSM!PmuH8JA$v|6Q<=7 zZ6UpEsQAN8$3`zv@+{8$6&40VM_=h#$JnFb?S=o;(E#3>)`s^Y&kPG!!DhkL>R@+H z$%fD4sUifO&zg7c(3gu_HKqv1X1-@n>EFk_vXwioJyfFez?JAHG*Z}Ip0xC#rjDc= z&HD4~zXKdrpR{*I1dQIEbmiH;``@%IpW4%4CZ0nI2kpQ^qQX60@oi(Crkf(P;lZV; zvuDq~jE$AEw&n(bA1Z4!_NvRjC2~M(rEKtevN9rsb@%Q;+kZ;+eNWu>@lnot)is)W zw{^l?!+~O)D6+w6#!{TDe8+R~MKNaWYoz6oqgbW;pN~bU&yTY^wF}tyn6Xm*My%1R z6nU&x6~CmA)ZD-36C;6QIvPRQems1KOFTTRM14+I3aXMLX2wl!Qj-UGKb-JqiQ#j0 z8xqJFeQ9%bO#SzNp$aeh{n6;H(#;qMG8&AaygTkppUjnZvNs(HgX^jI(-tb(-ZN?sjmc=&xs#-5#jQ1*g?nSB?i?{rpDf{@RHum#_{YBoW93^VbdFV}VmG)o z&ho_{W73B~F6w!E8q%b2PWB|x2sB~B5QV)DpJ>A4lZ$Odwo^-kxZYi4$8U>bTpi@F zomb3wNO$5q>=o(#`zawc85@CKMuT8Qm?HV~&4M6m?wfW?Qya+je-)JMyE7BU3U*s(fxJ6x7yw9ydHdWmnVco5SfpURaS0a+PON4caPB z6GIgyLFE{6C^7srdXX02Sd)4Qa|k4#(Z$sjjL2n)S{x6NOlM8c4s(u;B$JAz*UpSb zd^e-FhK*xR;hSSzp5~dBWq-)$iO25Z`-UNYTV=<-s=J^>CEko@c78;cver$x4jZN(n1X=rR-EFF>K%+80(7pVHaCZiWx1xi*=m6wO) z&Nxm6+jGEkHG@dsE2cO5Jnk^txH640k$2t%e^fPw3uPrluWs?H#H2t2#IFKtpTh$( zTl2LhqJs@;vJF1hmxMlcW^R@;bo^vb5`t}87eG|>^e1ul&sHFGD|;*hGY64%hl&GG zsA_?O(DriV<@%Zp8f-vzPkK|Q}-FY2esVyN>i%^Mb-ZQidaBh zFLYW^hq6))=vnMzmLS5D&o^`B4bveLOq5>sjvv5jL-G;3iY#&jC|clMqCneA^q+Mp z5dVrgsY}&>LRMEaha%D`4JE3*`a_T>1(qJpc_AU{xHh#97$}mlhcpQLMP-kNr{~+? z6bt9Qef<4YT1j`yp(<1XeN48OM?jt@IzC=w>oe#ytpn{XsbB=So3z5#3?S76sy5eb zMk}PetnBP~8yb#$ENFu3?{C>;^=K~VfXaxt)#Y_9-noA-L5vnTZ49-YIeXDG-P7~LNq7{uj4cD#)dXIZa51Tj508jIG9Q>y{6NS-^`iB= zKt8?+B-&c_{ui|()*E$G=`B$+#!baj#;(bC=-;KK`9kNiy@LaYVtugP^YtdUCMvpH z_3&y6fH&}x4f0O zQagI*Fk!z+^5c77Zq#c*3&i3K3=9CxPD|DX^fI93de<@xs5hS$@O-+gOCIeIJc<$; z{lknPzMRQcQ-2jxJQ&DmNPXI4EV>u z-^VY!mxw;yha!jGVxR{mZG8s96Yz2BVBi&0R7|0~$~Qkc^%l zg({NKE1ErkKk_hzOTy<*f?d|b6HH`po@X29|HeIDV*n||2&9~}D2APV8u803Am6(s zsL$byMSy*rw52Tk#%;jd17Ak+kN>YPqjhUy^4@nyuoA`t+E%17Frx_N>YO0C(y@C=ymQ* zD?>xWKTT;#mqknbYMR>*X@~lZcHT(Y?5(~_7KYoksr-Gr3c;0*+tt(>m?>vzz2dqD%f|w-}O0V7+k?C&<4%aVkz5tD^AVL-+N!JYBK6 z`g)*x@QOx+sQN>v$185#FSZ~laE?({=CWqmf$k$L+O(&=IW38T7CU=mN7jyKDL>#M z$~aKg&(W`D%IY!yQmz*w-+((f=0xR-bs1<3rKKVnMj`SX1EqFsFoy(b9^1>FK+weJ zJRQ|~*373*4Yk`098j~LAE^KnWkacxw}xTI{OZY~h>D6TGVAsS#w7h;4`ePs6JC(w zf3R;18d zm)1_Lxr!S#hOJo+7PYLn$xbi2ZU{@=JIq^P8^2TRv2AT=WTc>^#I>gdJbBFQYn#sg zy!Y=zKt{e03exUdi!D&mzasWAWT!u&*9S<|FokKLbqqZvqRxwE1`jCL0{L?>(tG83 zV7@iIy$_Fu2}Lhl2ueyy;x8tlpfCj?keGNSnae}^xktbh+mZS!L^bj6OI%P_G#wos z2b?6U?L`=%)=dAGyv)Arf?m zW6IEx2&nK!lbn(lNy8GEfy>0s#}^GY?M+68d4GO-chvq~j8yiRY_v}QI4=Jcno@-vr;;taE6`gh^N7g?X zp1_Mp*mZw;qKL?HgN~Gn_!@3tVBoOlM#qm_?YQY_;|nS&I$OKI4~~X-OGk$RbVsLZ z379h=q3=d8EpsoAEYG+1#K%A znp**O3FDR2D26UQi**&M-^% zaI?avKQF_?YZjV>k5ZlePzP~~e2wDWyByry5deowuH#rJNb{9}))e%^0Bo-T1Ak-K zp^K7{@h%K89lr@FXtoO7)5;8ImP!G-G>~Bw+}+*F8ap~WO~4fqU;BCnu0s|Mbp9)Q zlvw|Ge;*NQhugy`0}s_1K*jYn5C?5RM8@c|mifRZ4p;;Nmi;f`Y^6fW0X`H$z4yh! z0l^}kZO>s~`5?+{Id_3!4DA>J!NJHmWCg(NLIJy09)xXx?p|kI;;_*n{0bb}-pIBY z!}=hy%*;&G+Z9i1kcOX}Gz4a%G<>f$8Rl6Q<{7sFmd4fJ#s?K=x2IMd zEj>LZbk*)}{n_kCXeLA@f>}}+bk-4j1llLp?WYOBA5p+m+bJK7N&!nAp_2oLuBD^n z39!GOba7m`U=QL4J%fi^YiQ=9!;da2qlipjs`u{m)m2+Cbo%K!tcFa0H(&qcs9%9Y zWR5q|^z^uMIV@dMOJYL9qf9M;#@cR*e!Ud+W>a|j;pu)kx65c46XK{UtPQh+WE z=Qxv#!&^dX=iY+{b$|r5K*8OMO9-N1?!1Dor~`-sy!PB4ae+P|T3;8T=qS-^EKH0x#s_4LOY zK_F?$2VId{%OiVP=mZfvRuzfOvvziNM;rH-2eg2O2R5)hQE-7r-veSOK5%11C-nu>@;LvyJjpE0qqrFO@%<{KSyYDH<;n&ss*$~1qEq_Jw%n8GtNGf$Q4G@b>~ zhIVy#%l`MbtH!c;(a_LD<>WpDyxddrWW~Y~`u>?W;$DtGqlANp|6w+q3OQ z8&*=HNtY}VUa@Cczu?;uKrA*$0iTP?Fk;E}2@g-s(UA!Wm&5dEu3Ah|5{;11!NB76 z<+;vo5!1uN1N!Y-uZ;*wDS7$&4*PoT&#dMj{Qdo5-oL-N7-q~bv5s|D1DQSDovT&o zeg-~{!)Dpp6@uu1tMf}H$@3I^yEj`&sIRXd92$Bt%DKAKFmh~+&uNcWYd*ShyBg3) zc&*!Lzl`Me;WJBcVUB+~tHoF@6+#jX2)fgh<$Q#7T&clUYiVi8a=HX#vC*M1MW@jo zA6QZ6ZJBg7tFIH5rrn`PoKrbTNxiCy{NhqlaQ620Y9(qBaRLu;UyQm#m%n|{p~L(d z6qF|5#{-3k#qd)f?0s`P*Y4-@_wQf(R=tY$%4~k0i}f%7^+-7JqPO}e(L zzp^keFsPWA<_@s-eD8dZeQc+SKAxPM04tN+)Wns{XrNH8U4M3d{=;Fl{bym};$ib- z1DZ$^5eRNQ;XMjL+0EWW_X{66xwzlOAmwxksI)}A6a@Up%gU;Xii%DHk`zDQo@%^4 zT`IDZkci;(c~*g!D06)C9v&V_09n;g2>6PS2?cboZ*InvZ*3~U1v6z@s(RJNA>JE3 z@NRw4pGzhz)n?0eJcjRR)XR#zeSAs@{jTD@w+235A69m#*K3!zSWnYD@_cEroXFGd zO;1S36L{Fmw+1Y3IyDuWoq|GwJxz|YE+aLysQvMz)ml?C6$cG1zpuBqxTK_HobNIk z2M4EwL8n2E-*N2=kLQ`;^y;bs*mXYvxZUD@tc{^`I9pj+pTS zsW^Rh=IHkPaBZ!o_PxcZ`#n1giwZFL=iQtDwQ}{+Y{7t)_LtL+*9vcM?-FWi>Vx~s zT~L-np+YK?Fu&Wu_ZEj$0k@5w2x}RcA^OHmP!KGNIv5O|p2(Lh4MQPRFO<(HfVM7F z$eKbCxD(>{zAAcH@i{H_2J7>?>_h{?c^^zsV<>r?u4HZUulU_AAN0lGPV2S07lTUG zL8q;!0`(^Su?H1;ty9;Bv!#K7fd~DB0k#g03X2MG>)wE0=n_XF;M1J8t}iJpEIioX zFNU_3k_vBe*;RPt5qvreIygP8EGQ^gNTJtjQJc18v$nM@1D=cX=~KdH|B5X~sgaS< z4Ga@IJIKw&MU~TT;d}n`dUsf<-{TF~%ol@JU5(e{B-2DIN5F52L9b;l#~=f0hhpY1 zaYg5TBZ_e<5`%Ujr?8-)1ejA6uSbQSmb!W}L>sY$g8HE8*Mxk)*Bm#v2|iyf#P#>WOO)F?s_yA4@}1K;mQgM8J|Zi=snWe)m2?e^KQ0J)x0ep zw{!5%pJc|y#(+JBJiBEnNG4LqAB_W+E@f^`fzRXGIXpbdLN-sTDiy|1&GjrG1hm}vEID3D9*+8$1Ec@{XBDh`skT+KOl z-X2n})aQS6DOZ;@G$e9za%wCu^nZTfJ~%r&%LVRoC+n4yGD56`2Vx~5Uf$j+_12&g z^>P`&ucdO>;aFK&$)&Np8)$b|RQ{fk44%F?oVVqGN@mcrR^+%nn(zJ{1bgaYcE zCRWy%r{7#~{@`stvr`YhH_B$el&V^&a1I!Ae0==x{5XLj(l|cj0KY%E!kK(t38NXD zfS1Ih0hRQCZ&wgaDJ@GiD$VaNwx=reG923PLvh%x9f8T{f>FTwIh)OSRGfP5*Q~?x z{2nF$Ep;A@GWxq12~i1&_fYjVv*zR3{M&TFxD zJ9?9U0Gw{C;2@ZyV0^-d6d@Uub z`G_Il)jr_!ut{o(D>ngphWO(-un#9Nn0OTCHg{;=#-1HzFcpEREfleC>YynJ2M6Yt z;S|QpySYkNe^s8lk7aCq( zUgv|9IgUqj%yruI@);av^EGDN6{9w*?fii8O%m9Vv?gUq45z1{V6WqF<$p14O|8k#B?6&YgYBqSto zh=?XTBWYggUq^?B50fkD4ceDh5;cJb2`juoBou;w$UH7yynoP`7X*@)mL_InLyw_2 z?Y|^@(-v~MJB~&`aB{>1fzHJC)I2=tRaI4dDTy#=m~CM2n^Yb*8o>36RnG2~WX{`~ z15gKu0?Zm_7cKr)JCTb+Y0Oyei?J1}AFnZf#y))?mHn*o^um)^YR72NPy6U|a!7UL z2PUfC76-JuzP^6rOI`_iZfT((KOY|eum&en$Qb`mM_c*SnQ*n3y*fPg6D|Bd)$m{X z_vfRmX7qMvRYW_HT|kqDO@Xi`Qehwmcj z8G*s5RSV?W(S*3)Wg>cm1;z;t^@q0#WBv|dG$yf{FdQ}D>vfPG&`RNlfIC|M_lZ0J z69NB)7yFkxeUFDx`p*m1P7ydKT=k5h!8^5BeW~rEZPzh!bJUFQ(%#8QYKdu4@Y?2C zi=l*@&(rDy06|)vc(>L1uX z^W>8_qx~1`rE46Vca}vTb0kKUI`RVYfr%kWLxrIJQm|E_utC-{9Q}c4%i|P5H#|-1 zix3H2|JARl)tM-U=1!S%DoiFY+mekldx$+_G&Nt1XPVkWG_H*G82mhd8(?9x|CviXaejrsB@Hs8boYYasAV=Qe%f z&LEEIVZ$ch$as{-!f3_cumPNVY)hbtoK~6#)&>`(7jDdc%BY5OhrCesu#LMzM?CN; z!fvkuJKO~aW)nYg@BkuY7UT(o#%9BVFf({dPy$m8W9^?uCL&y>Qla)Yx}jjreM@x5WT{s{3@a8-%z=~RKg1&Xz8qAO{p%{ zCPMz=EFiHkO(Pkmy=|#Xj>-w1X?|m{SrPg2^fJXSH}9ChIE!bp9PioUUmsXWU?Ubq z6F7#f2&dcy@#2ouT9~+t3glHgf8M?D`3CLjK*#bf z4}GmKmU-0P#^(3H0;Jd%bVFoxD;XSkq#33*A{P4rF@NQwUJA3Cbxl5-xSr~lJ#iIz z%txE|S)s`wXe*6Uyju{G;jLi6M7+m-dby}wzae}ESJu3>iH9pm z={WThn;&oM7+Jj8v%?LNc;JJPe_e%os5_wh4&QTudL7gtZM8g=T*`b>kLt}UGjGL} zkvP(H)s^w(`5*AaGN=$c5@(pSHB)pYfh^?p6uEnr0$I21ySh#@sG-MZ7l(S5B^~;3 zU=hx5*|^wu@}^q6QKMdF6ND!loGy%Uz#WS{kRizjhW`x-2N^Pifq^@be2LcvsW z%Irpra)+x6c5SzUa%r?jl-_2tz?_?8$TRss0TndtUF)bO`(ADla5!ub0gsGEi*#0I z|BVI(84WoJSi{$OGGLgRTU!#JF|r-(;QJCH2hveeXiI{RLbc&SH21h#)yCXazF+%yj`mPBJZxLx$DOgltYF`j*oti>Vp)(f;?*y->Kw1+z{?VLQ_rq@id$td^ z`GCVj>V7W5+KEb0ep%W|Y0Sv}ESkaM`M}|x**@~6SSP~w$(|dZE_i_RK8h|Fs>Wiv z>3ec-M3Y)C2^_k1xt z=EydExmG&!ZWQrvCL2C+Z`fOhJ#g`|5eFkCz$k^Q^w`!r2`~q-!tdYcTut|<{FNT7 zTdJ}BQW!`hoUKN?D}RhiSOV*XTJM2|;$}lWdxY_kF+WzTJDu5afdf#--+%*5%xGKT z>6(=>WO=xCW57J~f|Wo?J+7?G(rG;u7LFXmF) zRZvnL9c{$E7Fj`t^bk{GsyziW>7$p3HfD-SZDMOwF$F_Gx|Gy#%dv9nVbVDZ>d~PD zw*zUxFqWl$CC~O-zGG>FZ;jPzag`b>FrGMfPM$6V_x5O%o0HfqCcJ|DPK~Y&A4Rrg zB3@*xy)Mlc8XZuC9&e5TPz`w4JfRvo4!~vomBUnFq5qjq_cMLurr(MJu{aG=MGiB8 zl}=ZI)#;!uxia=y)Y;s<#$r&G!viS*h2N|#dY;pPG%)+Ui0?AojT>ptY!<2k=gQnp$p}UT$hSKft6TJzirf*kP`1m6D#Hi_J@{X;-w%0yrrIYJM;CRR-@wpl! zabCvvYqCS^YtVebj^?VX*>m28(Vq>gsdc-l_3eW0Vb4+ElMbBx0uo4+$j60tr8_X* zt&3;^oL~usZiKL6!kzx_!txMvp+)Xtu|I#aa;z-bZXyz{=1<<`IkTpI5xm=y)#8-f|%a$bc`wpa5mgg)bF z_~k~UU;T=ximcr)%v5U~=Hr^r?~~lhtZ(8gZBle9%WPU}Myyq9XO$~yZB%O)TTiOx zNBwpAsJ|t65X+Os?=-WIV1;fCh5(@Yn@NmR|rN#AY*dlzg2kM5aBZCFL zgCTEp!=Q>9fkQmeZ!^6=GU1Y4{I~b;HJfG>anJO8`Vyxx)tL*+V6Htn)V z%qWQ<@%-*Q%POn-B5nLg1z2tT5{0O|$@~LXDsB2mg|NKYK!rGo9I#yBbnYY-V03jj z@4ynmKHFY5&hLWMgM-2rVv=nL2I7D zu5q}t{kUcsvfPk==pp9!u9#HN>{6wGsvQyEI(dD1jQ!5>{-c1te`<}scgr+Nv&(Pe zfwV^jf3E*bR`iF_dvAZ_y3v+s`^H@_$z^cZVRJkGe8%YnDgsQddrAP)Xm7B4J!?S8 z%p4C?7Is=zoHqN;$9PYds`yw~KB1t*eTDT$8;W#O(`n69I$&T>E5`)o54O)*3+D?@ z?<=|S*lL^{bApjU8Ga6v`^s+GQ?&2}&*w>QwzFk6mE(q;=1jQ&)q>uD3Wo`n z6v9Avowd$>O!r>=4iv z7p`CEG=Eo$1gbY%HSmfZwGPm$pYQa(ercJlXzggIz%^+6pYsgsKJl}rCzEY1L0In zOyH4`-y5E;fC2u9MDZFsMk2Z|10}Cy_VDuQ%}zmdyEDwg8Pi`Dmb2rz3G$bLpjEe*RpvzdwI0>~5Tq9m~$Y?Bt+UD0;Xb(YN?0|}$f<3xdX$mFs4Xa{rpUOYkR!|=KtRrfS{{cI*SiT+3Mf@P9 zL4j)5ne^Bx#P+`1?htFkeCbNN;DfaY35D zaMR|ZqXV7E318{ykpO9DrqrgU>S!a35gLA)mPtowoFrCJ=u;ebz5AeL4s6Sx^wjV= zDxaF4d)QZ2EZ^293fl=mwR8&A37h>%q7SQBO44!UW}DS3rNIip@}J+Bf#34Z_6{k2 zi+jF@vdD#((UmB8VmS1r58JgjKu%iYadGd+(=32-$+`Eu5j^DvO>GO%_ohHiN3&c# zmVjToC`(9;+N3&nbU-L0JCK4D-|itvN1JD%POYxEcu%EbsnC3twqYsG&XOIc`tCvB z<+56kN~rkPkx;H5qg}lhe~ndFtQ1 z+3On0XUy@NOk#`^p!?u=&*b`hTM6M_i9W(^bVU^1aS4d=1~x%i!TP(LOO9F9w*9;~+hJL;a9MV-z0V=Q_xN`fdOIMVSZx{&;kBI@P)r3V&zLqj>Bvg8Q-5o0eM<&MpG%_Ie) z5S#Us5i(mde>d91T`uGW zz~8v-wjX%BpoF64ZNRlh~m1y)ox3~d%IQ%7>I-dF4 z_km4IxsX{>Jl^erZHLuDiItTZpZn|nKs?@d2@Qg>YN2tNI=)H0HFgQ8SE(H50pK1{ zJV>*IBKufxB~i1!^_}{d+^uG2jo`0*=lS6!=%+RpIearj4>*V{A%uUFT#5n_GDVh9 za8vAb|uIOs4KP$$*;u-pi>dnrnUxNle(8d+}ddU$J7cscf zRFc)s8D0=0^(V03?SZl@Ey!~nB^*A9pnuwjQIYzICUw3UxmZFr4wC>Bp%)ASeu-OB z&8QX*@OVd;ZT1iHI6+^hd(|J;X@3Bf7?$bbnj9}QO;?2ckU(Oyw?~fB;0fH)cMeVK zFRH_r{@{Lm zG^|#dRK{w-gwHRr^CQTVfJb0Y%OV(Ga-h@6}Pf$|i zP3{BZeuSGkOk*$OMv;FAGjXzte(_?g4Q1~xqFqR{KKa>XTe;-y-u4&%r{ge2;i~&S z48Z@WqnBfvh{5!Q!};>K!3cpsbk)_sBZc|`-$Gt?0)sRe^}1Z|m<%6|ueB;X>Regnoo;7mJ5)1$;bStU3x5Oz!If?R%3urF4Vs_ne_g{3$zIZuln<_4-?FKZ+A`Rv8d)fyf3B97J zJQBpXwxJndNOWR%+7CW{_RJV9(`txT-ySyMcKkBJ?=!Gei*?u=WqPzC-*>XC`|#rP zXWy~Z0OgiK-pOGBrZE)BMOQL)HC0BIaV^8@<9h!izxCxo-dj0cpRa}vq;c#>F4l6r zUOvmwwVQ4c&&$8Br5O$P-yJFaMbr#876VOClCAk)pc7CkuK90}J^cKMS2|ax%|fe2 z1on3OYpvFg{t3DfyH0y)<-!t)cFbBy$*Zj(hUewtl1R*n9Q*|_;tHC=XUGG_d$CH*+yphV(c^NAB=|C`b>NW>7`Y~Qsn)2neqy6cE6V1qSIJGo;0Q3 z8KV4}b-=0?+nMhSbG08-QUdI0V!KOo6;4|+;KkL->LN5SLrm^vk^?# z_;BsO{Yy`HC64w6x;;sez)Hy18WT5GZ|j`9RqLuFIT)7flupWNRe#pSy^Y*1fN_LJ z_qkEe8z{NR(2FbA6c&|gethjGAf@Hca$5~h^eauelFwkm=QHildsv4BLe`nRi=aNB z%35*6eLY_^fZ~&W#+~%JFh}k$U^4CF@c%shNf0HdRuoNy>zghWX)qNtIygIeC<)&8 zMvLb4fp(h1p6Dtu?tFjYT}%qr%v}^2gJ$Qv^6RE$RI-@hHF`t`Ls!DLwWB{#7(l`W z5CTA69D{al#dp4`Act8Bu`sT0cmN&uU9*M7?Cf~r?J5DkQf-aYVnfzc#|z1JWd{%i z5?Xc?Rc4>yaga{rGd6St&~2hH_lA?*-1ii)jt={xfgJRC*&N`=*Fx@n?jNcpEZJBj za#6_x$-XqN9q9GSA^@?4<%8VBjK?Am`a6?LbL&0OR z90tVNO3H*Dd#7ltxLKRv1%1rW=C0|0>YmiV)y9xC*@a@FIqY2nEK3Jhrk9g{{}*|X9@@1&GKtYE&cDs7SbbI!q0RWRy38KfGr6qrZVG+Qouc37!w_q-Y` zpC0T{sE|8r5)JPB1#jS3Hu{|Dcf+m1`4VJZ%gwtb@?+LIb*_WiZTRuqx8&YVtHq{o znfw37`&V7r3e20`T)y$|YJW%wueWLbb4VP0eektcWN0W!EDrm3L~K?Qmlw+pqLW9( zpI*<;ZXXIFM)W=#@`dc-{e5I#BF_wU2Qx2ZPn_4s(Prx)B6zsFo} zFGB&JOTy6jmhHEVjvJDGOh%|kI5Vd(w z42uk`muqsNcs?1hB$&*OKO-VgEV=OBM~;TB=PZ*6K7U$V;Mlw{sFjuucXJ;={z$O) zyX?p48OOmKkOCBvc$ictXOd}zCn$JB{16JJmI_4Yfw@r-oyX7C_-x*?9Iny5D7@gh zjR)jg-9NrhocKXg2bLcc)4OOE{f00f4o9ze?ZG!u_-_PkX zc$`^&;#x*wqlb@3GziDTi+k$Au`meAbEZUlA|!8xu>^sT1YGBpkAHkCyjpS;a)s#I zx~r2cPA@7hUN|w)EMh^zAkLI~`9&8A2JF0z;F=aDop#HL6q`Dsdw*Dph}i8Q6yQtX z4Hpyj66W#}Tif>XC=8{4svSg3PlH(`ps~1`gb9yfHDO@r|c~ z(WYK2&BK(y;PfS(%>@TakEG>HF5iM`R~^8N$=fabF%q)7lKLAew?=J^dsbZBC_V7PI z>NEI10LEuHZ8&0t!T4a(5849ZaSeWA>D)07!q@lvfjQW#-h4(YM)wt*bF8V1j}i&@ zTlvvA6ZpxGZKe4Q zJh8oWEWpC|xUtZu`F5Q8n7{C%MOpurJ?(Xg$;tPKS+PX#f9lYxoW69AYCLCtVCrTH zVngC-AeNwLZ|n*ZNWiGo+dU&>fZDxy;IMs)kT;K8kXY@{QmihqXNjXFBK~2Ak$u%xz_0VGcSGXaj>fA{qvs79)v|S)TJ6|*O~?jC^&Kp$>r#`!wu{>A>-bhxo+1) zEFjF~F3 zt8`TVmuN4trY&Z+!7U$iF*9~4i1ex(rKrW4{N?%K2lfZkqXqG+%{a8_U1pV;3i^hK z+*aY?I%4@^w1e(nb#(9LmWP^qK3Ig22RDiQd!!q~HD3M;UN0@KKJmnNDJ^*|bJxt@ zHlqgJ!)u_Q)t2nqD;>Lj)_1c+#H@i9GXkP5-1ty_QgFW=z|u+6rSRB%aJ{23BYuxu zyaxf9-gia`8s#*}s-yQ!`)T}TpMh#Mch2`gNTEfMnVXl680IfLnTD=k-5DgCNg9Ds zsk`28KrS5}Qj`oZ{<|V=s?9oKbM>K=J^EWM@zg~*i0aY7er7s<_i`qO)v;FynG$a& zOaAmsKkD`+LyNRC=L?oWkHvt}CyQ~4{oNd9e7>G$i|k&d{P%&1F@2luk9aI-VflC1 z>?7E|Sbl}}n^V1P?-iE2GS}tL-8wFtB4$^xJpQLYqCkaBOcM&Gnjg~|tL8Fc-YwgO zD*9P2h7v~rV-=K%Hy@y&rNB(;_MXF*Z|eosZ+Y_gK&uNalrTo0)3`>E^u$4GOy>RC?;#YHoeE|cuO-i^%BtJjrHV(-p#FLM zj*Nh@*Y3H1zKhAXg6lsz?&snBlu(IH3@9w;loS#8=z#?!HIvx@@0;;lKQF z;&!mL&yNwxWAtVOZzlRhwV~?X6ndQTDFwik`Linz&aVHYbFf-nMQqh|daz3YRDrsI z+0bXZUHvQW{PzqBAX7n0fSb8{_Mqggzw6{yCD#NMj)3L$8{re-OgWxG%0Ck|~9gkpFuoSB`u3J1fM!);7l1%vabf3CWK1XU&U0pB`q8q7*j0 zHNb30_CsqtL2s}dz3@_47`9u=eyETS1>8`7?4a+e1<^8PH1j=5D!A?q^b!^rwmO4z zS%D^nSb+Wumk9LY&GWK3@91@x6D5`*fjBn?Mhf=O+s3wW(Ez?4{Y!l{wHCF5t_^}H zuloB^n5O0%-8w~1?{w>zX{iA@!=)W3FNN<*)>FA%Q`EtV8IjfM^tQ#tJ&LKF5o3B% zx>vX*)7nz;t1Cg*qW4b|@2L<*=AA=tlkpNDQzQYV*kvYOD8_0($<@MeFw{nR$+S44 zHUlzODCCaraNt`PSRX^4ApW5JmazT-4lFU=vgby}(@te@?YZoN^09-C49FuULV^t= zV#s%R|Z zZO<_RzB3(`(?X_|`okrT#Bt{W@Wgd%n5ngW3B|W(=M8ZY3bA7v{E-qt4sir(TGg2~ zjO}0g7I7!ny8*Z-e3eMboW-*}Q01~cQLx@NTgw2I_$u%_#U>WR>x0O54oF#A_p5w; z^~;erfx$Hw81vTnJfc?&(tX5Go3>z8BI|ZG5GPy@JMmK&jfL)WTf;efS;JFK z%QSWjOf0r=5{MS!R$X~iUSBd2ms?!cHx;WWD0!JKcyT>F#8-Toc%5Dk#!cj29!=vL z7{#neA;zOAJ1Voi+buY`*+>xm;=-n5+>oox=2|otI8YHUcfyn=VTQ}iJ3{hf+VVbk z8rE|kJcrg1mIiB%*`$!wA-JvYmoyZGwduC%XITA>$%TTF$7B8C>0aF1Z|zL|WAw2u z+L!TJJd5M|4c1>-sN^vaV!>Dv1iI-tUM~+=$vghq;9GV5HZLLnY{rN6=NM}8t@csIt%ss|q%0wbS<|SP06WnpaZc6xI&VBvK$;L+0mNS_R}BYuWAo zAiOSA?lUmn{Z`;gT-$fKxQHFbL-FWA2ye;DfhhFc_Tpm1V z+*eP=?bXMo*>!r}E(bH}3jGD}h};7*&?%Nlzy((six2N>^x@%;Qdpe}Z@#t$8U17r z3a;YiSVH$+JPxqov<{d4ARH_1B(ctas%)JJ9W8K*w4dmlKJ4 zX;Qvq+^5ftofZf4!q{~RU2HMedDO@$DBsE!+> zKAcH!;b}JUh7E@voPoZ2j-T~>TikSXDz0VVf9QCOL7P9k{QtixNz;}!p;|}I} zS3Jn%cthvj;yICZ<$sc4NeFU*XhnyKI6Ow@qEN+fRKHVMP3jJ-JgDpoKD6oMz}2BT zri%RP&}i>jZzcLPyXxq5qN}1_M&$PF{Z%54!tjsKcaggvs^}rN-c#bj>;3eFUiT?} zMV;v=2; zh>2vpb_s)(=3RV=^3T1QqApE>PyXp4Y_xSZbt@|{9WOZkU;>hxERVst+OQ@?LGt}Z zahMLEMO{9Fr%fKnyc;F)q5PMe)2lm<-jczi=Mh2j+O4Qw^YylEK0(6!G{2OaYFc|N zr+p{xnRE7szkE&Hx8FO$W{k?IH}(6ZCz5T;hZ;BH58|rM_C!{mcIEx|Ul8@*SBlt8 zmaEg#NQ{wNO^|E|JmO7OZ$dWVD#0=}uRC1}RR36qFFU*%dMfx{=2MaRI0?`u!V8IE z%?YM58*9IUjv`jOPY_$@aXV66WqFRC9Poqsgz}wZns~SDwSyaS)rIKUB0q3yqwCvV zkN~>c(LLbqb08dVy=~Lkv!lU5@<$Pj_GoqQ@jEAvxZF*=dNfvf)mNO?=-XJ#4-@rq zppER}T|Uf(s^!QrKdRJ-g^~G0C6*28k82V(HYb5)#NRUP`hD~$3(KA2eG+;djonPU z#c+bq9tF5wk^NwzlM&U^LD+Hu!@bBKKx_+dz*zW8(Iy{XSAKm-x|QX0ckLaX z%DLL*dPT)t*(UQB=pA6O#|w?bz@JIZql!Mv_T$k^5F)-%1kk$-bKng(r5r^lT?NQ~1*?-+Lp*F!mYi4mx9@J5yc3moi(LtkjSt>EwnSO_TAy8H1D3Cuh z0DJ2%^!n>r>vMgAJI2BUd7f;1zfqB9Ji=rlUiGJb`YWc`s=4(D zhd(+WpMSQ$60iFPj7Fa>~dTTR~vZ#d>~bb8LTyv zrD1%@x~uFUHkzSJzVw5c*YdK=Rq&B2V7dY4Sh5Z{b~jO80;{zQH`coi5)wv zIHTAgAShM68i;&2Sv-_G=!5JH{d8u!-|&!EPC}AMIyZg)=JzsmmC@p#X_Et0rc3SB ziJS&yxu|QHLZ5G0IKe=Epwb8a0AwX00#%h%UL|*+^|Ze6v-#NZJJ-j;C46U2fP_(q zk={H}Xs%}5oGd2YHSozQOQht!y<+|8dMwh+xkB{^>ThJ;nQN&d9GKv~oEmN&p2a3`NIvdP=t^G`<9K+4#7)^{)zx!!7 zmh!Y4F^2Ah_^dfCR(oCdZKncuRz=CR6EWf6{d++<6XX7u6OZ2<1p-6aaX+mQ7#f_| zT#N|kXZ3Y+>nSo|y_323Y z`t7Fi>ZN2qhwji(^H!th(#8z>j%^-DbI#|e(XZn5rmF@XtcxR>YKZC?K$F)2d!?Si z&V#oaqIv0k$JR-@siHV|vmx#L_CuJ116U%ibqrq-OsW5#vF&<=o51ID+u2{AXODpG z>PBK8eg`n;%6o@89J^R=h!rK%=i6jeIOC{ug{bFmKdYZ!o^6E9dl^x>AdeX-WeJZV zBSOVYNX=vQtu0rRGFO5__ve_$_yymenhnGI9@j%pKX3Vgm=4&YA2*2v%LF3^ZMTo@ z-Tqht0TP<*jcW-Z%FDn{{=@+mi}RPZTNg5G5?*Rn>lp01_du%SEv~5UjTz`4i0!74 zZ1VxTUgB!u2yr_avBKP3P@N^ZeC*=1nYMUT-j?p}gBd4nrK;;5 z+w7A4g>LD@O4AeO;mQSj408TX$JSUb`<7?L?4ARcyctJ^7TB8|f5FXhZ-Q;Q#JFMS zg>@{d&6iNO+)i@#G#sc^Ncs-}5RJ715sIJY+E9K9hojeaV;ZTFC4Vy-FDo=tLHP`q z{nPE^BI@mo4p4ld*xL2VjEngN96#HGetQYBJMAO3#K5g&;OSIc%o`l3Ihzo5o8aMs zcfHvK4#E6uWXZb|K(DhG2Tk+lxX_CK-y9x6u(*qM)#2H<=D}g3q5|O8&XC~tkYG&0 zGgm(gn=^eBD#>_)-JoyQ1$&w`h28SP--gIF7TmW$Nqa z7ZDx(Q!KN9L4D>dCpcDpg5}pUI?j7`S8cjR6ON2~ zpBcImdY#z&IcBJ~R(`284SnH^I6~epAb`?Xdh$yxr@^;Q+K!SuG@0V2K>Uw2`oA0$ zG8_6n=mAYt_{BvSICymbcEl#_sZLqDd85JEeB{47;(*k~!y+J{RpW4MXKs{^yEzyT zXY8vzqVvePZl-BSsLJ|oj?~i&EQ5TO%n+e0P%jPohO*LsnC)|+yZRQX%aQZoGq(j+ zDN678)VR-m#j9QuZk-21rtH{@?|(G6>^FjQuZP|^LjIk=O4B1!7q~k@I%+*@^i(NR z5r+ExTeE&X#olI@KN@9U$T^bt)=9(tZuM;U_q{4A?M9vDaF<{>!J%%F8=v`1aH-SA zn(YMdIFNxA{f_ zD@NXorpLvChVd_I=S{`0eW9@>S!wicYmzXI5I6&&$y0ALbz(tj~Yi94Ua8HbEz z<>w3cyk#;JaLK;#1xijb7InIn6Ta3Wf5BO>*QDNg1?asdUw?Cw+5TPObT9)rW1$@$ zkEqNCK{cqqG=Yfb`{&>-l)u0QD-Z&P2S0AdD25@c=|Ayi-_}cv4sCRW5q^B`Nle|` zaMqIy5kkS_n@=b)1Bc6xZ2>*Zm#57?MWVIgb`$^Uqgj1hhq>v-5DJn3jQz@XaTfE+ zr&SF-8%(6W-NB`jAhp8fbS{xpRC#$~opl3FA~C-XVouSX$^uQ^eucJ1l4>Hv67<0? z|IQeGwZIjW1wb!A4eo@vF@7_1E7z}%%tQUtAqbF0J({%?Gs7v|ybsjID+DQr>&8HT z@`zs>w><5AVuF>?TAiIO7pB2LJmNYYguV$D0xA~semUzVXX~B6-ukvYt6GG8XY4Bh z6|)5pyy*^o^Nq`apwOFNuCD{u8MM+bKMtIvu+rlX|4^H>&gxOMu{ziFK?|<%8)T|5 zP(Sp4_`04-3f)|Pp;ah%bQZhMXU3+wy^vK)<$kNz>})D7{_%RwL>JgQYNgk)+sjBm zCtFJtgIf^LqK%E;93|d5jw!q)g8r`@Au?BwY%?0}O$z1dGr5>4!?V2=eldP|(pvoV z=-}yb0E3BmZs7Yn?YAgXj$lB4jYL+m!vn`gd}~+Lf?9S?V+tXsB!>SV5%iA`!xPzJ zYFW2T|867FLY~EZ*!Rt7(9vD$zTo;Y|0%@)75H}!mVA6ttJOh?{N4#|w)6PI2X#1o zg1R~XNS59n1G zNe!&9)v8g*CM&tkCmYG~>Cev;J&9Nw7C@S?LWeZHP@10-ksgj^$pllyLOcPSlWg}P zQlY#iE&#pwT5q%%%ygaIrI6RXJX}cpUy&*~>}o7fy-xkc1fJPudU_U<59f>cRNwzE z#@;%v$~{{5B?Kh|6_5rMBow8)l~5!lr5hxryF@@*C8S$Ix;vyhM7lw`yWx(x);{~3 zyYD^woIlq3=n9Bn=$IpY!>v!z_>T#lk z`m6eeK#%&*V@fRdD4;^8Gb5EUX_}w1a+sEP8WzS+`N*v;WFoQ}q1eZ^3<-@5AGXY!B?F&FjePWhtw&QkVyedEjJUm;k$Q3ZM*i(gt3iOSs~V*4B*c>O6^ zR}^$daTIJ(CziC+_T3FM5hziDMQ8@K!DJy)$$jDG>fH>D4L)=a{(XdU2KAk;qiZjb zmdIk7C~2=?MTabEX5d7)pQ6nq@c%Mgm@l8PHf)#eE-X(#OEWCM#S$+|(@nZ*#Avj$ zSg(rHl7_DV3(ylWt@hCRhenG%pWHPD()8E`4&>0b@Z)|Q?omS*>lXR->!T>IiE^8N zPJ*-bNP{OgoC~z|u}sii!gQ5Z1l@RHmjalp4xARxLlsaxy*^O;F8U5T#GHhOuRu`T~Mobh0bNsv_&`h z@F(&5(?C4>`|v(H)2@PHiY*Q=h47KXU&h2cDIdnnw56-RRXo?@q1%<0JiQy?$SKT>QqA7mhLJod~}Z+pSrGPs2~6XtJKfC|-M7(w!)OYB0H@ zf_AWV>azX#3q+|4!<2&#ueEy9;^tcFwe+q1I#$@7jr^8meI+6?59Fz>@ai7uEJ;4^ zi+=+mtMKbRENp@&lLd95)d^oqa~NbW=klp`5egf`X7=00w0UvxV)C883{q-p>gqu1 z&6~Is)a>j8@p;Yl1`o;F411jZY{uM>4zrIoDV!L%D5c{4)%A5!!=W$UNU9%Y4(YpP z@wb%I?UndpBvrSNR9BARkT>7MZee4KcsnoNN=D034!Nhwl3x>wU%^uw{TTILU(##7 zmrkCW6Zw|-u1ya!c|Ngy>KBu(V|MiW>*f-9M*y9&uIl>f8RL3i*{Hc|$syHr&AAl5 zsFl4j&JQB&a2ErHglAhz7o*DUe2!n_Ybj{{ULNnRPOkbM-c~&+vqYU%as9025WnDq z=JL9miM2-Y6TFi7BMDaye0=<7Essl4U^T>(2iy^DGxX`!pDcd#9eVkE4#k9 z=?T8(@sxP8Wgr*l5*myB=KQ2h-&glQ`9_dt^-;X{toQSJPb#xJ{molll6}`YgXHmZ z;rn^H&9t7t^r@(<bapNbi?EWm2|?Nx5ehlCCU@Zim$3~eGd_y6y~bG*}L5<{Zn3Vfb1kf z3<)p8TMI378qI|N7J+JHfGO6*r}DYe>I9?4UW}j_frML$w^So7L6L*$Bfu3EP;7Yb z`jAsShUM{j_)Y@0lJ!9p=WThyH@Spn#tuARxk1orOflweCoz1x+}YJ z^`iFjXad28X!66wBPQ<93*|TTcqSl_0Qjf^!0!MSDw^&6J(!)c(Jg6wtg*_Zy)B~M zQ`KT)V}BFX^u9__kqo7(!rW9Z}k24rdeKY?Fx1sXtm$vvWoFE*nU@qm#k|M_?yV|DMh zFNV4>faOROFeQ^u=Mykh{(m!o71j|>C3gcs@96mUSd_s2SC+|9%idZ9>6%BV;$hX| z+Ox`zWqmVp6dax;N`b2x@M(s@^KA~-=#c3+SF8=(<8f!8iR?|t9 zvNahXB?Z)_(HQsY?s!V%7DQO~ww9dPn$M899T;-e+z4Ut4!SYQ%6Yy-igWwy#guqF zxm~g>zE8PYjT96Hs~7C|4-#eYPKBtU3~uD7WNaOGZ@M%#<@8etuuIu2$O1fa8V z)MjY2mBC+CWns~2%;6Div3Y(VYhJ*M`z!J-$picc9fgNK>8|bQ`qzY0>*p$evg_kM zOmVoG3-z(y+lQU}JbFjgwbhq}KW&yS(iVaLbPu1w~KS5{p`G)phLPYkA> ze*M0!YnAywC=sRK<$`2?ygbV7TBbANNF`JMv@~l;_j;hfo$u^$p>iTaU^vw|b9j0# zv7D8j&UJiE9zBn&Jvy9~ul$IcW?HaNh~FFQ{9H}jpz{uo`IGN;r;*LXtgm87UpuN0 ztsbr~$Ys3^QB+gDt$p-`hL72Z(2I}16vxW*#tZV1YITIv>-z|c=%B2q83xQL zR*OllEnupU4wC};Y`bQ^_jVT*6&3vF9~yY8F+sh#Xs{vGw#*5;NoC2_?4CJcgUM zITpw5N{^zhTrRZ8kL>bFj%OC)@+a`0aftd!4QM#!HKiNNv8$S`6ud9VRE`|es$Sxj z=-}t4jeDcl^@!Svmf#-8op5W;(Bwe`lf?q`MOWl@Q z-I}gduyx(xv;91Kiq)T{p2a? z|0N+oy59Zrm4rlNTN`cPV&K%>2DR5xQnhop&rVLhL`6AHSi>Qo^R9TQY#piQY%M#8 zn6>qakDEJs=PBWl{YwACk&J#A`~}oeuSRsva9T!f>&!am2d&ui{`KIoj?XC<4t+yy zBhN?F-z8KF=5*Q}=RJ{`D2w{=zt#d^I?hHpofawDs*USuxuydBe+4qs;yTZKnZFj#i)!y% zo-_M@fk*JiuQba@u6=JOH70eeTwfA%$cVfa@UtI!YRu_@mfPB(;a$v#`$1=uYMhnE z96NFQA`YXP=FS$LbalY#cFr=(xr+~`NT};K!?uvGTzWLGZI*P$t3&s+T)iIV)VP)I z2=QZymHyow;~lks;-yn;zq_b+dsVfMc|oG{O0!~dPc@xMF!bZ_I?Hk$VC}@-zP(pC zBH3N*u&oK;sfFguPj?=LPP!(w7&{tr^6hY+g!_dPsa)N2oxs1kWUoez#3EHUVhUCA zz$b_(ByBBXbO-d|6B5;D2CYF4&3;p})z#^5&Gcny*1oFTBC&&U>ta9lRGWD1q8tt} z@h#n>CAy4H3=;Xe4mbMEIP^+Y3&+f&dJI`$aD)ik(aC9`*2Q7k{oK6nV(*PozGhGT z_0=1oLIqH#*W{_iJ;#4W588EZR>MlVnjPr7b_cJUB+Y4Oo)g8?el_NB_xm_{Ti%k`YE>EunBI4;C2rf#V!H;f%8 z+oJ%|D7!=nPjMkqjveqkYWI-_u8wysPwVto_uai5thC=sNxq41by|1oH16E_G=k@7 zEHN-6ALx_xqibiT1jF;-iQ?zg5yEx$@6WTIYX8lMWX+VVh7gH!AIX$rrXuU>$-`Y3pg ze=HVkox|$U_HJ6;^-e72@d#a$awtc`RFd7R^AOo@N5|j({4-?rxSp_pwGuJ=77UsI z7|AI)BO&0yi%aGhb(-S5vicc@Y0s^x-5hzp;y%7N!~S@2q#Ou6jZnkvucN_Q5VFb+ zk9dO^x$vl66uob}z+L!UmXsQM;w1w*O>WElUu>o z!bY^Y`YZNp6IZKi!WDe-uGGkVP^>|z>np2L){Eu~rxU&%Bozik=MLy+6s9IW-Qsad zyOgQ%uwhGK_I z>`sgxibJ_1rQ-M6?3SEt^-Ts3Vw_9lb%BpfZ|0IaWP9zzgb{t_)>5)I((9UEpi9Nr z#hx1=d2Hicqc-5^e9w9DVB1GV;Gw~y1Qg$7ud?$$WXq9zLawdCRfOi9Zn>cEN`mWA z?oa$OMvnIndp>Hdl8MO^qrL=DMMY>radAbhtgN`=-cOj}*^_^sZ$P$tmG^@V6WEA2 zq-QwP$lV0W+w={<@%{H@roq${B?io7mXFtbDN!34ebX?QCKD8`&P-=4TyfF|_p&H7-6}GJP z?~9Oo_5`hhd3)CoJFzwl2AvMB-0=|81O^d8ekF;NXt^^crT56mg8|s)o=|OHM8&B64H=DSyWsbw+KYFwKS+pXa-crPG8DuwQ&D zqPWwaXLvqMh`k6;fneJBIGV)u*2kGSt_cP)?y*8v* zX47#e7P!CxEPFbIG8kgaosg3xr*NiNIKbALrH}pEVmQlOZ5`E>vyJ5I~PMwBmi}#VBifNT*UO z+H6w1x7Ygpos0c5O=rgRvP22H>ox9StI|vU`rV&OPcddZ`W8E8ynpKEXvEH9B*GXZ zzsu(iUA>L`>mpl^BkEg>CHb9Uxl|ThKNTjAkGs1iQ&Lm26teEY{hj$!LP7#_dU_g- z2PG=;f4=UB=;+r93iyEbf|+O;(syRg$VU45JHu+0g#gflxqKib7%p~3knz}lhBe&ed)s;(zg7>eRkrzeJ7-v5Dfko1PQz)H z1v`4Nc%4k9_#mP4Km4kKkQw6g#q8be|GxHQMex7;vLVy*QECsoEAe za6U=5)ayK_T=F}lJ$3D|(v>fA%y1#M9Vb1vx<7I`Wm1|#he;BQ9xUeFV~AS7*cEy) zY-L^v%u81L4Hfj;B+Wps1>jc@33~t#5oVW{+iINlGvEHetiL=W)q@e9_k-!cI%MoC z1e9-xABFR0fR3^_Y^fswmQ(}Ki^0ILg|T&@5CoC)+A|sVKLEhrC{R0U1>g@&q2n&| zC|pImsK34p1!ij`!#iC;L5+HMHyW9QjZ7M#vZ;5~-^13xIj*}!S76F<(T}csZD+0R zVEBjRv}$ui;W)pyB`A=u^6d3Lbv_m81-tE95r#7Y7{e-j{P^zW-&gZ>XP84KqEOX@ zw(|6r5~-+HrCJ}8b+0r_5!noD2^$HIEnTAf89maQNQQ?10|1oaK41Wt;1M8IIc)ci zXnANP+4I<~>C0RlZO`-pXOY|b?=1iqvdZuu;v-4Lu;~DZ1kHrDoGcOv2%+KdROHGn zG|uOGzkIm^C_=I!_$Hs%-yimGNfFf$)x4aYmx~&wIJ)?|(Z1E*HrwQ|S)W>?>;$zV zorA>G*Q^iT_8Ua-?f;(aE*w=L0bW`hV7He}KtSEy-91WxKw)(%76Pp! z9g92-dq|Zx|Kz+IysB|M-2-m4JiwFBi%cgfRRMg)B)Yzf# z(P_JLnK+-6Z?fcEnVL}ODy3f4dmc62a;Eu_y9Y-r!D0gylUG{>j_jDeUuEu{Es$|J zBn)1j;f<_6{I*?%<#|2i+2L0bC;cj8nUmBpB|Rcwy2ZhxejJO7ojoG$54Ni0sP*y- zrxK^`sq#1hMmDzak`guqEdZFyFQMiJ`O0HfR=ltd5tuFi60h*%$B(f@wOpmQ^70UN z9*yMJ*|RFIzj^%{xd^Wunx&v&v}=j1T3u&}7W zHV)BjK$|PL@c{y=@Mmg~urKc3zuyWQss}KaGC&6=8xr|S#P7@oYRs}@6m)g>x`uzI z5MbVO{7gcMahBKl&bohF|J4=s)oRAdhdurrewtLJ%F`&97SY-$XTI~};tkI23{`D* z5)BiPwh(d+T@S{bzLB$6md|U>o~)8`+~M;;X2-v6&{`LiGP187;NP~qG2d{CPeabZ zRPZx;nbKT~;rKYa*0Z*zrhwpgMZ~ngv?Gy)#_^YjFI8$BnSsB$JYiYiGBH8Q$;lZc zmRd__-V#9YT2d0&t2couDJhwz+Y)fZbKrbw?lK7}Q1Zz7?$Hs=R7c_RrTj;Yv(dq@&Q3zVt32y87r%Kk#9>qRO{_`J3S5`Cogs~Z+AonB~%C2 zhqkgF7WnS)7h;>d8`IgGxf6=&j9g86c)^>8O5Z{6cz6xyL_${;Un) zW|*G=ghl0txsSEW`-huB6#OxAsbW@;6Q4^`DzDccU9IVfAEP{%Md5P4I8o0%1~NNg z8Zop`PUn=7eRDk*^>mi8Pxi?xJ|I+hxO4Ewcyeuc?xIT%A*Pha6?`#Dh__=h9-ieLyVJ?&a%wQ*G_C6TxdNY+(Kcu6 z%kDBJ+)<81wkp`FeArbGF*#*5_4S3G9j*^%$!DnL?azAS7U_4~L%dK(9pFmXmm1-9 z+WRXNdZWx_2vbW-3z)?sK&ZvQ#jSsTiufP%GXo0rV#^0@S!}xVrw2XJ<@KBuxJyi7LcJRU$ z!A)FckEp-h`ZOB}4b8Q9FxJ(duLMlCMcZlf@jHbdkc|@E(Fea$#Zjy z{Zowd-pc5ml~NPn4QvGHy+d7w+LCNWwJD$XnQ_H2F68jv7T&gUb$ysBPxz|ik5m;q%i)_n$TVE+Q6q6qlt z_Zd`XS@;2mm?C1zLxz5dL*aF&n9#j~ve(ScUZI>VX&7mXa~iind_rLUc%hz`J7xYC zAcZ5`ujpN-wX-9zDBTdz&5NG)q&F48h^fVFxf8n)Zr{FfX^Hd;bkvQh>hGXwW`^(r z0U7R^nwol7@!=t3?ZI#JE=J9oC_*jQ0Zn^2?QWngx}S-9|7sY{Ra>2@zcwG4DAc__r6HWyYaScuWn9RaWLxTyi(-0g=mQPd>e44H49Sh@BC ziAm%?(YV^1d&DM96W4Uy-eYFzxoT>iN_1T{di##1gK9+VV&gu9eIX2@XQyknH{5mv ze0l6DPR5L=88swYzc#Hlf%NHbjl5t~q4?UFf zBzu|qS5b2a{>Aq{Mm}Mes!D$91%US|XvZPfbD5 zvabp|tQ|L(J*?Fz{Z32;xhI}*{7Jd1mTbVx>Wf&Dh4P@8(TGy4XR7FqI7u;eG0*_v zn3NX1%j5983Md~I7R>^~ekH1d8S4+hs|>D50jyvA;u}M zG|15rfHlC#wlgucc*5BTFUfd4Ohu>gL@!P2KS#KYMZ3BS*!o%@_5sbxl$JQMvN0l{^R?X+tN|3b5 z$;kojZJ7ui5bP|c(n#d?m=yq52k^8H@Xhalw*|O45Ij-%pl~RSSXhh@Bj^)FrR2)^ zdUgD;&wp8|T3}2aqxW>+VwC)>2Q_h?)q8Mg^AJXx+ErqI!7zZ6;S{UnCRYTH!5SBD z4Jp^c{*a&VJq|Y>-UMgNYpK}Ei_2qua-LT|b{9?$J&u`lk8tc0>bm>i@tz)hML#f8 z5V$ty)+PdslAd6#(`G-NQ^fz0!zvQNK>UWIhq^i$AmX7vb@%RFuh`gFw`hoBb$?ng z5*6X|bqZ|=ME&Nd4tvF%I$ST-8k;!rY*o5I1Pp(v$ymHulydqqQD=1=R zLuG!64ypjsV^-QI-V|<)bu_)QpM0E_xHDIF3^Mx@0pB`wFtow41NhkB?=b;_SPak| zwKm2!E_l3%Ci!v?b+EeO>tb)n8ak-(Xv$(=c_*P$8$I4X`Ps&8e;NhLPzfQp`jPl( zz|ThqX1Fuk&U97l!Y$7^mi&juP(?h-*63jHnX;JOBc4&>TQsW?!WqMbQCm@wnA@5f z+!KDh4x>2=Aq^yCOa~g+!R7>~)@F`cIgW>ihYRB@yuA;7{KvCPORca-H`g~u3%vp8 zXLCH|K)4e>6%CPLHXfhW=A6yeB)3>FNeg(LkpC0=H_mHe_~w7?G;fGQ7d-ZUHY3c; z`}S|v@!#sB89B~^=lvA`PQTFXcSk2P0@lX*QGl9zkc_c`jUI10FEtC?F^3ytSd?Nw$J3hbus!C|ncI}UU zrOh(R?7~9RCk#BtIUhpnoWZo$c)&JPO0u`k?gwVT&6}(`jW>WYHq>Z>KsZxXo(o_5 z^gA+Ta;WTLGPq#m+&2=B^oE(c4ssg#r%Crg+l{To9+#O$XXK}tV|;mWEAfKdE49c- z?sXJ#dZl)8|Nc8VT+MrtJv$Dn!V1a+~}SZ zFiH&_gc_Y%!K;%d0apz;eIcWIlOX-QFOEA*S<|WIss?rt1WMBd35ki6;1uAncG%#< zO0`b_zA2>+%Jv2c=5)<0A)1@qRJs=dqW0oI> z=DjR6LJo8*2yP9*M~9l48o`5CEi>!bU1+ljqH=^)^5VsdjXqRVRR7S>K4zx<&DPy& z9?hB3*9)b3l$u&cU1PQFv>_TX&y?L_$@S1l%+jO^0)mp@5c_p8gFe zX5etZ%}v}c{SyppHu`dvo@Qlb9Tj5r7#3fa##X9oLCM9_O`_u9;2<^7kdUAN78hE2gIt3v1F6LP&LwVSLP`Ct zXkC40KcW$r#mxe^EUb{obDze!AlbQlTnx$#tZo>oP{iK!@)0aE)htt<2rA>NTe6bQ zh+8sR?~^p=jj*Oz#N=-^!xDg&B+n)&tSnhT4IKAQP$6BDs;1wrdbKtRCJ(Q&dQXTZ3* zr{`IlHT;Pss^%dEP(7`vt{#LcJJ|x#{ZDW_ZBCT$g8|EQfh#~S5uGSRK`IDUr3R7J zTOkFO2@v1x_j*$5IhU=|+eG(WCOL74-6f}C$58aQt3{deXMs=eGu7rY^NEv{)KKdZxT=0lR@#7D)l{{E&0Hhe`KTW!Dc%lZBjsL? zpJ#^#ZgP2UgCUUAcMsr!hWvBdvEESXkVbh)`ce#~dkx($l8g5zS*KH^o@(3s@Z%?a ztA7U(XI&sMA>vj`H7*TzyW)o2i6Fr5=4x#DhrGU2SJ}P>*3F`f(b$Tk8+|2-^#IGmtBEf}2SPxOBJ<9!e+hISo>Ifq_UP;9%j-V20{hW0R%3 zlnFre5jH!$MZHnXxeek-%YBKso?uu478u;mU4sGw9zA&AG1v=-HJw<^NA31|DqPqh zd7h`J$z6`dM-|0X#aO$Y0{6J|Tkc3dj@KRS)RA20>Y*1$3FJ+bCTA8=nBS0>(G#%o zg;D}51PmB1X#)9|Rf)iOz>AIRz(w6|>`T?}o-*Z#<%U{V$aKTVpfTG8gpLk5;A7$D zdNgLl$)Jqy1NKG}`Iq~~{`v|8v9#A=8-27g z3Efa5g!36bHa&JiztQtac50WXCgBl`ZF_3c!U z+TofALsTNarnVu?vX<-D^Q#O0Xm1jL;TLWypw!k)G)KQdTQ`#>`~Ob`lHDGxsJ(+^ z9z0M|YB!)8dkeGk(t`mT9Tl#R+RXv+c8Xh7@JnuIa>7UyN@VqF`)5c{(-E+&*%k9b zy$8l>LGSH$X1~vpqI=ZhUb|v+EGM;z^b^OElOxSd&mlhV+*3ci2r>h~dn&!f#=O22 zD7pEJb7A#V&{(JhA_R4Jl<>*i%WjWF4c|-W@UY$Y2WMN9G{=^IH)OHW0M$w+=uXzo zT_XWyk(I%WKJqSv!4rr1_}^+hQ^=;d?biN~kC^^W!vJTkK4nrT#Uv_ELdGixw-)eY z(@8u(K8uC;?4F2R(&3x_ect{R?Q4{%eI|Ws9$uDerfsHlhXjjynh&rJn$uf&cyn}L z517#NE;)62oc_4161u$hEh>0PY~pwFftfuJd9b{g@u5epo#?JY(ha6Zj~cH|&MH0g z14nLDD=tLBNuNc$(} zV)cTYiv{m9o`TtJ)N3KmZRYR_?@aj#y;WYyk0$psRmIKoAL!i?EIIe0y>|UpoMl8@ zrAs$cew`rO*N-yf!Vf1>h=~^IU11e{YQok!$uq&&ii6HBS0-bCJa07A@Dn0BtNAGokWPE$Hm^}i9^5ju!+aB?rlC|3O89)&A-U@4L`63=_B9*>a* z7B!GC81&75{r0iE+~JoYN{2Z4NMtO#>HYk=vnP<$>4U2bLO%kPomQ>~fCV2=Ko_Cu&}m}^<*)@PKBPlm3c~1{p2yQJp_CpMpeSgE4zlrZ4l%F&2Ev~Z zuE>J-gETH~aNUVOUyOnxL67DOi$UjKUS!)*$p_%clnm7YP^a)d-ufI3e2;%_I|ScD zAR43jwQJX}*_MJ2be#hPEBA4Fx0qc=W?hw6+cy=bInQGn?q-YKi6CoP@DS)dkRHT1 zt~=GPJ)PU=8yVO<7d%1Q8v1#U|BRl?CGsa_P5Z^Nroqa4!J~Mo^y6^zZld4eAh@?w zlL?6yVk0?!KM>m!@>T6Lcj3(Xr5{cy?g<(A_kbBtG?UJY5MmzaHiSrLEWpjst*ACq zo;+Z@@+S)q8q!D`Gxdp(o>+nV9S#Lw`_5d`SeZE~c!cReoXmGLs+Y%#*A8NUF1XWI ze*eINj6^F0aU8sDoc+qLqz&p1J+!M`>G}fi{m{>3L;d-qfr;+Hjr5d6(g6%&KDPIGu_4Ru!vs+B3A>| zrX$Yc8J!d3&Dq_IjX&8!EVZxR1O_~|5xOCg77mC*@i6LEz#%^xhoMv=AArz0T zS|!bF3|VT2Fs5_P>0))Iuw&|=f;6-+K;s|~6Qk3S)YA8ijACKfU2V62<^uaK1Y|_) zCiqaiTG(6cBIC6Wa@nf%3!|0c;R~7M^0?vyr?4_XTr8{wh%!WZtOJ_v34uE#tYAqf zKGUm}nT3qdNX7ikG=!E<1&XLwnWd*Px60AIjVSc@R{f?=R;J>}$%QF|5jO^{lHjkx zt~R1FYoZy4lLS>S;1R0s{uq!2#6O?O2+dM3XUBMjmqTBIK`Ux%w2L$Ze&<|n^udHY ze}uyPC>lkR4SQk$?k$}t(DVDp8}J!3s>|oM{S-@{%dqAM-6-(LiYC-_{3SPp$fYr2 z_;C`1ch(m^tl&lsVo?O%a1b;S7lTQX?iDs~M3d3$%}t^@6RxlcnRItqH<07yoZ7GZ zCcnJ_HAE7dKlJE5?tW{R2@9K8bqM(5;P>CBIS#0k2b_ZA>v=Xt`+BjP@zj{sw`WW3 zV7lM3`U+^|QLIKdh$1>7=uwV!05+#J_PH)gv_+LBc)M{sY}GTf2A-`@axwkG&?i@n zfOY#VO)~CetU#lM4V#-7XcU;MM?`yfk)N=H1E6mhuvYxGqDZaWjD?}k6Y?h`M zCs)NLU-|oIw0-XL?qUSXvY2w($T@M2Pv>XHH#g>HYJKZ`(k6Dz?xXjB)#R5A#=1cLvpx&*l?ly945siz=Fhx}xqEyW&Xp+tWQhScDd; zSHEsj>O)H-h>ZIiY~y4)%;aRzYC$drWVpgFq`s2|i#0Yj8bcBrf)NE19pR7e9yj(I zFfHHx%!@S0)99)7u>DjI&6%_&deWVx@8S?!O|P8Aq=&A~k}y+22nE92sQ!tC8yn6GHpV zaVzLFfP0$+7?`Oz7%()O#`8JtrN7KC`7br;`cw9=U=f)C-jRPY<(dSrCFN{X7-!+P zyGyZ_h|2a6So(c?{Kj#=hjXkz2NmHc1|FvKP+726uz^B>y3_}LqB=~J>=$p@B)4x3 zOvIBDAW=Bu)|nqa1FXQK!I%zt4}lgSL_lF|~e8a7})jyp2 z)-(^}HN!XxPn#bb`C;gXMmR#Ae0H#E(`5&x@?Ws3U%z=nB_ME>-a**_rD!5%-R9d} zFadvcak>Fw(LRCmAkZt0wQW{US6D4Tvw-U+4%zHhH8gKsp4{?#>P1TsO?n4uKZ+Lgo@;$3D6aU@{{Jug79}-jrkU!S+XSDoTUYa;x&OhiEnC zCeU&C>W`e1#0Wx116W~VV`U^1b1*&m@YpZakGS3th2M6U+8~OU&FyJ6PBRaCD|B++ zW-C2|UV8X~Sz2{9FPNYH{qbG1%KWq?kPwlJjd%6Num>h3C8?KNG7*hd**(2HKd#?& zhTAO(B2qAr;uvS5-0K|8dZ3p+f3piD(l$sDAf!(H^s)H%?Ls~u?J;1&~{b_gO z4f@3&Li;`|dj%wzW)-O3W~~ylZAnpebh_-iu$sq(zQ8@cSkBbnAJK?Rhef1bY5%oM z-2ZlZ$1uB-_9;$SoKD@QiknZ?zX54npVcOR$72@&1*U2HS~&R%Jg(hg>BZ#R?=|X-Ac0q2EUw_i7iBFsf_Q1aA(O?0P{DMi z+>Pgl0|NukU2bdZNZ}+V{x=3-<+AkXj*j=o4fOgq&N196gV|U4$|C!`Qn=h)Y6maK zu}M(t<4=MSKp|Bn5?p1slgM>m-s$;C6K@B zEx8jGB`oTFw_W;%qGHd0DFef68HiwEj|25pru)bNlVJkM6@bu~;WiPe2r= zp`3$oD?}8g3V!! zEwFUg`L$Tr`x%g~l&?Lo^I0!^gfPN6q9O;r5Vxc0kJC_YA*GyLuqCg)PAXohC%#72y{N!srg@ww%Jc zUYV?9MfyKUV|wGbUqbdgR%t^EN77>|@sJxuyj~zrzXfKHWoBc#`7)^kNpun+n_B&S zV>&mrkAa~MWvnR057;kuU#tdHfuZ{YR+1%od z1}=#SQ$V3qG4Gvj0WQeKYlDXj?X30leyNl`(E*KxF55>FD!Ro-zuwW0Dsb7+$9Jv1 zlMc3A=}$hAegKjz$#|X!IBAzuGF*^KU21u_4ea--qi(B8MtF0<-&_T~e`bwNucb??}r$;=6nl&?9F1f(IOp zuuA=Q{=ZU}d=P7}nT;~d6o+;H?@Pu5x^NdDu7=$5>7v9~dmEdD%i|e@EvStG9^7UU z-e1mCd>LqmRB#@zN*;L*7&-9pK0$I;+U!_91~o&f5zH#{U5*T<#SX$KnyD=Qfw1sO z=l3>47M)kpX^lUO58l(OSA2+G*~d`%{kz~t#`0CKoROsT|RdKi8`3h6RMM ze+^iRCwzlbjouG6qUL516ciLXh??PXKYsAQ6Kt0LeZ3_++3mh2mcLhjv#~K(>kNDE zte9mE{~G%`P^aqxu}^!kX`;d4sT4v3RadqB6wY^+5-}>HGu-wf0fb8656+WjhKbppgcE*5$@Hzcbwer_!qdTK zsr%u-K1eyT82SuH-xTPUVgqI!D{nZl98GCqCOtZaj)rncCnqpEtQYzi!z zf5qjd^&urFUA7FZ=2%THalB0CBH6GD_aYlBQLavRKf0;ci??p^*$n;@X z=y{r!cKhB#1jcUM%RxZsQ4!t?4ebX31E0BhNW32h24q>q?ce$<`7xkFH#Micu;J8a z%xr12P>}#rdllQ6ExQ@UUmkVVA`4T^91Jgwt|I5oCNhtYP@mDBs&$;jMha7Hgr_q z&Iqux2xNckGkb6&NQw3P&f_kVR9(-TRj!hcCX<9w&*_IvdEdh>_Y-hCn=Eua-kJjO zl~i52Iw~aBkKv_PEjS~Di`Q3|rzTYSWIP1L&^?%%A_t8Vr~+-w^x?@i>O9)=N$x6^ z!DyrW_@4a1)|cYcMt}(;`t_~UANI$o-S9vZvU^1Yb>ABT;m%~FIGx?|ibS$P7PylsRiULvMQ6+N-p@urNB8#Yc0iv|edy z6q4IvGJ5-v9Y-zFe_=NZOyGRT-tWF8Do(>c!T(Tcy@-f}ENALKhI&8#d37hmYhxqt zK@lPxdl&Hs|0Tp}QfiP16+TdknnI;Wz$~qX_W;04zg&UlnUy{Ovk}$1@j=&Ho*) z>!m^h;S82v)7KwN9(Qan@ng6h9-#!MfHfK;-U>y#a&?{V+Eo^{KF!Y3lx4~wml=`f z_oN{c45(CWj1@y&3_c_=F){RmmY+OSGUos(Dfm8p@WQXfLzhI9q`jCMEJ9pTsiGtvSl!$;}(Gy{l{28Uc+DL|=d_#1Uo9bNPG5R>9aLB2U zjEU6VJt4hxa_FkQaNbb9$BKuTm91Ef<8_si+uz$uff^i)vOr9|K9ZjSqj;49KMlG% z=jTVX!uFQ6PLR(#IcGCSHs8zDlI7dw`p6|#|D_W&UoMq&AFm*<)!gp?i%Z6Z_v*DF zN9=x$g+zZP7j;})n!))(LsL>TiK6~j)At!t1$0GwwNBlco zbQ7tbsQltqiV6yUQXk;AcncAuiKw?T$jjo3qRHXkAVx7zs9H&q+B;7bJSQO7eC50> ztr@yLUo}pXczn5*ajNbV_Sa@+GTNFpe{u&?@#9a0_TAd7IxuuvwSB9i^0~+Gsg<5y zwu1lo^(pQ{cGGW1oeH|raY<(~f;-)eyBqxRUF%lLZ&M|9W`^mz3g7UiGqjylJJ-*s zs7=@Vv@H6|+>cQK2>^5oxyW#iHYdbE%6Sy1uC6K~QX^l>8hhF{P^t3aD~Uat78{XY z)6sE{SH`8n2_9B4;Wrt9(%e#i+~ACWA%3YO!7OM7{gKuTdM21CfAo`Doi#3q#Exii zQdq$tbx<)VE{+UxpZ4~4y1~`=e~>gqAczM6JcRFq<(4yVYbE2peS2YMX6CO&^StNs zGMad~v%Nb(psaemI#tujB;3I4eQVV2t|_%c_jiLC60_})*0)iCtUqsuAa}@CR>g+h zruC|0+TLKA5%IBJ+D=wN!IhFB~Dp0fRI~8`R8l&o>X4mR_Z!mU%kQ%l6^C zuy(bww#IJC`H?YnD)Zl#KMPX7Id?ew9d*Z0nd_=_AS+Yt$Mb!c?hL2WrL@H#%&was z1Y|BJS5(p$N+$fBFWGcq`6$t^6j4+ z!zQQt8ewgu z_>j%{AG!WHlLdit`}Gf=%8=$?1(68dy}RqCW2b#0VeE(+*XJvGsdKC*mXRVMOQ5;F zN20N2m)!8K0acA+cGJz0l)NkaCk~O&Wu;A_Vs7UT;x6ag>;v~lf{NGg@I{n?# zs_S(>9AZ-`3z{|T$&5*C!J5#dJu41Ah~H(_qLkv~Nl=zUrF-<~is}K8Mf~lNkY{HC zi&iSugIZ-_(3;w2w+TDwKNKw0o*fbs-#D0T1#?M(X1L{7ZcLZkMoA41bdWh>< z8m?BxxDYZTXgI`48x*q4{s$@G^JkAj)#UTy{=?{$Z9%C|4r0POb;*UGa9qeI>ua{h zE7aCm#eL(X-G%y>V2L=UD<~)8sZB@8dxiRQ3nUBPox6DDSD_w#mr*0-WNc@mTKP%n zvLYfE@_xG?)~_2#Zn;D@HBLNWY+6xh*0|sHCSLPVJ4v%I6)8~|i*JzYf=zUAi^-2x z{)I~YwWlgCUKqQq-PAl?QH-o9kN=CR)Ju4FjHAQu`RLJn{c}nr??_=;IdwR^w#<0P zn9Xu|`*gnHaj{n93%*iB<{c|OUrujkHV14ih+vWOS-b{UhXl;S6+cg_M+ z1~1v9uI-Z;1@p$n1guK7`M1)GagW^XYGAvGArEECTe{yr!?A29ot|T^_^U!u6~sDkw?y-8Ft8Wh>-lT>FIE}a{`_r5Yw>;F z4|BSm%kqw=f#0pFE?hWG-znB@@sKcRNN9Vb|LK-mu2(ZEa2enYQoDFux$Jg*5s291 zBJO=AJ{Dog=lh;$b&hzEIKKPbzO6;?%q7h@zn+gz-fWn(T;6Lh6Q}#I;#_WUcQW(g z?eEW%_v}XQ&eP2f^by`EG!sBIa%;?Dm=U;6`RB_ARvtYk`f{U8`$UI;`q0E6 zP=#pBnYz#3H4^C!(o@{LzX{KdzihJ{i3}SWVBuzL<&0$A7sU5`IFp~+=HibXRpnnx z%W_+Knfsp)c_k58cjp>e;U{KW9UYI97TB(m@%h-V_+_$lvUp3hf$QC^?Es~eWB zjeS}~@d4}4D?=)$mft>0BcUauB`UKZ@?*gvChsbFbat3}HOZ|)_47CN0#RSChYx)| zgV9xncu>fa{Xd^jBE=bxsFGss0@eDr_H@tA{G%I{k^K3;*zQhXJ01$)Rju?f%5#)XoHWv5s6&_}ea`JF=ewq{%f z1M9WSjA>YleUxaNTWueShoWoG*4?&MJz=rRx0qipZrwt6xQW=)kA4_nc}@?`wzdV- zUFwsV|F9~_R`acI`xK9g8{MBtYqxm9q+2aj+vo{ugleRDQ&{R-g87DUI zD^H^~O!C_}ouvA4Z*y6~!Hcy%6`QzSgZHM?gsqeBS6H^D_V3~j*NXFsfq~BMWzq(i z)#E+CwluDEi4!J1{cxB( z6!e<-rI@>Ka%DF|zB~WgGmRJ8`(2;8JVG+cYFf|xdUVfxFDtO?6tv%+xS~3){y(LC z1yGgkx;Ci-0s<1!pnwPxlG2DEDxo4F-CYZi4ngTuq@)y3K9m$G=>}=(?$8A+Lb}eq z;M?cld!I9N_RQ}L<2cLp@;-IvbzRTLxUX=LG~kBhfYUkYxf$N``tIF^=2GhMmSWb( z8T=gF%&M2e1ySFdmo)y^jwKEn>RsjMd7I4Ua?5G!QG{9Ijw(kw?m(_$`kX(sTpqk{ zt9_L>!8|)3=c?bTK1cZuxq*2{8nRG1nrtP1h%4H`}~#eTXnW2z1h$B;HvINGvCp5MzhYO z55O*1jo<`Bd`*m6F57p1P}-Z7bNPIEEOm0oC)LES`HOensoDHU7~{LB#TS+%X(u2O zYw;{w%`%LknI*3xjN^KIFuL$pjOp3exrO=kftH3pebBL+9yex)?G# zQm8&dA`^eh1Rt6ii;#c-I)Rjo%(1o_x`1V_+A!y6P&(9zvRd@Oq#Zu~_?c%;$J~uW zm|$w0H-BE1XV=lNh+~j7%Y$@qpe%N*PP@sDwrj(yjj+Sm*+AUAo5zi$@2~rn*(zdx zjzh&#q8f@Bdcz{NODb|PX~kT53JMBdy?Uj+wz<4)J>hfWmE!)Jec4&GWXyp8z*bNb zC+~yS1OQ3()=>4tk~oaq+>t=d`J|kx1fPfP#=vfv#KEbzvAYwPmRxG>eolhwJdu$y zGcEPyAMJ^zKQj>wv|Q(vZGGPS(o+Jg3FE%E+Zv{F&i;&WDR&}LEN<0Ag8YCn05);Bs$hzg?xT#Jf?ehl0*RI*3^pZdTz=+U2U@1s zsA`7mKArPvzdv>KX_Ut%W@FrJ<-S#z5}^49!AVPB`RpU6gaT z)`m1X^EBssn(f?>?&GXcetuXR8yof_$&{XSP!$Cvn!LO`qmWP>vBd5RsMmFuyV#{) zh2?vza94+_jDp(PZ*w@xQ`FPo@X8IygTiFRDM9y%B-25O*SdqJm|@b^iF2JX&jS}t z0R+ueOxe@}8sOUk@r0R`H2`b`DbP%zCk4&Gimd^yr#YJavkBku8bsp}x!>?I43QRO zK`5S4&zKu|9YiJEO~t=4v&$(#kZ)H00BR8Nz$1jm@*~s57DFD(YAL#xce&JCO0#@@jBScxjUPs7xp_T4HcB^YKLk zMC(m-^smv9JV9SqOuo(-LEop=;x<_8bf$@U8*@dTn-s;wsKy!2nk!y}5yu2Ix;b?b zCuT`pY<$ig`V%gj7)#^th163k->vGDCwfD0*mWW9tkY%2T7 z8Wob0smNGWZ@sDdslw)*^j&^VI=`*Ou6)+57qxaWMRMr#?fQNN`>uNM!Z2Oe*O_ko zDuUezD)o!oQahC#3ttkYemI8x?BgQN8^wWmV8(^|x!-FfV+H-81BR)KZ@OrhQsYX8 zotgXMucr_d_|{>E$zQ2mU!Ij~CKc-Dc)_B-O&qe1|F6U3E}6?2p$f=pD&{A$`pu<% zzY_7si%@;DT5{B%ZSjj&&USl9LgNsj(d{V23u%t?yaJ{-ZhkJh?x<*k#V%=sh2XQn zf@JvWFzuf9b92_`x2o&>{q4A~wD?kw*G?%?{pxh0Fy@}h*u3V8u3qnjdh8iV3~Hj9ZE!nxGJg~&qvBGvYF?kCk= z3Lf+a%e=*@LlOOk^R_;a;^%# zi4^|hLFRWuy=MJHTh&9AwEWtwz1~*N$?7CZ=c=0Zq**c7t(QYwKa-BhVSJ*eV_TP{ zAaJ5OkNt*`5obFmpiG>JqrY3jcR-4Cgbl6qgP~FC!n9*om73&7E8}?o*J-@FZhCY7 z&LMvOy}IDMQ0EJ&BUYyoPs_knxAg!@yszg9el4-eWz*GyzYbV<^QKp;2G%F}PE}o) z<42tuaxLZZ7hZwG3vIJ*R(g2#1DEpWoH?s$8@5c_V!7TN0TQ z)_QQN6c1ucV-O0F2}uV8Iof*%RfB#srV+#&Z7+-1>rK|S(! zB|OBVAqb6X4`PhwtrJ#2W#4~RJ<+|Dl9Jl_Dw1_=>sKBg@W6HjB74hwQd8?6mA`0% zv2eT?cER66ua7gPy0thw8hys_TWP2+94*uZoLgIeYOSSrZEl$*)f7|o583+dyY0>1XtU61Q&v#8M|z?pk$oNOy9Tr%y{Qj;ZDXAwe z@}m0Y*S<9V5Vu)1coKMjh*MBPY?sOCNmJD8R46!QP`sQd7x1@CjjeB4Xf z%;4J<<4aG+M&{H^ofGbx>t7dDUNv6(TnhyzODE2~lRsB#NO=y_5PAk+0xa}lpDSU{ zqUTX=@#bId>G*;-4Z>1$F1*JX{Fz^YpQCkOhnB;T3|Yt zL)*ZStULX6t?kFtF1iFK>Uic6+(S_j!myyA_?V6al=P0bX)ZCSy;BlpE9SNtje{F=GfoLRy|>0SX}Bch0KL3Q z*eV5E@c2oC;=NlUcI)fql5qYE`l}1P3oly@AgFj4mixz4sxQ`I*C%-QI(=G>uY1D~ zo6l-TsOqdb{o0CwsYY|#`EI5!JI&w6&*om;`x3^#@S!?l=j^XXL`}_JLtS%qP^=E_ zL(11T7(O-`D_p1VBv0bwkCS|Yu2#%^;ab7EI(SEeKVyY^gvoP`Pv+_~PKt9v4DEE= zq8AGM^S6f70&?je{4RScuWZ;#1{b&k4aT`nN+c8idF(}G9BbP-#c zE~l-0xQmtKW{f*H-P=SQMW)@`t-uu*s=Og-pg2LTU0TXN_2iryy?hW$L$~&XJiNuF zjChuFsY z)w$an=Cl*>7QDSdpK0e~6+}p!NGks^PTv1H&i&mU^}40-C^3wOziqK7Ca_LC=`_cG zr|kR88g3cVG?9{1H0~14qJ7kE(YgXkEO|gcv;1cCaO&vu(_$@qdAC~5JrDQg8>$i1o!NIiMz zX`5{8vUJJ>?~A`FW!gWtLAR$cB<6eDW5GNypXSu)ljM)QZ{F;lmCe_f{(_soCfK4V z#IH7A^FyH=L5=8`#c(xQ$-eS5!H9P zaZX1t=vQ*45pn+JUTc@z)dNEB&f{UIKWCsTmv@i<>YV4X#O|{VpC7Zx9X;WUMX5s> zh9=EU-#c=zFZ*e9Z)a~qUiczXMGwlsPGDxhd=1xm`GcEQ$I2RV|4w=u&|OI$G-@sx zd{xV!?`6hc{1R!fXHRS9Q|Gqgny>LgyST!QM%AJrDRF_vbc-rtk-=@E;@{HU9`QFW5N*3$DpK1Dm!`C$^7iY$+U0D4)seI!=Z;X^D+E*@BkQYsOJQY=#YQo{< zV(Z+eJK3hLOKCr_3h&er;dAU#pzyA~^kRb0V^gEN`NFp&Hys_kjGzfDF3iHzn`49M zt;~WB)Hu$fksdd3FVD6j7lW++ixc#|TWf;Z_r)1)+3yN+sffGG5#r%bf3TuYlXk^U z8C|F4@YbviP9jsNMBJFJowgM(77{N(K463~K0&;5eo11*#7X^g8!oN0-z7^|L3nJA zCLnq*-Z-ze5E`w=A+@Xx0q;$RsC0si0UoBuH zvQ)~50&fxXn)fqSiS2#tDX4gJx+mBxZxk5}Jt)m47VfMsH`1Twn{uM2{$kPp>DtbN zPpZZoKR0`?6xm*8pg-*HR+u>Rgl`q2==Ry9n-4;(PL^afBuMeYD(~FedeEQH>qS(s zWyEez!Gl2FHT4!(8N75%cxou0IID3uxsmR(`UzlEd7XdbF0;)pW26c}CltXAUB66Y zR1_lxSZxzq+?w5F9Nh@czU8e>6u^X%md80fynTpb6)qa=mRAdn!Bbac{NRO!34mvM z?bd3+<50&=$AE>6bEk#A261X#J*T}=%W%fo3l+oU-r9CfH}(Zqn%lYfvPd=j^OSu$ zvX`IH{tz>E;*>e9E|ctJd0RXt(>M`n>3SuLJ+(OuJrA#^9u$AHrJl}T_eLDwIUI3y zP8u?B;;cVAxI16fUoxTU$PrTxH9yYlcigoXxftFroW{FZ-jSJ`!}SdJ8M^(4TJ;(1 zR*>t7k$OUpRGz`I4X8U zA~|@oJyO^Z1lu(4tt zx=lsTZ%$4AOWFgXR86)eG;|N4#_=t!(_1dF-cH|oH+@y*kpSmWrrM>+c6f_{Q-``%b`b{8rfKCox zCvg0pSzG;#>I|)q`xubPeaWt=Iq&sp&>~RpUP3z>Y%_d`b5UtJTRSu|4fRQ9l9#+{ z!bj4!U-?V?pW$oxNx1xZBS}Ctd|a=auHF1Os9EM;dU>Z)C-6U}Zp-$+f6vzMt%<3T zw6vlS)fy3(%lE=hy*^R?XtXSHM1veSaF(_ldoD8e@x)8(pyC_I*I$Su$F=SU@ z-CE>pYqvtmr&A+&LrI=0Vw4h*?@q~C$~cdwfglzR8(&j_Vla9G9f+*7-fW+rP~3U* z$L39!u7uKQAn=sa3S+X5E+if4s9#VQw`nk)6Xh|`tzjT-aLxIChEMNtsr~v-O78W( zOy$Q@{LQw1ex61H%mMbrbc8OP{_h{{{<<1ZM__UOV#j53!nt)ThQ&$s6B+`FiHRM- zS)p*Y!2~OFE*BMac*EReF+whv?VoQhKT2F!UNfzHR`MTlxSr?i9Rnr$A%w$uJLBrw zp6v911qZg%18A5%k`v;5;a-vNn4Z43-cV5=bgufs4bZk9x%^j1MnyJ9+w&)r`dUiZ+#x9n5b8MIU8z;n@!_zv^bV%M~f zP;FLafZSKj>@lDIBeDKzb}UZJZ1HcgudVJmuhxD>!`Q(zu$F#HeQ{Q?R`mW}z>Pn4~+9fDL zZevwq^0-U3@5__O*~JJxt83QLE=7{zpjr3+I}g;QR@iY^7CD^Qkz&fR2|)A7YYT37$IigaO4-{ou{Hnz{jd?FOh_>qqrHT`+4 z;z14eUrL3-|6ab~_Vx8;p;mwNND4^jP&;O!Rv9@s;5#*D;$GG+gD&?fH~Ox(4gCz` zot*{VGdg(Q-*T^>*1RK8L4)*7>#Y|yq;DLau1YHj9e1*}^R(@1Z_fZgxQQ*s7KJ?? z0QqD0i8V%eO>PHN-}={rBcXDh%irb3TOxUSxjWsK8s{r&CrH_l>7Yqt}n7Q z_r_eU?c8m-|29t~j)f!d4;;IZCiz49JEZczu@~E2{3Aln_M4~7=xZL=+c<&sJ<8KQ z$XJ6WR8u97_O2>XrSWObA^GAyE-z{5bn9FjlVIMsr@@b}vxLSBBR`zO|Z;C_0v>V>lp zt4A*SLWJ@0v;8tbycb!@_ilPTR_-O}qsIjoX;CxN>ZcqNl%%x%w;a9h61)^IQ79 z+za|zB2h2u9N|-rzdto8kP1ZDHyd8a4%^DSIhK!N7e0vYX&sY0wLvYZ76aIFxs9qU zAvgBeVD1QsysVvWl$_1G18g-vq$@Ud|)GCdyB+u zQ(}tq#m=hVR&>oTevxMhXCvLCA+q9$&@!thJmK1}Esir7ek5$y*}()2EqY1sBqBNy z`+7nldmsgY*0Yh*HK=RwUJWG|kvwcBzjCuSEFRIDLMyzIU$Mw9uf4;^-Z)c7We@B}pC< z4~4vmBH6geFFmwhBkITK^LJ#@Rbt`?1zzCc;e9jj!TQqw19(bYr7Hk>1ko&l@^K|l z93ILykO{W59W4(3lKVXb=szl;N~hdF0Wa*MlEVbxn{ZJXX(CR#iww$qjq|h6JhBFc zH9#fPfdu7KY6DU#fSp4uv|j;g!W}?M-uBq$1euD4h6e356p*C2=m!D8j3xryEE%gy zy6t#lV-TKBqDMhWglK!eVqSyGuB@-+#z0~Ap{Mou$%`ILZ#%$*Vko4D?fIpenVD@u z+s6?!&;IUCaaSMS;!w-h2PnSvM8%#ma(;1YjqgGLfyM{ z8^TE=MK>H|uB_9A@%z$h9)CSa|3_aZ&ZSD}3K>~__3;+>IU?E%HNf1F1$eRW^WRU` zy_zB!BFAmbe!OL;%qg@P6{H8KG!QuZKdTynEWyyqw&WP9l`Yj66rFu`-5eY?QYZ9a z@#c0cO;;CwrHsl3KM+31 z$jm&MFO8rR1&Tpzb&e#^v{)75A00wB?4No$HKg;L*RM0OuzYOzKl@_fesXr+46gmr z3{1J4Qkp;~S~dO2wo+`{b$3NH#>C*=Idt=gxY`+jb z)*R!ikgPU$o_>94GQHw?r7c-YBfrJZS1?S#xrh1`TMcr71`L$)(A#8l{ku8_0Y1LH zFs*R15(_(2yB`4oP6nF0z`9^zVevofzM$}1pNv;**}2w~dg z(GulEDOjlnhgUaiSS&+lq`(!Akr`zOIQH!Fi(TPEdOGICM$!e|g-eMd!08y?%1$=4Q;! z?DOswuXAh6-s3c2$z(J&HM1nHYrgwGn}Xn_2Rwd3$Dz*ALrslh&FAQWg$3mr>d>7! z9`x}Xr)n_MXTib+Y4?E+DQNj|Z3zp!pqzFRxeesRWKoxeQ0}Vh{lGRD-Pl`9ja#Y$ z@_HZO?}1zvYe7>|&E7HQPVmop;p5l>7P|BzU3XJ0l-%Oke0tcrlxd?`VC3Zf{hIsA ze}3JZ3eDHd0o78nOP3z~mP`Ry=~jGxK94y2Td8LY1Lps39z^A=D(BjZC&JIH1C&)j ztWtNOU<7AFs40R@i^(X%xLvs9pT8!9950WzvHklSawlHniguVZ%Yz&dZ?_aCm<@?E zk<7>S7m+%77}T7gk^Slwj^E3d;StQt^ch85Gm`E36I=M`0(wwt4+k2R!t8zK&w^6_ z-^#qJfoTK8Iw6RGU8bO*rn`4{%o-$Xw0(}Y;Bp;txqBoe#OuY24gxP&AEnC?3fhjf z07byc=`snT5G?2$==vAijz5r=_RY%mWMXDnwCS3+#870scI{PA(1moPprG^ClU2!} z){D{o@gXIe%=MBiIEc-4)Uk|OiWu6S?*T2Lk)sCES`M`~naZi3)bn(QR-E4nSTzL@ z(p-GN&b+D?Ta=oTqU)J91Z_Z2J<*yjlg)7QoOaV4#M*uVWJn&H5q^50yGxDAG+ziLZMOXq@SG3CiJ$kDoht%xbrg>jEM zh6H)Un69A4%6bKWP#)Jd?=b#+P$w7Y7TI;1A@aj-=iMf>QraLm#T}{kkpv7cND*Z2 znyG6ea3{SFR`ep;+S<}Ve*xW{1_7Re=SVf>d*mcS`(KJCKPl4OQ2pEhG}_31%a7nJ z&#{uf-q`(8v zN!P{9mI9;On7Xy6dS-vmv5>wFd0)gm!_fY1pdUl+JxplS>(|njmX_;X&@`6?5-Onr z3vEtHw~^MptP^81~xF1J>rls4Y?pMSPBE2v;3J6%)!FaIF!#kBdB@6d|XR8 z@V#-~p)AZo9Dpl#8!osLXrTY@Ix7RM^PNVZcMngovm_*v>8HuxfAsOXp|Zr@HONE& znlfr50Qd@xug3SYn#Novy`Fx48Vtmd@|%G{RA>yXYb9`s^-D&9v(5s7zVHt!x~x0l zKuHJcSR{Qq>=qCmUrH+h`Q{h^L3{AO40=in(VrncNUdEH6-`8YTAQcfa&AbxrL=EG z9f2mViiXCLOL$R`Bs%~6^bHVF?}Y3+(QuBf-~DbN_|w|aVFH?;Xq^o@x{kN(Dj_Hz zkTC;5I2`ErFo9wlEmuK%?#NHG+N3}uMDO{*e4JiTXlOb_a{QKkLEx5V4jLO8*7{VG z5nKK0WFQDk=Q36cB0`~ddf%Pc0ezG9Am+w5+wpe{-n+i7(QJI4yK4jyF0gsmL6`gO z65Njd9+SIb4GZ)y(&3b1i~$!2{YE4t(m=Wgac=qbBhX@XoDOz@wF`z0J9UChLGI6_e z(aKzZ6`6KWgZ5VwaI;H6@d^Z)#fOK7t;b3q=i!I!UO(Lnkm|zby#%URFksC5(G@We zc!E@wl$N#~6fX8qJ|_>&&94JVcMNPt1>D#r^*DMPczdvJXcaEdt>f-NfacpU0D!=< zZ~}Lf-)+TfRE;9hqBiS@aX6ZsA%L86aGl z_kSjb7st|v>#W8c+HL}N>#eKAYW0aXFczPQu|k{(HWt+KT$ersqDgufqa}81;9kH_ zkWo>!0PX)Th?Ed?0PFy#8WbFi8KS#)2myLaS63$JBLF!xzaimngBaTFv%@Y#-`oQj zCD3!E#QscR zJ%Jd1R%nXYm}{Lm0KM?ST`NdAoSg+9{Tcoa^tL05ai9rOq8b!I8JmkMH$w$e%E{>u z?xb>xSi(c@%D3Q^K|Asu2;;3aPmUTEX!C3rc1fVmEqIw5>bdPeID;E_&Ve9p23%MS z(h?O<%kDPNqTk=*8E5QF9$Xou1WKZT#0*@vm-+bkLS1qPvQz>ggrJx_DbZ60rf^bH z(hSO{e0KZILoOy}=Co2%7&35`DvtM&K8bl?)DQpkD*L!=L1y!;#1=?w%Tr+eoIsp; zu3DJ#cohUq3}6AWbt~UN01HRpv8NWOO6)?=!cBEBit_O~*inaFY7FE&v|0*Sd9=fO zGEYk4h)zT$YT@n)28OPe#1iuGtCcdNK@ovMNCxy@j9}^@cv%PZ9golP;Y0$H2Ldx;gSsB!z#*JH4f;nVfrGl7Ls00*9>mO~BFAM=20 z!~h3#iJo4`$%)@(3~^p2;37LcB|UxTm%OSUFEFvqhw_<#HCq0D71*WdV;xQ{kOsC8 zZPVu#7LILFAe-ia05TZmyW2o6MDJF3K}-N~f%>dJkggsBRUFc&CKY9I)m&@l znPg6`xHc1~3nZ^Y1nnloAi$}Epypy*zSn^>`cfWW?DJgisb(o|0gI_VDPYzmD`K>C zK@t@d&HZmXE*!3Su_?sYz|bv*@~3e{-^(^6p*N-8t?!tSi=h)&&>0E2$Kcf$b)f+`_nf=#AJ?^9h%@uPd++y?&+~jHLPbdq3*!j}1OmZ&^-@|50zveLKoFME9)bVi z9iLwZKLlK4bX?T!EnM79oZdndO`!(Tw{MvMo)4s=#P=)tc}od4&S$v;w~>C{>$_4eEoyJ z+lNx44Ga!eTT|M%o)O*N-Ibm{uOf`SzmFJ-K%rKp_?VOwf{xFaWz_1a!c2gMh9;gV z>QmvoHBw~9&CNYlZY=iH;#IxV-``v4L5p5KgNxYP7&N zF6589l_}%^*=C&=;8~P&R5NvTb&a+8cqwFxQXoCT z{5HFPJz--xk`@5A+vvpLdHxqYNj~J$Gkq-~Q#8oQ=CG8N6|)8_A*JUw%}|C286_p9 zW_cW?$de#coU*!6=TVU`N)gX_zNOwM;#|XKHwRZ&8F6ulshL?qQj+G`b?roz-~AQS zY^@Dyh-5&ie*GdrfqH=w>}*oISR^?;9jnnG7QCTA)@)(Bw0=>tSgW*1%c0ND3wCOckDU}gbE5H{hV6 zf}5|DjsbyfrMu%&Q20!o+s)PWrrNimXB}IPgR^RAXz1wfMlx)2>71#yv={Q5j+-gc ze9ER%0Xf^54ALv@`}!&|YvRx0Q9l(OH8sT7*BAD1cTv3OUfiB5c6W;3uJ%X^-<$i2L9{UukD*D zAV<^2euOfr1QS1hN<&P|&A(pG*|$gZ$59c7VUp5@hJ-}um1+^lsLt2fr7|bH>`@lI zk{0&8Z6F~gX7cp#h}hrX*W{9mdBTAGgy-Ari&4>=lHaXf7e)OG&F;jRKIbz<{U=+a z#M7nvOc{c%^7D<(1-~oJ#B0{pF++q6gZi4BHX@lLb6z-aDpbB5{508j^|yMor=p^ws2{ihArcZ& zud(lyjIhsj&E+6Rd$^I2k*T+L3;4+8cc#qn?Ck7SV0t~zEl0xj>)#XNJ9doSVBRIvP`zK*sU>?@Uf=YHEYaA2lup1{v?Gjbxcd1NQvlrz~W1zo<) z^3`8&T;E+RX}9{W4?v;*Fc3??i5yk-Q{tmylBhiEt1#)dHiRrPb8)F6Qxg#ogy&ou ztJYah774X&m6WilGA2go*Vz_&mVvFVzUF8(Khy~&@CS#_Pv~;cc2oAdP@M^W#m|-* z(1X^CMeC41>9^Or<*P9d{5TjGcuRf{ch;l5Jw4&dVs|ynkq>vbq7SzxLVfqA6Ux1e zieJJvHa6G;V-kf29ck~%sh28M>kO2nB$?q#!Xd$YC8X5_}k#;5xWWUoK5Awa(7<(X`a zq?7R3rgWN3YPh-a{hXLMT2EA#EY;HX0SDxznYlqG;>m+eDGbsKnnJoDAsL@7rxj+5 zY)}+2M-B+$lNkp;^B%`i2x;v#HV==FWlO25sRbS$Iz&^6QMTV-KV@ZQEi$4K^A-NY zZW#IVrOyMC~?E?{stwR$li%A1X5 zh+Ljc8zX4=y6tIk9UH^Uomz30FnoiuE8*J#~r%!N;efjcb z$Kgu14ezJ&at`k2&x;8IrrW8&BSA(*T|50VVfE{qYHj%=tS1_FTbrAq{ghsqz(l*j zDvv-A)M%!?QJSBh$0Z;L28l=0%NK+QtJ#`&F{TEiVCy)dm(*>y$FFS{TS$f6_oda; z@F3!hi6-EpIv_g|u^WW4pH5p-ehi=_aLq1Q1vNeDLF3oZ~X5%h?Z;sW@5r^v;85J+@p%N+riHwWz? ztNCdNeQ*MyU^P)$v=c|{)?X=I(Bx>f_ob4O?Cw;lJ!v(lcO0CYy0ndbLL%^)XaxjF z;gMuqpsAtZ%~+O13YXaR9^uH1!8!1NeL!=fk{ubIqhb7yw7JW(J(QkL6tzA@Up_R7Xuj?S)5RaGw!yK#=%AMQrC$pd~&bcA73NCKl%DK}~b z=T`Gh9h5+*j*gC2GgSZ2bh(XO00|JQ|2(4E04V4Jbkzg>` z8{o6sAY$p&SOqAi@|l3BczAwZHkUJ4+4c0&dw}ywqXrtIgM$w)fg%V8rq`lqqTlI28NAKK34;x5jo+Yq66*cx!Do(9LYl60ca;qC2W-rnAv?)wHXPtPe>JE#;F&SR;U zd@c-YwS=Y3$zT{M;o;UB@Vst!v377^T>3x-oq0s$4{sx|L$wj`p-`v*$$$SHg&O>t z5M+Yz61=?rMhAlT|J%#57JJCHF`%*qA$VnH2SWn4Bpn;veOysmRa!y<0T?ZH0*SA1 z9Lh2lyHQK{*qDkM{`{amM}c^Q>Xbwn#<}ivWq2`eUHiMj z1Zlth!MED>VEeCQTgm5YhCaSClKgN>TTHX_wJ-b}UTGX<9)tbPr@ZCkR=7`|=xNrI zM1nh&rJrjSYQR1B2xm5JPDl{E(Pq;&qEb;Llx3BatUKkdVRLwpax2Pa@%X4=^C{_# zBd-y%JraUjNoV^T-bIz1kY*Ttka z90*G^z}C*g6tzY%Ah=~p3jd4rP)keOgr!R0NL!41Gh)Fu=Ra{eDMzMWrG;;^!!6dZphYsyu)w+UXq(~I^)DXx@oW28 zSzL%^AsT-Y9<6`iPYiE`Tp}R>^8{yKcg@lnLPAt3>TRiXG$ZF9HtfnMZXIwKYoTqs(H*dhOLV0oX0;ol9vs(yHOfYXz?xsIM4X>-mY9hkH)+>dacvFH+OKc2^*mQ-@>l8x^*fq5`KR?p?_LB zn`UoWY-y{Efgud!Z=ce-rTyqEzu|aum!JTA5u!o4w>$X@N4cgv?0t-njZXo#K3$^x zp{6Yv=9LAi8u#PF(+@s6=Ne2ezSB=B#f0xr!;juIhk4Z-dbo1ErsMSjUl--AW_gH5 z@u5|-3Z@+yqF8;CkF-K*yvcsJ8_D6M)?cyYFkL_L?xBETkUOE167aRKg5>fu#QQcO zEkf)Aw*#a0qh&TohdM()(zC!rmDD#i*k=`uMC_XyqxvB;adlmnROhBE=g+OwNAZ#L zAL$A`qb)LnKgV9MC+xK5K(Pn2f%eW z)Au`3RnKpZ4m&=@4-R`N8+jc`9x%Re*vD{7Z;Q4}rs(+b%8V%=*h4^%-{i8pVH;(xhA!$?!h7vo ziSnJ8C#98(u>3r#2AHXa9I&(;z44vXmre2iqUwnT`+0h+n(M|sZvsNuHtC-*N)Ut@ zhwz;(d{hRTqMCTFli4VHn^_5mK7)7_|$NFdAK~*U_Kv2bW%KJusGqS!M=YsBQ zRD*Lfx{$boChHt2q(%A8%3Y{H>KYo|HeGBFoxX5#k?14pqL7X9o}qhI-|yOWE@r zIfs0WJ^NFg&yOlg!?nk)v_-ITW}FD+FNvvDr==C@2TKE438V@~HYw+`Vu;*xo)?Mw z8ha;R(>#Y-opQ|553#D-zsHE7_iUF#uQuqrx8mx%x}DvYFTP@)ilqf0JcG5rq2;Co z3qu8dxuWnMs$@yL;^IaF|DgeXY!PH<)vSKH0igt!a65GBOn8j7=6Fzs{mnv?>-JJM zW%+DvJP{2gtjUtjyYUaQMTwGZm;=YgtivEovIuG7#?Nm&eb{ z8d=|>U1;WJmp^`TT?E}<3v@8%?P}3f`H}a@$IKj;=`->J*(_erYTbzjCv*}6oWo;0 z8R%O=PlAtHSrsLSU+|ul5hQE-6242&Hi#YU-DptrKD#L%-5^TJZILw2vagOGNGh!I&`&A5{ZiV@>@Fj&Xl#QBFIb%`{TIA_da;`WlFOB4jeG}-AKbx zsK>EfJfRzeo*%7UnM=pAzZ!(8l~U#r3V!^gEvj8KsV(Yvb^~H*-s}&%s2@+WSf*A_ zJejA;}au zwkxwOV{p-mwlFDnrd{9cn2M2(%`_tK0K0P(kJqp(Z*EGz*ZW&M`p(tU$~DPPYg_u` z?&-IN{YIN|?d?4o4tUfY2cOE(5VPDqbZW8$h5bO!V0VIj zOIyx!3M`N}I!h}6|HH}zYkbi;t*M%;UUTbhw6H~=xSUAyj0-m6cI*2B2}$2P%icKy zgE8le8G;oGj!*OB9A=~sZu&xmLbM3%8MT++xFaBzjRY8t1oDl@BTg(Io&HR2(Q7U} zEx$1;jqlWDUp_s`-6oiLM9GfvjWDSyt7Jq*h{ybr~hy-oMebputdP#}oGKl(Mx(KVOWh(?zh zsLH(VcGw^6=rop;I{Y}a;xv8cZEhCQy0MPR=9Flm)P$_%JcP&yY7!0CJ{!(zD?2A2 zcIGsuUebv6r_Pwr@rqHL zF+s!6h_&OD=b6A~Wckm?+;sN3`IFX_`#+$kcAKLU73O@S^K&GA^lw*Pl%S$UnSmEn zk#%nJ(&kJ$5WUW+LKe@Y+b!ZDO%l-KJsIz+<=Dp9(HsgaG zq>oCM-M z7iIbW?nYHdCmcW~lEssz0MwdNiU=RD&A*5Xj+;eis>V3l+nktE3Jd=$p3Vkw-=B{F z7zYBx^K2&s@Ep1VbhNZ5M=Am)n;jMqfABn3&9wrOKwqqHd4jSG+H@!(AxeaFAb`O& zy`BjPkpZ^FUp^0XKF9$6MTP(pDJV6S4AQZ%K%re`PzhU2=LYN_o`v0O1jm{dYSV&MDtPB|){V9EdoyQ88rvU+n&?zAsax|Xk#U5zqvjEUCFghw{VZn%qhzNlIB&Z9(8kmu}D$H3b%?SyhjxibXt!vpd-o}qOldFRFamMya-MdIRY}{omj{mt+^`;Hk z^d<))=>D0XJqs}^FF$VuL{<=vXgENG;h?O|REY$@YXRVFwf8Y1yhI7)bg!UPBnXkM zSkU_8E3J|6aNCGsV*j=NxUlN#=XLKF^jsbL0pOMK`&E#V+Elx(TP} z!7AO&h77zgA8t-w>_;6+WHle}3+X|D(Zme%+I!h7n#^{j=o=W2udc2F>Ms7vmmhqb z(i)cAGRuQ>YF`P_!q0!18GK!wWr39IK(ZnU01A0ni4fWF%y7;!b)$ z;eLwS+I~i}&v>SW@Mw4@1fw-vK)FWpfLW|~T@}BM(>QeXOTD+Sobkz%m`9?bqOsGc zV|YWZjTbk&YVn^KJ3HHzq*xQgaUl`Z5JYNme`)baXG92^c4m;n+0~C5UkrXx_cO1R z9pA~i=Ii-0$6|XgyXNA?tYhBqSOP0M7u<#5lj5vU>ellDY5(=mezos@bKlFn3~3R} z@m@_{XwDfgXf=G1vh$^^^M6LeMm4IcFFCJRjmshIs{CTpRy4%jS6QMSO{{^{&P(Kf zwvS|xQrKo)v2&O^+do^DrbiCrA!`stOTJxU-pPY;ynDW`hQ7}IY9mt(J?*RHZB#{41FruW!Z2m!?C{Oy_e8(r| z$V=_f$R^R+1Xdwzx6=Y1giC_KjTKr75R}q{LqNiLiZc=6k0xGDOoNCkBkp%L)M7+H z6X}lz^{hPR6%RHtz7v3I*W*7m+b;L|Jt5S z{VRgjrO8Idd?S-k5c+mQ&-U8#xuENxN2>AS#S>D+_~rMySDIz`*`*CDl}g5E23M|g z$=chhMU&am#ZrY@ad@TJZ~2AUTdy^BgSA*Ecfc!j-*a+dK`ZwsO{gLze*d?|^~L{|)iV}E*okX#8G3~`jIVuPZ{z82qm5(Ct- z%UebMae4@1+DyovFX#pgBdFaO=F^^Tg+8MpuVx6QF=}jw-oN_ZHI9kZw&aPS>{e*M z_pzw5_NoXSgo1yrW{YG-Yl|ecnNJ*`MxkPWK%fcf)yqB}#mM@$+J5l3Mm#{vKfmSp z>WiAZ3``Iq0|S~7`9rLgz&}ncxExRAsNKsY-B1_tQ^tp`SG22>p9EoZZZ@E$LYV7F zA(`v=O$l&L^^KCrKMDF8v1x%$=7gVU3bHU~LN*3i*t!`MN!d4(mradW%6=`^)D+0a zUN5r#y3nE-n#-S@vA z^&KCP`wUlOMU#HMakBTab$p`;!d&gJE<37*Jc?xNL5rcI2MYUU(yFNu`p5>6>ENPy z!{wtjNh8vqPEqlODxpt%^$b`>`U6gHQ_peEoMeOBpVA^4jIZxxu83N{_`ZKT!&w(x zalk9KyF#@6(5rQu`Xva9MF5s16JM)d)Hk(R%=q7y;R=?436QQtYC-wS@yBvfaF;_mMThC}#k z(A?x)!iBz|HcQzpk4sh=#@zl&`ISr4_S*%~zFZ^{;2SIZw#F#LP|~o65BLI*TFKDO z&Loui7|`#p!7LEeI0%<7^ANvU5G{k>Fn+McdluprCSz2dkI6ui?nt|R490{9us(Pr z+*_7sX{PXhbgHYX)KW(DlzH zeL|l;DhJvWgMp`=g@0+&ey}4__m(dm1Q@Vpc~l6Q?s#PzrZCM;UIZpbC7vzfl1kGg zuHJ>^9QCvq>Qvp3Q@+QKt}`)$_oqYA0K!<1#zjW<05;uCDnj?rY-y`xLi&MyeQkMW z@VCn{GW)xv0d}_j0B4UE4(vG2hlPkA|2>*&W zlQLCd6vyJRFQsBb!VleLl4V7=r+%aEk->6_8nbrHKP%vBw4{Sq zj21n9AqW03S$097)X3!tDgE|M+`pI{Dff#CfC>P23I7#NkIE%Y%6um5 zTL^hvS0KR%9b^4PvGC+-dGV#O^kp&NxKwx3C|X%;?F!S8Tc+yKjcyr8jo%9fh^n@s zom44tXn3WRlL`FzVo7H;r+Z?HY)5O0tY}UdqPHyF=D()h&YrA!z`K=)J3gc??W_!q znU|i=JHh;%z>Me|`zrnmhXlU6NXGl3u$Y=h^f_b|(3*%!Xw6<_|COow?>Qm&Mv^(D zO;cxUKDV@{=qe1KNgGxsmL}d~*(HnnZPFE+u|iWhdkh;^OXn!AiAs>^K1y- zdhk5nVHLIa6p+YC&GhQc}o+;n4r<=E+*3Se)4uRsZ-?RtP2Q zuEC@o&WS7CKi=gR@2KpUw0V76`qyp3jkx`o*0EQ%>EZ}DgoVEX1>h_hcOmix?^!>8_Z;m}tr5)T4Z#lqL*CbTEudY#0;n z9K3*RM%3Xms)i7^JiMWw{r)pycM*B;!muZ#Ma{c@gNMjgxx0fXfMmK>^vO-3B6nSG z>D6Z>+R9xQcDDk7QubY9W5v|ieoZi)X zq%i7`+wb<3mm?V|6Z2g}r*qxf#kvBfEn#%qFw&54{@w6De(y+$x^D$AX6v|JK9ebD z4m@=&zwqgVLONfuc8*LmhNriqI>*X8EE{Chs@Hgo)9j}>D8KC#Hgn}Zj-2sJ7%&37 zF>M&$a#@d1(3iE$WKZfkDUkts#MrIZhubaE3YU%?N|x1=-_sRZ%ekIhH&HidVIJJN z{epAO32?8G!Z>&6L&cFXTXQxX@6^VLfZTel#w4t6JQ#L6>>j0>v?riMJd zFzygz(S_Hw(Qts5Tra%fxhdJ7qq&bG4g5cG2tA=kLL*r>Ob^R*e#%EgR`p|iL-=OR zJP;L+)EA0{cQrONIr1P&g+qAG)y+D$N!UoI5mW=-Gc%WVg!z5VI@r=bvbV0Qov0Sz zSfmQzv?l~8Etid9B)mgHg736R2}JqJz0YNrOJko7T{Wqn6`hKWA;>Uy74>Mt8Y*z0%lG+h;e`jf z#VMd4ku=s`ya@vipbL1h`^OXklBFB} zbdi)Kga~wjgTonC@-^ERli22jA59dtI9sMTy0&%xZ>zBA2KyuW@B3qOH6ByptuTEl zSMnl0Aa1%~d7u{&^K&yWfYS79!*^OvHOKw=#6I&@ z{>Qa7nr8?alvoR%f$pj_RWfjkRv382*twn&Q*m^)-@x$`M=w3xzW%Gp6b%bsp1H1& zNYwW1Z&W%VO}=nnzz?=)b0%QH&C2{ywh^nhSP?}V**H+_ND1n$m9*&2K!dPjWl;7j1q zyD_CSZmXfh?JZctfQ)eIvE*SZ?D-w^|KqOzKK}W~t5DSLQ=K~(IhXg_F;3}}Cw2KN z8F3GtpiojNDov%rwbfpFyw)6o1j#Q~=t|0I(m%wTA%nXS(a)YG!q z)%5~!rt+5ClplJ_QAec8%f0N(^3UEoo&DJ69@0s--E#@wX8rd;dNf2&>C2Ui!iB@{ z@kD42>Z_7Q=o!YoXgJ=rSaVA2IzlpuYCrN)?yO$FWI*&4N(%r*uAUGBEh4A}X^Z3K zkud>DI?Qp_G3Z0LTok`z75b=q>!5D{B?6SV?$@YwXh$935kMf%wV3FNvwnfR3$;ga zN7b_%)+08U8!`AVMI8!_n|Y8vcl2($QpBU-_JT@!E((3M>dHN7K1v(nK+6L=H2d0| zzQ&m%bi?k7qnC`aZ;6)k2*cnF4qBkYpk3ppoxN?D$J~vG@!apgZL15`rkMW+p$55v z5=+Hq333>_c1D)!OPP7961fX;sFRSGrE?|80VUB+`mdo~&4r4LtK2`u4+1j!l zpPT>eflr)vrjrFaKLnms_7xU52JH@f~#s|B&w3(m~p^?=fu~;dVuz`cHkT+4V2= zt(D*;w=TTx)@HBJQD}3TUeiJk9a3>`PfT%ymx|E|xY6A*Mr7JK>XsA5)KyHw_(?v! zM837Rdfgy22&X{X=3Tmgkqgkn&5dsaWCBYs-ag}rrnSZ53*y+DEdo!!a}GX=>UJSp zOpH1=?TYi-E35tCPZR)a zP~<$NJ)A!dVrDC@02n`Z2xx{9C>q`TR@#lWW6>A7X%f*cPX-uHGg?ueUSx)e7*1bI z1r6i=U5P#&WPo`MLqTp>SAjd?3{6rZ=EMze@2q80jz0c((H2B@agLdzHN=_ExRl zz(pj#T4^B5lS!`{zE;MqCJijY!(x@QQz2Ym(FHoKoVVdZ81hdKk4M9}?!#I^vtRAz z>3(KV&S*vXH?+m{nbGxCg&{$i^m#1Up(@2V@cVX!ooMZA*)C9=8249=U7VC&Zoxj) zsyEYtDmoK{Ta3@haNmKsH-SR6=mfshNg7b7CVKMp6n!@w>oJZ=>*9{qZ9sjl&6KNQ z)9iypcGb9ghMEKfYUt;yYB|3`G-X3l_FN_rzQvGoC9MbVY9%U2p4^%4!dy9zE z3y7n7hYivBkP?d}$6cBR5@`>pe+Cd>#e^yRRTPUPV+7n0{!7@F%bn%*bL%WC?_<0j z?6W8#hsPXY2?@rg8`0rAlyI}emc&Jl-X)6Nz!#(ea8OMetuT)z>ZiY=HqHgXsJ|w1 zJyhP>q-=en2v)M!zk<#P{rgZpP$5l;%wb)~TxSEt)3l#rpYtG2PQ$$0e*e=%NT$dW zEWnF2Pq4404l|Xe1I-L=wHsocLUHNLmRXsdW!Zlj8C*?8qR|@;}OM{-CUOcaAUn~$%K@RdrYzj#^;!ittSxq&}M80^=_LV1-oMZy}&Hvd#{Q3}X*hF))b!{aa^!YpZ*BczF3v7qTdxI}YcSfY^zBqd_*=f-8i~ow$X>Y38lxp435zWS5H1Z-qZyq%{ zH)e9A&xK@)&SF@HxcX`uq;haHk{gSRKapx*h*(N|J}&YTC$8>st-O+ZH?KXw_?rNE zkxU$b3xz^}dTTWZ04^)t;|?F>54RFtlaSX_6jVPhO@E>{ebRH%nhJpcK0i>MFCITZ z1g`Coo)lheqx_`24bUhCB@04Rhj}+!p#-zN8qP{DDR^!NII21x_Mw)ebS=DO4}br& zDT8TBbb=6Qma?5f1XTD-aYrg=hBWeInx?N0zz zeMz!}fK!hhs>EU1S7bh9kRFYZzGy9Q)y%?mGyVzU-`hO0Qr}Hn`swk1mR6q^|LW*Z z?z1DOB{WD!PP!!*qc6_!>yqh-3b|ma48ZL}4tF?Sy-3wJuQdq&O9)T$O>`2thc0ol zmu@iq7lV1fJ!w&KMrUH53rsz20Yyb%%5??^yB+Jncg)4hTL=-Do$x(be+BB1l9b=* zpnw9nR@bt?9B3-bG@TM&F;gGjNH8F7K|lg z1L>K6p0aB&fFa>%V79=VBllp{#qJ)(MjTUl#s^==UYfM_F8Jz{!0NKHsQ=E^J_g>s zJzM*9-AN!aGLkysFgHY6IyPTXM7bpG7wK86<_o_(*+*sMVE z8v2Pergv1vAYE6Yl{EWse<3D(Iwl1J`hHF@xCQC3Z@&voNg?^S+4DT0h4lUWixdPf z>UQZUz-Fu+e0)trwggJ|Y2}(wpqWD2IzC*Xx)r7#Fa1>n@m>x);u-y`o375FR7oIE#QlhGx7m;N)id;;l@Ug5H&fI6!4tKBK_QG^;fC zwIt1>tTiEEU=FZ}NaC6Z-^Q)LFrZB)sJti91F7FQjmpA74SK{19xjT+xshT_Tmh6Yr>3v8v_=>()9}kmE|sU|zdZzryW5vyT2`H^KdN($W-jUzNoDyv9OY zXY)sEDQ+Y;-J;}znQ{GXa}k&0b}PAB5Y8oUpG%eJm?LcB05TA6zlF3#*r7!9@U&Mq zY(AqJ9iR5LGka|MOca`$k^-BXo~^gHx78_b&>8@z4dyv$0e8!q^aH5vpp&|!y&Y+} zYF0Ifw;yR4<^C*Za~`Dp3F+ASuBH)=_-JY(Tbq*ugXTu#e@U-4nh-v#v8>s(zkh8% zCMVO;(<6h~JU+e>&3FGZKOAVl-o7ge=Ap>=-%B4XwhmXd=2rJ#RauODBANSTmO`6R z$rU{lXS3)6*iWp3>I5wAcL-o`v=R(&g4x;>ZZ_~Z9DU!*vw0Qa17c{!DS^nCB4PE7XU0sQv)c#L zkqSOwbT1W}qvNIuQta4h^)-qS$G~h97<$@yovpH5J8jfmzvOH4FPusMffkL4w_Hu( zRsdeQ|M<~O#f?kZOyA=R%{8FZfoB5F;aIp8Q5i94Mj&$8u zEtEGpIy$u+;K8VG$bh0%9tbAX6Fg6?R)c`l4(NP?o)ykmkR9~iq-MRQvj@6f&XsPL(L8_XH%+Ly_G8$_aq6_HVFoZ-gnYZg)h|c?gib@*L;6RHPX%I$OUJ9 z@BaW#(nnLU!`;1?gDhP&8)2O8()x+K5sXzbkBI$my{Vv3-9Smk&NLG{P6iV(KJwP! z0^i?Z2eLIXqc10j0~W1O+DI24NwqCRw8t8Dr42K2Z7lXNQiTm@kr+VS4i*>4J-`|k zdR{R~%vbQi7*`-uRNs4osV-JhSL_^&)%_CVCTV++4zR3all=sumHG2QGuEsd`vPw! zP>(n8kw34^)SJ0FyMf{1-ZOqe-HJC7c2Z!PMuI(Qx%l@K%xwmtqD=1p2QqRQe^OaG$&laRM0KTumI1~4cAOeb8saK67Y-_l> z>L53Ok!JW{{pE5H4w%$9>O`f2%S>N*Usn8k_J|I(Xx=4+l(wYE;Ckx}H$b-By}rh5 zuIBx`1*^p{&4EWM2(%PMZlO`%*uQBa=xAsJgKfm!aU z0-A4T-3(VZN)=@phc{|CC`vku7gvKG z0P578pGd#ogpMMM&eS4MT0z5soaNQ)bGp~+*2i4oC7s_8Ik~y!+%*Cwy`GXEY z!@%eYM0pG!#*>zlOXYd>->*se6EUbr3H6{Kz~77%Qn;-BaKh0|f;7XZiV7r)#8?S) zELlQ-Vh*F8a421c?F@HtaPS*2b*NKkODZofuaFL`c-#)YK8o3@ot2?5jYCSAekmlsQZ317ZM0?pY97}^X5LtwJ8|ZWx!!Wx3nRyKO|V*28T0dr4UGzTSo8b%}6SbXhPoP4lOPO z4GXIm%#}rhFFh~?V{*T%-afuQ+qI0G2am&A8g9`{v&(HS#Xf3oAFb!K{`L`^{%Up_ zdE8%pp}9!8Uu&G`z$r5N^(ca^a0=xOr~`>OjG}=6G1u?m9$Z2k%)q0ofrwKi03ZS9 z(0Yjr#x~~h9ZpdEpQrQgB{h#OPLs6evc~Z!-8xcLVZc<;W|(p@IwB)6N(`Hcl!cFw z!B$I# zFmTjI?-((Zr&Zve>3#ePK$~b!waa?;7n&2m_Zggl6l88ADXgi(U54cSOX2oy;IcMgT=knW7aq@@gP! zU+ZTQT0UxQ2AmpY-$MoQW7&Qn@0t=k-&Q(vV5`Q3D}}zJ-&9)2YX^H4D#Y_9yqnxX zd!wf}`>b8(797emnt*1pL6t)dp(z#Pt0tR$j}oo691* z(u+^oouHXqm7y_r26Ztb14B0W&IkB6l7JyxDEKlJ5TB)GWxueB!FTnCWIx7Ut|r8Q zb-BKq6n2)}J(ika6x;eFCLi!uHY`tfcnDIF{sTWeYTE9?Bx`ldddLdHRN4E3R%uQV*!YtR;d}@XL*o$=;UIT zhxwO+)e4az%t`Vs;QIq$7YpwHTBHPq(JrO$KjK_ z3Lnxc!B-uO=PQzdg=%P|wBrV~S zdN9lDi`*_`ZF2lcS+HULMHmu}$SE%5&F$sUOL_UO^S!wvFv^=sFJN|ceZ2~9EemGe zOTVCk9x;>Ug0Jg0I~D}O@!&*47H3rCssOqtXSuqNYJSH35x` zY;2eyAU}WmG8e26E_)Wj0+u2bNWC0`pm_8$6&GYkMy9|0WfP6Hv2$z#6xCFvw`nVZ zd+#paDSLuPLOQtopHgzC&Uo60zvurX-8Q%S0pi%BgqO(Pr!RRtdC&f@(%u59%5L2k ze<@KZ=>`P>L8VKjBvneJlr9lT5ox4LDG`wr0|^NMB_$*mC`gDPQW6r12#7T3edfY_ z?)jgy_u2n@uVZ}Ua|~gvH|Bii6TeXN4&#_)m{<83wr$ip&&VD*<0G*LtEm&%2bK48 zcMUFUCcmSV_vm^#%bkZSMe5ck$U2fmCbK{CYG*`4Ef3-X7ER$4h?Wm<>#!FuL}h^Z z+*huj-?u(r@mV7SPQeo#DSE+0*2dOff|UylhS#(R3;d-A?b&9x;L#F`o#H8Pq(o`3*@=j>lLLqr%DhW@S3$9SE2T(`o*9}`1JO;k`5%Pia@NvwJbEeSQ0sZf_eMsr`!@JOL8E; z<^xr?K&7G`=>De`~(!k<_|+m7l|FjNtoF1(nlaX@jv#Z5W*TBiDy2Mt#Vjjj^iP#dr8Hlb=9ZWaPJO z!sCmVU(j93BHVtUqT!SsVq{jGoYWquO{K1L@zA5h3XV+HIoCAvXUbCi|7C`R+wq*t zW7Tf3wY9Zs2qpo}aG~aa0My!2wfs_26?vl}6`6VhNU5jKE*e<=)*#=YA1A>=0V);* z7-F-V_^;7F2l|8Sr0Pqjf5oykeo*v$M166+M%l*xZLv%fSro1`#7Jku;ln^W_mD|L zTbQq_uwiiN{TPv~D@q~D6RDmZ5&=8R>ekSAVUw``pxH&iev%FrQxmLW2U-?|sVke# zejxxnws)VG3viVUQzQsebZ!6m<$Bd=d1*J7e|aToMVockk8yk?Kt0$dpuD~Ket;o5 zHb{}Ta1hs>eoEqJQ#D{GU{ta`v7l?m@+Alm8qsf|p55O1^d1UDlZ5gh0s-Ge_ER1m zhf7$boTIn5{cLP)4P-rMyAP$=Nhm?LDkuKo(TUd5h^Pd*A?@jjs>>*%|EOz-t0;=- zc`yfq)SVj#T1D+WZ6b1c?cIqNap7IS*}nMFmICqBLneS4GJE6X?1~Tk1=Khi-@Msp zU&ew&9Bez&Z*|H4VMFEjE{y$RS}BNvMfZz-AcAPplpN-}sCJ##%s3^~lQX(NzXOpn z-xMf1o=OREh4Iz9dxDDwpEtkL#q)pows#CPHS%swfey&moQF7QEZLn;2RVZ#C_)k0 z;4jVLxN$j#O?RY({Q7mn%hz|Zh0(kjq)UjkwYvtNYC@HA)D(bl?R-W`Tv+>B_T(&C%rfnHIa;qTw*$TTX(A5@KMkTBA+%?V`<6Xe9t1V@07!fwH5O1T+e=A_3nOE^ zlac~DOH3&2XlZF7tudoA`^&JXa{lvhHqyz$F%Ve%L-iMd8D9~atNz`oPFbhf*ddO~ zvWovWDTpAk7oO7daa~%Rxuj zWD{dUl6aD9ejT_k+eZz|=a|^F8(lc*6w_#PDwFyTQxPRT*BL{-tA|}VpL;JaTv2xz z&2zFq5QE-R3yYKARtIz|8mAD{2&}p-WP5KQpc>!4%E|zU8ZNMy+#E+ zAZB*$1H>IZ(k#c7WbYUjv{b72>YTS9dU)&b7Nj7;;^M!ukNQKcWa7>j1Km0Q*jNy_ z3)Ud)xaAZEb4`RhhM|6&;F0RB*ow#Z)J32nuwKoNrg^$a9J%gYr=K`LRs@+eW6|s1 zCm{vu&Nmc-qihVsd|IJqqQazoejOS0nxsfLd=8SwIg`Ze$5?1X&I?^he|H?0ysk`l zU!RG+>$B!9Z|lBwVI+)jY1v>@BDyXP@A1EP85;RqWf)mPDVm>}T zERpdR$QL!yp<3h<2}}h1nT80I>OKX1A!7ls)q-Y4w3srGsQotW)HTjZ2QE}(JuZ38 z64&xU%(efE9b7eGU_yfKgX2F3NV_EgOjbhm2>MYz+QqM$IcDZ?=}N;7gk6*!$jyrx zA&yuLz6eQ{6=$J&^T2m=MC)O8UGm_|Lv`CTbfXs&qb)p1PKqzSni`m{#}h&FZemoN za?w|Nv&Uh1965H3_`LUtnuB|ReDYl1>OM{mjWO)`y$S2o;}wMVSMn*uMa<2)Ce?LT z@Z7F{LQBKemRPUCYh_eQDR-`ST79(%J~1;hQv?KpnsK;My<>1rFthgO!L_gcw`03Xe;r^=!;S*EOQ!5@wxb(>dqJtw(Ki@tPqo&p|m3nS0%{xp> zi6z&G?n{d`6+PKsb~Gdr5Z#*ZaB2bBsREkU50;%I^!oOJzvH1iCnSw9<;Y(h1i3r= zL?-kRKhJ$WW5amga_To(a(Xc*AYhb-gtarRR3a*^SD}OP>+VkEXKzZLal*|sY4f}x zc+)r>j!ROqU#|+fPkonYZUx41Tn%bhnL;WNsE20G>#ho{aGj-1HBu|11zyC(KKlMJ zQ?duMY1(?4v_oD#d`c{f#9KYo!0PjcE9L5dGEj6E2N6cr=Ro#`iVS1xn^vlZBW z2bds>rjF_|CxxhI1d}W}8kLW6uo9IuR$7ZL$aNE+%@Moy{7h8IlJDYj=;}57)YV2J zz>63!Gb|8EJMX6H4k80@H^b3fnTXVu_@5R&aG-Jy){QHj*E5Djs(tFBr zfm`TZhY+cp=3TDW+x7+7K4<1^LnvRpg*7+FwMtMb3k%>oksTsJ(G~~-Hd$11MrmeQ z#HxYgp52O9rTYOnzuc6D!oKG*?87zO;jIg5KpfF|@NGQicYJtVOm%F7gv%+1QGuHn zP$J1dd=69;F$HK@j0XI{h#3WEYp=&~p!U{d6B7K3S`*WL|vrdFKetcP>f>T}&q z{Ww0Y^vJ39BF{2Sfpduik~|=l+Rye$Mh+ zZ48FF6r5``SBr6>lLgp2xjlU->U~A6aUaiV)4O_s-Aa!jx6eLb@D7qrlaZC}dFAea zDJ1Y}-bqVyctsAm1zSCgn=JsFKdWN#_WcgX58T#qC4T(kvqe4(Oq1-OHzeC8RPyj> z-W$V)HTyZK8Zn(1XR@aW~#<0*7~e0LbGZt(a`LfkJHA_ zDVP%Gzo7x;)9Z8}SyZH`JeojAA=)fC5>O?XRvT3UA})HT{!We|WOOutx+^P|ht)va z=g$56;h?=W0r@vbrRDh)f~Md4_HvhIA`~U@O0Lk1vA97FOmtVt3MOsb!f99UFr5;B zR8PKaH6p;*uoI?NG?V$^3Vq8etEwJD>rhITliG54YOXxelMv6`tD%iVqCKVr-)JDQ z(VhAJ?4H%{NJ+2lEoC$Sf_E@JG+=ON6BWtgZMC13@T2|Ak+_^K)6mqV) zg!}|(MXiL((y5>i`ZcuB_xY4sN_g-`B%P6t0-wAr2ieD_dbu79`ws+#-UaF|wYjkw z$4$RC*8z-8JNZDtF%EK%1!61MKK_P*=x}LIKj9*i8phvFsVGFKyWkXg#Ya-y{<~-) zWfS9%mWE$`pnfo(lXJ3O>2k*F<@=E{v#@tO30>*no)9%);(-EU+%4=s&j|Rh6z-Yd z$3vDp&XU*`oWmsrJXDO#A>)YIC*kD?I;h^<*22=xr+~X7;=WToubX_C5W|--7u0CR|yX{1A3qt}YFgwlGy!Ras7vws1a4(^p-&2xT zl0Q$oR#93{t^tFmM5p9O%&*otA_3#d+SflW7COtSt%BGsEPw~s?w(zIwB#IX^9D3Pyg%JCs;CxDg>JUrR}>xG5B)s&|- zSVsiZFI{*-hRJRPuMwjJopgG|3@p)`emytmHFgdGf{j-*0U9-TtUr& z_C8zv3)gu92;=WlXKDi>81BW!(D*EwiMW#ARW$zqEyDsJ&&Hih0b|?2Nlz3YMFLc= ziH(PpO0COb?nn>=gkBEAPy{s>L6_#^*LJU|nI_@sUNeFp=ltYF_kdu+pNzJKJh5ZU z-)Me|!`)7*Pi^y;9HOt@xY$_`TL=*|p{z9AQjqNbjO1IL*oi7y%iM z=W5l$RCM?BExtqOKYmP1soaJi!Gj{d2?J_pocnlp)nlpKZ{3+*UZVnu5+*h^UV@1X zyD$(WdTK7%0OPUfSB=SzM7vL?6F?WxoqTfZH4Di3FjZfp63+_%e6FLtWgnSpMF?Oq zWUoB8*nE39^SLnZ93JfS1si@abx}H7cH4wr8aP=A3=2x$VWVTxG2158jK6q2S9U~(JF(!bBV6?V_F zv8|yWW`}A1DH(sKQ*QsVsR0q)*JzpAU%+qUBALd;>jz-CtZ*ld5JnnpVb0i5R{~B?Fsdof)inO>@sxOo%fuxDl3^vN=krG9|5Yt4O=gD60X>Q!84XroP*%TR^;eT#z-@q2CGe9{y7e)HW&NkJjPLvYxihbAb1 z?g2T#2m&s`lKxbJSI<$z(tgWo9FBJyKb&AO*`vNb+eHU&J{v(ZBin-bZ6Lqsp&YLh zY-ju(WfNXSapE*WRC3DY^_8M(3F9o8RBO6hFboWESiWy96$ij z{SU@v2}yx329!1;%xp_y-zn{>)RX$6)Cdu#9O^SF(81bA38>eA9Gme6pJQ42xED9f zVwOPs0_1cMhUDrA72CG^_EG37s0pya56jH}=_SN~_LmW|3GyloIE;<$xVHizt#^#+Tov82YPrgtYMLCk+rn4h$l1k6 zXK76DD#Pb7e?HCzbPG7Lx{k{SLc&ZDJ3f=wyxk*$j@8y@CJ@UVKk#1`rNZBXUd+M0 zURw>eNRJ6-`?L(43eU$!EW5?KDa>2S!wMUr%v)zdgmXBldKbN8rhrjKSyGDnaf_vu27V_$|Xb5!g zvnzUsjf2o|Zj2 z>MF1?g~1MfqMY9p%0qg`&^9~tnJWHC^{}guyt358&y<$yme)5I685y_%47|*Xm0nl z2^?t}rhBI2$#$q0u{=QcudhS5IgLsjBqU#n(C1T`2}_5kU5MStv>KbA2qkMF%q~0= ztkrciq%a77MSX3>tB;vJ7ZP9y{2!m}@o9_+aW}*Y=z%WxI_`>f|10ZktpxkP-5($L z<*(UOaR~!BvCPV(8RWR)(yDXksmLAlyhYxu4ZSb6S-Yg0bJp|FKajdpKmMhB2sC6~ zv~FB4mH4yN^zNF-Yo>@U2VoyeE`OgqB3Q2Ew?E?4LVd3h`Bj~uKoW8XrBL1@d6LiV z$CW6Dy7Cf|c&91?4AfR5qoP8za+K`t1t3~L_ZjJ#bq^84M+(x+|)plO9nd?n#m zZCz*?ed)b-=?1P#yDXx@$nu8P^gtKG#~O%sadB}yBnPz#J_r3z(jg|x)0g9xr|cZ+ zt`_s5IXj|?nf~Mn-AKnBy~#}xE9GfJ&XM|(9Vn+uzuqeW#+CY9)rZ{l=$k^*1Fh-u z3IC9@v?=YRxG483Y8FCH6 zODP)gQ3Ew<04=kp6&MgWlz{P47f*Mq`2GI44_^PrT>;jzRlgz}(p3Oq2ZYqSr_r>q zHdGZ)HOe~7hAp;a(_VD1U$pJj6T_dlx&2U4MZ_s*DiH}mC(Gh{qip3QO(owR7$;pJs#Mka{|}Q$Mw3| zpCx372p>vpF09l5Nj;AprkX&N5AzH-Wq*wvC=SbNEeGp0(fl{L#zwyMWG(XxcMbfF zw0-%HfY=NebdsU>d@E9Ge%X4~GeG_} zfbl6}djQC5E;q^&3^jmE#D*%}-5X-Nmm{e?LK{0kxpMG!{mXXBiNy_>5ImA$ZYPZp z8#VVNhmoA9>;2dW{EkgQfp7)_;b=1>j}bc#x6l$+LlZJ7^Qr8#{-G1@UkTW%?7SYH z-lRea443H9-7yxoXgxj5#F_p~`qQxvu&W**uGz5=yW#LX1fbWDODdS9c>i=K-o4xJ zs1M0TixNf<54E(+YaYw@nYyqK^%qqA?Lmvta@3Xoc00v_*qPnmP(*m-06lU&tqV`5 z)ff8*t@oJs&HXsm+Sntqcs+j7FFugb;4t&>l{@$#7*8TWErYs^XRJ|mqq)%A(-&BUAl`E70z;9Qf(_GD*}TCwWm zlB=i0@AGDeU5#~T$KUdcN?$^i=-G=@*y8rj5Y!TA5E)=Y0zl!8@+sEu+2%xd zKbgL0Evo)zyg#tct+%Os zfT>iaZ1e@emSJiq>TgrgZb?x~AEuURhhts=@yaP{*oc!R~ zil`RR5^5s8)&h#MbU?4SC>)JCj%0NilsPy_u)i48lMg7LJ$nXX?I6ST0;C%OqBoNy zzOUTo+(AZV4JfT{8a7!MoaAnhXQpX;j5-w&?`k5?e-{K=( zTq!PR+ML&7YwsR=)zspl;rL;5VSEr-?LsnoZ*-uCwEg4@Rl85QTi8 z-VGOmZBJ?ZHk2Je6jBLvOQy5Wz~E(o9RwHm;lz8mhg(TN5QM41PUv>~(T;m1^Z2HO zvPWi~Y;-kb#j^qIpJuz-lHj*Wq8XUU{Z>{+)`{oT8Bj`?=6sDIuv zW1)|Us+=4l5TUBPCQ#iCj|@+*0$mA+7ty3oy2Tn9fzyqsbTdVCtZaz0+YNzDJd2)* z^)+cy)Z2IWN}P66K@UwxX!CayTEtF^`AifOG;fK(VX=-82ek1sqh`*v#|4U4vZD)k zbJ|a}d8@+C`vEhHAeAVPWd02#HfLnqn0pO*nf=^LYIncET@j_TakqnZaUaq4RJ{YA z>0O%!LF}sd`X3TtpugAnWWLHCM$q`9I3l-xY`GAwFw9$nHZ_K4>sx z8Qzn(C66S;{3_*0<`O7esKlOFGvPeIuFA{%vS=q=vbahncqMS><_&#jkf54iJyEnqHxPJsItN zx9k9Zuj$R8<1NW>sOfv#U5nqVFZZ<0vQI_8$^l5oZx1>&+Hp^1*xhSvAY2vzlyyRE zaVcC6qIWcihwu$XK=%{Xc7W2$*6QWjJvN(|`bs!nZOr8lHnE8o%SJ;gaOJ$)jjLZ` zV3TE-l#(WiXHB2&kN*492Z#x%B)T(wtvOLY`+el9@a||vMai7e=1Y>*@RQmjfeSiR^2WO;}^hnY5Op8 zvexGMuCf=h9k99{OBBm%Bv+6@K}5#)j5vU!Dm3o5hKO!?_HJ&+_8vVxXeV_@sF6EU z^**m-1Q;yb_XyCLk1eI2xFB%?|NOobKT-PaK$TFu#Ww9E>vS#pbYbw4Nf8bUlrrG4 zhT2d!=j!#{z4mwoB#c>!o?zI^-)BVfWIJB2N#GtCoX+izLI4WE#N?CecmZNKdt4lo zHkm&07r=s$^La`#80P&1m`!eRXF;_qh3^vW?k1pw@~vh=feuLEEF&DM{7Dnl)QR(! zo1x!e#QW}^(>#8~a1kB^Ot8CS8f-7BEZIM$&=(7ZpF(A|+HOI#e zAD<^nI;A3U2vE#?4B_75#%15+$)x?l(9zOk8sJbBEZh0{c2!JV5vB>n-pjU*L**1H zDJg*5dI8*Bn1=EN%cPfB{0f-29Nmy5+2avW;_dzdBd4ScSA2|Nz<55BRqjif0SUCD zHp&K;ypHZA#4D(Gf@{Iuv!9d+kVVw4V~qu%x%iJEH_s`q z3FKqyYw4|}^byn(S*kZ8tIK-xB+`yx5mcO%7~a`S)*O^W`|=GZ0cHbs0?11N`F)f* zd_;~R12x{u$0rl---kgagZa%BdcfwsdmsnNQJ)S96a?|ocYG-MH|l{UZ2{^rdw*Ul z_pmRsq9qxdPnUKj1jjBgIVtdY4vLuo8far*LpEr!9J04(9tLn=!Z0wr@$JLc`$P8= z6Tu**;9Cj!CvBPmZ#C=lzs;pUictNzw@y*hEU%AW0FIvTWfW=+-H(k5GIE_0eS24) z)_UKQ$DXp1nSUiU^>aMHg5oc#vFMo>k<@4-TsY87SO~;F#oExnuNo@Xo}96->mrk3oUC(DeSUWjCCKQt>ee59Ir8f@pVM<7sor+vyZ=JCHnPC=6q=_I|xr3QQt8jXzQ z$1RfhUK6L14&3y58SwPYb+P7{mH5YwuP{e|;DI(kJiPnBKn$yg)gkOWES(VZ`23MP zBi!(r|AD+JzuQv4tJ|m-ZFo@lEq=-@gk}WE_F3eWI#I&3L9dB@6YpUCE+$E_ z=%eA5S)susPz(^b5cxgpn={MM?nnTjUA z0t;e&X%gwD0x}1!tZN<~xPK$C$;G86S>h`VDh&H;_sS$(!_wpU|7X|3p$Iuvsta!FBKgm6T2i{x+BJKF*o;WG>OBF~jXymS*dch$_-&%5q zS;4`Yl?ks}gk&#UC57E1U}S*EL7(2H{`pzL;B~{93xvEa9sRgyGNOY_4#d2DcfdW5 zB3c4qTZjm@n}mZjAKbOXUETeD_YbRBh6UPb%i>gL4~e+>CJ&YeSrT{=0maGF(-Roc z$UX>=IYc17GCXf#7zO0WGb3zP9U5`w`Q*kqvAw-Qa8!pH&&vk__R<3B` z9QVXwqo5SH3)2cMhU>h#&+_dsTjJk`1^y&gSea-oS()I0zhH#Bvx5JSybS&h9SeCv z`LDa_;Zu5~F6xlsWYK}3QD{J8tO(Gk!qQOTKBm}?zsfIcyZU@^h0MDd$-nlfF(mj* zz(S@GY8_h+dc0h@UYb zJsosaF^}Fwf+!ris2w6Qsc_HXFg4c#h)tq3WutrKHmo%wn(mZU4Kc%RkgpE2c+AMq);R zqdts-nECFNEHjQ{=Hq|SHwI0gtJ>dP{i}ew2*61%84^d5k3JMEL)9QUP4-bH-nt}0 zqKiAw0Q7zlGxrGHeuo@IWrlhQ?JpOdFL7hmn=J$m`9^0YSJh^#@%r<~##4 z8Bo49w*We@RIQ}9EU;LptL=%L?To&(oRN`X(DsW`S@aoDC8EHauh7Tj{P}~(z!BheaO}bz zPdrhHvS-uI?@N`@<`R`v>i+{&m}bEAodeg%bn&ZqD}C3Tqh{2V%d9&V{ERnhJ9X=A zJtms>0i~B)Sh)CG6@=*tK!th^7nPRM0VJal4w~*9ZBECLSAE0JXyR{;T-~X-+PkN- zvvan;ko7RlK15b+(YVz{_oH;$37)eyLE0rt%W+MqU=KGpB{Q>8_BCCB#C70sbtE%W zrwons|ABnKdE+UlmjC^gI4m^%NP?fgr za|20f#h1443XSplZ?2tR*As)WOx z^z`T;B2uGMm$^i#p9gTYUf}DmDJxQZc2pHSMhSCQR{(Vz36{Lz*JbtEe@7XNPXYCe zn}8IpFzpz13LW~UXJig$2UK)QwZ5K3JG#GKw;uhU5?l)LOM17$`9E^lGWgYR>~dN# ziTmKedK(enU$a4wKBXKRowvDs`E;Ryl0c%7jSQD4JLL2>?#MXtTvo7AVYpGDDzHNe zAKX=u-T0Ew=gi?k`7TYW6;N0jEWKS_Q~=(C_mg&Zk|urw<=SbB0F^}h0{)@mm|m$- z;Z(v4f^4tPGhGkWR8+#6==+s#_(D0*#_I%*eev<}UOOuv$0sL&N4<{m@bDyyUfvI8 zT?c4rf&sCUYrpm62^VBVjo>hgFzgORwc)VV45Hj+PanvOePvqb#|)E8q#xkrB@Lc^ zdS#|yrMU=N?T-LU0|SL7T5Xvipn~LmOcFAW1w*VfWefPrBTo@*Vhm`lAN* z@7_`T#WkKcFxZ1h`>q~CsWcQ9AEk5j^9?M)zz|9sLhQ!;AU)7flt6J^QBhGC9P%&) zAWL%iuUpD2cZdOzRRwGt0iPCYU(#P>9tT#Vk8*SOcFC@>K}IY@$H0J?EYD90c;!^> z%x18WG!HWoj8J@B z53uhg0GWfiDEE;gdjVh82s?`W(Tg)_V4{eOBAJ13+**$sDeXh1lj=k!}7pxaNv z#m!C4%4$4sHv&ncPLY``&|xg<0}1q7ECE9fwydGR5mMlaKL`X)Fi%F#$*EEn}5~elyeTgNYnSsa~ zU-d8y-f^C+KRDs_!h#wEuReLU|!ux)F;n~>4L~xdR(gZ}_ z@P`jM!KpMDGLBJq=Y?N#x7y_16g1U_;%6mL z!zgaw-0}SbF=uJS^D|;BgPSPz1zp{Ixn3qFrbwXn8V;>(wtm$5W7hjRAmG=+XHJMr zNDl%zO@hzvh^uo^t+tsm2!bvmIaOpz0n29`j#OncGmc+AvdEaTxmg*j2Q$t^;E!fL zdW3;fZYvmlo-cFR1vo~5=Px7hf)G~F+X!L`svlo?C{bbvbzw_5bA40R~L zdjRe#!XO_=2qyZJ3M*s^h}?!sb_k!a_@Ls3Rpj|#2)@vI^Vioi+S(CXIZd#Jqy2@z z)Dikk@gvEyzLN0!U~WkvBqW5mP2jRYfFX}iRA2Ag*MPz%HMgqX{0w9rLa(=JkPR)c ztOJ3bW*Aj%^M)o})|UbD9EiP5$mkpvcJ*{GI6C`*p(oQRk7KYIg>THBw-Zmz`v}c} zSO^Wwew%Bmu#!}Av>rf=3`c&PKZdKmNdOLh`)9k*Iv8S)&Cka`#4@bSNK1=?hzPW4 zA`IRG^6CW9jV3sC!0);qEX;|};Lo1pTmp0m?&(^qsriD`xquEDaF z3U<)qSKkwZU-QLMJL+&scKiFTk!`=$nIWST>$Wdjhf5am_&#vTc@1<^#$u#Kh1DrR z8OLk$YtB0w*4!FtULm0_$E90seyGcra?#mY5H?o#6BRN)SSbeWlbcas-tZif>D}`k iuiEtg>ZqCghv+WrX=Sk%eJc$9oK?|Mey(T{{J#KV<@Qzp literal 32370 zcmdqJWmJ`2yEeRNq>=7YK)Snx1*jlW(j9_?G%UJA8stW#TLfvOyF)sp8>G7%zPWt% z-tQjo7|-7C?{AH9k9#Z^*Suz&c^v0CLzR`}u`$RoAP@-l%NI~p2n5j&0zp_pM+N`F zKQi|R{7=|fR?At;@`EjXu)j~l@tkL+J)J3%10#_<0T@+5QLLm=LZFQL!XVJUm_ZhF7ZXwVKP zFQQB-yFWKRM|m#mU^no}Y3*8=hp*gNxVPVCN|lwB;vJF#t2|3F<&Q-3uRnx)f+z^J zam*fduh-n%-%Gu8oNtZfoZGpA;myr&oZL4Zw0r-Vck^lrU=E`X0iPbL9=22nKKLY( zU`o-04{JN(XZR1jrI07!>rWmwNGSMTi1ok!{0JWzAz8qd=f>6Zd^hxmT5ghe{ql*YvP8+M)q^je=w|lAE0L_U{Ky){rw%~LlWT`8MIT=)2-dzXx`VS zt@n2~1v7fJjwpB6XXQp;okcAMQ(AYY%ggMSr3)UYv~O;h@;Pn5wc1pBwyYhFPN%zVsdnHDww&vywu`qPa=@T*C`?v5I8$Y|MKnI6G+QaYakuEbmXcf zA2~B2hG~vDzRMZ!E9kfbE^Q3ipS3mPgN4QfQ8$kL<_8~SG_-7)V4MVQQ&dzeQswde z^>*uL&z|8SBTxv~wA@`R;^wG^=H=yCd14_f&Du4~8X3`kdG+)Y4po@@$$IPfc;)t) z!)ljt&u6;vYsFL%B5}|22Gb^1jY6q<*S)1be~@WtXrS`)47|MM+h-KP=Dv4lnibZQ zIIga)Q{@&z><%Js`w^1{o<%cG+S=O6%!HRGLy~7R6TSmU{Fp^LmHFp$w^t|lj~}b< z)jn1Dn(=<@duesGJQRvd%%-J$rsM7|oaVVNe0hD{wy;1=M@M(L6o|WD)982` z*I5l+-Q0xh6isB<>esuzCX`i45qA1cN<{S5Ry5uFJdu==Qtu2lk|mo}Qc_ambLVl? z7KFKSeYPVjC@AQ#HJSrf_jlT;sHkD}ZU@9_s;V78s6xuh%Bt^D2?+^96uz?IBZO!c z>*1H^)zX924kin}advej)-2L_nkMe4;k6d02@R5_V`O9u%ep)`;C%Ar8%wl8JjeWF z-}yS1EHLRB+gSl_e*U*&u)~ZR%Mp4NLRoHcaec67CVF~$Z*MLyVJdjY+|Qo9{0+_^ zJUm>;``Y;kNaD)YSZ-&ILVVbdA3v(SIR%r!>he^7bS$?Ahl6u^ENHjDHZwC52Gkrs z-S^)82&nbSN@ut%WCgDE*YjJvb>26wN2gn3CgATo1Z-zQ!14%zRIpMDJ3_Irv5A-z z6O@To4NT>s-@6e%_bB?@9?6$I4@AvsY;2s$Q6O>XiXb!b^75(_sJ>afo_AY(+vv0X z`x(9;Y`vchtmG(0o*Ewws55)l=18`+KIC3gPcH>sijA2WPxfdr%VzBRYd7zq#Kgp` z$jHbV&x`&14WNc>O}EE=sCIpy5xKay4!;KMgOQ0u!M}qomH=|Pf`lukT*TFw97!P< z_Hg%L4phZqFhzJg&3dt^QRw~X6BWXTySssO$%o=H$-7gvvX`-pChqQ6wuT3jCFw#A zD;@dWYPm{8z=A#lW3K=C69VY~QnGa>@j<|8T~XzSdYDyZ-FB^n_jL$R<+q)+K-6Kd zn#)!+8g=oeNek!k{I~QFhmFD1w?p2Ct!Us!*!ZevBo%%lH7)`{;;&NUcKfSibDM<* zGPt2F)~_G_{+fbKzwWg7PN&L7`>edAgcG7pMgRK63#nins{G1_gViJ2t>)zg8X%7#P zG>`3PdFuK3B^L{xCEI#UKu4FS%1qI5al5}fQ#%BzLRNuYsT0{3&j~jG<7o%Lbbx(R z+pG1A90|c^P*zn90LI<;_VQ?|#({x_g(csBM$$)2qev%cbW|1C@j|`Y$8RLAfN>uf zzy>BjCSAgt%YI49>;7t^#&Iod;eg@E6J#YNrMJ;QMn(#?d3(%$S`E$beHK%`%Mtt-Z}yi2`T3DXTO95QXwHBqtS0KfmF+ndy)&; z)9&u>mO8A;0h@$kZf*{orPkXA;3kY7?(a57b1)|gwF4PnC#g3Md0ri$JPV+mJFlfM z&3}_Zaq!SQbSL;p0tX+@Cne%F{iK0SrX$;nmH zAFf}lg8ldP_0_AfN65^~9B(2A(;Oe1o+gVHJ4SE1JJ&7LE=S#&EGco7J)aj66>T3H z!UalMbbbq5!f?fVwMLV<{?=B6Kve8D5<@S4AeY8qfk2^d44Q z<&4Hqns`iHTu`*cH9Bx%-M}jz^>H@0Oi$P54}fjqGVdh>JCbeK?8D5;+MX#BY`-_d zub3==4V(#?m$&yw{#(`_GoC`-Y8(j(iSgpJrucY6A2MExK`0PR_^)i*Kasnms0u{p zib{atmM$32GVP86o21p`B}_?4i3dE=`1)3EdNE7X{r$~B{zhzUY#HzgSmb=@K0ZD# zfTb`oq3?>KvR1}fe^*$>kd?Gb4PraxAL^S^WegHGyS%5HBSLFD42?%Z z5)Ay3ruE6`*qhb*gQj*c3h=R*b8d^?T6NCv$El@2fKltTkp*POaAv2^lWjTyh|)|7zo2#;DIuT@3cjz==0HF=m~jIH-BQ^4A;Ba35kfTfMad_ zY2KI5?xE3Dj!x3?pKB}xNLI^Caaa6b`Uz&BfN3mX5rLPx*TF4F>qo+(>dZBxbH9G#yR zSKZU#Yts<>LBU7klO_TI(0FaK|NM?Z3%QeFW$V7my+_! z87oC6_N#czuh8Ca)BWb2A-3UK+~WY|a{Nr;9qpUc>CE$vHp$*vR~{p245qWS)xF^f&J# z{onJx|DHA4Q%Nz5Sn_#PbGy!7D{Y$^@82p`iko&8y-rCw<*$ft+RM4G}IJ!LHfZ|8B(L?g@D!n^Xv1+tw4yR<$};7 z(;}Cp%zS$9mz4kiw&U!=XgRlJ0we~=(tqW<2JLgmHopp?!;#LT$2=JJ9OZb4+mBOT z{$o7(Dc0VhG^iw8yv;jhSR@ZYkFrM7FQgC&Y;V3>SRd_AX zd1y}@D=loy5JmW$+YhS{U^O{3$R{}pP%~GMlIIx=Z$WR}1qdjj4cZPYinD6;bkCBc zIcR_PJu)_6fr(D9I9feUl7nWv$d>W=z^$aO!600Ze)ErGDd#gZr|R@hOkBQCNSrYY zSsr0POUK`vle3@e6CGZ~`>sm6I*gw@|M2QG{Pg*xGHwOtdq|G$nxq?fBs##VtbAr$fJ{>A`k&>u|#TxSU8G35Fx=f4HL@4QJsxO-6!Q zC_j;_!sVM!rlaTK1y)5p_uB^X>P_P>El=jgZLX4nqL7!kagEa-VYR z1*IR>4PYkA=`VWF477bIH_9=NbQaNj%)~^&`AEQrVM=NE5*<{}X*3(kI=s#DX3%O1OlUJoSh8P;u ziZaHDlu~43sk?{JNxX=CJS>tNzWw15!BI3CZ0peYiB8kj;wK+rLMCRS22@}IxL^W5 z6IMx14(HR%ZoS5Ws1|VO4K@ivjrS0ZEf}ipKUI@Y2ta-a%U-TTpTNA^AAPJ5&61H3 zRLBKFf(L)QhE8h8;*ehFh37x`@&D+ad2Pt;lTJQG@7#E3ZMVJ4{A_gO)*jxNOe>rV zU;b+C6vNcHv>PmMmo1eTKV|{=l^E?mgkO#4m%~HE6FybU^@_Sq^&n$~9k<8Mlhcnb z<{WcSy(Csr#|@x0+Ak#*@|2BqN(@S%ljkcH{a5$old8ERPZVloNdFv~DX z`z)%7J*%Y9w1O!aiJH5o5$~=-?{l3G-0L=?ffvD5rOvOQP`6G10%EDEYxwIw(w_2R zLGn!-fEsJdj#~q(fMvCX6yE@ipqRkNkiFx${b2u7b7>Wy9sh3cc?S@mgLexxl5>5d z@A2{H@xgA?<(|%&>`KH3Ne;a;9;#*g@^&-d;Ka2`CVgFklyEJ$sui2%V4$9TBw$)c zF20KzmSv6p^)@v?(^o8N(O?%rGp7i?vvur1Qk=tAjxi`3K8H6yE-w}3#w7U}p5I8l zTMS)Xm)NA(3e1COE)ZPQY2L^!m2|M_^{}*|%?_IEAAbF+6dJNw1&=>|=a5q>_O^Xh zC;RG65lj$&oH-KqwxrJ-aR#|IOFn_gga1VCV>AJ>zwDy#H0z%P(ZZ*4Ugb2_I60=4 z6u!<@e?DwggoJ!(1qo5Fr3?K(<(T;CY0*IZ?U~QW2lZ64kCkkAAnp)|uO`~5U39=;d2JP`d^hZwr!e{#0==g3S$cT{uaG{kP45kwSKGVBa0q-UFo z`}n@GR*Db*C6K@@52@_&<(10EDfK#j9R(;aYIH(6A`ta@I0{{vFHq5fC5gTy70zYH1Xow}AQV~^ zDi!7Y*0@_$y_)>4^mr7?IY;uX$yYH+Y7q+VPlvZZu%G_5Kj4vyL$~MQ5E3X#O;%Yh zgUz3xR(pKpk-`g~#y3f}0u5d_9^ND>HZ&a}Pe{xrda8%M-~lJ3t)(4ATr0cQ^NdYi z!5GH+eUFIoNoq&#N7sTGNx~c+8R@bJGvh&FDRj( zXtXYl`v(Q1pa=N5p~|luocJ!Mf3co|oj$&wWNd+pC4v#i?)iYjD~_|uxRaK(+= zgpdVAB1BMLx29lsX~zVYhQ#wyWVU^BJafA&x?G%c&n9EUl4WRohpNlzY}+rlp1&*twgIb$irG~I?>SRjyN$81+pC~NcLbK3SI$lR3;KvOu zuM4=r^c(IeKltq9*yd-22&NG{oLu`>X^!7|L_K(WH5O?wNwXq~%txko_NLoi7mqK0 z-*8qY={-7{7RQsF84 z3>VX_G2}d-qq1Gzw?wl*qu6gO$hEOGOW@BF?&64Q|9SU}bXo#}FERL4DLkZ*5>x8Y zHPcg)@bhnw&&C^TgqRi#M2N~ds@Z8gna9zk(j0+B4afCua(UNRUDg=25M2skNg9D{;f_E0BpUo7WV)qg399t>|{8|$1?zYS>D(P z-rcq7PZcF$kc()kw4Ma1J4U4rHbl8#+}_27-)RDBW(xvzt~ygL$WkhM?g5O(f}URO zhh}_6BpEL%gbT1xRzoDj#48|UmVWgL15Wf{kp%#v#~7skn{&0i#2k7dF%0r6fFtOx zaai3aZ7wXt0>InbXgk6vskONL3&-rpve^kYRT@mE4U7CeGS&~aE5E;$WO|?4+HEiH zIEhoNP@7_jH@(8d? zO>0*G_yU`}+Kf-1Kk2HEU&<|uBTs>ES2ZE6U2-3v@}e#*JRF~jD)RRBHh-+8F!JrK zlbV(mtdA4Wb!6`D?hwDLlZ_oB3jnz%2-xb3n*t!WrKR`5`e45PLVPk0P&5GR4IcS- zYmQp9wkyIpGTiG9+NDoXSq4ky{=b(jNYh%bp`ilFSI^h=nYOAVXNl|05CVi% zX?c15o;600^Z{<(kC}h7v%QN2(g+RwrDSPZ$GAR1pFeS@$_)36mHNi_N1hCe&GO34 z&2({{iBFJm5?Kw}eE}%h5 z9VzLxY*_e-@{KGIesb(r3JRHHTlsf|fa9_prtMD=CV2Yv=~RO|uTq*=C{O_%5p#O_ z2H^}cklDGW4Rq{xuqouqKs7Q9i2PQ&qk{tjkpScqSZ3PY2H;GArg9ry!<69lY3g|YANthS9TgxWe`@&`% zm6KlWEb`8jp}>GogE%U#)66}Q^5pS(n-X1MQ6v^dEmqYr@Sa|pb1)mVyGpB}*`B40 zfBC7R+r@MuLCGrrMrqXNHEt@e%xv^!#E0t>1zl5`!oVSS;l6QQvWN+Zh(gIgt~_*W z%{xbU@%nW^!&nHd6d^(?dI%m}m>+Z4Bn^^C*)duwvw2=8 zUH(QNO9k`Drm{}4Y}t3j&b65xNoy6=Vp;9Z=03YGmf$zbGcOBAHc8*puNJAhHekL% z$=U34RIJVQ!ZWP{DhPt|qA(FqeK1WeF?eq8TDqJ@jR*l*?n>wfI<3n|l>TW~RPiL( zu`gptPo5Tp{879=cLb%M9_m!DUvD|-f!?JhpX0YYzpp+lu_WyvpM4xjoI`GF?f|>< zbf_gp$suB9F37tz$p7JyVyGAOyDzcS#rcPazP=7Zky4?To`(PL6wiak3eBFSJu_T8 zi~1eIILRB3=w|pMAyP0eo7pjJtua|qbSK3F&9$fxGP+w1e=*3>w$k_#mTw&*dtB2x zy6V6Q)D6a6gB9Vj^tOe+#oTDqz?oiI6@gF#5=5S%%#gA9J>5>MWCFd16D^GOboOM! zlA&!L$G)0m`2#L&D)g`vt$_+E^o)gbF!Op<>bu|DmyT0?vJKNZn7P+ZTz)-SHCR}f zEjr6QTSetGh%0y;oGeGE1?wOCb zy#~9pkiV=K+H{HI2b$x}(e-^Sl(g!QR>?qPHOBQGW>>nlZ^#jJR71gmWZFOqmLhV9 zR~nPBGU_Jt*Lj4`aCokKtB}vD?xUI|{9^SvO*i06A>wV-0hhW2-HT?8urDd}-`0p_ z^mY8Rx2}Ye(hQ5zdk0Ymyi!N{hsfYb&)g7-@d69;pK8h6h`yHJ5+tTc!g<1fGdx_w zHq%rJ`q78MbbP1MQ`j6PIAa4WV3e8xMw8EwvP)#So-37*i^TVg{`$gB=PX+5hg>+O zwyaS4+mMsQpclP`w?1_BctPewAqu}_^85LRQHYP0B3NVio<#*m{;Igur#iHW?t)_&Ad-{&I-8a3hl_uEtial-VkF;TKJMZ~U?K_b0 z4Pabtn0wN5HOgh7!c)CRI?d<}rPrjyyRX_pT>TFn%Br1ppz88v5WdG8$hIP?G~w5E z5ZliMQ~@*B#_GC~o6huu2J9{On6*>h925`V^kf`e@tYQtBMvSY+eeh5_A{wB$NDkn z$?GSCBsq}1-R_dySAuCZDV6%#(PouaW0%?ct8AY|bq{Rsh*dzbz)PrVaE!3+=`4S` z<`A_^dm-c&KN3o1%1}Nzc>4q6Idlw_UZ+0XazW}N)tk4x`4!SjV+3&z2lpmsDAFlx zDR?SW9YGn|kO>Tu00G<|(Lt4*QUzn7LJr!Ii$i8B@v)jQNjC?!2fH?Ao6{XgGP+lp z@&wVI2GF*kjI)!Ou2?PKKRi09LZ@4RsV?^R%xi#k-N51FmPjE3=R4{XL9QyLeQKx__02l{ZqwxH-L7l*)&Zf zD7SZ{hpSJln!iu^9J53js;_RSC0-gPL&|M+!&V)5t&=Hev zgiVb;PC`8%O;jZdVpnSfV- zvU{t~N+DNwLu{HI8Nga*#9xeCi%-5P1&3^tQX?|b$Ck(R9ZG!^1QOX*ndN8`)f_Pu z_#Qwhes3MNw20!PTwAdZEpH%F7F#wusG=0Y3#7w@LmZM3c5Y0j&{?UE_O^2LqXZXl zY?9x;qH|SWy42gstfB=!hZ$j`E7m6t{OXNC`8nSZOS}f8sDNjXdc^d`k&vY$d}B z19%j2S+oJfIgzoh+=FtP_&F%mf`>izG5$Ed7_!Y1J@gr8cr4~ub?yK#p9C*M8L@>{ z5+}`vP^2rCZ-2fR0ch8&T9B+==f-%&J95c0S=3N#3>+lEAFE)dI%Lz4G{XKFM+_<% zJw?ZKqyM0BfB^5bxInD^FrO17epNzN`hzj$uKnqETQC3qpMVgK1$vL0oh1|NW#p&d z6*2pT8RdOy{d^E~PO<+;?m*qz|GNyMkYw;1q&%Dx$>KXan>_5Kc^RTmi<;r+ur)%3 zc%*oN2SAWQN4m|~t1Bq#_hNAzQ3^7j#8DJ~?1&r5990_JL7COgCF$V_|6sq!kC@Ms z(|&gcU=EXW4i0$N^B>7ga&f}VL~irbr58HX#0LtUNirndTldNld!)+Qd*f?C8Fm)- zJCH(guSb9_Icz<5x^%S>jkS^AUTt-^1YQZf&SzDY7W%|JfHuQA4{hSjZa~hP3VBRl z62ds^qoa~XnlOP`thIaO_Vp zoKU!|n_2}RmyZxrcZjTmP>RRE=rbMlgld8=mq!SY{sk`#b0VESMkw?jI5N9UnW)(E zdE)+ZH75;r)T%ty3+*uM?=CI5Fz))a+QZ6G?HopYB3;4-A{x4Z}0X+^!8Untj|0Xst$Y?d*`rl;DlSe*W1mwhbU{xKTq^SnVN!Zu z{UV?7e6d8CLZ`n*+qQ2`M^7}`+EtV%^tT)Au@^A>#K<9{Xq6wR9KFaHBLU+y0wgYc zQo;W;XUUg z5H>|W$2?z+lfVZg4D!#1U7Ro18%i{p3mmZfdu6XW2K)oNHyua=Udt;+O^cDj4uCpF zJwVZGKBC8?|0xmxiLl&>HZv)7-8CjtzoBk0GVE zQY_#=*^=?_wFyBe@Y4!tnRB<%tw<%B2*0CDs9bopuSk$X9}YwA@6l;8&3I*8EZaR? z6=Z`&SX(}EH)GZ|oCwHtoNt-R6*UG5YOmZ=_8`r%-qlxTW@y#O^2Oj_k#O)_K*&Wq zat%%OFaCuNUX`_D#)A;;_NW!`E%Nn7nqRh%8y*x8sqY;*adQ6Xh=^w&I{$1hxTA+a z((k{9MBI8*CC7%GwgH{pl#~{uEIa;nPCEVqQxgqk@ExJirQpp`Z}btsnyZ~XD$gx% zXe)3WWsS8_7Un%>;QN9CFT$?FPE?e#u)}X|8YYUaz(fY7$r&Hls}8eZWpw*gmYyfk zPgq6=WVVMVp{$pyyKmt^(z`DBJ2~bkZMofG3b#U;y!2ivpEV0xBe0ncn@cX1J374- zay3l{Zc~obt3N^f1O?Lo!xI$5OHc0vcR1gIUFkkdU3&=vtm2uvtANngwBYC5o<|ek zV|zG@lP`$8%QOj)Yo9p?Hxs7c_EsW<7Cr(yL@z$wV-BnHWZ3oEk^m4Tno6Ob+JXNY zH{j56+{!3AR`W4F1q8g-XVKpPPDv66K(3ENB&M?j_|d2>gnL( zs7O$aiKVq9AUVlO?n$Fx6Nt7?tWS6&!SnSr?v)7vc#Q-1x{>Y6|EM}}+40qWO3TQI z3JQRSttwwADnda`-j`Q7aMB4gZy3QBKw@`USZg8(h*0MX{1HiIv|y3r<|$e7r8`qc zLJjmynmpNb$h~&Pbx}=sM+*P8LXIGeRvJn54wIz-BECu<+E1zc)b7_9IOspk&XUfwnMfdoC zG{Jt3ck03UwPNj(NKw}f5u?_RJ+>ZXSf-Ve!f*t|w4=xtOKnI-ZQ!{~-hUQ0XvyC{ zs9zIe1TD}gt5yD+GLS{r=hPT%q+>Y10voTt$+f4eN9QaQkJ`)iJ{(+n0bI#eYVuPo zTY?bwZr(!+Y2t+iFVuqcE#$=AiMF`^j-c_KQ}TWMBH6y)7A_SM5|QVbz~qxSL#0NI z6$pYJPA1;NVGCbl0Aatl@(ZU$huK+TGTW|!jHxr>!f=tgrQM>vX?oaU6m3;t?9et7ebQjzC^L8g52-VqW-?+=6Gm zpXbj})ZD3~UJot?0=|$fb%rW(k1_zHNFWt&=^tQ%>vbYrujvVXR>l}xl`u}->Ir`I z6s4;##fs*PYWLKAlU*ony>B`t1G^)w^) zD6t@yAMAKOb?vra^-E(~xE6p63+})mOGW8QbR{)&aBo`ncbWtMQ#rtj>Toli&Gc9G z2eB#avQJ#gjd_0b$NWkynl%1)jx?~53)BCy1u=i0DmNHtDD$?$b;dlC`XLt_4>(dX zil}ULhE$oha|~e#@`cAd2vhcd9^Wf|-ggg&nh60v3MF3Jvx%lj+x3h05cH>o0K>t3 zo9qp8zA9&{w=>B6Eo$@Rh>(TrExs^TkXGQ6VZ%2CGv*hv*n<(N59}urIWv)v`^(7S z=DBdmL4!*0n1Kf~CAK)FLuCe5vg##MU|!Rb4I}-}(tYE!DUlpe9h5ryW@sQ&Jat>c z;^T}lZJ*^$ir@eg1fhhd?P*Taa6&f14}=FX$d~mZMtkL{N0(;>ADb^%#nSX0NQ2D3 zO7719wlvxW3lY+AH1-~(`+w;Jc)bICXel_a^Q9O46l5s66l8F4%oy{VgTazQqs;OL zrWLsIT&@)Y&z_|Nw`NbcAFK)d_=lVW0AcsInApg^e-Wgg-C4rVY;6xMO{pNX=SJk` zsT-L_S#=SAXH|(~n;Kzr>8V_r5u`rA6KpI+L}zHhj*S1Vt4U`h$@3OC+%XATl(9&ct^e-e^qdDYjyodD{6 zJ32a~3dZR{p9Cm^0$@L!G24Eog6yjI_|U125;C0Sk7L^ITpFj#nEp`=0dr9O!|l~O zB6OEBMQSMjTRpvq%}vWc8yoG@)6=6{TF3z0fwLhF4)D@sQ1OiwB<(PH4(J|H*Ig;l z785yB)f9WJl^`mqW;>+iU`>$A=#9OXZRh#SXWvIS(SK{_O;&?+@K=OEExtPbxwo$G zrq6x5R|nFSj0Z9m&>fvx)?cPBTUtybz4||^%KJ~qmlhX+B2+qa_y)-;|KHd~g)Jw+ zJQvzqa-o$i8l2@zS$;V$ir}0#&Qhjt;-(#IxT)K>JGPU!Fk)jj3fDp>yx&W$#b}rZuKztARD#EC|sVYf10j(4dn-&58w^4eaQXf zzbVH&1Q8%!Wha#ISlC(Qgvj4EaQ;v+x(nhrDVQSVYMl7@nSZ^602u+8g&UYLW87JAZ!_Sl20A!Iug#M!IiDn*%}F{d8;lD&Db zNAFx)uhmZmKumg6L;$et=W1kA&b$9;S1J6*TBylL*Mbjd>~KNBK|Mh^9w-p`LlmEE zK09!yci0wa4Do{pYOGgJ-%WGilMULSEP)Dh`}19Gh?KN6qQ}|x-+muDx>mhsAl3__ zel1q!=p|pnLIe*+RKjr*_8J;O#VHtAhKT^a3Uj%8M2*4t4|6$@UrEC;#@yT-1OnQ3 z5JB%y@Q3-jxR_Q^Xb7u zr!sj}4SYF{x#;l8u-8rV%A7<7TNDToP!&M-ZJjXDD;a7=3g!oDriJX6ASR}!BSpG` zpaqSPi0C=v>iZBV^!w;=JHB<=UWAk&8hB(iCJ62GKepEayP+I(n^VKsoohOZx)jkE zMOVcy7_&Tib$N z;cHs6;aTyM*bmVmSf*8ohs(hL~exxVgBYU{Ku030#_ykr^7&Hno5%(q!A%Zv_DnIt60`hi%m>6Sa=JT?B- zP+_+r=!dcpJL({ST`mVBKtPRoJK$~m6A|%a#*dxz8+`4*HS;=#^&V|jquC#;HodGC z{uU=m{b38UNU0;-Ix5jtUz)y76zmv{_bI-C=N>=2F%A^|qd-6x%JP8VBH!P6mH20~ zYe>vLvJKFSG0bY+Jitk+Kqo{-aQal?2Wl?=DGxtf7_v~TVy7QXpT=k@X}ZP$=Bx#9 z!T?u+(29vsf_@oZ_)y3#p!mi7jcXnYVz-wsUM@#+F}kw~%i&fCGel~)mG9Q)I{#Od zEcBXN7XbuVAhJV*yhX{-Df;v(hX+1@b84)&IsTML50QIkoG0RIZDiL+XDyfe*a(o4 zV#%mN#1l5f*U)N903v(6a>3ki|4kP;({L=RIpYBxeDX98l7(~ zh;HoWBSTyFBVpM!nC+dz!qbmE0sVDY5wCKj?d`eXq&VoFprD{=c(}h=f8`$%a^F5} z;7^mb?U$ENe+U`W<9>~AX~EEat5RfS&Cotro){7d(5Mi$P8*br#zt{K>?y0Oe=N`} z$to?y12yx0piK@g*jcmoRhmn|Oro?bEhv-42am*(jg#oP+PcX~44M^s>UG~RJS!M} zGE0|LU(P-G2^5y+i-QiE;_F(_FuDG!-3(OwEZ9cO{~M3-!*@U8^?M{X>RHq`Y@!jX z@xNitBM61CpHxXOQ3S4iSj78-=+s=^(gSIZ@5K^f{Hvl;bS3lm=x~e&P_gXlM}k_VwZ8;rU^ba3nCGWQT@^J_p=og%0~;0s?#r3d|hU_wWKP ztD+i2Eqk4)Q+fm?41BdD>t*u*Bz|}EmN}SkSS2F$@uaa7o*j|=y4wHkAwL2EdKk5; zgm+OISzCu|8n|~pe)c;FhyW-{04mK5J2d*w8g4**|Br#b!kv@FtE;Ev5!znp7Q7fs zt2V)J-?;fz_jYZr9`*ggQq*>$>RkTh#mr8w>FlF z_vbql6ckb$I+CI=3fWqL1RLFQ$q#Ts4UJphjs&Hk)#g=*!+_p?mGg7EZ*UN&r1@T? z>1v(gujHcwB)+>hSF~-YlN!|b9iF`xJ`Ri2MG={1J-o`B_}qtVBjO5zUOhf5FZw!h zU>iWsQ75P#$!{vws|~2A;5*%$orJrL7=O6!J93tX<=Hs=&}vcZ!_Ch4T_bA*sF;Ln zBT^8Rzh;X0N8jxCCDfS}4Ak1%I^HBECe~m1o}NBGNG^?qjbf5GN`M}YU;oGnR#q+M z-xgq;rwNO~o>x{c?!+vJ&T0tIL?KB0=OriN`wu>Jt{4b}>_=!d0i(e9 zN;1^5Bj?Xb;#%Oa`YHAg$wA`#)lhGFsk$;*5JDHK|O^ zPS1l9OYC3vGS2)XIA&ja%heN99-kTVLG}We$g0pzL{=X7EjE2!kSg`e?PYv1q%U_)!?P)kR6>FlJ9kfJY#DB{(D@$wFaD@6@F%c11 zs6vBAav-Ibplf=0d)um*5OkWq0O)*YN+vr5g6aBnd3L_5J|{P@h|(~^3LB7T&FQ~7 zj*$S(_8J-o95IJ(6&C2X?6^5-#toA82SqkCvsJe3N2}cfaftZ%WFy(2>iN~8J)|YY z)}nM@xo*Tn@WiPr;y%ukXz}I>Yw%rOByn;`zZQg;h$vGfTMoiP62!s6B7L$xfKNhV z@pnc&j0=;btM!7&kcO&dWFOHubcB z?8pS(2ga^b!Q}#+m6?fvBUzJI1;2=ZvkU;9s0}HDF|~u_Lg%wV&(M~NJH`m>PBa5U z^KWK{(89!Dm@S|~bG59Sx*c@c!>ufchD^@3$C;l!<39Ty8qyQ7OXTQv0TYE@i!$Wq zQJRu;)2Z2}nAl#+EL$!g1T>gne=n2>!(a!NRh@#76EZ(HceqE6xDjd{{)z-=~ybj zFm-ORS}E!|Ag>WsE}Bk)*z4e-a@1NM%qn(oG6|lX$e-8(N9Z9du$e9A5 z4ses_%-4QmyFrY1rj*Sf~7?(y)PmdDRdtunw z*{Rtjg@mvbTGWt8P)-2s^sod|>)6e)$W#Onpl`v@(>?Gy>hN>Y0|95~L|fNy3Lwy! zb6~1z%{nQLUf$ijH1&I$5Pub)yy4Jzcw z@I1^c75RBf;q!r!>RR01$~ZU7mp#mRF8vq5a`aRBp?z05T5(STnUB4s=)M2mOHmHI zKtIhm#-0p$Mn=UkfM-su+|(d|yJ+&Lz$SD==yo#KB8&g<%_ekPu$<5j^yGqGV|jP? zT44cjF~Vc>lFzHNWqWu4V);}@_=fEYZCi(faGt&erR4NIA_VpjkDNUpoRBBMtAJo> zYKrt6Pgz;He*O*$RllfZu`S#Eg>&fmQ>JYkQBlVMIZ0<>X75Ppd5BF$pd9PU)mwQL ztu6w@(ETo(V83+G`V4?SQut*Nt$}F3$Y`F)LZK6#i{qIy(j#^@Vk!kE7vPEvXHzOK z{oR-p{f~myWYKv|yjMJ2g7Dfe2)y<1t)~GVvR+LKe+sCreEqE%vnlLDWNtiF+l&ke z{-5vg{+V&1v~0vn8z^Rkffssml)fAQz9Vc%EIT4Xw{gq&5EPY^n)XP-CF$vR&H%6Z z4%Z3?a`~qkdh5KaTC`G${lV{jBkK@a%GKDjl%YRAbN1#_Dn!~#iyfa;7*uBUc^26BwrI4>og$;#3J45 zPqDEC($dnyc`6KiR=?4KS^68KKH08p0+6OQ7=gDB7X*@}U1b1XKar~n2+lvIkDb<4 zBI8!ex^4w|;m1b=Tp+3fSyC&gIRvpXC^RI8ca{D%vX7s}KDykE(XgcY6L$L;8(!e| z6SL2Xa%k)qPI|Nz%5yl!WjZ!8L#4x*ZwH^4hzkbj*c1S_S|C6`mp43ff+uxJtiZ_r z!v&DJ#Yo#=TEVBIj^RhAKV>RKyk_}-BdHY|sviT)MvUh3CgVF+h`zplOnf{Var^gcfjn2NBV2uzyI;C>({@ zEORZ5>njBaC&0QCBTavqBd$x1l7p_L7Y#Zg)xIlNeo#L$%of2#F9Hycqd+2PB&nH{ zQd)qEi3HumJ$ldPzUJmK0Ui<8dHeUTEO$Kok!Ef12KL&&vJh2$n72B;1yKnM7^E8+U4S8xI{d1IIc`Z_zIW6F{@Gc4t@dKle~7LI0x&Gt!PYqUGet^zc`8VrK zB3%iWKZPjwJ%#hqbn>cL6-4YTeqTh{r6ZIJQDbU;vG zIj8q>=D$jey+A9wt_W2)*A{h4^4$fVjhq}RF{c3>q|EN%WMgYsi{ISc)vG*TN}ZaW zT?GN)q%{S+iyurSpSob&3K})H5M%;-R{yxX?ED{I0mV&ZCeOQvC$HS8|3xAZt}hM99~Q=ebP(L-aQk&b zE`rn_+`3>2uCl3&0*$vHu7W^sDY*7Rr@N^YWI3*`)shF$Oy&Qtv+n@M^56e|jO@M1 zCR9R1%F2k!2oWJWDcO64ghy72sE}DkG9p_>M%gm6$<8L5|NDM)#_#;j`JHqA-|Kr_ zu1nnR=e|Fm&wIVb%s!T=_WyN5$`ML!1Z?FJ;#3GpXj`I)`u)V$A*w~ovAs{Vn zNTrO#^%VtIk{V3c-%#&(M9RJ1`!w&Mhf>KjgeNA9CBydl5iP!E*h`+s)R)%eqdxRr z0s;c{fPP*<_{cO$DIL&rmV5VIHl-u6pn&Gnr%%B2XEkGcz$vk_9|Df6bfOusEr+Zd;S!0xQW zCxuS4Pg1@Bw$Jz-4Vx82QcSj2C-LeSLGlCi2y*YXv4*lp(2+sT7kkvX2X<5;~80)81(#Xud_5NL{r~)w6fZ!)| z;Wt57TDe@*oD2j>gM9N~jd4is{sx~GEluuY07&KR6>om{vNCSR$T0hC+^z4cZ$OH^ zNnee>xMv|n(>L=Oqnm~)x@;u(0!3ohB46l-&RRu`Woc-*O0lVbTYK76HTXJ8y5WWC zr#r@=oZ>k!z3}T71tihXu9N5aICC=CBjoS96(uAjl#$2MXi!G+&*Zs?W@fW$+bM2` zji=IKzj+fSf0~GaDf#ksqmO&;+{B~8LKgfeM0aa{ce55Wv?S$0S z)G831fE?r!RP4=>;Tq7pDlRT&7ZaoN$0wf>7UJRD$b*a2ht%FNPF0?p$lLBaQC@HW zgo1ck)fLO#DyF*au}e(D``i4GUS%aL`ld_7k@HQu0~mZ!6M1^SAnAWhO&Wc#K>Q}`5sJUxH}fnYtw4e%68Q!ldm z>usCe9khR-95WH0eV1}>AygntiX?o^yhu?z?nMyb7?*2aO(0|Gb9Mz4W}YY8~S=&;$fVWSL zJL;d*LPgURY=`gk{kWN+-|_M8 z_4Qx<-wkFNSOCGwk`VzX!dXLR0UWN|nrsoT*Bl+yjjL0#Dfahewk96%NDsO&LE39- z*PNswjV^oY&lX`&6Q!+`cTbadOMGA?U&?G;Sg5c`-UvfF>HmQJ;X0szDI?ceTIrT+ zFI+$wtEAH{NRb{o>U=mh^(JaUGtW0rjWfaaZ9uurdtF7>>O01e+^EFldE15yUKJ9IFy@ZFUZ^yGNyp#p-4u;kV=unC z?oB`7Yfltbjy+2VGQgV}hONm+jupWw#ROtA)gXm&OK|grJtM<+m{!4#ou~uMa_5PS zl`Y$cf}7S)*81xZP!>;Jz1f=M?Xl@OWA$crHhM2%P9o}?%=Mc-?~=XcT_qV7?FSYZ z0SWvE>2EO*84ne?>##dMu%<5C+1V9BTFiOl=~vulpH%H`DgQUO9ul0G3>-OEY@146 z?`lhca&sTDPwg@eX5>5x3k#H#EFb(R_-gQ)i<1)@CH|v-6iSiNDa(-OFch*Yt;C^KVNW``%N})p$F2>Y)H$-3-;7Uj})g>G0C@SQuqR^6!#3QQgZoK&oo!Q*4t;QhSx5* zdGvEUh;652Jtg7)Y14cf^*|;H{oTFl3vE!Iy&SK&MAyMLO#$57Kpr{K-IjOZr4vgP zx%3ta@&Xj9IYDYSd;tQ}y-XUFM*vX-;(i@%)m`47jr`dLquV7GdVLIT*Nh_ZwthZl zF1drPcdmUb!;S^F`rP(2dwUMcVZzj#fQWTRj(>^*IQ}^-XP@o3b#Z?N02zsq8^s)u z?{f-aPV$5KQ3CB?*uu8h61qb<{89?-%KbMyZl(HH&J4q+`(VwwGcMO|A&xI3DoX26 z!igyl8<9tN|&qL~eJr=9+`6oHa1IB~T#2<)z zFh(AHaLd=1_y5#;v5&=;{6Tn;So{}WiPj`*v;?H`Sy$(}?KozBOeS4dvAVlz)%V70 z^(wQpSMl5m)Ks|^Eldcx4q~fz5E}G8nzJF3EdB!Zkb)o1ISNNS$meAqsx zAW83u`|?;?z1s7}8E9i5`x&G*@KB(1G72fs7g!l+MDqw~9+o=KtHeV`u7gFYUlh0Y z2QIX~&O)T^bRa2{sbD9F6)8AYQ?Av>&sR&F6`mxQC8F_3q26Q_TRo*i>o$9y?T9q6 zoKR3c;-O%z;9j_J;jJ2sHfF+45f@(pMlpMiuK$V*vz*4Q0NJy^fnDB+6+>DuhjL`l zOFj4JYPrxA=__?UjWPzw9c@n>tkG}Lr|ldZgpme|f-Cd^%*MIfI3CBu%DYX1%=<-N*-@7&?6P@Bzg^#4s0h`O0_Zvb1xuL7569^Dr$N zh0UK6rV+OF1pxpzHd3<~&5|Mge0wmFPeyY10t0G!{FT|2Hql>p!jUDhd#eMiQXcFV zE-=E3!V=?*#(WTv2VY%0_7O0wZ@C~Q%e6yH4oFOcm~8TXPj4qf$jbOedF3n( zd`gAbcT~WpWGtwNVI!*TSO?&~Mp*D^GP8~E3s48l7kdBQrm$zJVuGtds2Pa(D*Wr~ z(`q#yQ$6A{ULL7yIM9n5je zVF|~vTsv|c3k^@xZ+WOlknA}K0(Nm_yp&p3_=6OX#SaV0)_$`-m4C|Di zW*8Z@4s&2>)O14RIZOko)E`c&EjNY9PJs{?qbgv*k<1AK#>Y#`3g9U00Gj>YTkn6@ zFp}oz$3uejcT86I!;Xe{)bwklb4zeyL(s3fDNt+sE@%ApXMtEwRZjn-pAU-h2%7LC z5CpM<<>poSMge}2bRVt6(-vfz<$5Ix~d5Bg|Dr6LEl$%rR#EK zk^l(V`jieC;JcVy;K`N@b&$`x!pVh^UrK#fpK!`+#nOrZJ9jCQB+q^pZ^IR^2CvUr zkD1&0bKP@ChSbz|t~t44{s4)c&trPSIa)lF+vfB~v~sIxx(_;tYbxx)F%%-^BEur` z>zgU38NA-V0cWw{03RmSElrhXooZbQRy*i(=f+ZUG>^?4rw~({!Ija$uh`urajbpJ zO1jdrXkPy5K)gmW3P}4ahE;{lM;Qk7AIvNzWwe!F+x4&Zc~>s^rl9FxS(%*f{rp)C zw^Eu*-n5d$@HeO7{iFaX*QVHGOUIgFvAPKwuRYz-T{f(OJ>!X`9MjcMtGSkYYj=@h zdx*o}bdRyRvXPgtB-JDK85Z7mxg`FdrJ=hiynb&gz`gd>7*vzf6~0!nL6vYNR%|h* zVdB1Z0L%kkc4Zu{idnC&4>=OlV8!YqtUxiSlwSCKKoE}=ySwMqM*+IA(pa;7k&zMS69dJS2p2xeSCp|Cw8Qev379q`rFf_L+l%1uHfiwN%ngSoQu%DU~eouTzQ zO)#P^fkvml0Q7hD;g2o(qsc+BTXtXKL4-3={V3)*=2wp5`dF1K5k|p?Ncd1{oFRPV z3lbiejvz}D{gXi&nH@}BhyI6!m#774yO^*9-vVzQIC>eog7;ejIMGWEs z2*U`#p~j8QFRtky_u8-|3&aZg5#h zuiS>JLgWDUk^85sF7@!3GKu7yr!zK~=kfB&C7ct`SS5woTp%0?0^>gdipMryxAICx zJ+pem|CMRwrk!GPhvmAB*{^>EPlEBP4J0toZ22uK;8u8@8i5ES>MA^j*PI^AymcKs z%d%%Leu7@+O>@=HXr)|8vq8xw^x5mYo!8?_uTT2CJ0f?lregcoefff5Q$f8Lf&@A& zEI>1(09Z$Cx#DdryFg<$?tN_#G zflE9nm>$=3dY{DGU~BKBzwT^BfI?zFeLj)u(-XIFFzeBx>qJ+|+_&LP&`ZFfcOaQN z1in}S`90s7d?I9CR5xkB{fY#EV4)kE6Xtp-mI`C$n z+7(ufZX63n9bH$){oT_SmQ(YgamfxUx;B0Ba^-Ogl#brs)v65wX4`&R)E3Gch;R-d zFzs@)%Wqu4NyFw9n4Aa;<0bv^yf-gW!f+nJ6ale~`D&R(rd9?kf^k$Z=kT++=H(14 zeM3pWw65C8e@AAhf@A0M&ZU%W$*8y+x)#YQ8I_o5U@i;1Vxg3gje&~&XTEFq_jidN z`9=g5DR5m^GWaT37uBtl)V<<$sq{SNrs;k=Z3ZG@Jw);76NC=%6WwJwK=?)K4hXnD zZ`!K&;-^((Pj=H|f(O3}1#UA-4;7`f8sB>gA@}aH{sKhz#upx!)apZLxj#O1qNMyf z^AHQ>V-nf{B}LYWCQ6J`%|LUaMK$m?sCRq=s&lphx5uPABj9&bqEB_>V6M&0nd?V2 zQRDQKunH(ErU8CUWz92eelFD?__}W{UjE71;lz9NgWQAKU)FJ*?Na=tZ)Nfp-lwll=vb!B#Mipx0Ni%Yg+S!t5Iv-M*|)6oTXm0qehX( z7|_c8OXpR3{EmKjPjxQOT$4B-k^2>?3hv1$8@r2Iz_AtcUicbBg}Iq;`b=~Lb%+pXZ>-C2JL>1NdB`lS{@KttuLO(Zrk0cFjFYnsLNaT z+VkSXc@CB7TYyhan%`9?6a6}%YpuF15j{8E7l#|ki_gISFJSD+9y32hu|^W2aZrlq zdy@TQ4tzc}6;zc|JD5iiSpMQRbr3o8Q}TDv__!$|L@p!4*4hfvD-E2wsGdjv-?$by z1tWH($q`6z<=z@Lun=`cDsf)z4wYDL+lC^w)BY6d$+rTKE)gSG3%oy%_a#ojS9owIL{~vvfjvDnD#FDV$c(wP#TNotCVcdmK-3 zn=wvabyZAJ|3+vY2CB|d4bhE?_h^tr;BwRtdVlc=QT73Sz81oS z@YYPdl+WR{nora^>x))gF=GI$9Gf?dAnv~mr%*zOg8tc~Yd2Q$$%HN$y0?wY&X3!- z`qq{#o|5pAdVA)<+VQonV%Ojz3Ym^h`@?K_2 zah#56&4a5?j_z9)`O9m%`h7ndL9;0fy}edG>%PkGLc=3Y!BE{2V8s(`2YMQR`> z8)4}NfvF|Za9mXLt`wyYkNMnCF9^k)H~Uco5WB5)$?}hr1#tU>n8QmeDC_|n8nm(4 zpHx9X$SGQ+yHp7bVr0tu2nAS7XhU?u0dp0@GD*I;xZu~)4j?SD z3ffAc*AsJW%wgHy_2g&3G{Th}%ymm;RF^7&WV0Pnp!oDP6@5;$@wWR*SsmINLkO4_ z1Px}|+et-s0s#GZ@Cv~~C5vGX9RDu~)qvFML8yG+?&j;~P&9DQV z03b63eHbqNmi0u3?Xq6@0dglt31dQDG|t%$4Lj{q6h3F!K8n2&PCq=9b3zl@`IQ!6 zQpB%z;GG_gyVR8etGf5`X0a&jdsSw^lp8VLR+chM+|geYt0k7Gi{IdCu7#u}xW^ z>jj?<8JycO~aRHwzh(swEv9ne$yv%R7Vt2s1yu)%yRz)79Ty6@KEjfSdp?YpE;*t zXjjdM#$lyW{xNzZv z{{9#uC5a1Alsyh)4d>b3wfHuY0Y`mMP>?pgFG3Rhzx8wkfooWD72y>wvB+bMhJdzY zyN(YRj7tTxWr9yk{E!!*UY|SM@wE_lEKjQgf|7s0%f}pjK-!vXkns8@+lXh3kf8>$-q|v`3XcS&0{mV2^Z-qAYBs> zn1v@Cq}FgbISuooD77an@V&(HPncupPN`qKSvUK+{Ug$+3H?x>Xx=cJwPoS@j8G)) z6($5I6oJ45i{NH3^lbNLX~NT{XNS&12>XbyW2nCRHHWazQ(%DRq~;mSqf8!nWoN{- zZoTO5kd1VA6kU=Ih@~R#v!NpwuoJ2MPG&{GOedI7DAyK{06|Q`pNn#KDRdC>aXov6JG47S>T+)}r6zi@@v9+HeFT6)1)@~}Z6%1= zfF7FfupZ0QLXexl)3>fs`AUI#1v4MyD&m&E0$98%d5C^_ZRNDbCaKd6(*v$-b^;83 z-0g9Qg7VP|D1GnJNzzHI`izqiVM&3c z^yFkvO^0X~3qk;ZvO%t`4REOVoaO372SEQybvxrd`p{}{qIq4PM{5!|QuaM3tLv1WOi50|p6 zZE|!iep)5=DNBe1mG&EZ;C$|J+o<%nrSSLmi_n>caOn{Ei&9jLS zo&1pA1+o*QvM-kSG2TooI^5?Zw^XTh6xGw~_Y7Ese9V;zDDqZj?z|U|ed}suM33*q zIK*_sn7hf;9&;f1X@IRmI3Zl&r-Km{jcWMhnZyAbFOAy;RT7jFM&+{%E_wjGs8tFoIkd7FSIMS6x(`C=Kk<9LKLZkwTl*?Jl{+^ME8Jn&Lt>Tg z-`P|Dm{Cs<)CUiD<^`P=2N|K+UJGasjMBPB1=Z}*BN$>~qok26^MnO3im`Q3oafHb zfV)x+f?+W^k%B<;l0tIDTx#bv{vIb^5Z$iMIW0R`3!Jit`K0|CwMEFB%sGpA1z zN!;gR9+aYgG&f(O^H&NfDqWcJo}jhb-BE zrz_nhBByI>YL>UB-%Ml|4VO+9etpi1_*(!W50QXJ94NR?oJay0!4$=?%$}QRnkMr- z*(l%8P!hz330yJGH+cf6HD9q(fNX0o@&!ZL7Tbd-pC9#9+qji0qtm|UUxT}57O^0K z>J%}f0UXVj>oWU@s3j=>kuVD50{poa477w?e(C=DQ8@o;1%&Jn%|CFnpaL+i>yXQ> zTa4en9aP8`>g_MpykKgn=sjQhui4svDQo{w{Q7vR2>l;9_eGs*Ku9Bl%E6%e8~QA$ zGIi&I7_aR6lwFYd`uE5qBcFXyi?)O?G#U~~d^Rrxay{~C0WraVU)N8Fz%l!9n6eS?!PVSs;TSo8W0o^P;_!Sx4O1A21<~Xq{>&~2XNeY0Z~}AM-?9* z4|qP;-iNSUzI+L$-uMBMh9a3~Xj5)xQ8F+Ppb$408lt+}yGOmU+L?dBRsV-i@0PNV zyt2vRu|gTw#9uS@fP8ORL4xmRzW$Gwn_O_S03ILI1m z>yRAA{Ch43(ro-gh;edus!GmVI6Ko+As+QADB__+#4UfDius_E^}65Qm^fxQ>R^pr z)zxKy&kx%|W5WPoi?7a4pD_n-iPZEYXzxpP0*c(ph)9g3!o2_S`z!IM|8rSG&Qky3 zmhzQ7oFw2JVgz<1C9TMirT1UJcJy=jAtU6R1x0N_k8>*uz;Y%$O~&;(R%iB=Uc3ap z9T;GNU&pMq(HdBRe6k*Be%dtHep#dNgUc5q}%6{u$7p{$@EKfCFF*b6olm-)-KX?P%;ByqR`E^}Ej&073v{ z{^Y+W^T&cPA{wMQnyxbllEwH%3jD>^z=|8`|O0y2+7_a}4V+?Alx&pI`zZf|zb-9=a8OIeHVA!YQaU>Dxq68af7d6CA`UJM5 zwcf_q4QvePlb@Fd{SOcn@mkkUPWzq_gGpi|Q;{ltGM&$9wR5aC$)K&5=IHxB-6RGk zI_fWq1HU!<uuy;8BhmmRp$a2zVIim=&cQoDW+xco$G?9knoU&8L@PHMLg|C%QP=+Rl#0m`odK>S3bI2;9VzeurxCd^vP8^{9mK+ov0Or? z^oXqmUN2SwM)$-3za4W+KFzR9$P)juO#J6jJ+|cpkKrRWezPMtJ~JrpVQ64LQmB{R zYh(ML8fVZ<0Sgdsd1=Jn>Wd@FY789B2uMf@oS5MB*TMk-PXYphTqh<>W#@E}MZl;s z6ra@%6-36;nRR{l_reN*EC)Zv>t!o~fnewN@7cd`yI;>r*t{_P2M-PDg$ww$zy(WK zVC1r~HUkq4JrA-c$>>Lqu(!6iWqCffejIZnD5f(PX2izEHa0U$*$lcN5OaK877mpu zHZ}%nn<scdBw)6j>TAO;{{_Ipn z#PPovdhCBRCv_vxO}2S|*0RNlhVmBGG<)P7d$Lz_o2YA1@$oDG#UO-WtNc#RJX#z- zm_Nj^y#R5}IC}a>t{eGJ9Alhy!AA`6TsWSdo?2R3y5NA5C1m~M9O5!{O}2rofO)=3oma{-Sd}^8K;KNG?8zc_5SvQrX{Qj*gD< zJ6Utl-%BGAh7}%ID1>{AgHNUl>Ll~EpS|m=vD-rtXro2TD_NfBCct>8Wx_UylD6wgr~+%AB*XkRGU0sXgee(Kumbi>TA zUQW)=0kFQ*-D9v91K2a;Up3bPt4EjpyT=vokKkvt`vn{pwWS2Wz|Pv*x(;|cI#RtA zp04)&`FA`TK!aDY?Rg^;gD@L8n>4@lTC)h^A_zgQ4)A}kq>Pex(s_L7w~KOI;N4+E zT*U_o*R7qMn^N?&v;kmAH&kc@242X60pmZQIN?LYJ?osQurWL|Wd^pNqhQzwo{I83 z&%uF;jIKE<{h)L}^5=;31SrW7!qYFGRP2Sea${3dnUxH@#62*Q;%N?T+!?fzZha#& zvUip8*2}UM`GW-!vPG;YRP;4%XTuKCBb{G4M#@`)txB9t6O!ko=zOUt{<$#k{Fm)3 z=I(JpU<%kC3Z9_1UzmsO2-b`=A|fJn5BGP1 z0c&cis~cNv)>89`5c*!0!d2@ALN!I5YL(*wqNz2dhhX zISM8wW7fp9VTxu4soYfzOS^D-fv0J1Y0WEivp*C?j4eRirl6$sJ3s7(17XbVaDP(+ zO!=l0JjsB~4rg1{U=G3HYXMetn6^Xbg{U!bR10hmfh!?mt%^1J!Au{lTZ%>=9*4^#QWzky zz2U*8V9o;1EK(z0#)lO=N5NjRIxDC03D}AuBNJpm8xm3r^fh1jV^AkTq8b;+oSK%# z0VrG8kG-A}5mLVy5UV~Qbbz&(38a_kh=?2yZzyT{a!qhLJ3H<6w(JqFJ0O*e_)H+) zU|{|Uo<|YR^F7Gp0bj-Xx2mtzZ{Ea1f$(n~{PB*@K0XzWa5PdQ%F&R!qELXo3Iu;Q zb}lX)z?j7f-yuRJmX|Xh?v5NT@2$0Q@$%wB{s%x@qe9(*B3mW!N<+u1wL^Fl(gaEC|o~P;I8yBS3pNJ>hYi!iPa2gbi@2 zB_#^LhFGJUZ%zormK*6>rywwyz-hAus|`zw?w)PM23=fyJRJ3Y$ac$FurN0_hKG!- zDwDf+f$Bj3gD9N={qtZIhYN0b-QBcMVWpoUixIf}B$%2v8C)VkDIPYPFSu0#y9jac zgGUN-b~%P&9P)ucmN8sfaa*aQADf)i?&gIx2@rNLmTN#>8Nk-CQE=KLMIXY7f%|Qf z+GGZ^ysUBXrTsNjR&+lno}B>k4+MG$_}_)Xa+9N}D+^x$-#7%x%*n?`01!TeYdgH; zkDil3cA^;~k^)#^;N*k#CL0O`SLBFk!b07;bqhF>vf%laNmSQsEP|qS_ zq0$`6*_yn$I7K5PBLkoq>y5l-8xi00M6j*M zqNbsvLv-yC%fMwQgom9U*p^>6RFG3Bs+9uQAYot&A!s}V@?TyqIpcH@@l3S0w@3Mc zJ*F8{x_o?mh?2-dV5?+Ss=hiWtENVF09}Nr=;$%TaM7b>WP}Zlr-lLB&tWk9guG%D zQUw5JuS+>Hows4GJlL^9+)R`CIN|((4UdH?E-4wS++C~%ZGRz$pN*MPFGV%f)looh zE-oueNlzyLE}3Ds732eo;MG}qc;E@u#4goB$i<4&dLpxx1Upb!EU( zEV(OvyVR)~?0Q$gK(Gc*7I_fR%XXv^F*SJP?~iyTIzjC< zC#tWn|K8{`E8;FWI5cDrmaLh*jt&lXliz3yEIY7KiQi|1To(-xFTtiJV%V@XaJ=J; zE}HGGHVIC^woriYjZRGkg4;v)+&+cIJ|{YvPwyfjCuibnO#rl1%;3DCYeEb>8K7zL z?Af!$zNw1M;o2a!hXkJ;8hU%#5YSUg=@<cQ|3(=PmH>FPiI=L2%5 Y_lz{3W#6oT|2yjHWi^Ela>kGTAKGG(9{>OV diff --git a/doc/freqplot-nyquist-custom.png b/doc/freqplot-nyquist-custom.png index 7c91208c5780f3d06a96c6561470d19decbad686..06ccda040e7a8930382c8783e964617ec1010ca0 100644 GIT binary patch literal 44066 zcmb@ucQjnl`z}6uXOtj}UL$Hm@1sTpL6GPq(Yxrq_mUtHJ&4|dAUeYc(QEWBLiFh6 z?#btS?_J;f$GvO)*6$CCnK`r1KKs1;d7t-rpCd|BU6}}<1|I@}5Is^+(1JkF10fK! zC0uOqj?l>58u%sVrl{|x?fBZw!_4IsZbpWrUizOd&Lth&Vg6E|2+!X>LF+=^J70DD@Lm;IIj}+u|JTrFYJv_Bv zUE=KTeW!mi+JZyzD@XR8&mLPeBbS3y5CP6oXVA*_(BG0upO#7k=a}ed=HMNvJ}w@& zy?NGw!SCnSNy7G4s`u!gpKg9@n90h>nDe7~D>2l-5WXr(914ZwG9euI=jb3zsK2+2 zk|AW^twKzvd?lp)&UD*gDgYxyB4P^OnlOVeo|p++LqzWo}ozB!x(yuaRS7W4n81Ddlw> zuJ<4GvLxix)>8DR@@$_k;W9}_fqAObzg1!NJm{u+YGSgts|kfd0}~UW9uXt<(b3VS z)%s3b1@D=;xbPpO?R=`RsMh}`_5dDPkGh`G^4C8;1oif+NZwu@@j6azxoL8xoZVdR zWyU*BSE0Ey!d{e9LaG98{a?O(Da)K>iijlDZ}XR;4(}MrQ$}mp6_ThgJeV_X3Aj1O z$y168Hsn<{HD&BcU`Xifg!>+T=g@C*=XoF~*uhT-zQd92yYk>B-Lds90VQ|)Or0$$ zJw0)OR+PkU1IFu`#(Cl5%1Y!)cMK^71!kIB_+#EiOv}LxXM|fnPrYopt_1z%R$;b- zYn+DkIc5kB2{we4ojur$nu3A?0$K1oH9Fp&B4JL#{r>&?+11fd=59Yf;eyYe)Q@Z# z25>1u(wAlZqKjUebcEFW5V9ytQc}`}-zB9GNVea}T{s+W`XDW1u>(zUs@U^v2p(yIKV*Q32~;VA}yLOj4B&9 zXzUi6?*>YV@$&I0gUFn$G)cJJYhwWC>x?4ja6-~~ETtMabbxbY?%s}TYna_!os0Tk zi8{3WofMvu0cY85+LM+%`XSgmIM~Awa253E9XlGNqV>Y2iaW-{|GeAT|H%^~|Lebc zb1wZnkU(082DIwxYEh>p2r->_s4{~e1w40OGJq5wY2X|R9et9@{k(G^TPAx|G@e%Q zHKE6LdA$n^>AXEvx%r}PZfCYWVfEu?n!Wlo*5yno;0m6FN?XDBT%Ux$d&uNsyQ z{rTnLcE>*C@f3Yn`gYJzP}jgLEN6(?Vw%sS3q8ySkZ ztl{DW_74qtz-YnZ*1K(K6&|53-T|z5d^VaB*!b;UmDgP)GES-mZ^x`2@;bI{S2Q(% zXhs|y*;cmnu(7kd2&cz^$!K#@%z;fYy1XZgdq6mjp@O?b%GY|vEPZ{fogx0FWWXM5 zDpVLqU+xG(+BdTU;?K@Jl@qjebty;3#xge=;^-v4K0d(2!CBo%ckBW8Uchldvias> zo0E^Pt;n`9y1crYw7a|8esG|#FIbkb{ntny9TEh4Vn#-6Sy@?(_myjCr zT&Gli(BW(tF|~Q%X+OAa<=h2sS*(=LiRoN}^BK6D#N_1A7N1k&-bzV?ljAa_R|MF^u*kpLQy%?$%D7wp|K|LIfUh}_h*sG2 zba&p~q3NK9_Nk6esK|mR28Tu#;w{@_SUnL;6q=Tn#!pQcZ?Va4V`gSHY*RN3g3w}s zKw*%Bg$1Kjud-)%zDdApn6b>Do*2SN7S;Y`2kY9n!khpXSJuwXF5MM}7=~Lq5$$(* zA{IX}Imyhyfm2*uoaw*gTJZU^`Q~7zI?{b_;ZK9RB`zlVj}HPEd@aXh@pKa5!NKTu zKfiQ4`?!wYj3_gh^~BzdjEQmm7NDg?rdy^T^dw!_Y`HVce#46lE{OwjS|Yum=f3Hj zQx}ov(SXS893=%sXcz(2N^S&wXW8?bjJJi`m2LEr^d$B3?zHNe;$e#cw{(1MS6{}i zl@sWR02m|beF!awvbw*$*`6_KB!HZspX;}H3!Uuz3;|FNg5vuB>8t-Tffy;%(M9`Uoi$YVf)qjQ8kFBow-JGu#gR4kx9wP zL(Y#jCFq+#$buXwVq;^I5pFDTI4n=H{7yr&z=V29~CPbb8=6sWZf|AmFs=^2W zQoABsZfK(M%H-Y1P-yn3H>pYuSXy;%O4kZwhnt&AN8&&W0R>y1lbvO--Nceq5JYt1 z$(PF!3>lO`P8oh9%C|SyVo?g6M(#gf&4JuKyvv*z9gXkM5sYQ1qeH<#7S#|Mis>-$ zQ7Ar)Rw*y331pYX_I6of$SFt=*{2?cHLr=N$jCaeFfpC#7yTtHAJWim)*54W0;to| zL(aR6J;_ilSjpGACjxd6F9!#5>zl`d7YFJ)XiF$ud!O*fh7=b7p2S{r7YbV7xrvWe zRaa1uQ8wxSr8rD!OMu2A_*qZXozzCy&b{wFCeG0g_R|moE<@6+Rth z8E9$-w)$PJ0PJ;`t;VQ&?`Caf)echK+E?m1>y002Do>tt(>gXU?`q;Q88JF}KtiFn zc~jd-*&vB#2he-WIV(qeXK-%&_DviGFa}@kIt(0J)_0x2;R>#Rowe*1yf^L~&XosQ zJ7}U*uSo*tf)-9h8;&9m05d<0HOs;yJw7p+{ughP`v1!0{(mBb|BqoT{WA#m|%#b5lJ6L5zcXy)%;lBeMv<(eor>CdY z7r|$;fS$B3XsQ;B4vctWr@l(c%!~s>WB=UOBVzTSs6{+trquO+|3cEvJkA?o-h(UdjsnZ(l+U(OlfZ>;8h42OUL*|BLeeKd$iq z!kn9V(R`P~s9-6T5yW)S;o;aG5ei^5=*qKZ8;(SgMPG7|TM>hq5~K_a3GX;G;LJ%4 z65Ri8Y~_j&9%KI(&)vq&D!)s2R#sLB1e=IvZKDV^0K7S2iZzgpjSV348Q>}V7u%IA z{QS`Sx@GN|9t&HCzVE(czWcs*_B?L{QpNF>yZ=P>M^;56U6B+oVV&Nlrq3JV|NYBT z-sg>waOES&Zn4P?-~nY5<-H4g237{ z%+X;pg?eJP{EY4jBN|RG|ByntC3@3m^0T*e(#)<6s`iK&2NL_6Hg;R7+d|E}YD_50 zh`(WeTaa)}Fo+yJH&}`)9S`(i$lM}zk}!ox(?&n(j2R3+Q0u3rwNY#b+uL+}oyP#h$Zs=;#J?8?6xedvcq*Gjb?1k$w<45i}k zPSn3sRz?*3*=+8P;JZ2MdrS!0e+4PMf^F?mnn?mnO+H$HB>#5-5k5ApsDZ)~&9UhR zl^Sg1=E$xwZ|>9$Qd7QSO2E%BQ8h0@{?`xTE5C0vZS?me((0D=qiDLwcix;i&@bZj zv$MgOcUs<3Jj62c(n#k_?R=+bW#hNM9@ZrCShwu|(JT3k7 z!wg>_RpSo{fo+J+_~>Q*agF@aQQ)(hw@DPazmoJHDiLr^D5)s=BCtpJ`I%Zn|IN!( zAV^D6RO08Be#k;>`Ojyj_Ap(Ox4%V=$E<>NdLsu7E;Dpx!J8RcXn@3!aQ6BqH8?6K zz%y`ldJoxOy|MX@dP0PHaY5j#_LQyhOE^esXY@4a?4eKwP*RV6dZu1r&WbL55!%Zy zDAeivqi?3_a5ir`@i{hut*dfTC{!fx-#pA>lzNtblU7&Fy!du-vN5rY1lyRSiRL|_ zORH_nIv&hP6)+&sr7_D@2Muo*{cw}<4)!xBj_vCj zz>f3zr+>(hGcb2`xoTy^rwCD3aa2+gVw7cOV?%yXQ3lc~BUuEv+b3S(G8xCBR-P$R z>(Typ3%OHm1KKh^9t5>E*fB(W*IqQ}(jnazmklB+K+gD&)B*&99O^sR-9<2@XuQ07 z0i{w5ku{jfFE!nL>Kg}!Sg1csEE)s8&Vr~>DOT^oYKa09s>Cjb=6XPQx3GY?R`NuPO1^&P`kEqogpXt*;S|#*j zn`!9qZQP_7sG0Kni*SHo)azx`tLs#0@;)elhdPwDhgCHGm7bOJb-=0l_ErgfY&_IO z;NO9fkJWsP0(mhbu^Nh>9pXT;|J-ZeoqGXZfA~nYu!WTI02i!s`Y)`QHs4e~me|dj zVE}t{W$@lL3|Xs0aML73LX)@Nd|EzAbFkz1oa($cG%@}kIONkAZTrRGC9hOB7OS(p zY@IO)y}gtocq}~=uyE;L#Y4id`vWLyn?smacLOo-&ks`Faiw>apiloc^bE_)9m)6>0U$)ROq zuH)&4ca(Srr73I%HKk6og*erwRu7GvgfSTG`a?#{F(AKwaPL0%z}()W$B9aGr)SD< z(j)Rm4MXZ^)&IJG2t9lF8zsQ4y#3zyX~Zfl z5E-J%zEh2SE+B~ao+M5wM<)`bfH%iCbte-y%(0IMd#-W?q$qKiZbH3LYF|UGR3Ua( z_IxZGLv}!ik_QM_Nb2eg>iFpdWab7w8Jw5?pBy+?TJL^lFLgR}Co`>kh2&Ju@ym&p zLg*Rqe->&yo$Z6sz_n{ZZAWCR)ffao*-l%ojmRq;r|@1scK%t53-vsozrzR?oII0T-tLfG38kd zou%#m3WJ!wm>^!wD6o}xreM1e{Hg&uKC_xPHV zN5m*EfH{z4pr4@<@hu0Zcju0m{UuL*QfXOO5H((}&>Jj===VJ(QC0sgaTpXxpzT&{ z#?O=EQJIOZ4+}`Hs>M)dG!j>AMR7Wg(AxcPij2bPL?|)_SkF8iJ_r?(E`CD#^z>*6 zj#K$6!!^;HtzGmTNrMm+gwqtbS%ijqVpl$f$eb-<#L`RA*woF;=K`$Mu&{^y(50ou zPRuBjjN!1!yn6nec40O(0zZyaTf6ff8Y`x8Dr9nEV!3Y0_@A_9-W`3EW&0ovsC+OP z+lN3R=>KB+{HyZnG3CG?*+0%^|HYCet6RRV>#R;{kTCJ6Mwz50xO#}Hi;o!-1`avW z1r43vFtV2oW5>D$4wDw!RuHFD1c!8+WSU5=-cj#H_u)rOr`fOez2Cpfsi_e{fIKVD2xSxz zp}GakbvA>KGKPsVW)`61IsGNljmqZTKYoa!qxmN*2RqJArjqQRU5)H~u=>u=Y<}uf zO#X(F&y8N5{{C#o$qJu)DBQ8VA!UrK;qC8*@n5tOZ|TdcekY)@iun2qe1Y!ry391{Sum(x>nhsp5Rfx-r4CwO_A3*?a$;88=IK5E`*n(#vY=^?s~`L~1y4MqQ&kDda z5%Wx_$UCa{Rc_xj8|fA0rn$Q*`ntBN;i5$fmk7F=NgK|@tM8t5AG#vdEQ|uD(Hb}g z;)8@JnLtpMHv78DQ>nMi6p6Ur91>E`KL_=gqG5>Iizr9dqgn#+$j8M`RhwPAz}{P4 zOULM*cK(b##6umq@F7=3k_mT~AuBrgMa$Ty#3_;N4z>^$6vYYS1ge#BBNac`O1C-{ z!k=n80wvlc2_aU)={{Ei^5_WatYNJH_tT#=SC+2C8!e4Bdi2?eS+f7y8kJ8gghj7? z&kdTYm}<)Os7e${SOHo`0cy*lIr(KhV`QbVNeSxm59tsQ`ugeG4|McPyFS0WBWk?T z9B`p6lil96XbCT`7mc^?DL}ydbFAGQ(FTKr==|V7eASFGF%Nb9uX3>`-l)B-@PYtgOzI13fzS8 zc)rmV<}NGOTVc$<|Bt7TbUVXrXrA;IkBhUtL6N(t?D*Bqyn=WO-O2D|4iWSARoYzP zTGlr*3_M+5hDgljZ{UTt0X|iji}c(Q3A72vosv zY9_E_Cd7U|rR6SiOwmD?Egy`{=u=9blsH|u_WFXpNXI27UwV{4Iknna8NU=3SC~22 z^1EeT#pgGPRh%xeS}P8Va*}>*qfGUO?;G05Klg3OwKbNHUQmAW4Je|n6Bj&Ln}D|; z)vS*p?vF5|`c|)mX(Pm2?lQR~<$aw?9eZ}>puzJxz0Yag$>%QFyNPhpAqQ;8OKBkj zu3{*}saYqE?}W0W&*g*6c&o(Qz{Nu^W7}HsaQ4-ZSG|!W3U-OE=Wl%qPjQfF_>cN$ z+sBigKp60p`lla$_`rBi`kNQ)ib0BOn#@D&ckenGr7Y`X9aH1N(q3iKJ8EfhPR>iy z;71K_%{8%~%Et|cN;C0na6x_C@Y z<~4aHO4)YH907e8-qHsIbWWsPCcFnnTxww>Jvf${yEoFBe0E;@qF!uL zL?^yA_fQzAh)#bIfg?&s040DjI$TncF^qmyH*SCjJ1Ne#xEoB(+6uP@aQ2AQJ+q}v z)o9P==s(ye;pyrnbwN9m%=sI6KLPDW8PSV(L@v&cUA*&)=t+ECDdbnt55}Zc>5z+O zmxSD9M0z9%u6HlP%&DYTMzOf!_vk->Fjianp>ACJp?S>w#Fuiu+a z#(3Yh3u6(c_^1WVWKMb}i5eAZl{YCNiY(@IcsUBa5emH_-LK{ACf8ITNOtTzn@D^? z90?9mT~`r+WI&8acHJ2U=V}z85IGM)XdTtA#w6r3XlpI zWenC`0qB7jr#5XO^~~GaJ_I_7Oto{Sj0u5Yg@^S-THjla$8@rFzhgY>i#_(X%lS4I zjfze%8!$31#7=E*Oe;2%R2ZrNa1L4(rI@;_sae|f3t<|Gb+VAJ;l94w7*|-$&w|Zo zD25s6clHLEMpHyYnLJ6G2(zvvdQVx7s7-bvjCG+OoNIP@5WL2WYd|zhtbrS>#t=D< zHrQga3lpyuV)HNGoNpX!B#?zH^^6>R$R>@bwJI3XwU={A8uJ37%P)5C#}+lxxxvre zWNqSC#@p@;e4Ym}v>D;eXiL9O-R0TImeS6x)qQa5H!nsG8r+;H@;{|!^~#6+^$alJ zrO$d7d$X(~pV&Zx3c@zMNz?Y5D{)R%bTy4QCs^C@0NpT6`Pos>qxgJvHu6rpIv@b- zxy1>+Cki$Ep`2gxs>s#bCUorY$FTde#1Y<~TDWiNGp<5a5UD zy;8vV`a;tC5!acoKhncJ$c%bUTA+I1pg%&1MOY;~F))=?%ks;Lteg}?l*lijwH~^C za>r~WQh)A2t7E$DPaj@`<||8KfE&yz?42=sM2$racw59MCV16Xj}z@&Vi@x39U19- z?X=m{Pa4VNYk}B3h82}*>To%iP;{FREOFPzB-6FYxI3PnT%U9XAI+t7S@`U||Akc+ z*QN2KG`5^Of*~QxuVRr&+bW-y<#%KKiMOy1MoWlIqE-(T^iU9RoPX_V>Gt zRuc{8Bf+$JmerGslAcw_wNw-^)`rzBSMU*AIK|?7sHwZn$gPQPaU5J&+ zw>7zzja4y2it^!wij=LtPgmDDD{Sx09&V%xHZZgFSWkbeZ~S;VZ4l~9AI^a(_6HXo za{o2EnT;y-MOYmnlckfz2cS+Zr((8G7Ch z!6TeT!zy_djT}@LeKnSHvY0BrseD#1)X37-X**P!I?Ggp%%+yTxlM`$s11dfPG(Ak zB{-qX!bR&uo|>`vsG5G@&CrvZtFVEdu${mRw)|CQl^-mg++TGP(080k71DgsbW%>Xo9i?6w~8AZTSgRKX>eRQ~?Oez<4{}pRSXLnppJrG2@2@$^9b5~qH_wb84P3L>gqteB$~%8x~K=Uv4=^T(?AjQ3;9*UsOxVha7m z!e-fzyMI5{;`frJeuz!*xwd4!ho5kAu+X?A%e=4$`nqf?mnnr7ON7`%-k+HRtx)QP26s;MSK~g*4&*qZjw$X%RsT*Ms1T^g zGH-zS5rT?8!?sl81N=JDS=SOYh{a_Xun7F6EW0}4P{*BkP*O>Q?)-4DT43jzb*2JFhr$i?oTVk#UKn-u_R;7&iGI$%j;KN4-LpFYiDuQ;^*wSQF0!;LFyE>*OcuYsRH{nN))PzT6?yP}#or6TL)_%lfReGEz-+V}=Aub4A2*lmO z!^lfkNgzO^beU&-)+LO3wjB33k5N+*&Tiwi9k8^`5~-=`G>d4()zj3dltD$kj9!6| z`9=S%Y3&yAIK>Ty38hD!|I+4nMfQ6@(_Pd-`$QowRy6EgR&TicHn?5pi5 z?FQ$ZX=^NJ|2Se9I-Z(6g$EzqJq|o_>__)=%|*#eplu>2$2R~tB0&`uD`3Lpl(4V>sO~mTr zH>JkjPK{Rzg`?A#_pp^uixPtpp(r}i!{_|BTl1H#hrG6RUNH-HSlLL^o_5?H)YGH) zr>(xM$ONqCjJ#9~RSo|B$c(o_#TU(fLnSg{#o(VX^bZ$5}J zQji<`LDT?IiTKWBP~Jyb=@6i_9gw~*C4x(@a^ir*-w`h;v?LIlNBKdGwf&+A*(9j8 zqUZ@+cdflvX4MCtVtwOE`h(}QeckAD0*ws2ALhPHRe}7tWunep|03en@Ll}<2j)X9 ztOsz^Ey2k8>4cAher1sa#C|9vvha-F(- z^Upgk5Lk~hb@4C)7dp)q;QT-Wew{DQ$D9;%ro%D%80cV;R5lNvlQKG-?-^8z$lF($ zj(x{hMyICY?(!SMX}GVjf^nwiimq}ur}C*vXndGypr86uc{U6J@pU^=VO9P*zC{Qn z*k5@jZ~Em6l;8zr*wv!r^XXLWFdR!ZiNDljd#Kvm7-41Ryr`#Kb*(1kE-6U_+8B_f z!SB~j6Z`srUT-bohZ=%@1h+E{`iWon8*JpMb4P^-o;A?9^l3p?!;^5eHZs(c1Z>*_ zCnbVy&TdB1!>7eU9ahz52I_Sd4kj-7=-+cPg;Y+-2+pWsdBOU!+gN@^;N5`ojL;SF zkTK{!14o|#4_l{ox-tZM=yi4yUtKgxlZmggC#fAGC(y?`LBQ4$0%*IW4yb*FK&f9% zCUoOv6>Xt0k0P~jW?3@(0wr(#5Aax`Q}thG3M=F5Fkxx*_aBUpW%T+Q?jv?GB32s?ripXPaz_N=q_D zzLkNiB-B*F;1~+ji!$S{4n24?qZD;=F#Y7$BZ*w3V$~#Z{(>k#D|x8Ye5An}{rmXr z*G3Wqk`x$0MM>h{*pZk+!qtL<<<|)4BUk%iDR6TGi-$UUqmhL zrCVjwPM3tQjjUiJS01j2p#*sn(>mufb4RAH85Nyd_;IUeu|cHCSETjU51$Jxck@u+ zc2a&Q{~Et1>l?4i725o)I|#_qW)mK1`c2Ep{YPx@*0HMn2#F)7^`@qStDZ9YgcP@U zJ+?shcX;)4E(GQl7P(r*{IB{bU^4!5^Jb)@_kd{+nP%hrwXofpTU;|*neS1DWqmwc zOO(wQ;hH>7t2twuqs5O2Lo)Haz-x?5xF2DpFYrq>4i7S1KVjU3>P|tcCTtYV&6!Vj z=VOYBI8i<@{VG#57gyJLIvOUb9TjH`hYKee1Umf&aXj2AuqC|cf>@L&bS$X(b z5e1c)X*OQP?lp;{K6n4nEpQu(1S0mDWXdCrxF6R$JsCJJ(g} z4Ow>)%kn*Zgy`uB9@?}3j*;G>A!U2}@+Ntfd?U)q@aEr2$RPml)alg0+seo$0WP?B zkL_RL4lNQ!>rwIZ(#ene?IOwodjpxGnwp!3S4`DG@#n$do3FAN5OX5#j7{*_`v+uG z%_TVdhQN#?r=WldhtE*938krl?s9y#5Y1&XSL&;dFLssPzrKH*4Vqc)G*t6h*RgR% zQh|1Q`)3?>aotfr|7~0(!KccvGE!~gNS4|D$p?Ew=GDP>yw$UVl)t{m*)BdYe@@9l zhW@lzz|5)kQ`a_?j>sofi{S4zAzD9slQD8bLMeoq=WX zYvVO=r}h9>>nv=s#*zdb9o?Hn0d875Q*~VUz-eiJ=NR`G@6$>V!UtgX`+(<|kh8-Q z{UX+fFO_FjM2W>~h|tViS2v})v16m&1$zvtnn8v?>QfZ+s1P_l=l&%8<@oA%eov25 zES&_UO&yJD!I!bq(>}~$tA{IZAM zqifjnX-uU5`8yC~E_pKcNR0*>osdfCsLi`!h*TYK*bTUJLLwBnvuB2$!h15Cm(L4E zte`NM?+9MbR13@Va$Q5wYHD-mSt?+k-K!2z^T-w6$~c)R1(NN$ z2_2U0DnFkTXh8>~LF89Md?XYSP|kvb+7s1iTnG{kJ;<_q;>Xxb|JYw8A3RLoUIkw@ zYAAkC&g#R}1nm_57j~isc_Es=o?Az8$bcL5-m>l(OaGhOJwj}ZR^SdLmU#vp9Ru*0 zOm-RitHJbcYV043w8(@TGo8M$v+yVP*_$LVS6)%ZMRqm#gJxyj4z^Z-5S)2U!kEv% z$4wm{Td|bCHK1tq!%rKGY-HdbT1!xCUnyDpf4Q9#RakNHZHl>Cf#XdrLv$oAi8R2X zw#xJ7l>5r9mJlHC8mI5K*9)>D%1XFQyHvE}Ur6|ESDip2(A08lZxSIyF6pO?H3EuZ z>|Hxn{a)nNs;L~EajQ68l-WbaHV)5c=pPajA$%EMRD2U7hq?e_0j1>1`4f5!^2FIg z1+>GGxP+9Fg{d_Q1?8ExME?LC_~7piGmtCSrhajv?Jyaq0LWCw!T-%@&lTRkDggR) zrdF|(g=PeB-vJ(mJ!LbX>lwcfsP}*#wb@(e z%BJDcGJFV?QP(jAs>W)=K#vy!oz!GmOfeJpz_he=08w{4pD@tKgO!PcEa5z7k*+LK zPiVHGqlwe?h=4bLfHNaLAW}cJSeDWV{7ne}&8WKmBMbC`279;(a!CB$9oNO_pf{J% zR;*R&fcE!dfodW&5ScT$)Tk(jw}odO@O!(Hzq#RnhT|G+k&e6P&fZQZ(7ih+A8u;& zZssyPQDFC1nXC27jq-*(5_yYz?rG;xk{65)@oj0tjlkbF${Jb~KwVg&waBbXiSuP4 z&eH;+6VK+>NRVF#1-_c#=EJ2w>1a`xk8jIe85}|R*#h%9=(x&|t1_AGLVJ51-ygh* z*fe-fn{~B?DQx*{1+c{yXzpIFzs|}j;cH585&^To>vyj}qc&Yv9n^cZAwFa)moK~_ zTV2pCvF}OvKOV(|s_5^D)YI(xy9R)tR!ltK=0z z+BPqOhQYie;i-A39BHHyNDce|y$V^4bd(1GsL&R^Nn=o^y8ghc{UZGEV;OF8l;Hvg zaGZEJQ180!n6zbe7PWSK$fW$aD&Qlb3W+iyNQxQe1@x?bDK5~{J(jNP2yXkrrD

>;GgGi!IQCT;6GO&41}g_WL4M zjv^zX^2)cC;(c=~U8UooGmL-;s(q-8%S5jL=*N2>_N58Mtq+2nzk_#KNDmKwvEB2u za*tlsf0BncWG9MMo}}bC2#hcX_hC5HJi;$ii#leCK1wpt{q+8Zf3z?cH6cUq;lYU* z!u+nNFUmc6P&4?lTUp|WZoN_bi%c7F%))F)g8RC~{#ZKy>V*B-RAr$zmtm#6e7iJo zZaC#PpkZ`k%w#HTJ5s(xfLJwk(GoqYEo5b)d!Vlm<9jC0oPUG9A`OVb`M0j=k4AAU z-G70oh0XRC8;GR(`G?-PLv%DPL=L(`Hjx99!fRq!Y`Tfe{0%)kxR-0)wu{*S(q<+DuQEWvrI>EywVJZcf z0&-di?C(%oR>fLXbX|);Zo`CWQ!xefMOA1VB_#kCg_OzA)B4Sopu0NvqZ0?CHKWlW zDK<0qL2j8drgC5zs^uOaBVqtLEycAB<>VWa#Er~sNatN(vq&q1hjp2E%!o=}8c>>t z6HO+|pj|1#qQb7A6^ag8jdl$l=yt-yLgL!#=VaY) zyw{!y=e%%qwL3!C3i0ixJozcAub)s~$q@cHVp`Aa&roI8`%CFiU7(<{z=YJ4&X?iiYnwfWuPY)INsidr=GqY z#r84Rn=x&-aMc!I6N5pVzNm#*2K2jlWe!6~k2g}YT1TQf0Fft+&)48}kP))xB_o0) zRLaDo7|SuzLciYa2i7$)=xv>WcAXyO%;HFv)&qnO>=F`(2sDsuae%#2&b3o18kH?*W zjtPOZ(eWW$Oz5mnZ?J^K8GqjRfyI7L6y?%Pg1~%4O2w+EmQ(g*$N;pEtna;5M_!Jm z$X8t;S3OVgZ|VD5^phbMIfKMg4+ul}!>G;hH$%536y;|#BuX6l>04L}w#Kp-Mp_)J zs*1)xXch}BYvvw7U4gdOM4yQbX;@#q)&w;v6(%x9K8J$LY|0xNfha+3qim=cW^+vT zP!Z_s=a})rVQ*RP@W0Rp9o;5*CL`0=Vt^e$S*awX85wv>kOXbnO4cE0cW5lq5A{`} z+LItXn2$Ov0#ynSH)d^HbrPSgiH%iX_S3h5w9@?Mx{ChVuQP?r*YilF&_an|cKwtr zKn^d5q^e4I?qo~OP>dVJ}?II(S~R?PFr&}34$)4pz(aTB^9Cj4-F>7VvEb03&q=P z=9Wq=3j}CMpG+-%UY;5C#wekE0*S6VIef@{cM2!4MfmqkusG6B(U<-c2-~#^6VLun z(Z|!WFJ*k9kh;mBkr*M-CK`*1^rwCy60ITGV4vgoR!NZnO)%;CTp$okT8xhp%&0># zr)8cB54E`Z(eLjPb%FX(D4I_ojs z5>^i8a6c%04lXtXA%TS(M905gDl)IFzU{EDKL$_G6hCZljLJRgtNy4YXhSp5%l%Yh z{x*R;#dD>Q95*%Q#ej_4u3{|FTc#yR@|g6L@ol=rTR>hVh9*}U?_-Tee=6$;d{Bo5^yrre9C6BOx_b`oogVJ>KDQwC#P5;AUw#nc z?;MGtqGgp&*1|M;BcN1JD931ZetC}-ZkR%wHG z8~9yG`~nDHPlkg=BdUor&tyaqZU!KRNt4}1uz9Ym(On0G(F;e}rL+;Gv$P~fi&#x^X2K4gS^UK~NWv;L`Gm?uVzTYMl{RNwat4_&jbI0kcoz^E7 zG`lQSa$u4gXo|7FkiPfnm9x54AThDT;C~gkl+qsbnTSCGQL=!_v#E_%FN~Ur zaGy5u*kwF9ec|uM(~akfdiO}-ci9wdl1JD5XrD~F>hf-!_VfNzV;}GqE%qg{1i0YjPraO z6U+~guRKG0L_);ls>6&dIXGU9p1D1Y{^o`njLps#w)}g!dY8CZ@5=cLI?%xplRGv) z=taX3EVz3qF4e8ox#+^zI)YyH*5a6F>-Br8Va^gc~ClUmJXylpm0L zpbCvTB|G%emlC;i>h}iI(M~KR_aNv)2F1p1)i*@njOM%*ym2NHzpi?#6b)bk=w9}q zOy1K3J0>@i74DT|-oI6Vss@_*qy=xqH#ebMp zNTtcNvfP1}+iOiB&rX?RXzzB+tZVyZIPE#0Gf76pZ@dDE6ZdLm*)}q|xtI=5WUk3q z@HU8|I#bJ3QMGJ+fHy?LSQrW#Qjow*lfuqns0 z$hvKMGT$`$k-U8va@pJj^4e3bD3;SniR-U&DUYn`F@SsQGlkA!o| z;*J_NOPfHby#jt(PcLm@$P)0bMiM8xJCW>xd%#4w&uCR5G4ZZTo&A1{YWY$4sU$W~ z2`P?1yY{sWXY|qFO3%2?{`p|`S{&%kvdV8iAY%LLtz)AG3=|o~Hi$HLZ)!HU@hldX z98c-TE_6gPBUwGLVDK3WVFIXGOwe0OBP!%~mesG^Iqq_X5mHjV5f}XZhEm6dP}E&F zhDMI)bN;lgdkGPx;YANI=zsDX%u<%O+NmUiW?^bfI|RBH(I}BmUm&dS zbcDPd5mAVL?~@C)_mc1DY6gu^Zfcsi#}Nu*HUwX|XLtSB;L;aiSUD#8f&H`Kf)^}2 z2PF|3tkrOf&=GTahdScM3Gw$+P?0B45Be7lTZ)n<*Szp=G5YOD17O0j^uq_7NR%xA z6b9g#g+TvYm(Y7`xCBrpS?*B%UU~h%X#vtjP@{m@qD&1Lv@CZz_gSg&(AN4>1b+gw9@ipp^*|PsPUqQwVr&ea$@?;+-^fN@*V8Pxq2p+E`x{u_@C5yKjvW zpbtyla2AU&O6U7T_zk_Ps?rx=!2=lXaTzTDlzw2^araRLySZShkW`!`y zcVDR#(M&Ui_bGD7_StFaA5GT=INZ@K-vB(-0-ko5+R`^GC!TekS=_Sh7`AG5x5tLG z|Cn(a!10-tIvwqJ3VcMoWI0;4F05~urAazmNQ2kmDt8I6yKA|xRt~7k+I(QaFPTH{ zA?SENih5i=UTFf(_5Hcd4k&?V@|937=5S0XW+cd2C`PVKch5xFS(bX?8!v_*d|fK* z3Qg7~`OEw>gwzw(B_<|?_)zE+p1Et%^vZ^DmuvXP`wx{qJf{V9Z?7YV9L3>X1rfH0 zitvvtDanj)W2nd&dpPQ26@Wz^tIm7e>W{?buK{kb2F%GkDfpO@^cP`2Pj^zI&T&yD zCQ8|b<2RjM~Sjsf;`Sv$)1S!)S>cK2tdl&GKyC>r6$w z9I8e;m4`j-;f%c@9+$tkDy#{=HhPRr3^LuQ^lk#nUWN3$T+5bd{Jpaf{{as@W48)KpM z;L3U9AWt~2Zr=Ck+e;pTQ}yk=BiF52c`ya57Mpvl?e!7dHZ;9&)bvLV&&3i;Z;x z&Kl|&0;+Xn_>Tt}<)bUJ5rl}!3Si_&H;)PQ3gn#UVQZXw70>6x3ZJ{UvZ0Y^-!1=75 z+nx75|Kimlj++2lGk9vc`c*$Aq#ZnRNm8v(2p-3sb!Y-lDBJx?gFp{DB9(6Gdxx~xKNw&^>0b>o!biK$eCby?Lj*dz{|xw~Wu;T678{Tu0Q)=M_*&o~ zEitonC8`=_p?^MSjQAjXFQ1v_HGAlB*%|b%@Pf=p;i9(0XaQ!`r%&k4&d&Vl1JkwE z5!ceiGxp0#X!@5e?NjXKQ){0|iVkaHp1DnB!qWQChiWA-TkWoRZd;ZUVTykx@@S3+FU<;FiYKa3m06zn_Ba{Qdb6I0*5Qh1gawiZ3cGgVQ+Jv=;g+L;z0WRQkENF!9rJ81qpsMJQaTOR=z z8Px%;e=bMOILT0&S!r-#WwO4FS>n;<2bmg zR?_oO27V8<-Khh*NIe^=ACi)}fBwLbau&7XZ#!H!8B>L)>*oaZr;jLqUA~-JaZK;U?eQWYpW=So0HRk~4m@(CpUrS_y{*Hhrc3Mg z`nTALC1IB=+Z{OD9dpy#ZSPnmf|%&fQXdRB!q;su`X-c;MX1d{`8j2vSy{iN)A)Hn zsFP;fscR(e%zj4_*TN$6Euv`SPdn!$R)k~GOE^l4LSUck6_=`W1cIkMJNK8n&>)wm zdyc2gSs!pbhonv!#l>lagoIFWh5APdYa1KPoSa3o4E;u+u~#82q#p*nQRzO+QnB0Adv}<8Ug(5_7-~U0^Sw~gXcI|%C-6_%`U4lqU zg9xICf^?|}k|G^j0RfSa5T#QLEUJuiQ-A5M5V(d)|01m52~{T#U(iHvxe#eA#_N zpckfO?(XhJA?x&^p`pirmy_?`yN7_c5{rQPpF16V$%Sq^^LE~RfGi*mzjQ`v>ijHp zDlD|k+g*3jpuaCb<#lZeX+{fQ5&Xzds@hckP0WoXd0n30D<|)z{=msf?r|>6xjo1Y z9;jg+$~>bY&texAm3uGune_E_s1oiE=(70x2$lMg+V8gqJ5By=HEZvM`8Mi5YFrnD zlJB6ym5XuuA|jG!?v{=+IxKZv$=2afQZ7A113Np4f)KkLuW{{@#93Do_a?X(URP^2XYw13f@JbC1&_Q#%-(#j(q` zz@Ur5q{J_bjg8^rZr3negH}+|Nhu+skV_NKz#Ff4)pNP%rIVA#@@xIE``OJQQr1Gu zdj7G?N*+UuC7V`)_DgshR2Mx`xV}e5Sr#=?n+{$kuSSfrt4{4=k3tcoWC&)296LrB zg`y30S`V{w;`F2#m4U0TNY)hh3~55cG|=}CVpZ~@pJH6*24Yk zm8vDNH&NDE>w-PruePTwVGGDf9{%Fu;z`o`r*v1ZO3AKBS4AW4eiA|pmp$Qnly8Xl z)+}XYZ3l%#0PnoY?c29w(WP|d3Li^mcjX>CP5z zUC_>m;RzU*br~dlZsf-KQR5R!1VSM#jg*`U%kQ&tK-=`1ZfcPrPo;&nNxSt~DYX7| zPeaViBw|VS`b*PEbBbd{JnR;pdsTc#5MpGrADTS}1s{TpiJXjSB>X)_czc7D8E8Y4 z(>vZ=Tu*;i5=*n4y&OxEa#$sF-n15Bl&ZXTIY)@GPom3wWHJQ znQ+ubc53os#yILRl{kxDvVAmM!03)*{XHxce;W%{(;Ax_-bRB>%{kYPM_|Or#5^z z!}{rOyL29`jNZQGF;l`mDP@a@CN~QVsazs{o*(~d@yf=c@;~3v+8N^~VT7xXBQ4>q z8oC5=h40&Cjvk}XEZFj9>b#50nz2##r<+sG6oAWl15ZNs9kfzTuIX|^5)&I>xv9pnB7N_1=;&R$jr*}P{1hg2W1U;AY zxseB(I1&nKBi&ah1CH$I-;RhS%fkUwj2JAQUd8IlaFm*=c3nWBguv?scn|woVC%Fu z1rY4O&un~rdDZ65s7RgNRFx1{rw1w#S~n8#h$s z`K=g78Z!PcoHgUQ{1`}-X$J&bKJ0UIym2XyBhc-$yWxLaCE=F_##wrtu%w2mdfim$ z4X8o^ofU4Y)0c_44g9923H$m`-uw!5WUb09KuCfc{czIL($WmjU-0ws5yD>YS#C07 zggTQFeSR{#hkA@y7!JAIs)^cv?yMv!c!7h&Q&%gCk(|WT%=Xyfne67L=s#uWulV!2 zb1J@D;6z|!7*|S86)DfcTeE#}c-VO-CN~tODCU_z5A*6y9^Yt@##x`&xW2OpHa%VJqP+RyDYUIv-?m^^-ApkS5);M*%bzm%v^jhkXDvU|k$AfjLRF?G%1Ye0 zn{*{|%H= z5_(DRKFN7Hjl5_=-h&bSI9ojlON%dGS5Vtgpn6e#3i0K|0?Gy2JjL=VUVsDH-H~iu z0HP6o@tzBw>8eLej-h6>UM_1^UM0Lt<(hxiHXS^ap(CP8ohg;X*&+kg&GfVfwY|Lz zfz5-Zhx+yv*_hDm9~6yCjmD>!8I8aDXm-MngUhBbJ^N9h%FEONZ|!tS+9XoK23f71 zHZ-W=P~$1gv8c+W3<24SC+(o8X`lZI+SgMX3I(++VM0GtZ_C|&qeV-#)8Vv5Dfx5m z%pzk$YY5H4XpseCmR5m0SgCLAz$m<@{kF2#q{vYD@;Ms9W+7qqtkNd?1AWcBG8y(8}0bgJUe1Rw^%u;W1 zIPjC00fn@rZT#LV8`9FEH2Lf6Pub@?zV(SswPC*x-Agrvczr zo`cO}-IclS8_ZZhy!nIAPR=EhS{eEbqH**g?*;rLdYR?;kcND6@Bx`WA!J@|VXYc@T<73N7(E6Hw+n?T!loQBy`{<||mB zEXu~2$wvb_&RG8P+6bY_5P>gq^@k4snv3SD3R(8*+k_~m!ZnVukQ^p%>jtpum3k(s zhyL0*2l;qX(oIsB{GQ&kji6KyCUqZz)4A0Z81cP(GhRkeqQ3h47xfB#*g~O1EyDD%#o`vL?8~ATNsiV-V9s5a-T8Vkq^Tx)CwY0 zG=Hes{QY{nkgZ0FOb3BgjHT*V_6m2eiDHFdGc-N0xs!C!BD=_M_(*EMGYOA@5mcR< zqD_f{ZJ{XtPv+leUrSW-PQ)m{-he0+#H6DKFKi1b41*(R>5vYYv@A|V3x4*VFkO)p zAxP|a*S6%V!n=C#ba1UJd%z&BF7Ez_l}hdOd;P?7vD{F_#Gdz(iIv?y4_|V(petps zD>t&mXqv>Aorb)S%#Xyc^)aSdVZas%@%~%-DRRBmpymFNhTyTAE}Hr((eb%br3pJS zhK>T(IC#>7cIVuEVZ2f5NGi&Y(12^ZvLg5;QOT3n!*K6|yuk?Ya%i@*In=PAZ=j=@kj?v7@ss+)w|WqHd#r zs!&3qef?nI7TZ_RYoGGOtTZ24<d^!f}47O`8+Rsy?>+vd~cJc3QGc zU%c>njBWNve9=Z~P7uLI=-7rR;F*$q9}}nNDkKRv+~8Dx!S;~+tknEEa13gF<^q2; z%{vEBLob>VE|Il>y6QZT{>JuZvMjQJYk7-&O<-f!{6{Tf)bzjQp2S79rGL6^b@`4PAv%Xw zh6;D%a`~li(1JLKz;tXvQIlgZ3M<%JomiLn4$(sAquHv61v*G)bVk)96nJi$xw9O1 zrG6>hWFmkT{S&eoI5x6ysJ~8=l=(?V2s)t=r>`YeeFn@FJKkSBjsqfa|I!YPd=K=I z2vdBO-cgj2R+6)9r*L`C@cL+7yr$hNHtL$%wFJ+yedg%F^5{pwBp>EBfm*S*Wgh=C zv%*7!l;HRe)275}?|9Tbj{(-@qqdJC;s!%OxS6z|b(hajpWlp-Y!M>VK~2Zz+%J2t z@biJpZMmgT;y#p@FcAWU&QqKA+vY)rzoSXZ*noRZfU>QuN8bE_;{Z_k^`j-9Ly#gcuCVMt@YWD z!sBm^h4*{-S)hB^Kr2lRVc};Pq@x}eDS^kHN33|#&LXQ6Hp+Y@O}`cmI|$3o?XLRP znUnv1v1H;E@N3~9&TKB23)C(o6CdKBMh_1J={jWWPVHm!;q%@=o-{LChm(=s9qDTq%&84f4{@| z!HC7LH03avH+Y4D_0$NV@n+BFs-I66wp&gpP$G`@Bgw% zepjAMqrr7CG@E4-bkiAMv4Zi7mBjWG?#7ogmv^E6vt==WmXcHGNUi-~p-1YsQjp-u zlAJK~iLl$Vg_yrZ{+~-z3m=6m(D3fY zV|6OuZSLx3!|x6leJ+sp40btj{mI!KHsgF}ZnOkp3v3jI)^*042F}w`btkL5dB(ML zaE5I^7%>UwEvO+U54QJKUnhix`_{}fhPdRf@+k9=?zeE~z|cKkyq|3cji|O%LknlZ z?vEuW`k=>nKZq;sJ|=hCLBGBGB|&Ti&gM!y91*4Z+_{nXJ45}#0^@^~kq1Y_#l4G;rlc2lKqxCKqoA}q4HzV| zi?JqcfRU_PFsr!>lbIW#PlK?e34;$d{`#7uG3CO|`de~w&(Jhck=I7Ca{Q0ZY=u@3 zJ;8Nz#OR%<_r7L#s*eP%Zs4eLQ_X@;6<0SX(PNJ_hP<6;YS>DbKtaF|mNE;D!?~{K zInxG*O%%9)Yrc$RAJPz`be=3r+U?nI&oLZghB0AcJhqo-O$`Hu9DR-;9z0q_HoBJ5 zAQECZ9cJ(24W3M;po=*)P~-<5sH!{m4qm`?^Z|4usHv#tpw?`IzRNwJaRJ|y7&wEf z0N+F~i-=GFvh8pJv#|0=kWIGFzDxq}9F7UKDzPBVG9OTvPY-B~3_nDjKY-S;E)jF~ zEaR;dxm>0W(zFs6Ke!>O537tXKL{iUEE$Vf(Pp&LuC24i$3%ELw?O8Ih5+r7Kku2V zPF6V=hXNN{fLgHgRESk^F_--+{|f<$hy9`(0As0hXoV5P*Maox%>=V0nZxI|H3s%$ zhh>66WOzmp;)TBO6{NQ= zk|NVu)mxe@d4wk?id9Ce&(Zd+nZx$Z718(dLGg(^-;XYc!Wn@1*6rsDl zr@2ckldR=RV`^~shOFUrbgfG#a&RZ1cw30szX5&>muT~TPfTgS?lmh;OxO&~${KfX zY#nW~`8OH3MB}BC!jM`g#I(X5+LZE*|x%}EF7Arj89qpqVJEL=v z;%*Nc*v|ncbF0VAOT{tKJLtiWXAxvfzc(GKh-?-BhLe?g^ZRI`K}eRMR&$7Nf{J-I zJ@_R3dG%!pTd+DJ4!RP=UTsTfY7nygZu&hkzC1yU>#FtZS${2z(SbkJL`5FErPZDL z`3~Lw-P@_&*<;h`dIjZjHYKn_mrdCo$I*OkDT}KbDArSc+lQD@BV8sAYl2fSoHH_g z*^vkoulWr4qHXXU&r|reYz|7FNwJIdWi8#`b|(Zb94^Y3?L1?Odn}D=gvT!Lx)HKV z&-|Uj+ffBTTwbH`w)C|h)sG}1Lk5cD9uL_S6!cgsKlbz9Onn)dtqK~fn7A;SudqC{ z*EH*8#dIAeH%rp8>{1SBuM?z)#fYYq{qiRj%pn_vc10kQPs7;vXFE*^N)2RlGwOA@4=dZd(-rb4{;iMrDVpe#K zMwaiYE37~Ig@;5lM5l*);bE$96KZ~{zntCakw5&hrB{>K0-gX}HEDCsFx*T`kViv} zYrZ^2*TqD)uo)qs27B$%v}Zx}{I&$_56u)_&;G=c&L_utUIGrq=Rr5pIT0o^Gxyx9 zLs-{C?h)EXHZKizEn0iBT<+OcbN&_y`*vvFyK$SaY-`?G7;hflxFq0JMOn~hd@&yN z{=y!(07s~a;@opKv;=8)C)ZYapci30ycvgRcf%WPi&Lt90m~X%7 z$R-(T$t~N?*19jd_R}eM@KRdM8>_eKLK3B1)5^-I=|{8&Y&$<55*(jY@n`XZcN{;K z@Ldb25mB;E1%WtVydZe~%6r5_%y>-HmSqmc-IRKyLuztco zI|9^j=YLBpSey5jJ6uvVy`A@ z$%+PJ8)sK8V0UoPrBflmwzbu?JXYQmqJ3MqSgWwp|9z<=^!(rwQeobg*@l@D6!@H* z>=1pNjzGWx9|We>PPFiGELpdX3kNf~Y{jlBD6AWOSI;CrI5-Fj4sKi-$g1WLx4)4O zIF197SFW`1Z#`LEVr(FoT!<&NZ?u0%;&@NvPGvmGq2GLY$YRXVLOAlU$I!!6MVmxv z>?Le#VYI^N@nW`3la()pZO29VVCtitL+OVzkdz0`3Ic$7?c4;>l>Bv;->k;%oSsF{ zcmd)$#|tq}?`**LUM;9Q;Q@H7vHN0-9bV5>TL~k)B4jv}bg~Z-aqtF|TstK#RG4RI z*7tWFDm-SU_wtg2R=>dN1t=&KWDB|l^pd{ZxlH%-GdQduf?>s)yKlGgShQc%6FMLR z33V~h|6}52+|kffPLVn9eow09Fc5eO<_RL%is#}_Gu;m*k#JS8_5&222+;e#M*q|d zb;83jkl9f4&~IASkX)H+50DBCmQT2(?)z<88Y@@K&&_x3Yd5w&bEoo0L1saU1R5m)ci!hUx?7> z?dQ`w$WUw#U4ewDiiH4^OlHwDduX1p< zcRK~!;a;IY(*A*gQd4DCztRM-mO_E4@?s!LSsjd)EjXVTWRUxDDrbI$4@Z&%O65m` ze@$Z7UJ*S1911^eO$ycEq^-%qvAX=l*qhl|)3fbnlDq9!-tKf__Koh}zLKKV=}$T% zr`XUk6QnOQ(#?nSm~)f&_g*2mOb~LU$ zi`b)Y`T>AF2Ui4&aEgi-c=P5>)rN4DU(OIZ>D$Vnv2=JC&EiZ(tZ+Xa6EKFqMz%Lt zFPIj&2%uTgVuNNDbV?;EylFZNGwnu_|KH(d9#yG+sB#GPKe{`R;rYua-=N|rn0$`S z%4Jksg(RtweVk7eg6tilU#H$DnpagqXUuzAHXwsUfQ&?x1No6LDDTu+679v^3k376 zTlEHh&wI1)rzdz&#tIm{i{aHh{AuBe{S9%=|Cr8Zz$F=-G1Qv$lI8avq7cewbS|5( z7Jr~A9o6wzZzSnZNYY9va z8rl@Kmd&%D@nt?{{4}+}B~rhC|E`e2EKv9_L+$oPYuVS=E{9!LbnZyoJ2yv-cV4~c zX~f)XSx|59yGHk<>Zd9gL;5F`Q+woayk@{%y0?S=$eK7p!P)u9mgQdzyuoEy5-#Mx2u~ z$B^V(6sIaCh!V`84$DArzsE(1K*B8XJ-r0^%E}5@K-(i&6os7s^bu1u0FVCFu^tr_ z)hCIU*HB(jKD|Pq8@8GYx6GG4mP+p3`o(!GxmR^rmbb!0t30^iKLb$|E6!YB)0Z4y znlpb`I;XYt|V%mZCuX2vh`0 zmb)9x9dKy^q+YMaO&B)I;l(vF0BF(L*mNNNmf-pye{fe!6B2y<8u!U^wR0Tr8@H1% zQ=?V18mMT5;PeE2R6-C>aB*`t!mEK??2H9N2;3`6OG{^oAIUx^c#zzoXlEy2?6Jbp zzLOv3>stOTD|dV0gEk5g9N)(N59_@WY4prMc9v%FkC4!~Uq~ETf9U4tagxW6pY9W^ zoyDP9JlN3C(n3@ZVjS-eXe~h1t9th?aoySO9m{9WP`_-4%@l#qHFU%(dok9($Q;Y} z7#$SjqoaTJdj}G7`pu!cA4WM`Eky~Rjy!B(`{biYSn{pWY41`ayqzZ=->DGNKKydA zoehSN5mIrs+gZ&E!c?u$-*!Kl;=Ch%198>4zhIU=H_O_HZ02-Ru}IdQ}4A0#@SD%9othHa3lp{2Umv zCx6oOjmOvC|Dkvf?w%1h|AowBWT^O-ZfsjRHF_4u#twK7ZH1uOyF zk+8aLZX?2Guwf~B3KZH6X0pseCY+RBYts0hnH`qlGzbfK83p zdIL~yP|T&ahK42Sz3Yc3;dQrk-b8a=Hhi@gsg_9F9D!5aj|i60QX3kCDGW&TO0B6N zCq{lB)+2*Adn!APhj{(acfY9$EZanj;$pY+Es*(^Az@Jmg&sAMpNko`q#02*Q034ImQ2`abp^He)Y{37R5Lxaq`>dg__Qh(-3Hq{@JeSb)iwP zO?fWR;_B^Nfq7Z}4Sy{>+GW)zyz6$`2hL~n(6RI2D&8E(eAsY)dgSWG#K5o-%j?@q zb=6V}5dy?bf49$_ZqOJG)u0ecC zN=;2owfPPnh;%5;J&lbNYT?=ihov#QvKZy&pZNopVm*N7jjY~15(F(Z(uxL!dPZQ@`6=@ z%ALBm<-J^#5JS|${?#>+JH&h{GqYPQT?5lh(Hpiu(-Im&3CQOGTO1xt=tu0!ge#ASZ?0l z-|IB$LSfCwPQnNa0ln+t#?MLVcVv(d(eg>mmM$MMiT<754&mVC3O8HKOpeRn3meW$ zux?$y9~<|XRAJJ;3K8r}P9WfgI|`(bwY*x97uM=-IL|!81fE zPqZHYZC3`3iJw-NzxwK5Pc(7`HPy3Is>EZqb{~%KV~)U5zpScF zi5v(Gd*5YOQYU%U1rf{w{!dJo3bVo8M~ignHo&i4MpwgNn8HA`_e zJ)Tm{LO(h?tFw__9Wo}2ZONRx+pS>kyC$5mAO&9>PAYtH1;7e*voxpGeh}5`Iobj)p|KGO%XzW4D=eSCae+vlQC$1*YEz>w8{?;!u`C0k4BhQwhj6WGqsXFBn} z4D1dvIs>8wC20dh`#K{ zyo7YMsn9jf05j9*H5PMwIT@sk24G!PtT7R@YZ$F|VQ*nW3_rOHsvmVrqX!ei)!dO} z@hx{RMn6!EkTS8ZW&WsQ;y~8UwiV$akS5nV!EjV9K?g6V5Pdf~yU)|}584j&q*Hev z$BwH|>_4>;R2>q5&x3_RVE~Y2%)0sJAb}b{;sLOK><6=_>Yi}|DU+m44})?rL^fr_ zUNkN}h^f7zAD)6)NCUxOt(vt+lXd=#R%UE`9Fdj-A_Ax zmyip{NlK=EUaN%jI%db4LS9cNz<$uaNIwFYbU+oi+$fbAS2mC%8YJ*gSDJx#_`Oaac zB9cqv>*D0(EHf)*G#5YKLjT%2ntbGD_reiXG~)33TeHHsX}pb1L4ao`y@3+7K;-e` zGnX#ev+CJ|xf#Dq>@$Z7umVe0GZUdRdCnYG%`64b7$cg6Myp*5sue4(04bwTgLiOA zW>R|Kd_xpfwUNJHxjHYNe?xzJxK1C@0HaHDH-*A#g>_-$nBeG-AI+z#UIo2JbyKF& zfPe;>7jHuG6)6;?No%i@nb1&hwZ2LHRq@o4-mT_ixMZ(=mr7`ovR5G?N%vu50Mj@3 zhyON*JfmuA^P(fICQ*GoJ}=js(=$oSpM2%ua|C@skel2Pe-tp1-`#*Al3;VH3CIrw z8HpetJ+x(JdTMLqN4n6?V4Jx2;DH}X90hIWKimIrvr25~OmMt>8S*W>CQ8TgSGEj0so%2b^3>_k8oEt|B|Ese^#mPXZ4lyJTLV%)C zSS62l*ZLH?SD(wufHE+WWP~jmAAJ3THWk8AN=p*C!9aq zyK)wj+x+-OpyrVlW_bH7kRf-*rdey84ou%`5gr~NS~HH-=rMjk*o~L0)RYVA6(T0e z?b~5^hJ(n?&u@d2q<0_*yaJG+kj~SfR`b}GSbx3h+Rue;=rrAIzn?#7`%Zv;bh6-S z9`AM?c-;SDTdW0*AGD$~HoIwPEbnF~bneHcM{j*8>c_$4K1n%B)YTT4OAt3sDVP^F-8lE7|N0_<1%gHy8G^71ITYs5BM3x{-I)P z0NL$oHDzv@Y>FaSgkmI}PKhj!L0TuxH}q?DO_sK|*J|JrXfEv$trek+H*lEYDK z;0^%D>+{;zV(?M~SHa7mX>o!mJVGz_Iktoo?#HERvQ-3o-E2s0fVfd=E2MNZzHWY5 z|7V5P-@|*F~OzOcX82|B!+y_8j_>)S}VO%rL2UlvY?--3i zeq7A^Es~g7U#UGbgrLz4ObpgD`%M`RBqRI1Yfa~xLqC!)&qd#@?c0R~LBfqVT@bVE zJXBD9wBOW1wG~*%X2)jM_coYn*|FeeP0}ZNf?>`Kg;fbH@dk6B~j+rjjdBe*@fwrmk@zPJVKmrOboXC4wYKOC_O%91tLIVQ%`FkJgHu)&&ce1;5-hm>3*ph@yQD00gw)J`vZWKbl|<<9chheHP;f z8yl;Vz?&XadQ6MVS#`3%Tkg?ChjL}r6PhA2Jo#gX4mCC9=rc6qVyc9Cd|kC|;4Xs+ zAEURo`YVKrq4xK3z&tF3@;_s^MFN77_VV}sh8oYcL{`!E9q?G3vVQk6<;Fm+PiHdc zPl_!t0w!H7W-Kg&Q+#LTTY5?a?i6jza;nbg9mpk7ol0A#A$EBw>QCw`_W%)m)4I>V z^rjHLWNK=;p0TKpcpI z!vpwfRZ{HXV8Dt+#lVpC-j(-Ac!$EG38o6j&C3AJz^g=r3F?9~hiuBDUfS8s2x&SF zr19^3?(<0obe5KIQ4+KPO1b$JjYrgXWMz>st%2hJplxB0+pz#NalshfsUR>y1qPH> zLh~Rf+`@|VlUp_%M&Mj!=4!_eGp1P}I1&H|vni7RPD#c;ET1?+{~W}!{z1K_8)x$W z9uq$+#3#363l5@+y*)*)5!#*lR<`XG{&WNa^jJ4lml(2f`UrxtyrjL|=@7F6G6Ba< zCaLjktf&|d4HicK1#z#^dR*PwYMdw5YyesPbxRszs+xqjxx1$3+=;;3I=Ehf#!M*?K>bd}0(Yx(T=R33;2Hs>qNHK>dL}u<=Q?)#N zA`b$)(|tsV3Q%j{a&g0+qLGvAOcXhxY@dKdV%8IA0w)c8P-I|izDAZZ6U}RKIYCYU z$jr2|k)~2EXgp+NJU-#l8y5&8?GOD^8&h!y3~qsSoh>qJ#EKRr=2nKxkGj>HUcd1` z93~cFt2`)L4ngq~0ByP5sL94my}f<3!jt#+FXpR23Wcio#wtNl4BTJaGws(KTm#h` zgc^2p&Ub#MIoDL|h$2jPMlt#5sn?dcYH5J7!YU&`TEM4{(~L0L~Dtm4I-RNd{JTT9R2o&RP z%iz|>%O=U?%|7tzO8ek=JmTdU+F-$9J1XqLN9c{?l}$ae|MyZ4oOZ#xRxD5 z01SsV2`85ONDG;S2fQH7nX?a9XvGc{kOn$<(8(YWpIoog0pb;1F5bN7`UeEllr*_S zj6Pv7(fXpAHg5M!&X=bka0JHJ(1av8{nS{;8{KwK6A^UJkn(PR|Sw2&%hVcOWVa~_t)~) z-Dv9wlPRVFwiT=-Qb;f=E)?@}EyOIiO!Pys3x&8;f=gqw%-r6r{eneZ2!M=GN(l+Q zdvtOLIP3HGN{&i1zlCgCc2@7G&L$; z0nh>*I@oPm{EQPg_Qq0_=!}IcIvmu#6-*$~1+b%nH0}W+GOR>^THyDdkPsXQihwxI zZZ^^Uz;W-mZsVFSIP6aAWZyv0T>!i@s#3ZK*WrVYa`>_Cbd}&j0@SFYq!7zF$@(UKZCSzRm!15) zB~A_PHZ|mN&5;yH@pz}lLYtL|?x|xQuMhvKuy%W)6?msd9*8OGwWj8AOusc|D^6YA3+F%+6&N zfP$u`<*y+*3rQ^ycWzrg^%ll)5Pv=oDUPnLYO)*vzu(%T4@`A@4XqG|Dc_^HYQNTh zYmf@PCi=c-)=yEl-=`L|duKCl5F=7^s+GS`_FD~WGf}po$Ss`>qCDE>!w*qQE-R>m=WGKaN3J)#1tN zt07c4)2JLrGLgiZn;7#09YQTf0clcHEcODD!n9ndOnv1$t?ogwXhAMDWAF?-!oVlEkx9#N3E*h?07=U*`XYnbw?e(oIf^4` zI^Pn!G2L!?z0vZzgwL>*C<5^huo>RIP82uM_|S7wxTs*jmT8NpVV0H(kXfs>2$`}iOdHbx2CGDys zQOxZmx%+C8iBV|iT#adDJF2sfnipJxCI<|d<}V<`{!Xkw>t~T?r1a|^cRpt&`_TQH z>Us4h$>8FqNZ=$oW=tYEFZ0op(WXDsgwiesbRRMMyD^4AX2G+zFa;SG%GG6w!A8h25jT?K7TS!=*n5EvP)>)q-1m`jvId0i( z0jU%0ksguN4=gO$+QJwJO7)2{i}wtc-IdVAZHD{go{dq zh11=@*OED)6sXu+ua+xcWcJ;AD*!fqnV@+Bf70~3quPFPE93O`*?&Sr>;7Q&vAsp! zv>kVzp16b;Q>+mVbdD*kW?vzM5_f@Oh0<0%!Y4$080E%NpxW_mJ`0gF`3J`FtE4Qq+|VF z?@STzxJG;3laC%=NyIEXU8@p~qkYjDXnTB8zs&BCUrQMNG|RG}sa$mq^7WfV#j~gz`aD z^AtS;OU8}iHnX!xHJoGGsWZ;{^um^j)}%*6Z#+`yBZ#Au@H<;&y$CP z04*6`d^E26gW}8nbu~h!$YBc^eUxVDAbmmjxg0HruW`Tn&<-Nd`t1+3ug?s9pj1hEO$jQ6#o#Z&0O~20HlF z5y;DGb0O&Y6);X8;DA8@_POAz?d;6_Cru`|x*uI7rWvvT%70mMPFt{c=)gwvJch8V z1LccvU+#4HPZ`#d!g5AIh|wYfvNEcS|oaTJ2Q7y6Vt`-{&(wjG93 z->C$8T7v260EnRb$9?qdP;yd`W@vYWC)-rZn5b+SmGxi^O8Bgok!+No66oI!Uv8wu zlgrOn_UKp_c}e?8+k|Qx~?QSKPy|Ap^2#CxqzKc%KWMxm8eVorCTZf7P*LO==sy$OC}veW3akN4phC4u0puNr=U7gjMY&F{8V#Wy&dB>E5n zS~f&Oos7ZD-s!+QDplX^E=(!w`p0A{i6ZU&2g zgv{jvdejXC329QDboW#$*?bX{td7mu;x9UQ+8ek$r%DzFu$dvV2HyMT(}~@L9ui=$ zF!6zhk8p?OIy+|P1_bPqGH_*L{%Rh5Ay!k(PjmTqjWADaxA9RPsj4DLz2t&ZyZZwL+(WQZHy+6yT8aw zi1`gg?v53x)ldn-uWn0cd^vK7YfkSr2AE(#2;binVH^qZJu;Q0(C`8bEm2r(_Jrn{z7({-AY2cD1R=Bx z!_z=iYU0j8`+aSDz$Dy|rnV8(dKn!9gV&398SR8&59bC@Ex#pkVpnfRS_s;hZ4<^D zyd$rM12Wu6k<$7B;q(B=vtkS=J@kc^1_T1$)5}u5ornfBCa#Bf9A^p+Y36dzTPy5O z5P2_n@D20DW+Bu78b8x7KaujO0*;i2d*gEAF^c0*L|*y;FG-V=cL!9$Qr_Rz@k80r zoH^lzfiQ*UUe!(n;ujCzMX4$2mn@YEiR=9^@nWxC+REcWvA-axREVD=;SnB%6B#>z zl>&MDZW;bs5*uzyRk!ii7~Jh=%#38^*ALDJ`dF*it0OiK{R7)gCN2tA7QMH}r0xT{ zS58DZf&uDc(tULO@#E+lwD$o|2cHh~$>0PtEgMfzPlEHQ!1X(WkWvWacnAdp77if* z6*E+LKG5gLMQ8+pRIzB$nW}7AN71IZ%w0p5_w|%K-)!nHE39xdIN#Ag9do}RnIx^A zYvl$6Q0x?7`2qYcA@UZ4(tSWa5+&~k_RGK*_AZDnn5|pENC<1izFlOl5^14Vner$c z5O{R^)S`ce00LNESq7!n9OpC1$WCwfQrND6)5s#4vfLTIj|qJOV9f$|Nu0c<-$Mp0 zUD^F{hSPz)7SI?DdpHW!DGR^K;^3MjSQul#?8yZ6)OoI_fa0oh7r{ri0%2bi1yMLcLxVX zlHiPgshutIIR0(a0jT>+>5R*cd^(iTvyxiN%aU3_o$a>rlSNPTIx(_Vd>g#r5q&^0 z(_ldZR$@D%=F7AqV>7bd=Hw^Bi;)D91j5!HJr9Koh0CE22dJTy=wpT>vxWw%q7)_D z*Etnv`V<7Azwk>N(L>?KFZ8I^rIO<=%?fgg;7UBfZiisI}g9sk7y#9A9~ zNIx0^QlnJEukApylf2wxE7=g3-i7OXim0=PmPwKd#Soq&2GHCf`${|h5li_~Gu!Ov z&YNUw6s)Q-ZT>BVAAfH^nm6drU#&XEkfVjk$V}|)y|WL4ty{mwXXBn~+9A{_AXRaY z(&c*T9&Lt%Ob6$@gd2K#fDHg54#P66KVZVQikZBfNM5%zU6}NdmKxboh(M*0wKH|b zT#%sw;d5|RLzHzv72Y4agW-ebZSZa#Zyidb3L%h2IJEy(g7e0o!3jBBM<$l!k*8LF zO$e|{B?RI1@yt3zx2;JqdamSmhFBo5lv z*=^kB(W5e=$PgIr0=Ei$-um8x{zGl@gV6|CQQj*@npct84Ifj-p*%c(*_shz`|;9# zt7jqo>(+UA{nKlw*T*P|dF&X4b8vJF4wim9QWka-K^Eg z8@D#lr~0NxFhtEUOMZ`(EaxX3I!lCiBF8CT{jE0`X5p+NX4Adx7K{-hFMGUppL}xf zJxbU*ny`4RFFE>XT+Zh%E27!6ef#KdtT5Nmy6%YkiIjKKJKX^6&&Nl%D-Can1|*+v z@Rl*YFkPu)edMM66GL}N$Xh868Ug#HegkP&5~$C=g%x@AaB#ke7v=gK$;rut7n(Tt zYs0DNS+Cv6(N=herR0L6NSH+TdVyqu-9^a?b8n5w``YeCsiQEKy&ul9s}_B*V11jqJG)%n(r&w zmB-&OdAJ)@-syg}VKjKNG>VZz{XzV|L}oBe4$eKVw~eN=agE#>^bsw0;)!?nPgq@a z$1DDl7|_NhHZp)^pUPyWMO&dC%@nuq}T?PdU!}Q^?F%`xJ3Ae6xAp)#X9q_jkT)SGP9c9(z6d zRvT(kz-!+6Q9D84rV7U7r`VpUzuq~5QgZ&+oIkSdtCJ>=a0(4FZXM2nCmH>=~p+mZsCWxUo@YOhUZ8x*zFJEiFa2!YYa1v zDZQ=L!yR87Pw3h%YsITORL>RX9Y^&TU1OaW)KI~=JT4~pjQ0z9knVQ8dLdhsUwABl zCAae7q$QxpZQRu5p?$M^G-RBlSy=-yEG+FHHDeM?C!KALDm z)CcZn?MfFle0$&fJ;g_dMFrzM{jZdzkK~0P1ZG}8Dh~N^x8J{?b-tR1|65I=*)3jK z?#xBC-kFoBp~+qQD{{-8(AHU;=vz}2P=l{%E%1v|_blbG*Tcpw{G+{AGlBwdkDw7* znU+s^Zc9ckWDCUk$v#+-nb4KOUJ=sdK%bw=5jsY4c-) z>b8QV&^HEwbz9=N2?o(piRad?eUsyN>9@;!JA-iX%=?+WuhM+5?-?F%G`S_!btj%g z+i>9bn5>x8>+0Q8#}45wE!O2Ycm)#oM}>TRHV~6`<;w;KSvaeei{SyU_grEl9(2L3-)5#5P|Xnb)L|-i4lPc=!AH)Qhsk6{ zS`lBnAsO9F#Q$tk@H!Xr3fn;Mu{ha>f>+{3c{2~YThMNQdXEk3#t8B4xnz?^|EIRE zj*2q++8sg>1f&#@PzNb#Bqc>c1VKRQ6cFhiI+PHk1VlhuB$Ngz=~lX>yJbLH7?8W? zx9+;}$G6tE)?Ii0fd%uP_dVzAv+Lc@vmLtDB$XLbvk5nsYX=2*kuHV8weuO?g$&6~ zogE?ucKUY0aGQ+?UD@7`ljxNRbGquq2>1jO`Cr#Jp0IjEL^qvaNlch@m zO^q=(h+nvGuf@*HZUs(i#VFq;A>GGj*9Yn}3C~A`J;|li&27yO4*6%M zG~2fxC0TeWYu^;C$jrN9Y2dUY2&1y{@iM8KaJ*$xipxJfe>iQK<~jy)pPp zi$?Xz0@bJH;UQLu0NnH+mQ$`CQiqz8$N8UAL(eGLCno!s|IHyNV=pq_g=aVvQi#W3 zk0&VUGEXmnUI-t0f8au{j-^R*&+k;adHQZK(6xV?|Dp_vC#}kXN0Vi@hYj&I8EbLA z&|NGm$^C#BT321Amx_20BO0idSOUAaZv*SVdmd-Iw93Mt;YaahAY)c>8oAqJEBd6b zv)~O)Y)Yf+gL^r_C;!^&v=0r*XB$Kk*IP7bXT;=xVID7lP3a?A7sHT#%O8^+7Z-A|Q7%BU^?=jRLfT5Ib+MdC*z2nurh;tCX*89xQZ zOWe8GGuQmnP2TcDAytHOB+>GaLZQea_5JA7PaU-}Mm`76O3TXll6s&(KBgy0*sJDt zbeWS)ZdX^xa?WfYGY=DVe@AI*dwBYg|B@_=R%_7hYw^Rx9Jy%?O$^i(vm>W9Y;Bj9 zdk7NGFsd{=vN+amnjTv z2;?RD`+xNvk;h_QV<_h4qVz8&hl9y{mP`MT*58xGsG(!-uZf&f_D6MlYv?Mgca$mDYx)hDZE%BKjO0xn=+ z6y-vpk~c!+KeWDiSgud~wP^A_+7VUXbx0)8oZ#yizE0io$@-+MthxQfU?hLipeJw& zzt5R5*Y^2tX%tNgZAX~!m7{g*iw7qgjOAKK$%S?Qz88eAN^-79+d9Xi$(vZ@4X8T6 z-mvVe-WI*H6u4-RyMMBgn%ZwTTOkyH8RHoC83V?fF1#z^(q3L-YHDivdXN3c2!n3uzp>!Zyr@6ao-*-NvCRGxVrG!*jKP5ewB~MrhrwH|6N9% z%tJwfzb?E~qVaDxCdPC}o5#W()O%8#{}gakl(}dy$m5xHT)4|A8ffzKmRSb@Wx6@t zGOkJGB&~#}05ot<$zBk!2lkf+0$MCOTewo4F$wX6Bpw*ZXfRYd3N;k@HKN-U&Y9H9o)7mx@&FaT%0-8$xPkmIbpr? zLX7TkWarP3bAsErob>8>XaO@xcyD+c{nyaM`$a`t8-!@{a^28~h_iN_epVHnB7>U4 zZ%0xG!y3v7ysuv2iScx%K>au1PkCxkXe1BM_Gb(}0Rbhw_d?JfOYBdJbG|w`+d+vL zyQ1W!Ty80X1Z8peXQXstR>zyhcyXgbnzlR^BZp21WB?w`gxJUVI#b|m3C^g?vos zE^jn_G~F`;IbbxhE3(&%SH*90k-uHmp%Xg0)4iyPLkvy_;3WLLZOR9jaZ$Ki$HJ>iH>ksL_Z2QZQ& z_V)Iw0bEqQ@ii|uFOP|dDF7fnaR~{|n2WauhahO7iH&Pa$j6^sd$X~cl~Tu+7ANG8 zTOV{skE3M%e(ITT#fDPnbzSVUM$?we+%fW=0;M3n-%h=+6h2q2!&HB;1B;_tTNj(M ztO*L_dw$VnWB%(j?`&SkrqT3qE&tdMt@n1Uf2i8egnP3QDB^Ug95O1q$kx?xmE|vH z$@8%Zz8%lJi^#1gcgn4=?vjo^LOp{?EmxEzrrKK9=g(ca!C)+1n)r%cjrbv7Y#h~n z2Y>ri(&%j!rJC4tuCbPFVaCSg;NrP0KbOsd(jA$3Um4uT;(X?0{j`6GP?~C^W4JDc zg}nKy#7t3B!Jic<|B<9B$@VIrm&u+gKR3G+8m*Ai;7~Iy4jn5{?{#S2d+wh!+h&n? z>kfKgbo~dU8(J@2{G34h&W0sN>vkd``R$|!yjCvD7uLZloMMa`(m!vly}z@pfIC?N zTl0oam#wg*tY)x1(&;i-M=usFJJ5x@Wi73N7k2+1;7J%sZ>7AG^Z(h{_@1qZM4Mtq z0W7(1uQ4xgts8MmR86+^Xs#s8^@ga#FORZsF2yj`)+0K5^%W1Bhw0H_3rs)y6z4J& zt5eaoq`y2c5=&F1m7?0UFNAq)CEc5S1S^CLr=8vno?LsIhu$o*T`)GFWaur7eIy%n z(G%AgrGEQJewFA=#IP10qIv;+Z^w1zuMyw!pYZo;rdiJR8)!{Uc8-jZ1^I1wf>zn z<&jb1Udk{BaykdWhO}ri=6y%O@aT~X8zsSQj|w*t1NyJ_FZ>=;^35yY8R(c^X5fDL z(rTN3Zt0xpa5svF1Ht-5 zQCkvJ8qDM;gt{09<1wfRXC3rt>xqeDevM81J>FozPYl=h*}2_!m{z+>t4At8c7t42 zUzUu|@Ii+``iRHKKHeBZj$(9~Ar=%7ks zIi5mdkfy?FMYa&@V~A`fQUoeRABK^bZxr|TFFSm%va-D8`WRi?;2_SY;HhIYq2Jt< zq@;>TzK(s;_GLmIbn~iIm}78S`|*#^Y^ zSy=(m4f+b{KY#Rg6z$SuEb{8j9;k8Q$m8M2GvTn{;jl2hg5O#2Ua>Is(=O3-3v-@EgDWPX$4U--pKB)nv_*O%765MSmeXWVz~%L+|iY~D>Kn}2#&Eqt4>X3Olf4oEdwrH(7t^QSptQ8mq1{G@39J)7Mavjl9ILh)&ECD#N1JaN7 zOK`{xF*|Iy;lbRo*Jp)qg^6_>pou-2aPVoSHfQRR{+(gc4z8zls7~)05DCy$iwlQ# zImZ^4qlyc@?bJ$Ch9rBzSwOlRim)gIr52z4ZQ`0X=cS=>?RH@^QW9_@$&;|OEc@|J zy4{@By@r_l_*(c3x3nyLdU-&!;3Jg@8U~46uz=GIe?ASzO%H)jni>L&h~K%39Uh7F zm4`{n%C`1Flmh?#OZ(ru7-xoi&fBqO8lhdF$)mL(maM{xs$s|*dHd6B7bPmGiXM@$ zD%yhA_)!yiUc-jdLzEN0e~a(A)~|Cn5c&%xk@y3Z6^|D737qWU^$`$~ey>YwI(wXH zdS%h6nho4 zx;pRm8b7(T*?q+I2zfv?)*1w>@+b93VsMY-{;wy(UTS1tWIwofBuIjbU9kUSN&2HM z5D@H*nMRS*({G~HJ@Mftxpm(a{`a(`zQxZH|L3x3l?|N#VnvBG^Wr@AR>Ce;R zv5#LE0)7>#zfD)zxVf`Ge-1o6L@~P0;n>G7I|DtZD)b?PK!nqchj8!=@!J@a>v4y}p1Y1rEP1*g463aOuK@3sZjQXB#D= z!P9oE+}x2dF%-ZJjYA`b;;fwUl_ccNh*zZ45HYiVf-QA12z+%np!UIPlIo%Jg1n8n1Bbjn_kQ&V>^$Llu( z6*^2u6*CubCAXl!d}H{_40l$?F`(^eMI6#AyZ*2PGnTBJoJaGGMgWWhv+5h_ybV#< z4_S5fnC4kah&9T9-{BgU?h;zvduG1n4cyjbxijuIGc)j4w?GXAqw-x=)JuX2s~_8*&mT_O1A+LSRGqxad*yG|eIV@MHqStO_>p_-xy+h_P`I6peAY zZjDWuZUOx2{^e6@MtON0yGAyz$FA8*Z^~~t?W2Io=>=)2LRU=I8a#?3yMCRh(KJdz z9_|lp0%ib(Kix}%IK_N5)f2(v0L4%e=rdR{R-3)mE}6bzLyc_ZjN;;Vz}|qXpkNQg z_kkev$x#$Oorx2d(@RTZLMd5y*D|9vo}a}+XFZULCptRov`_bo{LaDvXgtytcg+2! zr3ua%Fq517jA5SP?#S_hwcDJoi60(*nqKxx;O0&Lg@xya?(-LTv{tQA0DM)~eDy$uUZ&LxKM;o<~ z_kEytI6s>`M~~Z8PS$D1ZF?M!TU0N9&;K5MBI={ z1%e^xUj}Y!8X7IrZnHhu9U>t?m!3n%Z>%~SZ}5`>95Pn*q&l!6cOTP0GJbMWE+izG z2awLgBO{Q@v9z*!4k|ETyW}+}@U5yvQef!uSj%{WD4s;OwzguYAuTN(zgP?1s>OGI zFk!oQtkL7EtEt^DGOSaFGcNRV)=W zaJ})v0ihudcAn-0FJ>5z4e6Vco{mWBY5)2xZ>++W4m^%EdJjyP(dp~8wU?hVGZmGT znBZUn*$6!;0hV$B+J!XP2syWq2tU!%a%*3`H{@$#V$z)~8f#F4a)izu$@?^vEXs4e zV%tj{QvdiuLqj?BtKLOMMmi7CAQ$4XTg*dCe6g_MpC^lQLL;TBIP^KPy3=qnQuNZs zW`9aoSNEZk(ju@|K?aP(X5t%R-bg1DqBe~uON$Qqf@KgtnsNs5#}Zqm?uuN##%YW> zMB7YOL;wbGcfz{J2P02L-jD^pnlBneVhN7f=j`m@YUkBb;AX4;yKot?@%y(9;PkNj z3FX8v&o5wyKrLCgo(`c`ovN$g0J<+lD`?kyivpBx6~t6(o(3%0@{p=j+q?rAEv=%l z@lBT4b^6moG%B%%iRCdYypl0vw*;Rsee0BQ$9!2snH!qW!jwGDPr-k58$j+fpMya xv(RV26cRE!a1%TZtUt>5|KBhDpHA({IUZw%Q$HyiT{QweigGHlg)+vk{|AnA`Tqa_ literal 43720 zcmdSBWmJ@J^e#Mr(lLO9^w1qjw?m4QK?q1ncXzk6q|zlIASD9QEuwUHcXxB{@%KOH zto43-*LuIaYv~%+%=0{R$G-Qz_I2$&;i}4VIGALZ5C{b4xxDl%2n5*=0zq0pM+NWj z4bH597a=DZO{dqkCQhyf4#p5A11CExTPG`XLmC%j2S;;To2Q%toKM(k%$%I;9EG{K ztpCpioVE_8TrBTaeZfO8?Bw4%LLhhsi2q215(VZE$XCAS($C(wrR~hRy1h2OMmyN= z(S5f$7Y}Dit*o(ni>qo+!`zfph`xvOySQv4;!cOTu$D*<4fnybSTW<6A^5qjc`E<& zr^kk+C67iAltCGIYkKa`pGyFs$b z%b_olIXf$iy0yIjj+JW1ef)@At%Va}Q0{Yk#pa^}M>l5!U$lh!$K+{-@11*gdu@sL z^_jul&83FZUuxeQf8*Yy>etd51>i}&NgS5W$iM6WAPWQQq3ZubN?HZGClx}-@dHI$E zme&_X!NI|`t4Z1mtE&&Gsi|i?wo50PeI>vOm}Yu+WeRwlm_<^F{hT!Vn=V4a!^5N8 z%}L?FM;7IFbJ&efPL34}M=Dj1NJx0(b-i12j+%)hv}v@r#?|{>$ka+xciD6kx<_ ze^a}=ohq_d@?Rt$J>P$=BK9!EAZ^O{d~cRi#D%?~p&{#45x3KZs?|h!>!vta$d!QY zT%_k-9h$$tziQDN?$o~=;$LQMx{p?S2dgbLm=hH)uC8)4%5*Q9@2@2wE#KbNw{T<6 z_bGWFc9Q6mqK4v9B17Jrm@NI6wvp1*BwcY33J473aoL$*BfDb^s-+4aK!U=*r6(to zAoiDC>pS}N59@a4@pt1(?h(WsZIO?kmOF2&N0JLfOElRp%f5gAej(j;4ryWI9hra) z1tu2O;gn?=jE4uGoZqUYv}SJVi#^xd$_IKrmkdcUa4?Z%>BZE?1K)4BAoI^_nOW6BFI`8_zjC z-f3x(h2T!(DM$ib6n5K%X^?Aeo23Ix*b|=Ic_-D;O=&Jxqg{< zX(*O@yxuRjKi6nKtR%1qzOie!W*)ar2Nwct2CXZGI!3qAV=-Pu++T;Y8;#n_&wTjH z;~4zIS%(R2V)?;(YgEJ=2$pPA)oV)S`2;%Jik0 z+CvB_kKu!>v)zdEd0*-((|(tqXN~7`?S4oo7xd@g5TNx|YJ!_{a&lC4b)y?S&yUV! z&^Pl0;qnF5F1uQ|5Z8?XSf3TYqrJVoj)DTFY0b1y^m6UXTv_{`o}Qaa_Ff0@$qd+v zv^~?Kl^z{0FHzswuWH4DkQp$-C8s&>^Vx2sg|Tn%da23zEFKA1j1-zw%z}4yoSeQ7 z^FU@^a5Z-L&gaVE?S+ur)UG({)Y`#Z8En;ZWutzY?a;=B_4f4CnTgiSx{xy^_twqK z=oDBosbu^qdc*qd>(>v_Kqd1<#;{!`a7L>!l%j62C@tP#k0`qBb==*B z(EL2XDbqf!4T|jx4DrLTCw%e=yEmDuTjKsEaKHJ!snb!K7N5#v19o$Fz5na)--i%j zg!;o@l-v$l(OS8&Aq(KD5MaSyR5JIRZowwcec{2Q5QLHo*mMl5NJQ;U*R;QXQr&Z_ z%kEM?8=WrVs(bR&disaK&O}96WTca@xa*z{X_Rb%?k`JYZc@927NkFELWE>dArhR# z5%%NnTwxLt)aK^q%HuO$$A3$I?)#&lEnOTgBL;8?>;YajE+Arhwlj&2iMbRyfwVB| zIxnNIPcwg9IBJ1UO&udJ=Z3Ke0Iq}Z*R^reHuX5SSEucc{bFdv zqf<*l2-8bYU=Y7Kkb<;a?>FP+zX}HqAXK6tCkMH;we{~e91INeVYhkrbxP6Gk=L5d zK4M*wk5Pcb0y~Se-j`ng<+}0B4o-V7M^Ry+nZ273JNr)MxNgz!-wJjVt}-#Mb=mu< z{i4U%b6&?vJM+!d@k}Zq&CL>B(UcLscbB0Oa-7M_V5z$W=Dh;Heq~KaOk4y5>Atx< zzJytT*Z};2Vwxa6n|g_4v(GJ*lr&6^%KZT!AD_nc2nLMP4}`H9^mcBy+tcy5xH$jO zVvQQN=$IJ1y{2m$FW_PaHk~xoNAmWvCIkV!dc&}^mObHN`? zzgp{Xvmn#(?`OX9Nh{5Aeg9!^89BLS;2fR--!wEdRPJ_Y=moahZ7H1T+X)LHTn8Po zf1m7^y9{nF4iR4KrMC9;l2DB35&G}mULMCa#W!kdi`k)64nMvBr0^6L6}6T%-)%YF zq}n!_yXb+iBd?<3s({SK%3AKaKgae#L{N~_alNk-%r-75sf&pfr}3r66H%{<2^m^^ z*=P#)!EMAA0mD7S&2 zIN6ybl#8aQTbn?KwPmZd1l4Ab>-kdNUZ2aEo3nh3k58S=NJ$BM9?xj7+!aMC?j`7P zzPIaiohIaXFs5y5(3d83ao&6%#rf{%LX5;+OQ!GL#!;KS|bz0b3O zNdqhLtEo9RUZ&tRgMLv?{{WnFYkxmpQBl#wQ7;$I`(Mz)H>?oJ{tU6pbzb+Q_hFre zCtIUfPd@GBoNw>%$DmQULF(%2l-*tcR!LdUPx-7-UhX1_lN<1J;&}XH%A>5{>kGX*3%)t1{Z+cHGKuk%n9F6 zV-AWf9(N)-2u7R@T)$z~g)idQJ5Pbb1slK%*`%k6t-j)o!-lbsd1Y@vmwvDiXK6$sa$qU0z<=JJh8`L_{nTbLsv`Oin&t zPx)(N1Av?ka8%vg*l2#ezkmNUOXV%`nrreFLEO}{>cGj%o8WmiX)07a>e1sS7`?2V zA=;yq${%%nc(@2AF<$SwPpon613b7+jm@lJ(VMBITVCf1wHDyr>s@x2zSZvuE0?M} zD&&782jSuz#8;to$D&Nf7kAh5_YP8_xU0y>$bz2~yJTc!?9b;sxsubQ&V;0|Ud%Or2w$&FoKmi|WtAX1qFOx{b9pa~=^@lUAi4f}u;FNuzUL9R<1NfRpw3 z`g~u`#pO(9yXPIVhzNN_MFqmwto5Z&HzDcf0|%Vj&_Ge3oK7H|puE@-PPj2!FEHnO z?=5<<5C{*ILf@p}eV`bI#*_M2&|w7~mr67Y*zRNCysey%z2vAe@}n!IzxzfHd%;w zV`HNjBhrW&@4?xbOSqms?4`D#st9k+4{+b2dB%M`9U$9Kg?xCXxVPQKfkAdVEn;5g8dTcoKPxK<+Cy;Kfio)yIQ+rG zhcG%il%}R8c&IEQH5~dT%8%p)LM~X3aDar5x(y8tgRsI7-;fvRW`%qKe4pV`M|cXK zB{9JN{s#wk2%E3nZ@T96h?=wtnY3DK9^XENP-xGTvrq5wV3jTkd9*n;QdnT2S%k`t z5JweqP!v*<)oE$hDp0@;fj0=kg`;BzBSXsH_YnN~%!h@BN7a!VBmN;q{0iN1?T`84 zXOQR^PF5QKjozQG!6S?M@@|;{Oi6yau(Y%@7AB?o?j4S;t!;KYeo!}~AMmm)EG!fC zu3Wx5adK3x;5>mWp^3Q6yaW6C{MV|(uhk=y?oPvs z7Y$h=9}2|gUu6F?ixFMxR(p!Ck?I#k#y1s0nN%HpCr`XYnI10xM5D_sAs%I9%lXdw z!0dCghBL3nJA_du1qCJkDvFxCeVCgl5f-U6e|&CRgrXkunsu!-+$1aSM(SPNzM zjZ=A+Z^e|?FUFYyFB4@UEl2bH3t#Zg45ufDqOlU7LoDuA$h81)Ai!B!(-mu9rbLWw z(b6m+Ro-MYV}{NAcP`P%Wq2;WCxW7~@P+qb|$!{rzWp(3{EWsL)ZNwB53W^F5_lP(FM6d;)6SXb8Oab z$D@>2y4=-vn#es%#E^4jyEJNIeSGKTM6b+|ik?_vzouLmLm4XxG4FpBvI*%Y+%HZLkvK+JPLk>D^Z0rbFuybp8F>2p=viu=Vfz z>EpwoYq@^X?C?DG9%_k%QmL>S+0%|m3SzeGZew~m`lyV8_KVXwpBH)mppF; zquYliG9+a`Az7~F>3f~)`{&XJxe1dYGlCg067Yl_Sng~V^Grk6ih~pwyA}jFd~eKb z819tWf=i!MwphmLnRiSYihYet;;)l{hh66&oYB;$8u$mUeafKQ{^;Q3oC>?+Yv0W7 zhU(CRy&uQcM}l1UE~xQybHNhI#5Fy)`0yDLfNP;c&l*zceJQ$O{E|4OS|LS^@XO`( z7nX;I-xL$ZM&6w+tHR9Szg7n*z%1|~0PEW*xQg->k<%}A^)GGXt{VRR#(oq3E*x)v z%QyIZa_l7me1_;0P*!1npBa5219UTJw>e(+j`!$yn$?3JOnrpI1K$eUl@=Z;24`Ww zlBLAJAeP`JCm7w4;)}}Rb0P6E7iapM(QE34%Q^TYjY-*m7tmp)(*Ldt_)HwV_joT* z`xUKScNX(q?QGwoe;Mv_DoR~pRi*OyD>NF|ibEk9SPmVXest=Rl*#GM34eA<{tVWx zz2nu|B0WLKXB4o}VhA=Zk8q2iq_t|?H862CEA|5tWVs%Vt}zc4?Fk$A4{d0hS7LG< z2|TPI2c{24-wZ`v) zrEz?F=9Lv9ad#`>j(+-5-wp0JJOhV^t^eDr8R^8q4?&V#c^$kq0tIDNONsM+SzT7` zO`Au0E!*CB<@rf;RZ^IIk;|l4xJnnw_+ak4; ziZRFy7h#N0f#L5VS(#cP$zK@SZPsZB_>yAl?t9w{pJiXYAOgJ^rgo~3(!2~QxG>LuUvJOA=9O=V|FPZcV!uCmY$>$;^1{p%Rl)L4a>I|3 zuE=_Eala_0h;PE`@UZfK{H8$ryG~uZLw^f|$Hj|zE;$b6y1QtK#C$_us=R(TKjuWr z&Yp35Nv~kJ^^H#l9tQdEHhT`DJ3#W)?zL(@$!7B{nR?&Z+;oH1u3^<)_mK<|J=#7` z^#=v=hOE?Wtvg;hLKz*Fj`H{48u8@3fZV)!<%D(m^QNa%Rp(tOH#LKxotMGpxIo53 zOIyW@9~m5-Kc(Djt@YoeiZa6TjQ(-5Hiqg7^d|YzKPGRTaSq$MWaw12j6#5i(oe!o z?N8tp*<7)ila+v@=g@!n*ON_cYzL+TY zjYRVlzpRI^`KC2XCK6mGkMF7u*_Br`syB@Y|M#UPQywq(G_D=vil6G<*&~UbEc@MPsjcrmp-T|ae$yWpNHRXWaW%g1V09z;e$kyVj@dG1z^1GbaO`{ZS|6bz(J%L?!OAbE!P5?pc1f?y3o zcFm11<|QtX*q?%~=+HOisqV=&w6!Bd_G(cq$4dM&=ZXF}Fa|+M9H(2D8+eKZ zx}0!8N_|PyTMRSf?S1pdqo7udcSvj*B=LU&5d8ZlZV&BfGl+&Xpe3 za-sNRwP(q050Nh6x30SCd2wt1-3#r!D81QIdD<`H?^dR98T$oYIGzw)9bUb={c*4!y{m!i<(FBVwDs7@2z z`utyPh>-<&N&vkUofJ#e+vn$-C+$H9Q53$ejRsgDrR?Lq&us;AL;bF3lTd7gn2H|S zLk?2d%4Yxwfp^{uv9DGbu%>4jAxAN)CY|Mr{U`yS0z{OO)qK;t4JbhRudhT(A3cZ7 zp&y#h=KN%fd$bkhd{2fwHaAi2-t-;yg|ArP`WJc_%gEDpJA4NY(I#AktHF|O!EKq3 zAu+ho7C8W+$t}?IEkElrP{jIeN?x=Q6P=EP1`qr*-n|k_fMC@ z#qxU|{!Es&7@!TNw+5tP(w!)M6u_nUZOOr0RxNn?D{(X>PR&L#vFK2z>TfjVrtyT+ zPtqL5c+7io?GOzgi9j4C^5s=QTsqx*^2Q`<|I+7%JySwncIC(=>FwVfS5wLz(3-?! zQQ|vYWUO5oRtR|bIm!Ij3+N3L`c?1TY=ZGk$gQtseg&H$Y(eK?Ra9`F{$O`6KD?>>w2FEY|2q6|Ht^C&T!E#77L_0l z9ia9im6ni>Ybj2mT+fu6;X1B<`4F8Uw>`&gl|_KbYON*dZOEaWncMlX2sEcpD!5z1 zW2=eHc#i!n%ys$qyNa;Z)GCkm_r~c8-<&{LJ()Aupj_;wF0Pu|j+b6H&=oP9OnC2+0MFnXUeXxhf=v_S-NLuZOlw z36=b;qW&2?U||3!`xnEL?Y^kSybc}(iAXyW)Vz}~<>IVw?fJX>hayjKNJ+Q*nf&~9 z9fGb|@i!PkXZsH8oq+*kE`JOdeA-~&KS#qQ)OYXsB=dqVC6OTfElZqocfu2%HSBP6 zo;6kK{MSOn6=CKTZxr&>gXK$)4RJn62YtGw`Pq_M6xWhiYU=3u#hxl>#^vTC zU!4v}&FM+2is{$EfpbQ}r{(1oCyZ=2qfsKPw+s1@#n@^|`D(tseCykG07$tj5?1s|CFbf2R7o zu#opq2Y~`+s4UmhLd2V=G6Sh`*O$NeEP8Q$mhM=HzX~SowcSBV{Bw9V!8Al-%x4mG z$$wVp&c+~kb0cUr`lKMQ)HRIY`E&e$-KSc*mZ*@C&!x#iRo3rnf8}}>l0fvgjdJm~ zwrAQm@?(X)C2Td>*Ki`7g}bJNX2h8>J>o};&iBWcgD32A&<*3lR3JDedaM${XHdKCxu~w_Q*#ybENki#5d@NNuU>wA?`Ecm9KbcvW7rp)Vj@+F-QJ={7g{Xz zNe>5dQP5);7pu=iRSY*7irdU`?s>;#N)eOxVBp7@dzB3)=w@$_Ed}q9{E6`N zG8~WgCa~TBt`2kiMMc`LVt7##?z1`TW)AHaNy;j+I+8{?ot3*)TP`N|VJ63fYEO7< zwn%XIu{?QrAgdrJ;5X%>&w)({=Sr({#cV+xM}hh zy7Uc!>uW{HE!SOL7X)zyyvj)mFuzt9AIf)(?t3hPP3W?c@_259BL-wC6J^YR#z!DY z)_D+1x)a=?Uj|0GyL0~|W4YNxNPjdMyMdRZPKru9EM1O_KJ-$5mBTwNy21q)c&-%! z{8yj6YJY)@e1V}^L;&(h`-Tl(@)EtJi1Sif98DY zp@y)hW<-KSdNJ3EVogk2CvZ5}L%tImmG6`GMQ;T%#jl~oaEy101!sT8iR^6=r}W#~ zW@d>U(Sml{Zmh%ULpa2*OyNU<83)K9c(~OgR=92DJ7^K!=Uj#Ah%M?yM+_pU@hWin za#S$wbq|x@tW@LSr5MT}+e~+nYaHekzi^yhu(jz6?S|ddz-ZkTD0Tn#L#uFrkM`yD z3XB}W(Ot1W1f(xt$iRtHDI=OhP$A5tWeS?(s+pJTsh~a{* z`hlNOrO&;Y#7X!`XZ>^^3WSP$exlytI?GHa`B9|5Qizo?0lq8)>W_QEjgC3Hg)_$6~_VIeiSAs_i6MHu|=e@8)us2`l^XB;} zDHL##h*;%dfTMm974d48FTThBZTZ*DEz)R|zMcEvr99VXNc1joP>t>OuoVfq!>LsX zw9m5M2s?PQ7lO9H*KizjLmwvi3TI13!a4wbx zj@a5%!u4&16i!SYn5}4v6-WTe#d#;52Ey4$8u~r`TCS5$Ts08A^dlFneM%@{{42|K(~c1Fj*$3!IikQS+Vs@Cuu3$qo1nI|*^5N=i;sDwE8BX2F{ zV+UA>K`cS3j7uia;tN!AKhuKeI$eEVYz~lqb zB@$mBnO2s6_eenxn9IjFgs6|LsG$OyqT8_YsaMjUlNQpDz?5$%(%_co=@5rZ8CgT`8-*$Y%ioEFhs$|ROZ25CE!Z-;l|{ki*z zyZck!d8e}@rg&WZk~sb0oJCC$TL|2XjId=mcoc-jMmldmVJ-WNiwyN1bT(1^xxb;_ zP~wNd8L0xmb_%nM^|cyWmb4dq43B$l&@nbbP_ASV^H(8Unw|sm0Nq)gSWT8K(nNtm zCtQK?nS$c7?s$=m#~(LaytQv)58^xB&(k;BDYSuAOo?}OJHW)-N&cN*NE}EyW5JWa>!%nvJX?rj`5wepx0NBuQ(q9a; z%z1sc+>1>L4WhZB!xb}_bT*e})U-EmE^gx%Z@!5J>0kkWu^D8sZS`yT(?M?qTpa09 zc#4U3Ab$T)?8R%jILrEMTS1Q?&vrSM<@JkC*6d%E)E~IBd`{1Nsfz^yT?LYb!kv67 zqKcB_+*ON3d?v#mO}5*}Nuzr%N8mKV54fI_xrBo_SsaY4^dHoY?ikPd*be3=J#h7? ze|7rWY=u7;OFOrx8sT?5sTOFuF>Isu#9G?Uy; z{koT-)>-lqQ7nV98G5Z_Wu?oGxSl_2?rF~S1&gs^!L0M#6&vMva~0P8HB(t&4*gz; z2L!_&R&7GwB$5*GTnr9fT-U7S@s*}{1hNR+D13gwrK2rN@7H+xOmsvM2kil{i)}>= z#&fHk+hTsLbm9PB{auPa;?Wkvs^L&chf#o;I)d5Xx?%(Vk*0YlD1SH}@J4l_PlcW@ z{E|0??vzS`K&o{*i}AdZwqT|Iy#XSp8{nG4dr`n7LiB++g0$pQe8B8_FVB;TiXd#u zbu%PVb3U*a_^Q=CnE7w8KXnW`JC4VirEwL@?8{U8)6u050-F9i^q103e~Bb;Kd2En z>Zz2qS&;?u9fAzLvJp5nUf=O*zDO_iwGO_K{H&AI-G}4__&aX>7Kod>JB*nbU0}uz z1ytGu;YPT{a-A6)U2IPuG`B}Nx`i-3SSahvwKJMWN1~$(Lbq0|q47E|gCVS|O@(7Q z#*yR`{l#szXd3GPg1sy9<25G&a+fPmIfJoC4Dau5Cn}AxK!qBkVhSX%mBz`eLkd7N zz*$&{ziXp5B1NSoYl8(rNJ)!37X*FpuDu@<)t=_w{u+Lqn(lc%Kq@N1fMGj7R?z7l z7^L&dDAZ5DdTQn5cBdm0xklGBPuXQPs=!Qtlgsn-Nrt(TlT_D7ny; z{FXc_7_yw)OlKKDNK@2Bq!~~@0h3c=VTz#;z(8=_dSGrcR3k|7r1^p2O_vY@ZeQuN z;R?XorE!*Y&1CcN(kp&GoOo~m9~~WqKuXm;2OU94F8Fufs9S~xDQCw@GUjsmG;Q`D zFSxESZP@vRw`49c*q_Je!sJep8ylqvJtcwSft`!f7-RmpG@XVSmQgy9%&0SS86Or| zDBuv;%(h)Ly-g(=8c#(t(qi2vuSZf#+*YRPn8#9q8oEbCFw4lJ!=d4+^iTh-jZk7f zprPnC07Wu|B_$o8_LS3O4%8S|SWQ-%bf51|qeX>$uqQADFgEk&3miZYnex~upLLzS zYcR{FGAGe~YH>K$gn5GZT7S~H6%=0xw{R7CV1IZ+E4?hb(`!%Rqf*?Oxo&yb)d6MB zrxIB%mZ`3;CVlcA{cCaY;_fa7Q1P=KKwE$$il`XfnQJ7+$0y13ntz3-4|IGd;dHqM zKOp;icnA{^62gc*U3QCJR0DFORYbdADmQlF5F`A?p3O4!&5o{Z+sS9M6-?`jJ53nX z^*jc)%0c(~F)BI%$^x17BIZ;*C4V|=SDS52s~k(GUWAOJyebNkaZ#TqWDP8Dy)&S!HJS*=_c8%k=Lyz3?U@6aPseNXN zlc=N4EKT1B9&Fm81)Iw@AZvc8N7;I@*Lrc#cNY*TUHjXzjmQxC88EvP-T&%d`z7up zK@lV!Kfn4$tUQy+kBZnA6t>K{^{9q(<)o4ORDYO!gPejwBsSQ0A1vV`T=3l;Ou5_Q zZ}d-pAC42$t!=B==h9(Vs>8gGmg+DTz=|LK6_{U0*7NZPgyx5c2qcKOxVS2-_8mPS zk`#%F_ia=Vk^1KDz>Yc3kQ+M?s83jwWQUT509~jIJ85A6;x2=oGa_8vCRn8u2KWje9fIl{H0kL}f zL}7zFOcJ?q<-&QeBrUl`zN!(JS`e9i+>^?UE|CfxoTCuCH|?iX}duO6SBJ1a){0_A=WR&|87-Zb#jO92xO|+D*OUQ*QyPe>)Ji zWZX;ZI*-E<)kxrOCyyt(X;YN@Gh=cas_5p7HEm(`Y_9rS^(0(oDxzpWv0b~OcfvVq zizlrAvGuvYSJ;0(nq&z`dA92tVFRKrfD24Es&Txq14`Z3?Q$zwJcyqHW2;!ZkvTbR zsS=PjaE4qm(~fMt1Zu!1E`I-AGo)``p@{9v1)ao$T2HPxs%+nXq^bK@E}8?Z|^CoQTS{47LObdA_R z0o$cy+|&o@l>@$a?oGLw6$#L9vAoR#csC!AeTbVDYLTsmJjc2dd>iyxm>j%#4SK{W z)r5=aX$3yiqv|@nufdvJ4T;8#cY**dJuhRjYw5Q6soj3L=0za|c`+ANrrW1tbbCq% z^JP5lE#A_SdS_vLU|2Hd4P?xWBD^h$VduXuY%k4 zE6csw%xWA#4v9YSON8EJNPJ@%20JB=c_Cd}M)34nPUr4DTn7qrGIe2(vSKB5|6Evl zYgfEX?Ru3|O8ptlRtX1}&1?Bi$fsOC-LefB1KL3niob!e%g~ZtrDRG(PJa?AF>!BZ#)nk~{pAyE&>f_QI~+z#L|z zo%i7J4WjAzZ&y(x6|tp3?qTt%qsYroglBr^;?fKWh{YGDZZM#+Lxt%<;e;ziclK{H z8SwZtOcV#U$X|nxd1$)uYH-7lyX_HybZ*k4sdGEu5LG>?or5I~;s?^K?3}RxCSSpD zR~tejGq|LjIHdy);(L>QB?3826}Y)&0cd=LKuzMRQD(k;pu$J`iiPIMXBxahnKynR zTtb77S@I0M9L^zD&pBGt19O6aU# zChfQVn7ztp<8D~;Xd@M{rLFu>2k%&=E!Dz~G+-lgo8LX$EXue`=05o!X+6!j+I-N| zXvFxKo2!ML zxi;|32nmwSVHQCKYm|NR@i!UxKt9Y3q3MttwBn8KKdv!S6^)*eO)|I-!!(_ zv7+x)!9@;;4Shgas(0E0d^9pPscLD0zm{tiQ=l+~#NhV;LW3W1F!cRBJ4L)7B#Htd z*lY;{mGeR%dB*`|2+Nt7X9DQUpv)jU>vxd%CnCr~f@0}}6S3!0Rseq3zno#BEKHY2)9$?m-|`%bsA8CiQ6*f=o$_Hfrba8P2ZOo}=)HrlYVQl6_wCV4>%Xu#us%Yqx& z#4B4A`^`8~)jW5sqE7Ef?izf(-D^7o`l7S7MD81<+1sYvQ2;EHOi+KgD)R$N5&fv` zN4Kn$_d|vtppGOdn$7CAcQ^xWAdPp#`D2(&*vMCCk(z<@ttSr9Ap!jgN?o&_PEy#) zpV}$_^4X1V^H$`oYLt&@a0)DDP!V);enwL~@Lz|GXVzdD*_yQ(#r zVx4poARe{gX!Vy#1e=zrz{jCw>hIdQu>%?&p&z}XVUPty>s-pa(T@4m2myqet(Zru z10stRQPs&OsI4=+BOD&)FW->`{QS=c<`)80A<~D2nOaeuK=I--Et;koU)yoDZ>7Trpm*kSIZzUGEa?1ar3b*}i#t6$EG<)fEk44;;te8mA){TY!;vA>v#=Tb{FDL7(dszvbHQ>$8 z&D>F+wKt%rY1>p-+{&f_gE5g=)J_>_*7UtT`@ulqEm*F&uP7m5=W zeM67+jfDV3Yl0VPGuo7_wEBkB;Cs2--umkaub&Uf=4Y^Ayk3erX>e9q5L@$zHv#7Q zOwhs)gbA5%eH9)qfPeSB8H+hv1d3#Hc}@`^tNgki*nzx#LrGoQLMs@1$D~G6=V;88$(nw!qDFhBPhe%R7rdkH6X+ zp0VcUKYwLrrvQyObuQ$Yw)?3X14!k9?F>C%GOqii59kucx1x`Ua&AV$zWEYHk9^g- zNl1Tfu+lt-AR2A=J9?jfw!5`NK_#M`52v2x!`E~5T3>|LRU5v zCYrvimp@ohstc;^t}`inGkdxH{`Ng%B!BRvi&D(4wI5$E5u{{L>4tOGSgMRH7P;`{DA8l~FNdTDi5h|6qSbiQ*HFjpIJ`hmg z0m=hDeimL)CymoEcc6Dkj9Ps)#$`1lwpx5EB$$$K=|Zhljh)?uS?&@|t>kvvl>tO_ z^s`srHF-0Qwdb^Js=o4S+6|+5#uh(aTCRV6@lh+!kw6q_=DRr|FBwh<9yKn+?f&+> z!sIWR)BYSK=!_D-xzQKN-E+{KahB>XGi2LkS7>V9PK!gDaw6gQO zr&dy_UX)s6wfLiWLC_0!j*^_~_;hsYk0bfC)op z&Q{?g1A&?b9pM42X>4_Fl+~45SZjAWki#ov5Y_O>v(`MJxwn*hBAAx1UF3x`>KS}+ znhUh5BPGr{o2+((HKIk+jbf(0FuW#31>*Ii_XKj!i&XU<0@2N&NkQ5o@$`B6vMcYa z;(*%cp0gsNKbA8znShH;nx8-cWyyD^4DIsk3~tCNiHX5`vy@m+pPNHDP$x@-DDFkn z`GC@F-Gz;r{adJ+Vubcmyh%Rg||r2;3>Qi?wUrqxNxQf46x2-Qv@5 z$9Dg@$#VXc&_@nkG(bVJheqIX)O^>*)GO%KTOF$Z0zGfBrx>IB-F`WwB`Uzsv+6sq zLZZHG^)f2=msdVU@M!cs)>eUiUgMKbDqGR3>IS`^2nx0X8&*ymT@+H-*?spaH+wYg z9m`ybc(%;*4C7uOB^NxU9eBZcVPWjB`alI@{N!<@Z1?-?=DRB_Q0@qZu52h|Hy&iw7xP||r;(2TAkJePL;fFLNWYFc%%|`g(i`Q8D1Eeb&qe8Zw zZ|PZ&G!VtC-kf zF6PSxnlr)N|eq0J2>9$gG|4ZsdJ(Z zEZuoXAT=p#OCMamBqLHP{Z}ziMEd2?zx5u>Din`88ewu1BtF zB=X?(kI7^DJq`xh2mzC`t}2Q24j?p4e9{d$1ky_iMF0Q;K+V-1rM4dH16bG}Aot+x zyL+vttk}c}V=0F>D_vwND)&yv5|rjbMJRqtTf$8f9zekc1-!5sjc@=&fNG6??s!AJ zmAgVH10nrH8Wv|Z+ee(|&5f;U`D0PXoI_Fl?1N<~fdR(dum|YGJy;0DTMDK2X#uTx zP%0|WNn2}A$Efs~-p*-{u6ZcTwI&?}^E*_1@RY~W=PSiYK!&0I5xv7nLhniFQ)+J>V$kYAr~TT#3Xi-gaLBPb+70krfx!6@0mSJFWj}B@)3@-PJK$`83!}OtiQ5yfBvJcg3jy0Ig z)&a~bQc)OEuRS10cPP+ugJrDKaWeld{iJBnTg^bC^LFzwq~p12TUeHg04rR@8>BEjW|W{d}-g<&MI`to-6QT?E#8|4Ld$ z2GM3_>v99yp9yHl&a0m`QkbMtf)cHi!EP~PpBWKaVzf#pHzys#R6MbgbOAqV3ky85 zx(BoE4TEBT>L;z$$D#uiUPqkbIy#|(S^p~Ig#qGL%uM_{MOK`Ub>{d)V4MEwD~(rZsj$N<#WQ|iTIb%-Gh`G>&U8qW#0h+P($RAFbq``v%57dbt4;g z(_z*9a-XobrsY`;V~6|lHfmMZ>OCDwAK}io+>Xm@hf1LnVb`0F7Xvd+uN?(AypbWp z9>FkiRTPo#XC2&79&AuRr0|K9tS(693Zg$a!KwK~{4nP=KH%`)-j0tvU3m-uu>hK5 z#nVRY;=K(O3|}T1dE|}t_0XIgTF?>GIzC?08I-s9I;fs#=+Ube4--UEK}bt@#p9(G zEg_q6)*TEC&YcaqQrZI4c&XkiVawZrO2@|bkf`-2Vq((>OS>PnUnZ+*QPEHB6MD?# zG082mWz5wMG+ys#i_{&snwr5OA&d{cZ)s^AKIeR+YTVY_obEqq(oJ3Pfx9}{Gm^LN z=`(^B(4+aRc=Skbm^$&S3RvaOPEeoz%6P%JmJ*~6V;UE73aO*sA-{UaorjPJueC^H;{2QA=ZepPha@$J^HLD?q3 zwX|<~Yih_n9jl>tz$ZQ+MlcnP=v5#oG`Bww=u+#AZdBpAX_nVR92TwTI714b Kq zX~8Ka_r%@C+TlN;4RNb!P$PzQc>kdyWpF}Y!9;IDUkN7BZ2{CTtVv&@bZg6kU9%hl zx=czX9|Mcw6Dgb8^BIP*<4 z+|76QKntquwbU;cUSmueO|cg&sGK}~QV}-qoV^Kk45B9LWbB{>g&UqvfAi#EC2rZP z1u*&Pc^y9dVKo^5nrz7q4-X-Jfblc}eW+f~NgbSNt69CoZ6Owa`D-4VkVK>q6FwSh z0=b?c%E;d@1iT|s*b&bqpCwKX8fk9M1Zt{oPIN9BihO}Yi^=9*cx#Y{rjQdCsLq0- zc07=wfqtNtJ4MQ-23Hyee@=yi2M3^$uonDE#9)C6b%{Dl?9Nq4Ckwt$bWRJtm%Tnw+ie2+v6|bAAq`yTlOiqLu$%MuL@*(t$A|_X*+|ks zSj?=h_*9(#4klej+Qev)la%S{Y^zSgL9aQWEjrfEu>p1G5KM0f_+g6n#xPr-dLx?x zBSE3Ep^kG3e)=#I?d7FM@2hV}XH_HWnC?0bS!&uu_&>~xSDVZ`?YA)o~Ki4)BqR*y5hj(S`?cM{n&mgYS7J3&7^5(KgO zcQ?l>C0f;(WsPTA^?v5I)ZgrkKr&H|L%aVMS#JT9)f%;bKZJC*(k0TMfTVN?sDPAoC?!aDN+T^2iXaFI zNOw1gs5DB6v~)`&{MSD3`~SXg=9_WOoHJ*T{p@G&`@Yv&*Y&&R6`a&9gJB$=JcQ?; zL3qj{r4`L*;`Q5@+wIUuTfOiriL~q1!X&SkfX^plv#K)&4|3*a}rc`xs1&Xcw6C2r=g*vciFmN zYOX^MT|iL!w0F4V3+QW@moZhZ3=isYgDfq# zivsGg-~egx0|q4<4rjD1qXYOtQAUJbw9=0%6@( zzg&^h&qLRTM@IMqwP=r7o3VOjT@=n5wirj^?C|wC6eKYHchG`$i(SO8H(Ul>tPf)| z$gGAC@6AM@aCWgyy)hzRVkBTV@o4pqOeH*gB5P7j$X=~Gs=tAwt(JAGB442VOG#DG z65Y{5>*}0-J7=F?55r=mqCF4p5ErCTaije`8){3MVlFJInGlS_xT*Ry;msQ^83m&1 z>b`|NA^4c7WF&(P4pAlDVN05P)rkkU1|&n^`P`XVKk!jdQhNV%tR#5*(fLrn`r^6+ zbftIpik@%YT+Mj$C^s*URZy_}(e&pUkCrMbMutg3)Odv#rp38&;f||vO&B+M6@8{Z z)kc#yP;OQiyILy}p-9%v@~u@+VdMMv zb8>6tsPp+GS|sr>GYEd~1$NV5so?C%X=%MQa~6)7^}g9Y^FcqQ+t9H&460y;`uh4Z z{kPJO*4_GQbM5fa(9lStyZe03RMphd5AZ}1zAeF@zPRXa3)#SW{6cjvPeUx!EU1BY zbhsxEcE#sUJ}qjgs}rF;T_#~%Y>-I9`B&*l8C)f=fLXWW)Pr4f+H;|HHIDuSug4%ZXUr2~o7$YbIVZpTfG*ZP=_ zA1LOdU$NNbN8LzNSrOKZhlf_Oo}Phz>HQ^5)im_gH)$;DllWg7u{F+ z*i4If@|&>@T(oK6KVe`Xgdipu@CBzy`HBF8VW?1#A2GWEJVT{X>hLAIniE1@VQ0T0 zA5PG|_Mn}Ij`r1oXkan_z7(vtW znMv(-Ic}6jFP-#dC=(%Gp?aLL%v(H32@iBll`dE_%iK6W)}B>@j=xxik@MLq<8w#i zCHS)Y&Hi5l%**fn;GEGd?x#IZ19PEEhEuN{13IlxqTWpko%EeWVve$PBQdg& zDUT%|182g13LVzkj;?Low|TeT!)zoDqrXWq@xhwvUw6@w-0P+ZsZG5MZCv9Uu@66| z-hc3HL==~~!`saWJwVJP5|p9inY!VE)1ll~7FOXn!J!`OG=i8EaU2FwtG@;Er!dk9~!sVNX-z8NKax7FJ*EpHi0)Kd)4#=Cf` z*$<`V{oC5_D=aJ{Da;B(6Yoz77Vbin3D zS_1E@;&|s@-F%a9FOmaphV$~Q4a{qzjxO%R4;f<=P-`&3lYMzI5O`c_-TyY~%NG?m z&0yo=;-=lnz;fdYH>dFv_e9m?C7WwoWDU+$;ex=U-ulM%qujL}hXPQTfrTMT`a!BF zeQD*Srh%mrD7#@KSKdMdJ?6jhhYQPCEw!6;cc#)~_a>=ybx}|t?wTG&?#Pz(N2(OR z-0ppPJY&l1>XWohIX89q0I`sNXJm*TIDCw_Oo*&j1#a|T?olU-z!}9W8?YqigITh2 z5ks5;1Pdb5%f*{fEP7TW1uT+h`3>2&UUMF+`ommto@m5uG}B6dZPyDW1a!l_kBL0t2_!FGOitQZTJzi2CNm6dx?=!`Mv zbwp;)-PzF;ds$I>xI8OOJ0Q;PSS$#F(m(Mr@}R#rb5yKk>4A11Ok1XS0_MdDtY}@_ zm5>99d0CrHO}ot#^I8d?g>Dusi}2@K*Ta?go-1vQqjjq>KQC3q3#@+o=h@3bDiG{~ znMFUah@`N_diI~hDK7oXo@~srq*d@Q*P(>}#7DYDFA}3t)Kx+a_&&Q&=O2|8fCL|2 zh!@Z<5~GY$r1lnPZIwHOCWJskA*(r5*!jX!Z30NsB7o~Ej|f%R5BKx?G`yPJY&7bf z{0xB2Kn7CV&>%T866;U>Au@%&t;+eq0(=t3Pah9{qQCra7WA_H8!BGYq`EXCu$48V$T<;sXVE69bq2U?Is)#~VA&5VkK z-MGz#PG15$DJ-nrLLS;X)mA;NsyURP48P93KK}Z{*U>$UZ625w$wP{GGvt%RVExF5Ka9p-{X6eV7g8w0PbO+Z=EB`he))im1;td%jF9Ze( z%NfvoI?(9_^QCa3G&q|ELs10xaN1y~QNHXa79gz|D*b>m2aF8QuCNDfZ8e6}d(EXj zEUTacQ$or1)fZ8{%q!HJ(M+Xr z(~>+}+cCVaKO21271wTo)55Unfu{eqd)>QXPC)|4J$HHfyP$X_Kd&wL_z{czy1EP~ zr4Z|5<8}+}+}u|AI|swlC4Dr!!Zm>wkPYMY^#lFwyGbSET#Krt^aqJ|OzuiobgrL! zf2s?}{}}||_lY<;Pmv|#LLhXzJqcWj;tn)bPZs&d4dZNzCpp{K88>@o9FGLHMKY*C zzbMe~ltjssu%p#+<9WvF(($HOwjsxS=2m=?qSt9&5-O-yN)9&mo57Q2rk3I6a188F zV^*wcZJ5{u@Q1K4<=wk?&1guGCg;k!#`{uam1GAITTzL;x&OAgrVc$%(X?|>1Ch*= zeQZU`_$MQa0v)C1Pa4Qfo>d6+kAQ}}liIgZkeeOmM;cel;#j=Uj{%thbUt)b{{u>d zx774^Sd9kghFi@?CV=k3(Bk|jhtcMVyqDdXYZ2}PbnT~S-ouEtZ)6* zaHwKYww_&{h3Om2W-JbaRJz7mh4$T)n$FK&TaBr96Tp*Ba{Kkz_^n^q>D2KGxozF? zOJstdJ&8Yqb}P7BW>W7_?A3u$jzCZ1sL#;R3I1MA8TG&Y(bg5!2aOr>-o;l>bgnCF z>948~oLm;F=NGsVNa4F=a-rZglV*pmN2uxJ2R1BCusM$V z)KGZD5YU}$&d_YX#CBH*@tsIucj3@~Gz0yA z&we2a_3yp^mDmr(AV2F2k5Ha9vL!@so(%lf8eKjm2K{DG70V>l2G5ipDg;n&oh~wc zy7!Z+be()I&)4N7XB8YTG=4|Uj4Jc7#sbk0 zTZH$*Nx`(S&+}xJE~YPr&zT&rfLy-XE3Tz~?Jb?|Ye00!we*)u#6r6pmK!ch;rmqD zw;MCfgUt99qkGMBb$`r{;tdOeCBLH|4OBEZ^e>d1qcF>4H8l~3b4*|QZFwH51;8@) ztd8UjHT!xN>6dp{)`qL`7laLU$g!qosU@7T5&v&*wv(ZB*sPtu2QMMV)!sJcVe6-# z_8^nsqaz>SSK1x>0uMTzh~54PI8?Q=wyP2SXfxUxKjitM_FTvFaJy_-_RA8?Qd*=| zy!`Ln$u2Z3YCF(XnWJY>tW8Lnxdjz2jO7yZT=U1-SM;bvuMB4%Rs7lE~-=_z;j(L}%22X3+KTjGOl{xX+trgu1x25N{ zbLEObEEKQ@Ein47I`&1_!EOfc{f%@2;xHd>WD5nYiN?3|%QsLSkM4>1XzRr>m;%7)@o1z6hURDBt3o&Joz*ge8U)M{Jwtk-jSA{a=>(5f zh4$FV7prAFHI_P$-Bi<4x<^cx^v_C+MsJr2k?VJMuAwpW;VFsq4KQ>7BJ|C=L)#Uj(hIkZSvq<$*2)_%wVL`XePdFmYQXRL-G}q!X`e=iGhhVxB zr1j@MO(gLTR$izStFAcx%7i`TYcjX8wDO6dcVqG*y7h0|vd)}>tgy>h!gD8wl75_|ADV;5;djiv&T3jvsKDwNQ=RqF z6yZmj>nb~Mt~d-Mq8SFkFLwle+* zEOu?W{o~PQ+(~5e^$l6Y%60z$?q|PU_21p75z-rfSUiy&_3yR#UxK4KnZARirqa++mj9w*r2C;gxX1+~sDB3I2ASZodAo)^xUgXrgN;eQlAFB20N>=@ zM6~pFwEqO6-rAtv&>Gy~Y+T(b2k{MKv=Y;(vMf6j&U4mBVtNMnsFka-XN5Ia!n9*T zneIhX(p*#Gc(XM=vcsR(5wvH359`8P9vg4x7YbcW?*jx?-I6c`KeZ^l`WVJ}W6MtN zh-716)cmO(CwmaR%%EP10*kDhn~?tDyrGVFLymXc+)SN}d-_27x{B%6x6j1NcmkEC zqFdLG;N~yuUBmc~1BKfONcdrZ*O{{ZtujF7fXO zD7$<@xn0c7%-pAd!64;Jxob(nU}!js1vgYF**%G~XN(kKQ`kel6F_WwuG&*$4>f$> zr7Id<6pk^7q@=#rPB;*{61#HI!9U#N)-a*->B3ErFJzE?OVs0$EzM6y)$61%kdFeP z+dB&JJ3@t|1v+wkt48j`KvYt}8J_jC<@Lzm?u2ojT*Tr}D8mrsC`d&ZfRPAPt8jx& zBb|#ciLB^~f3E#9NBeRzd<`mPG}IRD>aXIucBs17-@KM^~SOTaDd}$$29y??0S>x>z>%RBzLmc7h#Y zew5$N2_|dvxDNG8C*f@zKv7t1(#4GhuC0HU3c_AXYHf^AV7*hezilBG$<3Yb@)xCa ztc5;4;mw^36Rf#H2B9aGn>UI+xlR`3XSdjbI0*~?n`3dU^uw_YAJgPf+jb-EB!fIz z6PNbzl!(t~3nNmG##4v<1PN^op}6C3{`+!}xvuE%%WE`i_%fblos82bbz{;@l z{R!a=wf1W>P$QO9rI_CP{VEbo&i|EPuuVn9%GEz145W8(_BC0?mA8bB25rjCHv&Dg zKx^d0kNYRC)op{YIgg2YAf8kvk<#)4vKUW!@*#oDw*xi9xqW%K0Ta&FasPA(&RB1-t*w!547M+DW+ zz}b^`26Z)z%8??b`&9hZ&m&dp(QyMx)0rElh)Q(m7uOr?@i=%0Q+W-;fhbCY0A2C< zn}T3vBAS?(Krpx_e!Gg@YF+6fph|)11r(pzb(5j+ALL2$2_*S)c6K_240)cR{HR&C zY=)wY_0fk}Mz8;WjVC{gG+-;6c+Fj5mM0&To=8qRnqcm_@~M2YeCR)pB_`A=KB}lF z8Nk8o@`mX0%Evn`Cx6qcn3Jz+y@po+o-YX(E`rFMHPX%buPJ*~A(4?dFcU&Uk&%&= z!9fDm2K+sy)Nf$~_cXvCCV27bzVSsE$#6MOQO1m%=8~*oBxPjsrrOu^PyX1zNb6sq74Pv`BMd+ zPu$#X&cBxUndsr%v?B-b+|RS^Az?%zfZ@*wXOLO@$6BJmnmSu>*EsRbo5{6*1+i4L z_o>%34Xr!Vp2=>~Wm~&MVG00#5SZ==33tO|nfbv3o-3A?n=}WXJ-&QkDKZr$_>K4G z`#qfcCiok}wEbS+!gY4I`T^_vsS_i*(9QGx^CzE_lM12kr~{Rj*Nc*B6^G6CFv}MV@^`)ETx26Iu8ks z@!wrr>N}WDCwoi(A$RjKeV|r1Qp%`yu9s|1B$qSzW;BDLvQ69d!>HDUV}q_tx}IC^ zaVq1Fy@%h*Hg|_M8Pl-I&yC*$V6xJxk4&5()uKl1PWQJimeWyr9NX%KQwAB(&6j*M z*L<1GWmrehPTuyY(rUN*GE!ciILnCZI6i`8I7)+<$yo<{bYLw`Wj-cxg3coHbRunC zDc{3T?X_RRzZeYLpIBQjB91O8S6W^ZL>0tolgYpZ^lDGArqts)y+gD?BRZfL^K zN}(7A(BK-ysBh5pRa6x7W9*L~^&mBK%Khy)Fv?AF3&n$~s?O)Y&PM1O3^y?(JT{yf zV$IV$?xKJfj1RDHghUCAI8paC3YawBp&`I(I{B0CaN(u*Nf0gfwzHhddijCyPlaNh zYFQO!+kD%n)zvN7Ws{F(p{`6;dg>dtGz6 zz%WVT;=V!09@Hf)%!h9KkEAT-4`B_rtPd)c=TR`iWwfil21{K1Vm*SMJ@UGF^X7k} z($>r7zkFdo-|E=55>ib!l;O-;?c?b2IhY-r~IA2&QdHIVu{C||c(GsWk9UtOKx(%syg8No9% z%ZHmCto=xBzJxQ>=Yk%s(lJ(Gg&H?{gaKDtr^i2geRMI4=tGrGa{6klQUOm?D%5_x<+(c zn+zK}dzGyuA*)xW`i>%#11A#`3ID9g_=vdGj0$o`QAqJu&~X@RaR7kTUMzm8n)M}y`cGaM$9XA6TsI#A{?B|<0W z68Zo$osTON&sM?qUPc=!>F|o3F51JpRfp_eh2f#0vxifT%2rm_5j7-2 zF8}i7OB-ZML>(V{<$nA)5AW+|NXYnM6)y&SekZ!Id1<)%7;xE!7*sA0f6TzR^ZUoH zur6+W8g<_Fxr}vrK|ap>A7d-)bok0ml*8ZN-Yp4-+6(eRf|VKlM{S8RRoFT@iKSzJ z0T*IUBMHwFtP8J#G(C#Mxud~HE&8gM{J$*->REH(h2&X+X6Nn=&~D&bpVmo#*1JI?kbPm8)CkUD*FXb|L5FB%oWQ|NP}kGL#Jb zI|2tEI7=5W4<7m5yv5h0{JfJthFY8ewq*pWV7F%Qo4fjBe>nfqlG$8ZO>wr;m*mNp z2Ep5Lddy53V{4c@9|K4?>5{F;nhD8+kZh4Qws;;W9XU9B4QipwZua7$(8*-ee!?` zM}ULiK*pobG=p&gm<_(iARIhlvJ8A%eysJLjWY=!!}zuF$!z zrjmfp&~ZLrYh?rsTwu`G5OL}zgM4euvk0>v0Rj7NH)Fq64@c5)K)%q<8ZQ|P!mI2~ za&@qeq4LktNrvq_8gtT`^%bQ2yQ+&OlEbE2209A^h4{~Yz62ZmLMeNW(;1Ti#-Iu8 zaIUVdf)Me63eqZ2xOa~brR<#s+7#U{gP4?C%PJ^*E>1x4RNe0sDP(~|WprXBed*nG z%8e`Plc{hvRZ+p=;-aHXQ&v{CgvAdP1Ti7;zu)i{!Csp6b#Z7@2B+TT)di^@Yh!S8 z&^;!Oc98Y0t{kZxU#wL$i5`2h=taLF-v|ac z`i?o2u~93uOH;qiy@lGzWl;Hrg@~R;!@%I{5tc~W9sdRyP25t)SNw=J7CZRgHs>$o7{eO#Y_bX$76MsdHC9g1grj{kY53YKL3@oc zsM@!poWD{IT%HI5^E#z)5qgW;?SrlTI3qJ~b^sVLm9tK`-S7yaC_0KBRcdH!V>V82 z{T)b3l13cwVUcJs5{ z?>gL^3M1-#LKx-hhc}r%`t`;u*hvLPS~xAxVHoq*qVs`usYZlmKtmYel9v0TIAqe6 zdkY#Lpj-s+!RLe8(1hq5B8quckxZTr09gx)4#wr?{;7>tB)HQeapi{+x1V;^rK2+R8YI2<*dWyi zABAj^BMzg48vsMz-P!=+yey8hvyhC8(a@>omE(Ok+$J9*pJ$Bhf%Iyyt$^BwN*r+6 z&iI5UjGI@~je6xR8<-3VM$`4PK3$_WYMkRWSv@fGx{shqCT(iTnhW-;W z*nK1MbK1%0RS}*LlwqWs+)q8GKxEs#a=Uf`;6vyNe3(VA92rW?5bhOcI{Khcdr z?I(Q?xbVltW)sVe5m)BC1)Ql+HyGnlH=bCiuaje;fJ`f78cZ^L6Ufs>?H?a1{x|!2qjPY4p~28+O-+MLTX{L- zxYh#S@&vc^BP$?@o}4Qxs!(7`A3CmAQ0iN&O|{!m=UkE}3%D@>t`e#TeR^0)ak98( z93v7P*ir4*(i}X_J(@IDoFHK&(k`DYdsECb?ph^b`)?O8+q*Vw9^A7=Lp}5fXNe3C zydn=j2*#Be{9`FX405?QSqw7sTwtjtKmj{qzRJw`=)`41%oGhs1?&stVR-RDWNr6X z!&~OSBu6(;C}-dti)^Pj%#xrK0hBuOk>pPn07Uteb_9j;B!~kbI=hNr7s$_LDkoy@ z_@4%u)6hwHsINE~u*`5Q27A(vSW}1?8I_jv(kLuyu5Fgc2>h5GKI5bgM$S>*~(h;4qhj!W+x%P-OZ~ zf>{i6{&a2zT(&LZCSY*&v(U5o(dT)Enf@CDFd+I^*tNYNUL}lZ=|wC!bzvU`JMRqL z7fM*2Bk^HnRImY^ZeJdKXX_Xc4KIv$t;Gp+iF(a{*ZG^h(wIxUj>(P5TLp)yU+@+q zEh+6!Kl|hXX$ybOk9?XLP;C`F`Zbomb2KR8xVTOLVp@U=af@O2qE&-%pgiYYA@~2} zQUHpgUHEYj9fu8F$skop8~GICVT7sYG1mu`s6(`G72~cgbkYo*kg4Y7uNPD)zjA#y z_g!zd*JC7t5AseBy%ZBDsGvDk+^|(WX3|;laVhbQ+{sC>;*z{IWDinH<#P~}eYyt9A|%uS$QYU4e_nGp zAe9;xRJU_T-UK9YDU6jE1JA=>N6@q|vzPuz|Nn`20F55~Q5)a?Msxt9WZ-oY{Bk@z zsO8==38G4d;NFZ(0;=43Hg6LZ)Tr#Kto2qJC`$yYggh*MlxbsQ15cp-#T-bg*Fisq z2%b5J!fRX$X!EX5d0vRjMs!4(7(nQD2sCa9qOtf3qTC= zo+_NyoLSa)?7LI`4}Lh*0lz2IH&JDgOqv)HAiPv1Y+hN|n@HldzPr&?7AgZrgq;J~ z9=e0EXKT10K8!w@{Ex~3w*^W?==juacyBlD6G2E`f1s(pek7a_ETG7u5wg+n4Ik$N zQs!*UkF$2P@q?B}; zBfwyb@MYCtRj!ggKsDS{MNNPAH$4vl6z-P-fmr}GA}jvz^L&g19QIFlD~_gHu{yuH znAz|JtL5NYKC|jiutBx;G*&u&Ojx5MosU}C=3B*ysBjlG)+a=XzBcV+OjYX|)DXr? zRmROq2UlYZh!6l23v#HtWgctfOkEG%4(q???t|J9Agyd4n<{B*1FDEeeow_xruXB~ zQ`MutLN#Oq<3t|1hd}oP-Y%<~C?uWy`u;$9&$(r^JYy0FQ78?<$@>66xeX?xwxpy6 zbd;{Ws(e(-{n(3uBcFg#UAu*Elzd_!3r5v5(2~- z&^Mt8L<&jUcYRNN0{Ot=aeidkcx5j6YVY5Mb)YG@J%pJc^5lWwb^hN^wKZH&v`_D7H;oSkqc0 zUiAdFZkfuHWF_L$kk(Vd4H8RM4~C)%g({j(TGB3zBAL&$;i9sA3T|gWyGLFI96huI zC_ae*i%T&Wa#8S{nHy{iz^=Y9{TgX%+j3}QCsakiKqS2N;`Ze~;AoJ{DNi-Idk8sg zGlS4P?nW^gsLEIXnUdf!oN%Fu&19?Qc=^3rr5(pC`+uM>JQwwOnuj-b*UNG;C#qGmbH#FQNPFt}?Q-WdrPiEEbg{;&Q_< z0&M!=g@6|jb^8FnXR7vqRGeox94=c1QJi_!WOjBq#sQNHA30XX!iCgR89r2V>Uo1v zXT8b1vR)L4KZ+no;ZOyEE>+B`D5=5bPD@hi{LieGjWXA>Q&G%Y!8v>~!&t!JFgM=> zyQ4hU`&QDe7XcLvH(;;)qpWNJfh0(Cp$Y@;yWXc&JeR;&;CphqVIe#eHZ$#9DR{@S z-#nXosB5WY^{6;#2tEV4&U0qH9BtDGL%r>u&!>;$t6kx=Lj%rZaJS*m(cAJ@;f;4@ zd@ubh^^P$ZDo|6#Yf6TvB=bZzWK6anj}J&+{l}$lTPcx+C>DLe%G;2}K(eUV zojDCjA3k;9k5wRW0 zS&IYBaItfcr_mJXEByteVc>=RcKdDpxnd{@a>`%Sf-0K9*puK}fCNT*MrYM;^W)v; z*+88mbRA=mgC^4;^GhP2X2`0>P;oo15~B1QIcOQT-*3)C;|R_Y^=}uvb<+0w`4F2w zydapgfyD&CHgI zP=uf z(8!rm7vk&VKU|s}a_<2~ukxi$@t`@WoI%td)XNmm5|%-;i0+Gv{i?_Zy&ERY*&Ke_ zT1CQo8Q7wtq|r1@5{>*m z%BSy#ZMuI|N5HU*N}NYdgG*Dshr8BsD$+UxAn=eq}j`L362o2sKVyR4!cb6R{TO zV!=e%Ps9-g-vb&8dr6QkT9TS-)R4u!Dn_IVuK@I-$WNm3v^#=i^FI0bgGoS#43N-_ z#GRJUdKCp(89Rr?{@Jghz({KEaRH0&XDCzhpICqk6h#`qh4%h>Nw5#9_le*E`3o>N zF86#Yn_bTln6kOg#9Z>?52~RRp4d9uA0|AfTQs_xUuNSuFl`OgFHmM%gEU>og=K5~ z7ck&n&DV&Ee$OB?Y$qnp8X#qefnV6u|JMc3UOa9pp$XS*h_cSUl?u%l^Dgf!B>JI( z46cXASGaf9;mVqfS3IVWW=!xBQAOP?>^?5sonMg|*S>glPCDO_4?o8V!0Lak0}JaI zVr3O^>X#o|=Dh4&Ze#j#8#IM4h@N}8iUZNa!v5ugRQgNlVTk{9Q9KRhN_<7p7ij8G zCC5iO#C2272<47ycxRVH36zC-7_JNaOkKEkZ95(WqKY#&TGdR>fJxqTbmR?SNc%tw zAvu2ohHKX|d*NtKNGmc65qh8Dgp>t2moAGcNVixn;)kvFRo=S&B#fPhy=7KJ$z)7j zPc*R2@~j1>c9t&aiY7Ck!|y{4LLu}(eItC%7~Q~~apWx29Qp)68OmLZ7g{LCMe->l z&$b$g5i>p#R|raRNJPb>*Uftg*nO+lXiCuxu)K6Bdw!_$;e&*dO=lt8L0-Rlep<(8 z_m|0A;VENymk9n& zW89vsE)3FizXMFG9eBFaY7dzXt=9zBJDUORIjg9b1-rFgXH6_+mA_@)X8{6`jC4V` zh?6?{vkh7zXKs%*NQS9{AfL#chx0#ZeS^(uR4=|LdN0}!LOgL6Od_Ct1!3Kako9@} zL1xTI-UEDkgS=aSWZtGGkWEOX1Lk1e?msC}9SvSL{ZOya7Y4WPj0Z4Gji{obVD$`P zq#|hlevt_2DF*9)wuB647ow2RFu<5TA&n09+lbbbn2zrkq{XTif8BMzpDZ$gT%_kT zCk((CRo3HOgkFz{&8$9J8df49a7$m4Bcr0)124}^W3CC~!2kwyYrH1bBI)KLw*xAE zLhu|ab<6vmqIw3=hIfGe>bM>Pg8ML>N_nFqUP;1g zc~<7h`H|^IUV*+?SUt9aEbWZWXt81bVdt+0A^bylvrM=eQ<|Z-XXuxz`ZgtcV&rpe zO!XB8pdeO##N{TS`hK>-_?B<9Q;oTu!}XL^snD(9(6bt{Lb{mQ!d-LjvO)>d4RsTr zcRvin6EZX7kN_A)|G%Uc2c>~%PHdi}q@+k4vDJEc0fi0RZ;((Losq9B5>QE)Og{== z=yoR&Yzx7tP8;o3TPcICh%V9flH<;%>DM zA)N+hVOb3g*C6pwE`k-ORu%Q_+c!-UlYm}VNKQclw~aif-N&n+QUfTYe?|lnVidnrD8NdA3G3m^aA0~Yu)ra)t!EYfu zec67$-Nf7ss1*F%qQ>~uF#bYVAGS%?0AQHsxmG3iK1 zf`Wp+@yBn^v`RyaIgmn+5$PifgnSMS4N*7W=S!96bG*R4_rGjKqqP&RZj1AylskZL z+6^=ufQgPea#Zd9Zjzw(t29<}(>hRalqj~Onir%Jmy6o-wFvRQ0!KU~thLzm6+f_H zHiaBEdrPCwRat*B_VqMiD1IsIUy479-s=XY56F-eiqob%1rg@%&TZwa(n{t@)3DMl z`cReP_3h1du2NjRNLia_$*7u?+S=RDlnzP-`w@g9gMJDkw42aSkj9wOHsl^a&}p`N ztPpy}xx4XzV;2-LUfj7}OW_QV?ii^yFG|F*SBS9H&ja4$fIjA;1~L|&ZBajmAc+K$ z#W&3oUD*Km1{3zAHx|X(JIOY9!DP zF}e>TK;g!lh!qPMV&~5M^_b)@Wbs@lHSbTLNh{`oZ#6D=@bi@` z4#swi?L)YL$Y_VK9CI`KZ%bbxs?evFnf}wT&2#-OAiv4>GCHeSaYwVhP9AqJA&7#{ zRUZg&Ho-1@CGKc&2*8}lW-+dICd|^tCsc#WuFq?+F$Y>p!O|X|1~q4XJX?19s1mQ5 zbA`1*)b5SlkDGM;1))P7^U#2Mx50b$-8kPah}y&;~;X!0Uicz2+N(_522oecmTmAeE(+zrvib|xZKlfaK|q>6KY`iU zd9ndsn0DxL$%FZL>61=pI1`Kd5Ml_yGt9~-6I&-E%u7~}ZjE;^o@w$TREF?6TLcq? z0UiYe;CPFVJSmOc)yoNV>q)^ZEU27cn(3E;cM(n~=uYaiICa4X8=QeY2I#6u3 zqMLTdFXI*HKimwqS`2a542ZbEb?RC@x#dvF+CE@4KQuSkzm9 zr|&=6|Mf0IP3gD4(&#>8+mLMKxfwWYa{_!8(YkUGz`bkd#b6;>TNvl?Uar511j2DP z%Lzgs7zS&wk@Y|jL{5hp1UB)NGzU!39souPyEiWM6@^zAW9;y5zx^ifEQawkQmv1PU?&h zfY@gkI}6aI7*7A(5P8Sf4lbp+!k4)8EX6;+~!Sb%}VPTueyj2IBs zi6D?Nz;XbwI3L>4rQOe(mvbq{kb*kFU{OWH`XIh7dZeND(U8r5DXa4?WFgHv`yrh> zTR&Zqb0X+OBQYLPA`J`3`@o}TU=H5V=^d0d_{mdXzDcL=Yk8Ec&}F6{EY0FaOZ^a5 zH$XngnOZNzN6{z`_=5G~`86>G0*u5j<*BuiXbJ=&kN&Yj9GYOLKh(tU;whLQ9y23^ z)|XFuG7&8)+1+SBw4_%5(POF=raSKFkR1F;U00iS{qpvs^7%g|e%^0EdE#|Em9uhn ztCJ%LmU>g`koJyX^B@h!E07uqA-5!(r6rd$yZ(lL0)HQVgDn=xjl$@0M(9Ys_hf6P z!~$|VEh^;;Q;^rpV|>lxzho<;m)blXFL8~XjkN?)iX_6nyI^cx{AGfogb_^6l;VOSu58{^jyPG+>oU|`~4_@rXbG{TEp@P=-5DATgZK<%?lj98;!!1_h}Yyr5svHWD- zqAIw`yII5gK2OU~}xb$Sq z84!!t@!r|^cv~z^{!#3NV6Kr#G!%7oW1^BzOE0Ab>jX((5Na%#vMxYqoLj?o`k8W8 zO+S`IpcFPKMwyb-JgYpUmCfb6gaDkd|8Ra3EuTJ{_ivg1*7v+juo66q`s;8OPJ#p2 z*coYW82sIW1P@tGO0Xf_t@CHvTv7{#6fI|O)z>r#9)FX@;>o7|;gs#KTRc?GLgsH0 zxH}M*CMC|Eu4wYd`d7Icj(PsiXo0q0Fd>-o1Z1Qya&z?~yR~O_S`GV=Gbk#q>#*4H z4B)%GPTE}~LpAuhBR1j$ey@E5|lkAB$l_uI?l+C+W_^ySt;g&%k3rqIwaj z2J^UK&U-3ENNOzt(YlH29|u!qthj}psVElUBJLi0^_2O7U$yx`{D*0iNHqvQa8n(+ zu!AN>&`9|`I3WTqu}M_;D)Swof;S|?yZuySvx$!J=%~-`_zInO7@+RggHOC#_2zzN zO}PipOu`FT4Lx#`=jO_dK_H_ZQNjSR#Mc`EdFOf;@8I)W<{=PoCsNFZecx9E%)QDt zn~j*dD^dEPKRiDGHk6-$it2L0i)yU-258ceU9;}K@dx3O|Zkyc-MO#=iFgUlzJQMD50HEG)t9l<~DK zVi5yz)NL%Nn^&DoLm8>2Dbb6u15*c!BhV6jggmW%oBSToSjFSCt@~D#Nj1}4-sSFy z`%c!hza#L={mG^#%loGV_5x;`o?_!~U4}%KSB%YnACDZPWz;;T)6_FVvE3c?5uMwN zU`Z4ZC*k(YXn&w69J#jqtkIMNldo4nLFB-P{3Y=s^GTcc==wcW5KRVlW;)5_nkV*9 z@e8yBwkKt+w0G1aWzBWSCEsp3Y{omND`tJZiocB${8`aGM2aMlLh@t|*Dv)+vzL8B zDL4G^il@NKL zf=&HBD% zXK2W;tK^i5HsDKTbu2ht(z`9421rc9rPmTg(N$h@B=rh#>4#{xUo$kcGAGpCkPM-e z7-*Z)xf1BfAv(crMvAG=6C}rHwz_HeUH!gnQf~uU+q-ST&K(pnsVOdL_1KT)e+?27 z*(DR9A!1AVetMC`#_hApQZyJ$L&Boty@EGYLg0VgDE^UCr8~10pe%9Ksqxxsn6S-F zJe-Zq7;}Gb3sFta)D+XOgR^}B?J4{RG1ZxS&U*Tc_HU)=EaiOm>7-v0V9C6H3Ua=M znSINhi)?)TmVesmXR%gj2R@aXhr#8tbi7P!A2DUyjvl4%Ze1ABiJ9V}5Ey&tkoXNs zmm7;WyTW{;jMz2DEKqC>&wG?Gv);D{)wW8FeVTrZ#&Gt4R6Q8QcpFb{jQ!LpMeph;~v zn2tQ)j10ZXR+_QJQf0Nb7+Q+?KPo+)`(wjl5vDMWkHMrV;nk48)BjyX-Si!LQn$~+ zteGQr6Aj}FL5!wdW8JH;1~^Pzu2#Akm5eMr@FbQAtx5F?Bfr}fbEIY8J^*iP=*}H4 z(U1HVZVXLjAuHEtP*IbdpWb1cq=}N0Zi+fQZIm7+zE5=MB_z`J^QVn~`OyP*8xe!D z#Vxd&L#v#tTp!*tDk-#TCAG(7yk>Uu(PDCJ^Z5qR9B37QU0U zpn6serwuvwmI1CSsQePYW23%alc?tC&t}`JS_Hd}VjNB$NA#uM^W4q6L3{hx z9;|%c|>Tw<<9kZ>l928^k*f zq|8lKJ}JA5r)$L@GMhJJjKR00VO#yuY!tuA5xx7wM{uviAjEJpt1DF2KkLBebwl^u zwLB9N%^sDTsFc)HRt^sA%hRz|fyZAUsmt_YkGjaXkt*+gh6O73KJ`ZN=Ucz+ByaIy zPJD15f2|n|&%hVX!k*jKUw8Um-^_pILg(*H_v@SanDKZNRM5r0Lqkz_I1B#_OFZ2=ENkd~JnvD%V)wR6kx3u+_Q|rjc2s!E>$C#g6 zydyThe{<$-n7A!euf-g4id@2L1R=k+X(QG~3n$n1mRTTM&txY~J{NM>clc#kBo+r>LEm5%>^mGjtPZZq0 z@n*?2V8DEZIq5nxrSh6!J3tS^yOTubKrIi%mNvGxJHZzP4p8q-bpfJ&252D;gMlCd zS5s5tg{u^n4CT)pIMqBp?N?Z9;nvxf!QLu}>b`k@psPdnjIoJZsL9F5B%ad6>~Ak} z`=WBxv^d5`X*orl3MW&{BP%t|&fr8fl1nLEe|oCGlbJsEa!!e^rDgosnDNliQ1kHc z)&kQ~h@U>H!9uCt#L@8#fak?-zdy!7PzU>K`nb3_O>ON?z%D`)N5{vP;iRx_A{1;= zd^{y3CDDf>z4wl-ot==dFeP2Yn;_kLcuS~(qzjFdcA~>GDPJPTCs?KUxG+ z|HVSyPu>FN+^f2&u(&uPGBPrk!YW>tvcY{u1%wIa9!yeFQd)g!3K%Q5Ir8%5OJ_w= zrPC-gHCS@x>2 zUQy)0IikD8NybG3-0-(^_GW8n)}`o4Ja3JBKdZ6@_8BkD?sI#A$|m~@f8Slhoz(kr z#{FV7dAge9MN$J^iYh`Sgyhawm`wL;dES1N-A!7=r(P!dmUmj>g#WC1-8DpB$%!L&z*lgrCvW(-!_d!pBZ<})3r5k(w$f>%ih)?xT?5VT z;^vtKI-m_c82G%Wq-PQ+`Mcz||KXC-2RJM|{Xoj+_LY@ot%7b*9_pG$i6XwcodQZXvyvPlWd+l;P0oBVFULB&uP} z?jj`O)kV!9IRA`oTI`R%ezHIOg?Vxg_y5(8z z@^+!#bIfar{P_v?P^!Dis8@rYsNm3?@ai|A@6|8u_);@2-U4xKgE=j}!A$9_!a7=k zX-Ct^_G+d~XigmE+>BBrH>msstKN$2`CY7(?F}|EX2Ay~(g&lMd3XrG?TRv|)-BLG z&Bnn?44EP0HTH?bU#Tm)QKx7*jmo*D~DDE z%zS5#^V5(kTzVXzBKI+~rJtpp?&V_>7dr{l{zB==h4f1XW?}wDe`uKO{ByBfcKf$9 z?EM7_Uh!T&@E17K%u^onyx*bjn~IR&3U?wyu&Um#p0il#OPqw(mzWyas_RnEpx00j zJE0+}Kf4rh)wI5%kz9G&G2ExtN{LT0v~hT;^sWliV@+bJk^WS8o~gJy(aiVBzTQWp z*<`11ENq}-J0P7UD4hATt)_J@lQuzKC;l6a`d;8JMn-@0@u^P zVQOj+M&=sl-7uCLLlYVtfAi<&M4DZ{eZ%(5=$lZ-+=E%Ww3{QZ_a1~jBiBeHgmtA5 zcf=n+pBqh<5M`qK?l#SKRosRaVT8Pl7u#Sw5d7-e);nx*TkUIENa=I;eJMC&$yc5b zinq_-URO>Yl9(G*Y!_6SJc@G9&ppn5mNRS1UDc9Fq_DPc^N+JX6uGmUNO2@kv!=TC zwjZwbNZ*fD!L%i7Du(;i^S7H4tlZd1TOQ7py`pV==q)q)U{$Z1-gGjd4MSilVZ&mA zx#~8=RsP)`bHDPy+2wdl@TZA89M_NgnB!e%wtwMX?JJCWPfm3+nlOpjPdy{fzf^In zq-!)Ux&QXZ{PL^BcADfCTV=H{-g!KA^62W_TJ89rEx+UushrH$Xij!Ei;M}6kcmI* zmk6Isy4$8NMsCVlQ9vWRym8YWMM;|OC)A>H}Jh~V=WZkF9gIfLMO_f4;SL&>4 zZIFa-UwvOV`teVReSdYG>^Kfxc5!3E~{h9_7gQ`#?b=*68 z{SKLW1r>vzIOi|S5Z85@wcGKfZKkO!`-67NHO2!`#W&gop%F$AacVg(iQfzZFljA= z9lY>iNf@cCG!C7ymw(#-ojqXp{nrh{YM!-Ye{;`7cB2CeU8H7X*zML}<^Nr^pkl6tQOm-%sPlqiw@mwl6Ct96oEb9TLo&Mh}3(XLd_VQ5v* zYxALXcUV^*6RKX^pvN42zsfNBxq40%({#A)eBuljz0V!9sN!`MHHxO5x=mmF+aY^r z`5(s@=I9`+oGLZJFKsK`K(@+$MF#yfV>vr1%{!*%5_2n7kq!eU*JDOzJ)ZH(i9ald z9R_?6r>o=pvld2&wEu;sdS|}6*E&vc`sZ;6adQpbsfQ$6b>$V=s_MvAFJ@?&Q0OG3 z?Do3ZwyN2xDsCeET&mP!OXJ16{G1FJAInPpiJFkb^s86gx3?Q6XGF@nq1 zDB)~gHG#C2-tIo{K6C#|9P?lD|N8uqVJ2{0(acfmiSBgAB9C|YNZX5EYhS^{l5hKy z4}n7+C5wa^8vUqU48;P^SLpw9m$7s&e)dBn%dt!Jbq(qE5Z!hTQPHy zoOJfxya#E2KgL`=%@dDbKmI4Ao?<(KZ9j`@Kbva5_2EH(w%k^PzQ$o7rg!X`s;a86 zHRL>au(Y8x*YovWl-=L;CF{=EokB( zY~We=0VJsZd3k6jcki1jkXxY@$r`YC2YrPY^Ta~HO$!PN@+WnJI_;J6o@EbqtXXq| z@6XJ^W#ZCO)ZxLt4UoUZIOuU{Bg)41@6K5lc(U@*d{i@d`WZa^teV1HY%Tc)CBN zF2#RX%N^{N$Lil`Z*_}g5Yz3Rw*aCdAvN{EK#qoxf&%aE?kN{85s#rpPutRJ=F=;l;QpTIx|BrZjz&bxvjO9SQqgYARM9E1+4Y4+W1MA zYTD@N=;8^WvPJ-0<)Oarj*g)r2E`1c67@cv4ID1k(6F$GM*kf;VECe+2ktqPUt942 zYsCgJ$Dvc@J(;US8h-p3Li7TLRjpYZfGJ2M5+Y(CkH|%da z30xvDp7Evtx$K;r^B_Ko*rx*FnM=xHC@U;|KZP!FgDkO33c zGni$iBtulC3Uzb9_yOxJWBv_9(-25j8OTFJ+#6U}@Ir`0f?hHrehHK5v+|+<(UB;> zCM1UXWRRGc2qElB!mo{;HwMe4W(We%K49WMbB2yf+BN(-rp+!R0P~}Wh@#c9@uCH#&>Oc81fkB6_PIG88Ry-`B@o$2j3lnZu=A^j^b`$kx`D2m;|O z^~qQx9i8BUj6hCA>ztdLyB({ce>{e&?Eym@C^4Z=oQPKZJ;S7_so7kIUv0+{P^UVu z!FBP7SuD(x^k)nZx* z)4!zO_Kx1(?)V5sm}qwPNZ4RD>`ePVGkaD8raZ^!)Se79y?*^#DkoHL^J~%#-2V1D zX(p17`2D*mGLi6cpE`T?vc7(Daj&z~9Ku?CEa{Xvx|*ePO7&IQDn!wny{D+)5Q-zX z)sbRB163m%lrR@TodRh0gX^$s&D4950NygXIqGC6*d$=hYJx%074MyHp4}L*2{db) zj)!bjlN}u$HGp*6gk{K&!Q_iyTf4BnezaM3{<4|bQx|<>?Dz2_C)U>2;p_kj^x3BU zZxxl_r|Q`O4|lx$b%_WKIcS()xxd-LPCDHGo;A4Kj=gg1-n6gC1#xlH%3eqfSy@>= zK%qFv3J66IP;|*Bf8W>l?R*AnwJe-&iy0Xi0jLNE=?b7bOQWTH7C{GiR5PqgwUQF2 zEs*RVc422{hc5f@;H31PE+|Bl+jM2SeQ6?1emQ*5lO{U(ZFR69J}L!Y(hm@_xsFglZA5c)`60NqOC1%fpzb7Y$+;SubAD0%K&X+Kmsk zj2&2l>W{5aOXRpmMn=Y^wUnPm&|r8s|3*gK!-sSYdn-k!PM=ox@ww=|K5?>EH!kDj zDyN*cbI~@!GJ>^dZpj?&O4^tq&BlmAgo_e~jVvRy3)%qP5}ht?_t2b^EP+;jS6UqE z2D);f;zqv!RDf)$|F?4duR`))mnHB`zX~Ms0)?)8ttb7!8`chB6wH2t^a-wRFcQfA z@B`?YrO9g1=RUKvK>CR`H;L5BP~ZXP5H3wwm8C0>7`2otX5C8Z{J92=NumW^woXvV z)HOFJfWC(2+9%oefdO4Tr#Tkgop!X6VBJZmg>d9{JWsF;{Ali~+Oz@y5}b_dpcoEHOH zH}Wo&URN0)&yrS(O0Ded?3^actSNwd6DR33!VlRK@M(|^f-5S-dHvVU13tF66DEwf zx*GH0!*yX{VWncjIUsmDjs7$_cN|)UxxpKX5$ZWDfC@y0($>{=WH4VVEG&%T@Zfup z5C%idDx%#EK+hP69sw+t5kyEvKQBV{M6wUq8YpM!5W&fy*n%CcYX{%7WSh3e@yHQp zXUTyUx3B=}J74}B-kUrCjSWtuxP1=#182FX>+i*RfQsbx+Xea#Y98XT=7vM z1{iR;Q)K;peT=0IKOU}EK{O#_TQ11J0RtKp4B|c@bVv@v@L9@=OaMJ?1ok&NWfvHz zkP4b3@Npmt0PgjU0)l&z5NJ!OaB>?7Bh4x=M}zdhyS~28q#FvfsG9q`7wG8d#N4JE z424`E99&&pt0pso4rQkA|J3^W^=oER6EFO^q@;xBGqbP(ZY?3P+@!y^(r#t#`8-K`(R0sk&u{3j?%nxr6u-+I5Qt#Jdd0=KPa_; zR(e>AmHj=2jKICqi0);r=i)3Z?@l<5JP(@9Qu{~-HZ(jAx*BjMd9N)10|%0jmXMMQ zCxDSq2#~bLv&<=&%{WKHkDf|Iq6efZE`ebg(o1G!@csDlLkvjTPOd>4MCD(rqfGF& z6_w^7b9DKmFR_^{mg78m(C;}u7Z<3wE>%zD?qOTo+7Rs`-=7OJpdp}YY&?eF;bLJ4 zO-Nuq2kD7P{ui^9>t_U?Tza_@jmA?#Up|%C8OIZYAoKuKi)d0oY26sQd81``m<^my z`d7CudarRnk5uNfi33|40YybV&>=q$pwBqCH*cTZzhD}lNV|1Dm-mMzvJ9pi1UFO) z2FI&Fi|3v@9Kk{@RVo_BL3j1Hj3)*>%Exc@NcbkE1HRBq0 zB(u3gw}UKv9>1pcc2y+Qfh8}C!{Kyvbq5?JHlU;UxBc7EV#A}&oHRv6MWwrDbP?oi zY-~Qi1~kwxWe$V+0tyOE!x0!&)o02WnoxdkG}5CF;o(a?coshY-#z<(>hk9w^jb*# TYLQet3LaO~v{g$~tU~_8!fsKB_$LPBt@jVJ48y5mTpPu?ovv+L0Un&yIXP-0+O5V?#{Ee-*;k+ zdw-le#{Gd3Z>)IM6LZdI2P?=)VxSSCK_C!}_fld?5Xd862n1mf1qu9yb7XcE{KxAk zuI{L8W8&yyU~deOHE^`Gv~jfj{OOgmvAx4*8*6qZ9wv5%S7wfmwhnyE%vS&F0wx=K zQ|6v^b!G4nR9h(x2M7eq0RDxLC!G5k0{J=fUhM5h*VNrP7gyZ1nVzGAgx#ErdDJ)L zsN|<~Dj}J;^mMA0>Jd|s?h#J}OYf#4KB?h8<3IoEdpa+Q{{B_?>3poLv&+2jBlKvw z{(Y*8jfOf=6I0WJfnT@hNx6Br;)>X!DCGXwbAdB6PvGB(ejB1hP=J4znGy}50lz>Q z8I*$H!mrvic>_U%U*pLB91;M(vEe1E?|<$Odo1$rZfl80Kj426TAq zGg&&O=dwFhKI?JNOk%%#G4BysR>tzzoU^p~Tr;RC5IfTX{<2L4?s-=Vy7-Wd44;Sg)}>FMdYbEORp$&CjsDL(fn8LMk+b}*}2 zCr>+3ltya!tCxsLNZghJ@bmKW%A9HI8XA^YRt)#pW@P2$Fb4+*wH-&qA3u4rw7csm z*Ynxh+IpkkAG_uQ7=31^?01$gZEYgy9{cq;Lb_^dL5+?43!W#kg?qwxr#MVZOn?9W zg_OCSm|R~RL}q1C_#t6@>WiVw`$*@!KZ}}LH@;u2pYO`7ZEjdso*Jd3kw> z2;%q7&Rpm(81(0x+}==AXDQ_?Ct_`BT~`@Ju=6(zJ-SyFLeYIrxz;ayKbbpd>8WK1M|4u5Psk_NITgWrsm@# zl$4Zw^ypFD?J*SL@^no8=;)|jpQUQ%p#sXZa=lZE{EC-1$!?{4X?;Bqj1LhR(`aX+ z7>p0t%)iZE;vmEr7P?`0xLJ7U9UK(gx5LNBFKO7O6S}`#QH2TLUm7yC-rCR3&gK;s zt}KT#Q*m)6Six$J{wm8KE&5^Au+UUIZsWT8`)){66*41PvwGR29M%V7NiD99*M9x_bvUW#Q|@~7DS<(wqsi?=uHhk^d%ky~SnKMj zhitmc05K$!#ke0gIVI&K>!-)S<_P!q_Y)?CMke_j);}aLY9UqmuYCRbsH3Apy}}69 zVPk0R3o@zxaJt~E_s!m{z2lNBu^+hwJrL z?t59;wTlHG)6>lnh_+o9-uDkw-nU1R(EIG{?AzOuVfbSp1Ie7BfBq=cSWb7;SixLZ zqa|%^ZF#!zo{2gVildP8{lVa#{qZ3~NJkM@{3Vy=cQ%i6OL0Y9V_;qV<*i@2tY&_h zaS&26Gs}YuXlZE`iHV8h;_21sLNaL%T5d{~_x6haj*n}kpPa*N=zS{;doaQ6Yb%k$ zssaK6n$7nMdK-Pz86RU}V!+vttEgamQr6VHK+<@y)zXbKzP`O(0LBe}BQVDP*?I>& za8*?m#}frGQ`70zs;ZB6_V!9G*V~1$-i*}n=RZ+kV`pcCNrVynoORzRE1^Lq#szZ+0||Jq^@#iW+rasbP-KRW?g+f zEjS%Kdy}vHH$6um0f)fB+;sRT!}A#R=6sKTznuJCU{q98TW*FoT3bf|Iw}@cZ52=U zuU}DdaeoUUVTVhdu#b_owcKzw5=$*_vi&!|>Hc~L*h}hIx!gxBD=WqzOcFlpg}6A} zDow_BL73H+Cr3x*zz*Z$;vC%XTFHD?d!vhM!ijm0>kP37IX2^Zl6dT1KYR8}OkCV< z&S|pTY~=O!&JJVb0+=j=PD5N%lfaMcuJhg>WWF~Ctr=R@^#Q0jREJ>49S#@UxqPfd zznzoA9nxosNYcU8zF4>2@*cU%OUBySPxTnLz(O6yWVtmu{4;5C1zR+Wg{)i0Fsv^x zS0dq-OCb@q2xV>s2RksFh&#P6(Lq9vWAw^MFEo>8kBja4poe#)Tt{15&h05TH+PNA z!q9S8C@LD-axiuJD_Yv%{(fl)@KW+hO3yRAuW4bmHl`Q*bF;wPBy7O_#_n8WVklF? zH#~Y(Y%;Rp7)qI$wH+MMs&L@X#d6*6uQsl>ax>Ihz3=QIbv*W}S65dLyNPVdTn==t z>z0t9hQLbzS2p(NkN))e#gFxk4M|y93@0b21S?6TZ>iD`_jhimBa#}e-hy7&r%NZp z!pI`IV+L$VLz_E%idH2hCH{edq_sAlo&pkC(XuIA8a46p@zDth6586c8m;FGU0q$} z&U-Veu!&MV8{YHjKjzgRfP2Q*^NiMMbdHXX?+U@AXNV+2-6QileTGBz;S~cz(fEns zr%!d@K&Ur3(kAM*oAur?mC>7|LAhe*fp^J3D9R_3|Flm9{U4o?vOHN$Sy~l9Kwe zB8B<`F^GDHhD^3bvx`O5jf~zTB_-|7*2j*Hj;=^Fkrw9X_bI__TJO4J<%Rm@To%GL zy>3gVH#g04=lv2KVYv!u&gKWU2)iutEjBJ0?wN?W$<@*x8^x~rfzO- zO%L}s#Yiz692~Y6b1s$kYtrC4jaq9Gtr|<-Tx>f3O^E8=7jWQ?BS;?Gi>az6WKQnH zY*4 z13&*B`3vrg7j*0<0}5Zie#K3b%M}w7qmdUl@;6?TFf`1vpEgdU1tA>mhbOTA+*`s7 z*JaeMo*qd%Cnpu_`n4C?<>ez4!{vS=z)AH(q47HPsf{ctzNkt_AUkoilOd6R42HqvsNcBpSa5j?x zf-Wdj2JXqO&-V&FuhtTK_FTZ>rk$UkFK*HGYyY9`G_E48uKpc9-Ni-ywf)8eRYF2S zxvOLl?S3l7v2UtV_+zITjbw@sr12---g-Ln&Cy;A_V;H>Mv{V5r_-F?Sp*u#1gzQf z;qF4UusxYdE>%ifo7kr5D6m@QnP@6`aWy)~m3*(S-GK{r+ppiKyE});6W#lt#V00K zI&LYc7OA%bL;SpF?~iTz_8MegmK~wYEmGh(qM)EGj!2SKJM%6-eM-RM3ydobU)S}g zN-Idj_F}c#{+pLo{eMi^{(s8+{;wYc)}Tz>q%sMtAV>^AJ~Y83`7iwhktZ)dpPYw> zp!#|jcJc<2F5>MiWME)0!SoJ(!Ezk%~WEPv;*P{0weYK++6csK!$Ih(Q8i5_^By%4nkRwit_OC zK1@(gwl%EYYGr66?o?cy=;`Rl0#l%@Ol53D^Box(fyWd9kkjPOxqwVg;JBA!a!DTp|4|qUo2np#mOoD#HU1OeAgVi7eqej?_eA| zN5?8>+J9T+3@y=w40i)(^c#GMSz0m-3qJ^CNk$57wIKN+__ga_H8nI4nz^~?vnBEU zYN6=a%UcOmjy^Y( z;rGbS0vEFm11a1Gb$j{w`5-NJHY*0liNxL0&iuc_?7ONJsz;hIF5PIYsi~12R-+Bc ztWsu7GXZ8jki@?6%TMHf|0_DvVn2PU(fRH)wdbuEqc7N*xWq&kGqN_2FMRs+X}96v zOLNTsV|3%=OavIq(HIVzct@WOfowLoe>y;V{j%3V-oXxOFY-;L_h3i#9 z^~C?K;JN!fOtVr4;}J;JbIQw~RZh=tKlohi)h;N3{Cvc06$DA6y_xDTGU0hNJal+1 zGDQk@t9IU}?H->7A|EYd5_x>*mqwW$3 z1n}H4Az;@QY>K8V&lmU2rd#gyX`jT0b0iILyu^B7Phuq){61hpnmh}uIJhZfpHfo@ zmnar3RQ)M*tC*$wQ!(H5^6UI&6{8id&p!R@;yk2c&45td(3GqfE|NhBk#d-)hfeKp zDfV89reeTrvynmC5K(b2_9rSBf4K->60RA#?Z#*4?+z7aR{TsV2sA0!))FEdMB9(h zbQa{Ct~h|vV^vT!pZb^nRBHE&{iK-x5n>4~S-fZtpf28O?<-Guc&KUgJ#b!4b6jA2 zNcPRpf||<>Kh$Jo#GEjakIcOfjSNkPU`aljBdO=1MFFE?=VujlG=Nu(nV}YDY)ilR z8!Z3A=jN98b)W;y+?zHhuUjOx+*pND-W1tch_$ccAmUv-HHH&X*2_wbx5d_|PG0W> zfos_0FhAAg7$%M4N)VO2Rrfo+ZSjmSLoDJ^4Q7DMQ_xTSYIWBwHp~}A+V5si9H#M&1`x*N6hH8AK~P! zEpp@YjD)7QGx!x&F8j4_Qi@I##!j-2Nyl1`Zb;m2Yc@6+ zEz(qF<7{LIcDFVuL10tuqru5ZW>2v(QWvyj_cLC$8s>D{s$#K}< z3R~7DUHv23Z_v+xgd{?0xsP!N0)hHe!p885Pm?$0wA%c*=yZ zA5n}{p4$ISwRAbU$?hwCATp7m#c>~4@7_(%DB!?y!XWFVgI?qv4| zF~8-C8~N+4)gMn{ghJYkRC^1}7WLmVBFmWPTXWPjkle!3AB~2XUzunzLEMXz{qmz5Ty?_tVGb>jqpWE6u+MBNwOu|z&SVcJni6dUj10Mq5$PA zvF4}{%#GROjTg(VuR`;MVooR((f;(Q;S2r=$f*Sb$y zWGgHQLkL?ZF(?)hE9{h#i78@R0%r#+p`5SSpL2_HRgJTzVO&pl@;AHif#Jt0<_+qU61X*B#Qo00m7Ql4cKltpuzf*R z^IFV8mx+&Qo9MT=m!AS|fFGq(9T|K3*$iSf!*p~{OecNjDW;>L;|J*8a(ndrs5`?@ zGJGF+5IMsKi{$8yHKd<`IS>%84c=-XB5Z=Q@`rT(^w?&rlQT0hl7X9QC`mdyGqKg8 z(8}(M^(=1f2Dz`6VohNZ7vB#cPWq{-+< zC1!eLH_pyT`~CC#cA5}TcRQ;>)Z&NQWrzh<-11)L%2%N;!1)bCk~hS0jp^eSt0 zGjDEEl-S(Y87%F63jkK>_l~x$!?_luhm3wj6n|(QW3~8v^?lz&@Nk+Y} zLwePwBkyj<$QPbGlJI9EG9_#VPbUt%!}9>reSv9KeFrTLnsRilI5zd3up5tJF~JCb zH8s{J9Un6E1`a5!5y+aT<|ZEQ)d<{wp#5YdPbSpz83poFcgWNB?p2_e8}uV%rdFe; zK8-|d$3}`hO_B9#aVzHWdA}dn$;IoX=&;Q#isD6`@9?Q6Mk}iht7%~!oz=XWsWec!pVZlARzC19CUd2=cqMRXRxMRKggIUU8rYtY+N6tq-l-^48jpS=~*qMx@O%*KfaO z5YowzwYSFO_HGJ5SW0j5R`Ka*S_@BXj$TL*MM*K{q8B(?A#IsY4sAC>YJ-XQ#QSx8 z=j717-$WS+{wk2_3cS5F30_xYA?EQ`pye?g(V;`^m)GY~@Nt;rkJF(Q5`uj3O`t2w zO_Nm48>IIOLgYoglPbflOd%T+BZ@}x6Dym4j!(?k=mn1Vm`Vt6yTNHxEm2C1fFEvI zGq&U_H#H&j2~$>|35bkd%MEq6J!~`mX~bzvi-hPDwhy-?JSE6@Xrj+3tzA1ltI?Ja zzp+2?C(v-23WP7Lx{9$Ej-KVQCSXwb?mR zOKXTf0S6Ae*-N6G9xt3vQfMbt&Th*#@MBT*x-|2POHEwmEmWH@Sr&5HxK(c;_NFp0 zP^+Gg{P#54x#RM*%=3D~5AyTccD^<>8x?HT{_**g+Edg~_{<0NGE6hra3>%)Ic522 zTWcrZ+zjazQ*WA<`f|XW9KO=%dVYF7W zs3Uhsrox!nVH$vTPDE)w;2MNvY*Hr{#;y9u}(*rXD3SoRexW^zv)b`A+xBu-dKp#$re z1t|o|nSICGERcrUE&Mi{$Vp_qxHaqWGRo&7{~gS0_IFk&hZ>*y3Hw1$a}mEnKgcL1 zm!hHiWd*28NLOz&5>$r&9kbVh~aWUhlWff4vOqZ~OdH}4=vYbnbA z=oyI@_g+wLn^O0IDmi3&!EG@$K66_FZXV1vtA8w&AX8~-UE``HGAITM5eyF~hZ`-g z*F9^}K$14!WC9WN)G1Qen1p*$JBb3K6gQXgw;%y|Z&>-#S8=3eR+u&Lo-HF0JCkIq z+Pq1}ad)tEeHqMnH#-=FluvsV4Y+WFV?SP0>tmQxd)(HB!c3Y>3@xMCDy8r@^T{&2 zy*x`-oIUBn1kQy0A~emCN4+~%8OL_Ck8$bzRhDl6HnkBKJqM|77XIRpUGwJJL4V^U z#%c<0C*>_FIp0T6g=8$S#d!=xN@SZSaocul?eHjQ8}5xZJchq{rAS!4KkRD9b#0gf zTH|ey&d}__5sUN4xI+~{w|~t4!ly87O&U^Km=3o59A6q@iDi$jj$%*_d?mg&Y*;U! z60)kwVY}c@0A)<1uy6x4jw#_ZG;v`)Vi^QQ?OE=rnKegLxLpEwci2D5(K4MLn(3=r zyqx@VY1YBJ>a_Nm=+t8nkSDPst2}kJ$9jc@7TT4^o=0fesHdg_H`7qRaDmHq5lTW3 z#z^6j`v&Rw&+0te-dF679KjnIv=laI($NH;Zfk)s{wZpe^LuA;fOCxuo?%^x6)Um6 z8BICZCvFG15`0Z8=U4E1*r~d){6+@SLTiq$a)>PwjnsDOAVOEGvA=tIvQ!JN0I?+3 zp!e<_;-szzBOvztgMunukCx?%lu%&VG-#l1UQWum(5QJ*$A7#ttLW)=!-CZ7=`D)F zzqC@Y(Mg14cNWDmfF@95#BIYM50VOtL=$}Q3JFQc6F`Hp8}&vh?_U5aNJ&>$PFI&y z&-3Vs%d8zTKv8l%Bd~Sm_GjrzynQHYy&K}OCQT|>vj&dUvGnj?PSg9B@oR=Bn=-#& zO+RXez&9@a){dE~(!Xu2yb$8LS3SvQw=4#TOZoZ*z;C!6_fgxqxS0O__UuCn*IpcB zps1s#hP4BOMOE4%eBpF^L=7i?4|w|2cv(P58zI3sJqx~G#}C76$vUx7q^@3 zRaojK5##rmJ7WtOQR9o+3dv04M_iyw3-!vA*;PD#-|# zVh?`q1j&$(S8R0cJzuZnPUUAlfi^>lR(;a%1hQqhIQny?t^C@ET2%jFnyONZpunY# zZIKLpEN!Rlv2?Zn;84&fZ8I~PfEFAYlEja9c5%tAsX6~O42L?ubKA_@!IYJi0p`0G z#TOZ+H8wFGKit}Gwhptp;&?gu25Gb2%@@DflQ@sAH?yE^W}IX^zVwS=)IUgRM!t@) z0G&RM$@0q6%9#Z9KEjnZ&6AJbL+~NDpVKrG`b0!cP3;2}&e_>n0=Bx2j#vMyi_NS^ zdw|7i36++VP%$us0nl%Dj(?pi31EPXjN#wE6L1hFnHE<%b)A&bpn)`&RiK}!I49es z#{tv(J08ITYs^ zM~KTL?&LN*Sex?=u`ep>Th)@?(}sS|GPQs3+}oaS7{?$D3{E|EFL8Cj$rvF0AX?UA zcQd_nWn(eu%!%@=zCNkDTVlY(q442h4h}T34-32ltPByi^=c29kJ0)-l4_p%w}|+M zS_D$Q;$(mVStL^WW2;VfP6iz86TCeT;g+_*81QtVXtbv<)=3yF1ID>iT)Vuw`a7A^ zq7J~H06YJ5wmr_ES(T@PzAz>)93B*e{PyizIP*D>A)Eo0mR^-f?55ze<$Bk`1^fP5 zJgAS5+bHkesUNiwSd)#7^^c>H`&%8lxU3fPcD@|#OwsgRyEra_ zL(Fly+a0B02rg#;P(R3?Gw?MMLQcK+$;*&}i z4uFpy)s75MzNJwtVQH>Q>o}Js%r`e~RM^39VFl%4Q}gjFvXa5ywgYISSaK27{=xuv z+!(S{ty>$j0?t2hg3+(Br$@cmO0|>GUQ#UA+YBD}g_q(OtC|E0H%6?6l+x z@EJM&AVPL!tG2uo>M{)0U={(}u;DU*z$vP9BaIS5?| zTe@&v330V_7kVNkn?Qe10~JoKS3@YI6&W&QLm`dk)AjV|v7K+Wj)L1+nX-9xNFtMb$DE=JC}C_$c=Y#TX5g5>P|S4EpDD`< zPj65Ko*uibHSZuDpQSE64Lhv)s;#iRw%)vw=y`k}hW+l*L_ z@1_O)jh~1=kLBGLCEZJ}*0mE6EJ^Pa{^YJ&%vks!=CnPd_~)7Uq|KjtHjqPS)~b>o zi;V28#f>}MbQEi!v{TLNx`~(@hx9j6(#JM7!WI#?3Ilh0u&b-ymE3#SdtWKI>%9VWs z34uc--qSj5sbnW^rcP9{RP0%qURPH8H0kN{$jta@)iMCBHSnt<l90Vt{*`7s8m((jyv*D$C6zUTIE{nnGu1BDe~^cZeue{)VzUxR{+&@b9W%~ZWH z)qyI@S3FUlB{?t8BB!Y&IOLkDe;fWo=IvoCI6x|AvLF9)uWbHUDo6LIWTg!C(c^n; zD*5>c2Vin0f6ei*mS4&0A_P9HUm@Qf~~aqykfaDgPl{vQ+RY)hkjq zxMyLoWuY9t|0EArZe;jPHG%RIrW%cL|G5;vFWP*sPW>Y>B2JeJ+6~hF^GZwG$OO(W zKC?-YeU^HNqQD3nO@-Ej_VYiZUfx=f3a3d7IwVqMszO6Z;b&-gN?mxCq#9S1yMnfI z_f)=&9N3`_3;?cAN=vC4i!jYzVjpi0co(17J7~+hUqOj|;I}2}7A|GByoKDBQ7rV2 zr;?!hb}%Ikpq1Vxb&ns|ya6z4Vq%U4DG|v^Puy=2i2HTDEjYyh76WktpPP~Pv9I0* zF8p-cbDGLM`ccL&J{~@BtxxeU5nk+n`%}Q>^QS^D(pDZ){ItLgroB*IdWSo(7MlbB zD8*S_f>SN=`CSuC8)3k8Is?cSRasZBvpdXQ+mR3?`DDzx>HdW+XQ}INN##5RO&`C* zboqk^hR*j@v-p#y5(~swuADQ}bI78C8)E#KtZK>nDKLwapEPL9 z_bnN@-ZMd&ZACwqnq1~Yv`_6}YJl~&I>HMqmwP`O3%U8ESf=P0I`~5sC8R4a5Omqu)%5E~C!L;r<5rny$ zt7Ui@KO^9(9_<(SB_NR1Muf!tbI~$oL5Ik|(DC4RZg|76+9>eP*SE=+R7<4b0#sd4 zh5@CP?T9!&kV1X{962|pCIuP4wvNtwDXGm>>8?IYDAPvyfiohD=?D4s zu&vK)Az-fG&QIEtpITp%+_tWdstxkF2JEOhP-!IL%lI>jV;Q-ZxZj!$y;|VBk z{WmouigZxl-xhC9MzGGu!K=ks8hNicIk(PGrSFs0k^XYT=S9y84z{BlH7^&d( zuO2RV5ht1ZI={qPqod1+&4A5mfMx%mJOGx-!YtX+>_y-tOLa;ZuhM$H?|N?)4rC4g zCFTpWhFU92vaO19%In{iT4_aEaU+z~)Vy$Uxlo18&duc)6$w}`{J&}mumIstEpYBI zEZ76qDFT+BoE%bEXwmrBhwVRl0xg9F%kJr)PKFM~E%6~&Df_nfR%!potDA>?yi}lc zudcd`frhhcr#w0h5JGD5|RlNEAWY*5NzR>f-}_FdaVU8=I7h2va;%ojeZTzp6@Yj zEF{2%68}|s@NM5ps%*4HNLR^~{O;wz7-UU$|nSXBd_>V#aqHRKc#>sToGaj^$aI5^`;lkc;cElSjir2-|j^ z0X1!N)c@9iR9{@VIM_pewDkS`IayuYQ&Zg9ox8Zb-Cy;2%oWu8pUun`;YAt{pMFT= zJFD|*y*t<1-ri;*42SEKigX$ij#hfKes1sY?ZqQcC+K`h(S;VW-~6mDhaVx)DsFro z86cJDvs{yw8?@GhAgm8(33PKiZ3s{! z!&SmSX(}cmp;>!r4WdlM!<`evH`nwH_WGXXf6h;Yi?=oeIV0_Bw?unVB1DSaZrzn`v zT>o+0Yl}pCX=f*N^{JqpKyenT87vz$aP*$RBguHpF53O9+VAh`!tkq}L&SqnE~4L( zfxk6m#3U!gcin17X6Ozj^fKy?SgYo|s1(fYm@$Tnic}rmK&~4=>FrpUFgg{ znLL4(JhDgxaxYOwK5<2mbUQK&Q*Oj+jrc}}MjSQY75`^qTLna693<(Gnc;3NNH*3F zGyDvz0VMr%H$i~-#Yl*LQ)W-XD7gd;e=@t;c~F!;kRSgS#nt&8o6DA z*VjP_`h6_7T5E-M%rsyO+gCC1*I!C^pK-8 z$J1s7Rp1&5dC`ESDoqJ%l(Me;TNT77D&e>vxuW#OrN9pXD&cXHoCd0VB}jfFVSuH0 zcSAf3o&ExG0lWYSs_htDECJAUj@@F@3C4oT{*)gK<4tFENl#b;xm?g5dsj2 z^W(0Cx%1X705oS+v;+gX7ZZ0fM&*BMD2x&(N2WYYc78PQn*&~PWo_5DHk8x`A6X!k z*mk12s-JgEvGu&p#nWcaki6meS?rk_KYNnXjc zppM|ZlrQgqV*#aCdyx7Nq!YbL$P;x(>wMI zfTp@be8e0zb9g}RO}CRmTf(aF@t?G!3$FYi>?^cO}{dtUp8P8qDkUe!Q07M|) z8xy|V$eyB~WZL8*mw&O=S#ENY49T1tAI$}4F$Gvg#eT+0A5C$W2K9oR=oHbr%HX-_ zc*`LMQwLRESS3BsN0HP5o0iGIc3Jil*d*DMaP*}gL9njdUfZ~ziuz8lJ+jRzu1HgC zwJc)Cm>)2{%UopOV}Ow#z{$ap!lOR_yZu;ku8>us6blL zk#TTk6>C;1a;w}rAgKks?V75gyo^_Ucvd;8g_~Bm@xa38eg2=4jRdcE0%-)qTU}A4LQl7r#6h{G=JbE5HVsKH)<`d%F zAE~Jw1yH(6k>N`OHe%!B`$=TATf#LKhHBP$ef5mwwgA8a81m|#<>F1+6~wi1lVGMZ zMRCMCEaaSWKr3Os>PbpvKLWw?Evq%@p${pK77J7gzlDXp0s2YMBasfIx&Y7xi44d6 zJ=;rLwOY=`uZ=IPHsC8M*c@36eI`n5!bT4;lf_8E0Kklh$+>wI_T0^$hV5>>tIPVb zMX?-w>=4Us&m~f<`fP1O8mL0puWO$c6tWXcM=STO7unYsB>ZZAt+H_6K$FaFMpk7 zNf`tQ3E0@zOT&Tno7JiKdr-HL76<^Pfo{&|?h6~B$bk0d>%b@}-*IVHhX5%8 zTpwXC`lAZdIR>a4{&FVSj#HIsL2T= z7%vHy28D+rb8^a)Fp#x67L!k(SM+aB$7u}Z4A|eF$e;l%;Cmc)@2^Y9^RIK1yDm|K zNsP5V$P(_;vKPTzcM^x7@qvQE52)x_Z5KsS)6za$TK+cT^M0JP=??N-2+B!}%Xd-7 zoWC7}EwE^4B>xF*9^cH;?1Jp@FaLyu3JL7?V;P_6QVNUBe z*g|OD3U@*-&hpmp-1+*VQb8adLdqAxSBsc>AOeVlx zqNH$YthXgIwI-bQOOZJLky#Rq2k@?j(x~yz*`SCo)AxD-DDG$Ld%sVAVVj&{C1?=O z^jfMC0HSM|&@cNSM-Yr8RnUV=O~(ljGBm_kEaHcZwO&}-V(wwwk@GT)v2q@fO)?&v z#7xhdGs9+R{f6Y~FKJ8H&JRUarilzdP_mTNwlc6&$@N0TdyEm^)m!S*z%@(15|3f~ zkM5_m;4X6hb_Zf}@8o;=$^{I<#9WExE$Q*ittD{U`)SynvnN@51uADnh>M^zh=9lT z6(oh*Mrg}>6sydFKF_j#Z*}uWH%#1g%^Va8K(Ykp=w>4um~Hc{D(t+;M2aU7<7s>b zznv;E2?yK|KY2nhWT^m*cmz0F)trQ~(jUoQPsRldH3S^sIpsDi{^RLXl_8*!0-O|} zBO{>5fp+7IEU&$EigYRlXX3TqdmB>#_y(q&{X|E;cNWhFwQW+@0Vqx|e@W@x@JLE01_TQEX z5f6&^die`6*(wsT0Ay>bk(WRZT0-)o-Kq2Sq20Jvqjq6okudb_ z44~cjtU}3KcVCUKUl^!h5^}Ow9$#%_jMducnVXwWHG8;tj8j{Flzz*( zqO03C;KHrmh)cd3m`PJKrT6nkI45V;sEI$fysZ1^9y0Rcm?c3=HxWpw>WQo&2m zYDB>2NHeM9Lc%?3iwHV;6g|eNEWeNZt!VR{W2MJJA(vw+&I>g4p6^LMRe}IoewLd& zImxdxTQ9!M4REVKcL`YQZ-Yr|z&c|A?ya7nG*A)u={nHe7Pd(PK+5eG4vNU|3q!E(AH0Nxe^`sB_F3V&&)$!m=j#4PTbQKem9S00}_d z%?XM2IiuoA*|UY-H#TqAR3^u@JAy&)}|<}S)a?MGDu&)|Jv zvERQ-fnvK6m&P)-v=GxYE%2HOrylQ2%xT5@6?GO38YdD(HYZX6QTRu04&^bkUk&9T z<9(K;@pIZNXWA%dy6A`M7l~pCpdug7`}6s49k03Fh=tv_1%M#hCdDHo3o-GVi+0Sh zfL`Oc^uQ%nM-{6LgpGSIMc@W1JTuFDfV$Z2JVp$Vznwtzb!DbQl`qaYTW-dG^mc!i zn>7%SXFAr~nLtJf$`jqfb+Q$3WQTYy#`L1+8eLXa931EP)8u;4nVZ_O6Ln|SJN&Jb z^FR7~@PoWNaQAqh2vWG60y09%%BlzuRqgwCXp78$)pd&io$;A0NhMQFtY0A51OPk- zpW0E)_5`4SG~F{5^~5-Do zuz<9qU2>-a2OVhz{HRf*vYd~GxB_|5OtvFWtOj}3uLKZ_cKZrVqxAd z9ULsLHuv+oKy3!3Fu5u}RSHMUKhj7;cR;y8RhiUn!tR7b0X7Z%8-F$!H$likFbMKi zhMx}OsJiT=L6m!xnuKPVw5!)}Enc)SSM7 z2g?+BKLZykOW|=ipZruvBcrQimd^Ux75%PL(9PA}Ch+2v_wLKCFX#yF=xL$uwRS*X z1ih@oB|441S0cc;4`r!eUq}I8q?gmW;IdR6MKeUj6RsAy;omeWh z++?O_kw_($du%^)1f<0dCvJkSHcm(x*1bR;MXA=>8jb$^k(;G-s*bZCOY#8RHBUYb zFN1me^q7NK&Tfi1mMd=xTGl{|x1xeV8;-odTY#v*3WW?hpNq~0AKL9df7_wYQBIqc z3V6{efUEB}(S7jQ`Mp~-7KOblCt8N=CHk-Oz|u>U+l$Oq%C{AqrDhqO40z__p{+}Shq^Z0xzQpONv9^scsCvaq<6+$!1w;C)OExY? z(4{sn#f4Y*HWFk4X?qWmfY9v+f;~g!oKr8Tlp0$Wk%71aniyJ@ zt<{_ZG7x;XTzsnAqmnTDXy5$)1V4M7f*kZBXAcMb8~OVTyN#L4=~ z-J#;;oF^%?#a6G|bcTTniGX0qYOlh->^-P!J)KV!;5d_y_j~f(rgY>Mx%IK|X@F&= zBP{7oFdh98f_<0uR)M#YX!A340J1NX>q#5DL0F|w)vk{+k;P?STOyn=K(lzg24-zh zdhJhQ2E-_(mSxkJdn`A92Kj{!=LN@54 zoCpG219HsY2Oemk&NBtIL&9z^#Z+fBP#?2fs84R5jHUyW%V8sP?=N@KH*|Z`c3Hnh zF&6-p#Yks=QWAY-`04J_%<6?ri4-+xQAixp8&>h_bluJ5nJsQYItRTv1hbtffTkCb zp?{$F$w6SbxZPx8hl-|HBRuGU&olsF_nS9wswT;cMXeDs>YJ}r;NlVM2+av$w)q@u z599cWqpNjdFs!U!-TKq>0I+y@_jN13)ZjL%#o6l~mXb-cEAX+88)kn+%bT&?od8<~ z?Gzw+fxB)XMwnTv-n}x_cawhR0GRX2_Xa@3e`1Q!HrVe|HIyKj@lYaKf`F^WeY{MT zpU~3xWj{i|<1-mhQEwhj3Qb?N8r}1qudAIb8+#=s;0|z-SsDTF_Rih)q^r2oGUsPo zL9Oot)9XwNj?fTx7bEh+uLTlZ#0-XF%sUaTA8`YUr}3Iv`TT^HLm2L6LDB&PfCI*e zqM);($C4{HCg#()rd2eM?fcZ>1Dwe9cG(qFZ$LH0HXX0kwLBQ4-gJd+Xn0o#80_~! z3nVVwK6}jT5yLfOmP+3NF=@em12rcVO{I9~%vviYAm|5*3vpEq!Ag9~wU~Qy0XsVZ z-89dQpCIi9vWsL{v$$#`GjFX=O*jD4XoJ7NrOd<}$6l0TS{UKSOSSb`ZfnCI zL5S@GWdX>Dmf+kxOZmzAi}`ri^ZN+(G*!{EAPVk?uqtT2g&gPwFsrl(5-+ngT8x|pZU z1?F&NX!8s_!tTmf;oi-_##85Pf~oqQapJh$PA&}So0G6Nn3v?gIj{d3J1h-dt_PCy zpw{WGFUy+y>Q!lADg!AK$ilS|4$S+X@8`;=%CYq&s zw6iZt)!YyQ`WHyXp?Pr@}0FF<46Jtt*^Q)Jl2JSwYB3uXTcAl)#$FZu#R zA1DAH0PRf2mslS4$8#WlJ2l4}kUkh-AfJ`YOV^11pVt zZh0z)-Q#yhiTS$VVEUqJIih zbe63p!D#(aaV`OQN6Wyl3jZLGwf^|i-RW5P=Oh6A*~rw?l&%vRQSMlQ+tG2$EuYKB z#!@eHHhRw{rr6-pqEDd32jD?FL6T+LOXUJQyc63F5>76J;8%f?$FSxsINk;__(<>C z6pxmv_wUAnC*^DK0Rud6^O+2CkxDigMatG!iJc}}I)3=K>hXL!XWOyF30!VHdB5!J zm1ae~`QY*!z+o?DIlc=Y5DkvM>)3Nv$uq2$p?;AjCkdL&0b$tIh+GG3y6VdIE(!{EAASN#N-XtprPaPD*Z(2>CunO zmZX&bLDpG^Rk?QSeu9EQmq-f+Aky8agi51?bc1v^0;05pNJuJ3C?F^?Dd`XAz? zAT3>IyncJ1y{~iD#ae$XWzILA7|$5@{To+oW)7xy(PQj0g=J;>4H__;=ijTGmb>%e z+0(bf>XV$bQdTh9A9ItLIheC%{{^_6Q-DYErRLBII4<{KY@^!R+JFWVL}OR}K`)GA zcTUQYK;-p8ikt#JRcCeOo!5IB7KS`*V+gz^vko_E!-MhisA1g{} zYhnMKzi&#nHAj$$k#V?jbUrmMzgGlu0~h_zIv%`*qR=ohU27^#gt|}PG%(YA^RyVa z3u)NxTI)lyUyf@ScRR>S>$u6ENy1W#jtZR}H6qcgRQ6215b!ZOdkZ|!(Xp|O;L5kW zz0z?T*`hp6?P5;QIHkE6c{ktgy`oPP5zZ&XWRH)3QM)& zVe-mwtfuQBb2?I~8s~IFMPHq*-)&`f3CDW1NQ-(cdmTs*3_wG$INp!t#M%XjMY^+N zg9O3a%xi5NzpVHokL?e|UTaWGS=m|F( zsH3YTyj#0llCIMgZtN1lfSdWw&!;A^Wg#{Sw;BNPUvE`s^|47^pa&z`xks+F}C7;{Lt|MzZHSWCKsVWk_qj zcp+Z4S_3tuas$|85^9Un*q>6sSg#hhMky=GN4t7gT@{qO087AmKSA-O=F;QE1m8i9 zrH@cz9P!L0_1~Vu&ew?`o{bQ))Xrw|HZ;aZtrv7nuQiV;kM3{G$J3@AvB$~9Um4v| zz_IPguKl)Ny-kRTXP*mZcs`x#J~;!6blLIB#hW*8BCsq_F_6*FV7BHl%H{vRx}NY; zj^gFZ8|jh^moMk*Jq+G-?%QsUV-I`*?k;n8yA{GpsEFwb_=zKX%9g{gDp5I?<&3Ee zXB;n~Eil!fv`ScmOE1_sKg^;NrbwiKeE+?W#fqrgU?t;-d(;e>?uCJO58+ngqpLu2 z_jaJnZvMz?g^~WiP7u{MH-2enIn6zJv_HTe$VIE_tyC2N4Y^22m|arxHcLLishL94 zVPpC(oRhRy|Ce~*d-sn~`&(9gTA}E~#6+cny|-`|en++nf)nRI=MmF$lg6+c?05cWpg4%tY=6d{!qlA zLMHhK=RF95AUOZX@R`_c0n{~cdUhPk(HTj5+(xl(W4LMCc+tV#v@KGX{?v^!3_DVr zLhvtmqbfA|vai%FESOJv%n^L4-g?v}dFIm+#bAFhGzn*)gPC9k1Uv;$8uOM2s=rHp z!BFv7D)*)2(ER~8j8K4d0Y1oZwB(r&kXcssV}*D@Q#ZfMEe?*ZIPH#nA_3J2OH;#_ zlm^{Y95aP974G-=Aho_rIanlIc#_~Oq6s1yL(t%{etGtc9jaG6i^Z$QH90F~y?8z9 z1mRmV@EVC{m!xH%(G6AC#=w5>F`Z``NvNYz+27P^-#I96sm2M3%v*h{Bt z&rUdDQCjSk=d>+6ywm$%8kgU{t2RG=ys^7BF=ka87IyhE9^OL*1)I{Th0bJUFPp%6 z|9Xd#P{37Cqhi}$w)ID*4&YtBgZ7ED9lOK8UPw&dzg38*6RVG`9*y~R`&yEd<)0ap zL==zG7I__h?T8$?;*>A(chJ(d99i=`jZwuA2sjbw>%>Q17AhMne>CvT*EprNw0)Ut zi`Ni<8X_7*3>Feqo?JsdMeo4mD|YHDum3Z*?(VrRLUvoje>e(vh!lYMh2&BY8q0@Z z`dPS3ldWHEhzee8vx&_1_MdflQ;zQT-#ZfFbpQ;ebv38Q(!tHmuGGNRcJ*P@$+&Yj zxBX=GTv<+b_U!WVXjwzljHI8$sox62r|)xwn6vQp^1xZqbsO|hF~4w};`p{TmN||K zHHGG$+qD(LBz5aY^2KW_?wZR%@q$l9@u+PVsA=zfnOQf%rN}b#e$*a%f!h_Q%;~g> zw*r^WdQ!`t{;Bo@&p;~8)G%}o?%cc!-|6tmfu#BuVKUpx{^rG03=9nKZh|K-+MS|mfMP(%jZE_0>(J$-BR^9XE7<}IX`>J-pv9X~6L?q%I zE@f>dQKf$mGPCBDy<6$7PCcg?s0%>tpU0W$lhHwKv(b1Q=0NrR{m^G{Fp7QsmVzTl zn33Rj^y&|<+5gh;9CaL-vQ3VT@T@$4QJV(1q~t{9k{mx_DD<|LqIS33uXAv8S-HBB zA5awmvm`Z>6-}CYpOueKb?l?V3EJ~_DLcD=y8e}*N#?gKeuCBso`a`pp8wUL85w6jwhsPN0dXE=^jMDW1@rLr^Gwe@Xe_Xrmf{P%fS$4*eh(E8yF*hN5KDPIOj(f9oP&wz`K2h}XXf(u?)w1A{sxmNf)P@6pQcHZgzjdrwk5#FFBLQ-%0MQ_N zG@FIX{oc^&+#ShtfTnqGf}Bta(e%dNN;sX_nf9yX?|Uv9;$9O*C;h&rZ2fllmhDN} zv%YK55Ug^W{vbw8dabbI5>QKfcnCqF-z+&ygao8=*^0>sjp`vdr2x%$9a#y1m)5!p zl&_(!4&H8+$B!GK2!b&5-U&OKR}I}z>bB9?Z=I#1W%+XRM`Mh#1rejfaG?D{#CwB8 zX2@hBN>R+?uIC5zM(Lm-hCr|3jc8CGrqyk5wEDd=@w%?4e_bPnuo6t{&Z|<8Yq3Nm z@fP=0$@NcoUqe0K{IR)b-iG^~z)M!i9e;#O4OZTw69jOiAlu{P>l+a7zuQEnya8(m z$>`m_B*bU}47ZuNxyC>ui60C&e}-a3AL&L@!UIUD>vN0(jNg&oeEHLVJGrfhJr zO*+Mg=ca$ZH&UxsIM4o4{25P@CoFgR25E$Kor^ouJ$NRUc7>jcd&&fy<=-*)cH6`E zx2?pn;iEo);0x$p5?^>{j}NxTo(zZX9~>ZPF?zJ`VE$8}0%Eo*Vq?jWOWzx^*Svd| ze9F@zVRidL5tNzFIBb`6MZwecHK5=~OK7E}+Wq9(>Grk+s9ysz1IMwK+JTNRKW1AY zCd`gS#C*Xz!C5VoF%5(=;A;2^bw3HlGRh~fh+FeM+nd93J{+wYBwH{GT2Y6cXa|&e zI%P9#PX~s!x7va=53z!sAyQ%wGOzgJ#YyUC`C;=G!h`>AP|iLBU1Z>Y(fVJ zC3|-!1KRSr_*wTqT7MR??C(gP%uyFQh7?Z3o3ht-q-8fti-Lsl(3=yHVu)L0)k*1L zjyi9(1t#@1xB|5+s2Q8y2|dy8He1iPxGzh^Aws|~Av8>S`hMQNv;U)EO|A3!sSc{H zSH9Ri)>1f$9a_|Em9cO+r|>`lMOU)^;Hl9bxy+1#{BE>Pk5nR>?9BaPI&Yedv!>lm zBA>X3K-uQ)gdH<0HHQnDY$Do_ek_(4mIlpA^aFePn!1)sla#uM(|V{&-UG?psv3;O zYmm!>GXmth4}Q1QH(f{v%yI2j|U3U_d|>86C@pPJ@dA zgCO|X`t(afIA#m`jh{d2lFQTBY*9aPbQjwm^963nU%Wj~cr{60S)cA%cT=4h9uF7@ zi!2dEhviLs;@H2(a6*|X}Mp}SY?C7Qxcnjt45Cu=hL4qlPNnPwX# z4Ifq|6g-;qN^L(hH^$bj@N&?qqU{5N`u$jMBzF#CwL4=&9}~bE{;NSEz(TA}+9e;3 z>(4BC9Oq}O)5#YeswL*QhFfKVVB_y4M++!?BB=*B5V1_z-_yElQXJ|jxoWn#a36&q zzO?{*)ZF^>?V=4&&*CIVPf@_vQ{Go@ zFxcDP8N3fwT;w?@L>L6u#P{SoI8GUYIl*mS!*Mk@xqLTJ5tQTWKZhs^1_Y@*ZJ$z; z=|63T5;7Dt(684Xh9tz6%3EuKKMYBYpw9NJFGEQ?A6y<2;plKe*he5CD3L1u5{$TR zmS@%QBuF4cwv##6eG=bmRA^$mJHjnDOb*Gio@`pw7n&O@g}TZ3iIRmhr@?+rjad%}r`_4e&qU~JkJdc7hz{NpfH z%Z3{?^Ks?);q%7oRL_~M8c52;!xW(!S+UHS5Y+tmSY_Y`$aa<(7Fg-_yYE8L8F7h^ z8nM^n2a2aAiZW7jTF`0YUtWE~{+xLhEK4UV7dGd*eC(*H5H{m)r`=!bn;U{vP+caF zGK#~>Y_lnSdj8b&uDwQf8J`1k{_oZs9lGu6@)jyUn);rve*H2XAJ?8dXl-iZ^4Ks0 zoxzWej*s?JH2}+2#x|tX(6Baao*9gO+Ss66?B2TN+{b%Vok{n11z&bjC-p8QWMq<^ zK%_eJ4eJBgjn4aN9wkN(Bf6l@r}I7)^Td+t?KvYKqsf;a8e3wXh`GNOMGMofrWRVS ztbYXr&FAH0sGXM?tKS<&x0sWGzprjAkI^3Z~z!+nU1S zp!<_KxACalJsa+zvQnhIz5Nar@%#Mzh|0?NtS3G`K3rGvZSz!yOG+<1;$|bJ{G|k< zM(c#WFsR(43+aBKp|)eI%t&?96?~kxIXM;0Jl+yzzEE#+U453;rS0~VPTuX;Ce%3z z;}}+JxP^N0Vl%Y9@{E~qC6%A_+0wFnnxCV&fDwzkml7!Msg7(36%_2X_P{*>zdJ+n zJ7;Ihw?u-kBYw@fK0V$});o5bvJ^}CzMcgl^$wD#Z{) z`T6?alYmLC?|0&wt(1DX4)h@n@NX~2tIK1VEMaCYZwtB`7vbyY-*bJTC6`rtDqg$R z#r)*4t*4Kz7c1JQG7jY~-k9NY=ZwiWrAqhOojm>`#>@z)egjwI+j!S1&1?X8Ov|qc za?lXBgK9YM?@|dROg%6OqI3ttM`dS zQ^$osFQQiwcZ1=x@kzZJBrde*@pc`4b$u0wtFh#_8a#ETjU*&J?0Q?3d5&R9=q0n? zI0j@?$9vs;Z=Bf<*5ghpJ8YT2vkFPn27;05vOBMrWv_#t3v!nzL#gtFxIEGCU%x(w z^tiFL8_tnu{zsC0LrV-TN>T zL=uCf9ClMKgQ>q5YBH(9aiHYhhY0xsbFgsevG=?>==cI_tqA>BqGE!P7G{NPV{538>$LI%CZF_C-naw~NaqY9O&gwaKODsogCKCL@vPs&<}`8mH6I z_S>b@cx=HnJM+sQ-V3PcghXk_}n4uq-rd?$DcZ5)NnIr))b z2}c1eOMLrQW?z{?Di2k2Kx9Hx^QEk(zLKp1Xo`*?OFA1+LO7aWaWH~T z2^+1GOpxv|uUMI$%a{X@rLHhb{(a4@-z@hteXf$twSF!kg+Fg$<2`x`Zx_kW0^&of z)QSS!My9972VzHmiglek`H>z5t54F3%n#pPN-c6J5sYQU%9S);X_U{ zhmV4=iaR8 zGW)88j}VdA1_~M-0F;03uksbQPD`FxcaO>J5W6d=GbIr0&wXxPJdak7T4l*+xePA3 z&ooJ&?0I@^)U+pXD;AF}A@~Rddr6+^hoR4o1ESLzL(>_3WtXoc5aG{n1$>}8dKD^w z2l?!8Sd2cU{0XorLv@&hNI7!;Tfhf5PdtT?T5$cuud)C7&QAs9%wGne^l^2OZ~O_G z?i2<}hotMn>44qZI7+)0zs6>~_~Fsv$P(XETWy2+Mk2`@TwKKdf>S=R+1a<8oSgPy z5{_mG8C8LQl{<+7gy2|qyOOjuyl_C(-O&aM4nTxtb)&uWYWzX62NH1^Kwv_s3dyJI zKO0G)Uhqz%Ny)R~x5wtz4X~kJRejC@`ZJIHF+GKoDeXaqKS_8U;cFj2PX}T5)xE7p zNST~YI1bilIOz>?6g2K^xzF`tvD?=foL(OQk8u^8e0P^!U4(OilTCFnhB$_>rdKjz z9hjP)!GU6CuOjon<^GjIPGt*&yZmU*@fIkR&zUd!W=QX4uv`WV#3I1Mp758rm~Fba zO^<#c(UoMvKC|n+1~L;%(2SU@2B^V=`iYr3J;W|!Mcoc-fMQ_>q+Rb|YUwuNnUsCv zG8*d$&N*JPioJo?qY4iO9T7I$i}j)Ut5~Xoy@mWfkO%X>c~zxatGO^B%H}uPP$vN$ z*h2iam%~UMIDpH9L!IRyC^Fa0XTYe19e7!P(fdN!o6Y71?zUpbIawtA4g~Viyjw;W zB0KhT?H)5@GgdM{#1Hit%TimA{@NY5ussIy7MQA`K%V|<X_+1Z32K8XjtJ-B1IzqoHdCC|*{ao=YXfMLspc!3=J{o-R=8RSUOn zwPd-!7yW*2e*JWR@^ruaH_IpPqT2;cYq-_mNkCGdVClHzKk+k0-Jo(aS(0(I6ONU< zH@QQ=;)`h45vRkg?{6V5F)ngD3J`66{L)n zK`#x7CM(TRh;|#qr66H$0{ZOOTyWK{3i-vK%w7}*~^vn7LFpv@P%0z~hP z8P)Tht*pA-EN>Ckl8+yWS!ocN(gpK8SPK|Drm@1p!+~>MZ^>7tsn|ex-m~QI!JW_C zhJ5cpj};TJ-{?g&E|u(Ymnj2 zTyW~ajYW+uSZsT8)gijDW0)Yrd4<7!IjSE0HG48(4g5ewqJ?4W?hBw;+~p;5g7=81 zxS{0?UZGYZ} zqL_J9L`m|MK8Vx<&RtN`*1nBZL<1BUa9)8UHlR8T7XhEV0EQyWeXVceQ2@k6Qa_+n zf>_X4_RP>ug7dOH@E|bc0>6S&J&(QH=&kVO)_XmLMIAuCn7xN*WLSQDVwVT(&*Q~K za-?J=SPOYZfTk=(z|h)VpGpUxDlha`IX*ej5#I$l1sZ1Q5g4$vu?@|{ui;JL_4M5P zp5kfgWDmMxOiKq35=a(S;eq;R8i*|8BFmO|N{+7ACB7Wmi7Uz>y5!d75>nFp;_R5% zS6;%8O}J)PK3jm%A$Im0MC+8P8kMUhl*$%#WMtR~1{7SH?olYMr%&5J(80pSmYJX5 z@ohpsNm6F)rKfOlj1#zb3iQH=C&GX|@Gpw_JHNE#yAQ@7sHb{}FxZ|XZ;uFoE*Q8t zbuY_NK{5x^8SDD7J8rH(^hJ1X;JSe+^5*g6R@FXOD&kSY5QPD;>~5`!^3tuJ0WGbE zh<#MRB2K63E$?9V6fT3`v7`3@;~y1RnGs=79-VI^UeAD#h-G3D`M8x%YW)K!r$IJ7 zeyoX*nj(;?nu=l$1G889sO|IhT|`KF7$s1=t#b2LvGK?k^*p3Ne{ZAb(@4J+#kpSs z_Q5p0ne!aOKp}%Pnb4ArpZ}mRPF-iRV7gm6G*C&we0W7i<+V@q9LfiZvc=7IuAkWX6xiV2o4-zoIuvh<_C+3y*|IaZrpkQk^E>4T}2!JKMsF=$z=77 z(n?CrW9aGQ+1{#tn}UjpYVk>Q5ySUmy-l|sRlxLu78h6cN0kDj&8tA!&Rk1L@O?cU zq}ET>Xn+TPtA!!8XjkeXJ7vvRLZCB2vW<#%sng#&+a)V~M?f&LL<49WG|hVmMoLj?ZNwqsQK!4!YL&#N$Rp0T$-U9j3{6SPE z)=&B$W1>B`?tASc(W*vH+&?%6^h0or?~2-HK4^RRk-Wc%wK#(PDLcCgICY^AV>?hf z2X2z;jicwr=f*<_9d6#Ld!2|9ghQSg&weZb0~@>Ut0NVg(xN1Ar2)rJo8G`*$TQf0 z?qTX<->NZYN81w!szFegL~A^e_fjQ*nGFf;A1t35J2!u)zvUEUn5_j#>-1{Ib*O0p z?mRv!EfNj~_*0FT*8_Y4=cYdojW+QagP#lW=oVUMWYmNLAjrhzc+1ZMuG_me^LZ=s~d%py&2 zW(nu%V!!`=$Uy~o*?cEh1p&7c!qEXvQqW1Yw9u#SPl1KA(CS)Fe$9aY%OGif=xk+uXqU z4*S9#SY%@xvm2DIr`dRQIf&k7aTXF6*M zQ%cg{L@1BaP0+V`_DU=Uf-CK1JD#LA$!z;HjRM5bj4np9wA4F2r@FDE*r7zb*P1Y) zD8cWYdpo45i$7ArLExUR+qMK40NaI`KXt$nMsTi(x?!!iW{~6IMWb_1Zd0UniHN1T zHsPcmzn-aH^7Z)DAOt5KoS|1Ze%U(v@{`9|%uEmi+}1%Y3)7$D_*n^}xY|MWXK^EIK`((YQ*E&V(%F#rU1> z=1VVWPir8Cd(RT4=<-Ym+V5rPb$~*)c9r#4vTX%IOXZjF8j&%Zg@nWdm~)!ql_2^rUEm%hQW z;X(sgsU@0aC@s9(8+yP7kn)hV*7c3wyQDPs7ZH0pk_S%P>_Pcd3xwzQR`!V@EnR+V zBWwkE2)Ynr1SpMj{3b1s);GZA1-zGwJS@UF**B-(t9~{1;|Ah+{(s;r&k(XzUQRk& zF;Ta_#Cnb|p8$hoUJU}9pm@ko=T>HhxdI7R5M7vqHptY%BHd-`$Bzf#cy)wUEdv8_ z!p;jW##z|Ya7E`UMc+Ku@5cCj)CN@}+|py(r=b80Xaj~$lHPf#za&& zE;7=EzCk%YUC@N;zfdvIo+&5xHiaB)smD_{eNp>RRt4xWQXqf}+Jsa$%0-|?`n|2D z`*3?48(e}J^iUBJ5!r&$c9HAK;Nvpv%PXRi9R2{dKyB1%wh5fsA@m!|Jg`?;KD+qU ztW0mh2+q0Jxw(6`D#F9@kPO9CjW0A=O4$&Gu1iv?r-pSr~D^Cm2X;eI<xFO9HphB6JF)L@~R0M-Fzx25T7|s_d69v40PZ?0endc6|Z>_w9ksgje_=g zk&sKELyPnCQ)p@qmHA=iM90SuerQGG?BTmD228CWIOD|x8*|z5Hp*A)HWM?)VpXHC=Mn&wD{ud|4^&7rRwha?XDTyz1AWt)W<15IEr~XM)=Ko1lo(a)F zqd!z+WMnl6G(9{#pi9@oCr|n>?fF47vI=O11x*kB0YHc6URZc@gE=NEi-e2}%<@ao zLq!yhQlHubEuN2b%Z;&JeRs7PeBpV6{i$8G1#kX`lA}aS z0-A4Obp81G`H>Edpc*EnqH2S~#y*JBRPt75CqBifKij_1)z`A%N}&%+Y< zWR9#sAdA81kEjp4P;5Q)g-pWjkC-3Wdj0_Zvbdepq762_3xfFO3sp43U>i;iFWX*o zJ?B`odGH3gG+x!Aeo~a4tr)7^K(A+MHgMwLcXmBw5TAanO$00`V65}?;*rT_UK$iH zssr(xPymDg)xN7zP{WhFwYUvRcP{yh2;TXH{M(&{D(ka6775)RO1Xze_N1TU5se z@vad9*n*EGL%K_h4G~J`s3OJLdC!5ef@9Ww<++HVxZSuZQfqXBAb(Ad2O0zA}Rx^052}eVV9<^Y_L7_ZMa1 z__Yn~8xT2eLH!T*bi4W2^GiIM$VDcXj78d=y?{Gu6icDqciC0>SHT0{5cguSZM^Fh zq;;&0k@7hyXkSs}2msogoV}T5%wa}fF1YqXsO$@_7v#2#W&sk57zHf|AiIAaL0!7J z&QEjIRQq1VTJwT@5YK97sZZ$+aTpW&C48jT5ctcV@bk^hWn5<*o`83Rkk{<~679_< zc*`OO67XFT`4xx55Xn}uyM**&%3yF`I0yCLYqWg3Bn5vmA2AYcyAEu(Dc<*h=);P_ z2Yo&2)0vL-GcQ1mGKxF~13Iu4vAGHiLgMm-o#8D^sOG7U^M9c<7#B#n_MegdcXg+_ z=8oPV$rTuapTHm{?Hd~kIVjwh-r7*#0G{A*0TjCt>>_N;koMhJ{>BF=Uj#Wh$f1bz z&fRRB8LRC(!T}~zzHa9`1b&zV*;Bzns=5`;oyJa8Ok~O<4j*5BhWxg=8_u{e=6*}f zyD9=41k13JZsHUNK^rDca=x5er|bNoF9DjSgKkb%-OVoK$!S;d!K2md=d8lxN}@P? zS>A`48h{5z0l$S*gJz49gSYyTkuF-UYSQcVP#HjdoXsBq$@Lef%0JzvAgH-yVdUBfr@w~eUTPQ-f`vxNX z{a@Mj;3bmu(Q~D}^J#8*PtfU1QA_kgNz;Xj#{)k*YHOx2jeg`vECC0#Zy!^TwPkmt#Ri%#U4k@-m*i2^3EulsH>`Uu z@c;ll_SkzMF%sP=4`5fnPXRiVb{C`yu0@g-Cc1};Bda1_jT&3S#2C%4C=aRJKil`TMva! z9}`Is%AJ|t$QVl7moxHw#BE}r-F6nA^LXmUUFaiSnFqIygu+uQM7NqR02fpMMswx& z2L_aD!jhE(0${4J*Byw0m>ojU(<2LN2p@OS$J7y(R+{n0nC(T)K+mg9CpT#K zM2F<85uvt@TSXij0v(Ql`qlP8{CyNqAF}03P6L38dk5yX<4Ms)Fl1hsm^wVaTuP15 z%MeA!7e{eN7Zos=y}$sB4lG$tMIQ$rsly8Nn*}#B)Vp>#v?rg7Tf+Z?Dl-G0CDIYY zF~Se}(|G1sPP&8f;X~VZu>A^|6JEYw@B(g$dud<*;nOz{yiV0BfN>l7w>|wC`CQE)gUseFRVWFd;^; zhKd52dHhVBCk$JY@UofOz4xW^R_?GeT3&#{nwHbz#f5HaDaa6mVcG*^l?py)6t#bD zN0T(dNR?YSDT#s_FXRb4jICajVwQ-J-(-eBpEdOEo$vO1-3rQeL+Wy1hIIF>Nu}Bz zf*fea=uKGggb)Sc7F6Y*-1eAne_p<MwW1wyYs*2;_vj-AS z+SEbDu=|4jBjtcrl{73a%qq~Vz(oE(d`P7BT#*q8ZLC8GXQ7Bb)pQlXIamk30tmAf z#1(CYr4d&-K5_r&cY|5O8X#asu(svb+}DzcA*Uts76ySxVr}yEvv)B+dJ!D91gaQ2 z-M-!EkG$XJLYNDr;|4iYVNQH+P9{Q@9oYJY%y&iYB!<6aTl={Jj63c57o?U|Q*C<{ z0OP>H+T7~pYdLejIc0}wwuuj5f`>+Mw3X+%u;_~t6BCXHGFP8i<0*tL8L@~J^GH-@ z@G9Y^OUC=pF^C~~_6!_@0czF>2z>YvG>QV8ssiw~w!IE`z*=ja(9a5^%?L+s@T&f4 z-BtREB0;d!LA#}jg+RseYD2sWVP@|`U==IT4h#iTR~B%^pd*-lC$+!!1pnZnI3Q;4 zX~kp)1__&ZecSr*b(~8K8_3JR^;39mOK|oEx#S)rd_V_3Rc{D*gUBkMI`k1kWRS0? zkpm0iO9J4c@Y+MWwQ_qt2x++9QCzWYHyX#Vc|so*9u;Z8+Qy9JZ%hkTjp*2bY{{(t zPyKms5fCCGr^1Ugy^wSRF~u9kJrrP|~|*o`1sIu;(_@B5(jaKkP#Hhl%9n^Wfz%_s142=#^|(QcpO!l5Wd z)kS|4^c!7(RU?FpH3i|&Ot@*Ge^adUWe&*cjU3IDCO$(}Cnf1DWH za8Y0kSWH92j%U0zD~jXl%^@4A9>$a-2?Z6dtK^=R{hk&N$=ap2KbIiTwNDEiSSn zmo!~}mD9OGzf--{W6|81GSwJefoq9p?2>hhI)q3iu2xOH+)9OIFJ%hPK=XSk#wIII z@0|Dbf5%am6liMYv5;_r(tUgNhkU}GOrd(I$k6U{=uhgNfQN8j%d607KYJ!7Qb$Ke zVX~#9t!g`pC-y3j#%!+l&Zo zi{cW!!uo2EzO@d)ncgP#Fxfv`>H8BFz>)rXR5RMw8}00vPlMhWh>1z_>RtSA1BUwf8*Ujd8D&h8=iL{l@J=Z825RmT0!P6~F3@bIn+2<(<~ zjpzdl0!YRNa3KBtvHM^D*VZZeK1)8jQ^g*tLPn)8dFf{)-;ehga5$xut~^%xob1imEp>1a${YDM*?0yqmvl#H%Er@(V&y zdU}@LvayS>;wnOXsJl0Vz_dPq>Gx%4=#y(-pEF%&Xz zXv`}5{O`yWpMQCrw)9Sl_{+9S0WiWjh81sv+)iZ41Vjx=dEMSS%gvRpXH%2Da)OQv zC)j77wceOLedCQbeQcw^P0VG;6)h|B;iY0=wEWhsjqGR}4)3YrhlKJC6%X~D9#1KL z^B%r4a`WZi=$GVH*BG-+@Dq(`+%eyCwce;NoHD97C~zC<#Q!}>$uxP!$9s6-iF<(Q z5aX>nEN5amBhPv>_exaG(C7<2r=K5oa`^IBH}{)0Vp@T6*@O*^p3g4E9(8J-Bf&Exq9IngiRfhM#QcH^{MWk>GqyR}z?xN~e_# z&muG8xpcao5>xK%@}>~8r89o+fwVr)r>jItN{x|beVhBGfgdiC%t^_xEz~4Ka=kSD zdQfQYl(4Q{_3_CivHfme%daj>YZh2|zZ$Xq<#Q=}UH`bT>_ITrit z#o;GUqLL?vLnZw@&l6;C8w7=hfIm2{4w??byUUB<=t zmv*`9XoaJn#Cus%f}cVVKRgh_Za9(lNa1KbeWRU-`R8EI(h6xPiISTwB@6fk!$(JnsU|;Z!^)! zaW(wd&Y6Fo1I^AoW|EnXTWfbSCzhq$zTwiOcQh7UC-c$MmNG)!$e_nO3~!>8clvr5 z;P@kgD7bB{X+=lLXxY!cb;|8+!|2i$yysu7m-EKBj#BkJ{4}Xh(;rx$?YlT~sAUSZ zqtTA!TqJr|VjjGt`8MmIXMU$f)T+)pS$W1K6Nl5+4?E9~wQ+8Uuti*$HCo;?F(||< zdt$jRPcp4(RGfnNyc8Mr3(ZBdxt4q(gM=$Z@SuN(g*2zhw~mX6(Hl_o&%S2QQJJu6 z-YSfmSr=8F3thoA=^8fu@loujl=LF=MQj1`e&hL;IZGaIJ2_!*1=3TW6|Sb27++mI zLld~YJf^r1$07c<#CNG7%Db8~tG3O#&x&VjYlL2)(Q$^GB`zH_2@PcE(A@A|S>Cj> zWtQjcwz#N|tuKw{Q?Eyh3XQhL;aq^{y-We)XPbH10X}TsLHXusStdEZt%g|b%+<+J zjTdq`P;R;ONu_iAS!#DKqQOeB;!Jjv~l(TXz*XlkqD9_r9KKknLhOnZC zmS2G!AAeP&dP9+XQ_PRn0UT!J{vN~qAs;jTwQaxbr~lcA z{);!bypxmqVFPL;Yl08HT0RmXE&Wi#5f|e1ZeppScAIVEaN%*0OXW3^@Qqrh9gpRf z4=Qa`cYQ(&l%-GZ-6k;^OuW(2q0~gwy1cPFXiQtkYqY~TueEKBV@DI`ADr{i#PnOs zP!?&A`m#&q=2F1zV^^I^R%7DmNZRDj&FxRG$He9CI=Y@mZd8&iT&CRB6x$p>yuP-K zwke8&;}5HKeb5VS8WpPf|~E%S@^)nKH}?i&h~ z(O{~@<4e4j{{DV$M7{lcV;H(v*Yz{&{3hOnGJm0o=q7wJccN#8yj%lx!Yncsc2z?Y zB~^pJe$tMly|KlJ)~R!sBk(Yh=YB-pf%3m-c9A|+;D_@&=Cx9Wjp6&!eA6%6va}NO zT8~3TY=rfr{El^lzR$DoZ>bQ}h&>53x@2`HF}E=_lZ>P#=B4yW%j%V)Pq~DJ_8cv3 zUSz0lUvGwYNs+HAydwYXT>rz$L|t^ln8c2nJ}Nn=HM6La;H;~#ZYbE=aon&ey;kf+ zLXBvout}`LnKWHc%d4YG-3)&-=kkrt8SU!YJla+QS(H?{ZdmYEZ;|CA>i#fd2F(Wv z;qY3H8*)wAH9GrdN5+C?iq8!oQ>{Je&i=JpY=&Q&h6I64466|k3{$$;Y#{7+dpL5V$;sTCtA!h>G{R?=eBLb=mf>E zS2b4f?Jn^Ixoj$Z%wDAkVh!Kp00QyozMn1UR+Ls+)r670rC0nzc*}I){>*c zj-1p;NN#Q0#<&c?GWCNqw3+D_LFnDd=&O85fA(h$`6VU|UiH1c;^Xz6I-NeZ<$WSo z2UT)}s2nqs@QXd_o0W;Xgcl^lRbG`=iDzzfx6_cmhW(-Zxfbn>>PUk+L(~nXT1qmG z*33TKnV3&Y!v;NJQG4n}CLge}USG*S+`OT2;z3H*%fxMALuyAKgHmK6(jiH8%`c-v zu2mCOUOTEotAbAQNeuCUU05$PqS7rfkC3GdNbPEUqFG`=_~BXYGY`0bv^Je>?Ua?j(L} z%M^Ltza`uw|&fmAe6SBo}7ux?k73z~yF zBIZ(}2p_c*YvVN>js%^$wZ6{%vZ5ZxNQWD^o9uhlYL#3s~4&y6*f4tq4A?pJjlrD;&T(2;GLi-dU>P2YT% z?rsDO*cWfK?lkaMKG4k!Z`wwi%@~@o3D9#-S6#>Lr&)z-u4}n>4rYqe-*>ymtH4wXzmHL{mMy>@vEdlhH*r>gKjca_^11s+)9*}-o5ox zXcIhtw+<$6ji_2MEH;jnJ+r=?e9|wFjk-1WJfU00HmoyDBEfJ6iTxKN9=@(ix9gIY zDQ>30-HSudnts2;yrSq~FUR_p=hCe#IY#>jd@wlfYP(!jexD;TU|MFP`H;*l&8nfh z`L!k2iJMZo!tEAUs;}kZqF6&_E%#XG(mg72F8#r_7kxE1{NgnGVi5)%<*uD9OuC93uswp5Cz zN#%yCG08E6URqMUniKBN@u=;7%Uvbn^H0iL-WRomK%l)}QT_>&t5@folU&W1RwwA` zz-Qc0Ve#$@{kdx-s+=nAAIk-JuMC;DV579zQ-?LzDvo|ke!D`OXDcV;eBpMI=*Cij z6)H{MDdN$fu}j#M%*T9JwcK?M&phUmvf;|PU8L(^}#c(**WscZ>pKiSFE zzxysDQ!3kE^3=!@UH{XraW@tu8Tc_FTr9G$V1>gE#gl{a?V|eVcV+|etwl|51LE^o zuWyOMrpjW=ms!&DqF1)tGp$zAem(yO7nN*|WlU;*^Y16@-(vZH-WE6No_Ctr-<*qf zwr4m%)!qyV!M#|@bUyZioXOU-<$8%*-npD*MIlv-hD(7Y%*zV!C|-=L{Z+{0b=6T; zD5rgGl5_=lXm z<)dW`ElKDw2 zqcc*OZIQCEblw=9$^uSZMwu6~0p$+Dzg`ef4KzRa8N{StAXP0JAXJL2YQz(AZiD`- z9oj!WQmMamOpGX#U`Mula=>fOzE7bHFIepB#RspS7(3)&4m9o(Gj4?EI6qM=_lpRY z-jL&n2RH6L`bf$e^JqMpVrc&RE@3b;zJQL(WPd=IIbM4bI|MXRa9+EW3_nyk%bh5H z_N=UlK?WugMgiS`kRoEs`({6121#Y&2i)R2KdRE*&C&Ok=Ox?6X!+*ohfTgUt$BS* zL2U~{+f_nF--HcIgpK|xtsEBjmh9wECPz+p)4PlH;^L)@09UM}n82hl9_5+l^`ddvuY=GM)W*>e%)P@xMyzG_n= zJG%piOS8kLHLVgG>}9pp!AVrEW)S;t*U?_B9X8>MnVS9ck@UA<>} z^R;6b@|ee~RLw8Qge?)rr%wIBvGMUJdnJd8K}#6V`=dR+=OJc$o5_rNGWeD39&gCo z3Y9pX@ZDJ~9RiUZAlEdDoybANs1e9~nI?EpH~Ou#v>=+ey2xd5=@Q!9oP6ltfmZVu zZhVyh(8(yxWZ}KR-$zXK*EpfBzH*mmGEtkiF<{_#lxyupg@#FDOU+D#&P>G3+Bxw% zzx8R|Wp9c$oc(sA>5KHZ1s>|k5VK|U(XOvVq(nN2cLM zf>QeZ*T`;t?5uC2^J1}%v07_)ns)nqe^HkGa|+b33?5o2A`H#U?q(|=hlSQ~Hs>vG zrb*-od0(1MD^KRwqDgSDYI{cqQYUf7EMGR@s)NIz-^t9m_P@^>SbT_bD<~?u_XmWG z^TZtUsyYIMyWJJ%z!#%PtwzH(=7v5qDYR-An~j}xWskG3RL{~?vNGi1vcl@%vB3wO z!u8G+Ciy>bIlxxP9Yes9LYOG)N_C6W%YEkn{t{E@@Jm)`{E%Cd2v!9sM=-5$#wz}Q( z2xf7aUFkH$QtADT8z1A4P`sCP|Ndc+92SIxM9RS2!Y5&#yor!52)kBZpR;}b{JH1! z>pM=Bo^8g25r8PbW&janLY$>tpB{7A`=W&f2Ivc%N~WGXEin>_H1XNB`IZjE;sJGo zU!NcHhCW;E8()7BQ`)bmzsQ4ds`5&Xjx&f_a5A_e9g`v|g@abC?{su@B=fV!5~y=P zYed)WioB;I1o`n(IC_D0xRG`FAZ{XL!_xfnm!~JqJzNd2Wn`mh7UTfCOqZs-7 zKe2XqkN>!J<3j$uf&!`sjZY@$twQ$?>P0VKe$Z7#BCR$j@nQ{>qjGXcD2WPw&w8AiUiNBw z+6#i=&;b}z>f`4ZJ(lI_>S_aZdnKX0T5@j9L}r_FIdsI?+e<`5MpnT(Vk@1063&v- z#s#zd5Hg7{<+UvFKL!IIP<-VaB#x-nx($(BQ&(0ZBqSwILJc5jIpbQ%zDy^pv9Tb{ z?@#<>SZ42j9o2A)P(wkwHAnz&4ocW!7OJ|!x@4mZ0b$)@w$EjpEsz5DCWVOOFd+-A z&-AjK>LX}AB=ZtmPGahzuZA?#v&GiTBu18@>c*oe6iTvD5u}|up$;+y?&_D^-1V*s z@dL4=AC+>2)d(W8va;|X)u^y2!KtA;-8;&mTb!_D~p(B$t?GV zRykR_xZDNGsrfTk1#z^3_`1&)mtXh2f>{2Wp#BbOxv@{sWNCp9jNbL*0!)G#V`LkK$mjUpnd8BnFT{l^R_ETSIh-K;KjEQho3Bmjj3 zU0((*JG|xco@!5?XkM)irS>ki$bsd;g|j4uxcdT6b8M@k93qOgIIohx?pm5gSv6!5(a}!;k;eS;Q9Bp&%Dh6`2A!) zbHuOU+9qQvEhFP~&%^Wm@7^I0VXr12SGC{E+xwuD)Ey|$Eh;IY{ag@UMFWQ5X@yg# zZh9mDN~62GJ8>}37?Qy7D57PpP+JNx_eGB7=fEm1$wHtX!r|cag@>Pu-=ax^FTsNV zh+nz^dpVn)Aq**!fLD$dofb@#wfTRS?Y0Ob`9!bV2Bi2nAkBC1;0?dv`Hx{}!j zY;8!-0XEOdlk(`_g8TL@R__3$i~*diX;|F;!NG4JvDq{Qw`YsN$qP2C;nKPZaQZ*W z%R4T}t#Vkzw~v?!71Zb=Yfo_QE?QZ26|mP%BN9h~z=Pv`>ZtsiZ2)0?2gVfxa{^Vv z@dzSXo*&P(yu2*A3ml`N{{Ezeg&;7-6c4t^EqWsP^XJdz@gGX=+bQMNLA7+)&StpY)=bW zKMC3}Xb?Lk-ux`3EtB;zK=g!g496evgBaBK&Ds1q_VzqyuW}=x&YgotD^1QF zWzLa2sKtGdkB{>XL3Mr^B;{D)p4r)H!a0LOTXr=8k;jElRaJ$z2_6J=wxHDr-Ptj;J7YgnzWPZ3M!2pz=1i(jUFv4!%zHNBo zr?vJ_D@%KLTvT)Bpeg literal 41758 zcmdRWRaDjCx9tWc6+uA>2~kp7x&;a8PHCi(ZYc!>Nl9sxMkJ(_1_5d51_9~rhP$@^ zbI*M^W8A0va>o!i1NQ!XwPLQh=Er+Qc}W~>5^Mwlfg|-?Oc{Yd^+h01{$QfRPdNJ~ z|H2Eelengnimj=WtD%DlLe9|1&f3<=+QR68i;07yg{=)cGdJ@S#s}t3PIiubEG)17 z`wh&t4rVO$x(hz=5G=drT8;<=t|9UZC097d0)a>mkrES8bxU5Ka&?PdIBnRmjjC9g ze*KJ4(PgYeFD&4O96ciMEL;R@;%UE^USLNmDYKx?r zdSUFyj@C@6=rc#%+VL9qwiH?mhoywa;z|Vmc%qn;{!@xC_z;xH@B6B#PzaDeDrS#D zU?YDtN-Tv4K)!1|l*$+R8$1_@J5T?;ng0>ir+=SMiM+0e{7qBOb5uIyV+_sUG3i(@ ziVaX6$6}kAnaQULxKCerogHR5uMOV|T5nQ)e3#vI_uS?b{HBF#Tw~9_kX#c8JTF8TLJMyeO%w9!x}S+Bs`D0> zGwR#uhq1TtQNP4>OHU@yL2BxU^CJO)$$mqQA21#48#lh6EG7}N8X({o&24Q<6e*=& zzF=#0=wjLzz!IC#1ul>0k55i^e&Q?WIMkzDL;syF93B88wR=s`O{-yjCVEx7`-*w0tqwvXOKCpg(pg4l zhZ_h|VejM#+xnE>zZJ{0nM6cHZW6Kn`I1;4fH&OM*pGrqdC7~5i<|0os73C5Y^YwO zCwFyu!BRETj4RyrEAr9Fe1tF&kKHHxv!eRTj&H_oZf6^nZ%)Uv-dw|of)D}5gk zu>=z~?22cj3449Izrv_f^?^{|Gx8Q0pQ4gdBfOK2jt*e}=b);py1h|3Q)1G2Z{D7g zlJcW~t&0m+<%~DKg3t*SOU*WF{rT<I~+7zW@98@AmP0#K1RW$;IBZUfA3g*lsJ?L>Bc@_pREa{z6@To9_$v$UV13 zTEp%Ks^_B_z^Uo@TpX0Wnuvn|uNSCy*0}Ex33>8_5V8mr)oj(B+1S+VNZe!Ac`h!F z79Ji>ShJX4RM*j!!0vuHX0|d_&0StzPAcRXKR0KD@Hki%54=U@b~NQm%`n?>x+BV=6pWYNo+#{7he|h5X$vQs(qH55 zn5B{jvUVW7x7ZyE7RANW`+@RVOnf}iygjTe6_pO0)!6R> zEJFxQ5ms+IIh>8u>#V?a{O>B)xDZh34hj)PjPwjo+TVyQ!q3s~ZbTgm`5FMzj>$oR!RD zFNzW~qW8L>@z7@K2mPBjZ=|)f66{~->ZbI=2-M)j$DYYvskE~3cH$%Vxvb;+>%7in zHXRR>t6jIaY$hsRC85%#c^xLC(*?tp6d^j2c^wOve~1QUKTGrtD84N(FJE&!7qUM3 z%@2(2^zB*hkY%=fN=L8om8^#cAEGUs%(x}^u57{+v{-4hhD1)Q?d@%YpFy{A!YR0I zlBJ9{`?GGq2N{sYWHnNl_2o+k)l#kII=bJRgS8R;{i>mS4R(VD#KVUVNvzYr`(tBc zaV#mX@`8i0FVFWBB*I7ns;jH*t0giF&yRPKg}f4DVq(zSCOy^)G@Le>b$=8?)XJ7k zXzGY%pl4zdv`qt#xI;u_Zf%6&2K$bQiOD)FaC&-r2Oq!Ls;CyCQBC9KR5csX&5>QZ z06cYMAh-Sn+bs`^abHX@%PlCV{UhW$&N06$Bb_h0mYXdtYoH93T&N4*c|Lx#nZ=h4tQU009AkPO&>L2giO% zn_fYB`a=To?_bt*3s=s*=A?QAkLdfP6uhW>^70qn`T02!1X_NVb=J*{A$2ha5Ukn*?0Hd4u&*VM!!8mK|vAN|NSf`Hdc4-8KI~q z3Z$%J%Ez(68hY*l#%U2`E0Hs#IS@BGC8Zmt&<4?)Sjh9(B%(G(re$+! z$+d4D=KiargU|N0sVNQO^78VEuF&!1`1q50e$lFjnUy(9TVvy!m4Td6s}W`xTC2v5 zEk{0O?%jQxPbDS&RWpCvqw@+176ufA7cwG*(hCd2rJ`v#c{Eg23DP`wvBt*6GBYz- zUyXBs{Sw7wcnJBI%k)pf8)O)%*>1WK^YNp;U0NWyN6`7XC)kg;y*(Q^ z^D8?aI3GF&hWVT{Z_DC~PL_IsEgeWUnc3M~&rxq+V~;}QQEMS1Ao%(7JwAjFMtXYs zRpQPI-Y7Wnt?OJvkN+MKd?c1HUom&DcD#sN0U zL4t#PM|=B9`qIJPp7HMA_RO3ddM{A9>@scAl!3Emf{JClyR zvukUe01J)*Xdq2?XLlF%0Syg0AtB*CCT+3KI3{~nS6U8^!BMBzS*E?I-3KH33UFX< z>)+b!92|_MYuu5^yd{KC-#%<+28Ti@8EkMMPlXm06_v+*m&$Rmi}LZ~VDMA)GokbC zW~YtuyS^uTOWakq054=y_+tAqB=HFe1EZty^EHZ0;fDezf1^hTlJJ_OH9ZJ|@#e-; z__2?-AT#A4a3oODtQy~Q9pR_6krhcCkW?fA_}AtzrT7(Zffuu&|U;y-zK&Dk=`6cIblB*JtYW z!SAZ(78bI2czNkJ#>=b!n9snjFfeJCDUyRJ;Nr_*%+_=vf@IAZ|s4Gswj z=`VP}Z8BD3f^+zNaL<$S>TKpJhFs8t4qP=jIy(9eF>xLolc2P=_Bh&6M0mKmc7?V3 z^kH%`sR`tE>5zL&1l-)*EmKpv784Z(yNgM-kDZ;JH3&lRn)vbv#IvIao5-giEL%_g zh%GBC3+bUfa<#Cq;IJAFg=1j1pA*|dcMCf`+>r717Q(niTI@t8*97^9)hjL))w^QWX!1hNgUfrMZxe~Ok*=fB?>(f+0%I^{yO{=iGKcIkr=Z;Z1 zRxMtW01}0Uzcev{6UGHoMutuI?M4hHvZ&$@SC>ciNca=S^kTQ0dxq#t2b*%;j|1h# ze}H`gy2SrP?f;L!|Np0tnKxKLBtG$LdU(3M>CECa@@L3SLIeC{YCoqdlj^_v;*Mx3_ncaakp>Z z9w8|~)=P}bgLx|cfq^ghZiW;mTrW;ff9tX_Za<>yYQI)cskdVf!Pm{hgTxl&`gNV1 zZ!nLi7dMtC9pm5X712^t2l)G6=O77_>V4Ilsnh+eV@Tk?UJ{kR$Hm3nxqaL4oU~Gs zD;jZ&_=!K|vv)cN_JEJvUcc5K;Oyl(^YHLUq(*Uab!{6M7+AfEOuR#{vG>7&6Zbza z5!srBhm&5NLig)>`#wLz5ET_g=4GqluSgR`8jPtKJEyM(0~M7&Wd08jlAZX-ZV)oR zZ16?-s#_g5UHe*pnr~ON=lw9C~!~f z!-tF`1SKRS&;gvmQve**vpOyRmWa?ro=Q5~m@MjOrL8_QXQ~N=ZyXzd<@3n;)HGcB zpP!$OUI_fBgg^Yhl<=cn5Afh|2CQ^3Y9mUjTF;bBa9Y&LRaf_ySNE&eRfuy&yD0mr~Dd=Boz!7ZlVXA2U|V~$^Z2@?f1 z{S5h4W#W4O>Wx%d=HIm^^?&MSg_v>fG-Opj8BJ4iX!NSRibGtU?U7jv zsr%+fqbrz6*65J#IN3K$482!mF-xUL4bm<^{ghd9kGlXJL+W0Dx#~ZXBY-|wR6Z}< z*nNStx2QoX!$@}N`TWI5?T@(0CsSwZEMDIRBJe^BoqE ztBSDlGnS+dP|;NK8x{$RmI#aXBPo{_PZ4Rp%7r~YswObTDb|GOd^^pTx%n%UpI8gFhv zHn;M|wHN50d7~MzDP<**^h>cX?g+)afhm34-eaCr4SDgfX*YdY-xq$@f6q+4KX)K& zOg+F-4$|-{`MZ`)Jvi~b(Y?N|p1)8VM?0{S#hEitq3dqjYulnljhZc7mBI`i4M__% zGHSK*81)flZ8aGYaU5rlXMSFL9Zp09a40nSnI!!oVMp#f{KZ=*BCQh?wmjj5Jx@J9 zVC;x&iXB&xSltQ0)A%_R`^js2)%^1tUux4$l_|Js2Lywx{(e%L-&pmpTw5^Kx>RJ@?R0(_ry8xM zBi_o}J(=1Qo~!CZ?G|z=yCmivuu~C|@ow~~>)hK(i~EZ$Ki3iy7IrWVL;mqt_*%s) z*YAh_b$n3jpWOdWu0o!Kv)sea-r#3dVI-J$pFl%cJi_&%m#)1-mEGH=`Bnc`iL+mM zLyu7fQ?T}(vc3F|sE=xE9j^zLc0O-so;TOyRV(*6G>a(~&hUT4y8!0L?JYyyF!erM zNvI6-Fvj#H<>f!;s>1g0YnokGc1dBJQ&cBrnVB5dlqqK__#k|13H6h*2)i)%o#vY7 zHxH=T21^^=H<#}XEq~*7K1v&SS-?$~%$WOtGbed4`H80vS=f=<$f~>ThLYvML8spj zE3#$06*=V?+>~@r3;e~tRJ!-__Jlk^3A|JfgpllyRM)#Yre93? zo{HSnO*)ArT9xX=Q`@NsSezVdvi|DNM?q&)kC}Bq^_+c)l{hPO}#1Ge~o^ zib*EBBC+nP7gwA|d(7N1Fcv9^-g@nz*G$@lm|x*u$^6UP{QbepL@PLh5wh|uUo(5H ztSs(tieKG(bJP5`m{D%dP3GHN3P=;5l3~exscXrc6n?MxL{n&MCQ>Xy(+5!)axlN- zmEdH%DXCn>0(%gIyZb@NM9yELAYCn&wm?*nct()KH*uU#S>@KX4~Z(mxN~&_)a(4Z zP02G6cz-@;`G`Kac!A!}KCEx)5Fi(&QI6NNIk}hz5dR0b+5sN@_2Lg|=dW!$*w=K8`3wH$Ghe<- z__V0XcW?7Ww6gvSPmaoD++hk@%3ppj_}{55C61t_IQM$=ezXd_(p4c}%P^ zg1P-Wotv)g*51qKYk2V7&tnO^r~a(eEQFG+&S5WgMxOWYGW=%n@mc`~HvU_k6twL; zyLfAMa-1!cPS~9cdktAer%UlB>vnMS%kRyn%0j^L6!?sP?Zr@Uy{p-gIh+n9MMb)j z_|=9?Yu}{9WcjV+$6x0*gu}NFDI}NsyFR{t&1G!R`5^Bufw~CNc83^7hIaO*W$VVh zg9USf!zR3@lIgyFWt+Yg6Mo!;Jvqwdf60WZ1&4>sUT#zouV}H6C%<@Uu%;uq*-_x%%hzNZ5WjX()F6*3vn6Fx%xtiwu)6d8#q+rCw2Je4snw;MAsrX<8#f^_Y9k`kGP3Gfj{`OzGeVN~_$jk|6U)9vEmo26lE@=l{m8x*5y9Ml{vvx?P1+{SZ5wTX;-iEs8jgrazi4rCh8Eqmz|%j(infTH(!V{0G51exd7I{s zHIDMr(?~MdG52Dhud==jKh;R4=-)!{uc;A8NTCgJGdobaXDhQb`(|fynpbqOiC{zw zX~$9pGTrlqCljp6#C;RB-ziki+WH^0Dr8sS&5=-xpKNbrZhjSrZ)RY)<@m7vEwM1E z!E78yoZ#pHPvs{(4QY79PvPwRq5D^xcQ!(blH#}wQ)M?OWRzoy&>rD8xj=n|UU|#( zY3I|r@wgrc&mRaD7~0dSXpn|qIM)6ad-|LyHfH^a9`T=RgDh_j&i1F>s`<2d_$aNT zGbFl?H~S_BDQ{kkeQ|jJ)-n_27(e<*J6q|_M{4ltxi1Sb>U-d!nkBW~L$`dNeJ`Y{ z_)@PQB~01XJD+S}2&l8|L@Ua-O?6c|d1|OT}e+t(UrCxoidVusc4JxMkx3gQ; znX(!fPr=SF9iO4D8v|$+ZByFq+A>*xs$prmLxbIPYuK{UOA= z!{`+`ceVLA3{5i86*29}#g#OpqdGCx!uNJkQnu|}#Ilrk`uydOfAF=V9*AnP#Y(qq z=ssMzOVOY*vq77anOHHa7k5iW^Iy9UhqQxnA!{LU)Ts>N8^N7y0LJ|Z?IVv9(9go=-2A<{^gF>)VAx015b76tRpw%?bNL1JNF)djkwTp=7e_5 zJ)Ym74J`YU@{LTB?>h$BBQHjx1iYq6h?cv1eu5T+vvN{uOs?KP!T@zYQ;O-NVEmWh zMJxz<1 zVzEb2LeP0c@e`SyNXc<`UNGG4v|6pChvJ}?k&4AX#ldB8do{PB4C|<=dF&0HFt(nFx$j=qWVw8UOnUzOC;t~*e5YGQvZ2s?qT48^@rB0R+`>Upuzi}&WHku5Z>$hL6 zeDF{B*JWKJBYYZPd1ET^Z0F~n>i~#>Q^IQshM>MYJsGj(Vzzy*fI$y=?rFWIOdxev zgXtHP;UfLs?b&85oPw=im(aA+IgE#fZ)8l2KlC8Glem|FCE@n@BpTlrUM5O@X3FC6 z?800KQWyjIO3Rgv6>WPO-dssC8Rz*{g^R3k>1nSOgNobQ(W86e((!&ky4<~cx6EoJ z{JZ0lUf(6He6qpv@6Y?ILm^Yuu6w|X?frg+`^{-ZnO*X+|H{J0HMjMo+E5Rl8#9{% z-6Q<+#9MoIE@cKU!Hy-sAAbAtq!LY{`f~dyEQG1iKamR!`<6iS2PhNPm%lzROkcrl zX`eia;&og^{4Oz(aakX2Tq~;Y0W#Dwn=XL0fUowAxKH-p=@){IFKY;*0s6Nh1#cNi z6Y$dWk|w#)CBuRVeWVsQh9seuSPZvO0tbr^f>mf(0qJ{_gd?}H;=WDQ8|V=EkB@7U zl4T8xX;!At-bmPK7P(~-i~5_dE1FQEBJO>103MAaRBKRBdrwBU2OWNnyCoU_VT#5V zdIQ(dIKNV3VPhlv2Eh9RVbjAeku&glU?sFtMrKXe?Z89OqjoxTCq*zVuh(kJI!ouS z_-soWu035ofr1$Z`F(=kjg&{fbJgy-TURI-4om#wl!|)%Z6ZTANW(KEUNN$ZEA=Gt z)X~RUsRZ>+u5+PW?|HqGx-nz-Z3quZSwp+MXCgH!>MeAvR<2zKhNIg-@AU{lr<$!I zE8U;mJRdK4^9@no=v01wxA_Gf5z7w48PuNxZ+Pl) z1voIVuv9u>-ZQJjGO)8_g@xi&EG#b0{rTgYmNtVH;l7%e6EEcTW5>n9f*#m4Dk`c! zD=QZL$NL_Fd3kw1+uAbveo5nG_p5d~FSS23W#$)4J4TS-R~6$Unzerx*=P&(Co$bdID@TSeO}-Lar##E)NEhTDR;f zO+8;ce<-z5H={3pqs6AjaiTO^x$tCxPw(V_b!J@v=c!FXI0nYg+0~aRS3l&kbdpH^ zacs37Sd@C_wod#=50G(5mMBo)+3kKsQkKja;81>eOybuqdrd`8uLracqoroJio)HU z@Ga0l7^_xWG_vsqlRo{KQpp1DQP5P1PEPKEzD@^inr9ObM5gbz1I(Y=Dr#0yhg}vG zankr?L^o;eJh#o4yY$C9oCUmB!<#K=d6#k8C0Kzgwb<$T9LZ=GZF@Kw|MEyt+Rouv z_Bj7mO*Gn#dmmzBO=Qtgptsoy4UPn^S0qTb`t#?{H5Z2yPtZb(tDr*7_NfiLMtmSg zP#`LBvL#m_6&%%9D~h?s3XnA5E@zjvOVG!UwD|Xz<%>pdxTf71Za2Nt0OYrxLsSQh zkz82-o#OTJ^3G5tEc=7WvRkB`1q~4St|mV;)c=t9tfcQ|5QQhI+3}OSkF@8paeKIm zK$RPJK6yoyeEVGRs4Oa-m`WBmoi$&g!qzbY3Am887&3m&T$~H#0KbF-$$@1u=DD^A z+B0noe5e5%`bFL|&_DvXSH@o(L@Z4H=cxpJ$kv*~QT!=Qj5iZ16L_(xPU^5o^W52w z&lSH(Gv~&U;1G=)6`t`cv=kn@=RMDE$wV(gwt{YFZnhhH!kXq4lH( z`F62K{r3s#CgXb67*y!;zMvTZa#y%zLD^jkWlRA;a$|-P9$gP?3=Eu%s3r)oRo4MO zn2Q~;Og3({e{UG;t9=jHTbt)GrT_7gPBO=Su!Hf=<(2G^)g@S%qL_Nta>@Np1H?VB^gO{&tWj(*DbAs+yMu=l~N0KBIi znUGZC*xqkCz1pAeA@Acc|2w0AY4~FB@!g^b%V!}5xKIiS9ClC3$oJ7ON(#O4XZ4#} z5ue=Oq)EM)MX>wunXhld0f@1<*ew$?D{{jG|({YSJY=GpCyt=9duc@#IF4YqysJhU>dCzxWG__;&( zHLDh=Y%f!#wVcTil}&y|#5!L0@csE^kt?pmg$fLocGK<}9>J3By ztMYOu7XWu-zhMw^@j+IqS}KA0Di`&N6Lz+nD`TO+06`)2!M0iy z)BYCVCi@3TYjfv2PA+9mJg6(z=zgl@7Y?y69jX54)syoO$+ABSH7p<+;Zz17>3^K0 z)p?7}y^k4uzBudIZ8ON7Kkt6ILQiV(y(%#7*^-2FUw}-{NEQc1TzmhHAByI_8J`b1 zOR*gXDpW0V!KCf<#^{)!tkC*{2OapAZ)%2Y6GO+M0U8cyG)%@rK% zkV}DfD+Xn{fuW+gKES+Rv;{Y{PY7>|Vydiu#Cu-v|5WvH!jsOZzXNik<=2R*1@@KE0|UWS6AsXH%|A0D&0q^Eopz*i;uQSC8A3b(O?^sN~uh2fw3L_Jp*9`P5%)If$%0Y(QCLj!k7{3^7A0_@6p$=OA|3>9|;&MW^Q=%MK_3A-{~ z(?(}Y*QMj^$1U!Aj`PX9-}I(c`;S2Zh%n8n=W-`=!#xcShM{p{9YqD)K){kZbMM6 zx(B>vlx}NJw0PXD7G`kG#LQJ~K?SeMG|9O2&m|HHP@D-Q-#;{u=Y6OY=Zp_gc`hj> z=euE#hn`-l^@`#;$OO~d+aKo{bz!{FtYIRH#U>}gYl}LoW_NT;w@)*C^=x@~viGeL z*j^P$?K~=C)V(AKw)uvn@fp~mT+imd5!h)XEDc$*L7eN$Rh#T*3x!SM;s4_9VJ;&R zNbip~_xSp2-e`h_YYoBIwC;ts9zsM*O#b{zG@kQeq>0Mw{)Vz5X0;`RNcWYk z86S@B;j?jnM6qDO2jKW%niDWh^@1Pjy?!CCd#k|&n`hP-&QGLrLHqd?K9_!>qeQ?H zuVu7iXPpR-x4f${yj>J=_4nh27LTQ>Yz;FBMp(_u0KBHSa_oca4|wwjn<7WKw6Mf9 zvmlVrc$S1UkD0jf@NYLBQvqf7f{zi|Lv%s%6@8q+KNVSI0*wZcbD+(r3g#EOjK)8? z3yjpsTxucJ_1BvJ-X8YpS!P7mv*H_2oagVQ*&aFo-2jujH#HG!?t`q5z+y%TRurkf z_ApddWSM;xo{`^VhH64|^z&Vel7w1;gn9P`FalF4oKMBr&d>z#mGm!S(4U+bYC@Vy zaZE2)&bI|O6t*|Oh}%^<@o-65A_7_#VpoU`dnD9<{Y-<+{t(#^1_Ym>(!vkE&GRzv zvaQa}=)R#9WN9RddBchrxWw;pa*WwPQLcWh=7~`YuCK;Vo0&o@@N4ZiL=IFOM|r?5 z3>7x$*74rg)`Yuc?oI^FW4{R zTyz-iv5^(u8Cgs7}$ zJ*4V|I_*e-6{t8_Jah~U9!yV9hY@5U>;`j@ZgLYHgmxw?c5u>~lv=2RHP#PNzUJi_ zLjN79X2GezCE*By8dHCF6sh&p)s+LisvA-$IZ`wuel)b=wCuz;ztP`+I=kXgOI|x& zrZ#BSYqq+l-GBPX-N|Y(FuGY^5SQd^cFgFz_O<`h6#w5X>ZIq0y}dn9QeHr7jgcJr)QzngVVh^}?F5iu5^9JpX5P#IY=C zj_pyK3gd$+xX(QCaMF#_8J+yh>jpYnV&L)bI=S=~qiw5h%$nHrE#{R&1zK+^Ok#O!D?%cJx2S@JoBOCnyHRFkxZu9N=T3|G)`(@fdHMKW zg%t-$Y3=*?y~(hJX3jPs+2294lO@#p)!m4;dmTe0QvX>ha>aQaL%J{0(p5)@WdRKA z**qF(0HF_%2S07=FNO`y;D3n-a>2r50g!OgP*MFHoE<9%a&WPb7qy}5_WR@Nw6v#4 zZHv#63k}NG4;BVpO*EDWlx&5xp5vYQmBBoGDB_loXC)|@0t!2ngYHUVVq(wBlclE@ zbhFFL=Ae{>(s33k>Rsv2V$}UH7=_!sSaaM-X?cJRE!ZdNy17}+080AAl66t!MdIGF zV15-I2U_3Ibtqyv8b z6!Sh=AbfX=%rY;~z;QTd@!RZkp>UGBy*M&4^!mu`_w8-)sTTM7ROZ4jQfnHN>+w%a zut6sD{g2m;dyM9GXFF{aOYmjupS%7str}l9@uZ)oE9AMb#y`PIIu<=$5z4BtjQ`4* zDk|Mq8KYc6naim#?ON3t*r6&uw1opsU+;d`Nk#}irdi5)b`Br1^2n0qeYoQSw&ARanEn+lm_a}{?+ zaj-rLKSc@-!a6ed5QUoG-iF=hCb6vt&0U%8Osf5StCFhf%MKYVhH@yqfP4o3j{hy# z@h?u8zm@;1!Fo3GvToYGqyO_LWArfMa!L4VHdaFq#Q?LR{@ zaY%4*J{h#{Ox-^cODC)WUFK~^$Ef#9NmbAqM~EH&A}v`o>c3uW)|-kvvbDnMaF9=a zd)a;m0R#~iE-v>%mjB&T6a9M#K#7su`jm`Ml?WW9ok_bGXBAE9152c(+UXwwv;U)0 zbpp-99Bapcrr}vgTGBlq+#L4$HLF<=me>vO{rOyQwK10~QgFF+wN&nLZDGh6DPGam zm9cPUYKbi;P#sj%)O#i(?)B=WOvgdQBPcQM%4Uf@up za8N|k_(n!Xo`V``>6Oo3H@BQSv0>KbYZWU%;Q<*EmRJ6)oWM&zx8dcNzgP08Ac&0i z2Ctf?^Rzce1x69B&{mFuK}3r&*ibgFzvfHIZ0+eEw7d(eMinS4!#NV#x`grCb~|_z zU-U#KpU%+pnk4@!dXS%)2%8R_JG4J7&Q@3l4%x;rxKc_&PNDmsp=lr9U;jJ(*2@_1 z($MbnCV@+PR84K|;GCSCoh=#O>a=2A`CGfK^!|A-?`eEnH7DLX+%(+#h8oOZb$_x* zT_nUnflth1fUhg$r=r4~p8#;YvaeD(p?my+XjR6g7*FHV-uXLh)lHrq#I6XcF zI!yc@EFttRArKeIQig`k)yjf@YzJfE!=Ig6ms$bG7*M`l3h4dXYUc$JMccQUVDzJE z9!sQTBgb5yPyFOJW&eF#Gszp`6J-F3`?C^QAa$1u4RI{fx4`WB+e>x1iDa%H1sm(GP(&y$NGLkg@Tw#XIPxWIg+4am9n8Q|rN5 zS6A0szd+G^sXDT{a(r$gbzu>Z^+p$_k(sYR+GlyMosC08)Z_&BD{DNtR=<>3}^mr+&x`r zKdr>f^yz&1gZrp-ZCu@P*Kwr7?0v$;{PkiW^;+xUy2hD;0&U_aubj0rD`2lZi;5pr z;vIg4a$`J3$9puTeKkhMa`iItT?^=z-Z1$sC*eIEF{gOaAKqVLLP`=wMY5Q!o*#s> z|A6ba-_BGzD-l6dsmz$eSKlznJ>*O1+~a#Tg6&NOwD$IccDi4Mk!hNaO>_E6EZV4F z>Bm%(CJ!cwhLY)lNRML*R&7CmcZ%J{bB#P;BV)4z(KR%Et!9__q}HhKZ0gk*4^ zbI;XSG5-NNHF}>=6GnGJBMG3Un=)vOiur1-m;OhGmhx(0sZ4EqCy#hPf>@*XCSCjN z(O=TklUW2D579JNjL3Ttw`%DpZcLZYdkinLIiSr64SC`bo9fom6C3k+u%W&o2=GK(a!r-Ag23Gs4^F6yIFIjXX>S%IH*W$tnr(03jB6r zyc0F7<)oSKM=atm(BeN$N|M5FfJ=Gy(C8Sb^Ljn)Hje{=*&S4D{}IcM#8B1hW26@fTS7sFcrL?CEpikPcMR3m%dQ zGe~cpogqbar@>~a?(fdF>M1ZVFuX4gG|+Dn8FX}FGDN%6pxiu+I!W~R0#E~q`npcL2XfDNM#H_D62~QZa*t)o zy7OHbkg1!k0)C0qRi62Jca;e!EFol7Jhm9kIGHHn?S3Imx~Yu;3`r}nPRJsbN3<^< zL>=ztPf2kPBTRsk0eq8a@|qo@Ys>xmtlh<}y#3IFrJl{ceXHB%>w6Yk-s90&4aF6o zd48F@maL4)_mO$?B&M~zQc_PNptgy=%u;2CS<`@ zY}i}{cQC0@%9M)2qsDa&^`#$MoxGg4U$m9ZSeKm}c{u9V?qv*FQEYJ)f63my-_9}6 z&Sn!&-a~{MN&L;dTFE3--f%D#)#&RKTaY$} zyy3LJ?__CdNiwOgscDW3QGKS1UrwcL(#W5F$hmp_b_F%a3e0?X8d@_>o?b|k4HPN- zsgR%TSJI95msS(DH2_}+_`H2NZp=94jAYSLviI-E1kzSN<0>W)(Q-BJqnff1Jy~IUOX7$-%^gW z#g*bK56%6g`o-s2SNKPfmto+x%)bjRc6J7E$IkP7r%m8!(h+V@48?rBqfXV3;oZ1d ziZ6PjZ;~yd81wn@v!62YCuoZFbR(NS@UG<*4k2yGsGsJ~`nomTGP>qlT@3>A1D4;0 z&F|QZTW_l9Noz)ecnX+!9$i%_<(P=9W(y~DKT+@RNZ<&V3kdxz5Loqp(SB^TnmfcW zI7pn^cVCeJElfMWPdh9_BA_$_smlN^r;4Bd&(@;Yr<^#1s~M!>%^&-KyxOc+SfTI-Fk zO>KD8u{t6N(D5iiYeBskjgxmjADGVc-_z%&y&*|+9pp?%b_R;WIiGyx6YwsGvwue} z#()`2#5ir8TNp2!CafT3G0^Z}lfPxTxi&P}KRZeWmJepn?sL9_pWI|zGD=SdxdI{nEt9*~G_MyZ8Jig*S5`txy z;pLCJ@u+qMZ&psUIIv6b2p1OGa4p0|Nm0o!Kl)ulGd}SYy^iID{}6H~yV*9r=a{hr zLEN=yjD{3x$yB7xMZU3@T_&G;seUh^`jie)=^Fk(5gm_<57v2g>e&B&jgh5GBSvFofGUHe3GeNd@!k$0QTM|#3$eJW00tnn(lWeG(BvUO_h z%ioPU2^BZZ&&~h@Zh;hjF#v6#{F8s>{}J;>qs4w4>SOj%-I1~At+D%EaDS5Aw6{60 zLn&(K&sU=Ho|mQNQ?Y13c?Cu_-=ZG{9YE~>wYr1~BDO(X&Asuk2BfR6 z%4~;w!bu=OvQ#~MD)K$NHYa2(TCZ!9oioN{$oZ>Ka_4IE_u_TD$hyLt=ET21Ckkji z?&UV>>OQ*Zx!Z@9iGGx-JTE#>=Y@ns??1aE=O>+&t{?IgWP^KfU7+U29P1goG||bX z1V~)EGyLw@jc|=S)oUzRZ_E^sHDdvjVaIXU&ZkeDF7^J#?w^78pmu3B8Ct=y7E0_* zFF>=tvcU;3Q+GgsN&?2tHcJ+UKm_t@5d1rH<(+=FTA6tmbjkDqdkXZ522G- z!(MR>3ElX<-mrv=JTapl-wQzx+!}$wk(q=F5(#&WrIZ|bdCfqQR zo*~NCrzjz=~#Z2BUNEQt%X`sbj-^fedDi<53C<= z1|hm>n5=afi+5njsu>$3S)z#nY`(;nD;C`hTD6?!kRDx+9(lmqt zmil6O@RcWiXnCZUDIeJb&^hX`oYwO~%DzQwlHFe#kS3+B_qMsZAiXH*>rS;Yq$UBL z2jK@1NAnN>gKjwGeEkvr-736)ZHTi=*XyUL*_;MJKwI5dCj`YRUJIlU81#45c!Yl& zxsP0zAU@`*ZC`BOeAhMBa9GyVNnwq;ByU_USP%q2CH}mHd3B#KO_ zZ?ikz0#8^|@mPorU6?V#5|jA-OLrruYkVZ{6f_IueeDCWmg;GJT^z;H%h5sY41}Y% za8vJDiJfBp@p6y6Q)pTJU8{eR0oVh98QE2Nf7^==Ib)$w2h*1Odo)HE?7jLW%tf+o zU_8bj4(6FUGO_-^MJ|}5!Rlb1C$K7Fl9KEI*6S_~UszgMvG}0&Wlkj$giE8nh#+(* zX{d2TRUcY*2T|MpYcHlWTV5%-lsDm#(_Lw!3Hs!#?Z3GwU34d0sexC4rp(^JH9_~a z!$W@$UZl}9>u(s&oo~Dx|24OskGr%zoUo9s_v1S!l$}hZk$7>D1Ph(JfgbiUZLBx3 zYf4Y)GNxyYDvs8m6V03TW3Pgt0nD!IXpf9QBUO0mi#aLHmH$5c84G0kg==rt6BS{j zqnfP|6bk0%bOYIP^KhF#yDqc%4#ckg(1I(w3zsE}Qk`c?1m5FG?Vxa2=$=u@E9Cr5 z-w_Dr+R@)GxIFUk_m^ybb8J`uDAT{4eybDk@DhO3Kb*B_-<-6jRU%j`HG;kvr@lAJ zeTD$ZZX#RCqkq$1m|g#Mzp{J@gqYh-E(Tk9MiO09Ki@rar>P(QeB-N;Qz4Yw-*+~` z)&{5N=8@Z{p zb>I{;W@eh6g}B0A%7M7ivCa8UlGN17?Rl2>Gs1t@b7vb->=}J>3CSMT(hm&n{OrGw zJvE{=8ImhP*H+!#4R}}=0iOhm=ki*C1xNen}`@59xefWBHT}wfXn?eo_jd3$&VNqLVAVHLIJpa zvzrywbDKp|(NouqTzi3bdv!q;f+f%CTH2R^`|;JMn2%$xYM54cDg&h?7|V9Maa~YInV&t zA`MuHh~N(dz#q`a0P0|A!?78M`_IP4tBy`=hIHrOtXtt!>7KgKqCah0;s=>-hW?gG zZvqWc85z&{L#zTH^G2)en&=9gk6ylQb>X%A#p<92ay{Z| zb4o}3>Fv3PAP24C`oi@7b85}8%oAk!uBpdM5xON-{Bcj1?`S5;H-&UCbcLYtZylRy zT8y?1)b0)3({6sqKmB926jE>Q>FEhE5bzemSJ^YnEg#QYz;c!{S=5xwu@04^1Bs06 zvO}zp3e$gNNio~qi+fC77%G%xeGhzy`Zv(R}WV zpHE}Q#g(L-PbT(;+RSR2zFNfn^^M-xTixzoU*q($DHB<$tKURe8%S=npFxZ$^*+wZ ztDXB9rRDM(@IE@$k+v*7A1Gw}X6%ap60*Ah*1fP(<@c~^$4~Zpe>d|;@1bv2GP{poqS1Td1m_r|7yDDI z2@B^!ox_{pL8qLM3=?M5$;bE&n2NNt`@2q~vCkFMs=yYfRi8QV!s z5W>!C_nqF-95p01QWSDGr)I`oikQ#*Lk1~{Q(UV;-uPJmC0=WP^;G5hl=f)mRjxO5 zH!-$X3%a-aUdhTU4e@dW;;wLm@%{mcOVuo=37)2q@{kK>JmH4Y5-!k{_w$g;J)H4m#jn7>4OKeQX#5TP1?!k-5;57R~hz(U)C=hj#Em=0l$+i+Q zx7B}s99jb#+&iARS+NpWAI5BYrBejH{m7M z(LrZ<2xqlt#^za(U@_vK<$HMgEeK++Qx|T69k_S0W@FCx3q_2VuX;iK;1-RL$mt!( z$$%HWwzuhnqT&z4jt`}jt+70XwEkS+ns0bXQGD8euhTKABX1_jynu1+}Slp#-}!R_SW#_caw? z;c|8lg%s!i?Y4PVc&&~?e|y9>pZxuL=h>X?T`xbWCCUJwf;-)34(~6=^xn_TneSH} zrHB~qV9wMByWRbata}54em8i2{aBIy(8=_*912s^j&p=@jte*JHYTKVHLA$jb+0Tf zk*!xc%`{@e(jp1}-%yn^kF4++C%)h=!HWnMv$8Wt?lo98T!_qGK1?mrPKjQOr9HVUFv&`gT{y*w4K*pS zcY}Dur(SMD%galysX2)$ys-N}%oQM{zW@dNsi-Ihl&mH$!)f&Fz%MXRw=4Ehq3LiK zNO%zy8`UvT#~RPF8p#yT4KYv}B|vqVjh@~rpsNo!E zW+ZlZ@r^1|FznY6^CDt`Z)NOdTMAGQ!@$uN;jzE6c*Y+FDUc&QcT(g&#KN8pL~=N2 z#8TC^h=tXp)c=sK1)s_cAbs>fhXQPuC!+io7IL~BPGiM6uRnUFk?|oqn!;{AwcXYNr6EKs-mzau+>j~m^{XM+WY9p3HIJMpy zWabH)1|6lW0{b74dA`MiJ8AC=#(PN~CudB$xwbzJXw=2ob^>_9pvjE7M-w>f=UqrwJ^_IYVyC`B^4K*;&QB(6P3sM zlka$?;!IEZ?YDKUQ>Bht27mr=9q#Wqyo2=~!=1kT_;qNk%lr;Tw4`yyd<>JBSgh)q z=%mk%Eh*!mPMO}Rt7&3lpG8UIN_*ej9>O~qq?644{orx?cY&LFe1fma57{}-bDt=R z2UGpjvQbQ_tQ`A8s}u_h@Bfz78tQzmQ37j?L&`B7_t^P@O-!C;ICWLzMAPs@Syph5 zxHlEp20)3pcl)*nFd6`1lFPMPBXGufT(O=JqPHkRMJJmAxEQ&6_byG5UH8x=%D#m0 zoH1>xKUuYhanD2~Wp41{h1|{Du|Fe2QA1<@!~FmJl{bR}hT_Y`Sicu$eoeo)=<+^& zUi~PMAbI)c2WlAk`8~62B#u?!wOJ`*%*oQ;#Zr9~ccEx9RB7hzQdvM?PtO%UN%7>v zNJJd=lL+2``ELjz0-iWv`L+G}bsM4~uvu2fRuKbg!*I1Lze@IzKH9;-fp}6+tm0@y zOpLPz^Q3ZJT^-rjWL@1QVc{BFYG7Nj9`XXf!)QXZz9Hz2TepHtW?0y7oAuM~ZZmC& z;E$D9k^yl6Boh6%A%@gv`mDmMZKAogF(pMNg?9<04r7PQ8itbv4rZTF{~e{O8Bq!N zvT_G~7I_3`%}Bu5fsbDpgzxa5U)KL9QoeqT#ynZd-i^p2i29ewRTR}PhE!R`6%AIk zIC~;|Gz4;pp!HA=htob$Y&w`$R#sAx4?n=9F#0*dxE2ftKYrYG1L7U#sQbwpkJIj7 zt2&)>`wh2=bJ%$&g6oKE^@2XX%7#Ww`Y^Bq1!VWsI$$v1*md?B=zUloP8 z_917yt}y(;IQ6^iNH7~}Ig*!b%k@#5?v2MlwN9d4W&s3Q$}aYYrp zag*zOu61)8Srmd)%)dip^;{V-{C1)WF*h&HH!cF*LnyfXK>_8qn2<6xWxDe$@Zo%N z7vc^<&M^Sm`U{K@8n;7Q#EIj0_P>}MoJQB*Eq3W43OH=VU`Ti)VH|)8#c*{ol3o{C zpKFsYZ#&4+JIPn77N*21^2cwszx_MO?a5|cwx{EUri7GoVSpySF2_-TI--WK$ZU6J zF&yeI8iAN6zLK!e^Tg`)yvC8!_XQwlT%pH(5Oubq9hT^F?}(^g6xax(6wW1HUIEyeHFe_>h&w zq*7wu3E>Pse}A-FjEtFevF|&hxe)4=R19|z{H6%luS~d|n3-4Y4LtKZ$QKc5{l=c$ zM*qG{uOEicB~;3ONV0UPqUQ-#G0sc_w#2FPv<#B5&4zgM96^+5-$=4<#MWsD)+Glx z68E^7-_>+0GbmUY%W^AEhoaGMN@7mqD8-k)?vmMPMJnDZmvhHPzV;X_Tu==Q1#0da zu-WeszI^vf{*w0_C;v=FhK#Jbmj1T<4*@UO9nm7Aqklm?t*x`ONy~8Phe21m77Ah7 zeGUi=Q_s_?a~y?xgP_2=CY2+-68qdum~yi2u|aw9xJkpZrW*SLQ)LCN#hH~C)`_MA zjkX{Tqj9PGG#&^XNI|VyqjRc~t@LXTcLy#+og_1i!H@C0WPxnGo6)P(`oWvC@>)n< zP-gYy$Y+v6byeF;M9J}COo^K;ZFWM~GM_h@yHFz}(=5son)Hy`?SCj=?0}BKz{27o zm(F~d-VukwS=k0@11?*WeA0}2Nm0Yrbx(nE?gJfp4$WDUXY$0wRE!DYS?)UCj5&`H z2@SG@g&vYfIM~?~i;B}YGwN0QlO%n}utOI0c2XK*hw9P&qA8)|=sbFEEZ*p1KtT*$ip=LIXmC5_xJ zOvKKBTIsU?vEBqVHGz1*RJ&~WyLGaUkpEvqHiBtCEaPY$GbK)3Y8Te5GZTf3+X%W8K@| ztmQ4lQ@qdyYN68C(+Yl2m34^~+18VUqmFu?WEf{9rT4_G3ai(zYK8|9CG#8iiJnv_ z^JcWaBKFqY*9%oOF5~j|Hhe%VHa&Z-C5qRbGP&OtnXQLC1p&}dep=_AWZU=9LhU+r z7v8E2>jGS2(~rJQ!g^43f&~K@t#tr!GwMz0blh2rGGXA=Ru>wNd?v5Q44IzNBAr97 z_|z91nr^P8WUS1x3+=+a%6X51_R<}Z;1)>c(qwt1X}QJ8J7cm~>FFF(iwli4&MiuO zKN$BRM~p<&%a@b`PhDjhHb)M>ZTFHw0{sS}mjozc>7!M{R-4i*XaT^a1-mFbp zES+8$*wC`v2V>AA-h6_5W~7zQ3()3W+w@-N_9ZlGff61F=`^iod@L~75R zxGXtzM9d(Sra~yyz}cYOuQPp+dn|^(LcBoh9Yu&+K?Di@L4CJ6T^h;E zM)Xm|R#zz=6g27L9jAMqY(dbyb1Ct`!fD(u4xVE6rK6@IlgcJVZ}meb@v|^3oeI%t z0qsp|TV2bQny_DUSuX)BAXYOtuw7TK^I7w)-)$?si9_Zu4FAeXPendqP0B9S^_^Qu zvmEiSz}^}pReI1BcXJOCd6ZgQyhW5=f-pGT9VPYe2 zrM9&!Mkyk?1q|;|Y*NOzyw3QdRhvPNoCaGPf>Ky>Kb|&U&>x2I+>H^sNT8B99-o{s zeH(kKu=Eq{;!t@K4o(29ZLVQ$CO*UVvOPKO;0uKylJV!GX;=`I9%b_guXZ8C0_5Ap z)TD0re4ItfAn9j1o#)L1pJ8Af+Vo=YVg|Nv6kR*e?BEQ^^@#WbtnP}x9`W^cw(pjt+jb7O`fCt6$Yfx41kF;0S8h@HMkVa z68GkWm=y9xhe3!OvQx28iUK)wYA#`6J+24CsgK^Z`19#Et}L_rfafU0*@K$-&^J(H zWnC&lgz*MhhsHtNxd<{JOuJY?BzErmaZ&AfNVse46S=NSH{n;>{yX(|A=Ul8G@q14 zQQWD8>)h}KjAE#QjSbOxffEN#vTWR%6jyO{ghwPH`2Dfun)&Wf)`y9Nyz}SO0mUf= z$Ch{o74>k#ED-RvIFd>D*`zX!P+7cI_7sbzO zCbq_tj?C>bPh=uCC*#8%4YH)VbtULr4=P~C$U4*qYabFYfSNP7dP6^b0*4L`W8R*_ zB@|SYlnX6;O#;PqRVZ>9GX+w<(ciykRocr~YN9)0D6 zVxw;5IKr4XZu-qJFv(J3@MB)_;jt$(tbQ`liC)q>cD9N3mBLsYl8z>(CyXjzd(}9N zNr0^Mkq|=trWSOw<)VKCo4em`4e`U0v%kIlc5k^KNtPad&v!mBM{v?0xj~xYJ5-#Z z_}}(9f<$3z4CD8RjnP7TER=Ow2Jnk;f=LE8N1#ejS^Sl9azZO`oD`u02`INh$v$u9 zak142*m7VsDmy9HKNYItL1ZTlt4nrKry0d-x8SUakuX64RrdyuITh?j#j{!{M(lFjOKMzk!BOEz|WmO$?@UnY2FZbTA)@zZDg=mC_F zr{K9%@u{iCGLvPTd;ARhTav59mHpZ+8W~+Pb1;l4$hGYgd1t-o)M*G6kjz|3ZCJXo z(mge>SM(kHoW(-@7c{aRWxA&vB3FUjQma>tkS2SM|hW~qqz1j6hR{@X=1&+Xb^7mGxcQ>0@8+h~9nw@`;g z^8>Wc%G2$3gi#7oQPg&Ref_=x@vAqPErXqYrH@zEwKiaNo8rY!2{M$hdUF$M9)GyU zMjbBxd`mqtc0M!Ihp6d*wnicDL5jK;8Fn3Y<7FqMEI(CwV)#h_KjNHNKl&AoIk|fY zJOWEM7P}J^u0^Pa&26xP&IKVj2m{ZT(co_b_9uAm^A2Q`Zo8;6-;5(rya$sp+;Q^B ziqo-Ja^rfxLuqEPQK|BOEYNLXK|x(;^pTb zH7f|umTY6eN>DFV43B;|)UED3;X98PIsrhl0{SXn@FLj7F}($I{p=Z*{K{R#S>gp^k< zuH!tPijUJDMwa&zTbJO9gz0YJoMoC2gOf@i&yWo4)Hj6e?@W$OR@E7Eh$vR=Y&B z#IrRWtxtx>q-N5KP^`KHNTSX_O4UCMvXb z;L{_}^trh{RyHDFBNrO=I?VXdqsTc82|Tgzx##t~y}v!ku<*EgV04TCyP#Hrmb2;W+_d3n=tYnG> zSDi*zBSvXY$7GQH`8wEe?$r+#)h$y!;pR1nzvtytu?Y|uu=P=#xDNE);0;rK_BO3g z>dFeBNkKJe9;xCl7u!;`#)GwtEz9hAxQV(mm>-4LJ9V4tOyL0L8xei*Oz#hdTvE?w z2S+#ZubhfX%|v{vL4&+F7{gO4f8?PVn4lV5)tIOxW~2Y`6xXc*<05~V4|aY*oooi< zlk^`6*F<_4ae|Gx@F+;|AU}b{1>4;FII*r9Ze}(W%}!Tls8q17J&AL_H~7v?cK*z^ z1=1bSkn8;P2;E!E44gHpH8kJT@;^ec)B9O=eUn7P;DLRKjo}~@ORFbs_DY1Wvwf%h zM7jFHWm74AXYmu~8G6&fC4i3ZPdH9INosEC#E!>h@*JeE-lA_I9qiJQYh}sK?NNtK zGLTN9pp*lZGp;ff(jFVg+yciA>eHXijP}MwVmXcR^uKbFR}Op@{LT6m_9)85JmD}6 z^h%X$aZ-fSzn^qFVb*j%;{vUqudk1@)B?;cDb=xgXksLL-39R#w)T9aGm=0E1aVdn z1kTy04g60UN^Lb{>pviM*gZBB_LX+~vSMUN;(f%pGMX8JSPJCg4}+Gd>V8zSc{z^C zm>_wav+HPp=xI?L?R7MM4k1uo9;uOcr(g?S$f;Pr{qW%@2rKm_zaRs+IIr6&FM#mb z5HHswe(#)T#?QQhmPp8Ie~CMBBwJjCf(&?i-_4Fv9v*ktP>Mu0z)D-TSa1`{q=5xV z(G|HS&0vt*nv78yeZ6fz5ZSd?z{WHh?pJp!JfDXYhC8tRXCWA+yFOM1nJdIjx&wIk zEx@VBzkK-?u>`*5t?>7lbFarN<27<{vBW)hD8z@XzsMN2>MB&Nuap|Wh>eSrfkYR|(#q<4 zR@T+Dc(Iq3 z-vET$<{@na(Pwm!q?u*$Yt>iY0}Q99N_{P*CcPl(BM3D|pvM3>)VB2rVz8Y8XA-6bQ1X4GDy1%T38PB@yhrwnq(e*wGUION3C0>dXtv?jC z=VvDcro-%fcB`#|2V)H|kst|@;h#EKC1chBhz|@jGO=t8Fa)_DeFJzs_7iFsULn6n zH8j(53Jf$B0(GaIMpw;<>LH>%-0@smo5JLkbyTq~J`liAQ0&5_$K=>5H-vn_koq6{ z94LVR?%>CIk7c0HMz~lS^?J+#c33Ve23?s zQaMrsGFln3i__Z@yi2J75(P)G91D_0Fq$B{TX1S9!2<)vX5Q5ngx5jJV*Z(QR6{2Bv?!x|)LvAu;w}L^?kZe6D1v@)tLg`sCz8-wO z!p&db^HcB?>7zhrlhP>f@9$q7EeRPLQ`0e}y{&ziFyA z`G!*vm?3S=?^3Lc);F5-ifON!QHlg;MRA@=g4-Lp0}~@US<-Fc7{5E9m$ODk;tU@@~2FS!qqwe8*s zDR9HLUGuAJcD4IKvON}pwG=~8Ys*$$x~zx8{6g-ZITSdRS`Z2}FP`EH>LO0?=>+*+?y-RE7Tn=48USV>P+S^| zPJ&aqA>nErtZ+c#OiD=n2%`_m@90`hcd7!39_3mF-~g|~sU2FMfOtuD z1Kr*pwBY$KL^OwkWLd-Q_&Yn*QYs%EkUUwY94mNH|FAbcP5E8=K7UySd|kI-&k2;b z;3tpzr_RS0clmeT4dz=c+>*#)PSE+x1A>G3rpuLHjwSv^XtdLg%UW6cuR197So;K? zjM;In7Emh!CK6hy6h$K8xRF>ELc~*S+C0Z0-L&ZTQ-(1uK_NG9!v-4;x2QerAjvm1 zl5Jp}x)BrbPBL@L&Q^3qD+W6#@jmgJ0c(g)-YJ_0PRk+?fJ3WUDji;(p(uIivEV)f zRuJz!%AOgn14IaZv;B%`l*`3j{5;pq&L`R@`{mBrug>-#*jm!k*Fd=so$JN}qDuqt zAWpX_;86S+E<3_6=sY^P<+(w3Fl8f80$<4zqH0f-lfkA8=Mb#lQ=U73VT83#5}*a3 z5?(p50utYshcpPEA=_=ZyZ~E6L4pM0+0ha>Zry?yS#Saj{Y2A9zotn*k!6h+Y=Yu;Q7 zAAl7FUW}OP(>W6OcV6XWK23Vr!?B*bQ@z_x3&kZlIr*ngyn|z3ezWqJuW3JR4;-i7>m7oX!3;+R>OE%{9AA= z?5VT{s4Ph209A?(Oni`dMwv5xw&*7UOChVnI^=Jeobyt*_FL_FtTQ(2!)sfx$_k8C zXlBZ`mNjrv(@)7MX|cOiBP9;j9}j;DP8fXu;;+;dyH7lF|s zFnw{E3`B0*B>I8-v@G3~9G5#4JkLN3fi_dX&&+X{yxEP{s3rHC5yz<^ibkwXi`N}( z4;!m?k~QdCG#NExUGFb; zT*jXEhJX=&0i;u+j_Ty>}ncJ>DS@L(y#%P8{hrQPlA@>7|5^Rdy)NATJ_ z8%4|zJjvRN4xUGlXrGacHA5Tdzmb;KGn?~e$w{j7?ma&DbC*}K&xU+ufB+t_sSln- zL>&ZqQHAd=yhqwMGaMaO704XSMJ(OD#EA}!94Q&V55_;iMgeLk4C*NWbpnEa`lC^& z*K)MzPdX6B2q}P;mWXH`e|s|B|HTJ5MbL(VZXq|cmYtxH3Q6tn^!+AHdjt77ZXjzT zRy5?p;$s3axak2^5#aAnF6<_tp`qd6=*Z@F>Hv*USRFe+J_q{fHMerm^?5Ii`jOVf z!EOx;(b?1bHC^hJke{hmZJ^-7@R?4lAkPoOa;($}kQ_cFj0$;gn{dE!&;T?AR_C#) zI!~yAv!6rfy-LEwBG!wt@1Pw7BT46my_Wy_!ih4P!cnD3OpL~)(r!x9*4FIEhG%6U z`(Kk9!~_8yslvm;fLd5D7SeBAgjCfO((D*&pSJHbsIr;0X-piSUGY@8+*UsU1QwRe z#1uS~;*CqDq|()|OH7A7A|fK#j?n)Cc>;bb(w8O-dkQLw*jKMMj*i9%xgKvqA&d~( z)Xld;qYA!p%{M*C$;l{~8+M(lu&FyWyW+b07K^;5%{-2bWa&&^ZXb4+I3FEPj{jCN z6ho;#P&B#y-z^_fSO#&%qcDEUn-zB}ISR1_3_I^DP8FVU&0msL;62W`-F5BB5n79)}e2R`X{<_0m%&+=rYtf3t zS?0^;>7eS7BELmIvkv3DvDtrjs%UsUAFZi|_gLGUw5{zP-J?b2`T2P|LCsgXMc7l| zw_=Sn{bqtR+9OlDykPVFRg+l}vqPJv}uJNe?!U!j*tb%BN4C z-lwK6-qWd4`5$}`PCCJoJf7DX({Qd)*!*kT7!doq8`tA^hmvdZ^u8kJ!?i*ZFfxgd{_`Zaz1)gS#| ze3bt{LyGc?tD^?So7(2O!v!`JAgO(FGP~h^6jYM~>OgoFe( zv@|T8Ss@`Nwp{LGfMJ*ONZ-n_8(&s;BmFu+H`({v)mxJrI8us!!H+;KCv;e~@lckRIbANBv0@!>ztJcTT8YyZG5ctpk`( zXw>)QG%?y<23v z@OustsA2)6Jt@+ZnAa#8!S;kWgrL)kX`Za4Bo2huzCGunxCX0%0bD}hUA}{sA=jZ9 z6?942-2B8K*})7sE|~fsXM2Ee~7M1@YnG_O44hA`yU!ogQbISwu zD+R*YrMZe6sPmmpA&>z|EJfjQ&8q9EJT^kkguMKcXoh&eZwhb%x#MFYUJ7&^nCP|x z5Y_KLwEw_Jb6N0Gm5-5j{#;vRz(EuPnPp*YA`VblultwFOwR3qSX6AI1b;8n-%oen z>(gT=hck&|yR$8kOeZz?vacT|fj- z4~Fy%JtQ4S+gS%VEPF6vG$`x6??Xk0BYdk;qnk)}!NzYt84?a#@urAA4uD&jpb3Gf zosgjr0+NdUx%pST7Jb+dW%+~2Fn)a8d&1xtW1>I{3pNk`xkN#8rWZ9{TC$wRU%Zok zsw3>G*_j{HN!Sw2J#|RPHN+HG~KL>ko;w-~dK! zolc%il)%p`UX@D;M44YjUItau9jLxKytTwdLC{tQ{L1OS`;~dwVFq7-#sfdGm7bwu zBH$-wzzLAb#HYN7669D($^pN=)%7DKb&NFVZ|vg*^4<4{T@EA z0f2ZOc00ZHyzl&U4MX|U-2=${y^HnczdtOm;+#(A`jjDQgg1Rke4OybFKR<$ z*&%5&nqPOAqT3X9NIg6!XVz@PD_x1}PI#{nLm?t$gPX-xT zP|)-Rm|FkHYhfS)0sX%^{*R}jup*RSO4rVqD=QY#q)4Epll1Rg1G+PsKPu7gl%5Dd z?#0!;w@|>p0nBMW&w5Bnke~D@Kt~#;o6#@}FxoKX#zMsp7%6I#lK=IdHlPX5!9{g& zwc#I&WZKO7(9{R6(wQpB%z~Z6x?D5Pt-e z@)@#obVkCe#tx2TtY2gzbq8qUq2#82Om^dJ)B#p`?tAbIThQAs{(Q0pru@^m*oHj| zNi%4?tCSgjnFP)UVo3^Cu8a~W$^f|43%tgCkoIlK$8!Dyh6un@r(XkJ4`Y#Ky95eO zchf6$oi#yXu)Qb%SNQhX=M{=ROgx8o=$RoAuU>x-r+9)8${+nKJBc95yIk@T<+1WSTC!dvu)jmIfx5k0pfz$g$b(P=-9=@1s)In4viU-ow zgS;PLF1e{vx_1|%gN>Nw@17=Jg(Ma{F%^jlnOF8K=Uy^bJRqs$%edJU{O6Pr9u~Pb zNsHmv=uwe>crf?otH0oe!$UBX95dphxm%sn>0(5--tXH3NF!G$Iq_X4;X>E}|42|j zUm$<)Zfh;?7|Y9RrF#yv;QgNgm_!iO7x?Mb(R}DMIl_3g;OFKwyi4*EgTYoi0<n5})lH3P9Qv?ye6UQ_*!e7e@~gcPKjg6#*XlFJn=>I}UJ5|=W2DIF}v*-+=> z6=l0c#R!>x+}c`>L&t#;1rxG>tIi9Q%UG<#(gHVA%t$!o#9@|2Qr4amYTX+?*1Bj$ zfQots8+ohzgzHdxhR8RZ@9p4`*B(5+hkFg!B zMgcq<#9Y|-gTxvK76^vS9J9H9KT4h$9CMShw%H#*<0S8eGZF2uAo9z0pwY=H!k>k| z-s4NJQ!jkGA}4PsZlzva3~Y_(^paow!^Gr8Kvn>odXUSLY~?skzH;X;`;Z`5*v#Kh zcaf#HTY&7R@BTZa`Uh4F_T{rqumZhZ+5{Nr^4yoD!wmq;M%uXw^ekSjCi;rBz#dF+ z54fcuv*MaU6YvqRErAa9cK|UN;$i(Q838V4vY8A&fs-M4gXSjUI^hZ6eF~isazX(v z43U*A$1GN!B78AjD7hUnqSk4uF6QBp{yud>ey6lE{b4= z24~wwziaL0q5eyN@;JOyQE%zc^C1UN;lC~b0`L&~B035{dQk^^#xg4pmEZP813%Eq z&n9?Z59T??t&{<1rGOyudp0bzj|ZJw8N>CpVT?QKHEHL+$n@KPHy`?8F}LzA6A->= zrJlny1A5$mz(~YT^<_n(BXdQ}GfmBQ7b8+qks&|k790dih+>7bfx>B?2s{_sm_p_< zaMHR4=)YiSFYtM3Ir3g-y~q`Q$eTCyvD#nSdttioy9GOi84(x?^?@Ve4m&U=*!aM@{tt2XeC9fQT4JcJ@9wk@R?aMBMQ7*#J+?_dl$EaZcx3}4 zHdZ(oZF7>)&&Geh2!4+>^8L^Ple}qG+Sd$7#e_$hPKOsbk!!_yqfI$k>cR;hbw|Yk zI4Grh=+_mIZW~O9?0Hd9#5^gz^kn6sEZFH0A5~yvh2J;&WcVcQahzYaV<*FSaF$df zn{5%i=?WRN(tp?bGT*b~%~^E8pw4>Ghs*Y=n1S1@v8`tYx0ECUEC`N02wWIO_WauD z=y!Qo*S`Meo%g!9adX`Y@pbt6d2rn;b~ur{x~TdGe4V)B_q_=Ah{d!Q@;za7^M&MX z$i}KyNoF|oPf)C*yIvci;p7LMG^duA{Yy#?NNy$p$kL$eE+;23>>{DzWjkc?Iw{i# z6l=TH+ZmIVW4wu;t_+g8t+#kybvH=j#Kom$l94Aq-xzFgIWhpMCE}q4cQ$N`)b7D4 z7Pxujf=-;!_Og0L2Wi)eFlrV6!UYTxY&^ULfE}i0WpxCG;#kciSD?2q?(_ggHXlEE zjQ7PIWVGSJlyPw$+W~=1^v!x-QKTGV`FciWNED6NWPl0$2+u%n%`tQbNCmX$>lWC# z3fciKv?X2uWibg_v9s2k{^{s}Pk`|@+Z{++z1GoMZqdbw%la9f7|}Z~iM^wQZvvT^ z9tA^pAaH})Y&fBjtDv2s9D&9`Q*lTsu$%W97eOmkA3#*Tg8+u+CNI(>@j$Wj1@P-p z2$535;tzTEzr(1#bdg$>I#s0WJCkSh-fTOmx_J6u*k@ZjU5eI-Im8Qp=={(VpWy1Z zF0%WFYINFzUM7nXH)q<-Qo&0(AEWY4HFXnHZ|L){B8EmobGs;%zJUQc0aU!SoaN*Q z=w;(7|5_Cobn6dfDKDDIN=Vd=kB=8Vi3|OA79FWbQORMcZ9l72wrc#)eL(u|Vdm!^ zn$xyDHgl=fDbI+4=ESZ4@#%V3{p-hsag}WgsYo`T^9YZWehH0@b*Vdx5h?o`5uwV5 z5l}FKVF@7=GO6OOBG(f;Xbx-BIVhJ-fv2cQJYQ+H==6W{DuL$j*lDHa3tca{xV}KU zUrvg4x3tmgstkhzeh;k@f*}&Ly_R#;jbEWI{std)l~CMI_1hG#4=`036ix2@JF_dw zSja&%>nw{;B^Zp!A;#@M(jc2C!Tz!`Oe)~4565O`##si@F4i(x8=GCOZ~VNx^B>-SAr#S})6A@oU=&Q`3xP)6n|5R}=Ux58zxqdJO|B}$ z{O8cRVe$1H4>XOPn$iNdJrAGFUsPYnU5yg+o4J+S{>nKFUS+V=&ReaEV>;fso0}~) z4b*xhJQ*oNC?LdpN%&x=rVyCn$$iV$q*U{LfbTw?ps)ppiK|9L)<@`K;o3w=?*R-j z3|$4F!VMY-BIiJF0gA${62l&kjhYMUG>c=`xlnN=czpz|nIBnBp@`^Z8llxQn7ovi zwXaxp!gD}WE?%(kvpP^FgNC^h{4mE=EGFDb-yMq zZQBnbDb%rvdq|6+EDO@}rCSi9=XfW28}XU(iNX}eul~C24AT0<=_E*!6;|XaHMFfwske6zjZJ)7ADcy;)0=cWT}+fV%?i zVWs+gS$wl6z7YXNxq9OBBa#2~m%Vzha8G?;wTGgZCqytI*YNxxlJVjXJY)T_@srZt z(nx3BE`wN6&~?GKc)bYc>ssfJi-oJ#h&(#aAd7XBQd+c#5V|(*>b#eJmpkf_gU~1RQmjoJ5wb z59wavb}#YkUDcRxMnB|$eNY}zc0=Xi@%ehCt+O-i^1!h*H_>fxIq0!Q)g3M& z@14g3G{L|lEu<$(kjmxmiJ>r_mco{%w(=MYZzE)ja1&`yWJ=Ra6SA-OGM=1@>%lNgwOsy@qF527APe4h&jNBuS8Cm;%kX|!jCSs&n zlAiQJL0ya{OIT(S?6BbVGu9g+r!^fQQSq(J%Lvu;|+b+p9@q+n&j?jQ< z5cE}qi&iy*cDQ^oTCtOsvVLkYwLu_Ke;v)^L!Kv2>1TgNrEFD`rs9^2S%np?HzRx@ zy|dPTtsBZyvEKTYB&IgpO`M!M z?X*5Mnj|59%`I{lO~d&Cac664;p5wAsOOE`O5``*zcNt?!7nT*dLm+XIc|I# zU18%4dpWu}4lmS~FTFbb@=8s$|DwH`=o7s=mFlZo!(ly2+}~*egc)1lZ!vCArmGuC zlVc)Z^RcgPuPqTK(Vm=F<#kBD(xZd6`RmZ_@2ufqulDsG^w^3XzGeH&jJ=joj~=(f zox%^6VNl6eLS63>Jlwac6<+kw+0wamcrv~6yd%55#UOvHsmY}=5Vtci=6TK1{;Ux{`JcP@-^Os=Sq|$IO69@Nt)Urw-T|g`-w)9 zXEYv8Rr7w%XkM6&YGuf6q4deo8N`32B=nO8lYcW%J2CEMX8&|&!{Amt4K4~*?Yg?P zpY2iaHmrw!C7+RgLXsPy+PTp?ZN|Y%e8P!^UE-Xc}9MsLaFq;&v zeE-kiykqy=DNiDvJW~C6@kV!96o`->cQp7V9-e!YY`9jDraFC>alwr8oU zi;Z03r{NNfO6=SOHIxh9_7^c;o>6U}Fuy{g%@>BBq+ltDHzJ3*p-!1!9OI|8LkHx~>qNZ3{oUAAzH0Lm!pR=ai{w763 zhh`MTv6UZ^XFWDWylCdwC1iahb$@cI+$@f-_EQ(0dz@)fr9RuM{h)IH^%eMv&b)m2 zoJ=Ucw07R1;kQerx0nKVTNESAwMWxqO5gPRmV~6}oGisCanhk!g-B6kSQ_G=(vobP z(5p)$A&0E{J-_+}>LGhANv_8tND>yum4ArQ z+dG^RCAEv|Y#s}BbJ+Tcn(+MmR|w-tZBJ&C!(zqNxzB^>D34>lw`+ZJ0*_if?Y9#q zy)NG(j0zMr^;B+f-Bc^(3D#h4{(4ARnv>IX!5`sSy7S1FA`uy#ic@1T0pWon5@4;sAgS9(9m8A~tldqJF>79D`^-|7_M5!F@c`H6tv7HZEzQ5+e zOU_{H=)U}-8B_b07XI_Y`DY4}1Q>U96}4KTOdAaf{2sZ^GyK6|{55L@bf=hT_s-omsC2^VelbWyUo1nu@QBom+P;X0NvW_bU%^cbqV`5VJ$dB3AWNGAK z@V=jGQsq!E^vugBB#nTBg+N<~MUe8AvLNYuQC-514vY^QRX+%eUu(1<^tZZIMqp6z z>r<>|(A=r<>7+&PLt0V4#rmp;46oaq6JM4v_8V?VTNCc9S9|Zi4YI0^NxG@;<$TBK zDyy5!f~PyJUu)vfsNWWh>^R(mXX(!ZEZkqtKHg@A0n&6Z_+s;H?|SQ9?nr{H#=?gr zbUqKJTUSy;{S0lLsAL)Is@qE}=?bov;IDap8^V;m`tq%QDSorh?))Be+v;ZSZ9-+H zWVMg?bkKk5n%>Hn4xsY)4$zaEg<@H&z>!%K~BX(_L*9^2#n zkIDzDH7>YVxoO{fipeK&58l;fX$v{fNi{iZge&V@dM;X3kHUYX5kuk6CF?zrF`z~>wbYPxH*mwFb4Z6sLDoEu1+vzwvtq7q7Cw9z z$#WacQTcYh05a1J!tz2sHy`*!qf1Hf9>$~jJzlFS4Eo*|TRJlL%)j=}>ML^#358!P z>mUt%V(ySt!%w}k5e%Q^h;^Ou&J{FvxQpO8`r7W0_*T=%vf=7mEzRU0rivWPNx0 z3L0F^>6aQLVb+!@#{!gFERjC6b zL-V@+dKGy6%u90;mU+eR0l)EW z@P4T6Tey9F5-@uQ$H@HzmdN0^`j3KJ=a`wc@Cd)@;=no9CbiL%h| zPQtU#!B?#9*@dw7Z0CHZSz!g4`#N~1;0NA~dlb4~3_r;yKG6_E-^Khsu6O(^nS6S~ zf4YRmvx+#cz|7f^rb=V-<}^_h7tCCuHKEV%dPD>WR;sOT&E3MEJ%z{R$2bd4E=m9G zBqh&Se<#io@=sP3kw;v~YB&~(&JGN#)9Ih;pQ#48JY{n^<`qfK^NC4P&n;buy>%tc zsPB84N`BM zJ{94GF~ZoPddRiVz3oc1HbV8{3JL~tea5pfrrd_kKYY3ogOu^@oYMEJ&YnNp>t>Y9 zV6QGD8m)ar>nTb5lt!Gtly|7E{|TBR7W~)qz+U?}lKtyLb`6(vVpOlD^)JhfrahHT z!Ydm2s#!Vkz4+(lFMHB*gN39nV*M(d%hUqb7Y*r~Ve0a*Aakgrw)S%P_5Je;$1&<2 zi&|KP(kT7RL;-65K0XE=7L(CR#on~1=8mo=A6_SkX}=L<$N444`dsdHwwSUyQS=_> zoFezFn*3>M)zX+M(W~i=m@o*2hDRP7GoClC3@q{IirpsM#Y9)xMcc)^#Qc%J`(tsh z)1^))bk321+p?J)0=%E>N*|3pnZNBBk!XwYCi&AiwX~V*{-<`QCSUr{GHv8S(Gl-o zM@E*ot2(NXI@9iq@1fFk8W~j$)40yUsiMVv4E2yTEnj{*MAFG%~CYZ0m^udA#3yuVTn5(W>e z@e4KnJTujKccP4;y0x}wx4_@-#L|c9@vqe`j5VhZFu`L^cHQ$G>*{(JX zd)(T!AyB`^!h#3hm&dlYd+4LParRgK6{p!l7iXQ)g^dSCgkBL+NMU+04w-c-!}RZHZOG% zzXxVx<}|cr0nPF{D6ys`($06@LwP?fD{FNd@5kUuXjGIR=u5s$mC8`zDNG3fv(Jp{0;+_A;1Dk|3Z07bPt_d!F?ROXL5!2@i8qv?Uy?cB;%$#OrJW zG~`j|d%5mSH5X?Vvo;P6yr^43LexZbQYe(Ju5JQc+s7-vEsTvH2p!E4y;f9wn*36G zrqK`S!Z~N{=u?u}V+e=K>T2~}3HT9d6+oQ3PwXFumn0s!CUNU)t=7YYw6rVMWmLCA z(_Rd^E@Fgxc%WqpKJF*}-&cqs*W=dXq@LRLc3f`ms+l`;uYGkCzPK9JcJP2>adeziz9R z1~aZK8tuR5it5t;^ZCj{aT38eua9KYnVOnHka6&#j^tl&6j*dUH z=j9418SMP3Ha=HEMf)u*=y${kQi9KBWs@Det9Sqb31n6+zQx8y7#A0ZVC;hq?$b>j zEyjz3XC|0h&_78$|fT!lMxyyVet(E9kth)#Oj21d?l5csQH+ z7%w=KXaU?ZzW?aaqe$q0+8jjbGdHJOd49a&0J+Sc7L(QH!DE%S+`0BJf(n=7(J`<7 zP4Vs2bafS^cHNZ+rbzPBwP8j6lmf>pPuKoHY+VJQOEJT+!7An;zv=;9E;a{L|G&bn zJRHh>kH1bx>11Y-kWMp3iO3c)L?k*zo2-@4bKC=ea%4{5Qk%F2C>h`+48rXYrL8_AGTU&ORX4^VoNrYwUHV zs;VVHcYNYkqpQYX7!!0{lz#tmgcOl}-My6T_tM&4*FHCG<~+K&MpjlCAp&K+)10T% z=@ePn?&Ezg)T&glMsBE>?QQR>BR6jR49ICE431u&F&LkRofwjZCOig!WA23ii$IU`N zG(|Emtc#!{^ZMl1V&m_xwFRL`_c%h;NJ$yLSr5a&if*H+cB|cc_OSQmY1#jFeaQ7| zh&d_`y1|Y6ZztfrzSa4zkrGb2)ck`vHzAK~5EX?8$XUmEQC$CV}_&sRqMe%yI~Nl2@|Z>>lib8MhouMU{QI8vZDG_&~GpsDt&K3 z$(SImF_`_BLA%gxAWP z`e#;P;8~lP@Y4BWPWl?DsEtG8<12%Lf>M6dN2#K0NWEEYU7gUQU#tSYfAb{Mem8dA zEC1->#AGrLT3N-cj}%aI%r5^#I98seYHMp_B3r~gwmo<-8WpW`u1vdx%dLa5=#*gg z6fC{!bQeJxMObr4#S4tEK}gGdv?k!7M_xAt+J#@=l}bvabWFpl_=r#c=d{0xWy4)*1Nt^rXW9`BBf$SZ+L&&cuSf%GQ*yXJQS{K zKCyFWjJkW1WH#Cs+f<$kabYZ43fbZ2W439n5C4`tFfpOl+10fS8CR?JWf}T}sj*lN zpc04Onnumjur5UO_4OHa`i{;rpCjAMy=7P_9SCGNLZ(O4QyPVBZEam)A2cN=1Rh(!s6nKZNt)~J!GIfH+9giJ9J{=%! zdh9()o{+zrc!L$FjK+K!Jp;GU^~)eHzo>{GxiFb^du5^3=-8O6uW$crS4wi~J25)d zUiiO=advjr1ugT2e$W;KXurAF0y?t>;CRC^&Ditj-M|p_>05lAwGa!;rK_t;-?T|= zq=OT;FK@(e1t1H|2#gUag#S*Z(by7(v(>ZDYzlawR(}C&S!VeC&=A_K3;e~1@jej& zR2d{3x$@#Yd>8mAFr?$P-)yH)17*#L3k`#yAiw+AmUCsd0zX*)%xE=yW{cflNX5p* zG4=FhkTnBU5f;)`V#k&=Ch#a2(2Oi6uCHGT?(8`vBeZ52 zC1H<$nR4oK{}0X478~o3Kaz+^a1_}ImD8+)vcNO zBrG;UVl>U2FQ7?n)zP_IUOrc(6=%zFx(xle=%QfQ2<&Dmz-qsLIGoaIVHEx4ue>aX$ZuDJ zQ{TpMuG+^lHEp*y5WNzw!p_NIexI30DlS$JgA<#FmzQQDUuK0UQCJaeb?8t+60XD` zkQNaI@Zthw9)Iy-EeICaYfk{3KfAoVyiQ}Zw_*)O#PdPkrBkDw8o9Z-1H3iPl_%C= zgdlz}%1#CLoNvNAWY(^|1Rd8~91g!RMUk}IMti!Wb)O;sX=@@uOWxI8?79RrcCu_B zA*ku;S=-gsWmoKCTru`CQ-3L@4z&KQx@u}_9IGCK&}kI_@)#q*TM2$JrdVY`FAhNi zM%d4vKPRsyIc&jW4tO~wx^yWMyX@pq3g#wDV9kLUkz-YYha6FIsq6+GuO>@irfPBB zkuq;%xVn+t4>&3?m6exUT3P~4m{?n{hPTr>NNbr!M(dp;<~Eom%3VM+2n@+B1m}Ks zC}sa=tSts+T2{n&B>)Agw6ur!WScoT`-NX0#LI?kA)~O6muVn>sqmk?x`7 zvm*TS_=DbnX?EqOH(Xb9PDCq2Y{{fuRYZ7R*$gln8A(O<3#U-Oc8QmtpIbooz) iKZN!_K>q*tYe8hL(tfmU1-#!Qh+lW@Gc7W4VgDO~t5^R3 diff --git a/doc/freqplot-siso_bode-default.png b/doc/freqplot-siso_bode-default.png index 924de66f44e7ddd74174751dc393ec18be25d4c6..3cf235a31167a1b14a99467f6e2c6a7faf82c340 100644 GIT binary patch literal 46492 zcmb?@byQVfyDnXdbeD*Pq)2yzN(-Cr?(RlFltyVJ1gTATw}41XcXxNgo%{El^PQXH z-aqab>}2gZ*P8R~_j%SAB?TEw3{ng@I5^CAZzVs#!65{|!ND(~p@46=M&{PQ3!jUW zhKq{5nTxxjlPR3Mp^Jl!y^D>d(Q`LbCud80I}TP}Ru1Op7A`Ih&irg_w*NkW)!xaR zt!G0+1q_1j@K)0q4i3u@_JGe9$+Lumt44n(DW>Z2eQ(~~Llttj1E0EQDX{-}iz!PN@UQP8 z)WD6Lzp92MwMm?BLI4 z(y)O_Q(qe*(8xrcc?g7M9j!)-GzgVIp>zI^_ma}mSqvBgZhH>iWa4Pc3b3(xO*(?n z8NxoChlPc$%vhJMM~gfhxlIaok9^tg2zhdScRF;vo~Zx(&!3f*aJCDd%{haibfGz? zK9-+9e`YdZ95$Us)i$aQV2Rwd#ZXIFjASAI`0?Xxe>PDnoY1pTTbvX9pK12M*tASc z;YCHv2`t*56!KO-k=Y%&)ixdcj-~n4-R;yxppK1)7o?C^=>8M}Dc4}8+?v0RkB=Y8 zl_%5lJ%<<>8Ie}m$`ol;hfzy>Dl=$DsIi;>lPMNdcic@j-QwF=+ejywO%Gd&&Zj7d z?Ck8ne*GG5_I7``sBMi+PJU-+X9r2vZFF-yA6Li2#uimo#lKwi7onx4h1?daF)0cj zBP}m4OG-%{Pqsb~Kp=(H*-*yP)(3vunJVh%&jak{8;^Ytr2 zK(EP4tPJH3)4qhO+gs=Lc=Za;(+#K>lUk9eGCm=T)-SN&QSAl>=R4zEE9z=$CyA|h zAyZQtclY=2-o0CnSJ#7ITJSzBW{0oUUJ-hKH-zw_KaKPL}BIRG9XS zO%!VvuJ%NiLN9@I6c`#B?zk`d<{iv8sy83D+>XV>#8{O-K3ujIf_42s#Hy1|$>$__ zzgIb=8q}UyqEWumbT6x*pe7+MKBlhcDJA5v6mSC;rT|Q-+vMR0ArVdEu}_!qWnpDi zvv1tzJ_pl4Dl00+fE13KycxHsEh|&<-OfoI3l2u&Vq%gV=H>cjW`?W*2r$QO^&YMu6S34h(pNxSGab4|>-07k6FM>j$ zW@ctk(n#s~DoYi}b((-XG%PD$CW>5nz^sy#kT6&HdhOfJa%bpxv-c%5!~dZ^B|Tlw zS{s~;yquisA}|YHmnvw=X)x3Cj6}q*2|8{yo|*Zai-F-S@)(dh*WHO?h^g?yl`+?g z7ve0hUKPw-?3T8|<{TItgzc@dvGKUNzHhZv>$Hs;9xg7FE&ym1w6(Rh0Vs{t{vz1b z9SZk3$At%4diugiJ#X7;+uB9HMz49-Nr-c*dqi>(YJuuaxh8^(3?< znw;-L+H1p)U~L*)chv}#M*sfZ5kvvMvu{36nE4@rT3u05F>ybs>z;PA6ojSb>%Ujt zGZu)53Vs32Q%L&|_(WlE==^54v@kX{cBl6n{qDRXwWO;Px(3>EnOG1?xpB`kx4o(M z?np8ceisHXknT8bqwnp-NU=80$B!SOJ3w);QU|)hm<)`JFM!=^@x4{spWJrQ@w;A! zEM6YW%SuThOMH4t&C6T2!{xjo7e&tJ)c%l0cG-Uk1{&9@DQRg~0k$z|!0hIHSG`)k zbaJ#%y_EEx?{dnT!>|JhoPbzQ6ouzntc(T__Ud~)dWE&hAz{Sl^z@YZ1F7o!dfo57(XpEk zk~1;6Z-JRIJ0TS6 z6dIV{A}7Shmuz&~x0o!UX!bf^@qfIf0`|z~q?bP6enCh|*{ayPW#8YdavJXHd{V!V zE)}>WgTsYp*9BCK47d4_$x~&;#nG!x-s)=41EeZ$A+NLNTwL*q`hLkLCr)-ik?oq# zC!qI030Aj8vWxUv)7e_@fMLVGxje)QP%AX;{YraxF>CL#{Wk>I_>3qDfv+hkJAaSU znAq845mBGLHtv3kfPmn!^&^z{wE>)2B}o9dHk_dLwkFThtLx1S_GCGjkAs|x-0pEq zl{BOS5Se7RuU6-EGCTi`R{FF2ZDhI(f)iQO3O z>C+;$$G@^{>&fQnhVu=sIzGo;{pmuDR*T>HoRdKGQE5K30kp^6x;4aNa3`Zs6m7&N zS&puvvJ#$wfdQzTaOTgS!LSt%5IAi5Mx^f(3w#HM>yE0Ev$N;ba%lbSL8Ik3lmIST z_=cgh<%V&8wl>dsb5JfrIIW|j1IjHfF75&3$@A{Gr+nH*$8$ZNI8qw86B!4G*Wg4& z>>npebo+pr8U!k&Sz&?>e!M=Z?_XS9MB^*}?w#RCmJ~U!LqL8$0~l|3_uTd2J5XGY zqjpr!or1j25fLw6z4`)vkXBLg2DZ(ieiP0%rpK)kDhlj7W z1tJ0`ALF>%4S&(QSm(IvaXIh4J({ODKJ^3*?Kv}Zk)DVQ^{)(%OF~I%Nn>`uI}d_< zuaMy2d?D`()mE^$R_nloVz~}yiowh@DG5n|LJDWW3{<6Zx=8qDE8EJ#BA=9!vPAg! z7v2t-0LoHRHf^)hc-T@16X@~XbE|MdmNCQ5PX$csC4%;k;B?0=M{^5m=iO3CiHY-T ztj6E_Zl<|IVdrGM&)W8OC|nf8!+m{y^ zYM3ZNGo|{iR)vN`%m}X-7);$DnSKfyMhHZ%s{1h8tY1adC04K)9afg`}$s zOxEFtd$nRM914m7AUSd%dP()74R(mvK_L8BLh%wa;(wPuz;cuSFL}uSmw`6-pK+pa zr$zz=!^Xw^n8mPg5CuEy6g~*#6)P(pE9BmEIkre{RU!w zU?!S(dy$6Wsi~<0?nB8*NwthYkYaYc()E;rAHP{o-#Vh<4=-*u`%$-}N0z+0F~4@J z@Hsil?#|S=@@;L~2AW(Bb`u+~sM@H``TajrF8jPYeHNTwlae&JWD3}l;rN&OO&5oU zhffvY5D^j4F)^E$kdDMn$-j&cd#v&bj^q}yrxojGcts_+y6*K(ofUJ>;D6>`%Va!SFU;3BJ{1N+nbe!VYyC;=K_nbz z2Gv@89!JlCVWxZidU$po_n*WODczg*}(MaT~wPdL^! z>XM|EP{{a_L`r96XQ!pZ{h?j*0tS}oPHLihQJ0+*(Vje%e#V6>xAJ^fWoV?LBua=R zwPie4z=$7DqI5KCXa<9XZ0Q&G>vT93c8mMxoRnEJS-&ns?b&;$is|dkv#<>VPc8^(!o6 z{(Q<|*8WF*#P%`lS#YDxJGjH%a%YR$+SAMl^E)zK_>rb|y+@^0M^X^$ImR~jvB z>QK1i?o;VYDAN^rAx`)jh|o+ODx-zl*BRr8k3IK!PlVquX&?h*y zmet%>=BL>;Ev+3!ypfQ#L3}`oJ_w#Q6PwF1coi!D7iFXr0xiK9)z<3~LCINXcTo5XjS?4EAy@Ob6agQ(1uO3!h4T>nDGgiZ>9p|IV zgNM&KYnB`F{Q2hiCjBxDLU%>0+e_-V9!8`4KA5Yn6XA>3DQ16%Yq?qp2Oa`BQo0ia z1-iESc6O}bjS%qHE_+ijcMq?mp`me}9|yDt0|SG!X%S?^uC(8cSLSIx^wvmqSg4p=i(k-D1WBQQdWSQ1sOK* zxU!{s%~pG99Ua%!*N;IK%kFh%0j5F2!s@Z$M7Y@83<(Y8aVQPJ?&!OCK%%;k zc3x7q2_xKX+gwUt^s!%-vf&{_~+U$w%l!sJTBMF+8G01 zDVOxR{fSViu9+W+zsW}BY1~JX9N;_y;e<1HODvwcnDiBTZV|05^`#^3w0(Z*w&PEd%S*pA? zJ2P`6VBCnh@oCgrLe}K&FvCSgjC6TowHC`->hr>U1d(QfNTWwShOp*{E~DIjgl;De zKeb!oNT(W>0Y20C(H@Q2Bz!$pJ-8zB+qPEi^@i^`drmd)j4+~d6)rcyq&n2oF zp!7FF&W5|2G5%vM1|~g;TL>?<38x55TQO(!F&_*U4$843KVdy4>idK20p{1IrYbMX zTy`fSK{)o>ZjKkEA}~b)p>*N--ZBZ@H}r44s^|Cp$r6>*5z{)SkGw-Rg|-HPb{v_mIj|tnPg|KFW%O0d8AV9&97`E@h{A-{xPDaINV!UQ*Ewww|A-A({3bx zRk#|TX3bXTKT`uCntSZuSbuiWd(bcWA^ZEa-DAQjrt=0s03jPGQ&`#%vp=dA4u%CP4ubx28chr4nT&rw! z*P$1;ArhsbnVUfjB)du%51-8*hZsyff5w#tAF5|DYK>j>DSs=Kj64h^b=S=H-1|=7 z{e@@7RYuU<$ivl!zkZQIC$cynr1}MHn08BTfpY1B$)Mr|SLStYbx^-a`HV_9ReT9V zemP}jF~Ae@lDqGW709J>7k6JwSDNDy6K{F-Jes%%cKls+)sJ*v<5~aBR$0Rv^$fv$ zRRFhe!b;&{e0kOJ#C+$izR*2~kbSG_t@pTWvFR;ehH|@`g22VT6G|z!A1OgI${puY zp3r>>e6w_yqHLt^gBF25%SGbggV0j{W*Xcr$jk-tQ1)azBlfw=ffVA%ol%V+D{tHGjMEY8fce{ zOiadmQ|0&s1dw9K{AfB?l-ICAg3UY$aNtWzOI}@`8_DJ#z(Pa2-pa|DfIz?cA%=zU zNnawHIrzZEI?MOL4DF~45jbQSKf=f#{}uaatJk0It3wC~@;S9N%6*U#OByhW6~g6( zgp>uF7jvOg3PW_Zn>LmHs07u}D0xWv%pO}R)Tlh|Uhn)vyH(|3<+N(iCX2dr>iT#0 zN=VLMt4^D0WlQCPDhFA)TP(gF z39=!seC}msz*+NoB7gbS)Qb;Fo!Z&bRo#TKMngeUZB57Sqj>ubG-Yi`BMRN`fPlej3q@*7s92O|QzW1oeOOUo zP!rf|ETo-O>tdHo!QS*o?U<~=7PwHMlXkW%yee5xu) zMP1>Z^GxyuoRY=o&FEj~_`xnNJ<(apBbx8OFv!yWTp?~J&35(Kp`;M||I`7Oc{X^j>iK2RT80|k2%kY<5yKx|A* z8z@We{#{cAxoUA6Bw`2tynDMo#edy~*=l<-n?_XD?{~Jn&5o zGdw2qiaaWP-v2~8TfE_06;G=axJ|2WYz z`%=74K3foRN@)$Z47)=;B$0A`WmO*s;)NFQ#`mT7YLA0plRKn^x)7r)UP%cZnJ&a< zG-H9O-K6;_XA8Uey{x|lP9`o{J}wztdEiCg(7=n?Xe*iq6Ong$YB>6JIFVM!&xI;P z8u1Q(WySmB1-o0I0)6}{V%CO-k@*%SADMsPCT4IubJAXxyFSCGqo7t1)IMM z32!UUy1}^eHRApbkMcuO(8n-R+)&pwf2D6X4ftxT@QsAo^$+tl35fwA*jdx;>7tbz z@^|iobR%Z)Z4>8ix1)mJef&zZ7=qLETz!;v2K+@M*3JH&_PrfoS{;5zvwQLLgCsTy z@;ZK8@^qY9TW(cl^!OOVaE%nUu95gK2|*S|_*M$`^03gSNO2F`39?0rZDGRwA*^it zpIP@-_!HLpGR;*FPcTD{==cyl;QuKK+xnT&P$)dey=)WL(ull zQH)pP)qJM8j-hD^{v4WA+bv4=3nUrY;bVx4{_;!a$bWv{2M5Is=26os{36RCOx-f< zN44Ir##6y|F=6JUt8;}=k2D7d_IEYqk12OO(%wz^Rf;qZcletTo1{Rq9(9HUCpepT zz6DJu_RKTpXT5zk^pOO6!iHG~@N0I~@6f<=BpDC>xS5QY?N?GR*xkYNPWhr4RBo0rv$tPsOPQjy4Cz z^{NL>$hw&tdB1U2yP#-~%&poe3w1<`?ThVEx~~UcmWf>`y(Gf~USZTcD2j`|oRRXE zYTOpdv?#~)>zx(C%TjPcIYNL5d6rl{;|Q&{<+sWtjnxb2Kz+L|FR?R?XS;4ne~wfk zW>kE~h*8McXsL)k|Ae*b%%}V+ER}8S+^^Vcw}}zo6pGjWMm)lo3D`ZA(ZalRik4KN zPYfUn&_Qt1$!_f5_>tsGve;%BG){+rpA zF4--Y>v)?1&WZ;M;oayBXK2-p>8g@H#r>=dN0|gCc)=rB+dOmh_-fXPYLO_9+~&0U zbWGOHJwF{x#Ukx|-}nm58>3g+y2Msda(@u^zb_fM7^l{w8qN}x*%Brxh~%qLAtGI+Vlpv#pXk?A_pF#B{V6E9^vLoqs3jw-nMis@BC9qm{sl0rCD#f zb{`$DdjnsD`cEXv!8Va>TfOgG^?x+|c2<=YNT!EAoC4${fU8m6d zR|FRrQC%)Ft%6ED*Oi$Ly1Y$mt{e z@M5uMa(A5XDnGNM_>xh3NI`yvFw-H&dApJA=ggDfohYu+fn4aZ+sf`)+`681HE`j+SUJ1oV;#t69#&6D0(`w`lu_TrIL)APq-8 zVGeN$ZjDm3=X%XoP4DxoOSqeK6rrf^%@!AT0Tr95oKhr^)bZckQw{T9ig#_XS9DIy z>W6lU{yO13CSMBVA>e7&h?LGW2L<|Rl~_>?l!a?Ky7mxaW<)eF;LYa+fq=$v_YKDG z@93e%7?}fj7nVum(zf6%WA`zVn6!YP9Q2|ld@@(HUoNxh1{CYR`F_JEmie{e%m8M$?zuh-sN z0e36UbV`bSZcHeOX;vzGl)H^&a*NwxmN|(JVPL`2;=_$t={usL7ng7igq?}qxg5Sw zwt7@h4rvmDP+Oz!>BFHCw)M`NUs~R0-YYSu*&8k65WB51aLOB;?DbWVhUgX3Y>)GQ zC9>P<7&Mk*o=Y2G^Z&l2A;x!FLuI~ju_}pt?bu0MKIdX7m`L|2+v82M!g~?o6I|w- z#(M&Pl3$ZL(=5R}zmdu)O>o}MH~D2ZNB@eGdfw8*(qmXG`A$F7>4=9jlrW1pT7CZm z0gKfx{8YnS#Ec{FRj45desWok3(B``BD%S`*}~9QvXW{99p%Yt%n6TAsWk5zm{L`8 z;(f}6)7U2Rz7gZJ$p)#4tR|n^MfW&-x|Lno=8C58K?+fhB zzUz)fc}=7hu?jTF&t?h`bZGyN97iISFn1i?CamV-EUQ{68;TZ>tEjzG^dtg?=t5+6+A)!LF#w3#)yGpD$6%t znnNyszlcG39xh5wA1xTs@qW{38SN=6Fj{ft#ycHhX)646(3r8U}^R)I5q#5K=4 zm9??pbO+3*CK}}x$wO0(IjhSx)hrErTXg)U+`hZYoEFxE-s}>Ouq0@E|8iE=xqnm^ zqFVpuR>e^&Q?6!2ae`&jOxL*1t3w?w>f>y~|DG_A^EtRuUhvSm-*Dq_mVi2v)7Hn7 zKl?i=cBA!s0rUImV;8B=%k#jRpv-+P2KK~E3r<%$s}_S)yXQPJ0+V?h9cNy4&4ORF z*%V)Jv_{lxM<358$SL4Mj@G;7TIQ18B~B@IpS?F3%Q+6dYP`CYJwWb!Kz@=g*=WN! z^HVrxYIJ?o0TrBp58po()5t)mxEP~}ZLQ+P-^um@39de=>Y$oQ(MId%^;E&aJwZ9Rn#z*QJnj6oSyNgssWo)cZ+0l3@_25ZJ|v2rRcGUn59jYh z+XB^cqxW)PJT~!m%_?@5FbsZU(eU1B>57}TgZybDUd7JM^CTM*b&Wk1(1an- zEQA)NT|D9>iy(LRU-Y-5DWfLCO#~Gol%y6RxE1?3>ke$ZfrMnq#eHj3cDl&?J{R=0 z883&S68ahC2vM~dzIwbX|DCTA-fb4$#ixMJJI6j2ke~EMf8O^sAm6^4n->Ud^y;dl z=E^ALHmh*)XHETkG98zo=u$>itDDf4l#c%EQ`)2OFliP1>z&rEmbz!_Z3soX!fig= zzLWw{Phuf$gNdght*I3lQ$Z#KW!Nn;_OEECTs{t;7zZbqYgCQz&GlXD?LGk*)5}9WY%Ay52i}rBY%3$y&C3s zf0am{`bB=EqT${dAEo+SsZ>gZwh;JZaQWZ=a|zUf1~8;Z7(7FjPO!4qC_buyH_@4K z8xvYm<6G1XG**S-3at%U-EOE7pC_X_iF$G?LDfEev}C;duP>iZJ^MF#OJv9_o8q(0 zbf&NMxhk?%Dg1w%@)>8S4kRic>1_jo z+Me+EKgGoO@pCgy(@{c542lK)=VN#+rqQ)@ZT!1*B5>#7tGsspl+YQERuc~x*-VI) zhTX*?&O(ma>2RlI&WD*0$1_$!AR$neV zRe{e34mYkhjbga0PZk{I74#Ghn9 zWUgIo8F}lzi`xL>?Cx(+0NsN7*l{cw71CQG+yH?YWtLJg z{3&ta#@Scz|zke~ZHh{^^(ScwFgjHIi4 z^7^H`k4KO?{!lWrH#_d!nlWFRG$0vADc(DWrX}CJGjUU)Ig-R=k#>uk5@{KLSwvW- z*=B}PcztHxw>`8WvR|87owSwuE%Kr-dfztVl{MF-a6#qtDc^RWHN4y8{q8728hiz- zjshP=ZJ4yVhyW2baD!7%f0(Q%;*K_O%(S81`o7D%T&9Ye#vVK*dsx~blg`G9p*KQP z)=#9BIaxf8CI8L3vB(sCG&+b^BplbXBjM>H`*bsqNhN;_#gO7$--V+z)K{c^<59fy z-NHeGMTZH323Goeq~g6B!ub{R`azv9cBRiC%X^ZaMf^7eXDM!rzTZZuU=1TqBJQ17 zaExySz{8==6RAAWL2&4=zah<}6?MGdg)(Gfm9c#szL{QhMHwbh8nQWk(vkaQO+!KW z_!Y(QRp>{3>@7s)`;SoJRia=`V}t!%iZe1^B;B|8TL{oJP0)|CDWFLc3t43Ehj!bd ze{B}~8VAcn>1JK?xRoE8{7$6=-{fOHYNvM3757XhYyOsScEcvil#;jT`YgtlseK{1 zlhtbcr5@j?(X&Y8E85JpQ_E{^TAV6WF4Y%XKbr`2QmzYTSGnnS_<99YIrGErJF=k` zd$$U$>b|ArrDhZam<)eBFAKsp&T3{ZEX!YMjg7M1nqzWHxnBtQ-;`J=5$HmitqwQi zs;$mI>7*!ZaogRu+8q)b0@NC{%S6j!2k1VF!bua+~w7 zd_E0<#bDbpe<3H4OfcV^u?nsj&+};7j}tOM{=~EomRm;rJUb#LTm9fN&K|_R+DwMr z46yvLl=%7|~A_2p@Z^2s{L3+H`@ zD<+^{!cPBjqOO1n*7kM~vj|9+L9I0(7*%&3SXyq%n?o1fOnY2mv%gEEs-fsKDmLe* zqaKuib=IkavCz*aPmj3v>mTjy9XWRxpN55O{?S{eS}ZZ!5-7Y{kH(v_ak@-!i2N6D zmkJ+uNhbAOWtmhBtsY;O%mYh z9l<)dr{fiP5qH=DebN5CpKzoE9Ux?&247=}|K{Rbvk_48J zq?#IG>)pu{tzx0jY1%}cj@HL}d-q@>Fjh)!xU_g{4;-4_74guSlIHo?^X_wb=~9S> z_Z5D&uujh}wwf}wzOC_+u>hAs;59#56k}8>*(E-R- z+u|Zsc-PAQ0jwQ=?tFeaZ1y}!b~&}tqM&psCzW;M@{#QKRv+##Lz&CsyHBmPDWRJ- z^jxK5vqFTz{a}WpBL@HnDzufAm#1ZA9i&*E&jL`0JAi5eV9B0YT^NvhN3k$STR5cb z8|Cn=>rzMSgwris^^KiLXM|}nv*yRu;y_) z7z(RS4k{#``WW+7PUIOTnEXZH5yr4P+Zq8y-5K3wi^UcpaEYt{r|T2xtCA~64RF6r zO@f4Mdi?-7#|P@Xbl<*!c8Mwz898}BSca7vKhSr@)^qQ*jj1G>Xu>?r6Ez`wTUVqN z+hUu2<@jENaPQAXq}1&@0Z8}h>E%%?SAif`5uOCUlxM+d2NACjywCmlBn9IoKv9nu zT)EG?62U!!eqo_48|d!>$l$EUYCn> z^z4zAtUor~#@wmaaUzw)HNH^^jxVK+mm*h>BvVVeU26P%clfj>#>?rAM{8$XWaP|^ zeovi|=S3U0aabrGNI6^J?0jd}IMBuT!FAY7HN%%8Mp3df%hKcFf35siA)ejzg1ezR z!~s&bQj?JpA-{RE#;k741pQ|D>#%+^9Xe!cYTBR56TQ&v{Vgf!Es*F`Zrc?Asxuq> z&d2KN@UKQw{Z9YF#r`Y_w+%5LA0Nb&((lR;G)p}J40Vt!FDvUKnO$9Av3Bj>Y#FRv zg|zpN5BJtA0s!WgE1#-ne7iSYiT?Dd%eDs$_u)RG*|+U~WGc=SrA!>tk@9TFXq91frrE1^TR zb52iSc(>eCJLt^CsG+lE zEJjMxeEISPbO@^cr+UA>b^rexPNuI%*@JJ#Tmqd<*4Sg6O+)6MNFmRpaDd@?>91e6 ztyCMkEIm`|`G)?npOoiUJ$xJljKuGooyirtElP|}`^Vpz*RNBy<;W(U0N9l3EVs{< z!$HffoqKR89cXZMi;+c2e+&wmpZL^n&}P8<_$UUGR$&@Jl3kXJANM%mP7aHuWa49@k-?kSK?nG-PGGAiw1$7hz4`QsW8p7 zQF-R*_UmLhjpB*Z?t;Sag}1vB%J?q)y5m9Ib6wlAZJRrjrBnd5y9{JRB5%~NT;mFe zc^4o`Xx7@L$(BF*pw|IpBS01Y9UTQL32y+}Lvr7FV*ymJ-iu-Ue?a48{sYBYuKaqU z=3u#z2P(LppI33BHk;*{K2eQU|0J9pBLB1lDN(E#DGUkQxTDAO4a>-&0+8e_mq_~+ zEu!!)aX&v{fHZ^5>NF$m0TVxxEkh#U#_WBu2ZQ9Ut*yZjs4X`;Of%Kio2qgkS{%1B z-5UNOm%{l49J{)?87iG^2+RebhMWuv9G02%;==d}051CZ^Jj;1B`ec^b%2sju(Y?ggZ>LdD87grz=x5L$9+4Eb=P&~4;dg3KGz+5@a0Qd+8-lR99IBrWMpjI zEC4S^Lqih;(EZ@kyZ7&%UQK{*7JzQBL2b4F)!BK;!;=WGrjmpOX+WxxQ z5((r_i%Lo&1|y}cvFHF(YTOeQo0g_~&a0ili|BC>HYZ{|U6E6`+XP zPpN_e+ALf2W~`X)7mO0V-jj_f9dJ<~E~v7bC-r|kWiwKS!~^ODK)tbgB$Smnl^m3o zhJ|7L{rea6fQ$Hr|LJ;FjpB*c3ZlOR*j0e;2ecZfaE2#Li?ZOi5z7}Y2&^=4--|KM z)UUREP(FMOdai>0zVw8GKFAXMwZE)XlAE`QCz~oiJr=$1GI6tY3@YpU{X5hD@c{`1 z<>b)+v9W!|b(eOD1E77cdqf_@0MJsX0=MqRZ(0K|NhIX$wc`zy7fEwWPRLUC? z{LP_Ta@LQY+gefaGeZ_qR|Ru1CfPDomqcOT>yf@EC4J7w$Z!`>QIwLBBIkGcyy$lu zd3EJ+03gbwrl1kt+uwiIEZbIHP*n6&K9!qXz^xx|nJf+z*}vfz=g!y1KtazncW zfSs!Q*SiJK_wO9h+o{`K^$;GM>*1Pfc1|9cOK8m9@0O2F$X7)jd00%s{2` z!Io04yWU9k1RZz)V-W<9T8nBefH2l*_Hu=!j^@f|LkiUZR-s~6T zs+bp6YMr|{rnB22l*KB(?9R<%NGcj$U8iNO_7(QlCza035F*MLFe|iD$sRcZhUZ1nFUOXe`6$L(wgxv_~u=$cQ2n91MKR@3}>af0iaNg~c zbhemsoRtWXx_`G_GMpR0q|eAT6ct4P=qn7s+CbAZ^g4B2v&}Vjv$#R6wO)9%g8KIq zC~Cu?gIA6^oTLK<*%s=pfj51t8uv8H0y>)?8u^haw=z2N56YXW*RVxwMB4AtH1Bdp zz7lzTzD2ES*Vlji)m0K95BOSiX6Xi%)6kWSdJnJM0ZJjS*N!WaF8mZQcL)eX9VTyL z6B4?CttJuj;)Fu~*4pc*``uUqe0C4O+rEGM_ATU&qufdWC3WBv6bj&%(BR>cD56>& z1igAE)9OPpF)^2|;r0TRuPu@XFk0To%Y4Rpjt3d12gahX^y>Ze+~;-8vmNGfZCIA( zc<*FLRi$4}Z&BvxZ56oKIopvEr>-Q2r#^TMAhVHCiTHho2{Hht zAHSmVJ;MPp1BwA)Nil1b1pvfvIUp3hpxNgm)CWX3fGM9g02TQ4yeiLAvvi+|4P*0M z#SFdu06k=5@vM-b_rM_q(Rd{3LH{Mt*IER_W-G3_5oTI4XZP#=}=XfIqvuq<{JH z7n7v{aBbVeKM(=cC>KC#0MpQ+kEQmt#qe{$gxi`ZCNuDNkZ$$6-vX}EdZOqDI0mRt z+XJzdzyG7wCJ6xn0TL3@Yv38Jz*TgBU>tDJ3MSB(L>{k)q=n$`I6z0k(J3R|`g~oO zX(+aQTk9WBa=kj-X{+DXkHgTzy(;3){P51-)w)qA3-Vy!AMev390ULs9SLXR()Zqo z*=({)y@nK)Bu)>#n$_w2o>)uQ2R{T>hb|BJv=4@E)r+;d068EExKkFbswKcO5(o4e zz>)ccMWsiun&!R$b96vs0U&%RCsFS`$iV=jyv>3$YupMJwuWL+l}w}$%_Cmz*DfMl z^py3d3DnMXCIYGvRKc2?zzNG>eodHZa;MK%EuH2+%zU0$w8Ti~R_X9S6Xp6C^$n#b zqVw@3U6-KC8c9uA^pbULvSV(PbReH52) zdRxM6B8!ciHuWNhFeravPO}Om{_f5PAe~@AeW6j)<$^cY3g8xgi;Y#bz0H_CtM`UO z#Uw>)+Ziw1UTl4w&I}U=tPvQ~VtcYQLzd!Y}qzb-Lvdm);8=e8{lByEwMD;Bb zccl5rW)5NJWr5Zk#Z9b;H~A5Ao90H>kz?2AF>37Ct$Jav^_%MebNZZ(SMw?qFX0Rq_2l*-NAjIB)gzC`U#{;9#uQ zOuE$AM#hW~_GAs9a|KMH1@y{1>^d*s!`>%L$*95b*e1irV`U1=-YbkHjl3wS82YyT21{gp z*G9UegoT?YS6_C%3nOai=;)kJfBQn@`-K^yAa%~-5G>Nj!hgR=gH`I&7h1%^6relX z-f&rV6JoS`nKXJ#&KH%0Ep#~Vhfd~AdlZd~I+dZ@A1<=LT!?A;G*XRp{sp%AtYh2| z3xeg23C?E#dfv#g9kkc+@p%R(fY%*6VdM~0Wvya3|1LzIgDXyRFEN8HvV#4^wDiyR za^jX6v|sZ+ZaA>ChpqVxSHS%MkbQs7v;YcW1L?vp7;$w?+8YRW*8^GC>wHs67 zOEYy(3E>h_g~gjas$`FMvNMamZp%J98Aw>oXSmwslA|2{^yU65yUtR%Q=~7>Z$P+8 z;Ry?ACC)%5MEF8}S$7x<&B z_VrE$RTJ8BA2V;a*|3S>DN3D%^@OUPj-H;#6MfT2Za>MgsQF2BGFZ{+(|XT4q`w$K zt*fQ$@Mc_tC=djY1<|B;3Ea7Efef#vRtT8zr6L4^C!;G$UQ+SZ=6lzB?g%#ZJKXy*On#YmIKs#KLV ziO<6yC`NqF=AwONVEt3ZYKI?uvbO7Ift$M2Y4P!0FwbLY`3g`R2GayaTmAhhy|$>~ zq$5eY9`6?)L4x4{lyt+-+aW>taunAWys2u0NS$^X}e>rdAHFwE02{P{rB+ zMQu6C0i0;?5n&{XU5cRyUfm;6k~3<=Ejli%br~x|Scm-lD#=_u0Y?JWMk^3_UxsMw zMa?du`wt##DHp+4lTIl8Iw+;peD*q+*axDw)d{z^=tobW)psCQh2g0|;L>Ts?R>N( zMyHtG534ANiNW7q9_Hz{`b7}4e*~5%8W1FvRaI4K1_7_D9q=>vMX_`@K^+S)%K-J0 z1yJaUV=oT@!pcPkPgqP1eo|gdt3gd)P0K4PLVog}Jl?((LD;^L=bp^Ai^AfsTDG6- zlY~b9PlRdTqcZgFt%clnR^r$Zu@hMg#CMHjdN~g!szAE zu4Dqm4{@UIlnej7u|;n_ze{|Ee%a9&ZNpalRPrJxS!*WSPQ_9Lg|}^r#^-XY4FON+ zdWHS&cw6r;$Y3rXhOP!Rk+sduN|)^qFb)>=TvI#AI` z67lyd=8N-nBXCfmFASidXJXMUWMg6x`cF?E#a4_^0`Y`zV3YZ=wkM7Gr8)yW;;o}_ zdblsNYU;|zmme6t_m(*X$aSomok92CEM~g}3Ij$*N8i1DD_S^y0;u5FU_O@Gxeh?G z2dp#WaVP|iT*xbq+jcK8zqDb8al!Xe7vv9hH#>#NT-Jn%x@xzkZW+4BcYymh*)VVL z8W6bKxF&TZKrKxm<%Cfad5>4qa$Cz6Jn_BZ)(xjN9(DFHB5){1*6O&rKDs_G%EnGXcL;+5*fi_^}F)xCc8->mtC{#$V~ULocz7{Tv!W zC6W#@P<7whX`Ao-u3>;a?hI(&>b8%77-==;dpf}52_9rWGd7)M7YM_M%&Y@G;+*g0ys$U&7zo5@WfL6cUB~gHo&mCN zS2z)(Ll1?!!`YUyJ0~ryMrDs4UaN>8f%p9Id4Ci7dqvMibqjp7lhLoZ1d=Xg@W>2| zJkCcZ?0nrAHkeIwKY*FCnXQRzeK;@0oU!w*GewvJzy zr?LK?pL4=mf*BgHSDvepJQmXxw4fFTBV_<|H=@JI+B+Dq^*=8l+{!uw$&Z`7;xT~D zK2Tu8t60DsHwAD=rmL$9&Q(~wPI&GO{2qvfwQFpsSy&>0Oabz)gp-rg_=8@v*GQo{n>*(^k*CJ;o7Hg3Gwlc;4TG& zn8|T*Yb8gR3b}vUfr~fh|+&EPJzaYWSN_Tw+;t#)<8t9gXsnkER*}q??^4auc}WgC3X<+Vc%8@F^^o1tYBgv*ltj>% z_KCas2zmO~UEuvZJa|JwLg0S&^i(=;Dk!82f@16!fezT_WZ^KN*+rj6)h`h}EhzNy z!bJmU)Ylw``(3SvJ7PW_a6M1@lJC~J57O!*zpXDEr2W%h0LiUdi4J;OcC;|8u)GZn z*|_sQOif1w^U<4^N~i{tk)n>b-(_Yo=y*Fa%VyMtwLY~9%~0!1>CE%6%}d}Rr208# za_mMV1k1uez#gTXEe#L58-UyXOcxjrrciS@dawpg#hCm{eI`&=MUCe;$qG*2hVt(JFe?@SM!H7^s8)j&@jY~8$ORB zdj)o>^lnbK{WXVlq`D-=E&0fOC8D0qs#q4St`@zy)5i7rL-7~au6<*0(rI7TVKJC# zyBN7ys~WG2s872C zFDp=s>F!nT<|rDJ+RGz9*Ee>&IaPM$W$6~S89~y|Q72`)^$+d zXE*li&J!TMvxZv6C*aB4xN)OmDJM5ayH;pjjyQD3CXilJY`{lh>jkI1 zjs_`}VK%Hdsumnv&zi`V0DIlvzf?FX?Cvo0eh5>!W;k4BHWHr8z0~oQRT>50BorbZ zf^W##jKFaJt*OZdU@=IlnN+ni2KH|VEgE8Z%)s?)1kc#yTKJz|;LZK~dlz>$-OzeI zkdU@|w&-*l6T60kWL%~=P%WTreD^mQz5%&gm79!B#|=UhpN9JoU7eksLEQDj*&wjI zsij4qeV9f%ZD<+JJ%=CgqO`taCoY%o9`j}~?>ZJP8OmiwGP|0igz5C-*GL*FsG~Mc zX>^q)?d#^5X!d+`e1T@d851qw#0o?g;wVkqi&akR^AOF=^`?j;JwH~5l_qkXk58gl z0c%iucC>7I4Bfg)_z&o5e1tkEv&QGnnToN`7GNLfNx8uM*O56}o2h~oFdQM_>2fEU za_9;-+`$0M&ok>2`FN|}FXu|nm6W~EJe_}BJLQ_!r%C4cg6JU}danZmXF>(mrmZ}W zsrVCw#-Tiw)4sDb(2+e1Xn+M^-^_uDzOdM;{XG-h<9AU}Er4c03O#^AX)xgAFzSpp zHT3cEL10EGh{YNRJTu4Zbxt|5e=h8qJPpM@UFVl8oP!N{&-Narct)4IDYL!9jONG@ zSXRJ|IqIiIBrTqHPMpRHm~5I;ZDSL;5l{ZKDIt^uvdTRm|44+Wf%F`rq#xPC|BKdF zS#xeymM$22s?X1kOHBusye;CM-gMnZT*xJ^XeR~^f=ir`dH7l%foV@!d zgoUc60>g3M2@r}>z$I7~iSUphWymdd-&+~Mz&vt1yMgR?#n>zz(?N8F&x=SDDBgZM za`a4-A9CJaA&s7HvA-lB^I~HtM{sQ7aaNM?=s%rKMBv_DKVnTl-SH0(52wVUgg@^x z|J-&#pbhYK&GZ)lDY7GPH~%qcw?f!zdP=LoOcu$e(+z*fVf7g*|F^>BzdMlss!ohg z6qIb5yQrjkaK&zX$Ma8g4x=yjoC!*yqgoxVzNG5T7&Q>*WZTc)b1KuLnP9J6au0nG z!m)pG|Gek=BO$=TP%*G+no+sPPA+Hu+ED8_GrL#Hxk^JgeFoSGClrTZixU+SL!?Zz#q2mhmKBE^b26wFcD({$kJM%A9(nAHIN z-dL<>t6G-G2m42_BdG>4Izt8I(WSs9+o6{~7DK^}xM(ziQF&Z5k$+2~8$}z${|FVK zx~0c_HmI?XNcmmhBl53DpJktsME_j1JjD3B0powZ45Bn1Pc8yJJQU3qGHJyJt+A6_*%Dqx-rL-3QCH>oD+GETu8M$CBn25Mv{itwA zXM_?G<(~*%fb%2U8h$^dJ zwRL{~nPw33(jd|ILL~ZsYT;Iv`=7XP{=FFl1w%WI&Y|ko+F)~jWA^~Zfn1aPId5!R0B;kOIk(40c{aqSsg;AV+pYn@6oW zE$P2$(i)mKH?+;A6N7VJxGq$I${ihEKJ?$b{OA(nv8RN9)s3L8;QR@>yz-Yg{O7lL z;DsNehyVK@Gj;e9igB)cFfYR$K%RE!$Q&Gl?kZmM^LT3*#PrB2|aW@q2Q3#-RxJXGb%Ml`rt!6cN3Tadpajts{;-8p+a*lJ=7~XMB9MdHoSO9TG%dJDW#4qV`DW4f+*b+K^|pPa^Ruzh;6Z^C4w4 z=Jgl4R~fQ-VR>Zp{-fs+`tg+wi=;cWm8U#(Ro56yN}Q69F6h^|^O}Aq-3|JUtFQ3A zo*Q2O*WG_}ZTb3xe!5j=)T8UoDIfDC`4)I9EXeFB)YqfKF(r|^m0Ha1Tc2Q;(&(U@ z?Nzw$H8JH@rE=-<-)@)34yyGr^CCZ`IoZLQ@bFP(x!Zv5UpPnDlyU=}(KOEOquxF_ zVa#(M8mloSgmsC;Yq4x0m<67=CylyY_NrTGvER|;s@$rKsp*Xob_8}`H4_e=2N9<1 zh5J=&7OeMpi526Vj^{*eF^i~g64_7O94Ro{r5`C+_yyb&%>j&&IOa^J#gqK~iNejV?m`Y62p910 zer`g4+d$PRPrp`le^m>q_{G@W89%&+A<2IgUKmM|#JD+4ZAFmUz=N-w`A{p8i(g%} ztn~X!c}LsLP>VIbP38MdtXuoQo`U2f)FxOX{vu?4^DAA!*k|>9O~Uw4oNwDztUV0* z+rRTOwQk5yPfGM|-FP1!q3N=i#Mn{}t6k=AKkQ2wn>e!8i>s?`yJreoM?OoNCBj@jg%WBJwj65@IUsKu)FCArV!0D;)8 zc64>k!GAEYv%dut+9&f7&H%jvwG#gh)~aBT+Jwi)uLN5D$wVuAO=kSdXWAK7rlMs0 z=-KYmIk(342w(gN)zNBbHVK}eZ1e0%$8h>pRNMth43OtI03`&bR*-Kn6=EFJEIk zA}ke|lzsD4NOh|}#V~;Xcn(j+(<&(EXwPp6@PM2yTeCS&s(|b_pXjzWvoX`CWSHo_ zr-p-z3m5}`jZr8O{%Z)0`6d0*pQk~ZCAg~C1f3Dvbh((fy}g|RbUzSE`uh71R(Yfe zpi^AEs_7uPh6izwwRO?hsPjK~0J8rB4`9*0?EK;K|AsTPJ$~vVcqVYVt(jFzIdP>v zJp6KMYU)E-S%zD;Fd;?9M7rZbX2h=jTKRO%2uM8Egn8@!0*n1$r zgb+7|`^9BgO3ghz1VCAVMrL4e@GR1a1=Be&MqWXqnUIKR=3OmR>)?0T+R>4_8(_{G zhtSkW-_Q$|a*7 zTrITP|20C1l$^XDxL&Xnz=WUcblO~Ho`VYCL`P^}Z2J$8H~pChf}hM=UbdLMsQ=2z zDvSI*Qo;Z$yH+}L|swo14yBLIIp{3zdwe{)A(TJ_H?rmkDD_#ltP}Hw_mwW^PHUmY2R^B z;7zUt5f1!+{u+5?fRFsw+WUXPD#I)MzjD#iwjHr3(E$ev>!x(hbey0$aCOJv&doh3USd(*9TwT93ZgO&QDc#rJ z3XiIurDt<#>&VoOiHVWv`Vc#QIa#s7>Mh_oiqrm@zYz)Iz z@VLN^4J|l{!l5C`wEs-Q_a}UZevLrr5hrB`2*;GWo-O6JNuxkDSl@MjP5RlhcVl{q zl`B+~l&+H(b)k3-tXlGT6zzYHi1;6NOE7M!bx+0)e!S&%cz9U7-7SFBe*s=sJz5K3 zN?p2Ht73pv#uaFF0`iQ6ce6f#*!}kZa6zY{BGzgDUIZZBr{~Rt65?#1Hbq zI6)WAi7F>!sCFP*j!XjoCbWa$Sq@5NL|VllxItR8u$fWtm@4MmfT*{<^hLj^c@p$y zfCZH(jQ3}y;r_E~G2rU(iB;MNt-}4-5dld8+bUQ&H=h^vqy!pOAE2eqX*b`gu0P<2 z$qsPR>gwukZ8Yt__O!}r`f1z`|B3MV4;Jl1@$XTaA5ncKH~INTe_zy%sKltYoqLQ= zE%@-|OF{M{gC2St0HmL+XT*^B25HCv+shehtkJ^mU&!6=_?nQI^JX#nZlST0 ziW>%=PAKBtqKkgKGM4v2x6G>xPnm0&S+^v)OzpRaAXS&QVKSeWB!RjRg;>1^-btfu zU4ZCAJm2P#eTY{Acw&&%rdxKr4f{4WKK?C1!FXt5AxtGW5?_afEg%I$gh`3K@dl-m z-*-Xw#G<+&+2OjVdBol}2ho)rTpN$lVW$vlV8gb@>|I+XV*HcHdT9#SLcaNuoMw4ci5Nz|D~y>84v(K>l4PWj7$(0b z|8Yg^QmE*qCth#w{(yV)ME4HwYR~Leu9X=1J6(~qd2CXXEE`?y0J53hpEpe0ENK)O zpNil6e1%7!ZtggWNZkf6)Z%kp3%iJTyziGpq@CqP(jL7&iu&gd(Ub=xCS&-=FQWrKG5BF=#83iz)wG`(-zVY3ej zHE_M~Vd5%H?qrMQtRvftn%Sw+A>ozouT$x+<4jU+PAKJE`v^X6^?|dnSC=j^e08(^ zIOhNs)lFMAKf=TtE+|x9@Tf5}Kixv%zyIe(w9S@$0uSIO&UcxlrY8c&mDjH|X}UHn zL9@u0A)GgFX#I@>S||pulMC?C=jM@j|!N!aNb(Q@r8RYq7x&Cbbm! z36@^8Y@&)|+bz}^T6`aN=QPbOJ=y|?e_CaTG;$ZMMU=`4pR%++XnT?_-F<`m&5+op z&9UB_6YebLT5CM_x9)o6BS$+JY;!9Q*aZ7(ZIvr@R_Lv_J*Q*Ib?0)6PM-{)<6hOq zK~M6p_1ttM@FNty52-P?l(Fp$sbO;bm7|-m6I4Y8xUZV({*^ot&-L72 zfORH5GGTg+=J~=^)dM_(^H*#A4d0riQT*L1?V#_Cq>3Sd1A3nF5;kOyJuvg_qEgjr zNgsde5gz&KoN8)|wRhesfM#%hFB*-OWBBXkd(U!cKikoizRM(6^Q9M6MLW2l#}ha5 zNf))T(B^tn!iIDZ8elx)L^mdCfP1zWvxhopSl=6!61tFvOB+j#c)({-^Ws1~mkI>* zB+O^AK4lvin}^HKhORZK+u)?%#CmL(Gs)B?ey^rN3=7PTD}v9_)2`pd*RaOBBBA_K zVE+MeBua`+*7LwU2?~C6qmr0>*coTr)s=G-xaJMbk0j$*oA6%y3wU}>oxk$T(Fp4;NV@yRNc9!kYxiW*o80!|w&Xs9`DkDJYUAl;Qc5VTimT5_xhF^9hH? zfHpk^v*Zbj1VyKW(!KGkIAPw8$R#UvZq6NH-#)p)G?a9F&l|`6K}oA0LwwZRy2vN} z=Wj6Y+@mEgDelteH1aihaFak6{jH!^sF{4_AQ_uctCC7`d8C*G?PH0QQw{@T;V5#^ zL#FqiPD<7dGm`~rnvAlY;&MDGOm%T(l$HV?F224zisP-Gf?4jH9I3Pp3tn>U9ww~{l--tZ^`9I;J^-s!4&`&hAIwfj@%x+ccMG$HSs^B?>X7si|%>J>eK$Ie?5J# zO~WwIUCfv>m4~$d+~C$1{lfT!X{AUnV&j=^Ihi_?V=n#E#s(2Qw6Cj4=rW!nT<>yY ze~d7=8o6WRlAU)$f*JQs`u>-<0jfsU&?({DYo9R5}6^{s-Drzm!Ib}>-N zhZ;Tu1SBxndiWiynbS$L^brT4gu$@=dV;uI+-PHLk@wwD;@Exa#QOwDHgmHO+r zms#C#3VO7fha-=Y24>~UdG6n=KTKquCpY)JB35tRy^s^A>Ac&P;7MWR&R$nI);`cE zl|q1>e=g!5a*|=+*IBw|B}*;jgl2v;oY+#lE)KO8!mmD1ZL$8JT6?rNZhRfn@=5*0 zs8;ntsq~s*9Zt|d;##BnMc(ZT!bu(@oqHC_Z}gLT@;%pX0+jrt1a2vMs|}}@FyRjB zUgpC^^m?|9cnefx1}l$-y|#E-k~h3w7F7hjY3ujxU(F0KxOy~nr&qAYW%tsQm9rR& zJ+QOxV|4Rqg~G+ph3lV@Gn+8=ktrE5k^s;5B+06)Q$ipZeDz*9$hx;dKgI>Yh?Nro zK8xgjhyD)g-KEv;_>^HQ%%LmYE{8sQ@jd)?{bMIN?dm+Pp+;9TrH@%nPP?B@cgOVp zM(-IRbM9W=!RQHWi!|kpa4<&&q{;Ot4L|EiQUdWknj$mSmrewNMU-OdP|*^@CNO~u zf#{xyj7-wp+(rIHITh?EP8~GnL#-L)~Phf zLl|Jf3G-Me$Ams$S)V@gD-28Y97rf<%wh~Wr4|T58@1C`n&R0zRhQmfrIg5jrmUcG zYC1JQx!GN9PuZ*FrqY*Ssk6UunkiyNTIqVnm&^N(jP<}P^4^i#Bcz_>QX2TXj!{tl z{%J~GZ)EcqRFQe|Z%{?`4w1h(9xs<-ES6F1ASlfp%GUO$nRYFX7>CQ7LoYUm%r=I`rqB__=J9ci#aX7v z@e5LBvNsC%l4H$;bNvA;yi6`WlKM)*bM9xvRNrrZrszg_5dOdZYi~KNI$Us(cISC> zQ5U4OzuO3XZyN}bBb#t|c(^DJW(6&g-*+^TuJoxG%P2K)yy z^gfS@XqXQyCuww_P1H`AD`l4svuju=s+%h&x|9#IC!AS+9%kfH(i8V-Qg+WU{hSk> zul%@}f0Ouo(W3LIRl6d|#?Xu29QDcZx>whI)>b-XHBKjz>55F_@I9|xwl;Jw|IR>!5j2%B%%x_6r%;~cLV~i*@^v5psD4-UcY0&dTf)58w$0A1e$8n4 zciYT8;%{8UEq3KeF{-i5%C|dtZ+9xUckT5U-r~Z-zm~4_^2V*)$9^N~yZj0n)!&2K z^wO)pKlW=9Zn)rvzhql-Nsf_;(dp-F`|5II_gxlBzg`rflrw%Y^c~-WW$e9v`S+PK zVSZTH1l)wSt~yzDlV{Y)bl-Gjy(0O0_Hds0q}EH*)MM354;yih8Kbd4Cx+HHj{D8U z>-C@$Y(3cg6&MtBgO>J{Ro&?zpL{)b`FB&2Qp)3WRTTg&lc^GLy*!Wz)$uPHm665I zCy9zttv0_9wOi|rbLYL1IwOx7lhC&1r}#7Tl+y2KHJt|O6i{7p81#=HDue`?Fp%avoHF!%i1LV#_v$ob}>?=Jf z5+>J)GWY$CmitUz{*tfV2=BdHadc1hfRDRFr@42HW)fh{U!`HoF9N?eSYYbMCJ3dY zwax0v*?;KB`qo8OT(96}s-E0O8SOE`e^5B2Uy}VkW|df6zw&~;7&mhQLCy!RmDCuaZ{+)f05IzEntk zo-pK{WE!D)(G(U1m9l%%i21FpAC~?)W1H0xPXScV#JAbV_GYoKT%_p(FV5pGlJ`pT za_WynV`3EONv}Q?2^D6H_qOHoOE&^cg8A)*c!wX>&MJE@$Jva8q_a}?8zYaNcgT7E z{CXOAahHLY*(;jeGu8WKHcwAKtqmfftsGKNh}n^r=Qxz?(nVjCS-zli=n* zxycmqVP5GlHsAd*#&g^}dGC z9RK-v>+#e0+xg!z#IzsL13+-4hgH~0XGh&nIpyq|FQtqu9$Zg}XV|4}gwXl={;3Oj zb%j`S1}=xXCf-C#%GBAt*ruN6GDp|mZzpY9Jgyw1^hWj}fB1(?Nh|td-hUBH?5I-T zr={eI!$~J&R~9Q)OBpsl*Hq1xQ@tqh0mttad+chq-;!Q$&Vwu0+mkQ|ncS$#@@Ce*Fd{*^x895+L!$gv!90gcM)57pMIzLjQkdbF zuRUDOy00#U_3kq1!?!ah7`SR#ELg-afkLabbXgCwd!8w@wC#bAf{vbHVUx2OC{Ua(w3r zC+Aj2YbRTy>hl@J7xbBr?~J(QWl5e!%Xz|8^kqoM4YR!HqcDLW*N?do#-BCSk zt#;mI$i1gdXebW&%D?UJ4eyZt+3Tb?*XR8p-lcsIF;h77y}*!tRekX6ePXIDS4<{@ z&x_1<;A761STbe1q{Hw0=9sGJ=VI?&DOsi5h0Ok5UjEnj-}rYbW!s11riteg{%k}y zc=lLmnA<}YODN28@`36x{tg9JO0mNrvDg8mFF3T6Aw?)c&o`fIUZqji*LfBbljcJI zasGp{G)~xT z!JKA^)tAKPXB43p-lT=~ulK7b=xKe4{{Xoze?{BXj3sGEe>6Z`J!XCzgpwn6)m}Qv zRuUJ(7UV+RZB^A@7)lw@3UK1)4m^5|J^izSoi&tTE*1V2M38Ry+7q2Rgg}9W;)wGl zKi=ma?^=aq2`Q`n$Jozg5fT#j3(62NJ%j5Uw60I35OyB0Z^K4R=}r}yus%JxYyBx2 zeMEB4kTl|*PIIxhZ7Avc66>Ck@cu60R zZdz&MwB;^*AFoGTx85_ee+t+E;;*N_BPnF|zp;N|@a?RMO}E1Gh=je=f4;nZSfx;Q=S_>fh4ODF_OOz2FbOZVttQ3P=MYo!Nq4 zuYW98<|v@3I0T`t^k{XrvgrdCevAueI9$8FmYL4wmY<8jr9FmY=uN2$99!R=QMTT69PIBuNs-V%j72TQHxPW?uTbKXieDJIvf2}cS_uBL zzfjBmmxk*1b)w-drg(n5F(a{_<3DEx`k(GU_2r+13#r&2X2b=OhnAUgON)Sd86qWH z%)yhi8sld`b?3lijH7nS5zkA8gLcP?rt8D1M(-W^a1;?5&x2xGjDjPolRc6=XHwS6 zYuq8`m+w5_`Z0UU3z?VHBe;#XJXDw|OLLr4dXe}RyK#4XPJen^TN@a8TH+>PWsAS^ z;6ExWN&1a`oVL!JIae|-N1aPBR}9PSY(;O+n0y;tH7BK%tg?Z+x-Ddy6WOE|8b8if zvO`V_8fUxiv^py7jNZ_#GF#VCG4pZZ*H!+c~YXXk5Ab>Rlq{BjpA!iJLBK{CFt_LPx zqYX^f0wN=EEU$0#UET;fyqo)vrwg<%zK>@EPbgfarl2|M}MACB5vJc)kWy%l^As) zV>oZo)B7RA@Rq3SLH!yL9xevs8WG}0N&vMU%u0e5%^;=K-!b=&k1$w#H!kp!hDLo| zL-VV-K*{+yH}hQ}f#Pp6!!(VLkDsESw=KEPvgid1+#{Nd0NkYIaI>F@WUR!E#T4;? zPo@Jo>ia_b<95EjzL1kWpY%L;_o5`O7pdACHLG0xJXQg=FS7}qu`Bi8zC8eWJ_>vR zA2PPLl$Lw0*yX!w15o&wN8=hZO40H@mv|12J;36~d-BBJ@kNt_4J~8P&k=*Fd&j+} z`?pC3B%8GAlBEky*Nf;l455pN5T(pop6PVmAld;*x86lNl#y^V|O0LOX{ z454d-D^y6UmQ2eoUe(0(LG?*7qD24W75H;8k#I3QO~o;U>Be6_&_1pB#B!MafqB9$ z+|TWknjK?UnoIi2(%T=xl+!_G-5L`0jpHOWQf5E5n}0J(cbOk^E^Oo={{$=6jePL% z_1!CRj)3rj((~$i#!YWb=n2@t%)Ff1eVDn4&~EUq-X-)}uRBi!bu1Z-l|w8%pz=m| z6E#0HK<*dcdR@eFIi}S@h?qk;TCG+jz^|%A&EtB&j)LLKq7!x+W|61n$&sDYik4rv zUwz|WyOPJYtR$PZ7W;?N)5@)9_vVbtBV+nEEVm2;6AOB1xl(0?8> z5#Z$fwB%6(?D9Bd5}?Gh#o=PQ?fEV`dir$Hqg%d&lb4qY3)Pi0O+O(3CXY!M?+;jZ zZMS{+qOShzq7PVnN7DV;(nizsQM_B?gUggHGs=y>qlIY5gfCeXVxAxAq+S+tmZ@Rz z0ir+0KU zV6W!Harqrpqd8K0pW^6XPPG~F|P2t4}`&*WapBS!*P|*4+z+g!y+=5$Cgnqd)uopO?{myKUF8_tG{W)nG@VR!phU_2;&rd_U zV)N+EjiMF2$ws3x-L+HtUg&2XI9)Biy~yPyb}fL;d58t9;Z z06;pt3t_5SQMUDPRuPlR^93fq$8qkYh2D>k**{FOD6$4BZrV-b6eo?e4jd;n=rYaA zbmQbLKWQym$#cfu>Kl8U-o5*5RT|Xk? zsZ0_-eOo+IG5P_b2N?0>0&fa(`fl)|!r)NBix)2fdm|Wl1)#R4Ad&bZ*at_YC1=k( z{6wf(5F`MfJnTA*2i_W(53))6YWGA>GL3(yOH>nKPG+yBo3avV*!*g1WZ9}a?~mtt z)6Y(-@TO(O%}_5p8C>P2IunemR{}m+-1?GqjutU=|9(Z|Kdz^HH@mhv7Hb2RJ2I4} z6y)coV_*yDLa<&iakv5=4GJMw`v@d7ePBm6N8qG05h)d5Z?K!9Id9&s`@1&2B=@!F zWJl|hUzKH2=3VW8oz2cozJAH$CAQ`Hr-oxT-@6^@7pD<6PFPssXBJ-GNT}|j_X6Ar zoDW(r5J^Z_pD78Zqj_6>C`%iMGP~0@{qGAp9ns)hz+WH{e@Q@b z=3n!3{rvtTt=|*fxP8Hu+^8p0=VwwdiLmllr~rZrgC{v1zD~dxbK$zMaN^s|`yGSk?-kKD^Jm56P;qPE_;s?_7%GHcXFxf~LV!Ryhk3&x)w& zpkF|5BFdPcbp?J2UQ~e|j70cEGpoG9DmAGO09S2eC_(1)&Ou z3)9->-Hh|OAy-a3u17&+P`uX46fWk!?a(UoGsvlLp;aRq*I)d>%aFT&LNyS8@TS+r zY4@NX0MlU$e(CSvR6vk!upKcmGefFN%j(ccj$}W+)?qJ+^8~V=L+$YL8?l>`9vg1& zNV*<fkS%?fdEhEVbGQw=V_ z>$N;8;2B!t8+xgHNfbeBjPvkHlTqRB#~bWrJe4tATfnL#50no&6n7)4Dme08b}KDr zqqIquMh2c)>eIySGA-ch_rsfs989CbB-RH{pW;E`^C}7wYrqmH@ZDAWN7t{51yX}> z1c#y0lA%pduATTTKZ>E4D~-6nj%nt1xJt#hF9AR4BPc$tyeO#4V{zJ-zQr^?Ef+6YJxKsbVc(8J;H7kx01|Vj&UAUI2O_J~ zlb>q3;~lUn=kq^|Z#OAB&fQV9*!m_NaGq-!V4erElK78x4aWK^KM02n7U_ z=jpP}+ES7@Xb)P@2?Xn53@OYRy?*ar43k2J;;JX;f?yEp0>q~Xn@;dx+6RPaMWV+r zQT-=c_)#(_ohiO9>W(%=9+bOOtFXV~|M1I?wEAewIx`_KSoN?t`@i%w|J5rxRZss-|uJMKc4-SL)$^UA~m&=8_KHHg&0B7)rnX!R)d2 z*HM;0javlIA$=?1H7c_1Y0Ft42v{t;x+hRSEZp|Zm$#dn^RHs+?z)lB0xAr&-5qHU z`U)eG&cxjr9bqj z_HLV;QlP(AigtEeTVE-7ZSX{rNI-^Zovr zMLszU?x5f6H7$d& z@kM4stf1byR1dbJ%Ei<--BcaA>@X?b)I17K>j+J=f&nYb!#v7xgv!9ZGK^;gJmQ~h z*Mc2K6idg9Q-vHTERWH=H7;XoQl@XMY)oG5zGFOpWbZNV5$|)4zIvlycvAJ{>%J&@ zTc;@lb*ZZTZ@vt$>fpu7VY}`^rywF~fHCmEW-Hda0Mq6Rd>z_BD^xUMeii6Q$aqv3 zpGujpj9aheG|>b*`coSl4&+3HZ~ugt*J?u;kZoBE5)FgKIKiiwcqss)7pBH$_^fhg z@E-4b70b1Df8&Cg%4Gp$+K!E%pX^Wu=VBLW@VPxyPecNxZEIvr7Xz zJmgN{@7^`Q(Qydj)A)c$fDr5#kTnOqeM^WyFTiiBUbYTUAiba80%08RW%v}x4glvU zRdpB~mhnHHQ#{qg)Cu!b2$=3Sdsg5{mE~c?#w^$K?aZR0T*plLTDu|Kr%0OC=W`93 z%G90oOq_44j&E`uZDD*xKdrW77CS(Ry5$AY1%iY?AW(p`D*)ocJdA|1w=adArU+Na z?e6vK^>-rVAq=qmk&6CQ9dk<7Tl`ILm*?9z>e^VJQ||9}JO|b^#3EOQi|N7le`qVt zKV{y1lddkTik7rQU}4tZWSDvQ;6gzx1xY$FK-JFqa9avZ^gtDvg7_;{+? z^1nslVh7Q^pYUAMYsKXZsmVfKS+wm(kWTi`97%jATKo71WN&PXbNlwh4W*-&VH4sT z_b&KZ+42zR!Y2f;#ke z(3?BYQzl-UjQQ4z5==@atd`JT&!=KN?62VCA=7 zZ7uE=em#RqV}6p@al`^=c+p2bV!yx&it7@?u zn+voL%sr>SOI!WuFN~x5Pd1-pmHT=$?4%9xW6$^ZWdiz5Neb3}1hK8HHZ9fR|9qD_ zMnp9)`#dJ5XDFTHq-J3J;EdA9;$dc1wM}6pc~`(6V+pqqZNBbFPwy^ok=k_CvF_N@ zsK#5!G>P8Oyu-19mmadR{!SsHg-XK?)vpo8aG@vb+@_Ud(OGLYe~BUXj5Mnj8Y>&y zf*-lIE&%ZW@1oC5sa9%21pU`v#Vyo!3gqqq|3frv6DoZHe0L$ND64yH)0qLq%I|fT z?`0Q=TR*JhCE76~Zpi-r*kd%N325VY-z&6NueQXLpWY25LWKk_5~^U~wy*r?{+!Gq zcIICSVDTp|gTtV~oOc@}tq5rd=7+Ynx9h<)z?G@Gsr1l8G(_!1DD9PF+ZR~)B5Ioo zMd0!}t&rB(pL2&YE_i3w2>T4OF zV=@Y~w9iW44A1v`tNvIvvN!hm)8|#AG1t{kj%s!_=_cCjT11UM6dzz`-gCUm&t^0qzrHUR;QrCLCuaNV_nxRvr_QKjVdT@xGwn4t4Z%zOe*9@W zsHKkh0o`3>MP@Yh#)&TekOyvn*IhwHr3JRr4gk`O)7G6c_!53?V8RJLBHnSw4tCf$ zpL5wgNBat~0l^7H2!uxLQ|h$rz3To`6W z9y4G49z1w3y|5rp2D(5&)`n_^EmwNcU znDDca1KlFfbGX1(tntlO8p5?X0?z|<@D*E@T7Lid2r(!f92_9r7ynCClAwDAg*9d} zXkf1W%pifIl6QIupTOPJRsP`&ThZS0=+A9CE>zF5Ni0{%>hmYioNW|kC)M|@aNI3* z?IeZ$NO|%`lbUi))$En4>|~R4FS}vcnJJ>I6@0Ie9`;v?*=eS-dK(#uS$}qV92gpU z3yK2phNCwtIyAMkkQtm5+$M4n%dkUlZXWKE9UmRJb|(s%^;5v+X@6b&jNL}a*>vVa zwBOEm_1l1iMDSqicP!Tke$SgpGGPl&=ybiVRW`-d{+=rxdRqb6WsY0DQBdsX##MnFkFk0js%r`mpsWQ)c&ZeTWA^9PT&yBKbXC1s_8S>2u zS@PjCyM}ZRpL;J8B7NfCe9eEBKyihtRjXLk*F-RXv@ky`jb&l+ZRHEpsy)=5?QI|` zKLfu>7_|^&Z}-#X%S@>#V2O2g(F6Lqj~~uaQ`6hvC^LkOwBpN`@Te#$V5l5&ZUE#L z#O3@j-Mn^57$M|CotVm<)g642slR?ZcwFl{JpY=!WnjGWMA6y4*y&-&51l2BXzhq);$$l?Vtw zqN1;wwjrl^8y^0B_6y{qP>}JwbU=Aw+7L?gH&|H<+TxxK7HD+ExzP0M@ly|%-U??S+jJP zdk)QyE4|L+@65EHhnv-mSJX(Mh^L`bd{5(gRZGn~1~;*h%+7vsyc!d3;>-OBC!|46(g1vbLQ*z7H4K&1xWq!WdDxUYx~`- z>&s^MU{4OqBTIEYsg_P@KIaW|XJhu96-7mnvrCqqqd|x26ip6SrJiO*M$55qtuKLu zA#puyp=8?`wMvFePTp`@=eNtrorxbDX)3R28uihx4064Vv)Zt-rwiOcH9vF=9mnd; zLE9MAu(GgkYyrg)!aGnB;(AL=H@GJ4)5GLK zEMm+D?9cCGlsW8vG>j_x<%}vIOJaSq>V2^0wJVkUlOr}bY<%RHk`8*-pRK zXodt+^5A&EUbNLp7bYh!kF;f=MsSOXsV$=zu5l5?G7;~JP9vL!ZX;fFZMrnug)#5k zH$fU-9Dha@Bt%CLHa6J`!JX9P7jS;}HHcDPhUBg7*Bu@fS#t7PmNSBKDJ;$k4V2=B z+N@bzUzrBDm4HdS1%(bE_iXlfo<&TZ%=4Wr>zx05g+*PY^wJ2NKPp=LP^Hy&n1HfK zG?#H`*Dna{`x+Q=#?No%Q5cwBva_bgi?>|Q%KNUi+F)ggzre>AprB(l`@rLhn=I+4 z1w~qTp5>Lb%sjZSdDWFuq2CbTVE>*3SDh*wO+#G}s)T{t0p|u%&j6xD0&In81Ey+V zqXT~3Pbk=wD!qhM;=$M^u3uI7OqEFe=O*i4r^)!GPKvxK@=V__kBO*OT1v;#vId7X z8WyHfaBAND=)5f7L-I`Xh3=E)3!e?56GMNl<)rFV_@ll{py(ZdcRxzowXE_VN!^9F zCL<;7gOCPgd}1OyJNr3Q{Ez_%w;B-gkcH*6{XtLWTPKXq)!20|Lz6^hIOHG1d?_U- zh?>sFfBUBtB+`wfUlr8&_Nr44KanLPE7c!8rs--cGjG^3(Z~6DY!-LA(jD9(LaG%8 zSw@@t%A{T#92{4LUq;7SehEarz{*1!A}J1y(gV*Y=hBp-e6q2t>U@)GRI#5gv`H_| zTYnx`TvH2OZg;zG!Bcj6OE1{u=#k=Q-9k@&>D6+ptk~KV(~L{CsIbWyJ*O8*WSNmu zz8LT+=$?CVxXxC`A$?tZ555ul^n9wdei2)Z_{(QOq&Iq^2#Hf0(l1QWzaKA+*P;?# zA1fzta&iJ{t*oRZCTvBifM14dD{F|jdvyTv169bh9UL6u@7jn_BDQMc-%-1?@B9Rq z_SPgH_mGReE76?8ysMD$R;l2v5;C;(gF^_e5W$Cc)->4L9G90YZg#djEF!Py7`kZD zTo96+;3tzQ4%bX)g8Q&UYq?p#OuYZ|^~x6$S7l=2=E$wx8K|4&L|2FFp0Av0jIE;| zpHh`Hd4LF2tx4&lag^W|e>Ztu_W++$^y)g?UK7Ei+C2D@ey zD}U4Amy4haXg52w$S-n{X~ucv__GWzPeqpTPUnF0qE(4*E`u3&mzanfcFZ8^5H$i;%q@H~GfQ_8HSRjN{A1 zD`sb%0IAW*V4zbmzKvtoaW^vem%Zpc2~wVqiA*f_2nO*E*zm z-4S<(c6{oIdjGJO(uL`yvmFKm#|@-H3(_zI2jEe0T(7k)EsOog<&vcbM)k?+wGWNY zNc>nm674s)XS<`XZ!Zk^^KVPjGi-O9k%KDv&N+^_ba?V)V+Ve!=G}_v|i&j$=HI%+K(xhZSu2Os) z)xlM{(Xc6m0^tA~ssE(!p&L=g?v2i=H`e)lsFU(nwH+re=z4h69_|7q)_JA4C7RDl zJ8h5+NZjW_ib&2Vc$=J}m~c=Kmr9rY4eeS0OQ zxPMmPPURH`a@LgcIN? z45Ve&pNqmvB$VRW3T|YU25r+1%)XEISTb8?%74bX%ftM_)`O4S@461b__F4KN}DHk zpDWSq^7AjgtIML~A_ONjibKIAjr*u8ix6c%MY#jbL8@}~hwTyx-{(Eo5Yv5`J^V+S zSZPGi#TmKaMkd#NN)E$)aiF3)9}$c zLZJ+iL^}TP)U`|VO?(5y|MBuv+eaw7>`4~+B|Pcm#7|9i|5(7!OR zg{wQqsEL1$9z|QyAoATvLBN!zelWU6yYlxurm!}(?~5A7gOS!Ofz;UXf{N;(p1O&r zNvJ+d**U-TDigi8C|M(yD^)Wxlk;M~re3ZV6oiU({qFJ*BC>$w1{qfaCUwUkGz1G1 z@uvFPmx+s+bpZ(-&sPNYLLUyl8g2Y=oed7C^Bm($KFe{FfL7+AR4l3`d;Zk4G*loD zq-SMqCh&e%)X?aF5Dh5}1*N`?iW<^Ajo~r|%Q(PS5$F@J=f3Nnwtu*Dk$|8DXp1lU zGoC3Z^yh3s$#b!O?J@7^Qw?--&&s{eVxp&_NIU9_cA z3Z*jIyQpYhv?qB;s3h&JeYGboe#bY@bwBrg|L)iG`}xZsb)KE)=lgk&<9)o3gAj6q z?C=#xvyot8{|K^rXqCiVCfQIdI2LFkQ-8e8=pFz4)}I{CWnWeoW%J|&N;a^uu(bAS z*g?|Ea@s(HSv5i0#`Agv>hM{B-}+8#klVxu*kWsI3)c<@2#1COM!mzteGzp4qtyIX zDw@qCLx|Z*F18vU*4cMo5+WvfpW}pH-JR+k*(JQ6zU2M(KmClaYEVQ*MP2O|&O8dF zj;Nt+3cF6hw+euXF@Bw7Vqy{+8EMg70LfugG?41&!_sVYtlEF-UFOT1bsrGDi=yq% zh&uAOZ5}6|Csd~1>`?xC|5x5ytuvf5$j!~2*Gr_maSSmr$`DIfdI_xoLI&~3kt69D z8O9CC3Xloj>dnM`O4z1d^ngnAhRB;nlarGGImqtrHKu_(1+L6|dwX9xLYh#>5!AYn zFq~~HlxVpB>2M(P%6zViV%6P?9VmUxDLRxeoQG$JO1849Dk`_7=f*fXtP?YXz+(z5 z5^(-e_jwB-^R+OfSI=k~f*-?Jn`FMOXOs9a#Az{d@)coXVnY9+$oa}lG3VIWJLR1G zW^N+wK8#U0deeg$CKoOvg&O3^Lya%rWj_LlV7tY@y`|S&4Y;F>+isqoJNI zYBc`ynTgri!B8DmTtuwbRGU^-;^r{AT3fFcs-QDu3UD{idq$`uwnABiV zTVt@q3nd<*LP$m<|nqYwT!cjQdxAd)kVi(bc)%Jgfq9rX)d(; z2iMzuYqa|he_xs7DJ$wDb9+BD2-$bcvz_gs`4M0&HEeEfJ)TRIGGB_Cb9kKHmw3IZ{1)%|sdfPgZ3W6THWxstmc ztcTLvV+uYZUKAJ9#9nS+%*u6nV+PR;c6(i^Pl6uuv z=GZKc{_!=6{^qw|Z@)F(Jkeuu^zV=Lg*JBwE;hcl^CEk8M=l*t;-O8qXS{NHT={E> z>#>uncg%2cjuQyS?~nWsghSC*H|hC?7DoS+kr&UV+=QI^r6~qm>rV);W!NhxLDXG39O#{os;yLS(HQYA7WVZ?jrP!iz5 zRm2eDJ41zW6#iKmlj~vMpsc82_{+KmTo&&_{(Sv1Yv0=y(tEny^)-SiDr!tj$-CK; z84Y2%D3rK?d;b-1Q?xDEW-Mjx##Bh^pI<-`pPoC;_-V@4wzD%KODdlq8+0{#nHgv{<_#tfi;c-TG zWpfM5@TaIZC>3bREnM)K3yETrSw;jL%kl0 z@oBA-(`SN=sIp7F5=C#>E;&zdAtx|h|M#50ZGjK6XezobbA_>Mj@(eZYCczeqTasF zsU&V(wNPVX$gY~Cpf|epeqx72oGMJ-9-R8TGt{heJ`>0PT+!nE9S@`q2aggc;r_hP-9rxyd2WHEO-g0LCLf7v2#kz%n2|wqp!-N3? zW@E*Z{dYzfnWn1Bb7bDpDCz}1%-=OQ|2Bo8_+MY>N(MW` z9l0%jr-;)-PjBm`Mu#UKwV%KC!;O1@?bi6Y#urXZ>7_DXKVRPE6zSQ&)0u~wP{V7` zxPI?el9#YR37c3&!@14zYZM=ZWR}fSsqGgwnR|mb{PS#)(N@2CYO>JEJE8UPME9uuBu(A!m0QO%`$ z`@es2c!*v@?(C+yKQ61fFSA*hp)m>hvPg4FR_|=WparK5s!x~NBH`WaX6fETuJ}#u9jF_^4 z@yy~wo}`XY(CSS|He><WEgT$g>)-pzN{zEr60jK8L}OnCimO0Af;QLI!=$z1*xX>W7IYPr@J>@mnvNL z67|#VWc?GqEj8C&W_T88sAw5jM~_%CKj*KvZ#q{MMr~x8wB&T@t%9Q}J9p;GJz*7_ z=TD>y-nL{PQC8_6n^%7jqWK`?#>j{Z zqEC|3uc-cRD$!(MB4!3v>%*5y9z&L=b?_oS0G&fzXSqt?fwG3@?!G>9tmJL0Jqp}1 zo>E^QU*e-vewM}it(UQ*_^FzjKEt58mc!fGu@!gE-6gl!M7y(jkA+1@3sD(Mk(6w9 zaFCvws`zJ6?qk02SBFCk8xl%?e?LZChnT7-(jL!wrL2O_w?PwZHD(JPrd8fa`0^mn2de zuFol}Q2T$_=4`VPoa9T>Yne$Q7dCn%KWWeAu&<*Zm&E%Ix);0^DG0@h|FS`0HIGf= z8YjZF1A5~kmG$r6?-dbgSgrWy-ZlE>zrb}9iS1@44w9&Pg?h4n6T z()MlJh?jD_gn|Y{LK4wy6SHR|{o`&l_6vVCLFC|z{wf7A<)@5(SBs z{au~3MzpAqeZKXddXhGGwik?s{Iv&*uNMDPPa4y8Ku9R0bgCkTdecr}=keA9g~Swr zc*SX*9D{PG3z93a70XDdycoLKUmx* zX*I0f#v6QITUS>J979;{@v2GA$Uo{J5d2S{KAn2ohe?!9vwOi#}a_ai}Oe+dFO5k^|CF!V)OLkW}>J7gAg=b%xmb|@EY*)LEY(ZaP+20ngA zkGTikxs!Ws|N380iK#CTdj0QW0ajGTj0+13u!Zd%8w+#{%kBnSX#o9hOYE?2hkixl z50r2MC2^%ve-60x(f!k#cXT>Gj0w(H)BDu+5GbEsh?L{YV~hO7SHJ8mzAC!s5I;Y+ zs3>#TU(1yZ2hB+WiJH&o80}VnMDZ6F6^X8#e8JQ4V`)izmGg*la3j;=)rnXEb}y;^ z!(9c%6Z^^RRtW`>FL?mb6mWP9m|2ZqaD186Tvr<&yHxs#%a+n%!%_3Pyqe?eK2pJW z*Z=Le+0(MV^B0ebK`~q+2`+^eq5_j60`gW5I+-WJ22w3@*tp1pn++wv7VFNOI^eZSk%dzpix)_ul(o_AqW7Fi-o0BEC?P2 z&goS(d7|WujEvplj{7ky#+V&Um+a;(+G2lN4PM2nz|8FI6$~QLvVZIEpI~`rf4l{{ z5Q{FFf)pKpV1AVnAh)u#q@k(lSnB{nxgoH>ES4yHXMtK3H8nLzx3u4TKtGc)G&_Hv z+-66f1S~j}uAkaCivKy^Q>5EoqtZvWUroVdP_g(Bbt1d`>C;*W zcLoOWOE2^CM1dySRHyreb}|S5F?$Y=`r{Z))Q?yda&kI`n809=(PTMU`RnFRL48GS z?HyQtIEJ3w6v)})79BDAzhAwH%dxTBCF!~e+zCV|83?$r8=9c^kxt%W%dBN&aL_a; zIQY12+l#jquQ#UcD?Y^LGw{qJ=Y*^+->H;_)gTMQc@5czO@LAhCrCbMzEsQGl1B(a|5UW8_k?G{j2UDP(XKRiciLPNqS5wA#tF zuiw@PbKyI8=zv026Ko2y9S5$`&;oQ%cVE7_#Dkw@6L<7;8f&Hi72~9^RrBF)k0~i7 zWo5#yae8j9A7z!%8-Iq81$Pp7RmzxpWAW{USSkbSaf06t44a||L0ZgtoM7Mr1t!>! zRO$d?pbV);OhvFp0?daIn9o(=7Hk5bIDe9yd<&0GIJOZq4GijV?1Pz!TiHX`Kdb{d zHlR1aR_9X;nUQ2?XZQ2F*RNe0r;9@QboM1eO zQAbSgDXi3f{AdinpR(22kFKt+TS3}K3Bnqi<$=PrxX+&z6n!E%4}G(T7ZGluFHVv@ zOi97o`Y@mn*tLJbZZ|BW>0ZI7iST@nkB{H^OBy^q6?OGcw@-Mr1`APFcXtBnbDrvE zc!fS=W_r38OBL0%wfC{5$FyzRmH0HE%mCt`0%QN``p{7+DfV&$HT+>vjd>w;o&Kp{lHJcB5?1wZho4iS8XC#pTrPFUf$2G zg8%YmWz21U`~5}^dqM)V$iDBETTEi&-Z?9LZ&(SUXml9^BGx=m_UM4hk)FGlty&&X zjkOrfq4Y*+M>7>6pmz%S5=YIAg|wjGqAF~`Xi^t%~#|SSWR*ZN$3hjn5g21uBaO&3BJ!K5h z&j1!55kAMa10l7KxH?as_<<#e5Mn0ik4sUF6$xH`{(fvPt*%XZkwYf12o6E4@y_Dy z-u`57{UUop zO(+~8jVQnu7Yq0Vx#U;&qfkngTdMrEa`MKF8!(Ja!CMo?=TJDN%7q-P=pF{dK1qM7Rbe(h6k~V9sA>a*!?99nCp-n0LotuV!ywvm^YY#yt{_B^&H9NQb60qg{lMoB zLFB_BoK9_i%gKC5S{7fL{Csz*?;5nG~`t zPIi5Ka^{hk(_de;3kkb!uho7|#De>RgSu9=(Z{UYUff2kOmDNn#2AYsjCbzcv$Utp z+gde4%s=dP7X?XB-6eVu&*ga|WC-WGeF%|c3JMDN2)q(p*(KW=kWo&BENOo3;zdRH z#vv#V0s?rc$9AE674SUA|5T|ed)JHn|7U`PbKU<>o*nu{5wxGBj%C}OKob6)QBal7 JmNmTfe*je7%}M|O literal 46693 zcmb@u1z1&Gv^Kh>8ODQfIuMFZ)M)7Kp+SK5Xhq?G!*a+_sHBT z_{HxcspX>TVBz9!>|_p+H+FHfb#SqLZ}P&;+{yX9gFPn;Hw!z{3o92FM`r<6R=fW^ zfW^Vdl6BhnxCxvD-BCu{83MsIhHsDZL~`FlAXTGp--xMsr0mYS`w+NZw;m1I_T*eB zh;Pcj3JeH;LH{DdMDj7AlCrY@eWl+gU0F?C{joS2WiXzw#LC_y_+P}sJ82$e z;K9F){Q^;ffAzad20{<^pe>tHLkQq|4%weTFyIGYK0}9uzz_C`LJIizL{bQ%@I7c0 zRNypOp>My@eprd-^=hP$RKC2wIhbE4hC*K-wj#cflFFjTfYms-dsB#`jm*7;(7)m2 zdOu1{AerwcDJjYBv?}AaKex4)=^2&%aqBCM?B#C7(B)QcdiUVq`rk;_^V_AlrR-Q? zli>`pH*enHJ$~F)YTQ2E=vh${rp_!Vn0&O-HCE?r$wh*#`1&ZgCX71R@gulPE>$Y& z7;3P8ch^>TV*A3 zJj43a)rC(%p;%(jblGQkFK%H$TUS>%VeYm!+o7(hFDWVtQC3!lTjYCOoJL8FPSNYL zan<0kFnmJ7j`W9HOEvYPkyt3S@u-uu(q<|qAOPZZzT0zqb;8P5&0{xvc-+Uz>38c9 z7!>qYPHwg7Vxhq(6*Jm(w(`Bt{nZAOR%ym{;l}nv!H|vV=+C#WuQ#*FguDnOm955d zu#IpH$h~*jO-xOXE-p4A7>kYi;+QASG)fGjv*?-h>%YsgHW381wbr}t4BE6np%D)^ zEe}+bl#l%V{lNv=MedJqA^YH(CkT#_9pXMduhV^w(IF=rL%H4;`x7ue+iAAm-d;$8 zkT(ym$Sqrw*IAZqJd4lii1f5A53s&x+v1+ySdM(Q>(1meER-ks_@29EU64!I;=R z)X_$ERo0daKp)K*>zvtl!UuMi^N}x_yS3$uab8~ZR6O$~jlL6j>2Dd#G&0@X$ zYCD)lD&Gea*QO~$e|>CBOx2B{^pgGg2F<2}=9}@)pFfk>i9Fn%SjV&IkJHG;<-LFZ zemgha4@!cC;(E3{;TpqALnDcej;{Q06ziXNb8(=#=zF2BUN8X#_AFpQ%me>Sl`v&~ z^-9^HVUNdkwfl>;n_G2KYHCrET+YcgGXsOl!+A|h{@b^2;XAyJSKq3utDlv1k*nh4 z<4;IN66JfJ?<&(Nq~uAxd6Rc_bp;+}8>(KQCb~D09ae8U!*Mp8DPe73u;97Za+%2Kv{GuWd^#t zmHh9{G|$>`MSwR^=j7y62Z!4)G}hJM#yl5PlT;qBtmK-oWHr^gn6e%JXaFLmB za4)%@u}se=CMMoEb6)$Q35^xGuWes>BF-fQoXZH7JQzeUWY$VbpGgP^ej-?liwA;f zIJwP1;dhxy^7wIP99S=`y0wm(&=ITgloa^maZ^%?`R-LsL8p=jEVy62$`^nzF*B>* z-Q7(X`d$5!dbpT(Pxk`Lc$~la`*#BPIB>_!``zqq=P74HThgCH1UM$0gBI#^K6pD+3dNmoO3VFMol|!Kn-0bYizQCiYsSDvl{2uNup4#4wNK>en)NeCPSX4~Z zH|y5eZ|{_}7~I`;k~*l-$tV2;V`V>IuZ}!^dV1-J9#b@hpQzwtcfZ3$cFM+8;p?Sr#&&nHCH?PTlk$oR zVm2euGp|&Iu3zy6I(NPY3r%Vo8XP{Cj=+f&7#jKW4lNyvi;K&4 z&jsC>2nh+{4)5lmB^|87;?Ab1i$#ACaM-W%@+aU%c4sOIx}Fjf_xybOt#&=hruP1N z$8#gq9mEH>S_jHECoe$+8cCmHN=UhRHt;CE%t zz`#(uR}HH@o763sQcPg`*dB&k@nJ>k{-Wh!BuAbU1)BsZK%>C?>UfRGpfLf=fFodp z5n!blGJcip*qQ~eNKHfEALe~=BiYiiD0VhZP8`5@&~bDB0A8Nl@6s3rmpp357G>#r zr=-h>?Qq_G@n|Jh#DpWUb}dd9y5oPnm1{d!`=yVyC8ebKIzk~;pzQrv4ob8b+Q@4V zwBKN6(qoWBhekwTK)~ARJl}&A&=Esyr%NA2OG)G^q@rPB0&kw#DRM{@8B(NMqv3xr zSwxBw^by>T25NGyVNXxbQ?jADkL@|~$(y6UWQ)vqNErjt(FqHvxIENyIb zfw@o+pEzIvRuV7pIdcjvIH&Ft9A?Shia^<)QndV0tU28IYyhsH08B6r{6 zoA-WQu9Uu{@-sfi7h}1K8(@UHhK6F{ zy^V(-66Kq3MjVOVJw1;yN=rZc-|ZNJxa)LxHihU2<_?GJwi>NMN_XY^vF?F^H84Tf z_8SgpSy*raz&c2oGVqQDPHnWxM$@7{K@0?LR|-l>%GYBRzN{XuG z_87CRtqnw?vcV&}>C%t93m!r62Vd)p=X6+jO~j(7Wuqe zI4A1^RKmh(hlhvT9N*{^*8!kux2~GJ^z{R-8HCxM@W)i)(a~!lywULT)(D`%J=o=r z;X^O54FCf2XN%{j=I+uy=QEaCMH<%^2Z}~UFDfhsUcPt{@csLDk`=-EjZkb-XgmeK zQ!t3+pV>`2KPMz~gZt)pT!P@!%H^>*3*@`KfBy=g8{m$fi-?H8-F3#IGTI1|#|6ndlQafmQxF@Ml7_g|g2H~b4 zGc(iL!=v_kTvah2eiina-xd}52aP8&vtS{qmrNC~v$Jn=Pw8bBYggn99{u|HGY?E8 zO?a5)W@A%|j*L{b98A&9#X^6YNCeGw88;%fg5I!jk@x;-Ha510}X5)%a_%{uedcDm6V zJjwF%Z{I3Q$CB%tUIG6wVN+Zu75(XxGB!%kY`!Yp8Nf#cN6D#oyh3+L0c=7|O{b}9*RL>USNtNAIp&!JeF*Y>LmYz4HD!fqNP%3w#t_k7_{5J0W2t!rREv&lkjG7-Pq#vA+)yk|E3XNQKbGqW*G4E{Qr=s{9l~L zWr1AO*|=h+ySMixH8ql?aw8ntgS>}LUH#RoSCs7RkE3&zH%_P_E=n32M8I1vkcYza zp*L0i{c^wmJaIPMoaG3P1ovngH4m~{>LHK%x=E==Pn zo^Dwur!BBPXJ+l{=QLY%X>Kkd=Zu!30xMbpHNXkI_9HNPlfRti|Hk9EShtLC4R0I- zA<8aKJ2*PAeqRfO1{&f8R|VGY(|__kq#pP;OdP>ycJpp?{UoV%#6RoDY%1CF+wOnyYy@}c**VvbRo zyl>Gc|G98InI4X8TF`9}y=bB#*1bf!6wHPUDR|0&ZvW*b56VtP%i&4j3|8czWP>je zfq83vjq%FOus4Fb2eW7cGwkrejvuKRqT`YLwh-@{?w}y zXTe)7Kem4XN!t?(I4HEcpsr;r3eH9-jF4+kXlGmbXV#x0k_p z2Ex%eEZ%4+B0*5>Hv zIp6}DH+HF+w9MVK=w?u3W(l-5^%+g84HJ`?qlJh)FO9i*vj0FV5REW_(y-ok6W`YO z_H#vnawlbQ$x%MUaiudFijWpfy_7SQ&6WDyR!Z{R7U&qV(CPr|Af|#X+mh z3&ctV!ff}l9*)c|bvR1KL++a*>zvqvVce%DwVwqz*1ou z3omcHO-WN6SYrb2`~AH?7$4CyFhKqE-f3w)1F2SKD@ZCAZ1F&pgZ^Q{w~htJ>d34rYq(- z9Bacdgx5m7G`VN+pFeMokB_ygZHZ00VrW1q$kK0bu4x3~?ccl__=wH9S2AsHRX;EH`BguR ziZDyty86+QzWY3KD`QEcim4|U6igzf7eYd*;7RQpkE8%1YXk7UJKz!G<&ghj$gD%Giq=4ieeQ5GCvP z63W)PI=Xev&4SaDb+Xnw3i(A+E9*2fx5}c~KKQo?AN-R77s(6Cl>WAuq zWz#le_82|)Y+)qTLv(#I-L#P#+Wf1Q`3T5o&#f>RbF8hmpqk< znz3OM=C|21>5lkCC0?j4r|BcRX<<%Q{JlL*R*L)P&y4!+c_(Aqm008 zULDQ&j$xmXs&tK%pZ#!lZ4#`Vtp)ebi`V4i^+yD(z|B@qZ=j#TYJALoTYN|=KmlJmUNU~BArZn65HHaKK)LUsxLoM(e@NOoVpK%krmfEx`j7i+Cq?BN)NS5 znxf8^EFpOyUP(8}`)rK7;a6Eq6eiVLsNyhXPaa@0I7V!r-5Sm<5$7*Q`Nj9`Fd{ox zlPsi>@Z3(b5^sixyPnh9!v;-O3R@m}AJuZfO2vD6VF&fCpUvU?uk$&jnPaPv=qUsw z59t@#&!VM3y@Yf;rp>6;$SQ>kEmwa^2uEU2A@oAQwh}RbE@8kTj`YFE<6%{59tRXG zj?3?`S{kc#uerfJmGHG5GODE54}qvM=kj?u2*$N*q~RLAEHNwK#>PouayjgVL)IU| z=Hn5DNmdxc;o}jHStv4ixcrnm(RWNk_Olf*s{(R7Q9;Cvb-Qhqvbl18`D`AWdfEFv zjrxnt5JKdNiRQ*$Cuqt<=#0}n$F~ltUo+t6o#c-n7!}|rI)b6VcP2l6#ya+$I$>`? z;df2#SFKp|WFk6qOLpTngf9{9!qF;GgCBqNgWH_bia)VPsf;r$VHlDXbQg}zjz_#{ z*)o3Lg;3d-CjF|y5WVcI5r0Qrm6B~V)jyE7EepGK_B~%xqV1fjXpK^?(qOH-x(g27fSI&(BjqoXQWSy|oP z-F&Xq2%sL)54=Vqo3VHhOi^B*hMSwPV50XUBI;`|bS<=zMr}KzYO#r}ctSazyh;W& zoy<{$9~yal2ZCxk3d|MaA;|sK?L!LHn&k=WypdwPIFJ~dCkdoZtaJzscL|IQWI&1B)MCF9S8vmoHzY z>CH!%?|irmLW6mjO!A!#!4_M?z}@1 z16A;E#$rv;qJL)0iJQNrbl3Fld9%lH8bSCCy5if1?PK&@f^Z|f44cOaeMDz7;hCh$ z8wk4bJ$2~S7{grp_io5fQUgfAndP(UK0?Q17=aR2_MV*~^ zlfD*`NZLK#E7Rk6BsM zC>F7}y*&#)oq`!Cm{Zfx9D!z#CS8C%JwGCSuvNJlsok;W7|l)cHmCO1MaQ{4rgopt|t9QQtpL9q5`p zNWFAvAcWUw=N*fGM)KOur8m%*k%fVeE=v_gOo)%)D0};2p%#4_zp?81{{GbSy&miV zdD+Oik!EN_>SE*DmajBcP7e^#=JFLnmSR;`j2wQ38}xc?rU#8C9X&k znh~ly6_y6#)8t@I#^Q1h^RooUd}wotz|K+CW7{(gJe-<}!V(fe|M}%1E$0bW!$#)J zCF}RU*^p@++*W~g-nFJs?vVsYkH1t&PDPmCMHh16?EA!zf;+;7hVg-n>!$i zp5b=!T(VAkDI(b2Jq#mVZ&^{`znMb&vFxjpdJ(JY`6DFi7Gw0JPiBa9L&lGv_-c); zhcUZ!PA+ETP0Yxjq#(};S1yd7Z%{^Gu_Uk@QMxz~zT224a{KiMFR*B+>3nrYS465} z-IYt4H_M0X+0I#hUaGXWcd$5Dc*>)~FnFfUh5XnYbt~x%oBfyfqf&Z5vQNZ=ZM8P+ zJ0zAl)^*5Ey_5~&lnrw5&jPaEo!UaO{oJo)KSu?$X!y~-2B`-oAE2+2Ajs2grXEoO zK&h-e{mn!0eOb2I*KjK?kd}P`g@>*l8l$P%!-+oP=*$^?3sv>+r&U&diJxeFQ+>Zk z#r~Q?($F|FJKQWYXz9;^GI;({-xX2r{fJMqJHTQ*^?^$IxYv4sIEmn~X!_*xsr_?> zp+813yVKp=R7qRxV-{i+r~H*LVdU0X2aIZCRzX4}o(A7B3Aqn0GAA#y>lxJO6w$h7W@9n=^*9^w9LZM+41mAmLhPJC;B4aF<$=7RY$7c z{=JZ*a&AV*Z)xs3u`aq>SirK?l1XZT}lR-sO8nJWZy52ijRvC#?==a({6~_8w zuVRGRhYYe)8eewi-@RNf@3v^W%CnZR#aD+k*ZsehgQra84q&`5SgMINelUSjpgo_# zxfTi^wRx@cpv26X}6D#Ti-Gm}L9AE)ET19I zZ!tME;YI_oeNiz3YVXC)^D_t7%>Qjc<%2=GB(YWXkXVH?ORu(KQfXBKhVJ6cp69Is z-P7~o#rA({EjEl}w4>=fUy7bB)(~nW_YU?WSTMun(s+^N}XA~t?E!kTjs#?@gKWt!s29G z&pvyDW_)}2((g+EV40$YD80YJAJd`F%K>+BN@HMv~FH$jZ9`9 zbba9CTQLS9D!bDtl}{%YOnI}L?yLGwB5IWLF)iiex74;%{R#5%s=jzbNI%UXZt~Tk z4p;H`ocYCd4(Gv)xwFZ%u^ZOgn?p7ggrwvo#q7Lks?%2XdV*Zg7cJMUJT-gs zpuK4;l0JmWW?AJ~C&%LD8LRf%_-Q^mR9-H0Nzz z7lD}fMQh}u8#_1K?5g{ZY|Wf-Ggel~MS-8Fy3r>2)>YkZ5fWu+birHd{z#2Ltwg2$ ztFqVpCooOky}{V`2((pg8R{K59*nEwdlk4`q$U-+uUOX88PPpjV5}pJ!U6Su&3kGqITb90fpYf6u}kmLkv^%g$SUq0*{=(TpTF%<)OX^ z6UG;U<>KLdg_M3Ydm?jZ_9WcK?s6M@AiB*Crfd)Zawf1L0 zRrr3qK6=+!=OWUi8|LgA>mj92Agxx~mbqtLI;ojKe2g%w&YI2Qg(7R~9)7TYSncsu z4&g(yo+_V3FEt+Sx3@3E(Il&$D7%GEf1UqB;trZ*NNa_tsXun8deC>|-8?9cg9Nh~ zjvprFmFtk*i0EwxRQa?DGfZ&1x$|5imFk!@e(BamOg^957|NO5^!K1W>fHN&-BF&? zw^(Ymw)l9NBoS#;1{h%FzZhY8Pf6XoKCZn$DW*{Btzo1IL%ufk`AgeWDdQb3jKALF zo^C@=9V*=`8+l_B>7srx&H4sXxLZ{0)RuX9x|CAzp1)g-lYO#?0m!1)Qkx{~9sTYUrwes)A zqOMCf82jlpjsSPLx}^D#HAZiCq4^$?kT%vXq% zYfe_KuP%Fhb(-IlOtAgU@{rOa80z`@u6f=qrNqB))zO~V(7tE2k2z6qR3N3{I@i%I z7U}j(;TBh{RrevycBo9dAfVh_{Obq~`&0D;)f-k4o%!S6f1 zx01qsb<4(XUbDXi$=B3|1P*1<}bN*`5W3#m(+ zx`X4%Il&i+%)}x6Gd@w~-in7eBQO0#bp9+p-Cv7aD0()<`{{dV&NpIiME!Gx?}1#l zi*vEAb9((m1zpv@Sek1cs(+g1^dp?JB_cDu!T&jnme))7=exX>ByA?4GJ8mn7+3@ce>B|!|ty%LNTtD0ZtkDJ@HkdqY{Zk@y>mbGIucS!6_9UI@pI}%0* zHKPK)(0b3EaVd{uR0hEJYMxsX~{Hr_O zuO+;93zYPH!6x~IRT0}1F<{kM?{=JDT$1CBA#({NzTXnRi{rtZh6kK&#Jc`@pQx&^ zW4^l*tA@=Nv^Z7+@=Z_B4+|cSOUq4h>eI<3)VUJuZ<2nY_L?t#H_d4`BXXp&fpX3! zy-Y;j)gcvT&mOP{`D#nwAMo3SUf|3i!T3S%tG>H_QTp9m%rbq-eG_k|`PxWjar_brQ94kMsA&&rxOM>bvXcD>KvzdSW0KaWp6gLp~bS2@R>$V zJM-Ck!*|Zudp`5b&+C~4?5X*pOJ=ho8RyV@7$KZ?_8K_-ay>S3RMTpq1WtFuhbjA3lc`bF6Yo=5feuh|>%PyG5;$FR4^nCUm} zCf@thp0iDz%PciB&W=*OYCK1gYC+a+$xfM*O+UqLbrU?tQ$-v4nw^XH`-29j+Byue zq5Snt!Rv$Z3qAV2uu=STqY`RVHJdv-YZtsYtjBgQUUraAr{0r|5Ft_v;fuL*x#()3Jqh*f4}w0>KL{rD6XSV1L4;4;>bi;+dmk% z!7~1)fPr+vVH)9J)Dqh+SD_~(>3-{aF4BeBmKitqVwI#8qRD-kD~<>D;Z{d*;z_=e zdZ~7+T44H&Rf|gmA=8iZQ(B@i?R3UAl}|ZY2{?4sS=tr&g+I>U;!l)}ZV%N%Rixqw zGhyb{Q$k@lwMZ{2&NE+$x&{(RB7PjfbJ-?*hAqZ!*^Jtef_@rkvc^$#sQt7C!?be` z(B<-2e9G_9D*T0dn^T^o-CCnMFblQb1!ZSkzm5_YRrQF#9*aj#?PYYy27_^(q#Sk+l-Z^uaN`H zy1JxBEfsye&=T1liY>&3VdQ@2|Bl)5vFKz-->ZP-xsdA@hqyrjj<%sn3IxgFvRmP_ zY@^L{BDdq-&xl&^CU2|5+Nd1FD4rma$lnFwi$n09ZVx$UHyj@hx^qNLmN{XWXV z$hoVHch?{{8(p)j%XWC#pgaFIf`vkU5GTPMcdi1h(n%!a5DOjj>b`x-sG>NvbWtX% z7ZOkd`}uY%g2bk`B65WpbEmiwgxE-oG_zgNr`^}ZAgJ?WX+)ck9Q&_$xJ0o;-?#5T zbwq}VMK^GDB+fP};$f#B&DIFN4c8-*Jm4K-BDB0v^Hn;tJQdU8Lh-w@Lq#km3uR%$ z!ph{nHwNW3+hV$3V)_1$Equ|miq17TSEGX`n-grOMvmqAA6L>LZ7+RfR7n^X`Q+d~ z^tWYatcR%(EP9;71MaX*3cHMp%?p_n|L47B16uKSgs{?hAs%uN-Dn=45`RT4C67)- zyH3)NU3PeNECZAO5#cnrp}I(@G%_9k>fBvjS!two%bj4nV)Em9BM0|Xs{O%uz0Pb| zNrgWuHjiYa{76=sSL(g3L=bdS!B^zuYVKe=pJ$N8hBdb4(o3q+e99nwYf2qho$|Un^vs5s z?-0Yq>v;->%r4ojj|Rkbz2fg*OA@sO+v-x2H4H$Qh%q>DU*?&Yc_PMp@G~b`?1`A5 zq2UuT?-(ewaKSy$|F$-WispP}CGvVkZj$BC`qK#4NA{)F(6d?YwBvSI`0i}_ z_=L2_UiY3}7FmYkgjl&q9pa9Vtkv_UdtaJ;KP=j!cgbnOe%Q#td)4?E^lTaW1cpL< z0W-LIZ5y9ddo(4i)IC2JJtX}}Z=M}o)}ynhC(0uFm-QPEmL_o+ zKq#APdA$6ba+~baWx*mZul2F9(0CV}?=1}~1E&cqfruFf;l_ckKHNm7D@l-nVTVXOMXT1# z>$I;gNz!2mt#Eo0U>&Aiootv^>0AMxbnQxvpa*EF%uR&!nV6Vdf?8bNZh2p$5COPK z*77X&$K_md+?rK>8QqX9daQkd_KR4o)fRk~UpC_OG_;rpg|EApcr}hjX4}=0k~daJ zLpExeAD>diz81H&WuoxEWe054MnFh{Q=jGl^=p6oxB313{pHP#xA!wRqv8bRH3ENw z(MCL*!%H~>^pWSv1R=)re`}$#OtR;zY^GO_a8jApen|QsZiQ08<8#faf_TAE|5(DC zlfRQ(Y@m^7e)P8k5dFdcXQGbmRz6kW2jJ0Vj#ym++OthzAK+-s+LX`$>ce2FV1?7# zyZGxT@M(uE`H}rV+{r(WDU`oP!c*+bI$Fxu@7>jqzZ>)pFujfk1rH9VTJFypU1MJ#qka1H3D6SC0NWN` z(bdr*q5bv=(9S04Ny*6i0jps*2pfC@Q6 zfo6$Y{m_^kEk5m7;?}8D_Ty5KB~a10%bESR_xb;XPLVQ8B*7PTM^VozmHo4%{d!Dw zTB^xTM8boJ*>Nafa&DCIW9($^$xJ6!wFLpk{R*=S=G1V#H04t|Ne>4>y~2Y6xWmy< z<4r|v2HeF2aDTjWjuL0(fX(}nwfQm-%-e?X^MBif@6HmN7X2Sm0g);c(AhNNJpo}H z9SdvqY|5~tBDJ^oU2(&{K(+n+J3w7c{Fp^U@&-j zwDO9DrPvQ5Em6x1!2%RX5fO^i{r}E7XUpza=?L9(_asH zYLJna7d}3&7Jn^JRLvOxA2v(NsVfOxCL+)?>j3m@n_HZixDP-5oR^CB9Nk;?t%eeL zNdBW;>g&85y?6K~y|{X7>uz-9*s1?@`-I(y-94{gL2fn!iCj(p@5z0r*AAJ0@#?QD z-RU%kbexPa`lyCVLRFMsc*LtyOY8v`7xK|k&TX8g8U;V#j9@^}(-f)vo#<3t>_FdS z5G$qXJRACNiT>u%5}@M{3;XZ^`@a-O#fj|r4OnfxaH+*wyrG^oOy3fc`XwppowYRs zI2|G?PB$@J+#w$e9o^aN`bkjOQFvtOoBNa7@(DKD2CGG3^Mz;kB zs1=q&ITEN-_FO`|aQ-$8AdN;vVF69Xqi3%@*uadi_#KSS;vj4HpG={ND+$2(j$<_h z{jv6uoil8f|F&ZHf1*I?R(I%xxb16k5tAxOJSmma!N_zKiCUf$o}%d8i2j9oNtKHf z5X|PEMl$)4UFgX$UxGlV?#((N7i=79km&&n68L;20fF}#*f5eary>oNp0sOv7`@QK0-|-GW zysFXxgl*72WME`GIys@@<4XX9OE$ptuoz6~IbQ3VY4YX;WX`7KYB+(;%A(Rw%i)S_ zEpmk36Lr{^8>eqx4^?nOZ;Kt8T0-iF!pCKY5BCE2J00gKw+1{m2&Hzip7$Hqt z+d@@41<=VF5_xFsELShkU^nZ=b8>c0z~f@J|ed{KGB88+a?K zP9Aij*tMwA-}5&;4PL%-f^%R8gJBkZBwOw^J%ZBcCUHwjbC9Oeh%H1GpK0(Vt4OjXW}7@ zMlijhKDt!j`-IM3>noTt&#PIaBbm%&2S#rXIsNh%l!1nZCO9~F+#BUkd`(Z^zZ&o! zod6G}9B?(^{FCpmR0kPVwYA@Rc?kdqFag`xrZK7!LjPk?p>9}QHDe2ilPO{3Ug1N+ zH~s&@lHZTfg~}Fg*`ZmI6(_P>J7nID?R8m!w;o&d#Y|qOPNDA69XY=>Tb`Rv_n$S^ zFhn0SL?)x|djp2G=T1=#oMJ#yWmuE?s8Ajl2ek25rprvzwtug{y9t0B%0S~l*u)`% zymT@7jh}>j`q%krROt%|S*iTHLXEtIG?7yO!n@s!8jqVNj)3!O%-bdfCUgnL}?VjBQ8K`8Z}2C{5}RN7jRs?4Q}MGpE%l07U_0@ zTL6!Lr1msg3Jie)%cF+LP(6fmvO1()A7AjHoi;}_0M#76KUP$W#@VrRR)QI>siZ@p zc^CyAWVrGQXnXqpn?$ZQY2&9JVPC zN%#Kb4w&JfArENkp)cbfvYzpRP<&VviU#3YUU#g){76)sWrUsz@M1Vz-%Onk?3bce971SRb_j@dKRw zzQLT%ZYq_%IK7GPggy;gYSUFbVE%1@Wxui0M`JW({oO8~LGq?0dD!eBhGaIPSJ2;R zCP&DAhf}B}%AaXrXz1nyf_64_2$yMU#-jADRa5A3s`p z@72`2kUBcS5i{<9^B1v6(8L3=rx+M`Hj-$oDjm3|$&?7QK6MwESeR*v zEb!-yM{F%=xhE+V$pz9Y&lF#Ab|Imr>v0QNW5D6{89v=wd+LRE_J6}D_&@TEN339f zpQ5iHcRH70$v2gg`w1# zjs{FVJDv5~nVPb6_Inael{6<5;OXi4Mp_yXs6TPXuU;EjrX$Z0^xQGUeDj9r+eqv` zIwb@BwySG!eM|1`>dLwlW;=?taw^V|-D?tgBZ8>gF3;E~=gvCV2n$aX?tb(40ci}6 ztK6nt0fTQ7P{wSQn3Biz{NA`3QrYz;#F_wq6ZD z;9-`U8jpg)aOKD6&r75K=z5ol>Ds+an(l>e;tfRt)Jr@nTm0;(v=6&Q7sz4XYLyTZ zkqKYF_9m@)u*7eOA@r_vQ2qw8D4-gIiWqKM^v1oR{Wz{j`>}R1R1V>Y40KL>e8GqI z!W?fw{ammKgJi?$Q0cjRVLikak=!|d;JVsWE|xFU_0!*M*R5N334!D>%xB-~(@4Gk zjOk9@0bbth575p^0b3C^ zxJP~t^gmbE;G-g`w>e+?j$sy?6H=;|9x=P(77ue7Kkt8e-|R>s7(@Cc~Kk({c5!Yvi#l^nj;r$oM?a`skk z|BEX&Hap;Wqcg1??zD{Dozf!(i`J0p*^G(#!a5Gm5RDsO+o1O;Abr)=YLjrT=FBtY zV%49Dj``rafg8Loi2f7EZs3uxyITf+@f?NJUb=K26>tM`NWQZ`)vDd%*Q9IF053ND z#w0*4zCulSXMFQubnojZ{lbN8fqveG3&Yn`EsdP_Gwzh-;i9XwmOESQmxIEU{XP{B zCoQ_)2+0Pe>8Ys$MKufWw6%$OlB0|D8#t_nU%*vs5c~Qq+WXU75#ur~50JTySXTkz zZkcgA%Juo4?z{q!NGA%q+h<43*p19~f1#SGeE+Q>2_IfD;I-mnTi37Mq%BQcE@*h+ z>zj>3*`2X6MAcCGH=mJsgc+wmeyzfAl=yg(!NRV$)w*D1pIbcyT8`P$zjhX%Uo?lj zpODOHi34=5rf^~8eEpAj1Fug&9fuL{`?okyz;%J7$Ma^d#uI2kXPSKlBZ-&=N>Txe zO(`g@?`3W=_MLM>VFS9SFI3VTCV#?Dj_;cQnQMQ$a|d)o?#zfvZS1<4jE25ww+>Fl zYqzFNP+tt}sE#DP8zIw)5!m1$eXiO_@?gJ1URC0D(mvYD!N)(^Xf~sh3$B}F7^ii-3=(w=bZYO zUA9J%zxBKU$Wk_r$r$)d&{YRqXAhv+f~WgHPRK|}X~|;q0CZEfvz4EK)Q2}#x-Hf1 z8l`hqE>&OxO!1I@xb$YZfUBB;Mbr zOpqynrpR@FRlmWl%xdJN#XwTWY?Tc_IA&AD`g87!zHmkQSB&AJ%Ng{-MJR&Yeu>2j3i z8x6m&&BT^_Hk{;UH@j5QFlZ+o*~gyW*XT@DWiWLu`O6nE6_qC-n8K$5 zSQhqmYeb2z#gffjt&x(bVgD_oYPF4!{7 zGZY|sN1#te1Yr|(eJI^9yM4Af2pKtJ{&)v8x-|VTT zipk_>ynV%tbeMRG7Z7iM`GilW;a@XjySlOAyg5v1-*P9%(gD|7ZcO;X^A@m?n5S4e z!7eiZeHn`VSKS=KpN&j+y#2`1tkZ ztyj0u(gfwJh~L~#JB~yxNi**S2qZHLdw*ws`$fh`-(`C?Xlm`gJ1zEbe^&?KMe^>1 zA}BWZ#j{!hg*A7azViS#lWsLufZ%>@5K!+n6bJ&JD9%+KfL43s9lnEOPPZp!q-gPsx8{4dI;eg_W88GWDs2bXj`;q>(dt_8&Kksoi zp;=&=3*?jr-h13Y6^k)VK{%zBZ3MprA3fU>TBd+$d!;1AbbVB0`4yztbOni>ZqeB; zB>api6Lt0SNJc)7ECN%>6UC>i3ig-~@CE{BA|@?S0KI{r`NhkZfykIdYygi#6jJ!w z0Aif~*G7#r^cb|a5O)0x>OMb3BjeB-Y4y}}*6xgK30t3ETg?JD!ip=zP%X+ z$@QlUq1?B$uru-GuW0pK@8fQAD9JkggZBM-Ggc|Y?{)>4+WK3d@L-jy;I{K4H3yH9eJhnev z*L=6Px8YGyZ*mLn=0I!52{Xa&JU}j6G((|d$ZkqpsLP}blxal470=3PzoB^n=OhOt z+^K@@v!ud=N7q+ZpcJ?t!_xQ;v}_cfh=Kf-I`BM&Hr2M~G3@)BVR^-hMc!!bbIy+; z()3f(nV=h|FE<}+=Dd+GSe!j#RjS40YQO=A-agG{_&di4e99&WOId%E$m`0V@0kQb z`?Q&e;L{ttY~)x6@g0z`1!vK3y3}t=x28^-JrPq(6XHiffVr@Eo zvIpb!LAC0o&d*<=eq3o|Cj)vu@4xoAH4W!b2ikij?KKnsK)7In+aCdQRH>zr*nCtG zZ>D&pb5-Vf#f)6T3(jv2jS-5x7RUG75==0|?g&KPx(a^`f0B_;hoT~&@&kn6OG`@v z54qDn&i0qA8|(#->MV!I|9J<8^mkC(KY;_|ctgLLf6EtH`55wloTd=oVWHD^uAI-b z$-j`4v%5XhA#bRsVtn8VwrQXPc!47l!TZ)*q;seSY z#_wjZAW>Ek_MgJ>?%@_Ara=i_zP#eMu7FLtoGK)cmevx9-}%k~cZh0^2-1A{H*(Hp zOdc}l|8NJ-gRx0@4uPP(z5w$dcY!L#&bCDt-h}o}aXP5=+fAbo6m#@F_Z(*_b3q#U z@BcyDTR>IWZf)BOP(WI`LsBFZq)S0SNKQ%Xq%>6Vl(326|JE@==@NiqO?(4c{oaZsEJ#^AiOF>eNwtbjR!1<9wv5%%r?dyzO91T*L zlAl_)ia5Wwk3Qx(THTu_pAZ_Elybm^3=qIJ{hwc2{;u750805a`(`QS$7LqCP;26V z!w=Rl6cKU$_}Bc*;vPucnh&O;H(iROzj^-DHauVddei1!!P(*S13CT2wc#x;##1}L zNCRGmE{wlRsudHBsdm3|2;qn*kWlgs8j{^M>SCZGa23EikY#J1S;&Luq!FC?5MPQ3 z2?@cS>Y9{7wqtY(8}G*+qA~5h+IC0o+TVYzs|wvqSFQS_Oei7Y!F+&k5&R&%_(ynT zh^rHt1kJFDzVX&RLDHf6{33*C6n4cm||l+=!APa$QWvTMQJT^{fSGRh9r)Shq7-sP$v+p|0c z6vm&z2Hpqn2qylh0Zhij!c{O)+VSavd%qV=T zgEgf}RQ%6r^Hrjo_EMHE3JW}1SMZ9q_H!ujsS?XL1pll~)}XD)6+=%7FbF5MTd!G- z{cI>8y`a7)FnFm-^a>LfR~VcFzpH-Yoo~l9s7dVD0Bc~_*aG`I^-HJM)#GKS)nk9l9L2nu+Ae9Rk7oY3=H4&rLpk=I0 z*Tg_FMCk2x`jZZa{N`+}Jxk=3$PTr$X|wW_3D~b=dlq#j#p`Md_x7UxlUB{rzLGS4 zWv}GP^t0O-r0KnNXsb#Wty7-&eB0;OjZAcllbvignz&;sek}N(2)=*ZX5clZ@bGPP zuSd`?a=OLMirap9UINnAEKXc_6g+;{A7$ONnG!@Gi>YD)UL$s0{-s}HLz-}+{%jA=uBwU!-#GfH(-BT;&2-hImBo}rt+soVxc>kZ=rR)QxNlXrfWXZ}C%j0LKR8U?& zd7RBRX|#BMw&aI>y@^*LmT1@DQp^eR>-2p-O zu!ZrL*H@AIcnFOMDMZr%&p_H$d3Yiq^elBhvS(3>zXy$7*wt+40-;gH!4XnhTMO?R zY2aGuLbl6XJ=T}p!MXSDxW}imqGkH*bGn%6gxP%>*{%^yD691N3skfaA>Cuy2MV%X zUAJ~{#syH+{f)U(FV>|H`I^ctj^h{ApZcO5x^Gj4LIFsG2Jx8>Ka~~vgFzRj7&?nA zim}KY=}&%gb}+-r%Nv=K!>@Fh2B5;r~HpOP$j&0dZ%*j2tob2CQO2`?bQco7d0@vG+dfe`*+{PU9K{rzs-`h zgr!k|)AL&s3*4xN>nDhcIWLTbQ|y>}*KVt=7;j`ve9q14EX$B)j}$S%N%ukTkZCMm zpH{t#!4$CyjThv<*pTZr=wp_Zki5I#>?~1{rFeJv_C~qHZ~7QeH0pw)5niBZtVKhIaDHXq z-C>Lma*ur+e_I=}Z|xVy^9iA8;r}U$OWwwPmx)oewu!SlVjqM$QC!l(tM*H>R*a+Q ztwLkyz5i-S6zTVx;n>IZK!xqfSlP1~t2<|jNz04h10E&^Qcl0=EHNmx8nQ_dG5HMk zvfm%9=#g|5x}pE5jQq9!*PXL@ak~w|!yoAHYr&gb{jO0X{CMit(0}MN_#e8KYYDjd zbR+02r+zm3J#7B6kNWRYMFywmLm?m%~uRBAY>Py>x zp9=A}-pLjVVtaf;Mo{XW~2-&Sj& z&#&x}QL1jv+)rrvha_Jj_+KUYQ>F{h-@)jId+G4O(~LvH=@2_Tw5&g)NJ`+qv1%QA zS#)q=KVkdNd&mF78I0%48=+fWf04HH$&jx})2X@e=sT@OBnu!Y?*Ci$uzKM8-+~+x z?cn*6Mjcz=jBH&wJZ)SIe=ng!t1DQ=P1(xsq-QSndgL8Z#Xki?f}YnF>Fp)lW(fzp z2sc98C6%d9`n2y)I+)(dT#LLz%^G<}*HVhb$2n}uY~ycn63KLE7!l45GTFOf<`s9v zdvBYy7}o`*tab2dSR4;Hy1+6P26A^ugWx){HswzB^-$jA7#Bz?^3qSbI>d038oVVZ zU5e#d*T}bAeJ5-?|H!TW@)S9TNR%b-TsqxlvO2@Dc444wxb>Y@J(3=YUqHr6;*pIK z)b(|AJ#^U1bP?$4n!e)AlZ-p;p!2(Lf-DwMAF z;F@r8B6?g(wR&OGCi+_eGsGdcC(Ew;y>=rlOBr%uzK&+7S6FcPmM_x4kvm_;9^P23MiYzFqY7N`ESU0w~c{EcEL_BprV??V6a zcS`4JcB2CQF1NLmHiz|!JqjyjhuQv0(EK(APg<{(M9BrwI~GlZ}G2V{9_r z{>|TeNU-sj*HU7`wp-+^)V0Z$=3N3T_g z{#&zA8-Y29WNji%y%0;vy0}y$A)UycHJB6k_N(Ex1wZ9&Idyx|Kf)CCd#tZ!GMKOL^x5`Lr}kk5E!I@}$#CY)e0| zIsBd)?_xyeBlpTO%)p07ROmi(?$Kjeylh^qT_?hY!S@ScxAN_y!|Dhi4_hF|)i%-t z(<)HEI3d7-uaAqmp(*@r5pZYFH^ztdC_OWCD^bfIni01OG5Ildh$ptnTFk44YJ3hB zWKN|djDSilBLJ)L&W`s)Y^Ra(IjB2A-W*TkS9;=5ime^tt&jd3(7u7pG%W_hU)B7dOTr32iA8q! zH5nr40XCNR$t5w11bIh@oVGX#2v7{Z`!9Z_ax|T`* zx!CN_1|KPGQbFryKk8)GP@8n;5m$7CE@n`nlWwow-bPlA#ZXEq4+u`O6yut!p8rH> zRoc)TOufK|c498q4*XOqYHIf^EOH+oCxSicy(^@dgy=!iflbr*mN2wx0*lkNEq zC`vUIcx3-8K*=8c50+PdX@#N@KAiX-lYEUEj4~m!;HWl*hwbp_2n3SkU_OWM1@OB_ zBti+mx`Ts*uV263{Hpa=H3j0dE{aB1kaU5cZula>8pl4m6#^mjKZo}}*-0Qv;^ajn z-Zm#p@j7=2HAcSOuWuRV7Z-V+|F{RKof1^mf!QVw4VM=ueLLTTh zxw(sa=_UYj0I_udK3$l8k*(c-B0T(ej#E9~l`m8e+B-lmOeU%l6%+GFRn@2Usrmn- zZ+U}#?M+saSU4*%r{v}35s*jkZ{J65S`2IO{{Tm{v=ald3O$Hnpg0boKad)kR@Zx+ zl!6=;yFy(vZs?;44=-<$aMI*^!EKS-f&a$aa!T7PwdJq-pJ`jIMp?PJfYk$n-fNkm zP1ci6iaQv9^@7&I3TO7P#p;>Ss3r^G!p7;ksgG#lrT$$im_aixknrGNg@RK1N`E|R zLvg%b*?gkUh{<+Au2Yq%_+qKR+Tq`ohCBXegtcW!|E_g_Al2PN$b=t)avRA9eYYJQ zWx@%PubpI>1wCsZR#Ja4Ca{2GNc8k3d93hDc68sSNvW$J(8mR&A2FR|n&rl~)L%D6 zAftXDLH|v~{?8%N$kq7&6~b-6#SM{M3J^|oJnFAVF=JVuc$aC4M;p|w0C8NzRpzvz zuTyEWuHptgOE`ceB_&meTOa-1!gFH&^<&v_;p9O8uLUV@-UYsC+cuKe^sIw0d!ie7 za6&@kG%bIcmUhAaguN9>qkDs(mEr8<0MhC)YwLjjpU7{yt(UzoU%rf7-B2Oko{v-> z(W-<7D^%HE2M7NIZm?13`|B?&jCkU1#wiZZKt~>diHS*1PoFv>ESwYu$Rt!$)Rj|T zgPah?y#zE{>%f|mm$GiX47X12IzoS6k5916MKssha4whCwg`7*!3c|@ITS@{#~vU z$Ry}7yh9LwK&_{0WdrC{g2-|oi1$r8BADS01;)mb1D(1J$vg#Vcdeif!@XeRPu@K^ zLFiWeWp;=C)kP#5vv9r55H#f&&P@f0_G8KLO2e4%$$>Yty!&+<| zz+#A}P9W*TPURr$d?2Zvd}a*ZvJ&L)nOog8)u{O_#cJa-1?s62xe4FU1Q08Zmv8Iz zFEO ze6LD6$5f+khZ9&%y)jw6!X|{*+Wz3Oo6Ej;k!XX==Hde^_A!qAn9SzyMU0Y>^tobR z^e(-rW7s0Zj7rRq#2hVOhLmYeii5@Nj^=w5e+m_c-EXVkmIjHIeNYhQd*vhq<`Rr# z#ArUMvvla^Y5PtsANvASPHMyv<>+8&T6J2~OGg_HsP6m{w9rNFxTmtK6MBa8M4cj5 zzERC}Me*s?_sM<{)NEoX%;PF{U+SlvyU&G7vs|5prP$7Jtp}`x&}jmt9Aw|J5?^7U zyo1_^&XdqHT`2U`YsH&CM=uDl-Mij)O62z+-6fUXCBCm@6KDju>xCWt4cmEB4 zM5D&E%C(2|`6L!^#rhxlKBd1&`Rc=ZQ$j+lx-~vz${wv! zb<_EHKCaEaX(#cpBsg7fF}uCFKCYzp3#EJ|&I?l>_j!h_fwauLA;)KW?l3jXIXQ4{ zy#qOBb8|CX3JqSC*5zY~8vNMrpQRJi_&+_-7ReMO3JRN;3DsuH-Fu~!BkYCbFIk3C zCgaQ%sJ7@xX<2^T9NF*sM25Mk^Q@4so6S70f9;HPVU~wj;j*E`r1`2RRRv1;IP3c= zL6#0sV{zKgychL`D>J`K)Ch|d^)CE0ux76_p12f^9Bo$QGRJ@GvO9~9ZdMZSty7?|cQB@>6zHb>B3Tgay`>WS-X zdaj}z;rJXSz;K!OimS5U?q2b4Yr$G9&l7S-&&yKDzUMC`(DX3pM3Ct!BDEwgZFW-| zMSt-luS?u=P?){P*7Mtw-0p8krQIHQJN3HVuN5Op-sF(>sqkGZf^YVel6n%gOW&L3 z#oV!%3y@ndxsm)tgVc$evB3;(81GX+N5My1iQx(u9}=2{&x1s4A{GtIT0(md`Gnv1 zYwR0xaU3P`x?JDC)TSepfBU+1p|@L1(?*$LtD0a5)pRzaS%Mu^PI|4FFoR#r*LOOv zO&+Kg>>Cye7k7#8B^!H1Jxk*?;T<#yn0{IQd_`~gDBX`a1#3BC{jR>VB}dbn{3+MB zd2LfZ-)CpcCRwKLrTd5zrFDHOp1n}PbGJ@CDl>nf61|lym=V!wsPio_K_r$bs&1)&SPBe{W@84cM*a;NNh>Z4Aqb6 zLja4U7NLa}Pju=%jkDyosB{~djU~<1SoX8+TaT^#Lk^Tv`aUg^p;vnPd_IyYzmfex ztQd1I@|~7Vg0+O(YMVGSzG2JZY5gxr4|uGo<veB^kw zjhe%D=XzgdL(GDdw77+~ILT4mrRywi)#wk;UeU9W@(KR_=4KV@ROZEGSwZt`Gbdr- zgd%a0R3P7$i)mD+=a})>vH2pQMs*wi1A6Pz>K&2Szt*Dvyv08;AG|ZTu>X9yy>4VL zni=0@N~?}KR#dBs>NBq*j@)feM$NHxYN&aomMDuj7YO&MMD%*wHVqLm7MnsAs zJvoEM$RPOrd~JMIkOM_Ef1)&yVKhvdj`;a!jRLhYilM^Dxwv_933_hO2c5O1cbDDzjS5Or&Puh{Hb&S_hDh_H z<5R4&M}`mGZR&KyC%X+l3bVe=D~~BrOD3CA_o{CsqH|~@K?I6!QeCI)$M6wH;4tia zrQ)Q`l7%SI-EVs%spGU9z)#;@|DF3#Ee@Q)LaRF;ovf$t#`RdS6u4haatn=~RVsJC zI{>w~&6&A<_jlN|;APa?9PfmpP8XDXfaZpjuz-dQ3M$C@22wi)R>F4>t2nzkFMqFo zeao2jNlm5fpbFOV>0K}&N#u@%56bg4JyB(I^*Rx5xZ~EJC2?|=-{E-9Gwox`44IbrdY0lRnWhEvoa8yGtgvpOZyJW%k=dq+lWNX+`e?2=&Sp z(`~)Iwed(0?<8uDJmY!76ZePI*jVO*P$lWbeXJ%OoIBtn6P`OfnUa}1JdT!DCVqo5 z>C9?Gs7t7>R_5$c(WCVbdm<#Y6e^zrR_+w;FQE4y`~LnWT+sBrSNm=p_z+B$yFDMG zC``w^daOo!2V=E7BT*ytu6==!ibR?~{9IA0-m&Sog-0cA2a-zlirWa+*grJpVWX^h z6f1AgaX#-8JFr{skF$*AuH8h1u{hB28etQ$p17T*oZ_iZmE4Uc__NYJsGG8Txj3~o zgft3!#>kQDGKn+_ZmMd|x$b1?j<|tcU7gM^UlxsyO^#Sl=Vb#r6J=Ux zgR)wZ+0X4GdmXPhQ?(tMvFEM)-`h?c6A0UIdCcdenmdT&ZxoFn3R&TG$)-R;5BnMh zj;fcEe|`k!qbiq>P#nyiaOS|DJqZ*r?BSL!8ckQfYx}4qmz|%)DqDP%tT2x)hkb0# zU@GUAjJ8hbs}zm9MZ@01igtzw^d$5;4d0aC-xTr^T_v23#y7CglSsYl(7ozN>tu{C zlBai9UtDQI@jP7pbZME7d{+l`SLgI)cBeVXdtojGg$H?A()I;>srBYJS7bE_)!g5! zcIvPPHZZ#&#P0tiE8dxM&PsD<|5J#A3J;iv{xlOo`xYzevh8Awi;jlga`fht&gA2?{>s%+{e}8(q)~!nxtb= z@=?p0zgvSOcsO9;Tj@%l21(?2b5nT>Q+9b%)~i<6+>jo}m9n#G_Xm$P5-cvPM21Gj zJ=CVPcRo*|Jf+O$tcOo3P_Wvbw!hdNR_7Au<7vvaR-Hp1dC1c?2E0SIbRb500`~(44-cFKw?G;i^^fK!(j@~@z>W1ZAw^YU z2c1m0i#gB)1(VV|-CgFQ9p6$Pre#aUL(k)YH%w(5rG8rLihG8R^Cck5wfa|n9r#zEjR{nT~`y z+8r%z8qs8zD2@2>QfrZQ;g^|%sK)A~or>A|>LZjJ3#J|wi9uXSq*N>lBuB<%lpmun zQ@E|_Ql*X(t`wmKNB4!>vhaKje|<;d+JgolY4VxL@ghZvUji-@lBUXLM>VPmxI_H6UPyXEkU-en(aYCQS8+}y+G zb59G&g+tgA?AguAF#+1{Ia%YDQ3m?35x4A)V+I`j;_+Crsv;jNjAoKjg8I3^5qU7l1doRpT0V~ zg4;jrLYHB-xO;B5KDpUSJ~4k5vUkXDHZ(Jt4nOSIB>;cN3rnl^o73}r?MtJIC*u@u zULL6HyJ1-}!N#Y}_Obk}!NaB?KC0!xbOB~{eyq-1Hjcax04sdrLUP%dC2WE8iN-Fm z<``Q04=mnR5)C|8>7N+gJ}2yiq&;)Q@`Zd$tKhxW z;CS5pGOp+YfQj}>FIpV;ZpR$I{YS~DA(NJO)#xwc@?L+aw7rf{??0y#%$K9q(dwK~ znbFWZG^GG_|1&veaFskGeIKc<)jROYK8!@|t+v*Ku#yNM)=E_yQ+JAaK@DC*N?wiL zI^EZdj7Sk!MiXt92Ka?v=g>=3S_PKrNEY&`4?LyX7r1RO?c>-LXm+9$@U?>LfZ-pL z0X!8%Oh#n40Vkw`Qy{~@z~Svzj5z)jDr#HT@sv3)r&Pu+_MK+$TvyJI9>$?r(c7d)bBQ&&&&Zs*TwyoXLpF|gFk;<54>BGX6Ho(=>csoHlJOmxV$hQqh7LQCr*XGG@27h zNbrZCa+U|zU~*McRe0caonswvM#c$A-sVMeKXgRB>Y}-}(#pfJ z?sSyja&_R|brmB~*8qZp@x>cLyhP81_ixp8hZYa=+U$NiE)y>k zlHHG~xPQpH9t%LoEa`d~pahb6Bm`FXVl#<#X;k*ZAu>O{#s2>!~-{g|R zTl(Nffa7YNhI5|E?GL`f;U-ree#Wr=Z!{3fIQGp!;0xl?aUfsAG_| zK;eLv#RV$Zh$sy~ef0KD;;^Xe&!Vr-zfVb-RLRRJ$MWN6V87nPZY`*I({ zM{!->tnGCZ&Ab{xYLRA;IyRf$r)`wE<^p007w~VjXuiyB_m)LUO$CLmfHWZa5>Sjg8?(bv!ANy$e~*wxbDLXojU^&ZF=KOTy|At~!hgcL0hZ&Wbjg zip_C#4V_GU_pZrMoEEqoJsnUy+_|YgnZYHqdozJfi|bP%8+Zoe0Zp3 zV>14oh-1>SA?D_n)O3T%`-RKoJ*i;><>6Ok%(+HGJ_(ca)700Z@p~XVSf#WgkRf@F zY%mVO0QB+6pfiJkF<*^i#&;emLFQHcVo5``8-}a^{i8jhg;??s;j6C@s6sB5LE~CS zTQ=NQ__NhY{9$8J;LZ_e-CM#)|0tj<+NVH$59l6fB4fTyJ~ST^JWE%4)9H=rpILdQ zT;K_uO(IX$Z|P7!M><#lD-ZJ-Qz~tsn~bbk>yt+jNRIvbMCn=?mg=;MnWZ~U3wu(y z72_)YLdm%yE%?#Cauq&1A2I5lamDclCj`z4c~4Z*)8$E)2o@(B6;;E-uFaV|!}b`v z@fL#VVdUAUdnXthaRG*?TOP*_$?n^7w)oPR3@e$#Y`RnIApqRFwa~e*7GGc`$8C7l zBsxOVZDd>VPU1nGxUO3)kk5VA8Q<_+-{t1JN;h!tw}-+C8rd|CTfP4RcN5J{t=Kh& zFPF=65Ox4o20F>}AtixfN<=*j0jz}=vTKbTTLqHH(edbxXU)%e)V%~KL%pHa;0G^| zVD*>}lgCRH@^RW}C)jaW67>$Xh`cqh_z}}`IbY&^--NHre3V9s!-m|QuBp+{e#Yw| z3`rj-CWHcPt}x(Di!7I%ZFepWoNY07&Z%qRbL3Ul0OIc3q+y~z&rk_Lf{`+&Ubq#Quu9> zCSb)G7iX)qBul!9H<$VUQs)X%`$h3_@Rpi%p84r5eFrOk8vB@sYbo6;T-?4t{O@AU zp}Di*&jO8GtH#l~U{&9JOB(t;f)2|B8+8Y?jV>s&)iPn!9mqiu;9q~ddOXpKU}0rd zfK&}0eq>t|(zUeA1)WuwaYKG;uBXH2y8IankDgSh$6Uegf36;*Rrrgts}WE2FlEPq zFnm3R#DDpF194_)?95~3tevVDW~hGZOw?b8BN#t*5>oZGSF14WP6jO0U9~RzCl3Ia zP`y84iFEQ;EhW44-Y6Q-J-m?ro09NuFl9&m{JSaYz^3@^p?$%pAe_bCD$L*1{n7Ge zQA&Y3+Mky$bsa3e)zoQqYB1fJ-q5~uY)&!39Q}^0mA71hBjC}`&99yx!~O4iy;|TN zU_PO8sP)tLn#*GW!bp1NS^{JPb4C_y9ca#-&?%FF0hxOT(Bs^O;iG{JQUQp~9)X#g zFpU)l9c{*a2X}R}XbIx!gF!QYg6299`Ug0K8Q)*hI`{n9dK#_Y7$GLaF`Xo(@theO zFq?L!{GP(Nz9RPqI&*JkbV|muo@ zD$wWxkM|EN0X%Gce2JnNV85@N?45(V#vVR47#a&EjYVjPq$?%x)6&I&Ux&XyrbNOx zLys8ggG_1<(k^8UWUhH37@^q~)aD3#~^lcowI_p{X}+e#XqWA9q=MM^QT`*~M>IKw58yKOeDk`w=@ zF7gL{`}Dn4M4qmMEN9R9$N+p!n23i!Lq$cxnN~T;u3nw9B7;uY)O}Ur&tC!uJ)LER zHEA-`!@IQ0mzdywz9{|jB?ff=_6jVw7|;th-hJit(0Q)x+p;kfr1*Hcujm*K8I-3U3$UEDot1rS^es203u|Qo^9(mI8zY+BY z!{Bw~JWTM?F#*s7q{2u5LR%|E$0nAMJ(nMtlNQioN&e}e>kb^=3?C;E~7`?x9$;1(a*JVihe9{>4Z$` zSU6VT>hH&R@?Dq{er91)gov!n%mL7OQ+5#&5+e6Z1o%`~1O&h-4TI)3uNBD51%(ah z4%~`2H{$vcxZWODBNPdd*+1}>;FYtt+|ck-Pf}M+_eqd=b%FDWsOHJsBQP20PvSAS zCp|9p3?skw3Tl_7NDK}*5uq(iE?`3qHkM0)xnGQ2qH=)fc4uVUS8+OPVNPgL`_l!JMgmsa6}#2!R5QbN-P;Xbzt@!rnoX;j z5vSmZMcOu;rk-QK-FpU09CtCzIE3(FB>&g`

Z*{xR8mBBsoF&7F31_m#9Y@n>7 zx_S)$N+*XQCWr}-<^Jn9L010^W(I^kDXTteijL|Lw=Q8vM=s0+&^a#J)#khsi1}^0 z7=)%fw1<_IrK_OWCV5Qbg0Ha8cE75s>8#@Y86hZQGLe(b5)^40{jte-yw2U>6hRW- z#!8K`p+*S9Wu|C)+(PG(n)p#Q?I&*a&BsKPJo4+;jd0YqqAnzsTRl5>Rr5Da38P$H z?B5fFSrEGXVV@!Gy1=k;p7SSzp;1p~>OEkD5MDq(jvvasbsw4e z36ww3TR3<|5mzP@N#|(t)0S(Is=>T`^jV~(nbLR8onQSGNiF~WW8b4~MA|^DzSqWq zwFG%6BanltAV8TOaF6`&==o1<+wp19{VZTasM5XYJ)3Lhy{+b#WLtaDILXIH+_gpZ ziZ_N-vCf@%AN`nl*1aG`;qqJ*J!vG(^Kqx=->vBH!bu&rVCLvPZ`>TBn1g|EKy3PL zrVpw&Y$DQB(?M_Ir&#-TqUKz8gEvxn+nt4%xI-?sUCv2~dti}N*C~If3}lD0JB()# zn06p~l%>eP&5iF3wd`b(MaJj7s|fSQ^SK(2E1HC0ucU}BZ@{ri|O z!qWtXDu)X5!}GlKh`1`l)V7&UCy4K6bYXnD`|1TxKq<#}gQT{8iq%82lz^9k+r{Ja z1ACHH!H-cJk)vW~XAQxQ37^U}m_`b-dqLf@61GUQ4dA~`ptSHf{no|8#s(zc+&fv? zkNOe-ivmZspy#O|j6P<@7uzL(BfzYD3l?vc_i~uohBjtefmzpc4Vl``f`YE%kHs}A zEp;ijKUXL$4>vxy5XT5yXg5eYCp<>I1LMA7GrxZ0#!v8K!MxOMkeU$@5X{2$OP{u4 z6;>}&a@FlVgp3fZIHJfX0ip;*cRXM4$4A+Ol$4#o6YGV$atPEuDr@Bh<<#~f8I5{6dU(w2GkJiB=Fu>P1cvdFV5L#a4A zs7kSLbsWpLmviZMt>iytSC%daFaWz{U6q~#s03RO5)%hz)tp>;P{+ZzQAcy{u!$Nc zZZvcpLl^+F3w;L|A07{|xRD|QWf=PlMzYqYC2BDj$a%SNbG57No)oM@fb)0!l`b*` z^II}6VBr!vW+(^(I3=42lbcSclyu7+p;k)z6ImZPPnAV+20!AwR;M7hWgMLCd51k9 zsM~|Kyi3to*0-&cBAx_fBiLhQz*hnSIz{+{)Kq%Y1c|P;#X zd+6PH2C^4jlMY|?Bx?wGM-s#@UEHL-T#BXO;_+R$f&?SN=yu69g}EgwTq%)uJ755z zSAZq*QCJ@j)J6rkm)(7CRtP9po5U-Lg3*xLioYo z*l3~LLh(-xuW%8?%8X*Ce`zd2y(6<-{O${9=6L18fJu|PlK6y-uc}$(7S>PDOBPia z%J?&3`h@t6gN0Ii11{?isMV{b#BKX>EF8ryYnA^!DRMQMiUnr>XjR)AgPsydX`-UA zU5i-369m5hFgl4|U@mzH$F&2 zUy-=0Wyz)(7#`TNQI-5a|z5t7I zvZACUD)^&nfr^!On~E zy&Pl7tz=X~<1vpOikZ(xjLc1WXk(?Jwl zc;vPQ^JAw6YFoH=r{=u9y=Cz4gV3-_)sQLVf^wwpa-P0)*_js(mKMHr%pJu*N@-sl z;kEG7LJDo zWL2IJY|cO2DRFg=Oz(dtetGWUrk9$rJEnBjhtz-=z=%&1KHr_BQkW><%{5yobN zgBg1z?;M0?Ad8+?BvX>KuwV!O9KZ?is0Hbfg|81+Q~@L=E*|LUas%-dug1^%I{woE zVaG&qRTL`w+g82mImHuw=f6mzz7Meb{;*~mP2yCW6bX4N- z>!Imqvxoo1W`z9T^}o~Uzwyrv*e9;P*cWb)sJ~mYtPCNzg&GD&W$&xyFg$CjJ22LW z&S`P8!GIU}wA9s_J|uVAQ#Sb~{hVA>(EQ#%w_PwP($GvFzDWh>*SgiPiPHaK0f#1G z^uObQijiJQ4MRPZ`%3}&bB5iNFz*BjKdy8dO4C^VK0UMv`z2%RF?d|^l_)qM{RuN_ zT@%#k&I>+x@nVC?W+Oonim`zc4u7ZReljwFlmuySaMsHc-)ywFPl2hXE=rryW&!_JjkmlIF@kHi-`l zm|^}`uv2Hy_BU>1HGME`G_kgO1R37>Ms8UC*^Y{Mvh#Ju&#h@gY*u|7KdNn=1~#Ii zM8#||U>MIz9i9H`tTt`Dy?Hwt0PSL(z)o1SK_HnJ-^B+3x89# z59|FzCU)zPu+^VO~uSZSttHlh-_M8S>=H*F`MSD2D&E|K8y zFO$D~PA#yjm})Ek<#MEA7gFC0Ih`vf{_Hps+6rAwq%9u6u^(Uz{Mwoo@L)Qj>Y;1> zJr4>lP*m`GvhYjSbNS_IzA^Eo3R9y%Q|exlF#@55VrJzQ+iEOnbyL)OOo=G*TkIa` z)?d0L7@BcwqcJwEN=izA*9%ffTW>IfGxH9anGY%|NjA3{skTh< zO9B~_OKKeS>C0WOv80U&-b&jMw>wdjM5)Tq7+)2bB0w3x%z?&8jAd-u^-%sG%kneR z2Hn7Y>on_lez_N3g*P-K6L&q-B0ib8xtaE$Sbd9aHZoj^+5EntYC5_J$T=HL zOH-98ixI6pT)h5;L|nxEjb66BV6^$HR+i6Fy`1r#d-O)OYhQBo?QE`Js`8g~cIkvsGX)pPV|lfTd7X6*gcuBb&PK!~1wHST^B3kr_7k zr=VK`0maAXD5smd_esOodu)YIjQFJ<>WE`YNc6rXsc~Mfig<~^{Z{j-)xZ`eiX%IM z&Sm~8(szqAJAiVesCF9*g3CoXh%00dG=_(Vr@*xXwvi7iY%nK0_mexEUVedr=|jI> z2L=5ACSeH|47q2O&m=6+u=GHdvkQNMZhQ{4`MAaJ;7-~r##O_moq~#Ajykvp_;2RR zB=DbXOwI6k?c(lY4;k^anEOVU)(hTUdogp%We-1JS(v*u)$EpI7fK>vpTG-Utm!m* z+iL74va*bhOQ~k64F|Nc*dB3xeSM<1NBmq%AQ2UnLW;Nt0?yaKu9^2R4!If6^-I&3 zS0fqklhK`MUSEL_^I-N={?m`N_k@9yRFeT2z=1xvwVe&KN?wb44 zOUi8r8OpEmA}R2)$co*Et^_nxMIJV6EM{_kWHR80Frd5I^E8In8{Ali6XoUz0O15` zmzksuTez&1v^IeA=sd_sgtUBx>=V9TaLe zx*dk%su>y;ZM}G#0AnCB_cZYu#!VKMfb3+~AV^yv6FuB)!SCqn%Qo#x21U*7&nbX) z0R4#GMky3iiVd4y8K8S6p>CSO&`Ty^;m_X_R3X>t14O-N&-$8P9BKLJM5(!dK4g%Fl_LM@1;SAI^UW|OrI0$i!l%3 zm@a9OPti_zyCzy{1T7z4k&|m*jNf%iOtAhH`-@n}8>;N+WhOn%Lqn0EMW^!aNf02S zqnpX_tgsq?8a}5Lr^wQqEcSSVCv*GQ!0VgYZL{0)!W$y$Sy7RZ)QyXKb2f1r1#+b$ zR<;|1Lf)f89+z;E(A>@g+OzI0yYn6f3KS_*-Cmfn*PS8waU5XCpCFW^*WCNf$}wxv z?xtAE&e4MVX3J&q!#UJsTKV(r7YM1(l}0L+^vC|cwp6ZL?k(87DC4B&O_(gw!)i>h zt*`FIr33TC)4>e6{pEU6KnR`v$Qv-r`0xRhn_D5`7^-|d0BHpl91@2QFjyocppg)5 z2nGi?x3ma(9N+GW=46D?o4^0;E+1r0FZZtdDO~sznKXIO`Tm$_m|5i@#=0yfd^nKq zONWoUD)Xi!-ow;>{9SxY;WsOuVD>RDuJE&^ZSO~Be6(L=(0Ok1c&|L{DvHKDFsdYv zg|gfx6#gS)Vl-EKGk`GGrk{XFg^zzk#EtRVHAMd8WVt!fi>2Po($WaP@$dWy=H_wT zHT#o-c^pj3K6%0bl^4Zi(KwhDUK6GSjt}fdALsCGo2h)~y7}*)W7;GxFRSv!Y5csa zn-cbA@7HV4&{;jWa?-cBbw;6ZRZC63bw6_4N+J%|d2=K#3FkNIJ*#K*XN;)J!>WPu zzfS#&%xG(fy^#hHmR{MFUF}s!g45l#ACo}fX;FGnPLnA-Qh~A*FAax{}X{DJfpeOwTFoM-9ZJbnffHK za-5!>Y1cS%f_-uhkU1r?2eA9yTczN^4)Z`CZ-25QTD8h48~)Yiz5Hblsl8p?VP0z$ z)A~~jB8CB9!C2KVUOZTWiK=%>O5&%p?Z-Si?TND6m93ARuFMJ~p)HdYvVNPP^2gSt zB^xz~LA@yD4Q%+G%YCdCknq0b*z3SiCs>#jDBnD}1bvxw05{SnrX?t0)z z+(DI7e;wt;Qj_CM+b}hsfVzCut$SS;4p$J@a&E;5z0CBxct&i;mi`v`pUknZ;bd4x zTapZK(eH>DDBIu+U8Tv*Hi%7LR-r)=PktaFFgbW@=(;_^$jInuN#deINnrY(t}eAy zARb5scK{$`2WiowbS3qg;jIv z9IbFGfnf%7DTpM4KIw{QSl79| z>C8wfEq#@*;e;wH_GG;wG^J{A>bA!4+X(gUfnaIsIy3sChgZ#AjQ0vBRkP;;9(eAq zEVtv*oGnkw$vS%rbXrb5yVl;__9BS7G0!WZ(rM#6JPOma)56R#9p(0@f3M03SC#v7 zRVzG0k6oH4UxtcZxN?*F(mp>Ib;cO;6489_U;R-d@6Gy(wAJYT$U#tNuAuA3w=KVp ztS&aLV{I}+eRr)m950sy zz0O73!)Vf>z&>(9#QOO==Po>mmk?;Q-clQPdgaE>1YR5bUcM^CTo)dnrn*i+KBs(d zTn^C0^3u48-Rz5BjM1*gp+DrJ5{y$;AlVYaq22o)l6l#^cf&+<&hDLAoiia_LyV;(8Gp?#4s@6G zYG}VURMnCTC=$7Q)5J5c-OYGrf6svqsXvEjf zMIq?ep^_~j5sHyC>GIQD&33s1v-N-jCYq4;A_-0625-D!7SGI z5GQNtZ1*cCV_8n(Q@AongP1R-qcrlAqaNOsO(IJ}`R;ewnTT{&N>)Odi{$!pq=C$m zqo=cLm93B23zXQTBx?_G+wY>Zz~e+FT|h&%EFhz%wmMl(d<)UJ;=i1{DCKo^H4BK5 zfi$|@WFwUB~_Np#us>EXxBrR0sl>Z(@LdhoDdLZ!9yeH|MyLH;m7{!o9DvJ^%V8I1#_@bc~Q zoh|x294z_HEB*W)5|a*isSiKiOH;9{Tg38z6(3KTfU$(bgaIb!OWqaNA|ESvOZmi! zsbYT}-M8C)`-LyITSeEn<7Rgr0Q{~Tkzj3yzO_|TG4#uIEyY<)SB)QVd-Z*2TQeJ7 zLYddo!qZhN*>bo)ULtJ`qJrOdVDD4@?{}`*sbkq8&WzFTm|J9;cDjY8IEVHz?lf~@ zyO`$d6xdMQqQLcZXS#x~@1C)~Nlk^9Ba{=Sm=&tJdfSPl4+R%+^lGgYSGq-B(8 zeW$4*6`j_s!?Z|B)xoc3$McgAi<`zJGYSM7I-Y!)p@z|jjnINP-Hu06g*9>baQKlB7oVz5dCjaWJcA4gbkyiMANX>P>t4WC` zRE|CD2oO#HFAA~yf0cIS;Z&~gdLfCOp(qk!Q&C$oWXKdkC81K8l?)k{Idg<&(k?8@ zP>D7&gk_#94W=Z-lA#i{Ol2tZxj*fFuIsnY`Rg3lwfaMswZ8Se@Ap2>b3gZU-(TCV z&Cdsxt^Vo{7p}Uk$#0i9N1+y;3OyxctGSp0whWpwuACcHCf&Ssix89lSQlwt>~?-~ z(o4xq0>b)V0vS)fNQoU(j@62E>J^mgK9bK?jorzC0Rn)@Xta1+Zr!}O(+3s? zQnX`sq(9U4^l3MIixeEz5fPta&B!8~H#3JoV%!72ZLJCpMw8?>-W{L9IEMo^R^i4g zxKFGecj06{_QlV>aWxGKI^U9U&{#l0NiaO5rDI&;Qc1PgVIN=cDv!_i}B*6TFZP~v0<|4o0L4l!A$X&T4HpN zR9`y5GSHL9}GAez5=6J3LnCB&ES)2zm}? zQY?h_q`Xmv^@D-3&-3G3c&yxqeZw8ZDBDR$FVCntflOjVU)=-bo)}*;K+lKhJ`rn` ztR@&TG~_^_afFQ(Fbxb0qyFs`nG?pwXaAzaU%PUT@rL1ZEiEZ)?i(e1UF&88k0~q9 zPUua)D{}4KMFDSXflw=(-V}{J{3F${`i1s*51-;B$7=r-jG}_7+eEVK2bzes71yDy z9^%NS54Pn_ZP1Ou8mwYZ*`q|*vn5t zYgkWiW+vn|TGk$Q{P{$^=E-kO&KH7m6#e&Vo_J|dtuLnWn*EmW5Ng@%dudr3wP#&i zr8Hj4vqfmG`EguDzOiop{b5H<7Hf`cS^2mB{?bQ6@0!J}(7@($Sf3xi^wKvhH2&9cF%@`f^$Z) zGrx^bQg_6boCyf<0dtkhYrAKeVXNJZ zz31*QIC$^@&U$E}wBXDIF5zNP=s9>O`oLz>toB)SwxUGOYGHNCzN&C7j&He(#J4(a zYw9WJ5vYYc zih@Mr?o$c`@R(oeQ&Zf*z$_40zm~@(HeydpDK0c3GSU{J3`0}?fk8p>YC*dZLfQv# zg5JlmCmwSEihm(RMGA2F@aVgY?|a$5TaNYIQpSMa8+D@~dBN25H;--BlAoozGIkcZ zZi0hAx{nDa>2O+k!3V890L3-l91Xe#M0ca~qf>?8d14Bi?i5x-!f9x;d?NnGzx#K{MNlQN`u5%>^-H{+ljAlZ5Cho##9xA0qg7T?M9? zk46va7w+@`fgwS~?Y0HJjs+0}Wa*1{ZGAGRIa!4YU|ZZRju9xv{{JeHnJfBWuzY|MKml3YM&IY<8(E zX=ceaJabid9ZFmsOO}D`2KgAKV(7W7?0EU=)rUeF*#^Fk-dEK_bTL)b&!wI{Ig z184E53@K744E`Atm8VU2{TtuL2Z@NZIFFS?_Zpvz{QimeuR_(ZZQk77C2K=Xr=9OA zH#HWzHF#wTRKt)6PG<4Y$^a+BFp<~*A8Y;7aB=FtgzN zbBVlh?)%tk*5uk2 z&XcrL;wqe*48nqPYIC>Vdp_cQPUq0&v>Tm-37?|q1;*L;Oi@CiYYf7=SY$Y#%mzqO zF5XhV$j=*Dy@q4(FeW|E|1VX^CsN@f`slS7=OtWR~5wH zs?QpCPL|p0-ZU*OG9idum}-+o`%Ef~g-}->>>!b*D0+X5UfzIi;@;j8f0ocLH*{V- zP94x?YY>0YuI(vp&1EvnhnveGlpotPW~0*LJ-Kcc6<`RZGJ zan7o1GB!C=F8P;uKaaY{k$V^%+AaUQkA4>~m48-0 zSH;7?tdiSz*oMc?-Y{XFap0xYo-YiEEE;cJxYluw1ejKuInd?JPN@&S?RkGazH#LE zuK?1FE_-)`WU*34-ty? zn%y(p^FlvXw>$qv^2&!r)#R9&fgCGcma%XL z_QT5|+{M^htb0Cpz{r?^!l6;8_Tt^O8O^n~GuA4WHGcmYZ?$#Ei`#36y{6(`kW~E! zov2dvsBPwyH9cG0w)bIX@#Z(YZ80e~W~^Q)F+8J4Mjh#$e{<|! zXmvJMAk&JeTouk?M~R(O!LNZihKlMEq&xfmNnL-T@C06k$ZZy@^*L?7#ywYsh=uIZ zBh);eXE8S7dDnqo@F=B=dl=mROFXo^HTHQ8luJo$#J?OVrUukEW=&%9*usTt@pi;pA~xPW)5b5x@_IQ}$TL4n zZa=Eo@5jUZMV#%;&Vj_ugAGw$vBT#UM9=*)_>oY`bK>!|Lz`Z zKT=x8HV$&vQ#5^y(%TFzSf9lkdaH~HuRy?UqOa`zTCGgLcZS->`P^)O8L%)bg`%e z8Hw*&!7Hfi-m|IPn@Y(Hs(w`Pjmb%MhcPKFElmb8LLf4PXxDV5EjnSOkU$kZH8CaLvpIB&A?Ky0vl zT3m9Iu%({x_gNz%vWsAMZ%n{4s>X^*%#k32J2 z;FGlfUC-0eJ7+~L16yT|&xBC5aEParg-uDQaqW)H!j;F$xkJFLTFcE%WFDw&iE|sliXd5B8oq|} zSH$_jcT%tLID74*sJ^Reyc3Zrl9UHIDWw@#K_8Qzo%Vg3#-``)Aa{c8>8rzkZM*PF z#_<(s^QTXGup|#?)c2=h)d}=w^5Hf z1@gKfDzecVet`qr9^)nnK77m~tV>I9fSJp8YY#Sq)uAKN!QL zE+@3zk%yW2gX<&3rgj<|yKgBIRlV32yd^I!_P(Y~D|X@N zLvQj0VL}A&wZz|ds;VZ!HQMdl2kp?XFa|y)4>9O$qpQM@8|apllmu2%Yh}=T`UI*o zLZZpLhw|$YP&7rkk@$7BHGplPAK5;g*kmVitszr%<_w|o2sfUNfR%3Wszdtp%5!mKL?02>@&@*{#CEuF6|iI+?w%i z`CcI}tamSYL|y;&hzBY0S4~Wl&M#Tm9c`7_<>G0 z%XIPbk|T^Q0FO~WlbVv%t6FG_GnqF#lm|?WjkRGdwKA-~lp>o=J!I2W#;7}TsiMd! zYSH;iii8V)8Ci?I%cmsM?diFKr}B4b_Il0rb=gwS8?2V0I{+BL*}BdZF;8q=8PB-z zN?D45Y1i_Ecxb|NOWpbzPo6xfPu|LGEsAC!Wc=W?s^y+&R?4!PuNrLR99jppeP%|7 z$j9D!=|;((X&CHdqfvE(3nyEmBr$u9{ioGf=9p7m&$zpz}ie3Wi= zmOo-{eh}Q>1GcSIErW+CA%gqUkIHA%9!o#UzWAK%AeeY)@HT_8txu0_D4z1}AM zGp+BuH=5>1FTCjXN^+4eYK~2!L|Rx~kFUD%cNO(@%Kr|n^sT;db{}}YkL!15HyO=2 zjE!`qsGH3?9Jo`LO?&M>x>Kq~daiRV&6%7msVcRxtWrQWScCu)5$<+F(r_<^dHgGS zJ{#(am|ktr?~gcb$!0&m=6R%vw0jM-Pa%QuwQ&;zfX#KZ(USJ{7`Ch0XQJ3wMhu~*-u}SUV{{5^dGwx+%yb`H8Aoeszi6(uRZ4WOuKfhx|mU-5(l*8!)D!+^T0rmFr zA3uC1cZOSo_KAm&Ed+?JJ4RAiqV}y?{@8c5>m^P1qJ}cs76WIC%Jw{vS_sdBz`(#E z$elud&LU+_HSp(7$ihsHzNhtQtta14{hY=%eY##n5`FiJV^|k7>`jBZ@4Gnt_S|4b zvTyzRb?cs~FMi`(zr*~5eJ7#Vg3W+;aPG{z0J@>u^sos?a!@Tb$nvI|N?HX?ts~(} zt4zPMA!J{(@;L9iI9@4{2(RdrF<4kwfZ|-p0Plu`FORM{Y;=yNFfcH1@O|-))6V2m z3oQ0~U+Uf70euTQbh|w5?9!$xP?6s51^JaeeZi+KYY8#Cvi zACNbvcp<>)m5Qp@(2bdUmxLg2W;X$;xdwIAS(#DCi&@OBCpURSMC(;^c%Uc&e3`i0 zJFl`M$4VVs)pPI95Tx% z3O|KecT0C-mS<~y{Wb8VseLcPe`;$@OoCfZUeI7I@~QCq;{1G{64Q_{QR557BqNV6 zFwF|n5evsd+0S-5iOv4gfeGvqmMicy29gE=NPwEx1@0Lnt8oa#aLFiKaJu2QE#c4Y zjd~I!vlB4X#ZTP9G}C4*P}S1Hm`Q=d8W5l{#K25kM zr!05R?uafVqg=AP+m3Th&@R8zxv8m1ereRFN;V)M;7-c@`weDAWba|?3ub?oNSL2* zIMN@{Ra<@(hR>dKN+NMSan&0A67c`ehl{|0R`uKcLW;uOWPfGnn#CI=K;gvSbw~Wl zxw*(X%T>bvct*{uF+*gO+2%F;u7w;#%-;Z@S4eMsWRi~+NduAc?8Zx6_owy)a&p@M zmhaD>KQTQ4v~};^y^8+(vc8^Y5fa|MJyW}=rO4IlO>1jT$vjp7b~u%1TBM<0o{#{~@~hJfK8=>Mf>XP+&rHC^Q+hSQ@qm8f_vEBvJ~#u6GD zN~r9LLj)4J8hnHsRrr`av*gCWL0LT8Hzu$e-FFf zc*G(AAYLO~F`$4om-Y~x_EIkiu$y%swz^|-@UV%=8H+{Gw%*{v345sP*SA2Cl2FHW z=_)X#ZIn5^Dj7VllxbCXYpvUU>~+4q0WA2~t1$^_kHJwKBU_QL#&!1lc zrY;LqKgst4D*`NvR35-V^K-pRpW*+z!Wy{+G0VF+??;S^0w3rd8X=ey<(t1F;D%I!_(s z7;ivk_`m@+!0Y76IAZV`7VOZ!UD=0@ML&i-PTSh9!OgdcQeC;n)^;;tm*NL2$Cvf> zDQHa$(~5GAS=~`^-GX!*b1=l%5M(N`+9%Ow^f+dCS$=u{>6MHW(s0|JgC~e|grV=_ z$0t^c-+A9U?t-rlVYP<=JJzgYdN>$m?Hc-!S*-j+y9;RycrHW_2je61j%7F$3DOJZ zV>u#qvf@V{m*e=hDD@JNk;!YZS*uADs~5O-*h0FSXZ?B@^SrQHnmtb1 z?fo_UKq{l~)~%P&n1Ny6Nl6}JpXKG}GZY8T$N+qAU(7ytPIa(3`62c>!l%ic1>Ap+ zXPZCH21Cs`X!PSpEyO$P8L|b8%IG5sp!xW39VHC&a3^fk*+`&ZI#yU#1}b6t1^XSA z+)5oj3UQV*A)S8q{5gx2l@;MBVsl2A}k;7`$qqZ&lQZ$wA$g@GB`piUos61wIp;kOIZuV?W5(*n{;z@WB> zDIah$QM)V`W(Vu5)Hka7%b_1K_$E~k>+;yGzjjNc-m3m?;^ZrkIFNc1JL5Z;!-gkL zTz+{P+CJRvryMZVN9dk@_;3o-N;B{&b8(>oo&Em(`#Y)=FWM}aZ*DLBLryN5fobJ< zgKV?mv12;k-n-CO*|K?aYK`=JbTrDp)omQ^t=a^;G?3&eQdTR4;b{cC(-UTjvJkzd z#~(BUhvZ{_zed^F5phXLThwOlwgi>9ygUJU{t;v2XJ}Dm*@Sc{gqW9jTp&inu=Mbn zQBzZETRJ-5I0A;2%c`^LZLz~)gR&WXF z-_f0e!&=Ly`l_n4a6grWS8J))7fs~fn4BuyF)=v_5n;9dvEU_T!b2XILHhti>Iudn zdPSszTet}YGQxOJQ85k*zoNn>>fEymtK+sAdJe-k0C4p?G?7VvJ$Jkb2 zwqPP!dM2W1{Wd?*41Z^w8Y{LS~IOH#aw7$%>BYBX5=hu3GByQR#Gj z2MHMpAuCLX2Q1FdaBO&jb6*d)eWXAqY<_ZBmSib?G6GlJK)%`_SHOP3zGA0w*)6 A(*OVf diff --git a/doc/freqplot-siso_bode-omega.png b/doc/freqplot-siso_bode-omega.png index 7e7398bf1e9b169b8bc84a8575957ae57ca57499..0240473ad5ebe7eb152a23a50bb51e0fe8fccc9b 100644 GIT binary patch literal 45851 zcmd43WmHvP_%2F!cOxnxE!`;Hh@^Cfba$7uib}V1cXx^82I&Ur?uI+JzjN=mJI48s zaXy?eWVngF)|zv^`Ml4wBi<=VW1^9v!N9;^%F0N*hk=0$fPsNsK|umP;f5^y1^@B8 zNNTyL+MBz$8#$T5C>psq*x0++SQ$TaGjnpbvbW=8Yd_S0U#i zcwXPJ#?^{~K4k}?X}#NDWV*V=uh1-6Y1JS=tfYA^^PN@Ei!Cq&26d;^Hffm}{mW-D zo>|j`zdq>}>5D@xM}ih-$s2qd(b+{skvL)~G$EE;T(MYhzzZC)KWwrvq0k?ak^Uce zfyHYz{!%KAN^k2zHCu!AO|Ke}8@1pQ{~&WT86t#{at&QgGns z&p6;6+Y61HPq)+UG71VWxw&g=hTDAa8a9)y9h{wCJbM;!chsKI($X@1U|yY+pYDZb zU|;|T2j_9vxb;rGcF0dneWSE~Df>gUc|&6(q)?UK?{+7j(IhG&Vs#_I!2JID#KX%A zkBF#Gn%Y;*EThOcO~h9K>^6545euX6Zll}5oRbOI+X(RcZ>sr9Sqx~eU%!SSASOPW zF^R*apolImX3{k9<({v%XFI5OJJ2SOG`cz6aM_!}4DRdzNAWwx;Qjlq7jZ&jV28@e z%D|2v-|m&eJB$ineUtA{q{FA7q4BxdNPxLNpHOz$9?LrC)OTNW{kydVKi2B)zT|gj zYuEnZhJhshy}h_dAwwjspnw4b3Es%aNa%9L1g7PDTps#1-Mccq=F_z(wjYmFUgz6^ z;o-<_ZEfcV^9dm#2rx_jPrm8ihx|?MM@lv}%;l|@WR;bb%=#@2eU)f5BdVb|*<^G| zsRiJiVsb^dHaCl~g^mN}vL(?cZFq`{ii&P-Za!*hB?_1ik+?3m`R?vc7Ek6WrWE1R zD={BjZKl{4iHL~oDvLh+q!RLY*Lt<&t!PlHuZJL4Wb;)hqC*yC!kMd10ZUh4Klk z>ev)~nM$dADi>#GsuL3v>gwu~+}2YC0dtim(yqOcgu5r}{gX8{HBRg850~>FO-+9` z0sG_@5z$|)FbWp1UlIauah=FhEYc`eA59n5ne&5WOBRKPhbO0`6sHS&YfSFA><%Sy zPR7$K7kOVDs#^>v=WcFpYFyuWAGKaFK0Ih__EY<-wYIiS=E^4&p`xPhPL=9Rf~`^m zmsV6zP~#?xX|kQK8^83v+*cu#R9RnJQ_F!A++JT7j0&Aad);3pBd9@g+96EY>=)q=XW$lvNx2QBNT5=WP;^O9_8tUt(@9ypvJzh*3 zm|gmVMHH>~#T5TLEZ3O|BeSVRw|U#$ztm|T>Tj*Ujn$%h->+WQ+0GZ)x80cU zjOIwkY0xVs{{#F|O3&bNY)iJ3IT5mKM_Nel&g{kQQsV*!2C; z=Xm99WMm|XkOzBudV204@3N1$uCDI)6Fs5B&{s?{RT@hs9e|ypHt@Y5gaHQ3{Glqu`>+u?Kq*bY z@t}5kJWCw8FP3u9BEwh8+}ylWWIh*sD{o{(Gn~wAa{70GS+}8Ls5TmypZVkc4FMsc z5f|CbVe^sP`q|Z$#rRKI3`&7-UtUO`b|O=M{`O66)o*h&WAuDy;zNZYY-eYu+XIFe zm()KC8t(26CSuVZ18xsONGGv@&s#q~kqqBUQo~j^WtDGecN%q%?}?%i18C)ce4|SN zJF^K4Gocl0?8n30i>coQTjf?QE~$~1o{n(ZUy93`BEe&wo({69YH9rfhw_`He&KzS zZ&wIvDxYJ}a0>6)LH#lwKE8On-vi9p$J!Fz#;>A}*TKLbP9f6NkRo*^rF5YW#iQ<( zz}{mi_`6CzRD;mJo)u1&?f>)$wire#mLj6l&~UXY6oj+HwKZeAwwulIN9ca0@Y?4o zXNWLsRRsKC(Wx>U{K0Xj1y&8B6PxJ$G5oZid)lHgarWzfNyj8II}>8bz|4%03A}NC zskQl>4n9CJg(nMQX*pX(3j$n7SlEvn%l|O~5xdWS_v>Y5& zzdcwLDe7!y#rCF3nQXipwP1m9u%`@9-rL^iNJbGgG&EE=uJ?_*O67cMe|k*ev7MU{ zO0TcytzUE_hi)`F5%bDchCkhl7w`cfnS&Bw8042;=+~nAvR+m44BQOS`ySq-PI0%?fHerX68GRz+CQUpHzk3RRigZlNuL;XDe1XjI7 z0ar%!g1y>+7O*VU~WfjHR^Mpjljetyz`p&>eD9vPky~qtEcci|Xx~)HG03Qo@2h3h*U`RKCjbYp@|bI`*x-+mM_O zjZU<{7+%Q#U@ok%bv2HOh=Ar+3Vx>$uroeBK4W_q2@k@a9v;Ul!Puw!)uU@iN6Kny z1oo{LM2Lup3n2bZ-s%|~FL@u~l99=6jif;=x$dvm<3JEy+1t~Z+ibf#gcdO!HarP8 z4>rKRCyO;XO@HA81qaVIxiS?N7Us%Y%F3c5V^cBv`fm=A0@sbn&!=b6t|`#)ao!y2 zwBebkwoqPJTuc&lXSK7llaQ89h&bvJ;kBJpYkK@U5bpyjj%YIONDu^}_6y08PGUEL zGgN$}Q%LMUruKPLuHP#6H1F)}+}+>bpSPTYvxXPjilBnxn48Gwn2q+0RbOBK8bns`@4b&V0I_~QphgY^fE7R?_!YlcU6^zbCnX=vxbI= zh@vDP!2bNvDAg|XYSqU?Lwg^NMOjp)Q(rcIot=|232dpLe#xtN_wcZc$7)={_vztk zux2$oyXT5xA3aGk0l${Kp*bY{+c;vcZ^NFaOd7MK4idMt!m`W)Eo$@zJmi{s;W z-WR*MW!kkxy3KwMw}rrES*lt2`9Dw!d)1JUkrg#HG!#G}kliS@HZ3pBn*dmN#^|H9 z=HH<>+&Kliw1^EMIBRGG`1sxU%0ivsYjykGuHM_Xu%NJl)??A6oPA{`AbO5}i29xzK1?vLLVuPS|R zoJ6iyg2}FwWo3;H7aBqK&Re*M5JTzz0!m!)rhKKeY^#Yp2?+^yi;+|^;h;k&;I_KO zkBZ4$H0QGsI#^Lwlr{)S{xlo138C4wEvuI}wtFDPG;5t(K6I5)i=nw-yeN3nD&!s%Xr3 z88ErBv4N=NKd`j41Owu{Mu}GEXBu(f^BcEnb&FFMv1*#HC*5>)?lkLtUFXy%^Js?n z`L*-kCs07ETM3 zSm_R!XM!xu;^N}TvMDMO$WsjWko!gMkAg4Tdj1y)`A(6 zRwjEqNoP$5_T}xa-XorhBGSH}`Rhw#IQ`qF&&RnMQ6-@3&HnQ5r2l_jq`Uz;lHB(` z$jM1KbqQ{#pJtCBG3qTOzyhC3L`5POp0xB?1ECDdI~oc2XQ-Jt*(a4+&kmJqn%hmT zJC`8`uL^4liMHX62ewv-;Y;l+SicDGz0#rysSt(spE2Q;IG01=!`06o_{d78I}6fj z7>1F=WRQ=ekXlo?Wru{L_%9ef+-a;C5X5~Y#ZD2eW7W^H)Q;<7Yey|8G7(L{5u1^L z_Lkk6pJC@kYFQC?rd*Mzhba51UegDO)C)x~_2zb!5#@Y|=@lk*T!cAC-CG?q=4+yG ziXXFkqJDsNozfih!>A#L&r18tRf*HJBMZk6Vp)OF$IMln-x?h{)exq5&yMd)4s&ad7$fwJ=TGJ*i_E$c{M7Hgslwp zVjfjWS+mDf!PrBR#bl*>VghfL=`#;3$I_p6ImxVf+D2eX!%XblCC89E>427cy<0sU1J?ckcJLd;@+o_FwS}q{>^~oNlKJkX}{4X#P0)vo14r<8?jU>SP8z* znB|Ca@sob>+x*GQX+}$K;(FDRdDfPXgct&tNNGfxzO$Oa`oYCYQ5q`zpY0SE7WMQT zCaqs@b2aSNdNgbwyG*W@O=m-95`PvlzO)Hq$>><64Y&xykXP{M*}ENEpUQ`*Ir(NR zlD1^7Yi;upsp=yM`ricDJ$hOym(?!0d~FHOgK2-VvMq-M`>Uc@!om)h=I09scQWEfvlCJM= zvKZt-O$rkBx5s%1d$Wp&s;a9_PA*>ghm@0`LP}J90x==wgqn(q`uBwep_Ue*!P?3KMo&*q09&NT$+N`Jii(0(Z?sBJ z?fXKD&%&bcyU{C6^}S-(%0AP^ijmXNOY{RaTa&%v0=lTkf$aAo8(&$_c6t%(Ff~}T z+k~`T*A7>+d%H8cCo-9QUELv{zvmeZ+9RL1xp(#}DhIsHRh&ah&Pa@s-pukxvgF6O z6%OYA$!Rs&+E&g=(js%&h&DKeYkA@IORmS|BNILEqlELc4VSEU$uw;qWi9J>$CDbm zV5-io_%6fan6MR|DRL#D;JqVGR2ni2;AtJ18lAd}Lvf%n<}jAvJ@;zO5r^xrBfaa{q) zFp&ZgVRdg1q~yJtjp;*Q%=z{txjMvj~-?^?@IE%J%V6P8l$=u^P9Xrlrgpy4W9p*&D3BJ`w3TnkL z)5lEqVqRV&kJ!cS>Wud?mWqCpGbuJgDkF-t<2d#F55EP?QL5{JFmj$4!$5Gf&@Vof zlZL?3lKgtXnBdQs7gwGkIGS7_v|GOUhCY3(?xAje0n(z9=i7SAb^*EjLHf0#qW3mc zpLI;1x6erES6+ap2LC19r!q6ox0?nu#e7=uXO)$iK&X1h8+5bz_9cnl>taR{mX~J4 zU%u%fSn{<97LF$_oRhWGX#2^`zWv!QxY}kXaovo2xTn;RL9W<>;dXbwVac^ZZl#xO zpz7CLq+R}MNcn;O)sTE>i>Wn7q7%ydxHoe*W@r64OPEMXp+wViugGX5zQ2Se5aUbD zW&mCa{vqheG%3(J7-RN41bJP%fBV{U7Q;Pe%&zN79LN&>`a`h=$J9%X@)-$@z%N5V zc;ilJA0DRN#8T?$aylgB>~ISkdvoRODkH>lLd9~#r5%D*{_oF_1SbB{E0g-@Y}WbqhwWEZwwZ1fiyXC~Xu zgg{KU^51h}t445V@gJj8+)_qX!R+P6d$M*mTqH$b772C=mgs6qsvJ8_u5T34k1tc^ zK!O)c7+>7-mLAKPzm15fCcU|DGN!~W75JK})0H$NHe&iAq54B8$uMI+2O2D9I8O%S z#B$~Y&cRV^_=j%UEBqStt6bMl#9*iEmVdohJ$xLyl-m26U|cHR@Zc;ngOYI``1UDG zB<@2T4;oF6&}XDDuo4a;tVfD;ew^K$MVO22`{PAWe3kb)`{-hdoN>QnQBv9^ zK(JDT@kJRLTf$3iX2w^Iy%eGe!)vuVCm6O;Vp6y#J2x+XZUHZF;G)GItFXQ}8TX@N z)z%L4fN;#ft0s%ZhbRb0BCc${cl4xhKEVjfDi<3?Hax+{sVCD=48D$G-&D1(VhF+6 zf@byt10wv?C3O178X_f;2VS$ohf9QRUAWGqDxl)E2O)`?^>VxQueU=Ov& zu?wR~ri!>^xsq5?hZ)x_oru~?@5o~e5TxIqM#vAmXzv*+Q~j_n@Ey_e=H~3ck{gXB z#REb!gifnUb8CZj@ce$vdT-@dsy)HN4d?zn+2eHrcjMzSOvAb~ik4Pb z{m~1zb(s^PBR<+-FxGna`C?=$D%7RshrJa)MpqNx!z=kT4RN&q!K@{()41Yj5(sRo zejLPxMua6pe4vp+Ainq3*YPKbp6oEw>bv(?;a{C#SkOgggWl$6*(UO8O5Q+(`!Wt+ z`yqJD?d0K02A0J?Yhhw;K<7~IA{Jk%YaFu)@V%r7X~>3dQ$=|;1z$71l6`p3frA%0 zfq6Ef7;BB=MWqN?X|L;;lV#}ixn9J%HfE(_%O~5l-s8HrH9S-%*T=9wiIZpJ6Ne8~ zN$(r!WB(cxJ4GtwN~5*Uc;E$WzNI?1+*Q6J@%Q4opzj)Ob%PCc3AoefzFMboME4Oy zlJY~*JFMu=Clu2ifZEWX)Ix;!*y7_<)?Myi&9y=Uxf?BdLX{GiYlcS8O2ZVTs3C}4 zu0D#X@$U#i-%<05`7Sinsl(Vt_mlA0;8-}v?8^=rd;1{GuXFNwvBow0@mYI+mekII z8^BJj>BWtnX&?2bEEe-;M1AoAtOr6zh-AgK(aaM*vlj~5c-E1L+v88MPfQUn1H?Y< zzWNpL*Y}Be>ryAa{cLoBrJEP+d6T#V_MWw+^bpY}ou+RZS!ra7r<$ZOQdw4+$cpg7 zB#X2Z0YmqAk4nExp--V?Uh$;BV^JM-Z8lBnH|vTNFk`3;y}yCYGvQ>U6{~_x&4wky zJ|85J)hWSH%|~hi^R8Mpxz;x{WUrw0@>4}34QKkwzOZE--5Ya?pOn=iMa-hLYa(TB zQ>rnzizNg49=yjN-*?XR31B|RZEdY~t<))!EKJ=tGci=AKVNbYic##JnDM4dF?r=l zAwRHQta!4`g$A__HlEMca|jbWf111cWqyoX8Xn89Y}&U9daNs0<9R$ZU!0?c;*3au zVw)^wP3V_gz!1VOfs4_*ArBeR*d<*B`+&%Fq0Q+(w+)q_W2b(W%X%M2e9n<^h5Gn1 zQQ)~PF3KB?x2XQTxz#5gWaM$Vj*K}0wkM=EQKKu1-=$Gc+|1tX8J1a5Dl8MhHZ-f9 zUie+$uWVYg5LT}^O7)ypk{ z*Z%XbHthvNqm;yt%wcsW1QM<15fa*ye(t^8i{TSh4ueOB5N&2&w6s2oe#7Z90*2Z3 zAxUv6`xoMlS;BqI*%2qJcEU%+^P%2J^7%>P`|M8M+YHTROO)u|zqr5W%mztc8zYbj zilA%FXaWazN04xq9<_{&Hm^&Su^3(@(4baYbup*ei_NP#v}By{6MPfyKpj?#ZDiSu zqmAILjcnsubmZk-p_TcPn%D%(ls@PqoCz!m zx=Q3J%D`NpQzpugg`kqoP$wO?Y%X^EvEn{~X!TJbNP9tMf%D`=7FcVcIzEi_b zlz*f0iX|sYSq5_xvY`FRSD{G2PJa+O@UfM+Y66v`i zTFV$o7ujg(W``{9K*4q@=ZFg>O=naARn*`r&aqx)cvZ;F%W{;V-tE9un7cuxa;$As zhpK%q797lX7o;E9ueGSxH>eySP6MMIeWbN^DS!#Bwv+E@|nGH9zTuz;Cf6k zi1o61$Ab*)&Gq)^y3hHRwF1z{NNggoz8kEIdNJ@5E za%Ho&o$y3gc0&8)OFPA@)U5-SR&N~UbWqp`Y9$SlOdDvR_IBy94LfQT4ynG{PCj>{SJEAJH z2@I-xGW;J00PsvnDd*{>`6fzb%c^vgRyr7Ty}#7Ub5#R=|G`aTsB{j-qqQpP0T( zq?af2*pdN+Q!)o~3^)J@vpex*4yczk;!L_z*-L+g;u~;=r1pXkVYYHqVm(3DsdMj}>>}4{d4zOr!og6pPIo)Ri>% zCDe}M@-}UAUwwTlFm8V?B0}Zv?hYMzfNAQ77LV8XbP9$CbG2BXG{C|t+;Td3@iyav zzrk}oxxQ4j&lq(UFE?}66=>fV8m@vL=*cHOUMk9Iso!N-G`T04pv5Sig><6RFs{|0 z8k)sY3WmkSVS{03?jD%*^#sDJ6BjcvGOhvi-w=#-p)<0biTsIjgLbreB4T1y-TToO zwN6e>FzjS8B%`9VtK-x1>i=7?qnqTYr-O8ZH)0d@p#*0D zdpeb;@6g&0mDbAfcWmNDLHR<56!W9B&v#*tt?-(s=6Ztl6FI8gb8(6CidsiBkjZ` zE2{qAL6_Y&MjNTZTG15ex{j2y`EQYv%fmVj&Yl&RCH)v~U4`IMdd_0VU(%g)FGuVP zeed1vE-VpAmCMXWHz|u;nX<#JLAfmQu*bU9sozSS$J6w6`tOvZp{G1;HP``~doXCO z&|)@Q0#3*A@ec#wTS$SqFCZ$A-(4M9{FU+4{Q`(b#jNff!v0!EcuJy38G7*H32HNc z2GvJFO1j?2YAf+762(5ZmjXAo@}%`?dPJBW)*V%><~@0+Q~gVrvU?MZ0=ee1h2!%) zHCN?L9j%4Xn+jS z6qjZ75v6+cA!Pm`*9?|ry!(mACf$oAV`=jH-W=E4VwD+J#;7g-S?N(t&DR$RzWbu8 z&8oU$pMLWnyjtOR-h|FS(CWd+uF_>^{1#INg+`)RDA=&8ykhOiaF4#?kws<>^F?vn zYvuAu_Mdtv;&Y*&zv}d`36546dOxS1I8AClAULZ}d)_53@AmFFuO4AULa}q22;rLC zW{otImZkf)#*5?;Y2p0Uw(jZ-no9mpSWuhOm^ zpHO0dL5b06jkEhvZ_snmDpTNgVWnQ8WP-s9)4TlnXAPM5e7Lmh2%1}MK~2Mmw?Y_` z1+WDSXss#8W6hp0TUFYpxA&9#!&jRU+9J#L%75<;B5F`C%zffy?Dp|u>nR8cvZek) zuZMDnc7SqK-aGC^KsFiew&A}L-kixWpJ#M0tV=?WSG8X$a)12B-fkB!HcF{G>nFvd zJp|UPttr{Uf1!Is^_0Sx#)kIa8fP+!u{U2ER6M27?>M-@{?6+C+=AWbhiQ~%OD3m6 z02;%5X;uHc7@I+`aqOTpkInsivK~8e->}YAD&EpiYt3ip1Ye0W`TXDI{$NV3nvUTN z;r|FwCNS;mCJr{b+j`gi!maI)b-~$HRYPbtBO~wJd`Nwj#Dxrte(QAnYj?|a{f{lb zrT$n1entifb!exFqLTmTxOgQH^tOD7@`eKwQ>tBvq})`hDg;fv*PLflBQ|$et_sw% zKYnzklcj^;Ql z%N^Te@ms9yeVOWlY|c^VsuG0e=^sxeUfMid)wVeJk|!g1eb%&rW-yY=Mv3D6jyh z%JW77n_(m@<1o;GI&4k1`KTzOo+(a`d@wox*3p28^T7oE9l?wPbIhyd!Ep+u z9MG)I`Ywy{k^g%jz8?k{3lGTW{zUH#uj-Fw4ZiiTxK;@QlmyxTI~$#g*&=6fB5)g6 zDpv5ulgAN5$vmTED5w#-5^Q1%?`RBmZPE!=8jMNnzA=)s{~KpyZYxy+2AYNS$#BG zuYT|}Q9zyx_f|Eos&JSlwY#$+w?CNV@b}IpNF@4)!s3YW(bisImROyU{n(riY$VaR zM{XlU{19Be|IE~ z>o6;-AqeTCB6rMySm@#H4POD~#!$ANHwGJYaL71yXWV8hvT#hby-4E+?=y~k$y{)9 z7Gj&rfR^^$*VEgEo=2EBAjNp72caQe$HsWX;6#_#S$JJ^zN-p;>$4oknw(Jr!Z9Gs zJO|v(W&bD2QVsMs{jrocNB&RNajPIWa+ycMEglBGBB#j~B-rZcx?Am!_?)3%o^{=@ zLrPLqbzj*w)LM@$KF9Mmr^CQ;N9gu}%6$LNDI}Ti{m*aF4o(8z7*(bNcpy)_Cc$8c zgnI+Hj)0_hNdk&qz}47vxZ;?(rYiA<$6^f%X)lpRo{uh>e#b=?>R0*pJPLD7L4)S3 zjt&}5+?;3{qNHSs>%G@?qzA|LyBCX#zVhmj3srH#R!bE8T;7&|a2(P0``ZST<>??zElDr-XmSMLz2jOAs{LwqDs?A3G*M^x{R& z^e@KwT7{m}enD_nNBcEdXDGZl?zQ!>V_1!CmtJf3&Z1D}d6*o{u3QX$2jGN!Z)0O% zfbzP|_h;h){R^1aY@IDRC}}I@KSS^7YU{KXmN5 z$RIl|P*xyM3e&!hddly**`~I>l5nJ>a1I#E#J)%xdCtZbH<7QLqjCJ{jk-E0!f9T=t{mTE zD*mWC%cCS?O2CLYCxVs|dz6y$6O*I|m(kU3|*az@|cVp?Wqrju+!uQ3f98@95t zGFNhBT&BikUX^WKSvjh@x~!t&24GM2^!3dh$Yg@pVLqH(X*Ng%_?nV{VGmkN2}#LW z6HD-bT_U;*M%%@SIx#<2?!1pjMBzmh0(f!^djwY|dmy+P1t2ji>rQ_SN3J#8=yV=h zOzqgj-znkqh$TcGg)ol=3wlX9%TJ^DERby}zMzW-cSl7->l!Y-|DqDrD+Y*ZfKjea z7x2Bd&?cpH&zg~e;S-oAM@!`_;=O6smHGVjtC*Y|8u%kF+c^SF&FOJh;5Q+hD&5Uh zWs~xWcOsZ%loYp^<`)5rXIViL;Ui+8z|IzDI6FG({Y`(zS?SJ|jzmd6e(HI16@2bv zOE~(}lJHMIr|knKv0RJ8c% zH!{);zk>|&JKRlZwxV;on@eWs^oJTMg>{~MS<0jBl#A)~2}oId+J(Q6i_HB>oK3lQ zohFS`tZj#V`==DJ?jiN|2D*BB(1fL9e^)#B$`G)IH@5)eO5byX(Cc#F>OWI$!kxpV zdqVa1MX_EES!aSgl(Rt;?O#ckw;I4H$Cc7e;M8c zIx~wp#Da;^0^|i=9MZM2OBSR{o%6@^z)VWUuA~_@L8_>~2;k0Aa+(i;VZGD&wo0Bt zQkOWku!OleT{t#%9#{gD^N1~a{~2(uzoZ?^SaTnIg{cE{w;{wx(CGcl&p!i@(~OA+ zlqcn9S)=78)G^12RK}teLgxq1{KQM4g_0wJ)V>)TTQSGFz{LTqQhIcQ!`&GU06vPk zA4S+$_@m$En8i7Lmi0}6R7E7@bhl=^9?X5eJ8Z^o)gJ{^V==(5WdH+(YR9U*YH5^;C%6K4)*W0m0HXs=x0oeM}VBDRc}WL z?d*XH!t`=~cERuNzz6WcnRV)-%iABx0t!|0Iee}i06kk`x=e4j)|wa=7Pj`fhub0n z!2!f@p|c^*jj7R8{&=8+`AyXfjFe_KAzLehdcm0e{_!P+PORHQ3Wf`&^bQ`<>sCt2 ztYK*I-pB85uru;Ge&C43{S7b*8{wqRsd!SZ6CU<9X|8oI3B3J--E9ZkJO(s7)(uti zsNSFf$*AV2vfl_5RXl*?mzw=szVhYEmpFuky-*7PArOEQTR;(FK9>0w0Ev*6#*1Gk zfQ1Z|@}vp6n@<+0zoerRV1})cPktJgXH#!@1We%C{$prtTE7nIzD9I7BQ7`$^dL@q zD`>%Yf5OHv;_BkU4GxdRSIsY~7a}8pxjkCSe)tG9$q~rQc#QuKZ#hF{xfvHq* zn^lkgRGFSUC~|kkbJ2nNWMf3|sHeXl@LmNRfZ=|xO99>td?^Q1NG|&`UqI|udH3!O z$UZy6)lhP8LZY=R!ZAQQU`hxZ{O?ctIi9|N3#=a<8T?lYSY$Gctr97yJjmSM+GTU_ zbWS~Wtv8{SvOxGCBKAN`8rgp@JDEKX>^c;D|TT-s|0`rJI z#0&FAl%7Ta%;zs4$2Ff@fS~T>CD0#7y;V1F$E5dk(odbRw|96r0xa zmTe=Wkl!LSiKd5@s2(q}j2SWO-c{w~6chf}L^W1A^C6Fzb3$G0P^5eHukK^319kb6 zBbdNSIe^+F8PQWfKsUe6Vw4JS?9C6`pZq`oqNG#`{rDZG>_atDfTq4@D6zgrCoAma zcRIynKy{bmBEy6d#RtC9MpFt-L5xtrARMl67^zcS$8gxX!i;DC4tMcnQUW0k(X}C` zySUcPNTkKlSvn8PzB^73FR7U}FytJrZH{16Gi7aunEV&mIWS2iDa|ty@hjzlg1I0X zrrny)fD+Ei$_fDq3C;m9m^E(~mRD9*k`KGeSp7VzvKeYVx^67?g3aiPXz=J5)69Ax zxjuOP&G~L8`B;>BnL6|fb$~%l&WjRm04Q8tSoaD0rc^y@F*@_oA8&mj;GvK=>8|7g zO+`bFCPBSx)XR>Em2HPm%#S|!GGK-B%Lcd1D^VG!x~ky2901l^a*?$?J>GH5zgJal ze7xOrba&4OC0~htYm>H#-9p0`AlRzd(NA^k z>sNRZX_56+dvKG529^fh7{7O)5*7S}e9PNCtv8xfBDSRM7P16PUlrZ0daK4Hiact! z*by!<qatBZXqh*zhLOwN>G@tvg6<(0P}a|YT5gID@FQ`uF-ocAm+7@8ZV8!HT06B2 zS)M)IxH=pLVx3*`>Us(8de7aN!c3_jJJj_9+99tnwmsWf`o zj`@9JX~cOe%^hw-e&FxMMx`a>`P%wA*ddGaZO9M^V!ctsoJL&;z>RfQJ$ie4Nie3m zCx8M&oh~1I2gVTzkE!wT@Bt9Z9#H1CwO?Pn|886F+WKNrT>;>yQ;(Cj25D~UwN@z3 zSR?#L+&en+Hzi8sI`spo)3*NJ52e%QBWHTzubNirb+MS=Gs6GYfl@DoT!EXvLNb&$6v>@6p{?*`e?)VycxGGwH@$Yrb`F37j3x))ZE2 zfi1fDiw~{DSa0-p#lC+e$wem5W>tK!T%0|Z)uC)`{2WNv@POnC z)S2Z&bzlxQ^>P0{V4nc0_=5rB!``th@j+eZ>+PJlH4p_rZ}MS>57YsFMW1f4$zqUz z0AO<@O=m~11Ju+JF0nz^ipq@Y~@`Uo6S(uk<2s0a6V;eJmK?)v@@ zt{q;>Jz%ncf{xBKk@xdwNKcOhz|vnQm0&xvf<_I9DNQXbrnk-Un<-#h4(jGV#l)C_ zM{-Snwz0AC{Vo#_xq%8qef9|O`OO!bTqo!HfpTV0sPiQ~eK_dv!Z1kRH`(Vve*ON= zL<;m(Uaf5lB>%HRop&Bt#frqfkG#F(^dO>lzNnmLcTf7Xk!-cH+aM^h=QJX$S@!n= zHF(D5d6a!UZ56<)kU0pkOvP&21;J4|oT;x~H_To(m+v}*8b2IJU4?{&9bH+T5b)L2 z2Zo1x2M5t53;EznivR`DM$h2O%#0S0l7$0NE>v&?Dn=dypA*R>9!W__sN}TW|7m>G zeRbbdah4W#q21r#D&l+7Cg^Yu#XSXodh z{()FmL?*#w$Qz(1u1Nek3j+tcOL*uv*HWHDhWc1;oa8GdB(13f^Y7^zX* z3v^{bM+E_bfbo+imz}O4MD*VW204&S2DzkVdD|@jgRN8;b^lqNu~8`LrC6Ye*4aEFqQSNQY}# zfHcKnYbuydITvZ*p0<%Pd_ti#vH<{iXopb-@dFL(@bP8VpWFS4N|+@Z4ZB*T<5q>~ zqB%<#DiMTl${MgxJ(TOTUO&))fbky%2$-)_^Nz>FvA-lG4Xk#D@66Y;bz_T~ zf+EM%BB9*`hjlEE?Cj@2 zxOIGfZu+M{MInVJ=4#nL<2#dPmH(3;P_tRZ#XW~EGcE67rBkuukY(l^7Bp!}CBZao z-Rk%yajDjs3wkcmN2I+CRA27XJ`eDw;9r{<;0fY!%zpViFqn=^I?tU-*PB2+IP3C1 zE{M(gw7~FHr_RRc;r8MJulm0Z_XJ2t=S>RU13lj+SSgYr5Q8fuvIhc55WB<58}rfh z;hqTSnCRK_=RwfY11MLT4-G&?SAg%u+h8|$12-PmHLF)~{d(puxHiDW5M5eYD<5=A z-qE69U@P0$hIv*`%VDnrx8)RhW4b8IWqDI<$s2#mmFs>MFsLuC8MZ|E=v%k&5!joO z9qW?5zIr-bSxHQ+5#I2zWP7jScE2IP9g%>45aVses(i3h0Y(hKt=vHm3rTN zqzYXNFAe3&l6u8Od&Q>uf8@-^QL*Lzx9(<(!`k?rOJzcSdd%3EA4h%%ZzWdmyqsU- z{NTtQN{Fm#iMu}lU=mVibw2&F$%aiul@evk#&5lFUe&HTW>-vVlYPd4*}v_ZWMpKX zF)~JmQ+a&?;pg&bd32a}c_{O3FbKRko@bjdQ0XMJ0c>=(0GcjIkVt?{&D%A{KqayZ zi|wuhz?*=EPJI>dS3pgR0F_=%h+qKfdWZu_Db}r!aVx3mz=VSjVTmW=q=_3dAUZ9P@;ws>;9+&~msrd5xM3^qD%H30P`tR*BH zQS{+lHLc$Uv@bxJ2UM(|ftnf*7q=7Cx=`^QXoUU(br4j=cMlY#7j8y5pr>(^Jc$Yv z^b2|r?WTST`qO>9fwS#ae&JGS-OEeOC1G^vu>7e`ffDk=z%6|hxPDLWCMRh2o$FtY z6(@<}d-bz7*y2lvYkvgF#RcE1#avMxW}@+l34XtOJ^;k(?A*qQJ~rqsgN22IuYCQr zmP9?gHz1UaiazOXR$2o!q7kUK?*aP)+MhwCU_dH5Pt}YM+7~h^$v~|7H)qy{8&92O z_Nzy1E5~>wCqFJ?SCM?;f93wKjw@sdViPOBwKsfHBIFUvLeDYd^gNhu3CV7c=`jcgE{t!6k{ z60(Hz{VpxltL*L`-p>YJvJX^yQp(!}Y;J`M3w5?S01vDk?+46NbLgiy%+*-IYf%$! zm5^3|<5>Ncd>M}XRJBBq4e9)n%U(=x^FXb|=%4N@PPDn#$0@E;xpQNEy>dC?5^>&H z!dN1hEcemw^~nz6&n;q;IzH*=+e7kw*mrbs2&vt*v2}5 z;8X9KGxjutniw?x6kdL(mMZZDI5A!K9vTBR<-_m7s0uQe~lq24+^Yhh^ z@U$T#`-PG(1#bpZP-b;AM2b}>%49zmd-dvdl`u`PWbM3#93(^4z@)07!xfkZ12NHWOcO;p9d|p#!w$ za^~MBo4~YmuhiMEjvZB;fA}SY>MSju@5ugF{TRi;B?QZvMulvQE)~|ciyzQH-F5J_ zDulmqHcDZ!igxN0uQz6yFaYlx;~%fDDF+pSDaY#Wt~RSxF%-B=i_o)!OX4s?<6ZK2 z0X}I0%)#Ol68eFNwHJ8*e?T;fV<8W3N4HK^|3d(r_hxs=VTA=O-@sx;ED_<#$RAwW znPVIOK5pI#k)ag4_)y^fM&~7p(YGEiL=X5Bzf_(qs+oW}82I3mmg}{shNdRCmEGOn zOywdnFug2~!CIQ0Fup=28Tk{AE==|b>mWc^H;P}`9AUWM2=KUHRto{$* zD3CLC_b?RJy?btn2^0`Rhw$Xf$kjln%8v=06mO${XkMV&bC+9)w}cRA0!)cWZfs11 z*p9}Xp6UfZc)vuHhi9XOE(A!IO+XP1BlLK^e!e#y2cQjhz~J~dHWd3b_z#~v9y7Pb ze5*=Rl8lsrRkg&;{2S$%>v*h#sKnn62g=T98-{ zVUCqIu;sW5J@*Jmafg8J609Icui5Rtksi(@;TQ$oy?HC0!%h3@g2?s0HUJgNZm>yO zfGw&*J`#l0pc}m#glW6=d}Xnad@@*84drM3{wm&5y@rw_5QewdaoV9x8vxqmR+|)P z?_&-fBZX9a|9@C}3#hEqukV)z0SO6dL=;d2>5?=E0RfdxK|;E_lx_^VOOQsoyF@yr z5u{U6^6XokXU+LP=Y7xnoONam6`p7WqeHPxc z9JFmPUqdF|s-4=Q4+8IMr7SoUfhNxhttnbAub1TfObVpdzsl3hZ0IpIN<%|?UOAE3 zPWE%g?g*uh(Ij<_#y$Dj{`!V};upvhPt~kD`CAEHCwEbdPJ5771lJDr2*k#O*aaX~ z@B<`(HR8JfEaKA2h?ueC##StXCFmoy$R2LNi+$Jghw~o>aNR$2$$j+k5r1H6U)m=T z&FeMGzt&z2)Tr;A&16b-vMi>FgmJopau0}R054|o_>#m53x(cwBm%uDB zovw)iJ2@i%B4E3GEz=z_I}N{o$Me#Db26%XX(M=A!*eq%b1r8t+@SQRBtJ$3hL^o)z6gqi`OXjG)K z&RqhZPPcxugnm(~>)Ta#%CcclUN4DP2p66Q5K;sW;T9p`5!PV*tWeD>>PKqDwu z4*op|7(*h78XvF=6<*Tyd((=wHtj8UeE*a|Lc*cd=vzyWdYtOmk*UYWFjMK`YxqB< zzq*#Qyd6DUmi%fveWy@q6bW4H-mq-9g;2KFpYIn8V3Jr&l;xGkhS3NaUrj;W&Z@5* zTCg?}riV{Puh=nrG$%@atd5Z8`r^_uRsoh)zB9wV*_Re!_EVCmo_JYCDZV(F^rY&v z2RYC4u80C;C@?4}hSLxafeKo^*-P`B*oTO5L4gZ#^@C4|K~>I0iIwxQIh4O}my+)@ zu5UduY*`cjT~CR9>R3=#2sfI)-;{>TSp;Ox+S=PEZvFN@^L>b;4L)s9<1pBn54R_F zufjZV#UHK5sZ$6I-40B(`x&pgd4d?lEh4EW4Ie_-EN>fW&W>S64-=gqV||4O#JG;I z5y0U4kipr|u=L^!ga0N@8;Z&fiYpIR&$_LxZ4=&aK?NwR-l#RT%)A(qm|ex`beY>V znG0J=;T!Gm4^TsB-{C_d290tZ&_zB|3k0JN>$>G{=W1DwRa)2*L?Cz>@CTxn$Z>f+ z@Ep!@>-xiODC%f2aW>z?-+;?7y#bD8xX|o^R=bfU>_aycVwOLJCbJ~fFuXwKH^22E z-i0AS_iz)Dp|rl8FCUL8og{X$k5z+BL`|KLh4EX9f~CNTh`A%!PR%TL?%OO{V9>Y| zcE?6FssL=}A<5sH>3&txx9jfc$Q-FOn${S6P=K#vf7kzH5boyjZ`lXT#@$Qpu3e+1 zX2*Ql%1j_=nv9!W>I{!sU0!av`R8N2r*53sx9&A)_t{`4H`LMUC^}th+!Lr0m;Li*hNvL~7skLhD;pu;ifR}iovl}X(4-w2n&1EK&ttXgy^FDVbjkc2 zMexnF4JKD^DtDJ5=RlPq=D$xwgcx0567fP5iSpL$-BD>B{Mu!Rf8 zKO&O^Bnt^YdKe8{TITL-s}Cwp@UcwMe|_5Ctu?Bzr#{rZMgEM|HWV*e_%e-PG$bz| zKZ|&;DA%g+WxgTB3488ar12NUihaTO5Kgsx!eq1$<(NieE(s)LM1mctEslWwp`!jx zLqoE~Als%AtRR=R)wVUhG%jM;km)tMhbJL1s>2WZLbGwMaR8=>r_F(Y_--)^H+KYt zeF)L7TB&g>0HyBU(*og$L@3n@K-=W1l?DRqVnlHnF{ug_b#T5qoPO!a>dZ2Cw=}19 zb!WNbh8Ji}MXl*I4+>u(jQ|e_S;%>hseA)uiVSz|1ecU>O}p;OB5*lSm+I{7#HHdZ z{A%5NnHNcijcj{+TQqaf3jV9mWm5xqM$c3*4832ybFA#z_4HIxL5Mt>G`#dRc z-jWkrltSb#>X3cw(S_#_bA0LlS*(niyl(~GAS?VYt2L}i;+=dDqH%Gb@_s3$;p;|5N%`G<5VCuGu~rp zH$GM+yI5m>GO>n`%$iGU?5_mI>}I*MISIvvY^8qt$^K<-MnNvOm1A2(rE1!%-}KYS zImP!w7qfPy=fjmjoA5NlAunPHXc^RzhnxRrD&%TSaKgdfxVn2=Cf(+{^3js|#aXYd zMcZbFONUjMwdKoDsKhjYoVl~7r)^?lV)0ygl2BAmu6Kam`sxBAXSVXH+)XAyAOh-K z*6Ep~sf3J(U9FyFL6yBQ?R=jh8TJ654i>UwF^# z&^bFKskPc=xYcXN;(S{Tlt$9i(}QaSI!+AiHAsj^56+W@Q+(+auA1amP z3;Yi+#76ylww&@p{Gl__c<3Abi~IZ){$n3*W@&FoRKEDQui9K1y!QB)d%;G<6PK%n z{YL3oSy+gIcrAcwASW{ffDI6n{hNtI4Ngks~M2-ePW z718hQ%-4$Vvp3cd-O(NdCqQ4-dZ~ zp;+Vd3kYOh|FaoUkj^lX)g!g_Aonsbky~lFo!XTI(R#hXm5^8>{=1Phr!nGiL30@NXs7-7QUw%~T(zY3K|Icp1B^-#7(B4Sz@gQ@D zDT_;1J!I3vZFV*l!{fdG-v?78h%)<8j%{iO$H|w0$*FU@8SThj@MV&{t*zZ(hzysr zv5dz^i93nSOr}_xAHDPoCAqPmmsGxn;`MI+-5ZhaP+Yx(n%VT>GQl^T$3Jzx?HVoN zwq{@#m`uuHu-ZI$R+0)?i}La!FOMc)S#dRlIv&st&3{IDZ}u9cxCvXt~Sm zTQimMNq-ES@x0;}N_Y9Hn)>^PWB-0k#13|&;35tWuM5R6tSl; zw|#Poy}?UQ_oEOl2Vp%$jJ`6g4YcgX(kj%FRgyo<$w~{fa^V{Fwox zqCH2?VYBImEBA2kh^t)ifDrShdo4m(^7p%pvpQ}f?T%Giu4!yz`vmjZ&V-~$H)YC4 zuPkrhzWHYWJ~U&(E}=%pxA56~ub_a{IgL*GK8-%-!{4ttm|aC3t@m;opj{8F!WVo) zMXitlyYp|pXeu3ucHXYXeP3qFzVTb14LP6x9ci@kQaZ(RMf7WojG4B;y-H6`_5|<^ zqR1fpKdz~m{N!Kt`dVpb7Qb_HcK?YrokS75@!{~eI2=(RCVJ5mA|B(;LRCTf2$-(0j#j@JeeSUs^;QqXej`lAvFF$)zkkREP zE)im4aoXeXZb1D8Xb}w(kRVg!sW#VPeT3vnZ`N#(M(rnExtBtujrQwOY zG6IaD0b0;LBh&g+xlkk}FYz?G>(^5!o%58`f3zr-)n>a-PftJDN4Ki%UCy#H+t8jm z7=ER!80X8jG#kIG^}en&p?9_9QzruGv-TV4)635{Q_~ecG15j}KVxFOu!RB-lavOQ zJ_@sX4H3hq%0(mpYw(b9Rrfc(`S{Uv#MSEeQ1j-y){o-zqp#lpJJI&e4&A+b6Q9oU z6^5u|cH1NtYpmWmS-9qV^Mk(iNs|s68-z)?7+z@)2=^Z@*6h6Hw}^i^O_{{}qUXnN zy8!qu=>JdN|KDNxza1n0qd$|7hFWn&Nw`hCez1#qVejIBB)tdqU?o&!*udS&;0t9T!!~`W0R0t8qG@v)a z4y%#$rEH>V`t9oNkK>{L%i)uU7(QjchY$Y}_b;k_vBk+Uo}Qz##P{zXynOlcRj6(b zMidf)4vP?*f=j46#A&XipuF562CZ*uirT_r>v6s4?eYH;Bh!2Sf{F8k-@cyF1)Cwv z7@LW4zTHC?*}JkP@|SeP#W4W5D-3MH#ZJbgJH=*DZ$Lvs>r0m+qH$Sg2PM_h6~2Gh zxK$X3{=b#Dp&DuykR#mr&q%&k2H;}jOcg5gFCT6pBxVr3u>p@#t=znOw^yXM^F1TL zh5;{IW--$v%R7ar_ExNXjJr)`c)YjrHJUwb@)!ybbHEWCr3Lmdr~w{Bb}*P$ByoLx zeW3V#nGxHiStza`QvBcQ-0rF6mC2wueuAu?7o>Q8LLK8dpVA`69nTSDl_p(KomlwjbBgHj6wo4Sz0 zc0HQ&16{-5>wau2pJJ6{CY+y7uZgrCtA!)qtdxI;e-mB)9cCK}pT|3~9JOU<9`cQ? zuEt?X4Z((4bgh(GBE0FjS!#@`pBK9b1xp=;49YURhQ(t+US3`(QSa>U>%+4|ROBGO zYHDu&HClh(3dGIT1|uI!a|-E8>9l?|#o-Z1s+s4ipXDC7-&T<+3%T?V>807H)CiRG z?rZ5nTq{TlwbxSbCFlL}gB4xjiI)`8U2gDZ4IDygi4{>^ntwysq)Hxi?Tjp)>b9os zEx!snW@LRiZdQEzedI8mZCs2)B(`{w&r9EtSvQj%Fk545VpvG=XvX9w#>h%O-d`hZ zN;U1^$Kf~3E%R#9#;SfTmKc$fY;1EI4AtUt8 zSFh9#?G}(Tik5zO<(!iGA^T8tCj@1NX*;N_?pXY_9GauArv$;WMmF`ER-=W7t54Mq zsb80+nkYXXcD~L311bIxqJ(iirg4h>M07FGoX?H4 zR$qK5Nn>g|4Xj?Clt)!>`jzH9k`c1cI$?anxrcA-$1w#?-}*5|cUugT4>^*`cvve0 zPnL%T2j}qoA~<`TWRIn(8&=={2I8H^vBG`59YVIvx1xNWz?6XZvqx<8g(N@jEzAoi zZH-Qwyi!(6;ePrG*_G5I@wBnIaX!QN!+|`Y?f4iWMZDFxo8zqN2e!Q^0ncH^-=V-UujVQew$)7q#kHyYPk#M3Xp;v&DH_$ElMRHbZ29N; zr}}u3UfggJ%cHBvE7b@rdwX%I+PS%KH07*&yX)neEQ>at7v;3y!P8YKEV|o+9T)oq zsi7)gM`E2;+WT*8W!f|umuR~oy^_dleOIJZ7F1agmRiJM_d4$jRX=^Q53xjDyuZ2S zh1$_R9pCA_JI+|LTDSX#`rm@y?HS~C{9`|>TsypzuD&+%>S@>jy*W2Z1l>pG}5C$Gmg;jO}~>%a*~j1yb9jT4Zv@#^);I&vCr9CY4RVfun+=%OCqG zNi>dZO_9}vf%8|sF7ZqHbjW$5O;FmOpI;a zXW@>&@!62wiAT(gKUaJn27h}9GmM?kKY{0rEeu<~bi7#-8O8p%T}w`b?`rP?;@DA@ z^%j36apo4Z;c9$EkD~sPZgq3!rawxQC^qiMsNe&pU%m{)WGD(Gzb=?E)3a?KpT3LU zvm@g+&ow){g6_)@8u}Qr+xJ(IMo>SYF5j?AeU3wHp!?;C?$WWotqGA=J|F7O!CZ;e zpM%##NHVTn{@Iff9hl9VJB?b?TzK@*`nCjJjV3J@vTP&cm0{j-XMr8pvl`~SC(mX1 zrfNnD3;K;-4hM=<2=5b>7?!2^+O}|6fd{p#1g2gO#3Czq?T~Wh{zfBzr%DNJNCujl z0>$y9Ak)`eXTam&TuL++$KONe(+Z)k#7uVfvC5Z!AivvVIkyGw=+%jy{1W}JP`f-@huu7r)nD-xv(E~i zb3+yVpDE-H(<#+m^$zSrt(6ydZdU4hk|{qMbeZQ>yun{{4TRItjM3vWz&rdK9aEi$9@J!g`nT5b73N#fk@;#U0bLf>HyW zmktsVuz%qV8(nDtW-v%ZTVlCQ{DXrLl4lL5Gl$}J2|p*f!@x%3Rk?6#!XEt?UhI7~ zQjMQ#MzzS_2khEBMqWu{lSRAZX`YsNj3*VmP^P>}BmVI=1u?J4+O3h>S3S0IKQlON zzK(wGBht%gOCh!V(5{3EC84b`@fV~PDm zR3j@Y_z(#WYKr*rK!YuOTLC-V4U2m9wRTO(=`T0zuGW)An0cMu{V{|jj6|aOIJ5tC z%dCl4&ommpf4^j2H@oPku+6K zsingF_t$jYhO1vspS@G&?Q_xCJ5Sv}Y_{#`%iqdOM1+pDkT_*qyWX)FXgLu)UFQg20dB}%t)ZN$=s(}tM+*!vQk-Ploft&>&# z_6PybP)cQ(!PLJ)?fJv%A>>@>y})A$r8%3^Ba!lu^CgiBI%eh|=mZgABI0&zYw$H% z!Q4%A7?ibz`?%@6gj^2$tIY1nbAbWYASe*Hnm&h-K_fADB0otnxm%icmW~%R82c*$^-;{=eyh>2Gvd~tH}SVi zHEtqb^BOL}(`j`R*HPW(jh$yEhkDx;b3~ZH_aAGO`ztNI9PzgZc*whi1X*iq4rpY7 z1m}Iflg*r?U&$C=$X+R@-IweXF$*6N(WahFSxJp|`EM$~QM~A7=Tl!?O5bdwt{XmW zyPdiL->ikLYM5SescHv>kOs;a1O}4=#VIhvAW()BJ1~Um-dj<5NwS*;5!VMFO-P?; z4E4T5&gH$g6cychmmL-RQ>PP;D+Nn2{<)?>NR*ggdE9hW#p*VPQK!^sVG!S`pvI2< z;M`h%d+(GF5()g423IQo?U>j~IQe^tJQJStf{mRjc-H z(2LvVj(9YX20eb;DdP?-MqQ$B=#O%>0FI+?r8X^4l87XSdQQVS(mI8% z%}Z_glvpq zfc`1|{#b~N?h+F+J*#w@LQm4jFyVrJgOM%WG$lp}ZuY^gH^14OEl7LLLN^(3Dj$h| z#tB&#?X5$D(q8Y^=VdC}k9$y^k!X>=ne**n;kp8Qwq%Y`Tvxd?UQo|hzW<*CPf zYK!d~cg~~=6tVWWW_3q?x{R3Lcb&vK;OJ|ah!Dl6?nIYY(Y3EiLkYQGpEcq9qKOUOjT zD0ehvFt7C0;`2Wu<@hPx!Nf#IU++CMc^xlFFl2T00mzS5mWbNY*RPAx&B;GT?_YLw z>oo@20=N{5S>5%u>CYy2tfJ8RH?LRg1=LZ7I!LYFe^8XX@66h2 z&>Abb7*)6>WAAfvU^7ZYJu5aSim!_z=zqyp zn-AVKFBkBPDhpVaPN5?%_K_nZub#FPXpusTAFw-5}W; zFNrNV@;v{t_8cG6Tq5_0W+AzFC2>?W!1FcEK4ltqh*ZsJ-q%+(@mJukW&}L-CvsK6 zVTC6W^7NhGtI4peZVW{iDu^q~{}l$E^8U#th~7feq+QL%OJa=4$bu(kA5DU35zs;I@h~QjLki7j zjyDT!tFLa%BsKQyhg)4a&A1Uvkop2D`2ON8!1&!-MBXz$?r;d(q`BNblr-I)dlrZ3#1rq$mW<9-Px@V{`Jfj}uA!lT zZCOR6vbn5jFsL=t&Q>TkdWE=Jjkq{0=ANGF7U*upXxPVpS!jr%8u#>qQm zte+fxIjW+s?voK&`q0v?Th((TPo7b0?4m4B{h4vUv)n(9D0Cc82*m9I(2_fh3}#|X zdD=6I`B@XFGdZNXSqyd(i|)(>+YDb$bc2#mM|<%afHkSbkO(LL(bh-Iwo1(pA>WUS9j_ z^MAh8Kat4;c(VY#_AUEHAf zn)_-Wn}1Uw6c2GMy#eQ;*F(r31Qdo}AplCov{BjF@si9sXGL5iw9N5V*83e(K>JZz_~lBPu(CrVdPPHwL9febV01Q{?R=+0KES9$VVIi_9a)5 z1V$^KGG?0(GvtrFU@gJh{c(=W(!tDAbRdb1aLo=k-gvtEIJ$g;3;d346N>GH2XvET z{P9}dD1BOseL9*$$ah9Rw!2vx5ssgUq);DYFKgbt7YaeygcTy)@%DFSz^z`I8cI3O zcDa@-QuN3kOrY&dY-R4e`j#*(F`(kKO$E53)9u4o?nftFjanGu_So}nJuhsr4y`7s zTiMU9T_YU`Yn-M{-bHI~fmEbjR-@3~Pr%HHDiA{#iKkWOVDN-eEFw9!x0epuHN0SX z|2FB&*T^hhj&3p%W#=aXi*lQwp;rLT1wwfh6v9Zpzrz6h5$dfx!N>QV-On&TG4*ZG ztew=?qg6f@$LdGo&O+M;wb$1;-mviSaO(+(BgFt<21ss*mm84#FVV4n9A?@xr)gNz z6DT|r8QuBiZ63T%?3<(2+*#r(tl}1oY*C;;nW=tcCU@oLqBCy(E?-||W91o>;dy>L zHE@;AjN~&tq1neP`0U2_a>6Ui^4vewn{nWq z>vd}0yhx!hbmm)xvL}{FRhK)u@yBOytLq;X?=tsI$(NtN4&polxk~6}@ea^#klua% z0_Esn!eSSG2BFaoLfm_NxTU?K^6!{ml3LV|95F{&BzmiZF!C*EzwU2%A!Nk8_j-R0 z_Hf2`vwok*3vjLGep{BJ6}(2%ne~J&f;2vV!}WFoWAelq%a_JS%M*BzLcoK`_J0e~ z(PS8irm7tbp*u#2#Y|#!G#MD?T%7k;(HkI(>>m)&2*wcvi~%8rhcJtXoLqIz@xQE2 zi19233r&#S6ic<~G97mlX*P z*C5w7%Cw4vN6z65fGg#S4R97SaSAsrriP+`JwrFe| z98Y0hbpD!xBQbq(lrYAy71xN<3uiFY4 z51u3>TV}SRlqakxTQnP>v&|edb^>909K0Ve3bsvF+Ejw43+V`~)1AG&?a%^ArxAt6 ze6oXkRAYWN%ZH#erJqS-uZjf%wgloUyFfqQA4E=VQ`38Ojh*MSs@J5nPTnfb+VPk z%3MJXNsCh%F8m1=FMz4zTFjrgcF%Wb)^oAsa`Buqd9TiuvlD{%b$C2(ND3s{>d>A= z`AQs71N4&{1i2}z!&b+^#sqaFfTAdP6O@`SQ$J9+;xIQ_#h7IASO=V>q+9%5--Qgx zC(AB{X%b1VF$`Ddh_E{H^{=ccgx>K<7a|z{6e{u>LQa-AB2h^5pP%mbc9re!?&c_n z_Q=3!Z2xC8j;2GJ>7hch%LiV!SnbxvbSmK~g5H6%PK3Pxto`iQcsz4(qmp(7N7=rb ziKpEwA?S+bWeYo7{A?vf-N1Zk0Y@7Fa}5xc)HxTRM#siJmX{Bo8s{&D$d27)WExAh%VY94v`&q)PPXU;bo7R$vjZ<@bXakzz`4M*z#!|HUcn?z?wFc z{3Q>*W{KkWlJ)y*@^a-&{qI`L47|mQ9i$o--`(vgHWf_lX`5fcH5>KL^eai#Co15W zH^Pwh@v2YduS1dju1)Z5=|3M$y`bL+^7=>~B_JYLL@aDD>My{%z9OwF?=kI!ztG zs{FT#aOz%gDBu|qFa+E>jjy>)Bg8%;SGX6*NItIAEt*eRTiYU=8tq~;B>1I0AimFa z1+M_L0>D>LH)aHrHv$`lD0`}^sv?S-Jk0_mpHP{goHY1PZ=y%k4dW%9cX@Vxd_=38 zaP&`#@E}a%Z?`{0cAVMa?tUZ0yupa*S_Dzj{y$|~YBkJlDCFtFCMgrc;d61iB!UE* zik%MnFfIs2P#|lqG5%_vQ}Z}lCTqX zl)1ysQ7Oxg-LSI2f86@9yMqyR1MEN1;6(fht7H_ZxA|~32|yHb6y?EqbrTV(=jlJ= zs1`wQkRHGLt=5hO@#@w~8JXU4yuOdcsF;J+XUa1_ujlr1zz2=(Px5PA!XOPDhm?Sl zGU!k01bQ!}*{TEd4D3~m(Ax|&`s^NclckK_g|zjJy`t*`8YJ{Klhf^aH@ps&XqSek z)JQi4f?BUfso~JYOT%bGi~%TJ!@&?k6k;!ge-9W<#hPz&^1&Rn(}0T4=5g-I!O0mA z8oCHtP}V775LIw+aPZkI;=*JS0vr4_SkLlC$$SVdM~mZth8ejCO>IDh=75}CSncy; z;=~hu5qgp74(;|qD(Vc7Q)erp905cE)Q3{Gwp{RrL1PQ8Zre=?Y7GjGvh@LKfndnO zf{-%0_Uo|zq8t2TGSEE{33{ICgCq|;EfBcSiic3Ng56WQfF1S)K4n_6Lm@I(td6nH zFOfLpB(Ivf6x&}H^9NtJG9P+Wzh8LMg%A01yF4Y{*I-$RjC>6Ap_^=Mg?rB}-Kvia z3=|dF!JvB2J{TIQf*E@S{NgJIK(i;$h^P(=x&jx%f@`&2hGTyDVl^njz!oq?>FM zzZRAvay$3*F1~3*-Z1|5)(rMF-O8e8OcWt{J;{I6L2w)r{+q8p@hN`Kt#5@RKefS9C<{fbL ze_ve0K$u7F)}L~K8e1&yO?ChfUl8q7Vdg$J1n21RDR(xv32B-$M10@h-4;JO?gACCYK#A&+`6MDLRgxz{?YbFWA88x;O(sygU z|Dd1|)t+y~hH&`FaSl^}-g-0U zKxmI@8ai3(*lgBT-O6{aeD)CQg-EFY3ZHHZ*7xt+}PuKEeN*3F?k^D9kN=Dc`3pLgj$iuQlDTSV(qXnR^= zS`EPnr^R#)1?D0yD{&=HTsK(npF>%n&bYfZx_P)=t2Ku&K=1((PusblZmmVehV<7$ zR@E0j$S=1Vn8ZXMxRZ*Dt75$^pr@nA8y`U~;YYTGUa>&Un6sWjxTQXS{%nfZLH+|& zo%wQpOD_K*=VYws~w*cu;6-Zf8E$pUB-bGg}45;h@7)K zAiM(f&JPBmP@@*oWH#00WGZiiV*KkN;eWfW-p)?w;8=K$Ep`ZUG8kjZIhqgX?T`{o zG(Hh2md9I77o-b#Dw+-cl1P&|ycER@QMy?d5T9`fc=HWaA?vt<)*i7ZI^%J0oI%=jA?NA z`m14qr1u&HnnpObF!K zKi(DY@GKws`J?T<^+QOQis!8%@i6>**w%^-A=gZvkB36d5OX6^H7kgwk$4OPMeR9- zvcCEHnD?BS*OAjGxj})DnDrCFyJzmOjrn_yL$C?5M|@8K8C(j5k3S+!;(KD`=%7qGVrUYzbC?48hm_uad9 zWL!oBz*oy(DSRTaiUdL5YRO-~&E-5iorolQ-b+(Us0!Ev><)3k`pav>$2E%Vu`H)` zyfGK~B8>qhC`f`DCBbWio!(jsXjLW&=KqwqIL{MC(>?Uge+R%<)jz+y1R709IS{uV zdqe@#5E@|*8>nR7{P!59geuwX!zEgD-ZT8VYII03r!5pe#Prr;@5A8 zYw||a9~DJay{OG)B{3oNdPIu;`rQ{&dr7Qt0!c}RwU?1L7i45uH|V-#7QLNBdO3S# zdMsibj()_~#K-L7S(pj7rNm#KK4bOLpWvtzspL+0ZkF%l)&{bq@%P*X>a;A>Gn4`r zUaTmHmHPD8ZbVsvpwqjtu`vvE2)B?~tgt4}vrcxd$~|}#p!{)ojab|^>_?8_$?j&0 zR(gqrZ*#_HdpVwhO>VXwFOQv#6b+4h=X&-V-bU9cJ|GF7tQQAU@xKGMD_Z7YXOy;k zC!E}B&wq*dH8*^!0ibesI(J3b~= zTIYN8%BMM}m)W~76yv6+oX|e;-MXXeVAP_4lOLik*i=fEp|uB8^4odfST4)(vT3wCQ-JA-%piqgUNUos%=T zzJRm$^2XO#O;y*u2MjSz8FwZk8$X+oPdZ84Fzmf*56{nITh8##C6Lwhy3znyv;^p- z?gzI0LcMl8V2Orl6)eFkNCrURbYPK^`^Cx3ZuQJr=)k~J_zR(16*40yCx;U&5hN76 zFA*VXr64mNuQcVMgbiu8c-R;n!a$`($iUTQwA$hO!{M>gLD-jGJME=uYta_xkh+J` zNl~e-okpWL{rlqGs5+!ojIMXaFn(sQdU7=O9QO*5W zRRBr2i*Dxj!|`1c>IM*z;?W370=)w$EP8<90_F9z^BN04p@x$iveTHbp*wwv`P6Y0 zkD}tYN*l%**WJsUhCMAhY|xeA0rYH05U~3W#{pp2_##xP@XqVTm!g5(2-v9sJJ1~_ z6Ex8Z73|)`&(KH^Q zIDRX6H3(<;{GY}CfOhx}ec$sBekHGRBK(R_5TW0FoWL|Q@VyH2IV>t(Os(7Y79YOb z@Od0#=TFe)oQ;jkXm?fIreb|M*t=sjPL3GxKefZ;-zT0_l`dWt3CK{cmXuR1{LkkI z*N0%N;n50zg@h)strnJ+^f-p|tlf-_jUO~sgm(S-4rVjOvK3q2^YuWW=9=p`MHk{H<_(AN zgj=lKz?1he%3l~?86Mr(z%`5WVf!qBOJCJ)Exntp);-Zzu{r^w0%IGIg5D!h!Mc-D zyxF9SQ$s}h9g$9L^4a7-hvSMNG-9}noqd}pE(DscuhF2^z=i;)lUeJ^u^K1NuBf|) zvkk93t8rzNlt_`_G^-D!fBs1%pk3$ zH(6nYxEKiL88|tKJiWcq8qQ)wJfR;pyUn7^?c2AFp#641-SO>aKYUCb=vFTHvx6S4 zmVlbN8!?N7-Ks|Cfsm5K5&fdUqY~$V$06hLJ|CIaDK!aLE(hw!Z*9cw44_J#?&`35 z%-BTAO7z&Ax?XDUFLvKKoTMP?@!w>}T^SE-F$!8TgS3+e*U|eHfTtn6q>R87&JlTX zG%<5tmhw#b-P^YcW)p@s*z@sU4%J_Uf-1P4Ah4gvLkS`!ku7Vdb@#STjB5KZ!YpzfHQh z5y@y_S7f$`VBEwMXn_bi4jeNE6rXa0VyquI%`FO=T2-ct1W8+SV_06AnGqD--3b#^2z0k3jzTEa;Wm745 zN0u^h^J#`&#bev>-a4#D{tWG~t~`7C^r%bwyveM5stu9Kn5h?mWd*jZqmRy%W5%U` z2cok>;^z40jvEknY{lx!>ylitK1O?jp=+LVp)nnt^LjUtg=zi-)>@(1_A(+T;z<76 zrM&pu{rBhsKS-Ci7~u#^MFh)3IVw?Uq$cH`8-%CY_QM)^v%m*-VG3Zlo&LD%@v5UF z7UG^#?*IDM5%|{Ul#&$aC&FzK5oa{2^>l7^7?E@E9wT(8mm zj!mvK2)i9S(l`LW3-TvCOo*=Ur9*30V~6bPCuqK`-m{V(5(|pX3HQS)uzXuT;nGf1 zMy2X)t=zYd@6c=SbhS6sTG0KJaCv2EEPV3`mK}Bp_Q0-NE3$K$Nt>A&y;LyXgM#;m zAwCsKUR@3G0(OB=V0#8!vR5ZCV<-elA@*M_*+A{rq~o2^yz;U4IegtS1FyvCOWn%} zeZj9hr&e??V(ufpW=0kL)G^zW6J7sh)UDiaZob^ry+{PQ1A`fMWKubO(y_(vwQxC7S(cP-XsglVst;t=y^i-Qz;v5_iPJsmn`B zETx0wZAU@u!{TkS1H(aKf#5QQ#^{h^iuvL1 zb?%%6PHrdMrSmRnqsU*oyY~gPs_j|8eq=C`t6BoEqo?&iQoum}h>lR4q}aXCSDkb* z;$huOw?84`(Mzv?VEiur_CiE+C5KNu2cL3wIC#GEac^r3*R$j%UwQF{RE$9XX#mHA z52`o6EYyW@JqWKO)b__B3(>-q&m2r)!sfpGj2J!hS+%ypb7lArC?P108@m~`eArloZkeK_*x+mi9U3X#IH+=VPAL32al&>L`amN`=Tn~1yxF{^J zNzggkz6Z@M7NVYq$7nxRa=)bt>V(2WwzdwV&p2lBEKJR6fF6_QbKxo&UwTUHkg^u} zLaYSWhS8s;`72xtA&G9PYF0p&yhAD(iShNJbcvm&My#m zfGCJMtK)i6I|VVqZHys#%%7WtewA}}!Jy&?jfVs=0YLLATV-s5ViL{L3MV#NuF}3d z+D=Rq>1pM`%w#3rY4y!3S@|GiZiT)SWV%55t%Kz@wii{IR)}9^=LNL}TIe5YW85Avh+f(ihP_Cx+4VCfFO3l8tgf=#@e*nk9fd5n4yM zJWl8c1)0^xCLf$y>NvmVxmifDF9Irg7Q~<6w;HUnGm$$1FBzg%g@{by^oW2QLMhQ{ zJc>oV4MM^~wLHP2Sue1I6Tk0VD0YM#nnKL|BE6MC|0R)r@eZ4D>q>$8zL9(-FB z8H)$j2tOfuhvus&YL7Tw-PODgoEbxiQA0 zF^oBR#^yX!@<_5!N{;dwo7r`*HLjkOr?<)~iCThMf0&MyMC6z6r?%ujRhvt0S?PDb4_aQzuu7f#B+{d)Z7=^qI#V3zyp=jK3z+S z;BwTJmYgf%wRnMf&XEbzuN4X;3ZAholk5qg*M6@Xy%ipprl+?e9E>4^k>FA-mI-Yg zZa-*$JwzXk>-%^jEK!lKoQ0^kzgDy0nY<<|Uc55dw5JEUc8)U2vaJ9B)}xjl&zg8( zNJ>fVJn=5w9(pEM1Sg5jn%yUGCT@jC&;X(cWJx(WM5vxv2k4PmKu&##h#;iW*zeIR z{#N)cKVGR^ZK}QlRz1pp4mgM;gn~I`*xc88d562rZ+|A0o*NLbAo3F~CfbLKv7@CtCk=Clr<;~9itl~0tf&ar7A?Gq>nGj1Y5T%KtIk0r-?Bomb4i~yLfWP( zdEB9u_Aw2{E-=QB;lWvh?&un8vu@h-f#yG!W zcWf&}w#*>`VPS^LeJSwHQ2+hT2Fc6B#yO5-@#d+{@8`7{S#_^*PG7Y{qO4lnccKmv z8>umOD{*wK7byP}hT%pMUkf92~;UJR&-uU6VGaMbBI4DE?eoo`DpknwHNjeJ0(UJRG?bpo6tC}xFl@+j3Sd4|9 z|K2C3^HG=ccvv>q{%$2M50=b0M$IQodA@XY6}U{o;{dQWU~3#KD>dSU-C_~?ulRV} z1}Lek6dPOyVmh4KKLdZeccKyM27>`B$VDQ^hUn|6D_ch11Qf$BuQUK{)TL+q=8YTA z1-uTyw7d=V9zqh5M_bdiGa3R-l&)O8D&guX2pOb&&_^lrzstmCo+$G#4 zcHgB@z2bi7Rg`u{9ZJv?M4^T$f2BbUwk&85U^&->{s}efwNu8E4;HVirr=Z0nEcLP z&kagtiM{1ZJSUV<92FV<9Ya8LA*8xnwcr1JXUe#A0MrU?ENIkOaJ^;!3I^>ya9ydZ zMZbB$*XEX!((5raruqBDLW%9*W%t^Mgmn9%C!#nCc0^m}<&zI5I|nyshk6YAya~?# zugb1G9Lv0IKd8u7ice1Pmqr*V#gC^hoD4Y3%(^?db=ReoJLVYf6Uw^lFc+2S{iyTLOGIH1SyUI6Fur21v zR?6j_w+X%mi;;h|)hg|^_u3ejK@S#@pMM+@3kF<%4sx^tyH6odWD`f0l-2VA`$TmL zOfNlzVH0Il=11iB7*LU~i3B77ZFSCY5~llXLQfJ@+ghFEJNi1)U3jb{sE12yRww2l ziH(g7BouZ`+_nSxkBnrs^66e_;19GeGcyzWX%9dVO!{?yMfZDK$#n}l-q5fx`Ya_uprCn{hK$! z8XAd!B}`j42ngum`G`k9s4_`paT`> z)aKjA8j5m5+SOlX8+~8r-Ij@EJHY;!fNbaaMkV&qj!z!}ZBv?2}s-Pc&-M2EKfv zE4zvM&8mvQs{?hXD!aFl4ekM{CrUF=K4Oeg510(4XGvfro}Q8t z(v)qM+F-IcI)jO>4{WKjDe4*X?A8GR&l?#U-#kCM{atZE$taduxben!oe3{p#>p9B z!uM=64meX=B#$Zny`)+?^o*Egir+ zKR7AaDBR7bLcICU&SHvVfr%XB-nSw**Iy<_kPWu63#DZWLC4x#0KG2t-RxP2Ub$bO zvZ_i8Qngp0Blu!$l;=o%Zi1uY*pgQ!`P3v~6y zGP5vw)wIZEcPF%atikZ3P)O6YuHXFD_LohHs6C)hD#%Gm6Z-Ggwz^?i_3PKhupS@o z-gV+}C@`rm4;5mU5XZs_{`=V>QeT2nZAMkNjrk)l+vJA1@AOmBr(Cb7Ucbe<9c!%c zK$Ww!Tcer>9+fTIyMYD#=jW;_J|&7|`g8Nm)y?a{sni9%f<>{qxkCH;r~J zEM*d0+RPcqz!w=`iZ{QgSUhbKyBhbT$LHUP%hH$@wd5UiSEFE+1sc z43Uf{g@WyuLK2r&ns=}&NIF@tlV?KL1g%<7zYw`DNLM1Xgh6@vPB=exVBm+0*tM|K z%!k7#m1a2ZwS6z&6q4K^6Dy^mJ?1vAYA*82CDBMjMZklexnSzT`losbMX0(a<~m(D zY^v_5!R{39+|ZXI^{z4n2R#xGacj-~<><6o>hZ2NRlZSQuE(^>3w4IHB@RmW4y8w* zC<}fYLW?gHQIeg7XuF?wRH31}ua>om~JQtptMU5U9* ztM?hX@E1|Tt-nul8^rS+Z9$Z;933>ydX>QmSRq?B9*oA-Ha zjEKnJy*pN`{%`P7>QWNrAS<}Tp=07%G2@SSZaHkQ&gj;m{r20s|8;`5F;Zedl}B`I zpD8zUjiJ+dz06GIvbJ|pUXK}5kK8!UdJkR*t+5G1{#;Vm(23nV|Fdvp|thaku zaGlMHI3%~U|w{htf|CShBwNw0!8#!NGYe%hUq?%H|zLDwiG_<;}8;xcufoYD7pOY zMj8f_Px#YzxgP9QFu63r_e?n zbyk1`lMHWHSI~u&i(TU0ZoJ%AJGc+zM{OOb__;YmwEfgYTh8z#7jA9wU6GtA_o5jN zyUT=M*u8?=c`HRrbNwOG8VqM}kia2D2y;=SCj3Bp)H)uXm6`~Xx^w4F0zEA)jc{Fr z1r1X$MoYVGKl108N)j}_!*NpZlAh}=gdNTJ9v#>1_PM1o>wPzyy>po|xi9c2Zr=}O z{*|@|sS`ZK-jTYej9Aj<4CDLDZ}z6%`qnM}u4X`jxydt)gVthO$RPgNvwdn+msGG# zP)0#JOI!Z!dLd4xW8%EpFSx(zbLu6>jcVt$1`c+t^%y*t_w`4w|FPc0={||NwZ)i}gSi3lM zO{$Qut!L_$gdktLhS~IS@62oZYgG0|vYBuE$=919cxB({S>sQq22%(2Qu5UlO6m%R zrn*9e7j(owu5=&2IdZeF{?Kk$X}fi+tr0W`N92UWbVR|SkIMdDdaiae!ubw?LCWyo zKm(Eewe06uiZqWq)@^G#-+%VjC5wfViE1h%Ugamf2W6uUh?ZD(iC0^hzj@H;$^Kk& zW$OD?GwU+MSNdlz_{T`L$648Xw^p8J()F#S&FtyQ8dko~GkQ07KJEci3Pa?K|Kurl zCKqN+4x#Ft%UryxTv8u$3nW<^dR#HwS6tVn&&tzovij@IM2^U-rxp0ZQkOipUf!Q6 z_lneJaWqoI@sr79N&g;_w?$NaqW|L29b0HhdtF*;7^jwsr?S2ohg)4zmHNh1Jxp8k zi6wqNqfahamp5W#jsHcR=zZ_|?S`(JMtXX>EW{*rb^nA1_$_<+74CA}9eI~vQ)teB zhT`Vm4Mh?*KUzzx7*7(cZVOR=CAR?ZU({V4f1+0FOvd(MxC72}v} zbv7-~=m(1}RBa3`lV5QMyyrkw@P1n=Wlq!hlvohD zm_~zSV&3it&kqP&&V(|NtpW<3N4wW@Q==uvXtL6nyXjKMdrH2F^j_0;T87zta*E|N z@AT1yCTjj@6q_**jqh!q<14F#F}HPoPw)R$XW<(d=bv}DE;~aaE5+s6my_xX+a2r# zH1+N=@T+);gHf3I*cku-lv>P$t>qr*vpZlVFHuLzJN_sHG*$oKHAqo4UzIO1n|auj-tiutxb>yzCADlTNZ-<_}D z&j`(gU$r`P4lpAPh2#4khsF$vg&h24z&%Y`n?c8f9Hf8F7xX~jY2~fOK@3n;oSU5H z=|u(b&yEm{tbBf*4|!y`!*cT3%ck4^+XjYxq>AP7NblTv7Jw5G8n->cC*_^G27Oi( zoQ0OH;l!jCdfY$K(u|HDe}jfojm%60rE0B6!RZu8pX-OOe;h*ER^nHGdeV7rqE~Ia zk_p|0X=}p0dmlh%e)Z;tD1x5|QVM8misxpRO%mf%E*A%r&q7g$3NZ7PIwrjih0b`f z=fGICA{ao02?F`>;Oh=#$?GhGnQ5%OR0@OU$*Yt$=;ha zCWPN!vDEA2(xom%hkS>HUh|8nt*0dh1|${zqUrI)c|DHQ3WY_7A$QpvWjpuwVcDYO z;S+b&J?&%UX^YEW#N54p^x5)Iq50}qR@PBtwRusVeDZZmQIPX|Q{%6GxW(2>TaO?^wUkv`~^=( zr#DgSr*rfY=Zoy4m*I}G!u=Tol(O`pRj#zQ(7iH}TAZCnhV!h6R1% ztK#2p(u|h5TMI>F{=597^@`i^N1~2`x6igS85}$AzFcN%v2a;`V_$ak-X9FpA>w;) zsr<{x6n`Yf;H0HM?l=N0YY;I|;JMShl~TBn_JznN1BAo4DDl%db!Y2wFAy``Ik(rDb@L|HgP>Qj##_28#k=PE#lzZ5QA;o%9BPyjj0F_tz!%(-+3JBi9z_ z*JND~{YmrWgS0eP06@>YMutYN>oCnZ)ao=CC3X^)YX*-#gNF@h;q!oN)O^gM`ncTL z+QJD%%W}5Q;ox==F88-py+=Kr2|gBDG0PH{3$VaBa80llr{tqAPCqB&DsmcI;D3m) zJw}jts%7ics*$7BDxSZuFV$y^Rk}OrP?{-r@I@L|K6>*eO`|S7e zjw9rf=PSQ6gLbkNc~1~-))j$d<$^M2^J@xN*F?T6?l@NRtJ7XK)Mg~?+;bK3C+h(zlabb6pjJBckFg5&I|Y~PPg!Bh<6{8 z&wcuxs+b<%Y>8#k%bp}eAUypPsVC;S_%{t5u>ieh%Qs`1T{q;{sOj0)BEaJ!vh7&e z*kBp{!-L7{9(ocZLiY%6BBNhQf6tdkt>t9_}!LJ z20wnhr+oG+8r?Mw_+k?*u=!7 zwzk$}taMCWUPLPsmcb#5)VjHwhBi<5bQ-3vl1aN@)!oDibOv4lqxeLP&lXFe`ARt6!-*yKbG zGC_0HSR6Evto4-FF;cT_pO~E7qJo8e^=pNj<-B;FCMMRq=gD@a;O@E=t!pX=kpC;w97 zntG3i`|CC$9U|o|0jt5j9X`N&@W3RDnPzLru)DT<>7+oULyxyQ=7R@I@pBqOk3NnV4it{=~64C9CY?zTHB>Go~yJ?=~Tg1odK<7pbschgOh_Jt)QTB5<9;Q zf!|@+8+G?!6N@;R9~Dar6^d7+QCy;SH2tCgKpVPAf+T=BA(8Y}7}RYXI6{z9klY+F z-DE}#r`-GX4J_~%;E>3Zn;A-!u2}T{GTvQ{uP^4i2Hcg3l+TG+(i0R`qT(D4s_!iXbhm%8nlYiX6mcfk!%71CMj3)HhMWS+G-!$%K*( zLbm6v>QMN9gKly!PK1`Sn^Z%H2+u-6OdOet-&JAR)a~;wPwR#bTZ(Q6vjYQR7&b9;Y02*c(kI% zb-G4KE22{5SJT3H#c~CaySZG?{y#6z|9l72g%oGUt&_!VVoCVtkdFTTJT2>x{{gYF BXZ8R9 literal 44834 zcmd43WmuI_+cro@NC-%SfQW>2cSwVjpn!CDcXvvMbcb|zr+_p_cXxNgto=Oie80Y# zW9FDY!vXFsTlc;0b*-z;>pb_*ud?E(NCZewP*A9n5+VvvP%z$5P|&N0@ZdLWhy6DzLwhG3TLUN=9eZnYD|>Sj-S>_Lwss~~mMruf^vtyHjqUBN?YJ2jEdJL& zptrI$V)&%7AKp@`)3aTtpQbh2(bL!!elQWjVOvl=ad4Jx` zG9tNsF796Ir{E6?A|1ZEC#_J9mALLJa$0brA=w`ka&MO1&?F@!gxW?loiANxg@E$xtBrS@^@&*t7=xkyC z-=734^oA4mMUe_0wvmX+-yW2=oAZ|!74bfvcHiFLXHy}$T_0B7@%y8%i&4U5qH|>0 zZ1iSPed+HW9gTc`dZ@Nq;TI1wQ;gl1u3adO-)S<)5Fb4zR_rULqo&r&Q4!9nt-&dtZct)Z2up- zQNE!1dJa!d&z8%7QUyh-rUFGp%mxEk;QD@{p~%B296L8FUhSsl^78U67b84j1Z+r7 zPEJC?!gu!v<>gJoQ@UxaCT|6vE-^25Mj5#F8x4n(X}0k=EZ@oT-+j!NO%syG%FfP) zqN1hUEX+^;z{rShWMstcbUbu@v>;WdR&9tHl3iiHr!Ze*;@7FI{d9k&Jf!vg`yWg> zUO@>7#F3E^5mC{zP6QID(+*fPb$M@GTwKg|?}j1;o)J4v+FxX=4Trxh>zypO_74xk zWm+uMxj&xuh2b&5_;p%OtxQcxC$s+i`&R-59yTj0i}z~s8&u2F^#ZHe^kK+ZsapMZ zY5g+w9bb*v%o`34j+WNey~#q%v$HcO_p=^c$gb2_EX42b8ZUdjcx30~s8ncoI`mQd zTfbLCwCTp@aV&A|BXaunn3|SW%76Zs%(T_@>U(T|Zc$Ou_V#uWxa7Wu)6(zbm3A$S zM%&-2&5jlhhqIOB3m%u_;zbDw3HJ{t?ZrWFh!jZNPX(vCyK^QN%UiFL=PPuC9r|O) zO{Jy7xGm;cr?eRh%%)2|akQz{nidih6YnFCxMvdcxqg4zFE0OHs#Hv`R#&2rk~xyX zFPkHF& ztdFD^0|R5f$>CtKp@Gu@m~X#CrTV*~;#4>xN0Dl&lFXMc)c68k&+b#h!!pAoBTBI` zG2hc<^F6QUj7-hVOPYY+Ie_D4>ged0)ZRWS@Y1rlV&$?ul2+{M>RJ?v%b>Keu`vZK zRkY%9lLq!RIVvjCl$F3?q0WMQw_%P!Org6(&FOx o%R3z}sxWUi zpR|4RaCe_fO-+q42*sgOU?T`mj)}xQJEj8NZBNf=#*vz=2&8R_n-tXm`0)tEe|6`s(!(;pmIdf8; zp4&-AlOT2!gIfV%LD8oe=Q<%7Ty6j0pg5h&F0ac5iS(UZ8w}1m{1gZ^*N1c6;KH*_ z4m2JQ*9MTA(3&IScTe0NPTAPrR;rQ#ZqAr8{EpA{*U*qOh;@)aC^dax&kdaV+xZ1B z1QiukCJ0~+&CLnCp3iqiy1Ke$1S`KUG#~Fy*SZZNT9r!TFfcLw#*K5o<;#)}Ub^xf z&DS=6NS9i1Q-Q>FumIz+OlUd2E3CnII-1(&tRP}t@b*x-d3jaF;~$8fSD~SjIjm&M zHCv6ROYpk`Q8$2R?L6LH#JO4}5VD)&-QC?y7Jdsl+vsDlT5eI;VU8dXNS~`V`u6p! z_qehC_D~Y}+1>p;v*jY^{nbHVrl8;L`5=R&tSr5qK(*1R;lEtTM-cR0!NbpA@`2

utY!EEu6<|jhM5;Rv3?G$LQLP zrt`hyw%<+OfmYIQuM4i_-4C!MV93ZX@z7NDj{mJ#tn{b1_k4usBq}3gl<#J-d&y}< zqsntAktvneB?biKi$R8VbZl(V1bPjqG1FRFt+rIJ=er=VNf%c$S`(Rqu)2DBG*{2` z*ccd{<2m9<+z!vka52L`0;lvOIWHdgWZB4 zg~KXOuP*{}pOfWU8FXrOzvlbO+n)#g(D?sawLgi0IBS8^jGk>O3384M2=1%|s9J)a1Y~bHR$!x{?ONVpS_#nxF>EFLRG8Iew-bZ)KR?5Wc;Y2vDWc=!dt>GJ`#o-!#J_$;hmsR` zVg*5kbbNfA)pRm=l>Z?Ne8qS;J3F6tAv2sFR*&kkr|c~@vZ$!2n9tX|25GoAf=JEM z9c-!oz^_jz_{{!Wg9$87$LctAs^7PNnCXUxgy`=5`wbiuOF%%NrKM%;;A-ZPud%W5 zY&R$Jd_9z5{op`KU;pE`JZVw}hDeZ7#)?+1L^Hgexj=PNV>}KMF4n!+X!rWfo8EyG`>Ga^(ztm`qWnsb08wnD3|40t+WBBsB$<^`uFeOmyj_Kz}^sXe?JE`)CAZk z1hCTmsbV8V_lbPDK7Ho#HV-#-4UHrwJ$P^~CyNw|zq{k!G=g$0W~;KY(*0)135A$9 zact~s1To(Lh|qW}hA7&fo_oXayA!lLB|)tUfI2`CSpP<01JoJ$*Sq7w4vvmW9v&W3!2c7P_9u;5i@=uG?C1y)gTpHpcFk!CB^jQ57`0n~@5NmCNbvRuZ&cfwYmFkx|Znw;5a1 z-rjD?h&Kt&WLy)$^}6W$ozV=28@|G#E!{X^xdKZ|%cA`J{P|*K28Wq4jo-asL69`D z-{Au*MJHgt8#Q09B>-6#8y*TIz)NWe5)u-sQRm~5ECG|?vw(Wx%GAqZG=)RXVx_GW za*s`ojfF(q_Ft7te%SOh&}%dmfD}SsOG{2JO2n)mOz`$?Ha8bnVXf(u!iwubX-x4z zGq9(jdxEASy?=uZRgtU81OusmK`y9&(_OalAwS|l3R~yr=ZL7NTfqM|%bJg?_7-C) zWORp<*$l2f*TfeUv6|0Di4(i{@1(npICj1!wWK=7u0R)>^`0}QASVw17QkX)V1P#> zHox$o)oA*~(EfPdR4*qZV*sq3%I|R>a)B9u&K3%34|HHbp2-GQ@DB=N@wmS{Xo6d+ zHD7LNR9HZOgIhZ}8FgCm2m(b*c=lVN#o$dEZAiNjOdvMj@!!USQ2`3+KOM;b@1Agr zBUtBv6#9{zd~I#bCz~qbjrf21qQs&ieIp}G0)h~+Z)Y1W3Q($_K7INb9E>O)1i2GL z`46DTKRrD~vI6x?94{{~)F8wB#6-1zBgklTRR)(w3%ISCTBa%I(~9Sia-p#PubymvKqnO$&MR`>?#Y?EB+otcne2{o z!U?hM>_=61AHNr!c)x&8zKm(=1aEQ06|IFxS{4M(LU8gY0a(Y!V9P#MSN(L~9E0#r zzK<8iBRym2s|oEL{jmG?eqw%^o?c^(iYBw*=paK(ZyF!=YWAFD_6iegD-)_G1T)!{ zZ(PK|e^sr63@>$&P8`~9MElFK+`otbe_UemeyJcbWID8PVv8e75dt$oO@vb<+skH5 zA;eWG2%N!VrF2d}fMIWga`Z<{AGrRZdeux*Z&G_$Bha^JlM1 z6NJ@S1+ z*3fLGv3DofzY?OO@BP&<+jNJ8>R(&O>)HZuBF;pVD1Kd+T$?SSB&o>N2hirOZ|gBkB@#3On z*z`}w8`NKMvytE$-Q+q8^6J&_)J3Kw>{&Vp~ZG3!>3;`BS^cE0eU zCr2@fvb`p=^_#|$(gsHt>v9y;NwH@H*9?4tO2v)lL+uNR!xXZ; zW}G#LoXN-=^l07Y?3i|6x}&!eBIM~0`$UF5p^7V~Qq_`F&kgvOH!65>0j zzwYcCh*>O~Ik7)Rl{rpDg=CD?b6%aDseZ1SW4*Q`HKX+-zf!kld%(hh0F}Gc_qnUu zls!5b?dQ&g4O8NnDb}SbT$+-fY)6h(NB_w8@85D4C>{Wg`Ll-Th{+{v}TVpyc zG-&sDnD!YNRVCipfEZ(YJL7CP)aP3Y9opyo@$sHU90CLER~!ME6zH>f>McjODdj zP`PSRCBJ7l6MT1r?oXP}<+z@G9mG@Pu+5i3ODo?!e8QIu!keR-%3nR`5`I`4aF zUe<53r&TUtNm2|mWa**6&XN2*tDl!yfXJ#EB17G?UG>69AVVz{`#Q{^j6NuExDcD+ z-hlwFHG8XD_~6ufdTpa*L&<>Q$?iE@XJk6YW{%i_YvNYW_F$#IEN$WEq|5qPnMZoo z*fr^(up(1lhW<&{i821ZKl>A6D%UHOpHW`R=Mr;T&*~vKi!ijJS>lYZSZmzVG@5A| z?v$6@Kyo|Hg(?v{K0yDu(g=%ks7mOeqD;me3_`w5Clma2k>tg9V@xhHUs}{JUpeC;T66qJ=R3nT7ZbLzW6h`r|^I5)w zCuX9J$Yj~>{e0*H&0pUkk-yU3Vc+6sxC*0UZP)HlHuKcVG)E*Wc@?fZ&kS%W1A`sM z+&?Zdze`m=dI0zz2RNhw=rg%g@pe#Gs!&G`qk60aDya?yLZa>cB{2!Hg5%G3Smuum zIxay{)7X2woLH=hGM-Lvjo$oW8#%?5MZHXcnK1ia+tQyjh$`YT=NHcC*!>GfP zI*0aJjV=;9Hgf~h`T#T2sZwuDD3~w_lIQjdsc<9cMBS{3iTe@+ZJ?p3k-nr^j-B(T z5-f`$w<6OG%q|+Uf(BTZ`)XHM%;#s#q0m2DB)U;t;=;LrT>b4>YxW?a>aMxP4U@RqNf7zlni8*?EAlb$dpPQ<2~_)gFScT#osgL-`QA7wq{vn-IQBQ z*@wU^m$|~UsQ-L(PGvXLBUEWO%AeZLWP9(R0leGS(UqQ}3ulWin#F(1dEI)}t8#<#9Ye1Y`CwGT zeLP9LJ6l71F@zQoAw>pfM3L%<0Z-kKEx+2j;}?yt4NN$hV}A-Kg~OR(y_ZK}zH;l7 zpe(A@t?a&)i8zWZP2~~}g7C-Z8{KR*hYzGV-m^98vUxkU%ybE}m+#KQ4P|q;Y(LN? zz`4CFjffU+C2U%-qMYTbB;pQ}wG?hyRJc5nv#K^2;IX!#PPd??wE1WVsI^fLa}EA0 z5>7V1Y-0_li_fdXY3t&F#v#jfsy% zQ|5n{*U?c^>rQLEpfBgr^-Y{}#l-ZC|1y`&-Hx*IB|5`D3?8MzKgpg!UoSBzxBZ1v z>uv)6V{Un|g&Q?@qtJ>|mZ#V42B`!O%F30u&P1lA+`^GKKq_OvQgj50kalEM>1Bf# zyy+c@JeV<8$H?_AEx+bB|K1HfM%L7c2)S;e3h|AEZkj^Nbc*$2Fz+8`*xYfELM&K` z(JO2`lp50Z(xqq=rI01SmbDBCl8NV!2bNY9zaOisW3b3^H^JEsh#i4{dd}wVzMVQf zFy?H9^~6Vl&HLPZ7MG!hXd@g8SqYEJ&gvz-RAqES_j#&Un|>`!;<%8r8Eb8`&=Ebl z3(fA~ZEb-c=N_wnQ)kCEDY-Il$`G}9EK6deGvBSK&HGQG-Tia=oA@d&ALHW06`-xB z&5SYDWSXh8=BKW6401Uv0}mb#=2>3#()k9Ab}g$^+`|2p^+~t-<t{zSB_rf*Re8~J= zjquLtZl?pMPCD=9Xpi(QUtns^N4?S6qTSB}(6_!RN{u#NZdhM)<`O;BuMP?*U$eJ4 zkhXwouaXym4K6L#fIA0cBDzQM7QRTpPgZJBf<#s9p0Ul0Xvi=wvF2S}Pnw?FAy-{r z+K#;#KhMT!HOn)vRw-{pN^JbK!{e?xSkCyf2tt$A!#g2SA4>+6;}2D*DzkjB=ObNX zB)K*<=xkAtChPC0cbKyj8d!|+M8r6`AwpBPoRFXj-&w_C{E)!B!YUj`t$GW_G?KbU zG4pv!gjfzb(Wan%6v9niIo#*BaMq6l!zn^rUJ^tVEIt&i%CA0 zi}~0`yy4a}s7_hrb8-YOQ=aa!XqL$M<4Kdp;S9HtKX zRyFJVA?>PfVh+bGV)9UE`&e54ctqq7TX?L74N)r|K=ebj}ZI@Vmx5tI{wS>eh z%mjQ#@Ji8h_-oR4Vvt3MwyQ=I$lsO_;rxYDr{=F--@WDw|@AN zhG57}AUUEcJ=oFv6_#PTA)51`);^*x75R4iD4Z)P{@eN0Y2B<{eBczJ?%hh@50H8< zEwTQ1=XKggT=#Jmyyk5{F+=|-1mE8)`hnn>aTj;2k8dG;Ea*&Og#2K&aW8y z6pq=xsOk}O>+yS3jb!m$^I~oJFyTV+jbX0-y=wUcr{2;zb+QuVhVJbD1F1DeJlG&j z%&d4Nub>yCtZ$SZX+cesq{SV712^_ccvA=Va|%-j>DD7Pem+*xU~o{1YnNo? z6JzLdIF?9_am*fRK|a2Fy?Qj}Rue4X?YQ<&>fWyK(M@<9d9=uN z&P**VXVId@5cBBUXy%hcZ@Y~mHTQz+X~S})DA zM(pDp0%%K>xU?4uB`gU{L9h9!ouCdsT_|e_q1nT7Dm~*7jlFxnHsC<;{@weWOItW= zI4bH^^(g`>g;eYFQ*kC|?`m8;UV2{M7Y`4UXs5Habvn_s25LDYKG>81#tIcgit2&u z20L1=sIGs0pFSGlR2XY9hhCF!!y z-DjuLk1TC-PvT@U-TBx@H6-0RcEn|ZNB2iY0yIm17SHe_j#ote0#V0JSrZ3Ac4;OMqfA+CsZE$?WO2BJZT<<($9LAQWdTaG}!3hBdb<*CqAu{$7sscLW9o=0~k5ws0VdjXf2>m*_+h znkG1h5NdDoKbDxug1JS5MspnC7Hr(`j%vBZoZ61FRH!gI)uH5D{2Hx25&Ga?;AlGO zwFU;FXV=$`_ITh;jy{D5iPTpb_l<}agSvTc;cdgt3;V>?#*};A zAywsGW5gR3M0x0`Ca6?Sn-2h_6w4WBG#W`&H~`>s!%^LWwS&WNK|lBs^~QgK@<^nA zWN3?6283xk%ZZmojS>r!{;os2EG}`s0}f<8m>~QU2rRb|VttY+qbmxxs)*Z?;0`&!0b#*+?)3*_Ut!Cnuw| zt^h^sI&`5$^~e1#zrnS7CMuf)la_5A{=FOM6BN&2gP>7Hs~eMP5;-F|A$Yg9%+79| zq)i-%n`KHm_N50KySoAC1_je_tGnYl(9S2VH(%&R`}=jCAMgJ3^sMdg4*>GQEx`GI zRA@u%^@iyH7&UI$Nk@kiOm4{qj0{vuVib*fu`yL?kKOT58RNNu5BGd5S)ah8kaw_>(hi*l(l5K6rF=Q26BTU{z^rAzj>1 z*f4%d!44X&SU<(*O>P)?N5%5$BUB1N~MW_9-z@= z|HH!i zq|Iilw0PH6yjod3E~!3yL6v7Y*(S!WZwO$b}e7k?NW}F0>a{^K1p!-HMFwdcNIn>o7Dowa|G|`3_k8$lV{i+^nLG3 z)p|5McU_8t%WQ6bz_#M0p+N?-k(8ruZANWIys{rf!K0s|1NGNaRO|P56E~t9@hJ&t5w)O_OLJAN-TbTAQj5 ztqJU$K30)E^O{BcuHOE^-DW9^VuI0I!M?_d^yz^r@PFC%7qG2bX*mqNoV`73Qc_ZG zZtgGIg=QxPnPgTQ?eD;MK@}emr1UwbQ=7f3%V_l^KeOR9B<`h79crXO54LAp@SD zn3OSK#<}A4GVBA3fX8Yal_QJ;pxvHT=$l8B)@2whfYeG8LhWn}F6CN!^Dx|4{moN$ zWwuaPgJ(q*D_5NL;*PD~CdplLqjAxlrk~D`=uiA2_G2c;)D4S zm^78B)xYruGt78@|5sp6=)4wydkbb+r)SZQu;50wu;7|_(QcmKj4WHbQa)!ZxU!;b3goC&U)3(RIJoISno@n{YHKZKw8xszdMA@RS49*_{5!=9P5%PYqAMvoC`(WJE;mv-RSatq=a_*+`-{fv*pAjya_;IE_9gzmdxzB7bo^i~d(B|n@#`@_9s^-15O3f_GsE}m3TZ{>|dqO?-&&Ep(-m%hFUz2bfA| zB(cdRBDkY;=lNA9Y{5joIQq2OQL|b3m(z@1S#$&@xSe*-vR|6wdBewnwwqVLiQ#Bj zt24!mXjNMw&tf?kodW{`BME&Er*P`>4@aNF2(i^(COhqOrYcbP$(u0UouUeUSzd^d zES2G%X(q;Kqu0m9V$qZ0t@o();mNbytUr3aiH*ImJB(nd z!Ld6t2rYK}XWSxR%c{D2{dV#g-i!Yg{@JOX!0s8fz2`_(TUGNI6{zj=?P>(}xB?#A zSU?Vz#qeT}#8<L~n^sZ9E)TonDuiw$`3@17&HIJOZ>0!Cs-f8ETWew+G(43|mD+lj`egRCZ zA~p^U?(UubdUf^_$y)fn*!!jl_?RvbLYuK7flB1oP#>A1mi^4U+|}QuIV##{(~D4d z?`ls~%+qL(=EryQy1ll50?Yr7_9A{$jp=@zY{K5=0~jSPZ@~4b5XwmXf%dO5F<#Wa={vA+9r4d;9 zoM7yAY(XMfE+%M;rfV}1CD0GNvj{C5hno)$ty~n9=y2@~QF z1y-P6T3~vMxR7wyHU^}g2&?wuG^L5ALLwZV7>lh>TLQ&B=VTHhmCmLHHd6azdVSY> zb*o`cEBlDaxVVx6ka4r8RPR460n*sxP5Vpj6g`Ce`PtN2O{zJO9ZeMywjS$QQs-3- zm;lhT=qQC)-Rq=1H<7lBq1(G4DyLuwok1rc)`zBiHe15?uKz3JpuC_BY=sJR10ei( z-mW14YGz0_6_mffe^hF!d9em$+E|#nxOzRhx-8H^_G%=(f;Cd}o*QdR(S!=b9K5#% zhTWkWce>8V^I~_}%*C_%2yYCjWsl%m$L%=0=kB($iRaFZO03*Ra zFmT=!7wnN~)9&)=ERL}aLuS{u6|Fez28Xf>6^M?cblr(OS!9FhM*|*2A8e+JQn?dG zA3`I?p8eu@Zw`nZGX^Rgq=ZSShYjIYC*%Z%A><;!U13U+hOkTlSL_^6WoQ3$kyj1Q z-BDILlj^640d`D`7EsAsoU>xq^o9AYY@PYyuwXdtTmDKw$|n%J7H>w3&tfTyN-vke%R6*}E`?B1S+VG%9j*Hba()G48x*H_^tS42Hr`O5zhaG z^V_6)95qzFbdv5=LxQGjA#*cis$53j#L(HxZWQ&F1ISmbHT2A-U!RHYHNO+JT!mD$j>J~ z-|!GPM`u&n7wyR9yFRD(Q)`dZy)v}o5d}HuMT4;Wr8M+EIlR7HG&0b~m@Pzj1Dm7% z3${1lDABm^+3$V@RL4Ogr$zayLqKQU-pTMP8-ln>Fp~Vib&Iv-Dq+Qe(d@NXe2$M_ zn|~AEJ0fBz!SoT{C7$Fyw@HJo=J|(}xOh_LrvBx)_&YzH1 zS04gIJvqP|F|S1iDI!~U|H`+ozGI+XXW^z|2iLwY0pl&_JG|Z9-7f&M+o<&kcP^9j zz&VoIPAEM);&R)zeZ`-ne8|a_o68!C1uc`KO&RN$@E11&$ep&w|Hhik0Dc|H;S42Xr?78f^3o zM^a7x6Isx)jZVG69AqNv^d^>Sug@6wfo*$5PW7069pi8pQOai841bW6{dtnrRQp+xZ*1)wrhNPLKQJ+2C@U+2e!GmSX~>WTFh~JA zGH3kP63m^c-T#io(K&-WDPs&%1 z;DUlB2W{*N-q@U(t)yJNlXPog04J!kvlGO8z;;(Zzh4)IM19#Rbuy-9etLautc#7_AFduv@$xHHI%m)N zVHDLl-PlT;4*OVX+zwrHb4f4HH|>gbS}7iI=Ija2e(^CeU4RrU^>BS;@t=d*<;cpt zdx-@`KRCRoHV1U2dT$cE>WluWlA_O@(IsS)3mgnb(6Y8b%;Rq;AdQQ$n2nA4C%VSEj8KRY-9xbO2 z)6m|-G(Ppu)!6mimF(UW$ZQxJAJ>Rg${EYic`p!VHh7=ldg>h6blc1moviU!xmb4W zE=Mu!#Rb7E^0yAVmPm+ePDx{~U@=Q(MK1su!@!(oDC zHZw8s`tD@EZ4iN#mDPN`Rivg?t+M07rDjLM0w9@z6LP%>N>)U9mk^lJK0$k}AD1u# zIUeT_1h`=Ug)A$$EyDHr#nB6Pe@=5d8!&Yznw_jDB zQ#z5+r;pez3Gol5z0aWzK4;i4BeK65X{m z9UPbxv2X(UA3r4A-Fc-F=(hlGP*5I=+wt%(O?gXKgUv?6!*TP`+x%K{B`8hL_3V@s zLI`tqVq!w+KXyNqlmAM%)LFCvcd5*tImbch_y{GAqjLXR49(i!ANwuQW@m1vjB}wE z?DKN$9|pAzE^F@4JGWS9BB_7uEceq?fi)=IOWHFG@K&mT9jFIr)sLX^Kp|iahV;T1 zWMYhV+tTs0DqVn#_o}0~yluc68a7eDiyu(#4FSFW_U?}BqhX4HD>(QqfQqV2`vNd3 zXMm@e*AhbF^%pz`;zW4Q@Vp+0AGcw@WrnP7vPuQejXbo(gOqj3WVu2As_(pjcuiq= zev$VB=a6eSnuV+7YzCVDaR`oeg8b=vxhrUFOyzI@khRVJSioBK1vJVE-5#X3 zZ{J!z!kmI8pS~K(9RP0sX^m_)iY8ErmtGz42Zn29bJZoLCo39vA!j`~k1hT{O~e+> z67}bhIX3-5c=X8@CK+_69{?;lH2ZcmjP9%^^xOdSN4qN@@hH=l%5ZDBMCGk*nyP95 z83l{S#Kz&DMlBRAWW^N4nU8i9GbJkBlo{^6fOZTG4Ly{~h1sep2Ux>+oTn>lZy+Lw z63teEQYCOSG>n&9xIh^KAzqi1(AKEZWw@Werj$)>7+LYYqSkT)ePr$A_|It_MwqEqD5DAaw=zJtwFR`}_mXw-J}f7v z*^(e!Xvf%#Tl^t5My2D>B0sV92n%o-q&0}Ty{7++RqMRZ;hD@fvxg!W9(IDOq&r$_ zP5=snbHKdcI66AowI2As2V)KR_)smtvs%u23FF@U1)!uafOKIA!UF;91Q84bq7rWJ zR)DQrlweiWg>{|S9l;%AaKnzE_r1!<<~gN&_U!iYnMuv&M!vS)p5woA$u{DPC*ke} z!5k9Bv4g&;*l^Z0{X)78cQ*FoVcl9O=kw2u z4aFR%tHY2qRbp6Yd)nEvy(DhvXjll(!;DT<%z35eX0264aeruJzSbK=4H%V zSD94KXdnm388=R3F_JBGFflP%bX>4#XlnWguB=q1ZZee$1QD6QV@iHh`T{|bhLbr+ zF|VM);X60fm})(tuzUWoZ>O+VoNzQqx*kp;+Z(NCQkZ*`;*y|Rh{b-D3key1Y0OE2O!wu1ahd{{QPS3 zIcBi^Vn722kZmB<%AWiIa8Mk2b;Qp*BWZJucEDrKUkg0nl7SppGQ5EU!67-_bdCiA z!c}za`x8TB9A7=ZLvu3{ZvPY!F=D8mW)GSE@>zVCjg9IAwO6IK)?0+wD(9=wr6}qUrFJI_glP^^ z;6Q45MFqNFCzN+W0xm^tf7ux*vkFv3n#I5I+GF2ataQysk{V(+oiu%Aux3nrfKha7 zS9X)f3W$&9uL-+c3tu2$ax#KpsZam#Y);HlmkMKFGB7`qsAe`%FNyAY6h84KFAwyZ ziBVAZ?-0B7(>`%4FK#oy2j|$ZnNdgoU#gj9G5FH-KZOTiQkRbege_+f?;O^l8 zDD+~DddSGgpJ*R%C{}?m017f75Yy{F4=rcVa4dDe);Ko)-@(Y_T=kwqY<6Z!w92n$ z+KG+?Mst3yNW|u9F}+wvtuOG4qgt3uJyde2Z7nWIu05-f;V3ZH8i@(ogX=9bR_yhD&sg}OI;lB-j*eZCP~Et#O)z{M1wVC~pW?n-;cQiGm~1{7 zD82y2IyKd@geKPMXkHZLOdulD0SX~NH@^$<^br*m{rK@?R7{MJP30EvAP{VVBrj@c zxb2`}VO~wikGU6ACVHe|@C3k81(Q zXKn6WfY2^j&fsC(-tvEIH0d6@<%GCUwSRpzZ}c`MA}fwpty@#G)RTia&-*Y+b0~l&?^zaRPB@}L*L~{P`aIg#b4JAD_>qeXANXEs zS~+crq9QpD4gm8mfItgKD|^h@Cko`rn(X(wz?cWXE{hH`8oW1) zc38N$7nc)qIa8)Kc6NF|j$jWoLi%l>k-mV4?c~R>v9MOx*M)$TL27wr%i*i&TnW_S zO1pqsop~0}8r3CNsRPlAzM)|Z*iX=%mXGzKu5yz+Z9xs=6}u|G!oKZpN7Shc@@j|t{vGBAcE+hDWHmww z;~h`z@DSbEW90#>jnT!ec0UupnvE~0^cu^B>5|2rwVb3u-V&7`qe4nvrz!so&a?KA zFq3JyD^0^WM2_)Qagd*0#p&!|iOX(#?0;L80wo-fuY3V%9go+UQOn~Bo6q&~Jqyc4 z$P>_V`DwPgYE-J{jAv4PDO`~n9HE}#!B!zi?vJ$#r4b^7V!#ppzd z3JXZeU--&qZqGJ=Xi*0o9ngWpMh7S-=1q& zf)$Bae{;6xI!uM9p#Z%4+cKUSFD$^_hhIpW(If&h@dH)Y17R>a7-oZlADYwU{3B3=XNrd6K(aj;egST9cMzHp2xtC* zN=t=M>@)yh`_w%CyHgti6oR9vxIp*;0x7)78vne2khNw}v8l*;OKF~j6tvyl5t+3X z?xCe)cGpOlI95u(!7Xw+cS!zD+3$xPZCW_xNEI05`0}OUkJI}`AANXz-ZC&X5u(f0 z<;qo!e@QXebWX3-I*(V4k2KJ}3(*R>gYhvZ7Z(OPddE-_%lN?+5NC(^z`hKx0lcyo zNXN!aYwh>`1%L!{0W@p2+e7%oKr9UfUg-mnndY-w4F*63njMdHms?zFtX9&2xcMz6 zCPbeGly@J1Vg@MNq6A(ZV}Xox-ZTN&=Fe~^8D5}_A5M<;xLuSD(sr1CV7(gs+cTu* z>vtT`fUxp2av&5|Ejq?R|GMtmV-ugxuM!vt?gc^Dtv22tAAAi}JGkfKUVICJ*cNEr z8SduH+3kQ}S~iul69i4Ec&+7SxK$wXTLV9ZF`Ntr)pk&!p`mvhkpe&JEr~!IpbIPn z`49oBkghzLltjR6FRY^m%kyuLwkL5mr?Gd1XXWOsLeH!7qkDm~8*Xw_1QRNTE660& z?R+a32av})^_A{+J|pEk*T-pQlp5S`JD(S=9R-2b4T4oPp0qs_9o1*B^T0H?-`RQs zF|ooRMBfU==TMO5Ka&5xpwy8PQVFM~s%MSrH*69AI7Rtr=||3>c1**&i(EkA^tO;1 zJ}sU{)!#-ulrbV#{|t2U+eh5P{Wa>#YVKIAVuLnEua67VJP1B>{I?F)Q1;s{(gnE? zP&l?h&Su#AYQdaz3#xRJ$pQ@RMn!dpQeV)92b)p?l34|o<;y!1&8QZHwi6RB;9w4tiM6{wK%LRIYAZEq9&brPts@a|ndP&+|gbnFr+w3$k^`Tj`j( zaaR2WR|{(vgg9O0=}$G6B1xvDY*;8NDr$-|cVa*%loyY_UG9A_ zQ$89kAEx&aRDD+GjZfb0-+1xf{o4!CYU4T6o>Ilt;$5>Taot8)8J|4(4|wJsN*Rn zE#Zk&hvRNwl@#M1AKlf})dyN|tyK=Fn;u<3ymEHtR4qL^#?q@6_yj&w!U!a?!-aaZ z%uQ4tF0SZ=1f$|5NPK2XiKV$rM;s39>@s?nR+)t`>QGCY!i5PipqOl^#c z8P!v3L4C6Upij~9ys7xsvh2ZPOb}}j(1`Uxz9L_7;Nju9IBq_Hh*XGOHZjzWAQnK! zHDMideaDK2D5d51WT$iB_1qdOk+VQVq*JRsW@bW|$!w$T7V&!v_|dna6}#k(LN4jY zhxa6OTwR%JLcz4Q_PL6EhRV=xZf>#B(a@iN{J?X&Io<*%ZF6&xlfw>jo0byCK41#Y zcrSPQ)A#V>?UiOC-&^Ll?}#*N|NRfz8$aX9F z0gj^|`_ERT3N)nHf@DIdbkBPeP~Qnb;0XcGmQqJ>BSOK&g)@V;(Gm$ebWU%%nr8no z8(w^8RP0tW$?S4H(`x@{jZN}sm-x-dYUBXV z{2Kd|(5glL-1YJH3}_M)Qd8f7l3n+|!1}uCCH>d|-Js|P|G z<)}D(jMJ)1*IlY)ohFtuqEp53YDT{PLkN*@%sBJvhcP2meA}A`FF%VHgrFC(y$9%mb1O#`doZU>c?Eht#{Yx0w}8s3 z?b>z;1qCIPP7wtJDd|QKP-!XYEzZ+%$FxQ2NE98bdA5n&4AVa|qz(<5*g?#qZ#2fXY7-H{ zsJM*A#>Ewd993}~ruW?cI6$J@T)jWp!CX3S5OjdNmZCcHxx1OM_uJ8jZ5J(_l1RDr z5WRE3J{Y!j@EcT(tR*klu@)6Kyt1&l&^hT5FLasoxSHop?LHm;Y}#$w8{U;;4`!{( zY{_iZ{@ldF#l;05c?WPkkcSCjqyWSKPGFguKZLN#vLh;lW{SFccO{gAlc#fqmQD+< zTOMDNX|}M|_2o04$&c1Q-gTxY66}kcd43ag_z%0)Vn0u_txajxlY6c$K71UVF8(F3 zD<2I5m;(rdW_4BO{(V%FlF{h%wnbVoeEQp01F1E{E8Nft43jg$cFtb-Drr(uPF#Jj zUIwOScWiRq)#fBcx?cyC;hILXG0d4uXHBk>r`F^G1B6&XIo6a=^C<-1eYyRj9q?Fe z;C9(e*Fk}CQyeG{a*%I6$4`fQM`OvHib}pxE%|#**E@*y1C<~3QG-t=%|;@Wo@ksa zmX@i~is!QAI$b}3==NgzAOjdKrWb$ycs3#Sv0qmejK=r?pJ@%Fb%8o^-|}50tFfgeE7ISvP4gY6q|_*f3LiMpl|XU`nzX~^%oGLIN(xCu0=Z;C_0jWS<{uUTr|$wO^ye z3!ls6dIM^O>xR%CIV&gR7r{(QxmaD2PD{XTFc2h)tSnpK0lxdg#CO%Ohu1ECy!rHq z<~Wl!Q455Ne!=Hb1hD|7!y)fJ&$@|$I-yJ5O?5p^b<{s;=)3y*-aJMuCU6Igl?cpS zi3N)$?6CO=Iwl^}m|qq6=>6HPQvY0N0UL__9{7nG52Em1ViOo4qOukbn}yW$^y|a- z&qX3)Pw8{H-s)aG5xGF`^l%*GYz?hr(l1R*N{XIQ^q=pL&+)|xZTLBs+IK@iHah23 zrlVK7GzDc+VL0MqfHRP{fQ{r7`|UAd)lHghf=;TCz5OCy;@287Hx2zhc*2iSbvtD_1Y3TvqU(fP`dEWB-DWx-EFJc?V-g6MAYM)}foI=0m z#Lv&Ki1GL5=#$@HDA?VAA7%h z5^d~e(!i6axYrpO^dS3TFe3^G>MmhnrNL1IoA_|w4Dxw%#RTDA`GZEKg>zq)=1j0c zLVjTR;OL#>_rAV~ooC9ZmwGehsfVBp4m%75C6c7l-274BXp!0@@X1x}*giDvNZ0A< zAveK1AAd!HYA_QD)Xc>pZ$5x5k@D|9K>6$nowlY>%Uh!*w*yBnt%&$r3)KB43<+8P zh-m#F2}63dKpnAP=)CiVg_${c%&PJ#^jFC^&Fb2tmD$iqE zz+XL*mp27}{S|WVx3RG#SlHO4>;@0AilE>Ff)1z|de!TpOheYX2npFZNMKa9bdV=Z z|DweG=WKXsZVkV1^;SHmrv-V7uDRA+eolQMc&JZtax)teHrE|96gXe1pLE#U*&&@6 z$c~|Sd(Ws94`~w;-F;dY%WeqF64|(IV^h%QhQ&1#OF_$#un(oPmHaz3h@P9bLBhJv%@{3!|?U)P7>fSZjZEU zkpmc4TLiss(Mwnn@Sap>&o{O-F=Yfq3+vP)_7?3;|)0I@s50`WeF4*02Yf_1G zVXDac@-vT=p3kYX3YZJwiJBskc2>169TP)5XzOt}^pcHfi+zcq>Dt}Hv5S-v_G9$Z zN;&=P6AXL>t5t)47^k-$NJ&M+#XWlb_;Fitwc9>WiLPTxf_zgffKjo4NAT-KrOZWk zCJj#dXmyQd%L6o-!4<8JU)lc$5?pB8tMpdtt)DXHkkoq+%sLi)|mXn^I zvxlrvk7H-Z4xZL}2!T?)9x7MROh83CZQ<|Ud8MRKvsP`Q)t>B;3kwV5gdl=TJe4~w zd{+jR4%y~Jrf0FUUQf5wZ0;+)bL#G!QPD)?{=)A3+1b&qP(Gye0-zodtB#D04pmDC zWxCVGWXM%jX0;Zr&>wtcUQI$Dtetrjl{55r7xWv{a-RvwvN;pM z>&4sZ*Po;{GoA2v^B#XR_v9}CWOm_64y|A@6*SEFO*w5>mObWPa9W65F!Y9ZNA!2k z{?;Y6ctJb)b<0=1{4w%8jkk`C^qVOmcqKm|RZRT5BbT`x4mESWlR1Tj$OG*tDYc^z zlPR(dhe~2o($!su6H$*~@PWfG5hPNhP>0iORqpS#eAj}8_e+eX{mz@iZPd4!@S*6z zw=ZS_Si2JPzlWLP&#XRo^@$~PnNs14WRw)@m!>}Z%1(KekMzxq{`0o+ydD|Wjc+qc zUtbQu(d+a#E=WHr!ksK<55ejA_|J(~rmSGtu?A(ji`|n9rh5asBV%T#F8Es%sbAMpD_Z|{nsm5zRMqC2VzrF>iGZjP5M`p zP%El0gg$@8KcOh&&-wWD`ovkq{Z)QA9%=r54r0oFy4qzMtbwnOsW0-gMwZY|XWnPC zMw|O6z|Viq{D2)?Q8CcxhYh<3jX=j16GuC?HdKB z4V}#{Uf}Zex#AF%lCk}JfBI!&dLt9?;*bypFN$yygGvY8eM)?=az^pp1v#sbkZi4g zu4TkW6_YY0)wzMr@qrMA6>3Pxr+@ubxG9Nwau)?XP3cb=P{4}+abr=av16cq&Gt7o%2s|Y8Ce*7MK8<8krqSIFH{-`^TnwGD0 z3U;X#?OZ9AA$mfHGNOu0N>E`_wXwN%{tk#nM@OAqTvVI|B&sL-i(WxZ@?Qv>jG-?; zPFx!+jVaf5S!vgR%~9gPg9{*80`2J!7H9IZA8roc|I_P&1j*5n8!{3zPC}7%`4AM1 zN9lba+0t3y&r{X3^6AiY`tlsOn>iD@*VKZB75{gy1k&U>-^w3%=Q#;Uow9@niCRtr zvan#YA_qt*qfC?kiH1`^wnb>e6%Ka_+J7J?8C>^#(;$3nkt=krY9TCfSdd4od;XFh zmjN3|ELfE=eCzw(2Qc2`D{%Sed&=?cSfmh*I4DO+_|QPg3(My}eNzA7L;U~vSFi@W zs-bxm2h^$GP^;W-XDVQW?2^iLi3WT!(#?=A2S5QSXMyA2KEgdLu;@UWI$jy+3?%@O zi!(lux~K9EwkS|nN_vE)K_n^7yfIP91I*O&d_G`1!s;lLa6Vrh++pwDi2{tvzZCvO z9n>L1peY1rmw5@F(EpF5q6vqK(~$QaKxr7sV4-Dfne_soXx{+r3UsbyKwHwu#44-{ zLbI8Gh$tFibzb!Xx+#d;Zg;%krv%CyfuP!vXbMNROtRo%;5-ys8U_ak zC#?|;8(x|gh(7?Z8ra#{`D98)W91_w3Y>gh2zn2092CJbuowm;EVS7T*+?LNSGzm>e-PE&UK~~(b+OJy+njk#Z369;+af@U z9e@aC8<2K|Ms3%iu_6mHLr9-zL3uO_OUhpFv)FeOI@(xSFRX0RK&-yFE!Mj^9%p!1 zAW^qfBJ@I-eBC|vwzl;X6O^D$LwaBk4!3r6Kuh^80OH~x`fKs-!?N{NRB08!jLW=1 zPiWVz<*enLlz`)}t`K{&(WtEa3`@v{yskz{bP-L?N^cV-6mJs?y+>g)(8~)0?>m8( zJLPXVf4td`PVka33BvBKZ7U#do#I!HxT~ zzv?roWp;-F`yPz|={Dq& zOX1{KnAVbv-pN<9m+1=C7Vll9G-{Fu`C`hGxZX0xa>bh&#y#v_<0+UMca2Iq`uGgp z5Er`o#=wMy-Y1mU>D*Byc0a`1-r)~2tv46MlKZLnF2MBEd>lKXH!i4s{M(16Hb

zV|;Hd7ukxn8sHDKJ#Dp}KJ9%DP33+@>o-@ARndxZQ|qsYew4oTT6}%st*QOHBL{4n zXP1`IpGv^FxVg0zF6`CM)Lz7=rqasqJ`*sBANe``o#TbuCnSOFrK_@^F*buFubO$0 z_2LaqZM}73?lmho+P4w1jNU$0<`nP{EwLbb{C=KAXrZE-eK!SdGK}zt+Ls;|!mK^M zf=4Oaa4?j5$h_z*-$Bha=*LuWl~CvS*blGPacE=ynt5>{N|4$=ZM7J^f2m%C42?`o zFCDulSn*|=XwFa9kYJUu#7fEgwN9xWC51EgBY$)`*_nD@4wL@zM9FJbb=Jk{ap6*Y zZtub2(VcU-t$f!oTd6w(7ckfN2H#5SleNE@w^{egsFN0X=EBm+=tdrlbNowNb%_gY zia#~aq`<9oN*#3R5 zz?&N06gd?7$JQSa(A$sHR}9|4b+y75IKM3^#dv}BCpXb95?P>4ZpE%aP z(F$CCu{W_<_oO^007zY8San#iCI$_4Dt7}J8NZb;QG6T;W+;EeKzf-0HWd!k+dm16 z=+bz|L2h>3zNR7}ogX2>qA$z5xO_Nte>cy!k2c(R3}+zIx|S)QKq<;F++NdqMJaSv zaeJoawCn?Q<8jAC?E1-o-AegNteP<5+;wdjJ?HTavM=^y_I7{3o$eA>3}PqYuw_qf z8Fi+Lx!F---_~Pl%atsV9-q%2O3HjFS2IWE)5?A!#VV@@PKk0+}Pd2Tp4b~ZcMCH?39#o zpKKgo55wwVNKH#P%xk->>-#Dw9SA6$-W2MU8=6xM4&sFVi z(m%6-TgJcRG1x-EoMtYvRxPJITPm8WT!FiF7Q`jA^E1WADEl*j|=~0nd zB)aO$Cf6{GP0ZG6OaC-fQ)`>w<(p-jKbQ+Yv@$vF8UIW+bXax6bnVfzsc3eIlce?k zGcdSCRhovyfHi*VpK*U@^k<RVb``rg0)mQTxTNZnLhUZH>Hi4@LiXS&CGTV5B_;!L62iz9UUDo5=7p$0Oc*T^r{Rj|IKZ` z-tnwQ*emmDUo5szU!`l>vm^!ZjDC@WW9}1ia-W7yjs|@%ndqWlHdm@ylBnsSdLO9* zi%TB-cZbC+QLC4?JPp43DpLmq-VZPU7>GaEMlh8CSeg+nX zIg7h0b4Q1U=d#_^B?7|gS9Vm4axu)62PLXyr->~cUN~dw;DI=C7ht|;<;U25<7qW|{ zNf^F5z9n)&CGcOJpqvOIwdz-^+sohIfSz4FG$8^;Gwzk8r4Sbb`-4XmT=qKyw*Mo3l;vr(PE&_rC2DW(kV(w`& z!3qrIONa{|Y6GU8ecPWPxKHDN%#)yNXL-c6Dx9F@?UeiT3#El^p9PqjelDjq4yb$1 ze3>8Zdepdl%fIR*>!3m)CU@U%@aM`ezo3Y(MqkM@)Rc|KKcCd^)bySZK0QYJ!>pVB z-DUsdFI-hpp6A^K_K9=j?66}N$o@f5^{T8C@WsS60WdW(@BpESBeHt4-WyV{7w`hp zQU@59ScW*~DM(<+-f|PmtnlDI)194d3L@n#)NHHD&VKS#ORmq1Gt3mIe`YtCYTvC@ z?>zpdL0cx&Zo*AikA}kq%&hRew={M1&EVW-i)KE$^^w2h(i@(>-ZF>4}K0oh=Y# zC8(1qXd0FcZT>VLx|0MZmY*vNexV81!M5kjXYr=%Rar^7-(khiU&`si20YQx`vB8Y zERG1^Ekz|+T?&8@qy2lCXA-jSLQ69U%8)?QMYLmsX&2uXDiB;WttNsm)_f1%DK2AH z^vc1aKNdb0v55yVOsTPC-o;tpVwy5@VJX{8)RmFcp?PgMYrB8-R%L2zu8%?SRxkj^ z?%a!O7LvkjYRzB6TZoV1`pXCP}jNow^?22k}kq19?-_9=OV(W)9qI zpvgImSXD*vt%SUx@!ToCH-lihLp0x zO3|kkktSx=s99f6u^cx_$}s4Nyn&0tvK1nbs0VK7L@Mn!CHe5s_BvI4<79>^xKfNO zOVaPvX~1gCp?>jJQjg)up3uRoK^o@F0Dx^hDZv7Fv}jFV=b<3&;`Y5!PyUk5lS)4G z%loz&(J4$|#0}VTqHXU9X7Gf&l-L*9S0nWlfWP*Ym(7N&f*e;oQ|B3ST%Q8mC0Guk zuwqkc(Pcv8+UGeHYRa~@?A@+HVUrj)tFMxXYxSk5E)P`hs11Q6_qf{V;#G~w$In8- z2I4N>GM)oU&D3H^xx^e%9Iq=~Lb_>j!ANF_jySWf+D&)uthJ5D)hJFNj>saPR{fP0 z75GV!&zc*oI7+=qqw=<^7~cbM2;-%N7xxlMD?GbzFMdq{w2II&x|!+!NKj0Mg}uZg zGg>b!22E>ui)o;K(B68PkJ35+c}`K`H0u)ZKg7RE751uRh}V`Jl)`FROf*NTZhD31#mj-I=f>;>M7@4RJ9fak;= zQ&!^g?c<`YAlGXUjU@Ik9eKXi2o}@!7sZu0pXf^c&WsgFTM;sVg;)6>)bOBLC0Sfp~<^M&sO7JJC3%xe|A zcCE+wbK6Wz40{FZ`e`_wv|xSQ5%=uy0$0?#j?kPkA*`WK>GBV{wNfnemnr z&-8{>s-gB-xN&y29bL{l^h^%Ecad%01L_nq?YHgg>nCrad=88z%`ENZ zZ;w$0v3>Tu_@|g{SvRiY^0h{@S)RJ?<=!>p-b!BnTQq)!NNxMmeF6!Zk&ZY$R#R6V z97grzWTn>n4|j1AyNz@WFe+zZ3sU-4GoZdIkks@!*cRo28~;FdG|!sFQD0F$^)A|k zb-a&4@H*yX7>EV;PB8LX`2Y2@@eV4A~GYg$PAGbMzU)Ih-Tf{2wr_^)LQu5Lp-_72yIX^w6vpl2H2o8&86AMT{GOhq7 z05PU;T(P8T=;aPW0a8Q>D|-Yb@CILQ-4&Saj(|7N0LIsGQ@$9sk%2gtzEcNlyoZaf zr_SZ7wcAPg+4E*kPpCeuzWzpu*EiIM4*{X}L)54D`!Ne$JDIA}R&#P8EBG9;`Qe2h zeW=5mw8D|j$!}M_CJXjNkJy76>c;IHuX2Iwag`kSAcvGFBi2qoSyr7&k*ueRm1$Dz z)QpR@WUu+oTaEdn*(nX2Y1>~n*e;fqEokxBcT)-#yzE~4?=-;76ms56D+F=VMqe9d zu5|pA@mMa97usQzbyto*%;wyD(x)<@<2PAOzwBsvjZUJam`+#WLxHo~Mfd=DkSrb2 z2w0XTZ|9D6!G)~u1i+$}{?V6P6y*{h!(Uj*X;cj3rpo^mtr*;A9rW#0WmlnF{6T$` z`e-sZt3@+bK=?MFQ*YH4U+Lc*!4T48J;I3dq(2_`=K)x~*9oWFVnbdqFmeMd1zc|O z1~cmyiUVct^1o|HL%+jo&IR0z#XU{2rLkKF@lASBb5#@0v1cSdCIGgFmG7Fqjd;G+{Ymr?9f6(?XFUefj8gc|nz)_u^^>ahgyRQ@6(t?79^v|cX z>zO=P4V7g0P3#F%veKN2wD7M0^HrtN8srmbJQMhJAZq3SM}?2CZ^2U@7Fr;?*}f_E#F<(;Op{ne+2e-qwc*6z{t2U-r`@W@oHA{sek$!!pM4B9O>T$vR!w1l6nQ)?6FO6;M_IGz>*T(Tr%liM*7@WPqtUma9gHc1&V= zCYKgu(Ykqo`dci_z}tzCI10aWms{JdzkM?Y`-K}SWBi23sFN-f)|;%dX}w@X5{-~h z5@KZq?eJdUF16<|JM!x)8Rs;3u|6P0&TbX3W9rY;z9xst4+^X;?S&{E#XS{DyGic; zps!&%RYSF4SIxNRB!#B=^WIa>*}E(9iA^mkJ(OMIB%|Cu{HRvL)de}hN*cl9#3k3d zl68B(TeI*L%>HiyI(A@CkonkGW)73iRG1tBgRIz1yPb5OezL@cXcTg+M74eAFuF40kcWzQWZ{(p%mVZ#I-lM!qLr5wM`AxNu-0qK7h2E z$yc)sx9@6Z?agpzNuW8* z4s%IR{z14M%tgqTot+*PkQDT3o$N^Y)+;Qy`2AB9JMV|HT8)*OGq@+b3b$bi)&2U7 z!_*D!4e3Q0b=O2zwPv=ZXuMxUV>cGps2)rl@aY_8GRTel<=;=idd|vMaQxp7xl%Wi zz=o_nKBB1Nb6CQI5peo2fCqpc_Y9k_yuzi%se{FF-^z*w{LIME8_SVG?_{Bj(il9R zic7j`I+P;;%msS}?Y)|26tj=?i{hr7k`~h4`KgXw=o1Y3%hy>2wA|TC%ZO3Bq6?mr z!0qSlenE|T42|$yvdqC}r0`+yt~WoMoSal!9UdMooqJggBd!uLshp7o4-<{ROF+xW z*uHKHtj||L5z%g74bPS31%&H%?Jm8#E1Um|mY(AE1NC@+m)|zS{8!A#-pXkfogKxG z$%>Aiif|TL(73Srah48%T{s}ycH-hRD7%+_d|BZ-Q>zA<3*#LWRv5pd_G|GfIk&RQ z75Ju12CV0401jTL@9|7t_)x=LyTRXeIuIww=f(q^BEgX?ZlHV3&Kk`pNmkK5+A^0q zIAkt7a5H z8`JaQ;_CyG-OJ5RS&f@R?^U~A+%$uCd&`7ivtC5%peLS$ACqA`J|Z;K z?a1X~XGmJ+#Ya=n>TL|4-t5`fu%w#6*3p4rgLX|&yt618J(dzEtmAXbNjWkTnE?bOJLm{7m>$C zOs6H>(Ga@DRV>^RvF2;?vwA@~%#M|bJ+`vz%2_?>M~mJ2E&u-YN~~Wy6~8=gEk>pM z_eHe37%zT#gn9r=7x7htU_d$=5FYMtDfq&{M25JqL8t1dgv2cgp_1O-T|T7aHxrFt zKRGaHvIW1u_V505nK6y=)HOct}G01DZG79P&S13s2;PeT3^M(fT z1s1=1hX*bSR8i2>Ka`d(Y03vnpA{#W|Ea9_(_>}g8j3z21`)M>`#@)>--?r?dB#BZ z4U{!m+7c|g*icTwIaX`$0CPVS^||k$fC-`l>R!l*DY$W#qs9Jk<9cg7JyE_sACrU$ zZI(q$5M&4hOU{H4>EHFtC#N1Ce0xJ4om2v=;N(R>O-g}beIG?<^f5A8^Z4^T^9`B!D7 zJbFJX^QYDGQtrfRHk1n1O7mWJGr`V$j)Q#GhhYK(r;sIh`8wSuY@6uQGc)xtvC(#b zz>63z(wtDQ3$FWQArFTScc*`QA@$?i73J5VXP5O(!m1tmsBTy+@S1!*iIZ~WuHOwG zVh`UY7g;1!r$=`0@NJ8n)hh1tOLGann8$=b{hqT|Ly9VmUz7jR zRUSKJ*ezBjm^e7nxuI0%<4UB;aT$Av!Sb+I|# zaSObo*C;82|CT-$z)pXAWovtzRLGSRPRa+8lK0@8U<{VMWV^k!z1RF=xhuYkh#vyk}C9_>9@_laA#Rlu4JxB&7WdMOG9$J3D76q`=1iiTPt`JJ6O~ z=E9_4HX1jKdCG(_PUr7t1$_0baPsrI|KSA5;!K|uHPU-kAxgoUrBf^5c}y+6=-Vd8 zQP#C~X%UMsIiWIzX3EOQzEd3&6LbV;#qcn;(WgMzCkG3-wYBvI1H+{xxfUSlSO+cV z6~jY{i1J`$8I1g@+WTPvEGTLiOozq>=N_G0VnAjlJv_KZo745+DadS}y$(%RC{Jig zrYg$5Og{>@rFm1vXFeJe+t#{Kx>>igMj_v2>ktVF#)KeIL^1Fq<3mOU3|-RQQn68~ z*zqv|+bfNRAm{l3)6ms}3u~j- z&Ez(wC3X#)MG6C~oe1xlO5H@TZ3||MYv`Pxd1J&sSq~=D*>fTF&sHRb1Xagkp|F=4 zQ!>k7zINqGTulRv9s36JJlnVCJItY^i-^#WOdZC@J$Udy0cLMPKqlRc%mq7!S$TIg zK7Z;wq?3(T?r;6`1c|n6nK2CMl0vI}-4q$syJsu|Jdz%ylVi)9k2rO2H3daTW=MT{ zT%f>#k>`s}BsOkCF@#wN1F6pB(im>h(ZP&a@GB+?xe=+TT*k#+1hexn#|a_Wd^^DZ z*sitTOm4jizt|wAh9yJUoh;OWz`!E!D2%uC@337Su;++lX3<=EF?UC)y* zoqQeqXe9XfH0~&HCeDrD-<~w%W0ecKe^^A_-9#GO_``r~SAe&?=r&z2kLQ$xR>-{O zHBTq{wruF1Rk*PrhqH~z0hex2eDtTYhn1J z!pzksyMI4~cx1ZKe-+nEO78?D_$=%=a(ce?4YOZT;PEnzkMI5dtSOU84iDgirKiH3 zJ(|~?Gd#szxv(5s?{Lo7gg#^2xEis&qP1>zUi8jPR0|UJf?L7`C=V*QU=)yTY{IC- zO_+B3!@xBM%vabTOo5@F$TR0WAEnm&jCm^WEtOEb)1=Gm)m2Nxi;4h8!Je1HDGZ~h z!q={an17?_t*mbw1le!wTLvtMusXL)E7@%o3}0&P0(xQQeToy?Y$fxmY^#mK5}a^} zvRIs%|h|^Y_lq2LN2bq{S#Oq*WMAfU!Rq^h01$LbSpN zas@{BDx1Fq(5ci_3-t5_uWr(i6JN*E3kuAXX-N)b>l?}mUs!ji`_^BuFL7E13$;)J zyLfJO0{E8pHaqb0QL_1HrvNT4halc;szwMVc7Xvb5TsTdfO654vHk++mgvgvrlySc zpFm4PdFJFlQ(LzhW`@&~nX#d+fEk^;=P`uan$MJdTgh|jc#6!)*6PT}L#Z^8( zNFMVtY3r~V<#N`aWO?Z*k4+>zij*b@;yRD5#qVlo<}OseU?(7v#lh0KWLr|yhA)cZ z>FEi;1;d=>Y-Y&C;Gl$D?7TGPZ>L!xvM^TDU_Nu*%t^NKgH!#u#XT*@KB*HFH4ln` zKmhz7nk}=3B)83+G)WzpD^c|9hAixv)SGdBtyXvd#}&z8;+Qq)*>>ScwE>RF{8xqY z?+_oy0x4j3HBF;zWcr8EJ=@h0c38B2pFX#iSeU!~!bAzVfIDN>sy!dVl~c$pt8eS` zs`I9FAMrxAo#uzQ=E-04UtsLuE1Rd(q7Ygmky-wiLr5=WBqf`XAKM0o|Bepn^ZH#| zx$i>tsGV@#K7kz56iVIqpUj<;r(g7O1~N_D`wn;91*-v;x9plbh!|0hb|=g%kEo+RFR&(HNQv4X*tdv`&BF z_&2A(u2r3T>Ci&$iUD$Cz?M~R{R4-8aQml!%~dnfW&2Gy1O6>h%Y@TI0E+B5U$t^?*!r`PIbD~c`kZKKxpPh+zWCSS`V|Yx z5J_)F z?3^+zOR=AE6M=d;HE-n2WFIPv4CQDd?VZtMr{{Nra6c9v_mTn|M!eL_lWIlhwQATT zp=)Rq4PQ)8xln0d8=n(=e$w-ci-<`PNrXWUF9lUsga-vXk>GYGM^w_}dn6l4V=O01 zet#5J+MBS=N99cZy5W`Dvl@=WLP5pGZikB;(I370l1={jWqscd7xobw{{#zr^9j-f z1i-SIj*CBxcCMJG4eLQFX^Fa;ka)C7+<^QU!i^{m zB64zRGc$;+h++TC+z^;1zRG8+*T%%1z}-3K|HwC?@Nh7>YNP-a7{^bFv0{sNc&`JY zc{(K>cF&U0Q;@Sn$YRyO)*KHE`QH#O8QzOS!ehvyJ|7->LKy(D&leW5LAm($?Tqh# zz*=$*AKx3|CFl>zByi^$O~8)dYsLw*z8Jxw0$u9?aOE|a?682aJ=IKas=&smNH%ld z@x|VA5e}#w}}ATfN^6AbME1=1{_w$XY+wF$g7?gVdo%!^wFQuolit&RbR*${QKcUWF->6c9g;|& ztr8zX^@%^}X@h#61ecBPj1bLNC|laMj+vBtlh69LU7{QH^#DHH z0AVk7c6K8pBfX-hfLtZnpLAn2DTxC(>KmBA%;|IhR_z9$Rlww5>7?h`*~Q?{;kFuY zt#aA!U3P%GsHm*`0LEnV+Ra^py2}Do0jJ;4Cx3D}ZVDnUF=`9vUqO^(X@gme;_|sS zvgh#1@x@05*7}A#+~lI`_Uy^_h#5vy_D4m6)A|dl+jkWi&+y-;MMe0CeUA59LMH*J z=HRn=Xc6x$_4xvw4?t9fPwx^CyPa)|!}wCjz%wSF1C$D$=o8N07+7`EfT9q8^5jW1 z1h2qFK!(5?PZiW~cmZ|iyejyp`-Ib~cTrFTeIkceL7`}>7C#NswYGq`DksJjk6u-s~T<;H?9-968{KVMUyxDD4f0`ts=@-$oEDMG05 zfCFo25WDi~73r2ImH<7emrW2XbB(gtJaRF`joD z9*Li|6`r~8Xr5kCTB#+?FVE*J2yqqSu=>^gHlf0vv%n9xR-o(b_~^=_bdIyV6p{6M zYnnxi0^LsNOo%tT!;0S4v+;$_tgPRtDch65b;S~Cla z(D-e}Db`{J<9Li;iW@r-B6oE%m-=x~vzjOpul7;9#SfL;Z|RE>VdQrIut@mUI8k%$ zXWtzP|4yHKp7Ls!6vcxQQL6wrHCk?On)d?cMC(K5&&>Xk8LUTip#Sg!o=DwEl86^T z3t_CfAk366TZp%Ch8goDFdrKQf^8uf=u8dmS)}|8lZl@wDQUj+01*xcWkqA^^5z8j zW><>d0`X}wJ_<(CtH^IGA8t9m?_AI`Y~~Z5is@J|T;y}jk4!f^+&Wy_d3!G+d?YTi zM*Cslm(;%27!3c-7$OVw66+~p5L(NDv6!n?_29M0@%xNPG@Ge5H$Fg#wHcRoB?-hp zzWsGc3seGwSEc={H$)dydAEhW=`3!L4qh|)Zo63bbe)1k+O|B2b$@YlZy1wLF>T)2 z<4()AwEFJuH%E0s=lpK@wxeeoK2H0G{tO0!mf155De*XQJ*59WkJ zSAV`e>KG=9Ftb-dRaW}uEKOF$;;*lZC;U-NMSj2H9JDEFmse)Trb1`^b+675KkD-% z{XD16}8G%z*N<;ijqh&eUcC?LSm7B1Z+_BoJ<553H8{xSFSAKw5T4Jvy*$aX9z zDx!dGQFQwiE<-;i8(TBP&Na9B_Jx~S`D#z`caA2-yACL%CiVBNF?b>h?5WaxZQm%q zm44f>U{kbWgsN+tXgUz~vO7k#h@CbinDh`uYk#;5MGTwQR$TWOWan_5k)4N zE_5(_``LO~1~+D<98vLZ3$`VnqjzFjyT%v*+`q*-YNhmguT)5~u?aV9TijA}>(W1OUWeq58U_bmf1_<4sFh6xGw~G+xnFp&E72zM z_H-JPZHGse8U&GpowiU$9iJ459y@9=C>=Z8I8zTT9~0d(B81yaGwMIT+EY|4($bzY zHh$!=M$+!tEY&N*ow)TxG`*VNex3HT+eLcSZIEj5s@ZxOGgOpp8m}fVLiOGltn19| zxv+>j6bVSSZoG`ca?|l$Ib+p&U+=E@z5dcqjAl0ThiWL@1S*?rZD@{3cc-UDB`A7W zZ|9^Y=K9zPpU@EZ{_YQx-3bl8ai?3%K!*1XJ5he{74gjKKd0_~X4&xgL?k730aoe` zGjrY-4`|9U?;?PSXTLmgEw!%r(@)P0_Zoh#HJ!6B!lxPMVhE|kXhK!c(l?!2zPV?j zYhvapsBad50gXM@6{vHLZ4(I~b;gEaE)BneTo{DE&uYNy+F5iSb9NNK)U# zy98?GM0Zf27pT6sIx22pU?6=3bTsj6s7{~aUp~F<^&Aq%?_9i}ylz--z>*_YEnI%+k!Nc_EAzB>(>lcFxw1fo;}zQX zh9vCxABWBq#12GZRymx;76sK`Z@JQ4o;@QqwG-4U%ww~-nNQZCV z<`NPU5)S5G{*$l+Lpm;0ETswEO8LXYtu1gGb%2)rv8iT~GO~U3of@hOA=V-j0gH0O z;p6>u@#hEoL9!ZAdl+Wc%I4O7I9ycB7?*~94*PzVm|IBpZ=WgW`5)GG9Sg+qRRK0v&=s6husAfKkc#-nTl*@6Qiz<)wYahkdG2G zwK3=4DE$;3G(VXX_U2OG^}+6kMgp{oYgZnqifm||kc@UeY+*y!$6yZZx2Yec2)Exb zM4RP3Bdy&?~uHRmn058zo_NfHIFs)PuYxs-e*LJF)$Bp z9Ey)!@o(XIrX%B|{3?tcr#aJLyYziviUW)PJqBfxxSn&5+>36EJl)#lF>Cqvoj8ZL zxwoVl`AlDkEDXCkh!lLT{A5?wTA~_mnrAt!ZNXv2<@b8&5^mpht9~_+p_h5I;~!eC zrP0e2*koS_S%}iR%z^)`7Y;bCtN?=N@+DYxNXHrc9<; ztQXoJZ-i=UYggAi(2@bW)l_l<)}`Y=!?g$v7~DZf4||~}Wn=Udve~d`7#;X*KBo5g zc8*#>vmV=lWsTUSzGpXQ-`1mp$+COAb=ZrY*8<01#MPNorC~Ec4%~ODLu5m+Rdp3c-W9kl`Vfv zfW+1W!dMDk8!zC%^$!dzkCxD1rSzkMlGpJH~wP7c{1- z^jdI{2##@m88Rn~ir~X4AG>#%eW`barRkV6SuV$`qp8opKO_^2opk41e%yTWNd*R+ zE5}5Lkwdh>PO7!UiKUU}qpGNoB$vo|b#lLVh%*P}vqs*|>T*pdLT&)GK|!I^_L2j? z$I;l7j-wmYE$kP&B?^WI@-%r6It{cqkk$#JtN>AgKC~22kf9cUTmv~9&9}ky#XLMJ z%pnTiW6~>SEmIuV@*bosf*xp~`vX1q&2KsGEZXr@JXQp*)l`|%8CC7~U7{kMB>37T zL=-b(&a2?GTgtUt;I;jQp6&Y=J4OKhYMg zpw`A=_7vOP#Vz5Gf?aIXjHqM9G^QvT1;3#wQYQ=~Q zIGNX`uoN>z4!X5z*Du=~+}-e4LBI6w-MijtVhKWt8R%`uQr6rLO#6O_GY!FBL82dZJZ%hBmjRDzYfT&5a z?%a^Cd}@8uM`3xTYu6Sx?p*GpEC2o@Na-RmSMu4*1T4lc)RkZC&-jB`IZJW%O1e=@ zOiZ{<_xT}Z94XE?RVw(KOlmvoLMRGI^;jNjsuI&4I+*_e4a11o*j8v(2aj6rB{un{ zbT7qqEx5KM09PX`E9=WFFvTA|dIYW*RJQz`z%AxB$i-0O?A`b&PQt?$BFdVDS0`A) z?F$Ui?k&pRfY=(sVV#nX=7C<%h*Of2C+FM&zzcv>V~8(cp#XCnaRVb=3WR?RA>2G5 zK#~vOH+@i+cV#_8`^)G}+C5KgU9Qve?N5}2+p}JAK?(7Avsd@pOexxjrgKI6_TpsA z1?BF9`*!Q@GB@U{%71<>r~XhhYN@QMI^;q{O8N+x^2pi35)%YKE##mFgepqxJ!35D zmz$`dV9zKki=FR?abv;6run9lan#i-jB43rvw7XKNAeQB*AFe!5rCKWs8@muLc??u zxE-{U?)%z+`|p8Sge34(;{wMX1?~@wTMUP0FF?no;6<^C?rwINLW?z}-)y=fZhdj8 zc6m7K5)GP?s5aW3r1+Eo#XX}-0*_a~m zqNRC&Vs3AWn53QSDK4L}*Pp!Xu{cc%!n-;Bxtzo66wH6n0aJzfB9{1@0)m_1P*p$Q(<#%m|<}KB5+-c`)`q`-;fd zNSt|k-XRw>Quc`RSI0KDq87b_Qf>4_qv$DYTQ>LqpkUOMffKOw7IOPtyQ64z(~g`m zvfF$NyK(g_)vQ52507V0`QL9a=+0ARf{77Z^0Z5Ox6TXm|CK6OfB1HJQx-SUhq`Y= z7n`TsoJ|Y4#JYv5u=Ah&q}w+i3N2y*lD%d#%`M|SrL`z3#-~Z4csFmH`@PjFQTHpz z#bf3hOLHJ~hkJDnd&qa>M}O zIv#J%@c&ViGMDC4lN9z}Phb8dpxY3(!?e^pvA7+c2vK8)yDuMNIXjoc%x1sO9=DlQ z=Z~S7)^hfAe3613IJ=>KnI>NJ56ahT=UG_Qo3O+qE3Gyc>^p+q>rpcd-Ha4YwZ1>x z66F_f^Wl0W>cW&kxKD`T(bD*TEcI=ZU*jzkL?$aGOWeme6<2)=LxfXe=CnfWb=S$? z@*&&8B^ol*ZxQR{Vvl?3iEA&G*A*}9~#&@yIcHaHwJ3gv~u!QCT zlZDbnJrI>6m9TGbt^ICL;U_G8f$)l(O;)p6M8S#qQPJjhB9SdD*grUcmB}NfD+DY7zr_AMzZ*$jm)U z-OpzDKmrzpsix-rw?Ht$>$nCf*^%=jhU!fH)#`I+5*{)g@z zbn4&5#y;Kn3Q%Dwi@v389bSeeYk}*>mAVr>eK>d1DGJ z6!WjH_ZYA~@^(zpuyk&7L0PDZr$83ELAUQ$+-Y2qV`Sfk;6^&>X0KH#C>Kd2Lnzvy zl!yur>-0~b0ss$d3k7JH!_kS3D_94r55ApLL%(O)7+Yu;{ zxH1d4b~a{l9lB|V1z>2YxT7dNdGc(cOi@WggA6uq6r^{Fgki(Ar%_OC9|}}biGoiS z`52%+A1bMIrm_wK!r##G)ZIJzC4f#sP0jjGFI@iT<8Jr=)!LOuQ?>VRjzl9BqDV?e z0})cFh>}bzWV%R-l)1=wT$CbIDrGDhWUO!<T>rWV-U z-F@PE6+}RgwVsBS>&3ABfrmx?Z@08qqQ~ai_=U&8b$uYi;f=%YPi8-_|Fo4&w|2k9ujH1# z^qj==;udwlp~tkM8X*>9rka@n0WnBBZ)493rL0ObSd=(QG5w*hP--DaBGETF2KIm0 z1KFPs9^sgwf5-0^t{x3}>37MObl!KRr5>4njGGZe>RCN>hd}V44QlD>t6^;)zt3wY z61%bTTr4B>eEf5p$|V16r{SK-UFZP_S(m;kIcO(Crt5JtNKHoUg4~Z*9J9H;EtBM@ z1E==hIL@P-&1+WVaW8l7`Wge8U+DD2Ns9CAj;!??*fmURDx7HX=2BMf0}>0p&U+&d zoH%OC0f#Avr$)&rywCGkQz^GtP~@|;z~38PJ{H*RXS-9#EtfpFsi>3Nps7~rS_s9_ z(%8v{bidBA-1fy00%nAGT!YxzRtP}~{wx;*@Q*~b7;=O)loiv(t09UK|P8gRa}|kB{iRz z$@|5AfklUL!CZB;=v^^iVuR(bmO9K{qn=Y!8E-1jY7brkY6ylQFM zsR=U$F{uF!x+3cpB&)nT-?|Y=N|)s{+w?u6wQyD7QK7>L@4G8cSAI9}jK`N<&9u7p zjx~8HZ}>Ex?P@B%S7_kar(UpYweii7wVNo~qNOJPY_(17DCv6DM>;w$cH4u?fF^QC z*^76l@L|JV*4#9@s!TJI4 z&pfs;hj+0RXa2b!Ym^oNRo;hkeY+L9o?aYZDqO(Tkl%f3aYg9E;!D;3r?ktK@cAn9 zB_7zSVt7taL{`8+J|J}U29EyZvX;i;-1LCmUhK!Yu8(gTHP>{H6lO+TTkpZrI(9k{r=+XI$^-n^e7xcR$J$MWh`lJ_>Z_Ua1AUM?a_nq5`QLP#M9>;_s2 z`hauMG!%rNAA@3HlF-lf%RAiQZj85S3e2YT;6>2`6ike#d%#IEE0K z2|l>ePAtShe)qcPZwh0Q+#32bSi{RIR+OytZ#0vl2H)}+sQlH=j|e z)CHOSDV&Q*@c}tBMUkbQxnke-F1W4@sc@COoKhFcU|Ft;)%D%@hNQJj@Gpa0t>iGC z6g#tx;w`NjhN7ftS=o>v+M=-0qkNg^xB<*pL4AU<;M0SeZh$ZZ^wp-si6JIi=t_~{ zHv)Woyld9H23^V$B+Xn$bal4?%@5LUIYeJ#e;ILTZrBV&I+KCPzYjTlH)ZL6JQ$(w z_LXompRFR_nS_n0Z@6n95>`y=`(|LgQqN+H zvNKisqRi>c(J43UrJ_8~OMEVCajh#Z+Ee>IO*GxwH?gpC4uyTvo)cy=bbyNqObolKJs zxuqg2c&@xx~a>H)5 z9Om=6+^CuXD@#wlI^zkABH@8@Lq>Z^+Z~6%OM&70))i+9eCN8+``fFPlnw2*cRH`I z&t94mRCSdvWlZNsu)j?$3fNxyu&}q1{agNZ_HrfN|4gl9<>jN1NZpK%)-W>SV}l~i z8H92InC{AYEwp?w;HX5iR(>8+RI`_M+6%=ZK=yG@3qPdl@zt4iGCI67iZaK?lRhaM zx>ic1E#r)tF*HuEueW5XAIyA_)#aIIB5Xv@-kTWPS-Xz@+gq!3Gao$+*zoylqvFGiSvB)$*f&Cx#_0LhtM5fM2 zp{9F4`Mv2sp2ajDHhyuUv4OHHVORd=E1wT5#eK>+8@uVj($dk<(QOr&Tf6mU=D&39 zPzQe1)a5-ikM4uvJ@ew^4gL4bO{t5}O_i6=(R15#x|&aIvYlfbjQXe)-o?mF zSgs@nBq7`qPHAkjP(NubA@AR2l2LkI(f4jFL3Rokrfq6!nmP90YG(&(H=(Yez9=NH zaFO2@B-u7Vz^$ktfIu;=iU9FJb+YlVoYllr^l)6z%}@YDhlvH6RSv(VOFA`t$VF_YJ*^&yk`&HZLvoDK>rgMe}0YZ_OU z6ZA7CEB1!M`|SLIPU#N&k4-sL&0K@7%hz8ae9+ zhjpw7HD!+PTOzbHEG_3sgr3zo%EYz5b2{gcG&D36I1_b9V`QwJ646@Ue97gDICEZz z2--yX|0{qOKZ&0zI^;|`%O0gNd?Y1bAyPIpVLqysZEJ2-9D*8rRVj@k9Z zS^}6aAtE$1aXTbRQ%mdR*%}FFO2=ZdzUJgx$V6dKcN$okhJMeaS-D{D?f-U>HS5>+ z7Gzpx*F%tJPGxh)If>|N;36UGYfOFs?2JG?uz|AkBrF%Nd`Lk#3%$3wxx1tfl?1A* z?N5I!^AoFMpZ)-JV7Zw)^)Y)sQ^{&0I1 zVYi zLNx5Bk>aQo*#Tqe<}WZmgUkvk5X7$=eEW8(0sn6@wLIC)@1_UCbN3b&0I#N*CZ%)B zNbYA+oz5PmVYy*2^nTdgkG1h!wQVlOxnXGWrvW9L$h@enea%r;uoh(=y%4SHbU<)D zgFB6kj8dUXmV>r|RT9-W_xjyxZ|aXePv3C*@ky;y!+?mlrK1{t4nV_R-|_Qf!0|eb zO@(!xtKKD3d9nG^y?CysHkX1$eUgMsm+cE)5s`i~C7V($iQ=3PFk#HSVH)o4FGcO8&5vp* z$8=8j)Edw@`UmqZN#oJj=h(ZSS7gHmJ#+wqXQ+v)acEA@xSsjzL~N`F_L@Ki?7v5z zu`cU23u3~5j!ACuOM8eOkN-tSDdz9v6BabK>1*)TeoW@-^tv#7S93iiTbmXf_jUi| z5n8amMRfsRV8F*5dwuvsRLmn8c)p_8oe7A)Gqk13+ckRjr{U-*$KcrXdF}%&g<_dy zPN$xc_iAzDf^=wda&i!Pwo_DC<XN48IZ2rBp>G3^plUj2V`e=Gc2Tp72(@ zea0)d4} zsqZB)RN)cIj{KH@gLAm$E2l6)5pl^@D+8xPK!dq5oQ2jy(_dO(k({Yu0oWqNO z^8>V>S8w$W3^x6B@gclU!Nek&;$WpHSsdI&XywZRT9oKFtc?Sy?Aa%XPFfctY{v+F zKbH;qPJDcP_%JF`0&jqgiUX3cZM#ZTln(D}296v!GJE`biT%XlG$Abr+EQYD0rw~x zNWkVX(KN}n(nWA5egdQ+E$H3*VF#n(ydpuHy2o!)7K_#+K6->WG@>QZ(`O?9{buAYN5w z2gR}$f=JVCRBLze-mnBraDKCa_jDEt#D}x%!E5e4LRB&=aNh#Y2)gkz^h7E?Vi6@g z7anvqTmcRS(y%Kh2IFF4Dsfc3@w;Ok2hlln>+vVGdo3m)^5I5RsOMd^s!S%}$1;7l zNdk)u&*og%Edk7{5#RIJ`^`xcfy*$BN`g6B2U*Ov0aUf)Jm@-5fEl+Y3c8E=`l|Y{Cb`}eM_fv zwPPUtrn1tvB7N$W7+&G+J9ii_P93IGFnK1nxDxNBrb^LA5U!5u=&(E=-T%_RpOX!I>UmZKTP7isg{SB4E{8PgKr1~{>S(4vXsa!V&Vu$Y) z;FYgNKkC3{+;Fy{^{;7V_ z_?vpa4FUpM-rfbwi`0G2gmlQ&t3%h#aKFg1$gG*R>^&vW@4^L)2mjEHmbjUiNW*4$ z6`jt!YvKH3KKS@djtf{@>(Wn*(8=@BU%uFS4u0-$6c7>7)zj0<^gjn;_o<0n;2nK| z6amjZxXR8J&CQ6|7~V}-f0GKKq(Lk4%=>#~Fj#FoWz33jX7zVnz|BAm*&Qh%VcdhS zMk4LoP?A7$s1!n5m@>`&h$4@k508jA{q}~~YzGhd!K+uoKnNfKQ1+V~;%8!W?b!Ty ze#r|Drk;`UH}s8(-KRhVKw0;%N07o+VM?fKFBg~m=+UACy~D7Dt=qPpLUTFMNh5US zW4JF^ya?bu=mDyD1U4xJq6ry^&>s{QwiGI5FaauYBSVBor}WI$ljqjrm4ITH@lb;c zO0zV0X?9a|)CIyXQz&}|iYKh#PrDlFwl9VNE0)7H6V96!X8D9oTv5@tZaLi!EC7cxA!pS^y)#j&q2}iZGv{GbP^DS_p70~4DZpzz+biU=d0Wv1wB>?Qu(&50aTl z0uyYAKwcZ@S(E^;SA&=XY)5;H@+^F9GG<`t zKQzb;%7i%h??8;6Zj6!suXI5{}o5(*^~Xc_gx2|C8f>mEa|^-v1pMLwNsR gBJBTtnfolBQ0-5T#4VR7u;Gukrrx0}b(^4n0c~fPz5oCK diff --git a/doc/freqplot-siso_nichols-default.png b/doc/freqplot-siso_nichols-default.png index 687afdd51f3c9de67078c5e56af0ac939c1af046..d8eab3feb6cf467b2a6d1437a1880f0f1eadf8f2 100644 GIT binary patch literal 96394 zcmcG$cRZDU{6Bn*A|dIJ>`+N|LT2QcQTASi?3KMo2qA-Ai(6Z%L=hJ=Wk2!%qC$jM5npisDeC=|{l;aT{T zJ3XT_@Y7u`;dkCrOD$T@pi?Pn;|1!LrYoR8w!7APDPN=`~b&F$^qWB0du&MB)= z4N55^yNmGUJrVQDl<6Be`nBE_W2fh#^Lmf2E(!(;FY2v{9ld|HdS<5jcBJbTPatmO zdD1WVrnDya%3r(-#*cOCO&PBk+089IJ(*vf)5?xt$z2(#J``cNz!0<2r#`2avUyS~ zzB;>|#UdB;F8zPLN^E}iAL6V1@0VrxA}aUee_z(O)d(J8{`)dbelO(5_CH@(;sG2r z<^R5h%|4R83;XZu8~=T0l=}a?RQZ)$ypR9;CS8x{?os^r6=xIt?=3!c?AGs!3a0#s ziCSG=ZXIek*(Rx*AXc>YFt3 za&b1_;k$9e((PC4cG-Mm&4xzuMR$Qsrh%`7u0vQkj9643g% z>DMo+RFB1+#Wby;y&taifq4bhL@qUSXv|ge(Eh{MCW4VIr+W;icr~u8!L5%aJUxZS z;VO-djo*)FXQh|iRQ~tAkv-;L66&|EJ#U#xZ+r9L`sdG|``1443tYN%sq%N&t)G2; zcoo>Xf*~XA^5&;y{5fhwz9)0Ok=@=a&+hoHmdR$S>>aQAMs@q1Z2tR&41+g%?ng?C z@c4S9M_N+Yw=5}S9n0?$T%eb-vbwcWHJ6&+hL%sD7xh42HuU0oDb1Xeob1p-BEagC zCZB1)w`Tmyn%~LQby|30Kl1l(wo*#7?)U~JTwCRs?NQgn5ea#yRL`@$g@?XjV>Paw zZ44rAWF00Ylf~U4o5Zk6a4paNj@4Y2&bXMM=Xg#jMW}4?>H4yrFAW|Z-p{3Nsw-ET z?q3jPIW4HDxQwzt-X01}XWgHudV~&|I9_qx3-R3}fM0WYO`X4{&n4$R@vK|a+|I6T zZOy)E$ai}{bN!D%!xjEy5?Jj*&#|SoZ?_5=6CX6&R!nD$ALsnud(sx!^thOjJ}S^u z+iNR>0i&x+1Gnkn=}9qhctd<&Zq%WT4%rEs$8R;Bcz96T`5t1Y9IK3qwTi5UIFEi` zZt!D~qoSq#lF)Eu+PYp?w?oZGO>+JEbri~Qule%Nu`!asCcm8>7q6pf1_G2IEvd-< zOl;-)R~jB(-T(!zI`r;@uei@{&4jU;nc3J}UV4fCe~+6~v9I!QrN-g(c=w5|ZNZ0z z{rzs=NE+KpoFRQzx|6jK@yVR*)aKU9hMxrg+%nuJ;;i3$d^B~zx6!6zEV$vYrlDoH z^eN8K&E6Tus_f4A7JA>K^?*X(K1G4|rKOjUcS9CqDpGjGPboVP4v**fCcVg7BVO1vgWDtyt&kHT zJkN=vKLQS0^U6mvH^h3AeYf2tDvCZ zKDSddajb;PsHmtI=cNBo{P;8ey@Q@8AC^;gDq{KTv2q9NQNDU>Nt_Kwjtlo04qp9s z9^Wo-l^Zhf%s;Y2^*)IbE&p@4I##1uy;M*$PbrpTwt7pg%-;|9#Sn9AY_itNKKsm(P^FTfRcqliiiE z-ploCK>-cAT3WBnlj03L7T{J`LQSTCxN zp^|3`TH?b`XHaXIT;AsdFo+h?LgpZy^wr4@X)H|&o`5JqoEnrX1QGFJ0`Xi3vMA8Xe@$8a=B;IK9+ zG3vQm=eUSQjjsg@7{OL`TWcb~L0u5tBCD>cSkuW#7`WK=Af(w z7jh&-`5sO0O`IP3PQxWu!g||p%*gG#+Su4su2e6r6`mdxqWszzd}$LOoL%)8szITU zA73eD_e@MgUGSd2?*?0^anozu)1EeDw{}hxZu4~O;i=lX)g$F$(tiz(2sNo_=W(f^ z>Q7P(HR{3jzNEH!C!yAcn_&U0VbINE(E4Ai+GZvD_)@(#4e@?8ZvNsSm7# zk)xwy*Cy-icKESv*(Q64N}&K&g8eHz#xqB-kG?n$>4(5Yo;E|@TL1MVs-xj_l0cj_ zTN^oOqaI878=ikB8W>_@WA_YCmwd0LC{2H*vHSA=eh9y#g}c{UAj6lS^Ox74S6xO* zKUAWZhpP>S>xT@-^D?s8eQuNf1Zyj<4K!w@S5Q9(27-!dr^_7bbo;!bsU)6TN1v~uy zat?E;?L1d4DneTI^S*yNE3KeC$`DHOdWiTD4($A?J@jvZhW&`6i79(3q|?pMn>Rgi z{rk&*F3s0qy%c)dMPZk}uTJy(78nVelZFyHJqld!1c!vI=REW#I)$IH%e>NCLiXm`$!-G!(vc>257&#Myop!6S3Re;JvJkKp&YFBt3I5{xAVS* zRQg^8uBO%9TW?Dxk6Of!@J4L~Y7Mwf=1z~&%x!Hs**K4fyL~7H#@(2ARwttJ3hSwn z$CD8y7G`+7sJX#YS6An@n3HWk*@#0$e6~`rAXm?hr+0x*>~OgI_s{qD=a-gRMn`Fp zK5;Z)cpT^TvU9eXL}1jf+h?cL4Yo(vj~`0=u7-yrLq7)xgS`)TBr=sN z6@UKxJTvp!%cv+ktp&a7`lC=Qucb^Qy}EYU#;#>;jk|e@`ve-B!n$Y=Uxco0)fv}u z_Zw#k2q-KLkh>;$ZdUdr&Y>jwep_M=I>nJ`62o{`q6J5KLqH z%6F)*kJ)?K%21Uy4NK(!WnrPq&ZpFbk2(`-)W5=wj%qufie2c-&a^71lHPC=iD@!= z1v@VjPEfLk$K(u;X)wpgwFpRPps~_|UiTVQR{Fp^1P& z?dW8_C!=?A^4*64%gof&)b!Of&-_^fJ07aw=<&_eU0Hp7{TPG7gb^$@Gs zgLW65xg6?48nn=`G~YSliRhhW>&`4boBV)_^!PFy?YMdzkGR)f3JGA{tzwhi*!c? z&MK)A>~c)&<7m#hEtLh$hJ!d*I=;Jiwbw>bve4$Xa?_GwUyHqF$$y`Lkc5&BuKaVT*5Zu_>|keSR}UF-b$^F_nf?^tuk zvorped$Gl^T&0i7sH>x+R@`3~8Nk6WDk}0TC@Anq3x-F1rFJuARf>_UakE?8a8(sp z-LRxJKbBWmIQ++tA0?+s&L|up7pPkd>0`Eqo5LSJTHC7Rpief%PcN00mcrY)b?S}> ztgNgAv~57egU$gwh?_bBp+ek3LOQ*NM;i$Z&!M)^jIW*j*Y9Ep)27vvww@Noopixr8TkJvg z3r1Q$cj5#0HZcJ6lkW6sCtKN5oBPlak5Ir|>}$rX>Z1U@_Lx5(vkmDmk@WQyx2@kd zLpAR03HofrrcLf(?LvCYKkeNC+S^Y*P>wdM%e1n*^a7Tq)kvEX;Evm7@&s{;QbqQu=dSPE)4KPFJSS z@dyeM!oQbgQ3>r-fg^D{*Ct2A65pN#UqWl!?ALby5U3r?65C%Yz3G?!~b1 z-MOPanG1(zF~U-pEou=}AjuTn2z8!CE_XLa?Mztu&*9;7c>_A|tcRJ3*v|(xz1vG{ zGP-v?_NE&Jl!;Tx=F)Yx;fH;xfzklD7#OR-B%M?T{8UTYG9 zDM|pNtoN#s`wIW>z9{{t1!ZIKquNx98l7%UuDd}yI1@PynnflPuwHKBKq;oHGVuus z3B|srC$&!$uV4D4aSMKLdMHj-C7mQ?mHLN7C4vcNgBXtWNl5nxw(ny=0Oty z-8|dX)wNV38&_R4QkPjG`p8CM`5nu)#eH_lz?P|deAIEKM!bo{*KgeD85$bm&L7X@ zy?r~d0b1+VRi9m9uj3`dwuzJFi9dAAa^%oy3YF0q6W%Lty3F=Hn4<|{4S@-tJ$rVh zL0?Bll8-tF9t?R<5nE;{v~XFLfbw$wyNb=5BAj}aDA*o7JveeP_8_M`P*iNPEc*>l zIeNQ7DODsC&>DTkmY5VRTUeYE>BiIIS)AE(5=t4m(zPjK_VlSSe{xT6Z#wmgB5C*L+TpPg z)mc$d(T!cXuy?9CubXjLS_eX2A;?#ee5c5Zq@$0jIkJ z(?u${$cfw0viR$6v?z2rOPqYiu2wmTww@l`3e>k`+xrDE4_VQYBJ?5H<@i;Gq^#%; zlXpGl=p~XCZX<0Cv6HN1TS?x;FEcYA(zEQkQ$_6sX$8Fx_yB}VISC;u5|j-orf7A# z56hOiY6M02EOL@bm)K6KuhZ%GE9>a#Axz`dgX>qrm|RvyLo4dH^98;3xKWb_ONDJ9 z-&g?BMd<1~3u*w=2n2vK%~>@=PAlv}EYf|S?0JB2+~3K<4in%??)s|0FEcYS>#k#C zW1xi*-G3{e39sI?S)1;{L`58s&I1q5FkHozf~9J&b6gj-dW8KVf;A zpg=4>-u4g$dFZNKjAVL~IbXA78Jo~9kqxU~T(c#)I;VzbMz7$P$2{M^f4^5a^u*j; zc3odS247+?wyuA{38^!!I(Y+<@Zx1U_#rJgflVl7G)3X%P$@=2Ts_W&qfIBF2saVZ z@K)ULR+W4O^^R}(0F$NEm~NxmO6 z8#Xl@V;iO>n*#Sh%_5AP<`xr+#M;)7gj`^d7Nq?O{5d|Jx@&(17YE4g__)C^j)^uU zaZ95$e_q#(JHgX}A5?B?F5M>nW+l;!G?C%i4IEVqK?RV_xjO$&u>QD zMkXdw#f^BkcF{bG`0=LE@|i{z*rim<;UBUw&rNvGMMyKtn9B{ZI1ILn_KuH}qQZiP zjksrqW3sZc0%n=f7z*p^rTO`Gtkc(NhdnPbP~d{_s3N36+66ISptU~uMfwXTArg2U z-;fv>)3=6a$Sfy4x+VIw*&!6!#dS3YZ;|$0S5lWCDO&G2l zS=c=tcFJGYk3co&9558*d|RTN2C?-^ zq3^L3E$GLHZn}PYGI81hG(k+{XsyNVcj%2ZuG0-JlpkR0OLm@E?Am-r)Nc?|_CQR( zk!@X?Qs;3GF3^b{@WIkHkvFFII9u9-O`-fVj$$7ap%-n_?hB_8LR!(XQjtu5!al~! zuecTtSibLDKr7=Yqc0K#O*#o}_KLI7$e=M&8OqR`?mF95V5fEuO>N2sc!|qCyi#r7 z6!~se%A|9SH4QKB+bgTm zSr(>*>((KS&n+bs{L(+B=ZskLh>Au4a~*ZT+Gs)T%2Ca>@8qa3Iz2fyx3R&vx(Y}s zf9dZ>1Dyz|^W6Qtke&9mxmnVnYuqC-IT^3B1n^YeN6K{U@{e#z*s5@HTb8zSQ(7sY zOv0mMhL#Ov%iz1Nj!v%16B(l2QmY1j`S*v*GduMnSo z85yb3KNT*WL3lQ>NGG47RI~A0)z0qjEq=jt*2i96w4lp?TDAD~JuVCRId)D?(8W7< zp1*cgn@(gYYl&+%=liyJ8DAM)TvP;A3Q#}=$D;hejrS7nh({Tlu=c6MI1Cr zSm@%X-Sp6vAMt-hlmJ8y4$QLnr?!sQdBVZv77=-=#eOy^>z}YZJw0ujc3&vvYzw#h zwoV-5knHmoW5R$(_G(e``>&`U!s82-GGW%|2mwOcV#2E~!uHy;{zHAcS?Mf=$K2rF z$4`nYbJFtsj;d90CkApHmSrk-!@Ckp(XTSi7wO7I*~spMLSKC3{c&(p#-yE%uC=S4 z0a|gF8N928RMeGVf9Z_j7>md11Y{9;c&uSeTJdq=T4y90>%9-xjyAh*RZk6e>I_ju zwaq?qFLUhzv2>ex=IT>z$^|ECml}QjUqgO^9#ALvEkWXA@BDLDLD&DUnh5}3c+l*W z=RG_;`Z4uVl$S4GBt8pb%dAJY9!Y~`6E`v7DkmX*#lD& zZyQvA6oqBQSV}6Rlai9qUrnI!!*Pb{ntO0)=aQA34bRcfh@18FyE&h&_T1gWq!(sy zK_50@-pKSk|SF$V!VS6_BL;YGyaoh_jrb_!M+&^=36g2o? zGtIsge^+F4b@7TW$(=K!Mr0(+8{#QS1Yzk#fO?%X9RzN{YMrm{TlloQz$c=VeTlfG zKfnHFYzJeC613JKuY?EJ@l6bC7ztmo$mQ>TlSE^nZDp6dK(}e6IM-8~NK|OCFJ>8& zSo71ECj}2%YsjAT6Q$#w`!rfwHu`gM+hc2Y7fhQV4r6T>h4!|OgT?+p#Aw?(#-i?d z3opaE!lMR;wSWJi&DS%0wYYf||vh@_pb)sv8 z4fXT@lH7ax^r`yHb$%M+7SK!#uS$LcoCoP2tZd85PIzitD`TI|8Vl=i&pt5fdp+y+<)8R- z07NAiX;t}nROh#o5K>MZtEm6f-2Bj?!DXKG6-*ScFn)^-+v?a459ReOAa+-s!35dZ zOFl(-$^s9|o$;Z+@55 z6A^DL8SfKyG{&8e2BS>D^CC)ghYFE6QGP>9t%!l)9Jh^toO<0;i&`;s`yyyxWLxEkB>E<5|F>KNCefZmPvMyKD6YB5mUMK-_R z76cA{a_D=yx_2}uZrC$ac%v%k$2~?rpbV{g)A`cyZdK3bW)5WDov2dr(-dnxC|J+^ zpykZWBp2hA^8V4s@$Ax^cAo;O;3oJ!GD3Xnbe3#t*hzpBK)<>vuv7O>5 z|11ljFtuyV=iPv*aW(vaB8*5@MP@_l3R22ag0%4%1Df|IpQyh~JGk@MsVR!{Rt(u9 z(4lNRJ61+j^%Cr0Vd@HA0M0cvH2(LDbhB>@$g`09GZMlYn_F61w$IsS09#UH1AgCF zVtrpeg)qP`H1r(mR>mZC*WCfjvia3j8K|}|^GAt4k{aEVC2zE;y~w0#5;vIW&m=vI z@JD-aVZ7GE4e{F?s2CX95NDtzWQFWIm}UNiq4~V?@PvsKxa>k9(Jyc}6Fn63mCGw~_J){Q|Wju<7Tk9}Mp=QYUD% znDepWl6{CS?GZ@UZ97oE#Cc|PtbQt?L$_MI0yTeLSOYQ0Ng2ct#pZqpsWE8cK-&8H z`Vg3756U9&3q7Cx*~;liVFVXUf)XA!BFDI`a}C!DmOo<b@)zl>xA=g}@_)Wm zd8guzuHUV~T5`xj6!!G@Kd)#wUPdJRH8^b-E{Gp-gS%>63(`3rYSeu$We*Inr+}nu zSDXuDZ%EW0EavU~eJUQ_M(=4oCM*nULu6#6A~X6{7!#BqhpFZ>pjCUM{iqI=&Ojb; zZ*Ol_jwn*cwAe}LFzvywHNHG9R@}T&D9scNZaSd4jGhO@Thpwt+>(9NXb%{081G*E(|9qpl}W zGu@eng^T^uEwQr}VBn{uq*N}KV~Z*)Ux1K16|ZaCbaH&yGd|9Fp{*V|9D>h)9#4Tt zO#zqR5kx&1{XEX{imS zgN1oE@co}y@#vB->A9uaQKby$hk@p0XU8R_{Au`O%XYeuU*UGa}{DxU=T6+-Ov)e<{F|fL+=FFs|h>4!@pmNctLIl3)vEVeB*mx1s<=C z*Zo_2P?ivCk1A3TJnTz5anhe_Nc?HeH@~t1@QUPgGXHE(q9uB&Pld5Yzs{h+f_8OO z&4Ss&AYO83KSq0mZJ=e=Q6g`^Hg}HqGVlyINJx9~c$LW*#`Jp~0xgzQ`8{RrW&RPl zmt^IV?QbCt6(XX#PIwEfR8Etk8tZn)!wbD;Zvlxwyw!Cudvj(k2vddwZDyp7_$Hur zJ+^6PhUMVkU{L>|G|}|7hc{*s1=$w_ZZ)6hQj@xGm2YK2CC!gc&Md!mIel<^{yYGL z4Yz`>7u|D#pzo-v_64W^*ak!lSP`}$U;w+YD{1Mhzng>3!**Kps3Y<9os+cA0A%MB z4Qx|^xyS5owh?HD{hbMawSOe)3nH zH^L2%aQ_)}V1-SA*2@eb1qUR9;4IQfAuD5Y&8f}6dt3eQuVOsJMXR`7w>uyO`lzC!v5SjKUzWGC5Z!mP%`E#=BA{DMn@3qaUEyuhpud!; zb(k?n%Njj?{J1YtKbGZOXJ;pz6uUj0>PM{4*Voq-buTL_qraOyyU(Wl8frg&3pXJ? zF3HmgfwA~W2;Yz*vPaNN2V`ZQBh($FT9jWmq%GX`rb0}+YCVAJ-YVZ5sd44{+SYc< zUL!LDSki!{fQ?$1F%^h*Ajm@9;GYGQ4hA&>x&l?I?HZWKRge#6$l_%cq@Oz z+gB}9ub8nB9)^Wy6Foj_XQ%+q`~ADe{IhYg_6t_Q?oC-1^5iTLW}5WU3T=lfJ=hLP z*`-rV+sTUy=Yu5oz{-l8Zi|{$O*?pfwAq*aaJp{QyYOfg;Y2@#SJ@AQ0CZJ9E4jh0 zMjn>VpXqQNl@DNs9pzDuWUQau(LBwoiLDQVr?p-fX;=hOU0r?5yDaJ16 zWpS)l&C!EGuZI*D)+yeERAor;E5M8>L}(9YMu zpt;~|Se8+G=Og^LV#259_nzL3N7;Q~W$zvPfKnVopK2ZIC;iY41m}i{hJ}pRv&hqN z&})&RZ#S>VU)v|Z#gSsV2yr&W%W|Ej0Qmjyp&OZw=8gDlr zvG#NKc~Ex^+JKG%5R>_#&&YRp_Ij1}5`+AoT)$>Jh`y%v0kAL)X2bmaJgSK4Th4$b zQhif|U6DLZ<<5u|&L_SHAT8(3Tg9bIVEXukgoSxPfy~LtiTR-%!}21XP#G zbG;X5GrH&UJf#S<9NvI2fG=TQsrcRFr)3!lMd$?KKd4n>Y~7iq?GB=Z~7|h#oE0(bj^TE{9IOM6WVnF1tOCmZDjDC4{TdqU2Il=2s^%F zpKh+0(5`S!w)gOB$)9m%8IQw2*#$KiVNLUMBotF+I3;S~B7FA_WdqdzepJbC|Ch%C$(_y*q zC}NA)ZwZs14K(g!!(L{BcR~|^Kzs%W2>^>QpzBZ|mo$D&^!MY-#TfBXS4as(K|2(T z#KS1-vRO56){6ABnUxNxT{m-g*LI14gJ88&KM-uH{ovul`*{P8ot!?8XRGo6gB`W4 z7)7gG0FfJ)D&i~0cH_nP_;|7i>7J31>dd#g37xQ?NVEI2`(7t$;G_M%+}3LfAK13mmhLE`bjU;wJnNHy@wcYF`eONhu?tWLKI)iQKT|?s>Sn z-g4AEU0q%M3Ew5}^gAEMTc-x3GkWf2^jKF}^+Ro3Ue514v{k=zl25sROFBPwKi^ij zovJ1uJ;2g`OUJrct92nTW&JOJumW#3;?@FNP#a$VDs{wT50C2HGg#nnfYu-^YPtGeMZf(+hz?)1Y>Zmz zu1XF)c=nKpTzfUbD_#q~+r0_AWFjUcp}s-lKl0Z%$B&RPs&NAC9Y^QXo0^6*N+ia>m;S^8?zZ{kzNpJ7;qj z4s%H-h2FDTDsVatKbO1;GVZVC9gZq83qER~!}rmxxztLa{-@3v!&-mXB={sH++J6r zo?~j00GfrTzuO&SD(RIk6Mr)%!=_wnnl`=EmwZC!pIwg~j`_h*#Do_spIQF;rx&M2 zUK!`53dDV6g}NUtYoZ|TR;JazG$yBW9;o(Tm&5o^nyNV>a7@TU?`8MdXcPQ2;(k|C zQrg4CV$-Fna%PjGjFzd7ztWYyYRktwZ)$4d(D#5lq6!8zTK7Q6KdwWZ zPjTqe6_X{MMK;i&%Y!C4iXNNDCTwabfzeA{smHk{V%W39M@0-$o%79={5!CQfR~`x zessT~o1ZhdS=eJfX)jogsaA+#SrfT{(iQ4GhXMfgyU!QwG2rCT9phcYpaei%*a&#) z#DpP~0JgYD^1>iUxT9NFcbQ>HmR;-?BBkC5F}p7g469#&$Ft>e96!$bQH?a-)B)TB zbG{@FE1M%>o>5t5>h=o)zeUV<#co!o_GI#y8bFRxUJizpqt z{uN9II4}}qY~_EP$ZdYQVqaSC}f%Q@IR zovw2>PeB1hoY2I?M3RW$C)$+2#RWZgto7S&Lt<=-;dGs0Y3D@u3K(q}J%mtuqgTQI zYk?&QKWJF~21EsFEVyj~TSD-V1bt7uy4r$GGe+VUC6r(PwNexIdnb)j_yT7MG}iI# z_bM20nL(*k%EoJRSfbx=b)W^oA8Zd@+PjYUq#<~a(Y5Kp{bP8tkpS1h4o?uyCj>jG zA%2F^;`xjOV=0m&lWnWzPQ33Tg2-z_ne0AeD4uRu?6^iWx&`{JRy+nsfB8@R53EE; zfW@;8I*HB2ee4eqdy3d=-jm?TU8n~-1rHG0Tn&kR#lDt{q%JA^u!Ph zNf5gT?7XIF&Sz=-8wY^yhlCzjjh30E#@77;R`X0mIfBayg zj!1{l!g@*^#KW7ue8Gp44l%+C3=6TAdw~djcX`#g9*dk#g3Z-F@$y(39x7sN$<#Ia zD5SeykIk_R#7C@m*)6-8yOL#;nbv5CssLF6WTLZE*#IcbU84J|5jSIO$ESme0LIDo zXy(eJjm}xmd@z1|4=a4nS70MR{*kCPtbSK9-l}P^QKNP^r;$c^6I#jFbTic$=utR9!rSx>UV=!yjhzk*3qkIm~XIucJ zhK7dPz6zf&StMx)zRI;3PI|R^)06RjrZQb4IihWJZ>kSWD_hXEzYZ|r)h@?_SP0H1 zswHcxVC}LTplC;+OCd7^>YDo3PDOMdj7+cp%Tq)6bT&X*h(78T3m#Di0WuH~G+=qA zvt$pMu>c{981k)8w1>11XV}P;XGE!64r=eH?QXRK0ob9CRI65PXG=c+FZBQ(<#4zM zTO6)p9|RwYwSO&^2fa4x;j3HuTH8g~L8P{sR1uXq&Zv{`qRV037&b+QZ;a(o;!HRX zdfbxA2r`HiNhjP`@+sZL5wPyShCh~S^t%C{r=`O{zh``(p1N|vDnl-` zd2i3H=gBu?c#M!rQ_t75kov5%9K0lbhq|l$bv!vfj!3s%GW9*9*{Y?*#b%g@8D0wQ zTlfMYc#s~-OE_Rl!#{*FLE&E4B~?Z@zC7FW@im5zx;63kQ&2}#S5+BY@0gBZmFp*0P8$3h zjXZr#)vFlgBJ48o#Zis&AlYX*`i*fiia3Q$z&D`Y4lRvoOg)`^DBPT1eg85(4xpfP zRyKS$uy7!d0)|8#C&i8t_lu^ce@Z1Hu0eocy}-5Zd<=^O8dD3D*6n0}&H-yvfrCo* z-qHTa7lG(l8&*fHhDT>0a2^;GbVlT0J_D2*(3pOeK7H7PCPC?Wt+&GJ?X~$H$w2M> zi>d;3r^pDD6o(>0jxxJ+18F$eCyAjWCrfD6hSsU=6uj{VOVF_ zu{;ybAK-8b_xvt6H()tSK}CTB)0$!=Ka%^<@Cwv^kTT$5v<7ey;{JGh7Y_w_x-P7Q zjdO`zL_XQ@)r+Dr9?%UyNe%!P6V2Y;)pZquK8oC#F0Kb&Vz3YpMlt6jDjd2+!I;)HZ z>ir@z62cx`C7<-T;+Ky&I5`96+yQ=HMmwrocs;m&2_jgVD;Z^LZX)npu_b-G6>;;j3uLtE+-Glo88pGZ z0$dEabXf6$o1I?v2<$k(=?asT27a^T7|5|03_P@kRcqhfF?(L_P&7$K%ys3PHH`mz{F#UCd8L`^gu^DN?J=45YFw}w?X!% zqoczXXoO@fIA?xDs%LEc2ocD5axo_780!qUTyu#67$;8QyUv_~2?yBo5n8?E5^y^R z8i6>0HqJWc-}+WIoMYzx0zs8QrrJPb zATC-QFm4H#1XiM-lTbckV(ipNCQ%qQEEe-1YX%BkyIRMYq3 zN2pSEr^2x`(?!50=6oYR`9*0GI?sf+mgFm#z>@_?3Vtx=HaoU&eBXIJ}=m4{8a(FvBiKF)QQOraOLD^D=@3}* zCmC`E)vVTOV`GCCFbqgUvrB3gv~c_Ysyw)^DtAW%p6d@zYfWnXkw9ZAK>4tGFiO!n zUlze6M-CwVyad^x6DyuS3fKQ0Ce=GEeZ%q_>{>)aA;cfN_9$P)8)V^eryThrQPE^_ z$O<6}$F9Z48Sur~1s^D*;iN-1K=+i$OQic)of`nqCKtmfr=qT+4ZPBte~!e_4lSkp zx=q!l?fr72yv@_QHuqM4eS(6NQf*v)qnrm zju95-LlZ%aW=IqRwm3xZNRzT4;~H6=8vgB%zjcz|fkHDZ$MCQ=>YlH!ui`iMb}y{T zxB}VplIq~jAg{|a+uHFML0aggIft&dL8^5UsxQ{+B#)#t@{K?{6bBhF6rcq4WC~c z^9Q0l(9WRo#Umj;9@biuZgX}Qk?%nUp{XY=Nb2|OHz~L2S#SaX7~EuJ{wwRX&b_~# zsiK~Z4tn<=d{kB_)>s*U7zD6T;OJpv8NfnO5@a(0oy)WXP&hL(GQuK@b%02aL1BVP zouQ)v4>L=MeL!}q$DBRM#Q^fkkX&7#Zi7%4Nl1%7GPDJr3Iy;SX9x{Em+!c@EjtO# z4yR#tgLT+-M&^_hX?0ib-8*EKG+qN1YdKj6T6S8;mOD*fxeZ=ULQh|o%<3s;XRT~^# zXMUvv4Na#X=cN=Af_Pv-*LPt|?9H1ujm%LZ0mx7TrbeU?=4kXBS}AD68o&k|_1f%0 z`2m){0#Rz9p5Y@#kIo>$BcQX2C$-PO^O#>)(7ycynbiWuY(r;(yMgJk>geqyhjIsH zJzPj-AUK^B0*EM9wvgBd*Fk+*2aZV(sz%mMP&(^y{f9maT5%uRf0J_CIS*~H>p=r1 z9EZIS35VIfo|hjMQIvj8w{3^|?U(^7_P{71fT@rc<%&&ED4=~~Nb*_a?5p&U;2i`n z-}NoP2uK)WGl7%w3mL0Nq~s|WT}E6)I7dC^p)7I$BZ5F~Wv9%`!FvPITH>=1tzC@a zjbS<0a5T$>Oc+As8*w=iR@3z4;akD?FOqN@WyCh3OIC{^!j3%djdUCMlmOpTA0!xS zbppoy*kEFiv>#!@(6fvWu<@bwS$d~|FbD-dF|i53gaU`aaAB(MvknI|TSdA?n8gKU zWpHq?+B%6p+50BJ08!2-c}B8VZFkfUr#hDfIZcn0%e1WwZef&R2m%r=7c*fn49Fzr zbOq?u7f7BG0uh6qL79KWbE`)N88Ss?-;fDHc)BWT$vm+gpaA#RnnC*ZUl#IDwV+>N z?FJEuDE~$RK~+aY2!#5n)$j;gR)dxG74gYXw^Re^VI~xrIWaOaYALLv1Jz3QdhEvN zvSrI=Z7p{npZ?&-Hp}9{&By%7@PJ_xh&a$0)#>hmN+&FQKHjtki>=9FVhM7pB|eJ>U8`xD3oK5( zXI*!oy6?fPcmIoJGBr zmqMj-)1Smg^q5P5Fg~W@apPg?7Z?qmDfT$rU2W@#y`f35%6SH~vA@4~-irIu13LqK z1rz05r3Y4GGZb!UrXVymv7YNJfrtV(6|r-|YK{Ql0-pv3&V;;0QX_WC7O=d)DqXD4 zVNZ}Q<1*>fTyDH)Wo4yLz{?lrz3}(%m+#++^*A+Kw~Pe3*>vwivxP|zFj30u@F1{% zHSF;KgIMG=46T8p-_q51O|mUW#r1WX%l2w z;PVL3k?I8(S7Cg`H5o4Gg4iCk@f#oo{1+wz$u3vO_S5(*xle;3&)wFgZ7`eD=hvaK z|D#03TJ{K2{~gZ7={AalcHvBVEvlwLzP}AzWwotm#6gm8Qc@5uLP<$E=~8oE$Pexv z6nHp-B+gMoc;J~q0Z96ADbz`gozjYx;86^VJuQJ;%tq=}fHB;}pLJ|nh7$${H2_~j zwlux4urN2d!6SS^Aj}&wuz?Wp>g`o&<=;jMcIhxN*uNsZR<~XW$9&R(=^fDH{Y{61 zb*Vy`2YPy<1sqras?w4|;Da$*wtcR?w)W-m;cmj#K`Xt?IK*Zal{Hj3|K9dM zw*BnoAJUAvyv!9pGL^xo0x$c_tZ4g-^!j=+k>f1{j=^*ooO~*Jdd@u$;L&G0OQ0qo zA3Xt@Fj3Yec2-YH4;Jh%Qr zQA}hN@<|gg?Kr*O#z0V1;@%$l>Jud$Sl)oMp=BbWnVA>`n7kPdXagS)^O;q^QL2v* zNq+o`1R?n!0OCk!0@}gNMRUmZ10xu+eo~gw;bQ>f>eyvl!Q-C;z1d%QZYOuabFg4N zd<+&AH@9DTd3ml+)|dVKIBOMVYyxmjh>$tCxM+M|&|vmsvyyzSbL;rs4f1o4iO$H& z%UdbI{Wn|)V6k=5wPAv5sD~oP-@?vL2Angnpw>#$j){@cO~9Cl!0L{NjNpo#9&MIT z4#9{u4H8Ii42#`?+3lK--@B0EV`iDi$-VVyu!Xv@at4+5I7qO?FHWa6oU>Xs+Ogfh z2n+&7LJBS`#+Jn~Ti2emaq>u`7fHDffhUm3?s~@@PgoU?h}!%o)vR8p45tts{72)^ zP-W%iR`W_E%dEqp3%q@cj0FN>tC>#dFoDC4E_)AiZIEF>J^CrZ91S)Z(oT_~JHvzC z1UTIG^FQBLV-u{g0EnR)wgz5@r0e}FFc+iUGsOADrIafd?@b_#w7Jv6p#-?T5-C>) z(zgUV<$cJ7Vfqm74oEjdq-aTpww_U9F2eVrF*mc!;V??ZuwcR>KS;Z!avgYp4*=6w zFucu{Hk-=%X=6?-apj|1^=cUyzmr2f7K&K?pQ*)oqa@A8`=S zwgQowZqZ#@QaYjM;PxV8$RDR3X7>p``}0zd>CyM%t288G>EL@*l>IP=(zLb32Na@J zI2#hSK(N45fOJ?FHKA-ZXPo@aZy1j0p6jlj{*9ArhWcVjYtdV9wZ-2P!0vg zNxj~w z2BuqQJaWzX!tA`4bYVM#;!E%Om#3=q80IEG?bd7>s$0y>vxm<{@qz(#Fe94*86#;o zaG2A&2>=JrztG4Ff9+|_5qcR$GQTb}EdTUW zuBonH+*iP2cy$JbeJjc^rw0xa>d{A8(79o#vXY_wL#E2yC^d0#Kreij!SzD9=cd|H z89hlu$-Km>$^=lu23a;LsLMWc!K^UUE?7mPL&z;dA8{BqO_+ku?0`x`(NX>=MktXM zW^n;a17P^iJK|GpnX*Sl^Tcfb)0PSgA4bw%i6I6`OkSU|D5=xFSi!22hQ-S^g{Ge3`(%bF|09kNfCXu;o&PBWYS!KK27^9hmw_W`>~StF*lKD9&;o$@q>(2=!jcRD&02ju z-o)2^t;4VOi<9fHg}py;qdjueOJ#ruvBgOOI*Z6_GHPsZm+iRf6qXKD33czPT9*Uu z@AbVT(s$As9pO~qQTm=8PCIk4E&uCB?y?*UXUCv+9FXCZQg*EVyuU037y3p_p|Z7`*WQ7I!wRZQ4ki|DikM&98_ zAt~*%HxKP#Mi8jpkg4p=Ft#^BB>1=`E`}~@?|We{eVJYls}1R%1D6mis*%r1W>ChO zn*&6;FKg|O%gGq-xYovd$?@#7hNTm64&F27z`(u3oO^BJ4B$FA8X)>EexGB<^+zFA z4TMO*0#+snnR5rH4`9;pRp_svjm6`geeO6hwBXbX^2Xgq;JUsebh?R7N{5f006Kj! zy!G1%D&c&a12TRGD!P4(Hg6)N!h<_Z*o4CCdM;uvg7^ak@ z?`QX^^Kriu@}rR|9Gbh!YvRfomi~JRh%$^~@+aH${T=OF_$*TOj{LTJhoYeck48yN zmkBSdxZ@>w_1qV#Djx+k;YCJ60bRrVhq6-RrU)crwRSlnJPET78Lwy}zJ7ho1EN_l z`7izRaB$>e{%S2a34s@Q`c@<@^EIK`dEka?w+9xS97BmfkwD4~zlb#&R5U_-uo=Po z3eIo==MscwaC|8$z*tM0^R1o{S!?;_jCpZe5cb z`G5F&6KJm2_g(m_h)hwYOqnw)Ayb9SA|!LDM8*&@mJ~{vqm59;%rb_gl8}%&l_+FR zktC(}`q=yY*Llxb>#Vic`u+CS%6IrY_jBLZbbo!=fVzn14qCRv&Ho(m-D9OD9$4Lg zr)u_2po$M^i7HHuWa?`;E1RADcz6Ayc<%y#gJ$FEK{L z%rhRf>H6>Ee6lb0&;lh&Pe|I3X`X}@@q2AeRTXlRj(esl87g_97UAvqdDc2yehY`Pnj9TilO+>7}if`0^D{eW68z5{7OeyMnF~wqV6H|4%XY zeMhrcR1;FJ>gN6s^(=;R1E4*mfVWtO)SO~;RqGse9C^RyeLGjHG^49#FGw8~`Iaj2 z2$y@ch7mMM4CFW@2s~)*a>|)82F!_RgP3lJ=_+A)`~DffNyU7jgssE~99NPgXO(kT zSeM)Bc>dHeL03I+pqRjbWm|XUb)PNxY@XohF*L2B$^dsle`~XO(O_<`E*^i1Q zKFw#gEH+)2#KZdgj+wEnJql;Mz;S_V*@__+40Q6_EeZr=^x=m%-mNdJvmFH)kSV4+ zc6V}il0WH(CJ7LsfbDZlS5jmgKVu^&UGn@WTS}v%d8Qx-Lhl^8p!-fR4yTG*DJ9 zz()N_=SL5dSC{jIsm0sDVL(N){KW+t<_)-TLNgOy2GH3BX9XM%r*K!`@uMIcoSU`%%qIR`r)z z-L%2bN#P$@@VFkIN{LB)W-r|qB`^d%Q9;t~@ryqM)EW}q^w5(EY>(sM7~mjd(lDx) z*m6ZR-N58VfUdMN4A-rl+w+eWhkZZ#C6KT^f@c}~=6crto^T|N9Qp?22U(e21?HaR zRQJ)o6`nnwzY4d}^C8Wm(Pjry&# zPc?l#?U{~2c~G}*!$59vCw1y;9DRo+R6mQ(medl9{o^3HQ9)l2$suQ}-bT7|BHkcJ z9ME;UjSBpM@a>T9-XC=;ZhLG7YZ)Y{HQAbzmX+1j&!)XaXQErRrQ-wK$mOKzqrE?s z!sr-FWE<8F`j+GEP-*l^={bpJVajt)7S!D~WB4(9M?Ed^tq?c13!)LXV*_ zUH`S^ST`%Y>i3T-lY9DxAZSXvCoFo-`8k+DL?@1p+6`Y=fD#UhJkmgMtBv--JQ&mx z>tC`z$ekwKr3e>dq$2-nc4^s+5Ya?(w|jDeW)6pF0(kZRicgsR1Dh8l{`iTImN2;O z4+t|D?^v{^N$uED^NudBx3+}Bgh@l8!1P>1D3$N#OOZ0YG7b4De4_ea1me-FAVk4~ zv*zBELC!zv>99Z9UO0UR?UUhwLfqjIxb3-NdYY*yYR?&{rZ8`NgXzn=sXA+-h0BG`kQ`KBJRu~~|5PQRNy03tQK1T4+0y-FsTusB_G-XV zQNEhM3hGjhWgw|*4DZ-x>5XH${}#Yl5K}7wmc58T7W9n`bJ4h;7gVb>ms{$ws8Dc}-42rw|5LN?T(iuq!-|ui?gN z{JYjDwe|uE+miM|R>d@WR1}m`lUFZqYG(QPGXSFlCZnmP)xQ1?It;r#4<*OAp%wVG zjl^6#w0{$B)YQ}jipT!x#IythCt=g2rKP=PBIS*-*xG+0(JQSR^d@las?Zh~QGd5L z{-#0tC--kidQ5}3hhl5{aft%6o^5QUBfhaROG#*82%0DvxINK97zK zw1smu|E^6p&>N`#ZX$>xY%@C?v~e+2xeX0mNFq3+M4fy@bKs9SYxLNLs9|jL4>fcJR?nH%Gn z;C}j?UMIpoK=v)50d1$S-)|xbjR4NQ+9jYGQ|9&`kIPi@h>zp~T(gk5eu!KZ+6Z;D z*hmu?&bVyMQ}K_Iq9TR_q#`;!`uXVw`mtw(C5H9VH`c=SKL|*Q0g`=~NrMRELpH1U zS{>q5i1*kk!V9wwK(8?vRXR8*_bV&k*-u}5 zK)K{I+$*a1CJ&DPCj0tpAw=IaSd5QpWASe;^8D%2<8n z2vGgo>%-eVR=;ykSdKWjl-xD?F=CfwJ6X0<-92_Gs-djYayuXjysn-(S0bD_Wvk=! zD+;8_Bb!oJQkA6y+UWMkm*wKAlS~k;mx-rdaQ#2Q-pR8D1_qx1&4md^qSy>tpO1QG z(Pf$?MaV6HJ_-!}VRK0$p}e z@ho4=7ATB!Yu9|Ed^CtGdesIilJU zBHuZr^yU3o6%1|91CCzVhFk2EpC22#Npx@Ey#zHpoKiGF{>=H^)`iLhLxO;g ztPknBeJ>^#&Sl(do69nX{?QgN{j-*^`{*aY$VpwR$ebmBbsBc3{|i>P9h~sGhlb>0 zV`ITDw?sZGM@g#;nYEGrt0&pe|KZXt?|CxoCXRL)>SWpO6|so-C1YOou`Xw4K3wz#-t{TDpsX`v8@yt`@z zyDxCT#J@%JfrROtE zfW-pww@`As(HsiOI;GViHeZ-X^FaCZ(HQuB@sds5tA!O-Ilh2oZ=GEdn|qDz{o2 zS6-}A>`GI{r`ENk449>Dg=*)tseuBch7k@jbMlT8)b^jY`!8Uu^pSmF@~#?K9DqTy z@#LXf^mb^X;VIiNop?nKBH)I55prJd2*1g+3(y9mA-g6T)^)FdTVwJ73<*s0xR3OHgc`sOJMC@BO{2A*$}}FodT+du<^f_X zmDlDf@FUncAS)BQpE2pJh>P#*`}19@4CIi5wPj|7q4C31sCxcrQP=-ZjJD2Iw# zA^N);qy7`*4Srg+UJ$x`#-jO@iTH^vB!J>CQa^kbLdgKPd>Ssv$Pt>*5F$&Ih)5&y zQGor$CW`s%SRI1qwir*kE^L+ip%R|0>V*W2jB?q8?>sWd)70IisuQ zLvN92w(2$4P@SEcKV;%HA4ojWb@U1hT&rtN(+kU;rn_NuTNeQkKYu>_wCZZ|4w(Ml zLx-gFY}~Hu-`)h!eZjvg5ZO46h01iJ%fv2oild2p96>#l%vmWw6yIZKpSi`qGyrfo za1bbA24@pprk;H)3p#`ZOK)#)qAh09`1pHusqk$Qk$$#owN;DM*I7+!t)RSVx z*nNEG`>3AxltpiXjbLsP080Aib@fEDWBOAx2xn71lu5Vdo+lmpes3F03PgOi(R+{m zBSHJX|Hh0W3YW`V=hknFf72=k zA03uPp+WrkgjXBQz7|hhtK~11F0+YA=U)GP6HzIMM0`%1ygTSN!QFd!7+!1uHw6-! zU_QVWq5Iqa-s7;&4jSXiMu6dS}+PcN?1Yy;=4-HUq(Sw-Qf*SaHKyZf}P1&bg5%^mB zHWNd(Cns#ODYKj7j0>9U25skC|rvs^5N!h87<61>|sv zvXm2=St1&ph>Rn0{Rt!Tuh$VCv&A(7-&|cNoAwY1CWMB!r8rSdq+Xe?$Z{q+mh-T~ zNz;V)omD`NVQs+WsN@QK0g#dZ4UHdEifSc0K0uZR9bkO}Zh|rc2gnSG@?-QKDL`F% zRWOb|&S*Y$8G6L#QzFw!cQ(xFxDyM1(!P2hZC`9!?_3c3s$b|Ye@bB3mqH}rkFhrX zq(CGc1=OH~N&(^*v7dFwB7TAZdm=vo7|mF}nXQELYb1gofk;;}`kXhU;GkrnRD;U1 z|4Y9y$I;enl~sJZYFFH=(hdQg`*Hc!6iS{3zcrNQbA1fRpo9AM-W&A^&2fC|M}!id zReNyedBj7^&W13qX>Zd5pU@6sC_u>CvyWd3EH+1GBFX1zxvNgKBxJJkX1ih`%~hTe}&@1*WX+ObN36+A zIqUG>!fsKQ86Qg2%~9!<0i1x)$30-v0iWu`k9TS=*4eAS$6!1WD3^Q$@D(7#x)B<1 z0-PJ(ld4ZIjCo(fL8^A{U+iOoE zWsbn(TF3Q7KXFruTz1yLyswzMym3O@ymefiD2YJ2V(?oR&-c*c2|_f;;7ukuMA~HDk5uZiS0qnnKg^kcIRgCxU9c1$c9sL5@4ay^S)eAfCGodb01+&$FaD#1!* zdk7^M$!7^zCe}yzf-0F^hVN?ennX{7QdC=^+{{ct@a3o+b z2V;dVtYYYqB-io!;q*ybhOK-lxsWh!mv~l{vf8>-mXuaFz$OnsMoQ&84jF?W=ykmZr z`b5`W3~jgXY8AM01lxEHvpdy7HXU!gPdz>B7G>ls!D28fnn`zIhO~Jo%D8-*O*8rv zh~(PN-0e`O<5S15&|Hhf2>A3P6|SNdeON6qHQNVZH2kD9_udZQN5YW>wM(Gc_h4YK zJLAn!d%MG7pSqFB8xmZC*WNM`-dqiR-x+}1XPunljy0gW4(aahR^HtMAu(>2gKMAy zphy6>0xGCq&{_4R2q(Q(bNYy}D~*4;hLQNR1$4#C3%_!NsWF&sY93z}%i&a2kI@%O zP+ki@KySyZt#izG{t*wAmyVhs?j@*hP-6%I$INS3_(AO*FRngUwbbtWXeMrJ$_8(L zOub%T=vX?-?vT*ahHb(618Gq&bMx_O)^6E<+x1FezcWqeT>+(a*Q^(woG3eZN&Pug zt&)k}6$8?Oh}b+?Wob5?NK~n zQ)12e-A;z83{XTKV|3Kc>PF<41y!}VzSvMONZjwqgugnX2@%W87WZLFKs^LA0d-Le1!`oB-cl$Cu> z?DA8)Rx27p3w&(wc{PJV;;Gcrr*5}dTHFLb=f9~}v+G)Sm=HZ9cU zD4J+2AA&o_U(T+|F_~O0a+)S7a)x9I(2^UM;+~tJ)*u!K3W8*b<0sx+3-#Z_R&+l^ zXeZ^QhrFpz5g5Vl2qaS-F)%=wz)O*#C>82H|8&GS-|8x~{B@@PnrM-xZ$O#xf{R@0 z8AmVK&Ar{-yn04VS8iUe7;`6tQ(=_|z`QDF-$QlZ3vTdI-$uWMWPNs%p;QUU4g$BLAgPA{v>mtca1QPJcz+(6Q zsg)aL>_(6nyj2TuXEX#1eG@BfXr&J_Y!4m(mAyB_1Qv5uU$*6E1CEi!@5Ulk4n| zrp@w*hM)tD`Ria~s?1nJ9SqBus6h`6%s)in1M=7MRz=~#2EULWc*V8~!!Eke$TdXM z-L_slcFp+CnDL=5Tq9sm;-a=Vy?B|FSRhb4{05|8QV$Jy@;NHNm;)I^u|04t$G)Zms^P5 z2Hpd(52fZKhGzzH)$VRH30!5^as$|rNT%BzfD(vnm`))KST~+oOh;!=d_?yl92wd^ zAzJqloT~e8^R9g&L|j3;*hv0yR=Ecf>P?1){R4fgOypz;Ut|_j;2rzLuB!4V1^Nbr zfRLfoK1ed_t%f)Pfw<3*z3S&@KEJ7iJd9nX07_X{c`uMCCy)1z$`AGjzAWn% zcjw|gK>&s}?DvI=A%!{D1_?tB)W_~MR?!{LrPWQab%h5OlVA2p7>l9*VW zovCr{-Cs``S~&tI;xEM7ci;C$M}XrGp% z&iR%jac6aNzL>$5goG)ij^HwN&rh#<@ib0f{CY0SmA>v0%8i_p&F}*4*~4?`Xw|Jz z-n7s71X0BWpr&g;>uE9hy&}cmabdTKD(b6~e@V(TVXe^x=eP-CMCR;4nT| zFq%w0t)dTpGU^LwCY!jl++g~XU{LNnb*vaJjuz~0ICavp%TYBmmq`P|CacU(lp_Fl zQ|e^lC+(YRxUZ?mCMOx^M?b-3gbN!!BMa^}02uc6*|{_Uz6s_EOYZw4HM6iKLk!?) z=D0ncvQQqvoyPhTxfgJnOW)m|5$JKPj_*% zf++)$G4>4_&jRLd7~~~rbke9YF&CM-s8YttTyqs@+79giY%15);pjGw>$uHBg*pV% zkRZ1P5y7^e;&25QgFWw56j)*(p|x<{MZv_P)360(M(u9qtnH7?x_%I>G@j+jx~{Ok zLfDh*m_U?k60tI$7gF_nsc(AM6ek8qL95F_#4qNx&ifL1&Lg0d5R3$S4(?7HGcKNF zr-sT(lkV^wz)tqkB3;&knspySUsegN?ffWDPtXi9#Y_UrR@W!@)>razL}^wOjK9Lv zh_1K(@8A`Kyu;_tl@>LcZgVyYsAQ=f%s}e>%3AmE@QH!o(>3o9d1~f;8getU4siyB zs<|z9ypR)w3JfZdxqec^NF5SwX7X~Ebvgcm&2LlyHo+n!=5C5iXNj>{-gokP@yJhY zzsQ3N6Vd-6iIt9Mp!co@w_6Cq&krI1liDL;S0Uy#OPI|kEE-vE)QSV4RTCpY_M-qfiuu_ z0Ii&L7Ki6`txRyRJ?Tvfn zifLi-ntHx2zBda(1C2?9dBF?NYwF8|m3IE1m;NN0r{&_9(N%iAhsMr|R$UN6B!7Kqf(NCEhWDpuW_&4g(woOwD{TrjKuv`<@oHP{!=?#)elDIVZ zS8RAs?CUvVc>kgiT!n~=PS3LzZL{AF&duvr$=fIeLX3U|FUG&@X@EtSd<{fdK!?V+ zX5UsT`R8{)oPf@NE+-pX?0%}+V>L67OE&fN#Q%0Jf<*mQ=-9*XgdM!wR0MrFGKF8t z?u5CpY79vZUh@_u2{opQvBHqZK*b6t6dQs&gp8mK{+ba8dpK8|7f7eXLbe3m*MW zOM&eoYw4~?4~7)*=@N*S!raY3$A(rI8UNVoRg@$l1r2s7|10y~{AMn?1GRwqcy@hl z1Gc8Dd6#zk#qO+E)WsrCe!Y0ImzHQ^;R6I<K?=f zF?0A^}m< z%@QBwv*I42ZMtK>oM74%p*r)9?E>mwkUZ2%wS^_0+kHjt&m+l-S3O zRPkh`U+W#z?%Z{~I__7ErugsW)gZ4G_aEZ#`f-3Z>-YN8AJnO3w&V#uxC@pZs8KDt zogyw^iD#gc&E9z{352zV>TT6W(n84^5eKNms>zK>9?w_ctQLDy)A53 z)4_y%4Q@vOBGspjXk6v2n)y!lW8%UV61Dj3c>cFU`V0R%)Znj^pbp$Qt-Dq#KXhRN z0Skdle0ZhZ{mERQ#$tw_1;I+;-+yk!Awd5gsqkPHiCYNXW5L}`P*@5y0K6ubzyK%S z5*-zQp%Z5|n^(L*))@y&(BVWES zxdE9N?&FVNHT5ZW;6Xii?p%6^cP)l!oGpx613{kvnL#OtM=Ab`*!Fpm3F|hdU3N>l zzA~Hox4U&B4(ToeR*M!ypu$oZ36g*)^Is#U-(<|IBW6A%vDV+em2ux5RtizMs3?-C zizT6VaVW>{$F$j_8HY^K-hyo-vn1K^HMC1bGwH<|TD{&D(+V4y8(Hm(2aJ#l_?o!L z7EJ#qWnnh6Hu^CV|M^Ol@p-gA$QA&EIo@ZWV6aI?;&b#VD;nr94e}<=BbSq|`=b@2 zgvdeu!Fh&01pVbbE)||jDTL7++DiEL6&mz3|2J|W_nMglI- zIHI)AJ&FskuOF6l>|@XGJ}nFQZEnuh=-#|Bk{`t3qG$?SCq8s!71b^`^f3wUgid8z zS56wwrJV$QdpRl-Y$+VvC)9hrn-njRh$`eyT0zJN0Zk^IAvRE8J?Lp-bIOP(X9OIV zC!sCIvjT#h$Vh0v_;<%{gHi0&S`41?koO?|u(!9&!W+b!;I{&0wWxZ`hL7=LhOQ+d;;y~CF!H6GD1bJsF)X?4Tq%@j47eRVa-7zdBxkW!hsryS zwQoLg&__(Pj%v=I=O00iJK=C&Y?Okx2a4qV*}?y#!gT4ZVbL)9_&;D9;GP&()(rpLS3jvmq9>V#;!F z{Ns!6f!M;OLXcgYpZ~`j2qpi<7S8#ak#xta%K;76T~(%SxcQ-Q^{-z=;5(3M4jO4A z3>3FG$MeCu5l+pE}d>0=H-pM0yB!?NvsYlkrd}JXhZCF<&((mmQ2eg!1jpmWz7$l#!E)Dejv%st~FHo}(c$fh*fy zdVbd4A6V;CIDWowcG+jAL>(glN(4goGnKv6RqS-A5OE*%VnMnlTxb&!-V&{^jx2_- zP!H{+y@E#%_k-U@c%J3e2U1t~;5+5GRA}{K`&n4i_5NhM{pK z++zQ#X=Dj)jX$BNQU39UaO}WcV!IqDKoAGdYz@c^<&@pj&-?)u{%FdxmR@0JyP58-yjWWOdvz5E8h|ubc6S7!ki)K$`0VhQ zMO^Lv-X}{A_gwoCrv3ERqASZwPME&&Ni;9xGlUu*LpIARXQnH!Z_5NR7eDKh)m9P+E{kf z`?Ygd>`2tlrHsFvz~o6?OTbV?9-9BBim4c14mhI|X3ZV^-3U25V?^36?7-hz`D2*+ zhT*dW(+&>v?6FSGL%nK@ebrfKv>JyJfW$%^{;a(kUtg9lH)IWDUA<;X`^deL9s z?xRZ57O)=@E$pvzHi_7PE)bZBZ|QXZLRxE1k8~bPVA`3v+S$AR75x#o}zysSn5l|icM|nI;g%$0W zj0`!@MEP~tfe{)zEXbGIT#YjUQ}P~K{;r=}UVr@|i0DCh&XR=1$gh)gAj6Z6jx0o( z?!MvJh~-E!mNHxj&gW>J3mE92*DwN3Ns;#3%kaFIh5b=hVwYN-GVf>=wY{EfeD=@% zD~>sjwB*!%f*be)XEb1?fz=|<%^txSu+V=PVOWisc`iwyg)2}b}FcUY=nQEbiL|Corr$TsKo0{d#* z;txWr*{{R+o)bGNG!b|@WC~>zJ_K3s-F^yajFLFFO1=18Q_lR{xk@f5&%73CCa6OI zj_ze^C~xGr-V<+fl1qJXe$v3-5s`*>U{N(R$rIjC*AVNid)c4_BCNqxmRP?-D0q_2 zfOs^3*Ah%wX0Hfw4>@K8V^I*13N7x1wtL$?9o9RCRylvIGh_&)2x&F_)G zf@!Yb@;)p-bMI@9`MxPvl4|>#5SZWBcld#k7kT(e2xGDzQp)K)caR{0z@%@y-)9wt zJ{*fJ+Lp}=VLXPw+zenKY=2 ziMJ0Sa(WpzrdcfoSO}8FLihKuDMN#~lzDCF2O$=~gQnraO7kGajn~E2_m-=etN2!A zHD;F=_ZuF2V#S$0iBuH09!@=YQ&6@2->^$8-d0Q!1_;GO{nTzx>moz#4Xmg@;F3m~ zQiIJlka>&}S-MSoXwf*s4{<7@3ThB&BCtpeH|HH>ZXG?a%oLIs@r~}B-xbcC3jZlR zf)K^FMZcF=D0mZ%&PQTdIAM*f|5BH!xr~LSPaqE=*iw|}NgpHI|8YOk&%ymjg=G70 z1%oD$AKQn2VVog}5Z28R7+9vIIKB~>&6m#7n+&;Jm@$i8v8JK%45Val0 zH&u6L0*j{o(A$h#=BuH%FcB3Tbl6E7t}n8sfqi46A=d5q>(_$_A(pcM`_2pt=1_3Sho5}1hgdFiSd23ERtXPPWJd??9E{_c{&+CkGw1D(>6b|So0f#mbnl@H zkjjAi#m9b9=+&*BDI;2G$$0EE8a$i=i7`LOT+^zPoGnDs7~Utx_LLIJoHw^|KW(t_ zl0a^Jrl$%RpAfhZDpJjz&Hohk)}&0G5iw%JZ4}dzMRh3Q(*%yF!gAG4p8TmfvPlq< zC^P;_ukh>wj}UcWal9Z{E?($ys?|VlzZ&~>^_SciOtu2{#te$2j;GCuC)v;iq8rNW zzEX9E?O$~_(rD}Du0J&_TJ*lUDguUXDnpg$}`TMuv z_O0k0P!Wl&?J?~o%g5KpBc(Siz=SyhjJp3EyvLtlk?{Ifk9}|c)ZF4Lz z0cG)Tx)HVR)z$w}k523f(CYo3(qRj}ALE#NO<>1t@3gmz;`NCh?H^cRQEaDwR)Ih# za;QGL`{Hqd@}tOfw(bU~6*rrcm%z)km%~HnqUp6kz69&He2LpM1Mm%C*D5D6Pv0A9 z;&7ZDclPu&lC#&^AknL@H|iVyYyd>G2#Umr$hW%;?BoD;+#nKs6bFcvbugB1B|GQ*mXe-Ci2-Kk?2!L}UvM+U@D< zOUmnY!cC3eTDywe0H}=!!H=#`q=Eu23Y;+#6IT^`lu*}45U{AmC@$2FqEIGs(wFA< zTGAn917oV?ioU>A5Loy(=zkH2-%ec@>#F`eljZ%gm3F_xN!5o-@d3$sEBn|bJ z2(^24uP&Tn+k%E4Zw5!)tM5{Sfw_n;R0QL)#1il3v$CXeO_wS?PXvdd9z;6G5eUCh z3*iQphbSNMN@vLY(8L;h*Swx=^5n#24<9oT2OS^gEU>0Fep&9>zz<)OMT`-U{vb5A z|C+iCJ7^3TMxgv^wYo2;1IYu(AGpYjGzi##UHCW3^;4`d*l& zr>FlcA%xr3-CeR&hKE&ptk=E9thkTJw)gw}tp(sV-dGuWgU}WnRg_h&^%_J%k1R;} z&HZnw81Wa@!|dfkn0MRb61i;?F#STxVF%*EK^#QcOV>Kj=kZYCR=d^QM$<3p$+`Pb zV{NL8bR<+9pMxm{{#eg161j46udr<=KVOG?qMBPfPrPj1{dl}h=fMaFcc3~(Dgxcm zV`yYuF^(iAv zXq0;Pyg{!{bRld?BB6`vQH4U%Ys#cSx_5L4XBdQ zKe+5bK!^12lLLX2&h_}joE~4?o7YuD?PQg-euAw>H9=f2IEM)sjMxzzi)`^8~7EpgnjR?Ckddc zx6y=yXpH>njs;a1QC-XswR+|e0%N_LS26vI{7mO;`G|@|WQca3eU1-=5P`3*)K-P! z9t3UUZ}%Mk2Uxu;>CQ6j$-CSH==;o#uEkXqe3& zbzhaa26BbaTz`wXRCLYlp0Mt>P zWky5&%k?6JKi#3Wa5GZ|e}+s4`Ziq^rjdQgH{S=F7c1WNR+QNP@IU$e!{q@hu+pG4 zZ`iEt>r%ertr+$0Tq76cC5L`K-3BeXO{FPrOI7fzFLD|iZ3iOQv8Czg#l;5gqq?Z;5%yWdhA9eW;%KADF)mjSf|sU`9c{jv#aY7?ko*& zQq3oU*nT+V5$P{tsky00`6!T4G$N6XyesKFv&&E;6&md0i#LGbT>np-7f%-qRWYs= z1;oBxf&EO6zW3-6s}CdHbc7Pn5!kT_o%4RD=|*G3(5ipK;nF!6vk7OO1|wcJ?r{RF zIZ&Py%zL8oUH4-Mqll+yD!_zt4-KHw@RLj@LHvnc*nMVjcahI&cNQF>0nRytw<`c` zRk`*pdc@qk8ItQ{$OP9>42GVXcg1gl5tZ{*x$*N?OI#1_?8N^(d5xs65ic!-I{#F^aP z!-D}$bewkfxDIwvHrR>AGsPy<@gj~0&Jwh6I0`TVJt_~u|9LG#2howoWq?+IF2U6^ zN3Amx(Qro(t_pyCK)fk-U`>b+Ex-u&$$gEB2_hoPk<~zan*cUXVAzMx>@=1}Q`oK) z6qXQsufJ852GgP8U_If@NDR?!$Z7OI?oPYW6p}C=&AXjTSZD@M1>hK;=c*$jYr5m# z3l$XGL1i$UvV({n#av=-m=Opp@baWT{uBxlQaOj5vYjkF4>?Hh6xe<}vV9)ipa0u7 z=QDdbkQaw6Vn8={6n&@>MN<;#=0EqKr3{mBdV2ctJg1_TY77aXEzVVz1R}ug4`N_E zsvBF3Q5CmPQZi2_KMSh$(9H7e5RpmDH2rY~S?k2LeJR7u7PphDt(@f` z;gewn%7e_oqb1Umxe4r>2Ri-vCDT*1g4-9e)Mrw$vIN_T^pF zY>U3t7qEzBl9UiAVUgAI-3Kpw$lr|M4xoa@X>Z9^^IBUkI_n3~WsuRLf3rH*z>K{{ z-rh_ghlP=R|cG_1U&nUNi|uJ~;I$`w>8SDdkfUv*_A);3Je%Ry*|>l>@M zn5KjN&BH^~VfRA)TLgguD^AH}HgdrQrOJS9oa3_s!vVD!wg6A8uSrJo8Ry>;uOIiS zWun=s-%Fu&-;*=%YzVSxe!;-=-$HU;-pZY>z#GS~^_`-m`)p(Zv9d@(BYD_JXGZ@# z*B0Q%-R0XCYkOo)^eXg2hz=wLaeDU*&o;rpy)`yg`=|3$hVpz)$fb`nluyshh)(%w z@iF3#1{&v@Vs`@pqb+0j1|uz-p~;&yjn|jf?_Iom)pZy0dXUfC>LTj7zF%#KeiR|z z=~$6?JO+BYORKjp)qY7RV7;uuvp^ZW+AKP_`Ug z;N~-s*6}AbD?LL;2Mn5Te%3>NJWv7{71D)DdcUpx@%#Fe5~pY{WKKP+dB!5peTq6L z=*3?}NyFX$aQMrk%JUCoyzh0WVwYy~iw@9|n#CJCVi&83bRsNNc9m- zZmk!qwMEnVA~dp$Fc}hY3Nu63Gq0f?QJ}Wbn>lGku1abz#~lL{$qy^(XzYUVO(h$> zDitX2Q0O=3&y;w?&;F`8dMUaX;aUGzFIqP@Y;-vV+4#sqWHK^R%$ zA~rKrc zd(7^rEg+HvIi}~P7%#VyF>Xa@xn<=+nF~8&Z?sRuPlT}ducoG?#P2p@(CWmJ4`lr0 zqz-WWxhG5wEuYODy?!Av8B>TEu>gBAiW$mP{}GDrL@+&cJ9vrMf!CsyZxT9ABf$6d z>sU^Uj&;I?gLjJ~#TQu;PSdt|pil zW}jD(m~CV^iM{pd@9BYeMiPNtxIEEHhp~)6kOr5k>HKFanoPIE)PfSZp)LB@TV-!g z-gR)TNIckMrY}EqAMfSF=(7JmD&KMyi5veHD(|cUw+bfzmv6VCuO{*o_PRqy{$zGJ zGd~|diSd{BXvxL#CzysqAuE6bOiFRn^|K-UhfDZbjnff_!*pnO_&%lMn#ONkoca=} z^?SiYYy_3b$W(q5!WEh2;i~;H2u7V}`P30j&~AV5@V?sv?MG%ew)Kolj+|OagtTx& z1Sz#)(>Ke0f+z^Q(a4uxx2W?U%;5UUU(!n7Ydmf%_HNVNyIJ+z?=}_5#1QR*XQSgF z(~>g!J;J~OYPDa)q?AjKC2b4gcJwJR3CLQXAT-ki zOb_!)CCx+RKa~1+xCooEirj$}2xA~6;Ka;ajX-sy>;lAuP{GMDCT?)#2u}t-g z}9b?%x-mPjT`f+NN!CUoJ_wALH4Re(%oZezZ z$I#$tk>tX37*`+usz2gDr~z%DgFKNv$R3%A4?oLV(&h8fJ#6HL*A32*PdZ8%4hONs zv_P$CJNBxSQai#a-^8+KNzIk9z5Gp`j~JwG`6dKbk7aifWJ9#Lef&y@yoz%1)9pzT zmDMrwVb1!HA?QrnRw#OJMI(gN;e7i^=Ol*MD2L_Ty%}AHlg^~DOC;(N0$(ij866!> z84TLNP=_CBWhA)D-2ls7I#~aCIa6iqaeL(Z>6qZT(|%1HA3~7-^7knW)q2)mZGu0E z6)wb<&4){!O5gThTH2rbl1zYyX4UdufLE=xB)%N|nId!Xo=-znH}StL7%m`*p`fYu zPtQB@^XARCy2U|(u ziA7U^$Odqnb#^7JPnC?Ud49Fwp?1;Saw50^;jp=%D_`O9wMb{aL_J zx@7kt6xitmKiRa<3A)dlVXTFg47M-62H$vD9G0X5%+z6ZvIqlv?4GRMU4YS!1REBwAcTTH>$8VE`{z6hJqD>?1m3mN z@y>$}P2G0InFrb_;{0c@=WHk}{=Rud7M=a%oVOx}gUW86?Y<=EhwoSvFQWetZJ zHogg&D^fif{rM$Pr0w&(w|F=NeQd>9oS2+pz}_cmk>ol0giJWHr*BPXj?}b=jf>08 zvLNo3o_PPogwJw#BJK9T)Hv>?pf6&8LohctmzmwBM{(V}e2+kvw5vEpa19*Bfw*c1u%1 zPjHc-Y3kJZS{@&^Fg4X3HbTu0Tu$6Q!g+>oRdYt6fJ>!**nn&6ry_>!?{H9HGD>Kx zyni?F0G@4PO+`s+wrqcpyMS~B(`1-8-=-&o!i%sOv)uT|wctl-pfJHiVs4qk9(ljT zHo~TgC`Avvh-X-wYQzKqIy-e7kv{U2a+i9o^$R@no`{PU_e;AW(T62P2ZjZqm~b6= z%muRe!HZ-7cfh*6@A32mBL^k^<8Ar`&1mbTRY7-8z(|!NzwFA`YGiDNoG=`yC~isrBJ>? zs{cM&nwLk}e9H5%ulkOQ$8I!d`sWV3jiVH05*+77q*L7}P3Ya7H0|Xw&g$t-J!i0o z3sz?%$=fcREo0!2u%VL)PcrZBEOT*ZHhLI$jYJcZUPUD963K1ELRfeK+23t4F>ZE# zw}{Jt9fUFD48%Q7Kk9{mjj~{iNaAw9^!c4LUZA^6D9xZ(nl8;itNk>BbWyJT(g*uu z3;APRY6tT5n9z-%z1lVQttikbi5=E9&6nqD&ASsimy{p>nLpP%qL;J%Puh{U9oLqR z*!FMc{kXjLCq)P8a7ZVBt>l4_52ZljabYH&cIh-K^-!&-BSMGUlyn6C>FZctUdHA< z`-&lEAF_S4y|2HRGHI~CFl(om$cskc`%AsgORGfKGUnC$Ujk2{P@;iWhu)pAQ4@93 z=gb@21B5n-uu}tdez^KMl~8Jp0_K^|Jk8tbDvL~#^+@A`;Nu%Noaz;wiZ|990%!pO zL4G&kwG;Gxj`3EU$|2Vz_sGa*KA+#$jp!qqa8nTs-;T-f0ppy|JxBj+<&s(_OByE| z-5)`gpDAB48sAk$a-_UjeVXy0#ug@u*yhLt^CM)DPIh)|Kxv)uy0wdmG+)iC5f`6P$e)7e7kUNrgw?E)UV&NKd(3=qgc-eH zrhWgl!6I(+&krk)St;o`A%vPdu+aT`9sgc)Pqpf9*srJjO2QUNgRW-k&h@%E+lRUK z(H`4RYa`BLB+i1hNC0k8H0&)j^G#stBb4j-HMdRJEM8&7ndhx0d+Gkydx_mtvMu>% zQW1p#go{YB@R>FJrTFn6L4;$Q2)*U2i&*$D7OnKlf0@sZj{^)sY(ZpxKwJZ4Eoswb4Zip(L z;X#~DL(h_}%(O#x@vM|~nTzwuf5Rq`UWiM|f$CEr@QS`zdGDtvNK6HiR?En~XK4elfvzw@*Xc+@0 z<=r(-eh2Jhk;IYtfX6a5GPB4jQZMNYvb9eEQ%o5|{yLg1P?|EApwY_ueZ7BWjmQ}R z{BdyoTMU84UijcY8JclH@^%yEGMlB8!PkS@&%yp7_djLR`B63}C)vK0w7I#8p}Cn? z$<|Er4>{gkQu0oSc_vZF!ly~;olfT6xP3~IW=gRlKE>^Ot>ZtsS6`nkl#gvF?O8vO z6!P52?u&xmjHlhqQI)wp3~$X=e~s0Uv{=i=+@3g@k>>O68VcVv5xqS2FhwXeiVBGF zSWsK}%?&iGMpV{Z{ewGio|&ts%a|e0y?%S;_;>*dpyL zS-lX3;a7Bk2xLxsa*D#UO4dFrrdRM&3tva zouo_`2Cu)Xdt8J0|5+b2VV4_VFDlu7=6e)LY2<{z1S?szGKuri4z^2W+ZBR7MI@H~ zI2QNCk3T;6TzFBm0I2ICi-Z)7y}%@8SLx2?|J_(00+Kod$vz_+g3r z*S_wW(`;Dz%!;32MN)lzs#mL)MvXYe*q7uK?bwB_AIrnp(`<(kUT-W#e z`Mlq+$;EEO8Gc`F$K1RCW=2fX5EB&faSNv6!7zXRk~i+A%bikT(bh3cv9KQ8Qz9Ww zvH9^ICtdVM+=nV0nvJ~>ToZ_nlkvaIE&KFcr6uInmHgz3 z5o#Z;H6^>hK%yl2glCnMRCMc5cVK(~^=+1;MWU1=8brCHL=sX9FV!$;;84JldRf>U z1P&;c$TN2(v?JI1=hk9e9)4!&7Q@4dO(@<`oDL2QsEBqwq|BNGUI-;Q3<*?lz0J)cmEcxPXa6muB=}9psBK8hjsa zCACg!3&mbsI~jsqU*(`18J%#QmTM*|p~aJ13@e&Z9i`}7yY**IM}T>$uf%5$rIxUJ{*U{Xi)N^wY%oz-7kES|vO-OC)LXS)SyF5VQOWVl^{6 z16iJwZ=uZ<OA-8AFn%Y`lJtBOd@29$o9z-pY?)TBn%T4SQ^cu4}<7QT1%yer7S{JO!bXwB;(D|rL%%GI6j16!TI!>qTeq@g-($g7LBPFzmiUs6- zy+a7moiBMmZ~{LhRwqEbg#rV}O!YN2cQ#Zw3@xElmsmT6+0XY+Pa4aQJmlx0QKzJ< zqA16KOADD7;6B`{!Nh=iTs`3;#f~2rJnmu7Ef=P%9q0XXw<+IWqItikhWfM5zQ-p@ zcJ$ohv=1Phj$N3~32Y*(p3STuI8dxYk+wl{beU@DBYnNABuPm%!^@?`!_|RFguYN~ z07u!n!KF-Mv{}!CrKl8&97w`i-Z8bjHh+F*%^%xyX&J>~#34G`i}W@?!=~vg*;?_% zYl7%*1a3|&h>Efg5pE?)fS^Zy*ks=J=Xr#KPV3O=;tg<|j!HQyFKsxGi)B&B9zPyH>?QK*N&2c{`g(io?|;QgKyz$95c)~y z_$Vq9xl)p4JM26fLO<|v?BsR$+~0rywjA;D0PO4X>Jg?IL>%ood975qr+sS8wz*@{ z1^WipDGbmJ4wb_}Q)#{?t{=f3!EEhA{3&8A;;&-LAU3oR2qPQsB%LQ?FLf8!5yNnI z$}SP09{f~vh1j#uS988pcmmql23pZ-RO~zgA`D;1*om~?bc7?9;_*a)0Tij-FbB8` zdt0-fsO9-*pHJwv{j0R#J>=iKC4Y5Mlw@WyCMJ_Mzia(!@x;LwYoU$>Y{|s!kXS^8 zX0NU6?VjG<^#|&x+3&pk`MQa=dLg7fpBN4#daHU7f=@mL$;Z@HdU%~2t z(@G-go>KZA$s71%WoG&dH%xVypQeOJ)A)r`K9n&Hi?Mye^Q`hDZYdtPr$2NU_B?J=6bN zDq>hqP6YdkUyjodQ90so0|+bC=Z_6BB5EU~ZX+Z%)uT<(as2b=&sB34#r*gvL44ya zO&UCs+&T$-2L`ub@Gv+LLJjW=w?bjcg>l`m63IXT(+i2gmmSd zV;T6jEACds`)3cq@q9YWLN;Pg_DS8|IEsf*zLRtn zLX2dQpgu29HSB!Z%=Ffx|*G%JVP=0oReLIC>r|b$5 zy_(IjA=WR(UHDJ|5Rp8S74vc{h?_gpmC<f!6xuQ{ip_czrhdkoqTQx750?!QQVcl3zUO_od)=gQDNDu+Q!TSBNU7Y25~kjLM$OR`f|AQhURk;BkG@1#c)w!stQ^7 zqE1;V@K9gJLhu^ti-WVRBsQER3LFYR#1|GE+kT_9cE)~fE=2V+%Nv)ulV|>T2;!Gv zs@W0f?^46m{tkmU%iRU?{RoQK`}p`@L-F8_DmZMl($-?-eRIck^g zi4yX}C^r|kw?rYr#7t3iJ@a;`atWE-pUZrEwmRiWR&M!kS3QZ^CAX;O=eQ!C87VFL zRwA0Z4!O6wWez$+FZ(25bohO@`H}N!!!T42S3C`o^<2AGn1gk`}SzY=O z^S`=WT}t&Lwu7z5%VGIMj3khV&>DWW$<`Z*7j?CC!e7*K0t>+BV)`wCQh~=A^K*>L zz1~r*7gvv-Q6*(_CvCaeV)Y4;BN&U=o5hcOejfQF1c5OTxi|8yz2g4dmNSAxC^Xed z`Ra-6Cl^VT?DItoO>Sr`S|XMSW6;6))~>|**@g1ka^V)osRJ7bu)5IgKvO4DyU!;n zq9Hef0XbfsQ9X45T%BhIHTGuU;=~7Q$ClW8T%R1{4)pVh{a&ffI7)!uLTy>gt-Eu0 zco@4LJjb9zkn)756!)3_D7%ydB~|?1`~d?O`kBp@Jr~stAHvGY z8mK7L*L3upo?SVS904B|qL#Mz3K1~Af2n$W&kLE&>Xr6JL_N>4S*K3@*NF&!3vQGU zD;nVP_~JmMKF2C=NRzHEI!jl7@&HMN>5k2<68}a|GT#k0=M9rlV@drpPbHxz;vug7 z9aG|()S)@6Xq1BozsRhxSd!Pc5v;DoageUWWe8*(=6dzh!*gpQuXV!SPZyB`y}2AMuGAwz({@wfc?@QUv zol&MdmIodtXXQpd7srFcI`-U6Ye40iL#glsAbW>TlysJ&)v63bP6OsGJQj5qI)T;fLr9Fnx@WEnnCZlal88dWGS-$R8xn zMP)nm_D8o)f(R8exPR~2mn!+Fg)3oqbgq*F?$Ie=%lo3&P0#~IIZ41z3n`+;tuofQ zr0*B6D?qSPZ6b<)VsG*=q$axDTiPoT7?WmcFl+Hsw$Ap2$o{t4r>~g5Aam6py^xbH zcWxVd4wsKBmOqog(F8i}zp`V=P_Gl5;d+K#O5++YPN|Ej$5|FAo=tAd4%>Ix@U6>9 zTCM*|V$^UoG;){|_c_D(*Do1GgcTWC+zDV%c%Ou1ze2@z?8gtNd`URhtG$b87cf6o zaI%Qyg}mck$JyYA6Ovn3Cq08GJgPZ9uNesVI|#&TaOFJ4^-M?i^reTbAOuHJ*mkfK z7-IG%W~qCj({fJ3bXm6Kl|+V!&Q4-$(MN1WC3~ z4Db4_mmH7{z=1Ny$)~%?6{8buc$F?`PJbB~pf-rRbYap4sSQx*cdiK!k;qOZyDnuO z_-C!&TqKS?m{_DXntq=X_w7!f)yxB9Ymk~pZPzi;H@8uNi3V!xC0jh;AQn{tEhDiS z1alfVDExUq(y=BEXYc-W$NYV~>jGkM6u3Hj9UV{;8qzdf{O2XZ=%(ya+BP*}G3!a0 zSq~2

_-&Y8cRE2tb|Elj3yhOq5E>TbzZ4StUI)$hv`u9lktVf|>@u=RIWjelLK( z*k%`?abD#fjr66+;Vi6vH|^K+mA3l(2|p)RP<$G(QGka}cz*x;YrYXQ4GH^PfEX*C z6n@a@aW4Q{V+egOwtI3itdM)u#Cka|t{M~p8(C4$%o4GJmLRkiR|m-T#`eGUi2z!W zC%VoS48l|$T+YM)>QmCler=JyoLcnjWnOw$;#4JK_T;DV?o`?G-4(ijkpPVLU5!`c z_$WZo!PoZh3k0Q;TzqbtXNmI#GO7H6dTjeJgoyEU(xIy2;Gt%#GWeZVUg{{jfABaa z0}DQJd!!ZL8wIh8clUl@^S1G>8`yU*)X@|R zQth6;-38Bo$oyJr+$p&lR2WS3&Hq1S{m%OEeWI%#gr;dJsfqye;0t=;!xYUo606uU zQi<_=S&ewQZBBElHx(S>M`EsYihgwpmCvmj6TI6;>B_E_5r2YweQC#LJ^YIlJE|Vf z9$ZIv9Hg1ze?HKf`*6P8@*eFzyVs3Cea6g1lm0X5<$`N=&o2v@_A7C{cIZ|C*J#6| zDUs9!2NA9moGsI3=UMWrY<{~GXSgi)`W~3OYDvGxWupH!oAY{)a-ZsKwywYXzcqcI#ormIIQ(?+t47gUm#q&?<-=-em2(8f;DK@ zJ5lCSe4BR__%xq>%09vp0-Ewo+>t8?OMxzIx;oPGmEf0>yUGTJo0aN!XHCy^{!yWboNuuz!_M0J zHT$`62-@;&r3z%M$_9kN#WSnIjRFB!5Es>pkO)fyh;FN1>vtP_RXgg(S=xBUCFcI{ z+Ad>bkHFm?<7+2AtIKlM35j8JJ9qYowIL}$bNzam!R&@iiWV@1XTs3$QiV-~iPH$u z9Q|v5@7?5YQ?g07$!|LjJAc1Wf76#j>TteR>XgklzcV^T6x=0jxhWoOsot}K_zls_ zHP&({Eo;Y1w%k;2A)=HM#&|MtaOY*0$=gq@f2nGA9IBuv0xn;Fw|gE;Y8wX#SaR%p zmQ3{2O?1LgIfm~&spwyS);W+ie5!J8g+(wrPKu#kOBo!z+)K!gzFdB<` z8gu8LH$MyD1TG|E?4O&1$$DQ1KdJMCO1@hK{pRemWbyQ1M^_j;7@eN{h+fY zCH`Tulwa&@^*p|HXreX!7l5;4+N-Z8%v14=kEtAp9#wH>!HHLM|1f>mrQBN&A|E0P z7=(yg`-~ebEW}Gp#JqB7?;|=0j`(ggAvgpU1jLu|^>4E~^@sod{b4Ub_V3eQGTOo9 zpMrOYTo2e)^RX!_8ylfeY=+Web6{0axRe)&Yww!WE%{*WU7v;HXvAC6Zwa-ZHsAbA zeM)(cdq__S;aqd~7nretC1GrdA+$?JX6Unjk9zQ{>%=h$*PXR%DZcmYk7io0 z9+XaN_`CI2o!NC?vWWV|th^5y4S||Ysg&dV&l-V+Qx7lwdbJd5tOcQhZHC{nSF(ny zyQgQ*IwqYa*7Og8H@vL-mT%LIEG6efSqAz_JF0^F04+5-k<*UspV z_YejKU3(}2)+11Jpej{)_|LkZ3Eo}RYdA*1@o$G>du7Z6wvH9?FoRPO(qq}5eU$#G zg8#x)1FSfd;X~;omsjV)Pq5OpR?z-`&$Lc6ZGF|5c8Q)^;zc$FV1v=~%MHp};Jt6G z%FKWpBhG-JAU;&LR^-(6rv;!%viEF0{a-eECPgP+Mq`z7(iZv6M)}U2XG2S{7rq1t zYS&I|$$=Q%&O=Wn`IeX0L$j_g?AZ-TdXmwW4wZulZ=~=VvO`H(570R z|B8nTswYFTSgqWyo*repZ=ij!DzFow#w%IIaJ^K}(M2(YF7G7bJvLtE+RSgj{2tv1f&@zKC=& z_WS$yuVi1DNbB+LSELMWxlAIY6OruiuH9r$)I9iDC{tM6>R`vT$7s@C3b5g@BTSRB zAp0*=4M_G(PNB%m@ATK{UvBSVHBeZHDKxt^wR4&{_(_Fbk)#MwQ?%BM`*1QB#N`{j zXE-I1>4mWgj1ev&>z>^@ACV&V$=*BczE#WV_KzRAVl}#c_x})X1SLjuj}(5sy$&?o z9xuJybkUfGA_x+{9LGy=*9BvO)Lz^j- z26*uhmeAui+)pD*6gBnypwXt5(8RN>Lg9C9EQrMQH-Mcz%iJdmN-3H%Y!dr_tj@~bCA-!P}A__I}X@{OrQR>a|i{naaLx4nu z)p%q;XWKLF_Kps0ABs9LmOXo6Y|u!wtsI(Rh^(Jj*3Kr+*n7^JgXW&naL0LORj`B^ z`a(7ycWD)iG|xTa3g$&&03K#NWHD9wv`wFu)6M@)CKOq>^A6R<;`WYq*|ML5q~(5K z+6lG?8$qz?H=xTxL5CSSqHim|RSzA9X6H8*HKtK;2@nW9y?A)o4>SPp?i+NK17;zd z0iNR>&Pz;>yC+yvd>N$E3lvhyNXYgQhD3{`eAVX1bv2VFFqxQbsrlrD`r*0OpOB?aOkU8hPpCqmAfkY*T<6+9&0m6Otov(Fv?#{ih z(-FX9D$U|;{O|pFF2=mzyAY^h(xeJ-{uuVi&s#-u@NWx9D{32ObosP*_bA4cdko=dns~hWDR?9?0$y zN+${iIAAz)7^>(i;(nUb4a@O@(f#}PXGShwIqRAY$g%#*moE=hMoxw`E-f9cx&L;+ zj5SCjfk~PTX9fr%TPdJ1kfPXnR0y}?(bLg-de5U4j}zcPAOWBxu%SYh^Dsl3GNLz| znT8^!b@Cp)PYv^8!gWqpLLtah2!wDH5`_lz*JN%;^zCxQSO;GU+nzvg%&}`TmK(AW z^bIK~l)EU+;<}G6Q^#cNzFO*f)s>s|q0UhkOZL9BtPIJ(8Cj0$llxhH$U0Yq6insm z!79Vg8Tu%?!-MCi^+O2p)Ze7$^QI=A89jf^jQt_=tn@9BXof}y4?4;ptgBa!jh0{S zbW)BVB8@h)WU2rXnRsz-e!lPXE(Czfokq6luI|?+t{f^S$^I#uk}dqDeDaT(%D4pV zN1$*k8zmP@NLRa0`N0mg7otczgDXxt#c^POBFGGa8^sblKR;!jtvX zP&09@zu1@{lyV~NPjBw0FC;Gp>|eqaw;Wq?n_~Ny({|9`#kvEcwHpV&!t*8aoBi&l zOE%Zj@3#N*YiU;U52Qygog|55{pnqEcEQMm7E@26+qM53FlP%?^+dhzCZf)^bCr-k zuNM-WbdDd7NmbXWI7`6`jY>gKG^44wr@bGFTfAg?HMR);XLFPue^6x60FAx=tPSGV z7TU{UZo%%uju3M~6ruf#833r-gn89>oAIfZZ_~+4S*IW2*aZ@$Y^) z-*JCg|LFae7;V=_BUbe`r#O=bC*KMhGbDFUs?>koJWgLKCGnxZ=_uXml<$r+VPs(L zeg4LeVpgtj95yU_8POIrSOM+vFvqUGdX7b!A-0&d2mAAoEhMU@cr0;yAi9o#ea7t`Wz@0iWw@>7+u-%Hlz zis`vjxN&an(`N+;Ujv!5DiWs06R|HaFxY;*lCoeT?DABArsz4gpPYHxd!!(z=z=sd z^`2kOnnTk?tIJo`pmaMv9lC)B;Eh1_vazvccAb&;b-$^55Sp??a+gr&*U9?so?z75ccV~AdO-K>1 zO6dUddrJNqQ;dv%NV~P_nCLuT8L0^{XAG9MCS<{$0q!0dFy_w@A&*yuNMl@UT9L(7 z4Q~s}53V8!p*~G^i=PAY7@k@FunWhK=GT_2tgH}aVvy$_kyx0{>)pK2H5CDvfB{k0 z6tuBN& zd&t@){e%W+A{oJ+W+fQ<7 zM5inQd856~Qc+4jU0yxCnG&%&XkU>dDfpBb^Si$0^^?iBAw6^X%@k^k_kg+`{R2>& zv{4DaZ9OAVL9Sx@_{(*CLz(i}ifjAL?KI0%(vp*by%*h}n^n~GIe(e)jPmJIFlixk z4NC|ZJH)i@%@EMF&6(v-yn6HjvI43iuOq~R<{nNh|NrzMXDyc?XaoZc$Jxw3q-;c3 z?(?qkX_-@U=S98<{l!A}3zzrB!G?^}JfE}5aQ-elcnI3XY$JXpv*_Yn#;*HkaiBbD zom9dpbhiR^incGV_S2xWjhiB>{EGv+u*gsws>M1?@z-!;f0}^rx*)j zW{tg{Uw--^^!4!3nlDTEdWxoa{)FO2zh zmQzNnYoi~SWnuoD6}RE^R86Xme7D(Sfd?9T+8LT^qQ1)S5jFTroay8y~1oQCk+$ZW{H5ziSG^F|c|~ zL6qr$F%wHM4quP$Eomt|C&{GH#8N7JmZKSjb9}4nK8ZNCwbrQ>P-Xs2=IO~rg{m#( z%=-Nj(I4pqcOFzch>XCHCf%~yr<2uC4mD@1$Z)c`5afyVbVW{g4sVSe*g|2l8PVhY zr@yZD`^?C03dqL!=Mk0*1jerFK{%i}zVJ`dG>u31)LdRu!enP@W%_76w0E8{Z!*ck zAjc*V;mLp-Wn|7C;+c7NQN|w%u%F|QFvF#B^%T=g#N%J7MH+e=) zs!xV=(&j6&h11*%c$XgjpAQmeDgExYVsa!_@LOt}84o`sc)fBc{|;A&k6hY)_?4vC zb1Z2weW6RDV1#k2YW4xo*iLdGLG^J$?-0QfNp*pW*hc$9bC@E&?<)T%7~e|7fe|Gk zB@fcT;aa)L`Z7CxQ2sQ1VbWl)cMT!$+G!2j*_1N0hG9HKC}oEJaU9D5Tv$LlrLD#z zb`90`B2DFqATy2TT(yZHa5kJ24M*vSqxT|Zm)J#L6O2MV9$yQ)I)}H2c2_)E#BN*S zwXj~dedjg=AMYUlO0^1g(oFx#;qaeOywMmi5A>@-v0^dexP^0jiVTEutA6og+D&S+ zA|lw=yuMM8UF@E4qX zi9$T@G;({0osky{*BQiR0TH;kv=XHKq!M_%}42Q6QM;CCR@Nr0{!gVntc5gtndHn*r zJvyRi=B;aknB%~Sz>&oyReyPwCh4M~;L7Adf8zf*JKhzjl84=iLvp|?eeIHsv!hKT z7bNzq`;d4oYPQOuOVGVcJmFl9RVt&_+wwvCf<-+@=YeR3ei1#ScS2tNd>Pd%BL>70 zBhYBlrOWM^R&HjyC6vCxt!~BG=szraSMTEPCO=43E}q-hfALg2v#NjNn4fSfBsw{^ zH6~8FvA7K}!e_ zmPifmhgJU4mp=_D9BB2!-I`A1|G9p8=17GSj_l&T6#l$RV93@##!W0>cM#<>rU+Fl zq-TAG-p70A)Jrao(n%MCi7d!7c#_&O3JdMpJQv=cc|E*fStB_kaDkZu;1HZwFKQok z8o}d&{$@-8$lPH7W#+HoCluJLjBmT(pl!tT<3R!fTZs_byc`;e#~SYoQcpjR{z&rI ziPEHM57m~z-}6>Gk2=fg7V9yVVd;^l2y9#%n4qrQM@Y2N&4k7j@nu+4m^?@ie$kSu zdk}rDTjs1_n|2S2c%j{m?9YF@6~Ej$>VK>G?BjFncAc~CNz3h*R!1GKyE&Z6Js*lT z>_7YFk@5OUFyp=AsC;`--d&?xJ3B9#T3&s{NbWC05~)c<&wG1&10tvU?h3a8P9n}J zs3B*$Bp_&tRZvwr1q!!piRdM>1rzJs}fPhzIG>ydVy9TY{f$_pLY0IdO{m zGBM4>E-_31z&PS9PXjV3-*4MKIQth4=iu9NC4%wXxT>Q?=RBjo|EFt!)+MIZ61CYe zRxbaGt`h7RH^+*G%^!e=_^x!jP+a-Qd1}nnNZci#F-hRYvkb4f*58ORK3U z(@Ip#er@e~>_bWzID1UHs$J#P)a_?izETx$v-|Zmyji(=-HIi<=NMb)s;lwS{X6r- zjzng762u%%SFx%;d}md5dAzLR)k(Dke@ucd8aN*g* zn3oZxRxqd)XNk-+TMey%hS7|N?7RoHY)M*f+zpKFb&k|BIewZor~zLSvZjrJk^jD_ zA(-hAr0%8@iYW((1ST%NeAXiryaa4*<(5znVAPk0KjJ2jDR)xo>AL5xH9jpUA!7!E zHcjE%0x=b8J!D_OchdE3#rsmDGHO#z#snRJ+a>73ByK&{Vz#M;p=Tt^7|-aP=eb-# z<^|u;AJ=s4`l8CO51~(@#5IT;-D@^KcZv9grh`Yn_{OzT2N_84bmdQ|K>e84J7_zt zdNJJJPwYAn9|V)CE*4dt2sLBX$Q*Z*j?}vJ;yMBbq{1@0VgROE1{ElFSN3TNtvwv- z6FOo$g$`kiEf_T0GOlC4Y~&$yY|_1)XYrH&6jZXBOlH+Q9E z6dCi;(Bqy))LqQ5fnB>6s;{%{rUKkP1n-UpIX`5PsRm*tQfNv$yIUJr+ zZF8tB@~^4bhvK|kC{LZxn&t0fFs`|_M>T!rat-wnW}05^d=HaC$*wFxMa>SSQbOPG zP*!k&U)C)kIhw9jMj~Kn{unUrJ4J9KQfdzxOheoY=VY#nW`)MrnYN?N{~t5awiUotGnX9C^{qs&IupBoka|G!TkCdh8ep;d7}a?VXXnF9}FXz^_zfv_8Gj zqi1t_eM~Bqfzvg|RA#oB(&Ut%abxZ7%7n~)&nhov_?`cEXlY~pQX2`mEl+orR)OI| z5x@sjUAF#i$=H8G>18-g2=44n;7_ ziBF@kQnYSYC8X3@rKcZRBikwKm*iAyurhe%>rWPMW+0`%EV|J=q0O_ zfA%67Cc+>EZ-~+WPnVUsHc$kxT7*pi55iwgVELJ}gR*Yw-BJCLe!Z5ISx3bvB@w_# zo(p|lNF@qaN+*O}@Vo9v&bdwUborrH&KtIR`#NT+6}Bh7d%I7EDKL|V(md*!c{;#> zFT!5pZ1cOLbk!zKnw7^$W+I|3_sMnyLLfr;DQmiKq&5F5++-*BaWFJT=?>g|8Ka`~ z>EJ)&{`FcqnY4C&RO;6`J`#d=T*Ksbx3Oz`8O+|-)egT)qJjL->rb8kG9}UGBl(-H z9;^$RSbBt&B#uBEU~O&Pmnw+LK)oJAI1L~x=&4d{8zZ?obThv_8c>`#c8(E0pcE z*BARnNOk!jNZeq;M17V++&qclpkxr7TYuX4#GGH?*t(mdZ^wfynLc9&i*6bAunT7= zp?Sm(;@P*RK({C18I;XXyAw+rG0nGGW!mfqe`)@lN>vA6WL{vFhtK=pfZ+L5E|`u$ zVCwfU^BlWwklCpF$+46w+Lx0_3RXETBGJ1y+t+y{Rz;?hIbJ+S{88MuBTj|2m+3u5 zl*D$v{;6dz0ZSFg01iefAWsPQnENc%z*7WB3ozpkCYI>}i3GAs9N;a#6|ChKQd{@T zh|SOP=rdvSzi_bOzx*lNZ*9pTsUOl}>=*McMK>{+YSHu)V>L`J&ZBH8m0L(_{`^9b0ZbXBk=W zCRBvTq`ga{PlqP_opDW1Swl=z>qLZU%;~yQ><_i|M(%Sl-_y6 z&h{dWc?5dma{T##?RI&*(Kx@Qb$LB_?1JlgrddJ;0R~O{9U;oYN`=3L;4vG}A2$}% zD|!5`b&;zoE)OJ`d97aQ%niF}Qs$|2a(#Dw!lghn%`=>GbiXFQvt;ag@^xlKwj?-! z(A>TB){IYE<^fK3u@nx5`{LIyj?-tY2$Ox=%bj7l{I}g-3Q;{^!<^+AB#XKIs_0)&?+lzI5_WC=O zgpzHcY-U5d2nNIQ9Pu%#Bk`?7+opI^_Wzuhf$`8@KmwxyS#}7?K?mm8Qw{!bhd1*gU0koi`q+I?Mecl`) z#=sdtkz9^*>riV{>*Fw@*FXLA%sSjcpQL=>8eA#X{)^0r;vD{nXI(?{9v|q=dlc6n zn>ST@aZWB5$(xFdVv#$dtlB1BVDk_YI^)s%?UesRWoamd%%5L=Rr~u+y>VLLZ%ekl z1K&t*L0|~4!f`tUKv33~3dj183Z46%udmTF*<32DnVTnL(~_a|c-{3CJHR>{@5CSN z_}O9okVwjAFoX3(mNU0Y2JBQwlTs{oFZPk2IR-@+aYo`s2CGOF@JvYOF~%PxE4*g% z|8N@#pPflhH-4R>T#jz$Z#a9Lb;rveFSKrd&(K-*KL7NAsrVUhpK`mjXOnGyEz}lM zehImLUoRCc{Nx%cQ5%@mXLcA;`jqU#1{0-Ku(X(s85BzG|6_L3sesNTn*hLtx$F8 z4U0#^CCc{LUS(wluJk9+ zAHMh$QvGSV{u9|D*A$eJfDn7eFP)upW*=<)iM#W53>d7)o_`%f=I^I=D_Y@5hjRDv zQenOO?PJauY2Xn@+Ax%}U4~#9A7aK7`h@Z+1fF(&`n2OjBbnzm$5O8^$wN9-CpE_@ zO23t@13zj%JkE-rbG0z|^kY^1&)H!WrAP8Na;RS&9-xmNJ}h{SfBmsv@7IXo6o{); zq=I!!9$Yz>+tU?hvv$m1;c6dEntIh)4r2?}9imw$H+w|axnuIhe*Iuu9$OUs`j8`~ za5u%Eb)MFC5!uZ;L zD}u~e!CfuMoVoNXlbwo|QvPRZ72m+A*foPuT#LFC^x{|l@6|2JfswR0k zjEzNXKx=ox8p9OG(5o>S2OfgirZ|=PNR$z99QBX zpSarFlYCu_ahCZPt+^OsVsksKBlQL=7rtF4)M&h~s?*bc#g zyoFL@Y9Kct5SW}@YX1vPS8Dk-N1O$9k3_z*ILeBlSur>@*!UQp*WZ3BTfr&#`Jh4U zO<(={&y7sotwlX3Gtn~|?8{I^sN=z4<-B4i8ANBIq-%7P3zwoLCs*}-NUjF?p6qgm zgge?TzAIHX0ii%I$lV@oqf0iF*70qtAD#iV+Ut$-I#=^ag0Fog& zog?Zs+1Pr$(K0j9t@A!3QUEd_)N|Q-e7Nhz+_~_vF!WK2 zMFs=Y0Dbes4WZ~A`WY5blcR@6Is45|1E~X>mz*hmF5NtTOZ2!jZW5C9D+LXE{_r`Bbc++fBn++(NuCJ z)6X+_zb*P=2vJ0!*--JAxjgjst5%O3AS`wUz41XcdUs4n&|9tVCDiQA;GJmpWpDOe zl&3R^G3zbc*tplY@tz{^=sqpE3C-E<%W=kc7RqWbU8?Pn-+AWXlcAT@!4|IlU0vxn z=ul4rDXEdjrA7_0y9de)rzBFe^pwm4Y!BU!Imd{JvOq1Pop=m8v)?B=skF4Zz2#v< zfuR+L*9Qs#^1-m8afuL4H&$2SlZ^!{KjbJ|pfUkcz<+I8` z*Zc*3{&w*(4%Agd;0?Olr>RaWF2K}gQPO{wLj^$}*?fqCN!M1uxr+X=#z{WZi!;;c z1d+S{K1XZ#zVx=yK*L0OK1&81yCeS=Jn=og6wJSx(KW5Er%=V7NB@FX9e*O;CGk*p zx<=u`)I*VH;QZ#sVkt#U6fM{f=r(3bf~HiD60#Yhpwk3^fgb~ysde-Y9eQr9bn#8* zs`cAsLFUXfjR)oa_}r~Drd4fjusYs#jHFYg@64gnKPH&ag}92XtPaJTcss`Pkb+lS zb9Mt>9VNSyP^)XEyRcV|-qDwNL)VDJA-!RvpPLs88*tkUo~%sPT8BCVms)v3OF5yO z_Zj8)6B|P#3yrj8vAt`>Ob2S0EA%9*jfQNAH#$Bg<34~jDzQ^2$&2EoMp#W=$I+ zB;kRE$)T{lHxvr(CLXLbDk&~T?jQU7*OVZnQ`dWM`%&^OnV5Kbp&4QR@#VK%gZ2{m zblYzBJ^J%7!22X-E4s5^CZht9>(qch9dXDcRBuDe%0 z+As{T^soP=vHOh0c8)Wlkcha=l3<+sAN6N*>EE&fFF)-)CC&b0jlCKb*bZ<-WnL%0 zTR|;#k@5_{`8UFA?rkO!{w0+ehsAS zt(pQ^ak$4&2Bcj;4i%Zc5Jh}zc77B0w?aVYkCO_ulQ8OPx%u|Py`Yg~kYdASm^ z*#Rzz?5ZoTIKvLDQTv4r&A4@Ubd5Rps$9QvSsK3{nyRmzCvkHT-8gnWm4-#Yn_8*W zbH2QJ^S|sXhzNRF)!)1@6^hOC$C$2v+Vxdex_9WIx7@n94^itV%PIekApckRrKzbw z`un4o{VIJ9d|vigtxlF+^OAk>&cfFAVa|1`VZ=ugb;OtBvW18<6O^nPf+yJ-*tm(g z)qWaNVq;@G?P*x~+mE)E(k?s=<}Ag;#qsN#oTN~h>gi5qH1KcfWB4Z2U?Kn3JQgijP$( zAO@PzzV4%Ef4i&~p1>Rh!GPv0EQNZl?J*4h!rYAgFL4m+4 z1QVIq!;-LfoT9e6EPO`WfB$VvrX6k*%3XiCRI{EMCbt;eQCsqEt=}{paYtqQL*zbe z{JgyJX1v+qcy9;|Tx_5i*@_tMDdBg*^MaSzMF0LRL4dW`3&nLk$DGkPW6fR+#9XlG z%zfWA*;3Ttva^#vNkI@BJtk_8*C{zV>W5x5T=p zbv!{JLH4=pY)(}yj7B}uDm5nOC0}Owlp0pqI zpL=TT4^o-#AvyL)g+noPBKV~!x$failtMY5OmXJ;vuEkEBtbwsXvFWi-ZrPXVL125 z^HqfNVSEb0x}|06zFL3vsP+V!;BlC_KQ8Funa$(Wq2})Adw39wI7&0rcoL>=f?z6` zMzl!^?}aY{4>C21TVbAyZs`nD9G4Z%_HY%s@V41!nJzU=JzN^o3Qi-+QnlqS)eiJnW%4g3kwqe@&t~3%je4;Kgr*t?!a` zB-#d-;g(}*vq(x#HrhYlbD_TFAVpSx#$c`>2@T{Q?UfF*Gdb7RX9SE^~A5haHMS! z2Dqzsr z4V#{ZGk-Bub}$8;h|y5s`hf3azh!uNkc#2$g>N&;bF_$a@ds zRVU_6wt0b3M(t(jo_(e}Btq`|ZalE{gqrs$`C%8r_JsTv8H5DOu-HAQ)yg<1`NdgT zInYovnU1u3j^s_?yHa9>tmdpFUc&D*Yhe=6E%*+=L1!%3Dx;?wY9&AMyQE)%7~>!u{UF9Kumq z*>k?%5px0}9US;v>U9KeqbcLjiFN|P$hm=HqusMsdB0D=@{h8PahU0Xgj-)Oy`kO9 zo(2Oc(F-yfxU*a2gLrh|hi0LXqEJC{dlu;9%U#^1jWsEsX9(a_Lp|b&cxrWN^*RY+ zXB?&@8+K#`L4Rt?x|_<(O}tMNr|YJt#nf-bq5J-C8S|2r=C>S0?*> zMk?WjUq8*mjH}+>iJ#u}U7>=>285;EBRAAob*vD@)bFBLd#dtj)yW;VrJgNX5$K#} zcKV$tza7)JJ+g1RXXL2|M10*|K}n_=&i$LnF>v*ICVPdqwCm_1s^ z!+=m&?1a06kw1$H6@zCsyz#B*9^AojKT~9&K%iw~aN*y^z-~Q)pJ!@cXo;!Mha7JA z)Pw{BZ7X56P}^>&yW#l%Pps46dH*iF-bu_3hq@Qdgf*kLVB0_oLS|uM;lfIJ0kR2e zuUtB9=#UA7h?t&@d)R&P1d?ws3yQ?|Nbw^M4>t#rF{5oAc#Y3}4M)2*vi$45v%==| zdbs#TFTm_Rj*FhX((DY*?3Y}Bynp{7=N+qcYD|8H!064|cMY`n8($p0oT4GYO6NZR zT;L(ml>Pj&y@uv@wYT1b@rb-D?TOXRK|MBs%=) zmAQl3N%&9%9%kh4=2dw$`&ae7^%_5Uc7fYtJ&B-#a4Q*yRvfE?h4lf-q-I0D2 z`T#Q`mYFf4xpla%aP9#0BeiS8Zu4lDcn(~ht)_M~fcBZwh+Nw-qDKcGD!4&#K{wjO z`^9E7;{2DkK6q|V57w(OvTD znti+O_f;3|lsyRv35q}zAQ3R0E4q02hsUkZ=vSAisqtEVD9{#2c3xXM6mZAjmykGC zaPbR;<$lx;egF>8-7B1jN6VU1qq6cyD&f=}Tj~+259Dz^GWq3+o zGnA}%akdtE?HeBibD?EM85O1c-+_*$u5h220;#9oY{Ca9kDrK58`3fuULWKl>QMNj z4JusWj=(?Sc9;Ik3=~hS226r@9+MK!o=@dW`cAxu4jn=UCNWq*dRvo!clJ~6ytuF{ zG|2Gv^jsf&&sEHrG+bK^7o=&o*WNd!917!`B!^NPnS)g>_NMo|8P9Y4bD5zaQS^$pf{b z?Uw(}qo)B-m7S5tfMv*R%b$NfvVVV+t$H5Rydau=4a&(Di|NJLv_dp_5vP$a@Zfrl z-P@ZdJ6>?Mfuktqdwm`K(Ui+warf$vo>T5UIQ#n=G9;y?4I8z=`T~{_lZ6(N2{056 zyu_S{S^7DbW5%~i;I*UD+ogp#g)$!E*k)}y^3}bm&AZHkQK zvOnMRxOb@Azen`9Y1y)Y`;f~<>WB5nkc;bgBnTiMG{5KX!)7Z!GXP2s7q>M62{ecz zrTt})&9h56D`f675s8Q0+Ln#xfrG&Zcg6+%wG;Xx@k|Ks(#RHT=7h8eOGvLu8f#Gg z^A;5k2Mdd=oOjRmwVR61I#@^^lqk5v?UD)IDavSQ3#x@F>Gudx1S;O1w=-=d{e zSo-5x0f?ag#3%h4iFV_8+c3XtYyN$S12B4GKuC0>?&33{{qlN>QSMf=&Nr`pSBB;{ z224{!{q9VtSIrMq?yMZ~k@@%U)l_OD#a<&n;zZVQYModYLbULHaqowXV>t4__C_-a zL2}q_HvsbIcKssYzlpJS?}(WWGK)9+aUi&}p6S zErJ{)Krz?=JEwrM;p5{Bw1QC0^=Fy)Kl}}M zG7;TlZ!T)N{)y^hYb_M86Ub`*G<`N+gAY*F|B-dx@m#lW*#FuRl9jB4QfAr7N=At6 ztWX+OAuCceD2j%pknBAoA}eKugpg5ol38{np5xQ~d!B!u*X#bHyW7pzXI$5Lo#%19 z5A;H;J=-)oDhZ1#Nq9L-QHr>bL|A?A-t}Cc3g@2HrcQ_VWd1Fe`)@pWu+=)?@1kB( zLAOJC@j(Gr@`*Ys@Z}Ge1JF%Pn6ZFI8TWL$Z71-679rVRrj>_Eliur7nQKt69H9L= zca8364?vk?UCa-=q`pFD2@0J|8;6=ql77QO`wmT;^CcZE)CW>meRoQ;Oq7D@b>vKJ zX8jABZmFkLX|5`v*ZD>sF^XJRZGG)#DZAUNdOYp9KEr7l@$z443_;`>5rX=Ck;iQ| z4RX{XXR^9pd1*h1&EEgp`>mPx)d-7_P72s|p~v5>c9K*#=QqrQ8{tn60_D5gcNyLzK zZ^oS80cI#zFHHDi2fWVb@VyMZoW2Wrj-FY^!;SJ%dF7YrGp5g zZl}NB5_+bG;n?Pv+<(+MOl}+d5X3RN!2i;XiX?z@A_f>eE`?LjE}_0hgB+~j&F7wZ zu?Nxx9mO_%(pCHT#=YHhIOn3)1(5YTnt;d#|0{-Rp#Qfa_EK%guWEGO+{MzO zC*uh--+JstMroaOJZpeQj8x-d) z#%hF*Nb}^vJ(5|IZPqpE1oq&b(1HxPmT#{O z4*vP}H2ngn<)d|{h(IP!*E(mIk1|X`KV99*ec&Rh8STTSk6Xqj&)$Hc4nTFyIb$YD z+zS*edSPf0B+frn91$FD*+>5@tH#G7Bh=#X%P|}XrQ-bOv}3`|42wNmO-yyw#y5M- zbhaPO{v5Ik&za2WFm?SSOq5|{ER+eFb+^-vOb*^5>_ERt=F{shBpLslxJk6``@R@`Cb zFEI@kCukR^bY)|xTIPw}q3GO88jCW&!1Ce)kiv}`Cs<7T;*(-%(etG z+8$B9i7m}Hd#!|!n3WrQA56{ap;qq_9cKCP_9M5*B5TpyGd$@Qf2!mh=0?!uDxB$} zLv0}Nu-{X0UCC}rS=E)if8L|2G+3}K-JchqO0+50=KKif$qj4jpBoL&ABcrqI`f8W z!=qUweO}Ay_Gd{kJ#N;bS+v?=la5w60M(pxc;}*-Y)nq-zUVU+XzAvhO*oM?32YBO zJ%&SGa<{{-hw$E<$q&d`n_JBz`7w%bJ8tZt@053h@(>v3Y1#sFiuc^)tp!d#J|bu! z9tEXKSBmwuUm>|qGaD7K&ZEtBW2A&-Ng+gmfO)-aMtmDI3_43>Y&1?d;bKt8k|EG6 ziDy+HW9;Hg&?_&o&NVeXh?W5`waA-=AijC*YP28s?`jpZtChdM zsQ$@lR@z{O+TiPj<>0%aqBO>{in;6K&mRcW%2(6};mI`b^(or?D&!L>J~A_D(dA3A zv*2P!Jw>GNr_N3)yq5MJICzG)_yy=Q-m+heWv?Wy%^VJ_p%8E-*Y~ZzeoI_Xs|##E z6j9NoQbnH_2uujDdTkEL-l6LD$X@ExJ1+${y<_`_5MgQ9W!}1f4Gw!OLk9_qtgKmk z>!%O%x(_Mi#$=owG3mqq4N$G=T^xL*M{{j#fh-13o7cW~O{aO@7tL*u6oM2gZop3=u5IPIr-|pTyGx4YuqCqi}6XL$8 zW^=Q~zp#G&>!a$;_=}MuV74!qy)0rol}!ze>(?6%m&i_tOI;{gigb%E`pDMCc|t!e z4$|VwrWL9?umGdzLS>~Hk0WsNJU%lB3Qq5HZA^LdV`KjeU#ITKnN7m`@nq>mSZbTr*KPCC`&6O%7lFy{J z`XLjj%JIe#u*ByZYv;;=$RIdD>vIwt%x_Ry{wnRN$h89pe@X$smdSLDNU^>*GdCiah=3w>vj98OT(HZGZqZrBi{Hkw$K>6Scs(KgNl~JU`~`>mqCePhzTfgRDjZ)fD~h0lNlbW zIcdJ6Kh-Zm3NqIiSSYe}_|XfZ^i=t0PB|5&FfQKblqCP373T)CmCrNq47GYFJnL8y zs^dscHh7=tjP|5=KahX9(w{;~4e}1a_jO@I@cw49ScXgW8>FOddCTdKgZwgO5eDz+ z`KXtM{L^ex0fd@NVuM00BOomGxiHy$Y;N42Mx76SeWfU(9zd0#Kx>*JIB^doPypb; zer`nePiSY<{z7`+J_C>b=5-5KO2~sRAlHPz>i$BqP@H$iKgQgH2X^~PGMq@qIzAR? z9(sSFlP_Tj!y#t`DW_<>ad-U!hW$*^UfHs4kGW)uS%hdmUs z6md^=2JaMC(2{<4Oa{AUT47$+!Mci@2T1@SZ6;+JzgBE%4}0t6b2;t^3`a>Z$!t5> zDA#|<3q2M+NusUrIhhv=&-O}6Ce$tD}q1M4{nWVyTaAGf-{#5U^14v)OfvjfNq?0Ngp z^3XdMeH>SuN)NGVWH4PQp!@1`m7ShcK72!U*}~b^aq}rth1eJp+^l^sRfA+lejQ~E zD7s92J$XdU|4`&^zj*)Hbg_+0&NQV8iM3XnbvN>qRwa8C3I@~r)A(H4e9H_GixA= z5ebqI`e06zR8esvV(B2-Pwq=S=j5cT*kx&O_o+)(6FMdrF{NznhN0LM ze-27i)i9dw5x3dc1s^wVa~MCl_TkCJ)##Zv7Ba;1 z#}f@j2|MR9o&n!6tnQxJ5oH|L{d8DVuV}8an{7Jv`r$;MkCfZ5k94D3NedO!m)g6o zeU$p_<3D-RiLrWu!JMEjt!*W;loX3j5ED+60L>yT^N*H|`o7i8D|#8|QzONdAN>Y& zialKccO;B`fHZ&px}W~Av(@C@sq{$|2I}hT!W?4R64AqcG~{HBLoxv6lA=QjEuc7* zlioI{S!1+^n>LfDI!ON08hcg1kGe()*EOxGDb2mghrMhz32MIsTa~10Y(>aI$P-fULKyxhpGQ=d+d?Dh__)O8cbDUJY+J!$v; zUiqaqSiV6+U$LH?tYjHp>Fu>tcUsc%H2EeM*_gT&3f0%bSutOaOegft?i@dg?C!lm zD1r;)avr1~g};xFmVlP?e-i3aow+5bjY|mFTl+pt(jVxj0SG-_ckH1cnq-DwG-nQG zoF7dnzSv>yA_)s8@Wr^6= zy2tKjI8;hWmh%!e7NkH;t)H=gLWqhKwss7PD?Czd4juAk=mLHQf2Fdg8Tk=qZM=od)>=JuYVLTM?9n2BKH?`(Ozu^I{H%A7`an@vof0;M_D6 z;G9mUoQ#+AxEsqmHwFdeM`mNPuKg{>F^V#`JmtWcHKk$; z%mpZkoak`@AyG@*6YX#af;?!}YEQLsj6ht}zPrYpS#8?s+ymN&$5|ZYHly(D+gPED zd!|2BctPmG$`9Ycg|O{zFrqY^cJPc3VjFzQ75KU$Fo)sA3YnH1Q#ZBzWlP2Zay~Ak ze3$H%8+#~dXmq8>-{xOa0PWp{Qb_-tGZcECHk`(kfS|xxU&8f-dwa;uA<>Uy*8D1) z9Zw!TH3cN-shrE2s!5f)hqtOmH3dQ5b+4ZAj41-?gojvKxZ_<2L-5IoIqF=Fmn|5? z1yl9AUGezn%iY0Za}GU$!&$q9b|Ly#{K|ctLSmS0&(lm0GS-*vd%MH@)_z?%Cp)!9 z7I|XzY+HZd3;9Wksyc_$1JaQ5#6;6u;5Fh_x$f7dSz%+_6^^N1bkMUiJ*5jyF_8*q zr2^_=co=dR0Ym3m|6Q*_PErQY;UxOQ@{1kDvta0#?7iVUBv>u5VYE^?ucZ2AsrKIa z1Zs)ql-UZEyJV!?H!fO-y#mAvTh%s;#dbUFp|TD`Cm5mAbwE9E2;TMk{cEVyiCU}! zj(c=zLB!ll_i)0sgY=+FgI_$Xz8;t3ovcD~GsTPcFR=0TM*0W{f=8Xi= z{*nrY4c|@+*o2tiLsq_r^^pDCcjo`*Fk7%$`+JIsGJbNz;ZyGXY3E&tfhE*Z$B%bu zn}(YRN8%55TRr-6@Pk=rSN*><8!xcVq~_Pvkrz%k!H z!CvdMg4(@qMtTDq)f|k$1;5M>_>WAdd<>7;Yl7rsgaXfgB;KAYzy2wwO)LiJbD=Q7U6L7h@dD zqeMCNCTVUyw?+19r73(8^}l{$2ed_ROof-1hU7nTKCSAUbLDB?ga_RpBuyu;L3x>( zh#?YKd^oQ*j?M*}^jYX39O2O8(TLohM!ft?H@{P|=riMj2TMK1j|Q-%^~;w#B6;P^ z2#r|Z)c(3%@{=wsjpuEe)>%|2<4IN$WWBQ9E2>H-zAfGq6#4xwM?%#sP}kcVvr13y zjpt^!*{MFv86F#Z6;ulsj@ePO${zQE1Lc%x8;!1sv4}Rwx>%W+yk`kf2Xo$^?4HsR zhcep4n-iQ8LDqA9ZqV$ufKLhVsqc~KMjjKO}lF(;$q)bK9!!@tyJl+omJ-| z=KgoFtC(Ypr9(oH>08V0Co&qc$t2Z|&26VK&Hx zQ4^AcxVW z#Y<5KoTUi51#d@Yp|BqDdGm*-e|@PqDKBpeB2VhT2DnjNF@0WUY^%oBH!IDqZkUt~ zcNib5CE_88{Q54N%hRECUifuK9vSOjgMtXDSpOi+5T>YN7ekcdfk0i=|CBo@Kr|`- zoIZrO9K4N~C2Nn7&Pr|v3jqYEysYT%v-uLpBT+pu`uNO=NuBi!Yw?lCRu|q9+w8N0 zKL6rFR92F^|4G&%l*V@rFk7Wnic6_VBk{j&w1cw514k&97bWsCY z!eqG5|5MsvT2N1n-!N84Hp(ddiORlZxNP9B`1+{rIu$U-7HdL9+<+J zg(X3K@2!!Nh>rj?hVJw(`8;q|)MRKbK z{`L*DnY0=oQ_{G106&C_v)eDe_DH2PFj8ReXU(!G{Z)zlnfIG7et^5|M1{?p8BeW; z*@HWLj+agi_;^da^2t5XbA8~a79UghKE*%`_t5}`Je7pJ0GUuaC}a?*{`BZ4d)mx< zqw`E`B>{@*BU|Lt|^AKB~Bla{Lp@~2sx&BM`VZ|T!5k~Xg)+)>HZijBN z+xIAp12W%NKJ(S{p!Rw=SlmLHAD~Q8rhV_2ZQ&Wcfy+r=jnLC@VSd)}n>ox>1_cjJ zW-GRFW6p`)n|aDGZ$_BtGtRG@#Y;$Finnun)bse*0W?$?JQ?k5*|MlpweLglMRH4X zE|;2?zv{&jBBfu@-e7p+zFFwNQoqTH@`6HD&rOG6?dy0)d}fsBiBq=LV18V8;Z}Ud zq_QF6k$b2so)B<(@EQ$RFz%hE$J@G~Onzo6|Yz@iiJxU zSAgXLH|N}y-%E`*ccfSxINlP%;y(h|8-tpCjsH`A1wCxl}aR%vp^A+ z?fdswz$y#l4&}Sfc@<_Ob}N6caw~Y=UXMejUDL(BU>>XlNXL7;jvUeR7czqZ+J$W3 zO;$iIc;WJY7uwyI`+V$i#UYA9i4d*-j@=0g5W@X%r}pBfRJ9v#`M_KSi%`F@C>=%+ z_B+>3KKcG=I}Z(%AVk7i{hRk1FZR><%FH#}ODZb3@ONyIET|JX)I zL?HkrW>(kv2BB>u;$>86G%1A4QUy6_KUk{}*+hqq~75$R75`udwc6vTyM zFh2Um1fmvn?y&Vns`wZClP-;$4aVLh-xiRSF=BNdihZLD%HWgi->zDUL7p7->rFs( z4fL*GmuBZb=jcizL(D|@?Wz3i6(v$2p#_4dIohx0M42~Hn32L~JwW z|6d*zE;IJ$|8Vm7ogiRFRMc+p-ZvStf{0Xwqe~_f8W=ebUVQ!I56tdhbOoQ3F5HiS zB|5JjEvUqmpVKrIz(%y-%l8r2D<(4n7#Tk$A?L$3&>jnFBNnT=vpR?BHe(?GTh&A6 zQDenh|I9Vnt}~;LO=K#I9bQXBld3bn!fgL8y zSoP2J(8)B>@{i1%kdqUZdLI<2@pMFMwEmG)QMm^g9r%>bj#xb2udK}Y_{{hdQtOf2 zPN&XCo@h^Sp6ouVe|oc+=(d~wmUlyP_1OYu5nrB%&}woDyx&Lf zMct`+-;*q(?Am{DEu1dXdG{wyD3EIy{t!QLB^wAIDq9A%7t?qZD54uqPly|V{*8@* zpnod@sRohf?g(vT42oF+;(?O9SA&1cfU*1f*T1S`+nwj*gh*F^4Q~DQ@U927;-%&n zt`)alil#sJIrZxw79O-OTyxK>yO=jMx{l8Cl<5!uNS8al;vaV*_kH;p4q^c+5Iy`* z(9gxo^KRfsNoih>%d2SLAG4SEv>)!4#7T!3^vIsPrW&YuF;j|`$n$|poc&HvWorBQ z#AjNV+5jA4@e;B(`I6@MO5^bv%lo;?vj5IN6r_q<7*s))9_alb6ui*-5u(eY@qj7m z&)=(lqAl}G8u=+fU*Bb_8L~Rrc5H3;v!MIeP$eVbD8JCXva%B09GST1(Vv!|%k2ja zCw5GHz``JX0=DgE6eyQ4E|=P(?H%uDe5S|}8uvPOQvCeUD~t%9hbKaslS`bfo0XAx z(Q}5_)>>~V-)!;!F14_XdDIx8QyO%WcOw!+KIuyQQ~vp*6=U=H4-xK6qk7j;22xKw z3d#rPG6>^Z*=6$JlR!8uah`)A`5pRuyr(q`;dqg`v;BaU(umH4R>v0ed~>u3iIKZJ z6e~;+z3_A5CZa}^jnQMtzpI&4`1dP<&yjQM$2J!)u}NY*ckW947rCH0Eg3;=HS`3k z_c=dKjSd}iZ;A^YTKyXHS&IiW*yfkf$b>`9z(0d)3ehp%RzyRFOK~#_AWO^}PDeY) zgh|p|T!yUB49a}mwl@;}Df?eov2kb&YeRT^cETgRvQa0_805P~JLkZH;1J784y{9! zYTTm-Smn_+M&ttLK?B$N+^)$x4gbfhb&aq`*3}RFt<*?;!yG+DQ(=n-c?7KB^9gCNahFiiV}0t$e^GMN&iq z6YD*pSmk3xUbd5N&#TAj9%4dcKYmZ>*^l6C|Ho@l@Im#)wg1@eh>i>aXRhjf;G-=l zHT)U(RDg3Z-%96yy1ofVxCDXP#@756^nK zFtI0@h*i&J?Sd^Dy=?i@coUSL=bcReEks6tkNZSsh&gP%l!sLLAH-`a{ih8#%VMKI zIAu4+nE)qaMO9dVF;cS4;&=TF4TZtzmbn8i>;hQBI!{}R(EO?oP^2?7b6aOuvFUju zxgt}v6>1O=kbvG;+6S(Iof5_{B7U^VxIqMg{`h9>&hL%(V@<>N&o(4F>i?f_a7 zw^V8iiXStNDYbCR3V!Ej`o-eh!O0&bVwyk8e9s~Sz&bY)eVfg9tB2Cv)uH6?n+jf;G?Tf zk^p?ejcz_0q=<XNcXz?DSjGJ?ti?2Os4D_LN$T~u;f9x38 z{zM9^xB)5@w7T)c%4p2jIPPQ#m)}V|d((oS+NK<~SMNhFFKam4?B`9ypdVGdGoWl7 zvi|o?muaFB)>+gx_IIIvMaPF#qis(lrl`gfWT%dvu}HO!b4r7e2t?~@_^D{_PX&_Y z7}vX7>nS|?FNgQ-MRJJxkpS({GNJKdTWI?E&kE87#wuG~bSv&s00t?S{!I#u7Y>NT zI_2;DBgU}=sU2bogQO$+5vPIgM{PfgFjQI^hSD(wXr~t+4VHiGRMCgP0~guN$P0A8 ztzCn{ux)?Vv#_%&QKyyjf~zg3(`Oa8Xg>rmN?Kp4!7W|R=sy56RM@@a_+K$L#sC=L z)KB)+LvCR<^5ZjSEX?fN8!mN_(MWD+2VUn!QY_MlWEeRTj`MFPzwSr&aKbs0xB4th zceV%ExDIGV)O}*=#{^Wodugp!;_6o0wc%}KB%ER{OCfD2JCleA>)7MtEJ6 zeEK1=H-=ciW%hnMx;trnUFm6l>xBbMv<5WS<*`3y%_xD zzUbFHvk%yTye{Xvn_K45Fp{a)uJCwaGvY-Az zU#A*Ef%QCxPS>hEo1Zw6>&KGpElhixCElA3Lr<&cn^cXvj~PIS`TaG%CmJ_D zztYrMA(%zHz1g8_v)3XfT%n1(=du36j10H4bWe%_!I(kcC!^XJvht^4et%I)!VB`f z8-o)FkMt-o)xb1_IH8OYvg0VT<`alW(oG7h37=Oa0RQNghn*KPoSNWVnRrMZ&wOO3 z9vfwHVS>#<4u+QVrF|Fb_ol^Oce+0(ATyy+c8ne7r&7blQM<$PfjBA-xZm3pq*n4H z@y@Rli7O$mj40S{5V?5UY%Y-j5y40rL}*YN<0&QF29{G=l{WJI;TdrciaE^fmO>gO zzJ%xJblp*V7~beqk7^CNUOm?9HwUr=SUTIJ;|rR;;dd#=)B+FxNI4D{7)IgO+FVk) z6viQd*@}I-^5b988QWOF&k~Mg_YCdu+S5~Tvuw*bGSZHU!6z?|l-hK*fR>u|#R1m| zaU{xa@o-*^2n0Z=@JG+DX;9*>0cev?QHjgY71LlWy zxMKHw%13y-xDKv=cU`BZVdSnN+H>V_c>Gfb5?O*?KKB<@9qi0{b^6{h?^`0dwI3v1 zrup@hBCDT-bWJ^(ts^4Z%wClp!Id^cGW+YWvbD=cG@P!QFHhBd^s78yG;9A4tYe`3 zy2u)z3+otoU?Pc4$beOY#qrPbt?&U#;l$Zf0rR)2Y3~s& zmDRR~&s1b+X>2zaVcZILQ&7Wc%ctrsLzjgIipw4KN&~Xm8&zw~yY9GkifkjS1u{of zca?6(+*K#VfhN@^FYmHT#j<5O$D7`L^NDvi{!@~Nm(CV8b)qYZ@_s24|w{qejHbr5taX;tih zAzJ3hsY8o1Af~D1Hb1p>>8>i`dqHkilHlP&NAoM%IoHBu0cWd`)R+rSzprE-w6&6_ zE{Hf`SY>V)SiNj^wf~~K2hFQGbcBK3@0{$N@jJfhz~Rj z`DovzTG@T3t4S?%X&S}@*FmQEbSJHv9^LY3$`%5Uj}1(W#*K{W`kLm8z1&qrY8B*5 z?810jy~<>xZoa?Dr^N6>uc~ULnWvkRSPtc9%r?s@DsLi{%*EPpcyfU$)_R~rq`-BE z0}Y=ES?Qv94WQ#L#i@+TF=Ho}4!SH!9J8E?;ue-q?l)=A%b^s@N>;m*fAu8ffRSnS z+N(Z;J(q*AfWh$Y&q!7)rTH?!RTH&(Zk5GAs7Of5l{}S*wZ6 z1k~o-WhPlspaal4nsYY(P0qCDF*^2kbBuCs5vDNM4Ig>r^`M2;UE#`0a%=Yen>EMV zOrDU)clxzh2Xcbgg7}6tTAJBUSM65|)SXNERaRM6r9Gg&f?>U1O6sNX*v6Z4 zXRCB2;Z+(claHcZZRvfg7MFosNr#=Cb_akX(X$WiW zy1ZvHJW1;wwx`u(*V`7f7#N^>0i4d1BK=*1O<+04ZPh;ocY1`@%~zB!y^U^tlP!BY z`mK}p+rIKN{y$5VFS+b5*>1*qPYfNVr}&A8+NdV6;S~+lM~;@u>1tF0O>^1<(lz_& zL7+9|a!gjcThx{5V73wK&^mW6O*1nq$Wk=9+g&noF`JuW$l`p0G6a;Gp>DezQUa~a zl~|3d*7_S;ZU_Zaltlk-ZjUUSvz?j>Z0_!jDI%tZg)jUZ4g`v2^QJy0vA#C?Gv+Yu zvh8rC=&9w(1Ei`l+x*$~H~-BST`m;9qZdZX$YWM(9=vrh>Hu9jx_|MQip5I*<(Ub3 z7oPuk;!s!uLmT7Wf6(@cR$Nr;&!WM|zcFd7h#|qMo`ef-T5U=Lh#sC9ZAYS>J_Q13zu?mGUTo(W6XG@QD5TGKVg# zF*7zDml|K+B(bzb*>t7fLw}y8NFOhG?Wz26J-*_f&!|Y{^Vu_cDOpy+k%50VVv z4{r3IP(Pxpkbve$z5^_QeOXHlkD7MR_!llk6$R&&zgKrp*Z z>#zeg!%^p^&UX`hzc2o^Z8;!BxiR2096lz}yu(!~r*ls`aobzp^~U4pVORfrnU;%r z#sBJxq+21`x0;L%3SqBpsNG*%=k6Vg(Psbk!GxLKxNRNMJxVhCrHl`|>VIlQ=8zh{ zEoTm6wv40Ss0jVDc-#UkltLA(+y?nY*!_B3yz#p4L@+ok=+G}72ox?%9-OcTWfdiB zQ@j7OE2(pTDV<1U!nJD{8emd(p>bu#-(q<=mTXHecTC<4QKMbFSdijXM#7GOY82Q< z;-?apBt(!5xm_ZD0`!e|&3hhRKU_-|`{YSgM~8{-mJ&ud;6dHsQqanxHVBG%cHM3# zLPr&S6J2QEf26PrTzZzJ@Tw@-GBJI7$z)I{#ifSb2J7iGM#+8A2N%&00nE^{=;&q~ zl9Ae6G?8Zu*u#B6M_&dXp*^q*pI3f#=C#+cOd?}JHU>YX$teqt`hOP`jn$?n0Y_$y1kX(^Ey-{9RmFH0%8kZ4Gek9kI8)SL-Ti`KZ5{9WJ~3sZ zTNt-P%(A6%|33Qm;g8moNC+8a&XGupB)^cb!Z+v2la@EOM^ZV}~UuLLpR(;2DJ_!6}F4~@L-YmV=y6=h6B-+lzJ6ZtvJE2T~%>;#ggTJb{EbAsFabVm{atc z4vz@rsaRx*NB^O7W)M#4?00nE$UXJt+eXg8?x5o3MN`a(7a5wDlbzR9c*E81v(o?0 z=9qKs54v}fqc?v~(?#9p1Z2t`HhjdMQ%{b48EZj~cuN%S9>7vonI;m%k4D}STpK&7z$cE+p+I-~CO2fb}<>Ae07|US(;P_i{OY4H`m(gfI1UTE9rh=0_8kJT!p zS)*0Q!>O%whh<^%EPJp`o~yZLe$jc?gx9yH^88)DRN|&qb*nr-#NSfgIPP}VR;2U) zzS2o-*r|7EnZWLgcW%M&?I!6Dz5B%;eu%X; z_{^N_#zecibY_+hKe4%^Z`tOs@SEn2BGW;x%d(pho2N@qNklJtGzJ<2T{xBc4 zv3XJ3m28+J0SFthEuYFS!M5y%X98d@Ona<;Cb-CBM1%GZAp3=#lyd~46i&&uRL3w^ z@B52F%puv!2D02Z+=6t373KVX6Nl*%CnzEy=m761Jiu*@mhVnr8<~9B@c_3;%J31h zuM77j?p!)6youB;Gwk~P#b*ZYdZYoGQKm6s#)y(c`&s9;#63usH(*WaR9}#!hfQT^ zR2_$ISB=BlNER_%hbD9JfL_lEsvogfy|QyL;M)1BO%sSP?z*qo7NIr5BuG`kyLt7B zkfujfK??aXezaqf%Kp^!(aVrye;C%xR-3eFdpGX+s`~(YV5d`UYpVhA>7^_kc+)Am zok$k6_bR{sEpz@>b7bSye;e}w)IL@Yyzi1R4sjtlQpYKB(vZsiN=8Zl`+}?3;!Pd2 z-*)n|(k0*o4)FK$B;nPIG%o@sC$_je!)}b#4`+b_?hK$CR^)}NTU4DlQS)oK?V{=qddU`XFboi=>|0|YT zp0Q)TNJeDWJIn*p&HI9{iBB>q3|TYo+HGbN?dgvbbg1c%`+;o0li!1gomXV_ICwD# z$?@|4SXN_5(n+D{_B-WS{28q)gqU`Pt}nMpqy@C_{*v`LGRer_*XL| z!iGM7%JXg8nr&@J;ML(%iNyo>zz#+S1BeS0%62dw?aWDdo@5P3n8Xm6L9%Crd#IdJ6ikgML3tVLzO-I8LIq1kb2twoBFmOlMsi~3XFQ$>%_z6u}Fj1?LONgsv< zoLSnLA~?9~cQS`y4`gsnSdr!n-wvNshm7(bCfdOL)G*ebcq_T>6usDJD)8n~M27R5z{4di`i&VpGQ4sM^5^%WI-d=_89C<9-=of)*^KpY-M+!=kb01^3x9?A< zG6;UxT+{AUWRPJpwq^dzLAJkTZo_#~d7VyLYr9w7(^yDu8jCeqq|8nyT(HsrW~}h| z+KzXTq!V(p(wxodjZq=M0ztHOT1a3ty>nv!v2x@6q3;+F?Ft_PW@LTRNkhdH8%hUO zf9~+1pypf<7ow$)+VGeA`j*yvEuhQJn<_|_A6Hz~KBuhJnR@%dKXyJ2`rA#{nH`E( z1{pQ&S~Crg>%3f}-FZ`RhbgI{yNBkuKub*QSI^{h0Umu))fAnSCuiyCzyHoqc^{nL z4l2>=c}2)U;*By4Oig7L(ct16)T zPs%Cr>Fp$+rkiSMeqagB_AtX|25&WIKW8;qF6HI^N9*J1;_3T5b*dSwBQ(VVIm4)_ zsH*Rce)&3fNZsyzQ%8cN>nR&s{PoHTYoFlOhz9kX1Bc_c&0O-#sYz1Q#xt-}PRTR!^bM!A*8W|iuR=DVD_S&~QC-^3l+WT63cS&h#18w@*ls1Q8#@?A3 zvYWK=pUG15Wwh?m+}*$T^q^bmA}4iOz+{uqjFqT8eS*Oex-NCLzL&TSsGd+h>UrMY z8GZ)_1!;dfgMYE*txiSKsowZAb;~^dTKKY78Nai z9XeYxW9zXiKJGV_nLKx0hH)D4mSq2}Wv^N-2suIK;^=tD*;yo~dk4b*;$hRmK$&>C z#((@!)zxi!vf~tsHp~e6&lEHg22Ue%t@YCmvdy4OAz8DF_1zolg2>pfv=Ypard<>1uS-}1bE zIh@9HLNn3ufzU~v`*_q_(#Xh5ChQJRV@HN@#Iu`^q#TX>9wiAFnwbR`6ci9|>gjXm z?D4b`A2y?*yF?)=VC)llResHEfRv6$dMA0ybI?zP_9okoK0|j*pWr7b#aL{>J)>Gb9x5 zU)JoYvHh8ymPP|};3xWV&tJc)w?M=9GxpEI($es^h6sDc9_g)K-rjI*ut2xbqpiIi zB{cRLPLG?nLTW%=c==LldiS;1JpWCUt|xY2$ey?AZRmz9leSARnv z*WZJB!hz@>j(h4D8huQuouDFhJU+Tc7yo5i6MBb}Cx>?Zd4~Bi(#1CrRDT;(Fx%BN z2zd??IvtD#pFIl$iNfPORr5XW1J|JrqkuFGL7326{7J8y&aobef8CY6IPbDVDmrqEEdfZ8x^UWS@a=J zi3_4dViEg=5p(q?wis@@{!*(!=Hz&Qg?7~9Ul#~?d!D4e!5_`4`Y{v(-D5(t*ym~Ub!A~hQ9k>8cnc4_ANk*Rf=XtL^>yl9rg0=*g-`18@SpXQN?)HLT~-Rb4bQFbm}`cf%lCHWs1kVy=A32_1@K*9*a{9 zIi|cqS={d@La2S9S!Q@D3(cB+eRx}S?0t9P6OG%Put>jsuY*LAF<)$kH9IdU-Wb{V zl>BGgZOsa%ya=Su$4%TZBc-JsT9$B=y@_=7vLBmYRYD4ky2|{89T~8oyiwuZpUES2 zBKP&G?_mu+cnkD6I>X&QP<~=TA0+feq^}p7#0Vr1>mQJQnLwI(baiaHcpw};e@tF- z%yjKbPuJWJ9X|DH;UOzqhZbQ{eh;HL%J~Xxhrl6&07d?SJ=nRmu+ABR531KQgir{T#%UV9uSH z$(%hObyh0yngdzu*RS+NmRCMfC0MQ2(hb%;Cy}cU1VWYP7Z7@=+H;C6LflJyj32f|M%CNS6OXH&T;EOb z%<%RNr$pJj3uO~Yj!GXA=Zj;61`De=iL|)5XhO!_K_F{eZZ$UQI342s=Bd#3<;%eZ z4+r`>kCg)7`Lm)H1>edCX07W?sa{}lmw+hpYgK)bbJx2I#Yy;!`g=R-5$ER)7)au) zSKjLNX=;1=4^+n)Zu@oLa`mG(SsDef0*02N7b;iIe)XSk{dxIDh7RRCO$uCYHT$6P%=3_zFo4} zGKZaD;vnW02FI{ZpNyQEwN-P>ZtT|_y+Hm*=-i3y0xFJ;Q2+?IzRT&kSV!s*@A)hi z(P}#b#>@ab3opEiowJu>I9#UD?e#PODEF`NK=aziC)jn=Q`FaZ_IY@Kve=s}4 zQdL`tg^Tx|P;SO&qy&u3?_GkXp0tKcO(F*zwQ zan$b+lYy1hou5~i%LoYI4c9A^R_R$;HxMLU{O0d@QdOeH9ZbPy*Z=&4n!>5pZUAsK%SAilgR9XXhE!N`yt_8MlM3@@N z(q3nZ(&tn7(~1l7xQLnZBp0ymkI4+)(T%`?pHYq5 z-VE$Ge!-1f$V;y!M$YxXVN9QrE5x;BiA7)ZM%Ed*f30Xg?+1Eh;L)V)UsJ7X-4W zt;NTo!w$yh1D?roE|&9B0y&9A4omyU1s@q>s6f$2%_GHf_(vwpSPb?3xy!sCH! zj3P(l!{^{&YEqjVTmEDjvVLV_#B!S^YC>4-?j|HBt4C9Dy?TC)QT3J-`ATeRU7aRU zsd0ZCU$Y{57N*0J5m^}-;M|j5yfAR;@p^5ITHrd+V^d!~eY%c?Zf(tfuWWMt2!WL7 za4H%u!v{y7oL@rXSg#xtZG1(AlDPNuQ>k;f)DL1}M5deExp8PpfP{AC3-A}%pOIZI z)2_w8b(~x8nF8C1k4*0rZyd_H-qm|8Zm{Rd=m}fn)T0mTZlgjW5;R0abPZddDf%*# z42+Ehym*MeMm~&`l=19$-??vu>_$6cxAu*DV(gpoAYu@gdh}^xchs1#$?@a5T_$K@ zL$3&lA6u7`y}bbBJHEcJ3;QEGoq{@@!phcbJS5)eLonRd)wRuMruNF{7#!n7NV0IG z&VCmCuX6a!{B~{?Id*sdxPpkdcwM%|%U^G4cGy7_{l2mB-3gyQ{8D$2TvWckI+>oG zT?3{T848@N+)_HMymhl9^(kJZ^@KlNhx=R4? zpr(bs7FgJSh-e3@b9HyOV`71!#}lJoEHYSmXcx*n`hSwx_88 zur<7lIB0fscGgZ?nVRl0y^S+0M$#io=N%ld1cYA9gY5%bwfmpYu1f!qEF=_z!gnaE zQ+Vn8g$tVU+?v|jA%%4*?c?eg2TB8KKk)c5J36d*mBxFQp~%EDq?u&+?Jy3+I7?s! zOSw`TwA|@bbZP(>j*^`0+vuovm+wA~8eE)s9QVeEf)ww<*_RfjX=r+ZK>~Lcf5j;u z4;PEwkB@nIc^NfXAp!!n(~B1`COexlQI3B-79*=yst-W}R;&k+kwMYXoa4*S^C$eh2?-Ju=L0EoD8@AWW%&eFQlTYUL;s1W>V$r|2nD8|0YTM#BEBSozy`s&bB<%}}1(?C3kDfbjjhd9*6?a39$}sprJ2E(Bp#S*v?Z z{+GPjKX<-iVQH}Y*v?<6RL8iR{Y{pl7lBkK9V*@65qkMx#XtD+B9=Ev%<$X;G@`S4^v z1r)B97Y@1XDjR)l#TuD{njtYWQ^zo$)2Z#dbM9;E<2Jr2g+J#;n*d=Vbkz$f5($-+ zHl;0JzI;JkPCT$Tm-jE(@Ms_4pOK24J0!h~1z1)lOsZHhv20na*HS3!PHw|=%kvb_QhA`U!m{IWZ zWy<4VH~G6r$iV+QzME~Cfs*|F$B&Ocv4^N9$5{6BcMS|6-<%Qnp`zShiV{Vv$4yNW znzq)=P;b5@9w>3NSj)`t&A9S0ziLgzM2GwBEa(x1Pd;vMpLnQ-?K%MnFZEe*kf znLEneOHy4uF}z}Tckc|@?A6yD_Oob440ppxN{t^;t*`-kSUX>6MGRnGKLRLm7 ziBObPLPkPH%8t-5yO5oXj1me(DKlvqg{=E{*YAE_&+B>qyzlGP>q_X`*ZXt6&v6{b zd7f4hDf)Q&sJ(Dj!U$Aa8Li>r;aMIdQ{H6pWlT)Qv-9^~Gw{647X3B}gEetjQ0o{P zS%+{RKV_Sgj$~yNdIl=H^_aNZ<-RZK#)-kUw#`$&yGh=2(DJ_RsI|Z4Mz4*}MB5Uv zt4SR`9~mCV#@+XVi~q@__Etup{nPi=7qf5d%5TK9$|br}Jr53;nQ@}maJL2WQA*~2 zKb*VoessjN+rp^t&?fG=-PzTZ=@g=O9(XMhwQvcAuwI6x6ABd8AKg@{vJzWwG)E4X zAAe4*x7Rj;{kfI#mYLvub|~qt{F9?+SksWcD3r>ooI&>XPT@P5YYp6Z6qN)8t z!XimZE&RNcme+{`Z;e+1OJY=;bm!h?$0jBc*n;6W>p?Cay@gD^5aX;xE#bX;k9KZT z%Z!oK(b17`zS%MbL7~<#>!DK?N{{UZuQcQzDBAXC8DR~&Ff$)KSnuQG1YtTw1l>dqn+O=!V?LDV;^lZE0B^9Xn-iZVfEKyxbLNt(FH`6R_Lafu~LRcU5 z&3G$T)ux+rT2{*R^6#dUB$=+<_1zaSTz-X_t1Csm-#FWde}in&-3G^(jTTGZRWSv^ z+P$r2VJ7D}ge&UpZJ(BARpKruEBVMwogA*2{X)GV^r@4JOI*(}K0{cj)5(*UpMKN= zW~&2g1OpnF=>qi~fe0TtawI&Lfv;lB8hsT5Y9A)rzt0T=P4L{<2*Ng8YuB9vtg4(_ zqmxbReYLx#1FuBV#0!UA3u+Y93QxZ%B#kvjzr3zAKb4VUzg@n*-6_XN-+pLx^ZAU^ z7IcrQH;OH)e3&k<{C$N#%=gmC&zbuoY%5|r(vxNanwBVNlr+?R@v9W_K*yO5bg22R|b0GUxJ`3Hc&Fv1_OG^2O&2sv-~6v$WzQDS5i zj*TWDIee3DH+iRqV)7{~oh>Rd=|PoO)ItYiRO1>bpWG)C7uJfZXnL3jUs}UMTae=} ztYh1!%8-+5zvnhpU=JlSqj%EK*jRnCqH)u)6%dz%Gik_`mYdMit_p3s{7sqjg10ae z=leF5ax2?g|E*AU*5^KYB=@F8YoEZ4un>K|=(M!!OG`@xP_?)!f0uc)rRWqQo2BSF zi>nMgKvtj8(uoFg8k=rbqvsvo47BX(#}is{JoH9F@*0Ubuc&YOv#Kr>C%t0wP4Iqb zKrfmNd;=~TcyNkd;+K)E_0m~8EhTk~YZ~tSxE;3ca-bHU%w0PJS_5nrXL|QFDFm1p zfJ8$>!%J0FRVCXRqywG%s5v%-cK*R)t|1=S3ko_QMSg-xqOdT!;+X@7VvF|#!;ZMbuazlbqL(pVuThPjz?_aomX9IgG%bT(B^w5gp+YFW>jAat#lYQ)DX zoZ86ZuzR!yI)|0hHlh?^VbHr|n^6ZqSzJ=(d84f*d@zJxXV{D4lZpWZjemJIVy39;@CE_-Mj(z~ zZ@vNiHx7;)*`Sap4lJR7mqCuQ*s25#Yn>XF$$6#`HG zw-v2OasvFCfR+K)3fF+mqrzWb6bZ+5x?EI+~5|JO@Fv2^n z83CpXh2n{leYg^w;67j>x%ciV+?F(=mD)cOHY^VSh(RPioJ}yk28W*z%0# zU1x3gBWijBU1{EtA)83;0Q$#$|6_r-DuUG!hNvwiRnyo?Xdhyb0Un z{GMwr4mQteyDF!&Sj-z2&OgX1%(4Xa$m#2!GU}a{)>i= z?eF8tY?w2=1$;C!F_;D^K~ATWfuUgxzQ%=>a$Q|r|6>YSpzd+VN%XnYTACq$lY;U? zmUS}7ujGOZ?}9l;Y{oNptejJuu%tqo314P#|MesJy!N^}3j8CoQr&mEWnjH53=&j` zg9!gXQH_B{J@ep{845?$=59|;4&?iA zwt|YB!h$L)fEbc86^TKr@omZQ4FhNuf!mK4U}a@(l}Q91d{&bIXvmG8GW=!%+m-Sym&4s-2vol8n#|^b7tSl@q`JxYSHKTnn z;IEz54yJwK%Zh_r1PtNE#lFlVXG--d=R0*i%oRWvTLeFNKVi6QG=8dGYy?=1)5kbt zz^OXqANjkQg1AwRphjCPIml??kzvoI)`EwgZOZ1O<5N*wr~ZI)_xrX=^M}Nhm%SvW ziAE(H8F`hK)>ib4V~nXL$uK@$&=wOFW!!pAz<)*XKLA+-CAjEzP8CEWArv&$t! z^BCp*4vsnhXAU5RJgQK&C;TQB7Lh|kLnQRS{29xEzz?7BkTnUtm_YRw5Hl?6?C1ab zfTT?@&k+63)Ov$#s(-^3Qm)(2HA@09`tul4CV?ZjShn9kSQ3bj$$m=rF2wLPs1x?> z+Xo!)@c$0VKQ91i74}Sze0~C>JA&W1?C{vzqu$loNrhqv{K5q`Cfi8uj1MPIopN4& zc0f5zzcsNl6U_c|DWf5u9ZDT(%YhYvRDnAc`Jiw@lcJQ5bc0NAD;s}>)s|r&)Ld7l z`9tQpG8eU+AM~z+%}!5G$AUrL8FKlC$?eSJ>5z>xFDN zub(J_-mQdLtw6Pl{C9gNCyu95f}iO|ChUyJG0L-%yX*L=(*v-9oy4(R?uhl)R|PJS zh|f$_eYpi*Y^%5Eu%`k9dswbKdpe~e5Ix~QZj41<-(>%otc3uM;EYV<;dcS-aQ}cZ z4AN91qgdotk*Yj_syr0fGsE**yH@_L&-CamKTatVcimo-A0q>EU75{!%8mEszbS6`sO?nyGorJytOkI2j#(y4%N?Nx(5%gQU3jD7jCPC|HA0}5PNNIpFfC5vM&t*=<(yn^X-nxyH4xA z{_d#^kn~K|6deqhw6VYQ>OKB#;BnV4WR)ME?;X6-JJ}c~{10iy(%!n-*V%aqgL#;6 zH$_bzU}#Nfi@nb6B87t~Gkr6bW@f;4hNk)7wXp#dxzWP1H}x0BKr~?RqJZ%m>h-n0 z>*#`>wY5FP>x%u9%9@^2NMtmtxw_wD;^ptX1H}&D745zk*$m zRTGDuYuRmV`>VBk{``5QbQ8@1n+~O!^@||V(57em(e0)g08&S5pHWuOpL?3zxlXyb z*kj3{oquhbbW>l(!O*_7+`e_NtVJBsGx?}W^+C_bp4U>PJq^FA|BJ_87oewB^!qJ$ zakldiy4H2)cU7MIY70^)W+m<3LRU{ulU}m?6VOyotOAz38cSh5zksq9V^b=|SY8}Y zIp0UR4&zq!#%Dg?FDM4#S?ng?j#$-4md2d;&z#dP(x=)A6KxcF1_s*kRxW}XV;!GD zdzRz5$`mh8&%&eDe!I=Ad7VQP#-HvVG%n=>v0St6XsMLuC}X_j)4j394!IR=Zbz0r z&vL-uiM${9S0w(G10V`iA3>yf9XTvajzd$lSwe z%G=S2ubUut09Fb05@mEwEBm{r@YV4pz}}idEDGcMxJAz7x@fz6tPf_+ccIGl&6sxZ z9vNT6wh2}dQPD#drI9pVRB6qC$P4Y7H-HxaiS(+scMYYYvXX>bc5C0wDD#Dcg`W_* z8FUnQH?WP3HuI=rkTX&01|EA%VS>kpx=U;3zc{KWD$^}$$_I{Tt|o}DVaBZB|IATT zvdrzm)kJRkj&*pq^NKv?ZjRKYQK##pv)OfN?NiIuw$r{czaS10AftW%*@E3!lPI9jC>KsELeDUROfJ# z3@ss)2rj(*J%F35x$)t+JvL=B!-W@}e0@)MCcB9M$k5H~-o0Cjq4+>cu~{9sSyd<% z>(ze4*FXl6Am?gVH5P%1Rgavzf3(YXP$)98ve{Fn!#@?N9J!VD4*JRh4cLlF112VP zJin`LkBMS5p}fTJEnwh+NY`~-DQ-82xSfdN0HN7;zaw*59(xGZOve|b7Z-2YasANS zv6+QJhc-4b>l!YcU47Jc#X>BeAu|}F6!kC@7_;Rr^Xn$qz*fCim*>b*DO4U~$+gx> zRes`_g{DJt=jsk6K^D=gHj6 zf?ll97LMA^5Nx#aRSe=bh~ebjhiKkkIK>`VDSh;Hq~yuWy&s@$!t|10#c$=izBz*V z!TGZG8wp#FtZB9D@OluiGLt6nGtKA!BZ!-5gWzKuAd$NM*kkC62nXHHUszbJ#(QZp8kgaTb)3ZD*#2k;XqOT>{_DsRMDoAIR`I?4e93 z4-VB&Q)WUzi}BmkltS+*+oj*VwNOp6H8J{4NjDj2$GK1@L?=R}V zEdZ}oQ1e@aB62LSgtr4aqQc`(=_swfoE;8~QopAgPn3Klu?+KIYOwq(X8@5Q!mQ@X z)8kT2658k8WZDwX5BjkqRKb1|ls5*eg||rBE=*(DWO_x#g}-Ni)WV$>{hbxOWwK3} z+(A)iJYB@8Y;xcL6?`qEx5XuQ9y%aw-`tB<3jJ9PIiG2JDYRO0xM7Fqk4oA=>8%oQ zw|;<2nr`hrwWTHomjLuJBl7qz$GkX6YytbXT}v?$E+1Scl#}dWTPr5>pAwUXf;fkq zv-+SoM9ZJEoP%kX~`Rfsl;Zt65r!^=GDIVGeO6}KU{R`Zq2f+mIREF5!QsWGM< zyk0pNVC0G&{r~Z?R~A4>fyx`y@-Tzb{nz1S2vL;cH&s_xiJk)Mg1#5-$+PKDc{n*a zscLA@wzjsy7f3s_vJ7|+UpwfZ<0*P#?aTO@1dcOnhQI*mgLUsM&dhV#w#_GWA*!h_+qxgj zHY(9i2Q4jV%oD?~zLg_%!}j`n|K1PbT6Fu;C+!?qDilAXv57{QzH(_$RZiK_!=vO8 zWfm$8&AhF0qK{P!~HE_%Truqke%X z$jHdNP>zr&woj0R89_C3qs9?$4YFi>1!H2)X)F}GeXN(3tlaHtPI>3L7fkLBmvxA+HipFgasl$+F#-2Y#zDcFt?EJvA zh#C{yuJnJ^baoat$+r-0JZOm&lW-eLa{;S+(S&L8z*M@%?pes%X2l7aB21qIil~Iy zCS7A15p3F%H<4=*vD5I#h|z9qjMWQ2-CwG`x;j66y$H9RWTzk{_5n8gfpb`g8nLi& z)9SA?t90=?v^-w5-3#af8OEXqU>*=NH$&SdQSE%f!QuGA^eA!fAls4gUPjEboR$;# ztkXT=NoG-JU+Q9HmuP?%(hXyjqH<3;^DTmV)HwQ*y>?zhX=Q$xFcQR)O---jogT;2 zh2n<9vZia>$b>mTm&VLu{-Q9`Qi^en!NS>Zexsvp(1VenK?xmi zfQ-$qEznSW#|@gcL`g>#Obxx+Jz>w)Tm(wix~mk+H?P0*>^{;ydKNm&U(zLS+Hr+L z{9N3{Q)+5zB4TFU+a^3^D&M_8LSy&5lJnRp+b^qZ{EBAUjWbGEA<#bIDS*O)pM^mh z--JCc8mpGu_PE#_isFh{8GQAsA=PJ$v&q!c@)1%O!?!2O`rlydT|KIk0e2{r8&fZQ z7M@tmFu1xOOYho0x;1=VgvP4m&(kP-!HYOOFER>5E<{v_h4{l1Ky=6 zbTyOTzjH6Mrv?HbDCz&&b>SRe>*Pvvg!exG2R-;^N(!pQNOMkwWUK zGSxr0!iJg~t^Fr;=mN>eg;TxxXo|0|4`y_qd{|}+bKAADpU_}=um4DOp`;O^OQWNv z0#b^?ZbG)nwB8T;uz?y%mfvVlOQWCNQwm}|zO2EK43T3_Hz#|ID<9Fa;d703eo@2V zJ~2mu*fnx$G}+P&tm#zhO!b?=KrW+P(S0a-a=Lx?Tp8H+>*rqq*oi5??cfs2`XBc7 z0^Goxcz+L+0;;#R(XBs;21+l-Nj~ zuYvXkRTQ`1>}Et2h>s&s!(%K`xra649kf$&yLV&kDbe>(URVi&5mlIrlt#}!2ZZ=Y zt$@G~2(WiXE5CE*tK!>YvCf*hPpvXY6>$I)i`HL?54-Y>c4tepkzNo8b)J<)c%?-C z9Ju~SY}<3Mov9b6%m5rpUVxBA65bb6%%2|O_T!6}?7n;CAT%w+AU;*F)rKw&95pf7 z$+6xRB2g0K7cyU;9R7tQr4cEi+viuph_HFSn>%upI$+5gxa29wa=E93}u7{ztn(QrTCW=2dd9>lO*r_!z%L6XYDo<*-oeLNUva_x2oZ#wdInb#h zyt@UP;DAyB!qw8{Kn`_7P@kIe`Sa(jZ(G4?i=XGwyR??)D{3y!JTqS#8wzN0sCA_4 z9_Qt0-=da`5=N^qW(xp3H599K$D4(1AcfV~%8hqGh6@9=YJ9*uWqUs_FQ!QdR)*)f zOIDT{#~dk**(-gD3Wi+N-g=B*ZH|wftL%h&>`rGcN95a{o)9Q+5S{bP`X_&8-np}e zymu8^bw?e{w~R|n)LmnTJ?eVMc2e{N-+8ObDMj~AYQU``pi-$bMgz|yat4`g$cv5U zlFB8U-JP7BFPT3?442LFtE{Yq9T}h+0#01+A(`JH@C^zBq@7u6DdRrQsx#!;pQufRnDT?gJ%3Oo-XEmzu1tP6P?M_5+luS#DM9XuW@}T&;_wL;*+T@BB z0|-Zj@;kxL^z`)b7L22^gK1IZFYa&aUZ)yfbj;W|uGqm0=@y3_L~qzh8;pXsGL<>r zVd$q)axr`|mY=T$px8C9^Wn=+3rkD!BM-FVi`$`wP!UYn71k;1U823-hHiHj5*CGQX0pOAGj&r0e}Q<)>Dx-b93{ov&VBGoU`8J z(g*%E7$>Ja8i93+C`(A`g1NHWfojj=!~%PIh>C(s#h(i=N+je!yiRnaUc)%YVNAh^ zZ%xFefIKl~!D<-V;oEzdfJ6}cBKZfUQwG8hXo9Mss_(1uQw((S@x-8H-GyhGii#JE zzlJ3CNd_$F(giM0=m*#$tN~Yu9~~c;z5Toi70^vc>AtL@a4XE#P2Av91r@anWj1u> zCHL=x0iQN5XQ&MS)^~Iq&;4v7(iF?>I2y9eHTss4-TwIxK}4|#cbIo`Yc(G71ItP_ zL~eDYslLi-vtwoc%NK~WJpe`8mL0OCv<6VsiJSV$?vMn&ckkXkc(Z-K>Rviuo_6sR z8q^G(K0PAT@#nWDk5uU<@FoUUR?7D{yM#Mwt1ixc^KcDV{8~1w%slxJIS>GdMt}fr zz)jX%l_-)zD#v@>QHo>eu49_y(m(fPlMWAm8#=P5wWKq{ciZ;XvY0zce}3Cm;3Kdh zjq{qj^g8>NSbm$xj{sfB##tO5Ylv^v>i<~ z-Q~Fy%p4=RnEw8sEYQ&RKo>oXX5 z$otW{_5b?dgFM2gJJwjIr>9eJO66GGnkA*ADrYhb=M8oy2%Vo*OVe%PX#q$wv)nXs zZiWrK$r<6=B@@ELzI zfITNC8>J4})bTeMV%mWL`Xy5O zPb$+OdKdc0kZ=GKeLWA4kyl1~)uLx&RE?!7E*KI01<2nC$=apj*#!vLpPt!$?E@1$mug1e>@{&rvM~ybXUCQwfq5Xx{pu*Lwr( zmBTLX{CHPi-!sUy>>`VT)^3zRLJEXs6o{fo;IIMTmgD*=%W|S3BC*P%;^GdN?-acf z0N|rAl-vI%j^Voh?5k68jXcUws1O!;k@l`BSXH{)20qm`G zxS+QLV(^I)B-%xo-LD*$r?WkRUDCvuax~wf1wXjpa=_CNrY~<#6*xpnm%_2_v1?lI ze7kqj0nE~u*@^B%i6_DW$bI8=8VSYzJ!As)V!Mr0A+w;K0j_y2qjz$W;&};Zt;zUc zr5|-`C=|#6BN{IQyV6>;guM_1gp!V(oUX?p`lY^9mwm*Sf#_PZq%Oss*>%Wgk8h4% zN-SG0d&^9?5P!wFkcxb?$w@);E+;2vG3|Lb9KQ5URu&D~K5>9kSRA$y@2~vxz58xJ zLNaS=Qm5C;(YX!mLthfS)5`bNm5q2zG@G__=XN?pCnX7gb(BehP$T>6G)L%AZR6L8 zp=U9>yobUBe{`p2Y_m_LUeo;l zz8^m1e{YH%$mRlfz|_>~RogZYv>1MiT;ZvnV`mIgFNp*S+rfgNtXQ|I1V`__2owcr zIr1!Y6U8MYh@7}WAOItc9N-_W{lL~R|H6H$wohYEvM-h=5$s}$oC`#DH~jZl&YaHb zy=74`_Qr`|zz`!!N0_G`RTu93Pxh79=*$AzH^Wh(>!!Z24_Du5`uHqAGzL>R0?psa z)2{P02cl~N-j16UujP&XxbN%;{o>-_>I)z_GZ(7ATw1%s2B=Kruso;%AWV{#_~DZJ zzn(zG;Rrq!a{pLqwv?o#w6u;DtWG1fkMi8(j_l{{=y`1+8O#x*s~QUlrcxaC7+yF;lY){u3t=nSUGIy|w7UjB4Q??t6PG$5mQvWjhI~`>HCrK3qo#8>Eg2gIYh$} zqA=RBaq`r{Qm!*A!gVM;o zdGyT>vxg?JusDaI z{n7_EWu++s+qo_4xIuR7H5VX+%&wYa3(3lUx2SB8Oc*A7eOH+%t?83^6;1#IkvLp% zyS)sWe#VMOknHc?-(eitVxr9VCyp`ixJLEoBW+pZ|ML&B_#q>{+I>-29QXt@LI}bf zXVW0v$6j%p!?n#P|Jwa zHpH@#92gWJ(mRXaE?@?4f<{5p!c?E#b?r2)i038(Z{RUtkgo`)`5L`F2X@ZFy^$5g z&H>Z{{)_#CI{j$78a$4EUm-EEhR?6>Lr)WuQiIh2wr?LflK_i~KdX<8p2iKg_)b+7 z7sOHFkDw4AIM+`au^Ovi-UYVA40b!dNd!i&6VKWslj%mgTk3m7>q!&fvl5U5$&T57{a=NVv0Nh zei%wO(k$jOP(Gz*&(3Rq`OcpsuY`Lcs5Men+vm4-mrv$bW}U_ezw6+BgAv6DWo0z^ z0brOkTIe8;ZckI;)=iXXtnpiAbl@cZbQZ(j-DmR zoDDWBp)UUcehj?P5PU*2Qb7s@9=7k1GjpGZDx2uFSYOoFs{uwv zGlHfs-Hc_(31o}MvCSDg@Ol*PKd3<=O^n4 zq8SS;MuQdVjWBZcK4K*Q6`)x#$+_OT=dAgf`-EGuR&ANn*8nK#s4*9O6K{{_rxo87%v7REa`eXeYZwSpc6f>cug zJm5V^jqM92hs>WZbnX_g2w48vqK9UlVCNet6x0oO*cpP|uxX3jXp-H-x$DQPs6F#B wWc=SX#Q#(n&VMyn^x&QUh_U`JelWJWmTHMTLP)^No`V0hHT2Z;)od>RFOJtr&Hw-a literal 69964 zcmdSBX*iZ`8#a0yLP(M%vjz!?LP%zkBqUSj%po($JSG`Rs7xUwA*9Jnk`&35BvXb+ zNFw9fubyvx>-&DJA8Xsz`muU?dmC=<>$=YKJdS-j?kFwI6I*E6Xh|f}mXm7AIwTT# z5Q#)KNJE9c5pVzU4gV+Qp<>{1_L7Z9mE1i{m8^M|(>iFKah<`%BJ8gvEtL zg?Q{dJY3wR4;^y)pDz%;RJdrAhbydvU(V|Kk@Mj;+qc1%@?Sy{+&&b&4)vxg$e(GPUp7rKaSX)ln7B3ld{j zPR|bw)`dzgPh@B62G&{jr+F~ZQ&F%+ z1h@Y3?~vdb6Orpy;FcIg#(Dl}bf8rf9T^(Cyq!teVjv--kk zUtfM3PmgwyyuLUP$UU&~b#ZomWo9I5e|l}EQl!hz7vo9)>$~Ko`wBQXIJk_bd5;Mt zyfQpWJ%0D@-C5j`#Poce>@tnnQvJ?* zdIc8cMssl+OK~*eic(XvOCxa?aATH#&z?EHqobq4u%-IfTS0SHsy3NPir zh3B6QXUECjT`*l;?x|6|a^)B^?WUJ6U(VK2Y`vOM{^SXX)Ou`2MudLPy6pA{i`lPN zW`+hf)&}sPoom+qR2J!rTpqYQo`y%KWNT~NJrcMy6e;=lTS8{fl!XYZ%eNaRhWot- z8h`&5!*k~fT%CLJtHNtKM6Wl!sDNr&J1x~@Ru)__@x)zxvirilqV(}BxlcWhnO|BjD5Dr>E$=JpFpHuc?n z{;A_hLHD-fi{@CJrNPjxF4N^b!xx9Xn1+5 zxXrgZDr&ResGwP0Ea$P=?|B)+iTb8>f5$VnD!zHNu-fWf9m>5nal!}7uXXNRIKKZ* zp%$BiE8h~%48LZ-^y*pl!a={)xu&JhJ=GBfMK5V9yl1FL#M_X9R(@7&-M)SM@J#RI zOXq%Rzp3*B^{-x0R3hFaXt`s=2{e@jJ?pIP0|Z8TB;X3a`P&7LquH|&E1&SPGT ziZqvhHSa(9&|{`zM%Ge{t#KeuYK+yb*E)Gr#@XHd$cxoqEsX=0)Aye{ckWwH&AK>m zSp2~HpJ%TeB@(pw_a+fbc~yBgFGJ*>Z0DJ(MJ_UVDr)Namqq;*-rGsv0@ud_U)5mm zY%4c9&2{q|xi~|)D^rEfuIdWxyKvz`7^9-G@Xi}8qu;RLsJ*`yiUZU9 zhUm;lW6`Ro?aAd2&Ow!4&RE{WXDd zno^^;3|kyOJyuwiYY=&mpC8=uos#5-P4MZt>z*e@g$6c#Pn`xYbD>b~YWj@7!&fjr zGOOVt?l@qvV&MH`8NbUr(Wa{#&kTenCMWCjG6L?F|G=-;ocf;Ttl<|Ysg|}#zhZCH z8uW%TuBqG<=lU*vvlyc8c=vlI+evQq;Y2wm1>qvt z+U=N$OC=3vMGGtLWl}hQp1tVB7@G`AklJ3RUE}74EI6|VeA1hW0~QKG%qYSY56}~3 zU5G+ca)>fDVEOxHCz4h{mwOVH$iC(XJw^IB87VCOiOK6DE$^`o!{IwkYjGSS%P;l} zkIQXHp*)J?{9dNI#+_!@=?+!8h$bi15l?P?J;2ztamUg` zcHCp@78ar)omp8W_9$bNvI}uCZ=MnkR?Q|OiAhLg<>gVMfgZ}#D{v($QP_4(wIh9H zLebHOs#z&0D2VcBF2YJ{6i6GcBT2MvLq4K~ek#AX^Q+HDjA4t@r^goBL#MloOro(A zc}~MVYYRQRH`Lsm1JEw8!VR3>UxK&FE|F-%cRLLx#2g*)JG)xbGu4Pj_Skn}@{x7V zBg4?DD~q{n(=kWC*4`Dr_-bI(O-eF0Wq#SFG=3^ArnObmZ$4$<70%?*)WG$>_5q&B zW&u(Wk&&)Ajl&6NWb1G~?))(ctqVFO{DQJ(rGIAj&7QcyLxF$kWVqTYr$pFeVq%u^ z0+;v8%)Q#a)cveFd|>UT_pq&P`ei;ehk&&yvym6$=?y5bAFB)SG|*y)(Xko@iz`F? zSN=q$c!$*u3^hc~p(qRcM2d$i8nRjC6p_Leo8xf&Mo<<{oiAyA?ewfa;;g3Brs?VF z=f6Lmx}mmr_KSPlP{qKSv+4MYAEhlWeNNAY-U=4KntnFGklYep9Jn_1eE6E6mWfH4 z_BuL${i#D$VI7*swxAmMpcV|ez4%CF+q<+FxZ!P3sHdy1KVr7AU}jO)>qeElP85G) zu~Lp+dVL@-HN>RCYlwge_&fe2dwcsj;=AFbDdg+cJ4);v^>yDCr97K9<43*I)Q8vT z{CQDn>1*C!FH`R{b_q6k?Ih;;)&d!ceZl(E5KnNPG<1}PgQIlvQ$4rS@P=Uz2lA#!IPInl5BcOM;fBT= zogseoXhH@$hyAFn^K}#fKGfgC+WES#EKA~1oFgbh>mGR?a~UK_t^MwZ>UZ9+o^z8Z zlNlSU<5I<^KD~N;u}8QRT`^0G|BdzuPL)4119DU1Ym@plyPcezl!cQMaFcEuYm0gQ z>wsK0Vq+P0Cp4?MySul}w^eqdybD{Fu)e@PIC^&7HIm=5^HhIy0oVB_r2F+V_Pq7x}}&Ybm+n6+W_53L4dBo!DL^6 z?+DbPH(NJQ7fKCeH`i4h;HfYW*J#PQYggT3_2O}3zqv+_*%O(MTqgJ!K^zRpe^#$J z6PvB8tBcq%v;nJK1^Oevnjy-ik8Re5BDq!d^>?lY$l--Q$$MfIGjFkXQfmCiMRY7a z?D&73fBb*PZ2o`zo#PWMDtZuO$E~1DA}!<0+ic#DbX{H@1n1i3#=o zeY;tjWK8K>#U=l1(_vQneMMWsb&S&kmhJfy)l)q_o@8ZXQ}p*g?)BpnS)zKP_Mh?| z(}vDY=2n?`4UN;MGao*rHT(Nk-&`VPT&8WlO>S#h?{xx)ECEx0=;#Q=UvZN}Bqgt+ zF0PKqt?#*|Ze3S=Lor`h;PgPSJPGZ_QqDB$1KHqi#&^|Jp}`=+f_HsnV$q(zpmBbf zT6k`Pza=Fkdq-zOCm6byMtA9<^~ds~{IHMlUK#G>^lNLknq(*;MI}MR*L%iJz2%k|K3S}cqfCTO}vy|6`T&`FFU&qNaA;)p`qr6Nem=G znu4xt20{^F21Vy6rAKg!^(bb#u)V4X1sdW!{mSAWtr4!%3 z19dAC?D*GIPjS=5;;IO|b9=k?@87@8`(JwQ8r9(2{=@6opC7#xu_MIBEGa2TU6}Qe zVddhAcyA;4sa%^sk)g}mx;{Q};=xm8N^&yR7}ce<0M{lR5TV*y5+FdCbH*WCpsBgU zV!urUzajLM;f(d~8Kk|ZYw9mD#WfL#GbxG1M}})J)8@{uuBhA~<=tdS){t5z%w6x` zyo<4g8w*EjB#F^J7K)ymbH(1o>&Qs;Ln7%u!<*^1Zf!6ZA>geda5m{)MFsnn#h;Bh zc7g$cJw+yxKC?WX4&s`}7j(fPWT*b-<>o$iAJ=qEzNagoa{Ba^*keB>e+<-cpEo>7MYwX@ERn?xID zYWK!pmYd+3GU)bz8k*a$?7l(V1utbJ11EWWsyH9h<|ogdMUOehHSMuEadOLMd74a4 z)jJ~dhV)yuL~WZ3@Atl;MyLhx%~p0!PMhLAesghgsq!$&J2@SEq$e2kZADZ@hW>?d zEC|ZnbB-p3-8Vjro9+&aI`42o8vl}H-QL-`mtpdY^HB~4YN#576a$nW#7KTeLv^8w zK6ANsE95HKAi-Ereq+Gz+v(|4ZSw{dUI#UgO^f~bR6;>=0rws{Kd{UKY~frvr>d5t zGvOg!xxPFla!2D+sWsg?pyJW#+aa~PB2M=8I+hslBs72Y3f&x|_;6znFC_>Ygdqaj z*n*Aka>IDjjcX^&FiyR;5pD-;@gNzHycHy;<#$ zi@C2a8!EyMPRDX)%1{Lj4Gnpm<+g2VMZd5)@KgI){oDA#?0pldlUFV)ES$b`NHP^7!Z0?~~+s|n9t?hgD_tfzKhfu~CRo;Z=51pNqg?cI4TTw7m-czNIH`Z*9IU&iR z*(W(X=TloMbY1mAZ*h|F(X4iUUCmS@1E2$O{`h@OnsP@pU zt_G-*%VumHa$yC|^C_&SE{)9%^FgJ zh(Wo-4)S0UNc+-ae*OU*f8BHE+RufOZ=tgEreV=i_-%%f^c5@$;whmnrEFzJ< z_)ZlrO{*q9gh6B3vTdR%?;)t!Z&8!vi0GR(y`k_V8YR~G8T*in z!D@}J! zNf-B|jP+cUNJ-wSyS>ZXH4|$<_mbQ|xzp_c!|KX+6)9)o<&_ofvu8t#{iiS9zJ0qE z0$v#S9McJ|%X=p$C&5H`llp+UC7eEo?KJb-wr9_ttd1FD7mi3gBy_|>ZwHzjCGy10 z!x*v2ukz*KxNhRExOqD@HLPzs!l+R7{P`5S;fs!r#=lGUF>R)&Qd02xCQ2XL-L2?1m2 zAJI2_6YFA$hQ2fc@g^8;?cBK?TmefKcoL9g$ZS(xBMg2v$*qfe&3xUGuX}AIPL7NH zsI#&phpMgZeysI{Q+XV*)TD^kuL52aFvRzTiyJzb7_w9PsHM3~@ zh>AJn&an-aXbrv=8rEat;^A8Sl!@vp$F54zP=!JcCh;(ka&+vwc`E4|N8N%)B!N91 z&KwS!OwkdtW4*1S#b9A>6X7;=+4TBL;dhhJ#dA-myh^K%=4Fe?diHFmZHN_e?v|Ach3_8p<#EkqBM$ldL_{g4oQG8 zKu!SEYp3bC(e6;J%Z(2HY<=fdOnVw=NIUM#LK^$SOK)`)se@Wrc|Qm?xei{IopN*- zc^zZ;{&~x$aK+%Uv9Tu{iM7Adx3wjAUhMkrk+spIBbEx86MQRPJqO3|Tzeb!Uj0WD z!9lk(vviJK1tPQ)qfN4oe#)lr@Sr-sTJYS!D2bCKd;tsi&F%8*hXd+L#XWi9%!85) z&|L`wVNQ@LQ;P;q@BRDtS(hJu5){j4RE$^Ko8-}xYb;DCra&F~tMh4F(ljG+r0vQ- z?~q#Bj?J~4dn+RGn1ewu9;ty)5}zKg^MFo$sSttl)b^I%AK$^KxEo|Hchh|nd%Olf zL)1g{0His)OP6+bs2m)7+7$xpaWMVbFP{r)*{aS7C}BF*reBn_{*;nQy|V>w@rSv~8kD;0XAH+9YQ?=7{xXvGmtBL^mg z+x~X*icjn3Fp^qIE%~n}Qu0#bSVDa@XU*l|m1Q}*^Wn^}(!$y(S7ZCx&yt-%(rGCCnQl zwk!?rthox9^=LG#&hEv#){!|$*g4=g)sK$QGb)NmNJLauSC@*0qZ6WHEv>EJ>{bG* zD=!y!D!1HsoBC|ALZKeGPx-fk6_oMG3K}i{ahsgUiZ2JYhMz61cjd@xpSZa>Gc%K{ zxbhe6%ZiFQH1x%#uZz{s_KuqfsWd(0C~@BKho%@?40a;mMT>O&BLFv;by@9py?b?%)%Jq(SbLit=h_Mp3HZW8 zy1(=Y`!+@BTlf-m{kL!FCl-9sy{@b7>GCE67Rnecni(bMB(ZE)BuU74zYr23G4rU+ zZho`(Fi-kTu-$KYaL5-6Ty6_k&H|>EPL08Ld0e7(7`~YRE-v zRP@+lklK@OU7CXD;#t=z$$KAc)>@Meo_~z111Tc_o>7>1`)|W zpDwu0zdw3`5Y6Ddbi|fGimHUy;scqsG+k-;4f%quBqxd=iz}koaQIPrW^PYsd3Cky z!C+}?uf0qsU)w~DGRjDn$119(xdD6MYP2ac*77g*ODd>NX78kS33nZi+CL18RZZ^kv9 zed-ybyc_I_#ru2W9yC@KJ!jcZ z(=f{>1~1*XRbiuZVDY7nzrF;$VQX;WSRD#b;7G?Ax$uFRrpc}XVsnlNn*F6Euv6gQ z)CAef-kqDt6-P}RZr7FRXL)ODaI*|*0;-l)UdON#_R2RIO(7O+ zJ+&1>p)f`l4*e&jJYq9cr%(1Xgw}o0-*TQ!(He?A|H4e5>gPRO$&tn_w{jzTLt zczM1*dp+-G7%ten34K`GdD-;mqop0SgbQ=2W=#Sv*WK%F9?~YCg$^>(ymRDh zC#&{_1u>R>(_E5iLzbgNxMlS6iEM2E7R4N$%`_LLn10&9d)CtUSgXKs;@w4oZ+Lw9!~sPprmFQ*8jU#U=UguvC#FTdxiq@58? z#v4617XCE-$GU^@TWEasweic)%i0~QjB(P@cSBXP(HW+1reAS$V*)W-SXi(wlj7$N z(+zIqvmJ}Br@0s&)Q9Y!HBplM% z%46p?^|9X7xc%5fj^qi^%~YW-k{pD~WM{|k={a`#fVk>{iP3}V@!XpWr}asKJoFk; zO2;BU%G1<+`oxN?0%KfLv{yP1dU`t7^_ZB0E&UzxA8QVWfe>=*r5; zv2ON0$HEpnGU!zSU+$V0!^4?h(5?cpVc8ud%@lz!pj}v&+-6O7k-Dk27d@eN-Y>tP z)cj#Vfdb8ehY1y34&g?Hrccu-X79-Lxit;B)J`qb+lgfXqVkX5TNdViP(2@t-IhsF zyH7d0orf((c;&aar>AEN-#K03Buno-4I(XW32o}I#dtUvb}n4j@=xBXJCN9@GjU~~ z;?ZECkZ{QxI!&{`l;Y(x(@$l_>8k_lKvl6i+*?Y!`DRSc2d*yfzX}U!DeB!v`zaOu zNy({+AM76O#nm%#O6zJ3K&}r_ie#vp_S*U5c8(!)w-8IA;f+_Lomx{|IGuSb{qIDIGkKhN#?cdTAkyy4BbkT;^J+@p` zp~TW^@O50fE6x(~{k#1tLNkQW4OT(8J5S2Xtq-oi8~HU^s!eX0O|xYg65*yxYCU6lKu3lm-dVZ&b`7yl^=gtwICTp zo5O;0n{)*d1$R?*YtZoiW2`n`j|{^Ig(t6&*Fj_eguxVNA@>bMusgr;6@oJ&SoEA6 zk_3 zoUiBiUTX7?Qg(Usp;T-!AroT4E&+sQiMDQ(%2dtPeq|}j&wOpi=rMTD2!yaOD~mDH zDhMa%{iQyquRq?^3x)tWPb~6EMqA{@a`8rpdQN@B7Iqh)SX=QaB3uTOt{x5nogxjF z-)x=X)F&VYEQ#>U)J^pqB=rQ{as)XT8b;>ig_E;izVtO6$XPZG(DJuc{8vfLZ(!G= z9||6>z27z-3dyd^!9<%g4DW-K3Cp(+mn2d$+wJb@5`-b1W|LyX&@r2!b`jiFvN+d{giZttx5CFIobnbqBJ1vzq zoV>(9XqvTNKwX%IcWKIOgBFXBpecQFwF2S~yB}P_?V6Hg;OUy(47*wBbGIm#Zc)R& z0a}!XIwphEnGb?*u7EX%z8%(QMygdJg~+ys#aCv?buIo1!)Z4_tJyqBVL*vWVOo6R z^y&B4-kr27G5FBk{nXMnmNd3Q{uU$o|Fpc;{oUN$y5qMY!^nZ&j)Z5WA$wl0Y{%3B z4JG;TO#VhjlwxKr_S1*HzLYYJeE@LKU@59h<%(N_ab%Sis(u*~?@7dRb*?sAf()kU z?*S)^hItE(+kEk7KlTw^3N(m`A3xqLr$Gn3U}Z%~q_M0@e}^xjyg{A}FcNjRAf3LMtpa$uz50sRNn9sl~n=I6L% zG8_sRs?ziP?hsl9bQ;yf9mqi(2?S_`Ury|9k9_!l zSy*%=f|m1uf#I=SZIWL3QC4EnK!q?c5!sc8HKte4h^<|EHktMK~CMS(I{ga-?dD znUNnv6$7IC^_fS0p-Sf7a%-G=xA)WaijVgMgEm2#1*JvD-f@7R=SA5;zzu=Ik2+Ab z0AzmqR!NRP3bNe&TNh$Fo){|Fyivaet15l!DVpGZ=Qf`|07=;2zEuGV?dzwaRI?3T zEi`oy+kqK^Ge3Aapp_wYvSJlyN%FtaV@z50o=5Lj(H;v`p@in7Mq0JNKsor14i_&X z)=akdSd5D#eT?ea->P*}3)d{f!wk%2+8O|qtPVqoEB@qdE%lhOQ0E`&xz+n7=iEzj zHGNX_Yju`N#Z3ObE;7Zdtm#TVRD21WIht}jDWNSx)SeQRj8*!VM9w%eSJCku=JV~Y z)e90S77{5PUR>b6a7(ejkSI!;USYxl&db2hjySTSZo#`)ZJeRcdvAH2{^88%nHOJI z+{~?IUDc7zsY9#6wd3i$GEDm*-?qQC52!!LsL+py2%`kX6XSpdTVB?{kV6azZkfg=L5b1pVxGL*!OyM)xu^EgJdm+ZeLI?$gPC z@@Vx0PCW<=3?Quf%8DPJah6=WBNtN`qk$01W1(X+y=6v)n(ms^HyL^%nZVgcffJ6_ zROCxQEibkkxbvSO&8P@FMf9TK!-410%uhe%| zW@~cGrs&4q(t&-`UcmP%DMx;}jwLl)A$)zl^Rf<>-JF&067@okxy}BkOkmx^Ho4bi38-jJ24FccF~P|BKwki>B9Qp-n;;K@vqarj&9)4!PHl85F}T<9{iB9z z{k`l|Jxe{d!*}SRIAJH*F9x7@ouVTgu5Sf1>QvH(R+lK%@pbK&%JR4nsbDHkk{^{77VD%!j znKSBP3?#a%Fb{PFO#WEj1yZOVn!PFAslJy9td^|yrsN>qx~Y2?qIRYsh@*SgteE^> zSQsj4;vzEs@f}vk0_`6H&^zx^1w;)|3GzlL(t%WXdT_6Z8zQuTkQCQz{RT{mvp|j) zP_S`OK0S3}kChs`{m6Q8W+0B3!I=JQhS2hSQFhySLtDU~Bd&~j7)1f_!ZNq|Zon6z z?($~B5&2%h1Ug2p^Cq5b^g28nY}xi>SK$^SWiB0@+}GOjAMGTfLI}-3926%MQBWug z$VAc7Pye?_(41)xgv#vp`T~0rFV8JBnR`M`^3pqCb z?>iS@FwD-1fV#Adq8g|iHG-vBSAT!M)Um66$QTi6WLQ}AWxX;}MS4hTy?(6w(5dadNKxxvIg)V&}o%{Y$ zz;@u6tunKuA6{3wOQC7P10yDz$gFw}|Br=fRn7lxl26IE^FX*kMuekXi1_^N<7eJ+_&i&Uy zskhop^8oe&DlJvinX66l5NC(*Cr+Lnga;psbo+M5if`G*!Y8lHY5DI*6PEMW7Z77G z4+g!(l+=~FHL7rM{8{^_-)P_wy$5Ce0IhNkA&@nacIBmli_G?cFf&ThzUk5LT;#JJ$+$AQ*i zc+3(SE~Eu;g;iq1?WiT^r773p_jt&!c=h@GK~I}!%s4q9b2yixoZGQVoSd8D9UT$4 zdCpWnUunm89_8z6;D-Mf3^73Bdp?mBji4_qN+Nqs%mZBC^k*#P(r|uWIynhp31heB zeY>hpkdJ2s%3>xj3eY~Yu<+momM_?*+^d7sq?>6A+fHx0vGz1BJj&WFuRlxhel zI{6xOhY;SQKtAl_$K7{hDYsjSj%bA|@SYB@rE4(NA74uAlT>FTWZ}s*rYoU9XWYrNXtJ^mG}4YvJC>txNM_26px02095iz z{X(OCUW_P6sMEV*w)RKeQubL(8a8EABr;nr9Le22P~-uHAIT~JE<#^{CBbalkBdYJ z1G(L0NJhhZ`|e$+bt=F?s{5@D-}&(2gVvKNc03P6YJh&S{GWxzYGrDD6T5Pd+J@mH z`V0IX5XlZbQ=mvj8cK}0ZAy91SB(<;yx;lZ%qGZJpQf^xTdgve8K^>c$dT@Mbd%S* zrhby@?C#Ee?}E$%>Hb;_V+gcd(ZNZ#cS6V)5s?ps08(Q+{|+wr4lS-|o0*w?Sb+eH znM1rOb^>YdF*p@rfO_3N4|N}=9$ADD0(a!eFV*aAAORQGH6koZmnQ*eBP>2@FoxVY ziQ0QVl-VzdwyRfwnHCwygHyrRp~3Y{yH|UJaZvG-QEH zZix7g@aty#lUtI{Dea1DLIpsVZoJ5nZZ>&E;D*{`uj$X%S0LY@IsmgBmY~uiJOZMf z>S&;-Aty_MBhJRo?j9gpCJKs1(DmE-(i{w!WQG6w&4WvLC*rA+vFC4{Ekq~-$5V#u zi~?JhkBqQa5flzQMV)-HX|80qr^k+b5NIhy%)?xe@<`lqDXGo*x_4PJ9CH+DphU_s zMJXHop-O1R&_=xI#9PmrGHYj0KvvxW^o*?A2t7}b9xFp}dXg;R$(PKwD`P}bgud*4 zRPQ{m`0-#R5ww9UiZ%bHMrCi z1D-mmudsJ{2i&Tt)~EgbGjVfBVADGjH;^=Rc8KqSZ?(n6X(lZ}U;wt!%}^2SV_sWg z7|`W~F>DG;Y5;!5C}qs%?yQ=+GB1>}mXJu8as-#w5oMx27~tLOIxUr{M3L*1r7 z;kB+DzGyF{LekRGERO5v)gM&vMD!Ou^_HSMT50Wf4@)#?y@GQdYNq`8mMk_3&|dj3 zv+bn7b2kJ4^Y}`3Vb2X30GU@$jOezNyPOHTPG0XIpV=USK99uElZ#?^G;nb$bEAYr z3p#rDQKQz?pghd8{P=pDmyerQ`AZlXvyJ?qhcwj0#H3$N*xp=mk(0*|3vyRlIDYh0 z&Ly_(@qq0ik8hdUAta-Rnlcv4%uj9W7S}}aj~5=EVbuYfz#)-6Jim{b)&lAe0y9}r zIR=(``MSG$^wn(tIF6^>InKjKBaaGcage26F|~2p>x$vGcg%YBp#F`m>NIuQb{z+J zDZ$#m-vO+sh#${h*39etZ?ljPf<$zZ*_sa-*pC`Y98DHJKCCir*|24_dD&P(;jI}9 zo5jmtbZ|g;d}pcy&NK3FFeF%GUhi;XS!yv`C+E47ATDm;R88aB0=om)`5N1Ur>w{U z$;e!XMtettuLzBHu?c70PAr$R=H*K^y@JGlkApA)J(d|F8&ss4+(Pg~f;9NfA0Be$ zphlQXdAGJs$@#+WO>MV!rZ7Cjmw~uKTx}+Qm-{+l_%atUI?KQzNy1>ovFc$5l+kV@3|@1 zC`5cT69W&$40@l|x)HMgjeyupq)VZY78n0xl>`Yh%&6*jj;u4k?Vb0-LmCM*ixPt* zk9`8z0|JTH3U~o z&{KnD$sn}(pCRPRzA{`0Ztk1Ms5_q%%gEvi4EgA&sHjo~m+x~vP&DZ>+L9N&DYw@x zEj_;-W08N-WEW$)D-!L{FXxSRO#(wg@uPvT4-NvPIs{PIYScY4H;91m@t=@tWe}ms z;yyQNPK+)9L?B!UCguM1Ou5mPgl4fz?xrHFVQu55++PVx;0VAcgO_;VIfW#NNWa6v zH*am*)REmZvTZ|kA&r|@5_j!b>}b7JT644jT+3I#`O|27!?toOyZ+7D;1RaTt_b~` za>RsT2;fk1pZAYXqQ&l#X_}%vRtLOvRkF27jJ9p3JT-Y4?W=hy{bVz4@8dP2bk~vO zFuj%V+tTjhMXctwnd#5v7t3;^-XduR*G;{zL?4FD+}zxw(G2ALVXs&qw1hZ^2-lS# zC1Pa^yp&M$WZFi+pD20n+qJJcNw5#kE!})1!zt-Px>Pww1;Y(f2y@|w{4BZ|oWL}o z3~*!Y7T}$rjIAsEi+}x=dfNi{7@q11?7-&_@Q)ep_*sC-z_xkZK3t%%$zus_o!(O6 z)dzM629TgY&Q;C$pIKc)Uag7n_%Zh~6im%kOAH+FtrDZcF&N5s`AQ+5rb!KLu=L(7 zg0ONX(JIn})D2b^y~xSg6fAH4HJ3KJkvz0ct90eqeC7P+FYIwmNAx^ysqaI`{Qqu_ z1^P5NQ`E6uO}Vw-mEO_IezNUn_%l=o?8L@AzclW)N+sL_%v6xl$88s^rSY)7`Y)Oo z`!94sS9rd$zJlq_*%xj8&R@rq)N=^fPPTU>3sZgmpI&+j653#w1V*kf@>4wyyLfY# zw=|-1>NbsANw%ez24r3J2ZAZ6T^e`jU(Im(@_gH~FK(w=XI@*10z}L$LNeyrb)&jd z!T79q90GVQk}x}?B`VJHGe0OSOw-Rkn5aJQ^?M6dDCm@>Ql;^p>VLB|AIV85V~=89 zGBWJ-OtiPz)BpMNH4H0r$bZ!Jz!YSI)#1#7f{U#$AFnIf8ZlcKv9Y+Z&P}?XbC>Mq$wu2NQiLIbA(y#44(SL-Xs}p% z3v=^(b^)h=yAXorFMA`;69irhkTm9W?EoJ-GQ2CKo$WW;sBsL_G?T{$#H6I|h_5GU z=0Sw__4>}X9CQKkviB5rEVN96F~n&#VO>FVsn6cHhXOD&XD3A_z*F@Ai6 zNkfDXK&5mpr=Q?q3~Cvz2aH7&c*yMqAoHu&2_w%9**_9Y35S5-6Ohypb9n6B|MI#U zm^8%BD}R2F{Y!8l0%6el^0EvUCSMdXwJ;&#p*bK}Wr`&B!%7Wxp_bv!ohyfuv|U7tUHer)sp?vu8am6f?r?p2cf z$NbAk4&yTrLK-a(Osp{tXXQvY?YxGG`H^1Rj7_9}nf?s_Kb6(RTKpf4MTzJ4t>UPA zqFk2(W>$v5j;Z3`)y{$Uj}Sxcv690ygubaJYlhF9SV*HFwvcX8balAUkwgs@dQvey z$N)i%GVJ-^uV1@E70pQ4>6k_tJ1>sm44yl^DzoF;q-A4N_efv>YX~2s zz*N(NhG{1z@Kc}<$`X)WI1;I_BjK78gXL`n&UytqHfFbO#4nT)))&S(=PN$#g2BZQ z3GLOU-{b)lQ}B+El*llXNaB@2*m9dZWwASPNQp_7pf7w!d89r83|n51>k~*+&8|Zt z5i;W?bBxzy<>o`p&aa-oAT?QW6A`Ogob*-V(}UD=)aPS-FxdZpld}3cjut2QmoL7T zm7AN8P(e`%y~f55A6;;Wo2%UDxa~L)Ig#*&1D3V_yVnb2c$5I*mejmqYm7`E=%8Le zb9qwp{&z_}KGz0hr@$LC8GD(U4Wzc&lr!1%V1goX8U=A|=&szb~oexVNks3GjQ2{m24mlrpXNPz!U!hpG>BeE;MOOF(Pb ze@2B8?=Oq9(nD^LFVsu!>>E3dljrN5TSQ50>#giePU5#4>qNkAX$N`=IpiI~n~A z-w0EgtyO^=0YpsWw4gT;Nd`a*L1G0P{gg5E^x@pF<5&Ke4^;c}guP?iFT@o$0;Ndt z(xu|(r(BTIMBelT>wXQsgkTF+q7FQHGKkNyfR@10wu6Qe$tq+s$+{MYA;mqy0TBwQ zsd=>1<=SQp50G1sJ`D_Hl)E1DnZ3t))yVEP#F8we@0+%0h}Q`1s~0+zqx0T(9qHn{ zj?ESQrXN&KxoAEEF(lKUui{4Iz?gxh9Wkz)l$3Otx@b#e11kqd7?SU{ws}75ipSaO zO3uT0LlQ>YMk1qa|IeFdjw8=MFk6K0Ws89YgAu`dh>)+YKnXwcE*0N#&c|3|bkwV2 z$VKu&b(uUy9pL$%8gP42IZPcS_?5DfnNg8Qfo>}}m9HCOar;Tk9;hog8<5tr5?*Lk z-zHZ-F40m7?d22`jR)u#Y(bExva#2<{`1#<|CNkA?dsq_3jqSk_o-4H zzNH|1&R0o-l_3iTZE#!)Lvc0ch7wMXUyIQDq+=|PCGNz(uudCDd;0$%U;v*`A;jkC z8bmNp`JP|!h8m>ej<={susV>LfiLj%K_(~6Y6PBOK|%g9%9Ahyf0yCf3SZ!^z0i(- zk*u2?V*7rm3Q__wL+FFj%EEciQ@THEdrSca=R7@gJeleIRTY=$g0=X=5Xr&N4KiU9 zwsINc&GUY(zbzp|(1u&K^Qk0RgHLZ(q(MCPYjDU;e9#lj4IbhHFZyp|OChV{P%iBx zk~Ccfd;}qjsb2(w~_}O`< z^=(V%vj~!tXsk3=C|=Xe-`4B>c2Ft19zbOWQGra$*$J-7EG5+jqc9+zCVEPUGax z9aKQg5f+HFs!zrpCWaAxyeaqpf$Fj;We$=z5l@2jcHP7^pL5(%^eHV85+v4 z)Yafqbj|Nx`()a%g)52{473?zTn@rTyRIlfCol*AA_%6@sCtPv%~N(9x59MH1^H`a zhQ$JRLVQ3FbIu1rGnUQ|n{6H#_fq_46u1>BDralY&4;JTp+Xkw?ey4#xukYG-QSB$ zR1{d#X~SF66|Xc1AN4HeR$AS<7Tu5+Y+;5B|L2dF_5*U~XU7@_Ttp$0OLD}j%m}o+ z#-K8!Y8X7N@}+cDu~;LN2P)Zvuj$1SJB>3)EM20lD*t9q?mQnZVMKflTe6iixoltb zxFo~BPhD|+I(G5lwWbkb9HGI2dAJI)016VE4po$YgALrEbs5_&+OEYPQ0^EAqnj|z zCqTzBQ(m`5YeQua(=-BQi4@OwGhC4-xM>6hskXCI_p4}`4zL`KaKRy%spw73lY5>R zZ0yJ6HOAx~6$pmg!d7-@;oN@?k>g+z&p)(8aWJ z5Y8t$8#EJ$5A)6*;kQoY#~g2Ro%OB4ZoZJ0ijWdI=&!frH@4uG;1g`Rvrb9Fi+{%y zwdINZ^yb&5JCq5NYUj*O0-uVaf5cR~-)SSFOF|^L;VNe?QSS9N78et{@2QGW5QuAD z75)lo5jy$ConAh?Cb~}<4(ngz2Xa^a*!C>+Ki@tQ&Eew3shd>22gPv+)pOhwWRC)e z!XNaiIPTOH%(%NqqIdewqk_%RbLEEbXg84n`=N7TOuB?Z(5s2(zZgXl3yal(*3%2b zee?FCZ(+ZZA{vf2(|3~%?1Hbhm7eE;DfAx^M2{g zW~+UiL4?54HeP`wyV8fFCS>>X2U)`7X^U>R$lNGc>D z>wca--~0ZJ`}+3B_i;`Z0=hkXcu{~~)@TLi^-k6ZKG35j7xc)jnt?%bz%BZU1sjgl5fI@(N;^Tt9Sz`Z^hqS+Y#I%hGOmbQ4e3yGWI%@f4K_6IBa2EkP)=bQGw4E@9xnKjeyYVIY7(RvT z*G1ufe4BDJ_Ye&(jD_X5o*RlXk)1%t1kMh|Xj`2sq_4+AK<65gFk&mM)6nI>1?B?2 z7krZA2a8#KLppO<*A=3sPUBZXS;;5@_6r06wbSW~DBrv;bO9~9U&+YGglfOd z3Okn7YX?wOAmJwaWp>J*K|V-cleJ|EW6;(~hz70ejXIWcOgv%X+{~_tueiBcJ%M@X z@!34$T8gEFYG&8B#BuU$ifUiXEt+dOIk4uTpB?8`H0P6)Kv#NP?-ZkK-iIkk3%^+f zW^_Et%}EP)S$0v|B&Vc^xY3-UGmSBU8wF)%{QO=dzsSi2Pfkug?_eY}H@7M{`zgmI z9|@{7GiXyVlGGua$Gc!@#uQb)T}YW0YF^CM7bdfCb0d=|bn~iLspOnz*I#!|B8wBXf{^-r zjeTAF;xt%!$kR})e@ipYZunP`nB~Bts~y~LCBcb*qQ?1q`3MuC#+$;qJxQg8mTEJY z8|qASUT9sA&f(Tk{eL8G=uU082P7DxZr&9K8^Ic7C+#1tH3oYs%WA=M{KbFOedT&fr01u zFJ4#&$$h*_ieJ3j^JA+&keUG>S(o@*yxoj#fSZ_a6>sB1n#QFOi5SwZT<~7 z5a0yHY?NpaWc%t96oTk{E=@dD#}H4kK{W{R5SQbB<~m)tCfR~jd@)S|gBkl-FBE6< zd;SB97Bi_{!0Uk(v<^M)w^5U~(lz8WRzaT&6A z4g_ypZ|*;2y`db{oP^Z?xf4MW7_$$L7vD#!vOa#9I-6QnThf`Ef&V4JR;bk3G@ zvH?y(fuDPC_ z5x_tV?(xjovj=nbbxq76I{=RZHkJpg#Z<_9%+BYNdO-0XJv}y+SU~C_Gdn8ys{h9o z49(E`h;xjaNWO&j2zNj3_$0|Q=)5qy8ii+^76hJP4C+*FN3>)AnZrA5l5eng%6?@) z^I+lVC~-MHzU8NnrA@-shQ5ipnn~x8$9V<5$a4j#Ao*(na!dlW+K|`zKp%4c?quVf z0zO)F=}E!&CoAT}F)p$LQC zppfZcXg_y_j-Z!-4qXUK6vn2SE7Dy?U+i9V%6kb$T;ak53QoL4N36I=3(iS+qaK`9 zDA4oIoFdiNPvIqiF>r~}U#f2=p2 zwuzin_#qTHIGFSDN*QqNxPFL(*D89j_He69;YO#$IfzVTh{$Y(XfeMUb)3MsLGYlt zk=B}L5fgy49Dm?Pq?W)E_=FKG<<#iXrn=FMvU0CE!NZTpjZQ7{jeHJN`e=nG@0B+N zD5DhNkKW)u2pOm`k-e9>N1={#Q-i+*ma;$=Uj!5pSJHu~a87hqgwPKaj1=jk6$7K) zui0A_@bET&jL%LGZWUK96U!^i%kx843>+~fCx)PE!jRw2sbh}ZQbPI7652p$iSR4t zpL->ekfQ1U7UrPAj|Ir40JVJB@H)qbN4~`gju05)Z(o3jRQ&ZDCe=qXb$!e;!q=!jeu}ZwW zo!1!g5ERn=Szwle7AvW246@KZ@Ad&!cDewxCur{^SMn%zH6QQG+6oP8P@NC#SQtx+ z(&v}l(Q!aJ2Ksk-VY(@=u#%3~Et&9zVCV(c0`J~a2uDqB|9nC6h6;`o3Cy*J7X~Qs zc@=ja5_)px)EIERrp{#fBJd6b`vVNlHg#cP;Va?Y_RjR``X8mvsD}scG}PGtW=6~` zjlicd1Y$^pv%_0Xgd(9a-aGD8(>B2ytwPHpE(`{oz|6#Q6cgBvZQ`U@~1UQi&0^T+~tQ= zy&8cVKfb)YQ2P3X1I|=WYgyej$CYPpp4lH`v_n2u?@-?L5Cq`-bIVmGxGJ1f82m%H zDG|N<V%iwuS3)DQ|1M7t}VUhlb|A^89iC66E5)yR_}UGh9(g9T`WCW8o( z3WH@lX$&&mP{^;KTOuTvAe6tC5AFs%o4WeLX2e@9OUE4PXR?!-QS8o)XkKLSe+#X> z3l`}VN*deoFMt)%?nQR+J#!8`qY2?^m0dolp7vZamnk^u0`Sq$7566@sJ%FiytNsl z$QvkfXgeXmWIrbq>(vhbL*G$={ZezNo9$v-9-{%KJoZ?!61@UI5o19HTz(+J5aBo6 zCHa<;KSraWap3E$8DUb{dIr*xiB--WJB}fuOKN*Z-@Q0dZf=H0G(EQjFgqC&juv6;tKzSFTwTF6)T)lvrVBrX#^`{>^p+5h; z)!b=!$%%YIfI>o0Q2reOOJ!OpmKta$C2eY*ZZP59puGh100}hHFf{RlY_-(1D5LgV zd!>gOVA!;P+HOzOiMth9C|5|uEiYC8yt|R<7)SQ-awK(X|Cl9-nAs+E;G{Y8U zHAPd1ZxA`5pPJ(Sj2w+F+@0k;$Hy$JFVP2@JO0}K^M9DO&v^*(I{;-^u?x^eF5(jg z+6bG1WUX7Kg>)jpY2li6Xv)UHIe-3ht;plMXoeVjZ;nkSQu`7E!&4odR=B(Y>b&}N zIFIKPrs6GKInrGC$Km1}(Rx-{xf4wbL!FtuJqt!IDC}*scVRwxqJQq4^Eu`60;oss z7fYC8!h5)C;eXt)@Ix$r1qUq44HlSqfM?;x{%_bsTVQmIh^Qejz>MxR{Ad%cfpE}Z zlwrU6eHnqNGk@Nmf+Ypay&33eqc+T~8%fm_uU{MA{VE-0fSf9TlSFDoLrjoKu@^p7 zA{r8d6q!eE<&kCi-kZ2mC$f|N95#?m((s1(qFRH_*S5$IP?M815}ydc9;)x2sI2p4 zVs(0Xy}bUJ2W4w#t&f|=YGhFjo;bdN4cPnvCVe%HnVRf#Jh?^Hxg%gNtISXq{1C25iXDVjzd#~`yk((3S)l3`7%Pa2>67E>qbB!O~jRY zlqet$HP3$JTQ?H?7NGjgg-wuMMC)o3JdI>4Om+~``m*>U<2od{7*~Q$F8WDA4B3AL zDHqMIjk&mN^NnBZzZ_BsqXl|8Oo;9BH;lohvlB3Lz4Vms2R|@1y{wpuAm4kW!Dhl*v zOux(H-*DI zOUTYINg=$2?%FGe&VdS~!o_}MEPJ|NXZ9?e=1cOpwtlBQKP#WE#=nDe4Wuisy^<678Fo2l3@Q)uqs0{6be)WB^&oS=5Jj3 z;=0~qJ0R--$`e|-4Tf;5{^#f2mwt>UGUF}*0s;3D)ZBz6_}ujhDtul@$T)Pl-ZMQ) z>$4oxHp%ymwc@&u%+_zYWM@~4SQF40A%q5)Xcc5d_=t!~UjI>sPhy`A3;5ret?}>z~EQo|_ z^i(4-&T!N6^_9CxBDp1czJzEI*Rc0vgb2%khgkYbpEt7F@ToeyDva zwiMg=N(xB-wFWDKG9FzILJD;ZpXuA7Qot@bkZ%QdYZ-Pn2s}PB47!k$adX=5NnbiTGgKEVA zM|Z~QEx}I*91guKfcy~lFg5&GW?~TC?q(0IfhY@{u|J~du~UGQ*PAfR!xr9DBc}DS zT|QQ_7`)5d$@-U9KY`K!f71}bP7V`k33zm9^)ZGK+8(zX{utNMJVQQ#M~R;i3Rv`P zoQitNCE-`*EjhB&xcxT#qmo?;l2bPLyzY((Y*?Hb`Gp2}hQHugT!BJ|xV1GkLrWYX zn+FHxfaMff0bwjUmylmVAiNc_ttSWD4u(7M89gH#`cV1zV3O-du+xJwbStrG(g9g{ zc|sZH-@kopHguth^w9`lqZlgggC!Kojp(0Y$CPRR%fS40&O#y{CqZI!Gz=gQQCpwX z>0(Wc;Q^|yD#3Oaw-i%*|9?xo?d7Ks>_2(x}ymP z82h)A@%h~PuG#wR0B#1?lvB%L=!y9^vu1R}ZpRISLy6x4Pl1pKp7>%D*`a`eD0H)y z0hm`@V(|Ap3T_D)NX5z&XO+^G8vj4W7)C9wb(?gy|2L1KEqR#RJ-sl&P;U3XhtkS? zZWW+_Cmoe(i1rDWBh=dH*fDnCnL;0$f7Hjuh2-mY>YJ;^Netxx(x5b%+V4!LQJ=io zRHmm3SEH@p3nIh-)J*Tq^nF>CLIIJV_@Rd*B6Hm#G(kW{oP;p6| zqR~Qungu>)b<&2CKRMp?_RoX37l~pA)hJX3ZGtuu@zB*2L0o`a4nr+QQOLh7J;tH? zhaQoWu?&D9qEj_5lMs@4fIYOYRBab4^ykm-Ec)7t;uB2+UJimpAo!JZ@ddQL7Yb!M z;?M1gN-r*!+`Xkv=Y1?8T3fIIE7jrHjmQ>0&At)Byi7FT#3~#(7ublkNA``JHcE)# zf?WZLUlaw{l#unf^C931eED!tG?ymYrlVFv=YxY9tht1L84y@__T2*51f?WBQo!ke z4-15x199J|r_en?yUAf0&EgBJB6u*iZH!=X-+t@(V1RFtZ)f;~vzaM_BrUU9IV+>G6joQ2;8MHglAi^0K;|(B$cwdMdkN0rAkvZ1@EA~&9Iv}Q> zg=LALB)lf@MbN=EShQUF^B+1$A_2_CjgKGT2d#}J+u1AdnF0&lP=JL?nSxaAq4o}~ zSjYFY+FzPmIRV6K1u#xE+9txL8M2ckGWqrkfJ`DY6$`0Wr@eTvNMk*~sZ)-IM2Lch zk!aScqn~58^IqV+jzmg=Kc+z=ISQ<%hXx?$Yb8|O=*FgImtfHKshyfc8 zF=QY1Ez(QM^Q}djh@|$Ok=y3aGMh3%7Zo9@TtYci%tjXW739CL3k!N8u;!fiGGMJP zv*s;Lz)lzvAbSuLs)v~oW{e;cULNt9*c0C#5s~8W&H$5`x@(Mk2-)BWFfD(Ndj^g3 zC8^i^(+{409ECXf%^TkLgHSUAyk|=*VFBJZyK}3=mw_uAF0>Rx!!(#n#MkSE$FxTl zkhU`fK2Mf`;c{pA-ie8^u&3mPt(^W(b;KqAsEC6Kg29-E1PA3r#a#G=8;kM-OPN6= zgk(tA^d$nTy&`vP??q1OTl48|B$ z^o)T)5Pojll~FCxAJQPg^PN}{=+DO~M`R_)F^EKMWC9!yRPQC_l1D_ZCGST|MvtHu zs&8e@(Z|-$+dXim5`+E+ad_-r;UJW!Yh7-&uCOHe>zbOGKL9@#Dv^hngGYshK^j@D zWlk(yw@&WSHO6KbUL2!#>$yl5E}Uf?(G9o^CS@TlHAKRJ)AP2>8Nf92|H$e64Xd$30frYt6h7pe#(f$t32 z{45@~{m+MxV~E4mgrs}+sLY954+5BeibvVY9&l;KVQRHdviQw=cXuj@hmpLJk5_6F zO4*cp$CV7IF6EIt4w~80T*)Jy+iPY^kvV62f4{)SGb+0~ zfBr0lNXG2)_k@!1=_8;yYY}sD!=PyCXyo%jtV-y~%Ga)GW?yv5W!dhh=O4j@0R_#u zs@(O0tXmJPa9P2o2}TF)AbJl4JXufqwmT z>H2gg<*O`_e}6?fH2IUeg$f~++Rd(P1qb5Z3=_LnxU%*W$f=#3#-C}8F(MBS)uDb$ zcG!Q*4ED-cIkTWdu!jy~C z-AqiPs1a3z;hmkGwKh-h1o>3P*8His8+c4qnVqBcK*r0J!Pd|Fs|V=5T_!t!Fs+zE z!^2T*ukId$KeFuV^&}B$m2#!#7?XVrcPVr$yq8&q6dCG|RnP2bNtO9U#V?UI$zj&J z&F6&|P29Qqx3?8`V!9%=oGn4Ms{P`pipB=Ybk51;bu{Qml276~5F>h35j70d%Y)b3 z1#DWVy@|Az3uB6igWp!VCm?6ww zq1A^N)cA@14+ik?NYwy695}fPHulN#4t6-WQ197KGS3}UJHa36wwwnf3B*v6Ln9|j zQES{)_%d;^g;pV@r*2{{%Zi;8S$3L+h6cxV^uNgO?9jJ^hd3eGj`Jo#&axu5<42gVl)-qrWvbA$&R5Y$497l0?s zq?+TQe~`L>#yz8=;_wsQaaktd_Oq@E9eYnKR@sYEK|ze?@)Tx#2lfgqa3UQ3wiC-l zpbc-Sh3>g?q2Ly}?_vN((^KQXMHnT%#{N4%L`5*L&|CZ_&3y5w4hmP=Ja??zSa-{t zC4sb6dNboN&4TZ2Fls)%xyMT}R_j$ju43AP>d=s6b@k=y=5sBnRUSMq@5R>sUGk!Q ztiSEm1$wwX5dXD#Qa<26=8q6*aqoN85{2e8gF@-RFv;G`Olf7ESV4xuL#%iN`2b|= z=757*cSePQ1PY)?Y@T5DcK|)zH8=MFn>{h=)8(FrAJ%wjBUJXcUHP_WwKZbx58GV< zjX_VT^sFxN^7smh&59`N_|g)F-Bz386>U=x1tm z5|}oG9vBaaO=}@u6oeA>i9UT)3%_+TxGK!on7at$Jeq}VJ8uiKlYgn=>06-Z6?>2` zzniM~pO#r0le+OKU(WbxO(U~M6k)4}?AzyCdaGY~C7N)qI2-)7`RrERvQFK1Xk79A z=3^MH84vhW+PpJ*lriIJE0yr@-&P&EQzue@<}_k^TJ+yn1{d6{T6~q*6W*BwjA_~J z-j{h~J4{)9*94VmQI`l)9WWkn^pFD~!CH&~|0On;0n_Zhiy51v%vqn+**WFvN>3o022Y zvT}d%t4VV`Key)x*@aU2#YxucxmP3~@tN)Ndp?}^`{J}l_jhI4`>!Zz{pPwx2U1v^ zmJP)j-ni^qv00%zX0yuddoqWAeXS*`x-g9T!oP*lJr5+HR)J-_D;%yG{6Y?~H|F8#?yU@iEO4`XsNv#i_%1sf`HMAZBKa0UN7MzoiFhoJm&IZ50!vSH+sT zYp($9Z*!J0$9ydxfZ7OAH^PXzRRCL~aX@o|@COl&@kDMMf#8GrIO zC?}o*xkrf$;bVr_j!bFbXu|ijFK^zEDlQzU>V0U);yPCqC2x0e{gs8eEyc^vwAOV3 zw2a|(X>U8)_D*5QA{GzhAQ5@%*lTB$zo139PyT;AoPjR_BRug;gQrt4Pr@u$1f2tA zFC(qz+TfX+f9^dk_qyI=YTtEOY2jjZ{}Jt9J4JMn1qy@z8ma*-a^D^lRUS)!Qy%tW zvr&&0Z!W600;0<>GZ71I5SG~fj4msZS()D8lgk4uF`8ALGTx3Ht(P9V&km{tynd|VH@w`XQ-_(0q-X$$vG(zhzR zl*Q2JlBXb!1hpF9C=Mq3y9lBddn)>~oVldz>jr)TsRGs-@soOr#RYT8{Ouq3(U0KI zTb;u#V~*l`?Oq#?`}~daiCy2~ zI%iNVzi!%NI`i-dS?}dyo~QL25gHXwotPOI@W~*%+2T({1dFQBJpswSoIs!WdsXYp zRich31xwL*K!X%|O^nk2&YW+s6(XnLmH%&b2B2O7qS?WYr7|fgDUsuT?D{*QD^B2v ztTAg=uQ+RJ8ji%0oS(P0NN|q&;g*w6?q|`Lv-V>l2V)70D!~n3D(cUFY6C$3s)JAA zQaTjeHCfj>m%3E_^EIE`qU1Y@i2-_(1?jl?ZMBy)vi})tT?)V@>R)F*faL*;#2!qT zzC?1mBHP9^&fO?1C9h41K6lYGkUGPMX-)P!SK#h~_`a5kcNIqG@l)O)I4i^!X_FhhX94gNzaX4TDR4Lzi)?X1#=Gg&UIQ|oQm)0?DzYZ8vOmLD z9hFeelSQ%m4$?^Hip}#s=WlIu7ZwT-*g=BPk*(@qZ{hF#uLi)eQ1u&|GG)3j`MSZ> z4{EqezA_3LA7Hf`CUYe?c>2;nJl>Jh4`?(2c$u4P`#$gp7t=*B7dT`X<~#do=_g}; z$DfBU*4NS#tPNKaAJP)|bcNjWnG2G1cI|F7E;y?7lH+nNH>^hu9WsLqyi1;k*A~CJf+SVd)zRLP@}ACQ zjeq8q7sZ!b2$jF3 z7#G1k9xaZIhrO1UjI7_306jsInBNX{%L)R?BLR-r^__eHI`o)b9a^Y z4=-LP`#8$0{@cr1EYQ6A*$-d+aH2tC-JF3o;^#ttKGpxR5uSbaabr!NQQPPl2o&JPcSa!Wbv$b6bo{%L>S1yZS?+fY~qUmBK8$bSkNLKNBHEFb1P`?p*df3%xj&+4glgr<{$SYR{ zNxP{OS0tZKHI8}+UxW^$>)E@TJ2MM1A?}iwm#23;-xePk;Iog&@rt{9t~uSUcGKP= zto=xFihVZJ)`MILI6@q#_hycng z@>HUYKd5bp0|IFUA#iYr9qQ|ot+a2Hi?er|{c&;O*sdrtez#S}491rS)%==Y$fm1O z_$A#*r1X~i<1tiNeen}n?cS5)rYqsk<~Ow;SDh-Wjy4%|d$xK0FeKuH6&-lw`s(1i za6udlKFBE=PIBt>!N=QuDgT?87&4Srum^_7%c`4n4)IzB*~^5Xf@f_e$kys&kzsGlljIvQeQ%@~>_?(I;B?{)xwG7dQ-(JVl@j#hs1Z8@bgR_}glS z?TtIzrS|MmJU4qAZ!qDqHzGWW$;_@^O^}mCo&cg;Fi;V`$3R+$qQROGx+3`+)bs9c z59##-sL%h|Ize&+&yd=3+Rky&-;4a2&*zpnm!K4y#r1PP?_c)rI#0&6+U1>fb_L8j zaDHf);Sg$Tyb?L&%Ag(4J;g8*b(E&jQQKSGJYiA{1Pnxt7P}rY2;C5@HM}G zw27km-I&V*D+egrfWGD%6(9e>k8K@#`-MZ_9m+*CNXRe^u$h1_k%ZUt%K$GD zS+FSk9=AX;#@X`jsP*{jb|Hzg%My?WBwcu#aP3;`&wSTOu<}|LQhPK1Bo6X-ROVvm zn$3FEPwAn*pBhZ5<^t`1yt}k=pbeLQ@PY<%yaoiCiJgR|+Iw%NcW+a+&-6UCsI}|9 z*{u<=t)0wdO*GXrip`B*Xmo-UU+nNX8A~=LN-hZYO zxJ@~fc4p*i_1t>M>{IId2^k2JI5RkxIq(PjihHPI=eS2jXguhlUDzA|8}jlS7yf z?g=~z)y`?N-_A%$ZnR_Z+_h3Fna|F;#-)gcfs*vOvnGttm_|7Vx9PL$Pzh1~jfM*U z-VgW`$$gZx=Z@yGSSV*nNK5aLt}VWCN%CeS2ta6$V8R6QCnYV7D-M$~{^W39w%*Gh z+Xf9s{c=;h)eeqX> z6oS<+anLdyW99OdPH2dI;j$a3p4rbqvfim4#m&#eS(NLUj^5!m5YeK3=sN!SLb>GV zvDDaOg>dY)Ii?tkG(5KBwsV$v$9eYB6N$8z$H$USFeYk~Wf(KXOD!*dhb}kFAm?p| z>ENeplu4<+lWROul}m^3Ce7PCo_2hyBEd?!y~(4C2^*%yF&_N@Db`_>28nu*x-`JCAFV;V=a?6RBnsuNV{MUS6m9j1Cz( zRcAV_`hfkBx3faUHa{KLZax=I^>)!M?Wan0#HZ)mpd`1KCGi{BhD>gWMle_1etO9=JE`rnhYg=rb}j82 zIz-!F?aTYh-(=zWq>hL=sK3Grz{eS z=<%^+y8^Cxe6Pqr{#b!T6$`V=>0wAMm>Rmp*QJ}${YFeo@IJE{f=GyYX`4}cuvzlQCsh^~7k`ug{tU^3 zZ`}ho2m8yGbqQR6wb!1y_S#Wixx_8{#zqg=-?e|?LlgZss410!t{JH`;iv(G(uc*gXSqg@7~hS^)0_)s@&94 zPZP2Bg8Ag^pWghtWda{afrnT;gv}mN{kbu-=N+xaAN5B+&3ey1vXdt_PTq;z`&aHh ze8019?E>~d^EYw;>bag|Ia2c6C@Gq&I9e{j(YTyZBUOCu$x$EO_wR;E&PsEAwhlN^ z{AYT}_vsA`VS8uVPgb|B-*4Z0)RG^SehT()v6EqPXsnmbljDz=Z~s z2>d=kxOVh)1ExrkM%p?ZQNHnpP{{mr!M75k_`r!Vto6hoZh1^@P@9*w{3gwGU^ z=)0=4;&}u(Nndc4$wI0*Q;4k_7+FspS(RFwJF@Q7(osbY1M``E-+p&6mKp+K2{gsa z2AN5u!%q>DhHO|{DaDgGLJ`El;A_>NU#UZmC9WOsDSSwn>3~=wm-a5ee4HBWoYgoW z$}835dny!hWpz$yJRVk5oM(t9xwC&dU~nis9#kMMKUlk;lMU5qimKL5H6WbYVf-pM z=zGWCCO>jxvUjGSDD+_{r)H?yG`>!KJNJ~Im=24R5dU8hmQVX#&6HKH`Mh*t(>i&% z`jM8pJr`6VpmK>$@&vE+7=S9|~E%Z#!f=NYxn8QkkVsJTNs_^WJpziF0^@U^+> z2iz?tt$w$?*DI(NTkDKMvB1c1aPdm)H_SlRA8yk5M?6pK&8_r-WaU5UBCkKOBfHXF zS!ohFsqE`0&Zh zfmLT9%^e`KXysDJ^$~ap_o?1sKZ!kx{UOjKsbIP^9y*oYZE2*h)$}|XvyhKfzuS@_ z${0}j?ooI*>(4vZ?%_snfQ>ScoI~mWxYEJ8Q;gwCIH*ygQHpH@!z^Zp zYcBlw;W857L)++{da%BOovm|l;Le=l2k$+XJ=d%ol*A;-4Ofmc29kBIu+9vA@=mew zsS_p7)9#qc(;KwPoF*iIP_iLUjNmRWKI9#ZWM4DI0E*uNC3b@c4P?umh7^g|PgGQN zCg~jq!wG|EN5jwbl;nt>5Q6u!bA9kjVw2k0&+F@j{WcO&T6>l&BT440GM93{6JFYq>m__?yvoYF{Cu}1;yqGJ zow}yOhcAp`uT?U^Han3<+8Mz zTdFn*6f7OT=6%7=`gbCzq=?`~=p@mX~vZ{TUk@!%!l)f4?ul zl3qJieSP+4#l`Rk)-3!MW~UDc35ke`qCnK0UrqJ;9zIH!vgAT%cp|I2{HD04oL@i6 zjl#BJ|E?_yWy5l(SZ4ya xKeMH*JI<>o$9s0p{N2f*3Nxk<8xfV4YyNx?Tz6lh zwBL0y5+~2rb{~w_Ug0H^%7NyD;Q8Z6V@RE&V`F!-(9WFrn5DB1mTc`qI*lh29p0WA zco8}w*)Df$Vsvy!sgSYD^GmSs@-4S2#fsxTV@|F1{hVyFPj=lp?ys`tLSURp;zQf& zfpb2|UKEPuJaNDM9H{OfU^TMxl#j~h?`h%;Q0#D!3!pSxXyav4IM{d-MF(5e;_@kPz%*5%`tpwz)YUyknqBG&D3G7VO~)MmLW&w%E(m{pL+X1YLxc5!NTtE-!!X z`?#|@N3CP!C1;kL;lV2E*d%@GdlE0^#v3VfSQn>$yzz~=Y)Y1Wf#q$Tu1Bg_&%d1k z2xmbI+scZ2jWV_PR2j0;YRpdChcVQtl#nvFPrmnT^7Fq(dinhMOyTEiG6bpRHaDLB z?Ad1gjzpq5sFL3*Y--W=_ZRDKo13I{udJ+;XkT>FuFRp6XSp!U%*;%{qDDqW$f94- zkmc3upI=zW$j@g$UjWf4xtE{_@6@H*&X$&=Mn;^pe7+iw5$6C|g`1n({g`cEX%b9n zDpzRUEcXU?&Bs*#$UAC%!AHNCQcLVkg75ZkmV9mj^0$Lzh*+nkr6uy5YrOADusZ^_ zCqNg73Yrxf+r;Ny65;Dh?x}J0fY3jvWPqY#XM}&o?R+z%2VLYxX=|F)0%x1${T5w# zw|-RKPbQLZK9HxYu!i$&=|1s~v0}~vIBMQqJE;`iWXGv_dlxqC$($CvD`i+}FJbp0 zfyaX_uhJ)?1~xQU1s5ls%vQ*9_qFhu-<-sXpkY%}hX%Gq1byBkXyf%O*!1IyShy`` zxz21BmN-1Y@YAt$L7!ESdK6}EDgb26@@ff0-<*d(-Lf+8a0 zx(aMtw-WxXfPer!i?UMlKAdh>M_d$Nml#ccJFAb1hT^k({T$jnTc+S3U`L6#Rf zA`KyuLiSS&Q&HbP#X48cNe+eX^-ejjwC=`26dwSQP6a5h7`eIJJ*V ze6i8dh$y2U(V-$I!&W;?`AUW1_fEZUK0pQ~8k$jv*;&_AxKveD-MJps)+#G*I<$=% zV+1gvIA$J}U%M%3ch@<|?JoU6*}ZG9%~B%z!2_ha2kp17qVHRkay+uM&N~;lJd+ih#h7=GmIFNXT-;Si*mIdmChw-Nv2mEk)#dr|WPHDJj{e~Xn+{&NIDd6J{cgWst&pbo`?=nF#aedj5E*HI z>DIjQ4@22bcDge9rd!c)@pL^YFJH-goA7m48An_tgKPRrt|HUG?UxKGSQhAjJ zn;fwHq5leAB#1J+NC5C-IaZ~Mex%-4%IQOIyB!wfV{+Wo{B~He$)6A>*>olaFHcwT zz;ZC`XS9Zmcbob3Pwj2oev6kac$@(XbFh*dW7a^DOQ}-!ZlQU5OuV8!P=BB&K#T!I zQ*h)G*|j(*xc`93xu>YdXi$N6got%y#KO|b%7=v1Q+_79j^0xU>S}3$*j(A?t}r{$7)9pCfFaJD zVI5?#2S*H}E;;R!#dlNlun!;KSQ5V?=%b%E=9l3pCr$=0=brETadty~{P?ukOx_rLv_{ug|zoJ*{t$gl6DSI z9`K-zXcDcK?7g|wBiuXmq^y)w{qkwNs|)A!2JfxN>7PBTnkjrzP1aPqC~7Ok3^7x} zE)x{QK0{ZC+_Kjux!T18`AD1ngH;_w&c0K(lx_2)P zmj6sIVACzibM+PJWBX&UWdmpg+-}=-v$ck!I-SJ#l-ddx9Nk{(5^By-Su=W^EF?7a zRD9J91^;C>?8-Zx?aLdwzM9GCwVKB5a=n@6+r$2>l8Y^R@7V9A{N(M0uYZN^ZQNAZ zzuVpgl=e&{Zh7y(hN8o3`&eF7I@ES)r=Lbf=kL;#x`V3oPe!MMyC%M-##mDB3a3F1 z&e(6By?&V--aw1{us;Z?69^v*@9F7@$|h;th>Ur-?}CaZ(=X)KzAy$wzO-}La#QLd zWJOn1rFJo#zHosFj&U?0xMV7O^78V&3S~ZgxJ&U#B=I?LIi%CzS>n-vmW0~Kly7SO z))$9!PxP?{l=s|DlJpnyA6`_ONk;>i>Ljl#&#JC7HpfKldZ#W&#MN#0Y#sbMn^s(` z8{y$McZS@*EAYeAm;sfvv@|*Gy+-?(3K)tYXT}8L?c+m+L#q`p5m4w}=STUW7vWB| z2F)m`?#CLe^zQV&y9*o~x-qn^kTWe^o;uC(^lx(ArAg*{%37iwH5F~vX4kG-?g?}T z1kzBb9jS4Q^Qg-@{iXg$dy3Q1|Cl7dKm>xkcVcuAi)*=r+)Y&GE zsLf8C*d%JL#Ic?CjBT&QrnYA}U-oria{;T+N7yWQdU)N>_NhQ^kHZ8p1OV^m*4B|a zf#~RHl^b`)xtdo!kI>Q4E&9($C*JF7l2cG<&(X(Zt%#kO0qZG1`w%~xtrbtc z;T{Zm_DllzEe;$m1PqCfKD@(3R%$pmH-|u9B8(5#pUFuL{KZgwl$vx-93IorvwdOw zW7=t`bNz=}SvM7_Wc0bj%39=}(J6_`Ta&De6wkhEcGee9cN8IQGP_2@<(J;TcY=TS z{1bh+FDy{{|D*PCsUwwRrFnPntJ8x;CMuDw_G_^gd-qWfsr%UiSX~(OIs&~>EN-{$ zL3Q^fSUa}_qv#m01{zpOCtg+F_qZhP`~aPj$muJtDJQQTDR_(XNtG^I;%dnhB}a{ z;#;EfXF*|LU|^`8m`i{3=nl`=kg^e`O2V)$BeM;)cqK#$Tgn2>fmphl@)mw*JEfWQ z{i6dP@9()eU<1U~!Kjv9?m>;3u$X}B$9q}aW?Squ^X+!f?5LXBQQFhdPij}&Y%E&t z7UfWA?ge2D_dJvW zP+AqVw{Vkj8T~(ZbZ-&UnFzl|!#Jlsq0}5}10IZuijbs?FL0wSVR_%QOq~bfB#mf6B<~s4~PIp zqLXKXB-+Yb)A zJ7?Y$?Lkwvrh$#kbAB-J&NA<(?=1J5p6EbBW53 z9oQF$mFCV)=yS;H#L6!&HQT(kD4LmQJ;_W~jqrmrdV2mLA#{Hh7I3j52IKc(*G@I{ zC;D@5<#x{n1)AzYSQXnQP{K6OtR=g9$H>g(L)+nY+(0QKyQHxFl5)35;==q$l?=D{ z+a}&~!cDK+Y`&rh?v=B%Mmp}-!l{*g>Fe1q7uP!ZPweoJPX>EQyhg$Jq$Dmbc^8HQ zy*KqdLfOzILCavdZTBR911U+-<8_)2`Z=6^V&iMV-I3E4cQmq;p`Ad&k0tRQsW&1) z*krfeuDAf%a7IaqtJY)~36{GhVpFn}(e0W@Dj zV>8C}IOkMqr@?#NiWvp@JCJh=xr~*Sz_fE$!bN*|6 zv52N6H7AyZxCtLvXl>Xmxo$l@4c1hOV8D_-ad6cEp zLwpDb^Fg>Epq&4)VDCn<<_*y=b7;+%@^qDQ9Rsc`)LP zkUJy*7Y00+fBNP&`De5+t}bMoDt(OZxv9^7#Oly9M&#P-4esI>_>)YH-+G|pwhTN) zVRyQC+(ubfz8h3&CxH+%Tq$jHcvhMhv9qT#d#SRW(y zeBI-n`)|!^8?xWuy{9gyDw$IB&!*)d`1SM&dtJkb*M@O<=7PQ_E1Md#~&QE#F`epE9 z!xK^W0MEp2hhn&xO>b=XLVrW=_wX{bV74(uL(?+j=)VJ#i1H&4}l> z6?mi1oBcAK!G{ziz2OiA{h^=7ZQzGhQ@i)m{O#NJXmwG#nOr-~lKrXUmNX%io44gL zlOfj8wJv!hNek#dJdKamOp`KPVay+zo1y#-?0x&a!0WW7Nsn$-q)gv);-p2tIcP|B z=R3b5d#%Aqa(FF*K1>0p8{5%dL@Dh#RZa3NG8c7c2z^a1obq~DOKV?ZK z7ZNqp>O+nrb%%gt3JRDQ>V^;~Q3G-^B!GU~ajqb9j&k^B4WD0PMeKY4^N|&nMCq%w z2;11JS1{HVdvUxy9+Ik0FR#|Y+2S29X+wVJ*nU~2zpl+fwyh-=r{XNXC7N@fCVAec zQbWc@@6AZ{y&mv|Xniw`S5dy4Lgc9^eH&j}9$aTv;03CEV!A>rTC0t6^L1K2%$_J( z+wy5C31=sCf=9n+Z|bg~H(Fm}WwH0s^Q4KKx-gtGP-2@oL)|v!n2yE@IFT>)5UdlJ zS_OrKz8dtPxh8fEWOUD*S@L-!iCss)I=c+oO}+)*Pxjx3x#Skx&e-z^MnWJ=%5_Ud zY6|E^9G#p1MPe4ZcJ0@R9RoH;rm8E>B_5@HddZG&XW3up(MK1nT4fYwu%CD9l|%_E zx^6$iTA~iP{1gZ!+-WLQT>)vd z%+{R;b#{OCJelc$*X>!Ax*$2?`^8bbQ`Y8sCu*@O^R?dRo0{g z0*JJq7EAYtetQi~&D}{4f4a!ymw>WL3N~?K6@%;D^kdcZv1E!nPS2ko`WQ>q$iwp3 zP))xtBVhH>qenvqtd0N}z-S-ZHA?ki`JPKbR0FaczIA6nK@2c zA64q|ocSitsNSbrM^#4Y4aG-5*R*V;^YhldJCe^|feK)B6k)}hJB@|`?`_?>mG(GT z%!cj^H8THOE8r9D8NBnW$Tx>`3Le=~^6RXUoOo5@%;3&VvHy#$zW}Oo4cms{n+`#` zJEWx*1nEW^6a$eEY+6COyDd&Hv3Xd-gcu zTI*g{oaa%eh`KB00ziq2e_*oD!NsWEi+3<`%_%JlqyA-ftTf?`m7K+_xs;?Ro$XWF}wZU<&fd1v) z0eR=!f{rKE^5glUp|}DJMTiGd1f~nR+VWI!8lA3CyTrKda<8%GP++xs%!vGQxXs|z z8=@6+^@V$xU$od7-O2p)iofd~B!{#FHd>29YAqlRC?wIXMOoug6%jmp1hY2B;-@PD zGAuPe>$B?ZS=*$msZM>>Dz)v7w$3&Ah%MePE@iyGe;{jI8^sH(x8xv^(3h;-fTBUIv$#2S+4{?7J!XtT#z*H9Gqpu!K5?^yO`4BU!2^P)hat z1Y2cZg|P`OIoYwW8%AenQ2iYcEmJL;35%lby+|MVV`i}j<8x4MHK<_Y^CqTr(JP7> z`(aW^8itZ4=lCir9a=b!S#S2Gol@G*N09v0rM7pH24*| zV%>RNXZnwbehHhy4LeK*??L)$6M7L)FS^H{A1hgq%+;1Dgrhd?FejdHadkBxQetrW z;tXypYuga-_TNzB*yvW3w$ChiAEC|ZMqr*~HjcZa%`d(N0P$q}b9HGwNpq|7OCL|~ z$hBF@?CM-qmv|~j=fGL{@i`p_jUiXob8if);4yZ`&?Y3KfYm?r^wEB#>n%3_gs5-C zMpA@XceXh*Df-Q?Xe*k4UtKaC7sOaKM!)Oai~Th=7K1^FC@S@00n6ZpBw~BPMsjj< z8v^5J&i$8$pNM~d)@n=JPpEo7zc1Lfg-ckEiQan1?*%n%->Hk8j_|xT9W$G%UoTPn zb4qlZY}4B6!qMPO2mke3U)Fa4_5F*^yj2m$Uf>mPQ^4HrB-B8k(qL2tiV9{40E(y z_5c8LVAn$MR6to5)8JO$!n5z$GADQ-R1NQbEcf`E&81fB?>w+!Z_16@CX_d^Z6n1? z!ZBc@!otdoa&Xl?NJtsG;;VIp&fJ_`@E!V4e}wf7A%db7@g2J~9AQBde{cl;gtp2odXnhNw#{yC!_7U(~VO3yfrIlRwQn zd~HHSe@=*uD$#EjO--P<#MtaOfGa9b?ZA3Wv^dDIMbe9U5>jDPBr^QQg}q>NUosiI zSIi)aO_U1~p=c;M1FBt=wV>A%zqmK1Cn&XV%otahh)6FumEIpso(Ee#sAvhJxN~xH zYCfUW`hlkAgapB^x>CX$MVJ5N~LP$qgD)J`!fx1Hnw&$7A~ojY@e zg4JdWws-&1@KmmN))nuO%8<2WF2;Q7wVfxuI|ZUHYSRacVBh0$V$skrSN;d-`unR4 z=;KIobsYLI7)vA#>`|Eo8O`;H6tNQ#f%uL~ zR{|Sz7?(2N{7%gPbV{a2p+MwUGyAyz^4oD5qu)RT4=ZWzzH%bNlw;FpUX8DupC@rR zAlXuxN#b241m}o%@$&Ktw@n04M1MqXJEMyHIst0eCk&H2qhD^RPhheBt}Id5(0lCw zATW$`VL}-W*dPATs}6h*U)nzWJl`}S*eW0PSnLduwKq_!yWlLp{4WME95YyNv9F^s zwE&O~Nj8;!2K1`8r(W20gf4!TqxNv_$4a30jr!|E_y$qI+dsT+Cqur5DCc9zYfGzN z*of%+p$wcSrE87mgub(n5UNS`Om%XR7 zvXS*s#t-f4E0=388_elEnm%uJ%|b|m!#tG&bU(~QJZ>Gi8`!wRLK3rs#O!qp6Aam2 z*I{(R`pCL{cIy+}OK6QT;UEFs3#QA~$K)UR;;|Pwvzq||LGfT9S7gz<#ymMhRs5Dm zm!9{qM_|8Ww!*-rl<6sViPhyfDk8eDP=m&~U@wE{>D5lO!o_yYTmOoWs*O&CWS=|N z=KKw$8VFpFci~j%h!>2#5W^j z6U+~_*9lEQ2r=TI3o(8YtW^L<&?(0Ft~q+oZ~MCzqBANfj}mz&RFp>_zZ0D2#9lFQ z?Qtr-I*?iTbb%{Yq2X)kxsh{ewwl{UzkP#B+$yv=(VZ98M)GfF)!e_&0b%lu*V8X{ z0c%2JOT8P)#Mqm3g5`G&T|p}bw6?|vN73=JP<#*{tQp8$JW}!!?T|)9A=C8<$IClz zocet~pAn6@%aaqwR3mo;r8BX^T!3ap*T&fvKL; zLrgFB@Nwuya4J6{J{S(>)=|oSo6lw3`6;r0x>2}l#UQ*=QDppfo{-8d)z60%fu2C1 zj*}&lvCXG)CXwc?zF(i3LKoxjlQuRsP7-3TSI!Q%UOEuH*EYdbX-&JRU`5^2^v4C& zLuIwHo@BpU2(Ncp;SB(dPELa;2@I?**R)*-y0K!Ks;Z>K0@^)xhJ177PBoXeB(-=9 zMMP@qnHbXJZhduluB^ez(}687ld^EDU}!|c<2?0}eADa=3w25pCYA5wI=3>f)=o3Y zd~Hlz**_2Z2oLzKf_zyIX0pM#O5?7o&Ts8hx^ys2>}AHJejR(t{(u+0Gv00=r}(lG zf~lBC+lt~ZpL(=(tr>#}9Mx2_D|cF?QY_59-RFs!V0jw8!g6wQNSBOLs#{?{=Munx zgVGP<**r#CGsuzhx%M^wr)0|q8|BwSAcywQnArfUliJY=fhzct>lqI0Go*j!tycK$ z&`V}&F|oDsB9<~emb{ZKUotgpAhg)FZ5`pZG&?5yB=)b;#Dn2e5=}ia`$K*#-Os+T z>G9fmR2nTF2Ea?B^mK$-v~a0HGQ}Lf<3<85y?(O{)4rf!cybX-bnqlXsl!{w{zLtV*srVL??$H52gLpkN)?TG z>ffeS4Aqo%tSkTQ89uJBx4PPEPt?abcel>I!k_-p(9FP{d%qjx?)ah>et2~N@1bL8edosxUnN)!c#_x)XV z2FgrvxJz-oKvmY?-+xN#xD8E}m8gr-wx99NGLXceg#>kS?ONiz*igwh(oU@kw9c&E z?)r*E^{<|O3~u4|90#c0c-EJM<*KGOwmhIzmMvWj>GkvscZc6etC*gH@2gDXLt#l-Vh$Gwts7iFShGp?z)HqB z)T=b+$0Gtk31Cs;V!l3Mfovi4nA6kK2c@!&`;aQG_jk;e9N-6Df{lr`!snBgRiUns zzRY$PEk396oy8mCCM_NByp;f13Z0DG_xq&mUbrIQG4i{_!*SXo8_*cB$VCr?se(4t zudH3jJH=;U)fCfA_%L=O`L3>rweH=A((7olKuX*$4 z&GZdZS;H#*`jN&DG(Q*C-JMV9IekZqr|M@^bU9D+)pU%2TzYd*-QorPna(9e+?ksM zeqXkj)A7g5f)5#XZ6rgA07b#uPkw7{o$WD#`l}IHSJ!L`QqlJ?5QrH_#++MqK9kGM zur#p`sdwMv7T~MJ2@et~rl|rGB6})!e2L`lycj+6hOpd-bTgd5c6N64&L4)>FOM;a zQ8P6mm~3Wr7*tBsjmfHfz`H2wUran4yy3~c|HhY)$$Mix)O*>6cuN+idl;2zS=kxQ zSLbHxSDlT9QV6#<+v{1@=)XHij9YF^PN>C1M3@w)-#e7m8u=}CcXf^25jdcLNxdEh z4ovl^4v~pNhoTo*QpV{0Ai7%o6*$`6(qA2T%Kia^K_DX|gY8!}{-KW>*ezZKh2VjH zHQSf?Y=TJjCIWB6pNeZEp4A{e1migo8v`bt(P0gJ^M6o4t>G8`(y8=*cEg4CDKJGN zhm#RJ-F1&r`UvXIwjYcv(V^da#1JTFa1eJZ2qbD_K|6Q}gLy9xHU; z$jyt=fzuBjE##q5GgE71aL`jP(2C2;uS30vuRdU!ajJB5k3PNM>s?&n9NTAON^wFJ zp-RWFv0rLin%N;-f*@OAM7L;>b+D4iq;Oj>Z|B)0Xu_>L5-|8|yS~>_kc+hCvsoR> zpPJVvSSxns8O#X@9VQY{2`&7p92ia%@To^01;s_)H*hCHPShdu@{0L}ft>wK%1n5B zgq5zw_t7k>be^)jbykZM(HuG>IcPFWuKW>;*T3`DY(W+SL5Um*YM1bvexS{7?vO`J zIJJ)Nh3BnGF2mhwyiC(MGfhLElSCi}K#rQRIw0?d_W8n8`!HV z;jz3EbzeAL;)U}i7wIqFtlVVuaKbl7`^yfBhe-1|8{f!Yeve~cyCkb)gc-5|9@#~h z9eD5{%|k-=MsywWR@|qCTdI&XV2^>}P$hO?4W48sJ8ZnJFjp-L4k=m9)rRNqhmG9zHp(- z`FbyV2~{!V#0~LglZ(CXF7q#xCL!qhjmjFj3DbE)szXYtOH9t~Ki5`lq%h<^q)j&m3}93(Y@KsOlj$v50XCzDz8 zgnQwqebLXL!EY>my78t8{)@aWlW&E-Zw~YOR3o=Cc5hdQB71^i@fEHIe`#}vxd0)q zgC>oTQBrEt7zmGpELXFjdp~DV?%|MQ^}nM~+0>-*M@cM; z>|_p^K16Y6?R7Ny6-)7c8`yRslSx6c0qZH&?yTj<|{HOul|z3%F*yI2kHew(9m+Zo$p-Jw1jo}<97j~>=Ke))BO|HbIsW^R5rwfNn)E``%H zWvmud^V>;j=s0O&XP2KTZ4#&#sT86lRt9GH?c9@pJ!D{cyp7>dsH)0u)ttQV+9no{ zYDbt~SF&P!QjSpmRIVM>T@1KE+Q33@R%ATsp5uGpS7H@Aw7F=8LtmVxyH@4>RSQ|N zh+)!>D3k9Q{zh}WL(%3#AZW8;bPuJM=Q%BD4d-+=vmYi9Uf_<3kVI)NMf}-yb7uvm z-coOtGF-IA+!EhZp37Cw@D5T9ysddcT z|3ll}E@Iu>FF#GG(DQsohRpRS{E>goh|q_|!9h_nT$!{Fg4VuMGu@eYE!mL`C*zLo zVE;@cPl%{B5O*i8_Kd6fBp-V3LGdpDnlN-vXMeB1b*0;VftNe*$n@PR*%RyZOkV=V zfgtVPy?a$#7BStFd}M&j$$)N*@=nJk0HqEhJ;}#fg@i+r6TY>lau{>t8@+Ekan5imjFl}{rHHP^g4TYUqojawf!gU;FY<8 zVNi4_u|M{dO<09zwrzX)H~@+h&|FZxA|v+JxzCRKC?`95q<@+PE*z`hM13$Vx>cn0 zk)H~=Cx+g$oL~O=u1bSb@UI4sb=HxlD?7+h4a3)47H395gp(dsOmQa*A&`p%8ShIn z+y@UrF5g^YlGfAT&x9?I+4ufEW=y2OrzwO2VjYj7F}gRAeL<4@qW*3YCTUj0?lb@Z zH{Dq1qG$#!AKYUTGp2JwR1u{V9X-L~#Y@~jw71R`?zH$$U-V+M2?Nb10lj)4DSu~e z_!cA_B~65nYNsfeJ}d4X);BPq0KG0<`{2@r)q=o{qT8O*;trGYdbsqsa(xWz;PCsa zd5-x4ZwJuy49ia#lTqE6#0>2!0VA+6?*2L*^lSjGxYH5_l03iEg8D@VhY(!0KI8un zhUTFa&OMN?WjAkraZYgXD4O7u-nC>S=`>&%aSmPmphDk;c>d^?mKGUV*#^Wgrak%n zIBnjDlzP{_K()oOOVW}l-%r=7lJ8)c(rjpV=R0n>jKv>$eA?>;#Lihxj*GPFjhK~0 zJbC2vDYe|Oboxvk#3`u0eqMGc$K4=NJC6Tc^D_Hb39K1D`S64~zac|J@9ew#0*~u1 zax4(L096PU`eBFBvnf{sYWH-O7bCSy*aBOizuyIg5gABC&TJMBJ%uk9NJokS`v$Iq zC#l@{ibA;U-sSy#d4(yfHkg|5`)QE{=Z$f z8oH_mtZK-19FvEgazU->)fZ&He zUs%N>D-`5QbdhUV+oIv`n1kQJ>?^F%^Fj0ppexMw4z1yk7{U;-olip_*4N7^D8S4k zzxLUq0+VNWnG%yd0e=r8R`uJ!^4~~|nMy8~6y==Vw6)-4hr<(#|4U#X;))@zAsY6C z^gqnnT&Lay^JgE7kY0Cvf@5hFd)6i*m(Rvq_bWr|$P~TcF3isZsnKNahvy8PqCuya zq4|g9*Z5yFP9aY}Per}o!kPM)j!+YKj=Rbpqc7@StzO+*C*NJB@8vpdx+Zm8sjdF= z)3A!Ld7qmu)vArbC(ux1EW81%6lCbj(sv1v4JORH?4dLQCQn9Kx%2*fS3!lsk#bGc zkRJ6VoaZP6V8~1YTuzeL1T|7VxN+p-34^{OEr&aHe1D8sy6Y2~x*X+(;&TNGq|kBC zPx<8-P74|yC4{B;FaN3}C$J+&U}1iB1gSaPnz{3T{*c=3d-rnp#e4zbf^h_AEH{{2V^$mq$3R3H8Ki7b%tPEU?_zLMr${RjwZ2y7;&& z_jIqG=$E{LQ>U5)^eVjZy5P!?<1W4Mg3MzMpMNrtfTN0>*A5n<30(K}>x>{@h4C=K zc9S3hlv*UEg#GWl_c+(1qwiyneS9Q_!vRRbW)y*X_n?S9DWvFH!wU+G=(-mk!UJkX zLk1)S1?%HVbUjtmo$~hf_Awv>NvW8ZmwiN=>SwO}v2K8TKX8+&l#j0uK4`u_t{hD(F?LZbs|q(PG>#A!2&Ff27` zf4QfC2d_4yOokj?_ifG7tdgCLGW}t*Mp?YfamO-H(l$bHI&N=d=*h;2H7Tu)>eE~P zEdO0m(dfOBg55g!O<2h&SAD*bca1;R~}l z9s7tMsX#S^EjxzZBSHxpQs@;kR<5o(M$*DZ0at&(za?B+}e!JZZBiIC?G zxTDD@1Al#7>KvV&rOUQf(M3r1Qrf~xZgqjXy74~T1Tp&hcJ7c*khC$sgeYf{-t`3v*@H{(BYkMW4Kj z#?yMn$Ihky(&p<{IknDLBWc+C)AZjjSHowP{{kC~eZ~UO8&DmDxB5+d1PC*;Xy@$Q zX1k2icJ|L7;HZrJ^#5!rZ3oT}%0JpkW)(|w>jW-zsEgPn+;IVm#?$M*J^V0F#nZHT zW+#Z2sXhD|QitE2OHFN0S9co7*EW>m25hOHC=e~NNXmsgTbYPr*A86bPz|*B>iv4q zM=f^9ba-ZwTK-g(u7ZZTak(GbVo{alFQ_v7LJ@+OLQB zFY>To_=$Cg-^{Q=a3lZ{)M2=cam-`403gJFp>1F6#muChPoJ1ExwNy>(zOg99Lsdq zv5&>r%<5EnnDxOHY#$8eoGQ5sObKw4D*x~!{5mAMn zd+pi#Une3{$uBOR6(=fuUpUN>1~&5|73dK*1+GeU)_&iF&kMT z527L>RqGffpNam#ERQFj&`rk*2P1|X7XntufcEBmD`b$H!6t#Cc_9Le8M&IMS{GK5?T+mgR@M`V8b#}g-QF{06U#Fu-BXmUykE8o9?dLqG z^*!uLg$(F2;5+|vG;HPyBmo2z78^gi@{pnmmHFo)fetdq$on}zp^pS5#p*BYTmR1X ztCKdkC4ISS9JH{8Yoc(TM?fh&5UwVquvfUQQpHNz$v} z0#u3&l7{=`*s)thLqm=8erLFWOvT0Ff|G#+SKj)cMwM%5yd#4Z&aKJi07pMkSJhet zft5m6NlnegC|4|S2omtE*a2vm+b0~SQD35K%Mdp}UpG*{FRHY!!+B}wMOo7jzD+mY zL|@S=Rj6M@Pya~u+SO2I0Du6GpW0C#`x*b_&6`%rxhT3XXWDrUAJ&3ASRle_fTJgP z$JzRW*OqiuKD_?$f$^*t42uYVmc%^bG9zvOE61Pz>DHdO7*GhHOaT{D-QQon72%5k zt1!Yv=jO79SSUj2@skxGrW| ztvJ_Q`S_1l^o7@Oijs%0`LP8~qlF3o0p>LY_-NwC2}AiUTcXZQ(t6;wCa7%|{u$!g zaR0@oUOXaNb=tJwAG3&HjtQ(JkrevwEU#UtNC9!{XSdAk6Qm+sR3uKP>(;n$mpg+p zkIhjL^)eB^SQZ!%pnUAZ1NwdU4wh$?Y*~2w=GyPWKaH^tTc7eOaOB^uHEUkygtY!Q z!J60w3SABn(nvGscr>BK;)ZA^Mh4cQg>~_APjU<%ow4+Cl3sxZ0Y%KZ(0WKtw{LG8a}s^E zXNL?YTWi>Z@KUr@Xc5>TRrNC*YI}Y7Ay!SgrsCVX@y;K>xfR|%S?9%Sv|fZU$g;oc z3sV_qV`szza69x3U+P$nS&$X^B+}6} z#n(ikpq&cw>$BEi7$#gXhRjo!oJ{L_C+WF2$8o7_hN&!?`ufPh)Y6z;&Qed*Ek>70 z>zbwE!@O@Yw=hRD^gb` zqV}?JVI=wO;fZr6j#Ciao4BPuEsWr(;(M~-t`J}9cX>&;w6^cGQ~EbnrLx+TgO|on ziG7w9O-vSxT{#GKf2@1nR6@tWHJRBuAN#GToIG&(h&_f*#k!^|y!6#<=DKY~ zum{czzNe2P6mSVl*$g`kjJyiwXIF|S6?YmCv+iqAenq4+NH}|@q~xrg@r)Iquu`K^ z7Ve7{5$2C=5z@EFXMf z;WH1*UA$dTymqye;`;2EKZhYuaU$MubF;_!_Mg)uO>gXOR&?2BJ==1@3MedYDFigO z+OC<9=CXt8l=Lm>Y21yHefimVRw3WD&lE4M$E0b=C%hI(cqszuPUK4=+7sh?r>?#l zVyf?)XfCz$M-Ds0QCI{mNA2t1{DoGD!Tao}+hL2tCRasxdG(#0d5|u0FD;i7FNC`#abq~-xjicPCHwi0sv$|%e&1TU`b+a9{O))Mz?AaUio;`!~NsX7=F zkYJdi^NLQH7Uh=xda*2RYo`~#d)7Lur#9{sMB{;wL?Rm8n8jju(E2Am{k}<7at*`R zUI{XAg*}$RBZUHp(6_eEkolX?oJ+et`BrTo#dTjE{7UZL^eaZp^}O(T-b>3SN6b*h z)W6&DoQ-n!*Se>Q+7h?Frt)Amh*aCj8U2H^zL62SOdnn`HR#hrpT+I9z#)3&(C_MN zOWa8pLT=6$thbA}4~fUW2Ttq8#M<|x!Vg$Rz4EhnI~aCrQQYCmmW?U77Q(af8<-f< zRCY(Y=>nbMY7|em)u*w2=(2tU;U3*Zih=i~<@k?jKL=rgcRQi58kxrD|M@Sk#2aO{ zk@MW+13XLnwo+x6ek*(1fxEE1`%?JLTA%v@%V9^eEu%N6IRq~86pfWYUjo99{G8&~ z4o&PF)830fbayx6F@1cl%+jC4)pOkzhgEW)FK>*4wB*RNT~XIc4i_GI@fE2cYGvAF z6)qQC_+Tzw6h%IA@=dG-hq`oeDIp@@RrswP+Czs*SautYwL~gEmGSmU<3Ys(vJ4}j zd`@fs^How2czxqh`At3%rCTaq25Uj7^YQ2-lIQ7RtLGJMb+Xqj%(5*AvZUXlLgTVo z`cg}(z`tR%CHL9UTXVFTd~b7F>Pms)XwtKUnIZ)B2bz#-CJH zYP@eT*ZTLKZ_QK3hkKK=PA?{JEGSkGRo!5xsq-6e@9@J=hk>=4=hS*lC5=T5r^WZC zTXN~aB+r{@aY7{*lv5mjj7emR;neHk$9S^`LJwZ95EVY&#-?JGla3*WP+mtK)n?h0 zw8~?%t&2ufUq3-Z)npMK1Z=_jXj->`{rk4cF3| zwMzm*dQxC2IGn&aaI4Gqgg?1y!~?!_`Z3`sF4;zNVDkk`XG2a$OE@8e8@~ipAcm)|FWs{8Jycl3DeMU4pN!w_o*C=Ond&^(`Bifkh(Du zWc+hUH+1$O`5wzCc&U)3j=e!rMg2bWy+f(A z`tTj^{aUs7j_=xg*`Cx^FK_fF-)b|bTnr4oSsRa1))D))vRk=s7>noo{kTFEaY8ek zDd1JWGns9Lv)lMHOi#D6u)Yj3Fjz`|(|TTIT-zuwy|$05VtkKP`I@Q3jF6B_N5XBQ zb=1sgHEN)|E6M77t*J70g`Fzh6!YE|3KiPEpeLU|GG28k2&aDaj(=&N=0+8oG>&-I z&t}-ZM_l@h_X%3pjqMYiby-H*izK`KVk|{*VC7B)!mzK{L*T2(|Ia57T5tAmP0+hB zK}^-5XxKQ0vfs?Ctz4+oy3Khv*OlPx?S}N|YI}NnA+fWMOlY1x@>-L6*2XQLZ@ogl2d+Y7vM{5IsL;=o!k_Wc^?edW_}RmA*Sq&i;v~M zn4R#>5bM~0iU~1mKEw`ts%(-DE2k=;%%t$xMq@^A zaNvNn$kyXddc~7$_3BApyKsk6&|7C^Y}oFU)e>j$ge9Pyx^(-u*6R2QXc*^*LD1d&=x9X zBU7TlX0+i%^-de5#^10V$3tz_I+4n7?p&IO`hH2Y9{(C+yNI;tl<(S~ z@WkZhp6HU}FA4-=!=AcZx%WT`#87=FEJiIvf@Wg(NPdkYEvF+6rN_Lca?OP5o z0_?}XgyrDC>bYB8MR(j|>jB7z6y+*!^|BU@*;+6?5{|wb?ZUkOoa7UAhPD@X;lwsM zU$|ZIcI)YXPdTe9@%AwFsJtXM@-$)LF&5|3$*(F6)xKq>@Gf+iKLv7S~--O8;uCaeseEpcBi95-(c zY#T{_chLe)V{*>v`}bRxY%WsdUErheVh|&7sZ3!Vt!qy9bfHGAP0s=%c56rhm4=NE zK?dg71qeGe0G$E7R2g)vy8R8K16fT+jJSK4M+IT$nfqg4#7R2m8FdiNi%%B2T7 zLTiH0h|vN?Z$bOtS`&qXS4+*y5|Lt;=sj#`H1PYpBd>$6iF!wXCkFRE z(3L|?X~4aaDu@D6s>OB=JckK~VJbZu1zoDi$s(%AM3YCmGk=8pXRLR`vfrRn$w#CwGKtQJcJM*&&k$~DG2r9)fw)BKi44OAB%!(Uu0G7uyjrVvy5fiS zDc1XFfr9^cvot?CZ;re3=FOwC+XLT>@ad~c(u%U~=G(Po+0`qtrD4PqT5 zW4&^EnQ47=_BFV?7vFjepI++LZ@oNWW%z7KQC^0b=h0QRW1{aeZ0*X*!m=45T zSbcp?`kFq2zIe_gZ9}G+}Afpl@!Kohyh*Hyg;0&zsx$$o|E_ z#XK72pVhGJ|YB#>M#Elv8dhdO=xKz?H0+^62&9N4Udrt((&jTN4ntcM`E+C_J% zj9!E0;;AjV(e>{fV!d+LMEr(b(>7p=v9b8jaqGE_>zn_iQw_hV+-X{AOG{qQJ8oE? zU}Lw8j9l#yx>n6r&vc#=V|qO;na>`Qhz5+zSH1i9=dg(uc!eC%cAI^=jkr6{)^zG~ za+}ESJ{#YCAHI75etveB>#ySYqfftM-%q@?`~HxgCnkvL2|+lf23aUt9QM5beiHLT zxNx-9t-ZE9)XkhI<+0}?}Dd6LvKY0}uOU^GpuBW{%%j94Sp~4T!%&tPLcvT}U(s9V4%bg&8qO7)$>hS;RrHz`Kcm}ThHQh#4KCNq zAo{B8{Xn>Q6m8y=Es0gA`L8h8E9 z-X|vvz5nxU{_Dd!hfF$P zUZTlYTLPS6TKAS?Ki+~S=G94XJA1qiW+dw&Fr6ECC#3KAfuDECX{p<|`KE7a-ej+cWs8hh_WV|n=6stTX*P- z*&MBaj~zC8gi$w$^ziJyxP^$`rdUm_R5KatR*1*v{`U6X6<=3aSK7PRZ~TG+pRV-f zzh{#6YcVtNAX7c!*@rHL{chmd7al{>)`a2HLULUC1r6Usm{wrcO+Iqx>52X}?vDWh zXnmGC5BN|dE8dsG1zOkVD06Nzw@+%6%}hH4S~N|U)Vf^VBHqX z?PBY7ONr^|p9%6(`1kxK3Rh=KOLaS#%s6S?02gCzlHnZmy8Ey+0Rce5=s#Fbp@7t= z1D8%p@e2r?a(c;Bf3lx=#l4|Y(4y#X6~)eT2DF3wtG<_{`SqIcOii!|Y7%F?rs^<@ zgs7+MfBK(WksqWh;wlRU>L4d3@gpJspTOHNsBdbbz(yL3iry{GOyJ>G^Dtj$?DobE zTBlUQ3f5gS;0ryb2R%@^v@tCVghByJ3j@mo5rXQ#3a;wuqSZ;#6(_<2o-(zc65f!U6MLwaTh*#B(-z? z1j|mkq(V(0R3iUesYw|RmrZvgCeJsHN+6F4(^ZH3=>N=xJ_U*&o+>H&MFC0^%uS_{ zodjP5^kio@@rnx~ZrDNa6XUt5>mJyjLtl?t(+@>7ns#y4XAp1pM^m)lQ-E+9E@@l< zfQxsXwdLSm-=w^vJ2WsKvNd+B;85Q+_qiXhtA-Ki!osQ=WuHL1`g zYoGWT{qa}pe+<~gWZ}CXsI08yL4}9>8q%ve|25Qb zD6GV~jPV=A?JO<>k6f#KCo7 zJ=TlpG9iW0ulJj_mKH*di{LEu>f|Jf8LvWGK_F?UUSJ$;5WZeq6S4ILk$eAh;jk@l*3gLa+J*K-Oj}SDGH!VYySLx0O9ZJFaR#Yv`KFsU@aw~u=6fKD*i~>5pE&!wup#`$b++6IP|+1PJ+RI zW^NZuwGRQSP=V>pIA2Mc6?ou^4y|GNZG<_(C`XQRg{;=unGPi8sgCA>%YGtaApa&J z=byyVO7=_JJX`AS>@>u_Cz34(`ZsOn&w$(potV?Wq1zKVLK{_bdr2`rxu*DrSQ+Ex zfWS&kPHlPJS@eHNHi^DYyuK^z5dI5tplr zo)5Mc^^aoB?fuj9eP6K+#Z`5657mHuhRK6F8{CwK?@y{`{PZ`|=J6TGkx=ga^YwGq z==p#bdv3lgPAGMTEPxMJmz3rUnswZR7|2G&s;Y(Myms^R$-qAIpopZX){Ki8 z{h0OrboTji^XByUD^nr!xf{0Kg&DByeL!3G znVy{8R&nI5B1CWU_E~(#sP7_?63I&w)~Q@)y(kPtPZkNXw^FTyi@fVUTzfCq@@h>_ zwWWFu+t+KS2r^)7dFgLttvz#LBaB3VEa3ZD4wyGXeZUlk;2T4FtcA5O*v@e*k#dB~ z>KC2^R|PxbJNuue7HE^(gBHYIdF?{E-`Hh2HK(%frj16e+}e{p#ZLyQIc1$X`GUgyEI|tl(Bf znq1k(i3ghr+m`9CT`=;lcV%)BEFq_fKuWX;{`x7@NS>c-P7=`qK2;P5QD`97w~A1q zuD-U!a=$s6}P8iZuf%Hfb2fpS0`N?klHz^BT5$B0Cht5jn9&cg*4xim-? zY1SH_;-OuEzk2K9ms6AnK2;3Qg_^vML(&a!AGpgJc^z(#WWM6dqsl`X9TO8lAO}_T zu-upZK);bH0Y=sS*7=#xr;sYff)@4ix>^?7nt6SKDe=di@Fm?{t*jNXxsM1lcBBk&;ZS1;;hNs*d zmw#wCp+Y)WYnGV8CQ+hFjL?jF%5dYLB3*8L4WGQ2{=TSZ(r9;{=2%{}jM! z!FvSn0A{idNZGiM~|6!b@<^yZW=FPrsXnLt zuwC#)h8IaPv}B;(hY$QYdpL!=iDzjm4(E;N4N!>h-o4v6NB%UaJ9_x=jIHzrZrr&f z2=V!|&D=&xe6Z391b~tVHZWRMck$2;;cegRq-L1(E5y&{WalK$)if2q6`f%l*Ewr0 zS)w!Vr>ezaUQ?XYY&N;}obu@2`iu#RGY6!fsH=Egu{!wGpm_g!r-9+PM+2|uve~y) zq360td5xJeA-5XS(VFQCD6ciswz4c_Ei)Zr>e#rBd>%5VPZ^R(28pY(v3E{RD&sD} zoo#caeR_A6?-}C9vowj;dkTq(hVDKHJ~qCu^%A31k#h(_7OutjEf&1c_u@(>qM`Ia zM4se18Gqx~!HNH#)coAs25?hmg0?3wvhBGpgJS~Mo4%;uu#qBl`fe6;uMXLr7x{#R zTPG*|(Bj+S)lqjI-Mj}>lpVG`P@%WuXgnD3!60@+BlN$Bf03O`?%w!#4`p8XDB}6- zRNt*-8CmJB>xkz zfjvcm2hul>@GWxL8!_v5R;BDVnAVNX-$E&~qgj>Ra7#=clV}CL1)qa*RTlMEb1Qb= zf~Z;P&!>Zajb|s!D{9IUZzRtu>c-oiNj`Qs{f2lmy8tumrOJ2HiKhSi zJ%0Rk0tfa>C%@AjVrM&JB@UYmJxp3X;Kq7TG$^a(i$s%{l!T~Y#U%|B;iRTO3H2W(USEw-Ro601OV*_s!9t+bE2c_5P?0$s~~9g~ztbr(m7{G;=OVNB8qc zwWL}I2SwURF8HaZsOCj% zZv;9YXl|TlJf5-WL#$o>X3=R(gV`ja5DaHXFOU~s~SBBR? z*=O8;BuAfq$g!kjziMxRc2ZvVp7i87*QB-xPBjuxLmIbJOi`BL7DPs7K?DhcJ4KwD z>Hh|Oq5G=Q3u{?0SBeCA{I`BR zoyV>+oIfPyCc~*B_K1&}(d1^2iRdZ)o8^OO%IL+UueI*}Ot|i1aC%1L6AErDZCyO8 zu3$2ZtWO5X+{2)(ZnoF#u|DvBaO91*ywB6(El+vE=$Xzf4m;*qqDG{D0mJ3o|o$ z2qgh^)jukGs>-GK{rmUDw1$!r(GUO;qSxuC5$J(V5I2MqGX^3@liu>Q=LF~XJ(Ae9 z+Xi6bA{X30lEQHVL%f3tO0x*A7awK8WQ^zlsM?UZu06l3D*1Hp|sneG};sGAoq6BjyG?1p!tV01%-Y6 z1k*9QAGv$(YBqvH&^q|x!J(2}8<6JXKl|POzwTobd6J`WgD4zN8SO!HSvlX}~YtXOgm?+U{mY6N8w#PF^w=lsS0dWajgXKJ0$wg9_YfWjnHwB+Y6F zFQ}2u*Q8RaOx?jZLi%HeIuu=9MB^u?gyFwEc(3lRLRYCVN8jO{XT26japk9a8`J-v zZ;V_&qoV-2$>YW{SE8h3(2P(EX51;B1IQd-CW9FSnm%W=S+#ssKKts2yZhq3R=`bV zl27R?IegDWrXnd@S)~5iCCY36){DOR|e4e3#Uh)FZ)#}+g59VOTe-8NsK zAaER&ne#ntZ!`T9Qo96(QV|d5!z@f#aeA!`z^h+c6NUuN+a~i>8c7YbUOdrBOMB zIdgrU=p%J4*n$u#PioBLh9h2>z1V`6>>_T1ZMM6QWW+2UUsd#Mfc75W(mnJz(p zPj0QgB3eBx#~@8G{F>5;h_$#zb19$pd!KDR0NGVpv9)3zvZ$-M!v(uhpaGqfKJ{H-AcSnm&}DY zy@^PS&x55~1Zki^dHm2)xkDjOL}OyKCs5oK70^f!Q0mP0Q;D7&{nX!|{z7j}5Vr-H zXQEiU;L-30p%!qK)ROsh_`bR|N0=h_$PLH?VubL!7;h2VP;a4u1)is){~yLAS!`{h z2uQ=7x>YR{4T?`^9ftne1e!iMAThx+-*0Nd<@T>d{LQXl_BC<{(Kyk9-8sD)mgarS<-P-@g2HE)=0z zk~XDkvlo-Z)TyDcfn{ObeaNPP2$>>2aRkGC{GqNx?cs(q4>pnEQYllz+*e0{wIWEO zt*QQ^Ih6+BLNE{*&I6v7WJi%Cm%N}WMon53G4GF%oUg$=nBG^fsBdi!U_|nB$(1YA z_c1VKu``rrt|ZMWi&KP8biB2Oo5vnv+W z&;DwTfwk3n#}NwQ7P_AQpipFcvF#iC{+$quFSN0EJ#+icoi=o@iBOu7rWv5v7K^Hd zOp22j?Mg~W*G{^+3PS-7oDbf~3OJIs0^=vy6+jH0u9;0qEF*vC2atz>4@Gv>@V_w+ zesOe`82k0BMZmX)0ulE>#uWC|u3V{jid`fUK1l(*gkCIU?e9F)_L%n-_A*S0KO&3r zb?}c*^4BMDBf-y<$GVZD9p8=ekv9rRIz$3j{tHQvjee7Z28d(Zgw)g~SkCTZ*xX9t z+DsJbp$hfD=@qpTMgET4E_`boS~M=5k{AH7D_V_6u$e{{UkkLEmp8KxL_!GiEUzI; z`O1%z2vQ*}BDOknoCL-W4Ry-jp%#<$>U!3&$%h<;hIR#=9t6RRqCrp1GLw;!fYOr` ziZMq{rR^i=7vmC2+s`WiF?&}Vp?$k*m=Vk>K;+4fsG&Cd^e3b37X*_^rr~`K9p6Yo zt88uVytH>}m*luN?v5v2xa4%aYt|R;hR*%4j|zJbhL%k6$xqd17q@Vrb^)tJ;&Up# zpSJ>ICF8aCQ?g~$nlZ3iVSuwxM$pUoT?Yy_jm=mGllm4Igr+*A3kmu;rY50`wA55` zn5&TXi9xspl7OUPLK5s&1TpjNc~hp4Hr6)~WK#6s26?$`?-Qm{TyE%7kh|*}DNE-k z;2nIuzF-bhz3Bk-0*clhegYZx)vG3VH|C5A{l2L??V9oB#+}+mM7d95evBYcTHl%} zTJjKC!Es<)9kyw@MzLy;^5{UVP?qkJ3~p$Zz;9NymsKy_ql+^D9&I3=(|jdn0f1x$ z;=`Z_rDXNqM_>4uGTJ1KdkEH7ZOF@WlTYsle~)@e6FPGW0&c`+BNiR%8?X6~pB}_J zYsIVv7M%7vVSnhmwZpGFDxO0yAp_}Y0|XRpclZG&XVXQ~&;11$9zTld*CA!Ko_8?g zsKKJp_c1B*gIHO;L9RZB)eydIBA%bghu>Wih3F)t_gV!#V}|~75Y5oY_c>7bBtON> zmeOEdn(!I+o**S+5QE5@(6m+Hdn{XY#PI}}*51{%JL+uv4A$!-w}<^5U~rqU5OdIy zVC?9JL#6I;;6X|v8+@mv;B6|G{K8uS4Ig6@6B?rE?p;?nzqdBroaUOoAT zQ9!c5$3f20L`n%6okvQ=1FBa}J30@g_dAz6iR1Jzy{u9ag8>VT+7mT#M{ZZsD%CEC zi+rY`|8#$HR2?C;K*UMMPu%;S9>15pvFUH-r)cxyFywl9|CLj!sec#G=2Z@O zw}`_5Z7h^DxVPRRW*0+>2!aef#_a%+1$68r_K4kq$`0Ux2Xqe$lT9pa^weZ>A3{Gd zgHvkgrfDfmTCg4zyY8tMTC&SYcp5hEfoQp%)d642B8AAUIU(4c^K1sjVx}gzKpKvS zz9NKCserP9>eyyonDA$!*TukhVuxb8e4Fq>4oZk;9Re9oU1$J&oNAK2C9#bMjq~w#znVo zF_W&vgX(0C9qCgg$v{WcN73n zr7wlV4%A>LMFzcszWdg#jI0!Hn|s}1SZicmwiZdcZ;{qXo(RnU68WU5>;KP8 zy62U>qW#$a>)|@z+P!HpE&I2m>NhJ@(r?}IB5IW+P*Mgaq)9t+-7i=tBzasz#46q& z{esOX0d)Goqeq#G?_31+Rod9ZU$}6lQdO-DbSN@xU?wNUcfkI$Fpo|4rM&c#H~^;` zPho>y*?j-K)$h8sNYp>#nSpS?O*eDcPENofQw_#b!Xtp)upM!&=J+O`)oJ8geL-2P zC^&)4xkqDw z)^xCMx^bP7+piA~kulw{vN%(5^#AGYOyi=iw=n)!(MS*wO~{p1Boj3+ZlEJLh~rja zrF6vwQ4<%yLNIhjg_Okt*AO*Q$g&dDGDJ)SK_OJ!!9X1taRX#VLb2YliK>xZO-!qg)U#Dx~&T7gfj}Lo&{nld! zVGqRHmD2a>H`Yn(nqvO_zSX@~*Z&DeoW6Ym`S8;jRhr!=e>`*uCdzqUEF)L!kqt}- z{a{he@gQ57L|Q>L#FvK$x0u?O=c;7nI4@dTMRz!?w!KPz_wJnXzQY~uohGh2Bd=mn z&%S7aMw*%^E>uPfB1QLs{Ra5_Y9?N{X8Zu9enH)z$Hg4}lU$BGKTl@xVqz7-q5TmZ#}ujL6WQv zE971u99;;Wz%BZqxgT<+w^#Z?-N^OcvcT5s(zKQlHqzP6^Rv|o^V)+V3*+`@K<2{e z&6U*KcSd22WD6OGuH~u5q4p+_awPBUS=p{5C_eF^q@D}yx^mev^mRn5^7`gm%QvCY zO+5leuU|Jt_4DJ$!Ad3}kK=v>gGE=>L;9A|gr*dv*0o3G5oAfqPkZehxuQ4O7cEY1 zQB)Ex-Hqa8^AQ`RVyToTHqydi|^V|Dk zJUT4hxIIuE<{a8sAZ8=Hz(XIXL-`Z8sg) zPu=zQo8c!SE~dC&4n7`f(4FsGlFwvn!trHgLNjrD{|-U^y%_LgW306tbc3cb+5vLJ zzyqEu`+h#%VSkyE_1_PQ&CB3{p&$cgU;gLBqe(Y^TA!`{IZgK@r(x3CbGLF(Od^=; z(d!T?p0r2i;zsJ&Z8 zM%fJc81Msb$`~LC#ECnDKI_rSF_Va{&dA2gNK5DQIz%+fK)~1O>l6Xo0vMbQ`nAIk z?+p@tUQb;?kIS`9f@?wcTI6x;PQ=}He1T(07jv-o-u8Dza96mww>KDiPFbs{byXh~ z6?NU6-#s3WgnQjoTjp{?9_Iu9kvF>g%(B2ubGJ`^=pGmI?+*>3ZgaeoNOyhM;FX z+o{vy`Jh(P4uBz~Z2sRqU2Mh3JAv2&442eM8$G}vaXnUN;i1KVy)|`_kiaMXep}y0 zEFcl?iX!xUI2TM`#Et(V`5KuCXo2wj;8+yUv%?5kUmut=5Y_nj!5I_S!5oJ!UAmZ5 z6s{gO2}hsm0|{>44EhP-FyZWS%O~DrSy_e;X#+PE+?X4;73301a^rvJkQFVe)CYl7MhdWJew;&EeJktO<7MO;iY`KJypw#6*|&u zo?Y=RhUVlYB>~vvtv(u%cx5)uo7s;J?ujj_ao~(Qbcx=8#zK(I;0!^~xwkLkjy+|C zqiA~?TTuR;%w<0Y9`2*sT1T=)7vY}^h>%$}m5G-kL`9~P!nHJIs-`1Il=Sn=*fALT zRkGvKb8_|!GoRR>5aKs$mal2|=J2IUm)g@c<~3ymrUW(^_iU0F9 zwHH9kZZ7NGi;q5I^k5=4c8^(V6R;b+x9v$;pPlTxggqet&TnhzkAnIV5 z-1PVU_PFNcFEOn)&9w-0{Bzxa`rX`DL^WUJr}9g7o1WHJn*n_|%4GANmDMbfwY~|! zbqQhpIf$ix5*%#((p@p?hYrab1du_3ZR83Snmv-e5m%s1FbtKs>_gb8%BaYzE1$S$ zjq4#0y8cmh!^JM@JR!4q^1~+6;ZHp~RE1mhx$>m-lhT5s`rVkFoJ9mDUe=~dlpcnQ zrD42YTzG+1`Cmv6U;WuhLIX;SQ{M$e7+O9n?TY%~o|XCUDxdZsjX=kjdyJ-zazM^) z3+z}W(tfVmjVmf29J(+&Q}G`o$MXly-LCU=bSy5Y9o~J?H!gOk{(4Jnv&YQ@Hxp7b zZYLi)81A{qI!wqkli-l-RkgJUBtpm4dyQ2A=KNCV_oJVf)^^zcmw|yQZ&UCJQXy^_ zBAmnQyypeVtyDtq1aRCGgLY%t$ zV2@OiU^olKwDcb>XS+caqN?97C-Rd%8jC0};3GEEYQq5SYi+rfDg zo~NV_zAjy`6Zj`i922RAic3lyWrixtVk)PzArU#Z?_u-o$ly9SOA?XB?6mR1h|(nJ zh6k=aD*ExmpY)5`9$nzVpGvOx(O|vCO5=VgBV(XsqUsxXs{a)VVh2$o;MkCk@a!q* zIK^&$mHx+rKP>oESG9S7wYO;th@G6cqCnC#yYZ3--e-np(rONe72)74SNQY3fJY@KluT!2>__%N+qk$U)+0ck459+T+=@ zn5?^r__||9+QEZe$WJ(8j3u2FwJQXxAR9ADTlY(8HBe&29F?%NAm(x_#@05FH|V?t z?PA-uwc5Pbz(({B(-O5$ONMGt(_L~bfw_r6Z+3E*TzgKLa*bkHP^OTEGc18c#hm^S zbg{MSXv?RmDqW$?XrzlU^N1!j_H5H@48I8^A27)GRobjAa!k}#v~lI^$Jd*9J^Og@ z8*|*sl1sAIwXPNb9;u!lHTj|C5QRc3R%GqxAR(u*@z~hD7IW4$-N1#Xkj2=5{+xQF znVW6tcRalvuhUxR6}ONLxyvoVxQ1Kx}f(LyNIO;Yn?qrUn4vFjglA&u=W1B|_lrBpq2@|FMu^HlEruolY(29Mek?O2Zp-v5u0UOBE*AV69|DY6KJ(Qyhe59u8mL zv`DB;HVSBgyiJnmH&pS8<-7qPiebnCfn!8YTU5tX9F(VT-)^tm(xQP~a8ocGRW}iFAPDPM`uG&e-Fk2ortTak|dHn;pzhxB<2c^ ztg4wJiQEv0AxorcjbGk)?FiZ>uw)ETNTc@I%LXN|i`g*MoSfTVadAP4CVC{hS*WJ7 z?{u4b!xwN~h@cUfHQ%Zyt3I-#Vx+Qys+!g}RTg#z=&N**PUz0{(c$LRU9@h!(>^EJ zxS6aBVF`u)*d1l-3h?Mkz*)F>5(~`R{Z?hz`F^OD@)exj#J5Rm&gFTcEN)O6#Lx(` zIO9Gs@2n4sAMJ1IN z0t+)z)`%Y%*iqa!U7cSSgD=#;LJk+rEzvL$&usRo$gpDxllH$SU+;OVGk>b*aFR43 zmCY1!4`F>GGSM$(TnWP-n%cc8P2!8bO_;!u6aSJk`_evY{{Q*(oY68n+JAh?nmA{P O4~5SRd4~7=jsF5upT@)h diff --git a/doc/plotting.rst b/doc/plotting.rst index a948a3978..b7d631409 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -459,6 +459,7 @@ Plotting functions ~control.bode_plot ~control.describing_function_plot ~control.nichols_plot + ~control.nyquist_plot ~control.phase_plane_plot ~control.phaseplot.equilpoints ~control.phaseplot.separatrices @@ -481,6 +482,7 @@ returned values from plotting routines. ~control.combine_time_responses ~control.get_plot_axes + ~control.suptitle Response classes From ffb0a0f22afcaf53e92238317220f354563b4fc9 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 15 Jun 2024 11:29:46 -0700 Subject: [PATCH 050/199] move plotutil to ctrlplot --- control/__init__.py | 2 +- control/{plotutil.py => ctrlplot.py} | 2 +- control/freqplot.py | 4 ++-- control/nichols.py | 2 +- 4 files changed, 5 insertions(+), 5 deletions(-) rename control/{plotutil.py => ctrlplot.py} (98%) diff --git a/control/__init__.py b/control/__init__.py index 35d5b4d5b..40f3a783b 100644 --- a/control/__init__.py +++ b/control/__init__.py @@ -83,6 +83,7 @@ from .timeplot import * from .bdalg import * +from .ctrlplot import * from .delay import * from .descfcn import * from .dtime import * @@ -92,7 +93,6 @@ from .modelsimp import * from .nichols import * from .phaseplot import * -from .plotutil import * from .pzmap import * from .rlocus import * from .statefbk import * diff --git a/control/plotutil.py b/control/ctrlplot.py similarity index 98% rename from control/plotutil.py rename to control/ctrlplot.py index c192db55f..51f1342b2 100644 --- a/control/plotutil.py +++ b/control/ctrlplot.py @@ -1,4 +1,4 @@ -# plotutil.py - utility functions for plotting +# ctrlplot.py - utility functions for plotting # Richard M. Murray, 14 Jun 2024 # # Collection of functions that are used by various plotting functions. diff --git a/control/freqplot.py b/control/freqplot.py index 755084192..21eb1e425 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -19,12 +19,12 @@ from . import config from .bdalg import feedback +from .ctrlplot import suptitle, _find_axes_center from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData from .lti import LTI, _process_frequency_response, frequency_response from .margins import stability_margins -from .plotutil import suptitle, _find_axes_center from .statesp import StateSpace from .timeplot import _make_legend_labels from .xferfcn import TransferFunction @@ -35,7 +35,7 @@ 'bode', 'nyquist', 'gangof4'] # Default font dictionary -# TODO: move common plotting params to 'ctrlplot' (in plotutil) +# TODO: move common plotting params to 'ctrlplot' _freqplot_rcParams = mpl.rcParams.copy() _freqplot_rcParams.update({ 'axes.labelsize': 'small', diff --git a/control/nichols.py b/control/nichols.py index dea8bc667..5eafa594f 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -18,11 +18,11 @@ import numpy as np from . import config +from .ctrlplot import suptitle from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults, \ _get_line_labels, _process_ax_keyword from .lti import frequency_response -from .plotutil import suptitle from .statesp import StateSpace from .xferfcn import TransferFunction From 47349122a630e32061223c46fd95259539becc7f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 15 Jun 2024 16:10:09 -0700 Subject: [PATCH 051/199] update freq_label handling + add Bode/Nyquist notebook --- control/freqplot.py | 5 +- examples/cds101_bode-nyquist.ipynb | 1254 ++++++++++++++++++++++++++++ 2 files changed, 1257 insertions(+), 2 deletions(-) create mode 100644 examples/cds101_bode-nyquist.ipynb diff --git a/control/freqplot.py b/control/freqplot.py index 21eb1e425..c57a32b32 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -56,7 +56,7 @@ 'freqplot.Hz': False, # Plot frequency in Hertz 'freqplot.grid': True, # Turn on grid for gain and phase 'freqplot.wrap_phase': False, # Wrap the phase plot at a given value - 'freqplot.freq_label': "Frequency [%s]", + 'freqplot.freq_label': "Frequency [{units}]", 'freqplot.share_magnitude': 'row', 'freqplot.share_phase': 'row', 'freqplot.share_frequency': 'col', @@ -894,7 +894,8 @@ def gen_zero_centered_series(val_min, val_max, period): ax_array[0, j].set_title(f"From {data[0].input_labels[j]}") # Label the frequency axis - ax_array[-1, j].set_xlabel(freq_label % ("Hz" if Hz else "rad/s",)) + ax_array[-1, j].set_xlabel( + freq_label.format(units="Hz" if Hz else "rad/s")) # Label the rows for i in range(noutputs if not overlay_outputs else 1): diff --git a/examples/cds101_bode-nyquist.ipynb b/examples/cds101_bode-nyquist.ipynb new file mode 100644 index 000000000..dac005338 --- /dev/null +++ b/examples/cds101_bode-nyquist.ipynb @@ -0,0 +1,1254 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "8c577d78-3e4a-4f08-93ed-5c60867b9a3b", + "metadata": { + "id": "hairy-humidity" + }, + "source": [ + "# Frequency domain analysis using Bode/Nyquist plots\n", + "\n", + "**CDS 110/ChE 105, Winter 2024**
\n", + "Richard M. Murray\n", + "\n", + "\n", + "The purpose of this lecture is to introduce tools that can be used for frequency domain modeling and analysis of linear systems. It illustrates the use of a variety of frequency domain analysis and plotting tools." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "invalid-carnival", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "python-control 0.10.1.dev32+gdbc998de\n" + ] + } + ], + "source": [ + "# Import standard packages needed for this exercise\n", + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import math\n", + "\n", + "from math import pi, sin, cos\n", + "\n", + "import control as ct\n", + "print(\"python-control\", ct.__version__)" + ] + }, + { + "cell_type": "markdown", + "id": "P7t3Nm4Tre2Z", + "metadata": { + "id": "P7t3Nm4Tre2Z" + }, + "source": [ + "## Stable system: servomechanism\n", + "\n", + "We start with a simple example a stable system for which we wish to design a simple controller and analyze its performance, demonstrating along the way that basic frequency domain analysis functions in the Python control toolbox (python-control).\n", + "\n", + "Consider a simple mechanism for positioning a mechanical arm whose equations of motion are given by\n", + "\n", + "$$\n", + "J \\ddot \\theta = -b \\dot\\theta - k r\\sin\\theta + \\tau_\\text{m},\n", + "$$\n", + "\n", + "which can be written in state space form as\n", + "\n", + "$$\n", + "\\frac{d}{dt} \\begin{bmatrix} \\theta \\\\ \\theta \\end{bmatrix} =\n", + " \\begin{bmatrix} \\dot\\theta \\\\ -k r \\sin\\theta / J - b\\dot\\theta / J \\end{bmatrix}\n", + " + \\begin{bmatrix} 0 \\\\ 1/J \\end{bmatrix} \\tau_\\text{m}.\n", + "$$\n", + "\n", + "The system consists of a spring loaded arm that is driven by a motor, as shown below.\n", + "\n", + "

\"servomech-diagram\"
\n", + "\n", + "The motor applies a torque that twists the arm against a linear spring and moves the end of the arm across a rotating platter. The input to the system is the motor torque $\\tau_\\text{m}$. The force exerted by the spring is a nonlinear function of the head position due to the way it is attached.\n", + "\n", + "The system parameters are given by\n", + "\n", + "$$\n", + "k = 1,\\quad J = 100,\\quad b = 10,\n", + "\\quad r = 1,\\quad l = 2,\\quad \\epsilon = 0.01.\n", + "$$\n", + "\n", + "and we assume that time is measured in msec and distance in cm. (The constants here are made up and don't necessarily reflect a real disk drive, though the units and time constants are motivated by computer disk drives.)" + ] + }, + { + "cell_type": "markdown", + "id": "3e476db9", + "metadata": { + "id": "3e476db9" + }, + "source": [ + "The system dynamics can be modeled in python-control using a `NonlinearIOSystem` object, which we create with the `nlsys` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "27bb3c38", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": servomech\n", + "Inputs (1): ['tau']\n", + "Outputs (1): ['y']\n", + "States (2): ['theta_', 'thdot_']\n", + "\n", + "Update: \n", + "Output: \n", + "\n", + "Params: {'J': 100, 'b': 10, 'k': 1, 'r': 1, 'l': 2, 'eps': 0.01}\n" + ] + } + ], + "source": [ + "# Parameter values\n", + "servomech_params = {\n", + " 'J': 100, # Moment of inertial of the motor\n", + " 'b': 10, # Angular damping of the arm\n", + " 'k': 1, # Spring constant\n", + " 'r': 1, # Location of spring contact on arm\n", + " 'l': 2, # Distance to the read head\n", + " 'eps': 0.01, # Magnitude of velocity-dependent perturbation\n", + "}\n", + "\n", + "# State derivative\n", + "def servomech_update(t, x, u, params):\n", + " # Extract the configuration and velocity variables from the state vector\n", + " theta = x[0] # Angular position of the disk drive arm\n", + " thetadot = x[1] # Angular velocity of the disk drive arm\n", + " tau = u[0] # Torque applied at the base of the arm\n", + "\n", + " # Get the parameter values\n", + " J, b, k, r = map(params.get, ['J', 'b', 'k', 'r'])\n", + "\n", + " # Compute the angular acceleration\n", + " dthetadot = 1/J * (\n", + " -b * thetadot - k * r * np.sin(theta) + tau)\n", + "\n", + " # Return the state update law\n", + " return np.array([thetadot, dthetadot])\n", + "\n", + "# System output (end of arm)\n", + "def servomech_output(t, x, u, params):\n", + " l = params['l']\n", + " return np.array([l * x[0]])\n", + "\n", + "# System dynamics\n", + "servomech = ct.nlsys(\n", + " servomech_update, servomech_output, name='servomech',\n", + " params=servomech_params,\n", + " states=['theta_', 'thdot_'],\n", + " outputs=['y'], inputs=['tau'])\n", + "\n", + "print(servomech)\n", + "print(\"\\nParams:\", servomech.params)" + ] + }, + { + "cell_type": "markdown", + "id": "competitive-terrain", + "metadata": { + "id": "competitive-terrain" + }, + "source": [ + "### Linearization\n", + "\n", + "To study the open loop dynamicsof the system, we compute the linearization of the dynamics about the equilibrium point corresponding to $\\theta_\\text{e} = 15^\\circ$." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "senior-carpet", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Equilibrium torque = 0.258819\n", + "Linearized dynamics: : P_ss\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "States (2): ['x[0]', 'x[1]']\n", + "\n", + "A = [[ 0. 1. ]\n", + " [-0.00965926 -0.1 ]]\n", + "\n", + "B = [[0. ]\n", + " [0.01]]\n", + "\n", + "C = [[2. 0.]]\n", + "\n", + "D = [[0.]]\n", + "\n", + "Zeros: []\n", + "Poles: [-0.05+0.08461239j -0.05-0.08461239j]\n", + "\n", + ": P_tf\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "\n", + "\n", + " 0.02\n", + "----------------------\n", + "s^2 + 0.1 s + 0.009659\n", + "\n" + ] + } + ], + "source": [ + "# Convert the equilibrium angle to radians\n", + "theta_e = (15 / 180) * np.pi\n", + "\n", + "# Compute the input required to hold this position\n", + "u_e = servomech.params['k'] * servomech.params['r'] * np.sin(theta_e)\n", + "print(\"Equilibrium torque = %g\" % u_e)\n", + "\n", + "# Linearize the system about the equilibrium point\n", + "P = servomech.linearize([theta_e, 0], u_e, name='P_ss')\n", + "P.name = 'P_ss' # TODO: fix in nlsys_improvements\n", + "print(\"Linearized dynamics:\", P)\n", + "print(\"Zeros: \", P.zeros())\n", + "print(\"Poles: \", P.poles())\n", + "print(\"\")\n", + "\n", + "# Transfer function representation\n", + "P_tf = ct.tf(P, name='P_tf')\n", + "print(P_tf)" + ] + }, + { + "cell_type": "markdown", + "id": "instant-lancaster", + "metadata": { + "id": "instant-lancaster" + }, + "source": [ + "### Open loop frequency response\n", + "\n", + "A standard method for understanding the dynamics is to plot the output of the system in response to sinusoids with unit magnitude at differening frequencies.\n", + "\n", + "We use the `frequency_response` function to plot the step response of the linearized, open-loop system." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "RxXFTpwO5bGI", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[list([])],\n", + " [list([])]],\n", + " dtype=object)" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMgElEQVR4nOzdd3hUZfbA8e+dkknvCakQeu+hqSAi3YKKqMQC9oKKgroWFLCtYi9Rf6uuYokoNhQRCQhSpPdeQguQkISQTOpkMnN/fyBZkUAyyUzuzOR8nodnMzPvee+ZN5zleKuiqqqKEEIIIYTweDqtExBCCCGEEM4hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SWksRNCCCGE8BLS2AkhhBBCeAlp7IQQQgghvIQ0dkIIIYQQXkIaOyGEEEIILyGNnRDCq4wfP56rrrrK5dtRFIUff/zR6fOqqspdd91FeHg4iqKwadMmp2/D2Xbt2kXfvn3x9fWlW7duWqcjRKMmjZ0QosGNHz8eRVGq/kRERDB8+HC2bNmidWouU9uGc/78+Xz66afMnTuXrKwsOnXq5NQ8/r7uQUFBJCcn8/3339cq9lzfYerUqQQEBLB7924WLVrk1HyFEI6Rxk4IoYnhw4eTlZVFVlYWixYtwmAwcPnll2udluYyMjKIjY3lggsuICYmBoPB4PAcqqpSWVl5zs8/+eQTsrKyWLt2LV27dmXMmDGsXLmyXjlfdNFFNGvWjIiIiDrPI4SoP2nshBCaMJlMxMTEEBMTQ7du3fjXv/5FZmYmubm5VWO2bt3KoEGD8PPzIyIigrvuuovi4uKqz202G5MmTSI0NJSIiAgee+wxVFU9YzuqqjJjxgxatGiBn58fXbt25dtvvz1vbklJSTz33HOkpKQQGBhIXFwc77zzznljzpfrtGnTmDlzJnPmzKnaW7ZkyZKz5hg/fjwPPPAAhw8fRlEUkpKSALBYLDz44INER0fj6+vLRRddxNq1a6vilixZgqIo/PbbbyQnJ2MymVi2bNk5cw0NDSUmJoZ27drxwQcf4Ovry08//XTe73eu76AoCuvXr+fZZ59FURSmTZt23nmEEK4ljZ0QQnPFxcV8+eWXtGrVqmqPT2lpKcOHDycsLIy1a9cye/ZsFi5cyP33318V99prr/Hf//6Xjz/+mOXLl5Ofn88PP/xwxtxTpkzhk08+4f3332f79u08/PDD3HTTTfzxxx/nzemVV16hS5cubNiwgSeeeIKHH36Y9PT0asfWlOsjjzzCddddd8ZeygsuuOCsed566y2effZZEhISqvaoATz22GN89913zJw5kw0bNtCqVSuGDRtGfn7+GfGPPfYY//73v9m5cyddunSpYdVPMRqNGAwGrFbreced6ztkZWXRsWNHJk+eTFZWFo888kittiuEcBFVCCEa2Lhx41S9Xq8GBASoAQEBKqDGxsaq69evrxrzn//8Rw0LC1OLi4ur3vvll19UnU6nZmdnq6qqqrGxsepLL71U9bnValUTEhLUUaNGqaqqqsXFxaqvr6/6559/nrH922+/XR07duw582vWrJk6fPjwM967/vrr1REjRlS9BtQffvih1rmOGzeuKq/zeeONN9RmzZpVvS4uLlaNRqP65ZdfVr1XUVGhxsXFqTNmzFBVVVUXL16sAuqPP/5Y4/x/z7u8vFx97rnnVECdN29ejbHn+g5du3ZVp06dWmO8EML1HD95QwghnOCSSy7h/fffByA/P5/33nuPESNGsGbNGpo1a8bOnTvp2rUrAQEBVTEXXnghdrud3bt34+vrS1ZWFv369av63GAwkJycXHU4dseOHZSXlzNkyJAztl1RUUH37t3Pm9/f5z39+s0336x2bE25NmnSpOYFOYeMjAysVisXXnhh1XtGo5HevXuzc+fOM8YmJyfXas6xY8ei1+spKysjJCSEV199lREjRtQ5RyGE+5DGTgihiYCAAFq1alX1umfPnoSEhPDhhx/y/PPPo6oqiqJUG3uu9//JbrcD8MsvvxAfH3/GZyaTyeGcz7VdZ+R6Lqeb1H/OU902/95Yns8bb7zB4MGDCQ4OJjo6ul75CSHci5xjJ4RwC4qioNPpKCsrA6BDhw5s2rSJkpKSqjErVqxAp9PRpk0bQkJCiI2NZdWqVVWfV1ZWsn79+qrXHTp0wGQycfjwYVq1anXGn8TExPPm8/d5T79u165dtWNryhXAx8cHm81Wy9X4n1atWuHj48Py5cur3rNaraxbt4727ds7PB9ATEwMrVq1cripq+t3EEI0HGnshBCasFgsZGdnk52dzc6dO3nggQcoLi7miiuuAODGG2/E19eXcePGsW3bNhYvXswDDzzAzTffXHVoc+LEibz00kv88MMP7Nq1i/vuu4+CgoKqbQQFBfHII4/w8MMPM3PmTDIyMti4cSOpqanMnDnzvPmtWLGCGTNmsGfPHlJTU5k9ezYTJ06sdmxtck1KSmLLli3s3r2bvLy8Gi9WOC0gIIB7772XRx99lPnz57Njxw7uvPNOSktLuf3222s1h7PU9TsIIRqOHIoVQmhi/vz5xMbGAqcasHbt2jF79mwGDhwIgL+/P7/99hsTJ06kV69e+Pv7M3r0aF5//fWqOU5fiTl+/Hh0Oh233XYbV199NYWFhVVjnnvuOaKjo/n3v//N/v37CQ0NpUePHjz55JPnzW/y5MmsX7+e6dOnExQUxGuvvcawYcOqHVubXO+8806WLFlCcnIyxcXFLF68uOq71uSll17Cbrdz8803U1RURHJyMr/99hthYWG1ineW+nwHIUTDUFT1Hzd9EkKIRi4pKYmHHnqIhx56SOtUhBDCIXIoVgghhBDCS0hjJ4QQAoDAwMBz/jnfkyyEEO5DDsUKIYQAYN++fef8LD4+Hj8/vwbMRghRF9LYCSGEEEJ4CTkUK4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SUMWifgjux2O8eOHSMoKAhFUbRORwghhBCNmKqqFBUVERcXh053/n1y0thV49ixYyQmJmqdhhBCCCFElczMTBISEs47Rhq7agQFBQHw0UcfcdVVV2E0GmsVZ7VaWbBgAUOHDq0xxpGxjZ2nrZXW+bp6+86ev77z1Se+LrFS567haWuldb5S566Ndbc6N5vNJCYmVvUn5yONXTVOH3719/cnODjYob8ItY1xZGxj52lrpXW+rt6+s+ev73z1ia9LrNS5a3jaWmmdr9S5a2Pdtc5rc3qYXDwhhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyEXDwhhKgX1W6nvLSYshIz5aXFVJQVUVFeQpExCrMxijKrDbs5m6ijC1GtpagVpSiVZWAtR6ksQ1dZzk5Le+YWxGFTIbT8CHfkv4bebkWvWjGoVvRqJXpsAPxsGEqaz2gUIMqex2vlz9BNVcna9ASqomBHR4XOjwq9P9uCLmJt9LUEmgwEG+1clDMLxTcQnW8wer8Q/MLjsZaZUe12bRdRCCGcRBo7IRoBa4WF0pIiKsqKKS8toqKsBGt5MdayEk76J3HSEElZhQ19wUESj81HtZagWEvRWUvRV5ait5VhsJXxs+lyFtObE4V65m5O5S3bi/grFvwAv39s8wVrCh/aLgegq7KPOabnz5nfn5WBpO/MAaCVkkMH09ZzjlXLTnKoqBSASqWYpqZjf33w1x8AO1AJ60qi+f7IUQCiKOAR39Sz5msPlL44mZ9NQ/k59kESwvyID/GlV+lSgpo0JyKhNRHR8Sg13BRUCCHcgTR2QjQQ1W6noqKcCks5VksZ1opyLMYQLJiwVNqxFx9Hn7cXW0UZNmsZtooy7NZyVGsZqrWcfaH9yTHGY6m0E1GwhW45P6KzWTDYytDbLehtFoxqOUa7hcW263h+qz/lVjv9K1fynvENQs6R1+PWO5hlGwRAf90WPvc5u/k57YfijuyxdQAU8hTwN1nO+LxM9aFc8aUcE0FBwXQJDMHXqCdRac7Gwouw6X2xG/ywG/xQDX5g9EPV+6AUhDC9Z3v8fIz4q61Zn/cmOqMPOoMJvdEHvdGEotMDcKF/NN8G/HWDzkoLW4+nsX37djp26IBOp0O1WbGWFWErLyLGJ4HH/dpRXF6JvTiXNZkjMVQWY6gsxVRZRFhlLtHk469YyCu1s2R3LgBRnORe30lV3+sEIRz270h5kx4EtuhDpfXM7y2EEO5CGjuhOdVuR7Xbsdlt2GyVp362VWKz2VBtlZTr/CmsgKzCcvQVOVBeiN1mxW6zYbfbTv2vzYrdVklJaDusig82u4pP4X6M5kOo9lPzqDYrdpsV1VYJNisHowdRrg/CalOJOLmR6JMbwVYB9lOfK/ZKsFvBbuWPiLHk6GOotNvpULiM3oXz0alWdPa/DhP+ddhQr1byss/9rCmL48Vtf3BZZTqT7DPxwYqPUokJMP3tu4+veIwl9m4AjNEv4RXjf865Tp9VVDLP3heAkbpt3OUz75xjjZVF5FoqACjR+VS9b1MVyvClXDFhUUxUKL5EhkfQLygCfx89zWjPmoKRqEZ/7EZ/MAagmALQ+QSgMwVwSVRn+oe2YNO61Qy+8HqOqsMw+QfiFxCEn38Qfnp91Z67B//68z9XVpur1Wold948RvZO/Ns9oNqc87udFd9sKPvzKmnXZ1gN95BqC1x01rZ/+GkOPTq2ortFz0uWEI6cLMOSs5edhzsSbs0mSs0nQikkovRPOPAnHHiXjZVDuPJIDD2TwkiOD6BnWAkJLTrKXj0hhOaksdPIy7/toeP2b9lw4GuUquNHgHrqeFKxIYy50fecOrqkqlyW+yFhFcf53/EmFUVVUbBTogvmy6hJqKioKlxz4j/EWA+Dqv4196mxoGJRfHkr4pmqsSkF/6GFdU/VWAX1r5/t2NDzeOgrqCrYVZU7S/6PrtatKNj/GmsHVUX3189jfVKpRIddhUcrP+Bi+xp0f43VY0dR7X+NVbnQ9j5Fdj/sqsq/9f/hesMSdEB1/yz3Kk8llzBYv5Rphk8Zb1hwznUdYHmDw2oTAP5l+Ip7DT+fc+zTFh92qU0BeED/C6OM355z7IyjXdmgVgIQqd9Fd+OKc44tMueTb48Hi4UyvZVAY1m14ypUPYEGlTCDER+DDj0RHKpMxKr4UKkzUanzwabzwaYzYdeb6BTZjsiQZpgMOmIrjawssIHBD52PHzqjPzqTHwaTHxh8ab2/kJ8G9SPQzwd/3UUUKnfiFxCE0ehDoE5H4N/yeOSMrHoBV53zu8GpZqhwN7RNiMRojD3vWE+gMxiJa9mRZkYjvavebQucOoxcXlbCwW0rKdjzJz5Z64gr3s56e2t2Zhed+qPs5irTdE4SxIGA7tg7XEm7/tcSGBym0TcSQjRm0thp5KfNWdxkWU1SxfFqPz9gb8L3R6+oen23zzLa6w5XOzZbDWN+Tsrfxm6gm25vtWPNqj/LT+ZVvb7XuJsO+m3VjrWqerYcKax67W88RnP9wXN+p2OFpVT+9VdKbywmUl9w5oC/3TDbVmmj8q+G1s7576R9uhk06HVU6kyUqiZs6LArOuzosaHDhh6boicu1A+DIQCDTsFeEce+ipbYFT129Nh1hlM/K3pURU+PxHha+Mag1+kIKenBmuJS0OlRdUZUnQFO/6/eyJUxPRkSEI9RrxBVYmB1UQt0eiOKwQfFcOqQoc5oQm/wYWJYe3pv2snAARcRSFcyK27FaPLD6OOL0eSHj8kXHx9ffPR63j3jmw4GHj/nOiSf8aoDMLTacVarlYMn59E+Nsgj7uDv7nz9AmjXazD0GgycWt8e389lcNuubDlqJmD3RiyFRsKUIsJKlsLapZSveYKNAb2xtr2Cygpp8IQQDUcauxpYrVaHx9Ym5vYLElm1fjhHw3zR6XSgnNoHBgooChZjEP+KPXU4SlEgK/sOCioLUFFQFEDRVY216f2YFt/+VLQCRbkTWFWRz18DURRd1c+q3odX4zujADoFlBOTWFeRj6roUFBAp/vrkSU60On4T1x3dAroFIWggqfZXHESRVFOne/017yKokNRdHwV3Q2dTo9ep+BTkshea9Gpbev06HQ6dDr9qbF6HT8HJaDoDeh1CoaKHuSoVvR6A4rOgE6nQ6/Xo9Mb0OsN/G6zsXDRIoYMGYTROASofs8ewOdnvLoAeOGcv4PpZ7zqBNx1zrFnNlWJwKBzjrVarWRl7KR1pB9GYzDQ5KwxNrsdm4uuxHTk76E7zF/f+eoTX5dYq9VKqK+OS9uEM7xjExj6LyosE8nYvoqCTT+TmJ1OIsfoXroCNq7gjYop/FK8gZGdYxnUNoogX/m/3eq4+u+ts2mdr9S5a2MdiWmIvwuOzK2oqqrWPKxxSE1NJTU1FZvNxp49e0hLS8Pf31/rtIQQHkS1q1gKMgnIWUtc2W6uLZ+C/a9bhk4xfE5nn2wOh/bFEJ+MziB7VIUQNSstLSUlJYXCwkKCg4PPO1Yau2qYzWZCQkJIS0tj1KhRDj00OD09nSFDhtTqocG1HdvYedpaaZ2vq7fv7PnrO1994usS60hMRUUFn81ZiDmkJQt25PBV8a1EKwUA5BHKnsQxtBp+P2HR8Q7l7Y20rhtHaZ2v1LlrY93t33Oz2UxkZGStGjs5JlADo9Ho8C/KkZi6zN9YedpaaZ2vq7fv7PnrO1994l1Z53EBcMfQtvxrZEcO7vyWlStn0TLze6LJJzLzQyz/+ZRNYUOIGPwQLTr1qVP+3kTrunGU1vlKnbs21l3+PXdkXrk2XwghGoKikNShF/1uf42wJ3exrter7DG0waRY6VUwjz9mvUbKh6tYuOM4drscSBFC1I3ssRNCiAZm9DGRfNmdMPIOdq1bRMkf7/B5/nD2Z5zgz4wTDAs9yq3N8uh02b1y2xQhhEOksRNCCK0oStWtVD4vKOOzlQf5avVhRpXMpu/uNZh3v8PKpjfT+donpMETQtSKHIoVQgg3EB/qxxMj2rPqyUsJ7zyMTCWOYErpd/j/qHi9C6vSnqO8rETrNIUQbk4aOyGEcCP+Pgb6XvcI8VO2sa7XqxxRYgnHTN89r1LwchdWzvkPlTbX3ANRCOH5pLETQgg3pNPrSb7sTpo8sZnVHZ8hh3BiyGPBmi0Me3Mp87ZmIXerEkL8k5xjJ4QQbszoY6LPmMmUX3Y3y398m7l7u5KbW8J9X27gxugD3NAzjk79r0LRyX+nCyFkj50QQngEX/9ALkp5kkX/GsqDg1oR5AO3FbxL58W3suOli9m7aZnWKQoh3IA0dkII4UGCfY1MGtqWxQ/1IzdmABWqgY4VW2j5wxWsefsmTuYe0zpFIYSGpLETQggPFBkeTt/7/kP+7atYFzwYnaLSO/9n9KnJrJ71byqtFVqnKITQgDR2QgjhwWKatiZ50nfsHPENGfrmBFNCn10vMfXN91i9/4TW6QkhGpg0dkII4QXa9xlG0hPrWN3+KeZxIV+eaMX1/1nFg19tJDvfrHV6QogGIo2dEEJ4Cb3BQJ/rH6Pvoz+S0qcZigLLNu9CfasbK2c+haW8VOsUhRAuJo2dEEJ4mfAAH168ujM/338RD0euIVY5Qb8D75Lzck+2LP5W6/SEEC7k1Y3dpEmT6N+/Pw8++KDWqQghRIPrFB/CzZNeY233l8gjlET1GF3+uJ31r11NXnam1ukJIVzAaxu7DRs2UFxczLJly7Baraxdu1brlIQQosEpOh29Rt2L6eGNrGpyAzZVoWfR7/h80Ic1372J3S5PrxDCm3htY7dy5UoGDx4MwODBg1m1apXGGQkhhHaCQsLpe+//sf/qn9mnb0kwJezb+Ac3/GcV+3KKtE5PCOEkHtHYTZ06lQ4dOqDT6Zg1a9YZn+Xm5nLZZZfh7+9P27ZtWbRoEQAFBQUEBwcDEBISwsmTJxs8byGEcDetu/Un6fFV/NnmMd5SbmTNwXxGvLWMD35ZJRdXCOEFPKKxa926NW+99Ra9e/c+67MJEyYQFxdHXl4eL7/8MmPGjOHkyZOEhoZiNp+6xN9sNhMaGtrAWQshhHsyGH24IOUpvps0kkHtorHa7HRY9QjZM3qxfeWvWqcnhKgHg9YJ1MZNN90EwAsvvHDG+8XFxcyZM4eDBw/i7+/PVVddxeuvv87PP/9Mv379+L//+z+uu+46Fi5cyPjx4885v8ViwWKxVL0+3RACWK3WWud5emxtYhwZ29h52lppna+rt+/s+es7X33i6xLrTXXeJNDIByldWbx2Ex3SM4m0F8BvN7B69WW0HPsKIeHRDZaLu6/VP2mdr9S5a2Pdrc4dmVtRVdVjzpwdOHAg99xzDzfccAMAGzduZNiwYeTk5FSNeeCBB/D39+fll1/moYceYv369XTt2pV33333nPNOmzaN6dOnn/V+Wloa/v7+zv8iQgjhZqyWEsL2fcOlFYsBOKEGsyhqHKbEXhpnJoQoLS0lJSWFwsLCqtPMzsUj9tidS3Fx8VlfMDg4mIKCAgDefPPNWs3zxBNPMGnSpKrXZrOZxMREAIYMGYLRaKzVPFarlfT09FrFODK2sfO0tdI6X1dv39nz13e++sTXJda763wM29amE7TwUZrZj3Bd3jtsKL2I2Js+IDIqxqVb9rS10jpfqXPXxrpbnf/9SGJNPLqxCwwMPOvLms1mAgMDHZrHZDJhMpmq/cxoNDr8i3Ikpi7zN1aetlZa5+vq7Tt7/vrOV594qfP/6XTBSCw9BrLyi6dIzpxJSHEGV/5nM49foXBNj3gURXHp9j1prUD7fKXOXRvrLnXuyLwe3di1bt2awsJCsrOziYk59V+Tmzdv5o477nDaNjz5mLy38LS10jpfOffGtbGNoc51eiPJ42ZwYNtoUhfvJjdHYfLszfy88RDPXxpJk4QWTt+mp62V1vlKnbs21t3q3OvOsbNardhsNoYOHcqdd97JmDFj8PHxQafTMWbMGMLDw3nzzTdJT09n/PjxZGRkEBYW5vB2UlNTSU1NxWazsWfPHjnHTgjR6NlU+P2YwvxMHbfqfuEhw/f8FnI9SvNL0Ok84sYKQng8R86x84jGbvz48cycOfOM9xYvXszAgQPJzc1l3LhxLFmyhISEBN57772qGxPXldlsJiQkhLS0NEaNGuWxx+S9haetldb5yrk3ro1trHWekVNM+adX0826EYAdxk74j36X+JadnDK/p62V1vlKnbs21t3q3Gw2ExkZ6T0XT3z66ad8+umn1X4WFRXFvHnzXLZtTz4m7208ba20zlfOvXFtbGOr83bxYdgfX8Sqb16my6436WDdRvlXQ1jfegK9bngavcE5/5x42lppna/UuWtj3aXOG805dg3Bk4/JewtPWyut85Vzb1wb29jrvOe1j5J9aBQZsyfQ2bKRvvveZPdLv2K4+j2atula53k9ba20zlfq3LWx7lbnXneOXUORc+yEEKJ2VLtK5aFlDD2Zhi8WRllfoGVCPIPiVPSuvXBWiEbH686xa2hyjp178bS10jpfOffGtbFS52fKPbafH36awytHOwLQOT6YV0bE0rJZM4fm8bS10jpfqXPXxrpbnXvdOXZa8uRj8t7G09ZK63zl3BvXxkqdnxLXrC333f8oMRuOMv3n7XBsE80+v4b1SbfR88ZnMfpUf4/Qc/G0tdI6X6lz18a6S53LOXZO5MnH5L2Fp62V1vnKuTeujZU6r96VXZrQJymE7TO/xs9cQd9DH7Dv5QWoV75LUofeNcZ72lppna/UuWtj3a3O5Ry7OpJz7IQQon5Uu4o1cyVDTnxBqFKMVdUzP+BKrC2vcNqVs0I0NnKOXT3JOXbuxdPWSut85dwb18ZKndfOiexMjn31AD1KlwOQoWtO5eVv06Jzv2rHe9paaZ2v1LlrY92tzuUcOyfy5GPy3sbT1krrfOXcG9fGSp2fX0xiC5o88jPrf/0vLdZOo6X9AFO//56QEzHcf0krfAzVP7XC09ZK63ylzl0b6y517si88jwYIYQQLqHodPS87A7s967i5/DxfFZ5KW8v2suV7y5n++EcrdMTwivJHrsaePLJlt7C09ZK63zlpGrXxkqdOy44vAnD732Vt7ZlM/XnnRzOzsX/4zv5M2EEXcc+h4/J1+PWSut8pc5dG+tudS4XT9SRXDwhhBCuVWSFk3uW8UDFhwDsI5H1iXfgG9lc48yEcF9y8UQ9ycUT7sXT1krrfOWkatfGSp07x6YFn9Fy7TTCMVOp6lgddzM5kQMYNmKkR6yV1r9bqXPXxrpbncvFE07kySdbehtPWyut85WTql0bK3VeP70uu538XsNZ/9l99CxewoVZM8nIWsThZuG0Sx6kdXq1pvXvVurctbHuUudy8YQQQgi3Fx4dT89H5rChz5vkE0xLjnDwp3/zym+7sFTatE5PCI8kjZ0QQghN9RhxK5V3r2Ch4WKerhhH6uIMLn97OZsPn9Q6NSE8jjR2QgghNBcWGUtJ59uZesNAIgN92JtTzL4Pb2bl/z1AeVmJ1ukJ4THkHLsaePLl0d7C09ZK63zlNgiujZU6d43TazSoTTi97r+Amd/PYfThZZC1jEMzfqd4+Ju06TFQ2yT/RuvfrdS5a2Pdrc7ldid1JLc7EUII92E5sp5BOZ8SqRRiUxUW+I6ktPXVGIw+WqcmRINy+e1OysrKeOaZZ5g9ezb5+fmYzWZ+++03du7cyUMPPVTXvN2G3O7EvXjaWmmdr9wGwbWxUueuca61KszP4cCXE+llTgfgsBJP0bA3aNNT2ytntf7dSp27Ntbd6tzltzu57777sFqtzJ07l/79+wPQpUsXJk6c6BWN3d958uXR3sbT1krrfOU2CK6NlTp3jX+uVWSTeCInfcumhV8Rv/wJmqpHOfrrvbyS8wMPD++En49ew2y1/91Knbs21l3q3JF569TY/fLLL2RmZmIymVAUBYDY2FiysrLqMp0QQghxXt0Gj6Wwx2DWzpzAe7ldWPznEdL3nOTl0V3o3Txc6/SEcBt1uio2NDSU3NzcM947cOAAcXFxTklKCCGE+KeQ8Ch6PfwNN99yJ02CTRzIK+Hrj15mVeodlBYXap2eEG6hTo3dxIkTueKKK/j222+x2WzMnTuXsWPHet1hWCGEEO5nULsmLHj4Ym7pHsozhs/omzubk6/1YtuKuVqnJoTm6nQodsKECURHR/Pxxx+TkJDA22+/zcMPP8z111/v7Pw058mXR3sLT1srrfOV2yC4Nlbq3DUcXSt/Azx9TW+2R71FzNIniFePE59+I6s2XEXbG18lMCjUhdlq/7uVOndtrLvVudzupI7kdidCCOF5Ki1lhOz7msEVvwNwTI1kaezt+MV21DgzIZzDJbc7mTFjRq02/thjj9VqnDuT2524F09bK63zldsguDZW6tw1nLFWO1bMJeqPx4hTc7CpCq+2/oI7Rw0iyNf968Ddti917l517pLbnezcubPq59LSUn744Qf69OlDYmIimZmZrFmzhmuuuabuWbspT7482tt42lppna/cBsG1sVLnrlGfteo68GpKel7C6pkPsy27jPe3KfxweCX/vqYzl7SLdnKmp2j9u23sdW6z2Wo8TGmz2TAYDNhsNnS62l1a4EhMXeY/H6PRiF6vP+u92qp1Y/fJJ59U/Tx69Ghmz57NqFGjqt776aef+Oyzz2q9YSGEEMLZAoJC6XP/J6gZeTT7fiuHTpQyfeZP+DX5nfY3v0FIRBOtUxROUlxczJEjR6jpwKOqqsTExJCZmVl1i7aaOBJTl/nPR1EUEhISCAwMrFN8nS6eWLhwIV9//fUZ740cOZKbb765TkkIIYQQztS3ZSTzJw7glfm7GLLuefoW7CDvnRVs6Pc8PYbJv1WezmazceTIEfz9/YmKijpvQ2W32ykuLiYwMLDWe9QcianL/Oeiqiq5ubkcOXKE1q1bn7Xnrjbq1Nh16tSJ559/nilTpmAwGKisrOTFF1+kY0c5UVUIIYR78PPR88yVHdkV+xyHfp1IM/sRIlfez/qt35J0cyoRTRK0TlHUkdVqRVVVoqKi8PPzO+9Yu91ORUUFvr6+DjV2tY2py/znExUVxcGDB7FarXVq7OqUweeff878+fMJCwujZcuWhIWF8csvv8ihWCGEEG6nXa/BNHl0DSvjxlGp6uhZvATd+31ZP/dDVLtd6/REPTjj0Ke7qe93qtMeuxYtWrBq1SoOHz5MVlYWsbGxNG3atF6JCCGEEK7i6xdAv7veZu+m69D/NIEW9oP0XPcIHx4+yZU3PUiTYF+tUxTCKeq0xy4nJ4ecnBx8fX1p3rw5vr6+Ve8JIYQQ7qp1t4tI+NdqVja9m832lrx8uC1DXv+D2esyazwJXwhPUKc9djExMSiKUlUEf99taLPZnJOZm/DkO1V7C09bK63zlTvSuzZW6tw1GnKtFJ2e5JtfYPexR2j/0262HjXz5LcbCF38BO2ueZKYpq1rnEPr321jr/PT59jZ7XbsNRxOP92rnB5fG7WJMZlMdOzYkYqKCpKTk/n4449rNXdN7HY7qqqecY5dgz95Ijs7m+eff54+ffp49JWx8uQJIYRoXGwqLDmm0PzYHB42fEuJ6stvIdehNB/klBPhhWsYDAZiYmJITEzEaDRSbnX+uZK+Rt15z3dr27Ytu3fvxmazMWrUKO666y6uvPLKem+3oqKCzMxMsrOzqaysBFz05InaJNKiRQuOHDnijOk0JU+ecC+etlZa5yt3pHdtrNS5a2i9Vpl7t2D54QHaW7cDsMPYEb9r3iWhVedqx2udb2Ov8/LycjIzM0lKSsKuM9BpWnq9c/ynlZP6Eh0Res7mLi4ujmPHjqGqKpMnTyYmJqbap28tWbKEiRMnotfrCQgIYNmyZdW+d1p5eTkHDx4kMTERX99T53665MkTNVm9enVVZ+lN5I707sPT1krrfBv7HeldHSt17hparVWLDj2xt13G6m9fofOO1+lg3U75rKGsb3kvyWOfxmD0qTZO699tY61zm82Goiin9qq6cM9q1TbOQafTUVJSwvLly3nmmWeqHfvGG2/w9ttvc8kll1BYWIhOp6v2vb/PqSjKGWvlkidP/F379u3P6GBLS0s5ceIEb731Vl2mE0IIITSn0+vpc/3jZB26mn1f3UuX8vX03f82v7yaQYvxH9A+9vx7SoQ2/Ix6djw77Jyf2+12isxFBAUHOXQfO2tZyXnHnDhxgm7dugEwaNAgLr/88mrHXXDBBTz++OOMHz+ea6+99pzvOUudGrsPPvjgjNcBAQG0adOmxt2DQgghhLuLbdaWmMcWsmZOKs02v8Yr5kEceWc59w1syYRBrTAZHL9prHAdRVHw9zl3O2O326n00ePvY3CosTOXn/9+chEREWzatOnUWLP5nOOeeOIJRowYwZw5c+jZsycbN26s9r2IiIha5VaTOjV2a9eu5ZFHHjnr/ddff51JkybVOykhhBBCS4pOR++rHyBn4Djazt3Dwe3Hefv3fQRueJ+LB19Ji679tU5ReIj9+/fTrVs3unXrxsKFC8nMzKSwsPCs95zV2NXpwPSzzz5b7fsvvPBCvZIRQggh3El0WDAf3NST1JQeXBqwnzvKPqXVz9ew7sP7qbRatE5PeIDXX3+djh070qVLF7p06ULXrl2rfc9ZHNpj98033wBQWVnJ7Nmzz7iZ48GDBwkPD3daYkIIIYQ7UBSFy7rEcmHcGNZ/vpRehQvolzOLI8cXsSPSSNeBV2udotBAdnZ2rca9++67tXrPWRxq7N5//33g1K1N3nvvvar3FUUhOjqaTz/91KnJCSGEEO4iNDKGXg/PZvPi2TT543ESlFwSloxnzebZtL3lbULCIrVOUQjHGrvFixcD8PzzzzNlyhSXJCSEEEK4s66XjOFk14Es+OBeBlsW0vvkL2S8tYWVoxcwvHOc1ukJjWzdupVx48ad8V6XLl347LPPGjSPWjd2eXl5REae+q+Ru+6665zPhY2OjnZOZkIIIYSbCgwKpazjzeyIup3ghZN53zKSb7/cyMjOWUy7siPRQb5apygaWOfOndm0aZPWadS+sWvevDlFRUXA2c+KPU1RFK97VqwQQghxLm17DcbWfR0xfxxGv3Q/87Zmo+xNZ1zXAHqNmoAijyUTDazWjd3ppg6o9UN0vYE8HFx7nrZWWufb2B8O7upYqXPX8LS1+nu+RqORiZe2ZEiHKJ7/fg1Pn/yAmM0n2brre0LHvEtMszYu3b4ruHudW61WVFXFbrfX2JOc3gl1enxtOBJTl/nPx263o6oqVqsVvf7UPRMdWTenPSvWG6SmppKamorNZmPPnj2kpaXh7++vdVpCCCE8hN1uQ7dvPsOKv8dXsVKqmvgt+FpoMaTWN8cVNTMYDMTExJCYmIiPT/WPe/NUFRUVZGZmkp2dXfWo1tLSUlJSUmr1rNg6NXaZmZk8++yzbN68meLi4jM+27Fjh6PTuR2z2UxISAhpaWmMGjVKHg6uMU9bK63zbewPB3d1rNS5a3jaWtWU79GMbZR89wAdrVsB2G1oi/7Kt2jWPrlBtu9u8zu7zsvLy8nMzCQpKQlf3/Ofz6iqKkVFRQQFBZ3xONT6xphMJjp27EhFRQXJycl8/PHHVXvY/m7Tpk3k5eUxePBgALZv386NN96IXq9nyZIlBAUFnTG+vLycgwcPkpiYWPXdzGYzkZGRtWrs6vTkieuvv57WrVszffp0r9+jJQ8Hdx+etlZa59tYHw7eULFS567haWt1rnyT2nXH/vgfrP7+TTpse4W2lbup+O4yPuv5LTeNvNhpjyVrrHVus9lQFAWdTlfjntDTh0dPj6+N2sScfqSY1Wrlkksu4ccff2TMmDFnjduyZQu7du1i6NChAMydO5ebb76ZRx99tNp5dTodiqKcsVaOrFmdGrtt27axfPly2a0shBBCnINOr6fPmMnkXHAN+768j0NF8NyfZXy1bzkvj+5Mz2ZyU3+nqiip/n27HSrLgeCaxwIoOtCbar1ZvV5PcnIy+/fvP+szm83GM888g8ViYf78+bz66qu89dZbGI1G/vzzT3744Ydab6e26tTYDR8+nFWrVnHBBRc4Ox8hhBDCq0THNyfqkV84viWTyLl72ZdTzH0fzOONhGV0ufklAoPDtE7RO7xY/T0EdUBA0iVwy/f/e/OVVmAtrX6eZhfBuJ9rvdmysjKWL1/OM888c9Zner2eZ599ll27dvHSSy8BcM899xATE8M999xT6204ok6NnZ+fH8OHD2fo0KFn3bfu70+kEEIIIQQoOh3DuzWjb5tYXpy3k0Gb3+CC3LVkv76QjAH/puug67ROUTjoxIkTdOvWDYBBgwZx+eWXa5vQX+rU2LVo0YLJkyc7OxchhBDCq4X6+zDj2q5sa/IAx35/lDj1ODFL72Tdpq9pcdPbhEfHa52i53ryWLVv2+12SopLOOOSg0f3nXsepXanmZ0+x85ut2M2m2ufp4vVqbGbOnWqs/MQQgghGo1O/UdR1v0SVn3+GL2yZ5FsXsjJ9/qwtvuTJF9xj9zYuC58Aqp/324Hg612Y/8e4yRBQUFn3UHElerU2M2YMaPa900mEwkJCVx66aWEhobWJy8hhBDCq/kFBtP33g/YuzEF3dwHaWk7QK+NT/DpwWNcevOTJIZ7910nGouBAwfy8ssv06tXL15++WWXb69Ojd2GDRv44Ycf6NOnDwkJCRw5coTVq1dzxRVXcOzYMW6//Xa+//57Bg0a5Ox8hRBCCK/SuvsArB1Xs/KrZ4ne/z0vZ3Xn5TeWMnloG269sDl6Xe3uvSYaVnZ2dq3GRUREsGbNmqrXru6N6rSvt7Kyku+++46lS5eSlpbG0qVL+f7771EUhT///JPU1FQmTZrk7FyFEEIIr2T0MdFv3Avo7ltJl+ZxlFltvPDLdn6bkULG1lVapyc8SJ0au/T0dEaMGHHGe8OGDWPBggUAjB07ttr7uQghhBDi3Jo3CeWrO/vy0jWdudX3D0aWz6PZtyNY+Z8HKS9tuPO0hOO2bt1Kt27dzvhzyy23NHgedToU26FDB1588UWeeOIJDAYDNpuNl156ifbt2wOnHjkm59gJIYQQjtPpFG7o3ZS8hAfY8OVuepQspd+xmWS+ko558Kt0vPAyrVMU1ejcuTObNm3SOo267bGbOXMmc+bMITw8nFatWhEWFsacOXP4/PPPATh+/DhvvvmmM/MUQgghGpXIuGb0ePRnNvR7l1zCSFSP0TE9hTVv3Yj5ZK7W6bmFOjzu3u3V9zvVaY9dmzZtWLduHQcPHuT48ePExMTQrFmzqs979+5N796965WYEEIIIaDHsJsp7D2C1V9Mos+JOfQ+OZcV7x9hY+JkRnhhY1MbRqMRRVHIzc0lKioKRTn3BSZ2u52KigrKy8sdelZsbWPqMv+5qKpKbm5u1bNi66JOjd1p0dHR6PV6VFXl8OHDADRt2rQ+UwohhBDiH0LCIunzwGfsWDUfvwWP8u+ya9m2R8/hLzfx/NWdiQv10zrFBqXX66vuynHw4MHzjlVVlbKyMvz8/M7bANY1pi7zn4+iKCQkJKDX6+sUX6fGbuvWrdxyyy1s2bKlKgkAHx8fSkvP8ew1IYQQQtRLh77DsfS8lIGL9rHzjwx+353LV69P4qIOTel17aPoDPXaX+NRAgMDad26NVar9bzjrFYrS5cuZcCAAbXeC+ZITF3mPx+j0Vjnpg7q2Njdc889jBo1ipUrVxIbG0tWVhbPPPMMLVu2rHMiQgghhKiZyWhk4qWtCDy5hy055TyQ/zU+u2zsfulHTKNTSWqfrHWKDUav19fYBOn1eiorK/H19a114+VITF3md6U6HQzevn07zzzzDL6+vgD4+vry/PPP89xzzzk1ufrIzMykR48e+Pr6UllZqXU6QgghhFPF+sMbd49iY4fHKFb9aFu5i7hZQ1n10STKy0q0Tk9opE6NXWhoKAUFBQDEx8ezefNmjh8/3qDPQqtJVFQUv//+O3379tU6FSGEEMIldHo9fa5/nJI7V7DR/wJ8FBt9j3xMziu92LHyV63TExqoU2N3xx138McffwAwceJE+vfvT+fOnbnzzjudmlx9+Pr6yr30hBBCNApNElrS7ZFf2NDnTfIIpan9KEnzx/HcN8soLDv/OWjCu9SpsZsyZQpXX301AHfeeSdbt25lxYoVvPLKK3VOZOrUqXTo0AGdTsesWbPO+Cw3N5fLLrsMf39/2rZty6JFi+q8HSGEEMIbKTodPUbcinHietaEX8EblaP5eIOZwa//wS9bsrzynm/ibA5dPNGhQ4cax+zYsaNOibRu3Zq33nqLp59++qzPJkyYQFxcHHl5eSxYsIAxY8aQkZGBxWLhhhtuOGNsYGAgc+fOrVMOQgghhKcLCYuk94NfoGbksejHbezPLWHmV18SN38hsWPfJSaxldYpChdyqLE7cOAATZs25cYbb2TAgAFOuV/LaTfddBMAL7zwwhnvFxcXM2fOHA4ePIi/vz9XXXUVr7/+Oj///DO33HILS5Ysqfe2LRYLFoul6rXZbK76uabLqP/u9NjaxDgytrHztLXSOl9Xb9/Z89d3vvrE1yVW6tw1PG2ttM63Ntvv0TSEn+7rxwdLMrhs1eO0Lz1MyUcXsrLtg3S/ehL689waRercverckbkV1YF9s0VFRXz//fd8+eWX7Nu3jzFjxnDjjTfSpUuXOiVanYEDB3LPPfdU7YnbuHEjw4YNIycnp2rMAw88gL+/Py+//PI55ykvL+fyyy9n/fr19OjRg2nTptG/f/9qx06bNo3p06ef9X5aWhr+/v71/EZCCCGEtspPHqXDoU/orO4BYAct2drsVnzD5aECnqC0tJSUlBQKCwsJDg4+71iH9tgFBQUxbtw4xo0bx/Hjx5k1axZ33XUXJSUlfP3117U6VOuo4uLis75EcHBw1VW55+Lr68vChQtrtY0nnniCSZMmVb02m80kJiYCMGTIEIduaJienl6rGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vnWZft2222s/PEtOu18gw5KBq0PTmVtxY10vuFZfP0D6z2/s/N1Vrw31PnfjyTWpM4PNTOZTPj5+eHr60t5eTl2u72uU51XYGDgWV/IbDYTGBh4jgjHmUwmgoODz/gjhBBCeBOdXk/y6EkU3baUDf4XYVRsXJD1Ga+mpvJnxgmt0xNO4tChWIvFwk8//cQXX3zBxo0bueqqq0hJSXHqveL+eSi2uLiYiIgIDh06RExMDAADBgzgjjvu4JZbbnHadgFSU1NJTU3FZrOxZ88eORQrhBDCa1mOrMeUs4GJlnsAhd5RdkY1tRHo47zz54VzOHIo1qHGLjQ0lJiYGMaOHcuQIUMwVHPiZe/evR3PmFO7Mm02G0OHDuXOO+9kzJgx+Pj4oNPpGDNmDOHh4bz55pukp6czfvx4MjIyCAsLq9O2amI2mwkJCSEtLY1Ro0Z57K5bb+Fpa6V1vnIo1rWxUueu4WlrpXW+ztp+UXklry/cy5drMglSi/nW93kKut5DxyHjWLhokdS5m9S52WwmMjLS+efYhYaGYrFY+PTTT5k5c+ZZ98RRFIX9+/c7njGn7oc3c+ZMAJYtW8Ytt9zC4sWLGThwIO+99x7jxo0jIiKChIQEvvnmG5c1df9kNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+/C0tdI63/puP9xo5Pmru3BNz0S2f/kEbSyHYfOTbN31LZaEFKlzN6lzR+Z1qLE7ePCgo7nU2qeffsqnn35a7WdRUVHMmzfPZds+H0++PNpbeNpaaZ2v3O7EtbFS567haWuldb7O3n7n2EDaPvAKf84OpefBj+hs2UCrfdtY88UBul/3JEYfU73mlzqvH5fd7sTbyTl2QgghGrvywmzaHPiU7uqpBw7spSnrE2/DL7KFxpk1Xi47x66xkHPs3IunrZXW+co5dq6NlTp3DU9bK63zdfX2KywWfv1oGoMLviKUYr61DWBLzxd5eHArAk0OHexzSr6Nvc5ddo5dY+TJx+S9jaetldb5yjl2ro2VOncNT1srrfN16Xldzftj6fUgf37zFC9kj+TkqsOk78zh+ctbc2nnut3YWOq8bhyZt873sRNCCCGEdwuPiuWChz7nrdsGkxjuR1ZhGfZvxrHhlSvIPXZQ6/RENWSPXQ08+WRLb+Fpa6V1vnLxhGtjpc5dw9PWSut8G7rO+zUP5ZcJFzDr13Qu2boJQ4mdov/ry8r2D9HjqofQ6fUuzbex17lcPFFHcvGEEEIIcX7l+YfpfOgTOpABwDZasz3pVnzDEjTOzHvJxRP1JBdPuBdPWyut85WLJ1wbK3XuGp62Vlrnq3Wd2yor2fjD63TZ/TYBSjlWVc/auJvoPPZZfP0CnJ5vY69zuXjCiTz5ZEtv42lrpXW+cvGEa2Olzl3D09ZK63y1qnOj0Ui/lKc4fuQG9qbdT7fSP4k/+ivXfjCSZ65J5sJWkS7Jt7HWuVw8IYQQQgiXa5LQkm6P/cqGfu/yks8EdufbuPGj1Uz+ej0n87K1Tq9Rkj12NfDkky29haetldb5ysUTro2VOncNT1srrfN1tzrvPOgGXrigksiFe/liTSYBW2bCzu9Z3eVRul92D5U2W73ybex1LhdP1JFcPCGEEELUz0GzysUZL9KN3QBsVDqwt/k4TCGxGmfmueTiiXqSiyfci6etldb5an1SdUPP19hPqvYWnrZWWufr7nVurbCw6dt/033/f/BTKrCoRn4LuJIBd71KQEBQg+bjDXUuF084kSefbOltPG2ttM5XLp5wbazUuWt42lppna+71rnRaOSCcS9wdP9NnPhmAl3K13Nl6XccfHsNR0e+S8fkgQ2aT11j3aXO5eIJIYQQQmguvkV7Oj+2kNXdX+aEGkyC7SiPfLeDJ77fSmGpZ5xP6Wlkj50QQgghXEbR6egx8nbmlAVRWpLHzr3N2LnmMOk7jvPKAAMDLxqAopP9TM4ijV0NPPkqGm/haWuldb7udrWcq+dr7FfLeQtPWyut8/XEOjf6BXLtlVfT8mgRT8/ZgfHELi5a9BRb/uxB2LVvENusnUvy8YY6l6ti60iuihVCCCFcr9IO5owVpBR9jEmppEz14bfAa1BbDkWnl31O/yRXxdaTXBXrXjxtrbTO192vlnP2fI39ajlv4WlrpXW+3lLnmXu3UPrjQ3Sq2AJAhq45FcNfo1X3AU7LxxvqXK6KdSJPvorG23jaWmmdr7teLeeq+Rrr1XLextPWSut8Pb3OW3ToidruD9bMSaXN5pdoaT+A/ZfRrFh/I91ufZMgX+N54+uzbWfHyFWxQgghhGj0FJ2O3lc/gP2+NawNGYpOUVl8RGHI60uZv00eS+Yo2WMnhBBCCM2FR8cT/vBstqyYz5IVBrLzy7nni/Xc3rKQ2wb31Do9jyF77IQQQgjhNrpcOJx5D1/ChEta4q+zcmPmdEI/HYB93wJslZVap+f2pLETQgghhFvxNep5dFg75t7egQpTOAFKOVcXfUHmqxexb/NyrdNza3IotgaefN8bb+Fpa6V1vp54f6v6zNfY72/lLTxtrbTOt7HUeWLT5tgnL+bPH9+m0843aG3bh+37y1m54jra3/AiAUEhLtm2u9W53MeujuQ+dkIIIYR7qigpICYjjf62VQBkqRF8nTCN5tE1N3eeTu5jV09yHzv34mlrpXW+3nJ/q4aI94b7W3kLT1srrfNtzHW+e+Vcmiyfwu7KGG61PsbQDk14+rJ2xAT7Om3b7lbnch87J/Lk+954G09bK63z9fT7WzVkvNS5+/C0tdI638ZY590vvY6yviPYtmgLhlWFLNiRw/aMQ7zaPoPe105Gb6i+tfHkOpf72AkhhBDCa/kFBPHAlRcy98GL6N40lAdtn9Nv14tkvNSPjC1/ap2epqSxE0IIIYRHahcTzHf3XECzLhdRpPrRpnIPzb67jFXv30NJUaHW6WlCGjshhBBCeCydTqHvdY9iuXs16wMHYlDs9D3+FUWv9WTTollap9fgpLETQgghhMeLjGtGz0fmsHnAh2QRRQy5dFt2N9/83/MUVmidXcORxk4IIYQQXqProOsIeWQ9q2JuJFsNY8aRDrywSc8Xqw9js3v/jUDkqtgaePINDb2Fp62V1vk2lhuXOiPeG25c6i08ba20zlfq/PyMJn963v4Wuw4/SbN5B9hy1Mz0uTsJWfE8nYbeTvNOfZy2PblBsRuTGxQLIYQQ3sWuworjCrbM1bxheJdKVUe63whKW12FwWjSOr1akRsU15PcoNi9eNpaaZ1vY75xqdyg2HN52lppna/UueOxPTq3Jee7R+lZshSALKLIvug5Ol18bb22Jzco9jCefENDb+Npa6V1vo3xxqVyg2LP52lrpXW+Uue1F5PYksRHf2bTolk0WTaFWHKJXX4PGzZ9RWLK20TFJdVre3KDYiGEEEKIBtbt0huqLq6oVHX0KP6D7P+7hs/+POAVF1dIYyeEEEKIRsU/MIS+97zHodG/sNvQlhetN/DMTzu45v0/2XHMrHV69SKHYoUQQgjRKLXscgG2jqsYseYwW+fvZnNmAd++N4XB8RVURg3SOr06kcZOCCGEEI2WXq/jln5JDOsYw2s/rGDy/lkEHLdwLDudrSGV9BiSonWKDpFDsUIIIYRo9JoE+zJj3KXsHfA22UQSp+TRY8W9bHj1CnKPHdQ6vVqTxk4IIYQQ4i/dLr0Bv4mrmW8a+dfFFUvx/b++rP76JWyVlVqnVyNp7IQQQggh/sY/MARLhxvIuOon9hjaEKSU0WPHDB5I/Y7txwq1Tu+8pLETQgghhKhGi059afn4Sla3f5L3GMO8rECufHcFL87bSWm5Rev0qiWNnRBCCCHEOegNBvpc/y9umPwWl3WOxWZXWbHsd06+3JlNi2Zpnd5Z5KpYIYQQQogaNAn2JfXGHozedRzlm3eItx8nftndrN/wBRVxo7VOr4o0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3D09ZK63ylzl0be76Y/i3DKX3gC/78+hl6Z31Fz5JlvLHzYpIO5dOtWbjD+TmST20oqqp6/vMznCQ1NZXU1FRsNht79uwhLS0Nf39/rdMSQgghhBsqzz/MycxtzFSv4NEuNvQuOsGttLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tIjKWigu/nLeTay1z3d8FsNhMZGVmrxk4OxdbAaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlefeKlz9+Fpa6V1vlLnro2tbUyIj2t/F47MK1fFCiGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIRdPVOP0hcKlpaWYzWaHrqKpbYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tudW42m4H/9SfnI7c7qcaRI0dITEzUOg0hhBBCiCqZmZkkJCScd4w0dtWw2+0cO3aMQYMGsW7dOodie/Xqxdq1a2scZzabSUxMJDMzs8Z70ojar6u70DpfV2/f2fPXd776xNclVurcNbSuG0dpna/UuWtj3anOVVWlqKiIuLg4dLrzn0Unh2KrodPpSEhIwGAwOPxL0uv1DsUEBwfL/+HXgqPrqjWt83X19p09f33nq098XWKlzl1D67pxlNb5Sp27Ntbd6jwkJKRW4+TiifOYMGFCg8SImnnaumqdr6u37+z56ztffeKlzt2Hp62r1vlKnbs2Vuvfb13JoViNnH5sWW0eDyKE8ExS50J4P3erc9ljpxGTycTUqVMxmUxapyKEcBGpcyG8n7vVueyxE0IIIYTwErLHTgghhBDCS0hjJ4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF7CoHUCrpSbm8v48eNZvHgxiYmJvPfee1x66aU1xtntdo4dO0ZQUBCKojRApkIIIYQQ1VNVlaKiIuLi4tDpzr9PzqsbuwkTJhAXF0deXh4LFixgzJgxZGRkEBYWdt64Y8eOkZiY2EBZCiGEEELULDMzk4SEhPOOUVRVVRsonwZVXFxMREQEBw8eJDY2FoABAwZwxx13cMstt5w3trCwkNDQUD766COuuuoqjEZjrbZptVpZsGABQ4cOrTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6V1vlLnro11tzo3m80kJiZSUFBASEjIecd67R67vXv3EhISUtXUAXTt2pXt27efNdZisWCxWKpeFxUVAeDv74+fn1+tf1EGg6HWMY6Mbew8ba20ztfV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudVqBajV6WFeu8du2bJl3Hrrrezbt6/qvaeeeoqCggJSU1PPGDtt2jSmT59+1hxpaWn4+/u7PFchhBBCiHMpLS0lJSWFwsJCgoODzzvWa/fYBQYGYjabz3jPbDYTGBh41tgnnniCSZMmnTHu9Dl2Q4YMcWjXbXp6eq1iHBnb2HnaWmmdr6u37+z56ztffeLrEit17hqetlZa5yt17tpYd6vzf/Yz5+O1jV3r1q0pLCwkOzubmJgYADZv3swdd9xx1liTyYTJZKp2HqPR6PAvypGYuszfWHnaWmmdr6u37+z56ztffeKlzt2Hp62V1vlKnbs21l3q3JF5vfY+doGBgVx55ZVMnTqVsrIyfvrpJ7Zt28YVV1yhdWpCCCGEEC7htXvsAN577z3GjRtHREQECQkJfPPNNzXe6qShPP3TDpJ3fcf6wz+gmoLAFITONwS9XzAGvxAMwVGQ0JsgXwNBvkaCfBSP+q9YIYQQQjQ8r27soqKimDdvntZpVGvhzhzurVhJsxM51X5+wN6ESyreqHr9s8+TtFSyKFYCKNUFUK4PwmIIxGoMpsy3CataPkiwr5EQPyNJJZsJNKr4BUfiHxJBUFg0AYEhKDXc1FAIIYQQns2rGzt39siQ1qxZPoKjwXp01mJ0FcUYrEUYK4sx2UrIJoJok4liSyWlFTaCKcVfseCPBez5YAesQBkcKojm5sOXVc39s88UOukOnrE9q6qnSAnguK4JT0a+RaifkTB/Hy4tmUu4rhidfwTGoEh8giPxD4kmKLwJweHRmHzlqmAhhBDCU0hjp5HRPeKZl30pvUaOrPYQaxtgzV8/V9rsFJ9M5qg5j7Kik5QX5WMtOYm1pBB7WQHFNgPjQ5Mwl1kpLLNizmrKQauNQHsRwWoxPkolRsVGOGbMlX5sPFxQtZ1bfWbT+R9N4GkFagA91P8SHuhDRICJ2yq+IkY5gc0vEiUgAn1QNKbgaPzCmhAcGUdYTHN8DLJXUAghhNCKNHYewKDXERrZhNDIJuccM/iMVz9X/aTa7ZSVlVBUkEdJQQ7FpeX8n39bCkorOFlqJW/fSNYUH8JoOYmvtRB/WyFBdjPBajEn1UBKKmyU5JeRmV9GC59lp/YEFpy9/ULVnzaWjwj1NxIVaOJ++5fE605Q6RcJAdHog2PwDYslICKesCZNCY2MkefwCiGEEE4mjZ2XU3Q6/AKC8AsIgvjmAHT++4CL/11tnN1mI9xcyGKbiRPFFk6UVFC49z5WFhxEKc3DUJaPqeIE/pUFBNsKyFdP3R+woNRKQamVVj6r6Kg7BNXceses+tO28r9EB5toEuzLLZXfEqM3owbGYgiNwzc8nuDopkTGNcc/8PyPThFCCCHE/0hjJ6ql0+sJCQsnBGgeGXDqzY53n3N8hM3OhvJK8oot5BZZKN49mVUFB6HoOPqyXEyWEwRWnCDUnk+eGkSFzc6Rk2UcOVnGcz4L6aA7BNVcR3KUKG4P/S96i441tp0MqFxBhK+Cf1QzQmNbEBWXhNGn+nsQCiGEEI2NNHbCKXR6HeEBPoQH+NCmSRC0GnfOsYEVVlaUVpJdWE6OuZz8nbey8uR+DKXZ+JXnEGTNI8J2gkCljGK7iV3ZRYCO7Wsyucknlfa6zKq57KpCjhLGCWMs+QEtWd3xaRLD/EgI86eZXxlNomPQG+SvuRBCiMZB/sUTDc7Hx0i8j5H4UL9Tb3R+uNpx5oITGHJz+LAihPQV64hIbMWJPclsLwkjxJpDtD0PH6WSaPKJtuazO7+QtxftrYr/1edxopSjZOsiOekTS2lAIvawFvhEtyGsaQdiW3XF16hviK8shBBCNAhp7GpgtVodHlubGEfGNlZ+AcE0DQgm1mqldJ/KkIuTMA7+sOpzu81Gdu4x8o9lUHx8PydKK7neEE/myTKOniynSclJjIqNePU48ZbjYNkE+UAG7FsRR7uKV4kN8aVZuB/jbd8RHBiAKaolIYntiU1qj4/Jt055a/27dfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnXuyNyKqqqqyzLxMKmpqaSmpmKz2dizZw9paWn4+8t93DyV3W7HWnoSe0kuhtI8fC05hFRkE2nLYa89lgcrJvw1UmWL6Q6ClbKqWKuq54jShGx9HIdM7dgWPowYP5VoPzDJTj4hhBANqLS0lJSUFAoLCwkODj7vWGnsqmE2mwkJCSEtLY1Ro0bV+lFeVquV9PR0hgwZUmOMI2MbO1eslaqq5JdaOXSilMO5hcRveRcf80FCyw4TW3mUAKW8auwiW3dutz5a9Xq+3xQspnBKg1uhi+lIaPPuxLfqisnXz2X5OsLV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudlsJjIyslaNnRyKrYHRaHT4F+VITF3mb6ycvVYxPj7EhAbQp2UU9H2z6n3Vbif76H5y92+h5OgOsiwh9LaEsy+3GEryaKfuh/L9UL7u1JW8W/7aw6dPYHv4EA53vBtzgUKvcjtx/tr9bl39d8vZ89d3vvrES527D09bK63zlTp3bay71Lkj80pjJ8Q/KDodMYmtiElsBVxDX+Cmvz47UWBmx85ZFB3ZATk7CCzcTWLFfoKVEprbD7EkO5MZR/YCer7Y+StLfB8hy9Sc4vDOmJr1JK7DhTRJaCnP7RVCCOES0tgJ4YCI0GAi+o0ARlS9p9rtZB/JIHvvevxKAhlR2IT1Gdk0rcgkkgIiLRshayNkfQar4AQhHPFrx+GkawnsehVdEkKICJR78QkhhKg/aeyEqCdFpyOmaWtimramGzDaamXevKNcMvA29mT04GTGepSsjUQUbqdZ5UEilEIiylbz/ZZ2zNwYD0C/4HweNX5DRWxPwjsMpHmnfnLjZSGEEA6Txk4IF/HzD6BNj4HQY2DVe+WlxezbvoqCfasxWbvQMjeAjNwSEkq20MO4FPYthX1vUDrHxG7f9hRFJxPY+iJadB9EQJA8Xk0IIcT5SWMnRAPy9Q+kXa/B0GswfYEngaJyK/t2RLJymy9+2WtpXrqFEKWETpZNkLkJMj/ijt8e5XjMQHolhXNhTCXdm0UQHh2v7ZcRQgjhdqSxE0JjQb5GuvfoAz36AKduvHxwz0aOb1uCLnMV8UWbWWtrTeHRQrYeLSTM8A2XGn4kQ9+CnOgLCGw/lNa9BuPrF6DxNxFCCKE1aeyEcDM6vZ6k9skktU+ueu/XgjLWHsxn3cGTtNlRDBXQ0raflln7IesLyhcZ2eLXhdKE/gRccDdyd0ohhGicpLETwgPEhfoxqls8o7rFw1XfkZedycG181D3/U6zwjVEK/l0KV9Pwd5d9NiWjL9Rz++lW7k6Oose3ZMJiWii9VcQQgjRAKSxE8IDRcYkEnnF3cDdqHY7h3ZvJGvjPDJzTmI6YaDYauenLcd4zDSRgGX5bDd1pqj5cJIuHENM09Zapy+EEMJFpLETwsMpOh3N2vekWfue9AVGlFn4YPZv6EOjqdgUiMGeR8eKzbB7M+x+mX36luQlDKFJ3+tJatcdRVG0/gpCCCGcRBq7GlitVofH1ibGkbGNnaetldb56lQbrUNUhgzugnHEOg4d3MnRVd8RejiddhU7aGXLoNWhDD7N2M+44HsZ0j6aIe2i6J4Ygk6vr3F+Z3+/+s5Xn/i6xEqdu4anrZXW+bp6+1Ln7lXnjsytqKqcZn1aamoqqamp2Gw29uzZQ1paGv7+/lqnJYTTVJSZUbI3kWhez9vlI1lh7whAD2UP7/q8y0b/CymJuQBTaKzGmQohhDittLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfOt7fZLLJUs23eChTtz6LXrZW5S5ld9ttvQhpMtr6LFwJsJizyzyXP296vvfPWJr0us1LlreNpaaZ2vq7cvde5edW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfOtafuhRiNXdEvgim4JlJd+zPrFs9Bv+4ZOpWtpW7kHds/Auus1tgf0Jm/Q6/Tv1haTQV/r+Z2dryvjpc7dh6etldb5unr7UufuUeeOzCuNnRACX/9Ael52B1x2B3nZmez7fSYRGT/Q2raPqJI9XP1tBkFzM7msSxwpHeQZtkII4a6ksRNCnCEyJpHIlCnAFA7tXM/qzVuJOeBPVmE5367Zz8ObH0TRRbFRyab78PEYfaTRE0IIdyGNnRDinE7fRmW0XWX1/hOsXvoroYeKiFYLYMNj5G74N/uaXU/rEfcTGZOodbpCCNHo6bROQAjh/vQ6hQtaRfLwbTdz4o51/Ox/DXmEEsVJ+h36gOD3u7Hu9WvZuW2D1qkKIUSjJo2dEMIhkTGJ2Ntehd8j21jXcwa7DW3xUSpJNqcz6ctVXP3eCuZsOkpFpV3rVIUQotGRQ7FCiDrxMfmSfMXdcMXd7NmwhH0rf2LfsSSshwvYeHgT2YHP061tK7pfOQEfk6/W6QohRKMgjZ0Qot7a9BhImx4D6VVk4as1h1mwcj3jrd9g2l5J1vb3yew8ge5X3CcXWgghhIvJoVghhNNEBZl48NLWfDvpcja2fZg8Qokll95bp5H7706s+e5NrBUWrdMUQgiv5fGN3UsvvYSiKKxatarqvfHjx2MymQgMDCQwMJCOHTtqmKEQjY+vfyB9U6YQ+Nh2VrWeTB6hxKk59N46lZx/d2Zh+jwqbXIOnhBCOJtHN3ZHjx4lLS2NmJiYsz6bPn06xcXFFBcXs337dg2yE0L4+gfS98ZnCHh0G6taT+IEIYTZC/jXogIuff0Pvl1/RBo8IYRwIo9u7CZPnsz06dMxmeS8HSHcmV9AEH1vnIrfI1tZ1ONdCIji0IlSHpm9mbmv3YHl2FatUxRCCK/gsRdPLFmyhLy8PK6++moefvjhsz5/5ZVXeOWVV2jbti0vvfQSAwYMOOdcFosFi+V/5/2Yzeaqn61Wa61zOj22NjGOjG3sPG2ttM7X1duvz/xGkz/DR17NgMGVfLkmk61L5zDG+hMchw1vrCDqmleJadamwfKpS6zUuWt42lppna8717kr5mvsde7I3IqqqqrLMnGRyspKevXqxeeff06nTp1ISkpi1qxZ9O3bF4CNGzeSlJREQEAAs2fP5r777mPbtm0kJlZ/Z/xp06Yxffr0s95PS0vD39/fpd9FiMas0lJKQMaPDC5fgEGxU64aWRhwOZYWl2Ew+midnhBCuIXS0lJSUlIoLCwkODj4vGPdsrEbOnQoS5curfazKVOmEBQUxL59+3jnnXcAzmrs/mn48OFcd9113HbbbdV+Xt0eu8TERNLS0hg1ahRGo7FWeVutVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/FarlZ+/+YSOx2bRqWILAMeUaLL6PE3nS65H0Z3/jJH65FOXWKlz1/C0tdI6X0+s8/rM19jr3Gw2ExkZWavGzi0PxS5YsOC8n1911VUsXbqU2bNnA5Cbm8tll13Gq6++yq233nrWeF0N/zCYTKZznqdnNBod/kU5ElOX+RsrT1srrfN19fadOb9vWAJtxi5k/aIvSFjzAnFqDvaV07nvaAuevLIbLaICXZqP1Ln78LS10jpfT6pzZ8zXWOvckXk98uKJTz/9lB07drBp0yY2bdpEXFwcn3/+Oddffz0A3333HSUlJVRWVvL111+zfPlyBg0apHHWQojzUXQ6eo68ncDJG1gZN44XbONZuLeQYW8u5eV52ykpKtA6RSGEcHtuuceuJqGhoWe81uv1hIeHV50P98Ybb3DbbbehKApt27blhx9+ICkpqeETFUI4LCAolH53vU1MXgllP29nye5czCs+omTNj+wf9DqdB1ytdYpCCOG2PLKx+6eDBw+e8Xr58uXaJCKEcJrmkQF8Mr4Xi3YcJ+67Z4i25xP9+3hWb51Ll/Fv4hcQpHWKQgjhdjzyUKwQonFQFIXBHWNoPnkJqyOvAaBP7rfkvNaXvZuWaZucEEK4IWnshBBuzy8giD73f8KWiz8mlzCa2Y+Q9MMoVn7yLyqtFVqnJ4QQbkMaOyGEx+hyybUY71/FhsABGBUbfQ7+H1P+8w25ZVpnJoQQ7sErzrETQjQeoZExdJ80h3Vz/48/12/iu+xofHJUTE2PcFO/JBRF0TpFIYTQTK0au2+++aZWk+n1ekaPHl2vhIQQoiaKTkfylfcSO6CMFV9vZPWBk3zy80LaLf+J5rekEhnTVOsUhRBCE7Vq7FJSUhgwYAA1PaRi7dq10tgJIRpMfKgfn41P5l8f/8qN2R/Rq3QXJz+4kK2XvEXni6/ROj0hhGhwtWrs/Pz8+P3332scFxYWVu+EhBDCETqdwiXxEHrhm2T8dC8tbQcI/v02Vh3eRJ8bp9X4SDIhhPAmtWrs9u/fX6vJ9uzZU69k3JHVanV4bG1iHBnb2HnaWmmdr6u37+z56zvf6bj41l2xT1zC6v/eS5+CefTNeIt1r2+h9e0f4R8Y4rRtS527hqetldb5NtY6r0u8N9S5I3Mrak3HVxuR1NRUUlNTsdls7Nmzh7S0tKqnWQghPINqV7EfWMQVhV9iVGzspSnrWj2Cf1Co1qkJIUSdlJaWkpKSQmFhIcHBwecd63BjN2LEiGqvOjOZTCQkJHD11Vd7/HNZzWYzISEhpKWlMWrUqFo/fNdqtZKens6QIUNqjHFkbGPnaWuldb6u3r6z56/vfOeK37X6N+IW3schexR3657l1Rt6ckHLiHpvW+rcNTxtrbTOV+rctbHuVudms5nIyMhaNXYO3+4kOTmZzz77jHHjxpGQkMCRI0f4/PPPueGGG1AUhbFjx/L444/z8MMP1/kLuBOj0ejwL8qRmLrM31h52lppna+rt+/s+es73z/jO190OdnN2vH299vJzYJbZ67nyRFtuf2iFmeddyd17j48ba20zrex17mrY92lzh2Z1+HG7tdff2XhwoW0bt266r2bb76ZsWPHsm7dOkaPHs2YMWO8prETQniumMRWfHBfc576YRvfbTiCdcE01q8ro9M9M/H1D9Q6PSGEcDqHLxfLyMggPj7+jPdiY2PZt28fAD169CA3N9c52QkhRD35GvW8OqYLr14axB36eSSbF3LktQFkH96rdWpCCOF0Djd2Q4cOZcyYMaxatYojR46watUqbrjhBoYPHw7AmjVraNasmdMTFUKIulIUhWuHDGDP0M85STCtbBmY/juI3WsXaJ2aEEI4lcON3ccff0zbtm0ZO3YsrVu3JiUlhbZt2/LRRx8BEB8fz5w5c5yeqBBC1FfHCy+j/NaF7NO3JAwzrX8bh+XIeq3TEkIIp3G4sQsMDOT111/nwIEDlJWVsX//fl577TUCA0+dr5KQkEDLli2dnqgQQjhDbLO2xE/6g43+F2BSrIzOeZt1P7ypdVpCCOEUdbol+y+//MKtt97K5ZdfDpx6lFh6erpTExNCCFfxCwii88NzWB12OXpF5etN+byRvqfGxyYKIYS7c7ixmzFjBo8//jjJycksX74cgKCgIKZMmeL05IQQwlUMRh+63/NfZoQ8w4/2i3hr0V6e/GEbNrs0d0IIz+VwY/fuu++Snp7OhAkTqm5U3LZtW/bulSvMhBCeRdHpaNuiFdOvaI+iwMI1W1j65jjKS4u1Tk0IIerE4fvY2Ww2QkJOPXfxdGNnNpurzrETQghPk9I7kSbBvjT59kq6m/ey8419xN07h5DwKK1TE0IIhzi8x+7qq6/mnnvuIS8vD4Di4mIeffRRRo8e7fTkhBCioQzvHIfP8Ocw409763ZOvjuI40cytE5LCCEc4vAeu1dffZXJkyfTrFkzysrKaNKkCePGjePFF190RX6as1qtDo+tTYwjYxs7T1srrfN19fadPX9956tP/D9j2yQP5qD/d5T/cCNJ9sNkfzSUjGtn0bRttzptT+u/C57E09ZK63ylzl0b62517sjcilqPy8Byc3OJjIysOiTr6VJTU0lNTcVms7Fnzx7S0tLw9/fXOi0hRAOzFOXRe98rJJFFoRrA/IRJ+Ea3rjlQCCFcoLS0lJSUFAoLCwkODj7v2Fo1dmvWrKnVhnv37l27DN2c2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7x54s9mZdN/sfX0q5yFzvVJPLGzqdvy0ipcxfxtLXSOl+pc9fGuludm81mIiMja9XY1epQ7PXXX1/1s6IoHDlyBEVRiIiI4MSJE6iqSkJCAvv3769f5m7IaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlef+Opio2MTCXxoAYvfv5snT4wk/4tN/OeWZC5oHurw9rT+u+BJPG2ttM5X6ty1se5S547MW6vG7sCBA1U/T58+ndLSUqZNm4afnx9lZWVMnz6dgIAAxzMVQgg35h8YQr+HvqTDlxtYtCuHO2eu4/+uitU6LSGEOCeHr4p95513eOGFF/Dz8wPAz8+P5557jrfeesvpyQkhhNZ8jXrev6knwzvGMFj9k35zB2PJXKd1WkIIUS2HG7uwsDAWLVp0xntLliwhNDTUWTkJIYRb8THoeDelO+Mid+OrWLkm9102zvtI67SEEOIsDt/u5K233uK6666jT58+JCYmcvjwYdauXcuXX37pivyEEMItGPQ6kh9MY807N9K7cD7JG55grd1Kr6sf1Do1IYSo4vAeu5EjR5KRkcFNN91EmzZtuPnmm9m3bx+XXXaZK/ITQgi3oTcY6HrvTBYaB6FTVHptfprVs1/VOi0hhKji8B47gMjISG655RZn5yKEEG5Pp9dT3GEcK49G0C9vNn22P8cqazl9U6ZonZoQQtRuj93fb3dyPikpKfVKRgghPIGiU+h5ZyorY28CYNeOzXywZJ/GWQkhRC332P3000/Mnj2bmu5lPG/ePKckJYQQ7k7R6eh75zv8+E03pm+KQZ2/G0ulysTB8oQKIYR2atXY9enTh/fee69W4xrK119/zZQpU8jKymLQoEF8+umnhIeHA1BWVsadd97JnDlzCAsL4+WXX2bs2LENlpsQonFQdDquuuFOjjbZxyu/7ebdhTtofXweI8Y+gKJz+BRmIYSot1o1dkuWLHFxGo7ZuXMnd999NwsXLqRr165MmjSJCRMm8NVXXwEwdepU8vPzOXr0KNu2bWPkyJH07NmTNm3aaJy5EMIbTbikFT46SFx4D8P3rmXlx/vpe/sbWqclhGiEPPI/KRcuXMiwYcNITk7GaDTy5JNP8t1331FSUgLA559/ztSpUwkODuaCCy7gyiuvZNasWRpnLYTwZnde3IrQdgMA6Hf0U1Z/+CCq3a5xVkKIxqZOV8W6g7+f76eqKlarlb1799KsWTOys7Pp3Llz1eddu3ZlzZo155zLYrFgsViqXpvN5qqfrVZrrXM6PbY2MY6Mbew8ba20ztfV23f2/PWdrz7xdYk9X0zP655g5Ww9/fbMoG/W5/z5sRU1doTH/N3VktZ14yit85U6d22su/177sjcilrTFRFuaMeOHfTr14/09HS6du3KI488QmpqKsuXLycxMZHmzZtTWVlZNf7DDz/kxx9/5Jdffql2vmnTpjF9+vSz3k9LS8Pf399l30MI4Z1sGYu4xjwTgN9MwylrNxZFp2iclRDCU5WWlpKSkkJhYSHBwcHnHeuWe+yGDh3K0qVLq/1sypQpTJkyhffff59x48Zx4sQJJk6cSFBQEPHx8QQGBmKz2SgtLa1qysxmM4GBgefc3hNPPMGkSZOqXpvNZhITEwEYMmQIRqOxVnlbrVbS09NrFePI2MbO09ZK63xdvX1nz1/f+eoTX5fY2sWMZOX3CfTb+QLDLPNZeiyMvne+jaJIc3cuWteNo7TOV+rctbHu9u/5348k1sThxq6srIxnnnmG2bNnk5+fj9ls5rfffmPnzp089NBDjk5XrQULFtQ4JiUlpeq+efv27eOdd94hISEBvV5PTEwMW7durbpKd/PmzXTs2PGcc5lMJkwmU7WfGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE++KOu93/WOsmq2n07YZvHukFQt/3cP0KztKc1cDrevGUVrnK3Xu2lh3+ffckXkdvnjivvvuIysri7lz56LX6wHo0qULH3zwgaNT1cuGDRuw2+0cPXqUu+++m8cff7wqn5tuuonnnnuOoqIiVq1axU8//VTrmywLIYSz9LzqQd6MfZW1tOezlYeY8uM27HaPO/tFCOFBHG7sfvnlFz7++GM6depU9V+esbGxZGVlOT2587n33nsJDg4mOTmZAQMGMHHixKrPnn32WUJCQoiNjWXMmDG89957tG3btkHzE0IIgM6xwbx0dUcUBdavWc7y9+7BbrNpnZYQwks5fCg2NDSU3NxcEhISqt47cOAAcXFxTk2sJqtXrz7nZ35+fnz55ZcNmI0QQpzbNd3j8VMs9J17H9F5Bax5x0zP+z9Hb3DL05yFEB7M4T12EydO5IorruDbb7/FZrMxd+5cxo4d67Tz64QQwhtd2asth3s9hU1V6F0wj41vXYe1wlJzoBBCOMDh/1ycMGEC0dHRfPzxxyQkJPD222/z8MMPyzlsQghRg+TL72K9zkiX1ZNJLlrExjevov0D3+LrF6B1akIIL1Gn4wBjxoxhzJgxzs5FCCG8Xs+Rt7LZ1492f9xP99I/2frmZbR8YA7+gSFapyaE8AIOH4p988032bx5M3DqPLfWrVvTrl07Vq5c6fTkhBDCG3UddAN7h35CqWqis2UjC997CHO5ZzxxQQjh3hxu7GbMmEFSUhIAkydP5qGHHuKJJ57gwQcfdHZuQgjhtTpdeAWHr/iKZXTn8fzLSflwFfklFVqnJYTwcA43dsXFxYSEhHDy5El27tzJvffey7hx49izZ48r8hNCCK/VLvlSwu+ag19AMNuOmrn+gz/Jzc3VOi0hhAdzuLFr1aoVs2bN4u2332bw4MHodDry8/Px8fFxRX5CCOHVOsaF8PXd/YgJ9mVo/pdY3ruIrEO7tU5LCOGhHL544v333+ehhx7Cx8eHjz76CID58+czbNgwpyfnDqzW2p/3cnpsbWIcGdvYedpaaZ2vq7fv7PnrO1994usS64o6bxZm4qtb2uHz8R/Eq8c5/skIDlz/LQmtOtc6L0+ndd04Sut8pc5dG+tu/547Mreiqqo83+YvqamppKamYrPZ2LNnD2lpafj7+2udlhCikagozid57wyac4wTajALkx7DN7yp1mkJITRWWlpKSkoKhYWFBAcHn3dsnRq7zZs3s2LFCk6cOMHfw5955hnHs3VDZrOZkJAQ0tLSGDVqVK0fvmu1WklPT2fIkCE1xjgytrHztLXSOl9Xb9/Z89d3vvrE1yXW1XWen5tF0cejaGXbTyEBHBn2CW2SB9Uq1pNpXTeO0jpfqXPXxrrbv+dms5nIyMhaNXYOH4p99913mTJlCiNHjuSHH37g6quv5pdffmHUqFF1TtidGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE+9Odd4krim+96ezK/Vy2lXuxHf+jWw5+Qo9R97qUH6eSuu6cZTW+UqduzbWXf49d2Rehy+eeO211/j9999JS0vDZDKRlpbG3LlzKSsrc3QqIYQQ1QgJi6TpQ7+x0f8CTIqVWSt28MEfGciZM0KImji8xy4/P58ePXoA4OPjQ0VFBf379+fyyy93enJCCNFY+QeG0GXSz3z51SfM3h4Hv+4iM7+U6Vd2xKB3+L/JhRCNhMP/79C2bVs2bdoEQLdu3Xj55Zd5++23iYqKcnZuQgjRqOkNBm68+U6eubwDigLzV29l2Rs3UWw+qXVqQgg35fAeu7fffhu73Q6cerzY/fffT1FREf/5z3+cnpwQQgi47aLmxIf6Ejx7NP2Kt5Px1k5Kb/ue6PjmWqcmhHAzDjd2ffv2rfq5Q4cO/P77705NSAghxNmGdYplT8WLnPjpFlra9nP8w0vZf+1XtOjUR+vUhBBuxOHGDuDw4cNs27aN4uLiM96/7rrrnJKUEEKIs7XpMZBjYQs49PlomtmPUDx7FFtPvEfni6/ROjUhhJtwuLGbMWMG06ZNo3PnzmfcvFdRFGnshBDCxeKat6Pw/iVs/+AaOlZsof3vt7M6L5M+oydqnZoQwg043Ni9+uqrrF27lo4dO7oiHyGEEDUICY/Cd9JvrHvvFpLN6URufp+XjP2ZfFk3jHLFrBCNmsP/DxAYGEjLli1dkYsQQohaMvn60/Ohb1jW9D5usz7KB39mMfY/q8guLNc6NSGEhmrV2OXk5FT9eeKJJ7jjjjvYvn37Ge/n5OS4OlchhBB/o+h09L/t3zxx40iCTAbWHTrJp28+xbalP2qdmhBCI7U6FBsTE4OiKGfc9TwtLe2MMYqiYLPZnJudG7BarQ6PrU2MI2MbO09bK63zdfX2nT1/feerT3xdYt2xzi9tG8kP9/Yl9YuveaTov+gWfcyfe++gZ8pz6Ax1ukauwWldN47SOl+pc9fGuludOzK3osozaqqkpqaSmpqKzWZjz549pKWlnXGBiBBCuLNKawWhu7/kUutiANYrnTnQ9m6Mfud/aLgQwr2VlpaSkpJCYWEhwcHnr+daN3aqqvLhhx+ybds2unXrxm233eaUZN2R2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7xdYn1hDrf8PMHdNn8LH5KBTmEkzvsA9okD2qw7deF1nXjKK3zlTp3bay71bnZbCYyMrJWjV2t99FPnjyZr776iv79+/PUU0+xf/9+nn/++Xon6+6MRqPDvyhHYuoyf2PlaWuldb6u3r6z56/vfPWJ97Y673PNAxxo1xf9t+Noaj9K2PyxrDvwCH3HPoGiKA2WR11oXTeO0jpfqXPXxrpLnTsyb62viv3mm29YunQp33zzDYsXL2bWrFl1Sk4IIYTrNe/Qi/CHVrA+6BKMio1ft2dz35cbMJd7xjlsQoi6qXVjZzabad26NQDt2rUjPz/fZUkJIYSov8DgMHo8/D0Le6TyFcP4dVs2I95cxoptGVqnJoRwkVofirXZbKxdu7bqyth/vgbo3bu38zMUQghRZ4pOx+Arb+Lb7gXc/9UGTuafIGn2HaxZ2Ie2494hJCxS6xSFEE5U68YuKirqjEeGhYeHn/FaURT279/v3OyEEEI4RdfEUOZPHMC8We8Rf+AE8QXzyHlrFZsuepFug8dqnZ4Qwklq3dgdPHjQhWkIIYRwtQCTgTHjHmTn6jYEzn+YRPUY0cvvYd2Wb2l587uERcVqnaIQop7koYJCCNHItO8znKhH17Iq9kZsqkKyeSFqam/Wz/sEubWpEJ5NGjshhGiEfP0D6Xv3e2SMmsNBXVPCMZO18ivu/WIDOUXyvFkhPJU0dkII0Yi16XExsY+tZkXTe3jONp7527MZ8vpSfli5A7sXPiZSCG/nto1dZWUlo0ePJj4+HkVRyM7OPuPzqVOnkpiYSHBwMK1bt+aTTz6p+mzJkiXodDoCAwOr/ixbtqyhv4IQQngEk68/F972Mv+9/zI6xgVTWGbFf94DZLzYh+0rf9U6PSGEA9y2sQMYMGAA3333XbWf3XTTTezatQuz2cy8efN46qmn2L59e9Xnbdq0obi4uOpP//79GyptIYTwSB3jQvhxwoU8OyiCC3XbaW3bS8ffbmDjjJFk7t2sdXpCiFpw28bOYDAwceJE+vbtW+3nrVu3JiAgoOq13W7n0KFDDZWeEEJ4JaNexy1D+2K5bx2rI66iUtXRvXQFMV9cwqrUOziZl13zJEIIzdT6difu6KWXXuK5556jtLSU3r17M2jQ/x5yffDgQaKjowkJCeHmm2/mqaeeQq/XVzuPxWLBYrFUvTabzVU/W621f/zO6bG1iXFkbGPnaWuldb6u3r6z56/vfPWJr0tsY6nz4PAm9LjnIw7u3kjx3Cl0K19N39zZmN/9he+6v8ewoSMxGZy3b8DT1krrfKXOXRvrbnXuyNyK6gHXtiuKQlZWFjExMWd9pqoqa9asYeHChfzrX//CYDCQnZ1NQUEBbdq0YdeuXVx33XXcfvvtPPzww9XOP23aNKZPn37W+2lpafj7+zv9+wghhKcpy95Bz6w0/NRSLrW8SoDJyJVN7XSLUFEUrbMTwruVlpaSkpJCYWEhwcHB5x2rWWM3dOhQli5dWu1nU6ZMYcqUKVWvz9fYnXb//ffTuXNn7r777rM+mzVrFu+99945t1fdHrvExETS0tIYNWoURqOxVt/JarWSnp7OkCFDaoxxZGxj52lrpXW+rt6+s+ev73z1ia9LbGOuc1tlJQtWref5P8vJKbKgw86HIZ8QlnwtnQaMRtHVfQ+ep62V1vlKnbs21t3q3Gw2ExkZWavGTrNDsQsWLHDqfHa7nYyM6h9sravh/2xMJhMmk6naz4xGo8O/KEdi6jJ/Y+Vpa6V1vq7evrPnr+989YmXOq8do9HIlZdcxOALK/nP0v3kLv2YSy2LYMUiMlbN4GSPCXQfdit6Q93/afG0tdI6X6lz18a6S507Mq/bXjwBp/aklZeXn/UzwEcffURBQQF2u50//viDL7/8koEDBwKnbneSmZkJwN69e3n++ee5/PLLGzx/IYTwRv4+Bh4a3IaH77mPVTE3UqqaaGk7QPLaR8h6oSOrv30dS3mp1mkK0Si5dWPXtm1b/Pz8AEhKSqr6GWDevHm0bNmSkJAQ7rvvPl555RVGjhwJwPr16+nbty8BAQEMHTqUq666ikmTJmnyHYQQwltFxjWj7z3vYX1wKyub3s1JgkhQs+mzbTqFL3Xki4VrKbFUap2mEI2KW18Ve/DgwXN+9v3335/zs8mTJzN58mQXZCSEEOKfQiKa0O+2GZQWP8Wqn96mxZ7/ctAexZSFObyy4nfGX5DE+D5xhAUHap2qEF7PrffYCSGE8Bz+gSH0TXmakMe3kz34XZpHBlBYZuWzReuxvdaBNW/dyN6N1V/EJoRwDrfeYyeEEMLzmHz9uXJAby67SOXXbVkc/vVNIssKiTw5F+bMZd/clpxodyOdht1GQHCY1ukK4VVkj50QQgiX0OsULu8Sx72PvsSOYbNYFzyYCtVAK1sGfbY/C6+1Y/U7t7Brz26tUxXCa8geOyGEEC6l6HR06DcC+o3gZG4WG377gPiMb0jkGN3yfqHff0eQkJBDR5PCwIpKQjzodidCuBtp7IQQQjSYsKhY+t40HdU+lW1//sKOzaspOhbCliNmtqBn6IzLCAiPwa/79XS4YCR6gzR5QjhCGjshhBANTtHp6HTRFXS66AoGFVuYtfoQi5cu4RJlPZwEfv+FE7+HsC9yMCG9bqBN8qXozvG8byHE/0hjJ4QQQlORgSbuHtCcePN2tkZ+Tummb2lz4nciKCQi7zv49Tuyf41kbYsJNL/0djrGBaPIA2qFqJY0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3DarWi0+lo2XMwxr4jsFZY2LhyLpVbvqN94TJilDzm7zrJLzuWkxThz3VtjQxOhKQOver1jNr65Pv3//W27Uudu1edOzK3oqqq6rJMPExqaiqpqanYbDb27NlDWloa/v7+WqclhBCNmq2ygsqsLXxX2oUNJ/2wqgoP6L9nsvFbstQItpm6kR/aDUN0ewxGH63TFcLpSktLSUlJobCwkODg4POOlcauGmazmZCQENLS0hg1alStH75rtVpJT09nyJAhNcY4Mrax87S10jpfV2/f2fPXd776xNclVurcNWq7VsWWSn7flUvQ0qn0L5yLn1JR9VmZ6sMu/x6UNx9MwoBxxES47h55Wv9upc5dG+tudW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+6hprcKMRkYnN4XkTygvLWbzqnmUb/+FZieWE6Pk0b1sFebtm+mxoQ1tYsO5tH00Q+PKaNemPUYfU4Pn62pS566NdZc6d2ReaeyEEEJ4JF//QLoOug4GXYdqt7N/x1py1s3hUM5JbBUGdmSZ2ZFl5jqfiVQoRezw70JZ/IVEdh5Ci0595Spb4ZWksRNCCOHxFJ2OFp360KJTH/oCg4stLNmdy+rtewnaX0YA5XQtWwP71sC+Nyj8IYD9Ad0xt7yCuAtvpFV0oFxpK7yCNHZCCCG8TkSgidE9ExjdMwG77TAZ29eQu3UBfkdW0LJ0CyFKCd1LlvPpBn/GrUkkMtBE/yR/rtcvJqJdf5I69nHJoVshXE0aOyGEEF5Np9fTsks/WnbpB0CltYLdm5eTv30hh4tb4putI6/YwtHtm+hrmgG7Z1D2ow97TW0pjOiOX4t+NO16MeHR8Rp/EyFqJo2dEEKIRsVg9KFt8iBIHkQ/4F+VNjYeLiBzcxmb9/QmqWw7IUoJHSq2QtZWyPoMVsDLPhM43vI6ujcLo2OEDltlRY3bEqKhSWMnhBCiUTMZ9PRtEUHfFtcC12K32Ti0byvHty+FzNVEFW6huf0wfxY1YfPGo3y/8SjX6RfzguG/HN7+AieC26PGdCGkZS+adeiDX0CQ1l9JNGLS2AkhhBB/o9Prada2G83adqt6rzA/j0nHK1h/pJhNmQV0PpyFERst7QdoWXAACubBLrDNVTioT+SbpOlEtuhOu9gg2kX7Ex4kN7sXDUMaOyGEEKIGIeGRXBwOF7c/9brC8l+++fZLWobrsR7djN+JrSSU7SFCKSDJfphZOyzk79gBwOOGr7jWsIxsU3OKQ9qgb9KBkObdSGjTDf/AUO2+lPBK0tgJIYQQDlJ0OkyBEXQZPBKjcVzV+3nHDpK5ax3j7F3ZdqyQ3dlFtC06TCQFRFo2Qs5GyAG2nhp/VGnCK03fJy42nhZRgbTzN5MYE01IWKQ2X0x4PGnshBBCCCeJjEsiMi6J7n97r6SoO3v2bqLgwCbsx3cQWLibGMtBIikgyF7Ej7vLYHcGAP9nfJ1O+nXkEcpxn0SKA5ujRrTGL7YdUUmdaNKsHXq9TpsvJzyCNHY1sFqtDo+tTYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWypF8fXwDaN75Quh84RnvH8/N4uihPUyxJrE/r4T9uSVEZpeByqk9fBUFkL8V8oG9UPaHD+0rPyE+NICEMF8uPvEHawo34tukFSHxbYhp2gaTX0CDf7+GmK+x17kjcyuqqqouy8TDpKamkpqais1mY8+ePaSlpeHvLye8CiGEaDiVljIqi7LQFWfjV55FWEUWTWxZFNlNXF3xbNW4X33+RXtdZtVru6qQQxjHdU04Zkjkp5CbCfeFcB+VWEMRfn7+6HTyGDVPVFpaSkpKCoWFhQQHB593rDR21TCbzYSEhJCWlsaoUaNq/fBdq9VKeno6Q4YMqTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6VFvjabneNFFg7nl3Egt4jgFS+SqOQQYjlKk8osgpSyqrG77QkMq5hR9fpXn8dprRwhV4ngpLEJJX5xWIMS0IUl4hPVAt9WFxMb4kugyeCS7yd1Xj9ms5nIyMhaNXZyKLYGRqPR4V+UIzF1mb+x8rS10jpfV2/f2fPXd776xEuduw9PW6uGzNdohGa+JppFBdO3RTjzToyiy8iRGI1GVLud/Lwscg7vovjYXvJKrFxvTORoQRlHTpYSXVyAQbETSy6x1lywbgMzcBR22RMZ/uvLAASZDLxvfJ1gvZUgeyCbcv7AEJaAKSKRwMhEwpo0JTQyFp2ubs/VlTqvG0fmlcZOCCGE8HCKTkd4dPxfjz27FIDhf/vcbjtI7vFMThzdR/Hx/VhPHEJnPoJvyVEO2yMJ0RspLLNSZKmkM1sIqSw9FXj0Dzj6v3l22pvSu/JlooJMRAf7MtHyHwKMYA+IQR8SgyksFv/weIIj4wiLisfH5NtgayBOkcZOCCGE8HI6vZ6ouCSi4pLO+qwrcAVQYqkku7CMzN0fsCv3EMf3bSbatwK/suMEVuQQassnWw2j0q6SVVhOVmE5PU0LCFFK4cTZ29xub8ZY3StEBpmICPDhlrwvWH/4RwiMRhcUjTG4CX4h0QSENyE4Io6g0Mg67wkU/yONnRBCCCEIMBloGR0E0aOwWq3MmzePnn8d6j3tokobK0sqOG62kFNYxq4dD6Oas9GVHMdUnkNAxQmCbScJUwvJU0Mwl1diLq9kf24JH5uWE3yi+iZwqz2Jqyr/TZi/D+EBRp6peAN/vR2rKQzVLwK7XyjWvGK2/VGKb0QivondCfM3EuRrRC/N4BmksRNCCCFErRgNemJD/IgN8YPEUOj0WLXj7DYbXcxm0isM5BVXcLyghEVLrqFJoB5DeR4+5Sfws54k0FZAiN1MvhqMza6SV2whr9hCF9NqgpVSKP7HxMths70FIyqeB0BR4BfTUwQr5ZTqgyg3BGM1BlPpE4zdN5SKoKYcTbqGfScUwvafIKbyGIEBAQSERBAYFIre4H1tkPd9IyGEEEJoSqfXExYWRhjQuglYrcHMOzKUXv/YA3ha34oKVpfbOVFcwcnSCvbsfhZbUS72khPoyvLRl59EKcklRFfGMX0igYqBYkslqgoJ6nGCKYXKLKgEyv837yZ7C8Ztagfo+e+e9SzzmUicLrfq82LVjxLFnzJdAEeMzfk4ZgpBvkYCfHR0yUhnbf4q9P4h6HyDMfgFY/QPxhQQiikoHN8mrQgyGdHjXjcXkcZOCCGEEJoy+fjQxAeaBP91sUWrO8/4/PSh4S4jR9LKaGQEUFFpp7DMyskjczlqzqO8MBdryUnspSehrADFUkiOEsFA30gOZeWi8w2kssiHctWIr3Lqhr+BShmBlIH9BIVlBhbv/l/Td5/PfBJLc6nOfnsMvSteB0CngEmn54KBVqJCtL+iWxo7IYQQQngcH4OOqCATtO953nHD/2oKR468EKNxBwCW8lKKC/MpLTpJeVE+5UUFlNl0zAjsgrncSkGJhY0b+5HlZ8VgLcFYWYyPrRSTvQQ/eyknlHAUBVQV7CqU2RT8fNzj5s/S2AkhhBCiUTH5+mPy9SeiScIZ7/f963+tVivzLNfS/RyHjpsAGXaVMquNk8VlzEv/HZPBPZ7h6x5ZVKOyspLRo0cTHx+PoihkZ2ef8fmBAwcYOnQooaGhxMfH8+9///uMzz/99FMSEhIIDg7m1ltvpaKioiHTF0IIIYQX0+kUAkwGmgT70sRP62z+x20bO4ABAwbw3XffVfvZAw88QIsWLcjNzWX58uW88847LFq0CICtW7cyadIkfvzxRzIzMzl48CDPP/98Q6YuhBBCCNHg3LaxMxgMTJw4kb59+1b7+aFDh7j++usxGo00b96ciy66iB07Th07T0tL4/rrryc5OZmQkBCefvppvvjii4ZMXwghhBCiwXnsOXYTJkxg1qxZXHDBBRw+fJhVq1bx9NNPA7Bjxw6GDRtWNbZr164cOHCAsrIy/PzO3l9qsViwWCxVr81mc9XPVqu11jmdHlubGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vlKnbs21t3q3JG5FVVV3esGLNVQFIWsrCxiYmKq3tuyZQs33XQTO3bswGazMW3aNKZOnQrApZdeyq233spNN90EnFoQHx8fcnJyiIqKOmv+adOmMX369LPeT0tLw9/f30XfSgghhBCiZqWlpaSkpFBYWEhwcPB5x2q2x27o0KEsXbq02s+mTJnClClTzhlrs9kYOXIk//rXv7j33ns5cuQIl19+OR07duTaa68lMDDwjL1up38ODAysdr4nnniCSZMmVb0uLCykadOmlJaWcskll1R7RUx1rFYrixcvrlWMI2MbO09bK63zdfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnVeVFQEQG32xWnW2C1YsKDOsfn5+Rw7dox7770Xg8FAUlISV111FYsXL+baa6+lQ4cObN26tWr85s2bad68ebWHYQFMJhMmk6nq9elG8I477qhzjkIIIYQQzlRUVERISMh5x7j1OXYWi6WqO7VYLJSXl+Pr60tUVBSJiYl8+OGH3H333Rw7dow5c+YwYcIEAFJSUhg4cCB33nknLVu25IUXXqg6LFsbcXFxZGZmMmjQINatW+dQzr169WLt2rU1jjObzSQmJpKZmVnjblVR+3V1F1rn6+rtO3v++s5Xn/i6xEqdu4bWdeMorfOVOndtrDvVuaqqFBUVERcXV+NYt27s2rZty6FDhwBISkoC/rcb8ttvv2XixIk8/vjj+Pv7c/3113PnnaceQdK5c2dee+01rrjiCsxmM6NHj+app56q9XZ1Oh0JCQkYDAaHf0l6vd6hmODgYPk//FpwdF21pnW+rt6+s+ev73z1ia9LrNS5a2hdN47SOl+pc9fGulud17Sn7jS3buwOHjx4zs969erFn3/+ec7Px48fz/jx4+u1/dN7AF0dI2rmaeuqdb6u3r6z56/vfPWJlzp3H562rlrnK3Xu2litf7915RFXxXojs9lMSEhIra5wEUJ4JqlzIbyfu9W5296g2NuZTCamTp16xkUbQgjvInUuhPdztzqXPXZCCCGEEF5C9tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0b++OPP+jXrx8XXXTRGc+yFUJ4j8zMTHr06IGvry+VlZVapyOEcJJJkybRv39/HnzwwQbdrjR2bqxVq1YsWbKE5cuXk52dfcbzb4UQ3iEqKorff/+dvn37ap2KEMJJNmzYQHFxMcuWLcNqtTboo+eksXNj8fHxVffFMRqN6PV6jTMSQjibr68voaGhWqchhHCilStXMnjwYAAGDx7MqlWrGmzb0tg50dSpU+nQoQM6nY5Zs2ad8Vlubi6XXXYZ/v7+tG3blkWLFtV63g0bNpCXl0eHDh2cnbIQwkGuqnMhhHuqS80XFBRUPYUiJCSEkydPNli+bv2sWE/TunVr3nrrLZ5++umzPpswYQJxcXHk5eWxYMECxowZQ0ZGBhaLhRtuuOGMsYGBgcydOxeA7OxsHnzwQb777rsG+Q5CiPNzRZ0LIdxXXWo+NDQUs9kMnHrkWIPulVeF01188cXqV199VfW6qKhI9fHxUY8dO1b1Xv/+/dWZM2eed56ysjL1kksuUTds2OCyXIUQdeOsOv/7fFar1el5CiGcw5GaX79+vXrXXXepqqqq9957r7p69eoGy1MOxTaAvXv3EhISQmxsbNV7Xbt2Zfv27eeN++STT9ixYwcPP/wwAwcOZOXKla5OVQhRR3Wt8/LycgYPHszmzZsZNmwYy5Ytc3WqQggnOF/N9+jRAz8/P/r3749Op6N3794Nlpccim0AxcXFVcfaTwsODqagoOC8cffeey/33nuvCzMTQjhLXevc19eXhQsXujAzIYQr1FTzb775ZsMnhVw80SACAwOrjrWfZjabCQwM1CgjIYSzSZ0L0bi4a81LY9cAWrduTWFhIdnZ2VXvbd68mY4dO2qYlRDCmaTOhWhc3LXmpbFzIqvVSnl5OXa7/YyfAwMDufLKK5k6dSplZWX89NNPbNu2jSuuuELrlIUQDpI6F6Jx8biab7DLNBqBcePGqcAZfxYvXqyqqqrm5OSoI0aMUP38/NTWrVur6enp2iYrhKgTqXMhGhdPq3lFVVVVm5ZSCCGEEEI4kxyKFUIIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQggNTZs2DaPRSExMjNPmHDhwILNmzXLafP/0+uuvExAQgK+vr8u2IYSoG2nshBCaS0pKwt/fn8DAQAIDA0lKStI6pQZ1++23n/EgcVfo1KkTBw8edMpckyZNYvv27U6ZSwjhXNLYCSHcwu+//05xcTHFxcXVNiBWq7Xhk3IDzvjeR44cobKystE1zEI0RtLYCSHc0pIlS2jXrh1PPfUUkZGRvPjii5SVlXH//fcTFxdHQkICL7/8ctX4kpISUlJSCA0NpUePHjz55JMMHz78jLn+TlGUqr1k+fn5pKSkEB0dTYsWLZg5c2bVuIEDB/Lss8+SnJxMcHAwY8eOpaKiourzr7/+mk6dOhEUFETnzp3ZvXs3L7zwArfeeusZ27vwwgv5/vvva/Xdk5KSmDFjBm3btqVDhw4A3HfffcTFxREaGsrQoUM5fPhw1fi1a9fSpUsXgoODufvuu7Hb7WfM99tvvzFs2LCq7zN9+nS6d+9OYGAgjz76KPv27aNXr16EhobyyCOPVMXNnTuX/2/njkKa7OI4jn9nLW3ZtrSk6ZYmYl5oXUSKFhRBEnUTkUKmKaIXKwsDQY1SIq1uIhNCBmVmpIZaUiiCeCFakkGQiUspQg1mxmhz6lAr34t4H7J631fLN238P1fPs/Oc/3POrn6cs7NNmzaxevVqTCYT1dXVcxq/EGLxSLATQixZr169QqPRYLPZyM3NJScnB6fTSX9/P11dXVRWVvLw4UMAzp07h91uZ3BwkKqqKm7fvj3n96SkpGAymRgaGqKpqYn8/HyeP3+utNfW1nLv3j0GBwfp7u7m7t27ADx69IisrCwsFgtOp5Pa2lq0Wi1HjhyhoaGByclJAAYGBujt7WXfvn1zHlNDQwPt7e28ePECgB07dmC1WhkeHsZoNHLy5EkApqamOHjwICdOnMButxMZGcnjx49n1WpublaCHUB9fT2NjY309PRQVlaG2Wzm/v379PT0cP36dWXuGRkZlJeX43K5ePr0KVu2bJnz+IUQi0OCnRBiSdizZw96vR69Xk9+fj4AGo2GvLw81Go13t7e3Lx5k8uXL+Pr60tgYCBms5m6ujrgS/g6e/YsWq2WiIgIUlNT5/Te4eFh2tvbuXDhAt7e3kRERJCUlDRrdS0zM5MNGzag1+vZv3+/EnwqKiowm81s374dLy8vIiIiMBgMhISEEBkZSVNTEwA1NTUcOHBgXocNTp06RUBAgNInKSkJnU6Hj48Pubm5dHR0ANDZ2Ym3tzeZmZmo1WqysrIwGAxKnU+fPtHR0cGuXbuUzzIyMggMDCQkJIStW7cSHx+P0WjEaDQSExNDd3c3AGq1mp6eHsbGxli/fr2yeiiEWLok2AkhloSWlhYcDgcOh4OLFy8CYDAYWLZsGQDv37/H7XYTHh6uBMDTp08zMjICgM1mw2QyKfW+vv43g4ODjI+P4+/vr9S1WCy8e/dOeSYgIEC51mg0jI2NAV9+uxYaGvrDusnJycrJ1KqqKpKSkub6VQBgNBpn3RcXFxMWFoZWqyU6Ohq73Q58P2+VSjWr75MnT4iMjESj0fxwPitXrmTdunWz7sfHxwGoq6vjwYMHBAUFER8fz8uXL+c1ByHE77d8sQcghBD/RKVSKddr167Fx8eHgYEBdDrdd88aDAaGhoYIDg4GYGhoSGlbtWoVExMTyv3XJ1CDgoLQ6/VKUJoPk8nEmzdvftiWkJBAXl4eXV1djIyMsHv37nnV/nrubW1tWCwWWltbCQsLo7+/X/nNoMFg4O3bt7P6fn3/7TbsfMTExNDY2Mjk5CQFBQUcP36c1tbWn6olhPg9ZMVOCPFH8PLyIjU1lZycHBwOB58/f8ZqtdLV1QXAoUOHKC4uxuVy0dfXR2VlpdI3PDwcu91OW1sbk5OTnD9/XmkLCgpi27ZtFBQUMDExwcePH3n27Bm9vb3/Oaa0tDTKysro7OxkZmaGvr4+bDYbAH5+fuzcuZO0tDQSExOVlcef4XK5WL58Of7+/oyPj1NUVKS0xcbG4na7uXHjBtPT01y7dk0ZA8w+ODEfU1NTVFVVMTo6ilqtxtfX95fmIIT4PSTYCSH+GH//MW5UVBR+fn4cPXqUDx8+AFBYWIhOp8NoNHL48GFSUlKUfjqdjtLSUhITE9m4cSPR0dGz6t65c4eBgQFCQ0MJCAggOzsbt9v9n+OJi4ujpKSE9PR0tFotCQkJjI6OKu3JyclYrdZ5b8N+a+/evcTGxhIcHExUVBRxcXFK24oVK6ivr+fKlSv4+/vT3d2ttNvtdmw2G1FRUT/13lu3bhEcHMyaNWtoaWnh6tWrvzQPIcT/TzUzMzOz2IMQQoiFVlFRQU1NDc3NzYs2hs7OTpKTk3n9+vU/PlNUVMSlS5fQ6/Xfban+qurqalpaWigvL1/QuiUlJRQWFqJSqXA4HAtaWwjxa2TFTggh/gfT09OUlpaSnp7+r8+dOXOGsbGxBQ918GU7+NixYwteNzs7G6fTKaFOiCVIDk8IIcQCs9vtGI1GNm/ejMViWbRx/OyhCSHEn0u2YoUQQgghPIRsxQohhBBCeAgJdkIIIYQQHkKCnRBCCCGEh5BgJ4QQQgjhISTYCSGEEEJ4CAl2QgghhBAeQoKdEEIIIYSHkGAnhBBCCOEhJNgJIYQQQniIvwDJxx/TV7xczQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Reset the frequency response label to correspond to a time unit of ms\n", + "ct.set_defaults('freqplot', freq_label=\"Frequency [rad/ms]\")\n", + "\n", + "# Frequency response\n", + "freqresp = ct.frequency_response(P, np.logspace(-2, 0))\n", + "freqresp.plot()\n", + "\n", + "# Equivalent command\n", + "ct.bode_plot(P_tf, np.logspace(-2, 0), '--')" + ] + }, + { + "cell_type": "markdown", + "id": "stuffed-premiere", + "metadata": { + "id": "stuffed-premiere" + }, + "source": [ + "### Feedback control design\n", + "\n", + "We next design a feedback controller for the system using a proportional integral controller, which has transfer function\n", + "\n", + "$$\n", + "C(s) = \\frac{k_\\text{p} s + k_\\text{i}}{s}\n", + "$$\n", + "\n", + "We will learn how to choose $k_\\text{p}$ and $k_\\text{i}$ more formally in W9. For how we just pick different values to see how the dynamics are impacted." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "8NK8O6XT7B_a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": C\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "\n", + "\n", + "s + 1\n", + "-----\n", + " s\n", + "\n", + ": C\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "\n", + "\n", + "s + 1\n", + "-----\n", + " s\n", + "\n" + ] + } + ], + "source": [ + "kp = 1\n", + "ki = 1\n", + "\n", + "# Create tf from numerator/denominator coefficients\n", + "C = ct.tf([kp, ki], [1, 0], name='C')\n", + "print(C)\n", + "\n", + "# Alternative method: define \"s\" and use algebra\n", + "s = ct.tf('s')\n", + "C = ct.tf(kp + ki/s, name='C')\n", + "print(C)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "074427a3", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUNUlEQVR4nOydZ3hc1bWw3zNFozLqXZYsuci9YMCAbdxwxRQ7EIcaYwgkJoTcALkJ3IRrnEt6woXkYhJIAv4IvTcDtrFsMO7GlnuT1Wz1OhqV0ZTz/RhpJFltNKPRqKz3ec5zzpy91tp7j7a2ltZuiqqqKoIgCIIgCMKAR+PvAgiCIAiCIAi9gzh2giAIgiAIgwRx7ARBEARBEAYJ4tgJgiAIgiAMEsSxEwRBEARBGCSIYycIgiAIgjBIEMdOEARBEARhkCCOnSAIgiAIwiBBHDtBEARBEIRBgjh2giD0G5544gkuueQS1+fVq1ezYsUKn+R18uRJrrrqKgIDA9vkKfQ+8+bN4yc/+YnP8/FlexGEgYI4doLQT1m9ejWKoqAoCnq9npEjR/LTn/6U2tpaAHJyclAUhUOHDvm1nIqi8P777/u1DJ6wdu1aQkJCOHXqFF988YW/iyP0As888wwvvfSSv4shCH5F5+8CCILQOUuXLuXFF1/EarXy1Vdfce+991JbW8tzzz3n76L1CKvVil6v7/N8VVXFbrej07Xv6rKysrjuuutITU312H5jYyMBAQHeFLFf5TPQCQ8P93cRBMHvSMROEPoxBoOBhIQEUlJSuP3227njjjt6FB2zWCz87Gc/IyUlBYPBQHp6Ov/85z9d6du3b+eKK67AYDCQmJjIo48+is1mc6XPmzePH//4x/zsZz8jKiqKhIQEnnjiCVd6WloaAN/61rdQFMX1uXlI9V//+hcjR47EYDCgqip5eXksX74co9FIWFgY3/nOdyguLna7Pqqq8oc//IGRI0cSFBTE1KlTefvtt13p27ZtQ1EUPv/8cy6//HIMBgNfffVVOzuKonDgwAF+9atfoSiKq05HjhzhmmuuISgoiOjoaL7//e9jNptdes1Dfb/97W9JSkpizJgxHZYzMzOT+fPnExoaSlhYGJdddhn79+93pe/cuZM5c+YQFBRESkoKP/7xj12R2Obv9cknn2T16tWEh4dz3333MWPGDB599NE2+ZSWlqLX68nIyACgsrKSVatWERkZSXBwMNdeey1nzpxxyb/00ktERETw8ccfM3bsWIKDg/n2t79NbW0tGzZsIC0tjcjISB588EHsdrtLr7GxkZ/97GcMGzaMkJAQrrzySrZt29amLF9//TVz584lODiYyMhIlixZQmVlpSvd4XB02o4AnnrqKSZPnkxISAgpKSn88Ic/bPPdN5f9888/Z/z48RiNRpYuXUphYWG7n08zb7/9NpMnT3b9PBcuXOj6nptlf/Ob3xAfH09ERATr1q3DZrPxn//5n0RFRZGcnMy//vWvDn/GgtBfEcdOEAYQQUFBWK1Wt+VXrVrF66+/zl/+8hdOnDjB3/72N4xGIwAXLlxg2bJlTJ8+nczMTJ577jn++c9/8uSTT7axsWHDBkJCQtizZw9/+MMf+NWvfsXmzZsB2LdvHwAvvvgihYWFrs8AZ8+e5c033+Sdd95xDRevWLGCiooKtm/fzubNm8nKyuKWW25xuz6//OUvefHFF3nuuec4duwYDz30EHfeeSfbt29vI/ezn/2M3/72t5w4cYIpU6a0s1NYWMjEiRN55JFHKCws5Kc//Sl1dXUsXbqUyMhI9u3bx1tvvcWWLVv40Y9+1Eb3iy++4MSJE2zevJmPP/64w3LecccdJCcns2/fPg4cOMCjjz7qilgeOXKEJUuWcNNNN3H48GHeeOMNduzY0S6fP/7xj0yaNIkDBw7w+OOPc8cdd/Daa6+hqqpL5o033iA+Pp65c+cCTmdl//79fPjhh+zatQtVVVm2bFmbNlNXV8df/vIXXn/9dT777DO2bdvGTTfdxMaNG9m4cSMvv/wyzz//fBuH+e677+brr7/m9ddf5/Dhw6xcuZKlS5e6nMZDhw6xYMECJk6cyK5du9ixYwc33HBDG+ewq3YEoNFo+Mtf/sLRo0fZsGEDW7du5Wc/+1mb76Suro4//elPvPzyy3z55Zfk5eXx05/+tMOfQWFhIbfddhv33HMPJ06ccNWz9fe3detWCgoK+PLLL3nqqad44oknuP7664mMjGTPnj2sWbOGNWvWkJ+f32EegtAvUQVB6Jfcdddd6vLly12f9+zZo0ZHR6vf+c53VFVV1ezsbBVQDx482KH+qVOnVEDdvHlzh+n/9V//pY4dO1Z1OByud88++6xqNBpVu92uqqqqzp07V7366qvb6E2fPl39+c9/7voMqO+9914bmbVr16p6vV4tKSlxvdu0aZOq1WrVvLw817tjx46pgLp3716X3tSpUzv8DsxmsxoYGKju3LmzTV7f+9731Ntuu01VVVXNyMhQAfX999/vsM6tmTp1qrp27VrX5+eff16NjIxUzWaz690nn3yiajQataioyFWe+Ph41WKxdGk7NDRUfemllzpM++53v6t+//vfb/Puq6++UjUajVpfX6+qqqqmpqaqK1asaCNTUlKi6nQ69csvv3S9mzFjhvqf//mfqqqq6unTp1VA/frrr13pZWVlalBQkPrmm2+qqqqqL774ogqoZ8+edcn84Ac/UIODg9WamhrXuyVLlqg/+MEPVFVV1bNnz6qKoqgXLlxoU54FCxaojz32mKqqqnrbbbeps2bN6vT7cKcdXcybb76pRkdHuz53VPZnn31WjY+Pd31u3V4OHDigAmpOTk6H9u+66y41NTXV1dZVVVXHjh2rzp492/XZZrOpISEh6muvvdZpOQWhvyFz7AShH/Pxxx9jNBqx2WxYrVaWL1/OX//6V7d0Dx06hFardUVzLubEiRPMmDEDRVFc72bNmoXZbOb8+fMMHz4coF3EKzExkZKSkm7zT01NJTY2tk1+KSkppKSkuN5NmDCBiIgITpw4wfTp07u0d/z4cRoaGli0aFGb942NjUybNq3Nu8svv7zb8l3MiRMnmDp1KiEhIa53s2bNwuFwcOrUKeLj4wGYPHlyt/PdHn74Ye69915efvllFi5cyMqVKxk1ahQABw4c4OzZs7zyyisueVVVcTgcZGdnM378+A7rEBsby6JFi3jllVeYPXs22dnZ7Nq1yzXf8sSJE+h0Oq688kqXTnR0NGPHjuXEiROud8HBwa6yAMTHx5OWluaK5Da/a/4Zf/PNN6iq2m7Y2WKxEB0dDTjb2sqVK7v8TrprRxkZGfzmN7/h+PHjmEwmbDYbDQ0N1NbWun4mF5e9q7Y4depUFixYwOTJk1myZAmLFy/m29/+NpGRkS6ZiRMnotG0DFzFx8czadIk12etVkt0dLRb7V0Q+gvi2AlCP2b+/Pk899xz6PV6kpKSerQAISgoqMt0VVXbOHXN74A27y/OU1EUHA5Ht/m3dpA6y6+r9xfTnOcnn3zCsGHD2qQZDIYu83aHrsrR+r07tp944gluv/12PvnkEz799FPWrl3L66+/zre+9S0cDgc/+MEP+PGPf9xOr9mZ7iyfO+64g//4j//gr3/9K6+++ioTJ05k6tSprvK7U6+Ofp5d/YwdDgdarZYDBw6g1WrbyDU7g921tc7ybc4jNzeXZcuWsWbNGv7nf/6HqKgoduzYwfe+9702w8gd2eis3lqtls2bN7Nz5042bdrEX//6V37xi1+wZ88eRowY4dF3IQgDAZljJwj9mJCQEEaPHk1qamqPV5VOnjwZh8PRbv5ZMxMmTGDnzp1t/jDu3LmT0NDQdo5TV+j1+jZzqTpjwoQJ5OXltZmvdPz4caqrq11Rqu70DQYDeXl5jB49us3VOgroKRMmTODQoUNtFjF8/fXXaDSaThdJdMWYMWN46KGH2LRpEzfddBMvvvgiAJdeeinHjh1rV4fRo0d3GwlcsWIFDQ0NfPbZZ7z66qvceeedbcpvs9nYs2eP6115eTmnT5926/vtjGnTpmG32ykpKWlX3oSEBMAZjfNmy5j9+/djs9n485//zFVXXcWYMWMoKCjw2F4ziqIwa9Ys1q1bx8GDBwkICOC9997z2q4g9GfEsROEQUpaWhp33XUX99xzD++//z7Z2dls27aNN998E4Af/vCH5Ofn8+CDD3Ly5Ek++OAD1q5dy8MPP9xmeMqdfL744guKiorarIK8mIULFzJlyhTuuOMOvvnmG/bu3cuqVauYO3euW0OnoaGh/PSnP+Whhx5iw4YNZGVlcfDgQZ599lk2bNjgdnk744477iAwMJC77rqLo0ePkpGRwYMPPsh3v/td1zCsO9TX1/OjH/2Ibdu2kZuby9dff82+fftcztXPf/5zdu3axQMPPMChQ4c4c+YMH374IQ8++GC3tkNCQli+fDmPP/44J06c4Pbbb3elpaens3z5cu677z527NhBZmYmd955J8OGDWP58uU9/0KaGDNmDHfccQerVq3i3XffJTs7m3379vH73/+ejRs3AvDYY4+xb98+fvjDH3L48GFOnjzJc889R1lZmVt5jBo1CpvNxl//+lfOnTvHyy+/zN/+9jePywywZ88efvOb37B//37y8vJ49913KS0t9crJFYSBgDh2gjCIee655/j2t7/ND3/4Q8aNG8d9993nikgNGzaMjRs3snfvXqZOncqaNWv43ve+xy9/+cse5fHnP/+ZzZs3k5KS0m6uW2uaNzKOjIxkzpw5LFy4kJEjR/LGG2+4ndf//M//8N///d/89re/Zfz48SxZsoSPPvrINbTmDcHBwXz++edUVFQwffp0vv3tb7NgwQL+7//+r0d2tFot5eXlrFq1ijFjxvCd73yHa6+9lnXr1gHO6Nb27ds5c+YMs2fPZtq0aTz++OMkJia6Zf+OO+4gMzOT2bNntxm6Befq5Msuu4zrr7+eGTNmoKoqGzdu9HoPwRdffJFVq1bxyCOPMHbsWG688Ub27NnjipSOGTOGTZs2kZmZyRVXXMGMGTP44IMPOtw/sCMuueQSnnrqKX7/+98zadIkXnnlFX772996VeawsDC+/PJLli1bxpgxY/jlL3/Jn//8Z6699lqv7ApCf0dRO5ugIAiCIAiCIAwoJGInCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEnb8L0B9xOBwUFBQQGhqKoij+Lo4gCIIgCEMYVVWpqakhKSkJjabrmJw4dq149tlnefbZZ2lsbCQrK8vfxREEQRAEQXCRn59PcnJylzKKqqpqH5VnwFBdXU1ERATZ2dmEhoZ2KGO1WsnIyGD+/Pno9foey7ijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0za2pqGDFiBFVVVYSHh3cpKxG7Dmgefo2KiiIsLKxDGavVSnBwMNHR0V12Up3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNbkLbpuf5Q7TOb7bozPUwcuy6wWq1YrdZO01rfeyrjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xB2qbn+kO1z+yJbRmKbUXzHDu73c7p06d59dVXCQ4O9nexBEEQBEEYwtTV1XH77bdTXV3d6UhiM+LYdYDJZCI8PJyysrIuh2I3b97MokWLuhxW6EzGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9Ydqn2kymYiJiXHLsZOh2C7Q6/Xd/pA8lamz1qGqqlv6AwF/1aO38+0Ne57Y6ImOu7LdyXmbPlDwRz18kae3Nn3dLt2V91ZmsLRLkLbpjf5Q6zN7YlccOz+xetNqLpgu8PamtxkZMZKR4SMZET6CEeEjGGYchlaj9XcRBUEQBEEYYIhj1wW+WjzhUB3km/OxqBYyyzLJLMtsk67X6EkNTSUtLI20sDRGhI9wPQfpgrypUq8jiye8szFUJwL3BTJB3XN9WTzhW6Rteq4/VPtMWTzhIX25eKJRbaTcUU6ZvYwSewlljjJK7aWUOcqwYetUL1wJJ1YbS6wmlhhtDLGaWGK1sRgVo5ySIQiCIAiDEFk84SX+XDxhd9gpqisix5RDtimb7Opsckw55JhyqLRUdlrmUH2oM6oXnsaIMGeEb0SYc1hXp/FdYFYWT3hnY6hOBO4LZIK65/qyeMK3SNv0XH+o9pmyeALYvn07jz76KFqtliuuuIKnnnqqxzb8MRFYj540QxppkWnMY14b2aqGKpezl12dzbnqc2RXZ3PBfIEaaw1Hyo9wpPxIGx2dRsfw0OFt5vCNDB9JWngaIfqQLsvdE2TxhHc2htpE4L5EJqh7ri+LJ3yLtE3P9YdanymLJ4DRo0ezbds2DAYDt99+O0eOHGHy5Mn+LpZXRARGMC1wGtPiprV5b7FbyDXluhy+5ivHlEO9rZ5z1ec4V32unb244DiXo9fa6YsNipVhXUEQBEEYgAxax27YsGGuZ71ej1Y7eFeZGrQGxkSOYUzkmDbvHaqD4tpiV2QvuzqbbFM256rOUd5QTkldCSV1Jewp3NNGL0QfwoiwJkcvYqTrOSUsBb1mcPynLAiCIAiDkQHh2K1du5a33nqLkydP8uqrr3Lrrbe60kpLS1m9ejUZGRmkpKSwfv16FixY4Er/5ptvKCsrY8KECf4oul/RKBoSjYkkGhOZNWxWm7RqSzU5phzOVZ1rmctXnUN+TT611lqOlh/laPnRNjo6RUdyaHKbKF9KSAoNakNfVksQBEEQhE4YEI5deno6zzzzDI8//ni7tAceeICkpCTKysrYtGkTK1euJCsri8jISIqKivjxj3/MO++844dSd43mm5cYXn4C5XwMJEyAoMg+zT/cEM7U2KlMjZ3a5n2jvZH8mvw2c/iarzpbnWshR0Z+Rhu9v733tzZDuiPCRpAankpiSCIaRdOXVRMEQRCEIcuAcOzuvPNOAH7961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx/xne98h9tvv52//vWvxMfHd2nfYrFgsVhcn00mE+C7fewAtF/9iWnmItjwTwDUkDjUmHTUmLEQPQY1ZgxqTDoYE6AP57spKAwPGc7wkOHMTZrreq+qKiX1Jc7Vuk1DujmmHHKqcyhtKKWsvoyy+jL2Fu1tY8+gNZBiTCE1LJXhocNJC0sjNSyV1NBUwg3hHpdT9rHzXK4/7MnUF8heYZ7ryz52vkXapuf6Q7XPHLT72M2bN481a9a4hmIPHjzIkiVLKCkpcck8+OCDBAcHk5aWxrp16xg3bhwAv/3tb5kxY0aHdp944gnWrVvX7r3P9rFTHUy68CqhDRcIbSggyNr5NiZWTRA1gUmYA5OoabrMgUnUBsRCP4mENagNlNnLKHWUUmovpdRRSrm9nHJHOXbsneoFK8HEaGKI0cYQrYkmVhNLtDaaaE00OmVA/M8hCIIgCD6nJ/vYDei/nmazuV0Fw8LCqKqq4v777+f+++93y85jjz3Gww8/zAsvvMALL7yA3W7n7NmzviiyE0XD0eQ7XR919nqMDQWENl1Gi/MeYilB76gnqi6LqLqsNibsih6zIaGd01drSMDRxwscApVAknXJJJPc5r1DdVDlqKLMUUaZvcx5b3o2qSbq1Dry7Hnk2fPa6CkoRGginE5fk+MXo4khWhtNmBImQ7uCIAiC0AkD2rEzGo2uYdNmTCYTRqOxR3YMBgMGg4HAwEA0Gg19HcS0aYOoChlFVcioNu81DishlmKns9dQ4IrwGS1FaFUr4Q35hDfkt9FRUag1xFFjaHH4mu82bd8eR6ZRNERpo4jSRjFG33bFrkW1UGGvcJ640RTha3b6LFiodFRS6ajkDGfa6OnRE62Jdjl7re+BSmBfVk8QBEEQ+h0D2rFLT0+nurqaoqIiEhISAMjMzOTee+/1yN4DDzzAAw884Dp5Yv78+Z2GPG02GxkZGcyfPx+druOvsSsZd/Q7w+Kwo1Tno5SfQVN+Bk3FGdezYjFhtBRjtBSD6WAbPYcxATV6DI7odNTodBxNF8ExHs/j86YeHaGqKhWWCvJq8sitySW3Jpf8mnxya3K5UHsBq2qlyFFEkaOonW6UIYrhocMZHjqcFGMKycZkko3JpBhTuj1jtzfq4YmNnui4K9udnLfpAwV/1MMXeXpr09ft0l15f/aZ/Q1pm57rD9U+8+IgVlcMiDl2VqsVu93O4sWLue+++1i5ciUBAQFoNBpWrlxJVFQUTz/9NJs3b2b16tWuVbE9pS/PivUJqorBVu0a0g1tuOAa4g20VXeq1qgNaYnsGVqifHUB0f1mHh+AXbVT6ahsO7TbdDer5i51Q5VQojRRrjl8zVeUNgqDYuijGgiCIAhCzxl0Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FV+zRG7wsLCfhmx84iGamdErznKV34GpeIMSlUeCh03AVUXiBo12hXZa47yqZEjQBvgn3o0cXG+ZquZ/Jp88sx55NXkcd58nnxzPvnmfEyNXf+nE2WIItmYjLZGy/TR00kNS3VF+4x694f15b/P/oVERTzXl4idb5G26bn+UO0zTSYTiYmJg8ex6ysGfMTOAzSORowNRYRa2s/j06gdr2h1oKHWEH/RSt1EagxJ2LX9b55bnaOOCkcF5Q7nSt0Ke8tznVrXpW6IEuKM7F0c7dNGy5w+QRAEoU8YdBG7vmZQRux6isOGUpXbJsrnultrO1cLG+aM7EW1jfIRHN2rxeut76+msYbz5vPkmnL58siXBMQFcKH2AvnmfCotnW9DAxAREOGcwxfqnM83LGgYRSeLWD53OVHBUb1ej8H032dfIFERz/UlYudbpG16rj9U+0yJ2HnIUIzY9RhVJdBa2bI1S8MFQpu2ZzHYajpVs+hCW63UTXTN46vXR/fpBsw9oUFtaBPdax3t625OX7AS7IzyNUX3XHP6NFEEa6RNCYIgCO4jETsvkYid+7Sph9XUfh5f+Rk0pvOd6qv6EBzRo1vm7zVF+9TINNB4/h+WV/Vww16ttZbz5vOcrz1Pfk0+583nyavJ41zFOWrUzh1cgLCAMFKMKaQYU0gKTsKUZ2Lx9MWkhad1eRrHYPrvsy+QqIjn+hKx8y3SNj3Xl4idOHY9QiJ2vkFrt2C0FLZbqRtiKUHTyckUDkWL2ZDQtFK3JcJnDkzErunfq1gtqoUKR4Vrn74KR4XrJI7unL4gJagl0tcU7YvVxBKrjSVACeijGgiCIAj9CYnYeUlzxK6srKzTL9BqtbJ582YWLVqEXt/xSQ9dybijPxDwqh52K1Rmo5Sddl7lzjvlZ1GsHS9qUFEgYjiOqNFkmwNIuXQh2vjxqNFjICjCP/XogY16Wz35Nc7Vuvk1+eRW55KZl0ltQC2l9aWd2lZQSApJItQSypWjryQ9Mp3REaNJDUvFoG3r6HZXDm/TBwr+qIcv8vTWpif6PdXxtj90R2awtEuQtumNfk903JUdCH2myWQiJiZm8B8p5mv0en23PyRvZdzRHwh4VA+9HhInOq/WOBxgOg+lp6H0JJSdcj6XnUKpr4SqXLRVuYwG+OzTFr2QOIgdCzFjWt3HQWiC2/P4euPn0d3Pe2LQRCbGOetstVrZWLmRZcuWYcXq3KbF5NyQOc+UR64pl3PV56hoqOBC7QUATp486bKnUTSkhqUyIXoCE6MnMjF6IqPDRrtVF2/TBwr+qIcv8vTWpif6PdWRPrNnSNv0XL8nOu7K9uc+syd2xbHrAqvVitVq7TSt9b2nMu7oDwR8Vo+QROeVNrflnapCXRlK2WkcxSfIP7SVtJAGNOVnUWoKoLbEeeV81caUagh1RvRixqDGpKNGj0GNGQMRqaDR9lo9PLHRWkev1zPCOIIRxhHt5CoaKjhVfopP936KPlFPdk02WVVZ1FhryK7OJrs6m0/OfQKABg0xmhh2fb2LqXFTuTTuUkaEjUBpcm67K6e0zf6Vp7c2vW2XvSUvfWYL0jY91++Jjruy3vaJffHz7IltGYpthcyxG7jo7PUYG1rN47O0zOPrbANmu6JvmseX2Go/viTMhgQcmv4/n01VVWrUGgrthRTYC7hgu8AF+4UO5/EFK8Gk6lJJ06aRpksjUZuIph+dKiIIgiB0jsyx8xKZY+c+/qqH2/naLFBxzjV/z3mdgYqzKLaGDlVURQMRqagxzsheS7RvDBhCvS+ThzruyhaaCnkt4zUChgdwpOIIR8qO0GBvW9cQJYTZKbO5etjVzEicQWRgyxF80jb7V579fR6Tu/LSZ7YgbdNzfZljJ3PsvELmi7iPv+rRbb56PQyb4rxa47BDVR6UnYbSUziKT1B1dg+R9lIUi8m5qKMyG8583lYvNPGiOXxjnfP4QmLdL5Mn9eiBbGJYIuP041g2bRl6vR6r3crxiuMcKD7gvIoOUGur5bO8z/gs7zMUFCZGT2RuylwWpS5ieMhwj+vRH5F5TJ7ryxw73yJt03N9mWPXOeLYdYHMsesef9WjV/INTXZeI67BarXy1ebNLFq4EL2loinCdwZardZVzMVQU+i8sre3MaUGRqCJTueShmDUr7OwxY9zRvjCU6CLIc++mi8yIWICEyIm8N2x36XeUs+/Pv8X1mQre4r3cKryFEfLj3K0/CjPHnqWtNA00hrTSCtNY3zMeNfcvIGGzGPyXF/m2PkWaZue68scu+6RodhWyBw7oSt0tlpCLYVt9uILbSgkuLG003l8NiUAc2BCy7m6hpZ5fGoXGzD3JTWOGk5bT3PcepyztrPYW+0tGKuJ5ZKAS7gk4BLCNZ1vniwIgiD4Dplj5yUyx859+v0cu76wZ62HiiwcxSfI3vc5o8PtaCvOQkUWir2xQxVV0ULUCOxRozln0pN6+SK0ceNRY9IhwOhVGb2ZD1LTWMO2vG28fvB1suxZNDqc5VdQuDLhSq4fcT3zU+YTpAty99vxGzKPyXN9mWPnW6Rteq4vc+yG8By7/Px8li9fzvHjxzGbzR4d8yHzRdyn386x6wt7ej0ET8MaP4lT50MYtWwZil4PdhtU5ULpqab9+Jzz+Sg7jdJohvKz6MrPMgbgk49a7IUlQ+wYiBnrvMeOcz4HhPWojJ7MB4nSR3HD6BvQntYyZ9EcMi5k8MHZD/im5Bt2F+1md9FuQvaHcMPIG7hl7C2Mjhzds+/KD8g8Js/1ZY6db5G26bm+zLHrnEHr2MXGxrJ161ZWrFjh76IIQxWtDqJHOa9xy1reqyqYCqDsFPbiE+R9s4XU4AY05WegttS5ObPpPGRtbWNOFxzNLCUGDVsgbnyL8xee7PYGzD3BqDdyU/pN3JR+E/k1+XyU9REfZn3IBfMFXj/1Oq+fep3L4y/nlrG3sGD4AvTawfHHVhAEYSAzaB27wMBAAgMD/V0MQWiPokD4MAgfhmP4bA6XJpO8bBkavR7qKpoieyddp21Qehqq81DqyomhHA6eamtPHwIx6a6VukrkaIwNReCwAb3jbKWEpvDDS37Imqlr2FO4hzdOvUFGfgb7i/ezv3g/0YHR3DzmZm4deyuxwbHdGxQEQRB8woBw7NauXctbb73FyZMnefXVV7n11ltdaaWlpaxevZqMjAxSUlJYv349CxYs8GNpBcELgqNg+FXOqzWNtViLTnD4i7e4JDkYbcUZp8NXkQXWWig85Lxw/lIvANRTv3RGC13bszQN7YaneVw8jaJhRtIMZiTNoKi2iHfOvMPbp9+mrL6M5w8/z4tHX2TZiGXcNfEu0iPTPc5HEARB8IwB4dilp6fzzDPP8Pjjj7dLe+CBB0hKSqKsrIxNmzaxcuVKsrKyiIyM7MCSIAxQAkIgcSrnoy4wZd4ytM3zLexWqMhuiuw5o3xq6UnsJSfRORqb3p2EEy2mdCgsDIhGa/p/EDeu5Uzd2DEQ5P7vTUJIAg9c8gDfn/J9tuZt5ZUTr3Cw5CAfZH3AB1kfMCtpFqsmrmJG4owBu2WKIAjCQGNAOHZ33nknAL/+9a/bvDebzXzwwQfk5OQQHBzMihUreOqpp/joo49YtWqV2/YtFgsWi8X12WQyAbKPnTsM6H3setme3/ZkihjhvEYvdaVv3vQ5i6+cgL4623XiBuVnnM/1FYQ0lkHWFufVCjUkDk3UaKbUB6LuzsMWP9558kZoQpfz+K4Zdg3XDLuGw2WH+feJf7P1/Fa+Lviarwu+Jj0inTvH3cnStKXoNX27crr1faDm2d/3CnNXXvrMFqRteq4v+9h1z4Da7mTevHmsWbPGNRR78OBBlixZQklJiUvmwQcfJDg4mHXr1nH99ddz4MABLr30Up544glmz57dod0nnniCdevWtXsv+9gJg5EAq8m5B5+loNV+fAUEWSs61bFqgtqdqVsTOIzagNgON2CusFewy7KLA40HaMS5ZUq4Es7swNlcFnAZekUWWgiCILhLT/axGxARu84wm83tKhgWFkZVVRWBgYFs2bKlE822PPbYYzz88MOuzyaTiZSUFObPn9/pF2iz2cjIyGD+/PmdbqXSlYw7+gMBf9Wjt/PtDXue2OiJjruy3ck1p0+58X5XugrUWcxoKs6ilp4k/+AXjDA2oq3IQqnKQe+oJ7LuHJF159rYUrUG1KiROKLSUaPTcTRdatRsbtHdgqnRxHvn3uP1069TYang4/qP2enYye1jbuemUTcRog9x63vyBH+0TV/k6a1NX7dLd+Wlz2xB2qbn+v7sMz1N7w2aRxLdYdBG7H7/+9/32L6cPCEI7dE4rIRYigltaBXhsxRgbChEq3Y8PKCiUBsQ6zpxozwwgS16M5+rJ6hSqwEIUoK4KuAqZhhmEKyR3zNBEITOGDIRu/T0dKqrqykqKiIhIQGAzMxM7r33Xj+XTBAGDw6NnpqgZGqCktsmqA6CG8s6cPgKCLDXYWwswdhYQoLpEOnAVcDPgffDY3kxLJh8XT0Zlgx2Wr7iKt1UrgpaQKi26w5LEARB6JoBEbGzWq3Y7XYWL17Mfffdx8qVKwkICECj0bBy5UqioqJ4+umn2bx5M6tXr/Z6VWzzkWKFhYUyFNsNMhTrnY1BOaygqlBbiqb8DJry0yjlZ9CUn3Hea4sBsANfBAfxQkQ4Jw0BAASoKjfZDNxtHEtMzATUqNE4okajRo4Afc+PMJPhLs/1ZSjWt0jb9Fx/UPaZbmAymUhMTBw8Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FE+MhQrCL5FZ6sl1FLYFOUrJMRSwBG1mH+H2DkUaABAr6rcXGPme1UmEux2VBTqAmIwGxKbFnAkYjYkYQ5MwKIL98mpG4IgCP2JngzFDgjHrq8Qx04Q/ITdSkHDQTZbv+YM5QDoVVhhruf7lRUk2O0dqlm1wdQ0OXytHb/agHhUzcCO6giCIDQjjp2XNA/FlpWVdfoFWq1WNm/ezKJFizo9nLcrGXf0BwL+qkdv59sb9jyx0RMdd2W7k/M23Zeoqsr+kv08f+R5DpQcAECv0bMi7iruDhlNUk0JStkZlPKzUJWLQsfdl6poUSNSKbaHEzNuBkrsGIh2rtwlOMpn5ffFd+etTV+3S3flpc9swR91GYptczD1mSaTiZiYmMG/eEIQhMGFoihMj5/O9Pjp7C92Onj7S/bzVtFXvKfZxfKRy7l7xlMkhSSBrQEqslGa5u8p5Weg/KzzubEWpfIciQB7D7bJQw2ORo0aDdGjUWOczp4aPRoiUkGifIIgDHAkYtcKGYoVhP5Hti2brQ1bybZlA6BFy7SAacwNnEukpoNFUqpKoLUSo6UQY0MhoU13Y0MBwV1swuxQtJgNCa4hXbOheT5fAjad7/bbEwRB6A4ZivUSWRXrPrIq1jsbQ3WFlyccLD3IP47/g/0l+wHQKlquT7ue1eNXOyN4F9FhPRrrUCqz0JSfRVNxFqUiy3VXbA2d5q0GR+OIHIkaNQpH5AjUyJE4okahRqS1WbE7FFceuisvfWYLsirWc/2h2mcOulWxfYVE7ASh/5NjyyGjIYMsWxYAGjTOCJ5hLlFaD+fPqQ6CGssxWgoJbShsifY1FBBoq+5StU4fRa0hAXNgAmZDgvPZkECdIQZVGdgOiCAI/QOJ2HmJLJ5wH1k84Z2NoToRuDc4VHqI5488z+6i3YAzgnfdiOv43sTvkRKa0nv1sNRAxTlnVK/pTkWW83ND506fqtFBxHDUqFGoUaMgaiRq1GjU6FEQmtjhGbsd0d8nqLsrL31mC7J4wnP9odpnyuIJQRAGPZfEXsL6a9aTWZrJ34/8nd1Fu/nw3Id8kv0Jy9KWcde4u3onI0MoJE5FTZzadg2uqkJ9hdPRK3c6fWr5GWpzMwmzlTqHdivOoVScAza3ManqgiBqhMvpU6NGQtQo1Mg0CImTvfkEQfAYidi1QoZiBWHgkm/LZ2vDVs7YzgCgoDBVP5V5gfOI0cb0bWFUB4HWKoyWIkIsRRgbijBanFewpRQNHe/LB2DTGKgNiKPOEEetIY7aAOe9zhBHXUC0DO8KwhBEhmK9RIZi3UeGYr2zMVSHFXzJkbIjvHD0BXYU7ACcc/CWpC3h3on3MiJ8hE/zduu7c9igKs81tOsa1q04B6YLKKqjU/uqooXwZNTINOfCjcg01MgRzkhfZBoEGD0rk5c6MhTbM2Qo1nP9odpnylBsL6HX67v9IXkr447+QMBf9fA0X1VVsTtUbA4Vq91BvVXF1AhldXYUDVjtDleaza5iczTf276z2p12rHYHFquNzCKF0v0FqGiwOVRsdgdWh4q9Sd/abKsprdFqJ++8hk9Nx7GruGzZmuzaVRWN4tzfTUGlolzDGyWZaDUaNIqCRgGDTktQgJZAvZYgvRaDFvLOK5TsLyA2NIiIYD1RIQFEBgcQGRJAQNOqre6+u4HaNi9NvJTnEp/jUNEhnvziSU7ZTvFpzqd8lvMZS0csZc2UNYyMGOnTMnT93ekhfqzzuhhbI1TlQWU2VGRDZTaO8izM+UcJtZU7h3erclGqcoHt7fVDYiFyBESNcN4j01BCkwhqLEOvVXr88+xpG5A+s2f4oy6+yNNbm57o90THXVlv+0Rf/jx7YlccOz+xM6ucY5UKgadK0Wq0qDidDecdQEVVcX1Wmz47U5yyXJTWIu+0Q+u0pnzVi9+1yrN1/h3lQZs05zu7zc7J8wo5286h0WhcaQ5VdV12R9PnJkfF4VBxqLR6biXT5HA55S+SUXE92+wOysq1bLiwF4dK27wcKtZmR6zJsbLZWxyzZoesPTo48KWXP1ktZJ/qoY4Gyovdlj1j6nwvttbl+CS/43KEGLSEarS8W/4NyZHBDIsMIjkymNGxRkbGhqB1u9z9m4nRE/mu8bukXZXGP479g2352/g0+1M+y/6MJWlL+MGUHzA6crS/i9kWXQDEjHZeTditVjI2bmTZtUvRN5S7HL529/pKqC11Xuf3tpgEFgPq8f+E8GHOjZgjhrdc4SnOe9gw0MqfBEEY6MhvcRdYrVasVmunaa3vPZX56dtHKDVr4eTBdmkDDy2f5J/1Q74K1FT1qkWdRkGnVdBpNOi1StNnjfN+cdpF77UKlJeVkpSQQIBOi06roNcqaDWt7Wmcn7UKeo0CqJw7e5qJ48dh0OvRapQ2+WqUFkfZarNz+PBhJk6ajEajcTnHjTYH9VY79Y12GqwOai1WzubkERGTgKnBRkWdlaq6RirqrDTaHNRa7NSiUHS6rF39NQokRwYRpmo4qjnJlJRIpgwLIzE8EGWATehv/r1LD03nqdlPcbLiJC8cfYGM8xl8lvMZn+d8zsLhC7l30r2kR6T3ap5d9Qse27TZISgWhsXCsCvaCzZUQ2U2SmUOSlUuSmW2M/pXlQ/VeWhUe9PnvA7zURUthCWhhqeghA5jbLkVxzfl2CJTUcMSITQJAjreqNnb/tAdGV98t/7CH3Xxadv00KYn+j3RcVe2Ozlv03uDntj2aI5dfX09//3f/81bb71FRUUFJpOJzz//nBMnTvCTn/ykp+b6DX25eOJvJzSYrQoKLQvgmv9stv7c+k+p873apVzrv72t3ykdvGuXhztyykVl6iQPRQFN8/umZ02TjEZplncOM7Z5z0Xyrey47hfJdySnVVS0GmeattV18WfXO02L/mBFVaHRAVWNUGlRqLRAhUWhshHKGhSK66DO3vEXYNSpDDc6r1FhkGZUCRigob1CeyHbGrZxzHrM9W6CfgLzA+eTqE30Y8l8SNNijuDGMoIaywhuc5US1FiOVrV1a6ZRG0K9PoqGgEjq9VFtnhv0UdQHRGHTBnVrRxCEnuHzxRN33303VquVRx99lNmzZ1NZWUlhYSHz58/n5MmTHhe8vyCLJ9xHFk94Z6M/TQRWVZXy2kZOFlTzyY4DKJEpHCus4XSxGZujbTeh1ypMGRbO9LRIrkiL5LLUCIID+tcAQHffw5mqM/zj6D/YkrfFNdVgfvJ87pt0H+OixvkkT3/YdEtfdYC5BKXaGd1zVORy4dguhoc60JiLoKYAxVLjVn6qIRRCk1DDksCYiGqMB2MctqAY9h7P4fJ516GLSOrxQo/B0meCLJ7wRr8/9Zne1KOn+HzxxCeffEJ+fj4Gg8E1PJOYmEhhYaEn5nzGww8/zL59+5g2bRp/+ctfeqwvE4HdZ6AtnvClvYE8ETgxIIAYowHTWZVlyyah1+tpsNo5UWjiyIVqDuRWsudcBUWmBg7kVXEgr4q/fZlNgFbDFSOimDsmlnljYxkdZ+w3Q7edfQ8TYifw1PynOFt5lr8f/juf53xOxvkMMs5nMC9lHmumrmFi9MRezdMbfD5BPSrFeTETq9XK4ZqNJC9bhrZZp8EENYVQfR5MBU3XBTAVoJouYC3PIcBe53QALadQytrO8dQCswHO/Nr5IsAIxjhocvwwxqMJjmV4eREBuXp0YQkQHO28Wg0BD5Y+E2TxhDf63vaZdrvdNbxpt9vR6XTY7XY0mvYbh3ub3lP0ej1arbbdO3fxyLGLiIigtLSU5ORk17vs7GySktqf1+gvvvnmG8xmM1999RX3338/+/btY/r06f4uliAMOAL1WqYNj2Ta8EhWzUhDVVXyKurYc66C3dnl7DlXwYWqenacLWPH2TJ+vfEESeGBzB0by7yxccxOj+l30bzWjI4czR/n/pE1U9fw98N/57Psz9iWv41t+duYmzyX+6fez8QYzxy8QUVgmPOKbb+a12a18unGjSxbOAd9fZnL4cN0AcwlYC7GUVNMXUk2IQ4zirUWGs1QYYaKcy47WmAaQN4/22agC0QXFMVcmw5t1T8hJKbF6bv4CoqEwHCnM9hP/rkQ+hdms5nz58+3WiCokpCQQH5+fof/kHqb3lMURSE5ORmjsX1U2x086m3/4z/+gxtuuIFf/OIX2O12Pv74Y5588sl+Nb9u165dLFy4EICFCxeye/ducewEoRdQFIXU6BBSo0P4zvQUVFUlq7SW7adL2X66lN3nyimobuC1vfm8tjcfg07D7PRYFk+MZ+H4eKJCAvxdhQ4ZFTGKP8z5A2umruH5w8/zafanbD+/ne3ntzN72Gzun3o/k2Mn+7uY/ZsAI4REQkz7xSh2q5UvNm5k2bJl6B0WMBe7nL7my2EqoiT7KPFBDpT6CqgtA7sFbA0oNQVEAGR3vPijHRqd08Frc0W0f9fsCBrCwGB01iHA6HQMdQZxDgcZdrud8+fPExwcTGxsLIqi4HA4MJvNGI3GDiNu3qb3BFVVKS0t5fz586Snp7eL3LmDR47dAw88QFxcHP/85z9JTk7mL3/5Cw899BC33HKLJ+a6Ze3atbz11lucPHmSV199lVtvvdWVVlpayurVq8nIyCAlJYX169ezYMECqqqqGDVqFADh4eEcO3asM/OCIHiBoiiMjjMyOs7I964eQX2jnd3Z5Ww/VcoXJ4vJr6hny4litpwoRqPA9LQoFk9MYPGEeFKi+t/JLiPDR/K72b9jzZQ1vHDkBT4+9zFfXfiKry58xaxhs7h/6v1MjZ3q72IObAxG5xU9qs1ru9XKnmbnT693rvix1kFdObbqIvZ9+TnTJ45EZ6mGuvKmqwzqKpzPtWXQUOXcBNpha5HxFI3O6eAFhDbdQ9o7fwEhzmd9IOiC3LujQ2u3OOc2Cn2K1WpFVVViY2MJCnIu9HE4HDQ2NhIYGNip4+ZNek+JjY0lJycHq9Xad44dwMqVK1m5cqWn6j0iPT2dZ555hscff7xd2gMPPEBSUhJlZWVs2rSJlStXkpWVRUREBCaTCXBOOoyIiOiTsgrCUCcoQMv8sXHMHxvH2hsmcLKohk3Hitl0vIhjBSb2ZFewJ7uC//n4OBMSw7huSiLXTU4kLabjrTT8RVp4Gr+++tf8YMoPeP7w83x87mO+vvA1X1/4mhmJM/j+lO9zecLl/i7m4EZRXM6TGpJISVgh6uRl0NV8o2ZnsKHaedVXtTw3VDsdv9b31umNtc7LVu+05bC1pPUieuB6gMP3gTagxeHTGkCrd77T6i96DnDzuemu0TkvRQMaHYoKKeXHUI6YQW8AjRYUbZOctoPPuqbPHaU1fbY7CLRWQk0RBBicedG87YGm5U7z51bvFI3TsfXT4Vf9ZQ5wR3hbNrcduz/84Q9uyf3sZz/zuDCdceeddwLw61//us17s9nMBx98QE5ODsHBwaxYsYKnnnqKjz76iBkzZvD3v/+d73znO2zZsoXVq1d3at9isWCxWFyfmx1CX+5jN1j2ZPJXPXo7396wJ3sydczomCBGz03jh3PTOF9Zz5aTJWw5UcK+nEqOF5o4Xmjij5+fYkJiKMsmJbB0UjypvRDJ6616JAYlsvbKtdwz4R7+dexffJz9MbsKd7GrcBeXxF7CvRPvZUbiDBRFGZJ7hbkr36d9phLg3PMvKBYiuxdvh8MGjXXOeYCNtSiNZtcz1lqwNM0TtJidnxtrnaeCWOvB1uC8rA0otnrXs/N9vfO9o1Ud7I3Oy9K7zuPF6IBLAdwcyXYHPbAE4Kjn+ssB9ZCC2trha+MI0uadTlFYarWhO2VAbXYUm51JaPOsBRbVN6DN+i+nLKAGJ8IlP0cts6HqNc0ahDocKBYt7dxMBRS1Kb2xg/QmfaPdgWoMwZ0YrMFgYOLEiTQ2Nrp8ldaRPofDgaqqbSJ2PtnH7u6773Y919XV8d5773HllVeSkpJCfn4+e/fu5aabbuK1115zO/OeMm/ePNasWeMaij148CBLliyhpKTEJfPggw8SHBzM73//e37yk59w4MABpk6dyv/93/91aveJJ55g3bp17d77ch87QRjqmK1wpELhULnC6WoFR6sdElNCVKZFO7gkWiU60I+F7IAKewU7LDs40HgAO3YAkrRJzDPMY5x+HBrF+6EYYZCjOtA6Gp2X2ojWYUXjaESj2tGoNjSqDUW1tXx22FzvNaq9bVpTett3VhTVgaI60OBoerajuJ4dTc/2Vs8t7zWqHbrVdQAqiqqiNLkzSoduT/+iwZhC9qw/M2JYLIG63o3aVQWlNjmhXTN27FhOnTqF3W5n+fLlfP/73+fGG290pTc2NpKfn09RURE2m3N/yZ7sY+d2xO7FF190Pd9888289dZbLF++3PXuww8/5P/9v//nrrlewWw2t6tgWFgYVVVVADz99NNu2Xnsscd4+OGHXZ9NJhMpKSnMnz+/0y/QZrORkZHB/Pnz0ek6/hq7knFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv03uTbzXdK+sa2XKyjM+OlbAnp5L8WoX8Wi0f5sHkpFCWTIhjyYQ4hkW47+X5sh63cAsl9SW8eupV3jv3HgX2Al6te5URoSO43H45Dy5+EIPe0Ct5eVsPX7dLd+Wlz2yhuS5zFl7bZ3Xx9PtToVN3rZ1NtUlaVZuGWZuu1u9oSbPbbOz46iuunjUDrVbrdBYvlm9tCxW7zcrePXu4YvrlaLUXD+c6Hc2W8lk5cOAAl192mVMWsNhAbTTiCB+Ow+BcyKWqKnV1dQQHBzuDfRdVWEWlvq6OoOBgOnIFVVWlvr6O0NAwtxbbKIpCaGgoADNnzqSgoMD1GaChoYHAwEBmzpyJweDsR5pHEt3Bow2Kw8PDKS8vb9M4bDYb0dHRVFf7Lpzc04hdT+nLkycEQeiYGiscrlA4WKZw1qS0OmsFUo3OSN60aJWI3vGbvKbWUctOy052W3ZjwTmlI1oTzRzDHKYGTEWnDGwnRBAGEzqdjoSEBFJSUpr26ez9BSyBek2X8+SaI3b19fXccMMN/PSnP2Xp0qWu9D6L2LVm0qRJPPnkk/zyl79Ep9Nhs9n4zW9+w8SJfbvXU3p6OtXV1RQVFZGQkABAZmYm9957b5+WQxCE3iNUD7PiVWbFq5gam5y8coUsk0KuWSHXrOX9XBgRqnJp03BtmB93UAnRhLAoaBFXG65md+Nudlp2Uu4o573699jasJXZgbO5LOAy9Mrg2FRXEAYLDVYHM57a3et2dz18FUFdnLlYUVHB7NmzAVi0aFEbp6438Mixe/nll7n99tv585//TFxcHCUlJUyYMIFXXnmlVwvXjNVqxW6343A4sFqtNDQ0EBAQgNFo5MYbb2Tt2rU8/fTTbN68maNHj3LDDTf4pByCIPQtYQFwdYLK1Qkq1Y2QWa5wsFzDuRqF7BqF7Bot7+aojA5TmRajMjVKxegn/ylIE8T8wPnMNMxkn2UfOyw7qFar+bj+Y7Y1bONqw9VMN0zHoPSTUKMgCH4hKiqKr776ymf2PRqKbSYvL4/CwkISExMZPnx4b5arDatXr2bDhg1t3mVkZDBv3jxKS0u566672LZtG8nJyaxfv961MbGnNJ8VW1hYKHPsukHm2HlnY6jPsfOUwuoGPj9ewqfHSjhS0HKGqVZRuGpEBEsnxjN/dAQHdu/o03q0/u7sip2Psj/i5VMvU1RXBEBYQBi3pd/GytErCQ0I7cZae5syx65/t0t38UddfJFnf2+bHclaLBYKCgpIS0vDYDBQb3UugDLXmDGGdn7SQ0/Sg/TaLodihw0bxoULFzpNb2hoICcnh6SkpDZz7BITE90aivXIsWs9p+1i4uLiemqu3yBz7ARh4FHeAAebInnna1s6U62iMi5CZVq0yuRIlUA/+QI21UZmYyZfWr6k3OHcLNeAgasMVzHTMJMQTf/av08QBjOt59gFBPhnDkfzHLvO8HaOnUeOnUbjnBjYrNraM7Xb7T011++QiJ37SMTOOxsSsetdcsrr+OxYCZ8eL+FMSa3rfYBWw5z0KK6dGMfc9BiCu5j/4g1dfXd21c4X+V/w0omXyDJlARCoDWTFyBXcPuZ24oPje2zT2zL1lo5E7HqGROw81+/NiF1gYMsq+5qamjYrUy/G2/Se4JeI3cUUFRXx5JNPcuWVV/Ld737XW3N+QyJ2gjB4KKyDg2UaDpYrlDS0/PMZoFGZGOmM5E2IVNH38bZzDtXBKdsptjVs44LdORyjRcvUgKnMNswmVhvbtwUShCFEf4jYdYdfInadFWTkyJGcP3++N8z5leaIXVlZWadfoNVqZfPmzSxatMh5pmEPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IFCcz0WLlzI2fIGNh4p5pOjRZyvrHfJhBi0LBwXx7LJCVw9KpoAnXdeXk++O1VV2VW4ixePv8iBkgMAKCjMT5nP3RPuZmL0xB7b9LZMnup42x+6IzNY2iX4py6+yLO/t82OZBsaGsjPz28TsVNV1RVx62hunLfpPaU5YpeSkuIqo8lkIiYmxnfbnXTEnj17XJ6lIAhCf0FRFCYkhjEhMYxHFo3myAUTnxwpYuPRIopMFj7ILOSDzELCAnUsmhDHdZMTmDEiCp3Wt6E8RVGYmTSTmUkzySzNZMOJDWw7v42t+VvZmr+V6fHTuWfiPUyLmubTcgiCMLjwKGI3fvz4Nl5pXV0d5eXlPPPMM9xzzz29WsC+RIZiBWHo4FAhpwYOlms4VK5gsrb0aSE6lanRKpdGq4wKU9H00XnhJfYSvmr4ikxrJo6mY5qStEnMMcxhgn6CHFcmCF4iQ7GdsH379jafQ0JCGDNmTLeZDRRkKNZ9ZCjWOxsyFOs7elIPu0Nlf24lnxwp4rNjxVTWtRy4HWsMYOnEeK6bnMC0lAg0XXh5vfXdFdYW8u+T/+a9s+/RYG8AIMWYwuoJq7luxHUEaN3/gyRDsf0PGYr1XF+GYn00FLtv3z5++tOftnv/1FNPtTlzVRAEYSCg1ShcOSKKK0dE8d/XjWNXdgUbjxSz6XgxpeZGXt6Tz8t78kkIM7BsUgLLJicwZVhYr3TiHZEYksh/Xvaf3DvxXl47+RqvnHiFfHM+/7P3f3juyHPcOe5Obh59MyF62SpFEIS2eBSxCwsL6/BA2ujoaMrLy3ulYP5AhmIFQWiNzQGnqp3n1h6uVLDYWxy5aIPKJdEql8Y4GBbs1tnfHmNRLey37Odry9eYVGffG6gEclXAVcwwzJC98ATBTfrDUOz58+f5+c9/zvHjxzEYDEyePJk//vGPREREAH08FPvmm28CLSdBtFbNycnhhRde4MyZMz2tY79DhmLdR4ZivbMhQ7G+o7frYbHa+fJMOZ8cLWLryRLqWx0ePiI6mGsnJbBkfAw5mTt9NtyFBjbmbGTDiQ3kmHIA5154y0ct57vjvkuSMalLfRmK7R/IUKzn+gN9KFZVVa688kp+9KMfsWrVKgDef/99Jk+ezKhRo1xl7LOh2Oeeew5wepPr1693vVcUhbi4OF566aWemOv36PX6bhuOtzLu6A8E/FWP3s63N+x5YqMnOu7KdifnbfpAobfqodfrWTZ1GMumDqOu0cbWkyV8nFlIxqkSssvrWL/9HOu3nyMhSMu5oDyWT0tmZGznRxB5kr9er+fb477NTWNvIiMvg38c+QdHy4/yxuk3ePvM2ywdsZTVE1czLmpcp/qe5Nmb8tJntuCPuvgiT29t9mWfabfbURQFjUaDRlHAWofD4QBrHYpVi0bTfoFSj9P1nYfwt2zZgtFoZPXq1a53N910UxuZ5kMgWpe7J99Pjxy7jIwMAJ588kl++ctf9kRVEARh0BAcoOP6KUlcPyUJs8XGluPFfHy4gO2nSymqh2e2ZvHM1iwmJIZx/dREbpiSREpU703r0CgaFqQu4Jrh17CvaB//OPIPdhXu4pNzn/DJuU+4KvEqVk9czcykmb2WpyAMOqx18JskNEBEF2I9Tv+vAgjoeHrE8ePHmTbNt1sYue3YlZWVERMTA8D3v//9Ts+LHchnxV6M1WrFarV2mtb63lMZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oNBX9TBo4LpJcVw3KY4yUx1/eXc7+cSyK7uS44Umjhea+MNnp5iSHMZ1kxK4dlICieGB3Rtuort6TIuZxrPzn+VExQlePvEym/M2s7twN7sLdzM6YjR3pN+Boio+a5fuykuf2YI/6uKLPL216Y8+02q1oqoqDocDBw58sYGQw+EAh6PztFb3zmRUVcVqtaLVOo8/7Ml35PYcu9DQUGpqaoD2Z8W6jCnKgD4rVhZPCILQW5itcLhC4ZsyhbMmBZWWoZkRoSqXRju4JFolrJfnb1c6Ktll2cV+y34aaQQgTAljhmEG0w3TCVTcdyoFYbDRZvGEXg+2+u6VepxJUKdDsRkZGfzv//4vH374Yafq/eZIscGELJ5wH1k84Z0NWTzhO/rTBPXSGgufHStm49Ei9udWud4rClyRFsnSifEsnhBPXKjBbZvdYWo08c6Zd3jt1GuUNZQBEKIL4abRN3Hb2NtICEnocT28kZc+s4X+1Db9aXOoLp6YPn06P/nJT7jzzjsB+Oijj5g4cSIjR450lbFfHCnW38jPz2f58uUcP34cs9mMTtfzqspEYPeRxRPe2ZDFE76jP0xQT4rSc89sI/fMHkVhdT2fHC7k48OFHMqvYk92JXuyK/nVJyeZnhrFtZMTuHZSIgkXDdf2tB7R+mi+f8n3uWPcHfz+w9+TGZDJuepzvHzyZV479ZprocXYqLFu16On9faFzGBpl9A/2mZ/sOm3xRNNCyGah0Wb31+Mt+kX8/777/OjH/2IX/3qVxgMBi699FLmzp3r0u3TxRPN5Ofn86tf/YrMzEzMZnObtOPHj3tisteJjY1l69atrFixwt9FEQRBcJEYHsS9s0dy7+yR5FfU8dnRIj454nTy9uZUsDengnUfHeey1EiunZTA4vGxXuUXoA3gMsNl/PLaX7KnZA8vHXuJvUV7+fjcx3x87mNmJM5g9aTVzEic4bMNlwVBaGH48OFdDsV6i0eO3S233EJ6ejrr1q3rt3PQAgMDXSFMQRCE/khKVDD3zRnJfXNGcqGqns+OFrHxSCEHcitd15OfnCDVqKUwPIfrpgzzeHWtoijMTp7N7OTZHCs/xoajG9iUu4ldhbvYVbiLMZFjWD1xNUtHLO3lWgqC0Jd45NgdPXqUHTt2uBVydJe1a9fy1ltvcfLkSV599VVuvfVWV1ppaSmrV68mIyODlJQU1q9fz4IFC3otb0EQBH8zLCKI7109gu9dPYKi6gY+O1rIxiNF7MutINes8LvPTvO7z04zJTmcZZMTWTYpkeHRnjl5E6Mn8oe5f+A/zP/Bv4//m3fOvMPpytP8147/4ulvnuY76d8hzDE4zv4WhKGGR47d0qVL2b17NzNn9t4eSenp6TzzzDM8/vjj7dIeeOABkpKSKCsrY9OmTaxcuZKsrCwsFksbBxDAaDTy8ccf91q5BEEQ+pqE8EBWzxrB6lkjuFBh5n/f2ko+MezLqeTw+WoOn6/md5+eZGJSmNPJm5zIiJieHys2zDiMn1/xc9ZMXcNbp9/ilROvUFJXwv9l/h969Jzae4pVk1YxMnykD2opCIIv8MixCwoKYunSpSxevLjdvnWtT6ToCc2rQ37961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx+xatUqtm3b5lF+rbFYLFgsFtfn5nNwZR+77pF97LyzIfvY+Y7BsldYZKCG2QkqixZdQrXFwabjJXx+rJjd2RUcKzBxrMDEHz8/xbiEUJZOjGfpxHhGxbY4ee6UKVgTzF3j7uL29Nv5PO9zXjnxCqeqTvHO2Xd45+w7zEqcxe3jbueqhKs6nIcn+9j1jMHSNgf8PnZNix6aNwdpfn8x3qb3lD7bx64169at6zRt7dq1PTXXhnnz5rFmzRpXJO7gwYMsWbKkzYbIDz74IMHBwfz+97/v1E5DQwPXX389Bw4c4NJLL+WJJ55g9uzZHco+8cQTHdZJ9rETBKG/0rxPXma5wulqBUerffISg1SmNu2Tl+hBF6aqKjn2HHZZdnHCegIV55+JOE0cMwwzuCTgEvTK4FiZKgwt2uxjF9DLm0j2Et7uY+dRxM5b560nmM3mdpUICwujqqqqS73AwEC2bNniVh6PPfYYDz/8MC+88AIvvPACdruds2fPelpkQRAEn2PUw8x4lZnxKrVWOFKpcKhc4VS1QmG9QuF5LZ+dh/gglUuiVC6JdpDY+RGWbVAUhRG6EYzQjaDCXsEuyy4ONB6gxFHCB/UfsLlhM9MDpnOl4UrCNDIXTxD6Ex45dn/4wx86fG8wGEhOTmbBggVERER4Uy4XRqPRNTTajMlkwmjsvcO1DQYDBoOBRx55hEceecS1QfH8+fM79YxtNhsZGRnMnz+/0z3yupJxR38g4K969Ha+vWHPExs90XFXtjs5b9MHCv6ohy/ydNfmiqZ7db2VjNNlbDpeytfnKiiuh88vKHx+QUNadBBLxsexeEIs4+KNnW5vcnGet3ALZquZj7I/4o0zb1BYV8h2y3Z2NO5gUcoiVo5cSeGhQo/7Q3dkBku7hKHXNntT39s+02KxUFBQQEhISJudM5o3GO4Mb9NbM2zYMC5cuNBpekNDA4GBgcycORODwblp+cV+UFd4NBR766238t5773HllVeSnJzM+fPn2bNnDzfccAMFBQUcP36cd999l2uuuaanptsNxZrNZqKjo8nNzSUhwblT+pw5c7j33ntZtWpVj+13hRwpJgjCYKLeBkebInknqxRsaosjFxPYEslLDnEvkgfgUB2csJ5gp2UnufZc1/tUbSozDTMZpx+HVtH2dlUEoVfoD0OxY8eO5dSpU52m+2Uo1maz8c4773D99de73n3yySe89NJL7Ny5k1deeYWHH36YQ4cOuW3TarVit9txOBxYrVYaGhoICAjAaDRy4403snbtWp5++mk2b97M0aNHueGGGzwpuiAIwpAhSAfTY1Wmx6o02OBYldPJO1GpUNagsKVAYUuBhmiDypQmJ2+4ETRdOHkaRcPEgIlMDJjIBdsFdlp2csR6hFx7Lrl1uYQr4VxhuILLAy4nRNPzlbqC0FeoqkqDvaHX7QZqA/262bdHEbvw8HAqKipcqzXA6exFR0dTXV2Nw+EgIiKiR6HD1atXs2HDhjbvMjIymDdvHqWlpdx1111s27aN5ORk1q9fz8KFC3tabLdpHootLCyUodhukKFY72zIUKzvkOGuzvVrG218eaaCz4+X8OWZchpsLSv54kMNLBgbTXRdHvfcOA9DQPeLJAprCvnfjP8lU82kqrEKgABNgHOYNn0l4yPHS5/ZCmmbnuv31lBsWloaqk5lxuszelzu7th16y6CdEGdprszFJuTk0NSUlKbodjExES3InYeOXYzZsxg2bJlPPbYY+h0Oux2O7/97W/5+OOP2b17N7m5ucyePZu8vLyemvYrMhQrCMJQw2KHE1XO1bXHqhQs9pZIg1GvMiVSZWq0SnqYirabPemtqpUj1iPstuymwF7gep+iTeFKw5VM0k9Cpwxsp0wY2LQeirVr7Cz+ZHGv57Hpuk1dOna+Hor1yLE7ffo0t99+O6dPnyYuLo6SkhLGjh3Lq6++Snp6Onv37uX8+fPcdNNNPTXdL5CInftIxM47GxKx8x0SFem5vsVmZ9e5Sj4/XsLmY0XUtXLywgJ1XDM2hkXjYpk5KhKDru2ITes8VFXlaMVR3j77Nlvyt2BTnX+cjIqRb4/5Njen30xcUFy7/IdCnwnSNr3R782IncFgcA3F9ubiie6GYvtlxK6ZnJwciouLSUhIIDU11VMz/QaJ2AmCIDixO+CMyRnJO1ypYLa2/KEyaFUmRjgjeeMjVAxdrJUwO8zsa9zHXsteatQaADRomKCfwFWGq0jVpvp1PpIwtBgKiye8cuzq6uooLy+ntYnhw4d7aq7f0ByxKysr6/QLtFqtbN68mUWLFqHXdzwHpSsZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oOCPevgiT29t9ka7tDtU9uc6I3mbjhdTbGo5qSdQr2H2qGgSbEU8ePM8Io0dD0HVW+r566d/5VTwKQ6WHXS9T49I55Yxt3Bt2rXoVN2g7zNB2qY3+t72mQ0NDeTn55OWluba7kRVVVfEraN/MrxNvxi9Xk9iYqLr89/+9jeWLVvm+twcsUtJSXGV0WQyERMT47tVsUeOHGHVqlUcPnwYwFWRgIAA6urqPDEpCIIg9FO0GoUrR0Rx5YgofnntWDIvVPP5sWI+P17C+cp6Np8sBbS8/qcdzBoVzZKJ8SwcF0dEcMsfXp1Gx6SASTw0/yGyzdm8cfoNPs35lDNVZ3hy75M8c/AZrku7jnh7vP8qKgh9gK+PkvMoYjdr1iwWLVrEo48+SmJiIoWFhfz3f/83o0aN4gc/+IEvytknyFCsIAiC+6gqXKiDzHINmRUKxfUt0QoNKqPDVS6JVpkcqRLWwahXvaOebxq/YXfjbiodla73I3QjuCLgCsbrx8tiC6FX6Q9Dsd3hl6HYiIgIKioq0Gg0REZGUllZSWNjIyNHjuT8+fOe1aQfIUOx7iNDsd7ZkKFY3yHDXZ7r91SnWX7EJTPZcqqcTceKOVlsdqUrClyWEs5wTQU/WnE1KdFtJ6HbHXZ2F+3mzdNvsqNgh+ts2qjAKJaPXM5No28izhA3KNolSNv0Rn8wDMV2h1+GYiMiIqiqqiIqKophw4aRmZlJVFQUZrO5e2VBEARhUDI6NoTxSRE8OH8UueV1fHasmE3Hizl8wcT+vGr2o+Xdp3cxNTmcJRPjWDIhnuFRwWg1WmYlzeKK2Ct46/O3qEyu5IPsDyirL+PF4y/y0vGXuCrhKkZaRzLfMR89A9uxEwRf4lHE7sknn2TixIl861vf4oUXXuCRRx5Bo9Fw33338cc//tEX5ewTZChWEASh96mwwOEKhcxyDdk1oNIS1RgWrDI12sHUKJWEVt2tXbVzynqKvY17OWs763ofpoRxueFyLg+4nDBN15ELQbgYrVZLYmIiMTExBAV1vtecP6mvr6esrIzCwkLsdjvQh6tim8nNzcVsNjNx4kRvTfULZCjWfWQo1jsbMhTrO2S4y3N9T4di3ekPL7lqDhlnK9l0rJg9OZXYHS1/gkbFBjM6wMwPrruSSckRrmGt/Jp83jn9Dm+ffps61blAT6tomTNsDjePvpmrEq9Co3Sze3I/Qtqm5/re9pmqqlJcXExNTY1LTlVVGhoaCAzseP85b9M9ITQ0lPj4eJc9nw3FTpgwoVuZ48eP98Rkv0av13fbcLyVcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvySVFGVs+KZPWskVTUNrL5eBGfHi3i67NlZJXWkYWGz5/fR2p0MEsnJXDtpESmJo/gJ5f9hJFFIwmYGMA7We9woPgAGeczyDifwTDjMFaMXsGK0StICEnoUR39ibRNz/W96TNTUlKw2WyuhQlWq5Uvv/ySOXPmdPrPrjfpPUWn07XbfLkndnvk2GVnZzN8+HDuuOMO5syZI5tKCoIgCB4TFRLALdOHc8v04VTXW9l8tIANWw9zukZHbnkdf99+jr9vP0dSeCCLJsQRXqPjh8OXcEP6DWRVZfH26bf5IOsDLpgv8OyhZ3ku8zlmJc3i5vSbmZMyB71m4P9jIviG1s6TVqvFZrMRGBjYoQPlbXpf0yPHrqSkhHfffZdXXnmFl156iZUrV3LHHXcwZcoUX5XPr1it1k73m2l+39V+NF3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l357mSCdbBsYiz6Agcz585iV3Y1nx8rYdvpUgqqG9iwKw/Q8eoft7NofBxLJ8bz4yk/4f7J97M1fyvvZ73PgZIDfHXhK7668BVRgVFcP+J6VoxaQVpYmtt17wukbXquP1T7zJ7Y9niOXXFxMa+//jqvvfYatbW1vPHGG24N1fZnZPGEIAhC/6LRDqeqnUebHa1UqG91fm2ITmVSpPNos7HhKlVqGd80fsM3jd9gVlt2aUjVpnKZ4TIm6ScRoPTPvcsEoSv6ZPFEVVUVb775Jq+++ioXLlzgvffeY9KkSR4VuL8hiyfcRxZPeGdDFk/4Dpmg7rm+LxdPeNNnfvr5ZoyjLuWLU+VsPlFCZV1LFMNo0HHN2FiWTIxj5qgI9pfu4v2s99lRsAOH6nDK6I0sTV3KitErGB853m/TiaRteq4/VPtMny2esFgsfPjhh/z73//m4MGDrFixgt/97ndcddVVXhXYV2zfvp1HH30UrVbLFVdcwVNPPdUjfVk84T6yeMI7G7J4wnfIBHXP9X2xeMIbGZ0GrhmfwJIpKdjsDvbmVPDZ0SI+O1pESY2FDw8X8uHhQoL0WuaPi2XppF/wyGXwRf4nvHvmXc6bz/P22bd5++zbjI0cy03pN3HdyOsIN4S7XcfeRNqm5/pDrc/02eKJ+Ph4EhISuO222/j5z3/umni4d+9el8wVV1zRE5M+ZfTo0Wzbtg2DwcDtt9/OkSNHmDx5sr+LJQiCIHiJTqth5qgYZo6K4YkbJnIwv5JPjzhX2F6oqmfjkSI2HikiQKdhTvol3D1hMTGx5/k870O25G7hVOUpfrv3t/xp/5+YlzKPFaNXMDNpJjqNHGEmDGx61IIjIiKwWCy89NJLbNiwgYtHcRVF4dy5c71aQG8YNmyY61mv16PVav1YGkEQBMEXaDQKl6VGcVlqFL+4bjxHL5j49Gghnx4tIrusli0nSthyogStRmHGyJtYM/67OEIOsCX/Y05WnGRz7mY2524mOjCa60dez/LRy0mPTPd3tQTBI3rk2OXk5PioGE7Wrl3LW2+9xcmTJ3n11Ve59dZbXWmlpaWsXr2ajIwMUlJSWL9+PQsWLHDL7jfffENZWdmAX9whCIIgdI2iKExODmdycjj/uWQsp4vNfHa0iE+PFnKyqIYdZ8vYcbYMRYnh8tSHuH10PfWGPWwv+JzyhnI2HN/AhuMbmBA9geWjlrNsxDIiAiP8XS1BcJt+FXNOT0/nmWee4fHHH2+X9sADD5CUlERZWRmbNm1i5cqVZGVlYbFY2jiAAEajkY8//hiAoqIifvzjH/POO+/0SR0EQRCE/oGiKIxNCGVsQij/sTCdnLJaPjvmnJN3KL+KfTmV7MsBmMqkYbO4YuQFqrQ72V/6NcfLj3O8/Dh/3P9H5iXPY/no5cwaNkv2xhP6Pf3KsbvzzjsB+PWvf93mvdls5oMPPiAnJ4fg4GBWrFjBU089xUcffcSqVavYtm1bh/YaGhq4/fbb+etf/0p8fHyn+VosFiwWi+uzyWQCZB87d5B97LyzMVT3ZOoLZK8wz/X9sY9ddzK98d0OCw/gezOH872ZwymsbmDziRI+P1bM/txKjl4wc/RCOHAto+KXkpZ6mhL1a3LMp9mSt4UteVuICozi2tRruWHkDYyJHONxOaRteq4/VPvMPtnHzpfMmzePNWvWuCJxBw8eZMmSJZSUlLhkHnzwQYKDg/n973/fqZ3nnnuOdevWMW7cOAB++9vfMmPGjHZyTzzxBOvWrWv3XvaxEwRBGPzUWOFIhXOvvNMmBYfasg1KVGgBUbHfUG04SAO1rveJ2kSm6acxJWAKRo3RH8UWhhA92ceuX0XsOsNsNrerSFhYGFVVVV3q3X///dx///3d2n/sscd4+OGHeeGFF3jhhRew2+2cPXvWmyILgiAIA4RQPcyMV5kZr1Jng2OVTifvZJVCRU0SFTVJwLWERZwiPPoApoCTFNoLKbQX8lnDZ4zSjWJqwFQm6CfIBsiC3xkQjp3RaHQNjzZjMpkwGnvnvySDwYDBYOCRRx7hkUcecW1QPH/+/E49Y5vNRkZGBvPnz293WK87Mu7oDwT8VY/ezrc37Hlioyc67sp2J+dt+kDBH/XwRZ7e2vR1u3RXfiD1mcub7rWNNnacrWDziVK2nSnHVDUBU9UE0NYSHnOU0OjDVKtZnLGd4YztDEHaIOYOm8u1qddyedzlnW6dIm3Tc/2h2mde7AN1xYAYijWbzURHR5Obm0tCQgIAc+bM4d5772XVqlW9lq8cKSYIgiB0hNXhPNrscLnCkUqFOptzuFbRlxEceRBDxEGs2gqXvFExMiVgClP1U0nSJvntlAthcDBgh2KtVit2ux2Hw4HVaqWhoYGAgACMRiM33ngja9eu5emnn2bz5s0cPXqUG264wd9FFgRBEIYAeg1MinSeTWt3wNka53DtkYpoTCWLqC1ZiCYwn8CIb9CHH8asMbPTspOdlp3EamKZGjCVqfqpRGoj/V0VYZDTryJ2q1evZsOGDW3eZWRkMG/ePEpLS7nrrrvYtm0bycnJrF+/noULF/qkHM1DsYWFhTIU2w0yFOudjaE6rNAXyHCX5/pDfSi2JzhUlUP51Ww+Ucrmk2UUVDcAdrTG0xjCD6ILPYGqtKxonBozlcXJi9Gf03PdguukbUqf6RYmk4nExES3Inb9yrHzNzIUKwiCIHiKqsL5Wsis0JBZrlDSoICmAV3oUQLCD6INPgeK80+uFi1j9GOYqp/KWP1Y9Irsjyd0Tk+GYsWx6wCJ2LmPROy8szFU//vsCyRi57m+ROy8R1VVssrqmiJ5pZwsMqPoqtGFZaIPP4g2sNAlG6wLZu6wuSxOWcwV8Vf45Lzaodg2B1OfKRE7D5GInSAIguALyhrgcIVCZrmGHLOCxlCELuwg+rBMNAFVLrlgJZhJ+klMDphMqjYVjaLxX6GFfoNE7LykOWJXVlbW6RdotVrZvHkzixYtQq/vOITelYw7+gMBf9Wjt/PtDXue2OiJjruy3cl5mz5Q8Ec9fJGntzZ93S7dlZc+s4X88hqefX8H+Wo0+/MqITAPfdghdGFH0OjMLrm4oDgWpy5maepSxkeN92pl7VBsm4OpzzSZTMTExAy8VbGCIAiCMNhJCAtkTqLKokXTMDWqfHGihE3HL2PnuRIcgVnO4drQo5TUl/Dvk//m3yf/TYoxhSWpS1iatpSR4SP9XQWhHyMRu1bIUKwgCILgL+pscLxSIbNC4US1HTXoNLqwTHShJ1A0LStr4zUJTAmYzBT9FNk+ZYggQ7FeIkOx7iNDsd7ZGKrDCn2BDMV6ri9Dsb7FnbrUNdr48kw5m44Xs/X0eSwBR9GHHUJrPIOi2F1yk6Inc23aUhYNX0RMUIxXefqiHr2tP1T7TBmKFQRBEIQBTHCAjqUT41k6MR6LbRI7s6az6XgJW07nUKs7iC4sE23wOY6WH+Fo+RH+dODPXBZ3GUvTljA/eT6RgRLJG6pIxK4VMhQrCIIg9GfsKmSZnKdeZFbX0BB0BH14JtqgfJeMomoYoRvJ1IDJjNePJ1gjf8cGOjIU6yUyFOs+MhTrnY2hOqzQF8hQrOf6MhTrW3qrLg6HyqHz1Ww6XsynJ49Txl50YUfQBha4ZDRouTzuCpakLsRxysGNS24cMm1zMPWZMhTbS+j1+m5/SN7KuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNb6I26XDkqlitHxfLL6ydyrGAJnx0t4qPjmRTa9qALOwyBRewt2cXekl0oqpbN27exYsx1zE+ZjzHA2C/qIX1m9/TErjh2giAIgjDAURSFScPCmTQsnJ8uGcvZkmv59EgRH504RE7DTnShR9AGFrO35Gv2lnyNVtEzPW4GK8YsY17KPEL0If6ugtBLiGPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLfRFXVIjA1kzJ401c9LIq1jMZ0cLeW3f15TojjgjeYZSdhd/ye7iL9ESwGWxV/GtMdcyO2k2wXr35uT197Y5mPrMntiWOXatkMUTgiAIwmCmuhEyK+BAdQmF2iPoQo+gMZS50jWqnjTNGKYHTWasfgwBSoAfSys0I4snvEQWT7iPLJ7wzsZQnQjcF8jiCc/1ZfGEb+kvbbOitpEtJ0p4/8R+jlZ9hSY0E01AhUtHi4FLY2aycuwyrh42i0BdYK/WQ/pM95HFE0BBQQHf/va30el0hIWF8eabb/Y4+iYTgd1HFk94Z2OoTQTuS2TxhOf6snjCt/i7bcZH6LljxgjumDECU8MKtp4o5u0je/imYhtKSCYEVLKvLIN9ZRnoCOTSmFncOvF6Zidf3cbJ6+9tczD0mbJ4AoiPj2fHjh1oNBrWrl3LJ598wsqVK/1dLEEQBEHod4QF6lkxLZkV05Kpb1zBtlPFvHVkF/tKM3CEZGLTV7G37Av2bv8CLQamRM1g5bhraVQb/V104SIGrWOn1Wpdz4qiMHbsWD+WRhAEQRAGBkEBWq6dnMS1k2/GYlvB12fLeD1zB7tLtmIPOgz6Kg5WbOPgzm0oqp53P9nKbZNuYGHqPLcXXgi+Q+PvAjSzdu1aJkyYgEaj4fXXX2+TVlpaynXXXUdwcDBjx47liy++cMvmjh07uOyyy9iyZQupqam+KLYgCIIgDFoMOi3XjIvn+Vtu5psf/pXn573LPOP/oKuZj6MxElWxcrR6B7/4+ufMePVqvvPeD3j71IeYG83+LvqQpd9E7NLT03nmmWd4/PHH26U98MADJCUlUVZWxqZNm1i5ciVZWVlYLBZuvfXWNrJGo5GPP/4YgKuvvpoDBw7wpz/9iX/961889NBDfVIXQRAEQRhs6LQaZo2OZdboFTgcy9l3rpSnPnuXLOUU9QEHIaCcE6adrNu9k1/t0jE69DJWjlvGdekLCQvoesK/0Hv0G8fuzjvvBODXv/51m/dms5kPPviAnJwcgoODWbFiBU899RQfffQRq1atYtu2bR3as1gsGAwGAMLDw7Hb7Z3mbbFYsFgsrs8mkwmQfezcQfax887GUN2TqS+Qfew815d97HzLYGmbk5OM3J6SyMKF3+VMWT2vZ+5j24UvqNEeQGMo44x5D7/Zv4ff7PsVI0KmsSJ9CTeOXki4IdzjMg3VPnNA72M3b9481qxZ44rEHTx4kCVLllBSUuKSefDBBwkODub3v/99p3Z27NjBL37xCzQaDVFRUbz88sudrop94oknWLduXbv3so+dIAiCIPSMojqVXVWlHLUepS7wKFpDy99vVA1R9lFcGjiR6cHjCdHIiRfu0JN97PpNxK4zzGZzu0qEhYVRVVXVpd7VV1/N9u3b3crjscce4+GHH+aFF17ghRdewG63c/bsWU+LLAiCIAhDloRghW8Fx/EtrqG84Rp2VpZypPEYNYajaAOLqNCdYYvtDFuqPyTCPoJLDJO4Mng8odreObt2qNPvHTuj0egaGm3GZDJhNPZeAzAYDBgMBgIDA9FoNPSzIKYgCIIgDEiiA+GGxFhuYB7VjfPYVVnGIcsxqgOOog0spEqXxTZ7FttMHxJmH8GUgInMDJlAmDbU30UfsPR7xy49PZ3q6mqKiopISEgAIDMzk3vvvbfX83rggQd44IEHXCdPzJ8/v9OQp81mIyMjg/nz56PTdfw1diXjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xhKLfNbzfdK+saeftwJm8d+4jKgKNoAi9g0p1jh+McO0wfE6MbyzXJ13DnpGuJD47zKM/B1GdeHODqin4zx85qtWK321m8eDH33XcfK1euJCAgAI1Gw8qVK4mKiuLpp59m8+bNrF69mqysLCIjI3u1DHJWrCAIgiD0LQ022FtVyYH645TqjqAJOt8mPdiaygT9ROYYJxCli/BPIf3MgDwrdvXq1WzYsKHNu4yMDObNm0dpaSl33XUX27ZtIzk5mfXr17Nw4UKflaU5YldYWCgRu26QiJ13Nobqf599wVCOinirLxE73yJts3P9equdj0+c5L0zm8iq2w2BOW10wpRRjHSk87OFdzMqKq1XyjcQ+kyTyURiYuLAcuz6AxKxEwRBEIT+gc0BmdUmdtcdp0BzFAJzUZQWl8VgTWK0diJzQicwTB/rx5L6ngEZsetPSMTOfSRi550Nidj5DomKeK4vETvfIm2z5/o2h4OMs+d4/cTnHK3egRqY3cbJC1KTuCxmNt+ddC1TY8ehKMqg6jMlYuchErETBEEQhP6NQ4VTNbV8bT5JLsdwBJ1FURyudK0tmlQmcrVxIumGJBRF8WNpeweJ2HmJROzcRyJ23tmQiJ3vkKiI5/oSsfMt0jY9179YR1VVvjlfxL+PbeJA2Vc06E+gaGwueY0tgskRs7htwjLmDr8UjaLpcTn6Q58pETsPkYidIAiCIAxc8ussfGk6zVnHMRoDT6FoWo7iUmxhJKnjuSp4IlOCU9EqWj+WtGdIxM5LmiN2ZWVlnX6BVquVzZs3s2jRIvR6fY9l3NEfCPirHr2db2/Y88RGT3Tcle1Oztv0gYI/6uGLPL216et26a689JktSNv0XL8nOqeKSvnNpxvI0ZzFpMlE0bacCa9xGBkdciU3j13KspFXsX3r9n7dZ5pMJmJiYgbHkWL+RK/Xd/tD8lbGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9d3RGZsQyy3xE1i27KcUm+v554FNfJG/hQr1IA6tmdP1X/DbQ1/wu2+CiLaNo/Q43HnJEgJ1gR7l6cufZ0/simPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLUjb9Fzf0z4z3hjEf81dzn+xnDJzPS8d3MrmvC2U2A+AzkxZwEGeOXaQZ478D8mGS7lu5CLumLwYY0Bwv+gze2JbhmJbIXPsBEEQBGHoUGdzsKMqj8zGY1Tpj6Poq1sSHXrCbOlMDpjInNCxhGg7juT1STlljp13yBw795E5dt7ZkDl2vkPmMXmuL3PsfIu0Tc/1fdlnzpo7j3dO7OfDs5+TZ9kD+gqXjOrQEqOdxILhC7hn6rXEGaO9qkdPkTl2vYTMF3EfmWPnnQ2ZY+c7ZB6T5/oyx863SNv0XN8XfWZ4SDA/mLGAH8xYgMVq562je3jn5EbO1u5C0ZdQrmbyZm4mb+Q8TaRmPPOSr+G+y5aTGBzlcT3cRebYCYIgCIIgeIhBr+XOaTO5c9pM6hss/PrNDZwOKOSUeScOfQFV6jHezz/Ge3n/RxjppNrTmVZzFcOj4v1ddHHsukIWT3SPLJ7wzoYsnvAdMkHdc31ZPOFbpG16ru+PPlN12JkeHs9/LboTnU7HprPHef3YRo5Wf41dn0cNpzmqO82FqrtIDI1yuy49QRZPeIgsnhAEQRAEwR1UFU7XVvKV+QQVahk/S7zRZ3nJ4gkvkcUT7iOLJ7yzIYsnfIdMUPdcXxZP+BZpm57rD9U+UxZP9BIyEdh9ZPGEdzZk8YTvkAnqnuvL4gnfIm3Tc/2h1mf2xG7703AFQRAEQRCEAYk4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBJk8UQHNC8UNplMncpYrVbq6uowmUxdrvDqTMYd/YGAv+rR2/n2hj1PbPREx13Z7uS8TR8o+KMevsjTW5u+bpfuykuf2YK0Tc/1h2qf2eyPuLORiTh2HVBTUwNASkqKn0siCIIgCILgpKamhvDw8C5lZB+7DnA4HBQUFBAaGoqiKJ3KTZ8+nX379nVpqzMZk8lESkoK+fn53e5J099x53sYCPn2hj1PbPREx13Z7uS6Spe22f/y9Namr9ulu/LSZ7YgbdNz/aHYZ6qqSk1NDUlJSWg0Xc+ik4hdB2g0GpKTk7uV02q13f4Qu5MJCwsb8J2UO9/DQMi3N+x5YqMnOu7Kdifnjh1pm/0nT29t+rpduisvfWYL0jY91x+qfWZ3kbpmZPGEFzzwwAO9IjPQ8Vcdezvf3rDniY2e6Lgr253cUGiX4J96+iJPb236ul26Ky99ZgvSNj3Xlz6za2Qo1k80H1vmzvEggtCXSNsU+iPSLoX+Sn9rmxKx8xMGg4G1a9diMBj8XRRBaIO0TaE/Iu1S6K/0t7YpETtBEARBEIRBgkTsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEgQx04QBEEQBGGQII6dIAiCIAjCIEEcO0EQBEEQhEGCOHaCIAiCIAiDBHHsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEjQ+bsA/RGHw0FBQQGhoaEoiuLv4giCIAiCMIRRVZWamhqSkpLQaLqOyYlj1wEFBQWkpKT4uxiCIAiCIAgu8vPzSU5O7lJmUDt2paWlrF69moyMDFJSUli/fj0LFizoVi80NBRwfoFhYWEdylitVjZt2sTixYvR6/U9lnFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv0wcK/qiHL/L01qav26W78tJntiBt03P9odpnmkwmUlJSXP5JVwxqx+6BBx4gKSmJsrIyNm3axMqVK8nKyiIyMrJLvebh17CwsC4du+DgYMLCwrrspDqTcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvy0me2IG3Tc/2h3me6Mz1s0C6eMJvNfPDBB/zqV78iODiYFStWMGnSJD766CN/F00QBEEQBMEnDNqI3ZkzZwgPDycxMdH1burUqRw7dqydrMViwWKxuD6bTCbA6YVbrdYO7Te/7yy9Oxl39AcC/qpHb+fbG/Y8sdETHXdlu5PzNn2g4I96+CJPb236ul26Ky99ZgvSNj3XH6p9Zk9sK6qqqj4riR/56quvuPvuuzl79qzr3S9+8Quqqqp49tln28g+8cQTrFu3rp2NV199leDgYJ+XVRAEQRAEoTPq6uq4/fbbqa6u7nSKWDODNmJnNBpdkbdmTCYTRqOxnexjjz3Gww8/3EYuJSWFxYsXdznHbvPmzSxatKjL+SKdybijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0zL/ZnumLQOnbp6elUV1dTVFREQkICAJmZmdx7773tZA0GAwaDod17vV7f7Q/JU5ltp0s5XqmQWFRLdGgQ4UF6woP06LUDc9qjO9/DQMi3N+x5YqMnOu7KdifnbfpAwR/18EWe3tr0dbt0V95bmcHSLkHapjf6fdpnqipauwV9fSn6mlqwmKDB1HSvRlNXxfiCg+h11/rs59kTu4PWsTMajdx4442sXbuWp59+ms2bN3P06FFuuOEGfxcNgMc/OE6RScvfT+5t8z44QOty8sKa7p1dkSEBRIcEEBUSQHCAVjZTFgRBEITOsFmgrhzqK6G+ChqqoL4KTW054wr3o/n8S6ezVl/pSqOhCl19Fdc7rHC4Y7NaYAxgtdZCQEBf1aZTBq1jB7B+/XruuusuoqOjSU5O5s033+x2q5O+YnxiKFpbAwQEYaq3UWOxAVDXaKeu0U5hdUOP7Bl0GqJDAog2Gohq5fBFGZufne9jjAHEhQYSFKD1RbUEQRAEwfeoKljMUFcGteVN97JW9wq05hJmF2Shy/5vp0PXWNOhKS0wFqCo46yaQyaqRocSGA6GMAgMa7qH49CHkFNUQUo/WbIwqB272NhYNm7c6O9idMjzd17Kxo0bWbZsDnq9HpvdQU2Djep6a4eXqYN3lbWNlNc2YrE5sNgcFFQ3UOCmQxgWqCMuLJD4MAPxoYHENt3jwgzEhwW6ngP14gAKgiAIfYTD4XTOaorAXNx0L4KaYjAXoTUVsbA0G92R74Ot6793GiAKoK7VS0ULQREQGOG8B0XiMISRW1zN8LFT0YZENaVFuuSseiOfb9/Dkuu/hb6DiJzdauXIxo2kGLrfPLgvGNSO3UBCp9UQGRJAZEjPwriqqlLXaKfc3Eh5rYWKJmevoukqNzdS0ep9mdlCg9WBqcGGqcHM2RJzl/bDAnUkRQQxLCLIeY9seU6ODCLCMDDnBAqCIAh9jK0Ragqg+jxUX0BTmceU/J1o3/g31JY4HTlzCaj2Tk1ogJDWL3SBEBwDIdFN9xjnPTgKW2AkB07kctnsxejCEpwygRFw0bQlu9XK4Y0bSZ63DG1Hc9msVuzawHZ6/RVx7AY4iqIQYtARYtAxPLr7rVlUVaXGYqPE1ECxyUJJTdPdZKG4poESUwMlNRaKTQ0tDmBRDSeLOg5h67UKYTotrxXtY1hkCKnRwaRGBzMiJoTU6BDCgwbHJGdBEAShC1TVOTetMhuq8p3Om+lCkxPX9GwuAVqGK7XACICyi40pEBILofFgTGi6O59twTHsPHyOGYuWow9PhICQTh0u1WqlqHAjasqVMEgW3LiDOHZDDEVRCAvUExaoZ3Rc52FjVVUxNTgdwAtV9RRUNXChqo4Llc3P9RSZGrDaVcrtCuXZlZBd2c5OVEgAqdHBpEWHOK8Y5/PI2BBCA4fOL5ogCMKAx9YI1flO560yB035Oaaf24PuH3+EqlznwoPu0BogPBnCh+EITeJMcR2jLp2LLiK5xZELiQVtx+6JarVSeW4jRKYNKWetJ4hj1wVD/eSJYB2kRQWSFhXYYbrN7uBCZS0fbvmKpPTJFNdYyausI7fceZWaW4aED+ZVtdNPCDOQHmckPc7I6LgQRscZGR1rJDSw+2YpJ094LtcfdlHvC2R3f8/15eQJ39Kv26bDBlV5KOVnUSrOQvlZlIoslMpcMF1AuSjilgRQ3aKuGhNQI4ZDWBJqWDKEDUNtuggbBsHRrgib1Wrl5ObNpExehNraSXOo4PC+fxpMfaacPOEhzz77LM8++yx2u53Tp0/LyRNeYrFDaQOUNSiUNkBpveJ6Nlk7n6sQEaCSEKQyLASSQ1SSQ1RiAkEzMKY3CIIg9Hv0thpCGwoxWgoxNhQ575YiQizFaLqY42bTBFAXEEetIbaDeywOjf+3+xiM9OTkCXHsOsBkMhEeHk5ZWZmcPNENntajut7K2RIzZ0pqOVtq5kyJmbMltZTUWDqUDwnQMj4xlAmJYUxIDGVsXDDZmbtYulhOnuipXH/YRb0vkN39PdeXkyd8S5/WxVKDUnYKe+FRzn+zibTgejRlp1BqSzpVUXVBEDUSNXo0atRo1OhREDkCNSLVOUzaKuLWn9vmYOozTSYTMTExQ/tIsd5AdlF3n57WI0avJyYsmKtGt31fXWflTEkNp4prOF5g4liBiROFJmob7ezPrWJ/bpVLNkCj5Y3iQ1yWGsWlwyOZNjyCaGP7E0R8WY/esiEnT/gO2d3fc305ecK39GpdbBYoPQUlJ6DkeNP9BFTnAc4/9qMu1glPgejREJPuvDc9K2HJoNHg7iBJf2+bg6HPlJMnhAFLeLCey9OiuDwtyvXOZndwrqyWoxeqOVZgct3NFht7sivZ02rRRlp0MJcOj+TS1EhmjIpmZEyInMghCMLgwmKG4qNQeBgKM6EoE0pOdjovjdBEHLHjOFdjIO3KZegSJ0HsOOeKUmHQIY6d0O/RaTWMiQ9lTHwoN13qfGexNPLiu58SmjaFzAsmvsmr4myJmZzyOnLK63j34AUA4sMMzBgZzcxRMcwYFU1KlMyZFARhAFFXAUVNDlyzI1d+ltbbhrgIjID4iRA3vuma4HTggqOwW60c27iR1KnLZDXpIEccO2FAotEoJAbDssuTuWOGs5OqrrNyML+Sb3Ir2ZtTwTd5VRSbLLx/qID3DxUAkBwZxKxRMcwfF8us0TGy5YogCP0Hm8XpvF3YDxcOwPn9zq1FOiI0ERKmQOJUSGy6h6cMmE10Bd8hjp0waAgP1jNvbBzzxsYB0GC1801uJTuzytl1rpzM/CrOV9bzxv583tifj16rMD0timvGxTF7VBSyjEgQhD5DVZ2Rt+ImR+78fig60vFwauSIFuctocmRM8b1fZmFAYE4dsKgJVCvZeboGGaOjgGg1mJjb04FX50uI+NUCdlltezMKmdnVjkAMYFajutPc8PUZCYNC5O5eYIg9B6NdU4HLm832txdXJu7B/2h2vZywTGQfDkMuxySL4OkS51nlgqCm4hjJwwZQgw65o+NY/7YOP77hglkl9Wy9WQJGSdL2JNdTlkDPP9VDs9/lUNKVBDLJiWybHIiU5LDxckTBKFn1JZB3m7I2+W8Fx5ybv6L87zTAEDVGlASpzY5cpc57xGpMpwqeIU4dsKQZURMCN+7egTfu3oEleZ6nnljM0UBSWw7XUp+RT1///Icf//yHClRQdw0LZlvX5Ysiy8EQWiPqjrnwrV25MpOt5cLTYLUGdiTpvNVroVZ37oPfaCsTBV6F3HsumCoHynmDv6qR2/na9CoTItRWbRoAlZVYfvpMj47VkzGKaeT98wXZ3jmizNcOSKSm6YlsXRiPMEBbX995Eix/kW/PrapD23KkWI+QFWhKgclZwea3B0ouV+jmIvai8WOw5F8JWrKlajDZ0BYMigKVquV6tLNWB0K9FF9hmLbHEx9phwp5iFypJhwMY12OFyhsLdU4XS1gtq0ZadBo3JpjMrsBAfD5B9uQRj0BDWWEVNzghjzCWJqThBsLW+T7lC0VAaPpCJkDOXGMVSEpGPVGf1UWmGwIUeKeYkcKeY+/qpHb+frjr3C6gbeO1jAuwcLyK2oc72fnhbJd69MYe7oSLZt/UKOx+knyJFinuvLkWJATRFKbquI3EXbjqgaPeqwy1BTZ6GmXo067HLQB7llWtqm5/pDtc+UI8V6CTkex338VY/ezrcre8Nj9PzHorH8eOEY9mZX8P925fLZsSL25VSyL6eS+DADV0QozLYrBAfL8Tj9BTlSzHP9IXWkmMUMOTsg6ws4t639HDlFC0nTYMRsSJuNMvwqFC9PbpC26bn+UOsz5UgxQfAhiqJw5chorhwZTWF1Pa/uyeO1vXkUmyx8ZNKy7c9fcteMNO6eleb12bWCIPgIh8N5okPWVueVt/uiPeQU535xI+ZA2hwYfhUEdh0pEYT+gDh2guAFieFBPLJ4LD+6ZjTvHcjnfz87SnG9jf/LOMs/dpzj1unD+eG8UcSFBfq7qIIg1BS3OHLnMqC2tG16ZBqMWgCj5kPa1RAU6ZdiCoI3iGMnCL2AQafl5kuHYSjMJGDEZfz9qxwOn6/mpZ05vL4vj7tnjWDNnFGE93CIVhAEL7BZnNuPnP3C6cwVH22bHmB0RuRGXeO8okf5p5yC0IuIYycIvYhGgcUT4lk2ZRg7zpbx1ObTHMyr4rltWbyyO5cfzB3F3bPS2m2VIghCL6CqzrlxWVudzlzODrDVtxJQnMdyjV7gjMwlTwddgN+KKwi+YMD/dfnd737HY489xq5du7jqqqsAWL16Na+99pprsmFqairHjh3zZzGFIYaiKMxOj+Xq0TFsOVHCnz4/xaniGv74+Sn+vTuX/1o2nuunJPq7mIIw8KmvdC52yNoKZ7eC6XzbdGOCMxo3egGMnAchMf4opSD0GQPasbtw4QKvvvoqCQkJ7dLWrVvHo48+6odSCUILiqKwaEI814yL46PMAv606RTnK+t58LWD/Ht3Lr9cNtbfRRSEgYXDBnnfOFevZm2FCwdAdbSkaw2QOrPFmYubIEd0CUOKAe3YPfLII6xbt46HHnrIKzsWiwWLxeL6bDKZADl5wh0Gy8kTvWGvOxvXTYpjwdho/rEjh79/lc2e7AqWr9/FrDgNV9XUExXaO2UcCLuo9wVy8oTn+v3u5InqfBynNzP93JvonvoRWExtktWYsThGzkcdOd95woO+1cbyNptbdehLpG16ri8nT3TPgN2geNu2bTz55JNs2bKFtLQ0Xn/99TZDsR999BEAY8eO5Xe/+x1z5szp1NYTTzzBunXr2r2XkycEX1FhgQ9yNRwq1wAQHqByy0gHEyMH5K+jIPQqWnsDMeaTxNUcIc50BKOl7XFdjdoQSkMnUhI2mZLQyTQERPmppILQNwz6kydsNhvTp0/n5ZdfZtKkSe0cu4MHD5KWlkZISAhvvfUWP/zhDzl69CgpKSkd2usoYpeSkiInT7jBUDp5whc2vjxVzM/fOkSZxTlUdOOURH6xbCxRIe0ndA+mXdT7Atnd33P9Pj95QnVA8VHUs19QfeBdYurOorTaU05VtDiGXcZpezIjFt6LNvky0Gjdqkt/RNqm5/py8sQAPXli8eLFfPnllx2m/fKXvyQ0NJSrr76aSZMmdSgzbdo01/Mdd9zByy+/zObNm7nnnns6lDcYDBgM7TeSHdC7qPcxQ+HkCV/YmDM2np9PtXNSP4oXd+by4eFCvs4q5w/fnsKC8fFe2e/Pu6j3JbK7v+f6Pj15wlTo3EsuaytkZUBdGQCxzYIRqU2rV69BGTEHhzaY0xs3Mnr4FYOiXYK0TW/05eSJzumXjt2mTZu6TF+xYgVffvklb731FgClpaVcd911/OlPf+Luu+9uJ6/RaHxSTkHoDQK08OjSsdxwSTI/f/swp4pr+N6G/ayakcp/LRtPoH7gRiYEwYW1nljTETRbdkP2Nig53jY9wIgjdRZH6+MYf8OP0MeNbbvoYYDP+RSEvqJfOnbd8dJLL9HQ0OD6PH36dP7+978zb948AN555x2WLl2KwWDgnXfeYceOHaxfv95PpRUE97gkJYIPH5zFHz47xT93ZPP/duWy+1w5f7ltGuMS5CgjYYChqlB8zHXSgy53JzPtFshqFlCcZ682bw6cPB27qpC9cSPjo0bJSlZB8JAB6dhFRES0+azVaomKinItdPjf//1f7rnnHhRFYezYsbz33nukpaX1fUEFoYcYdFoev34Cc8bE8sibmZwuNnPj/33Nk8sn8a1L2m/rIwj9CnMJ5O1oObLLXOxKUoB6fRSGCdeiSV/o3FMu+KJFDxKVEwSvGZCO3cXk5OS0+bxjxw7/FEQQeom5Y2L57Cez+c+3Msk4VcrP3jnMgdwKrpBRWaE/UV8FOTvQZG1j/omN6A9eaJuuD3aeuTpqAdbUOWzac5pl112HZpDMkROE/sigcOwEYTASYzTwz7um82zGWZ7acpo39p9nt1HL9NkNDI+RP4yCH2isdZ69mv2l8yrMBNWBFnBNFkiY4lr0QMqVoGtamGa1gnLGTwUXhKGDOHaC0I/RaBQeXJDO5ORw/uP1g+Sabax4bhcvrLqcy1Jl7y7Bx9gscGFPiyN3fj84LhoujRmDPfVqDlSEMG3Fg+jDO17NLQhC3yCOnSAMAOaNjePdNVex6u9fcaHWym0v7OFPK6dy49QkfxdNGEw01sL5fWiydzDzzMfojvwAbPVtZcKHw8g5MGIupM2GsEQcViuFGzcy7eI5c4Ig9Dni2HWBHCnWPXKkmHc2eqKTGKrnPybZ+aw6ga2nyvjxawfJLqnh/rkjUFqtIBwIx+P0BXJskxv69ZUo+budV94ulKLDKA4bWlr2k1ND4lDTrsaROht1xBzn/nJtM/D9kWJu6g8UpG16ri9HinXPgDx5wlc8++yzPPvss9jtdk6fPi1Hign9EofqPI5sW6Fzf8YrYh3cOtKBVrZrFLohsLGCaPMpomtPEW0+TVjD+XYydfooyo3jKDeOoSJkLDWBSbL1iCD4mUF/pJivMZlMhIeHy5FibiBHinlnw5vjcV7Zm8//fHISu0Nl7pgY/nrLVIICtAPieJy+YMgf22StRyk6jCNvD2WHPiXBdh6NubCdmBqdjppyFY7hM1CHz4DwlL4/UswNmcHSLkHapjf6cqTYAD1SrL8gR4q5jxwp5p0NT47HWT1rJKnRRu5/5QDbT5fxvZe/4R93TSe4yU5/Ph6nLxkSxzapKlRmOxc3nN/nvIqOgMMGgGsmpqKFhEmQOguGz4DhM1CMsShARwFfnx4p5qHMYGmXMETapo/05UixzhHHThAGMPPHxfHv713J3S/tY19OJbc+v5t/fnda94rCwEVVoaYQCg45txspPOR06JrOWm1DSByOYZdzwmxk7II70aVcDgEhfV1iQRD6EHHsBGGAc3laFG98fwar/rWXE4UmbvvHPlan+btUQq+gqlB9nsSq/Wi2HYLiI05Hrra0vaw2ABKnQvJ0SL7ceQ9PwW6zcXbjRsYMnwmDJNIlCELniGMnCIOACUlhvL1mBt/91x5yK+r4v1ot8+fXkxYrf8gHDLZGKD8Dxceh+CgUHYbCTPR15VwBkN1KVtFC7DinI5d0ifPM1cSpLZsBC4IwZBHHThAGCWkxIbz5gxnc+vfd5FbUcec/9/Ha92eQEiUru/sVqgqmC04HruQYFB9zPpedbr/5L6BqdJgMSYSOmY1m2DRIvATiJ0KA/FwFQWiPOHaCMIhIDA/i39+7nG/9dTvnqxq49fndvP79q8S58wcOh9OBKz8DZWeg9BSUnHA6cw3VHesEhEL8BIibAAmTIekSbFFj2LZpK8uWLZMzVgVB6BZx7ARhkJEQFsiDE+y8mBtGTnmdOHe+xloP5VlQdhpNyUkuy9mO7h9/hIossNZ1rKNoIWZMixMXP9F5hae03zNuEGzIKwhC3+GWY/fmm2+6ZUyr1XLzzTd7VSBBELwnwgD/vudyVr14gHNltdz2wm7eWjODxPAgfxdtYGKpgcocqMh23iuznc8V56AqD3BuB6oFklvraXQQNQpi0p1X7HinMxczRubDCYLgE9xy7G6//XbmzJlDd3sZ79u3b1A5dnKkWPfIkWLe2fDl8ThRQVr+392Xccc/95NbUccdL+zh1XunExagdGlnSLZNhx3MxSjVeVCZg1KZg1KV0/Lc0VYirVADI1Cj03FEjeJUucroK69FEz/OefyWtoPhUxW3I3H9/dgmd+Wlz2xBjhTzXF+OFOset06eCA0NpaampltjkZGRVFZWup15f0OOFBMGIxUWeOaolqpGheQQlQcm2AkeYpMwdPY6ghrLCW4sJ6ixnCBrhfPeWE6wtZzAxgo0OLq0YdEaqTPEUWuIozYgjjpDHGZDPGZDIo26UDl2SxAEn9HrR4qVlpYSGxvbnZjbcv0dOVLMfeRIMe9s9NXxONlltdz2j32U1zYyLTmM25IquH7pIDhSzN4I5hIUcxHUFKOYi52RN3MRak0htQWnCXVUozR2/4+pqmghLAk1Mg0i0lAjR6BGpqFGpELkCAjsujOFoXlsk7vy0me2IEeKea4vR4r10pFi7jprg8Gpa40cj+M+cqSYdzZ8fTzOmMQIXv7eldz6/C4OnjdRV6Nh2bXa/nmkmN0GdeXOkxRqy5x3cyk0OW/Oe9NVX9GlqTbdX1AUhA9zLlAIT251OT8rxnjQaOmNuNtQPLbJXXnpM1uQI8U815cjxTqnxwMy1157LUoHQw4Gg4Hk5GS+9a1vcc011/TUrCAIPmZCUhgv3XMFd/5jD6eq4aE3D/PcnZeh03Z0SmgvoarOhQcNVVBf1eSsXeS01ZY5HbnaUudzQ1XP8tDoITQBjPHOe2gCGBOwBcew9+QFpi+8CX10qhylJQjCkKDHjt3ll1/O//t//4+77rqL5ORkzp8/z8svv8ytt96KoijcdtttPProozz00EO+KK8gCF5w6fBI/nbHJdzz0n42nyjhZ+8c5k/fnopG00WcymGHRrPTQauvanHSGqqgvrLtu/rKi9KrQLV7UFIFgiIhJAaCY5z3Vk5bm+fgqA7nt6lWK6UFG52rUQdJhEcQBKE7euzYffrpp2zZsoX09HTXu+9+97vcdttt7N+/n5tvvpmVK1eKYycI/kJV0TganU5WXSM01kFjDVicztnMuir+mriHoyX/v737Do+qzB44/r3Tk0x6ISEJhBogNFEpFlARUCyLa1sQRdeKICroKgICiu6ubW3o2nX9SVHsgkgTQUU6CaGGUALpfVImk2m/PyYMRALpmUlyPs8zz8zc+77vnJu9ez3c8h4LfklmtuVquTBKg2IphcoS1BUmRhZkoUl53NXHWtb4mNR68AkC31DX6/SE7YzvYa5kTaVu/O8KIUQ7U+/ELjU1lejo6GrLoqKiOHToEACDBg0iN7eGAtVCtGdOJ9itYKtw3fBvqwCbBSpKCSo7jHL8D3DaXMtsFa5Jb61lrvfKcrCWobKUMfDYAdRff+VqU1m13lruelW63jXWcq5zOiCx5lA0wNXA1Sf/359b9aqiAowAlj91VGldyZkhqPq7T/CflgWf2U7rI0+NCiFEC6h3Yjd69Ghuvvlm5syZ474Uu2DBAq666ioAtmzZQufOnZs80D9bunQps2fPJjMzkyuuuIKPP/6YkJAQAMxmM/feey/ffvstwcHB/Pvf/2b8+PHNHpPwEKcTHDZX4mSvrPpcWfXd6qq/aa903ZRvr6zxu1JZQaf87ai2ZwOOs/SxnvqNk0mazQJ2C9gsqK1mRhTkoEl7tmrZaQmcrYKTk9ieTguMADhY+2aqgc4A535eoPrN/yqtq6aozh/0/qA34tAZySwoJapTD/YVwpojZsqcBi4f0I1hvbtgU/vwx85khgwfhdYvuKqfv0yoK4QQrUC9E7sPPviAp59+mvHjx5OVlUVUVBQ33HAD8+fPByA6Oppvv/22yQM93b59+7j//vtZs2YNAwYMYPr06UyZMoXFixcDMHfuXAoKCkhPTyc5OZmxY8dy/vnn07Nnz2aNq16KT+BryXaVHVKrwelw3cvkdPzp5axhWWPbNNHvOGyobFYSTqSgWvUrroTI5toOh931O+7vthqWnf79bMuqxvxTP43DxrV2K6pdVbE0kgY4DyCt4WOogCAAcx0aq3WgMeDU6DFXOvDxD0LR+lQt14PW13WWS+dX9dkXu9rAgcNpxPc7D7XB3738VDsf0PpiVXSsWv8ro8f+Ba3hzHkY7VYr21asYOzYsSRotfy0+iDvrk3h3R3wWs+BjO0VQX6KzVWrVO5NE0KIVqXeiZ3RaOSVV17hlVdeqXF9TExMjcub0po1axgzZgwXXHABAE899RSdO3emrKwMPz8/Pv30U7755hsCAgK46KKLuP7661myZAlPP/10jeNZLBYsllPXnUwmE9C8lSfUH41hVFk27K3DBnsxNdAdql3KawlK1W+fjVOlcZ2tUmtdyZJK43pXV72rtDjVWncbp6Imt6CYsA5RqLT6quU61zhqXdU42tPG1LoSM7UeNAbQ6LGjZnvSHgZdOAyNwYhTo3claeqq96p2qHWguJ5Ere+cTCnlq4kbWPucTDa1L1YHNVY3+PN+OXVEHIWlFXy6+TgzPk9Ed0vfautbK5ndv+H9pfJE85J9s+H9pfJE7eo0QfGfLV++nGXLlpGbm8sPP/zA1q1bKSoqYtSoUfUdqkHeeOMNNm7c6K5hm5GRQXR0NDt37qRz586EhIRQVlbmrhrx8ssvs2XLFpYuXVrjePPmzXOfcTxdc1aeGLn3cfTWYlBUOFFwooCi4ESFU1FB1TKnogCqqveTy+q4vmo83O1Ojl/1ueq3a4rhVP+zrXdN6OpQVIAKh6J2jaeocHL6ZxXOqnWO0z6f3E7XS40TVaPHcigaHIrGNdGs3M9VLw4n/N8hFdvzVGgVJ5P72OlW+3y8QgghWkB9Kk/U+4zdCy+8wKeffsoDDzzArFmzAFfJsalTp7ZYYjdy5Ehmz57Nli1bGDBgAP/85z9RFIXy8nJKS0tRq9XVErKAgABKS0vPOt7MmTOZPn26+7vJZCI2NpbRo0c3X+WJUaNYcdq61pqGSOWJxo3hTbOoj7E7eHDRLtYfzOPd/Wr+7+8XMqBTSJ22wxvJ7P4N7y+VJ5qX7JsN7+9Nx8zGbEd9nbySWBf1TuzefPNNtmzZQmRkJLNnzwYgPj6elJSU+g51VqNHj2bDhg01rps9ezazZ8/m7bffZtKkSeTn5/Pwww/j7+9PdHQ0RqMRu91OeXm5O7kzmUwYjcaz/p5er0evP/PGcJlFve6k8kTjxvCGWdS1Wvjv7Rcw8f0/2HasiPsXJbFs8kV0CWvdE/vK7P4N7y+VJ5qX7JsN7+8Nx8zGxFRfzVp5wm63ExgYCOCuQFFb4lRfq1atqrXNhAkTmDBhAgCHDh3ijTfeICYmBrVaTWRkJLt372bIkCEAJCYmkpCQ0GTxNYXxP44nqziLj5d/TIA+AKPOiL/OH6PWSIDu1Hd/rb9r+Z++69X6GiuACNEYBq2adyeex3X/WUd6WSUT39/MssnDiAr08XRoQggh6qDeid0NN9zAAw88wMsvvwxAaWkpjz/+ODfeeGOTB3cuO3bsYODAgWRmZnL//ffz5JNPola7bqefOHEizz77LIsXL2bPnj189913bN68uUXjq012eTbFzmKKi4sb1F+j0hCgCyBIH3TqZQgiUB9IsD6YIH3VZ0MwgfpA13ddIGqZ9FXUwt+gZXIfO+8fCeBofjm3f7CFz+8fRoifztOhCSGEqEW9E7uXXnqJGTNm0LlzZ8xmMx06dGDSpEk8//zzzRHfWU2ePJk9e/bg7+/PAw88wMMPP+xe98wzz3DPPfcQFRVFcHAwb731FvHx8S0aX20+Hv0xP/38E/0H98fsMFNSWeJ+lVpLz/q91FqKw+nA5rBRUFFAQUUtk5qdRkHBX+dPkD6IUJ9QwnzCCDW43k++Tl+uVbeNyx2i/vy18PGd5/O397ZyKKeUuz7awmf3DsWor/chQwghRAuq91HaYDCwcOFCFi5cSG5uLmFhYR65JHiuM3A+Pj589tlnLRhN/XXy70S0JpohkUPqde3c6XRSbiunpLKEYksxxZZiCi2FFFuKKbIUUVhReMayoooiSqwlOHFiqjRhqjSRVlL7hG2B+kDCDFVJn28YHXw7EOkX6X6P9IvEqGq6S/DCu0QH+fB/9wzm5v9uIvFEMff9bxsf3nkhBq2c9RVCCG9Vp8Ruy5YtZ1135MgR9+fBgwc3PiJxToqi4Kf1w0/rR6RfZJ37WR3WU4lgRSEFFQXkmfPIM+eRX5Hvejeferc5be72qcWpZx1Xp9JhxMg3a74hyhhFB78ORPpGEu0fTYwxhmhjtJz5a8W6R/jz8V2DmfDeH/yems+0xTt567ZBaNQqT4cmhBCiBnVK7G699Vb3Z0VROHHiBIqiEBoaSn5+Pk6nk5iYGA4fPtxsgYrG0aq07suttXE4HZgspmpJX055Dtnl2WSVZZFdlk1WeRZ55jwqHZUUUEBBTgHknDmWgkKkXyQx/jHEGGOI9Y+t9jlQHygPgXi5AbFBvHfHBdz50VZW7c1m5le7eeGm/vK/mxBCeKE6JXann5WbP38+5eXlzJs3Dx8fH8xmM/Pnz8fPr3VPiSBOUSkqggyuhzG6u+pK1Mhqt5JuSufbdd/SpX8XcityyS7PJrMsk/TSdE6UnMBsM5NZlklmWSZb2XrGGIH6QLoEdKFrUNdq7x2NHeVBDy9yUfcw3phwHpP/bztfbD9BoI+WWdf0luROCCG8TL3vsXvjjTfIyspCo3F19fHx4dlnnyUqKoo5c+Y0eYCe1JwlxdpKeZwIfQRxmjiujL7yjHsFnU4nBRUFnCg9wYnSE6SXppNems7x0uOkl6aTa86l2FLMrtxd7MrdVa2vTqWjU0AnugR0oXtgd3oG96RHcA+ifKNQFKXJ/35NMV5bL49zRc9Qnh+XwJNf7+H9X48QYFAzeUTXWuP2FCnb1PD+UlKsecm+2fD+remY2ZSataRYjx49ePPNNxkzZox72erVq5k8eTKHDh2qz1Be5+RDIXa7nYMHDzZrSTEBlc5K8h355NpzXS9HLnn2PPIcediw1djHoBiIVEUSpY4iUh1JpDqSDuoOaBR5WrOl/Jyh8M0x19nUm7vYuSSy3lUJhRBC1EN9SorVO7FbsWIF48ePZ8iQIcTGxpKWlsbWrVv57LPPuOaaaxoVuLcwmUwEBgaSl5fXfCXF2kh5nObYDrvDTmZ5JkeLj3LYdJiUwhQOFh3kSPERbM4zEz6tSkt8cDx9Q/uSEJpAv9B+xPrH1usyoZQUq9/vvLImhbd/OYKiwMs39eO6/lG1bGnLk7JNDe8vJcWal+ybDe/fWo+ZjWUymQgLC2ueWrFjx44lNTWVFStWkJmZyYgRI1i8eDFhYbXflN/aSHmcumvK7dCipYu+C12Cu3A5l7uXW+1WDhcfZn/Bfvbl7WNT6ibyVfkUVxaTnJ9Mcn6yu22ALoB+Yf3oH96f8zucT//w/vhoaq+e0J5LitVn/T+u6o2pws5nm9N4bNluVCo1486Lrj14D5CyTQ3vLyXFmpfsmw3v39qOmY3VrCXFAMLCwrjjjjsa0lWIBtOqtcSHxBMfEs/YzmNZkb2Cq6++muyKbHbn7Xa/9uXvw1Rp4reM3/gt4zfAVamjX1g/LuhwARd0uICBEQPx1cpl9oZSFIVn/tKXSpuDL7af4NHPd1Fpd3DLBbGeDk0IIdq1Ok93snTp0lrbTZgwgUWLFjU6KCHqSlEUYgNiiQ2IZWzXsYDrzN7BooPszt3NzpydbMveRk55DjtzdrIzZyfv7X4PjaIhISyBiztezCXRl9AjoIeHt6T1UasU/n1jf3QaFZ9tTuMfy5Kw2h3cNqSzp0MTQoh2q06J3XfffccXX3xBbbfjrVixokmCEqIxtGotCaEJJIQm8Ldef8PpdHKi5ATbsrexLXsbW7O2klmWSWJuIom5ibyV+BZB+iA6OTrhOOJgeOxwQn1CPb0ZrYJKpbBgXF90GhUf/XaUWV8nY7U5uPPiLp4OTQgh2qU6JXZDhgzhrbfeqlM7IbzN6Wf1buhxAwDppen8kfEHv2X8xqaMTa7SaxSRtCkJZZPCeRHnMbLTSEZ2Hkm00TvvHfMWiqLw9LV90GlUvPPLYeZ9v5dis41pI7vLPHdCCNHC6pTYrV+/vpnDEKJlRRujubHnjdzY80asDis7Mnfw6cZPyfbNZn/hfnbk7GBHzg5e3PYivUN6c2XnKxkTN4bOAXKZsSaKovDkVb0waNS8tjaF/6w5SE5JBc/8pS9qlSR3QgjRUmTyL9HuaVVaBkUMIssni7FXjyW/Mp+1aWtZm7aW7dnb2Vewj30F+3hj5xv0D+vPtd2u5aq4qwg2BHs6dK+iKAqPjupJqFHH3O/28NnmNPJKLbz2t/MwaKWKiBBCtARJ7IT4k0i/SG7rfRu39b6NgooC1h9fz6qjq9iUuYmkvCSS8pJ4YcsLXBJzCdd3u57LYi9Dq2ob0y80hTuGxRFm1PPIkl38tCebOz7Ywrt3nE+Qr87ToQkhRJsnid05SEmx2nlqO1qqpJi/2p/r4q7jurjryDPnsfLYSlYcWcH+wv2sP76e9cfXE+YTxg3dbuC6ztfVO6a2Wh5nVK8wPpw0iAc+28WWowX85c3feGfieXQLb7ma0lK2qeH9paRY85J9s+H92+oxszbNWlKsLZOSYqKusu3Z7Krcxc7KnZQ6SwFQUOil6cVg/WC6a+TBAYCMMnjvgJoCi4KP2smkng56B8khRwgh6qNZS4qZzWaefvppvvjiCwoKCjCZTPz000/s27ePRx55pDFxew0pKVZ3ntqOpv7dho5ntVv5+cTPLEtZxracbe7l3YO6M6n3JEZ3Hn3Oy7TtoTxOfqmFqUsS2XasCJUCM6+OZ9LQTs2e+ErZpob3l5JizUv2zYb3bw/HzJo0a0mxBx98EKvVyg8//MCll14KQP/+/Xn44YfbTGJ3kpTHqTtPbUdT/25DSihd0/0arul+DQfyDvDS6pdIciRxqOgQczbNYWHSQu7ocwc39rjxnJUu2nJ5nMhgLZ/dO5TZXyfzxfYTPLfiAMkZJTx/Qz/89M1/N4iUbWp4fykp1rxk32x4/7Z8zDzb2HWlqu/gy5cv54MPPqBv377uf3FHRUWRmZlZ36GEaFO6BnblWt9rWTFuBdPOm0aIIYSssixe2PoCV391NZ/s+YQKW4Wnw/QIvUbNCzf1Z861fVCrFL7dlcH1b/7KwewST4cmhBBtSr0Tu6CgIHJzc6stO3LkCB07dmyyoIRozQJ0Adzb/15W3bSKp4c9Tax/LAUVBby07SWu+eoalu5fitXe+m8Ary9FUbj7ki4svW8okQEGUnPL+Mubv/Hl9hOeDk0IIdqMeid2Dz/8MNdddx3Lli3Dbrfzww8/MH78+DZ3GVaIxtKr9dzc82a+Hfct8y+aT5RfFDnmHBZsXsB131zHyqMray3T1xZdEBfC8mmXcGmPMMxWOzO+SGTa4p0Ul7e/ZFcIIZpavW9wmTJlChEREXzwwQfExMTw+uuv8+ijj3Lrrbc2R3xCtHpalZa/9vgr13a9li9TvuS9pPdIL03n8V8eZ2D4QIbZhnk6xBYXatTz8V2DWfjzIV5bm8J3iRlsOVLAizf359Ie4Z4OTwghWq16n7EDuPnmm/nxxx/Zs2cPq1atapakzmazceONNxIdHY2iKGRlZVVbP3fuXGJjYwkICKBHjx589NFH7nXr169HpVJhNBrdr40bNzZ5jELUh06tY3yv8Sz/63IeHPggPhofduXu4r+l/2XeH/MoqCjwdIgtSq1SmDayB8seGEaXMD+yTBXc/sEW5n6bTJnF5unwhBCiVap3Yvfqq6+SmJgIwObNm+nRowe9evVi06ZNTR7c8OHD+fLLL2tcN3HiRPbv34/JZGLFihXMmjWLPXv2uNf37NmT0tJS9+vkE7xCeJqPxofJAybz3bjvuDruapw4+e7wd/zlm7/w7aFv293l2fM6BbN82iXcPtRVh/eTTccY/Z8NrNuf7eHIhBCi9an3pdgXXniBu+66C4AZM2bwyCOPYDQamTZtGlu3bm26wDQaHn744bOu79GjR7XvDoeDY8eOkZCQUO/fslgsWCwW93eTyQRI5Ym6aOuVJ5pzjFBdKPMunEdsXizr1Os4VHyI2b/N5ttD3zJr8Cw6+Xdq0PitYRb1P9Mq8PQ18VzeM5Q53+0lvcjM3z/extUJHZh9TS8i/PX1HlNm9294f6k80bxk32x4f6k8Ubt6T1AcEBCAyWSisLCQ7t27k5ubi0qlIjAwkOLi4noHW6cgFYXMzEwiIyOrLf/Xv/7Fs88+S3l5OYMHD+aXX37BYDCwfv16rrrqKgICAggMDOT2229n1qxZqNU1FyKfN28e8+fPP2O5VJ4QLcXutPO75XfWVqzFhg0NGsb4jGGIbggqpUF3TLRaFjusPK5ifaaCAwWD2smYGAfDI51o2tefQgghgGauPDFo0CD+8Y9/cODAAfbu3cvSpUspKCggPj7+jGlQmsrZEjsAp9PJli1bWLNmDU888QQajYasrCyKioro2bMn+/fv55ZbbuHuu+/m0UcfrXH8ms7YxcbGSuWJOmjvlScaO8af+xwvOc7zW59nc9ZmAIZGDmXe0HlE+Ea0qVnU62Jvpok53+4lKd11Br1TiA9PjOnJqN4RdapaIbP7N7y/VJ5oXrJvNry/VJ5ohsoTb7/9No888gg6nY73338fgJUrVzJmzJh6jTN69Gg2bNhQ47rZs2cze/bsOo2jKApDhgzh008/5YMPPuD+++8nMjLSnQT26dOH2bNn89Zbb501sdPr9ej1Z17qkVnU6669Vp5oqjFO9uka0pX3Rr/H5wc+56VtL/FH1h/csuIW5gydw8iYkfUa35tnUa+LAZ1C+XrKJXy5/QQvrjpAWoGZKYsTGdo1hKfG9qZ/TFCdxpHZ/RveXypPNC/ZNxveXypPnF29E7shQ4ac8aDEhAkTmDBhQr3GWbVqVX1/+pwcDgepqak1rlOp5PqNaD0UReHWXrcyOGowT218iuT8ZB7f8Dh/7f5X+jn7eTq8FqVWKdxyYSxj+0fx3/WpvLfxMH8cLuD6N39jVJ8OPHplT/p0PPe/XoUQoj1pUKHGxMREfvvtN/Lz86s9wff00083WWDgukR6cnyLxUJFRQUGgwGA999/n5tuuomAgAA2btzIZ599xuLFiwHXdCfdunUjNjaWlJQUFixYwMSJE5s0NiGaW5fALvxv7P94J/Ed3k16l68OfcUm9SbOLz2fLsFdPB1eizLqNTw2Jp7xQzrx0k8H+GZXOqv3ZrN6bzZj+0Xy8MiexEf6ezpMIYTwuHqfynrzzTcZMWIEv/76K88//zz79+/n5Zdf5tChQ00eXHx8PD4+PgDExcW5PwOsWLGCbt26ERgYyIMPPsiLL77I2LFjAdi+fTtDhw7Fz8+P0aNHM27cOKZPn97k8QnR3LQqLVPPm8p/R/2XIH0QmfZMJvw4gbVpaz0dmkdEB/nwn1sHsvrR4Vw3oCOKAit2ZzHm1Q3c88k2thwpaHfTxQghxOnqfcbu5ZdfZt26dQwaNIigoCAWLVrExo0bef3115s8uKNHj5513VdffXXWdTNmzGDGjBlNHo8QnnJRx4tYfPVi7vv+Po5bj/PIz48wecBkHhjwQLt7ahage4Q/b4w/j6mXd+fVNQf5MTmLNfuyWbMvm4GxQdw3vCtX9Az1dJhCCNHi6v1fhIKCAgYNGgSATqejsrKSSy+9tMnvmRNCVNfBtwP3GO9hfPx4AN5OfJvHf3kcs83s4cg8Jz7Sn7cnns/aGSMYP7gTOo2KXceLePCzHYx69VfWpivkl1V6OkwhhGgx9U7s4uPj2bVrFwADBw7k3//+N6+//jrh4VLfUYjmplbUPH7+4zxz0TNoVBpWHVvFnSvvJLusfVdp6BZu5J9/7cdvT1zBtCu6E+Sr5Xihme/S1Fz64i9MW7yTzYfz5TKtEKLNq3di9/rrr+NwOABXebGff/6ZTz/9lHfffbfJgxNC1OyGHjfw3qj3CNIHsTd/LxOWT2B/wX5Ph+Vx4f56po+O5/cnr+D5cX3o5OfEanfyXWIGt777B1e+8gsLfz7EicJyT4cqhBDNot732A0dOtT9uU+fPqxbt65JA/ImUlKsdlJSrHFjNKY8zoDQAXw65lMe+eURUotTuWvlXbwy/BUGhAw455jeUB6nuWkVGNe/A37ZSUT3HcoXO7P4PimT1NwyXvzpAC/+dIAL44L5y4AorkroQKBP003Yevq7N4wpJcW8j5QUa3h/KSlWu3pXngBIS0sjOTmZ0tLSastvueWW+g7lVRYuXMjChQux2+0cPHhQSoqJVsHsMPNZ2WcctR9FjZqbfW+mr66vp8PyOhU22FWgsC1X4ZBJwYmreoVacdI7yEn/ECd9g534tY25b4UQbUizlhR74YUXmDdvHv369auW9CiK0mbO3plMJgIDA6WkWB1ISbHGjdFU5XEsdguzfp/FuuPrUFC4xuca5lw7x2vL47SEc21HZnEF3ydl8u2uTA7mnPoHqlqlMDgumFG9I7iydwRRgYYm+83m2I7m6i8lxZqXlBRreH8pKdYMJcVeeukltm7dSkJCQoMDbC2kPE7dSUmxxo3R2PI4Wq2WVy57hX9u+SdLDyzlB/MPRO2L4qFBD521rqq3lxRrKjVtR6cwLVOu8OfBy3uwP6uElclZ/LQni/1ZJWw6XMCmwwU8s3w/faMDGNEznOE9whnUORitum63JbfHsk11bS/HzFOkpFjD+0tJsbOrd2JnNBrp1q1bfbsJIZqZWqVm1pBZhOhCeHv327yX/B42bDw66NGzJnftnaIo9I4KoHdUAI+O6smx/DJ+2pPFT3uy2X6skOR0E8npJhb+nIpRr+GibqGMiHclerEhcpuGEML71Cmxy8nJcX+eOXMm99xzDzNnzjxjipOIiIimjU4IUS+KonBvv3tJO5TGcvNyPkr+CKvdyj8u/Ickd3XQOdSP+4Z3477h3cgpqWDjwTx+OZjLxpRcCsutrNqbzaq9rqllooN8GNIlhMFdQhjSNZS4UEn0hBCeV6fELjIyEkVRqs0BtWjRomptFEXBbrc3bXRCiAYZph/GgL4DeH7r8/zfvv+j0l7JrKGz2mWVioaK8Ddw4/kx3Hh+DHaHk+T0YjYczGVDSi470opILzLz1c50vtqZXtVez4Wdg/EpU+iUbiIhJhidRv7eQoiWVafE7uS8dUKI1uOmHjdh0BqY+/tcPj/4OVaHlbnD5no6rFZJrVIYEBvEgNggHhrZgzKLjR1phWw5UsDmwwXsOl5ETomF5clZgJpl//0DnUZF344BDIgNYmDVq1OIr5w5FUI0qzrfY+d0OnnvvfdITk5m4MCB/P3vf2/OuIQQTeCGHjegVWuZ9essvj70NXannTkXzvF0WK2en17DpT3CubSH63aUCqudXceL2HQol5+2p5BZqaPYbGNHWhE70orc/YJ9tfSNDqRP1X19fToG0DXMD00dH8oQQoja1DmxmzFjBosXL+bSSy9l1qxZHD58mAULFjRnbEKIJnBt12vRqrQ8seEJvkv9DjVqznOe5+mw2hSDVs3QrqGcHxtAV/MBrr76ctJNVhKPF7Gr6rU3w0RhuZWNKXlsTMlz99VpVPTsYHQne/Ed/OkeYSTcXy9n94QQ9VbnxO7zzz9nw4YN9OjRg/3793Pttde2+cROKk/UTipPNG6MlppF/YroK3juoud46ven+Dr1azJ0GYyuHN3omLyZJ2f3t9lsxATqiAmM4Jq+rofKLDYHB7JK2JdVwr7MEvZnuV5llXb307en8zdo6BbuR5dQH+wFCprkTOKjAokJ9kGtqnvCJ5UnvI9Unmh4f6k8Ubs6T1AcEBCAyXTqwBMSEkJBQUH9o/NiUnlCtHW7KnfxZfmXOHFykf4irjZcLWeFPMjhhAILnChTyChTSC+HrHKFfAvuyhh/plGchBkgzOAkVF/1ftp3eV5DiLanWSpP+Pn5sX79eveTsaNGjWLNmjXVnpQdPHhwI8L2HlJ5ou6k8kTjxvDELOpfHvyS57Y9B8Bdfe5i6oCp1ZI72Tc9/5sWq52j+eWk5pZxMNvE78mHKdf4cyTfTKXt7A+zKQpEBRjoFOJDbIgvMUE+RBi1pKckc+0VFxMTakRfh8xPKk80r9a8bzblmK3lmNlmK0+Eh4dXqwUbEhJS7buiKBw+fLgB4XovmUW97qTyROPGaMlZ1G/seSNJe5L43vw9H+39CB+tD5MHTm5UTN6sNc7ur9Vq6etroG9sCFarlZ6Vhxg79mJUag3phWaO5pdxrKCctPwyjuWXk1ZQzrH8csxWOxnFFWQUV/DHkcLTRlTz5t4/AAj319Mx0EDHIB+iAn3oGGQgOsiHiAADEf56wv317til8kTzao37ZnOM6e3HzKZa3xjNUnni6NGjDYlFCOGFhuiH0KN3D17Z8QpvJb6FVq3lnn73eDosUQu1SqFTqC+dapgM2el0kltqIe20RC+9yExGYTkpGfmYbGosNge5JRZySywknig+6+8EGDT4KGqWZG+jQ4CBcH89Ef4GIgL0hBv1RAToCfXTE+ijRVWP+/2EEM2v3iXFhBBtw8ReE7Fj57Udr/HajtfQqXTckXCHp8MSDaQoiiv58jdwQVyIe7nVamXFihVcffVoSiqdZBZXkF5kJrPI7Dq7V2Qmo8hMtslCbqmFSpsDU4UNEwrZh899H7VKgWBfHcG+WpwValYU7yLU30Con45gXx2hRtd7iJ+OAL2KSpnDXohmJ4mdEO3YPf3uodJeyduJb/PithfRq/X8tdtfPR2WaAaKohBq1BFq1NM3OrDGNk6nE5PZRnphKcvXbqRLn4EUlFvJLbGQU2Ihpyr5yzFVYKqw4XBCflkl+WWVgELq3pwaxz1Fw6wdawgwaAn00RDgoyWw6hVg0GLUq8jIUCjbfoIQo4EAg9bdxlfjethECHFuktgJ0c5NHjAZi93Ch8kfsmDzAlSo0KHzdFjCAxRFIdBXi6/WSM9AJ2MHRJ313p5Km4OicldSl2sqZ+2vW4iLT6DIbKewvJKCsuqvwvJKrHYnlTYHeaUW8kotZ4lCzbfH9p5lnYaZ29dg1Gsw6jX4Vb2M7nf1aZ9PX6/GqNfip1fjo1Xjo1Pjq9Vg0KnQqVXyZLhoUySxE6KdUxSFRwY9QqW9kv/b9388u/lZbvK9ibGM9XRowovpNCrXAxcBBrqH+VC438nYIZ3OnghWVvL19z8yZPjllFuh2GzFVGF1vVe9Csss7Es9hjEkglKLnWKz1d2uwup6GrjC6qDCWkleaWWTbIdKwZ3s+eiqEj+tGsPJBFBX9VmrPqOdXqNGr1Gh17oSRL1WXfWuci3XqNBr1Oj+9FmI5uS1iZ3NZuPWW2/ljz/+ICMjg8zMTCIjI93rjxw5wv3338+WLVvw8/Nj6tSpzJw5073+448/Zvbs2ZhMJm688UbeeecddDo5CyFETRRF4R8X/gOL3cIXB7/gy/IvGZw2mKu6XeXp0EQboSgKBg1EB/mcc7qTFSuOMHbsoDPalJktfLt8JUOHX4bFrlBmsVFa9XJ9tlNW9bmk6r3Mvd7ublthtWOutGOruq7rcEJZpZ2yFrwBUKNSUKFmXuLP1RK/09+16pMvBY1ahValoFWr0KhV6KqWadQKOrUKjUqFVqOgVbmWnex3sr1WpaDgYF+hQvDhfAw6nbuvWqW44ql6V5/+UhQ0KhVqtevzyeUqBTnL6cW8NrEDGD58OI8//jjDhg07Y91DDz1E165dWb58OSdOnODiiy9m8ODBjBw5kt27dzN9+nRWrVpFjx49GDduHAsWLOCZZ57xwFYI0TooisLsobOpsFXw/eHvmfnbTAw6A5fFXubp0IRAp1Hhp4XYYN+mmbvS7sBstVNRacdsdb3KK6t/N1f+6b2qfXmlnXKrnUqbA4vNgcVqp9LuwGJ1uN5t9lOfra7vp98f6EoqFSrLrUBLVtJQ89/925tkpJPJIA41s3asQ6OuShCVsyWKKtQqUKtUruWKgkpxUlCgYlnudtRqFSrlVNKoUlxPgbs+u76rFAWcDjLSVfz6zR40VZfRT65Tnd5WpeB0ODhyTMX+NSlo1erqY6lOfXY6HezPUMjZdAytWn3G7zocDpJzFCw7M9Bo1KgUBaUqTgVwOuzsylcYZXfgDTPxeG1ip9FoePjhh8+6/tixY8yYMQOtVkuXLl245JJL2Lt3LyNHjmTRokXceuutXHDBBQDMmTOHe+6556yJncViwWI5db/HyQobUlKsdlJSrHFjeGN5nJmDZnL0+FF2W3czff10Xh3xKsOizvzHlbeTsk0N799eSor5qMHHR02wj7rJxjwbm92VBFbaHZSZK1n3ywYuHHoRDlTuBPH0RNDmcGK1O7HaHdgcTmx2R7XvVrsDW9V3q8Pp/myzO6m0O7A5Tq23OZxYrHYKi034+Bldy6vGsDuc1V9O17vN4eRc5QtsDmfV0ywKlRZbI/4yKg4W59e7z+bc9Dq3XZNxpA7t1Hxz7MA51y9KTT7n+gfNFrTq5rnU3iwlxTxJUZQzLsX+97//ZefOnbz++uukpaUxcuRIli9fTr9+/fjLX/7CmDFjePDBBwHIz88nLCyM8vJyfHx8zhh/3rx5zJ8//4zlUlJMtFd2p52l5UvZa92LFi23+91OV21XT4clhGhBDic4neCo+myv+m6vyulOLq/2qnGZcmZ/Tn12Vn0++e6o93el2vdz9jv5+eTy09o4ahjjz8vBNQ7V2rkuSz/Q246umf6NUJ+SYl57xq42F110EW+99RZ+fn7Y7XbmzZtHv379ACgtLa224Sc/l5aW1pjYzZw5k+nTp7u/m0wmYmNjGT16tJQUq4WUFGvcGN5cHufd69/lyU1P8mvGryy2LOati95iQPiAOm2XN5CyTQ3vLyXFmpfsmw3v783HzOYuKVZXHkvsRo8ezYYNG2pcN3v2bGbPnn3Wvna7nbFjx/LEE08wefJkTpw4wbXXXktCQgI33XQTRqOx2h/h5Gej0VjjeHq9Hr1ef8ZyKY9Td1JSrHFjeGN5HF+9L69e8SpT107lj8w/eGj9Q7w/+n0SwhLqFKe3kLJNDe8vJcWal+ybDe/vqWOmRqOhwl5BmbWM0spSymxlFJuL2Wfdx9Waq1tXSbGmtmrVqgb3LSgoICMjg8mTJ6PRaIiLi2PcuHH8/PPP3HTTTfTp04fdu3e72ycmJtKlS5caz9YJIc5Or9bz2uWv8eDaB9mevZ37Vt/Hh2M+JD4k3tOhCSFEvdkcNkoqSyipLMFUacJUaaKwvJCtlq3k7M2hzFaGqdLkamMtoazSlcDlmnJ5YdkLlFnLsDtrfoJ6in2KV8wB6tWXYi0WCydvAbRYLFRUVGAwGAgPDyc2Npb33nuP+++/n4yMDL799lumTJkCwIQJE7jsssu499576datG8899xwTJ0705KYI0Wr5an1ZOHIh962+j6TcJO5edTfvjnqXPqF9PB2aEKKdcjqdFFuKKbIUUVhR6H4vtBRSVFHkfj9acpSPV3xMqbUUk8VEua387IPuquVHT5s6UUHBT+uHn9YPX40v1jIrVod3PAzp1YldfHw8x44dAyAuLg7AnegtW7aMhx9+mCeffBJfX19uvfVW7r33XgD69evHyy+/zHXXXeeex27WrFke2QYh2gI/rR9vX/k2D6x+gN15u7nnp3t468q3GBgx0NOhCSHaiHJrOfnmfPIq8sgzn3qdTNQKK1yvbFM2c5fMPeuZszMUnbnIV+NLgD4Af50/Ro0Rc6GZ7rHdCTIE4a/zJ0AXgFFnxKg1YlAZSNySyKgRowj0CcSoM+Kj8UGluJ6APVmP2V/n33R/jEbw6sTu6NGjZ1134YUX8vvvv591/Z133smdd97Z9EEJ0U4F6AJ4d9S7TFk7hR05O7hv9X0sHLmQCyMv9HRoQggvdfLMWnZ5NjnlOeSZ88ivyCe3PJfc8lwOlhzk3e/fJb8inzJrWb3H99P6EaQPIlgfTJAhiBBDiOu7IRg/tR+pe1IZPmQ4Ib4h7oTNX+ePRnUq/TmZmI0dNvasD0fka/LpEtilVdzf6dWJnRDCuxh1Rt6+8m2m/TyNzZmbmbxmMq9d/hoXR1/s6dCEEC3M6XRS7ijnYOFB8ivzySrLIqssi+zybLLLsskqzyK7LJsKe8W5Byo59dGgNhDmE0aYTxjhvuGEGELcyVqIIQSjxkjy1mSuG3kd4cZwdOqz39NmtVpZkbKCYVHDWkVC1lQksRNC1MvJe+6mr5/OhhMbeGjdQ7w04iWu6HSFp0MTQjQhp9NJoaWQ9JJ00kvTOVF6gvTSdDJKM8gozSCrLMuVtP1Y+1ghhhDCfcIJ8w0jzOBK3EL0IaTtS+PKi64k0hhJuG84vhrfc5Yrs1qt5KvzifCNQKtuP8lafUhiJ4SoN71az6uXvcoTG59g9bHVPLr+UZ4e+jQ39rzR06EJIeqh0l7J8ZLjHDMdI73UlcCll5xK4sw2c61jBOuDifSLpINfByJ9Xe8dfDsQ6RdJpG8kEX4R6NVnTilmtVpZkbqC8yPOb1dn1JqbJHbnICXFaiclxRo3hjeWFKtPTM8New4ftQ/fHf6OeZvmkVmayX197/OKAuFSUqzh/dtLSTFPaeltsTlsHC8+zkHrQQr2FnCi7ARpJWmklaSRWZaJk7MXoFJQCPcJp6OxI9F+0XQ0dqSjX0c6GjsSpgsj6fckxo6u+d40Nwc1PjHaHo+ZDdXmSoq1lIULF7Jw4ULsdjsHDx6UkmJC1IHT6WRtxVrWW9YDcL7ufK73uR610vz1N4UQp1Q4K8i155JtzybXkUu+PZ98Rz4FjgLsnP0JUj16QtWhhKhCCFYFV3sFqYLQKHIOyNPqU1JMErsamEwmAgMDycvLk5JitZCSYo0boy2Vx1mWsox/bfsXDqeDi6Mu5vmLn/fo4/9Stqnh/aWkWPNq7LaUWks5XHzY/UotTuVw8WGyy7PP2ken0hFMML2jetMlsAux/rF09u9M54DOBOuDG3SW3dv3TW8/ZtaHyWQiLCysbdeKbQlSHqfupKRY48bwxpJi9d2O8X3G08HYgX9s+Ae/Zf7GXavv4o0r3qBTQKc6j9EcpGxTw/tLSbHmVdu2WO1WUotTOVBwgIOFB0ktSuVQ0aFzJnARPhF0DepKt6BuxAXE0TmgM3EBcYToQlj540rGjqjlsmkzbEdz9G8Lx8z6aBUlxYQQbc8Vna7gk6s/Ydq6aRwuPsz45eN5+bKXGRo11NOhCeHViiqKOFB4gAMFB9zvqcWp2By2GttH+ETQLahbtVfXwK4E6gNrbN8W7k0UdSOJnRCiSSWEJrDkmiU88vMjJOUl8cDqB5hxwQwm9p7oFQ9VCOFJTqeT9NJ0kiuTOZp4lJTiFPYX7D/rWTh/nT/xwfHEh8TTPag73YO60yWwy1kTOCEksRNCNLlw33A+vOpDntn0DN+lfscLW19gW9Y2nrn4GfkPkmg3nE4n2eXZ7Mnfw568PezN38ue/D0UWYpcDfZUbx9jjCE+xJXE9QruRXxIPFF+UfIPIlEvktgJIZqFXq1nwcUL6BPah5e3vcy64+vY//1+XhzxIv3D+3s6PCGaXL45353E7cl3vfLMeWe006g0RCgRDI4bTO/Q3sSHxNMzuKfX1BoVrZskdkKIZqMoCrf1vo2BEQN5bP1jnCg9waQfJzH1vKncmXAnapVMiSJapwpbBXvy95CYm0hSbhJ78veQVZZ1Rju1oqZbUDcSQhPoG9aXhNAE4oxxrPlpDWOHNP2DDEJIYieEaHYJoQl8ft3nzN80n5+O/sSrO17l5+M/8+zFz9IlsIunwxPinJxOJ1llWSTmJpKYm8iunF3sL9iPzVn9wQYFhS6BXUgITSAhLIGE0ATiQ+Lx0fhUaycPMojmJIndOUjlidpJ5YnGjdGeZlE3KAaeH/Y8QzoM4eXtL5OYm8jN39/MlAFTmBA/AZWiatLfk8oTDe/f3itPVNor2V+4n6TcJJLyXK8cc84Z7cJ8wugf1p/+Yf1JCE2gV3Av/LR+1Rs5z4xZ9s2G929Px8yafqMuZILi00jlCSFaRpGjiK/LvybVlgpArDqW63yuo6Omo4cjE+2RyWHiuO04afY00mxpZNgzzqjUoEJFpDqSTupOxGpi6aTpRJASJA82iBYhlScaSSpP1J1UnmjcGO11FnVwXd76KvUr/rPjP5TbylEpKm7qfhMPDniQAN25D1x1IZUnGt6/LVeesDqspBSmkJSXRGJeIkl5SWSWZZ7RLkgfxICwAe4zcn1C+5xxSbXBMci+2eD+7fWYKZUnmojMol53UnmicWO0t1nUT/pb779xWafLeHnby6w8upLPUz5nzfE1PHTeQ4zrPg6NqvGHKKk80fD+baHyRL45331vXGJuInvy9lBhr6jWRqWo6BHUgwHhAxgQMYCB4QOJ9Y9t9rNxsm82vH97O2ZK5QkhRKsR6RfJiyNe5KaeN/H85uc5XHyY+Zvm88meT5g2aBpXdrpSLneJOrE5bBwqOkRiTtVDDrm7OF5y/Ix2AboA+of3Z2D4QAZEDKBfWL8z740TopWSxE4I4RWGRA1h2XXLWHJgCe8mvctR01Gmr59Ov7B+TB04lWEdh0mCJ6opqigiKS+JXTm7SMpNYnfebspt5We06xbYjYERA11n5MIHEBcY1+QP6wjhLSSxE0J4Da1ay+19bueG7jfw8Z6P+d/e/7E7bzf3r7mfPqF9uLvv3YzsNFLmv2uH7A47WfYslqUsI7kgmaTcJI6ajp7Rzk/rR7+wfu5Erl9YP6l2ItoVSeyEEF7HqDMy9byp/K3X3/hg9wd8mfIle/P3MuOXGcQFxHF7n9u5tuu1+GrlqfW26qxn47ZWbxcXEEf/8P4MCB/AwIiBdAvsJom/aNe8NrE7cOAAM2bM4I8//kBRFMaMGcMbb7xBcHAwANOnT+ebb74hNzeX+Ph4XnnlFYYPHw7A+vXrueKKK6pNVfLjjz9y6aWXemRbhBANE+YTxhODn+C+/vexaP8iFu1bxFHTUZ7941le2f4K13e7nlvjb6VbUDdPhyoaweqwklqUys6snfxY9iPvff8ex0qOndFOh46BHQYysIPrbFz/sP4EGYJaPmAhvJjXJnbFxcXccsstfPbZZ2g0Gu666y4ee+wxPvjgAwACAwNZtWoVXbt25csvv2TcuHEcO3YMf39Xrb2ePXuyf/9+T26CEKKJBBuCmTJwCncl3MVXKV+x5MASjpmOsXj/YhbvX8x5EedxbddrGRM3Ri67eTmH08HhosPsyd9Dcl4ye/L3sL9gPxa75VSjqrlY4wLi3E+qJgQncOC3A1w78to2MZOAEM3FaxO7wYMHM3jwYPf3e++9l+nTp7u/z5071/355ptv5pFHHuHgwYOcf/75LRqnEKLl+Gp9mdhnIhN6T2Bz5maWHljKz8d/ZmfOTnbm7OSfW/7J8OjhXNP1GoZEDPF0uO2e0+nkROkJ9uTtISk3iY0lG/nnF/+kzFZ2Rlt/rb9rrrhCH24cdiPnRZ5XLUm3Wq2kKCktGb4QrZLXJnZ/9vvvv5OQkFDjuqNHj1JQUED37t2rLYuIiCAwMJDbb7+dWbNmoVbXfN+FxWLBYjn1r0WTyQRISbG6kJJijRujvZbHaQoXhF/ABeEXkFuey8pjK1lxdAUHCg+w7vg61h1fh06lI04VR+mBUi7vdDnhPuHNHlN7LNt0sp3VaSUpJ4nDJYdJKUzhYNFBUopSMFWazmhvUBvoFdKLPiF9SAhNoE9IH2L9Y7Hb7KxevZrB4YPRqrTVfr+17Jd1ISXFGt6/vR4z21xJsV27djFy5Eg2bNhwRnJntVq58sorGTFiBM888wwAWVlZFBUVuS/H3nLLLdx99908+uijNY4/b9485s+ff8ZyKSkmROuSbc9mV+Uukq3JFDoKq62LUkfRTdONrpqudNZ0Rq/oPRRl6+Z0Oil2FpNjzyHLnuV+5TnycOA4o70aNZHqSGLUMXRUdyRGE0OYKgy1Ig84CFFXraKk2OjRo9mwYUON62bPns3s2bMBOHLkCMOHD+eNN95g3Lhx1do5nU4mTpxIZWUlS5cuRaWqeV6iJUuW8NZbb53192o6YxcbGyslxepASoo1boz2Wh6nuTmdTg7mH+SDDR+Q6ZvJnoI91dZrFA0JoQmcF3EeCaEJ9A3tSwffDo3+3bZUtmnlqpX0Htab42XHOWI6wpHiIxwxHeGo6WiNc8UBBOoC6Rnck55BPV3vwT3pGtAVrVorx8zTSEmxhvdvr8fMVlFSbNWqVbW2ycrKYtSoUcyZM+eMpA7goYceIiMjg5UrV541qQPOuQ5Ar9ej15/5r3dvLI/jraSkWOPGaG/lcVpCfFg8lxkuY+xVYym2FbMlcwubszazOXMz6aXpJOYlkpiX6G4f4RNB37C+9ArpRffg7nQL6kYn/04NKmvWWso2VdgqSC9N50TJCY6XHOdE6QlOlJwgzZRGmikN+0p7jWOpFTWdAjrRM7gn8cHxdAvoRvrOdG695lZ0Ol2jt6M9HDNBSoo1pn97O2a2iZJixcXFjBkzhjvuuIP77rvvjPVz587lt99+45dffjkjKVu/fj3dunUjNjaWlJQUFixYwMSJE1sqdCGElwnzCWNs17GM7ToWgBMlJ9iatZWkvCSS85JJKUwhx5zjvj/vJK1KS1xgHN0CuxHjH0NHY0eijdHEGGOI8otCq/beBKPSXklOeQ4Zpgx2V+4mf18+eZY8cspzyC7LJqM0gxxzzjnHMKgNdAnsQtegrnQNdL26BHahk3+nattutVpZkbhCKoMI4QW8NrH75ptvSEpKIjU1lRdeeMG9vLS0FIBnnnkGvV5Px44d3eveeecdbrvtNrZv385tt91GUVERERER3H777dWeqBVCtG8x/jHE+MdwQ48bACi3lrO/YD+783aTUphCalEqqcWpmG1mUgpTSCk882lMBYVgQzChPqGEGkIJMYQQrAsmtyIX8yEzgYZA/LR+p14aP3RqHRqVptpLrahRK2rsTrvr5Tj1bnPaKKsoI9ueTVJeEpXOSsw2M+W2csqt5ZgqTRRWFFJkKXK9KoootBRSVFFEibWkesA7a/5bGLVGYv1j3X+TGGMMHX07cmjbIcZfMx69Tu5FFKI18drEbtKkSUyaNOms6891a+CMGTOYMWNGc4QlhGiDfLW+DOowiEEdBrmXOZwOMssySS1K5UjxEdJL012vknQyyjIw28wUVBRQUFFACtUTv1Vbar/VpN4aMKROpSPCNwKNWUOvmF5EGiPp4NuBCN8IOho7EusfS4Au4IwzbVarlXxVvtRTFaIV8trETgghPEmlqIg2RhNtjGZ4zPBq65xOJwUVBeSZ88g355NfkU++OZ/c8lySDiURGBGI2W6m1FpKmbXM/aq0V2J31nzf2tkY1AbUDjWBvoH4an1dL40vPhofAnQBBBuCCdIHnfmuDyZQH4jNZmPFihWMvXhsm7k3TQhxdpLYCSFEPSmK4roE6xNabbnVamVF5grGjjh7EuVwOrA77dgcNtflVocNu9N+6rKsSu2+PKtSVKcSs7GSmAkhaieJnRBCtCCVokKlqNCqJEkTQjQ9uYFCCCGEEKKNkDN25yAlxWonJcUaN0Z7LY/TEqRsU8P7N6SkWG3t5Zh5iuybDe/fXo+Zba6kWEtZuHAhCxcuxG63c/DgQSkpJoQQQgiPaxUlxbyZyWQiMDBQSorVgZQUa9wY7bU8TkuQsk0N71/fPo09HtalTVvZL0H2zcb0b6/HzFZRUsybncx1zWbzOQ9A5eXlmM1mbDZbvdvUpX9r4KntaOrfbYrxGjJGffrUtW1t7Rq7vrXwxHY0x282dszm3i/r2l6OmafIvtnw/u31mGk2m4Fzz+F7kiR2NSgpcc3YHhsb6+FIhBBCCCFcSkpKCAwMPGcbuRRbA4fDQUZGBv7+/uesfXjhhReydevWc451tjYmk4nY2FiOHz9e62lVb1eXv0Nr+N2mGK8hY9SnT13b1tbuXOtl3/S+32zsmM29X9a1vRwzT5F9s+H92+Mx0+l0UlJSQseOHVGpzj2hiZyxq4FKpSImJqbWdmq1utb/EWtrExAQ0OoPUnX5O7SG322K8RoyRn361LVtbe3qMo7sm97zm40ds7n3y7q2l2PmKbJvNrx/ez1m1nam7iSZx64RpkyZ0iRtWjtPbWNT/25TjNeQMerTp65ta2vXHvZL8Mx2NsdvNnbM5t4v69pejpmnyL7Z8P5yzDw3uRTrISefvK3LEy5CtCTZN4U3kv1SeCtv2zfljJ2H6PV65s6di16v93QoQlQj+6bwRrJfCm/lbfumnLETQgghhGgj5IydEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdF/vll18YNmwYl1xyCdOnT/d0OEK4HT9+nEGDBmEwGFp93U7R+k2fPp1LL72UadOmeToUIQDPHiMlsfNi3bt3Z/369fz6669kZWWxe/duT4ckBADh4eGsW7eOoUOHejoU0c7t2LGD0tJSNm7ciNVq9Uh5QyH+zJPHSEnsvFh0dLR7XhytVotarfZwREK4GAwGgoKCPB2GEGzatIkrr7wSgCuvvJI//vjDwxEJ4dljpCR2TWju3Ln06dMHlUrFkiVLqq3Lzc3lmmuuwdfXl/j4eNauXVvncXfs2EFeXh59+vRp6pBFO9Fc+6YQTakh+2lRUZF7tv/AwEAKCwtbPG7RtrW246fG0wG0JT169OC1115jzpw5Z6ybMmUKHTt2JC8vj1WrVnHzzTeTmpqKxWLhb3/7W7W2RqORH374AYCsrCymTZvGl19+2SLbINqm5tg3hWhqDdlPg4KCMJlMgKu0k5xJFk2tIftlcHCwByKt4hRNbsSIEc7Fixe7v5eUlDh1Op0zIyPDvezSSy91fvLJJ+ccx2w2Oy+//HLnjh07mi1W0b401b55+nhWq7XJ4xTtW3320+3btzvvu+8+p9PpdE6ePNm5efPmFo9XtA8NOX564hgpl2JbQEpKCoGBgURFRbmXDRgwgD179pyz30cffcTevXt59NFHueyyy9i0aVNzhyramYbumxUVFVx55ZUkJiYyZswYNm7c2NyhinbsXPvpoEGD8PHx4dJLL0WlUjF48GAPRirak3Ptl548Rsql2BZQWlrqvgfkpICAAIqKis7Zb/LkyUyePLkZIxPtXUP3TYPBwJo1a5oxMiFOqW0/ffXVV1s+KNHunWu/9OQxUs7YtQCj0ei+B+Qkk8mE0Wj0UERCuMi+KVoD2U+FN/LW/VISuxbQo0cPiouLycrKci9LTEwkISHBg1EJIfumaB1kPxXeyFv3S0nsmpDVaqWiogKHw1Hts9Fo5Prrr2fu3LmYzWa+++47kpOTue666zwdsmgnZN8UrYHsp8Ibtbr9skUf1WjjJk2a5ASqvX7++Wen0+l05uTkOK+++mqnj4+Ps0ePHs7Vq1d7NljRrsi+KVoD2U+FN2pt+6XidDqdLZ9OCiGEEEKIpiaXYoUQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQwoPmzZuHVqslMjKyyca87LLLWLJkSZON92evvPIKfn5+GAyGZvsNIUTDSGInhPC4uLg4fH19MRqNGI1G4uLiPB1Si7r77rurFRJvDn379uXo0aNNMtb06dPZs2dPk4wlhGhaktgJIbzCunXrKC0tpbS0tMYExGq1tnxQXqAptvvEiRPYbLZ2lzAL0R5JYieE8Err16+nV69ezJo1i7CwMJ5//nnMZjNTp06lY8eOxMTE8O9//9vdvqysjAkTJhAUFMSgQYN46qmnuOqqq6qNdTpFUdxnyQoKCpgwYQIRERF07dqVTz75xN3usssu45lnnuGCCy4gICCA8ePHU1lZ6V6/dOlS+vbti7+/P/369ePAgQM899xz3HXXXdV+7+KLL+arr76q07bHxcXxwgsvEB8fT58+fQB48MEH6dixI0FBQYwePZq0tDR3+61bt9K/f38CAgK4//77cTgc1cb76aefGDNmjHt75s+fz3nnnYfRaOTxxx/n0KFDXHjhhQQFBfHYY4+5+/3www/Ex8fj7+9PbGwsixcvrlP8QgjPkcROCOG1Dh06hK+vL5mZmTzxxBM89thjFBcXc/DgQbZs2cL//vc/vv/+ewDmz59Pfn4+aWlpLFq0iE8//bTOv3P77bcTGxvL8ePHWbFiBTNnziQxMdG9/osvvuCrr74iLS2NpKQkli5dCsBvv/3G1KlTeeeddyguLuaLL74gICCA2267jW+++QaLxQLAsWPH2Lt3L2PHjq1zTN988w0bN25k9+7dAFxyySXs27ePrKwsYmJimDZtGgCVlZX89a9/5aGHHiI/P5++ffvy+++/Vxtr5cqV7sQO4Msvv2T58uUkJyfz9ttvM3nyZL7++muSk5N5//333dt+zz338OGHH1JSUsLWrVsZMGBAneMXQniGJHZCCK8watQogoKCCAoKYubMmQD4+vry5JNPotVq0ev1fPTRR7z88ssYjUY6duzI5MmTWbZsGeBKvubMmUNAQAC9evVi0qRJdfrdrKwsNm7cyPPPP49er6dXr15MmDCh2tm1e++9l06dOhEUFMQ111zjTnw+/vhjJk+ezMUXX4xKpaJXr15ERUURFxdH3759WbFiBQBLlixh3Lhx9XrY4NFHHyUiIsLdZ8KECQQGBmIwGHjiiSf49ddfAdi0aRN6vZ57770XrVbL1KlTiYqKco9jt9v59ddfueyyy9zL7rnnHjp27EhcXBznn38+o0ePJiYmhpiYGIYMGUJSUhIAWq2W5ORkSktLiYyMdJ89FEJ4L0nshBBeYfXq1RQVFVFUVMQ///lPAKKiolCr1QDk5uZiNpvp2bOnOwF86qmnyMnJASAzM5PY2Fj3eKd/Ppe0tDTKysoIDQ11j/vOO++QnZ3tbhMREeH+7OvrS2lpKeC6d61r1641jjtx4kT3k6mLFi1iwoQJdf1TABATE1Pt+3PPPUf37t0JCAhg8ODB5OfnA2dut6Io1fpu3ryZvn374uvrW+P2+Pj4EB4eXu17WVkZAMuWLeO7774jOjqa0aNHs3///nptgxCi5Wk8HYAQQpyNoijuz2FhYRgMBo4dO0ZgYOAZbaOiojh+/DidO3cG4Pjx4+51fn5+lJeXu7+f/gRqdHQ0QUFB7kSpPmJjYzly5EiN626++WaefPJJtmzZQk5ODldccUW9xj5923/55Rfeeecd1q5dS/fu3Tl48KD7nsGoqChOnDhRre/p3/98GbY+hgwZwvLly7FYLDz99NNMmTKFtWvXNmgsIUTLkDN2QohWQaVSMWnSJB577DGKiopwOBzs27ePLVu2AHDTTTfx3HPPUVJSwoEDB/jf//7n7tuzZ0/y8/P55ZdfsFgsPPvss+510dHRXHjhhTz99NOUl5djs9nYsWMHe/furTWmO++8k7fffptNmzbhdDo5cOAAmZmZAISEhDBixAjuvPNObrnlFveZx4YoKSlBo9EQGhpKWVkZCxYscK8bNmwYZrOZDz74AKvVysKFC90xQPUHJ+qjsrKSRYsWYTKZ0Gq1GI3GRm2DEKJlSGInhGg1Tk6M269fP0JCQrjjjjsoLCwEYO7cuQQGBhITE8P48eO5/fbb3f0CAwN5/fXXueWWW+jSpQuDBw+uNu5nn33GsWPH6Nq1KxERETzyyCOYzeZa47nooot49dVX+fvf/05AQAA333wzJpPJvX7ixIns27ev3pdh/+yqq65i2LBhdO7cmX79+nHRRRe51+l0Or788kv+85//EBoaSlJSknt9fn4+mZmZ9OvXr0G/+8knn9C5c2eCg4NZvXo1r732WqO2QwjR/BSn0+n0dBBCCNHUPv74Y5YsWcLKlSs9FsOmTZuYOHEiqampZ22zYMEC/vWvfxEUFHTGJdXGWrx4MatXr+bDDz9s0nFfffVV5s6di6IoFBUVNenYQojGkTN2QgjRDKxWK6+//jp///vfz9lu9uzZlJaWNnlSB67LwQ8++GCTj/vII49QXFwsSZ0QXkgenhBCiCaWn59PTEwM/fv355133vFYHA19aEII0XrJpVghhBBCiDZCLsUKIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQR/w+Yr86HtC/uJwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Loop transfer function\n", + "L = P * C\n", + "ct.bode_plot([P, C, L], label=['P', 'C', 'L'])\n", + "ct.suptitle(\"PI controller for servomechanism\")" + ] + }, + { + "cell_type": "markdown", + "id": "Bg5ga11VuRtI", + "metadata": { + "id": "Bg5ga11VuRtI" + }, + "source": [ + "Note that L = P * C corresponds to addition in both the magnitude and the phase." + ] + }, + { + "cell_type": "markdown", + "id": "UmYmSzx2rTfg", + "metadata": { + "id": "UmYmSzx2rTfg" + }, + "source": [ + "### Nyquist analysis\n", + "\n", + "To check stability (and eventually robustness), we use the Nyquist criterion." + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "Qmp59pmS9GLj", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWnklEQVR4nOzdd1hT1xsH8G8SQth7b5AhIKCiouJeiHXXUa2zarVuadVaa9UObbVVW1erto7+tFq12jrqFtwLRVQQUEGQIbI3hOT8/qBEIytAIAm8n+fh0dx77r3vPQk3L/eewWGMMRBCCCGEEKJiuIoOgBBCCCGEkLqgRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWENLoOBwOjh49Kpd99ejRA/Pnz6/z9kePHoWzszN4PF699lOV9PR0mJmZIS4uTu77lrcVK1agdevW1ZaZNGkShg4dKvM+Hzx4ABsbG+Tn59cvuGamvp9rWdX2/SRE2agpOgBCmqNJkyYhKytLbslcc/bXX3+Bz+fXefvp06dj8uTJmDt3LnR1deUYWZnVq1dj0KBBcHBwkPu+q6JMny8vLy906NAB69evx+eff67ocMhbfvzxR9BM9USV0R1ZQohKMzIyqnMCmpeXh9TUVAQEBMDKyqrO+ykpKal0eWFhIX799VdMnTq1TvttKiZPnoytW7dCJBI12jGrek+INH19fRgYGCg6DELqjBJZQpRQSEgIOnToAIFAAEtLS3z66acoLS2VrC8uLsbcuXNhZmYGDQ0NdOnSBbdv35asDw4OBofDwYkTJ+Dj4wMNDQ34+fnhwYMH1R533bp18PLygra2NmxtbTFz5kzk5eVJ1u/atQsGBgY4ffo03N3doaOjg/79+yM5OVlS5vbt2+jbty9MTEygr6+P7t274+7du1Ues1evXpg9e7bUsvT0dAgEAly4cAEAsGXLFri4uEBDQwPm5uYYMWKEpOzbj2CrK/um4OBgSeLaq1cvcDgcBAcHAwAOHz4MT09PCAQCODg44IcffpDa1sHBAV9//TUmTZoEfX19TJs2rdJj/Pvvv1BTU0OnTp0q1OGbjh49Cg6HI3ld/oj/999/h4ODA/T19fHee+8hNzdXUubQoUPw8vKCpqYmjI2N0adPH+Tn52PFihXYvXs3/v77b3A4HKnzWrx4MVxdXaGlpQUnJycsW7YMQqGwQty//PILbG1toaWlhZEjRyIrK6vS8wMAxhjWrFkDJycnaGpqwsfHB4cOHZIqExAQgPT0dISEhFS5n/v376Nnz57Q1dWFnp4efH19cefOHcn6a9euoVu3btDU1IStrS3mzp0r1VyhsvekU6dO+PTTT6WO8+rVK/D5fFy8eBEAkJmZiQkTJsDQ0BBaWloIDAxETEyMpHz5+3X8+HG4ublBS0sLI0aMQH5+Pnbv3g0HBwcYGhpizpw5Uol6SUkJFi1aBGtra2hra8PPz0/yPpS7evUqunfvDi0tLRgaGiIgIACZmZmS9WKxGIsWLYKRkREsLCywYsUKqe3l8fv6dtOCqj5Xb5ZdtWoVzM3NYWBggJUrV6K0tBQLFy6EkZERbGxs8Ntvv1X5PhMid4wQ0ugmTpzIhgwZUum6Fy9eMC0tLTZz5kwWGRnJjhw5wkxMTNjy5cslZebOncusrKzYyZMn2aNHj9jEiROZoaEhS09PZ4wxdvHiRQaAubu7szNnzrDw8HA2cOBA5uDgwEpKSqqMa/369ezChQvs2bNn7Pz588zNzY199NFHkvU7d+5kfD6f9enTh92+fZuFhoYyd3d3NnbsWEmZ8+fPs99//51FRESwiIgINmXKFGZubs5ycnIkZQCwI0eOMMYY27t3LzM0NGRFRUWS9T/++CNzcHBgYrGY3b59m/F4PLZv3z4WFxfH7t69y3788UdJ2e7du7N58+YxxliNZd9UXFzMoqKiGAB2+PBhlpyczIqLi9mdO3cYl8tlX375JYuKimI7d+5kmpqabOfOnZJt7e3tmZ6eHlu7di2LiYlhMTExlR5j3rx5rH///lLLdu7cyfT19aWWHTlyhL15OV6+fDnT0dFhw4cPZw8ePGCXLl1iFhYW7LPPPmOMMZaUlMTU1NTYunXrWGxsLAsPD2ebN29mubm5LDc3l40aNYr179+fJScnS86LMca++uordvXqVRYbG8v++ecfZm5uzr777jup42pra7NevXqxe/fusZCQEObs7Cz1/r792f3ss89Yy5Yt2alTp9jTp0/Zzp07mUAgYMHBwVLn2KFDB7ZixYpK64kxxjw9Pdm4ceNYZGQki46OZn/++ScLCwtjjDEWHh7OdHR02Pr161l0dDS7evUqa9OmDZs0aVK178nGjRuZnZ0dE4vFknIbN25k1tbWTCQSMcYYGzx4MHN3d2eXLl1iYWFhLCAggDk7O0t+T8o/83379mV3795lISEhzNjYmPXr14+NGjWKPXr0iB07doypq6uz/fv3S44zduxY1rlzZ3bp0iX25MkTtnbtWiYQCFh0dDRjjLF79+4xgUDAPvroIxYWFsYePnzINm7cyF69esUYK/tc6+npsRUrVrDo6Gi2e/duxuFw2JkzZyTHkMfv65vvZ3Wfq/Kyurq6bNasWezx48fs119/ZQBYQEAA++abb1h0dDT76quvGJ/PZ/Hx8VW+14TIEyWyhChAdYnsZ599xtzc3KS+fDdv3sx0dHSYSCRieXl5jM/ns71790rWl5SUMCsrK7ZmzRrG2OtE9s0v1vT0dKapqckOHDggc5x//vknMzY2lrzeuXMnA8CePHkiFZu5uXmV+ygtLWW6urrs2LFjkmVvJrJFRUXMyMhIKq7WrVtLkp7Dhw8zPT09qUT4TW8msjWVfVtmZiYDwC5evChZNnbsWNa3b1+pcgsXLmQeHh6S1/b29mzo0KE17n/IkCHsgw8+kFomayKrpaUldR4LFy5kfn5+jDHGQkNDGQAWFxdX6XGr+3y9ac2aNczX11fquDwejyUkJEiW/fvvv4zL5bLk5OQK+87Ly2MaGhrs2rVrUvudMmUKGzNmjNSyYcOGSSWeb9PV1WW7du2qdN348ePZhx9+KLXs8uXLjMvlssLCQsZY5e9JamoqU1NTY5cuXZIs69SpE1u4cCFjjLHo6GgGgF29elWyPi0tjWlqarI///yTMVb5Z3769OlMS0tLkuAxxlhAQACbPn06Y4yxJ0+eMA6HwxITE6Xi6d27N1uyZAljjLExY8Ywf3//Kuuje/furEuXLlLL2rdvzxYvXlzlNnX5fX3z/ZTlc2Vvby/5I4Axxtzc3FjXrl0lr0tLS5m2tjb7448/qoyTEHmipgWEKJnIyEh06tRJ6lGzv78/8vLy8OLFCzx9+hRCoRD+/v6S9Xw+Hx06dEBkZKTUvt58pG1kZAQ3N7cKZd508eJF9O3bF9bW1tDV1cWECROQnp4u9QhXS0sLLVq0kLy2tLREamqq5HVqaipmzJgBV1dX6OvrQ19fH3l5eYiPj6/0mAKBAOPGjZM8jgwLC8P9+/cxadIkAEDfvn1hb28PJycnjB8/Hnv37kVBQUGl+6pN2apERkZK1S1QVv8xMTFSj47btWtX474KCwuhoaFRq+OXc3BwkGqz+2Y9+/j4oHfv3vDy8sLIkSOxfft2qUfSVTl06BC6dOkCCwsL6OjoYNmyZRXeFzs7O9jY2Ehed+rUCWKxGFFRURX2FxERgaKiIvTt2xc6OjqSnz179uDp06dSZTU1Nat9L4KCgjB16lT06dMH3377rdT2oaGh2LVrl9QxAgICIBaLERsbKyn39ntiamqKvn37Yu/evQCA2NhYXL9+He+//z6AsvdaTU0Nfn5+km2MjY0r/J68/Zk3NzeHg4MDdHR0pJaVvz93794FYwyurq5SMYeEhEjOKywsDL17966yPgDA29tb6vXbv2vy+H19kyyfK09PT3C5r1MHc3NzeHl5SV7zeDwYGxtXeQxC5I0SWUKUDGNMKoktXwaUDVv15v9r2q4yVZV5/vw5BgwYgFatWuHw4cMIDQ3F5s2bAUCqHeXbIwS8GRNQ1o4uNDQUGzZswLVr1xAWFgZjY+NqO99MnToVZ8+exYsXL/Dbb7+hd+/esLe3BwDo6uri7t27+OOPP2BpaYkvvvgCPj4+lbbbrE3ZqlRX/2/S1taucV8mJiYVEgEul1thf5W1U62snsViMYCyZOHs2bP4999/4eHhgY0bN8LNzU0qqXvbjRs38N577yEwMBDHjx/HvXv3sHTp0ho7RZXXRWWfm/J4Tpw4gbCwMMlPREREhXayGRkZMDU1rfI4K1aswKNHj/DOO+/gwoUL8PDwwJEjRyTHmT59utQx7t+/j5iYGKkkrbL35P3338ehQ4cgFAqxb98+eHp6wsfHB0Dl72v58jfPt7L3orr3RywWg8fjITQ0VCrmyMhI/PjjjwDKEvuaVHcMef2+vkmWz1Vt64KQhkaJLCFKxsPDA9euXZP6srl27Rp0dXVhbW0NZ2dnqKur48qVK5L1QqEQd+7cgbu7u9S+bty4Ifl/ZmYmoqOj0bJly0qPe+fOHZSWluKHH35Ax44d4erqiqSkpFrHf/nyZcydOxcDBgyQdJhKS0urdhsvLy+0a9cO27dvx759+/DBBx9IrVdTU0OfPn2wZs0ahIeHIy4uTtIR7G21KVsZDw8PqboFyurf1dUVPB5P5v0AQJs2bRARESG1zNTUFLm5uVJ3zcLCwmq1X6AsWfD398fKlStx7949qKurSxI/dXX1CiMEXL16Ffb29li6dCnatWsHFxcXPH/+vMJ+4+Pjpd7369evg8vlwtXVtUJZDw8PCAQCxMfHw9nZWerH1tZWquzDhw/Rpk2bas/J1dUVCxYswJkzZzB8+HDs3LkTANC2bVs8evSowjHKfxeqM3ToUBQVFeHUqVPYt28fxo0bJxV/aWkpbt68KVmWnp6O6OjoCr9LtdGmTRuIRCKkpqZWiNfCwgJA2d3W8+fP1/kY8vp9fVt1nytClBGNI0uIgmRnZ1dIYIyMjDBz5kxs2LABc+bMwezZsxEVFYXly5cjKCgIXC4X2tra+OijjyS9hO3s7LBmzRoUFBRgypQpUvv78ssvYWxsDHNzcyxduhQmJiZVDn7eokULlJaWYuPGjRg0aBCuXr2Kn3/+udbn5ezsjN9//x3t2rVDTk4OFi5cKNPdp6lTp2L27NnQ0tLCsGHDJMuPHz+OZ8+eoVu3bjA0NMTJkychFovh5uZWYR+1KVuVjz/+GO3bt8dXX32F0aNH4/r169i0aRO2bNki8z7KBQQEYMmSJcjMzIShoSEAwM/PD1paWvjss88wZ84c3Lp1C7t27arVfm/evInz58+jX79+MDMzw82bN/Hq1StJ8uXg4IDTp08jKioKxsbG0NfXh7OzM+Lj47F//360b98eJ06cqDRB0dDQwMSJE/H9998jJycHc+fOxahRoyQJ2Jt0dXXxySefYMGCBRCLxejSpQtycnJw7do16OjoYOLEiQCAuLg4JCYmok+fPpWeT2FhIRYuXIgRI0bA0dERL168wO3bt/Huu+8CKBttoWPHjpg1axamTZsGbW1tREZG4uzZs9i4cWO1daWtrY0hQ4Zg2bJliIyMxNixYyXrXFxcMGTIEEybNg2//PILdHV18emnn8La2hpDhgyR7c2ohKurK95//31MmDABP/zwA9q0aYO0tDRcuHABXl5eGDBgAJYsWQIvLy/MnDkTM2bMgLq6Oi5evIiRI0fCxMSkxmPI6/f1TTV9rghRSgppmUtIMzdx4kQGoMLPxIkTGWOMBQcHs/bt2zN1dXVmYWHBFi9ezIRCoWT7wsJCNmfOHGZiYsIEAgHz9/dnt27dkqwv7+x17Ngx5unpydTV1Vn79u0lvcCrsm7dOmZpack0NTVZQEAA27NnDwPAMjMzGWOydVS6e/cua9euHRMIBMzFxYUdPHiQ2dvbs/Xr10vK4I3OXuVyc3MlozW86fLly6x79+7M0NCQaWpqMm9vb6mOYW929qqp7Nsq6+zFGGOHDh1iHh4ejM/nMzs7O7Z27Vqp9W+fT3U6duzIfv75Z6llR44cYc7OzkxDQ4MNHDiQbdu2rUJnLx8fH6lt1q9fz+zt7RljjEVERLCAgABmamrKBAIBc3V1ZRs3bpSUTU1NZX379mU6OjpS57dw4UJmbGzMdHR02OjRo9n69eul3s/y427ZsoVZWVkxDQ0NNnz4cJaRkSEp83ZHMrFYzH788Ufm5ubG+Hw+MzU1ZQEBASwkJERSZtWqVSwgIKDKOiouLmbvvfces7W1Zerq6szKyorNnj1b0pGLMcZu3bolOSdtbW3m7e3NvvnmG8n66t6TEydOMACsW7duFdZlZGSw8ePHM319fcnnvnxkAcYq/8xX9v68XS8lJSXsiy++YA4ODozP5zMLCws2bNgwFh4eLikTHBzMOnfuzAQCATMwMGABAQGS37U3P9flhgwZIrlGMCaf39c3467pc1VZJ8LK4qzN7wch9cVhjKb0IKSpCQ4ORs+ePZGZmakyg50nJCTAwcEBt2/fRtu2bRUdjtycPHkSn3zyCR4+fCjVSaa5KC4uhouLC/74448KnegIIaS+qGkBIUShhEIhkpOT8emnn6Jjx45NKokFgAEDBiAmJgaJiYkV2o02B8+fP8fSpUspiSWENAhKZAkhCnX16lX07NkTrq6uFXq6NxXz5s1TdAgK4+rqWmlHMUIIkQdqWkAIIYQQQlRS82uwRQghhBBCmgRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmRJkzRp0iQMHTq0wY/D4XBw9OhRue+XMYYPP/wQRkZG4HA4CAsLk/sxCCGktlasWIHWrVs3+nF79OiB+fPnN8i+t23bBltbW3C5XGzYsKFBjkEaDiWyRGEmTZoEDocj+TE2Nkb//v0RHh6u6NAajKwJ9qlTp7Br1y4cP34cycnJaNWqlVzjaKgEnBAiX+XXyW+//VZq+dGjR8HhcBo9nk8++QTnz5+Xqayikl4A2LVrFwwMDGosl5OTg9mzZ2Px4sVITEzEhx9+KNc4GjIBJ2UokSUK1b9/fyQnJyM5ORnnz5+HmpoaBg4cqOiwFO7p06ewtLRE586dYWFhATU1tVrvgzGG0tLSBoiOENKYNDQ08N133yEzM1PRoUBHRwfGxsaKDkNu4uPjIRQK8c4778DS0hJaWlp12o9QKJRzZERWlMgShRIIBLCwsICFhQVat26NxYsXIyEhAa9evZKUefDgAXr16gVNTU0YGxvjww8/RF5enmS9SCRCUFAQDAwMYGxsjEWLFoExJnUcxhjWrFkDJycnaGpqwsfHB4cOHao2NgcHB3z11VcYO3YsdHR0YGVlhY0bN1a7TXWxrlixArt378bff/8tuQsdHBxcYR+TJk3CnDlzEB8fDw6HAwcHBwBAcXEx5s6dCzMzM2hoaKBLly64ffu2ZLvg4GBwOBycPn0a7dq1g0AgwOXLl6uNlxCi/Pr06QMLCwusXr260vX5+fnQ09OrcE07duwYtLW1kZubCwC4desW2rRpAw0NDbRr1w5HjhyRarpU2V3Mt+/8vn2XNTg4GB06dIC2tjYMDAzg7++P58+fY9euXVi5ciXu378vud7t2rWr0vjLn1StXLkSZmZm0NPTw/Tp01FSUlJlnWRmZmLChAkwNDSElpYWAgMDERMTI4lp8uTJyM7Olhx7xYoVFfaxa9cueHl5AQCcnJzA4XAQFxcHANi6dStatGgBdXV1uLm54ffff5falsPh4Oeff8aQIUOgra2Nr7/+uspYScOiRJYojby8POzduxfOzs6Sv/gLCgrQv39/GBoa4vbt2zh48CDOnTuH2bNnS7b74Ycf8Ntvv+HXX3/FlStXkJGRgSNHjkjt+/PPP8fOnTuxdetWPHr0CAsWLMC4ceMQEhJSbUxr166Ft7c37t69iyVLlmDBggU4e/ZspWVrivWTTz7BqFGjpO5Cd+7cucJ+fvzxR3z55ZewsbFBcnKyJFldtGgRDh8+jN27d+Pu3btwdnZGQEAAMjIypLZftGgRVq9ejcjISHh7e9dQ64QQZcfj8bBq1Sps3LgRL168qLBeW1sb7733Hnbu3Cm1fOfOnRgxYgR0dXWRn5+PgQMHws3NDaGhoVixYgU++eSTesVVWlqKoUOHonv37ggPD8f169fx4YcfgsPhYPTo0fj444/h6ekpud6NHj26yn2dP38ekZGRuHjxIv744w8cOXIEK1eurLL8pEmTcOfOHfzzzz+4fv06GGMYMGAAhEIhOnfujA0bNkBPT09y7MrOdfTo0Th37hyAsiQ/OTkZtra2OHLkCObNm4ePP/4YDx8+xPTp0zF58mRcvHhRavvly5djyJAhePDgAT744IM61iKpN0aIgkycOJHxeDymra3NtLW1GQBmaWnJQkNDJWW2bdvGDA0NWV5enmTZiRMnGJfLZSkpKYwxxiwtLdm3334rWS8UCpmNjQ0bMmQIY4yxvLw8pqGhwa5duyZ1/ClTprAxY8ZUGZ+9vT3r37+/1LLRo0ezwMBAyWsA7MiRIzLHOnHiRElc1Vm/fj2zt7eXvM7Ly2N8Pp/t3btXsqykpIRZWVmxNWvWMMYYu3jxIgPAjh49WuP+34ybEKK83rxmdOzYkX3wwQeMMcaOHDnC3vwKv3nzJuPxeCwxMZExxtirV68Yn89nwcHBjDHGfvnlF2ZkZMTy8/Ml22zdupUBYPfu3WOMMbZz506mr68vdfy3j7N8+XLm4+PDGGMsPT2dAZAc421vlq3pHCuLTUdHh4lEIsYYY927d2fz5s1jjDEWHR3NALCrV69KyqelpTFNTU32559/Vnkulbl37x4DwGJjYyXLOnfuzKZNmyZVbuTIkWzAgAGS1wDY/Pnza9z/m3GThkF3ZIlC9ezZE2FhYQgLC8PNmzfRr18/BAYG4vnz5wCAyMhI+Pj4QFtbW7KNv78/xGIxoqKikJ2djeTkZHTq1EmyXk1NDe3atZO8joiIQFFREfr27QsdHR3Jz549e/D06dNq43tzv+WvIyMjKy1bU6z18fTpUwiFQvj7+0uW8fl8dOjQoUI8b547IaTp+O6777B7925ERERUWNehQwd4enpiz549AIDff/8ddnZ26NatG4DX16c324C+fX2rLSMjI0yaNAkBAQEYNGgQfvzxRyQnJ9dpX5XFlpeXh4SEhAplIyMjoaamBj8/P8kyY2NjuLm5VXl9ro3IyEipay1Qdi2na61yokSWKJS2tjacnZ3h7OyMDh064Ndff0V+fj62b98OoKxta1U9c2XtsSsWiwEAJ06ckCTNYWFhiIiIqLGdbG2OK49Yq8L+a/P79n4qO+abiTQhpOno1q0bAgIC8Nlnn1W6furUqZLmBTt37sTkyZMl1wf2Vr+BynC53ArlaurEtHPnTly/fh2dO3fGgQMH4Orqihs3bshyOjKp7NpZ1blUdw2u73HpWqu8KJElSoXD4YDL5aKwsBAA4OHhgbCwMOTn50vKXL16FVwuF66urtDX14elpaXUhbO0tBShoaGS1x4eHhAIBIiPj5ckzeU/tra21cbz9gX5xo0baNmyZaVla4oVANTV1SESiWSsjdecnZ2hrq6OK1euSJYJhULcuXMH7u7utd4fIUQ1ffvttzh27BiuXbtWYd24ceMQHx+Pn376CY8ePcLEiRMl6zw8PHD//n3JtRWoeH0zNTVFbm6u1DVMljGs27RpgyVLluDatWto1aoV9u3bB6B217vKYtPR0YGNjU2Fsh4eHigtLcXNmzcly9LT0xEdHS25Htb1WgsA7u7uUtdaALh27Rpda5UUJbJEoYqLi5GSkoKUlBRERkZizpw5yMvLw6BBgwAA77//PjQ0NDBx4kQ8fPgQFy9exJw5czB+/HiYm5sDAObNm4dvv/0WR44cwePHjzFz5kxkZWVJjqGrq4tPPvkECxYswO7du/H06VPcu3cPmzdvxu7du6uN7+rVq1izZg2io6OxefNmHDx4EPPmzau0rCyxOjg4IDw8HFFRUUhLS5N5yBZtbW189NFHWLhwIU6dOoWIiAhMmzYNBQUFmDJlikz7eFtsbKzUHeqwsDCp0SAIIcrHy8sL77//fqUjqBgaGmL48OFYuHAh+vXrJ5UEjh07FlwuF1OmTEFERAROnjyJ77//Xmp7Pz8/aGlp4bPPPsOTJ0+wb9++KkcaAMquIUuWLMH169fx/PlznDlzRiqZdHBwkFxn0tLSUFxcXOW+SkpKJLH9+++/WL58OWbPng0ut2Ka4uLigiFDhmDatGm4cuUK7t+/j3HjxsHa2hpDhgyRHDsvLw/nz59HWloaCgoKqq3XNy1cuBC7du3Czz//jJiYGKxbtw5//fVXnTvHvXr1qsK1NiUlpU77IpVQWOtc0uxNnDiRAZD86Orqsvbt27NDhw5JlQsPD2c9e/ZkGhoazMjIiE2bNo3l5uZK1guFQjZv3jymp6fHDAwMWFBQEJswYYJUpyqxWMx+/PFH5ubmxvh8PjM1NWUBAQEsJCSkyvjs7e3ZypUr2ahRo5iWlhYzNzdnGzZskCqDtzpN1RRramoq69u3L9PR0WEA2MWLFys99tudvRhjrLCwkM2ZM4eZmJgwgUDA/P392a1btyTryzt7ZWZmVnlOb8Zd2U9V8RBCFKOyDqJxcXFMIBCwyr7Cz58/zwBIOj296fr168zHx4epq6uz1q1bs8OHD0t19mKsrHOXs7Mz09DQYAMHDmTbtm2rsrNXSkoKGzp0KLO0tGTq6urM3t6effHFF5IOWkVFRezdd99lBgYGDADbuXNntef4xRdfMGNjY6ajo8OmTp3KioqKJGXe7jSVkZHBxo8fz/T19ZmmpiYLCAhg0dHRUvudMWMGMzY2ZgDY8uXLKz12ZZ29GGNsy5YtzMnJifH5fObq6sr27Nkjtf7ta39VunfvXum1tqp4SO1xGJOh4QwhzZCDgwPmz59Ps7IQQlTG3r17MW/ePCQlJUFdXb3asnFxcXB0dMS9e/cUNgMXUDaUVlZWFs02SOqk9tMFEUIIIUSpFBQUIDY2FqtXr8b06dNrTGIJaSqojSwhhBCi4tasWYPWrVvD3NwcS5YsUXQ4hDQaalpACCGEEEJUEt2RJYQQQgghKokSWUIIIYQQopIokSWEEEIIISqJRi2oA7FYjKSkJOjq6sptOjxCSNPAGENubi6srKwqHcydlKHrKCGkKrW5jlIiWwdJSUk1Tm1KCGneEhISKp1ek5Sh6yghpCayXEcpka0DXV1dAGUVrKenB6FQiDNnzqBfv37g8/k1vpa3uu5f1u2qK1fbdbIsa071V916qj/Zyilb/eXk5MDW1lZynSCVe/s6WhORSISoqCi4ubmBx+M1dHgKR+fbtNH5Vq8211FKZOug/DGYnp6eJJHV0tKCnp6e5IuvutfyVtf9y7pddeVqu06WZc2p/qpbT/UnWzllrT96XF69t6+jNRGJRNDR0YGenl6z+eKn82266HxlI8t1lBpwEUIIIYQQlUR3ZBvY1Sdp+CfsBTgZHDgm58LD2gBqPPr7gRBCCCGkvpplIpuQkIDx48cjNTUVampqWLZsGUaOHNkgx7oU/QoH7iQC4GH/luvQ4HPhaaUPbxt9tLY1gLeNARyMtegxJCGEEEJILTXLRFZNTQ0bNmxA69atkZqairZt22LAgAHQ1taW+7F6u5uDMTEu3n+G5GJ15BWXIvR5JkKfZ0rK6GmowdvGAN42+vCxNYCPjQEs9DXkHgshhNRk9erV+Ouvv/D48WNoamqic+fO+O677+Dm5iYpwxjDypUrsW3bNmRmZsLPzw+bN2+Gp6enAiMnhDRHzTKRtbS0hKWlJQDAzMwMRkZGyMjIaJBEtoOjEdrY6MKz9An69++JFzklCH+RhfsJ2bj/IguPknKQU1SKK0/ScOVJmmQ7M10BvG0M4GOjD2/bsn8NtNTlHh8hhLwpJCQEs2bNQvv27VFaWoqlS5eiX79+iIiIkFwj16xZg3Xr1mHXrl1wdXXF119/jb59+yIqKopGayCENCqVTGQvXbqEtWvXIjQ0FMnJyThy5AiGDh0qVWbLli1Yu3YtkpOT4enpiQ0bNqBr164V9nXnzh2IxeJGGc+Qy+WghakOWpjqYFibsnHRhCIxolJyEf4iuyzBfZGN6Je5SM0txrnIlzgX+VKyvb2x1uvk1sYAraz1oKWukm8hIURJnTp1Sur1zp07YWZmhtDQUHTr1g2MMWzYsAFLly7F8OHDAQC7d++Gubk59u3bh+nTpysibEJIM6WSWVB+fj58fHwwefJkvPvuuxXWHzhwAPPnz8eWLVvg7++PX375BYGBgYiIiICdnZ2kXHp6OiZMmIAdO3Y0ZvhS+DwuWlnro5W1Psb6lcVWWCLCo6Rs3P8vuQ1/kY3YtHw8Ty/A8/QCHLufBADgcgBXc120stIDJ5MDu8QceNoYQl2NOpMRQuQjOzsbAGBkZAQAiI2NRUpKCvr16ycpIxAI0L17d1y7do0SWUJIo1LJRDYwMBCBgYFVrl+3bh2mTJmCqVOnAgA2bNiA06dPY+vWrVi9ejUAoLi4GMOGDcOSJUvQuXPnao9XXFyM4uJiyeucnBwAZeNPlv+Uv5bl35qocQAfa134WOsCfmV3brMLhXiQmIMHidl4kJiD8MRsvMwpxuOUXDxOyQXAw8Gfb0BdjQt3C114W+vBy1ofXtZ6cDLRBpdbsTOZrHFVV66262RZVt/6q6267l8e9Vfdeqo/2copW/01VD0rAmMMQUFB6NKlC1q1agUASElJAQCYm5tLlTU3N8fz58+r3FdV11GRSASRSFRjLOVlZCnbFND5Nm10vrKVlwWHMcbqFJWS4HA4Uk0LSkpKoKWlhYMHD2LYsGGScvPmzUNYWBhCQkLAGMPYsWPh5uaGFStW1HiMFStWYOXKlRWW79u3D1paWvI6lVrLLgHi8zj//ZT9v0BUMWEVcBmstQEbbSb5sdAEaBQwQuSvoKAAY8eORXZ2tkwD/SuzWbNm4cSJE7hy5Ypkmshr167B398fSUlJkr4GADBt2jQkJCRUaJpQrqrr6PXr16Gjo9MwJ0CUUqFQjFf5peByOLDRfz3JSFGpGOo8Drg0ik+zl5eXh06dOsl0HVXJO7LVSUtLg0gkqvRuQfmdhKtXr+LAgQPw9vbG0aNHAQC///47vLy8Kt3nkiVLEBQUJHldPnVav379JDN7nT17Fn379pXMBFTda3kr33+fPn2QnFeKBy9e37V9lJSDQqEYz3KBZ7mvLw7qaly4mWlDV5SNfu3c4WVjADdzHQj4FWfcqC7+2q6TZZmi6q+2+5d1u5rKVbWe6k+2cspWf+V3GlXdnDlz8M8//+DSpUtSc51bWFgAKLsz+2Yim5qaWuG6+6aqrqNubm4yz+wVHR0NV1fXZjMTkiqdb3ahEI+ScsDhAJ2cjCXLZ+27h/DEbKwb6Y32DmXNU4KjXmHmgVB4Wunhn1llT0RFIhHe23oZ4S+L8cNIbwz0LvtspWQX4WDoC9gba2Gwj5Vkv4wxlR62UtXe3/qq7fnW5jra5BLZcm9/wN/80Hfp0gVisVjmfQkEAggEggrL+Xy+1BdbbV/Lm7q6OpzNteFsro9hvmXLRGKGZ6/y8DApG48ScyT/5haX4kFSLgAurp2IAgCocTlwNtMpa7NrpYdW1vpwt9SD+n8xVxd/bdfJsqyx66+u+5d1u5rKVbWe6k+2cspSfw1Zx42BMYY5c+bgyJEjCA4OhqOjo9R6R0dHWFhY4OzZs2jTpg2AsidhISEh+O6776rcb1XXUR6PV6sv8tqWV3XKeL5nI17iUVI2hrexgZ1x2VPJ289fYfrvofCxNcDfs8wkZdPySpCUVYSMglLJeeho8GGoxYeeBl/q3DIKRSgVMxhoCyTLn6UXYMP5J3A118Gwtq87ZU/eeQuPknLwzTAv9PUo+wMqNbcIZx69hK2RFrq7mjZ4PciDMr6/DUnW861NnTS5RNbExAQ8Hk9y97VcTXcLmioelwMXc124mOtiWNl3DsRihoTMAtyPz8A/l8NQpGWKiORcZOSXSNrcHgotK8vhAI7GWjBgXCTqxcLbxgieVnow1KahwAhpimbNmoV9+/bh77//hq6uruRaqq+vD01NTXA4HMyfPx+rVq2Ci4sLXFxcsGrVKmhpaWHs2LEKjp7IU35xKa4/TUdmQQlGtnudRG4NfoK78VlwNNGWJLJ2RlpoYaoNeyPp5nbLB3lCxBgcTV4Pb+nnZIx7X/TD29YHWsLExhEmupqSZUba6nivvS1MdKT/CErOLkJqbjEEb3Rufpyci8+PPoSbua5UIjt7313EpuXj436u6NWy+eUBTV2TS2TV1dXh6+uLs2fPSrWRPXv2LIYMGaLAyJQHl8uBvbE2rPTUweLFGDDAF2pqakjOLsLD/5ojPErKxsPEHKTkFOFZWgEALu6ejpHsw9pAEx5WenA310FhBgdtsotga6ym0o96CCHA1q1bAQA9evSQWr5z505MmjQJALBo0SIUFhZi5syZkgkRzpw5Q2PIqricIiHEYiYZszzqZS6m7rkDAy0+RvjaSK7vA7ws0cJUB1YGrxNOd0s9nP+4R4V9etnoy3x8Po8DKwNNqbtxnlb6+PZd7wpl90zpgNScYtgbv06cdTTU0MfdHDaGmlJlY17mIeplLjT5r1OeqJRc/HErHj3cTNHDzQxEdalkIpuXl4cnT55IXsfGxiIsLAxGRkaws7NDUFAQxo8fj3bt2qFTp07Ytm0b4uPjMWPGDAVGrdw4nLILiJWBJvp5WkiWv8otxv34dBwJvgORnhUiU3LxPL0AiVmFSMwqxNmIlwB42B51CUba6vC00oOnlT48rfTgZqYFsUp3JSSk+ZGl/y+Hw8GKFStk6ixLVMPa04/xc8gzzOvtgrm9XQAAXtZl13IPSz0UCkWSccundnVSZKgAADNdDZjpSs+A2dbOEDsmtqtQduPYNniamoc2dgaSZRejUrHrWhxeZBZIJbKhzzPRyloPArXm87hf1alkInvnzh307NlT8rq8A8HEiROxa9cujB49Gunp6fjyyy+RnJyMVq1a4eTJk7C3t1dUyCrLVFeA7q6myH/CMGCAD/h8PnKKhIhIysGjpBw8fJGJG1FJSC3mIiO/BJdj0nA55vUMZQIuD3uTb6GVtQE8/ktuS2VvnkwIIUSOGGN4mJiD4+FJmNvbBdqCsjTAykATIjFDbFq+pCyfx8WJuRUnElI1rua6cDWXflrga2+I8R3t0dbeQLKsoKQU7227Dg0+D6fmd4O1gSaI8lPJRLZHjx413jWYOXMmZs6c2UgRNS96Gnx0dDJGRydjCIU2OHkyAb369sGz9KKyzmT/JbmPk3NQXCrGnedZuPM8S7I9j8PDbwnX0c7eCJ2dTdDOVrWHKCKEEFXBGDD99ztIyi5CW3tDBPz3BG6gtxW6OJvA3lj+U7Uro/YORpJRFMolZRXBSFsdGnwerPRf3+099TAFmuo8dG5hDL6M41Y+Sc2FuZ4GdDVUu/OnKlDJRJYoHw0+Dz62BvCxNZAsKywqxq4jp2Di3BqPX+bjYWI2IpJzkFtUikdJuXiUlIvd15+DywFstHiIETzBwNbWcDLSqPpAhBBCZFJQUorDdxNxOzYDP40p6+3L5XIwsp0tnrzKg4Xe62utviYf+prNO+lyNtPB9U97IzmnSNIemDGG7049RmxaPn4a00ZqCLCqMMbw2ZGHcDbTwaphlQ/rSeSHElnSYNR4XFhpAQNaW0mGJCopKcHvR/6FiUtb3I7PwrUn6XiWlo/4fA42BT/DpuBncDDWgosGF57pBXC2kL2jACGEkNeKhGJ8dSwCJSIxZvV0hptF2eP1BX1dFRyZ8uJyOVJNCopLxejibAKhSIzeLV+3pb0Vm4Hk7EL0b2VRoT3tiQfJuBWbgVuxGRjoZYnOziaNFn9zRIksaVQcDgcmGsAALwsM+W9MwPi0XPx85CJe8i1w+Uk64tILEAcuzm64An9nY4xqaw0RdRojhJAqCUVinAhPRmJWIWb1dAZQNnTV1K6OMNYRwEKfnnTVhQafh6+GtqowAcOmi09wKfoV5vZyRlA/N8nywhIRVp2IlLxe/Fc4Ts/vJukoR+SPapYonKW+BvzMGAYMaINiMQdnHyZh29n7eJzNxdUn6bj6JB3GAh5yTBPwXgd7aFQy+xghhDRnDxOzMf9AGNR5XIxsZyPp0b+of0sFR9Y0vJnEMsbQzt4QT17mYoTv6/F1U7KLsPFCDJKyiyTLEjIK8f3paHwxyKNR421OZGu1XI2ioqKaCxEiIx2BGgZ6W2KGuxgXg7pibi9nGGnzkV7MwYpjkejy3UXsuPwMxaUiRYdKCCEKk5lfgrvxmZLXbewM0c/DHHN6OdPQUQ2Mw+Fgbm8XXFncSzIhBFA2hNnem/EVyu+8FovQ5xmNGWKzUqdEViwW46uvvoK1tTV0dHTw7NkzAMCyZcvw66+/yjVA0nxZG2giqJ8bgoO64V0HEaz0NZCWV4yvT0Si9w8hOHovEWIaqJYQ0szci89El+8uYNbeu1J/1G+b0A5zers0+05bjYXLlb5Le+NZeqXlGAMWHgpHkZBuwDSEOiWyX3/9NXbt2oU1a9ZAXf31VKVeXl7YsWOH3IIjBAA01XnoZslwbkEXfPeuF8z1BHiRWYj5B8IwaNMV3Imjv3QJIc2Hu6UedDTUYKiljpfZxYoOhwC4/iwdiVlVP6F+9iofP52PqXI9qbs6JbJ79uzBtm3b8P7770tNJeft7Y3Hjx/LLThC3sTncTG6vR2CP+mJhQFu0BGo4VFSDkb8fB2fHLyP9Dy6oBNCmpZSkRi/33iOoANhkmUafB4OzeiME3O7SD3aJopRKhLjy2MRNZb75dIzPHiR3QgRNS91SmQTExPh7OxcYblYLIZQKKx3UIRUR1Odh1k9nRGysAdGtytraH8o9AV6/RCC/914DhE1NyCENBFJ2UX48tgj/HUvEdeevp410dZIS6oDElGcP27F43FKbo3lRGKGhYfuIz49HwUlpY0QWfNQp1ELPD09cfny5QpTvh48eBBt2rSRS2CE1MRYR4DvRnhjVHtbLDv6EBHJOfj86EMcDH2BNe96S8ZMJIQQVVJYIoL6fw877Yy0MLunCwy0+BVmoiLKYVR7WwR6WSK7UIicQiFyikqRXShEdqEQuUVC5BSWvc4pEiK7oATT9oQiu7AE8/0M4O6u6OhVX50S2eXLl2P8+PFITEyEWCzGX3/9haioKOzZswfHjx+Xd4yEVMvX3hD/zPbH/248xw9nonE/IQsDN17GrJ7OmNnDGepq9R6cgxBCGpxQJMbW4KfYfS0Of8/qLFk+r4+LAqMiNRGo8SDQ4cFER1Bj2dTcIry79RoyCoQw0abRJeShTt/wgwYNwoEDB3Dy5ElwOBx88cUXiIyMxLFjx9C3b195x0hIjdR4XEzyd8TZoO7o424OoYhhw7kYDNp4BWEJWYoOjxBCasTjcBAclYr0/BIcvpuo6HBIAzDT1cDZBd2xc6IvLHRejy4R+jwDJaViBUamuuo8IUJAQAACAgLkGQsh9Wahr4HtE3xxPDwZK/55hKiXuRi+5SqmdHFEUF83aKrTX8CEEOVRWCKCBp8LDocDLpeDVcO9EP0yDwM8zajzdBOlweeho5MxIiNTAQBxafkYu/0m7I218L8pfjDTo1nYaoOeuZImh8PhYJCPFc4GdcewNtYQM2D75VgEbLgk1VmCEEIU6U5cBvr/eAn/e2MQ/ZYWehjsY0UduZqRxKxC6AjUYKarIVPzBCJN5juyhoaGMv9iZWTQuJ5E8Yy01bF+dGsM8rHE0iMPEZ9RgLHbb2Ksnx2WBLaErgYNGk4IUZwHidl4nl6AXVdjMaa9LdR4dG+pOfJ3NsG5oO4QisWSSRZEYoaEjAI4mGgrODrlJ3Miu2HDBsn/09PT8fXXXyMgIACdOnUCAFy/fh2nT5/GsmXL5B4kIfXRq6U5ziwwwrf/lk0fuO9mPC4+TsWq4V7o6Wam6PAIIc0IY0xyU2hiJwcUl4ox1s+OkthmzlBbXer1L5ee4sdzMfhqSCuMam+roKhUg8yJ7MSJEyX/f/fdd/Hll19i9uzZkmVz587Fpk2bcO7cOSxYsEC+URJST7oafHwzzAsDva2w+HA44jMKMHnnbQxva40lAa6KDo8Q0gz8HZaIY/eT8Mv4duBxy9rEzujeQtFhESXDGMPd51koLhUD1MKkRnX6E/D06dPo379/heUBAQE4d+5cvYMipKF0amGMU/O7YkoXR3A4wF93ExG48Srup9PVghDScF7lFuOzvx7gXGQqDoUmKDocosQ4HA62jffFrxPbYaSvjWQ5YzTZT2XqlMgaGxvjyJEjFZYfPXoUxsbG9Q6KkIakpa6GZQM9cGhGZ7Qw1UZaXgl+i+Zh7v77SKNpbgkhDcBUV4BvhnlhXm8XjPClR8WkelwuB73dzSXNUIpLRRiz/QaO3Huh4MiUT50S2ZUrV+LTTz/FO++8g6+//hpff/01Bg4ciCVLlmDlypXyjpGQBuFrb4gTc7vio26O4ILh30cv0XddCP4OS6S/fEmzdunSJQwaNAhWVmW9548ePSq1ftKkSeBwOFI/HTt2VEywSux2XAbi0vIlr4e2scaCvq7gcekJEKmdP27G48azDKz4JwJZBSWKDkep1CmRnTRpEq5duwYDAwP89ddfOHz4MPT19XH16lVMmjRJziHK3/Hjx+Hm5gYXFxfs2LFD0eEQBdLg8xDU1wVBXiK0tNBFZoEQ8/aHYdqeO0jJLlJ0eIQoRH5+Pnx8fLBp06Yqy/Tv3x/JycmSn5MnTzZihMrv1MMUjNl2Ax/+fgf5xaWKDoeouAmdHDCnlzM2jmkDAy31mjdoRuo8IYKfnx/27t0rz1gaRWlpKYKCgnDx4kXo6emhbdu2GD58OIyMaA7r5sxWB/jrXT/8ejUeP12IwbnIVNyMDcHn77hjVDtbGtORNCuBgYEIDAystoxAIICFhUUjRaR62tgZwEhbHa7muqDLB6kvLpeDj/u5SS17kpoHdR4XdsZaCopKOdQpkY2Pj692vZ2dXZ2CaQy3bt2Cp6cnrK2tAQADBgzA6dOnMWbMGAVHRhSNz+NiTm8XBLSywMKD93H/RTYWH36AY/eTsXq4F2yNmvfFgpA3BQcHw8zMDAYGBujevTu++eYbmJlVPZxdcXExiotft0HPyckBAIhEIohEohqPV15GlrLKwESbj78+6gQLPQE4HE6t41a1860vOt/aScsrxqSdt1BQXIrfJrWDl7W+PMOTu9qeb23qpU6JrIODQ7V3qBryg3jp0iWsXbsWoaGhSE5OxpEjRzB06FCpMlu2bMHatWuRnJwMT09PbNiwAV27dgUAJCUlSZJYALCxsUFiIs1pTV5zNdfF4Y8647ersfjhTDSuPElDwIZLWNy/JcZ3tJcMWE1IcxUYGIiRI0fC3t4esbGxWLZsGXr16oXQ0FAIBJXPTLR69epK+1BERUVBR0dH5mNHR0fXOe6GlFsswporaRjrbQB309d1kJVUv/0q6/k2FDpf2WQUlEKDI4KIx5CXmoDInHp+0BqJrOebl5cn8z7rlMjeu3dP6rVQKMS9e/ewbt06fPPNN3XZpczK225NnjwZ7777boX1Bw4cwPz587Flyxb4+/vjl19+QWBgICIiImBnZ1dpJx56bEzepsbj4sNuLdDXwwKLD4XjVlwGlv/zCMfDk/Ddu95wMpX9i5eQpmb06NGS/7dq1Qrt2rWDvb09Tpw4geHDh1e6zZIlSxAUFCR5nZOTA1tbW7i5uUFPT6/GY4pEIkRHR8PV1RU8Hq/+JyFnK49H4F5yEdKLc3B2fpd6T3Cg7Ocrb3S+tXfEqxRZBUJYGWjKOTr5q+35lj+xkUWdElkfH58Ky9q1awcrKyusXbu2yguZPNTUdmvdunWYMmUKpk6dCqBsRrLTp09j69atWL16NaytraXuwL548QJ+fn7VHrOqR2JCoVDyU/5aln/lra77l3W76srVdp0sy5Sp/mz01fH7ZF/8cTsBa87E4HZcJgJ/vIx5vVtgXHsrmeKqKf6q1jeF+pPHdqpWfw1Vz8rM0tIS9vb2iImJqbKMQCCo9G4tj8er1Rd5bcs3lk8D3fEypxhBfd0gUJff9NfKer4Nhc5XdrqaPOhqvv6duvksHVEvczGhk4OcopM/Wc+3NnXCYXIcZygmJgatW7dGfn5+zYXlgMPhSDUtKCkpgZaWFg4ePIhhw4ZJys2bNw9hYWEICQlBaWkp3N3dERwcLOnsdePGjWrHv12xYkWlj8T27dsHLS1qN9lcpBcBB55xEZVddqfFTpthjLMIVvQRIG8oKCjA2LFjkZ2dLdOdRmX39nW2Munp6bC2tsa2bdswYcIEmfabk5MDfX19metJJBIhMjIS7u7uSpPo5BWXQkdQ5z7T1VLG821IdL71k5BRgIANl1BQIsLP49qifytLOUQpP7U939pcH+r0G/j2LV/GGJKTk7FixQq4uLjUZZdykZaWBpFIBHNzc6nl5ubmSElJAQCoqanhhx9+QM+ePSEWi7Fo0aIaJ3Go6pFYv379oKenB6FQiLNnz6Jv377g8/k1vpa3uu5f1u2qK1fbdbIsU+b6G8cYDt1NwupTUYjPL8X34Tx81M0RM3o4Q6BW+aPEmvZf1fqmWH912U7V6q82j8SUVV5eHp48eSJ5HRsbi7CwMBgZGcHIyAgrVqzAu+++C0tLS8TFxeGzzz6DiYmJ1A2Epu5RUjYm/nYLS99xx7A2NjVvQEgDsjHUxAf+jrj/Igs93KrudNkU1SmRNTAwqNCulDEGW1tb7N+/Xy6B1Udlsb25bPDgwRg8eLDM+6vqkRifz5f6Yqvta3mr6/5l3a66crVdJ8syZa2/sR0d0NvDAksOh+NC1CtsConDqcg0rBrmhQ6OVQ/jVtP+q1rf1OqvrtupSv01ZB03ljt37qBnz56S1+V/yE+cOBFbt27FgwcPsGfPHmRlZcHS0hI9e/bEgQMHoKurq6iQG92Ru4lIyyvB7mvPMdjHmiY5IArF4XDwcT9XlIoZ+PVsn61q6pTIXrx4Ueo1l8uFqakpnJ2doabWMI9ZZGFiYgIejye5+1ouNTW1wl1aQurDXE8DP7/fGt/8fgrHkzTxJDUPo365jvfa22JJoDv0tVQ/mSHNV48ePaqd3e706dONGI1y+myAOywNNDGynQ0lsUQpcDgc8HmvP4v7bsYju1CIj3q0UGBUDa9OaTuHw4G/vz+6d++O7t27o2vXrmjZsiWAsuGxFEVdXR2+vr44e/as1PKzZ8+ic+fOCoqKNFUcDgdtTRhOzfXHmA5lc6fvv52A3uuCaZpbQpqgrIISye81l8vBlC6O0NOgP1qJ8nmYmI3PjjzAd6ceIzgqVdHhNKg6JbI9e/ZERkZGheXZ2dlSj6MaQl5eHsLCwhAWFgbgddut8kkagoKCsGPHDvz222+IjIzEggULEB8fjxkzZjRoXKT5MtDiY/Vwb/w5vROczXSQlleCefvDMHHnbcSnFyg6PEKIHKRkF+Gdn65g9b+P6Y9UovRaWesjqK8rZnRvge6upooOp0HVqR3A221Oy6Wnp0NbW7veQVWnurZbu3btwujRo5Geno4vv/wSycnJaNWqFU6ePAl7e/sGjYuQDo5GODG3C34JeYZNF57gUvQr9NsQgtk9WsBKrOjoCCH1cSn6FRKzCnE24iVm9XSGvibdiSXKbW5vxXW+b0y1SmTLx4flcDiYNGmSVAcokUiE8PDwBn+EX1PbLQCYOXMmZs6c2aBxEFIZgRoPc3u7YKC3JZYeeYjrz9Lx/dkYWGrxYOOThQ5OTfsvY0KaqlHtbaGpzkNrWwNKYonKEYsZ1p2NRv9WFmil5NPZ1latmhbo6+tDX18fjDHo6upKXuvr68PCwgIffvgh/ve//zVUrISoDCdTHeyb5oe1I7xhoMlHcgEHo7ffwrKjD5FT1PwGzCdEFTHGUCp6/ThlkI8VbI1o4GiierZffoZNF59g8q7byG1i30G1uiO7c+dOAICDgwM++eSTBm9GQIgq43A4GNnOFl2djTDn1wu4/YqL3288x6lHKfj8HXcM9rGi6ZEJUWLfn4nC4+RcbBzbBlrqihuRh5D6GuNnh5MPkjGxswN0m1gHxTp19lq+fDklsYTIyFhbHeOcxdg9yReOJtp4lVuMefvDMGb7DcS8zFV0eISQSrzILMD2y7E4/zgVl2PSFB0OIfWip8HHXzP9Mbxt05u8Q+Y/Mdu2bYvz58/D0NAQbdq0qfZO0t27d+USHCFNSecWxjg1vyu2hZQ94rnxLAOBP17GpM72cBUpOjpCyJtsDLVw4MOOuPEsAwGeFooOh5B6e3O84yKhCGcjXmKQj5UCI5IPmRPZIUOGSDp3VTfnNiGkagI1Hub0dsHQNtZYeSwC5yJfYseVOOir86DhmIJBrW2ouQEhSqKNnSHa2BkqOgxC5KpIKMLIn6/jQWI2GIDBKp7MypzILl++vNL/E0Jqz9ZICzsmtsP5yJdY/s8jvMgsxNwD4Th4NwkrBnuihamOokMkpNkRisT45kQkPuzmBCsDTUWHQ0iD0ODz4O9sgsSsQpjqCGreQMnVq/V6SUkJUlNTIRZLD5JpZ2dXr6AIaS56u5ujg70+Fv52FhdS1HA5Jg39N1zCh92cML2Lg6LDI6RZ+el8DHZdi0NwVCrOBXWHWjObs540HwsD3DDZ3wHmehqKDqXe6vRbGh0dja5du0JTUxP29vZwdHSEo6MjHBwc4OjoKO8YCWnSNPg8BNqKcXJ2Z/RwM4VQxLD54lP0/+kqwtI5NIsQIY3k3bY28LLWx+L+LSmJJU0aj8uRSmLzi0tV9rumTndkJ0+eDDU1NRw/fhyWlpbUpo8QObA31sLOSe1xJuIlvjwWgcSsQuzM5uHRb3ewfLAnPK2a1iDWhCgbBxNtHJ3lL9UphpCmLvR5Bub+EYbZvZwxpoPqPVGvUyIbFhaG0NBQtGzZUt7xENKscTgcBHhaoJuLKbZcjMbPwU9xKy4TgzZewej2dpjXy0nRIRLSpIjFDC8yC2FnXDbRASWxpLm5E5eJxKxC7Loah5G+Nir3NKJOiayHhwfS0mhcPUIaiqY6D3N7OcMoOxp3Smxw4mEK/rgVj+PhSehtzkGfUjH4TWtMa0IU4pdLz/Dj+Wh8PdQLI3yb3hibhNRkWlcnMADv+9mpXBIL1LGN7HfffYdFixYhODgY6enpyMnJkfohhMiHkQDYMNobf07vBE8rPeQWleLocx4Gbb6Gi1Gpig6PEJUmFjNce5qGIqEYorc6LRPSXHC5HMzo3kJlZ/yq0x3ZPn36AAB69+4ttZwxBg6HA5GIRncnRJ46OBrhn9ldcOBWHFadeIRnaQWYvPM2eriZ4tMAV0WHR4hK4nI52D25Ay5GpaJXSzNFh0OIUrgU/Qo6GmpoqyJjKNcpkb148aK84yCE1IDH5WCkrw24ieGIUW+BPTfiERz1Cpdj0tDRlIsOecWwNFTNv6gJURQul4Pe7uaKDoMQpfDnnQQsOhQOJxNtnJzXFRp8nqJDqlGdEtnu3bvLOw5CiIw01YBP+7thXCdHfHMiAuciU3H1JRd91l/B9O4tMLEjtfMjpDoxL3MRHPUKH3RxpM5dhLwhwMMC6/Si0c3VFKoyGledEtnw8PBKl3M4HGhoaMDOzk4ynS0hpGE4mmhjx8T2uBL9EksO3EZCvgjrzkbjfzeeo5cpB/1E1CGMkLeJxAwLD4UjLCELafnFWBLoruiQCFEa+lp8nPu4O3QE9Zovq1HVqbNX69at0aZNmwo/rVu3RsuWLaGvr4+JEyeiqKhI3vESQt7i52iEIC8R1o/0gq2RJlJzi7H/GQ+Dt1zHhccvVXaQa6I4ly5dwqBBg2BlZQUOh4OjR49KrWeMYcWKFbCysoKmpiZ69OiBR48eKSbYWuJygPfa28LaQBOTO9MEPoS8TZWSWKCOieyRI0fg4uKCbdu2ISwsDPfu3cO2bdvg5uaGffv24ddff8WFCxfw+eefyzteQkgluBxgoLclzgV1x2eBbtDiMcSk5uODXXcwfucdxOcpOkKiSvLz8+Hj44NNmzZVun7NmjVYt24dNm3ahNu3b8PCwgJ9+/ZFbm5uI0daexwOB+91sEPwwh6w0Ff96TkJaSivcovxycH72HM9TtGhVKtOafc333yDH3/8EQEBAZJl3t7esLGxwbJly3Dr1i1oa2vj448/xvfffy+3YAkh1ROo8TC5sz100x7hqcAZe27E42ZsJm5CDQ9EYVgY0BIu5rqKDpMoucDAQAQGBla6jjGGDRs2YOnSpRg+fDgAYPfu3TA3N8e+ffswffr0xgy1VspH1gEAvgqOl0lIYzoTkYJDoS9wLvIlRvjaQEtdOe/U1imqBw8ewN7evsJye3t7PHjwAEBZ84Pk5OT6RUcIqRMtNWBxgCsm+Tvi+1OP8ff9JJyJSMXZyFQMa22N+X1cJTMZEVIbsbGxSElJQb9+/STLBAIBunfvjmvXrlWZyBYXF6O4uFjyunzMcZFIJNOQjeVl6jq84+24DHx7KgorBnnAy1r5p3uu7/mqGjpf5TOyrTXuPs/E2A62EPDqN7Rqbc+3NseqUyLbsmVLfPvtt9i2bRvU1dUBAEKhEN9++61k2trExESYmyvnkCYJCQkYP348UlNToaamhmXLlmHkyJGKDosQubMx1MLaEV5wQwLulljhbGQq/rqXiH/uJ2FUe1vM7eVCj1dJraSkpABAheu7ubk5nj9/XuV2q1evxsqVKyssj4qKgo6OjszHj46Olrnsm746k4JHqcX4+cwDzO5oXKd9KEJdz1dV0fkql8keakBeMiIj5XNjUtbzzcuTvT1cnRLZzZs3Y/DgwbCxsYG3tzc4HA7Cw8MhEolw/PhxAMCzZ88wc+bMuuy+wampqWHDhg1o3bo1UlNT0bZtWwwYMADa2tqKDo2QBmGlBUwd0RqRL/Px/ZloXIp+hX0343Eo9AUmdLTHRz1awFiHRhohsit/RF/uzcf2lVmyZAmCgoIkr3NycmBraws3Nzfo6enVeDyRSITo6Gi4urqCx6v92JbbrByxOfgp5vV2hokKfNbre76qhs5X+RWUlEKTz6v297wqtT3f2swSW6dEtnPnzoiLi8P//vc/REdHgzGGESNGYOzYsdDVLWt/N378+LrsulFYWlrC0tISAGBmZgYjIyNkZGRQIkuaPG8bA+z5oANuPkvH92eicDsuEzuuxOKPW/GY7O+IKV0cYaitrugwiRKzsLAAUHZntvw6CgCpqanVPoUTCASVDsvI4/Fq9UVe2/LlrI20sWq4d623U7S6nq+qovNVTvtvxeP7M1H4drg3+njU/Wm7rOdbmzqpc2t3HR0dzJgxA+vWrcP69esxffp0SRJbXzUN/QIAW7ZsgaOjIzQ0NODr64vLly/X6Vh37tyBWCyGra1tPaMmRHX4ORnjz+mdsGtye3hZ6yO/RIRNF5+gy3cXsObUY2Tklyg6RKKkHB0dYWFhgbNnz0qWlZSUICQkBJ07d1ZgZJUrEipvG0RCVEV8RgHS8kqw/3aCokOpoF5d0CIiIhAfH4+SEukvvcGDB9crqPKhXyZPnox33323wvoDBw5g/vz52LJlC/z9/fHLL78gMDAQERERsLOzAwD4+vpKdSwod+bMGVhZWQEA0tPTMWHCBOzYsaNe8RKiijgcDnq4maG7qylOP3qJH8/HIDI5B1uCn2LXtTiM72SPaV2dVOIxLJGvvLw8PHnyRPI6NjYWYWFhMDIygp2dHebPn49Vq1bBxcUFLi4uWLVqFbS0tDB27FgFRl1RTpEQvX8IwYBWFljUvyW0VWx8TEKUxfTuLWBtqIlR7ZTvpl+dfqufPXuGYcOG4cGDB+BwOJIB18vbTdS3F151Q78AwLp16zBlyhRMnToVALBhwwacPn0aW7duxerVqwEAoaGh1R6juLgYw4YNw5IlS2q8i1BVb1uhUCj5KX8ty7/yVtf9y7pddeVqu06WZc2p/qpb35j119vNGL1cjXD+8StsCn6KR0m5+CXkGfZci8PYDraY4u8AU93KE1qqv8rjUWV37txBz549Ja/L27ZOnDgRu3btwqJFi1BYWIiZM2ciMzMTfn5+OHPmjNyeysnLqQcpeJVbjGtP01ViznhClJW+Jh/v+1UcrUoZcFgdpv0ZNGgQeDwetm/fDicnJ9y6dQvp6emScWO7du0qvwA5HBw5cgRDhw4FUPYIS0tLCwcPHsSwYcMk5ebNm4ewsDCEhITUuE/GGMaOHQs3NzesWLGixvIrVqyotLftvn37oKVFQxiRpoUxICKLg1MJXMTn/zfmJoehszlDb2sx9KkJbbUKCgowduxYZGdny9SJqbnKycmBvr6+zPUkEokQGRkJd3f3WrWfu/Y0DWBAZ2eT+oTb6Op6vqqKzld1MMaQlldS5c2NytT2fGtzfajTHdnr16/jwoULMDU1BZfLBZfLRZcuXbB69WrMnTsX9+7dq8tuZZKWlgaRSFTp0C/lw8LU5OrVqzhw4AC8vb0l7W9///13eHl5VVq+qt62/fr1g56eHoRCIc6ePYu+ffuCz+fX+Fre6rp/Wberrlxt18myrDnVX3XrFVl/7wD4hDFcfpKOjRefIiwhGyEpHFxPU8OItlaY2sUBtoZataqH2taLrOWUrf5q09uWNLzOLVQrgSVEmSVkFGD+gTCkZBcheGEPpZhYpE6JrEgkkoz7Z2JigqSkJLi5ucHe3h5RUVFyDbAqtR365U1dunSBWCyW+VhV9bbl8/lSX2y1fS1vdd2/rNtVV66262RZ1pzqr7r1iqy/3h6W6OVugStP0vDjuRjceZ6Jfbde4MCdRAz0tsRHPVqghbFmnfdfm+1Upf4a8jNKZFMkFIHH5SjFlywhTYmprgDP0wuQUyTEg8RstLUzVHRIdUtkW7VqhfDwcDg5OcHPzw9r1qyBuro6tm3bBicnJ3nHKMXExAQ8Hq/C3deahn4hhNQNh8NBVxdTdHE2wY1nGdga8hSXol/h77Ak/B2WhB6uJvCm3I0okd3X4rDn+nMs6u+GIa2tFR0OIU2GBp+HjWPaoIWpNsz0lGMynTr9ufr5559L7mh+/fXXeP78Obp27YqTJ0/ixx9/lGuAb1NXV4evr6/U0C8AcPbsWaUc+oWQpoLD4aBTC2Ps+aADjs/pgne8LcHlAMHRafjpkRre234LFx6/RB2a3RMiN4wx/HM/CYlZhSgplf3JGyFENp1aGCtNEgvU8Y5sQECA5P9OTk6IiIhARkYGDA0N6zTjw9tqGvolKCgI48ePR7t27dCpUyds27YN8fHxmDFjRr2PTQipWStrfWwe2xaxafn4OfgJDoUmIDQ+Cx/suoOWFrqY0b0FBnpbQo0e7ZJGxuFwcPijzvgnLInuxhLSwDLzS2CgxZdL7ldXtUpkP/jgA5nK/fbbb3UKplxNQ7+MHj0a6enp+PLLL5GcnIxWrVrh5MmTsLdXzqEhCGmqHE208fUQD3iyOMRrOuOPWwl4nJKL+QfC8P2ZKEzp4ohR7Wxp/E7SqDT4PIxqr3zjXRLSVDDG8NmRBzgcmoj90zsqtK1srb5ddu3aBXt7e7Rp06ZBHx/26NGjxv3PnDkTM2fObLAYCCGy01cHFge4Yk4vV/x+Iw47r8bhRWYhVh6LwPqz0Xi/oz0mdXaAuRI9jiJNj1Akpg5ehDQCDoeDklKGEpEYFx+nqk4iO2PGDOzfvx/Pnj3DBx98gHHjxsHIyKihYiOEqBh9LT5m93LBlC5OOHT3BX69/Axx6QXYGvwUOy4/w2Afa0zr5oiWFjS+ak1OnToFHR0ddOnSBQCwefNmbN++HR4eHti8eTMMDRXfW1jZzN8fhqzCEiwJdEcra31Fh0NIkza7lzPGd7JHa1sDhcZRqz9dt2zZguTkZCxevBjHjh2Dra0tRo0ahdOnT1MHD0KIhKY6D+M72uP8xz3wy3hftHcwhFDEcPjuC/TfcBnjf72JK0/SQZeNqi1cuFAyJu2DBw/w8ccfY8CAAXj27JnUuNakTHaBEGcjX+Lqk3So8RTXXo+Q5sLRRFvhSSxQh85eAoEAY8aMwZgxY/D8+XPs2rULM2fOhFAoREREhGR8WUII4XE5CPC0QICnBe7FZ2LH5Vj8+zAZl2PScDkmDVZaPJRYJWFoW1uoq9Ej4TfFxsbCw8MDAHD48GEMHDgQq1atwt27dzFgwAAFR6d89LX4uPBxd1yMekV3/AlpZGJx2V0JLrfx/4is1zcHh8MBh8MBY6xWEwwQQpqfNnaG2Px+W4Qs7IlJnR2gpc5DUgEHi/56iK5rLmBr8FNkFwgVHabSUFdXR0FBAQDg3Llz6NevHwDAyMiIZg+rgo2hFsZ3pE6/hDSm7Zeeoeuai7gU80ohx691IltcXIw//vgDffv2hZubGx48eIBNmzYhPj6e7sYSQmpka6SFFYM9cemTbhhoJ4KZrgAvc4rx3anH6PTteaz45xHi0vIVHabCdenSBUFBQfjqq69w69YtvPPOOwCA6Oho2NjYKDg6Qggpk5hViMSsQhy7n6yQ49eqacHMmTOxf/9+2NnZYfLkydi/fz+MjY0bKjZCSBOmr8lHX2uG7yZ3xamIV9h++Rkep+Ri17U47L4eh94tzfFBFwe0s22ej4k3bdqEmTNn4tChQ9i6dSusrcvGRP3333/Rv39/BUenXFb88whCkRhTuzrB0URb0eEQ0qyM62gPX3tD9PVQzOyqtUpkf/75Z9jZ2cHR0REhISEICQmptNxff/0ll+AIIU2fuhoX7/raYHhba1x5kobfrsTiYtQrnIt8iXORL9HSXAdtdDjoLRSBz28+c+Ha2dnh+PHjFZavX79eAdEor7ziUhy4nYBCoQjv+trAEZTIEtKYnM104GymuCfytUpkJ0yYoNDZGwghTReHw0FXF1N0dTHF01d52HU1DodCX+Dxyzw8fsnD6R8uYVxHB4zraAcz3aY5Hm1OTg709PQk/69OebnmTpPPw/YJ7RAclYo2StCDmhDSuGo9IQIhhDS0FqY6+GpoK3zSzw37bsZh28UoZOQL8dP5GGwNfoJB3lb4oItjkxsr1NDQEMnJyTAzM4OBgUGlNw4YY+BwOBCJRAqIUPnwuBx0cTFBFxcTRYdCSLP25+0EnHiQjNXDvWBloNlox6V5IwkhSktfi4+pXRxgnh0BNfu22HMjAXeeZ+Kve4n4614iOjgYYUJHW4ibyHi0Fy5ckEwyc+HCBXoCRghRGQdDE3A7LhOnHqbggy6OjXZcSmQJIUqPxwECW1lgcBtb3E/Iws6rsTgenoxbcRm4FZcBIwEPqQZxGNPRAXoaqtuOtnv37pL/9+jRQ3GBqIhL0a8Qk5qHAV4WsNRvvDtAhJCKJnRyQA83M/Rxb9xOXzQCOSFEpfjYGmDDe21w9dNemN3TGYZafGQUc7D6VDQ6rSobviu2CQzftWzZskqbD2RnZ2PMmDEKiEj57Ln+HF8dj8AftxIUHQohzd4gHyvM6ukMO2OtRj0uJbKEEJVkrqeBTwLccOmTbnjPSQQXM23kl4iw61ocev0QjA//dxdR2RyVnT57z5498Pf3x9OnTyXLgoOD4eXlhbi4OMUFpkR6uJmig4MRBnhZKDoUQoiCUCJLCFFpGnweOpkznJjdGf+b4odeLc3AGHAxKg1bInh4Z9M17LsZj8IS1eocFR4eDgcHB7Ru3Rrbt2/HwoUL0a9fP0yaNAlXrlxRaGwrVqyQzOxY/mNh0fjJ5LiO9vhzRieakpYQJSEUiXHzWToO3mm8pyTURpYQ0iRwOK97rz97lYffrjzDn7fjEZOaj8+OPMB3px5jlK81rIoVHals9PX1sX//fixduhTTp0+Hmpoa/v33X/Tu3VvRoQEAPD09ce7cOclrHo+nwGgIIcog5mUeRm+7AU0+D4NbW0Gg1vDXBUpkCSFNjpOpDpYPdIenOBa5Jp74380ExGcUYPuVOHDAw/WiMHzQxQl+jkaKDrVaGzduxPr16zFmzBiEhoZi7ty52LdvH3x8fBQdGtTU1BRyFxYoG4LsdlwmWtsaQF2NHiwSoizcLXXR0qLsJ6ewFKa6lMgSQkidaakBIzrbY0rXFrj4OBW/XXmGa88ycCYiFWciUuFuqYfxfrbgK2Grg8DAQNy+fRt79uzBiBEjUFhYiKCgIHTs2BErV67EokWLFBpfTEwMrKysIBAI4Ofnh1WrVsHJyanK8sXFxSgufn07vHzCB5FIJNOYuOVlRCIRYtPyMeqX6zDQ5OP6pz2bZDL75vk2B3S+TceJOf6S/799nrKeb23qhRJZQkiTx+Ny0MfDHN1djPDroZOIU3fA0bAkRCbn4LOjj6CtxsNTjRhM9HeEiZZyXBZLS0sRHh4OKysrAICmpia2bt2KgQMHYurUqQpNZP38/LBnzx64urri5cuX+Prrr9G5c2c8evQIxsbGlW6zevVqrFy5ssLyqKgo6OjIPr1ldHQ07iQWwkCDCzt9Hp7GRNX5PFRBdHS0okNoVHS+TZus55uXlyfzPpXjik0IIY3EUguYMsADnwa64887Cdh9LQ6JWUX4+VIstl+JQ4CHGVwYFD7awdmzZytd/s477+DBgweNHI20wMBAyf+9vLzQqVMntGjRArt370ZQUFCl2yxZskRqXU5ODmxtbeHm5ibTdLsikQjR0dFwdXWFuzsP43oz5BWXQleFxw2uzpvn2xzaH9P5Nj3ZhUII1LjQ4PNqfb41TdH9JkpkCSHNkoGWOj7s1gLjO9hg7b7TeCQ0wc3YTJx8+BKAGs7/fBOT/R0R4GGq6FArMDFRrulYtbW14eXlhZiYmCrLCAQCCASCCst5PF6tvsjfLG+g1vS/wmpbP6qOzrdpmPF7KE5HpODncb4I8Hzdll7W861NnTS9hkWEEFILajwufIwZ/vdBe/w7rytG+lqDz2F4mJSDjw/eR/fvL+FkArfR79CKRCJ8//336NChAywsLGBkZCT1o0yKi4sRGRkJS0tLRYdCCFECRjrqYAyIeZnb4MeiRJYQQv7jbqmHVUM9scJXhE/6usBSXwPp+SVIyCsb3qsxrVy5EuvWrcOoUaOQnZ2NoKAgDB8+HFwuFytWrGjUWN72ySefICQkBLGxsbh58yZGjBiBnJwcTJw4scGPfejuCwzaeAW/X49r8GMRQupmdk9n3F7aB7N7uTT4sZr+cxlCCKklHT4wqpsjZvRwxsnwRMQ+utvoMezduxfbt2/HO++8g5UrV2LMmDFo0aIFvL29cePGDcydO7fRYyr34sULjBkzBmlpaTA1NUXHjh1x48YN2NvbN/ixbz7LwIPEbHR3Vb4mH4SQMlYGmo12LEpkCSGkCmo8LgJbWeBkfOMfOyUlBV5eXgAAHR0dZGdnAwAGDhyIZcuWNX5Ab9i/f7/Cjj2vtzN6tjRHSwtdhcXQUIqEIrzILERCZgHi0/Jx/2kmOBEPkF1YiuzCEmQWCJFfXAqhiEEkFqNUxCBmDAI+Dxr/darRVOfBSFsdpjoCGOuow1xPA7ZGWrA31oKdkRa01OlrnzQt9IkmhBAlZGNjg+TkZNjZ2cHZ2RlnzpxB27Ztcfv27Uo7TTUXNoZasDdR7SSWMYbErEI8SspBRFIOHiXlIDI5B4lZhZWUrrn3dn4tpl+2N9ZCKyt9eFrroZWVPlpZ68NIW70W0RMim4uPU/Hvw2R0dTHFgFbmDXYcSmTroLzTR/nwEEKhEAUFBcjJyQGfz6/xtbzVdf+yblddudquk2VZc6q/6tZT/clWTtnqr/y6UN/OYcOGDcP58+fh5+eHefPmYcyYMfj1118RHx+PBQsW1GvfpHExxvD0VR6uP03H9WfpuPksA+n5JZWW1VbnwdZICzYGmtBCIVztLGCkrQEDLT4MtPjQFfChxuNAjcsBj8sBl8NBcakYRUIRioQiFJSIkJ5fgvS8YqTnlyApqxDxGQV4nl6A7EIhnqeX/f/Eg2TJMVta6MLf2QRdnE3QwdEI2gJKDUj93X+RhT/vvIBIDEpklU1ublkvPFtbWwVHQghRVrm5udDX16/z9t9++63k/yNGjICtrS2uXr0KZ2dnDB48WB4hqpxHqUWIKk5CB0dj2BppKTqcauUVl+Li41ScjXiJa0/TkZZXLLVejcuBi7kuPK304GGpB08rPbiY68JQiw8OhwORSITIyEi4u7eQ2/BMmfkliEjOwcPEbDxMysGjxGw8S8vH45RcPE7Jxa9XYsHncdC5hQne8bJEXw9zGNLdWlJH3V1NIRYzdGxR+SQp8kKJbB1YWVkhISEBurq6kp7M7du3x+3btyVl3nxdPvB3QkKCTAN/18Xbx5f3dtWVq+06WZY1p/qrbj3Vn2zllKn+GGPIzc2VzMglL35+fvDz85PrPlXN2ad5OPf0Jeb2ckZQPzdFh1NBZn4Jzka+xOmHKbgck4YSkViyTqDGha+9ITo5GaNTC2N42ehDoNa444caaqvD39kE/s6vxyFOyyvG9afpuPokDVeepOFFZiFCol8hJPoVeEc48Hc2weh2tujrYd4kpwImDaeNnSHa2BkCaNipeCmRrQMulwsbGxupZTweT+pL7u3XAKCnp9dgiURlx5PndtWVq+06WZY1p/qrbj3Vn2zllK3+6nMnllTNWpeP9g6vvxyVgVAkxvnIVBy4HY9LMWkQiV83KXE00UaApwV6upmitZ1BoyeusjDREWCQjxUG+ZT94fUkNQ//PkjGyYcpiEzOwaXoV7gU/QpG2up4t601JnZ2gI2hct8NJ80LJbJyMmvWrGpfN/bx5b1ddeVqu06WZc2p/qpbT/UnWzlVrz8im5Gt9OHu7q4UMyHFpuVj/+14HA59gbS81+1dPSz10L+VBfq3soCLmU6jjz9cX85mOpjT2wVzersgNi0fh0Nf4GBoAl7mFGP75Vj8djUOg32sML27E1paNMwfxqTpKBKKEJuWDx31hrubz2GKnlC8GcjJyYG+vj6ys7Mb7I5YU0b1Vz9Uf/VD9dcwaluvr9uMKi6RFYsZLjxOxfbLz3AzNkOy3ERHgJHtbDDS1wZOpjpyOZYynG+5UpEYF6NeYfe1OFx5kiZZ3rulGT4JcIO7Zf1/L5TpfBtDcznfRYfu4887LzCvlzP6WgllPt/aXB/ojmwjEAgEWL58ebMeMqc+qP7qh+qvfqj+lINYrLh7LkKRGMfuJ+HnkKeIfpkHAOBygB5uZhjd3ha9WpqBz2u67UfVeFz09TBHXw9zPHiRjZ8vPcW/D5Jx/nEqLkSlYngbGwT1c4V1Iw6CT1RDC1Md6GmoobQBf3/pjiwhhCihSZMm4YMPPkC3bt0UHUqDqO0d2d+vx2LtqccY1d4Onw/0bIQIgcISEQ7cjsf2y7GSMV51BGoY19EeEzrZN+jsRcp+xy42LR/fn4nCifCyYbwEalzM7e2CaV2d6tQpTNnPV96ay/mWisTgcTkQi8W1Ol+6I0sIISouNzcX/fr1g62tLSZPnoyJEyfC2tpa0WEpzPP0AuQUixv0zk65UpEY+28nYMO5aEn7VxMddUz2d8S4jvbQ15T/eMyqxtFEG5vHtsWHXbOw6mQkbsZmYO3pKPwTloRVw1vB195I0SESJaDWCE8qmu6zEEIIUWGHDx9GYmIiZs+ejYMHD8LBwQGBgYE4dOgQhEKhosNrdLN7tsBP71hiYif7BjsGYwznI18iYMMlfH70IdLySmBjqImvhnjiyuJemNXTmZLYt/jYGmD/hx2xfrQPjLTVEfUyFyN+vo7VJyNRUiqueQeE1BMlsoQQoqSMjY0xb9483Lt3D7du3YKzszPGjx8PKysrLFiwADExMYoOsdHoavDhZKgOuwaaCOHBi2yM2X4DU3bfwdNX+TDU4mPFIA9c+LgHxndygAa/6T7+rS8Oh4NhbWxwPqg7RvjagDHgl0vPMPLna3ienq/o8IiCrTz2CON/u43EnIb5A5wSWUIIUXLJyck4c+YMzpw5Ax6PhwEDBuDRo0fw8PDA+vXrFR2eSkvLK0bQn2EYtOkKbjzLgLoaFzO6t0DIop6Y5O9IkwDUgqG2Or4f6YOfx/lCX5OP+y+y8c5PV3D6UYqiQyMKdP1pOq49TUdKXmmD7J/ayBJCiBISCoX4559/sHPnTpw5cwbe3t5YsGAB3n//fejq6gIA9u/fj48++ggLFixQcLQNSyRm+OXSM4jy8tDCRQxNOXSOEYsZDtxJwLf/PkZ2YdmdomFtrPFxP1ca8L+e+reygJeNPubvv4fbcZmY8b9QLApoiRndnVRuXF1Sf7N6OqNYWAoTcUbNheuA/tRUIgkJCejRowc8PDzg7e2NgwcPKjoklTNs2DAYGhpixIgRig5FJRw/fhxubm5wcXHBjh07FB2OymnIz5ulpSWmTZsGe3t73Lp1C3fu3MGMGTMkSSwABAQEwMDAQO7HVjZZBSVYczoaP1xNhzzyoLi0fLy37QaW/PUA2YVCeFjq4egsf6wf3ZqSWDmxNtDEvmkdMb6jPRgDvjv1GIsOhaNURO1mm5tBPlYY1sYaJloNc++U7sgqETU1NWzYsAGtW7dGamoq2rZtiwEDBkBbW1vRoamMuXPn4oMPPsDu3bsVHYrSKy0tRVBQEC5evAg9PT20bdsWw4cPh5ER9TaWVUN+3tatW4dRo0ZBQ0OjyjKGhoaIjY2V+7GVjZ4mH52cjKDPLUGpqO6jFojFDLuuxWHN6ccoEoqhpc7Dx/3cMLGTfaP0rm5u+DwuvhraCi7mOlh5LAIHQ18gv6QUG0a3oSYbRG7ok6RELC0t0bp1awCAmZkZjIyMkJHRMLfim6qePXtK3bEiVbt16xY8PT1hbW0NXV1dDBgwAKdPn1Z0WCqloT5vpaWl+OCDD/DkyRO571sV8Xlc/G9KB3zga4icorp1GEnKKsSY7Tfw5fEIFAnF6NzCGKfnd8OULo6UxDawCZ0c8PM4X6jzuDj5IAUz94aiuFSk6LBII8ktEiIyOQfxWSU1F64D+u2thUuXLmHQoEGwsrICh8PB0aNHK5TZsmULHB0doaGhAV9fX1y+fLlOx7pz5w7EYjFsbW3rGbXyaMz6aw7qW59JSUlS45La2NggMTGxMUJXCsr8eVRTU4O9vT1EIvqyL5dbVIrlF1IxdsctvMwpqtW2/z5IRuCPl3EzNgNa6jx8PbQV9k71g20DjYBAKurrYY5tE3whUOPiXGQqgv68r9DZ2kjjOfUwBQM3XcOO0MwG2T8lsrWQn58PHx8fbNq0qdL1Bw4cwPz587F06VLcu3cPXbt2RWBgIOLj4yVlfH190apVqwo/SUlJkjLp6emYMGECtm3b1uDn1Jgaq/6ai/rWZ2WT+jWnjhjy+Dw2pM8//xxLliyhpzL/yS0SIqOgFHHpBRiz7QZSZUhmi4QiLD3yAB/tvYvsQiG8bfRxYm5XjOto36w+68qih5sZdkxsBz6PgxPhyfjmZKSiQyKNwERHAGNtdWjxGyjlZKROALAjR45ILevQoQObMWOG1LKWLVuyTz/9VOb9FhUVsa5du7I9e/bII0yl1VD1xxhjFy9eZO+++259Q1QpdanPq1evsqFDh0rWzZ07l+3du7fBY1VG9fk8NtTnrXXr1kxHR4cJBALm6urK2rRpI/Wj6rKzsxkAlp2dLVP50tJSdu76PdZp9Tlmv/g46/n9RZaUVVBl+fj0fDbwp8vMfvFx5vDpcfbtv5GsWCiSV/gNrrS0lD148ICVlpYqOhS5O3rvBbNffJzZLz7Odl+LZYw17fOtDJ1v9WpzfaDOXnJSUlKC0NBQfPrpp1LL+/Xrh2vXrsm0D8YYJk2ahF69emH8+PENEabSkkf9kddkqc8OHTrg4cOHSExMhJ6eHk6ePIkvvvhCEeEqHWX4PA4dOrRRjlMfW7Zswdq1a5GcnAxPT09s2LABXbt2bbDjmeuoYe+UDnh/xy08e5WPkT9fx96pfrA3lu4QGxL9CnP/uIfsQiEMtfhYP7o1eriZNVhcpBaSkzHk6HZkdwjAF7cy8NXxCPjYGKCVFfVtIHVDiaycpKWlQSQSwdzcXGq5ubk5UlJkGwz66tWrOHDgALy9vSXt9X7//Xd4eXnJO1ylI4/6A8qGI7p79y7y8/NhY2ODI0eOoH379vIOV+nJUp9qamr44Ycf0LNnT4jFYixatAjGxsaKCFfpyPp5bMjP2/Lly+Wyn4ZS3vRiy5Yt8Pf3xy+//ILAwEBERETAzs6uwY5rZ6SFP2d0wrgdNxGXXoCRP1/H/6b6wdVcF4wx/HolFqtORkLMgNa2Btj8fltYG2g2WDyklpKTgZUrMf7OIFzLt8CpRymYufcu/pnVSdGRkQZy6mEyNpyLwdPUXLQwy8D8Pi7o38pSbvunRFbO3m53xRiTuS1Wly5dIBY37zH26lN/AKjX/Vtqqs/Bgwdj8ODBjR2Wyqip/prz523dunWYMmUKpk6dCgDYsGEDTp8+ja1bt2L16tUNemwbw7JkdvyOW3iVVwx1HhfFpSJ8fuQhDoa+AACMameDr4a2gkCNppZVRhwOB2tGeiEyJQfP0wvw+d+PMNNHoOiwiJydepiMGf+7K3kdlZKLGf+7i5/HtZVbMkuJrJyYmJiAx+NVuHuYmppa4a4OqYjqT76oPutHGepPJBJh/fr1+PPPPxEfH4+SEumhaxTZCawuTS+Ki4tRXFwseZ2TkwOg7DxlGZ2hvEz5v8ZafOyb2h5JWUXQ1+Bh4q+3cCM2A1wO8NmAlpjUyR4cDlR25Ie3z1elJSeX/QDg3LsHLgDxnTvQFonwiwcw6VQG/n0IuOgYwc2tCZyvDJrU+1uNDediwAFQ3rWYAeBwypb3da+6uU9t6oUSWTlRV1eHr68vzp49i2HDhkmWnz17FkOGDFFgZKqB6k++qD7rRxnqb+XKldixYweCgoKwbNkyLF26FHFxcTh69KjC2zLXpSnQ6tWrsXLlygrLo6KioKOjI/Oxo6OjpWPJL8Ws/6UiPlsIdS7Q3VEbfgYFePz4scz7VGZvn68qMtuyBWZbt0ot406fDgBoCWBWn3FY5vsefg3NRFf7x9BsqN7tSqgpvL/VeZqai7fHx2GsbHlkZNWjVuTl5cl8DEpkayEvL09qgPLY2FiEhYXByMgIdnZ2CAoKwvjx49GuXTt06tQJ27ZtQ3x8PGbMmKHAqJUH1Z98UX3Wj7LX3969e7F9+3a88847WLlyJcaMGYMWLVrA29sbN27cwNy5cxsljurUpinQkiVLEBQUJHmdk5MDW1tbuLm5QU9Pr8ZjiUQiREdHw9XVFVwuF09S8/HP/ST8ejUBxaVi6GuqIbuwFGef5uPCs3xY6AnQuYUx/JyM0cnJGBb6Vc+QpozePF8eT8WbR3z2GUSTJwP4747s9OkQ//ILWJs2uP4sAz9dTgUATGprCB/Plqp/vjJoUu9vNVqYZSAqRTqZ5XAAZzNduLu7V7ld+RMbWVAiWwt37txBz549Ja/LL8oTJ07Erl27MHr0aKSnp+PLL79EcnIyWrVqhZMnT8Le3l5RISsVqj/5ovqsH2Wvv5SUFElHTx0dHWRnZwMABg4ciGXLljVKDFWpS9MLgUAAgaBiG0gejyfTF3lKdtm4sUuPPkJwTDpe5b5upqCvyceJuV0w8bfbePoqDyIGJGYX4+DdJBy8WzbGtJOJNvydTeDvbIJOTsbQ1+LLfL6KJGv9KDUbm7IfAPjvXLjt2iHHwwuzTl5Eto4RpndzRKCduGmcby009fOd38dFqo0sh1N2R3Zen+oT+NrUCYexSkZFJ4QQolBubm7Ys2cP/Pz80LVrV7zzzjv49NNPceDAAcyZMwepqakKjc/Pzw++vr7YsmWLZJmHhweGDBkiU2evnJwc6OvrIzs7u9I7stkFQlx/lo6rT9Jw9UkakrMLcHC0HUYeiEehUPpra/+0jujYwhinH6Vg+u+hNR7b3lgLJ+Z2hY5Aee/liEQiREZGwt3dvWklOnfvAr6+QGgo0LYtzkW8xN6bz7FlbBs8jYlqeudbhSb7/lbi4J0ELDwUDgBoaaGL+X1c0b+VRbXb1HR9eJPy/hYTQkgzNmzYMJw/fx5+fn6YN28exowZg19//RXx8fFYsGCBosNr8KYXV5+mYda+uyi/1aLJL2uyIHprWlNvG310bFE2bFzvlmYw1xPgZU4xqqKvycevE9srdRLbpFlaAsuXl/0LoI+HOfp4mDf5Tk/NWa+Wrzt1HZ/dGWpq8v3do99kQghRQt9++63k/yNGjICNjQ2uXbsGZ2dnpRgyraGbXgzwssTSAe74+sTrDiEPXxah5K18Z3zH18dT43Exur0dfjofU+k+1dW42DGxHZzNZO9cRuTM0hK/9ZmI3up6oEZOzYPov79GOWiYadApkSWEEBXQsWNHdOzYUdFhSJk5cyZmzpzZYPuf2tUJSVlF+O1qLERihhUXpZtT6GmoYaC3ldSy99rbYtOFGLx147ZsyJ/RreFto99g8ZKa7boaiy+PR2BL8BOcXdAdhtrqig6JNLDC//761FCTfxILUCJLCCFKKzo6GsHBwUhNTa0wWYqih+BqLJ+/446krAKcevQSAJMak3J4Wxtoqku3L7Qy0ESvluY4F/nyrf14oJ+HOUZvuwFXcx18NsAduhqq0eGrqdhx+ZnkDvu4jvaUxDYTBf8lsgJKZAkhpPnYvn07PvroI5iYmMDCwkLqkRyHw2k2iSyXy8GG99qg1fLTKBUz8HmQNC9436/yqXDf72gnlch+4O+IKV0ccTEqFaHPMxH6PBOXotPw3bve6OJi0hin0awxxrDpwhP8cLZszNRZPVtgXm8XBUdFGktBSSkAQFOtYcYHpkSWEEKU0Ndff41vvvkGixcvVnQoCpdbVIpScdndWO5/+XwHRyO4mOtWWr6biymsDTSRmFWIAV4W+PydsvEqe7qZ4Y9pHbHo8H0kZBRi3K83MbytNZYOcIexDk2P2hBKSsVYeuSBZOrgoL6umEtJbLPS0Hdkm8/0GYQQokIyMzMxcuRIRYehFLIKyqbn1eJzYKJTNrFBVXdjAYDH5WCsnx3a2Rti3ajW4HJff4F2amGMU/O6YVJnB3A4wF93E9HrhxD8cSse4rcb1pJ6++l8DA6GvgCXAywf5EFJbDOUX/zfHdkGmrGNEllCCFFCI0eOxJkzZxQdhlIob0uZL2TY+F5r2Bhq1jgO5XvtbbF9Qjto8CuO0aktUMOKwZ44MtMfHpZ6yC4U4sjdRDRAh+pmb3p3J7S1M8Cvk9pjsr+josMhCpCRLwQA6AmoaQEhhDQbzs7OWLZsGW7cuAEvLy/w+dIdk5RhitrGYqilDlMdATR5YtibaOPvWf4QqFU/iLwsTQVa2xrgn9n+2HP9OXztDSXtkLMLhEjMKoSHVc1T5xJppSIxjoUnYWhra3A4HOhq8HH4o84NMuwSUQ3peWXjOutrNMzED5TIEkKIEtq2bRt0dHQQEhKCkJAQqXUcDqdZJbI8Lgc3lvREZGQk9DX5cp0JSY3HxQddpO8Ubg5+gu2Xn+Hdtjb4uJ8rLPU15Xa8puxhYjY+/SscDxNzkF0gxKT/7sBSEtu8WRlooquzMZwMG6bpDiWyhBCihGJjYxUdQrPEGENaXjEYAw6FvsDfYYkY3sYG07s7wcmUJlKoTH5xKdadjcbOq7EQs7LxfanzHCn3rq8Nhra2RGRkZM2F64ASWUIIIeQ/HA4H60a1xriO9vj238e4FZuBA3cS8GdoAgJbWeCj7s7wokkVAJQ1I/jzzgtsOBeN1Nyyx8eDfKywbKA7zHQ1FBwdaS4okSWEECURFBSEr776Ctra2ggKCqq27Lp16xopKuWw/XIs9l5PwoQMTUzr1qLBj9fWzhB/Tu+EO3EZ+DnkKc5FpuLkgxSY6WpQIvufJX+9HlbLzkgLXw7xRA83MwVHRZRNkVCEBhqwAAAlsoQQojTu3bsHoVAo+X9VmmObw7ziUiRkC/HsVX6jHredgxF2OBghKiUXv1x6imndnCTrbjxLx7UnaRjZzha2RlqNGpciFJeKUCQUQ1+zrOPh+x3tcf5xKub0csb7fvZQb6AB74nqEokZvFachq5ADT8GmjfIMSiRJYQQJXHx4sVK/0+AIT6WsODmoodvw9+NrYybhS7WjWottWzX1TicepSCjRefoIuzCUa1s0VvdzNoqTetr9akrEL8eScB+27GY4CXJVYM9gRQNurDtU97VTrEGSEAkJpbBKGIIaeolIbfIoQQ0nw5meqg2FITlvrK0/ZySGsr5BWX4sqTNFyOKfsRqHHR3dUU/VtZYFgba5W9e55fXIoLj1Nx+O4LhES/Avuvw/ml6FcQiRl4/00yQUksqY6lvibuL++H5KwClKYnNMgxKJElhBAlNGzYsEqTIA6HAw0NDTg7O2Ps2LFwc3NTQHQEAAK9LBHoZYn49AIcuBOPf+4nISGjEGciXiIlpwjD29pIyj57lQcHY22pWcaU1VfHI7D35nMUCcWSZZ2cjPFeB1sEtrKUJLGEyEJfkw8ddR1EpjfM/imRJYQQJaSvr4+jR4/CwMAAvr6+YIzh3r17yMrKQr9+/XDgwAF89913OH/+PPz9/RUdbqO4/DwfJxKiMdnfEWZ6ynNn1s5YCwsDWuKTfm6ISM7B6UcvYWP4euzZnCIh+qwLgb4mH36OxujUwhi+9oZwMdepcWKHhpRXXIp78Zm48iQNs3s6Q1ejrO2rBp+LIqEYdkZaGOhtiZHtbOFooq2wOAmpDiWyhBCihCwsLDB27Fhs2rQJXG5Z2zKxWIx58+ZBV1cX+/fvx4wZM7B48WJcuXJFwdE2jv0PsvE8Kw3tHY3QS4kS2XIcDgeeVvrwtJIe1eBJah40+DxkFghx6lEKTj1KAQCocTlwMdfF1C6OeNe37O5tqUgMMQN4cr7pmVVQggeJ2YhIysHDpBw8SszGs7TXHec6OBiht3tZZ5z3/ewR2MoSnlZ6Kts0giiHH85EIatAiDHtbWouXEdNKpG9e/cuFi9ejNu3b4PH4+Hdd9/FunXroKPzehDr+Ph4zJo1CxcuXICmpibGjh2L77//Hurq6gqMnBBCpP3666+4evWqJIkFAC6Xizlz5qBz585YtWoVZs+eja5duyowysZlp8/H8ywhol/moVfLhukB3RDa2hni/vJ+CH+RjRvP0nHjWTrCX2Qju1CIyOQcFJe+foQf+jwT722/AXM9DRgLGOzCimCoLYCBJh+GWuro2dIMzmZl32mpuUW4FZuBYqEYRf+NKFBQXIr0/BKk55fgfT87dHQyBgCERL/CvP1hFWKzNtBERydjmLwxgYGVgSasDGg2M1J/x+4nIS69AP08zGDYQMdoMolsUlIS+vTpg9GjR2PTpk3IycnB/PnzMWnSJBw6dAgAIBKJ8M4778DU1BRXrlxBeno6Jk6cCMYYNm7cqOAzIISQ10pLS/H48WO4urpKLX/8+DFEIhEAQENDo1ndMbPTL3v0HfMyT8GR1B6fx4WvvSF87Q0xq6czGGNIyi7Co8RstLJ+fQf3RWYhGANSsouQAuBR6kup/ehr8SWJ7KOkHMzeV/Uwbe3sDSWJrJOJDpxMteFuoQdPaz20stKHp5UezcBFGkyRUIT4jAIAgIuZDtJepDbIcZpMInv8+HHw+Xxs3rxZcgdj8+bNaNOmDZ48eQJnZ2ecOXMGERERSEhIgJWVFQDghx9+wKRJk/DNN99AT09PpmOJxWIkJSVBV1e3WX2JEEJqxhhDbm4urKyspO6m1tb48eMxZcoUfPbZZ2jfvj04HA5u3bqFVatWYcKECQCAkJAQeHp6yit0pWdvUPbkLCY1V8GR1B+Hw4G1gSas37rzObytNbq5muJ5Wh5uPnoCTQNT5BSVIqtAiKyCEtgavh6vVk9DDR0cjSBQ40KDz4MGnwctPg9GOuow1lZHewcjSVkvG31c+LhHY50eIXj6Kg9iBhho8WGio460BjpOk0lki4uLoa6uLvXFoalZdoG4cuUKnJ2dcf36dbRq1UqSxAJAQEAAiouLERoaip49e1a57+LiYsnrxMREeHh4NNCZEEKagoSEBNjY1L1d2Pr162Fubo41a9bg5cuyu3Lm5uZYsGABFi9eDADo168f+vfvL5d4VYG9Qdkd2ccpuRCKxODzmt4A/BwOB6a6AhhpqUEjXxvu7vbg8SrvEOZrb4Q/p3dq5AgJkc3DxGwAgLtFw7a1bjKJbK9evRAUFIS1a9di3rx5yM/Px2effQYASE5OBgCkpKTA3Fy6XZWhoSHU1dWRkpJS5b5Xr16NlStXVli+Y8cOaGk1/dlcCCGyKygowNSpU6Grq1uv/fB4PCxduhRLly5FTk4OAFR4amRnZ1evY9SVg4MDnj9/LrVs8eLF+Pbbbxv0uFa6atDTUENOUSmiUnKlHskTQpTL/Rdliay3bcP+nip9IrtixYpKk8g33b59G+3atcPu3bsRFBSEJUuWgMfjYe7cuTA3N5f6a7ayvwoYY9X+tbBkyRKpec9zcnJga2uLoUOHQk9PD0KhEGfPnkXfvn3B5/NrfC1vdd2/rNtVV66262RZ1pzqr7r1VH+ylVO2+svJycHUqVPlegdC1mZPjenLL7/EtGnTJK/f7FTbUDgcDnxs9HH5STrCErIokSVEid1PyAIA+NgYNOhxlD6RnT17Nt57771qyzg4OAAAxo4di7Fjx+Lly5fQ1tYGh8PBunXr4OjoCKBsOJubN29KbZuZmQmhUFjhTu2bBAIBBIKKDeL5fL7UF1ttX8tbXfcv63bVlavtOlmWNaf6q2491Z9s5ZSl/uRZx4cOHcKff/6J+Ph4lJSUSK27e/eu3I5TF7q6urCwsGj043rbGODyk3SEv8gCYN/oxyeE1KxIKEJUSllbdh9bgwY9ltI3MDIxMUHLli2r/dHQkB5P0NzcHDo6Ojhw4AA0NDTQt29fAECnTp3w8OFDSVMDADhz5gwEAgF8fX0bJP7fr8eh5w+XsOkRF58dfYTNF5/gn/tJuBefifS8YrDyef8IIeQNP/30EyZPngwzMzPcu3cPHTp0gLGxMZ49e4bAwEBFh4fvvvsOxsbGaN26Nb755psKiXZD8bEpuwt7PyG7UY5HCKm9iOQclIoZTHTUYdXA00or/R3Z2ti0aRM6d+4MHR0dnD17FgsXLsS3334LAwMDAGUdIzw8PDB+/HisXbsWGRkZ+OSTTzBt2rQGe3QXm1aAF1lFALiICU2ssF5bnQc7Y224mOmU/ZjrwMVcF/ZGWlBrgh0ZCCGy2bJlC7Zt24YxY8Zg9+7dWLRoEZycnPDFF18gIyNDobHNmzcPbdu2haGhIW7duoUlS5YgNjYWO3bsqHKbtzvNlrf7FYlEkuHEqlNeppVVWROG6NRcZOQVQV+z4Z4yKFL5+cpSN00BnW/TcvNZ2Xy0rW0MIBaLa32+tamXJpXI3rp1C8uXL0deXh5atmyJX375BePHj5es5/F4OHHiBGbOnAl/f3+pCREayuxezgjwMMWxi9dhZOeKxKxiJGQWICGjAMnZRcgvESEyOQeRyTlS26nzuHA00UZLS114WevDy1ofntb60BE0qbeMEFKF+Ph4dO7cGUDZCCy5uWWP6caPH4+OHTti06ZNcj1ebfojLFiwQLLM29sbhoaGGDFihOQubWWq6jQbFRVVq/a1GUnPYaOnhhc5pfjrcjg62jbtDrfR0dGKDqFR0fk2DefCy0ZacdAWIjIyUrJc1vPNy5N9rOgmlRXt2bOnxjJ2dnY4fvx4I0RTxkhbHW3tDJBiyjCgZwup9nNFQhESswoR+yofMal5iEnNxZPUPMS8zEOhUISol7mIepmLv8OSAAAcDuBkog1vGwO0tjVAB0cjuJnXr2c0IUQ5WVhYID09Hfb29rC3t8eNGzfg4+OD2NjYBmmSVJv+CG/r2LEjAODJkydVJrJVdZp1c3OT6YmYSCRCdHQ0XF1d0a2lGPtuJeCFUAvu7u41bquK3jzfqobfakrofJuOUpEYj/98AQAY0tEd7lZ6tT7f8ic2smhSiayq0eDz0MJUBy1MddDH43VnM7GYITGrEDGpuYhIykH4i2w8SMxGcnYRnr7Kx9NX+Thyr6yZgp6GGtrZG0K3iAObF9loY28MLpcmaSBE1fXq1QvHjh1D27ZtMWXKFCxYsACHDh3CnTt3MHz4cLkfz8TEBCYmJnXa9t69stmlLC0tqyxTVadZHo9Xqy9yHo+H3u7myCwQor2DcZNLAt5W2/pRdXS+qu9BUi7yS0TQ1+TD09pAKieR9XxrUyeUyCohLpcDWyMt2BppSc0n/iq3GA8TsxH+Iht3nmcg9HkmcopKcSHqFQAe/v7lJoy11dHN1RQ93EzRzcUUhtrqijsRQkidbdu2DWKxGAAwY8YMGBkZ4cqVKxg0aBBmzJihsLiuX7+OGzduoGfPntDX18ft27exYMECDB48uNHGte3tbo7e7lWPNEMIURwbQ018PbQVCkpKG+XGGiWyKsRUV4CeLc3Qs6UZgLLb94+ScnDj6Sscu/kYcQXqSM8vwZF7iThyLxFcDuBrb4h3vCwxwMsSZnoN23OQECI/XC5XaqbCUaNGYdSoUQqMqIxAIMCBAwewcuVKFBcXw97eHtOmTcOiRYsUHRohRAmY6AgwrmPjDY1HiWw9CIVCyU/5a1n+lScPC224GKvDIjsCPXr542FKPkKi0xASnYaol3m4HZeJ23GZWHk8Au3tDTHAywIDvSygr8mXOa7qytV2nSzLGrP+6rN/edRfdeup/mQrp2z1J896LioqQnh4OFJTUyV3Z8sNHjxYbsepjbZt2+LGjRsKOfbbnqfnIzYtHz3czBQdCiFEQTiMBjKV2ebNm7F582ZJo+V9+/Yp9RS1GcVAeAYH99K4iMt7fXufz2FobcLQ2UwMR92yTmSEEPkoKCjA2LFjkZ2dXa9h/U6dOoUJEyYgLS2twjoOh6Pyw/bk5ORAX19f5noSiUSIjIyEu7s7eDwe7sVnYtiWazDQ4iP0877gNbG+AW+fb1NH59s03IrNQGRyDnq7m8HG8HV+VNvzrc31ge7I1sKsWbMwa9YsSQX369dPZaaoTcwqxL8PX+JoWFLZndpXHNx+xYWFJsOMXi0xwtcGAn7lHy6aorZ+26naFKu1RfUnrTa9basze/ZsjBw5El988UW1Mw82V17W+jDREcDVXAfp+cUw06WmU4Qo2v7b8fjrbiISswrx2YDGGVGEEtl6UKUpah1M+fiopx5m9HBGWEIW/rgVj2P3k5BSKMaKE1HYFBKHyf4OGOdnD30t+UxDW906mmJV9vVUf7KVU5b6k1cdp6amIigoiJLYKqjxuLj6aU8I1JrO3SxCVJ2vvSFeZBaid8vGa+5DU0c1MxwOB23sDLFmhA+uLuqBYQ4iWOlrIC2vGGtPR8H/uwvYeD4G+cWlig6VkGZtxIgRCA4OVnQYSo2SWEKUy/t+9vhzeif4OVU+nnRDoDuyzZiuhhp6WDJ8M6kLTke+wi8hz/A4JRc/nI3G7uvPMbe3M8Z0aJzhdAgh0jZt2oSRI0fi8uXL8PLyqnCnd+7cuQqKTPmkZBeBywGNzEJIMyRTImtkZFSrnXI4HNy9exf29o03/AKpOz6Pi2FtbDDExxrHHyTjhzNReJ5egC/+foS9N+KxclBLRYdISLOzb98+nD59GpqamggODgbnjV6ZHA6HEtn/rDsThY0Xn+DDbk5YEtg0Z/kiRNmVisT4624i+nqYN/r49TIlsllZWdiwYQP09fVrLMsYw8yZM1W+R21zxOVyMNjHCv09LXDgdjzWnY1G1MtcvLfjNvxMuehcIISpfsO1sSSEvPb555/jyy+/xKeffio1niyR1tJSD4wBJ8KT8Wn/llIJPyGkcVx7mo5Fh8NhcVYD1z7t1agzjMrctOC9996DmZlsjXfnzJlT54CI4qmrcTG+kwMGelvhu1OPsf92Am6+4mLgpmv4fpQPurqYKjpEQpq8kpISjB49mpLYGvR0M4OWOg8vMgtxLyELbe0MFR0SIc3OsftJAIA+HmaNmsQCMnb2EovFMiexAJCbmwsnJ6c6B0WUg6G2Or591xsHpnWAmQbDy9xijP/1Fr48FoEiId1xJ6QhTZw4EQcOHFB0GEpPU52Hfh5lIzscDn2h4GgIaX4KSkrx78MUAMBAb6tGPz519iI1amtngIXeIoTBEXtvJeC3q7EIjc/EL+N8YaxFvYYJaQgikQhr1qzB6dOn4e3tXaGz17p16xQUmfIZ1c4WR8OS8E9YEj5/xwOa6nRdIqSxnAhPRl5xKeyNtdDBoXZ9quSh1onsP//8U+lyDocDDQ0NODs7w9HRsd6BqQJlmKK2PvuvzRSh6jxgaV9ndHc1wcLDD3A/IQsDN17GhhGeVe6DpliVrZyyTbFaW1R/lcdTXw8ePECbNm0AAA8fPpRaR+1ApXV0MoatkSYSMgrx78NkDG9ro+iQCGk2DtxOAFD2B2VjNysA6jBFLff/7d13XFPX+wfwTxIgjLBB9hQEFVQEtYgDtILVr6PuWSjWVgWtWvXX1jpbtcNVR7VaC9qq1bbuOnDgRFFUnAiCIFuW7J3c3x+UaMpKICEJPO/Xi5fee09unnOMl5N7zzkPmw0Wi4X/vqx2H4vFQr9+/XDs2DHo67etsUrKlqJWVnLKgV9iOcgoZYHDYjDdUQA3Q8p0TAggvRS1bV1LU9T+15aLz7HxfBz62Bng0Ceesgi5VbXVFKYNofoqp/isIry78So4bBZufj6owSXwFCpF7fnz57F06VKsWbMGvXv3BgDcvn0bX331FZYtWwZdXV188sknWLRoEfbs2SPp6RWaMqeobcnr6is3rrIai/9+jLCnWdgbx4b1MCdM97Rt8nWUYlXxU6xKitpPlLRS1BLJjHO3xKYLcYhMzENCdjE6GvPkHRIhbV7t3dhBzh3kto6zxB3ZTz/9FLt27ULfvn2F+wYPHgx1dXV8/PHHePLkCTZv3ozAwECpBqqIlClFrTRe93Y5XVVV7Jjmga+OPsTBO6lYfToOZXwWgnwcxDo/pVgV/zi1n3jlFKX9WtrGY8aMEavckSNHWvQ+bY25ngYGO3fAhZgs7ItIwqpRLvIOiZA2raySj7/+nWA50cNKbnFIvK5LQkJCvbd5dXR08OLFCwCAo6MjcnJyWh4dUWgcNgurRnSGn6UAAPDDuVjsupog56gIUW66urpi/ZC6AvrWzM/4624qCstlMyacEFLjyP1UvC6tgpWBBnycxV/ZStokviPr7u6OxYsXY9++fTA2rllPNDs7G0uWLEGvXr0AAM+fP4elJQ22bw9YLBaGWQnQ2akTNl+Mx9rTz6CuysEH/xlmQAgRT0hIiLxDUFpeDoZw7MDD86xi/BWVisB+7WPiMSGtTSBg8Ov1RADAh33twJHDJK9aEt+R3bNnDxITE2FpaQkHBwc4OjrC0tISSUlJ+OWXXwAAxcXFWLZsmdSDJYoryNseQT4dAQDLjz/BPw8z5BwRIaS9YbFYCPCyBQDsvZkEgYAmoRIiC1fispGQXQJtrgom9JLfsAKgGXdknZycEBMTg3PnziEuLg4Mw8DZ2RlDhgwRZqAZPXq0tOMkSmCRrxOKy6ux9+ZLLDwcjf0zesk7JEJIO/O+mwUiX+QhwMtWLksBEdIeHL2fBgCY1NsKPK58UxI0K/chi8XC0KFD8fHHH2PevHnw8/OTeRrFNWvWoG/fvtDU1ISenl6d47m5uRg6dCjMzc3B5XJhZWWF4OBgkRnESUlJYLFYdX7Onj0r09jbCxaLheUjumKQcwdUVAswa/995FXIOypCSHuiqaaCLZPdKFUtITK0YUJ3/DipBwK85D98R+Lep0AgwNdffw0LCwvweDwkJtaMkVi2bJlMl9uqrKzE+PHjMXv27HqPs9lsjBo1CidOnEBcXBxCQ0Nx4cIFzJo1q07ZCxcuICMjQ/gzaNAgmcXd3nDYLGyZ7AZnU23kFFciJJaDymqBvMMihLRTEi6VTggRgyqHjVE9LGChpyHvUCTvyH7zzTcIDQ3F999/DzU1NeF+V1dX4RhZWVi1ahUWLFgAV1fXeo/r6+tj9uzZ8PDwgI2NDQYPHow5c+bg2rVrdcoaGhrC1NRU+PN2PUjL8bgq+MXfA7oaKkguYeH7sDh5h0QIEVNTT78AIDk5GSNGjICWlhaMjIwwb948VFZWtm6gTcgprsDKE0/wwa+35R0KIW1GTnGFwt2ckrgju2/fPuzatQtTp04Vyc7QrVs3PHv2TKrBtUR6ejqOHDmCgQMH1jk2cuRIdOjQAV5eXvjrr7/kEF3bZ6mvie/G1KzjuPdmMs4+zpRzRIQQcTT19IvP52P48OEoKSnB9evX8ccff+Dvv//GZ5991sqRNo4vYHAgMhnXnufgQUq+vMMhpE348sgjeP8QjuvPFWeJVYlH6KalpcHBoe6i9wKBQGa53CUxefJkHD9+HGVlZRgxYoTIXWIej4eNGzfCy8sLbDYbJ06cwMSJE7F3715MmzatwXNWVFSgouLNYM/acbdVVVXCn9ptcf6UNnnmum/s2ICO+hhkJsClDDaW/PUAXc20YKjBqVO+PbdfY8fr2y/OPmq/hve3RvspwnWwJVatWgUACA0Nrfd4WFgYnj59ipSUFJibmwMANmzYgICAAKxZs0Zh0vKa6Khj6fDOcOjAQ3crPXmHQ4jSKyyvwsPUArwqKoepLlfe4QixGAkHEHl4eGD+/PmYNm0atLW18eDBA9jb22PVqlW4cOFCvY/yG7Jy5UrhRbMhd+7cgYeHh3A7NDQU8+fPR35+fr3lMzMzkZ+fj9jYWHz55ZcYOHAgfvrppwbPP3fuXFy5cgUPHz6UOM4DBw5AU1Oz0fjbO74A2PSYg5QSFrroCfCxswAsmkhM2rDS0lJMmTJFrBzhiqyha+3y5ctx/PhxPHjwQLjv9evXMDAwwKVLl+Dj4yPW+SXJpQ60ndz04qL6tm3KWt/yKj5uvciFt5NkCRAkra8k1weJ78iuWLEC06dPR1paGgQCAY4cOYLY2Fjs27cPp06dkuhcwcHBmDRpUqNlbG1tJTpn7bhXZ2dnGBoaon///li2bBnMzMzqLf/OO+80Obb3iy++wMKFC4XbhYWFsLKygq+vL3R0dNp1rntxjm2b3hvjdkfhaT4b5aZdofHqkUxz3UtKnu3X2PH69ouzj9qv4f2t0X5vr5TSFmVmZsLExERkn76+PtTU1JCZ2fAQooaebPH5fPD5/Cbft7aMOGXr87q0EjrqqnJduF0SLa2vsqH6KgdVNtDfwVDiuCWtryTnl7gjO2LECBw6dAhr166tWW5p+XL07NkTJ0+exJAhQyQ6l5GREYyMjCQNQWy1N5vfvnj+1/379xvs5NbicrngcuveRpc0N3tbznXf2LEuFvqY/24n/HAuFmvPPseirrLNdd9c8my/xo6L01b17aP2a3i/LNtPlm3cXM15+tUYVj2PVRiGqXd/rXXr1tUbQ2xsLHg8nljvCwBxcZJPHj3ytBAHH+XjYw8DDOko/nspgubUV5lRfRWPgGEQkVwKTyvNFn8RFLe+xcXFYp+zWavY+vn5wc/Przkvbbbk5GTk5eUhOTkZfD4f0dHRAAAHBwfweDycPn0ar169Qq9evcDj8fD06VMsWbIEXl5ewru6e/fuhaqqKtzc3MBms3Hy5Els2bIF3333XavWpT36ZIA9zj7OxKO0Ahx/ycZkeQdESDsizadfpqamiIyMFNn3+vVrVFVV1blT+7aGnmw5OTmJPbQgLi4OnTp1kvhRbIecRJRVvcaBR8UIHOIm9wXcxdGS+iojqq/iOno/Dd9eS4a7jR4OzezT6BfWhkhaX0mebCn+/+Z/LV++HHv37hVuu7m5AQDCw8Ph7e0NDQ0N7N69GwsWLEBFRQWsrKwwZswYfP755yLn+eabb/Dy5UtwOBx06tQJv/76a6MTvYh0qHDYWPu+K0Zuv467OWzcTsqDl2PDv/QIIdIjzadfnp6eWLNmDTIyMoRPs8LCwsDlcuHu7t7g6xp6ssXhcCT6RS5peQD4sJ8dDt5JwcvcUuy+loRFfk4SvV6emlNfZUb1VSzlVXxsOP8cADC4swlUVFrWbRS3vpK0iVgR6evri90Dz8vLE/vNJREaGtrgLFoA8PHxQURERKPn8Pf3h7+/v5QjI+JytdTFBHdLHIpKxdennuHUPGOocGSbEY4QIpmmnn75+vqiS5cumD59On744Qfk5eVh0aJFmDlzpsJObuOqcPDlsM745Le72H3tBSb2soKVAU3UJaQpu6++QEZBOSz0NBCoAFm86iNWR3bz5s3Cv+fm5uKbb76Bn58fPD09AQA3b97EuXPnsGzZMpkESdqOhe864OT9FDx7VYz9kcnw72sr75AIIW9p6ukXh8PBP//8gzlz5sDLywsaGhqYMmUK1q9fL6+QxeLbxQSe9oa4+SIXq04+xS/+4o0HJqS9eplbgm3h8QCAJUOdoK6qmHeOxerIvn0Xc+zYsVi9ejWCg4OF++bNm4dt27bhwoULWLBggfSjJG2GgZYahlkL8FciB5svxOH9nhbQUMz/G4S0S009/QIAa2triVepkTcWi4VVo7pi2I/XcCHmFc4/fYUhXWh4EyH1YRgGXx17jIpqAbwcDDGyu7m8Q2qQxM91z507h6FDh9bZ7+fnhwsXLkglKNK29TVhYG+khdelVdh99YW8wyGEtBOdTLTxUX97AMDKE09QWlkt54gIUUwnH2bg2vMcqKmw8fUol2ZN8GotEndkDQ0NcfTo0Tr7jx07BkNDQ6kERdo2DqtmiAEA/HItETnFDS+PRggh0jRvsAMs9DSQll+GjWGKv/QRIa2toKwKq08+BQAEeTvA3lixl6yTePrZqlWrMGPGDFy+fFk4RvbWrVs4e/Zsk4kF2hpKUSv5sdq/+zjqo5ulDh6mFmLrpXj0UWmf7dfYcUpRK145RWs/ZU9R29Zpqqng69FdERgahT03EjHUxRQetgbyDosQhfH92WfIKa6AvbEWZnnbyzucJkmcohYAIiMjsWXLFsTExIBhGHTp0gXz5s1Dnz59ZBGjwti+fTu2b98uXA+NUtS2zPMCFrY95YDDYrC0Bx+G6vKOiJCWayspamVN3ilqF/35AH/dTYWtoSbOfDoAGmqKNVhfWVOYNhfVVzFcicuG/6+3AQAHZvZB347SWbZPoVLUAkCfPn2wf//+5rxUqQUFBSEoKEjYwJSiVvJjb+8bpqqKe6FRiEjIw4V0Nn75ZHC7a7/GjlOKWvHKKVr7tfUUtW3Fsv91wfXnOUjKLcV3Z59h5ciu8g6JELl6XVKJxX8+AAD4e9pIrRMra2J1ZAsLCyW6s1BUVARtbe1mB6UsKEVt84/V7vt0cCdEJNxCZBYLOaV8WBtpNvi6ttx+jR2nFLXilVOU9lPEFLWkLl0NVXw71hVfHXsM3660egEhP12OR1ZRzZCCz9/rLO9wxCbWZC99fX1kZWWJfVILCwu8eEGz0UnT+tgbopetPvgMC3tuJMk7HEJIO+Lt1AEXPxuoNHeeCJGlz3ydEOhlh00TeijcUJvGiHVHlmEY/PLLL+DxxJu5RpMdiCTmDLTHh0l38cedVAQP6gQ9dcr2RQhpHVyVN7+wU1+XwkJPQ6GXGiJEVtRVOVg+oou8w5CYWB1Za2tr7N69W+yTmpqa0uM1Ijavjgaw4TF4WSzAL9deYNEQB3mHRAhpZ/66m4qvjj3C0mGdMd3TVt7hENIqKqsFOBSVgim9rcFhK+cXOLE6sklJSTIOg7RnLBYLvpYC7H7Gwf7IZHzS30beIRFC2pn80kqUVwlwJS4b096xobuypF1YezoGoRFJuJmQg5+muss7nGZp1qoFhEhbVz0GDsZaiM8uwaGoNChuMjxCSFs0o58dTHTUMdzVjDqxpN1ws9bDn1EcjHGzlHcozUaDEYlCYLGAQC9bAMDemy/BF8g3HkJI+8JisTCiuznY/z5eZRgGAoHEy6wTolRG9bDAtf8bhHe7KO/KHdSRJQpjZHczGPG4yCyswP1cuiNCCJGP8io+Fv35EJsuUApb0vYUV1Qjq6hcuG2gpSbHaFqOhha0AKWobX6K2vr2sRk+pvWxwuaL8QjPYOPzykqJ4mwuSrHaMtR+9cdDlNf15zn4+14qAMDJVBv/60aDnUjbUM0XYO6Be3iSXogd03rC3Ub50zM3K0Vte0UpamWvpApYcY+DKgELQV346KRLH0+iXChFrXjknaK2KWv+eYrd1xKhrsrGX7P6wsVCV+bv+TZFTWEqK1Rf2WMYBsuPP8Fvt15CXZWNPz72RA8rvVZ5b4VLUXvt2jX8/PPPSEhIwF9//QULCwv89ttvsLOzQ79+/ZpzSqVAKWqlm6K2oX2P8AQHo9LwqNIY84d5tOn2a+w4pagVr5yitR+lqG0bPn+vM+JeFeNKXDY+2huFI3P6wlxPQ95hEdJse64n4rdbL8FiAZsnurVaJ1bWJO7I/v3335g+fTqmTp2K+/fvo6KiAkBNWtq1a9fi9OnTUg9SUVGK2uYfa2zfjH52+CMqFVfj85CUVw5bA3WJ4mwuSrHaMtR+b8oR5cdhs7BlshvG7ohAfFYxAkJu489P+kJXk/59ifI5+zgTa07HAACWDuuMoS6mco5IeiSe7PXNN99g586d2L17t8gFu2/fvrh3755UgyPtk42hJlz0a4YU/HojUc7REELaK10NVewN7A0THS7iXhVj5m9RKK/iyzssQiQSnZKP+Yfug2GAae9YY0Y/O3mHJFUSd2RjY2MxYMCAOvt1dHSQn58vjZgIgY95zfpbf99LQ25JpZyjIYS0VxZ6Ggj9sDe0uSq4nZiHhYejwadluYiSiHtVhMDQOyivEsDHyRgrR3Rtc+skS9yRNTMzQ3x8fJ39169fh729vVSCIsReG+hmoYPKagEORKbIOxxCSDvW2UwHP3/gDjUOG6cfZeLLI49ojVmi8F5kF2PK7kjklVSim6Uutk7pCRVO21t1VeIaffLJJ/j0008RGRkJFouF9PR07N+/H4sWLcKcOXNkESNph1gs4MO+Nalqf7+djCpKkEBIq1izZg369u0LTU1N6Onp1VuGxWLV+dm5c2frBtrK+nY0wuZJPcBmAYeiUrDixBPQoj9EUSXnlmLK7kjkFFegs5kO9gX2Bo/bNldclbgju2TJEowePRo+Pj4oLi7GgAED8NFHH+GTTz5BcHCwLGIEIN7F9c6dOxg8eDD09PSgr68PX19fREdHi5R59OgRBg4cCA0NDVhYWGD16tV0MVJQfl1NYK6rjrySKkRlt61HIYQoqsrKSowfPx6zZ89utFxISAgyMjKEP/7+/q0UofwMczXDhgndwWIBv916ifVhsfIOiZA60vLLMHn3LWQWlsOxAw+/z+gNPU3lTnrQmGbdY16zZg1ycnJw+/Zt3Lp1C9nZ2fj666+lHZuIpi6uRUVF8PPzg7W1NSIjI3H9+nXo6OjAz89PuEB5YWEhhgwZAnNzc9y5cwdbt27F+vXrsXHjRpnGTppHlcPGh141g9IvZ7DpCwchrWDVqlVYsGABXF1dGy2np6cHU1NT4Y+GRvtYmup9N0t8O8YVuhqqGNKl7cz8Jm3HjxfikJZfBjsjLeyf2QeGPK68Q5KpZg+W0NTUhIeHB5ydnXHhwgXExMRIM646mrq4xsbG4vXr11i9ejWcnJzQtWtXrFixAllZWUhOTgYA7N+/H+Xl5QgNDYWLiwvGjBmDL7/8Ehs3bqROkoKa2NsKWmocZJaxcD0+V97hEEL+FRwcDCMjI/Tq1Qs7d+6EQNB+xv9M7GWNK4u928w6nKRtWT3KBZN7W+HAzD7ooK0u73BkTuIBExMmTMCAAQMQHByMsrIy9OrVC4mJiWAYBn/88QfGjh0rizib5OTkBCMjI+zZswdffvkl+Hw+9uzZg65du8LGpmas5c2bNzFw4EBwuW++nfj5+eGLL75AUlIS7OzqX5KioqJCuF4u8GbBc0pRK90UtfX9qaGqirFuZtgXmYo91xPR39FIjJpJhlKstgy1X/3xtGVff/01Bg8eDA0NDVy8eBGfffYZcnJy8NVXXzX4moauo3w+H3x+00ta1ZYRp2xr0OZyhLFEp+Tj2P10LPtfZ3DY0hkGpWj1lTWqb8vkFFfAUEsNLBYLqmzgm1FdpXr+lpK0vpLELXGKWlNTU5w7dw7du3fHgQMHsGLFCjx48AB79+7Frl27cP/+fUlOJ7HQ0FDMnz+/3qW+njx5glGjRiExsWbt0U6dOuHcuXOwtrYGAPj6+sLW1ha7du0SviY9PR0WFhaIiIiAp6dnve+5cuVKrFq1qs5+SlHbOnLLga/vc8CAhf/rXg1zanKiwBQxRW1D17C33blzBx4eHsLtxq61/7VhwwasXr0aBQUFEsdw8+ZN8Hi8Jt9DUZVWCfDRsTQUVggQ2FMfY7ooxr85aT+SXldi2cUsvNtRC/5u+vIORyqKi4vh6ekpmxS1BQUFMDAwAACcPXsWY8eOhaamJoYPH47FixdLdK7mXFwbUlZWhsDAQHh5eeHgwYPg8/lYv349hg0bhjt37gjHb/13/bTafnxj66p98cUXWLhwoXC7sLAQVlZWlKK2GceamyL0RPJFROeykMCxwUfDuopdR2m2Q3Nfp2wpViVF7SdKEVPUBgcHY9KkSY2WsbW1bfb533nnHRQWFuLVq1cwMTGpt0xD11EnJyexOvx8Ph9xcXHo1KlTq+WmF9c6tiFCIl5iwQh3aKpJZ2a4ItdXFqi+zRdzPw2vyzPwKJeBTUdHqX0GpUnS+kpyHZW4tlZWVrh58yYMDAxw9uxZ/PHHHwCA169fQ11dsrEY0ry4HjhwAElJSbh58ybYbLZwn76+Po4fP45JkybB1NQUmZmZIq/LysoCgAYvvgDA5XJFhiPUohS1zT8maYpQHzMBonPZOPEgA0vec5bJuB9KsdoybbX9SiqqUVyl3ClqjYyMYGQk/WE5te7fvw91dfUGV5QBGr6OcjgciX6RS1q+NQzvboH3XM3B/ndYAcMwyCuplMokG0WsryxRfSU33sMabBYb73Y2gbaG4l1/3iZufSVpE4k7svPnz8fUqVPB4/FgY2MDb29vAMDVq1ebnOX6X9K8uJaWloLNZovcWa3drp2E4OnpiS+//BKVlZVQU6tZiiIsLAzm5uYtuhtBZM9WG3Cz0sX9lAL8fvMlFvo6yTsk0kaUVlYjvQQ4/zQL6YUVSMwuRvRzNna8iEBGYQUKyqrQw5CNCfIOtJUkJycjLy8PycnJ4PP5wiUMHRwcwOPxcPLkSWRmZsLT0xMaGhoIDw/H0qVL8fHHH9fbUW0v2G+Njf3x4nPsj0xGSEAvuFjoyjEq0hYxDIN9N19ieDczGP37ZWmsu6Wco5IfiTuyc+bMQZ8+fZCcnIwhQ4YI737a29vjm2++kXqAtZq6uA4ZMgSLFy9GUFAQ5s6dC4FAgG+//RYqKirw8fEBAEyZMgWrVq1CQEAAvvzySzx//hxr167F8uXL21zKtrbow742uH/oIX679RJzfBygrtp+vrWTlqnmC5CcV4qY9HyEpbIQ/tcjpOSXIzmvFNlFFQBUgIfRb72CDaBYuFXS9udvCS1fvhx79+4Vbru5uQEAwsPD4e3tDVVVVfz0009YuHAhBAIB7O3tsXr1agQFBckrZIVSXsXH2ceZyC6qwISfb2LjhO4Y6mIm77BIG1Fexcfnfz/Eseh0/H0vFX/O8gRXpX3/LmzWQAp3d3e4u7uL7Bs+fLhUAmpIUxdXZ2dnnDx5EqtWrYKnpyfYbDbc3Nxw9uxZmJnVXER0dXVx/vx5BAUFwcPDA/r6+li4cKHIuC2iuIZ07gBLfQ2kvi7DkXtpmNLHWt4hEQXDMAxeFVbgUVoBnqTl42pczZ3VF7mlqKyuXR6KA6RkiLxOk8Ogo6kurA21YKWnjtep8fDt1wtWhjwYaarg2qWw1q+MnISGhiI0NLTB40OHDsXQoUNbLyAlo67KweFZnpjz+z1cj8/BrN/vYe4gByx4t5PIXVtCGnInKQ8djXkw0BJNYpBVWI6Zv93Fg5R8cNgsjPewavedWKCZHdnU1FScOHECycnJqKysFDkmq+QCTV1cAWDIkCEYMmRIo2VcXV1x9epVKUZGWosKh41ALzusPvUUe66/wKReVvSLoZ3LLCjH/Ze5OJ3MxpHf7uFJehFyiiveKvHmzqqGKgcdjbWgUZmP/j06wc5YGzaGmjDXUcON8PMYNuwd4eSu06efY4CjkXCbEEnoqKsi9MNeWHfmGfZcT8TWS/F4ml6ITZN6QEddsccwEvkqr+Jj0Z8P0LejIdaN6SbcH/kiF8EH7yO7qAK6GqrYMbUn+jrIbty7MpG4I3vx4kWMHDkSdnZ2iI2NhYuLC5KSksAwDHr27CmLGAkRmtDLCpsuxCEhuwRhT19hqAtl1mkvBAIGzzILcSfpNaKS8hCV9Bpp+WX/HmUDyAEAcNgsOHbgobMpD/y8VAwf4IEu5nqw0NMAn1+N06dPY9hAe5FVCwiRNhUOG8v+1wUuFjr4/O9HuPgsC6O33cD2qT3R2YyW6CL1+/Hic7zMLUVyXikmeFihh5Uedl97ge/OxoIvYNDJhIdd0z1ga6Ql71AVhsQd2S+++AKfffYZVq9eDW1tbfz999/o0KEDpk6dSo+biMzxuCrw97TFtvB4bLn4HH5dTWh8cxvFMAyeZxXj8rNXOBbDxrL74SgsrxYpw2Gz4GisBV1BIYb26YLu1gbobKoDDTXOv3dWUzDIyVjYaVWQtcFJO/K+myUcjLXxyW9ReJFTglHbb2DZ/7pgWh9runYRETEZhdh19QUAgGGAL48+gpW+JsKevgIAvO9mgTXvuyjk8lryJHFrxMTE4ODBgzUvVlFBWVkZeDweVq9ejVGjRmH27NlSD5KQt83oZ4eQG4l4mlGI809fwbcr3ZVtK3KLK3A9PgdX43JwPT4brwprhwmwAVRDU42Dntb68LDVRy9bA/Sw0oMam6m5y9rHWiGXviLE1VIXp+b1x6I/H+DSsywsO/YYEfE5+HZsN+gq+HJJpHXwBQw+P/IIfMGbHFUxGUWIySiCGoeN5SO6YCp9+amXxB1ZLS0tYZpBc3NzJCQkoGvXmgXqc3JypBudgqMUtbJPUVvfnzw1Fqa/Y42dVxOx+UIcvB0NWvSfm1KstkxL2+95ZgEux+fhYkw27qXk4+1cg1wVNnrZ6MGwOhvThvSBi6UeVDjst87CKFz70VAFUh8DLTXs8ffAnuuJ+O7sM5x5nImHqQXYMrkH3G0M5B0ekbPfbibhQUp+nf1sFvBrgAf6ORq3flBKQuIUtaNHj8bw4cMxc+ZMLFmyBEePHkVAQACOHDkCfX19XLhwQVaxyt327duxfft2YYYKSlErP8VVwKp7HFQKWJjpxIeLgUQfYyJHDAOklgDReWw8zmMhs0z0S4iFJgNnPQZOegzstRmoshs4kYJSxBS1iqiwsBC6urpitxOfz0dMTAw6d+6s9AvmP0jJx9yD95FRUIaTc/vB2bRu/dtSfcXRnuv7qqgSQzZeQUll/WOfJnhY4vtx3Vs5QumS9N9XkuuDxHdkN27ciOLimlnAK1euRHFxMQ4dOgQHBwds2rRJ0tMplaCgIAQFBQkbmFLUtl6K2vreI0k9DruvJ+FGoR4WTXmn2SsYUIrVlhH3/C9zS3HiYQZOPczAi5xS4X4VNgu97fQxpHMHDHbuADNd0axtytZ+ipiiliiW7lZ6OPNpf0S9fC3Sic0oKIOZroYcIyOtjWEYLDv2uMFOLAAcjkrFxF7WcLfRb8XIlIfEHVl7e3vh3zU1NfHTTz9JNSBlQilqm39MGilWZ3k74OCdVDzNKMLpp1l4361lmU3aaopVSeNsrvrOn1tcgRMP0nEsOl3ksRlXhQ3vTkboUJmB+RPehaFO0082lKX9aJwuEYcWVwUDO715XPwwNR9jd0RgvIcVvh7lIsfISGvadfUFLj7LarLcsmOPcXJuP3Boyck6mj31rbKyEllZWcL0r7WsrWmRetI6DHlczPbuiB/OxWL9uTi852JG2b4UgEDAICIhFwfvJCPsSSaq+DXDPtgsoJ+jMUZ1N4dvVxOoc4DTp9OhQ5NdCMHVuGxU8RmUVFSDw2bRChvtQGmVAD+EPW+ynCqHhZziClyIeQU/mtxch8Qd2bi4OMyYMQMREREi+xmGAYvFAp/+95FWFOhlh99vvURafhlCI5Iwa2BHeYfUbmUVVeDYg5c4dCcFyXlvhg50s9TFGDcLDO9mDmNtrnA/TYoi5I3gQY5wtzFAxw5v1gfNKa1G3KsidDbXk19gRKpq+0oAoKnKRmdTHkqrBPBx6gALfQ3oa6pBX0sVBlpcGPz7dx5XhVYraITEHdkPP/wQKioqOHXqFMzMzKhxiVxpqHHwma8TFv35ANvD4zHe3RKGPG7TLyRSE52Sj71xbHwWeRXV/y4do81VwWg3C0zqbYWu5rpyjpAQ5eDZ0VBke1fUa9w6moaJvayxYIgjOmirN/BKogwi4nOw7swzLBnqhL72NStVnAj2gooKrQvbEhK3XnR0NO7evQtnZ2dZxEOIxN53s8Cv12vWlf32zDP8MF65Z3cqgyq+AGceZyLkRiLuJ+ejZp1XBu42+pjUywrDu5nRot2EtEBFVc3TTQEDHLydjOPRaZg1sCNm9reHhhoNoVImzzJrfjddjs0GAKw/F4u/Z70DAHQzUAok/k3TpUuXdrdeLFFsHDYLX492wdgdEfjzbirGe1ihtx2tyygLBaVV2H/7JfZFvERmYTmAmvFbbgZ8LB3fF92tDZs4AyFEHFxVDr4cYIwSDVOsPRuLByn52Hg+DvsjX2KOtwMm9rKiOQEKLvV1KTZfeI6/76WCYWpWaJnaxxpzBztSB1aKxOrIvr2czHfffYclS5Zg7dq1cHV1rTNDl9ZNJPLgbqOPyb2tcfB2Mr469gin5vaHmoqSLUCqwHKLK/DL9UT8dvMliitq0sQa8biY/o4NJrib4fbVi+hC+eMJkToPW30cm9MXJx9m4Lszz5CWX4YVJ57gp8vx1KFVUIk5JdhxOR5H7qUJh1sNdzXDYj8n2BrVjIGm+UTSI1ZHVk9PT+TbA8MwGDx4sEgZmuxF5O3/hjoh7Ekm4l4VY3t4PBYM6STvkJReVmE5dl19gf2RySj791Gns6k2Zva3x/+6m4GrwqFJW4TIGIvFwsju5vDraoLDUan4KTweGQXlwg7trIEdMcHDClpcGs4jT88yC7E9PAH/PExHbaZZLwdDLPZzRg8rPbnG1paJ9akPDw+XdRxKiVLUyidFbUO0VFn4apgTFvz5CNvC49HfwQDdLZueaEQpauvKKCjH7muJOHQ3DZXVNUvsuZjrIMjbHoOcjGuSTzACVFUJqP0aiIcQaeOqcGqegnhY4s9/O7TpBeVYdfIpNp2Pw+pRLhjtZiHvMNudWy9y8cu1RFyIeSXcN9i5A4IGOaCnNSUxkDWJU9S2Z5SiVjnsjWPjXi4bxuoMFnfjg0tP3cSWWw5cSGMjMpsFPlPzFMaWx8DPUoDOegxoWFfTKEWteNpzilpxiFPfimo+/rqbil+uJSIxpwR/zvJEL9ua+QHlVXxwVdhKMxZTmf99V554gtCIJLBYwDAXM8zx6djkai3KXN/mUIgUtaWlpVi8eDGOHTuGqqoqvPvuu9iyZQuMjIzEPYXSoxS1ipWitiF9vavwv+0ReFVYgchqa6z7X9dGL+aUohZIyi3BjiuJOP4gA/x/n4n1sdNHkLc93rEzoPajFLVEAXFVOJjaxwaTe1nj1otceLyVwnTt6RjcepGLL4Z1ho9TBzlG2bbEZhZh780kjO1pAXebmi8N096xgYBh8IGnLRw68OQcYfsjdkd2xYoVCA0NxdSpU6Guro6DBw9i9uzZ+PPPP2UZn0KjFLXNPybLFKHGuqrYOKEHpu+JxN/30uFuY4gpfZrOONceU9Q+f1WEbeHxOPngzZiu/o5GmDvIUeKVH9pj+zUUByGtic1moa/Dm5tKfAGDs48zkVVUAZW3UpoWlFVBU40DVQ5NhG2uA5EvcSAyGYVlVcKOrEMHHlZTWmG5Ebsje+TIEezZsweTJk0CAEybNg1eXl7g8/nt4rY4US5eDkZY7OeM784+w4oTj+Fspk1jld7yJL0A2y7F4+yTTNQOLhrs3AHBgxzgRu1EiFLjsFk4v3Agzj3OhFfHNx3cLRdrloIa5mqGkd3N0dvWoGa8O6kjq6gc/zzMwMkH6fi/oc7oY1+ztODIHhbILq7A9Hds5BwhqSV2RzYlJQX9+/cXbvfu3RsqKipIT0+HlZWVTIIjpCVmDbTHw9R8nHmciZl7o/DX7L6wM9Jq+oVt2IOUfGy99BwXYrKE+4Z2NUXwIAe4WFAGrvYuKSkJX3/9NS5duoTMzEyYm5tj2rRpWLp0KdTU1ITlkpOTERQUhEuXLkFDQwNTpkzB+vXrRcoQ+dLVUMWEXqK/myMTc5FfWoUDkck4EJkMIx4Xg5yNMbizCfo7GrXrJCYMwyAhuwQRCTk4+zgTt17kCp9SHX+QLuzIutvow93GXY6Rkv8S+1PL5/PrXKRUVFRQXV0t9aAIkQYWi4UfxndHyutSPE4rxAe/RuLv2X3bZZrHhEIgcO9dXIvPBQCwWMD/upkj2McBTqbaco6OKIpnz55BIBDg559/hoODAx4/foyZM2eipKQE69evB1Dzu2D48OEwNjbG9evXkZubC39/fzAMg61bt8q5BqQxx4P64daLXByPTsOZx5nIKa7A4ahUHI5KhZoKG572hhjYyRieHQ3hZKLd5u/WpuWXISI+BxEJuYhIyMGrwgqR427WehjZ3RzDXc3kFCERh9gdWYZhEBAQAC73TR778vJyzJo1C1pab+5yHTlyRLoREtICPK4KQgJ6Y9zOCLzMLcX0X27j94/6wFib2/SLlRzDMLgal42tl57jTpIKgFxw2CyM6mGOIB8HdDSmSQlE1NChQzF06FDhtr29PWJjY7Fjxw5hRzYsLAxPnz5FSkoKzM3NAQAbNmxAQEAA1qxZQys1KDAOmwUvByN4ORjhm9GuuJ2Yh4vPXuFiTBaS80pxJS4bV+Jq0qgaaKmhj50BFg7pBEeTtvNlNyopD0fupyEiPgdJuaUix7gqbHjY6qO/ozGGu5rByoBWJVIGYndk/f396+ybNm2aVINpiDiPux48eIBvv/0W169fR05ODmxtbTFr1ix8+umnIuexs7Orc/4zZ86IXLxJ22KszcW+wN4Yv/MmYl8VYeKum9j/UR+Y6WrIOzSZEAgYPMpjYc/PkXiYVjODnsNiMM7dEnN8HGFj2L6HVxDJFBQUwMDgzcS/mzdvwsXFRdiJBQA/Pz9UVFTg7t278PHxkUeYREJqKmz0czRCP0cjLP9fF8RnFePisyxEJOQiKikPeSWVOPM4E0uGOgtfczw6DfeT8/Gei6nwUbsiEAgYvC6tRH5ZlcgX9O3h8XiQko/Z3h2FY/8fphbgQGQygJqOfTdLXXh1NELfjoboaaNPWdKUkNgd2ZCQEFnG0ShxHnfdvXsXxsbG+P3332FlZYWIiAh8/PHH4HA4CA4OFjnfhQsX0LVrV+H22xdp0jbZGGrh8CeemPpLJF5kl2Dcjpv4NaBXm3qsXs0X4PSTNGy/FI+4LA6AQqirsjHRwxL2FS8wZVRXmlFPJJKQkICtW7diw4YNwn2ZmZkwMTERKaevrw81NTVkZmY2eK6KigpUVLx5dFu7TBmfzxcrI2RtmfaSPbK162tvpAn7fraY2c8WVXwBHqYWIDolH1Z6XGEMZx9n4MzjV+igrQYPGz0ANelY1515ho7GPFjqa8BcTwMWeuqw0NOQKNNYffVlGAYFZVV4VVSBrMIKvCoqR3ZRBV4VViCrqAJZheV4VVSB7KIKVPEZ6Gmo4u5Xb7KO3krIwbX4XLzbuQO6WdQ8KejvYICAvjboa2+I3nb60FZXrTcOWaPPs3jlxaEUI7vFedwVGBgo8hp7e3vcvHkTR44cqdORNTQ0hKmpqewDJwrF1kgLhz55B9N+iURSbinG/HQDP05yw0BH5f4iU1hWhYtpLHy76ToyCsoBAFwOgw+97PHRgI7Q5bJx+vQLOUdJ5GnlypVYtWpVo2Xu3LkDDw8P4XZ6ejqGDh2K8ePH46OPPhIpW9+6wrVpyhuybt26emOIjY0Fjyf+MJe4uDixy7YF8qqvJoC+hjU3kmp5GAmg6qwNc3YhYmJiAADXX5bg4rMcXHyWXeccPDU2dLls6KhzoK3Gho46GzpqHHBVWJjSTVf4eYnOKEN8XiX6WGoC/9b3+ssSbLiRgyqB+DEzAj4ePn4KVU7Nefubs+FqYADdqlzExLxZ33mcPQDkIjUxV7JGkQH6PNevuLhY7HMqRUe2Pv993CVJmZEjR6K8vByOjo5YsGABxo0bJ6swiYKx1NfE0TlemLP/Hm6+yMVH+6IQ2NcGXSS4WCqKl7klCLmRhMNRKSit5AAohxFPDVN7W8G0KBbjhjgKF/Qn7VtwcLBw6cSG2NraCv+enp4OHx8feHp6YteuXSLlTE1NERkZKbLv9evXqKqqqnOn9m1ffPEFFi5cKNwuLCyElZUVnJycxM7sFRcXh06dOrWLJR8Vsb6dO9fdp2VSCq5uNl7klCA9vwxp+eVIzy9DYXk1iisFKK4UIK1IdFK4GoeFbyZ5Crc3Rd3FxWf50FPnYHCvruBwOMhWyUbVtRwAgJ6GKjrocGGizUUHHXV00ObCRIeLDtpcdNBWh4kOF0Y8LtRURNfHrS9eRaGI/76yJGl9JUkso5Qd2foed/3XzZs3cfjwYfzzzz/CfTweDxs3boSXlxfYbDZOnDiBiRMnYu/evY2O923okVhVVZXwp3ZbnD+lTZ657iU91hq57pvCU2NhzwduWHcmFr9FpuDXiJcw0+TAxjUPPWzEvzsrjfZr7Hh9+0vLKxCdy8KfoVG48SJPuAasmQaDoCGdMbqHBdgQ4Pz52Hbx+WvsuLw+f4r4xcHIyEjsLIxpaWnw8fGBu7s7QkJCwGaLdg48PT2xZs0aZGRkwMysZjZ3WFgYuFwu3N0bXpaIy+WKTBauxeFwJPpFLml5Zafo9bUz1oadcd0hWkXlVcgoKEdeSSXySyvxurQKeSWVKCirgkDAiNSpq7kudDRU0UGLL6xvH3sjXFviA2Ntbpset6ro/77SJm59JWkTFsPU/ipsfc193DVw4EAMHDgQv/zyS72vefLkCXx8fDBv3jx89dVXjZ5/7ty5uHLlCh4+fChxnAcOHICmJs1qVGaP81g4mMBGcTULLDB4pwOD/1kLwFOwoaSvyoDILDYis1kornrz+LaLngDeZgw66TJQkpTqbV5paSmmTJkiVo5wRVN7fbW2tsa+fftEfpnUDsfi8/no0aMHTExM8MMPPyAvLw8BAQEYPXq0RMtvSZJLvfZ9KTd920X1bdskra8k1we53pGV5uOuWk+fPsWgQYMwc+bMJjuxAPDOO+802CGu1dAjMV9fX+jo6Eg9V7uk5JnrXtJjrZHrXhLDAEx/XYIF+67hbg4bN7NYeJiviim9rRDoZQMjXsPLdEmj/Ro7nphViC3HbyC+UhfPMt+MF9JRZTCxtw0m9raGjYFmu/78NXZcXp8/SR6JKZqwsDDEx8cjPj4elpaWIsdq73lwOBz8888/mDNnDry8vEQSIhBCSGuTa0dWmo+7gJo7sYMGDYK/vz/WrFkj1nnv378vfDzWkIYeiUmam725uejFJc9c95Iek2Wue0mZ6WvhA0cBFo3ugzVnYvE4rRC7rydh361kvOdiigm9rPCOnWGDi4NLo/0AgM1RwcP0YlyJzUJ4bDYepRUA4AAohgqbhQGdjDHOzRzlL6IwYqizwrRfS88vrfZr6Hhrf/6UeWWIgIAABAQENFnO2toap06dkn1AhBDSBKUYI5ueng5vb29YW1tj/fr1yM5+Mzuy9nFX7XACX19fLFy4ULgMDIfDgbGxMQBg7969UFVVhZubG9hsNk6ePIktW7bgu+++a/1KEYXjYaOPk8H9cOlZFrZeikd0Sj6ORafjWHQ6zHXV4ePcAYM7d0AvW4M6S7Y0R3kVH4/SCnAnMQdnY9lYHh2OgrI3kyLYLKCjtgD+Pi4Y3s0C+lpqqKqqwumkFr81IYQQ0iYoRUdWnMddf/75J7Kzs7F//37s379feNzGxgZJSUnC7W+++QYvX74Eh8NBp06d8Ouvv7ZaYgei+FgsFgZ3NsEg5w54kFqAw1EpOBmdjvSCcuyPTMb+yGSwWIC9kRZczXVQmcdC1YMM2BjxoKOuCi0uB1pqKuAzDKr5DCqrBcgqLMXjPBaKolKRXlCB+KxiJGQX42VuKaprk3mDDaAauhqq6O9ohIGdjNGvoz5uX72IYR6WSn2XjxBCCJEVpejIivO4a+XKlVi5cmWjZfz9/evNUEbIf7FYLPSw0kMPKz0s/18XRCTk4NKzLFyJy0ZKXhkSskuQkF0CgIPTKY/EOCMHiH1aZ6+xNhc9LHWhUZKBaX6e6GlrCBVOzbAZRZz9TgghhCgSpejIEiJP6qocDHI2wSDnmjUyc4or8DA1Hw+SX+PWo+cAzxCZhRUoLq9GcUU1KqprFqVV5bCgymFDT0MVKtVl6GhpDAt9TXQ05qGjMQ8OHXgw01VHdXU1Tp9Oh5u1nrATSwghhJCmUUeWEAkZ8bgY5GyC/h0NYF8Wi2HDeok8+ucLGLBZb7IfVVVV4fTp0xg2rCcNESCEEEKkiDqyhEgZp4HVDQghhBAiXfQckxBCCCGEKCW6I9sMtSsl5OXlCVPUlpaWIjc3V7iAemPb0tbc84v7usbKSXpMnH3tqf0aO07tJ145RWu/oqIiAG+uE6R+te0jbgIJPp+P4uJiFBYWtptMSFTftovq27ja64I411HqyEpg+/bt2L59OyorKwEAdnZ2co6IEKKoioqKoKurK+8wFFZth9/KykrOkRBCFJU411EWQ7cNJCYQCJCeng5tbW3hhJ5evXrhzp07wjJvb9emtE1JSZFZ7vX/vr+0X9dYOUmPibOvPbVfY8ep/cQrp0jtxzAMioqKYG5uXm8GQlKjvutoY1rjc6xIqL5tG9W3cZJcR+mObDOw2ew6iRk4HI7IP85/twFAR0dHZh/Y+t5Pmq9rrJykx8TZ157ar7Hj1H7ilVO09qM7sU2r7zoqDll+jhUR1bdto/o2TNzrKN0ukJKgoKBGt1v7/aX9usbKSXpMnH3tqf0aO07tJ145ZW8/QgghzUNDC1pBYWEhdHV1UVBQ0K6+eUkLtV/LUPu1DLWfYmhv/w5U37aN6is9dEe2FXC5XKxYsQJcLlfeoSglar+WofZrGWo/xdDe/h2ovm0b1Vd66I4sIYQQQghRSnRHlhBCCCGEKCXqyBJCCCGEEKVEHVlCCCGEEKKUqCNLCCGEEEKUEnVkFUhKSgq8vb3RpUsXdOvWDX/++ae8Q1I677//PvT19TFu3Dh5h6IUTp06BScnJzg6OuKXX36RdzhKhz5vspWUlIQZM2bAzs4OGhoa6NixI1asWCFME14rOTkZI0aMgJaWFoyMjDBv3rw6ZZTFmjVr0LdvX2hqakJPT6/eMm2pvgDw008/wc7ODurq6nB3d8e1a9fkHZLUXL16FSNGjIC5uTlYLBaOHTsmcpxhGKxcuRLm5ubQ0NCAt7c3njx5Ip9gW2jdunXo1asXtLW10aFDB4wePRqxsbEiZWRRX+rIKhAVFRVs3rwZT58+xYULF7BgwQKUlJTIOyylMm/ePOzbt0/eYSiF6upqLFy4EJcuXcK9e/fw3XffIS8vT95hKRX6vMnWs2fPIBAI8PPPP+PJkyfYtGkTdu7ciS+//FJYhs/nY/jw4SgpKcH169fxxx9/4O+//8Znn30mx8ibr7KyEuPHj8fs2bPrPd7W6nvo0CHMnz8fS5cuxf3799G/f3+89957SE5OlndoUlFSUoLu3btj27Zt9R7//vvvsXHjRmzbtg137tyBqakphgwZgqKiolaOtOWuXLmCoKAg3Lp1C+fPn0d1dTV8fX1F+jEyqS9DFJarqyuTnJws7zCUTnh4ODN27Fh5h6Hwbty4wYwePVq4PW/ePObAgQNyjEg50eetdX3//feMnZ2dcPv06dMMm81m0tLShPsOHjzIcLlcpqCgQB4hSkVISAijq6tbZ39bq2/v3r2ZWbNmiexzdnZmPv/8czlFJDsAmKNHjwq3BQIBY2pqynz77bfCfeXl5Yyuri6zc+dOOUQoXVlZWQwA5sqVKwzDyK6+dEdWAk09IgCk94gkKioKAoEAVlZWLYxacbRm+7UHLW3P9PR0WFhYCLctLS2RlpbWGqErBPo8KqeCggIYGBgIt2/evAkXFxeYm5sL9/n5+aGiogJ3796VR4gy1ZbqW1lZibt378LX11dkv6+vLyIiIuQUVetJTExEZmamSP25XC4GDhzYJupfUFAAAML/r7KqL3VkJdDUIwJxHpG4u7vDxcWlzk96erqwTG5uLj744APs2rVL5nVqTa3Vfu1FS9uTqScXCovFkmnMikQan0fSuhISErB161bMmjVLuC8zMxMmJiYi5fT19aGmpobMzMzWDlHm2lJ9c3JywOfz69THxMRE6erSHLV1bIv1ZxgGCxcuRL9+/eDi4gJAdvVVaX6Y7c97772H9957r8HjGzduxIwZM/DRRx8BADZv3oxz585hx44dWLduHQA0+Y25oqIC77//Pr744gv07dtXesErgNZov/akpe1pYWEhcgc2NTUVffr0kXncikIan0fSPCtXrsSqVasaLXPnzh14eHgIt9PT0zF06FCMHz9e+G9Sq74vYAzDKMwXs+bUtzGKXl9J/TduZa5Lc7TF+gcHB+Phw4e4fv16nWPSri91ZKWk9hHJ559/LrJfkkckDMMgICAAgwYNwvTp02URpsKSRvuRN8Rpz969e+Px48dIS0uDjo4OTp8+jeXLl8sjXIVDn0fZCg4OxqRJkxotY2trK/x7eno6fHx84OnpWedJlampKSIjI0X2vX79GlVVVXXu/MiLpPVtjDLUV1xGRkbgcDh17sZlZWUpXV2aw9TUFEDNnUozMzPhfmWv/9y5c3HixAlcvXoVlpaWwv2yqi91ZKVEGo9Ibty4gUOHDqFbt27C8Xq//fYbXF1dpR2uwpHWIyY/Pz/cu3cPJSUlsLS0xNGjR9GrVy9ph6vwxGlPFRUVbNiwAT4+PhAIBFiyZAkMDQ3lEa7CEffzSJ+35jEyMoKRkZFYZdPS0uDj4wN3d3eEhISAzRYdEefp6Yk1a9YgIyND+MsxLCwMXC4X7u7uUo+9OSSpb1OUob7iUlNTg7u7O86fP4/3339fuP/8+fMYNWqUHCNrHXZ2djA1NcX58+fh5uYGoOZL9JUrV/Ddd9/JOTrJMQyDuXPn4ujRo7h8+TLs7OxEjsuqvtSRlbKW3DLv168fBAKBLMJSGi195HDu3Dlph6TUmmrPkSNHYuTIka0dltJoqv3o8yZb6enp8Pb2hrW1NdavX4/s7Gzhsdq7O76+vujSpQumT5+OH374AXl5eVi0aBFmzpwJHR0deYXebMnJycjLy0NycjL4fD6io6MBAA4ODuDxeG2uvgsXLsT06dPh4eEhvOOenJwsMg5amRUXFyM+Pl64nZiYiOjoaBgYGMDa2hrz58/H2rVr4ejoCEdHR6xduxaampqYMmWKHKNunqCgIBw4cADHjx+Htra28Eu/rq4uNDQ0wGKxZFJf6shKSXt/RNJS1H7SRe3ZMtR+iiEsLAzx8fGIj48XeUQJvJmsyOFw8M8//2DOnDnw8vKChoYGpkyZgvXr18sj5BZbvnw59u7dK9yuvXMVHh4Ob2/vNlffiRMnIjc3F6tXr0ZGRgZcXFxw+vRp2NjYyDs0qYiKioKPj49we+HChQAAf39/hIaGYsmSJSgrK8OcOXPw+vVr9OnTB2FhYdDW1pZXyM22Y8cOAIC3t7fI/pCQEAQEBACATOrLYuqbukyaxGKxcPToUYwePVq4r0+fPnB3d8dPP/0k3NelSxeMGjWKJof8B7WfdFF7tgy1HyGEKCe6IyuBph4RtPVHJC1F7Sdd1J4tQ+1HCCFtQLNTKbRD4eHhDIA6P/7+/sIy27dvZ2xsbBg1NTWmZ8+ewowWhNpP2qg9W4bajxBClB8NLSCEEEIIIUqJMnsRQgghhBClRB1ZQgghhBCilKgjSwghhBBClBJ1ZAkhhBBCiFKijiwhhBBCWt3KlSvRo0cPmb5HaGgo9PT0ZPoeRL6oI0sIIYQQoYCAALBYLLBYLKioqMDa2hqzZ8/G69ev5R2axCZOnIi4uDh5h0FkiBIiEEIIIUTE0KFDERISgurqajx9+hSBgYHIz8/HwYMH5R2aRDQ0NKChoSHvMIgM0R1ZQgghhIjgcrkwNTWFpaUlfH19MXHiRISFhYmUCQkJQefOnaGurg5nZ2eRdM4A8H//93/o1KkTNDU1YW9vj2XLlqGqqkrsGPh8PmbMmAE7OztoaGjAyckJP/74o/B4eXk5unbtio8//li4LzExEbq6uti9ezeAukMLHjx4AB8fH2hra0NHRwfu7u6IioqSpGmIgqE7soQQQghp0IsXL3D27FmoqqoK9+3evRsrVqzAtm3b4Obmhvv372PmzJnQ0tKCv78/AEBbWxuhoaEwNzfHo0ePMHPmTGhra2PJkiViva9AIIClpSUOHz4MIyMjRERE4OOPP4aZmRkmTJgAdXV17N+/H3369MGwYcMwYsQITJ8+HT4+Ppg5c2a955w6dSrc3NywY8cOcDgcREdHi9SLKCF5pxYjpL3w9/cXpkE9evSoTN5j4MCBzKeffiqTczdkxYoVwnpt2rSpVd+bECJ9/v7+DIfDYbS0tBh1dXXh/++NGzcKy1hZWTEHDhwQed3XX3/NeHp6Nnje77//nnF3dxdur1ixgunevbtEsc2ZM4cZO3ZsnfMaGRkxc+fOZUxNTZns7GzhsZCQEEZXV1e4ra2tzYSGhkr0nkSx0dAC0mxvTwh4+yc+Pl7eoSmsoUOHIiMjA++9916rvq+3tzd27twpk3MvWrQIGRkZsLS0lMn5CSGtz8fHB9HR0YiMjMTcuXPh5+eHuXPnAgCys7ORkpKCGTNmgMfjCX+++eYbJCQkCM/x119/oV+/fjA1NQWPx8OyZcuQnJwsURw7d+6Eh4cHjI2NwePxsHv37jrn+Oyzz+Dk5IStW7ciJCQERkZGDZ5v4cKF+Oijj/Duu+/i22+/FYmXKCfqyJIWqe2Yvf1jZ2dXp1xlZaUcolM8tePOuFxug2UkGUMmjry8PERERGDEiBFSPW8tHo8HU1NTcDgcmZyfENL6tLS04ODggG7dumHLli2oqKjAqlWrANQ88gdqhhdER0cLfx4/foxbt24BAG7duoVJkybhvffew6lTp3D//n0sXbpUot8Fhw8fxoIFCxAYGIiwsDBER0fjww8/rHOOrKwsxMbGgsPh4Pnz542ec+XKlXjy5AmGDx+OS5cuoUuXLjh69KgkTUMUDHVkSYvUdsze/uFwOPD29kZwcDAWLlwIIyMjDBkyBADw9OlTDBs2DDweDyYmJpg+fTpycnKE5yspKcEHH3wAHo8HMzMzbNiwAd7e3pg/f76wDIvFwrFjx0Ti0NPTQ2hoqHA7LS0NEydOhL6+PgwNDTFq1CgkJSUJjwcEBGD06NFYv349zMzMYGhoiKCgIJFOZEVFBZYsWQIrKytwuVw4Ojpiz549YBgGDg4OWL9+vUgMjx8/BpvNlugbflJSElgsFg4fPgxvb2+oq6vj999/R25uLiZPngxLS0toamrC1dW1zmzh+tqqPv/88w+6d+8OCwsLXL58GSwWC+fOnYObmxs0NDQwaNAgZGVl4cyZM+jcuTN0dHQwefJklJaWCs/x119/wdXVFRoaGjA0NMS7776LkpISsetJCFFuK1aswPr165Geng4TExNYWFjgxYsXcHBwEPmpvZFx48YN2NjYYOnSpfDw8ICjoyNevnwp0Xteu3YNffv2xZw5c+Dm5gYHB4d6r6+BgYFwcXHBvn37sGTJEjx9+rTR83bq1AkLFixAWFgYxowZg5CQEIniIoqFOrJEZvbu3QsVFRXcuHEDP//8MzIyMjBw4ED06NEDUVFROHv2LF69eoUJEyYIX7N48WKEh4fj6NGjCAsLw+XLl3H37l2J3re0tBQ+Pj7g8Xi4evUqrl+/Dh6Ph6FDh4p8kw8PD0dCQgLCw8Oxd+9ehIaGinSGP/jgA/zxxx/YsmULYmJisHPnTvB4PLBYLAQGBta5+P3666/o378/OnbsKHFb/d///R/mzZuHmJgY+Pn5oby8HO7u7jh16hQeP36Mjz/+GNOnT0dkZKTEbXXixAmMGjVKZN/KlSuxbds2REREICUlBRMmTMDmzZtx4MAB/PPPPzh//jy2bt0KAMjIyMDkyZMRGBiImJgYXL58GWPGjAHDMBLXkxCinLy9vdG1a1esXbsWQM01ZN26dfjxxx8RFxeHR48eISQkBBs3bgQAODg4IDk5GX/88QcSEhKwZcsWie98Ojg4ICoqCufOnUNcXByWLVuGO3fuiJTZvn07bt68iX379mHKlCkYN24cpk6dWu+d37KyMgQHB+Py5ct4+fIlbty4gTt37qBz587NbBWiEOQ9SJcor7cnBNT+jBs3jmGYmklHPXr0ECm/bNkyxtfXV2RfSkoKA4CJjY1lioqKGDU1NeaPP/4QHs/NzWU0NDREJjChnslSurq6TEhICMMwDLNnzx7GycmJEQgEwuMVFRWMhoYGc+7cOWHsNjY2THV1tbDM+PHjmYkTJzIMwzCxsbEMAOb8+fP11j09PZ3hcDhMZGQkwzAMU1lZyRgbGzc6icDf358ZNWqUyL7ExEQGALN58+YGX1dr2LBhzGeffcYwDCN2W5WXlzPa2trMw4cPGYZhmPDwcAYAc+HCBWGZdevWMQCYhIQE4b5PPvmE8fPzYxiGYe7evcsAYJKSkhqNz8bGhiZ7EdIG1HetYhiG2b9/P6OmpsYkJycLt3v06MGoqakx+vr6zIABA5gjR44Iyy9evJgxNDRkeDweM3HiRGbTpk0iE6+amuxVXl7OBAQEMLq6uoyenh4ze/Zs5vPPPxe+JiYmhtHQ0BCZdFZQUMDY2toyS5YsYRhGdLJXRUUFM2nSJMbKyopRU1NjzM3NmeDgYKasrKx5DUUUAi2/RVrEx8cHO3bsEG5raWkJ/+7h4SFS9u7duwgPDwePx6tznoSEBJSVlaGyshKenp7C/QYGBnBycpIoprt37yI+Ph7a2toi+8vLy0UeS3Xt2lVkXKeZmRkePXoEAIiOjgaHw8HAgQPrfQ8zMzMMHz4cv/76K3r37o1Tp06hvLwc48ePlyjWWv9tKz6fj2+//RaHDh1CWloaKioqUFFRIWzfhIQEsdrq0qVLMDQ0hKurq8j+bt26Cf9uYmIiXOfx7X23b98GAHTv3h2DBw+Gq6sr/Pz84Ovri3HjxkFfX79ZdSWEKLa3n0y9bcqUKZgyZUqD2//1/fff4/vvvxfZ9/YwsZUrV2LlypUNvp7L5SIkJKTO069169YBAJydnUWGQAGAjo4OEhMThdsBAQEICAgAAKipqSldQgfSNOrIkhapnRDQ0LG3CQQCjBgxAt99912dsmZmZk0O0q/FYrHqPNZ+e2yrQCCAu7s79u/fX+e1xsbGwr//d+1AFoslnMQgTiaYjz76CNOnT8emTZsQEhKCiRMnQlNTU6w6/Nd/22rDhg3YtGkTNm/eDFdXV2hpaWH+/PnCx2X/rX9D6htWAIjWncViNdoWHA4H58+fR0REBMLCwrB161YsXboUkZGR9U7sI4QQQloLjZElraZnz5548uQJbG1t60wQqO0Qq6qqCme9AsDr16/r5Mk2NjZGRkaGcPv58+ci38p79uyJ58+fo0OHDnXeR1dXV6xYXV1dIRAIcOXKlQbLDBs2DFpaWtixYwfOnDmDwMBAcZuiSdeuXcOoUaMwbdo0dO/eHfb29iIdfXHaimEYnDx5EiNHjmxxPCwWC15eXli1ahXu378PNTU1mulLCCFE7qgjS1pNUFAQ8vLyMHnyZNy+fRsvXrxAWFgYAgMDwefzwePxMGPGDCxevBgXL17E48ePERAQADZb9GM6aNAgbNu2Dffu3UNUVBRmzZolckdx6tSpMDIywqhRo3Dt2jUkJibiypUr+PTTT5GamipWrLa2tvD390dgYCCOHTuGxMREXL58GYcPHxaW4XA4CAgIwBdffAEHBweRx/wt5eDgILwLGhMTg08++QSZmZnC4+K01d27d1FSUoIBAwa0KJbIyEisXbsWUVFRSE5OxpEjR5CdnU0TJAghhMgddWRJqzE3N8eNGzfA5/Ph5+cHFxcXfPrpp9DV1RV2wH744QcMGDAAI0eOxLvvvot+/frB3d1d5DwbNmyAlZUVBgwYgClTpmDRokUij/Q1NTVx9epVWFtbY8yYMejcuTMCAwNRVlYGHR0dsePdsWMHxo0bhzlz5sDZ2RkzZ86ss+TUjBkzUFlZKdW7sQCwbNky9OzZE35+fvD29oapqSlGjx4tUqaptjp+/DiGDx8OFZWWjSDS0dHB1atXMWzYMHTq1AlfffUVNmzY0OpJHQghhJD/YjHiDrYjRE68vb3Ro0cPbN68Wd6h1HHjxg14e3sjNTUVJiYmjZYNCAhAfn5+nTVwZaVbt2746quvRJY3kyVbW1vMnz9fZDIHIYQQIkt0R5aQZqioqEB8fDyWLVuGCRMmNNmJrXXq1CnweDycOnVKpvFVVlZi7NixrXLXdO3ateDxeBKnniSEEEJaiu7IEoWniHdkQ0NDMWPGDPTo0QMnTpyAhYVFk6/JyspCYWEhgJpVGv67UoGyysvLQ15eHoCaiXjiTqgjhBBCWoo6soQQQgghRCnR0AJCCCGEEKKUqCNLCCGEEEKUEnVkCSGEEEKIUqKOLCGEEEIIUUrUkSWEEEIIIUqJOrKEEEIIIUQpUUeWEEIIIYQoJerIEkIIIYQQpUQdWUIIIYQQopT+Hx5f54TlT8H+AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=[7, 4])\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "ax2 = plt.subplot(2, 2, 3)\n", + "ct.bode_plot(L, ax=[ax1, ax2])\n", + "\n", + "# Tidy up the figure a bit\n", + "fig.align_labels()\n", + "ax1.set_title(\"Bode plot for L\", fontsize='medium')\n", + "\n", + "ax2 = plt.subplot(1, 2, 2)\n", + "ct.nyquist_plot(L, ax=ax2, title=\"\")\n", + "plt.title(\"Nyquist plot for L\", fontsize='medium')\n", + "\n", + "ct.suptitle(\"Loop analysis for (unstable) servomechanism\")" + ] + }, + { + "cell_type": "markdown", + "id": "s4dDf4PrZqU3", + "metadata": { + "id": "s4dDf4PrZqU3" + }, + "source": [ + "We see from this plot that the loop transfer function encircles the -1 point => closed loop system should be unstable. We can check this by making use of additional features of Nyquist analysis." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "K7ifUBL0Z3xN", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "N = encirclements: 2\n", + "P = RHP poles of L: 0\n", + "Z = N + P = RHP zeros of 1 + L: 2\n", + "Zeros of (1 + L) = [-0.26792107+0.j 0.08396054+0.259999j 0.08396054-0.259999j]\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUklEQVR4nO3deVxU9f4/8NeZGWAYhmHflE3cccHd3O2qWZrLtcXKJbVsMbvtda3M1qvZrVu/vmnXbum9tlpZmalZrpn7AiqgKAKigIDIwLDPzOf3xzCjo6iowGHOvJ6PBwlzhnPeMwfj5WeVhBACREREROTyVHIXQEREREQNg8GOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiByWLFmCqKgoqFQqvP/++w1+/qNHjyI8PBylpaUNfu6GNm3aNIwfP/6Kzxk6dCiefPLJep9z9erV6N69O6xW640V52ZiY2Mb5efxYtd6P4maIwY7alL5+fl4+OGHER0dDS8vL4SHh2PkyJHYsWOH4zmSJOHHH3+Ur0g3VVJSgtmzZ+OFF17A6dOn8dBDDzX4NV566SU89thj8PX1bfBzX05z+mV9++23Q5IkfPnll3KXQnVYuXIl3njjDbnLILohDHbUpO644w4kJSXhv//9L9LS0rBq1SoMHToURUVFcpcGAKiurpa7BNmcPHkSNTU1GD16NCIiIqDT6a7rPDU1NXU+furUKaxatQrTp0+/kTJd3vTp0/Hhhx826TUvd0/IWWBgYJP+o4OoMTDYUZMpLi7Gtm3b8Pbbb+Pmm29GTEwM+vTpgzlz5mD06NEAbF0uAPDXv/4VkiQ5vgaAn3/+GT179oRWq0VcXBxee+01mM1mx3FJkrB48WLcdttt8Pb2RqtWrfDtt99esaahQ4di9uzZePrppxEcHIwRI0YAAFJSUjBq1Cjo9XqEhYVhypQpKCwsdHzfd999hy5dusDb2xtBQUEYPnw4ysrKAJzvwnvttdcQGhoKg8GAhx9+2Ck0VlVV4W9/+xtCQ0Oh1WoxcOBA7Nmzx3F88+bNkCQJGzZsQK9evaDT6dC/f38cPXrU8ZykpCTcfPPN8PX1hcFgQM+ePbF3717H8e3bt2Pw4MHw9vZGVFQU/va3vzlqvNiyZcvQpUsXAEBcXBwkSUJmZiYAYPHixWjdujU8PT3Rvn17LF++3Ol7JUnCxx9/jHHjxsHHxwdvvvlmnddYsWIFEhISEBkZ6Xjs1VdfRbdu3Zye9/777zvdd/v7+c9//hMREREICgrCY4895hRWFi1ahLZt20Kr1SIsLAx33nmn43u3bNmCDz74AJIkOV6XxWLBAw88gFatWsHb2xvt27fHBx98UGfdV7qPF6uursbzzz+Pli1bwsfHB3379sXmzZudnjN27Fjs3r0bJ06cuOx5Nm/ejD59+sDHxwf+/v4YMGAAsrKyHMfr83fhwnvy+uuvIzIyEh9//LHTdfbv3w9Jkhy1nDx5EuPGjYNer4fBYMDdd9+NM2fOOJ5vv1+fffYZoqOjodfr8eijj8JisWDhwoUIDw9HaGgo3nrrLafrGI1GPPTQQ4738S9/+QuSkpKcnrNq1Sr06tULWq0WwcHBmDBhgtPx8vJyzJgxA76+voiOjsaSJUucjr/wwgto164ddDod4uLiMHfuXKefEXvty5cvR2xsLPz8/HDPPfc4DQu4uHX3cj9X9uc+/vjjePLJJxEQEICwsDAsWbIEZWVlmD59Onx9fdG6dWusXbu27ptM1FgEUROpqakRer1ePPnkk6KysrLO5+Tn5wsAYunSpSI3N1fk5+cLIYRYt26dMBgMYtmyZSI9PV2sX79exMbGildffdXxvQBEUFCQ+OSTT8TRo0fFyy+/LNRqtUhJSblsTUOGDBF6vV4899xz4siRIyI1NVXk5OSI4OBgMWfOHJGamir2798vRowYIW6++WYhhBA5OTlCo9GI9957T2RkZIiDBw+Kjz76SJSWlgohhLj//vuFXq8XEydOFIcPHxarV68WISEh4sUXX3Rc929/+5to0aKFWLNmjUhOThb333+/CAgIEGfPnhVCCLFp0yYBQPTt21ds3rxZJCcni0GDBon+/fs7ztGpUycxefJkkZqaKtLS0sSKFStEYmKiEEKIgwcPCr1eL/71r3+JtLQ08eeff4ru3buLadOm1fk+lJeXi99//10AELt37xa5ubnCbDaLlStXCg8PD/HRRx+Jo0ePinfffVeo1WqxceNGp/c9NDRUfPrppyI9PV1kZmbWeY1x48aJRx55xOmxefPmiYSEBKfH/vWvf4mYmBjH1/fff78wGAzikUceEampqeLnn38WOp1OLFmyRAghxJ49e4RarRZffvmlyMzMFPv37xcffPCBEEKI4uJi0a9fPzFz5kyRm5vreF3V1dXilVdeEbt37xYnTpwQn3/+udDpdOKbb75xuu7V7uOQIUPEE0884fj6vvvuE/379xdbt24Vx48fF++8847w8vISaWlpTq8xNDRULFu2rM73qaamRvj5+Ylnn31WHD9+XKSkpIhly5aJrKwsIUT9/y5cfE+eeeYZMXDgQKdrPfPMM6Jfv35CCCGsVqvo3r27GDhwoNi7d6/YuXOn6NGjhxgyZIjT/dLr9eLOO+8UycnJYtWqVcLT01OMHDlSPP744+LIkSPis88+EwDEjh07HOcdMGCAGDNmjNizZ49IS0sTzzzzjAgKCnL8vK9evVqo1WrxyiuviJSUFJGYmCjeeustx3VjYmJEYGCg+Oijj8SxY8fE/PnzhUqlEqmpqY7nvPHGG+LPP/8UGRkZYtWqVSIsLEy8/fbbl9Q+YcIEcejQIbF161YRHh5+2ft5pZ8r+3N9fX3FG2+8IdLS0sQbb7whVCqVuO2228SSJUtEWlqaePTRR0VQUJAoKyur814TNQYGO2pS3333nQgICBBarVb0799fzJkzRyQlJTk9B4D44YcfnB4bNGiQ+Mc//uH02PLly0VERITT910cHPr27SseffTRy9YzZMgQ0a1bN6fH5s6dK2655Ranx7KzswUAcfToUbFv3z4B4LIB5v777xeBgYFO/zNfvHix0Ov1wmKxCJPJJDw8PMQXX3zhOF5dXS1atGghFi5cKIQ4H+x+//13x3N++eUXAUBUVFQIIYTw9fW9bDiYMmWKeOihh5we++OPP4RKpXJ8/8UOHDggAIiMjAzHY/379xczZ850et5dd90lRo0a5fgagHjyySfrPOeFEhISxOuvv+70WH2DXUxMjDCbzU41TJw4UQghxPfffy8MBoMoKSmp87oXh6/LmTVrlrjjjjucrnul+3jxuY8fPy4kSRKnT592Ou+wYcPEnDlznB7r3r27UxC70NmzZwUAsXnz5jqP1/fvwsX3ZP/+/UKSJMfPrcViES1bthQfffSREEKI9evXC7VaLU6ePOn4nuTkZEfYF8J2v3Q6ndN7PXLkSBEbG+t4T4QQon379mL+/PlCCCE2bNggDAbDJf+Ya926tfj3v/8thBCiX79+YtKkSXW+XiFswW7y5MmOr61WqwgNDRWLFy++7PcsXLhQ9OzZ0/F1XbU/99xzom/fvo6vL7yf9fm5ujAom81m4ePjI6ZMmeJ4LDc31ynkEjUFdsVSk7rjjjuQk5ODVatWYeTIkdi8eTN69OiBZcuWXfH79u3bh9dffx16vd7xMXPmTOTm5qK8vNzxvH79+jl9X79+/ZCamnrFc/fq1euSa23atMnpWh06dAAApKenIyEhAcOGDUOXLl1w11134ZNPPsG5c+eczpGQkOA0Rq1fv34wmUzIzs5Geno6ampqMGDAAMdxDw8P9OnT55Jau3bt6vg8IiICgG0CCgA8/fTTePDBBzF8+HAsWLAA6enpTq9h2bJlTq9h5MiRsFqtyMjIuOL7caHU1FSnOgFgwIABl9R58XtYl4qKCmi12npf+0KdOnWCWq12fB0REeF4H0aMGIGYmBjExcVhypQp+OKLL5x+Ji7n448/Rq9evRASEgK9Xo9PPvkEJ0+edHrOle7jxfbv3w8hBNq1a+f0vm/ZssXp3gCAt7f3ZWsMDAzEtGnTMHLkSIwZMwYffPABcnNzHcfr+3fh4nvSvXt3dOjQAV999RUAYMuWLcjPz8fdd98NwHavo6KiEBUV5fie+Ph4+Pv7O93v2NhYp3FoYWFhiI+Ph0qlcnrMfn/27dsHk8mEoKAgp5ozMjIc70tiYiKGDRtW5/thd+HfBUmSEB4e7rgGYBseMXDgQISHh0Ov12Pu3LmX3M+La7/w5+hi9fm5urAmtVqNoKAgx5AG+/sA4LLXIGoMDHbU5LRaLUaMGIFXXnkF27dvx7Rp0zBv3rwrfo/VasVrr72GxMREx8ehQ4dw7Nixq4YFSZKueNzHx+eSa40ZM8bpWomJiTh27BgGDx4MtVqN3377DWvXrkV8fDw+/PBDtG/fvl6BSZIkCCHqrEsIccljHh4el7wO+1IZr776KpKTkzF69Ghs3LgR8fHx+OGHHxzPefjhh53qT0pKwrFjx9C6deur1nlxzVer8+L3sC7BwcGXBGCVSuV4P+zqGuh/4ftgr8n+Pvj6+mL//v346quvEBERgVdeeQUJCQkoLi6+bC0rVqzAU089hRkzZmD9+vVITEzE9OnT6z15pq6fKavVCrVajX379jm976mpqZeM3ysqKkJISMhlz7906VLs2LED/fv3xzfffIN27dph586djuvU5+9CXfdk0qRJjhm5X375JUaOHIng4GAAdd/Xuh6v615c6f5YrVZERERc8vfp6NGjeO655wDYgu7VXOkaO3fuxD333IPbbrsNq1evxoEDB/DSSy9dcj+vdI6L1efn6mrvxcV/Z4maAoMdyS4+Pt5pUL+HhwcsFovTc3r06IGjR4+iTZs2l3xc2FJg/+V34df21rb66tGjB5KTkxEbG3vJtey/LCVJwoABA/Daa6/hwIED8PT0dIQqwDaxoaKiwqkOvV6PyMhItGnTBp6enti2bZvjeE1NDfbu3YuOHTteU63t2rXDU089hfXr12PChAlYunSp02uo6/3y9PSs9/k7duzoVCdgm5RxrXUCthajlJQUp8dCQkKQl5fnFO4SExOv+dwajQbDhw/HwoULcfDgQWRmZmLjxo0AAE9Pz0t+nv744w/0798fs2bNQvfu3dGmTZtLWtWAK9/Hul6fxWJBfn7+Je95eHi443mVlZVIT09H9+7dr/iaunfvjjlz5mD79u3o3LmzI5DV9+9CXe677z4cOnQI+/btw3fffYdJkyY5jsXHx+PkyZNOrZEpKSkwGo3Xdb/tevTogby8PGg0mkvqtYfKrl27YsOGDdd9jT///BMxMTF46aWX0KtXL7Rt29Zpssn1utLPFVFzpZG7AHIfZ8+exV133YUZM2aga9eu8PX1xd69e7Fw4UKMGzfO8bzY2Fhs2LABAwYMgJeXFwICAvDKK6/g9ttvR1RUFO666y6oVCocPHgQhw4dcpqF+e2336JXr14YOHAgvvjiC+zevRuffvrpNdX52GOP4ZNPPsG9996L5557DsHBwTh+/Di+/vprfPLJJ9i7dy82bNiAW265BaGhodi1axcKCgqcfvlVV1fjgQcewMsvv4ysrCzMmzcPs2fPhkqlgo+PDx599FE899xzCAwMRHR0NBYuXIjy8nI88MAD9aqxoqICzz33HO688060atUKp06dwp49e3DHHXcAsM0QvOmmm/DYY49h5syZ8PHxQWpqKn777bdrWmrjueeew913340ePXpg2LBh+Pnnn7Fy5Ur8/vvv1/SeAsDIkSPx4IMPwmKxOLpVhw4dioKCAixcuBB33nkn1q1bh7Vr18JgMNT7vKtXr8aJEycwePBgBAQEYM2aNbBarWjfvj0A28/Trl27kJmZCb1ej8DAQLRp0wb/+9//8Ouvv6JVq1ZYvnw59uzZg1atWjmd+0r38WLt2rXDpEmTMHXqVLz77rvo3r07CgsLsXHjRnTp0gWjRo0CYAuHXl5elwwbsMvIyMCSJUswduxYtGjRAkePHkVaWhqmTp0KAPX+u1CXVq1aoX///njggQdgNpud/t4NHz4cXbt2xaRJk/D+++/DbDZj1qxZGDJkSL262i9n+PDh6NevH8aPH4+3334b7du3R05ODtasWYPx48ejV69emDdvHoYNG4bWrVvjnnvugdlsxtq1a/H888/X6xpt2rTByZMn8fXXX6N379745ZdfnP6hdT2u9nNF1FyxxY6ajF6vR9++ffGvf/0LgwcPRufOnTF37lzMnDkT//d//+d43rvvvovffvsNUVFRjlaNkSNHYvXq1fjtt9/Qu3dv3HTTTXjvvfcQExPjdI3XXnsNX3/9Nbp27Yr//ve/+OKLLxAfH39NdbZo0QJ//vknLBYLRo4cic6dO+OJJ56An58fVCoVDAYDtm7dilGjRqFdu3Z4+eWX8e677+K2225znGPYsGFo27YtBg8ejLvvvhtjxozBq6++6ji+YMEC3HHHHZgyZQp69OiB48eP49dff0VAQEC9alSr1Th79iymTp2Kdu3a4e6778Ztt92G1157DYCtBWTLli04duwYBg0ahO7du2Pu3LmOcXr1NX78eHzwwQd455130KlTJ/z73//G0qVLMXTo0Gs6DwCMGjUKHh4eTqGwY8eOWLRoET766CMkJCRg9+7dePbZZ6/pvP7+/li5ciX+8pe/oGPHjvj444/x1VdfoVOnTgCAZ599Fmq1GvHx8QgJCcHJkyfxyCOPYMKECZg4cSL69u2Ls2fPYtasWZec+2r38WJLly7F1KlT8cwzz6B9+/YYO3Ysdu3a5TRu7auvvsKkSZMuu06gTqfDkSNHcMcdd6Bdu3Z46KGHMHv2bDz88MMA6v934XImTZqEpKQkTJgwwakL1L4weEBAAAYPHozhw4cjLi4O33zzTb3OezmSJGHNmjUYPHgwZsyYgXbt2uGee+5BZmamYwza0KFD8e2332LVqlXo1q0b/vKXv2DXrl31vsa4cePw1FNPYfbs2ejWrRu2b9+OuXPn3lDdV/u5ImquJHHxABciFyVJEn744YerbgPV2KZNm4bi4mLunlGHRYsW4aeffsKvv/4qdymyKCgoQIcOHbB3795LWgeJiBoCu2KJqMk89NBDOHfuHEpLS91yhf+MjAwsWrSIoY6IGg2DHRE1GY1Gg5deeknuMmTTp08f9OnTR+4yiEjB2BVLREREpBCcPEFERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERAqhkbuA5shqtSInJwe+vr6QJEnucoiIiMiNCSFQWlqKFi1aQKW6cpscg10dcnJyEBUVJXcZRERERA7Z2dmIjIy84nMY7Org6+sLwPYGGgwGmashIiIid1ZSUoKoqChHPrkSBrs62LtfDQYDgx0RERE1C/UZHsbJE0REREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREdB2EELjtgz9w75KdOFdWLXc5AACN3AUQERERuaKSSjNSc0sAAN6eapmrsWGLHREREdF1KCitAgD4ajXQejDYEREREbkse7AL8fWSuZLzGOyIiIiIrkOBqTbY6RnsiIiIiFwaW+yIiIiIFKLQxGBHREREpAj2FrtgdsUSERERuTZ2xRIREREpBIMdERERkUJwViwRERGRAlisAkW124iFssWOiIiIyHWdK6+GxSogSUCgj6fc5Tgw2BERERFdI/v4ukCdJzTq5hOnmk8lRERERC6iOU6cABjsiIiIiK4Zgx0RERGRQhQ2wxmxAIMdERER0TVz7DrBFjsiIiIi19Yc17ADGOyIiIiIrhnH2BEREREpBIMdERERkUI4Jk8w2BERERG5rmqzFefKawAAwRxjR0REROS6zpbZWus0Kgn+3h4yV+OMwY6IiIjoGjiWOtF7QaWSZK7GGYMdERER0TVorhMnAAY7IiIiomvSXCdOAAx2RERERNfkfFesp8yVXIrBjoiIiOgasCuWiIiISCGa63ZiAIMdERER0TU532KnlbmSSzHYEREREV2DQlM1AHbFEhEREbk8Tp4gIiIiUoDyajNMVWYAbLEjIiIicmmFpbZuWK2HCnovjczVXIrBjoiIiKieCkyVAGytdZLUvLYTAxjsiIiIiOqtoLbFrjkudQIw2BERERHVm30Nu2AGOyIiIiLX1px3nQAY7IiIiIjqjcGOiIiISCEY7IiIiIgUojnvEwsw2BERERHVW6F91wm22BERERG5LiEEW+yIiIiIlKCk0oxqsxUAx9gRERERuTT7xAlfrQZaD7XM1dSNwY6IiIioHpr7jFiAwY6IiIioXgqb+a4TAIMdERERUb2wxY6IiIhIIZr7jFiAwY6IiIioXthiR0RERKQQDHZERERECmGfPMFgR0REROTiHC12HGNHRERE5LosVoGzZdUA2GJHRERE5NLOlVfDYhWQJCDQx1Puci6LwY6IiIjoKuzdsIE6T3iom298ar6VXWTHjh1QqVRYsGCB47EFCxYgJCQEgYGBeP755yGEcBzbs2cPEhISoNPpMGTIEGRlZclRNhERESmAK0ycAFwk2FmtVjz11FPo3bu347E1a9Zg8eLF2LVrF5KTk7F69WosXboUAFBVVYUJEybgiSeeQFFREW666SZMmTJFrvKJiIjIxdlb7JrzdmKAiwS7JUuWoG/fvujYsaPjseXLl2PWrFmIi4tDREQEnn32WXz++ecAgM2bN0Ov12PGjBnQarV45ZVXsHfvXrbaERER0XVxhTXsABcIdkVFRXj//ffx6quvOj2ekpKCLl26OL5OSEhAcnJyncd8fHzQunVrpKSk1HmNqqoqlJSUOH0QERER2THYNZAXX3wRTz75JAICApweN5lMMBgMjq8NBgNMJlOdxy4+frH58+fDz8/P8REVFdXAr4KIiIhcmSvsEws082B34MAB7N69GzNnzrzkmF6vd2pZKykpgV6vr/PYxccvNmfOHBiNRsdHdnZ2A74KIiIicnWuMnlCI3cBV7JlyxakpaWhZcuWAACj0QiNRoP09HTEx8fj0KFDGDVqFAAgKSkJnTp1AgDEx8djyZIljvOUlZU5vqcuXl5e8PJq3jeKiIiI5MPJEw3goYcewvHjx5GYmIjExESMHTsWTzzxBN555x1MnjwZixcvRkZGBvLy8vDee+9h8uTJAIChQ4fCZDJh2bJlqKqqwptvvolevXohJiZG5ldERERErshVxtg16xY7nU4HnU7n+Nrb2xt6vR7+/v4YPXo0Dh48iN69e8NisWDmzJmYPn06AFsL3MqVK/HAAw/g0UcfRe/evbF8+XK5XgYRERG5sGqzFefKawA0/2AniQtX9SUAtvF4fn5+MBqNl0zCICIiIveSa6xAv/kboVFJSHvzNqhUUpNe/1pySbPuiiUiIiKSW2FpNQDb+LqmDnXXisGOiIiI6AoKTJUAgGBfT5kruToGOyIiIqIrcEycaOYzYgEGOyIiIqIrcpUZsQCDHREREdEVMdgRERERKYSrbCcGMNgRERERXZF9VmyIr1bmSq6OwY6IiIjoCgpcZJ9YgMGOiIiI6IrO7xPL5U6IiIiIXFZ5tRmmKjMAttgRERERuTT7+Dqthwp6L43M1Vwdgx0RERHRZdh3nQjx9YIkNe/txAAGOyIiIqLLcqVdJwAGOyIiIqLLcqXFiQEGOyIiIqLLKjDZ17BjsCMiIiJyaeeXOmGwIyIiInJp7IolIiIiUghX2icWYLAjIiIiuqxCttgRERERuT4hBLtiiYiIiJSgpMKMaosVACdPEBEREbk0+/g6g1YDrYda5mrqh8GOiIiIqA6OpU5cpBsWYLAjIiIiqpOrzYgFGOyIiIiI6uRqEycABjsiIiKiOjHYERERESkEgx0RERGRQnCMHREREZFCuNquEwCDHREREVGd7C12rrI4McBgR0RERHQJi1XgbG2wC2WLHREREZHrKiqrhlUAkgQE+njKXU69MdgRERERXcQ+IzbIxxMatevEJdeplIiIiKiJuOL4OoDBjoiIiOgSrriGHcBgR0RERHSJQhODHREREZEiOFrs2BVLRERE5NrYFUtERESkEAx2RERERArhivvEAgx2RERERJdgix0RERGRAlSZLTBW1ABgsCMiIiJyaWdN1QAAD7UEP28Pmau5Ngx2RERERBewd8MG670gSZLM1VwbBjsiIiKiC7jq+DqAwY6IiIjIiavOiAUY7IiIiIicsMWOiIiISCEY7IiIiIgUgsGOiIiISCEKOcaOiIiISBnskyeC2WJHRERE5NocXbFssSMiIiJyXWVVZpRXWwBwjB0RERGRS7O31uk81fDx0shczbVjsCMiIiKq5Vic2AVb6wAGOyIiIiIHVx5fBzDYERERETkUssWOiIiISBnsLXbBbLEjIiIicm2uvOsEwGBHRERE5MBgR0RERKQQBS68nRjAYEdERETkwBY7IiIiIgUQQnBWLBEREZESGCtqUGMRAIAgvafM1VwfBjsiIiIinO+G9fP2gJdGLXM114fBjoiIiAiuP74OYLAjIiIiAuD6M2KBZh7sqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn4cQwnFsz549SEhIgE6nw5AhQ5CVlSXHSyAiIiIXwRa7RmY2mxEXF4edO3eiqKgIY8eOxfjx4wEAa9asweLFi7Fr1y4kJydj9erVWLp0KQBbIJwwYQKeeOIJFBUV4aabbsKUKVNkfCVERETU3Ln6dmJAMw92Pj4+mDt3LiIjI6FWqzF79mxkZGTg7NmzWL58OWbNmoW4uDhERETg2Wefxeeffw4A2Lx5M/R6PWbMmAGtVotXXnkFe/fuZasdERERXVZ+bbALNTDYNYkdO3YgLCwMQUFBSElJQZcuXRzHEhISkJycDACXHPPx8UHr1q2RkpJS53mrqqpQUlLi9EFERETuJb+0EgAQyq7Yxmc0GvHwww/jrbfeAgCYTCYYDAbHcYPBAJPJVOexi49fbP78+fDz83N8REVFNdKrICIiouYqv6S2xc5XK3Ml188lgl1lZSXGjx+P0aNHY8aMGQAAvV7v1LJWUlICvV5f57GLj19szpw5MBqNjo/s7OxGeiVERETUXNm7YsPYFdt4zGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZBNSkpCp06d6jxWVlaG9PR0xMfH13kNLy8vGAwGpw8iIiJyH5U1FhgragCwxa5RzZw5ExUVFVi2bBkkSXI8PnnyZCxevBgZGRnIy8vDe++9h8mTJwMAhg4dCpPJhGXLlqGqqgpvvvkmevXqhZiYGLleBhERETVj9hmxnhoVDN4amau5fs268qysLCxbtgxarRYBAQGOx9euXYvRo0fj4MGD6N27NywWC2bOnInp06cDsLXArVy5Eg888AAeffRR9O7dG8uXL5frZRAREVEz55gR6+vl1JDkaiRx4aq+BMA2Hs/Pzw9Go5HdskRERG5g3eFcPPL5fvSI9sfKWQPkLsfJteSSZt8VS0RERNTYzrfYue74OoDBjoiIiOj8UicuPCMWYLAjIiIiUsTixACDHRERERG7YomIiIiU4kxtV2wIu2KJiIiIXFsBu2KJiIiIXJ/ZYsXZsmoA7IolIiIicmmFpmoIAahVEoJ8POUu54Yw2BEREZFbs8+IDdZ7QqVy3V0nAAY7IiIicnOONexcvBsWYLAjIiIiN3fhPrGujsGOiIiI3JpjcWIXX+oEYLAjIiIiN2dvsQthVywRERGRazs/xo4tdkREREQuTSmLEwMMdkREROTmHJMnDOyKJSIiInJZVqtAAWfFEhEREbm+c+XVMFsFACBYz2BHRERE5LLs3bCBPp7w1Lh+LHL9V0BERER0nZS0ODHAYEdERERuLL/Evjix60+cAABNfZ60cOHC+p1Mo8HTTz99QwURERG5KiEELLXjtSRJgkqy/UnNl9Ja7OoV7F5++WVMmjTpqs/77rvvGOyIiMitGCtq8MexAmw+WoAtaQWOGZYA4OftgWEdQnFLp3AMaRcCb0+1jJVSXZQ0IxaoZ7Dz8/PD0qVLr/q8devW3XBBRERErsBUZcaSrSfwnz9OoLzaUudzjBU1WHngNFYeOA29lwbPjWyPKTfFQKViK15zka+gxYmBega7goKCep0sNzf3hoohIiJq7qxWgS93n8T7v6eh0FQNAIgL8cGwDqEY2j4U8REGSBIgBHAs34Rfk/Pwa3IeTp2rwLxVyVh9MAdv39EVcSF6mV8JAcCZ2u3EwtxpjN3FqqqqYDKZoNfr4eWljIRLRER0NcXl1Xh6RRI2HskHALQK9sFzI9vjts7hdY6l69MqEH1aBeKlUR3xxa4sLFh7BHsyz+G2D/7A+xO74bYuEU39EugieUZbi12YnzKCXb1nxZrNZrz66qto3bo1dDodQkJCoNPp0KZNG7z22muoqalpzDqJiIhkdeiUEbd/uA0bj+TDS6PCvDHxWP/UYIzqEnHVCRIqlYQp/WLx61ODMahtMKrMVjz+1QGsO8yeLjkJIRxdsUppsat3sHv44YexdetW/Oc//0FBQQGqq6tRUFCAJUuW4I8//sAjjzzSmHUSERHJZt3hPNzx8XacOleB6EAdvn+0P6YPaAUP9bWtGhYZoMOy6X3w1+4tYbYKzP7yAH5NzmukqulqisqqUWOxzWJWyhg7SQgh6vNEf39/ZGdnw9fX95JjRqMR0dHRMBqNDV6gHEpKSuDn5wej0QiDwSB3OUREJKOfEk/j6RVJsFgFhnUIxXsTu8HP2+OGzmmxCjy9IhE/JeZAo5Lwn/t7YWj70AaqmOorJacEo/7fHwjWe2LvyyPkLueyriWX1PufGr6+vjh+/HidxzIyMuoMfERERK5sxZ5sPPlNIixWgTt6RGLJ1F43HOoAQK2S8O5dCRib0AJmq8BT3yQ6xnpR0zlToqxuWOAaJk+88cYbGD58OO655x506dIFBoMBJSUlOHjwIL799lu8++67jVknERFRk/p2bzae//4gAOC+vtF4c1znBl2mRKNW4Z27uuJEoQmHT5fgia8P4MuZN0HNpVCajBKDXb1b7KZNm4bNmzfDz88P69atw2effYZ169bB398fmzZtwtSpUxuzTiIioiaz6Wg+/r7yEABgWv9YvDW+YUOdnZdGjQ/v7QGdpxq7MoqwaFPdPWPUOPIUGOyuabmTLl26oEuXLo1VCxERkewOnirGY1/sh8UqMKF7S8wbE9+o24K1CvbBG+M645lvk/D+hmPo1zoIvWIDG+16dN75NeyUMXECqGeL3apVq+p1stWrV99QMURERHI6ebYcM5btQXm1BQPbBGPBHV2bZK/XO3pG4q/dW8JiFXjh+4OosVgb/Zp0vis2XEEtdvUKdpMnT67XydgdS0RErspUZcaD/9uDQlM14iMMWDy5Bzw117acyY14bVwnBPl4Ir2gDMt3ZDXZdd2Z246xM5lM0Ol0V/zw9vZGVVXV1U9GRETUzAgh8Ny3SUg7Y0KorxeWTu8NX+2Nz369FgatB565pT0A4P3f01BUVt2k13dHSgx29Rpjl5GRAcD2g//DDz9g9OjRdW4l1hTN1URERA1t0eZ0rD2cBw+1hMWTe8r2i35i7ygs35mF1NwSvPfbUbw5nuPaG0uNxerY69ftxtjFxMQgJiYGsbGx+P7779GvXz+8/vrrSE9PR3R0tON4dHR0Y9dLRETUoDYdzcc/1x8FALw+rjN6xgTIVotaJeGV2+MBAF/uOokjeSWy1aJ0+aW2XkYPtYRAH0+Zq2k41zx4YNu2bThw4ADat2+Pp59+GpGRkXjqqaewd+/exqiPiIio0eQUV+CpbxIhBHBvn2jc20f+Bop+rYNwa6dwWAXwjzVH5C5HsezdsKG+WkX1OF7XqNDo6Gg8//zzSExMxI8//oj169ejb9++aNu2LebPnw+TydTQdRIRETWoGosVj391AMXlNega6YdXx8bLXZLDi6M6Qq2SsDWtAAdPFctdjiKdqd3pI9xPOePrgOsMdjU1Nfjpp59w77334tZbb0W7du2wYsUKLF++HIcOHcItt9zS0HUSERE1qHfXp2Ff1jn4emnwf/f2gJdGLXdJDtFBOoxLaAEAWLQpXeZqlOn8xAnljK8DrnGBYgCYMWMGfvrpJ3Tu3BmTJk3CokWLEBBwfjxCz5494efn16BFEhERNaRNR/Px8RZbYHr7zq6IDtLJXNGlHh3aGisPnMa65Dwczy9Fm1Duyd6Q8hyLEyurxe6ag12bNm2wf/9+xMTE1Hncw8MDp06duuHCiIiIGkNBaRWeXZEEAJhyUwxGdYmQuaK6tQ3zxS3xYVifcgaLN5/Au3cnyF2SouQrcKkT4Dq6Yl988cXLhjq7wEBuhUJERM2PEALPf5eEs2XV6BDui5dGd5S7pCuadXMbAMBPiadx6ly5zNUoS54Cd50ArnOMHRERkSv6fGcWNh0tgKdGhQ/u6Q6tR/MZV1eXblH+GNgmGGarwCdbT8hdjqI4ZsUqbIwdgx0REbmF4/mlePOXVADA32/tgPbhrjFmbdbQ1gCAb/Zmw1heI3M1ynGmdowdW+yIiIhcTLXZiie+TkSV2YpBbYMxrX+s3CXVW7/WQegQ7ovKGitWHuAY9oZgqjLDVGUGwDF2RERELue939KQnFOCAJ0H/nlXAlQq11mQVpIkTOprWzj5i10nIYSQuSLXZ++G9fXSwMfrmueRNmsMdkREpGg7T5zFv7faljaZP6GLS7bQjO/eEjpPNY7nm7A7o0juclyefXFipY2vAxjsiIhIwYwVNXi6dsuwu3tF4tbOzXNpk6vx1XpgXDfbgsVf7DopczWu70ypMnedABjsiIhIweb+eBg5xkrEBOkwb0wnucu5Iff1sS01tvZwLgpNVTJX49ryjLWLE/sy2BEREbmEnxJPY1VSDtQqCf+a2M3lx1J1ifRDQqQfaiwC3+3jJIob4dhOjC12REREzd+pc+V4+YfDAIDH/9IGPaIDrvIdrmFSX1ur3Ze7TsJq5SSK6+UIdr4cY0dERNSsWawCT69IQmmVGd2j/TG7dvcGJRiT0AK+XhqcLCrHnkxOorheZxS6nRjAYEdERArz763p2J1RBB9PNd6f2A0atXJ+1Xl7qnFbl3AAwI+JOTJX47pya2fFRvh7y1xJw1POTzsREbm9g6eK8d76NADAvLGdEBPkI3NFDW98t5YAgF8O5qDKbJG5GtdjtliRX2qbPBHBMXZERETNk6nKjMe/OgCzVeC2zuG4q2ek3CU1ir5xQQg3aFFSacbmowVyl+NyCkxVsFgFNCoJwXqOsSMiImqW5v54GFlny9HCT4sFE7pCklxnd4lroVZJGFu7pt2PB07LXI3rsXfDhhm0ULvQDiT1xWBHREQu7/t9p/DDgdNQScAH93aHn85D7pIalX2x4g1H8lFSWSNzNa4lt7h2fJ0Cu2EBBjsiInJxJwpMmPuTbWmTJ4e3Q+/YQJkranzxEQa0C9Oj2mzFukN5cpfjUnKNFQCUuesEwGBHREQurMpswd++PoDyagtuigvEYwpa2uRKJEnCuNpJFD+wO/aa2LtiWyhwRizAYEdERC5s4bqjOHy6BAE6D7w/sbsix0xdjr07dmfGWeTVhhW6OkeLnQLXsAMY7IiIyEVtOpKPT7dlAADeuTNBsV1rlxMZoEOvmAAIAaw7nCt3OS7jfIudMn9eXHvjPCKieqixWHGmpBK5xkqcK6uGqcoMU5UZpZW2P02VZlTWnF8PTCVJ8PZUw9tTDZ2HGoF6TwT5eCHE1xMt/XUI9fWCyo1ahpqj/JJKPPNtEgBgWv9YDI8Pk7kiedzaORx7s85hXXIepg1oJXc5LuH85AlldsUy2BGRIpwrq0Z6gQnpBSacKCjDqeIK5BRXILe4EvmllWjIbTU9NSpEBXijbagvOkT4okO4AV0j/RQ7Zqe5qbFY8diX+1FUVo2OEQb8/bYOcpckm5GdwvHmL6nYnVGEs6YqBClwXbaGZFucWNmzYhnsiMilGCtqkJpbgtTcEhzNK60Nc2UoKqu+4vd5qCWE+2kR5OMFX60GvloNfDw10Gs18PXSwMtDDfuyZ1arQEWNBRXVVpRVmXG2rBpny6pQUFqFXGMlqs1WpBeUIb2gDOuSz89IjPDTokdMAPq2CsTgtiGIDVbergfNwVu/pGJP5jn4emnw0X3dofVQy12SbKICdejc0oDDp0vwW8oZ3NMnWu6SmrX80ipYBRS7ODHAYEdEzZTVKpBVVO4IcbaPUpwurrjs97T090ZciA9ah+gRFahDCz8tWvh7I8Jfi2Cfhuk+NVusyDVWIvNsGdLOmHAktwQpuSU4kleKXGMlfjmYi18O2sY7RQfqMLR9CG7tFI4+rQIVtWepXH44cArLtmcCAN6b2A1xIXp5C2oGbuscgcOnS7AuOY/B7iouXJxYqcMpFB3sCgoKMG3aNGzatAlRUVFYtGgRhg0bJndZRHSR0soapJ0pRUpuqVNrXHl13ftgtvT3RscIAzpG+KJNqB6tQ/SIC/GBzrPx/5emUasQFahDVKAOg9qGOB4vrzYjMbsY+zLPYdvxQuzLOoeTReX4344s/G9HFgJ9PHFLfBj+2r0lescGKvaXSmNKySnBnJWHAACP/6UNRrjpuLqLjewUjnd+PYo/jxfCWFEDP29lL858I+wzYpU6cQJQeLB77LHH0KJFCxQWFmL9+vW46667kJ6ejoCAALlLoysQQsBsFTBbBGqsVtSYrTBbBapr/7TUDpaSJEACHNsGSY7HJMdx+58ealXthwQPtQqeahV/scqgxmLFiYIyHMmzBbejeaU4knf5VjgvjQrtw33RMdwW4jpGGNAhwtAsf3HpPDXo3zoY/VsH4/FhbWGqMmNH+ln8lpKH31LOoKisGl/vycbXe7IRGeCNCd1b4p4+0RyXV0/5pZV48L97UFljxZB2IXhyeDu5S2o22oTq0TZUj2P5Jmw6ko/x3VvKXVKzZV8WJlyhEycABQc7k8mEn376CZmZmdDpdBg/fjzee+89/Pzzz5g6darc5dWLEAJCAKL2c6sABGyP2Y6f/9r+HAFbF5Y9ANVYrLDU82uzRcBitV5wTMBssaLGKmrDlRU1Ftv3nA9dovZx6/nn259Te37H8+3PueA8lzvWFNQqySnoeWpU0HmqofPUQOepho+XBt6eavhc/JiHGj5etsd8tRoYvD3g5+0Bg9b2p6eG3W2llTXILCzHiUITMgvLkV5gQtoZ23i4y93fcIPWFuJqW+LiIwxoFezjst2Xei8NRsSHYUR8GMwWK3ZlFGFVYg5+OZSLU+cq8P82HsdHm9MxslMY7u8Xiz6tAhW7t+mNqqi2YOb/9iHHWIm4YB/8v3vca726+ri1cziObTyOdYfzGOyuIKd2RmwLhU6cABQc7I4dOwY/Pz9EREQ4HktISEBycvIlz62qqkJVVZXj65KSkkavb9DCjThTUnVJeLP92eiXdzmqC1rdLvz/uaj9j/0tu/g9tAdfe3i9kKU2wFbWWBu0Vq2Hyino2YOf7TFbELwwDBq8NbV/esDXS+MSLYnl1WbkFFfgdHFl7cxT2+fZ58qRUViGgtKqy36v3kuDdmF6tK9thWsf5ov24b7w13k24StoWhq1CgPaBGNAm2C8OrYT1qfk4avdJ7HzRBHWHMrDmkN56BhhwLT+MRjXraVbTwa4mNUq8My3iUjKLoa/zgOfTeut+H1gr8fITuH4cONxbE7LR3m1uUmGJbgipW8nBig42JlMJhgMBqfHDAYDiouLL3nu/Pnz8dprrzVRZTZVNVZUmxs2UFxMo5KgVkmOPz3UqvNfqyV4qGxfq1USNGoJapUKHnV8ralt1bJ3ZWrUtsc91Crb52r757Zz2p/jWfuY7XMJGpXta8/a7zv/ee35VRd8br9O7TkbIuxYrbWtjBZbC2SNxYrqC1oYK2ssKK+2oLzabPuzyoIy++fVZpRVWVBRbXusotriWAfNWFGDksoalFaaAQCVNVZU1lThTMnlw83lSJIt+NiDnt8Foc+g9YCPlxpaDzV0nmp4e9jWWfP2sLUeenuq4O2hgadG5bjn9g+VJEElARZhC7O21lkBi7B9bn/NZVVmlNW+1rIqM4oralBkss0IPVtWjaKyahSZqlFaZb7qawnWe6JVsA9aBfsgNtgH7UJtAS4ywNutW6a8PdUY160lxnVriSN5Jfjv9iz8cOAUUnNL8ML3hzB/7RFM7ReLGQNiFR1262vhr0ex5lAePNQS/j25J2caX0anFgZEBXoju6gCW9MKcWvncLlLapbskyeUuoYdoOBgp9frL2l5KykpgV5/6QyqOXPm4Omnn3Z6XlRUVKPW99PsAbAK53Fh9jFjkGwLpNrHjzmNHZNsrVcXP37heDK1ZPtl7s6/POuiUknwUqnhpQHQCLPcLVYB0wVBr6SixvG5saIGJRVmp6+NFbYwWFL7WGWNFUIApZW2wHil2Z/Nga+XBi38vdHCX1v7pzda+ns7glxzHAfX3HQIN2D+hC544db2WLE3G//bkWXrpt1wDJ/+cQJT+sXiwUGtFLssw9X8e0s6Pt6SDgCYP6Er+sYFyVxR8yVJEkZ0DMdnf2Zg45EzDHaXYW+xU+oadoCCg13btm1hNBqRl5eH8HDbD3hSUhIefPDBS57r5eUFL6+m/R+nkv+14K7UKgl+Oo/r7iaqMlsuCHpmp2BYUmFGSWUNKi5oUbS3MNrWW7P9WV5tQVWNBVZxvqvZ3kpn56G2t+Seb8G1jSXUwMfLNo5QV/u1wdsDwXpPBPp4IdDHE0F6TwT6eCLE1wsGLYNbQ/HXeeKhwa3xwMA4/Jqchw83Hkdqbgk+3pKOZdszcF+fGDw8JA5hCt3bsi5f7T6J+WuPAAD+flsH3NkzUuaKmr+/dAjFZ39mYNPRAlitwiWGdTSlGosV+bXDRCI4K9b16PV6jB07FvPmzcP777+P3377DYcPH8aYMWPkLo2oTl4aNbz06kZpnbGP5eT/6Js3tUrCqC4RuK1zODak5uPDjceQdMqIz/7MwOc7s3BPnyjMGtpG0eODAGD1wRy8+INtWZNHhrTGI0Nay1yRa+jTKhA+nmoUlFbhcI4RXSP95S6pWckvrYIQtn/cBvsotxXcNaeb1dOiRYuQnZ2NoKAgPPvss1ixYgWXOiG3JEkSQ50LkSQJw+PD8ONjA/C/GX3QOzYA1RYr/rcjC4Pf2YTXf05xbIukND8eOI0nvk6EEMC9faLxwq3t5S7JZXhqVBjczra24obUfJmraX7yarthlbw4MaDwYBcSEoI1a9agvLwcaWlpGD58uNwlERHVmyRJGNwuBN8+0h9fzuxrC3hmKz77MwODF27C/DWpV91KzZV8tfsknlqRCItV4I4ekXhzfGeOFb5GN3cIBQBsPMJgd7HzS50oeyiUooMdEZFS9G8djBUP98PyB/qgW5Q/Kmus+PfWExj09kb889ejMJbXyF3idRNC4D9/nMCclYcgBDDlphi8c2dXrlV3HW5ubwt2h04bkV+izFbd6+UOS50ADHZERC5DkiQMahuCH2b1x2fTeqFzSwPKqi34v03HMfDtjXj/9zSUVLpWwKuxWPHyj4fx5i+pAICHB8fh9XGdFN1V1phCfL2QEOUPANh0lK12F3IsdaLgiRMAgx0RkcuRJAl/6RCGn2cPxMeTe6JDuC9Kq8x4//djGPT2Jny06TjK6rHWoNzOlVVjyqe78MWuk5Ak2+zXv9/Wgd2vN+gvta12HGfnLLe2KzZC4bPLGeyIiFyUJEm4tXM41vxtEP7vvu5oHeIDY0UN3vn1KAYt3IQlW9NhaqYBb19WEcZ+tA07TxTBx1ONT6b0wiNDWjPUNYBhHW3BbtvxQlSZLTJX03zklthb7DjGjoiImjGVSsLtXVtg/VND8K+JCYgN0qGorBr/WHME/eZvwIK1Rxybn8utxmLFP389irs+3oHsogpEBXpj5awBGB4fJndpitGphQFhBi+UV1uw80SR3OU0G7nFyl+cGGCwIyJSDLVKwl+7R+L3p4dg4Z1dERfsg9JKMz7eko5BCzfi6RWJSM1t/L2wL2df1jn8ddGf+L9Nx2EVwITuLfHL3wahfbivbDUpkSRJjkkUmznODoBtAXj74sQtFd5ip9gFiomI3JVGrcLdvaJwZ49IbDiSj0+2nsDuzCKs3H8aK/efxqC2wZhyUwxu7hAKD3Xj//s+u6gcb687gtUHcwEA/joPvDW+C0Z3jWj0a7urwe1C8PWebGxNK5C7lGbBPr5O66FCoI+y92BmsCMiUiiVSsKI+DCMiA9DYnYxPvnjBNYeysUfxwrxx7FCBOs9Mb5bS4zr1hKdWxoafHzb4dNGLNueiVWJOai2WCFJwF09I/HsLe0RqvAB7HIb0DoYKglILyjD6eIKxbdSXc2pc7Zu2MgAneLHcTLYERG5gW5R/vjovh7ILirH8p1ZWLn/NApNVfjPtgz8Z1sGWvp7Y0R8GIa2D0HPmAD4XudewKfOlWNDaj5WH8zBnsxzjsf7xQXh5ds7olMLv4Z6SXQFfjoPdIvyx/6TxfgjrQD39ImWuyRZnS4uB6D8bliAwY6IyK1EBerw4qiOeG5ke2w5WoDv95/C5qMFOF1cgWXbM7FseyZUEhDfwoCukf6IC/ZBXIgPWvh7Q++lga+XB9RqCaZKM0ora1BQWoUjeaU4mleKxOxiHD1T6riWpnbv2+kDYtE9mts5NrVBbUOw/2Qxth5jsLO32LUMYLAjIiIF8lCrMDw+DMPjw1BZY8EfxwrxW0oedp4owsmichw+XYLDp699ooVKAnrFBmJYh1CM794SYexylc3gdiH4YMMxbDtWCLPFCk0TjKdsrk47umIZ7IiISOG0HmrHWDwAyDNWYndmEdLySnGi0IQTBWXIL62CqcqMarMVgG0Grq9WgwCdJ9qE6tEh3BcdIwzo3zoI/jplD053FQmRfjBoNSipNCPplBE9Y9y31fRU7VIn7IolIiK3E+6nxdiEFkDCpceqzVZYrAJaD5XiB6G7Oo1ahYFtg7HmUB62phW4dbBzpxY7922XJSKia+apUcHbU81Q5yIGtw0BAGw95r7LnpgtVuTV7joRGaCTuZrGx2BHRESkUIPa2YJdUnYxjOU1Mlcjj7ySSlisAp5qFUL0XnKX0+gY7IiIiBSqpb83Wof4wCpse8e6I/uM2Bb+WqhUym9pZrAjIiJSsMG1rXbbjrtnd+xpN1rqBGCwIyIiUrSBbYIBAH8ePytzJfI47UYzYgEGOyIiIkXr0yoQapWEk0XlyC4ql7ucJnfqnO01u8PECYDBjoiISNF8tR7oGmnbym1Huvu12rHFjoiIiBRlQOva7th095tA4U7biQEMdkRERIrXv00QAGB7+lkIIWSupulYrQK5xfY17BjsiIiISAF6RAfAS6NCQWkVjueb5C6nyRSYqlBtsUKtkhDuJvsWM9gREREpnNZDjV6xti3FtrvRODv7xIlwgxYatXtEHvd4lURERG6uv32cnRstVOxu4+sABjsiIiK30L+1bZzdzhNnYbG6xzg7+4zYSDeZEQsw2BEREbmFLi394OulQUmlGck5RrnLaRL2Fjt3mTgBMNgRERG5BY1ahb5xgQDcZxcKd9tODGCwIyIichv2cXbb3WQ9u/OLE7vHrhMAgx0REZHbGFC7b+yezCJUmS0yV9O4hBAXbCfGFjsiIiJSmHZhegTrPVFZY0XiyWK5y2lUhaZqVNZYIUlAhL97rGEHMNgRERG5DUmS0M+xvZiyx9mdLCoDALTw84aXRi1zNU2HwY6IiMiN2Jc92a7w9ewyC23dsNGB7jO+DmCwIyIicisDalvsErOLUVZllrmaxpNVZAt2scEMdkRERKRQ0UE6RAZ4w2wV2J1ZJHc5jebkWVtXbHSgj8yVNC0GOyIiIjdj747doeBxdvYWu5ggttgRERGRgtmXPVHyvrFZZznGjoiIiNxAvzhbi11KbgnOlVXLXE3DK62sQVHt62KLHRERESlaqEGLtqF6CAHsPKG87lh7a12Qjyd8tR4yV9O0GOyIiIjckKM7VoHbi52sHV8X7WatdQCDHRERkVvqZ1/PToETKOwtdjFuNr4OYLAjIiJySze1CoIkAScKynCmpFLuchpUln2pkyD3WuoEYLAjIiJyS346D3RqYQCgvGVP7C12seyKJSIiIndhnx2rtGB30k3XsAMY7IiIiNyWfZzdDgXNjK0yW5BjrADgfrtOAAx2REREbqt3bCDUKgkni8pxurhC7nIaRHZRBYQAdJ5qBOs95S6nyTHYERERuSlfrQe6tPQDoJzu2JNF9j1idZAkSeZqmh6DHRERkRvrp7B9Y89PnHC/bliAwY6IiMitnZ9AUQghhMzV3DjHGnZuOHECYLAjIiJya71iA+ChlpBjrHTMJnVl59ewY7AjIiIiN6Pz1KBblD8AZXTHZtmXOnHDGbEAgx0REZHbc3THuviyJxarwKki2+xedsUSERGRW7rpggkUrjzOLq+kEtUWKzzUElr4e8tdjiwY7IiIiNxcj+gAeGpUyC+tQnpBmdzlXLf0fBMA21InapX7LXUCMNgRERG5Pa2HGj2i/QG4dndseoEt2LUO0ctciXwY7IiIiAj9WwcDAHa68ASK47Utdm1CGeyIiIjIjdkXKt55wnXH2THYMdgRERERgIRIf3h7qHG2rBppZ0xyl3Nd7OMD2RVLREREbs1To0Kv2AAAtl0oXI2xvAaFpioAQGu22BEREZG7s3fHbnfBcXbHC0oBAOEGLfReGpmrkQ+DHREREQE4v1DxrowiWK2uNc4uPd/WDevO4+sABjsiIiKq1aWlH/ReGhgrapCSWyJ3OdfkeAEnTgAMdkRERFRLo1ahd+04u50utp6dfXHi1iHuuUesHYMdEREROfS7YHsxV2JvsXPniRMAgx0RERFdwL5Q8a6MIpgtVpmrqZ/KGguyi8oBsCuWwY6IiIgcOkYY4OftAVOVGYdOG+Uup14yz5bBKgBfrQYhei+5y5EVgx0RERE5qFWSY3bsn8ddYz27C3eckCRJ5mrkxWBHRERETga0sQc71xhnZ1/qxJ13nLBrtsHu6NGjuP322xEcHIyQkBBMnjwZ586dcxyvqKjA5MmT4evri+joaHz11VdO379s2TJERkbCYDBg+vTpqK6ubuqXQERE5JIGtLGNs9uXdQ4V1RaZq7k6LnVyXrMNdkajEXfffTfS09ORmZmJ6upqPPvss47j8+bNQ1FREU6fPo2vv/4ajz76KNLS0gAAhw4dwtNPP40ff/wR2dnZyMzMxJtvvinXSyEiInIprYJ90MJPi2qLFXuziuQu56ocXbFssWu+wa5Pnz6YOnUq/Pz84OPjg5kzZ2L37t2O48uXL8e8efNgMBjQv39/jB07Fl9//TUA4Msvv8TEiRPRq1cv+Pn5Ye7cufj8888ve62qqiqUlJQ4fRAREbkrSZLQv7bVblszH2dntQqc4FInDs022F1s+/bt6NSpEwDg3LlzyMvLQ5cuXRzHExISkJycDABISUm55FhGRgYqKirqPPf8+fPh5+fn+IiKimrEV0JERNT8DawNdtub+Ti708UVqDJb4alWISrAW+5yZOcSwS4xMRH/7//9P8ydOxcAYDKZoFarodPpHM8xGAwwmUyO4waDwemY/fG6zJkzB0aj0fGRnZ3dWC+FiIjIJfSvXaj4cI4RxeXNd5z6sfxSAEBssA4atUvEmkYl2ztwyy23QKvV1vlx4Xi4jIwMjBkzBp9++qmjxU6v18NisaC8vNzxvJKSEuj1esfxC7tT7Z/bj1/My8sLBoPB6YOIiMidhRq0aBemhxDNexeKlBzb7/iOEfzdDQAauS68fv36qz4nLy8PI0aMwNy5czF+/HjH4wEBAQgPD8ehQ4fQt29fAEBSUpIj+MXHx+PQoUOO5yclJaFVq1bw9mYTLRERUX31bx2MtDMmbDteiNu6RMhdTp1Scm3BrlMLBjugGXfFGo1GjBw5ElOnTsVDDz10yfHJkyfjjTfeQGlpKXbu3IlVq1Zh4sSJAID77rsPK1aswP79+2E0GvHWW29h8uTJTf0SiIiIXJpjnJ0LtNjFR/jJXEnz0GyD3Y8//oiDBw9i4cKF0Ov1jg+7119/HX5+foiIiMBdd92FRYsWoX379gCALl264N1338WYMWMQGRmJqKgovPTSS3K9FCIiIpfUNy4QapWEjMIynDpXfvVvaGKmKjMyz9rq6hjhK3M1zYMkhBByF9HclJSUwM/PD0ajkePtiIjIrd2xeDv2ZZ3D/AldcG+faLnLcbInswh3fbwD4QYtdr44TO5yGs215JJm22JHRERE8hvSLgQAsDWtQOZKLmXvhuX4uvMY7IiIiOiyBtcGu23HC2G2WGWuxpljfB2DnQODHREREV1Wl5Z+8Nd5oLTSjMTsYrnLcWKfERvPpU4cGOyIiIjostQqCYPa2lrttjSj7tgaixVHz9gWJ2aL3XkMdkRERHRFg9valj1pTuPs0gtMqDZb4eulQVSA7urf4CYY7IiIiOiK7BMoDp42oqiseWwvduGOEyqVJHM1zQeDHREREV1RqEGLDuG+EAL441jzaLXjxIm6MdgRERHRVZ1f9qRQ5kpsOHGibgx2REREdFWOYHesAHLvbSCEQDJb7OrEYEdERERX1TM2AN4eahSUVjlay+SSY6yEsaIGGpWEtmH6q3+DG2GwIyIioqvy0qgxoE0QAGDTkXxZa7GPr2sTqoeXRi1rLc0Ngx0RERHVy7COYQCA31LlDXaJ2ecAAJ1b+slaR3PEYEdERET1MqxDKAAgKbsY+SWVstWxJ9MW7HrHBshWQ3PFYEdERET1EmrQIiHKHwCwQabu2GqzFUm1W5v1jAmUpYbmjMGOiIiI6m1ER1ur3YbUM7Jc/3COEVVmKwJ0Hmgd4iNLDc0Zgx0RERHV2/B42zi7P44VoqLa0uTX35tZBADoFRsISeKOExdjsCMiIqJ6ax/mi8gAb1SZrdh2vOkXK95bO76uVwzH19WFwY6IiIjqTZIkDK+dHft7StN2xwohsC+rNtjFcnxdXRjsiIiI6JqMqO2O3XDkDKzWptuFIqOwDGfLquGlUaFzS+44URcGOyIiIromvWMD4eulQaGpGomnipvsuvZu2IRIfy5MfBkMdkRERHRNPDUqDGlv2zt23eG8JrvuHsfECY6vuxwGOyIiIrpmt3eNAACsTsppsu5Y+/i63hxfd1kMdkRERHTNhrYPhd5LgxxjJfadPNfo1ys0VeFEYRkAoEc0W+wuh8GOiIiIrpnWQ41bOtkmUfyclNPo17OPr2sf5gs/nUejX89VMdgRERHRdRmb0AIAsOZQLswWa6Nea+eJswCAnhxfd0UMdkRERHRdBrQJRoDOA4WmauyoDV6NQQiB32u3MBvaLqTRrqMEDHZERER0XTzUKozqYptEsSqx8bpjj54pxalzFfDSqDCwbXCjXUcJGOyIiIjouo2p7Y5dl5yHKnPj7B1r3+FiYJtg6Dw1jXINpWCwIyIiouvWJzYQYQYvlFaaseVoQaNc47fUfADA8NodL+jyGOyIiIjouqlUEm7vamu1+3bfqQY/f35JJZKyiwEAwzqENvj5lYbBjoiIiG7IPb2jAAAbUs/gdHFFg557wxFba123KH+EGrQNem4lYrAjIiKiG9I2zBf94oJgFcBXu0426Lnt4+tGsBu2XhjsiIiI6IZN6RcDAPh6z8kGm0RRXm3GtuOFAIDhHRns6oPBjoiIiG7YiPgwhBm8UGiqxrrDeQ1yzm3HClFltiIq0BvtwvQNck6lY7AjIiKiG+ahVuHePtEAgM93ZjXIOdfWBsThHcMgSVKDnFPpGOyIiIioQdzbJxoalYQ9meeQmltyQ+fKL63ELwdzAQDjurVsiPLcAoMdERERNYgwgxYjO4UDAJb+mXFD5/pi50lUW6zoEe2PblH+DVCde2CwIyIiogYzY2ArAMB3+07heH7pdZ2jssaCL3ZlOZ2P6ofBjoiIiBpMz5gA3BIfBqsAFqw9cl3n+DkpB4WmarTw0+LW2hZAqh8GOyIiImpQz9/aAWqVhN9T87HzxNlr+l4hBD77MxMAMLV/LDRqRpVrwXeLiIiIGlSbUL1jN4r5a1IhhKj39+48UYTU3BJ4e6gd56D6Y7AjIiKiBvfk8HbQeaqRdMqI1bWzW6/GahX4cOMxAMAdPVvCX+fZmCUqEoMdERERNbgQXy88PLg1AOC1n5ORXVR+1e/5eGs6tqefhdZDhQcHxjV2iYrEYEdERESN4qHBcYiPMKDQVI1pS3fDWF5z2efuySzCu+vTAACvje2E2GCfpipTURjsiIiIqFF4e6rx2bTeiPDTIr2gDA8t31vnPrJFZdV4/MsDsFgF/tq9Je7uxbF114vBjoiIiBpNuJ8Wn03rDb2XBrsyivDAsr3483ghrFYBs8WKtYdyMfk/u5BXUom4EB+8Ob4ztw+7AZK4lqkqbqKkpAR+fn4wGo0wGAxyl0NEROTy/jhWgOlL98BstcWOmCAdzBaB08UVAAC9lwbfPtIPHSP4e/di15JLNE1UExEREbmxQW1D8MvfBmH5zkz8eCAHWWdtkykCfTwxqW80Jt8UgzCDVuYqXR9b7OrAFjsiIqLGU15txm8pZwAAIzuFQ+uhlrmi5o0tdkRERNRs6Tw1GNetpdxlKBInTxAREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUJo5C6gORJCAABKSkpkroSIiIjcnT2P2PPJlTDY1aG0tBQAEBUVJXMlRERERDalpaXw8/O74nMkUZ/452asVitycnLg6+sLSZIa5RolJSWIiopCdnY2DAZDo1yD5Mf7rHy8x+6B91n5mvM9FkKgtLQULVq0gEp15VF0bLGrg0qlQmRkZJNcy2AwNLsfIGp4vM/Kx3vsHnifla+53uOrtdTZcfIEERERkUIw2BEREREpBIOdTLy8vDBv3jx4eXnJXQo1It5n5eM9dg+8z8qnlHvMyRNERERECsEWOyIiIiKFYLAjIiIiUggGOyIiIiKFYLAjIiIiUggGOxkUFBRg9OjR0Ol0aN++PTZs2CB3SXSDqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn6/Xfn/UfO3YsQMqlQoLFixwPMZ7rCwLFixAVFQUfH190a1bNxQXFzse531Whv3796N///4wGAyIi4vD0qVLHcdc+T5z5wkZPPbYY2jRogUKCwuxfv163HXXXUhPT0dAQIDcpdF1MpvNiIuLw86dOxEREYEPPvgA48ePR3p6OtasWYPFixdj165d8Pb2xrBhw9ChQwfMmDFD7rLpOlitVjz11FPo3bu34zHeY2X58MMPsXbtWmzbtg3R0dFITk6GVqvlfVaYqVOn4t5778W2bduQmJiIIUOGYMCAATh+/LhL32cud9LETCYTgoKCkJmZiYiICADA4MGD8eCDD2Lq1KkyV0cNpbq6GlqtFgUFBZg9eza6deuGF154AQDw2Wef4fPPP8fGjRtlrpKux8cff4zU1FQYjUZ06NABf//733HvvffyHiuExWJBZGQktm7dirZt2zod431WFl9fXxw8eBCtWrUCAPTp0wdz587Fl19+6dL3mV2xTezYsWPw8/NzhDoASEhIQHJysoxVUUPbsWMHwsLCEBQUhJSUFHTp0sVxjPfbdRUVFeH999/Hq6++6vQ477FynDp1ChUVFfj2228RFhaG9u3b4+OPPwbA+6w0s2fPxvLly2E2m7F7925kZ2ejb9++Ln+f2RXbxEwm0yWbCxsMBsf4DXJ9RqMRDz/8MN566y0Al95zg8EAk8kkV3l0A1588UU8+eSTlwyb4D1WjtOnT8NoNCI9PR2ZmZk4ceIEhg8fjvbt2/M+K8ytt96KqVOn4vXXXwcALFmyBKGhoS5/nxnsmpher0dJSYnTYyUlJdDr9TJVRA2psrIS48ePx+jRox3jMS6+57zfrunAgQPYvXs3Pvroo0uO8R4rh7e3NwBg3rx58Pb2RqdOnTBlyhSsWbOG91lBzp49izFjxuC///0vxo4di9TUVNx6663o1KmTy99ndsU2sbZt28JoNCIvL8/xWFJSEjp16iRjVdQQzGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZDl/XZNW7ZsQVpaGlq2bInw8HB88803eOuttzBz5kzeYwVp164dPD09nR6zD0XnfVaOEydOwM/PD3/961+hVqvRuXNnDB06FFu3bnX9+yyoyd15553ioYceEuXl5eKnn34SAQEBoqioSO6y6AZNmzZN3HLLLaK6utrp8dWrV4uYmBhx4sQJkZubKzp16iQ+/fRTmaqk61VWViZyc3MdH3fffbd46aWXxLlz53iPFea+++4TM2fOFJWVleLIkSMiIiJCbNy4kfdZQYqLi4Wfn59YtWqVsFqtIjU1VURERIi1a9e6/H1mV6wMFi1ahPvvvx9BQUGIjIzEihUruNSJi8vKysKyZcug1Wqd7uXatWsxevRoHDx4EL1794bFYsHMmTMxffp0Gaul66HT6aDT6Rxfe3t7Q6/Xw9/fn/dYYT766CM88MADCA4ORlBQEObOnYubb74ZAHifFcLPzw/ffPMNXnjhBdx3330ICAjA7NmzceuttwJw7fvM5U6IiIiIFIJj7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIAJw8eRLBwcGNeo3MzExIkgS9Xo8ff/yxwc67Z88e6PV6qFQq7Ny5s8HOS0Suh1uKEZHb0Ov1js/Lysqg0+kgSRIAICUlBYWFhY1eg5eXF0wmU4Oes3fv3jCZTIiNjW3Q8xKR62GwIyK3cWGg0mq1SE5OZhgiIkVhVywREWzdpFqt1vG1JElYvHgxoqOjERwcjG+++QarV69GXFwcQkND8c033zieW1RUhPvuuw+hoaGIi4vDf//733pf99VXX8WUKVMwfvx46PV6jBgxAvn5+bj77rthMBhw6623orS0FACQlpaGgQMHwmAwIDg4GM8880zDvQFEpAgMdkREl/Hnn38iLS0NixcvxqxZs/D999/j8OHD+PTTTzF79mxYLBYAwJQpUxAVFYXs7GysWbMGc+bMQVJSUr2v8+OPP+KFF15Afn4+iouLMXDgQDz++OPIz8+HyWTCZ599BgB45ZVXMHr0aBiNRmRlZWHixImN8rqJyHUx2BERXcbzzz8PrVaLCRMmoLi4GLNmzYJOp8OYMWNQWlqKnJwc5OXl4Y8//sA//vEPeHl5oUOHDrjvvvuwcuXKel9nxIgR6NevH3Q6HUaNGoW2bdti0KBB0Gq1GD16NA4ePAgA8PDwQEZGBvLy8uDj44M+ffo01ksnIhfFYEdEdBmhoaEAALVaDQ8PD4SEhDiOabValJWV4eTJkygrK0NQUBD8/f3h7++Pf//73zhz5sw1XwcAvL29na7j7e2NsrIyAMDChQthNpvRrVs3JCQk4Oeff77Rl0hECsPJE0REN6Bly5bw9/fH2bNnG/1aERER+OyzzyCEwKpVqzBx4kQUFxfD09Oz0a9NRK6BLXZERDegZcuW6N27N1555RWUl5fDbDZj//79SElJafBrfffdd8jJyYEkSfD394ckSY7lWoiIAAY7IqIb9sUXXyArK8sxY/bJJ59ERUVFg19n9+7d6NmzJ/R6PR599FF8+eWX8PDwaPDrEJHrkoQQQu4iiIjcQVZWFjp06AAvLy/873//w9ixYxvkvHv37sXw4cNRVVWFLVu2cFIFkRtjsCMiIiJSCHbFEhERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQvx/PES2Nz102fIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Get the Nyquist *response*, so that we can get back encirclements\n", + "nyqresp = ct.nyquist_response(L)\n", + "print(\"N = encirclements: \", nyqresp.count)\n", + "print(\"P = RHP poles of L: \", np.sum(np.real(L.poles()) > 0))\n", + "print(\"Z = N + P = RHP zeros of 1 + L:\", np.sum(np.real((1 + L).zeros()) > 0))\n", + "print(\"Zeros of (1 + L) = \", (1 + L).zeros())\n", + "print(\"\")\n", + "\n", + "T = ct.feedback(L)\n", + "ct.step_response(T).plot(\n", + " title=\"Step response for (unstable) servomechanism\",\n", + " time_label=\"Time [ms]\");" + ] + }, + { + "cell_type": "markdown", + "id": "p3JxLilMxdOE", + "metadata": { + "id": "p3JxLilMxdOE" + }, + "source": [ + "### Poles on the $j\\omega$ axis\n", + "\n", + "Note that we have a pole at 0 (due to the integrator in the controller). How is this handled?\n", + "\n", + "A: use a small loop to the right around poles on the $j\\omega$ axis => not inside the contour.\n", + "\n", + "To see this, we use the `nyquist_response` function, which returns the contour used to compute the Nyquist curve. If we zoom in on the contour near the origin, we see how the outer edge of the Nyquist curve is computed." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "R5IBk3Ai9Slk", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFQCAYAAACoKiaXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOtklEQVR4nOzdd1hT1xsH8G8SkhD2XjIFQRAHiiJurYraWkfr3lV/te6itnW0Vdu66qp1VWvRtiq2VWuto1gVB6IoQxEQEBkqIILsTXJ+f1CikZWwQvD9PA+P5tybe9+TcfLm5gwOY4yBEEIIIYQQFcJVdgCEEEIIIYQoipJYQgghhBCiciiJJYQQQgghKoeSWEIIIYQQonIoiSWEEEIIISqHklhCCCGEEKJyKIklhBBCCCEqh5JYQgghhBCiciiJJYQQQgghKoeSWEJIs7B69Wp06tRJ2WGopIKCArz33nvQ0dEBh8NBVlaWskOqxNbWFtu3b1d2GNVKSEgAh8NBWFiYskMBAPj7+yv8XNJ7iLxpKIkl5A01ffp0cDgcbNiwQab8zz//BIfDafJ4li5diosXL8q1b3P6sO7Xrx8WL16s1BgOHTqEa9eu4caNG0hJSYGurq5S41EWeV8X06dPx8iRIxs9nvro0aOHws+lIu8hQloCSmIJeYOpq6tj48aNyMzMVHYo0NLSgqGhobLDaNZKS0urLI+Li4OzszNcXV1hZmZWpy8hYrEYEomkviGSBlBaWgqBQKDwc0nvIfKmoSSWkDfYwIEDYWZmhvXr11e5PT8/Hzo6Ovjjjz9kyk+fPg1NTU3k5uYCAIKCguDm5gZ1dXW4u7vj5MmTMj/NHjx4EHp6ejLHeP2K7+tX0fz9/dGtWzdoampCT08PPXv2RGJiIg4ePIg1a9bg7t274HA44HA4OHjwYLV1/Omnn9CuXTsIhUKYm5tj/vz50m1JSUkYMWIEtLS0oKOjg7Fjx+LZs2eVYvrll19ga2sLXV1djB8/Xlrv6dOn48qVK/juu++ksSQkJAAArly5gm7duknP+9lnn6GsrEx67Kp+Xu/UqRNWr14tvc3hcLB3716MGDECmpqa+PrrryvVr1+/ftiyZQuuXr0KDoeDfv36AQAyMzMxdepU6OvrQ0NDA0OHDkVsbKz0fhXPyd9//w0XFxcIhUIkJiZWOn7Fz9pnzpxBx44doa6uDg8PD4SHh8vsd/z4cenjbGtriy1btlT7nABAdnY2/ve//8HExAQ6OjoYMGAA7t69W+N9Pv30Uzg6OkJDQwOtW7fG559/Lk3s5X1drF69GocOHcKpU6ek+/n7+0u3P3r0CP3794eGhgY6duyIwMBAmfvfuHEDffr0gUgkgpWVFRYuXIj8/Pwa496zZw/s7e0hEAjg5OSEX375RWZ7Vc9zVd0J9u/fDysrK2hoaGDUqFHYunWrzPvq9fdQxRXnzZs3w9zcHIaGhpg3b161X4YIUTmMEPJGmjZtGhsxYgQ7ceIEU1dXZ48fP2aMMXby5En2atMwe/ZsNmzYMJn7jho1ik2dOpUxxlheXh4zNjZm48aNY/fv32enT59mrVu3ZgBYaGgoY4wxHx8fpqurK3OM18/z5Zdfso4dOzLGGCstLWW6urps6dKl7OHDhywyMpIdPHiQJSYmsoKCArZkyRLWrl07lpKSwlJSUlhBQUGVddy9ezdTV1dn27dvZ9HR0SwoKIht27aNMcaYRCJhbm5urFevXuzOnTvs5s2brHPnzqxv374yMWlpabHRo0ez8PBwdvXqVWZmZsZWrFjBGGMsKyuLeXp6stmzZ0tjKSsrY0+ePGEaGhps7ty5LCoqip08eZIZGRmxL7/8UnpsGxsbaSwVOnbsKLMPAGZiYsIOHDjA4uLiWEJCQqU6ZmRksNmzZzNPT0+WkpLCMjIyGGOMvfvuu8zZ2ZldvXqVhYWFMS8vL+bg4MBKSkqkzwmfz2c9evRgAQEB7MGDBywvL6/S8S9fvswAMGdnZ+bn58fu3bvH3nnnHWZrays91p07dxiXy2Vr165l0dHRzMfHh4lEIubj41NlfSUSCevZsycbPnw4u337NouJiWFLlixhhoaG0vir8tVXX7GAgAAWHx/P/vrrL2Zqaso2btzIGGNyvy5yc3PZ2LFj2ZAhQ6T7FRcXs/j4eAaAtW3blv39998sOjqavf/++8zGxoaVlpYyxhi7d+8e09LSYtu2bWMxMTEsICCAubm5senTp1cb84kTJxifz2e7du1i0dHRbMuWLYzH47FLly7V+DxXPO6ZmZmMMcauX7/OuFwu+/bbb1l0dDTbtWsXMzAwkHlfvfoeYqz8Pa6jo8PmzJnDoqKi2OnTp5mGhgbbt29ftfESokooiSXkDVWRxDLGWPfu3dkHH3zAGKucXN66dYvxeDz29OlTxhhjz58/Z3w+n/n7+zPGGPvhhx+YgYEBy8/Pl95nz5499UpiMzIyGADpOV73+od1dSwsLNjKlSur3Obn58d4PB5LSkqSlkVERDAALCgoSHoeDQ0NlpOTI91n2bJlzMPDQ3q7b9++bNGiRTLHXrFiBXNycmISiURatmvXLqalpcXEYjFjTP4kdvHixbXWc9GiRTLJd0xMDAPAAgICpGXp6elMJBKx3377jTFW/pwAYGFhYTUeuyKZ8vX1lZZlZGQwkUjEjh07xhhjbOLEiWzQoEEy91u2bBlzcXGR3n61vhcvXmQ6OjqsqKhI5j729vbshx9+qLW+FTZt2sS6dOkivS3v6+LV136FiiT2xx9/lJZVvB6ioqIYY4xNmTKF/e9//5O537Vr1xiXy2WFhYVVnqtHjx5s9uzZMmVjxoyR+WJY1fP8ehI7btw49vbbb8vsM2nSpFqTWBsbG1ZWViZz7nHjxlUZKyGqhroTEEKwceNGHDp0CJGRkZW2devWDe3atcPPP/8MAPjll19gbW2NPn36AACioqLQsWNHaGhoSO/j6elZr3gMDAwwffp0eHl5Yfjw4fjuu++QkpKi0DHS0tKQnJyMt956q8rtUVFRsLKygpWVlbTMxcUFenp6iIqKkpbZ2tpCW1tbetvc3BxpaWk1njsqKgqenp4y3SV69uyJvLw8PHnyRKF6uLu7K7R/xfnV1NTg4eEhLTM0NISTk5NM3QQCATp06CDXMV99Tg0MDGSOFRUVhZ49e8rs37NnT8TGxkIsFlc6VnBwMPLy8mBoaAgtLS3pX3x8POLi4qqN4Y8//kCvXr1gZmYGLS0tfP7550hKSpIrfnm9+niYm5sDgPT5Dg4OxsGDB2Vi9vLygkQiQXx8fJXHq+6xefV5AGp/nqOjo9GtWzeZstdvV6Vdu3bg8Xgydart9UuIqqAklhCCPn36wMvLCytWrKhy+6xZs+Dj4wMA8PHxwYwZM6QJGmOs1uNzudxK+9XWL8/HxweBgYHo0aMHjh07BkdHR9y8eVOe6gAARCJRjdsZY1UOmnm9nM/ny2zncDi1DoCq6tgV9a8ol/cx0dTUrPFc1Z1fnrhEIlG9ZqJ49TVQXX2rIpFIYG5ujrCwMJm/6OhoLFu2rMr73Lx5E+PHj8fQoUPx999/IzQ0FCtXrkRJSUmd46/Kq893RZ0qnm+JRIIPP/xQJua7d+8iNjYW9vb21R6zqsfm9bLanmdFH+Oq6lMRCw3gIy0FJbGEEADAhg0bcPr0ady4caPStsmTJyMpKQk7duxAREQEpk2bJt3m4uKCu3fvorCwUFr2erJpbGyM3NxcmQEw8szH6ebmhuXLl+PGjRtwdXXFkSNHAJRfQazqCt+rtLW1YWtrW+2UQy4uLkhKSsLjx4+lZZGRkcjOzoazs3OtsVWoKhYXFxfcuHFDJsm4ceMGtLW10apVKwDlj8mrV5dzcnKqvZqnKBcXF5SVleHWrVvSsoyMDMTExChUt1e9+pxmZmYiJiYGbdu2lZ7v+vXrMvvfuHEDjo6OMlcBK3Tu3BmpqalQU1ODg4ODzJ+RkVGV5w8ICICNjQ1WrlwJd3d3tGnTptJANHleF4rsV1XcERERlWJ2cHCAQCCo8j7Ozs5VPjaKPg9t27ZFUFCQTNmdO3cUqwAhLQwlsYQQAED79u0xadIkfP/995W26evrY/To0Vi2bBkGDx4MS0tL6baJEyeCy+Vi5syZiIyMxNmzZ7F582aZ+3t4eEBDQwMrVqzAw4cPceTIkRpnFIiPj8fy5csRGBiIxMRE+Pn5ySRgtra2iI+PR1hYGNLT01FcXFzlcVavXo0tW7Zgx44diI2NRUhIiLR+AwcORIcOHTBp0iSEhIQgKCgIU6dORd++fRX6Cd/W1ha3bt1CQkIC0tPTIZFIMHfuXDx+/BgLFizAgwcPcOrUKXz55Zfw9vYGl1ve7A4YMAC//PILrl27hvv372PatGlVJnx10aZNG4wYMQKzZ8/G9evXcffuXUyePBmtWrXCiBEj6nTMtWvX4uLFi7h//z6mT58OIyMj6VyrS5YswcWLF/HVV18hJiYGhw4dws6dO7F06dIqjzVw4EB4enpi5MiR+Oeff5CQkIAbN25g1apV1SZmDg4OSEpKgq+vL+Li4rBjxw6cPHlSZh95Xxe2tra4d+8eoqOjkZ6eLvdo/U8//RSBgYGYN28ewsLCEBsbi7/++gsLFiyo9j7Lli3DwYMHsXfvXsTGxmLr1q04ceJEtY9NdRYsWICzZ89i69atiI2NxQ8//IBz584pZU5nQpoNJfTDJYQ0A1UNbklISGBCoZBV1TRcvHiRAZAODHpVYGAg69ixIxMIBKxTp07s+PHjMgO7GCsfyOXg4MDU1dXZO++8w/bt21ftwK7U1FQ2cuRIZm5uzgQCAbOxsWFffPGFdFBUUVERe++995ienh4DIDMK/nV79+5lTk5OjM/nM3Nzc7ZgwQLptsTERPbuu+8yTU1Npq2tzcaMGcNSU1OrjKnCtm3bmI2NjfR2dHQ06969OxOJRAwAi4+PZ4wx5u/vz7p27coEAgEzMzNjn376qXSUO2OMZWdns7FjxzIdHR1mZWXFDh48WOXArpMnT1ZbtwqvD+xijLEXL16wKVOmMF1dXSYSiZiXlxeLiYmRbq9qsF1VKgYYnT59mrVr144JBALWtWvXSgPC/vjjD+bi4sL4fD6ztrZm3377rcz21wey5eTksAULFjALCwvG5/OZlZUVmzRpksxAu9ctW7aMGRoaMi0tLTZu3Di2bds2mTrI+7pIS0tjgwYNYlpaWgwAu3z5snRg16uv2czMTOn2CkFBQdL7ampqsg4dOrBvvvmmxsdw9+7drHXr1ozP5zNHR0f2888/y2yv6nl+fWAXY4zt27ePtWrViolEIjZy5Ej29ddfMzMzM+n2qgZ2vf4er+q1Qoiq4jAmR6caQsgb7/Dhw1i0aBGSk5Or/em0QkJCAuzs7BAaGtpsVtYidePv74/+/fsjMzOz0ly/RLlmz56NBw8e4Nq1a8oOhRClUFN2AISQ5q2goADx8fFYv349Pvzww1oTWEJI49i8eTMGDRoETU1NnDt3DocOHcLu3buVHRYhSkN9YgkhNdq0aRM6deoEU1NTLF++XNnhEPLGCgoKwqBBg9C+fXvs3bsXO3bswKxZs5QdFiFKQ90JCCGEEEKIyqErsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhJAmt3r1anTq1EnZYRAVRkksqRd/f39wOJxq//r376/sEJvM9OnTpfXm8/kwNTXFoEGD8NNPP0EikSg7POlzlZWVpexQCCFKUNFGbdiwQab8zz//BIfDafJ4li5diosXL8q1LyW8pCqUxJJ66dGjB1JSUir9/fDDD+BwOJg7d66yQ2xSQ4YMQUpKChISEnDu3Dn0798fixYtwjvvvIOysjJlh9dkSktLlR0CIaQK6urq2LhxIzIzM5UdCrS0tGBoaKjsMGrEGHuj2m5VQ0ksqReBQAAzMzOZv8zMTCxbtgwrVqzAmDFjpPteuXIF3bp1g1AohLm5OT777DOZxqG4uBgLFy6EiYkJ1NXV0atXL9y+fVu6veJK4j///AM3NzeIRCIMGDAAaWlpOHfuHJydnaGjo4MJEyagoKCgxriPHz+Odu3aQSgUwtbWFlu2bJHZbmtri3Xr1uGDDz6AtrY2rK2tsW/fvlofD6FQCDMzM7Rq1QqdO3fGihUrcOrUKZw7dw4HDx6s8b5PnjzB+PHjYWBgAE1NTbi7u+PWrVvS7Xv27IG9vT0EAgGcnJzwyy+/yNyfw+Hgxx9/xKhRo6ChoYE2bdrgr7/+AgAkJCRIr4rr6+uDw+Fg+vTpAGp/3A8ePAg9PT2Zc71+5abiKslPP/2E1q1bQygUgjFW6+NFCGlaAwcOhJmZGdavX1/l9vz8fOjo6OCPP/6QKT99+jQ0NTWRm5sLAAgKCoKbmxvU1dXh7u6OkydPgsPhICwsDIBi7UYFf39/dOvWDZqamtDT00PPnj2RmJiIgwcPYs2aNbh79670166a2tOffvpJ2r6bm5tj/vz5AMrbwVdjBICsrCxwOBz4+/tLY6j4nHF3d4dQKMSBAwfA4XDw4MEDmfNs3boVtra20rYuMjISw4YNg5aWFkxNTTFlyhSkp6dXGydpAIyQBpSZmckcHR3Z8OHDmUQikZY/efKEaWhosLlz57KoqCh28uRJZmRkxL788kvpPgsXLmQWFhbs7NmzLCIigk2bNo3p6+uzjIwMxhhjly9fZgBY9+7d2fXr11lISAhzcHBgffv2ZYMHD2YhISHs6tWrzNDQkG3YsKHaGO/cucO4XC5bu3Yti46OZj4+PkwkEjEfHx/pPjY2NszAwIDt2rWLxcbGsvXr1zMul8uioqKqPe60adPYiBEjqtzWsWNHNnTo0Grvm5uby1q3bs169+7Nrl27xmJjY9mxY8fYjRs3GGOMnThxgvH5fLZr1y4WHR3NtmzZwng8Hrt06ZL0GACYpaUlO3LkCIuNjWULFy5kWlpaLCMjg5WVlbHjx48zACw6OpqlpKSwrKwsuR53Hx8fpqurKxPvyZMn2avNx5dffsk0NTWZl5cXCwkJYXfv3pV5/gkhylfRRp04cYKpq6uzx48fM8Yqv59nz57Nhg0bJnPfUaNGsalTpzLGGMvLy2PGxsZs3Lhx7P79++z06dOsdevWDAALDQ1ljMnfbnTs2JExxlhpaSnT1dVlS5cuZQ8fPmSRkZHs4MGDLDExkRUUFLAlS5awdu3asZSUFJaSksIKCgqqrOPu3buZuro62759O4uOjmZBQUFs27ZtjDHG4uPjZWJkrPwzCwC7fPkyY+zl50yHDh2Yn58fe/jwIUtPT2ddunRhq1atkjlXly5d2PLlyxljjCUnJzMjIyO2fPlyFhUVxUJCQtigQYNY//79a35SSL1QEksajFgsZkOHDmXOzs4sOztbZtuKFSuYk5OTTGKza9cupqWlxcRiMcvLy2N8Pp8dPnxYur2kpIRZWFiwTZs2McZeNi7//vuvdJ/169czACwuLk5a9uGHHzIvL69q45w4cSIbNGiQTNmyZcuYi4uL9LaNjQ2bPHmy9LZEImEmJiZsz5491R63piR23LhxzNnZudr7/vDDD0xbW1uaOL6uR48ebPbs2TJlY8aMkfmgASDTyObl5TEOh8POnTvHGHv5+GVmZsrsU9vjLu+HEZ/PZ2lpadXWkRCiXK+2Ud27d2cffPABY6zy+/nWrVuMx+Oxp0+fMsYYe/78OePz+czf358xVt5eGRgYsPz8fOl99uzZU68kNiMjgwGQnuN1r+5bEwsLC7Zy5coqtymSxP75558y9926dStr3bq19HZ0dDQDwCIiIhhjjH3++eds8ODBMvd5/Pix9MIBaRzUnYA0mBUrViAwMBCnTp2Cjo6OzLaoqCh4enrK/JTUs2dP5OXl4cmTJ4iLi0NpaSl69uwp3c7n89GtWzdERUXJHKtDhw7S/5uamkJDQwOtW7eWKUtLS6s2zqioKJnzVMQSGxsLsVhc5Xk4HA7MzMxqPG5NGGPSus+ZMwdaWlrSPwAICwuDm5sbDAwMFIq5psdGU1MT2traNcasyONeGxsbGxgbGyt0H0KIcmzcuBGHDh1CZGRkpW3dunVDu3bt8PPPPwMAfvnlF1hbW6NPnz4Aytujjh07QkNDQ3ofT0/PesVjYGCA6dOnw8vLC8OHD8d3332HlJQUhY6RlpaG5ORkvPXWW/WKBQDc3d1lbo8fPx6JiYm4efMmAODw4cPo1KkTXFxcAADBwcG4fPmyTNvetm1bAOXtLGkclMSSBnHs2DFs3rwZvr6+aNOmTaXtryZxr5YB5Qniq/+v7X58Pl/6/4qZAF7F4XBqnA2gpliqO488x61JVFQU7OzsAABr165FWFiY9A8ARCJRrcdQ9LGRJ2Z5Hncul1vp8alq4JampmYtNSCENBd9+vSBl5cXVqxYUeX2WbNmwcfHBwDg4+ODGTNmSNuEqtrL18nbbrzKx8cHgYGB6NGjB44dOwZHR0dp0iiP2tpRLrc85Xk1rupier09Mzc3R//+/XHkyBEAwNGjRzF58mTpdolEguHDh8u07WFhYYiNjZUm/6ThURJL6i0sLAwffPABNmzYAC8vryr3cXFxwY0bN2Qajxs3bkBbWxutWrWCg4MDBAIBrl+/Lt1eWlqKO3fuwNnZuUHjdXFxkTlPRSyOjo7g8XgNei4AuHTpEsLDw/Hee+8BAExMTODg4CD9A8qvoIaFheHFixdVHsPZ2bnKmBV5bAQCAQDIXG2W53E3NjZGbm4u8vPzpfu8OjCCEKKaNmzYgNOnT+PGjRuVtk2ePBlJSUnYsWMHIiIiMG3aNOk2FxcX3L17F4WFhdKy15PNurYbbm5uWL58OW7cuAFXV1dp0igQCGTarqpoa2vD1ta22mm7Kn4pevUKryJt2aRJk3Ds2DEEBgYiLi4O48ePl27r3LkzIiIiYGtrK9O+Ozg40Bf8RkRJLKmX9PR0jBw5Ev369cPkyZORmpoq8/f8+XMAwNy5c/H48WMsWLAADx48wKlTp/Dll1/C29sbXC4Xmpqa+Oijj7Bs2TKcP38ekZGRmD17NgoKCjBz5swGjXnJkiW4ePEivvrqK8TExODQoUPYuXMnli5dWu9jFxcXIzU1FU+fPkVISAjWrVuHESNG4J133sHUqVOrvd+ECRNgZmaGkSNHIiAgAI8ePcLx48cRGBgIAFi2bBkOHjyIvXv3IjY2Flu3bsWJEycUitnGxgYcDgd///03nj9/jry8PLkedw8PD2hoaGDFihV4+PAhjhw5UutMC4SQ5q99+/aYNGkSvv/++0rb9PX1MXr0aCxbtgyDBw+GpaWldNvEiRPB5XIxc+ZMREZG4uzZs9i8ebPM/RVtN+Lj47F8+XIEBgYiMTERfn5+iImJkX6ZtrW1RXx8PMLCwpCeno7i4uIqj7N69Wps2bIFO3bsQGxsLEJCQqT1E4lE6N69OzZs2IDIyEhcvXoVq1atkvvxGj16NHJycvDRRx+hf//+aNWqlXTbvHnz8OLFC0yYMAFBQUF49OgR/Pz88MEHH9SafJN6UEI/XNKCHDx4kAGo9s/Gxka6r7+/P+vatSsTCATMzMyMffrpp6y0tFS6vbCwkC1YsIAZGRkxoVDIevbsyYKCgqTbqxqYVNXgAXkGAPzxxx/MxcWF8fl8Zm1tzb799luZ7TY2NtIRrRU6duwoM5vC66ZNmyatt5qaGjM2NmYDBw5kP/30ExOLxTXGwxhjCQkJ7L333mM6OjpMQ0ODubu7s1u3bkm37969m7Vu3Zrx+Xzm6OjIfv75Z5n7A2AnT56UKdPV1ZWZdWHt2rXMzMyMcTgcNm3aNMZY7Y87Y+UDMhwcHJi6ujp755132L59+6odoEEIaZ6qGnyakJDAhEIhqyoduHjxIgPAfvvtt0rbAgMDWceOHZlAIGCdOnWSzn7y6qApRdqN1NRUNnLkSGZubs4EAgGzsbFhX3zxhbTtLCoqYu+99x7T09NjAGTatdft3buXOTk5MT6fz8zNzdmCBQuk2yIjI1n37t2ZSCRinTp1Yn5+flUO7Hr1c+ZVY8aMYQDYTz/9VGlbTEwMGzVqFNPT02MikYi1bduWLV68mGZqaUQcxmgyR0IIIYTIOnz4MBYtWoTk5GRpd6TqJCQkwM7ODqGhobSyFmkyasoOgBBCCCHNR0FBAeLj47F+/Xp8+OGHtSawhCgL9YklhBBCiNSmTZvQqVMnmJqaYvny5coOh5BqUXcCQgghhBCiclTiSuz69evB4XCwePHieh/rypUr6NKlC9TV1dG6dWvs3bu32n19fX3B4XAwcuTIep+XEEIIIYQ0nGafxN6+fRv79u2TWYmoruLj4zFs2DD07t0boaGhWLFiBRYuXIjjx49X2jcxMRFLly5F7969631eQgghhBDSsJp1EpuXl4dJkyZh//790NfXl9lWUlKCTz75BK1atYKmpiY8PDzg7+9f4/H27t0La2trbN++Hc7Ozpg1axY++OCDSvPbicViTJo0CWvWrJFZzpQQQgghhDQPzXp2gnnz5uHtt9/GwIED8fXXX8tsmzFjBhISEuDr6wsLCwucPHkSQ4YMQXh4eJXLngJAYGAgBg8eLFPm5eWFAwcOoLS0VLpk59q1a2FsbIyZM2fi2rVrtcZZXFwsM/GyRCLBixcvYGhoWGk5T0JIy8AYQ25uLiwsLKTLWZLGJ5FIkJycDG1tbWpfCWmh5G1fm20S6+vri5CQENy+fbvStri4OBw9ehRPnjyBhYUFAGDp0qU4f/48fHx8sG7duiqPmZqaClNTU5kyU1NTlJWVIT09Hebm5ggICMCBAwcUWopu/fr1WLNmjfyVI4S0GI8fP5ZZzYg0ruTkZFhZWSk7DEJIE6itfW2WSezjx4+xaNEi+Pn5QV1dvdL2kJAQMMbg6OgoU15cXAxDQ0MAgJaWlrR88uTJ0gFcr39zr5icgcPhIDc3F5MnT8b+/fthZGQkd7zLly+Ht7e39HZ2djasra3x+PFj6OjoyH2c5mbwtitIzirC4Vnd0NFKv/Y7EPIGycnJgZWVFbS1tZUdyhul4vGWp30Vi8WIjo6Gk5MTeDxeU4TX5KiOLQPVUZa87WuzTGKDg4ORlpaGLl26SMvEYjGuXr2KnTt34vDhw+DxeAgODq70QFQkr69eSa1o6MzMzJCamiqzf1paGtTU1GBoaIiIiAgkJCRg+PDh0u0SiQQAoKamhujoaNjb21eKVygUQigUVirX0dFR6SRWTV0TXCEXWtqqXQ9CGhP9pN20Kh5vedpXsVgMLS0t6OjotOjEgOqo+qiOVautfW2WSexbb72F8PBwmbIZM2agbdu2+PTTTyEQCCAWi5GWllbt7AEODg6Vyjw9PXH69GmZMj8/P7i7u4PP56Nt27aVzrtq1Srk5ubiu+++o5+wCCGEEEKaiWaZxGpra8PV1VWmTFNTE4aGhtLySZMmYerUqdiyZQvc3NyQnp6OS5cuoX379hg2bFiVx50zZw527twJb29vzJ49G4GBgThw4ACOHj0KAFBXV690Xj09PQCoVE4IIYQQQpRHZYfU+vj4YOrUqViyZAmcnJzw7rvv4tatWzVeLbWzs8PZs2fh7++PTp064auvvsKOHTvw3nvvNWHkhBDS8qxfvx5du3aFtrY2TExMMHLkSERHR8vswxjD6tWrYWFhAZFIhH79+iEiIkJJERNCVF2zvBJbldfngOXz+VizZo3CswL07dsXISEhcu9/8OBBhY5PCCFvoitXrmDevHno2rUrysrKsHLlSgwePBiRkZHQ1NQEAGzatAlbt27FwYMH4ejoiK+//hqDBg1CdHQ0DZAjhChMZZJYQgghzdf58+dlbvv4+MDExATBwcHo06cPGGPYvn07Vq5cidGjRwMADh06BFNTUxw5cgQffvihMsImhKgwSmIJIYQ0uOzsbACAgYEBgPJlv1NTU2UWnBEKhejbty9u3LhRbRL7+mIyOTk5AMpHOovF4hpjqNhe236qjOrYMlAdq963NpTEEkIIaVCMMXh7e6NXr17SQbEV0xtWteBMYmJitceqbjGZ6OhomfnAaxITEyNv6CqruddRwhi4r0yXdDEuDyl5ZRjQWhMW2uWrZUY9L8LuoBew0OZjeR9j6b67bmUgIasUE5IL0dlCBADIKRYjOLkQhiI1dDCrPJ+8qmruz2NDkKeOeXl5ch2LklhCCCENav78+bh37x6uX79eaVtVC87UNBfk64vJVEyC7uTkJNc8sTExMXB0dGzRc282lzoWl0mQmJEPc10RtNXL04ursc/xyR/30dpYE0dmdZPuu9I/EHefZKN/R3s4O5sAAF4IMhCf+Qx8gRDOzs7SfZP9AxH1PA+GpuZwdjYHANxOeIEtvwfB1lADF73dpPsuPnYX4U+z8dkQJwxyKf/ClJ5XjNN3U2Cuq44hrmbSfSUSBi63eczz3Jyex8aiSB0rfnGpDSWxhBBCGsyCBQvw119/4erVqzLLRZqZlScPqampMDc3l5anpaVVujr7quoWk+HxeHJ/2Cuyr6pq6joWlJQhNbsIrY1fXg0ftSMA0c9y8eNUdwz8L4HUUhfgeV4xRALZ+LxczdDBUg+t9DWk5e1b6eHnD7pBR8SX2Xf1cBfcjniIztb60nIhXw2erQ1hrqsus29SZiESMgrA5XKl5fEZhfj67APYGWni7Y6tpPv+75fbuPskC5+/44IRnV6WKxO9Vl/uIw9KYgkhhNQbYwwLFizAyZMn4e/vDzs7O5ntdnZ2MDMzw4ULF+DmVn7lrKSkBFeuXMHGjRuVETJRwKtXzG8+ysDE/TdhZaCBK8v6S/dxsdDB06xCZBeWSsvaWejg7wW9YK4r+5P/3H6VFyTS1xSgj6NxpfIOlrrg52rAROflMdys9XH0f90r7btjfCc8yylGG5OXybW2uhre7mAOYy3ZL0Pp+SVIzyuBvoZAWnb3cRaW/H4X/RyNseodl2ofD9I8UBJLCCGk3ubNm4cjR47g1KlT0NbWlvaB1dXVhUgkAofDweLFi7Fu3Tq0adMGbdq0wbp166ChoYGJEycqOXpSnR+vPcLRoCRM72mHKd1tAADO5jpgAIpLJSgqFUOdX37VbP3o9tg6tqNM9xANgRpcW+k2Wbw2hpqwMdSUKWtnoYtdEztX2vfQjK54lJ6PtmYvp3cLScrEw7Q8WBtoyOy77UIMjLWFeKeDOfReSXrlkZZbhICH6RjlZln7zkQhlMQSQgiptz179gAA+vXrJ1Pu4+OD6dOnAwA++eQTFBYWYu7cucjMzISHhwf8/PxojthmIimjAJej0zC5uw14//UVLSgRI+55Pm49ypAmsboiPm6vHAij165sViSzqkJPQ4DO1rIJ6chOrWBtoAGR4GVdCkrKsMc/DiViCbq3NpQmsdkFpRAJeBCo1bxu1A9XHuHXm4lwNtdBW7Oa+3ETxVASSwghpN4YY7Xuw+FwsHr1aqxevbrxAyIKKSmT4O0d15BbXAbXVrroYqMPoDypczLTRjdbA5n9X09gWwp9TQHecpbto10qZlg0sA0ikrNhb/zyKu93F2Px253H+GSIE6Z62lZ5vLTcIhy+lYjiMgnmHQ7BX/N7QVNIqVdDoUeSEEIIeYNkF5Ti9+DHSMjIx9cj2wMABGpcDG5nhuSsQpkvJNaGGrA21KjuUG8EXREf8/pX7sMb/jQLecVlMNF+2Vc3u7AUkck58LAzAJfLwb4rj1BUKgEAxD3Px6o/71fqckHqjpJYQggh5A2SWVCCr89EgcsBFg90lF5V/fb9Ds1myilVcOx/nghJypTp83s2PAXLT4Sjh70hvhvvhl9vyc6BfDL0KTzsDDC+m3VTh9siURJLCCGEtFCp2UX45WYCBDweFg1sAwCwNdLElO42cDLTlunHSgmsYrhcDtxf62aRX1wGbXU19HMyxr6rcdKrsK/68q8IdLTSg7M59Y+tL0piCSGEkBbq/tNs7LocB30NPj7qZy8dhPTVSFclR9YyzerdGlM8bZCWU4xB265UuY+0f+yCXtCi/rH1UvOQOkIIIYSoBLGE4e97yfCPTpOW9W9rghGdLLBuVHvpjAOkcQnVePjlZmKVV2ErPErPx9Lf7so1IJJUj5JYQgghpAX4OTAB84+EYv3ZB5BIypMjHpeD78a7YWh7c0pim0h6XjF+CUysdb/zEakYvfsGikrFTRBVy0RJLCGEEKKCysQSZBWUSG+P7mwJS30RhrY3Q6mk+quApHHtv/oIhXImpmGPsxD3PK+RI2q5qDMGIYQQomJuPcrAZyfC4WKujY86ls8uoCvi48qy/nTFVck+7GuPmb1fLrvMwcvno2JmLQ6AiORsqHG5sP1vhbFSMcOG89H4oJcdzHVFTRmyyqIklhBCCFExOiI+EjLykVNYiiltTaTllMAqn4GmfMvS9nF8+byJxWKcj83F/juZOB+RCv+l9GVEHpTEEkIIIc1cQno+HqXnYUDb8tWknM11sHtiZ/SwN8DjR7FKjo40BEcjIbra6mOkWyuZBJYxRosjVIP6xBJCCCHN2N3HWRi87SoW+4YhI69YWj60vTlN0dSCOBkJcXRWN0zo+nIhhNCkTLy7MwDBiS+UGFnzRUksIYQQ0oy5ttJFG1MtdLTSk3vAEFFNHA5HZtGJLX4xCH+ajaNBj5UYVfNFX+EIIYSQZiQ9rxhHbyVh/gAHcDgc8LgcHJ7lAV0Rn35WfsNsH98J3/0bi4VvtZGWlYolUONy6LUASmIJIYSQZqOkTIIROwPwNKsQhlpCTPQo/2lZT0O+wUKkZTHSElZaXW3d2SgkZRRg/ej2MNFRV1JkzQN1JyCEEEKaCYEaFx/0soOzuQ46WOoqOxzSzKTnFeNoUBIuPkjD/eRsZYejdHQllhBCCFGiy9FpcDDWgpWBBgBgeg9bTPW0AZ9H15mILCMtIf6a3wv/Rj2TzlTxJqN3CCGEEKIkvwQmYIbPbSzyDUWZuHyVLR6XQwksqZajqTbm9nOQ3s4vLsOsQ7cRlZKjxKiUg94lhBBCiJL0czKBtroaOljqQcyYssMhKmizXzT+jUrDR78GS78IvSmoOwEhhBDShNLzimGkVb5UrJWBBi4t6QdjbaGSoyKqasGANnj8ohAf9m0NtTfsCv6bVVtCCCFESSQShp2XYtF302VEJr/86ZcSWFIfBpoC/DjNHV1tDaRl959mIyE9X4lRNQ1KYgkhhJAmwAAEJWQiv0SMfyJSlR0OaaGeZhVixsHbGLk7APeftuwZDKg7ASGEENIEeFwOdozvBP/o5xjp1krZ4ZAWis/jwEJPhOJSMWyNNJUdTqOiJJYQQghpJFEpObj3JAvjur5ctIASWNKYTLTVcex/3ZFdWAot4cs0jzHW4lb5oiSWEEIIaQTx6fkYszcQ+SVlMNFRR38nE2WHRN4Q6nwe1Pk86e2z4Sk4dz8VW8Z0hECt5fQkpSSWEEIIaQS2hhoY5dYKMc9y0dlKX9nhkDdUTlEpPj1+D7lFZXCz0sMHveyUHVKDoSSWEEIIaQQcDgdr3m2HMglrUVe/iGrRUedj18TO+DP0KaZ62ig7nAZFSSwhhBDSQH65mYiHz3Kx+t124HA44HI5EHBbVj9Eonr6OBqjj6OxTFlRqVimy4Eqoq+GhBBCSAN4mJaLL07dx6HARFx6kKbscAip1q7LDzFyVwAy80uUHUq9UBJLCCGENAAHE21sHN0BH/ZtjQFtaRAXaZ6yC0px6EYCHqTm4tx91Z6vmLoTEEIIIfXw6tRFY7taKTkaQmqmq8HHkdkeCHiYgYke1soOp17oSiwhhBBSRxejnuGDg7dRWCJWdiiEyM3BRBvTethKb4slDCVlEuUFVEeUxBJCCCF1kF9chqW/38Xl6Of4OTBB2eEQUielYgkWHwvD4mOhkEiYssNRCHUnIIQQQupAU6iGH6e545fAxBY19yZ5s0Sl5OCf+6kQM4awJ1nobK06cxpTEksIIYTUURcbA3SxMVB2GITUWQdLPWwZ2xF6GnyVSmAB6k5ACCGEyK2kTIIvT91HanaRskMhpMEM72iB3m2Ma9+xmaEklhBCCJHTFr9oHApMxMT9N1EmVr2BMITUJiOvGB8cvI2HaXnKDqVWzTKJ3bNnDzp06AAdHR3o6OjA09MT586dq/dxr1y5gi5dukBdXR2tW7fG3r17q93X19cXHA4HI0eOrPd5CSGEtAyTPGzgbK6DFcOcocZrlh+hhNTLV39H4tKDNCz5/S4Ya94DvZpln1hLS0ts2LABDg4OAIBDhw5hxIgRCA0NRbt27ep0zPj4eAwbNgyzZ8/Gr7/+ioCAAMydOxfGxsZ47733ZPZNTEzE0qVL0bt373rXhRBCSMthbaiBvxf0Ao+WkiUt1Mq3XfA8rxirh7eTzn/cXDXLr5HDhw/HsGHD4OjoCEdHR3zzzTfQ0tLCzZs3AQAlJSX45JNP0KpVK2hqasLDwwP+/v41HnPv3r2wtrbG9u3b4ezsjFmzZuGDDz7A5s2bZfYTi8WYNGkS1qxZg9atW8sVb3FxMXJycmT+CCGEtAzZBaUyP61SAktaMmNtIQ7P6o42ptrKDqVWzTKJfZVYLIavry/y8/Ph6ekJAJgxYwYCAgLg6+uLe/fuYcyYMRgyZAhiY2OrPU5gYCAGDx4sU+bl5YU7d+6gtLRUWrZ27VoYGxtj5syZcse4fv166OrqSv+srGjFFkLIm+fq1asYPnw4LCwswOFw8Oeff8psZ4xh9erVsLCwgEgkQr9+/RAREaGcYOXEGMOKk+F45/trOH03WdnhENLkHj3PQ2Ry87w412yT2PDwcGhpaUEoFGLOnDk4efIkXFxcEBcXh6NHj+L3339H7969YW9vj6VLl6JXr17w8fGp9nipqakwNTWVKTM1NUVZWRnS09MBAAEBAThw4AD279+vUKzLly9Hdna29O/x48eKV5gQQlRcfn4+OnbsiJ07d1a5fdOmTdi6dSt27tyJ27dvw8zMDIMGDUJubm4TRyq/olIJsgpLUCZmsDLQUHY4hDSpOwkv8O7OAMw/GtIsV6Vrln1iAcDJyQlhYWHIysrC8ePHMW3aNFy5cgURERFgjMHR0VFm/+LiYhgaGgIAtLS0pOWTJ0+WDuB6vW9HRYdlDoeD3NxcTJ48Gfv374eRkZFCsQqFQgiFQoXrSAghLcnQoUMxdOjQKrcxxrB9+3asXLkSo0ePBlA+3sHU1BRHjhzBhx9+2JShyk0k4OGXDzxw90kWOlnpKTscQpqUg4kWNIU8GGoKkFtUCpGAp+yQZDTbJFYgEEgHdrm7u+P27dv47rvvMGDAAPB4PAQHB4PHk30wK5LXsLAwaZmOjg4AwMzMDKmpqTL7p6WlQU1NDYaGhoiIiEBCQgKGDx8u3S6RlE+foqamhujoaNjb2zd4PQkh5E0QHx+P1NRUmW5dQqEQffv2xY0bN6pNYouLi1FcXCy9XTHmQCwWQyyu+cpQxfba9pNHh1Y6DXKchtaQdWyuqI7Koy3k4egsD1jqi8DjcuoVnyJ1lPc8zTaJfR1jDMXFxXBzc4NYLEZaWlq1swdUJL+v8vT0xOnTp2XK/Pz84O7uDj6fj7Zt2yI8PFxm+6pVq5Cbm4vvvvuO+rkSQkg9VFxEqKpbV2JiYrX3W79+PdasWVOpPDo6WuZXt5rExMQoEGm5U1E5KJUwjHLWUYmBXHWpo6qhOipPTFoDHkuOOublyTdHbbNMYlesWIGhQ4fCysoKubm58PX1hb+/P86fPw9HR0dMmjQJU6dOxZYtW+Dm5ob09HRcunQJ7du3x7Bhw6o85pw5c7Bz5054e3tj9uzZCAwMxIEDB3D06FEAgLq6OlxdXWXuo6enBwCVygkhhNRNVd26aprGZ/ny5fD29pbezsnJgZWVFZycnKS/tFVHLBYjJiYGjo6OlX65q8nTzEIc8r2GkjIJujnbwcvZtPY7KUld66hKqI7Ng1jC8PPNRKRmF2H50LaK31+BOso7y1OzTGKfPXuGKVOmICUlBbq6uujQoQPOnz+PQYMGAQB8fHzw9ddfY8mSJXj69CkMDQ3h6elZbQILAHZ2djh79iw+/vhj7Nq1CxYWFtixY0elOWIJIYQ0PDMzMwDlV2TNzc2l5WlpaZWuzr6qujEHPB5P7g97RfYFACtDTXw90hVXY55jaHvzZj9XJqB4HVUR1VG57j3NxNdnHoDDAUa6WcK1lW6djiNPHeV9DBROYs+fPw8tLS306tULALBr1y7s378fLi4u2LVrF/T19RU9ZCUHDhyocTufz8eaNWuq/ImpJn379kVISIjc+x88eFCh4xNCiLI1RRtdF3Z2djAzM8OFCxfg5uYGoHzO7ytXrmDjxo1Kiak6HA4HY92tMNadupERUsHNWh8f9LSDg4kWXMxr/hWkqSg8xdayZcukl3nDw8OxZMkSDBs2DI8ePZL5yYcQQkjTU2YbnZeXh7CwMOng2vj4eISFhSEpKQkcDgeLFy/GunXrcPLkSdy/fx/Tp0+HhoYGJk6c2KhxyauoVAyxpHkvs0mIMn0x3AUTPazBbSb9xBW+EhsfHw8XFxcAwPHjx/HOO+9g3bp1CAkJqfHnfEIIIY1PmW30nTt30L9/f+ntiqR52rRpOHjwID755BMUFhZi7ty5yMzMhIeHB/z8/KCt3TxWBtp0Phq34jOwfnR7dLDUU3Y4hDRrjDEUl0mgzlde9weFk1iBQICCggIAwL///oupU6cCAAwMDGi5VUIIUTJlttH9+vWTzr9dFQ6Hg9WrV2P16tWNGkdd5BaV4njIE2QXliKroLT2OxDyBgt/ko3PT91HOwsdfDOqvdLiUDiJ7dWrF7y9vdGzZ08EBQXh2LFjAMqnTLC0tGzwAAkhhMiP2ui60Vbn4+KSvvgnIhV9HI2VHQ4hzVphqRhhj7MQ9zwPnwxpC10RXylxKNwndufOnVBTU8Mff/yBPXv2oFWrVgCAc+fOYciQIQ0eICGEEPlRG113RlpCTPKwUXYYhDR73ewM8NVIV1xc0ldpCSxQhyux1tbW+PvvvyuVb9u2rUECIoQQUnfURiuGMYbUnCKY64qUHQohKmVKd+V/4ZMric3JyZFOKl1bn6raJp8mhBDSsKiNrrvARxmYciAIY92tsG6Uq0rMCUtIc/M8txjG2pXnc25sciWx+vr6SElJgYmJCfT09Kp8k1esutLc1v0lhJCWjtrourvxMANiCQOfx6EElhAFMcaw6s/7OHb7MX6f4wk366adh1quJPbSpUswMDCQ/p/e6IQQ0nxQG113S72cMMjFFKY66soOhRCVw+FwUFImQZmE4dKDtOaZxPbt21f6/379+jVWLIQQQuqA2uj66Wilp+wQCFFZC99qg/HdrNHFpulXA1R4doLPP/+8yp+jsrOzMWHChAYJihBCSN1QGy2frIISFJVS1wpC6svKQEMpCSxQhyT2559/Rs+ePREXFyct8/f3R/v27ZGQkNCQsRFCCFEQtdHy2eIXg14bL+Gvu8nKDoWQFqOkTIKCkrImO5/CSey9e/dga2uLTp06Yf/+/Vi2bBkGDx6M6dOn4/r1640RIyGEEDlRG107iYQh8FEG0vNKYKgpUHY4hLQIJ0KeoNfGS/jxWnyTnVPheWJ1dXXh6+uLlStX4sMPP4SamhrOnTuHt956qzHiI4QQogBqo2vH5XJwflFvXIl5jh72hsoOh5AWgcflIC23GGfDU7BggEOTDDBV+EosAHz//ffYtm0bJkyYgNatW2PhwoW4e/duQ8dGCCGkDqiNrp0aj4u3nE1pJgdCGshQV3PsndwZf83v1WTvK4WT2KFDh2LNmjX4+eefcfjwYYSGhqJPnz7o3r07Nm3a1BgxEkIIkRO10TUrFUuUHQIhLZJAjYshruYQqNXp+midKHymsrIy3Lt3D++//z4AQCQSYc+ePfjjjz9oWUNCCFEyaqNrtvZ0JEbsCkDAw3Rlh0JIi8YYa/RzKNwn9sKFC1WWv/322wgPD693QIQQQuqO2ujqiSUMZ8JT8CK/BJIm+IAl5E106cEz7PGPw9vtzTG9p12jnkvhJLYmRkZGDXk4QgghDehNb6N5/w3ouhD1DD3s3+zHgpDGEp9egNsJmQDQ/JJYsViMbdu24bfffkNSUhJKSkpktr948aLBgiOEEKIYaqNrZqKjjkkeNsoOg5AWa1h7MzDGMMTVrNHPpXCf2DVr1mDr1q0YO3YssrOz4e3tjdGjR4PL5WL16tWNECIhhBB5URtNCFEmc10RZvVuDUt9jUY/l8JJ7OHDh7F//34sXboUampqmDBhAn788Ud88cUXuHnzZmPESAghRE7URlftdsILeP8WRgO6CGlBFE5iU1NT0b59ewCAlpYWsrOzAQDvvPMOzpw507DREUIIUQi10VW7EPkMJ0Ke4kTIU2WHQkiLxxjD5QdpWP1XBPKLG28ZWoWTWEtLS6SkpAAAHBwc4OfnBwC4ffs2hEJhw0ZHCCFEIdRGV82rnRlm9bLD8I7myg6FkDfCF3/dx8EbCQiMy2i0cyg8sGvUqFG4ePEiPDw8sGjRIkyYMAEHDhxAUlISPv7448aIkRBCiJyoja5aFxt9dLHRV3YYhLwROBwO3utsiWc5xTDTVW+08yicxG7YsEH6//fffx9WVlYICAiAg4MD3n333QYNjhBCiGKojX7zMMaQW1SG/NIS5BSWIreoDAUlZRBLGMokDBJJ+Zy4Qj4XQjUehGpcaKvzYaApgL4GH2q8plthibw5Fg90bPRz1HueWA8PD3h4eDRELIQQQhoYtdFAUPwLGGmrw95YC1xu06zp3tCyC0rx8HkuHqbl4VF6PlKyipCaXYTk7EKkZheiTJJUp+NyOICeiA9DLSFMdYSwM9KEraEmWhuX/2tjqAmeij5mpOVr0MUOCCGEkOZm1akIxD3Px4Fp7njL2VTZ4dQqLacIoY+zEJqUhfCnWYh5lofnucW13o/P40BXxIeOOh8iAQ9qXA64XA7UuBwwBpSIJSgulaCoTIycwlJkFZaCMSCzoBSZBaV4mJaHgIey/Rc1BDy4Wuiig6Uu2lvqoqutASz0RI1VddICpWQXAgBMtAQNfmxKYgkhhLRYpWIGY20hUrKL0Nm6efaJfZJZgGux6Qh4mI7QpCw8zSqscj8LXXXYm2jB3lgLrfREMNNVh4m2APlpT+DRyQUaQj44HPmvmpaJJcgsKMWL/BJk5BXjaVYhEjLyEZ+ej0fP85GQkY+CEjGCEl4gKOHlIhl2RproYW+IXg5G6O1oDC0hpRKkahvOPcDeK3GY3dsOnw1xavDj0yuPEEJIi8XncXB4ZjcwcJpN38+iUjECHqbjWmw6rsY8x6P0fJntXA7gaKoNN2s9dLTUg7O5DuxNtKpMFsViMaIKUqHO5ymUwAKAGo8LY20hjLWFALQrH1vCEPc8D/eeZOPekyzcfZyF+8k5iE8vT3QP30qCQI2Lvo7GGOpqhrecTaEr4isUA2nZHE21wONykFlQ2ijHpySWEEJIi6fsBLaoVIyrMc9xJjwF/0Y+Q36JWLqNx+XAzUoPvdoYoZudATpY6jWLq5s8LgeOptpwNNXG+10sAQA5RaW49egFAh6mwz86DQkZBbgQ+QwXIp+Bz+PgrbammOBhjd4ORirb/5g0nKGu5vBqZwZNoRrEYnHtd1CQwu+S6dOn44MPPkCfPn0aPBhCCCH1Q2108yGRMFx7mI4/Q5/iQuQz5L0y6buFrjr6tzVB7zbG8LQ3VJkrmDrqfAxyMcUgF1Mw5oIHqbk4dz8V58JTEJuWh/MRqTgfkQpLfREmdLPGJA9r6Gk0fF9IohpEAl6jHl/hJDY3NxeDBw+GlZUVZsyYgWnTpqFVq1aNERshhBAFURsta+n5VOgG5GLd6PawN9ZqknOm5Rbh9ztPcDQoCU8yX/ZvNddVx7D25ni7gzk6Weqp/JVKDocDZ3MdOJvrwHuQI6JScnDs9mOcCHmCJ5mF+PafaOy+/BATPawxq3drmOo03nyh5M2kcBJ7/PhxZGRk4Ndff8XBgwfx5ZdfYuDAgZg5cyZGjBgBPl81vk0SQkhLRG30S4UlYkSnF4OlF0NHvXHrzRjD9YfpOHwzCf9GPUPZf3Oz6qirYZRbK7zbyQJuVvoqn7jWxNlcB6vfbYfPhrbFmXsp2H/tER6k5mL/tXgcupGI8d2ssPCtNjDSenNXjnsT/Rv5DH8EP0FXWz14NPDYyjp1EjI0NMSiRYsQGhqKoKAgODg4YMqUKbCwsMDHH3+M2NjYho2SEEKI3KiNLqfG42DzEDN8P77Tf4OXGp5YwnD6bjLe3nEdUw4E4XxEKsokDF1s9LFlTEcErRyINSNc0cXGoEUnsK9S5/PwXhdLnFvUGz7Tu6KrrT5KxBL8HJiIft/6Y9flhygqbfj+kaR5SsjIx/mIVAQnZjX4sevVczwlJQV+fn7w8/MDj8fDsGHDEBERARcXF2zatOmNXuKQEEKU7U1vo/k8LpyMhHB2NmvwYxeXiXEy5Cl+uPoI8f/NLqAh4OH9LpaY6GGNtmY6DX5OVcPhcNC/rQn6tzXBjbh0rD/7AOFPs/HtP9H47c5jrBvVHj0djJQdJmlkvdoY4cvhLnA20wIKnzXosRVOYktLS/HXX3/Bx8cHfn5+6NChAz7++GNMmjQJ2trlU3T4+vrio48+avENJCGENDfURjeuUrEER4OSsOvyQzzLKV+AQE+Dj+k9bDHN0xb6mjSIqSo97I1wal5P/HU3GRvOPUBiRgEm/XgL73W2xBfDXVRmYBtRXFszHbQ10ymfDi5KyUmsubk5JBIJJkyYgKCgIHTq1KnSPl5eXtDT02uA8AghhCiC2uiXAuIyEJWUDz2LIlgaaNbrWIwx/BORio3no6VXXs101DGrtx0mdLOGZjOYEqu543I5GOnWCm85m+Dbf6Lxy81EHA95glvxGfh+ghvcmuliFKT5Uvhdt3XrVowdOxbq6tWPMtTX10d8fHy9AiOEEKI4aqNfOhqUhHP308HVSsXsPvZ1Pk5wYibWnY1CcGImAMBIS4BFb7XB2K5WEKo17hRCLZG2Oh9rR7hiRCcLLD4WhscvCjFmbyA+G9oWM3vZKbxoA2n+Hr8oQGp2ASQlkgY9rkIDu8rKyvDBBx/g4cOHDRoEIYSQ+qM2WpazmQ46mAphol23n/hTsgsx93Aw3ttzA8GJmVDnc7FggAP8l/XHFE9bSmDrqYuNAc4s7I2325ujTMLw9ZkofHY8HKXihk10iPJ9cPA2xvxwC7EZxQ16XIWuxKqpqcHGxqZRVl0ghBBSP9RGy5rX3x6thXn49t+HsDTQQhcb+X6uFksYfr2ZiG//iUZecRk4HGBMF0t4D3KCmS7NddqQdNT52DnRDV1v6GPt35E4ducxnmYVYs/kztBu5GnRSNOx1BehsFQMMWvY4yo8xdaqVauwfPlyvHjxomEjIYQQUm/URsv69W4WEjMKMGHfTZwMfVLr/tGpuXh/7w18+VcE8orL4Gath7MLe2PT+x0pgW0kHA4H03vaYf9Ud2gIeLj+MB3TfgqSWeGMqDafGd1wZWlfdLEQNehxFe4Tu2PHDjx8+BAWFhawsbGBpqZsZ/mQkJAGC44QQohiqI2WtaSnEfbdK8aFqDR8fOwuYp/lYelgp0pzthaVirHr8kPsvRKHUjGDllANnwxxwiQPG/DekPldle0tPQku5/ljAqcDQpKAGT5BODijG9TV6PEnVVM4iR05cmQjhEEIIaQhqEIbvXv3bnz77bdISUlBu3btsH37dvTu3btRziXic7F7ohu2X3qIXZfjsNs/Dg/T8rBtXCfpjAKxz3Kx4GgoHqTmAgAGOpviq5HtYK7bsFeNSC1SUmC6bSN+OOuP0beKcDshEx8fC8OuCZ2UHRmpp/P3U7D931jEpeXC3uQFFg9sgyGu5vU+rsJJ7Jdfflnvk9Zm/fr1OHHiBB48eACRSIQePXpg48aNcHJyqvexr1y5Am9vb0RERMDCwgKffPIJ5syZU+W+vr6+mDBhAkaMGIE///yz3ucmhJDG1hRtdH0cO3YMixcvxu7du9GzZ0/88MMPGDp0KCIjI2Ftbd0o5+RyOVjm1RYOJlr49Hg4/CKf4b09N/DLzG64EJmGtX9HoKhUAiMtAb4a4YohrmY0Ql6J2phq4+CM9piw7xb8Ip9h67+xeNtK2VGRujp/PwVzfn35C1B0ai7m/BqCvZM71zuRbZYT2125cgXz5s1D165dUVZWhpUrV2Lw4MGIjIys9NOYIuLj4zFs2DDMnj0bv/76KwICAjB37lwYGxvjvffek9k3MTERS5cubbSrA4QQ8ibaunUrZs6ciVmzZgEAtm/fjn/++Qd79uzB+vXrK+1fXFyM4uKXI5pzcnIAAGKxuNYBbBXbK/59t4M5LPXU8dHhUOiJ+Pj8z3Ccj0gDAPR2MMTmMR1gpCWERKI6o+Nfr6PKSUkp/wPACQ0FF4Dkzh10chNjt7MEy2++wJ4rAL+7ARwdVbSOclD557EG2/+VXeaaAeBwyssHOZtUeR95HweFk1ixWIxt27bht99+Q1JSEkpKSmS2N8RggvPnz8vc9vHxgYmJCYKDg9GnTx8AQElJCVatWoXDhw8jKysLrq6u2LhxI/r161ftcffu3Qtra2ts374dAODs7Iw7d+5g8+bNMkmsWCzGpEmTsGbNGly7dg1ZWVn1rhMhhDSFpmij66qkpATBwcH47LPPZMoHDx6MGzduVHmf9evXY82aNZXKo6OjoaWlJdd5Y2JipP8XAfjIXQe7g14go0ACHgeY2EEXwxxFeP74EZ7LX51m5dU6qhKT3bthsmePTBn3ww8BAAMBJPafhK+6TcD+Oy/gaRUFbWHLntZMVZ/HmsSl5VYqY6y8PCoqqsr75OXlyXVshZPYNWvW4Mcff4S3tzc+//xzrFy5EgkJCfjzzz/xxRdfKHo4uWRnZwMADAwMpGUzZsxAQkICfH19YWFhgZMnT2LIkCEIDw9HmzZtqjxOYGAgBg8eLFPm5eWFAwcOoLS0FHx++XQea9euhbGxMWbOnIlr167VGl91VwoIIaSpKaONlld6ejrEYjFMTU1lyk1NTZGamlrlfZYvXw5vb2/p7ZycHFhZWcHJyQk6Ojo1nk8sFpcnBXrmiHlWgAcpObgc8xyxaeUrblnqiZBfXIIj4dn49W42BDxAXY2H1saaaGuuAydTbTiaaaGtmTZ0Rc1zOdmKOjo6OoLHU8EEb8UKiGfMAPDfldgPP4Tkhx/A3NxwKDARe2MKweUAs7oYoEt7Z9WsoxxU/nmsgb3JC2l/8wocDuBgog1nZ+cq7yNvHqVwEnv48GHs378fb7/9NtasWYMJEybA3t4eHTp0wM2bN7Fw4UJFD1kjxhi8vb3Rq1cvuLq6AgDi4uJw9OhRPHnyBBYWFgCApUuX4vz58/Dx8cG6deuqPFZqamqVjWdZWRnS09Nhbm6OgIAAHDhwAGFhYXLHWN2VAkIIaWpN3UbXxev9TRlj1fZBFQqFEAqFlcp5PF6lD/v0vGJEpeT895eLR2k5+Ka/Acb8cAuFpbITVLpa6ODo/7pj56WH+OHqIwBAsRgoFosR+iQHoU9kP0QtdNWxf5o72lnoKlzfplDV46ESLC3L/wDgv/i57u5IsXfGt39loFBLhG1jOqCNIFt166iAlljHxQPbyPSJ5XDKr8QuGlh9wi7vY6DwPLGpqalo3749AEBLS0t6lfSdd97BmTNnFD1crebPn4979+7h6NGj0rKQkBAwxuDo6AgtLS3p35UrVxAXFyeNreLv1YFbVTWeFeW5ubmYPHky9u/fDyMjI7ljXL58ObKzs6V/jx8/rk+VCSGkzpq6jVaEkZEReDxepauuaWlplS4w1MXuy3GYciAI684+wMnQp4hJK/9JsqKdr6AlVMMfH3lCW52Puf0coCWo/QOzr5NJs01gWyJzXRF+n+OJlcOc8W5HC2WHQ+phiKs53u/cCkB50ulkqo29k7tgiKtZvY+t8JVYS0tLpKSkwNraGg4ODvDz80Pnzp1x+/btKr8t18eCBQvw119/4erVq7Cs+KYGQCKRgMfjITg4uFK2XtFH6tUrqRU/OZmZmVXZeKqpqcHQ0BARERFISEjA8OHDZc4FlK+EEx0dDXv7yutvV3elgBBCmlpTttGKEggE6NKlCy5cuIBRo0ZJyy9cuIARI0bU+/ifDW2L4KRM3H2cJS1LyS3F63PmfzLECer88o8/XQ0+Puhlhx2Xql+q19lcB18Od6l3fKQW5ubI/2wlNM3LR6y7ttKFayvdFjnY6U3jaKYNAOhrp4kfZ/VssKvNCiexo0aNwsWLF+Hh4YFFixZhwoQJOHDgAJKSkvDxxx83SFCMMSxYsAAnT56Ev78/7OzsZLa7ublBLBYjLS2t2tkDHBwcKpV5enri9OnTMmV+fn5wd3cHn89H27ZtER4eLrN91apVyM3NxXfffQcrK5rjgxDSvDVFG10f3t7emDJlCtzd3eHp6Yl9+/YhKSmp2qkOFSFQ42LXRDe8veM6sgtLUSZm+PhsCl69DmuqI8RYd9m2/INedvgpIKHKFaI0BTzsntQZ6vyW9RNvc8MYw/eRedgn6I1jTAPtlB0QaVD5xeVfRET8hp26TuEkdsOGDdL/v//++7C0tMSNGzfg4OCAd999t0GCmjdvHo4cOYJTp05BW1tbevVUV1cXIpEIjo6OmDRpEqZOnYotW7bAzc0N6enpuHTpEtq3b49hw4ZVedw5c+Zg586d8Pb2xuzZsxEYGIgDBw5Iuyqoq6tL+91W0NPTA4BK5YQQ0hw1RRtdH+PGjUNGRgbWrl2LlJQUuLq64uzZs7CxsWmQ41vqa2DLmI6Y9fMdSBiQ91pf2I/62ldKSPU0BJjewxY7L1e+Grvx/Q6wM9KERMIQkpQJd1uDSvuQ+iksEWPln+E4EfIUAOAf/Zy6brQwFV8QRWoK92KtUb3nie3evTu6d+/eELFI7flvuo3Xp8vy8fHB9OnTpf//+uuvsWTJEjx9+hSGhobw9PSsNoEFADs7O5w9exYff/wxdu3aBQsLC+zYsaPSHLGEENJSNEYbXV9z587F3LlzG+34A11M8b8+rXHgWvmALR4HEDPARFuI8d2qXlBhZi87+ATEI7/k5U/XU7rb4J0O5f0x/w5PwcKjoejjaIzlQ9vC2bzmmRGIfGKe5WLe4RDEpuWBx+VgzbvtMLl7w3yhIc1H/n9JrAa/GSSxMTEx8Pf3R1paWqVJoRtiCpfXO+FXhc/nY82aNQrPCtC3b1+F1g4/ePCgQscnhBBla+w2WhUs83KCb1AScorKwOUCYjHwUb/KV2Er6GsKML2nLXZdLh8c7NpKB6veeTn9z9PMQvB5HFyNeY5rsc/xfmdLzB/gABvDui/A8yYTSxh+vZmI9eeiUFQqgbG2EN+N64QeDvIPqiaqI7fovyuxyu5OsH//fnz00UcwMjKCmZns0nwcDueNaSAJIaQ5oja6HJ/HxfKhTkhNTcXe2xkw1hZiQjVXYSvM6tUaBwMSwOVwsGtiZwjVXia8H/Wzx7D2Zth0PhpnwlPwe/ATHA95gnc6WOCjfvZ0ZVZBZ8NT8OVfEQCA3m2MsG1cJxhp0QDplup5bvlc+nrqDdu3XOEk9uuvv8Y333yDTz/9tEEDIYQQUn/URr801t0KUVF52HfnBeZU0Rf2dfqaAkzrYYv2rXSrvMJqY6iJXZM6Y1ZSJr67GAv/6Of4624yUrIL8fucHo1VjRZDImHgcsu/VL3d3hy/Bz/BQGcTTPawkZaTlikttwgAYCBSchKbmZmJMWPGNGgQhBBCGga10ZV9Mtip2r6wr/t4kCP4vJr77blZ6+PgjG6ISM7GHv84vNfl5RSQz3KKcCX6Od7paA4NQb2HnbQIBSVl+CUwEX8EP8Gp+T2hIVADl8vBoRldq13kgrQcjDE8yym/Emug0bBJrMI9bMeMGQM/P78GDYIQQkjDoDb6pdyiUoQkF8LSQAMiORY0AFBrAvuqdha62DmxM/o7mUjLfIMe45Pj9+Cx7iK+OHUfD1Lf3GXIswpKsP3fGPTYcAnrzz1AbFoefr/zRLqdEtg3Q25xGQpLywdMKv1KrIODAz7//HPcvHkT7du3B5/Pl9neHJY0JISQNxW10S9Fp+bhi0tpsNLPxaB25k1yTlMdIawNNJD0ogA/Bybi58BEdLLSw7sdLTCsvTnMdNWbJA5lik7NxdGgJPx25zEK/pvtwdZQA/P6O2B0Z8ta7k1amuJSCd7taIGMvGKoK3uKrX379kmXeL1y5YrMNg6H80Y1kIQQ0txQG/2Spb4I1rp8OJppgzHWJFf+xnezxlh3KwTEpePIrSRciHyGsMdZCHuche3/xiD480EKXe1VNRl5xRi24xrEkvJZhpzNdTC3nz2GtTcHj/q9vpGMtYXYMaF8kaqoqKgGPbbCSWx8fHyDBkAIIaThUBv9kpmuOnYPt4Czs3OT/nTN5XLQu40xercxRlpuEc7cS8GZeymwNtSQJrCMMcw4eBsu5jro3cYYXWz0IWjgq1SN7UV+CS5EpiLmWR4+f6d8WV5DLSG82plCIgEmelijdxsj6jZAGg31OieEEEIaiYm2Omb0tMOMnnbSq5MA8DAtD/7Rz+Ef/Ry7/eOgIeDBs7UhutoZwM1KD+0tdZvdwLDiMjFCk7IQ8DAdAQ/TcfdJtrROs3rbwVxXBADYOaEzzTZApJ7lFMFQU4DGeEXI9Q7x9vbGV199BU1NTXh7e9e479atWxskMEIIIfKhNrpmjDEUlJQpPSl89ed0Ex11bB3bEddi03Et9jnS80pw8UEaLj5IAwDM7WePT4a0BQBkF5QiIiUbbUy0YaQlaJIrm0WlYvC4HOmV431X47DZLwYlZbKLZ7iY62CoqxkEr3SRoASWvGraT0GIT8/HT9O6oKEXE5brHR0aGorS0lLp/6tDPxkQQkjToza6ev7x+Zjwx0X0aWOMXZM6KzscKV0RH6M7W2J0Z0tIJAxRqTkIeJiO0KQshCZlwc1aX7rvncQXmHnojvR+9saasNATwVxXHabaQliplaJibbGiUjFKxZLyaaw4ss85YwyMvUwy03KKEP40Gxn5JcjIK0FyViESMvLx6Hk+krMLcXimh3QFLUNNIUrKJDDSEqKngyF62huhh4MhLPU1muYBIyqpTCxBak4RissksDbQQHZKwx5friT28uXLVf6fEEKI8lEbXT1ddS5yi8oQ/jRb2aFUi8vloJ2FLtpZvLxO9ery6yVlEtgYls94kF1YipCkLIQkZUm3f9b75VKt/0Y9w/wjL7/I8Lic8ivADCgRS7BnUmcMbV8+U8P1h+nw/u1utXElvihAxRIOA11M4b+0H2wMNd7IL0OkbtR4XISsGoTEFwUw1xUqJ4klhBBCVJGjoRAcDpD0ogDpecUqs7Tpq4ni0PbmGNreHEWlYjx6no+EjHykZBchJasQydmFsNR5uW/FGvUVxBIm0xe3+JXuAK30RGjfSheGWgIYaApgqqMOOyNN6Z+hpkC6r66ID12R7HRthMiDy+XAzkgTYrG4wY+tcBI7atSoKr+FcTgcqKurw8HBARMnToSTk1ODBEgIIUR+1EbL0hRw4WCshdi0PIQmZWGQi6myQ6ozdT4PLhY6cLHQkZa9Pm3RhG7WGOXWCgUlYmkCK/7vqq5QjQtt9Zcf+x6tDXF6Qa+mqwAhDUzh+Tx0dXVx6dIlhISESBvK0NBQXLp0CWVlZTh27Bg6duyIgICABg+WEEJIzaiNrszNSg8AEJqUqdxAmog6nwcDTQGMtYUw01VHKz0RWumJYKQlhFCtYVdMIqQmY/bewCLfUKRkFzbK8RVOYs3MzDBx4kQ8evQIx48fx4kTJxAXF4fJkyfD3t4eUVFRmDZtGj799NPGiJcQQkgNqI2urLO1HgDgVvwL5QZCyBskOasQtxMycfpuMrTVG6crisJJ7IEDB7B48WJwua9Op8HFggULsG/fPnA4HMyfPx/3799v0EAJIYTUjtroynrYGwIAwh5nIaeoVMnREPJmCPrvS6NrK11oCRtnCJbCSWxZWRkePHhQqfzBgwfSTrvq6uo0epEQQpSA2ujKWumLygeWSBgC4zKUHQ4hb4Srsc8BAN1bGzbaORROjadMmYKZM2dixYoV6Nq1KzgcDoKCgrBu3TpMnToVAHDlyhW0a9euwYMlhBBSM2qjq9a7jRHi0/NxPTYdXu3MlB0OIS2aRMJwJbo8ie3nZNxo51E4id22bRtMTU2xadMmPHv2DABgamqKjz/+WNrHavDgwRgyZEjDRkoIIaRW1EZXrXcbY/wcmIjL0WlgjL1RV6IJaWp3n2QhI78E2kI1dLU1aLTzKJzE8ng8rFy5EitXrkROTg4AQEdHR2Yfa2vrhomOEEKIQqiNrlpPB0Oo87l4klmIiOQcuLZq6AUwCSEVLv+3fHIfR2Pp0sWNoV5H1tHRqdQ4EkIIaR6ojX5JQ6CGvo7lP2v+E5Gq5GgIadnO//ceG9DWpFHPU6fhYn/88Qd+++03JCUloaSkRGZbSEhIgwRGCCGkbqiNrtpQV3P4RT5DanaRskMhpMV6kJqDmGd5EPC4GNjIi4sofCV2x44dmDFjBkxMTBAaGopu3brB0NAQjx49wtChQxsjRkIIIXKiNrp6Xu3MELRiIL4d01HZoRDSYp2+mwygfEBXYy9VrHASu3v3buzbtw87d+6EQCDAJ598ggsXLmDhwoXIzs5ujBgJIYTIidro6okEPBhrC5UdBiEtFmMMp++mAACGd7Ro9PMpnMQmJSWhR48eAACRSITc3FwA5dO6HD16tGGjI4QQohBqo+WTkl2IMrFE2WEQ0qLcScxE0osCaAh4eMu5cfvDAnVcdjYjo3yyaBsbG9y8eRMAEB8fD8ZYw0ZHCCFEIdRG126xbyh6bLiEa7Hpyg6FkBbl7uMscDnAOx3MoSFonFW6XqVwEjtgwACcPn0aADBz5kx8/PHHGDRoEMaNG4dRo0Y1eICEEELkR2107fQ1BWAMuPfkze5eQUhDm9W7Na5/OgAL32rTJOdTOE3et28fJJLyn2DmzJkDAwMDXL9+HcOHD8ecOXMaPEBCCCHyoza6drN7t8aU7jZobayl7FAIaXEs9ERNdi6Fk1gulwsu9+UF3LFjx2Ls2LENGhQhhJC6oTa6dk35IUvIm0AiYUh8UQA7I80mPW+dOiwUFRXh3r17SEtLk37jr/Duu+82SGCEEELqhtpo+aVkF0JfQwB1Pk/ZoRCisv6NeoYPfw3GaDdLbBnbdFPYKZzEnj9/HlOnTkV6euUO8RwOB2KxuEECI4QQojhqo+X3zZlI/BSQgC/eccG0HrbKDocQlRX+NBuMASY6TTuFncIDu+bPn48xY8YgJSUFEolE5o8aR0IIUS5qo+VnbagJsYThhytxKCmj6bYIqaslg53wr3dfzOxl16TnVTiJTUtLg7e3N0xNG3cpMUIIIYqjNlp+Y7pYwkhLiOTsIpwKe6rscAhRaQ4mWjDSauZXYt9//334+/s3QiiEEELqi9po+anzeZjdu/zK0R7/OFr8gBAFPUzLQ2JGvtLOr3Cf2J07d2LMmDG4du0a2rdvDz5fdl3chQsXNlhwhBBCFENttGImdbfB3itxeJSejxMhTzG2q5WyQyJEZaw5HYHAuAxsfK8D3uti2eTnVziJPXLkCP755x+IRCL4+/uDw+FIt3E4HGogCSFEiaiNVoyWUA3z+jvg6zNR2PZvDN7tZEEzFRAih5uPMnAtNh18Hgfd7AyUEoPCSeyqVauwdu1afPbZZzJzERJCCFE+aqMVN7m7DX66Ho/k7CL8EpiI2X1aKzskQpo1xhi+/ScaADCuqxWsDDSUEofCLVxJSQnGjRtHjSMhhDRD1EYrTp3Pw+KBjgCA7y/F4kV+iZIjIqR5++tuMoITMyHi87BgQNMsMVsVhVu5adOm4dixY40RCyGEkHpSVhv9zTffoEePHtDQ0ICenl6V+yQlJWH48OHQ1NSEkZERFi5ciJKS5pEwvtfFEs7mOsgpKsMWv2hlh0NIs1VQUob1Zx8AAOb2s4epjrrSYlG4O4FYLMamTZvwzz//oEOHDpUGDWzdurXBgiOEEKIYZbXRJSUlGDNmDDw9PXHgwIEq43r77bdhbGyM69evIyMjA9OmTQNjDN9//32jxKQIHpeD1cNdMG7fTRwNSsIkDxu4WOgoOyxCmp09/nFIzSmClYFI6V1vFE5iw8PD4ebmBgC4f/++zLZXBxAQQghpespqo9esWQMAOHjwYJXb/fz8EBkZicePH8PCwgIAsGXLFkyfPh3ffPMNdHSUnzB6tDbE2x3MceZeCr44dR+/fegJLpc+1wipkJRRgB+uPgIArBzmovRBkAonsZcvX26MOAghhDSA5tpGBwYGwtXVVZrAAoCXlxeKi4sRHByM/v37V3m/4uJiFBcXS2/n5OQAKL+yW9sKZBXbFVmp7DMvR/g/SAOPC2TmF0FPQyD3fZWhLnVUNVTH5oExhk+P30VJmQQ97Q0xsK2RQvEqUkd5j6twEksIIYQoKjU1tdIqYvr6+hAIBEhNTa32fuvXr5de5X1VdHQ0tLS05Dp3TEyMQrF+O9gElrp8pCTGIUWheyqPonVURVRH5Tofm4vARy8g5HEw3VWIBw8e1Ok48tQxLy9PrmPJncSOHj1arv1OnDgh7yEJIYQ0kMZoo1evXl1lAvmq27dvw93dXa7jVdWdgTFWYzeH5cuXw9vbW3o7JycHVlZWcHJyqrULglgsRkxMDBwdHcHjyf+zp7PceypfXeuoSqiOypeSXYSDv18HACwZ7IgB3ewUPoYidaz4xaU2ciexurq68u5KCCGkiTVGGz1//nyMHz++xn1sbW3lOpaZmRlu3bolU5aZmYnS0tJKV2hfJRQKIRRWXo+dx+PJ/WGvyL6vKigpw9dnotChlS7Gd7NW+P5Nqa51VCVUR+X55uwD5BWXoaOVHmb2tgevHn3F5amjvI+B3Emsj4+PvLs2iKtXr+Lbb79FcHAwUlJScPLkSYwcObLex71y5Qq8vb0REREBCwsLfPLJJ5gzZ06V+/r6+mLChAkYMWIE/vzzz3qfmxBCGktjtNFGRkYwMjJqkGN5enrim2++QUpKCszNzQGUD/YSCoXo0qVLg5yjoZ0MfYojt5JwSsDDEFezZt8/lpDGsmBAGyRkFGDTex3qlcA2tGY7G3Z+fj46duyInTt3Ntgx4+PjMWzYMPTu3RuhoaFYsWIFFi5ciOPHj1faNzExEUuXLkXv3r0b7PyEENJSJSUlISwsDElJSRCLxQgLC0NYWJi0b9vgwYPh4uKCKVOmIDQ0FBcvXsTSpUsxe/bsZjEzQVUmdLXGyE4W2DfVnRJY8kZzsdDBmQW94GSmrexQZDTbgV1Dhw7F0KFDq91eUlKCVatW4fDhw8jKyoKrqys2btyIfv36VXufvXv3wtraGtu3bwcAODs7486dO9i8eTPee+896X5isRiTJk3CmjVrcO3aNWRlZdUYa3WjZ1uKvVfi4GKuC3M9dVjoimCupw5zXXVoCJrty4cQ0sS++OILHDp0SHq7Ypqvy5cvo1+/fuDxeDhz5gzmzp2Lnj17QiQSYeLEidi8ebOyQq4Vl8vB9vFuyg6DEKUoKhXjYVoeXFuVd1VqjtPNqWwWMmPGDCQkJMDX1xcWFhY4efIkhgwZgvDwcLRpU/USaIGBgRg8eLBMmZeXFw4cOIDS0lLppOBr166FsbExZs6ciWvXrtUaS3WjZ1WdsbYQTzIL8U/EM/wT8azSdl0RH+a66rDQE8HGUAM97Y3Q3d4QWkKVfVkRQuro4MGD1c4RW8Ha2hp///130wTUCOKe5yEtpxie9obKDoWQRvf1mUj4Bj3G6nfbYXJ3G2WHUyWVzDbi4uJw9OhRPHnyRDrn4NKlS3H+/Hn4+Phg3bp1Vd6vqileTE1NUVZWhvT0dJibmyMgIAAHDhxAWFiY3PFUN3pW1e2b4o7LD9KQnF2IlKwiJGcXIjW7CCnZRcgrLkN2YSmyC0vxIDUXAOATkAA+j4PO1vro62SM4R0sYGWgoeRaEEJI/YU/ycaE/TfB43Lw94Je1LaRFk0sYcgpLEOZhMG6Gb/WVTKJDQkJAWMMjo6OMuXFxcUwNCz/hvzq/IGTJ0/G3r17AVSe4oUxJi3Pzc3F5MmTsX//foUGM1Q3elbVGWsLMbZr1cl4TlGpNLFNySpCRHI2rsWmI+lFAW7Fv8Ct+BfYdD4aHnYGeK+zJYZ3tIBI0PxGXBJCiDwczbRgb6KFu4+z8OEvwTgxt4fSVysipLHwuBx8N74TpnjaoKutgbLDqZZKJrESiQQ8Hg/BwcGVpmGoSF5fvZJaMWjAzMys0qTaaWlpUFNTg6GhISIiIpCQkIDhw4fLnAsA1NTUEB0dDXt7+8aoksrRUedDx4xfqZN3Qno+rsY+x/n7qQh8lCFNaNedi8LEbtaY1sMWpjrqSoqaEELqRqjGw55JnTH8++uITMnBipPh2DKmIy23TlqUnKJSaAnUwOVywOFwmnUCC6hoEuvm5gaxWIy0tLRqZw9wcHCoVObp6YnTp0/LlPn5+cHd3R18Ph9t27ZFeHi4zPZVq1YhNzcX3333XYvoItDYbI00YWukiametkjOKsSfYU9xNCgJj18UYrd/HH68Ho+J3awxt789TLQpmSWEqA4LPRG+n+iGyT/ewomQp2hjoo2P+tGFDdIyFJeJMf2nIBhrC7FlbCeVGN/SbCPMy8vDw4cPpbfj4+MRFhYGAwMDODo6YtKkSZg6dSq2bNkCNzc3pKen49KlS2jfvj2GDRtW5THnzJmDnTt3wtvbG7Nnz0ZgYCAOHDiAo0ePAgDU1dXh6uoqcx89PT0AqFROamehJ8Lcfg74sI89LkQ+w4/XHuFOYiYO3kjAsduPMX+AA2b3bg2BWrOd6Y0QQmT0sDfCF++4YPXpSGw8/wAWeuoY0amVssMipF4kEoZP/riHkKQs6KirIT23WCWS2GabPdy5cwdubm7SaVq8vb3h5uaGL774AkD5xN5Tp07FkiVL4OTkhHfffRe3bt2q8WqpnZ0dzp49C39/f3Tq1AlfffUVduzYITO9Fml4PC4HQ1zN8PscT/w60wNu1nooLBXj23+iMeS7q7gem67sEAkhRG7Te9rhg57ly24u+/0ebj3KUHJEhNQdYwzfnI3CqbBkqHE52DmxM2yNNJUdllw4rGJkE2kwOTk50NXVRXZ2drOdxFuZGGM4GfoU685GIT2vBADwbkcLfDXSFboivpKjI0Q+9D5XDkUed7FYjKioKDg7Ozf4Up5iCcPcw8H4J+IZdEV8/DHHE21Mm34i+MasY3NBdWxcP1yJw/pzDwAA28Z1xCg3y0Y5jyJ1lPd93myvxJKWi8PhYHRnS1xc0g/Te9iCywH+upuMYd9dw52EF8oOjxBCasXjcrB9nBvcrPWQXViKST/eQmJGvrLDIkQhJ0KeSBPYlcOcGy2BbSyUxBKl0RXxsfrddjgxtydsDDXwNKsQY38IxI6LsZBI6AcCQkjzJhLw8NO0rnAy1UZabjEm7r+Fp1mFyg6LELmcv5+CT/64BwD4X5/WmN2ntZIjUhwlsUTpOlnp4e8FvTDKrRUkDNh6IQbzj4agsESs7NAIIaRG+poC/DKrG1obaeJpViEOXItXdkiE1OpseArmHQlFmYRhdOdW+GxIW2WHVCeUxJJmQVudj23jOmHT+x3A53FwNjwVY38IxLOcImWHRgghNTLRVsevszzwvz6tsWKYaiYD5M3x971kLDgaCrGEYbRbK3z7fkdwuao53zElsaRZGetuhcOzukNfg4/wp9kYvfsGkjIKlB0WIYTUyEJPhBXDnKHGK/9YFUsY0nLpSzhpXv66m4xFvmEQSxje62yJb8d0BE9FE1iAkljSDHWzM8Cpeb1g99/Pc2N+uIGHaXnKDosQQuQikTCsOBGOETsD8Og5tV2keSgsEeOrvyMhljCM6WKJTe93UOkEFqAkljRT1oYaOPZhdziaauFZTjHG7wukDwNCiErILSpDcFImnuUUIYFmLCDNhEjAw74pXTDV0wYb31P9BBagJJY0Yyba6vD9nydczHWQnleCKQeCkJpNP88RQpo3XQ0+jv2vO3ZMcMOAtqbKDoe8wcrEEkQm50hvu1nrY+0IV5XtA/s6SmJJs2agKcDPM7tJuxZMOXAL2QWlyg6LEEJqZKglxDsdLKS3H78owK83E5UYEXnTFJSUYfbPd/D+3hu4/zRb2eE0CkpiSbNnpCXELzO7wUxHHbFpeZh/NARlYomywyKEELnkF5dhmk8QVv15H2tOR1D7RZqEGpeLMgmDhLXcQYaUxBKVYKmvgQPT3SHi83AtNh3rzj5QdkiEECIXDQEPY92tAAA+AQmY5hOEjLxiJUdFWirGyhcLEqhxsXtSZ/z+YY8W262FkliiMtpZ6GLr2I4AgJ8C4nHmXoqSIyKEkNpxOBzM6WuP3ZM6Q0PAQ8DDDLy7MwD3nmQpOzTSgjDG8MOVOKz88760TFudj/aWukqMqnFREktUytD25vionz0A4LPj9/D4Bc0hSwhRDcPam+PPeT2lffzf3xuI324/VnZYpAXILSrFR7+GYP25BzhyKwmBcRnKDqlJUBJLVI73IEd0ttZDbnEZFh8Lg0TClB0SIYTIxdFUG3/O64mBziYoKZPgk+P3sNg3FLlFNGCVVK+ii0BVYp7lYsSuAJyPSAWfx8E3o1zRvbVBE0anPJTEEpXD53Hx3Xg3aAp4CE7MxC804pcQokJ0RXzsm+KOpYMdweNy8GdYMobtuIaQpExlh0aaoeSsQnx+6n6lcsYYDgbEY/j31/HoeT7MddXx24eemORhAw6nZUyhVRtKYolKsjLQwKdDy9co33T+AZ5mFSo5IkIIkR+Xy8H8AW3w24fdYakvwuMXhRizNxA7LsbS7AVEqkwswWLfMPx6M0lmvte0nCJM97mN1acjUVwmQX8nY/y9oBfcrPWVGG3ToySWqKzJHjZwt9FHfokYq06GKzscQghRWBcbA5xd1BvDO1pALGHYeiEGvtRPlvzn+0sPEZTwAgCw9UIMGGM4HvwEg7ZdxZWY5xCqcbF2RDv8NL0rDLWESo626VESS1QWl8vBhvc6gM/j4HL0c1yJea7skAghRGE66nzsGN8J28Z1hGdrQ4zraqXskEgzcPNRBr6/FCu9/W/UM7y/NxBLfr+L7MJStG+li9MLemGqp+0b033gdZTEEpXmYKKFqZ62AID1Z6MgpkFehBAVxOFwMMrNEkdme4DPK/9oLimT4MNf7rwxI83JS5n5JVjsG4bXP9KCEzMh4HGxzMsJJ+f2gKOptnICbCYoiSUqb8EAB+ioq+FBai6OhzxRdjiEEFJnr15RO3QjAf9EPMOCo6EoKhUrMSrSlBhjWPbHPaTmVL3K1vrRrpjX3wFqPErh6BEgKk9PQ4D5AxwAAN/9G4tSGhRBCGkBxrhbYkp3G6x8uy3U+TwAgFjCUFxGCW1LduhGAv6Nelbt9mO3n9Q45dabhJJY0iJM9bSFkZYAT7MK8fe9ZGWHQwgh9aanIcBXI10xys1SWvZn6FO8teUK/gx9SnNkt0BRqTn45kxUjfsEJbzA9YfpTRRR80ZJLGkR1Pk8zOhpBwDY4x9HjTshpEU6fCsRTzILsfhYGN75/jquxVIy0xJU/IL4ye/3UCrH59cWvxi6GgtKYkkLMrm7DbSEaoh5lkczFRBCWqTDs7pjmZcTtIVqiEzJwfSDd7DiQipuPsqgpEYFlZRJ8EtgAvp+ewUPM4qRllMEbXU16IrUYKDBh7G2EGY66milJ4KVgQi2hhpobayJ/OIy3H2SrezwlU5N2QEQ0lB0RXyM62qFA9fjcfhWEvq3NVF2SIQQ0qBEAh7m9XfAxG7W2HX5IX4OTMC9Z8WYdOA23G30MX+AA/o6Gr+xUy6pivziMvjefowD1x4hObt8ANfp6FzcWjkQPB5PydGpDkpiSYsyoVt5Ens5Og3PcopgqqOu7JAIIaTB6WsKsOodF0zztMaGUyG48CgfdxIzMd3nNtq30sWs3nYY1t5cOl0XaR4y8opx6EYCDgUmIruwFABgoi3EvH726KCVp+ToVA+9ukmL4mCiDXcbfYglDH8E03RbhJCWzUJPhI+6GcB/SR/M6mUHEZ+H8KfZWOQbhl4bL+HQjQRlh0gA3H+ajc+O30PPjZew49JDZBeWwtZQA+tGtcfVT/pjcndr8Hl09VxRdCWWtDjjulrhTmImToY+xbz+DsoOhxBCGp2pjjpWveOCj/rZ49ebSfj1ViKe5RTjeW6xdB+JhIHDAXU1aCJFpWKcuZeCX24mIuxxlrS8g6Uu5vS1h1c7M/C45c+FWEzTptUFJbGkxRnczgwrTobjYVoeHqblwcFES9khEUJIkzDUEmLRwDb4qJ89zoQno4e9kXTbv1HPsPH8A8zq3RoTulkrMcqWr6hUjF4bLyM9r/xLBJ/HwRBXc0z2sEY3OwP6ItFAKIklLY6uiI+eDkbwj36O8/dTMH9AG2WHRAghTUqgxpWZXxYAToY+RdzzfCSk50vLSsUSFJaKoaPOb+oQW5SE9HwExb/A2K5WAMqnfWxnoYOHaXmY6GGNse5WMNYWKjnKloeSWNIiDWlnBv/o5/gn4hklsYQQAmDT+x3Q19EY3VsbSsuux6bjw1+C0cfRGO90MMdbzibQpoRWIWm5Rei/xR+MAb3aGMFCTwQA+HZMBxhqCqVdBkjDoySWtEgD/pte635yNrIKSqCnIVByRIQQolza6nyMf60bwc34DJSIJfg36hn+jXoGPo+DbnYG6Odogv5tjWFvrEU/ff+nqFSMm48ycPlBGnKKyrBtXCcAgIm2OrrbGYKvxkVuUZl0fxNtmh2nsVESS1okEx11OJho4WFaHm4+eoEhrmbKDomQFishIQFfffUVLl26hNTUVFhYWGDy5MlYuXIlBIKXXyCTkpIwb948XLp0CSKRCBMnTsTmzZtl9iFN67MhbTHazRJnwlPw971kPHqej4CHGQh4mIFvzkbBUl+EPo7G8LAzgIedIcx035zErKRMgsiUHIQkZiLwUQaux6ajsLR8ABaPy8Hq4e2gq1F+1fqXmd2gRtOZNTlKYkmL1cPeEA/T8nAjLp2SWEIa0YMHDyCRSPDDDz/AwcEB9+/fx+zZs5Gfn4/NmzcDKB99/fbbb8PY2BjXr19HRkYGpk2bBsYYvv/+eyXX4M3F4XDgZKYNJzNteA9yRHx6Pvyj03A5+jluPsrAk8xCHLmVhCO3kgAANoYamN27NSZ3t1Fy5A0vLacIIUmZCEnKQkhiJsKfZqO4TCKzj6mOEAPamuKttiZQF7xMWimBVQ5KYkmL5WFniJ8DExGalKXsUAhp0YYMGYIhQ4ZIb7du3RrR0dHYs2ePNIn18/NDZGQkHj9+DAsLCwDAli1bMH36dHzzzTfQ0dFRSuxElp2RJuyM7DCjpx0KSsoQGJeBG3EZCIp/gYjkbCRmFEDyyvK20am5+OzEPXi2NsQnQ9oqMXL5ZBeUIvFFPtT5PDiaagMAnmYVYuzeQDzNKqy0v74GH27W+uhio49+TsZwMdeh7hXNCCWxpMXqYKkLoLyRLSmTQKBG35QJaSrZ2dkwMDCQ3g4MDISrq6s0gQUALy8vFBcXIzg4GP3796/yOMXFxSgufjnXaU5ODoDyK7u1za1Zsb0lz8HZmHUU8jjo52iEfo7l03TlFpUhODETbc20pecLTXyB0KQsCHhcmRhG7r4BDYEaWhtpwspABHNddVjolv9roiNUaCWx6upYJpYgq7AUGXklSM8vQUZeMTLyS5CRV4IX+SXl/88vwRdvO0s/D06GPsbq01EY0s4Uuya6AQCMNNSQWVACDgdwMtWGm5Ue3Kz10NlaD7aGGjJJq0Qie2W2odBrtep9a0NJLGmxLPVF0BXxkV1YiphnuXBtpavskAh5I8TFxeH777/Hli1bpGWpqakwNTWV2U9fXx8CgQCpqanVHmv9+vVYs2ZNpfLo6Ghoack3B3RMTIyckauupqqjKYDM5HRkJpffNueUYWlPI4j4HERFRQEACkolCH9a/mXjVvyLSsfgcgBtARfaQi60hTxoC7jQEXIx0lkHtvrl/aMTs0oQllIEW30+OpqVj/YPj3yALy+lIbtYguwiMXKLJWCVjl5ZUEQs+LmaAICS7AIYavAgLsqTxgsA37xljFbafGhIuwjkoOh5Dh48V/wxqg96rZbLy5NvCV5KYkmLxeFw4NpKBwEPMxCZnENJLCEKWr16dZUJ5Ktu374Nd3d36e3k5GQMGTIEY8aMwaxZs2T2repnWMZYjT/PLl++HN7e3tLbOTk5sLKygpOTU61dEMRiMWJiYuDo6Agej1fjvqqqOdSx12u3y8QSnPzIEnHP8/AoPR/JWUVIyS5ESnYRUrKLUCpm5YlosQTAy9H8k/q0hXMbYwBA+J0n2B98H4NdTDGmjyNiYmLg6uyE6N+foFT8MnXlcAB9DQEMNQUw1BLAQPO///9321BTCDcrXZjolA9Ic3YGZnpVroNzQz8oCmoOz2NjU6SOFb+41IaSWNKi2RtrIeBhBhIy8mvfmRAiY/78+Rg/fnyN+9ja2kr/n5ycjP79+8PT0xP79u2T2c/MzAy3bt2SKcvMzERpaWmlK7SvEgqFEAorTxLP4/Hk/rBXZF9V1ZzqyOPx4GZjADcbg0rbJBKG9PxivMgvQWZ+KbILS5BZUIqsglLYG+tI62BtqIl3O1rA1lBDWqampoadEztDW6gGQy0hDLUE0NcQtKh5WJvT89hY5KmjvI8BJbGkRbMxLP8JKTGjQMmREKJ6jIyMYGRkVPuOAJ4+fYr+/fujS5cu8PHxAZcr2+fR09MT33zzDVJSUmBubg6gfLCXUChEly5dGjx20jxxuRyYaKvXOodqTwcj9HQof+292j/Sqx3NNENeoiSWtGi2hhoAQFdiCWlEycnJ6NevH6ytrbF582Y8f/6yI6GZWXnSMXjwYLi4uGDKlCn49ttv8eLFCyxduhSzZ8+mmQkIIXVCSSxp0cx1ywcEPMsprmVPQkhd+fn54eHDh3j48CEsLS1ltrH/pmPi8Xg4c+YM5s6di549e8osdkAIIXVBSSxp0Qy1yke6ZhaUQCJh4LagvlOENBfTp0/H9OnTa93P2toaf//9d+MHRAh5I9DEmaRF09coT2LFEobswlIlR0MIIYSQhqL0JHb37t2ws7ODuro6unTpgmvXrjXq+Y4fPw4XFxcIhUK4uLjg5MmTSo+JNB6BGhdawvIfHLIoiSWEEEJaDKUmsceOHcPixYuxcuVKhIaGonfv3hg6dCiSkpLqdLyDBw+iX79+1W4PDAzEuHHjMGXKFNy9exdTpkzB2LFjZaZ9aeiYiPIJ/1upq6SscVZaIYQQQkjTU2oSu3XrVsycOROzZs2Cs7Mztm/fDisrK+zZswcAUFJSgk8++QStWrWCpqYmPDw84O/vX+fzbd++HYMGDcLy5cvRtm1bLF++HG+99Ra2b98ud0xE9QgoiSWEEEJaHKUN7CopKUFwcDA+++wzmfLBgwfjxo0bAIAZM2YgISEBvr6+sLCwwMmTJzFkyBCEh4ejTZs2Cp8zMDAQH3/8sUyZl5eXNImVJ6aqvL62d3Z2NgD5V5wgjYtbVghJcSFeZGUiR4cGdpGGUfH+rhh9T5pGxeMtT/sqFouRl5eHnJycFjuBPNWxZaA6ypK3fVVaEpueng6xWFxppRZTU1OkpqYiLi4OR48exZMnT2BhYQEAWLp0Kc6fPw8fHx+sW7dO4XNWtXZ3xfnkiak61a3tbWVlpXCMpPH0267sCEhLlJGRAV1dWtK4qeTm5gKg9pWQN0Fubm6N7avSp9h6fc3sinW0Q0JCwBiDo6OjzPbi4mIYGhoCAJKSkuDi4iLdVlZWhtLSUmhpaUnLJk+ejL1799Z6Pnliqs7ra3tnZWXBxsYGSUlJKv3hVrFG+ePHj1V6MnKqR/PSUuqRnZ0Na2trGBhUXlqTNB4LCws8fvwY2traNbbLQMt5rdWE6tgyUB1lMcaQm5srvYhZHaUlsUZGRuDxeJWucKalpcHU1BQSiQQ8Hg/BwcGVLjtXJKkWFhYICwuTlp84cQLHjx/H4cOHpWWvPlBmZmbVnk+emKpT3dreurq6LeLFqKOjQ/VoRqgezcvry6uSxsXlcistqFCblvJaqwnVsWWgOr4kz0VApbW+AoEAXbp0wYULF2TKL1y4gB49esDNzQ1isRhpaWlwcHCQ+atYxlBNTU2m3MTEBCKRqFJZBU9Pz0rn8/PzQ48ePeSKiRBCCCGENA9K7U7g7e2NKVOmwN3dHZ6enti3bx+SkpIwZ84c2NjYYNKkSZg6dSq2bNkCNzc3pKen49KlS2jfvj2GDRum8PkWLVqEPn36YOPGjRgxYgROnTqFf//9F9evX5crJkIIIYQQ0jwoNYkdN24cMjIysHbtWqSkpMDV1RVnz56FjY0NAMDHxwdff/01lixZgqdPn8LQ0BCenp51SmABoEePHvD19cWqVavw+eefw97eHseOHYOHh4fcMclDKBTiyy+/rLKLgSqhejQvVI/mpaXUoyV7E54jqmPLQHWsGw6j+WEIIYQQQoiKoREJhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbFVOHHiBLy8vGBkZAQOhyOzoEJ9HT9+HC4uLhAKhXBxccHJkyer3Xf9+vXgcDhYvHix3MffvXs37OzsoK6uji5duuDatWsNEHX15KlPfWK6evUqhg8fDgsLC3A4HPz5558NEveVK1fQpUsXqKuro3Xr1jKrur3O19cXHA4HI0eOrNO51q9fj65du0JbWxsmJiYYOXIkoqOj6xi5rKasx549e9ChQwfpRNWenp44d+5cHSN/qSnrUJW6vM+qo+y6kHIJCQmYOXMm7OzsIBKJYG9vjy+//BIlJSUy+yUlJWH48OHQ1NSEkZERFi5cWGmf5uybb75Bjx49oKGhAT09vSr3UfU6NvVnWmOq7fOMMYbVq1fDwsICIpEI/fr1Q0REhHKCrSN5Pu8atJ6MVPLzzz+zNWvWsP379zMALDQ0tEGOe+PGDcbj8di6detYVFQUW7duHVNTU2M3b96stG9QUBCztbVlHTp0YIsWLZLr+L6+vozP57P9+/ezyMhItmjRIqapqckSExPrFK+Pjw/r27dvvepT35jOnj3LVq5cyY4fP84AsJMnT9apLq969OgR09DQYIsWLWKRkZFs//79jM/nsz/++KPSvgkJCaxVq1asd+/ebMSIEXU6n5eXF/Px8WH3799nYWFh7O2332bW1tYsLy9Pperx119/sTNnzrDo6GgWHR3NVqxYwfh8Prt//77K1OF1dXmfVUfZdSEvnTt3jk2fPp39888/LC4ujp06dYqZmJiwJUuWSPcpKytjrq6urH///iwkJIRduHCBWVhYsPnz5ysxcsV88cUXbOvWrczb25vp6upW2q7qdWzozzRlq+3zbMOGDUxbW5sdP36chYeHs3HjxjFzc3OWk5OjnIDrQJ7Pu4asJyWxNYiPj682ic3KymKzZ89mxsbGTFtbm/Xv35+FhYXVeLyxY8eyIUOGyJR5eXmx8ePHy5Tl5uayNm3asAsXLrC+ffvK/eHarVs3NmfOHJmytm3bss8++4wxxlhxcTFbtmwZs7CwYBoaGqxbt27s8uXL1R6vtiRWnvrUFpMiqnrTK1onxhj75JNPWNu2bWXKPvzwQ9a9e3eZsrKyMtazZ0/2448/smnTpjVYspGWlsYAsCtXrqh0PRhjTF9fn/34448qWYea3meqVhdSu02bNjE7Ozvp7bNnzzIul8uePn0qLTt69CgTCoUsOztbGSHWmY+PT5VJrKrXsSE/P5qb1z/PJBIJMzMzYxs2bJCWFRUVMV1dXbZ3714lRNgwXv+8a+h6UneCOmCM4e2330ZqairOnj2L4OBgdO7cGW+99RZevHhR7f0CAwMxePBgmTIvLy/cuHFDpmzevHl4++23MXDgQLljKikpQXBwcKXjDx48WHr8GTNmICAgAL6+vrh37x7GjBmDIUOGIDY2Vu7zKFIfeWKqr7rUqbq479y5g9LSUmnZ2rVrYWxsjJkzZzZIrBWys7MBAAYGBipbD7FYDF9fX+Tn58PT01Ml61DT+0zV6kJql52dLfOeCwwMhKurKywsLKRlXl5eKC4uRnBwsDJCbHCqXMem+PxoTuLj45GamipTX6FQiL59+6p0fV//vGvoeip1xS5VdfnyZYSHhyMtLU268sTmzZvx559/4o8//sD//ve/Ku+XmpoKU1NTmTJTU1OkpqZKb/v6+iIkJAS3b99WKKb09HSIxeJqjx8XF4ejR4/iyZMn0gZt6dKlOH/+PHx8fLBu3TqFzidPfWqLqb7qWqfq4i4rK0N6ejrMzc0REBCAAwcONGh/aKD8C5C3tzd69eoFV1dXlatHeHg4PD09UVRUBC0tLZw8eRIuLi4qVQeg5veZqtWF1C4uLg7ff/89tmzZIi2r6vnS19eHQCBokPapOVDlOjb250dzU1GnquqbmJiojJDqrarPu4au5xt/Jfbw4cPQ0tKS/snTaTw4OBh5eXkwNDSUuW98fDzi4uKQlJQkU/7qhx6Hw5E5FmNMWvb48WMsWrQIv/76K9TV1etUn+qOHxISAsYYHB0dZWK7cuUK4uLiAKBS3HPmzMG1a9cqlclzPkX3qQt56lRd7FXFVFGem5uLyZMnY//+/TAyMqp3nK+aP38+7t27h6NHj6pkPZycnBAWFoabN2/io48+wrRp0xAZGalSdajtfaZKdXnTrF69GhwOp8a/O3fuyNwnOTkZQ4YMwZgxYzBr1iyZbVW1Qw3VPtVVXepYk+ZYR0U01udHc9WS6lvV512FhqrnG38l9t1334WHh4f0dqtWrWq9j0Qigbm5Ofz9/Stt09PTg56ensyVlorL6GZmZpW+QaalpUm/kQQHByMtLQ1dunSRbheLxbh69Sp27tyJ4uJi8Hi8KmMyMjICj8er9vgSiQQ8Hg/BwcGVjqGlpQUAsLCwkIn7xIkTOH78OA4fPiwt09HRkf6/tvrUFlN9yVOnV+tTEXt1caupqcHQ0BARERFISEjA8OHDZc4FAGpqaoiOjoa9vb3C8S5YsAB//fUXrl69CktLS5Wsh0AggIODAwDA3d0dt2/fxnfffYcBAwaoTB1qe58dPnxYZeryppk/fz7Gjx9f4z62trbS/ycnJ6N///7w9PTEvn37ZPYzMzPDrVu3ZMoyMzNRWlraIO1TXSlax5o01zrKo7E/P5obMzMzAOVXKs3NzaXlqlrf6j7vGrqeb3wSq62tDW1tbYXu07lzZ6SmpkJNTa3axqTig/5Vnp6euHDhAj7++GNpmZ+fH3r06AEAeOuttxAeHi5znxkzZqBt27b49NNPq01ggfLkokuXLrhw4QJGjRolLb9w4QJGjBgBNzc3iMVipKWloXfv3lUeQ01NTSZuExMTiESiKusiT31qi6m+5KlTdc/D6dOnZcr8/Pzg7u4OPp+Ptm3bVnoeVq1ahdzcXHz33XewsrJSKE7GGBYsWICTJ0/C398fdnZ2KlmPqjDGUFxcrFJ1qO19JhAIVKYubxojIyO5r2I/ffoU/fv3R5cuXeDj4wMuV/aHR09PT3zzzTdISUmRfpj6+flBKBTKfMFpaorUsTbNtY7yaOzPj+bGzs4OZmZmuHDhAtzc3ACU9wu+cuUKNm7cqOTo5Ffb512D11PhoWBvgIyMDBYaGsrOnDnDADBfX18WGhrKUlJSGGPlo+t69erFOnbsyM6fP8/i4+NZQEAAW7lyJbt9+3a1xw0ICGA8Ho9t2LCBRUVFsQ0bNlQ7xVYFRWYnqJiO5MCBAywyMpItXryYaWpqsoSEBMYYY5MmTWK2trbs+PHj7NGjRywoKIht2LCBnTlzpsrj1TY7gTz1qS2m2uTm5rLQ0FAWGhrKALCtW7ey0NBQ6RQritaJsZdTIX388ccsMjKSHThwoNqpkCrUZxT5Rx99xHR1dZm/vz9LSUmR/hUUFEj3UYV6LF++nF29epXFx8eze/fusRUrVjAul8v8/PxUpg7Vef19psp1IYw9ffqUOTg4sAEDBrAnT57IvO8qVEw/9dZbb7GQkBD277//MktLS5WZfooxxhITE1loaChbs2YN09LSkraVubm5jDHVr2N9Pz+am9o+zzZs2MB0dXXZiRMnWHh4OJswYYLKTbElz+ddQ9aTktgq+Pj4MACV/r788kvpPjk5OWzBggXMwsKC8fl8ZmVlxSZNmsSSkpJqPPbvv//OnJycGJ/PZ23btmXHjx+vcX9FkljGGNu1axezsbFhAoGAde7cWWYap5KSEvbFF18wW1tbxufzmZmZGRs1ahS7d+//7dxfSFNtHAfwr6yma81ZLVim5Wqs0iiHRNSFNIxoSURYzRgx25qgaKChBRJbBF100V/LQGEjsUKiCArLiwqiMhS07A9ZGbOu8sKCaJstn/ei9z28e9Vyae889v2AF+ecZ8/ze87wd347Z8+ejHoeflTEjnU+P4rpZ+7cuTPie+FwOH5pTv+4e/euMJvNQqlUioyMDFFXV/fD9uMpNkaKH4Dw+XxSGznMw+l0Su/j3LlzRV5enlTAymUOo/nv/5mc50Kj5/D/3rcJBAIiPz9fqFQqMXv2bFFWViZCoVCcoo6dw+EYcY7//jk4uc9xPNePyeZn17OhoSHh8XiEXq8XiYmJIjc3V3R3d8c36BiN5Xo3kfNM+HtQIiIiIiLZ+ON/nYCIiIiI5IdFLBERERHJDotYIiIiIpIdFrFEREREJDssYomIiIhIdljEEhEREZHssIglIiIiItlhEUtEREREssMilugXeb1eZGdn/9Yx/H4/UlJSfusYRESTDfMrjQWLWJpyioqKkJCQgISEBEybNg0LFixASUkJBgYG4h1azGw2G3p6euIdBhERAOZXmlymxTsAot9h48aN8Pl8iEQieP78OZxOJz5+/IiLFy/GO7SYqFQqqFSqeIdBRCRhfqXJgndiaUpKTEyEXq9HWloaNmzYAJvNhtbW1qg2Pp8Py5YtQ1JSEpYuXYqzZ89GHd+/fz9MJhNmzJiBRYsW4eDBg/j69euYY/j27RtcLhcMBgNUKhWWLFmCkydPSsdDoRCysrJQXFws7Xv79i20Wi3q6+sBDH/c9fjxY1gsFmg0GiQnJyMnJwcdHR2xnBoionFhfqXJgndiacrr7e3FzZs3MX36dGlffX09PB4PamtrYTab0dnZCbfbDbVaDYfDAQDQaDTw+/1ITU1Fd3c33G43NBoNqqurxzTu0NAQ0tLS0NzcDJ1OhwcPHqC4uBjz5s3Djh07kJSUhKamJqxevRqbNm3C5s2bsWvXLlgsFrjd7hH7tNvtMJvNqKurg0KhQFdXV9S8iIj+T8yvFFeCaIpxOBxCoVAItVotkpKSBAABQBw7dkxqk56eLi5cuBD1usOHD4s1a9aM2u/Ro0dFTk6OtO3xeMTKlStjiq20tFQUFBQM61en04ny8nKh1+tFf3+/dMzn8wmtVittazQa4ff7YxqTiGiiML/SZMI7sTQlWSwW1NXV4cuXL2hoaEBPTw/Ky8sBAP39/Xj37h1cLlfUJ/JIJAKtVittX758GSdOnMDr16/x+fNnRCIRJCcnxxTHuXPn0NDQgEAggGAwiMHBwWErbvft24dr167h9OnTaGlpgU6nG7W/yspK7NmzB42NjVi/fj22b9+OxYsXxxQTEdF4ML/SZMHvxNKUpFarYTQasWLFCpw6dQrhcBiHDh0C8P0xFPD9kVdXV5f09/TpU7S1tQEA2traUFhYCKvViuvXr6OzsxM1NTUYHBwccwzNzc2oqKiA0+lEa2srurq6sHv37mF9fPjwAS9fvoRCocCrV69+2KfX68WzZ8+Qn5+P27dvIzMzE1evXo3l1BARjQvzK00WvBNLfwSPxwOr1YqSkhKkpqZi/vz56O3thd1uH7H9/fv3sXDhQtTU1Ej7AoFATGPeu3cPa9euRWlpqbTvzZs3w9o5nU4sX74cbrcbLpcLeXl5yMzMHLVfk8kEk8mEiooK7Ny5Ez6fD1u3bo0pNiKiicL8SvHCIpb+COvWrUNWVhaOHDmC2tpaeL1e7N27F8nJybBarQiHw+jo6MDAwAAqKythNBrR19eHS5cuYdWqVbhx40bMn8iNRiPOnz+PW7duwWAwoLGxEe3t7TAYDFKbM2fO4OHDh3jy5AnS09PR0tICu92OR48eQalURvUXDAZRVVWFbdu2wWAw4P3792hvb0dBQcGEnCMiol/B/EpxE+8v5RJNNIfDIbZs2TJsf1NTk1AqlaKvr0/azs7OFkqlUsyaNUvk5uaKK1euSO2rqqrEnDlzxMyZM4XNZhPHjx+PWgTws4UHoVBIFBUVCa1WK1JSUkRJSYk4cOCA9JoXL14IlUoVtQDi06dPIiMjQ1RXVwshohcehMNhUVhYKNLT04VSqRSpqamirKxMBIPBXztRREQxYn6lySRBCCHiXUgTEREREcWCC7uIiIiISHZYxBIRERGR7LCIJSIiIiLZYRFLRERERLLDIpaIiIiIZIdFLBERERHJDotYIiIiIpIdFrFEREREJDssYomIiIhIdljEEhEREZHssIglIiIiItn5C/RDpaXSmxg3AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig = plt.figure(figsize=[7, 5.8])\n", + "\n", + "# Plot the D contour\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "plt.plot(np.real(nyqresp.contour), np.imag(nyqresp.contour))\n", + "plt.axis([-1e-4, 4e-4, 0, 4e-4])\n", + "plt.xlabel('Real axis')\n", + "plt.ylabel('Imaginary axis')\n", + "plt.title(\"Zoom on D-contour\", size='medium')\n", + "\n", + "# Clean up the display of the units\n", + "from matplotlib import ticker\n", + "ax1.xaxis.set_major_formatter(ticker.StrMethodFormatter(\"{x:.0e}\"))\n", + "ax1.yaxis.set_major_formatter(ticker.StrMethodFormatter(\"{x:.0e}\"))\n", + "\n", + "ax2 = plt.subplot(2, 2, 2)\n", + "ct.nyquist_plot(L, ax=ax2)\n", + "plt.title(\"Nyquist curve\", size='medium')\n", + "\n", + "ct.suptitle(\"Nyquist contour for pole at the origin\")" + ] + }, + { + "cell_type": "markdown", + "id": "h20JRZ_r4fGy", + "metadata": { + "id": "h20JRZ_r4fGy" + }, + "source": [ + "### Second iteration feedback control design\n", + "\n", + "We now redesign the control system to give something that is stable. We can do this by moving the zero for the controller to a lower frequency, so that the phase lag from the integrator does not overlap with the phase lag from the system dynamics." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "YsM8SnXz_Kaj", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGMCAYAAAAm4UHAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzXUlEQVR4nOzdd3wURf/A8c/d5dJ7QhppQCAEQu+9SUdARH1AkSZSRNBYUB8V8FER9YeNoqACIgiCgNJ7770l9EACJAQS0tvlbn5/xBw50skll4R5v173yu3s3Mx39u72JruzswohhECSJEmSJEmSKhmlqQOQJEmSJEmSpMchO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuykiRJkiRJUqUkO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuykiRJkiRJUqUkO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuyUoW1aNEiFAoFx48fN3UolcLu3btRKBTs3r27TMr39/dnxIgRRinr1KlTdOrUCQcHBxQKBd9++61Ryi3MtWvXsLCw4NChQyV63eeff87atWsfu94bN26gUCj4+uuvi8yb85m/ceNGiev55ZdfqF69OikpKY8RpfQ4cr5zq1atMkn9xvxOSlJlZWbqACRJqhzWrFmDvb29UcoaNWoUKSkpLF++HCcnJ/z9/Y1SbmHefvttunfvTps2bUr0us8//5zBgwczcODAsgnMSIYPH87MmTP58ssvmT59uqnDkcqBMb+TklRZyY6sJEnF0qRJE6OVdf78ecaMGUPv3r2NUp5Go0GhUGBmlv8uLSwsjLVr17J582aj1FcRmZmZMXbsWP73v/8xZcoUrK2tTRpPamqqyWOo6oz5nZSkykoOLZAqvf3799OtWzfs7Oywtrambdu2bNiwIU++8+fPM2DAAJycnLC0tKRx48YsXrzYIE/OqcLff/+dkJAQPDw8sLKyolOnTpw6darIWO7du8eECROoV68etra2uLm50bVrV/bt22eQL/fp5lmzZlGjRg1sbW1p06YNhw8fNsh7/Phx/vOf/+Dv74+VlRX+/v4MGTKEmzdvFhrLkiVLUCgU+Z5K/+STT1Cr1dy5cwfIPtXfr18/3NzcsLCwwMvLi759+3Lr1i39ax49janT6fj0008JDAzEysoKR0dHGjZsyHfffVdgTDmnzrOyspg3bx4KhQKFQqFfX5L3aMmSJbz11ltUr14dCwsLrl69WmC98+bNw8PDg+7duxukF9VuhUJBSkoKixcv1sfauXNnoPjvde7t9dlnn+Hr64ulpSXNmzdnx44dBcac2/bt2+nWrRv29vZYW1vTrl27fF/74osvkpiYyPLly4ssszjvuRCCuXPn0rhxY6ysrHBycmLw4MFcv37doKzOnTsTHBzM3r17adu2LdbW1owaNYqBAwfi5+eHTqfLU3+rVq1o2rSpfjk9PZ3333+fGjVqYG5uTvXq1XnttdeIj483eJ2/vz/9+vVj/fr1NGnSBCsrK4KCgli/fj2Q/RkLCgrCxsaGli1b5js06fjx4/Tv3x9nZ2csLS1p0qQJf/75Z558t2/f5tVXX8XHxwdzc3O8vLwYPHgwd+/eNcin0Wj473//i5eXF/b29jz11FNcunTJIM+2bdsYMGAA3t7eWFpaEhAQwNixY7l//75BvmnTpqFQKLhw4QJDhgzBwcEBd3d3Ro0aRUJCQp5tUdLvZE75Z8+e5bnnnsPBwQFnZ2dCQkLIysri0qVL9OrVCzs7O/z9/fnyyy/zbBdJqlCEJFVQCxcuFIA4duxYgXl2794t1Gq1aNasmVixYoVYu3at6NGjh1AoFGL58uX6fBcvXhR2dnaiVq1a4rfffhMbNmwQQ4YMEYCYOXOmPt+uXbsEIHx8fMSAAQPEunXrxO+//y4CAgKEvb29uHbtWqExX7x4UYwfP14sX75c7N69W6xfv16MHj1aKJVKsWvXLn2+8PBwAQh/f3/Rq1cvsXbtWrF27VrRoEED4eTkJOLj4/V5V65cKT7++GOxZs0asWfPHrF8+XLRqVMnUa1aNXHv3r08sefUk5GRITw8PMSLL75oEKNGoxFeXl7iueeeE0IIkZycLFxcXETz5s3Fn3/+Kfbs2SNWrFghxo0bJ0JDQ/Wv8/PzE8OHD9cvz5gxQ6hUKjF16lSxY8cOsXnzZvHtt9+KadOmFbh9YmJixKFDhwQgBg8eLA4dOiQOHTr0WO9R9erVxeDBg8U///wj1q9fL2JjYwust2bNmuL55583SCtOuw8dOiSsrKxEnz599LFeuHDhsd5rHx8f0b59e/HXX3+JlStXihYtWgi1Wi0OHjyoz5vzmQ8PD9enLVmyRCgUCjFw4ECxevVqsW7dOtGvXz+hUqnE9u3b87Q1KChIDBo0qMBtUdy2CyHEmDFjhFqtFm+99ZbYvHmzWLZsmahbt65wd3cX0dHR+nydOnUSzs7OwsfHR/zwww9i165dYs+ePeLvv/8WgNi2bZtB/WFhYQIQ33//vRBCCJ1OJ3r27CnMzMzERx99JLZu3Sq+/vprYWNjI5o0aSLS09P1r/Xz8xPe3t4iODhY/PHHH2Ljxo2iVatWQq1Wi48//li0a9dOrF69WqxZs0bUqVNHuLu7i9TUVP3rd+7cKczNzUWHDh3EihUrxObNm8WIESMEIBYuXKjPd+vWLeHp6SlcXV3FrFmzxPbt28WKFSvEqFGjRFhYmBDi4WfR399fvPjii2LDhg3ijz/+EL6+vqJ27doiKytLX968efPEjBkzxD///CP27NkjFi9eLBo1aiQCAwNFZmamPt/UqVMFIAIDA8XHH38stm3bJmbNmiUsLCzEyJEjDbbj43wnc5f/v//9T2zbtk28++67AhATJ04UdevWFd9//73Ytm2bGDlypADEX3/9VejnSZJMSXZkpQqrOB3Z1q1bCzc3N5GUlKRPy8rKEsHBwcLb21vodDohhBD/+c9/hIWFhYiIiDB4fe/evYW1tbW+45jzw9S0aVP9a4UQ4saNG0KtVotXXnmlRG3IysoSGo1GdOvWTTzzzDP69JzOTYMGDQx+7I4ePSoA8ccffxRaZnJysrCxsRHfffedPv3RjqwQ2T9a5ubm4u7du/q0FStWCEDs2bNHCCHE8ePHBSDWrl1baFse/dHs16+faNy4cZHbID+AeO211wzSSvoedezYsVh13b17VwDiiy++MEgvbrttbGwM2l2Qot5rLy8vkZaWpk9PTEwUzs7O4qmnntKnPdqRTUlJEc7OzuLpp582qEur1YpGjRqJli1b5onjxRdfFO7u7oXGWpy25/zD8X//938G6ZGRkcLKykq8++67+rROnToJQOzYscMgr0ajEe7u7mLo0KEG6e+++64wNzcX9+/fF0IIsXnzZgGIL7/80iBfzmd1/vz5+jQ/Pz9hZWUlbt26pU87ffq0AISnp6dISUnRp69du1YA4p9//tGn1a1bVzRp0kRoNBqDuvr16yc8PT2FVqsVQggxatQooVarDTr2j8r5LPbp08cg/c8//xSA/p+0R+l0OqHRaMTNmzcFIP7++2/9upyO5qPbYsKECcLS0tJgv/Q438mc8h99Xxs3biwAsXr1an2aRqMR1apVK/IfI0kyJTm0QKq0UlJSOHLkCIMHD8bW1lafrlKpGDZsGLdu3dKf3tu5cyfdunXDx8fHoIwRI0aQmpqa5/T70KFDDU55+/n50bZtW3bt2lVkXD/++CNNmzbF0tISMzMz1Go1O3bsICwsLE/evn37olKp9MsNGzYEMBg2kJyczJQpUwgICMDMzAwzMzNsbW1JSUnJt8zcxo8fD8CCBQv0abNnz6ZBgwZ07NgRgICAAJycnJgyZQo//vgjoaGhRbYRoGXLlpw5c4YJEyawZcsWEhMTi/W6gpT0PXr22WeLVW7O8Ak3NzeD9Mdtd24lea8HDRqEpaWlftnOzo6nn36avXv3otVq8y3/4MGDxMXFMXz4cLKysvQPnU5Hr169OHbsWJ5ZCtzc3IiJiSErK6vAuIvT9vXr16NQKHjppZcM6vbw8KBRo0Z5ZsdwcnKia9euBmlmZma89NJLrF69Wn9aXKvVsmTJEgYMGICLiwuQ/d4Dea7Af+6557CxsckzjKJx48ZUr15dvxwUFARkD3HIPS43Jz3n+3T16lUuXrzIiy++CGDQrj59+hAVFaXfZ2zatIkuXbroyyhM//79DZbz+x7HxMQwbtw4fHx89J8VPz8/gHw/L/mVmZ6eTkxMTIFxlOQ72a9fP4PloKAgFAqFwbh1MzMzAgICihzGJEmmJDuyUqX14MEDhBB4enrmWefl5QVAbGys/m9x8uXw8PDIk9fDwyNPvkfNmjWL8ePH06pVK/766y8OHz7MsWPH6NWrF2lpaXny5/yQ57CwsAAwyDt06FBmz57NK6+8wpYtWzh69CjHjh2jWrVq+ZaZm7u7Oy+88AI//fQTWq2Ws2fPsm/fPiZOnKjP4+DgwJ49e2jcuDEffPAB9evXx8vLi6lTp6LRaAos+/333+frr7/m8OHD9O7dGxcXF7p16/bY06WV9D3KL29+crZR7k4kPH67c5T0vS7oM5WZmUlycnK+deSMxRw8eDBqtdrgMXPmTIQQxMXFGbzG0tISIQTp6ekFxl6ctt+9exchBO7u7nnqPnz4cJ6xnQW9H6NGjSI9PV0/bnfLli1ERUUxcuRIfZ7Y2FjMzMyoVq2awWsVCkW+3ztnZ2eDZXNz80LTc7ZFzvZ8++2387RpwoQJAPp23bt3D29v7wK3YW5FfY91Oh09evRg9erVvPvuu+zYsYOjR4/qx8M/7r7hUSX5Tua3raytrfN8T8zNzQv9LEmSqclZC6RKy8nJCaVSSVRUVJ51OUfhXF1dgewfheLkyxEdHZ0nb3R0dJ4fl0f9/vvvdO7cmXnz5hmkJyUlFfq6giQkJLB+/XqmTp3Ke++9p0/PyMjI04EpyOTJk1myZAl///03mzdvxtHRUX9EKkeDBg1Yvnw5QgjOnj3LokWL+OSTT7CysjKoNzczMzNCQkIICQkhPj6e7du388EHH9CzZ08iIyNLfMV6Sd+j3EfMC5Pzuvy21+O0O0dJ3+uCPlPm5uYGZxTyi/2HH36gdevW+eZxd3c3WI6Li8PCwqLAMnMU1XZXV1cUCgX79u3Td6JyezStoPejXr16tGzZkoULFzJ27FgWLlyIl5cXPXr00OdxcXEhKyuLe/fuGXRmhRBER0fTokWLQttSXDnb8/3332fQoEH55gkMDASgWrVqBhe+lcb58+c5c+YMixYtYvjw4fr0wi5QfBzG/k5KUmUgj8hKlZaNjQ2tWrVi9erVBkcpdDodv//+O97e3tSpUweAbt26sXPnTn2nKMdvv/2GtbV1nk7CH3/8gRBCv3zz5k0OHjyov2K9IAqFIs8P/NmzZ0s8CX/u8oQQecr8+eefCzwd/ahmzZrRtm1bZs6cydKlSxkxYgQ2NjYF1teoUSO++eYbHB0dOXnyZLHqcHR0ZPDgwbz22mvExcU91oT+JX2PisvPzw8rKyuuXbtWYJ7C2m1hYZHvUbCSvterV682OLKVlJTEunXr6NChg8HwktzatWuHo6MjoaGhNG/ePN9HzlHHHNevX6devXoFtrW4be/Xrx9CCG7fvp1vvQ0aNCh2HSNHjuTIkSPs37+fdevWMXz4cIM2d+vWDcj+5yC3v/76i5SUFP360goMDKR27dqcOXOmwO1pZ2cHQO/evdm1a1ee2QceR04n/9HPy08//VTqsgtijO+kJFUG8oisVOHt3Lkz351wnz59mDFjBt27d6dLly68/fbbmJubM3fuXM6fP88ff/yh/wGZOnUq69evp0uXLnz88cc4OzuzdOlSNmzYwJdffomDg4NB2TExMTzzzDOMGTOGhIQEpk6diqWlJe+//36hsfbr14///e9/TJ06lU6dOnHp0iU++eQTatSoUeiYxYLY29vTsWNHvvrqK1xdXfH392fPnj388ssvODo6FrucyZMn88ILL6BQKPSnUHOsX7+euXPnMnDgQGrWrIkQgtWrVxMfH59nuqrcnn76aYKDg2nevDnVqlXj5s2bfPvtt/j5+VG7du0St7Wk71FxmZub5zutWXHb3aBBA3bv3s26devw9PTEzs6OwMDAEr/XKpWK7t27ExISgk6nY+bMmSQmJhZ68wJbW1t++OEHhg8fTlxcHIMHD8bNzY179+5x5swZ7t27Z3BEWKfTcfToUUaPHl3oNilO29u1a8err77KyJEjOX78OB07dsTGxoaoqCj2799PgwYN9GOwizJkyBBCQkIYMmQIGRkZecbCdu/enZ49ezJlyhQSExNp164dZ8+eZerUqTRp0oRhw4YVq57i+Omnn+jduzc9e/ZkxIgRVK9enbi4OMLCwjh58iQrV64Esqeo27RpEx07duSDDz6gQYMGxMfHs3nzZkJCQqhbt26x66xbty61atXivffeQwiBs7Mz69atY9u2bUZrFxj/OylJlYIJLjCTpGLJuYK7oEfOld379u0TXbt2FTY2NsLKykq0bt1arFu3Lk95586dE08//bRwcHAQ5ubmolGjRgbT7Qjx8CrkJUuWiEmTJolq1aoJCwsL0aFDB3H8+PEiY87IyBBvv/22qF69urC0tBRNmzYVa9euFcOHDxd+fn76fDlXsn/11Vd5ygDE1KlT9cu3bt0Szz77rHBychJ2dnaiV69e4vz583muWM5v1oLccVlYWIhevXrlWXfx4kUxZMgQUatWLWFlZSUcHBxEy5YtxaJFiwzyPVrf//3f/4m2bdsKV1dXYW5uLnx9fcXo0aPFjRs3itxO5DNrgRAle49WrlxZZD05fvnlF6FSqcSdO3dK3O7Tp0+Ldu3aCWtrawGITp06CSFK/l7PnDlTTJ8+XXh7ewtzc3PRpEkTsWXLFoO68pt+Swgh9uzZI/r27SucnZ2FWq0W1atXF3379s2zDXbs2CEAceLEiUK3R3HbLoQQv/76q2jVqpX++1WrVi3x8ssvG3wfOnXqJOrXr19onUOHDhWAaNeuXb7r09LSxJQpU4Sfn59Qq9XC09NTjB8/Xjx48MAgn5+fn+jbt2+e1+f3mSroe3bmzBnx/PPPCzc3N6FWq4WHh4fo2rWr+PHHHw3yRUZGilGjRgkPDw+hVquFl5eXeP755/WzgBT0WcypN/dnNzQ0VHTv3l3Y2dkJJycn8dxzz4mIiIg83/ecWQVyT60nRP6fjcf5ThZU/vDhw4WNjU2e7Vqc91aSTEkhRK7zp5L0hNu9ezddunRh5cqVDB482NThGM26devo378/GzZsoE+fPqYOp9ylp6fj6+vLW2+9xZQpU0wdTpkZNmwY169f58CBA6YORZIkqVzIMbKSVIWFhoayadMm3nrrLRo3bmy0W8JWNpaWlkyfPp1Zs2blma6qqrh27RorVqxg5syZpg5FkiSp3MgxspJUhU2YMIEDBw7QtGlT/W1Wn1Svvvoq8fHxXL9+vUQXKlUWERERzJ49m/bt25s6FEmSpHIjhxZIkiRJkiRJlZIcWiBJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIyuVyogRIxg4cGCZ16NQKFi7dq3RyxVC8Oqrr+Ls7IxCoeD06dNGr0Mqns6dO/PGG28Umsff359vv/22XOKRpKpo2rRpNG7cuNzrLc73+3HNnz8fHx8flEql3D88gWRH9gkwYsQIFAqF/uHi4kKvXr04e/asqUMrM8XtYG/evJlFixaxfv16oqKiCA4ONmocZdUBNxXZkZSkksnZ/37xxRcG6WvXrkWhUJR7PG+//TY7duwoVl5TdXoBFi1ahKOjY5H5EhMTmThxIlOmTOH27du8+uqrRo2jLDvgknHIjuwTolevXkRFRREVFcWOHTswMzOjX79+pg7L5K5du4anpydt27bFw8MDMzOzEpchhCArK6sMopMkqSqwtLRk5syZPHjwwNShYGtri4uLi6nDMJqIiAg0Gg19+/bF09MTa2vrxypHo9EYOTKpvMiO7BPCwsICDw8PPDw8aNy4MVOmTCEyMpJ79+7p85w7d46uXbtiZWWFi4sLr776KsnJyfr1Wq2WkJAQHB0dcXFx4d1330UIYVCPEIIvv/ySmjVrYmVlRaNGjVi1alWhsfn7+/O///2PoUOHYmtri5eXFz/88EOhryks1mnTprF48WL+/vtv/VHo3bt35yljxIgRvP7660RERKBQKPD39wcgIyODSZMm4ebmhqWlJe3bt+fYsWP61+3evRuFQsGWLVto3rw5FhYW7Nu3r9B4SyrnaMSWLVsICgrC1tZW/89IbgsXLiQoKAhLS0vq1q3L3Llz9eueffZZXn/9df3yG2+8gUKh4MKFCwBkZWVhZ2fHli1bjBp7Qfbs2UPLli2xsLDA09OT9957r9B/AGJiYnj66aexsrKiRo0aLF26tFzilCRje+qpp/Dw8GDGjBn5rk9JScHe3j7PvnLdunXY2NiQlJQEwNGjR2nSpAmWlpY0b96cNWvWGAyJyu8o5qNHfh89yrp7925atmyJjY0Njo6OtGvXjps3b7Jo0SKmT5/OmTNn9PvRRYsW5Rt/zhmw6dOn4+bmhr29PWPHjiUzM7PAbfLgwQNefvllnJycsLa2pnfv3ly5ckUf08iRI0lISNDXPW3atDxlLFq0iAYNGgBQs2ZNFAoFN27cAGDevHnUqlULc3NzAgMDWbJkicFrFQoFP/74IwMGDMDGxoZPP/20wFgLcuPGDRQKBatXr6ZLly5YW1vTqFEjDh06ZJDv4MGDdOzYESsrK3x8fJg0aRIpKSkA/PDDD/o2wMP3a86cOfq0nj178v7775c4vieGkKq84cOHiwEDBuiXk5KSxNixY0VAQIDQarVCCCFSUlKEl5eXGDRokDh37pzYsWOHqFGjhhg+fLj+dTNnzhQODg5i1apVIjQ0VIwePVrY2dkZlP3BBx+IunXris2bN4tr166JhQsXCgsLC7F79+4C4/Pz8xN2dnZixowZ4tKlS+L7778XKpVKbN26VZ8HEGvWrClWrElJSeL5558XvXr1ElFRUSIqKkpkZGTkqTc+Pl588sknwtvbW0RFRYmYmBghhBCTJk0SXl5eYuPGjeLChQti+PDhwsnJScTGxgohhNi1a5cARMOGDcXWrVvF1atXxf379/NtW+64S2LhwoVCrVaLp556Shw7dkycOHFCBAUFiaFDh+rzzJ8/X3h6eoq//vpLXL9+Xfz111/C2dlZLFq0SAghxPfffy+Cg4P1+Rs3bixcXV3FnDlzhBBCHDx4UJiZmYmkpKRix+Xn5ye++eabErfn1q1bwtraWkyYMEGEhYWJNWvWCFdXVzF16lR9nk6dOonJkyfrl3v37i2Cg4PFwYMHxfHjx0Xbtm2FlZXVY9UvSaaSs/9dvXq1sLS0FJGRkUIIIdasWSNy/wSPGTNG9OnTx+C1zzzzjHj55ZeFEEIkJyeLatWqiRdeeEGcP39erFu3TtSsWVMA4tSpU0KI7P2Gg4ODQRmP1jN16lTRqFEjIYQQGo1GODg4iLfffltcvXpVhIaGikWLFombN2+K1NRU8dZbb4n69evr96OpqakFttHW1lYf2/r160W1atXEBx98oM/z6Pe7f//+IigoSOzdu1ecPn1a9OzZUwQEBIjMzEyRkZEhvv32W2Fvb6+vO7/9VGpqqti+fbsAxNGjR0VUVJTIysoSq1evFmq1WsyZM0dcunRJ/N///Z9QqVRi586d+tcCws3NTfzyyy/i2rVr4saNG/m27dG4cwsPDxeAqFu3rli/fr24dOmSGDx4sPDz8xMajUYIIcTZs2eFra2t+Oabb8Tly5fFgQMHRJMmTcSIESP06xUKhbh3754QQog33nhDuLq6iueee07/Htna2opNmzblG4MkhOzIPgGGDx8uVCqVsLGxETY2NgIQnp6e4sSJE/o88+fPF05OTiI5OVmftmHDBqFUKkV0dLQQQghPT0/xxRdf6NdrNBrh7e2t78gmJycLS0tLcfDgQYP6R48eLYYMGVJgfH5+fqJXr14GaS+88ILo3bu3fjl3h7A4sT7aeS/IN998I/z8/PTLycnJQq1Wi6VLl+rTMjMzhZeXl/jyyy+FEA87smvXri2y/NJ0ZAFx9epVfdqcOXOEu7u7ftnHx0csW7bM4HX/+9//RJs2bYQQhjvIuLg4oVarxaeffqrfQX7++eeiVatWJYrrcTuyH3zwgQgMDBQ6nc6gPba2tvp/pnL/YFy6dEkA4vDhw/r8YWFhApAdWalSyb0vat26tRg1apQQIm8H88iRI0KlUonbt28LIYS4d++eUKvV+oMAP/30k3B2dhYpKSn618ybN69UHdnY2FgBFHigIXfeotqYX2wFfb8vX74sAHHgwAF9/vv37wsrKyvx559/FtiW/Jw6dUoAIjw8XJ/Wtm1bMWbMGIN8zz33nME/CoB44403iiy/OB3Zn3/+WZ924cIFAYiwsDAhhBDDhg0Tr776qsHr9u3bJ5RKpUhLSxM6nU64urqKVatWCSGyDzjMmDFDuLm5CSEe74DDk0YOLXhCdOnShdOnT3P69GmOHDlCjx496N27Nzdv3gQgLCyMRo0aYWNjo39Nu3bt0Ol0XLp0iYSEBKKiomjTpo1+vZmZGc2bN9cvh4aGkp6eTvfu3bG1tdU/fvvtN65du1ZofLnLzVkOCwvLN29RsZbGtWvX0Gg0tGvXTp+mVqtp2bJlnnhyt70sWFtbU6tWLf2yp6cnMTExANy7d4/IyEhGjx5tsK0//fRT/bYODg7GxcWFPXv2sG/fPho1akT//v3Zs2cPkH36rlOnTmXahhxhYWG0adPG4BRnu3btSE5O5tatW/nmf/TzVbdu3WJd/CFJFdXMmTNZvHgxoaGheda1bNmS+vXr89tvvwGwZMkSfH196dixI/Bwv5d7DOij+82ScnZ2ZsSIEfTs2ZOnn36a7777Ls/wpeLKL7bk5GQiIyPz5M35frdq1Uqf5uLiQmBgYIH7/ZIICwsz2IdD9v6mrPbhDRs21D/39PQE0O+rT5w4waJFiwz20z179kSn0xEeHo5CoaBjx47s3r2b+Ph4Lly4wLhx49BqtYSFhbF7926aNm2Kra2tUWKtikp+ZYtUKdnY2BAQEKBfbtasGQ4ODixYsIBPP/0UIUSBV9AW98panU4HwIYNG6hevbrBOgsLixLHXFC9xoi1IOLfMb+PlpNfnbk70mVBrVYbLCsUCn18Odt6wYIFBj8GACqVSp8/Zwdpbm5O586dCQ4ORqvVcu7cOQ4ePFhuV+Pmt/0K2tZFrZOkyqpjx4707NmTDz74gBEjRuRZ/8orrzB79mzee+89Fi5cyMiRI/XfAfHI9Qj5USqVefIVdRHTwoULmTRpEps3b2bFihV8+OGHbNu2jdatWxe/YYUo7PudX7qxvvPluQ/Pva/OqSNnH63T6Rg7diyTJk3K8zpfX18ge2aE+fPn6w84ODo60rFjR/bs2cPu3bvp3LmzUeKsquQR2SeUQqFAqVSSlpYGQL169Th9+rR+ADrAgQMHUCqV1KlTBwcHBzw9PTl8+LB+fVZWFidOnNAv16tXDwsLCyIiIggICDB4+Pj4FBpP7nJzluvWrZtv3qJiBTA3N0er1RZzazwUEBCAubk5+/fv16dpNBqOHz9OUFBQicsrK+7u7lSvXp3r16/n2dY1atTQ5+vcuTO7d+/W7wwVCgUdOnTg66+/Ji0tLc9Ri7JSr149Dh48aPADdvDgQezs7PL80wMQFBREVlYWx48f16ddunSJ+Pj48ghXksrMF198wbp16zh48GCedS+99BIRERF8//33XLhwgeHDh+vX1atXjzNnzuj32ZB3v1mtWjWSkpIM9o3FmRu7SZMmvP/++xw8eJDg4GCWLVsGlGw/ml9stra2eHt758lbr149srKyOHLkiD4tNjaWy5cv6/ezj7sPh+z9R+59OGTvb0yxD2/atCkXLlzIs5/O+a2B7P30hQsXWLVqlb7T2qlTJ7Zv387BgwfL7cxZZSU7sk+IjIwMoqOjiY6OJiwsjNdff53k5GSefvppAF588UUsLS0ZPnw458+fZ9euXbz++usMGzYMd3d3ACZPnswXX3zBmjVruHjxIhMmTDDoWNjZ2fH222/z5ptvsnjxYq5du8apU6eYM2cOixcvLjS+AwcO8OWXX3L58mXmzJnDypUrmTx5cr55ixOrv78/Z8+e5dKlS9y/f7/YU6vY2Ngwfvx43nnnHTZv3kxoaChjxowhNTWV0aNHF6uMR4WHh+uHdeQ8cs8G8bimTZvGjBkz+O6777h8+TLnzp1j4cKFzJo1S58nZwd57tw5OnTooE9bunQpTZs2xd7evsT13r59O0974uLiCn3NhAkTiIyM5PXXX+fixYv8/fffTJ06lZCQEJTKvLuhwMBAevXqxZgxYzhy5AgnTpzglVdewcrKqsTxSlJF0qBBA1588cV8Z2ZxcnJi0KBBvPPOO/To0cOgEzh06FCUSiWjR48mNDSUjRs38vXXXxu8vlWrVlhbW/PBBx9w9epVli1bVuBMA5C9b3r//fc5dOgQN2/eZOvWrQadSX9/f/3+6/79+2RkZBRYVmZmpj62TZs2MXXqVCZOnJjv97t27doMGDCAMWPGsH//fs6cOcNLL71E9erVGTBggL7u5ORkduzYwf3790lNTS10u+b2zjvvsGjRIn788UeuXLnCrFmzWL16NW+//Xaxy8jt3r17efZ50dHRxXrtlClTOHToEK+99hqnT5/mypUr/PPPPwYzyuQMA1u6dKm+I9u5c2fWrl1LWloa7du3f6y4nximGJgrla/hw4cLQP+ws7MTLVq00A8uz3H27FnRpUsXYWlpKZydncWYMWMMBphrNBoxefJkYW9vLxwdHUVISIh4+eWXDS6q0ul04rvvvhOBgYFCrVaLatWqiZ49e4o9e/YUGJ+fn5+YPn26eP7554W1tbVwd3cX3377rUEeHrloqqhYY2JiRPfu3YWtra0AxK5du/Kt+9GLvYQQIi0tTbz++uvC1dVVWFhYiHbt2omjR4/q1+dc7PXgwYMC25Q77vweBcWTozgXbQghxNKlS0Xjxo2Fubm5cHJyEh07dhSrV6/Wr9fpdKJatWqiefPm+rSciyPefvvtPHUWtUvw8/PLtz0LFy4s9HVCCLF7927RokULYW5uLjw8PMSUKVP0V/YKkfeiiqioKNG3b19hYWEhfH19xW+//fbYF5tJkqnkd+HpjRs3hIWFRb7ftx07dghAf9FTbocOHRKNGjUS5ubmonHjxuKvv/4yuNhLiOz9REBAgLC0tBT9+vUT8+fPL/Bir+joaDFw4EDh6ekpzM3NhZ+fn/j444/1F2ilp6eLZ599Vjg6Ohb6Pc9p48cffyxcXFyEra2teOWVV0R6ero+z6Pf77i4ODFs2DDh4OAgrKysRM+ePcXly5cNyh03bpxwcXERgMEMJ7nld7GXEELMnTtX1KxZU6jValGnTh3x22+/Gax/9DelIJ06dcp3nzd16lT9xV65t/+DBw/y7OOPHj2q/z2ysbERDRs2FJ999plBPc8++6xQqVQiISFBCJG973Z2djbYd0v5UwhRjIE3klSG/P39eeONN+TdU0xs2rRp+mEIkiSZxtKlS5k8eTJ37tzRn3ouyI0bN6hRowanTp0y2R24IHse2fj4+Cp1F0Op8pAXe0mSBMCWLVv47rvvTB2GJD2RUlNTCQ8PZ8aMGYwdO7bITqwkSdnkGFlJMoHevXsbTMeS+/H555+bJKZDhw7RsmXLx3rtuHHjCmzPuHHjjBypJFU9X375JY0bN8bd3V3exUmSSkAOLZAkE7h9+7bBFb65OTs74+zsXM4RlU5MTAyJiYn5rrO3t8fNza2cI5IkSZKeBLIjK0mSJEmSJFVKcmiBJEmSJEmSVCnJi70eg06n486dO9jZ2ck7D0mSVCghBElJSXh5eeU7p+aTQO4zJUkqiZLsN2VH9jHcuXOnyDtVSZIk5RYZGZnvXY6eBHKfKUnS4yjOflN2ZB+DnZ0dkH1XlEOHDtGjRw/UajUajYatW7fSo0cPgHyf574nc0nlLr+ocorKm9/64qQVtizbXDnaXNI2PiltfjRPQe0saZsTExPx8fHR7zeeRDltj4yMfKy7yVVEWq2WS5cuERgYiEqlMnU4lZbcjqVXFbdhSfabsiP7GHJOjdnZ2WFtbY29vb3+hzFnGcj3eWl/7ItbTlF581tfnLTClmWbK0ebS9rGJ6XNj+YpqJ2P2+Yn+ZR6Ttvt7e2rVEfW1tYWe3v7KtN5MAW5HUuvKm/D4uw3n8wBW5IkSZIkSVKlJzuyZS3lPsrN7+L14DAkRZk6GkmSJEmSpCrjiRxakJSURNeuXdFoNGi1WiZNmsSYMWPKpC5F5GFUJ36lBcD3c8G5Jvi1Bb922X8d/eAJPuUoSZIkSZL0uJ7Ijqy1tTV79uzB2tqa1NRUgoODGTRoEC4uLkavSzj5o205lqRzW3BIj0ARdx3irsOp37Mz2Ff/t2P7b+fWtY7s2EqSJEmSJBXDE9mRValUWFtbA5Ceno5Wq6XMbnDmHoyu+2fs0bSjT9f2qKNPws0DcPMg3D4Jibfh3MrsB4C1C/i2eXjE1qMBKKvW4G1JkiRJkiRjqJRjZPfu3cvTTz+Nl5cXCoWCtWvX5skzd+5catSogaWlJc2aNWPfvn0G6+Pj42nUqBHe3t68++67uLq6ln3glvZQuzs8NQ1Gb4X3ImD4Ouj8PtToCGZWkBoLF9fDlvdhfieY6Q+/D4Z9s1DcOopCl1X2cUqSJEmSJFUClfKIbEpKCo0aNWLkyJE8++yzedavWLGCN954g7lz59KuXTt++uknevfuTWhoKL6+vgA4Ojpy5swZ7t69y6BBgxg8eDDu7u751peRkUFGRoZ+OTExEcieqqewv4U9B0ChBu822Y92b4E2E0XUGRQRh1BEHERx6wiKjES4ug2ubsMM6KMwR/HgF7R+bRG+bRDVm4PaOk/M+cVS1PripJW6zSVUVDtKkle2ueB02eaCX1vaNpd220iSJEkFU4gyO6dePhQKBWvWrGHgwIH6tFatWtG0aVPmzZunTwsKCmLgwIHMmDEjTxnjx4+na9euPPfcc/nWMW3aNKZPn54nfdmyZfohCmVC6HBIi8Al+VL2I+USFllJBll0qIi3qUGsTSD3besSZ1ubLFUZxiRJUomkpqYydOhQEhISqswcqiWVmJiIg4NDldoGWq2WsLAwgoKCqtzcneVJbsfSq4rbsCT7jEp5RLYwmZmZnDhxgvfee88gvUePHhw8eBCAu3fvYmVlhb29PYmJiezdu5fx48cXWOb7779PSEiIfjnnjhNdunThyJEjdO/eXT/B+rZt2+jevTtAvs9LNWl8ZiY71i+mg48Ss9tHUUQcQpl0B+eUqzinXKV2zAYECnAPJsu7FafirAju8ypqR8+8ZeWKNfdk8EWlFbZcJm3OJ6bHzSvbrC4wXbY573tfUDtL2uacMzhS1XY3MZ0dYTG0rOFEgJsdOp3g2I04zFRKGnk7YKbKHskXn5pJaqYWBys1NhZV7idYkspdlfsW3b9/H61Wm2eYgLu7O9HR0QDcunWL0aNHI4RACMHEiRNp2LBhgWVaWFhgYWGRJz3nR0ytVhv8oBX2vDQ/9gDJltVRtOiDsu04EALiI7IvHPv3AjJF3DW4ew713XO0BJjzQ/ZMCLmn/HJ4eN/i/GIqTlp5trmk5RSVV7a54HTZ5odpxXlenFiNsV2kiu+Fnw5xIzaVLoHVWDiyJRlZOl6YfxiAmtVsmPtiU+p62PPzvnBm77qKuUrJktEtaVUze7acjl/uQq1SsGJsG1xts39vDly9z97L92jm50SP+h76uq7cTcLeSk01WwuUSjnLjfRkq3Id2RyP3tZMCKFPa9asGadPnzZBVEamUICTX/aj8ZDstKRouHkQbfh+ki9sxSE9Eu5fzn6cWJSdx9EXlU8bfBNsIS4Q3ALllF+SJEml8EILX2ZuvkgNV1sAdEJQs5oN1++lcP1eCqp/97E5u9pMrY4f91yjVU0XMrN0RMSlAtB2xk5WjmtDIx9HjobH8dPe6wDMGdqUvg2zz671+2E/GVk6tod0JMAt+170uy7GsOl8FO0CXBnQuLo+roRUDfZWZk/0LZKlqq3KdWRdXV1RqVT6o685YmJiCryYq0qx84DgQegCn2a3rhN9urRBfef4wym/os5AfATK+AiaAMz7BWzdwa8tSu/W2KVlgdCZuhWSJEmVyvjOtRjfuZZ+2cbCjJ1vdeZ0ZDyxyRl4O2Vfu/BWj0Ca+Dry++EImvg4AqBSKvhnYjv6zz5AplaHtXn2OMemfk7YWZiRlJHFXydv0behJxlZWuwszchIzuSpWXtZNa4Nzf2dORXxgD+P3+LP47dISNPwcht/hBC0m7mT5Iwslr7Sihb+zpibKQmLSuT6vRQCPewIcLMt920lScZU5Tqy5ubmNGvWjG3btvHMM8/o07dt28aAAQNMGJmJWDlB3T7ZD4CMJIg8ijZ8Pw9Ob8AlPRxF8l24sAbVhTV0BcSsr/Q3aVB4tUQh5JRfkiRJj6Pxv53V3LrWdadr3YcHVlRKBQ29HTn8fjfiUjLxdcnu9HaqU41fRrTg79O3CfTIPvJqYabi+IfdafzJVuJTNThaZw9d6VCnGn+dvM3t+DT2XLrHy238SUzLIjkje//94s9H+HNsG1rWcGbjuSh+2HkVtUrB36+1p55X9sU00/65QHVHK4a08sVWjt+VKolK+UlNTk7m6tWr+uXw8HBOnz6Ns7Mzvr6+hISEMGzYMJo3b06bNm2YP38+ERERjBs3zoRRVxAWdhDQDZ1fRw6kNqZPj66oY87BzQPobhxAd+MgZunxcGkjXNqYPeWX0gJlwm/g3x6Fd0uUukxTt0KSJKnK8XCwxMPB0iCtZQ1nWtZwzpP35IfdSUzX6DucLfydmf9yM3Zfuoe3kxUADtZqLv6vF00+2YZA4GxjDoCbfXYdGq3gyy0XWTSyJXEpmSw6eAMAawsV/Rp64WCl5s/jkRy4ep+nG3rxVL0n4KymVOlUyo7s8ePH6dKli345Z0aB4cOHs2jRIl544QViY2P55JNPiIqKIjg4mI0bN+Ln52eqkCsuM0v90VdtmzfYtOEf+jTxxuz2Ubh5EHHz345t+G4I3/3vXLZmKOJ+/rdj2wozbZqJGyFJkvRkUSoVOFqbG6TV93KgvpeDQZqlWkXY/3oB6O9gOay1Hy425vx++CYt/B92kl/rUos5u67x3zXnaR/gioOVmv1X7vPPmTtsPBfFb6Na0aaWC8kZWYxedIwgT3s+7Bukn5FBkkyhUnZkO3fuXOQtZSdMmMCECRPKKaKqQyjMEF5Nwa8VtH2drMwM9q1eQCc/M1S3DiNuHECVEgORhyHyMGZAb5Rw70eEbxs8EswhrU32kAZJkiSpwsh9wVefBp70afBwakZnG3PGdw4gIU1D+P0UfP4d0/tiK1/+OXMHjVaw5UI0bWq5cCk6iSPhcRwJj6NrXTda13TB3EzJL/vDiU5IY2CT6nk61JJUViplR1YqRwolSVY+6Jr3QdVmHFmZmexZs5DONc0xu3UEceMAyoQIiDoFUadoBTDrW4RbPRrovFCEZkLNDtkXoUmSJEkVlq2FGZ8ObGCQ1qqmC/OHNWPnxRja1sqeKszfxZqQ7nWYte0yoxYd4/z0ngCsOXWL87cTsVKrqOthj0qp4E58GqtP3qJVTReDo7+SZCyyIyuVjEJBiqUHonEfaDGSLI2GXWt/o2uAFYqIw6SGbcMu/Q6KmFBqEgprtme/zrmm4Vy2jn5yyi9JkqRKoEd9D4N5bF1sLXi6kRfX7iWTodFhqc6eZWF0+xq8ueIM3++8ioO1OaPb1+DgtVi+3nqZ4Or2rH+9g76MUxEPCHCzxVothyVIpSM7slKppZm7IoL7IIKfYycb6dOpBYrII9zcu4yayigUd89D3PXsx6nfs19kX10/Nhe/dtk3bZAdW0mSpEqhhqsN3/2niUHaM0282XnxHrsuxuhna/BysKSanQXnbyfy+h+n+GFIE3Q6wYiFx7AxV7EjpKMJopeqEtmRlYzPphqibj/OX1fi26cP6qwUiDz6cC7bOych8TacW5n9ALB2Bb82D4/YugeDsmrcM1qSJOlJ8cOQJmh1D69haRvgysh2/ny5+RI5hyruJ2eQkKYhIU3D11sv85SX1jTBSlWC7MhKZc/KEer0yH4AZKbCrWMPb6176xik3oewddkPAAt78G2NsnpLXJJ1oOkMannxgCRJUkWneuS2ueM71aJHPXdyrtF2s7fExcac2JRMfjlwg06DHt6J7G5iOtbmKuws5a2dpeKRHVmp/JlbQ81O2Q+ArEy4cyq7UxtxCCIOQ0YiXNmK6spW2gPi6y/BsxH4tAKfluDTGuw9C61GkiRJMj2FQqG/le7DxOw/Peu542z9sCvyzbbL/HXyFh/2rcfwtv7lF6RUaZVJRzY9PR1LS8uiM0oSgJk5+LbKfgDotHD3PNw4gO7mITKv7sUyKx5un8h+HJ6bnc/BN7tT69s6+69zHZM1QZIkSSo+5b/XRLzetRbE39anh99PQaMV1Kxmo0+LiE3lt0M36FHfI9+bQ0hPNqN1ZHU6HZ999hk//vgjd+/e5fLly9SsWZOPPvoIf39/Ro8ebayqpKpOqco++urZCG3zMWzZsIE+7RuivnMCIo9kP+6eh4SI7Mf5VQCYmdvQ1twP5Z4z2eNsvZtnD2uQJEmSKpScYQYKhYLcs8KvGNuG8PspVHe00qdtDY3m5/3hnL+TwPJX2+QqQxjMjSs9mYzWkf30009ZvHgxX375JWPGjNGnN2jQgG+++UZ2ZKXHp1CAgw+41oSGz2WnZSRlH52NPJo9FOHWMRQZiVTLDIX9obD//wAFuAWBd4vsI7YeTR/uPSVJkqQKqYarjcFyg+oODGpanba1XPVpGVlaen27j7a1XHi/T5D+Vr3Sk8do7/xvv/3G/Pnz6datG+PGjdOnN2zYkIsXLxqrGknKZmEHNTtnPwB0OjRR57mw+RcaOqahvH0se7qvmNDsx8nFqIHeKhtUSW3+HY7QAtwamrARkiRJUlFa1XShVU0Xg7T9V+4Tfj+F1Mws/jcgWJ8em5yBs415sY/UJqZriE3OzNN5lioPo3Vkb9++TUBAQJ50nU6HRqMxVjWSlD+lEtyCuOnalfp9+qBUqyE5JvuI7a2jEHkMceck5lkpcG179gMwUyjpbFEdJTuyp//yaQl2PiZujCRJ0pNBATzOebKOdarx26iWxKdpUOaaJeHlX4+Smqnlu/80pqG3Y5Hl/HEkglUnbrHmtXbyqG4lZbR3rX79+uzbtw8/Pz+D9JUrV9KkSZMCXiVJZcjWDYL6ZT+ArPRUDq75ifZ+5qjunIDIYygSInBIj4RTi7MfgJm1C63MfFAeuAR+rcGtQWG1SJIkSSXULsCFxDQNNhYqkh7j9WqVko51qhmk3U1M5/q9FLJ0OnycrPXptx6kYmepxsHKcEqvjCwtvx4I525iBm//eYZ5LzWVY24rIaN1ZKdOncqwYcO4ffs2Op2O1atXc+nSJX777TfWr19vrGok6fGp1MRb10TXog8qdfYOTRMXwal182nmps3u3N45jSI1Fg9iYfdpAMwUKjpZeqNU7s4eklC9henaIEmSVAXk3BVMq9USFm2cMt3tLTn+4VOciYzHycZcn/7FpotsD7vLZwMb8Gwzb33636fvcDcxA4DNF6KZs+sqE7vWNk4wUrkxWkf26aefZsWKFXz++ecoFAo+/vhjmjZtyrp16+jevbuxqpEk47LzJMqxBbqn/u3cZmWQdesUYdsWU98+BeXt4ygSb+OYdhNO/AonfkUNdLLyR+l4FV29gaZugSRJkvQvGwsz2gY8vChMpxNExKWSrtER6PFwLtu45Azm7b5m8Nr/23aZel72dK3rXm7xSqWnNGZhPXv2ZM+ePSQnJ5Oamsr+/fvp0aOHMauQpLJlZoGo3ozrbr3QDvoFQkLRvH6WY/4T0bYcB9WbIxRKHNNuoNr1CWZzmtHq2v+huLI1e/5bSariZsyYgUKh4I033jB1KJJUJKVSwd+vtWPDpPYEV394d8ip/1wg/H6KQV4hYPLy01y/l1zeYUqlYNSOrCRVSfZe3HFqia77pzBmB1mTL3DaZwQ6/w4oEHgknsHsz6GYzW+P14PDIHSmjliSysSxY8eYP38+DRvK2T6k0mn3xU7qfrSJKzFl32lUKBTU9zK8xfneK/fzzZuUnsWrS06QlC4vUq8sStWRdXJywtnZuViPiuaZZ57BycmJwYMHmzoUqbKxqcZN165oX1yDZvxRrlbrhbB0QBF7hRY35mK2oBNc3WHqKCXJqJKTk3nxxRdZsGABTk5Opg5HquTSNVrSNTqECeb2PnHzAQlpBXdUr8Yk89afZ9Dp5LzjlUGpxsh+++23+uexsbF8+umn9OzZkzZtsu+8cejQIbZs2cJHH31UqiDLwqRJkxg1ahSLFy82dShSZeZckwveQ/HrNg/l0R/RHfgB9b0w+H0QBPWHnp+Do5zOS6r8XnvtNfr27ctTTz3Fp59+WmjejIwMMjIy9MuJiYlA9oU9Wm3VGIKT046q0p7yltOB1emyz2CV53ZcuP8aVuq8sxNkZAl0AsyUsO9KDPN2X2Fcp1rlFtfjqoqfxZK0pVQd2eHDh+ufP/vss3zyySdMnDhRnzZp0iRmz57N9u3befPNN0tTldF16dKF3bt3mzoMqaqwsEPX4R22PfCnp9VpVMd+hrB/4Op26DYVWr6aPdetJFVCy5cv5+TJkxw7dqxY+WfMmMH06dPzpF+6dAlbW1tjh2dSly9fNnUIlVLWvx2Vmzdu4OtoXq7bcVwjS8Y18s0bk05wMCKVBu6WOFmpgEzWHzjDsrPxPFvPnnpuluUW4+OoSp/F5OTiDzkx2qwFW7ZsYebMmXnSe/bsyXvvvWesagDYu3cvX331FSdOnCAqKoo1a9YwcOBAgzxz587lq6++Iioqivr16/Ptt9/SoUMHo8ZRHPGpGpYciSArXkHHjCyc1OqiXyRVWhozG3TdP0PV9GXY+A5EHITNU+DSBhgwBxzz7jwlqSKLjIxk8uTJbN26FUvL4v2Qv//++4SEhOiXExMT8fHxITAwEHt7+7IKtVxptVouX75MnTp1UKlUpg6n0jFT3QF0+Pv7o4u/U27b8cj1WE5EPMDCTIW5SomFWpn93EyJpZmS4NpKLNQqtGZKzM2UrD9xhSO30nB3ceTZTkFlHt/jqIqfxZyzOMVhtI6si4sLa9as4Z133jFIX7t2LS4uLgW86vGkpKTQqFEjRo4cybPPPptn/YoVK3jjjTeYO3cu7dq146effqJ3796Ehobi61vyjkRBp8ly7lhW0F+AY+H3+X7nNUDFj5/tpI67HU19HWjq40gTX0d8nKyKPQFzfuU/bt781hcnrThtLuj546i0bXYJhJfWojyxCOXOaSjC9yLmtkHb43NEwyFQyHte1m1+nDZW9vc5v/SSfh4Ke16ceCurEydOEBMTQ7NmzfRpWq2WvXv3Mnv2bDIyMvL8eFpYWGBhYZGnLJVKVWV+aHNUxTaVh5zRp0qVCh3ltx3b1najbW23Yud/v08QrnaWvNTaVx9fQqqGw+GxdA9yN7irmKlVpc9iSdqhEEYaab1o0SJGjx5Nr1699GNkDx8+zObNm/n5558ZMWKEMarJQ6FQ5Dki26pVK5o2bcq8efP0aUFBQQwcOJAZM2bo03bv3s3s2bNZtWpVoXVMmzYt39Nky5Ytw9raOp9XPBSeBHujlNxIVhCXkfcDb6cW1LB7+PC2AbU8A12l2KRH0yRiAS4pVwC45diaM74jyVJZmTiysqNUKlE+gUMpdDqdfsxfjtTUVIYOHUpCQkKlPBqZlJTEzZs3DdJGjhxJ3bp1mTJlCsHBwQW88qHExEQcHBwq7TbIj1arJSwsjKCgoCrTeShPTT7ZyoNUDVsmt0cTG1mptuO32y/z7fYrPN3Iix+GmP7OpVXxs1iSfYbRjsiOGDGCoKAgvv/+e1avXo0Qgnr16nHgwAFatWplrGqKlJmZyYkTJ/IMZ+jRowcHDx58rDILOk3WpUsXjhw5Qvfu3VGr1Wg0GrZt26a/AcS2bdt4dVB3Xv33ecNWHTkXlcypyARORsQTGpVIkgbOxik4G5ddtlqlINjLnqa+jjT1daSJjyPV7LKPbOQuX13EEIWi8ua3vjhphS3ntPnR50XFWpp2VJo264ajPTwb5e7P8Y4/THXFXbKeWQCejcu9zSVtY0naLIQgOjq6ROObIPvCj/T0dCwtLYs8Q1FU3oLWP5qeX77caUCRz/Or39bWFg8PD/26kpwiq4js7OzydFZtbGxwcXEpVidWkvLTzM+ZpHQNVmoVle2chYWZClsLM3rV99Cn5RwTlLe4LX9G68hC9pHQpUuXGrPIErt//z5arRZ3d8M7c7i7uxMd/fA+eD179uTkyZOkpKTg7e3NmjVraNEi/1uPFnSaLKdjoFarDToJBT33drGlhocT/ZtkX8WertFy7nYCJ24+4MTNB5y8+YDYlExORSZwKjKBXw5kHwWp7mhFIx8H6nnYkZagoIMWrK2L1zl8NLbirC9OWnHbXFT9xVWScipmm9XQ6W2o2RFWjULxIBz1ot7Q/RNoPT7foQZl3eaC2lSaNqenp5OSkoKrqyt2dnbF3qnrdDqSk5OxtbUt8khuUXkLWv9oen75cqcBRT7PXb4QgqSkJGJjYxFCYG5unmc7SZKU7efhzYHso4mJRrpFbXkZ37kWQ1r6YG/58Lu95cJd5u+9xpRedWlV07jDKaXCGa0jGxERUej6xxmbWhqP/oAKIQzStmzZUq7x5MdSraKFvzMt/LPn2RVCcDM2NbtjG5Hdsb10N4nb8Wncjk9j47loQMWc0F3UdLWhobcDDbwdaeTtQH0vB6zMq8YphSrNpyWM2wd/T4SL62HL+xC+FwbOBeuKN9/y47K3ty/2hUGQ3YHMzMzE0tKyWB3ZwvIWtP7R9Pzy5U4Dinz+aP0KhULfka3K5Iwv0pPO0drcYHne7qucuZXA/qv3ZUe2nBmtI+vv71/o0Zfymt/M1dUVlUplcPQVICYmJs9R2opGoVDg72qDv6sNzzbzBiAxXcP5WwmcvZ3A6YgHHL0aTVyGguv3U7h+P4W1p+8AoFRAgJstgR721PWwI6CaNXEZVPkf1ErJygle+B2O/QxbPoDLm+DHDjD4V/Atv2E4kiRJknEseLk58/de55UONfVp0QnpCASeDlX3eoiKwGgd2VOnThksazQaTp06xaxZs/jss8+MVU2RzM3NadasGdu2beOZZ57Rp2/bto0BAwaUWxzGYm+ppm2AK20DXNFoNGzceJtWnZ7i4t0Uzt1K4MytBM7djuduYgaX7yZz+W4y687kvNqMWaG7qOthR6CHHXXc7ajhaoO/iw3VbIw6qkQqKYUCWo4Bn1awcgTEXYOFvaHbR9BygqmjkyRJKlOdv9pFYnoWf75aNf55d7O35MN+9QzSPt0QyrbQu8wY1IBBTb1NFFnVZ7TeTKNGjfKkNW/eHC8vL7766isGDRpkrKpITk7m6tWr+uXw8HBOnz6Ns7Mzvr6+hISEMGzYMJo3b06bNm2YP38+ERERjBs3zmgxmJKLjTmdA23oHPhwCpG7iemERiVyMSqJS9GJhEUlciUmiaT0LI7deMCxGw8MyjA3U+KsVrE+/jQ13Wzxd7HB3U5NdCqkZGThKMf1lQ/PhjB2D6x/E86thO3TUIXvx9xqoKkjq5Q8PDy4c+eOqcOQJKkID1I1JKRpquxZw3SNlpikDDK1Oup6VI2ZOiqqMj8sV6dOnWLfDaa4jh8/TpcuXfTLOTMKDB8+nEWLFvHCCy8QGxvLJ598QlRUFMHBwWzcuBE/Pz+jxlGRuNtb4m5vSZd/O7cajYZ/1m8ksHkHrt5PIyw6kWsxKYTfTyYiLpXMLB3RWQqiw2IgLCZXSWbMOLMTBys1Xo5WeNibkxmv5MqOq1Szt8LRUsWVBAVX7ibj5miNbT63+ZNKyMIOBi0A/w6w6V2U17bTWX0CRYQv1Opk6ugeixCC1MysYufX6XSkZWoxy8wqcoyshUp+5iSpsquqHdgclmoVK15tzYU7idTzetiR3XQuCh9na4KrO5gwuqrFaB3ZR6eYEUIQFRXFtGnTqF27trGqAaBz585FfgkmTJjAhAlP9ilaMyUEetgR7OPMQKrr07O0Om7eT2Ll5j1Uq1mfiLg0bsalcudBGhGxSaRrFSSkZf+3HBYFoOTA3eu5SlYxO/ThVGYWShWfn9+DjYUZ2nQVK2KOY2thRvw9JcfXh2FlocbCTInFv3dKsTBTZS+rlZirsu+oolJmjxFWKhSoFAqUiuxlodNyPRFORcSjVpuhVCjQCfHvA7S6f5/rIDNLQ+gDBVaX7qFUqtAKgUarIzMr+5GWqeHMHQURe66jEQoys3SkZ2q4cl3JvjUX0OjEv3m1REUrWX3/JDpAq9Nx756SFXePY2upxsZcyf1oJZF7w/FxsiIyGTKzdJiblWLeVIUCmg0H7+aIP4djFXsF8ftA6PIBtH+r0t3eNk2jo+n0srmg8vy07qUuw9/fn5dffpnVq1fj6OjI+vXrcXR05MqVK4wbN47ExERcXFyYPXs2586dY8GCBXz//ff88MMPLFy4kN27d7Nz507+/PNP5s+fb4RWSdKTqSpPV6VQKAw6rPeTM3j3r7MkZ2SxfExreVGYkRitI+vo6JjvTAE+Pj4sX77cWNVIRmCmUuLrbE2Qo6BPa1+D+VM3btxIh67duZei5U5CGpGxyRw4eQEXL18epGZxPzmDiLtxZCrMeZCaPftfhk7B3aQMSMoAFNxM/ndSXJQcvRdpjIj57sLRYuZVwcVTha+/efWRNCXcvZ03Lf6+wfKVxDiD5X3RVx7GF7qDep72VBNKPCPjae7v+nh3fHGvT9aobUT98iK+cQdg56dw4wAMmg+2xb8bjVS0WrVqsX//fj788EP+/PNPXn31VSZOnMh3331HcHAwK1as4KuvvuL777/XD0s6ePAgZmZmJCYmcujQIdq1a2fiVkiSVJl0q+vG1XvJNPevOrPUmJrROrK7du0yWFYqlVSrVo2AgADMzOSFRZWJnaUaZztrAj3s0GiccLh3jj596uknxt+4cSN9+nRBoVRxPymNDVu206x1e5Izsthz4AiBwY1Izsji+NkL+NQIQCsUZGi0ZGp1ZGh0ZGTpyMjS/vs3+2ipEALtv0dWDY64anUkpaRgZWWNTmT/c6RUKlAps4/eKhVkH8X9t9OYnJSIk6MDKqUSpSK7055zNNhMqeDe3Shq+Ppgaa7CXKXCTCm4GX6d4Lp1sLJQY26mRCEEF86fo3GjhqjNzBBCx9kzp2nYsBHpWkhIzeD0hUtYu1bn1oM0wu48IDULztxKAJRsn38UV1sLBjb24oUWPtR2tyvZG2Buyym/sXi1/Q9mm9+F67vgx/bZww9qVo6hBlZqJaGf9Cx2fp1OR1JiEnb2dsUaWpCUXtoIoX///gA0btyYGzdukJSUxMGDB3nxxRdRqVRotVp8fX2xsLDA0dGR6OhoYmJiGDBgAMePH+fAgQMMGTKk9IFI0hOoag8syJ+rrQXf/qcJaZla/W+WTieYsSmMF1v54e9qY+IIKyej9TAVCgVt27bN02nNyspi7969dOzY0VhVSRWEmUqJi405rpZQ/98xQLFhgj6NvQBwij1Pn6dql/rOXtkd5w7FustVdt7WBd7lauPG2/TpU/+Ro9BX6dOppmHavbP0aVpd33lX3z5Fn8ZeDzvzSWH06dMAgA0bNhLcujMnI+L5Y89ZriSbcz85g5/3h/Pz/nCa+joyqn0NetX3wExV/CECotEQ8G0JK4fDvYvw2wDoNAU6vQvKij1nsEKhwMq8+LsXnU5HlrkKa3OzYs0jawwWFhZkZmaiVCrJyspCCEH16tXZt2+f/paIOUOm2rRpw6pVq/D29qZdu3Zs2rSJ69evExAQYJRYJEl6cuSe833F8UgW7Atn1YlbHHivK9Yl2G9K2Yw28K5Lly7ExcXlSU9ISDC4MEuSqhqFAvxcrHmmiRcj6ug48l5nfhnenB713FEpFZyMiGfislN0/b89LDl0g7TMEsyp7FYXxuyCJi8BAvZ8kd2hTapkt8KpBOzt7XFycmLHjh1A9j80ly5dAqBt27bMmzePtm3b0rJlS/7880/q1atXWHGSJBUi2MuBRt4OWJTm2oIqoG0tFzrUdmVSt9qyE/uYjPYJevTOWTliY2OxsZGHy6Unh7mZkm5B7sx/uTmH3uvK5G61cbJWExGXykd/X6DDlzv5ed/14ndoza1hwBx4Zj6obeDGvuyhBtd2lm1DKqF79+7h6+tL/fr18fX1ZePGjSV6/ZIlS5g9ezZNmjShadOmnDhxAsjuyN65c4e2bdtibW2Nq6srbdu2LYsmSNIT4Y9XW/P3xPZ4OT7ZNwvwc7Hht1EtGd7GX5927V4yc3ZdJUtrnLNPVV2pu/8588MqFApGjBiBhYWFfp1Wq+Xs2bNyhy89sdzsLXmzex3GdqrJyuO3WLDvOrcepPHphjB+2nudCZ1rMaSlL5bqYgwVaPQCeDXJvoFCzAVYMghluzdRiAZl3o7KQqvVotPpSExMxN7evsBhCjdu3NDfjnbEiBH6fAEBAaxZsybP0AI3NzcePHigT9+xY4f+uSRJUmkoFApyjgPqdIJ3V53lxM0H3E/OYOrT9U0bXCWgEKWczG3kyJEALF68mOeffx4rq4f/XZmbm+Pv78+YMWNwdXUtXaQVSGJiIg4ODty/f5/9+/fTp0+fRy6E6gNg8Lx///6oVKoix/8VRqfTERMTg5ubW7HGERaWN7/1xUkrbBnI97lsc64YhCA6IZ3r91NI12QfkbUwU1HD1QYvR8vs6cWKarNOC/fCID57RohMM1vMfJqjNM97ZKOgskrSxpK02cXFhREjRuDu7o5KVbJxvFlZWcW+MLSovAWtfzQ9v3y50wp6LoQgICAgz/uTnp5OeHg4NWrUwNLSEni4v0hISHhiO79VcRtotVrCwsIICgoq8WddekhuR0NCCFafvM2sbZf5c1wbqhfjiHVV3IYl2mcII5k2bZpITk42VnEVWkJCggDE/fv3xdq1a0VmZqYQQojMzEz9ckHPS6Mk5RSVN7/1xUkrbFm2ufixZmi04vfDN0Trz7cLvynrhd+U9aLtjB3ijyM3RUpaevHKObtS6D7zFGKqvdDNrCHE5a3F3iYlaWNJ2pyWliZCQ0NFWlpakdsgN61WKx48eCC0Wm2p8+ZeP2HCBNGoUSP9Izg4WOzbt6/AcnKnFef5o/Jrf87+IiEhoUTbpCqpitsgKytLnDt3TmRlZZk6lEqp+6zdou2MHeLGvUS5HfORoTHcv+y6eFfEp+b/m1AVP4sl2WcYbWTx1KlTjVWUJFV55mZKXmzlx+Bm3qw4FsmcXVe5HZ/Ge6vPMXf3VTo6K+ipExQ6T0ODwWS5BZOy6DkcUyNg6WBoPQG6TQW1ZXk1pUKbM2eO/nnuIQeSJJnWnfh0kjOykMNA85f7Bjvnbyfw6m8ncHew4K9xbXGzl/v33ErVkW3atCk7duzAycmJJk2aFHqHjpMnT5amKkmqkizMVLzcxp/nm/uw9EgE83ZfJSIujd/jVByafZA3u9ehT7BnwTdXcK7Fvjof08fsEKoTv8DhuRC+F579GdyCyrcxkiRJxSSq+C1qjc3dwYJAd3uq2VkUnfkJU6qO7IABA/QXdw0cONAY8UjSE8lSrWJ0+xoMaenDr/uuM3fnZa7dS2HislPU9bhKSPc6dK/nnu8/izqlObpeM1HV6QF/vwZ3z8P8ztD9f9BkRLm3RZIkSTKe4OoOrH+9A4iHt/TN0upI1Wixt3z8edqrilJ1ZHMPJ5BDCySp9KzNzRjbsQau8WHcsQ1k4cGbXIxO4tUlJ2jo7UBI9zp0qlMt/7Mfgb1g/EH4ewJc3Q6b3kF1eQsWVgPKvyGSJEnFUMiJXCkXByvDDut3O67w9+k7zBnalHqetiaKqmIw+kzEmZmZ3Lp1i4iICIOHJEnFZ2UGr3etxb4pXZjQuRbW5irO3kpgxMJjPPfjIQ5di83/hXbu8OIq6DUTVBYor22n88X/ori6rXwbIEmSVAg5sODxpWZm8ffpO0TEpXL9frKpwzE5o3VkL1++TIcOHbCyssLPz48aNWpQo0YN/P39qVGjhrGqkaQniqO1Oe/2qsved7vwSvsaWJgpOX7zAUMWHGbogsOcjIjP+yKFAlqPg1d3IaoFYZmViNmKIbDxXdCklXsbypOHh0epXu/l5ZVvetu2beU/5JIkVQjW5masm9iez59pwIDG1U0djskZbdaCkSNHYmZmxvr16/H09Cz0wi9JkkrG1daCD/vVY0zHmszZdZU/jkZw8FosB6/FEuSoxLdRIk38XQxf5F6frFHbiPh1FLXubYWjP/17IdgCcKlbtgELAZkpxc+v04EmFTJVUNS8wyp5xa4kVXa1qtmSrtFiVtCFrFKhHKzVDG3lq1/OyNLx1ZZLvN6tDjYWT9atbo3W2tOnT3PixAnq1i3jH0hJeoK521vyyYBgXu1Yk9k7r7LyxC3C4pU88+NhetRzJ6RHHep65JpeysyS894v4dd1FGbrJ2XfSGF+F5Qd30UhAsouUE0qzKxZ7OxKwLG4md+79RgBGdq6dSvvvvsuGRkZ9OrVi1mzZhn8863Vahk/fjz79u2jUaNGZGZmlrpOSZIeWvd6eyD7u5YQZeJgqoA5R+PYeT2Fc3cS+X10qyfqYKLRhhbUq1eP+/fvG6u4MvfMM8/g5OTE4MGDTR2KJJWYt5M1XzzbkC2T2tHCVYdSAVtD79L7u31MXHaSqzGG46ZEwFPZF4IF9gWdBtXuz2h/+VOIvWKaBphQWloaY8eOZe3atRw4cIDLly+zdu1agzx//fUX8fHxHDlyhClTpnD69GmTxCpJklQcvWvb4eFgyetdaz9RnVgw4hHZmTNn8u677/L555/ToEED1GrDK+wq2iTkkyZNYtSoUSxevNjUoUjSY/Nzseal2jo+GdKe2XvC2XA2ivVno9h4LoqnG3kxvmOu8em21eA/S+HMcsSmd3BOvYb4uQs8NQ2ajjJuYGpr+OBOsbPrdDoSk5Kwt7Mr+pbGKktIT3rs0C5dukRQUBC+vr4kJiby0ksvsXfvXp555hl9nkOHDvHcc88B0KRJE3mmSZKkCi2omgU7QzpibfGw75WRpcXCrGrcsrYwRuvIPvXUUwB069bNIF0IgUKhQKvVGqsqo+jSpQu7d+82dRiSZBQBbrbMGdqU1zon8s32y2wLvcvfp+/wz5k7NHFWUrt5MvWqO2VfCNZ4CFk+bXiwaChuSRdg83uowtZhZTPIeAEpFGBuU/z8Oh2otdmvKaojqzP+rYAePYIhJ2uXpLLV9/t9ZGTpWDyiualDqTIsct0NLCYxnRfmH+a1LgEMbuZtwqjKntGGFuzatYtdu3axc+dOg0dOWkns3buXp59+Gi8vLxQKRZ7TfgBz586lRo0aWFpa0qxZM/bt22eklkhS5VXPy54FLzdn/evt6VHPHSHgZKySvrMP8tqyk1yK/vdIpn11DtV6F23PL0FtjfLmAbpc/C+K079nX6hVhQUGBhIWFkZERAQ6nY6lS5fSoUMHgzxt27Zl5cqVAJw6dYqLFy+aIlRJqrKu3UvmakwyWl3V3t+Yyh9HIwm/n8LsnVdI11SsA4nGZrQjsp06dTJWUaSkpNCoUSNGjhzJs88+m2f9ihUreOONN5g7dy7t2rXjp59+onfv3oSGhuLrm30VX7NmzcjIyMjz2q1btxY4xU5BMjIyDMpKTEwEQKPRFPq3sOePI7/yHzdvYbEWlibbXDnaHOhmzZwhjTgbGcf0VUc5G6dkw9koNpyNold9d8a29wWFgoxGw1DX7Izyn9dQ3z4GG95Ad3E9WT1m5lt+UW3WaDQIIdDpdOhKcOQ05whozmsfN++9e/fw9fXVnwn68ccf6dOnj8HrLC0tmTdvHgMGDCAzM5OePXvSv39/g7IGDRrEtm3baNu2LS1btqRJkyYGZRRUv06nQwiBRqNBpVIZbBtJkh6q4v8vm9ykbgEoFDCwcXUs1VV7eIFCGOkc2tmzZ/OvQKHA0tISX19f/e1sS0KhULBmzRqDW+C2atWKpk2bMm/ePH1aUFAQAwcOZMaMGcUue/fu3cyePZtVq1YVmm/atGlMnz49T/qyZcuwtrYudn2SZCq3U2DrLSWn4x6ehGnorKOntw5vG0DoCIjZRN2ov1CJLDRKSy5U/w83XTqDovgnbszMzPDw8MDHxwdzc3PjN6SCy8zMJDIykujoaLKysgBITU1l6NChJCQkVLhrBcpLYmIiDg4OVWobaLVawsLCCAoK0v/TIhVf4IebyMjSsfftTiRG35DbsRSK+1m8cjeJmtVsUVWCKc9Kss8w2hHZxo0bF3qlnFqt5oUXXuCnn37C0vLx54HMzMzkxIkTvPfeewbpPXr04ODBg49dbmHef/99QkJC9MuJiYn4+PjQpUsXjhw5Qvfu3VGr1Wg0GrZt20b37t0B8n3+6EVwJZG7/KLKKSpvfuuLk1bYsmxzxW3ziIHdGaNWc/luEnN2X2fT+bucjVNyNk7JU3WrMa6DH1fPK6nZazwWm99CfecEjSMX0YBL6Pp9i8bOt1htTk9PJzIyEltb2xJ9z4UQJCUlYWdnV+QVt0XlLWj9o+n55cudBhT5/NH609PTsbKyomPHjvr255zBkSRJMpVztxIYsuAwPeq789XgRpWiM1tcRuvIrlmzhilTpvDOO+/QsmVLhBAcO3aM//u//2Pq1KlkZWXx3nvv8eGHH/L1118/dj33799Hq9Xi7u5ukO7u7k50dHSxy+nZsycnT54kJSUFb29v1qxZQ4sWLfLNa2Fhke/R5JyOg1qtNuhEFPa8NB2cxymnqLz5rS9Ommxz5WxzfW9n5r7kTOjtB3y4bD+n4pRsv3iP7RfvEeykxLeRL01e2Yb20FzEjk8wizyEakGnf+edrVFkm7VaLQqFAqVSWfTsA7nknKLPeW1p8uZe//rrr3PgwAH9Oq1Wy7x582jfvn2+5eROy1HY80frVyqVKBQKg/fDGJ8FSapqck4FP2EzRZnM7fg00jRabsWlkZGlxdq86tw0wWgt+eyzz/juu+/o2bOnPq1hw4Z4e3vz0UcfcfToUWxsbHjrrbdK1ZHNkd9VxiWZO23Lli2ljkGSKqvabrYMr6Pj8xYd+HFvOP+cucP5B9k3Vuha140JnYbwoK4V3dL+QRm+B9XOT+ho5Q/Na4B7cJHlV5Sr/ufMmaN/rtPpSExMLNNT2xWl3ZIkSbn1Cvbgt1EtaeLrWKU6sWDEjuy5c+fw8/PLk+7n58e5c+eA7OEHUVGlu4WHq6srKpUqz9HXmJiYPEdpJUkqXK1qNnz7nyaM71iDD5ft40Sskp0XY9h5MYYgR3ccnvuZlg23IrZ8gGPaDcSvT6Fr/TpKXf18y1Or1SgUCu7du0e1atWK/c+lTqcjMzOT9PT0Yh2RLSxvQesfTc8vX+40oMjnucsXQnDv3j39EVlJkgrm7WhFRpYOpTwkW27aBbgaLJ+9FU+D6g6V/gYKRuvI1q1bly+++IL58+frL/LQaDR88cUX+snEb9++XerOprm5Oc2aNWPbtm0GE5hv27aNAQMGlKpsSXpS1axmw0u1dXz+Ugd+3HuTtadvExav5PkFx+hQuzaT+myi+s7JeMUfQ3XwG7qaV0NR1wYR0N2gHJVKhbe3N7du3eLGjRvFrl8IQVpaGlZWVsUaI1tY3oLWP5qeX77caUCRzx+tX6FQ4O3tLS9akaQi7Hy7M5A93OdB8e+dIhnJ6pO3eHvlGUa1q8F/+wZV6s6s0Tqyc+bMoX///nh7e9OwYUMUCgVnz55Fq9Wyfv16AK5fv86ECROKLCs5OZmrV6/ql8PDwzl9+jTOzs74+voSEhLCsGHDaN68OW3atGH+/PlEREQwbtw4YzVHkp5I/i42/N/zjRjfyZ///r6X47Eq9l25z74r9wmwf4Nv2z+g/pnPsUm6AyuGoAvsi6XZUwZl2NraUrt27RJNO6XRaNi7dy8dO3Ys1gVuheUtaP2j6fnly50GFPk8v3HVshMrSVJFl5GlQycgPk2DToCq8vZjjdeRbdu2LTdu3OD333/n8uXLCCEYPHgwQ4cO1V/pO2zYsGKVdfz4cbp06aJfzpkxYPjw4SxatIgXXniB2NhYPvnkE6KioggODmbjxo35Dm2QJKnk/JytGRqg44thnVhw4CYrj0dyNRH6bXemjff3TFb8SqukLSgvbaCbcjsKjwRoOxFU2R07lUpVog6dSqUiKysLS0vLIjuyReUtaP2j6fnly50GFPlcDiGQJKkyGtLSlzrudjT1dazUR2PBiB1ZyD4SY4yjop07dy7yookJEyYU6+iuJEmPz9vJis+facC4Dv789/fdHLlvxqFbmRziJfq59+ETs19xjj0JO6bBuT+h7yzwa2PqsCVJquAGzT1Alk6wYFhTU4fyxGrm52SwfCc+DS9HKxNF8/iMfulaaGgoERERZGZmGqT379/f2FVJklROPB0sGVxDxxcvd+CX/Tf4/fAN1t91ZgMhvGK1l7fVf2IREwoLe0HDF+CpaWBfsjvoSZL05Dh3OwGNVqDRypk+TE2rE3y6IZRVx2+xcnwb6npUrpuWGK0je/36dZ555hnOnTunv5ACHk6TpdVW7Xv9StKTwM3Ogvd7B1Ir8xqR1rVZciSCBWmdWZnWjM/t/qK3ZhuKsysgbB10CIE2E0Fd+f7DlyRjEUJwNzGDiLhUohLSiEpIJyo+jYlda1PNLnt+8h/3XGPhgXCytAKNVkeWTqBUKFCrFJibKVnwcnMaejsCsO/KPTacjcLd3hJPB0s8HCzxdbbG19kaM1Xx526WpBxZOh0X7iSSlJHF8RsPntyO7OTJk6lRowbbt2+nZs2aHD16lNjYWKPNGytJUsVhq4a3utdmdDt/PlqygwP3nZiQNIIGio58bvU7DTQXYeencPI36PEpBPWXM59LT5SVxyNZeiSCazHJJGVk5Vn/XHMffUdWq8vu7BYk90i7c7cTWH4sMk8ec5WSGq42fPFsA5r4Zp8y1ukEygp+B6eKHd2TwcJMxfxhzTgaHkeP+h6mDqfEjNaRPXToEDt37qRatWr6u/q0b9+eGTNmMGnSJE6dOmWsqiRJqiAcrdX09tHx+fAOLDt2m1/2q3k69SP6Kw/xX4s/cI+PgD9fBv8O0GsGeDQwdciSZDTpWTr2XL7HgWtxHLsRxzcvNKZWNVsAEtI0nI6MB0ClVFDd0QpPB0u8/v3rYmuuL+e55t50qlMNtUqJmUqBWqlEJ7KPzmZqddRwtdHnbVXDhTefqkN0YjrR/x7hvRGbQrpGx6W7SdhZPvxZX3jwBosOhtPU14lmfk60reVKrWo2FeLiHnnvkIrF0drcoBNb0ptMmZLROrJarRZb2+wvsKurK3fu3CEwMBA/Pz8uXbpkrGokSaqA7CzVTOxam5HtarD0yE3m77Wkc3JTxpmtZ5zZeixu7EP81BFFk2HQ5QOwq3z/9T/JZsyYwerVq7l48SJWVla0bduWmTNnEhgYaOrQyl10Qjobz0WxNTSa4zfiyNI9PDp6KiJe35F9KsgdTwcrarvb4udijYVZwbN4uNlZ4mZnWaz6m/k55blIR6cT3I5P42pMMn4uDzu9J28+IDIujci4NP4+nT1Zq7eTFV0C3egcWI12Aa5YquV0cZKhxHQNIStO0y3InSEtfU0dTpGM1pENDg7m7Nmz1KxZk1atWvHll19ibm7O/PnzqVmzprGqkSSpArOxMOPVjrV4uY0/fxyN4Mc9DvyZ2In31X/QT3UYTi5GnFuFou3r0PZ1sLA1dchSMezZs4fXXnuNFi1akJWVxX//+1969OhBaGgoNjY2RRdQRey6GMPIRccM0rwcLekQUI22AS60rfXwzkn+rjb4u5bPtlEqFfg4W+PjbG2QPuPZBvynpQ8nb8Zz7EYcR8PjuPUgjSWHb/LH0QiO/vcpk3dkK8lBvyfK2lO32R4Ww5HrcfRp4ImDVcWeZtBoHdkPP/yQlJQUAD799FP69etHhw4dcHFxYfny5caqRpKkSsBSrWJkuxoMaenLyhO3mLHbl8UJp/hAvYwmmquw5wt0x39F2fk9aPqyqcOVirB582aD5YULF+Lm5saJEyf0N4nILSMjg4yMh2M+ExMTgewzd5Xlwl8hBEfC49AKaFfLBYAmPvaYmylpUN2enkFu+Jkn07lZPczMHv6UVqT22aiVtK3pTNuazkBNUjKyOHw9jt2X75GlEzhYqvTxjvv9JN5OVrzYytdgKENh7iVncD8pgyDPkl8c5GxjTpZOIHQ6oGJtt8omZ9sZaxsObeHNlegkBjWtjq250iTvTUnqNFpHtmfPnvrnNWvWJDQ0lLi4OJycnCrNOAtJkozLUq1iWGs/Xmjuw9pTtXljVxPqxe/mXbPl1Ei5CxtC0B6ai6Lrx3LQXCWSkJAAgLOzc77rZ8yYwfTp0/OkX7p0ST8EraLS6gT7bqay6kICN+I11HI257s+nvr1vz3jha2FCsgA1Fy5csVksT4OL2BonezZDcLCwgCIScliW1gMAAsP3qSJpyX96tjRwtsKZTF+v8Pib5c4jl8HZA8vehB1E4DLly+XuAzJkDG34Qu1FZB0h7Aw09w/ODk5udh5S92RHTVqVLHy/frrr6WtSpKkSsrcTMnzLXwY1LQ6687WYdyODrR6sI7JZqtxibsKq16mjXVtFI3coEZbU4crFUIIQUhICO3btyc4ODjfPO+//77+joyQfUTWx8eHwMBA7O0r5tQ+WVodf528zbw914l8kAaAtbmKlrXcqVk7EAszw6mttFotly9fpk6dOpX+tsS1tTp+tvNg2ZEIdl2+x6modE5FpVPbzZYJnWvSJ9jDYGqvtMwsxvx2nNO3ErBWq9j9dmesLR6vO1GVtqOplPU2jEpIJ/ROIt2C3IxedkFyzuIUR6k7sosWLcLPz48mTZoUeTcuSZKebGYqJc808aZ/o+psOl+fV7b3oWvcH7yi2ohb6hVY3JuMWj2x6P4xeOTfSXqSbd68GVtbW9q3bw/AnDlzWLBgAfXq1WPOnDk4OTkVUULpTZw4kbNnz7J///4C81hYWGBhYZEnvaS3Li4vh6/H8vHf57l8N/sokLONOSPb+vNyG38crIu+ZXJFbFNJqFQqnqrnwVP1PIiMS+X3IzdZdjiCKzHJvPnnWbJ02dOFAWRkaRm/7DSHwuMBSNNksSXsHoObeZc6hsq+HU2tLLZh+P0UBs45QLpGy4ZJ7QlwszNq+QUpSTtK3ZEdN24cy5cv5/r164waNYqXXnqpwNNNkiRJkD0dUb+GXvQJ9mRraGNe3TaQvrGLeE61B4trWxDXtpIeOBCrHh+BSy1Th1thvPPOO8ycOROAc+fO8dZbbxESEsLOnTsJCQlh4cKFZVr/66+/zj///MPevXvx9i5dx6UiSUzTcPluMg5Wal7vGsDQVr5Ymxv9xpeVgo+zNe/3DuK1LgEsOXSTdWfu8HSj7Lv0ZWl1vL7sFPuu3Dd4zV8nbpW4I/uf+YcQAuYMbWys0KUy4OdsTUNvBxLSNKiUFfOGG6WOau7cuURFRTFlyhTWrVuHj48Pzz//PFu2bJFHaCVJKpRSqaBXsAe/vNaX6wGjed1pHuu1rVEgsLq0Bu0PLUheOR4Sbpk61AohPDycevXqAfDXX3/Rr18/Pv/8c+bOncumTZvKrF4hBBMnTmT16tXs3LmTGjVqlFld5UGnE1y/93AMXvd67kzvX5+973ThlQ41n9hObG72lmpe6xLApskdsFSr0OkEU/46y9bQu3nyHroey60HqSUq/0h4HEfC48iSt6it0JRKBT8MacJf49sW+yLA8maU7rWFhQVDhgxh27ZthIaGUr9+fSZMmICfn1+JBuxKkvRkUigU1HcSfDvhWRxfXso7rnPYoW2CCi22F5aR9W1jEte8Bckxpg7VpMzNzUlNze4wbN++nR49egDZF12VZExZSb322mv8/vvvLFu2DDs7O6Kjo4mOjiYtLa3M6iwr95MzePnXowz+8RCxydkzKygUCoa3LXoYwZMo55bzn20M46+TBV/UtbqQdVLl5mhtjjrXGOmKdpDS6MeJFQqF/oOv+3daDUmSpOJQKBS0r+3KVxNfwmbkX0yrNotD2nqYCQ32Z34m4/8akLBhKuqsFFOHahLt27cnJCSE//3vfxw9epS+ffsC2Vcrl+Wp/nnz5pGQkEDnzp3x9PTUP1asWFFmdZaFYzfi6Pv9PvZfvU9appbQqLLr/FclP+y8yi/7wwvNs/rkrcfq4MhJjSoPnU7w++GbvPzrUbS6itOZNUpHNiMjgz/++IPu3bsTGBjIuXPnmD17NhERERV+qhVJkiqm1jVdmPbaaMxHb+Art5mc1tXEQqTjenoOHc+9RdymzyA9wdRhlqvZs2djZmbGqlWrmDdvHtWrVwdg06ZN9OrVq8zqFULk+xgxYkSZ1Wlsa0/dZsj8w9xNzCDAzZa/J7ajQ+1qpg6rwotOSOfYjTjUqsJ7nDdiUzlx80Gxy61gB/WkYohNyWTmpovsu3Kff85UnCPwpR4INGHCBJYvX46vry8jR45k+fLluLi4GCO2MpGUlETXrl3RaDRotVomTZrEmDFjTB2WJEkFaObvTLMJ4zgX+R/mrF9Mt6gF1FVGYnvyG1JO/0xSk7F4dJ8MlhVzWidj8vX1Zf369XnSv/nmGxNEU3nM33uNzzdeBKBvA0++HNwQm8ecLupJ4+FgyZLRrUjOyGL/lXvsCIth16UY7idn5sm76kQkzf3lxd5VVTU7Cz56uh4pGVn0b1Td1OHolfqb/OOPP+Lr60uNGjXYs2cPe/bsyTff6tWrS1uVUVhbW7Nnzx6sra1JTU0lODiYQYMGVejOtyRJ0MDHkQbjJ3Pu5lC+XvYtA9LWUJvb2Jz4muRTP5HQeCzVe0wGlZWpQzWqxMRE/dyrRY2DrahztJrSn8ci9Z3YV9rX4IM+QSiV8nx2SdlamNEr2JNewZ7odIKztxPYeTGGrReiuBidfS3MhrPRTOsfbPLb3kpl5/l/p2GrSErdkX355Zcr1Z27VCoV1tbZ96NOT09Hq9VWuIHLkiQVrK6XI9frtSSr6Zv8tmkxbW/9TAB3sD35NUmnfyK2wSuYibqmDtNonJyciIqKws3NDUdHx3z3t0IIFAqFvM1nPnoGe7D8WATdgtx5rUuAqcOpEpRKBY19HGns40hI9zrcTUxn18UYdlyMYf+V+1R3sqKuh12hfQMr2dmt9IQQJKRpcLQ2N2kcRrkhgjHt3buXr776ihMnThAVFcWaNWsYOHCgQZ65c+fy1VdfERUVRf369fn222/p0KFDseuIj4+nU6dOXLlyha+++gpXV1ejtkGSpLIX4OFA0KtvcSNmDMv+mU+ryF+opbuD3ZlvcMaWCHGRmn1DUFTyIQc7d+7Uz829c+fOSnXgoCJwsFKz/NU2mJtVzDkwqwJ3e0v+09KX/7T05e/Tt+n7/T4mdgkgpEdgga8J+1/2mG6tVsu98gpUMppr95J5d9VZtDrBmgltTbpfqnCDhFJSUmjUqBEjR47k2WefzbN+xYoVvPHGG8ydO5d27drx008/0bt3b0JDQ/H19QWgWbNmZGRk5Hnt1q1b8fLywtHRkTNnznD37l0GDRrE4MGDcXd3LzCmjIwMg/JyTu9pNJpC/xb2/HHkV/7j5i0s1sLSZJsrf5vzS6/Mba7uZMVzwydzK3Y0K9b/TIvIX6ipiML+3Dcknv+F6Pqv4N/rdbKUlsVuU3HaWdw2l3bbdOrUSf+8c+fOpSrrSRERm8qR8Fj93ahkJ7b8xCZnohPw/c6rWKhV8ih4FWVnYUbonUQEgqsxydR2L587fuVHISrweXWFQpHniGyrVq1o2rQp8+bN06cFBQUxcOBAZsyYUeI6xo8fT9euXXnuuecKzDNt2jSmT5+eJ33ZsmX6YQqSJFUMCek60m4epkfyWmooowGIx5bjjn1J9emGMLMs13hSU1MZOnQoCQkJpR7D+tFHHzFt2rQ8t29MSEhg3Lhx/PHHH6Uqv6wkJibi4OBglG1QFJ1O8PxPhzh+8wH/7RPEmI41y6QerVZLWFgYQUFB8taqj8h9cd13/2nMgMYFXxgkt2PpmWobbgu9S4PqDng4GH+fWqJ9hqjAALFmzRr9ckZGhlCpVGL16tUG+SZNmiQ6duxYrDKjo6NFQkKCEEKIhIQEUa9ePXHmzJlCX5Oeni4SEhL0j8jISAGIqKgosXbtWpGSkiIyMzNFSkqKfrmg55mZmY/9KEk5ReXNb31x0gpblm2uHG0uaRsra5tvRt0Taxd9JcI/DhRiqr0QU+1F3NTq4vSyj0RaYmyR772x2nz//n0B6Pc7peHr6ytatWolrl69qk/btWuX8PHxEa1bty51+WUlISHBaNugKAv3Xxd+U9aLeh9tErcepJZZPVlZWeLcuXMiKyurzOqozD7bECr8pqwXtf+7URy/EWewTqfTieG/HhHDfz0iHiSnye1YSlXxs1iSfUaFG1pQmPv376PVavMMA3B3dyc6OrpYZdy6dYvRo0fr50GcOHEiDRs2LPQ1FhYWWFhY5ElXq9X6vznPc6fn9zz38uMqSTlF5c1vfXHSZJsrf5vzS69KbfZ0ccB3+Ns8SJrApr9/pN6Vn/BTRON06TsSLv3KzTojUJgHF/jeF+d5cWI1xnbJcfbsWcaOHUvjxo2ZNWsWly9f5rvvvuO9995j6tSpRqunsnqQksn/bb0MwHt9gqjuWLVmsKhMpvSqy/V7KWwPu8vEZSfZNLmDwUVBuy9lj4zVyFvUVglRCWk425hjYVb+R9UrVUc2x6ODisW/V+wWR7NmzTh9+nQZRCVJUkXkZGdN75dCiI1/hcW/fEqnpH/wJ4qGl3/AX1hzIe0UQc9MwcK24s9/6eDgwPLly/nvf//L2LFjMTMzY9OmTXTr1s3UoVUIP+69RlJGFkGe9rzY0tfU4TzRVEoF3/2nMf1+2E/4/RSWH4tkXKdagLwZQlUzc/NFft53nc8GNuD5FuU/PVelGgHv6uqKSqXKc/Q1Jiam0Iu1JEmS7G2scAxoh2PIcXbU+4zreGOvSKXxtR/RfF2fM4vfJj2x4l8//cMPP/DNN98wZMgQatasyaRJkzhz5oypwzK5pHQNSw7dBODtHnXkXLEVgI2FGd//pwnT+9dnbAFjleUkHJWfk7UajVZw/GacSeqvVB1Zc3NzmjVrxrZt2wzSt23bRtu2bU0UlSRJlYmNlQXdnp+I61tHWewwkasKX2xJpVH4ApQ/NMH60p+kPijeUKXy1rt3b6ZPn85vv/3G0qVLOXXqFB07dqR169Z8+eWXpg7PpP4+fYfUTC0BbrZ0retm6nCkfzXwdmB4W385bVwVNrSVH3+Nb8uXgxuZpP4K15FNTk7m9OnT+tP/4eHhnD59moiICABCQkL4+eef+fXXXwkLC+PNN98kIiKCcePGmTBqSZIqGytLcxxrtsTjnaPsaTyLy4oa2JBO99T1mM9txtlFb6BLSzB1mAaysrI4e/YsgwcPBsDKyop58+axatWqJ/42tXaWZrT0d+alVr6y01RBJWdksfVCNHJkQdVia2FGMz8nk9Vf4cbIHj9+nC5duuiXQ0JCABg+fDiLFi3ihRdeIDY2lk8++YSoqCiCg4PZuHEjfn5+pgpZkqRKzEJtRqeBo9H0G8GejUtwPfkd9blOs9u/U1+s4MwvB6jx9BRThwmQ52xUjr59+3Lu3LlyjqZiGdC4eqHTPEmm9SAlk17f7eVBiobd73TWp8t/OaoWjVZHSkZWud7tq8J1ZDt37lzkLWMnTJjAhAkTyikiSZKeBGozFW17v8g6rSMPLFJwOf4tQbrLNI9eTsb8v7C17MyDJnVx8iybeUlLS96hUKrInGzM8XW25m7iAxYeCEetUsgZC6qYTeeimPrPBToHVivXYQYVriMrSZJkSiqlglbdn0fXdTBLfvmapnHrqK8No1vGNjJ/2cmZav3Icupokti0Wi3ffPMNf/75JxEREWRmZhqsj4szzcUWpnYnPg1rc5XJ7/kuFW5sx1ocu3Gc5UcjOflRdyzMVCjREWXqwCSjcLWzICYpg0PXY8nS6jBTlc/o1Qo3RlaSJKkiUKqU2HsHU/vdPRztsJCTBGGu0NL8/t/0v/wu188eKPeYpk+fzqxZs3j++edJSEggJCSEQYMGoVQqmTZtWrnHU1F8t/0KjT/Zxvy910wdilSIrnXdCHCzJSkji2VHIjA3U8rxzFVIcz8nfhnenB0hncutEwuyIytJklQohVJJk45PE9H4fU52WcIZ88ZEKDzxq9+63GNZunQpCxYs4O2338bMzIwhQ4bw888/8/HHH3P48OFyj6eiiEvNPjJtZS5PMlZkSqWCV/+dhuuX/eFkZGlNHJFkTAqFgm5B7piblW/XUnZkJUmSikGhgAZtexP09jZOBH1okvvCR0dH06BBAwBsbW1JSMieVaFfv35s2LCh3OOpKLS67LGWFuV4FEh6PAMae6FQQExSBu+sPGvqcKQyVNT1TsYiv/WSJEkloFAosLC0Nknd3t7eREVljygMCAhg69atABw7dizf22g/KdSq7NPT6fIIX4VnYabi638vBHKze3I/s1XZ9tC7PPfjQebsulou9cnzMJIkSZXEM888w44dO2jVqhWTJ09myJAh/PLLL0RERPDmm2+aOjyT8XSwAuB2fJqJI5GK49lm3vQM9sBarUIInanDkYzsQWomx248ICk9i4lda5d5fbIj+xhyDpcnJSWRmppKYmIiarUajUajXwbyfa5Wqx+73tzlF1VOUXnzW1+ctMKWZZsrR5tL2sYnpc2P5imonSVtc85rjHGa7YsvvtA/Hzx4MD4+Phw4cICAgAD69+9f6vIrK1/n7CPkN+6nmDgSqbhsLbK7H1p5EL3K6V7PnY/61aN3sEe51Cc7so8hKSkJgBo1apg4EkmSKoukpCQcHByMWmarVq1o1aqVUcusjOp52QNw4mY8Qgh5JbwkmZCjtTmj25df/0h2ZB+Dl5cXkZGR2NnZ0bJlS44dO6Zf16JFC/1yzvPExER8fHyIjIzE3t6+VHXnLr+0efNbX5y0wpZlmytHm/NLl23Om2aMNgshSEpKwsvLq1htk0quia8jTwW50aqGC5laHRZm5X8hniRJpiE7so9BqVTi7e0NgEqlMvgxy7386Dp7e/tS/9g/WmZp8ua3vjhpss2Vv835pcs2500zVpuNfSRWMmRhpuLn4S1MHYYkSf/S6QTbwu5y6Fos7/YKxLoMp8aTsxaU0muvvVbg8qPryqK+0uTNb31x0mSbK3+b80uXbc6bVtZtliRJqooUCvhkXSiLDt7g2I0HZVuXKK+Jvp5giYmJODg4kJCQUOqjVpWFbLNsc1X1JLa5tMprm6VrtCw9EoGthYoXWviWWT2QfbvgsLAwgoKCTDKncFUht2PpVdRtOGvbZR6kZDK0lS9BniX73pdknyGHFpQDCwsLpk6d+kTN8yjb/GSQbS5fI0aMYNSoUXTs2LHc664M1p+N4n/rQ3G2Mad7PQ+cbcxNHZIkPbFCutcpl3rkEVlJkqRK4tlnn2XDhg34+PgwcuRIhg8fTvXq1U0dVpHK64isRquj3/f7uXQ3iQGNvfjuP03KrK6KehSsspHbsfSq4jYsyT5DjpGVJEmqJP766y9u377NxIkTWblyJf7+/vTu3ZtVq1ah0WhMHZ7JqVVKvhzcEKUC/j59h3/O3DF1SJL0RBNCcDs+jfjUzDKrQ3ZkJUmSKhEXFxcmT57MqVOnOHr0KAEBAQwbNgwvLy/efPNNrly5YuoQTaqRjyPjO9cC4N1VZzh/O8HEEUnSk2vC0pO0+2InG85FlVkdsiMrSZJUCUVFRbF161a2bt2KSqWiT58+XLhwgXr16vHNN9+YOjyTCukeSKc61UjX6Bi16BjX7yWbOiRJeiL5udigUiq4l5RRZnXIjqwkSVIlodFo+Ouvv+jXrx9+fn6sXLmSN998k6ioKBYvXszWrVtZsmQJn3zyialDNSmVUsH3Q5oQ6G5HYrqGu4ll9yMqSVLBxneuxYXpPXnjqbK78EvOWiBJklRJeHp6otPpGDJkCEePHqVx48Z58vTs2RNHR8dyj62icbBSs3RMK27GptDMz9nU4UjSE8nBSl3mdcgjshVIUlISLVq0oHHjxjRo0IAFCxaYOqQyFxkZSefOnalXrx4NGzZk5cqVpg6pXDzzzDM4OTkxePBgU4dSZtavX09gYCC1a9fm559/NnU45aKs39dZs2Zx584d5syZk28nFsDJyYnw8PAyqb+ycbW1MOjEno6MZ+XxSORkPZJUdciObAVibW3Nnj17OH36NEeOHGHGjBnExsaaOqwyZWZmxrfffktoaCjbt2/nzTffJCUlxdRhlblJkybx22+/mTqMMpOVlUVISAg7d+7k5MmTzJw5k7i4OFOHVebK8n3Nyspi1KhRXL16tUzKr+piktJ5ZfFx3ll1ltf/OEVCmpzlQZLKw+ydV3ht6UmuxpTNWHXZka1AVCoV1tbWAKSnp6PVaqv8kQNPT0/9kSU3NzecnZ2fiA5Ply5dsLOzM3UYZebo0aPUr1+f6tWrY2dnR58+fdiyZYupwypzZfm+mpmZ4efnh1arLZPyqzoXGwtGtvNHpVSw/mwU3Wft4e/Tt6v8PlaSTG1bWAwbzkXJjmxFsHfvXp5++mm8vLxQKBSsXbs2T565c+dSo0YNLC0tadasGfv27StRHfHx8TRq1Ahvb2/effddXF1djRT94ymPNuc4fvw4Op0OHx+fUkZdOuXZ5oqqtNvgzp07BhP1e3t7c/v27fII/bFVhvf9ww8/5P33338i/tkzNpVSwWtdAlg1rg01XG2IScpg8vLTDFlwmJMRZXsveEl6kg1r7cdH/epR16Ns/smXHdkSSElJoVGjRsyePTvf9StWrOCNN97gv//9L6dOnaJDhw707t2biIgIfZ5mzZoRHByc53HnTvbE3Y6Ojpw5c4bw8HCWLVvG3bt3y6VtBSmPNgPExsby8ssvM3/+/DJvU1HKq80VWWm3QX5HuRQKRZnGXFrGeN/L2vfff8++ffvw8vIiMDCQpk2bGjykojXxdWLT5A6EdK+DhZmSw9fjGDT3oJyiS5LKyOBm3oxuXwN/V5uyqUBIjwUQa9asMUhr2bKlGDdunEFa3bp1xXvvvfdYdYwbN078+eefjxui0ZVVm9PT00WHDh3Eb7/9Zowwjaos3+ddu3aJZ599trQhlrnH2QYHDhwQAwcO1K+bNGmSWLp0aZnHaiyled/L8n2dNm1aoY+yNmfOHOHv7y8sLCxE06ZNxd69e4v1uoSEBAGIhISE4ld2544QU6dm/y0jEbEp4p2Vp8XY344bpO+5FCOS0jWFvjYrK0ucO3dOZGVllVl8TwK5HUuvKm7Dkuwz5PRbRpKZmcmJEyd47733DNJ79OjBwYMHi1XG3bt3sbKywt7ensTERPbu3cv48ePLIlyjMEabhRCMGDGCrl27MmzYsLII06iM0ebKrjjboGXLlpw/f57bt29jb2/Pxo0b+fjjj00RrlFUlPd96tSp5VbXo3KOSM+dO5d27drx008/0bt3b0JDQ/H19TV+hVFRMH069O8Pnp7GLx/wcbbmy8GN0OkenkGITkhn5KJjqJQKOtauRp8GHnSoXY1qdhZlEoMkVXX/nL7NdzuuEBmXRs1qNrzxVG16BRvvOy07skZy//59tFot7u7uBunu7u5ER0cXq4xbt24xevRohBAIIZg4cSINGzYsi3CNwhhtPnDgACtWrKBhw4b6MYlLliyhQYMGxg7XKIzRZsie6/PkyZOkpKTg7e3NmjVraNGihbHDLRPF2QZmZmb83//9H126dEGn0/Huu+/i4uJiinCNorjve2V+X4sya9YsRo8ezSuvvALAt99+y5YtW5g3bx4zZswwcXSlo1Q+HPZyOz4VPxdrrt9LYXvYXbaHZQ/vqlXNhpY1nPlPC18a+TiSrtFyPzWLDI0Wa5XKVKFLUoW2+XwUk5af1i9fik5i3O8n+fGlpkbrzMqOrJE9Og5QCFHssYHNmjXj9OnTZRBV2SpNm9u3b49OpyuLsMpUadoMVIkr+IvaBv3796d///7lHVaZKqrNZf2+arVavvnmG/78808iIiLIzMw0WF9WF4GV9Ih0RkYGGRkP76aVmJgIZMdf6KwLUVHZD0Bx6hRKQHf8OCLnNZ6eZXZ0Nkdjbwe2Tm7P5bvJbL4QzbbQGC5GJ3HtXgrX7qVw+HosD1I0xP87fdcfTl60rFl5/0kztZzPg5yN4/FV5G347fYrKICccx4CUCiy07sHuRX4upK0RXZkjcTV1RWVSpXnqFxMTEyeozhVhWzzQ1W5zY96ErdBRWnz9OnT+fnnnwkJCeGjjz7iv//9Lzdu3GDt2rVlOnSjpGciZsyYwfTp0/OkX7p0CVtb2wLrcZs7F7d58wzSlGPH6p/HjB9PzIQJJQ2/xLQ6wfmYdK7eSuVuQhq5L10Mv5/6MDYFXA6/iV1GTJnHVNVdvnzZ1CFUehVxG16LSeLRS3+FyE4PCwsr8HXJycW/+FJ2ZI3E3NycZs2asW3bNp555hl9+rZt2xgwYIAJIys7ss1PRpsf9SRug4rS5qVLl7JgwQL69u3L9OnTGTJkCLVq1aJhw4YcPnyYSZMmlWn9xT0T8f777xMSEqJfTkxMxMfHh8DAQOzt7Quu4IMP0I4cmV3XqVMox45F99NPiCZNAHDx9MSlDI/IRsal8sexSFaduE1sysOj3eYqBY18HGnu50RdDztqVbPB096cOzevExgYiEoOLXhsWq2Wy5cvU6dOHbkdH1NF3oa13OK4FG3YmVUoIMDNjqCgoAJfl3MWpzhkR7YEkpOTDe6qEx4ezunTp3F2dsbX15eQkBCGDRtG8+bNadOmDfPnzyciIoJx48aZMOrSkW1+Mtr8qCdxG1SGNkdHR+vHj9va2pKQkABAv379+Oijj8qs3pIekbawsMDCIu/FUSqVqvAfWm/v7Ed2ZgCUzZtDGU8tdjoyntk7r7DjYgw5M8c5WavpWd+DXsEetK7pgqXaMG6tVkuUQlF0m6Rikdux9CriNnzjqdqM+/2kflmhyD4iO/mpwjvdJWpH2U2eUPXs2rVLkD3Ew+AxfPhwfZ45c+YIPz8/YW5uLpo2bSr27NljuoCNQLb5yWjzo57EbVAZ2lynTh1x+PBhIYQQ7du3FzNmzBBCCLF8+XJRrVq1Mq27ZcuWYvz48QZpQUFBxZp27rGm3zpxQgjI/ltGLtxOEKMWHhV+U9brHy/9fFhsOR8lNFnaQl9bFac8MgW5HUuvom/DLzaGCb8p64X/lPWi17d7xKZzUUW+piT7DIUQ8v58kiRJlcF7772Hvb09H3zwAatWrWLIkCH4+/sTERHBm2++yRdffFFmda9YsYJhw4bx448/6o9IL1iwgAsXLuDn51foaxMTE3FwcCAhIaHwoQW5RUXBTz/B2LFGv8ArMV3DrK2X+e3QDXQie6zroKbeTOhci5rVCh7Dm5tWqyUsLIygoKAKdxSsMpHbsfQq+jbceiGaV5ecoImvI2smtCvWa0qyz5BDCyRJkiqJ3B3VwYMH4+3tzcGDBwkICCjzGSJeeOEFYmNj+eSTT4iKiiI4OJiNGzcW2Yl9bJ6eMG2a0YvdfSmGd1ad5V5S9qwKfRt48laPOsXuwEqSVDKpmdkzEFibl00nW3ZkJUmSKqnWrVvTunXrcqtvwoQJTCiHWQPKQkaWlpmbLvHrgXAAalaz4ZP+wbSv7WriyCSpaotPzb5w0tHKvEzKlx1ZSZKkSuTy5cvs3r2bmJiYPHMwV+a7p5WluJRMxi05wdEb2fPsjmjrz3u96+a5gEuSJOPLmXPZwVpdJuXLjqwkSVIlsWDBAsaPH4+rqyseHh4GU18pFArZkc1HZFwqL/1yhJuxqdhZmPHNC415ql7VnO9Ykiqi+NTsjqyT7Mj+f3v3HRXF9TZw/Dtb6F2QoggidrGhxhYFY08xRWOL0WiKsaSYxMQYoyZqyi8xeY2mmKKmm2KMvSX2LopdUQRBmkivC7s77x/IRgR0KcuycD/n7HHnzt2Z586uy907d54RBEGo3xYsWMDChQt5/fXXzR2KRbiWlsuo5YeIS8+jsast303oSgtPR3OHJQj1SpqYWiAIgiAApKWlMWLECHOHYRGSszSM/rqoE9vU3Z5fn+2Op5ONucMShHonIT0fgIZOpXNLVweFSbYqCIIgVLsRI0awbds2c4dR62m0Oib/GEZsah5+Dez45RnRiRUEc4lOyQHAr4G9SbYvRmQFQRAsRGBgIHPmzOHQoUMEBQWhVpecc2bqW9RaioUbzxN2NQ1HGxUrJnTFy1l0YgXBHPIKdFy/merOv4GdSfYhOrKCIAgWYvny5Tg4OLB79252795dYp0kSaIjCxyIvMH3B68CsGRUJ5EfVhDMSK2U2DC9N9fScnGxE3NkBUEQ6rWoqChzh1Cr5RfqeOPP0wCMvacJoa0amjkiQajfVEoF7Ro5066Rs8n2IebICoIgCHXCL0diiEnNxcvJhjeGtDJ3OIIg1AAxIisIglCLzZgxg3fffRd7e3tmzJhxx7qLFy+uoahqH41Wx7KdkQC82L85jjamyVkpCILxlu+JRCFJPNDex2Rz1UVHVhAEoRY7ceIEhYWFhuflufXmCPXRtrNJ3MjW4OVkw/DgxuYORxDqPVmWWb4nihvZGjr7uYqOrCAIQn20c+fOMp8LJf0edg2Ax7s0Rq0Us+YEwdy0epkJPf04dS2DNt5OJtuP6MgKgiAIFi2/UMehKykAPNSxkZmjEQQBQK1UMK1fc5PvR3RkBUEQLMQjjzxS5hQCSZKwsbEhMDCQMWPG0LJlSzNEZz7HotMo0OrxcrKhmYdpkq4LglA7iY5sJej1euLj43F0dKz389IEQbgzWZbJysrCx8cHhaJqp7ydnZ1Zu3YtLi4uBAcHI8syJ06cID09nYEDB7J69Wo++OAD/vnnH3r16lVNLaj9LiRmAhDs5yq+kwWhlth4KoGu/q40NPFd9URHtgKWLVvGsmXLKCgoIDIy0tzhCIJgQWJjY2ncuGoXIXl5eTFmzBiWLl1q6BTr9XpefPFFHB0d+fXXX5k8eTKvv/46+/btq46wLUJMai4ATUx05yChesmyTGxqHt4uNiIHaB0Vk5LL1J+Po1JInJo3EDsr03U3RUe2AqZOncrUqVPJyMjAxcWFiIgIjh07RmhoKGq1msLCQnbu3EloaChAmc9vv6VkRdy6/btt5251y1pvTNmdlkWbLaPNFW1jfWnz7XXKa2dF25yVlUXTpk1xdHQ07mDcwbfffsv+/ftLjOwqFAqmT59Oz549WbRoEdOmTePee++t8r4sSWJGPgA+4la0FmHVgWjmrT/HqK6+LHy4rbnDEUxg7+VkADo3cTVpJxZER7ZSik9dubm5YWdnR4MGDQx/GIuXgTKfV/WPvbHbuVvdstYbU3anZdFmy2hzRdtYX9p8e53y2lnRNhfXqY5T3lqtlgsXLtCiRYsS5RcuXECn0wFgY2NT706va/UyANYqpZkjEe4mr0DHvPXnAPjtWKzoyNZRuy8WdWTvbe5u8n2JjqwgCIKFGDduHJMmTeLNN9+ka9euSJLEkSNHWLRoEU8++SQAu3fvpm3b+tU5UCuLOu4arc7MkQh380dYrOG5lUpMLKiLsvIL2R1R1JHt19r0t4kWHVmh1pNl0OtlZFmudyNNgnCrTz75BE9PTz788EOSkpIA8PT05OWXX+b1118HYODAgQwePNicYdY4N3srAG5kF5g5EqEs+YU6bNRKtDo9X++NMpRrtHpkWTZjZIIp7DifhEarJ8DD3qT5Y4uJjqxgNhl5hZxPyCQmJZeY1KJHfHoe6XmFpOcWkplXSIFOD6h46dB2JAkcrFU42ahxtlXTyNWWxq62NHGzo7W3Ey08xIUeQt2mVCqZPXs2s2fPJjOz6Ep9J6eSfyiaNGlijtDMyq9BUcqtyORsM0ci3C42NZeXV4ezamI3dl68TkxqLlYqBQVaPbJc1JkV6pb1JxMAeLC9T40MPomOrFAjdHqZs/EZHIxM4eS1dM7EZRquNDaWLENWvpasfC1x6XmcS8gsVaehjZIjuvOEtPKkR7MGOFiLj7hQN93ega3PWt8c9Tkdl2HmSITbrTsZz7GraUxceYSs/KKpH8/1CeCzfy8DRaO1Qt2RnlvAnpvTCh7s4F0j+xR/5aug+P7n5f17p+fVsb+q1L1TrHcqq0ib0zWw6kAUB6PSORKdRla+tlQcjVxsCHC3x9fNFl9XOxq52OBqZ4WzrRpnWxUK9OzZvZvQkBBQKIs6shotabkFxKXlcS09n6spuZyNzyQ+I5/r+RI/HYnlpyOxqJUSoS09eKSjD32auyPJOpO3+fbnlWHq97msctHm8l9b1TZX9djc7o8//uC3334jJiaGgoKSp9KPHz9erfuyFJ2buKBWSlxNySXqRg5N3cVNEWoDWZZZeyIOgMNRaQDYqBU82cPf0JEV6pZNpxPR6mVaeTkS2LDqmVqMIcligorRivPI6nQ6IiIi+Pnnn7GzE6ezb3U9D06mSpxKURCTU/KUgo1SJtBJJsBRprEDNLaTsa/8he6lZBdCVJbEhfSixw3Nf/t3UMv09dLTy7N69ykId5Obm8uYMWPIyMio8ijqkiVLmD17NuPHj+frr7/mqaeeIjIykqNHjzJ16lQWLlxYTVFXr8zMTJydnavlGJRnzNeHOBCZwmuDWjI1NNAk+7iVTqfj/PnztG7dGqVSZEsoy7n4TIYu2VuizL+BHVte6kOrOVsACJvdj4SrkeI4VkFt+SzKsswDn+3jbHwmbw5txbN9mlV6WxX5zhAjshVQnEe2+ACHhoZy+PBhBgwYYEjns337dgYMGABQ5vOqpigydjt3q1vWemPKylr+e/N28hu2YW14Iifj/jvdLyHTsbEz97X2pEeAG228HVEpK3aVamXaPGNkf9RqNRcSs1gbHs+6kwkkZxewMVbJ9jiZSb38ea5vM+ytVZVusyW/zxVtY31p8+11ymtnRdtcPJe1Onz++ecsX76c0aNHs2rVKmbOnElAQABvv/02qamp1bYfS/RIp0YciEzh16MxPN+3GQqFuDDU3P4OjytVFp2Sy4zfwg3LYiSt7jgek87Z+EysVQpGBPvW2H5FR7YKiv+IqdXqEn/Q7vS8Kn/sK7Odu9Uta70xZSqVimMxmfx4KJqtZ5Ro5QgAFMj0CnRnQJuGSHGnGfVwd7O1OcjXjSBfN94Y2oaNpxL4ctdlLiRl88Xeq/wRnsjrg1vxUFBDo9tc197nsspFm/8rM+Z5RfLIVoeYmBh69uwJgK2tLVlZWUBRWq7u3buzdOnSatuXpXmgvQ/vbjhHbGoem84k8EB7H3OHVK/p9TLrTsaXuW7T6cQajkaoCT8eugrAgx18cL2ZSaQmiCRuQoXkFeg4kCTx4LKDjP76EBtPJ6KVJVo0dOCNwS2YH6zju/HBjO7qi1PNfY7vSK1U8HCnRqyb2oOJLXQ0cbMlOUvDq7+f5JkfT5AhMvYIFsLLy4uUlBQA/Pz8OHToEABRUVH1Po2RrZWSib2bArB4ewRanbga3pwOR6WScPOOa3ei19fvz21dkZKtYeOpomwFT/bwq9F918mOrEajoWPHjkiSRHh4eIl1kiSVenz55ZfmCdSCxKfnsWjTee79aDerryi5mJSNrVrJqK6NeTVIy4ZpPZjUy7/WdF7LIkkSHRrIbJ7ei9cHt8JKpWB3xA3eD1ey99INc4cnCHfVr18/1q9fD8CkSZN4+eWXGTBgACNHjuSRRx4xc3TmN6l3U1zt1FxJzuGbfVF3f4FgMmuOXzOq3k9HYkwciVATXO2s+Hp8F57u3ZT2jV1qdN91cmrBzJkz8fHx4eTJk2WuX7FiRYmE4c7OzjUVmsW5kpzDz5cVvHJ4n+E2kA2sZZ7r14qR3fywU8GmTdEWdaMCK5WC50Oa0b91Q2b8Fs7puEye/uE4Mwe34rk+AeYOTxDKtXz5cvT6opHGyZMn4+bmxr59+3jwwQeZPHmymaMzP0cbNW8Obc1rf5zik+0RDGjjSTMPB3OHVe/kF2pZW8b82GKBHvZcTs4BYEzXJiRfu1JToQkmolBI9G3hQd8WHjW+7zrXkd28eTPbtm3jzz//ZPPmzWXWcXFxwcvLy+htajQaNBqNYbn44o26lqLo1rKz8Zl8tSeKLWeTkFEAMj0C3BjXrRGa6BMM6uqDWmXZbfZ3s+GH8Z2Y/M1ODl1X8P7mC1y9kc3swYFl1q8r73NZ5SL9VvmvrU3ptxQKBQrFfyfSHn/8cR5//PFq235dMDy4MetOxrP30g2e/zGMv6b0wl7kk64xsizzwq/hFOr+mzIgSdDJ14VBbb0Y0MaTpu72NJ21qWiduCjP4un0Mkozvo91Kv1WUlISwcHBrF27Fnd3d5o2bcqJEyfo2LGjoY4kSTRq1Ij8/HyaNm3KpEmTePbZZ0v8cbjdvHnzmD9/fqnyuph+KzITtscpOJ/+3/EIctXTv5Ee/5pJCVfjZBn2JUn8GaVARiLYXc/YZnoqmGBBEMpUnem3APLz8zl16hTXr183jM4We+ihh6q8fVOoifRbt7qemc/9n+0jOUvD0CAvlo7uXO1ZDGpLyqPaRJZlPt4WwdKdRTliW3g68FSvptzXuiENHW1K1PV/YyMAR97sx/UYkX6rKsz5Wcwr0DF0yV7uD/JmSmgz7Kyq50djvUy/JcsyEyZMYPLkyXTp0oXo6Ogy67377rvcd9992Nra8s8///DKK69w48YN3nrrrXK3PWvWLGbMmGFYzszMxNfXt86k31KpVOy5dIPPd13heGzRnXEUEjwQ5M2kno2JPnmwzqZlKi57Z1x/ep2/wWt/niHshgKlBCsm98PKyqrOtbmscpF+yzLSb23ZsoUnn3ySGzdKz+mWJAmdTtwlCaChkw1fjO3MqOWH2HQ6kTl2Z1jwcDuLmgJlaXR6mXfWn2XVwaIr12cNacVzfSufR1SwDOtPxRN1I4e14XG82L+5WWKo9R3Z8kZDb3X06FEOHDhAZmYms2bNumPdWzusxSO177zzzh07stbW1lhbW5cqt/T0W3oZdlxM4cs90YbbvSolmRFdfJkS0pwmDewoLCwk+mTdT8ukVqt5JLgJ9jZWPP/TcY4kK/hkZzRvPdC23NdZepvLKq/r73NZ5ZaUfmvatGmMGDGCt99+G09Pz2rbbl3Uxd+NxSM78uKvJ/jpcAw2aiVv3d9adGZNIK9Axwu/nmD7uSQkCd5+oA1P9Wpq1Gvr0Enheml458Y42aiRpKIMQeZQ6zuy06ZNY9SoUXes4+/vz4IFCzh06FCpDmeXLl0YO3Ysq1atKvO13bt3JzMzk6SkpHrzh6FQp+eP43F8Eq7k+qFTANhZKRndtTF++ZGMfqhNtf7xtSQD23qxcFgb3vjrLN/si6aphwOPdxb5KIXa4fr168yYMaPefFdV1UMdfMjVaHljzWm+3RdFWk4B7z/WHiuVmDdUXWJScpnycxhn4jKxUin4dGRHhgZ5mzssoYYoFBKD2xl/zZEpGNWRdXNzq9BGJUni+PHj+PlVPZeYu7s77u7ud623ZMkSFixYYFiOj49n0KBBrF69mnvuuafc1504cQIbGxtcXFyqHGttl1+oY/XRWJbvuUJceh4g4WyrYkLPpkzo6Y+DlcSmTZHmDtPsHuvciL3HTrExVsm8dWdp7l635kELlmv48OHs2rWLZs3EKVtjjerWBKVC4o01p1lzIo6krHw+G90ZtxpM2F5XbTmTyGt/nCQrX4urnZrlT3ahq3/F+guCZUrJ1qBSKnC2Nf+gl1Ed2fT0dD799FOj0lTJssyUKVNqfK5WkyZNSiw7OBSlXGnWrBmNGzcGYP369SQmJtKjRw9sbW3ZuXMns2fP5tlnny1z6kBdkZVfyI+HYvh23xVuZBdl//dwsKJngzzmjeuHq4MtUL1XV1u6AY1ktI4N2XruOtN/Pcn0luaOSBBg6dKljBgxgr179xIUFFTqzMkLL7xgpshqtxFdfHF3tGbqT8fZfzmF+5fsZemYzgT7uZo7NIuUkVfIwo3n+O1YUa7YYD9XPhvdCR8XWzNHJtSUhRvPsysimfcfDWJgWwsYkQUYNWoUDRs2NKru9OnTKx2QKanVaj7//HNmzJiBXq8nICCAd955h6lTp5o7NJNI18D/tkXw69FrZOZrAWjkYsvkkGY80t6Tf7ZvxUGkpSmTJMH7j7Yj8sYRLl/P5tdIBY+LuVyCmf38889s3boVW1tbdu3aVWK+pyRJoiN7B6EtG7JmSk+m/HicKzdyGPnVQab1C2RKSKCYalAB288lMfuv01zP0iBJ8HTvpswc3KrC8yMlqShjjGB5wmPTWXMiDkkCb2fz/3gxqhdze4qXuym+/7c5+fv7l5pEPnjw4BI3Qqiq2ppr89S1DL7bH8Xms0r0cjQAAe72TO7TlAfae6FWKiqcQ7Ou5he9U5m1Qmbx8CAe/fIQZ9IUrD4ay6huTSy+zWWV1/X3uaxyS8wj+9Zbb/HOO+/wxhtv3DFloFC2Vl5OrJvem1lrTrP+ZDyf7rjE5tOJfDC8PR19XcwdXq0WkZTFwo3n2R2RDBT9TflgeHsxlaCe0ell5q8/C8CjnRoT1Nj8N5SqU3lkTW3ZsmUsW7YMnU5HRERErcojq9PD6TSJ3QkKrmT9N0oT6CQT4q2nrauMyDtdOf/ESayLUWKtkHmjow63ujsLRTCB6swj6+bmxtGjRy1ujmxN55G9G1mW2XAqgXnrzpKSU4AkFf1RfnVQC6NHmOpLHtkb2Ro+2R7BL0di0MugVkpM7N2Ul/u3wEZd+XY3nbURWYZDb4Ry49qVOn8cTakmP4sr9kcxf/05HKxV7JjRFy9nm7u/qBJMmkd23bp1ZZZLkoSNjQ2BgYE0bWpc2g1LM3XqVKZOnWo4wLUhj2xsWi6/H4vjj+NxJN+c/6pSSAxp25CWxDHxkYrnVL1TWV3LL2pMWT9NAaf/bydRWRL7c71Z8kA7i25zWeV1/X02ps231ymvnRVtc3XmkR0/fjyrV6/mzTffrLZt3k10dDTvvvsu//77L4mJifj4+PDEE08we/ZsrKws84IpSZJ4sIMPvQLdWbDhHGtOxPHn8WtsOBXPxN5Nebp3Uxo41O9frAkZeSzfc4VfjsSQX1h0VnZQW0/eGNKapu72Vd6+BIhRNMsSm5rLh1suAvDGkFYm68RWVIU7sg8//DCSJJU6bV9cJkkSvXv3Zu3atbi61u2J9ObKI6tHwfYLN/jlSAx7L/2XGN3dwYqRXX15soc/brZKNm2Kq3RO1buV1bX8oncrGxmg46PTanZcSGZPZJph/a11KxNrVdpRkboij2z55ZaUR1an0/Hhhx+ydetW2rdvX2rbixcvrrZ9Fbtw4QJ6vZ6vvvqKwMBAzpw5wzPPPENOTg4fffRRte+vJrnZW7F4ZEee7OnPoo3nORKdyhe7IlmxP4pRXZvwTJ8AGtWzC5jOxGXw/cFo1p6Ip0BX1IHt4OvCm0NacU9AAzNHJ5iLLMvMWnOavEId3Zq6MaZbk7u/qIZUuCO7fft2Zs+ezcKFC+nWrRsAR44c4a233mLOnDk4Ozvz3HPP8eqrr/Ltt99We8D1lU4vcyAyhZ8vK3jrxG6ybl68BXBvc3fGdGvCfa09DRctiAwE1cvbDp7q6cfX+6J5d+MFXmph7oiE+uj06dN06tQJgDNnzpRYZ6pE/7dfWxAQEMDFixf54osvLL4jW6yjrwurn+vOjvPXWfLPJU7HZbDyQDQ/HLpK/9YNGdWtCX2ae5j1fvKmlKPRsvlMIj8eukp4bLqh/J6mbkzrF0jvQHeTfb7E7EbL8HvYNfZdvoG1SsEHj7Wv9ls+V0WFO7Ivvvgiy5cvp2fPnoay++67DxsbG5599lnOnj3Lp59+ysSJE6s10PpIq9NzNDqNbecS2XgqgetZGkABaPF2tuGRTo0Y1bUJTRrUjnm6dd200AA2nUkiLj2PXQkSD5s7IKHe2blzp7lDACAjI+OO+cU1Gg0ajcawXDy9QqfT1erb6PZr6U5oiwYciEzhi91XOHglla1nk9h6NgkfFxse6diIoUFetPR0MFwEXZvbcycFWj17Lt1g3cl4/rlw3TB9wEopMaSdF090b0LnJkVnVSt6wbcxpJtpC3QWfhxrg+JjZ6pjGJ+ex4IN5wB4qX9zmrjamPz9qsj2K9yRjYyMLHPirZOTE1euXAGgefPmZd4LXLi7rPxC9kTcYPu5RHZeTCYj77+RVRdbNW2cNEx9oBs9mjWsVb+I6gM7KxWvDWrJS6vD2RGvICWngAYiqbpQz0RGRvLZZ5/x8ccfl1vnvffeK/PW4hcvXjTk+K7N3IDZPR252saarZez+fdKDvHp+SzbFcmyXZE0clTRy8+OYB9btPqLqCzkuzglV0tYfD7H4vMIT8gjt/C/0VAfRxX9mzkwMNABFxsl5CRy/nyiyWIpHom9EhmJm52KiIgIk+2rvjDFMdTpZWZtTyIzX0uLBlb0dMvj/Pnz1b6f22VnZxtdt8Id2eDgYF577TW+//57PDw8AEhOTmbmzJl07doVgEuXLhluQlCXVUeKIo1WT3hsOoeupHLwSionr2Wg1f/35eJqpya0pQcD2zSku78zu//9h06NHNHptNzpB0t1p6Kqq2mZKtrmIW08WO7twLmEbJb8c4m3hrQo9/WVVRtSUdW197mscktKv/Xoo48aVW/NmjVGb3PevHlldjZvdfToUbp06WJYjo+PZ/DgwYwYMYKnn3663NfNmjWLGTNmGJYzMzPx9fWlZcuWtSJrgbFaA4N7FN0Vcdu5JDaeTmTPpRvEZWn57Uwmv53JxN5aSY+mDejRzI3OTVxp5eVYK/LSyrLMtbQ8TsSmc/xqOseupnE+sWRqTE9Hax5o780D7b0JauRksukDZZGkGJBlmgYEkJEYQ4sWLUTWgkoqzqRkimO4ePslziVrcLBW8uX47vjV0BngilwkW+H0WxcvXmTYsGFERUXh6+uLJEnExMQQEBDA33//TYsWLVi7di1ZWVmMGzeuwsHXZtWRfitPC1ezJa5mw5VMicgsiUJ9yS8PDxuZIFeZdm56mjoi0mbVMpcyJJaeU6KQZGZ10NGwfl0LIlRQdaTfeuqpp4yqt2LFCqO3eePGjbueOfP398fGpujK5Pj4eEJDQ7nnnntYuXJlhfLY1rb0W1WRrdHyz/kktp1NZG/EdTI1JU+7WykVtPFxon1jZ5o3dKBZQweaN3TE3cHKZB3FbI2Wy9ezuXw9m0vXs4i8ns3JaxkkZ2lK1JMkaN/YhdCWHoS0bEj7Rs5mO7MX+OYmtHqZA6+HkBoXJdJvVYGp0m9dvp7FgE/2IMuwZHQnHurgU23bvpuKfGdUKo+sLMts3bqViIgIZFmmVatWDBgwoN4k6C4+wAkJCXdNv9Wu273svZzK5iPnSZYdiErJLXU3kwb2VnQPcKNngBvdA9xo4lZ257g2pKKqa2mZKtvm4Uv+4Vy6ggeDPOnvEGdRbTa2jXXpfTamzbfXKa+dFW1zZmYm7u7uFt2Ji4uLIzQ0lODgYH788ccK/7GsSx3ZYjqdjrPnzqF3bsSBK6kciUrlZGw6abllj8A7WKvwdrbBy9kGH2dbPBytcbZV42yrxslWha2VCrVCQqVUoFIWZQEq0MoU6vQUaPVkaQpJzy0kI6+QtJwCEjPzSczIJz4jv1SHtZhaKdHWx5nOTVzp7OdCj4AGtSatWHFHdv/MENLiRUe2KkyZR3bdyXhOxqYz54E21brduzFpHlkomqQ9ePBgQkJCsLa2rtHTEbWJMem3wuOymbfxIkUXaeUC0MTNjk5NXOjk60KPZu608HSo0DE0dyqq8pbLe24JaZkq2uahvnrOpSvYeCaJoA6W2eayyuv6+1xWuSWl3zKH+Ph4QkJCaNKkCR999BHJycmGdV5e5r3HurkpJIm2jZzp2MSNKSFFgzwxqbmEx6ZzLiGTy0nZXE7OJjY1l2yNlkvXs7l03fi5fxXR0NGawIYONG/oQGBDB1p7O9GukXOVblpgSvW022BxHurgU6MjsZVR4Y6sXq9n4cKFfPnllyQlJREREUFAQABz5szB39+fSZMmmSJOi9WpiTM9A9xw0NzgsdBguvjXnl/EQuX5OsB9rTz450IyW68pMO7EryBYnm3btnH58mUuX75c6toHkTqpJEmS8Gtgj18De4Z1bGQozy/UEZeeR0J6PvEZRf+m5GjIzCsaYc3IKySvUI9Or0erkynU61FIEmqlAiulArVKgaO1Cme7ohFcF1v1zdFdW7ydbfB1tcPZzrJ/MAm1x8r9UQwJ8sbTqXbc8OBuKtyRXbBgAatWreLDDz/kmWeeMZQHBQXxySefmLUje/z4cV5//XWOHj2KUqnkscceY/HixSWuko2JiWHq1Kn8+++/2NraMmbMGD766COT3aHG19WOVU91YdOmTfRr6WHxozPCf6aHNuOfC8kcvyERmZxDM4+q3+1GEGqbCRMmMGHCBHOHYdFs1EqaeTjQzKP2Z2yoaeKnUO3y+7FY5q0/x1d7rrDt5T442tT+PkuFJ7V+//33LF++nLFjx5aYi9G+fXsuXLhQrcFVRHx8PP379ycwMJDDhw+zZcsWzp49W+ILWKfTcf/995OTk8O+ffv49ddf+fPPP3nllVfMFrdgudr6OHFfKw9kJD7fdcXc4QiCIFgMCTG3oDbq6u9GYEMHRnVtYhGdWKjEiGxcXByBgYGlyvV6vVnvJrVhwwbUajXLli0zXHS2bNkyOnXqxOXLlwkMDGTbtm2cO3eO2NhYfHyK5nx8/PHHTJgwgYULF9aZixCEmlM8KrvhdAJTQgLMHY4gCIIgVJq/uz1/T+2FnVXtnFtdlgp3ZNu2bcvevXvx8/MrUf77778bbp1oDhqNBisrqxKZE2xti/Ii7du3j8DAQA4ePEi7du0MnViAQYMGodFoCAsLIzQ0tNxtl3WXGmPyUuqi9qH+dx73ZmWjSF6KXqkGhQokFSiURc8VpZ/LZZXL0DLhKvLuM+jU1qCyBqUVssoGlFagsrlZZo0OJc65UWjjT4ONvaEclTWobSnUyaViFXlkyy67078tPGxp56rnTJqCpTsvM8Ch9re5rPK6/j6XVW5JeWQFoa4S86zNLyOvkLNxGfQMdAfA3rpSeQDMpsLpt9avX8+4ceOYNWsW77zzDvPnz+fixYt8//33bNiwwZCepqadPXuWjh07smjRIl588UVycnJ4+umnWbNmDYsWLWLWrFk8++yzREdHs23bthKvtba2ZuXKlYwePbrMbZeXONyYPLJe6WHcE/V/lW+YiegkNVqFNVqlDTqFDVqlDVrFzYfSuqjsZnmh0p4ClQMFN/8tVDpQoLJHq7AVl54Csdnw0WkVEjJvdhR5ZYWSqiOPrKWrq+m3TJXyqD5o8dZmCrR69r7Wl4yEaHEcq6Aqn8XcAi3jvj3CiZg0Fj0SxKhuTUwUZcWYNP3Wgw8+yOrVq1m0aBGSJPH222/TuXNn1q9fb5JObEXuPrNq1SpmzJjBrFmzUCqVvPDCC3h6epZ4Y8tKcyXL8h3TX5V3l5rQ0NC75pENGjqJ/MQunDx+jI7t26FUAHot6PU3/9Ui6XUgaw3L6HVlPtdrC7kWE4WvjzcK9KArAK0GtPklnku6AuTCfPJzMrBVS0XlugIkXYGhDUq5EKWuEGtd5VPByJISbF3I1llh59EE2cGL6JR8mrTphuzgybGL1+jcdygqV1+wcqhUp7e25pG9/X0Oad6AXZdS2BanYNXz91l8TlWRR7Z688gKgiDUNgVaPc//eJywq2k42ajo4Oti7pAqpVLjx4MGDWLQoEHVHUuZpk2bxqhRo+5Yx9/fH4AxY8YwZswYkpKSsLe3R5IkFi9eTNOmTYGinIeHDx8u8dq0tDQKCwvx9PQsd/vW1tZYW5dOmWVMHlm1iw+4+JB4RUbRbiiqKvyx1xcWcmrTJhoPHYriLtvRFhayfdMmhg4d+l88ej3oNFCYR2FuBnt3bKJP92BU+nzQZKPNy+Ds8cO0a+GPUldUps/PIDH6Il7O1ijy05FzU9Fl30AlFyDJOshNwRHgWgIAgQC7twLQC+Dy+0X7tnYGVz9wawqu/rc8moKLH9zlZhq1LY9s8XKx6f0C2XUphbBkifjMQgK9qn4bv9qQU1XkkRV5ZAVBqHt0epkZv4WzOyIZW7WSFU91pbW3ZZ4tqfUTIdzd3XF3d6/Qa4o7pd999x02NjaGUZQePXqwcOFCEhIS8Pb2BopyJFpbWxMcHFy9gddGCgUobEFtC2pHsmwbIzcKhpt/aOXCQqJjHWjTYyjKm2W6wkKO3uwQK9RqtIWFbNq0iaEDQlFrsynMSubwzs10D2qGlJ3IlZMHaNbQHrITyUm4jAM5SJpM0GRA4qmix+3UduDREhq2gYatix6eQeBY/o+L2qZ9Y2f6Nndn96UbfL77CotHmm++uCAIQm0nJqWZjyzLzPn7DBtOJaBWSnw5LphgPzdzh1VpRnVkXV1djb7zVGpqapUCqoqlS5fSs2dPHBwc2L59O6+99hrvv/8+Li4uAAwcOJA2bdowbtw4/ve//5Gamsqrr77KM888U2fmbdUYtS3YOYGtBymO0chthiID5240wX/oUAD+LR4RlgsgPQbSov97pEbdfB4FhbkQf6LocSunxih9OtMs0x4p1g18uxTtt5aaFhrA7ks3+PtkAi/2b4FfA5FXVhAEQag9ZFnm/S0X+PlwDJIEn4zsSN8WHuYOq0qM6sh++umnhucpKSksWLCAQYMG0aNHDwAOHjzI1q1bmTNnjkmCNNaRI0eYO3cu2dnZtGrViq+++opx48YZ1iuVSjZu3MiUKVPo1atXiRsiCCZkZf/fSOvtdNqizuz18zcf54oeNy5B5jUUmddoB/D9L0VZF5rcAwEh0DQEfDoWZXWoJTr6utDKWc+FDAWf74zkg+HtzR2SIAhCrSaSFtQcWZZ5d8N5vtsfBcDCh4N4oH3tvv2sMYzqyI4fP97w/LHHHuOdd95h2rRphrIXXniBpUuXsmPHDl5++eXqj9JI33///V3rNGnShA0bNtRANIJRlCpwb170aPPQf+WaLIg/gS7mCEnHN+Gtu4aUnQRRe4oevAM2LtBicNHrmvWjNsyUGexb1JH98/g1pvULxNet6nNlBUEQ6hqR8KZm6fVF0wl+OhwDwLvD2jLmntqRoaCqKvyXf+vWrXzwwQelygcNGsQbb7xRLUFZirqWa7NW5ZFV2EDjHhR6duFoenMG9O+POusqiqi9SNG7kaL3IuWnw6lf4dSvyGp7pGb98ShsTqGmn9na3NQRega4cuBKGkv/jWDBsLYVbnptyKla1z7bZZWLPLKCINQHOr3M63+e4o+wa0gSfPBoex7v6mvusKpNhfPI+vn5MW3aNF577bUS5f/73/9YunQpV69erdYAa5Nly5axbNkydDodERERRuWRFUxDknW45lzGJ/0o3unHsCv8b252rtqNmAZ9uNoghHyrmp/AfiUT/u+sCoUkM6eTDrfSCS+EekTkkRV5ZIXSWs3ZTH6hnt2v9iEr8ao4jlVwp8+iXi/z4upw1p+MR6mQWPx4B4Z1bGSmSI1n0jyy8+fPZ9KkSezatcswR/bQoUNs2bKFb775pnIRW4ipU6cydepUwwE2Jo+sJeXarK6cqjXeZllGm3AC+eRq5JO/YleYSqvEtbS8vhG53Qh0PaaBe4saa/Nzjw3gSN5JDl5J5aLSn3eHtqn+NhtZV+SRFXlkBaE2kkTeghqhUEgEuNujVkosGdWJIUHe5g6p2lW4IzthwgRat27NkiVLWLNmDbIs06ZNG/bv388999xjihhrLaPyyFpgrs2q5lQ1S5v97qHQpzNbdT0Y0lSH6vgqpJgDSKd+RnHqZ2j9EITMLndb1d3ml/q34ODyQ/x5PI6poc0rNVe2NuRUrXXvcwXqijyygiAI8FL/5jzYwZvAho7mDsUkKnV1zD333MNPP/1U3bEIQpXpFVbIbYdCx1EQexT2fwoXNsL5dagubiLILQRy7wFnL5PGcU9AA3oFNmD/5RQ+3HqRz0aLvLKCIAi3E1kLql9kcjYfb7vI/4Z3wN5ahSRJdbYTC3Dn2yndVNFTY1lZWZUKRhCqlW9XGPUTPH8Amg9E0msJuLED1Zc94PQfJv8GnTWkNZIE60/GE3Y1zaT7EgRBsCQia4Fp6PQyz35/jE2nE1m06by5w6kRRnVkXV1duX79utEbbdSoEVeuXKl0UIJQrTzbwNjf0Y5dQ4aNL1JeKvw5CX4ZDdlJJtttu0bODO/cGIAFG89RwesqBUEQ6jzxrVi9lAqJ/43oQPcAN14e0MLc4dQIo6YWyLLMN998g4ODg1EbrS/pZupaiqJalX7rDjFVtm5hox7sbjmfwY7nUR/4FCliM8q447j5PE1h4YByt1OVNr/YL4CNpxM4EZPO2uOxPND+7hPta0MqKot+n0X6LUGo9cSAbPWRZZm4zEKKbznUuYkrvzzT3eg7slo6o9Jv+fv7V/iA7NmzB1/fupOnDET6rbrEMe8aXaKX4ZQfhx4FZxuN4orHIJOc79p6TWJTrBIntcysjjrszH/fBqEGifRbIv2WUFrbt7eQU6Bj5yt9yEkS6bcqK1uj5dXfwtl18Tq/PdeD9r6u5g6pWlToO0MWKiwjI0MG5ISEBHnt2rVyTk6OXFBQIOfk5BiWy3teUFBQ6UdFtnO3umWtN6bsTssW1+bsNLlw9QRZnusky3OdZO2GV+UCTX61tzkrJ08O+fBf2e/1DfLM38PN/j5X9H21+PfZyDYb286KtvnGjRsyIGdkZJj7q8tsir8z69Ix0Gq18unTp2WtVmvuUCxSmzmbZb/XN8iRSZniOFbSleRsuf/Hu2S/1zfIzWZtkP84FmPukKpNRb4zxNhQFYj0WxbeZrULhQ9/xZkMa9rF/YLy6HKUucnw4OdlbqeybVar1bz3WHtGLT/E6mPXeLRzY+4JaGCeNt+lvE6+z3cpF+m3BKHm1ZfT3qay9Wwir/5+kqx8LQ0drXmtpysPd/Qxd1hmYdTFXoJQZ0kSkQ2HoH14OSjUcPYvlH9PBllfrbvpHtCA0d2KptrM/PMU2RpttW5fEARBqPsKtHre3XCO534IIytfS7CfK39P6UFrj/p7C0mL6cguXLiQnj17Ymdnh4uLS6n1KSkpDB48GB8fH6ytrfH19WXatGklUodFR0cjSVKpx5YtW2qwJUJtJLd9FEb9DAo1ivN/0ynmm2rvzL4xpDU+zjZcTcllztoz1bptQRAESySLvAVGu5aWy+NfHeTbfVEAPHNvU359tjsNnWzMHJl5WUxHtqCggBEjRvD888+XuV6hUDBs2DDWrVtHREQEK1euZMeOHUyePLlU3R07dpCQkGB49OvXz9ThC5agxUAYsQJZUtIkdR+KXYuqdfPOtmr+b3QnFBL8dSKOP8OuVev2BUEQLIWYWFAx607GM+T/9hIem46TjYrl44KZfX8b1EqL6caZjMXMkZ0/fz4AK1euLHO9q6triU6un58fU6ZM4X//+1+pug0aNMDLy7R3dhIsVOsH0T34Gap1U1Ae+BQ8W0Obx6pt81393XipfwsWb4/grbVnaOnlSLtGztW2fUEQBKHuyMovZO66s6w5HgdApyYuLBnVqVK3Pa+rKtWR3bt3L1999RWRkZH88ccfNGrUiB9++IGmTZvSu3fv6o6xUuLj41mzZg19+/Ytte6hhx4iPz+f5s2b8/LLLzN8+PA7bkuj0aDRaAzLxdMV6lquzTqfR9bYNrd6hMjDW2iZtA553XR0Dk3KrFvZNj/b24/DV1LYH5nCpFVH+fO5e/C85dRQbcipWtfe57LKRR5ZQTA/cZ+Y8uUX6nho6X6ibuSgkGBaaCDT72suRmFvY1Qe2Vv9+eefjBs3jrFjx/LDDz9w7tw5AgIC+Pzzz9mwYQObNm0yVaxA0YjsSy+9RHp6epnrR48ezd9//01eXh4PPvggv/32GzY2RZ2EGzdu8MMPP9CrVy8UCgXr1q1j4cKFrFq1iieeeKLcfc6bN88wInwrkUe2DpP1dI36DJ+MMHKsGrKr1TtoldX3Xudq4dMzSpLyJHztZaa31WEtUijWSSKPrMgjK5QWNG8rWfladrx8L/nJMeI4luO9TefZcCqBT0Z2pFtTtzLr1MXPoknzyHbs2FFetWqVLMuy7ODgIEdGRsqyLMsnTpyQPT09K7StuXPnyhTdoa7cx9GjR0u8ZsWKFbKzs3O520xISJDPnz8vr127Vm7Tpo38/PPP3zGGadOmyUFBQXesk5+fL2dkZBgesbGxIo9sfWhzSrysX9xOluc6ybGfDJBzsrOrtc2XE9PljvO3yn6vb5CHf7FfTs/OrTU5Veva+2xMG41tp8gjW3Eij6xwu3Zzt8h+r2+QLyVmiON4i7CrqXLk9SzDcl6BVs7IK7jja+riZ9GkeWQvXrxInz59SpU7OTmVO0panmnTpjFq1Kg71vH396/QNr28vPDy8qJVq1Y0aNCAe++9lzlz5uDtXfatQbt3784333xzx21aW1tjbV06tYXII1vH2+zojjT8O+QVg2mcfhhtxDpUnUaXeE15z42JtZmnMyuf6sYT3xzmaHQaU345ybfju5b7uboTkUfW+PUij6wgCLXRb8dief3PU3Ro7MIfk3ugUiqwUSuxUdeNUVZTqXBH1tvbm8uXL5fqYO7bt4+AgIAKbcvd3R13d/eKhmA0+easiVvnt97uxIkT5XZyBQHfrujvfQ3l7vdQbp8NLQaAVfVdnNXB14WVE7vx5LeH2X85hbHfHOaLMR2qbfuCIAi1kchaUNq9zd1xsFIR4G6PRqtHJebCGqXCHdnnnnuOF198ke+++w5JkoiPj+fgwYO8+uqrvP3226aIEYCYmBhSU1OJiYlBp9MRHh4OQGBgIA4ODmzatImkpCS6du2Kg4MD586dY+bMmfTq1cvQ6V61ahVqtZpOnTqhUChYv349S5Ys4YMPPjBZ3ILl0/d4gezDP+KcGwtb3oCHvqjW7Qf7ubJqYjcmrjxK2NU0Ri4/whNNqnUXgiAIQi2TlJnPtnNJjOvuB4C3sy3/vNK33ueFragKd2RnzpxJRkYGoaGh5Ofn06dPH6ytrXn11VeZNm2aKWIE4O2332bVqlWG5U6dOgGwc+dOQkJCsLW15euvv+bll19Go9Hg6+vLo48+yhtvvFFiOwsWLODq1asolUpatGjBd999d8cLvQQBpZpwv0n0iXgH6fTvSNWYjqtYF383/ny+JxNWHCUqJZeP0pX4tL7OkPaNqn1fgiAItYVcD9MWFOr0rNwfzac7Isgp0NHEzY6+LTwARCe2EiqVfmvhwoXMnj2bc+fOodfradOmDQ4ODtUdWwkrV64sN4csQGhoKAcOHLjjNsaPH8/48eOrLaa6lqJIpN8qu6ywsJB0uwC0wc+gPvYVim2zkZrMrvY2+7vZsPqZrkz/JZwT1zJ5/udwnopOY0b/wHLnSIn0W8avF+m3BKH2kKT6ObngYGQKb/99hkvXs4GivLAeDvX39rLVocLpt26XmZnJv//+S8uWLWndunV1xVUrLVu2jGXLlqHT6YiIiBDpt+oZlS6P+869ho02k9ONxnCl4WCT7Eenh3UxCnYlFM2PamgjM6qZjmZ1I2tRvSPSb4n0W0JpHeZvIyOvkO0v9UZzI9bij+OJmDRyC3T0Ciz7up+YlFze23yezWcSAXCzt+KNwa0YHtwYhaJqnfq6+Fk0afqtESNGyJ999pksy7Kcm5srt2jRQlar1bJKpZL/+OOPim7OIhWnhRDpt+pfmwuPfCfLc53kgne85JzkqyZt84bjV+WuC7bLfq9vkP1e3yC/+tsJOfZGZo2koqpr77MxbTS2nSL9VsWJ9FvC7drPK0o9eDEh3eKPY1JmnnzPwh3y6OUHS63LyCuQF208Jzd/c5Ps9/oGuekbG+TZf52S03I01bb/uvhZNGn6rT179jB79mwA/vrrL/R6Penp6axatYoFCxbw2GPVP3+wthLpt+pfm1XBTyIf+xZ10mkUBz9BP/hDw7rKxHonA9t507uVN+9tOs+vR2P5PSyODacSeebepjzTJwBHG+P3KdJvlV8u0m8JQs2rKzMLCrR6pv50nMTMfBIz8zl1LZ32jV0o0OpZfTSGT3dcIiWnACjKSjD7/ta08qobZyVqiwrndsjIyMDNrejuElu2bOGxxx7Dzs6O+++/n0uXLlV7gIJQqyiU6Aa8W/T0xPeQFm3S3Tnbqnn/sfb8+XwPOjdxIa9Qx5J/L9Pz/X/5cMsFkrPKTy0nCIJQ21n6tV4LNp7jaHSaYfmr3Vf4OzyO/ot3M+fvs6TkFNDMw54VE7ry/cRuohNrAhUekfX19eXgwYO4ubmxZcsWfv31VwDS0tIMt4IVhLpM9uvNdcd2NMw6g3Lv/0B1v8n3GexXlNVgy5lEPtp2kcjkHD7fFck3+6Lo5KrAOyadrgHu9fYCCkEQLEtd+Kb67Vgs3x+8WqJs85kEcgu0xKTm4uFozQv9AhnVrQlqkRPWZCrckX3ppZcYO3YsDg4O+Pn5ERISAhRNOQgKCqru+AShVjrvPZyGWWeQzvyOQ6uONbJPSZIYEuTNoLZebD+fxJe7IzkRk87hZAWPf32E5g0dGNnVl6FB3vi42NZITIIgCPVReGw6b/11plS5XgYHaxWvDWrJU738sbOqVHIooQIq/BNhypQpHDp0iO+++459+/ahUBRtIiAggAULFlR7gIJQG6XbB6BvMRRJ1tMqYU2N7luhkBjU1os1z/fk16e70s1Dj41awaXr2SzYeJ6e7//Lw8v289XuSK6m5tZobELdptFo6NixI5IkGW5KIwhVYYkzC5KzNEz+IYwCnb7M9VvPJfF4F1/Ria0hlTrKwcHBBAcHlyi7/37Tn16tbepark2RR7bssvL+1fR6DZuIzTRKP0pebBiyV3ujY61KO27V3seBsYF6Pru3F1vO32D9qQTCYtIJjy16vLcZGlgr2V9whnube9AjwA1nW7XII1tOPZFH9s5mzpyJj48PJ0+eNHcogoWz1GlQmkIdk38IIzEzv9w6BVo9qw5E8+qgljUYWf1VqTyy165dY926dcTExFBQUFBi3eLFi6stuNpG5JEVbtc5+kt80w6Q6NSBw81eMXc4AGQWwKlUifAUicgsCb383x8MCRlPW/B3lPF3kPF3LFquYhpD4Q7qSh7ZzZs3M2PGDP7880/atm3LiRMn6NixY5l1NRoNGs1/FyJmZmbi6+tLamqqRR+DWxX/HWjRokWdyd1Zk7ou/IfU3EI2TeuBPj2+1h/HAq2edafieW/TRbI0hVgp//vSlGW5VMfcyVrFjhl9sbM2/ahsXfwsZmZm4ubmZtT3ZoU7sv/88w8PPfQQTZs25eLFi7Rr147o6GhkWaZz5878+++/VQreEhQn6k1ISODw4cMMGDAAtbpolGv79u0MGDAAoMznVUnFc+v277adu9Uta70xZXdaro9tllKvYP3NvSjQk//EBraeTa1VbU7PzmP537vIc/LjYFQakck5perYWytp4WGPbWE693VuRWsfZwIaWHN476468z6XVX639768dla0zZmZmbi7u1t0RzYpKYng4GDWrl2Lu7s7TZs2vWNHdt68ecyfP79U+cGDB01+F0jBMoz5PZZMjZ5lD3jj52Jl7nDKlVugZ8vlbP6+kElKrg4AVxsl3z3SCLVSjACYSnZ2Nj169DDqe7PCPxVmzZrFK6+8wjvvvIOjoyN//vknDRs2ZOzYsQwebJo7HdVWIo+saDOeLYl164Vf6l6s9n8ELhNrVZtdHKCdq8zQoW1Qq9UkZ2kIj03nWFQK/5yMJC5PRY5Gx4lrmYCCA5sjDK91VCv5Pu4E/u4O+LrakHZDwvd6Lj7ONuhly3yfyyoXeWTvTJZlJkyYwOTJk+nSpQvR0dF3fc2sWbOYMWOGYbl4RLZly5YW25m/XV0cBatJKlUCaArw9/dHroUjstfScvnhUAyrjyWQla8FoKGjNU/18md018aGPN6yLFOg1VOg16Mp1FOok9EU6tBo9VipFDR1tzd5rHXxs5iZmWl03Qp3ZM+fP88vv/xS9GKViry8PBwcHHjnnXcYNmwYzz//fEU3KQgWLcLrYZqkH0QRtQu35r2AoeYOqVwejtYMaONJSHM32mgvMXBQP2LSCzgbl8amAyfR2jckIimb+Ix8sgolwmLSCYtJv/lqJasuHS56Jin5+OJevJys0WcrOKW4iI+rPe4OVjSwt8bVXm3411pVN75Y65ryRk1vdfToUQ4cOEBmZiazZs0yetvW1tZYW5e+f7xSqawzf2iL1cU21YTisUyFQoGO2nEcZVnm4JUUVu6PZsf5JPQ3z1cHeNgzuU8zhnXyKfP7TKWC2jDJsDYcw+pSkXZUuCNrb29vmPvk4+NDZGQkbdu2BeDGjRsV3ZzRFi5cyMaNGwkPD8fKyor09PRSdY4ePcobb7xBWFgYkiTRtWtXPvzwwxKnv06fPs20adM4cuQIbm5uPPfcc8yZM8diJ54L5pdr7YG+wxiUJ76/mcHgZXOHZDSVUkFLL0cCGtigvHaCoUM7o1arSc3K5ed12/Ft3ZlrGRquJGcRfimOLGxIztagkyWupeVxLS0PUHB8/9Vy9+FgrcLVXo2bvTUutmocbVQ42tz811qFg40KO7XExRQJ1yspuNrbYmetxEatxFatxEatwEalrPL9yIWSpk2bxqhRo+5Yx9/fnwULFnDo0KFSHdMuXbowduxYVq1aZcowhTquNmQtyNFo+Ts8nlUHormYlGUov7e5OxN6+hPasqH4/qnFKtyR7d69O/v376dNmzbcf//9vPLKK5w+fZo1a9bQvXt3U8QIQEFBASNGjKBHjx58++23pdZnZWUxaNAghg0bxueff45Wq2Xu3LkMGjSIa9euoVaryczMZMCAAYSGhnL06FEiIiKYMGEC9vb2vPJK7bhQR7BM+t6voDj1Kx7Z59FG74Hm95k7pCpxtFHj6wBDg7wM80k3bYph6NC+FOr0rF63hTbBPUnMyGfn4RO4NQogKbuAlGwNaTmFpOQUkJZbgE4vk63Rkq3REpuad5e9KvkuIqzctdYqBTY3O7a6AiVfXDmArbUKG5USa7UCtVKBWimhlCApQcGBv89hrVbeLFeglGSirknE7onCxkqFUpK5kCSRdzwOK7UKpUICvZ6TKRJW56+jUEicT5NwupyCSiFxORPCrqahVEjEZINOL2PJkwbc3d1xd3e/a70lS5aUSK0YHx/PoEGDWL16Nffcc48pQxTqsNo0djTlp+PsjkgGwM5KyWOdGzO+px+BDR3NHJlgjAp3ZBcvXkx2djZQdGoqOzub1atXExgYyCeffFLtARYrPgW2cuXKMtdfvHiRtLQ03nnnHXx9fQGYO3cu7du3JyYmhmbNmvHTTz+Rn5/PypUrsba2pl27dkRERLB48WJmzJhR7qhsWVfgQt1LUSTSb5VdZlSbbRtChydQH/8Oadd7FPrdW+lv6tqQiupu/7pZQ5C3PUHe9hArM6B/QKm5oHq9TJZGS1puAak5haTlFJCWV1jUsc0v6txm3fw3M6+Qa0kpKG3tydboyCvQkVeoo1D333iNRqtHo9WTkQcgcSM/+w5HRsGR5GtllCvZFHupxPLqK2dL1fkuItzw/MsLxZ1rFZ+dPWp4PmpoflHn9y4sPf1WkyZNSiwXX6zVrFkzGjdubI6QBKHSMvML+Ts8niHtvHB3KDrL8HAnH66m5PBEdz9GdPHF2daSf6LWP5VKv2VOK1eu5KWXXio1tSArK4uAgACmTp3Km2++iU6nY9asWezYsYPw8HBUKhVPPvkkGRkZ/P3334bXnThxgs6dO3PlyhWaNm1a5j7Lm0sm0m8Jt7IpTKP/2VdRyoUcaPYqyU7tzR2SxdPLUKiHAv3Nf3W3LksU3CzTyUUPrf6/50XLUtG/Muj1Rf8W19PL/y3rDQ8JPUX3f9fJRac99beuv2V5dkcdVkZM46or6beKRUdH3zVrwe2KM73UlWMARRfYnD9/ntatW9eZeYk1qcuC7dzILmDT9F7o067V2HF8/KuDHIlK5c2hrXi2TzOg6OyKQrLc3LZ18bNYke+MSic4Kygo4Pr16+j1Je9scfuv95ri6OjIrl27GDZsGO+++y4ALVq0YOvWrahURc1MTEzE39+/xOs8PT0N68rryJZ3BW5oaKhIvyXaXOJ5VNImApO30j33H3QjX6/UqGxtSEVlGe9z/5pLvyXr2bP5T0I6NUfKTuD8sT20GPye0em36hJ/f38sbPxDqJVM32k8n5DJ2hNxPNe3GW72RSm+HunUiLScAho62hjqGXNmRai9KtyRjYiIYNKkSRw4cKBEeXFCYJ1OZ/S2jL1qtkuXLnfdVl5eHhMnTqRXr1788ssv6HQ6PvroI4YOHcrRo0extS269/ztv7iKv5Dv9EusvCtwRfot0ebbn1/yfJBm6XtRJJxAEfUPtBxiVMyVaUdF6lY2FVVde5/LKler1aiVSshKQEq+RJOU3VjvO46UHk3vq2exjXwTshMZrNfCzVurdwQKeQe1+u5nZCw9/ZYgWJLEjHzWnYxjzfE4LiQWXbjV2NWWcT38AXi8iy+juvpa7OirUFqFO7JPPfUUKpWKDRs24O3tXaUPg7FXzRrj559/Jjo6moMHD6JQKAxlrq6u/P3334waNQovLy8SExNLvO769evAfyOzglAVBWon9F2eRnlwCexcCM0Hwc3Po2B+kqyF5IuQGoEi8Qxdr+xC9dUCSI8BbT4qoBNATFH9Bre8VkYCB09kJx8ScxR4FOYBzjXeBkGoS6pjbD8uPY8tZxLZfDqBsJg0ik8YWCkV9GvVkOae/120JUZf654Kd2TDw8MJCwujVatWVd65sVfNGiM3NxeFQlGiY128XDz9oUePHrz55psUFBRgZVV0mmHbtm34+PgY3WEWhLvRd5+GMmwFJJ6GC+uhzTBzh1Q/afMhMRziwiAuDFXSGR5IvogivOiskRLwubW+pER2aUKy1p4GzbuCqz9hkcl0DnkA2dGHzXvDGHL/gwAc3bSJoXYNbt+jIAhGquqA6NWUHDafSWTzmUROxqaXWNfV35VHOjVmaJAXLna1965hQvWocEe2TZs2Js0XW56YmBhSU1OJiYlBp9MRHh4OQGBgIA4ODgwYMIDXXnuNqVOnMn36dPR6Pe+//z4qlYrQ0FAAxowZw/z585kwYQJvvvkmly5dYtGiRbz99tviNINQfezcoPvzsOdD2PketHpQjMrWhMx4iN6PIno/fS/sRHVyIui1htXSzYds5YDUsA169xacTZZp3edhVB7NwdkXrV7m4KZNDB1SdFOLhNRNyI2KpjbJUnjNt0kQhBL+vZDER1sjOJfw39xzSYKu/m4MbefFoHZeeDvbmjFCoaYZ1ZG99WKFDz74gJkzZ7Jo0SKCgoJKzf8y1RWpb7/9donE2506dQJg586dhISE0KpVK9avX8/8+fPp0aMHCoWCTp06sWXLFry9vQFwdnZm+/btTJ06lS5duuDq6sqMGTNKXMglCNWixxQ4/BUkn4fTv0OHkeaOqO7JToJrhyBqD0Tvg9RIoGik1aW4jr0HNOoCjYLRerTh37OJhA4bh9rKCl1hIVc2baJVQCgUf4/pLTtVliBYmjtdOJiVX8j+yzdo4elIgEdR2rdCncy5hEyUConuAW4MaefNwLaeJS7eEuoXozqyLi4uJUYsZVnmvvtKJnyvzMVeFbFy5cpyc8gWGzBggOFq4/IEBQWxZ8+eaolJ5FQVbb79NYbnagcUPaaj3LUAefsctM0GgLVxybUtIY/snZ5XhlFtlvVICeFwcQt9L6xBfSK65GpJgezVHl3j7pxIVhE0eDwqN3/DOczCwkLyLm2nUKsFSarw5+FOz41pmyAI/9HfvP+rLMuG/AW3X3w9a81pNpxK4IV+gcwY2BKA3oHufPBYEAPaeBkyEQj1m1F5ZHfv3m30Bvv27VulgGqzZcuWsWzZMnQ6HRERESKPrHBHCn0BoeffxKHgOpcaDuFco9HmDsniSLIWj6xz+KQdwTPzJDbajBLr0239ueHYmhsOrUixb4FWZW+mSMtX1/LIVobIIytAUUaBg1ducOByCr+HFd2wZNHDbUm+nkhMvg2HrqSyamJXwx21/gi7xuc7LzO2ux+TepedHlOom5/FinxnWNwNEWqD4gOckJAg8siKNt+xzdLl7ahWj0ZWqNA+swfcW5i9zRVtY42/z0oJ6eoBFOf+Qrq4ESkv1VBPtrJH5x/C6XxvWj4wHbVro2pr8+11ymtnRducmZmJu7t7nerEVZToyNZPxWdqATaeSmDqz8fv+ppbb1Sg18soRJaBu6qLn0WT3BAhNzeX1157jbVr11JYWEj//v1ZsmRJtWUdsEQij6xoc3nPDcuth0KLIUgRm1FvfgUmbASFcV809S2PrGPeNax3zUd59k/ISf5vhZ17UeaH1g8i+fVCliViNm2inWsjk7S5uMyY58a0WeSRFeqbHw5Gs/JANCO7+jKorRcnYtL5I6ysW0YXpcMKdFMT0qYRPQM96OrvalgnOrGCMYzuyM6dO5eVK1cyduxYbGxs+OWXX3j++ef5/fffTRmfIFi+IR9A9F6IOQiHvoCe08wdUe2RnwFn/kQZ9j39Ek78V27rCq0fhLaPgv+9oLzlq0rMORUEs8vRaDkbn8mxq6kcv5rG3Afb4mijwsXOirxCHZHJOSzadIFFmy6UeJ1CgqBGznRv1oDuAQ3o7OtM7JVLtG7dss6MJgo1y+iO7Jo1a/j2228NNzB44okn6NWrFzqdTnz4BOFOXP1g0EJY/yL88w40HwAeLc0dlXldOwZHv4Gza0GbhwLQo4SWg1F0fhIC7wOlGMkUhNqguNN6Oi6DM3EZnI7L4PL17BJ1dpy/jkohcWb+IIa086aZhwNrw+PZeiaR1j5O3NPUjR4BDeji74qjzX//t011gbhQfxjdkY2NjeXee+81LHfr1g2VSkV8fDy+vr4mCU4Q6ozO4+H8eri8A36fAE/vAKvad2GSSWk1cPavorRk8bfMlfNoha7DGLYlutF/2CgU4lS8IJjVnohkzidkcj4hkxOx6VxNyS2znqeTNcF+rnRu4sqCjefRyTKXr2fTrpEzvm52dPFz46MR7bFWicEuwXSM7sjqdDrD3bAML1ap0Gq15byi7quVKYqMrCvSbxlfVm1tHvopqm/7IV0/h37dC+ge+qLM29vUufRbmQkojq9EEf490s25r7LSCrnNI+iDJyL7dKZQq6Vg+3aztrmi7RTptwRLl5ylYcOpeHILdIzr4Ufk9Wwik3N49feTRr3+0Kz7DBdz3dvcg0autjhY/9etcLYTP0oF0zM6a4FCoWDIkCFYW1sbytavX0+/fv2wt/9vZGnNmjXVH2UtIdJvCVXVIPsCPS+9jwI9ZxqNJrLhEHOHZBqyjFtOBAHJ2/FOD0NB0enDPLUr0e73Ed0ghAJ13bh6/W5E+i2RtcAcZFnmRnYB0Sk5RN3IIfpGDtEpObTxdqKjryttfJxIydYw4BPj8qp3aOxMMw8HmjV0oJWXIx18XXB3sL77C++ith9HS1AXj6FJshaMHz++VNkTTzxR8egs2NSpU5k6darhAIeGhor0W6LNFWzzUOTDtrBjDu3ifqFV1xDkto/VaJsr2sYKtVmrQTq3FuWRL5GSThv2p/ftjr7rM6haDCVQqSawgu2oiTbfXqe8dpZq813cemdEQagqnV4mM6+QjLxCLiRmcTounXPxmZxPyCIxM/+ur990OhGAL5/ozH2tPRnc1ovolBwuJGbR0NGawIYONPNwKPGvp5O1uI27UGsZ3ZFdsWKFKeOwSCL9lmhzec/vGGuv6ZAVB4e/RLVuKti6QMvBFW5HReqaPP2WJg31kR/g6LeQc72oUGUDQSPgnudQeAWhqIZ2VKSuSL8l1FZanZ7MfC0ZNzukGXmF5Bfq6OLnalj+/uBV8gp0PB/SDH93e+asPcO6k/GV2l/vQHf83e3wb2DPz0diQAatXkatVPDluGDyC3UU6PQ42YjPqmB5jO7ICoJQTSQJBr1XlCv1zJ+weiw88hUEDTd3ZBWXeIpOV5ejWvo06AqKyhx9oNszEDwB7NzMGp4g1KT8Qh1bzyZyLDoNa5XC0Cnddi6p0tscEuRFSy/HUp1YOysluQWlr/h3slHR2tuJ1t5OtPF2wsPRmr4tPAw5WSf1blpqdNVGrcRGXTdOSQv1j0V0ZKOjo3n33Xf5999/SUxMxMfHhyeeeILZs2cbLkA7efIk77//Pvv27ePGjRv4+/szefJkXnzxxRLbadq09G3uNm/ezODBpUfEBMFkFIqizqukhNO/wZ9PQ2Y89Jxu7sjuTleId/pRlD98gSLmIE2Kyxt3hXsmF928QKTOEuqhHI2WF38Nr9I2HKxVONuq0Wj1vHhfIO0bu2CjVjLvwTbYqJX0bu5OQ0cbrFTGnOMoTUwREOoai+jIXrhwAb1ez1dffUVgYCBnzpzhmWeeIScnh48++giAsLAwPDw8+PHHH/H19eXAgQM8++yzKJVKpk0rmYB+x44dtG3b1rDs5iZGjQQzUKqLOrM2TkU5VbfPKUpLNfhjc0dWJltNMoqdC1Gc/IluN6cPyAoVcc5d8Bo2H5V/dzNHKAjmZaNW0jvQnYikLO5v7427gzVOtmr2RCRzPUuDt5MNXs43H042uNlb4WyrNjwcbVSolGV3UCf0Kj0IIwiChXRkBw8eXGLENCAggIsXL/LFF18YOrITJ04s8ZqAgAAOHjzImjVrSnVkGzRogJeXl+kDF4S7UShg6Efg0Qq2vAFn/0IVc5iGHqOBoeaOrij366XNKI+tZMCVf5EoSnKSr3JC3W0S+uCJhO07wdBGwWYOVBDMz95axY9P31OqfFx3PzNEIwj1g0V0ZMuSkZFx15HU8uo89NBD5Ofn07x5c15++WWGD7/z3ESNRoNGozEsF1+FLHKqijbf/hpjYy2l0wQkjzYo101FSouiR9bHaH87S2HoW0Wd3HKYJKeqXofuym46Xv0G1afTQJNpuFBL598HbYdxbItW0r/3kFLbq6zakDv3bmV3em5MvIIgCEL1MzqPbG0SGRlJ586d+fjjj3n66afLrHPw4EH69u3Lxo0bDSlzbty4wQ8//ECvXr1QKBSsW7eOhQsXsmrVqjumEps3bx7z588vVS7yyArVTanX0CphDc2ub0FCRkYi3qUrUR79SbFvWeYNFKqDSpeHR9ZZPDNP4pkRjo02w7AuT+3KNdeeRLuHkGvtaZL912Uij6zIIyuUTxzHqquLx7BC3xmyGc2dO1cG7vg4evRoidfExcXJgYGB8qRJk8rd7pkzZ2QPDw/53XffvWsM06ZNk4OCgu5YJz8/X87IyDA8YmNjZUBOSEiQ165dK+fk5MgFBQVyTk6OYbm85wUFBZV+VGQ7d6tb1npjyu60LNpcfW3e8esyufCn0bI818nw0P9fJ1m7dY5cGHVQLsjPrXSbCwoK5JzURHn/9+/KBVvnybrvhsr6d9xL7us9PzlqyTA57/x2uUCTb/HvszHvq7HvbUXbfOPGDRmQMzIyjPtirIMyMjLq3DHQarXy6dOnZa1Wa+5QLJo4jlVXF49hRb4zzDq1YNq0aYwaNeqOdfz9/Q3P4+PjCQ0NpUePHixfvrzM+ufOnaNfv34888wzvPXWW3eNoXv37nzzzTd3rGNtbV3ijmbFRB5Z0ebynle1zdk2jZCHroKUC3Dkazj9O1JqJMoD/wcH/g/U9tCoM4qGbWianINVtAqVowdYO4HKGvRa0BUi5abjnX4M65OJKLPjIfkiJJ9HlXaVnsgQ+d8+c6waYtPhYZQtB6Nt3J2TW3fQqFnforZIhSZvc0W3I/LICoIgCGbtyLq7u+Pu7m5U3bi4OEJDQwkODmbFihUoFKWv7Dx79iz9+vVj/PjxLFy40KjtnjhxAm9v7wrFLQg1xisIHloCAxfApW1wfj1E/guaTIjeizJ6L+0BfvuxzJergG4AUSXLJSDHygPbFiEo/HtS2Kg7Ow5HMHTg/SjVahDzOgVBEAQLYBEXe8XHxxMSEkKTJk346KOPSE5ONqwrzj5w9uxZQkNDGThwIDNmzCAxseg2fEqlEg8PDwBWrVqFWq2mU6dOKBQK1q9fz5IlS/jggw9qvlGCUBE2TkU3TAgaDnpd0cjqtaPoki+SdP4Q3jYFSJpM0GSBNh8UalCqkdV2pBWqcfFthcLJBzxagkcrCl0D2bH7CEOHDkVR3HGVLpm7lYIgCIJQIRbRkd22bRuXL1/m8uXLNG7cuMQ6+ea1ar///jvJycn89NNP/PTTT4b1fn5+REdHG5YXLFjA1atXUSqVtGjRgu++++6OF3oJQq2jUIJnG/Bsg76wkKOaTQwdOrTMU9jawkL2btr0X4e1mBhxFQRBEOoAi+jITpgwgQkTJtyxzrx585g3b94d64wfP57x48dXW1wiFZVo8+2vMTbWO6kNqajqY5vvVnan58bEKwiCIFQ/i0y/ZS7Lli1j2bJl6HQ6IiIiRPotQRDuSqTfEum3hPKJ41h1dfEYVuQ7wyJGZGuLqVOnMnXqVDIyMnBxcaFLly4cO3aM0NBQ1Go1hYWF7Ny5k9DQUIAyn1flCuZbt3+37dytblnrjSm707Jos2W0uaJtrC9tvr1Oee2saJuzsrKA/6ZB1UfFbS++mUxdoNPpyM7OJjMzs850HsxBHMeqq4vHsPi7wpjvTdGRrYTiP0wtWrQwcySCIFiKrKwsnJ2dzR2GWRR/Z/r6+po5EkEQLIkx35tiakEl6PV64uPjcXR0pFu3bhw9etSwrmvXrobl4ueZmZn4+voSGxtb5dNqt26/qnXLWm9M2Z2WRZsto81llYs2ly6rjjbLskxWVhY+Pj5lpg2sD279zpRMdHe6mladn/36TBzHqquLx7Ai35tiRLYSFAqFIXuCUqks8cG5dfn2dU5OTlX+kN2+zarULWu9MWWizZbf5rLKRZtLl1VXm+vrSGyxW78z65rq+OwL4jhWh7p2DI393qyfwwPVaOrUqeUu377OFPurSt2y1htTJtps+W0uq1y0uXSZqdssCIIgVI2YWlAD6uIVu3cj2izaXFfVxzYLpYnPQfUQx7Hq6vsxFCOyNcDa2pq5c+dibW1t7lBqjGhz/SDaLNRX4nNQPcRxrLr6fgzFiKwgCIIgCIJgkcSIrCAIgiAIgmCRREdWEARBEARBsEiiIysIgiAIgiBYJNGRFQRBEARBECyS6MgKgiAIgiAIFkl0ZGuRrKwsunbtSseOHQkKCuLrr782d0gmFxsbS0hICG3atKF9+/b8/vvv5g6pRjzyyCO4uroyfPhwc4diMhs2bKBly5Y0b96cb775xtzh1Ij68L4KRT7//HOaNm2KjY0NwcHB7N2719whWYz33nuPrl274ujoSMOGDXn44Ye5ePGiucOyaO+99x6SJPHSSy+ZO5QaJ9Jv1SI6nQ6NRoOdnR25ubm0a9eOo0eP0qBBA3OHZjIJCQkkJSXRsWNHrl+/TufOnbl48SL29vbmDs2kdu7cSXZ2NqtWreKPP/4wdzjVTqvV0qZNG3bu3ImTkxOdO3fm8OHDuLm5mTs0k6rr76tQZPXq1YwbN47PP/+cXr168dVXX/HNN99w7tw5mjRpYu7war3BgwczatQounbtilarZfbs2Zw+fZpz587V+e9+Uzh69CiPP/44Tk5OhIaG8umnn5o7pBolRmRrEaVSiZ2dHQD5+fnodDrq+u8Mb29vOnbsCEDDhg1xc3MjNTXVvEHVgNDQUBwdHc0dhskcOXKEtm3b0qhRIxwdHRk6dChbt241d1gmV9ffV6HI4sWLmTRpEk8//TStW7fm008/xdfXly+++MLcoVmELVu2MGHCBNq2bUuHDh1YsWIFMTExhIWFmTs0i5Odnc3YsWP5+uuvcXV1NXc4ZiE6shWwZ88eHnzwQXx8fJAkibVr15aqU9XTTenp6XTo0IHGjRszc+ZM3N3dqyn6yqmJNhc7duwYer0eX1/fKkZdNTXZ5tqqqscgPj6eRo0aGZYbN25MXFxcTYReaeJ9F4xRUFBAWFgYAwcOLFE+cOBADhw4YKaoLFtGRgZAnT9jYwpTp07l/vvvp3///uYOxWxER7YCcnJy6NChA0uXLi1z/erVq3nppZeYPXs2J06c4N5772XIkCHExMQY6gQHB9OuXbtSj/j4eABcXFw4efIkUVFR/PzzzyQlJdVI28pTE20GSElJ4cknn2T58uUmb9Pd1FSba7OqHoOyziRIkmTSmKuqOt53oe67ceMGOp0OT0/PEuWenp4kJiaaKSrLJcsyM2bMoHfv3rRr187c4ViUX3/9lePHj/Pee++ZOxTzkoVKAeS//vqrRFm3bt3kyZMnlyhr1aqV/MYbb1RqH5MnT5Z/++23yoZY7UzV5vz8fPnee++Vv//+++oIs1qZ8n3euXOn/Nhjj1U1RJOrzDHYv3+//PDDDxvWvfDCC/JPP/1k8lirS1Xed0t5X4XKiYuLkwH5wIEDJcoXLFggt2zZ0kxRWa4pU6bIfn5+cmxsrLlDsSgxMTFyw4YN5fDwcENZ37595RdffNF8QZmJGJGtJtVxuikpKYnMzEwAMjMz2bNnDy1btqz2WKtLdbRZlmUmTJhAv379GDdunCnCrFbitKJxx6Bbt26cOXOGuLg4srKy2LRpE4MGDTJHuNVCvO9CMXd3d5RKZanR1+vXr5capRXubPr06axbt46dO3fSuHFjc4djUcLCwrh+/TrBwcGoVCpUKhW7d+9myZIlqFQqdDqduUOsMSpzB1BXVMfppmvXrjFp0iRkWUaWZaZNm0b79u1NEW61qI4279+/n9WrV9O+fXvDnMQffviBoKCg6g63WlTXacVBgwZx/PhxcnJyaNy4MX/99Rddu3at7nBNwphjoFKp+PjjjwkNDUWv1zNz5kyLzr5h7Ptuye+rYBwrKyuCg4PZvn07jzzyiKF8+/btDBs2zIyRWQ5Zlpk+fTp//fUXu3btomnTpuYOyeLcd999nD59ukTZU089RatWrXj99ddRKpVmiqzmiY5sNbt9HqAsy0bPDQwODiY8PNwEUZlWVdrcu3dv9Hq9KcIyqaq0GagTV/Df7Rg89NBDPPTQQzUdlkndrc114X0V7m7GjBmMGzeOLl260KNHD5YvX05MTAyTJ082d2gWYerUqfz888/8/fffODo6Gn4MOjs7Y2tra+boLIOjo2OpOcX29vY0aNCg3s01Fh3ZalIfTzeJNv+nLrf5dvXxGNTHNgvlGzlyJCkpKbzzzjskJCTQrl07Nm3ahJ+fn7lDswjFacpCQkJKlK9YsYIJEybUfECCRRNzZKvJraebbrV9+3Z69uxppqhMS7T5P3W5zberj8egPrZZuLMpU6YQHR2NRqMhLCyMPn36mDski1E8fe72h+jEVs2uXbvq3c0QQIzIVkh2djaXL182LEdFRREeHo6bmxtNmjSpk6ebRJvrR5tvVx+PQX1ssyAIgsUzQ6YEi7Vz504ZKPUYP368oc6yZctkPz8/2crKSu7cubO8e/du8wVcDUSb60ebb1cfj0F9bLMgCIKlk2S5jt8DVRAEQRAEQaiTxBxZQRAEQRAEwSKJjqwgCIIgCIJgkURHVhAEQRAEQbBIoiMrCIIgCIIgWCTRkRUEQRAEoUbMmzePjh07mnQfK1euxMXFxaT7EGoP0ZEVBEEQhHpuwoQJSJKEJEmoVCqaNGnC888/T1pamrlDq7CRI0cSERFh7jCEGiJuiCAIgiAIAoMHD2bFihVotVrOnTvHxIkTSU9P55dffjF3aBVia2uLra2tucMQaogYkRUEQRAEAWtra7y8vGjcuDEDBw5k5MiRbNu2rUSdFStW0Lp1a2xsbGjVqhWff/55ifWvv/46LVq0wM7OjoCAAObMmUNhYaHRMeh0OiZNmkTTpk2xtbWlZcuW/N///Z9hfX5+Pm3btuXZZ581lEVFReHs7MzXX38NlJ5acPLkSUJDQ3F0dMTJyYng4GCOHTtWkUMj1GJiRFYQBEEQhBKuXLnCli1bUKvVhrKvv/6auXPnsnTpUjp16sSJEyd45plnsLe3Z/z48QA4OjqycuVKfHx8OH36NM888wyOjo7MnDnTqP3q9XoaN27Mb7/9hru7OwcOHODZZ5/F29ubxx9/HBsbG3766Sfuuecehg4dyoMPPsi4ceMIDQ3lmWeeKXObY8eOpVOnTnzxxRcolUrCw8NLtEuwcOa+tZgg1Dfjx4833P70r7/+Msk++vbtK7/44osm2XZ55s6da2jXJ598UqP7FgShasaPHy8rlUrZ3t5etrGxMfxfXrx4saGOr6+v/PPPP5d43bvvviv36NGj3O1++OGHcnBwsGF57ty5cocOHSoU25QpU+THHnus1Hbd3d3l6dOny15eXnJycrJh3YoVK2RnZ2fDsqOjo7xy5coK7VOwHGJqgVBlt14kcOvj8uXL5g6t1ho8eDAJCQkMGTKkRvcbEhLCl19+aZJtv/rqqyQkJNC4cWOTbF8QBNMKDQ0lPDycw4cPM336dAYNGsT06dMBSE5OJjY2lkmTJuHg4GB4LFiwgMjISMM2/vjjD3r37o2XlxcODg7MmTOHmJiYCsXx5Zdf0qVLFzw8PHBwcODrr78utY1XXnmFli1b8tlnn7FixQrc3d3L3d6MGTN4+umn6d+/P++//36JeAXLJzqyQrUo7pjd+mjatGmpegUFBWaIrvYpnotmbW1dbp2KzCszRmpqKgcOHODBBx+s1u0Wc3BwwMvLC6VSaZLtC4JgWvb29gQGBtK+fXuWLFmCRqNh/vz5QNEpfyiaXhAeHm54nDlzhkOHDgFw6NAhRo0axZAhQ9iwYQMnTpxg9uzZFfre/+2333j55ZeZOHEi27ZtIzw8nKeeeqrUNq5fv87FixdRKpVcunTpjtucN28eZ8+e5f777+fff/+lTZs2/PXXXxU5NEItJjqyQrUo7pjd+lAqlYSEhDBt2jRmzJiBu7s7AwYMAODcuXMMHToUBwcHPD09GTduHDdu3DBsLycnhyeffBIHBwe8vb35+OOPCQkJ4aWXXjLUkSSJtWvXlojDxcWFlStXGpbj4uIYOXIkrq6uNGjQgGHDhhEdHW1YP2HCBB5++GE++ugjvL29adCgAVOnTi3RidRoNMycORNfX1+sra1p3rw53377LbIsExgYyEcffVQihjNnzqBQKCr0qz86OhpJkvjtt98ICQnBxsaGH3/8kZSUFEaPHk3jxo2xs7MjKCio1BXEZR2rsmzcuJEOHTrQqFEjdu3ahSRJbN26lU6dOmFra0u/fv24fv06mzdvpnXr1jg5OTF69Ghyc3MN2/jjjz8ICgrC1taWBg0a0L9/f3JycoxupyAIlmPu3Ll89NFHxMfH4+npSaNGjbhy5QqBgYElHsWDFvv378fPz4/Zs2fTpUsXmjdvztWrVyu0z71799KzZ0+mTJlCp06dCAwMLPO7dOLEibRr147vv/+emTNncu7cuTtut0WLFrz88sts27aNRx99lBUrVlQoLqH2Eh1ZweRWrVqFSqVi//79fPXVVyQkJNC3b186duzIsWPH2LJlC0lJSTz++OOG17z22mvs3LmTv/76i23btrFr1y7CwsIqtN/c3FxCQ0NxcHBgz5497Nu3DwcHBwYPHlzi1/3OnTuJjIxk586drFq1ipUrV5boDD/55JP8+uuvLFmyhPPnz/Pll1/i4OCAJElMnDix1Bfid999x7333kuzZs0qfKxef/11XnjhBc6fP8+gQYPIz88nODiYDRs2cObMGZ599lnGjRvH4cOHK3ys1q1bx7Bhw0qUzZs3j6VLl3LgwAFiY2N5/PHH+fTTT/n555/ZuHEj27dv57PPPgMgISGB0aNHM3HiRM6fP8+uXbt49NFHkWW5wu0UBKH2CwkJoW3btixatAgo+r547733+L//+z8iIiI4ffo0K1asYPHixQAEBgYSExPDr7/+SmRkJEuWLKnwyGdgYCDHjh1j69atREREMGfOHI4ePVqizrJlyzh48CDff/89Y8aMYfjw4YwdO7bMkd+8vDymTZvGrl27uHr1Kvv37+fo0aO0bt26kkdFqHXMPUlXsHy3XiRQ/Bg+fLgsy0UXHXXs2LFE/Tlz5sgDBw4sURYbGysD8sWLF+WsrCzZyspK/vXXXw3rU1JSZFtb2xIXMFHGxVLOzs7yihUrZFmW5W+//VZu2bKlrNfrDes1Go1sa2srb9261RC7n5+frNVqDXVGjBghjxw5UpZlWb548aIMyNu3by+z7fHx8bJSqZQPHz4sy7IsFxQUyB4eHne8sGD8+PHysGHDSpRFRUXJgPzpp5+W+7piQ4cOlV955RVZlmWjj1V+fr7s6Ogonzp1SpZlWd65c6cMyDt27DDUee+992RAjoyMNJQ999xz8qBBg2RZluWwsDAZkKOjo+8Yn5+fn7jYSxAsTFnfS7Isyz/99JNsZWUlx8TEGJY7duwoW1lZya6urnKfPn3kNWvWGOq/9tprcoMGDWQHBwd55MiR8ieffFLiwqu7XeyVn58vT5gwQXZ2dpZdXFzk559/Xn7jjTcMrzl//rxsa2tb4qKzjIwM2d/fX545c6YsyyUv9tJoNPKoUaNkX19f2crKSvbx8ZGnTZsm5+XlVe5ACbWOSL8lVIvQ0FC++OILw7K9vb3heZcuXUrUDQsLY+fOnTg4OJTaTmRkJHl5eRQUFNCjRw9DuZubGy1btqxQTGFhYVy+fBlHR8cS5fn5+SVOVbVt27bEvE5vb29Onz4NQHh4OEqlkr59+5a5D29vb+6//36+++47unXrxoYNG8jPz2fEiBEVirXY7cdKp9Px/vvvs3r1auLi4tBoNGg0GsPxjYyMNOpY/fvvvzRo0ICgoKAS5e3btzc89/T0NOR+vLXsyJEjAHTo0IH77ruPoKAgBg0axMCBAxk+fDiurq6VaqsgCLXHrWehbjVmzBjGjBlT7vLtPvzwQz788MMSZbdOCZs3bx7z5s0r9/XW1tasWLGi1Jmu9957D4BWrVqVmO4E4OTkRFRUlGF5woQJTJgwAQArKyuLu6GDUDGiIytUi+KLBMpbdyu9Xs+DDz7IBx98UKqut7f3XSfuF5MkqdRp7Vvntur1eoKDg/npp59KvdbDw8Pw/PZ8gpIkGS5sMObuME8//TTjxo3jk08+YcWKFYwcORI7Ozuj2nC724/Vxx9/zCeffMKnn35KUFAQ9vb2vPTSS4ZTaLe3vzxlTSuAkm2XJOmOx0KpVLJ9+3YOHDjAtm3b+Oyzz5g9ezaHDx8u88I+QRAEQTA1MUdWqHGdO3fm7Nmz+Pv7l7pooLhDrFarDVfCAqSlpZW6d7aHhwcJCQmG5UuXLpX4pd65c2cuXbpEw4YNS+3H2dnZqFiDgoLQ6/Xs3r273DpDhw7F3t6eL774gs2bNzNx4kRjD8Vd7d27l2HDhvHEE0/QoUMHAgICSnT0jTlWsiyzfv16HnrooSrHI0kSvXr1Yv78+Zw4cQIrKytx9a8gCIJgNqIjK9S4qVOnkpqayujRozly5AhXrlxh27ZtTJw4EZ1Oh4ODA5MmTeK1117jn3/+4cyZM0yYMAGFouTHtV+/fixdupTjx49z7NgxJk+eXGJEcezYsbi7uzNs2DD27t1LVFQUu3fv5sUXX+TatWtGxerv78/48eOZOHEia9euJSoqil27dvHbb78Z6iiVSiZMmMCsWbMIDAwscZq/qgIDAw2joOfPn+e5554jMTHRsN6YYxUWFkZOTg59+vSpUiyHDx9m0aJFHDt2jJiYGNasWUNycrK4aEIQBEEwG9GRFWqcj48P+/fvR6fTMWjQINq1a8eLL76Is7OzoQP2v//9jz59+vDQQw/Rv39/evfuTXBwcIntfPzxx/j6+tKnTx/GjBnDq6++WuKUvp2dHXv27KFJkyY8+uijtG7dmokTJ5KXl4eTk5PR8X7xxRcMHz6cKVOm0KpVK5555plSKacmTZpEQUFBtY7GAsyZM4fOnTszaNAgQkJC8PLy4uGHHy5R527H6u+//+b+++9HparaTCInJyf27NnD0KFDadGiBW+99RYff/xxjd/UQRAEQRCKSbKxk+wEwcxCQkLo2LEjn376qblDKWX//v2EhIRw7do1PD0971h3woQJpKenl8qBayrt27fnrbfeKpHezJT8/f156aWXSlzgIQiCIAimIEZkBaEKNBoNly9fZs6cOTz++ON37cQW27BhAw4ODmzYsMGk8RUUFPDYY4/VyKjpokWLcHBwqPDtKAVBEAShssSIrGAxauOI7MqVK5k0aRIdO3Zk3bp1NGrU6K6vuX79OpmZmUBRlobbMxVYqtTUVFJTU4GiC/GMvaBOEARBECpLdGQFQRAEQRAEiySmFgiCIAiCIAgWSXRkBUEQBEEQBIskOrKCIAiCIAiCRRIdWUEQBEEQBMEiiY6sIAiCIAiCYJFER1YQBEEQBEGwSKIjKwiCIAiCIFgk0ZEVBEEQBEEQLNL/A7HrOJd2h4oHAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Change the frequency response to avoid crossing over -180 with large gain\n", + "Cnew = ct.tf(kp + (ki/200)/s, name='C_new')\n", + "Lnew = ct.tf(P * Cnew, name='L_new')\n", + "\n", + "plt.figure(figsize=[7, 4])\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "ax2 = plt.subplot(2, 2, 3)\n", + "ct.bode_plot([Lnew, L], ax=[ax1, ax2], label=['L_new', 'L_old'])\n", + "\n", + "# Clean up the figure a bit\n", + "ax1.loglog([1e-3, 1e1], [1, 1], 'k', linewidth=0.5)\n", + "ax1.set_title(\"Bode plot for L_new, L_old\", size='medium')\n", + "\n", + "ax3=plt.subplot(1, 2, 2)\n", + "ct.nyquist_plot(Lnew, max_curve_magnitude=5, ax=ax3)\n", + "ax3.set_title(\"Nyquist plot for Lnew\", size='medium')\n", + "\n", + "plt.suptitle(\"Loop analysis for (stable) servomechanism\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "kFjeGXzDvucx", + "metadata": { + "id": "kFjeGXzDvucx" + }, + "source": [ + "We see now that we have no encirclements, and so the system should be stable.\n", + "\n", + "Note however that the Nyquist curve is close to the -1 point => not *that* stable." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "id": "GGfJwG716jU2", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0.98, 'Step response for (stable) spring-mass system')" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTuUlEQVR4nO3deXxU1cH/8e9kmyyThCQECISdsK8iWLciUquspVZcAB9pax8XtBW1Kq0VxQWLu/1J9WkVFRFBUEGKiAVEW7VgVRBwASQQdgJkX2fm/P5IZpLJRgI3uWTyeb9e85rMnTN3zpk7JF/OuedchzHGCAAAAM1eiN0VAAAAgDUIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYtxH/+8x/9/Oc/V6dOneR0OtW2bVude+65uuOOOwLKzZs3Ty+//LI9lYRl0tPTNXbsWCUmJsrhcOi2225r9PfMyspS69at9cYbbzTodVZ85xwOh2655ZaTlvvwww/lcDj04YcfNvg91q5dK5fLpf37959CDRvP6bQJ9uD3LBqTg0uKBb9//OMfmjBhgi666CL95je/UUpKig4ePKjPP/9cb7zxhvbt2+cv279/f7Vu3Zo/Es3cz3/+c3388cf6+9//rnbt2iklJUWdO3du1PecMWOG1q5dq82bN8vhcNT7dVZ85xwOh6ZPn67/9//+X53lPvzwQ40cOVLr16/XRRdd1OD3ufjii9WxY0e98sorp1hT6+Xk5Gj79u3q27ev4uLi7K4O6oHfs2hMYXZXAI1v7ty56tq1q95//32FhVUc8quvvlpz5861sWb14/F45Ha75XQ67a5Ks7F161YNHz5cEydOtGR/JzsGx48f1wsvvKCnnnqqQaGuuZk+fbquuuoqPfTQQ+rYsaOtdSktLZXD4VBcXJx+9KMf2VoXAGcOhmJbgGPHjql169YBoc4nJKTiK9ClSxdt27ZNGzZskMPhkMPhUJcuXfzP5+Tk6M4771TXrl0VERGhDh066LbbblN+fn7APn3DYi+88IJ69uwpp9Opvn371muILj09XQ6HQ3PnztVDDz2krl27yul0av369ZKkzz//XBMmTFBiYqIiIyM1ZMgQLVmyJGAfBQUF/npGRkYqMTFRZ599thYtWuQvM23aNLlcLm3btk2jRo1STEyMkpOTdcstt6igoCBgf0VFRZo5c2ZAu6dPn66srKyAcl26dNG4ceO0evVqnXXWWYqKilLv3r310ksvNbh+9W1rVb5huZ07d+q9997zH8f09HRJ0t69ezV16lS1adNGTqdTffr00RNPPCGv11vvY1CTl19+WW63W1dddVXA9h9++EFXX3212rdv7z8FYNSoUfrqq6/8n1lt37mioiLdcccdGjx4sOLj45WYmKhzzz1Xy5cvr7Uep/Kdk+r/WY8fP14ul0t/+9vfTrrPk7Xd1/5x48bp7bff1sCBAxUZGalu3brp2WefDdiX77guWLBAd9xxhzp06CCn06mdO3fWOBTr+37v3LlTY8aMkcvlUseOHXXHHXeouLg4YN/79u3TFVdcodjYWLVq1UpTpkzRpk2b5HA46jVceP/998vhcGjLli2aNGmS/1jdfvvtcrvd+u6773TZZZcpNjZWXbp0qfafyYYc5zfffFPnnHOO4uPjFR0drW7duulXv/qV/3mv16uHHnpIvXr1UlRUlFq1aqWBAwfqmWeeqbMNJ3vdxx9/LIfDUe3fqCS9+uqrcjgc2rRpk6TT+85LDf89O3/+fH+9zz77bH322Wcyxuixxx5T165d5XK5dPHFF2vnzp11fgYIIgZB7/rrrzeSzK233mo+++wzU1JSUmO5L774wnTr1s0MGTLEfPrpp+bTTz81X3zxhTHGmPz8fDN48GDTunVr8+STT5p//vOf5plnnjHx8fHm4osvNl6v178fSaZjx46mb9++ZtGiRWbFihXmsssuM5LMm2++WWddd+/ebSSZDh06mJEjR5qlS5eaNWvWmN27d5t169aZiIgIc+GFF5rFixeb1atXm2nTphlJZv78+f593HDDDSY6Oto8+eSTZv369WblypXm0UcfNX/5y1/8Za677joTERFhOnXqZB5++GGzZs0ac//995uwsDAzbtw4fzmv12suvfRSExYWZv70pz+ZNWvWmMcff9zExMSYIUOGmKKiIn/Zzp07m9TUVNO3b1/z6quvmvfff99MmjTJSDIbNmxoUP3q29aqsrOzzaeffmratWtnzj//fP9xLCoqMkeOHDEdOnQwycnJ5vnnnzerV682t9xyi5Fkbrrppnodg9pcfPHFZvjw4dW29+rVy/To0cMsWLDAbNiwwSxbtszccccdZv369caYur9zWVlZZtq0aWbBggVm3bp1ZvXq1ebOO+80ISEh5pVXXgl4n/p+59avX28k+d//VD7r0aNHm7POOqvWz6K+bTem7DvToUMH06lTJ/PSSy+ZVatWmSlTphhJ5rHHHqtW7w4dOpgrrrjCrFixwqxcudIcO3asxjb5vt99+vQxjz/+uPnnP/9p7rvvPuNwOMwDDzzgL5eXl2d69OhhEhMTzXPPPWfef/99M2PGDNO1a9eTftd8Zs2aZSSZXr16mQcffNB88MEH5q677jKSzC233GJ69+5tnn32WfPBBx+YX/7yl0aSWbZsmf/19T3On3zyiXE4HObqq682q1atMuvWrTPz58831157rb/MnDlzTGhoqJk1a5ZZu3atWb16tXn66afN/fffX2cb6vO6IUOGmPPPP7/aa4cNG2aGDRvmf3w63/mG/p7t3LmzOe+888xbb71l3n77bdOzZ0+TmJhoZsyYYX72s5+ZlStXmoULF5q2bduagQMHBrwewYtg1wJkZmaaCy64wEgykkx4eLg577zzzJw5c0xubm5A2X79+pkRI0ZU28ecOXNMSEiI2bRpU8D2pUuXGklm1apV/m2STFRUlDl06JB/m9vtNr179zY9evSos66+UNG9e/dqAbR3795myJAhprS0NGD7uHHjTEpKivF4PMYYY/r3728mTpxY5/tcd911RpJ55plnArY//PDDRpL517/+ZYwxZvXq1UaSmTt3bkC5xYsXG0nm//7v//zbOnfubCIjI82ePXv82woLC01iYqK54YYb/NvqU7/6trU2nTt3NmPHjg3Yds899xhJ5j//+U/A9ptuusk4HA7z3XffGWPqPga1iY6ONjfeeGPAtszMTCPJPP3003W+trbvXFVut9uUlpaaX//612bIkCEBz9X3O1dTCGroZ/3HP/7RhISEmLy8vFrrWt+2d+7c2TgcDvPVV18FbL/kkktMXFycyc/PD6j3j3/842r7qC3YSTJLliwJKDtmzBjTq1cv/+PnnnvOSDLvvfdeQLkbbrihwcHuiSeeCNg+ePBgI8m89dZb/m2lpaUmOTnZXH755bXur7bj/PjjjxtJJisrq9bXjhs3zgwePPikdT6V182fP99IMl9++aV/28aNG40kfwA93e98Q3/PtmvXLuB7+M477xhJZvDgwQEh7umnnzaSzJYtW+qsF4IDQ7EtQFJSkj7++GNt2rRJjz76qH72s5/p+++/18yZMzVgwABlZmaedB8rV65U//79NXjwYLndbv/t0ksvrXFG3qhRo9S2bVv/49DQUF111VXauXNnwGSN2kyYMEHh4eH+xzt37tS3336rKVOmSFJAHcaMGaODBw/qu+++kyQNHz5c7733nu655x59+OGHKiwsrPV9fPvzmTx5siT5hx3XrVsnqWxoq7JJkyYpJiZGa9euDdg+ePBgderUyf84MjJSPXv21J49e/zbTla/hrS1IdatW6e+fftq+PDhAdunTZsmY4y/rT5Vj0FtsrKyVFBQoDZt2gRsT0xMVPfu3fXYY4/pySef1Jdffhkw5Fsfb775ps4//3y5XC6FhYUpPDxcL774or755ptqZU/lO3cqn3WbNm3k9Xp16NChWuvdkLb369dPgwYNCtg2efJk5eTk6IsvvgjY/otf/KLW96zK4XBo/PjxAdsGDhwY8F3csGGDYmNjddlllwWUu+aaawIeG2MCPhu3213t/caNGxfwuE+fPnI4HBo9erR/W1hYmHr06BFQB6l+x3nYsGGSpCuvvFJLliypcXby8OHDtXnzZt188816//33lZOTU+Nncyqvu+aaa9SmTRs999xz/m1/+ctflJyc7D8F4XS/8w39PTty5EjFxMT4H/fp00eSNHr06IBzXX3bq37uCE4Euxbk7LPP1t13360333xTBw4c0IwZM5Senl6vCRSHDx/Wli1bFB4eHnCLjY2VMaZaOGzXrl21ffi2HTt27KTvl5KSUu39JenOO++sVoebb75Zkvx1ePbZZ3X33XfrnXfe0ciRI5WYmKiJEydqx44dAfsMCwtTUlJSnXU8duyYwsLClJycHFDO4XCoXbt21dpSdX+S5HQ6A8LbyerXkLY2xLFjx6p9rpLUvn37gDb71FS2Jr62RUZGBmx3OBxau3atLr30Us2dO1dnnXWWkpOT9dvf/la5ubkn3e9bb72lK6+8Uh06dNBrr72mTz/9VJs2bdKvfvUrFRUVVSt/Kt+5U/msfe2s6z8MDWl7Q+pd32MiSdHR0dWOidPpDPjsjh07FhCGfapu27BhQ7XPx3fepk9iYmLA44iIiBrrEBEREVCH+h7nH//4x3rnnXfkdrv1P//zP0pNTVX//v0DznubOXOmHn/8cX322WcaPXq0kpKSNGrUKH3++ed1flb1eZ3T6dQNN9yg119/XVlZWTp69KiWLFmi66+/3j+p6HS/8w39PVvTZ17X9pr+3SD4MCu2hQoPD9esWbP01FNPaevWrSct37p1a0VFRVWbCFD5+cpq6s3wbasp/FRVdWalb/8zZ87U5ZdfXuNrevXqJUmKiYnRAw88oAceeECHDx/2946NHz9e3377rb+82+3WsWPHAupTtY5JSUlyu906evRoQLgzxujQoUP+XoSGOFn9GtLWhkhKStLBgwerbT9w4ICk6sewvrNbfZ/V8ePHqz3XuXNnvfjii5Kk77//XkuWLNH999+vkpISPf/883Xu97XXXlPXrl21ePHigLpUPfnf51S+c6fyWfvaWfXzqqq+bW9Iva2ecZyUlKSNGzfW+v4+Q4cO9U8O8PH9h+B0NeQ4/+xnP9PPfvYzFRcX67PPPtOcOXM0efJkdenSReeee67CwsJ0++236/bbb1dWVpb++c9/6g9/+IMuvfRSZWRkKDo6usY61Pd1N910kx599FG99NJLKioqktvt1o033hiwr9P5zjf09yxQE4JdC3Dw4MEa/6fvG+ao/Au6au+Sz7hx4/TII48oKSlJXbt2Pel7rl27VocPH/b/z9/j8Wjx4sXq3r27UlNTG9yGXr16KS0tTZs3b9YjjzxS79e1bdtW06ZN0+bNm/X000+roKAg4Jf7woUL9dvf/tb/+PXXX5ck/xpno0aN0ty5c/Xaa69pxowZ/nLLli1Tfn6+Ro0a1eC2nKx+p9rWkxk1apTmzJmjL774QmeddZZ/u29W38iRI09pvxEREerWrZt27dpVZ7mePXvq3nvv1bJlywKGGGv7zjkcDkVERAT8sT906FCts2JP5Tt3Kp/1Dz/8oKSkpBp7umpTW9sladu2bdq8eXPAcOzrr7+u2NjYgOPUGEaMGKElS5bovffeCxgyrTqbODY2VmeffXaj1KGhx1kq+86MGDFCrVq10vvvv68vv/xS5557bkCZVq1a6YorrtD+/ft12223KT09XX379j1pfep6XUpKiiZNmqR58+appKRE48ePDzj1oqqGfucb+nsWqAnBrgW49NJLlZqaqvHjx6t3797yer366quv9MQTT8jlcul3v/udv+yAAQP0xhtvaPHixerWrZsiIyM1YMAA3XbbbVq2bJl+/OMfa8aMGRo4cKC8Xq/27t2rNWvW6I477tA555zj30/r1q118cUX609/+pNiYmI0b948ffvttw2+KkFlL7zwgkaPHq1LL71U06ZNU4cOHXT8+HF98803+uKLL/Tmm29Kks455xyNGzdOAwcOVEJCgr755hstWLBA5557bkCoi4iI0BNPPKG8vDwNGzZMn3zyiR566CGNHj1aF1xwgSTpkksu0aWXXqq7775bOTk5Ov/887VlyxbNmjVLQ4YM0bXXXtvgdtSnfvVta0PMmDFDr776qsaOHavZs2erc+fO+sc//qF58+bppptuUs+ePRu8T5+LLrpI7733XsC2LVu26JZbbtGkSZOUlpamiIgIrVu3Tlu2bNE999zjL1fbd27cuHF66623dPPNN+uKK65QRkaGHnzwQaWkpFQbVpdO/TvX0M/6s88+04gRI+rsPatv26Wy/1hNmDBB999/v1JSUvTaa6/pgw8+0J///Odae5isct111+mpp57S1KlT9dBDD6lHjx5677339P7770sKXA6psdT3ON93333at2+fRo0apdTUVGVlZemZZ55ReHi4RowYIalsOZr+/fvr7LPPVnJysvbs2aOnn35anTt3VlpaWq11aMjrfve73/l/182fPz/gudP9zjf09yxQI1unbqBJLF682EyePNmkpaUZl8tlwsPDTadOncy1115rtm/fHlA2PT3d/PSnPzWxsbH+6fQ+eXl55t577zW9evUyERERJj4+3gwYMMDMmDEjYDaiJDN9+nQzb9480717dxMeHm569+5tFi5ceNK6+mZkVl7qobLNmzebK6+80rRp08aEh4ebdu3amYsvvtg8//zz/jL33HOPOfvss01CQoJxOp2mW7duZsaMGSYzM9Nf5rrrrjMxMTFmy5Yt5qKLLjJRUVEmMTHR3HTTTdVmOxYWFpq7777bdO7c2YSHh5uUlBRz0003mRMnTgSUq2kmqjHGjBgxImAGXH3qV9+21qa2uuzZs8dMnjzZJCUlmfDwcNOrVy/z2GOPBcz8PNkxqMnatWuNJLNx40b/tsOHD5tp06aZ3r17m5iYGONyuczAgQPNU089Zdxut79cXd+5Rx991HTp0sU4nU7Tp08f87e//c0/C7Oy+n7nappBakz9P+udO3dWW66jJvVtu+84LV261PTr189ERESYLl26mCeffLLGete0XFBts2JjYmKqla3ps9u7d6+5/PLLjcvlMrGxseYXv/iFWbVqlZFkli9fXmc7K+/z6NGjAdtrq8OIESNMv379ArbV5zivXLnSjB492nTo0MFERESYNm3amDFjxpiPP/7YX+aJJ54w5513nmndurV/OaNf//rXJj09vc42NPR1Xbp0MX369Km23YrvfEN/z1ZW27/dur4/CD5cUgyWq+/lnew0bdo0LV26VHl5eXZXJWgMHDhQ559/vv7617/aXZVG86c//Umvvvqqdu3aVeOC3w3VpUsX9e/fXytXrrSgdtZ55JFHdO+992rv3r2ndOpEMNuyZYsGDRqk5557zj/BBjiTMBQLwBJz587Vz3/+c/3xj38MyjCQlZWl5557Tn/5y18sCXVnCt9/wHr37q3S0lKtW7dOzz77rKZOnRqUx/FU7dq1S3v27NEf/vAHpaSkVFsCCThTBM9vJwC2uuyyy/TYY49p9+7dQRkIdu/erZkzZ/rXOgwW0dHReuqpp5Senq7i4mJ16tRJd999t+699167q3ZGefDBB7VgwQL16dNHb775ZqOf/wicKoZiAQAAggQLFAMAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAIs7sCjc3r9erAgQOKjY2Vw+GwuzoAAAANYoxRbm6u2rdvr5CQuvvkgj7YHThwQB07drS7GgAAAKclIyNDqampdZYJ+mAXGxsrqezDiIuLs7k2AAAADZOTk6OOHTv6M01dgj7Y+YZf4+LiCHYAAKDZqs8pZUyeAAAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIErYFu1mzZqlv374KCQnRG2+8UWu5wsJCTZ06VbGxserUqZMWLVrUhLUEAABoPmwLdmlpaXrmmWc0fPjwOsvNmjVLx48f1/79+/XGG2/opptu0vfff99EtQQAAGg+wux646lTp0qSHn744TrLLViwQO+8847i4uJ03nnnacKECXrjjTd033331Vi+uLhYxcXF/sc5OTnWVRoAcEYzxshrJI/XyGvKbh6vkdcreXw/l99X/rnsXoHPGyNTx3avVzKSvMbImIr3Niq/L9/uNdUf+17nNZLK772Vnw/Yj2+b7/mKfZjyNvq2G9++vRV1MVX27TVSWc1VXu+ycv7H5fdlpco2+N7L90pfOd9nXmmX/vesa7/ylamyj6rbpMC6+PYb8Lim965hv/5i1baZip/99atej4rvWOUyZQ9uHNFdl5+VqjOBbcGuPk6cOKFDhw5pwIAB/m2DBg3Sxo0ba33NnDlz9MADDzRF9QCg2fJ6jUo83rKb26vS8vsSd+Vtxv9ccfm92+uV22Pk9pbfPJUee7zl28vvPWVBqLRyGf9z3vLnKsp4vEalAc+V3bu9Rt7yQOXxqlJYM9XCmtecvO2A1U4UlNpdBb8zOtjl5eUpNDRU0dHR/m1xcXHKy8ur9TUzZ87U7bff7n+ck5Ojjh07Nmo9AaChvF6jYrdXRaUeFbk9Kiot+9m/rbRsW7G74mf/faVtxeWvLy4tC2TFlUJaaaWAVuz2qsTtKQtr5YGppQoNcSjEIYU4HAoNcSjU4VBIiKN8u0OhIQrYFupwyOFQpefLbg5JDkfZvirfO1S275AQyaGy14Y4Ku5DHJJUUYfKz/v2E+Koun9fGV/5qmUCt6vSezlUqW4Bj8s+D0f5D/7H8pWTf7tvm1TxGkfAayr273usamVq3q+q7qPya+p476rPV94mOarXrfJranlvf90D9lVetkp7KwpJXZJidKY4o4Ody+WSx+NRQUGBP9zl5OTI5XLV+hqn0ymn09lUVQQQ5IwxKir1KreoVPklHuUXu1VQ4lFBSdl9frFbhaUe5ReXbcsv9qiw1O1/XFDiUX6JRwWVXpdf4lGJ22t30wJEhIYoPNShiLAQhYeGKCIsRBG++/Jt4aEOhYeGKCzEodCQssehIWXbyu7LHof5n6teJsx3C61eJiwkpPy58p9Dy/bpC1OVQ1VgKFP1MuXbq29znPzDAJqxMzrYJSQkqF27dvr66691zjnnSJI2b96sfv362VwzAM1FUalHWQWlyi4sVW5RqXKL3Motdlf8XH6fV+RWTqXHucWlyityK7fILXcj926FhTgUGR6qyPAQOcPK7ssel/8cVvazMyxEzvBKzweU9YWxUH9A8wWz8EoBreq28FCHIkJD/L0VAJo324JdaWmpPB6PvF6vSktLVVRUpIiICIWEBE7UnTp1qh588EEtWrRI27Zt04oVK/Sf//zHploDsEuJ26sTBSU6UVCirILS8luJsgor/VxQqqzCSs8Xlqio1JqeMYdDckWEKSoiVDHOMEVHhCrG/zhU0RFl26IjwhQTEapop+9xWbno8m0xEaGKigitCG5hIQoLZUlRANZwmKrTPZrItGnT9MorrwRsW79+vfbv369HHnlE27Ztk1S2jt3111+v5cuXKyEhQX/+8581efLker9PTk6O4uPjlZ2drbi4OEvbAODUGWOUU+RWZl6xjuWV6FhesTLzS5SZW6xj+b5tJcrML1ZmbrFyityn/F6hIQ7FR4UrNjKs7OYMl6v857jIsu0uZ5hiIyuViaz8OFzR4aEM4wGwRUOyjG3BrqkQ7ICm5Qtsh3OKdDinSIeyi3Qkt1iHssseH84t1pGcImXmFavU07BfPyEOqVV0hFpFh6tVVHiln8vuE6LDFR8doYRK21pFh8vlDGOoEUCz1ZAsc0afYwfgzJNbVKr9WYXaf6LQf38wu0iHcop0JKfsviHDn7HOMCW5ItTa5VSSK0JJLqdax5Td+7a3dkUoKcap+Khwes0AoA4EOwABcopKtfdYgfadKNC+E4XaVynA7c8qVHZh/dZrio8KV7u4SLWJc6ptXKTaxUWqbfnPbeMilRzrVGJMhCLDQxu5RQDQchDsgBYou6BUu4/la8+xfKVnFpTdH8tX+rECHc8vOenr46PClZoQpQ6totQhIUrt46PUNj4wvBHYAKDpEewayZNrvtM/vzmiRb/5keKjw+2uDlogt8erPccLtONwnnYdzdOOw7nafawsxGWdZJX01q4IpSZEq0NClFJbRZWFuIQodWhVts3l5FcHAJyJ+O3cSJ5dt1OSNP+T3brtJz1trg2CWbHbo92Z+dpxOE87j5TddhzJ1e7M/DonJ7SNc6pzUoy6JEWrc1KMuraOUefynwluANA88du7EVSeaPzD0Xwba4Jgk5lXrG8O5mj7gZyy+4M52nU0v9bLQ0VHhKp7sktpbVzq3sal7skx6tI6Rp0SoxUdwT9/AAg2/GZvBJVPLm/J12PEqTPGaM+xAm3Znx0Q4o7mFtdYPi4yTGltY9Uj2aW0tmUhLq2NS+3jo5hFCgAtCMGuEVT+41t8hl0PEmemI7lF2pKRrc37svRVRpa27Muucfapo/xi031T4tQnJVZ928epT0qc2sVFsk4bAIBg1xgq/0HOK67f0hBoOYrdHn29L1uf7zmhzRlZ2pyRpQPZRdXKRYSGqE/7OPVrH1ce5OLUu12sYjj/DQBQC/5CNILKi7PmFZ/6ZZAQHLILS/XFnhPalH5cn6ef0Ff7slRSpSfX4ZDS2rg0KLWVBnZspcGprdSrXawiwriGKACg/gh2jaCo1OP/Oe80rm+J5ulYXrE+2XVMG3cf16b04/rucK6qXrivtStCZ3dO1JBOrTSoYyv17xDPTFQAwGnjL0kjKHJXCnb02AW9/GK3NqYf1yc7M/Wvncf0zcGcamW6to7R2Z0TNKxLooZ1TVSXpGjOiQMAWI5g1wgqD8Xm0mMXdDxeo68ysvSvHZn6985MfZlxotp6cb3bxerc7kka3iVRQ7skqE1spE21BQC0JAS7RlB5KLbY7ZUxht6ZZi6roEQbvj+q9d8e0Ybvj+pElSs3dGgVpQt6tNZ5PZJ0XvfWSo512lRTAEBLRrBrBJWDnVQW7rhuZvNijNH3h/O07tsjWv/tEX2+57gqL0kYFxmmC9Ja64IeyTq/R5I6JTK0CgCwH8GuEVRdu45g1zx4vUZf7cvS6q2H9N7Wg8o4XhjwfM+2Lo3s3UYX92qjoZ0TFBbKjFUAwJmFYNcIqvfYeSSF21MZ1MnjNfrvnhNa9fVBvb/tkA5WWk8uIixE53VP0sW922hkrzbqmBhtY00BADg5gl0jqBrsqq5ZBnt5vUb/3XtCy7/ar9VbDyszr+JKITERobq4T1uN7t9OF/VK5nqqAIBmhb9ajaDyrFiJy4qdKXYeydU7Xx7QO1/t174TFcOscZFh+knfthrdP0UXprVm2BwA0GwR7BpBqadKsCsl2NnlSE6RVmwuC3Nb91esLxcTEarL+qdo/KAUnde9NVd4AAAEBYJdIyipGuzcnlpKojG4PV6t/+6oFm/aq3XfHvHPZg0LcWhEz2RNHNJBP+nTVlER9MwBAIILwa4RuKssVstQbNPIOF6gxZsy9OZ/M3Q4p+K8ubM6tdLPh3TQ2IHtlRgTYWMNAQBoXAS7RlBtKJZg12jcHq/WbD+sRRv36uMdmf7tSTER+sXQVF01rKO6J7tsrCEAAE2HYNcIql5eqriUoVirHc8v0aKNe/XaZ3v8S5Q4HNIFPVrrmuGd9JM+bTlvDgDQ4hDsGkHVHruq59zh1G07kK2X/52u5ZsP+JeRae2K0NXDOumqYR1Zaw4A0KIR7BqB28usWCt5vUbrvzuiFzb8oI3px/3bB3SI1y/P76KxA1PkDGMiBAAABLtGUG0olnPsTkmpx6t3Nx/Q8xt26fvDeZLKZraOHpCiaed10VmdWnF9VgAAKiHYNQLfUGxEWIhK3F6WO2mgghK3Fm/K0N8/3q39WWULCbucYZryo0765Xld1S4+0uYaAgBwZiLYNQLfcicuZ5iOu0vosaunvGK3XvkkXX//+AedKCiVJLV2OfWrC7poyjmdFR/F9XYBAKgLwa4R+HrsXM4wHc8v4Ry7kygocevVT/fo/z76QcfzSyRJnRKjdcOIbvrFWalc4gsAgHoi2DUCX7CLcZZ9vCUehmJrUlji0cL/7NHzG3YpM68s0HVtHaPfjuqh8QPbKyyU5UoAAGgIgl0j8E2eiC0PdvTYBSr1ePXGpgw9u3aHjuaWXSGiU2K0fjsqTRMHE+gAADhVBLtG4Pb32JUNIXKOXRljjNZsP6w/r/5WPxzNlySlJkTptxen6edndVA4gQ4AgNNCsGsEJeU9dr6hWGbFSl/sPaE5q77RpvQTkqTEmAj9blSarhneiStEAABgEYJdI/AtUOzyB7uW22OXcbxAj773rf7x9UFJkjMsRNdf2FU3juiu2EhmuQIAYCWCXSOovNyJ1DLPsSsq9eiFDT9o3oc7Vez2yuGQrjgrVbf/tKdS4qPsrh4AAEGJYNcIfLNio/2zYltWsPvn9sN6YOU2ZRwvW1z43G5Jum98X/VJibO5ZgAABDeCXSPweMt67KIjfJMnWsY5dumZ+Zq9crvWfXtEktQuLlJ/HNtH4wamcOkvAACaAMGuEXhMWbCLKl9Yt9Rt6ire7JW4vXphwy79Zd1OlXi8Cg916PoLu+mWkT38E0gAAEDj46+uxbxeo/Jc5w92xUE8FPvl3hO6Z9nX+u5wriTpwrTWun9CP3VPdtlcMwAAWh6CncV8vXWSFBnh67ELvmCXX+zW42u+08ufpMuYsuVLZo3vqwmD2jPsCgCATQh2FvOdXydV9NgF2+SJf+3I1N3Ltmh/VtnkiMuHdNC94/oqMSbC5poBANCyEewsVlOwKw2SYFdY4tGfV3+rlz9JlyR1aBWlRy4foBE9k+2tGAAAkESws1zlodioiLIrKpQEwVDsVxlZun3xV/ohs+xSYNf+qLPuGd2byREAAJxB+KtsMY+n0jl2QdBjV+rx6i/rduq59Tvl8Rq1jXNq7hWD6KUDAOAMRLCzWMDkCd+s2GbaY5eema9bF32pr/dnS5ImDGqv2T/rp1bRnEsHAMCZiGBnMd85diEOKSK0bCi2OfbYrdh8QH9462vlFbsVHxWuhyb21/hB7e2uFgAAqAPBzmK+YBcWEiJnmC/YNZ8FiotKPXrg3W1atDFDkjS8S6KeuWYw13cFAKAZINhZzN9jFyKFl/fYebxGHq9RaMiZvb7bziN5mr7wC313OFcOh3TLyB763ag0hZW3AwAAnNkIdhar3GMXEVYRiEo9XoWGhNpVrZNa9fVB/f7Nzcov8ai1y6lnrh6s83u0trtaAACgAQh2FvNNnghxVPTYSWUTKHyTKc4kbo9Xf179rf728W5J0o+6JerZa4aoTWykzTUDAAANRbCzmL/HLjRE4aEVQ69n4gSKo7nFuuX1L/Sf3cclSTf8uJt+f2kvhl4BAGimCHYWq5gV65DD4VBEaIhKPN4zbpHi/+45rpsXfqHDOcWKiQjV45MGafSAFLurBQAATgPBzmK+YOfr9AoPdajEc2b12L2xca/+tHyrSj1GPdq49PzUoerRxmV3tQAAwGki2Fms8uQJSYoIC1F+ieeM6LHzeo0eW/Od/vrhLknS2AEpmnvFQC4LBgBAkOAvusXclZY7kSomUJTY3GNXVOrRnW9u1sotByVJvxuVptt+kiaH48xeggUAANQfwc5iXlO9x06SrT12mXnF+t9XP9cXe7MUFuLQo78YqCuGptpWHwAA0DgIdhZzeyqWO5EqX1bMnqtPfHcoV79+ZZP2nShUXGSYnp86VOexPh0AAEHJtnUtjh49qrFjxyo6Olq9evXS2rVrayy3e/du/fSnP1WrVq3UoUMHzZkzp4lr2jBnUo/d+u+O6Bd//UT7ThSqS1K03p5+PqEOAIAgZluP3fTp09W+fXtlZmZqzZo1mjRpknbt2qWEhISAcrfeequ6deumf/zjH9q3b5/OP/98DR8+XKNGjbKp5nWrOMeurMsu3N9j17TB7uV/79bsldvlNdI5XRP1/NShSoiJaNI6AACApmVLj11eXp6WL1+u2bNnKzo6WhMnTlT//v317rvvViu7Z88eXXXVVQoPD1fXrl11wQUXaPv27TbUun68/lmxZcHO32PXRMHO7fHqvuVbdf+7ZaFu0tBULfj1OYQ6AABaAFuC3Y4dOxQfH6+UlIoFcQcNGqRt27ZVKzt9+nS98cYbKi4u1o4dO/TZZ5/poosuqnXfxcXFysnJCbg1JU+1Hruy+6YYis0vdutXr3yuVz/dI4dDumd0b829YmDANWsBAEDwsq3HLi4uLmBbXFyc8vLyqpU977zz9OmnnyomJkY9e/bUr3/9aw0YMKDWfc+ZM0fx8fH+W8eOHS2vf13c1Xrsyq4P29hDsblFpbrupY366PujigoP1fNTh+rGEd1ZzgQAgBbElmDncrmq9aTl5OTI5Qq8+oHH49GYMWP0m9/8RkVFRdq9e7fefPNNLV26tNZ9z5w5U9nZ2f5bRkZGo7ShNr7JE6HlgSqiCXrsPF6jmxd+oc/3nFBcZJhe/805urRfu0Z7PwAAcGayJdilpaUpOztbhw4d8m/bvHmz+vXrF1Du+PHjOnDggG666SaFhYWpS5cumjhxotavX1/rvp1Op+Li4gJuTcntv6RY002eeG79Tn28I1OR4SFaeP2PNKRTwslfBAAAgo5tPXYTJkzQrFmzVFhYqBUrVmjr1q0aP358QLnk5GR17NhRf/vb3+T1erVv3z4tX768zqFYu3mrBDvf+W3FjdRj98muTD39z+8lSQ9NHKABqfGN8j4AAODMZ9tZ9fPmzVNGRoaSkpJ05513asmSJUpISNDChQsDeu6WLl2qBQsWKCEhQcOGDdOoUaP0m9/8xq5qn1TtPXbWL1B8JLdIv130lbxGuvLsVK4mAQBAC2fbOnbJyclatWpVte1TpkzRlClT/I+HDRumTz75pCmrdlpq67Gz+hy7olKPbnrtC2XmFatX21g9MKG/pfsHAADND+tgWKxqj13ESc6xW7PtkF76127/Mikn4/UaZRwv0E2v/Vf/LZ8sMW/qWYqKCLWg9gAAoDnjWrEW81SdFVvHAsVf7j2h/13wX0lSeFiIrv1R55r36TV6+p/fa9HGvTqeXyJfBowIC9HzU4eqe7KrxtcBAICWhR47i3nKA1xo6MkXKF719UH/z+98ub/WfT763jf6y7qdyswrC3UOhzSsS4KW3ngu134FAAB+9NhZzDdHomIdu7Ih0pp67LYdqFjL78u9J1RQ4lZ0ROAh2XU0T3//125J0kMT++unfdsqISbCPykDAADAh3RgsarXig0PK7svraHH7vvDuRWvM9I3B6tf/uzvH++WMdIlfdtq6o86q01cJKEOAADUiIRgMXeVa8X6Jk9U7bErdnuUmVciSTqrUytJ0tf7sgPKeL1GH2w/LEm67twujVVlAAAQJAh2Fqt2SbGwmmfFHskp9j9/QVqyJOnr/YE9dtsO5Cgzr1guZ5iGd01s1HoDAIDmj2BnMXf5SXa+yRP+Hjt34HImR3LLgl2yy6n+7csue7btQGCP3frvjkiSLujR2h8QAQAAakNasFjV5U7CaxmKPZpbJElqG+dUvw5llwHbeSRPRaUef5l135YFu5G9kxu30gAAICgQ7Czm8ZYvd1LlyhNVJ08cLh+KbRMbqfbxkWoVHS6312jH4TxJ0rG8Ym3elyVJuqhXm6aoOgAAaOYIdhbzdcxVvVZs1R67I+U9dm3inHI4HOpXZTj2ox1HZYzUNyVObeMim6LqAACgmSPYWczXYxfm77ErX+7EU3OPnS+09WtfNhzrW9tu3bdHJUkX96a3DgAA1A/BzmK+/Fax3En5AsVVhmKP55ctdZIUEyGprGdOkrYeyJbb49VH35cFO86vAwAA9UWws1jVHjv/JcWq9NjlFJZKkuKjwiVJZ3VKkFS2lt2H3x1VdmGpWkWHa3DHhCapNwAAaP4IdhbzzYoNqbKOXdUeu9wityQpNrIs2HVKila31jFye41mLPlKknRJn7b+c/UAAABOhmBnMV/HXFiVyRNVz7HLLSrrsYuNrLg2rG/2qy/0TTq7Y6PWFQAABBeCncV8Q7G+c+ycJ+2xqwh2U3/Uyd/DN7RzgoZ1YRgWAADUX9jJi6Ahau+xM5XKGOUWBw7FSlK3ZJeW3XieNqYf1xVDU+VwMAwLAADqj2BnsdoWKK7cY5dXHuqkwB47SRqQGq8BqfGNXU0AABCEGIq1mK9jrqYFik35xArf+XURoSGKDA9t+koCAICgRLCzWG09dpLk9vqCXVmPXVwUHaYAAMA6BDuLecrDmz/YhVZ8xL7h2KpLnQAAAFiBYGcxf7BzVO+x8y15UtNSJwAAAKeLYGex8lznX+4kNMQh3xrDvh67HIIdAABoBAQ7i/l67EIqLVVSeQKFVGko1slQLAAAsA7BzmJe4zvHrmJb1SVPalqcGAAA4HQR7CzmNdV77CKqLFLsG4qNi6LHDgAAWIdgZ7Hy1U4Cgx09dgAAoAkQ7CzmqaHHzne92GK3RxLLnQAAgMZBsLOYqeEcO9/VJQpLy4JdTiGzYgEAgPUIdhbzzYp1VOqx8wW7otLAdeziCHYAAMBCBDuL+dexCwh2ZR9zUSlDsQAAoPEQ7CxW11Bs9WBHjx0AALAOwc5ivskTAUOxYeXBzl11KJYeOwAAYB2CncV8y52EVgp2URHlwa7EI7fHq/ySsp47euwAAICVCHYWq2mB4srn2OUVu/3bOccOAABYiWBnMX+wq/TJOv1DsR7/+XXOsBD/wsUAAABWIFlYzLfcSUgty534LidGbx0AALAawc5i5R12Cg2pdI5dpQWKfT12rGEHAACsRrCzWMUlxSq2VT7HjqVOAABAYyHYWazmyRNlPXbFpd6KpU6iGIoFAADWIthZzLfcSeVgF1VpgWKuEwsAABoLwc5iNfXYOcuHYiufYxfrpMcOAABYi2BnsZqWO6l8SbHcYs6xAwAAjYNgZzFPDUOxlZc7yS4oG4qN5xw7AABgMYKdxUx5j11Ny50UuT3KKiyRJLWKJtgBAABrEewsVudyJyUeZRcyKxYAADQOgp3FvHVdecLtVXZh2Tl2raIjmr5yAAAgqBHsLFae62pc7qSgxK3sgrKhWM6xAwAAViPYWcxbwzl2vhmwRaVeZeaXn2NHsAMAABYj2FnMU95lV6nDTi5nxdImJe6yabP02AEAAKsR7CxW3mEX0GMXFhqi6IjQgHJMngAAAFYj2FmspitPSIELEsdGhgUEPwAAACsQ7CzmW+6kSq5TbGRFDx1r2AEAgMZAsLOQMaZiKLZKsour1GPXKoqlTgAAgPUIdhbyLXUiVR+Kbe1y+n9uGxfZVFUCAAAtCMHOQr7z6yQppMo5dO3iK8JcSjzBDgAAWI9gZyFPpS67qnMjKvfStSPYAQCARkCws1ClDrtqs167to7x/9y3fVxTVQkAALQgtgW7o0ePauzYsYqOjlavXr20du3aWsvOnz9faWlpiomJUZ8+ffT99983YU3rz1N5KLbKOXYje7VRSnyk2sQ6dU7XxKauGgAAaAHCTl6kcUyfPl3t27dXZmam1qxZo0mTJmnXrl1KSEgIKPfuu+/qiSee0DvvvKO+ffvqhx9+qFbmTOGtI9hFRYRq1W8vlJEUHWHbxw4AAIKYLT12eXl5Wr58uWbPnq3o6GhNnDhR/fv317vvvlut7IMPPqinnnpK/fr1k8PhUPfu3ZWYeGb2eHnrOMdOkhJiIpQYw1InAACgcdgS7Hbs2KH4+HilpKT4tw0aNEjbtm0LKOfxePTll1/q66+/Vmpqqrp27arZs2fLVD6ZrYri4mLl5OQE3JpKXcudAAAANDbbeuzi4gInEMTFxSkvLy9g2+HDh+V2u7V27Vpt3bpVGzZs0OLFi/Xyyy/Xuu85c+YoPj7ef+vYsWNjNKFGdS13AgAA0NhsCXYul6taT1pOTo5cLlfAtqioKEnS3XffrVatWqlTp06aPn26Vq1aVeu+Z86cqezsbP8tIyPD+gbUwjcUS6YDAAB2sCXYpaWlKTs7W4cOHfJv27x5s/r16xdQLiEhQe3btw/YVtcwrCQ5nU7FxcUF3JqKbyi26lInAAAATcG2HrsJEyZo1qxZKiws1IoVK7R161aNHz++Wtlp06Zp7ty5ys3N1YEDB/T8889r7NixNtT65HzLnTg4vw4AANjAtnXs5s2bp4yMDCUlJenOO+/UkiVLlJCQoIULFwb03M2aNUspKSlKTU3VsGHDdPnll+u6666zq9p18g3FhhLsAACADRzmZGObzVxOTo7i4+OVnZ3d6MOye47la8RjHyomIlTbZl/WqO8FAABahoZkGS4pZiHfOXbMiAUAAHYg2FnI458VS7ADAABNj2BnId+oNrNiAQCAHQh2FvIPxZLrAACADQh2FvINxbLcCQAAsAPBzkK+S4qx3AkAALADwc5CvmDHUCwAALADwc5CLHcCAADsRLCzEMudAAAAOxHsLMRyJwAAwE4EOwtVzIq1uSIAAKBFIthZyHeOHbNiAQCAHQh2FqqYFUuwAwAATY9gZyFfsCPXAQAAOxDsLOQfimXyBAAAsAHBzkJeljsBAAA2IthZyH+OHT12AADABgQ7C1UsUGxzRQAAQItEsLMQy50AAAA7EewsxHInAADATmH1KTR37tz67SwsTLfffvtpVag5qzjHzuaKAACAFqlewe7ee+/VlClTTlpu6dKlLTrYeZgVCwAAbFSvYBcfH6/58+eftNzq1atPu0LNmWEdOwAAYKN6DRoePXq0Xjs7ePDgaVWmuau48gTBDgAANL1TOhusuLhYx44dU3FxsdX1adZY7gQAANip3sHO7Xbr/vvvV/fu3RUdHa3k5GRFR0erR48eeuCBB1RaWtqY9WwWDMudAAAAG9U72N1www366KOP9Pe//11Hjx5VSUmJjh49qv/7v//Txx9/rBtvvLEx69kseBiKBQAANqrX5AlJWrZsmTIyMhQbG+vflpiYqIsvvlhDhw5Vp06d9OKLLzZKJZsL3zl2oSx3AgAAbFDvCBIbG6udO3fW+Nzu3bsDAl9L5WW5EwAAYKN699g9+OCD+slPfqKrr75aAwYMUFxcnHJycrRlyxa9+eabeuKJJxqzns2C75JiIcyeAAAANqh3sJs2bZqGDh2qRYsWafXq1crLy5PL5VLfvn21fv169e/fvzHr2SywQDEAALBTvYOdJA0YMEADBgxorLo0e/5z7Mh1AADABvU6x27FihX12tnKlStPqzLNnf9asfTYAQAAG9Qr2E2dOrVeO/uf//mf06pMc+c7x47lTgAAgB3qNRSbl5en6OjoOssYYxQS0rLX+WC5EwAAYKd6Bbvdu3dLKgtvb7/9tsaOHSun01mtXEvvqWK5EwAAYKd6BbvOnTv7f162bJkeeughTZw4UVOmTNHIkSNbfKDzYbkTAABgpwYPGv7rX//Sl19+qV69eun2229XamqqZsyYoc8//7wx6tesVCx3YnNFAABAi3RKZ4N16tRJd911l7766iu98847WrNmjc455xylpaVpzpw5ysvLs7qezYLxL3dCsgMAAE3vlIJdaWmpli9frmuuuUaXXXaZevbsqSVLlmjBggX6+uuv9dOf/tTqejYLnvJgx9A0AACwQ4MWKJakX/3qV1q+fLn69++vKVOmaN68eUpISPA/P3ToUMXHx1tayebCd45dKGOxAADABg0Odj169NAXX3wRMKGisvDwcO3bt++0K9YceTnHDgAA2KjBwe4Pf/jDScskJiaeUmWaO/+VJ0h2AADABiylayH/ciecYwcAAGxAsLMQy50AAAA7EewsxHInAADATgQ7C7HcCQAAsBPBzkIsdwIAAOxEsLMQy50AAAA7EewsxHInAADATgQ7C3m8ZfcsdwIAAOxAsLMQs2IBAICdCHYWqpgVa3NFAABAi0SwsxBXngAAAHYi2FnIN3mC5U4AAIAdCHYWYrkTAABgJ4KdhVjuBAAA2IlgZyGWOwEAAHYi2FmI5U4AAICdbAt2R48e1dixYxUdHa1evXpp7dq1dZZPT09XVFSUbrzxxiaqYcOx3AkAALBTmF1vPH36dLVv316ZmZlas2aNJk2apF27dikhIaHG8jNmzNBZZ53VxLVsGN9yJ8yKBQAAdrClxy4vL0/Lly/X7NmzFR0drYkTJ6p///569913ayz//vvvyxijSy65pIlr2jAVs2IJdgAAoOnZEux27Nih+Ph4paSk+LcNGjRI27Ztq1a2pKREv//97/X444/Xa9/FxcXKyckJuDUVZsUCAAA72dZjFxcXF7AtLi5OeXl51co++eSTGjNmjHr06FGvfc+ZM0fx8fH+W8eOHS2pc334gx25DgAA2MCWYOdyuar1pOXk5MjlcgVs279/v1566SX98Y9/rPe+Z86cqezsbP8tIyPDkjrXh5flTgAAgI1smTyRlpam7OxsHTp0SO3atZMkbd68Wddff31AuU2bNikjI0NpaWmSynr6vF6v0tPTtXr16hr37XQ65XQ6G7cBtajosSPYAQCApmdLsHO5XJowYYJmzZqlp59+Wh988IG2bt2q8ePHB5QbPXq0du/e7X/8+OOP6+jRo3ryySebusr14mEoFgAA2Mi2dezmzZunjIwMJSUl6c4779SSJUuUkJCghQsXql+/fpLKet/atWvnv7lcLkVFRSkpKcmuateJ5U4AAICdHMZ3uYQglZOTo/j4eGVnZ1ebsGG18X/5l77en63504ZpZO82jfpeAACgZWhIluGSYhZiuRMAAGAngp2FPF7OsQMAAPYh2FnIN6gdyqxYAABgA4KdhXyzYh0EOwAAYAOCnYW48gQAALATwc5ChuVOAACAjQh2FvJNnmAoFgAA2IFgZyHfUCw9dgAAwA4EOwt5We4EAADYiGBnId8lxUIYigUAADYg2FnI458VS7ADAABNj2BnIcM5dgAAwEYEOwtxSTEAAGAngp2F/OfYkewAAIANCHYW8nKOHQAAsBHBzkIsdwIAAOxEsLMQy50AAAA7Eews5F/uhC47AABgA4KdhfzLndBjBwAAbECwsxDLnQAAADsR7CzEcicAAMBOBDuL+GbESkyeAAAA9iDYWcS3hp3EOXYAAMAeBDuLeCoFOwefKgAAsAERxCKVch1DsQAAwBYEO4swFAsAAOxGsLOIp9LkCXIdAACwA8HOIpVynUJZ7gQAANiAYGcRljsBAAB2I9hZpPI5dnTYAQAAOxDsLOJb7sThkBz02AEAABsQ7Czi67BjRiwAALALwc4ivlmxnF8HAADsQrCziO8cuxA+UQAAYBNiiEV8Q7H02AEAALsQ7CzCUCwAALAbwc4i/qFYch0AALAJwc4iFefYkewAAIA9CHYW8bLcCQAAsBnBziK+c+xYnBgAANiFYGcRX7AL5RMFAAA2IYZYxHeOHUOxAADALgQ7i/iXO2HyBAAAsAnBziJeFigGAAA2I9hZxD8US48dAACwCcHOIhVXnrC5IgAAoMUi2FnE66XHDgAA2ItgZxGP4VqxAADAXgQ7i3josQMAADYj2FmEyRMAAMBuBDuLeLxl9wzFAgAAuxDsLMJQLAAAsBvBziJcUgwAANiNYGeRikuK2VwRAADQYhFDLMLkCQAAYDeCnUUqrjxBsAMAAPYg2FmkPNcR7AAAgG0IdhbhkmIAAMBuBDuLcEkxAABgN9uC3dGjRzV27FhFR0erV69eWrt2bY3lbr/9dnXr1k2xsbE6++yz9dFHHzVxTeunYh07mysCAABaLNtiyPTp09W+fXtlZmbqz3/+syZNmqQTJ05UKxcfH681a9YoOztbd999tyZOnKjc3Fwbalw3ZsUCAAC72RLs8vLytHz5cs2ePVvR0dGaOHGi+vfvr3fffbda2VmzZqlHjx4KCQnRpEmTFBUVpe+//96GWteNWbEAAMBuYXa86Y4dOxQfH6+UlBT/tkGDBmnbtm11vi49PV3Hjx9Xjx49ai1TXFys4uJi/+OcnJzTr3A9cEkxAABgN9t67OLi4gK2xcXFKS8vr9bXlJaW6rrrrtPvf/97xcfH11puzpw5io+P9986duxoWb3rwiXFAACA3WwJdi6Xq1pPWk5OjlwuV43ljTGaNm2a2rRpo/vvv7/Ofc+cOVPZ2dn+W0ZGhlXVrpPHW3YfQo8dAACwiS3BLi0tTdnZ2Tp06JB/2+bNm9WvX78ay9966606cOCAXnvtNYWc5GKsTqdTcXFxAbemQI8dAACwm209dhMmTNCsWbNUWFioFStWaOvWrRo/fny1srNmzdK///1vLV++XE6n04ba1o9/8gQ9dgAAwCa2LXcyb948ZWRkKCkpSXfeeaeWLFmihIQELVy4MKDnbvbs2frmm2/Uvn17uVwuuVwuLVy40K5q14p17AAAgN1smRUrScnJyVq1alW17VOmTNGUKVP8j035EOeZznDlCQAAYDP6lyzCJcUAAIDdCHYW8c2KZR07AABgF4KdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EUMswgLFAADAbgQ7i7BAMQAAsBvBziL02AEAALsR7CxCjx0AALAbwc4irGMHAADsRrCzCEOxAADAbgQ7izAUCwAA7Eaws4jXf61YmysCAABaLIKdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EewswqxYAABgN4KdRZgVCwAA7Eaws0jF5AmbKwIAAFosYohFmDwBAADsRrCziC/YMXkCAADYhWBnESZPAAAAuxHsLMLkCQAAYDeCnUU8ZbmOHjsAAGAbgp1FjO9asXyiAADAJsQQizArFgAA2I1gZxFmxQIAALsR7CzCrFgAAGA3gp1FmBULAADsRrCziNc3K5ZgBwAAbEKwswiTJwAAgN0IdhZh8gQAALAbwc4iTJ4AAAB2I9hZpGLyhM0VAQAALRYxxCL+HjuGYgEAgE0Idhbxn2PHUCwAALAJwc4ibiZPAAAAmxHsLOLrsQvjJDsAAGATUohF3J7yYBdKjx0AALAHwc4ipV6vJIIdAACwD8HOAh6vUfmkWIUzFAsAAGxCCrFAqcfr/5keOwAAYBeCnQV8M2IlKTyUjxQAANiDFGIBd+UeO5Y7AQAANiHYWaDUU9Fjxzp2AADALgQ7C1SsYeeQgytPAAAAmxDsLOCbPMHECQAAYCeCnQV8kydY6gQAANiJJGIBNz12AADgDECws0Cp/3JifJwAAMA+JBELuMsvJxbOjFgAAGAjgp0F6LEDAABnApKIBfzn2NFjBwAAbESws4BvViyTJwAAgJ0IdhbwBzuWOwEAADYiiVig1F0+eSKMjxMAANiHJGKB/BK3JMnlDLW5JgAAoCUj2Fkgt6gs2MVEhNlcEwAA0JIR7CyQX1zeYxdJsAMAAPaxLdgdPXpUY8eOVXR0tHr16qW1a9fWWK6wsFBTp05VbGysOnXqpEWLFjVxTU/OH+ycBDsAAGAf25LI9OnT1b59e2VmZmrNmjWaNGmSdu3apYSEhIBys2bN0vHjx7V//35t3bpVY8aM0dChQ9WzZ0+bal5dbnmwiyHYAQAAG9nSY5eXl6fly5dr9uzZio6O1sSJE9W/f3+9++671couWLBAs2bNUlxcnM477zxNmDBBb7zxhg21rh09dgAA4ExgSxLZsWOH4uPjlZKS4t82aNAgbdu2LaDciRMndOjQIQ0YMCCg3MaNG2vdd3FxsYqLi/2Pc3JyLKx5zfIIdgAA4AxgW49dXFxcwLa4uDjl5eVVKxcaGqro6Og6y1U2Z84cxcfH+28dO3a0tvI1uKRvW/36gq7q3yHu5IUBAAAaiS3BzuVyVetJy8nJkcvlqlbO4/GooKCgznKVzZw5U9nZ2f5bRkaGtZWvwc+HpOpP4/pqaOfERn8vAACA2tgS7NLS0pSdna1Dhw75t23evFn9+vULKJeQkKB27drp66+/rrNcZU6nU3FxcQE3AACAlsC2HrsJEyZo1qxZKiws1IoVK7R161aNHz++WtmpU6fqwQcfVG5urj777DOtWLFCV111lQ21BgAAOLPZto7dvHnzlJGRoaSkJN15551asmSJEhIStHDhwoAeudmzZ/snWkyaNEnz5s1Tr1697Ko2AADAGcthjDF2V6Ix5eTkKD4+XtnZ2QzLAgCAZqchWYZLigEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkAizuwKNzXfFtJycHJtrAgAA0HC+DFOfq8AGfbDLzc2VJHXs2NHmmgAAAJy63NxcxcfH11nGYeoT/5oxr9erAwcOKDY2Vg6Ho1HeIycnRx07dlRGRsZJL84bjFpy+2k7baftLUdLbrvUsttvd9uNMcrNzVX79u0VElL3WXRB32MXEhKi1NTUJnmvuLi4Fvdlr6wlt5+20/aWhra3zLZLLbv9drb9ZD11PkyeAAAACBIEOwAAgCBBsLOA0+nUrFmz5HQ67a6KLVpy+2k7bW9paHvLbLvUstvfnNoe9JMnAAAAWgp67AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsTtPRo0c1duxYRUdHq1evXlq7dq3dVbJMcXGxfvnLXyo1NVXx8fG66KKL9PXXX0uSXn75ZYWFhcnlcvlve/fu9b9206ZNGjRokKKjozVixAjt2bPHrmaclosuukiRkZH+No4ePdr/3KOPPqrk5GQlJibqrrvuCriGX3Nvf+Xj6nK55HA4tGzZMknBeexnzZqlvn37KiQkRG+88UbAc6d6nAsLCzV16lTFxsaqU6dOWrRoUZO1pyFqa/vLL7+swYMHKzY2Vt26ddPzzz8f8DqHw6GYmBj/d+CRRx7xPxcMbT/V73hzb/uNN94Y0O7w8HCNHz/e/3wwHPe6/rZJQfBv3uC0TJo0yVx//fUmPz/fvP322yYhIcEcP37c7mpZIi8vz8yePdtkZGQYt9ttnnjiCdOtWzdjjDHz5883l156aY2vKyoqMqmpqebFF180hYWF5q677jIXXnhhU1bdMiNGjDCLFi2qtv0f//iH6dSpk9m1a5c5cOCA6dOnj3nxxReNMcHVfmOM2bx5s4mKijI5OTnGmOA89gsWLDBr1qwx55xzTsDxPp3j/Pvf/96MHj3aZGdnm3//+98mPj7efPfdd03etpOpre3PP/+8+fTTT01paanZunWradOmjdmwYYP/eUnm4MGDNe6zubf9dL7jzb3tVQ0ZMsT8/e9/9z8OhuNe19+2YPg3T7A7Dbm5uSYiIsIcOHDAv+3CCy80r7zyio21ajzFxcXG4XCYzMzMOn/xrV692vTu3dv/OC8vz0RFRZn09PSmqqplagt2V199tXn00Uf9j1988UUzcuRIY0xwtd8YY+666y5z9dVX+x8H87GverxP5zi3a9fOfPbZZ/7nr732WvPAAw80dhNOWW3fdZ/Jkyebxx9/3P+4rj/wzb3tp/Mdb+5tr2z79u3G6XSarKws/7ZgOu4+lf+2BcO/eYZiT8OOHTsUHx+vlJQU/7ZBgwZp27ZtNtaq8Xz66adq27atkpKSJEn//ve/lZSUpL59+wYM02zfvl0DBgzwP46JiVH37t21ffv2Jq+zFW699VYlJyfrkksu0ZYtWyRVb2Pl4x5M7TfGaNGiRZoyZUrA9pZy7E/1OJ84cUKHDh2q9bXNjcfj0caNG9WvX7+A7WeddZY6dOigadOm6dixY5IUNG0/le94sLTdZ+HChRo3bly1a5QG23Gv/LctGP7NE+xOQ15eXrWLAcfFxSkvL8+mGjWe7Oxs3XDDDXr44YclSSNGjNDXX3+to0ePav78+Zo9e7befvttScH1ucydO1e7d+/W3r17dckll2jMmDHKy8ur1sbK7Qum9n/00UcqKCjQpZde6t/WUo69VL099T3OeXl5Cg0NVXR0dI2vbW7uvfdedejQIeB78NFHH2nPnj366quvVFBQoF/96leSFBRtP9XveDC0vbLXX3+92n/qgu24V/3bFgz/5gl2p8HlciknJydgW05Ojlwul001ahxFRUWaOHGixo4d6/9H3LVrV3Xp0kUhISE655xz9Nvf/tb/iy+YPpfhw4fL5XIpKipKd911l1wulzZu3FitjZXbF0ztX7hwoa688kqFh4f7t7WUYy9Vb099j7PL5ZLH41FBQUGNr21Onn/+eb311ltaunSpHA6Hf/uFF16o8PBwJScn69lnn9WqVatUUlISFG0/1e94MLTd55NPPtGJEyc0ZsyYgO3BdNxr+tsWDP/mCXanIS0tTdnZ2Tp06JB/2+bNm6sNVzRnbrdbV199tdq3b6/HH3+81nIhIRVfpb59+wbMMMrPz9euXbvUt2/fRq1rU/C1s2obKx/3YGl/SUmJli5dWu1/7FUF87E/1eOckJCgdu3a1fra5mLx4sV6+OGH9f7776t169a1lvN9B4wxQdP2yur7HQ+mti9cuFBXXHFFnddGbc7Hvba/bUHxb77Jz+oLMldccYX53//9X1NQUGCWL18eVLNijTFm2rRp5qc//akpKSkJ2P7ee++ZI0eOGGOM+e9//2s6dOhgFi9ebIypmDk0f/58U1RUZO65555mMTOyqhMnTpg1a9aYoqIiU1xcbJ588knTtm1bk52dbVauXGk6d+5sfvjhB3Pw4EHTr1+/ajOnmnv73377bdOlSxfj9XoDtgfjsS8pKTGFhYXmwgsvNK+++qopLCw0Ho/ntI7znXfeacaOHWtycnLMp59+auLj4823335rVxNrVVvb33//fZOcnGw2b95c7TVbt241X331lXG73eb48ePmmmuuMaNHj/Y/39zbfjrf8ebedmOMKS0tNa1btzbr168PeE2wHHdjav/bFgz/5gl2p+nIkSNm9OjRJioqyqSlpZkPPvjA7ipZJj093UgykZGRJiYmxn/76KOPzO23326Sk5NNTEyM6dmzp3n22WcDXrtx40YzYMAAExkZaS688MJmMyuysiNHjpihQ4eamJgYk5CQYEaOHGn++9//+p9/5JFHTFJSkmnVqpX5/e9/HxCAgqH9V1xxhfnDH/5QbXswHvvrrrvOSAq4+f6onepxLigoMJMnTzYxMTEmNTXVLFy4sKmbVS+1tf2iiy4yYWFhAf/2b7jhBmOMMWvXrjVpaWkmOjratG3b1kydOtUcPnzYv8/m3vbT+Y4397YbUxZuUlNT/UHPJ1iOe11/24xp/v/mHcZUWnkPAAAAzRbn2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBaDH27t1b5zVPrZCeni6HwyGXy6V33nnHsv1u2rRJLpdLISEh+uyzzyzbL4DgEmZ3BQDASi6Xy/9zfn6+oqOj5XA4JEnbt29XZmZmo9fB6XQqLy/P0n0OGzZMeXl56tKli6X7BRBcCHYAgkrlQBUZGalt27YRhgC0GAzFAmgx0tPTFRkZ6X/scDj017/+VZ06dVLr1q21ePFirVy5Ut26dVObNm20ePFif9njx49r8uTJatOmjbp166ZXXnml3u97//3369prr9XEiRPlcrl0ySWX6MiRI7ryyisVFxenyy67TLm5uZKk77//XhdccIHi4uLUunVr3XHHHdZ9AACCHsEOQIv273//W99//73++te/6uabb9ayZcu0detWvfjii7rlllvk8XgkSddee606duyojIwMrVq1SjNnztTmzZvr/T7vvPOO7r77bh05ckRZWVm64IILdOutt+rIkSPKy8vTSy+9JEm67777NHbsWGVnZ2vPnj266qqrGqXdAIITwQ5Ai3bXXXcpMjJSl19+ubKysnTzzTcrOjpa48ePV25urg4cOKBDhw7p448/1iOPPCKn06nevXtr8uTJeuutt+r9PpdcconOPfdcRUdHa8yYMUpLS9OFF16oyMhIjR07Vlu2bJEkhYeHa/fu3Tp06JBiYmI0fPjwxmo6gCBEsAPQorVp00aSFBoaqvDwcCUnJ/ufi4yMVH5+vvbu3av8/HwlJSWpVatWatWqlV544QUdPny4we8jSVFRUQHvExUVpfz8fEnS3Llz5Xa7NXjwYA0aNEjvvvvu6TYRQAvC5AkAOIkOHTqoVatWOnbsWKO/V0pKil566SUZY7RixQpdddVVysrKUkRERKO/N4Dmjx47ADiJDh06aNiwYbrvvvtUUFAgt9utL774Qtu3b7f8vZYuXaoDBw7I4XCoVatWcjgc/uVaAOBkCHYAUA8LFy7Unj17/DNmb7vtNhUWFlr+Phs3btTQoUPlcrl000036fXXX1d4eLjl7wMgODmMMcbuSgBAsNizZ4969+4tp9OpV199VRMmTLBkv59//rl+8pOfqLi4WBs2bGBSBYAaEewAAACCBEOxAAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAk/j8o9/CxCfe8zQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the transfer function from r to y\n", + "Tnew = ct.feedback(Lnew)\n", + "ct.step_response(Tnew).plot(time_label=\"Time [ms]\")\n", + "plt.suptitle(\"Step response for (stable) spring-mass system\")" + ] + }, + { + "cell_type": "markdown", + "id": "b5114fa7-6924-47d7-8dd2-f12060152edd", + "metadata": {}, + "source": [ + "### Third iteration feedback control design (via loop shaping)\n", + "\n", + "To get a better design, we use a PID controller to shape the frequency response so that we get high gain at low frequency and low phase at crossover." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "id": "e6da93a4-5202-45d7-9e5a-697848f4ba71", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWKUlEQVR4nOzdd3wUZf4H8M/2vpveOwmh944ISlcUUBEFBVRUDgWV0zsVFbjD8lPh0BPO806BA1FBilKkiIDSQ+8tJJDes5vdZEt2n98fk0yyyaaXTfm+X695ZXbm2Zlnd5+d/eZpI2CMMRBCCCGEkFZP6O4MEEIIIYSQxkGBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGNJCIiAitWrGjy88yaNQuTJk1q8vO4MmLECLz66quNcqyDBw9CIBAgPz+/UY5XnW3btiE6OhoikajR8k9cEwgE2LZtW5Ofp7m+b61ZxWtFY35/ScsldncGCHFl1qxZyM/Pb5YfiNbms88+Q1u4E+CQIUOQlpYGnU7X5Od68cUX8cwzz2D+/PnQaDRNfj7S9OLi4qBSqdydjUaVmJiIyMhInD17Fr169XJ3dkgrRYEdIa1McwRCzUEqlSIgIKDJz2M0GpGZmYmxY8ciKCio3sexWq2QSqWNmDPXbDYbJBJJk5+ntfP19XV3FtymucpiRXa7HQKBAEIhNfa1ZPTpkFbp0KFDGDBgAGQyGQIDA/Hmm2+iuLiY32+xWDB//nz4+flBLpfjnnvuQVxcHL+/tBlw586d6NmzJ+RyOQYOHIiLFy9We97FixcjLCwMMpkMQUFBmD9/vtP+wsJCPPvss9BoNAgLC8NXX33ltP+vf/0rOnbsCKVSiaioKLz77ruw2WxOx+/Vqxf+/e9/IzQ0FEqlElOmTHFqrnTVvDJ//nz85S9/gZeXFwICArB48WKn8167dg333HMP5HI5unTpgl9//bXGJjOTyYQZM2ZArVYjMDAQy5Ytq5TGarXiL3/5C4KDg6FSqTBw4EAcPHiQ33/nzh089NBD8PT0hEqlQteuXbFr1y4Arpti//Of//Cve/LkyVi+fDk8PDwqvT/r1q1DREQEdDodnnjiCRQUFLh8DQcPHuRr6O6//34IBAI+f5s3b0bXrl0hk8kQERFR6fVFRERg6dKlmDVrFnQ6HZ5//nmX5/jxxx/RvXt3KBQKeHt7Y9SoUTCZTPz+1atXo3PnzpDL5ejUqRNWrVrF70tMTIRAIMDGjRsxYsQIyOVyrFq1CgqFArt373Y6z5YtW6BSqWA0GgEAFy9exP3338+f94UXXuD3AWXl5IMPPoC/vz88PDywZMkSFBcX44033oCXlxdCQkLwzTffOJ0nJSUFU6dOhaenJ7y9vTFx4kQkJiY6pfnmm2/49y4wMBAvv/yy0/7s7GxMnjwZSqUSMTEx+Pnnn/l9drsdzz33HCIjI6FQKBAbG4vPPvvM6fmlef/0008RGBgIb29vvPTSS07flYpNsdV9N0s/y9LyHB4ejp9++glZWVmYOHEi1Go1unfvjlOnTrn8jEvl5+fjhRdegL+/P+RyObp164YdO3bw+2tTpj744IMqrxGRkZEAgN69e0MgEGDEiBFO78eHH36IoKAgdOzYEUDNZaAmNX1/16xZAw8PD+zYsQNdunSBTCbDnTt3an184iaMkBZo5syZbOLEiS73JScnM6VSyebOncuuXr3Ktm7dynx8fNiiRYv4NPPnz2dBQUFs165d7PLly2zmzJnM09OT5eTkMMYYO3DgAAPAOnfuzPbu3csuXLjAJkyYwCIiIpjVanV53k2bNjGtVst27drF7ty5w06cOMG++uorfn94eDjz8vJiK1euZDdv3mQffvghEwqF7OrVq3yav//97+zIkSMsISGB/fzzz8zf35/93//9H79/0aJFTKVSsfvvv5+dPXuWHTp0iEVHR7Np06ZV+d4MHz6cabVatnjxYnbjxg22du1aJhAI2N69exljjNntdhYbG8tGjx7Nzp07x/744w82YMAABoBt3bq1ys/gT3/6EwsJCXF6f9RqNXvllVf4NNOmTWNDhgxhv//+O7t16xb75JNPmEwmYzdu3GCMMfbggw+y0aNHswsXLrD4+Hi2fft2dujQIafPIC8vjzHG2OHDh5lQKGSffPIJu379Olu5ciXz8vJiOp3O6f1Rq9XskUceYRcvXmS///47CwgIYG+//bbL12CxWNj169cZALZ582aWlpbGLBYLO3XqFBMKhexvf/sbu379Olu9ejVTKBRs9erVTp+nVqtln3zyCbt58ya7efNmpeOnpqYysVjMli9fzhISEtiFCxfYypUrWUFBAWOMsa+++ooFBgayzZs3s9u3b7PNmzczLy8vtmbNGsYYYwkJCQwAi4iI4NOkpKSwRx99lD311FNO53r00UfZk08+yRhjzGQysaCgIP592L9/P4uMjGQzZ87k08+cOZNpNBr20ksvsWvXrrGvv/6aAWBjx45l77//Prtx4wb7+9//ziQSCbt79y5/3JiYGPbss8+yCxcusCtXrrBp06ax2NhYZrFYGGOMrVq1isnlcrZixQp2/fp1dvLkSfaPf/yDPy8AFhISwjZs2MBu3rzJ5s+fz9RqNf/ds1qt7L333mMnT55kt2/fZuvXr2dKpZL98MMPTnnXarVszpw57OrVq2z79u1MqVRW+r6Vnre2380vv/yS3bhxg/3pT39iGo2GjRs3jm3cuJFdv36dTZo0iXXu3Jk5HA6XZclut7NBgwaxrl27sr179/LledeuXYwxVusyVd014uTJkwwA+/XXX1laWhr/ns2cOZOp1Wr29NNPs0uXLrGLFy/WugxUvFbU5fu7evVqJpFI2JAhQ9iRI0fYtWvXmNFodPn+kJaDAjvSIlUX2L399tssNjbW6QK8cuVKplarmd1uZ0ajkUkkEvbtt9/y+61WKwsKCmIff/wxY6wsqPj+++/5NDk5OUyhUDj9wJS3bNky1rFjxyoDv/DwcKcfY4fDwfz8/Ni//vWvKl/nxx9/zPr27cs/XrRoEROJRCwpKYnf9ssvvzChUMjS0tIYY64v1vfcc4/Tcfv378/++te/8s8Xi8X88xljbN++fdUGdgUFBUwqlbp8f0p/GG7dusUEAgFLSUlxeu7IkSPZW2+9xRhjrHv37mzx4sUuz1ExsJs6dSp78MEHndJMnz69UmCnVCqZwWDgt73xxhts4MCBLs/BGGN5eXkMADtw4AC/bdq0aWz06NFO6d544w3WpUsX/nF4eDibNGlSlcdljLHTp08zACwxMdHl/tDQULZhwwanbX//+9/Z4MGDGWNlgd2KFSuc0mzZsoWp1WpmMpkYY4zp9Xoml8vZzp07GWNcwOjp6en0I7tz504mFApZeno6Y4wrJ+Hh4cxut/NpYmNj2bBhw/jHxcXFTKVSse+++44xxtjXX39d6btlsViYQqFge/bsYYwxFhQUxBYuXFjlewKAvfPOO/xjo9HIBAIB++WXX6p8zty5c9mjjz7KPy7Ne3FxMb9typQpbOrUqfzj8oFdXb+baWlpDAB79913+W3Hjh1jAJy+J+Xt2bOHCYVCdv36dZf7a1umqrtGlJaHs2fPOh1n5syZzN/fnw+uGat9GagqsKvN93f16tUMADt37pzL10xaJmqKJa3O1atXMXjwYAgEAn7b0KFDYTQakZycjPj4eNhsNgwdOpTfL5FIMGDAAFy9etXpWIMHD+bXvby8EBsbWylNqSlTpqCoqAhRUVF4/vnnsXXrVqfmXwDo0aMHvy4QCBAQEIDMzEx+248//oh77rkHAQEBUKvVePfdd3H37l2nY4SFhSEkJMQpjw6HA9evX6/yPSl/XgAIDAzkz3v9+nWEhoY69WcbMGBAlccCgPj4eFitVpfvT6kzZ86AMYaOHTtCrVbzy6FDhxAfHw8AmD9/PpYuXYqhQ4di0aJFuHDhQpXnvH79eqV8ucpnRESE0wCI8q+1tq5evepUPgCuDN28eRN2u53f1q9fv2qP07NnT4wcORLdu3fHlClT8J///Ad5eXkAgKysLCQlJeG5555zen+WLl3Kvz9VnefBBx+EWCzmmzA3b94MjUaDMWPG8Pnv2bOn0+CBoUOHVionXbt2deoP5e/vj+7du/OPRSIRvL29+ffv9OnTuHXrFjQaDZ9fLy8vmM1mxMfHIzMzE6mpqRg5cmS170v58qhSqaDRaJw+oy+//BL9+vWDr68v1Go1/vOf/1T6HnTt2hUikYh/XN3nXNfvpr+/PwA4vRel26o6x7lz5xASEsI3g1ZU2zJV0zWiKt27d3fqV1fbMlCV2nx/Aa4vbMXrC2nZaPAEaXUYY05BXek2gLtQll+v6XmuVJUmNDQU169fx759+/Drr79i7ty5+OSTT3Do0CG+s3vFTu8CgQAOhwMAcPz4cTzxxBNYsmQJxo4dC51Oh++//95l3zVX+aku79Wdt7avuzxWi1G3DocDIpEIp0+fdvoBBgC1Wg0AmD17NsaOHYudO3di7969+PDDD7Fs2TLMmzfP5Tmr+lzLq+611lZtz1XTqEuRSIR9+/bh6NGj2Lt3L/75z39i4cKFOHHiBJRKJQCu3+DAgQMrPa+680ilUjz22GPYsGEDnnjiCWzYsAFTp06FWCyuMv+lym939V5V9/45HA707dsX3377baXj+vr61rrTfHXn2LhxI1577TUsW7YMgwcPhkajwSeffIITJ07U+hgV1fW7WfoeudpW1TkUCkW1r7mpy2/FMlLbMlCV2nx/Ae511/X6QdyLauxIq9OlSxccPXrU6aJ59OhRaDQaBAcHIzo6GlKpFIcPH+b322w2nDp1Cp07d3Y61vHjx/n1vLw83LhxA506dary3AqFAg8//DA+//xzHDx4EMeOHatxwEWpI0eOIDw8HAsXLkS/fv0QExPjsiPy3bt3kZqayj8+duwYhEJhlTUFNenUqRPu3r2LjIwMflv5gSSuREdHQyKRuHx/SvXu3Rt2ux2ZmZmIjo52WsrXDoaGhmLOnDnYsmUL/vznP+M///lPlfk8efKk07aaOrPXV5cuXZzKB8CVoY4dO1b6kauJQCDA0KFDsWTJEpw9exZSqRRbt26Fv78/goODcfv27UrvT2kn+epMnz4du3fvxuXLl3HgwAFMnz7dKf/nzp1zGqRx5MiRBpUTAOjTpw9u3rwJPz+/SnnW6XTQaDSIiIjA/v37632OP/74A0OGDMHcuXPRu3dvREdHV6rBrI+GfDdro0ePHkhOTnb6DpTXGGWqtEaufA1fVRpaBmr7/SWtD9XYkRZLr9fj3LlzTtu8vLwwd+5crFixAvPmzcPLL7+M69evY9GiRViwYAGEQiFUKhX+9Kc/8SP/wsLC8PHHH6OwsBDPPfec0/H+9re/wdvbG/7+/li4cCF8fHyqnPx3zZo1sNvtGDhwIJRKJdatWweFQoHw8PBavZ7o6GjcvXsX33//Pfr374+dO3di69atldLJ5XLMnDkTn376KQwGA+bPn4/HH3+83hfb0aNHo0OHDpg5cyY+/vhjFBQUYOHChQCq/s9erVbjueeewxtvvOH0/pSvsenYsSOmT5+OGTNmYNmyZejduzeys7Px22+/oXv37njggQfw6quvYvz48ejYsSPy8vLw22+/VQquS82bNw/33nsvli9fjoceegi//fYbfvnllyapLfjzn/+M/v374+9//zumTp2KY8eO4YsvvnAasVobJ06cwP79+zFmzBj4+fnhxIkTyMrK4l/j4sWLMX/+fGi1WowfPx4WiwWnTp1CXl4eFixYUO2xhw8fDn9/f0yfPh0REREYNGgQv2/69OlYtGgRZs6cicWLFyMrKwvz5s3D008/zTcp1sf06dPxySefYOLEifjb3/6GkJAQ3L17F1u2bMEbb7yBkJAQLF68GHPmzIGfnx/Gjx+PgoICHDlyxGUtrCvR0dH43//+hz179iAyMhLr1q1DXFxcrYLdqjT0u1kbw4cPx7333otHH30Uy5cvR3R0NK5duwaBQIBx48Y1Spny8/PjR0SHhIRALpdXOb1RQ8tAbb6/pHWiGjvSYh08eBC9e/d2Wt577z0EBwdj165dOHnyJHr27Ik5c+bgueeewzvvvMM/96OPPsKjjz6Kp59+Gn369MGtW7ewZ88eeHp6Op3jo48+wiuvvIK+ffsiLS0NP//8c5XzQ3l4eOA///kPhg4dih49emD//v3Yvn07vL29a/V6Jk6ciNdeew0vv/wyevXqhaNHj+Ldd9+tlC46OhqPPPIIHnjgAYwZMwbdunWrc8BRnkgkwrZt22A0GtG/f3/Mnj2bf6/kcnmVz/vkk09w77334uGHH8aoUaNwzz33oG/fvk5pVq9ejRkzZuDPf/4zYmNj8fDDD+PEiRMIDQ0FwNU8vPTSS+jcuTPGjRuH2NjYKl/L0KFD8eWXX2L58uXo2bMndu/ejddee63aPNZXnz59sHHjRnz//ffo1q0b3nvvPfztb3/DrFmz6nQcrVaL33//HQ888AA6duyId955B8uWLcP48eMBcE3R//3vf7FmzRp0794dw4cPx5o1a2oVxAgEAjz55JM4f/68U20dACiVSuzZswe5ubno378/HnvsMYwcORJffPFFnfJfkVKpxO+//46wsDA88sgj6Ny5M5599lkUFRVBq9UCAGbOnIkVK1Zg1apV6Nq1KyZMmICbN2/W+hxz5szBI488gqlTp2LgwIHIycnB3LlzG5Tvhn43a2vz5s3o378/nnzySXTp0gV/+ctf+Nq1xihTYrEYn3/+Of79738jKCgIEydOrDJtY5SBmr6/pHUSsNp0piGkjTl48CDuu+8+5OXlOc2T5m6LFy/Gtm3bKtVUNrYjR47gnnvuwa1bt9ChQ4cmPVdDPP/887h27Rr++OMPd2eFEEJaBWqKJaQd2Lp1K9RqNWJiYnDr1i288sorGDp0aIsL6j799FOMHj0aKpUKv/zyC9auXdug2kpCCGlvKLAjpB0oKCjAX/7yFyQlJcHHxwejRo2qcTSuO5w8eZLvBxgVFYXPP/8cs2fPdne2CCGk1aCmWEIIIYSQNoIGTxBCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2JEWLSIiAsePH3d3NkgVPv30U3z44YfuzobbrFmzBuPGjavTcw4ePIjHH3+8iXJEDh48iE6dOjXJsV9++WV89913TXLs1mDx4sWYM2dOnZ6zZs0a/OUvf2miHBFXKLAjTaItB2Q5OTn405/+hODgYGg0GkRHR+Pll19Gamqq2/L0yy+/IDo6GiqVChMnTkReXl6VaePi4tCzZ08olUoMHz4cd+7c4fctWrQIoaGh0Gq1iImJwerVq6s8jtlsxueff46XXnqpxvwlJiZCLpdXmyYrKwsPPvgglEolYmNjsX///irT1pTPNWvWICQkBFqtFs888wysVmuNeWwsn376KZYsWVLl/hEjRuD27du4dOlSrY63Zs0aiMViqNVq6HQ6DBo0CMeOHWus7NbJt99+C7VazS9yuRwajYbf/8ILLyAwMBBarRbdu3fHjh07qjzWrFmzIJPJ+GN17dqV3+dwOPD2228jODgYXl5eeP3118EYa9LXVpOUlBTs2bOnVkF5bYLLBx98EH5+ftDpdBg4cGC1n2l1343CwkK8+OKL8PPzg7+/Pz799NPav6hG8PLLL2Pt2rVV7p8+fTo2bdqE7OzsZsxV+0aBHSF1UFRUhBEjRiA1NRUHDx6EwWDA8ePHER0d7bZANjMzE9OmTcM///lPZGZmQqPR4JVXXnGZ1mKx4JFHHsErr7yC3NxcDBo0CE8//TS//6mnnsK1a9dgMBiwa9cuLFy4EJcvX3Z5rC1btmDgwIHQarWN8jpeeuklBAUFITs7G//3f/+HKVOmVBmgVpfPixcvYsGCBdi2bRuSkpKQmJiIpUuX1ioPxcXFDX4du3fvxtixY6tN8/jjj+Obb76p9TFHjRoFo9GI7Oxs3HvvvXjkkUfcEuhMnz4dRqORX+bOnYtJkybx+xcsWIDExEQYDAZ88803eOqpp6r9J2PJkiX8scqXs6+//ho7d+7EmTNncOvWLRw9ehRfffVVU760Gq1duxaTJk2CSCRqlON9/PHHSE1NhV6vxzvvvIPJkydX+ZlW9914//33kZCQgFu3buHUqVP497//jT179tR4fofDAYfD0eDXsWfPHowZM6bK/RKJBOPHj8eGDRsafC5SS4yQJhAeHs6OHTtW6/Tvv/8+CwgIYGq1mnXp0oVdvnyZP84//vEP1qlTJ+bh4cHmzZvHP+fGjRts2LBhTKfTscDAQPbWW2/x+1avXs1GjRrFZsyYwdRqNevfvz+7fv06v//ChQts2LBhzMPDg/Xp04fFxcXVKp//+te/WHBwMCsqKqoyzaJFi9hTTz3FJk6cyFQqFRs1ahTLyMhgU6ZMYRqNho0dO5YZDIZavzc1+fLLL9m4ceP4x7du3WJyuZyZzeZKaXfv3s06derEPzYajUyhULDExMRKaW/cuMH8/f3Zzp07XZ53xowZ7PPPP+cfZ2dns7FjxzJvb2/m4+PDnn/+eT4PMTExDABTqVRMpVKxlJQUp2MVFBQwqVTKUlNT+W3Dhg1ja9eurfH1V8znm2++yebMmcPv379/P4uMjHT53EWLFrFp06bxn9WBAwfYTz/9xLp168bUajWLjo5mGzdu5NMbjUb25JNPMp1Ox3r37s3eeustNnbsWH6/yWRiAQEBrLi4mF2/fp0NHTqUaTQa5u3tzRYsWMCnO3bsGOvcuXONr40xriyXP8elS5cYAJaVldXsZa08u93OAgMD2e7du13uj4uLYzKZjP8uVzRz5kz24Ycfutz3yCOPsFWrVvGPN2zYwIYMGeIyrc1mY/PmzWNeXl6sY8eO7IMPPmCxsbH8/uq+60ePHmVdu3ZlGo2Gvfjii+zee+9l3333ncvz3Hvvveznn3/mH1d1/SkuLmZyuZwJBAKmUqmYTqdzebxSDoeD7dixgwFgRqOx0v6avht9+vRhu3bt4vd98MEHbNq0aS7PNXPmTDZv3jw2fPhwplAoWEJCAvvqq69YdHQ0U6vVrHv37uzAgQN8+szMTDZu3Dim0WjYiBEj2J/+9Cf24osv8vtv3brFevTowRjjynSvXr2YWq1m/v7+bNmyZXy67777jo0fP77a94E0HqqxI2537do1/Otf/8LZs2dhMBiwefNmeHl58ft//vlnHD58GBcvXsT333+PP/74g9+3dOlSZGdn49ChQ1i/fj22bdvG7ztw4ABGjBiBnJwcjB8/HtOnTwcAFBQUYPz48XjttdeQnZ2Nd999F5MnT4bZbAYAzJ07F3PnznWZ1wMHDmD06NE1Nitu27YNf/3rX5GZmYn8/Hzcc889mDdvHjIzM2E0Gqusrfnoo4/g4eHhcpkwYYLL51y5cgXdu3fnH3fo0AFisRi3b9+uMa1KpUKHDh1w5coVpzyoVCp07NgR4eHhuP/++12e9/Lly4iJieEfOxwOvPzyy0hJScGFCxdw6tQp/Otf/wIA7N27FzKZjK+dCQoKcjrWzZs3odPpEBgYyG/r2bNnlbWF1eWz4mvs2bMnEhISUFRU5PI4W7Zswcsvv4yCggIMHjwYWq0WP/74I/R6PT7//HM888wzSE9PB8DVMOXk5ODu3bvYsGED1q1b53SsAwcOYNiwYRCJRHjvvffw4IMPQq/X486dO5g6dSqfLjY2FteuXatzDaHVasXatWsRHBwMHx8fAM1b1sr77bffYLfbMWrUKKftc+fOhUKhQP/+/TFu3Dh06dKlymN88skn8Pb2xpAhQ/D777877WPlaq8YY1WWha+++gq///47rly5ggMHDjj1gavuu26xWPDoo4/itddeQ05ODnr06IGjR49WmdeK5R1wff0RiUT45Zdf0LFjRxiNRuTn51d5zAkTJkAul2PChAmYP38+VCpVpTS1+W7U9r0CgO+//x7Lly9HQUEBQkJCEBQUhP3790Ov12PevHl44oknYLFYAHA1hQEBAcjMzMT777+P9evXOx2rfO30q6++ijfeeAMFBQW4evUq7rvvPj5dbGwsLl68WGWeSOOiwI64nVgshtlsxpUrV2C329GpUycEBATw+1999VV4e3sjJCQEI0aMwPnz5wEAMTExuPfeeyEWixETE4Pp06fj8OHD/PMiIyPxzDPPQCqV4u2338aVK1dw584d7Ny5Ez169MDkyZMhEokwadIk+Pv7831cVq1ahVWrVrnMa05OjlPetmzZAg8PD6jVasybN4/fPnr0aAwePBhKpRIPPPAAYmJiMGzYMMjlcjz44IO4cOGCy+O/+eabyM/Pd7lU1V/JaDRWag7VarUwGo31Svvmm2/CaDTi+PHjePjhhyEWi12eV6/XQ61W8499fX0xYcIEyGQyBAYG4sUXX3T6PKpTl9dQUz4rHqt0vapj3X///Rg1ahQEAgFkMhlGjBiB2NhYCIVCjB8/Ht27d8epU6cAAJs2bcK7774LrVaLTp06YebMmU7HKv9DJ5FIkJCQgPT0dKhUKgwYMIBPp9FowBiDXq+v1fuzf/9+eHh4IDg4GCdPnsTWrVv5fc1Z1sr79ttv8cQTT1Rqmly1ahWMRiP27duH4cOHV/n8V155Bbdu3UJaWhpeeuklPPTQQ0hKSgIAjBkzBv/+97+RlpaG7OxsrFy5EoWFhS6Ps2nTJrz++uvw9/dHUFAQ5s+fz++r7rt+7NgxqFQqPPfcc5BIJJg7d65T8FRRxfJe0/WnNnbs2IGCggL8+OOP6NOnj8s0NX03xowZgxUrViA/Px+JiYlYs2ZNle8VAEyZMgV9+vSBSCSCWCzGgw8+iLCwMAiFQjz//PMQCAS4efMm7HY7tm7dir///e+Qy+UYMmQIHn74YadjVSzv169fR25uLjw9PdG7d28+nUajqTbAJY2LAjvidtHR0Vi+fDkWLlwIX19fPPfcczAYDPx+Pz8/fl2pVPIXtJSUFEyePBkBAQHQ6XRYsWIFcnJy+LShoaH8ukwmg5+fH9LS0nD37l3+h7J0uXr1KtLS0mrMq7e3N197AwCPPPII8vPz8frrr8Nms7nMs0KhgK+vr9Njk8lU27enRmq12un9AgCDweD0I1TXtAKBAAMHDkRaWhq+/vprl+fV6XQoKCjgHxcUFGDGjBn8oIUFCxY4fR6N9RpqymfFY5WuV3WskJAQp8eHDx/G0KFD4eXlBQ8PD5w6dYp/HWlpaU7lqvw6wPU3Kv2h+/jjj1FcXIxevXqhZ8+e2L59O5+uoKAAAoEAOp2u2tdXauTIkcjPz0dWVhYOHjyI/v378/uas6yVMpvN2LJlC18LXpFIJMKoUaOwf//+Kvt79e7dG56enpBKpZg+fToGDx6Mffv2AQBmz56N8ePHY8CAAejfvz8eeOABBAcHuzxOdZ9Jdd/19PT0Sp9fVecAKpf3mq4/tSWVSvHoo49i2bJluHr1aqX9NX033nnnHURERKBz584YP348pkyZUu3rqFjet23bhj59+vDvT2ZmJnJycpCVlQWHw+F0rPLvl9VqRVxcHIYNGwYA+O9//4urV68iOjoaQ4YMcRoMUlBQAA8Pj9q/KaRBKLAjLcLTTz+NY8eO4ebNm7hz5w4+++yzGp/zzjvvwNfXFzdu3IBer8err77q1CSRnJzMr1utVmRmZiIgIADBwcF48MEHnWooTCYTpk2bVuM577vvPuzbt49vtm1sH3zwgdOow/LL+PHjXT6nS5cuTs0ct2/fRnFxMaKiompMazKZEB8fX2VzmcPhQHx8vMt93bt3x/Xr1/nHy5cvR25uLs6dOweDwYDly5fzn4dAIKj2dcfExECv1zsFzefPn3caKVmd8vms+BrPnz+PyMhIKBQKl8+tmLenn34azz77LDIyMpCfn49+/frxryMwMJCvVQLgtJ6QkACpVMr/cAYGBuKbb75Beno6/va3v2Hq1Kn86Nxr166hU6dOVdaGNof6lLVS27dvh5+fn1MtpCvVlZ+KhMKynyORSISPPvoISUlJSEhIgL+/P/r16+fyedV9JtV91wMCApyuEQAXrFWlYnmv7vpTU3l3pbi4GAkJCZW21/TdUKlU+Oqrr5CWloarV69CIBBU+V5VzJvFYsGTTz6Jjz76CDk5OcjPz4efnx8YY/D19YVQKHR6T8q/t4cPH0a/fv0glUoBcM2tGzdu5AdzPfXUU3zaa9euOXWPIE2LAjvSZKxWK8xmM79UNQLr+vXrOHjwIKxWK5RKJWQyWa1GnhUUFEClUkGtVuPSpUuV+n/cvn0ba9euhc1mw4cffohOnTohIiICEyZMwKlTp/Dzzz/DbrejqKgIu3fvrlWz2MyZM+Hp6YmpU6fi5s2bYIwhLy/P5X/a9fH22287jTosv/zyyy8unzN58mQcP34ce/bsQWFhIRYtWoQpU6ZAJpNVSjtixAgYjUasWbMGFosFS5cuRb9+/RAeHg6A+687Pz8fDocDhw4dwrfffosRI0a4PO+4ceOc+kUVFBRAoVBAp9Phzp07Ts3ZPj4+sNlsVdaKqtVqPPzww1i0aBGKiorw888/49KlS3jooYdcpq8un9OmTcPGjRtx5swZ6PV6vP/++04/MjUpKCiAl5cXxGIxNm/ejNOnT/P7HnvsMbz//vsoKCjA9evX8b///Y/fV3E07I8//ojU1FQIBAJ4eHhAIBDwP6p//PGHU9rFixdX+T43lfqUtVLffvttpdo6o9GIb7/9FkajEcXFxdi8eTPf59CVzZs3w2Qyobi4GD/88AMOHz7M95PMyclBYmIiGGM4deoU3n//fbz55psuj/PYY49h+fLlyMzMRFpaGr744gt+X3Xf9cGDB8NoNGL16tUoLi7Gl19+WW2tvavyXtX1x8/PD5mZmVX267xz5w527NjB9/X74osvkJycjL59+1ZKW9N3Izk5Genp6bDb7di3bx9Wr16N1157rcrXUZ7FYoHVauVreT/77DNkZWUBAN90vWjRIpjNZhw/ftyp1rl87TTAlYmcnByIxWJoNBqna3jF8k6aFgV2pMkMHz4cCoWCX7Zs2eIyncViwRtvvAFvb2+EhYVBp9NVOV1Hee+99x72798PrVaL+fPn49FHH3Xaf9999+HAgQPw8vLCjh078O233wLgmlR27NiBzz77DL6+voiIiHCaSmHOnDlVTsKpUChw8OBBBAYGYvjw4dBoNBgwYAB8fX3x7rvv1vataVR+fn749ttvMXfuXPj4+ECv1zvVeI4fPx4ffPABAK5JesuWLVi+fDk8PDxw5MgRpwEAu3btQocOHaDT6TB37lx88skneOCBB1yed+LEiTh16hTfd+aVV15BSkoKPD098eijj2Ly5Ml8WpVKhb/+9a/o3r07PDw8XM75t2rVKiQlJcHb2xuvv/46Nm7cCE9PTwDcj0b52rvq8tm9e3csW7YMDz30EEJCQhAaGoqFCxfW+v385z//iZdffhmenp7Ys2ePUz+xRYsWQafTISQkBE8++aTTVDEVA7uTJ0+ib9++UKvV+NOf/oQNGzZAIpEAADZu3Ihnn32WT5ucnIyhQ4fWOo/ulJeXh19++aVSYCcQCPD1118jJCQE3t7e+OCDD7Bhwwa+pqbiZ/iPf/wDQUFB8PHxwfLly7F161ZEREQA4KbwGTVqFFQqFZ566iksW7bMZdADAC+++CKGDBmCTp06YcSIEXjiiSf4fdV912UyGTZv3oxly5bBy8sL586dQ//+/V3+QwQAM2bMwE8//QS73Q6g+utP586dMWHCBISEhPCDXCp6//334efnh4CAAPzwww/Yvn07/P39AXC1qeVrTav7bty8eRP9+/eHRqPBX//6V3z//feVBidVRavV4pNPPsHo0aMREBCAnJwcREdH8/tLA05fX1+89dZbTp95xfK+a9cuxMbGQqPR4PPPP+fnlrTZbNi1a1etWkRI4xAw5uZZHwlpAmvWrMH333+P3bt3uzsrbdqyZctgNpvrFDi1RTabDSEhIbhz506NI6YPHjyIlStXYtOmTfy2vn37Yu/evfD29m7qrJIqMMYQEhKCbdu2OfVhLG/evHkYNGhQlX0L24u0tDQMHTrU5cj7itasWYPLly/jk08+aYacEYACO9JGUWBHmlNGRga2b9+O2bNnuzsrpA4OHDiALl26wNPTE8uXL8eXX36JW7duubXvY2tw/fp1XLx4EY899pi7s0JcoKZY0mweeughlx21Dx486O6sEdIg/v7+FNS1QpcvX0bPnj3h7e2Nbdu2YcuWLRTU1UJsbCwFdS0Y1dgRQgghhLQRVGNHCCGEENJGUGBHCCGEENJGUGBHCCGEENJGUC9RFxwOB1JTU6HRaOo1gzghhBBCSGNhjKGgoABBQUFOd2lxhQI7F1JTUyvdQ5AQQgghxJ2SkpIq3e+3IgrsXNBoNAC4N1Cr1bo5N4SQls5sNvO3LVu/fn2NkxQT4g5UTlsvg8GA0NBQPj6pDk134oLBYIBOp4Ner6fAjhBSI5PJBLVaDYC7Z6pKpXJzjgipjMpp61WXuIRq7AghpIGkUil/b0ypVOrm3BDiGpXT9oFq7FygGjtCCCGEtBR1iUtouhNCCCGEkDaCAjs3yS7Khs1hc3c2CCGNwG6349y5czh37hzsdru7s0OIS1RO2wfqY+cmz+x+BncL7sJX4YtAVSAC1YEIVAUiSBVUtq4OgkpCnVsJaenMZjN69+4NgDqlk5aLymn7QIGdGzDGkGvOhYM5kFGYgYzCDJzLOucyrUaq4YK9kuAvSBWEAHUAv81b4Q2hgCpeCXEngUCAoKAgfp2QlojKaftAgydcaI7BEw7mQK45F2nGNKSZypZUYyq/rrfoazyORChBgCrAqabPKQhUBUAqotFPhBBCSGtVl7iEAjsXWsqoWJPNhHRTulOwl2pM5baZUpFZmAkHc9R4HB+FDx/kBamD+ECwdF0r1dJ/b4QQQkgLRYFdA7WUwK4mxY5iZBZmOgV+aaY0p1rAouKiGo+jkqj4mr7ygV9pDaCvwhcioagZXhEhhBBCKqIJitsJsVCMIDVX8+YKYwz5lnynYC/VlOpUC5hrzoXJZsKt/Fu4lX/L9XkEYvir/J2aecsP9AhQBUAhVjTlSyWkRTObzXj66acBAOvWraNbNZEWicpp+0A1di40S43doY8Bhx3wCAU8wgBdKKANBsTN2x/OXGx2WdNXGvhlmDJQzIprPI6X3Iuv6Stt8i0d6OGv9Ie33Juae0mbRbdqIq0BldPWi2rsWoOT/wFMmRU2CgBNIBfs6ULLBX1hZdukykbNhlwsR6QuEpG6SJf77Q47souyKw3sKP/YZDMh15yLXHMuruRccXkciVACf6U/AlQBZYsywOkx9fUjrZVUKsUXX3zBrxPSElE5bR+oxs6FJq+xYwz4YxmQfxfQJwH5SdzfYnPNz1V6lwV9ujAu8CsfCMo9gGYOjgxWQ1lTb7nBHaW1gNlF2WCouZgpxAr4K/3hr/KvFPSVPlZL1c3wigghhJCWgwZPNJBbBk8wBpiySoK8u2XBHv/3LmAx1HwcqaZcoBfmvK4LBdR+zR742Rw2ZBVmId2Uzi2F6WXrpnRkFGYg15xbq2OpJWqnmj9XQSD19yOEENKWUGDXQC12VGxRfuVgr/RvfhJQmF3zMUQyQBfiupnXIxTQBAGi5m+ht9gtyDBxkzWXD/rKB4EGay0CWwBaqdapps9P6VdpoWZf0pgcDgfi4+MBAB06dIBQSJOGk5aHymnrRYEdgNTUVDz22GMQi8XQarXYuHEjlMra9U9rsYFdTayFgD65co1faQBYkAbUNO+dQARog8pq+MoHfbowLiiUuGckVaGtkA/0MkwZSC8s+VsuCDTZTLU6llwkh6/Slwv0FOWCPpXzY5rcmdQGdUonrQGV09aLAjtwNzsWCAQQCoVYtGgRunXrhilTptTqua02sKuJ3QYYUio0894tq/HTJwMOW83HUfm5buYtfSx333tWYC1wCvQyTBnIKspCRmEGMgszkVmYWas7epTylHnyAaC/0t9p3U/pB1+FLzzlnnRbt3bOZDIhODgYAJCSkkI/mKRFonLaiBwObgBk6e+oMQsYNKfJTkejYgGIRGUT6goEAsTGxroxNy2ESAJ4RnCLKw4HYMyo0MxbYd1m4gqzKRNIOeX6OHKPcoM7QivU/IVxA0CaqBlUI9VAI9UgxjOmyjTmYjOyirL4QK+qxeqwIs+ShzxLHm7k3ajyeGKhGH4Kv0pBX+lS+lgupjmj2iqVSoX8/Hx3Z4OQalE5rYMqK0JKHuuTAbvV+Tl9ZjT6zBX10Spq7BYtWoRNmzbh2rVr2LBhA5544gl+X1ZWFmbNmoUDBw4gNDQUq1atwsiRIwEAhw8fxiuvvAKFQoGdO3dCp9PV6nxttsauoRgDivKqCPpK/hbl1XwcidJ1M2/pY00A4OY7XTDGoLfo+Zq+irV+WYVZdRr0AXB9/6oL/PyUflT7RwghzaGqrkulfwtSa9F1Scj1Sy/97Rr3EaDybpLstrmm2PXr18Pf3x/vvvsuXn31VafA7vHHH4dOp8Nnn32GvXv34tlnn0V8fDw8PT35NJ9++ilEIhFee+21Wp2PArsGsBiraOYt2WZMr/kYQgmgC3bdzOsR5paJnKtis9tc1v6VDwIzCzNhttdiKhuU1f5VFfj5q7gRwRKhpIlfGSGEtFKMAeZ817NLlD6u1WBDaeXfn/KPtUFcS1gzaHNNsU899RQA4P3333fabjQa8dNPPyExMRFKpRKTJk3C8uXLsX37dkydOhUymQwAoNPpYLfbqzy+xWKBxWLhHxsMtRt9SVyQqQG/ztziSrGl5L8kF828+ruAIZXr55eXyC0uuZjImZ/epWSAh7R5+o5IRJJqb+sGcLV/BqvBqabPVRCYa85FsaMYqaZUpJpSqzyeSCBCgCoAIeoQBGuCEaIOQYgmBMHqYIRoQuAp86QRv83MYrHgxRdfBAD8+9//5q89hLQkbaacMgYYMysHa+VnibAW1Hwcp+nBXLQgqfyAVjhyuFXU2JUaMWIE5syZw9fYnT17FmPHjkVmZtkdHObNmwelUomHHnoICxcuhFAohJeXF9atW1flqNjFixdjyZIllbZTjZ0bOOzc6F0+6HNRTV6viZwr/Lflhomca2Jz2JBdmO0c+BU51wSmm9JhsVuqPY5KokKULgpRuih08OjArXtEIVgdTM28TYRGG5LWoNWUU7uN+ye/qto2fTJQw3UQgPPvgEd45QCuBf4OVKXN1dhVxWg0VnqBWq0W+fn5uOeee3Do0KFaHeett97CggUL+McGgwGhoaGNmldSS0IRV+OmCwHCB1fezxhgynbdzFv616IHCnO4Je2c6/O4/E8tDO6cyFkilCBQHYhAdWCVaRzMgZyiHCQbk5FckFz2t2Q9szATJpsJF7Mv4mL2RafnykXc7eO6eHfhl46eHWlKl0YgkUjw8ccf8+uEtEQtppyaDWUDEMoHa6WPazM1FwRcU2iV/bWbr+WmpWnVgZ1ara7UbGowGPj/SGpLJpO13irp9kYgANS+3BLc13Uas971wI7S4M+UxVXTZ17hFlfKT+RcMejzCOWagpupb0V5QoEQvkpf+Cp90duvd6X9FrsFSYYk3NbfRrw+Hrfzb+O2/jYS9Akw2824mnsVV3OvYvPNzQAAsUCMaM9odPHugh4+PdDHvw8itBHUlFtHUqkUb7zxhruzQUi1mqWcOuxAQXpZkKYvF7SVBnC1mXJKKCl3Da4ww0JpX2s3XINbg1Yd2MXExECv1yM9PR0BAQEAgPPnz2P27NluzhlxK7kOCNABAd1c77cVlVxk7lQ9GspuAXLjucUVgRBQB5TVLlZctCGA0qvZa/1kIhmiPaMR7RnttL3YUYwUYwpu5N3AlZwr/JJvyce13Gu4lnsNW25uAQB4yb3Q2683+vj1QR//Pujk1QliYau+VBBCGovVVHVNmz6ppJ90cc3HUXiWXC9LArbSa2dpP+lW2r+tJWgVfexsNhvsdjvGjBmD559/HlOmTIFUKoVQKMSUKVPg5eWFFStWYN++fZg1a1alUbF1RaNi27n6zF/kilhRLtgLdr54aUu2Sdx3X1vGGNJMabiScwWXcy7jbOZZXMy6CKvD+bVpJBoMDByIwUGDMSRoCEI0IW7KccvlcDiQlpYGAAgMDKRbNZEWqcZy6nBwLRql04A41bSVXPuKajHFk0DE1ah5lLvmVQzgZHVrWWvv2tx0J7NmzcLatWudth04cAAjRoxAVlYWZs6ciYMHDyIkJASrVq3CqFGjGnQ+CuxItRwObqh8+SYGfUrZY0MKN9FzbSh9XAR95R6r/Zv1v1ar3YorOVdwOuM0zmaexZnMMyioMLosTBOGwUGDMTRoKAYGDoRS4v4JOd2t1XRKJ+2aKS8LfWMCEKIVYOeGLyEryqrcXFqbf1pl2gq1bOWDtpYxF2lb0+YCu+ZGgR1psGILF+DxQV+yc+BXehePmgglgDaw7KKpDS73329JrZ+8dhNv14fdYceVnCs4mnoUR1OP4kLWBRSzsmYWmUiGwYGDMSJ0BIaHDoePwqfJ8tKSmUwmeHh4AADy8/MpsCPNz1ZUMpK05BpjSOGuPYaUsu3m/JqPIxByfYidatpCyg1OCGnSaw5xjQK7BqLAjjS50gk0K9b2lV6U9cncxZhVPf8iT6Z1Dvq0wVwwqA3iZkXXBjXa/XuNViPi0uNwJPUI/kj+w2m+PQEE6OHbAyNCR+D+0PsRqYukQRiENIZiC3c94IO1kutD6bo+pXZNpAA3I4AuuEJTabkat2acdJfUHgV2DUSBHWkR7MXcnTpcBn6l/V1qcQs3gLuYlwZ72mDuP/LSdW0g97eO9/BljOFG3g0cTDqIA0kHcDnnstP+CG0ExkSMwZjwMejo2ZGCPEJcsZm577khzfmfOn49hev3VhsSZck/eMFl/Xi1Qc7rVNvWKlFg10AU2JFWw2qq3L/PkFq2FKRy07/UhkhaEvAFuwgCS34U1P6AyPUI2QxTBg4lH8KBpAM4kXYCNoeN3xehjcDo8NEYGzGWgjzSPjjs3JybBanc9B+Gkr/84zRuvrba1rSJ5WXfQ76GvqTmrXS9FU24S+qGArsGosCOtCkWI/cDUj7YM1RYTJk1HwcomebFn+scrfZ3XtcEcFPAaPxhlCpxKO0Y9ibuxeGUw04jbcO14RgTPgZjIsYg1jO2TQR5FouFn+R8+fLlNC9mW8YYYDFUEaylct+1gnRuqU1XCoAL2jQBFWrZgsuaRhtp+iQqp60XBXYNRIEdaXeKrSXNQamVa/wMqSW1C7Wcn6qUwgvQBMCo8sUhhQR7WQEOWzJhLfdjF6YOwZjIcRgXMa5V1+TRqNg2wFbE3X/UmMmNajdmcOumituygOKi2h1TIOTmY9MElPR5DSjp9xpYtq4J4OZ0a4ayT+W09Wo3txQjhDQSsbTs7hpVKZ3jqnQ6l4L0kh+8dKAgo9zfDMBh45qYinKhBvBgyWISCHBIqcBelRKHFXLcNSbjvxf/i/9e/C8imAhjRV4YqwpHjDYCUPkAKl+u75/Kl3us9OHy2sJIJBIsWrSIXyctgMPBDVAqzOWmJyrM4ZpGTVllgZopqyyAsxhqPKQTuY7rplC6aAMrP1b5Vdl1wR2onLYPVGPnAtXYEdIADgc3qMOYXhIAZrgI/tJhMmbgkIRhr0qJPxQKWIVlNRYdrFaMNRVirKkQUbYKtYQyXVnQp/IpC/iUXlzNR+ki9yhZ9wDE1OTUqpU2f5r1XNkqzOECNlNJwMYHbjnlHufWvim0lEhW0sXAr9xfv3KP/blyp/Zrt/chJe5BTbENRIEdIc3EYgSMGTDq7+JgymHsyTqFIwWJsKHsBuAxDiHGFlowLj8H4bZaTJ7qikTFBXh84OdRLvDz5KaDkWkBqRqQaSovYjl1Sm8IezF3f2arifvMrUYuSDPnA0X51ayXPtbX4qbwVZBpuaBf6cPV/qp9uZo0p8CtZF2mpc+ZtEgU2DUQBXaEuI/BasDBpIPYnbAbx1KPOU2I3MkjGmP9B2KsrhNCmYBrSjPlcH+L8pyX0uAAjXCJE4pLgj5tuYBPzU0vIVGAiRWwOoRgYjlkag8IJArudnESBRcU8usKQCLnJp4WSbjjiiRVP27sIMPh4PpJOi32cus2bvqN4vKLhet/Vmzh+pZVfGwzc4Ga1VgWtFlNgKWgbL3Y3Dj5F8m4oLy0hlbpXVJj6122reJjqq3lMcag13Oj5HU6Xavt09oeUWDXQBTYEdIy6C16/Hb3N+xJ3IPjacdhL9e01tW7K8ZGjMXYiLEIUge5PoDDAVj0XIBXKejLK9tuMXCBiKWAC05K1yvcTq3ZCURlAR9KfoT5H2OB0x/nbQKu+ZKVC+TsNjRKkNsQQgkXEEvVXB81ua6k5tSjwnrJY75mteSxG++t3BbQ4InWiwK7BqLAjpCWJ8+ch/1392NP4h6cTD8JR7mmuR4+PTAmYgzGRoxFgCqg8U7qcHC3fuODvgqLrRCwFcFaaMCy/1sKhRh46YVnIUExV6tlK+Jqq2yFJTVhJTVcDhsXaJUGXA5b/ZsaG4NQXLaI5SW1jCV/xTKuplEsK6l1dPG4tAlbqipZLwnepGpum0zDrbfAgS/tCQV2rRcFdg1EgR0hLVtOUQ72392P3Ym7cSr9FFi5mqhevr0wLnIcRoePhp/Sr1nywxhDcTHXZCwWi+vXxMU3k7oI+kqnmal4uXZ6zCpvE4qcgzahmNtWWgsoFHNTclCTXLvQKOWUuAUFdg1EgR0hrUd2UTb23dmH3Qm7cTbzLB/kCSBAH/8+GBsxFqPDR8NH4ePmnBJCSP1QYNdAFNgR0jplmDKw784+7Encg3NZ5/jtQoEQ/fz7YWzEWIwKHwUvuZf7MkkIIXVEgV0DUWBHSOuXbkrHnsQ92Ju4FxeyL/DbRQIR+gf0x7iIcRgZNhIeco8Gn8tqtWLhwoUAgPfffx9SKfUlIy0PldPWiwK7BqLAjpC2JcWYgr2Je7E7cTeu5Fzht4sFYgwMGoix4WMxInQEPOWe9To+dUonrQGV09aLbilGCCHlBKuD8Uy3Z/BMt2eQZEjCnjt7sCdxD67lXsORlCM4knIEQoEQffz64P6w+3F/2P0IVgfX+vgSiQSvv/46v05IS0TltH2gGjsXqMaOkPYhUZ+IPYl78OvdX3Et95rTvk5enXB/KBfkdfTsSCMICSFuQ02xDUSBHSHtT4oxBQfuHsBvSb/hdMZpp3nygtXBuC/0Ptwfdj96+/WGWEiNHYSQ5kOBXQNRYEdI+5ZnzsOh5EP47e5vOJp6FBa7hd/nKfPE8NDhuC/0PgwKHASlREnzg5FWgcpp60WBXQNRYEcIKVVoK8SxtGP47e5vOJh0EAargd8nFUrRP7A/BvoMxIujX4Qt24aCggK+gzohLQkNnmi9KLBrIArsCCGuFDuKcSbjDH5L+g0H7h5AqinVab85xYwZ98zAuI7j0MuvFyRC6qBOWg4K7FovCuwaiAI7QkhNGGOIz4/H7ym/48CdAzibcRYCUVnTlkaqwdCgobg35F7cE3xPvadSIaSxMMag1+sBADqdjppiWxEK7BqIAjtCSF2YTCZo/bTQdNfg+Q+fx/GM48i35PP7BRCgh28P3BN8D4YGDUUX7y4QCUXuyzAhpFWhwK6BKLAjhNRFxSYuuUKOi9kX8Xvy7/g9+Xdcz7vulF4n02FQ4CAMDRqKwUGDEaAKcEe2CSGtBAV2DUSBHSGkLvLy8uDlxd1/Njc3F56ezs2u6aZ0/J78O46lHsOJtBMosBU47e+g64DBQYMxNHgo+vr3hUKsaLa8k/bDarXigw8+AAC8/fbbdEuxVoQCuwaiwI4QUheZmZnw9/cHAGRkZMDPz6/KtMWOYlzKvoQjqUdwNPUoLmVfcpozTyqUoo9/HwwJGoIhQUMQ4xkDoUDY5K+BtH00eKL1avLArqioCO+99x42bdqE3NxcGAwG7NmzB1evXsWrr75a33y3GBTYEULqIjc3F97e3gCAnJwcvvauNvQWPU6kncDR1KM4knoE6aZ0p/2eMk/0D+iPAQEDMCBwACK0EdTpndSLxWLBggULAADLly+HTCZzc45IbTV5YPfMM8/AZrPhzTffxLBhw5CXl4e0tDTcd999uHbtWs0HaAZJSUmYOHEirly5AqPRCLG49jPFU2BHCKmLxqoJYYwhwZCAY6nHcCTlCE5lnEJRcZFTGj+FHzd3XsBADAgcUKd72hLibna7HTabzd3ZaNEkEglEIufBVU0e2Pn5+SEpKQkymQxeXl7Izc0FAP6kLYHZbIbZbMakSZPw66+/UmBHCGkyTdXEZbPbcCnnEk6mncTJ9JM4l3kOVofVKU2wOpivzRsQMAB+yqqbgQlxJ6PRiOTkZFAPsOoJBAKEhIQ4TXRel7ikXjc89PDwQFZWFkJCQvhtCQkJCAoKqs/hmoRcLodcLnd3NgghpN4kIgl6+/VGb7/eeLHni7DYLTifeR4n0k8gLj0OF7MuIsWYgq23tmLrra0AgHBtOHr79UYfvz7o698XoZpQarolbme325GcnAylUglfX18qk1VgjCErKwvJycmIiYmpVHNXG/UK7F555RU89NBDWLhwIex2O3bs2IGlS5c2Wf+6RYsWYdOmTbh27Ro2bNiAJ554gt+XlZWFWbNm4cCBAwgNDcWqVaswcuTIJskHIYS4YjKZnNabqlO6TCTjauYCBwDgbnd2NvMsTqSfwMm0k7iaexV3DHdwx3AH225tAwD4Kny5QM+fC/RiPGJoDr12ymQywcPDAwCQn5/frIMnbDYbGGPw9fWFQkGjvqvj6+uLxMRE2Gy25gvsXnrpJfj5+eHrr79GSEgIPv/8c7z22muYOnVqfQ5Xo5iYGHz22Wd49913XeYlKCgI2dnZ2Lt3L6ZMmYL4+PhK0w0QQkhbo5QoMTR4KIYGDwUAGKwGnMs8hzMZZ3Am8wwuZV9CVlEW9t7Zi7139gIA1BI1evr1RF+/vujj3wfdfLpBJqJO9O1FcXGxW89PNXU1a+h71KqmOxkxYgTmzJnD19gZjUZ4e3sjMTERgYGBAIB7770Xs2fPxowZM/jn1NTHzmKxwGKx8I8NBgNCQ0Opjx0hpFYKCgr4a4XBYIBGo3FzjjgWuwUXsy7ibOZZnM48jXOZ52CymZzSSIQSdPbujB4+PdDTtyd6+vZEgCqAfoDbIIfDgbS0NABAYGAghMLmm0bHbDYjISEBkZGRbusmJZFI0LVrV1itVgwZMgRfffVVs74HteXqvWqSPnYff/xxrdL95S9/qe0hG+zmzZvQ6XR8UAcAPXv2xOXLl2E2mzFhwgScP38eY8eOxeLFizFs2DCXx/nwww+xZMmS5so2IaSNKf/j0JJ+KGQiGfoF9EO/gH54Hs/D7rDjRt4NnMk8g9MZp3Em4wxyzDm4kHUBF7IuYP3V9QC45tsevlyg18O3B7p4d6FJk9sAoVCI4OD2O4ra29sb586dg91ux8iRI7F161Y8+uij7s5Wo6t1YHf16lV+vbCwEFu3bsXAgQMRGhqKpKQknDx5Eo888kiTZLIqRqOxUuSq1WqRn58PuVyOX3/9tVbHeeutt/i5fYCyGjtCCGlLREIROnt3RmfvzpjeeToYY0guSMb57PO4kHUB57PO40buDWQVZWH/3f3Yf3c/9zyBCB09O/KBXnef7gjThtHEyaRVEolEGDRoEOLj492dlSZR68Bu9erV/Pqjjz6KTZs2YeLEify2n3/+Gf/73/8aN3c1UKvVMBgMTtsMBoPTEOHakMlkNFEjIaTerFar03prmdFfIBAgVBuKUG0oJkRNAAAUFRfhas5VnM8qC/ayirJwNfcqruZexffXvwfA9dXr4t0FXb27oosP9zdEHUJNuC2Y1WrFZ599BoAbBOmuW4oxxlBkszf6cRUSUa3KX1FREQ4cOOCy335bUK/BE7/++it++OEHp20PPPAAnn766UbJVG3FxMRAr9cjPT0dAQHcTbTPnz+P2bNnN2s+CCHtW/kJV1v75KsKsQJ9/Pugj38fANyPcLop3alW73rudRhtRpxM5+bXK6WVatHVuyu6+nTl/np3pf56LYjNZuO7S82dO9dtgV2RzY4u7+1p9ONe+dtYKKVVhzU5OTno1asXAC5mmTBhQqPnoSWoV2DXrVs3LF26FO+88w7EYjGKi4vxwQcfoGvXro2dPwBcYbTb7XA4HLDZbDCbzZBKpVCr1Xj44YexaNEirFixAvv27cOlS5fw0EMPNUk+CCHElfKDs+oyGXprIBAIEKgORKA6EOMixgEAbA4bbuffxuWcy7icfRlXcq7get51GKwGHEs7hmNpx/jne8m90MW7Czp7dUasVyw6eXVCqCaUmnHdQCwWY+bMmfx6e1Pax66tq9eo2Nu3b2PatGm4fPky/Pz8kJmZiS5duuDbb79FdHR0o2dy1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDzkd3niCE1AXdXJ27S8bN/JtOwd7NvJsoZpWn11CIFejo2RGdvDoh1isWsZ6xiPGMoQEabVj5kZ4ymcwtTbEBAQFIT0+vcn9L0dBRsQ2a7uTu3btIS0tDYGAgwsLC6nuYFocCO0JIXVBg55rFbsGN3Bu4nHMZ13Kv4XruddzMvwmL3VIprVAgRLg2HLGesXzNXievTvBR+Lgh56SxtYTpTtpLYFevutjMzEwA3G27IiMjnbb5+dF9CgkhhHDTrXT37Y7uvt35bcWOYtw13MW13Gu4lncNN3Jv4GruVeSac5GgT0CCPgG7E3fz6T1lnoj2jEa0B7fEeMagg0cHaKX0Tzepm9YQ1DWGegV2AQFcZ9jSyr7yVZ92e+NXrxJCSEvWXLcUawvEQjGiPKIQ5RGFB/AAvz27KBvXc6/zNXvX864j0ZCIPEse4tLjEJce53QcP6UfYjxiuIDPMxoxHjGI1EVCKVE290tqNUwmEz+PXUpKCpXTNqpegZ3D4XB6nJ6ejqVLl2LgwIGNkilCCCHti4/CBz7BPvzt0QBu6pXb+tuIz4/HrbxbuJl/E7fybyHdlI7MwkxkFmbiSOoRPr0AAgSrg/lAL8ojCpG6SERqKeArpdfr3Z0F0sQa7ZZiVqsVUVFRSE5ObozDuRX1sSOE1EVLvaVYW1VgLeCCvfxb3FIS9OWac6t8ToAqAJHaSC7Q00UiSscFfT4Kn3YzHYvD4eAn5e3QoUO7u6VYa+GWPnaunDhxwu03FyaEEHdoqbcUa6s0Ug16+fVCL79eTttzzbmIz4/HzTyuZu+2/jYS9AnINeci3ZSOdFO601QsADfRcmmwV34J1YRCIpQ046tqekKhEDExMe7OBmli9QrsOnfu7PQfTmFhIXJycvgZrUnrwxgDYwArWQdK1wGGkscM/N/y20qfw1C2H1WkcTDur71k3eFgcJSs2x2MT2Pnt7ve53QMxkqOU3kfY6zkWGXnspek57eXpCnbDtgZ459bfnv5tPx+h6tjOB+b319u3encVWx3lByz/DmcXwcgFgkgl4ggEwtLFhHkkpK/UhG0cjE8lBLoFM6Lr0YGf60cfho5pGIKRkjr5yX3gleAF/oH9Hfarrfo+YEZpctt/W0kG5NhtBlxMfsiLmZfdHqOWCBGqDYU4dpwRGgjEKYNQ7gmHGHaMPgp/WgePtJi1Suw+/LLL50eq1QqdOzYkZot6+DBz/9AVoGFD544ZcEVUBYsMeYcbKGqNBUCqdJEDFUHbaT1s9qBQmvDBi35qKXw08gRoJMj1FOBCB8VInxUiPRWIdhTAYmIfsSq05buPNEW6WQ6lzV8VrsVdw13kWAoC/ZKA7+i4iJ+vSK5SM4FetpwhGlK/pY89pZ7t9imXZvNhq+++goA8MILL0AiaVs1koRTr8AuLi4Or7/+eqXty5cvx4IFCxqcqfYgq8CCzILKczm1ByKhAEIBN5paJODWhUIBhCXrIqEAgtJ1Abde+hyhQFCStmRdIIBQWJau/PNFJfv4dBX2iYRlxxKVHJf/K6y8TShwvV1Usi4oOb6IT+t8PKGgbB+/v9z28scrfX1Ox6pw3NLzFdsZLMV2mG0OWIrtsBQ7YLZxfwutduiLbNAX2WAosiG/0Ap9kQ35RTauDBossNodyDZakW204kqaodLnJRYKEOKpQLSfBl0CNegUqEXnQC3CvZQQClvmD1hzq3ivWNI6SEVSbioVT+eJ9RljyCjMwG39bdwx3MFdw13ub8FdJBckw2w340beDdzIu1HpmCqJyinYK1/b5yH3aKZX5prVasXLL78MgJv4nwK7tqlegye0Wi0Mhso/AN7e3sjJyWmUjLlTcwyeuJ5egGKHAwJwP9Cl/+Dxj0vScdsrbhNAgMrPQfltVaQpOVwV5yp7jqAsUY1pyp+7/DYByqbC4Z/TQv+Tba8YY8g1WZFuMCPTYEGa3ow7uSYkZpuQmF2IxBwTLMUOl89VSESIDdCgc6AWvUJ16BXqiWg/NUTtMNjLycmBjw83kW52dja8vb3dnCPSVGwOG1KNqU4BX2nQl2pMRVmnlMq0Ui3CNGEI1YQiRBPi9Lc5mnfNZjN/T/d169Y16yCGljB4IikpCfPmzcPFixchk8nQu3dvfPHFF/D09KzxuYsXL0ZAQADmzJnT5Pls1sETGzduBAAUFxdj06ZNKB8TJiYmwsvLq675b7diA2jUHHE/gUAAb7UM3moZugZV3u9wMGQUmJGQZcL1jAJcTTPgWnoBrqcXoMhmx7mkfJxLysd3JfeBV8vE6B6sQ68wD/QK9UDvUA/4adv+CLjyP1Q04q9tkwglCNeGI1wbXmmf1W5FckEyEg2JXNBXUBb8ZRRmwGA14FLOJVzKuVTpuVKhFMGaYIRqQvklRM0FfcGaYMhEsgbnXS6XY9OmTQ0+ToMxBtgKG/+4EmVZTUOlUzJMnjwZ8+fPx7Zt2wAA27ZtQ25ubq0Cu9akToHdv/71LwBcde6qVav47QKBAH5+flizZk2jZo4Q4l5CoQCBOgUCdQoMiS67tZPdwZCQbcK1dAMupRhwLikPF5L1MFqKcex2Do7dLqu5D/dWYkCEF/pHemFgpBfCvJRUc0vaJKlIyk++XFFRcRHuGrim3KSCJCQVJCHZyK2nGdNgdVir7NMngAB+Sj++dq9i4KeT6VrXd8pWCHzg4j/Jhno7FZC6nnR5//79UKvVmDFjBr9t0qRJLtP+8MMPWLJkCSQSCTp27MgHw6dPn8Y999yDtLQ0rFy5EuPGjUN8fDxmzpyJwsJCyOVyfPPNN+jUqRPWrFmDXbt2IT09Henp6fjzn/+MF198EQDw/vvvY9u2bbBYLJg3bx6ef/75Rn0b6hTYHThwAACwdOlSvPPOO42aEUJI6yESChDtp0a0nxoTenAXaLuD4WZmAc7dzedr8q5nFOBOTiHu5BRi02lujks/jQwDIr34paOfhvrqkTZPIVYg1ou7D25FxY5ipJnS+KCP/1sS+JlsJmQUZiCjMAOnM05Xer5GokGIJsSpeTdYHYwQdQgCVYGQiKgv3ZUrV9C7d+9apV26dCl27tyJyMhIpwmd79y5g0OHDuHcuXOYN28exo0bh8DAQOzfvx8ymQwnT57E22+/jS1btgAATp06hfPnz4MxhgEDBuChhx7ChQsXkJWVhbi4OFgsFtxzzz2YMGECAgMDG+211jqwy87O5vuQvPDCC/y9YStqS/eKNZlM0Gg0/H9CVqsVNpsNYrEYMpnMKR0AKBQKfg4rm80Gq9UKkUjk1DRTl7SFhYVgjEEul0MkEgHgmsEtFguEQiEUCkW90hYVFcHhcEAmk0Es5oqA3W6H2WyuU1qBQAClsmw2d7PZDLvdDqlUynfKrUtah8OBoqIiAHC61Y3FYkFxcTEkEgmkUmmd0zLGUFjIVfsrlcpKn2dd0tbms2+McuLq82yMclL6eTa0nFT8PEvTRvso0SlAiycGhMFutyMr34hzyQacTzMhLiEX55PzkVlgwY4LadhxIQ0AoFNIMDDSC/3CNBgY4Yke4b78+97QclL+82xoOanq81QqlfzzACArK4uuEXSNqPbzrJhWLBQjVBMKL6EXeuh6VEqbacxEWmEaMq2ZfG3fHf0dpBhTkG3ORoGtAFdzr+Jq7lVUJBQI4Sv3RZAqCIHKQPz4zY9w5Dmw9vO1XN8+lR9UyrL3p6muEWazGQ6Hg+vCJVECb6dyU1iV3Mmq9Fylnx1jjBsQV/I+1Cptyd1FXKUt7Tpmt9trPO6QIUPwwgsvYNq0aZg8eTJ/rgce4G6B16NHD9y9excAV57mzp2LixcvQiQSwWw28+nHjRsHpVIJoVCIkSNHIi4uDocOHcL27dtx8OBBANydQOLj4/nYqfw8mDabDXa73en11gqrJbVaza8LBAImFAqZQCBwWoRCYW0P16Lp9fqSmdjAMjMz+e1Lly5lANjs2bOd0iuVSgaAJSQk8Nv+8Y9/MABs2rRpTml9fHwYAHbp0iV+21dffcUAsIkTJzqlDQ8PZwDYyZMn+W3r169nANioUaOc0nbp0oUBYAcOHOC3bd26lQFgQ4YMcUrbr18/BoDt2LGD37Z3714GgPXs2dMp7fDhwxkAtnHjRn7b4cOHGQAWHR3tlPaBBx5gANjq1av5bWfPnmUAWFBQkFPaxx57jAFgX3zxBb/txo0bDADT6XROaWfOnMkAsI8//pjflpyczAAwsVjslHbu3LkMAFu0aBG/LS8vj/88rVYrv/31119nANjrr7/Ob7NarXzavLw8fvuiRYsYADZ37lyn84nFYgaAJScn89s+/vhjBoDNnDnTKa1Op2MA2I0bN/htX3zxBQPAHnvsMae0QUFBDAA7e/Ysv2316tUMAHvggQec0kZHRzMA7PDhw/y2jRs3MgBs+PDhTml79uzJALC9e/fy23bs2MEAsH79+jmlHTJkCAPAtm7dym87cOAAA8C6dOnilHbUqFEMAFu/fj2/7eTJkwwACw8P57cVWYvZyCdeZLohT7ARizezzu/+wsL/usNp6fv3fWzehjPsuxN32CNPP88AsH/84x/8MRISEhgAplQqnfIwe/ZsBoAtXbqU35aZmcl/nuW98sorDAB7++23+W1Go5FPazQa+e1vv/02A8BeeeUVp2OUv0ZkZGTwj+kaQdeI8pr6GnH89HF2M/cm++3Ob+zl1S+zwKcCWb8P+rGHtz7M+q3rx7qt6Vb98nU39uCWB9kLe19gS44uYd2f6860/bXsvzv+y3KLcpnD4WiUa8STTz7JfvnlF5aamspvMxqNLC4ujp0/f94p7c2bN1lcXJzT729hYSGLi4tzuiYyxlh8fDyLi4tj6enp/Daz2czi4uLY6dOn+W179+5lgwcPZnFxcU55sFqtLC4ujsXFxfHbHA4H27x5M3vqqadYZGQks9lsbNGiRWzlypV8Wn9/f8YYY++++y5bsGABO3nyJDtz5gx/vVu9ejV77LHHWFxcHLNarexPf/oT27ZtG3vhhRfY3//+d6drAWOMnT59msXFxTGz2cyKiorYlStX2JdffslfI0rjEr1ez2pS6yE4BQUF/LrD4YDdbofD4XBa7PaGzaVFCGnb5BIR1EXp0B/9HtOCcnB+0RhsmTsEM3t5oCjxLFixFdlGC34+n4o3t1zE6aCJCJ7zNfbq/bD1bDIyDOaaT+IGNGCCuItMKEO0ZzTuC7sPfdEXaevT4HfYDz9N+gknp5/EgccPwLLagqQvk/CQ50MY7jUcXdRd4CHwALMzQATcMdzB0dSj2HRjE9gwhrCXwrAiewXu/eFeDNowCCvyViBsfhhs99iw/sp6HLh7ADfyboCJW89kqKNGjYLBYMCuXbv4bdu3b8ft27crpU1ISEC/fv0wb9482Gw2p/inooKCAvj5+UEgEODHH3902nf06FGYTCYUFBTgt99+Q//+/TFs2DD89NNPsFi46c6uX7/uVMvXGBrtXrFtSemw4tTUVAQEBFBTLDWzUFNsLZti61tOSj9PS7Ed17NtOBafjaPxOTiXlI9ih/MlKspHhQEROgyM8MSIzkHwVElr9dk3ZVNs6edgtVohkUggkUjoGkHXiCo/z5ZyjTAVmZBtyUaOLQcpxhQkG5NxN/8uUk2pSCtMQ1ZRFmriIfVAsCYYwepgBGuCEaQMgq/UF8HqYET5REEq4t63/Px8pKSkICoqii8/rLGbYmtIm5iYiHnz5uHq1auQyWTo06cPPv/8c376kNK0kydPxq1btwAAU6dOxTvvvIPFixfD398fL7zwAgAgODgY6enpuH79Oh577DGo1WqMGTMGa9euRWJiItasWYN9+/YhMzMTd+/exYIFC/Diiy/C4XDg448/xrfffgvGGPz8/LB9+3b+8xIKhbBYLEhISEBISAiEQiFEIhGsVmutpzupV2CXlJSEv/3tbzh//jyMRqPTvitXrtT1cC1Oc8xjRwipmclSjLjEXByLz8HR+BxcStVXumNKl0AthnTwxtBoH/SP9IJa1mi3wCakXbPYLUg1piLFmIKUghQ++Esxcut6i77a5wsggK+SC/JiNbEYpRmFiIgIqBQqSEQSSISSNntrtjVr1uDatWv46KOP6vzcZp3HrtTUqVMRExODJUuWOP2HRQghjUklE2NErB9GxHIdi/WFNhxPyCkJ9LJxI8OIK2kGXEkz4L+HEyAWCtAz1ANDO3hjcAcf9An3gExcx47H9WCz2fDtt98CAKZPn04z+pMWqa7lVCaSIVIXiUhdpMv9RquxLNgrCfzKL0XFRcgszERmYSbS89MxKHoQMgszIbSVBXNioRgSkQRSoRQSoaRsvY0Hfk2p3neeyM/Pdxq90ZZQjR0hrUNmgZkL8m7l4Eh8NpLzipz2y8RC9I/wwpBobwzp4IPuwbomuTOGyWSCWq0GABiNRqemP0JaiuYsp4wx5JpzuRo/UwpyDDno4OgA3xBfMBGDzWGDg7m+q015VQZ+JesNCfz27NmDv/71r07bxo0bV69atsbklhq7cePG4fjx4xgyZEh9nk4IIY3CTyPHxF7BmNgrGACQlFuIo/HZOHKLa7rNNlpw+FY2Dt/KBnAdGrkYAyO9MbQk0Ovor26UiV1FIhE/FUKdpyYgpJk0ZzkVCATwVnjDW+GN7r7d+WAlWB0MuVwOxhjszA6b3Qarwwqbwwarnftrs9v4wK/YUYxiRzGKUOTyPA0J/MaOHYuxY8c21VvgNvWqsZs5cya2bt2KMWPGVJq3rvwdKVorqrEjpPVjjOFmphFHb2XjSHwOjt/OQYG52CmNj1qKwR18MLQDF+iFeVPXEkKaQl3vFesq8Ku4Xt8aP4mwrLm3JTb1uqXGLioqCn/+85/r81RCCGkWAoEAHf016OivwayhkSi2O3A51YAj8dk4Fp+DuMRcZBut2H4+FdvPpwIAQjwVGNrBB0OivTG4gzf8NDSNCSHuIBAIIBaIIRaKoYCi0v6qAj+bo+SxvQ41fi769rXkwK8mNN2JC1RjR0jbZym24+zdfBy9VfXUKjF+agyN9sHgDt4YFOUNnYIGRRBSH3WtsWsoPvArX9PnIvCriUgochnwNWXg55Yau48//tjldplMhpCQEIwcORIeHh71OTQhhDQLmViEQVFcwLYAgLFkapXSQO9KmgE3M424mWnEmqOJEAqAbsE6DOnggyEdvNE/wgsKKddPqbCwED179gQAnD9/nmYLIC1SeyqnTjV+4mpq/GoI/OwOO4ocRSgqdl3jVz7wC1QFQix0/3RL9crBmTNnsHXrVgwcOBAhISFITk7GiRMn8NBDDyE1NRXPPfcctmzZgvvvv7+x80sIIU1CLRPjvlg/3FcytUqeyYrjt7nRtkfjc3A7y4QLyXpcSNbjy0PxkIgE6B3miaEdfNA7WIlbtxMAhx3UCEJaKsYYP/FueyynAQEBSE9PB1D3wK9bx244dOYQRBJRlYFfsDq4uV+SS/UK7IqLi7F582ZMmDCB37Zz506sWbMGR48exbfffosFCxbg3LlzjZVPQghpVp4qKcZ3D8T47oEAgDR9EY7F55SMuM1Gmt6Mkwm5OJmQCwDo+OZP6OQtxrq4NNwT44sugVoIm2BqFULqSy6X4/Dhw/y6uzDGqqwBawiFWNEoo9yByoGfUCBEoCqQf98qBn7FjuIW0x+vXn3sdDodcnNznYZLFxcXw9vbG3q9Hg6HAx4eHjAYDI2a2eZCfewIIdVhjCExh5ta5WhJoJdXaHNK46GUYHCUN4Z08MaQaB9E+aga7UeHkNamfL8xh8iBgRsGNvo5Tkw7AaWk6ubl8jV2VbHb7Zg1axbOnDkDoVCIt956C9OmTUNERARmzpyJbdu2QaPRYMeOHfDw8MCXX36Jr7/+GhaLBQMGDMBXX30FoVCIESNGoG/fvti/fz8kEgm+++47REdHIyMjAy+88AJSUlKgUCjw9ddfo2PHjk55cEsfuy5duuCDDz7AW2+9BbFYDLvdjo8++gidO3cGwN1yjPrYEULaKoFAgEgfFSJ9VJg+MBwOB8O19AIu0IvPwYnbOcgvtOGXS+n45RL3QxKglZcMwvDC4CgfhHo1Xu0CIaRxnDt3Dnfv3sXly5cBAHp92W3ToqOjcf78ecybNw8bN27ECy+8gMcffxxz5swBAMydOxc7duzAww8/DIC7Tpw7dw47duzAa6+9hu3bt+O1117DokWL0KdPH5w4cQILFizAjh07GvU11CuwW7t2LaZNm4ZPPvkEfn5+yMzMRGxsLDZs2AAAyMjIwIoVKxozn3WWlJSEiRMn4sqVKzAajfzNqQkhpLE5HHZcPrIHOgBfPTUZTCDEhWQ9PxDj9J08pBvM2Ho2BVvPpgAAgj0UGBjlhUFR3hgc5Y1Qr7bbkZ20DMXFxdi6dSsA7kb37vpdVIgVODHtRJMct6GioqKQlJSEV199FZMmTcKIESP4faUBW+/evXH79m0A3CCUd955BwaDAfn5+QgNDeXTTZ06FQAwYcIEPvj77bffcOXKFf6YTTFRdL0+1Y4dO+LUqVNITExERkYGAgICEB4ezu8fMGAABgwY0GiZrA9fX1/89ttvmDRpklvzQQhp+ywWCx5//HEAZbdq6hvuib7hnpg3MgZmmx2n7+ThWMlEyeeS8pGSX4QtZ1Kw5UxZoFc6rcrgDt4I9mj4jxQh5VUsp+4K7AQCQbVNpu7k6emJ8+fPY9euXVi8eDFGjBiBxYsXA+Bm/gAAoVCI4mJusvPZs2dj9+7diImJwSeffAKTyVTt8QUCAd/M21Qa9Kn6+flBJBKBMYa7d+8CAMLCwholYw0ll8vd2jmUENJ+CIVCDB8+nF+vSC4RYWi0D4ZG+wAACq3FToHehWQ9UvKL8OPpZPx4OhkAEOqlwOCoskAvUEeBHmmYmsopAbKzsyGVSjF16lT4+Pjgn//8Z7XpCwsL4evrC7PZjI0bN+LBBx/k9/3www/o378/duzYgd69ewMAhg0bhv/+97944YUX4HA4cPnyZXTv3r1RX0O9AruLFy9ixowZuHDhAgDw/USkUikKCwvrlZFFixZh06ZNuHbtGjZs2IAnnniC35eVlYVZs2bhwIEDCA0NxapVqzBy5Mh6nYcQQhqbQqHAwYMHa51eKRVjWIwvhsX4AgBMlmKcupOH47dzcCw+BxdT9EjKLUJSbjI2nuICvXBvJR/oDYryRoCO/nEldVPXctrWZGVlISQkhH/81Vdf8ffOLZWcnIxnnnkGjDFIJBKsXLmy2mMuXLgQffv2RXh4OB+8lZJKpRg0aBDsdju+++47AMA///lPzJkzBytXroTNZsOMGTNaRmA3Z84cTJw4EceOHUNgYCDS0tLw3nvvoUOHDvXOSExMDD777DO8++67lfa99NJLCAoKQnZ2Nvbu3YspU6YgPj4eFovFKQAEALVa3egdEQkhpCmpZGIM7+iL4R25QK90suTjt3NwvCTQu5NTiDs5hfg+LgkAEOmjwqByffT8tBToEVIdu91eY5pevXrh7NmzlbYnJiby67NmzeLXX375Zbz88ssujzVjxgx88MEHTtv8/f35fo5NpV6B3eXLl/HHH3/wVblyuRxLly5FVFQUXnzxxXpl5KmnngIAvP/++07bjUYjfvrpJyQmJkKpVGLSpElYvnw5tm/fjhkzZjTKfx8WiwUWi4V/3FqnaSGEtA0VJ0suMNtwKjEPx25zTbeXUvRIyDYhIduE705ygV6Ur4oP8gZGedF9bglpp+oV2Hl4eCA/Px9eXl4IDg7G+fPn4eXlBaPR2Nj5w82bN6HT6RAYGMhv69mzJz8UuSpmsxkTJkzA+fPnMXbsWCxevBjDhg1zmfbDDz/EkiVLGjXfhJD2o6ioCIMHDwYAHDt2DApF4/aH08gluK+TH+7rxAV6+iIbTiXmcn30EnJwOdWA21km3M4yYcMJrr9ztJ+an1plYJQXfNSyRs0TaX2aupy2Ni+99BKOHDnitG3VqlUYMmRIg4/tzibvegV2s2fPxqFDhzB58mS88sorGDZsGIRCIZ5//vnGzh+MRmOlyfi0Wi3y8/OrfZ5cLsevv/5aq3O89dZbWLBgAf/YYDAgNDS0znklhLRPDocD58+f59ebmk4hwcjO/hjZ2R8AoC+04WRJ0+2x+BxcTTfgVqYRtzKNWH+cC/Q6+qv5/nkDI73gTYFeu9Pc5dSVlnQrs5r6z7lLQ9+jegV277zzDr/+/PPPY8yYMTAajejatWuDMuOKWq2u1DRqMBigVqsb7RwymYwfxkwIIXUll8uxd+9efr256ZQSjO7ij9FduEAvv9CKEwllgd619ALcyDDiRoYR/zt2BwAQ66/h++gNoECvXXBnOZVIJBAIBMjKyoKvry9Nzl0FxhiysrIgEAggkUjqdYw6BXZdunSpMU35ifcaQ0xMDPR6PdLT0xEQEACAmxBw9uzZjXoeQgipL5FIhNGjR7s7GzwPpRRjuwZgbFfumplnsuJEQg6O3+aCvWvpBbiewS1rSwK9GD+uRm9glBcGRnrDV0OBXlvjznIqEokQEhKC5ORkp4EIpDKBQICQkJB6T15cp8AuISEBYWFhmD59Ou69995GjbhtNhvsdjscDgdsNhvMZjOkUinUajUefvhhLFq0CCtWrMC+fftw6dIlPPTQQ412bkIIacs8VVKM6xaIcd24vso5RgtOJOTixO0cnEjIxbX0AtzMNOJmphHrjnOBXgdfFQaWNNsOivKGP426JQ2kVqsRExMDm81Wc+J2TCKRNOiOFAJWh8bcgoICbNmyBd9++y1u3bqFKVOmYPr06ejRo0e9M1Bq1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDz1mVutxslxBCiouLsWfPHgDA2LFjW90tDHNNVpxMyOVr9a6lG1DxlyHSR8UHeQOjvGjC5FaotZfT9qwucUmdArvyMjIy8P333+O7776DyWTCDz/8UKum2taAAjtCSF2YTCa+32/pLcVas/KDMU4k5OBKqgGOCr8U4d5KDIzkmm0HRnkhxLNl3iKKlGlr5bQ9qUtcUu9wXSaTQaFQQC6XIycnx20jbAghxN2EQiH69evHr7d2FQdjlE6vUjog41K5CZNL74wR4qngg7zBUd4I8VRQB/kWpq2VU+JanWrsLBYLfv75Z6xfvx5nz57FpEmTMG3aNAwaNKgp89jsqMaOEEKqVmC28bdAO3E7FxdT9LBXqNIL0smdBmOEeysp0COknpqsKdbDwwMBAQF48sknMXr0aJft8wMGDKh7jlsYCuwIIaT2jJZinL6Txw/GOJ+Uj+IKgV6AVs4HeYOivBDpo6JAj5BaarLALiIigv8iCgSCSpPoCQQC3L59ux5ZblkosCOEkPortBbjzJ38ksEYOTiXlA+b3fn3wlcj4wdjDIryQgdfNQV6hFShWQZPtGUU2BFC6qKoqIgfqf/rr7+2+1s1VWS22XHmbh6O3+amWDmblA9rsXO/bB+1lO+jNzDSGzF+agiFFOg1JiqnrRcFdg1EgR0hpC5otGHdmG12nEvKx4mSCZPP3M2DpUKg56WSYkCEFwaW3B0j1l9DgV4DUTltvZplVCwhhBCOTCbD1q1b+XVSPblExN+39hXEwFJsx4VkPY7Hc330Tt/JQ67Jit2X07H7cjoAwEMpQf8IL/5et50DtRBRoFcnVE7bB6qxc4Fq7AghxH2sxQ5cTMnnb4F2+k4eCq12pzRauRgDys2j1yVQC7GIpvAgbRM1xTYQBXaEENJy2OwOXErRc330EnJwKjEPRkuxUxqNTIx+EZ4YWFIT2C2IAj3SdlBg10AU2BFC6sJut+OPP/4AAAwbNqxB93kkNSu2O3A51YATCdw8eicTclFQIdBTSUXoG+GFQSWDMXqE6CBp54EeldPWiwK7BqLAjhBSF9Qp3b3sDoaraQYcv83d6zYuMRf6IucbzSulIvQN9+RugxbFBXoycfsKbKictl40eIIQQpqRQCDg75VNc7E1P5FQgG7BOnQL1mH2sCg4HAzX0gv4e92eTMhFXqENf9zMxh83swEAMrEQvcM8+D56fcI8IZe07UCPymn7QDV2LlCNHSGEtB0OB8ONzAKcKOmjd+J2LnJMVqc0UpEQPUN1fKDXN9wTSinVfZCWgZpiG4gCO0IIabsYY4jPMpYMxuAmTc4ssDilEQsF6B5SFuj1C/eERi5xU45Je0eBXQNRYEcIIe0HYwyJOYU4WVKbdyIhFyn5RU5phAKga5CO76M3IMILOiUFeqR5UGDXQBTYEULqoqioCA8//DAA4Oeff6ZbNbUBSbmFfG3eiYRc3M0tdNovEACdArQl97v1woBIb3ippG7Kbe1QOW29KLBrIArsCCF1QaMN2740fZFTH73b2aZKaTr6q/mm2wGRXvDTyN2Q06pROW29aFQsIYQ0I5lMhvXr1/PrpO0J1CkwqXcwJvUOBgBkGsw4mZjLB3s3Moz8su74HQBAlI8KA6PK7o4RqHNvDRmV0/aBauxcoBo7QgghdZFjtCAuMZcfkHEt3YCKv65hXkq+j97ASC+Eeindk1nS6lBTbANRYEcIIaQh9IW2kho9ro/e5VQ9HBV+bYM9FCWBHtdHL8JbSfPLEZcosGsgCuwIIXVht9tx5swZAECfPn3oVk2kEoPZhtN38vim24vJehRXiPT8tTIMiPTmB2R08FU3aqBH5bT1osCugSiwI4TUBXVKJ3VlshTjzN2yQO98kh5Wu8MpjY9aigGRZX30OvppIBTWP9Cjctp60eAJQghpRgKBAOHh4fw6ITVRycQYFuOLYTG+AACzze4U6J29m49soxW7LqZj18V0AICHUoIBEWV99DoHaiGqQ6BH5bR9oBo7F6jGjhBCiDtZiu24kKzn++idSsxDkc3ulEYjF6N/hBc/IKNbkBZikdBNOSZNiZpiG4gCO0IIIS2Jze7AxRQ9X6N3KjEPRkuxUxqVVIS+JYHeoCgvdA/2gFRMgV5bQIFdA1FgRwghpCUrtjtwJc3AB3onE3JhMDsHenKJEH3DPTEgguuj1yvUA3IJDZhojSiwayAK7AghdWE2m/HEE08AAL7//nvI5S3rjgOk7XM4GK6lF/B3xjiZmItck9UpjVQkhKQgBerCNHy04DkMivaHQkqBXmtAgV0DUWBHCKkLGm1IWhqHg+FWlhEnbufgeAJ3h4xso8UpjUQkQI8QD76PXt9wT6hlNKayJaLADkBqaioee+wxiMViaLVabNy4EUpl7Wb5psCOEFIXNpsNa9asAQDMmjULEonEvRkipALGGG6k6bHiu51IKpIiW+iJdINzoCcSCtAtWMcFepFe6BfhBZ2CynJLQIEduIkYBQIBhEIhFi1ahG7dumHKlCm1ei4FdoQQQtoyxhiScotwvKTp9kRCDpLzipzSCARAl0AtP4/egAgveKqkbspx+0bz2AFOM2oLBALExsa6MTeEEEJIyyEQCBDmrUSYtxKP9wsFAKTkF3HTq5QEeok5hbicasDlVAO+OZIAAOgUoOGbbgdEesFHLXPnyyAutJgau0WLFmHTpk24du0aNmzYwHdEBoCsrCzMmjULBw4cQGhoKFatWoWRI0fWeMzDhw/jlVdegUKhwM6dO6HT6WqVF6qxI4TUhcPhwNWrVwEAnTt3hlBIU0yQlqeu5TTDYMbx29yI2xMJubiVaayUJtpPjYGRXhgQ6YVBUd7w19LAoabQKpti169fD39/f7z77rt49dVXnQK7xx9/HDqdDp999hn27t2LZ599FvHx8bBYLE7pAECtVmPHjh1O2z799FOIRCK89tprtcoLBXaEkLqgwROkNWhoOc02Wrggr2TS5GvpBZXSRHgr+abbgVHeCPZQNEre27tW2RT71FNPAQDef/99p+1GoxE//fQTEhMToVQqMWnSJCxfvhzbt2/HjBkzcPDgQZfHs1gskMm4KmKdTge73e4yXWlai6WsE6nBYGjgqyGEtDc+Pj7uzgIhNWpIOfVRy/BA90A80D0QAJBnsuJkYi7fdHslzYDEnEIk5hTih1NJAIAQTwUf6A2K9Eaol4JuZ9bEWkxgV5WbN29Cp9MhMDCQ39azZ09cvny52ufFxcVh4cKFEAqF8PLywrp166pM++GHH2LJkiWNlmdCSPuiUqmQlZXl7mwQUq3GLqeeKinGdg3A2K4BAAB9kQ2n73CB3vGEXFxK0SM5rwjJecnYfCYZABCok2NApBcf7EX5qCjQa2QtPrAzGo2Vqh21Wi3y8/Orfd4999yDQ4cO1eocb731FhYsWMA/NhgMCA0NrXNeCSGEkPZKp5Dg/k7+uL+TPwDAaCnG6Tt5fNPtheR8pOnN+OlcKn46lwoA8NXIuP55JQMyYvzUFOg1UIsP7NRqdaWmUYPBwPcTaAwymYxvtiWEEEJIw6llYgzv6IvhHX0BAEVWO87czeMnTT6XlI+sAgt2XkjDzgtpAAAvlRQDIry4PnqR3ugUoIFQSIFeXbT4wC4mJgZ6vR7p6ekICOCqe8+fP4/Zs2e7OWeEEMIxm8147rnnAABff/013VKMtEjuLqcKqQhDo30wNJrr52e22XE+KR8nErg+eqfv5CHXZMXuy+nYfTkdAKCVi52abrsEaiEW0ajz6rSYUbE2mw12ux1jxozB888/jylTpkAqlUIoFGLKlCnw8vLCihUrsG/fPsyaNQvx8fHw9PRskrzQqFhCSF3QqFjSGrT0cmotduBiSj6O3+amVzmdmAuT1Xngo1omRr8ITz7Q6x6sg6QdBHqtcrqTWbNmYe3atU7bDhw4gBEjRiArKwszZ87EwYMHERISglWrVmHUqFFNlhcK7AghdWGz2bBy5UoAwEsvvUS3FCMtUmsrp8V2By6lGvg+enGJuSgwFzulUUpF6BvuyU+a3CNEB5lYVMURW69WGdi1JBTYEUIIIS2L3cFwNc3ANd3ezsHJxFzkF9qc0sjEQvQO8+Br9PqEeUIuaf2BHgV2DUSBHSGEENKyORwMNzIL+Hn0TtzORY7J6pRGKhKiZ6iOD/T6hntCKW3xwwsqocCugSiwI4TUhcPhwN27dwEAYWFhdEsx0iK19XLKGEN8lpHvo3fidg4yCyxOacRCAbqHlAV6/cI9oZG37CZpgAK7BqPAjhBSFy29UzohQPsrp4wx3Mkp5GvzTiTkIiW/yCmNUAB0DdLxffQGRHhBp2x5gV6rvKUYIYS0Zkql0t1ZIKRG7amcCgQCRPioEOGjwtT+YQCApNxCvjbvREIu7uYW4mKKHhdT9Pjv4QQIBECnAC0GRnphUJQXBkR6w0sldfMrqRuqsXOBauwIIYSQti9NX8TX5p1IyMHtLFOlNB391XzT7YBIL/hpmn+eSmqKbSAK7AghhJD2J7PAjJMJufyAjBsZxkpponxU/J0xBkZ5IVCnaPJ8UWDXQBTYEUIIISTHaEFcYi4/IONaugEVo6YwLyUGRnrh9bGx8Nc2TW0eBXYNRIEdIaQuLBYLXn75ZQDAF198QfeeJi0SldOG0xfacDIxFycTuD56l1L0cDBuEMb5RWOabIQtBXYNRIEdIaQu2ttoQ9I6UTltfAVmG07dyUNitgnPDI1ssvPQqFhCCGlGEokES5cu5dcJaYmonDY+jVyC+2L9gFh356QM1di5QDV2hBBCCGkp6hKXtK1ppwkhhBBC2jFqiiWEkAZijCE7OxsA4OPjA4FA4OYcEVIZldP2gQI7QghpoMLCQvj5+QGgTumk5aJy2j5QYOdCabdDg8Hg5pwQQloDk6lstnqDwQC73e7G3BDiGpXT1qs0HqnNsAgaPOFCcnIyQkND3Z0NQgghhBBeUlISQkJCqk1DgZ0LDocDqamp0Gg01fZB6N+/P+Li4qo9VlVpDAYDQkNDkZSU1OpH3tbmfWgN522M49XnGHV5Tm3T1pSuuv1UNlveORt6zKYul7VNT9fMMlQ26//89njNZIyhoKAAQUFBEAqrH/dKTbEuCIXCGiNiABCJRDV+iDWl0Wq1rf4iVZv3oTWctzGOV59j1OU5tU1bU7raHIfKZss5Z0OP2dTlsrbp6ZpZhspm/Z/fXq+ZOp2uVuloupMGeOmllxolTWvnrtfY2OdtjOPV5xh1eU5t09aUrj2US8A9r7MpztnQYzZ1uaxterpmlqGyWf/n0zWzetQU6yY0CTJpqahskpaIyiVpqVpa2aQaOzeRyWRYtGgR3YSZtDhUNklLROWStFQtrWxSjR0hhBBCSBtBNXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW2E2N0ZaIkcDgdSU1Oh0WggEAjcnR1CCCGEtGOMMRQUFCAoKAhCYfV1chTYuZCamorQ0FB3Z4MQQgghhJeUlISQkJBq07TqwO7cuXOYO3cuLl68iOjoaHzzzTfo3bs3AOCjjz7CsmXLYLfbMXv2bPzf//1frWvfNBoNAO4N1Gq1TZZ/QkjbYDab8dRTTwEA1q9fD7lc7uYcEVIZldPWy2AwIDQ0lI9PqtNqAzubzYbJkyfjrbfewnPPPYcff/wRkydPxo0bN/Drr7/iX//6F06cOAGFQoGRI0eiU6dOePbZZ2t17NIAUKvVUmBHCKmRSCTCvn37AAAqlQoqlcrNOSKkMiqnrV9tKqhabWB37do1FBYW4oUXXgAATJ06Fe+99x4OHTqEdevWYe7cuYiKigIAvP7661i/fn2tAztCCKkLqVSK1atX8+uEtERUTtuHVhvYucIYw+XLl3HlyhU8/fTT/PaePXvirbfeqvJ5FosFFouFf2wwGJo0n4SQtkUikWDWrFnuzgYh1aJy2j602ulOYmNjIZfL8eWXX8Jms+G7777DrVu3UFhYCKPR6NSEqtVqYTQaqzzWhx9+CJ1Oxy80cIIQQgghrVGrDeykUim2bt2KdevWISAgANu2bcOoUaMQHBwMtVrtVOtmMBigVqurPNZbb70FvV7PL0lJSc3xEgghbYTdbse5c+dw7tw52O12d2eHEJeonLYPrboptk+fPjhy5AgArsB26NABffv2RZcuXXDx4kU88MADAIDz58+ja9euVR5HJpNBJpM1S54JIW2P2WzmR+QbjUbqlE5aJCqnLtiLAYuBW8zl/xaUbC8ArEbAauL+WkrXTYC1oNy6CfhrIiCSuPsVte7A7uLFi+jYsSOsViv+9re/oVevXujWrRueeuopvPTSS3j88cehUCiwfPlyLFiwwN3ZJYS0UQKBAEFBQfw6IS1RmyynDgdg0QNFeWVLYbl1iwEw68uCNHOFIM5W2Hh5sRoBhWfjHa+eWnVg980332D16tVgjOHhhx/GmjVrAAAPPvggLly4gP79+8Nut+P555/HM888497MEkLaLKVSiZSUFHdng5Bqtfhy6nBwwZgpCzBllvzNdg7aivKAwtyydXM+wBwNP7dYAci1gEwLyDTO61I1IFUBMnXZulRdYbuKS98CCBhjzN2ZaGkMBgN0Oh30ej3NY0cIIYTUl72YC9IK0gBjabBWErCZskq2lawXZtc/SJOouNoypSf3V+EJyD0Aua4kSNM5B2x84Fay3gKaUKtTl7ikVdfYEUIIIcQNGONqzAypQEE6F7jxS3rZdlNm3YM1hSeg8uUWpTe3KMoFbEqvco+9AIUHIKZ+8qUosCOEkAYym8383Jnr1q2jWzWRFqlO5dRuAwwpQH4SoE8q+Xu37LE+BbBbqn5+eQIRoPYH1H7cUhq08YuP83oLrz1r6agptpyVK1di5cqVsNvtuHHjBjXFEkJqxWQy8VMq0WhD0lI5ldMCA1SOAiD3NpCbAOQlAPnlAreCtNrVtCm9AU1gyRLA/dWWfxzEBWtCURO/uratLk2xFNi5QH3sCCF1YbPZ8NVXXwEAXnjhBUgkVONAWgCHHdAnlwRvt2HPvoU7Zw9CZ8+Bl8AAQXFR9c8XyQBdCOARCuhCAY+wkr+h3HZNIDWBNhMK7BqIAjtCCCGthq0IyL4JZN8Asq4DWde49Zx4wGGr+nkCEReseUUBnhHcukcooAvj1lW+gLDV3segTaHBE4QQQkhbYzUBmVe5pTR4y7rONaGiijoakZQL2ryiAM9I7q9XFOAVyQVv1J+tzaHAjhBCGsjhcCA+Ph4A0KFDBwiploM0BGNcsJZxCUi/xP3NuMT1hasqgFN4Aj6xgG/Hkr+xgE8M13Ra0r/NqZx6RlI5baMosCOEkAYqKipCx44dAdDgCVJHdhtXA5d6Fki/AGRc5haLwXV6tT/g17lCENeJG6BQw90kqJy2DxTYEUJII9DpdO7OAmnpHHau+TT1LJBypiSYu+h62hCRlKt18+9WsnTl/qp9G5QFKqdtHwV2hBDSQCqVCvn5+e7OBmlJGOOmDUk6WRLEnQHSzru+N6lcBwT1BgJ6AAHduQDOJ6bR+79ROW0fKLAjhBBCGspu45pS754Akk5wAV1BauV0EhUQ1IsL5EoXr6gam1EJqS0K7MopP0ExIYQQUqWivHJB3AmuVq7ivHACERDYAwjpDwT14YI4nxiarJc0KZrHzgWax44QUhcWiwUvvvgiAODf//43ZDKatLXNMeuBO8eAxD+4Je0CKo1QlXsAoQOB0AFA2CAukJO2nAEKVE5bL5qguIEosCOE1AXdUqwNMhuAuyWBXMIfXDNrxVtseXUAwgeXBHMDAe+YFj2hL5XT1osmKCaEkGYkkUjw8ccf8+ukFbLbgORTQPxv3JJ6xnUgF3EPEHkvED6UuydqK0LltH2gGjsXqMaOEELagbxE4NZ+LpBL+L3y3HGekc6BnC7YLdkkpN3V2B07dgxDhw7FBx98gDfffBNr1qzB7NmzIZfL+TRXrlxBWFiYG3NJCCHErawmLoC7tR+I3w/k3nber/AEou4DokcCUSO4G90T0sq0+sDO4XDgtddeQ//+/Z22jxo1Crt373ZTrggh7YnD4UBaWhoAIDAwkG7V1JLok4HrvwA39nBBXfnJgIViIGQA0OF+IPp+ILBXmx6xSuW0fWj1gd1XX32FgQMHQq/X1/sYFosFFkvZl91gqOJWLoQQ4kJRURFCQrjaHeqU7mYOB3dHhxu/ANd3AxkXnfd7hAHRo7lgLvJeQN5+uttQOW0fWnVgl5ubixUrVuDYsWN47bXXnPYdOXIE3t7e8Pf3x/z58zFnzpwqj/Phhx9iyZIlTZ1dQkgbJha36stp62YrAuIPANd3Ajf2AqbMsn0CIVcr13EsEDueu69qO54MmMpp29eqP+G3334br776Kjw9PZ22Dx8+HBcvXkRYWBji4uIwefJk+Pv7Y/LkyS6P89Zbb2HBggX8Y4PBgNDQ0CbNOyGk7VCpVLDZbO7ORvtiKQBu7gWu/Azc3AfYTGX7pBquabXjeCBmDKDydl8+WxAqp+1Dqw3szp49i5MnT2LlypWV9kVGRvLrAwcOxPz587F169YqAzuZTEYTNRJCSEtXlMc1r179mRsAUb6/nDYE6DwB6DiOG8Eqlrovn4S4UasN7A4dOoQbN24gOJgbfq7X6yEWixEfH4///Oc/TmmpgyghhLRSpmzg2g6uZi7hEOAoLtvnFQV0fhjo8jB3y6523MRKSKlWO49dYWGh0yCHV155BTExMXj99ddx/Phx9O3bF76+vjhz5gwefvhhLF++HI8//nitjk3z2BFC6sJisfDdOZYvX04tAA1VlM8Fc5c2A7cPAazc/bt9O3OBXOeHAf+uFMzVAZXT1qtd3lJs1qxZ6NSpE9588038+c9/xrp161BYWIjg4GC8/PLLmDdvXq2PRYEdIaQu6FZNjcBayI1kvbSF6ztnt5btC+wJdJnIBXM+Me7LYytH5bT1ancTFAPAmjVr+PVly5Zh2bJl7ssMIaRdkUgkWLRoEb9OaqnYyt314dKPwLVdzgMgfDsB3R4Duj0CeHdwXx7bECqn7UObqbFrTFRjRwghTcThAO4eBS78wPWbM+eX7fMIB7o9CnR/DPDrQs2shJRolzV2hBBCWrDsW8CF74HzPwD6u2Xb1QFA18lcMBfcl4I5QhqIArtyVq5ciZUrV8Jut9ecmBBCSjDG+Lvf6HQ6CCg44RTmApe3Aue/B5JPlm2Xabk+cz0e56YmacO38WpJqJy2D9QU6wI1xRJC6oI6pZdjt3ETBp//Drixu2wQhEAERI8Eej4BxD4ASBTuzWc7ROW09aKmWEIIIc2HMSDtHFczd3ETUJhTts+/OxfMdZ8CaPzdlkVC2gsK7AghpIGUSiWsVq5mql3di7MoH7iwETi9Bsi8XLZd5cc1s/Z8Agjo7q7ckQrabTltZ+iTJYSQBhIIBO1n+gjGgKQTXDB3eStQbOa2i+VApweBnk8CUfcBIvp5aWnaVTltx+ibRwghpGaFuVy/udNrgezrZdv9ugJ9Z3I1dApP9+WPEAKAAjtCCGkwq9WKhQsXAgDef/99SKVt5Ab0jAGJh7nauas/lw2EkCi5iYP7zAJC+tEUJa1Emy2nxAmNinWBRsUSQuqizY02NGYB5zdwtXO58WXbA3oAfWdxAyHkdG1sbdpcOW1HaFQsIYQ0I4lEgtdff51fb5UcDiDhIBfMXdsJOGzcdqmamzy47ywgqLc7c0gaqE2UU1IjqrErp/wExTdu3KAaO0JI21eQDpxdD5z5H5B/p2x7cF+gz0zuFl8ytfvyRwipU40dBXYuUFMsIaRNc9iB+N+4vnPXfwFYyd12ZDpuEETfmTRNCSEtCDXFEkJIM2KMobi4GAA3P1iLvVWTPoWrnTu7DtAnlW0PHcg1tXaZBEiV7sodaWKtppySBqHAjhBCGqiwsLDldkq3FwM39wJn1nJ/mYPbLvfg5pzrOxPw6+zWLJLm0aLLKWk0tQrsNm7cWKuDiUQiPProow3KUGPKysrCrFmzcODAAYSGhmLVqlUYOXKku7NFCCFNL+8OVzN3dj1QkFa2PfweLpjr/DAgkbsvf4SQJlGrwG7atGm49957UVN3vLi4uBYV2L300ksICgpCdnY29u7diylTpiA+Ph6enjSJJiGk8SiVSuTl5fHrbmO3cX3mTq/h+tCh5Jqt9AZ6TeMGQ/jEuC9/xK1aTDklTapWgyc0Gg0KCgpqPJinpydfaNzNaDTC29sbiYmJCAwMBADce++9mD17NmbMmFHtc2nwBCGkVcm9zY1qPfstYMos2x45nOs71+lBQCxzW/YIIQ3T6IMnbt++XasT37hxo1bpmsPNmzeh0+n4oA4AevbsicuXL1dKa7FYYLFY+McGg6FZ8kgIIfVWbAGu7eDmnUs4VLZd5Qf0ng70mQF4Rbkvf4QQt6hVYOfr61urg9U2XXMwGo2VolqtVov8/PxKaT/88EMsWbKkmXJGCGlrrFYrPvjgAwDA22+/3bS3asq+yTW1nv8OKMwp2SgAokdytXMdxwEimnyWVNas5ZS4TZ3nsRs/frzLIdIymQwhISGYPHky7r///kbLYH2dPXsWY8eORWZmWbPEvHnzoFQq8X//939OaV3V2IWGhlJTLCGkVpr8Vk02M3ev1tNrgDtHyrZrAoHeTwO9nwI8wxv3nKTNoVuKtV5NOo9dv3798L///Q8zZ85ESEgIkpOTsW7dOjzxxBMQCAR48skn8eabb+K1116r9wtoDDExMdDr9UhPT0dAQAAA4Pz585g9e3altDKZDDJZ8/Y/+eiXazDb7NDIxVDJxFDLxNDIub9qGbeNfywXQyYWNWv+CCG1JxaLMXfuXH690WRe5Zpaz38HmPO5bQIhEDOGq52LHg2IaNYqUjtNVk5Ji1LnGrt+/frhu+++Q0xM2ciqmzdv4sknn8SpU6dw+vRpTJkypdb98prSlClT4OXlhRUrVmDfvn2YNWtWrUbFNsfgif7v/4qsAkvNCUtIRUKoZCKo5WKoZRJoZGKoZCJo5BJ4KCXQKcoWD6W05G/ZNrmEAkNCWgVrIXB5KzfvXNKJsu260LLaOV2w+/JHCGl2TVpjFx8fj+Bg54tKYGAgbt26BQDo06cPsrKy6nrYJrFq1SrMnDkT3t7eCAkJwcaNG1vMVCcv3huFvEIrTBY7CszFMFpsMFqKYTQXc39L1k1W7lY/VrsD1kIH8gptAIrqfD6ZWMgHeh4KKbQKCTyVEnippfBRyeCtlsJLJYWPumydagkJaUZpF7hg7sImwKLntglEQOx4rnauw/2AkL6ThJDq1TmwGzNmDKZMmYJ3332Xb4pdunQpxo0bBwA4efIkwsNbRl8PX19f7Nq1y93ZcGn2sNqNVrM7GEzWYphKAr2CCsGfocgGQ5EN+UU26ItsyC/k/pZf7A4GS7EDGQYLMgy1ryXUyMR8kOetlsGnZN1PI4e/Vg5/rQwBOjl81DJIRML6vhWEtF9mA3DpR665Ne1c2XbPCG5Ua6/pgCbAXbkjhLRCdW6KNRqNeO+997B161akp6cjMDAQkydPxpIlS6BWq5GcnAyLxYIOHTo0VZ6bXFuax44xBqOl2GXAl2uyItdkRY7RghyTFTlGK3JMFuQYrSh21L5YCASAj1rGBXpaOfy0cvhr5AjQyeCnlSPEQ4FgTwWUUurTQdomk8kEDw8PAEB+fn71ndIZA5JOcvPOXd4C2Aq57UIJ0HkCF9BFjgCE9M8SaVx1KqekRalLXFLnwK49aEuBXX0wxmAoKuaCvAqBX7bRgkyDBRkFZmTozcgssNQ6CPRWSRHsqUCIpwIhnsqSv9x6sIcCKhkFfqR1qtVoQ1MOcOF7LqDLula23SeWC+Z6PgmovJspx6Q9olGxrVeT9rEDgJ07d+LHH39EVlYWduzYgbi4OOTn52P06NH1yjBpWQQCAXRKCXRKCaJqmJrQ4WDIMVmRYTCXLBakG8zILHmcpjcjNb8IBnMxFxyarLiQrHd5LG+VFBE+KkSWLFE+KkT6qhDhraLBH6RFUygUSE5O5td5Dgc3efCZ/3GTCdut3HaxAuj2CBfQhQ7kqr0JaWJVllPSptS5xu7jjz/GunXrMGfOHCxcuBD5+fm4du0aZs6ciRMnTtR8gBZs5cqVWLlyJex2O27cuNFua+yagr7IhpS8IiTnFSI5rwjJeUVIyS9b1xfZqn1+kE6OSF8u4Iv2VSM2QIvYAA28VDTBJmmBDGnAufXAmXVA/p2y7YG9uGCu+2OAXOe27BFCWpcmbYoNCwvDyZMnERAQwN8bljEGb29v5ObmNijjLUV7b4p1B4PZhrs5hUjMMSEhy4SEbBNuZ5twO8sIg7m4yuf5amToFKBBR38NYgM0iPXn1hVSquEjzazYCtzcw92v9eYegDm47TIt0ONxLqAL7OnePBJCWqUmbYq12+3Q6bj/NEvvQGEwGPh2e0LqQyuXoFuwDt2CnWsxGGPIK7QhIduIhOxCxGcZ/7+9+w6PqkwfPv6dmpn0QnoFEkILIFWaAioodkX5iahgV3BF1y4KrN3VFQvrq+vapSy6lhUVQTpSpffQ0ntPZjL1vH8MDAkgBNJmkvtzXXOdM+c8c+aZ5MnJPU8lvaCK/QVVZJWaKaqyUFRlYXV6sfs1ahUkR/iTFhtMr7gg0uKC6B4dKM25onnkbcfxxxdYNn+Jb92piBIGQ987oPu1oPdtvfwJcYzVauXtt98G4OGHH5Ylxdqoc66xmzp1KlVVVbz55pt06dKFzMxMHn30Ufz8/HjrrbeaK58tSmrsvEO1xe4K8vJdgd6BY/vF1dZT0mrUKrpEBtArNogLEoLpnxRK53C/0y6PJ8RZVRfBzoWwbS4U7HQfzq1y0uGSqegHTILw1NbLnxCnIYMnvFez1ti98cYb/PWvfyUxMRGz2UxkZCR33HGHe2FhIVqKv4+WCxJCuCCh/qTTBZW17MyuYEdOBbtyKtiRXU5xtZW9eZXszatkweYsAEL99PRPDGFAUij9k0LoEROEXitTTIg/4bDBgcWuYC59MTiPdRHQ6HF0uYLZKwrZbY7g/UtmQgsvUShEQ2i1Wu644w73vmibGjXdSVFRER06dGhztR5SY9e2KIpCfmUtO7Ir2J5Vzh8ZZWzLKsdid9ZLZ9CpGZAUyrDkDgxL6UC3qEDU6rZVtsU5UhTI3+laq3XHf8B0osmfmL7QZwL0vBF8Q1svj0KINq/JB09s3LixQW88cODAhuXQw0lg1/ZZ7U525Vaw6Ugpm46WsTmjlHJT/ZG5YX56hh4L8i5KCScqyNBKuRUtrjzT1dS6YyEU7T1x3D8Seo13BXQR3Vovf0KIdqXJA7uOHTueeIFKRXZ2NiqVirCwMEpKSlAUhbi4OA4fPtz43HsACezaH6dT4WBRNWvSi1lzsJj1h0swHVun97i02CAu6x7J6B6RpEYGtLma6nbPVAp7vnPVzGWuO3Fco4cul8MFE6HzJaCRJiwhRMtq1ulOZs2ahclkYubMmRiNRsxmM7NmzcLPz4/nnnuuURlvbTKPnTjOaneyNbOM1enFrD5YzI7scur+pcSHGhndPYrR3SMZkBQqTbbeymaG/T+7aufSl4DzeK2tCpKGuaYp6XYNGIPPeJmamhpiY2MByMnJkU7pwiNJOfVezRrYdejQgfz8/HodL202G9HR0RQXF5/hld5DauzEyYqqLCzbV8CvuwtYfbAYa53+edFBBq7pHcO1fWLpFi01eR7PYYejq1zNrHv/B9aqE+ei0iDtZle/uaDYBl9SRhsKbyDl1Hs166jYkJAQfvvtN8aMGeM+tmLFCvfCwkK0ReEBPowfkMD4AQnUWOysTi/i190FLNlbQF5FLR+sOswHqw6TEuHPdRfEcv0FscQEy5I9HsNhh6OrYfe3rqW9TCUnzgUlQK+bXAFdRNfzurzRaOTAgQPufSE8kZTT9uGca+x++uknbrnlFgYNGkR8fDyZmZls2rSJr776iiuvvLK58tmipMZONFStzcGK/YV8tzWXZfsKsTpcNXlqFYxIjWDCwARGpIaj1cg0Ki3uTMGcb5hr4uC0m11rtarl9yOE8FzN2hQLUFxczE8//UReXh7R0dGMHTuWDh06nHeGPY0EduJ8VJhtLN6Vz3+3ZrP+8Inl9aKDDNzcP54JgxKIDJSRtc3qeDC35ztXM+vJwVy3q6H7dZA0XAZBCCG8RrMHdp7k1Vdf5emnn2bdunVceOGFAEyaNIl58+ah0+kASExMZPfu3Q2+pgR2orEOF1Uzf1MWCzdnUXZsGhWdRsXVvWK4e3gnusdIuWoyVhMcXg77FsGBX+oHc8ZQ6H5NswdzNpuNDz/8EIB7773Xfe8RwpNIOfVeTR7YjR8/ngULFpz1jSdMmMDcuXMbntNGysnJ4YorrqCoqIhvv/22XmDXtWtXnnrqqfO6rgR2oqlY7A5+2ZXPl+sz2HS0zH18aHIY9wzvxMVdwmWwxfmoKXEFcfsWwaFlYK+zRqsx1FUz1+P6FquZk07pwhtIOfVeTT544ocffmDhwoWcLQb86aefGp7LJvDXv/6VWbNm8cgjj7To+wrRUD5aDdf2ieXaPrFszyrnX6sP8/OufNYeLGHtwRJ6xwUx7dIujEiVAO+sSo+4Arn9P7nmmVPqrBwSlABdx0LXKyFhSIs3s2o0GsaNG+feF8ITSTltHxpUYzdixIgG/dPR6/UsXry4STJ2NitWrODFF19k6dKlJCUlMX/+/Ho1dv/73/8ASE1N5dVXX+Wiiy7602tZLBYsFov7eWVlJfHx8VJjJ5pFdpmJT9YeZe6GTMw21yTIEuCdht3qCuDSf4WDS6FoX/3zUWnQ9SpIHeval5+bEKKNavN97Ox2OwMGDOCLL76gZ8+epwR2W7duJSkpCT8/PxYuXMiDDz7Irl27iI+PP+31Zs6cyaxZs045LoGdaE7F1Rb+teown6/LcAd4/RJDePbKbvRNCGnl3LWSimzXRMHpS+DISrBWnzin0kDSUEi90lU7F5zQevkUQogW5PWB3ejRo1m1atVpz02fPp2AgAAOHjzIu+++C3BKYHeyyy+/nJtvvpk777zztOelxk60puJqCx+uOszn645Sa3M1L17VK5onL+9KfKhvK+eumdktkLXBVSOXvgQK99Q/7xcBKZdB8qXQeSQY22nAK4Ro17w+sDub6667jlWrVqHX6wEoKioiODiYN954g8mTJ5+SfuzYsYwbN+5PA7uTyeAJ0RryK2p589f9fL0lG0UBvUbN5GFJPDQqBX+fNjI1h9MB+Tvg8Eo4vAIy19cf+KBSQ9yAY8HcZRDVyyvmmDOZTKSkpACQnp6Or28bD8iFV5Jy6r3afGBXXl5ObW2t+/mAAQP44IMPGDFiBL6+vnzzzTdcfvnl+Pj48M0333DPPfewY8cOkpKSGnR9CexEa9qdW8HLP+1l7UHXtB3RQQZmXN2DMT0iva//naJAySE4ssIVyB1ZDbXl9dP4RUDnUa5grvMo8A1thYw2jow2FN5Ayqn3atYlxTzBycuXaTQaQkND3d8+3nrrLe68805UKhWpqal8++23DQ7qhGhtPWKC+PKuQSzbV8jM/+0mq9TM/V/+waXdIph5TQ/iQjz4W7aiQPEByPjdNfDh6FqozK6fRh8AScOg0wjodDGEd/X6gQ8Gg4GtW7e694XwRFJO24dzrrEzm808//zzLFy4kNLSUiorK1m8eDF79+5l2rRpzZTNliU1dsJTmK0O3luezoerDmNzKBh1Gh4bk8rkIUmo1R4QDDnsrqbVzHXHgrn1YCqun0ajdy3b1fFiVzAXc4Gs+iCEEOegWZtiJ0+ejM1m46mnnmL48OGUlZWRl5fHyJEj2bdv39kv4AUksBOeJr2gime/3cXGo66lygZ1DOWNm3q3/OAKcznk/OF6ZK6DrI31R64CaA0Q2x8SB0PiEIi/EPQeXMsohBAerlkDu4iICLKysvDx8SE0NJTSUtc/muNv2BZIYCc8kaIozN2YyUuL9mKyOvDTa3j+6u7c3D++efreOWxQsAuyN7sCuezNUJJ+ajqfIEi40BXIJQyBmD6g9Wn6/Hgwm83GV199BcCtt94qSzUJjyTl1Hs1a2DXpUsXli1bRlxcnDuwO3LkCGPHjmXv3r2NynhrmzNnDnPmzMHhcHDgwAEJ7IRHyiip4bGF291LlI3qGsHr43rRwb8RwZTTCaWHIX87ZP8BOZshbzvYa09NG5LkqpGLH+SqkYvo7hUjV5uTdEoX3kDKqfdq1sETDz/8MFdffTXPPvssDoeDH3/8kRdffLFN9K+bMmUKU6ZMcf8AhfBEiWF+zL93MP9ec5g3Fh9g2b5Cxr69mnduuYALO4Wd/QJ2KxTthbwdrv5xeTtcNXMnN6kCGIIhth/E9XcFc7H9wK8B79HOaDQaxo4d694XwhNJOW0fzmu6k4ULF/Lxxx+TmZlJbGwsd911F+PHj2+O/LUKaYoV3mJffiVT527lYGE1ahVMu7QLU0Ymo1GrXCNUa4qgcK/rkb/TVSNXuA+ctlMvpjVCZA/X4IbjgVxYZ68fsSqEEN6uzc9j19wksBPexGS188rXv7N/50a6qLO5OLiYi0NK0JfuB1PJ6V9kCIboXq4JgKN7u7ZhyTJaVQghPFCzNsXOnj2bkSNH0rt3bzZs2MDEiRPRaDR88sknDB48+LwzLYQ4C6cDyjNdE/6WHITSQ1C0H9+ifbxQXQDHu9jVHHsAoILQjhDezVUbF93bFdAFxUtNnBBCtEHnXGMXExPD3r17CQoKYtiwYdxyyy34+/vz3nvvsWnTpubKZ4uSGjvRahQFqgtcgdvxAO74tuwIOKx//trgBGqCUvhfXjAbqiM4ok7gjqsv4/pBKS2X/3bKZDLRu3dvALZv3y5LNQmPJOXUezVrU2xgYCCVlZWUlZWRnJxMUVERarVapjsRoqHM5VCeAWUZdbaZrv3yTLCZ/vy1Gh9Xv7ewzq6m07BkV21ceCr4uEa7VdXaeGTBdpbuLQBg0pAknr2yGzpN+x652pxktKHwBlJOvVezNsUmJyczf/589u/fz6WXXoparaa0tBS9Xn/eGRaizXDYXTVulblQmXNiWzeQqz3LFyCVGoITTgRuYcknArnAuLNOLRJg0PHhbf2Y/Vs67/yWzqe/H2V/fhVzbu1LqJ/8nTYHg8HAmjVr3PtCeCIpp+3DOdfYbdiwgWnTpqHX6/noo49ISUlh7ty5/PTTT3z55ZfNlc8WJTV24rSsNVBdeCxwOxa0VeTUCeByoTofFOfZr+XbAUISXQFccOKx/UTXHHFBcU02we8vu/J49D/bMVkdJIT68vGkASRH+DfJtYUQQrQMGRV7nmSC4nbIbjkWrBVCzbGg7fjz6gLXdCHHj51unrfTUWshIBoCY449Yl2DFY4Hb8EJ7mbTlrA/v4q7P99EVqmZQIOWD27rz+DOMhedEEJ4i2YP7LZv387atWspKSmh7suff/75c8+tB5IaOy/lsIGp1DXFh/nY1lRne/Ixc+nZm0VPpjWAf6QrWDseuAXF1Q/i/MJB7VmTf5ZUW7jn881sySxHp1Hxyg29GNcvrrWz1WbY7Xa+/fZbAK6//nq0Wpk2RngeKafeq1kDu/fee4/p06czduxYvv32W66//noWLVrEtddey+eff96ojHsKCexaiaK4asVqK10B18kPy2mO1VYcC9rKwFJ5fu+r1oF/hOvhd2zrH3nimH/kieM+AV47TUitzcFfF25n0Y48AB4alcyjl3VpnnVm2xnplC68gZRT79WsgyfefPNNli1bRt++fQkODmbu3LmsXr2ad95557wzLLyYwwaWKlf/M2v1ia3l+P6xcyc/dx+rqhOkVYLiaGSGVGAMAd8w8A11bY2hx/brPj923i/clb4dBDcGnYZ3/+8CEkN9+eeKQ7y77CAZJSZeH9cLg86zahi9jVqt5uKLL3bvC+GJpJy2D+dcY1d3WpOIiAiys7PR6/Uy3YmnUBRw2l19xxxW19Zmci3mbjO7HvZa1zFbbZ1zJz8/yzlrtetxpnnVzpdaB4agOo/Ak54HgU+dc3UDNUOQxzWDeqL/bMrimW93Yncq9E8M4V+39ydERswKIYRHatYau9TUVLZt20afPn3o06cPr732GkFBQYSHh593hs/HggULmD59Onl5eYwaNYpPP/2U0NBQAMxmM/fccw/ff/89ISEhvPbaa9xyyy0tmr+z2jbP1XRot4DD4lqY3WE9EYy5j51ua3HVlP3ZOVphPIzGB/R+rkEB+uOPMz33c219Ak4N2rSGdlGD1ppuHhBPbIiR+7/8g80ZZdzw/u98OnkAiWHSNCOEEN7snGvs1q9fj16vp2/fvuzZs4epU6dSVVXFa6+9xqhRo5orn/Xs3buXwYMHs3TpUnr37s2jjz5KcXEx8+bNA+CJJ55g165dzJ8/n127djF27Fg2btxIly5dGnT9Fqmxe6OLa7Rlc1NpQOcLOoNrkXed0bWv83UFUOd07thDazwWmNUJ1DS65v8soskdKKhi8iebyCk3E+qn51+396dfYkhrZ0sIIUQdbX66k3fffZc1a9awYMECAPLy8khMTKSsrAw/Pz+io6P57rvvGDRoEAC33347ycnJfzpq12KxYLFY3M8rKyuJj49v3sDuh4dcfcq0PqDRH9v6gFZ/0vbYeY3+1GN/9lqN7sQxWdRdnEVhZS13fraJXTmV+GjVzB7fhyvSols7W17FbDa718pet24dRqOxlXMkxKmknHqvZm2KBcjMzGTXrl1UV9ef1+vmm28+n8udl7rxqKIo2Gw20tPTSUxMJD8/n7S0NPf53r17s3Hjxj+91iuvvMKsWbOaNb8ns1z5BlqVFo30BxOtLCLQwIJ7B/OXeVv5bV8hD87dwrNju3HXsI4yYraBnE4n27dvd+8L4YmknLYP5xzYvf7668ycOZO0tLR6CwirVKoWC+wuueQSpk+fzsaNG+nduzevvPIKKpUKk8lEdXU1Go2mXt4CAwNPCULrevrpp3n00Ufdz4/X2DWnq769ivyafLQqLXqNHh+NDzqNDh+Nj2tf7drXa/Tu83p1nX3NSfvq+scNWgNGjRGjzohBY8CoNWLUGjFoDfhqfdGqtfJPW7j5+Wj54LZ+zPrfHr5Yn8GLi/aSWWpixtU90KilnJyNwWDg119/de8L4YmknLYP5xzYvfHGG2zatIkePXo0R34AGD16NKtWrTrtuenTpzN9+nTef/997rjjDkpKSnj44YcJCAggNjYWf39/HA4HJpPJHdxVVla65+45HR8fH3x8mmYJp4ayHhtNalfs2O12TPYzLPzeDDQqjTvQqxv0GbVGV0CodQWFRq0RP50fAboA/PR++Ov88dPV2er93ftatTT7ejOtRs3fru1BYpgvL/20l8/XZZBbbuadWy7AVy+/2zPRaDRcdtllrZ0NIc5Iyml9TsWJ2W7GZDNhspsw2Uyu58f2T3esbvq6+7X2Wn684Ud06tbvb37Ofew6derEnj17PCraP3jwIMOGDSMnJweNRnPOfexO1hKDJ0w2ExaHBavDitVhde07rfWfO6xYndZT0/3JcZvThsVhweKwUGuvxWw3n7K1K/Zm+TwABo2hXqDnr/Mn0CeQQH0gwT7BBPkEuR76oBP7xx4+mpYNrMWZ/bwzj2kLtmGxO0mLDeLfk/oTEeA5f/NCiPbN7rRTba2mylZFtbWaals1VdaqE9uTjtVLe2zfbDc3aZ7W3rKWQH3zxAxNPniisLDQvf/999+zcuVKnn766VOmOImIiDjPLJ+7LVu20KdPH/Ly8rj99tu5+uqrmTZtGgCPP/44e/fuZd68eezevZvLL7+cDRs2kJqa2qBre/U8dmdhc9gwO8yYbWZqHa5gr+7jeAB4fL/GVuN+VNuq62+trm2to7bR+TJqjQTqAwnyCSLUEEqYMYwwQxhhxjA6GDu498MMYYQYQqR2sAX8kVHGPZ9vprTGSmywkU8mD6BLZEBrZ8sj2e12Fi9eDMCYMWNkqSbhkTyxnDqcDqqsVZRbyqmwVlBhcT3KLeX1tsf3K62VlFvKqbHVNFke1Co1vlpf10Pni1FrPLE9dqzu9vj5uumNWiOpoanNVmPX5IGdWq1GpVJxpqQqlQqHo7GrBjTcoEGD2L17NwEBAdx///08//zz7j5jZrOZu+++u948dhMmTGjwtdtyYNccbE4bJpuJKmtVvcCvylpFpbXS/UdZYamo94d7/LlTObdOvCpUhBhCCDWEEukbSZRfFJF+kUT5RhHld+Jh1MqIr8Y6WlzD5E83caS4hgCDqx/ekM4dWjtbHkeWahLeoCXKqaIo1NhqKK0tpbS2lBJzCSW1rkepudS1PXa8tLaUKmsVSiPmXjVqjfjr/PHX+xOgC3Bt9QH4605s/+yYn84PP50ferXe4/uct/npTpqbBHYtx6k4qbZVU2GpoNLi+iZWWltKsbn4xA3BXEJxret5WW1Zg28CwT7B7iAvISCBhIAE4gPjSQhIIMovSmr9Gqisxso9n29mc0YZOo2KV2/oxY394lo7Wx7FbDZz0UUXAbBq1SqZRkJ4pMaUU0VRqLBUUGgupNBUSJGpiAJTgXu/2FzsDtosDsvZL3gSP50fwT7Bp3TdOb5/8rFAfSD+en+P6NPWEpolsFMUhX/961/s2rWLPn36cOeddzZJZj2RBHaey+F0UGYpcwV75mIKTYXk1+STb8p3bY89zjYYRavSEhsQS3yAK9DrFNSJzsGdSQlJIcgnqIU+jfeotTn468LtLNqRB8Ajl3bhL5cke/y3XCHE2SmKQkltCXnVeeTW5JJfk0+BqYAiUxGFpkL3vtXZ8CUkfbW+hBpCCTWGEmYIc3exCTWEurvWhPiEEGwIJkgfhE4muT+jZgnsHn30UebNm8fw4cNZvXo1d911Fy+++GKTZNjTSGDn3RRFocpW5Q7ycqpzyKrKcj0qXdsz3aDCjeF0Du5McnAyycHJpISkkBqa2u4HeDidCq8v3s//W3kIgHH94nj5+jT0WllMXAhP5nA6KDIXkVOVw5HSI+Sb8im2FpNXk0dutSuQa2hf6RCfECJ8Iwj3DSfSN9K9H24MdwVwxlBCDaHSFaaJNUtgFxcXx/Lly0lJSWHfvn1cddVVHDx4sEky7CnmzJnDnDlzcDgcHDhwQAK7NsqpOCk0FZJZmUlmVSaZlZkcqjjEwbKD5NbknvY1WpWWlJAUenToQY+wHvTs0JPOwZ3bTTNAXV9tyOD573fjcCr0TQjm/Yn9iAyUEbNCtCabw0ZOdQ6ZVZlkVWW5729ZVVnkVOWcdUYEFSrCfcOJ8Ysh2i+aSL/IUwM4Yzh6jb6FPpGoq1kCu8DAQCorK93PQ0NDKS0tbVxOPZTU2LVfNbYaDpUf4mD5QdLL0jlUfoh9pfsos5SdktZH40OPsB70j+pPv8h+9Anvg6/O9zRXbXtW7C/kL/O2UllrJzzAh/dv7Uv/pNDWzlarMZvNXHrppQAsXbpU+tiJZuFwOsipzuFwxWEyKjPIrDwWxFVlkleTd8aBaFq1lghDBAc2H8BWYmPandPoHN6ZGP8YYvxjiPKNkuZQD9YsgZ2fnx8rVqxwj4y97LLLWLp0ab2RsgMHDmxEtj2HBHaiLkVRyKvJY3fJbnYV72J3yW72FO+hylZVL51WpaV7WHf6RfbjwugL6RfVr0033x4truG+L/5gf0EVWrWKGVd3Z+KFie2y352MihVNyeqwklGZweGKwxwuP+zaVhzmaMXRM3YjMWqNroFigQnu/sPH98ON4ZQUlxAZGQlAQUFBi05RJhqnWQK7pKSkM96wVSoVhw8fPreceigJ7MTZOBUnmZWZbCncwub8zfxR8McpzbhGrZEBUQMYHjucYbHDiAtoeyNJayx2nvhmh3tQxU394njhup4YdO1rDWS73c6PP/4IwFVXXeUR84MJz+dwOsioyuBA6QEOlB3gYPlBjlQcIasqC4dy+unDfDQ+JAUmkRiYSGJgIgmBCe4ALswQdsb/0xUVFQQHBwNQXl5OUJAMFPMWMt1JI0lgJ85HbnUufxT8wab8TazNWUuhubDe+Y5BHbk04VLGJI2hS0iXNlOzpSgKH646zGu/7MOpQGpkAO9NuIAUmcxYCLcKSwUHyg64H/tL93Ow/OCfTg3ir/OnU3AnOgXVf8T4x6BRn98XJ6lZ9l4S2DWSBHaisRRF4UDZAVbnrGZNzhq2FW6r9w08KTCJyxIvY0zSGFJDG7Yiiqdbk17MtAVbKa62YtCpmXl1D8YPiG8zAawQDVVsLmZ38W5Xt42SPRwoO0BeTd5p0xq1RlKCU+gS2oXk4GQ6B3emU1Anwo3hTf63I4Gd95LArpEksBNNrdJayers1Sw+upi1OWvr9ZPpGtqV65Kv48qOVxJsCG69TDaBoioLj/5nG6vTiwG4slc0r9yQRqChbXfKdjgcrF69GoDhw4ej0bSvpuj2rLy2nN0lriDueDBXYCo4bdoYvxi6hHahS0gXUkNSSQ1NJT4gHrWqZaYMOv6/DZD/b15GArtGksBONKdqazUrs1fy69FfWZ2zGpvTBoBOrWNk/EjGdRnHhdEXem1Nl9Op8OHqw7yxeD92p0JssJHXbuzFsJS2uxSZ1IS0DxaHhT0le9hWuM09kCqnOueUdCpUdArqRI8OPege1p3UkFS6hHZptgXiG6qwsFAGT3gpCezOk8xjJ1paeW05i44s4vuD37O3dK/7eOegzkzoNoGrOl3ltVOobM0s4+H528gsda0CMmFQAs+M7Ya/T9sbWGAymRgwYAAAmzZtwtfXO39nor4iUxHbiraxrXAb24q2sadkD3bnqfPBJQYm0j2sOz3CXPNcdgvrhp/O84L7oqIidzBXWFhIeHh4K+dINJQEdo0kNXaiNewv3c836d/w/cHv3UuiBegDuDHlRm7rfhsRvt737brGYue1X/bx+boMAGKDjfx9XC+GJLfd2jvhnRxOBwfKDrgDue1F209bGxdqCKVPeB/SwtPo2aEn3UK7ec0yhFKz7L0ksGskCexEa6qyVvH9we+Zu28uWVVZAOjVeq5PuZ47e95JjH9MK+fw3P1+qJgnvt5BdpkZgBv7xvH02K508G+78/wJz2Z32tlXuo/N+ZvZVLCJLQVbqLZV10ujVqlJCU6hT0Qfeof3pk94H+IC4ry2m4QEdt5LArtGksBOeAKn4mR19mr+vevfbC3cCrgmQb6689Xck3YP8YHxrZzDc1NjsfPKz3v5akMmigKBBi2Pj0llwqBENGrv/EcpvIfdaWdvyV42FWxic/5mthRuocZWUy+Nv86f3uG96R3hCuLSOqThr/dvpRw3PQnsvJcEdo0kgZ3wJIqisLlgMx/u+JD1eesBV4B3U+pN3NfrPsKMYa2cw3OzNbOM6d/tYneua4nCtNggZl3bg74JIa2cs/NnNpu55pprAPjhhx9kSTEP4FSc7Cvdx/q89WzM38jWgq3uLg7HBegD6BfRj/5R/RkQNYDUkNTzniPOGxQXF7v71RUVFdGhg3SJ8BZtIrCz2+2MHz+e9evXk5ubS15eHlFRUe7zM2bM4OOPP6aiooLIyEieeeYZJk+eDMCKFSsYNWpUvQ7MP//8M8OHD2/Qe0tgJzzV9qLtvL/9fdbmrAXAV+vLpJ6TuKP7HV41yMLhVPhqQwZ/X7yfqlpXZ/SxaVE8PqYrHTt4Xy2C1IR4hrzqPNblrWNd7jo25G04ZY3nQH0g/SL7MSBqAP0j+9MlpEubDuROJqNivVebCezmzJnDoEGDGDx48CmBXXp6OjExMfj5+ZGens7FF1/MkiVL6NGjBytWrOD+++9n37595/XeEtgJT7cxbyP/+OMf7C7ZDUCYIYxp/aZxTedrWmxOrKZQVGXh74v3sfCPbBQFtGoVtw5K4KFLUryq/53dbmfBggUAjB8/XpYUayHV1mo25m9kXe461uet52jl0XrnfbW+DIwayKDoQQyIGkBKSIpX/X00NVlSzHu1icCuLpVKdUpgV1d6ejrDhw/n448/ZuzYsRLYiXZBURQWZyzmnS3vuAdZ9A7vzbODnqVbWLdWzt252ZdfyWs/72P5/iIA/PQabh+SxN3DOhLmRQGeaF5Oxcmekj2szlnNutx17CjaUW9FF41KQ88OPRkcM5jB0YNJC09Dp27bk2OfC6lZ9l7tJrB79dVXeeGFFzCZTAwcOJCVK1diMBhYsWIFl19+OYGBgQQFBXHbbbfx7LPP/uls8BaLBYvlxHp9lZWVxMfHS2AnvILNYePLvV/y/vb3MdvNqFVqbupyEw9d8JDXTMNw3O+Hinn1533syK4AwKjTMPHCBO65qBMRAYZWzp1oDRWWCtblrWN1tmt5vtLa0nrnEwMTuTD6QgbHDGZg1EAC9LJG8Z+RwM57tZvADly1Fhs3bmTp0qU8+eSTaLVa8vPzKS8vp0uXLuzbt4+bb76Zu+66i0ceeeS01585cyazZs065bgEdsKbFNQU8OYfb/LzkZ8BCPEJ4YmBT3Blxyu9anoGRVFYureQd5eluwM8H62am/rHMXloRzqHe94oRYfDwZYtWwDo27evLCnWCHXXWV6dvZrtRdvr1cr56fwYEjOEoTFDGRwz2Cun/2ktsqSY9/KKwG706NGsWrXqtOemT5/O9OnT3c/P1hQLMHXqVNLS0rjvvvtOOTd//nz++c9//un7SY2daEs25W/i5Q0vc7D8IADDYofx/IXPE+0f3co5OzeKorDiQBHv/pbOlsxy9/ERqeHcObQjw1M6eEzAKjUhjVNjq2F93npWZ69mdc5qCk2F9c4nByczPHY4w+OG0ye8DzqNNK+eDxk84b3OJbBrtR6+v/76a5Nez+l0cujQodOeU6vP3FnWx8cHHx/pxyPahgFRA/jP1f/hk12f8P+2/z/W5Kzhuu+vY1q/aYxPHe81ncdVKhUjUyMY0SWcdYdL+HjNUX7bV8CK/UWs2F9EcoQ/tw9O5NresQT5tu4/epVKRWJiontfnF1+TT4rslawPGs5G/M31luqy6AxMCh6EMNjhzMsbhix/rGtl9E2pG7ZlHLadnl0U6zFYkFRFIxGI0ePHiUyMhKDwdXP5qOPPmLcuHEEBgayevVqrrnmGubNm+cePNG5c2fi4+NJT0/nxhtvZOLEiTzxxBMNel8ZPCHaisMVh5n5+0z3BMd9I/oyc8hMOgZ1bOWcnZ+Mkho+/f0oCzdnU21xBQJ6rZorekZxc/94BncKQy2THXskRVFIL09nWeYylmctZ0/Jnnrn4/zjuCjuIi6Ku4j+Uf3x0ciX7aYmNcveyyuaYhsiKSmJjIyMeseOZ/eGG25g5cqVWK1WEhISePjhh7n33nsBePPNN/nHP/5BeXk5ERER3HbbbTz//PMNnoJAAjvRljgVJwv2L2D2H7Mx2U3o1XqmXjCV27vf7rVzeFXV2vjmj2zmb8piX36V+3h8qJHrL4jjmt7RJEdIJ/rWZnfa2Vq41R3M1V17VYWK3uG9GZkwkhHxI+gY2FFqkZqZBHbeq80Edq1FAjvRFuVW5/K3dX9jba5rcuO0Dmm8MPQFOgd3buWcnT9FUdiZU8GCTVn8sC2XKsuJ5ryuUQFc3TuGq3pFkxgm/8BaislmYm3uWpZnLmdVzioqLBXucz4aHy6MvpBRCaO4KO4iOhhl5YOWJIGd95LArpEksBNtlaIofHfwO/6+6e9U2arQqXU82OdBJvWYhFbt3ZPqmq0OFu/O53/bc1mVXoTNceLW1isuiMu6RTKqWwTdowObvGaotraW//u//wNcg7WOdxlpL4rNxe7+cutz12N1Wt3ngn2CuSjuIkbFj2JwzGCvWiGlrSkpKXEvI1ZcXExYmHctR9ieSWDXSBLYibYuvyafv637G6tzVgPQI6wHLwx9gZSQlFbOWdOoMNlcQd6OXH4/VILDeeI2FxNkYFS3CC7pFsngTmEYdI1vjm5vNSGKonCk4gjLslxNrDuLdqJw4mcc5x/HyISRjIofRZ+IPl7/paGtkFGx3ksCu/M0Z84c5syZg8Ph4MCBAxLYiTZNURT+d/h/vLrxVaqsVWjVWh7o/QCTe05uU7P1F1dbWLqngN/2FbImvRiz7cScaAadmgFJoQxN7sDQzh3oHhOI5jwGX9hsNj799FMAJk2ahE7Xdn5+xzmcDnYU73D3l8uorN//uWdYT0YmjGRk/EiSg5Olv5wHKi8vJyQkBICysjL38mLC80lg10hSYyfak0JTIS+se4EV2SsA6BbajReGvkBqaGrrZqwZ1NocrDtUwtK9BSzbV0heRW2980FGHYM7hTE0OYwLO4XROdy/XY+yrbXXsi53HcuzlrMye2W9VR+0ai2DogYxKmEUF8ddTKRfZCvmVDREe6tZbksksGskCexEe6MoCouOLOKVDa9Qaa1Eq9Zyb9q93J12d5udDFZRFA4UVLP2YDG/Hypm/eFS9xQqxwUatPRNDKFfQgj9EkPoHR+Mn0/bblYsqy1jZfZKlmcu5/fc36l1nAh+A3QBDI8bzsiEkQyLGYa/3vNWARF/TgI77yWBXSNJYCfaq2JzMS+se4FlWcsASA1J5cVhL9I1tGsr56z52R1OduRU8PvBYtYeLGFbVnm9ZlsAtQq6RQfSJz6YnrFBpMUGkRLpj06tYu/evQB069btrJOie5rMykyWZy1nWeYythVtw6k43eei/KIYFT+KkQkj6RfZr00107c3VVVV7v9plZWVBATIlEDeQgK7RpLATrRniqLwy9FfeHnDy5RbytGqtNzd627uTbu3zdbenY7N4WRfXhV/ZJTyR2Y5fxwtJfekplsAnUZFcrgfGxd/gzX/IL8u+De9EsM9umbPqTjZVbyL5VnLWZ65nEMV9Vft6RralZHxrv5yXUO7Sn+5NkIGT3gvCewaSQI7IVy1dy9veJklGUsASAlJ4cWhL9I9rHsr56z15Jab2ZJZxs6cCnblVLArp5IKs+20aWODjaRGBZAS6U+XiAC6RAaQHOGPUd86k0JbHBY25G1w9ZfLWkmRuch9TqvS0i+qnzuYi/GPaZU8iuYlgZ33ksCukSSwE+KExUcX89L6lyizlKFRabiz553c3/t+9Bp9a2et1SmKQnaZ2RXk5VawM6eSPbmVFFdbTptepYKEUF86h/uTFOZHUgdfksL86NjBj5hg43mNyD2TCksFq7JXsTxrOWtz1mKym9zn/HR+DIsdxsj4kQyLHUaQT1CTvrfwPNLHzntJYNdIEtgJUV9pbSmvbHiFX47+AkBycDIvDH2Bnh16tnLOPFNZjZUDBVUcKKzmQH6Va7+gijLT6Wv3APQaNfGhRjp28CMxzI+kMF/iQnyJDTESG2xsUNPu8fnlVmWvYlXOKrYUbMGhnOgnGOEb4a6VGxA1QILzdkYCO+8lgV0jSWAnxOktzVjKC+tfoLS2FLVKzQ0pNzClzxRZGqoBFEWhuNpKekEVh4tryCip4UixiaMlNWSWmLA6nGd8fbCvjthgV5BXN+CLCFSTZ93FtuL1rM5ZVW89VnA1oY+Md00W3D2su/SXa8cksPNeEtidJ5mgWIizK68t59VNr7Lo8CLA1aR3d9rd3Nb9Nnw0Pq2cu9ZRW1vLXXfdBcC///3vc15SzOFUyC03c7SkhqMlJo4W15BRYiKn3ExOmYnK2vrTsKi05Wj996H134fG7xAq9YmaQJWiJUjVlQRjP3qGXEhySCKRgYZjDx+CjDoJ7topWVLMe0lg10hSYyfE2W0p2MLrm15nd8luAGL8Ynio70NckXQFGnXrDBBoLc1dE1JUU83yIxtZm/M7O0o3UGw9Wu+80xaEvbor9upUHDXJoPx5E6teoybMX0+on+vRwd+HUD89Yf56wvz0hPr5uPfD/H3w02skEGwjZPCE95LArpEksBOiYZyKk0WHFzF7y2wKTYUAJAUmcV/v+9pVgGez2ZgzZw4AU6ZMafSSYoqicKDsAOvz1vN77u9sKdhSb6JgtUpN7/DeXBR3EcNjh9MxMJniaiuFVRYKKmsprKyloNK1X1BlOfa89ox9/P6MXqsmzE9PkFFHkFFHsO/xretYoFFH8MnnjHoCDNp2vWqHJ5IlxbyXBHaNJIGdEOfGbDfz5Z4v+WzPZ1RYKgBXgHdnzzsZ22lsu22iPRcFNQWsz1vPurx1rM9dT0ltSb3z4cZwBscMZkjMEIbGDCXYEHzO71Frc1BcbaG0xkpJtZWSGislx5/X2S+utlJSY6HWduZ+f2eiUkGgQUeAQYu/j9a99auz7++jw9+gJeDYcf+T0vobtPjptU0+Wri9kj523ksCu0aSwE6I81NtrWbevnn1ArxQQyjjuoxjfOp4Inyl6ee4nOocNudv5o+CP9hcsJmsqqx6541aI/0i+zEkZgiDowfTObhzizeJmqx2SqqtlNZYqTDbqDDbKDfbqDTbKDfVOWayufcrzDZMVsfZL34OfLRqjHoNvjqNa6vXYnTva+rvHzvn2j/5vBYfrdr10GlO7Gs16DSqNt/kLIGd92oTgZ3dbmf8+PGsX7+e3Nxc8vLyiIqKcp8/cuQI9913Hxs3bsTPz4+pU6fy9NNPu89/+umnTJ8+ncrKSm688UY++OAD9PqGDe2XwE6Ixqmx1bBg/wLm7ZtHfk0+4JoEd2TCSK7tfC1DYoe0qaWpnE4nmZmZACQkJJyypJhTcZJRmcGWgi1sLnAFc3k1efXSqFVquoV2c9fK9Q7v7bXTkVjtzmNBnpWqWjvVFjvVtXaqjm1rLK5jx5/XPe8+V2vD5mi5f08qFe4gzxX4qTFoNfjo6hw7fl6nrpdWr1Wj0xzfqtBp1McedffrP9drVWjVJ/aPH9dqVOhPek1TBZyypJj3ajOB3Zw5cxg0aBCDBw8+JbC76qqriIuL49133yU7O5uhQ4fyxRdfcMkll7Bz504uvvhifv31V1JSUrjuuusYPnw4f/vb3xr03sd/gLm5uURFRbn/qKxWKzabDa1Wi4/PiaalmpoaAIxGo/uGbrPZsFqtaDSaeiPkziWtyWRCURQMBgMajcb9c7FYLKjVaoxG43mlNZvNOJ1OfHx80Gpdc2M5HA5qa2vPKa1KpcLX19edtra2FofDgV6vd/cxOpe0TqcTs9kMUO+bpMViwW63o9Pp3MH5uaRVFAWTyTUxq6+v7ym/z3NJ25DffVOUk9P9PpuinBz/fTa2nJz8+/yztNWmalblrmLh4YVsLdzqTh/iE8LliZcztvNY0jqkoUJ12t9nY8tJ3d9nY8vJn/0+fX19MZlM7pqQgoICnD5ODlQdYEfRDnYW72Rn0U6qbFXUpVVp6RrSlb4RfRkUO4gLIi4gQB8g94g6ac0WGxZFjV1RYbY6qLbYKK8yUWtz4lTrMFnt1NocVJos1FhsWBxgdYDJ6sBktVNTa8Vsc2A5dsxsdWCxO7DYHFgcClb7+Tc1tyStWoVOo0KrUaNVq9Co1WhUoFGDVqNBq1GhVatQq1SoUdBq1Oi0GjRq13GV4kSjVqE4HSz++WcUxcF111yD0UePVqPG51hzt1atxulwoFGDj07rvoYaBcXpPJbWNapao3KVHxUKPnodWo3G1adSUXDYbWjUagwGH9Qq0KhU2Gw2d1qd9lj/S8WJ3WZDo1ZhNBjQqF1BrN1mBcWJj16PTnesKV5RsFktqFUq/Hx9j6UFm/VEWr1eh+uvVnGVVZXr716tUqHC9bfsdNjR63T4+PigUoEKMJtNqMD9NwxNf49obBxhtVq9P7CrS6VSnRLYpaWl8c477zBy5EgAbr75ZoYPH85DDz3E008/TXl5Oe+//z4Ay5Yt4+677+bw4cOnvb7FYsFiOTFTfGVlJfHx8YBrFFF4eDgAL730EtOnT+fuu+/mX//6lzu9n58fJpOJI0eOkJSUBMDs2bN55JFHmDBhAl999ZU7bXh4OMXFxezatYsePXoA8K9//Yt7772Xa6+9lu+++86dNikpiYyMDDZu3MiAAQMA+Oqrr5g4cSKXXnopS5Yscaft0aMHe/bsYfny5YwYMQKA7777juuvv54hQ4awdu1ad9oBAwawefNmfvzxR6688koAlixZwujRo+nduzfbtm1zpx0xYgQrV67kP//5DzfddBMAa9euZdiwYSQnJ5Oenu5Oe+WVV/LTTz/xySefMGnSJAC2bdvGBRdcQExMDDk5J+bXuummm/j666957733mDJlCgDp6el06dKFoKAgysvL3WknTZrEZ599xuuvv87jjz8OQE5ODnFxcWi1Wmy2Ex3Cp0yZwj//+U9mzJjBzJkzgfodhq1Wq/sfyuOPP84bb7zBY489xt///nfA9Yd0/I+4bufimTNnMmvWLB588EF3J3kAnU6H3W4nOzub2NhYAP7+97/zxBNPcMcdd/Dpp5+60wYHB1NRUcGBAwdISUkBXFPsTJ06lXHjxrFw4UJ32tjYWHJzc9m6dSt9+vQBXLXQkydPZuzYsSxatMidNiUlhYMHD7JmzRqGDh0KwMKFC7n55pu5+OKLWbFihTttnz592L59O7/++iuXXXYZAIsWLeKqq66if//+bNq0yZ126NCh/P7773z77bdcd911AKxYsYKRI0fSvXt3du/e7U572WWXsXTpUr788ktuvfVWADZt2sTAgQNJTEzk6NGj7Cvdxw+HfmDulrk4DCea6kJ8QkjzT+PLWV/ik+9DYVah+9ytt97K3Llzeeutt5g2bRoAR48epWPHjvj6+rpvhgD33HMPH330ES+++CLPPvssAEVFRe6Rf3VvddOmTePtt9/mmWee4aWXXgL+vJnq2Wef5eWXX+bhhx9m9uzZ7mscv1HvzthNjjWHSU9MQhutxZBkQB9xak2b0+okLTyNoYlD6R/ZnzX/WcMTjzwh94hWvEc8//wMrA4nhSVldExOQaXRs2vvfhyoqLU5eee9f/Kf/37L9TfcxPhbJ2KxOzFZbPxl2qOotHqefGY6Kq0Oi83Jug0b+WPrNlK7deeCfgOwOZzYHAo//bIYVBoGXDgYlUaLzaGQX1hEYXEJ/oFBBAaHutLanVSbzKi03llL21aoVKBWqXA6HK4gV6tBr9PiCg0VaqqrAYXgoCBUKhVqletLk6mmhms1W3hv9pt1ruW6RzRFHPH+++83OLDz3FWqz2LKlCnMnz+fIUOGkJmZyfr163nuuecA2LNnD2PGjHGn7d27N0eOHMFsNtf7pnncK6+8wqxZs1os70K0R11Du9I1tCtrX17LskPLGDNtDLnGXMosZayyrCJhagKKU+HGH26kb0Rf+kb2xWK0gCd0e1JBra6WDXkbyKjM4EjFEZKeTMIQb2D88vEAhF4bWu8lHYM6ktYhjV4denH/dfdTfrCcRQcXuW/aG9jQ0p9CnEStVmFQawg0aHHWlAPQOdzP/eUvgnJqD/9BLCO5to/ri5vNZmPy5u8BeHD4hye+/G1ZyK8/v0Ofjg/y3oT73O+hu2cIdrud//fGSV/+Xj725e/vn7rTHv/yt3fffhI7dsbmdPLBhx/x9LPPMfaqq5n9zrs4nAp2p8Klo8dQXFzCZ198QafOKdidTn7+ZTFv/OMtBgwYyLPPPe9O+8gjj1JQVMyjjz3OW7PfRqXWMPG22/hy7nw6Jydz1933YHcqOJwKH370bwqLirlx3E3ExSdgdzo5cjSTxUuWENYhnLFjr8ThVHAqCkt/W0ZJaSkXXjiYyKgonAoUF5ewYdMm/Pz9ufDCwTicCooCO3btoqKiks7JyYSEhuFUFKprTKQfPIhe70On5GQUBZyKQl5eASazmZDQMIy+vjgVsNpslJWXo1ZrCAgMwqm48mCx2nA6FVQaDU1xs1AUcCgKqNSotGqcUG8QkdrHVatcf25JHRq/YKjFI3htjd2OHTuYOHEie/bsweFwMHPmTGbMmAHAJZdcwuTJk5k4cSJwohambtRc15/V2ElTrDTFSlNs45piz/a7RwPbCrexPHM5q7JXkVGVwcl8tb4kByeTGppKYmAi0X7RhGnDiPaLJjo42v07akxTrNVhpchUREZpBoXmQiocFRSYCsirzuNoxVGyqrOwOE6//qtGpSEpMIkuoV1IDkwmOTCZXuG96BBwYjUOuUec+ruXe0TL3yN8fHzc/+v0ej1Wq9Xj7xFn+92fnFZRFBwOJzVmE4oCRl9fFMUVsNVaLNjsNrQaHVq9DsXp6v9aYzqR1qko4E5rR6PRotXp3EGnyWR2/SwNBpRjtXgWqw2bzUZqVBBG46l/y+2mKXb06NGsWrXqtOemT5/O9OnT3c9PDuwcDgeJiYk8+eSTPPDAA2RnZ3PVVVcxc+ZMxo0bx7XXXsuYMWN48MEHgROzbZtMptPW2J1MBk8I0TqKzcVsKdjC1sKtbCncQnpZOjbnn8+9plVrCdIHEewTTJBPEIH6QHQaHTq1Dr1Gj1atRVEUbE4bNocNm9OG1Wml2lpNpbWSSmslVdYqzHbzWfOmUWmIC4gjISCBxMBEuoR0ITU0lc7BnWU6FyFEszqXuKTVmmJ//fXX835taWkpubm5PPDAA2i1WpKSkrjuuutYvnw548aNo3v37uzcudOdfvv27XTs2LFBQZ0QovV0MHZgdNJoRieNBsDmtJFZmcmBsgOkl6WTXZVNTk0OudW5FJuLsTvtlNSWnDLn2/nQqXVE+EYQ6RtJpG8kEb4RRPlFkRDoCuRi/GP+dCSvxWJh6tSpALz33nv1vokL4SmknLYPHt0Ua7FYUBQFo9HI0aNHiYyMdFcvJyYm8tRTT3HfffeRm5vLFVdcwZQpU7j//vvZuXMnI0aMYMmSJXTu3JkbbriBoUOHnvOoWKmxE8Jz1dprKbeU13tUW6vr1c7ZnDY0Kg06tQ6tWotOrUOn0eGr8yVQH+iu5Tv+ON9pJWR+MOENpJx6L6+osWuI1NRUMjJcfW6Odzg+Hod+/fXXPPzwwzz11FP4+voyfvx47rnnHsA1YvbNN9/k6quvds9jd3yUnBCibTBoDURpo4jyizp74mam0+l48cUX3ftCeCIpp+2DR9fYtRapsRNCCCGEpziXuER9xrNCCCGEEMJreHRTrBBCeANFUSguLgagQ4cObX7NUeGdpJy2DxLY1TFnzhzmzJmDw9G0C1gLIdo2k8nkXuFCOqULTyXltH2QPnanUVFRQXBwMFlZWdLHTghxVjU1NcTExACQm5sr/zCFR5Jy6r2OL5xQXl5OUFDQGdNKYHca2dnZ7rVihRBCCCE8QVZWFnFxcWdMI4HdaTidTnJzcwkICDhjH4QBAwbUWzT9XNIcj77bQq1gQ34O3vC+TXG987nGubymoWnPlu5M56Vset57NvaazV0uG5pe7pknSNk8/9e3x3umoihUVVURExPjXnLsz0gfu9NQq9VnjYgBNBrNWX+JZ0sTGBjo9TephvwcvOF9m+J653ONc3lNQ9OeLV1DriNl03Pes7HXbO5y2dD0cs88Qcrm+b++vd4zz9YEe5xMd9IIU6ZMaZI03q61PmNTv29TXO98rnEur2lo2rOlaw/lElrnczbHezb2ms1dLhuaXu6ZJ0jZPP/Xyz3zzKQptpXIJMjCU0nZFJ5IyqXwVJ5WNqXGrpX4+PgwY8YMWYRZeBwpm8ITSbkUnsrTyqbU2AkhhBBCtBFSYyeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYOfBVq5cyeDBgxk2bBiPPvpoa2dHCLesrCz69u2LwWDAbre3dnZEO/foo48yfPhw/vKXv7R2VoQAWvceKYGdB0tOTmbFihWsWbOG/Px8du7c2dpZEgKA8PBwli1bxoUXXtjaWRHt3JYtW6iurmb16tXYbLZWWd5QiJO15j1SAjsPFhsb654XR6fTodFoWjlHQrgYDAaCg4NbOxtCsG7dOi699FIALr30UtavX9/KORKide+REtg1oRkzZtC9e3fUajXz58+vd66oqIgrr7wSX19fUlNT+e233xp83S1btlBcXEz37t2bOsuinWiusilEUzqfclpeXu6e7T8oKIiysrIWz7do27zt/qlt7Qy0JSkpKbz99ts899xzp5ybMmUKMTExFBcX8+uvv3LTTTdx6NAhLBYL//d//1cvrb+/Pz/++CMA+fn5/OUvf+Gbb75pkc8g2qbmKJtCNLXzKafBwcFUVlYCrqWdpCZZNLXzKZchISGtkNNjFNHkLr74YmXevHnu51VVVYper1dyc3Pdx4YPH6589tlnZ7yO2WxWRo4cqWzZsqXZ8iral6Yqm3WvZ7PZmjyfon07l3L6xx9/KPfee6+iKIrywAMPKBs2bGjx/Ir24Xzun61xj5Sm2BaQnp5OUFAQ0dHR7mO9e/dm9+7dZ3zdJ598wp49e3jkkUcYMWIE69ata+6sinbmfMtmbW0tl156Kdu3b2fMmDGsXr26ubMq2rEzldO+fftiNBoZPnw4arWagQMHtmJORXtypnLZmvdIaYptAdXV1e4+IMcFBgZSXl5+xtc98MADPPDAA82YM9HenW/ZNBgMLF26tBlzJsQJZyuns2fPbvlMiXbvTOWyNe+RUmPXAvz9/d19QI6rrKzE39+/lXIkhIuUTeENpJwKT+Sp5VICuxaQkpJCRUUF+fn57mPbt2+nR48erZgrIaRsCu8g5VR4Ik8tlxLYNSGbzUZtbS1Op7Pevr+/P9dccw0zZszAbDbzww8/sGvXLq6++urWzrJoJ6RsCm8g5VR4Iq8rly06VKONu+OOOxSg3mP58uWKoihKYWGhcsUVVyhGo1FJSUlRlixZ0rqZFe2KlE3hDaScCk/kbeVSpSiK0vLhpBBCCCGEaGrSFCuEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEK1o5syZ6HQ6oqKimuyaI0aMYP78+U12vZP94x//wM/PD4PB0GzvIYQ4PxLYCSFaXVJSEr6+vvj7++Pv709SUlJrZ6lF3XXXXfUWEm8OPXv25OjRo01yrUcffZTdu3c3ybWEEE1LAjshhEdYtmwZ1dXVVFdXnzYAsdlsLZ8pD9AUnzs7Oxu73d7uAmYh2iMJ7IQQHmnFihV07dqVZ599lg4dOvDyyy9jNpuZOnUqMTExxMXF8dprr7nT19TUMGHCBIKDg+nbty/PPPMMl19+eb1r1aVSqdy1ZKWlpUyYMIGIiAg6derEZ5995k43YsQI/va3v9G/f38CAwO55ZZbsFqt7vMLFiygZ8+eBAQEkJaWxv79+3nppZeYPHlyvfcbOnQo//3vfxv02ZOSknj99ddJTU2le/fuADz44IPExMQQHBzM6NGjyczMdKfftGkTvXr1IjAwkPvuuw+n01nveosXL2bMmDHuzzNr1iwuuOAC/P39efzxxzl48CADBgwgODiYxx57zP26H3/8kdTUVAICAoiPj2fevHkNyr8QovVIYCeE8FgHDx7E19eXvLw8nnzySR577DEqKio4cOAAGzdu5PPPP+d///sfALNmzaKkpITMzEzmzp3LF1980eD3ue2224iPjycrK4uffvqJp59+mu3bt7vPL1y4kP/+979kZmayY8cOFixYAMDatWuZOnUqH3zwARUVFSxcuJDAwEBuvfVWvvvuOywWCwAZGRns2bOHsWPHNjhP3333HatXr2bnzp0ADBs2jL1795Kfn09cXBx/+ctfALBardxwww089NBDlJSU0LNnT37//fd61/rll1/cgR3AN998w6JFi9i1axfvv/8+DzzwAN9++y27du3io48+cn/2u+++m48//piqqio2bdpE7969G5x/IUTrkMBOCOERLrvsMoKDgwkODubpp58GwNfXl6eeegqdToePjw+ffPIJb775Jv7+/sTExPDAAw/w9ddfA67g67nnniMwMJCuXbtyxx13NOh98/PzWb16NS+//DI+Pj507dqVCRMm1Ktdu+eee0hISCA4OJgrr7zSHfh8+umnPPDAAwwdOhS1Wk3Xrl2Jjo4mKSmJnj178tNPPwEwf/58rrvuunMabPDII48QERHhfs2ECRMICgrCYDDw5JNPsmbNGgDWrVuHj48P99xzDzqdjqlTpxIdHe2+jsPhYM2aNYwYMcJ97O677yYmJoakpCT69evH6NGjiYuLIy4ujkGDBrFjxw4AdDodu3btorq6mqioKHftoRDCc0lgJ4TwCEuWLKG8vJzy8nJeeeUVAKKjo9FoNAAUFRVhNpvp0qWLOwB85plnKCwsBCAvL4/4+Hj39erun0lmZiY1NTWEhYW5r/vBBx9QUFDgThMREeHe9/X1pbq6GnD1XevUqdNprztx4kT3yNS5c+cyYcKEhv4oAIiLi6v3/KWXXiI5OZnAwEAGDhxISUkJcOrnVqlU9V67YcMGevbsia+v72k/j9FoJDw8vN7zmpoaAL7++mt++OEHYmNjGT16NPv27TunzyCEaHna1s6AEEL8GZVK5d7v0KEDBoOBjIwMgoKCTkkbHR1NVlYWiYmJAGRlZbnP+fn5YTKZ3M/rjkCNjY0lODjYHSidi/j4eI4cOXLaczfddBNPPfUUGzdupLCwkFGjRp3Ttet+9pUrV/LBBx/w22+/kZyczIEDB9x9BqOjo8nOzq732rrPT26GPReDBg1i0aJFWCwWnn/+eaZMmcJvv/12XtcSQrQMqbETQngFtVrNHXfcwWOPPUZ5eTlOp5O9e/eyceNGAMaNG8dLL71EVVUV+/fv5/PPP3e/tkuXLpSUlLBy5UosFgsvvPCC+1xsbCwDBgzg+eefx2QyYbfb2bJlC3v27DlrniZNmsT777/PunXrUBSF/fv3k5eXB0BoaCgXX3wxkyZN4uabb3bXPJ6PqqoqtFotYWFh1NTU8OKLL7rPDR48GLPZzL///W9sNhtz5sxx5wHqD5w4F1arlblz51JZWYlOp8Pf379Rn0EI0TIksBNCeI3jE+OmpaURGhrK7bffTllZGQAzZswgKCiIuLg4brnlFm677Tb364KCgnjnnXe4+eab6dixIwMHDqx33a+++oqMjAw6depEREQE06ZNw2w2nzU/Q4YMYfbs2dx5550EBgZy0003UVlZ6T4/ceJE9u7de87NsCe7/PLLGTx4MImJiaSlpTFkyBD3Ob1ezzfffMNbb71FWFgYO3bscJ8vKSkhLy+PtLS083rfzz77jMTEREJCQliyZAlvv/12oz6HEKL5qRRFUVo7E0II0dQ+/fRT5s+fzy+//NJqeVi3bh0TJ07k0KFDf5rmxRdf5NVXXyU4OPiUJtXGmjdvHkuWLOHjjz9u0uvOnj2bGTNmoFKpKC8vb9JrCyEaR2rshBCiGdhsNt555x3uvPPOM6abPn061dXVTR7Ugas5+MEHH2zy606bNo2KigoJ6oTwQDJ4QgghmlhJSQlxcXH06tWLDz74oNXycb6DJoQQ3kuaYoUQQggh2ghpihVCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCP+PwXWcC4Tl5c1AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Design parameters\n", + "Td = 1 # Set to gain crossover frequency\n", + "Ti = Td * 10 # Set to low frequency region\n", + "kp = 500 # Tune to get desired bandwith\n", + "\n", + "# Updated gains\n", + "kp = 150\n", + "Ti = Td * 5; kp = 150\n", + "\n", + "# Compute controller parmeters\n", + "ki = kp/Ti\n", + "kd = kp * Td\n", + "\n", + "# Controller transfer function\n", + "ctrl_shape = kp + ki / s + kd * s\n", + "\n", + "# Frequency response (open loop) - use this to help tune your design\n", + "ltf_shape = ct.tf(P_tf * ctrl_shape, name='L_shape')\n", + "\n", + "ct.frequency_response([P, ctrl_shape]).plot(label=['P', 'C_shape'])\n", + "ct.frequency_response(ltf_shape).plot(margins=True)\n", + "\n", + "ct.suptitle(\"Loop shaping design for servomechanism controller\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "id": "d731f372-4992-464c-9ca5-49cc1d554799", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0.5, 0.98, 'Step response for servomechanism with PID controller')" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMyUlEQVR4nO3deXxU1cH/8e8kmUyWSYYQAiSEgEAAgYAKouKCCIiA0NSKGyiU6mMVfX5CcaGLUVyoVKm0T1GrFVwoi1jZBAQBl1pQrMrmAipLAANhywbZz++PZIYMWUhgZm4YPu/Xa14mN2fOPXNn7vD1nHvOtRljjAAAAHDWC7G6AQAAAPANgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYJdgHz66af6+c9/rpSUFDkcDrVo0UKXXXaZfvOb33iVmzFjhmbNmmVNI+EzO3fu1NChQ9W0aVPZbDY98MADVjcJp/DYY4/JZrPp4MGDAd/3zp07ZbPZzupz3338qqrt++yDDz6QzWbTggULTmtfs2bNks1m8zzCwsKUnJysX/7yl9q7d2+d+zn5uREREWrZsqX69eunKVOm6MCBA6fVpkBZtmyZHnvsMb/U7T5eH3zwgWdbTe8rGjeCXQC8++676tOnj3JzczV16lStXLlS06dP1+WXX6558+Z5lSXYBYfx48fr008/1auvvqp169Zp/PjxVjcJjVhiYqLWrVunoUOHWt2U03bnnXdq3bp1Xtv8/X02c+ZMrVu3TqtWrdJdd92lOXPm6Morr1RBQUGDnvu3v/1NF1xwgZ555hmdf/75ev/99/3W5jO1bNkyPf7441Y3A41YmNUNOBdMnTpV5513nt577z2FhZ045LfccoumTp1qYcvqp6ysTKWlpXI4HFY35ayxZcsW9e7dW+np6T6pz8r3wBijwsJCRUZGBnzf5wqHw6FLL73U6mackeTkZCUnJwd0n926dVOvXr0kSf369VNZWZmeeOIJLVy4UCNHjqz3cyXpF7/4hcaPH68rrrhCN9xwg7Zv364WLVr4tf3+1hjP3WPHjikqKsrqZgQ1euwC4NChQ2rWrJlXqHMLCTnxFrRt21Zbt27Vhx9+6BkmaNu2refvubm5mjhxos477zyFh4erVatWeuCBB6r936nNZtN9992nl156SR07dpTD4VCXLl00d+7cU7bVPSQ0depUPfnkkzrvvPPkcDi0du1aSdLnn3+u4cOHq2nTpoqIiNCFF16o+fPne9Vx7NgxTzsjIiLUtGlT9erVS3PmzPGUGTNmjJxOp7Zu3ar+/fsrOjpaCQkJuu+++3Ts2DGv+goLCzVp0iSv1z1u3DgdPXrUq1zbtm11/fXXa8WKFbrooosUGRmpzp0769VXX21w++r7Wk/mHsr4/vvvtXz5cs/7uHPnTknS7t27NWrUKDVv3lwOh0Pnn3++nnvuOZWXl9f7PajJW2+9pUsuuUQul0tRUVFq166dxo4d61WmoZ+fF198Ueeff74cDodeeeUVNW/eXLfffnu1fR89elSRkZGaMGGCZ1tDXuef/vQnPfPMM2rbtq0iIyN19dVXa9u2bSopKdEjjzyipKQkuVwu/fznP69xmGzevHm67LLLFB0dLafTqUGDBunLL7+sVu7TTz/VsGHDFB8fr4iICLVv377GIfL9+/fr1ltvlcvlUosWLTR27Fjl5OR4lfnb3/6mq666Ss2bN1d0dLTS0tI0depUlZSUeJW7+uqr1a1bN23YsEFXXnml57354x//WOOxqNq7lZ2drf/5n/9R69at5XA4lJCQoMsvv9yrN8ld/7p169SnTx9FRkaqbdu2mjlzpqSK0YKLLrpIUVFRSktL04oVK6q93qqMMWrRooXGjRvn2VZWVqa4uDiFhIRo//79nu3Tpk1TWFiY5zw8ecjuVN9nklRSUqLf/e53SkpKUmxsrAYMGKDvvvuuzjbWxR2Od+3adVrPT0lJ0XPPPae8vDy99NJLpyy/d+9ez3sUHh6upKQk3XjjjV7HqSHnwrPPPqtp06bpvPPOk9Pp1GWXXab169d7yo0ZM0Z/+9vfJMlrONn9/VLTufvaa69Jkv7973+rf//+iomJUVRUlPr06aN33333tI6TVL/zzv09v3nzZl177bWKiYlR//79T3ufqCcDv7vzzjuNJHP//feb9evXm+Li4hrLffHFF6Zdu3bmwgsvNOvWrTPr1q0zX3zxhTHGmIKCAnPBBReYZs2amWnTppn333/fTJ8+3bhcLnPNNdeY8vJyTz2STOvWrU2XLl3MnDlzzOLFi811111nJJm33nqrzrbu2LHDSDKtWrUy/fr1MwsWLDArV640O3bsMGvWrDHh4eHmyiuvNPPmzTMrVqwwY8aMMZLMzJkzPXXcfffdJioqykybNs2sXbvWLF261Pzxj380f/3rXz1lRo8ebcLDw01KSop56qmnzMqVK81jjz1mwsLCzPXXX+8pV15ebgYNGmTCwsLMH/7wB7Ny5Urz7LPPmujoaHPhhReawsJCT9k2bdqY5ORk06VLF/P666+b9957z4wYMcJIMh9++GGD2lff13qynJwcs27dOtOyZUtz+eWXe97HwsJCc+DAAdOqVSuTkJBgXnzxRbNixQpz3333GUnmnnvuqdd7UJP//Oc/xmazmVtuucUsW7bMrFmzxsycOdPcfvvtnjIN/fy0atXKdO/e3fzzn/80a9asMVu2bDHjx483kZGRJicnx2v/M2bMMJLMpk2bjDGmwa+zTZs2ZtiwYWbp0qXmzTffNC1atDAdO3Y0t99+uxk7dqxZvny5efHFF43T6TTDhg3z2vdTTz1lbDabGTt2rFm6dKn517/+ZS677DITHR1ttm7d6im3YsUKY7fbTffu3c2sWbPMmjVrzKuvvmpuueUWT5mMjAwjyXTq1Mk8+uijZtWqVWbatGnG4XCYX/7yl177HT9+vHnhhRfMihUrzJo1a8yf//xn06xZs2rl+vbta+Lj401qaqp58cUXzapVq8y9995rJJnXXnut2rGo+tkaNGiQSUhIMH//+9/NBx98YBYuXGgeffRRM3fu3Gr1d+rUyfzjH/8w7733nrn++uuNJPP444+btLQ0M2fOHLNs2TJz6aWXGofDYfbu3Vvj58jtlltuMR07dvT8vn79eiPJREZGmtmzZ3u2Dx482PTu3bva8XOr6/ts7dq1RpJp27atGTlypHn33XfNnDlzTEpKiklNTTWlpaV1tnHmzJlGktmwYYPX9unTpxtJ5u9//7vXfqp+79X2XLf8/HwTGhpq+vfvX2cb9uzZYxITE73OqXnz5pmxY8eab775xhjT8HOhbdu25rrrrjMLFy40CxcuNGlpaSYuLs4cPXrUGGPM999/b2688UYjyXNM3d8vxtR+7n7wwQfGbrebnj17mnnz5pmFCxeaa6+91thsNq/Pk/t4rV271rPt5PfVmPqfd6NHjzZ2u920bdvWTJkyxaxevdq89957dR5XnDmCXQAcPHjQXHHFFUaSkWTsdrvp06ePmTJlisnLy/Mq27VrV9O3b99qdUyZMsWEhIRU+zJasGCBkWSWLVvm2eb+Es7KyvJsKy0tNZ07dzYdOnSos63uL5j27dtXC6CdO3c2F154oSkpKfHafv3115vExERTVlZmjDGmW7duJj09vc79jB492kgy06dP99r+1FNPGUnm3//+tzGm4h9kSWbq1Kle5ebNm+f1BW5MRbCLiIgwu3bt8mw7fvy4adq0qbn77rs92+rTvvq+1tq0adPGDB061GvbI488YiSZTz/91Gv7PffcY2w2m/nuu++MMXW/BzV59tlnjSTPl39NGvr5cblc5vDhw15lN23aVO2YG2NM7969Tc+ePU/7dfbo0cPreD7//PNGkhk+fLjX8x944AEjyRMsd+/ebcLCwsz999/vVS4vL8+0bNnS3HTTTZ5t7du3N+3btzfHjx+v9Ri5/wE7+bN27733moiICK/wW1VZWZkpKSkxr7/+ugkNDfU6bn379q3xWHTp0sUMGjTI83tNwc7pdJoHHnig1vZWrf/zzz/3bDt06JAJDQ01kZGRXiHuq6++MpLMX/7ylzrrfOWVV4wks3v3bmOMMU8++aTp3LmzGT58uCe4FhcXm+joaPPb3/7W87yaAkBt32fuADFkyBCv7fPnz/eElrq4w9n69etNSUmJycvLM0uXLjUJCQkmJibG8913OsHOGGNatGhhzj///DrbMHbsWGO3283XX39da5mGngtpaWleofazzz4zksycOXM828aNG1ftOLvVdu5eeumlpnnz5l7/3pSWlppu3bqZ5ORkz2e7PsGuIeed+3v+1VdfrfUYwfcYig2A+Ph4ffzxx9qwYYP++Mc/6mc/+5m2bdumSZMmKS0trV6z8JYuXapu3brpggsuUGlpqecxaNCgarOYJKl///5e14eEhobq5ptv1vfff689e/accn/Dhw+X3W73/P7999/r22+/9Vy3UrUNQ4YM0U8//eQZQundu7eWL1+uRx55RB988IGOHz9e635Ovg7mtttukyTPsOOaNWskVXTpVzVixAhFR0dr9erVXtsvuOACpaSkeH6PiIhQx44dvYZmTtW+hrzWhlizZo26dOmi3r17e20fM2aMjDGe1+p28ntQm4svvliSdNNNN2n+/PleswLdGvr5ueaaaxQXF+e1LS0tTT179vQM80nSN998o88++8xr2Lehr3PIkCFelyScf/75klRtIoF7++7duyVJ7733nkpLS3XHHXd4vaaIiAj17dvX85q2bdumH374Qb/61a8UERFR80GsYvjw4V6/d+/eXYWFhV7DwF9++aWGDx+u+Ph4hYaGym6364477lBZWZm2bdvm9fyWLVtWOxbdu3c/5XBh7969NWvWLD355JNav359tWFet8TERPXs2dPze9OmTdW8eXNdcMEFSkpK8mx3H79T7XfAgAGS5BnyXbVqlQYOHKgBAwZo1apVkqR169apoKDAU/Z01XSs69NGt0svvVR2u10xMTG6/vrr1bJlSy1fvvyMr40zxpyyzPLly9WvXz/Pca1JQ8+FoUOHKjQ01PN7Q4+HVP3cLSgo0Keffqobb7xRTqfTsz00NFS333679uzZ06Dvs/qed1X94he/qHf9OHMEuwDq1auXHn74Yb311lvat2+fxo8fr507d9ZrAsX+/fu1adMm2e12r0dMTIyMMdXCYcuWLavV4d526NChU+4vMTGx2v4laeLEidXacO+990qSpw1/+ctf9PDDD2vhwoXq16+fmjZtqvT0dG3fvt2rzrCwMMXHx9fZxkOHDiksLEwJCQle5Ww2m1q2bFnttZxcn1RxYXrV8Haq9jXktTbEoUOHqh1XSZ5/fE9+LTWVrclVV12lhQsXer5sk5OT1a1bN69rBhv6+alt32PHjtW6dev07bffSqqYWehwOHTrrbee9uts2rSp1+/h4eF1bi8sLPS8Jqki2J78uubNm+d5TdnZ2ZJU7wv7T/4MuSesuD9Du3fv1pVXXqm9e/dq+vTpnv9pc1/7dPL/KNTnM1mTefPmafTo0XrllVd02WWXqWnTprrjjjuUlZXlVe7k4yRVHKtTHb/atGnTRu3bt9f777+vY8eOad26dZ5g5w4B77//viIjI9WnT5866zqVUx3rU3n99de1YcMGffnll9q3b582bdqkyy+//IzaVFBQoEOHDnmF4ppkZ2ef8jPV0HPhTI+HVP3cPXLkiIwxDWpHXep73rlFRUUpNja23vXjzDEr1iJ2u10ZGRn685//rC1btpyyfLNmzRQZGVltIkDVv1d18pd/1W01/UNzspPXLXLXP2nSJN1www01PqdTp06SpOjoaD3++ON6/PHHtX//fk/v2LBhwzyBQKroCTt06JBXe05uY3x8vEpLS5Wdne0V7owxysrK8vRWNcSp2teQ19oQ8fHx+umnn6pt37dvn6Tq72FD1o762c9+pp/97GcqKirS+vXrNWXKFN12221q27atLrvssgZ/fmrb96233qoJEyZo1qxZeuqpp/TGG28oPT3dq4egoa/zdLnrWbBggdq0aVNrOffnpj491fWxcOFCFRQU6F//+pfXfr/66iuf1O/WrFkzPf/883r++ee1e/duLV68WI888ogOHDhwykkQZ6p///5atGiRPvzwQ5WXl+vqq69WTEyMkpKStGrVKr3//vu68sorLZ8pf/7553vNbPWFd999V2VlZbr66qvrLJeQkHDKz1SgzoWqTj533RNffNWO+p53tbUH/kePXQDUdEJJFcNYkrz+z7C2/5O//vrr9cMPPyg+Pl69evWq9jh5ttnq1au9ZmaVlZVp3rx5at++/WktSdCpUyelpqZq48aNNe6/V69eiomJqfa8Fi1aaMyYMbr11lv13XffVZvxOnv2bK/f//nPf0qS50vVPYPqzTff9Cr39ttvq6Cg4IxnWNXUvtN9rafSv39/ff311/riiy+8tr/++uuy2Wzq16/fGb0WqeLz07dvXz3zzDOS5Jml1tDPT23i4uKUnp6u119/XUuXLlVWVla12beBeJ2SNGjQIIWFhemHH36o9X2SpI4dO6p9+/Z69dVXVVRUdMb7df9DVTXUGGP08ssvn3HdtUlJSdF9992ngQMHVjuu/jBgwADt379fzz//vC699FLP571///565513tGHDhnoNw9anZ7Ix2b17tyZOnCiXy6W77767zrKDBw/W2rVr6xzG9Me50NBevOjoaF1yySX617/+5fWc8vJyvfnmm0pOTlbHjh3rvf/6nnewDj12ATBo0CAlJydr2LBh6ty5s8rLy/XVV1/pueeek9Pp1P/7f//PUzYtLU1z587VvHnz1K5dO0VERCgtLU0PPPCA3n77bV111VUaP368unfvrvLycu3evVsrV67Ub37zG11yySWeepo1a6ZrrrlGf/jDHxQdHa0ZM2bo22+/rdeSJ7V56aWXNHjwYA0aNEhjxoxRq1atdPjwYX3zzTf64osv9NZbb0mSLrnkEl1//fXq3r274uLi9M033+iNN97QZZdd5rV+UXh4uJ577jnl5+fr4osv1n/+8x89+eSTGjx4sK644gpJ0sCBAzVo0CA9/PDDys3N1eWXX65NmzYpIyNDF154YY3Lb5xKfdpX39faEOPHj9frr7+uoUOHavLkyWrTpo3effddzZgxQ/fcc0+DvlyrevTRR7Vnzx71799fycnJOnr0qKZPny673a6+fftKUoM/P3UZO3as5s2bp/vuu0/JycnV/oH31+s8Wdu2bTV58mT97ne/048//qjrrrtOcXFx2r9/vz777DNPz6xUsTzJsGHDdOmll2r8+PFKSUnR7t279d5771X7n4tTGThwoMLDw3XrrbfqoYceUmFhoV544QUdOXLEJ69LknJyctSvXz/ddttt6ty5s2JiYrRhwwatWLGi1l5kX7rmmmtks9m0cuVKr8VwBwwYoNGjR3t+PpXavs8agy1btniuDztw4IA+/vhjzZw5U6GhoXrnnXeqXf5xssmTJ2v58uW66qqr9Nvf/lZpaWk6evSoVqxYoQkTJqhz585+ORfcx++ZZ57R4MGDFRoaqu7du3uG2msyZcoUDRw4UP369dPEiRMVHh6uGTNmaMuWLZozZ06DetUact7BIpZN2ziHzJs3z9x2220mNTXVOJ1OY7fbTUpKirn99turzajauXOnufbaa01MTIxnKQi3/Px88/vf/9506tTJhIeHG5fLZdLS0sz48eO9ZsBKMuPGjTMzZsww7du3N3a73XTu3NlrqYLauGdn/elPf6rx7xs3bjQ33XSTad68ubHb7aZly5bmmmuuMS+++KKnzCOPPGJ69epl4uLijMPhMO3atTPjx483Bw8e9JQZPXq0iY6ONps2bTJXX321iYyMNE2bNjX33HOPyc/P99rn8ePHzcMPP2zatGlj7Ha7SUxMNPfcc485cuSIV7maZqIaUzFzsOrMvPq0r76vtTa1tWXXrl3mtttuM/Hx8cZut5tOnTqZP/3pT16zQk/1Hpxs6dKlZvDgwaZVq1YmPDzcNG/e3AwZMsR8/PHHXuUa+vmpTVlZmWndurWRZH73u9/VWOZMXmdNMxmNqX0248KFC02/fv1MbGyscTgcpk2bNubGG28077//vle5devWmcGDBxuXy2UcDodp3769GT9+vOfv7tl/2dnZNe636nIzS5YsMT169DARERGmVatW5sEHHzTLly+vNqOwb9++pmvXrtWOz+jRo73O7ZNnxRYWFppf//rXpnv37iY2NtZERkaaTp06mYyMDFNQUHDK+mv7/J3qva3qwgsvNJLMJ5984tm2d+9eI8nEx8dXmyVc06zY2r7PanuPa5odXJP6zGytbT/u57of7nOmb9++5umnnzYHDhyos86qMjMzzdixY03Lli2N3W43SUlJ5qabbjL79+/3lDnTc16SycjI8PxeVFRk7rzzTpOQkGBsNpvXZ7Ou9/fjjz8211xzjYmOjjaRkZHm0ksvNUuWLKnxeJ1quRNj6nfeub/nEVg2Y+ox/QdnFZvNpnHjxun//u//rG5KrcaMGaMFCxYoPz/f6qYAABA0uMYOAAAgSBDsAAAAggRDsQAAAEGCHjsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSYVY3wN/Ky8u1b98+xcTEyGazWd0cAACABjHGKC8vT0lJSQoJqbtPLuiD3b59+9S6dWurmwEAAHBGMjMzlZycXGeZoA92MTExkioORmxsrMWtAQAAaJjc3Fy1bt3ak2nqEvTBzj38GhsbS7ADAABnrfpcUmbZ5ImMjAx16dJFISEhmjt3bq3lJkyYoHbt2ikmJka9evXSRx99FMBWAgAAnD0sC3apqamaPn26evfuXWc5l8ullStXKicnRw8//LDS09OVl5cXoFYCAACcPSwLdqNGjdLAgQMVERFRZ7mMjAx16NBBISEhGjFihCIjI7Vt27YAtRIAAODscVZdY7dz504dPnxYHTp0qLVMUVGRioqKPL/n5uYGomkAAACWO2sWKC4pKdHo0aP14IMPyuVy1VpuypQpcrlcngdLnQAAgHPFWRHsjDEaM2aMmjdvrscee6zOspMmTVJOTo7nkZmZGZhGAgAAWOysGIq9//77tW/fPq1YseKUKy47HA45HI4AtQwAAKDxsCzYlZSUqKysTOXl5SopKVFhYaHCw8OrBbeMjAx98skn+vDDDwlsAAAAdbAZY4wVOx4zZoxee+01r21r167V3r179fTTT2vr1q0VDbTZ5HA4FBZ2IoO+9NJLGjlyZL32k5ubK5fLpZycHBYoBgAAZ52GZBnLgl2gEOwAAMDZrCFZ5qyYPAEAAIBTI9gBAAAECYIdAABAkDgrljs5lxljtHlvjuZuyNR3WXk6PzFGV3Ropmu7tFRIiM3q5gEAgEaEYNeIGWM0eenXmvnJTs+2/+46ojfX79YVHZrpTyO6K9EVaV0DAQBAo8JQbCP2+rpdmvnJTtls0s8uSNKfbuyuMX3aKsIeon9/f1DXPf+xNu/JsbqZAACgkWC5k0bqPz8c1KhXPlW5kX47pLP+56r2nr/9kJ2vB+Z+pc17c+SKtGvOXZeqS9LZ89oAAED9sdzJWc4Yo2dWfKdyI/3iomTddWU7r7+3T3Dqn3ddogtaN1HO8RLd/o9PtefIMYtaCwAAGguCXSP0+a4j2ph5VOFhIZo0pLNstuqTJGIi7HptbG91SYzVoYJi3fPmFyosKbOgtQAAoLEg2DVCL3/0oyTpFxe1UjNn7ffHdUXa9fc7eiouyq7Ne3P0h4VbAtVEAADQCBHsGpkdBwu06pv9kqRfXdHuFKWl5Lgo/d9tFynEJr313z16d9NP/m4iAABopAh2jcxbn2fKGOmazs3VobmzXs+5vEMzjevXQZL0+4WbdSCv0J9NBAAAjRTBrpH54LtsSdLwHkkNet7916Sqa1Ksjhwr0aS3NyvIJzsDAIAaEOwakQO5hfr6p1zZbNKVqc0a9NzwsBBNu+kChYeGaPW3B/TW53v81EoAANBYEewakQ+3VfTWdW/lUnwdkyZq06lljCZc21GSNHnp18o8zBIoAACcSwh2jYg72PXtmHDaddx1ZTv1ahOn/KJSPbRgE0OyAACcQwh2jURpWbk+3n5QktS30+kHu9AQm567qYci7aFa9+Mhzfks01dNBAAAjRzBrpHYuCdHOcdL5Iq0q0dykzOqq018tCYO6iRJmrLsG/2Uc9wHLQQAAI0dwa6R+GzHYUlSn/bxCgs987dlTJ+2ujClifKKSvX7d7YwJAsAwDmAYNdIbNmXI0nqfoa9dW6hITZN/UV3zyzZxRv3+aReAADQeBHsGomv9+VKkrq1ivVZnaktYnT/NRULFz+2eKsO5hf5rG4AAND4EOwagbzCEu04WCBJ6prk8mndv766vTq3jNGRYyV6bPFWn9YNAAAaF4JdI+DurUtyRahpdLhP67aHhuhPN/ZQaIhNSzf9pJVbs3xaPwAAaDwIdo3A1spg18XHvXVuacku3XVlO0nS7xduUc7xEr/sBwAAWItg1wi4J0748vq6kz0wIFXtmkXrQF6RJi/52m/7AQAA1iHYNQLuoVhfX19XVYQ9VFNv7K4Qm/T2F3u0fPNPftsXAACwBsHOYoUlZdp+IF+Sf3vsJKlX26b6dd/2kqRJ72zW/txCv+4PAAAEFsHOYt9m5ams3KhpdLhaxkb4fX8PDOiobq1idfRYiR7kXrIAAAQVgp3Ftu3PkyR1bhkjm83m9/2Fh4Xo+ZsvkCMsRB9ty9br63b5fZ8AACAwCHYW233omCSpbbPogO2zQ/MY/XbI+ZKkp5d94wmXAADg7Eaws9jOQxULE7eNjwrofu+4rI36dkxQUWm5fv3mf5VXyBIoAACc7Qh2Ftt9uKLHrk184HrsJMlms+m5m3oo0RWhH7ML9OBbXG8HAMDZjmBnsZ2VtxJrE+AeO0lq5nRoxsiLFB4aohVbs/Tihz8GvA0AAMB3CHYWOnqsWLmFpZKklKaBD3aSdGFKnDKGd5Ek/em9b/XJ9wctaQcAADhzBDsL7aycONEi1qGo8DDL2nFb7xSN6JmsciPdP+dLZVYODwMAgLMLwc5CuyonTrRpGtjr605ms9n0RHo3pbVy6XBBscbM/ExHjxVb2iYAANBwBDsL7TrknjhhzTBsVRH2UL0yupeSXBH6IbtA//P6f1VYUmZ1swAAQAMQ7CzUmIKdJLWIjdDMX/ZWjCNMn+08rHtnf6Hi0nKrmwUAAOqJYGchz1BsgJc6qUunljF6ZXQvOcJCtObbAxo/7yuVlhHuAAA4GxDsLLSrcpJC20YU7CTpknbxeun2nrKH2vTu5p903z+/pOcOAICzAMHOIgVFpcrOK5IkpTSSodiqru7UXC+M7OlZ4+7uNz7XseJSq5sFAADqQLCziPuOE3FRdrki7Ra3pmYDurTQK6N7KcIeorXfZevWlz/Vwfwiq5sFAABqQbCzyL6jxyVJreIiLW5J3a7qmKDZd16iJlF2bcw8qvS/faKv9+Va3SwAAFADgp1F9udW9Hy1jI2wuCWn1rNNU719Tx+lNI3SniPHdcMLn+idL/dY3SwAAHASgp1FsnILJVUsMXI2aJ/g1OL7LtdVHRNUWFKu8fM2asL8r5RfxHV3AAA0FgQ7ixw4y4KdJDWJCtfMMRfrgQGpCrFJ//pir66d9qFWbMmSMcbq5gEAcM4j2FnE3WN3NgzFVhUaYtMDAzpq3t2XqXXTSO3LKdSv3/yvfvXa59p9iHvMAgBgJYKdRdzX2DWPdVjcktNzcdumWvlAX93Xr4PsoTat+faABv75Q01Z/o1nGRcAABBYBDuLnI1DsSeLDA/VxEGdtOKBq9SnfbyKSsv10oc/6opn1uixxVv1U85xq5sIAMA5xbJgl5GRoS5duigkJERz586ttdzx48c1atQoxcTEKCUlRXPmzAlgK/2jqLRMhwqKJZ19Q7E1aZ/g1Ow7L9E/RvfSBa2bqKi0XLP+s1NXTV2re978r9Z8u5/bkgEAEABhVu04NTVV06dP1x/+8Ic6y2VkZOjw4cPau3evtmzZoiFDhqhnz57q2LFjgFrqe+6hyvDQEDWJapyLEzeUzWZT//Nb6JrOzfWfHw7pL6u369Mdh7V8S5aWb8lSQoxD6RckacD5LXRRmzjZQ+ksBgDA1ywLdqNGjZIkPfXUU3WWe+ONN7Rw4ULFxsaqT58+Gj58uObOnatHH300EM30i/2Vw7DNYx2y2WwWt8a3bDabLu/QTJd3aKZvfsrVW5/v0cKv9io7r0gvf7xDL3+8QzERYboytZmuTE3QhSlNlNo8RqEhwXUcAACwgmXBrj6OHDmirKwspaWlebb16NFDn332Wa3PKSoqUlHRiYv3c3Mb310SzqbFic/E+YmxenRYFz0yuLPWfHtA723N0ofbsnW4oFjLNmdp2eYsSVJ0eKjSkl3qluRSh+ZOtW/uVIcEp+Kiwy1+BcHJGKNyI5Ubo7Jyc+K/5VJZ5c/GGM/PVbeXm5rLV63Lvb28vGJbmams76Tt5cbIVLbDSJV1S6r8b9V2qvLvFeWrbCuvLCvv51atU+ZE3eak+qrWKVW0vdbnVttW8dyKZ6ryZ1N5jN3bjNff3YsCebZ7nl9RV7XfPW/aiW0n6jNV6qsse9L+aq5bXssTmVPUrVpfS5XXWmW1I6/nqur2GrbVUPLkcvWtq6aSNe+zpvpqeG499lvf59W00aftOIPXXnPbfHss6+tMF82yctWt3w89X3de2c66BlTRqINdfn6+QkNDFRUV5dkWGxur/Pz8Wp8zZcoUPf7444Fo3mnbHwQTJxoiPCxE13Vrqeu6tVRZudGmPUf1wXfZ+mzHYW3ac1QFxWVa/+Nhrf/xsNfzosND1cIVoRYxEWoR61ALV4Sax0QoNiJMMRF2xUSEVT7sig4PlT00RGGhNtlDQ2QPDTntXsCycqOSsnKVlRuVlhmVlJd7tpWWGZWWG5WWV/m5rLzyv5Vlyyr+XlJmvOoqKTcqc5etfJ6njOd51euueF7l9sr9eJWppS3uv5VVeQ1llUEIABCcGnWwczqdKisr07FjxzzhLjc3V06ns9bnTJo0SRMmTPD8npubq9atW/u9rQ1xtt11wpdCQ2y6MCVOF6bESaoIUdsP5Omr3Uf13f48fX8gXz9mF2jv0eMqKC7Tj9kF+jG74LT2ZbNJ9pAQ2UNtCrHZvHoiqvZSuDtajCrCEGstVxy7UJtNISE2hdpsCg2xKcSmyv+etD3kRNkQm+3E80K866h4XpU6Kp9vU8UQfoitYr/uv6nyZ5ukkMqf5fm7ZFNFfZLN83dblf/a5F2nzfP3E/XaKvfl3m6rWoeq1OXZpxQSUllX5XGq+Mn9c8V/K1pVuUHy7MtW5fie/FxVljlR/kQ9thNVVW63Vfl7zXVXbcOJv9lqrNtdj2p8PTW/vlO2wfOb9+fqVGoqc3JdNZY53efVsw0nl6x/XbZ6lKmprlPvryYnl6vpcp/6tKG+7189DtUZq6ktZ1ynj6uMDm88carxtKQGcXFxatmypTZv3qxLLrlEkrRx40Z17dq11uc4HA45HI17bbgDlUOxLc7SNex8KTTEps4tY9W5ZazX9mPFpcrKKdT+3CLtzy2sfBTpQF6h8gpLlVdYovyiUuUVliq/sFT5xaU1DJNIxWXlKi4783aGhVSEEHdPoD3UprCQKj+HhigsxKawyu1eP4faKn4PCVFoqE32EJtCKwNn1fIVfztRp7tMaEiV+qvtw7v+Gn+ufG5oiM0TqtxBzTu4ndgebNd+AsC5wrJgV1JSorKyMpWXl6ukpESFhYUKDw9XSIj3bMlRo0bpiSee0Jw5c7R161YtXrxYn376qUWt9o2snHO3x66+osLD1C7BqXYJtffOnsw97OkeMi2pHMYsKS2X0YneBq9eCncvTeXPVUOZO8SFVfbQAADQ2FkW7O666y699tprkqSPP/5Yd9xxh9auXau9e/fq6aef1tatWyVJkydP1p133qnExETFxcVpxowZ6tSpk1XN9on9eQQ7f6jokQpVhD3U6qYAAGAJmwnyu7fn5ubK5XIpJydHsbGxp35CAHTLeE/5RaVa85u+DeqRAgAA556GZBlWiQ2w/KJS5ReVSqLHDgAA+BbBLsDcS504HWGKdjTquSsAAOAsQ7ALsCOV94iNd7L4LgAA8C2CXYAdrgx2cVEEOwAA4FsEuwA7cqwi2DXldlkAAMDHCHYBdrigRBI9dgAAwPcIdgHm7rHjGjsAAOBrBLsA4xo7AADgLwS7AHPPim0abbe4JQAAINgQ7ALs8DF67AAAgH8Q7ALscAGzYgEAgH8Q7ALMc40dwQ4AAPgYwS6ASsrKlVdYcZ/YpgzFAgAAHyPYBZB7qZMQmxQbyeQJAADgWwS7ADpSuThxk6hwhYbYLG4NAAAINgS7ADqxhh29dQAAwPcIdgHEfWIBAIA/EewCiLtOAAAAfyLYBdAR1rADAAB+RLALIM9dJwh2AADADwh2AeTpsWMoFgAA+AHBLoAOH6tY7oQeOwAA4A8EuwA6cY0dy50AAADfI9gFELNiAQCAPxHsAoh17AAAgD8R7AKksKRMx4rLJHGNHQAA8A+CXYDkHK+YOBEaYlOMI8zi1gAAgGBEsAuQ3MpgFxMRJpvNZnFrAABAMCLYBUhuYakkKTaCGbEAAMA/CHYBklt4oscOAADAHwh2AZJHjx0AAPAzgl2AVL3GDgAAwB8IdgHiHoqNjaTHDgAA+AfBLkDcQ7H02AEAAH8h2AWIeyiWa+wAAIC/EOwChB47AADgbwS7AOEaOwAA4G8EuwBhuRMAAOBvBLsAOXGNHUOxAADAPwh2AcJQLAAA8DeCXYAweQIAAPgbwS4ASsrKday4TBLX2AEAAP8h2AVAfmVvnSQ56bEDAAB+QrALAPf1dVHhobKHcsgBAIB/kDICgOvrAABAIBDsAoDbiQEAgEAg2AVALj12AAAgAAh2AcAadgAAIBAIdgHgHoqNYSgWAAD4EcEuAE7cJ5ahWAAA4D+WBbvs7GwNHTpUUVFR6tSpk1avXl1juR07dujaa69VkyZN1KpVK02ZMiXALT1zDMUCAIBAsCzYjRs3TklJSTp48KCeeeYZjRgxQkeOHKlW7v7771e7du2UnZ2tf//73/rrX/9aawhsrFjuBAAABIIlwS4/P1+LFi3S5MmTFRUVpfT0dHXr1k1LliypVnbXrl26+eabZbfbdd555+mKK67Q119/XWvdRUVFys3N9XpYjeVOAABAIFgS7LZv3y6Xy6XExETPth49emjr1q3Vyo4bN05z585VUVGRtm/frvXr1+vqq6+ute4pU6bI5XJ5Hq1bt/bHS2gQeuwAAEAgWNZjFxsb67UtNjZW+fn51cr26dNH69atU3R0tDp27Khf/epXSktLq7XuSZMmKScnx/PIzMz0efsbimvsAABAIFgS7JxOZ7Uh0tzcXDmdTq9tZWVlGjJkiO666y4VFhZqx44deuutt7RgwYJa63Y4HIqNjfV6WI1ZsQAAIBAsCXapqanKyclRVlaWZ9vGjRvVtWtXr3KHDx/Wvn37dM899ygsLExt27ZVenq61q5dG+gmnxFPjx3X2AEAAD+yrMdu+PDhysjI0PHjx7V48WJt2bJFw4YN8yqXkJCg1q1b6+WXX1Z5ebn27NmjRYsW1TkU29gYY6pcY0ewAwAA/mPZciczZsxQZmam4uPjNXHiRM2fP19xcXGaPXu2V8/dggUL9MYbbyguLk4XX3yx+vfvr7vuusuqZjdYUWm5ysqNJMnJUCwAAPAjmzHGWN0If8rNzZXL5VJOTo4l19sdyi9SzyfflyT98PQQhYbYAt4GAABw9mpIluGWYn52rLhMkhRpDyXUAQAAvyLY+Vl+UcX1ddGOUItbAgAAgh3Bzs+OFVcEu6hwrq8DAAD+RbDzs4KiiqHYaAfBDgAA+BfBzs/cPXbR4QzFAgAA/yLY+Zm7xy6KHjsAAOBnBDs/K6DHDgAABAjBzs88PXZMngAAAH5GsPMz9zV2TpY7AQAAfkaw8zOusQMAAIFCsPMzZsUCAIBAIdj5mfvOE1xjBwAA/I1g52fue8VySzEAAOBvBDs/K/DcK5YeOwAA4F8EOz/z9NgxFAsAAPyMYOdn7gWKo5g8AQAA/Ixg52cMxQIAgEAh2PnZMc+dJ+ixAwAA/kWw8yNjjGco1kmPHQAA8DOCnR8VlZar3FT8zJ0nAACAvxHs/Mh9fZ0kRdoZigUAAP5FsPMj931iI+2hCg2xWdwaAAAQ7Ah2fuS+vo67TgAAgEAg2PnRsWKWOgEAAIFDsPOjAs9SJwQ7AADgfwQ7P/L02LGGHQAACACCnR/lu3vsGIoFAAABQLDzo2OexYnpsQMAAP5HsPMjrrEDAACBRLDzI66xAwAAgUSw86MCrrEDAAABRLDzI/ctxeixAwAAgUCw86MCFigGAAABRLDzo2PFFUOx0UyeAAAAAUCw8yP3UGwUy50AAIAAINj5ET12AAAgkAh2fuTpsWPyBAAACACCnR8xeQIAAAQSwc6P3EOxkfTYAQCAACDY+VFRSbkkKdJOsAMAAP5HsPOT0rJyFZcR7AAAQOAQ7PyksLTc8zNDsQAAIBAIdn5SWFLm+dkRxmEGAAD+R+Lwk+OVEyci7CGy2WwWtwYAAJwLCHZ+4u6x4/o6AAAQKAQ7PymsnBEbQbADAAABQrDzk+P02AEAgAAj2PmJO9jRYwcAAAKFYOcnVSdPAAAABEK9bmI6derU+lUWFqYJEybUq2x2drbGjBmjtWvXqnXr1poxY4b69+9fY9mZM2fq6aef1r59+5SSkqJFixapY8eO9dqPVYpKuZ0YAAAIrHoFu9///vcaOXLkKcstWLCg3sFu3LhxSkpK0sGDB7Vy5UqNGDFCP/zwg+Li4rzKLVmyRM8995wWLlyoLl266Mcff6xWpjFy99hxjR0AAAiUegU7l8ulmTNnnrLcihUr6rXT/Px8LVq0SDt37lRUVJTS09M1bdo0LVmyRHfccYdX2SeeeEJ//vOf1bVrV0lS+/bt66y7qKhIRUVFnt9zc3Pr1SZf4xo7AAAQaPW6ACw7O7telf3000/1Krd9+3a5XC4lJiZ6tvXo0UNbt271KldWVqYvv/xSmzdvVnJyss477zxNnjxZxpha654yZYpcLpfn0bp163q1yddY7gQAAATaaV3ZX1RUpEOHDnn1jDVEfn6+YmNjvbbFxsYqPz/fa9v+/ftVWlqq1atXa8uWLfrwww81b948zZo1q9a6J02apJycHM8jMzPztNp4pljuBAAABFq9g11paakee+wxtW/fXlFRUUpISFBUVJQ6dOigxx9/XCUlJfXeqdPprDZEmpubK6fT6bUtMjJSkvTwww+rSZMmSklJ0bhx47Rs2bJa63Y4HIqNjfV6WMFz5wkmTwAAgACpd7C7++679dFHH+mVV15Rdna2iouLlZ2drb///e/6+OOP9etf/7reO01NTVVOTo6ysrI82zZu3Oi5js4tLi5OSUlJXtvqGoZtTNzBLiKM5U4AAEBg1Dt1vP3221q0aJH69eunpk2bKiwsTE2bNtU111yjt99+WwsWLKj3Tp1Op4YPH66MjAwdP35cixcv1pYtWzRs2LBqZceMGaOpU6cqLy9P+/bt04svvqihQ4fWe19W8axjR48dAAAIkHoHu5iYGH3//fc1/m3Hjh2KiYlp0I5nzJihzMxMxcfHa+LEiZo/f77i4uI0e/Zsr567jIwMJSYmKjk5WRdffLFuuOEGjR49ukH7sgLX2AEAgECr13InUsWyIwMGDNAtt9yitLQ0xcbGKjc3V5s2bdJbb72l5557rkE7TkhIqPFauZEjR3qtmRceHq6XX35ZL7/8coPqt1ohy50AAIAAq3ewGzNmjHr27Kk5c+ZoxYoVys/Pl9PpVJcuXbR27Vp169bNn+0867iXO6HHDgAABEq9g50kpaWlKS0tzV9tCSosUAwAAAKtXtfYLV68uF6VLV269IwaE0w8txRj8gQAAAiQegW7UaNG1auyk28Hdi4rLGW5EwAAEFj1GorNz89XVFRUnWWMMQoJIcS4FdJjBwAAAqxewW7Hjh2SKsLbO++8o6FDh8rhcFQrZ7PZfNu6sxjLnQAAgECrV7Br06aN5+e3335bTz75pNLT0zVy5Ej169ePQFcD96xYJk8AAIBAafDY6b///W99+eWX6tSpkyZMmKDk5GSNHz9en3/+uT/ad1YyxjArFgAABNxpXRSXkpKihx56SF999ZUWLlyolStX6pJLLlFqaqqmTJmi/Px8X7fzrFJUWu75mWvsAABAoJxWsCspKdGiRYt066236rrrrlPHjh01f/58vfHGG9q8ebOuvfZaX7fzrOJe6kRiViwAAAicBi1QLEljx47VokWL1K1bN40cOVIzZsxQXFyc5+89e/aUy+XyaSPPNu6lTuyhNoWFEuwAAEBgNDjYdejQQV988YXXhIqq7Ha79uzZc8YNO5u5e+y4vg4AAARSg4Pdb3/721OWadq06Wk1Jliw1AkAALAC44R+wFInAADACgQ7Pyikxw4AAFiAYOcHnmvsWOoEAAAEEMHOD9yzYlnqBAAABBLJww/cPXYsTgwAAAKJYOcHXGMHAACsQLDzA5Y7AQAAViDY+YF7uRMHwQ4AAAQQwc4P6LEDAABWINj5wYnJExxeAAAQOCQPPyjyLHdCjx0AAAgcgp0fsNwJAACwAsHOD9zX2HGvWAAAEEgEOz9wz4ol2AEAgEAi2PkBs2IBAIAVCHZ+4LnzBLNiAQBAAJE8/MAd7JgVCwAAAolg5wdFpdx5AgAABB7Bzg+K3LcUC+PwAgCAwCF5+IF7gWKCHQAACCSShx94hmK5xg4AAAQQwc4Pij3X2HF4AQBA4JA8fKy0rFyl5UaSFB7K4QUAAIFD8vCx4rJyz8/02AEAgEAiefiYe0asRI8dAAAILJKHj7knToSF2BRGsAMAAAFE8vAxz8QJljoBAAABRvrwMfcaduEEOwAAEGCkDx9jDTsAAGAVgp2Pee46wYxYAAAQYKQPH+M+sQAAwCqkDx8rKmMoFgAAWINg52PuHjsmTwAAgEAjffiY5xo7gh0AAAgw0oePFbGOHQAAsAjpw8eKWe4EAABYxLJgl52draFDhyoqKkqdOnXS6tWr6yy/c+dORUZG6te//nWAWnh6PD12LHcCAAACLMyqHY8bN05JSUk6ePCgVq5cqREjRuiHH35QXFxcjeXHjx+viy66KMCtbDjPnSe4TywAAAgwS9JHfn6+Fi1apMmTJysqKkrp6enq1q2blixZUmP59957T8YYDRw48JR1FxUVKTc31+sRSJ517OixAwAAAWZJ+ti+fbtcLpcSExM923r06KGtW7dWK1tcXKwHH3xQzz77bL3qnjJlilwul+fRunVrn7W7PrilGAAAsIplPXaxsbFe22JjY5Wfn1+t7LRp0zRkyBB16NChXnVPmjRJOTk5nkdmZqZP2lxfxcyKBQAAFrHkGjun01ltiDQ3N1dOp9Nr2969e/Xqq6/qv//9b73rdjgccjgcPmnn6fBcY0ewAwAAAWZJsEtNTVVOTo6ysrLUsmVLSdLGjRt15513epXbsGGDMjMzlZqaKqmip6+8vFw7d+7UihUrAt7u+mAoFgAAWMWyHrvhw4crIyNDzz//vFatWqUtW7Zo2LBhXuUGDx6sHTt2eH5/9tlnlZ2drWnTpgW6yfXGAsUAAMAqlqWPGTNmKDMzU/Hx8Zo4caLmz5+vuLg4zZ49W127dpVUMazasmVLz8PpdCoyMlLx8fFWNfuUikoqbynGrFgAABBgNmOMsboR/pSbmyuXy6WcnJxqEzb8YczMz/TBd9l6dkQP3dgz2e/7AwAAwa0hWYZuJR9zr2PH5AkAABBopA8fc8+K5Ro7AAAQaKQPH2PyBAAAsArpw8eKWe4EAABYhGDnY54eO2bFAgCAACN9+JjnzhOhHFoAABBYpA8fc/fYRdBjBwAAAoz04WPu5U64xg4AAAQawc7HisuYFQsAAKxB+vCh0rJylZVX3MiDBYoBAECgkT58yH19ncRQLAAACDyCnQ9VDXb02AEAgEAjffiQe6kTe6hNoSE2i1sDAADONQQ7H+KuEwAAwEoEOx9yD8UyDAsAAKxAAvGhE2vYcVgBAEDgkUB8yH2NHcEOAABYgQTiQ1xjBwAArESw8yH3NXYO7hMLAAAsQALxIfdQbHgohxUAAAQeCcSH6LEDAABWIoH40IlZsVxjBwAAAo9g50NFZSx3AgAArEMC8aGikspr7Ah2AADAAiQQH/JcY0ewAwAAFiCB+FAR69gBAAALEex8iDtPAAAAK5FAfKiY5U4AAICFSCA+5B6KDQ9lKBYAAAQewc6HPOvY0WMHAAAsQALxIa6xAwAAViKB+FAxs2IBAICFCHY+xDp2AADASiQQH3IPxXLnCQAAYAUSiA+VlBlJBDsAAGANEogPFXuWO+GwAgCAwCOB+FBJWUWwsxPsAACABUggPlRcGewYigUAAFYggfiQeyjWHmqzuCUAAOBcRLDzIYZiAQCAlUggPuSeFcs6dgAAwAokEB86MRTLYQUAAIFHAvEh9+QJOz12AADAAiQQHzHGVLnGjskTAAAg8Ah2PlJWbmQqLrGTIzTU2sYAAIBzEsHOR9zDsJJkD6PHDgAABB7BzkdKSo3nZyZPAAAAK5BAfMTdY2ezSWEh9NgBAIDAI9j5SHGVxYltNoIdAAAIPMuCXXZ2toYOHaqoqCh16tRJq1evrrHchAkT1K5dO8XExKhXr1766KOPAtzS+impXMMunGFYAABgEctSyLhx45SUlKSDBw/qmWee0YgRI3TkyJFq5Vwul1auXKmcnBw9/PDDSk9PV15engUtrpt7qZNw1rADAAAWsSSF5Ofna9GiRZo8ebKioqKUnp6ubt26acmSJdXKZmRkqEOHDgoJCdGIESMUGRmpbdu21Vp3UVGRcnNzvR6BUMwadgAAwGKWBLvt27fL5XIpMTHRs61Hjx7aunVrnc/buXOnDh8+rA4dOtRaZsqUKXK5XJ5H69atfdbuunA7MQAAYDXLeuxiY2O9tsXGxio/P7/W55SUlGj06NF68MEH5XK5ai03adIk5eTkeB6ZmZk+a3ddSsoqljvhGjsAAGCVMCt26nQ6qw2R5ubmyul01ljeGKMxY8aoefPmeuyxx+qs2+FwyOFw+Kqp9cY1dgAAwGqWpJDU1FTl5OQoKyvLs23jxo3q2rVrjeXvv/9+7du3T2+++aZCQhpncGIoFgAAWM2SFOJ0OjV8+HBlZGTo+PHjWrx4sbZs2aJhw4ZVK5uRkaFPPvlEixYtsqQnrr6YPAEAAKxmWffSjBkzlJmZqfj4eE2cOFHz589XXFycZs+e7dVzN3nyZH3zzTdKSkqS0+mU0+nU7NmzrWp2rRiKBQAAVrPkGjtJSkhI0LJly6ptHzlypEaOHOn53RhTrUxjxFAsAACwGinERzw9dgQ7AABgEVKIjxS7lzthKBYAAFiEFOIjJQzFAgAAi5FCfOTErFgOKQAAsAYpxEfcPXbhYSx3AgAArEGw8xEmTwAAAKuRQnykiKFYAABgMVKIj5SUVsyKtTMrFgAAWIQU4iMMxQIAAKuRQnykuJRbigEAAGuRQnykxHONHbNiAQCANQh2PsI6dgAAwGqkEB/xXGPHUCwAALAIKcRHirmlGAAAsBgpxEdKyiqWO2FWLAAAsAopxEeKGYoFAAAWI4X4CEOxAADAaqQQH2G5EwAAYDWCnY8wKxYAAFiNFOIjTJ4AAABWI4X4CNfYAQAAq5FCfIQ7TwAAAKuRQnyEa+wAAIDVSCE+4h6K5Ro7AABgFVKIj3iWOwljuRMAAGANgp0PGGOYFQsAACxHCvEB98QJSbJzjR0AALAIKcQH3L11Ej12AADAOqQQHygprdJjR7ADAAAWIYX4gHviRGiITaEhTJ4AAADWINj5QJHnrhOEOgAAYB2CnQ+UcNcJAADQCJBEfMA9ecLBjFgAAGAhkogPFJfSYwcAAKxHEvGBYoZiAQBAI0AS8QH3NXbhDMUCAAALkUR8gMkTAACgMSCJ+ID7GrtwljsBAAAWItj5AD12AACgMSCJ+EBx5XInXGMHAACsRBLxAZY7AQAAjQFJxAcYigUAAI0BScQH3MGOO08AAAArkUR84MRQLLNiAQCAdQh2PsCdJwAAQGNAEvGBklJmxQIAAOuRRHyAyRMAAKAxIIn4QDH3igUAAI0AScQHmDwBAAAaA8uCXXZ2toYOHaqoqCh16tRJq1evrrHc8ePHNWrUKMXExCglJUVz5swJcEtPzT0UGx4aanFLAADAuSzMqh2PGzdOSUlJOnjwoFauXKkRI0bohx9+UFxcnFe5jIwMHT58WHv37tWWLVs0ZMgQ9ezZUx07drSo5dV5euzC6LEDAADWsaTHLj8/X4sWLdLkyZMVFRWl9PR0devWTUuWLKlW9o033lBGRoZiY2PVp08fDR8+XHPnzrWg1bU70WPHyDYAALCOJT1227dvl8vlUmJiomdbjx49tHXrVq9yR44cUVZWltLS0rzKffbZZ7XWXVRUpKKiIs/vubm5Pmx5zUrKWO4EAABYz7Ieu9jYWK9tsbGxys/Pr1YuNDRUUVFRdZarasqUKXK5XJ5H69atfdv4GvQ/v7nuvOI8dUmMPXVhAAAAP7Ek2Dmdzmo9abm5uXI6ndXKlZWV6dixY3WWq2rSpEnKycnxPDIzM33b+BrccFGyfn99F/Vq29Tv+wIAAKiNJcEuNTVVOTk5ysrK8mzbuHGjunbt6lUuLi5OLVu21ObNm+ssV5XD4VBsbKzXAwAA4FxgWY/d8OHDlZGRoePHj2vx4sXasmWLhg0bVq3sqFGj9MQTTygvL0/r16/X4sWLdfPNN1vQagAAgMbNsqv9Z8yYoczMTMXHx2vixImaP3++4uLiNHv2bK8eucmTJ3smWowYMUIzZsxQp06drGo2AABAo2UzxhirG+FPubm5crlcysnJYVgWAACcdRqSZVifAwAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCRJjVDfA39x3TcnNzLW4JAABAw7kzTH3uAhv0wS4vL0+S1Lp1a4tbAgAAcPry8vLkcrnqLGMz9Yl/Z7Hy8nLt27dPMTExstlsftlHbm6uWrdurczMzFPenBf+xXvRePBeNA68D40H70XjcDa+D8YY5eXlKSkpSSEhdV9FF/Q9diEhIUpOTg7IvmJjY8+aD0mw471oPHgvGgfeh8aD96JxONveh1P11LkxeQIAACBIEOwAAACCBMHOBxwOhzIyMuRwOKxuyjmP96Lx4L1oHHgfGg/ei8Yh2N+HoJ88AQAAcK6gxw4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTB7gxlZ2dr6NChioqKUqdOnbR69Wqrm3TOuvrqqxURESGn0ymn06nBgwdb3aRzQkZGhrp06aKQkBDNnTvX629//OMflZCQoKZNm+qhhx6q130Ocfpqey9mzZqlsLAwz7nhdDq1e/duC1sa3IqKivTLX/5SycnJcrlcuvrqq7V582bP3zkvAqeu9yJYzwuC3RkaN26ckpKSdPDgQT3zzDMaMWKEjhw5YnWzzlmzZs1Sfn6+8vPztXz5cqubc05ITU3V9OnT1bt3b6/ty5Yt0wsvvKBPP/1UW7du1dKlSzVz5kyLWnluqO29kKQBAwZ4zo38/HylpKRY0MJzQ2lpqdq1a6f169fr8OHDGj58uNLT0yVxXgRaXe+FFJznBcHuDOTn52vRokWaPHmyoqKilJ6erm7dumnJkiVWNw0ImFGjRmngwIGKiIjw2v7GG2/o3nvvVbt27ZSYmKiJEyfqzTfftKiV54ba3gsEVnR0tP7whz8oOTlZoaGhuu+++7Rjxw4dOnSI8yLA6novghXB7gxs375dLpdLiYmJnm09evTQ1q1bLWzVue3+++9XQkKCBg4cqE2bNlndnHPa119/rbS0NM/vnBvW+uSTTxQfH68uXbroxRdftLo555R169apRYsWio+P57ywWNX3QgrO8yLM6gaczfLz86vdQDg2NlZHjx61pkHnuKlTp6pLly4KDQ3VX//6Vw0ZMkTffvutnE6n1U07J518fsTGxio/P9/CFp27+vbtq82bNyslJUUbNmzQz3/+c7Vo0UI///nPrW5a0MvJydHdd9+tp556ShLnhZVOfi+C9bygx+4MOJ1O5ebmem3Lzc0lSFikd+/ecjqdioyM1EMPPSSn06nPPvvM6mads04+Pzg3rHPeeeepbdu2CgkJ0SWXXKL//d//1TvvvGN1s4JeYWGh0tPTNXToUI0dO1YS54VVanovgvW8INidgdTUVOXk5CgrK8uzbePGjeratauFrYJbSAgfbyt16dLFayYg50bjwbnhf6WlpbrllluUlJSkZ5991rOd8yLwansvThYs50VwvAqLOJ1ODR8+XBkZGTp+/LgWL16sLVu2aNiwYVY37Zxz9OhRrVq1SkVFRSouLtaf//xnHT58WL169bK6aUGvpKREhYWFKi8v9/p51KhReuGFF7Rjxw5lZWVp2rRpGjVqlNXNDWq1vRcrVqxQdna2JOmLL77QX/7yF11//fUWtza43XXXXTp+/LhmzZolm83m2c55EXi1vRdBe14YnJEDBw6YwYMHm8jISJOammpWrVpldZPOSQcOHDA9e/Y00dHRJi4uzvTr18/897//tbpZ54TRo0cbSV6PtWvXGmOMefrpp018fLxp0qSJefDBB015ebm1jQ1ytb0XEyZMMAkJCSY6Otp07NjR/OUvf7G6qUFt586dRpKJiIgw0dHRnsdHH31kjOG8CKS63otgPS9sxrAyIgAAQDBgKBYAACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOwDlj9+7datasmV/3sXPnTtlsNjmdTi1cuNBn9W7YsEFOp1MhISFav369z+oFEFzCrG4AAPiS0+n0/FxQUKCoqCjP/SG//vprHTx40O9tcDgcys/P92mdF198sfLz89W2bVuf1gsguBDsAASVqoEqIiJCW7duJQwBOGcwFAvgnLFz505FRER4frfZbHrhhReUkpKiZs2aad68eVq6dKnatWun5s2ba968eZ6yhw8f1m233abmzZurXbt2eu211+q938cee0y333670tPT5XQ6NXDgQB04cEA33XSTYmNjdd111ykvL0+StG3bNl1xxRWKjY1Vs2bN9Jvf/MZ3BwBA0CPYATinffLJJ9q2bZteeOEF3XvvvXr77be1ZcsW/eMf/9B9992nsrIySdLtt9+u1q1bKzMzU8uWLdOkSZO0cePGeu9n4cKFevjhh3XgwAEdPXpUV1xxhe6//34dOHBA+fn5evXVVyVJjz76qIYOHaqcnBzt2rVLN998s19eN4DgRLADcE576KGHFBERoRtuuEFHjx7Vvffeq6ioKA0bNkx5eXnat2+fsrKy9PHHH+vpp5+Ww+FQ586dddttt+lf//pXvfczcOBAXXbZZYqKitKQIUOUmpqqK6+8UhERERo6dKg2bdokSbLb7dqxY4eysrIUHR2t3r17++ulAwhCBDsA57TmzZtLkkJDQ2W325WQkOD5W0REhAoKCrR7924VFBQoPj5eTZo0UZMmTfTSSy9p//79Dd6PJEVGRnrtJzIyUgUFBZKkqVOnqrS0VBdccIF69OihJUuWnOlLBHAOYfIEAJxCq1at1KRJEx06dMjv+0pMTNSrr74qY4wWL16sm2++WUePHlV4eLjf9w3g7EePHQCcQqtWrXTxxRfr0Ucf1bFjx1RaWqovvvhCX3/9tc/3tWDBAu3bt082m01NmjSRzWbzLNcCAKdCsAOAepg9e7Z27drlmTH7wAMP6Pjx4z7fz2effaaePXvK6XTqnnvu0T//+U/Z7Xaf7wdAcLIZY4zVjQCAYLFr1y517txZDodDr7/+uoYPH+6Tej///HMNGDBARUVF+vDDD5lUAaBGBDsAAIAgwVAsAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAASJ/w/T9oJqkxzJSgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the transfer function from r to y\n", + "T_shape = ct.feedback(ltf_shape)\n", + "ct.step_response(T_shape).plot(time_label=\"Time [ms]\")\n", + "plt.suptitle(\"Step response for servomechanism with PID controller\")" + ] + }, + { + "cell_type": "markdown", + "id": "JL99vo4trep5", + "metadata": { + "id": "JL99vo4trep5" + }, + "source": [ + "### Closed loop frequency response\n", + "\n", + "We can also look at the closed loop frequency response to understand how different inputs affect different outputs. The `gangof4` function computes the standard transfer functions:" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "id": "ceqcg3oM619g", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOIklEQVR4nO3dd3hUxd4H8O/uZlM2PSEhCQmhhUAoKghID9JUpFgiRS7gFRTk2rAXBFRUfBVBBcu9CqgUQVGKKDU0pUnvJSQhkIT0bDZls2XePwIrKZvsbrZl8/08T57kzJwyO2fyy+ScOXMkQggBIiIiImrQpI4uABERERHVHzt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RGQTJSUleOihh+Dn5weJRIKCggJHF6lOs2fPRtOmTSGRSPDrr786ujh2J4TAE088gaCgIEgkEhw7dszRRbIJiUQCiUSCgIAAq+970qRJhv03xjZEjsVOHZETyszMxLPPPos2bdrA09MTTZs2RZ8+ffDll1+ipKTE0cUzybJly7Bnzx789ddfyMjIgL+/f7V1li5davgDeOvX//73P7uX9+zZs5gzZw6++uorZGRk4N5777Xq/lu0aGH4fAqFAh07dsRXX31l8f5u7TzI5XK0atUKL774IoqLi+vcdufOnTV2tP/44w8sXboUGzduREZGBjp27GhyeY4ePYqEhAQ0bdoUnp6eaNu2LaZMmYILFy6Y+9HsYsmSJZXKdrNOqn6dO3fOsE58fHyN6wwbNsywzsKFC5GRkWHXz0J0k5ujC0BElV2+fBm9e/dGQEAA3nvvPXTq1AlarRYXLlzAt99+i4iICIwYMcLRxaxTUlIS2rdvX2fHwM/PD+fPn6+UVlMH0FrKy8vh7u5eLT0pKQkAMHLkSEgkEov3r9FoIJfLa8x7++23MWXKFKhUKixduhRTp05FQEAARo8ebdGx7rnnHixZsgQajQZ79uzB5MmTUVxcjC+++MKi/SUlJSE8PBy9evUya7uNGzfioYcewtChQ7F8+XK0bt0aWVlZWLNmDWbOnIkff/zRovLYUkBAAEJDQ6ulnz9/Hn5+foblkJAQw89r165FeXm5YTk3Nxe33XYbEhISDGn+/v42bb9EtRJE5FSGDh0qIiMjhUqlqjFfr9cbfv74449Fx44dhUKhEJGRkWLatGmiqKjIkL9kyRLh7+8v/vjjD9GuXTvh7e0thg4dKtLT0w3raDQa8fTTTwt/f38RFBQkXn75ZTFhwgQxcuTIWsv5008/ibi4OOHu7i6io6PFRx99ZMjr37+/AGD46t+/f437uFk+Y1JTU8WIESOEt7e38PX1FQkJCSIzM9OQP3HixGrlfPbZZysdr3///mL69Oni+eefF8HBwaJfv37VjjNr1qxK5b0ZGnU6nZgzZ45o1qyZcHd3F7fddpv4/fffDdslJycLAOLHH38U/fv3Fx4eHuLbb7+t8bNER0eLTz75pFJaTEyMGDNmjNHPX5uaPvvkyZNFWFhYrdvdLPOtXxMnThQTJ06slBYdHW1SOYqLi0WTJk3EqFGjaszPz883aT9VHTt2TMTHxwsfHx/h6+srunTpIg4dOiRUKpXw9fUVa9asqbT++vXrhUKhEEqlUqjVajF9+nQRFhYmPDw8RHR0tHjvvfcM6wIQv/zyS6XtExMTBQCzyvvJJ58IX1/fGn9XazoGka3x9iuRE8nNzcWWLVswffp0eHt717jOrVeRpFIpPv30U5w6dQrLli3Djh078PLLL1dav6SkBB999BG+//577N69G1euXMGLL75oyJ83bx6WL1+OJUuW4M8//4RSqaxzLNDhw4fxyCOPYMyYMTh58iRmz56NmTNnYunSpQAqrmhMmTIFPXv2REZGBtauXWt2XQghMGrUKOTl5WHXrl3YunUrkpKSLLqqtWzZMri5ueHPP/+s8Zbniy++iCVLlgAAMjIyDLfPFi5ciI8//hgfffQRTpw4gaFDh2LEiBG4ePFipe1feeUVPPPMMzh79iyGDh1qcrk8PT2h0WgAAHv27IGPj0+tX++9916t+/Py8jLsz5ioqCj8/PPPACquSmVkZGDhwoVYuHAh3n77bURGRiIjIwOHDh0y6TNs3rwZOTk51drdTbeOW6vr8916y/vRRx9FZGQkDh06hMOHD+PVV1+FXC6Ht7c3xowZYzhfNy1ZsgQPP/wwfH198emnn2L9+vVYvXo1zp8/jx9++AEtWrQw6fPccccdCA8Px8CBA5GYmFjrut988w3GjBlj9HeVyN54+5XIiVy6dAlCCMTGxlZKb9KkCcrKygAA06dPx7x58wAAzz33nGGdli1b4p133sG0adOwePFiQ7pGo8GXX36J1q1bAwD+85//4O233zbkf/bZZ3jttdfwwAMPAAA+//xzbNq0qdZyzp8/HwMHDsTMmTMBAG3btsWZM2fwf//3f5g0aRKCgoKgUCjg7u6OsLCwWvdVWFgIHx8fw7KPjw8yMzOxbds2nDhxAsnJyYiKigIAfP/99+jQoQMOHTqEbt261brfW7Vp0wYffvih0XwfHx9D5+PW8n700Ud45ZVXMGbMGAAVHeDExEQsWLAAixYtMqz33HPP4cEHHzS5PFqtFj/88ANOnjyJadOmAQDuvPPOOh9MCAoKMpp38OBBrFixAgMHDqx1HzKZzLCf0NDQSp0uX19fyGSyOs/ZrW52cNu1a1fnunV9Pi8vL8PPV65cwUsvvWTYb0xMjCFv8uTJ6NWrF9LT0xEREYGcnBxs3LgRW7duNWwbExODPn36QCKRIDo6us6yhYeH4+uvv0bXrl2hVqvx/fffY+DAgdi5cyf69etXbf2DBw/i1KlT+Oabb+rcN5G9sFNH5ISqjuk6ePAg9Ho9Hn30UajVakN6YmIi3nvvPZw5cwZKpRJarRZlZWUoLi42XD1QKBSGDh1Q8ccrKysLQEWH6vr16+jevbshXyaToWvXrtDr9UbLd/bsWYwcObJSWu/evbFgwQLodDrIZDKTP6uvry+OHDliWJZKpYZjREVFGTp0ABAXF4eAgACcPXvWrE7dnXfeafK6NymVSqSnp6N3796V0nv37o3jx49btP9XXnkFb775JtRqNdzd3fHSSy/hySefBFDRoWnTpo1ZZdy4cSN8fHyg1Wqh0WgwcuRIfPbZZ2bto76EECava87nmzFjBiZPnozvv/8egwYNQkJCgqEdd+/eHR06dMB3332HV199Fd9//z2aN29u6HxNmjQJgwcPRmxsLO655x7cf//9GDJkSK3Hi42NrfTPVM+ePZGWloaPPvqoxk7dN998g44dO1b63SFyNN5+JXIibdq0qfbEHQC0atUKbdq0qXQlIzU1Fffddx86duyIn3/+GYcPHzZcPbr1FlzVQfsSiaTaH+Kqnci6/lALIczexhipVIo2bdoYvlq1amX0GFXTpVJptePWdPuxPrfHavqcVdNM3f9LL72EY8eOITU1FSqVCh9++KGhE2vJ7dcBAwbg2LFjOH/+PMrKyrB27doaB//bUtu2bQGgWputiTm3X2fPno3Tp09j2LBh2LFjB+Li4vDLL78Y8idPnmy4BbtkyRI89thjhvPSpUsXJCcn45133kFpaSkeeeQRPPzww2Z/trvuuqvarXagYkjDqlWrMHnyZLP3SWRLvFJH5ESCg4MxePBgfP7553j66adr7Sz8/fff0Gq1+Pjjjw0dg9WrV5t1PH9/fzRt2hQHDx5E3759AQA6nQ5Hjx7F7bffbnS7uLg47N27t1LaX3/9hbZt25p1la42cXFxuHLlCtLS0gxX686cOYPCwkK0b98eQMWTiadOnaq03bFjx4w+fWoOPz8/REREYO/evZWu1Pz1118WX51p0qSJ0atVltx+9fb2NvvqHgDD0786nc7sbasaMmQImjRpgg8//LBSp+umgoICwy1ec26/AhUdxrZt2+L555/H2LFjsWTJEsMwgfHjx+Pll1/Gp59+itOnT2PixImVtvXz88Po0aMxevRoPPzww7jnnnuQl5dX6y3sqo4ePYrw8PBq6atXr4Zarcb48eNN3heRPbBTR+RkFi9ejN69e+POO+/E7Nmz0blzZ0ilUhw6dAjnzp1D165dAQCtW7eGVqvFZ599huHDh+PPP//El19+afbxnn76abz//vto06YN2rVrh88++wz5+fm1TuvxwgsvoFu3bnjnnXcwevRo7Nu3D59//nmlsXz1NWjQIHTu3BmPPvooFixYAK1Wi6eeegr9+/c33O68++678X//93/47rvv0LNnT/zwww84deoU7rjjDquU4aWXXsKsWbPQunVr3H777ViyZAmOHTuG5cuXW2X/t7Lk9quloqOjIZFIsHHjRtx3333w8vKqNK7RHN7e3vjf//6HhIQEjBgxAs888wzatGmDnJwcrF69GleuXMGqVasAmH77tbS0FC+99BIefvhhtGzZElevXsWhQ4fw0EMPGdYJDAzEgw8+iJdeeglDhgxBZGSkIe+TTz5BeHg4br/9dkilUqxZswZhYWG1Tja8YMECtGjRAh06dEB5eTl++OEH/Pzzz4aHSm71zTffYNSoUQgODjaxlojsg7dfiZxM69atcfToUQwaNAivvfYabrvtNtx555347LPP8OKLL+Kdd94BANx+++2YP38+5s2bh44dO2L58uV4//33zT7eK6+8grFjx2LChAno2bMnfHx8MHToUHh6ehrdpkuXLli9ejVWrVqFjh074q233sLbb7+NSZMmWfqxq7k5I39gYCD69euHQYMGoVWrVpXmPBs6dChmzpyJl19+Gd26dUNRUREmTJhgtTI888wzeOGFF/DCCy+gU6dO+OOPP7B+/fpKg/YbombNmmHOnDl49dVX0bRpU/znP/8xuu7NCaJrM3LkSPz111+Qy+UYN24c2rVrh7Fjx6KwsBDvvvuu2eWTyWTIzc3FhAkT0LZtWzzyyCO49957MWfOnErrPf744ygvL8e///3vSuk+Pj6YN28e7rzzTnTr1g0pKSnYtGmT4Yp2TcrLy/Hiiy+ic+fO6Nu3L/bu3Yvffvut2gMwFy5cwN69e/H444+b/bmIbE0iLB0IQ0QuSa/Xo3379njkkUcMHUhqvGbPno2dO3di586dji5KNcuXL8ezzz6L9PT0GieUNkYikeCXX37BqFGjbFY2exyDqCpeqSNq5FJTU/Hf//4XFy5cMEyxkZycjHHjxjm6aOQENm/eXOt0MI5QUlKC06dP4/3338eTTz5pVofuprFjx1a6ZWstU6dOtfhWNlF98UodUSOXlpaGMWPG4NSpUxBCoGPHjvjggw9qnMaBGoapU6fihx9+qDFv/PjxFo29dCazZ8/G3Llz0a9fP6xbt87sTtSlS5cAVNzmbdmypVXLlpWVBaVSCaBi+iBOTEz2xE4dEZGLubVjUZWfn5/dpz0hIvtgp46IiIjIBXBMHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiagQmTZqEDz74wNHFIBtip44IQIsWLaBQKODj4wMfHx+0aNHC0UUiogaOcYXsjZ06oht27NgBlUoFlUqFlJSUavkajcYu5bDXcYjI9pwlrlDjwE4dkRE7d+5Eu3bt8MYbb6BJkyZ47733kJeXhzFjxqBJkyZo06YN/ve//xnWnzRpEp577jn0798fPj4+GDduHDIzMzFo0CD4+/vj0UcfhU6nq/FYLVq0wIcffojY2FjExcXZ6yMSkZ3ZM64kJSWhV69e8PX1xYMPPoiSkhJ7fUxyEDdHF4DImV26dAkKhQIZGRnQ6XR47LHH4ObmhitXruDSpUsYNGgQ2rVrhz59+gAA1qxZg+3btyMkJARdunTB/fffj++++w4RERG48847sXHjRowcObLGY/3666/Ys2cP/Pz87PkRicjO7BVXxo0bhyFDhmDnzp3YtGkTEhIS0KVLF3t/XLIjduqIbhg8eDBkMhkAYNq0aRg6dCgUCgVeffVVyGQySKVS/Pzzz0hKSoJCoUDnzp3x+OOPY+XKlYbgO3r0aLRr1w4AEB8fDx8fH8OVt4EDB+LEiRNGO3XPP/88QkND7fBJicheHBVXUlNTcerUKezZswfu7u4YNWoUevToYcdPTo7A269EN2zduhUFBQUoKCjA+++/DwAIDw83BOTs7GzodDpERkYatomOjkZ6erph+dZOmZeXF0JCQiotFxcXGz3+rfslItfgqLiSkZGB0NBQuLu7G9KioqKs98HIKbFTR1QLiURi+DkkJARSqRRXr141pF25cgURERFWPxYRuS57xJXw8HBkZWWhvLzckJaWllavfZLzY6eOyEQymQwPPvgg3njjDZSWluLUqVP45ptvMGbMGEcXjYgaKFvFlejoaMTFxeG9996DRqPB+vXrcfDgQSuVmpwVO3VEZli0aBHKysoQGRmJESNG4O2330bfvn0dXSwiasBsFVdWrFiBzZs3IygoCEuXLsUDDzxghdKSM5MIIYSjC0FERERE9cMrdUREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgFsFNHRERE5AL4mrB60uv1SE9Ph6+vLyePJWrkhBAoKipCREQEpNL6/8/M+EJEgOmxhZ26ekpPT+erV4iokrS0NKu89o3xhYhuVVdsYaeunnx9fQFUVLSfnx8AQKPRYMuWLRgyZAjkcnmlZQCV8qyt6rGtvV1t6xnLMzXd3GVrcmS91ZZfU7opaY29zRnLs3WbUyqViIqKMsSF+qoaX3ieneM8m8uWdefI2MK4bL+4bGpsYaeunm7eEvHz86vUqVMoFPDz8zOcyJvLACrlWVvVY1t7u9rWM5Znarq5y9bkyHqrLb+mdFPSGnubM5ZnrzZnrVulVeMLz7NznWdr14El2zkytjAu2z8u1xVb+KAEERERkQtgp46IiIjIBbBTd8OMGTPQt29fPPPMM44uChEREZHZ2KkDcOTIEahUKuzZswcajQaHDh1ydJGIiIiIzMIHJQDs27cPgwYNAgAMGjQI+/fvR7du3RxcKiLjhACKyrQoLtIgv6QcOcpS/J0tQe7+K1CqdchVqXHmkhS//nAEao0eGdkyfJ26D2qtQJlGByEAqRSQSiSQSSSQSiXwksvg5+UGP085fD3dEKBwR1M/T0T4eyI8wAsRAZ4I8fHgfGlERE7K5Tp1s2bNwpo1a3Du3DmsWLECY8aMMeRlZ2dj0qRJSExMRFRUFBYvXoyBAweioKAArVu3BgD4+/vj9OnTjio+NVJqrR4FauBsRhGUaj1yi9XILy5HdlEZjl2W4vdVx1FQqkFecfmNLxn0+3dU2YsMuHTulmUpkJNz42cJUFRU73L6erihTVMftA31RUxTH3SI8Ef7pop675eIiOrP5Tp1MTExWLhwIWbOnFktb/r06YiIiEBOTg62bNmChIQEJCUlISAgAEqlEkDFXDABAQF2LjU1NBqdHmUaHVSlauSWARezVNAKCco0epRqdCi78VVUpkVRmRaFJWqcvCzFtjUnUFyuR1GZBkVlWihLNVCWaaFSawG4AUf21XA0KXD9epW0iqtlnnIpAhXu8Pd0g65UidZR4Qjy8YCfhwwZqZfQ/fZO8JDLcPrEMfTqcSe8Pd3hKZdBJpFAJwT0egG9AHR6gVKNtlKZ8ovLkaEsQ0ZBKTIKy3BdWYYitRZHrxTg6JWCf0onAcK9ZNinPYNuLYLRJ6YJmvp52qrqiYjICJfr1I0fPx4AMHfu3ErpKpUK69atQ0pKChQKBUaNGoX58+djw4YN6NmzJ7766is88sgj2LZtGyZNmmR0/2q1Gmq12rB8szOo0Wig0WgMPxv7/mniZRy9JMWun09CIv3nNpYQlY9TabFK5q2Lokq6XuiRkSHF1tXHK90mq33/FdtlZkrxe+ExSI2US6DitUVZ16X4reBo5f0DEHqB61lSbMg/Aonkn+Gaer0eWVlSrM87UmkbnV4gO1uKX3OPQCqVQK/X31g+DEgkEHqB7Bwpfsm5sSwq1v85+29Ibr4mpdrn+iehts8sBKDT66HVC+j0AhqdHvkFMnye9Cd0+oqy6fR6aG7k6/TCsG65tmK7f7gBR/9C3aTA9cxacgUCvT0Q7O2OQG85ghTu8PeSIT/zKu7sGIsmvp4I8naHr7sUJ//eh+FD74avoqLzpNFosHXrVgweHGeYD2nr1osYfFtTAID8mkDvlgH1mkeqXKtHSm4xLmYV42KWCheuq3AqXYmMwjJcK5Fg1aGrWHXoKgAgJtQbvVsHo0+bYPRoGQRPuaza/qr+fhhT23rm5pnyO1rb97qYup4xdcUXU8pX3zIYY25dmLtdQzrP5rJl3dW1jrF8U+qtpjR71p0j21xt+daqO1PKaO56EiGq/ulzDfHx8Zg6darh9uvRo0cxdOhQZGVlGdZ5+umnoVAoMG/ePDz33HM4fPgwbrvtNnz++edG9zt79mzMmTOnWvqKFSugUNR9G+q9YzJcL+WYJFfiLhWQSwG5FHC/8b3iS8BTBni5oeK7DPByq5LmJuAlA3zkFcvSBtg0CtRAqkqClCIJLioluFoMCPzzQdylAnEBAp2DK757udy/kv8oKSnBuHHjUFhYaJhg1Bz1jS9E5JpMjS0uHF4rU6lU1SrCz88PBQUFAIAFCxaYtJ/XXnsNM2bMMCzffHXHgAEDDPvXarVITEzEgAED4ObmVmk5NyADR06fR+tWrSGVSlF1zHmlxSqZEuNZhjy9Xo9Lly4hJibG8NLf2ra7mavX63Dp4sWK7WQyo9vpdXpcuHgBbdu2hUwqq5Sn0+lw4cIFxMbG/nNsScU25y+cR2zbWMhk/1yx0et1OH/+PGJjK9L1ej3OnzuH2Hbt4CaTQqfT49y5c2jXrt2NfB3OnTuH9u3aGcpYd71IjOa5SSWQ3fiSCD1OnzqJLrffBg+5G2RSCdxk0krruN34ksuk8JBL4SWXQir02Llzp+FcG1O1TZiaX1O6KWm3LgOo9dj1dfNYzz0cDzc3NxSUaLA/JR/7Ludhz6U8ZCrVOJYnwbG8ijrv2SoQ93VoigExgTjw5+561Z25ebXVkynLdbl5Zc1SdcUXZzjP5u7f1O0a0nk2ly3rzpGxxdZ158g2V1u+I+KyqbGFV+puXKkz16JFi7Bo0SJDR4b/SRNVJwRwtRg4kSfF8TxJpavU7lKBTkEC3UIE2voLyBrgVcqq6nul7ibGFyK6lamxpdF06lQqFYKDg5GamoqwsDAAQL9+/TB58mRMmDDB4uMolUr4+/sjIyPDpCt1QOP7b9rUdP5H6Bz/EZrLnLq7nFOMzWeysf5EJlLzSg3pTXzcMbxTUyR0iUCL4Mqdl4Z0BUepVCI8PLzenbpb93drfGko59mS7RrSeTYXr9RZhnH5H6bGFpfr1Gk0Guh0OgwZMgRTpkxBQkIC3N3dIZVKkZCQgKCgICxYsABbt27FpEmTkJSUhMDAQLOPw/+kiSwnBJCqAv7OluJIrgTF2n8u08X46dE7TKBToIBbA5senVfqiMgWTI4twsVMnDhR4MbDmDe/EhMThRBCZGVliXvvvVd4eXmJmJgYsXXr1nofr7CwUAAQOTk5ory8XJSXl4vi4mLx66+/iuLi4mrLVfOs/WXp/k3drrb1jOWZmm7usqvUm7l1Z0paQ2pz+coisen4VTHxm/2ixasbRfQrFV9d3t4i3v/ttDh/NcfsNmdJPVmjzeXk5AgAorCwsN6xpab40pDPsy1ii6POszPVnSNji63rjnH5ny9TY4vLPSixdOlSLF26tMa8kJAQbNq0yb4FIqJaucukGNQ+FIPah+JaQSlW/30NPx25hqwiNb7cnYyvdiejY6AUATH56NkmhG+0ICIywuVuv9oLb48Q2Y5OD5zKl+DP6xKcL/znHmykt0D/cD26BDvnrVnefiUiW2j0D0rYCx+UqDuPD0o0rAG55rJ13V3IVOL/1h3C4Vw3lGn1AIBgb3eMvTMCD93eFCcO/uk0A+j5oITl2/FBCcu244MSlm/XkOJyo31Qwl74nzSRfRVrgH1ZEuzOlKKwvOIWrJtEoHuIwIAIPUK9HFxA8EodEdlGo31Qwt74oIRlg0otGYDLAbn2GZDr7HVXXFom1v6dKoZ/ttvwUEWLVzaKJ787JA4nZ1tcT9Zoc3xQwja/I3xQgg9K2LvN2bru+KCEk5PL5dXeq1k1rerP9XkPpyXlseZ2ta1nLM/UdHOXrcmR9VZbvintq6Y0V2xzcjnwQNfmeKBrc+y7lIV3fz6A0/lS/HH6Ov44fR292wRjWv826B7tZ3T/tmpz9mqXjeE8WyPPmWJLffZvynaOiC2My/aLy6Z+fnbqrMSUl2031pdum5rOF0c7x4ujzeXIurstwgdPtNOjxW09sGTfVWw4mYk/L+Xiz0u5iAv3QXcfCe5Wlxvdl7XbnC3r2JQYY+syWLJ/W8YWY3nOFFvqs39TtnN0bGFcNj2tPr+vpq7HMXUW4pgXIueTpwYS06XYlyWBRl8x7q6Jh8CgZnp0C7H9E7McU0dEtsAxdXbCMXWWjT+wZKwGx27YZ+xGQ6o7Y3mZ+Sox77dTov0bGwzj7nq+t038b+cFsWYtx9S5ynm25PfBGufZmeqOY+ps0+ZsXXccU+fkGuv4JnPyOKauYYzdsJQztbmmAXI8P7gtWpRdQn5QHP73ZyrSC8vwzu8X4C+XIS8oHf/q2dKwDcfUWV4Wa2/HMXWWbccxdZZv1xDiMsfU2RnH1HFMXX3Wc6axG+ZyxjZ3M81DBvyrezOM6x6FNYev4es9ychUqvHe7+fx1e5kTLorEk11HFNnahks2T/H1HFMnaUYl6sfsy4cU2chjnkhani0euBAtgTbrkmRp64Yc6dwE4gP16NfmIBXPf/N5Zg6IrIFjqmzE46ps2z8gSVjNTh2wz5jNxpS3Vk61qpAWSRW7E8WfedtN4y56zjrD/HBxpNi+RqOqXOV8+wMscXWdccxdbZpc7auO46pc3Ic31R3HsfUNYyxG5ZyxjZnLE/h6YGxPVpg1G3heO+Hzfir0A9J2cX4Yk8qPKQypClS8ET/NvBxr3nMXW1ltAWOqbMsz5liS332zzF1jMumfn4nfCU2EZF9uMmkuDNEYNN/emHRuC5o19QHar0EX+xORp95OzB/60UU22aYFRGR1fFKnZXwQQk+KFGf9ZxpQK65nLHNGcszVj86nRZD2jdB/9Z++GT1dvxZ6I9zmSp8sTsZHlIZ2nfNR8fIQJM/k7XxQQk+KGHpOnxQwvL1nCku80EJG+NAZiLXJQRwKl+C39Ok0Arg1dt0kErq3o4PShCRLfBBCTvhgxKWDSq1ZAAuB+TaZ0BuQ6o7Ww+gV6lUYtlqPijh6ue5IdcdH5SwTZuzdd3xQQknx0HrdefxQYmGMSDXUs7Y5ozlmdPG/N35oERtZbH2dnxQwrLt+KCE5ds1hLjMByWIiIiIGhF26oiIiIhcADt1RERERC6AY+qshFOacEqT+qznTI/Om8sZ25yxPFu3OU5pYvl2Dek8m4tTmliGcbn6MevCKU0sxCkHiKgqTmlCRLbAKU3shFOaWPb4tyWPyvPRefs8Ot+Q6s7ZprrglCaN4zw7U91xShPbtDlb1x2nNHFynF6i7jxOadIwHp23lDO2OWN5tmpznNKk/ts1hPNsKU5pYhnGZU5pQkRERNSosFNHRERE5ALYqSMiIiJyAezU3ZCWloYuXbrA09MTWq3W0cUhIiIiMgs7dTeEhIRgx44duOuuuxxdFCIiIiKz8enXGzw9PeHp6enoYhARERFZpMFeqZs1axbi4uIglUqxatWqSnnZ2dkYNmwYFAoFYmNjsX37dgeVkoiIiMg+GuyVupiYGCxcuBAzZ86sljd9+nREREQgJycHW7ZsQUJCApKSkqBWqzFmzJhK6/r4+GDjxo32KjYRERGRTTTYTt348eMBAHPnzq2UrlKpsG7dOqSkpEChUGDUqFGYP38+NmzYgAkTJmDnzp31Oq5arYZarTYsK5VKAHz3a215fPdrw3rHoLmcsc0Zy3P2d7/WFV94np3jPJuL7361DONy9WPWpcG/+zU+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P2VlZbj//vtx+PBhdOnSBbNnz0bfvn2rrTd79mzMmTOnWjrfzUhE9X33K+MLEdXE1NjSYK/UGaNSqap9YD8/PxQUFNS6naenJ7Zt21bn/l977TXMmDHDsKxUKhEVFYUBAwYYjqvVapGYmIgBAwbAzc2t0jKASnnWVvXY1t6utvWM5Zmabu6yNTmy3mrLryndlLTG3uaM5dm6zd28smapuuILz7NznGdz2bLuHBlbGJftF5dNjS28UmehRYsWYdGiRdDpdLhw4QL/kyaiel+pu4nxhYhuZWpscblOnUqlQnBwMFJTUxEWFgYA6NevHyZPnowJEyZY/fhKpRL+/v7IyMjglTpeqbN4PWf6j9BcztjmjOXZ40pdeHh4vTt1t+7v1vjC8+wc59lcvFJnGcblf5gaWxpsp06j0UCn02HIkCGYMmUKEhIS4O7uDqlUioSEBAQFBWHBggXYunUrJk2ahKSkJAQGBlrt+PxPmoiq4pU6IrIFl79SN2nSJCxbtqxSWmJiIuLj45GdnY2JEydi586diIyMxOLFizFo0CCblINX6urO45W6hvUfobmcsc0Zy+OVOsvxPFuOV+osw7j8D6e9UldaWoq33noLa9asQV5eHpRKJTZv3oyzZ8/iueees2dR6oX/SRNRVbxSR0S2YHJsEXY2adIk8eijj4qTJ0+KgIAAIYQQ6enpIjY21t5FsYrCwkIBQOTk5Ijy8nJRXl4uiouLxa+//iqKi4urLVfNs/aXpfs3dbva1jOWZ2q6ucuuUm/m1p0paY29zVlST9Zoczk5OQKAKCwstEl84Xl2jvPsTHXnyNhi67pjXP7ny9TYYvcpTX777TekpaXBw8MDEokEABAeHo6MjAx7F4WIiIjIZdj99mvbtm2xY8cOREZGIigoCHl5eUhOTsZ9992Hs2fP2rMo9cLbI0RUFW+/EpEtOO3t188//1zcfvvtYs2aNcLPz09s2LBB9OjRQ3z55Zf2LopV8ParZZeqLbmsz8v89rnM35Dqztluy/H2a+M4z85Ud7z9aps2Z+u6c5nbr9OnT0doaCi++eYbREZG4tNPP8Xzzz+P0aNH27soRERERC6jwU5p4mi8PUJEVfH2KxHZglPNU/fhhx+atN7LL79s45JY3815pHJycgwVrdFosHXrVgwePBhyubzSMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2brNKZVKNGnSxOrz1N2MLzzPznGezWXLunNkbGFctl9cNjW22OX2660PQJSUlOCXX35Bjx49EBUVhbS0NBw8eBAPPvigPYpiM3K5vNqJqZpW9WdbBI/67t/U7Wpbz1ieqenmLluTI+uttnxT2ldNaY29zRnLs1Wbs1e75Hk2Lc+ZYkt99m/Kdo6ILYzL9ovLpn5+u3TqlixZYvj5oYcewpo1azBy5EhD2vr16/Hdd9/Zoyg2o9FooNFoDD/X9r3qz9YuhyX7N3W72tYzlmdqurnfrcmR9VZbfm1tp7a0xt7mjOXZus3Zso5NiTG2LoMl+3fF82wuW9ado2ML47LpafX5fTV1PbuPqfP390dubm61V24EBwejsLDQnkWpF455IaKqOKaOiGzBaac06dWrl5g1a5bQaDRCCCE0Go2YM2eO6Nmzp72LYhWc0sSyx78teVSej87b59H5hlR3zjbVBac0aRzn2ZnqjlOa2KbN2bruXGZKk++//x7jxo3Dxx9/jNDQUGRlZSEuLg7Lly+3d1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e0awnm2FMfUWYZx2cnG1N2qVatW2L9/P65cuYKMjAyEh4ejefPm9i4GERERkUuxe6cuKysLAODp6YmWLVtWSgsNDbV3cayGD0rwQYn6rOdMA3LN5YxtzlgeH5SoXxks2b8rnmdz8UEJyzAuVz9mXez+oIRUKoVEIsHNw0okEkOeTqezZ1HqhQOZiagqPihBRLbgtA9KVJWRkSGmT58uvvvuO0cXxSJ8UMKyQaWWDMDlgFz7DMhtSHXnbAPo+aBE4zjPzlR3fFDCNm3O1nXnNA9KHDt2DLfffruFfc3qwsLCMH/+fLRq1Qr/+te/rLZfe+Og9brz+KBEwxiQaylnbHPG8vighPXKYu3tGsJ5thQflLAM47LpsUVq0lq3GDFiBOLi4vDOO+8gKSnJ3M1rdODAAWi1Wqvsi4iIiKgxMvtK3ZUrV7Bnzx6sXLkSPXv2RMuWLTFu3DiMHj0aYWFhdW7fvn37SuPoSkpKkJubi4ULF5pbFCIiIiK6waKnX/v27Yu+ffvis88+w+bNm/HSSy/hxRdfRHx8PP79739j9OjRkEprvgj45ZdfVlr29vZG27ZtrfLyayIiIqLGyuIpTY4fP45Vq1Zh5cqVCAwMxAcffIBmzZrhiy++wMqVK7F+/foatzt06BBefPHFaunz58/HjBkzLC2Ow3FKE05pUp/1nOnReXM5Y5szlscpTepXBkv274rn2Vyc0sQyjMvVj1kXs6c0efvtt7Fy5UqUlZVh7NixGD9+POLi4gz5paWlCA4ORklJSY3b+/n5QalUVksPDg5Gbm6uOUVxKE45QERVcUoTIrIFm01pMmXKFLFr165a1zl69Gi1tB9//FH8+OOPwsvLS6xevdqw/OOPP4p58+aJNm3amFsUp8ApTSx7/NuSR+X56Lx9Hp1vSHXnbFNdcEqTxnGenanuOKWJbdqcrevOaaY0+frrr+tcp6YpT7744gsAQHl5ORYvXmxIl0gkCA0NxdKlS80tilPh9BJ153FKk4bx6LylnLHNGcvjlCbWK4u1t2sI59lSnNLEMozLTvju18TERADAu+++izfffNNehyUiIiJqFOzSqcvJyUGTJk0AAE888YThXa9VNeR3vxIRERE5kl06dS1btkRRURGAijdI3Pru15skEkmDevcrERERkTOxqFOXmpqKn376Cenp6YiIiMCDDz6Ili1bGl3/ZocOAPR6vSWHtLldu3bh1VdfhUwmQ/fu3TF//nxHF4mIiIjIZGa/Jmzjxo3o3LkzDh8+DHd3dxw5cgR33HEHNmzYYIvy2U2bNm2wc+dO7N27F5mZmTh58qSji0RERERkMrOv1L322mtYt24d4uPjDWm7d+/GtGnTMHz48Dq3T0tLw9tvv43jx49DpVJVyjtz5oy5xbGaZs2aGX6Wy+WQyWQOKwsRERGRuczu1F27dg29e/eulNazZ0+kp6ebtP3o0aMRExODOXPm1GsyzVmzZmHNmjU4d+4cVqxYgTFjxhjysrOzMWnSJCQmJiIqKgqLFy/GwIEDTdrvkSNHkJOTU2lCZSIiIiJnZ3Kn7urVq4iMjESPHj0we/ZszJ49G3K5HBqNBnPmzEGPHj1M2s+pU6ewd+9eo++GNVVMTAwWLlyImTNnVsubPn06IiIikJOTgy1btiAhIQFJSUlQq9WVOn8A4OPjg40bNwIAMjMz8cwzz+Dnn3+uV9mIiIiI7M3kTl1cXByUSiW++uorjB07FkFBQQgNDUVWVhY6deqEVatWmbSfe+65B/v370evXr0sLjQAjB8/HgAwd+7cSukqlQrr1q1DSkoKFAoFRo0ahfnz52PDhg2YMGECdu7cWeP+ysrKMG7cOHz22Wdo2rRpvcpGREREZG8md+puTkHSvHlz/Pnnn0hLSzM8/RoVFWXyAb28vHDPPfdgyJAh1ealu/VNE5a6ePEi/P39ER4ebki77bbbcPr06Vq3W7JkCc6cOYPnn38eAPD++++jZ8+e1dZTq9VQq9WG5ZvvsTXlZduN9aXbpqbzxdHO8eJoczljmzOWZ+s2V986riu+8Dw7x3k2ly3rztGxhXHZ9LT6/L6aup5EVJ0wzghfX1+cOXOm2vxyt2revHmd+5kzZ47RvFmzZplSlEri4+MxdepUw23VPXv24LHHHsOlS5cM67zxxhsoKCjAokWLzN5/VbNnz67xM/CF20Rk8ku3jWB8IaKamBpbTL5SV1xcjNjYWKOdOolEgpKSkjr3Y0nHzRw+Pj6G/25vUiqV8PHxscr+X3vtNcyYMQP//e9/8d///hc6na5SB5KIyFKML0RUH2Zdqbt1EmFLffjhhzWme3h4IDIyEgMHDkRAQIDJ+6t6pU6lUiE4OBipqakICwsDAPTr1w+TJ0/GhAkT6l3+qpRKJfz9/ZGRkWHoPWu1WiQmJmLAgAFwc3OrtAygUp61VT22tberbT1jeaamm7tsTY6st9rya0o3Ja2xtzljebZuc0qlEuHh4RZfqatpf7fGF55n5zjP5rJl3TkytjAu2y8umxpbTO7U+fn5VbsCZokxY8bgl19+QY8ePRAZGYmrV6/iwIEDGD58ONLT03HmzBmsXbsWd999d6370Wg00Ol0GDJkCKZMmYKEhAS4u7tDKpUiISEBQUFBWLBgAbZu3YpJkyYhKSkJgYGB9S7/TYsWLcKiRYug0+lw4cIF3h4honrffr2J8YWIbmVqbLH7lbqHH34YkyZNwv33329I++2337B06VKsWbMGy5cvx//93//h2LFjte5n0qRJWLZsWaW0xMRExMfHIzs7GxMnTsTOnTsRGRmJxYsXY9CgQfUue01u/iedk5NjqGiNRoOtW7di8ODBhmlfbi4DqJRnbVWPbe3talvPWJ6p6eYuW5Mj6622/JrSTUlr7G3OWJ6t25xSqUSTJk2sfqXuZnzheXaO82wuW9WdRqfHtTwV1m/fi+axnaEq16OwVIvCUg0KSjUoUWtRrtUhMysbfgFB0ImKoVLuMincpEB+bjaiIsIR5O2OAIUcvh4ypF06h0G9uqJFiC+a+nlCr9MyLjtBXDY1tph8PdMaHTqg4kP8+OOPldKGDh2KcePGAQDGjh2LadOm1bmfpUuXYunSpTXmhYSEYNOmTfUuKxERkSPpBZCWX4qU/AJcylIhKbsYyTnFSC8sQ1aRGhWXZdyA07W9kUkKFBTUmH4i73qVNBm+v3QMAOAmlSDc3wPeeimO4xLiIvzRpokXdM75CneCGVfqrKVnz56477778Nprr8HNzQ06nQ7vv/8+Nm7ciP379yM1NRV9+/bFlStX7Fkss/H2CBFVxduvVB9CANllwBWVBFdUEqSqJLhWAmj0EqPbyCQCge6AvzvgLRfwdgMUboCXm4CnDHCTADJpxXepBBAAtHpAJyq+l+uBEq0ExVqgRAOotEBBuQT5akAnaj6uXCoQ7SPQ2hdo7SfQwlfAg2/WtCmr3361lgsXLmDcuHG4cOGCYfLi2NhYrFixAjExMTh48CCuXr2KBx980J7FshgflKg7jw9KNKwBueZyxjZnLI8PSliO59lyxvavFwIXs4pxMCUf+5MLcPhKAZRl2mrbu8skaNlEgdZNvNE6xBstmyjQzN8T4f6e8POQYNfOnVaPLRKpDNkqNVJzivHHX0chCYzEhawSXMhSQaXWVTqGTCLQo2UQBrRtgvi2TdAswNOm9Wat7RpSXLb6gxLWlpKSguvXryMsLAzR0dGOKEK98D9pIqqKV+qoLoXlwJl8Cc4VSHBRKUGxtvLVMDeJQKQ30NxHGL5CPCuusjkDIYDrpcDlIgmSlBVf+eWVCxfpLdAtRI8uwQJ+7g4qqItx2it1N5WUlCA3N7fSvHemTF7sbPigRN15fFCiYQ3INZcztjljeXxQwnI8z5YRQuBEWj6++f0AruoDcDK98vh0hbsMXZsHoEfLINzVKgjtw3zh7iat83ObUje15VsjtsjlcpSXl2P5hm1QN4nF7kt5OJyaD/2NP+syqQS9Wwdh9J2RGNguFDIze6aMy/+w+oMS1nLy5ElMmDABJ06cAFDxJA4AuLu7mzR5sbOSy+XVTkzVtKo/2yLw1nf/pm5X23rG8kxNN3fZmhxZb7Xlm9K+akpr7G3OWJ6t2py92iXPs2l5jootQgicvFaIjScysPF4OtILywDIAFR06G6L9Mfd7Zqid5tgdI4MMHTijDGlXI6ILTeXm3oB9/VvjacHtUNecTl+O5GOn49cw7G0Auy+mIvdF3PRLMALE3pGY3S3KAQozLt8x7hsemyxe6du6tSpGDlyJPbt24fw8HBkZGTgrbfeQuvWre1dFKvSaPjuV2N5pqab+92aHFlvteXX1nZqS2vsbc5Ynq3bnC3r2JQYY+syWLJ/VzzPxly4XoSNJzPx28lMXMkrNaR7yaVo46PFI33aY2D7MIT4evyzkdBBo9HVsDfTyuXo2FL1u6+7BGPubIYxdzZDck4x1h5Nx49/X8W1glK8//s5fLLtAsbcGYkpfVsi9NZ6sPDz12c7R9edKWU0dz27334NCAhAXl4epFIpAgMDkZ+fj/LycrRq1QpXr161Z1HqhWNeiKgqjqlrfFQa4FC2BAeypcgo+ef2olwq0DFQ4I5ggfYBAu6N+OnQch1wJFeC3RlSXLtRR3KJQM+mAoOa6eHPcXd1Mjm2CDuLjo4Wubm5QgghOnToII4dOyauXLki/P397V0UqygsLBQARE5OjigvLxfl5eWiuLhY/Prrr6K4uLjactU8a39Zun9Tt6ttPWN5pqabu+wq9WZu3ZmS1tjbnCX1ZI02l5OTIwCIwsJCm8QXnmfnOM8lpWVi88lrYsqyg6L1a7+J6Fc2iuhXNoo2r/8mHl9yQKz9O1XkF5XYpe4cGVvM/WxqtVpsP5MuHli011Bnbd/YJD7YdFrk3VJfztDmbF13tootdr/9OnnyZOzatQsPPPAAnn32WfTt2xdSqRRTpkyxd1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e2c+Tyn5ZVgxcEr+PnwVWQVqQ3pnSP9kXBnFEZ0joC/wvzf77o4+5g6U8sIAHe3D8eAdmH481IuPtl2AYdT8/HFrmT8dCQdLw5pi4e7RlV7oIJx2YnH1L355puGn6dMmYIhQ4ZApVKhQ4cO9i6KVXFMHcfU1Wc9Zxq7YS5nbHPG8jimrn5lsGT/Df086/UCfybl4vsDV7DzQg5uDlgKVMgx8rZwPNSlGdqF+VY7tqnlr01DHFNnqh4t/LHy8Tux7Ww25m2+gNS8Erzy80ks+ysF74yIQ+dIf8blGo5ZF7uNqYuLi6tznTNnanvNiXPhmBciqopj6lxHiRY4mC3Bnkwpcsr+uXIU669Hr6YV4+XqeGiVTKTVA3syJdh8VYpSnQQSCPQNExjWXA/PRjwW8VZON0+dl5cXmjdvjkcffRT9+vUzTGVyq/79+9ujKFbFeerqzjM13dxla3JkvdWWX1O6KWmNvc0Zy7N1m+M8dZZv5yznOSVPjWX7r2D98XSUaipecurj4YYH74jAo92j0CrE2+TPbm4dWLKdI2OLteNyrkqN936/gPUnMgAAYX4euD+8BDNGD2r0cdnp5qnLysrC2rVrsXz5cixduhQJCQl49NFH0blzZ3sVwaZsdR/dmuWx5naWjHsxNd1aYzcswbEblnPGNmcsz1Ztzl7tkufZtDxTz6sQAucLJfh55QnsvphryI9t6osJvaIx6vZm8Pao/59LW9adI2KLtdtdWKAcn47rgoRu2Xjjl1O4kleC/yllyN94HrNHdISvp3n7d6W4bGrd2u3isa+vLyZOnIgtW7Zg3759iIiIwBNPPIFOnTo1qNuuRETkGjQ6PX45ehUjF+/H4jMy7L6YC6kEuLdjGH584i788VxfPNoj2iodOjJd35gQbH6uHx7vHQ0JBH4+ko57F+7BweQ8RxfN6TmkpXp4eMDLywuenp7Izc2FXq93RDGsypRBzI11MLOp6bYakGsKDsi1nDO2OWN5tm5ztqxjU2KMrctgyf6d8TznFZVi+zUJ3p+/B5nKiqdY3aUCD3eNxL/7tER0UMX4Ra1Wa8pHrJMt687RscVWcdlNArwwsBUUBUlYe80HV/NLMfrrfZjSpwWevbtNrW/hcMW4bOp6dhtTp1arsX79evzwww84evQoRo0ahXHjxuGuu+6yx+GtjgOZiagqPijh3ArUQGKGFPuyJFDrKsZ1+8oF+oXp0bupgLft7lpTPZRpgbUpUhzIrujItfARmNhWh6DaX0jhUpzuQYmAgACEhYVh7NixGDx4MNzcql8k7N69uz2KYlV8UKLuPFPTzV22JkfWW235NaWbktbY25yxPFu3OT4oYfl2tjzPl64X4u3V+3AoRwbtjbfNh3kJ/Gdwe4y6IxJSoWuwdefI2GLvuLzlzHW89stpKMu0CPCS48OHOmJAbIjZdWLqes4Ul53uQYmAgACo1WosXboUy5YtQ9W+pEQiweXLl+1VHKuz1eBIa5bHmttZMpjZ1HR7DMg1xpH1Vlu+PQfkWsoZ25yxPFu1OXu1S55n0/Iu55bh673nsfFEOvRCCkCgR8sgTO4TjeKLhzCsW3PDH1tzymgpW9adI2KLvePysNsi0TkqCNNXHMGJq4V44oejmBbfGi8Mbgs3WfXbsa4Ul02tW7t16lJSUux1KCIiasSOpRXgv+ekOLVvnyEtLkCPtx7ugbvahEKj0WDTJQcWkCwWFaTAmqk98f6mc1j6Vwq+2JmEo1fysWhcFwT7NKL7sUZw6kQiImrwhBD481IOxv13PxK+PohT+VJIJMCwTuFY99RdeLK9Hl2jAx1dTLICDzcZZo/ogEXjusDbXYb9l/Mw4vM/cSZd6eiiORyf0yYiogZLrxc4mSfBt18fxPGrhQAAN6kEXYN1eHtsX8RGBECj0SDlqIMLSlY3rHM4Ypr6YMp3fyM1twQPffEXPn7kNgxu18TRRXMYduqsxJTpBhrrtAOmpjvq0fn67NsVH503lzO2OWN5tm5ztqxjU2KMrctgyf5tdZ71eoEtZ7PweeIlnL8uA1AIDzcpHunaDBPvisTpg3sQFeBuVmxuiHXn6Nji6LjcMsgTPz3RA8+tPoE/k3Lx1PIjmNY3Gm2Fa8VlU9ez29OvroZTDhBRVZzSxPb0AjiRJ8EfaVJklFZMS+IhE+jTVCA+XA8/dwcXkBxCJ4D1qVLszKgYVdY5SI9/tdHD3UXeHWtybBFUL4WFhQKAyMnJEeXl5aK8vFwUFxeLX3/9VRQXF1dbrppn7S9L92/qdrWtZyzP1HRzl12l3sytO1PSGnubs6SerNHmcnJyBABRWFhok/jSmM/z2l9+FWsPJYvBH+8U0a9sFNGvbBQd3vpDfLDxpFi+xr7n2ZnqzpGxxdZ1Z8m+fzyQItq8/puIfmWjuH/hLpGeV+SUdWer2MLbr1bC6SXqzuOUJg3j0XlLOWObM5bHKU2sVxZrb1d1Pb1e4PdTmfjwuAwZ+08DAHw93PBYn5Z4vHdLKOTApk1Jdj3PluKUJpYxZ9+PdI9GVJAXHl96ECfTi5Dw9UEsfawb2oT6Wrx/Z4jLTjelCRERkan0eoFNpzLw6faLuHBdBUACX083/Lt3S/y7d0v4K/6Z4JXoVndGB+L5jjp8f8UXV/JK8eDiv/DVv+5Ez9bBji6azbFTR0RETkOnF/jjeDo+23GzMwf4erqhdxM15k4YgGA/ji2kuoV6Aauf6IHpK4/jcGo+Jnx7APMe6owHu0Q6umg2xXnqiIjI4XR6gSM5Etz/+V94euVRXLiugq+nG54bFIOdM/ri3igBPy/b3Rol1xPs7Y7lk3tgWKdwaHQCM1Yfx6LES9XeaOVKeKXuhvT0dDz88MNwc3ODn58fVq9ezafNiIhsTKcX+O1kBhZuu4CkbBmAYvh5uuHxPq0wqXcL+HvJeYuVLOYpl+GzsXcgMsgLX+26jP/bfB65qnK8Oay9o4tmE+zU3dC0aVPs3bsXUqkUs2bNwm+//YaEhARHF4uIyCXd7Mx9uv0iLmVV3Gb1kgk80b8NHu/XGn6evCpH1iGVSvDave0R6uuJdzaewbd/JiOvWI25I+McXTSrY6fuBpnsn8lsJBIJYmNjHVgaIiLXpNcL/HE6E59svYCLNzpzfp5ueKxXNMKLzuOhAa1t+gQqNV6P92mJYG93vLjmOH49lo5clRrDgxxdKutqsGPqZs2ahbi4OEilUqxatapSXnZ2NoYNGwaFQoHY2Fhs377dpH3u3bsXXbt2xbZt2xAdHW2LYhMRNUpCCGw9cx3DPtuLp5YfwcUsFfw83TBjcFvsffVu/GdAa3jxMgPZ2Kg7muG/E++El1yGPZdyseiMDPkl5Y4ultU02E5dTEwMFi5ciO7du1fLmz59OiIiIpCTk4N58+YhISEB+fn5yMzMRHx8fKWv+++/37Bdnz59cPjwYYwaNQrffvutPT8OEZFLEkLgbL4ED391AFO++xtnM5Tw8XDDMwNjsOeVu/HMwBjeaiW7GhAbiuVTeiDAS45UlQRj/3cI6QWlji6WVTTY/4vGjx8PAJg7d26ldJVKhXXr1iElJQUKhQKjRo3C/PnzsWHDBkyYMAE7d+6scX9qtRoeHh4AAH9/f+h0OqPrqdVqw7JSqQTAd7/Wlsd3vzasdwyayxnbnLE8Z3/3a13xpaGd5/2X8/DJtos4kiYDoISXXIoJd0Xj8T7RCFS417jfhnCezcV3v1rGlvXWKdwH3026AxO+OYCk7GI89MVfWDapK1o28a5zP3z3qw3Fx8dj6tSpGDNmDADg6NGjGDp0KLKysgzrPP3001AoFJg3b57R/ezduxdvvPEGpFIpgoKC8P3339f49Ovs2bMxZ86caul8NyMR1ffdr64SXy4rgU1pUlxUVtwMkksEeocJDGqmhy8vypETyVcDX5yV4XqpBL5ygafa6xDhXfd29mZqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFAYMGGA4rlarRWJiIgYMGAA3N7dKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii/Ofp5PXFPi853J2JuUBwBwk0rw8B1hiEMaRg11nfNsLlv+jjgytrhKXF71xF2Y9uNpnMtU4cuLnvjvo7ehY0T137fa9m/ruGxqbOGVOgstWrQIixYtgk6nw4ULFxrcf9JEZH31vVJ3U0OLL1eLgd/TpDiVX3FlTioR6BEiMCRSjyAPBxeOyAQlWuDLszKkqiTwkAk82U6H1pb/CludqbHF5Tp1KpUKwcHBSE1NRVhYGACgX79+mDx5MiZMmGD14yuVSvj7+yMjI4NX6nilzuL1nOk/QnM5Y5szlmePK3Xh4eH17tTdur9b44uzneeLWcVYtCsZW85mAwCkEmBE5zBM69cCUYFeRrczdf+W5jlTbDGnDizZjlfqLN+u6nrFai2mrzqJg6kF8HSTYsHDcVCnHnOKuGxqbGmwnTqNRgOdTochQ4ZgypQpSEhIgLu7O6RSKRISEhAUFIQFCxZg69atmDRpEpKSkhAYGGi14ze0/6SJyPYay5W6rFLgj6tSHMmRQEACCQTuCBa4J0qPpl6OLh2R5cp1wLcXpDhbIIVMIvBYWz06BTm+m+TyV+omTZqEZcuWVUpLTExEfHw8srOzMXHiROzcuRORkZFYvHgxBg0aZJNy8Epd3Xm8UscrdfXZriFdwXH1K3U//Z6I47pm2HDyOvQ3/nIMbheC/8S3QEyoj9HtXO08m4tX6izjqNhSrtPj5bVnsOVsNqQQeG9kO4y4LaLW7XilroFz9v+kicj+XPVKXb4a2HJViv3ZEuiFBADQIVCP+6L0iHTCJwWJ6ksngJVJUhzKlkICgdGt9OjZ1HHdJZNji6B6KSwsFABETk6OKC8vF+Xl5aK4uFj8+uuvori4uNpy1Txrf1m6f1O3q209Y3mmppu77Cr1Zm7dmZLW2NucJfVkjTaXk5MjAIjCwkKbxBd7n+eruUXizbXHRZvXfxPRr2wU0a9sFOO++lMcTMpq1OfZmX5HHBlbbF13jo7LRSqVGDd/vaHtL9mbZLW6s1VscbkpTYiIqH5yVWp8vScFyw+mQa3VAwC6RQegp08Opj50O9/NSo2CVCJBQks92rSMxrL9aZi94Sx0eoGxXcMdXTSjePvVQs52e4SIHK+h334t1gA7MqTYnSFBub7iNmsLH4H7muvR1k9AIrF5EYicjhDAhitSbE+vmLJnVLQOAyLs23Xi7Vc74e1Xyy7zW3JZ35Uv8/P2q3XbnCX1ZI0211Bvv+Yqi8VHf5wRHd76w3Cr6f5Pd4utp64JtVrN8+zEvyO8/WqbNlc1X61Wiw82nTb8fjy9aB1vvxIRkfMoVmvx3f4r+ObPFBSWagEA7Zr64NmBbTCwXQgkvDRHBACQSCR4fmAbuEkl+CzxMtZfkaHV3lRMH9DG0UWrhLdfLcTbr0RUVUO5/VquA/Zel2DbNSmKtRUdt6ZeAvdG6XFbkICUfTkiozZflWBTmgwAcF+UDkMjbd+N4u1XO+HtV8su81tyWb+xXOavK523Xy3Pa+y3X4uKS8V/d10Ud76zxXAbqd+8HWLNwRRRWqbmeW6AvyO8/WqbNldX3U1ftM7wO/R/v58RKpWKt19diVwur/ZEWNW0qj/b8gkyS/dv6na1rWcsz9R0c5etyZH1Vlu+Ke2rprTG3uaM5dmqzdmrXZp7nsu1eqw5nIbPd1xCRmEZAKBZgBeeHRiDB7s0g5tManFZrL1dQzjPlrJl3TkitjTmuDy4mUBc+xh8uPkiPt95GTohECtsF5dN/fzs1FmJRqOBRqMx/Fzb96o/W7scluzf1O1qW89Ynqnp5n63JkfWW235tbWd2tIae5szlmfrNmfLOjYlxlT9WavT49fjGViUmISrBRWduaZ+Hniqfys83KUZ3N2kEHodNHqdSWWoun9Ty27Kdg3pPJvLlnXn6NjSmOPypB6RcJNK8d7v5/HFrmQMjJBicHm50e3rE5dNXY9j6izEMXVEVJWzjKnTC+BIjgR/XJUiu6xigJyvXGBwMz16NRWQm35hjojqsDtDgp9TKsbYxYfrMSpab/Xpfzimzk44ps6ysRuWjNVorGM3OKau4Yy1cvSYurW//CrWHkoWAz9KNIz3uX3OZrF4xwVRqCrleeaYOrPqzdF115Di8v92XjD8zs1Zd1Ko1WqOqWvIOL6p7jyOqeOYuvps1xDGWjlyTN32c1n46IQM1/afBgD4ebrhyf6tMbFXC/h4WC/U8zxbjmPqLNMQ4vKEXi1w/vxZrL4sw7d/pUImk+KlwW1q3J5j6oiIqFZrDl/DtRIJvD1keLxPKzzepyX8vfg6LyJ76d1UoEOH9pi14Sz+uycZQgh0tPMAN3bqrIQPSvBBifqsxwclLFvP2QbQO/JBien9WkCivI63x/VBiL/C6uXhebYcH5SwTEOMywl3hEEAmL3hLP63N6XSwxN8UMKJ8UEJIqrKWR6UICLH2pMpwU/JFQ9PDIrQ4/7m9Xt4gg9K2AkflLBsUKklA3A5INf0tMbe5iypJ2u0OUc/KMHzbJ/z7Ex1xwclbNPmrFF3/9153vDwxPu/na40QTEflHByHLRedx4flOCDEvXZriEMoHfkgxLG8mxdFmtv1xDOs6X4oIRlGmpcntirJc6ePYefU2T4cncyJIBhgmJLymgKzlZEREREZAP9wgXevC8WAPDF7mRsSpNC2HDUGzt1RERERDYysWc0Zt4fBwDYck2KT3ck2exYvP1KREREZEOP92kJnU6H934/j893XoZEArSxwXHYqbMSTmnCKU3qsx6nNLFsPWeb6sKRU5rYowyW7N8Vz7O5OKWJZVwtLo/vFoEzZ87g11QZPku8jHsiJRjMKU2cA6ccIKKqOKUJEdVlR7oE61IrpjsZ3UqHXk3r7oZxShM74ZQmlj3+bcmj8nx03vS0xt7mLKkna7Q5TmnSOM6zM9UdpzSxTZuzdd19uvWs6P32BnEtp8Ckz8QpTeyM00vUnccpTTilSX22awhTXXBKk/pv1xDOs6U4pYllXDEuT+3fGhFF5xHip+CUJkREREQNmZsNemDs1BERERG5AHbqiIiIiFwAO3VERERELoAPStSTuDEjjFKpNKRpNBqUlJRAqVRCLpdXWgZQKc/aqh7b2tvVtp6xPFPTzV22JkfWW235NaWbktbY25yxPFu3uZv1Law0U1TV+MLz7Bzn2Vy2rDtHxhbGZfvFZVNjCzt19VRUVAQAiIqKcnBJiMhZFBUVwd/f3yr7ARhfiKhCXbGFkw/Xk16vR3p6Onx9fSGRSAzp3bp1w6FDh6otK5VKREVFIS0trV6Tk9am6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9//3q/G7IxYt1ZhvVmuYZUdw2prM6GdWc51p1lbFVvvFJnZx4eHpg1axY8PDwcXZQGh3VnGdab5RpS3TWksjob1p3lWHeWsVW98UodERERkQvglToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtwcXYCGTq/XIz09Hb6+vpBIJI4uDhE5kBACRUVFiIiIgFRa//+ZGV+ICDA9trBTV0/p6emIiopydDGIyImkpaUhMjKy3vthfCGiW9UVW9ipqydfX18AFRXt5+cHANBoNNiyZQuGDBkCuVxeaRlApTxrq3psa29X23rG8kxNN3fZmhxZb7Xl15RuSlpjb3PG8mzd5pRKJaKiogxxob6qxheeZ+c4z+ayZd05MrYwLtsvLpsaW9ipq6ebt0T8/PwqdeoUCgX8/PwMJ/LmMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2avNWetWadX4wvPsXOfZ2nVgyXaOjC2My/aPy3XFFj4oQUREROQC2KkjIiIicgHs1BERERG5AI6pQ8UTZg8//DDc3Nzg5+eH1atXQ6FQOLpYRORgRWUaJBc5uhRERKbhlToATZs2xd69e7F792507doVv/32m6OLREQOIIRAZgnw373JGP3VPnR7fye+OiuDRqd3dNGIiOrEK3UAZDKZ4WeJRILY2FgHloaI7EmjB/ZczMHuS3nYdvY6rua7AccvGvL9vIBMZRlaeXo4sJRERHVzuSt1s2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b99uyNu7dy+6du2Kbdu2ITo62t7FJiI7uq4sw6qDVzBt+VG8fkiGf393BEv/SsHV/FLIJAJ92wRj9vA4bH++D16/XYeoQA7HICLn53JX6mJiYrBw4ULMnDmzWt706dMRERGBnJwcbNmyBQkJCUhKSkJgYCD69OmDw4cP46OPPsK3336L559/3gGlJyJb0OsFTlwrxNbTGVh3Qoar+3bfkitBqK8H7m4Xiv4xwSi69DceGN7VMK/UKYeVmojIPC7XqRs/fjwAYO7cuZXSVSoV1q1bh5SUFCgUCowaNQrz58/Hhg0bMHr0aHh4VNxa8ff3h06nM7p/tVoNtVptWFYqlQAqJhnUaDSGn2v7XvVna6rpWNbcrrb1jOWZmm7ud2tyZL3Vll9b26ktrbG3OQAoUJXiWK4EiT+dwJ5LecgtLr+RI4EEQKdIP/RvEwyP3It4bFQ83N3dodFosDXZ8jZX3zquK77wPJuW50yxpT77N2U7R8cWxmXT0+rz+2rqehIhhDBpzQYmPj4eU6dOxZgxYwAAR48exdChQ5GVlWVY5+mnn4ZCocDw4cPxxhtvQCqVIigoCN9//73Rp19nz56NOXPmVEtfsWIFn5glcrDCcuBUvgQn8yS4UCiBTvwz+7qHTKC9v0BcoED7AAE/d+sfv6SkBOPGjUNhYaFh1nhzML4QUU1Mji3CRfXv31+sXLnSsLx7927RunXrSuu8/vrr4qmnnjJrv2VlZaKwsNDwlZaWJgCInJwcUV5eLsrLy0VxcbH49ddfRXFxcbXlqnnW/rJ0/6ZuV9t6xvJMTTd32VXqzdy6MyWtMbW5r1b+KhZsPiNGfLZHRL+ysdJX11kbxFtrj4ld5zKEqqTM5m0uJydHABCFhYUWxa264ktjPs/m5DlTbLF13Tkytti67hiX//kyNba43O1XY3x8fAy3Mm5SKpXw8fExaz8eHh6GW7W3ksvl1d7fVjWt6s+2eMdgffdv6na1rWcsz9R0c5etyZH1Vlu+Ke2rpjRXbHN6vcDRtHxsOXMdW05lIjnXDcBlw3q3RQVgSFxTDGgbjAuHdmPYsLhK72Ks6ZjWanP1rV9T40tjOM/WyHOm2FKf/ZuynSNiC+Oy/eKyqZ+/0XTqYmJiUFhYiMzMTISFhQEAjh8/jsmTJzu4ZERUF50A9l3OxR9nsrHl9HXkqP4ZdyaTCPRu0wRDOoRjcFxTNPXzBFDRgbtY+7uviYhcist16jQaDXQ6HfR6PTQaDcrKyuDu7g4fHx+MGDECs2bNwoIFC7B161acOnUKw4cPd3SRiagGWp0eB5LzsOH4NWw8KoNq/2FDnq+nGwbEhmJgbBOUJR/BgyO62vQKCxFRQ+BynbopU6Zg2bJlAIA9e/ZgwoQJSExMRHx8PBYvXoyJEyciODgYkZGRWL16NQIDAx1cYiK66WZH7reTGdh8KrPSE6sBXnIM7RCG+zqHo2erYLi7SaHRaLApzaFFJiJyGi7XqVu6dCmWLl1aY15ISAg2bdpk3wIRUa2EEDh6JR+/Hr2GjScybunIAYEKOQa3D0VwyRU8PXoQFHyrAxGRUS7XqSOihiE1rwR/pEnwycI/kZJbYkgPVFRckRvWORx3tQoG9Dps2pQKuczlXoBDRGRV7NQRkd0Ulmiw/kQ6fj16DYdT8wHIAJTASy7D0A5NMfKOZujTpkmlDpxGb3wycCIi+gc7dURkU0II7L+chx8PXcGmU5ko1+oBAFIJ0NZPj8cHdca9nZvBx4PhiIioPhhFicgmsovU+PnIVfx4KA3JOcWG9HZhvni4ayTuiQvB4b07cN/tEZDLGYqIiOqLkZSIrEYIgQPJefhuXwq2nL4Orb7iLYTe7jKMuD0CY7o1R+dIf0gkEpu9Z5OIqLFip46I6q1cB6w5fA3fH0jD2Yx/3txye1QAxnaPwv2dI+DN26tERDbFKEtEFssoLMWyP5Px/REZig+eBgB4yWV4sEszjL8rGu3DzX+pPRERWYadOiIy24XrRfhyZxLWHU+HTi8ASNAswBMTe7XA6Dubw1/BtzsQEdkbO3VEZLIjV/KxODEJ285eN6R1axGITu45eGlcH3hxcmAiIodhp46IaiWEwJ6LOVi88xL2X84DAEgkwNC4MEyLb424MG9s2rQJbpwcmIjIodipIyKj/rqUg4+2nMeRKwUAADepBKPuaIap/VujTagPAPApViIiJ8FOHRFVcyglDx9vOW+4MufhJsXY7s0xpV8rNAvwcnDpiIioJuzUEZHB8bQCfLz1AnZfyAYAuMukGNs9Ck8NaIOmfp4OLh0REdWGnToiQkpOMT7cfA6bTmYCqLjNmnBnFP5zdxtemSMiaiDYqSNqxPKLy/Hpjov4YX8qNDoBqQR44I5IPDswBs2DFY4uHhERmYGdOqJGqEyjw7K/UvB54iUUlWkBAPGxIXjt3vaIDfN1cOmIiMgS7NQRNSJ6vcCGE+n48I/zuFZQCgBoH+6HN+5rjz4xTRxcOiIiqg926ogaiTMZSrz923kcTs0HAIT5eeLFobF44I5mkEklDi4dERHVFzt1RC6uqEyDn5Ol2Lt/P/QCULjL8FR8azzepxW83GWOLh4REVkJO3VELkoIYN3xDMz74zyyVRVvexjWORxvDmuPcH8+0UpE5GrYqSNyQRezVPj8jBSX9p8EAIR4Cnw4+k4MaB/m4JIREZGtsFNH5EKK1Vp8sfUSvtmbDK1eCk+5FNP6tUKk6hz6tAl2dPGIiMiG2KkjcgFCCBzLleD9T/9EplINAOgYqMdnj/VFZKAXNm065+ASEhGRrbFTR9TAXc5W4a11p7D3kgyAGlFBXnjzvnYoSzqEyECOnSMiaizYqSNqoErLdVi44zK+3n0Z5To9ZBKBaf1b4z8D20IGPTYlObqERERkT+zUETVAJ/Mk+L/P/sTVgjIAQL+YYPTzvo6JA9tALpdBo9E7uIRERGRv7NQRNSBpeSV4a91JJJ6XAShDhL8n3hoeh7vbBuP33393dPGIiMiB2KkjagDUWj2+2H0RixIvQa3VQyoRmNynJZ4bHAuFuxs0Go2ji0hERA7GTh2RkztbIMH8z/5Cal4JAOCuloEY4JeNfw9pC7mcv8JERFSBfxGInFR6QSnmrD+FzWdlAEoQ6uuBN4a1x71xIbzVSkRE1bBTR+RkyrV6fPtnMj7dfhEl5TpIITChZzReGNoOvp5y3molIqIasVN3Q1paGkaOHIkzZ85ApVLBzY1VQ/Z3IDkPszeew6UsFQCga/MADAzIwZT72kEulzu4dERE5MzYc7khJCQEO3bswKhRoxxdFGqEsorU+O6iFIf3/Q0ACPZ2x6v3tsOITk3xxx+81UpERHVjp+4GT09PeHp6OroY1MhodXp8ty8V87degEothUQCjO8RjReHxMJfwVutRERkOqmjC2ALs2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b9/uoFJSY3c4NQ/DP/8Tb288A5Vai+beAj8/2QPvjOoIfwVvtRIRkXlc8kpdTEwMFi5ciJkzZ1bLmz59OiIiIpCTk4MtW7YgISEBSUlJCAwMdEBJqTHKVanxwe/nsObwVQCAv5ccLwxuA9+sk+jUzN/BpSMioobKJTt148ePBwDMnTu3UrpKpcK6deuQkpIChUKBUaNGYf78+diwYQMmTJhg0r7VajXUarVhWalUAgA0Go3hVlld36v+bE01Hcua29W2nrE8U9PN/W5N9qg3vQC+35eChYmXUViqBQA83KUZXhwSAz93CbZuPWlS3ZmS1tjbnLE8W7e5+tZxXfGF59k5zrO5bFl3da1jTly2Rl1akyPbXG35jojLpq4nEUIIk9ZsgOLj4zF16lSMGTMGAHD06FEMHToUWVlZhnWefvppKBQKzJkzB/fffz8OHz6MLl26YPbs2ejbt2+1fc6ePRtz5syplr5ixQooFArbfRhq0FJVwJrLMqQVSwAAzRQCCa10aOnr4IKRVZWUlGDcuHEoLCyEn5+f2dszvhBRTUyOLcKF9e/fX6xcudKwvHv3btG6detK67z++uviqaeeMnmfZWVlorCw0PCVlpYmAIicnBxRXl4uysvLRXFxsfj1119FcXFxteWqedb+snT/pm5X23rG8kxNN3e5IdRbVkGxeOWnY6LFKxtF9CsbRYe3fhf/3XVRlJSWWVx3pqQ19jZnST1Zo83l5OQIAKKwsNCimFVXfOF5do7z7Ex1V9c6towttq47R7Y5W9edrWKL3W+/lpaW4q233sKaNWuQl5cHpVKJzZs34+zZs3juuedsemwfHx/D7YyblEolfHx8TN6Hh4cHPDw8qqXL5fJq84hVTav6sy3nHbN0/6ZuV9t6xvJMTTd32ZqsVW96vcBPh6/igz/OIa+4HABwZxM9Pv13f0QEGW9v5tQd25zlebZqc/WtX1PjC8+zaXnOFFvqs39TtqtrHVvEloYWly1dzxnisqmf3+5Pvz711FPIyMjAxo0bIZPJAACdO3fGl19+afNjx8TEoLCwEJmZmYa048ePo0OHDjY/NjUep9MLkfDVPrz88wnkFZcjJtQHP/z7TvwrRo8Q3+p/sImIiKzB7lfqfvvtN6SlpcHDwwMSScX4ovDwcGRkZFjtGBqNBjqdDnq9HhqNBmVlZXB3d4ePjw9GjBiBWbNmYcGCBdi6dStOnTqF4cOHW+3Y1HgpyzSYv+UCvtuXAr0AFO4yPDcoBo/1bgnoddh01tElJCIiV2b3K3UBAQHIzs6ulJacnIyIiAirHWPKlCnw8vLCnj17MGHCBHh5eWH37t0AgMWLFyMtLQ3BwcF48cUXsXr1ak5nQvUiBLDueAYGfrwLS/+q6NAN6xSO7S/0xxP9WkMuc8npIImIyMnY/Urds88+i+HDh+ONN96ATqfDxo0b8e6771p1PN3SpUuxdOnSGvNCQkKwadMmqx2LGreLWSp8fkaKS/tPAgBaNvHGnBEd0K9tiINLRkREjY3dO3XTp09HaGgovvnmG0RGRuLTTz/F888/j9GjR9u7KEQWK1Zr8en2i/hmbzK0eik85VL8Z0AbTOnXCh5uMkcXj4iIGiGHTD6ckJCAhIQERxyaqF6EEPj9VCbe2XgGGYVlAICOgXp89lhftAw1f14yIiIia7FLp+7DDz80ab2XX37ZxiUhslxyTjHeWncKey7mAACigrzw5n3tUJZ0CJGBXg4uHRERNXZ26dSdPfvPY38lJSX45Zdf0KNHD0RFRSEtLQ0HDx7Egw8+aI+iEJmttFyHxTsv4atdl1Gu08NdJsXU+NZ4Kr41ZNBjU5KjS0hERGSnTt2SJUsMPz/00ENYs2YNRo4caUhbv349vvvuO3sUhcgs285cx+wNp3E1vxQA0K9tCOaM6ICWTbwBABqN3pHFIyIiMrD7mLpt27bhxx9/rJR233334V//+pe9i0JkVFpeCeZsOI1tZyveExzu74m37o/DPR3DDPMrEhERORO7T6DVsWNHvPvuu9BqtQAArVaL9957j291IKeg1urx2faLGDR/F7adzYKbVIIn+7fCthn9cW+ncHboiIjIadn9St3333+PcePG4eOPP0ZoaCiysrIQFxeH5cuX27soRJWcLZBg/md/ITWvBABwV6sgvDOyI2Ka+jq4ZERERHWze6euVatW2L9/P65cuYKMjAyEh4ejefPm9i4GkUF6QSnmrD+FzWdlAEoQ4uuBN4e1x4jbInhljoiIGgy7d+qysirGKHl6eqJly5aV0kJDQ+1dHGrEyrV6fLM3GZ9uv4hSjQ5SCEzoGY0XhraDr6fc0cUjIiIyi907dWFhFQPNhRAAUOlKiE6ns3dxqJHaczEbs9afxuXsYgBA1+YBGBiQgyn3tYNczg4dERE1PHbv1On1laeAyMzMxLvvvosePXrYuyjUCKUXlOLd385g08lMAEATH3e8dm97DO8Uit9//93BpSMiIrKc2Z26gwcPGs3r3r272QUICwvD/Pnz0apVK05rQjaj1urwvz3J+HzHpYpbrRJgQs8WeH5wW/h7yaHRaBxdRCIionoxu1M3evToSsvZ2dkoLy9HZGQkLl++bFEhDhw4YJjihMjadl/Ixuz1p3E5p+JWa7cWgXh7ZEe0D+e7WomIyHaEALQ6PXTQQV2uRakWyC8ph14vUFheMY2WNUf8mN2pS05OrrSs0+nw/vvvw93d3aTt27dvX2kcXUlJCXJzc7Fw4UJzi0JUq4vXi/DeprNIPJ8NAGji44HX72uHB+5oxqdaiYgaISEESjU65BWXI7eoFElKYOeFbKh1QLFai2K1ruJ7uQ5FpeW4mCzF1tUnoNELlGv1KNfpodbocD1HhsWX/4JGJ6DW6lGu1aG4VIbXj2yHXg/o9AJavR564Qbs33ZLCdyAQzsNP7e6rQB92ja12uer95g6mUyG1157DWFhYXj55ZfrXP/LL7+stOzt7Y22bdvCz49XTcg6clVqLNh2ESsOXoFOL+AmlWBCzxZ4bnAM/PhUKxGRyynT6HBdWYaMwjJcyyvGrmsSHP7tHHKLNcgrLkd+STkKSjTIKylHufbWsf1uwOmjtexZCmRn1pAuAYpV1dPMeOBTKhG48cyo1dS7U6fX67Fy5Up4e3ubtP6hQ4fw4osvVkufP38+ZsyYUd/iUCOmUmux7K8UfLkzCUXqitv5Q+Ka4tV726FViI+DS0dERPWh1upwObsYyTkVXyk5xUjJLUZKbgmyi9RV1pYBV64Y3Ze7TAp/LzdItGqEBPnBx0MObw+3ii93Gbw93ODpJsGVyxfRqUMcvDzk8HCTwsNNCikEThw7gt53dYfCwx3ublJIhR77/9qDu+Pj4eEuh5tMAr1Oh507tmPokMHwcJdD6HTYumUzht13L6QS4Pfff8ddrYKsWkdmd+q8vLwq3brSaDQIDw/H119/bdL2b7/9do2durlz57JTRxZRqbX4bl8K/rv7MvJLKh546BDhhzeHxaFn62AHl46IiMylLNPgWGouEtMlSPzpJM5dV+FSlgpavfFLW55yKcL9vRDq6w5dUS66tG+F8AAFgrzdEai48eUtR6DCHQp3GbRaLTZt2oT77utZ41RWGo0Gm9QXcF+v6Er5Go0G+lSB3q2DDekajQbJXkB0sKJSmo8c8PeSQy6XQ6MB3KSATGq74T9md+rOnTtXadnb2xtNmjSpc7vVq1cDqHjX65o1awzz1AFASkoKgoKs21sl15dRWIof9qdixYErhs5cqybeeGZgDEbcFgGpDX9xiIjIOoQQSMsrxeErefg7JR+HU/Nx/nrRjVuTMiA1w7Cun6cbWoX4oGUTb7QI9kaLJgq0bOKN5kEK+HvJIZFIKjpjmzbhviFtG928o2Z36qKjoy060BdffAEAKC8vx+LFiw3pEokEoaGhWLp0qUX7pcZFqwd2nM/G+uOZ+ON0JnQ3/mtr2cQbT9/dBiNui4CbTOrgUhIRUW2UZRr8dSkHuy7kYPeFbFwrKK22TmSgF4IkxRhweww6RQaifYQfIvw9+aBbLew2+XBiYiIA4N1338Wbb75pr8M6nWNpBbhYKMGB5Dy4y+WQSgCJpKJzK5VIKpYhgUQCSCX/fJfeWKfS8s31pP8s63RaKMsrHhZwdxeQSiou9cplUrhJJZBJJQ3uFyK7SI1DV7Kw+0IWfj8uQ8mBfwa19mgZhMd6t8Cg9k3ZmSMicmKpucX4/VQmtp25jqNpBYZ/ygFALpOgYzN/dG0eiDtbBKJLdCACPWUVV9wGtG50V9wsZZdOXU5OjuEW7RNPPGF412tVjeHdr6/+chpJ2TJ8fuZvGx7FDTMP7zKaK5f908mTy6Rwk0ngJpWgvEyGzy79CbmbDPIbaXKZFJ5yGTzlUnjJZXCXSZB5TYpTmy/A21NekedWsY5cCpzOlcDnYg68Pd3hJZdBLpNCInTILq14m4OXh85wTI1GiyINkFFYBh3KkVdUipN5EhQeSsP1onKcTVfiWIoMeftu/SwShPp6YFjncCR0jUJcBJ+aJiJyVpeyVPj9ZAZ+P5WJMxnKSnmtQrzRLyYE/duGoEerICjcK3dJOCm8+ezSqWvZsiWKiooAVH/3600SiaRRvPu1eZAXilUqKLx9AEnFxIR6IYx+r/hHpuK7Xgjo9QICtWyHiieSBYxfjdPoBDQ11rUE2WXFJnwKKXZnphjJk+HbC0dqSHfDu8f21JiOv3dX2h7nz1Yqk0RS8eBDjxaB8Mq/jP+M7gdPD9PmRSQiIvvKKy7HumPX8NPhqzid/k9HTiaV4K5WQbinQxjiY0MRFaRwYCldk0WdutTUVPz0009IT09HREQEHnzwQbRs2dLo+jc7dED1d782Nl+P73LjaZveNrmcbBgget99cHNzg04voBMCGp2AVqev+K7XQ6MV0Oj10OoENDo9yso12L33T3TrfheERFqxjq5iskW1Vo9SjQ5qjQ7FZRqcPncBzaJbolwnUKbRo0yrQ1m5DqXlWmRk58LLxw9lWj3UmoqJGjVaPUrLyyEkMmh0+mrz8shlEni4yeDtIYO7rgwxkaEID/BC6yYK5CefwsRRg9HET3HjsyXZ9MkhIiIyn0anR+KFTPx0+CoSz2dBo6sI9HKZBH3aNMG9HcMxKK4pgrz5D7ktmd2p27hxIx599FEMGzYM0dHROHLkCN555x18//33GD58uC3KSBaSSCQVt1YBeNRxpjUaDa75AXe1Cqq1s6nRaLCp5Bzuuze22nr/dCh7Vnv8uyJ9KORyOXT6io6kRqPBti2bcf+w+2487n1zvTv+Wc47BX8vjqUgInJGWUVq/J4mwdyP9yDrlrniOkf64+GukRjeOQKB7MjZjdmdutdeew3r1q1DfHy8IW337t2YNm2aSZ26tLQ0vP322zh+/DhUqsqzMZ85c8bc4lADJJNKIJPKIIMevOhGRNSwCAH8nZqP5Qev4o9TmdDqZQDUaOLjgQe7NMNDXSIRG+br6GI2SmZ36q5du4bevXtXSuvZsyfS09NN2n706NGIiYnBnDlzoFDwfjoREVFDoNXpsf54BuafkOHa/kOG9Ja+As/c0xnDbouEuxtnIXAkkzt1V69eRWRkJHr06IHZs2dj9uzZhltkc+bMQY8ePUzaz6lTp7B3715IpTzxREREzq5cB/xw4Aq++TMVV/NLAUjg4SbFqNubYWy3Zkg9thf3dQ6HnB06hzO5UxcXFwelUomvvvoKY8eORVBQEEJDQ5GVlYVOnTph1apVJu3nnnvuwf79+9GrVy+LC01ERES2VViiwZI/L+N/R2RQaSveJhWokKNncBlmj49HqL83NBoNUo85tpz0D5M7dTenIGnevDn+/PNPpKWlGZ5+jYqKMvmAXl5euOeeezBkyJBq89Ld+qYJIiIisj9lqQbf7UzGt3uTUaTWApAgMsATT/RvjVGdw5C4bTMCFXz4wRmZNaYuLS2t0vxy4eHhEELgypUrACo6fHVp1aoVXnjhBTOLSURERLakUmux5aoEM+fvgbJMCwBoG+qDHn6FeH18H3h5enBCYCdncqeuuLgYsbGx1SYNvkkikaCkpKTO/cyaNcv00tlRWloaRo4ciTNnzkClUsHNzW5vUCMiInKYknItvtuXiq92JSG/RAZAizahPnh+UFsMig3GH3/8ztcwNhAm91y8vb0rTSJsqQ8//LDGdA8PD0RGRmLgwIEICAio93HMFRISgh07dmDUqFF2PzYREZG96QSw8lAaPt1xGTmqijnmQj0FXrm/M0Z1iYJMKuGVuQbG5E6dtV4Cf+TIEfzyyy/o0aMHIiMjcfXqVRw4cADDhw9Heno6Hn/8caxduxZ33323VY5nKk9PT3h6etr1mERERPYmhMD2c1mYd1yG66UVr2VsHqTA9PiWkKcfx/DbwvnmngbK5Oupxm67mkur1eLnn3/G7t27sWLFCuzevRtr166FRCLBX3/9hUWLFmHGjBl17mfWrFmIi4uDVCqt9uRtdnY2hg0bBoVCgdjYWGzfvt0qZSciImrITlwtwJiv92Pq8mO4XipBoEKOWcPjsG1Gfzx4RzPI2Jdr0Ey+UmeNW68AsHXrVvz444+V0oYOHYpx48YBAMaOHYtp06bVuZ+YmBgsXLgQM2fOrJY3ffp0REREICcnB1u2bEFCQgKSkpKgVqsxZsyYSuv6+Phg48aN9fhEREREzi29oBQfbzuF9ccrXhTg4SZF31AtPnysD4J8K14EoNHoHFlEsgK7Pw0QFxeH9957D6+99lrFC+d1OnzwwQdo3749gIoHFkwZUzd+/HgAwNy5cyulq1QqrFu3DikpKVAoFBg1ahTmz5+PDRs2YMKECdi5c2e9yq9Wq6FW//N+O6VSCaDi/aY3xx7U9b3qz9ZU07GsuV1t6xnLMzXd3O/W5Mh6qy2/trZTW1pjb3PG8mzd5upbx3XFF55n5zjP5rJl3dW1jqq0DJuvSvDKwj9RptVDIgFG3RaO6f1b4PTBPfCUmdaeGJdrT7d1XDZ1PYmw1n1VE124cAHjxo3DhQsXDJMXx8bGYsWKFYiJicHBgwdx9epVPPjggybtLz4+HlOnTjVcgTt69CiGDh2KrKwswzpPP/00FAoF5s2bZ3Q/ZWVluP/++3H48GF06dIFs2fPRt++fautN3v2bMyZM6da+ooVK/jaM6JGrqSkBOPGjUNhYSH8/PzM3p7xhaxFCOBUvgS/pEiRq664p9raV+DBljpEeju4cGQ2k2OLcJDk5GSxf/9+kZKSUq/99O/fX6xcudKwvHv3btG6detK67z++uviqaeeqtdxbiorKxOFhYWGr7S0NAFA5OTkiPLyclFeXi6Ki4vFr7/+KoqLi6stV82z9pel+zd1u9rWM5Znarq5y65Sb+bWnSlpjb3NWVJP1mhzOTk5AoAoLCy0SXzheXaO8+xMdVfTOufT88W//rdPRL+yUUS/slF0nrlBrDlwWajVarPqzdF1x7j8z5epscVhk7GFhoZCJpOZPXlxXXx8fAy3LG5SKpXw8fGp976BiqlXPDw8qqXL5XLI5fJa06r+XHV9a7J0/6ZuV9t6xvJMTTd32ZocWW+15ZvSvmpKa+xtzlierdpcfevX1PjC82xanjPFlvrs35Tt5HI5tEKKhdsv4pu9l6HRCbjLpPh372i0KruIkXdEWj22MC7bLy6b+vnt3qk7efIkJkyYgBMnTgD4Z6oUd3d3kyYvrktMTAwKCwuRmZmJsLAwAMDx48cxefLkeu+biIjIGe25mINZG88iLa8UAHB3u1DMvD8Okf7u2LTpooNLR/Zi907d1KlTMXLkSOzbtw/h4eHIyMjAW2+9hdatW5u1H41GA51OB71eD41Gg7KyMri7u8PHxwcjRozArFmzsGDBAmzduhWnTp3C8OHDbfSJiIiIHCNHpcayC1Ic2XcEABDh74m3R3bEoLimAGz38Ac5J7t36k6fPo09e/ZAKq2YIs/T0xPvvvsuWrVqhSeffNLk/UyZMgXLli0DAOzZswcTJkxAYmIi4uPjsXjxYkycOBHBwcGIjIzE6tWrERgYaJPPQ0REZG96vcDqv9Pw/u9nUVgqhVQCPNa7JWYMbgtvD77msrGy+5kPCAhAQUEBgoKC0KxZMxw/fhxBQUFQqVRm7Wfp0qVYunRpjXkhISHYtGmTFUpLRETkXJKyVXht7UkcTM4DAER6C3z2r564o0Wwg0tGjmb3Tt3kyZOxa9cuPPDAA3j22WfRt29fSKVSTJkyxd5FISIiajB0eoFv9ybjoy3nodbq4SWX4flBbdAk/zQ6NjN/Ch1yPXbv1L355puGn6dMmYIhQ4ZApVKhQ4cO9i4KERFRg3A5W4WXfjqBw6n5AIC+MU3w/oOd0NRHjk2bTju4dOQs7Napi4uLq3OdM2fO2KEkREREDYNeAEv+SsXHWy9CrdXDx8MNbw5rj9HdoiCRSPggBFVit05dcnIymjdvjkcffRT9+vUzTGVCRERE1aXmluCz0zJcLjoPAOjTpgnmPdwZzQK8HFwyclZ269RlZWVh7dq1WL58OZYuXYqEhAQ8+uij6Ny5s72KQERE5PSEEFh5MA3vbDyNUo0E3u4yvDEsDmO7R/GCCNVKaq8D+fr6YuLEidiyZQv27duHiIgIPPHEE+jUqRNvuxIREQHIKy7HE98fxuu/nESpRo8YPz02/qcXxvVozg4d1ckhk9l4eHjAy8sLnp6eyM3NhV6vd0QxiIiInMbuC9l4Yc1xZBep4S6T4oXBbRBacAaRgbzdSqax25U6tVqNNWvWYOTIkejcuTNOnTqFDz74ABcvXkTHjh3tVQwiIiKnUqbR4Z2NZzDh24PILlKjTagPfpneC//u3QJSXpwjM9jtSl3Tpk0RFhaGsWPH4pVXXoGbW8WhDx48aFine/fu9ioOERGRw124XoRnVh7FucwiAMCEntF47d728HKX8clWMpvdOnUBAQFQq9VYunQpli1bBiFEpXyJRILLly/bqzhEREQO9cvRq3h97SmUanQI9nbHhw93xsD2TR1dLGrA7NapS0lJsdehiIiInJZaW3G79Yf9VwBUTCQ8/5HbEeLr4eCSUUPHt/4SERHZydX8EkxffgTHrxZCIgGevjsGzw6MgYyD58gK2KkjIiKyg90Xc/DCTydRUKJBgEKOT0bfjgGxoY4uFrkQduqIiIhsSKcX+D1Nis37j0AIoHOkPxaN64KoIIWji0Yuhp06IiIiG8krLsezK49gz9WKGcQe7dEcbw2Pg4ebzMElI1fETh0REZENHEsrwPTlR3CtoBRyqcDcUZ3wSPdoRxeLXBg7dURERFYkhMAPB67g7Q2nodEJtAhWYHQzJR64I8LRRSMXZ7c3ShAREbm6knItZqw+jpm/noJGJzC0Q1OsndoDEd6OLhk1BrxSR0REZAVJ2SpM++EwLlxXQSaV4NV72mFy35bQarWOLho1EuzUERER1dPvJzPw0k8noFJrEeLrgc/H3oEerYIdXSxqZNipIyIispBGp8e838/hf3uTAQDdWwbh87F3INTP08Elo8aInToiIiILXFeW4T8rjuBQSj4A4Ml+rfDS0Fi4yThcnRyDnToiIiIz7UvKxdMrjyBHVQ5fDzf8X8JtuKdjmKOLRY0cO3VEREQm0usFvtp9Gf+3+Rz0AmgX5osvxndFyyZ8vJUcj506IiIiE+QXl2PG6mNIPJ8NAHiwSzPMHdUJXu58OwQ5B3bqiIiI6nDkSj7+s/wI0gvL4O4mxZwRHTCmWxQkEomji0ZkwE4dERGREUIIfPtnCt7fdBZafcXbIRY92gUdIvwdXTSiatipIyIiqkGWsgwv/3wCO2/cbh3WKRwfPNQJvp5yB5eMqGbs1BEREVWx6WQG3vjlJPJLNHB3k+LNYe3xr7uiebuVnBo7dURERDfkqNR4d+MZ/HosHQDQIcIPn4y+HW2b+jq4ZER1Y6eOiIgaPb0AVh5Kw0dbLkJZpoVUAkyLb41nB7aFuxsnE6aGgZ26G9LT0/Hwww/Dzc0Nfn5+WL16NRQKhaOLRURENrb/ch4+OSnDleKzACquzs19oBNujwpwbMGIzMRO3Q1NmzbF3r17IZVKMWvWLPz2229ISEhwdLGIiMhGjqUV4NPEy9hzMQeABN4eMrw4JBb/uiuar/qiBomduhtksn8mj5RIJIiNjXVgaYiIyBZ0eoHNp69jwSkZkvcdBADIZRLcFaLDvAn9ERHk4+ASElmuwf4rMmvWLMTFxUEqlWLVqlWV8rKzszFs2DAoFArExsZi+/btJu1z79696Nq1K7Zt24bo6GhbFJuIiBwgvQSYt/kCer6/Hf9ZdRzJRRLIZRIkdI3E5md74+GWeoT4eji6mET10mCv1MXExGDhwoWYOXNmtbzp06cjIiICOTk52LJlCxISEpCUlAS1Wo0xY8ZUWtfHxwcbN24EAPTp0weHDx/GRx99hG+//RbPP/+8XT4LERFZl14AR9MKsPtiHraeycT5624AUgAAgQo5ugWqMevRAWgW5AONRoOTDi0tkXU02E7d+PHjAQBz586tlK5SqbBu3TqkpKRAoVBg1KhRmD9/PjZs2IAJEyZg586dNe5PrVbDw6PivzR/f3/odDqj66nVasOyUqkEAGg0Gmg0GsPPtX2v+rM11XQsa25X23rG8kxNN/e7NTmy3mrLr63t1JbW2NucsTxbt7n61nFd8YXn2XheeXk5LmcX4+/UfBxIzsWOszKo9h80rCeTCAyIDcGDd0SiVyt/7NqxHYGe0hrr1dpsWXeOji2My6an1ef31dT1JEIIYdKaTio+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P3v37sUbb7wBqVSKoKAgfP/99zU+/Tp79mzMmTOnWvqKFSv4tCxRI1dSUoJx48ahsLAQfn5+Zm/P+GI6vai4pXpJKcFlpQRJRRKoNJUnBvaUCbQPEOgQKBAXIODNF0FQA2VqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFIYMGWI4rkajwdatWzF48GDI5fJKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii+N+Tz/vnkrQtt3w7GrRfg7tQCHrxRApdZWWs/dTYrbIv3RNcoPstzLeOKBu6Hw9HBobDGnDizZzpGxhXHZfnHZ1Njicp06Hx+fah9eqVTCx8c6TzR5eHgYbtPeSi6XVzsxVdOq/myL4FHf/Zu6XW3rGcszNd3cZWtyZL3Vlm9K+6oprbG3OWN5tmpz9a1fU+NLYzjPKrUWR1LzcSglD/sv5+JoqgzaA0crrevr4YYuzQPgq76O8UPuwh0tguHhJoNGo8GmTUlQeHo4TWypz/5N2c4RsYVx2X5x2dTP73KdupiYGBQWFiIzMxNhYWEAgOPHj2Py5MkOLhkRERmTW1yO47kSHPv9PP5OLcCZDCV0+ltHB0kQ7O2O7i2D0L1lELq1CEL7cD/odVps2rQJXaMDIXeTGd0/UWPQYDt1Go0GOp0Oer0eGo0GZWVlcHd3h4+PD0aMGIFZs2ZhwYIF2Lp1K06dOoXhw4c7ushERHTDtYJSHEzOxcHkiqtxl7JUAGTAhVTDOpGBXujeMghdo/xRknoCEx8cDHd390r70df8TBtRo9RgO3VTpkzBsmXLAAB79uzBhAkTkJiYiPj4eCxevBgTJ05EcHAwIiMjsXr1agQGBjq4xEREjVd6QSkOpmZiX1IuDiTn4VpBabV1wrwEBnSMwl2tm6B7yyCE+3sBqPgnflPWCUgkkmrbENE/GmynbunSpVi6dGmNeSEhIdi0aZN9C0RERAY5KjX2JeVi78UsbD8pQ86+PZXyZVIJOkb4GW6l3h7pi307t+G+++JsOq6NyJU12E4dERE5j8JSDQ5czsVfSbnYl5SL89eLbsmVQCaVoHOkP3q1DsZdrYLRpXkgvD3++RNkqzniiBoTduqIiMhsJeVa/J2Sj7+ScvFXUg5OXSuEvsqsp+3D/dCzZSDc8i5j6kODEeTr5ZjCEjUS7NQREVGddHqBVBWweOdl/HU5D0eu5EOjq9yLaxXijV6tg9GrdRPc1SoYQd7uhulFfD3554bI1vhbRkRENbpWUIq9F7Ox+2IO/ryYg4JSNwCXDPnNArwqOnFtgtGzVROE+Xs6rrBExE4dERFVKFZrsf9yLvZczMGei9lIyi6ulO8pE+jbtin6x4aiT5smiA5W8IlUIifCTh0RUSOl0wucTi/Enos52H0hu9otVakEuKN5IPq0aYJerQJx7eRfGD7sdj6dSuSk2KkjImpE0gtKsefmLdVLOSgoqfzUaVSQF/rFhKBvTAh6tg6Gv9c/77HMPOWIEhORqdipIyJyYcVqLQ4k52L3hZpvqfp6uKFn62D0bRuCfjFNEB3s7aCSElF9sVNHRORC9HqBE1cLar2lentUAPrGhKBf2ya4LTIAbjKpA0tMRNbCTh0RkQv4/VQmll6QYvbxncg38ZYqEbkWduqIiFzA9nPZOJorBaDhLVWiRoqdOiIiFzDytnCU5V7DY/f0QNeWTSDnLVWiRoedOiIiF9A3pgmKLurRNTqQHTqiRoq/+UREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgF8EGJehKiYlJPpVJpSNNoNCgpKYFSqYRcLq+0DKBSnrVVPba1t6ttPWN5pqabu2xNjqy32vJrSjclrbG3OWN5tm5zN+v7Zlyor6rxhefZOc6zuWxZd46MLYzL9ovLpsYWdurqqaioCAAQFRXl4JIQkbMoKiqCv7+/VfYDML4QUYW6YotEWOtfykZKr9cjPT0dvr6+kEgkhvRu3brh0KFD1ZaVSiWioqKQlpYGPz8/m5Sp6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9/fxQWFtrsP0JXxbqzDOvNcg2p7hpSWZ0N685yrDvL2KreeKXOzjw8PDBr1ix4eHg4uigNDuvOMqw3yzWkumtIZXU2rDvLse4sY6t645U6IiIiIhfAK3VERERELoCdOiIiIiIXwE4dERERkQtgp46IiIjIBbBT54R27dqFnj17ok+fPpgxY4aji9OgpKWloUuXLvD09IRWq3V0cZzejBkz0LdvXzzzzDOOLkqD0ZDbGGOL5RryeXcExhbL1LedsVPnhNq0aYOdO3di7969yMzMxMmTJx1dpAYjJCQEO3bswF133eXooji9I0eOQKVSYc+ePdBoNBa9iqcxashtjLHFcg35vNsbY4vl6tvO2KlzQs2aNTPMXSOXyyGTyRxcoobD09MTAQEBji5Gg7Bv3z4MGjQIADBo0CDs37/fwSVqGBpyG2NssVxDPu/2xthiufq2M3bqrGDWrFmIi4uDVCrFqlWrKuVlZ2dj2LBhUCgUiI2Nxfbt203e75EjR5CTk4O4uDhrF9lp2KruGhtL6rGgoMAwk7m/vz/y8/PtXm5Hc/b2x9hiOWc/tw0FY4vlHNEG3ayyl0YuJiYGCxcuxMyZM6vlTZ8+HREREcjJycGWLVuQkJCApKQkqNVqjBkzptK6Pj4+2LhxIwAgMzMTzzzzDH7++We7fAZHsUXdNUaW1GNAQACUSiWAilfWNMarEJbUW2BgoFOXj7GlAmOLdTC2WM4h8UWQ1fTv31+sXLnSsFxUVCTc3d1Fenq6Ia1v375i2bJlte6ntLRUDBgwQBw5csRmZXU21qq7W/en0WisXk5nZ049Hj58WDzxxBNCCCGmTZsmDhw4YPfyOgtL2p892xhji+UYW6yDscVy9owvvP1qQxcvXoS/vz/Cw8MNabfddhtOnz5d63ZLlizBmTNn8PzzzyM+Ph779u2zdVGdjqV1V1ZWhkGDBuH48eMYOnQo9uzZY+uiOrXa6rFLly7w8vJC3759IZVK0b17dweW1LnUVm/O0MYYWyzH2GIdjC2Ws2V84e1XG1KpVIZxBTf5+fmhoKCg1u2mTZuGadOm2bBkzs/SuvP09MS2bdtsWLKGpa56XLBggf0L1QDUVm/O0MYYWyzH2GIdjC2Ws2V84ZU6G/Lx8TGMK7hJqVTCx8fHQSVqOFh31sF6tIyz15uzl8+Zse6sg/VoOVvWHTt1NhQTE4PCwkJkZmYa0o4fP44OHTo4sFQNA+vOOliPlnH2enP28jkz1p11sB4tZ8u6Y6fOCjQaDcrKyqDX6yv97OPjgxEjRmDWrFkoLS3F+vXrcerUKQwfPtzRRXYarDvrYD1axtnrzdnL58xYd9bBerScQ+qufs90kBBCTJw4UQCo9JWYmCiEECIrK0vce++9wsvLS8TExIitW7c6trBOhnVnHaxHyzh7vTl7+ZwZ6846WI+Wc0TdSYQQov5dQyIiIiJyJN5+JSIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipI7KT2bNnQy6XIywszGr7jI+Px6pVq6y2v6rmz58Pb29veHp62uwYRFQ/jC10Ezt1ZFctWrSAQqGAj48PfHx80KJFC0cXya4ef/zxSi9xtoWOHTsiJSXFKvuaMWMGTp8+bZV9EdkSYwtjC7FTRw6wY8cOqFQqqFSqGgOERqOxf6GcgDU+99WrV6HVahvdHzQigLHFGMaWxoOdOnK4nTt3ol27dnjjjTfQpEkTvPfeeygtLcV//vMfREREIDIyEvPmzTOsX1xcjHHjxiEgIABdunTB66+/jnvuuafSvm4lkUgM/8Hm5eVh3LhxCA0NRatWrbBs2TLDevHx8Xj77bdx5513ws/PD2PHjkV5ebkh/8cff0THjh3h6+uLTp064fz585g7dy4ee+yxSsfr3bs31q5da9Jnb9GiBT788EPExsYiLi4OAPDUU08hIiICAQEBGDJkCK5cuWJY/9ChQ+jcuTP8/Pzw5JNPQq/XV9rf5s2bMXToUMPnmTNnDu644w74+PjgpZdewqVLl9CtWzcEBATgxRdfNGy3ceNGxMbGwtfXF1FRUVi5cqVJ5SdyZowtjC2NjiCyo+joaLFv375KaYmJiUImk4l3331XlJeXi9LSUvHUU0+J8ePHi6KiInHt2jURFxcn1q9fL4QQ4qWXXhJDhgwRhYWF4uzZsyIyMlIMHTrUsK/Y2NhK+wcgMjIyhBBC3HfffeLll18WZWVl4uzZsyI8PFwcO3ZMCCFE//79RceOHUVqaqrIz88XcXFx4rvvvhNCCLF3717RpEkTsXfvXqHT6cTZs2dFenq6SE5OFgEBAaKsrEwIIURKSooICAgQpaWl1T77rFmzxJNPPlmtPnr27CmuX79u2Gb58uWioKBAlJaWiscee0yMHDlSCCGEWq0WkZGR4uuvvxbl5eXi008/FTKZTKxcudKwv4cfflj89ttvhs/TqVMnce3aNZGcnCy8vb3FoEGDRFpamkhLSxP+/v6Gz960aVOxd+9eIYQQGRkZ4vTp04Z9JicnCw8Pj7pPLpEDMbYwtpAQ7NSRXUVHRwsfHx/h7+8v/P39xauvvioSExOFr6+v0Gq1Qggh9Hq98PLyEtevXzds99lnn4kJEyYIIYRo0aKF2LNnjyHvjTfeMCnwZmRkVDqOEEK88MIL4q233hJCVASqhQsXGvJeeukl8cILLwghhJg8ebKYOXNmjZ+pT58+Yu3atUIIIT744AMxadKkGtczFnhXr15trLrEuXPnRHBwsBBCiJ07d4rWrVsb8vR6vYiMjDQEXq1WK8LCwkRxcXGNn6dfv37iww8/NCwPGTLE8IclMjJSfPnll6KoqKhaGRh4qSFgbGFsISF4+5XsbuvWrSgoKEBBQQHef/99AEB4eDhkMhkAIDs7G6WlpWjbti0CAgIQEBCA119/HVlZWQCAjIwMREVFGfZ368+1uXLlCoqLixEcHGzY71dffYXr168b1gkNDTX8rFAooFKpAFSMJ2nVqlWN+x0/frzhKbEVK1Zg3LhxplYFACAyMrLS8ty5c9GmTRv4+fmhe/fuyM3NBVD9c0skkkrbHjhwAB07doRCoajx83h5eSEkJKTScnFxMQDgp59+wvr169GsWTMMGTIE586dM+szEDkDxpbKGFsaHzdHF4AIqAgiNzVp0gSenp5ITU2Fv79/tXXDw8ORlpaG6OhoAEBaWpohz9vbGyUlJYblW58Ga9asGQICAgyBzBxRUVFITk6uMS8hIQGvvvoqDh48iKysLNx9991m7fvWz75r1y589dVX2L59O9q0aYMLFy4YxvGEh4fj6tWrlba9dfmPP/4wjHkxV48ePfDbb79BrVbjrbfewvTp07F9+3aL9kXkTBhbKjC2NA68UkdORyqVYuLEiXjxxRdRUFAAvV6Ps2fP4uDBgwCAhx9+GHPnzkVRURHOnz+P7777zrBt27ZtkZubi127dkGtVuOdd94x5DVr1gzdunXDW2+9hZKSEmi1Whw5cgRnzpyps0yTJk3CF198gX379kEIgfPnzyMjIwMAEBQUhP79+2PSpEl45JFHDFcFLFFUVAQ3NzcEBwejuLgY7777riGvZ8+eKC0txTfffAONRoNFixYZygBUHshsjvLycqxYsQJKpRJyuRw+Pj71+gxEzoqxhbHF1bFTR07p5sSUnTp1QlBQECZMmID8/HwAwKxZs+Dv74/IyEiMHTsW//rXvwzb+fv749NPP8UjjzyCli1bonv37pX2u3z5cqSmpqJVq1YIDQ3Fc889h9LS0jrL06tXLyxYsAD//ve/4efnh4SEBCiVSkP++PHjcfbsWbNvj1R1zz33oGfPnoiOjkanTp3Qq1cvQ567uzt+/vlnfPLJJwgODsaJEycM+bm5ucjIyECnTp0sOu6yZcsQHR2NwMBAbN26FQsXLqzX5yByVowtjC0uzdGD+ojqa8mSJYbBzI7y119/iVatWtW6zjvvvCO8vb1Fs2bNrH78FStWiMcee8zq+/3kk0+En5+f8Pf3t/q+iZwdYwtjS0PDK3VE9aTRaPDpp5/i3//+d63rvfnmm1CpVNXGrlhDUFAQnnrqKavv97nnnkNhYSEKCgqsvm8iqh1jC5mLD0oQ1UNubi4iIyPRuXNnfPXVVw4rh6WDmInIOTG2kCUkQgjh6EIQERERUf3w9isRERGRC2CnjoiIiMgFsFNHRERE5ALYqSMiIiJyAezUEREREbkAduqIiIiIXAA7dUREREQugJ06IiIiIhfATh0RERGRC/h/AKmBj9VWyAIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ct.gangof4(P_tf, ctrl_shape);" + ] + }, + { + "cell_type": "markdown", + "id": "gel18-iqwYYs", + "metadata": { + "id": "gel18-iqwYYs" + }, + "source": [ + "### Stability margins\n", + "\n", + "Another standard set of analysis tools is to identify the gain, phase, and stability margins for the sytem:\n", + "\n", + "* **Gain margin:** the maximimum amount of additional gain that we can put into the loop and still maintain stability.\n", + "* **Phase margin:** the maximum amount of additional phase (lag) that we can put into the loop and still maintain stability.\n", + "* **Stability margin:** the maximum amount of combined gain and phase at the critical frequency that can be put into the loop and still maintain stability.\n", + "\n", + "The first two of the items can be computed either by looking at the frequeny response or by using the `margin` command.\n", + "\n", + "The stabilty margin is the minimum distance between -1 and $L(jw)$, which is just the minimum value of $|1 - L(j\\omega)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "id": "m-8ItbHwxLrv", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Gm = inf (at nan rad/ms)\n", + "Pm = 47 deg (at 0.15 rad/ms)\n", + "Sm = 0.6 (at 0.19 rad/ms)\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAF3CAYAAACygxMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjE0lEQVR4nOzdd1wT9/8H8NdlkABhL9kgKIJbEFFBpe49sK6qoKh11dlq1VrHV2trW/cqal3VarWuulDrVlQUUVw4EWQoexMyPr8/+HE1EpBAIBA+z8cjD8jlc3fvu1wu79x9BkMIIaAoiqIoiqKoWoSj6QAoiqIoiqIoSlU0iaUoiqIoiqJqHZrEUhRFURRFUbUOTWIpiqIoiqKoWocmsRRFURRFUVStQ5NYiqIoiqIoqtahSSxFURRFURRV69AklqIoiqIoiqp1aBJLURRFURRF1To0iaVKFRQUhB9//FGty9y5cyd69OihlmUlJSWhXbt2MDAwwLp169SyzNqqcePGCA8PV/paTEwMhEJhNUekurK2gaIoiqI+RpNYLePk5AQ9PT2IRCKYmZlh+PDhyMrK0nRYFcIwDJKSkkp9PSQkBK6ursjOzsa0adMqta7akuiV5tGjR2jdujWAqvnxUR0+3AaKoiiK+hSaxGqhCxcuICcnBzExMUhPT6+VCU15xMbGwsPDQ+X55HI55HJ5FURElUYikWg6BIqiKErL0CRWixkYGKBfv3548uQJOy0qKgrt27eHsbExvLy8cPPmTfa1ly9fsrfnBw0ahLy8PIXlbdy4EQ0aNIC5uTkCAwORm5urdL2dOnXCwoUL0axZM5iammLy5MmQSqVKyx48eBCNGjWCqakp+vbti8TERABAt27dAAAuLi4QiUQICwtTmG/ixInYtWsXFi1aBJFIhKioKKSlpWHYsGEwNzeHq6srtm3bxpYPCgrCtGnT0KlTJ4hEIsTGxpZ7Pzo5OWHNmjVwd3eHiYlJiau+pe2Xdu3a4dy5cwCAXbt2gWEYvH//HgAwc+ZMrFix4pPrtrW1xfPnzwEAS5YsgaGhIWQyGQBg4MCB+PPPP9kYb968iV27dmHv3r3sfpk6dSq7rK1bt8La2hr16tXDnj17lK6v+Ir05s2bYWlpCXt7e1y6dAnbt2+HtbU1HBwccPnyZbb8//73Pzg6OsLQ0BBt27bFgwcPFPbbypUr4ebmxv7YWLx4MSwtLeHk5IT169crXP0u3gag6BhaunQpvLy8YGhoiOHDh6OwsBAA8OzZM/j6+sLQ0BDm5uaYPXv2J/cjRVEUpX1oEqvFMjMzcfz4cbRp0wYAUFhYiL59+2LEiBFITk7G119/jT59+iAzMxMAMGLECHTu3BmpqakYPXo0jhw5wi7r4MGDCAkJwfnz5xEXFweJRILvv/++1HXv27cPR48eRXR0NG7cuIEtW7aUKPPkyROMGzcOv//+OxITE+Hs7IxRo0YBAM6ePQugKLHOyclB27ZtFebdsmULvvjiCyxZsgQ5OTlo2rQppkyZAh6Ph9jYWBw+fBjz58/HtWvX2Hn279+PVatWITs7G3Z2dirty+PHj+PatWuIiorC/v37cfXq1U/uFz8/P7bctWvX4OzszMZz7do1+Pr6fnK9vr6+CsswNzfH/fv3AQDXr18vsYzAwECF/bJhwwYARe99dHQ03rx5g927d2PKlCklfqQUKywsRExMDOLj4zF9+nSMHDkSjx8/xps3bzBnzhzMmDGDLevh4YE7d+4gLS0NXbt2xejRoxWWdfToUVy9ehVRUVE4fvw4duzYgbCwMNy/fx8nTpwoc9sPHjyIw4cPIzY2Fg8ePMCBAwcAAN9//z169+6NzMxMvHnzBkOHDv3kfqQoiqK0D01itVDXrl1hbGwMU1NTxMXFITg4GABw8+ZNcLlcTJkyBXw+H8OGDUODBg1w9uxZvHnzBg8fPsTChQuho6ODAQMGsMkvAGzfvh0LFiyAo6MjdHV1MX/+fBw6dKjUGIKDg1G/fn1YWFjg66+/xt9//12izMGDBzF48GC0a9cOAoEAP/zwAy5fvozk5GSVt1kmk+Hvv//GihUroKenh2bNmiE4OJi9UgkAn3/+OVq1agUulwsej6fS8mfMmAEzMzPY2dmhU6dObCJZ1n75MAG9fv06Zs+ejatXryInJwePHz8uV/3P4mVIpVJER0cjODgYV69exdOnT6Grqwt7e/tyxU8Iwffffw8dHR1069YNQqEQr169KrXsggULwOfzERAQgPj4eHz77bfQ0dFBQEAAHj16xFbHCAgIgIWFBXg8HubPn48HDx4gJyeHXdbMmTNhaWkJoVCIw4cPY8KECXBxcYGRkRHmzJlTZszjx4+Hg4MDjI2N0bt3b3af8/l8vH79GklJSdDX14e3t3e59gFFURSlXWgSq4XOnTuHjIwM5OXloW/fvujZsycAICEhAQ4ODgplHR0dkZCQgMTERFhaWkJHR4d97cMEKTY2FsHBwTA2NoaxsTF8fX2RkpJSagwfXum0t7dnqwl86ON4ihujJSQkqLzNycnJkMlkCust3jZlManK0tKS/V9PT49N1MraL76+vggPD0d8fDz4fD769++Pa9euISwsDC1atChXQ7Liq7n37t1DixYt0KFDB1y9ehVXr14t15XcYgKBAIaGhkq3oayyurq6AAALCwv2uUQiYW/tb926FY0bN4aRkRHq1asHQghSU1PZZX24z5OSkhSOqU+9H6Xt85UrV0IqlaJFixZo3rw5/vnnn0/vAIqiKErr0CRWiwkEAowaNQp3795FSkoKbGxsEBcXp1AmNjYWNjY2sLa2xvv379nkBIBCWVtbW+zduxcZGRnso7Q6sQDw9u1bheXUq1evRBkbGxuFuqm5ublITU2FjY2NyttqYWEBDoejsN7ibSvGMIzKy/2UsvaLiYkJnJycsHbtWvj6+sLOzg7p6ek4ffp0uRPQZs2aISUlBQcPHoSfnx+8vb1x586dMqsjVMV2KhMTE4NZs2Zhz549yMjIQGJiIjgcDgghSmOpV6+ewvvz4f+qsLa2xu+//46kpCQsXboUQ4cOVThuKYqiqLqBJrFaTCKRYN++fbC0tISZmRl8fHwgkUiwefNmSKVSHDx4ENHR0ejWrRscHR3h4eGBH374ARKJBMePH8ft27fZZQUHB2P58uXsLejExEScOXOm1HX//vvviImJQXJyMlatWoWAgIASZQICAvD333/j5s2bEIvFWLBgATp06MBe9bO0tERMTEy5tpXL5WLQoEFYsGAB8vPz8fDhQ2zfvh3Dhg1TYY8BBQUFCo9P+dR+8fPzw5YtW9ChQwcAQNu2bbFt2zaFBHTx4sXo1KmT0uVzOBy0bduWXYZAIIC9vT2OHDlSahKryn6rjJycHDAMAzMzM0gkEixatEghgf3YoEGDEBISglevXiErKwu//PJLhdZ76NAhJCQkgGEYGBsbg2GYakvcKYqiqJqDJrFa6LPPPoNIJIK5uTkuXryIo0ePgmEY6Ojo4NixY9izZw/MzMzw448/4vjx4zAyMgJQ1BgrNDQUpqam2LlzJwYOHMguc9iwYQgKCkKvXr1gYGCAjh074vHjx6XGMHz4cPTr1w8NGzaEt7c3Jk6cWKJM48aNsWXLFgQGBqJevXp48eIFdu/ezb7+/fffo3///jA2NlboRaE0GzduREFBAezs7NCvXz8sXboUfn5+5d5vYrEYurq6Co+yqkwAn94vfn5+yM7OZuPw8/NDTk4O2rdvz5Z5+/atwvOP+fn5QSaToVWrVuxzLpeLxo0bKy0/duxYXL9+HcbGxpXuP7csTZo0wYQJE9CsWTM4OTnB2dlZoTrKx/r164egoCC0adMGTZs2RdeuXSEQCFRe7+3bt+Hp6QmRSIRJkyZh37594PP5ldkUiqIoqhZiSFmXTiiqAjp16oSJEyeqfBW0rvL09MTZs2dhZmam6VCqVWhoKGbNmoVHjx5pOhSKoiiqFqJXYilKw+7evVtnEtjDhw+jsLCQrc86YMAATYdEURRF1VI0iaUoqtqsX78eFhYWaNasGdzd3TF//nxNh0RRFEXVUjSJpdTu0qVLtCoBpdTFixeRmZmJ9+/fY9u2bdDX19d0SFQ12rlzJxiGgVAoxJs3b0q83qlTJzRp0kQDkSnHMAwWL16s0jynTp1SeZ6qjAco6s5w8eLFiIyMLPc8//77L7y8vKCvrw+GYXD06FGV11teMTExYBimwo09a4LFixezjUxFIpGmw9G4S5cugWEYXLp0iZ02Y8YMte8jmsRSFEVR1UosFuO7777TdBifFBYWhnHjxqk0z6lTp7BkyZIqiqhiEhISsGTJknInsYQQDBkyBHw+H8ePH0dYWBg6duxYtUFqibCwMFy8eFHTYdRIM2fORFhYGHr16qW2ZdIkthbq2bOn0hGwlDl06BBsbW0hEokUOqEv9vbtW7Rs2ZIdgakuYBgGSUlJ5S4vk8nQokULvH//vgqjqtucnJzK1QOFqu7cuYMePXqofbm1RUxMTLkG1fhQZmYmmjZtCrFYXEVRAT169MC+ffvYUdhqKh8fn0oNklJbJSQkIC0tDQMHDkTnzp3h4+MDExOTSi0zPz+/zC74tIWPj0+5RmOsixwdHeHj48N2o6kOGkliq+oLq6ocO3YMbdu2hb6+PqysrNChQwccPHhQY/GcPn1aab+rysyZMwe7d+9GTk6O0sZDK1aswOTJk8HhfPpQ6NSpE/bv369yvDVdcnIy6tevX+rrXC4XwcHB+Pnnn8u9TIZhoK+vD5FIBEdHR6xYsUIdoVZKWFgYOBwOfvzxR3baxIkTIRKJ2Aefz0ffvn1LXcbOnTthZ2cHQ0NDjBkzRmGQgfPnz6N58+YwMDCAh4cHTp48WaXbUx6LFi3C7Nmzy1X2U+cluVyOGTNmwNjYGFZWVli9enWpZa9cuYIOHTpAX19faRL94fEhEonwww8/lCtGdbhz5w78/f1Lfd3IyAjdunXDtm3bqiyGOXPmwMzMDHPnzi2zXOfOndGoUaMSyQ8hBK6urujduzc7LSEhAUOGDIGBgQGMjIwwdOhQ3Lx5EwzDYOfOnWy5Tp06Ke2XOSgoCE5OTgrTPr59n5eXh6+//hrOzs4QCoUwNTWFl5cXO7x1UFAQNm7cyM5b/Cir3+biKhRXr16Fj48PdHV1YWtri4ULF0Imk5W5fwDg4cOH6N+/P0xMTCAUCtGiRQvs2rWLff3SpUtsUjVmzBg2ptKqJSxevJhN3OfOnQuGYRT2y7Vr19C5c2cYGBhAT08P7dq1K/FZL642cvbsWYwdOxYWFhbQ09Or9A8jhmEwdepU7NmzB+7u7tDT00Pz5s1x4sSJEmWfP3+OESNGwNLSEgKBAO7u7ux7AxQdQ1ZWVpgyZQo7TSaTwcTEBBwOB+/evWOnr1q1CjweDxkZGSrHXLwvlD0+PA4LCgowb948tqtCW1tbTJkypcQ65XI5Vq5ciUaNGkEgEMDS0hKjR48uMXhM8XEVFhaGdu3aQVdXF05OTtixYwcA4OTJk2jVqhX09PTQtGlTpf2+f2ofFnv69Cl69OgBPT09mJubY+LEicjOzlZ5X1UI0QBHR0cSFhamiVWrbPfu3cTY2Jj88ccfJCsri8hkMnLjxg0yYcIETYdWLlwulyQmJip9LS8vj5ibm5P09PRyLatjx47kzz//VGN0lVdYWKjyPAAU9smePXvIl19+WeY8iYmJxMrKikgkEpXXERYWRnR1dcnp06dVjlVdZDIZadOmDfH29iYrVqwotVzLli3Jtm3blL724MEDYmJiQsLDw0lGRgbp1KkTWbhwISGEEIlEQoyMjMiePXuIXC4np06dIiKRiGRmZpYrvqo4J8TFxREbGxsik8nUEsPGjRtJy5Ytybt378jTp09JvXr1yL///qu0bHh4ONm7dy/53//+R7p3717i9Y+PwfJS9Xh//fo1EQgECtP+97//lXkMEELIrVu3SMuWLVWO71N27NhBAJDw8HCydu1aAkBhH3bs2JE0btyYfX7s2DECgJw7d05hOSdPniQAyMmTJwkhRecyd3d3YmRkRNavX09CQ0PJtGnTiIODAwFAduzYobCOjh07logtMDCQODo6KkwDQBYtWsQ+//LLL4menh5ZtWoVuXjxIjlx4gT58ccfyfr16wkhhLx48YIMHjyYACBhYWHso6CgoNR90rFjR2JmZkZsbGzIunXr2NgBkClTppQZz9OnT4mBgQFxcXEhu3fvJidPniTDhw8nAMhPP/1ECCEkMzOT3e/fffcdG1NcXJzSeOLi4sjhw4cJAPLVV1+RsLAwEhERQQgh5NKlS4TP5xNPT09y4MABcvToUdKtWzfCMAzZv38/u4zi9dna2pIJEyaQ06dPk0OHDhGpVKp0na9fvyYAyM8//1zqfireficnJ+Lt7U3++usvcurUKdKpUyfC4/HIy5cv2XKPHj0iRkZGpGnTpmT37t3k7NmzZPbs2YTD4ZDFixez5YYNG0YaNmzIPr958yYBQHR1dcnevXvZ6T179iTe3t5lxrZo0SKiLKV6//69wrEQFhZGVq1aRQCQyZMnE0IIkcvlpHv37oTH45GFCxeSs2fPkl9++YXo6+uTli1bKhw/EyZMIADI1KlTyZkzZ8iWLVuIhYUFsbe3J8nJyWy54uPKzc2NbN++nYSGhpI+ffoQAGTJkiWkadOm5M8//ySnTp0iPj4+RCAQkPj4eJX3YVJSErG0tCS2trZkx44d5NSpU+SLL75gP3sXL14ssU8CAwOJvr5+mfuzvGpFEuvo6EhWr15NGjVqRIyNjclXX32l8PqGDRuIq6srMTMzI6NHjyY5OTmEEELatm1Lzp49SwghZOfOnQQAeffuHSGEkBkzZpAffvihzPXKZDJibW1N1q1bV2Y5AGTTpk3E3t6emJmZkf3795N//vmHODs7EwsLC4UPtzp8mEwGBgaSmTNnks8++4yIRCLSrVs3kpaWRgghRF9fnwAgenp6pG3btiWWc+HCBdKqVSuFaUuXLiUODg7EwMCA+Pj4kPv377PTORwOEQgERF9fnz1BfqisWGQyGRk4cCCxsLAgJiYmZPDgwSQ1NZUQ8t8XbUhICKlXrx6xsrIiu3fvVrrtxWXXr19PrK2tSVBQEElJSSHdu3cnZmZmxNzcnIwfP17hQ79t2zZia2tLrKysyJYtW0okECNHjiSHDx8mMpmMfPXVV8TMzIwYGBiQli1bKpwU3NzcyK1btz79BpGSSYqXlxf5+eef2fg3bdpELCwsiJ2dHbl48SLZtm0bqVevHrG3tyeXLl0q1zpUsXnzZjJt2jQSGBhYagLz+PFjIhAISEZGhtLXv/32WzJx4kT2+b///kucnZ0JIYSkpKQQhmEUvqQsLCzIgwcPlC7r5MmTxMXFhZiYmJBFixYpnBPy8vLIlClTiLW1NbG1tSU//vgjO19WVhYZMmQIMTIyIi1btiQLFixQmiQSQsjvv/9OBg0apDBt0qRJxNramhgZGZGuXbuSN2/eEEIICQ4OJgzDEF1dXaKvr6/0M+vj46MwfeHChWTMmDFK111sx44dlUpiL168SNzc3Mj8+fOJmZkZWbx4MXn27Bnx8/MjRkZGxNramsybN09hnmXLlhELCwvi6OhI1qxZUyKJ9fX1JRERESQvL48MGzaMGBsbEyMjI9KuXTu2jFQqJfr6+uz5Ul0+TGLFYjGpX78+8fLyInK5nBBSMomVyWSkfv36pH///grL6dmzJ3FxcWHn27x5MwFAjh07plBu/Pjxak1imzRpQgYMGFDmNk6ZMkVpMlOajh07lho7h8Nhj1Fl8QwbNowIBAISGxurMG/Pnj2Jnp4e+1kODw8vsR/KUlpS6ePjQywtLUl2djY7TSqVkiZNmhA7Ozv2/Sh+n0ePHl2p9X0MALGysiJZWVnstKSkJMLhcBTOa927dyd2dnYlfkRPnTqVCIVC9ntp27ZtBAC7/5YtW0YaNWpE+vXrx362CwsLib6+Ppk/f36ZsZWWxH7s6dOnxMzMjPj7+xOxWEwIIeTMmTMEAFm5cqVC2QMHDhAAJCQkhBBCyJMnTxSS32K3bt0iABRiLD6u7ty5w05LTU0lXC6X6OrqKiSskZGRBIBCrlPefTh37lzCMAyJjIxUKNe1a9dqSWJrTZ3Y48eP49q1a4iKisL+/ftx9epVAMDBgwcREhKC8+fPIy4uDhKJBN9//z2AopGNistdu3YNzs7OuHbtGvvc19cXsbGxMDY2RmxsbIl1RkdHIzExEf369ftkfNevX8ezZ8+wefNmTJ48GX///Tc79OnUqVNLvS1kbGxc6qM41k85cOAA1q5di+TkZEilUmzYsAFA0bCgAPDy5UvcuHGjxHyPHj1CgwYNFKZ5eHjgzp07SEtLQ9euXTF69GgAwMKFC+Hn54edO3ciJycHc+bMUSkWoGjY0devX+P169fIzs7G0qVL2dcKCwsRHR2NN2/eYPfu3ZgyZQry8vKUrqOwsBCPHz/Gq1evsHnzZsjlckydOhXx8fF48OAB7ty5g82bN7PbOHv2bBw5cgSvX78usU8JIbh48SI+++wznD17Fjdu3MCrV6+Qnp6Obdu2KdQndHNzQ1RUlPI3oQw3btzAo0eP0Lx5czb+mJgYxMfHY/r06Rg5ciQeP36MN2/eYM6cOZgxY4bS5RQfq6U9lB3DAJCWloY1a9Z8slXz3r170adPH3YEt489fvwYTZs2ZZ83b94cr1+/Rn5+PszMzDB06FDs2bMHMpkM//zzD/T19dGwYcMSy0lOTsawYcOwbt06JCUlIS8vT+FW2Ndff43MzEw8e/YMt2/fxu7du/HPP/8AKKoekJWVhbi4OOzfv19hhLePKTu+fX198eTJEyQlJcHOzo4d0Wzbtm1wcHDAhQsXkJOTg6FDh5Zr+yszUEOrVq1ga2uLoKAgpfXVi7148QJ6enpITExkb78vW7YMKSkpuHz5Mv744w+25fipU6ewZcsW3LhxA5GRkex+K5aZmYnXr1+zt5xzc3ORkJCAlJQUhWomXC4XLi4uFTrey0tHRwfLli3DnTt38Ndffyktw+FwMHXqVJw4cYI9vl++fIkzZ85g8uTJ7HDDFy9ehIGBQYlz9YgRI9Qas7e3N06fPo1vv/0Wly5dQn5+vlqWW1rscrkcV65cKXW+CxcuoHPnzrC3t1eYHhQUhLy8PISFhaklPgDIzc3FrVu3MHjwYIWW5VwuF6NGjcLbt28RHR2tME95q72pwt/fHwYGBuxzKysrWFpasr1dFBQU4N9//8XAgQOhp6cHqVTKPnr16oWCggK22lCXLl0AFFWFAoBz586ha9eu6NKlC86dOwegqBpWbm4uW7YykpKS0KNHD1hbW+PIkSPsCIcXLlwAUPS+fejzzz+Hvr4+/v33XwBgG4x9XM7b2xvu7u5suWLW1tbw9PRkn5uamsLS0hItWrSAjY0NO93d3R0AKrQPL168iMaNG7Pfb8XU/dkrTa1JYmfMmAEzMzPY2dmhU6dObIOA7du3Y8GCBXB0dISuri7mz5+PQ4cOASj6wipOYq9fv47Zs2fj6tWryMnJwePHj9G6dWs4ODggIyMDDg4OJdZZ/MVSr149dpq3tzeMjY0hFAoV6szMmTMHQqEQgwYNQkZGBiZPngw9PT307dsX2dnZSEhIULpdGRkZpT58fX3LtW+GDh2KJk2aQCgUIiAgoNyNJTIzM0t0cxEQEAALCwvweDzMnz8fDx48YJPhysTC4XAwcuRI6Ovrw8jICDNnzlRIKAkh+P7776Gjo4Nu3bpBKBTi1atXStdBCMGSJUsgFAohFAphYWGBPn36QCAQwNraGl9++SW77EOHDmHw4MFo3bo1dHV1sWjRIoVlRUREwNnZGUZGRuDz+cjKysLTp0/B4XDQqlUrhf1jYGCgUp0oNzc3mJiYYMyYMVi+fDm6du3Kxr9gwQLw+XwEBAQgPj4e3377LXR0dBAQEIBHjx4pbWhXfKyW9lB2DAPA/PnzMWPGjE82zNi3bx+++OKLUl/PycmBoaEh+7z4/+LjY/DgwZg9ezYEAgGGDh2KzZs3Kx1W9tSpU/D29kavXr2go6ODxYsXs3WyCSHYsWMHfv31V4hEItjY2GDSpEnsZ/rw4cP47rvvYGBggIYNGyIwMLDUeJUd3yNGjICRkRGEQiHmzp1b7h+KpW2/Kp+ND125cgVv3rxBZGQk8vLyMHbs2FLL6unp4dtvvwWfz4dQKESDBg3QoUMH8Hg8NGjQAF988QW7HQcPHsSXX34JV1dXGBsb49tvv1VY1vnz5+Hv7w+GYcDn85GcnIxXr16Bx+OVGKJZ1eO9IoYNG4ZWrVphwYIFkEgkSsuMHTsWurq62LJlC4Ci4aV1dXUV9llqaiqsrKxKzPvhuVsd1q1bh7lz5+Lo0aPw9/eHqakpBgwYgOfPn1dquWXFXtYPnNTUVFhbW5eYXpyglDWvqtLT00EIUWl9yspWlrK2HQKBgP1BkZqaCqlUivXr14PP5ys8ilvFFw8n7ujoCBcXF5w/f55N+ouT2OKk/Pz589DV1UW7du0qFXd2djZ69eoFiUSC06dPK1wsSE1NBY/HK9HgiWEY1KtXj92vxX9Lew8+3v+mpqYlyuno6JSYXpxMFxQUsOsp7z5MTU1V+jlT92evNLUmibW0tGT/19PTY788YmNjERwczF6N8vX1ZXeur68vwsPDER8fDz6fj/79++PatWsICwtDixYtPtlqt/jD8mFL9tu3byMjIwNisVihsUFxfFwuF3w+X+FgFAqFyM3NreQeKF1p++ZTjIyMSlS+3rp1Kxo3bgwjIyPUq1cPhBCVToSlxSKVSjFjxgw4OjrC0NAQgwcPVliuQCBQSBDK2g4dHR2F/ZudnY3Ro0ezDY5mzZrFLjsxMVHhKsXHVyxCQ0PZhjedO3fGpEmTMGHCBFhaWmL27NkKX6zZ2dkwNjYu976Ijo5Geno6oqOjMXPmTKXbqqurCwDs9ujq6kIikSg0mKqMe/fu4fbt2xg/fnyZ5W7cuIH09PQyuz4RiUTIyspinxf/LxKJ8OTJE4wZMwbHjh1DYWEhQkNDMWrUKKVXhz9+T/T09NjPWnJyMvLz89GwYUP2Mz1//ny2Z4ikpCSFectqOa7s+F6+fDlcXV1haGgIb29vlY5tZdtf0b4O/fz82PPEunXrcOrUqVLfc2tra3C5XPZ5fHw8Bg4ciHr16sHIyAhr1qyp0PE+atQodO3aFQMHDoSdnV2JxmWqHu8VwTAMfvrpJ7x8+RIhISFKyxgZGSEwMBDbtm1DWloaduzYgREjRijEZmZmpnBRoZiyXkiEQqHSBkbF3xtl0dfXx5IlS/D06VMkJSVh8+bNuHnzZpmNIcujrNjLGs3PzMwMiYmJJaYXXzQxNzevVFwfKm7wpMr6iq+UVycTExNwuVwEBQUhPDxc6ePD81znzp3x77//4vLly5DL5ejUqRPc3d1hY2ODc+fO4fz58/Dz81P6g7y8JBIJAgIC8PLlS5w6darEecvMzAxSqRTJyckK0wkhSEpKYvdr8bFQ2nugrvdblX1oZmam9HOmSg9AlVFrktjS2NraYu/evQpXpIoTRhMTEzg5OWHt2rXw9fWFnZ0d0tPTcfr06XJd5XRzc4O1tTWOHz9eZfF/2DL840fxVeSq0rRpU4XbPzExMZg1axb27NmDjIwMJCYmgsPhsMl6ZU5Ie/fuxdWrVxEWFoasrCwcOnSowt2tfBzHqlWrkJaWhsjISGRlZWHVqlXssq2trREXF8eW/fB/ADhz5gy6d+/OPp85cyYiIyMRERGBs2fPKvTG8PTpU4XbydUtNja2zONFWcJ4+fJlPHv2DLa2tqhXrx4OHDiA5cuXl0hq9+7di8GDB5d5ovbw8FC4vXz//n04OztDV1cXDx8+RPPmzeHr6wsOhwM/Pz+4ubnh1q1bJZbz8XuSn5/PJmHm5uZsR/jFn+esrCycPn0aQNGv+w+rHnzcIvdDHx/fly9fxm+//YbTp08jMzMTt2/fVij/qeNb2fY3bty4zHnK48Or0Mp8HNd3330HCwsLPHv2DJmZmZgxY0a5j/fi26VA0Y/BpUuX4tmzZzh//jzWrVvHnnNkMhlevnxZLcd7ly5d0LVrVyxdurTUH67Tpk1DSkoKBg8ejIyMDEydOlXhdX9/f2RnZ5c4V+/bt6/EspycnPDs2TOFRDY1NVVplauyWFlZISgoCMOHD0d0dDRb/an4M6RKVYPSYudwOOjQoUOp83Xu3BkXLlwocadv9+7d0NPTg4+PT4Vj+pi+vj7atGmDw4cPKyxHLpfjjz/+gJ2dndLqQ9VNT08P/v7+uHfvHpo1awYvL68Sjw9/GHTp0gXv3r3DmjVr4OPjw1ZV6Ny5M44cOYLw8PBKVyUIDg7GpUuXcPjwYTRr1qzE6507dwYA/PHHHwrT//77b+Tm5rKvf/bZZ0rLhYeH48mTJ2y5ylJlH/r7++PRo0cl7gAr++xVBV61rEWJwsJC9tI1UHRCLU83Tx8LDg7G8uXL0aRJE9SvXx+JiYm4f/8+e7XBz88PW7ZswdatWwEAbdu2xbZt27B3795PLpvD4eCnn37CtGnTYGZmhr59+0JfXx/h4eEqx1mait6OVAcfHx/Ex8cjLS0NpqamyMnJAcMwMDMzg0QiwaJFi0pcbS6rq5iyZGdnQyAQwNjYGCkpKWodmSU7Oxu6urowMjLCmzdvsGnTJvbWeUBAAHx9fTFp0iR4eHhg2bJl7HxZWVl48eIFWrVqBaCo6yFCCFq2bAkDAwPw+Xz2ClhSUhIyMjLYsjExMXB2dsbr169LdMtTVRwcHFQ+XiZMmKAwetr06dPRoEEDfP311+w0qVSKv/7665Pdxo0YMQKdOnXC+PHj4eLiguXLl2PkyJEAgBYtWiAqKgq3bt1CmzZtEBYWVmqS16tXL3z11VcIDQ2Fv78/lixZwlaf4HA4CAwMxNdff42ff/4ZhoaGiI6ORnZ2Nry9vTFo0CAsW7YMBw4cQFJSEvbs2YNGjRopjbdr166YO3cuZDIZuFwusrOzwePxYGZmhtzcXIVjAfjv+C7+4v/YyJEj8fPPP+Ozzz5j60zv2bNHaVm5XI7CwkJIJBLI5XIUFBSwd2kePXoEqVSKJk2aICsrCzNmzEDXrl3LfaUnOzsb9vb2EIlEePjwIf744w/2y2vw4MGYNGkShg8fDnNzc6xcuZKd78mTJ2ydOKCoLpulpSXc3d1haGgIHo/HHu93795FgwYNFO6sVKWffvoJnp6eeP/+vdJjpmHDhujRowd7AeLj+nejR4/G6tWrMXr0aCxfvhwNGjTAqVOnEBoaWmJZo0aNwm+//YaRI0di/PjxSE1NxcqVKxXuBJWmTZs26NOnD5o1awYTExM8efIEe/bsQdu2baGnpwcAbOL/008/oWfPnuByuWjWrBl7y1YZMzMzTJo0CbGxsWjYsCFOnTqFrVu3YtKkSaVWEwKK6oifOHEC/v7++P7772Fqaoq9e/fi5MmTWLlyJXvL2sXFBbq6uti7dy/c3d3Zqjof1ossjxUrVqBr167w9/fH119/DR0dHWzatAkPHz7En3/+Wekrr1FRUWzVoQ+1bt0ajo6O5V5O8YUrPz8/TJo0CU5OTsjOzsaLFy/wzz//sHVQgaLEsLg7sA8HqejSpQtbXakySezPP/+MPXv24KuvvoK+vr5CN36Ghobw8PBA165d0b17d8ydOxdZWVlo3749Hjx4gEWLFqFly5YYNWoUgKILaxMmTMD69evB4XDQs2dPxMTEYOHChbC3t1e441dZ5d2HM2bMwO+//47evXtj2bJlsLKywt69e/H06VO1xVImtTQPU5GjoyMBoPA4ePBgmeU/7M3g4xbWmzZtIm5ubkQkEpEGDRqQX3/9lX1t7969BADbEu+3334jDMOwLePfvHlD9PX1FVqAfuzIkSOkTZs2RE9Pj1haWhJfX1/y119/sS0x8VFLY4FAQF6/fs0+NzIyIk+ePCnn3vm0j3sn+HBffNwa+uPYPjZ16lSyZcsW9vns2bOJoaEhsba2Jps2bVLYlqtXrxIXFxdibGystBVpWbFkZmaSHj16EH19fdKoUSPyyy+/sC2BlXUDVFoPFsrKxsbGkrZt2xJ9fX3i6elJFi1apND6OCQkhNja2hJLS0vy22+/sfvk8OHDZPjw4Wy58+fPkyZNmhB9fX1iaWlJpk6dyra2X7duHZk9ezZb9urVq8TR0bHULo9K2+8fx5+YmKjQojU9PZ0AIPn5+UqXW1nKeic4ceIEsbOzU9oVlb6+Prly5Qr7fMeOHcTGxoaIRCISGBio0AvEnj17SMOGDYlIJCKurq6ldtVFCCHHjx8n9evXJyYmJmTx4sUK73dubi6ZPn06sbOzI0ZGRsTLy4ucOXOGEPJf7wSGhoakZcuWZM6cOaRfv36lrqdPnz7svBKJhIwYMYKIRCLi5ORENm3apLDv//77b2Jra0uMjIzIgQMHSixLJpOR6dOnEyMjI2JhYaFwnvn4PHLx4sUS57jAwEBCSFGvDg0aNCB6enrEysqKjBw5stReAIp7J/jQ/fv3SdOmTYm+vj7x9/cn06dPZ5dNCCFLliwhFhYWxMHBgaxdu5Y93latWqXQk8HevXuJq6sr0dfXJzY2NmTp0qXsa7NmzWK7jVKnD3sn+NiIESMIAIXeCT5U3MNMab29vH37lgQEBBCRSEQMDAxIQEAAuXHjhtJW+bt27SLu7u5EKBQSDw8PcuDAgXL1TvDtt98SLy8vYmJiQgQCAalfvz6ZOXMmSUlJYcuIxWIybtw4YmFhQRiGIQAUvg8+Vtwjw6VLl4iXlxcRCATE2tqazJ8/v0SXfh/HQwghUVFRpG/fvsTIyIjo6OiQ5s2bK+2F4M8//ySNGjUifD5f6XI+VFZvAVevXiWfffYZ0dfXJ7q6usTHx4f8888/CmXKep/LWl9pj+LtgZJuxwgp+r748DNQvMyxY8cSW1tbwufziYWFBWnXrh1ZtmxZiflbtmxJAJDr16+z0+Lj4wkAYmZmxn7Xl6W03gkCAwNL3a4Pv6fy8/PJ3LlziaOjI+Hz+cTa2ppMmjSpRBeYMpmM/PTTT6Rhw4aEz+cTc3NzMnLkyBJdpn3c08eH+6p3794lpivbt+Xdh48fPyZdu3YlQqGQmJqakuDgYLZ7PK3sYouqOeLi4kjz5s3L3ZemNpkwYQLZtWvXJ8tJpVLSrFkzkpSUxE774YcfFJJ/SjO+/fbbEt3NfCg8PJx07dq1GiOqubp160YuX778yXKZmZmkcePGVfZDqqIGDRpEbGxsVOortzg5Km/XUppQWrJB1S7FSaxEIim1P9y6TiaTEYlEQkaPHq22JFZj1QmomsHOzq7c42lrm1atWpVrDGcul1uivs+8efOqKiyqDHFxcYiPj4e3tzfu3buH7du3l1k1yMvLC2fPnq3GCGuuzp07o23btp8sZ2hoiIcPH1ZDRJ8mFosRERGB27dv48iRI1i1ahX4fL6mw6KoUvH5fOjr62u0qmBNNWvWLKxduxZAUR1rdagxSWzfvn3ZPtA+dOLECaVDBFJUZX355ZeaDoFSkVgsRnBwMGJiYmBhYYE5c+awDZWospXWt3NNlpiYiHbt2sHQ0BBffvklvvrqK02HRFFKTZgwAX369AEAhd5EqP/Mnj2bbUehrn3EEFLBJuIURVEURVEUpSG1vostiqIoiqIoqu6hSSxFURRFURRV69AklqIoiqIoiqp1akzDrtpELpcjISEBBgYGGhlWj6Komo8QguzsbNjY2FRoIBdtQM+VFEWVR0XPl3U2iR04cCAuXbqEzp07Kx0hpCwJCQklxiSnKIpSJi4ursRY6XUFPVdSFKUKVc+XdTaJnTZtGsaOHYtdu3apPG/x2MpxcXHlGqqQoqi6JysrC/b29uz5oi4q3vaYmBh2KGhtIJPJEB0dDTc3N63pToluU80W9Ptt3HmTjp8DmsKRl6EV2/Sh9PR0ODk5qXy+rLNJrL+/Py5dulSheYtvixkaGtIklqKoMtXl2+jaeq6UyWQQiUQwNDTUmkSCblPNxtfVB0cghp7IACKeVCu26UMymQyA6ufLWllR68qVK+jbty9sbGzAMAyOHj1aosymTZvg7OwMoVAIT09PXL16tfoDpaharLCwEIsXL8bixYtRWFio6XAoiqIoSkGtTGJzc3PRvHlzbNiwQenrBw4cwIwZM7BgwQLcu3cPfn5+6NmzJ2JjY6s5UiA9txDfHLyPxwlZ1b5uiqoMiUSCJUuWYMmSJZBIJJoOh6Ioqs6io1IpVyurE/Ts2RM9e/Ys9fVVq1YhODgY48aNAwCsWbMGoaGh2Lx5M1asWKHy+sRiMcRiMfs8K6v8CeneW29w8O5bHLz7Fr6u5hjn54yODS3q9C1Gqnbg8XiYPHky+z9FURSlWTR1UKR130yFhYW4e/cuvv32W4Xp3bp1w40bNyq0zBUrVmDJkiUVmreTmyWeJmXj9MMkXHuRgmsvUtDQSoRxvvXRv6UNBDztqdNCaReBQICNGzdqOgyKoiiKUqpWVicoS0pKCmQyGaysrBSmW1lZISkpiX3evXt3fP755zh16hTs7OwQHh5e6jLnzZuHzMxM9hEXF1fueJrYGmHDiFa4/E0nBPs6Q1+Hi2fvcjDn7wdo/+NFrP/3OdJzaX1DiqIoiqKUszAQwNZYF0I+vfD1Ia27Elvs49v1hBCFaaGhoeVelkAgYK9Kbdy4kW1Fpwo7Ez0s7OOB6V0aYP/tWOy4HoPEzAL8eu4ZNl56gc897RHs6wwnc32Vl01RFEVRlPbaOKIVgKJW/E+epGg4mppD667Empubg8vlKlx1BYD379+XuDqrqilTpuDx48dlXrX9FEMhHxM6uODKHH+sGdoCjW0MUSCRY8/NN/D/9RIm7L6D8Jg0EEKrcVOalZubCz6fDz6fj9zcXE2HQ1EURVEKtC6J1dHRgaenJ86dO6cw/dy5c2jXrl2llr1x40Z4eHigdevWlVoOAPC5HAxoaYsTX/li3/g2+KyRJQgBzj5+h8+3hGHAphs48SABEpm80uuiqIqSSqWQSqWaDoOiKIqiSqiV1QlycnLw4sUL9vnr168RGRkJU1NTODg4YNasWRg1ahS8vLzQtm1bhISEIDY2FhMnTqzUeqdMmYIpU6YgKysLRkZGld0MAEXVHtq5mKOdizlevM/GtquvcfhePO7HZWDqvnuoZyjEqLaOGNbaHmYigVrWSVHloauri7dv37L/UxRFUZrx7d8P8DgxC193awhTTQdTg9TKJPbOnTvw9/dnn8+aNQsAEBgYiJ07d2Lo0KFITU3F0qVLkZiYiCZNmuDUqVNwdHSs1HorUye2PFwtDfBjQDPM7uaGPTffYO/NN0jKKsDPodFY++9z9G1mg6B2Tmhqp54EmqLKwuFwYGtrq+kwKIqi6ryXyTl48DYT2fkSmNK2XSyG0MqXKiu+EpuZmVmlQymKpTKcfJCInTdi8OBtJjvd09EEge2c0LNJPfC5WlcjhKK0QnWdJ2qy4n2QlpYGExMTTYejNkWNa57A3d1da4b+pNtUs32+5QbCY9KxcXgLOHLTtWKbPpSeng5TU1OVz5e18kpsXSHgcTGolR0GtrTFvbgM7LoRg1NRibj7Jh1336TD0kCAkT6OGO7tAAsDWtWAUq/CwkKsXbsWADB9+nTo6OhoOCKKoqi6jQ52oIgmsSqo6uoEpWEYBq0cTNDKwQQLerlj3+1Y7L0Vi/fZYqw69wzrLzxH98b1MMLbAW1dzOhoYJRaSCQSzJkzBwAwefJkmsRSFEVpCL1nrhxNYlVQFQ27VGVpKMSMLg0xuZMrTj8sqmpwLzYDJx4k4sSDRDiZ6WGYtwMGe9rBnDYEoyqBx+MhMDCQ/Z+iKIqiahL6zVRL6fA46N/CFv1b2OJhfCb2h8fi6L0ExKTm4cfTT/Hr2Wh086iH4d4OaOdiBg6HXp2lVCMQCLBz505Nh0FRFEWx6Hf5h2gSqwJNVSf4lCa2Rlhm2xTzerrj5INE7Lsdi8i4DJyMSsTJqEQ4mulhcCs7DGhpC3tTPU2HS1EURVGUCgx1+TDT14EOlwFo1QIW7Z2gAmpDq+PHCVnYHx6LIxHxyBb/11m9t7MpBrW0Ra9m1jAU8jUYIUVpt9pwnqhqtHeC2qMqt4kQgmyxFPmFMlgZCtnpN16moEAig4DHha4OF7r8ooe+gAdTfR1wK3kHkb5PtQftnYBS4GFjiKX9m+Dbno1wOioJh++9xY2Xqbj9Og23X6dh0fFH6OJhhYBWtvBrYEG76qJKyM3NZfuJjY+Ph76+voYjoiiqJpPJCc4/eYcniVmISclFUlYB3mWJ8S6rAHmFMng7meKviW3Z8tP+jERKjljpspzN9XHx607s8103YmAg5KFRPUO4WOpDwNOeBI6qOJrEajk9HR4CPO0Q4GmHxMx8HL2XgMMRb/H8fQ5OPkjEyQeJMNLlo5uHFXo1tUZ7V3Po8GhCSxXJzMz8dCGKouqcrAIJbr1KQ75Ehn7NbQAAHAb45uB9ZBUoH6r6445zGtsYIi23EIVSOfIkUuQXylEgkSG3UFqi28hNl17gXVZRwsvjMHCxEKGpnRG8nU3Rtr4ZrSpXR9EkVgU1tU5seVkb6WJSJxdM7FgfjxKycDgiHsfvxyMlpxAH777FwbtvYSDkoauHFXo1sYZfQ3P6a7cO09XVxbNnz9j/KYqqu2RygvCYNFx9nozrL1Lx4G0G5ASwM9Flk1iGYdC7mTUKpQQNrESwNhLCylCIeoZFf3V1FL9Pdo31VrouqUyO3ELF79meTazxODELTxOzkFUgRfS7bES/y8ahu2/R3N4Yx6a0Z8sWSuVadzFm4dGHePYuGzO7uEKk6WBqEJrEqqAmdLGlDgzDoImtEZrYGmFBb3eEx6ThdFQiTj9MwvtsMQ5HxONwRDz0dbjwbWAOfzdLdHKzRD0j4acXTmkNDoeDBg0aaDoMiqI0bN2/z/HHzTd4n61469/ZXB/tXMwglsrYCx4rBjWr9Pp4XA6MdBWT0MX9GgMoql+bmFmAJ4lZuPMmHbdfp6FtfTO2XK5YirYr/oWXkym6NLKAM792XnT62KOETETEZiA9TwIR7aCAVSVJbEFBAYRCmvDUBlwOA5/6ZvCpb4ZFfRvjbmw6TkUl4nRUEpKyChD66B1CH70DALhbG+KzRhbo2NASLeyNte6XLkVRFAW8zyqAhYGAHTgnJUeM99liGOny8VkjS7RzMUN7V3PYGFf/HRqGYWBjrAsbY110drcq8fqt16nIKpDiwtP3uPD0PfgcoHu0FENbO6Cdi3mlG4tRNYvakli5XI7ly5djy5YtePfuHZ49e4b69etj4cKFcHJyQnBwsLpWRVURDodBaydTtHYyxcLeHniUkIWL0e9xMfo9IuMy8CQxC08Ss7Dx4ksI+Rx4OZrCp74pfOqboZkdTWq1jUQiQUhICABgwoQJ4PNpbxYUpc2eJoux+X4kzjx6hwMTfODlZAoAGN3WER0aWKBDQ4saf573d7PE2ZkdcPZREk48SMTTpGyceJCEEw+SYGMkxE+Dm8GvgYWmw6TURG1J7LJly7Br1y6sXLkS48ePZ6c3bdoUq1evpklsLcPhMGhqZ4SmdkaY1rkBUnPEuPI8GReeJuP6ixSk5Rbi2osUXHuRAgAQ8jloaW+CFg7GaG5njBb2xrT6QS1XWFiIqVOnAgCCgoJoEktRWkguJzj1MBHbrr5CZNx/DTmvvUhhk1hXSwO4WhpoKkSVMAyDhlYGaGhlgIkdnHHi+n3cTdfB8fuJSMoqgJPZf72syOSk1lyZpX2hKqe2JHb37t0ICQlB586dMXHiRHZ6s2bN8PTpU3WtRqNqe8OuyjATCTCwpR0GtrSDXE7wIjkHN1+l/v8jDWm5hQh7lYqwV6nsPFaGAjSzM0YTGyO41ROhoZUBHM30a81Jo67jcrkYPHgw+z9V96xYsQKHDx/G06dPoauri3bt2uGnn36Cm5ubpkOjKokQgkvRyfjpzFM8TcoGAPA4wIAWthjrWx8eNrW/b2OGYeBqJkBfX3cs6O2Be7EZCr0YfPVnBIQ8LmZ0aQgHs9rRuwH99lSktiQ2Pj4erq6uJabL5XJIJBJ1rUajtKVhV2VxOP/90h3d1glyOcHz9zmIiE3Hg7cZiIzLRHRSFt5liXHu8Tuce/yOnVfA46CBVVFC62ymDwczPTiY6sHRTB8meny2DhaleUKhEAcPHtR0GJQGXb58GVOmTEHr1q0hlUqxYMECdOvWDY8fP6b9BtdyhTI5FhyJQkJmAQyEPAS1dYS3qRjtWjXRyh+tQj4XbV3+awD2LqsAZx4mQU6A4/cTMKS1PaZ91oDeQaxl1JbENm7cGFevXoWjo6PC9IMHD6Jly5bqWg1VA3E4DNzqGcCtngGGezsAAPIKpXiUkIX7cRl4mpSN6KRsPH+fjQKJHA/js/AwPqvEcgwEPNib6sHWRBdWhgJYGgiL/hoKYWkggJWhECZ6lR/FpaYSS2XIKZAiVyxDjliKHLEUuWIpsv//b65YComMgMMAHIYBwwAGQh7M9AUwE+nA0Uwfpvo6mt4MSoucOXNG4fmOHTtgaWmJu3fvokOHDhqKiqqo1BwxTPV1wDAMBDwu5vRohMeJWZjU0QWGQi6ePHmi6RCrjZWhEEentMcvZ5/hyrNk7LtVNMLlFH8XjPOrDyG/ZiXyAh4Hunxu0fcfrVvAUlsSu2jRIowaNQrx8fGQy+U4fPgwoqOjsXv3bpw4cUJdq6FqCT0dHttIrJhMThCXlofod9l4/i4bMal5iE3NQ2xaHpKyCpAtluJxYhYeJ5ZMcD9kIOTBWI8PY10dGOvxYaRb9DAQ8qFXPHShDlfh/+K/XA4DPpdT9JfDAZfLgMcpfnDA+f82C3JSdLuNEEBOSNFz/PdcJicQS+UolMohlsohlshQKJNDLCl6XiiTQSyRKySjOWIpsgsU///wNYms8mcmCwMBPKwN0d7VDB0aWsDNyoBe3abUpnjwC1NT00+UpGoSQggOhMdh+akn+L6PBz73sgcADGhpiwEti0blq4vV5JrZGWP3WG/cfp2GlWee4s6bdPxy9hn+uvMWIaM90ahezalSsX9C0UhnRcPOpn6idN2htiS2b9++OHDgAH744QcwDIPvv/8erVq1wj///IOuXbuqazVULcblMHAy14eTuT66N66n8FqBRIa36Xl4k5qHhMwCJBcPV5hdgPdZYrzPLkBKTiEAILugKAGMQ74mNqPK6ekUjR1uIOBBX8CDvoALkYAPkYALPpcD+QeJdI5YitQcMZKzxUX7LVuMy9nJuPwsGT+cego3KwN87mWHzz3tYaSnWsOsvLw8tp/Y58+fQ0+vdtQZo6oGIQSzZs2Cr68vmjRporSMWCyGWPxfX6JZWUU/SGUymVYlScXbUhu2KSY1FwuOPsLNV2kAim6dD2xhXeLHbW3apvIq7zZ5Ohhh/3hv/PMgET+ejkZ+oQz1DAQ1cl9o4/sEVHx7GEIIvTCtouI6sZmZmTA0rDm/1LSdRCZHZr4EGXkSZOZLkJlfyP6fnidBrliKvEIZ8gv//69EhvxCGft/gUQGqbwo+ZPI5JDJCaRyAqlMDnk5PgUMU1SpnsMw4HAYCHgcCHjc///LgQ6PAwGfCwGXAwG/aJr+/yeiBgIeRAIeRMIPngv/f9oH0/V1eBWuLpErluLZu2xExGbg2vNkXH+ZikKpHAAgEvAQ2M4R43zrw6ScVQ5yc3MhEhWNDZOTk0PrQKpI284TU6ZMwcmTJ3Ht2jXY2dkpLbN48WIsWbKkxPSwsDD2WKKqByEEp5/nYNvddBTKCARcBiObG6NfIwOtrZKlDvkSOeKzJHA1Kxr2lhCC+0kFaF5PSO9qVaGcnBy0bdtW5fMlTWJV8GHvBM+ePdOaLyeqqJsZGSGQygiYD+qcchgGHAa18uSVmS/BiQcJ2BP2hm19bKzHx5zujTCstT04n/gik8lkiIqKAlDUVZ42NvaoStqUxH711Vc4evQorly5Amdn51LLKbsSa29vj+TkZJiYmFRHqNWi+DugYcOGNfJzkSuW4rtjj3D8fiIAoJ2LGZYPaAwH09LvptT0baoIdWzT4Xvx+OZQFPo1t8bSfo1hINTMQKfLTj7Bq5RcTO1YH7r577TqfQKA9PR0WFhYqHy+rNS7YWJiUu4v97S0tMqsqkagvRNoLw6HAQcMalhd/kox0uXjizaOGN7aAeeevMOqs88Q/S4b849E4eDdOKwZ2gKOZqVfXeVyuWjRokX1BUzVOIQQfPXVVzhy5AguXbpUZgILAAKBAAKBoMR0LperVV+4xWrqdj1MTMc/DxLB5TCY28MN4/3ql/u7uqZuU2VUZpsy86Xgchgcv5+IyLhMrBveEi3sjdUbYDlExGXiflwGvvB2gC60732q6LZUKolds2YN+39qaiqWLVuG7t27o23bogrIYWFhCA0NxcKFCyuzGoqiKoHDYdC9cT10bmSJ3WFvsOrcM9yLzUCvtVexpH8TBLSyrZVXmqmqN2XKFOzbtw/Hjh2DgYEBkpKSAABGRkbQ1a3+IUep8mnnYo7venugmZ2RQuNaSnXj/OqjpYMxpv0Zidi0PHy+5QaWD2iKIa3tNR0aBTVWJwgICIC/vz87wk+xDRs24Pz58zh69Kg6VlMjaNNtQqrueZueh1kH7uN2TNHdkaFe9lg6oDEEPMVfwhKJBHv37gUAfPHFF3TELhVpw3mitB83O3bsQFBQ0CfnL94HaWlpWled4MmTJ3B3d68xV8P+uPkGnzWyhI1xxX5c1MRtqix1blNmvgRzDz3AmUdFP+SC2jnhu97u4HGrZxje/huv435cBkJGtoINUrXqfQKKqhOYmpqqfL5U294PDQ1Fjx49Skzv3r07zp8/r67VUBRVSXYmevhzgg9md20IDgMcuBOHEVtv4X12gUK5wsJCjBkzBmPGjEFhYaGGoqU0qaibuZKP8iSwVPWQywmWn3yM744+RODvt5FXKNV0SFrJSJePTV+0wswuDQEAu8JiEBGbUX0B0OZLSqktiTUzM8ORI0dKTD969CjMzMyUzEFRlKZwOQy+6twAvwe1hoGQh7tv0tF/w3U8e5f9XxkuF7169UKvXr206hc/RWmLQqkcM/+KxNarrwEAAZ520NWmiv01DIfDYHqXBtgy0hMLernD27n6q2rQml+K1NbMbsmSJQgODsalS5fYOrE3b97EmTNnsG3bNnWtRi1OnDiB2bNnQy6XY+7cuRg3bpymQ6IojejkZoljU9pj3O47eJWci8+3hOH3IC94OppCKBTi5MmTmg6RoiglJDI5Ju+9i/NP3oPHYfBTQDMEeCrv+oxSrx5NFPs5f5dVgOwCKVwtaTdy1U1tV2KDgoJw48YNGBsb4/Dhw/j7779hZGSE69ev16hbT1KpFLNmzcKFCxcQERGBn376SSt6TqCoiqpvIcLfE9uhpYMxMvMlGLH1Fs4/fqfpsCiKKoVMTjDzQCTOP3kPAY+DbYFeNIHVkIy8QozafgtDfgtD1NtMTYdT56i1w7M2bdqwDUFqqtu3b6Nx48awtS0aaq9Xr14IDQ3F8OHDNRwZRWmOib4O9o3zwZR9Ebjw9D2+/OMufh7cDINa0S9GiqppVp2LxokHieBzGWwZ5YlObpaaDqnOkhNAyOciLbcQw7fexO5gb7RyUH8jxmNTfQHQYWc/prYrsbGxsWU+1OXKlSvo27cvbGxswDCM0l4PNm3aBGdnZwiFQnh6euLq1avsawkJCWwCCwB2dnaIj49XW3wUVVvp6nDx2yhPDPa0g0xOMPuv+3DpMhINGjRAXl6epsOjKOr/jfRxREMrEdYNawl/msBqlKm+DvaN94FPfVPkiKUI+v02HiXQK7LVRW1XYp2cnMrsa1Jd4/zm5uaiefPmGDNmDAICAkq8fuDAAcyYMQObNm1C+/bt8dtvv6Fnz554/PgxHBwcoKxHsYr2kZmbmwsDAwN2/sLCQkgkEvB4PIUOv3NzcwEAurq64HCKfjdIJBIUFhaCy+VCKBRWqGxeXh4IIRAKhWzDG6lUCrFYDA6Ho9CPoypl8/PzIZfLIRAIwOMVHSIymQwFBQUqlWUYBnp6/40QU1BQAJlMBh0dHba7JlXKyuVy5OfnA4DCEKhisRhSqRR8Ph86OjoqlyWEsEmanp5eifdTlbLlee/VcZwoez/VcZxIC8VY1NMFQh4Hf9yKhcxrON6npiEnJwcMw1T4va/scVLa+1nZ4+TD97Oyx0lp7ydFqZu1kS5OTvMDv5q6d6LKJhLw8HtQa4zefht33qRj1PbbODDBBw2sDDQdmtZT2yfg3r17iIiIYB+3bt3Cli1b0LBhQxw8eFBdq0HPnj2xbNkyDBo0SOnrq1atQnBwMMaNGwd3d3esWbMG9vb22Lx5MwDA1tZW4crr27dvYW1tXeY6xWIxsrKyFB4AYGNjg5SUFLbczz//DJFIVKKvXEtLS4hEIoUr0hs3boRIJEJwcLBCWScnJ4hEIjx58oSdtnPnTohEIgwbNkyhrIeHB0QiESIiIthpBw4cgEgkQr9+/RTKtm7dGiKRSOGq9IkTJyASidClSxeFsh06dIBIJEJoaCg77cKFCxCJRGyjvWI9e/aESCRS6Jni5s2bEIlEaN68uULZgIAAiEQihSonUVFREIlEaNCggULZUaNGQSQSISQkhJ328uVLiEQihSvpAPDll19CJBJh7dq17LTExESIRCIYGxsrlJ01axZEIhF++OEHdlpmZiZEIhFEIhGk0v+6p1mwYAFEIhEWLFjATpNKpWzZzMz/fm3/8MMPEIlEmDVrlsL6jI2NIRKJkJiYyE5bu3YtRCIRvvzyS4Wytra2EIlEePnyJTstJCQEIpEIo0aNUijboEEDiEQidlhYANi7dy9EIlGJH3fNmzeHSCTCzZs32WlHjhyBSCRCz549Fcq2bdsWhgYG6KCfiDHtHAEAZt2nwLXXeHTo0EGhbJcuXSASiXDixAl22tWrVyESidC6dWuFsv369YNIJMKBAwfYaRERERCJRPDw8FAoO2zYMIhEIuzcuZOd9uTJE4hEIjg5OSmUDQ4OhkgkwsaNG9lpsbGxEIlEsLRUvEI1depUiEQi/Pzzz+y0lJQU9v380Ny5cyESibBkyRJ2Wl5eHlv2wyvTS5YsgUgkwty5cxWWYWNjA4pSl+svUnD2//soBUAT2BpGT4eH38e0RjM7I6TlFuKLbbcQl6a+O1g/nn6KyXvv4mE8vcr7IbV9Cpo3b67w8PLywvjx4/HLL79g3bp16lpNmQoLC3H37l1069ZNYXq3bt1w48YNAIC3tzcePnyI+Ph4ZGdn49SpU+jevXuZy12xYgWMjIzYh709HamD0m4Mw+D7vo0xsaMLAMC0ywTkObTXcFQUVTfFpuZhyr4ITNhzF+doo8say1DIx64x3nCzMoCAz4FYKlfbsq+/SMGpqCQk59A+uz+kthG7SvP8+XO0aNGiSm6tMQyDI0eOYMCAAQD+q+96/fp1tGvXji33ww8/YNeuXYiOjgYAHD9+HF9//TXkcjnmzJmDCRMmlLkesVgMsVjMPs/KyoK9vT0SEhJQr149Wp2AVifQmuoExe9ncVlCCH49G40NF4uuDs/v1QgTOrio/N7XxeoEiYmJsLGxqdUjdlUWHbGr8nLFUgzadAPR77LR3N4YByb4QFgFfcHSEbvUJymzADwuA3OR4NOFy6nv+muIis/EttGeqCdP0ar3Caj4iF1qqxNbfIu9GCEEiYmJWLx4cYlbxVXt4zquhBCFaf369Stxu70sAoEAAoEAGzduxMaNG9n6vfr6+grL1dHRYb/wPvThl2MxPp+vdBhPVcp++MVfjMfjsUlCRcsqGxOdy+UqjU2Vsh8mVhUpy+FwlJYtfn8qWpZhGKVllb2fqpQFlL+f6jhOlL2f6jhOFOrHSqU4cuQIHAFM/6wp1l54iR9OPQWXw0Gwr3O1HielvZ+VPU5Kez8re5wAyt9PilLVkn8eIfpdNiwMBPhtpGeVJLCUetUzUjwvxaXlwd605HmYqjy1JbHGxsZKk0d7e3vs379fXaspk7m5ObhcLpKSkhSmv3//HlZWVpVe/pQpUzBlyhT26gJFaTOxWIwhQ4YAAHJyckDAYN2FF/jficfgcRgEtnPSbIAUpeXOPkrCX3fegmGADcNblkiOqJpv7603WHL8MZYNbIIhXhWvikhAh51VRm1J7MWLFxWeczgcWFhYwNXVVekVn6qgo6MDT09PnDt3DgMHDmSnnzt3Dv3796/08j++EktR2ozD4aBjx47s/zO7NoRUTrDp0kssOv4IXA6DkT6OGo6SorRTSo4Y8w4XNdyc4FcfberT4dtro7ScQhTK5Fh49CEa2xiisU3lLoDRUWcVqS27ZBgG7dq1K5GwSqVSXLlypUTL5orKycnBixcv2OevX79GZGQkTE1N4eDggFmzZmHUqFHw8vJC27ZtERISgtjYWEycOLHS66ZXYqm6RFdXF5cuXVKY9k13N8jkBL9deYXvjj4Ej8NgmLeDZgKkKC124n4CUnML4WZlgFndGmo6HKqCpvi7IiI2HRejkzHpjwicmOYLQ2HJal9UxagtifX390diYmKJbm0yMzPh7++vtquXd+7cgb+/P/u8uEujwMBA7Ny5E0OHDkVqaiqWLl2KxMRENGnSBKdOnYKjY+WvGNErsVRdxzAMvu3ZCBIZwe/XX2PekShwOQw+r8RtMoqiSgpq7wxLQyGczPQh4NF6sLUVh8Ng9dAW6LP+GmLT8rDk+GP8OqT5p2ekykVtvRNwOBy8e/cOFhYWCtOfPXsGLy+vEg2/arPiK7F1udUxVbcRQrD4+CPsCnsDhgFWDWmOgS3pELUfoucJ2jtBbUK3qWqFx6RhyG9hIATYMtITPZrUU2n+AokMhABchuBZ9NMasU3qpLHeCYoHHWAYBkFBQQotemUyGR48eKDQ3RVFUbVDfn4+O7hFWFiYQg8DDMNgcb/GkBGCP27GYvZf98FhGPRvYVva4iiKKod/n7xDc3tjtXbPRGleaydTfNnBBVsuv8T8I1HwcjJR6T0u7pWC3glWVOkktrhuKCEEBgYGCl90Ojo68PHxwfjx4yu7mhqBVieg6hK5XI779++z/3+MYRgs7dcEMjnBn7fjMPNAJHgcDno3K3sEPIqilHubnofJeyOgw+PgxFe+cDSj3bRpk5ldGyDsZQq6N6kHE72S3fJRqqt0Ertjxw4ARcOlfv3111rdNyJt2EXVJUKhEGfPnmX/V4bDYbB8QFNIZQQH777FtP33wOUAPZrQRJaiVPVzaDTEUjla2BvDgfYrqnUEPC7+ntQOvAoMGbzqbDTiMwoQ3J72CPMhtTXsWrRokboWRVFUDcDlctG1a9dPluNwGPwY0AwyOcHhe/GYuu8eNn7BoHtj1ep8UVRd9io5B//cTwAALOzjUaLfdUo7fJjASmRyyOSkXANYnH/yHo8Ts9CnmRUsPlm67qhUEtuqVSv8+++/MDExQcuWLcv80EVERFRmVTUCrU5AUcpxOQx+/rw5ZITgWGQCpuyNwOaRnujqUflBRiiqLth48SXkBOjcyBJNbOmdPm0XEZuOeX9Hwb+RJb7t2UjT4dRalUpi+/fvzzbkGjBggDriqdFodQKqLpFKpQgNDQUAdO/e/ZODlnA5DH79vDkIAY7fT8DkvXexZaQnOrvTRJaiyhKXloejkfEAgK86V+8w7ZRmpOYUIvpdNl6l5GCEtwMczGj1kYqoVBL7YRUCWp2AorSLWCxGnz59ABQNMlKekfd4XA5WDWkOOSE48SARk/6IwJZRrfBZI5rIUlRptlx+CZmcwK+BOVrYG2s6HKoadPWwgl8Dc1x9noJfzkZj3fCWZZang84qp3rt4k8oLCzE27dvERsbq/DQBhs3boSHhwdat26t6VAoqspxOBx4eXnBy8sLHE75TxU8LgdrhrZA76bWKJTJMXFPBC5Gv6/CSCmq9tPhcTC5k6umw6CqUXE1guP3ExD1NrNc8zB04FkFaktinz17Bj8/P+jq6sLR0RHOzs5wdnaGk5MTnJ2d1bUajZoyZQoeP36M8PBwTYdCUVVOV1cX4eHhCA8PV+g6rzx4XA7WDGuBnk3qoVAmx5d77uLys+QqipSiarflA5vi9vzO8KlvqulQqGrU2MYIA1rYAAB+PPMEahp7qk5RWxI7ZswYcDgcnDhxAnfv3kVERAQiIiJw7949rWjURVGUavhcDtYNb4nuja1QKJVj/O47uEITWYpSylhPh/ZIUAfN7uYGHS4H11+kIuxVqqbDqXXU1sVWZGQk7t69i0aNaCs7iqKK8LkcrB/eClP2ReDc43cYv/sOtge2hm8Dc02HRlEa9yY1F3mFMrhb181hiSnA3lQPQ1vbY8/NNzgVlYh2LsrPjX+ObwOZnECPz8HL5/RiQDG1XYn18PBASkqKuhZHUZSG5efno3379mjfvj3y8/MrvBwdHgcbR7RCF3dLiKVyjNsdjhsv6LmConbdeIOea69i1dloTYdCadDETi7YEdQa/+vfpNQyxno6MBMJoMNTe1OmWk1te+Onn37CnDlzcOnSJaSmpiIrK0vhoQ1owy6qLpHL5bhx4wZu3LihdNhZVejwONj4RSt81sgSBRI5xu4KR9hLeuuMqrsIIQh9lAQAtF/YOs7WWBf+jSxpdZIKUFt1gi5dugAAOnfurDCdEAKGYbRigADaTyxVlwgEAhw5coT9v9LL43GxeWQrTNxzFxejkzF2Zzh2jGkNn/pmlV42RdU2D+OzEJ+RD10+Fx0a0jGYqCIFEhnEUjmMdPkK0zdceI6krAKMauOgochqJrUlsRcvXlTXoiiKqgF4PJ7aBzEpSmQ92d4Kxu4Mx84x3vB2pq2yqbrlzKNEAIB/I4tyDTtKab+/wuPww+knGOplj3m93BVeO/EgEU+TstHN3RL0bPkftSWxHTt2VNeiKIrSYkI+F7+N8sT43Xdw9XkKgnbcxq6x3mjtRE/NVN1x4WlR45xuHvU0HAlVUxjr8ZGRJ8GBO3GY2bUh/XFTDmpLYh88eKB0OsMwEAqFcHBwUMstSYqiqodMJsPVq1cBAH5+fuBy1XdCFfK52DraC+N23cG1FykI+v02dtJElqojMvMkeJpU1FaknSutTkMV6exuBVtjXcRn5OOf+wn43Mte0yHVeGpLYlu0aFFmpWQ+n4+hQ4fit99+g1AoVNdqKYqqIgUFBfD39wdQNOysvr6+WpfPJrK7w3H9RSoCf7+N34NoHVlK+92OSQMhQH0LfVga0O9DqgiXw2BEGwf8HBqNg3ff0iS2HNTWO8GRI0fQoEEDhISEIDIyEvfu3UNISAjc3Nywb98+bN++HRcuXMB3332nrlVSFFWFGIaBh4cHPDw8qqzVrK4OF9sDW8OvgTnyCmUI2nGbdr9Fab22Lmb4PcgL33Rz03QoVA0zqJUtGAa4/ToNcWl57HR2MC/ag4ECtV2JXb58OdauXYvu3buz05o1awY7OzssXLgQt2/fhr6+PmbPno1ffvlFXautVhs3bsTGjRu1oqcFivoUPT09PHr0qMrXU3xFtrix15id4dgW6AW/BrTFNqWdRAIePmtkpekwqBrI2kgXbeub4cbLVByLjMfUzxpoOqQaTW1XYqOiouDo6FhiuqOjI6KiogAUVTlITExU1yqr3ZQpU/D48WOEh4drOhSK0ipCPhchoz3xWaOiARGCd93Bpej3mg6Loiiq2g1saQsAOHwvHoS9BEspo7YktlGjRvjxxx9RWFjITpNIJPjxxx/ZoWjj4+NhZUV/fVIUVVJxP7JdPaxQKJVjwu67uPD0nabDoii1epdVgDXnn+H8Y3psU8r1bGqNWV0bYs3QFuy0XWO9cXWOPzwdjDUWV02ktuoEGzduRL9+/WBnZ4dmzZqBYRg8ePAAMpkMJ06cAAC8evUKkydPVtcqKYqqQvn5+ejXrx8A4Pjx49DV1a3ydQp4XGwc0QrT/ryHM4+S8OWeu9j0hSe6etAfv5R2iIzLwJrzz+FhbYgu9LimlBAJeJjWWbEaQT2jogaAtDqjIrUlse3atUNMTAz++OMPPHv2DIQQDB48GCNGjICBgQEAYNSoUepaHUVRVUwul+P8+fPs/9VFh8fB+hEtMWN/JE5GJWLSH3exYUQr9GhC+9Okar+XyTkAgIZWIg1HQlG1n9qSWAAQiUSYOHGiOhdZZQYOHIhLly6hc+fOOHTokKbDoagaRyAQ4I8//mD/r058Lgdrh7UAl8Pg+P0ETNkXgXXDWqJ3M+tqjYOi1C0hIx8AYGeip+FIqJpMLic49TARV54lY1Hfxth29TXyCqUY5UOHnf2QWpNYAHj8+DFiY2MV6sYCYG9L1hTTpk3D2LFjsWvXLk2HQlE1Eo/HwxdffKG59XM5WD20BXgcBofvxWPa/nuQEYJ+zW00FhNFVVZSZgEAwNqY9g9LlY5hgB9PP8Xb9Hx0b1wPe2+9wftsMfo0rQfaydZ/1JbEvnr1CgMHDkRUVBQYhmFb1BX3L1nT6nH4+/vj0qVLmg6DoqgycDkMfv68OTgcBofuvsWM/fcglxMM+P/WuxRV2yRk/H8Sa0STWKp0DMOgk5sF/rgZi0vRyZDKi3IqHpdBzcqmNEttvRNMnz4dzs7OePfuHdu/5JUrV+Dl5aVysnjlyhX07dsXNjY2YBgGR48eLVFm06ZNcHZ2hlAohKenJzs8JkVR6iGTyRAeHo7w8HCN/gjlchisDGiGYa3tISfAzL8icejuW43FU5eU51xMqSYlRwwAdKQu6pM6NbQEAFx69h4SWVG7BD5XbWmbVlDb3ggLC8PSpUthYWEBDocDDocDX19frFixAtOmTVNpWbm5uWjevDk2bNig9PUDBw5gxowZWLBgAe7duwc/Pz/07NkTsbGxbBlPT080adKkxCMhIaFS20lRdUVBQQG8vb3h7e2NgoICjcbC4TD4YWBTjGjjAEKAbw7dx4Hw2E/PSFXKp87FlOpyxVIARS3QKaosbV3MoMPlIC4tH9kFRccNj0MrE3xIbZ8imUwGkaiotaW5uTkSEhLg5uYGR0dHREdHq7Ssnj17omfPnqW+vmrVKgQHB2PcuHEAgDVr1iA0NBSbN2/GihUrAAB3796t4JaUJBaLIRaL2edZWVlqWzZF1VQMw7ADmFTVsLOq4HAYLB/QBDwOg91hbzD37yhI5QRftCk5yAqlHp86F1Oq2z+hLbLFErbLJIoqjb6Ah9bOJrj+IpWdxqVJrAK1XYlt0qQJHjx4AABo06YNVq5cievXr2Pp0qWoX7++ulaDwsJC3L17F926dVOY3q1bN9y4cUNt6/nQihUrYGRkxD7s7e2rZD0UVZPo6ekhJiYGMTEx0NOrGS2pGYbBkn6NMaa9EwBgwZGH2Hn9tWaDoigVNLUzQjsXcwj5XE2HQtUCxVUKitHqBIrUdiX2u+++Q25uLgBg2bJl6NOnD/z8/GBmZob9+/erazVISUmBTCYrMfKXlZUVkpKSyr2c7t27IyIiArm5ubCzs8ORI0fQunVrpWXnzZuHWbNmsc+zsrJoIktRGsIwDL7v4wE+l4OQK6+w+J/HKJDKMbGji6ZDq/NKu2slk8lqXOPeyijeltq0TYQQREZGIjo6Gubm5rC0tERISAgKCgowa9YshIaG4uTJk7C0tMS+ffswf/58mJiYwMfHB02aNMHbt2/h4OAAIyMjTW9KudXG9+ljfg3MFJ5zmaIGXrV5m5Sp6PaoLYnt3r07+3/9+vXx+PFjpKWlwcTEpEpuRX68TEKISusJDQ0td1mBQACBQICNGzdi48aNWnfwUFRtwzAM5vVsBAGPg/UXXuDH008hlsgxrbNrjaj6UFetWLECS5YsKTH9xYsXbHUzbfLs2TOVyktkBKeeZ4MQoK+bQZXdGs7MzATDMLh69SrOnDkDPp+PVatWYefOnbC1tYWxsTGkUikGDx4MgUAAmUyG7t27o0ePHgCAJ0+eoEOHDkhJSUFqaipu3bqFo0ePIj4+HuPGjcOjR48AAC1atICzs3OVbIM6qfo+1SSEEPw+0BYMgNQ8GZJiX4FhmFq9Tcrk5ORUaD6GFPeFVUFjx44tV7nff/+9QstnGAZHjhzBgAEDABRVJ9DT08PBgwcxcOBAttz06dMRGRmJy5cvV2g9qsjKyoKRkREyMzNhaGhY5eujKE0oKCjAsGHDAAD79++HUFgz6/BtuPAcv5wtOqFP7uSCb7q71YhEVtvOEx+fi5VRdiXW3t4eycnJMDExqYYoq4dMJsOzZ8/QsGFDcLnlrxaQVyhF0yVFo+A9XNQVujrqqVJACMG7d+8AABMmTIC+vj7mz58PW1tbGBgYgM/nf3IZqmxTQkICbty4gbi4OIwZMwbjxo1D586dMXToUJiamqplm9Shou9TTaaN2wQA6enpsLCwUPl8WekrsTt37oSjoyNatmyJSubD5aKjowNPT0+cO3dOIYk9d+4c+vfvX6XrpldiqbpEJpPh2LFj7P811dTPGkDI52LZySfYdOklCiRyLOzjXiMSWXU4c+YMRCIRfH19ARSdh7Zu3QoPDw9s3LixRiWHxXetPsblcrXqC7eYqtul80EuKQNT6X1CCMGaNWtw5swZ+Pn5Yf78+Thy5Ah0dHQqvMzybJO9vT2GDh3KPt+7dy9OnTqFmJgYhIaGQk9PD7179672kf5Ko43Hn7ZtU0W3pdJJ7MSJE7F//368evUKY8eOxciRIyv9SywnJwcvXrxgn79+/RqRkZEwNTWFg4MDZs2ahVGjRsHLywtt27ZFSEgIYmNjq3zI2ylTpmDKlCnsFRaK0mY6OjoICQlh/6/JxvnVh4DHwcJjj/D79dcolMmwtF8TcLSgJe8333yDn376CQAQFRWF2bNnY9asWbhw4QJmzZqFHTt2VNm6P3UuplQj4HGhw+OgUCpHdoEERrqfvkL6MblcjhMnTmDr1q2YM2cOxo8fj5kzZ7Kva+Kzqqenh8GDBwMAnJyccODAAcycORO//voroqKi4O3tXe0xUXUEUYOCggKyb98+0qVLF6Knp0c+//xzcubMGSKXyyu0vIsXLxIAJR6BgYFsmY0bNxJHR0eio6NDWrVqRS5fvqyOTSnThg0biLu7O2nYsCEBQDIzM6t8nRRFld/+22+I07cniOPcE+TrvyKJVFaxc5A6ZGZmquU8oa+vT16/fk0IIWTRokUkICCAEELI3bt3iZWVVWXDLFN5zsVlKd4HaWlpVRpndZNKpSQqKopIpVKV5/Vado44zj1Bot5mqDRfVlYW2bFjB8nNzSW//vqr2vdpZbapNOnp6WTGjBlk4MCB5O3bt2pbbnlVxTZpmjZuEyGEpKWlVeh8qZa+GgQCAYYPH45z587h8ePHaNy4MSZPngxHR8cKVdbt1KkTCCElHjt37mTLTJ48GTExMRCLxbh79y46dOigjk0p05QpU/D48WOEh4dX+booilLd0NYOWDWkOTgMcPDuW8z6KxLS/x/pprbS0dFBXl4eAOD8+fNs94KmpqZV3md1ec7FlGqKr75m5kvKPU9oaCiGDBkCfX19CIVCzJo1q0ZVIymNsbExVq9ejfXr18PExATz5s3Dw4cPNR0WpUXUPmQIwzBgGAaEEMjltfvLg6LqMrlcjidPngAA3N3dweHUjv4JB7a0g4DHxbQ/7+FYZAIKpXKsHdYSOrzaEf/HfH19MWvWLLRv3x63b9/GgQMHABS1uLazs9NwdJSqLA0EePE+B0mZnx4FLzQ0FGFhYZg3bx66detWa+t529raAihqdLZs2TJ07twZw4cPr7XbQ9Ucajmri8Vi/Pnnn+jatSvc3NwQFRWFDRs2IDY2Vqu6Vdm4cSM8PDxK7U+WorRJfn4+O1xzfn6+psNRSa+m1tgy0hM6XA5OP0zCpD/uokBScxunlWXDhg3g8Xg4dOgQNm/ezCYEp0+fZrtEomoPOxNdAEB8RtmfqXXr1uHChQv4+uuvIRAItCLhc3Z2xvbt2zF8+HD8+OOP+OWXX2p0o1Gq5qt0F1uTJ0/G/v374eDggDFjxmDkyJEwMzP79Iy1mLZ1nUNRyuTm5sLJyQkAEBMTA319fc0GVAGXnyVjwu47EEvl8GtgjpBRXmrr1uhT6Hniv31Q3Ge4tpDJZHjy5Anc3d1VblX9OCELmfkSNLASwVyk2HpfKpVi5cqVMDIywuTJk6s1ca3MNlUEIQTbt29HWloa5syZUyXrqO5tqg7auE1AURdbpqam1d/F1pYtW+Dg4ABnZ2dcvny51H5aDx8+XNlVURRVjfT19ZGcnKzpMCqlY0ML7BjTGuN23cHV5ykI2nEb24NaQyRQe00qtcrKymJP5J+q91pXE+TaysOm9Pdr0aJFcHd3xxdffKEVV17LwjAMxo0bBwBYvXo1DA0NMXbsWK3fbkq9Kn0mHz16dJ056Gg/sRRV+7RzMcfusd4I2hGOW6/TMHr7Lewc6w1DoerdG1UXExMTJCYmwtLSEsbGxkrPseT/Rymk56Pa79atW7h37x6WLVtWZ75PPzRt2jSsWrUKy5cvx3fffafpcKhaRC2DHdQVtJ9YiqqdvJxMsXdcG4z+/TYiYjMwctst7B7rDWO9mtn/7YULF9j+ti9cuFAnExttdiwyHo8SshDs64yLp47i77//xtatW+vs+8zlcvHNN99ALpdj06ZN6NatG1xdXTUdFlUL1Ox7ahRFaUxBQQGCg4MBANu3b6+xw86WV3N7Y+wb3wajtt/Gg7eZGBZyE3+Ma1OiXmJN0LFjR/b/Tp06aS4QqkqEXHmFh7EpkLy5hwkD/DFkyJBa0/tHVeJwOOjXrx+CgoKwcuVKtGrVStMhUTUc/dRQFKWUTCbDvn37sG/fPq25Zd3Yxgj7J/jAwkCAp0nZGBZyE++zPt3VkSYtXLhQ6f7PzMzE8OHDNRARVVktbfSQfOwnPInPgLW1NU1gP2BnZ4dDhw7B0NAQb9++1XQ4VA1HPzkqoF1sUXWJjo4OVq9ejdWrV9f4YWdV0dDKAAcm+MDaSIgX73Mw5LcwJHyiuyNN2r17N9q3b4+XL1+y0y5duoSmTZsiJiZGc4FRFWYheQ+DVr2RYd5E06HUSMbGxnBxccHcuXPxxx9/aDocqgajSawK6IhdVF3C5/MxY8YMzJgxA3x+zW0EVRH1LUT468u2sDPRRUxqHob8Foa4tDxNh6XUgwcP4OTkhBYtWmDr1q345ptv0K1bNwQFBeHatWuaDo9SQWFhIYKCgtC3gyd0nVvhaVI20nMLNR1WjcQwDHbv3o2IiAjExsZqOhyqhqJJLEVRdZK9qR7++rItnMz08DY9H59vCcOrZNWHya5qRkZG2L9/P6ZNm4Yvv/wSa9euxenTp7F06VKt6idS2xFCEBgYiICAANS3tUQDy6KBgK48r93d2FUlLpeLVatWISMjA2fOnNF0OFQNRJNYiqKUksvliImJQUxMjNYOIW1jrIu/vmwLV0sRkrIKMOS3m4hOytZ0WCWsX78eq1evxvDhw1G/fn1MmzYN9+/f13RYVDlJpVIkJSVh+fLl6Nu3LwCgq4cVAODso3eaDK1WcHNzw/r16xEZGanpUKgahiaxFEUplZ+fD2dnZzg7O9e6YWdVYWkoxIEJPnC3NkRKjhjDQsLwMD5T02GxevbsiSVLlmD37t3Yu3cv7t27hw4dOsDHxwcrV67UdHhUOSxevBiXLl1C/fr12Wk9mtQDALzNyEclB87UegKBALt370Z0dLSmQ6FqGJrEqoA27KLqGj09Pejp6Wk6jCpnJhLgz/Ft0NzOCOl5EgzfehN336RrOiwARVfxHjx4gMGDBwMAdHV1sXnzZhw6dAirV6/WcHTUp9y5cwcpKSklepJoamuEC7M74tiU9nW2f1hVmJmZYciQIRg/fjyys2ve3RJKM2gSqwLasIuqS/T19ZGbm4vc3Fzo6+trOpwqZ6yngz/GtYG3kymyC6QYtf0Wwl6majosnDt3DjY2NiWm9+7dG1FRURqIiCqvpKQkuLi4YN26dSVeYxgG9S1EGoiq9mIYBkFBQQgODqZXrykANImlKIpiGQj52Dm2NXxdzZFXKEPQjtu4FP1e02GVytzcXNMhUKWQSCQYO3YskpOTP9lFXVaBBNkFkmqKrHZr3749ZsyYoTV9V1OVQ5NYiqKoD+jp8LAt0AudG1lCLJVj/O47CH2UpLF4ZDIZfvnlF3h7e6NevXowNTVVeFA1U0hICAIDA9GwYcMyy2269ALey89jz8031RRZ7deuXTvMnTsX8fHxmg6F0jCaxFIUpZRYLMb48eMxfvx4iMViTYdTrYR8LjaP9ETvptaQyAgm743AsUjNfGEuWbIEq1atwpAhQ5CZmYlZs2Zh0KBB4HA4WLx4sUZiosr24sULBAUFYejQoZ8sa64vQIFEjr03YyGRaWcvIFUhODgYM2bMoNUK6jiaxFIUpZRUKsW2bduwbds2SKVSTYdT7XR4HKwd1gKDWtpCJieYcSASf4XHVXsce/fuxdatW/H111+Dx+Nh+PDh2LZtG77//nvcvHmz2uOhyiaTyTBp0qRyf2b6tbCBuUgH8Rn5OPEgoYqj0x4eHh4YN24cJBJaDaMuo0msCmjvBFRdwufzsWzZMixbtkzrRuwqLx6Xg18+b47h3g4gBFj773PkFVZvQp+UlISmTZsCAEQiETIzi7r/6tOnD06ePFmtsVCftnfvXgQEBMDIyKhc5YV8Lsa0dwYAbLn0il5ZVEH37t2xfPlyJCVprroPpVk0iVUB7Z2Aqkt0dHSwYMECLFiw4JMNU7QZh8Pgh4FNML1zA/wxrg30dHjVun47OzskJiYCAFxdXXH27FkAQHh4OAQCQbXGQpWtoKAAAQEBGDdunErzjfRxhEjAQ/S7bJx+SBMyVQwaNAgLFizQdBiUhtAklqIo6hMYhsHMrg3hbF79XY0NHDgQ//77LwBg+vTpWLhwIRo0aIDRo0dj7Nix1R4PVbpFixbh7t274PFU+6FjpMvHWN+iq7G/hEbTurEqaN68OXx8fOgV7Dqqei8pUBRVaxBCkJKSAqCoKyfaIbtm/Pjjj+z/gwcPhr29Pa5fvw5XV1f069dPg5FRH3r16hVevXqFDh06VGj+8X7O+OPmGyRk5uNRQhZa2BurN0AtNnbsWOzevRuBgYGaDoWqZjSJpShKqby8PFhaWgIAcnJy6sSAB7VBmzZt0KZNG02HQX3ExMSkUiOoGQj52DC8JVwsRbAyFKoxMu3H5XJx8uRJ+Pv7w8HBQdPhUNWIJrEVUHzbIisrS8ORUFTVyc3NZf/PysqinYurqPj8QG9zar/U1FSsXbsWS5curdRy2rnSwSsqau7cuTh8+DBmzJih6VCoakST2AooHrfZ3t5ew5FQVPVQNuwpVT7Z2dnlbqlO1U47d+5Ue68111+kQMjnwNORDmhRHp6ennB2dkZaWhodBKQOoUlsBdjY2CAuLg4GBgZsPcHWrVsr9Frw4fOsrCzY29sjLi4OhoaGVRLTx+tX93yfKlfa66pML20fVsf+KytWdc1X1fuwth6DqsxbVjlVX1PlGARU34eEEGRnZ9MfAHVEr1691Lasv+7EYc6hB7A31cWpaX4wENbNLu5U9ejRI4SGhmLZsmWaDoWqJjSJrQAOhwM7OzuFaVwuV+GL7ePnAGBoaFhlCYSy9alzvk+VK+11VaZ/ah9W5f4rK1Z1zVfV+7C2HoOqzFtWOVVfq8gxCKi2D+kVWO336NEjDBs2DFwuV23L7NGkHtaef464tHx8f+wRVg9tobZlazNfX18sXboUhBDaELWOoF1sqcmUKVPKfF7d61f3fJ8qV9rrqkyn+7By+7C27j9V5i2rnKqv1cRjUJmgoCBcuXJF02FQpfjf//6n1gQWAAyFfKwd1gIcBjhyLx5H7r1V6/K1FcMwWL9+Pa2HXocwhL7bVS4rKwtGRkbIzMys0iuJ2oruv8qj+7DyNLUPAwICcPLkSdjb22PMmDEIDAyEra1tta2/Mor3WVpaGkxMTDQdjtrIZDI8efIE5ubmmDlzJv78888qWc/qc8+w9t/nEPI5ODSxHZrYVt2V/eJtcnd3V3tSXp2SkpLw559/YubMmVqzTR/Sxm0CgPT0dJiamqp8fqVXYquBQCDAokWL6Og6FUT3X+XRfVh5mtqHf//9N+Lj4zF16lQcPHgQTk5O6NmzJw4dOkTHjdcwCwsL7Nixo8qWP61zA3Rys0CBRI7xu+/gfXZBla1LW1hZWeHUqVP0amwdQZPYaiAQCLB48WKaQFQQ3X+VR/dh5WlyH5qZmWH69Om4d+8ebt++DVdXV4waNQo2NjaYOXMmnj9/Xu0xUcC0adOQn5+vMO3KlSvo27cvbGxswDAMjh49qnTeTp06YcuWLWUun8thsG54S7hY6CMxswChdEjaT2IYBn379sW7d+80HQpVDWgSS1EUVUskJibi7NmzOHv2LLhcLnr16oVHjx7Bw8OjUh3tU6ojhODFixclqknk5uaiefPm2LBhQ6nzpqWl4caNG+jbt+8n12Mo5GNbYGusGtIco9o6VTbsOmHq1KlIS0vTdBhUNaBJLEVRVA0mkUjw999/o0+fPnB0dMTBgwcxc+ZMJCYmYteuXTh79iz27NlT6Y72KdXk5+djyJAhJab37NkTy5Ytw6BBg0qd9+TJk2jevDlbt/n48eNo0KABdHV14e/vj127doFhGGRkZAAALp84iLGfNcGJEyfg5uYGPT09BAQEIDc3F7t27YKTkxNMTEzw1Vdf0UFJUHQ19ptvvtF0GFQ1oF1sURRF1WDW1taQy+UYPnw4bt++jRYtWpQo0717dxgbG1d7bHVZbGwsBg4cWKF5jx8/jv79+wMAYmJiMHjwYEyfPh3jxo3DvXv38PXXX5eYJy8vD+vWrcPWHXsw/2A4Tm5bgAEDB8LUxASnTp3Cq1evEBAQAF9fXwwdOrRS21bbMQwDLpcLqVSq6VCoKkaTWIqiqBps1apVGDJkCIRCYallTExM8Pr162qMitq6dSs6d+6s8nxisRihoaH4/vvvAQBbtmyBm5sbfv75ZwCAm5sbHj58iOXLlyvMJ5FIsHnzZiQRI7zXTwXftS0uXr6EuPgEWJubwMPDA/7+/rh48WKdT2IBYNmyZZDL5ZoOg6pitDpBDZKdnY3WrVujRYsWaNq0KbZu3arpkGqduLg4dOrUCR4eHmjWrBkOHjyo6ZBqnYEDB8LExASDBw/WdCi1RvFt3gYNGmDbtm1qW65UKsXYsWPx4sULtS2TUo+CgoIKdbV24cIFmJmZoWnTpgCA6OjoEkPWent7l5hPT08PLi4uaO9qjl1jvKFraAaOgSWC9z7E2/Q8AEUt89+/f1+BrdFOtH9l7UeT2BpET08Ply9fRmRkJG7duoUVK1YgNTVV02HVKjweD2vWrMHjx49x/vx5zJw5E7m5uZoOq1aZNm0adu/erekwag2pVIpZs2bhwoULiIiIwE8//aS2RiU8Hg+Ojo60nmMNNH/+/ArN92FVAgBKR5dS1j0Un//f0LNtXcwQ4GkHHp+Hx4lZ6LfhOsJepoJhGHr18f/p6uri5MmTmg6DqmI0ia1BuFwu9PT0ABT9ypfJZLSvOxVZW1uzdQYtLS1hampKW6mqyN/fHwYGBpoOo9a4ffs2GjduDFtbWxgYGKBXr14IDQ1V2/K/++47zJs3jx7HNcjr169x+/ZtlecjhOCff/5Bv3792GmNGjVCeHi4Qrk7d+58cllWhkI4m+ujsY0h0nILMXL7LcSn539yvrrCxcUF6enpmg6DqmI0iVVBefr/27RpE5ydnSEUCuHp6YmrV6+qtI6MjAw0b94cdnZ2mDNnDszNzdUUfc1QHfuw2J07dyCXy2Fvb1/JqGuO6tx/dUVl92lCQoLCCFp2dnaIj49XW3zr1q3D1atXYWNjAzc3N7Rq1UrhQVW/p0+foqBA+cADOTk5iIyMRGRkJICihDcyMhKxsbG4e/cucnNz0aFDB7b8l19+iadPn2Lu3Ll49uwZ/vrrL+zcuRMASlyh/RifWzSS14AWNjAU8mAm0lHL9mkDDoeD7du3azoMqorRhl0qKO7/b8yYMQgICCjx+oEDBzBjxgxs2rQJ7du3x2+//YaePXvi8ePHcHBwAAB4enpCLBaXmPfs2bOwsbGBsbEx7t+/j3fv3mHQoEEYPHgwrKysqnzbqkt17EMASE1NxejRo9VaP7EmqK79V5dUdp8qu1vyqeRDFQMGDFDbsij1yMvLg4uLi9LX7ty5A39/f/b5rFmzAACBgYGwt7dH7969weP999Xr7OyMQ4cOYfbs2Vi7di3atm2LBQsWYNKkSeUaWENXh4vVQ1sgPiMf383chwIUXfE98SAR3RvXgw6v7l6rGjp0KNuAjtJShKoQAOTIkSMK07y9vcnEiRMVpjVq1Ih8++23FVrHxIkTyV9//VXREGu8qtqHBQUFxM/Pj+zevVsdYdZYVXkMXrx4kQQEBFQ2xFqnIvv0+vXrZMCAAexr06ZNI3v37q3yWGuDzMxMAoCkpaVpOhS1Sk9PJw8ePCBSqVSl+Zo2bUoOHDjwyXLLli0jdnZ2FQ2PnH2URBznniD+v1wkF568I3K5/JPzSKVSEhUVpfI21WRBQUHk8uXLWrVN2vg+EUJIWloaAUAyMzNVmq/u/kRTs8LCQty9exfdunVTmN6tWzfcuHGjXMt49+4dsrKyAABZWVm4cuUK3Nzc1B5rTaWOfUgIQVBQED777DOMGjWqKsKssdSx/yhF5dmn3t7eePjwIeLj45GdnY1Tp06he/fumgi3ytAqKorGjRwJo/XrgcTEcs9TWFiIgIAA9OzZs8RrmzZtQnh4OF69eoU9e/bg559/RmBgYIXjk8nlMBfp4FVyLsbsDMeATTdw4em7OtfGok+fPuByuZoOg6pCtDqBmqSkpEAmk5W49W9lZYWkpPKNd/327VsEBweDEAJCCKZOnYpmzZpVRbg1kjr24fXr13HgwAE0a9aMrdu4Z88etjsbbaaO/QcUdZwfERGB3Nxc2NnZ4ciRIyW6AKoryrNPeTwefv31V/j7+0Mul2POnDkwMzNTWwwymQyrV6/GX3/9hdjYWBQWFiq8XtUNvspTRaWuEWdlweHkScjGjwfs7Mo1j46ODhYtWqT0tefPn2PZsmVIS0uDg4MDZs+ejXnz5lU4vh5NrNHO1RwbLrzA7rAY3I/LwNidd+BqKcKw1vYY294ZHI76qrzUVI0aNUJKSoqmw6CqEE1i1UxZVynlrR/n6enJNgaoyyqzD319fet8FzOV2X8A1NqyXlt8ap/269dPocW5Oi1ZsgTbtm3DrFmzsHDhQixYsAAxMTE4evRotdT3W7VqFYKDgzFu3DgAwJo1axAaGorNmzdjxYoVVb7+mmhEjx6AGq9Gr169GqtXr1bb8gDAUMjH/F7umNChPrZefYU9YW/w4n0O/nmQiHF+9dlyT5Oy4GIh0spW3v/++y8EAgF8fX01HQpVRWgSqybm5ubgcrklrni9f/9eqxpmVSW6DyuH7j/1qwn7dO/evdi6dSt69+6NJUuWYPjw4XBxcUGzZs1w8+ZNTJs2rcrWXVyd4ttvv1WYXloVFbFYrNBosLh6lEwmq/193SYmstUHmP8fHY3cvQt2q6ytix41jIkuD3O6NcSkDvXxz/0EWBoKIZPJUCCR4ezjd5j51wMwDCDS4aJFPQG2N2yo6ZDVxsjICMnJybX/2PtA8bZo0zYBFd8emsSqiY6ODjw9PXHu3DmF8bTPnTun0LE1VTq6DyuH7j/1qwn7NCkpia0OIxKJkJmZCaCovt/ChQurdN2qVlFZsWIFlixZUmL6ixcvIBKJqizO6mC5aRMsN28GAMwDsBKAzaRJ7BVMsaMjCp2dNRVeucgJQVq+DGl5MmSKZZB/UEX2HYAUUws887PQWHzqlpycDIlEgmfPnmk6FLXTtm3Kycmp0Hw0iVVBTk6OwvCPxf3/mZqawsHBAbNmzcKoUaPg5eWFtm3bIiQkBLGxsZg4caIGo65Z6D6sHLr/1K+m71M7OzskJibCwcEBrq6uOHv2LFq1aoXw8PBydcGkDuWtojJv3jy2Symg6Eqsvb09XF1dYWJiUuVxVqn58yEbMwYA0CQ4GIFRUdjSqBF+XbQITVxcauyVWABIyMjHzhtv8HdEPLLzJeADMAdgbSSEt5MJbE10YSHSgak8Ew0bNtSaxlBisRjx8fFatU0ymQzPnj3Tqm0CUPGBKdTbSYJ2u3jxIgFQ4hEYGMiW2bhxI3F0dCQ6OjqkVatW5PLly5oLuAai+7By6P5Tv5q+T+fOnUuWL19OCCHk4MGDhMfjEVdXV6Kjo0Pmzp1bpesWi8WEy+WSw4cPK0yfNm0a6dChwyfn19Yutl4dP04IQOJOnSKDBg0iv/zyS43s8iguLZfMO/yAuM4/SRznniCOc08Qnx/Ok19Dn5JH8ZkKXW9pY9dNt27dIhcvXtSqbdLG94mQinexxRBSx/rcoCiKqsVu3ryJGzduwNXVtcoak32oTZs28PT0xKZNm9hpHh4e6N+//ycbdmVlZcHIyAhpaWm1/0rsB74fPx5Ltm2D/PZtcLy8sG3bNhw7dgwbNmyAk5OTpsNDXqEUmy6+RMiVVyiUFTV09alvigkd6qNjQ0twlfRMIJPJ8OTJE7i7u2vNFb558+ahdevW6N+/v9Zskza+T0DRlVhTU1NkZmbC0NCw3PPR6gQURVG1iI+PD3x8fKptfZquTlETJeTm4uHo0fCwtgbDMBg/fjw+++wzTJ48GZ9//jmCgoLUOmqbKkIfJWHJ8UdIyCwaFtenvilmdmmINvXV1+1bbZGRkaFSQkTVPjSJpSiKquGePXuGS5cu4f379yW6kKvqbraGDh2K1NRULF26FImJiWjSpAlOnToFR0fHKl1vTdayfXu8sLGBxwd1YF1cXPDPP//gl19+wbBhw7B+/XpYWlpWW0xZBRIsOf4Yf0e8BQDYGutiYR8PdG9spbGEWtMWLFhA+4nVcrQ6AUVRVA22detWTJo0Cebm5qhXr55CQsIwDCIiIjQYXdm0tTqBWCzGgwcP0KpVK6W3dO/fv4/Zs2fjq6++qpZeLO7FpmPqvnuIz8gHhwEmdHDB9M4NoKtT/tvN2nibev78+RgxYoRWbZM2vk9AxasTaGP/xhRFUVpj2bJlWL58OZKSkhAZGYl79+6xj5qcwGqzu3fvYteuXaW+3rx5c5w8eRI3btzAuHHj2P5yq8L+27EY+ttNxGfkw8FUD3992Rbf9mykUgKrre7du6fpEKgqRpNYiqKoGiw9PR2ff/65psOgPuDs7Iy3b9+WWUYgEOCnn35CYGAgBgwYgMuXL6s1BqlMjoVHH+Lbw1EolMnRo3E9nJruBy8nU7Wup7YSi8Vo3LixpsOgqhhNYimKomqwzz//HGfPntV0GNQHLCwsyj2UqZ+fH44dO4Z9+/bh66+/RkFBQaXXXyCRYfLeCOy5+QYMA8zu2hCbvmgFkYA2cylWWFiodOANSrvQI56iKKoGc3V1xcKFC3Hz5k00bdoUfD5f4fWqHHaWUo5hGAgEAsjl8nLVSzQwMMBvv/2Gf/75B3369MHPP/+Mli1bVmjdOWIpJuy+gxsvU6HD5WDd8Jbo0aRehZalzUJCQtCsWTNY19ABKCj1oEksRVFUDRYSEgKRSITLly+XuCXNMAxNYjXk3r17ePjwoUrJaN++feHj44Np06ahadOmmDNnDni88n8N5xVKEfT7bdx5kw59HS62BnqhnYt5RcLXehEREQgMDFQ6PDKlPWh1AoqiqBrs9evXpT5evXql6fDqLB8fH/z7778qz2dhYYF9+/bBzs4Offv2VRjyuCxiqQxf7rmLO2/SYSjkYd94H5rAluGLL77Qqh4xKOXolViKoiiKUlHr1q3RsGHDCs3LMAxGjx6Njh07YurUqejduze+/PLLUvtzlcsJpv8ZiavPU6Cnw8WOMd5obm9ciei1W3p6OqRSqabDoKoBTWIpiqJqmFmzZuF///sf9PX1MWvWrDLLrlq1qpqioj7E5/Mxffp0bNq0CTo6OhVahqOjI44dO4Z169YhICAAGzZsgI2NTYlyv5yNxplHSdDhcrB1tBc8HekVxrIcO3asRN1xSjvRJJaiKKqGuXfvHiQSCft/aerqSEw1haOjI27evIkOHTpUeBkcDgczZsxAt27dEBQUhHHjxmHIkCHs68ci47Hp0ksAwMrBzdDelVYh+JQLFy5gw4YNmg6DqgY0iaUoiqphLl68qPR/qmbp27cvkpOT1bIsDw8PnDhxAsuWLcOJEyewdu1axOdxMOfQAwDAxI4uGNDSVi3r0mYSiQQ7duwAl8uFTCbTdDhUFaNJLEVRFEVVQNOmTXHlyhXIZDK1DAGqo6ODpUuX4tatWxgwaBAyG/SG2NQdnzWyxDfd3dQQsfbbvXs3DA0N6QAhdQRNYimKomqwgQMHKq02wDAMhEIhXF1dMWLECLi50SRHE+7cuYPc3Fz06dNHbcts06YNPMetwLa1P6Fhd1esGtIcXA6tOlIe//zzD/bs2aPpMKhqQrvYoiiKqsGMjIxw4cIFREREsMnsvXv3cOHCBUilUhw4cADNmzfH9evXNRxp3TRmzBjs3r1brcs8//gdDkelwqzzOKwL8oWxnvKGY4cOHULTpk2hq6sLMzMzdOnSBbm5uQgKCsKAAQPwww8/wMrKCsbGxliyZAmkUim++eYbmJqaws7ODr///rta464JgoKCYGBgoOkwqGpCr8RSFEXVYPXq1cOIESOwYcMGcDhF1x3kcjmmT58OAwMD7N+/HxMnTsTcuXNx7do1DUdb95ibm2Pnzp1qq1KQK5bi+2MPAQAT/OqX2hdsYmIihg8fjpUrV2LgwIHIzs7G1atXQQgBUNS4yc7ODleuXMH169cRHByMsLAwdOjQAbdu3cKBAwcwceJEdO3aFfb29pWOuyb4448/0KtXL02HQVUjhhQf8VS5yeVyJCQkwMDAgLYOpihKKUIIsrOzYWNjwyafFWFhYYHr16+X6JP02bNnaNeuHVJSUhAVFQU/Pz9kZGRUMmr1ysrKgpGREdLS0rSq43mZTIYnT57A3d0dXC4XDx48wP79+/HDDz9UetnLTjzGtmuvYW+qi7MzOkJXR3liHBERAU9PT8TExMDR0VHhtaCgIFy6dAmvXr1ij71GjRrB0tISV65cYbfByMgI27Ztw7Bhw0psU22TnZ2NwYMH48yZM+z3cm3fJmW0cZuAor59TU1NkZmZCUNDw3LPR6/EVkBCQoLW/HKlKKpqxcXFwc7OrsLzS6VSPH36tEQS+/TpU7b1tVAopD+oNahp06aYPXs2xGIxBAJBhZfzOCELO27EAACW9m9SagILAM2bN0fnzp3RtGlTdO/eHd26dcPgwYPZHwuNGzdW+PFkZWWFJk2asM+5XC7MzMzw/v37Csdbk1y9ehVTp06ln4M6hiaxFVBc3yYuLk6lXwwURdUdWVlZsLe3r3T9vFGjRiE4OBjz589H69atwTAMbt++jR9++AGjR48GAFy+fBmNGzdWR9hUBTAMgwULFiA7O7tSSeyK008gkxP0aloP/m6WZZblcrk4d+4cbty4gbNnz2L9+vVYsGABbt26BQAlOvtnGEbpNLlcXuF4a4q8vDy4urpWeAQ1qvaiSWwFFP/SMzQ0pEkspbUKCwvZ26Pz58+v8KhEdV1lrwytXr0aVlZWWLlyJd69eweg6KrazJkzMXfuXABAt27d0KNHj0rHSlVcp06dsGHDBgwfPhxmZmYqz3/9RQquPk8Bn8vg2x7u5ZqHYRi0b98e7du3x/fffw9HR0ccOXJE5XXXdiEhIbCxsaFJbB1Ek1iKopSSSCRYsmQJAOCbb76hSayGcLlcLFiwAAsWLEBWVhYAlPjx7ODgoInQqI+0bNkSixcvxvr161WajxCClWeeAgC+aOMIBzO9T85z69Yt/Pvvv+jWrRssLS1x69YtJCcnw93dHQ8ePKhQ/LWRRCLBiRMnEBoaqulQKA2gSSyl1XLEUrxJzUVsah5i0/KQnC1GWm4hUnMLkZ5XiFyxFBIZgUQmh0QmB5fDQMjnQsjjQqjDhakeH5YGQlgYCGBlJISLuT5cLUWwMBBofd0rHo+HyZMns/9Tmkfv/NRs7du3x+XLlyGVSlX6zNx4mYr7bzMh5HMw9TPXcs1jaGiIK1euYM2aNcjKyoKjoyN+/fVX9OzZEwcOHKjoJtQ6hYWFOHDggFY1cqLKj34zUVqBEIKY1Dw8jM/Eo4QsPErIxJPEbKTkiKtkfQZCHjysDeHpaAJPRxO0cjCBib52XakUCATYuHGjpsOgUNQf6F9//YXY2FgUFhYqvBYREaGhqChl5s+fjwMHDmDo0KHlnmfzpZcAgKFe9jAXla9Orbu7O86cOaP0tZ07d5aYdunSpRLTYmJiyhtijRQREYEtW7YgJCRE06FQGkKTWKpWkssJnr3Pxq1Xabj1OhW3X6chJadQaVlTfR04mOrB0UwP9QyFMNHXgam+Dkz1dCAS8sDncqDD5YDPYyCVEYilMhRI5MgrlCEtV4z3WWK8zxYjPiMfr5JzEJuWh+wCKW69TsOt12kAAIYBWtgbo3MjS3zWyAru1rT7NUo91q1bhwULFiAwMBDHjh3DmDFj8PLlS4SHh2PKlCmaDo9SIioqCiKRCL179/5k2Yfxmbj2IgVcDoNxfvWrITrtIJFIMHfuXOzbt0/ToVAaRJNYqtbIK5Ti6vMU/PvkHS48TS5xlVWHx4G7tSEa2xQ/jFDfQh+GQn4pS6yYAokMr1NyEfU2E3ffpOPOmzS8TM7FvdgM3IvNwC9nn6GBpQgBnnYY2NIWVoZCta6fqls2bdqEkJAQDB8+HLt27cKcOXNQv359fP/990hLS9N0eJQS8+bNw8yZM9GrV69P/pjddzsWANCzST3Ym366Liz1n61bt8LCwkLTYVAaRJNYFWzcuBEbN25k+2akql5WgQShD5NwMioRN16molD6X3cwunwuvJxM0MbZFG3qm6GZnREEvKqvFyXkc+FubQh3a0MMaV3UX3BSZgEuRr/Hv0/e4+rzZDx/n4MfTz/FyjNP0b1xPUzoUB8tHWpXZ++5ubkwNjYGAGRkZEBfX1+zAdVRsbGxaNeuHQBAV1cX2dnZAIq63vLx8cGGDRs0GR6lhL6+PkJCQnDkyBH069ev1PqauWIpjkcm4P/au+/wpsr2gePfJN1NFy1QSksHZW9aRplFhOJgqCxBpIIMAX0RFVFfBP2BW1FkOZDxiorKUEEZKnuWUWSUVUZLB9AWumdyfn/URmILNF1pyv25rlwkJ885uc+TkNx9zjMARnSSwXmldfz4cRYvXsyiRYvMHYowM0liTTB58mQmT55sWIVGVI6cfB3bTl/jp8h4/jxzzShxbVDLgd7N6tC7aV06+tfCxqrsKyFVJE8XOx7v2IDHOzYgLSefjX8lsObwFQ5dvsFvJxL57UQiHf1qMbVPo9suI1kdFRQUmDuEe56npyfJycn4+vri6+vL/v37adOmDRcvXkQWXKze0tLSePPNNw2zfPzbxuMJZOQW4OfuQEiA6dNy3YtycnKYNm0aK1euNHcoohqQJFZUG1EJaXxzIIb1R+NIz/0neQqso2VgGy8eaOVJw9raat/X1NnO2pDQnklM54tdF/gpMo6Dl1IY8cUBejWpzcsPNKWpZ/UeaW5vb8+VK1cM94V53Hffffzyyy+0b9+esWPH8vzzz/Pjjz9y6NAhHn30UXOHJ+5g9OjRvPzyy6SmppbY8LHuSBwAQ4J9qv33WnWg1+spKCjg008/pV69euYOR1QDksQKs8rKK2DDXwl8cyCGyNibhu1eLnb0b+vFwDb1LXqQVBNPJz4Y0oYX+zZh8fbzrDoQw7Yz19lx9jpPdw/g+fsb33FpSXNSq9XUr1/f3GHc8z7//HPDqkoTJ06kVq1a7N69m/79+zNx4kQzRyfu5t1332XTpk20bt0aLy8vw/aUzDwOXEwGYEAbr9vtLm7x6quvEhQUxJAhQ8wdiqgmJIkVZhF3M5sVey/x7cEY0nMKW12t1Cr6tqjL4x0b0LWhB2q1ZSauJfF0seONgS0J7+rPe5tO89uJRD7feYFNJxJ557FWFtXFQFQttVqNWv1Pt5mhQ4cydOhQM0ZUc4SGhtKyZUsAvv76azQaDc888wz/93//h0qlws/Pj6effpqzZ8+ydu1a3N3dmT9/Pp06deLZZ58lIiICf39/li1bRnBw8G1fx9/fn/DwcL7//ntDP/Pfo66iV6BZPWcZ0FUKa9euRaVSSQIrjFSPDoUVLDc3l7Zt26JSqYiMjDR6TqVSFbstWbLEPIHeg/66cpPnvj1Kj/e28fnOC6TnFNCglgPT+zVh3yu9WTQyiO6NateoBPZW/h6OLH4iiKWjg6nnYkdMShYjvzzAR1vPotNXr/6NeXl5vP/++7z//vvF5iYVVSsnJ4eDBw+yYcMGfv75Z6ObKJ8VK1ZgZWXFgQMHmD9/PvPmzePLL780PD9v3jy6du3K0aNHeeihhxg1ahTh4eE8/PDDREREEBgYyJNPPnnH/slNmjRh7ty5HDp0yLBty8lEAPq18Ky8k6shTp48Sd++fZk7d665QxHVTI1siZ0+fTpeXl4cO3asxOeXLVtmtM64DNKqXHq9wu9RV/ly10UOXvpnSqCQAHfG9fAntHGdGpu03k7vZoUD0+ZsiGL1oVjm/3GOiIspLBjRDvdSTnZe2fLz85k+fToAkyZNkmVnzWTTpk08+eSTJCUlFXtOpVLJbCnl5OPjw7x581CpVDRp0oTjx48zb948xo0bB8CDDz7IhAkTAHj99ddZvHgxwcHBhIWF0bhxY15++WVCQkK4evUqnp63T0g7dOhAXl4eo0aNYv6Chew5X9iVoE/zupV/khbs6NGjvPrqq6xdu9boioQQUANbYn/77Te2bNnCBx98cNsyrq6ueHp6Gm4yaKVy6PQKPx+Lp98nOxn/v8McvJSClVrFo+3qs+HZbnw7vjP3Na17zyWwRZzsrHl3cGs+HtYWBxsN+y4k88iivURfzzB3aEDhUrOjR49m9OjRsuysGU2ZMoUhQ4aQkJCAXq83ukkCW36dO3c26nMfEhLCuXPnDHXbunVrw3N16xYmnK1atSq27dq1a3d9LRsbGyZMmMCAR4eQlZODi701TT2dKuQ8aiK9Xs9nn33GqlWr5HdalKhG/TJdvXqVcePGsX79ehwcbt/HaMqUKTz99NP4+/szduxYxo8fL3/hVaACnZ5f/orn0z/Pc+F6JlC4TOsTnX0ZHeKHp4tM/n+rQe3q07K+M08tjyAmJYtHF+3liyeD6ehfy6xx2dralrh8paha165dY9q0aYZkSVQta+t/FkspSnZL2lY0+O5uunXrxgPjX2HxnnjaNa5Zff8r0urVq3FwcJDufuKOakwSqygK4eHhTJw4keDg4NuuCf1///d/9O7dG3t7e/744w9eeOEFkpKS+O9//3vbY+fm5pKb+8/qUGlpaRUdfo2Qr9Oz/mgcC7ed51JyFgAu9taM7ebP6C5+uNhX7MpZNUlgHSfWTerK0ysOERl7k9FfHWRpeLAM+BIMHjyY7du307BhQ3OHUiPt37+/2ONGjRrddoGCinAhx5H8lDgivlhCTNjXNGggCx3cavHixRw7dkwW8hB3VaoktlYt01qEVCoVR44cwdfXt0xB3Wr27Nm3nSi6SEREBHv37iUtLY1XXnnljmVvTVbbtm0LwJtvvnnHJPbtt9++awz3srwCPWuPXGHh9vPEpmQD4OZgzbgeAYzq7ItTBS/7WlN5aG35bnxnJvzvMDvOXmfM8gi+Gt2BLoGSyN7LFixYwJAhQ9i1axetWrUyagUEeO6558wUWc0QGxvLtGnTmDBhAkeOHOHTTz/lww8/rLTXUxSFIzE3sfNuzjsT72fVqlXMmDHDYqcRrEh6vZ6oqCjCwsKYOHGi1Im4q1IlsTdv3uTjjz8u1QAoRVGYNGlShfXVmjJlCsOHD79jGT8/P+bMmcP+/fuxtTUeFBMcHMzIkSNZsWJFift27tyZtLQ0rl69etvLda+88grTpk0zPE5LS8PHx8fEM6l5cgt0fH/oCku2RxN3szB59dDaML5HACM7+eJoW2Ma+quMnbWGz0YFMfHrw2w/c50xKyJY9XRngnyrfsnazMxMwzyxcXFxsuysmXzzzTds3rwZe3t7tm/fbvTDrlKpJIktpyeffJLs7Gw6duyIRqPh2WefZfz48ZX2etfTc0nJzEOtgj6dWtO/WzsWL15MRkYGL7744j2buF29epUpU6bQr18/xo4da+5whIVQKaVYt1CtVpOYmEidOnVKdVAnJyeOHTtGQEBAuQMsrZiYGKPL/PHx8YSFhfHjjz/SqVMnvL29S9xvwYIFvPTSS9y8ebNYAnw7RcvOpqam4uxcvVddqgw5+Tq+OxjDkh0XSEzLAaC2ky0TezZkRMcG1XbyfkuSW6Bj/MrCFlk3B2vWPNOFgNraKo0hMzMTrbbwNTMyMiSJNVFFfU94enry3HPPMWPGDIvru19UBykpKbi5Vf0fYncTGhpK27Zt+fjjj03aT6fTERUVRbNmzUzudrDz7HWe/OogAR6O/PliKFDY+LNgwQLS0tJ47bXXTDpeRSnPOZVXUlIS+/fvp0GDBkYD6crLnOdUWWriOQHcuHGDWrVqmfx9WaqmstJ2WC+Snp5uUvmK8O8+RUU/vg0bNjQksL/88guJiYmEhIRgb2/Ptm3beO211xg/fnypE9h7WXaejlUHLvPZzgtcTy/sI+zpbMczoQ0Z1sEHO+ua8x/K3GytNCwa2Z7Hv9jPX1dSCV8WwbpJXap0+i17e3vOnj1ruC/MIy8vj2HDhllcAitKdv5a4ewjjer+80epSqXi2WefRa/Xs3DhQgICAnjggQfMFWKVSU1N5fnnn6dZs2a89NJL5g5HWKB76lvR2tqaRYsWERISQuvWrfnkk0948803K7X/U02QkVvAkh3RdHv3T+ZsjOJ6ei71Xe2ZM6glO6aHMrqLnySwlcDR1oqlozvgU8uemJQsnv32KAU60/6gLA+1Wk2jRo1o1KiRJFBmNHr0aFavXm3uMEQFuXKjsOuVr3vxKxtqtZrRo0ezY8cOXn/99aoOrUplZ2ezceNGxo4dKwmsKDOTOy3eboUYlUqFnZ0dgYGB+Pv7lzuw8vLz8yu2gkq/fv2MFjkQd5aWk8/KvZf4cvdFbmblA+BTy57JoYE82t4bGytJbCpbbSdblo7uwKCFe9gbncyHW8/ycr+m5g5LVCGdTsd7773H5s2bad26dbGBXR999JGZIrN827dvr/LXjLtZOHNLfdeSr25otVreeecdCgoK+OGHHzhz5gwvvvgidnY1Y2rC48ePM2fOHDp27MgLL7xg7nCEhTM5iR00aBAqlapYgli0TaVS0a1bN9avX18t+0CJu0vNyuerPRdZtuciaTkFQOFyqZN7BTKwrRfWGkleq1Ljuk68+1hrnv32KIu3R9O+gVuVrPKTn5/P559/DsD48eOLJU+iahw/fpx27doBcOLECaPn7tVBQJYs/mbhOAKv2ySxRaysrBg8eDBr1qxh0qRJfPHFFwAW2w/y7NmzqFQqjh8/zjvvvFMtGruE5TM5id26dSuvvfYac+fOpWPHjgAcPHiQ//73v8ycORMXFxcmTJjAiy++yNKlSys8YFF5UjLzWLr7Aiv2XiYjtzB5Dayj5dn7Anm4tRcamZTbbPq38eJozE2+2nORl9f8RRuf7tRxqtyWmby8PKZMmQJAeHi4JLFmsm3bNnOHICrQjaw8ANy1d1/GWaVSMXjwYAYPHszZs2d55plnePjhhxk3bpxh3Ed1p9PpmDhxIjk5Obz55puMGDHC3CGJGsTkJPY///kPn3/+OV26dDFs6927N3Z2dowfP56TJ0/y8ccfM2bMmAoNVFSe2JQslu6+yOqIWLLzC6dGa+rpxLP3NeKBlp6yokw18fIDTdh3IZmohDRmrDnO0tHBldoSp9FoGDx4sOG+uPfMnTuXjRs3EhkZiY2NDTdv3jR3SBYvNbuwa5api780btyYLVu28PPPP5OXl8e8efPo378/gYGBlRFmueTk5PDLL7/www8/sHTpUmbOnCkLOohKYXISGx0dXeL0B87Ozly4cAGARo0akZSUVP7oRKU6EZfKZzsv8OvxBHT6wu4hLbycea53I/o0qyvJazVja6Xh42Ft6b9gN3+evsa3B2MZ0anyfhjs7Oz44YcfKu344s4effTRUpVbu3ZtpcWQl5fHkCFDCAkJkStrFUCnV0j/u4tWWVYw1Gg0PPLIIwD07NmTuXPn0rVrV8LCwlCr1YZ5nc1Br9eze/dubty4gbu7O0lJSSxevBgnJyecnJzMFldNEZuSRT0XO+RX2ZjJSWxQUBAvvfQSK1eupHbt2gBcv36d6dOn06FDBwDOnTt323lZLdnChQtZuHBhhS3kYA6KorDzXBKf74xmz/lkw/ZugR5M6BlAt0AP6WdXjTXxdGJ6WBPmbIzi7V+j6N2sDnWda8aAD2GsNIvLVLailQqXL19u3kBqiLyCf2YXsS/njC7t27dn2bJlKIrCsWPHmD9/PvHx8axZs4bLly/TpEmTSr+CEhcXx969e3nooYeYOnUqXl5ejBo1ioYNG9KtW7dKfe17yca/Epj8zREebl2PT4a1MXc41YrJSezSpUsZOHAg3t7e+Pj4oFKpiImJISAggJ9++gkonBh95syZFR6suU2ePJnJkycbJvC2JJm5Baw9Gsf/9l3i7NXCeQo1ahUPt67HuO4BtKxvWedzL3uqqz+/HIvn2JVU3txwioUj2ps7JFEJli1bZu4QRAXT3TIguqLGGKhUKtq2bctXX32FXq9HrVazfv16du3axQMPPMCDDz7Ijh07aNasGe3atSvTnM9FA7kPHTrEvn378PX1xdbWljVr1tClSxcURTEMAhUVb97vhfN1b/grQZLYfzE5iW3SpAlRUVFs3ryZs2fPoigKTZs2pU+fPoa5JAcNGlTRcYoyir6ewf/2XWbN4Suk/z1Yy8FGw7AOPozt5o+3m4OZIxSm0qhVvPVoKwYs2MPGvxIYHHSNXk1Kt5qeKbKysmjUqBFQeHXFwUE+K+LOcnNzyc3NNTwuWkVRp9NZ9BWsfys6F1PPqaCgwHBf0eupjCrR6XS8/PLLvPzyyyiKQkpKCi4uLvzxxx94eHiwZs0adu/eTd26dfn88895+umnsbOzo1evXtja2rJq1SpSUlJ47rnn2LBhA7t378bNzY2vvvqKDRs20KFDBzp37oybmxt9+vQxet3qpqzvU3WSnlNgWCADICuncGCgJZ9TScp6PqVadvZ2cnJysLW1vecuP1f3ZWdzC3T8EXWNbw/GsOvcP32T/T0cGdXZl8eCvMvUH0tUL3M2nOLL3RfxdrPn92k9K3zBCVl2tnyq6/fE7NmzDd0EbiciIoLg4GDD4+XLlzN16tS7Duy63bH37dtnMaPpK1NGnp7h38cCsO7xBlhrzPfbqdPpUKvVpKamkpeXh42NDWq1mvj4eNzc3PDw8JABndXA3pgs3tp53fD468HeuNrVvPclIyODkJCQyll29lZ6vZ65c+eyZMkSrl69ytmzZwkICGDmzJn4+fkxduxYUw8pKsjJ+FR+OHSF9ZFxhsUJVCro3bQOT4b40S3QQwZr1SDP92nMr8cTuHIjm6W7LzK5V8WOUrazs+Po0aOG+6JmmDJlCsOHD79jGT8/vzId+5VXXmHatGmGx2lpafj4+BAYGFij5g3X6XScPXuWxo0bm5ToFfaJLUxifRs2qlaNCUXnFBwcXGOS17K+T9XJ/04bzw3t6+dPamKMRZ9TSW7cuFGm/UxOYufMmcOKFSt47733GDdunGF7q1atmDdvniSxVexaeg4b/0rgh0NXOJWQZtju6WzHo+3r83jHBvjUksvANZGjrRXT+zVl6upIFm07z9BgH2o72VbY8TUaDW3btq2w44nqwcPDAw8Pj0o5tq2tLba2xT+DGo2mRv3gFjH1vOw1Gmw0avJ0erILFGpVwzqpie+VpZ5T0UBso20Udtu01HO6nbKei8lJ7MqVK/n888/p3bs3EydONGxv3bo1p0+fLlMQwjRJGblsOpHIhr/iOXAxhaIOITYaNX1a1GVIkDfdG9WWxQnuAQPaeLFsz0WOXUnlo61nefvRVuYOSdQgMTExpKSkEBMTg06nIzIyEoDAwEDpHlBGjrYa8rL0ZOYW3L2wuKedvZpBQmoOtlZqdHqFAr1Cvl5/9x3vISYnsXFxcSVOrqzX68nPz6+QoERxV9Ny+CPqGr8eT2BvdBL6W3oyt/Vx5ZF29RnY1gtXh7uvAiNqDrVaxX8fbs6QJftYHRFDeBc/mnhWzJyM+fn5rFq1CoCRI0fKil33oNdff50VK1YYHhctf7tt2zZCQ0PNFJVlc7G35kZWPjcy88wdiqjmtp+5BkDnAHciY2+Smp1vmNNdFDI5iW3RogW7du3C19fXaPsPP/xg+IIT5afXKxyPS+WP09f48/RVTsSlGT3f2tuFh1rV48FW9aS7wD2ug18tHmjpyW8nEnl/8xm+HB18951KIS8vj6eeegqAIUOGSBJ7D1q+fLnMEVvBPF3suJScRWJajrlDEdXc9jOFA7pCm9TmZHwqAAU6SWJvZXISO2vWLEaNGkVcXBx6vZ61a9dy5swZVq5cyYYNGyojxntGQmo2+6KT2XM+mR1nr5OU8c9UNSoVtPF2pU/zujzcuh6+7jJSXPzjxbAmbD6ZyO9RVzkWe5M2Pq7lPqZGo+HBBx803BdClF89l8J5WuNvShIrbi8jt4BDl1MACG1Sh892FK6Imq/TI9/G/zA5ie3fvz+rV6/mrbfeQqVS8frrr9O+fXt++eUXoznjaqKKXrHrenouBy4mszc6mX3RyVxMyjR63tFGQ4/GtbmvaR1Cm9Sp0EE7omZpWFvLoHb1WXskjo+2nmXFmI7lPqadnR0bN26sgOiEEEXquRTO9JGQmm3mSER1tud8Evk6BV93B/w9HLH6ezq2Ar0iSewtTE5iAcLCwggLC6voWKq98qzYlVegJyohjaMxNzgae5MjMTeITTH+ElOroFV9F0IaetAt0IOO/rWwsVJX5CmIGuw/vRvxU2Q8O85e5/DlFIJ8a5k7JCHEvzT4u/vXvxsthLiVoStB49oAWKn/SWKlOesfZUpiRelt/CuBZXsucjwuldwC41GFKhU0qetEl4YehDR0p6N/rWo1b6CwLL7ujgwJ8ua7iFg+3HKWb8Z1NndIQoh/KRp4eTox3cyRiOpKURR2ni3qD1u4GqOVprBBq0AnsxPcqlRJrJubW6lX5UpJSSlXQDVNRm4+hy4XTuLrYm9NuwautG/gRrsGrrTxccXZTpJWUXGm3BfImiNXDF1UQhq6l/lYWVlZtGlTuE73sWPHZNlZISpA47qFSez19FySM3Jx10q7mjB27EoqcTezsbNW0zmg8Dtc83cOJuO6jJUqif34448N95OTk5kzZw5hYWGEhIQAhUsKbt68mZkzZ1ZKkJase6PafDikDe0auOLv4XjPLdErqpa3mwPDOvjw9f4YFmw7V64kVlEUzp8/b7gvhCg/R1srfN0duJycxenEdLoGShIrjK07cgWAvs09sbcp7AErqUPJSpXEjh492nD/scce480332TKlCmGbc899xwLFizg999/5/nnn6/4KC2Yl6s9jwV5mzsMcQ+Z2LMh3x2MZc/5ZI7G3KBdg7It92lnZ8fu3bsN94UQFaOllwuXk7M4cvkGXQMrZ/U0YZnydXp++SsBgEfa1zdzNNWfyaOGNm/eTL9+/YptDwsL4/fff6+QoMrqyJEj9OnTB1dXV9zd3Rk/fjwZGRlGZWJiYujfvz+Ojo54eHjw3HPPkZcnk06LmsPbzYGBbQu//BZtjy7zcTQaDV27dqVr164yxZYQFahTQOGgywMXpfudMLbjzHVSMvPw0NrSXf7AuSuTk1h3d3fWrVtXbPv69etxdy/7pcvyio+P5/777ycwMJADBw6wadMmTp48SXh4uKGMTqfjoYceIjMzk927d/Pdd9+xZs0aXnjhBbPFLURleCY0AJUKtp66yhkZQCJEtdLJv/C38tDlFPIKZKCO+Me3B2MAGNjWyzCYy4h07TJi8uwEb7zxBmPHjmX79u2GPrH79+9n06ZNfPnllxUeYGlt2LABa2trFi5ciFpd+MYvXLiQdu3acf78eQIDA9myZQunTp0iNjYWLy8vAD788EPCw8OZO3cuzs7OZotfiIoUWMeJfi0KV/FasiOaecPamnyMgoICwx+sjzzyCFZWMpmJEBWhUR0tbg6Fy8/+deUmwX4yHZ6A2JQs/vx7qdmRnRqYORrLYHJLbHh4OHv37sXV1ZW1a9eyZs0aXFxc2LNnj1GrZ1XLzc3FxsbGkMAC2NsXroxS1K9v3759tGzZ0pDAQmE3iNzcXA4fPly1AQtRySaFBgLw87F4YpKzTN4/NzeXoUOHMnToUHJzc+++gxCiVNRqFV0aFl4q/vP0NTNHI6qLrw9cRlGgeyMPAmprzR2ORSjTTPqdOnVi1apVHDlyhKNHj7Jq1So6depU0bGZ5L777iMxMZH333+fvLw8bty4wauvvgpAQkJhJ+nExETq1q1rtJ+bmxs2NjYkJibe9ti5ubmkpaUZ3YSo7lp5u9CjcW10eoXPdpreN1atVtOzZ0969uxp9MehEKL8+rYo/C3adCJRZv8Q5OTr+D4iFoBRnX3NHI3lKNUvk6lJW3p6xfXBmz17NiqV6o63Q4cO0aJFC1asWMGHH36Ig4MDnp6eBAQEULduXaNBKSVNcaUoyh2nvnr77bdxcXEx3Hx8fCrs/ISoTJNDGwLww6ErXEszba12e3t7tm/fzvbt2w1XNYQQFeO+pnWw0ai5kJTJ+WsZd99B1Gg/HIrlRlY+9V3t6d2s7m3LyZ87xkqVxLq5uXHtWukvedSvX58LFy6UOahbTZkyhaioqDveWrZsCcCIESNITEwkLi6O5ORkZs+ezfXr1/H39wfA09OzWIvrjRs3yM/PL9ZCe6tXXnmF1NRUwy02NrZCzk2IytbRvxbBvm7k6fR8sati/k8KIcrPyc6abo0KuxT8duL2VwJFzZev0/PZzsLv5wk9A9CoizeqyRzzJSvVSA1FUfjyyy/RakvXRyM/P79cQd3Kw8MDDw/TppkoSki/+uor7Ozs6NOnDwAhISHMnTuXhIQE6tWrB8CWLVuwtbUlKCjotseztbXF1lYmpBaWR6VSMblXIE8tj2DVgRgmhQbi5mhj7rCEEEC/lp78efoa647G8ex9gZKo3KN+ORbPlRvZeGhtGBosV3pNUaoktkGDBnzxxRelPqinpyfW1lW/nOqCBQvo0qULWq2WrVu38tJLL/HOO+/g6uoKQN++fWnevDmjRo3i/fffJyUlhRdffJFx48bJzASixgptUpvm9Zw5lZDGsr2XmNancan2y87ONlqVT7oUCFGxHmpVjzd/OcXFpEz2XUg2DPYS944CnZ6F2wpXRhzbLQA7a5mT2xSlSmIvXbpUyWFUjIMHDzJr1iwyMjJo2rQpn332GaNGjTI8r9Fo2LhxI5MmTaJr167Y29szYsQIPvjgAzNGLUTlKmqNnfzNEZbvuci47v442d39j0y9Xs+xY8cM94UQFcvR1oqBbb1YdSCGbw7ESBJ7D/rx8BWir2fi5mDNE53vPq2WjAE0VqMmfly5cuVdyzRo0IANGzZUQTRCVB/9WnoSUNuRC9cz+Xp/DM/8PeDrTuzs7NiyZYvhvhCi4j3esQGrDsSw+WQiSRm5eGil69q9IjtPx7zfzwIw5b5GpWpcEMZk3hwh7gEatcowb+zS3RfIydfdfR+Nhj59+tCnTx9ZdlaIStKyvgttvF3I1yn8b99lc4cjqtBXey5yNS0Xbzf7u7bCSm/pkkkSK8Q9YmBbL7zd7EnKyOO7v5c2FEKY3/gehVdGlu25SHpOxQ2MFtXX9fRclmwvnL/7xb5NsLWShoKykCRWiHuEtUbNhJ6FP5af77xw1zXbCwoK2LhxIxs3bqSgoKAqQhTintSvpScNazuSllPASmmNvSe89WsU6bkFtKrvwoA2Xnff4W+KzBRrRJJYIe4hQ4K8qeNkS3xqDuuPxt2xbG5uLg8//DAPP/ywLDsrRCXSqFVMua+wu8+Xuy6QmSt/NNZke6OTWHc0DpUK5j7SEnUJ88KK0ilTErtr1y6eeOIJQkJCiIsr/CH83//+x+7duys0uOpm4cKFNG/enA4dOpg7FCHKxM5aw7juAQAs3hGNTn/7v+rVajXBwcEEBwfLsrNCVLL+rb3wdXfgRlY+X+2+aO5wRCXJK9Azc/0JAJ7o5Etrb9dS7SdTCJfM5F+mNWvWEBYWhr29PUePHjW00KSnp/PWW29VeIDVyeTJkzl16hQRERHmDkWIMhvRqQGuDtZcTMpk4/GE25azt7cnIiKCiIgImSNWiEpmpVEb5nBetD2a+JvZZo5IVIaPfz9L9PVMPLS2vBjWxNzhWDyTk9g5c+awZMkSvvjiC6MFDbp06cKRI0cqNDghRMVztLViTNfCpZjn/3Hujq2xQoiqM6CNFx383MjO1/H2b6fNHY6oYIcvp7BkR+FgrjmDWuBib/qUWjJPrDGTk9gzZ87Qo0ePYtudnZ25efNmRcQkhKhk4V39cHWw5vy1DNbdpW+sEKJqqFQqZvVvgUpVuBTpwYsp5g5JVJDM3AKeX30MvQKPtq9Pv5b1zB1SjWByEluvXj3Onz9fbPvu3bsJCAiokKCEEJXL2c6aSX8veDBv61lyC4rPG5udnU3Xrl3p2rUr2dlyaVOIqtCyvgvDOxTOGTpz/YkS/28KyzNn4yliUrKo72rP7AEtTN5f+sSWzOQkdsKECfznP//hwIEDqFQq4uPjWbVqFS+++CKTJk2qjBiFEJXgyRA/6jrbEnczm+8OxhZ7Xq/Xs3fvXvbu3SvLzgpRhV4Ka4K7ow1nrqbz0daz5g5HlNPaI1f49u/v2PeHtMZZVuaqMCYnsdOnT2fQoEH06tWLjIwMevTowdNPP82ECROYMmVKZcQohKgEdtYanr2vEQCf/nmerDzjaX1sbW1Zt24d69atw9ZWlsIUoqrUcrTh7UdbAYVzOku3Ast1OjGNV9cdB+C53o3o0tCjXMeTPrHGyjRvzty5c0lKSuLgwYPs37+f69ev83//938VHZsQopIN6+BDg1oOJGXksnSX8bQ+VlZWDBo0iEGDBmFlZWWmCIW4N/Vt4cngIG8UBV74IZIMmTvW4qRm5/PM10fIydfTvZEH/+ndyNwh1ThlnvzRwcGB4OBgmjZtyu+//05UVFRFxiWEqALWGjUv9C2c1mfxjmgSU3PMHJEQosis/s2p72pPbEo2/113HEWa4SxGXoGeZ74+zMWkTLxc7PhkeDs0sqhBhTM5iR06dCgLFiwACgd+dOjQgaFDh9K6dWvWrFlT4QEKISrXgDZeBPm6kZWn453f/vljVKfTsX37drZv345OJ4NLhKhqTnbWfDS0DRq1ivWR8SyVRRAsgqIo/Hf9cfZGJ+Noo+HL0R2o5WhTrmOqkAS4JCYnsTt37qR79+4ArFu3Dr1ez82bN5k/fz5z5syp8ACrE1mxS9REKpWK2X9P67M+Mp7Dlwv73+Xk5NCrVy969epFTo600AphDp0C3PnvQ80AeOvXKHadu27miMTdLNoezfeHrqBWwYIR7Wnu5Vxhx5a2eGMmJ7GpqanUqlULgE2bNvHYY4/h4ODAQw89xLlz5yo8wOpEVuwSNVUrbxeGBfsAMPvnU+j0CiqViubNm9O8eXNUMr+LEGYT3sWPIUHe6BWY8s1RLidnmjskcRsr913i/c1nAJjVvwW9mtYxc0Q1m8lJrI+PD/v27SMzM5NNmzbRt29fAG7cuIGdnV2FByiEqBovhjXByc6K43GpfL3/Mg4ODpw8eZKTJ0/i4OBg7vCEuGepVCrmPNKStj6upGbn89TyCJIycs0dlviX7w/F8vpPJwGY0iuQ0V38zBvQPcDkJHbq1KmMHDkSb29vvLy8CA0NBQq7GbRq1aqi4xNCVBEPrS3T/17L+91Np4lNyTJzREKIIrZWGj4bFYSXix0XrmcyaulBUrPyzR2W+NtPkXHMWPMXAGO6+hsGzFYUuRhWMpOT2EmTJrF//36++uordu/ejVpdeIiAgIAa3ydWiJpuZCdfOvrVIitPx6syGlqIaqWusx2rxnXGQ2tLVEIao5cdlKm3qoFvD8YwdXUkegUe79iAmQ83q7wuWPKdbKRMU2wFBQXxyCOPoNVqDdseeughunbtWmGBCSGqnlqt4p3HWmFrpWbXuSQ6PT6VPn36yLKzQlQT/h6OrHq6E64O1kTG3uTpFRFk58nsIeayZEc0r6w9jqLAiE4NmDuopYwhqEJlSmKvXLnCokWLmDFjBtOmTTO6VZa5c+fSpUsXHBwccHV1LfZ8cnIy/fr1w8vLC1tbW3x8fJgyZQppaWmGMpcuXUKlUhW7bdq0qdLiFsLSBNTW8nyfwkthiV7d2X74lCw7K0Q10sTTiZVjOqK1tWL/hRSeWHqAm1l55g7rnqLXK7zz22ne+e00AJNCGzJ3UEvUMhdslTJ5GZ4//viDAQMG4O/vz5kzZ2jZsiWXLl1CURTat29fGTECkJeXx5AhQwgJCWHp0qXFnler1QwcOJA5c+ZQu3Ztzp8/z+TJk0lJSeGbb74xKvv777/TokULw+Oi2RaEEIXGdQ9g2+mrHLgIQc8uRFHLil1CVCetvV1ZMaYDTy2L4PDlGwxeso8VYzpS39Xe3KHVeFl5Bbzw/TF+O5EIwIwHmjKxZ8NKfU1JjUtmckvsK6+8wgsvvMCJEyews7NjzZo1xMbG0rNnT4YMGVIZMQLwxhtv8Pzzz9928JibmxvPPPMMwcHB+Pr60rt3byZNmsSuXbuKlXV3d8fT09Nws7Ep3yTEQtQ0GrWKtwc0RZeVSmKuNe9tOm3ukIQQ/xLkW4sfn+lCPRc7zl/L4NFFezidmHb3HUWZXbmRxWOL9/HbiUSsNSreH9y60hNYcXsmJ7FRUVGMHj0aKFxbPTs7G61Wy5tvvsm7775b4QGWVXx8PGvXrqVnz57FnhswYAB16tSha9eu/Pjjj3c9Vm5uLmlpaUY3IWq6us62JP/6CQArD1zhl2PxZo5ICPFvjes6seaZLjSqo+VqWi5Dluzjj6ir5g6rRjpwIZkBC/YQlZCGh9aGb8d1Zsjf82tXFRnWZczkJNbR0ZHc3ML56by8vIiOjjY8l5SUVHGRldHjjz+Og4MD9evXx9nZmS+//NLwnFar5aOPPuLHH3/k119/pXfv3gwbNoyvv/76jsd8++23cXFxMdx8fKr2QyuEOeh0OrKjD5J6oHA56Rd/OMZfV26aNyhRZS5dusTYsWPx9/fH3t6ehg0bMmvWLPLypO9ldePlas+PE7vQwc+N9JwCxq44xHubTlOgk77sFUGnV1jw5zlGfHmAlMw8WtZ35ucp3Qj2k66I5mZyEtu5c2f27NkDFM5I8MILLzB37lzGjBlD586dTTrW7NmzSxxodevt0KFDJh1z3rx5HDlyhPXr1xMdHW002MzDw4Pnn3+ejh07EhwczJtvvsmkSZN477337njMV155hdTUVMMtNjbWpJiEsERFS83e3LGCrv4u5BboGb/yMFfTZAnae8Hp06fR6/V89tlnnDx5knnz5rFkyRJeffVVc4cmSuDiYM2qpzsT/vcE+4u2RzPyywNcS5f/r+WRmJrDyC/388GWs+j0Co+0q88PE7rgJX2PqwWTR2t89NFHZGRkAIVJaEZGBqtXryYwMJB58+aZdKwpU6YwfPjwO5bx8/Mz6ZhF/VybNm2Ku7s73bt3Z+bMmdSrV6/E8p07dzZqrS2Jra0ttra2JsUhhKUzTBOj6JnzUCDjvj/D+WsZjP7qIKvHh+DiYG3eAEWl6tevH/369TM8DggI4MyZMyxevJgPPvjAjJGJ27GxUjN7QAuCfN2YseYvDlxM4cFPdvP+kNb0aiLLn5pCURR+OHyF/9twivScAhxsNLw5sCWPta9vnim0ZNquEpmcxAYEBBjuOzg4sGjRojK/uIeHBx4eHmXe/26KJmov6v5QkqNHj942wRXiXnbrUrN13Jz4anQHBi/Zy+nEdJ5afpCvn+6Eg43MWnAvSU1NldlcLED/Nl4093Jm0tdHOHM1naeWRfBIu/rMfLg5tRxlIPPdxN3M5pW1x9l59joArb1d+HhYWwJqa++yZ+WTtQ6MlfkXKC8vj2vXrhWbP7JBgwblDqokMTExpKSkEBMTg06nIzIyEoDAwEC0Wi2//vorV69epUOHDmi1Wk6dOsX06dPp2rWroTV3xYoVWFtb065dO9RqNb/88gvz58+vVgPShKiuGrg78L+xnRj62T6OxNxk3MpDfPFksCSy94jo6Gg+/fRTPvzww9uWyc3NNWo0KBoEq9Pp0OlqzoT8RedSnc/Jr5Y9ayZ25qPfz7Js72XWHY1jx5lrzHy4Gf1b1yvWmmgJ52QqU88pN1/HF7svsXhHNDn5emys1EztHcjYrn5YadTmrZu/s1e9Xg/qmvU+QdnPR6WYuK7k2bNnGTt2LHv37jXarigKKpWq0io2PDycFStWFNu+bds2QkND2bZtG6+99hqnTp0iNzcXHx8fHn30UWbMmGFYHGHFihW8++67XL58GY1GQ+PGjZk6dSpPPPGESbGkpaXh4uJCamoqzs7OFXF6QlQ7mZmZhlX5MjIycHR0BOBozA1GfnmArDwdwb5uLA3vgIu9dC34t+r6PTF79mzeeOONO5aJiIggODjY8Dg+Pp6ePXvSs2fPO3a/ut2x9+3bZ7TCo6haZ5Jymb8/mcs38wEI8rLjqfZu+LlKqywU5i/7r2Tz5eEbXM0oXMa3RR1bnu3kjrdL9fhum/ZbAmeT85gZWptO3g5338HCZGRkEBISYvL3pclJbNeuXbGysmLGjBnUq1f8r7k2bdqYcjiLVF1/nISoSMnJyYbuPklJSbi7uxueOxJzg/CvDpKWU0ALL2dWjOmIh1b6jd+qun5PJCUl3XUmGT8/P+zs7IDCBLZXr1506tSJ5cuXo1bffjxwSS2xPj4+XL9+HTc3t4o5gWpAp9Nx9uxZGjdujEajMXc4pZJXoOeznRdYtD2aPJ2CSgWD2nrxfO9G1Hezt8hzupu7nZOiKOyNTuaj388RGZsKgKezLS/3a1Jia7U5PbZkH5GxqSwZ0RZv9Y0a9T4B3Lhxg9q1a5v8fWnydcDIyEgOHz5M06ZNTd1VCGFBbr2q8u8rLO0buPHd+BCe/OoAJ+PTGLRwD1+ODqapZ/VJ1kTJTBmLEBcXR69evQgKCmLZsmV3TGDh9oNgNRpNjfrBLWJJ52Wv0TC1TxMGtK3PB1vO8OvxRNYdjWfjX4mMCvFlQg9/wLLOqbT+fU6KorAvOpn5f55j/4UUAOys1Yzt5s+k0EAcbatjF6nChFr19//BmvY+lfVcTH6nmjdvXi3mgxVCVK5bV7IraVW75l7OfD8hhKeWR3A5OYvHFu3l4+Ht6NO8blWGKSpJfHw8oaGhNGjQgA8++IDr168bnvP09DRjZKI8AmprWTQyiMjYm7z722n2XUhm6e6LfL3/Mj39HJhaK53mXq7mDrNS5Ov0bPgrni92XuRUQmF/bRuNmhGdGjCpV0PqONmZOUJhqlIlsbeuUPXuu+8yffp03nrrLVq1aoW1tXF/kep02UwIUXa3/t/+9//zIgG1tayf1JXJ3xxhb3Qy4/93iAk9GvJC38ZYa0yehlpUI1u2bOH8+fOcP38eb29vo+dM7IUmqqG2Pq58M64TO88l8eGWM/x1JZUt5zPYMn8P3Rt5MKarPz0b10atrj6X1MsqNiWLtZEJfB8RS+Lf81zbW2sYEuzNxJ4NZc5XC1aqJNbV1dWob4iiKPTu3duoTGUP7KoOFi5cyMKFC2v0OQphKjdHG1aM6cicDadYse8yS3ZEsy86ifmPt8PX3dHc4YkyCg8PJzw83NxhiEqkUqno2bg2PRp5cPBCMp9sPs7+2Cx2nUti17kkvFzseLiNFwPaeNHCy7la9RG9m/ScfDafSGDlrkT+unrZsL22ky3hXfwY2akBrg6WM7DNgqq+SpUqid22bVtlx2ERJk+ezOTJkw0DNoSoyW6dPu/fU+n9m7VGzRsDWxLS0J2X1xzn2JVUHvhkFy/2bcLoLn5oakBrjhA1lUqlItjPjVd71MbJ05evD8TyXUQs8ak5fL7zAp/vvECAhyP923jRt0Vdmnk6V8sW2mvpOWw9dZUtJ6+yNzqJfF3hFQOVCroFejA4yJt+LT2xtbLcvqSKohR1jxWUMont2bNnZcchhKhmsrOzje47OTnddZ9+LevR2tuV51dHcuBiCm9uOMX6yDjeeqQVLevLH35CVHfebg689lBzXujbhO1nrvHzsXj+iLrGhaRMPvnjHJ/8cY5ajjaENHSna0MPuga606CWg1laaVMy8zh4MZn9F1I4cDGF04lpRosB+Hs40MXLmolhbfFxlyneaqJSD+zKysripZdeYv369eTn53P//fczf/78Sl1xSwhhebxc7fl2XGe+jYjhnd9O89eVVAYs2M2wDj48f39j6jjL4Akhqjs7aw39WtajX8t6pOfks/XUVTb+lcC+C8mkZOax8a8ENv6VAEAdJ1ua1XOmaT0nmtdzpqmnMwG1HSusX7xerxB3M5sziemcTkwjKjGdqIQ0LlzPLFa2jY8rYS3q0re5J/7u9kRFRUmf1xqs1EnsrFmzWL58OSNHjsTOzo5vv/2WZ555hh9++KEy4xNCmEnR4gb/vl8aarWKkZ186dOsLm9sOMXGvxL49mAs64/GM667P+N6BOBkVz0mERdC3JmTnTWPtvfm0fbe5BXoOXblJnvOJ7H3fDJHY29wLT2Xa+nX2XH2nxks1Crw0Nri6WJHXWc7PJ3t8NDaYm+jxtZKg62VGltrNVZqNTn5OnLydWTl6cjO15GRU0BiWg6JqTkkpOZwNS2HAn3Jgwkb19XSyd+dTgG16Ohfy2iGARm/UvOVOoldu3YtS5cuZfjw4QA88cQTdO3aFZ1OV6PmKhNCVJw6znYsHNGep7qk8NavURyJucn8P8+zfO8lngzxI7yrnyySIIQFsbFS08GvFh38ajH1fsjKKyAq4e8W0oQ0TiekczoxnYzcgr+T21wgtdyva61R0bC2trDF19OJpvWcaenljPs98v1R1FlD5gUxVuokNjY2lu7duxsed+zYESsrK+Lj4/Hx8amU4IQQNUOwXy3WPNOFzSev8sGWM5y/lsGCbef5cvcFhgb78GSIH4F1pM+aEJbGwcaKIF83gnz/WZFNr1dIyszlamouiWmFLalX03JIysgjN19HboGe3ILCf/MK9NhZa3Cw0WBvrcHeRoOjrRV1ne2o52KHp0vhv7W1tljJtH3iX0qdxOp0umITnltZWVFQUFDhQQkhzC8nJ8fovqldCv5NpVLRr6UnfZvXZcupqyzefp5jV1JZue8yK/ddpnNALUZ28iWshSc2VvJjJYSlUqtV1HGyo46THa2QAZ2i8pQ6iVUUhfDwcKMlBXNycpg4caLRj9vatWsrNkIhhFncadnZ8lCrC5PZsBZ12RudzLI9l/jz9FX2X0hh/4UUajna8FCregxs60X7Bm7VciofIYQQ5lfqJHb06NHFtj3xxBMVGowQovq427Kz5aVSqega6EHXQA/ib2bzXUQs3x2M4Vp6Lv/bf5n/7b9MfVd7Hm5djz7N69KugZvMNyuEuCcVTWGmKMg8sbcodRK7bNmyyoxDCFHNlGbZ2Yri5WrPtD6Nee6+QPZEJ/NTZBxbTl4l7mY2n+28wGc7L1DL0YbQJrXp3bQu3Rt74CyzGwghxD2t1EmskGVnhahsVho1PRvXpmfj2uTk6/jz9DU2nUhk+5lrpGTmsfZIHGuPxKFWQcv6LoQEuNM5wJ0O/rXQ2srXmRBC3EvkW98EsuysuJeYsuxsZbCz1vBgq3o82Koe+To9hy/f4I+oq/xx+hoXrmfy15VU/rqSymc7L6BRq2jh5UxbH1faeLvStoEr/u6O0p9WCCFqMElihRAlKsuys5XFWqOm89+trq891JzE1Bz2XUhiX3Qy+y4kE5uSbUhq4TIATnZWtPF2pbmXM03qOtHE04nAOlrsrGVeayGEZfnnz3GZKfZWksQKISyOp4sdj7Tz5pF23gBcuZHF0ZibHIu9ybErNzkel0p6TgG7zyex+3ySYT+1Cvw8HGnq6URgHSf83B3w83DE390RVwdrs6z/LoQQomwkiRVClKg8y85WNW83B7zdHOjfxguAfJ2es1fT+etKqmG99TOJ6dzIyufC9cy/11xPNDqGs50V/h6O+Lo70qCWA16u9ni52uHtZk89F3scpc+tEEJUKxbzrTx37lw2btxIZGQkNjY23Lx5s1iZiIgIZsyYweHDh1GpVHTo0IH33nuPtm3bGsocP36cKVOmcPDgQWrVqsWECROYOXOmtMAIUYNYa9S08HKhhdc/fdcVReF6ei6nE9M5k5jOhaQMLiVlcSk5k4TUHNJyCjh2JZVjV0peItPVwZqOfrX4/MngqjoNIYQQd2AxSWxeXh5DhgwhJCSEpUuXFns+PT2dsLAwBg4cyKJFiygoKGDWrFmEhYVx5coVrK2tSUtLo0+fPvTq1YuIiAjOnj1LeHg4jo6OvPDCC2Y4KyFEVVGpVNRxtqOOsx09Gtc2ei47T0dMShYXkzK5lJzJlRtZxN/MIf5mNnE3s0nPKeBmVj5ZeTIziRDCfBTpEmvEYpLYN954A4Dly5eX+PyZM2e4ceMGb775Jj4+PgDMmjWL1q1bExMTQ8OGDVm1ahU5OTksX74cW1tbWrZsydmzZ/noo4+YNm2atMYKcYvc3Fyj+9W9S0F52NtoaOJZOPirJGk5+STczEEvvyBCCDOQ9KRkNWaB8iZNmuDh4cHSpUvJy8sjOzubpUuX0qJFC3x9fQHYt28fPXv2NFo6NywsjPj4eC5dumTya2ZmZqLc8qOWl5dHZmam0Y9/UbnMzEyjaYry8/PJzMw0Wp/e1LJZWVlkZmYazVtbUFBAZmam0chyU8tmZ2eTmZlJQUGBYZtOpzO5bFZWllHZnJwcMjMzyc/PL1NZvV5vqJ9b5ebmkpmZSV5eXpnKKopiKFvS+2lK2dK89xXxOSnp/ayIz0nR+6nT6Yze09TU1HK99+X9nNzu/Szv5+TW9/NOZZ3trGlcV0sDZ41J770QQojKU2OSWCcnJ7Zv387XX3+Nvb09Wq2WzZs38+uvv2JlVdjgnJiYSN26dY32K3qcmJhY7JhFcnNzSUtLM7oBeHl5kZT0z8jn999/H61Wy5QpU4z2r1OnDlqtlpiYGMO2hQsXotVqGTt2rFFZPz8/tFotUVFRhm3Lly9Hq9UyfPhwo7LNmzdHq9Vy5MgRw7bVq1ej1WoZMGCAUdkOHTqg1WrZtWuXYduGDRvQarXcf//9RmV79OhhqL8if/75J1qtlpCQEKOyDzzwAFqtlnXr1hm27d+/H61WS5s2bYzKPvbYY2i1WlatWmXYdvz4cbRaLY0aNTIqO2rUKLRaLZ9//rlhW3R0NFqtlvr16xuVnTBhAlqtlk8++cSwLSEhAa1Wi6urq1HZadOmodVqeeuttwzbUlNT0Wq1aLVaoyTrtddeQ6vV8tprrxm2FRQUGMqmpv7Td/Ktt95Cq9Uybdo0o9dzdXVFq9WSkJBg2PbJJ5+g1WqZMGGCUdn69euj1WqJjo42bPv888/RarWMGjXKqGyjRo3QarUcP37csG3VqlVotVoee+wxo7Jt2rRBq9Wyf/9+w7Z169ah1Wp54IEHjMqGhISg1Wr5888/jVbpCggIoEePHkZl77//frRaLRs2bDBs27VrF1qtlg4dOhiVHTBgAFqtltWrVxu2HTlyBK1WS/PmzY3KDh8+HK1Wa3TVJSoqCq1Wi5+fn1HZsWPHotVqWbhwoWFbTEwMWq2WOnXqGJWdMmUKWq2W999/37AtKSnJ8H7e6uWXX0ar1RquAEHhHwNFZW9NvN944w20Wi0vv/yy0TG8vLwQQghRecyaxM6ePRuVSnXH26FDh0p1rOzsbMaMGUPXrl3Zv38/e/bsoUWLFjz44INGLUj/7jJQ1KJyp64Eb7/9Ni4uLoZbUXcFIWoyGxsbc4cghBDiFtKhyZhKUczXySspKcmoJbMkfn5+2NnZGR4vX76cqVOnFpudYOnSpbz66qskJCSgVhfm5nl5ebi5ubF06VKGDx/Ok08+SWpqKj/99JNhv6NHj9K+fXsuXLiAv79/iTHk5uYaXSpMS0vDx8eH+Ph4PD09DQlwXl4e+fn5WFlZGXVZKLqsaG9vb4gtPz+fvLw8NBqN0fmZUjYrKwtFUbCzs0OjKZzAvaCggNzcXNRqNfb29mUqm52djV6vx9bW1tCKrdPpyMnJMamsSqXCwcHBUDYnJwedToeNjY2hlc+Usnq93vAHya39M3NzcykoKMDa2tqQeJlSVlEUQ8uag4NDsffTlLKlee8r4nNS0vtZEZ+TovfTzs4OtVpNVlYWBQUFaDQaNBpNmd/78n5Obvd+lvdzcuv7Wd7Pyb/fz4SEBLy8vEhNTcXZ2Zl7UdHqhikpKbi5uZk7nAqj0+mIioqiWbNmhv9Tlk7OqXobumQfBy+lsODxtvhpbtSIc7rVjRs3qFWrlsnfl2Yd2OXh4YGHh0eFHCsrKwu1Wm3Uolr0uKiPYUhICK+++ip5eXmGH6YtW7bg5eVV7DLlrWxtbY1+nIo4OjoavZ6NjU2JrVclDYixtrY2ulxblrK3/vAXsbKyMiQJZS17a6JSRKPRlBibKWVvTazKUlatVpdYtqT3x5SyKpWqxLIlvZ+mlIWS38+K+JyU9H5WxOfk1vfz1qTNw8Oj2NWKqvyc3O79LO/n5HbvZ3k/J1D959YVQghLZzF9YmNiYoiMjCQmJgadTkdkZCSRkZFkZGQA0KdPH27cuMHkyZOJiori5MmTPPXUU1hZWdGrVy8ARowYga2tLeHh4Zw4cYJ169bx1ltvycwEQpQgKyuLOnXqUKdOnWKDr4QQQghzs5gptl5//XVWrFhheNyuXTsAtm3bRmhoKE2bNuWXX37hjTfeICQkBLVaTbt27di0aRP16tUDwMXFha1btzJ58mSCg4Nxc3Nj2rRpxQbj3E1RD4yiAV5C1ES3jq5PS0szmt1A3F3R94MZe2yZ3a3flTXp0qdOpyMjI6NGnZecU/WWn52JPjeLzPR0Mqxqxjndqqzfl2btE2uprly5IoO7hBClEhsbi7e3t7nDMIsLFy7QsGFDc4chhLAQ0dHRBAQElLq8xbTEVideXl7Exsbi5ORk6IbQoUMHIiIiDGVufVw0ECw2NrbSBnj8+/Urer+7lbvd86Zsv10dVkX93SnWitqvsuvQUj+Dpux7p3KmPmfKZxBMr0NFUUhPT7+np9qqVasWUNgdzMXF5S6lLUdVfSdVJTkny1ATzwkKp7ps0KCB4TujtCSJLQO1Wl2sZUWj0Rh9oP79GMDZ2bnSPnQlvV5F7ne3crd73pTtd6vDyqy/O8VaUftVdh1a6mfQlH3vVM7U58ryGQTT6rAmJW5lUTTLhouLS436wS1S2d9J5iDnZBlq4jnBP98ZpS5fSXHccyZPnnzHx1X9+hW9393K3e55U7ZLHZavDi21/kzZ907lTH2uOn4GhRBClJ70ia0CRXMl3svzRZaH1F/5SR2Wn9Sh6WpqndXE85Jzsgw18Zyg7OclLbFVwNbWllmzZpU416y4O6m/8pM6LD+pQ9PV1Dqriecl52QZauI5QdnPS1pihRBCCCGExZGWWCGEEEIIYXEkiRVCCCGEEBZHklghhBBCCGFxJIkVQgghhBAWR5LYaiQ9PZ0OHTrQtm1bWrVqxRdffGHukCxObGwsoaGhNG/enNatW/PDDz+YOySL88gjj+Dm5sbgwYPNHYrF2LBhA02aNKFRo0Z8+eWX5g6nWrp06RJjx47F398fe3t7GjZsyKxZs8jLyzN3aOUyd+5cunTpgoODA66uruYOp0wWLVqEv78/dnZ2BAUFsWvXLnOHVC47d+6kf//+eHl5oVKpWL9+vblDKre3336bDh064OTkRJ06dRg0aBBnzpwxd1jlsnjxYlq3bm1YuCEkJITffvvNpGNIEluNODg4sGPHDiIjIzlw4ABvv/02ycnJ5g7LolhZWfHxxx9z6tQpfv/9d55//nkyMzPNHZZFee6551i5cqW5w7AYBQUFTJs2jT///JMjR47w7rvvkpKSYu6wqp3Tp0+j1+v57LPPOHnyJPPmzWPJkiW8+uqr5g6tXPLy8hgyZAjPPPOMuUMpk9WrVzN16lRee+01jh49Svfu3XnggQeIiYkxd2hllpmZSZs2bViwYIG5Q6kwO3bsYPLkyezfv5+tW7dSUFBA3759Lfr3zdvbm3feeYdDhw5x6NAh7rvvPgYOHMjJkydLfxBFVEvJyclKgwYNlOvXr5s7FIvWqlUrJSYmxtxhWJxt27Ypjz32mLnDsAh79uxRBg0aZHj83HPPKd98840ZI7Ic7733nuLv72/uMCrEsmXLFBcXF3OHYbKOHTsqEydONNrWtGlTZcaMGWaKqGIByrp168wdRoW7du2aAig7duwwdygVys3NTfnyyy9LXV5aYk1QmksU5b0sc/PmTdq0aYO3tzfTp0/Hw8OjgqKvHqqiDoscOnQIvV6Pj49POaOuPqqy/u4V5a3T+Ph46tevb3js7e1NXFxcVYRu8VJTU6lVq5a5w7hn5eXlcfjwYfr27Wu0vW/fvuzdu9dMUYnSSE1NBagx/390Oh3fffcdmZmZhISElHo/SWJNcLdLFKW5LBMUFETLli2L3eLj4wFwdXXl2LFjXLx4kW+++YarV69WyblVlaqoQ4Dk5GSefPJJPv/880o/p6pUVfV3LylvnSolrBejUqkqNeaaIDo6mk8//ZSJEyeaO5R7VlJSEjqdjrp16xptr1u3LomJiWaKStyNoihMmzaNbt260bJlS3OHUy7Hjx9Hq9Via2vLxIkTWbduHc2bNy/9ASqtTbiGo4RLFBV9WWbixInK999/X9YQq73KqsOcnByle/fuysqVKysizGqrMj+D92p3grLUaUndCVatWlXpsVYXs2bNUoA73iIiIoz2iYuLUwIDA5WxY8eaKeo7K8s5WWJ3gri4OAVQ9u7da7R9zpw5SpMmTcwUVcUq6f+0pZs0aZLi6+urxMbGmjuUcsvNzVXOnTunREREKDNmzFA8PDyUkydPlnp/q4rIpMU/l2VmzJhhtN2UyzJXr17F3t4eZ2dn0tLS2Llzp8UOFiiLiqhDRVEIDw/nvvvuY9SoUZURZrVVEfUnjJWmTjt27MiJEyeIi4vD2dmZX3/9lddff90c4ZrFlClTGD58+B3L+Pn5Ge7Hx8fTq1cvQkJCqu2VElPPyVJ5eHig0WiKtbpeu3atWOusqB6effZZfv75Z3bu3Im3t7e5wyk3GxsbAgMDAQgODiYiIoJPPvmEzz77rFT7SxJbQSrissyVK1cYO3YsiqKgKApTpkyhdevWlRFutVQRdbhnzx5Wr15N69atDX0b//e//9GqVauKDrfaqahLg2FhYRw5coTMzEy8vb1Zt24dHTp0qOhwLUJp6tTKyooPP/yQXr16odfrmT59Ou7u7uYI1yw8PDxK3Xc/Li6OXr16ERQUxLJly1Crq2ePNlPOyZLZ2NgQFBTE1q1beeSRRwzbt27dysCBA80Ymfg3RVF49tlnWbduHdu3b8ff39/cIVUKRVHIzc0tdXlJYivYv/vCKYpS6v5xQUFBREZGVkJUlqU8dditWzf0en1lhGUxylN/AJs3b67okCze3ep0wIABDBgwoKrDsijx8fGEhobSoEEDPvjgA65fv254ztPT04yRlU9MTAwpKSnExMSg0+kM3+GBgYFotVrzBlcK06ZNY9SoUQQHBxtax2NiYiy6r3JGRgbnz583PL548SKRkZHUqlWLBg0amDGysps8eTLffPMNP/30E05OToY/ol1cXLC3tzdzdGXz6quv8sADD+Dj40N6ejrfffcd27dvZ9OmTaU+hiSxFUQuy5Sf1GH5SP1VPKnTirNlyxbOnz/P+fPni10GVUoYHGcpXn/9dVasWGF43K5dOwC2bdtGaGiomaIqvWHDhpGcnMybb75JQkICLVu25Ndff8XX19fcoZXZoUOH6NWrl+HxtGnTABg9ejTLly83U1Tls3jxYoBin6lly5YRHh5e9QFVgKtXrzJq1CgSEhJwcXGhdevWbNq0iT59+pT6GNXzWo4FuvWyzK22bt1Kly5dzBSVZZE6LB+pv4ondVpxwsPDDV2l/n2zZMuXLy/xnCwhgS0yadIkLl26RG5uLocPH6ZHjx7mDqlcQkNDS3xPLDWBBW77f8dSE1iApUuXGj53165d4/fffzcpgQVpiTXJ3S5R1MTLMhVN6rB8pP4qntSpEEJYqHLMjHDP2bZtW4lTrYwePdpQZuHChYqvr69iY2OjtG/fvsatplFeUoflI/VX8aROhRDCMqkUxcKv5QghhBBCiHuO9IkVQgghhBAWR5JYIYQQQghhcSSJFUIIIYQQFkeSWCGEEEIIYXEkiRVCCCFEpZk9ezZt27at1NdYvnw5rq6ulfoaovqRJFYIIYS4B4WHh6NSqVCpVFhZWdGgQQOeeeYZbty4Ye7QTDZs2DDOnj1r7jBEFZPFDoQQQoh7VL9+/Vi2bBkFBQWcOnWKMWPGcPPmTb799ltzh2YSe3t77O3tzR2GqGLSEiuEEELco2xtbfH09MTb25u+ffsybNgwtmzZYlRm2bJlNGvWDDs7O5o2bcqiRYuMnn/55Zdp3LgxDg4OBAQEMHPmTPLz80sdg06nY+zYsfj7+2Nvb0+TJk345JNPDM/n5OTQokULxo8fb9h28eJFXFxc+OKLL4Di3QmOHTtGr169cHJywtnZmaCgIA4dOmRK1QgLIC2xQgghhODChQts2rQJa2trw7YvvviCWbNmsWDBAtq1a8fRo0cZN24cjo6OjB49GgAnJyeWL1+Ol5cXx48fZ9y4cTg5OTF9+vRSva5er8fb25vvv/8eDw8P9u7dy/jx46lXrx5Dhw7Fzs6OVatW0alTJx588EH69+/PqFGj6NWrF+PGjSvxmCNHjqRdu3YsXrwYjUZDZGSk0XmJGsLcS4YJcS8ZPXq0YVnTdevWVcpr9OzZU/nPf/5TKce+nVmzZhnOa968eVX62kKIshk9erSi0WgUR0dHxc7OzvB/+KOPPjKU8fHxUb755huj/f7v//5PCQkJue1x33vvPSUoKMjweNasWUqbNm1Mim3SpEnKY489Vuy4Hh4eyrPPPqt4enoq169fNzy3bNkyxcXFxfDYyclJWb58uUmvKSyPdCcQ5XLrwIBbb+fPnzd3aNVWv379SEhI4IEHHqjS1w0NDWXJkiWVcuwXX3yRhIQEvL29K+X4QojK0atXLyIjIzlw4ADPPvssYWFhPPvsswBcv36d2NhYxo4di1arNdzmzJlDdHS04Rg//vgj3bp1w9PTE61Wy8yZM4mJiTEpjiVLlhAcHEzt2rXRarV88cUXxY7xwgsv0KRJEz799FOWLVuGh4fHbY83bdo0nn76ae6//37eeecdo3hFzSFJrCi3oqTs1pu/v3+xcnl5eWaIrvop6oNma2t72zKm9CcrjZSUFPbu3Uv//v0r9LhFtFotnp6eaDSaSjm+EKJyODo6EhgYSOvWrZk/fz65ubm88cYbQOFlfijsUhAZGWm4nThxgv379wOwf/9+hg8fzgMPPMCGDRs4evQor732mknf999//z3PP/88Y8aMYcuWLURGRvLUU08VO8a1a9c4c+YMGo2Gc+fO3fGYs2fP5uTJkzz00EP8+eefNG/enHXr1plSNcICSBIryq0oKbv1ptFoCA0NZcqUKUybNg0PDw/69OkDwKlTp3jwwQfRarXUrVuXUaNGkZSUZDheZmYmTz75JFqtlnr16vHhhx8SGhrK1KlTDWVUKhXr1683isPV1ZXly5cbHsfFxTFs2DDc3Nxwd3dn4MCBXLp0yfB8eHg4gwYN4oMPPqBevXq4u7szefJkowQyNzeX6dOn4+Pjg62tLY0aNWLp0qUoikJgYCAffPCBUQwnTpxArVab9Ff/pUuXUKlUfP/994SGhmJnZ8fXX39NcnIyjz/+ON7e3jg4ONCqVatiI4ZLqquSbNy4kTZt2lC/fn22b9+OSqVi8+bNtGvXDnt7e+677z6uXbvGb7/9RrNmzXB2dubxxx8nKyvLcIwff/yRVq1aYW9vj7u7O/fffz+ZmZmlPk8hRPU3a9YsPvjgA+Lj46lbty7169fnwoULBAYGGt2KGir27NmDr68vr732GsHBwTRq1IjLly+b9Jq7du2iS5cuTJo0iXbt2hEYGFjid+iYMWNo2bIlK1euZPr06Zw6deqOx23cuDHPP/88W7Zs4dFHH2XZsmUmxSWqP0liRaVasWIFVlZW7Nmzh88++4yEhAR69uxJ27ZtOXToEJs2beLq1asMHTrUsM9LL73Etm3bWLduHVu2bGH79u0cPnzYpNfNysqiV69eaLVadu7cye7du9FqtfTr18/or/tt27YRHR3Ntm3bWLFiBcuXLzdKhJ988km+++475s+fT1RUFEuWLEGr1aJSqRgzZkyxL8WvvvqK7t2707BhQ5Pr6uWXX+a5554jKiqKsLAwcnJyCAoKYsOGDZw4cYLx48czatQoDhw4YHJd/fzzzwwcONBo2+zZs1mwYAF79+4lNjaWoUOH8vHHH/PNN9+wceNGtm7dyqeffgpAQkICjz/+OGPGjCEqKort27fz6KOPoiiKyecphKi+QkNDadGiBW+99RZQ+D3x9ttv88knn3D27FmOHz/OsmXL+OijjwAIDAwkJiaG7777jujoaObPn29yi2dgYCCHDh1i8+bNnD17lpkzZxIREWFUZuHChezbt4+VK1cyYsQIBg8ezMiRI0ts8c3OzmbKlCls376dy5cvs2fPHiIiImjWrFkZa0VUW+bulCss260DA4pugwcPVhSlcIBR27ZtjcrPnDlT6du3r9G22NhYBVDOnDmjpKenKzY2Nsp3331neD45OVmxt7c3GqxECQOjXFxclGXLlimKoihLly5VmjRpouj1esPzubm5ir29vbJ582ZD7L6+vkpBQYGhzJAhQ5Rhw4YpiqIoZ86cUQBl69atJZ57fHy8otFolAMHDiiKoih5eXlK7dq17ziYYPTo0crAgQONtl28eFEBlI8//vi2+xV58MEHlRdeeEFRFKXUdZWTk6M4OTkpf/31l6IoirJt2zYFUH7//XdDmbffflsBlOjoaMO2CRMmKGFhYYqiKMrhw4cVQLl06dId4/P19ZWBXUJYiJK+jxRFUVatWqXY2NgoMTExhsdt27ZVbGxsFDc3N6VHjx7K2rVrDeVfeuklxd3dXdFqtcqwYcOUefPmGQ2yutvArpycHCU8PFxxcXFRXF1dlWeeeUaZMWOGYZ+oqCjF3t7eaIBZamqq4ufnp0yfPl1RFOOBXbm5ucrw4cMVHx8fxcbGRvHy8lKmTJmiZGdnl62iRLUlU2yJcuvVqxeLFy82PHZ0dDTcDw4ONip7+PBhtm3bhlarLXac6OhosrOzycvLIyQkxLC9Vq1aNGnSxKSYDh8+zPnz53FycjLanpOTY3SZqkWLFkb9OOvVq8fx48cBiIyMRKPR0LNnzxJfo169ejz00EN89dVXdOzYkQ0bNpCTk8OQIUNMirXIv+tKp9PxzjvvsHr1auLi4sjNzSU3N9dQv9HR0aWqqz///BN3d3datWpltL1169aG+3Xr1jXM8XjrtoMHDwLQpk0bevfuTatWrQgLC6Nv374MHjwYNze3Mp2rEML8br3qdKsRI0YwYsSI2z7+t/fee4/33nvPaNut3b9mz57N7Nmzb7u/ra0ty5YtK3Zl6+233wagadOmRl2bAJydnbl48aLhcXh4OOHh4QDY2NhY3GINomwkiRXlVjQw4HbP3Uqv19O/f3/efffdYmXr1at31876RVQqVbFL2bf2ZdXr9QQFBbFq1api+9auXdtw/9/zBqpUKsNghtKs/vL0008zatQo5s2bx7Jlyxg2bBgODg6lOod/+3ddffjhh8ybN4+PP/6YVq1a4ejoyNSpUw2Xz/59/rdTUlcCMD53lUp1x7rQaDRs3bqVvXv3smXLFj799FNee+01Dhw4UOIgPiGEEKKySZ9YUaXat2/PyZMn8fPzKzZQoCgZtra2Nox8Bbhx40axNbFr165NQkKC4fG5c+eM/lJv3749586do06dOsVex8XFpVSxtmrVCr1ez44dO25b5sEHH8TR0ZHFixfz22+/MWbMmNJWxV3t2rWLgQMH8sQTT9CmTRsCAgKMkvzS1JWiKPzyyy8MGDCg3PGoVCq6du3KG2+8wdGjR7GxsZHRvkIIIcxGklhRpSZPnkxKSgqPP/44Bw8e5MKFC2zZsoUxY8ag0+nQarWMHTuWl156iT/++IMTJ04QHh6OWm38Ub3vvvtYsGABR44c4dChQ0ycONGoJXHkyJF4eHgwcOBAdu3axcWLF9mxYwf/+c9/uHLlSqli9fPzY/To0YwZM4b169dz8eJFtm/fzvfff28oo9FoCA8P55VXXiEwMNDo0n55BQYGGlo/o6KimDBhAomJiYbnS1NXhw8fJjMzkx49epQrlgMHDvDWW29x6NAhYmJiWLt2LdevX5eBEkIIIcxGklhRpby8vNizZw86nY6wsDBatmzJf/7zH1xcXAzJ1/vvv0+PHj0YMGAA999/P926dSMoKMjoOB9++CE+Pj706NGDESNG8OKLLxpdxndwcGDnzp00aNCARx99lGbNmjFmzBiys7NxdnYudbyLFy9m8ODBTJo0iaZNmzJu3Lhi00qNHTuWvLy8Cm2FBZg5cybt27cnLCyM0NBQPD09GTRokFGZu9XVTz/9xEMPPYSVVfl6Djk7O7Nz504efPBBGjduzH//+18+/PDDKl+wQQghhCiiUkrbsU4IMwoNDaVt27Z8/PHH5g6lmD179hAaGsqVK1eoW7fuHcuGh4dz8+bNYnPcVpbWrVvz3//+12gKs8rk5+fH1KlTjQZ1CCGEEJVBWmKFKKPc3FzOnz/PzJkzGTp06F0T2CIbNmxAq9WyYcOGSo0vLy+Pxx57rEpaS9966y20Wq3JS00KIYQQZSUtscIiVMeW2OXLlzN27Fjatm3Lzz//TP369e+6z7Vr10hLSwMKZ2P494wEliolJYWUlBSgcNBdaQfPCSGEEGUlSawQQgghhLA40p1ACCGEEEJYHElihRBCCCGExZEkVgghhBBCWBxJYoUQQgghhMWRJFYIIYQQQlgcSWKFEEIIIYTFkSRWCCGEEEJYHElihRBCCCGExZEkVgghhBBCWJz/B/RUkgb9RJvGAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.figure(figsize=[7, 4])\n", + "\n", + "# Gain and phase margin on Bode plot\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "plt.title(\"Bode plot for Lnew, with margins\")\n", + "ax2 = plt.subplot(2, 2, 3)\n", + "ct.bode_plot(Lnew, ax=[ax1, ax2], margins=True)\n", + "\n", + "# Compute gain and phase margin\n", + "gm, pm, wpc, wgc = ct.margin(Lnew)\n", + "print(f\"Gm = {gm:2.2g} (at {wpc:.2g} rad/ms)\")\n", + "print(f\"Pm = {pm:3.2g} deg (at {wgc:.2g} rad/ms)\")\n", + "\n", + "# Compute the stability margin\n", + "resp = ct.frequency_response(1 + Lnew)\n", + "sm = np.min(resp.magnitude)\n", + "wsm = resp.omega[np.argmin(resp.magnitude)]\n", + "print(f\"Sm = {sm:2.2g} (at {wsm:.2g} rad/ms)\")\n", + "\n", + "# Plot the Nyquist curve\n", + "ax3 = plt.subplot(1, 2, 2)\n", + "ct.nyquist_plot(Lnew, ax=ax3)\n", + "plt.title(\"Nyquist plot for Lnew [zoomed]\")\n", + "plt.axis([-2, 3, -2.6, 2.6])\n", + "\n", + "#\n", + "# Annotate it to see the margins\n", + "#\n", + "\n", + "# Gain margin (special case here, since infinite)\n", + "Lgm = 0\n", + "plt.plot([-1, Lgm], [0, 0], 'k-', linewidth=0.5)\n", + "plt.text(-0.9, 0.1, \"1/gm\")\n", + "\n", + "# Phase margin\n", + "theta = np.linspace(0, 2 * pi)\n", + "plt.plot(np.cos(theta), np.sin(theta), 'k--', linewidth=0.5)\n", + "plt.text(-1.3, -0.8, \"pm\")\n", + "\n", + "# Stability margin\n", + "Lsm = Lnew(wsm * 1j)\n", + "plt.plot([-1, Lsm.real], [0, Lsm.imag], 'k-', linewidth=0.5)\n", + "plt.text(-0.4, -0.5, \"sm\")\n", + "\n", + "plt.suptitle(\"\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "WsOzQST9rFC-", + "metadata": { + "id": "WsOzQST9rFC-" + }, + "source": [ + "## Unstable system: inverted pendulum\n", + "\n", + "When we have a system that is open loop unstable, the Nyquist curve will need to have encirclements to be stable. In this case, the interpreation of the various characteristics can be more complicated.\n", + "\n", + "To explore this, we consider a simple model for an inverted pendulum, which has (normalized) dynamics:\n", + "\n", + "$$\n", + "\\dot x = \\begin{bmatrix} 0 & 1 & \\\\ -1 & 0.1 \\end{bmatrix} x + \\begin{bmatrix} 0 \\\\ 1 \\end{bmatrix} u, \\qquad\n", + "y = \\begin{bmatrix} 1 & 0 \\end{bmatrix} x\n", + "$$\n", + "\n", + "Transfer function for the system can be shown to be\n", + "\n", + "$$\n", + "P(s) = \\frac{1}{s^2 + 0.1 s - 1}.\n", + "$$\n", + "\n", + "This system is unstable, with poles $\\sim\\pm 1$." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "ZbPzrlPIrHnp", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([-1.05124922+0.j, 0.95124922+0.j])" + ] + }, + "execution_count": 16, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "ct.set_defaults('freqplot', freq_label=\"Frequency [{units}]\")\n", + "\n", + "P = ct.tf([1], [1, 0.1, -1])\n", + "P.poles()" + ] + }, + { + "cell_type": "markdown", + "id": "W-sBWxKi6SPx", + "metadata": { + "id": "W-sBWxKi6SPx" + }, + "source": [ + "### PD controller\n", + "\n", + "We construct a proportional-derivative (PD) controller for the system,\n", + "\n", + "$$\n", + "u = k_\\text{p} e + k_\\text{d} \\dot{e}\n", + "$$\n", + "\n", + "which is roughly the equivalent of using state feedback (since the system states are $\\theta$ and $\\dot\\theta$)." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "hjQS_dED7yJE", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": L\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "\n", + "\n", + " 2 s + 10\n", + "---------------\n", + "s^2 + 0.1 s - 1\n", + "\n", + "Zeros: [-5.+0.j]\n", + "Poles: [-1.05124922+0.j 0.95124922+0.j]\n" + ] + } + ], + "source": [ + "# Transfer function for a PD controller\n", + "kp = 10\n", + "kd = 2\n", + "C = ct.tf([kd, kp], [1])\n", + "\n", + "# Loop transfer function\n", + "L = P * C\n", + "L.name = 'L'\n", + "print(L)\n", + "print(\"Zeros: \", L.zeros())\n", + "print(\"Poles: \", L.poles())" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "YI_KJo0E9pFd", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAGNCAYAAAAGiilmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHMUlEQVR4nOzdd3hT1f/A8XeS7j2AttAFlFH23kNUpiDgQlGGDOULCFoVRQUBRfyJIipDUWQoKCpDRWSolL33LrtQWkoLdNI2Te7vj0qkdCVt2iTt5/U8fdp7zrn3fnK4pKcnZ6gURVEQQgghhBDChqgtHYAQQgghhBCmkkasEEIIIYSwOdKIFUIIIYQQNkcasUIIIYQQwuZII1YIIYQQQtgcacQKIYQQQgibI41YIYQQQghhc6QRK4QQQgghbI40YoUQQgghhM2RRqwQokJRqVSsWbPGLNd64IEHePnll4t9/po1awgLC0Oj0ZToOvkpaWzWaujQofTr18/SYeQrMjISlUrF7du3jT7Hml+PENbOztIBCCHK1tChQ7l9+7bZGnIV2apVq7C3ty/2+S+++CLPP/8848aNw93d3YyRlTw2c5JnTghRGqQRK4QQxeTj41Psc1NTU4mPj6d79+5UrVq12NfJysrCwcHBrLGZi06nQ6VSWToMIUQ5JcMJhBC5bNmyhVatWuHo6EhAQABvvvkm2dnZhvzMzEzGjRtHlSpVcHJyokOHDuzbt8+Qf/cj1T/++IPGjRvj5ORE69atOXbsWKH3nTVrFg0bNsTV1ZWgoCBGjx5NamqqIX/x4sV4eXmxYcMGwsPDcXNzo0ePHsTGxhrK7Nu3j65du1KpUiU8PT3p3LkzBw8eLPCeDz74IGPHjs2VlpiYiKOjI//88w8A8+bNo1atWjg5OeHn58cTTzxhKHv/R/aFlb1XZGSkoef1wQcfRKVSERkZCcDKlSupX78+jo6OhIaG8sknn+Q6NzQ0lPfff5+hQ4fi6enJyJEj873H/bGFhobywQcfMGzYMNzd3QkODmbBggWG/LZt2/Lmm2/musaNGzewt7dn8+bNQE6DecKECVSrVg1XV1dat25tiBv++zdau3Yt9erVw9HRkeeff54lS5bw66+/olKpcr3WmJgYBgwYgLe3N76+vvTt25dLly4ZrqfT6YiIiMDLywtfX18mTJiAoij5vt77Y1izZg21a9fGycmJrl27cuXKlVzlfv/9d5o3b46TkxM1atRg6tSpuZ5zlUrFN998Q//+/XFxcaFWrVr89ttvua6xbt06ateujbOzM126dMkVO8CUKVNo0qRJrrTZs2cTGhpaYPyhoaHMnj07V1qTJk2YMmVKrti++uorevfujYuLC+Hh4ezatYtz587xwAMP4OrqStu2bTl//nyhdSWErZNGrBDCICYmhl69etGyZUuOHDnC/PnzWbhwIe+//76hzIQJE1i5ciVLlizh4MGDhIWF0b17d27evJnrWq+//joff/wx+/bto0qVKjz66KNotdoC761Wq/n88885fvw4S5Ys4Z9//mHChAm5yqSnp/Pxxx/z3XffsXXrVqKjo3nttdcM+SkpKQwZMoRt27axe/duatWqRa9evUhJScn3niNGjGD58uVkZmYa0pYtW0bVqlXp0qUL+/fvZ9y4cUybNo0zZ86wfv16OnXqlO+1TCnbrl07zpw5A+Q0WmNjY2nXrh0HDhzgqaee4umnn+bYsWNMmTKFSZMmsXjx4lznz5w5kwYNGnDgwAEmTZpUYJ3e75NPPqFFixYcOnSI0aNH87///Y/Tp08D8Oyzz/LDDz/kaiSuWLECPz8/OnfuDMDzzz/Pjh07+PHHHzl69ChPPvkkPXr04OzZs4Zz0tPTmTFjBt988w0nTpzg888/56mnnjL8wXH3taanp9OlSxfc3NzYunUr27dvN/xhkpWVZYj322+/ZeHChWzfvp2bN2+yevXqIl9neno606dPZ8mSJezYsYPk5GSefvppQ/6GDRt47rnnGDduHCdPnuSrr75i8eLFTJ8+Pdd1pk6dylNPPcXRo0fp1asXzz77rOE5v3LlCo899hi9evXi8OHDjBgxIs8fAaXpvffeY/DgwRw+fJi6desycOBAXnzxRSZOnMj+/fsB8vyBJkS5owghKpQhQ4Yoffv2zTfvrbfeUurUqaPo9XpD2ty5cxU3NzdFp9Mpqampir29vbJs2TJDflZWllK1alXlo48+UhRFUTZv3qwAyo8//mgok5iYqDg7OysrVqwwOs6ffvpJ8fX1NRwvWrRIAZRz587lis3Pz6/Aa2RnZyvu7u7K77//bkgDlNWrVyuKoigZGRmKj49PrriaNGmiTJkyRVEURVm5cqXi4eGhJCcn53v9zp07K+PHjzeq7P1u3bqlAMrmzZsNaQMHDlS6du2aq9zrr7+u1KtXz3AcEhKi9OvXr8jr3xvb3fOee+45w7Fer1eqVKmizJ8/X1EURYmPj1fs7OyUrVu3Gsq0bdtWef311xVFUZRz584pKpVKiYmJyXWfhx56SJk4caKiKP/9Gx0+fDhXmfyeuYULF+Z51jIzMxVnZ2dlw4YNiqIoSkBAgPLhhx8a8rVarRIYGFjg83tvDLt37zaknTp1SgGUPXv2KIqiKB07dlQ++OCDXOd99913SkBAgOEYUN555x3DcWpqqqJSqZQ///xTURRFmThxohIeHp4r/jfeeEMBlFu3bimKoijvvvuu0rhx41z3+fTTT5WQkJAC6yYkJET59NNPc53TuHFj5d133y0wtl27dimAsnDhQkPaDz/8oDg5OeVTQ0KUH9ITK4QwOHXqFG3bts01jrF9+/akpqZy9epVzp8/j1arpX379oZ8e3t7WrVqxalTp3Jdq23btoaffXx8qFOnTp4y99q8eTNdu3alWrVquLu7M3jwYBITE0lLSzOUcXFxoWbNmobjgIAA4uPjDcfx8fGMGjWK2rVr4+npiaenJ6mpqURHR+d7T0dHR5577jm+/fZbAA4fPsyRI0cYOnQoAF27diUkJIQaNWowaNAgli1bRnp6er7XMqVsQU6dOpWrbiGn/s+ePYtOpzOktWjRwqTr3tWoUSPDzyqVCn9/f0P9Va5cma5du7Js2TIALl68yK5du3j22WcBOHjwIIqiULt2bdzc3AxfW7ZsyfWxtYODQ677FOTAgQOcO3cOd3d3w7V8fHzIyMjg/PnzJCUlERsbm+s5srOzM+q131+ubt26eHl5GZ6/AwcOMG3atFyvY+TIkcTGxub6N7v3dbi6uuLu7m6or1OnTtGmTZtc/1fujbW03Rubn58fAA0bNsyVlpGRQXJycpnFJERZk4ldQggDRVHyTMRR/v14WaVS5fq5qPPyU1CZy5cv06tXL0aNGsV7772Hj48P27dvZ/jw4bmGINw/2/7emCBnFvyNGzeYPXs2ISEhODo60rZtW8PH0/kZMWIETZo04erVq3z77bc89NBDhISEAODu7s7BgweJjIxk48aNTJ48mSlTprBv3z68vLxyXceUsgUprP7v5erqatT17pdf/en1esPxs88+y/jx4/niiy9Yvnw59evXp3HjxgDo9Xo0Gg0HDhxAo9Hkuo6bm5vhZ2dnZ6OeBb1eT/PmzQ2N5ntVrlzZpNeVn/xiuJum1+uZOnUqjz32WJ4yTk5Ohp8Lq6/8/l3up1ar85QrbEiNKefcG9vd15Vf2r3/vkKUN9ITK4QwqFevHjt37sz1S3Tnzp24u7tTrVo1wsLCcHBwYPv27YZ8rVbL/v37CQ8Pz3Wt3bt3G36+desWUVFR1K1bN9/77t+/n+zsbD755BPatGlD7dq1uXbtmsnxb9u2jXHjxtGrVy/D5KiEhIRCz2nYsCEtWrTg66+/Zvny5QwbNixXvp2dHQ8//DAfffQRR48e5dKlS4ZJX/czpWx+6tWrl6tuIaf+a9eunafhWBr69etHRkYG69evZ/ny5Tz33HOGvKZNm6LT6YiPjycsLCzXl7+/f6HXdXBwyNWTDNCsWTPOnj1LlSpV8lzvbi96QEBArucoOzubAwcOFPk6srOzDeNCAc6cOcPt27cNz1+zZs04c+ZMnvuGhYWhVhv3a7FevXq5YgPyHFeuXJm4uLhc/58OHz5c6HUrV66ca7JicnIyFy9eNComISoa6YkVogJKSkrK88vUx8eH0aNHM3v2bF566SXGjh3LmTNnePfdd4mIiECtVuPq6sr//vc/Xn/9dXx8fAgODuajjz4iPT2d4cOH57retGnT8PX1xc/Pj7fffptKlSoVuKh7zZo1yc7O5osvvqBPnz7s2LGDL7/80uTXFRYWxnfffUeLFi1ITk7m9ddfx9nZucjzRowYwdixY3FxcaF///6G9LVr13LhwgU6deqEt7c369atQ6/XU6dOnTzXMKVsQV599VVatmzJe++9x4ABA9i1axdz5sxh3rx5Rl+jJFxdXenbty+TJk3i1KlTDBw40JBXu3Ztnn32WQYPHswnn3xC06ZNSUhI4J9//qFhw4b06tWrwOuGhoayYcMGzpw5g6+vL56enjz77LPMnDmTvn37Mm3aNAIDA4mOjmbVqlW8/vrrBAYGMn78eD788ENq1apFeHg4s2bNMmojAXt7e1566SU+//xz7O3tGTt2LG3atKFVq1YATJ48md69exMUFMSTTz6JWq3m6NGjHDt2LNckxsKMGjWKTz75hIiICF588UUOHDiQZwLeAw88wI0bN/joo4944oknWL9+PX/++SceHh4FXvfBBx9k8eLF9OnTB29vbyZNmlQmf8AIYYukJ1aICigyMpKmTZvm+po8eTLVqlVj3bp17N27l8aNGzNq1CiGDx/OO++8Yzj3ww8/5PHHH2fQoEE0a9aMc+fOsWHDBry9vXPd48MPP2T8+PE0b96c2NhYfvvtt3zXM4WcJYRmzZrF//3f/9GgQQOWLVvGjBkzTH5d3377Lbdu3aJp06YMGjTIsBRYUZ555hns7OwYOHBgro+Tvby8WLVqFQ8++CDh4eF8+eWX/PDDD9SvXz/PNUwpW5BmzZrx008/8eOPP9KgQQMmT57MtGnTDGN0y8Kzzz7LkSNH6NixI8HBwbnyFi1axODBg3n11VepU6cOjz76KHv27CEoKKjQa44cOZI6derQokULKleuzI4dO3BxcWHr1q0EBwfz2GOPER4ezrBhw7hz546hkffqq68yePBghg4dStu2bXF3d8/1R0ZBXFxceOONNxg4cCBt27bF2dmZH3/80ZDfvXt31q5dy6ZNm2jZsiVt2rRh1qxZhmEkxggODmblypX8/vvvNG7cmC+//JIPPvggV5nw8HDmzZvH3Llzady4MXv37s21mkZ+Jk6cSKdOnejduze9evWiX79+ucaBCyH+o1KMGdgjhBBGioyMpEuXLty6dcvosaCWduXKFUJDQ9m3bx/NmjWzdDiiBBYvXszLL79s0tavQgjbJMMJhBAVllarJTY2ljfffJM2bdpIA1YIIWyIDCcQQlRYO3bsICQkhAMHDhRrDK4QQgjLkeEEQgghhBDC5khPrBBCCCGEsDnSiBVCCCGEEDZHGrFCCCGEEMLmSCNWCCGEEELYHGnECiGEEEIImyONWCGEEEIIYXOkESuEEEIIIWyONGKFEEIIIYTNkUasEEIIIYSwOdKIFUIIIYQQNkcasUIIIYQQwuZII1YIIYQQQtgcacQKIYQQQgibI41YIYQQQghhc6QRK4QQQgghbI40YoUQQgghhM2RRqwQQgghhLA50ogVQgghhBA2RxqxQgghhBDC5kgjVgghhBBC2BxpxAohhBBCCJsjjVhR7gwdOpR+/fqV+n1UKhVr1qwx+3UVReGFF17Ax8cHlUrF4cOHzX4PIYQorilTptCkSZMyv+8DDzzAyy+/XCrXXrBgAUFBQajVambPnl0q9xDmJ41YYRFDhw5FpVIZvnx9fenRowdHjx61dGilxtjG9fr161m8eDFr164lNjaWBg0amDWO0mp8CyFKx933yw8//DBX+po1a1CpVGUez2uvvcbff/9tVFlLNXgBFi9ejJeXV5HlkpOTGTt2LG+88QYxMTG88MILZo2jNBvfFZ00YoXF9OjRg9jYWGJjY/n777+xs7Ojd+/elg7L4s6fP09AQADt2rXD398fOzs7k6+hKArZ2dmlEJ0QwhKcnJz4v//7P27dumXpUHBzc8PX19fSYZhNdHQ0Wq2WRx55hICAAFxcXIp1Ha1Wa+bIRFGkESssxtHREX9/f/z9/WnSpAlvvPEGV65c4caNG4Yyx44d48EHH8TZ2RlfX19eeOEFUlNTDfk6nY6IiAi8vLzw9fVlwoQJKIqS6z6KovDRRx9Ro0YNnJ2dady4Mb/88kuhsYWGhvLee+8xcOBA3NzcqFq1Kl988UWh5xQW65QpU1iyZAm//vqrofc5MjIyzzWGDh3KSy+9RHR0NCqVitDQUAAyMzMZN24cVapUwcnJiQ4dOrBv3z7DeZGRkahUKjZs2ECLFi1wdHRk27ZthcYrhLAdDz/8MP7+/syYMSPf/LS0NDw8PPK8t/3++++4urqSkpICwN69e2natClOTk60aNGC1atX5xq2lF/v5f09vvf3rkZGRtKqVStcXV3x8vKiffv2XL58mcWLFzN16lSOHDlieN9bvHhxvvHf/aRq6tSpVKlSBQ8PD1588UWysrIKrJNbt24xePBgvL29cXFxoWfPnpw9e9YQ0/PPP09SUpLh3lOmTMlzjcWLF9OwYUMAatSogUql4tKlSwDMnz+fmjVr4uDgQJ06dfjuu+9ynatSqfjyyy/p27cvrq6uvP/++wXGKkqHNGKFVUhNTWXZsmWEhYUZ/sJPT0+nR48eeHt7s2/fPn7++Wf++usvxo4dazjvk08+4dtvv2XhwoVs376dmzdvsnr16lzXfuedd1i0aBHz58/nxIkTvPLKKzz33HNs2bKl0JhmzpxJo0aNOHjwIBMnTuSVV15h06ZN+ZYtKtbXXnuNp556Klfvc7t27fJc57PPPmPatGkEBgYSGxtraKhOmDCBlStXsmTJEg4ePEhYWBjdu3fn5s2buc6fMGECM2bM4NSpUzRq1KiIWhdC2AqNRsMHH3zAF198wdWrV/Pku7q68vTTT7No0aJc6YsWLeKJJ57A3d2dtLQ0evfuTZ06dThw4ABTpkzhtddeK1Fc2dnZ9OvXj86dO3P06FF27drFCy+8gEqlYsCAAbz66qvUr1/f8L43YMCAAq/1999/c+rUKTZv3swPP/zA6tWrmTp1aoHlhw4dyv79+/ntt9/YtWsXiqLQq1cvtFot7dq1Y/bs2Xh4eBjund9rHTBgAH/99ReQ08CPjY0lKCiI1atXM378eF599VWOHz/Oiy++yPPPP8/mzZtznf/uu+/St29fjh07xrBhw4pZi6LYFCEsYMiQIYpGo1FcXV0VV1dXBVACAgKUAwcOGMosWLBA8fb2VlJTUw1pf/zxh6JWq5W4uDhFURQlICBA+fDDDw35Wq1WCQwMVPr27asoiqKkpqYqTk5Oys6dO3Pdf/jw4cozzzxTYHwhISFKjx49cqUNGDBA6dmzp+EYUFavXm10rEOGDDHEVZhPP/1UCQkJMRynpqYq9vb2yrJlywxpWVlZStWqVZWPPvpIURRF2bx5swIoa9asKfL698YthLB+9753tGnTRhk2bJiiKIqyevVq5d5f43v27FE0Go0SExOjKIqi3LhxQ7G3t1ciIyMVRVGUr776SvHx8VHS0tIM58yfP18BlEOHDimKoiiLFi1SPD09c93//vu8++67SuPGjRVFUZTExEQFMNzjfveWLeo15hebm5ubotPpFEVRlM6dOyvjx49XFEVRoqKiFEDZsWOHoXxCQoLi7Oys/PTTTwW+lvwcOnRIAZSLFy8a0tq1a6eMHDkyV7knn3xS6dWrl+EYUF5++eUir39v3MK8pCdWWEyXLl04fPgwhw8fZs+ePXTr1o2ePXty+fJlAE6dOkXjxo1xdXU1nNO+fXv0ej1nzpwhKSmJ2NhY2rZta8i3s7OjRYsWhuOTJ0+SkZFB165dcXNzM3wtXbqU8+fPFxrfvde9e3zq1Kl8yxYVa0mcP38erVZL+/btDWn29va0atUqTzz3vnYhRPnzf//3fyxZsoSTJ0/myWvVqhX169dn6dKlAHz33XcEBwfTqVMn4L/3qXvHfN7/PmcqHx8fhg4dSvfu3enTpw+fffYZsbGxxbpWfrGlpqZy5cqVPGVPnTqFnZ0drVu3NqT5+vpSp06dAt+nTXHq1Klc77mQ854u77nWRRqxwmJcXV0JCwsjLCyMVq1asXDhQtLS0vj666+BnLGsBc28NXZGrl6vB+CPP/4wNJgPHz7MyZMnixwXa8p9zRFrQZR/x/jef5387nlvI1oIUf506tSJ7t2789Zbb+WbP2LECMOQgkWLFvH8888b3ieU++YL5EetVucpV9SEpUWLFrFr1y7atWvHihUrqF27Nrt37zbm5Rglv/fQgl5LYe/FJb2vvOdaH2nECquhUqlQq9XcuXMHgHr16nH48GHS0tIMZXbs2IFaraZ27dp4enoSEBCQ680yOzubAwcOGI7r1auHo6Mj0dHRhgbz3a+goKBC47n/TXj37t3UrVs337JFxQrg4OCATqczsjb+ExYWhoODA9u3bzekabVa9u/fT3h4uMnXE0LYtg8//JDff/+dnTt35sl77rnniI6O5vPPP+fEiRMMGTLEkFevXj2OHDlieI+FvO9zlStXJiUlJdd7mTFrVTdt2pSJEyeyc+dOGjRowPLlywHT3vfyi83NzY3AwMA8ZevVq0d2djZ79uwxpCUmJhIVFWV4Xyzuey5AeHh4rvdcgJ07d8p7rpWRRqywmMzMTOLi4oiLi+PUqVO89NJLpKam0qdPHwCeffZZnJycGDJkCMePH2fz5s289NJLDBo0CD8/PwDGjx/Phx9+yOrVqzl9+jSjR4/m9u3bhnu4u7vz2muv8corr7BkyRLOnz/PoUOHmDt3LkuWLCk0vh07dvDRRx8RFRXF3Llz+fnnnxk/fny+ZY2JNTQ0lKNHj3LmzBkSEhKMXo7F1dWV//3vf7z++uusX7+ekydPMnLkSNLT0xk+fLhR17jfxYsXc/VMHz58ONeqD0II69WwYUOeffbZfFdM8fb25rHHHuP111+nW7duuRqAAwcORK1WM3z4cE6ePMm6dev4+OOPc53funVrXFxceOuttzh37hzLly8vcEUByHkvmThxIrt27eLy5cts3LgxV0MyNDTU8H6TkJBAZmZmgdfKysoyxPbnn3/y7rvvMnbsWNTqvE2VWrVq0bdvX0aOHMn27ds5cuQIzz33HNWqVaNv376Ge6empvL333+TkJBAenp6ofV6r9dff53Fixfz5ZdfcvbsWWbNmsWqVauKPRHuxo0bed5z4+LiinUtcQ+LjcYVFdqQIUMUwPDl7u6utGzZUvnll19ylTt69KjSpUsXxcnJSfHx8VFGjhyppKSkGPK1Wq0yfvx4xcPDQ/Hy8lIiIiKUwYMH55pApdfrlc8++0ypU6eOYm9vr1SuXFnp3r27smXLlgLjCwkJUaZOnao89dRTiouLi+Ln56fMnj07VxnumyBVVKzx8fFK165dFTc3NwVQNm/enO+975/YpSiKcufOHeWll15SKlWqpDg6Oirt27dX9u7da8i/O7Hr1q1bBb6me+PO76ugeIQQlpXfpNBLly4pjo6OSn6/xv/++28FMExwuteuXbuUxo0bKw4ODkqTJk2UlStX5prYpSg5E7nCwsIUJycnpXfv3sqCBQsKnNgVFxen9OvXTwkICFAcHByUkJAQZfLkyYbJWBkZGcrjjz+ueHl5KYCyaNGiQl/j5MmTFV9fX8XNzU0ZMWKEkpGRYShz/wSpmzdvKoMGDVI8PT0VZ2dnpXv37kpUVFSu644aNUrx9fVVAOXdd9/N9975TexSFEWZN2+eUqNGDcXe3l6pXbu2snTp0lz59/8OKEjnzp3zfc8tKB5hPJWiGDFIRogKJjQ0lJdffll2WRFC2Jxly5Yxfvx4rl27hoODQ6FlL126RPXq1Tl06JDFdtaCnOWybt++LbsJCpOYvhWQEEIIIaxOeno6Fy9eZMaMGbz44otFNmCFsHUyJlYIIYQoBz766COaNGmCn58fEydOtHQ4QpQ6GU4ghBBCCCFsjvTECiGEEEIImyONWCGEEEIIYXOkESuEEEIIIWxOhV2doH///kRGRvLQQw+ZvP2oXq/n2rVruLu7m217OyGE7VIUhZSUFKpWrZrvwuyiYPJ+KoS4n7HvqRV2YtfmzZtJTU1lyZIlJjdir169WuSWpUKIiufKlSv5bpEpCibvp0KIghT1nlphe2K7dOlCZGRksc51d3cHcirXw8MDrVbLxo0b6datG/b29rmOgVx55nb/vc19XlHlCso3Nt3UY3OzZP2ZmmdM3cizZ1zd5ZdWkmcvOTmZoKAgw3uDMN7976dF0el0nDlzhjp16qDRaEo7PLOz5fhtOXaw7fhtOXYwPX5j31NtshG7detWZs6cyYEDB4iNjWX16tX069cvV5l58+Yxc+ZMYmNjqV+/PrNnz6Zjx45muf/dj7w8PDwMjVgXFxc8PDwMv/zuHgO58szt/nub+7yiyhWUb2y6qcfmZsn6MzXPmLqRZ8+4ussvzRzPnnwcbrr730+LotPpcHNzw8PDw2Z/mdtq/LYcO9h2/LYcOxQ//qLeU21y8FZaWhqNGzdmzpw5+eavWLGCl19+mbfffptDhw7RsWNHevbsSXR0dBlHKoQQQgghSoNN9sT27NmTnj17Fpg/a9Yshg8fzogRIwCYPXs2GzZsYP78+cyYMcPk+2VmZpKZmWk4Tk5OBnJ6cu5+3T2+//ufJ67z+yU1R9adwsHeDo1ahUatwi6f73Yadb55GrUKe40aR7u7Xxqc7NU42WvQoCNTBxmZWSa9pvtjLW65gvKNTTf1u7kV9/rmqD9T84ypm8LSzM2SdVdYvqn1Yo5nr7TqWAghRMFsfmKXSqXKNZwgKysLFxcXfv75Z/r3728oN378eA4fPsyWLVsMaZGRkcyZM6fIiV1Tpkxh6tSpedKXL1+Oi4tLoecuP6dmz42y6fDWqBTs1OCgBidNzpeznZLzXQNOdv9+1yi42oGbPbjbK7jbg7s9aGyyX14Iy0tPT2fgwIEkJSUZ9ZG4+E9ycjKenp5G151Op+PUqVOEh4fb7Meqthq/LccOth2/LccOpsdv7PuCTfbEFiYhIQGdToefn1+udD8/P+Li4gzH3bt35+DBg6SlpREYGMjq1atp2bJlvtecOHEiERERhuO7A467dOmCh4cH2dnZbN68mS5dumBnZ5frODsgAffdJ6gWFISCimy9gu7fr+x/v+49LuhnrU5PZnbOV4ZWT1a2noxsHVrdf3+D6BQVOh1k6iDF0DFk/Bg9T2c7fF0dqOzmQFUvJ6p5OuHv4cD1Cyfp/UBbqnq7olHnvt79r93UdFOPza241zf2vMLKmZpnTN3cmwaU27orLN+YussvrSTP3t1PZ4QQQpSdctcTe+3aNapVq8bOnTtp27atodz06dP57rvvOH36dLHvNXfuXObOnYtOpyMqKsqontjSpldAq8/5ytZD1r8/Z+jgjk5FRjbc0f17nK369zukZ0OKVkWKFlK1oDeisatRKVR2An8XBX/nnO8Bzjlp0osrKjLpiS0+6Ym1HbYcO9h2/LYcO0hPrNEqVaqERqPJ1esKEB8fn6d31lRjxoxhzJgxhso1picWyqY3rMfDxe8NU2s0JN3RkpCq5WZaFtdTMrmWlMG12xlcvXWHc7G3uK1Vk62HuDsQdyd3g9depVC/mieNqnnQqJoHDat54O9mR2RkpPTESk9ssc+TnlghhBCFKXc9sQCtW7emefPmzJs3z5BWr149+vbtW6yJXXdZY09sWdErcDsL4tJVOQ3ZdBVxd1TEpUOmPm8vrru9Qi0PhdqeOV++ThYIWogyIj2xxSc9sbbDlmMH247flmMH6YnNJTU1lXPnzhmOL168yOHDh/Hx8SE4OJiIiAgGDRpEixYtaNu2LQsWLCA6OppRo0aV6L7W3BNb2r1hDz2Yf7ksrZaf/4zENbg+x2NTORaTzOnrqaRo4WCiioOJOeUCvZzoXNuXB8J8SDl/iIcfkp5Y6YmVnlghhBDFZ5M9sXc/pr7fkCFDWLx4MZCz2cFHH31EbGwsDRo04NNPP6VTp04lum9F7ok1RbYeLqVAVJKaqGQVl1NBr/zXW+usUajvrdDIJ+e7nYynFTZOemKLT3pirVuGVkd6lo47Wh2OGoi7fJ7w8HC0ejgWk4RaBWpVzlKQjnYaPJ3t8XC2w9leY3Wbf9ha3d/LlmMH6YnN5YEHHqCotvfo0aMZPXq0We97f09st27dDDt2bdq0ia5duxp2+rl7DOTKM7f7723u84oqV1D+3fRPu3YlU69iz4Wb/HX6Bn+fjudWupb9CSr2J4CHkx0NPbMY06sFLar7kp2dXWBdlrf6MzWvsOcsvzJQsZ+9wuouvzRj6rcg0hMrbJGiKGh1Cg7/9iREJ6bz8cYzxKdkEJ+SyY3kTFIysw3l/9e5Bo8E5fwcn5zJk1/uKvDaz7QKZsZjDQHIzNYxceUxArycCPB0pqqXEyG+roT4uGAns4JFCdhkI1bYFjdHOx4Kr8JD4VXIyKzF16v/Ism9OutPxHM9JZMdGWp2LDpIqK8LTzYLwFvWjRdCCLPS6RXOxqdw5MptDl+5zYlryVy4kcaLnWrw0kO1AMjW6/ntyLV8z3e47yMztRqqV3I1LAWpVxQytDqSM7LR6RU8nP5rXlxPymTVoZg817TXqKheyZWnWgQxomMNQ7qiKFbXiyusk00OJ7AUGU5gXnoFziap2HdDxZGbKrL+nSBmr1ZoXkmho7+eQFcLBymEEWQ4QfHJcILCXbmZTlpWNnX9i/dcXbmZzuu/HOHo1STSs3R58vs3rcanA5oAcCdLx7I9l6ns7khld0equDtR2c0RV0cNdhq1UbErimK4j6tjTkM2ITWTn/ZfIfZ2BrFJd4i5ncGlhDTuaHPKjXuoFhFdawMQn5xBj8+20SjQk8aBXjQJ8qJZsDeeLiX/NMmWnx1bjh1kOIFVkOEEJftIN7/0u8fzOndh46lElu6O5sz1VHbHq9gdr6Z1qBfNnRMZ88RDODg4GP36jCXDCYrPlp49GU4gbJGiKExcdYwsnZ4VL7QpsncyMTWTTSevY6dR80TzQAAquztyKPo2mdl6XB00NAr0onGQF40CPalVxY1g3/86YpwdNLl6RItDpVIZGq93VXJzZPQDYbnS9HqFmNt3OHcjlSDv/2I4cjWJm2lZRJ65QeSZG/9eE+pX9aBdzUr0a1KNelXlD0WRQxqxwiq4OtjxVItA+jWqwler/uIcVdl46gZ7Lt1mDxq2LTzA/zrX5KG6lVGr5WMmIUT5t/JgDNvPJQDw25Fr9G1SLU+Zm2lZbDgRxx9HY9l1IRGdXqG2n5uhEetkr2Hes80I8nGhZmW3PLsuWoparSLIx4Ugn9yfZnaqXYk1Y9pz9GrOsIfD0be5kJDG8ZhkjsckU8fP3dCITUjN5GZaFrWquMnwgwpKhhOYQIYTlK2bmbD5mppd8Sq0/w41CHBR6B2sp76XgrxnCWshwwmKT4YT5O9GSiYPz9pC0p2cSQJ+Ho78/eoDuP3by7n5TDzf77pMZNQNdPr/fo03qOZB13B/XnowzOx/8Fuq7uOTM9h1IZGd5xJ5uWstAjydAfhm2wXe/+MUQT7OPBzux8PhfrSq7oN9AZPFbPnZseXYQYYTWAUZTlB6wwkKOh6g1bJ63SainWqyfH8MsenZfH1aQ/NgL17tWouWod5Gv+aS1ENxz5PhBMU/T4YTiIps6u8nDA1YgOvJmXzxz1km9gwH4NdDMfx9Oh7I+aj9kUYBPNIwgBDf8jeRoIqHE32bVMvTE30rPQsHOzVXbt5h0Y5LLNpxCR9XB3o28OfRxlVpGeojn9yVc9KILQF7e/tcv9zyOy4or7RjMfd5RZUrKN/Y9MKO3ezhte51GP1gHb7cep5FOy5yIPo2Axfuo0udyrzVK5xafu5FvobCWLL+TM0rqu7uppkaY3HZ0rNXnPo0Js7SrF9R8fx96jprj8bmSV+47QJPNg8irIobg9qGUtndkQEtgwmr4maBKC3v9e51GdMljG1nE/j71HX+PhVPYloWy/ZE8/OBq+x/52E8nOT/ZnkmjdgS0Gq1hq+7x/l9v/9nc8dQnOsbe15R5QrKNzbdlO8u9vZEPFSTZ1tWY27kBX46EMPmMzfYejaBQa2DeKlLTTycTXvDsmT9mZpnynMmz57x9WLsd2NiFaKkUjK0vLPmeL552fqcHtqlw1rRPMSb5iEl+ySqPHBxsKN7fX+61/cnW6dn5/lEwzJh9zZg31x5lHB/d+o46y0VqigFMibWBDIm1rrE34HfLqs5ditn/JObXc542dZVFOQTJFGWZExs8cmY2NwmrTnOd7svF3qNL59rTo8G/qUVYoFste7PXk+h66dbAXDQqOjVMICBrUNoGeptMxPCbLXu75IxsVZAxsSW/ZjYou4/FNh2LoH3/zjDhYQ0fryg4XiGB+/3rUd9I5ZhkTGxxWdLz56MiRW2YN+lm0U2YAHeW3uSzrUr4+xge40ZS6ji4cSk3vX4cW80Z+NTWXP4GmsOXyM8wIPn24XyaJOqONlLXdqiUmnEZmRk4OTkVBqXtioyJrbofHOMiS3q/g+GB9Cxth9Ldl7is7/OcvxaMo9/tYfhHarzysO1jXqjlzGxxWdLz56MiRXWKkOr482VR40qm3xHy88HrjC4bWjpBlVOeDrbM7xDdYa0CWLNtiPsSdDw+9FYTsUmM2HlURzt1fkuXyasn9kasXq9nunTp/Pll19y/fp1oqKiqFGjBpMmTSI0NJThw4eb61ZWQ8bElu2Y2KIMaRNEr/pVmL7uDH8cj2PB1gusOxbLe4/Wo0OYb7FeX0FkTKxtPXsyJlZYI0VR+ONYLEHeLlxPzqCOvzvNgr1RqaBWFXc8XezxcrbH29UBbxd7vFwc8HS2L3AJKVE4lUpF3cqO9O8UztuP1OPHfVdYfzyOng0CDGV2nU/Ez8ORGpUr5mQ5W2O2MbHTpk1jyZIlTJs2jZEjR3L8+HFq1KjBTz/9xKeffsquXbvMcRuLkjGxtuPELRU/XVBzOytnvFPLSnr6h+pxlQ4zUQpkTGzxVdQxsR7+obz96wm2nU2gQTUPfh3TwWo2IihIean7guLP1ul54ONIYm7foVeDAP73QE0aVPO0QKR5lfe6v1+Zj4ldunQpCxYs4KGHHmLUqFGG9EaNGnH69Glz3caiZEys9Y2JLUgv4H+Z2Xz61zm+2xPNvgQ1lzKcmN6vPl3qVDa5HkytF2PKyZhYGRMrKh5FUdhwNoVFP28nNVOHg52ah8P90OkVq2/ElndJd7TU9ffg6q07/HEslj+OxfJAncqMf6gWTYNlJQhrZLZGbExMDGFhYXnS9Xp9uf2oTcbEFp1fFmNiC+Jtb8+0fg3p3yyQ1385yrn4VF74/hADWgTxTu9w3J1K/u8jY2Jt69mTMbHCkq4nZzDhlyNsiboJQPMQbz5+sjHVK5W/DQpska+bI98MacHpuGTmR57n9yPXiDxzg8gzN3g4vApv9qxLWJWSrUkuzMtsA2vq16/Ptm3b8qT//PPPNG3a1Fy3EcJkTYO9WftSB0Z0qI5KBSv2X6HH7G3sOp9o6dCEEBXE+Rup9PxsG1uiErBXw8SedfjpxbbSgLVCdf09+Ozppvzz6gM82TwQtQr+OhXPzbTy2SFny8zWE/vuu+8yaNAgYmJi0Ov1rFq1ijNnzrB06VLWrl1rrtsIUSxO9hre6V2Ph+v58drPR7h66w7PfL2bIW2DaaCzdHRCiPIuxMeFWlXcSMnQ8lILd7q1qS7DB6xcaCVXZj7ZmFEP1GTDiThaVfcx5G0+E0+jap74ujlaMEJhtp7YPn36sGLFCtatW4dKpWLy5MmcOnWK33//3TA+TwhLa1PDl/Uvd+KZVsEALNkVzaxjGqKup1g4MiFEeXMzLYtsXc4OUXYaNfOfa84vL7YhyFOGn9iSmpXdGP3Af8Ml45IyGP39QR6YGclXW86TmS09IZZi1nViu3fvTvfu3c15SasmS2xZ1xJbxnJUw7Q+dXmwji9vrjpBbFoW/efvYWLP2jzbKsioHVxkiS3bevZkiS1R1k5eS2bk0v10refHlEfrA+Dj6oBOJw0eW5d0R0vNKq4cj0lmxp+n+X7PZSb2DKdnA3+b2QGsvJBtZ00gS2yVP8lZsPy8mlO3cz6UaOCt55maetyko0SYQJbYKr7yuMTW+uNxRPx0mPQsHaG+Lvw6tgOezjlvKrYQf0FsOXYwb/x6vcKqQzHM3HCa68mZALQK9WFq3/qEB5j/PaCi1X2ZLLHl7W38vsM3b94sya2sgiyxZTtLbBlLq9XivnET1z3r8PFf5zh+S81nZ5z56PEGtK+Z/wYJhb0+U8rJEluyxJYofxZuv8h7a08C0CGsEnMGNjU0YEX5oVareKJ5IL0a+vPllgss2HqevZdu0n/eDna9+RDerg6WDrFCKFEjdvbs2YafExMTef/99+nevTtt27YFYNeuXWzYsIFJkyaVKEhrJUtsFZ1vySW2jKVSwbAO1elYx59xPx7iXHwqQxcf4MVONXi1Wx0c7AoeOi5LbNnWsydLbInSoigK/7f+DF9uOQ/AoDYhvNunHnayu1a55uJgR0TX2jzdMoj31p6kRmVXacCWoRL97xoyZIjha8eOHUybNo0ffviBcePGMW7cOH744QemTZvGli1bzBWvEKWmXlUPfh/bgWdb50z6+mrrBR6fv5OLCWkWjkyIsrF161b69OlD1apVUalUrFmzpshztmzZQvPmzXFycqJGjRp8+eWXpR+oFXpr9TFDA/b17nWY1re+NGArkKpezsx/rjmvdq1jSDsek8QLS/dz9Va6BSMr38z2P2zDhg306NEjT3r37t3566+/zHUbIUqVs4OG6f0b8tWg5ni52HMsJonen29j1cGrlg5NiFKXlpZG48aNmTNnjlHlL168SK9evejYsSOHDh3irbfeYty4caxcubKUI7U+nWpVxtFOzUePN2JMlzCZ4FNBqe9ZNm3KbyfYePI63T7dyne7L6PXyxQkczNbI9bX15fVq1fnSV+zZg2+vgWPLbSEtWvXUqdOHWrVqsU333xj6XCEFepe358/x3ekdXUf0rJ0RPx0hFdWHCY1M9vSoQlRanr27Mn777/PY489ZlT5L7/8kuDgYGbPnk14eDgjRoxg2LBhfPzxx6UcqfXp2TCAbW904amWQZYORViJGY81pGWoN+lZOiatOc6gb/dIr6yZmW2JralTpzJ8+HAiIyMNY2J3797N+vXrraqhmJ2dTUREBJs3b8bDw4NmzZrx2GOP4ePjU/TJokIJ8HRm+cg2zN18jtl/RbH6UAwHo2/xxTNNCfeTXXaE2LVrF926dcuV1r17dxYuXIhWq813rHBmZiaZmZmG47uT4nQ6nVHLT90tY+mlqrJ1ej5cf4bn24VSzdsZAF8X+yLjspb4i8OWY4eyj79GJReWD2/F0t2Xmbkxih3nEun+6Vbe7FmHZ1oat5zjXRWt7o0tZ7ZG7NChQwkPD+fzzz9n1apVKIpCvXr12LFjB61btzbXbUps79691K9fn2rVqgHQq1cvNmzYwDPPPGPhyIQ10qhVjHuoFu1q+jL+x8NcTkznsXk7ebVrLfzlkyFRwcXFxeHn55crzc/Pj+zsbBISEggICMhzzowZM5g6dWqe9DNnzuDm5mb0vaOiokwP2Ez0isLH2xPYejmdTcdjmNO7KnYm7r5lyfhLypZjh7KPv7U3fNbTn892JXLyRiaTfj1J6s14OoaY3hlSUeo+NTXVqHJm3eygdevWLFu2zJyXzGPr1q3MnDmTAwcOEBsby+rVq+nXr1+uMvPmzWPmzJnExsZSv359Zs+eTceOHQG4du2aoQELEBgYSExMTKnGLGxfi1Af1o3ryJurjvLn8Tj+b0MUdT3VtOmcSYC3zEwXFdf9vUl3lx4vqJdp4sSJREREGI6Tk5MJCgqiTp06Rq8TGxUVRe3atS2yXqaiKExde4qtl9Ox16iY/GgjGoZXMfp8S8dfErYcO1g2/nCgS0uFpbsuExl1g+Hdmpu07XBFq3tjly00WyM2Ojq60Pzg4GCz3OfuxIPnn3+exx9/PE/+ihUrePnll5k3bx7t27fnq6++omfPnpw8eZLg4GDy29tBBuALY3i62DPv2Wb8uO8KU38/wekk6D1nF7MGNKFz7cqWDk+IMufv709cXFyutPj4eOzs7AqcC+Ho6IijY9795jUajUm/nE0tby5zN5/ju905v+8+frIx3Rrk7W02hqXiNwdbjh0sF79GAyM61WR4xxqGdkeGVseCrRcY2bEGzg5Fx1RR6t7Y12i2RmxoaGihjUFzjePo2bMnPXv2LDB/1qxZDB8+nBEjRgA5a9lu2LCB+fPnM2PGDKpVq5ar5/Xq1atWNdxBWDeVSsUzrYJpXM2d4Qt3EJuWxZBv9/JCpxq8VsSaskKUN23btuX333/PlbZx40ZatGhRLtfOXbEvmpkbzgAwuXc9+japVsQZQuR1b1tpxrpTLNl1md+OXMuZb1EKu32VZ2ZrxB46dCjXsVar5dChQ8yaNYvp06eb6zaFysrK4sCBA7z55pu50rt168bOnTsBaNWqFcePHycmJgYPDw/WrVvH5MmTC71uQRMRtFqt4evucX7f7//ZnGxp//r80s25f31xFPf6od6ORDTQcUgJYfm+GBZsvcCu8wl8+mQjQnz/24q4sOubmmfKcybPnvH1Yo5nr7TquKylpqZy7tw5w/HFixc5fPgwPj4+BAcHM3HiRGJiYli6dCkAo0aNYs6cOURERDBy5Eh27drFwoUL+eGHHyz1EkrNznMJvLX6OACjH6jJsA7VLRyRKA8erufHumNxnItPpddn22gY6EnX8CrU8fegtp87QT4uJg07qGhUSn6fr5vRH3/8wcyZM4mMjDT7tVUqVa4xsXfHu+7YsYN27doZyn3wwQcsWbKEM2dy/oL+7bffeO2119Dr9UyYMIEXXnih0PtMmTIl34kIy5cvx8XFJZ8zREVy9KaKH86pSdepcFQrPFlDT8vKMuurIklPT2fgwIFF7vNt7SIjI+nSpUue9CFDhrB48WKGDh3KpUuXcr2fb9myhVdeeYUTJ05QtWpV3njjDUaNGmX0PY3dI/0uS+0hH3P7DiOX7KeOvzuznmpc7GFolorfHGw5drDe+BNTMxm0cA8nY1Py5DnZqwmr4kZ9f3cGhdtxQ+NLmJ8ngd7ONjUU0tS6N/Z9wawTu/JTu3Zt9u3bV9q3ySW/iQb3pj366KM8+uijRl/v7kSEr7/+mq+//hqdTpert0JUbI18FIIa6/jurIbzKSq+P6fhTJKeJ6rrcbKe90khivTAAw/kO2/grsWLF+dJ69y5MwcPHizFqKxDNS9nfvlfW9QqlU01HoT183Vz5NcxHWg94y9upuX+VCdDq+d4TDLn41MYFB7M6OWHeKCOH/OebWahaK2L2Rqx988kUxSF2NhYpkyZQq1atcx1m0JVqlQJjUaT70SD+5eBMcXdiQivvvoqr776quEvhC5duuDh4UF2djabN2+mS5cu2NnZ5ToGcuWZ2/33Nvd5RZUrKN/YdFOPzc2c9fe4XmHB9svM3XKRfTfUXNe58lHfOlw/vT/f6xd27/zyjKkbefaMq7v80kry7Bk7k1bYFr1e4WD0LVqE5qwj7uJQ6v0+ooKyt1PzXt+GjFle+B+EVT2d+fCxRvKH1L/MNpxArVbn2wMaFBTEjz/+aNgAwZzuH04AOct8NW/enHnz5hnS6tWrR9++fZkxY0aJ7jd37lzmzp1rWCpChhOI/JxPhqVnNdzOUqFRKfQO1vNAgIIMayq/ystwAkuw5uEEczefY+aGM7zZsy6jOtc0yzWt9SNtY9hy7GD98ev1Co98sZ1TsXn/KHa2V/HzgGAyXP1pUb2SBaIrGasfTrB58+Zcx2q1msqVKxMWFmbWXqCiJh5EREQwaNAgWrRoQdu2bVmwYAHR0dEmjdEqyJgxYxgzZoyhcrt164aHhwdarZZNmzbRtWtX7O3tcx0DufLM7f57m/u8osoVlG9suqnH5lZa9Tf4jpa315xgw8l4fr2sIdHOh5lPNKSSm6NR18gvz5i6kWfPuLrLL60kz570xJY/ey4k8snGnHkUPi4OFo5GVARqtYpXu9ZmxNL9efKyshUys/U0Dfa2QGTWy2ytS5VKRbt27fL9WHTr1q106tTJLPfZv39/rokHdxfNvjvxYMCAASQmJjJt2jRiY2Np0KAB69atIyQkxCz3F8IYns72fPF0Y5bviWb6utNsP3+TPnN3MfPxhnQIy3/9TCGEdUhIzeSlHw6hV+CxZtV4skWgpUMSFcRD4VVoHOTFkSu3c6XrFJi46TpLQmoS4C3bnt9ltuEEGo2G2NhYqlTJvXNJYmIiVapUsdn9fu8lwwlEccSmw5IoDbF3csYTPFRVT68gPbKkbPkhwwmKz9qGEyiKwvOL9xF55gZhVdz4bWx7s46FtfaPtAtjy7GD7cS/7ewNBi3cazh2d8p5/lIysvH3dOKbwS1oUM3TUuEVi9UPJ7h/BYC7EhMTcXUtH3813D+cQCZ2ycQuY+vv17Ht+XTzZX7YH8Pf19TE48n7vWtz6dgemdhVzHIysUuUhuV7o4k8cwMHOzVzBzaTyVyizHUIq0SrUB/2XroJwGdPNyHEx5kh3+zialIGT365iy+eacrD9Yo/Yb28KHFP7GOPPQbAr7/+So8ePXJtJ6jT6Th69Ch16tRh/fr1JYvUCkhPrCipe9eUtVcpPBKsp7NM+rJ50hNbfNbUExufnMEDH0eSnqXjnUfCGdGxhlmvD7bTG5gfW44dbCv+PRcSGbBgN8PaV2dyn3rodDr2HTnB3EN32HY2AbUKPujfkKdbBVs6VKNYbU+sp2dOl7aiKLi7u+Ps7GzIc3BwoE2bNowcObKkt7EKMrFLJnaZet795XoBQ5IyeHvNCbadS2TNZQ1XFU/+7/GGBPu4FHp9mdhlXL5M7BLFVdndkff6NuDP47EMay87cgnLaV3Dl1Gda/JK1/+WKHVzUPP1oGZM+vUkPx+4yv7LtxjQMqhCL7dV4kbsokWLAAgNDeW1114rN0MHhCgtAZ5OLBzcjOV7opnx52n2RyfRZ+4u3uhem2daBlboNyQhLEmlUvF480Aeby4TuYTlvdmzbp40e42aj55oROsavvRtUrXC/74o9W1nyxMZTiDMLTEDlp/XcC45542ojqeeZ2rq8XYs4kRhVWQ4QfFZw3CC+JQMnO01uDuZ/xOL+9nSR9r3s+XYwbbjLyx2nV7h2+0XGdQ2BCd763xdVjmcoFmzZvz99994e3vTtGnTQv8iKA/bEspwAhlOYOp5xqwFu2Z8F348EMvHm85yJgk+PuHAhK418Ug4QbduMpxAhhOI0qQoCm+uPMbxmCRmP92EdjVtbyF5UbG9t/Yki3deYuvZGywY1AJnB+tsyJaGEjVi+/bta5jIde+uWRWFvb19rl9u+R0XlFfasZj7vKLKFZRvbLqpx+ZmyfpzdHBgRKcwHgz359Wfj3Ao+jaT154hzENN/TZZ1PJ3KfRa+V27otRdYfkF1UtRacV59kqzfkXp2nAijn9Ox2OvUVHF3cnS4Qhhsm71/fhp/xW2nU1g6KK9LBzaEjfHirGqRole5bvvvpvvzxWFVqs1fN09zu/7/T+bO4biXN/Y84oqV1C+semmfjc3S9bf/XlBXo78MLwlS3ZdZvbf5ziXDI98sYtxD9ZkWPsQ0OvyPS+/50yePePrxRzPXmnVsShdqZnZTPntJACjOtckrIqbhSMSwnTtalbiu+GtGPrtPvZcvMnghXtYPKwVHmUwPMbSzD4mNisri/j4ePR6fa704GDbWAaiMDImVpSVxAz46YKa00k5OyJUc1F4uqaOYPkda5VkTGzxWXJM7P+tP838yPME+7iw8ZVOZTKesLyOy7QFthy/MbEfuXKbwd/uJemOlkaBniwd1govK9ky2SrHxN4rKiqK4cOHs3PnzlzpdzdBKA87dsmYWBkTa+p5xoyJLSjPZ+MmMvzr8+GGc8Ska/n0uB2d/PV8POQBPF2dZEysjIkVJXD1VjoLt18E4J1Hwq12QowQxmoc5MUPI9vw3MI9HL2axJBF+1j9v3aoy/FC5GZrxD7//PPY2dmxdu1aAgICKsSyDzImtuh8GRNbdLmC8lQqeLx5EA83qMZ7a0/y6+FrRMaqeXT+Xib3qc+DtX0KPL+i1F1h+TImVhRm5oYzZGXraVPDh66y85EoJ+pV9WDFC20Yumgf4x4MK9cNWDBjI/bw4cMcOHCAunXzrmsmhCi+Sm6OfPZ0U/o09GPCTwe5lpTBqO8P0LlWJTrKssxCmCxbp0ev5Pyh+M4j9SpEp4uoOGr5ufPPa51xtCv/ny6YrRFbr149EhISzHU5myATu2RilzkndhWV1666FxMb6zjnUJNvd0Wz5WwC21UaEt3PMLpLGE72Gnn2CkiXiV3iXnYaNV8805TXutUmxFf+EhTlz70N2MuJaczbfJ5p/eqXu4at2SZ2/fPPP7zzzjt88MEHNGzYMM/Ha+VhsoNM7BLWIv4OrLz438QvH0eFx0P1NPCRvUssQSZ2FZ81bHZQlmw5fluOHWw7/uLGnq3T0+3TrVxISKNbPT/mP9ccjQWGGFj9xK6HH34YgIceeihXukzsksk1MrGreBO7ipqINDAri49X/M2fcS7EJWfy9RkND9Typb3rdZ59VJ49mdgl7qcoCnP+OUe/ptUI8pEOCFH+2WnUvN+/AUMX7WPjyetM/vU47/drUG6G0JitEbt582ZzXcpmyMSuovNlYlfR5UzNuzetia/CywPa8+W2y3yz7QKRZxPZptJwzeUCYx6oYVKMxWVLz55M7KrYNp+J55NNUXy97QJ73nq4Qu1sJCqudjUr8fnTTfjfsoMs2xNNgKcTYx+sZemwzMJsjdjOnTub61JCCBO4ONjxRo+6PNE8kPd+P0FkVAKLdl5mzeFrPOSnoptOj7SxREWnKAqz/zoLwDOtgqUBKyqUHg0CmNKnPu/+doKPN0bh5+HEky2CLB1WiZmtEXv06NF801UqFU5OTgQHBxu2qBVCmF/Nym58PagZnyz/k78SPDh3I41fLmo4PHcXk/vUp1PtypYOUQiL2XwmnqNXk3Bx0PBCpxqWDkeIMjekXShxyRnMjzzPm6uOEeDpTIdalSwdVomYrRHbpEmTQsdY2NvbM2DAAL766iucnMrH/tSyOoGsTlCWqxMY+5yFeymMfrwFvxyM5ZONZzh3I43B3+6lc+1KTOxRh5qVzTMb25aePVmdQHy55QIAg9qE4OsmHSqiYprQvQ7XkzI4fyOVugHulg6nxMy2OsGvv/7KG2+8weuvv06rVq1QFIV9+/bxySef8O6775Kdnc2bb77JgAED+Pjjj81xyzInqxMIW5OeDRuuqtkap0KvqFCj0MZPoUegHk/r2I2wXJDVCYqvLFYnOHzlNv3m7sBOrWL7Gw/i72m5jpSKOEPeWthy/OaMPStbT7Zej4uD2foxi2T1qxNMnz6dzz77jO7duxvSGjVqRGBgIJMmTWLv3r24urry6quv2mwjVlYnkNUJTD2vNFcnKKoM5Dx780Y+xNWkLD7aEMVfp2+w87qKQzftGNouhJEdquPuVLy3AVt69mR1gort6205vbCPNqlq0QasENbAwU6NA2rD8ZaoG7St4YuDnbqQs6yT2Rqxx44dIyQkJE96SEgIx44dA3KGHMTGxprrlhYnqxMUnS+rExRdriSrExRW5t6fawe48M3QVuy7dJMP/zzNgcu3mL/lIiv2xzC2SxjPtgku9iLYtvTsyeoEFY+iKIT4uODuZMfIjjIWVoh7zfnnLB9vjOKZVsF80N/2lt4yW7O7bt26fPjhh2RlZRnStFotH374oWEr2piYGPz8ZI9qISylZagPv4xqy1eDmlOzsis307KYtvYkD8/awq+HY9DrZbMEUb6oVCom9KjLvrcfJjxAhnoIca96VT1QqeCHvdF8v/uypcMxmdl6YufOncujjz5KYGAgjRo1QqVScfToUXQ6HWvXrgXgwoULjB492ly3FEIUg0qlont9fx6qW4WfD1zl001RXLl5h/E/HmbB1gu80aMuHWtVsrm/yIUojJO9bY2BFKIsPFjXjzd61OXDP08zbe1JGlTzpGmwt6XDMprZGrHt2rXj0qVLfP/990RFRaEoCk888QQDBw7E3T1nBtygQYPMdTshRAnZadQ80yqYfk2q8e2Oi3wZeZ4T15IZ/O1eWlX34fXudWgZ6mPpMIUotp3nEwBoW8NX/igTogAvdqrBsatJ/HEslrHLD7H2pQ54u9rGzF+zTk1zc3Nj1KhR5rxkqenfvz+RkZE89NBD/PLLL5YORwiLcXbQMKZLGM+0Cmbu5nN8t/syey/e5Mkvd9GpdmVe61abRoFelg5TCJP935+nOXI1iff61mdQ21BLhyOEVVKpVMx4vCEnriVxKTGdiJ8Os3BIS9Rq6//Dz+zrK5w8eZLo6OhcY2MBHn30UXPfqkTGjRvHsGHDWLJkiaVDEcIq+Lg6MKl3PUZ0rM6cf86xYt8VtkbdYGvUDbrV8yOiW23q+suYQmEbjsckceRqEvYaFT0bBlg6HCGsmoeTPXOfbUb/eTvZfOYGO84n0LGW9W+QY7ZG7IULF+jfvz/Hjh1DpVJxd/nZux/h6HQ6c93KLLp06UJkZKSlwxDC6gR4OjO9f0Ne7FSTz/4+y+pDV9l48jqbTl2nT6OqvPxwLWpUdrN0mEIU6oe90UDOdpuVZHMDIYpUv6onH/RviJO92iYasGDG1QnGjx9P9erVuX79Oi4uLpw4cYKtW7fSokULkxuLW7dupU+fPlStWhWVSsWaNWvylJk3bx7Vq1fHycmJ5s2bs23bNvO8ECEEAMG+LnzyVGM2vtKZRxoFoCjw25FrdP10KxN+OcLVW3csHaIQ+crQ6vjtyDUAnmlp+/vDC1FWnmgeSO9GVS0dhtHM1ojdtWsX06ZNo3LlyqjVatRqNR06dGDGjBmMGzfOpGulpaXRuHFj5syZk2/+ihUrePnll3n77bc5dOgQHTt2pGfPnkRHRxvKNG/enAYNGuT5unbtWolepxAVTVgVN+YObMa6cR15OLwKOr3CT/uv0u2z7fx8QU1sUoalQxQil82n40nJyCbA04k2NXwtHY4QNik+JYPvrHzZLbMNJ9DpdLi55XzEWKlSJa5du0adOnUICQnhzJkzJl2rZ8+e9OzZs8D8WbNmMXz4cEaMGAHA7Nmz2bBhA/Pnz2fGjBkAHDhwoJivJK/MzEwyMzMNx3d359FqtYavu8f5fb//Z3Oypf3r80s35/71xWHJ+jM1z5TnrDSevVqVnZk/sAmHr9xm9t/n2XE+ke3X1Tz06TYGtAjkhY7VCTBiNyRLPHvFqU9Tno3Sej5F8aw+FANA3ybVbGJyihDWJumOll6fbSMhNYsADycermeda/yrlLuDV0uoY8eOvPrqq/Tr14+BAwdy69Yt3nnnHRYsWMCBAwc4fvx48QJUqVi9ejX9+vUDICsrCxcXF37++Wf69+9vKDd+/HgOHz7Mli1bjL52ZGQkc+bMKXJ1gilTpjB16tQ86cuXL8fFxcXo+wlRnpxLgj+vajiXnNNI0KgU2lVReLiaHq8KNgQxPT2dgQMHFrnPt8jL2D3S7ypqD/ZsnZ6en23jbHwqG17uRB1/99IIu9hM3UPemthy7GDb8Vsi9vfXnuSb7RfxdXVgwyudSjS23NT4jX1fMFtP7DvvvENaWhoA77//Pr1796Zjx474+vry448/mus2JCQkoNPp8uz85efnR1xcnNHX6d69OwcPHiQtLY3AwEBWr15Ny5Yt8y07ceJEIiIiDMfJyckEBQXRpUsXPDw8yM7OZvPmzXTp0gU7O7tcx0CuPHO7/97mPq+ocgXlG5tu6rG5WbL+TM0zpm7K8tnrkp1N2ObNuNVoypfbr7Dv8m22XVexO0HDk82qMqJ9MP4eeXtmLfHsFac+TXk27n46IyzPTqNm4yudOHEt2eoasELYkte612H7uQROx6Uw9feTfPFMU0uHlIfZemLzc/PmTby9vUu0yPT9PbHXrl2jWrVq7Ny5k7Zt2xrKTZ8+ne+++47Tp0+XNOwCzZ07l7lz56LT6YiKipKeWCHucTZJxfqrKs4l5wy116gU2v7bM+tdzntmy1NP7Lx585g5cyaxsbHUr1+f2bNn07Fjx3zLRkZGGv5gutepU6cM240Xxdw9sdbOluO35djBtuO3VOzHribRd+529AosGtqSLnWrFOs6VtsTO2zYMKPKffvttyW9FZAz3laj0eTpdY2Pj8/TO2tuY8aMYcyYMYbKlZ5Y6YmtyD2x99+/KzAa2HvpFvO2XGLv5dtsv65iT4KGJ5rm9MwGeDpJT6wVuztpdt68ebRv356vvvqKnj17cvLkSYKDgws878yZM7l+0VSubJnleTKzdahVKuw1ZpuzLESF1jDQk+EdqvP1tou8s+Y4G1/phKuj+X+fFFeJe2LVajUhISE0bdqUwi61evXqYl3//p5YgNatW9O8eXPmzZtnSKtXrx59+/Y1TOwqDdITK4TxKlLPbHnpiW3dujXNmjVj/vz5hrTw8HD69euX73vr3Z7YW7du4eXlVax7mrMn9uf9V3j/j1M83z6Ulx+uXax4Spv0BlqOLcdvydjTs7Lp9ulWrt66w0sPhvFqtzomX8Nqe2JHjRrFjz/+yIULFxg2bBjPPfccPj4l2289NTWVc+fOGY4vXrzI4cOH8fHxITg4mIiICAYNGkSLFi1o27YtCxYsIDo6utS3vJWeWOmJNfW8itQTe7/CemZbV9Ix+ck2BPq4Fvv65bUndv369bi5udGhQwcg54/nr7/+mnr16jF37ly8vb3Ndq97ZWVlceDAAd58881c6d26dWPnzp2Fntu0aVMyMjKoV68e77zzTr5DDO4qaLUXnU5n1KY4d8vkV3bD8TiS7mhR9IrVbbBzV2HxWztbjh1sO35Lxu6oUfF+3/r8fTqeER1CixWDqfEbW84sY2IzMzNZtWoV3377LTt37uSRRx5h+PDhdOvWrVjjYQsaZzVkyBAWL14M5Izb+uijj4iNjaVBgwZ8+umndOrUqaQvpVDSEytE8eXXM9u6isLDVfX4Fr0yl1UzZ09sw4YN+b//+z969erFsWPHaNmyJREREfzzzz+Eh4ezaNEiM0Wd2935Bjt27KBdu3aG9A8++IAlS5bku1TimTNn2Lp1K82bNyczM5PvvvuOL7/8ksjIyALfjwta7WXXrl2GZRqL445Wz8Cfr6DVw5xHAgj1dij2tYQQlpWamkrbtm2LfE81+8Suy5cvs3jxYpYuXYpWq+XkyZMlemOyRnd7YmNjY6UnVnpipSfWxOvvOp/AjN+PGBqzdmoVfRr58UKHEEJ8/vuj0NZ6YgMCAszSiHVzc+P48eOEhoYyZcoUjh8/zi+//MLBgwfp1auXSauwmMJck2b79OmDSqXit99+yzc/v57YoKAgbt68afRwgqioKGrXrp3rY8kNJ64zevkhgn1c+CeiY4kmFJemguK3BbYcO9h2/NYUu6IoxCZlUNXL2ehzTI0/OTkZHx+fsm/ERkdHs3jxYhYvXkxWVhanT58uN41Y6YkVwnzOJ8OGq2rOJOU0ZlUoNKuk0K2aHn8b+29lzp5YHx8ftm/fTr169ejQoQODBw/mhRde4NKlS9SrV4/09HQzRZ2budbgnj59Ot9//z2nTp0yqry5xsROXHWMH/ZGM7RdKFMerW/UvS1BxmVaji3Hby2xxybdYfwPh4m+mc4/r3XGxcG4DgyrHRMLuYcTbN++nd69ezNnzhx69OiBWl1+ZonePya2W7dueHh4oNVq2bRpE127dsXe3j7XMZArz9zuv7e5zyuqXEH5xqabemxulqw/U/OMqRtbevZGPd6Vl+ztOXTlNvMiLxAZlcCBBBUHE9V0r+fHC+2DuXJsl1meveLUpymvz5xjYjt06EBERATt27dn7969rFixAoCoqCgCAwPNdp/7OTg40Lx5czZt2pSrEbtp0yb69u1r9HUOHTpEQEBAaYRYIEVR2Bp1A4DOtS2zMoIQFYG3iwPXku4Ql5zB/MjzxZrkZU4lbsSOHj2aH3/8keDgYJ5//nl+/PFHfH1lr2ohhHGaBnnx9aBmnLiWzNzIC2w6Fc/6E9dZf+I6DbzVBNRPpmlIxXlPmTNnDqNHj+aXX35h/vz5VKtWDYA///yTHj16lOq9i5o0O3HiRGJiYli6dCmQs+V3aGgo9evXJysri++//56VK1eycuXKUo3zfhcT0oi5fQcHjZrWNUo2sVgIUTAnew3vPBLOqO8P8vW2CwxqG0IVd8tNajDLElvBwcE0bdq00DFIq1atKsltrIIMJxCi9F1Lg40xag4nqlDIeU8J99LTPVBPdSvdgKm8LLEFhU+aHTp0KJcuXSIyMhKAjz76iAULFhATE4OzszP169dn4sSJ9OrVy+j7mWM4QWzSHZbviSb5jpapfRuY/qLLkLV8LFwcthw72Hb81hS7oig8Nn8nh6JvM6RtiFH/50prOEGJG7FDhw41agB9ac2otYS7lZuQkCDDCWQ4gQwnKKW6i4pNYsrPuziYoEH379tUm+rejHmgJq2re5OdnW1VwwkqVapU7EZscnKy4byihibYeiP5frJjl+2w5djBtuO3tth3nktg4Dd7sNeo2PzaAwR6F96hZ7VjYu8ueVUR2dvb5/rllt9xQXmlHYu5zyuqXEH5xqabemxulqw/U/OMqZvyUHe1Azx5LkzPjOc68c32y6w8eJXdF2+x++J+WoR4M7pzdRTFtGevOPVpzOsraf16e3sTGxtLlSpV8PLyyrdjQFEUVCqVTa5xKYQoX9qFVaJ9mC87ziXy2V9nmflkY4vEYT17h9kgrVZr+Lp7nN/3+382dwzFub6x5xVVrqB8Y9NN/W5ulqw/U/NMec7K07NX1d2e9x4N53+dQlmw7RI/H4xh/+VbDFt6i2BXDfYhsXSt729o+JlaL+Z49kpax//8849hk5h//vnHapeHskYxt+9wOjaZFiE+eLqU3h9rQojcXutWhx3ndnL0ahKZ2Toc7cq+h9jsS2yVZzImVgjLS8qCf66p2XFdhVaf09ir5qLQLVBPIx8FtQXaf+VpTGxZK+lwgm+3X2Ta2pM8UKcyi59vVQYRl4y1fSxsCluOHWw7fmuNffvZBNrW9EVTxBuv1Q4nqEhkiS0ZE2vqeTImtvjnFVbuGSDudhpTftjGrgR7YtJ1LIrSEFbZlRc6hGAfe5Tu3Wxzia1JkyYxZcqUPG/0SUlJjBo1ih9++MFs9yoP9l++CUDLUFmVQIiy1qFWJYveXxqxJSBjYovOlzGxRZeTMbHFK+fv5cqjIXpmDOnI93uusmjnJc7dSGPC6pNUdtKQGRDP4y2CsdeoC72WNYyJvdfSpUvZtGkTy5Yto2bNmkDOVtyDBw82LLclciiKwt6LtwBpxAphSRlaHafjUmgS5FWm9y0/OxEIISokbxcHIrrVYfsbD/Jq19p4OdtzI0PFm6tP0OXjSJbtuUxmtt7SYRrt6NGjhIaG0qRJE77++mtef/11unXrxtChQ9m+fbulw7MqlxPTSUjNxEGjplGgp6XDEaJCik5Mp+NHmxn0zR6SM0pnDkZBpCe2BGRil0zskold1vPsudjBqE6hPN3Mj/d+iGRHohNXb93h7dXH+fyvs7TzVdEhPQMPl/zPt+TErnt5enry448/8vbbb/Piiy9iZ2fHn3/+yUMPPWS2e5QXR67eBqB+NQ+c7K1nnKAQFUmgtzNezvacTcnkp31XGNGxRpndWyZ2mUAmdglhO7J0sCtexd/X1CRl5Uw6cLNT6FJVTwc/BScz/glv7oldX3zxBW+88Qb9+/fnwIEDaDQali9fTuPGllnGpjSVZGLXh+vP8PW2iwxuG8I0K9/k4C5rnaBjDFuOHWw7fmuPfdmey7y9+jjVK7nyz6ud86ywIhO7rIBM7JKJXaaeJxO7in9eSZ+9R3p0pZ+9PZnZen7Zf4Uv/jpNYqaK36M1bL1hx3OtAqmWdo5+vaxrYlfPnj3Zt28fS5cu5YknnuDOnTtERETQpk0bpk6dyoQJE8x2L1t3PCan3htUlaEEQlhS3ybVmLHuNBcT0th1PpF2YWUz4UsasSUgE7uKzpeJXUWXk4ldJStX1DNmbw/PtgnBI/EEumpNmL/1IhdupDF3yyUcNRouOV/khc5heDra53u9sp7YlZ2dzdGjR6latSoAzs7OzJ8/n969ezNixAhpxN5jWt/6HL5yu8x+YQoh8ufmaEe/plX5fnc0y/ZESyNWCCHMSaOCPk2q8ljzYNYfj+OLv6M4fT2VBdsusXR3NANaBFIj09JR5vSe5+eRRx7h2LFjZRyNdavl504tP3dLhyGEAJ5tHcL3u6PZcCKO+JQMqrg7lfo9ZXUCIUSFolGreKRRAL+NacvIOjoaBXqQodWzZFc00w5pmPTbSa7cTLd0mPmqVEl6HIUQ1ik8wIOmwV5k6xW2RiWUyT2lJ1YIUSGpVCoa+Ci8/mxr9lxO4vO/z7Lv0i1+3HeVnw/E8GjjAMItMO1Vp9Px6aef8tNPPxEdHU1WVlau/Js3b5Z9UFbon9PxXL2dQfuwStSW3lghrMLk3vVwd7IjrErZ/J+URmwJyBJbssSWLLFlG89eYWnZ2dm0CfWi+eAmfLlyEwczqrD9/E1WH7rGaS81z5XxEltTp07lm2++ISIigkmTJvH2229z6dIl1qxZw+TJk812H1u3+tA11h2P4+1e4dKIFcJKNA32LtP7yRJbJpAltoSoGC6nwqararpU1VPTiBWzzLnEVs2aNfn888955JFHcHd35/Dhw4a03bt3s3z58hJd39oUd4mtVzYmcjY+lUVDW9KlbpUyiNQ8rH2ppMLYcuxg2/HbYux6vYJanbPUliyxZQVkiS1ZYsvU82SJreKfZ85nrzj1OcJCS2zFxcXRsGFDANzc3EhKSgKgd+/eTJo0yWz3sWU6vcKlxDQAwqq4WTgaIcS9rt2+w/R1p7hyM53fxnYo1XtJI7YEZImtovNlia2iy8kSWyUrZ8qzV5z6LOsltgIDA4mNjSU4OJiwsDA2btxIs2bN2LdvH46Ojma7jy2LS81Gq1NwttdQzcvZ0uEIIe7h6mjH+uNx6PQK0YnpBPuW3ifWsjqBEEJYkf79+/P3338DMH78eCZNmkStWrUYPHgww4YNs3B01uFqUs4Y5BqVXQ0fVwohrIOnsz0tQ3PGxv59+nqp3kt6Yovh7jDiux8harVa0tPTSU5ONnwsefcYyJVnbvff29znFVWuoHxj0009NjdL1p+pecbUjTx7xtVdfmklefbu1rc5phh8+OGHhp+feOIJgoKC2LFjB2FhYTz66KMlvn55EJeWDUBIKfbwCCGK7+FwP3ZfuMk/p+N5vn31UruPNGKLISUlBYCgoCALRyKEsCYpKSl4epp3C9TWrVvTunVrs17T1sWn5jRiA72lESuENXqwbhXe/+MUuy8kkpqZjbNd6XxiIo3YYqhatSpXrlzB3d0dlSrnH6Zly5bs27fPUObucXJyMkFBQVy5cqXEs5YLcv+9zX1eUeUKyjc2vbDj8l5/puYVVXf3ppX3uiss35i6yy+tuM+eoiikpKQYtooVpWtAQ08GP1AfH7fS3xFICGG6GpXdCPJx5srNO+y/dJOOYb6lch9pxBaDWq0mMDAwV5pGo8n1i+7+Yw8Pj1JrSNx/L3OfV1S5gvKNTS/qGMpv/ZmaZ0xdybNnXL3kl1aSZ8/cPbCiYB6OGsKDvGxmqSEhKqLW1X25cvMqey5KI9bqjRkzptDjsry3uc8rqlxB+camW7LuSnI/c9SfqXnG1JU8e8bXi6WfPSGEKK86hFXicmIawT6lN+xHNjsoZaYu5C1yk/orPqm7kpH6Kxum1nNyeiaTf95Do5qBPN++umFIl62wxUXr77Ll2MG247fl2KH0NjuQJbZKmaOjI++++66s71hMUn/FJ3VXMpaqv6FDh7J169YyvactiU/JZM2pFGZtOmtzDVghhHlJI7aUOTo6MmXKFGlIFJPUX/FJ3ZWMpeovJSWFbt26UatWLT744ANiYmLK9P7WLiE1EwBfNwcLRyKEMEZyhpbryRmlcm1pxAohhBVZuXIlMTExjB07lp9//pnQ0FB69uzJL7/8glartXR4FpeQmgVAJWnECmH1vtl2gUZTNvLJprOlcn1pxAohhJXx9fVl/PjxHDp0iL179xIWFsagQYOoWrUqr7zyCmfPls4vBFuQ+G8j1tdVPmEQwtoF/Tup6+S15FK5vjRihRDCSsXGxrJx40Y2btyIRqOhV69enDhxgnr16vHpp59aOjyLuDucQHpihbB+9avmTMo6G5+KVmf+dQSkESuEEFZEq9WycuVKevfuTUhICD///DOvvPIKsbGxLFmyhI0bN/Ldd98xbdo0S4dqEYlpd3tipRErhLWr5uWMk72abL1C/L/bRZuTNGKtTP/+/fH29uaJJ56wdChWb+3atdSpU4datWrxzTffWDocmyPPWvFcuXKFBx54gHr16tGoUSN+/vlns14/ICCAkSNHEhISwt69e9m/fz+jRo3C3d3dUKZ79+54eXmZ9b62IulOzrhgTxd7C0cihCiKSqUixMcVgLhUacSWe+PGjWPp0qWWDsPqZWdnExERwT///MPBgwf5v//7P27evGnpsGyKPGvFY2dnx+zZszl58iR//fUXr7zyCmlpaWa7/qxZs7h27Rpz586lSZMm+Zbx9vbm4sWLZrunLZnYsy6f9vTnkQb+lg5FCGGEEN+ccbHXUsw/MVUasVamS5cuuXpcRP727t1L/fr1qVatGu7u7vTq1YsNGzZYOiybIs9a8QQEBBgal1WqVMHHx8dsf0BlZ2czbNgwzp07Z5brlUcBnk7U8nWkioeTpUMRQhghtFJOT2xsivTEWtTWrVvp06cPVatWRaVSsWbNmjxl5s2bR/Xq1XFycqJ58+Zs27at7AO1ASWty2vXrlGtWjXDcWBgYIVaT1OexeIzZ93t378fvV5PUFCQWWKzs7MjJCQEnU5nlusJIYSlta3hy3Otg6lX2fwrikgj1gRpaWk0btyYOXPm5Ju/YsUKXn75Zd5++20OHTpEx44d6dmzJ9HR0YYyzZs3p0GDBnm+rl27VlYvwyqUtC7z2y25Iu3eY45nsaIyV90lJiYyePBgFixYYNb43nnnHSZOnCjDYwrwzfaL/HIiybBKgRDCunWpW4Wpj9ajQ4ir+S+uiGIBlNWrV+dKa9WqlTJq1KhcaXXr1lXefPNNk669efNm5fHHHy9piDajOHW5Y8cOpV+/foa8cePGKcuWLSv1WK1RSZ7Fivas3a+4dZeRkaF07NhRWbp0qdljatKkieLm5qY4OjoqtWvXVpo2bZrrq7xJSkpSACUpKcmo8k2mblBC3lirnIy5VbqBlZLs7Gzl2LFjSnZ2tqVDMZktx64oth2/LceuKKbHb+z7gp35m8UVU1ZWFgcOHODNN9/Mld6tWzd27txpoahskzF12apVK44fP05MTAweHh6sW7eOyZMnWyJcqyPPYvEZU3eKojB06FAefPBBBg0aZPYY+vXrZ/ZrlieZ2XoAnOw1Fo5ECGEMRVG4nZ7F1SQt4Wa+tjRizSQhIQGdToefn1+udD8/P+Li4oy+Tvfu3Tl48CBpaWkEBgayevVqWrZsae5wrZoxdWlnZ8cnn3xCly5d0Ov1TJgwAV9fX0uEa3WMfRblWcvLmLrbsWMHK1asoFGjRobxtN999x0NGzY0SwzvvvuuWa5TXmXrchqxduqKM3xICFt2IzWTVtP/AeBca/O8T94ljVgzu39cpqIoJo3VlBn2/ymqLh999FEeffTRsg7LZhRVf/KsFaywuuvQoQN6vd4SYZWJefPmMXPmTGJjY6lfvz6zZ8+mY8eOBZbfsmULERERnDhxgqpVqzJhwgRGjRpVavFp9Tnj4aURK4QZxcbCV1/Biy9CQIBZL33vpyZZOgU7M7Y8ZWKXmVSqVAmNRpOn1zU+Pj5Pr44onNRlyUj9FZ811J1Op+Pjjz+mVatW+Pv74+Pjk+urNJk6IfDixYv06tWLjh07cujQId566y3GjRvHypUrSyW+dUdjuTunc9Cifaw/Hlsq9xGiwomNhalTc76bmZPdf43YTK15V16RRqyZODg40Lx5czZt2pQrfdOmTbRr185CUdkmqcuSkforPmuou6lTpzJr1iyeeuopkpKSiIiI4LHHHkOtVjNlypRSvfesWbMYPnw4I0aMIDw8nNmzZxMUFMT8+fPzLf/ll18SHBzM7NmzCQ8PZ8SIEQwbNoyPP/7Y7LGtPx7L6OUHDcfn49MY9f1BacgKYeXsNSrufnCSYeZGrAwnMEFqamquRcgvXrzI4cOH8fHxITg4mIiICAYNGkSLFi1o27YtCxYsIDo6ulQ/WrNVUpclI/VXfNZed8uWLePrr7/mkUceYerUqTzzzDPUrFmTRo0asXv3bsaNG1cq9y3OhMBdu3bRrVu3XGndu3dn4cKFaLVa7O3zbg2bmZlJZuZ/y2MlJycDOT3Qha2PO/uvs6iAu4vrKYBKlZPeNbxK0S/QStx9jba4FrAtxw62HX+pxB4ba+h5VR06hBrQ79+PcvceAQFmG1qgUqlAUbh2K92ojUqMfZ3SiDXB/v376dKli+E4IiICgCFDhrB48WIGDBhAYmIi06ZNIzY2lgYNGrBu3TpCQkIsFbLVkrosGam/4rP2uouLizNMEnNzcyMpKQmA3r17M2nSpFK7b3Emp8bFxeVbPjs7m4SEBALy+QU4Y8YMpk6dmif9zJkzuLm5FRjf+fgU7l8dWlFy0k+dOlXgedYqKirK0iEUmy3HDrYdvzljrzJvHlXu+5RF/eKLhp/j//c/4kePNsu97FUKOiAx7gqn0q8XWT41NdWo66oUJZ9V44UQQlhEnTp1WLp0Ka1bt6Zjx4488sgjvPnmm6xYsYKXXnqJ+Pj4Urnv3V3wdu7cSdu2bQ3p06dP57vvvuP06dN5zqlduzbPP/88EydONKTt2LGDDh06EBsbi7+/f55z8uuJDQoK4ubNm3h4eBQY3yNf7OBMXO6GrEoFdf3cWftSexNfreXodDqioqKoXbs2Go1tLRNmy7GDbcdfKrHf3xP74ovov/oKpWnTnHwz9sTWnbwBrU5hy6sdCfQpetOD5ORkfHx8SEpKKvR9QXpihRDCivTv35+///6b1q1bM378eJ555hkWLlxIdHQ0r7zySqndtziT2vz9/fMtb2dnV+CSd46Ojjg65t1+UqPRFPrL+eWHazHq+//GxKrI6Ykd/7DtNUig6NdrzWw5drDt+M0ae2BgzlfOhQFQt2gBzZqZ5/r/0ukVtLqcPz9dHO2Nit/Y1yiNWCGEsCIffvih4ecnnniCwMBAdu7cSVhYWKkuKXfvpLb+/fsb0jdt2kTfvn3zPadt27b8/vvvudI2btxIixYt8h0PWxI9GgQw/9lm/G9ZTkM2rIorr3arS48GeXt7hRDWIzP7v/GtTvbmXU9AGrFCCGHF2rRpQ5s2bcrkXkVNaps4cSIxMTEsXboUgFGjRjFnzhwiIiIYOXIku3btYuHChfzwww+lEl/PhgHYqVVk6xUWD21JNSM+lhRCGCEgAN591+xrxAJkaP9bV9vRzrw94NKIFUIIKxMVFUVkZCTx8fF5NlYoze2Vi5rUFhsbm2vN2OrVq7Nu3TpeeeUV5s6dS9WqVfn88895/PHHSy1GO01OIza7HG84IUSZCwiAUlrCLy0zGwAHjQqNmTcpkUasEEJYka+//pr//e9/VKpUCX9//1y7h6lUqlJtxAKMHj2a0QXMSF68eHGetM6dO3Pw4MG8hUuJvUZNhlZvGGMnhLBuCak5Ezm9nMy/NYE0YoUQwoq8//77TJ8+nTfeeMPSoVglVwcNKRnZpP7buyOEsG6JqVkAeDqZfzKd7NglhBBW5NatWzz55JOWDsNquTnm9L2kSSNWCJvwX0+sNGKFEKJce/LJJ9m4caOlw7Barv82YlMzbW/XJSEqohspOY1YTxlOIIQQ5VtYWBiTJk1i9+7dNGzYMM9SVaW17aytkJ5YIWzL5ZvpAPi7mb/JKY1YIYSwIgsWLMDNzY0tW7awZcuWXHkqlarCN2L/64mVRqwQtuByYhoAAW7mXTsapBErhBBW5eLFi5YOwaq5OeaMq0vJkEasELbgcmJOT2yAu/mbnDImVgghhM3wcXUA4GZaloUjEUIUJS0zm/h/x8SWRiNWemKFEMLCIiIieO+993B1dSUiIqLQsrNmzSqjqKyTr5sjAInSiBXC6p2OSwagspsj7o7mX51AGrFCCGFhhw4dQqvVGn4uyL0bH1RUldxyemLvLtsjhLBeJ67lNGLrVXUvletLI1YIISxs8+bN+f4s8vqvESs9sUJYuxMx/zZiAzwA8y+LJ2NihRBC2Axf13+HE0gjVgirdyI2CYD6VT1K5frSEyuEEFakf//++Q4bUKlUODk5ERYWxsCBA6lTp44ForO8uz2xN9Oz0OkVNGoZYiGENUrLzOZ0bAoADat5kBJ3y+z3kJ5YIYSwIp6envzzzz8cPHjQ0Jg9dOgQ//zzD9nZ2axYsYLGjRuzY8cOC0dqGZXcHNGoQKdXuJ6cYelwhBAFOBR9m2y9QlVPJ6p5OZfKPaQRK4QQVsTf35+BAwdy4cIFVq5cyapVqzh//jzPPfccNWvW5NSpUwwZMoQ33njD0qFahEatorJrzoeIMbfvWDgaIURB9l5MBKB1Dd9Sm5RarhqxBw8epGvXrnh5eeHr68sLL7xAampqrjLR0dH06dMHV1dXKlWqxLhx48jKkrFVQgjrsHDhQl5++WXU6v/entVqNS+99BILFixApVIxduxYjh8/bsEoLavKv9tXXr2VbuFIhBAF2X3xJgCtqvuU2j3KTSP22rVrPPzww4SFhbFnzx7Wr1/PiRMnGDp0qKGMTqfjkUceIS0tje3bt/Pjjz+ycuVKXn31VcsFLoQQ98jOzub06dN50k+fPo1OlzO718nJqUIvt+XnmrPe5NWb0hMrhDVKy8zmcPRtAFqXYiO23EzsWrt2Lfb29sydO9fQgzF37lyaNm3KuXPnCAsLY+PGjZw8eZIrV65QtWpVAD755BOGDh3K9OnT8fAwbvacXq/n2rVruLu7V+hfJEKIHIqikJKSQtWqVXP1oBbHoEGDGD58OG+99RYtW7ZEpVKxd+9ePvjgAwYPHgzAli1bqF+/vjlCt0lVXO/2xEojVghrtP1cAlk6PcE+LlSv5Ipery+V+5SbRmxmZiYODg65foE4O+cMJN6+fTthYWHs2rWLBg0aGBqwAN27dyczM5MDBw7QpUsXo+517do1goKCzPsChBA278qVKwQGBpboGp9++il+fn589NFHXL9+HQA/Pz9eeeUVwzjYbt260aNHjxLHa6vuDie4IsMJhLBK/5yKB+DBulVKtbOv3DRiH3zwQSIiIpg5cybjx48nLS2Nt956C4DY2FgA4uLi8PPzy3Wet7c3Dg4OxMXFFXjtzMxMMjP/2x1GURQALl68iLu7O1qtls2bN9OlSxfs7e1zHQO58szt/nub+7yiyhWUb2y6qcfmZsn6MzXPmLqRZ8+4ussvrSTPXkpKCtWrV8fdveS70mg0Gt5++23efvttkpNzFgq//1Oi4ODgEt/HllV1z/n3uHAjzcKRCCHup9cr/HMmpxH7cLhfEaVLRqXcbZFZqSlTpjB16tRCy+zbt48WLVqwfPlyIiIiSEhIQKPRMG7cOL777jsiIiKYMGECL7zwApcvX2bDhg25zndwcGDp0qU8/fTTJsWwfPlyXFxciv/ihBDlQnp6OgMHDiQpKcnoYUkiR3JyMp6enkbXnU6nY9+REzz90xUAjk3phruT+f9IKy06nY5Tp04RHh6ORmP+veRLky3HDrYdvy3FfvjKbfrN3YGrg4ZDk7vhYKc2OX5j3xesvid27NixBTYu7woNDQVg4MCBDBw4kOvXr+Pq6opKpWLWrFlUr14dyFm6Zs+ePbnOvXXrFlqtNk8P7b0mTpxIRESE4Tg5OZmgoCC6deuGh4cHWq2WTZs20bVrV0MPzt1jIFeeud1/b3OfV1S5gvKNTTf12NwsWX+m5hlTN/LsGVd3+aXde6xDzdWbqezduYMnexf9+u72mJrLL7/8wk8//UR0dHSe1VMOHjxo1nvZIjcHNZXdHLmRmsn5G2k0CfKydEhCiH/9fuQaAF3qVsHBrnTXD7D6RmylSpWoVKmSSefcbZB+++23ODk5GX6ht23blunTpxMbG0tAQAAAGzduxNHRkebNmxd4PUdHRxwdHfOk29vb5/rllt9xQXnmVtzrG3teUeUKyjc23dRjc7Nk/ZmaZ0zdVJS6Kyy/oHrRaOyIS87g4o0U9sSrOL8tmvjULGJv3yEqRsO7h7dz+44WgAcD1Aw0Ik5z1u/nn3/O22+/zZAhQ/j11195/vnnOX/+PPv27WPMmDFmu4+tC6viyo3UTM5eT5FGrBBWQqdXDI3Yfk2qlfr9rL4Ra4o5c+bQrl073Nzc2LRpE6+//joffvghXl5eQM5kiHr16jFo0CBmzpzJzZs3ee211xg5cqR8BChEOaJXIPpmOpdvZXA+Po2LCSkcPKNmdtR2Ym5nkKW7O1NWA+fP33OmCshpwDrbq9EppTOjtjDz5s1jwYIFPPPMMyxZsoQJEyZQo0YNJk+ezM2bN8s8HmsVVtmNXRducu5GatGFhRBlYs+FROJTMvF0tqdT7cqlfr9y1Yjdu3cv7777LqmpqdStW5evvvqKQYMGGfI1Gg1//PEHo0ePpn379jg7OzNw4EA+/vhjC0YthCguRclZZulMfCJnr6dwNj6Vs9dTOBevQbt7+32l1UDObHY7tYoATyec9Wk0CQuimrcrld3siD59jD4PdyDQxx1nO4U///yzzF9TdHQ07dq1A3JWWElJydl7fNCgQbRp04Y5c+aUeUzWqGYVVwDOXpdGrBDW4tfDOb2wvRoGlPpQAihnjdilS5cWWSY4OJi1a9eWQTRCCHPS6xUuJaZx/FoyJ2KSOHb1Nocva0jfvS2f0irsNSpqVnajZhU3gr2duHXlHI90bk1oZXcCPJ1Q9DrWrVtHr171DWNi110/Sm0/d8OxJfj7+5OYmEhISAghISHs3r2bxo0bc/HiRax8Hm6ZCg/I+fTsxLUkC0cihICcDQ7+OJazGlTfJlWLKG0e5aoRK4QoPzK1Os4nw1dbL3LoShIHom9xO/3+hmVOY7VWFXfqBrhTq4o71X2cuHJyP8/164GzU85Ydq1Wy7p1Z2lTw+e/iV16XRm/IuM8+OCD/P777zRr1ozhw4fzyiuv8Msvv7B//34ee+wxS4dnNeoFuKNSwfXkTOJTMqji7mTpkISo0H49fI3UzGxqVHIt1V267iWNWCGEVdDq9ByKvs22szfYeT6Ro1dvo9XZwYmzhjKOdmrqVfWgQVVPwv1duXXhKEP798DV+b+Jl1qtlnUXwU5jm7tqL1iwwLC7zahRo/Dx8WH79u306dOHUaNGWTg66+HiYEfNym6ci0/lREwyVepKI1YIS1EUhe93XwZgYOvgMtvNVBqxQgiLuZyYxpaoG2yNSmD3hURSM7Nz5bvbK7St5Uer6r60DPWhXlUP7P9tnN79+L8sxl2VJbVanWvnwaeeeoqnnnrKghFZr4bVPDkXn8qxmCS61K1i6XCEqLAOX7nNydhkHOzUPNG8ZLsWmkIasUKIMqMoCieuJbMuWs3cL3YSFZ97Uo63iz0dalWmY1glmgV5cHx3JI880qRUlwizRhkZGRw9epT4+Pg8e44/+uijForK+jSo5snqQzEci5FxsUJY0ne7cnphezcKwMvFoczuK41YIUSpUhSFYzFJ/Hr4GuuPxxFz+w45KwWkYqdW0SLUm061K9OpVmXqBXigVud8DKXVajlRNp9IWZX169czePBgEhIS8uSpVCp0Ouscy2sJDat5AnD06m0URSmzjzCFEP+JuX2H3/5dG3Zw29Ayvbc0YoUQpeLqrXTWHIph9aEYzt+zx72TvZra7tkM6tKIbvWr4ulSsXpZizJ27FiefPJJJk+eXOhOgiKnEWuvUXE9OZOrt+4Q5CPbgAtR1r7dfpFsvUKbGj5lvvGINGKFEGaTla3nz+OxLN8TzZ6L/y3M72inplt9f3o3CqBtqBeb/9pAryZVK9wwAWPEx8cTEREhDVgjODtoaFDNk0PRt9l36aY0YoUoY7fTs/hhbzQAozrXLPP7SyNWCFFiMbfvsHzPZVbsu0JCahYAKhW0qe5L/2bV6NnAH3enf5e2stD6q7biiSeeIDIykpo1y/4Xgi1qFepjaMQ+1qzsJpQIIeD73ZdJz9IRHuBB5zLYoet+0ogVQhTbxRQYvfwwf5+OR//vOvx+Ho480yqYJ1sEUc3L2bIB2qA5c+bw5JNPsm3bNho2bJint3rcuHEWisw6tQj14autF9h36ZalQxGiQknJ0PLN9osAjOpcwyJj0o1qxPr4mLZorUql4uDBg4SEhBQrKCGE9VIUhcgzN5i7+Sz7L9sB8QC0q+nLoDYhPFzPz7AMljDd8uXL2bBhA87OzkRGRub6xaBSqaQRe58WId4AnItP5WZaFj6uZTczWoiKbOH2i9xO11KzsiuPNAywSAxGNWJv377N7Nmz8fT0LLKsoiiMHj1aZtAKUc7o9Qp/Ho/ji3/OcjouBQCNSuGxZoG82LkmYVXcLRxh+fDOO+8wbdo03nzzzVzrxYr8ebs6UNffndNxKew8n0DvRmWz3aUQFdmttCy+2ZbTCxvRtY7FNpcxejjB008/TZUqxi0m/dJLLxU7IFui1WoNX3eP8/t+/8/mjqE41zf2vKLKFZRvbLqp383NkvVnap4pz5k5nz1FUdhyNoFZm85x6t/Gq6uDhqeaVyU08yJPPlIbe3t7o+9jiWevOPVpyrNhzuczKyuLAQMGSAPWBB1rVeJ0XApbo25II1aIMvDllvOkZmZTv6oHPRv4WywOlaIoisXubmPmzp3L3Llz0el0REVFsXz5clxcZDasKL/OJcPaaA0XU3I+0nbUKHQJ0NM5QMFFRtQbpKenM3DgQJKSkvDw8CjRtV555RUqV67MW2+9ZaborFtycjKenp5G151Op+PUqVOEh4ej0WgA2Bp1g8Hf7iXA04mdbz5o1evF5he/rbDl2MG247em2OOSMug8czOZ2XoWDW1p1G55psZv7PuC/BoywZgxYxgzZoyhcrt164aHhwdarZZNmzbRtWtXQ4/U3WMgV5653X9vc59XVLmC8o1NN/XY3CxZf6bmGVM35nr2rt66w4z1Z9h4Mme8q6OdmkFtgnmhYyje/+7GYkvPXnHq05TXl5ycbPTrL4pOp+Ojjz5iw4YNNGrUKM+9Z82aZbZ73evWrVuMGzeO3377DcjZGeyLL77Ay8urwHOGDh3KkiVLcqW1bt2a3bt3l0qMBWlV3QdHOzWxSRmci0+llp8MbRGitPzf+tNkZutpGerNA3XKfkWCe5nciL37Bnc/lUqFk5MTYWFhVK9evcSB2QJ7e/tcv2DyOy4or7RjMfd5RZUrKN/YdFOPzc2S9WdqnjF1U9y6S8/KZn7keb7aeoGsbD1qFTzTKphxD9XCz8PJ5PgLY4lnrzj1aUyc5nw2jx07RtOmTQE4fvx4rrzS7GEcOHAgV69eZf369QC88MILDBo0iN9//73Q83r06MGiRYsMxw4OZT+xysleQ6vqPmw7m8CWqBvSiBWilBy4fIvVh2JQqWBy7/oW/9TD5EZsv379UKlU3D8K4W6aSqWiQ4cOrFmzBm9vb7MFKoQoXeuPxzH19xPEJmUAOasNTO5Tj7r+Jft4XJhm8+bNZX7PU6dOsX79enbv3k3r1q0B+Prrr2nbti1nzpyhTp06BZ7r6OiIv7/lxsTd1bl2ZUMjdkTHGpYOR4hyR69XmPr7CQCebB5Iw8CiJ/uXNpMbsZs2beLtt99m+vTptGrVCoC9e/fyzjvvMGnSJDw9PXnxxRd57bXXWLhwodkDFkKY1/XkDCb/epwNJ64DEOTjzNu96tG9vp/F/8oWZWPXrl14enoaGrAAbdq0wdPTk507dxbaiI2MjKRKlSp4eXnRuXNnpk+fXugk4MzMTDIzMw3Hd4di6HQ6o1a1uVvm/rKdavkCsPtCIrfTMgyba1ibguK3BbYcO9h2/NYQ+y8HrnL0ahJujhpe7VrLpFhMjd/YciY3YsePH8+CBQto166dIe2hhx7CycmJF154gRMnTjB79myGDRtm6qWFEGVIr1f4YV80H647TUpmNnZqFaM612Tsg2E42dvWpIfy4LHHHjOq3KpVq8x+77i4uHwbnlWqVCEuLq7A83r27MmTTz5JSEgIFy9eZNKkSTz44IMcOHAAR0fHfM+ZMWMGU6dOzZN+5swZ3NzcjI45KioqT1qghx1Xk7NZ9s8ROld3NfpalpBf/LbClmMH247fUrGnZOqYse4aAE/Vd+fGlQvcKMZ1jI0/NTXVqHImN2LPnz+f70wxDw8PLly4AECtWrVISEgw9dJCiDJy7fYdXv3pCLsuJALQOMiL/3u8oQwdsCBj1uE21ZQpU/JtMN5r3759QP7jbe8OESvIgAEDDD83aNCAFi1aEBISwh9//FFgo3zixIlEREQYjpOTkwkKCqJOnTpGr04QFRVF7dq188xy7nNFw/wtFziepGFUeHiR17KEwuK3drYcO9h2/JaO/Y2Vx7idoadWFTde79sKBzvTlgA0NX5jJ8ua3Iht3rw5r7/+OkuXLqVy5ZxZaTdu3GDChAm0bNkSgLNnzxIYKHtYC2GNfj0cwztrjpOSkY2zvYbXu9dhSLtQNGoZOmBJ906OMpexY8fy9NNPF1omNDSUo0ePcv369Tx5N27cwM/Pz+j7BQQEEBISwtmzZwss4+jomG8vrUajMemXc37lezYMYP6WC2yJSkCrx6o/UTD19VoTW44dbDt+S8S+41wCvxzMmcz14eMNcXYs/lAdY+M39jWa3IhduHAhffv2JTAwkKCgIFQqFdHR0dSoUYNff/0VyOkGnjRpkqmXFkKUoqQ7WiatOc5vR3I+EmoS5MWnA5pQvZJ1f+wqiq9SpUpUqlSpyHJt27YlKSmJvXv3GuY67Nmzh6SkpFxDx4qSmJjIlStXCAiwzBaUDat5UtXTiWtJGWw7m0DXesY3wIUQeWVodby1+hgAg9qE0DzEx8IR5WZyI7ZOnTqcOnWKDRs2EBUVhaIo1K1bl65duxp2mOnXr5+54xRClMCBy7d4aflBriVloFGreOnBMMZ2CbPYVoHCuoSHh9OjRw9GjhzJV199BeQssdW7d+9ck7rq1q3LjBkz6N+/P6mpqUyZMoXHH3+cgIAALl26xFtvvUWlSpXo37+/RV6HSqWiewN/Fu24xNqj16QRK0QJfbopisuJ6fh7OPF694IneFpKsTY7UKlU9OjRgwceeABHR0eZwSyElVIUWLTzMh9tiCJbrxDi68KnA5rQLFiWvxO5LVu2jHHjxtGtWzcgZ7ODOXPm5Cpz5swZkpKSgJyP+44dO8bSpUu5ffs2AQEBdOnShRUrVuDubrl1Wvs1qcaiHZfYcCKO1Mxs3BxlTx8himPPhUQWbMuZ6/R+vwZWueKHyf+79Xo906dP58svv+T69etERUVRo0YNJk2aRGhoKMOHDy+NOIUQJkrJ0LIoSs2Rm2cAeKRRAP/3eCP5pS7y5ePjw/fff19omXvXB3d2dmbDhg2lHZbJGgV6UqOSKxcS0thwPI7Hm8v8DCFMlZyhJeKnIygKPNUikIet9FMNkz9LfP/991m8eDEfffRRrp1ZGjZsyDfffGPW4IQQxXM6LoX+8/dw5KYae42KqY/WZ84zTaUBK8o9lUpFv6bVAFhzOMbC0Qhhm6b8doKY23cI8nFmcp/6lg6nQCY3YpcuXcqCBQt49tlnc80ea9SoEadPnzZrcEII0x1JVPHUgj1cvpmOt4PC8uEtGdIuVIb9iAqjX5OcRuyOcwlcT86wcDRC2JZ1x2JZdTAGtQo+faqJVXd+mNyIjYmJISwsLE+6Xq9Hq9WaJSghhOkUReGLzef5NkrDHa2e9jV9eb2RjiZBXpYOTYgyFezrQosQb/QKrDx41dLhCGEzrt5KZ+KqnNUIRnWuSYtQ61qN4H4mN2Lr16/Ptm3b8qT//PPPNG3a1CxBCSFMcydLx9jlh/j8n/MADGkbzDeDmuJqfePwhSgTA1oGAfDD3mj0eqWI0kKIrGw9Y5YfIumOlkaBnrz8cG1Lh1Qkk/uI3333XQYNGkRMTAx6vZ5Vq1Zx5swZli5dytq1a0sjRiFEIWKTMhj9w2GOxyRjr1HxeEg27/Sqa+mwhLCo3o2qMm3tSa7cvMO2cwl0rl3Z0iEJYdVm/HmKI1du4+Fkx9yBzUzelcsSTG7E9unThxUrVvDBBx+gUqmYPHkyzZo14/fff6dr166lEaPV0mq1hq+7x/l9v/9nc8dQnOsbe15R5QrKNzbd1O/mZsn6MzUvvzq5lgYffLWH6ymZeLvY89mTDbgVtU+ePQqvu/zSSvLsyVAq6+PsoOHxZoEs3nmJZbsvSyNWiEKsOxbLoh2XAJj1VBOCfFwsG5CRVMq9a6aIQs2dO5e5c+ca9gBevnw5Li628Q8typ+oJBULz6jJ0Knwc1Z4sa4OXydLR1UxpaenM3DgQJKSkvDw8LB0ODYlOTkZT09Po+tOp9Nx6tQpwsPDi9ya8uz1FLp+uhWNWsWONx7E39Py/0FMid/a2HLsYNvxl2bs52+k0nfODlIzs3mxcw0m9gw36/XB9PiNfV+w3ilnVmjMmDGMGTPGULndunXDw8MDrVbLpk2b6Nq1K/b29rmOgVx55nb/vc19XlHlCso3Nt3UY3OzZP2Zmndv2p8nE/hqz3Gy9QrNgz358tlmeLnIs1dQujFpJXn2kpOTjX79ouzU8nOnVagPey/dZOmuS0zoIcNshLhXUrqWkUv2k5qZTatQH17vZn27chXGqEast7e30cvz3Lx5s0QB2RJ7e/tcv9zyOy4or7RjMfd5RZUrKN/YdFOPzc2S9WdKnqLAot1XmbnxLABNfPUsGdoCNxenPOeZGmNx2dKzZ0xacZ690qxfUTLDOlRn76WbLNsTzZguYbha8XJBQpSlbJ2el348xIWENKp6OjH32WY2txW5Uf+bZ8+ebfg5MTGR999/n+7du9O2bVsAdu3axYYNG5g0aVKpBCmEAL1eYdUlNVvjchqwz7cLoZH+PI72tvWxmBBlqWs9P0J9XbiUmM7P+68wtH11S4ckhFWY8edptkbdwNlew9dDWlDZ3dHSIZnMqEbskCFDDD8//vjjTJs2jbFjxxrSxo0bx5w5c/jrr7945ZVXzB+lEBVctk7PG6uOszVOjUoFb/cKZ0ibINatO2/p0ISwahq1iuEdqjPp1xMs3HGRQW1D0ahl4w9Rsf20/woLt18E4JOnGlO/qqeFIyoek/uNN2zYQI8ePfKkd+/enb/++sssQQkh/pOVreelHw6x5kgsahQ+eaIhIzrWsHRYQtiMJ5oH4e1iz5Wbd9hwIs7S4QhhUTvOJfD26pwNDcY/VIteDQMsHFHxmdyI9fX1ZfXq1XnS16xZg6+vr1mCEkLkyNDqeOG7/fx5PA57jYphdfT0aWS7bzhCWIKzg4ZBbUIAmLv5HLIoj6ioTl5L5sXvDqDVKTzSKIDxD9WydEglYvII96lTpzJ8+HAiIyMNY2J3797N+vXr+eabb8weoBAVVYYOhi89yN5Lt3C21zBvYBOSo/ZYOiwhbNLz7auzcPtFTlxLZtPJ63Sr72/pkIQoU1dvpTN00V5SM7NpU8OHWU81Rm3jQ2tM7okdOnQoO3fuxMvLi1WrVrFy5Uo8PT3ZsWMHQ4cOLYUQhah4ku5omXdSw95Lt3B3tGPp8FZ0CJNPOoQoLm9XB4a2DwVg9l9npTdWVCi307MY8u1e4lMyqePnzleDWuBoZ/uTgou11kjr1q1ZtmyZuWMRQgAJqZk89+1+Lqeq8HK257vhrWkY6Cm7QglRQiM61GDJzsucjE1mw4nr9GggvbGi/LuTpWPEkv2cv5FGgKcTi4e1xNO5fCwLaFRPrKkLeaekpBQrGCEqutikOzz11S5Ox6XgYa+wbHgLGgba5qxRIayNt6sDQ9uFAjD7ryj0eumNFeVbZnbOvIr9l2/h4WTHkmGtCPB0tnRYZmNUI9bb25v4+HijL1qtWjUuXLhQ7KCEqIiiE9N58stdXPj3r+WX6uuo7edu6bCEKFdGdKyOu5Mdp+NSWHUoxtLhCFFqtDo9Y5YdYtvZBJztNXw7tGW5+51i1HACRVH45ptvcHNzM+qi8rGnEKY5F5/Cs9/s4XpyJqG+LiwZ2pzDOzdbOiwhyh0vFwfGdgljxp+nmbnhNL0a+uPiILt4ifJFp1d4ZcVh/jp1HQc7Nd8MaUGLUB9Lh2V2Rv3PDQ4O5uuvvzb6ov7+/mbfhnH69On88ccfHD58GAcHB27fvp0rPzExkWeffZajR4+SmJhIlSpV6Nu3Lx988AEeHh4AXLp0ierV8+7W8ueff+a79q0QZeFkbDLPLznIzbQsavu58f3w1ng7azhs6cCEKKeGtAvlu92XuXrrDl9vvcj4h217mSEh7qXXK7yx8ihrj8Zir1Hx1XPNaR9WydJhlQqjGrGXLl0q5TCKlpWVxZNPPknbtm1ZuHBhnny1Wk3fvn15//33qVy5MufOnWPMmDHcvHmT5cuX5yr7119/Ub9+fcOxj0/5++tE2IZLKTDp2/0kZ2TTsJonS4e1wtvVQT7NEKIUOdlreKNHXV764RBfbT3PM62CqOLhZOmwhCgx3b8N2F8OXEWjVvH5003pUreKpcMqNTbzGcrUqVMBWLx4cb753t7e/O9//zMch4SEMHr0aGbOnJmnrK+vL/7+MitVWNbuCzeZe1JDlj6blqHeLBzaEg+n8jFjVAhr17tRAN/uuMih6Nt8tOEMHz/Z2NIhCVEiWp2eiJ+O8PuRa2jUKmY91ZieNrwblzFMXifWVly7do1Vq1bRuXPnPHmPPvooVapUoX379vzyyy8WiE5UdJtPxzPiu4Nk6VW0r+nLkmGtpAErRBlSqVS880g9AH45cJW9F29aOCIhii8rW8/Y5Qf5/cg17NQq5jzTlL5Nqlk6rFJnMz2xxnrmmWf49ddfuXPnDn369Mm1i5ibmxuzZs2iffv2qNVqfvvtNwYMGMCSJUt47rnnCrxmZmYmmZmZhuO7S45ptVrD193j/L7f/7M55Xcvc55XVLmC8o1NN/W7uVmi/v48HservxxDq1No4K1nzoD62KuUfJ+XwtKMKVOc12YsW3r2ilOfprw+Gf5hm5qHePN0yyB+3HeFt1cf449xHXGwK7d9O6KcytDqGL3sIP+cjsdBo2bes814uJ6fpcMqEyrFgtuWTJkyxTBMoCD79u2jRYsWhuPFixfz8ssv55nYdVdcXBy3b9/mzJkzvPXWW3Tu3Jl58+YVeP2XXnqJLVu2cPToUZPjXL58OS4uLoXGL8S99sarWH5ejYKKZr56ngvTo5HfmTYvPT2dgQMHkpSUZJhIKoyTnJyMp6en0XWn0+k4deoU4eHhaDQl33HodnoWD32yhcS0LCb0qMPoB8JKfM3CmDv+smTLsYNtx19Q7CkZWl787gA7zyfiaKfm68Et6FS7sgUjzZ+pdW/s+4JFe2LHjh3L008/XWiZ0NBQk67p7++Pv78/devWxdfXl44dOzJp0iQCAvIfF9KmTZtcvbX5mThxIhEREYbj5ORkgoKC6NatGx4eHmi1WjZt2kTXrl2xt7fPdQzkyjO3++9t7vOKKldQvrHpph6bW1nW348HYlm26zQATzavxuSetfjn77/yvUZ+1zembuTZM67u8ksrybNn6oYwwnp4uTjw9iPhRPx0hM//PkvvhlUJ9pXOCWH94v+/vTuPi6rqHzj+GbZhGTbBBRDcUNwVcQlXLEXN1MpM00zSLLfKrPy1PC71WE+LZVmmZQbWo9lqpfmomKbmlqKYC4K4gaACsu8wc39/kJMjIDMIDiPf9+s1L7znnHvnO8fL5cy5556TXUhY+EFOXsrGyc6azyf1ILhV/VqevFqN2N27d/Ppp59y5swZvv/+e3x8fPjqq69o0aIFffv2Nfo4np6eeHrW3rQP1zqZrx8KcKMjR45U2sC9Rq1Wo1ary6Xb2toa/HGraLuyvJpW3eMbu19V5SrLNzbd1O2aVtv1t2pvIu9tiwdgcp8WzLuvHaWlpVUeo6I8Y+rmTqq7mjz3qlOfxsRZm/Urat8DgT58H3WRvWeu8sL3R1k39S6srFTmDkuISp1NzeWxL/7kYkYBnho7wsN61svVHU1uxP7www9MnDiRCRMmcOTIEX0DMScnhzfffJNNmzbVeJAACQkJpKenk5CQgFarJTo6GgB/f380Gg2bNm3iypUr9OjRA41Gw8mTJ5k7dy59+vTR9+auXr0aW1tbAgMDsbKyYsOGDSxdupS33367VmIWQlEUfrlgxW/JZQ3YZ+9pzexBrVGp5A+kEHWFSqXirQc7M/TDXfx5Lp0v9pzjiX4tzR2WEBWKTsxkcsRB0vOKaebhyJeTe9LMw8ncYZmFyaPxFi1axIoVK1i5cqVB70Pv3r05fPhwjQZ3vfnz5xMYGMiCBQvIzc0lMDCQwMBADh06BICDgwMrV66kb9++tGvXjtmzZ3PfffexcePGcvF3796dHj16sG7dOr744guee+65Wotb1F86ncLCjTH8llz2a/bqve14bnAbacAKUQf5eTgy776y2Qre2RLL6Ss5Zo5IiPJ2nErhkc/2k55XTCcfV36Y3rveNmChGj2xsbGx9O/fv1y6i4tLpQ9b1YSIiIhK54gFGDhwIHv37r3pMSZNmsSkSZNqODIhyivV6pj7/V/8eCQJFQqvj+zAxN7lV4sTQtQd43r4suXEZX6PTeW5b6NZP6MPtvLkpagDFEVh/clsvjhyAUWBfq09WfFoEE7qO26SKZOY/Nvp5eVFfHx8ufQ//viDli3l9osQhSVaZq09wo9HkrC2UjGxtY5xPZqaOywhRBVUKhVvj+6Mq4Mtx5OyWbw11twhCUFxqY6X1x9n1eEMFKXsy9aqST3qfQMWqtGIfeqpp3j22Wc5cOAAKpWK5ORk1qxZwwsvvMCMGTNqI0YhLEZWQQmTvviTzScuY2djxbJxXQjyNNssdkIIEzV2seft0Z0A+HTnWbafumLmiER9lp5XzKOrDvBdVBJWKvjX8Lb858FOMp/x30xuxs+dO5esrCwGDhxIYWEh/fv3R61W88ILLzBr1qzaiFEIi3A5q5Cw8D85dTkHjdqGzyYG0aOZK5vOmTsyIYQphnb0Iqx3cyL2nmfOt0f59Zl++Lg5mDssUc/EXclhyuqDJKYXoFHb8GKfBjzau7k8V3GdajXl33jjDdLS0vjzzz/Zv38/qamp/Pvf/67p2ISwGPEpOYxevpdTl3No6Kzmm6fuord/7U0fJ4SoXS/f25bOTV3JzC9h1trDFJVqzR2SqEc2/pXMA8v2kJhegF8DR36YdhdB3vJF6kbV7o92dHSke/futG3blm3bthETE1OTcQlhMaIuZPDQin0kZRbQsqETP07vTQfv+jdfnxB3ErWNNcvGd8PZ3oYjCZnM/+kEZlzgUtQTxaU6Xttwgllrj5BXrCW4pQc/z+yDfyONuUOrk0xuxD788MN8/PHHABQUFNCjRw8efvhhOnfuzA8//FDjAQpRl209eYUJn+8nM7+Err5ufD+tN74NZLUfIe4Evg0c+eiRQKxU8M2hRML3nDd3SOIOdjmrkEdW7tefZ9NDWvHVlJ64O9mZN7A6zORG7K5du+jXrx8A69evR6fTkZmZydKlS1m0aFGNByhEXaQoCtuSVMz8+iiFJTrubtuItVN70UAuNkLcUUICGvHKve0AWPTrSXbFpZo5InEn2hOfxvClu4m6kIGzfdkzFf83tC02MsXbTZlcO1lZWTRo0ACAzZs3M3r0aBwdHRk+fDinT5+u8QCFqGuKSrX83/oTbEiwBiCsd3M+mxiEo51MdyLEnWhK3xY8FNQUnQIz1x7m1OVsc4ck7hDFpTre+t8pHl11gKt5xbRt4syGWX0J7dDE3KFZBJMbsb6+vuzbt4+8vDw2b95MaGgoABkZGdjb29d4gELUJel5xUz8/E/WH0nGCoUF97Vl4cgO8m1ZWLw33niD3r174+joiJubm1H7KIrCwoUL8fb2xsHBgZCQEE6cOFG7gZqBSqXijQc60qO5OzmFpTy26k8S0/PNHZawcMeTshj24S5W7DyDosAjPX1ZP6MPzT3r7wpcpjK562j27NlMmDABjUZDs2bNCAkJAcqGGXTq1Kmm4xOizoi5lM1TX0WRkJ6PRm3Doy2LeLSXn7nDEqJGFBcXM2bMGIKDg1m1apVR+7zzzju8//77RERE0KZNGxYtWsTgwYOJjY3F2dm5liO+vdQ21nz+WA8e/nQfsVdymPTFn3w3LRgPjdrcoYk6Lr+4lNNXcom9ksPpKznEXs7h6MUssgpKAHC0s+a9MV0Y1snLzJFaHpMbsTNmzKBXr14kJCQwePBgrKzKeqBatmwpY2LFHWv9kYu8/OMxCkt0+DZw4NMJgZw+tMvcYQlRY1577TWAmy7vfT1FUfjggw949dVXefDBBwFYvXo1jRs3Zu3atTz11FO1FarZuDrasnpyT0Yv38vZtDwmRxxkzdS70MjKSeI6ien5rP0zgbjLOcSl5JCYXlBpWUc7a7bO7k9TeSC4Wqr1mxcUFERQUJBB2vDhw2skIEtSUlKif13brujnjf+u6Riqc3xj96uqXGX5xqab+rOmVXX84lIdb22O5asDiQD08/fgvTGd0NiqOG1EXDc7vql5ppxncu4ZXy81ce7VVh3XZefOnePy5cv6IWUAarWaAQMGsHfv3kobsUVFRRQVFem3s7PLxpdqtVq02qrnYr1WxpiytaGhxpbwsCDGfnaAoxezeGzVAb6Y1B1ne+P+nJo7/lthybHD7Yu/ocaWqPNXOZaUBYCDbdniBFqdQvF1b21jBUsf7oyXq7rKmOpb3RtbTqVUY+K7ixcv8ssvv5CQkEBxcbFB3vvvv2/q4SzGsmXLWLZsGVqtlri4ONauXYujo3x7ulNlFkF4nDXnc8suQEN8dAz11WEli6WIG+Tn5zN+/HiysrJwcXExdzi3JCIigtmzZ5OZmXnTcnv37qVPnz4kJSXh7e2tT3/yySe5cOECW7ZsqXC/hQsX6nt9r7dv3z40GsuZCzP+ahGv/pZCXrGOtp5qXr+7EY52MjZelJddpGXFn+nsulA2jtrP1ZbnenvQ2kOGolQmNzeX4ODgKq+pJvfE/vbbb4wcOZIWLVoQGxtLx44dOX/+PIqi0K1bt1sKuq6bOXMmM2fOJDs7G1dXV0JDQ3FxcaGkpITIyEgGDx6Mra2twTZgkFfTbnzvmt6vqnKV5Rubbup2Tavs+L/FpPDBTyfIyC/B2d6GxQ914u6AhkbXizHlTM0zpm7k3DOu7ipKu5Vz71pvYl1TWYPxegcPHqR79+7Vfo8bl8BUFOWmy2K+/PLLzJkzR7+dnZ2Nr68vAQEBRn0BuNaJ0KZNG6ytrasd961qBzRvkcWk8EOcSiviP/tzCDeiR7auxF8dlhw73P74/3f8MnO+jS7X+5qSV8Ir267w2cQgercybmXH+lb3xl5TTW7Evvzyyzz//PO8/vrrODs788MPP9CoUSMmTJjA0KFDTT2cRbO1tTX441bRdmV5tR1LTe9XVbnK8o1NN3W7pl07fmGJljd+jeGr/RcA6ODtwicTutHMo+KnRWui/kzNM6Zu5Nwzru4qSqvOuVeb9XsrZs2axbhx425apnnz5tU6dpMmZVMAXb58GS+vfx5ISUlJoXHjxpXup1arUavL90BZW1ub9MfZ1PK1oatfA9Y80YsJnx/gSEImk8IP8kVYD6Me9qoL8VeXJccOtyf+pMwCfj56yaABC1CqK3v1bO5O39aNbvqFryL1pe6N/YwmN2JjYmL4+uuvy3a2saGgoACNRsPrr7/OqFGjmD59uqmHFKJOOHU5m2e+PkLclVwApvZrwQtDAlDbWO4FQ9Rvnp6eeHoa19NjqhYtWtCkSRMiIyMJDAwEymY42LlzJ2+//XatvGdd1NHHlTVP9OLRVWVjZMes2MfqyT1l5b56qkSrI3zPOZZEnqagRIuNlQqN2obMAsNx88+HtjG5ASvKM3kAj5OTk35Qvre3N2fOnNHnpaWl1VxkQtwmWh0s33mWkR/tIe5KLp4aNV9O7smrw9tLA1bUGwkJCURHR5OQkIBWqyU6Opro6Ghyc3P1Zdq2bcv69euBsmEEs2fP5s0332T9+vUcP36csLAwHB0dGT9+vLk+hll09HHl+2m98XFz4GxaHqOX7yXmUvnboRuOJqPTmfwYirAQURfSGfHRH7y56RQFJVp6NHdn07P9+PrJu7Cz+ae51a+1J71aepgx0juHyT2xd911F3v27KF9+/YMHz6c559/nmPHjvHjjz9y11131UaMQtSaU5dzeP+4NRfz4gEY1K4Rb43ujKfM/Sjqmfnz57N69Wr99rXe1R07dujnA4+NjSUrK0tfZu7cuRQUFDBjxgwyMjLo1asXW7duvePmiDWGfyMNP0zvzaQv/iT2Sg4PLd/Lh+MCGdS+bGhFfEouc76NJvu+dnSpf9VzR0vJLuTdLbF8F3URAHdHW16+tx0PdWuK1d9PAs8b3o55P5ctBPJ8aIDZYr3TmNyIff/99/XfzBcuXEhubi7ffPMN/v7+LFmypMYDFKI2FJVq+WTHGZbtiKdUp8LVwYaFIztwf1cfucUj6qWIiIgq54i9cTIblUrFwoULWbhwYe0FZkGauNrz7VPBTPtvFPvOXmXqV4d4cUgA0/q35LUNJyjRKnyw7TThD3hXfTBR5xWWaFm56yzLd54h/+/Brw93b8pLw9rRwMnOoOyjdzXjj/g0tDro6utmhmjvTCY3Ylu2bKn/t6OjI5988kmNBiREbfs9NoXXNpzkXFoeAJ0b6FjxRB+8G1jO9D5CiLrJ1dGWL6f05LUNJ/jv/gTe2RzLjlOpHDyfDkBucSlQ/guBsBw6ncIvR5N5Z/MpkrMKAQj0c+Nfw9sT1My9wn1UKhVvj+5MWm5Rhfmieqq9zEhxcTEpKSnodDqDdD8/WYZT1E0XM/L598aTbDlxBYCGzmr+NSwAJeEwDZ1l+IAQombYWlux6P5OBDRxYeEvJ/QN2OttPnGF+7r4mCE6cSsOnL3Km/87xdHETAB83ByYOzSAkV28q7yL5+Zoh5uj3U3LCNOY3IiNi4tjypQp7N271yD92tyAlrqahLhz5RWV8vnucyzfGU9hiQ5rKxWP927Os4NaY28NmxLNHaEQ4k408a5mRCdk8MPhJH1aqU5BURT+symGPv4NcXeSRo0lOJqYyeKtsew+XfYAu5OdNTMG+jOlbwvsbeUBYHMxuRH7+OOPY2Njw8aNG/Hy8pLxg6LOKtHqWHcwkQ+3ndbfwunVogGvj+pIQJOyJyvq43KhQojb48LVPDb8dckgrUQL/9mdxtW8Ihb9GsN7D3cxU3TCGKcuZ/Pe1jgiT5bdwbOxUjG2hy/PDmpNI2d7M0cnTG7ERkdHExUVRdu2bWsjHiFumaIo/O/4Zd7dEqsf99rMw5EXhwQwvJN88RJC3B7/3niS4lJdufS9CWXLj/5w+CKjunrTv03DcmWEeR1PyuKT3+P53/HLKApYqeCBwKbMHtRa5gCuQ0xuxLZv317mgxV1kk5X1nj9aPtpTl3OAcDDyY5nB7VmXA8/g3n6hBCiNm0/dYVtMSnl0tU24KWx5Xxm2V2gp76KYvPsfpWuCihurwNnr7Ls9zPsikvVpw3v5MVzg1vj30jmRqtrjGrEXr+G7dtvv83cuXN588036dSpU7nlFo1Z+1qImlSq1bHxr0t8vCOe+JSy6d80ahsm923Bk/1bolFX+/lFIYQwmaIo/Hd/Ag2c7MjML+b69Q2sVCqWDPNizDcJlOqgoETLoPd38tKwdkwKboaNtXzZvt20OoXfYq6wcvdZDp7PAMDaSsXILt5MG9BKP/xM1D1G/XV3c3MzuAWrKAr33HOPQRl5sEvcbnlFpXwfdZEv9pzjwtWy23Mu9jY83qcFj/dpLk+BCiHMQqVS8UVYD6DsDlFOUSlZ+SVk5BeTmVeIbWka84e3I+ZKLpEnr5CWW8y/N57ku0OJLBjRgeBWsprT7ZBdWMK3BxNZve88iekFANhZWzGme1Oe6t8KPw8ZNlDXGdWI3bFjR23HIYTRLmbks3rvedYdTCSnsGzORXdHW57o15KJwc1wsbet4ghCCHF7WFmpcHWwxdXBFj8PR7RaLTExaUy4qxnW1ta8cb/Ct4cSeXvzKU5dzuGRlfsZ0KYhLw4JoKOPq7nDvyOdSc1lzYFEvo+6SN7fixS4OtjySE8/Hu/TnMYu8sCWpTCqETtgwIDajkOIm9LpFPbEp7HmwAU2H7+svz3X0tOJx/s058FuTXGSYQNCCAtjZaViXE8/hnRowpJtcaw9kMDOuFR2xqUyoos3zw1qTcuGshDLrcovLmXD0SRW77rMydQL+vQ2jTWE9W7BA4E+ONjJVFmWxui/+vn5+bz44ov89NNPlJSUMGjQIJYuXYqnp2dtxlenlZSU6F/Xtiv6eeO/azqG6hzf2P2qKldZvrHpVf1MSs9l60UViz/YTWJGof44vVs1ICy4GQNae/69NrVSrTo2Z/2ZmmfKeSbnnvH1YuxPY2IVorrcnex4fVRHpvRtwfuRcfwcncyGo8ls/CuZoR2a8NSAVrJcqYkUReGvi1l8eyiRX6KTySkqu3NnbaViYEAjwno3p4+/h8xYY8FUipFr37344ot88sknTJgwAXt7e77++mtCQkL47rvvajvGOmPZsmUsW7YMrVZLXFwca9euxdFRxszUtFIdxGSq2J+i4mSGCh1lFxh7a4Xungp9Guvwlgd5RR2Sn5/P+PHjycrKkodbTZSdnY2rq6vRdVd2Oz6Gdu3aYW1teT1nxsZ/IjmLJZFxBjMc3NWyAVP7tSQkoBHWVre/4WUpdR93JYdfopPZ8Fey/nkJAL8GjoT42TFtSFe83S3rj4il1H1lTI3f2OuC0T2xP/74I6tWrWLcuHEAPProo/Tp0wetVmuRFVodM2fOZObMmfrKDQ0NxcXFhZKSEiIjIxk8eDC2trYG24BBXk278b1rer+qylWWb2z6te17Bg0iOimXn6OT+fVoEvnafy7QLZ0Vnri7Hfd1rvnbPeasP1PzbnaeVVQG5NyrrO4qSjOmfitz/QwuQtSEDt6ufD6pB3FXcvh051l+jk5i/9l09p9Nx9vVnrE9/Hi4R1O8XB3MHarZKYpCfEouW09eYcPRZP0UiwAOttaEdmjM2B6+9PBzIzb2lIx5vYMY3YhNTEykX79++u2ePXtiY2NDcnIyvr6+tRJcXWdra2vwx62i7cryajuWmt6vqnKV5d8s3cbGhhPJ2fx83oo3P9zHleyiv3NVNNTYMaqrD6MDvYg7tIt7u/vdsfVnal5V5921NFNjrC5LOveqU5/GxFmb9SvqtzaNnXnv4S48H9qG8D3n+C7qIslZhSzZFseHv8UxMKARI7t6c0+7xvVqOsESrY6D59LZFpPCtpgrJKT/0+Nqa61iQJuGjOjizeD2jXG0K6sXmT3pzmP0Ga/VarGzM5yyyMbGhtLS0hoPSty5SrU6TmepWLTpFNtiUknKLACsgCKc7W0Y2qExjQoSeHrsAOzVdpSUlBBn7qCFEMLMvN0ceHV4e54PDWDLicusPZDAgXPp/HYqhd9OpWBnY0VIm4YM7+zF3W0b4XyHzdKiKApnUvPYdyaNvWeu8kd8mn52GiibGiu4lQfDOjZhaMcmMsViPWF0I1ZRFMLCwlCr1fq0wsJCpk2bhpPTP2NLfvzxx5qNUFi8/OJS/jidxtaTV/gt5goZ+dZAAgD2tla0dS7lySHduKdDE6wUHZs2XTDLeC8hhKjr7G2tGdXVh1FdfYhPyeXn6CR+/esSZ9Py2HryCltPXsHaSkWgrxv9WjekXxtPOvu4WtwiCqVaHadTcolOzGT/2avsPXOV1JwigzIeTnYMbNuIQe0a0bd1w3rVEy3KGP0/PmnSpHJpjz76aI0GI+4MiqIQcymH35JUrAs/RNSFTIq1/6wf7mSjMKSTD0M7enFXczd2bNvC4PaNsLWxpqSk/DrjQgghyvNvpOH50ADmDG5DzKUcNh27xKZjZQ3aQxcyOHQhgyXb4nC2tyHQz52uTV3p6udGl6ZueGjUVb/BbVKi1XHhah4xl3I4mpjJXxezOJaURUGJ4e1/Oxsrujdzp3crD4JbedLV1006POo5oxux4eHhtRmHsHBXsguJSkxhZ1wqu0+n/f2N2RpIB8DHzYHQDo25J8CTlJP7GTG8o/7hGSGEENWnUqlo7+1Ce28XXhgSQGJ6PrtPp7H7dCp74tPILixlV1wqu+JS9fs0dXfAv5GGVg01tGzoRKuGGlp4OuGpUddKw7CoVMuVrCKSswq4lFXAudQ8TqfkEp+Sy7m0PEp15SdK0qht6OTjSlAzd3r7e9DNzx172/rxILkwjvS9C5MpisLFjAL2n73K/rNp7DxhTdq+XQZlHGytaOFUyoO92zGwXRNaejqhUqkoKSlhU4yZAhdCiHrAt4Ej43v5Mb6XH6VaHScvZXM0MZMjiZkcTczkTGoeFzMKuJhRwO+xqQb7WqnAU6OmkYuaRs72NNSocVLb4Ghnjb2tiuz0bP7KTcTa2gqtDrSKgk6noNUpFJZqyS4oJbuwhOyCErILS8nMLyY5s5C03KJKoi3jaGdN60YaOjd1o4uvG12autKyoUZ6WsVNSSNWVKlYC0cSMjl+qWx80sHz6VzKKryuhAorFbTzcqGvvyf92zSki48zv23dzL3BzeTJbSGEMBMbays6N3Wjc1M3JgaXpWUVlHAyOZuzabmcTc3jbGru3w3bfHQKpOQUkZJTBFQyddyhjGrFYmdjhberPV6uDjTzcMS/kYbWjZ3xb6TBy8X+74VrhDCeNGKFgeJSHfEpuRxLyuToxSyiEzI4ddka3Z9/GpSztVbRuakb3f3cIDWep0YPooHzPws/yDABIYSom1wdbAlu5UFwKw+D9FKtjvS84r8bsYVcyS7iam4RecVaCoq15BWVcDktA1v7sjtrVlYqrFUqrK3K/q22scLF3hYXB5u/f9ri6mCLl6s9Xq72NHCyk9WxRI2SRmw9pSgKGUWwIzaV+LR8Tl3KIfZyDmdScysYm6TCU2NHV9+yb/Pdm7kT6OeOg5112fCATafvuOlchBCivrGxtqKRiz2NXOwB13L5lr5qlLjzSCP2DpdXVMq5tDz963xaHmfT8jiTmktOoQ0cPlJuH2d7Gzp6u9LF140OXhquxkUx/v7B5eYJFkIIIYQwF2nEWriCYi1XCmB3fBopOSUkZRaQlFk2YP98Wt7f45oqZqVS8G/oTFsvF9p6OdO2iTNtm7jg5Wqvv+VTUlLCpgvILSAhhBBC1CnSiK2j8otLScspJjW3kNScYlJzi0jNKSLt75+XswpJyiwgPa8YsIHow5Uey8PJjuaeTrS47uXrpibu0G5G3tdbHrwSQgghhMWxmEbsG2+8wa+//kp0dDR2dnZkZmaWK3Pw4EFeeukloqKiUKlU9OjRg3feeYeuXbvqyxw7doxZs2bx559/0qBBA5566inmzZtXaz2NpVoduSVwNjWP3BKF7IISMguKycwvITO/hKyCEjLzi8ksKNvOyC8mLadsIL2x1NYKzTyc8XF3wNvNAR93B3zcHGjm4UQLDydcHcs3UktKSjhrWQu4CCGEEELoWUwjtri4mDFjxhAcHMyqVavK5efk5DBkyBBGjRrFJ598QmlpKQsWLGDIkCFcvHgRW1tbsrOzGTx4MAMHDuTgwYPExcURFhaGk5MTzz//fK3E/eIPx9l4zAYO7TF5X3tbKxo6q2moUeOpUZf9++9XY2d7fNwdaORkw+7tkQwfLj2qQgghhKg/LKYR+9prrwEQERFRYX5sbCwZGRm8/vrr+Pr6ArBgwQI6d+5MQkICrVq1Ys2aNRQWFhIREYFaraZjx47ExcXx/vvvM2fOnFrpjXX7uxfU2d4GN0db3BzscHMsm3rEzcFWn+bqeG3bjobOajw1dmjUNlXGVFJSggxXFUIIIUR9YzGN2KoEBATg6enJqlWreOWVV9BqtaxatYoOHTrQrFkzAPbt28eAAQNQq/9ZM3rIkCG8/PLLnD9/nhYtWlR47KKiIoqK/nlAKju7bALokpIS/eva9o0/59zdgm6qcwwNHWhyT2lpaWmVZW58T2MZu19V5SrLNzbd1J81zZz1Z2qeMXVzs7SaZknnXnXq05TPJ/MiCyHE7adSFKX8gsV1WEREBLNnz65wTOyJEycYNWoU586dA6BNmzZs2bIFPz8/AEJDQ2nevDmfffaZfp/k5GR8fHzYu3cvwcHBFb7nwoUL9T3B11u7di2Ojo4V7CGEqE/y8/MZP348WVlZuLi4mDsci5KdnY2rq6vRdWfpc5VacvyWHDtYdvyWHDuYHr+x1wWz9sRW1ji83sGDB+nevXuVxyooKGDy5Mn06dOHr7/+Gq1Wy+LFi7n33ns5ePAgDg4OQPmpoq614W922/7ll19mzpw5+u3s7Gx8fX0JDQ3FxcWFkpISIiMjGTx4MLa2tgbbgEFeTbvxvWt6v6rKVZZvbLqp2zXNnPVnap4xdSPnnnF1V1HarZx71+7OCCGEuH3M2oidNWsW48aNu2mZ5s2bG3WstWvXcv78efbt24eVlZU+zd3dnZ9//plx48bRpEkTLl++bLBfSkoKAI0bN6702Gq12mAIwrWGb0FBgf6PXX5+PgUFBZSWlhpsAwZ5Ne3G967p/aoqV1m+semmbtc0c9afqXnG1I2ce8bVXUVpt3LuXatvC7uxVSdcqzNjvwhotVpyc3PJzs622B4pS43fkmMHy47fkmMH0+O/dj2o6ppq1kasp6cnnp6eNXKs/Px8rKysDHpUr23rdDoAgoODeeWVVyguLtavPrV161a8vb2NbixD2UwIgP4BMiGEgLJrg6tr+eU6ReXkeiqEqExV11SLGRObkJBAeno6v/zyC++++y67d+8GwN/fH41Gw6lTp+jatSuTJ0/m6aefRqfT8dZbb7FhwwZiYmLw8vIiKyuLgIAA7r77bl555RVOnz5NWFgY8+fPN2mKLZ1OR3JyMs7OzvpGc48ePTh48KC+zLXta0MPEhMTa22s3I3vXdP7VVWusnxj02+2fafXn6l5VdXd9Wl3et3dLN+YuqsorbrnnqIo5OTk4O3trb8TJIxT0fX0Zm7HeV2bLDl+S44dLDt+S44dTI/f2GuqxcxOMH/+fFavXq3fDgwMBGDHjh2EhITQtm1bNmzYwGuvvUZwcDBWVlYEBgayefNmvLy8AHB1dSUyMpKZM2fSvXt33N3dmTNnjsF4V2NYWVnRtGlTgzRra2uD/5gbt11cXGrtxLvxvWp6v6rKVZZvbHpV23Dn1p+pecbUlZx7xtVLRWm3cu5JD2z1VHQ9NUZtnte3gyXHb8mxg2XHb8mxg2nxG3NNtZhGbERERKVzxF4zePBg/QMtlenUqRO7du2qwcjKzJw586bbtam672XsflWVqyzf2HRz1t2tvF9N1J+pecbUlZx7xteLuc89IYQQ1WcxwwkslanTxwhDUn/VJ3V3a6T+6iZL/3+x5PgtOXaw7PgtOXaovfhl8FYtU6vVLFiwwGB2A2E8qb/qk7q7NVJ/dZOl/79YcvyWHDtYdvyWHDvUXvzSEyuEEEIIISyO9MQKIYQQQgiLI41YIYQQQghhcaQRK4QQQgghLI40YoUQQgghhMWRRmwd88ADD+Du7s5DDz1k7lDqvI0bNxIQEEDr1q35/PPPzR2OxZFzrXoSExMJCQmhffv2dO7cme+++87cIdUbb7zxBr1798bR0RE3N7cKyyQkJDBixAicnJzw9PTkmWeeobi4+PYGaqS4uDhGjRqFp6cnLi4u9OnThx07dpg7LKP9+uuv9OrVCwcHBzw9PXnwwQfNHZLJioqK6Nq1KyqViujoaHOHY5Tz588zZcoUWrRogYODA61atWLBggV19jwH+OSTT2jRogX29vYEBQXpV129VdKIrWOeeeYZvvzyS3OHUeeVlpYyZ84ctm/fzuHDh3n77bdJT083d1gWRc616rGxseGDDz7g5MmTbNu2jeeee468vDxzh1UvFBcXM2bMGKZPn15hvlarZfjw4eTl5fHHH3+wbt06fvjhB5OWFb+dhg8fTmlpKdu3bycqKoquXbty3333cfnyZXOHVqUffviBiRMn8vjjj3P06FH27NnD+PHjzR2WyebOnYu3t7e5wzDJqVOn0Ol0fPrpp5w4cYIlS5awYsUKXnnlFXOHVqFvvvmG2bNn8+qrr3LkyBH69evHsGHDSEhIuPWDK6LO2bFjhzJ69Ghzh1Gn7dmzR7n//vv1288884yydu1aM0ZkmeRcu3WdOnVSEhISzB1GvRIeHq64urqWS9+0aZNiZWWlJCUl6dO+/vprRa1WK1lZWbcxwqqlpqYqgLJr1y59WnZ2tgIo27ZtM2NkVSspKVF8fHyUzz//3Nyh3JJNmzYpbdu2VU6cOKEAypEjR8wdUrW98847SosWLcwdRoV69uypTJs2zSCtbdu2yksvvXTLx5aeWBPs2rWLESNG4O3tjUql4qeffipXpra6zO80t1qXycnJ+Pj46LebNm1KUlLS7Qi9TpBzsfpqsu4OHTqETqfD19e3lqMWxti3bx8dO3Y06FkbMmQIRUVFREVFmTGy8jw8PGjXrh1ffvkleXl5lJaW8umnn9K4cWOCgoLMHd5NHT58mKSkJKysrAgMDMTLy4thw4Zx4sQJc4dmtCtXrjB16lS++uorHB0dzR3OLcvKyqJBgwbmDqOc4uJioqKiCA0NNUgPDQ1l7969t3x8acSaIC8vjy5duvDxxx9XmG9Ml3lQUBAdO3Ys90pOTr5dH6NOuNW6VCpYo0OlUtVqzHVJTZyL9VVN1d3Vq1d57LHH+Oyzz25H2MIIly9fpnHjxgZp7u7u2NnZ1blb9CqVisjISI4cOYKzszP29vYsWbKEzZs3Vzret644e/YsAAsXLuRf//oXGzduxN3dnQEDBljEsC5FUQgLC2PatGl0797d3OHcsjNnzvDRRx8xbdo0c4dSTlpaGlqtttzvZePGjWvmd/KW+3LrKUBZv369QVpNdZnXt1u81anLioYTrFmzptZjrYtu5Vysb+fajapbd4WFhUq/fv2UL7/88naEeUdbsGCBAtz0dfDgQYN9KhtOMHXqVCU0NLRcuq2trfL111/X1kcwYOzn0el0ysiRI5Vhw4Ypf/zxhxIVFaVMnz5d8fHxUZKTk29LrNWNfc2aNQqgfPrpp/p9CwsLFU9PT2XFihVmid2U+D/88EOld+/eSmlpqaIoinLu3Lk6MZygOr8LSUlJir+/vzJlyhQzRX1zSUlJCqDs3bvXIH3RokVKQEDALR/f5tabwQL+6TJ/6aWXDNJrqsu8PjGmLnv27Mnx48dJSkrCxcWFTZs2MX/+fHOEW+fIuVh9xtSd8ncvzt13383EiRPNEeYdZdasWYwbN+6mZZo3b27UsZo0acKBAwcM0jIyMigpKSnXE1RbjP0827dvZ+PGjWRkZODi4gKUDWOJjIxk9erV5c7B28HY2HNycgBo3769Pl2tVtOyZUuz3u0xNv5Fixaxf/9+1Gq1QV737t2ZMGECq1evrs0wK2Xq70JycjIDBw4kODi4zt4R8vT0xNraulyva0pKSo38TkojtobUVJf5kCFDOHz4MHl5eTRt2pT169fTo0ePmg63TjOmLm1sbHjvvfcYOHAgOp2OuXPn4uHhYY5w6xxjz0U518ozpu727NnDN998Q+fOnfXjab/66is6dep0u8O9I3h6euLp6VkjxwoODuaNN97g0qVLeHl5AbB161bUavVtG2dq7OfJz88HwMrKcFSflZUVOp2uVmKrirGxBwUFoVariY2NpW/fvgCUlJRw/vx5mjVrVtthVsrY+JcuXcqiRYv028nJyQwZMoRvvvmGXr161WaIN2XK70JSUhIDBw4kKCiI8PDwcudRXWFnZ0dQUBCRkZE88MAD+vTIyEhGjRp1y8eXRmwNu3FcpqIoJo3V3LJlS02HZLGqqsuRI0cycuTI2x2Wxaiq/uRcq9zN6q5v375ma2TUdwkJCaSnp5OQkIBWq9XP6+nv749GoyE0NJT27dszceJE3n33XdLT03nhhReYOnWqvrezrggODsbd3Z1JkyYxf/58HBwcWLlyJefOnWP48OHmDu+mXFxcmDZtGgsWLMDX15dmzZrx7rvvAjBmzBgzR1c1Pz8/g22NRgNAq1ataNq0qTlCMklycjIhISH4+fmxePFiUlNT9XlNmjQxY2QVmzNnDhMnTqR79+76XuOEhIQaGcMrjdgaUttd5vWJ1OWtkfqrPqm7um3+/PkGt3oDAwMB2LFjByEhIVhbW/Prr78yY8YM+vTpg4ODA+PHj2fx4sXmCrlSnp6ebN68mVdffZW7776bkpISOnTowM8//0yXLl3MHV6V3n33XWxsbJg4cSIFBQX06tWL7du34+7ubu7Q7nhbt24lPj6e+Pj4co1upYKHns1t7NixXL16lddff51Lly7RsWNHNm3aVCO99nWz/9kCXd9lfr3IyEh69+5tpqgsk9TlrZH6qz6pu7otIiICRVHKvUJCQvRl/Pz82LhxI/n5+Vy9epWPPvqo3NjHuqJ79+5s2bKFq1evkp2dzb59+xg2bJi5wzKKra0tixcv5sqVK2RnZxMZGUmHDh3MHVa1NG/eHEVR6Nq1q7lDMUpYWFiFvwd1sQF7zYwZMzh//rx+urv+/fvXyHGlJ9YEubm5xMfH67fPnTtHdHQ0DRo0wM/Pr1a7zO80Upe3Ruqv+qTuhBDiDnHL8xvUIzt27KhwyotJkybpyyxbtkxp1qyZYmdnp3Tr1k3ZuXOn+QKuw6Qub43UX/VJ3QkhxJ1BpSh1uP9ZCCGEEEKICsiYWCGEEEIIYXGkESuEEEIIISyONGKFEEIIIYTFkUasEEIIIYSwONKIFUIIIYRZLFy4sNbnZ42IiMDNza1W30OYhzRihRBCCGEgLCwMlUqFSqXCxsYGPz8/pk+fTkZGhrlDM9nYsWOJi4szdxiiFshiB0IIIYQoZ+jQoYSHh1NaWsrJkyeZPHkymZmZfP311+YOzSQODg44ODiYOwxRC6QnVgghhBDlqNVqmjRpQtOmTQkNDWXs2LFs3brVoEx4eDjt2rXD3t6etm3b8sknnxjk/9///R9t2rTB0dGRli1bMm/ePEpKSoyOQavVMmXKFFq0aIGDgwMBAQF8+OGH+vzCwkI6dOjAk08+qU87d+4crq6urFy5Eig/nODo0aMMHDgQZ2dnXFxcCAoK4tChQ6ZUjagjpCdWCCGEEDd19uxZNm/ejK2trT5t5cqVLFiwgI8//pjAwECOHDnC1KlTcXJyYtKkSQA4OzsTERGBt7c3x44dY+rUqTg7OzN37lyj3len09G0aVO+/fZbPD092bt3L08++SReXl48/PDD2Nvbs2bNGnr16sW9997LiBEjmDhxIgMHDmTq1KkVHnPChAkEBgayfPlyrK2tiY6ONvhcwoKYe8kwIeqzSZMm6Zc9Xb9+fa28x4ABA5Rnn3222vtfi8/V1bXGYhJC1G2TJk1SrK2tFScnJ8Xe3l5/HXj//ff1ZXx9fZW1a9ca7Pfvf/9bCQ4OrvS477zzjhIUFKTfXrBggdKlSxeTYpsxY4YyevTocsf19PRUnn76aaVJkyZKamqqPi88PNzg+uXs7KxERESY9J6ibpLhBKJGXf8wwPWv+Ph4c4dWZw0dOpRLly4xbNiw2/q+ISEhrFixospyly5d4oMPPqj9gIQQdcrAgQOJjo7mwIEDPP300wwZMoSnn34agNTUVBITE5kyZQoajUb/WrRoEWfOnNEf4/vvv6dv3740adIEjUbDvHnzSEhIMCmOFStW0L17dxo2bIhGo2HlypXljvH8888TEBDARx99RHh4OJ6enpUeb86cOTzxxBMMGjSIt956yyBeYVmkEStq3LVG2fWvFi1alCtXXFxshujqnmvjztRqdaVlTBlDZoz09HT27t3LiBEjqizbpEkTXF1da/T9hRB1n5OTE/7+/nTu3JmlS5dSVFTEa6+9BpTd5oeyIQXR0dH61/Hjx9m/fz8A+/fvZ9y4cQwbNoyNGzdy5MgRXn31VZOu/d9++y3PPfcckydPZuvWrURHR/P444+XO0ZKSgqxsbFYW1tz+vTpmx5z4cKFnDhxguHDh7N9+3bat2/P+vXrTakaUUdII1bUuGuNsutf1tbWhISEMGvWLObMmYOnpyeDBw8G4OTJk9x7771oNBoaN27MxIkTSUtL0x8vLy+Pxx57DI1Gg5eXF++99x4hISHMnj1bX0alUvHTTz8ZxOHm5kZERIR+OykpibFjx+Lu7o6HhwejRo3i/Pnz+vywsDDuv/9+Fi9ejJeXFx4eHsycOdOgAVlUVMTcuXPx9fVFrVbTunVrVq1ahaIo+Pv7s3jxYoMYjh8/jpWVlUnf9M+fP49KpeLbb78lJCQEe3t7/vvf/3L16lUeeeQRmjZtiqOjI506dSr3lHBFdVWRX3/9lS5duuDj40NGRgYTJkygYcOGODg40Lp1a8LDw42OVwhRPyxYsIDFixeTnJxM48aN8fHx4ezZs/j7+xu8rnVa7Nmzh2bNmvHqq6/SvXt3WrduzYULF0x6z927d9O7d29mzJhBYGAg/v7+FV5PJ0+eTMeOHfnyyy+ZO3cuJ0+evOlx27Rpw3PPPcfWrVt58MEH5ZpnoaQRK26r1atXY2Njw549e/j000+5dOkSAwYMoGvXrhw6dIjNmzdz5coVHn74Yf0+L774Ijt27GD9+vVs3bqV33//naioKJPeNz8/n4EDB6LRaNi1axd//PEHGo2GoUOHGnyj37FjB2fOnGHHjh2sXr2aiIgIg4bwY489xrp161i6dCkxMTGsWLECjUaDSqVi8uTJ5S6EX3zxBf369aNVq1Ym19X//d//8cwzzxATE8OQIUMoLCwkKCiIjRs3cvz4cZ588kkmTpzIgQMHTK6rX375hVGjRgEwb948Tp48yf/+9z9iYmJYvnz5TW/FCSHqp5CQEDp06MCbb74JlPVo/uc//+HDDz8kLi6OY8eOER4ezvvvvw+Av78/CQkJrFu3jjNnzrB06VKTezz9/f05dOgQW7ZsIS4ujnnz5nHw4EGDMsuWLWPfvn18+eWXjB8/noceeogJEyZU2ONbUFDArFmz+P3337lw4QJ79uzh4MGDtGvXrpq1IszK3INyxZ3l+ocBrr0eeughRVHKHjDq2rWrQfl58+YpoaGhBmmJiYkKoMTGxio5OTmKnZ2dsm7dOn3+1atXFQcHB4OHlajgwShXV1clPDxcURRFWbVqlRIQEKDodDp9flFRkeLg4KBs2bJFH3uzZs2U0tJSfZkxY8YoY8eOVRRFUWJjYxVAiYyMrPCzJycnK9bW1sqBAwcURVGU4uJipWHDhjd9gGDSpEnKqFGjDNLOnTunAMoHH3xQ6X7X3Hvvvcrzzz+vKIpidF0VFhYqzs7Oyl9//aUoiqKMGDFCefzxx2/6Pjc+GCGEuLNVdG1SFEVZs2aNYmdnpyQkJOi3u3btqtjZ2Snu7u5K//79lR9//FFf/sUXX1Q8PDwUjUajjB07VlmyZInBtaSqB7sKCwuVsLAwxdXVVXFzc1OmT5+uvPTSS/p9YmJiFAcHB4MHzLKyspTmzZsrc+fOVRTF8PpVVFSkjBs3TvH19VXs7OwUb29vZdasWUpBQUH1KkqYlUyxJWrcwIEDWb58uX7byclJ/+/u3bsblI2KimLHjh1oNJpyxzlz5gwFBQUUFxcTHBysT2/QoAEBAQEmxRQVFUV8fDzOzs4G6YWFhQa3pjp06IC1tbV+28vLi2PHjgEQHR2NtbU1AwYMqPA9vLy8GD58OF988QU9e/Zk48aNFBYWMmbMGJNivebGutJqtbz11lt88803JCUlUVRURFFRkb5+z5w5Y1Rdbd++HQ8PDzp16gTA9OnTGT16NIcPHyY0NJT777+f3r17VytmIcSd4fo7UNcbP34848ePr3T7Ru+88w7vvPOOQdr1Q8EWLlzIwoULK91frVYTHh5e7i7Xf/7zHwDatm1Lfn6+QZ6Liwvnzp3Tb4eFhREWFgaAnZ2dxS3WIConjVhR4649DFBZ3vV0Oh0jRozg7bffLlfWy8urygH616hUKhRFMUi7fiyrTqcjKCiINWvWlNu3YcOG+n/fOFegSqXSP8BgzIovTzzxBBMnTmTJkiWEh4czduxYHB0djfoMN7qxrt577z2WLFnCBx98QKdOnXBycmL27Nn6W2Y3fv7KXD+UAGDYsGFcuHCBX3/9lW3btnHPPfcwc+bMcuN7hRBCiLpExsQKs+rWrRsnTpygefPm5R4OuNYYtrW11T/tCpCRkVFuHeyGDRty6dIl/fbp06cNvp1369aN06dP06hRo3LvY+yT9506dUKn07Fz585Ky9x77704OTmxfPly/ve//zF58mRjq6JKu3fvZtSoUTz66KN06dKFli1bGjTyjakrRVHYsGEDI0eONDh2w4YNCQsL47///S8ffPABn332WY3FLYQQQtQGacQKs5o5cybp6ek88sgj/Pnnn5w9e5atW7cyefJktFotGo2GKVOm8OKLL/Lbb79x/PhxwsLCsLIyPHXvvvtuPv74Yw4fPsyhQ4eYNm2aQa/qhAkT8PT0ZNSoUezevZtz586xc+dOnn32WS5evGhUrM2bN2fSpElMnjyZn376iXPnzvH777/z7bff6stYW1sTFhbGyy+/jL+/v8Gt/Vvl7+9PZGQke/fuJSYmhqeeeorLly/r842pq6ioKPLy8ujfv78+bf78+fz888/Ex8dz4sQJNm7cKA85CCGEqPOkESvMytvbmz179qDVahkyZAgdO3bk2WefxdXVVd/4evfdd+nfvz8jR45k0KBB9O3bl6CgIIPjvPfee/j6+tK/f3/Gjx/PCy+8YHAb39HRkV27duHn58eDDz5Iu3btmDx5MgUFBbi4uBgd7/Lly3nooYeYMWMGbdu2ZerUqeTl5RmUmTJlCsXFxTXaCwtlswh069aNIUOGEBISQpMmTbj//vsNylRVVz///DPDhw/HxuafkUR2dna8/PLLdO7cmf79+2Ntbc26detqNHYhhBCipqkUYwfSCVGHhISE0LVr1zq5ktSePXsICQnh4sWLNG7c+KZlw8LCyMzMLDfHbW3p3Lkz//rXvwymMDNGREQEs2fPJjMzs3YCE0IIIUwkD3YJUUOKiopITExk3rx5PPzww1U2YK/ZuHEjGo2GdevWcd9999VafMXFxYwePdrk5W01Gg2lpaXY29vXUmRCCCGE6aQnVlikutgTGxERwZQpU+jatSu//PILPj4+Ve6TkpJCdnY2UDYbw40zEtQF8fHxQNl434qWDxZCCCHMQRqxQgghhBDC4siDXUIIIYQQwuJII1YIIYQQQlgcacQKIYQQQgiLI41YIYQQQghhcaQRK4QQQgghLI40YoUQQgghhMWRRqwQQgghhLA40ogVQgghhBAWRxqxQgghhBDC4vw/YhIkkU6IF78AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Bode and Nyquist plots\n", + "plt.figure(figsize=[7, 4])\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "plt.title(\"Bode plot for L\", size='medium')\n", + "ax2 = plt.subplot(2, 2, 3)\n", + "ct.bode_plot(L, ax=[ax1, ax2])\n", + "\n", + "ax3 = plt.subplot(1, 2, 2)\n", + "ct.nyquist_plot(L, ax=ax3)\n", + "plt.title(\"Nyquist plot for L\", size='medium')\n", + "\n", + "ct.suptitle(\"Loop analysis for inverted pendulum\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "8dH03kv9-Da8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "N = encirclements: -1\n", + "P = RHP poles of L: 1\n", + "Z = N + P = RHP zeros of 1 + L: 0\n", + "Poles of L = [-1.05124922+0.j 0.95124922+0.j]\n", + "Zeros of 1 + L = [-1.05+2.8102491j -1.05-2.8102491j]\n", + "\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/murray/Library/CloudStorage/Dropbox/macosx/src/python-control/murrayrm/control/timeresp.py:1009: UserWarning: Non-zero initial condition given for transfer function system. Internal conversion to state space used; may not be consistent with given X0.\n", + " warnings.warn(\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY10lEQVR4nO3deXhTZfo+8PskadOmadJ9o2Vp6UJpBQQEUQQ3UFmsC+MGggyo44JOR8dhRJYOijrqKM4wbr8BR+qCyurXQRBBURZlLy1LKS2UQumeNF3SJjm/P9JEaltoadNzkt6f68rVNjk55zlhu3ne875HEEVRBBERERG5PYXUBRARERFR12CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCOSMUEQsHbt2otuM2PGDKSlpbV7nwUFBRAEAQcOHOhUbT3JwoULER4e3q5fD7lYuHAhBEGAIAh48803u/3427Ztcx6/I78/iahzGOyIuklHAxgAnDt3DrfeeiuAtgPZW2+9hRUrVnRNkdTCkSNHsGjRIrz77rvNfj3cwcCBA3Hu3Dk8/PDDzufee+89jB07FjqdDoIgoKqqqsX7KisrMW3aNOj1euj1ekybNq3ZdgcPHsR9992HmJgY+Pr6YsCAAXjrrbea7WPUqFE4d+4cfve737nq9IioFSqpCyCitkVERFxyG71e7/I6Ghoa4O3t7fLjyFFeXh4A4Pbbb4cgCJe9n8bGRnh5eXVVWe2iUqla/B6qra3FLbfcgltuuQVz585t9X33338/zpw5g40bNwIAHn74YUybNg0bNmwAAOzduxehoaFYuXIlYmJisGPHDjz88MNQKpV44oknAADe3t6IiIiAr68vzGazC8+SiC7Ejh2RRMaOHYs5c+bgz3/+M4KCghAREYGFCxc22+bCob9+/foBAIYMGQJBEDB27FgALTuBGzduxLXXXouAgAAEBwdj4sSJznDSXn379sXixYsxY8YM6PV6zJ49GwCwY8cOXHfddfD19UVMTAzmzJmDmpoa5/uWLVuG+Ph4+Pj4IDw8HHfffXez833iiSfwxBNPOGubN28eRFF0blNZWYkHH3wQgYGB0Gg0uPXWW5Gbm+t8fcWKFQgICMA333yDAQMGQKvV4pZbbsG5c+ec22zbtg1XXXUV/Pz8EBAQgGuuuQanTp1yvr5hwwYMHToUPj4+iI2NxaJFi2CxWFr9HBYuXIhJkyYBABQKhTPY2Ww2ZGRkIDo6Gmq1GoMHD3aGIODX7uqqVaswduxY+Pj4YOXKlW0eo3fv3lCr1YiKisKcOXMAABkZGUhNTW2x/dChQzF//vx2nWtrnn76afzlL3/ByJEjW339yJEj2LhxIz744ANcffXVuPrqq/H+++/jq6++wrFjxwAAM2fOxNKlSzFmzBjExsZi6tSpeOihh7B69eqLHpuIXI/BjkhCH374Ifz8/LB79268+uqryMjIwObNm1vd9ueffwYAfPvttzh37lyb/4jW1NQgPT0dv/zyC7Zs2QKFQoE77rgDNputQ7X9/e9/R0pKCvbu3YsXXngBWVlZGD9+PO68804cOnQIn332GX788Udnh2bPnj2YM2cOMjIycOzYMWzcuBHXXXddi/NVqVTYvXs3li5din/84x/44IMPnK/PmDEDe/bswfr167Fz506IoojbbrsNjY2Nzm1qa2vx2muv4aOPPsIPP/yA06dP45lnngEAWCwWpKWlYcyYMTh06BB27tyJhx9+2BnIvvnmG0ydOhVz5sxBTk4O3n33XaxYsQIvvvhiq5/BM888g+XLlwOwD4s7AuRbb72F119/Ha+99hoOHTqE8ePHY/Lkyc1CKAA899xzmDNnDo4cOYLx48e32P8XX3yBf/zjH3j33XeRm5uLtWvXOsPczJkzkZOTg19++cW5/aFDh7B//37MmDHjkud6uXbu3Am9Xo8RI0Y4nxs5ciT0ej127NjR5vsMBgOCgoI6dWwi6gIiEXWL6dOni7fffrvz5zFjxojXXntts22GDx8uPvfcc86fAYhr1qwRRVEU8/PzRQDi/v37L7rf3yopKREBiFlZWRfdz4X69OkjpqWlNXtu2rRp4sMPP9zsue3bt4sKhUKsq6sTv/zyS1Gn04lGo7HVfY4ZM0YcMGCAaLPZnM8999xz4oABA0RRFMXjx4+LAMSffvrJ+XpZWZno6+srrlq1ShRFUVy+fLkIQDxx4oRzm3/9619ieHi4KIqiWF5eLgIQt23b1moNo0ePFl966aVmz3300UdiZGRkm5/FmjVrxN/+VRkVFSW++OKLzZ4bPny4+Nhjj4mi+Otn/Oabb7a5X1EUxddff11MSEgQGxoaWn391ltvFf/whz84f3766afFsWPHiqJ46XNdsGCBOGjQoDaPvXXrVhGAWFlZ2ez5F198UYyPj2+xfXx8fIvPzmHHjh2il5eXuGnTphavXer3JxF1LXbsiCR0xRVXNPs5MjISJSUlndpnXl4e7r//fsTGxkKn0zmHcE+fPt2h/QwbNqzZz3v37sWKFSug1Wqdj/Hjx8NmsyE/Px8333wz+vTpg9jYWEybNg2ZmZmora1tto+RI0c26yhdffXVyM3NhdVqxZEjR6BSqZp1ioKDg5GYmIgjR444n9NoNIiLi3P+fOFnFhQUhBkzZmD8+PGYNGkS3nrrrWbDtHv37kVGRkazc5g9ezbOnTvXota2GI1GnD17Ftdcc02z56+55ppmdbb2Gf7WlClTUFdXh9jYWMyePRtr1qxpNiw8e/ZsfPLJJ6ivr0djYyMyMzMxc+bMdp1rZ7TW9RNFsdXns7Ozcfvtt2P+/Pm4+eabu+T4RHT5GOyIJPTbi+kFQejwkOlvTZo0CeXl5Xj//fexe/du7N69G4B9AkRH+Pn5NfvZZrPhkUcewYEDB5yPgwcPIjc3F3FxcfD398e+ffvwySefIDIyEvPnz8egQYNanXXZGvGCa+1++/yFgaK1z+zC9y5fvhw7d+7EqFGj8NlnnyEhIQG7du1ynsOiRYuanUNWVhZyc3Ph4+PTrjovPO7F6gRafoa/FRMTg2PHjuFf//oXfH198dhjj+G6665zDj1PmjQJarUaa9aswYYNG2A2m3HXXXe161wvV0REBM6fP9/i+dLSUoSHhzd7LicnBzfccANmz56NefPmdeq4RNQ1GOyI3IRjVqrVam1zm/Lychw5cgTz5s3DjTfeiAEDBqCysrJLjn/llVciOzsb/fv3b/Fw1KZSqXDTTTfh1VdfxaFDh1BQUIDvvvvOuY/fho5du3YhPj4eSqUSycnJsFgsziDqOJ/jx49jwIABHap1yJAhmDt3Lnbs2IGUlBR8/PHHznM4duxYq+egULTvr0OdToeoqCj8+OOPzZ7fsWNHh+sEAF9fX0yePBlLly7Ftm3bsHPnTmRlZQGwf57Tp0/H8uXLsXz5ctx7773QaDTtOtfLdfXVV8NgMDiv6QSA3bt3w2AwYNSoUc7nsrOzcf3112P69OltXqNIRN2Py50QuYmwsDD4+vpi48aNiI6Oho+PT4ulTgIDAxEcHIz33nsPkZGROH36NP7yl790yfGfe+45jBw5Eo8//jhmz54NPz8/HDlyBJs3b8bbb7+Nr776CidPnsR1112HwMBAfP3117DZbEhMTHTuo7CwEOnp6XjkkUewb98+vP3223j99dcBAPHx8bj99tsxe/ZsvPvuu/D398df/vIX9OrVC7fffnu7aszPz8d7772HyZMnIyoqCseOHcPx48fx4IMPAgDmz5+PiRMnIiYmBlOmTIFCocChQ4eQlZWFxYsXt/uzePbZZ7FgwQLExcVh8ODBWL58OQ4cOIDMzMwOfKL2Wb5WqxUjRoyARqPBRx99BF9fX/Tp08e5zaxZs5yB8aeffmr3ubaluLgYxcXFOHHiBAAgKysL/v7+6N27N4KCgjBgwADccsstzl8HwL7cycSJE52/lo5QN27cOKSnp6O4uBgAoFQqERoa2qHPgIi6FoMdkZtQqVRYunQpMjIyMH/+fIwePRrbtm1rto1CocCnn36KOXPmICUlBYmJiVi6dKlzaZTOuOKKK/D999/j+eefx+jRoyGKIuLi4nDPPfcAAAICArB69WosXLgQ9fX1iI+PxyeffIKBAwc69/Hggw+irq4OV111FZRKJZ588slmi+cuX74cTz31FCZOnIiGhgZcd911+Prrr9u9/ptGo8HRo0fx4Ycfory8HJGRkXjiiSfwyCOPAADGjx+Pr776ChkZGXj11Vfh5eWFpKQkzJo1q0OfxZw5c2A0GvGnP/0JJSUlSE5Oxvr16xEfH9+h/QQEBODll19Geno6rFYrUlNTsWHDBgQHBzu3iY+Px6hRo1BeXt7s+sNLnWtb3nnnHSxatMj5s2Pm8vLlyzFjxgwAQGZmJubMmYNx48YBACZPnox//vOfzvd8/vnnKC0tRWZmZrMw26dPHxQUFHToMyCiriWIbV3YQkTUhcaOHYvBgwdLcnsrdyaKIpKSkvDII48gPT293e9buHAh1q5dK/mt42bMmIGqqiq3uRUbkbvjNXZERDJVUlKCN954A0VFRXjooYc6/P6srCxotVosW7bMBdVd3Pbt26HVajs8PE1EncOhWCIimQoPD0dISAjee+89BAYGdui9c+bMwdSpUwFAkuvehg0b5uwWarXabj8+UU/FoVgiIiIiD8GhWCIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCMiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AObDYbzp49C39/fwiCIHU5RERE1IOIoojq6mpERUVBobh4T47Brh3Onj2LmJgYqcsgIiKiHqywsBDR0dEX3YbBrh38/f0B2D9QnU4ncTVERETUkxiNRsTExDjzyMUw2LWDY/hVp9Mx2BEREZEk2nM5GCdPEBEREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2Cwc3NVtQ14+tP9WLolF/WNVqnLISIiIgmppC6AOmfh+mysPXAWALBmfxFevCMFo+JCJK6KiIiIpMCOnRvbnHMeaw+chUIAQv3VyC+rwf3v78aznx9EZU2D1OURERFRN2Owc1NVtQ3465osAMDD18Vhy5/GYNrIPhAE4PO9Z3DjG99j27ESiaskIiKi7sRg56YyvspBabUZcaF+ePqmeOh8vPC3tBR88egoJIb7o6KmAemrDsJs4XV3REREPQWDnRv67uh5rN5XBIUA/H3KIPh4KZ2vDe0TiA1PXosInQ8qahrwTfZ5CSslIiKi7iT7YFdaWooJEyZAo9EgMTERW7ZsaXW79PR0xMbGwt/fH8OGDcMPP/zgfG3btm1QKBTQarXOx/bt27vrFLqUoa4Rc1fbh2BnjY7Flb0DW2zjrVLgnuExAIDMXae6tT4iIiKSjuyD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurna8nJCTAZDI5H6NHj+7O0+gyi7/KwXmjGbEhfki/OaHN7e69KgYKAdidX4ETJaZurJCIiIikIutgZzKZsG7dOmRkZECj0SAtLQ0pKSnYsGFDi20XLFiA/v37Q6FQYMqUKfD19cXx48clqNp1Dp2pwud7z0AQgFfvvqLZEOxvRep9cUNSOADg492nu6tEIiIikpCsg11ubi70ej0iIyOdzw0aNAjZ2dkXfV9BQQEqKirQv3//Zs+FhYUhPj4eGRkZsFrbnlRgNpthNBqbPeRg69FSAMAtAyMwrG/QJbd/YGRvAMAXewu5eDEREVEPIOtgZzKZoNPpmj2n0+lgMrU9tNjY2Ijp06fj2WefhV6vBwAkJSXhwIEDKC4uxrp167Bq1SosXbq0zX0sWbIEer3e+YiJiemaE+qkHXllAIDR8aHt2v66+FD0CvCFsd6C/zt0zpWlERERkQzIOthptdoW3TKj0QitVtvq9qIoYsaMGQgLC8PChQudz0dERCApKQkKhQLJycmYN28e1qxZ0+Zx586dC4PB4HwUFhZ2yfl0Rn2jFftPVwEAro4Lbtd7lAoB94+wd+0yd3MSBRERkaeTdbCLj4+HwWBAcXGx87mDBw9i4MCBrW7/5JNP4uzZs1i5ciUUirZP7WKvAYBarYZOp2v2kNreU5VosNoQqfdB32BNu983ZVg0VAoB+05X4cg5eQwpExERkWvIOthptVpMnjwZCxYsQF1dHdavX4/Dhw9j0qRJLbZdsGABfvrpJ6xbtw5qtbrZa9u2bXN23XJzc7F48WJMnDixW86hqziGYa+ODYYgCO1+X5i/D8YN5CQKIiKinkDWwQ4Ali1bhsLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu4yMDBw5cgRRUVHOteoyMzMBAHv37sXIkSPh5+eHcePGIS0tDenp6VKd0mXZmVcOoP3DsBd6YEQfAMCa/UWoMVu6tC4iIiKSD0EURVHqIuTOaDRCr9fDYDBIMixrMlswaNEmWG0ifnzuekQHtn8oFgBsNhE3vvE98stqsOTOVNx3VW8XVUpERERdrSM5RPYdOwJ+KaiA1Said5Cmw6EOABQKAfddZZ/Z+9kv0k8EISIiItdgsHMDzmHY2I4PwzpMHtQLgH2RY2N9Y5fURURERPLCYOcGHMFuVP/LD3YReh/0C/GDTQR+ya/oqtKIiIhIRhjsZM5Q24jDZw0AOtexA4CRsfa7VTiCIhEREXkWBjuZ251fDlEE4kL9EKbz6dS+RjYFw135DHZERESeiMFO5nZ0YpmT33IEu+yzRhhqeZ0dERGRp2Gwk7ldJ5uur4sL6fS+wnU+iA3xgygCPxfwOjsiIiJPw2AnY2UmM44WVwP4tdvWWSObOn+OwEhERESeg8FOxhzhKynCH0F+3l2yT0dA5AQKIiIiz8NgJ2OduY1YWxwzY48UG1FV29Bl+yUiIiLpMdjJmHP9ui64vs4hzN8HcaH26+x2cz07IiIij8JgJ1PFhnqcLKuBQgCu6hfUpft2LnvC6+yIiIg8CoOdTO07XQkAGBCpg97Xq0v3fbVzAgU7dkRERJ6EwU6m8kpMAICkCF2X73tEP3uwO3LOiMoaXmdHRETkKRjsZOpkWQ0AIDbUr8v3HeqvRnyYFgCvsyMiIvIkDHYydbLU3rGLc0GwA3idHRERkSdisJMhURSRV2rv2MWFal1yDAY7IiIiz8NgJ0Ol1WaYzBYoBKB3sMYlxxjRtJ7d0eJqVPA6OyIiIo/AYCdDJ5qGYXsHaaBWKV1yjBCtGgnhTdfZsWtHRETkERjsZOhkqWPihGuGYR2u5nAsERGRR2GwkyFnsAtxzcQJh1+vs+PMWCIiIk/AYCdDeY4ZsWGu7dhd2ScQAJBbUo26BqtLj0VERESux2AnQyfL7MHO1R27MH81QrRq2ETgaLHRpcciIiIi12Owk5n6RivOVNYBcH3HThAEDIyy39ni8FkGOyIiInfHYCczBeU1EEVA56NCsJ+3y4+X0sse7LKLDC4/FhEREbkWg53MXDgjVhAElx8vJUoPADh8lsGOiIjI3THYyUxeieNWYq4dhnVI6WUPdseLTWiw2LrlmEREROQaDHYyc7LM0bFz7cQJh+hAX+h8VGiw2pBbUt0txyQiIiLXYLCTGedSJ90U7ARBcHbtsos4gYKIiMidMdjJiCiKzmvsumsoFsAFM2N5nR0REZE7Y7CTkdJqM0xmCxQC0DtY023HdXTsDnNmLBERkVtjsJORE03DsL2DNFCrlN123IFNM2OPnKuG1SZ223GJiIioazHYyciFS510p34hftB4K1HXaEV+010viIiIyP0w2MmIY+KEq28l9ltKhYDkyKbr7DiBgoiIyG0x2MmIc+KEi28l1hrnBApeZ0dEROS2GOxk5GSZNB07ABjoWPKE94wlIiJyWwx2MlHfaMWZyjoA0nTsLry1mChyAgUREZE7YrCTiYLyGogioPNRIdjPu9uPHx+uhbdSgep6Cwor6rr9+ERERNR5DHYykVfy64xYQRC6/fheSgWSIv0BcKFiIiIid8VgJxMnnbcS6/5hWAfHBIpsBjsiIiK3xGAnEyfLHB277p844eBYqJhLnhAREbkn2Qe70tJSTJgwARqNBomJidiyZUur26WnpyM2Nhb+/v4YNmwYfvjhh2avr1ixAtHR0dDpdHjooYfQ0NDQHeW3W54MOnYX3lqMEyiIiIjcj+yD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurAQBZWVlIT0/H2rVrUVhYiIKCAixevLi7T6VNoij+uoadhB27pAh/KBUCymsacN5olqwOIiIiujyyDnYmkwnr1q1DRkYGNBoN0tLSkJKSgg0bNrTYdsGCBejfvz8UCgWmTJkCX19fHD9+HADw8ccf45577sGwYcOg1+vxwgsvYOXKld19Om0qqTbDZLZAIQC9gzWS1eHjpUR801IrvM6OiIjI/cg62OXm5kKv1yMyMtL53KBBg5CdnX3R9xUUFKCiogL9+/cHAOTk5CA1NbXZPvLz81FX1/qyHmazGUajsdnDlRzDsL2DNFCrlC491qUkR/HWYkRERO5K1sHOZDJBp9M1e06n08FkavtG9Y2NjZg+fTqeffZZ6PX6Vvfj+L6t/SxZsgR6vd75iImJ6eypXNR5Yz0Ugn2pE6lduFAxERERuReV1AVcjFarbdEtMxqN0GpbD0CiKGLGjBkICwvDwoUL29yP4/u29jN37lykp6c3296V4e6OIdG4LTUS1fUWlx2jvRwTKHJ4azEiIiK3I+uOXXx8PAwGA4qLi53PHTx4EAMHDmx1+yeffBJnz57FypUroVD8emrJycnIyspqto9+/frB19e31f2o1WrodLpmD1dTq5QI0apdfpxLSQy3L1JcVFUHk1n6oElERETtJ+tgp9VqMXnyZCxYsAB1dXVYv349Dh8+jEmTJrXYdsGCBfjpp5+wbt06qNXNA9L999+PVatWYd++fTAYDHjxxRcxderU7joNt6LXeCHM3/755Z6vlrgaIiIi6ghZBzsAWLZsGQoLCxEcHIxnnnkGq1atQmBgIDIzM5t17jIyMnDkyBFERUVBq9VCq9UiMzMTAJCamorXX38dkyZNQnR0NGJiYvD8889LdUqyl9DUtcs93/a1jERERCQ/gsiVaC/JaDRCr9fDYDB0y7Cs1BZtyMbynwow69p+mDcxWepyiIiIerSO5BDZd+yo+zk6dsdL2LEjIiJyJwx21EJCuH22MK+xIyIici8MdtRC/zB7x+6coR7G+kaJqyEiIqL2YrCjFvS+XgjXOWbGcjiWiIjIXTDYUasc19mdKOFwLBERkbtgsKNWxTcNxx5nx46IiMhtMNhRqxwTKI5zAgUREZHbYLCjVsVzkWIiIiK3w2BHrYpv6tgVG+thqOPMWCIiInfAYEet0vl4IVLvA4ATKIiIiNwFgx21yTEcywkURERE7oHBjtqUEMYJFERERO6EwY7aFO+8tRg7dkRERO6AwY7a9OtQLDt2RERE7oDBjtoU3zQUW1JthqGWM2OJiIjkjsGO2uTv44WoppmxxzkzloiISPYY7OiiOBxLRETkPhjs6KISOIGCiIjIbTDY0UWxY0dEROQ+GOzoohK4SDEREZHbYLCji3LMjC0zmVFZ0yBxNURERHQxDHZ0UX5qFXoF+AIAckvYtSMiIpIzBju6JMcdKHidHRERkbwx2NElOa6zy2WwIyIikjUGO7okx3V2nEBBREQkbwx2dEnOjh3vPkFERCRrDHZ0SbGhfgCAMlMDDHW8ZywREZFcMdjRJfn7eCFcpwYAnCzlcCwREZFcMdhRu8SF2q+zyyutkbgSIiIiaguDHbWLYzg2jx07IiIi2WKwo3ZxdOw4FEtERCRfDHbULhyKJSIikj8GO2oXx1DsqfIaWKw2iashIiKi1jDYUbtE6X3h46VAo1VEYWWd1OUQERFRKxjsqF0UCgGxIU3DsSW8zo6IiEiOGOyo3TgzloiISN4Y7Kjdfp0ZywkUREREcsRgR+0WF+aYGcuOHRERkRwx2FG7xYbYh2JPlrFjR0REJEcMdtRujmvsKmoaUFHTIHE1RERE9FsMdtRuGm8VegX4AuAdKIiIiORI9sGutLQUEyZMgEajQWJiIrZs2dLqdsuWLcPgwYOhUqnw8ssvN3tt27ZtUCgU0Gq1zsf27du7o3yP4+jacQIFERGR/KikLuBSHn/8cURFRaGsrAybNm3ClClTkJeXh8DAwGbbRUVFYfHixfjPf/7T6n4SEhJw9OjR7ijZo8WFarE9t4wTKIiIiGRI1h07k8mEdevWISMjAxqNBmlpaUhJScGGDRtabJuWloaJEydCp9NJUGnPEce17IiIiGRL1sEuNzcXer0ekZGRzucGDRqE7OzsDu+roKAAYWFhiI+PR0ZGBqxWa5vbms1mGI3GZg+yi+VadkRERLIl62BnMpladOB0Oh1Mpo51i5KSknDgwAEUFxdj3bp1WLVqFZYuXdrm9kuWLIFer3c+YmJiLqt+T+RYpPhURS0aLDaJqyEiIqILyTrYabXaFt0yo9EIrVbbof1EREQgKSkJCoUCycnJmDdvHtasWdPm9nPnzoXBYHA+CgsLL6t+TxSuU8PPWwmrTcTpCnbtiIiI5ETWwS4+Ph4GgwHFxcXO5w4ePIiBAwd2ar8KxcVPW61WQ6fTNXuQnSAIzuHYPA7HEhERyYqsg51Wq8XkyZOxYMEC1NXVYf369Th8+DAmTZrUYluLxYL6+npYrdZm3wP25U4cXbfc3FwsXrwYEydO7NZz8SScQEFERCRPsg52gH19usLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu8WLF8PX1xcrV67ECy+8AF9fX3z00UcAgL1792LkyJHw8/PDuHHjkJaWhvT0dKlOye05O3Yl7NgRERHJiSCKoih1EXJnNBqh1+thMBg4LAvg/w6dw+Mf78OQ3gFY89g1UpdDRETk0TqSQ2TfsSP5iQtrGootMYH/LyAiIpIPBjvqsL7BfhAEwFhvQXlNg9TlEBERURMGO+owHy8logN9Adi7dkRERCQPDHZ0WeK45AkREZHsMNjRZYkNcdxajB07IiIiuWCwo8vinEDBYEdERCQbDHZ0WTgUS0REJD8MdnRZYpvuPnGmshZmi1XiaoiIiAhgsKPLFKpVQ6tWwSYCp8trpS6HiIiIwGBHl0kQBGfX7mQZh2OJiIjkgMGOLlu/kKZgx+vsiIiIZIHBji6bY8mT/DLOjCUiIpIDBju6bP1C2bEjIiKSEwY7umyxTUOx+bzGjoiISBYY7OiyOa6xK69pgKG2UeJqiIiIiMGOLpufWoUInQ8A4CSvsyMiIpIcgx11CmfGEhERyQeDHXWKYy07XmdHREQkPQY76hRnx45DsURERJJjsKNOiQu1r2XHoVgiIiLpMdhRpzg6dgXlNbDZRImrISIi6tkY7KhTogN94aUUUN9owzljvdTlEBER9WgMdtQpKqUCvYM0AICTpbzOjoiISEoMdtRpsaGOe8byOjsiIiIpMdhRp8VyLTsiIiJZYLCjTnOsZXeSHTsiIiJJMdhRp/ULcSx5wmvsiIiIpMRgR53m6NgVVdWhvtEqcTVEREQ9F4MddVqwnzf8fVQQReBUea3U5RAREfVYDHbUaYIgXDAzlsOxREREUmGwoy7hmBmbx5mxREREkmGwoy7hCHZcy46IiEg6DHbUJfo5ljzhzFgiIiLJMNhRl4gN4d0niIiIpMZgR12ib4j9frGVtY2orGmQuBoiIqKeicGOuoTGW4UovQ8A3oGCiIhIKgx21GV4nR0REZG0GOyoy/A6OyIiImkx2FGX6Rfi6Ngx2BEREUmBwY66jOOesSd59wkiIiJJMNhRl3EMxRaU18JqEyWuhoiIqOeRfbArLS3FhAkToNFokJiYiC1btrS63bJlyzB48GCoVCq8/PLLLV5fsWIFoqOjodPp8NBDD6GhgUtydLVegb7wVinQYLHhbFWd1OUQERH1OLIPdo8//jiioqJQVlaGV155BVOmTEFlZWWL7aKiorB48WJMnjy5xWtZWVlIT0/H2rVrUVhYiIKCAixevLg7yu9RlAoBfYPt69nlcWYsERFRt5N1sDOZTFi3bh0yMjKg0WiQlpaGlJQUbNiwocW2aWlpmDhxInQ6XYvXPv74Y9xzzz0YNmwY9Ho9XnjhBaxcubI7TqHHcQzHcgIFERFR95N1sMvNzYVer0dkZKTzuUGDBiE7O7tD+8nJyUFqamqzfeTn56OurvXhQrPZDKPR2OxB7cMJFERERNKRdbAzmUwtOnA6nQ4mU8dCw2/34/i+rf0sWbIEer3e+YiJielg5T1XbCg7dkRERFKRdbDTarUtumVGoxFarbZT+3F839Z+5s6dC4PB4HwUFhZ2sPKey9mxY7AjIiLqdqr2bPTqq6+2b2cqFdLT0ztV0IXi4+NhMBhQXFyMiIgIAMDBgwcxa9asDu0nOTkZWVlZzp8PHjyIfv36wdfXt9Xt1Wo11Gr15Rfeg8U1XWNXbKxHjdkCP3W7fosRERFRF2jXv7rz5s3DAw88cMntvvjiiy4NdlqtFpMnT8aCBQvw5ptvYvPmzTh8+DAmTZrUYluLxQKLxQKr1QqLxYL6+np4eXlBqVTi/vvvx9ixYzF79mzExcXhxRdfxNSpU7usTvqVXuOFYD9vlNc0IL+sBim99FKXRERE1GO0K9jp9XosX778kttt3Lix0wX91rJlyzB9+nQEBwcjOjoaq1atQmBgIDIzM/HSSy85J1IsXrwYixYtcr7vhRdewPLlyzFjxgykpqbi9ddfx6RJk2A0GnHXXXfh+eef7/JayS421A/lNQ3IKzUx2BEREXUjQRRF3iLgEoxGI/R6PQwGQ6vLqVBzz31xCJ/tKcRTN8bjjzcnSF0OERGRW+tIDrmsyRNmsxnl5eUwm82XVSB5tl+XPOEECiIiou7U7mBnsViwcOFCxMXFQaPRIDQ0FBqNBv3798eiRYvQ2NjoyjrJjfy65AnXsiMiIupO7Q52jzzyCH744Qd88MEHKC0tRUNDA0pLS/Hee+9h+/btePTRR11ZJ7kRR8cuv6wGHOknIiLqPu2+xi4gIACFhYXw9/dv8ZrBYEDv3r1hMBi6vEA54DV2HdNotWHACxthsYnYOfcGROpbX1aGiIiILs0l19j5+/vjxIkTrb6Wn5/fauCjnslLqUDvIA0ALlRMRETUndq9euzf/vY33HTTTbj33nuRmpoKnU4Ho9GIQ4cO4fPPP8frr7/uyjrJzcSG+uFkWQ1OlppwTf8QqcshIiLqEdod7GbMmIGhQ4fik08+wcaNG2EymaDVapGcnIytW7ciJSXFlXWSm4kN1QJHSjgzloiIqBt16H5PqampSE1NdVUt5EFiQ3jPWCIiou7Wrmvs1q9f366dffXVV50qhjyHc8mTMi55QkRE1F3aFezae1/VBx98sFPFkOdwLHlyprIO9Y1WiashIiLqGdo1FGsymaDRaC66jSiKUCgu60YW5IGC/byh81HBWG/BqfJaJEZw1jQREZGrtSvY5efnA7CHtzVr1mDChAlQq9UtthMEoWurI7clCAJiQ7U4UFiFk6UmBjsiIqJu0K5g16dPH+f3X375JRYvXoy0tDQ88MADuP766xnoqFWxoX72YMeZsURERN2iw2OnP/74I/bv34/ExESkp6cjOjoaf/zjH7Fnzx5X1EduzDEzNo/3jCUiIuoWl3VRXO/evfHnP/8ZBw4cwNq1a7Fp0yaMGDEC8fHxWLJkCUwm/kNOF8yM5ZInRERE3eKygl1jYyPWrVuH++67D7fccgsSEhKwatUqfPTRR8jKysK4ceO6uk5yQ46ZsSdLTWjnLYmJiIioEzq0QDEAzJw5E+vWrUNKSgoeeOABLFu2DIGBgc7Xhw4dCr1e36VFknvqG+wHQQCM9RaU1zQgRNtywg0RERF1nQ4Hu/79+2Pfvn3NJlRcyMvLC2fOnOl0YeT+fLyU6BXgizOVdThZWsNgR0RE5GIdHor961//2maocwgKCrrsgsiz/HqdHa+7JCIicjWuKEwu5bxnLJc8ISIicjkGO3KpuAsmUBAREZFrMdiRS3HJEyIiou7DYEcuFdcU7E5V1KLBYpO4GiIiIs/GYEcuFa5TQ6tWwWoTcaqcXTsiIiJXYrAjlxIEwXmd3YkSXmdHRETkSgx25HJxYfbhWN4zloiIyLUY7Mjl+jcFO3bsiIiIXIvBjlyuf9MEihPs2BEREbkUgx25nKNjl1dSA5tNlLgaIiIiz8VgRy7XO0gDb6UCdY1WnDXUSV0OERGRx2KwI5dTKRXoG6IBwOvsiIiIXInBjroFJ1AQERG5HoMddQvHBAoueUJEROQ6DHbULeLYsSMiInI5BjvqFo57xjLYERERuQ6DHXWLuFAtBAGorG1EucksdTlEREQeicGOuoWvtxK9AnwBsGtHRETkKgx21G2cM2M5gYKIiMglGOyo2zhnxpbUSFwJERGRZ2Kwo27Djh0REZFrMdhRt/n1nrEMdkRERK4g+2BXWlqKCRMmQKPRIDExEVu2bGl1u7q6OkydOhX+/v7o3bs3PvnkE+dr27Ztg0KhgFardT62b9/eXadATRzBrqiqDjVmi8TVEBEReR6V1AVcyuOPP46oqCiUlZVh06ZNmDJlCvLy8hAYGNhsuwULFqCiogJFRUU4fPgwbrvtNgwdOhQJCQkAgISEBBw9elSKU6AmARpvhGi9UWZqwMnSGqRG66UuiYiIyKPIumNnMpmwbt06ZGRkQKPRIC0tDSkpKdiwYUOLbT/66CMsWLAAOp0Oo0aNwuTJk/Hpp59KUDVdjHOh4tJqiSshIiLyPLIOdrm5udDr9YiMjHQ+N2jQIGRnZzfbrrKyEsXFxUhNTW1zu4KCAoSFhSE+Ph4ZGRmwWq1tHtdsNsNoNDZ7UNfgrcWIiIhcR9bBzmQyQafTNXtOp9PBZDK12E6pVEKj0bS6XVJSEg4cOIDi4mKsW7cOq1atwtKlS9s87pIlS6DX652PmJiYLjyrnq0/by1GRETkMrIOdlqttkW3zGg0QqvVttjOarWitra21e0iIiKQlJQEhUKB5ORkzJs3D2vWrGnzuHPnzoXBYHA+CgsLu/Cserb+7NgRERG5jKyDXXx8PAwGA4qLi53PHTx4EAMHDmy2XWBgICIiIpCVlXXR7RwUiouftlqthk6na/agruEIdqfKa9FotUlcDRERkWeRdbDTarWYPHkyFixYgLq6Oqxfvx6HDx/GpEmTWmw7depU/O1vf0N1dTV27dqF9evX45577gFgX+7E0XXLzc3F4sWLMXHixG49F7KL1PvAz1sJi03EqXLegYKIiKgryTrYAcCyZctQWFiI4OBgPPPMM1i1ahUCAwORmZnZrCOXkZHhnGgxZcoULFu2DImJiQCAvXv3YuTIkfDz88O4ceOQlpaG9PR0qU6pRxMEgRMoiIiIXEQQRVGUugi5MxqN0Ov1MBgMHJbtAumfHcDq/UV4ZlwCnrghXupyiIiIZK0jOUT2HTvyPI6OXV4ph2KJiIi6EoMddTvOjCUiInINBjvqdhcGO5uNVwIQERF1FQY76nZ9gjTwVilQ12jFmco6qcshIiLyGAx21O1USoXzDhRHi3m7NiIioq7CYEeSSIrwBwAcP18tcSVERESeg8GOJJHQFOyOFjPYERERdRUGO5JEYjg7dkRERF2NwY4kkdjUsTtZWoMGC+8ZS0RE1BUY7EgSkXof+PuoYLGJOFnG9eyIiIi6AoMdSUIQBOdw7DFeZ0dERNQlGOxIMo4JFAx2REREXYPBjiTDJU+IiIi6FoMdSSYhnEueEBERdSUGO5KM4xq7M5V1MJktEldDRETk/hjsSDKBft4I81cD4HAsERFRV2CwI0k51rM7zuFYIiKiTmOwI0kl8jo7IiKiLqOSugDq2RI4M9Zj1TdaYahrhKGuEVW1jaiqbYDFJiIqwBfRgb4I9vOGIAhSl0lE5FEY7EhSSVzLzmM0WGzYU1CBrcdKsPVYKU6UXPyOIr5eSkQH+qJfiB9Gx4fg+qQwRAdquqlaIiLPxGBHkooP84cgAOU1DSgzmRGiVUtdEnWAKIrYcqQEX+w9gx9PlLWY3awQAL2vFwI03tD5ekEpAGer6nG+uh51jVbklpiQW2LCppzzwLpsxIdpcX1SGG5MCsNV/YLY0SMi6iAGO5KUr7cSfYI0KCivxbHiaoT0Z7BzF7tPluOVjUex73SV87kQrRpjE0NxfWIYRsYGIVDjDYWiZTgzW6w4W1WPM5W1yCoyYNvRUuw9XekMeu/9cBJxoX548Oq+uGtoNLRq/lVFRNQegiiKotRFyJ3RaIRer4fBYIBOp5O6HI/z8H/3YFPOecyfmIyZ1/aTuhy6hOyzBvz9m2PYdqwUAODjpcD0q/ti4hVRGBilazXItYehthE/5JZi69ESbMo57+z+adUq3HVlL0y7ui/6h2m77DyIiNxFR3II/xtMkkuK8MemnPO8zk7m6hutyPgqBx/vPg0AUCkE3HtVDObcEI8wnU+n96/XeGHSoChMGhQFk9mC1fvO4MMdBcgrrcGHO0/hw52nMGlQFP54UzxiQxnwiIhaw2BHknPMjD3GmbGyVVRVhz+s3ItDZwwAgEmDovCnmxPQN8TPJcfTqlV48Oq+mDayD346UY4VOwrw7ZHz2HDwLL7OOocpQ6Mx58Z4RAX4uuT4RETuisGOJJd0wZInNpt42UN55Bo/nSjDk5/sR0VNAwI0Xlh67xBclxDaLccWBAHXxofg2vgQ5Jw14o3Nx/DtkRJ8+kshVu8rwgMje+OpG+MRoPHulnqIiOSOCxST5PoE+8FbqUBtgxVFVXVSl0NNRFHEO9/nYdr/242Kmgak9NJhwxPXdluo+63kKB0+mD4cX/5hFEbGBqHBasPynwow9rVtWLnrFKw2Xi5MRMRgR5LzUioQ13RRPO9AIQ9Wm4j0VQfx8v+OwiYCU4ZG44tHRyEmSPp15ob2CcQns0fio99fhcRwf1TVNmLe2sOY/M8fsaegQuryiIgkxWBHspAYbg92vAOF9Gw2EX/58hDW7C+Cl1LAi3ek4NW7r4CPl1Lq0pwEQcDo+FD835xrsXBSMvx9VMg+a8Td7+zEHz87gNJqs9QlEhFJgsGOZMExgYIdO2mJoohFG7Lx+d4zUCoEvH3fEDwwoo9sFwpWKRWYcU0/bH1mLO4ZFgNBANbsL8KNr2/DJz+fho3Ds0TUwzDYkSw4J1Aw2ElGFEW8svEYPtx5CoIAvDblCtySEil1We0SolXjlbuvwNrHrkFKLx2M9RbMXZ2Fe97biVx2gYmoB2GwI1lIjLAvuJhXaoLZYpW4mp7pn9+dwDvf5wEAFqel4I4h0RJX1HGDYgKw9rFrMG/CAGi8lfiloBK3Ld2O1zcdQ30jf18RkedjsCNZiNL7IEDjBYtNxPHii988nrre8p/y8frm4wCAeRMG4IERfSSu6PKplArMGh2LzeljcNOAMDRaRbz93Qnc9tZ27DpZLnV5REQuxWBHsiAIAlJ76QEAh88aJK6mZ9mRV4a/fZUDAEi/OQGzRsdKXFHX6BXgi/cfHIZ/P3AlwvzVOFlWg3vf24XnvjgEQ22j1OUREbkEgx3JxsAoe7DLKmKw6y7njfWY88l+2ETgriuj8eQN/aUuqUsJgoBbUyOxOX0M7h/RGwDw2Z5C3PjG99hw8Cx4q2wi8jQMdiQbKb3s19llM9h1i0arDU98vA9lpgYkRfhjcVqKbGe/dpbe1wsv3ZGKzx+9GnGhfigzmfHkJ/vx0IpfUFhRK3V5RERdhsGOZCOlqWN3pLgajVabxNV4vlc3HsUvBZXQqlX499Sh8PWWzzp1rjK8bxC+fmo0nroxHt5KBbYdK8XN//gey7adQIOFv+eIyP0x2JFs9A7SwF+tQoPFhhMlnEDhShsPn8P72/MB2Jc16RfiJ3FF3UetUuKPNyfgf0+PxsjYINQ32vDqxmOY+PZ2/MI7VxCRm2OwI9lQKAQkR9mHYw9zONZl8stq8OznhwAAs67t5zZr1XW1uFAtPpk9Em/8bhCC/Lxx/LwJU97ZifRVB1BirJe6PCKiy8JgR7KS0jQzNvusUeJKPFOj1YYnP9mHarMFw/sG4rlbk6QuSVKCIODOK6Px3Z/G4N7hMQCA1fuKcP1r2/DvbXlcU5GI3A6DHcmKYwIFO3au8d4PJ3G4yIgAjRfevu9KeCn5VwAABGi88fJdV2Dt49dgcEwAahqseGXjUYz/xw/4Nuc8Z88SkdtQSV3ApZSWlmLGjBnYunUrYmJisGzZMtx4440ttqurq8Ps2bOxbt06BAYG4pVXXsF9993nfH3FihWYN28ejEYj7rrrLrz77rvw9vbuzlOhdnCsZZdzzgirTYRS4ZmzNKVwosSEt7bkAgDmT0xGhN5H4orkZ3BMAFb/YRTW7C/CyxuPoqC8FrP+uwcjY4Pw51uScGXvQKlLpIswW6ww1DXCWNcIQ50FNWYLahusqGts+tpgRYPVBotVhMVqQ6NNhNUmthrcFQoBKoUAlUJh/6pUwFulgFqlgI+X0vnV10sJX28lNN5K+Hmr4OuthFatgo+XwmNnmZO8yT7YPf7444iKikJZWRk2bdqEKVOmIC8vD4GBzf+CXbBgASoqKlBUVITDhw/jtttuw9ChQ5GQkICsrCykp6dj06ZNiI+PR1paGhYvXoyMjAyJzora0i9EC18vJWobrMgvM6F/mL/UJXkEm03EX748hAaLDWMSQnHHkF5SlyRbCoWAu4ZGY3xKBP753Qn856d87DpZgTuX7cDNyeF4dnwiEsL5+7K7iKKI8poGnKuqR1FVHc4Z6lBabUZptRllJjPKTA0oM5lRWduA+kb5zGxWKgT4eSvh7+MFP7U97Pn7eMHfR9X08ILO8dVXBX+1F3S+9tcdX7XeKij4n1vqIEGU8RiDyWRCcHAwCgoKEBlpv8D7uuuuw6xZs/Dggw822zYyMhJr167FiBEjAAAPPvgg+vfvj/nz52Pu3LmoqqrCv//9bwDAd999h1mzZuHkyZPtqsNoNEKv18NgMECn03XhGVJr7vr3Duw9VYk37xmMNAaQLvHfnQWYvy4bft5KbEofg14BvlKX5DaKqurw1rfH8cXeM7CJgCAAdwzphSeu74/YUK3U5XmERqsNpytqcaq8BgVl9q+nKmpxurwWRVV1MHdgKRpBAPzVKug1XvDzVkHjrYSmqZOm8VbCW6mASqmAl7KpG6cU0KKxJgI2UUSj1d7Rs9hsaLSKaLDYYLZYUd/469f6RitqGiyoa7CitunRVRzn8ttA6O+jglatgtZHBX+143svaNX2c/VTq+CnVjY7f3YQL87x62y1Nf91t9pEWJp+toqi82eb2Pw5q03EwCgd/H28XFJfR3KIrDt2ubm50Ov1zlAHAIMGDUJ2dnaz7SorK1FcXIzU1NRm2/38888AgJycHIwfP77Za/n5+airq4Ovb8t/4MxmM8xms/Nno5EX8nenlCgd9p6qxOEiA4NdFzhTWYtX/ncUAPCXW5MY6jqoV4AvXr17EB6+LhavbzqO/x0uxup9RVizvwjjkyPwyJhYDOEQbbs0WGw4WWbCseJqnCgxOR8F5TVotLbdYxAEIFSrRlSAL6ICfBDm74NQfzVCtN4I0aoRolUjUOMNfVOnS8oul80morbRihqzBSazBaZ6+9fqeguq6xubvl7wvbkRxjr7z8am5411FjRYbRBFwFhvgbHe0iW1+XrZw62PlxI+XgqoVfavjqFlr6bhZseQs5dSAZWiKQQrfx2WVigEKBUClIL9e4UACLB3uwUAEJq+Amj2qyqKsDWFZvGCr45wZLPZX7f/bIOl6TmLzRG0RFitIhovCFwWm31o3T6sbg/gFqv9vc1ftzW9t+l1q31/lqbjdEWLa81jo2Txd4Gsg53JZGqRTHU6Haqqqlpsp1QqodFomm1nMpla3Y/je5PJ1GqwW7JkCRYtWtRVp0EdNJD3jO0yoijir2sOo6bBiuF9A/HAiD5Sl+S2+of5499Th+JgYRXe/i4X3x4pwcbsYmzMLsaIfkF4dEwcxiSEcuisSZnJjOyzRuScNeJosRHHiquRV2pqM8D5einRL8QPfYI16BPsh77BGvQO1iAmUINwnQ+8Ve4x0UehEOwdNLUK4Z3YT32jFdX1FhidYfC3X+2BscZsQXVTcKxtCpO1Db8Gywu7nXWNVtQ1cqZ3eykE+5C6sulaS4UAqJQKKAT79ZdKhQCFAlAK9u/l8ntU1sFOq9W26JYZjUZotdoW21mtVtTW1jrD3YXb/XY/ju9/ux+HuXPnIj09vdn2MTExnT8hahfHHSiyi4yw2UT+Q9kJq/cV4YfjpfBWKfDyXVfws+wCg2IC8MH04cg9X413fziJdQeKsDu/ArvzKxAT5IvfDY3B3cOiEanvGZ1RURRRVFWHw0VGZJ81IPus/et5o7nV7f3VKiRG+CM+3B/9w7TOR6TOh78/L2DvqikR6q/u1H6sNhH1jVbn5JHaRotzCNn+sA8rmy02NDgeVvvXRmfnq6kT1tQpsz/gHI60iaK9M3dBF06ECEff7sIRYEdXTyHYh8AVggCFIECpsIeoX39uCk9KwRmcHEPnKsWvrzuG1ZWK5sPrzueatnG8z9GBVCoEe0fygk6kUinAS6Fw7ttdfz/KOtjFx8fDYDCguLgYERERAICDBw9i1qxZzbYLDAxEREQEsrKynNfYHTx4EAMHDgQAJCcnIysry7n9wYMH0a9fv1a7dQCgVquhVnfuDxNdvvhwLbyVClSbLSisrEWf4J5zV4SuZKhtxOL/ywEAPH1TPOJ4PViXig/3x2tTBuFP4xLwnx/z8enPhSisqMPrm4/jH98ex5iEUNwzPAZjE8Pg4+UZt2uz2UScqqhF9lkDDhcZcbjIgMNnDaiqbWyxrSAA/YL9MCBKh+RIHZIi/JEY4Y9eAb681qsbKRVC0zV3sv7nnrqQrCdPAMCUKVMQFBSEN998E5s3b8aMGTNanRX77LPP4siRI/jkk0+QnZ2NW265Bbt370ZiYiKysrIwduxYbN68GXFxcbjzzjtxzTXXtHtWLCdPdL/J//wRh84Y8K/7r8SEK3rmnRE6629f5eD//ZiP+DAtvn5qNNesc7G6Biv+d/gcPv2lED/n/3prMo23EtfFh2LcwHDckBSGAI17LLPUYLEht6QaR85VI+esEYfPGpBz1giTueX1Xl5KAQnh/hgYpcPAKD0GRumQFKmDlmGCqEt4zOQJAFi2bBmmT5+O4OBgREdHY9WqVQgMDERmZiZeeukl50SKjIwMzJo1C5GRkQgMDMSyZcuQmJgIAEhNTcXrr7+OSZMmOdexe/7556U8LbqElF56HDpj7wYw2HVcXqkJH+4oAAC8MDGZoa4b+HorceeV0bjzymicLDVh1Z4zWHegCOcM9c5r8ZQKAcP6BGJkbDCG9Q3E4JgAl82iay+bTcSZyjrkllTj+HkTcs9XI+ecESdKTLDYWv6/31ulwIBIHQZG6ZDaS4+UKD0SIrRQqzyjK0nk7mTfsZMDduy638e7T+Ova7IwOj4EH/1+hNTluJ3fr/gFW46W4IakMPxnxnCpy+mxRFHE4SIjNucUY1POeRwtrm72ukIAEiN0uLJ3ABLC/REb6ofY0K6/3qzRakNptRmnymtxuqIGp8prcappeZETJaY213/T+agwIFKHAZE6pPTSI6WXDnGhWv5HgaibeVTHjnqmC28tJooir8npgB+Ol2LL0RKoFAKenzBA6nJ6NEEQkBqtR2q0HunjElFYUYttx0uxt6ACe05V4kxlHY6cM+LIueaTxHy8FOgb7GdfxsPPG4EaLwRqvBGg8WqalQfnUhOAfQalyWxBrdn+1WS2oLTajJJqM0qM9aiobbjocg7eSgViQ/0QH+6PhDAtkiJ1SI7SIUrvwz97RG6GwY5kKSHcHyqFgMraRpw11HPttXayWG3421f2CRMPXt2XEyZkJiZIg2kj+2DaSPuyM+eN9dh7qhIHC6uQV1qD/DITTlfUor7R1tTdq774DjtApRDQK9AXvYM09iVFgvzQO1iD/mFa9AnSQMUuHJFHYLAjWfLxUiI+3B9Hztln3jHYtc/HP59GbokJgRovPHVjvNTl0CWE63xwW2okbkv99TpSi9WGM5V1OFVRi4oaMypqGlFV24CKmgZU1TXCZvt1iQnHYq+O+5Q67jig8VYhVKtGmE6NMH8fhOnUCNJ4u+3yDUTUfgx2JFspUTocOWdEdpEB4wdGSF2O7BlqG/HG5uMAgPSbE6DXSHtRPl0elVKBviF+6BvCZX6IqOPYeyfZSnHegYK3dGuPt7bkoqq2EQnhWtx3VW+pyyEiIgkw2JFsOSZQZDVNoKC2FVbU4qNdBQCAeROSeb0UEVEPxb/9SbaSI/VQKQSUVptRVFUndTmy9ua3uWi0ihgdH4LrEkKlLoeIiCTCYEey5eutxMAoe9du76lKiauRr9zz1Viz/wwA4JlxiRJXQ0REUmKwI1kb2icIALCngMGuLW9sPg6bCIwfGI5BMQFSl0NERBJisCNZG9bXfk/gPezYterQmSr873AxBAH4E7t1REQ9HoMdydrQPvZgd6zYiOr6RomrkZ/XNtmXN7ljcC8khPtLXA0REUmNwY5kLVzng+hAX9hE4EBhldTlyMquk+X44XgpVAoBT9+UIHU5REQkAwx2JHvDmrp2vM7uV6Io4rVvjgEA7r0qBr2DNRJXREREcsBgR7I3tK99AgVnxv5q27FS7DlVCbVKgSdv4K3DiIjIjsGOZM/Rsdt/uhIWq03iaqQniiJe22Tv1s0Y1RfhOh+JKyIiIrlgsCPZSwj3h79ahZoGK44WV0tdjuQ255xH9lkj/LyVeGRMnNTlEBGRjDDYkewpFQKGNHXt9p3u2cOxoihi6Xe5AIDpo/oiyM9b4oqIiEhOGOzILQztzQkUAPDd0RIcLjJC463ErNGxUpdDREQyw2BHbsGxUHFPnkAhiiLe2mLv1k27ug+7dURE1AKDHbmFwTEBUCoEFFXV4ZyhTupyJLHteCkOnTHA10uJh9mtIyKiVjDYkVvwU6swINJ+Z4WeOBwriiLe+vbXbl2wVi1xRUREJEcMduQ2hvXpuevZ/ZBbhgOFVfDxUmA2u3VERNQGBjtyG477xva0YGfv1tnvCfvAiD4I9We3joiIWsdgR27DMYEi55wRNWaLxNV0n59OlGPf6SqoVQo8MobdOiIiahuDHbmNSL0vegX4wmoTcbCwSupyuoV9Jqy9W3f/iN4I8+ddJoiIqG0MduRWrmwajt3TQ4Zjd52swC8FlfBWKfAo7zJBRESXwGBHbmVYD7vO7p9b7TNh7xkWw3vCEhHRJTHYkVtxTKDYd6oSFqtN4mpca++pSvx0ohwqhYBHx7JbR0REl8ZgR25lQKQOARovVJstOHimSupyXOqfTfeEvevKaPQK8JW4GiIicgcMduRWlAoBo+NDAQDbjpVKXI3rHC4yYOuxUigE4A/s1hERUTsx2JHbGZNgD3bfH/fcYPd2U7fu9sG90DfET+JqiIjIXTDYkdu5LiEEAHDojAFlJrPE1XS9Y8XV+Cb7PAQBeIzdOiIi6gAGO3I7Yf4+GBilAwBsz/W8rt0/t54AANyaEoH4cH+JqyEiInfCYEduyTkc62HX2eWVmvDVobMAgCeuj5e4GiIicjcMduSWxiaGAQB+yC2DzSZKXE3XWbY1D6II3DQgDMlNXUkiIqL2YrAjtzSkdwD81SpU1DQgq8ggdTld4lR5DdYeKAIAPHEDu3VERNRxDHbklryUClzT3z6JwlNmx/5r6wlYbSKuSwjF4JgAqcshIiI3xGBHbmtsomM9uxKJK+m8woparN5n79Y9dSO7dUREdHkY7MhtXdc0geJAYRWqahskrqZz/rX1BCw2EaPjQ5y3TSMiIuooBjtyW1EBvkgI18ImAttzy6Qu57IVVtTii71nAABP38RuHRERXT4GO3Jrjtmx7nyd3bJt9m7dtf1DMLRPkNTlEBGRG5N1sPvll18waNAgaDQajBkzBqdOnWpz27y8PFxzzTXQaDS48sorcfDgQedrCxcuhJeXF7RarfNBnuHC24uJovste3Kmshaf77F3655it46IiDpJtsHObDbjzjvvxFNPPYWKigqMHDkS06ZNa3P7++67D+PGjUNFRQVmzpyJO+64AxaLxfn673//e5hMJueDPMOwvoHQeCtRWm1Gzjmj1OV02LJtebDYRIyKC8bwvuzWERFR58g22G3btg1arRYzZ86Ej48P5s+fjz179rTatTt27BiOHTuGuXPnwsfHB0888QSsVit27NghQeXUndQqJUbFBQNwv+HYoqo6fL6nEABnwhIRUdeQbbDLyclBamqq82c/Pz/ExcUhJyen1W0TExPh7e3tfO6KK65Adna28+dPP/0UQUFBGDJkCFavXn3RY5vNZhiNxmYPki/HcOw2N7u92L+3nUCjVcTI2CCMiA2WuhwiIvIAsg12JpMJOl3zWyrpdLpWh1Evte3vfvc7HD16FCUlJXjllVfw0EMPYc+ePW0ee8mSJdDr9c5HTExMF5wRuYpjAsXeU5UoM5klrqZ9Citq8dkvjm5dgsTVEBGRp5As2I0bNw4+Pj6tPhYvXgytVtuiU2Y0Glud+HCpbZOTkxEREQGVSoVx48bhvvvuw/r169usbe7cuTAYDM5HYWFhF5wxuUpMkAaDovWw2kSsP3BW6nLa5R+bj6PRap8Je3Ucu3VERNQ1JAt2mzZtQn19fauPefPmITk5GVlZWc7ta2pqkJeXh+Tk5Bb7Sk5OxrFjx9DY2Oh87tChQxg4cGCrx1YoLn7aarUaOp2u2YPk7a6h0QCAL/edkbiSSztabMSapnvCPjs+UeJqiIjIk8h2KHbs2LEwmUxYsWIFzGYzFi9ejGHDhqFPnz4ttk1MTERiYiJefvllmM1mLFu2DEqlEqNGjQIArF+/HgaDATabDd999x0yMzNx2223dfcpkQtNuiIKXkoB2WeNOFos72siX/vmGEQRuC01AoN4T1giIupCsg12arUaq1evxhtvvIGAgAD89NNP+Oijj5yvP/roo3j00UedP3/88cfYuHEjAgIC8P7772P16tVQqVTO1/r16we9Xo+nn34a7733HkaOHNnt50SuE+jnjRuTwgEAX+6Vb9ful4IKfHukBEqFgD+NY7eOiIi6liC646qu3cxoNEKv18NgMHBYVsY255zH7P/uQYhWjV1zb4BKKa//t4iiiCnv7MSeU5W476oYLLnzCqlLIiIiN9CRHCKvf/mIOmFsYiiC/bxRZjLL8t6xW4+VYM+pSqhVCs6EJSIil2CwI4/hpVRg8uAoAMAXMhuOtdpEvLrxGABgxjV9EaH3kbgiIiLyRAx25FHuutI+O3ZzznkYahsvsXX3WX+wCEeLq+Hvo8IfxsRJXQ4REXkoBjvyKAOjdEiK8EeD1YYNh+Sxpl19oxWvbzoOAHh0TBwCNN6XeAcREdHlYbAjjyIIAu6W2Zp2y7aewJnKOkTofPDQNX2lLoeIiDwYgx15nNsH94JSIWD/6Srklba8BV13OllqwjvfnwQALJiUDI23StJ6iIjIszHYkccJ9VdjTEIoAGC1hF07URQxf102Gqw2jEkIxS0pEZLVQkREPQODHXkkxySK1fuK0Gi1SVLD/2Wdw48nyuCtUmDR5IEQBEGSOoiIqOdgsCOPdOOAMIRovXHOUI9Pfyns9uObzBb87ascAMBjY+PQN8Sv22sgIqKeh8GOPJKPlxJzbowHALz1bS5qzJZuPf6bm4/jvNGMPsEaPMrlTYiIqJsw2JHHund4b/QO0qDMZMZ/fszvtuMeOWfE8h0FAIBFkwfCx0vZbccmIqKejcGOPJa3SoE/jbPfuuvdH06ioqbB5ce0WG14fk0WrDYRt6VGYGximMuPSURE5MBgRx5t0hVRGBilg8lswT+/O+Hy47226Tj2na6CVq3CCxOTXX48IiKiCzHYkUdTKAQ8d0sSAGDlrlM4U1nrsmNtzjmPd77PAwC8evcViNT7uuxYRERErWGwI483Oj4Eo+KC0WC14Y3Nx11yjFPlNUhfdQAAMPOafrgtNdIlxyEiIroYBjvyeILwa9duzf4iHDln7NL91zda8YeV+1Bdb8GVvQPwl1uTunT/RERE7cVgRz3CoJgATEiNhCgCL//vKERR7LJ9L1yfjZxzRgT5eeNfD1wJbxX/WBERkTT4LxD1GM+MT4RKIeD746V4eePRLtnn53sK8ekvhRAEYOm9Q3hdHRERSYrBjnqMfiF+ePGOFADAu9+fxLJtnZsl++nPpzF3dRYA4I83JeDa+JBO10hERNQZKqkLIOpO9wzvDWOdBS9+fQSvbjwGfx8vTBvZp0P7sNlEvPLNUbz7/UkAwJ1DeuGJ6/u7olwiIqIOYbCjHmf2dbEw1DXin1tPYP66w9D5qHD74F7tem9dgxV//OwANmYXAwCevikeT90YD0EQXFkyERFRuzDYUY/0p3EJMNQ14qNdp/CnVQehVikwfmDERQNaibEes/67B4fOGOCtVODVu69A2pD2BUIiIqLuwGBHPZIgCFg0eSCM9Y1Yd+AsHl25D7Ehfph4RSQmDYpCfLg/AKC02oytR0vw7ZHz2J5bhrpGKwI1XnjvwWEY3jdI4rMgIiJqThC7ct0HD2U0GqHX62EwGKDT6aQuh7pQo9WGBeuz8eXeMzBbbM7nkyL84eutxIHCKlz4JyQx3B/vThuKviF+ElRLREQ9UUdyCINdOzDYeT6T2YJvc85jw8Gz+CG3FI3WX/9YpPTS4aYB4bhpQDgGRul4PR0REXWrjuQQDsUSAdCqVUgb0gtpQ3qhqrYB3x4pgcVqw5jEUK5NR0REboPBjug3AjTeuHtotNRlEBERdRgXKCYiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AORFEEABiNRokrISIiop7GkT8ceeRiGOzaobq6GgAQExMjcSVERETUU1VXV0Ov1190G0FsT/zr4Ww2G86ePQt/f38IguCSYxiNRsTExKCwsBA6nc4lx/AU/Kw6hp9X+/Gz6hh+Xu3Hz6r9+Fm1JIoiqqurERUVBYXi4lfRsWPXDgqFAtHR0d1yLJ1Ox9/I7cTPqmP4ebUfP6uO4efVfvys2o+fVXOX6tQ5cPIEERERkYdgsCMiIiLyEAx2MqFWq7FgwQKo1WqpS5E9flYdw8+r/fhZdQw/r/bjZ9V+/Kw6h5MniIiIiDwEO3ZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWAnA6WlpZgwYQI0Gg0SExOxZcsWqUuSrQULFiA5ORkKhQKffvqp1OXImtlsxkMPPYTo6Gjo9XqMHTsWWVlZUpclWw8//DAiIyOh0+mQmpqKr776SuqSZG/nzp1QKBR4+eWXpS5F1saOHQsfHx9otVpotVrceuutUpckey+//DJiYmLg7++PwYMHo6qqSuqS3AaDnQw8/vjjiIqKQllZGV555RVMmTIFlZWVUpclS/Hx8Xjrrbdw1VVXSV2K7FksFsTGxmLXrl2oqKjA5MmTkZaWJnVZspWeno6CggIYjUb85z//wdSpU/nn8CJsNhv++Mc/Yvjw4VKX4hZWrFgBk8kEk8mE//3vf1KXI2tvv/02/ve//+HHH3+E0WjEypUr4ePjI3VZboPBTmImkwnr1q1DRkYGNBoN0tLSkJKSgg0bNkhdmixNnToVN998M/+Qt4Ofnx9eeOEFREdHQ6lU4oknnkB+fj7Ky8ulLk2WkpKSnOtmCYKA+vp6nDt3TuKq5Ou9997DiBEjMGDAAKlLIQ9itVrx0ksv4YMPPkCfPn0gCAJSUlL4d34HMNhJLDc3F3q9HpGRkc7nBg0ahOzsbAmrIk+0c+dOhIeHIzg4WOpSZOuxxx6Dr68vhg8fjltuuQXJyclSlyRLFRUVePPNN7Fw4UKpS3EbTz75JEJDQ3HzzTfj0KFDUpcjW2fOnEFdXR0+//xzhIeHIzExEe+8847UZbkVBjuJmUymFjc51ul0MJlMElVEnshgMOCRRx7Biy++KHUpsrZs2TKYTCZs3rwZY8aMkboc2frrX/+Kp59+GoGBgVKX4hZeffVV5Ofn4/Tp07j55ptx22238e/4NhQVFcFgMCAvLw8FBQVYvXo1Fi1ahK1bt0pdmttgsJOYVquF0Whs9pzRaIRWq5WoIvI09fX1SEtLw4QJEzBz5kypy5E9pVKJm266CVu2bME333wjdTmys3//fvz888+YPXu21KW4jauuugparRa+vr7485//DK1Wi59//lnqsmTJ19cXgH2inK+vLwYOHIhp06bh66+/lrgy96GSuoCeLj4+HgaDAcXFxYiIiAAAHDx4ELNmzZK4MvIEFosF9957L6KiovDaa69JXY5bsdlsyMvLk7oM2fn+++9x/Phx9OrVC4C9G6xSqZCXl4f3339f4urcg0LBnkpbEhIS4O3t3ew53vm0Y/i7S2JarRaTJ0/GggULUFdXh/Xr1+Pw4cOYNGmS1KXJUmNjI+rr62Gz2Zp9T62bPXs26urqsGLFCgiCIHU5smUymZCZmQmTyQSLxYIvv/wSW7duxejRo6UuTXYefvhhnDhxAgcOHMCBAwcwefJkPPXUU/j73/8udWmyVFVVhc2bN8NsNqOhoQH/+Mc/UFFRgWHDhkldmiz5+fnh7rvvxuLFi2E2m3Hs2DFkZmbitttuk7o09yGS5EpKSsRbb71V9PX1FePj48XNmzdLXZJsTZ8+XQTQ7LF161apy5KlgoICEYDo4+Mj+vn5OR8//PCD1KXJjslkEq+//npRr9eLOp1OvPLKK8XVq1dLXZZbmD59urhkyRKpy5CtkpIScejQoaKfn58YGBgoXn/99eLevXulLkvWKisrxTvvvFPUarVinz59xGXLlkldklsRRJE9TiIiIiJPwKFYIiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyKiSzh9+jRCQkJceoyCggIIggCtVou1a9dedNsvv/wSWq0WgiCguLjYpXURkXvhnSeIiGC/b7NDTU0NNBqN8/66OTk56N27t0uPX1BQgKSkJNTX17f7PYIg4Ny5c4iIiHBhZUTkTlRSF0BEJAcmk8n5vY+PD7Kzs9G3b1/pCiIiugwciiUiuoSCggL4+Pg4fxYEAf/+97/Ru3dvhISE4LPPPsNXX32F2NhYhIWF4bPPPnNuW1FRgfvvvx9hYWGIjY3Fhx9+2O7j7tq1C0OGDIG/vz8iIiLwxhtvdOl5EZHnYceOiOgy/PTTTzh+/Dg2bNiARx99FJMnT8bhw4exZcsWzJw5E3fffTeUSiWmTZuGlJQUFBYWIj8/HzfccAMGDx6MQYMGXfIYTz/9NJ599lncf//9qKysREFBgetPjIjcGjt2RESX4c9//jN8fHxw5513oqqqCo899hg0Gg0mTZqE6upqnD17FsXFxdi+fTteeuklqNVqJCUl4f7778fq1avbdQwvLy8cO3YMFRUVCAwMxJAhQ1x8VkTk7hjsiIguQ1hYGABAqVTCy8sLoaGhztd8fHxQU1OD06dPo6amBsHBwQgICEBAQADeffddnD9/vl3H+OCDD3DkyBH0798fo0aNws6dO11yLkTkOTgUS0TkIr169UJAQADKy8sv6/2JiYlYtWoVLBYL3nnnHUydOhV5eXldXCUReRJ27IiIXKRXr14YPnw45s+fj9raWlgsFuzbtw85OTnten9mZibKy8uhUqng7+8PpVLp4oqJyN0x2BERuVBmZiZOnTrlnDH79NNPo66url3v/frrr5GYmAh/f38sXboUy5cvd3G1ROTuuEAxEZEMnDp1CklJSVCr1fjvf/+LyZMnt7nt6tWrMXPmTNTX1+PUqVMIDw/vxkqJSM4Y7IiIiIg8BIdiiYiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYf4/0XMOvXgGwnoAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Check the Nyquist criterion\n", + "nyqresp = ct.nyquist_response(L)\n", + "print(\"N = encirclements: \", nyqresp.count)\n", + "print(\"P = RHP poles of L: \", np.sum(np.real(L.poles()) > 0))\n", + "print(\"Z = N + P = RHP zeros of 1 + L:\", np.sum(np.real((1 + L).zeros()) >= 0))\n", + "print(\"Poles of L = \", L.poles())\n", + "print(\"Zeros of 1 + L = \", (1 + L).zeros())\n", + "print(\"\")\n", + "\n", + "T = ct.feedback(L)\n", + "ct.initial_response(T, X0=[0.1, 0]).plot();" + ] + }, + { + "cell_type": "markdown", + "id": "VXlYhs8X7DuN", + "metadata": { + "id": "VXlYhs8X7DuN" + }, + "source": [ + "### Gang of 4\n", + "\n", + "Another useful thing to look at is the transfer functions from noise and disturbances to the system outputs and inputs:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "id": "oTmOun41_opt", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgcUlEQVR4nOzdd3gU1foH8O/M7qZseiEkISEhhBaa0pFikCYognijgAhBQUFEvfhT5CoCdixcUMEuoIJwsVACKi2hKL33EkiB1AWym03ZbDm/P0LW1M3s7mzN+3mefcicM2fm7DuTw8mcOTMcY4yBEEIIIYS4NN7RFSCEEEIIIdajTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hpFGlpaV45JFH4O/vD47jUFRU5OgqNWrBggVo3rw5OI7Dhg0bHF0dh0hLSwPHceA4DmPGjBF9+7Gxscbtu8I5YanExETj9zxx4oSo2165cqVx2y+++KKo2yZND3XqCLGxvLw8vPDCC4iPj4eXlxeaN2+O/v3744svvkBpaamjqyfIqlWrsHfvXvz999/Izc1FQEBAnXWq/+dU/fPNN9/Yvb7nz5/HwoUL8eWXXyI3NxcjRowQdfvVOzNyuRydOnXCl19+Keo+xHTx4kWsXLnSuKzT6fD666+jVatW8Pb2RlxcHN58800YDAbjOsnJyXWOZZ8+fWps9/Dhw/jll18sqlNeXh5mzZqFuLg4eHp6Ijo6GqNGjcLOnTst2p6tTZs2Dbm5uejUqZMx7fDhwxg8eDACAwMRFBSEYcOG1en0Mcbw0UcfoW3btsbv+e677xrzH3vsMeTm5qJv3772+irEjUkdXQFC3NnVq1fRr18/BAYG4t1330Xnzp2h0+lw6dIlfPfdd4iMjMRDDz3k6Go2Kj09HR06dKjxH1p9/P39cfHixRpp9XUAxVJRUQEPD4866enp6QCA0aNHg+M4i7ev1Wohk8nqzXvzzTcxbdo0qNVqrFy5EtOnT0dgYCAee+wxi/dnK2FhYQgMDDQuL1q0CF988QVWrVqFjh074siRI5gyZQoCAgLwwgsvGNe7//77sWLFCuNy7Vg3a9YMwcHBZtcnIyPD+HvxwQcfoEuXLtBqtfjzzz8xc+ZMXLhwwfwvaWNyuRzh4eHG5eLiYgwfPhyjR4/G8uXLodPpMH/+fAwfPhzXr183njcvvPACtm3bho8++gidO3eGUqmEQqEwbsfb2xve3t71nseEmI0RQmxm+PDhLCoqiqnV6nrzDQaD8eePP/6YderUicnlchYVFcVmzJjBiouLjfkrVqxgAQEB7I8//mDt27dnPj4+bPjw4SwnJ8e4jlarZbNmzWIBAQEsODiYvfLKK2zSpEls9OjRJuv5888/s4SEBObh4cFiYmLYRx99ZMy79957GQDj59577613G1X1a0hmZiZ76KGHmI+PD/Pz82NJSUksLy/PmD958uQ69XzhhRdq7O/ee+9lM2fOZP/+979ZSEgIGzhwYJ39zJ8/v0Z9q5o5vV7PFi5cyFq0aME8PDxY165d2e+//24sd+3aNQaArVu3jt17773M09OTfffdd/V+l5iYGPbf//63RlqbNm3YuHHjGvz+pqxfv5516tSJeXl5seDgYDZ48GCmVqvZ7t27mVQqZbm5uTXWnz17NhswYABjjLGMjAz24IMPssDAQCaXy1lCQgLbsmULY4yx1NRUBoDdvn27RvkHHniAPfnkkzXSxo4dyyZOnGhcru941KehfZgyYsQI1qJFi3p/L8zZTnW3bt1iEyZMYKGhoczLy4vFx8cbj9+gQYPYzJkza6yvUCiYh4cH27lzJ2OMsWXLlrH4+Hjm6enJwsLC2COPPGJc995772UvvPBCjfKHDx9mAFhWVpYx7dSpUwwAu3LlCmOMsXPnzjGpVMouXLjQaP3r2wch5qLhV0Js5ObNm9i2bRtmzpwJHx+fetepfhWJ53l88sknOHPmDFatWoVdu3bhlVdeqbF+aWkpPvroI/zwww/Ys2cPsrKy8H//93/G/EWLFmH16tVYsWIF/vrrL6hUqkbvJzt69CgeffRRjBs3DqdPn8aCBQswb94843Ddr7/+imnTpqFv377Izc3Fr7/+anYsGGMYM2YMbt26hd27d2P79u1IT0+36KrWqlWrIJVK8ddff9U75Pl///d/xqtLubm5yM3NBQAsXboUH3/8MT766COcOnUKw4cPx0MPPYTLly/XKD9nzhw8//zzOH/+PIYPHy64Xl5eXtBqtQCAvXv3wtfX1+SnagguNzcX48ePx5NPPonz588jLS0NY8eOBWMMAwcORFxcHH744QfjfnQ6HX788UdMmTIFADBz5kxoNBrs2bMHp0+fxqJFi+Dr62uyrv3798fOnTtx6dIlAMDJkyexb98+jBw5ssZ6aWlpCAsLQ9u2bTFt2jQUFBQIjkdDbt26hT/++KPB34vqVxRHjBjRaByrzJs3D+fOncPvv/+O8+fP4/PPP0doaCgAYOrUqVizZg00Go1x/dWrVyMyMhKDBg3CkSNH8Pzzz+PNN9/ExYsX8ccff2DgwIEmv0e7du0QGhqKb7/9FhUVFSgrK8O3336Ljh07IiYmBgCwefNmxMXFISUlBa1atUJsbCymTp2KW7duWRNCQhrm6F4lIe7qwIEDDAD79ddfa6SHhIQwHx8f5uPjw1555ZUGy//vf/9jISEhxuUVK1bUuArAWOXVhebNmxuXmzdvzj788EPjsk6nYy1btjR5xWXChAls6NChNdJefvlllpCQYFyufcWsPlX1q/puPj4+xrpt27aNSSSSGlc1zp49ywCwQ4cOMcaEX6m76667TNaDMcZ+++03Vrt5i4yMZO+8806NtJ49e7Jnn32WMfbPlbolS5Y0uv3qV+q0Wq3xuy9fvpwxxlhpaSm7fPmyyc/NmzcZY4wdPXqUAWAZGRn17mvRokWsQ4cOxuUNGzYwX19f41Wuzp07swULFtRbtqGraAaDgb366quM4zgmlUoZx3Hs3XffrbHO2rVrWUpKCjt9+jTbtGkT69q1K+vYsSMrLy8XtI+GHDx4sN7fi/pcv3690ThWGTVqFJsyZUq92ykvL2fBwcFs3bp1xrS77rrLGLdffvmF+fv7M5VKVW/5hq6inTlzhrVu3ZrxPM94nmft27dnmZmZxvxnnnmGeXp6st69e7M9e/aw1NRUdtddd7FBgwYJ3gch5qB76gixsdr3dB06dAgGgwGPP/54jSsHqampePfdd3Hu3DmoVCrodDqUl5ejpKTEeEVDLpejdevWxjIRERHGqydKpRL5+fno1auXMV8ikaB79+41boCv7fz58xg9enSNtH79+mHJkiXQ6/WQSCSCv6ufnx+OHTtmXOZ53riP6OhoREdHG/MSEhIQGBiI8+fPo2fPnoL30aNHD8HrVlGpVMjJyUG/fv1qpPfr1w8nT560aPtz5szB66+/Do1GAw8PD7z88st45plnAFTeJxUfHy9oO127dsXgwYPRuXNnDB8+HMOGDcO//vUvBAUFAaicsPD666/jwIED6NOnD7777js8+uijxnPi+eefx4wZM7Bt2zYMGTIEjzzyCLp06WJyn+vWrcOPP/6INWvWoGPHjjhx4gRefPFFREZGYvLkyQBQ4ypqp06d0KNHD8TExGDLli0YO3asoO9WH8YYgLq/F/Vp0aKF4O3OmDEDjzzyCI4dO4Zhw4ZhzJgxuOeeewAAnp6emDhxojF2J06cwMmTJ41XsYcOHYqYmBjExcXh/vvvx/3334+HH34Ycrm8wf2VlZXhySefRL9+/fDTTz9Br9fjo48+wsiRI3H48GF4e3vDYDBAo9Hg+++/R9u2bQEA3377Lbp3746LFy+iXbt2gr8fIULQ8CshNhIfHw+O4+rc9B0XF4f4+Hh4e3sb0zIzMzFy5Eh06tQJv/zyC44ePYply5YBgHFID0Cdm/Y5jjP+J1k9rbra+bUxxswu0xCe5xEfH2/8xMXFNbiP2uk8z9fZb/XvXqWhoWwh6vuetdOEbv/ll1/GiRMnkJmZCbVajQ8++MDYiTVn+FUikWD79u34/fffkZCQgE8//RTt2rXDtWvXAFROchg1ahRWrFiBgoICbN26FU8++aSxHlOnTsXVq1fxxBNP4PTp0+jRowc+/fTTRuv+6quvYty4cejcuTOeeOIJ/Pvf/8Z7773XYJmIiAjExMTUGa42V5s2bcBxHM6fP9/ouuYMv44YMQKZmZl48cUXkZOTg8GDB9e4NWHq1KnYvn07rl+/ju+++w6DBw82DpNW/THy008/ISIiAm+88Qa6du1q8jEta9asQUZGBlasWIGePXuiT58+WLNmDa5du4aNGzcCqIyZVCo1dugAoEOHDgCArKwss+JGiBDUqSPERkJCQjB06FB89tlnKCkpMbnukSNHoNPp8PHHH6NPnz5o27YtcnJyzNpfQEAAmjdvjkOHDhnT9Ho9jh8/brJcQkIC9u3bVyPt77//Rtu2bc26StfYPrKyspCdnW1MO3fuHJRKpfE/uWbNmhnvf6si1jPB/P39ERkZWe/3rNq/uUJDQxEfH4/IyMg6HcMePXrgxIkTJj/Tp083rs9xHPr164eFCxfi+PHj8PDwwG+//WbMnzp1KtauXYsvv/wSrVu3rnPFMTo6GtOnT8evv/6Kl156CV9//bXJupeWlho7oFUkEonJK7o3b95EdnY2IiIiGo2NKcHBwRg+fDiWLVtW7+9F9Y7UN99802gcq2vWrBmSk5Px448/YsmSJfjqq6+MeZ07d0aPHj3w9ddfY82aNTU6xgAglUoxZMgQfPDBBzh16hQyMjKwa9euBr9HVQxr3xfLcZwxjv369YNOpzPOxgZgvI+xqkNJiJho+JUQG1q+fDn69euHHj16YMGCBejSpQt4nsfhw4dx4cIFdO/eHQDQunVr6HQ6fPrppxg1ahT++usvfPHFF2bvb9asWXjvvfcQHx+P9u3b49NPP8Xt27dNDnW99NJL6NmzJ9566y089thj2L9/Pz777DMsX77c4u9d25AhQ9ClSxc8/vjjWLJkCXQ6HZ599lnce++9xuHO++67Dx9++CG+//579O3bFz/++CPOnDmDu+++W5Q6vPzyy5g/fz5at26Nu+66CytWrMCJEyewevVqUbZfnTnDrwcPHsTOnTsxbNgwhIWF4eDBgygsLKzR2Rw+fDgCAgLw9ttv480336xR/sUXX8SIESPQtm1b3L59G7t27Wq0ozpq1Ci88847aNmyJTp27Ijjx49j8eLFxo6OWq3GggUL8MgjjyAiIgIZGRn4z3/+g9DQUDz88MNmRqOu5cuX45577kGvXr3w5ptvokuXLtDpdNi+fTs+//xz41U8c4Zf33jjDXTv3h0dO3aERqNBSkpKnThMnToVzz33HORyeY3vkZKSgqtXr2LgwIEICgrC1q1bYTAYTA6PDh06FC+//DJmzpyJWbNmwWAw4P3334dUKsWgQYMAVJ733bp1w5NPPoklS5bAYDBg5syZGDp0aI2rd4SIxmF38xHSROTk5LDnnnuOtWrVislkMubr68t69erFPvzwQ1ZSUmJcb/HixSwiIoJ5e3uz4cOHs++//77GDej1PTKk9oQArVbLnnvuOebv78+CgoLYnDlzWFJSUqOP2qh6pIlMJmMtW7asMdmCMeETJax5pAljjL3xxhusefPmLCAggP373/9mzz33XJ2JEkJuJq9vokT1R5rIZLIGH2ly/PjxRrdf3yNNLHXu3Dk2fPhw1qxZM+bp6cnatm3LPv300zrrzZs3j0kkkhqPsGGMseeee461bt2aeXp6smbNmrEnnniCKRQKxljDkxhUKhV74YUXWMuWLZmXlxeLi4tjr732GtNoNIyxyokew4YNY82aNTOeE5MnT64x0aVK7X1UxTE1NdXk987JyWEzZ85kMTExzMPDg7Vo0YI99NBDjZZryFtvvcU6dOjAvL29WXBwMBs9ejS7evVqjXWKi4uZXC43To6psnfvXnbvvfeyoKAg5u3tzbp06VJjUkVD5922bdtYv379WEBAAAsKCmL33Xcf279/f411bty4wcaOHct8fX1Z8+bNWXJysnGSTHU0UYKIgWPMwptnCCFOz2AwoEOHDnj00Ufx1ltvObo6xArTpk1Dfn4+Nm3aJLhMWloaBg0ahNu3b9d4VIiYau8jLS0NDz/8MK5evWqc7OEssrOzERsbi8OHD6Nbt26CyyUmJuKuu+7CkiVLbFY3e+yDuD+6p44QN5KZmYmvv/4aly5dwunTpzFjxgxcu3YNEyZMcHTViIWUSiV27NiB1atXY9asWRZtIyoqCuPHjxe5ZkDHjh3rvILtjz/+wH/+8x+n6tBptVpkZWVhzpw56NOnj1kduirLly+Hr68vTp8+LWrdVq9eDV9fX+zdu1fU7ZKmia7UEeJGsrOzMW7cOJw5cwaMMXTq1Anvv/9+ow9SJc4rMTERhw4dwjPPPIP//ve/ZpUtKyvDjRs3AAC+vr41XnMlhszMTOMM5bi4uDqTL5xF1dXEtm3b4ueff0bnzp3NKn/jxg2UlZUBAFq2bCnqK72Ki4uRn58PoPLBy1UPTCbEEtSpI4QQQghxA875ZxUhhBBCCDELdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYSQJiA5ORnvv/++o6tBbIg6dYQAiI2NhVwuh6+vL3x9fREbG+voKhFCXBy1K8TeqFNHyB27du2CWq2GWq1GRkZGnXytVmuXethrP4QQ23OWdoU0DdSpI6QBaWlpaN++PV577TWEhobi3Xffxa1btzBu3DiEhoYiPj4e33zzjXH95ORkvPjii7j33nvh6+uLCRMmIC8vD0OGDEFAQAAef/xx6PX6evcVGxuLDz74AO3atUNCQoK9viIhxM7s2a6kp6fjnnvugZ+fH8aOHYvS0lJ7fU3iIFJHV4AQZ3blyhXI5XLk5uZCr9djypQpkEqlyMrKwpUrVzBkyBC0b98e/fv3BwCsX78eO3fuRLNmzdCtWzc8+OCD+P777xEZGYkePXogJSUFo0ePrndfGzZswN69e+Hv72/Pr0gIsTN7tSsTJkzAsGHDkJaWhq1btyIpKQndunWz99cldkSdOkLuGDp0KCQSCQBgxowZGD58OORyOV599VVIJBLwPI9ffvkF6enpkMvl6NKlC5566in89NNPxsb3scceQ/v27QEAiYmJ8PX1NV55Gzx4ME6dOtVgp+7f//43wsLC7PBNCSH24qh2JTMzE2fOnMHevXvh4eGBMWPGoHfv3nb85sQRaPiVkDu2b9+OoqIiFBUV4b333gMAREREGBvkwsJC6PV6REVFGcvExMQgJyfHuFy9U+bt7Y1mzZrVWC4pKWlw/9W3SwhxD45qV3JzcxEWFgYPDw9jWnR0tHhfjDgl6tQRYgLHccafmzVrBp7ncf36dWNaVlYWIiMjRd8XIcR92aNdiYiIQEFBASoqKoxp2dnZVm2TOD/q1BEikEQiwdixY/Haa6+hrKwMZ86cwbfffotx48Y5umqEEBdlq3YlJiYGCQkJePfdd6HVarFp0yYcOnRIpFoTZ0WdOkLMsGzZMpSXlyMqKgoPPfQQ3nzzTQwYMMDR1SKEuDBbtStr1qzBn3/+ieDgYKxcuRIPP/ywCLUlzoxjjDFHV4IQQgghhFiHrtQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgBeverCAwGA3JycuDn50dvBSCkCWOMobi4GJGRkeB56/9mpraFEAIIb1uoUyeCnJwceqceIcQoOztblHf5UttCCKmusbaFOnVWWLZsGZYtWwadTgcA+OabbyCXyx1cK0KIo5SWlmLq1Knw8/OzajvUthBCqhPctjBiNaVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dO51ztdPM/W4KhYIBYEql0u5tCx1n92pbhJajtsU255ytY2ertoWu1IlIJpNBJpOZXG4oz9Z1EbucqfXMzRMSN2ePnRhxM5UvJG71pdkzdu50zlWlWVJHW3Cm3xF3Os6u0LYILUdti+XlHBE7S+ooBM1+JYQQQghxA9SpI4QQQghxAzT8KiKtVmv8VC3X92/tn8WugyXbF1rO1Hrm5jUWJyFxFJPQ7TPGYGCAhOdEiZupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP81V2hZLylHbYnk5R8dOSB3NXY9jjDFBa5I6qmao6fV6XLp0CWvWrKEZam5GWQGcL+KQruKQW8qhsBzQ6CvzfKRAuByI9zegZzOGUC/H1pU4XmlpKSZMmAClUgl/f3+Lt0NtCyGkOqFtC3XqRKBSqRAQEACFQgF/f39otVps374dQ4cOhUwmq7EMoEae2GrvW+xyptYzN89UnIQsi02r1eKPbdsR2q4n/r5WhN2XFDifVyy4/NAOYZg9JB7xYb71bttU3RvKFxK3+tLsGTt3OudqrwOY9/uqUqkQGhpqdaeu+vaEti10nJ27bbFV7KhtsbycI2MH2KZtoeFXEQmZHdRQnq3rInY5d5qhlqcsx55Lhdh1IR+7L0hQduB4jfwuUQEY2KYZOrXwR3yYLwLlHmAMKCgux7GMW1i9+wwuqnhsP1+AXRcLMXNQPGbdFw+ZpO4tqzRDzfJy9jznqtIsqaMtOPp3xFRdxC7nTm2LkDqKVY7aFsvLOSJ2ltRRCOrUkSanXKvH4Yxb2H2xEHsuF+JSvrpaLodAbxkGtm2GxHbNMLBtM4T6eta7nWZ+nmjbTA7/wlNo26M/Pt6Rjh3n8/HJzstIu1iA5Y93Q1QQDZkRQgixD+rUEbdXoCrH0czbOJJ5G0czb+NsjhJa/T93HXAc0CUqEANaB0OmuIRnkobCy9PDrH3Eh/nim8k9sPlkDl7fcAanrisxZtlf+GJid/SIDRb7KxFCCCF1UKeumtmzZ+Pw4cO4++678cknnzi6OsRMyjItsm6W4mJ+MS7kqnAhrxgX8lRQqCvqrBvu74UBbUIxsG0z9I8PRZCPB7RaLbZuvQQJb/mL00d1jUS3mCBMW3UE53JVGP/1AXz4r654oFOYNV+NEEIIaRR16u44duwY1Go19u7dixkzZuDw4cPo2bOno6tF7ijX6pFzuxTXioFt5/Jxq0yPnKIyZN0qRfatUmTeLIWyrP4p3xwHtGvuhx6xQegeE4QeMcGICvIGx1neeTOlRaA3fp7RF7PXncQfZ/Pw4roTuKluj1Cb7I0QQgipRJ26O/bv348hQ4YAAIYMGYIDBw5Qp84KjDFU6A0o1xqg0epRXKZBbilw+oYSOsajXKtHSXkFjhRyuH0wCyVahqISDc6m8/hz3UmoKwxQllYgRyHBa8d2Qa3R3dmyFDhzssH9hvp6ID7MF+3D/dEhwg/tw/3RtrkfvD0k9vnid8g9pFj+eDe8mXIOK//OwFtbLuD+KA4jaLI5IYQQG3HLTt38+fOxfv16XLhwAWvWrMG4ceOMeYWFhUhOTkZqaiqio6OxfPlyDB48GEVFRWjdujUAICAgAGfPnrVJ3X4/k4dNmTxO/3kJPM+DMQbGAAbc+bdyGajsGNVOr1q+s0ZlWrV8vcGA69d5pP1yGhzH31m/+nb+WUatcnl5PFKKToCBg85ggN7AoNOzyn/vLGv1BtxWSrD08l8wMAadoSqfQac3oFwjwatHdqBcZ0Dd/osUOHmwVpoEuHKh2jIPFORXW+YAVHboPKU8fCR6tAwLRJifF8IDvNAyWF75CZEjOkgOH0/nOaV5nsP8UQkIlMuwZMdl/HFdgre3XsSChzqBt2KIlxBCCKmP8/wPKKI2bdpg6dKlmDdvXp28mTNnIjIyEgqFAtu2bUNSUhLS09MRGBgIlUoFoPJ5MIGBgTapW+olBXbm8EBOhk22X4kHCnMtK3erQMB6HFBa0nCe3lAzhQO8pDx4poef3AveHlJ4Snl4SnmUqm6jVVQ4AuUe8PWQIDfrKrp3SUCQjxfkMg7nThzBg0PuRUSwD7x4ht9//x0jR/a26WMHxMRxHF4c0hZ+nhK8teUCvj+QBXWFHh880gXSeh55QgghhFjKLTt1EydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZvRt29ffPnll3j00UexY8cOJCcnN7h9jUYDjUZjXK7qDAp5lU+/VoG4nXcdsTExkEh4cBwHDpUdHw7cnX8B1FquykdVPlCrbOWywaDHlcuX0aZtW0glkhp5qLVu9bIGgwHnz59HQkIHeEilkPAcpDwHqYQ3/izhOcCgx4kTx9G7R3d4esgg4TnI7qzDDHoc3P83Bg7oD19vT3hJeXjKJPCQcNDpdHcetHhPPQ9m7FjtwYzpGNoj0rhccQ2IDvSATAJotboa8RSbJa+kEVpmfPcIXLt4Fj+lS/HrsRsoLtPiv0md4SmTmNwOvcrHvq+PaiytMdbG15q2paG6i8WdjrM942bN9oWUa2wdalssX8/WsRNSR3PXc+s3SiQmJmL69OnG4dfjx49j+PDhKCj452rUrFmzIJfLsWjRIrz44os4evQounbtis8++6zB7S5YsAALFy6sk06v8iGNOX2Lw8pLPHSMQ9sAA6a2M8DTvrf7ERuy9jVh1LYQQuojtG1xyyt1DVGr1XWC4e/vj6KiIgDAkiVLBG1n7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+uXF7/pFE9Msuxsx1p3FJCfx4IxBfTOgCXxlX73aExK2+NHvGzp3OudrrAOb9vlZdWbOUNW0LHWf3aluElmtsnYbyqW1xbOwA27QtdKWu2pU6c9FLt4mlMouBLy5IUKrjEOHNMCNBjwDznndMnJC1V+qqUNtCCKlOaNvSpDp1arUaISEhyMzMRHh4OABg4MCBmDp1KiZNmmTxfqpeup2bm0tX6prYX9PWxO1ygRpTfzyJQnUFooO8MCVWjX+NoL+mzVnPGa/URUREWN2pq749oW0LHWf3aluElqMrdZaXc7UrdULaFrfs1Gm1Wuj1egwbNgzTpk1DUlISPDw8wPM8kpKSEBwcjCVLlmD79u1ITk5Geno6goKCzN4P/TVNrKUoB5afk+CmhkOAB8OzHfQIp1PIZdGVOkKILTTpK3XJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XLjQ4ctRVfqLMtzh7+mxYhbQbEGT/1wAumKUvh7SfHZY53RIyawwXL017TleXSlznLudJxdoW0RWo6u1Flejq7UkRror2kilhIt8OUFCTLVHCQcw/jWBvRsRr+aroau1BFCbKFJX6mzN7pSZ1meO/w1LeZfhH/uSMU2VTi2X1AAAGYMjMX0flFIS0ujv6bpSh1dqWtibYvQcnSlzvJydKWO1EB/TROxGRiwJYvHjpzKt010DzVgfGsDZPTyCZdAV+oIIbYguG1hxGpKpZIBYAqFglVUVLCSkhK2YcMGVlJSUme5dp7YH0u3L7ScqfXMzTMVJyHLzhA7MeJWX/7q/VdZ67lbWMycFNb/zc3scs5NUWPp6Lg56zlXO83c76ZQKBgAplQq7d620HF2r7ZFaDlz2xZz4ubo2DnynLN17GzVttDf/4Q4oaTuUfh2UjcEeEuRXcIh6esjOHD1lqOrRQghxInR8KsVaIiE2NrNcuC7SxJcL+HAgeGhGAMGRTBwXONlif3R8CshxBZo+NWOaPjVsjx3GCKxx2X+//2ygT2/+giLmZPCYuaksGkrD7I1P9MQiS3OudppNPzqnsfZFdoWoeVo+NU255ytY0fDr4Q0UR4S4N3R7bHgwfaQ8hy2nS/Eh6ckOJ6tdHTVCCGEOBEafrUCDZEQe8ssBlZdrnwDBQ+GEdEGDGnBwNNwrFOg4VdCiC3Q8Ksd0fCrZXnuMETiiMv8+beUbOyHm4zDsY9+8RdLz73ZJIdIaPiVjrO7ti1Cy9Hwq23OOVvHzlZti/hPWWzCZDIZZDKZyeWG8mxdF7HLmVrP3DwhcXP22IkRN1P51dODfIEn4g14bGAXLEg5j4PXbmP0F4cxqgWHEVKpw2LnTudcVZoldbQFZ/odcafj7Apti9ByYrQt5qQ1lXPOVL41sbOkjkLQPXWEuCCOAx6+OxIps/qja3Qgist1WJMuwdM/Hke+qtzR1SOEEOIAdKVORFqt1vipWq7v39o/i10HS7YvtJyp9czNayxOQuIoJku2L0bcTOU3FrfoQE+sfaoHvt57FUt3pSPtkgJDF+/Gf+5vAy9mn9i50znXWFpjbHluCmlb6DjXn+aKbYvQcrZqWxpKayrnnKl8sWInpI7mrkcTJaxANzMTZ5JbCqy+IkF2SeWsiQ6BBiS1MiDEy8EVa0JoogQhxBZoooQd0UQJy/Lc4WZmZ7sht0hVzP677QKL/0/lK8bavbaVfbrjIitSFbvlzcw0UaJp3LTeFNsWoeVoooRtzjlbx44mSrgAmihhWZ473MzsLDfkyr088eLQdri/Y3M8t3IvrqiAj7ZfxsaTORjZzH1vZqaJEk3jpvWm2LYILUcTJSwvRxMlCCFOrXUzHzyXYMAHYzsh2McDlwtKsPSsFP/ZcBYKtcbR1SOEEGID1KkjxE1VzZDdOfte/KtbCwDA+qM3MOjDNHyz9yoqdAYH15AQQoiYaPhVRDT7tenNUHOFWVa+HjK8+WBbtNBkYvutQJzLVePtLeex+kAm/jOyHRLbNhPwTS3/btaWo9mvNPu1KbYtQss5eganu55zpvJp9qubohlqxNUYGHCokMPmLB5qbeUs2YRAA8bEGtDc28GVcwM0+5UQYgs0+9WOaParZXnuMEPNFWZZ1bd8U1XK3tx02jhLNm7uFjb3lxMs51Zxkz7naqfR7Ff3PM7O1LbcLi5l567fYsczFOxEpoLduFnMNBqN4Ho5W9viLuecrWNHs19dAM1+tSzPHWaoOfMsq/qWg2UyzBvVCY/3icU7W85j54UCrDl0HRtO5GLqgDg8PTAOvp7mNQ/udM5VpVlSR1twpt8RdzrO9m5byvXAketFOJZ1G8ezinD6hhK3SirqrBfgLUP/+FCM7BQGA6PZrzT7VXjbQp06QpqwuGa++Da5Jw5cvYn3fr+Ak9lF+GTnZaw5mInnB7fB+F4tIZPQfCpCzGUwMFwpVON41m0cybiFveckePFAKuq74cnPUwpfLyl0Boabag2UZVpsOZ2LLadzEeYlgW+bQgztGGn/L0FcDnXqCCHoExeCDc/eg9/P5OHDPy/imqIEb2w8i+/2XcP/DW+HkZ0iwPOco6tJiFNijKGwWIOzuSoczyrC8azbOJFVhGKNrtpalb8/LYPl6NYyEN1ignB3dBBiQ+Xw8/rnKky5Vo9zuSr8eSYPPx3KQkG5DtN+OI6Huubj3bGdzb6CTpoWOjvuyM7OxujRo3Hu3Dmo1WpIpRQa0rRwHIeRnSMwNKE51h7OxtIdl5FxsxTPrTmOhIh0zB7aFoM7hIHjqHNHmiaDgaGgWIPMmyW4pijBhbxiXMwrxoU8FW6X1p2d6C2ToGt0ALq2CIC+4AqmjrkP4UG+JvfhJZOgW8sgdGsZhOkDYzH72x3Yky/BppM5OJujxFeTeqB1M9PbIE0X9VzuaNasGXbt2oUxY8Y4uiqEOJRMwuOJPjEYe3cLfL33Kr7Zew3nclWY+v0RdI0OxOyhbTGwTSh17ohb0RuAPFU5ispKUaguR2GxBgUqDQqKNbh+uxRZt0qRfbuswec78hwQG+qDu6ICcXdMELq1DES75n6QSnhotVps3XoZIb6eZtXJ11OKMbEGzBjVB8+vPYX0whIkfbEfq6b0QueoADG+NnEz1Km7w8vLC15e9OZzQqr4eErx4pC2mNw3Fl/uuYpVf2fgZHYRJn93CD1igjB7WFvc0zrU0dUkTYSBARU6A3RMD53BAL2BQaMzoLhMg5xS4NR1JXSMQ7nOgJKyChxVcCg5egM6BpSUa3Eii8eRLRdQUqGHsrQCGTck+PzafhSX66Aq16K4XAoc3NNoPSQ8hxaB3ogJkaNdcz+0C/dDhwh/xIf5wksmscl3vzs6ECnP98eTKw/j1HUlxn99AN9O7oHecSE22R9xXS7bqZs/fz7Wr1+PCxcuYM2aNRg3bpwxr7CwEMnJyUhNTUV0dDSWL1+OwYMHO7C2hLiuIB8PvDqiPZ7q3wpf7E7HjwcycSTzNiZ8fRB940Lwwn1xjq4iAbD5ZA62nMpBbi6PLcoT4DkeDAyMAQy4c4N+5V36/6QxY17V/fuMVV/nTnkGMGaA4iaP1bmHK19XUi2/ast1tscYGGO4XSTB15kHAA7G7RkYg87AoDcw6AwG6PQMJaUSLDyVCr0BxvTKfxkYkwIHdjTw7aXAyYO10iTA5bPVlnngRla1ZQ4oLq5ZgucQ6uuBMD8vNPPzRDNfT4T6eSAqSI6WwZWfiAAvSB0weSjU1xOrp/bGtO+P4MDVW5iy8jB+nNobnSNoKJb8w2U7dW3atMHSpUsxb968OnkzZ85EZGQkFAoFtm3bhqSkJKSnp0Oj0dTo/AGAr68vUlJS7FVtQlxWMz9PzHswAU8PjMOy1Cv46VAW9l+9if1Xb6J9AI/mHW+jT3yYo6vZZF3KL8YfZ/MB8MCtAhvthQdUty0oxyG7RCVoPZjx9gAJz8FLyoMz6ODv4w0vDwm8pBJ4SjmolbfRIjwMck8pPHgOirwb6NyuNQJ8POEj45F+/jQG9u2JIF8vyKUcjvy9G/8aNQKenh4WfD/78POSYeWUXpj2/RHsvaxA8neHsPqpno6uFnEiLtupmzhxIgDgnXfeqZGuVquxceNGZGRkQC6XY8yYMVi8eDE2b96MSZMmIS0tzep9azQaaDT/vBRdpapsrOg1YU3vVT6u8joaMWMX7C3BvJHt8NQ9LbF891X8ciwHF5Q8xn1zGH1aBWFmYmv0bhXU6D13znjONZbWGGvja03bMjA+GAGebXDhwgUkdOgAXiIBh8qLahy4O/9WLleqmVa1TmVOZeI/eYDBoMepU6fRpUsXyKSVw4xctXXubNG4PrjKfINOh+MnTuDuu++GTCoxluF5DlKeg+TOBwY9Dh86iP739IWnh0eNPGbQYd+ePRh8XyK8quVV3a+2fft2DB3a1/gsr3/SOkMmk91ZzsbQxNh/lgtPoU9sgHH5ggzQ63XQasW/V1TMdlkC4LNxXTBl1TEcyypC8sqjmN7GPdoWoXUXq5yj22UhdTR3PZd/TVhiYiKmT59uvAJ3/PhxDB8+HAUF//ylOmvWLMjlcixatKjB7ZSXl+PBBx/E0aNH0a1bNyxYsAADBgyod90FCxZg4cKFddLpVT6kKVKUAztu8DhUyEHPKv9DbOXHMDzKgPYBDE1pPoW1rwmjtoUIVaoDPjsrwY1SDiGeDP/urIef7Z6bTBxMaNvislfqGqJWq+t8YX9/fxQVFZks5+XlhR07Grpfo6a5c+di9uzZxmWVSoXo6GgMGjQI/v7+0Ol0SE1NxaBBgyCVSmssA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9jpdDqEpqZiQVJfrDyYg1+O5+JasQFfnJegc6Qfpg+IRWLbkDpX7pzxnKu9DmDe72vVlTVLWdO22OM4U9tiGVvFrv/ACoz/9iiuF5Vj7Y1ArJzcDXIPiaBtuErb4qhzzlS+GLEDbNO20JU6K9BLtwmpS1kB7Mzh8Xc+B62hsiPXQs4wLMqALsEM7vwMY2uv1FWhtoUIVVAG/PeMBKU6Dp2CDHiqncGtf8eaKqFti9t16tRqNUJCQpCZmYnw8HAAwMCBAzF16lRMmjTJJnVQqVQICAhAbm4uXalrYn9Nu8JfhI76a/pmSQVW7c/GmiM3UFqhBwC0bibHM/1jcX/HZoDB4HTnXO11APP/mo6IiLC6U1d9e0LbFne+atIU2xah5XQ6Hb7dmIrPL8hQoWcY36MFXh/Rxnhl3B3bFrHKudqVOiFti907dWVlZXjjjTewfv163Lp1CyqVCn/++SfOnz+PF198UfB2tFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUGifhf6a5qQxpVogd25PPbkcSjTV/5HE+rJcF8LA3o1Y5C50atl6UodcZQTNzmsvMSDgcNDLfUY3MKlr9eQWpz2St2UKVOg1Wrx6quvYsCAAbh9+zZyc3MxaNAgXLhwQfB2kpOTsWrVqhppqampSExMRGFhISZPnoy0tDRERUVh+fLlGDJkiNhfxYiu1FmW5w5/TbvCX4TO8te0qlyLNYdu4PuD11FUVjmTy1/G8GT/VpjQK7rBd1rSlTq6UtcU2xah5aqvs/pILhZtuwIA+GhsAkZ2at4k2hZLy9GVOhGEhYUhOzsbnp6eCA4Oxq1btwAAAQEBUCqV9qyK1eivaULMp9ED+ws4pObwKKqovHLnLWEYEM4wMMLg0jP46EodcSTGgF8zeOzJ4yHhGJ7toEc8vU3MLTjtlbq2bdti165diIqKMnbqrl27hpEjR+L8+fP2rIpo6EqdZXnu8Ne0K/xF6Kx/TZdpKvDxz3uwv8gX126WAQA8pTweuTsCU/pGo0Wgd6Pbpyt1zn+cqW2x35U6qVQKvYFh9s9nsf1CIfy9pFj5RBdknznUpNoWV2iXATe5Urds2TJ88803eO211/DUU09h9erVePvttzFlyhQ888wz9qyK1eivaUKsZ2DA6VscdtzgkVVSeeWOB0P3UIbBLQyIcKFfKbpSR5xBhR5Yfl6Ca8UcAj0Y/t1Jj0BPR9eKWENw28Ic4H//+x+7//77WUJCAhs6dChbu3atI6ohGqVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dWOecRqNhaedz2fiv/mYxc1KMn+RvD7AlP9jnnKudZu53UygUDABTKpV2b1tc5Thbsl5TbFuElmtonfwiNRv04S4WMyeF9V24meXdVJodN0fHzpHnnKl8MWJnq7ZF/OvMAiQlJSEpKckRuyaEOCmO43BP6xDc0zoEp64r8dXea9h2vgCplxRIhRT7io9jxr1x6B9f90HGhJCaguQe+GZSNyR9eQg5JRV4Yf0ZfDupOzykbjTdnNRhl+HXDz74QNB6r7zyio1rIi4aIiHEtvLLgJ03eBxR/PMKsigfhsGRBnQNYZA4Wd+Ohl+Js8lWA5+claDCwKF7qAFPxBua1Kv73IVTTZSYMmVKjYr99ttv6N27N6Kjo5GdnY1Dhw5h7Nix+Omnn2xdFZuouplZoVDA39+/2sukh1Z7mXTlMoAaeWKrvW+xy5laz9w8U3ESsiw2S7YvRtxM5QuJW31p9oydPc65/6Vsx1VZLNYfy0GZ1gAAiAryRnKfKATcPI8H7hfnnKu9DmDe76tKpUJoaKjoEyWEtC3ucJypbTG/nJC25ZP/7cDXF6XQM4ZnBrTC/w1rQ22LgPVs2S4Dtmlb7DL8umLFCuPPjzzyCNavX4/Ro0cb0zZt2oTvv//eHlUhhLigIE/g1aFt8Nx98fjxQDZ+OJiF67fL8Pbvl+EjlSDD+xom9Y1FsI+Ho6tKiNPpEMSwcFQ7vL7pAr7cew0RAZ54tFuEo6tFbMDus18DAgJw8+bNOtODQ0JC6Dl1hBBBKvTAwcLKZ93d1FSOJcl4hj5hDIMiDAjxcky9aPiVOLM/sjn8fl0CDgyT2xpwdwi9dcJVOO3s13vuuYfNnz+fabVaxhhjWq2WLVy4kPXt29feVRENzX61LM8dZqi5wiwrW8fOkeecsriYzf9mIxuxJM04W7bVqyns2R+PsMNX8mj2q5sc56bYtggtZ07botFo2JyfT7CYOSms9dwt7L2VG6ltodmv1vnhhx8wYcIEfPzxxwgLC0NBQQESEhKwevVqe1dFdDKZrMbYeH3LDeXZui5ilzO1nrl5QuLm7LETI26m8oXErb40e8bOUefc3aEM/3miL45kqfD57nTsvazAltN52HI6D20DePi3VSGxffMaM2aFxMWSuNkrtk3xOFuS50xxs2b7QsoJbVveebgLijV6bDmVi+8u8hiUW4LerZs1uq2mes6ZyremXbakjkLYvVMXFxeHAwcOICsrC7m5uYiIiEDLli3tXQ1CiBvhOA73xIfinvhQnM1R4us9V7H5VC4uKXlMWXUUCRH+eObeOAxrH+roqhLiUBKew38fvQvFZRXYc/kmpv1wDOue6YsOEdZP7CGOZ/dOXUFBAQDAy8sLrVq1qpEWFhZm7+qISqvVGj9Vy/X9W/tnsetgyfaFljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc7Zzrm0zOT58pBNmDozB2//7C4duSnEuV4UX1p5Ai0Av9Ank0K+kHAE+5sdX6HcSm9C2pSkdZ1N57tC2CC1nSdvCAfjvvzriX5/txrViHZ749iDWTu2FSH9ZnXWb6jlnKl+sdllIHc1dz+4TJXieB8dxqNpt9SERvV5vz6pYjW5mJsT5lWiBffkc9uTyUOsq2xu5lGFAOMPAcAN8RRwxookSxJWU6oDPzkpwo5RDsCfDCx3pdWLOymknStSWm5vLZs6cyb7//ntHV8ViNFHCsjx3uJnZFW7ItXXsXOWcU5WUsW93X2Ld39hsnFTR9rWt7PHFm9iF64p6y9FECdc7zpbEyRnbFqHlrG1bMvNvs4GLKl8ndt9Hu9iP66ltERo7t5goceLECdx1110W9jXrCg8Px+LFixEXF4cnnnhCtO06Ak2UsCzPHW5mduYbcpvCzcxC8mQyGZ7oG4ugW+cgiemGb/7KxKnrSuzL5zHiswMY0TkC0we2RvvmcmM5S+poC870O+Lsx9lUmiu2LULLWdq2RAT5YPW03vjX5/uRXliK5SUSDBsKNJNT29JYvjNOlDD7JXAPPfQQEhIS8NZbbyE9Pd3c4vU6ePAgdDqdKNsihBBTeA4Y0SkcG2f2w49P9kCHQAMMDNhyKhejPtuHSSuO4HzRP7eIEOLuooLk+HFqb4T6euBGKYcpq45CWWab+wuJbZndqcvKysKXX36J3Nxc9O3bF71798bSpUuRl5cnqHyHDh2QkJBg/MTGxmLkyJF49913za48IYRYiuM49G4VjOkdDNg8sy/G3t0CUp7D/qu38MV5CR5afgCbTuZCb3B0TQmxvfgwX3yf3AM+UoYzOSokrzgEtYYutrgai2a/DhgwAAMGDMCnn36KP//8Ey+//DL+7//+D4mJiXjyySfx2GOPgefr7y9+8cUXNZZ9fHzQtm1bUd6T6Gg0+7XpzVBzlVlW7jpDTaxzrnWIFxaN7YgX7ovDt/uuYe3hbFzIK8ZLP59GkIcE4QkK9Ixr/HEoNPvV8nLUtlhWTsy2JTbYEzMT9PjikheOZxUh+buD+GJ8l3rXd/dzzlS+W85+PXnyJNauXYuffvoJQUFBmDhxIlq0aIHPP/8cAQEB2LRpU73lPvroI/zf//1fnfTFixdj9uzZllTFYWiGGiHuqUQL/JXPYXcej3IdsKC7Hn4Cbmmh2a/EHWSrgWXnJCjTc2jjb8DT7Q3wkDi6Vk2bzWa/Lly4kLVv357FxsayuXPnsrNnz9bILy0tZd7e3g2W9/Pzqzc9ODjY3Ko4DZr9almeO8xQc4VZVraOnTudc7XTbilV7OPvafarux1nV2hbhJazVdtyKL2AJbzxO4uZk8KGvbuJ3VKqmtQ5Z03shJyHTjP79fr16/jyyy8xcODAevO9vb3x999/10n/3//+BwDQ6XRYv359jZuQMzIyEBwcbG5VnA7NfrUszx1mqDnzLKumMENN7HOuelprf5r9aqouYpejtsWycmK3LT3jmmHllF6Y/N0hXFQCL/58Dl9N6mFct6mcc6bynXH2q9mduq+++qrRdep75Mnnn38OAKioqMDy5cuN6RzHISwsDCtXrjS3KoQQQgixkZ6xwfhq4t2YsvIwdl9S4JkfjuKzx7o4ulrEBLu9Jiw1NRUA8Pbbb+P111+3124JIYQQYqHerYLxdHsDvr0sQ9rFQkxfcwKjXX9gzW2Z/UgTSygUCuPPTz/9NAoKCur9ONLu3bvRt29f9O/f3+UmbBBCCCG20jaA4ZsnusFbJsG+Kzfx9UUeZRWu9VrPpsIunbpWrVoZfw4PD0dERATCw8NrfCIiIuxRlQbFx8cjLS0N+/btQ15eHk6fPu3Q+hBCCCHOonerYKx6shfkHhJcUvJ4+sdjKK2g59g5G4s6dZmZmfj444/x0ksv4eOPP8a1a9dMrl9cXGz82WAwQK/Xw2Aw1Pjo9Y7t9bdo0QKenpVvMpbJZJBIaP42IYQQUqVXq2B8N6kbPHmGA9duY8qKwyihBxQ7FbM7dSkpKejSpQuOHj0KDw8PHDt2DHfffTc2b95si/o1aP78+UhISADP81i7dm2NvMLCQjzwwAOQy+Vo164ddu7cKXi7x44dg0KhQEJCgthVJoQQQlxa95ggzEjQw9dTioPXbmHqD8dQTiOxTsPsiRJz587Fxo0bkZiYaEzbs2cPZsyYgVGjRjVaPjs7G2+++SZOnjwJtVpdI+/cuXOC69GmTRssXboU8+bNq5M3c+ZMREZGQqFQYNu2bUhKSkJ6ejo0Gg3GjRtXY11fX1+kpKQAAPLy8vD888/jl19+EVwPQgghpClp5QesTO6OKauO4khmEW7ekmDoUB2Cbfg4GCKM2Z26GzduoF+/fjXS+vbti5ycHEHlH3vsMbRp0wYLFy606gnpEydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZsxadIkpKWl1bu98vJyTJgwAZ9++imaN29uct8ajQYajca4rFKpANBrwpriq3xc5XU07voqH7HPucbSGmNtfK1tW+g415/mim2L0HKOalsSmsuxKrk7klcexbViHZJXHsGKyd3h7y1ex45eE1Z3n40R/Jqw69evIyoqCiNGjEC3bt2wYMECyGQyaLVaLFy4EEeOHMEff/zR6Hb8/f1RVFTU4LthzZWYmIjp06cbr8AdP34cw4cPrzGbdtasWZDL5Vi0aFGD2/n888+xcOFCtG/fHgDw3nvvoW/fvvWuu2DBAixcuLBOOr3Kh5CmzdrXhFHbQlxNthpYfl6CUh2HKB+GGR308KULdqIT2rYIvlKXkJAAlUqFL7/8EuPHj0dwcDDCwsJQUFCAzp0717mvrSH3338/Dhw4gHvuuUfors2iVqvrfOGqjqQpM2bMwIwZMwTtY+7cuTUee6JSqRAdHY1BgwbB398fOp0OqampGDRoEKRSaY1lADXyxFZ732KXM7WeuXmm4iRkWWyWbF+MuJnKFxK3+tLsGTt3OudqrwOY9/tadWXNUta0LXSc3attEVrOGdoWnkvF11e8cb1EixWZAfh2Ylc08/M0J0QWf39ryjkydoBt2hbBV+r8/PxqzGLNzs5GTk4OIiMjER0dLWhnADB58mT89ttvGDZsGMLCwmrkVX/ThFBiXamzBL10mxBSnbVX6qpQ20JcTX4ZsOysBEoth1AvhpkJegRb368jd4h+pQ6o7MhV7wNGRESAMYasrCwAQMuWLRvdRlxcHF566SVzdmuWNm3aQKlUIi8vD+Hh4QCAkydPYurUqTbbJyGEENKUNfcGnu+kx7JzEijKOXxyRoKZCXo083Z0zZoWwVfqeJ6Hl5cXGlqd4ziUlpaKWjlTtFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUE2qYtKpUJAQAByc3Np+LWJDZG4wmV+Gpaz7/BrRESE1Vfqqm9PaNtCx9m92hah5ZytbclTlePJH04g42YZQn098O3Eu9AmzMeccJn1/a0p52rDr0LaFouHXy31wQcf1Jvu6emJqKgoDB48GIGBgY1uJzk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhlhd99poiIQQUh0NvxICqCoqJ0/klnLwkVZOnoj2dXStXJvgtoUJ5OfnJ3RVkx577DHm4eHBBgwYwMaPH88GDBjAPDw82COPPML69u3LAgIC2M6dO0XZl70olUoGgCkUClZRUcFKSkrYhg0bWElJSZ3l2nlifyzdvtByptYzN89UnIQsO0PsxIibqXwhcXN07NzpnKudZu53UygUDABTKpV2b1voOLtX2yK0nLO2LQVFJWzUJ3tYzJwU1mn+H+zglQKnipujY2ertkXwc0WYsAt6jdLpdPjll1+wZ88erFmzBnv27MGvv/4KjuPw999/Y9myZTVmfxFCCCHEtQTKZViZ3AM9YgJRXK5D8qqjOHD1lqOr5fYED7+KJSAgALdu3arxblWdToeQkBAolUoYDAYEBgZa/WgAe6AhEkJIdTT8SkhNGj3w7UUeF5U8ZBzDlHYGdAyya7fDLYg+/CqWPn36sDfffJNptVrGGGM6nY699dZbrHfv3owxxjIyMlh0dLS9q2UVGn61LM8dhkhc4TK/rWPnTudc7TQafnXP4+wKbYvQcq7QthSXlLEnVxxkMXNSWPx/trBNx7MdHjdHx87hw69iWbVqFTZu3Ijg4GDEx8cjKCgIGzduxA8//AAAyM/Px5IlS+xdLUIIIYTYgKdMgk/HdcUDncKh1TO8sO4kfjl2w9HVckt2H36tkpGRgfz8fISHhyMmJsYRVbAaDZEQQqqj4VdCGmZgwLqrPA4UVF5PejhWj8QIGooVwmmHX6uUlJSwrKwslpmZafy4Khp+tSzPHYZIXOEyv61j507nXO00Gn51z+PsCm2L0HKu1rZoNBr25qbTLGZOCouZk8I++P0c02g0TnfO2Tp2tmpbxH/KYiNOnz6NSZMm4dSpUwAqH1oMAB4eHnZ9eDEhhBBC7IvjOMwZ3hb+XjL8d+cVLEu7ClW5Dq+PaAee5xxdPZdn9+HXfv36YejQoXj11VcRERGB3NxcvPHGG2jdujWeeeYZe1bFajREQgipjoZfCRFubx6Hn69VPgmjZ6gB41sbILH7nf6uwWmHXwMCApher2eMMRYYGMgYY0yj0bAWLVrYuyqioeFXy/LcYYjEFS7z2zp27nTO1U6j4Vf3PM6u0LYILefqbcv6w5ksbu4WFjMnhT254iArLilzinPO1rFzm+HXwMBAFBUVITg4GC1atMDJkycRHBwMtVpt76qITiaTQSaTmVxuKM/WdRG7nKn1zM0TEjdnj50YcTOVLyRu9aXZM3budM5VpVlSR1twpt8RdzrOrtC2CC3nqm3Lv3q0RKDcEzPXHMPOC4WY9uMJfD25B3w9/+meOPKcM5VvTewsqaMQdr/QOXXqVOzevRsA8MILL2DAgAHo3Lkzpk2bZu+qEEIIIcTBhiQ0x6one8HXU4r9V2/i8a8P4HZJhaOr5ZLsfqXu9ddfN/48bdo0DBs2DGq1Gh07drR3VUSn1WqNn6rl+v6t/bPYdbBk+0LLmVrP3LzG4iQkjmKyZPtixM1UvpC41Zdmz9i50znXWFpjbHluCmlb6DjXn+aKbYvQcu7StnSP9sf3U7rjqe+P4eR1JZK++BtfP97Vom27SrsspI7mrme3iRIJCQmNrnPu3Dk71EQ8dDMzIaQ6mihBiHXySoHl5yVQVnAI9mR4toMezbwdXSvHc7qJEl5eXqxt27Zs4cKFLDU1laWlpdX5uCqaKGFZnjvczOwKN+TaOnbudM7VTqOJEu55nF2hbRFazh3blqv5SjZw0S4WMyeFdXp9Mzt2Nd/u55ytY+fyEyUKCgrw66+/YvXq1Vi5ciWSkpLw+OOPo0uXLvaqgs3RRAnL8tzhZmZnviGXbqCniRK2rIvY5ahtsaycO7UtrcJkWD+jLyZ9cxAX8tWYvOo4Vkzphe4xQWZtx5nbZUvqKITdJkr4+flh8uTJ2LZtG/bv34/IyEg8/fTT6Ny5s8sNuxJCCCHEdsL8vPDjUz3Ryo9BVa7DxG8OYu/lQkdXy+k55DF/np6e8Pb2hpeXF8rLy2EwGBxRDUIIIYQ4qQBvGWZ00KN/fAjKtHo8ufIwfj+d6+hqOTW7Db9qNBps2rQJP/74I44fP44xY8bg/fffR58+fexVBZuj2a9Nb4aaq8yyolmR9afR7Ffz6mDJtp3xOLtC2yK0nLu3LZ4S4LNHO2Huxgv4/Ww+Zq45hrceSsCjPaJMlhNSJ0fHTkgdzV3PbrNfAwMDER4ejvHjx2Po0KGQSuv2J3v16mWPqoiGZqgRQqqj2a+E2IaBAf+7ymN/QeUA46iWegyOZOCayOtinW72a0xMDIuNjWWxsbGsVatWxp+rp7kqmv1qWZ47zFBzhVlWto6dO51ztdNo9qt7HmdXaFuElmtKbYtGo2HvppxlMXNSWMycFPbmptOsvFxjk3PO1rFz+dmvGRkZ9tqVw9DsV8vy3GGGmjPPsqJZkTT71ZZ1EbsctS2WlWsqbcvcBxIQ6ueFd7aex7d/ZaKoTI9Fj3SGVFJ3ioAzt8uW1FEIh0yUIIQQQgixxLSBcfgoqSskPIdfjl3H9B+PoVyrd3S1nAJ16gghhBDiUv7VPQpfTOwOTymPHefzMem7Q1CV22aiiyuhTt0dOTk5uOeeezBw4EA8+OCDKC0tdXSVCCGEENKAoQnN8f2TveDnKcWha7fw2JcHUFBc7uhqORR16u5o3rw59u3bhz179qB79+7YsmWLo6tECCGEEBN6x4Vg7TN9EOrrifO5KiR9sR9Zt5ruRRnq1N0hkUjA85Xh4DgO7dq1c3CNCCGEENKYjpEB+GVGX0QHeyPzZinGfX0IN0ocXSvHcNlO3fz585GQkACe57F27doaeYWFhXjggQcgl8vRrl077Ny5U9A29+3bh+7du2PHjh2IiYmxRbUJIYQQIrKYEB/8Mv0etA/3Q6G6Ap+eleBo5m1HV8vuXLZT16ZNGyxdurTeBxbPnDkTkZGRUCgUWLRoEZKSknD79m3k5eUhMTGxxufBBx80luvfvz+OHj2KMWPG4LvvvrPn1yGEEEKIFcL8vbDu6b7o3jIQZXoOyauOYteFfEdXy67s9pw6sU2cOBEA8M4779RIV6vV2LhxIzIyMiCXyzFmzBgsXrwYmzdvxqRJk5CWllbv9jQaDTw9PQEAAQEB0Osbnh6t0Wig0WiMyyqVCgC9JqwpvsrHVV5HQ6+Pqj/N2V4TZm3bQse5/jRXbFuElqO2pSa5DPjq8S544vM0nCsCpn1/FIse7ojRd0WavX16TZgDJCYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyLFi1qcDv79u3Da6+9Bp7nERwcjB9++KHB1/IsWLAACxcurJNOr/IhpGmz9jVh1LYQIg69AViTzuOIonJAcmysHvdGuG53R2jb4rLDrw1Rq9V1vrC/vz/UarXJcv3798fu3buRmpqKX375xWQDOnfuXCiVSnz00Udo164d4uPjRak7IaRpo7aFEHFIeODxeAPuDTcAAH7NkGBLFg/XvozVOJcdfm2Ir6+vcciiikqlgq+vr2j78PT0hKenJ1566SW89NJLUKlUCAgIwKBBg+Dv7w+dTofU1FQMGjQIUqm0xjKAGnliq71vscuZWs/cPFNxErIsNku2L0bcTOULiVt9afaMnTudc7XXAcz7fa3d9pjLmraFjrN7tS1Cy1Hb0nC5wfcNwjCJBF/uy8Qnqdew7QaPwPAozBvRFhKec2jsANu0LW43/KpWqxESEoLMzEyEh4cDAAYOHIipU6di0qRJou572bJlWLZsGfR6PS5dukRDJIQ0cdYOv1ahtoUQce3L4/DzNR4MHO4KMeCJeAOkLjRWKbRtcdlOnVarhV6vx7BhwzBt2jQkJSXBw8MDPM8jKSkJwcHBWLJkCbZv347k5GSkp6cjKCjIJnWp+ms6NzeXrtQ1sb+m6Uqde51ztdcBzP9rOiIiwupOXfXtCW1b6Di7V9sitBy1LcLL/XGuAK/8eg46A0PfVkH47yMdcPCvPS5zpU5I2+Kynbrk5GSsWrWqRlpqaioSExNRWFiIyZMnIy0tDVFRUVi+fDmGDBkieh3or2lCSHV0pY4Q53axiMM3F3lUGDjE+DI83V4PX5mja9U4wW0LI1ZTKpUMAFMoFKyiooKVlJSwDRs2sJKSkjrLtfPE/li6faHlTK1nbp6pOAlZdobYiRE3U/lC4ubo2LnTOVc7zdzvplAoGACmVCrt3rbQcXavtkVoOWpbzC93+Gohu2vhnyxmTgrrtWAzu5Jz0+6xs1Xb4kIjyoQQQggh1ukaFYA1T/VEuL8n8ss4PL7iGNIL3eO9Yi47/OoMaIiEEFIdDb8S4jpuaYDPz0lQUM7BR8rwTAc9YsR7UIaoaPjVjmj41bI8dxgioeFX9zrnaqfR8Kt7HmdXaFuElqO2xbpz7sf1G9iDS3ezmDkpLGHe7yz1fK5dYkfDr4QQQgghIvKVAd89cRfuiQtGSYUe0344ht/P5Dm6Whaj4Vcr0BAJIaQ6Gn4lxDXpDMAPl3mcuMWDA8OjcQbc09x5ukc0/GpHNPxqWZ47DJHQ8Kt7nXO102j41T2Psyu0LULLUdsi3jlXVq5hc34+wWLmpLCYOSns4z/Ost9+o+FXQgghhBCXIuE5vDmqA2YmxgEAPkm9hl8zeBhcaECThl+tQEMkhJDqaPiVEPewO5fDrxkSAEC3EAMed/BrxWj41Y5o+NWyPHcYIqHhV/c652qn0fCrex5nV2hbhJajtsU251xFRQVbd+Aqa/XqZhYzJ4VN/Ho/K1KXihY7W7Ut4r/krgmTyWSQyWQmlxvKs3VdxC5naj1z84TEzdljJ0bcTOULiVt9afaMnTudc1VpltTRFpzpd8SdjrMrtC1Cy1HbYnm5htZ7uFsUrp4/jVXpMuy9chOTVx7DiuSe8PWQNVhOaOwsqaMQdE8dIYQQQkg9OgQxfD+lBwLlMpzILkLSl/uRqyx3dLUaRFfqRKTVao2fquX6/q39s9h1sGT7QsuZWs/cvMbiJCSOYrJk+2LEzVS+kLjVl2bP2LnTOddYWmNseW4KaVvoONef5opti9By1LZYXk5o7DqG++Cnp3piyqqjuFKgxqNfHcSUVtbHTkgdzV2PJkpYgW5mJoRURxMlCHFftzTAF+clyC/jIJcyPNNej1g/++ybJkrYEU2UsCzPHW5mpokS7nXO1U6jiRLueZxdoW0RWo7aFtuccw3l591WG18r1v71rWzn2RyLYkcTJVwATZSwLM8dbmamiRLudc5VpVlSR1twpt8RdzrOrtC2CC1HbYvl5cyJXfNAGX54sifGfboDF5TAM6uP46OkrhjZMazBbdFECUIIIYQQJ+TjKcW09gY80DkcWj3Di+tO4PsDWY6uFgDq1BFCCCGEmEXKA4v/1RmT+8aAMeCtLRewNYsHc/A0BRp+FRHNfm16M9Ro9qt7nXONpTWGZr9aXo7aFsvKUdtieTlrY6fX6/DaiLYIksuwZOcV/HmDx+sbz+LNhzpCwnM0+9XV0Aw1Qkh1NPuVkKZpXx6Hn6/xYODQNdiASW3Efa0YzX61I5r9almeO8xQo9mv7nXO1U6j2a/ueZxdoW0RWo7aFtucc5bEbsG3G1n8f7awmDkpbNyXf7P8W0qa/erKaParZXnuMEONZr+61zlXlWZJHW3BmX5H3Ok4u0LbIrQctS2WlxMrdneFMCTe0w3PrjmB/VdvYcoPJzA+kma/EkIIIYS4nHtah2Dt030R4uOBsznFWHJGguzbpXbbP3XqCCGEEEJE0jkqAOun90WLQC8oyjmM+/owLuSp7LJv6tTV8vPPPyM6OtrR1SCEEEKIi4pr5ot103ohwpuhoFiDR7/YjyOZt22+X+rUVcMYw/r166lTRwghhBCrNPf3wvOd9OjeMhCqch2SVx7FmducTfdJnbpqfvvtNzzwwAPgeQoLIYQQQqwjlwIrJnfHfe3DoNEZ8O0FHr8dz7HZ/ly29zJ//nwkJCSA53msXbu2Rl5hYSEeeOAByOVytGvXDjt37mx0e4wx/Pjjj5gwYYKtqkwIIYSQJsbbQ4Ivn+iOh++KgAEcXvn1DL79K8Mm+3LZR5q0adMGS5cuxbx58+rkzZw5E5GRkVAoFNi2bRuSkpKQnp4OjUaDcePG1VjX19cXKSkp2LhxI4YPHw6p1GVDQgghhBAnJJPweP/hTijKv4HUXB7v/3EJgyN5jBD5/Q8u24OZOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS2t3u2dPXsWqamp+O2333D27FnMnTsX7733Xr3rajQaaDQa47JKVTmrhV4T1vRe5UOvCXOvc66xtMZYG19r2xY6zvWnuWLbIrQctS2Wl7N37PR6HcbEGtAtIR4f77yKnTk8VvyVgSf7txL8nRrj8q8JS0xMxPTp041X4I4fP47hw4ejoKDAuM6sWbMgl8uxaNEiQdvs378/9u3b12D+ggULsHDhwjrp9CofQpo2a18TRm0LIU3DgQIOBwt4TO+gh6ek8fWFti0ue09dQ9RqdZ0v7O/vD7VaLXgbpjp0ADB37lwolUp89NFHaNeuHeLj4y2qKyGEVEdtCyFNQ58whlkdhXXozOGyw68N8fX1NQ5ZVFGpVPD19RVtH56envD09MRLL72El156CSqVCgEBARg0aBD8/f2h0+mQmpqKQYMGQSqV1lgGUCNPbLX3LXY5U+uZm2cqTkKWxWbJ9sWIm6l8IXGrL82esXOnc672OoB5v6+12x5zWdO20HF2r7ZFaDlqWywv58jYAbZpW9xu+FWtViMkJASZmZkIDw8HAAwcOBBTp07FpEmTRN33smXLsGzZMuj1ely6dImGSAhp4qwdfq1CbQshpDqhbYvLduq0Wi30ej2GDRuGadOmISkpCR4eHuB5HklJSQgODsaSJUuwfft2JCcnIz09HUFBQTapS9Vf07m5uXSlron9Ne0KfxG681/TznilLiIiwupOXfXtCW1b6Di7V9sitBy1LZaXc7UrdULaFpft1CUnJ2PVqlU10lJTU5GYmIjCwkJMnjwZaWlpiIqKwvLlyzFkyBDR60B/TRNCqqMrdYQQW3D7K3XORKlUIjAwENeuXYOfnx+0Wq2xBy6TyWosA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9i50zlXex3AvN/X4uJitGrVCkVFRQgICBAci4aY07bQcXavtkVoOWpbLC/nyNgBtmlb3G6ihCMUFxcDAFq1avxZM4QQ91dcXCxKp47aFkJIdY21LXSlTgQGgwE5OTnw8/MDx1W+rLdnz544fPiwcZ2qZZVKhejoaGRnZ4tyz019au9b7HKm1jM3r6E41bfsrLETI26m8oXErb40e8bOnc656mnmxo0xhuLiYkRGRoryDmlz2haAjrOpNFdsW4SWo7bF8nKOip2t2ha6UicCnucRFRVVI00ikdQ4ULWX/f39bdZ41N6X2OVMrWduXmNxqq+Ms8VOjLiZyhcSt/rS7Bk7dzrn6kszJ25iXKGrYknbAtBxri/NFdsWoeWobbG8nKNjJ3bb4nYPH3YWM2fONLlsz32LXc7UeubmNRYne8bN0v2JETdT+ULiVl8anXOWx8ne55056DgLy3OHtkVoOWpbLC/nbrGj4Vc7q3pEgViPPGhKKHaWo9hZxtXi5mr1dRYUN8tR7Cxjq7jRlTo78/T0xPz58+Hp6enoqrgcip3lKHaWcbW4uVp9nQXFzXIUO8vYKm50pY4QQgghxA3QlTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDcgdXQF3IHBYEBOTg78/PzAcZyjq0MIcRDGGIqLixEZGQmet/5vZmpbCCGA8LaFOnUiyMnJQXR0tKOrQQhxEtnZ2YiKirJ6O9S2EEKqa6xtoU6dCPz8/ABUBtvf3x9arRbbtm3DsGHDIJPJaiwDqJEnttr7FrucqfXMzTMVJyHLYrNk+2LEzVS+kLjVl2bP2LnTOVd7HcC831eVSoXo6Ghjm2Atc9oWOs7u1bYILUdti+XlHBk7wDZtC3XqRFA1LOLv729seOVyOfz9/Y0HsmoZQI08sdXet9jlTK1nbp6pOAlZFpsl2xcjbqbyhcStvjR7xs6dzrna6wCW/b6KNVRqTttCx9m92hah5ahtsbycI2MH2KZtoYkShBBCCCFugDp1hBBCCCFugDp1hBBCCCFugDp1hBDSgJslFTh5kx4lQghxDTRRQkRardb4qVqu79/aP4tdB0u2L7ScqfXMzWssTkLiKCZLti9G3EzlC4lbfWn2jJ07nXNVPxsYsOrva/gk9RpKNDz+ladEm/AAwd9JbELbFjrO9ae5YtsitBy1LZaXc3TshNTR3PU4xhgTtCapY9myZVi2bBn0ej0uXbqENWvWQC6XO7pahBArXFUBP1+T4EZp5RW6KB+GCa31aOHTeNnS0lJMmDABSqXSOMPNEtS2EEKqE9y2MGI1pVLJADCFQsEqKipYSUkJ27BhAyspKamzXDtP7I+l2xdaztR65uaZipOQZWeInRhxM5UvJG6Ojp27nHM5t4rZiz8dZTFzUljMnBTWef4f7Ju0S+zX34R/N4VCwQAwpVJp97aFjrN7tS1Cy1HbYptzztaxM/e7CW1baPhVRDKZrMbzZupbbijP1nURu5yp9czNExI3Z4+dGHEzlS8kbvWl2TN2rnrO6Rmw5kgOlu5MR7FGBwDoG2bAf5/sjxAfD2zdes6sOtqCM/2OuOpxtmRZbLaMHbUtlpdzROwsqaMQ1KkjhDRZhzJu4cNTEuSWXgQAdG4RgDceaIec038jxMfDwbUjhBDzUKeOENLkFBRr8OG2M9hwIgcAh0BvGV6+vx3G9WwJg16HnNOOriEhhJiPOnWEkCZDqzcgNYfDf5buQ4lGD46rHGpd8mQ/hAVUzoQw6B1cSUIIsRB16gghTcLfVxSYv+kMLhdIAOjRNToQ8x9oh+yTfyFITkOthBDXR506Qohby1WWY9Gfp7HldC4AwEfK8J8HOmJ871jo9Tpkn3RwBQkhRCT0Rok7du/ejb59+6J///6YPXu2o6tDCLGSRqvHtuschi/dhy2nc8FzwMTe0XjtLj0e7REFnqc3RRBC3At16u6Ij49HWloa9u3bh7y8PJw+TXdKE+Kqdl3Ix8jP/saWbAnKtAb0jA1CyqwBmP9gB/jY7okVhBDiUDT8ekeLFi2MP8tkMkgkEgfWhhBiiQxFCd5MOYddFwoAAP4yhvmju2Bs92hwHGez10ARQogzcMsrdfPnz0dCQgJ4nsfatWtr5BUWFuKBBx6AXC5Hu3btsHPnzhr5x44dg0KhQEJCgj2rTAixQmmFDh/+eQHD/rsHuy4UQMpzmNo/Fq/drcdDXSPAcTTUSghxf27ZqWvTpg2WLl2KXr161cmbOXMmIiMjoVAosGjRIiQlJeH27dsAgLy8PDz//PP47rvv7F1lQogFGGM4fpPD8KV/YVlqOir0BgxoE4o/XhyIOcPbwosuuBNCmhC3HH6dOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxHH30UEyZMwKefformzZub3L5Go4FGozEuq1QqAIBWqzV+qpbr+7f2z2Kqb19iljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc9Q5dzlfjYUp53AwQwJAgxaBXnhtRHsM6dCsxlCrOXFqLE3od7KUtW2LOx5nS/LcoW0RWo7aFsvLOTp2Qupo7nocY4wJWtMFJSYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyxsbFYuHAh2rdvDwB477330Ldv33q3u2DBAixcuLBO+po1ayCXy23wTQghVcp0wO/XeezN5WAABxnHMLgFw+BIAzwcfGWutLQUEyZMgFKphL+/v9nlqW0hhNRHaNvillfqGqJWq+sEw9/fH0VFRZgxYwZmzJghaDtz586t8dgTlUqF6OhoDBo0CP7+/tDpdEhNTcWgQYMglUprLAOokSe22vsWu5yp9czNMxUnIctis2T7YsTNVL6QuNWXZs/Y2eucuzcxEVvOKrB4ZzpullT+1Xpf2xD098nHv0aIc87VXgcw7/e16sqapaxpW9zlOFPbYl45alssL+fI2AG2aVvoSt2dK3WLFi0ye/vLli3DsmXLoNfrcenSJfprmhAbyVYDP1+TIENdOeEhzIthbCsDOgQ6V/Nl7ZW6KtS2EEKqE9y2MDd27733sp9++sm4XFxczDw8PFhubq4xbcCAAWzVqlVW7UepVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6NjZ8tzLu+2mv3fumMsds5mFjMnhXWY9zv7bOdFpi4tt8k5VzvN3O+mUCgYAKZUKq1qUyxpW1z5OFtyLMX8fXDGtkVoOWpbbHPO2Tp2tmpb3HL4VavVQq/Xw2AwQKvVory8HB4eHvD19cVDDz2E+fPnY8mSJdi+fTvOnDmDUaNGObrKhJBqtHoD1hzKxie70qEq1wHg8ECn5nh1RDuE+3s5unqEEOKU3HL4NTk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhli0HxoiIUR8F4o4/JrBI7+scqg1Us7wSCs94i0fzbQbGn4lhNiC0LbFLTt19qZSqRAQEIDc3FyaKNHEbmZ2hRtyXeVm5oybpfhw+xWkXroJAAj0luGF+1phTOcw7NmdZpdzrvY6gPk3M0dERFjdqau+PaFti6scZ0vWa4pti9By1LZYXs7VJkoIaVuoU2cF+muaEOuV64A/b/DYnctBzzjwHMOAcIb7owyQu9gNInSljhBiCzRRwo5oooRlee5wM7Mr3JBr69hZuu1itZq9+tVG1u3NP1nMnBQWMyeFTfx6Pzt3/ZbDzrnaaTRRwvrjTG0LTZRwxrg5OnY0UcIFyGQyyGQyk8sN5dm6LmKXM7WeuXlC4ubssRMjbqbyhcStvjR7xs6cbR/JuIUFm87iTI4EgBatQn0w78EOGNQurMH3tNrznKtKE7L9hsqIyZl+R6htsZwtY0dti+XlHBE7S+ooBHXqRESvCWt6r/JxldfROMurfHKV5fjgz0tIOZ0HAPCSMMy6Lx7J97SCh5SHTqcza/tin3ONpTXGlucmvSasabUtQstR22J5OUfHTkgdzV2P7qmzAt33QogwGj2wK4fDrhweFQYOHBj6hDE80NIAP9tdGLE7uqeOEGILdE+dHdE9dZblucN9L65w74atY2dq22XlGrZ6/zXW8+3txvvmHlm+jx3PUDjlOVc7je6ps+73Q6zfkabYtggt11TbFlufc7aOHd1TRwhxKfuu3MSiPy7iQr4aABAV5I2Xh7bBiE7NwXGczYa6CCGkqaLhVyvQEAkhdeWWAhszeZwv4gEA3hKG4VEGDAhnkPIOrpyN0fArIcQWaPjVjmj41bI8dxgicYXL/LaOXdW2M/Nvs1fWn2CtXq0cZo3/zxY2f8Mpll+kdplzrnYaDb9a9/vhrMfZFdoWoeWaQttCw680/OoQ9EgTy/Lc4bEDzjx13taxK63Q4c/rHP7z2QGUVOgBAPd3DMerI9ojNtSn0fLOeM5VpVlSR1twpt8RalssR480sQw90oQeaUIIsbEKnQHrDmfhk52XUaiWANCja3QgXn+gA3rGBju6eoQQ0uRQp05E9Jy6pvcsKVd5HpKYsTMYGDafzsPSnVeQfbsMABDiyfDqAx3xUNcW4HlhkyCc8ZxrLK0x9Jw6y8tR22JZOXdqW4TWXaxyjo6dkDqaux5NlLAC3cxMmhLGgLNFHLZk8cgprXzrg5+schJE3zD3nwQhBE2UIITYAk2UsCOaKGFZnjvczOwKN+SKEbt9l/LY2GX7jM+a6zT/D/bJ9gusSF3qVudc7TSaKGHd74ezHmdXaFuElnP1tsVZzzlbx44mSrgAmihhWZ473MzszDfkWhO7/ek3sXTnJRy4egsA4CnlMaVfK0y/Nw6Bcg8A/wwLuNM5V5VmSR1twZl+R9zpOLtC2yK0nKu1LeagiRI0UYIQYiHGGPZfvYmlOy7j4LXKzpxMwuHRHtGYdV8bhAd4ObiGhBBC6kOdOkIIgMrO3N/plZ25QxmVnTkPCY/HekZjemJrtAj0dnANCSGEmEKdOhHR7NemN0PNVWZZmdq/Tm/An+cK8M2+DJzJUQEAPKQ8HuveAtMGtELEnStz5ta9Mc54zjWW1hia/Wp5OWpbLCvnzG2LtWj2a919NoZmv1qBZqgRV6bRAwcKOKTl8rilqZzNKuMZ+oYxDI40INDTwRV0QTT7lRBiCzT71Y5o9qtlee4wQ80VZlnVXk7PL2LvpJxhXRb8YZzNetfCP9nHf5xnebfrf6VXUznnaqfR7Ff3PM6u0LYILedMbYsrxc3RsaPZry6AZr9alucOM9SceZaVTCaD3sBw5haHX386jT1XFKi6Ph8bIsfUAXF4pFsUvD0kjdbfFHc656rSLKmjLTjT74g7HWdXaFuElqPZr5aXo9mvhBCXcE1RgpTT+fjl2HXcKJIAUAAABrQJxcQ+MRjSoTkkPOfYShJCCBEFdeoIcTMFqnJsPnkD35+WIHP/X8Z0uZRhfO9YPNG3FWJDfRxYQ0IIIbZAnTpCXBxjDJfyi7HtOodvvzyAU9dVd3I4SHgOA9uEYlSXcOgzj2PM/e1sOrxECCHEcahTR4gNlGv10GgN4HjAx0PcXzOd3oCcUmD1oWwczVLi4NWbKCjWAJAAqOzQdY0KQGvpLbzy2H0ID/KFVqvF1uvHRa0HIYQQ50KdOhHRc+qa3rOkqtZVqEqx9ZwCey4pcCZHhZslFcZ1eA4I9vGAp0GCnwuPICLAG839PRHm53XnX094SYDbGiCvqAQSiRSlWj3KKvQoVJXhUAGHKzsv44ZSg4v5xbicX4IKvRQ4ed64D08pj3g/HR7t1wFDEsIR5MVj+/bt8Pfk6z0nxeRO51xjaY2h59RZXo7aFsvKOfpZa+56zpnKp+fUuSl6lhSp0APbb/BIy+VQYbDfhAMPniHGlyHen6G1PxDjy2Dl5FUiAnpOHSHEFoS2LdSpE4FKpUJAQAAUCgX8/f2h1Wqxfft2DB06FDKZrMYygBp5Yqu9b7HLmVrP3DxTcRKyLDZzt38pvxgz1pxA1q0yAEC75r54+O5I9IoNQnSQHD6eEhgYoCrTIreoBNv2HERUm45QlGiRX6xBgUqD/OJyFKg0KK3Qo1yrg55x4DhALpNA7iGBn5cUHlo1Osa1QIsgOdqG+SI+1Bvnj+zD8GGWx9KRcTO3nD3PudrrAOb9vqpUKoSGhlrdqau+PaFtCx1n92lbzCnX2DoN5QuJW31pTeWcM5UvRuwA27QtNPwqIiHP8Wkoz9Z1EbtcU3+W1M7z+Zj103GUVugR6MHw1ti78GDXFuC4ulfrfL090czPE9eDGEb2atlg47F161aMGDECMpnMuJ2q9JEjO9doKC5y9Cwpa/KExMWWz5IylzP9jrjTcXbGtsXSco2t01C+kLjVl9ZUzjlT+dbEzpI6CsELWktEZWVlePnllxEbG2vsbf75559YsmSJvatCiEW2nc3DMz8cRWmFHn3jgvFyFz3u79i83g6duTiOE2U7hBBCmh67d+qeffZZ5ObmIiUlBRJJ5U1AXbp0wRdffGHvqhBitr2XC/Hs6mPQGRhGdY3Ed5O6wZeeEEIIIcQJ2H34dcuWLcjOzoanp6fxikRERARyc3PtXRVCzHI5vxjP/ljZoXuwSwT++2hXMIPe0dUihBBCADjgSl1gYCAKCwtrpF27dg2RkZH2rgohginUGkxZeRjFGh16xQbj40e7Qiqx+68PIYQQ0iC7/6/0wgsvYNSoUfj555+h1+uRkpKC8ePH48UXX7R3VQgRxGBg+Pe6E7h+uwyxIXJ8+UR3eErp+SGEEEKci92HX2fOnImwsDB8++23iIqKwieffIJ///vfeOyxx+xdlRqys7MxevRonDt3Dmq1GlIpTQwmlb7Yk469lxXwkvH4alIPBPl4OLpKhBBCSB0O6bkkJSUhKSnJEbtuULNmzbBr1y6MGTPG0VUhTuRo5i18vO0SAGDhQx3Rtrmfg2tECCGE1M8unboPPvhA0HqvvPKKjWvSMC8vL3h5eTls/8T5FJVW4PmfTkBvYHioayQe7RHt6CoRQgghDbLLPXXnz583fo4ePYrXX38dmzdvxokTJ7B582bMmzcPx4+L97Lx+fPnIyEhATzPY+3atTXyCgsL8cADD0Aul6Ndu3bYuXOnaPsl7oMxhld+PoUbRWWICZHjnYc70fPjCCGEODW7XKlbsWKF8edHHnkE69evx+jRo41pmzZtwvfffy/a/tq0aYOlS5di3rx5dfJmzpyJyMhIKBQKbNu2DUlJSUhPT0dQUJBo+yeu7/v9mdh2Lh8yCYfPxneDnxc9jI4QQohzs/s9dTt27MC6detqpI0cORJPPPGEaPuYOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYJ3r5Go4FGozEuq1QqAJWvb6r6VC3X92/tn8VU377ELGdqPXPzGouTkDiKqWq7J7Nu4e0t5wAArwxvi/bN5Q3uU4y4mcoXErf60uwZO3c65xpLa4y18bW2baHjXH+as7QttogdtS2Wl3N07ITU0dz1OMYYE7SmSPr164ehQ4fi9ddfh1QqhU6nw7vvvos//vgDf//9t6j7SkxMxPTp0zFu3DgAwPHjxzF8+HAUFBQY15k1axbkcjkWLlyIBx98EEePHkW3bt2wYMECDBgwoN7tLliwAAsXLqyTvmbNGsjlclG/A7Gvcj3w0SkJCss5dAoyYGo7A2jUlQhVWlqKCRMmNPrS7YZQ20IIqY/gtoXZWXp6Ouvduzfz9fVlcXFxzNfXl/Xq1YtdvnxZ9H3de++97KeffjIu79mzh7Vu3brGOv/5z3/Ys88+a9Z2y8vLmVKpNH6ys7MZAKZQKFhFRQUrKSlhGzZsYCUlJXWWa+eJ/bF0+0LLmVrP3DxTcRKyLPZHrVazf324icXMSWG939nO8ovUdombqXwhcXN07NzpnKudZu53UygUDABTKpUWtVnWtC10nJ23bbFl7Khtsc05Z+vY2aptsfvwa1xcHA4cOICsrCzk5uYiIiICLVu2tMu+fX19jcMZVVQqFXx9fc3ajqenJzw9PcWsGnECG07m4bCCB88Bi5O6IEhOz6Mj9kVtCyHEGnYffq0+9FlbWFiYqPuqPfyqVqsREhKCzMxMhIeHAwAGDhyIqVOnmnVPXZVly5Zh2bJl0Ov1uHTpEg2RuLC8UuDj0xJUGDg8EK3HsCi7/loQN2Ht8GsValsIIdUJbVvs3qnjeR4cx6Fqt9UfE6HXi/NydK1WC71ej2HDhmHatGlISkqCh4cHeJ5HUlISgoODsWTJEmzfvh3JyclWz35VqVQICAhAbm4u/P39odPpkJqaikGDBhnvG6xaBlAjT2y19y12OVPrmZtnKk5ClsVSptVj3LdHcbmgBO0CDFj37EB4yITNdhUjbqbyhcStvjR7xc6cGFhazp7nXO11APN+X1UqFSIiIqzu1FXfntC2hY6z87Ut5sbAknLUtlhezpGxA2zTtti9U1dbXl4e3n77bfTu3Vu0GbDJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XIMGTLEov3QX9PuYW06j/0FPPxkDK900cOfRl2JhehKHSHEFmw2UeLgwYMNfiyl0WhYixYtLC7vaEqlkiZKWJDnDDcz/3Ikk8XMSWGxr6awHaezzd6+K9yQa6vYueM5VzvN3hMlrGlb6Dg7V9tir9hR22Kbc87WsXOaiRKPPfZYjeXCwkJUVFQgKioKV69eNXdzAICDBw9Cp9NZVJYQS10pUGPexsrn0c0YGIe+ccHYnu7gShFCCCEWsnr4Va/X47333oOHh4egd7d26NChxn10paWluHnzJpYuXYonn3zSmqrYHQ2RuK4yHbD4tAQF5Rzi/RmeTdBDQs+jI1ai4VdCiC3Y9Tl1Op2OhYaGClo3LS2txufw4cOiDVU4Cg2/WpbnqCGS8nINe3LFQePz6HJvFVu8fVe4zC9m7Nz9nKudRsOv7nmcafiV2hZHx85phl9rMxgM+Omnn+Dj4yNo/cOHD+P//u//6qQvXrwYs2fPtrY6hDRq+e6r2HmhEB5SHsvG34UQX3ouGCGEENdn9vCrt7d3jeFTrVaLiIgIfPXVV7j//vsbLe/v71/nAcAAEBISgps3b5pTFYejIRLXc+YWh28u8mDgML61Hn3C6Hl0RDw0/EoIsQWbDb9mZGTU+BQWFgoqt27dOrZu3Trm7e3N/ve//xmX161bxxYtWsTi4+PNrYrToOFXy/LsPURyPEPBOsz7ncXMSWFzfzkhSuxc4TK/GLFrKudc7TQafnXP40zDr9S2ODp2TjP8GhMTY1Ev8/PPPwcAVFRUYPny5cZ0juMQFhaGlStXWrRdZyKTySCr9tDa+pYbyrN1XcQuZ2o9c/OExM3a2OUqy/DM6uMordCjf3woFo7uDJmEN7v+DREjbqbyhcStvjQxYieUO51zVWmW1NEW7PE7YmldxC7nam2LOWwZO2pbLC/niNhZUkch7Pbu19TUVADA22+/jddff91eu7UrrVZr/FQt1/dv7Z/FroMl2xdaztR65uY1FichcRRCrdFhyorDyFdp0CbMB5881hkw6KE11HyDiSXbFyNupvKFxK2+NLFiJ4Q7nXONpTXGlr/XQtoWOs71pzkybtZsX0g5alssL+fo2Ampo7nr2eWNEgqFAqGhoQDs++5XW6P7XpyfzgB8fYHHBWXlGyNmd9YjmOZFEBuhe+oIIbZg10eaNMbX19f4M8dxjOd5xnFcjQ/P8/aoik3QPXWW5dn6vpeycg2b/v1hFjMnhbV/fSs7crVQ9Ni5wr0b1pwXTe2cq51G99S553Gme+qobXF07JzmnjoAyMzMxM8//4ycnBxERkZi7NixaNWqVYPrFxcXG382GAyW7NIl0D11luXZ4r4Xxhhe/+U0fj+bD5mEw5dP9ED3VqGNfi+h27e0DN33Ynk5uqfOOe4Nc6fjTPfUUdsiZD23vqcuJSUFjz/+OB544AHExMTg2LFjeOutt/DDDz9g1KhR5m7OrdA9dc5x3wtjDO/9cQnrjmSD54DFSV3Qt1Wg1fdXWFPG0fduuOt9L3RPHR1nuqeO2hZLyzk6dkLqaO56Zt9T17lzZ3z66adITEw0pu3ZswczZszA2bNnGy2fnZ2NN998EydPnoRara6Rd+7cOXOq4nB034vzYQzYmMkjNbdyZis9i47YE91TRwixBZvdUxcUFMQqKipqpFVUVLDAwEBB5fv27csmTZrEtm7dWueVYa6K7qmzLE/s+17KyzXstV9Pspg5KSxmTgr7bu8Vm8fOFe7dsOa8aGrnXO00uqfOPY8z3VNHbYujY+fwe+quX7+OqKgo9O7dGwsWLMCCBQsgk8mg1WqxcOFC9O7dW9B2zpw5g3379oHn639GmCuje+osyxPjvheDgWHeptNYezgbHAe8M6YzJvRu2ej3MLf+1pah+14sL0f31DnHvWHudJzpnjpqW4Ss50r31AnuWSUkJAAAvvzyS6SlpSE4OBitW7dGcHAwdu3aha+++krQdu6//34cOHBA6G4JaVS5Vo/n1x7H2sOV99B9+K+uFnfoCCGEEFcl+Eodu3PrXcuWLfHXX38hOzvbOPs1Ojpa8A69vb1x//33Y9iwYXWeS1f9TROECFFUWoGnvz+KQxm3IJNw+PjRu/BQ10hHV4sQQgixO7Nmv2ZnZxs7dwAQEREBxhiysrIAVHb4GhMXF4eXXnrJzGq6Bpr9at8Zatdvl+Gp74/hqqIEvp5SLJ/QFX3jQiyOLc1+tYw7nXONpTWGZr9aXs6Z2hax0exXy9Ds17r7bIzg2a88z8PLywsNrc5xHEpLSwXt1F3QDDXHuazksOISjxIdh0APhmfa6xHp4+hakaaOZr8SQmxBaNsiuFPn5+dX4yHClvrggw/qTff09ERUVBQGDx6MwMBAq/djTyqVCgEBAVAoFPD394dWq8X27dsxdOhQ42SSqmUANfLEVnvfYpcztZ65eabi1NDytm3bkePXDh/vvAq9gSEhwg9fPH43IgK8zIiSdTGwpExj6zWULyRu9aU1tiwmdzrnaq8DmPf7qlKpEBoaanWnrvr2hLYtdJyta1tctV2mtsXyco6MHWCbtkXw8CvHcUJXNenYsWP47bff0Lt3b0RFReH69es4ePAgRo0ahZycHDz11FP49ddfcd9994myP3sSMjuooTxb10Xsco6YoVZcrsP3l3kcu5kOABh7dwu8O7YzvGSSRutrDkti58yzrJrCDDWxz7mqNEvqaAvmHlc6zvWnOTJu1mxfSDlqWywv54jYWVJHIcyeKGEtnU6HX375BQ8++KAxbcuWLVi5ciX+/vtvrF69GrNnz8aJEydE2R9xD0cybuHFtcdxvYiHlOfw+gMdMPmeWNH+2CCEEEJcneBHmogx9ApUXm4cMWJEjbThw4dj27ZtAIDx48fj6tWrouyLuD69AViy8woe/XI/rheVI9iTYfVTPZHcrxV16AghhJBq7P4E4ISEBLz77rvQ6XQAAL1ej/fffx8dOnQAUDnD1tXuqSO2cTy7CB+elmBZ2lUYGPDwXRGY00WPbi0DHV01QgghxOnYvVO3atUqbNy4EcHBwYiPj0dQUBA2btyIH374AQCQn5+PJUuW2LtaxIkUl2sxb8MZPPb1IeSWcgiSy/Dp+LvxwSOd4WXWQ3gIIYSQpsPu/0W2bdsWR44cQUZGBvLz8xEeHo6YmBhjfq9evdCrVy97V0sUQp8lVftnsetgyfad4VlSpeUa7M3jsOC/+3C7tDKtVzMD/ju5F8ICfJzyWVKu8jwkd32WlLXnnLnxbYwtz00hbQsd5/rTHBk3a7YvpBy1LZaXc3TshNTR3PUEP9JEbKWlpbh582aNCRhCHl7sTOhZUuJgDDh1i0NKFo+C8sr75MK8GJLiDGgb4JDTkxCL0HPqCCG2ILhtYXZ26tQpdtdddzGe5xnP80wikTCJRMK8vb3tXRXRKJVKBoApFApWUVHBSkpK2IYNG1hJSUmd5dp5Yn8s3b7QcqbWMzdPVaxm87/ZyIYtTmMxc1JYzJwU1vG1zezb3ZdYSVm5yTg6S+zEiJup/PrShaTZM3audM4JiYs1v68KhYIBYEql0u5tCx1ny38fnLFtEVqO2hbbnHO2jp2t2ha7D79Onz4do0ePxv79+xEREYHc3Fy88cYbaN26tb2rIjp6Tp2wPC3jsPFEDr7ek46rCgkANXw8JJjUtyViSy9jbN/YyvXuXG52hWdJOfPzkJrCs6ToOXV0nOk5ddS2WFquST6nTixnz57F3r17wfOVczS8vLzw9ttvIy4uDs8884y9q0PsKK8UeHPLBWw4kYPi8srZz3IJw1MDW+OpAa3hI+OwdetlB9eSEEKcQ4lGh0MFHPb8dgZZt8pQotEjwFuGFkHeuCs6EL1bBSMmyNPR1SROxO6dusDAQBQVFSE4OBgtWrTAyZMnERwcDLVabe+qEDsoUJVj86lcbDxxHaeuSwFkAQBiQuQY3zMKQbfOYex98TWuzBFCSFNWrtXjy91X8fXeq1BrJABy6qzz89HrAIDYEDniPXnE5KjQtWUwPb+zibN7p27q1KnYvXs3Hn74YbzwwgsYMGAAeJ7HtGnT7F0VYiPXFCXYc+UWdp4vwIFrN1E1F4YDw+D2YZh0Tyv0jw+FXq/D1q3nHFtZQghxIhfzijHjx6O4qigBAIR6MfyrVxw6RQXCx1MKZakWVwvVOJp1G4czbiPjZikywGPH5wcQ18wHo7pE4qG7ItG6ma+DvwlxBLt36l5//XXjz9OmTcOwYcOgVqvRsWNHe1eFiKSwWIMjGbfwd7oCv5+QQLH/rxr53VoG4oHO4fDIO4NxY+423hug1zuitoQQ4px2nMvH82uPo7RCj+b+nph7fzuwrGN4cGibeu+pUmt02HE2Fyt3nMB5lRRXC0uwdOdlLN15GR0j/fFQ10iM6BjmgG9CHMVunbqEhIRG1zl3jq7aOLuyCj0yioG1h6/jdI4KhzNu49qdvygrcZBJOPRuFYLEds0wvGM4ooPl0Gq12Lr1jMPqTQghzuz307mY9dNx6AwM97QOwWcTusHPg8PW7IbL+HpK8UDncHDZBgwcnIjUSzex6WQO9l1W4GyOCmdzVHjv9wuI85PgdkgWRt0VhRBfugfPndmtU3ft2jW0bNkSjz/+OAYOHOiU4/6zZ8/G4cOHcffdd+OTTz5xdHUcSlmqRcbNksqPohRXCtU4l6PENUUJDEwKnPmnA85xQLvmfujeMhCeRRmY9ehQBPl6O7D2hBDiOradzcNzPx2H3sAw5q5IfJTUFVIJb9Z9xr6eUoztFoWx3aJwq6QCW0/nYtPJHBy6dgtXizksSLmAt7ZeRL/4UAxuH4ZeMQFwzFNqiS3ZrVNXUFCAX3/9FatXr8bKlSuRlJSExx9/HF26dLFXFUw6duwY1Go19u7dixkzZuDw4cPo2bOno6slOp3eAGWZFjdLKpCvKke+SoN8VTlyi0px6jKPb7MPIOtWGYpKG25MfGUMd8eEolNUIHrGBqF7y2AEyGV3rsZdg68nvcuLEEKEuJhXjBfXnYDewPDw3S3wUVJXSHjrLnoE+3hgYp8YTOwTgyxFMT5en4p0bRDO5Kiw51Ih9lwqBAAEyCRILTuN3nGh6BIVgLgQLzG+EnEgu/3v6+fnh8mTJ2Py5MnIz8/H2rVr8fTTT6OkpATr1q0TNDxrS/v378eQIUMAAEOGDMGBAwcc0qljjEFvYNDqGbQGA3R6Bq3eAK2+8meNzoDSCh3KtHqUVehRWqGv8XNJeQXOZvD4e+M5FGt0UJZpUVRa+VGVaVGs0ZnYOw/cUhmXmvt7IibEB7EhcrQK9UWHCD+0bSbH4b07MXJkd5s+z4kQQtydslSLp384gtIKPe5pHYIP/9XF6g5dbREBXrgvkuGjkX2QXaTB72fy8He6AoczbkOpNWDjyVxsPJkLAPCU8ojwkuCI4TzaRgQgvpkvYoI86YqeC3HIJRVPT094e3vDy8sLN2/ehMFgEHX78+fPx/r163HhwgWsWbMG48aNM+YVFhYiOTkZqampiI6OxvLlyzF48GAUFRUZH4AcEBCAs2fPilqnKh9tu4xfj0vw4fk90BnwT4fNUNV5E+O3hwdyr5tcI8BbhnB/L4T5e6K5vxea+cpQmHUF9/XpjlZhfogJkUPuUff0oMeOEEKI9fQGhllrjyPzZilaBHrjswndIJXwNt1nXDNfzBwUj5mD4qEuLcfnP2+DoVk8Tt8oxsnrRSgu1yFDzSHjYDaAf27m85ZIsOL6QUQFyxHu54HbuRxk5wrQMtQXQd4S6MX9L5xYwW6dOo1Gg02bNuHHH3/E8ePHMWbMGLz//vvo06eP6Ptq06YNli5dinnz5tXJmzlzJiIjI6FQKLBt2zYkJSUhPT0dgYGBUKkqr1KpVCoEBgaKXi8AUJRoUFjOAeXlgsvwHCCT8JBJeHhIeXjLJJB7VH68PSR3lqXw9pDAU8Ih93omOrdvg2BfLwTKZfD3liHQW4YAbxkC5R7w95LWaTwqh04vY2hCGF2BI4QQG/to20XsuVQILxmPryZ1R7CPh1337ymToG0Aw8ghlTNrDQaGK/lK/LBlDzyax+HazTKkF6qRdasUZXoOJ68rcfK68k5pCX7NOFFta1IsOLkLIb6eCPbxQLCPB0J8PODnJYWvpww+nhL4eUnh4ymF752Pj6cU3jIJPGU8PKUSeEp5eEp5m3ds3Z3dOnXNmzdHeHg4xo8fjzlz5kAqrdz1oUOHjOv06tVLlH1NnDgRAPDOO+/USFer1di4cSMyMjIgl8sxZswYLF68GJs3b0bfvn3x5Zdf4tFHH8WOHTuQnJwsSl1qe7p/K7TQZGFAv3vg7ekBmYSHVMJBxvOQSTlIeR4yCVcjnTfjcnzVfW0jB7WmzhkhhDihlFM5+DwtHQCw6JEu6BgZ4OAaATzPoVWoD3o0Yxh5fzvj/x/q0nJ8v+FPRCd0R4Fai+u3SnDswjUw70DkKDW4WaIBY4CqXAdVua7W0xDMJ+E5eEj4ys6ehIeuQoJPrvwFmYSHhOcg5Tnwd/6tXOZrLEs4DjzHkJ/HI+2X05BKJOA4gAOHyhdZcXeWATCGrEweR1LOQyKRVMaB+yefMQOuZfI48+clSIzbqUxPz+JxaeeVynQAzGDA5WwO6anpkN7Zll6vx+XrHK6lXYWE52EwGHDpOoeMtKvgOODidQ5dbpehVZh4/1fbrVMXGBgIjUaDlStXYtWqVWC1Buk5jsPVq1dtWofLly8jICAAERERxrSuXbvi7NmzmDRpEry9vTFgwAB07drVZAdTo9FAo9EYl6uu8Gm1WuOnarn2v9GBHmjtD3QM92mk08UAxqDXG8x6nlvtfYpdztR65uaZipOQf8VmyfbFiJupfCFxqy/NnrFzp3OusbTGWBtfa9qWhuouFnc6zo5sWy7kFePl9ScBAE/1i8HIjmFmtwvmrGNt28LDgBY+wOC2wcY3/2xn6Rg6tPK+6nJNBTb9sQOde94DlcaA26Va3CqpwO1SLdQaXeWnXIeSCh3UGj1K7qSVaPQo1+lRoat525HewFBmqLxXvBKHm4WWdBR5HFXkClpvb76J58aAx66cjHrTt92o3WeR4Pfr6XXStmZfqbG8xbgswSOFxYgKavxpEULPTY7V7l25kcTEREyfPt14T93evXsxZcoUXLnyT4Bfe+01FBUVYdmyZYK3u2DBAixcuLBO+po1ayCXy62vOCHEJZWWlmLChAlQKpXw9/c3uzy1Le6tRAt8fFqCmxoObQMMmN7BAInzPd3L7gwMlfeYGwBdrZ+1BkBn4GBglesZ7qyvr1qullb9o6+WV9XLYXd+rlzkKv+9s1z1gTH/n3WNy7XWR618VP+Z1ZNWz/KgCAPCBfxqC21bmtSzJ3x9fY1/+VZRqVTw9TXvdSpz587F7Nmza2wjOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3tXb7Yi5r2hY6zs7dtuzclYqUm6G4qSlCVKAXVk7tgUC56WE3IfVqGm1Lot3POVP5YsQOsE3b0qSu1KnVaoSEhCAzMxPh4eEAgIEDB2Lq1KmYNGmS2dtftmwZli1bBr1ej0uXLtFf04Q0cdZeqatCbYv72ZTJY2cODw+e4cVOerTwcXSNiCsR2ra4ZadOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFGTx/lQqFQICApCbm0tX6lz8r2m6Umc+dzrnaq8DmP/XdEREhNWduurbE9q20HF23rZl88kczNl4EQDw8SMdBb+Pla7UOe6cM5XvqCt1QtoWt+zUJScnY9WqVTXSUlNTkZiYiMLCQkyePBlpaWmIiorC8uXLjQ8dNhf9NU0IqY6u1JHabpQA/z0jgdbAYXCkAQ/F0EPdiPkEty2MWE2pVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6Nj507nXO00c7+bQqFgAJhSqbR720LH2fnalvwiNev33g4WMyeFDX93E1MVq0WPHbUttjnnbB07W7Ut9JQ/QgghRGRavQHPrz2J60XliA7ywqQ2BtFfAUZIbW45/GovNERCCKmOhl9JlZ+v8dibx8OTZ3ixsx6RdPiIFWj41Y5o+NWyPGcZIrEmdq5wmd/WsXOnc652Gg2/uudxtnXcfvj7KouZk8JiX01hv5+8btPYUdtim3PO1rGj4VdCCCHEyR3OuI2FKecBAC/eF4/BHYTNdCVEDDT8agUaIiGEVEfDr03bzXJg8WkJ1DoOd4cYMLmNARzdRkdEQMOvdkTDr5blOXqIRIzYucJlflvHzp3OudppNPzqnsfZFnErKCphgz7cxWLmpLARS3YzpbrMLrGjtsU255ytY2ertqVJvSbM1mQyGWQymcnlhvJsXRexy5laz9w8IXFz9tiJETdT+ULiVl+aPWPnTudcVZoldbQFZ/odcafjLFbcyrV6zFhzAlcVpYgM8MJ3yb3g7+NlVv1NEVKO2hbLyzkidpbUUQjq1IlIq9UaP1XL9f1b+2ex62DJ9oWWM7WeuXmNxUlIHMVkyfbFiJupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP82WcTMYGF5YdxJHMm/Dz0uKb57ohhC5pNFzSggh5ahtsbyco2MnpI7mrkf31FmB7nshhFRH99Q1LYwBv2bw2JPHQ8IxzOhgQJsA+i+ViI/uqbMjuqfOsjy6p84+927YOnbudM7VTqN76tzzOIsVt/e3nGUxc1JYzJwU9uuRTIfEjtoW25xzto4d3VPnAuieOsvynOl+IUu378z3bjSF+17onjo6zvZuWz7bdRmf77kGAHhrTCc83L1lo2XonjrL0D11dE+dQ9A9dc5734sQdE+dZdzpnGssrTF0T53l5Vypbfnurwx8tO0SAGDu/W0xrnukVfe9WVOO2hbLyzk6dkLqaO56dE+dFei+F0JIdXRPnftLy+XwW4YEADAyWo/hUfRfKLE9uqfOjuieOsvy6J46+9y7YevYudM5VzuN7qlzz+NsSdw0Gg1b/Od54z107285yzQajcNjR22Lbc45W8eO7qlzAXRPnWV5znS/kKXbd+Z7N5rCfS90Tx0dZ1u2LYwxvP/7BXy55yoA4KWhbfHcffHgzHxdBN1TZxm6p47uqSOEEEKsptMbMG/jGfx0KBsA8PoDHTB1QJyDa0VI/ahTRwghhNSjuFyLmWuOY8+lQnAc8M6YzpjQu/FZroQ4CnXqRESzX51rhpq5aParZdzpnGssrTE0+9Xycs7WtuQqy/H0D8dwIV8NLxmP/yZ1wZAOYRbFlma/WoZmv9bdZ2No9qsVaIYaIaQ6mv3qHq6qgBWXJFBpOfjJGKa11yPG19G1Ik0ZzX61I5r9alkezX61zywrW8fOnc652mk0+9U9j3NDy2q1mn2z5wprPXcLi5mTwoZ8nMqu5iudOnbUttjmnLN17Gj2qwug2a+W5TnTzD5Lt+/Ms6yawgw1mv1Kx9na34dyPTB340VsOpULAHiwSwQWPdIFPp7i/TdJs18tQ7NfafYrIYQQIsjxrCJ8cFKCm5pcSHgO/xnZAU/2izX7kSWEOBp16gghhDRJWr0Bn6Zdwme7LsPAOEQGeGHJuLvRq1Wwo6tGiEWoU0cIIaTJySwGxn5xEBfyigEAPUIN+OqZvgj2owkpxHVRp44QQkiTUVyuxQe/n8ePZyRgKEagXIY3HmgPyfXj8POy3b26hNgDdeoIIYS4PT0DfjqcjU92XYVCrQHAYUzXCMwb1RH+njy2Xj/u6CoSYjXq1ImIHj5MDx+2dD16QKhl69HDh+k4N3YMGWPYeS4PH5yUIK/sPACgZbA3HmyuxnOj20Mm452ybRFajtoWy8s5OnZC6mjuevTwYSvQA0IJIdXRw4edB2PA2dsctt3gkamunMXqI2UYHmVAv+YMUt7BFSTEDPTwYTuihw9blkcPH7bPQy5tHTt3Oudqp9HDh13vOKtLy9n/Dl5l9yzczGLmpLCYOSms3Wtb2ZNLN7Hcm0V2j5utY0dti23OOVvHjh4+7ALo4cOW5TnTg1Ut3b4zP+SyKTwglB4+TMe5sESH9ceysfZwFhTqCgAcfDwkeKJvLCb3icKhPTsR4id3ubZFaDlqWywvRw8fJoQQQhxMrdHh91M5+O48j4sH9sJw52ai5n6e6BZQijefGIRmAXKb3StHiLOhTh0hhBCXUVRagT2XFfjzTB52nM+HRmcAUHmD3D2tQ/BEnxjc2yYY2//8A4FyekQJaVqoU0cIIcRp6fQGnL6hxLbrHL7/+hCOZxcZr8gBQFyoHG29ijH7kYFoGxEIwHazWAlxdtSpI4QQ4jSKSrW4WKDEkcxbOJJxG8eybqO0Qg9AAqAIANC2uS8GtQ/DqC6RaNvMG7///jtahfo4stqEOAXq1BFCCLG7Eo0OmTdLcU1RgvO5KpzNKcLxaxIU7U+ts66flxQx3hVI6t8RgxPCERX0z+Nd6KocIf+gTt0d2dnZGD16NM6dOwe1Wg2plEJDCCGWMBgYbpVWIF9VjpzbJdifzyE9NR05Sg0yb5Yg42YpCos19ZSsfJ5cdLA3urUMQo/YYPSMDUKrIC/88cfvGNkr2qazUwlxddRzuaNZs2bYtWsXxowZ4+iqEEKIwzDGUK41oLRChzKtHuVaPUor9Cgu0+DcbQ44nQe11gBlmbbyU1r5b9Gdf2+XVqCwWANd9RvfIAGuptfZV5BchpgQH7Rr7od2zX1QlHEGyWOGItiv5oOW6WocIcJQp+4OLy8veHl5OboahBBikW1n87DzfB6uZfLYsf4UDIyDVm+AzsCg1Rsqf9YzaA0MWp0BOkPVsgFaHUOF3oCyCj3KtHoTe5EAF04Jqg/HASE+ngjz8wDKlOgcH42oIB/EhPogNkSOmGAfBFSbnarVarH11hn4edGVOEIs5bKduvnz52P9+vW4cOEC1qxZg3HjxhnzCgsLkZycjNTUVERHR2P58uUYPHiwA2tLCCG2dfqGEuuO3ADAA4V5omzTU8rD20MCb5kE3jIeFWUlCA8NQqDcEwHeMgTKZTX+9feWIUjugeb+ngj19YRMUvle1a1bt2LkyI40dEqIjblsp65NmzZYunQp5s2bVydv5syZiIyMhEKhwLZt25CUlIT09HRoNJoanT8A8PX1RUpKir2qTQghNnFP61BIOODq5Yvo1DEBnjIppBIOMp6HTMpByvOQSe78K+Uh4zlIJbxxHQ8pD7mHBF4yifFfCc8Zt/9P56wXdc4IcVIu26mbOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS3N6n1rNBpoNP/c5KtSqQBUNnpVn6rl+v6t/bOY6tuXmOVMrWduXmNxEhJHMVmyfTHiZipfSNzqS7Nn7NzpnGssrTHWxteatqVHS390jfDG9tILGNoz0sqOF4NBr4Oh2kisOx1nV2hbhJajtsXyco6OnZA6mrsexxhjja/mvBITEzF9+nTjFbjjx49j+PDhKCgoMK4za9YsyOVyLFq0qMHtlJeX48EHH8TRo0fRrVs3LFiwAAMGDKh33QULFmDhwoV10tesWQO5XF5PCUJIU1BaWooJEyZAqVTC39/f7PLUthBC6iO0bXHZK3UNUavVdb6wv78/ioqKTJbz8vLCjh07BO1j7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3terKmqWsaVvoOLtX2yK0HLUtlpdzZOwA27QtdKXOCsuWLcOyZcug1+tx6dIl+muakCbO2it1VahtIYRUJ7RtcbtOnVqtRkhICDIzMxEeHg4AGDhwIKZOnYpJkybZpA4qlQoBAQHIzc2lK3VN7K9pV/iL0J3/mnbGK3URERFWd+qqb09o20LH2b3aFqHlqG2xvJyrXakT0ra4bKdOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFCRqHar+mtbpdLh8+TK++eYb+muakCastLQUU6dORVFREQICAizeDrUthJDqBLctzEVNnjyZAajxSU1NZYwxVlBQwEaMGMG8vb1ZmzZt2Pbt221al+zs7Dp1oQ996NN0P9nZ2dS20Ic+9BH901jb4rJX6pyJwWBATk4O/Pz8wHGVz3Xq2bMnDh8+bFynarnqxufs7GxRhmfqU3vfYpcztZ65eQ3Fqb5lZ42dGHEzlS8kbvWl2TN27nTOVU8zN27s/9u7/5io6z8O4E9ABY7j7iZGAscgFHEEtDFjYTCosTD78UcTN0kRq+VIY/ijVTKlNCr6o7AfK/5I0xZgTuaqpabxY5SkLTa0IKqtAPUAvTjg8NBj9/7+4fx8PaXj+HDwufvwfGxsd5/35/35vO71+ezF6z53HxACw8PDiIyMhL+//4TrT2QytQXgcXa1zBdri7vzWFvkz1Mqd9NVW1R396sS/P39YTQanZYFBAQ4Hajbn+t0umkrHrfvy9PzXK032bGJ8jTeHG/LnSfy5mrcnbyNt2wmc6emc268ZZPJ21Q+dr2dnNoC8DiPt8wXa4u781hb5M9TOneeri1TfytJ49q0aZPL5zO5b0/Pc7XeZMcmytNM5k3u/jyRN1fj7uRtvGU85+TnaabPu8ngcXZvTA21xd15rC3y56ktd/z4dYbdvJvNU3fHzSbMnXzMnTy+ljdfi9dbMG/yMXfyTFfeeKVuhgUGBqKsrAyBgYFKh+JzmDv5mDt5fC1vvhavt2De5GPu5JmuvPFKHREREZEK8EodERERkQqwqSMiIiJSATZ1RERERCrApo6IiIhIBdjUeaGenh6kpqYiKCgIY2NjSofj9bZu3YrMzEwUFxcrHYpP4XkmX1NTE9LT05GRkYGtW7cqHc6k8Li7j7VFHp5j8k21trCp80J33XUX6uvr8cADDygditdrbW2F1WpFc3Mz7Ha7rH8nM1vxPJNv8eLFaGxsxA8//IDe3l6cP39e6ZDcxuPuHtYW+XiOyTfV2sKmzgsFBQXBYDAoHYZPaGlpQU5ODgAgJycHP/30k8IR+Q6eZ/JFRUVJf19q7ty5CAgIUDgi9/G4u4e1RT6eY/JNtbawqfOAsrIyJCYmwt/fH7W1tU5jly9fxmOPPQaNRoOEhAR8//33CkXp/eTk0WKxSH+NW6/XY2BgYMbj9gY8B+WbSu5aW1tx5coVJCYmemV8dANri3w8/+RTorawqfOA+Ph47N27F2lpaXeMbdq0CZGRkbhy5QoqKiqQl5eHgYEB9Pb2Ijs72+nn8ccfVyB67yEnjwaDAUNDQwBu/NuV2fruUE7u6Aa5uevt7UVxcTH27dvndfGxvjhjbZGPtUU+RWqLII/JysoSNTU10vPh4WExb948cenSJWlZZmamOHDggNvbs9vtHo/T200mj7/88ot4/vnnhRBCFBUViTNnzsx4vN5Ezjk4W8+z200mdzabTTz00EOitbXVK+Nzd3uz7biztsjH2iLfTNYWXqmbRn/++Sf0ej0iIiKkZffddx9+++03l/NGR0eRk5ODtrY25Obmorm5ebpD9Wqu8piamorg4GBkZmbC399/3HdEs5mr3PE8c81V7vbv34/29nZs2bIF2dnZaGlp8ar4XOFx/z/WFvlYW+Sbztoyx9PB0v9ZrVbpOxk36XQ6WCwWl/OCgoJw6tSpaYzMt0yUx8rKypkPyke4yh3PM9dc5a6oqAhFRUUKRXYD68vUsbbIx9oi33TWFl6pm0ZarVb6TsZNQ0ND0Gq1CkXkm5hH+Zg7+bw9d94eny9gDuVj7uSbztyxqZtG8fHxGBwcRG9vr7Ssra0N9957r4JR+R7mUT7mTj5vz523x+cLmEP5mDv5pjN3bOo8wG63Y3R0FA6Hw+mxVqvFk08+ibKyMthsNnz11Vf49ddf8cQTTygdsldiHuVj7uTz9tx5e3y+gDmUj7mTT5HcTfm2DhLr168XAJx+GhoahBBC9Pf3i0cffVQEBweL+Ph4cfLkSWWD9WLMo3zMnXzenjtvj88XMIfyMXfyKZE7PyGEmHprSERERERK4sevRERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUgE2dUQKeu211zB37lwsXLjQY9vMzs5GbW3tpOaUlJQgODgYS5cu9VgcRKQc1pbZiU0dKS42NhYajQZarRZarRaxsbFKhzSjnn32Wad/7DwdkpKS8M8///zneGVlJY4dOzatMRDNNNYW1pbZhk0deYX6+npYrVZYrdZxC4Tdbp/5oLyAJ173hQsXMDY2Nut+oREBrC3/hbVFndjUkVdqbGzE0qVLUVpaigULFuDNN9+EzWbD5s2bERkZCaPRiIqKCmn9kZER5Ofnw2AwIDU1FTt27MCKFSuctnUrPz8/6R3sv//+i/z8fISHhyMuLg4HDhyQ1svOzsbu3buxbNky6HQ6rFmzBtevX5fGDx06hKSkJISGhiI5ORmdnZ0oLy/Hhg0bnPb34IMPoq6uzq3XHhsbi3feeQcJCQlITEwEALzwwguIjIyEwWDAI488gu7ubmn9n3/+GSkpKdDpdNi4cSMcDofT9k6cOIHc3FwAwL59+xATEwOtVotFixahoaHBrZiI1IK1hbVFzdjUkdf666+/oNFoYDKZ8PLLL2P79u0YHBzEH3/8gbNnz+LgwYP4+uuvAQCvv/46zGYzuru7UV1djc8//9zt/axbtw7R0dHo6enBt99+i1dffRVtbW3S+OHDh1FXV4fu7m6cO3cOhw4dAgD8+OOP2Lx5M6qqqjA4OIjDhw9Dp9Ph6aefxtGjR3Ht2jUAQFdXF9rb27Fy5Uq3Yzp69Ciam5tx/vx5AEBGRgY6OjrQ29sLo9GI4uJiAMD169fx1FNP4cUXX4TZbEZSUhJOnz7ttK3jx48jNzcXIyMjKCkpwalTp2C1WlFfX8932DQrsbawtqiWIFJYTEyM0Gq1Qq/XC71eL1555RXR0NAgQkNDxdjYmBBCCIfDIYKDg0VfX58074MPPhAFBQVCCCFiY2NFc3OzNFZaWipyc3OFEEI0NDSIhIQEp30CECaTSZhMJqf9CCHEtm3bxK5du4QQQmRlZYm9e/dKYy+99JLYtm2bEEKI5557TuzcuXPc15SRkSHq6uqEEEK8/fbborCwcNz1ysrKxMaNG+/Ix5dffvlf6RK///67CAsLE0II0djYKBYtWiSNORwOYTQaRU1NjRBCiLGxMbFw4UIxMjIirFar0Ol04siRI2J0dPSO7Y6XJyJfxtrC2jLb8EodeYWTJ0/CYrHAYrHgrbfeAgBEREQgICAAAHD58mXYbDYsWbIEBoMBBoMBO3bsQH9/PwDAZDIhOjpa2t6tj13p7u7GyMgIwsLCpO1WVVWhr69PWic8PFx6rNFoYLVaAdz4PklcXNy42127dq10l1h1dTXy8/PdTQUAwGg0Oj0vLy/H4sWLodPpkJaWBrPZDODO1+3n5+c098yZM0hKSoJGo0FISAhqamrw4YcfIjw8HKtWrcKlS5cmFReRr2Ftccbaom5s6shr+fn5SY8XLFiAoKAgdHV1SQV6aGhIuqsqIiICPT090vq3Pg4JCcHVq1el57feDRYVFQWDwSBt02KxYHh4GJ988smE8UVHR+Pvv/8edywvLw/fffcdzp49i/7+fjz88MPuv3A4v/ampiZUVVXh2LFjGBwcxNmzZ6WxiIgIXLhwwWnurc9vfjxy08qVK1FfX4+LFy8iKCgIO3funFRcRGrA2nIDa4v6sKkjn+Dv74/169dj+/btsFgscDgc6OjokIrQqlWrUF5ejuHhYXR2duLgwYPS3CVLlsBsNqOpqQnXrl3Dnj17pLGoqCjcf//92LVrF65evYqxsTG0traivb19wpgKCwvx8ccfo6WlBUIIdHZ2wmQyAQDmz5+PrKwsFBYWYvXq1dJVATmGh4cxZ84chIWFYWRkBG+88YY0lp6eDpvNhk8//RR2ux0fffSRFAPg/EXmvr4+fPPNN7DZbAgMDIRGo5lSXERqwNrC2qImbOrIZ7z77rsICQlBcnIy5s+fj4KCAgwMDAAAysrKoNfrYTQasWbNGqxbt06ap9fr8f7772P16tW45557kJaW5rTdL774Al1dXYiLi0N4eDhKSkpgs9kmjGf58uWorKzEM888A51Oh7y8PAwNDUnja9euRUdHx6Q/HrndihUrkJ6ejpiYGCQnJ2P58uXS2Lx583DkyBG89957CAsLw7lz56Rxs9kMk8mE5ORkAIDD4UBFRQXuvvtuhIeH4+LFi9i9e/eUYiNSA9YW1hbVUPpLfUTTYf/+/dKXmZVy+vRpERcX53KdPXv2iJCQEBEVFeXx/VdXV4sNGza4te6WLVtEaGioSElJ8XgcRGrC2sLa4s38hBBC6caSyNM+++wz1NbW4vjx44rs3263o6CgAElJSSgtLVUkhhMnTiAsLAzLli1TZP9EasTawtrizeYoHQCR2pjNZhiNRqSkpKCqqkqxOG79EjMR+T7WFpoIr9QRERERqQBvlCAiIiJSATZ1RERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUoH/AWsaRD7hF0ydAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "ct.gangof4(P, C);" + ] + }, + { + "cell_type": "markdown", + "id": "U41ve1zh7XPh", + "metadata": { + "id": "U41ve1zh7XPh" + }, + "source": [ + "We see that the response from the input $r$ (or equivalently noise $n$) to the process input is very large for large frequencies. This means that we are amplifying high frequency noise (and comes from the fact that we used derivative feedback)." + ] + }, + { + "cell_type": "markdown", + "id": "YROqmZTd8WYs", + "metadata": { + "id": "YROqmZTd8WYs" + }, + "source": [ + "### High frequency rolloff\n", + "\n", + "We can attempt to resolve this by \"rolling off\" the derivative action at high frequencies:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "vhKi_L-F_6Ws", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": Cnew\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['y[0]']\n", + "\n", + "\n", + " 800 s + 4000\n", + "----------------\n", + "s^2 + 40 s + 400\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmQElEQVR4nOzdd3gUxRvA8e/epfcekkAKLfQuJXSU3hHhB0qRIohKiRUbxQKiIiqgIAqCqAgCCiJFeu89QCiBQEgICaS3y938/og5OZKQBC65XJjP89wDOzu78+7msvdmb3ZGEUIIJEmSJEmSJMnMqEwdgCRJkiRJkiQ9DJnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrCRJkiRJkmSWZCIrSZIkSZIkmSWZyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchK5crBgwfp27cv/v7+WFtb4+3tTYsWLXj11VcN6s2fP58lS5Y8UluKovDyyy8XWm/Hjh0oisKOHTv0ZVOnTkVRFIN67dq1o127dvrltLQ0pk6darCducvvXBhTYGAgw4cPN8q+jh8/Ttu2bXF2dkZRFObMmWOU/RZEURSmTp1aom0YgzF+dwpiLucgP4/y3rv/d1+SpKKzMHUAkmQsf/31F7169aJdu3bMmjULHx8foqOjOXLkCL/++iuff/65vu78+fPx8PAwWtLzII0aNWL//v3UqlXrgfXmz59vsJyWlsa0adMA5IdcEa1ZswYnJyej7GvEiBGkpqby66+/4urqSmBgoFH2W5D9+/dTsWLFEm3DGErzd0eSJKkwMpGVyo1Zs2YRFBTEpk2bsLD47639v//9j1mzZpksLicnJ5o3b15ovcISXalwDRs2NNq+zpw5w+jRo+natatR9qfRaFAUxeC9ea+ivEdMKS0tDTs7O1OHIUmSZEB2LZDKjfj4eDw8PPJNFFSq/97qgYGBnD17lp07d6IoCoqi6O+2ZWRk8Oqrr9KgQQOcnZ1xc3OjRYsW/PHHHwW2u2DBAqpXr461tTW1atXi119/NVhf1K/T7/168erVq3h6egIwbdo0fZzDhw9n9+7dKIrCL7/8kmcfS5cuRVEUDh8+XGA7t2/fZty4cdSqVQsHBwe8vLzo0KEDu3fvNqh39epVFEXhs88+Y/bs2QQFBeHg4ECLFi04cOCAQd0jR47wv//9j8DAQGxtbQkMDGTQoEFcu3btgce8bNkyFEVh//79edZNnz4dS0tLbt68CeR81d+jRw+8vLywtrbG19eX7t27c+PGDf0293+9q9Pp+PDDDwkODsbW1hYXFxfq1avHl19+WWBMS5YsQVEUsrOz+eabb/TnPteZM2fo3bs3rq6u2NjY0KBBA3788UeDfeT+zJctW8arr76Kn58f1tbWXLp0qcB27/9aPTeO7du38+KLL+Lh4YG7uzv9+vXTnxOAPn36EBAQgE6ny7PPZs2a0ahRI/2yEIL58+fToEEDbG1tcXV1pX///ly5csVgu3bt2lGnTh127dpFSEgIdnZ2jBgx4oG/OwBJSUm89tprBAUFYWVlhZ+fHxMnTiQ1NdVg/0lJSYwePRp3d3ccHBzo0qUL4eHhBZ6b/M7tTz/9RGhoKBUqVMDW1pa2bdty/PjxPPWPHDlCr169cHNzw8bGhoYNG/Lbb78Z1CnquYacP0jeeOMNKlSogJ2dHa1ateLQoUN52s2v+9C9bV29erXQY7z/mpH7O3lv147hw4fj4ODA+fPn6dy5M/b29vj4+DBz5kwADhw4QKtWrbC3t6d69ep53quSZO5kIiuVGy1atODgwYOMHz+egwcPotFo8q23Zs0aKleuTMOGDdm/fz/79+9nzZo1AGRmZnLnzh1ee+011q5dyy+//EKrVq3o168fS5cuzbOvP//8k6+++orp06ezatUqAgICGDRoEKtWrXqkY/Hx8WHjxo0AjBw5Uh/ne++9R+vWrWnYsCHz5s3Ls93cuXN54okneOKJJwrc9507dwCYMmUKf/31F4sXL6Zy5cq0a9cu32R73rx5bNmyhTlz5rB8+XJSU1Pp1q0biYmJ+jpXr14lODiYOXPmsGnTJj755BOio6N54okniIuLKzCWgQMHUqFChTzHkp2dzYIFC+jbty++vr6kpqbSsWNHbt26ZRCPv78/ycnJBe5/1qxZTJ06lUGDBvHXX3+xYsUKRo4cSUJCQoHbdO/eXZ9Y9+/fX3/uAS5cuEBISAhnz57lq6++YvXq1dSqVYvhw4fne9d/8uTJREZG8u2337Ju3Tq8vLwKbLcgo0aNwtLSkp9//plZs2axY8cOnnvuOf36ESNGEBkZybZt2wy2O3/+PIcOHeL555/Xl40ZM4aJEyfy1FNPsXbtWubPn8/Zs2cJCQnh1q1bBttHR0fz3HPPMXjwYDZs2MC4ceMe+LuTlpZG27Zt+fHHHxk/fjx///03b775JkuWLKFXr14IIYCcZLpPnz76JH/NmjU0b9682He+3377ba5cucKiRYtYtGgRN2/epF27dgZJ+fbt22nZsiUJCQl8++23/PHHHzRo0ICBAwfm28+3sHMNMHr0aD777DOGDh3KH3/8wdNPP02/fv24e/duseI3Jo1GQ79+/ejevTt//PEHXbt2ZfLkybz99tsMGzaMESNGsGbNGoKDgxk+fDhHjx41WaySZHRCksqJuLg40apVKwEIQFhaWoqQkBAxY8YMkZycbFC3du3aom3btoXuMzs7W2g0GjFy5EjRsGFDg3WAsLW1FTExMQb1a9SoIapWraov2759uwDE9u3b9WVTpkwR9//6tW3b1iCm27dvC0BMmTIlT1yLFy8WgDh+/Li+7NChQwIQP/74Y6HHld8xPvnkk6Jv37768oiICAGIunXriuzs7Dzt/PLLLw/cZ0pKirC3txdffvmlvrygc2FlZSVu3bqlL1uxYoUAxM6dO4UQQhw5ckQAYu3atQ88loCAADFs2DD9co8ePUSDBg0KPQf5AcRLL71kUPa///1PWFtbi8jISIPyrl27Cjs7O5GQkCCE+O8427RpU6z27v1Z5/6Mx40bZ1Bv1qxZAhDR0dFCCCE0Go3w9vYWgwcPNqj3xhtvCCsrKxEXFyeEEGL//v0CEJ9//rlBvevXrwtbW1vxxhtv6Mvatm0rALF169Y8cRb0uzNjxgyhUqnE4cOHDcpXrVolALFhwwYhhBB///23AAzeF0II8dFHHxX4fr9X7rlt1KiR0Ol0+vKrV68KS0tLMWrUKH1ZjRo1RMOGDYVGozHYR48ePYSPj4/QarVCiKKf63PnzglATJo0yaDe8uXLBWDw3svvd/zetiIiIvRl9//u5/d7IsR/v5OLFy/Wlw0bNkwA4vfff9eXaTQa4enpKQBx7NgxfXl8fLxQq9UiNDQ0T1ySZK7kHVmp3HB3d2f37t0cPnyYmTNn0rt3b8LDw5k8eTJ169Z94J3Be61cuZKWLVvi4OCAhYUFlpaWfP/995w7dy5P3SeffBJvb2/9slqtZuDAgVy6dMngK29jGzRoEF5eXgZ3Mr/++ms8PT0ZOHBgodt/++23NGrUCBsbG/0xbt26Nd9j7N69O2q1Wr9cr149AINuAykpKbz55ptUrVoVCwsLLCwscHBwIDU1Nd993uvFF18E4LvvvtOXzZ07l7p169KmTRsAqlatiqurK2+++SbffvstYWFhhR4jQNOmTTl58iTjxo1j06ZNJCUlFWm7gmzbto0nn3ySSpUqGZQPHz6ctLS0PF0knn766UdqD6BXr14Gy/effwsLC5577jlWr16tv0uu1WpZtmwZvXv3xt3dHYD169ejKArPPfcc2dnZ+leFChWoX79+nrvxrq6udOjQochxrl+/njp16tCgQQOD/Xfu3Nnga/Lt27cD8OyzzxpsP3jw4CK3lVv/3q/uAwICCAkJ0e//0qVLnD9/Xt/OvTF169aN6OhoLly4YLDPws51QbEPGDCgwL7PpUFRFLp166ZftrCwoGrVqvj4+Bj0G3dzc8PLy6vQLj+SZE5kIiuVO02aNOHNN99k5cqV3Lx5k0mTJnH16tUiPfC1evVqBgwYgJ+fHz/99BP79+/n8OHDjBgxgoyMjDz1K1SoUGBZfHz8ox9MAaytrRkzZgw///wzCQkJ3L59m99++41Ro0ZhbW39wG1nz57Niy++SLNmzfj99985cOAAhw8fpkuXLqSnp+epn5sI3ds2YFB38ODBzJ07l1GjRrFp0yYOHTrE4cOH8fT0zHef9/L29mbgwIEsWLAArVbLqVOn2L17t8HQZs7OzuzcuZMGDRrw9ttvU7t2bXx9fZkyZUqBXUgg56v9zz77jAMHDtC1a1fc3d158sknOXLkyANjKkh8fDw+Pj55yn19ffXr75Vf3eIqyvnPfX/m9s/etGkT0dHRBt0Kbt26hRACb29vLC0tDV4HDhzI84decWO/desWp06dyrNvR0dHhBD6/cfHx2NhYZHnuPL7XXqQgn73cn8GuV0lXnvttTwxjRs3DiDPMRd2rnP3fX/b+R1PabKzs8PGxsagzMrKCjc3tzx1rays8r2WSZK5kqMWSOWapaUlU6ZM4YsvvuDMmTOF1v/pp58ICgpixYoVBnd7MjMz860fExNTYFlJf7C9+OKLzJw5kx9++IGMjAyys7MZO3Zsodv99NNPtGvXjm+++cag/EF9TR8kMTGR9evXM2XKFN566y19eW5/46KYMGECy5Yt448//mDjxo24uLjkuetVt25dfv31V4QQnDp1iiVLljB9+nRsbW0N2r2XhYUFoaGhhIaGkpCQwD///MPbb79N586duX79erGfwnd3dyc6OjpPee4DQR4eHgbl+T3sUxJq1apF06ZNWbx4MWPGjGHx4sX4+vrSqVMnfR0PDw8URWH37t35/rFzf1lxY/fw8MDW1pYffvihwPWQcw6zs7OJj483+B3J73fpQQr63cvdZ257kydPpl+/fvnuIzg4uFht5u47JiYGPz8/fXnu8dwrN7HMzMw0OLdF+Wbo3m3vVdRvlSTpcSLvyErlRn4JBqD/ajv3rhnkfGjnd6dQURSsrKwMPsRjYmIKHLVg69atBg/JaLVaVqxYQZUqVR55TND87rzdy8fHh2eeeYb58+fz7bff0rNnT/z9/Qvdr6IoeZKWU6dO5TtyQFEoioIQIs8+Fy1ahFarLdI+GjduTEhICJ988gnLly9n+PDh2NvbF9he/fr1+eKLL3BxceHYsWNFasPFxYX+/fvz0ksvcefOnQc+NV6QJ598km3btuV5kn3p0qXY2dmZdAit559/noMHD7Jnzx7WrVvHsGHDDLqE9OjRAyEEUVFRNGnSJM+rbt26RWqnoN+dHj16cPnyZdzd3fPdf+7oBu3btwdg+fLlBtv//PPPxTreX375Rf8AGeR8/b9v3z79yB/BwcFUq1aNkydP5htPkyZNcHR0LFabufu+P/bffvuN7Oxsg7Lc4z116pRB+bp16wptp6Bt//zzz2JEK0mPB3lHVio3OnfuTMWKFenZsyc1atRAp9Nx4sQJPv/8cxwcHJgwYYK+bu7dvRUrVlC5cmVsbGyoW7cuPXr0YPXq1YwbN47+/ftz/fp1PvjgA3x8fLh48WKeNj08POjQoQPvvfce9vb2zJ8/n/Pnz+cZguthODo6EhAQwB9//MGTTz6Jm5sbHh4eBsMdTZgwgWbNmgGwePHiIu23R48efPDBB0yZMoW2bdty4cIFpk+fTlBQUJ4P46JwcnKiTZs2fPrpp/r4du7cyffff4+Li0uR9zNhwgQGDhyIoij6r35zrV+/nvnz59OnTx8qV66MEILVq1eTkJBAx44dC9xnz549qVOnDk2aNMHT05Nr164xZ84cAgICqFatWrGPdcqUKaxfv5727dvz/vvv4+bmxvLly/nrr7+YNWsWzs7Oxd6nsQwaNIjQ0FAGDRpEZmZmngkLWrZsyQsvvMDzzz/PkSNHaNOmDfb29kRHR7Nnzx7q1q2r76/8IAX97kycOJHff/+dNm3aMGnSJOrVq4dOpyMyMpLNmzfz6quv0qxZMzp16kSbNm144403SE1NpUmTJuzdu5dly5YV63hjY2Pp27cvo0ePJjExkSlTpmBjY8PkyZP1dRYsWEDXrl3p3Lkzw4cPx8/Pjzt37nDu3DmOHTvGypUri9VmzZo1ee6555gzZw6WlpY89dRTnDlzhs8++yzPRBzdunXDzc2NkSNHMn36dCwsLFiyZAnXr18vtJ0KFSrw1FNPMWPGDFxdXQkICGDr1q2sXr26WPFK0mPBhA+aSZJRrVixQgwePFhUq1ZNODg4CEtLS+Hv7y+GDBkiwsLCDOpevXpVdOrUSTg6OgpABAQE6NfNnDlTBAYGCmtra1GzZk3x3Xff5fsEMv8+1T5//nxRpUoVYWlpKWrUqCGWL19uUO9hRy0QQoh//vlHNGzYUFhbW+d5KjpXYGCgqFmzZpHPU2ZmpnjttdeEn5+fsLGxEY0aNRJr164Vw4YNMzgPuU9If/rpp3n2wX1Pl9+4cUM8/fTTwtXVVTg6OoouXbqIM2fO5BlFoKCnsXPjsra2Fl26dMmz7vz582LQoEGiSpUqwtbWVjg7O4umTZuKJUuWGNS7v73PP/9chISECA8PD2FlZSX8/f3FyJEjxdWrVws9T+QzaoEQQpw+fVr07NlTODs7CysrK1G/fn2Dp8jvPc6VK1cW2s697eU3asH9owA86BwOHjxYAKJly5YFtvPDDz+IZs2aCXt7e2FrayuqVKkihg4dKo4cOaKv07ZtW1G7du18t3/Q705KSop49913RXBwsLCyshLOzs6ibt26YtKkSQajeyQkJIgRI0YIFxcXYWdnJzp27CjOnz9frFELli1bJsaPHy88PT2FtbW1aN26tcEx5Dp58qQYMGCA8PLyEpaWlqJChQqiQ4cO4ttvv9XXKc65zszMFK+++qrw8vISNjY2onnz5mL//v153ntC5IzwERISIuzt7YWfn5+YMmWKWLRoUaGjFgghRHR0tOjfv79wc3MTzs7O4rnnntOP3nH/qAX29vZ5jrugn2FAQIDo3r17PmdWksyTIsQ9381IkmRWTp06Rf369Zk3b16eu5jmZt26dfTq1Yu//vrL4AlsSbrXjh07aN++PStXrqR///6mDkeSJBOTXQskyQxdvnyZa9eu8fbbb+Pj42PW896HhYVx7do1/YxqxpoSVpIkSSr/5MNekmSGPvjgAzp27EhKSgorV64s9tP3Zcm4cePo1asXrq6u/PLLL6X2pL8kSZJk/mTXAkmSJEmSJMksyTuykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchKkiRJkiRJZkkmspIkSZIkSZJZkomsJEmSJEmSZJZkIitJkiRJkiSZJZnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrCRJkiRJkmSWZCIrSZIkSZIkmSWZyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchKkiRJkiRJZkkmspIkSZIkSZJZkomsJEmSJEmSZJZkIitJkiRJkiSZJZnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrGQyw4cPp0+fPiXejqIorF271uj7FULwwgsv4ObmhqIonDhxwuhtSJIklZSpU6fSoEGDUm+3Xbt2TJw4sUT2vXDhQipVqoRKpWLOnDkl0oZUtshEVnqg4cOHoyiK/uXu7k6XLl04deqUqUMrMUVNsDdu3MiSJUtYv3490dHR1KlTx6hxPGoCbqoPKUmS8pd7PZ05c6ZB+dq1a1EUpdTjee2119i6dWuR6pryerJkyRJcXFwKrZeUlMTLL7/Mm2++SVRUFC+88IJR4yjJBFx6eDKRlQrVpUsXoqOjiY6OZuvWrVhYWNCjRw9Th2Vyly9fxsfHh5CQECpUqICFhUWx9yGEIDs7uwSikySpLLKxseGTTz7h7t27pg4FBwcH3N3dTR2G0URGRqLRaOjevTs+Pj7Y2dk91H40Go2RI5NKkkxkpUJZW1tToUIFKlSoQIMGDXjzzTe5fv06t2/f1tc5ffo0HTp0wNbWFnd3d1544QVSUlL067VaLaGhobi4uODu7s4bb7yBEMKgHSEEs2bNonLlytja2lK/fn1WrVr1wNgCAwP54IMPGDx4MA4ODvj6+vL1118/cJsHxTp16lR+/PFH/vjjD/1d6B07duTZx/Dhw3nllVeIjIxEURQCAwMByMzMZPz48Xh5eWFjY0OrVq04fPiwfrsdO3agKAqbNm2iSZMmWFtbs3v37gfGW1ICAwP5+OOPGTFiBI6Ojvj7+7Nw4UKDOlFRUQwcOBBXV1fc3d3p3bs3V69eBXLOo0qlIi4uDoC7d++iUql45pln9NvPmDGDFi1alNoxSVJZ99RTT1GhQgVmzJiR7/rU1FScnJzyXPvWrVuHvb09ycnJABw6dIiGDRtiY2NDkyZNWLNmjUEXp/zuYt5/5/f+u6w7duygadOm2Nvb4+LiQsuWLbl27RpLlixh2rRpnDx5Un9dXLJkSb7x536jNW3aNLy8vHBycmLMmDFkZWUVeE7u3r3L0KFDcXV1xc7Ojq5du3Lx4kV9TM8//zyJiYn6tqdOnZpnH0uWLKFu3boAVK5cGUVR9Neqb775hipVqmBlZUVwcDDLli0z2FZRFL799lt69+6Nvb09H374YYGxFuTq1asoisLq1atp3749dnZ21K9fn/379xvU27dvH23atMHW1pZKlSoxfvx4UlNTAfj666/1xwD//bzmzZunL+vcuTOTJ08udnzlmpCkBxg2bJjo3bu3fjk5OVmMGTNGVK1aVWi1WiGEEKmpqcLX11f069dPnD59WmzdulUEBQWJYcOG6bf75JNPhLOzs1i1apUICwsTI0eOFI6Ojgb7fvvtt0WNGjXExo0bxeXLl8XixYuFtbW12LFjR4HxBQQECEdHRzFjxgxx4cIF8dVXXwm1Wi02b96srwOINWvWFCnW5ORkMWDAANGlSxcRHR0toqOjRWZmZp52ExISxPTp00XFihVFdHS0iI2NFUIIMX78eOHr6ys2bNggzp49K4YNGyZcXV1FfHy8EEKI7du3C0DUq1dPbN68WVy6dEnExcXle2z3xv0wpkyZIurXr1/g+oCAAOHm5ibmzZsnLl68KGbMmCFUKpU4d+6c/lxVq1ZNjBgxQpw6dUqEhYWJwYMHi+DgYJGZmSl0Op3w8PAQq1atEkIIsXbtWuHh4SG8vLz0bXTq1Em8+eabD30MklSe5F5PV69eLWxsbMT169eFEEKsWbNG3PtxPHr0aNGtWzeDbfv27SuGDh0qhBAiJSVFeHp6ioEDB4ozZ86IdevWicqVKwtAHD9+XAghxOLFi4Wzs7PBPu5v595rhEajEc7OzuK1114Tly5dEmFhYWLJkiXi2rVrIi0tTbz66quidu3a+utiWlpagcfo4OCgj239+vXC09NTvP322/o6bdu2FRMmTNAv9+rVS9SsWVPs2rVLnDhxQnTu3FlUrVpVZGVliczMTDFnzhzh5OSkbzs5OTlPu2lpaeKff/4RgDh06JCIjo4W2dnZYvXq1cLS0lLMmzdPXLhwQXz++edCrVaLbdu26bcFhJeXl/j+++/F5cuXxdWrV/M9tvvjvldERIQARI0aNcT69evFhQsXRP/+/UVAQIDQaDRCCCFOnTolHBwcxBdffCHCw8PF3r17RcOGDcXw4cP16xVFEbdv3xZCCDFx4kTh4eEhnnnmGf3PyMHBQfz999/5xvC4koms9EDDhg0TarVa2NvbC3t7ewEIHx8fcfToUX2dhQsXCldXV5GSkqIv++uvv4RKpRIxMTFCCCF8fHzEzJkz9es1Go2oWLGiPpFNSUkRNjY2Yt++fQbtjxw5UgwaNKjA+AICAkSXLl0MygYOHCi6du2qX743ISxKrPcn7wX54osvREBAgH45JSVFWFpaiuXLl+vLsrKyhK+vr5g1a5YQ4r9Edu3atYXuvzQS2eeee06/rNPphJeXl/jmm2+EEEJ8//33Ijg4WOh0On2dzMxMYWtrKzZt2iSEEKJfv37i5ZdfFkLkXHRfffVV4eHhIc6ePSsvupJ0n3uvLc2bNxcjRowQQuRNMA8ePCjUarWIiooSQghx+/ZtYWlpqf+jfsGCBcLNzU2kpqbqt/nmm28eKZGNj48XQIE3Dgq7ntx7jPnF5uDgoL/5cW9CGB4eLgCxd+9eff24uDhha2srfvvttwKPJT/Hjx8XgIiIiNCXhYSEiNGjRxvUe+aZZwz+UADExIkTC91/URLZRYsW6cvOnj0rAP3NgSFDhogXXnjBYLvdu3cLlUol0tPT89wcaNCggZgxY4b+5sC+ffuEhYVFvon840x2LZAK1b59e06cOMGJEyc4ePAgnTp1omvXrly7dg2Ac+fOUb9+fezt7fXbtGzZEp1Ox4ULF0hMTCQ6OtrgK2YLCwuaNGmiXw4LCyMjI4OOHTvi4OCgfy1dupTLly8/ML77v7pu0aIF586dy7duYbE+isuXL6PRaGjZsqW+zNLSkqZNm+aJ595jN6V69erp/68oChUqVCA2NhaAo0ePcunSJRwdHfU/Dzc3NzIyMvQ/k3bt2um7XuzcuZP27dvTpk0bdu7cyeHDh0lPTzc4H5Ik5fjkk0/48ccfCQsLy7OuadOm1K5dm6VLlwKwbNky/P39adOmDfDfdezePqCP2oXHzc2N4cOH07lzZ3r27MmXX35JdHT0Q+0rv9hSUlK4fv16nrrnzp3DwsKCZs2a6cvc3d0JDg4u8DpeHOfOnctzDWrZsmWJXZPvvab6+PgAGFxTlyxZYvAZ17lzZ3Q6HRERESiKQps2bdixYwcJCQmcPXuWsWPHotVqOXfuHDt27KBRo0Y4ODgYJdbyovhPp0iPHXt7e6pWrapfbty4Mc7Oznz33Xd8+OGHCCEKfOK2qE/i6nQ6AP766y/8/PwM1llbWxc75oLaNUasBRH/9vm9fz/5tXlvIm1KlpaWBsuKouh/FjqdjsaNG7N8+fI823l6egI5ieyECRO4dOkSZ86coXXr1ly+fJmdO3eSkJBA48aNcXR0LPkDkSQz06ZNGzp37szbb7/N8OHD86wfNWoUc+fO5a233mLx4sU8//zz+uuIuO/5gvyoVKo89Qp7iGnx4sWMHz+ejRs3smLFCt599122bNlC8+bNi35gD5DfNbagY3nQtfpR2y3Ja/K919TcNu69po4ZM4bx48fn2c7f3x/IuaYuXLiQ3bt3U79+fVxcXPQ3B3bs2EG7du2MEmd5Iu/ISsWmKAoqlYr09HQAatWqxYkTJ/Qd1gH27t2LSqWievXqODs74+Pjw4EDB/Trs7OzOXr0qH65Vq1aWFtbExkZSdWqVQ1elSpVemA89+43d7lGjRr51i0sVgArKyu0Wm0Rz8Z/qlatipWVFXv27NGXaTQajhw5Qs2aNYu9P1Nr1KgRFy9exMvLK8/PxNnZGYA6derg7u7Ohx9+SP369XFycqJt27b6i27btm1NfBSSVHbNnDmTdevWsW/fvjzrnnvuOSIjI/nqq684e/Ysw4YN06+rVasWJ0+e1F+DIe910NPTk+TkZINrXVHGum7YsCGTJ09m37591KlTh59//hko3nUxv9gcHByoWLFinrq1atUiOzubgwcP6svi4+MJDw/XXzcf9poMULNmTYNrMuQ8cGWKa3KjRo04e/Zsnutp7mcH5CSyZ8+eZdWqVfqktW3btvzzzz/s27dPXlPzIRNZqVCZmZnExMQQExPDuXPneOWVV0hJSaFnz54APPvss9jY2DBs2DDOnDnD9u3beeWVVxgyZAje3t4ATJgwgZkzZ7JmzRrOnz/PuHHjSEhI0Lfh6OjIa6+9xqRJk/jxxx+5fPkyx48fZ968efz4448PjG/v3r3MmjWL8PBw5s2bx8qVK5kwYUK+dYsSa2BgIKdOneLChQvExcUVeSgWe3t7XnzxRV5//XU2btxIWFgYo0ePJi0tjZEjRxZpH/eLiIjQd+vIfd07GkRh0tPT82x/6dKlIm377LPP4uHhQe/evdm9ezcRERHs3LmTCRMmcOPGDQD9V2E//fST/qJbr149srKy2Lp1q7x7IEkPULduXZ599tl8R1pxdXWlX79+vP7663Tq1MkgCRw8eDAqlYqRI0cSFhbGhg0b+Oyzzwy2b9asGXZ2drz99ttcunSJn3/+ucCRBiDnWjN58mT279/PtWvX2Lx5s0EyGRgYqL8excXFkZmZWeC+srKy9LH9/fffTJkyhZdffhmVKm/KUa1aNXr37s3o0aPZs2cPJ0+e5LnnnsPPz4/evXvr205JSWHr1q3ExcWRlpb2wPN6r9dff50lS5bw7bffcvHiRWbPns3q1at57bXXiryPe92+fTvPNTUmJqZI27755pvs37+fl156iRMnTnDx4kX+/PNPXnnlFX2d3JsDy5cv118/27Vrx9q1a0lPT6dVq1YPFXe5ZrLeuZJZGDZsmAD0L0dHR/HEE0/oO6PnOnXqlGjfvr2wsbERbm5uYvTo0QYd0jUajZgwYYJwcnISLi4uIjQ0VAwdOtTgoSqdTie+/PJLERwcLCwtLYWnp6fo3Lmz2LlzZ4HxBQQEiGnTpokBAwYIOzs74e3tLebMmWNQh/semios1tjYWNGxY0fh4OAgALF9+/Z8277/YS8hhEhPTxevvPKK8PDwENbW1qJly5bi0KFD+vW5D3vdvXu3wGO6N+78XrnxAGLx4sUFbj9lypR8t2/btq0QIufcffHFFwbb1K9fX0yZMkW/HB0dLYYOHao/nsqVK4vRo0eLxMREfZ2vv/5aAGL9+vX6st69ewu1Wm1QT5Ied/k9SHr16lVhbW0t8vs43rp1qwD0Dz3da//+/aJ+/frCyspKNGjQQPz+++8GD3sJkfNwV9WqVYWNjY3o0aOHWLhwYYEPe8XExIg+ffoIHx8fYWVlJQICAsT777+vf0ArIyNDPP3008LFxeWB157cY3z//feFu7u7cHBwEKNGjRIZGRn6Ovc/NHXnzh0xZMgQ4ezsLGxtbUXnzp1FeHi4wX7Hjh0r3N3dBWBwjbpXfg97CSHE/PnzReXKlYWlpaWoXr26WLp0qcH6+z8jCtK2bdt8r6lTpkzRP+x17/m/e/duns+QQ4cO6T9f7O3tRb169cRHH31k0M7TTz9tcP3U6XTCzc1NNGnSpNAYH0eKEEXobCNJZVRgYCATJ0587GZbuXr1KtWqVSMsLIxq1aqZOhxJkkrA8uXLmTBhAjdv3tR/9VyQq1evEhQUxPHjx006o9/w4cNJSEgokWnBJSk/8mEvSTJDGzdu5IUXXpBJrCSVQ2lpaURERDBjxgzGjBlTaBIrSY8z2UdWkszQ2LFjDWZ7kSSp/Jg1axYNGjTA29tbzuIkSYWQXQskSZIkSZIksyTvyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJkluSoBQ9Bp9Nx8+ZNHB0djTaFniRJ5ksIQXJyMr6+vvkO+i4VTF5PJUm6X3GuqTKRfQg3b94sdNpUSZIeP9evX893Gk6pYPJ6KklSQYpyTZWJ7ENwdHQEck6wk5MTGo2GzZs306lTJywtLQ2WAYN1xnZ/28berrB6Ba0vanlxl43NlOevuOuKcm7ke69o5y6/skd57yUlJVGpUiX9tUEquvuvp4XRarVcuHCB4OBg1Gp1SYdndOYcvznHDuYdvznHDsWPvzjXVJnIPoTcr7+cnJz0iaydnR1OTk76D8DcZcBgnbHd37axtyusXkHri1pe3GVjM+X5K+66opwb+d4r2rnLr8wY7z351Xjx3X89LYxWq8XBwQEnJyez/UA31/jNOXYw7/jNOXZ4+PiLck2VnbkkSZIkSZIksyTvyJawExuXYB22jcPRm1BUFqBSg6IGlRpFUSNUahSV6r+yf9cruf+/79+clwUqS2vUltagsiQz7grXzh3B2s4BSysbLK1tsLS2xcrKBmsb25ztJUmSJEmSyhmZyJYw3eVtdMncADEl10YdgOsFr88SarKwIk2xJUNlS6bKjiyVHd7Zak5eWorWygFh5QhW9ij27lg6emLt5Im9qxe2Tu7osrNLLnhJkiRJkqSHJBPZEqaq9hR/n1ZwcXJEQYei04LQgtChCC2K0MG//+Ys55bpUN1bTs6/qn/L1UKDRe5Ll4mVko2l0GBFNtaKxiAGK0WLFek4kA46cl65kgs/hr5A8mlbbikuJFp6km7rQ7aDDypnPyxd/ciIjycl6Q6u7t7GPHWSJJnA/Pnz+fTTT4mOjqZ27drMmTOH1q1bF1h/+fLlzJo1i4sXL+Ls7EyXLl347LPPcHd3L8WoJUl6XMlEtoQ16DSUDdkeNOnWrcQeuNmwYQPd7tm/0OnIysogMzMDTWY6mswMsjJSyUxNIistCU1aEpmpCdy4ch4fd2cUTSpkpaDOSsYiMwEbTQL22gQcdUk4i2TUisCRdBxFOhWzoiHrFCQCUTkxNAT4+j3iceGWVUVS7QPQuFQmM0XFzcv+VKpWD5UZdk6XpMfNihUrmDhxIvPnz6dly5YsWLCArl27EhYWhr+/f576e/bsYejQoXzxxRf07NmTqKgoxo4dy6hRo1izZo0JjkCSpMeNTGTLIUWlwtrGDmsbuwLraDQaYjZs4IlCEuyMjAxWr/2dxvVqkJYQS3rcNTR3b6BKjsI6LQaHzFu4Zd/GXUnCnQTcsxIg6wzc/XcHv35JmrDmulVlEp1rIrzrkJmsIjsrs0QSe0mSHt7s2bMZOXIko0aNAmDOnDls2rSJb775hhkzZuSpf+DAAQIDAxk/fjwAQUFBjBkzhlmzZpVq3JIkPb5kIis9kFqtxsrWgUrV6hU4BNKGDRtoHdKcuBvhJN44hyb2IpYJl3FMvkKguIGdkkmw5hzEnYO41TQD0md9TJh1DZI8GpKl9SA1sSkuHj6lf4CSJAGQlZXF0aNHeeuttwzKO3XqxL59+/LdJiQkhHfeeYcNGzbQtWtXYmNjWbVqFd27dy+wnczMTDIzM/XLSUlJQM7wPFqtttA4c+sUpW5Z9Kjxrzt5k2rejtSoUPpjFj/u596UzDl2KH78xTlOmchKRuHo4oabZ2tomNOXLjfBDej4FBHXLhB36TCaqFPY3w0jICMcFyWFWlmn4OYpmgO6r2dz2bIKt71akoUv2Vkd5B1bSSpFcXFxaLVavL0N+7p7e3sTE5P/06ohISEsX76cgQMHkpGRQXZ2Nr169eLrr78usJ0ZM2Ywbdq0POUXLlzAwcGhyPGGh4cXuW5Z9LDxV7UCcTeRc3cLr1tSHtdzXxaYc+xQ9PhTUlKKvE+ZyEolysLSiqCajQiq2QjISXDXr19Pnap+xJ/fA9cP4pN4ggAlhirZl6hy8xLNgbRZszll34DMwA5otRVMexCS9Bi5fwByIUSBg5KHhYUxfvx43n//fTp37kx0dDSvv/46Y8eO5fvvv893m8mTJxMaGqpfzp3BJzg4uMgTIoSHh1O9enWzHRj+YeK/lZTJ/xbu53ZKJpYqhc2T2uLpaF2stjM1WlKytLjbW+nLjl67y900DSoFLNQKFioVVmoVjjYWONla4uNs88ixlxXmHL85xw7Fjz/3m5qikImsVOpUKhWBNRpSrW5T/Z1bdYM63Di2CeXKVqokHcJDSaJe2kEIO8gTwIVZ35IU2JmAVgPxCqhl6kOQpHLHw8MDtVqd5+5rbGxsnru0uWbMmEHLli15/fXXAahXrx729va0bt2aDz/8EB+fvN2FrK2tsbbOm4Cp1epifUAXt35ZU5z4MzRaxi4/RuTdDADSEfx08DqvdQ7Ot/6u8NuERScReSeNG3fTibqbRnRiBmlZWvzd7Nj1Rnt93Y82nOfkjcR892NnpSZsehf98uwtFzkdcZsa11RU9XKkipcDVT0dcLYzr2/PzPm9Y86xQ9HjL84xykRWKhO8ff2pGDAOjWY069evp7q/B3dPb8T9xj/UzD6f08f24jm4OIcIi8rcqdybyh2ex7VCgKlDl6RywcrKisaNG7Nlyxb69u2rL9+yZQu9e/fOd5u0tDQsLAw/RnI/gIQQJRfsY0QIwZu/n+LUfcnmTwevMbRFAGHRScQkZvC/pv+NKvHxhnOcj8l/bMXkDMPhGYMrOKIoCkIINFpBtk5HVraO5Ixs7KwNk4k9l+I4eSONXdciDMo9HKyp5uXA0pFNsVTLCUOl0iUTWanMUalUVK/XHMvGrdFopvLLiuVUUt3E6epmamWeJCj7CkHhX6C7MIcwu4Zk136G4PaDsbZ3MXXokmTWQkNDGTJkCE2aNKFFixYsXLiQyMhIxo4dC+R0C4iKimLp0qUA9OzZk9GjR/PNN9/ouxZMnDiRpk2b4uvra8pDKTe+3XmFP07czFOekKah+Yyt6ATYWKp4unFFfRLZvoYXVb0cqOxhT0VXO/xcbfF1scXN3gpHa8OP/Vn96xfY9v1/jLzcvgoHzkaQZeVIRFwal2+nEJ2YQVxKJs62FgZJ7Is/HSUzW0eTQFdaVvGgjp8zalX+XVQk6VHIRFYq8+wcXWnW7VksLd/mduxNLmxbjuul1dTODqNW+jE4coz0I1M47vYU7m3H4F+vLRTQp0+SpIINHDiQ+Ph4pk+fTnR0NHXq1Ml5aDMg55uP6OhoIiMj9fWHDx9OcnIyc+fO5dVXX8XFxYUOHTrwySefmOoQypV/wm4xa9P5AtfrBAS42dE4wJWUjGxc/+37+maXGkZp//6+0R1qeOEj4qlZs6b+zntKZjYRt1NJ1/z3lHm2VseOC7dJ12jZdj4WuICTjQUtqrjTqqoHrap5EuRhb5QYJUkmspJZ8fTyxfN/rwOvE3HxDNd3/kjgjXX4E03DOxtgzQaurqtMYu3nqNFpBNb2rqYOWZLMyrhx4xg3bly+65YsWZKn7JVXXuGVV14p4ageP0ev3WH8L8corIfGez1q8VQt082q6GBtQd2KzgZliqLw8+hmHI9MYP+VeA5ciScpI5tNZ2+x6ewtWlR255cXmuvrP+iBQkkqjExkJbMVVK0OQdU+Rav9hOMHtpCx/zsaJu8gMPsKnJxO2slZHPfsjG/H8XhXb2LqcCVJkgp1JiqR7/dEsPZ4FEXpZbxozxWTJrL5UasUGvq70tDflRGtgsjW6jgdlci+y/HsuRhHt3r/PQR4OzmT3nP38GRNb7rX86FpoBsq2QVBKgaZyEpmT61W0bBlZ2jZmVu3ojm4cSEBV1cQKKJoePsP+PkPLtg2xKLly1QJ6Qcq+TCCJElly9Frd5jzz0V2X4zTl7nZWeHpaE2aJpu0TC1pWVqDr/ABDly5w5moROr4Od+/yzLDQq3SJ7Yvta9qsG7ruVvcTMxg2YFrLDtwDT8XW/o09KVvQz+qepX+pA+S+ZGJrFSueHv74D1sCtnZ73J4799oDyykSdpugtOPwz8jidr+PnfrjqRG5xewsJUXSUmSTOvw1TvM+SecvZfigZy7mV3rVGBoi0CeCHTN85W7TidI1/yb1GZpSdNk42Znld+uzUKfhn54O9vw9+lo/j4dQ1RCOvO2X2be9svU9XPm475183RdkKR7yURWKpcsLNQ80bYHtO1BePg5bm6aQ6O4P/HTRuF3YjpJJ2ZzLfAZArtOMnWokiQ9pnQ6wZQ/zhIWnYSFSqF/44qMa1cVf3e7ArdRqRTsrS2wty4fH982lmraB3vRPtiL6b3rsPVcLGuO32DHhducj0nC1+W/CRmSMjQ4WlvI/rSSgfLxmyBJD1C9ek2qV1/A7biP2PbXfKpG/IQ/t6h7dTGZ3/yEu01rUhtVw6WSnGhBkqSSlZKZTWa2DshJSt/vWYs/TkQxrl1VKrkVnMA+Dmws1XSv50P3ej7Ep2RyKioRd4f/Js8Y9eMR0rKyebZZAH0a+GFrZb4TA0jGIzsLSo8NTw8POgx7H8+3zrCj4RxOq4KxRkOrjG04Lgrh3Nf9uXvlqKnDlCSpnNp+IZbOX+5hddh/0282r+zOjH71Hvsk9n7uDta0D/bSL8cmZ3DiegJnopKYvPo0ITO3MnvzBW4nZ5owSqksKJFENiMjoyR2K0lGYWtjRbvez1Pz7f3saP4D+6mHWhHUjN+C69IOhM/uQtzZ7aYOU5KkciIhLYtXfzvJ84sPE5OYwd7INLQ6OfNZcXg52nBw8pO8270mldxsuZum4attl2j5yTbe+v0UV26nmDpEyUSMlsjqdDo++OAD/Pz8cHBw4MqVKwC89957fP/998ZqxijWr19PcHAw1apVY9GiRaYORzIRCws1LZ/sRUyD19jd/nd2W7VBKxSqJ+3HY2UfIma1IvbInxQ6kKMkSVIB9lyMo+MXu/j92A0UBUa2DOSzLhXkLFcPwdXeilGtK7PjtfbMf7YRDSq5kJWt49fD1zl5I8HU4UkmYrRE9sMPP2TJkiXMmjULK6v/nqCsW7dumUoWs7OzCQ0NZdu2bRw7doxPPvmEO3fumDosyYRUCjQPaUuryX9yos8/bLXrRqawICjtNF7rh3Dzkybc3v8z6LSF70ySJImc2a0+33yBIT8c5HZyJlU87Vk1NoS3u9XAxkL26nsUapVCt7o+rBkXwqqxLRjQpCLd6/43JfKOC7GcuJ5gugClUmW036alS5eycOFCnn32Wf3UdQD16tXj/PmCp9grbYcOHaJ27dr4+fnh6OhIt27d2LRpk6nDksoARVFo3LAJT77xCxf+t5cNjs+QImzwzbiE56YXuT2zHnG7FkF2lqlDlSSpjLsan8qCXVcQAgY19eev8a1pHCBnGjQmRVFoEujGrP71sfr3j4OsbB3vrDlDn3l7GfbDIY5H3jVxlFJJM1oiGxUVRdWqVfOU63Q6NBqNsZph165d9OzZE19fXxRFYe3atXnqzJ8/n6CgIGxsbGjcuDG7d+/Wr7t58yZ+fn765YoVKxIVFWW0+KTyoV7NGnR7dRFXnjvAGuehJAh7PLNu4LHtVRJm1iJhx1zUOvmQgSRJ+avq5cgHvWvz1aCGzOhXFxtL+YR9aUjLyqZ5ZXfUKoWd4bfpO38fLyw9wqXYZFOHJpUQoyWytWvXNkgYc61cuZKGDRsaqxlSU1OpX78+c+fOzXf9ihUrmDhxIu+88w7Hjx+ndevWdO3alcjISCBnTuf7yTHppILUqxZE30lfEzn0EL+6vsAt4YJL9m08906lzalQErd8AukJpg5TkqQyYMPpaMJu/jciwcAn/OlV3/cBW0jG5mJnxecD6rM1tC39G1dEpcDmsFt0+mIXb60+TVxqtqlDlIzMaOPITpkyhSFDhhAVFYVOp2P16tVcuHCBpUuXsn79emM1Q9euXenatWuB62fPns3IkSMZNWoUAHPmzGHTpk188803zJgxAz8/P4M7sDdu3KBZs2ZGi08qn+pVqUi9CZ9yMuJVNq7/hva3l+Ovug2HPiX9yHwyGjyPa4eJ4OBp6lAlSSplQgi+2XmZWRsv4Odiy7pXWuFmb76zbZUHgR72fPZMfca0qcynmy6wOewWK49G0cTd29ShSUZmtES2Z8+erFixgo8//hhFUXj//fdp1KgR69ato2PHjsZq5oGysrI4evQob731lkF5p06d2LdvHwBNmzblzJkzREVF4eTkxIYNG3j//fcfuN/MzEwyM//7GjkpKecvbo1Go3/lLuf37/3/N6b82jLmdoXVK2h9UcuL+6+xFXf/tSq6U2vsuxy7MpoVq+bSK3MdwdzA9thcso5/R2rtwTi0nwhOfoXuv7jrivM+k++9op8XY7z3SuocS2WfEIKPN5zju90RAHSpUwFnW0sTRyXlqubtyMKhTTgWeZdt525R2+u/O7JnbyZSo4KTHEHCzCkiv+/azYSiKKxZs4Y+ffoA//V/3bt3LyEhIfp6H3/8MT/++CMXLlwA4M8//+S1115Dp9Pxxhtv8MILLzywnalTpzJt2rQ85T///DN2doUPYv3tt98SHx9fjCOTzEV6tkCTnoS3NgZnJQ0AgUKqpRvpNl5oVTaF7EEqy9zd3Rk7dmyh9dLS0hg8eDCJiYk4OTmVQmTlR1JSEs7OzkU+d1qtlnPnzlGzZk2DB4tNIVur463Vp1l19AYA73avyajWlR+4TVmKv7jMOXYwjD82JYsOn+2ksqc9U3rWpmmQm6nDe6DydO6LEn9xrgvlcora+/u8CiEMynr16kWvXr2KvL/JkycTGhqqX05KSqJSpUp06tQJJycnNBoNW7ZsoWPHjlhaWhos58pdZ2z3t23s7QqrV9D6opYXd9nYjHX+ztxIZOvGVYTc/JEQdRiQjo5IEgO7csK6Bc16j8qz/we1nd+6opyb+9975nDuHrZecd57D3M+i3N8ud/SSI+PbK2OSb+dZN3Jm6hVCp88XY/+jSuaOiypiMJvpWChVjh7M4kBC/bTo54Pk7vVxM/F1tShScX0SImsq6trkR+UKo2xWj08PFCr1cTExBiUx8bG4u398P1irK2tsba2zlNuaWlp8AGX33JB64ztYfdf1O0Kq1fQ+qKWF3fZ2B71/DUM8qDhi2M5EzWITzaspVHkEjqqj+F6dQPt2UDSz1ux6zQZ/JsXq+381hXl3JjTuXvUesV57z3M+SxKnCV5fqWyae72S6w7eRNLtcLcwY3oXLuCqUOSiqFtdU92vNaO2VvC+eVQJOtPRfPPuVu80qEao1tX1g/nJZV9j5TIzpkzR///+Ph4PvzwQzp37kyLFi0A2L9/P5s2beK99957pCCLysrKisaNG7Nlyxb69u2rL9+yZQu9e/culRikx1sdP2fqjB7Guei+fPT3JupE/EAP1X6cbuyAH3aQUqEZDk+9CVU6mDpUSZIewfMhQewKv80LbarIJNZMuTtY81Hfugxu5s/0dWEcjLjDp5susP5UNH++3BJLtUxmzcEjJbLDhg3T///pp59m+vTpvPzyy/qy8ePHM3fuXP755x8mTZr0KE3ppaSkcOnSJf1yREQEJ06cwM3NDX9/f0JDQxkyZAhNmjShRYsWLFy4kMjIyCL1c5MkY6np48Q7I54h7MZTvLJ8Fa1T/uJp1S4cYg7CT/1Ic6+LVbtXwWx7qEvS483ZzpJVY0NQyQeFzF5tX2d+faE5f5y4yQfrw2gX7CmTWDNitD6ymzZt4pNPPslT3rlz5zyjCDyKI0eO0L59e/1ybt/VYcOGsWTJEgYOHEh8fDzTp08nOjqaOnXqsGHDBgICAowWgyQVVTVvBzrX8KLGE0uYsf0Qlc79wP/U27CLPw2/D6eNpTcqrxhoPASsHUwdriRJD/DjvquoVApDmud8nsgktvxQFIU+Df1oF+yJtcV/DyOF3UziYmwyver7yjHnyyij/cnh7u7OmjVr8pSvXbsWd3d3YzVDu3btEELkeS1ZskRfZ9y4cVy9epXMzEyOHj1KmzZtjNa+JD2Myp72THm2Ex0mfs+nNVcyV9uXRGGHq+YW6s1vkf1ZDdj0DiREmjpU6TH3oJkR85OZmck777xDQEAA1tbWVKlShR9++KGUoi09f5+OZuq6s7y39gz7L8tRaMorFzsrbK1yElmtTjB5zWkm/HqCkT8e4VZShomjk/JjtDuy06ZNY+TIkezYsUPfR/bAgQNs3LiRRYsWGasZSTJrgR72TPlfW67feYLPtpxEOfUrw9SbqKKJhv1zEQfmQ82eKE1eAPMdGU8yU7kzI86fP5+WLVuyYMECunbtSlhYGP7+/vluM2DAAG7dusX3339P1apViY2NJTu7fM2edDzyLhNWnEAIeK65P80rl+2hmiTj0AnBkzW8OHcziW3nY+k4eyfTetemTwM/eXe2DDFaIjt8+HBq1qzJV199xerVqxFCUKtWLfbu3StnzpKk+1Rys+P9fk34SYllsfp5Yo//xRBlA63VZyDsDyzC/qCNbRCKfyrU6w8WeUfNkCRjK2xmxPtt3LiRnTt3cuXKFdzccpK7wMDA0gy5xMUmZ/DiT8fIytbxVE1vpvWqI5OYx4SlWsX4J6vRpU4FXlt5klM3Epm04iQbTsfwUd86eDnKccLLAqOOI9usWTOWL19uzF1KUrnmZg3PdatN/FM1+HZnHz45tJdn2UA/9R5c0yPgz3GIf95Dafgc1B9i6nALpdVqizRjl4WFBRkZGWi12oeuV9D6/MqLUlbY8r0sLS3NclDyBynKzIj3+/PPP2nSpAmzZs1i2bJl2Nvb06tXLz744ANsbc1/PM6sbB0vLT9GTFIGVb0cmPO/BnIWqMdQdW9HVr8Ywrc7L/Pl1otsCbvF4at3WDmmBdW8HU0d3mPPaIlsZOSD+/YV9LWUJElQwdmGqb1qE9u+Ct/takX7A6fpp9vCsxZb8UmLh71fYrH3K5o71kUJV6Bmd1OHnEdKSgo3btygsMkChRBUqFCB69evP/DOVmH1ClqfX3lRygpbvpeiKFSsWBEHh/LzgF5cXBxarTbPmNve3t55xubOdeXKFfbs2YONjQ1r1qwhLi6OcePGcefOnQL7yRY05bdWq33gHza5cusUpe6j+mB9GIev3sXB2oJvn22IrYXyyO2WZvzGZs6xw6PFrwAvtq1M+2BPXl91CisLFf6uNqV2Lh63c1+c4zRaIhsYGPjADyVzPfmSVJq8HG14p3stRrYM4N1ldnSO60vzrMM8p/6HNurTeCefgpVDwKkiqoZDsNb4mDpkIOf3+8aNG9jZ2eHp6fnAa4FOpyMlJQUHBwdUqoKfNy2sXkHr8ysvSllhy7mEENy+fZsbN25QrVq1cndntrCZEe+l0+lQFIXly5fj7OwM5HRP6N+/P/Pmzcv3ruyMGTPynfL7woULxfrDIDw8vMh1H4YQguzURNQKhLZwJeN2JOduG2//JR1/STLn2OHR4/+onSspWTouhudMe6/RCiLuZlHdo+S7gD0u5z4lJaXI+zRaInv8+HGDZY1Gw/Hjx5k9ezYfffSRsZqRpMeCu70VPf11zBj6JD8dqsbLe1vgmnmDQept/M9iJy5JN1DvnEEn1KDZBI2GQtWnTBavRqNBCIGnp2ehXynrdDqysrKwsbEpNJF9UL2C1udXXpSywpbv5enpydWrV9FoNOUmkX2YmRF9fHzw8/PTJ7EANWvWRAihT/TvV9CU38HBwYXOqQ45fzSFh4dTvXr1Ej/3H9aCcQnp+Bpx2tLSjN/YzDl2KLn4Z/x9nh/2xvBy+yq81K4KFiUwBu3jdu6LM+230RLZ+vXr5ylr0qQJvr6+fPrpp/Tr189YTUnSY8PFzpJJHaszsnUQS/Zc4esd3nyR0Z+uqkOMsN5KPXEBLvyV83LwRlV3IA4ZfiaL93F5CKY8HufDzIzYsmVLVq5cqb9zDTl3XFQqFRUrVsx3m4Km/Far1cX6gC5u/aLK1urQCqEfS7SSe8l0Hymp+EuDOccOxo1fpxPcTctGJ+CrbZfZe/kOcwY2oJKbnVH2f7/H5dwX5xhLfOqK6tWrc/jw4ZJuRpLKNScbS15sW5kpjbRM7FyHPXZP0it9Cp0yP+FnVU/SLV0h5Rbq/V/x5Lk3Uf/YHeXEciy06aYOvdRUqCCnCX1UoaGhLFq0iB9++IFz584xadIkg5kRJ0+ezNChQ/X1Bw8ejLu7O88//zxhYWHs2rWL119/nREjRpjtw15zt1+iz7x9XIpNNnUokhlQqRQ+H1CfL//XAEdrC45eu0u3L3ez8Uy0qUN7bBjtjuz9t4GFEERHRzN16tR8v16SJKn4rNUwqlUgz7eqzE/7I/j6H8HbaYOYwjP0sT/DSy778Y/fg+rGQVQ3DtJZZY2KHdDwWQhoCQ/4Kl+SCpsZMTo62uDBXgcHB7Zs2cIrr7xCkyZNcHd3Z8CAAXz44YemOoRHEnYzibnbLpGtE5yJSqKql3wiXSqa3g38aOTvysQVJzh67S5jfzrGyFZBvNW1hpzutoQZLZF1cXHJ9yGBSpUq8euvvxqrGUmSABtLNcNaBOAaf5YUr7os3H2VlQkNWJnagECLgXxU9RzNEzdicfcynPol5+XkB3WfgXoDwLt2icUmhCBdU/DDnTqdjvQsLRZZ2YX2kb23nq2luthf6bdr145mzZrxzz//kJWVxZ9//klQUBC3bt1i9OjRXL9+HQcHB77//ntsbW0ZNGgQu3bt4s8//2TYsGFcuXKFK1euMG7cODZv3lysts3VuHHjGDduXL7r7p1BMVeNGjXYsmVLCUdV8rK1Ot78/RTZOkHn2t70buBr6pAkM1PJzY5fX2jOp5susHDXFVYcvs6wFoH4u5dMNwMph9ES2e3btxssq1QqPD09qVq1KhYWRh2uVpKkf1moYHDTSgxuHsiaY1HM3X6Rq3fcePZ8S5xt2vCs8xnGV7qMzcW/ICkK9s7JeXnXyUlo6/QHZ+P2qU3XaKn1/iaj7hMgbHpn7KyKfy1xcHDg8OHDfPzxxyxcuJAZM2YwadIk3n//fapWrcq5c+cIDQ3lzz//5Pbt22RlZbFv3z6CgoI4f/48Fy9epGXLlkY/HqlsWbQngtNRiTjZWPBBbznpgfRwLNUq3u5WkyYBruiEkElsKTBahqkoCiEhIXmS1uzsbHbt2kWbNm2M1ZQkSfexVKsY8EQletb14qOfNrEvwYkrcanMz6jJ0oS6jGg+ltEVLuN44XcI3wS3zsCWM7BlCgS1hnoDoWZPsHEuvDEz06tXLwDq1avHihUrANi2bRthYWFotVqDhw/q1q3L0aNHOXbsGC+99BIHDx7k/Pnz9O/f32TxSyXvyu0UvtiSMyzQuz1q4eUkZ2ySHk2n2oZ99vddjuNwxF1e6VAVlZxUw6iMlsi2b9+e6OhovLy8DMoTExNp3769HEdWkkqBhVrFE56Cd4eEsOnsLWauO0l0ejZf7bzBIis7hoW8x4svfYFTxF9w6jeI3AcRu3Je60MhuAvU7gfVO4Plwz2sY2upJmx65wLX63Q6kpOScXRyLLRrwb31bC0f7knd3CfkVSoV2dnZQM4f3keOHCElJQUnJyf9cFvNmjVj+/btKIpC+/bteeeddzh//jyffvrpQ7UtlX1CCN7/4yyZ2TpaV/Pgmcb5j7YgSQ8rOUPD+F9OEJeSSVh0Ip8PaICDtfym2liM1gO5oEGz4+Pjsbe3N1YzkiQVgVql0K1uBd6or2XeoPrU9nUiLUvLNzsu0+rr43yT0ob059bDhFPQ4T3wCAZtJoT9ASuHwawqsGoknP8LsjMLb/AeiqJgZ2XxwJetlbrQOvfXM+ZXva1bt2bRokVATsJ8+vRpAJo3b86CBQto1KgRgYGBXLhwAZVKhaOjfOinvErKyCY5Q4OVhYqP+tSVXQoko3O0seSNLsFYqVVsOnuLfvP3ci0+1dRhlRuP/CdB7viwiqIwfPhwg/EBtVotp06dIiQk5FGbkSTpIagU6FTLm271/PjnXCyfbbrAhVvJfLLxPEv2RTDhyeo80zIUy9avQvRJOPM7nF0LiZFwZlXOy9oJanTPuVNbuR1YWJn6sPJ1+/Zt/dilQggWLFhQYN2vv/6aMWPGMHfuXHQ6HUOHDqV27drUqlWLxMRE/TUrICAAH5+yMXuaVDKcbS1ZM64lYdFJsj+jVGIGNKlEVS8Hxi47SvitFHrN3cu8wY1oVc3D1KGZvUdOZHNndBFC4OjoaDB2oJWVFc2bN2f06NGP2owkSY9AURQ61vKmQw0v/jgRxeebw4lKSOftNaf5bvcVXu1UnW516qPybQAdp8ONI3B2dU5Sm3wTTv6S87JxyelLW6cfVGxh4qMylNt9SafTkZSUhJOTEz169NCXtWrVim7dugHg7e3N6tWr9fVyuxao1WoSEhL0y4sXLy7SbFOSeVOpFOr4lb/+4VLZ0sjflXWvtGLMsqOcuJ7A0B8O8na3moxsFSS/CXgEj5zILl68GIDAwEBee+012Y1AksowtUqhX6OKdK/nw88HI5m77RIRcam8/PNx6lW8wvs9atEk0A0qPZHz6vQRXD+Yc6c27A9IjYXjy+D4MizsPKhnVw/lmhP4NjX1oUlSsdxKymD5gWuMbVfloUbDkKSH4e1kw68vNOfdtWdYdfQGszZd4OCVeJoEutEk0JU6fs76WeWkojHab++UKVOMtStJkkqYtYWa51sG8UyTSny/O4KFuy5z6kYi/b/dT8/6vrzVtQZ+LrY5EygEtMh5df0Eru7JuVMb9idKWhxBadvgp21ke9aH5jMg0xOsrUHeXZDKuC+3XuTng5GE30rh2yGNTR2O9BixsVTzaf961PZx4sO/wthyLpYt52IBsFKrqFvRmSYBrjQKcKVxgCseDnmndJb+80iJbKNGjdi6dSuurq40bNjwgbfGjx079ihNSZJUAhysLZjwVDUGN/Pn880XWHHkOutO3mTz2RjGtKlseLdKpYbKbXNe3T4j+9J2ojZ9jX/aSUi/A1kpOX1r026CrTPYuIK1AyhyVhupbLkal8pvh68DMKJVkImjkR5HiqLwfKsgTkUlsuZ4lL48S6vj6LW7HL12V18W5GFPiyBXBgfLO7X5eaREtnfv3vqHu/r06WOMeCRJMgFPR2tmPl2P55oHMH19GIci7vDVtkusOHKdt7rWoE8DP8M/VNWWiMrtORGQjm/np+DaQUixBsUChBbS7uS8FHXO2LQ2LmDtKKfIlcqE2VvCydYJ2gV70jTIzdThSI+xka2CDBLZ/ETEpdK/kS+QVTpBmZlHSmTv7U4guxZIkvmr4+fMiheas/FMDB9tOMeNu+lMWnGSFYev82GfOvnPPa+2goAQiIgAj0BQZUN6AmQkgC47525t+p2cO7PWzig2ziBEKR+ZJOUIu5nEnydvAvBap2ATRyM97ur4OdMsyI2DEXcKrNO9ng9j2lTm/PnzpRiZ+TB6D/esrCxiY2PR6XQG5f7+/sZuSpKkEqAoCl3r+tC+hhff74ng620XOXDlDl2/3M2YNlV4uUNVbAqanEBRcu68WjuCqAhZqTkJbXoC6DSQcRcl4y7OKCAScu7U2jjndFuQpFIwd/tFAHrU85EjFUhlwqjWlQtMZOv4OfFZ//rysYMHMNr3fOHh4bRu3RpbW1sCAgIICgoiKCiIwMBAgoJkHyRJMjc2lmpeal+VLZPa0j7YE41WMHf7JTp9sYsdF2IL34Gi5PSRda4I3rXBozrYeyHUVigIlIxESLgGMach/jKkxefcwX1IFSpUKLyS9Fi7FJvC32diAHilQzUTRyNJOZ6s4UVgAWMYNw10w8ZSdsl6EKPdkX3++eexsLBg/fr1+Pj4yDHRJKmcqORmxw/Dn2DT2Rim/hlG5J00hi8+TPc6FQgp6pT0igJW9mBlj3D0IeXubRwstCgZCTkzimUm5bz4N/m1ccmZiEGSjMjaQkXv+r6ka7QEV5CztUllg0qlMLJVEO/9cVZfplYUtEKw7MA1BjX1p7KHnKyjIEZLZE+cOMHRo0epUaOGsXYpSVIZoSgKXer40KqaJ3O2hLN431X+OhPDTgs1jlVi6FTT87/KQoAmreCd6XRodVqEtSOKjRNkZ0BGYs4rOz1n25RYFMBBZY2ic8vpfmDrKof1kh5JJTc75vyvIVqd7KMtlS1PN67IZ5vDSUzXAPBJ/3qkZ2Xjam9FNW9H/YQvUl5GS2Rr1apFXFycsXYnSVIZ5GBtwbs9atG7gR+v/naC8NgUxq84xeDGFRhc699Z/TRp8LFvgftQAS5FaEvhvgvU6B3g5JOT1FoU9VawJOWlVsk/iKSyxc7Kgmeb+TN/x2VGtw6if+OKeerEJGvwz8zGyU4+U3Avo3W8+OSTT3jjjTfYsWMH8fHxJCUlGbwkSSo/6lZ0ZvWLzensp0OtUtgZfpvYpAyS0rMQJTUiQXY6JEfD7fMQew4lORq1NrNk2pLKleQMDe//cYbwW8mmDkWSCjS0RSAda3nzVteaedZFJ2Ywecsthi85QlKGxgTRlV1GuyP71FNPAfDkk08alAshUBRF3haXpHLG2kJFN38dL/YK4bONYWhFzsU2Q2uH75s3sFDn/3eyTqcjKTkZJ0dHVA8YV9agntCCVvNvX9pk0GaipMbiCIjY22DrAgg5rJeUr1VHb7B0/zX2X45n86Q28hkOqUyq4GzDt881zvcbg7iUTNKyBcciExiy6CBLRzTD2c7SBFGWPUZLZLdv326sXUmSZEZq+zox/9nGnAu/hIJCQkY2qRoVldyscbDO5xKj04GlNufhrwdNkJBfPQdP0GkhIxHxb79aRaeB1Ns55bfOoFg7YaG1BOTDPBLodIIf910FYFhIoExipTKtoG4vdf2cmfGUN1N2xHHyRiKDFx1g2chmuNlblXKEZY/REtm2bdsaa1eSJJkZKwsVTraWVHCz5VaajqxsHVdup+DlaI2Xkw0qYyYPKjXYuSFsXEhKTMDZRoWSkcjt+LtUbPiUvtqCT9+je7ceOdPlWsmk9nG18+Jtrsan4WhjQd+GfqYOR5IeWmU3K5aPasrQHw5z9mYSg787wE+jmuHhYG3q0EzKaInsqVOn8i1XFAUbGxv8/f3109lKklQ+2VpZUM3BmuiEdO6kZRGbnElKZjaVXO2wLmgShUehqBDWTii2LmizsyErBZGegEi/m9MdIeNuziQMKNipbFEss3OG9lIbfS4YqYxa+u/d2IFNKmGf3zcEkmRGgr0d+fWFFgz+7gDnY5IZuGA/v7zQHC/Hx/cBWKM97NWgQQMaNmyY59WgQQNq1KiBs7Mzw4YNIyMjw1hNSpJUBqlVChXd7Ahws0OtUkjL0nIxNoW7aSU8T/i/s4oJJz+SbCoh3KuBgxeorVEQWOnSUBKvw63TEHcRJS0O5REmYCiv5s+fT1BQEDY2NjRu3Jjdu3cXabu9e/diYWFBgwYNSjbAYohOTGdn+G0Anm0eYOJoJMk4qno5sGJMC3ycbbBUq1B4vLvLGC2RXbNmDdWqVWPhwoWcOHGC48ePs3DhQoKDg/n555/5/vvv2bZtG++++66xmpQkqQxztrOimpcj9tYW6ITg+p00btxNK53nsRQFYWkHTn7gVROdRzDpFi4Ii3+HCMtKQUmKwjnjOkr8RUi+lTMxw2NuxYoVTJw4kXfeeYfjx4/TunVrunbtSmRk5AO3S0xMZOjQoXke9jW11cei0AloGuRGkIe9qcORJKMJ8rDntzEt+GV0czwdH+9vu432PctHH33El19+SefOnfVl9erVo2LFirz33nscOnQIe3t7Xn31VT777DNjNStJUhly/9BbVhYqKnvYE5ucya2kDO6kZpGWpcW1NB+2VRSwsCHTyhVrJ6ech8MyEhDpiSiaVBRNGmjSUCXfxFGxRFG55YyCoC74q7oSG2LMxGbPns3IkSMZNWoUAHPmzGHTpk188803zJgxo8DtxowZw+DBg1Gr1axdu7aUoi2ctYUKDwdrBjSpZOpQJMnoKrkZzva1+WwMLaq442jzeI1mYLRE9vTp0wQE5P3qJiAggNOnTwM53Q+io6ON1aQkSWWEpaUliqJw+/ZtPD098zwZ7mwFFo5qohMzSU/PIiMDhJKCk23BT9zqdDqysrLIyMjId5iugtbnV56nzMIZnb0jqUmJOFgKlKxkhCYNhSxIiIGEGITKElR2ZFhZGexfCMHt27dRFAVLy/LzgZGVlcXRo0d56623DMo7derEvn37Ctxu8eLFXL58mZ9++okPP/ywpMMsllGtKzMsJFCOyiaVe78dvs4bv5/iiUBXfhzRFDurx6c/uNGOtEaNGsycOZOFCxdiZZXz4aTRaJg5c6Z+2tqoqCi8vb2N1aQkSWWEWq2mYsWK3Lhxg6tXrxZcUSdITM0iM1vHrShwsFbjbGuZ75BIQgjS09OxtbUt1vr8yotSJnSWaNKSsFSyUbIzQAg0alssEjLztK8oChUrVkStLj8z7MTFxaHVavNco729vYmJicl3m4sXL/LWW2+xe/duLCyK9nGSmZlJZuZ/3ThyJ8zRarVFGm88t05RxyZXAShFr1/Siht/WWLOsYN5x19Y7MHe9jjaWHD46l1GLjnMoqGNsSmJB2wfUnHPfXF+RkZLZOfNm0evXr2oWLEi9erVQ1EUTp06hVarZf369QBcuXKFcePGGatJSZLKEAcHB6pVq4ZG8+BZZzIys/jwt73sj81JDmv7OjOlVy3c7Q37eWk0Gnbt2kWbNm3yvfNZ0Pr8yotSZrAsNGRf3cvhS1E06dgwT/uWlpblKom91/1Je+6kNvfTarUMHjyYadOmUb169SLvf8aMGUybNi1P+YULF3BwcCjyfsLDwwtcl6UVhMVmUNfbpsxOR/ug+Ms6c44dzDv+gmJXA1PaevDe1lvsv3KHUd/v4a3WnmXu/V/Uc5+SklLkfRotkQ0JCeHq1av89NNPhIeHI4Sgf//+DB48GEfHnDEchwwZYqzmHsn169cZMmQIsbGxWFhY8N577/HMM8+YOixJMntqtbrQBE+tVtPaK4uOLZ7gtVWn2XzhDicXHObb5xrT0N/VoF52djY2Njb5JrIFrc+vvChlhsuOaGp2ISliQ4HtlzceHh6o1eo8d19jY2Pz/SYtOTmZI0eOcPz4cV5++WUgpwuHEAILCws2b95Mhw4d8mw3efJkQkND9ctJSUlUqlSJ4OBgnJycCo1Tq9USHh5O9erVC3yvbQm7xbtbj1PH14k/XgopdJ+lqSjxl1XmHDuYd/xFib1mTfCpGM/zPx5l//V0fr0o+KB3zTIxCUhxz33uNzVFYdROFA4ODowdO9aYuywRFhYWzJkzhwYNGhAbG0ujRo3o1q0b9vbyqVZJKi0dgj358+VWvLD0CBdjUxi44AAf9KnNwCf8TR3aY8nKyorGjRuzZcsW+vbtqy/fsmULvXv3zlPfyclJ//xDrvnz57Nt2zZWrVpFUFBQvu1YW1vnO6Z4Uf4IKmr9DWduAdCssnuZTViKe7xliTnHDuYdf2Gxt6zmxZcDGzDu52P8cvg6FZxtmfBUtVKM8MGKeu6L8/Mxem/gsLAwIiMjycoyHDOyV69exm7qofn4+ODj4wOAl5cXbm5u3LlzRyayklTKgjzsWfNSS1797QSbzt7izd9Pczoqkfd71H7MR0Y0jdDQUIYMGUKTJk1o0aIFCxcuJDIyUn+DYvLkyURFRbF06VJUKhV16tQx2N7LywsbG5s85aUpPUvLP+dyEtke9XxMFockmUrXuj5M71Wb9/44S5omu8DuQeWF0RLZK1eu0LdvX06fPp3z4MS/j4nmnrzidNzdtWsXn376KUePHiU6Opo1a9bQp08fgzrz58/n008/JTo6mtq1azNnzhxat25d7LiPHDmCTqejUiU5PIskmYKDtQXfPNuYedsvMfufcH46EMn56GS+GljP1KE9dgYOHEh8fDzTp08nOjqaOnXqsGHDBv2INNHR0YWOKWtq2y/Ekpalxc/FlgaVXEwdjiSZxJAWgdTydaZxgGvhlc2c0SZEmDBhAkFBQdy6dQs7OzvOnj3Lrl27aNKkCTt27CjWvlJTU6lfvz5z587Nd31RBu1u3LgxderUyfO6efOmvk58fDxDhw5l4cKFD3XMkiQZh0ql8MqT1fh+WBMcrS04cu0uTy84SFSqqSN7/IwbN46rV6+SmZnJ0aNHadOmjX7dkiVLHng9nzp1KidOnCj5IB/g7zM5fXx71PMp13ehJKkw9yaxmdlaIuLK5wXVaHdk9+/fz7Zt2/D09ESlUqFSqWjVqhUzZsxg/PjxHD9+vMj76tq1K127di1wfVEG7T569OgD28jMzKRv375MnjyZkJAHPwxQ0HAxGo1G/8pdzu/f+/9vTPm1ZcztCqtX0Pqilhf3X2Mz5fkr7rrivM/M9b3Xuoobv49txtjlx7kSl8acM2r8a0bTuU7er4iL8957mPNZnOMrqXMsFY9Gq2PHhVgAOtWWQz1KEsDd1CzGLDtKRHwqf7zUEl8XW1OHZFSKMNIUNa6urhw9epTKlStTpUoVFi1aRPv27bl8+TJ169YlLS3t4QJUFIOuBVlZWdjZ2bFy5UqDBxImTJjAiRMn2LlzZ6H7FEIwePBggoODmTp1aqH1p06dmu9wMT///DN2dnb5bCFJ0qNIy4bF4SrCE1UoCHr66+jgKyirN9jS0tIYPHgwiYmJRXryXvpPUlISzs7ORT53Wq2Wc+fOUbNmzTwPhBy4Es//Fh7Azd6Kw+88VeaGHoIHx1/WmXPsYN7xP0rsyRka+n+znwu3kqnl48TKsS2wty7dCROKG39xrgtGO5I6depw6tQpKleuTLNmzZg1axZWVlYsXLiQypUrG6uZhxq0+3579+5lxYoV1KtXTz+d4rJly6hbt26+9QsaLqZTp044OTmh0WjYsmULHTt21I9HmbsMGKwztvvbNvZ2hdUraH1Ry4u7bGymPH/FXVeUc1Oe3nvdMjIZt2g7e2+p+DNSjZWHH9N61sTKQvXA/RTl3OVX9ijvveIMFSOVnKaBbvzxUkuiE9PLZBIrSabgaGPJomFN6DNvL2HRSUxccYIFzzVGVU5+R4yWyL777rukpub0v/jwww/p0aMHrVu3xt3dnV9//dVYzegVddDu/LRq1QqdTlfktgoaLsbS0tLgAy6/5YLWGdvD7r+o2xVWr6D1RS0v7rKxmfL8FXddUc5NeTh3dsAzQTo6NKnFRxvOs+pYFNfvpvPtc41xtbcqdD9FOXf5lT3Me+9xGGfWHKhUCvUruVBfPuQlSQYqudmxcGhjBi08yJawW3yy6TyTu9Y0dVhGYbSHvTp37ky/fv0AqFy5MmFhYcTFxREbG8uTTz5prGaKPWi3JEnmS1FgaHN/fhj+BA7WFhyMuEOf+Xu5FFv0WV8kSZIkaBzgxqz+OaPBLNh5hb9ORZs4IuN45DuyI0aMKFK9H3744VGbAoo/aLckSeavXbAXq8eFMPLHw1yLT6Pv/L3MH9TA1GFJZcgfJ6LYdyme3g18CanqYepwJKlM6tPQj3PRSSzYdYXp68/yZE0vbCzNq7/w/R45kV2yZAkBAQE0bNgQIz03RkpKCpcuXdIvR0REcOLECdzc3PD39y900G5Jksqf6t6OrB3XkjHLjnLk2l1GLD3K/4IUupk6MKlM+Pt0DBvPxlDJzVYmspL0AK93DiY5M5uRrYLMPokFIySyY8eO5ddff+XKlSuMGDGC5557Djc3t0fa55EjR2jfvr1+OfdBq2HDhrFkyZJCB+2WJKl8cnew5qdRzXj1t5P8dTqaZZfUeO28wstPVi83Y4Zu3LgRBwcHWrVqBcC8efP47rvvqFWrFvPmzcPVtfwPcF5cOp1g/5V4AFpUkUmsJD2IhVrFx33zf7jdHD1yH9n58+cTHR3Nm2++ybp166hUqRIDBgxg06ZND32Htl27dggh8ryWLFmir/OgQbslSSq/bCzVfD2oISNb5vzh+vk/l3hn7RmytUV/gLMse/311/WjIJw+fZpXX32Vbt26ceXKFYPRU6T/hEUnkZiuwcHagvoVnU0djiSZlX2X4lh24Jqpw3hoRnnYy9ramkGDBrFlyxbCwsKoXbs248aNIyAggJQU+VCGJEnGpVIpvNUlmKcDtSgK/HwwktFLj5CamW3q0B5ZREQEtWrVAuD333+nR48efPzxx8yfP5+///7bxNGVTfsv59yNbRrkhoXaaM8wS1K5d/ZmIs99f5Cpf57leORdU4fzUIz+G68oCoqiIIQo1hBXkiRJxdXGRzB/UANsLFVsv3CbgQv3czs5s/ANyzArKyv9BDL//PMPnTp1AsDNzU2OV1uAfZfjAAip4m7iSCTJvNTycaJ7PV+0OsH4X4+TnGF+sxQaJZHNzMzkl19+oWPHjgQHB3P69Gnmzp1LZGQkDg4OxmhCkiQpX0/V9OKX0c1xt7fiTFQSzyw8SMzDTSRYJrRq1YrQ0FA++OADDh06RPfu3QEIDw+nYsWKJo6u7NHpBEeu5txJal5ZJrKSVByKovBhnzr4udhy/U467/9x1tQhFdsjJ7Ljxo3Dx8eHTz75hB49enDjxg1WrlxJt27dUKnkVzySJJW8hv6urB4XQpCHPVEJGcw5o+bQ1TumDuuhzJ07FwsLC1atWsU333yDn58fAH///TddunQxcXRlT1xKJp6O1thbqalRwdHU4UiS2XG2teSrQQ1QKbDmeBRrjt8wdUjF8sijFnz77bf4+/sTFBTEzp072blzZ771Vq9e/ahNSZIkFSjA3Z7fXwxh5JJDHL+eyPM/HuOr/zWgSx0fU4dWLP7+/qxfvz5P+RdffGGCaMo+Lycbtr3WjpTMbNk/VpIeUuMANyY8WZ0v/gnnvbVnaezvhr+7nanDKpJH/q0fOnQo7du3x8XFBWdn5wJfkiRJJc3N3oqlzzehrquOrGwd45YfY/nBsv807r19X5OSkh74kvLnYG20Gdcl6bH0UvsqPBHoSkpmNquOXjd1OEVmlAkRJEmSygobSzXPB+s4mF2JFUeieGfNGW4lplPZOPO1lAhXV1eio6Px8vLCxcUl3zFxhRAoioJWqzVBhGWXTidQqcrHGMKSZEoWahWzBzTgyLU79GngZ+pwikz+CStJUrmjVuCDXrXwdrLlq22X+GrbZVp6q+iiE1iaOrh8bNu2TT+RzLZt28rN5A4lLSlDQ8uZ26jr58wPw58oF7MUSZIpVXKzo5KbeXQpyCUTWUmSyiVFUQjtFIynozXv/3mWvbdUjF9xkq8GNSpzCU/btm31/2/Xrp3pAjEzZ6ISSc7I5lp8Wpn7mUqSuUtIy+LXw9cZ06Zymf7jWvaMlySpXBvSIpAvB9RDrQg2h8Uy7IdDJKaX3bES33vvvXy7DyQmJjJo0CATRFR2nYtOBqC2r5OJI5Gk8kWj1dF73l5m/n2e346U7f6yMpGVJKnc61qnAi/W1OFgbcHBiDsMXLCfW0kZpg4rX0uXLqVly5ZcvnxZX7Zjxw7q1q3L1atXTRdYGXQuOufht5o+MpGVJGOyVKsY0jxnGvCZf5/nbmqWiSMqmExkJUl6LFRzFiwf2QQPB2vOxyQz8LtDxKabOqq8Tp06RWBgIA0aNOC7777j9ddfp1OnTgwfPpw9e/aYOrwyRSayklRyhocEUqOCI3fTNMzadMHU4RRIJrKSJD02avk4sfrFEALd7fQTJ5y6kWjqsAw4Ozvz66+/Mn78eMaMGcOXX37J33//zfTp01GrS74f6Pz58wkKCsLGxobGjRuze/fuAuuuXr2ajh074unpiZOTEy1atGDTpk0lHiPkfPV58VYKkPNzlSTJuCzUKj7oUweAXw9HcuJ6gmkDKoBMZCVJeqz4u9ux6sUQ6vg6kZqtMGTxEXaF3zZ1WAa+/vprvvjiCwYNGkTlypUZP348J0+eLPF2V6xYwcSJE3nnnXc4fvw4rVu3pmvXrkRGRuZbf9euXXTs2JENGzZw9OhR2rdvT8+ePTl+/HiJx3rldipZ2pzuIhVdbUu8PUl6HD0R6MbTjSoiBLy79jRaXdkbx1AmspIkPXY8HKxZNqIJwc460rK0jPzxMBtOx5g6LAC6du3KtGnTWLp0KcuXL+f48eO0adOG5s2bM2vWrBJte/bs2YwcOZJRo0ZRs2ZN5syZQ6VKlfjmm2/yrT9nzhzeeOMNnnjiCapVq8bHH39MtWrVWLduXYnGCZCZraN1NQ/aBnvKcWQlqQS91bUGjjYWnIlKYmUZfPBLDr8lSdJjycHaghdq6Nia6sOGM7eYuPIU/QMVupk4ruzsbE6dOoWvry8Atra2fPPNN/To0YNRo0bxxhtvlEi7WVlZHD16lLfeesugvFOnTuzbt69I+9DpdCQnJ+vHxM1PZmYmmZmZ+uXc2cq0Wm2RJnvIrVPbx4Elw5sYlJmD3FjNKeZc5hw7mHf8pozdzc6CSU9V4+KtFNpWc3+oGIobf3HakImsJEmPLQsVzH6mHi72F/j5YCQrI9RU3HGF8U9VN1lMW7Zsybe8e/funD59usTajYuLQ6vV4u3tbVDu7e1NTEzR7lZ//vnnpKamMmDAgALrzJgxg2nTpuUpv3DhAg4ODkWONzw8vMh1yyJzjt+cYwfzjt9UsTd1gaYuKuKjIoiPevj9FDX+lJSUIu9TJrKSJD3W1CqFj/rUwcXGgvk7r/DF1kskZWp5o2NVU4eWh4eHR4m3cf/A57lT4xbml19+YerUqfzxxx94eXkVWG/y5MmEhobql5OSkqhUqRLBwcE4ORX+0JZWqyU8PJyKgVVwtLUqtH5Zkxt/9erVS+XhPWMy59jBvOMva7Fna3VYqIveO7W48ed+U1MUMpGVJOmxpygKk56qSvS1i6y5qub7PRHcScmgtXXpx6LVavniiy/47bffiIyMJCvLcPzGO3fulEi7Hh4eqNXqPHdfY2Nj89ylvd+KFSsYOXIkK1eu5KmnnnpgXWtra6yt855YtVpd5A9oIQQhs3ZiZ6Xmj5db4edifg97Fed4yxpzjh3MO35Tx375dgof/3WOiq62TOtdp9jbFzX+4hyjfNhLkiTpX+18BLP61UGtUlhzIpofL6oQonSf0p02bRqzZ89mwIABJCYmEhoaSr9+/VCpVEydOrXE2rWysqJx48Z5ujZs2bKFkJCQArf75ZdfGD58OD///DPdu3cvsfjudSddS1qWlrtpGjwdTPDXhiQ9pmISM9h6PpZfDl0nJrFsTCojE1lJkqR79G3oy4LnGmNrqaKBe9G+Vjem5cuX89133/Haa69hYWHBoEGDWLRoEe+//z4HDhwo0bZDQ0NZtGgRP/zwA+fOnWPSpElERkYyduxYIKdbwNChQ/X1f/nlF4YOHcrnn39O8+bNiYmJISYmhsTEkh2bNyopG4BKrrZYWciPMUkqLSFV3Hki0JUsrY5vd14ufINSIK8AkiRJ93mqljfbQlvTyKP0x0yMiYmhbt26ADg4OOiTwh49evDXX3+VaNsDBw5kzpw5TJ8+nQYNGrBr1y42bNhAQEDOVJXR0dEGY8ouWLCA7OxsXnrpJXx8fPSvCRMmlGict1L/TWTd7Eq0HUmSDCmKwvgnqwHwy6FIYsvAVN+yj6wkSVI+PEz0lXXFihWJjo7G39+fqlWrsnnzZho1asThw4fz7VtqbOPGjWPcuHH5rluyZInB8o4dO0o8nvzc/jeRNce+sZJk7lpV9aChvwvHIxNYuOsK7/aoZdJ45B1ZSZKkMqRv375s3boVgAkTJvDee+9RrVo1hg4dyogRI0wcXdkQl5ozxqSPs0xkJam0KYrChH/vyi4/GElimsak8cg7sg8h9+GP3OEhNBoNaWlpJCUlYWlpabAMGKwztvvbNvZ2hdUraH1Ry4u7bGymPH/FXVeUcyPfe0U7d/mVPcp7L/d8G+PBsJkzZ+r/379/fypVqsTevXupWrUqvXr1euT9lwe303LuyPq62Jg4Ekl6PLWt7kmNCo6cj0nmtyPXGd2msslikYnsQ0hOTgagUqVKJo5EkqSyJDk5GWdnZ6Pus1mzZjRr1syo+zR3NTyscbC3p4pX0SdQkCTJeBRFIbRjdW4lZ/J0Iz+TxiIT2Yfg6+vL9evXcXR01D/R/MQTT3D48GF9ndzl3MG+r1+/XqTBvh/G/W0be7vC6hW0vqjlD1ou7+evuOsKO3f3lpX3c/eg9UU5d/mVPex7TwhBcnKyflpZqWQ9W9+FmjVrmu1YoJJUHnSqXcHUIQAykX0oKpWKihUrGpSp1WqDD7v7l52cnEosmbi/LWNvV1i9gtYXtbywZSi/56+464pyruR7r2jnJb+yR3nvGftOrCRJklQ4+bCXkbz00ksPXC7Nto29XWH1Clpf1HJTnrtHac8Y56+464pyruR7r+jnxdTvPan4srU6srSlPyyaJEn5+/VQJD2+3s2FmGSTtK+I0p625jGTlJSEs7MziYmJJXZXrDyT5+/hyXP3aOT5Kx3FPc8HL8cx8LuD1KzgyN8T25RChMal1Wo5d+6cWXaNMOfYwbzjL8uxv/jTUf4+E8PzLQOZ0rN2vnWKG39xrgvyjmwJs7a2ZsqUKaUy/mN5JM/fw5Pn7tGY6vwNHz6cXbt2lWqb5iQ+NQsAG0v58SVJZcHAJ3IefF9zPIoMjbbU25dXghJmbW3N1KlTZTLxkOT5e3jy3D0aU52/5ORkOnXqRLVq1fj444+Jiooq1fbLujv/JrJu9lYmjkSSJIDW1TzxdbYhIU3D5rBbpd6+TGQlSZLKkN9//52oqChefvllVq5cSWBgIF27dmXVqlVoNKYdeLwskImsJJUtapXCM01y7squPHK91NuXiawkSVIZ4+7uzoQJEzh+/DiHDh2iatWqDBkyBF9fXyZNmsTFixdNHaLJ3E2TiawklTVPN8oZyWnvpTjiUjJLtW2ZyEqSJJVR0dHRbN68mc2bN6NWq+nWrRtnz56lVq1afPHFF6YOzyTu/jsdprOt8WerkyTp4fi721G/kgs6AX+fji7VtuU4spIkSWWIRqPhzz//ZPHixWzevJl69eoxadIknn32WRwdHQH49ddfefHFF5k0aZKJoy19aVk5D5M4WsuPL0kqS/o38qOCk3Wpz7gn78iWMX379sXV1ZX+/fubOpQyb/369QQHB1OtWjUWLVpk6nDMjnyvPZzr16/Trl07atWqRb169Vi5cqVR9+/j48Po0aMJCAjg0KFDHDlyhLFjx+qTWIDOnTvj4uJi1HbNRV0/J57ws8Xf3c7UoUiSdI8hLQJZMKQJIVU8SrVdmciWMePHj2fp0qWmDqPMy87OJjQ0lG3btnHs2DE++eQT7ty5Y+qwzIp8rz0cCwsL5syZQ1hYGP/88w+TJk0iNTXVaPufPXs2N2/eZN68eTRo0CDfOq6urkRERBitTXMyrl0VprT3olXV0v2wlCSpbJKJbBnTvn17gzsvUv4OHTpE7dq18fPzw9HRkW7durFp0yZTh2VW5Hvt4fj4+OgTTC8vL9zc3Iz2R1R2djYjRozg0qVLRtmfJElSaYuIS+WXQ5Gl1p5MZIth165d9OzZE19fXxRFYe3atXnqzJ8/n6CgIGxsbGjcuDG7d+8u/UDNwKOey5s3b+Ln56dfrlix4mM13qZ8Lz48Y567I0eOoNPpqFSpklFis7CwICAgAK229AcVNxdanZyMUpLKqoS0LJ78fAeTV58mMj6tVNqUiWwxpKamUr9+febOnZvv+hUrVjBx4kTeeecdjh8/TuvWrenatSuRkf/9ZdK4cWPq1KmT53Xz5s3SOowy4VHPZX4zKyuKUqIxlyXGeC8+rox17uLj4xk6dCgLFy40anzvvvsukydPll1lCtBsxjb6/RLJldsppg5FkqT7uNhZ0aKKOwDrT5dSXiOkhwKINWvWGJQ1bdpUjB071qCsRo0a4q233irWvrdv3y6efvrpRw3RbDzMudy7d6/o06ePft348ePF8uXLSzzWsuhR3ouP23vtfg977jIyMkTr1q3F0qVLjR5TgwYNhIODg7C2thbVq1cXDRs2NHiVN4mJiQIQiYmJRapf872/RcCb68WV2KQSjqxkZGdni9OnT4vs7GxTh1Js5hy7EOYdvznF/vPBayLgzfWi25e79GXFjb841wU5fomRZGVlcfToUd566y2D8k6dOrFv3z4TRWWeinIumzZtypkzZ4iKisLJyYkNGzbw/vvvmyLcMke+Fx9eUc6dEILhw4fToUMHhgwZYvQY+vTpY/R9lifZ/3YtsFA9Pt/ASJI56Vy7Au+uPcPZm0lExKUS5GFfou3JRNZI4uLi0Gq1eHt7G5R7e3sTExNT5P107tyZY8eOkZqaSsWKFVmzZg1PPPGEscMt04pyLi0sLPj8889p3749Op2ON954A3d3d1OEW+YU9b0o32t5FeXc7d27lxUrVlCvXj19/9ply5ZRt25do8QwZcoUo+znYc2fP59PP/2U6OhoateuzZw5c2jdunWB9Xfu3EloaChnz57F19eXN954g7Fjx5ZYfNlaHSATWUkqq9zsrWhZ1YNd4bf569RNXu5QrUTbk4mskd3fT1MIUay+m/LJ+/8Udi579epFr169Sjsss1HY+ZPvtYI96Ny1atUKnU5nirBKXG7/4Pnz59OyZUsWLFhA165dCQsLw9/fP0/9iIgIunXrxujRo/npp5/Yu3cv48aNw9PTk6efftro8el0gtxnvdRq+YiHJBlNdDQsWABjxoCPzyPvrkddH3aF32b9qWh61PPlWnwKLiX0oKa8EhiJh4cHarU6z93X2NjYPHd3pAeT5/LRyPP38MrCudNqtXz22Wc0bdqUChUq4ObmZvAqSbNnz2bkyJGMGjWKmjVrMmfOHCpVqsQ333yTb/1vv/0Wf39/5syZQ82aNRk1ahQjRozgs88+K5H4Npz5b+rLZxcdYuOZ0p0KU5LKrehomDYt518j6FTbGwuVwtX4VDp9sZNhi4/w4/EEo+z7fjKRNRIrKysaN27Mli1bDMq3bNlCSEiIiaIyT/JcPhp5/h5eWTh306ZNY/bs2QwYMIDExERCQ0Pp168fKpWKqVOnlli7uf2DO3XqZFD+oL7V+/fvz1O/c+fOHDlyBI1GY9T4Np6J5uWfj+uXL8WmMPanYzKZlaQyyMXOip9HN6OalwNZ2pw7sZsuJaMrgbuysmtBMaSkpBgMVB4REcGJEydwc3PD39+f0NBQhgwZQpMmTWjRogULFy4kMjKyRPuLmSt5Lh+NPH8Pr6yfu+XLl/Pdd9/RvXt3pk2bxqBBg6hSpQr16tXjwIEDjB8/vkTafZh+/jExMfnWz87OJi4uDp98vqLMzMwkMzNTv5yUlATk3Il+0Pi5c/65iALkfgwKQFFyyjvW9Cr8AMuI3GM0x7GCzTl2MO/4SyT26Gj9HVjl+HFUgO7IEURuGz4+j9TNQAWcjkrCSq2QpRWkagQRt5Op4u1U6LbFOU6ZyBbDkSNHaN++vX45NDQUgGHDhrFkyRIGDhxIfHw806dPJzo6mjp16rBhwwYCAgJMFXKZJc/lo5Hn7+GV9XMXExOjf3DMwcGBxMREAHr06MF7771X4u0Xt59/fvXzK881Y8YMpk2blqf8woULODg4FNjO5dhk7r+XI0RO+blz5wrcrqwKDw83dQgPzZxjB/OO35ixe82fj9d93YZUY8bo/x/74ovEjhv30PtfdiRnLOxGPtYcuJEBQPjlK2TdsS5025SUoo8TrQiRz8jykiRJkkkEBwezdOlSmjVrRuvWrenevTtvvfUWK1as4JVXXiE2NrZE2s3KysLOzo6VK1fSt29fffmECRM4ceIEO3fuzLNNmzZtaNiwIV9++aW+bM2aNQwYMIC0tDQsLS3zbJPfHdlKlSpx584dnJwKvlPT/eu9XIgxTGYVBWp4O7L+lZbFPFrT0Wq1hIeHU716ddRqtanDKRZzjh3MO/4Sif3+O7JjxqBbsADRsGHO+ke4I6vTCVp/tpOYxAy8nay5lZRJDQ9r/hzfpkjxJyUl4ebmRmJi4gOvCyDvyEqSJJUpffv2ZevWrTRr1owJEyYwaNAgvv/+eyIjI5k0aVKJtXtv/+B7E9ktW7bQu3fvfLdp0aIF69atMyjbvHkzTZo0yTeJBbC2tsbaOu8dGbVa/cAPuIlPVWPsT8f0ywo5d2QnPGV+SQkUfrxlmTnHDuYdv1Fjr1gx55WzYwBUTZpAo0aPvOvj1+8Qk5iBg5WaLnUqcCU2hQHBVkWOvzjHKBNZSZKkMmTmzJn6//fv35+KFSuyb98+qlatWuLDzRXWP3jy5MlERUWxdOlSAMaOHcvcuXMJDQ1l9OjR7N+/n++//55ffvnF6LF1qePDt8810iezVb3sebVTDbrUqWD0tiRJejTrT+Xc6e1UuwLTetVBq9WWWBcgmchKkiSVYc2bN6d58+al0lZh/YOjo6OJjIzU1w8KCmLDhg1MmjSJefPm4evry1dffVUiY8hCTjJrqVbQaAVLhj+Bn1vJzhgkSY8NHx+YMsUoY8jqdIINp3MS2e71Hn1/hZGJrCRJUhkTHh7Ojh07iI2NzTP5QklPxTxu3DjGFfCAx5IlS/KUtW3blmPHjuWtXELUqpxENrucTkohSSbh4wNGGt7v8NU7xCZn4mhjQetqnkbZ54PIRFaSJKkM+e6773jxxRfx8PCgQoUKBk//K4pS4olsWWehUgE6NFr5nLIklUV//Xs3tnPtClhZlPx0BTKRlSRJKkM+/PBDPvroI958801Th1Im2VupScnMJi3L/MYClaTyTqsTbDidM+50aXQrADmzlyRJUply9+5dnnnmGVOHUWbZWec8zZyWlW3iSCRJut/BiHjiUjJxtrWkZRWPUmlTJrKSJEllyDPPPMPmzZtNHUaZZWeV80ViSqa8IytJZU3uaAWda3uXSrcCkF0LJEmSypSqVavy3nvvceDAAerWrZtnPNaSmqLWXDjIO7KSVCZptDr+/rd/bK/6fqXWrkxkJUmSypCFCxfi4ODAzp0788ympSjKY5/I5t6RTZV3ZCWpTNlzKY67aRo8HKxoXtmt1NqViawkSVIZEhERYeoQyjT7f+/Ipso7spJUpqw7eROA7nV9sFCXXs9V2UdWkiRJMhuO1jldLZLTZSIrSWVFhkbL5rO3AOhZ37dU25Z3ZCVJkkwsNDSUDz74AHt7e0JDQx9Yd/bs2aUUVdnkap+TyN5JzTJxJJIk5dp2PpaUzGz8XGxp5O9aqm3LRFaSJMnEjh8/jkaj0f+/IPdOjvC4crO3AuBOmkxkJamsWHH4OgC9G/iiUpXudUomspIkSSa2ffv2fP8v5eWem8jKO7KSVCZEJaSz6+JtAAY+UanU25d9ZCVJkiSz4SYTWUkqU1YeuY4QEFLFnQB3+1JvX96RlSRJKkP69u2bbxcCRVGwsbGhatWqDB48mODgYBNEZ3pudrmJrMbEkUiSpNUJVh65AZjmbizIO7KSJEllirOzM9u2bePYsWP6hPb48eNs27aN7OxsVqxYQf369dm7d6+JIzUN13/vyN5Ny0KnEyaORpIebzsuxBKVkI6zrSWda1cwSQwykZUkSSpDKlSowODBg7ly5Qq///47q1ev5vLlyzz33HNUqVKFc+fOMWzYMN58801Th2oSHg5WKEC2ThAvuxdIkkl9vydn3Ov/PVEJG0u1SWIoV10Ljh07xptvvsnhw4dRq9U8/fTTzJ49GwcHB32dyMhIXnrpJbZt24atrS2DBw/ms88+w8rKqsjt6HQ6bt68iaOjo3yKWJIkhBAkJyfj6+uLSvVo9we+//579u7da7AflUrFK6+8QkhICB9//DEvv/wyrVu3ftSwzZKlWoWbnZr4NC03E9LxdLQ2dUiS9FgKu5nEvsvxqFUKQ0MCTRZHuUlkb968yVNPPcXAgQOZO3cuSUlJTJw4keHDh7Nq1SoAtFot3bt3x9PTkz179hAfH8+wYcMQQvD1118Xq61KlUzTF0SSpLLr+vXrVKxY8ZH2kZ2dzfnz56levbpB+fnz59Fqc6ZltbGxeaz/iPb4N5GNTkynfiUXU4cjSY+lH/bm3I3tUqcCfi62Jouj3CSy69evx9LSknnz5unvZMybN4+GDRty6dIlqlatyubNmwkLC+P69ev4+ubMPPH5558zfPhwPvroI5ycnIrUlqOjI5DzoeXk5IRGo2Hz5s106tQJS0tLg2XAYJ2x3d+2sbcrrF5B64taXtxlYzPl+SvuuqKcG/neK9q5y6/sUd57SUlJVKpUSX9teBRDhgxh5MiRvP322zzxxBMoisKhQ4f4+OOPGTp0KAA7d+6kdu3aj9yWufK0s+ACWUQlZJg6FEl6LMUmZfDniZwpaUe2CjJpLOUmkc3MzMTKysrg6zhb25y/EPbs2UPVqlXZv38/derU0SexAJ07dyYzM5OjR4/Svn37IrWVeyfEyclJn8ja2dnh5OSk/wDMXQYM1hnb/W0be7vC6hW0vqjlxV02NlOev+KuK8q5ke+9op27/MqM8d4zxl3SL774Am9vb2bNmsWtWzlTPnp7ezNp0iR9v9hOnTrRpUuXR27LXHna53x0RSekmzgSSXo8Ldx1hSytjkb+LqU+k9f9yk0i26FDB0JDQ/n000+ZMGECqampvP322wBER0cDEBMTg7e3t8F2rq6uWFlZERMTU+C+MzMzyczM1C8nJSUBOR+Eua/c5fz+vf//xpRfW8bcrrB6Ba0vanlx/zU2U56/4q4rzvtMvveKfl6M8d4z5jlWq9W88847vPPOO/przf3fFvn7+xutPXPkYZ/zUMnNRJnISlJpi0vJ5KeD1wAY/2Q1E0cDihCiTI9fMnXqVKZNm/bAOocPH6ZJkyb8/PPPhIaGEhcXh1qtZvz48SxbtozQ0FDeeOMNXnjhBa5du8amTZsMtreysmLp0qX873//K1YMP//8M3Z2dg9/cJIkmZbQYaHLwFKbhoU2HUttGpbadCz+/TfZ1o94hxqF7iYtLY3BgweTmJhY5C5KUo6kpCScnZ2LfO60Wi0/bD7KRztvU6+iM3++3KoUojQerVbLuXPnqFmzJmq1aZ7yfljmHDuYd/xlKfYZG86xYNcV6ld0Zu1LLYv0TVRx4y/OdaHM35F9+eWXC0wwcwUGBgIwePBgBg8ezK1bt7C3t0dRFGbPnk1QUE7/jQoVKnDw4EGDbe/evYtGo8lzp/ZekydPJjQ0VL+c2x+uU6dO+q4FW7ZsoWPHjvqvJHOXAYN1xnZ/28berrB6Ba0vanlxl43NlOevuOuKcm4e+/deVirZCVEc2fEXTWsHoc5KQkm/iy4ljujLZ/B1tUWVmYCSfgfS7kD6XRQK/lv+isdTNOr7SpH6yBrTqlWr+O2334iMjCQry3CIqWPHjhm1rVx3795l/Pjx/PnnnwD06tWLr7/+GhcXl3zrazQa3n33XTZs2MCVK1dwdnbmqaeeYubMmQbdt0qCr2POR1dEXCpCiMf6wTdJKk13UrNYduC/u7Fl4XevzCeyHh4eeHh4FGub3KT0hx9+wMbGRv+h3qJFCz766COio6Px8fEBch6Gsba2pnHjxgXuz9raGmvrvEO8WFpaGnzA5bdc0Dpje9j9F3W7wuoVtL6o5cVdNjZTnr/irivKuSl3506thtRYSLgOCdcg6SaqxCgaR5zA5tdvUaXGQvItyErGEmgNcPG/fagBf4A7BTSitkJYO5GqVWPnWgGVrTM6K0eS0ryoVIQ4jXl+v/rqK9555x2GDRvGH3/8wfPPP8/ly5c5fPgwL730ktHaud/gwYO5ceMGGzduBOCFF15gyJAhrFu3Lt/6aWlpHDt2jPfee4/69etz9+5dJk6cSK9evThy5EiJxQng42iJokByRjbxqVl4OMghuCSpNMzffom0LC11/JzoUMPL1OEAZpDIFsfcuXMJCQnBwcGBLVu28PrrrzNz5kz9HYVOnTpRq1YthgwZwqeffsqdO3d47bXXGD16tPw6UJJMLSsN7lyGuItw5wqqu9docekYFt9Mg8QboM00qK4GKgIkGO5GWNqRqjhg5xmAyt4dbN3Q2jhzITKO6g2aY+HoCbZuaKyc2br/OE9274elrSPZGg1bN2ygW7duqCwt0Wo0XNuwgdIeG2D+/PksXLiQQYMG8eOPP/LGG29QuXJl3n//fe7cKSgTfzTnzp1j48aNHDhwgGbNmgHw3Xff0aJFCy5cuJDvdLjOzs5s2bLFoOzrr7+madOmREZGlmg/Xiu1gp+LLTfuphMRlyoTWUkqBdfvpLF0f87d2Nc71ygTd2OhnCWyhw4dYsqUKaSkpFCjRg0WLFjAkCFD9OvVajV//fUX48aNo2XLlgYTIkiSVErS7+KRHIbqSDTc/Tdxjb8EidcNqqkBg7/3FRU4+YGLPzj5obX35Nz1O9R4oh0Wzn7gWAEcvMlW2bD177/1CSmATqPh4oYNVGvUDXLvnmo0ZFpGgIVNqRx2UUVGRhISEgLkjLySnJwM5AzL1bx5c+bOnWv0Nvfv34+zs7M+iQVo3rw5zs7O7Nu3L99ENj+JiYkoilJgdwQo+OFZrVarHyf3QXLrBLrZceNuOpdvJdOoknOR4isLcuMvyrGWNeYcO5h3/GUh9k83nSdLq6NlFXdaVnYtVizFjb84+y5XiezSpUsLrePv78/69etLIRpJeszpdHA3AmJO57xunYGY01gmRdES4FI+29i6gns1cK+C1qkiJ68lUK9Ndyzcg3KSWPV/X+HrNBoub9hAcO17klOAEhqlobRUqFCB+Ph4AgICCAgI4MCBA9SvX5+IiAhK6tncmJgYvLzyfk3o5eX1wBFd7pWRkcFbb73F4MGDH/gN14wZM/J9ePbChQsGszAWxsUip+/wkfBI6tgnF3m7siI8PNzUITw0c44dzDt+U8V+KT6TP0/mXAsGBFtx/vz5h9pPUeNPSUkp8j7LVSIrSZIJpSdA1BG4cQRuHM75NyMh36qpVp7YBjRC5RkMHtXAo3pOAmvvrq+j02i4vmEDdQNaGSaq5VyHDh1Yt24djRo1YuTIkUyaNIlVq1Zx5MgR+vXrV6x9FXXUF8h/DNyiPkil0Wj43//+h06nY/78+Q+sW9DDs8HBwUUetSA8PJwGVXxZf+ECCTobatasWeh2ZUVu/NWrVzf50+fFZc6xg3nHb8rYhRB88P0hAPo08KVHy3rF3kdx4y/OA7QykZUk6eGkxOJ39wDqv7bAjUMQdyFvHQsb8KoJFeqCd12oUAeNWzD/bNtj8NW/9J+FCxei0+kAGDt2LG5ubuzZs4eePXsyduzYYu2rqKO+nDp1Sj/5wr1u3779wBFdICeJHTBgABEREWzbtq3QZLSgh2fVanWxPqCDK+S0E34rxeySEij+8f6/vfuOq6r+4zj+uoO9hwoIgoiCAxVx4YTKvco0TSNNs1xZWZkNR/20aWWmpZm526m5cpXmwi0ORHAhsmTvfe/5/YHeJNa9CF6ufJ+Px33oPeu+79fj5cu53/P91CWGnB0MO78+sv8RGsvxG2mYGsl5vZ/3fb2+tvl1eQ3RkRUEQTv5GXDjENw4CDcOYpQUTsf/bmPXFFw7gVtncO0IjdqUGg4AGPxX/7VNLpeXqlD41FNP8dRTT1XrWNrO+hIQEEBGRgYnTpygc+fOABw/fpyMjAzNeN3y3O3EXrlyhf379+Pg4FDhtjWtpXNJOeDo1Fyy8ouwMhW/FAlCTcvML2LBjnAAXnqkOa52dW/ufNGRvQ+ispeo7PXQV/ZKuYr86h5kV/Ygu3UMmbq41Op0syZYtB6ArGkPpMadwOI/nSY1oNbu3Piv+lrZC0rGm54/f57ExETN1dm7hg4dWqOvBdCyZUv69+/PpEmTWLFiBVAy/dbgwYNL3ejl4+PDhx9+yBNPPEFxcTEjRozgzJkzbN++HZVKpRlPa29vj7GxcY3nvJeduTFO1qYkZOYTkZBFRw/7Wn09QaiPFu+9QlJWAZ6OFjzfs6m+45Srzlf2qkuWLVvGsmXLNGM9RGUv4aEjqbHPuYpz+kmcMkOxLCj9dXOWiTPJVq1IsmpFiqUPhUorPQWtW2qysteuXbt49tlnSU5OLrNOJpPV2l3LqampZQoiLF26tNQMBDKZjNWrVzN+/HiioqI0xWb+a//+/QQGBmr1utWp7HW3QtDz606zPyKJ/w1rTXCAh1avp291qUKTrgw5Oxh2fn1kD4/PZPBXh1GpJdZP7EzP5g2qfax6XdmrLpk2bRrTpk3TNLCo7CUqez0Ulb0kCVncGWSXNiMP34osK+7fVXIjJPfuSM37ovbqg6ldU1wpmb/VkM696rSnLu+vJit7TZ8+nZEjRzJ37twqx6fWJHt7ezZs2FDpNvde9/Dw8Ki1WRS01dLZmv0RSVyKN7xZCwShLitWqZm96QIqtcQgX+f76sTWNtGRvQ+islfV60Vlr6q301tlr6RICN0IFzdBRvS/y02swXsg+AxC1iwImUnJVdeKfoc2pHOvOu2pTc6aPDcTExOZOXPmA+3EGqqWziVXai7F12yJYEGo71YdvsG5W+lYmSqZM7iVvuNUSnRkBaE+yc+EsM1wdkPJTAN3GVuC9wBo/QQ0exSM6laRgPpkxIgRHDhwgGbNmuk7Sp3XpnFJIYTw+EwKi9UYK+VV7CEIQlWuJmbz2d6S+V7nDG6Fk03d/nmgVUfW3l63QfQymYwzZ87g7u5erVCCINQgSYJbJ+DkKrj0BxTnlSyXKaB5H2j3NLToB0Zm+s0pACWltkeOHMmhQ4fw9fUtc7V3xowZekpW93g4mGNrbkR6bhHh8Zm0c7PVdyRBMGgqtcSs385RWKymV4sGjPR31XekKmnVkU1PT2fx4sXY2FRdBlCSJKZOnWqQJeAE4aFSlEeTlIMov18ECef/Xe7oDX5joe1osBJfX9c1P/zwA7t378bMzIwDBw6UKkggk8lER/YeMpkMPzdb9kckcTY6TXRkBeE+fX/4Bmei07E0UfLRcF+tCqLom9ZDC0aPHl1uCcPyvPTSS9UOJAjC/TErSEL+93vIQzfgl5dWslBpCm1GgP/4kvldDeDDqb569913ef/995k9e3ap+WSF8vk1sSvpyN5KZ7y+wwiCAbsYm8Enu0tKz74zqCUutobxLZ1WHdn/zmNYlawscQepIDxw8edQHPqcPpf+QEbJ3eQ5xo6Y9piGouN4MBfzbBqCwsJCRo0aJTqxWvJrYgvAmeg0/QYRBAOWW1jMjJ/OUqSS6NuqEaM7uek7ktbEzV73QRREEAUR9F4QQZJQXfkLxclvkN84wN2uj8qjF8UdJrLvukSfjv1KxlnWcBsa0rlnSAURxo0bx88//8zbb79dY8d8mLVzs0Umg1upeSRlFdDAqmz5W0EQKvf+tktcT8qhkbUJHz/Z1iCGFNylc0GEu5NllzmQTIapqSleXl4VTpJt6ERBBKHOkNS4pJ+k+e0d2OZFAaBGTqxdV642GkimWRP95qtnarIgwowZM1i3bh3t2rWjbdu2ZW72+vzzz+/r+HXN/RREuDuxev/FB7mckMXXYzsw0Ne5tiPfFzEpv/4Ycv7azL7zQjxTN55BJoONz3ehW7Oqy1rrqk4VRHj88ceRyWRlJsK+u0wmk9GjRw+2bNmCnZ2droev00RBBFEQQdf9arwgwp7d9G9SgPGRRchSrgAgKU1Rtw9G3WUKDhbOnBHnnkEXRLhw4QJ+fn4AXLx4sdQ6Q7pK8iB19XTgckIWR64m1/mOrCDUJdEpucz+veRm4Cm9m9VKJ7a26dyR3bt3L++88w4LFy6kc+fOAJw4cYJ3332XOXPmYGNjw4svvsjrr7/OqlWrajxwXSIKIlS9XhREqHo7rdZJErLIPwm8PAeT0FsASGZ2RNj0ptnTH2Nk41RSsODOV9z1pe0qW2+oBRH2799fY8eqL7p7ObLmaBQh11L0HUUQDEZ+kYrJG06TmV9MezdbXu3TQt+RqkXnjuzLL7/Mt99+S7du3TTLHn30UUxNTXnhhRcICwtj8eLFTJgwoUaDCkK9JElwdR/8vRBl3BlsAMnEClnASxR3nETEX4doZu6g75SCoFedm9ojl8H15BziM/JwtjGMu60FQV8kSeLdLRe5FJ+Jg4Ux3zzTASOFYd5gqnNH9tq1a+WOV7C2tub69esANG/enOTk5PtPJwj1mEPWZRTrv4ZbxwCQjCy4Yv8ITcd+jpF1wxq/eUvQr+HDh2u13aZNm2o5ieGxMTPCt7EN52IyCLmWwvAOdX8Sd0HQpx9P3OK30zHIZfDV034G/cufzt1vf39/3njjDZKSkjTLkpKSmDVrFp06dQLgypUruLqKDxJBqJZbJ1H88CQ9rn6A/NYxUJhAwHSKp50i3GUkmD1cY8+FEjY2Nlo9hPIF3Bnbd+SqGF4gCJUJvZXO/K1hALzRz4duXoY3LvZeOl+RXbVqFcOGDcPV1RU3NzdkMhnR0dF4enryxx9/AJCdnc2cOXNqNOjChQvZsWMHoaGhGBsbk56eXmp9SkoKY8eO5fz586SkpNCwYUOGDRvGBx98oLmCHBUVVe6MCn/++Sf9+/ev0byCoLP4c7D/A4jchRxQyxRIHcah6P0GWLuIK7APudWrV+s7gkHr7uXA8n+ucehKkubGY0EQSkvKKmDqhtMUqtT0a92Iyb099R3pvunckfX29iY8PJzdu3cTGRmJJEn4+PjQp08fzQTejz/+eE3npLCwkJEjRxIQEFDuTWRyuZxhw4axYMECGjRowNWrV5k2bRqpqan88MMPpbbdt28frVu31jy3txcTxQt6lHQZDn0C4XemtpMpULcdzb6iDgT1H4eiFm/UEoSHReem9pgbK0jMKiAsLpM2jcXVa0G4V36RihfWnyIuIx9PRws+HdnuofiFr1oFEWQyGf379ycwMBATE5MH0hDvvfceAGvWrCl3vZ2dHVOmTNE8d3d3Z+rUqXz66adltnVwcMDJyalWcgqC1lKv0SFqOcqzIYAEyMB3JATORmXdhLydO/WdUBAMholSQc/mjuwOu82+8NuiIysI95AkiVm/nedsdDo2ZkZ8N64j1qYPx0USnTuyarWahQsXsnz5cm7fvk1kZCSenp7MmTMHDw8PJk6cWBs5dRYXF8emTZvo3bt3mXVDhw4lPz+f5s2b8+qrrzJixIhKj1VQUEBBQYHm+d05I0VlL1HZq1rtl3ELxaFFKM//hJukAkDtMwRVrzehgU+F++lynolzz3ArewnV96hPI3aH3ebvy4m88phhTiUkCLVhyV9X2XouDqVcxjfPdMCzgaW+I9UYnSt7vf/++6xdu5b333+fSZMmcfHiRTw9Pfnll1/44osvCAkJqa2sQMkV2VdeeaXMGNm7nn76af744w/y8vIYMmQIv/zyC6ampgAkJyezfv16unfvjlwuZ+vWrSxcuJC1a9fyzDPPVPia8+fP11wRvpeo7CXowrQojeYJ2/BI2Y/8Tgc2wbo9l52Hk2Huod9wwn2pycpe9U1NVPa6KzErn84L/wLgxNuP0tDatFYy3w9RXUp/DDn//WTfdi6Ol348C8BHw30Z3fnBV36szcpeSDpq1qyZtG/fPkmSJMnS0lK6du2aJEmSFB4eLtna2up0rHnz5kmUfKda4ePkyZOl9lm9erVkY2NT4THj4+Ol8PBwacuWLVKrVq2kKVOmVJph+vTpkq+vb6Xb5OfnSxkZGZrHrVu3JEBKTk6WCgsLpZycHGnLli1STk5Omef/XVfTj+oeX9v9qtquovXaLtf1uSG235+/rpEKt74mqd9vIEnzrCVpnrWkWjNEyrtysMJjlHd8bdpGnHvatV1Nn3vJyckSIGVkZGj9+SeUyMjI0KntiouLpQsXLkjFxcXlrh/61SHJ/c3t0o/Hb9ZkzBpTVf66zJCzS5Jh569u9hM3UqQW7+yU3N/cLi3YHlZL6aqma35dPhd0HloQGxuLl5dXmeVqtVrnr9emT5/O6NGjK93Gw8NDp2M6OTnh5OSEj48PDg4O9OzZkzlz5uDsXH7Zwq5du/Ldd99VekwTExNMTEzKLBeVvapeX68re+UkIz/0OY+FrUQpFZYsaxIAQe8gb9oTRVERhO3UueqXNm1j8G2nw3YPW2Uv4f70adWIczEZ7LgQr5crT4JQV0TezmLimpMUFKt5rGUjZg9oqe9ItULneWRbt27NoUOHyiz/9ddfNfXBteXo6IiPj0+lj7vDAqpDujNq4t7xrf919uzZCju5glAtuamw7z1Y3BbFsWUopULULv4QvBme+xOa9tR3QkEoIy0tjeDgYM18tcHBwRUO4SrPiy++iEwmY/HixbWWURuD2roAcPRaCinZFX/2C8LDLC49j3HfnyAzvxh/dzu+etoPhdzwZygoj85XZOfNm0dwcDCxsbGo1Wo2bdpEREQE69atY/v27bWREYDo6GhSU1OJjo5GpVIRGhoKgJeXF5aWluzcuZPbt2/TqVMnLC0tuXTpErNmzaJ79+6aq7pr167FyMgIPz8/5HI527ZtY8mSJXz88ce1lluoR3JT4dg3JY/CLADUTu04bv4YHUfPRm5srOeAglCxMWPGEBMTw65duwB44YUXCA4OZtu2bVXuu2XLFo4fP46Li0ttx6xSU0cLWrtYExaXye6w24zpIq7KCvVLem4hz35/gviMfLwaWrJqXEfMjA1rTLAudO7IDhkyhJ9//pkPPvgAmUzG3Llz6dChA9u2baNPnz61kRGAuXPnsnbtWs3zu1d/9+/fT2BgIGZmZqxcuZJXX32VgoIC3NzcGD58OLNnzy51nAULFnDz5k0UCgUtWrTg+++/r/RGL0GoUmYcHF0Kp9dAUU7JskZtIOhtVJ59SPzzT3gI5uoTHl7h4eHs2rWLY8eO0aVLFwBWrlxJQEAAEREReHt7V7hvbGws06dPZ/fu3QwaNOhBRa7U4LYuhMVlsv18nOjICvVKXqGKiWtPcTUxGydrU9ZN6Iyt+cN9EaVa88j269ePfv361XSWSq1Zs6bCOWQBgoKCOHr0aKXHGDduHOPGjavhZEJ9ZVFwG8WOV+D8z6C+Mz7cyRd6vg4th4JcLqpxCQYhJCQEGxsbTScWSu4fsLGx4ejRoxV2ZNVqNcHBwbzxxhuliszo2+C2zny86zLHrqeQlFVAA6uy9zgIwsOmsFjNtB/OcPpmGtamStZN7IyLrZm+Y9W6anVkBaFeizmN4ugSHr30BzLuzF7n3h16zASvR8XVV8HgJCQk0LBhwzLLGzZsSEJCQoX7ffzxxyiVSmbMmKH1a1U0L7dKpUKlUlW5/91tKtvWxcaEdq42nIvJ4I+zMTzX3UPrfLVNm/x1lSFnB8POX1X2YpWaGT+f4+/LiZgayfk2uAPNHM3rzHvVte11ya1VR9bOzk7r6l2pqalav7ggGAxVUUkJ2WPLIeaE5i5JdbPHkPd6HdwD9BpPEMpT0RzY9zp58iRAuZ/xkiRV+Nl/+vRpvvzyS86cOaNTdccPP/yw3EwRERFYWmo/SXtkZGSl67s5KzgXAxuOXqOLXW6dK8VZVf66zJCzg2HnLy+7Si3x+dFk/onKRSmHt3s6Ypl3m/Dw23pIWDlt2z47O1vrY2rVkb33LtSUlBQWLFhAv379CAgo+eEdEhLC7t27mTNnjtYv/DAQlb3qQWWvvDTkZ9cjP/Udsqw4ACS5EaqWwzhU3I4uw54vmXpJx/apzjpR2Uu79aKy17+0neLw/Pnz3L5d9odeUlISjRo1Kne/Q4cOkZiYSJMm/45BValUvPbaayxevJioqKhy93vrrbeYOXOm5nlmZiZubm54e3trXRAhMjKSFi1aVDqxuotHEavO7icqvQiVTWN860jJWm3z10WGnB0MO39F2dVqibc2X7zTiZXx9Rg/Hm1Z9tsVfdO17e9+U6MNnSt7PfnkkwQFBTF9+vRSy5cuXcq+ffvYsmWLLoczKMuWLWPZsmWafxBR2eshJUk4ZF/GPeUfXNJPopBKOin5SmuiHB8hyvERCoxs9ZtRqFMMvbJXeHg4rVq14vjx43Tu3BmA48eP07VrVy5fvlzuGNmUlBTi4+NLLevXrx/BwcE899xzld4gdq+arOz1XzN+PMvWc3EEd3Xnf4+30SpPbauv1aXqAkPOX152SZKY88dFNhyLRiGXsfRpPwb41s3pROtUZS8LCwvpypUrZZZHRkZKFhYWuh7OIN2tOCEqez1klb1Sb0nFBxZJ6sXtNBW4pHnWkvrr7lLRqXVSYW5WjbafrutEZa/qn3uislfV+vfvL7Vt21YKCQmRQkJCJF9fX2nw4MGltvH29pY2bdpU4THc3d2lL774QqfXrenKXvc6FJkkub+5XfKdt0vKK6wb1ZzqY3WpusKQ8/83u1qtlt7bGia5v7ld8pi9XdpyNkbPCStXpyp7OTg4sHnzZt54441Sy7ds2YKDg4OuhzNoorJX1evrfGWvwmxcU49i+vs65DcOgLq4ZLmxJfiOgA7jkLn4oaxgfF1NtJ+o7HV/24nKXjVj48aNzJgxg759+wIwdOhQli5dWmqbiIgIMjIy9BGvWro1c6CxrRmx6Xn8eTGeJ/xc9R1JEO6bWi0xb2sY64/dBOCj4b4Ma99Yz6n0R+eO7HvvvcfEiRM5cOCAZozssWPH2LVrV5WlXgWhTiguhKv74OJvKC/vxL847991rp2hw7PQ+gkw0f7GE0EwdPb29mzYsKHSbaQqRqJVNC5WX+RyGU93dmPRnkjWHL0pOrKCwVOrJeZsvcBPJ28hk8HHw9vyVCc3fcfSK507suPHj6dly5YsWbKETZs2IUkSrVq14siRI6XmIBSEOiU/E67uhcs74MpeKCgZSC4Dsk0aYdYpGEW7UdCghX5zCoJQo0Z3bsKSv65y7lY6Z6PT8Gtip+9IglAtKrXErE0X2Hw2DrkMPnuqnfjljGrOI9ulSxc2btxY01kEoWalR8OVPSWd1xuH/i1aAGDpBG2epLjl4/x1No6BvQeheAi+HhYEoTRHSxOGtHPh9zMxrD0aJTqygkEqUqn57EgyB2/mopDL+HJ0ewa31X9J6LpAq45sZmamTnfiZmVlYWVlVe1QglAt+ZkQdRiu/Q3X90PK1dLrHZqDz0DwGQyNO4JcjlRUBKHx5R9PEISHwvhuHvx+JoYdF+J5e1BLGlqZ6juSIGgtv0jF9B9COXgzFyOFjKVjOtCvtZO+Y9UZWhdEiI+PL7fyS3kaN25MaGgonp6e9xVOECpVkA0xJyH6GNz4p+Tvd2/WApApwLUjeA8A70EPZNhAfpGKmLQ8bqXlEpOaS1RyNmci5fyWdJqsAhVZ+UVk5heTU1CMSi1RrFIw8/he1JKEqVKBhYkSSxMFFiYKpFw5x4ov4WpvgaudGc0czChW1/pbEISHjq+rDf7udpy+mcaaI1HM6u+j70iCoJWMvCImrT3FiahUjBUl88Q+JjqxpWjVkZUkie+++07rqit1dXJwwcBlJ0F0SEnHNfooxJ8H6T9l7OyaQrNHoFkQePQEM9sajVCsUhOfkc+NpExCbsu4vO8KcRkF3ErNJSYtj8SsgnL2kkNKSgVHlMGdG2jyilTkFalIzv53v0snY0ptrZApWBl1lI5N7enYxJaswpp6Z4LwcHuxlycvrD/N+pCbTA5shrWpGEok1G2Jmfk8+/0JLidkYWWq5J1eDgT51L1iB/qmVUe2SZMmrFy5UuuDOjk5PRTT0VRFVPaqxcpe2anIUi4hxZzB/8ZuFMvmQPrNMq8vWbsiNemK5NYVddNAsPP4b0Cd3p9aLZGUXUBMWt6dK6t5xKSX/D02LY/4zAJU6rt3bivg+o0yx7QwUeBma4arnRnONiZkJdykS/s22FqYYGWqxMpUiYWJEtQqjhw6RO/evTAyMiK/SEVuoYqcgmLScgo4cPws9o09uZ1dxM2UXCJuZ5FdoOLy7Wwu385mw7FoQMmGmKP0a9WIPq0a4mlvUqbdxblXfyt7Cf96rGUjWjSyJPJ2NutDbjItyEvfkQShQjdTcghedYLo1FwaWJmwepw/pMfqO1adpHNlr/pMVPaqHUbFWVjnxWCTF41t7g1sc29gVVD+uNVMU1dSLFuQYtGCVMsW5Bk76vRakgTZxZBaAKkFMlLzIaVARkr+necFUCxVXpNdKZOwNwEH0zt/mkjYm5b86WAC5kqojbLukgRphXArW8a1TBlXM2XE5YLEvy/W0FSiS0M1nRtIWBvXfAahfIZe2UufarOy139tPhvDqz+fw8HCmMNvPoKZ8YOv7vSwVZcyJIaSPywug3HfnyQ5u4Am9uZsmNiFxrYmBpG9IrVZ2atasxbUV9OmTWPatGmaBu7bty/W1tYUFRWxd+9e+vTpg5GRUannQKl1Ne2/r13T+1W1XUXry11elEdxQhjhB37Ht5ECRUoE3L6EPKdsjXcoudqqcmpHZJY5nj1HoHD1x8zMFlegoglH1GqJxOwCYtPyiE3PJy49j5g7f8am5xOXkUd+UeUDTRVyGc7WJrjameFqZ05jW1Pc7MzuPDejgaUJKlXxfbefruvuLhs1+DHNebZl515o3Ia/IlI4dDWFxHw126IV/BkjI7CFA60UCUx+Upx72iyr6nlldKkLLujPkLYufLYnkpi0PH46Gc1z3ZvqO5IglLI/IpHpG8+QU6iipbM1ayd0oqGVKSqVquqd6ynRkb0PorJXOeslCbISkCVexj15Pyb/HEORdh2Sr0DaDYwkNR0AokvvL9m6I2vUGlWjtpyIKaLj0OcxsnVBKiriys6dNG/+KGqZnMTMAhIy87mdmU9Cxp0/Mwu4nZFPQmY+8Rl5FKkq/5JBJoNGVqY0tjOjsY0p+SmxBHZqg4ejFW725jjZmGKkkFd6jKIiWY213/1U9rIwgoEdmzAmoBnZBcVsPXuLFfvCuJkN+y4nsw8lR7LOMjXIiyDvhsjlNX+puM6ce1osF5W96jelQs7k3s14d8tFvj5wjVGd3DA3Fj8Ghbph4/GbzP0jDJVaIsDTgeXB/tiYic+Wqoj/wYLuigshMwbSo5Gl3MAn7m8UmzdD2nVIuQaF2SiB9gC3Su8qmdmTrGiEvU8PFM5tKHbwZuepm/gFDSIjX01cWg5/XT3F0eMZJGUnE5+ex5VYBfPP7SctV7txiAq5DGcbUxrbmtH4zlVV1ztjVhvbmeFsY4axsqSjWlRUxM6dtxjo72rwnRFLEyUj/V2xuH2eZh16sv54NL+djuF0dDoT156ilbM1swf40KtFA31HFQS9eaqjGysOXuNWah5rjkYxNVCMlRX0S62W+GjXZb49eB2AJzu48uFwX83PKaFyoiMrlKZWQ24KZMWXXFlNj8Enbj+KP7ZpOq9kxgElVz2VgDfAvaMDZArUtk2IK7LGuEkH0sw9iFc25obMjag8cy5cuYlxrAMpkUUkZWWRnmcFpw7ecwAFXL9+7wGBkk6ssVKOk7UpjaxNaGRtipO1KU42pjS88/fGdmY0sjJBWcUV1Yedt5MVC4a1prV0k1tmXvx4MoZL8Zk8+/0Jeng5MnuAD20a2+g7piA8cMZKOa8+1oKZv5xj+YFrjO3sjo25Yf8SKxiu/CIVr/4cyp8XEwCY2acFLz3ihaw2brR4SBlMR3bhwoXs2LGD0NBQjI2NSU9PL7PNyZMnmT17NqdPn0Ymk9GpUyc++eQT2rdvr9nmwoULTJ8+nRMnTmBvb8+LL77InDlzHu6TRq2G/PSSDuqdhyzzNi0SDiPfdQByEjUdV7Jvl5qLtdyOKlAsNyXL1JkUIydu5JqTbunJdcmF8KJGXMy1JfnuvVrJ9+6Vcuchh5S0UsdTyGU4WBjjYGGMLD8DX68muNia08BSyc3LFxj8aA9c7S2xNTd6uP+tapiNMTzdrwVTgpqz9O+rrD8WxeGryQxZephnurjzej9v8dWVUO8Ma9+YFf9cJ+J2FisOXhPzygp6kZRVwAvrT3E2Oh1jhZxPRrTlcb/G+o5lcKrVkT106BArVqzg2rVr/PbbbzRu3Jj169fTtGlTevToUdMZASgsLGTkyJEEBASwatWqMuuzsrLo168fw4YN4+uvv6a4uJh58+bRr18/YmJiMDIyIjMzkz59+hAUFMTJkyeJjIxk/PjxWFhY8Nprr9VK7hqjKiqpXFWQcefPTCjIQpaTRtOkEOSHw6EoG/IzIDe1VKdVyktDJpW+wUkJtAQoZ3IANTIyZLYky2xJUNsSVexAjNTgzsORGKkBKVhD7j0dyqyyx5Ej4WhliqOlCQ2sTHC0NMHeXEnSrWv07NQeJ1tzbE3lhB47xIghAzAxMb7zVf9OBg5spbnhZuft8/g4WRn8V//6ZG9hzNwhrXiuuwef7I5g27k41h+7yZ8XE3h3UEuGtXcRvyAI9YZCLuP1ft5MWneKVYdvMKZLE1ztxAw0woNzPiadF9efJj4jHxszI74N9qeLp4O+YxkknTuyv//+O8HBwYwdO5azZ89SUFAyAXxWVhYffPABO3furPGQAO+99x4Aa9asKXd9REQEaWlpvP/++7i5uQEwb9482rZtS3R0NM2aNWPjxo3k5+ezZs0aTExMaNOmDZGRkXz++efMnDmzdn6QJ12mUUYoskuFoC5EKspFVZCDqiAXdUEO6qJc1AW5SEV5UJQLhbnIivOQFeUhK85DUZSNsjgbpSq/3MMrgbYAMeWuBtBMzpQhmZMqWZGGFWmSFUmSDYnYkijZcfvOI1GyJRkbiss5NaxMlNhZGONqbkQbc2PsLYyxNlWQFHODzu3b4Ghlip25MY6WJtiayjl6YB+DB/Uuc0f5zp1XGdjOWdNRvWpErdyEJJTlZm/OV0/78XRnN+Zsuci1pBxe+TmU38/E8MmItjjbmOk7oiA8EI+1bEhXT3uOXU/lw52XWTa2g74jCfXE76djeGvTBQpVapo1sGDlsx3xbKBdwSmhLJ07sgsWLGD58uU8++yz/PTTT5rl3bp14/3336/RcLrw9vbG0dGRVatW8fbbb6NSqVi1ahWtW7fG3d0dgJCQEHr37o2JiYlmv379+vHWW28RFRVF06Y1PxXLxd8+oGvqTrgz5FNGSaNXd0xHjmRCFuZkSeZkYUa2ZEam5rk5mZI5qViXdFglK1LvdFrTsUBpZIy1qRFWpkosTZQUZKXR1NUZWwtjmpoa0dZEeWfC/pJtrM2MsDaWczrkIE8O6Y+5qUmZPCUd0+sM7OxWpsMq+qZ1V7dmjvz5ci9WHrrOkr+ucOhKMv2+OMj7w9qIq7NCvSCTyZg3pDWDlhxix4V4xl5Lplsz3ealFgRt5BQUE3ornRPXU/n9bAwxaXkAPOLTkMWj24sqc/dJ5/5UREQEvXr1KrPc2tq63HGrD4qVlRUHDhxg2LBh/O9//wOgRYsW7N69G6Wy5G0mJCTg4eFRar9GjRpp1lXUkS0oKNBceYZ/54zUprLXbYUT59Se5GFCnmRc8ifG5Ekm5GFCoazkUaQwo0huSrHclGKFKSqFGSqlGSqlOUVKS4qNLJGMrTAxMcbcSIGZsQJzIwXGCrh5LZIObdvgZGqEp/HddcqSP40VmBkpsDBRlJpS6t85MltVOZfnFWNArSq3elGtVfaqRnWl6tBndSpd1+lSQU6byl4y4IUe7jzq7cis3y9wPjaTV34O5c8Lcbw/tBX2FpVXVBCVvcq+pmBYWjpbM7aLO+uP3eS9rZfYMaNHvb9RVLh/sel5nL6ZxumoVE7dTONyQtY9FSFL9G3diOVj/cW3kTVA58pezZo1Y8WKFTz22GNYWVlx7tw5PD09WbduHR999BGXLl3S+ljz58/XDBmoyMmTJ+nYsaPm+Zo1a3jllVfKdJrz8vIIDAzEx8eH6dOno1KpWLRoEZcvX+bkyZOYmZnRt29fmjZtyooVKzT7xcbG4urqSkhICF27dtUppzaVvdIKIF8FShko5Xced/6ukCGuWgp1gkqCfbEydsXIUUsybI0lxjVX4SmKVGlFVPaqvgdZ2as8aTmFBH12gPTcIuYMbsXEHrVbJMFQqkuVx5CzQ+3n/3xPBL+ejiE+o/yhgHfZmRtx4p3Hqpyv/F71re1rtbLXiy++yMsvv8z333+PTCYjLi6OkJAQXn/9debOnavTsaZPn87o0aMr3ea/V1Ar8sMPPxAVFUVISAhyuVyzzM7Ojj/++IPRo0fj5OREQkJCqf0SExOBf6/Mluett95i5syZmueZmZm4ubmJyl6VrNd2eU1WV6oOfbZfdSt7VdY293PuDQHC4jJ59Zfz3EjJZWm4ETMf8+L57h7lXjUwpHNPVPYSKmJnYcwb/bx5Z/NFFu2OoG+rRrjZixu/BN0N82vM6qNRVW43JbCZTp1YoXI6d2RnzZpFRkYGQUFB5Ofn06tXL0xMTHj99deZPn26TsdydHTE0bFmxiTl5uYil8tLje27+1ytLrljPyAggLfffpvCwkKMjUu+Nt2zZw8uLi6VdphNTExKjau9S1T2qnq9tstrorrS/dBn+91PZa/KttE1I0B7dwe2zejJO5sv8EdoHJ/uucLJm+l8/lT7CocaGNK5Jyp7CeV5ulMT/giN48SNVN7adIH1EzuLceKCzpo1sOSrp/2YsOYk6gq+6zY3VjCqU5MHG+whV61fCRYuXEhycjInTpzg2LFjJCUlacal1pbo6GhCQ0OJjo5GpVIRGhpKaGgo2dnZAPTp04e0tDSmTZtGeHg4YWFhPPfccyiVSoKCggAYM2YMJiYmjB8/nosXL7J582Y++OCD2puxQBAMkKWJksWj2vPRcF9MlHIORCQx5KvDXIzN0Hc0QagVcrmMj59si4lSzuGryfx6qpJpYAShEoHeDZncu1mF65/q6Cbm7q5h1b62bW5uTseOHfHx8WHfvn2Eh4fXZK4y5s6di5+fH/PmzSM7Oxs/Pz/8/Pw4deoUAD4+Pmzbto3z588TEBBAz549iYuLY9euXTg7OwNgY2PD3r17iYmJoWPHjkydOpWZM2eWGjYgCELJHd2jOzdhy7TuNHW0IDY9jxHLj/JHaKy+owlCrWjqaMFrfVsA8L8dl0ioYpyjIJRnx/l41oXcLHedTAYTutfuGOz6SOeO7FNPPcXSpUuBkhusOnXqxFNPPUXbtm35/fffazzgXWvWrEGSpDKPwMBAzTZ9+vTh8OHDpKenk5qayl9//VXmBi5fX18OHjxIfn4+8fHxzJs3T1yNFYQKtHS2Zsu07gR6NyC/SM3LP4Xy4c7wMnfgCoYvLS2N4OBgbGxssLGxITg4WKuZaMLDwxk6dCg2NjZYWVnRtWtXoqOjaz9wLZjQvSntXG3Iyi9m5i+h4jwXtJZTUMys384x7YczZBcU08nDjjYupW9S6tfKiSYOYvx1TdO5I3vw4EF69uwJwObNm1Gr1aSnp7NkyRIWLFhQ4wEFQdAvGzMjVo3rxJTAkq/LVhy8zvjVJ8jIE1NOPUzGjBlDaGgou3btYteuXYSGhhIcHFzpPteuXaNHjx74+Phw4MABzp07x5w5czA1NX1AqWuWUiHn81HtMTNScPRaCisOXtN3JMEAXIjJYPBXh/nlVAwyGUwP8uLHSV35/rlOONv8+3/h+Z7iamxt0Lkjm5GRgb29PQC7du3iySefxNzcnEGDBnHlypUaDygIgv4p5DLe7O/D0jF+mBkpOHQlmRErjpOYp+9kQk0IDw9n165dfPfddwQEBBAQEMDKlSvZvn07ERERFe73zjvvMHDgQD755BP8/Pzw9PRk0KBBNGzY8AGmr1nNGljy3tDWAHy+J5LQW+n6DSTUWWq1xPJ/rjH8myPcSM7B2caUHyd15fV+3igVchpambLy2Y6YGslp52aLv7udviM/lHTuyLq5uRESEkJOTg67du2ib9++QMnXUob6W7ggCNoZ3NaF36d0o7GtGVEpuXxxUcHxG6n6jiXcp5CQEGxsbOjSpYtmWdeuXbGxseHo0aPl7qNWq9mxYwctWrSgX79+NGzYkC5durBly5YHlLr2jOzoyqC2zhSrJV768QzpuYX6jiTUMfEZeQR/f5yP/rxMkUpioK8Tf77ck66eDqW2a9PYhs9Gtuf5Hk3FMMZaovP0W6+88gpjx47F0tISd3d3zRjVgwcP4uvrW9P56jRtKnvdu21tZajO8fVRXam85aKyl/4qe1VX8wZm/PZiZ17ccJbzsZmMX3OaBcNa8WSHxlrtLyp71T0JCQnlXkVt2LBhmbm370pMTCQ7O5uPPvqIBQsW8PHHH7Nr1y6GDx/O/v376d27d7n7VVQpUaVSoVKpqsx6dxtttr0fC4a24vytdG6l5vHSj2dZ9aw/ihqoYPOg8tcGQ84ONZNfkiQ2nY3jfzvCycovxsxIwdzBLRnp3xiZTFbusfu3bogkSff1uvWt7XV5nzpX9gI4ffo00dHR9OnTB0tLSwB27NiBra0t3bt31/VwBmPZsmUsW7YMlUpFZGSkVpW9BOFhVaiCjdfkhKaUfLHTp7GagW7qelmtrq5W9tK2euKePXtYu3ZtmWEEzZs3Z+LEicyePbvMfnFxcTRu3Jinn36aH374QbN86NChWFhY8OOPP+qUKSQkRPPzpK64nlbIG7sSKFBJjGxtzTg/8dVwfZaSW8zS46mcjC0ZU9XCwZiZ3RxxtRHTadW07OxsAgICtPpMrVZHtr67WzotOTlZVPYSlb0emspeuioqKmL3nr1cVjZjxeGS6Wb6t27Ep0+2wdSo4hKED2tlL0dHxzrXkU1OTiY5ObnSbTw8PPjhhx+YOXNmmVkKbG1t+eKLL3juuefK7FdYWIiFhQXz5s3j3Xff1Sx/8803OXz4MEeOHCn39cq7Iuvm5kZqaqrWJWojIyNp0aLFAynVufVcHK/+ch6ApU+3Z0Abp/s63oPOX5MMOTtUP78kSWw9F89728PJyCvCWCHj5Ueb83wPD5QPqEJXfWv7zMxM7O3ta6dELUBMTAxbt24lOjqawsLSY4c+//zz6hzSIInKXlWvF5W9qt6uLlX20pVcBq/386a5sy1vbTrPrrDbxGcWsPJZfxpaVT5mXlT2qn3aVk+8e+XjxIkTdO7cGYDjx4+TkZFBt27dyt3H2NiYTp06lbmKGxkZibu7e4WvVVGlRIVCodMPaF23r64nOrhxKT6LlYdu8Nqv53G2Na+Rm3YeVP7aYMjZQbf8tzPzmbPlInsu3QbAt7ENi0a2w9vJqjYjVqi+tL0u71Hnjuxff/3F0KFDadq0KREREbRp04aoqCgkSaJDhw66Hk4QhIfACH9XXO3MmLzhNOdupfPEsqOsGt8RH6e6c3VSqFjLli3p378/kyZNYsWKFQC88MILDB48GG9vb812Pj4+fPjhhzzxxBMAvPHGG4waNYpevXoRFBTErl272LZtGwcOHNDH26g1b/b34VpSDn9fTuT5tSf5fUo3PBvUrWEQQs1SqyU2Hr/JJ7siyCooxkghY8YjzZkc2AyjB3QVVtCOzv8ab731Fq+99hoXL17E1NSU33//nVu3btG7d29GjhxZGxkFQTAAXT0d2Dz1nkpg34Sw/3KivmMJWtq4cSO+vr707duXvn370rZtW9avX19qm4iICDIy/i1V/MQTT7B8+XI++eQTfH19+e677/j999/p0aPHg45fq5QKOUvH+NHO1Ya03CLGrT5BYpao/PWwupyQyZPLjzLnjzCyCopp52rDH9N68NKjzUUntg7S+YpseHi4ZhC/UqkkLy8PS0tL3n//fYYNG8aUKVNqPKQgCIahqaMFm6d2Y/KG0xy7nsrEtSeZM7gV47t5iKln6jh7e3s2bNhQ6Tbl3VIxYcIEJkyYUFux6gxzYyWrxnfiyW+OcjMll+dWn+SH57tiY143h5UIussrVPHlX1f47tB1itUSliZKXu/bguAAjxqZsUKoHTr/amFhYaEZqO/i4sK1a/9WPqnqpgJBEB5+tubGrJvQhac6uqKW4L1tl5j7RxjFKrW+ownCfXG0NGHtc51xsDAmLC6TZ78/Tma+YU+9JpT8grbv0m36Lv6H5f9co1gt0b+1E3tn9mJ896aiE1vH6dyR7dq1q+Zu1EGDBvHaa6+xcOFCJkyYQNeuXWs8oCAIhsdYKefjJ9vy1gAfZDJYf+wmz605KX7oCwbPw9GCjZO6YGduxLmYDMZ9f4IscV4brCu3s3j2+xM8v+4Ut1LzcLYpqca1PNgfZxszfccTtKBzR/bzzz/XVH+ZP38+ffr04eeff8bd3Z1Vq1bVeEBBEAyTTCbjxd7NWP6Mv6as7ZNfHyU6NVff0QThvvg4WbPx+a7YmhtxNjqdZ747TmqOqP5lSDJyi3hvWxj9vzzEoSvJGCvkTAlsxt6ZvenTqpG+4wk60HmMrKenp+bv5ubmfP311zUayJCIyl6isld9rOxV2WuV55EWDvz4fCde3HCWK4nZjFhxnGebispegmFr5WLNholdCF51nHMxGYxcfpT1E7vgYiuu4tVlKrXED8ej+XzfFdJyS/7f9mnViHcHtcTdwULP6YTqqHZBhMLCQhITE1GrS497a9KkSY0Eq4tEZS9BqL70AlgZoSAmR4ZCJvF0MzWdGjwc9VjqamUvQ3C3wIy2badSqQgPD6dly5Z1Yj7Nq4nZBK86TnxGPi42pqyd0JnmjSqeY7Su5deFIWeXJIm9YQks3H6Bm+klHdjmDS2ZO6QVPZs30HO6qhly24Pu+XX5XND5imxkZCQTJ07k6NGjpZZLklRhneGHxbRp05g2bZqmgfv27Ssqe4nKXvW6speux3+8sJjXf73A3stJbLiqwLqxJy8/0gx5OTdTGFplL6F+8mpoyW9TuhG86jjXk3IY/vVRvhrjR6B3Q31HE+44FZXKR39e5tTNNABszIx49bHmPNPV/YFV5hJqj84d2eeeew6lUsn27dtxdnau11PqiMpeVa8Xlb2q3s6QK3vpenwbIyOWPt2eaSt2sy9Oztf/XCcyMYfPR7XD2lT39qlsvajsJTwojW3N+G1yNyavP82JqFQmrDnJO4NaMaG7mHZOnyISsvh092X2hZfMZ22ilDPE25K3n+iEvWXllQcFw6FzRzY0NJTTp0/j4+NTG3kEQXjIyeUyhrir6dPVlzlbw9kXfpvHlx5hRbB/pV/JCkJdZm9hzIbnuzBny0V+PnWL/22/xIWYdBY+4YuFyb8/aguLxTR0tS08PpOv/r7CzgsJACjkMp7q6Mr0wGakxd3Axkz84vkw0fmaeqtWrcR8sYIg3Lfhfo35bXIALjamXE/OYdiyI+y8EK/vWIJQbcZKOR896cu7g1qikMvYEhrHkK8Ocynu36Enuy6WdK72hd/WV8yHVlhcBi+uP8WALw9pOrEDfZ3Y82ovPhzeFicbcRX2YaRVRzYzM1Pz+Pjjj5k1axYHDhwgJSWl1LraGicWFRXFxIkTadq0KWZmZjRr1ox58+ZRWPjvdCfnzp3j6aefxs3NDTMzM1q2bMmXX35Z5jgymazMY9euXbWSWxCEyrV1tWXbSz0I8HQgt1DF1I1n+OjPy6jUD8dNYEL9I5PJeL6nJz+90BUn65Jf0h7/+ghrjtxApVKz5ugNAN7edIHLCWJs9f2SJIlTUak8v/YUg5YcZnfYbWQyGNzWmd2v9OLrsf40a2Cp75hCLdJqaIGtrW2pcT6SJPHoo4+W2qY2b/a6fPkyarWaFStW4OXlxcWLF5k0aRI5OTksWrQIgNOnT9OgQQM2bNiAm5sbR48e5YUXXkChUDB9+vRSx9u3bx+tW7fWPLe3t6/xzIIgaMfB0oT1Ezvz8a7LrDx0g+X/XONCbDqfDm+j72iCUG2dPOzZ+XJPXv/1HH9fTmT+tkv8ePIWUclZgD25RSqeX3uKrdN7YG9hrO+4BkelltgdlsDKQ9c5G50OgFwGQ9q5MD3ISwxTqke06sju37+/tnNUqn///vTv31/z3NPTk4iICL755htNR/a/tb49PT0JCQlh06ZNZTqyDg4OODk51X5wQRC0olTIeWdQK3xdbXnzt/McuZrC0K9DGOkmY6C+wwlCNdlbGPPdsx3ZcPwmH/15mYiELAA2XcpAkiRi0vKYsuE06yd2wVgp7p7XRnZBMb+fjmHV4Rua4irGCjnDOzRmUi9PcfW1HtKqI9u7d+/azqGzjIyMKq+kVrTN0KFDyc/Pp3nz5rz66quMGDGi0uMUFBRQUFCgeX53CIUoiCAKIoiCCDXbdgNaNcBrchde+fk8kYnZLA+XU7TrMjP7tMDoP9PkiIIIgiGQy2U8G+CBp6MFz6w6AcD3Z9K5+x3n8RupvLctjIVP+OovpAEIj89k4/GbbDkbR3ZBMQC25kY829Wd4AAPGliZ6DmhoC9aF0TIzc3ljTfeYMuWLRQVFfHYY4+xZMkSHB0daztjGdeuXaNDhw589tlnPP/88+VuExISQu/evdmxY4dmTs3k5GTWr19P9+7dkcvlbN26lYULF7J27VqeeeaZCl9v/vz5vPfee2WWi4IIglA7ClWw+aaco7dLOq8elhLjWqiwr6M/q0RBhOoz9III2npr0wV+PBGNkQLMlHIyC0rPXvC/x9sQ3NVdT+m086DbPr9Ixc4L8Ww4dpMzd4YPAHg6WvBcj6aM6OCKmbH2OQz13AHDzg51pCDCvHnzWLNmDWPHjsXU1JQff/yRKVOm8Ouvv2p7iDIq6iDe6+TJk3Ts2FHzPC4ujv79+zNy5MgKO7FhYWEMGzaMuXPnajqxAI6Ojrz66qua5x07diQtLY1PPvmk0o7sW2+9xcyZMzXPMzMzcXNzEwURKlkvCiJUvV19LIigy36Dior45Kd9/HbTmKhsFZ+FmfLuQG+G+7kgk8lEQQTBYKRkF7DpTAwASrmMb4c1Zuxvt1Dd05edu+UiJkoZT3V8eKtjakOtljgZlcrms7HsuBBPVn7J1VelXEa/1k6M7dqEAE8HMT+voKF1R3bTpk2sWrWK0aNHA/DMM8/QvXt3VCpVtX87mD59uuZ4FfHw8ND8PS4ujqCgIAICAvj222/L3f7SpUs88sgjTJo0iXfffbfKDF27duW7776rdBsTExNMTMpeChIFEapeLwoiVL1dfSqIoOt+fg4Szw4O4LXfLnI2Op3Zm8PYG57Eh8N9sbszF6QoiCDUdRuORVNwz/yxlsZyjBUy8u6ZnUMCZv12gT8v3GZmnxb4utroIan+XE3MYvPZWLacjSM2PU+zvLGtGWO6NGFkR1caWonps4SytO7I3rp1i549e2qed+7cGaVSSVxcHG5ubtV6cUdHR62HJsTGxhIUFIS/vz+rV69GLi87MD4sLIxHHnmEcePGsXDhQq2Oe/bsWZydnXXKLQjCg+NmZ86vLwbw7aHrLN57hb8uJ9J38UHmDvJBLmbpEuq4/CIV649FVbheIZdhopCjkiQKitXsj0hkf0Qi7dxsebarO4PaOmNqZHhfJVdFkiTOx2SwOyyBPZduczUxW7POykTJAF8nnvBzpUtT+3JLWAvCXVp3ZFUqFcbGpacIUSqVFBcX13io/4qLiyMwMJAmTZqwaNEikpKSNOvuzj4QFhZGUFAQffv2ZebMmSQk3KnooVDQoEEDANauXYuRkRF+fn7I5XK2bdvGkiVL+Pjjj2v9PQiCUH1KhZypgV486tOI134N5WJsJjN/vYCvnRy/7nm4NxBXRIW6Ka9QxScj2mJmpMTCRIGZUkZB8i0OzwrC0swYY4Vc8zV5eHwmy/+5xs4L8Zy7lc5rt9JZsOMSQ9u5MKSdCx2a2Bl0py6noJgTN1LZH5HInrDbJGTma9Yp5TJ6t2jAEx0a81jLRg9l512oHVp3ZCVJYvz48aW+Ys/Pz2fy5MlYWFholm3atKlmEwJ79uzh6tWrXL16FVdX1zK5AH799VeSkpLYuHEjGzdu1Kx3d3cnKipK83zBggXcvHkThUJBixYt+P777ysdHysIQt3h7WTF5qnd+Xr/Nb76+woX0uQM+Ooorz7WgvHdPcrMbCAI+mZnYcwjPo00z1UqFeHJYGtuXGZYXktna74c7cecwa34+eQtNh67SVxGPmtDbrI25CbONqYMbutMv9ZOtHezRVnHz/cilZrQW+kcuZrMkavJnI1Op/ie4RQWxgoCvRvSt3UjAr0bitKxQrVo3ZEdN25cmWUPqgM4fvx4xo8fX+k28+fPZ/78+ZVuM27cuHLfhyAIhsNIIeflx5rzmI8DL609yvUsFQt3hvP7mRgWPtGGti5iInTBsDlamjAtyIsXe3ly6Goy287FsSfsNvEZ+aw8dIOVh25gZaqkh5cj3b0c8Xe3o0UjKxR6vFp7d17c0FvpnLuVzrmYdC7EZpBfVHp2Bjd7M3p4NaBvq0YENHMQV16F+6Z1R3b16tW1mUMQBEEnLRpZ8VJrFXlO7fhkTySXE7J48psQhrR1ooPWn2yCUHcpFXKCvBsS5N2Q/CIV/0QmseN8PAevJJGeW8SfFxP482LJMDpLEyXt3Gxo6WSNt5MV3k5WNHW0wMq0Zq9yqtQScel5XE/J41piNleTsrmWmM2VxGxScwrLbG9vYUxAM4eSTnczR5o4iCkrhZolPu4FQTBYchmM9G9Mf18XPvoznF9OxbDtfAJ/yhTctrzCtEea1/gP8odVWloaM2bMYOvWrUBJ4ZivvvoKW1vbCvfJzs5m9uzZbNmyhZSUFDw8PJgxYwZTpkx5QKnrD1MjBf1aO9GvtRMqtcT5mHQORiZzIiqF0Oh0sguKOXI1hSNXU0rtZ2NmRGNbM1xszXCwMMbWwgg7c2MsTZQYK+QYK+UYKeSoJYlitZoilUSRSk1mXjGZ+UVk5hWRlltIQkY+8Rn53M7MRy1Fl5vRSCGjlbM17dxsaedqSzs3WzwdLQx6XK9Q94mO7H0Qlb1EZS9R2atunHtWxkYsHNaKMZ1c+WDnZU7cTGf5wRv8ejqWaYGePNGuYZljicpepY0ZM4aYmBh27doFwAsvvEBwcDDbtm2rcJ9XX32V/fv3s2HDBjw8PNizZw9Tp07FxcWFYcOGPajo9Y5CLsOviR1+TeyA5qjUEpG3szh3K53LCVlE3s4iIiGLlJxCMvKKyMgr4lJ8zc11rJTL8HC0wKuBJc0aWuDV0JJmDSxp0chKDBUQHjitK3sJsGzZMpYtW4ZKpSIyMlJU9hKEOkiS4GKajK035STml1wJsjGW6NNYTUBDidooaW/olb3Cw8Np1aoVx44do0uXLgAcO3aMgIAALl++jLe3d7n7tWnThlGjRjFnzhzNMn9/fwYOHMj//vc/rV67vlT2uutB5s8uKCY2LY/Y9Fzi0vNJzy0kLbfkCmtOQTFFKonCYjWFxWpkspLx50YKGUYKOVamRlibKbExM8LGzAhnG1MaWBqTlXiLgPatMTE2vG86DPncMeTsUEcqewkwbdo0pk2bpmlgUdlLVPYSlb3q5rkn27uXl0YEsvl8Isv/uU5CZgG/3VBwOMWEyb09GeHnghy1qOx1R0hICDY2NppOLJQUi7GxseHo0aMVdmR79OjB1q1bmTBhAi4uLhw4cIDIyEi+/PLLCl+roKCAgoICzfO7badSqVCpVFVmvbuNNtvWRQ8yv5lShlcDc7wa1MwFF5VKRWS2EhmSQba/IZ87hpwddM+vy/sUHdn7ICp7Vb1eVPaqejtR2ev+tqtovbmpCeO7e/J0F3d+OBbF4t3hJGQWMH9bOF/9fY2xnd1oWCQqewEkJCTQsGHDMssbNmyomZO7PEuWLGHSpEm4urqiVCqRy+V899139OjRo8J9Pvzww3JLk0dERGBpaal15sjISK23rYsMOb8hZwfDzm/I2UH7/NnZ2VVvdIfoyAqC8FAzUSp4pksTrJIukuHYhu+P3CQ2PY8l+6+hlCm4QBiTejXD3e7hK385f/78cjuN9zp58iRAubXrJUmqtKb9kiVLOHbsGFu3bsXd3Z2DBw8ydepUnJ2deeyxx8rd56233mLmzJma55mZmbi5ueHt7a310ILIyEhatGhhsF+xGmp+Q84Ohp3fkLOD7vl1+ZZLdGQFQagXjOTwbNcmjOvWlJ0XE1h58BoXYjP5+VQsP5+KpZOHHT5KGY8WqQz+Cutd06dPZ/To0ZVu4+Hhwfnz57l9+3aZdUlJSTRq1KicvSAvL4+3336bzZs3M2jQIADatm1LaGgoixYtqrAja2JiUqqwzl0KhUKnH9C6bl/XGHJ+Q84Ohp3fkLOD9vl1eY+iIysIQr2iVMgZ2s6F/i0d+ernPwlXOfN3RBIno9I4iYKtn/7D8A6ujPBz1nfU++bo6Iijo2OV2wUEBJCRkcGJEyfo3LkzAMePHycjI4Nu3bqVu8/dGVvk8tJ3zykUCtRqdbn7CIIg1LS6Xd9OEAShlshkMrys4ZuxfhyZ/QgzHmmGnbFERl4xq49EMWhpCOuu1I+PyJYtW9K/f38mTZrEsWPHOHbsGJMmTWLw4MGlbvTy8fFh8+bNAFhbW9O7d2/eeOMNDhw4wI0bN1izZg3r1q3jiSee0NdbEQShnhFXZAVBqPecbcx4KagZTXMjsGreiV/PxPH35URcLerP7IQbN25kxowZ9O3bFygpiLB06dJS20RERJCRkaF5/tNPP/HWW28xduxYUlNTcXd3Z+HChUyePPmBZhcEof4SHVlBEIQ75DLo3aIBj7V24XZ6Dvv/2qfvSA+Mvb09GzZsqHSb/0477uTkJMqXC4KgV6Ijex9EZS9R2UtU9jKMc6867WllLMNMWX8qewmCIBgiUdlLB6KylyAI5TH0yl76JCp7GQ5Dzg6Gnd+Qs4Oo7FVn3K3slZGRga2tLQEBAVhZWVFUVMT+/fsJCgrSVAS6+xwota6m/fe1a3q/qraraL22y3V9XtP02X66rtOmbcS5p13blbfsfs69rKwsoOxX70LV7raZtvNGqlQqsrOzyczMNNgf6Iaa35Czg2HnN+TsoHv+u58H2nymio5sNdz9odW0aVM9JxEEoS7JysrCxsZG3zEMyt3PUzc3Nz0nEQShrtHmM1UMLagGtVpNXFwcVlZWmqo3nTp10lTIuff53ao1t27dqrWvHP/72jW9X1XbVbRe2+WVPX/Y20/XdVW13b3LHva2q2y9Nm1X3rLqnnuSJJGVlYWLi0uZeVWFypX3eVqZB3Fe1yZDzm/I2cGw8xtydtA9vy6fqeKKbDXI5XJcXV1LLVMoFKX+cf773NrautZOvv++Vk3vV9V2Fa3XdnlVz+HhbT9d12nTVuLc065dylt2P+eeuBJbPeV9nmqjNs/rB8GQ8xtydjDs/IacHXTLr+1nqrh0UEOmTZtW6fMH+do1vV9V21W0Xtvl+my7+3m9mmg/Xddp01bi3NO+XfR97gmCIAj3RwwtqGW63pErlCbar/pE290f0X51k6H/uxhyfkPODoad35CzQ+3mF1dka5mJiQnz5s3DxMRE31EMkmi/6hNtd39E+9VNhv7vYsj5DTk7GHZ+Q84OtZtfXJEVBEEQBEEQDJK4IisIgiAIgiAYJNGRFQRBEARBEAyS6MgKgiAIgiAIBkl0ZAVBEARBEASDJDqydcwTTzyBnZ0dI0aM0HeUOm/79u14e3vTvHlzvvvuO33HMTjiXKueW7duERgYSKtWrWjbti2//vqrviPVGwsXLqRbt26Ym5tja2tb7jbR0dEMGTIECwsLHB0dmTFjBoWFhQ82qJYiIyMZNmwYjo6OWFtb0717d/bv36/vWFrbsWMHXbp0wczMDEdHR4YPH67vSDorKCigffv2yGQyQkND9R1HK1FRUUycOJGmTZtiZmZGs2bNmDdvXp09zwG+/vprmjZtiqmpKf7+/hw6dKjGji06snXMjBkzWLdunb5j1HnFxcXMnDmTv//+mzNnzvDxxx+Tmpqq71gGRZxr1aNUKlm8eDGXLl1i3759vPrqq+Tk5Og7Vr1QWFjIyJEjmTJlSrnrVSoVgwYNIicnh8OHD/PTTz/x+++/89prrz3gpNoZNGgQxcXF/P3335w+fZr27dszePBgEhIS9B2tSr///jvBwcE899xznDt3jiNHjjBmzBh9x9LZrFmzcHFx0XcMnVy+fBm1Ws2KFSsICwvjiy++YPny5bz99tv6jlaun3/+mVdeeYV33nmHs2fP0rNnTwYMGEB0dHTNvIAk1Dn79++XnnzySX3HqNOOHDkiPf7445rnM2bMkH744Qc9JjJM4ly7f76+vlJ0dLS+Y9Qrq1evlmxsbMos37lzpySXy6XY2FjNsh9//FEyMTGRMjIyHmDCqiUlJUmAdPDgQc2yzMxMCZD27dunx2RVKyoqkho3bix99913+o5yX3bu3Cn5+PhIYWFhEiCdPXtW35Gq7ZNPPpGaNm2q7xjl6ty5szR58uRSy3x8fKTZs2fXyPHFFVkdHDx4kCFDhuDi4oJMJmPLli1ltqnNy+cPk/tty7i4OBo3bqx57urqSmxs7IOIXieIc7H6arLtTp06hVqtxs3NrZZTC9oICQmhTZs2pa6w9evXj4KCAk6fPq3HZGU5ODjQsmVL1q1bR05ODsXFxaxYsYJGjRrh7++v73iVOnPmDLGxscjlcvz8/HB2dmbAgAGEhYXpO5rWbt++zaRJk1i/fj3m5ub6jnPfMjIysLe313eMMgoLCzl9+jR9+/Yttbxv374cPXq0Rl5DdGR1kJOTQ7t27Vi6dGm567W5fO7v70+bNm3KPOLi4h7U26gT7rctpXLqeMhkslrNXJfUxLlYX9VU26WkpPDss8/y7bffPojYghYSEhJo1KhRqWV2dnYYGxvXua/rZTIZe/fu5ezZs1hZWWFqasoXX3zBrl27Khz/W1dcv34dgPnz5/Puu++yfft27Ozs6N27t0EM8ZIkifHjxzN58mQ6duyo7zj37dq1a3z11VdMnjxZ31HKSE5ORqVSlfl/2ahRo5r7P1kj13XrIUDavHlzqWU1dfm8vn3dW522LG9owcaNG2s9a110P+difTvX/qu6bZefny/17NlTWrdu3YOI+VCbN2+eBFT6OHnyZKl9KhpaMGnSJKlv375llhsZGUk//vhjbb2FUrR9P2q1Who6dKg0YMAA6fDhw9Lp06elKVOmSI0bN5bi4uIeSNbqZt+4caMESCtWrNDsm5+fLzk6OkrLly/XS3Zd8n/55ZdSt27dpOLiYkmSJOnGjRt1YmhBdf4vxMbGSl5eXtLEiRP1lLpysbGxEiAdPXq01PIFCxZI3t7eNfIayprpDgt3L5/Pnj271PKavHxeX2jTlp07d+bixYvExsZibW3Nzp07mTt3rj7i1jniXKw+bdpOunM155FHHiE4OFgfMR8q06dPZ/To0ZVu4+HhodWxnJycOH78eKllaWlpFBUVlbkiVFu0fT9///0327dvJy0tDWtra6BkSMvevXtZu3ZtmXPwQdA2e1ZWFgCtWrXSLDcxMcHT01Ov3/pom3/BggUcO3YMExOTUus6duzI2LFjWbt2bW3GrJCu/xfi4uIICgoiICCgzn4z5OjoiEKhKHP1NTExscb+T4qObA2pqcvn/fr148yZM+Tk5ODq6srmzZvp1KlTTcet07RpS6VSyWeffUZQUBBqtZpZs2bh4OCgj7h1jrbnojjXytKm7Y4cOcLPP/9M27ZtNeNr169fj6+v74OO+1BwdHTE0dGxRo4VEBDAwoULiY+Px9nZGYA9e/ZgYmLywMadavt+cnNzAZDLS4/wk8vlqNXqWslWFW2z+/v7Y2JiQkREBD169ACgqKiIqKgo3N3daztmhbTNv2TJEhYsWKB5HhcXR79+/fj555/p0qVLbUaslC7/F2JjYwkKCsLf35/Vq1eXOY/qCmNjY/z9/dm7dy9PPPGEZvnevXsZNmxYjbyG6MjWsP+O05QkSaexm7t3767pSAarqrYcOnQoQ4cOfdCxDEZV7SfOtYpV1nY9evTQW0ejvouOjiY1NZXo6GhUKpVm3k8vLy8sLS3p27cvrVq1Ijg4mE8//ZTU1FRef/11Jk2apLnqWVcEBARgZ2fHuHHjmDt3LmZmZqxcuZIbN24waNAgfcerlLW1NZMnT2bevHm4ubnh7u7Op59+CsDIkSP1nK5qTZo0KfXc0tISgGbNmuHq6qqPSDqJi4sjMDCQJk2asGjRIpKSkjTrnJyc9JisfDNnziQ4OJiOHTtqrh5HR0fX2Jhe0ZGtIQ/i8nl9Idry/oj2qz7RdnXb3LlzS33t6+fnB8D+/fsJDAxEoVCwY8cOpk6dSvfu3TEzM2PMmDEsWrRIX5Er5OjoyK5du3jnnXd45JFHKCoqonXr1vzxxx+0a9dO3/Gq9Omnn6JUKgkODiYvL48uXbrw999/Y2dnp+9oD709e/Zw9epVrl69WqbjLZVzI7S+jRo1ipSUFN5//33i4+Np06YNO3furLGr93XzWrQBuvfy+b327t1Lt27d9JTKMIm2vD+i/apPtF3dtmbNGiRJKvMIDAzUbNOkSRO2b99Obm4uKSkpfPXVV2XGQtYVHTt2ZPfu3aSkpJCZmUlISAgDBgzQdyytGBkZsWjRIm7fvk1mZiZ79+6ldevW+o5VLR4eHkiSRPv27fUdRSvjx48v9/9BXezE3jV16lSioqI0U+H16tWrxo4trsjqIDs7m6tXr2qe37hxg9DQUOzt7WnSpEmtXz5/mIi2vD+i/apPtJ0gCMJDpEbmPqgn9u/fX+50GOPGjdNss2zZMsnd3V0yNjaWOnToIP3zzz/6C1yHiba8P6L9qk+0nSAIwsNDJkl1+Fq0IAiCIAiCIFRAjJEVBEEQBEEQDJLoyAqCIAiCIAgGSXRkBUEQBEEQBIMkOrKCIAiCIAiCQRIdWUEQBEEQ9GL+/Pm1Pn/rmjVrsLW1rdXXEPRHdGQFQRAEQShl/PjxyGQyZDIZSqWSJk2aMGXKFNLS0vQdTWejRo0iMjJS3zGEWiIKIgiCIAiCUEb//v1ZvXo1xcXFXLp0iQkTJpCens6PP/6o72g6MTMzw8zMTN8xhFoirsgKgiAIglCGiYkJTk5OuLq60rdvX0aNGsWePXtKbbN69WpatmyJqakpPj4+fP3116XWv/nmm7Ro0QJzc3M8PT2ZM2cORUVFWmdQqVRMnDiRpk2bYmZmhre3N19++aVmfX5+Pq1bt+aFF17QLLtx4wY2NjasXLkSKDu04Ny5cwQFBWFlZYW1tTX+/v6cOnVKl6YR6hBxRVYQBEEQhEpdv36dXbt2YWRkpFm2cuVK5s2bx9KlS/Hz8+Ps2bNMmjQJCwsLxo0bB4CVlRVr1qzBxcWFCxcuMGnSJKysrJg1a5ZWr6tWq3F1deWXX37B0dGRo0eP8sILL+Ds7MxTTz2FqakpGzdupEuXLgwcOJAhQ4YQHBxMUFAQkyZNKveYY8eOxc/Pj2+++QaFQkFoaGip9yUYGH2XFhOE+mzcuHGaEqmbN2+uldfo3bu39PLLL1d7/7v5bGxsaiyTIAh127hx4ySFQiFZWFhIpqamms+Bzz//XLONm5ub9MMPP5Ta73//+58UEBBQ4XE/+eQTyd/fX/N83rx5Urt27XTKNnXqVOnJJ58sc1xHR0fppZdekpycnKSkpCTNutWrV5f6/LKyspLWrFmj02sKdZcYWiDUqHtvELj3cfXqVX1Hq7P69+9PfHw8AwYMeKCvGxgYyPLly6vcLj4+nsWLF9d+IEEQ6pSgoCBCQ0M5fvw4L730Ev369eOll14CICkpiVu3bjFx4kQsLS01jwULFnDt2jXNMX777Td69OiBk5MTlpaWzJkzh+joaJ1yLF++nI4dO9KgQQMsLS1ZuXJlmWO89tpreHt789VXX7F69WocHR0rPN7MmTN5/vnneeyxx/joo49K5RUMj+jICjXubsfs3kfTpk3LbFdYWKiHdHXP3XFoJiYmFW6jy5gybaSmpnL06FGGDBlS5bZOTk7Y2NjU6OsLglD3WVhY4OXlRdu2bVmyZAkFBQW89957QMlX/lAyvCA0NFTzuHjxIseOHQPg2LFjjB49mgEDBrB9+3bOnj3LO++8o9Nn/y+//MKrr77KhAkT2LNnD6GhoTz33HNljpGYmEhERAQKhYIrV65Uesz58+cTFhbGoEGD+Pvvv2nVqhWbN2/WpWmEOkR0ZIUad7djdu9DoVAQGBjI9OnTmTlzJo6OjvTp0weAS5cuMXDgQCwtLWnUqBHBwcEkJydrjpeTk8Ozzz6LpaUlzs7OfPbZZwQGBvLKK69otpHJZGzZsqVUDltbW9asWaN5Hhsby6hRo7Czs8PBwYFhw4YRFRWlWT9+/Hgef/xxFi1ahLOzMw4ODkybNq1UJ7KgoIBZs2bh5uaGiYkJzZs3Z9WqVUiShJeXF4sWLSqV4eLFi8jlcp1+44+KikImk/HLL78QGBiIqakpGzZsICUlhaeffhpXV1fMzc3x9fUtc/dweW1Vnh07dtCuXTsaN25MWloaY8eOpUGDBpiZmdG8eXNWr16tdV5BEOqHefPmsWjRIuLi4mjUqBGNGzfm+vXreHl5lXrcvXBx5MgR3N3deeedd+jYsSPNmzfn5s2bOr3moUOH6NatG1OnTsXPzw8vL69yP08nTJhAmzZtWLduHbNmzeLSpUuVHrdFixa8+uqr7Nmzh+HDh4vPPAMmOrLCA7V27VqUSiVHjhxhxYoVxMfH07t3b9q3b8+pU6fYtWsXt2/f5qmnntLs88Ybb7B//342b97Mnj17OHDgAKdPn9bpdXNzcwkKCsLS0pKDBw9y+PBhLC0t6d+/f6nf7Pfv38+1a9fYv38/a9euZc2aNaU6w88++yw//fQTS5YsITw8nOXLl2NpaYlMJmPChAllPgy///57evbsSbNmzXRuqzfffJMZM2YQHh5Ov379yM/Px9/fn+3bt3Px4kVeeOEFgoODOX78uM5ttXXrVoYNGwbAnDlzuHTpEn/++Sfh4eF88803lX4tJwhC/RQYGEjr1q354IMPgJIrmx9++CFffvklkZGRXLhwgdWrV/P5558D4OXlRXR0ND/99BPXrl1jyZIlOl/59PLy4tSpU+zevZvIyEjmzJnDyZMnS22zbNkyQkJCWLduHWPGjGHEiBGMHTu23Cu/eXl5TJ8+nQMHDnDz5k2OHDnCyZMnadmyZTVbRdA7fQ/SFR4u994gcPcxYsQISZJKbjpq3759qe3nzJkj9e3bt9SyW7duSYAUEREhZWVlScbGxtJPP/2kWZ+SkiKZmZmVuoGJcm6WsrGxkVavXi1JkiStWrVK8vb2ltRqtWZ9QUGBZGZmJu3evVuT3d3dXSouLtZsM3LkSGnUqFGSJElSRESEBEh79+4t973HxcVJCoVCOn78uCRJklRYWCg1aNCg0psKxo0bJw0bNqzUshs3bkiAtHjx4gr3u2vgwIHSa6+9JkmSpHVb5efnS1ZWVtL58+clSZKkIUOGSM8991ylr/PfmyUEQXi4lffZJEmStHHjRsnY2FiKjo7WPG/fvr1kbGws2dnZSb169ZI2bdqk2f6NN96QHBwcJEtLS2nUqFHSF198UeqzpKqbvfLz86Xx48dLNjY2kq2trTRlyhRp9uzZmn3Cw8MlMzOzUjedZWRkSB4eHtKsWbMkSSr9+VVQUCCNHj1acnNzk4yNjSUXFxdp+vTpUl5eXvUaStA7Mf2WUOOCgoL45ptvNM8tLCw0f+/YsWOpbU+fPs3+/fuxtLQsc5xr166Rl5dHYWEhAQEBmuX29vZ4e3vrlOn06dNcvXoVKyurUsvz8/NLfU3VunVrFAqF5rmzszMXLlwAIDQ0FIVCQe/evct9DWdnZwYNGsT3339P586d2b59O/n5+YwcOVKnrHf9t61UKhUfffQRP//8M7GxsRQUFFBQUKBp32vXrmnVVn///TcODg74+voCMGXKFJ588knOnDlD3759efzxx+nWrVu1MguC8HC495uoe40ZM4YxY8ZU+Py/PvnkEz755JNSy+4dFjZ//nzmz59f4f4mJiasXr26zLddH374IQA+Pj7k5uaWWmdtbc2NGzc0z8ePH8/48eMBMDY2NriCDkLlREdWqHF3bxCoaN291Go1Q4YM4eOPPy6zrbOzc5WD9u+SyWRIklRq2b1jW9VqNf7+/mzcuLHMvg0aNND8/b9zCcpkMs1NDdpUhnn++ecJDg7miy++YPXq1YwaNQpzc3Ot3sN//betPvvsM7744gsWL16Mr68vFhYWvPLKK5qvz/77/ity77ACgAEDBnDz5k127NjBvn37ePTRR5k2bVqZ8b6CIAiCUNeIMbKCXnXo0IGwsDA8PDzK3DBwt0NsZGSkuQsWIC0trUzd7AYNGhAfH695fuXKlVK/pXfo0IErV67QsGHDMq+j7R35vr6+qNVq/vnnnwq3GThwIBYWFnzzzTf8+eefTJgwQdumqNKhQ4cYNmwYzzzzDO3atcPT07NUR1+btpIkiW3btjF06NBSx27QoAHjx49nw4YNLF68mG+//bbGcguCIAhCbREdWUGvpk2bRmpqKk8//TQnTpzg+vXr7NmzhwkTJqBSqbC0tGTixIm88cYb/PXXX1y8eJHx48cjl5c+dR955BGWLl3KmTNnOHXqFJMnTy51dXXs2LE4OjoybNgwDh06xI0bN/jnn394+eWXiYmJ0Sqrh4cH48aNY8KECWzZsoUbN25w4MABfvnlF802CoWC8ePH89Zbb+Hl5VXqa/775eXlxd69ezl69Cjh4eG8+OKLJCQkaNZr01anT58mJyeHXr16aZbNnTuXP/74g6tXrxIWFsb27dvFjQ+CIAiCQRAdWUGvXFxcOHLkCCqVin79+tGmTRtefvllbGxsNB2wTz/9lF69ejF06FAee+wxevTogb+/f6njfPbZZ7i5udGrVy/GjBnD66+/XuorfXNzcw4ePEiTJk0YPnw4LVu2ZMKECeTl5WFtba113m+++YYRI0YwdepUfHx8mDRpEjk5OaW2mThxIoWFhTV6NRZKZhfo0KED/fr1IzAwECcnJx5//PFS21TVVn/88QeDBg1Cqfx3VJGxsTFvvfUWbdu2pVevXigUCn766acazS4IgiAItUEmaTuwThDqkMDAQNq3b18nK04dOXKEwMBAYmJiaNSoUaXbjh8/nvT09DJz4NaWtm3b8u6775aa3kwba9as4ZVXXiE9Pb12ggmCIAhCNYibvQShhhQUFHDr1i3mzJnDU089VWUn9q7t27djaWnJTz/9xODBg2stX2FhIU8++aTOpXAtLS0pLi7G1NS0lpIJgiAIQvWIK7KCQaqLV2TXrFnDxIkTad++PVu3bqVx48ZV7pOYmEhmZiZQMkvDf2cqqAuuXr0KlIz/La/UsCAIgiDoi+jICoIgCIIgCAZJ3OwlCIIgCIIgGCTRkRUEQRAEQRAMkujICoIgCIIgCAZJdGQFQRAEQRAEgyQ6soIgCIIgCIJBEh1ZQRAEQRAEwSCJjqwgCIIgCIJgkERHVhAEQRAEQTBIoiMrCIIgCIIgGKT/AyAOKYYfxnR1AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "Cnew = (kp + kd * s) / (s/20 + 1)**2\n", + "Cnew.name = 'Cnew'\n", + "print(Cnew)\n", + "\n", + "Lnew = P * Cnew\n", + "Lnew.name = 'Lnew'\n", + "\n", + "plt.figure(figsize=[7, 4])\n", + "ax1 = plt.subplot(2, 2, 1)\n", + "ax2 = plt.subplot(2, 2, 3)\n", + "ct.bode_plot([Lnew, L], ax=[ax1, ax2])\n", + "ax1.loglog([1e-1, 1e2], [1, 1], 'k', linewidth=0.5)\n", + "ax1.set_title(\"Bode plot for L, Lnew\", size='medium')\n", + "\n", + "ax3 = plt.subplot(1, 2, 2)\n", + "ct.nyquist_plot(Lnew, ax=ax3)\n", + "ax3.set_title(\"Nyquist plot for Lnew\", size='medium')\n", + "\n", + "plt.suptitle(\"Stability analysis for inverted pendulum\")\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "id": "WgrAE9XE7_nJ", + "metadata": { + "id": "WgrAE9XE7_nJ" + }, + "source": [ + "While not (yet) a very high performing controller, this change does get rid of the issues with the high frequency noise:" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "FknwW6GkBLLU", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjGUlEQVR4nOzdd3gUxf8H8Pfu3aX3AOmEEgiE3qUHaTakiSAgoIA/ELGhRkWlKCoWvqCCYqMKCCItoIKSYOgthBIgEEiBhPTc5VIuV+b3R8iZhOSyd7mez+t57gm7s7M399m9YW53ZpZjjDEQQgghhBCbxlu6AIQQQgghpOGoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIaZCSkhKMHz8eHh4e4DgOhYWFli5SvRYvXgw/Pz9wHIfdu3dbujgWERsbC47jwHEcxowZY/T9t2jRQrt/WzgnCLEH1KgjxILu3buHV155BWFhYXBycoKfnx8GDBiA7777DiUlJZYuniAbNmxAXFwcjh8/jszMTHh6ej6wzfr167X/wVd9/fjjj2Yv79WrV7FkyRKsXbsWmZmZePTRR426/6qNGRcXF3Ts2BFr16416nsY0/Xr17F+/XrtskqlwnvvvYeWLVvC2dkZrVq1wtKlS6HRaLTbzJgx44Fj+dBDD1Xb75kzZ7Bz506DynTv3j3Mnz8frVq1gqOjI0JCQjBq1Cj8888/Bu2v0s6dOxEZGQlPT0+4ubmhc+fOWLp0KfLz8xu0X0KshdjSBSCksbp16xb69+8PLy8vfPzxx+jUqRNUKhWSkpLw888/IzAwEE8++aSli1mv5ORktG/fHh07dtS5nYeHB65fv15tXW0NQGMpLy+Hg4PDA+uTk5MBAKNHjwbHcQbvX6lUQiKR1Jq2dOlSzJ49G3K5HOvXr8ecOXPg5eWFiRMnGvx+ptKsWTN4eXlpl5cvX47vvvsOGzZsQIcOHXD27Fk899xz8PT0xCuvvKLd7pFHHsG6deu0yzVj3bRpU/j4+OhdnpSUFO334rPPPkPnzp2hVCrx119/Yd68ebh27Zr+HxLAwoULsXz5crz22mv4+OOPERgYiBs3buC7777Dpk2bqn02QmwWI4RYxMiRI1lwcDCTy+W1pms0Gu2/v/zyS9axY0fm4uLCgoOD2dy5c1lRUZE2fd26dczT05P9+eefrF27dszV1ZWNHDmSZWRkaLdRKpVs/vz5zNPTk/n4+LC33nqLTZs2jY0ePVpnOX/77TcWERHBHBwcWGhoKPviiy+0aYMHD2YAtK/BgwfXuo/K8tUlNTWVPfnkk8zV1ZW5u7uzCRMmsHv37mnTp0+f/kA5X3nllWrvN3jwYDZv3jz22muvMV9fXzZo0KAH3mfRokXVyltZBarVarZkyRIWFBTEHBwcWJcuXdgff/yhzXf79m0GgP36669s8ODBzNHRkf3888+1fpbQ0FD2v//9r9q6Nm3asEmTJtX5+XXZsWMH69ixI3NycmI+Pj5s6NChTC6XsyNHjjCxWMwyMzOrbf/666+zgQMHMsYYS0lJYU888QTz8vJiLi4uLCIigu3fv58xxlhMTAwDwAoKCqrlf/zxx9nzzz9fbd24cePY1KlTtcu1HY/a1PUeujz66KMsKCio1u+FPvup6tSpUwwAW7lyZa3plftdtGgR69KlC9u4cSMLDQ1lHh4ebOLEiUwmk2m31Wg0bPny5axly5bMycmJde7cme3YsUOb3r1792rfkdGjRzORSMSkUiljjLHMzEwGgF27ds2gz0KILnT7lRALyMvLw8GDBzFv3jy4urrWuk3Vq0g8z+Orr77C5cuXsWHDBhw+fBhvvfVWte1LSkrwxRdfYNOmTfj333+RlpaGN954Q5u+fPly/PLLL1i3bh2OHTsGmUxWb3+yc+fO4emnn8akSZNw6dIlLF68GO+//772dt3vv/+O2bNno2/fvsjMzMTvv/+udywYYxgzZgzy8/Nx5MgRHDp0CMnJyQZd1dqwYQPEYjGOHTtW6y3PN954Q3t1KTMzE5mZmQCAVatW4csvv8QXX3yBixcvYuTIkXjyySdx48aNavmjoqLw8ssv4+rVqxg5cqTgcjk5OUGpVAIA4uLi4ObmpvP18ccfa8v4zDPP4Pnnn8fVq1cRGxuLcePGgTGGQYMGoVWrVti0aZP2fVQqFTZv3oznnnsOADBv3jwoFAr8+++/uHTpEpYvXw43NzedZR0wYAD++ecfJCUlAQASEhJw9OhRPPbYY9W2i42NRbNmzdC2bVvMnj0b2dnZguNRl/z8fPz55591fi+qXlF89NFH641jpV9++QVubm548cUXa33fqvtNTk7G7t27ER0djejoaBw5cgSffvqpNv29997DunXr8O233+LKlSt47bXXMHXqVBw5cgQAEBkZidjYWAAV53ZcXBy8vb1x9OhRAEBMTAz8/f0RHh5uaJgIqZuFG5WENEonT55kANjvv/9ebb2vry9zdXVlrq6u7K233qoz//bt25mvr692ed26dQwAu3nzpnbd6tWrmZ+fn3bZz8+Pff7559pllUrFmjdvrvOKy+TJk9nw4cOrrXvzzTdZRESEdrnmFbPaVJav8rO5urpqy3bw4EEmEolYWlqadvsrV64wAOz06dOMMeFX6rp27aqzHIwxtmvXLlaz6gsMDGTLli2rtq5Xr17sxRdfZIz9d6Wuris9VVW9UqdUKrWffc2aNYwxxkpKStiNGzd0vvLy8hhjjJ07d44BYCkpKbW+1/Lly1n79u21y7t372Zubm7aq1ydOnViixcvrjVvXVfRNBoNe/vttxnHcUwsFjOO49jHH39cbZtt27ax6OhodunSJbZ3717WpUsX1qFDB1ZWViboPepSeUWt5veiNnfu3Kk3jpUeffRR1rlz53r3uWjRIubi4lLtytybb77J+vTpwxhjTC6XMycnJ3b8+PFq+WbOnMmeeeYZxhhje/fuZZ6enkytVrMLFy6wpk2bstdee429+eabjDHGXnjhBTZx4sT6g0GIAahPHSEWVLNP1+nTp6HRaDBlyhQoFArt+piYGHz88cdITEyETCaDSqVCWVkZiouLtVc0XFxc0Lp1a22egIAA7dUTqVSKrKws9O7dW5suEonQo0ePah3ga7p69SpGjx5dbV3//v2xcuVKqNVqiEQiwZ/V3d0d58+f1y7zPK99j5CQEISEhGjTIiIi4OXlhatXr6JXr16C36Nnz56Ct60kk8mQkZGB/v37V1vfv39/JCQkGLT/qKgovPfee1AoFHBwcMCbb76J//u//wMAODs7IywsTNB+unTpgqFDh6JTp04YOXIkRowYgaeeegre3t4AKgYsvPfeezh58iQeeugh/Pzzz3j66ae158TLL7+MuXPn4uDBgxg2bBjGjx+Pzp0763zPX3/9FZs3b8aWLVvQoUMHXLhwAa+++ioCAwMxffp0AKh2FbVjx47o2bMnQkNDsX//fowbN07QZ6sNYwzAg9+L2gQFBem1X6H9J1u0aAF3d3ftctXvUWJiIsrKyjB8+PBqecrLy9GtWzcAwKBBg1BUVIT4+HgcO3YMgwcPxpAhQ/DRRx8BqLjC+eqrrwouOyH6oNuvhFhAWFgYOI57oNN3q1atEBYWBmdnZ+261NRUPPbYY+jYsSN27tyJc+fOYfXq1QCgvaUH4IFO+xzHaf+TrLquqprpNdX2n2F9eerC8zzCwsK0r1atWtX5HjXX8zz/wPtW/eyV6rqVLURtn7PmOqH7f/PNN3HhwgWkpqZCLpfjs88+0zZi9bn9KhKJcOjQIfzxxx+IiIjA119/jfDwcNy+fRtAxSCHUaNGYd26dcjOzsaBAwfw/PPPa8sxa9Ys3Lp1C88++ywuXbqEnj174uuvv6637G+//TYmTZqETp064dlnn8Vrr72GTz75pM48AQEBCA0NfeB2tb7atGkDjuNw9erVerfV5/Zr27ZtkZycXOs5U1Nt36PKHz6Vf/fv348LFy5oX4mJifjtt98AVAz+6dq1K2JjY3HkyBFERkZi4MCBuHDhAm7cuIGkpCRERkYKDQkheqErdYRYgK+vL4YPH45vvvkG8+fP19lYOHv2LFQqFb788kttw2D79u16vZ+npyf8/Pxw+vRpDBw4EACgVqsRHx+Prl271pkvIiJC2xeo0vHjx9G2bVu9rtLpEhERgbS0NKSnp2uv1iUmJkIqlaJ9+/YAKkZSXr58uVq+Cxcu1Dn6VB8eHh4IDAzE0aNHMWjQIO3648ePV7uyqY8mTZrUeTWuZ8+euHDhgs78VUeNchyH/v37o3///vjggw8QGhqKXbt24fXXXwdQ0XCbNGkSgoOD0bp16weuOIaEhGDOnDmYM2cO3nnnHfzwww+YP39+ne9dUlKiPc8qiUQinVd08/LykJ6ejoCAAJ2fqz4+Pj4YOXIkVq9ejZdffvmB70VhYaG2/9uPP/6I0tJSQfudPHkyvvrqK6xZs6bWUa5V96tLREQEHB0dkZaWhsGDB9e5XWRkJGJiYnDq1CksXboUXl5eiIiIwEcffYRmzZppz2tCjI0adYRYyJo1a9C/f3/07NkTixcvRufOncHzPM6cOYNr166hR48eAIDWrVtDpVLh66+/xqhRo3Ds2DF89913er/f/Pnz8cknnyAsLAzt2rXD119/jYKCAp23pRYsWIBevXrhww8/xMSJE3HixAl88803WLNmjcGfu6Zhw4ahc+fOmDJlClauXAmVSoUXX3wRgwcP1t7ufPjhh/H5559j48aN6Nu3LzZv3ozLly9rb3k11JtvvolFixahdevW6Nq1K9atW4cLFy7gl19+Mcr+q9Ln9uupU6fwzz//YMSIEWjWrBlOnTqFnJycao2CkSNHwtPTEx999BGWLl1aLf+rr76KRx99FG3btkVBQQEOHz5cb4Ni1KhRWLZsGZo3b44OHTogPj4eK1as0F4BlMvlWLx4McaPH4+AgACkpKTg3XffRZMmTTB27Fg9o/GgNWvWoF+/fujduzeWLl2Kzp07Q6VS4dChQ/j222+1V/H0uf3ap08fvPXWW1iwYAHu3r2LsWPHIjAwEDdv3sR3332HAQMGCJrSxN3dHW+88QZee+01aDQaDBgwADKZDMePH4ebm5v29nRkZCRWrVoFHx8fREREaNd9/fXXDbo9TUi9LNWZjxDCWEZGBnvppZdYy5YtmUQiYW5ubqx3797s888/Z8XFxdrtVqxYwQICApizszMbOXIk27hxY7UO6LVNGVJzQIBSqWQvvfQS8/DwYN7e3iwqKopNmDCh3qk2Kqc0kUgkrHnz5tUGWzAmfKBEQ6Y0YYyxDz74gPn5+TFPT0/22muvsZdeeumBgRKvvPKKznIwVvtAiapTmkgkkjqnNImPj693/7VNaWKoxMRENnLkSNa0aVPm6OjI2rZty77++usHtnv//feZSCSqNoUNY4y99NJLrHXr1szR0ZE1bdqUPfvssyw3N5cxVvcgBplMxl555RXWvHlz5uTkxFq1asUWLlzIFAoFY6xioMeIESNY06ZNtefE9OnTqw10qVTzPSrjGBMTo/NzZ2RksHnz5rHQ0FDm4ODAgoKC2JNPPllvvvr8+uuvbNCgQczd3Z25urqyzp07s6VLlz4wpUlV//vf/1hoaKh2WaPRsFWrVrHw8HAmkUhY06ZN2ciRI9mRI0e02xQWFjKRSMSeeuop7brK8+6bb75p0GcgRBeOMQM7yBBCbJpGo0H79u3x9NNP48MPP7R0cUgDzJ49G1lZWdi7d6/gPLGxsRgyZAgKCgoE3Xo0RM33iI2NxdixY3Hr1i3tYA9CiPHQ7VdCGonU1FQcPHgQgwcPhkKhwDfffIPbt29j8uTJli4aMZBUKsWZM2fwyy+/YM+ePQbtIzg4GKNGjcLWrVuNWrYOHTrg1q1b1db9+eefePfdd6lBR4iJ0JU6QhqJ9PR0TJo0CZcvXwZjDB07dsSnn35abXAAsS2RkZE4ffo0/u///g//+9//9MpbWlqKu3fvAgDc3Nzg7+9v1LKlpqZqR5u2atXqgcEXhBDjo0YdIYQQQogdoJ9OhBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCSCMwY8YMfPrpp5YuBjEhatQRAqBFixZwcXGBm5sb3Nzc0KJFC0sXiRBi46heIeZGjTpC7jt8+DDkcjnkcjlSUlIeSFcqlWYph7nehxBietZSr5DGgRp1hNQhNjYW7dq1w8KFC9GkSRN8/PHHyM/Px6RJk9CkSROEhYXhxx9/1G4/Y8YMvPrqqxg8eDDc3NwwefJk3Lt3D8OGDYOnpyemTJkCtVpd63u1aNECn332GcLDwxEREWGuj0gIMTNz1ivJycno168f3N3dMW7cOJSUlJjrYxILEVu6AIRYs5s3b8LFxQWZmZlQq9V47rnnIBaLkZaWhps3b2LYsGFo164dBgwYAADYsWMH/vnnHzRt2hTdu3fHE088gY0bNyIwMBA9e/ZEdHQ0Ro8eXet77d69G3FxcfDw8DDnRySEmJm56pXJkydjxIgRiI2NxYEDBzBhwgR0797d3B+XmBE16gi5b/jw4RCJRACAuXPnYuTIkXBxccHbb78NkUgEnuexc+dOJCcnw8XFBZ07d8bMmTOxdetWbeU7ceJEtGvXDgAQGRkJNzc37ZW3oUOH4uLFi3U26l577TU0a9bMDJ+UEGIulqpXUlNTcfnyZcTFxcHBwQFjxoxBnz59zPjJiSXQ7VdC7jt06BAKCwtRWFiITz75BAAQEBCgrZBzcnKgVqsRHByszRMaGoqMjAztctVGmbOzM5o2bVptubi4uM73r7pfQoh9sFS9kpmZiWbNmsHBwUG7LiQkxHgfjFglatQRogPHcdp/N23aFDzP486dO9p1aWlpCAwMNPp7EULslznqlYCAAGRnZ6O8vFy7Lj09vUH7JNaPGnWECCQSiTBu3DgsXLgQpaWluHz5Mn766SdMmjTJ0kUjhNgoU9UroaGhiIiIwMcffwylUom9e/fi9OnTRio1sVbUqCNED6tXr0ZZWRmCg4Px5JNPYunSpRg4cKCli0UIsWGmqle2bNmCv/76Cz4+Pli/fj3Gjh1rhNISa8YxxpilC0EIIYQQQhqGrtQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBevarEWg0GmRkZMDd3Z2eCkBII8YYQ1FREQIDA8HzDf/NTHULIQQQXrdQo84IMjIy6Jl6hBCt9PR0ozzLl+oWQkhV9dUt1KhrgNWrV2P16tVQqVQAgB9//BEuLi4WLhUhxFJKSkowa9YsuLu7N2g/VLcQQqoSWrfQEyWMQCaTwdPTE5mZmfDw8IBKpUJMTAyGDBkCsVhcbRlAtTRjq/nexs6nazt903TFSciysRmyf2PETVe6kLjVts6csbOnc67mNoB+31eZTIaAgABIpVJ4eHgIjoWu/QmtW+g421fdIjQf1S2G57Nk7ADT1C3UqGuAyl/TarUaSUlJ2LJlC/2aJqQRKykpweTJkxvcqKO6hRBSleC6hZEGk0qlDADLzc1l5eXlrLi4mO3evZsVFxc/sFwzzdgvQ/cvNJ+u7fRN0xUnIcvWEDtjxE1XupC4WTp29nTO1Vyn72fLzc1lAJhUKjV73ULH2b7qFqH5qG4xzTln6tiZqm6hPnVGJJFIIJFIdC7XlWbqshg7n67t9E0TEjdrj50x4qYrXUjcaltnztjZ0zlXuc6QMpqCNX1H7Ok420LdIjQf1S2G57NE7AwpoxDUqDMipVKpfVUu1/a35r+NXQZD9i80n67t9E2rL05C4mhMhuy/ctvy8nIwxuqcdqK+fdeVLiRuta0zZ+zs6Zyrb119THluCqlb6DjXvs4W6xah+ahuMTyfpWMnpIz6bkd96hqA+r2Qm1Lg0F0eN2UcOADtvRlGNdegmbOlS0YsgfrUEUJMgfrUmRH1qTMszZb7vZSVKdinB66w0KjoB14dPviTHbmWaTV9N0wdO3s652quoz519nmcrblu0Tcf1S2mOedMHTvqU2cDqE+dYWm21u9FrlDhtV8TcCgxCwDQr5kG700cAMbxWLz3Cs6kFGDuLxfw29x+aB9Q/RcV9XsxPB/1qbOO74g9HWdrq1sako/qFsPzUZ86UivqU2f//V7SC0owZ/MFJGXL4SDmsfSJcDhnXUILb0dIJBKsm94Dszedx4lb+Zi5/gz2zesLD2eJxftu2Gu/F+pTR8fZXuoWQ/NR3WJ4PkvHTkgZ9d2O+tQ1APV7aVxuSDmsS+JRrOLgIWGYGa5Gi1om9y5RAV9cFCFPwaFHEw2mtdGYv7DEIqhPHSHEFKhPnRlRnzrD0myl34tCoWDfH7nBWr2zn4VGRbMnvvqXpeXKdOY5lZyt3X7n2VTq92Ij51zNddSnzj6Ps7XULcbIR3WLac45U8eO+tTZAOpTZ1iaNfd7KVao8P7uK/g9/i4AYEzXQHw6vjOcJCKdn6F3q6aY/3AYVv59A0uir6F3i76Cyk79XgzbjvrU0XG2tbrF2PmobjE8nz31qeMFbUVII3QmJR+ProrD7/F3IeI5vP9EBP43sesDDbq6zBsShk5BnpCWKvHenkRQRwdCCCGmRI06QmooLFFi0Z7LeHrtCaTllyDQ0wmbZ/bBzAEt65xcuDYSEY8vn+4CBzGP2KRcnMoRnpcQQgjRF91+NSIa/WrbI9SKSspwJJPDByvjIC1VAQDGdw/EwkfD4e4k0fszA0BLHye8OrQ1PvvrBn5P4TEztwihTR4cXUEj1Azbjka/0nG2hbqFRr8ahka/Pvie9aHRrw1AI9TsQ6kKOJ7FISaTR5Gy4mpagDPD2JYahHs2/OuhYcBXV0S4XcShracGc9trwNNFO7tEo18JIaZAo1/NiEa/GpZmyRFqCoWCnbiRxV7ddp6Fv3dA+zSIru/vYz//m8RKSsuMGrcraTks7J19LDQqmq2Lu2nWUVbGjp09n3M119HoV/s8zjT6leoWS8eORr/aABr9aliauUaoKdUanEnJx1+X7+FgYhYypWXatLZ+bni+XygcMhIw6qEWeu+/vjK18ffEk8012JkiwvK/bmBIe3+E+roK3g+NUKPRr9YyitOejjONfqW6Rch2tjT6lRp1xG6VKdW4kiHFyVv5OHU7H2dT8lFSrtamuziI8HinAEzq3Rzdm3tBpVLhwL0Ek5VngD/DXc4bJ28X4I0dCdj2Ql+I6D4sIYQQI6FGXRWvv/46zpw5g27duuGrr76ydHGIQEq1BncKSpGSV4ybWXIkZspwJUOK5JxiqDXV+8R5u0gwrL0fHunoj/5hTQRPT2IMPAd8MrYjnvjmOM6kFODno7cxe1Ars70/IYQQ+0aNuvvOnz8PuVyOuLg4zJ07F2fOnEGvXr0sXaxGT6UBMqVlyC8tRmZBMY7e43Djn5vIK1HiTkEpUvNKcLew9IHGWyVfVwf0auGDPq188FArX4T7uYO34NWxYG9nvP9EBN7+/RI+/+s6erf0QZcQL4uVhxBCiP2gRt19J06cwLBhwwAAw4YNw8mTJ6lRVwfGAJVaAzXUUGsYVBoGtYahTFGOQkXFQ+814FGm1KBMqUaZUgN5mQLnczmUnr8LJeOgUKohL1PiShqPM9FXIVeoUVhSjtRMEb5JPoaiMjVkZUqUlIuBU/9WeXcRcPvWA2VykvBo4euKFr6uiAj0QIdAD3QI9ISfh6Nec8uZw8ReITh8LRsHE7Pw4i/nsW/+ALg7WFcZCSGE2B67bNQtWrQIO3bswLVr17BlyxZMmjRJm5aTk4MZM2YgJiYGISEhWLNmDYYOHYrCwkK0bt0aAODp6YkrV66YpGw/HUvB7kQeO3LOgeM4MAYwsIq/Vf8NAPeXAWjXMcbu/63cpuoyg0bDIJWK8O3tE9r3rLnfyn1A+x6ARsNQXCzCF9fiwIBqjTWVWlN9WSMGTv5dxycUA+eP1pEmAm7UjCsP3E2vsswBRcXV98hzaOruiKZuDtCUFKJjWHP4ezoj0NMZob4uaNHEFc3cra/xVheO4/DF010w+ptjuJ1bjFe2xeOHqd0sXSxCCCE2zi4bdW3atMGqVavw/vvvP5A2b948BAYGIjc3FwcPHsSECROQnJwMLy8vyGQyAIBMJoOXl5dJynY9S45rUh6Q5plk/xU4oKTIsHyKUoPflecADgwSsQiOYhGcJDycJSI4SURwEHMokUkR6NcELg4SOEl4OIg43Lubjo7hYfB2dYSrA4+biRcR2b83fNyc4SwGTsXFYvyoR+Ho6AClUokDBw7gscciTDpCzRw8nCT4dmp3jF19HHE3crHqn5toZ+lCEUIIsWl22aibOnUqAGDZsmXV1svlcuzZswcpKSlwcXHBmDFjsGLFCuzbtw99+/bF2rVr8fTTT+Pvv//GjBkz6ty/QqGAQqHQLlc2BoXM+j6+ix9citLRqWNHiEUigOPAAeA43P9bsYz761BlXcU2nHZbcDXTAJVKjQvx8ejevRvEEnG17avmR41llUqFs2fOoHfv3pBIxBDzHMQ8DzHPQcRzEIk4iHkOTK3GsaP/4uEhkXBycNCmi3kOarUKhw4dwvDhDz/Q6FIqlffTOmvTKtalYvjgUEgkFU9sOJTF0DPEQ7vsKgHUahWUSs4qZ31vyMzlrX2d8dHoCCz47RK+/fc2poRxGE6zvuu1nb09UaIhdUtdZTcWezrO9EQJqluEbEdPlLAykZGRmDNnjvb2a3x8PEaOHIns7GztNvPnz4eLiwuWL1+OV199FefOnUOXLl3wzTff1LnfxYsXY8mSJQ+sp1nfiSH2pfH4+y4PEccwt70GbYzwFAtiGQ19ogTVLYSQ2gitW3gzlsni5HL5A8Hw8PCAXC4HAKxcuRJxcXE6G3QA8M4770AqleKLL75AeHg4wsLCTFZmYv8eD9Ggm68Gasbhp+s8sgy/A05sHNUthJCGsMvbr3Vxc3PT3s6oJJPJ4Obmptd+HB0d4ejoiAULFmDBggWQyWTw9PTEkCFD4OHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xogbAPQfqMDT3x5DipzD+ttu2PxcN/h7OAmKW23rzBk7ezrnam4D6Pd9rVm/6KshdQsdZ/uqW4Tmq2+butKpbrFs7ADT1C2N6varXC6Hr68vUlNT4e/vDwAYNGgQZs2ahWnTpum9f3roNjEmuRL432URcss4+DkzzO+ghrttjwdpdBp6+7US1S2EkKqE1i122ahTKpVQq9UYMWIEZs+ejQkTJsDBwQE8z2PChAnw8fHBypUrcejQIcyYMQPJycnw9vY2+P0qf01nZmbSlbpG9mva2L8Iw7v3xYxNF3FPpkA7fzf8OLkTzp2Io1/TNnSlLiAgoMGNuqr7E1q30HG2r7pFaD66Umd4Plu7UiekbrHLRt2MGTOwYcOGautiYmIQGRmJnJwcTJ8+HbGxsQgODsaaNWu0kw7ri35NE1PILgVWXRFBruTQwo1hboQaTuZ7mhlpALpSRwgxhUZ9pc7c6EqdYWn28GvaVL8Ir92TY8bGeMjKVGjhxrD5hX7wcXOqc1+N9dc0Xamj42yvdYvQfHSlzvB8dKWOVEO/pokppcmBbxNFKFFzCHFlmNteDVfqY2fV6EodIcQUBNctjDSYVCplAFhubi4rLy9nxcXFbPfu3ay4uPiB5Zppxn4Zun+h+XRtp2+arjgJWbaG2BkjbrrSzyVnsYiF+1hoVDQbuSKWZRbIjRJLS8fNWs+5muv0/Wy5ubkMAJNKpWavW+g421fdIjSfoXWLkLhZOnaWPOdMHTtT1S2Nap46QmxNO383vNxBjSZuDriWJcfkH88gQ1pm6WIRQgixQnT7tQHoFgkxl+xSYHWiCIXlHDwlDHPaqxHoaulSkZro9ishxBTo9qsZ0e1Xw9Ls4RaJOS/zp+bI2NAvYlhoVDRr9+4+FnvljsGxtHTcrPWcq7mObr/a53G2hbpFaD66/Wqac87UsaPbr4Q0cgGeTtg6qze6h3iiVM1h9i8X8eeVLEsXixBCiJWg268NQLdIiCWUq4FNN3lczOfBgWF0qAaRAQwcZ+mSEbr9SggxBbr9akZ0+9WwNHu4RWKpy/y/79rNonacZ6FR0Sw0Kpq98et5tvP3xneLhG6/0nG217pFaD66/Wqac87UsTNV3WL8WRYbMYlEAolEonO5rjRTl8XY+XRtp2+akLhZe+yMETdd6TXX8xyw9MkOCPPzxLIDV7HjfAYuePAYNBRo4mKZ2NnTOVe5zpAymoI1fUfs6Thbe91SWKLETRnQPLsUnZs7Q8TXfTneWHWL0HWN5ZzTld6Q2BlSRiGoUWdESqVS+6pcru1vzX8buwyG7F9oPl3b6ZtWX5yExNGYDNm/MeKmK11X3FQqFaY/FIJgL0e8vuMSbsiAp9aexA/PdkeQh0Ot+U0RO3s65+pbVx9TnptC6hY6zrWvs7W6pVihwid/XsfO8xlQacT4+spJNPdxxidjO6B3Cx+99m1I3dKQWBqTJc85XenGip2QMuq7HfWpawDq90Ksxd1i4IdrIhSUc3ARMTwfrkEbT/pqmxv1qSMNdacY2JAkQnZZxVU5H0eGEhVQpubAcwwz2mjQxZe+240N9akzI+pTZ1iaPfR7saa+Gxu372ajvvqXhUZFs9bv7Gdvrd1j9/1eqE9d4+jf1BjqFoVCwb4/coOFvbufhUZFs4c+/pvFXrnDdu/ezbILpGzupjMsNCqatV14gJ2/nSt439SnzvDtqE9dI0d96gxLs/V+L/rkMWXfDQ8H4JeZvfDunqvYl5CBX2+J4HgwGR+M6oDKzey13wv1qWsc/ZvstW7JLy7HW78l4O+r2QCAERF++OypznCVcDhwA/BydcZXz3SHYtM5/HMtGwt+u4TolwfAxUFc777rS6c+dfbVp47mqSPEjjhJRPhqUle8OjQMALDxZBqeW38G0lLT9BUihDTMsZu5eGxVHP6+mg0HMY+loztg7bM94OXiUG07sYjHl093gb+HE27lFmPZ/qsWKjGxZtSoI8TOcByHeZGt8HxbNZwlPOJu5GLC2lPILrV0yQghlcqUanwYnYgpP57CPVkZWjd1xe4X+2Na3xbg6ph00svFASue7gIA+OVUGs6lFpizyMQG0O1XI6LRr41rhJo+eSwxyqqLL8Pjkd3x0q+XcTuvBCsKRWjZIQuD2/kJ+3AC2dM5V9+6+tDoV8PzNaa65UhSDj7cfx2p+SUAgGd6BePtR9rCxUFc77nYK9QT47sHYuf5DCz8/SK2z+6hs+w0+tXw7Wj0ayNDI9SILZCVAz9dFyFFzoEHw9gWGgz0pydQmAKNfiW6pMuBP+7wuFJQcZPMQ8IwqbUGHbz1+29YrgSWXRChRMVhTKgaQwLpv3F7R6NfzYhGvzaeEWq2OMqqvLycFUiL2FNf7NU+gSLqtwusuLSMzjka/dooj7M546ZQKNiRxLvs8U//+/61fmc/W7r3EsuTlRgck19O3GKhUdGs3Xt/sHW/0uhXY59zpo4djX61ATT61bA0WxmhZow8lhqh5gpgSmsNHu7eDp8dTMK2M3eQkleCb6f0gLdr9Q7ZhrKnc65ynSFlNAVr+o7Y03E2Zdyyi8oQnZCJLafTcDNbDoAHzwFPdgnE/KFt0Lqpm+B91VauSb1b4Pf4TJxNLcDvKTym0OhXg/PZ0+hXatQR0khwHDBrQAuEB3jg5a0XcPJWPkavPoYfp/dEWz93SxePEJvGGENyTjFir2fjz8v3cC6tAJWdm5wlPLp6q7B40kCEB3oZ5f14nsNHYzviia+O4mI+j8PXczCyY6BR9k1sFzXq7ktPT8fo0aORmJgIuVwOsZhCQ+zTw+388PuL/TBrw1mk5Zdg3Jrj+OqZrnjYyAMoCLFnpeVqXLsnw+W7Upy6nY+Tt/KRK1dU26ZLiBee6h6Exzs2Q9zhQ2jV1NWoZWjn74Hn+oXih6MpWBp9FQPbNqs2dx1pfOjo39e0aVMcPnwYY8aMsXRRCDG5tn7u2D2vP+ZuPodTt/Mxc8NZvPNoO8we2KrO6RQIaWwYYygoUSIlrxhpeSVIzSvBrVw5rmTIcCtHDk2N8QmOYh49W3hjRIQ/RnTwQ4CnMwDTjaoFgJeGtMJvp2/jbmEZvvrnJt5+tJ3J3otYP2rU3efk5AQnJydLF4MQs/FxdcCmmX2waO8VbD2dho8PXMP1e3J8PK4jHMUiSxePEJMoV2mQX1yO7FLg4h0pSlQMObJS/JvB4dJfScgrViK7qAw5RQpkFpahSKGqc19N3BwQEeiJHs298VArH3QJ8YKTxLzfHRcHMZ5qqcEP10X4Me4WxnYLQrg/dadorGy2Ubdo0SLs2LED165dw5YtWzBp0iRtWk5ODmbMmIGYmBiEhIRgzZo1GDp0qAVLS4h1chDz+HhsR7Tzd8fS6ETsPH8HKXnF+G5qDzR1d7R08YgeVGoNFEo1ytUVtwZVjAcDA2MAQ8VVp4q/qFgB1JnOwKpsU7GuXKlEgQLIKCyFSKxE1cmwKvPU3BcAKJUq3CsBbmRXdGup3FatqXip7v9VlCtxvZCD241cgOO161UahvJyJc5nc5CfvQPG8VCpNVBpGBQqDYrLlLiawuP0vqsoVzOUqTQoVSiRnsljU8ZpKFQMJeUq5BaK8PbZv1Gq1NwvmRi4cKpKBEVAakqtsQ3wdEJzHxe08HVFaBMXtPf3QIdADzTzsI4LAR19GIa3b4ZDV7OxcNclbP+/vuB5uuLeGJm9UVdaWooPPvgAO3bsQH5+PmQyGf766y9cvXoVr776quD9tGnTBqtWrcL777//QNq8efMQGBiI3NxcHDx4EBMmTEBycjIUCkW1xh8AuLm5ITo6uqEfixCbxXEcpvdrgVZNXTHvl/M4l1qA0d8cxQ/Te6JDoKeli0cEWvXPDXx9+CYAMd48/Y+J3kWMxefjDMr3ScJxAduJgKvn605LTqwjjQcy0x9cJy2ssswB0GiXnEQMPm7O8HCWwMNJDFVRHrqEt4S/pzOaujuimbsT/DwcEeLjYvarb4Z477FwHEvOw9nUAmw6mYrp/VpYukjEAszeqHvxxRehVCoRHR2NgQMHAgA6d+6MV155Ra9G3dSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtGmJjY431UQixKwPbNMXuef0xa8NZ3MotxlPfnsD/JnbBIx0DLF00YmYcV9EEquxfyd1fp9FoIBKJtMscuAe25+5n+C8/g1KphKODgzad4wCe4yDmOYhFPMQ8B54DSorl8PbygFgkgpjnIOI5bVp+bg4C/P0gEYkgElWsdxKL4CAC7qanIqJtGFycJHASiyDhgeuJl9C7Rze4OTtAwgEXz53Eo8Mi4evmAkcRw19//oHHHhsEiUQCpVKJAwcO4LFHw006XZIpBXo54+1H2+GDPVfwyR9XMahtU7RsYtyBGcT6mb1Rt3//fqSnp8PR0VFbYQQEBCAzM9Mo+79x4wY8PT0REPDff0RdunTBlStXdOYrKyvDE088gYSEBIwcORKLFy/WNjprUigUUCj+G+Ukk8kA0GPC7O1RPsbMY+nH0QgtZ4iXI7a/0Buvbr+IozfzMGfzebw6NAwvDm5Z5wAKezrn6ltXn4aemw2pW/5vQCie7RWAmJgYPPzwEDjcb5xw4LSNLlRpVFUezaoNLV2DZJRKJQ4dOoThwx/Wq+HzX74BOvP9t13PB7b7L61jHWm3MXxQqDZNqVTiUM5FDAv31Tba8q8B/m4SSCQVt4Rrxq/qX2Mz5Xek6jYTuwfij0uZOHErHwu2X8CWmb2gUatq3Qc9Jszy9bKQMuq7ndkfE9a2bVscPnwYwcHB8PHxQX5+Pm7fvo3HHnsMV69e1Xt/kZGRmDNnjva2alxcHJ577jncvHlTu83ChQtRWFiI1atXG+UzLF68GEuWLHlgPT3Kh9gLNQN2p/D4917F44y6+2rwTGsNHKz/LpRFNfQxYVS3kIbKVwCfJoigUHN4srkaQ4PoEWL2QGjdwpuxTACAV155BaNGjcJvv/0GtVqN6OhoPPPMM3rdetXFzc1N++u2kkwmg5ub8Nm76/POO+9AKpXiiy++QHh4OMLCwoy2b0KsgYgDxrfUYGIrNXiO4Xwej6+uiFCoqD8vMRzVLaShfByBsaEVfQf3p/O4W2zhAhGzMvuVOgDYsWMHfv75Z6SlpSEoKAgzZ87ExIkTDdpXzSt1crkcvr6+SE1Nhb+/PwBg0KBBmDVrFqZNm2a0z1CVTCaDp6cnMjMz4eHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xoibrnQhcattnTFjdyalAK/suILCUiX8PRzx/ZQuCKsyiao9nXM1twH0+77KZDIEBAQYfKWutv0JrVtM/R2xp+NsC3WL0Hy1bcMYw7xtlxB7Iw8tfJzxYlgRHhlmfXWLMT5/Q/JZsl4GTFO3WKRRZwxKpRJqtRojRozA7NmzMWHCBDg4OIDneUyYMAE+Pj5YuXIlDh06hBkzZiA5ORne3t5GLcPq1auxevVqqNVqJCUl0S0SYrdyy4Dvr4mQVcrBRcTwQns1WtJUWA9o6O3XSlS3kIaSK4HPEkSQKjn0bqrBlDBN/ZmI1RJat5ilUffZZ58J2u6tt94SvM8ZM2Zgw4YN1dbFxMQgMjISOTk5mD59OmJjYxEcHIw1a9Zg2LBhepVZH3SlzrA0e/g1bQu/CI0Vu8ISJeZuvYiEuzI4inl8Ob4DHg5vYlfnXM1tALpSV8mejrMt1C1C8+na5mxqIWZsjIeGAR8+0RbjuwfpzEdX6oSlN/ordc8995z23yUlJdi1axf69OmDkJAQpKen4/Tp0xg3bhy2bt1q6qIYFf2aJo1NuRpYf4PHlQIeHBgmttKgr59NXuw3CbpSR6zNX3c4HEgXwYFnWNBJDX86jWySVV2pq2r8+PGYNm0aRo8erV23d+9ebNy4Eb/99ps5i2I0dKXOsDR7+DVtC78IjR07lUaDxdFJ+P1CxTRELw0KRVh5Mh5+2PbPuZrbAHSlrhLVLYaz1JU6AFCUK/H0mn9xQ8ajpa8Lts3sAXen+s99ulJHV+oE8fT0RF5e3gMB8vX1hVQqNWdRGox+TZPGijHgQDqPg3crBtAP9NdgXAsNGvuTiehKHbFGsnLgy0siFJZz6Oitwcxw+q7aGsF1CzOzfv36sUWLFjGlUskYY0ypVLIlS5awvn37mrsoRiOVShkAlpuby8rLy1lxcTHbvXs3Ky4ufmC5ZpqxX4buX2g+Xdvpm6YrTkKWrSF2xoibrnQhcbNk7H769yZrERXNQqOi2StbzrKS0jKbPudqrtM3brm5uQwAk0qlZq9bTP0dobrFOmMntG45dSOTtVl4gIVGRbPP/0i0+rrF0uecrnRjxM5UdYvZ56nbtGkT/vzzT3h7e6N169bw9vbG/v37sXHjRnMXhRDSQM8+1BzLx0aAB8PuhHt4fccllKtolB0h1qZjoAc+ejICAPBN7C38fS3HwiUipmCxKU3S0tKQmZmJgIAANG/e3BJFaDC6RUJIhYv5HNYn8VAzDhFeGjwfroHE7D8ZLY9uvxJr93sKjyOZPBx4hlc6qhFMj4e1CVZ7+zUrK6vOl62i26+GpdnDLRJbuMxv6thV7vuvhDTW9v7tnUlrj7OCohKbO+dqrqPbrw37fljrcbaFukVoPn3rlpLSMvbM98dZaFQ06/zePpacmWfUWNpK3AyJnT5xqi9WdnP71d/fHwEBAfD399f+u/JFCLFdA8J88dO07nB1EOHErXw8v/E8ispM84B0QohhxCIe30yqeCqMVMlh7taLKCpTWbpYxEgs/kSJe/fu4aOPPkKfPn3w7LPPWrIoeqNbJIQ8KKUI+O6qCKVqDiGuDC9GqOFi/FkirBLdfiW2Il8B/O+SCDIlh3aeGrzQTgNRI+wyYStMdvs1Pj7esPsIOigUChYUFGT0/ZoL3X41LM0ebpHYwmV+U8eutn0npOaxrkv+YqFR0WzUV/+yXKl+54ulzrma6+j2a8O+H9Z6nG2hbhGaryF1y9ebd7N271V0mXhzezyTy+VWX7eY65yrL3bWevtV79/PTz75JNzc3PDMM89g8uTJaN26taENT61Tp05BpbL9y78SiQQSiUTncl1ppi6LsfPp2k7fNCFxs/bYGSNuutKFxK22deaMXdV9d27ugy2zH8LkH07i4l0Znt8Uj00ze8PDSdhnq2//DU0TEhdD4maO2BqybMqyGDsf1S2G5TOkbglxA/73dGe8uOUCtp+7Cz8PR4TVsW1jPed0pTekXjakjELo3ahLS0tDXFwctm7dir59+6Jly5aYPHkyJk6cCH9//3rzt2/fHhz336yHJSUlyMvLw6pVq/QtitVRKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8aurn2HNXHGhhk9MW3dWSSkF2LaT6fw87SK2ez1KZM5z7n61tXHlOemkLrFEsfZWPmobjEsX0PrlkGtvfHBE+2xeN9VfB1zC+NbcBhu5XWLsfJZul4WUkZ9t2tQnzq1Wo2//voLb775JpKSkhAZGYnnn38eEydOBM/XfnP+yJEj1ZZdXV3Rtm1bozxSx9yo3wsh9btTDKy+IkKJmkMLN4a5EWo4iSxdKtOgPnXEVlU+IxYAng1To2dTeqazNTH5lCYXLlxgb7/9NgsNDWVdu3ZlX3zxBdu6dSsbNGgQGzVqVJ35Pv/881rXf/nll4YWxeKoT51hafbQ78UW+m6YOnZC9h2fkss6LfqThUZFs3Grj7L8ohKrPOdqrqM+dQ37fhjrO9IY6xah+YxVtygUCrZw5wUWGhXNWr+zn/116a7FY0d96v57maxP3dKlS7F161aUlZXhmWeewYEDBxAREaFNHz16NHx9fXXmf+ONNx5Yv2zZMrz++uv6FseqUJ86w9Lsod+LNffdsIZ+L11DffHLrIcw5ceTOJdWiP/75QJ+nNpNrzJRnzrr+I5Q3WI4a+tTV3P9+4+3x7VbaTiby2P+tgRsntUHXYPca83fWM45Xel20afuzp07WLt2LQYNGlRrurOzM44fP/7A+u3btwMAVCoVduzYAVblrm9KSgp8fHz0LQohxIZ0CvbEppl9MPXHUzh9Ox/ztyXgSfraE2I1eJ7D5NYauPs2Q8z1XDy//gw2PdfT0sUietC7Uff999/Xu03Xrl0fWPftt98CAMrLy7FmzRrteo7j0KxZM6xfv17fohBCbEyXEC/8NKMXpv18Ckdu5ELqy+NxDYPpro0QQvQh4oGvJnbBzI3xOJ2Sjxnrz+GFNpYuFRHKbFOCxsTEAAA++ugjvPfee+Z6W7Oi0a+Nb4SarYyysqYRat2C3bHmma54YXM8LuTxWLj7Mj4Z27HaqHih+6fRr9Z7nPXNR3WLYflMUbeIoMF3U7riuQ3nkHBHitWJIvS/W4iIIK9Gc87pSrfb0a9C5ebmokmTJgCA7OzsOrdr1qyZqYtiVDRCjRDDXcjjsD6JBwOHyAANxoRqUEe7zmbQ6FdiT0pUwJpEEdKLObhLGOZ3UMPP2dKlapxMPvpVH25ubtp/cxzHeJ5nHMdVe/E8b46imASNfjUszR5GqNnCKCtTx64h59w73+9hoVHRLDQqmn3551WLn3M119HoV+McZ6pbrH/0a13r7uYWsn5L9rHQqGjW+6NDLDE9p1Gcc8aInU2MfgWA1NRU/Pbbb8jIyEBgYCDGjRuHli1b1rl9UVGR9t8ajcaQt7QJNPrVsDR7GKFmzaOsrHmEWp9mDK3Cw/HRgev4KiYZnq6OmDmg9rqERr9ax3eE6hbDWfvo19rWNfVwwYsRaqxP88SN7GI8vykBs1s1nnNOV7o1jn7V+/G90dHR6Ny5M86dOwcHBwecP38e3bp1w759+/TdFSGEYHrfUCwY3hYA8GF0IvZcuGvhEhFCqnKTABuf64nWTV2RKS3DN4ki3C0stXSxSC30vlL3zjvvYM+ePYiMjNSu+/fffzF37lyMGjWq3vzp6elYunQpEhISIJfLq6UlJibqWxyjOXLkCN5++22IRCL07t0bK1assFhZCGlsXno4DAUlSvx87Dbe2JEAH1cHDGzT1NLFIoTc18TNEVtmP4SnvzuB1PwSTPnpDLbO7osADxq7bk30btTdvXsX/fv3r7aub9++yMjIEJR/4sSJaNOmDZYsWWJVHX/DwsIQGxsLR0dHTJ48GZcuXUKnTp0sXSxCGgWO4/De4+2RXVSG6IuZmLPpHLa90Bedgj0tXTRCyH1+Hk7YPLMnxn99BHcLyzDx+xM0j52VEdyou3PnDoKDg9GnTx8sXrwYixcvhkQigVKpxJIlS9CnTx9B+7l8+TKOHj1a57NhLSUoKEj7b4lEApHITh9OSYiV4nkOXz7dBQUl5Th2Mw/PrT+NnXP7IdDDwdJFI4Tc5+/hhJc6qLEhzRPJOcWY8tMZzGxt6VKRSoJbVpWPAlu7di1iY2Ph4+OD1q1bw8fHB4cPHxY0KTEAPPLIIzh58qRhpa1i0aJFiIiIAM/z2LZtW7W0nJwcPP7443BxcUF4eDj++ecfwfs9f/48cnNzqz36jBBiHo5iEb6b2gMRAR7IlZdj2s+nkSdXWLpYhJAqPB2Azc/3RFs/N2QVKfDNFRFuZsvrz0hMTvCVOnZ/OrvmzZvj2LFjSE9P145+DQkJEfyGzs7OeOSRRzBixIgH5qWr+qSJ+rRp0warVq3C+++//0DavHnzEBgYiNzcXBw8eBATJkxAcnIyFAoFJk2aVG1bNzc3REdHAwDu3buHl19+GTt37hRcDkKIcbk7SbD++V4Y/+1xpOaVYNameDwbbOlSEUKqauLmiK2zH8KUH07iWpYcU38+iy2zH0K4v7uli9ao6dWnLj09vdozWwMCAsAYQ1paGoCKBl99WrVqhQULFuhZzAdNnToVALBs2bJq6+VyOfbs2YOUlBS4uLhgzJgxWLFiBfbt24dp06YhNja21v2VlZVh8uTJ+Prrr+Hn56fzvRUKBRSK/64eyGQyAPREicY467utzFxua7O+ezuJ8NOz3THxh9O4nCHDumIeI4cr4KrHPmzxiRINrVts7TgL3a4x1i1C81mybvFwlODnZ7vi6W/jcKe4HJO+P4ENM3qifYBxGnb0RIkH37M+gp8owfM8nJycUNfmHMehpKRE0JsaU2RkJObMmaO9AhcfH4+RI0dWe3LF/Pnz4eLiguXLl9e5n2+//RZLlixBu3btAACffPIJ+vbtW+u2ixcvxpIlSx5YT7O+E2JcqUXAN4kilGs49G6qweTW1v3UiYY+UYLqFmKLqj55wkXM8GJ7NULcLF0q+yK0bhHcqHN3d682ibChPvvss1rXOzo6Ijg4GEOHDoWXl5fg/dVs1MXFxeG5557DzZs3tdssXLgQhYWFWL16dYPKXqm2X9MhISHIzMyEh4cHVCoVYmJiMGTIEIjF4mrLAKqlGVvN9zZ2Pl3b6ZumK05Clo3NkP0bI2660oXErbZ15oydqc+5mOvZmP/rZWjAYX5kS8wd1ELQPgyJU81tAP2+rzKZDAEBAQY36hpSt9j6caa6xbB81lK39Og7EC/+egUX78rg7ijGd5M7o1tIw0avW/Kc05VujNgBpqlbBDfqPDw8tLcCGmLSpEnYtWsX+vTpg+DgYNy5cwenTp3CqFGjkJGRgcTERPz+++94+OGHBe3PWFfqDEHPZyTEPI5lcdh+q2JE+tQwNXo1Nfkjqw1Cz34ljVmZCvj+mgjJRRwceIZZ4RqEe1nnd9XWCK1b9B4o0VAqlQo7d+7EE088oV23f/9+rF+/HsePH8cvv/yC119/HRcuXDBo/23atIFUKsW9e/fg7+8PAEhISMCsWbOMUfxq5s2bh3nz5kEmk8HT0xNDhgyhK3WN7Ne0LfwitIcrOIiJgUuzYKw/eQfbbokxvF8X9GrhbZVX6ozBkLrFHo4z1S3657O2umXYMDVe2X4ZR5Pz8UOSGCue6oCh4YZNJE5X6v4jtG4RfKXOWDw9PZGfn19tHjiVSgVfX19IpVJoNBp4eXnV+wGUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb2N+lno1zQh5qNhwIYkHhfyebiIGF7tpIafs6VLVR1dqSMEUGmADTd4XMznwYNhSpgGPa306rqtEFq3mH0G4IiICHz88ccVv74BqNVqfPrpp2jfvj2AihG2QvrUzZ49G87OzoiLi8O0adPg7OyMf//9F0DF1Cjp6enw9fXFG2+8ge3btxu9QUcIMS+eA6aEadDCjaFEzWHtVRHkphmsSAhpADEPzGirQa8mGmjAYfNNHsezrHiEkz1hZnb9+nXWo0cP5u7uzlq3bs3c3d1Zz549WVJSEmOMsVOnTrGdO3eau1gNIpVKGQCWm5vLysvLWXFxMdu9ezcrLi5+YLlmmrFfhu5faD5d2+mbpitOQpatIXbGiJuudCFxs3TszH3OZeYXsf6f/sNCo6LZk1/9y7bvNN45V3Odvp8tNzeXAWBSqdTsdYu9HeeGpNlD3SI0nzXXLWVlCvbuzgQWGhXNQqOi2bcxSVYTN0vHzlR1i/E7D9Sjbdu2OHv2LFJSUpCVlQV/f3+EhoZq03v37o3evXubu1iEEBvh6+aIH5/tjok/nELCXRm4Uh6PmrcXCSFEAJ7nsOiJdnB1FOH7uBR8+mcS5GUqvPxwa3DWPDeRDTN7n7pKJSUlyMvLqzYAQ8jkxdaE+r0QYjk3pcCaqyKoGYehgRo8GaqxdJGoTx0hdTh0l0N0WkVf+sgADcaEWveck9bG6PPUGculS5cwbdo0XLx4saIA94+qg4ODRSYvNobKEWo0T13jG6FmC6Os7HlU5O4LGXh373UAwLIn22Fs1wCd+ax9nrra9ie0brHn49wY6xah+Wypbtl8+g4+/vMGAOCpbgFY9Hg4RHzdLTsa/fofo89TZyz9+/fH8OHD8fbbbyMgIACZmZn44IMP0Lp1a/zf//2fOYvSYPRrmhDL25/G4+BdHiKOYV6EGq0b3pYyGF2pI0S3k9kctiXzYODQxUeDaW00EJt9yKbtEVy3GKU3rx48PT2ZWq1mjDHm5eXFGGNMoVCwoKAgcxfFaGighGFp9tCZ2RY65Jo6dpY+537ftZvNXn+KhUZFs65L/mK3sqQGx6nmOhooYT3HubHVLULz2WLdsjc+nYW9u5+FRkWzSWuPs/yiEqs750wdO7sZKOHl5YXCwkL4+PggKCgICQkJ8PHxgVwuN3dRjE4ikUAikehcrivN1GUxdj5d2+mbJiRu1h47Y8RNV7qQuNW2zpyxs9Q5x3PA5091wt2fzuJKhgxzfrmAnS/2g+P9bQ2JU+U6Q8poCtb0HaG6xXCmjJ0t1S2jugbD180JszeexYlb+Zi27hzWP9cLvm6OBn22ulhzvWxIGYUwe6Nu1qxZOHLkCMaOHYtXXnkFAwcOBM/zmD17trmLYnRKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b8x4qYrXUjcaltnzthZwzkn4Ri+ndwV4787ietZRZi/5Ry+mtDxgXz6fDcN+b6a8twUUrfY+3FuTHWL0Hy2Wrf0CvXEpud7YubG87h0V4qnvj2OdTN6IMjrvxnFLXnO6Uo3VuyElFHf7Sw2+rVSamoq5HI5OnToYMliGIT6vRBiXVKLgK+viKBkHB4O1GC0mUfEUp86QvSTXQqsSRShoJyDpwPD3PZqBNCp/gCr61PXvn37el+2ivrUGZZmD/1ebKHvhqljZ23n3O9nU7WTnb7z/R7qU2enx9mY3wdrrFuE5rOHuiUtV8aGfhHDQqOiWefFf7JTydkWP+dMHTub71N3+/ZtNG/eHFOmTMGgQYPscuJB6lNnWJo99Hux5r4bja2v1dgezXE7vwxf/XMDv97iMSpDjr5hzXTui/rUGV4WY+ejusWwfLZct4T4SvDb3H54bv0ZxKcVYvq6c/h2anf0b+XdoH1bc71sSBmFMFujLjs7G7///jt++eUXrF+/HhMmTMCUKVPQuXNncxXB5KhPXePr92IrfTcaW1+reYNa4FpGIQ5ezcGLWy5g55w+CPF2oT51DSyDIfumuoX61AnhKuGwfnp3vLQ1AXE38zBrw1l8MqY9HAzYt63Uy0LKqO92FulTl5WVhW3btmHr1q0oLi7Gr7/+ioiICHMXo8Go3wsh1qtcDXx1RYT0Yg4BzgyvdlTDycQ/Y6lPHSENo9IAv9zkcT6PBweGcS00GBRAjwG0uj51VRUUFLC1a9eywYMHs7CwMHbp0iVLFMNoqE+dYWn20O/FFvpumDp21nzOrf91N+v54UEWGhXNnvv5FCuSy6lPnR0eZ3usW4Tms8e6paxMwd77PUHbN/bT6EtMoVCY9Zwzdexsvk+dQqHA3r17sXnzZsTHx2PMmDH49NNP8dBDD5mrCCZHfeoMS7OHfi/W3HejMfe18nIEvpvSDc/8dAaHr+fg27g0tK1le+pTZ3hZjJ2P6hbD8tlb3bJ0TCd4uzrgq8PJ+DYuFfmlGiwb2xFikfDHT1hzvWxIGYUwW6POz88P/v7+eOaZZxAVFaV91tnp06e12/Tu3dtcxSGENBKdgz3x6bhOeH17AlbH3sJzbTk8ZulCEUJ04jgO84e0xr2UJPx2W4Rfz6YjR67AN5O7wcXB7FPs2gyzRcbLywsKhQLr16/Hhg0bwGp05eM4Drdu3TJXcQghjci47sFIzJDhx6O38ctNHuPuFaFTiI+li0UIqUd/P4YhD3XFq9sv4vC1bDzzwyn8PL1nnU+faOzM1qhLSUkx11tZDI1+bXwj1GxllBWNigQWDGuNxIxCHL9VgDm/xOP3OQ/B3YF7ID+Nfq27DIbsm+oWGv1qqMp9Dg7zxqbneuKFzfFISC/E+G+P46dp3dHcp/bBQ7ZSLwspo77bWfyJEraMRqgRYluKlcCXl0TIU3Bo46HB3AgNREacMpNGvxJiOlmlwHdXRchXcHCTMMxpp0aIm6VLZR5WPfrV3tDoV8PS7GGEmi2MsjJ17GztnPt2y27W/v0/WGhUNHvv9ws0+tVOj7Ot1y1C8zW2uuVOXhF75H9HWGhUNGv//h/s7ysZJjnnTB07mx/92hjQ6FfD0uxhhJo1j7KiUZHV0wJcgC/Gd8KLWy9g06k7ULXm8BiNfjW4LMbOR3WLYfkaS90S5CPB9jl9MXfzeRy9mYv/2xyPT8d3xlM9gnXmE7p/fdKtcfSr8LHBhBBiJ4ZHNMOrw9oAALbf4nEhvdCyBSKECObuJMHPM3phbLcgqDQMb+xIwOqYmw8MwGyMqFF3X0ZGBvr164dBgwbhiSeeQElJiaWLRAgxoZcfboPh7ZtBzTjM25qALFmZpYtECBHIQczjywldMGdwawDA539dxwd7rkCtadwNO2rU3efn54ejR4/i33//RY8ePbB//35LF4kQYkI8z+Gz8R3h78yQXaTA/206hzKl2tLFIoQIxPMc3n60HRaPigDHAZtOpmLu5sb9PaZG3X0ikQg8XxEOjuMQHh5u4RIRQkzNzVGM2e3U8HQW40J6Id7bfZlu4RBiY2b0b4nVk7vDQczjYGIWpq8/B7lpZqexejbbqFu0aBEiIiLA8zy2bdtWLS0nJwePP/44XFxcEB4ejn/++UfQPo8ePYoePXrg77//RmhoqCmKTQixMk2cgJVPdwHPAb+du4ONJ9MsXSRCiJ4e6xSATc/3hoeTGOfTCrHysgipeY2vG5XNNuratGmDVatW1fposXnz5iEwMBC5ublYvnw5JkyYgIKCAty7dw+RkZHVXk888YQ234ABA3Du3DmMGTMGP//8szk/DiHEggaE+eLdx9oDAD75Mwk3pEacvI4QYhZ9Wvli59x+CPJyQk4Zhwnfn8K51AJLF8usbHZKk6lTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6P4VCAUfHiseOeHp6Qq2u+568QqGAQqHQLstkMgD0RInGOOu7rcxcTk8aqH1d1b/T+gTj8p1C7E7IxLokHqNzihDk5SSojDX3b6iG1i10nGtfZ4t1i9B8VLdU18LHCVue746pa48hvViJyT+cxBdPdcIjHfz03j89UcICIiMjMWfOHEyaNAkAEB8fj5EjRyI7O1u7zfz58+Hi4oLly5fXuZ+jR49i4cKF4HkePj4+2LRpU50zuC9evBhLlix5YD3N+k6IbStXA6uuiHCnmEOwK8MrHdRwEAnP39AnSlDdQohxKNTAhhs8rhTw4MAwOlSDyAAGzkYvwgutW2z29mtd5HL5Ax/Yw8MDcrlcZ74BAwbgyJEjiImJwc6dO3VWoO+88w6kUim++OILhIeHIywszChlJ4RYloMImBmuhquY4U4xh19v8TDnz16qWwgxDkcRMDNcgwF+GjBw2J0qws4UHvY+44nN3n6ti5ubm/aWRSWZTAY3N+M9IM7R0RGOjo5YsGABFixYAJlMBk9PTwwZMgQeHh5QqVSIiYnBkCFDIBaLqy0DqJZmbDXf29j5dG2nb5quOAlZNjZD9m+MuOlKFxK32taZM3b2dM5VbpNXFotvr4pwNpdHiBvDksmRgj5bzbpHXw2pW+g421fdIjQf1S115xv28BCMFImw7kQ6vvg7GXH3eIg9muHzcRFwcRBZNHaAfm0BoXWL3d1+lcvl8PX1RWpqKvz9/QEAgwYNwqxZszBt2jSjvjc9dJsQ+xWbyWFXigg8GOZFqBHmWX+eht5+rUR1CyHGFZ/HYfMNHirGobkrw+x2ang4WLpUwgmtW2y2UadUKqFWqzFixAjMnj0bEyZMgIODA3iex4QJE+Dj44OVK1fi0KFDmDFjBpKTk+Ht7W2SslT+ms7MzKQrdY3s1zRdqbOvc67qNpGRkVi4LwlXU7Pw4/MPwc+z/kaVTCZDQEBAgxt1VfcntG6h42xfdYvQfFS3CM93Pq0QL/16GYWlSgR5OWH10x2QeumUzVypE1K32GyjbsaMGdiwYUO1dZUVcU5ODqZPn47Y2FgEBwdjzZo1GDZsmNHLQL+mCbFvSk1Fx2ORwN7HdKWOEOuWXQqsvSpCroKDs4hhVriwq/CWZvdX6qwJXakzLM0efk3TlTr7OudqbgOY5te0UHSlzrA0e6hbhOajukX/fPnF5Xjp10u4cEcGEcfw0ZPtMLpLoOD90JU6O0W/pgkhVdGVOkJsQ7ka2HyTR0J+xWX4x0PUGB5kvVOeCK5bGGkwqVTKALDc3FxWXl7OiouL2e7du1lxcfEDyzXTjP0ydP9C8+naTt80XXESsmwNsTNG3HSlC4mbpWNnT+dczXX6frbc3FwGgEmlUrPXLXSc7atuEZqP6hbD8xXJ5WzGyr0sNCqahUZFsze3x7Pi0jKzxM5UdYvdzVNHCCGEEFIfnuMwpoUG7z3aBjwHbD93F/+3OR5FZSpLF81gdPu1AegWCSGkKrr9SohtupzPYcMNHuUaDoEuDP/XTg0vR0uX6j90+9WM6ParYWn2cIuEbr/a1zlXcx3dfrXP42wLdYvQfFS3GO+cO3c7h/X48CALjYpmvT86xM7cvEe3XwkhhBBCbE2nIE/89n990KaZK7KKFHh2fTwuF1jpyIk60O3XBqBbJISQquj2KyG2r1QFrEvicV3KgwPDuBYaDAqwbFOJbr+aEd1+NSzNHm6R0O1X+zrnaq6j26/2eZxtoW4Rmo/qFhOdc6Vl7I1fz2lHxr6/6yIrLVMYLXamqluMP8tiIyaRSCCRSHQu15Vm6rIYO5+u7fRNExI3a4+dMeKmK11I3GpbZ87Y2dM5V7nOkDKagjV9R+zpONtC3SI0H9Uthuer/fMCy8Z0hCL3DvamibDxZBoypGVYNakbHO5v25DYGVJGIahPHSGEEEJIDRzHYWgQw1cTO8NRzOPvq9l4eu0JZMnKLF20OtGVOiNSKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8bOns65+tbVx5TnppC6hY5z7etssW4Rmo/qFsPzCY3dsHBfbHq+J+b8Eo8rGTI8tfYUprVoeOyElFHf7WigRANQZ2ZCSFU0UIIQ+5VXBqy9JkJWKQdHnuG5thq09zZPE4oGSpgRDZQwLM0eOjPTQAn7OudqrqOBEvZ5nG2hbhGaj+oW05xzdaXnSIvZ098eZaFR0azV2/vZuqPJBsWOBkrYABooYViaPXRmpoES9nXOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fn0iV0TiQQ/T++J59YcxOkcHov3XcXdwjK8MSyszn3RQAlCCCGEECvkIOYxubUGr99vyP0QdxsvbUtAudrCBQMNlDAqGijR+Doz00AJ+zrn6ltXHxooYXg+qlsMy0d1i+H5GhI7jgNm9QtBiLczonZdwaGr2bjuKkLvAXIEervVmp8GSlg56sxMCKmKBkoQ0vjckgE/XhehWMXB24HhhfZqBBr560oDJcyIBkoYlmYPnZlpoIR9nXM119FACfs8zrZQtwjNR3WLac45fWOXmJ7Dei7ax0KjolmHD/5khxMzaaCEraOBEoal2UNnZhooYV/nXOU6Q8poCtb0HbGn42wLdYvQfFS3GJ7PGLEL8/PEax3V2JXbFGdSCjB703ksGdUebrXkp4EShBBCCCFWzFUCrJveA2O7BUGlYVi4JxH7UnloNObr5UaNOkIIIYQQI3AU81jxdBe8OqwNAODvDB6vbr+IMqV5hsZSo66G3377DSEhIZYuBiGEEEJsEMdxeHVYW3w+viNEHMMfV7LwzA8nkSdXmPy9qVFXBWMMO3bsoEYdIYQQQhpkTNdAvNheDU9nMeLTCvHU96dxr8S070mNuip27dqFxx9/HDxPYSGEEEJIw4R5Attn90GorwvuFJRi5WURTt7KN9n72WzrZdGiRYiIiADP89i2bVu1tJycHDz++ONwcXFBeHg4/vnnn3r3xxjD5s2bMXnyZFMVmRBCCCGNTKumrtj1Yn/0aO6FUjWH5zacw87zd03yXjY7pUmbNm2watUqvP/++w+kzZs3D4GBgcjNzcXBgwcxYcIEJCcnQ6FQYNKkSdW2dXNzQ3R0NPbs2YORI0dCLLbZkBBCCCHECvm4OmDDjB6YtvoQzufxeHvXFYwI4vGokZ//YLMtmKlTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6vytXriAmJga7du3ClStX8M477+CTTz6pdVuFQgGF4r8OjzKZDAA9JqwxPsqHHhNmX+dcfevq09D4NrRuoeNc+zpbrFuE5qO6xfB85o4dDw2ebaNBr/YtsfZoKg7e5bHuWAqeH9BS8Geqj80/JiwyMhJz5szRXoGLj4/HyJEjkZ2drd1m/vz5cHFxwfLlywXtc8CAATh69Gid6YsXL8aSJUseWE+P8iGkcWvoY8KobiGkcTiZzeFkNo8X26vhIKp/e6F1i832qauLXC5/4AN7eHhALpcL3oeuBh0AvPPOO5BKpfjiiy8QHh6OsLAwg8pKCCFVUd1CSOPwUDOGlzsIa9Dpw2Zvv9bFzc1Ne8uikkwmg5ubm9Hew9HREY6OjliwYAEWLFgAmUwGT09PDBkyBB4eHlCpVIiJicGQIUMgFourLQOolmZsNd/b2Pl0badvmq44CVk2NkP2b4y46UoXErfa1pkzdvZ0ztXcBtDv+1qz7tFXQ+oWOs72VbcIzUd1i+H5LBk7wDR1i93dfpXL5fD19UVqair8/f0BAIMGDcKsWbMwbdo0o7736tWrsXr1aqjVaiQlJdEtEkIauYbefq1EdQshpCqhdYvNNuqUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb1NUpbKX9OZmZl0pa6R/Zq2hV+E9vxr2hqv1AUEBDS4UVd1f0LrFjrO9lW3CM1HdYvh+WztSp2QusVmG3UzZszAhg0bqq2LiYlBZGQkcnJyMH36dMTGxiI4OBhr1qzBsGHDjF4G+jVNCKmKrtQRQkzB7q/UWROpVAovLy8kJSXB3d0dKpUKcXFxGDhwoLZ1XrkMoFqasdV8b2Pn07Wdvmm64iRk2dgM2b8x4qYrXUjcaltnztjZ0zlXcxtAv+9rUVER2rZti8LCQnh6egqORV30qVvoONtX3SI0H9UthuezZOwA09QtdjdQwpwqf02Xl5cDANq2bWvhEhFCrEFRUVGDGnVUtxBCalNf3UJX6oxAo9EgIyMD7u7u4DgOANCrVy+cOXNGu03lskwmQ0hICNLT043S56Y2Nd/b2Pl0badvWl1xqm3ZWmNnjLjpShcSt9rWmTN29nTOVV2nb9wYYygqKkJgYKBRniGtT90C0HHWtc4W6xah+ahuMTyfpWJnqrqFrtQZAc/zCA4OrrZOJBJVO1A1lz08PExWedR8L2Pn07Wdvmn1xam2PNYWO2PETVe6kLjVts6csbOnc662dfrEzRi3XSsZUrcAdJxrW2eLdYvQfFS3GJ7P0rEzdt1id5MPW4t58+bpXDbnexs7n67t9E2rL07mjJuh72eMuOlKFxK32tbROWd4nMx93umDjrOwNHuoW4Tmo7rF8Hz2Fju6/WpmlVMUGGvKg8aEYmc4ip1hbC1utlZea0FxMxzFzjCmihtdqTMzR0dHLFq0CI6OjpYuis2h2BmOYmcYW4ubrZXXWlDcDEexM4yp4kZX6gghhBBC7ABdqSOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQNiSxfAHmg0GmRkZMDd3R0cx1m6OIQQC2GMoaioCIGBgeD5hv9mprqFEAIIr1uoUWcEGRkZCAkJsXQxCCFWIj09HcHBwQ3eD9UthJCq6qtbqFFnBO7u7gAqgu3h4QGlUomDBw9ixIgRkEgk1ZYBVEsztprvbex8urbTN01XnIQsG5sh+zdG3HSlC4lbbevMGTt7OudqbgPo932VyWQICQnR1gkNpU/dQsfZvuoWofmobjE8nyVjB5imbqFGnRFU3hZxdnaGs7MzxGIxXFxc4OzsDIlEUm0ZQLU0Y6v53sbOp2s7fdN0xUnIsrEZsn9jxE1XupC41bbOnLGzp3Ou5jaAft9XpVIJAEa7VapP3ULH2b7qFqH5qG4xPJ8lYweYpm7hGGOs3r2RWq1evRqrV6+GWq1GUlIStmzZAhcXF0sXixBiISUlJZg8eTKkUik8PDwM3g/VLYSQqgTXLYw0mFQqZQBYbm4uKy8vZ8XFxWz37t2suLj4geWaacZ+Gbp/ofl0badvmq44CVm2htgZI2660oXEzdKxs6dzruY6fT9bbm4uA8CkUqnZ6xY6zvZVtwjNR3WLac45U8fOVHUL3X41IolEUu0yam3LdaWZuizGzqdrO33ThMTN2mNnjLjpShcSt9rWmTN29nTOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fksETtDyigEzVNHiBFlSkuRnl9i6WIQQghphOhKHSFGUFSmwltbLuDvq9kAgJ6h3vh8Qhe0bOJq4ZIRQghpLKhRZ0RKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b9SqYSGAS9uicfJ2wUAAJ4DzqYWYPy3x7DpuZ5o6+de777rShcSt9rWmTN29nTO1beuPqY8N4XULXSca19ni3WL0HxUtxiez9KxE1JGfbej0a8NQCPUCAAcy+Kw/ZYIDjzD/A5qeEiAH66LcKeYg5cDw4JOang4WLqUxBxo9CshxBRo9KsZ0ehXw9LsYYRabqGMdVi4j4VGRbPvj9zQrs+RFrPIzw6z0KhoNm71UVYgK6IRajZwztVcR6Nf7fM420LdIjQfjX41zTln6tjR6FcbQKNfDUuz5RFqey+lQa7iEOzlhOf6t4JYVDH2qIlEgh9n9MKY1cdwLq0Qyw8m4yExjVBrSD4a/Wod3xF7Os7WXLfom4/qFsPz0ehXQgjUGoafjqUCAGYNaKFt0FVq3dQNXz3TDRwHbD1zByey6IHshBBCTIcadYQY6NStPNwpKIWziGF896BatxkS3gxvjAgHAOy4zSM+vdCMJSSEENKYUKOOEAPtir8LAOjmy+AkEdW53YuRrTEiohnUjMP8rQnILiozVxEJIYQ0ItSnzohoSpPGM+1AmVKNA5czAQA9m2rqzbNsVDgu3s7CvSIFZm84iw0zesDV8b+vH007YNh2NKUJHWd7q1v0zWfpaTns9ZzTlU5Tmtgpmnag8YrP47A+SQQfR4b3u6nBC+gul10K/O+SCCVqDm08NPi/9hpI6Fq5XaEpTQghpkBTmpgRTWliWJotTzvw/LpTLDQqmi3bd0mvuJ1IymQR7//BQqOi2ZQfTrD8ohKTD503dezs6ZyruY6mNLHP42zNdYu++WhKE9Occ6aOHU1pYgNoShPD0mxt2oH84nIcScoFAIzpFoQbZ5MFl6lHC1/8NKMXnlt3Bkdv5uHZdWfx8/Re8HaW6HxvmnaApjSxlu+IPR1na6tbGpKPpjQxPB9NaUJII7b/UiZUGoYOgR5o08xN7/wPtfLFthcegq+rAy7fleGxr+IQdyPXBCUlhBDSmFCjjhA97b4/6nVst9qnMRGiS4gXfn+xH9r5uyNXXo7nN57HtmQeecXlxiomIYSQRoYadYToIS2vBOdSC8BzwKgugQ3aV6ivK3bP649pfUMBACeyeQxfeRRfHryOPLnCGMUlhBDSiFCjjhA97LlQcZWuf1gT+Hk4NXh/ThIRlo7uiG2zeiHIhaGoTIWvD99Ev08P46Ut5/H31Wwo1A1+G0IIIY0ADZQgRCDGGHbdb9SN6Wr4rdfa9Aj1xhud1RC36IEfj6Yg4Y4U0RczEX0xEzwnwtbMU+ge6oOwZm4I9XZCdikgLVXCRyQGX2M+FY2GoVihgqwcSMsvgULNobC4DFcKOKgSMlGqYpArVJCXqSBXqCArU2r/LVeoUFRW8VIo1eB5DqL7LzHPwdVRDE9nCbycJfB0kcDfwwkBHo7IKOQQkVeMVs08IRIyvwshhBCjo0YdIQJduivFrZxiOEl4jOzob/T98xzwSAc/PNElCJfuSrH3QgYOXMpEhrQM8elSxKdLq2wtxrILMeA5QCziIeIAjVqEqLN/o0yp0W6Dc0er5BEB1y4ZvdyV+/726jE4SXiE+3sgIsADHQI90KuFD9o0c3ug4UkIIcT4qFFHiECVjwUbHuEPN0fTfXU4jkPnYC90DvbCWyPCsHnXH3Bu0QU3sktwM0eO2zlyZMsqrsBpGFCuqmzEcYBGU21fzhIero4SuDuKoCorRrCfL9ydJPdfYrg5iiv+Vvm3u5MEbo5iOElE0DAGtabipVJXXOGTlpajsESJghIlMqWlSMsrxrX0HBSqRChTapCQXoiEKs+49XaRoHdLH/Rr3QRD2zdDsDdNoksIIaZAjTojoseE2e+jfJRqDfZeyAAAjOrkp3eZDH0cjUqlgq8TMLxTM+08RUqlEocOHcLgIUNRrAJUag0U5UrEHT2KgQMGwMPFEWKOIS72MEaOGA6JRKLNM3x4F6PPJVW574eHDkFmkRJXM4tw7V4REu5KEZ9WiIISJf66koW/rmRh0d4raOfvjqHtmmJoW1+dMakvNoak0WPCGlYGQ/ZNdQs9JsxQ9JiwB9+zPvSYsAagR/k0HlcKOHx/TQQ3CcPS7mqIaIiRICoNkF4M3JRxuFrA41YRwPDfrdgAF4beTTXo0YTB08GCBTUSekwYIcQU6DFhZkSPCTMszZYe5TN30xkWGhXNFu2+aHOPozF17PTZ970COfv1VAqbtf40C3t3PwuNimahUdGs5dvRbNpPJ9mhy3dZWZnCYudczXX0mDCqW6w9dlS3mOacM3Xs6DFhNoAeE2ZYmrU/ykdaqsTf13IAAE/1bC74cTFC9i003V4e5ePnJcHTvV3xdO9Q5MpK8Nm2v5Gs8sW5tEIcScrFkaRctGziimcfCsVTPYPh4SSs7PSYMOs6zg3J15jqFmPma+x1S0Py0WPCCGlEDlzKRLlKg3A/d3QINPyWGqnO01mC/n4M22b3RswbkZg5oCXcncS4nVuMpdGJ6PvxP/jkj6vIpYmYCSFEEGrUEVKP38/fAQCM6x4EjqOpOUyhZRNXvP9EBE6+MxTLxnZEWz83FJersfbILUR+GYffbvPIKCy1dDEJIcSqUaOOEB3S8kpwJqXisWBjGvCsVyKMq6MYU/qE4q9XB+Gn6T3RNcQLCpUGcfd4DP3fUSzcdQnZsjJLF5MQQqwSNeoI0eHXs2kAjPdYMCIMx3EY2t4Pu17shw0zeqCNhwYqDcMvp9Iw6PMYfPbnNUhLTTP9BCGE2Cpq1BFSB6Vag+1nK269PtO7uYVL0zhxHId+rX3xUgcNfpnZE92be6FMqcGa2GQM+iwGPxy9DaWm/v0QQkhjQI06Qurwz9Us5BQp0MTNEcMj/CxdnEavdwsf7JzbD98/2wNtmrlBWqrEZ3/dwCcXRDiUmA1GU24SQho5atQRUodfTlXcep3QMxgSmm3YKnAchxEd/PHnq4Pw+VOd4efuiDwFhxe3XsCzP51GUlaRpYtICCEWQ/9TEVKL9PwSxN3IBQA804tuvVobEc9hQs8Q/PVKfwwP0kAi4nD0Zi4eXRWHxXuvUH87QkijRI06Qmqx9XTFVbqBbZqguS89nslauTqK8URzDf58uT9GRPhBrWFYfzwFQ788guiLmaA7soSQxoQadfelp6eje/fucHJygkqlsnRxiAWVKdXaRt2UPnSVzhY093HB99N6YvPMPmjd1BW5cgVe23EJ313lkZZfYuniEUKIWVCj7r6mTZvi8OHDeOihhyxdFGJhuy9koqBEiWBvZwyP8Ld0cYgeBrRpggOvDMTrw9vCQczjmpTHY18fx5rYm1CqaZgsIcS+UaPuPicnJ3h5eVm6GMTCGAPWn0gFAMzo1wIinp4gYWscxSK8PLQNouf1RRsPDRQqDT778zoe/yoOF9ILLV08QggxGbts1C1atAgRERHgeR7btm2rlpaTk4PHH38cLi4uCA8Pxz///GOhUhJrdK2QQ3JOMVwdRHi6V4ili0MaoGUTV8yL0ODz8R3h4+qApCw5Jv5wGntSeZQp1ZYuHiGEGJ1dNuratGmDVatWoXfv3g+kzZs3D4GBgcjNzcXy5csxYcIEFBQUWKCUxBrFZlZcmXu6Vwg8nCQWLg1pKI4DxnQNxD+vD8bYbkHQMOBwBo/Ra07gXCp97wkh9kVs6QKYwtSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtmuD9KxQKKBQK7bJMJgMAKJVK7atyuba/Nf9tTLW9lzHz6dpO37T64iQkjsaUeLcA16Q8OABTewcLeh9jxE1XupC41bbOnLGzhXPOzUGCz8Z1wNC2Pnj394u4lVuCp747jml9QtBRIzy+Qj+ToRpatzT241zXOkvXLaaMHdUthuezdOyElFHf7Thmx9OwR0ZGYs6cOZg0aRIAID4+HiNHjkR2drZ2m/nz58PFxQVLlizBE088gXPnzqF79+5YvHgxBg4cWOt+Fy9ejCVLljywfsuWLXBxoekvbNXGGzzO5fLo4qPB8+HUqd5elaiAXSk8TudU3Kho6sTwTGs1WnsYYd8lJZg8eTKkUik8PPTfIdUthJDaCK5bmB0bPHgw27p1q3b533//Za1bt662zbvvvstefPFFvfZbVlbGpFKp9pWens4AsNzcXFZeXs6Ki4vZ7t27WXFx8QPLNdOM/TJ0/0Lz6dpO3zRdcRKybMxXUmYBa/l2NAuNimZnbt4za9x0pQuJm6VjZ6vn3F+X7rJeHx1koVHRrEVUNFu69xIrKilr0Pc1NzeXAWBSqdSgOqshdQsdZ+usW0wdO6pbTHPOmTp2pqpb7LJPXV3c3Ny0tzMqyWQyuLm56bUfR0dHeHh4VHsR2/btkdvQMCDCS4OIAHdLF4eYwZDwptg7tzf6NNWAAfjpWCrGf3cS17PkFisT1S2EkIZoVLdf5XI5fH19kZqaCn//ivnHBg0ahFmzZunVp67S6tWrsXr1aqjVaiQlJdEtEhuVVwZ8FC+CBhxe66hCC2rTNTqX8jlsS+YhV3EQcQyPh2gwJJBB3xltGnr7tRLVLYSQqhr17dfy8nJWWlrKBg4cyDZu3MhKS0uZWq1mjDH21FNPsRdeeIGVlJSwPXv2MG9vb5afn9+g95NKpXT71YA0a7lFEvXbBRYaFc2eWXtM7/3bwmV+U8bOns65zPwiNnPdKRYaVXEbftzqOHb9Tq5Zb782pG6h42x9dYs5Ykd1i2nOOVPHjm6/6mH27NlwdnZGXFwcpk2bBmdnZ/z7778AgDVr1iA9PR2+vr544403sH37dnh7e1u4xMRSUvNL8Nu5uwCAOQNbWLYwxKJ83RyxZnJXfDiqHRx5hnNpUoxZewYnszkw+72hQQixI3Z9+9XU6BaJ7duQxON8Ho92nhrMjaARr6RCXhmw+aYIt4oq7r8+31aNLr71V5V0+5UQYgqN+varudHtV8PSLH2L5EJqrvZWW3xKrkH7t4XL/KaInb2ec1XXyYrk7KuDiWzkx3tZkVwu6DPR7VfbOM50+5XqFkvHzlS3X+1y8mFChPjy0A0AwOOd/NEh0MNkE48S2yTiOczsH4rg4iTwHD0DmBBi/ej2awPQLRLbdUPK4ZtEEXiO4d0uajR1tnSJiD2g26+EEFOg269mRLdfDUuz1C2SktIyNnJFLAuNimbv7kxoUOxs4TK/MWNn7+dczXWmukViirqFjrPl6xZLxI7qFtOcc6aOHd1+tQESiQQSiUTncl1ppi6LsfPp2k7fNCFxM2bstp1NwbUsOTydJVgwsl295RHCGHHTlS4kbrWtM3bsdLGnc65ynSFlNAVzf0f0KYux89ly3VIfU8aO6hbD81kidoaUUQhq1BmR0Idu1/y3sctgyP4by0O3C0rK8cXB6wCAV4e2hrsD16D928qDo+31odvGPufqW1cfU36vhdQtdJxrX2fJuDVk/0LyUd1ieD5Lx05IGfXdzux96kpLS/HBBx9gx44dyM/Ph0wmw19//YWrV6/i1VdfNWdRGoz6vdie7bd4HMviEeDC8GZnNUTU/50YEfWpI4SYgtX2qZsxYwabMmUKu3TpEvPy8mKMMZaRkcHCw8PNXRSjoT51hqWZu99LfEoua/l2xRQmcdfvGSV2ttB3wxixayznXM111KfOPo8z9amjusXSsbObPnX79+9Heno6HB0dwd2fJiAgIACZmZnmLorRUZ86w9LM0e9FpdZg4Z5EaBjwROcADGjrV+e21KfOMPZ0zlWuM6SMpmBNfcPs6ThTnzqqW4RsZ0t96sz+mDAvLy/k5ORUW3f79m0EBgaauyikEfkh7jauZMjg6SzBolEdLF0cQgghxOjMfqXulVdewahRo7Bw4UKo1WpER0fjo48+srn+dLWhgRLW2Zk5Ja8YK/9OAgC880hbeDnxepe/LrbSIddeOzPTQAk6zjRQguoWQ/NZOnZCyqjvdhaZfHjHjh34+eefkZaWhqCgIMycORMTJ040dzEajDozWz8NA1YninBTxiHcU4O57TWghwMQU6GBEoQQU7DagRL2iAZKGJZmjs7Ma2NvsNCoaNbuvQMsOavQ6LGzhQ65DTkvGts5V3MdDZSwz+NMAyWobrF07Gx6oMRnn30maLu33nrLxCUxLRooYViaqTozX7snwxcHbwAA3n08Aq2aedabR5/9G5KHOjMbno8GSlhHh397Os40UILqFiHb2dJACbM06q5evar9d0lJCXbt2oU+ffogJCQE6enpOH36NMaNG2eOopBGokypxitbL6BcrcHQds0wtU9zSxeJEEIIMSmzNOrWrVun/ff48eOxY8cOjB49Wrtu79692LhxozmKQhqJz/68jutZRWji5oDlT3XWTp9DCCGE2Cuzj379+++/8euvv1Zb99hjj+HZZ581d1GMjka/WscItYOJWfj52G0AwCdjO8DTsfbRrvqUv6F5LD3Kyl5HqNHoVzrONPqV6hZD81k6dkLKqO92Zh/92r9/fwwfPhzvvfcexGIxVCoVPv74Y/z55584fvy4OYvSYDRCzfpklwJfXhKhTM0hMkCDsS00li4SaURo9CshxBSsdvRrcnIy69OnD3Nzc2OtWrVibm5urHfv3uzGjRvmLorR0OhXw9KMPUJNKi9lI1bEstCoaDZ+zVFWXFpm8tjZwiirhpwXje2cq7mORr/a53G2tdGvWflS9uelu+xYUhYrK1PotW+qWwzfjka/CtCqVSucPHkSaWlpyMzMREBAAJo3t49O7DT61bA0Y4xQY4zhg52XcT1LjiZujlg9pQdcnBzr/Rz6lr+heWiEmuH5aPSrdYzitKfjbAujX1OKgI9Wn0KOvBwA0DXEC99N7QF/Tye99k11i+Hb2dLoV7M/Jiw7OxvZ2dlwcnJCy5Yt4eTkpF1HiKG+PnwTuy9kQMRz+PqZbvDzcKo/EyGEWLF7sjJ8f02EHHk5mrk7wsVBhAvphZj840nkF5dbunjECpn9Sp2/vz84jgO735Wv6qhEtVpt7uIQO7A3IQMrDlU8Bmzp6A7o29rXwiUihJCG+/SPJBSrOHQIdMeOOf2QJy/HpO9P4lZOMV7ffgE/T+9l6SISK2P2K3UajQZqtRoajQYajQZ3797F3LlzsX79enMXhdiBc6kFeGNHAgBg1oCWmNIn1MIlIoSQhruQXoj9l++BA8PHYzrAxUGMEB8X/Di9JxzFPGKv5+CHuFuWLiaxMnpfqTt9+nSdab1799a7AP7+/lixYgVatWpl89Oa0JQm5p124Ea2HLM2nEG5SoOh7ZrijeFhDYorTWliGHs65+pbVx+a0sTwfNZUtxibIfv/NuYGAKBXU4Y2TZy1ecOaOOP9x9vhvT2J+OLgdfQKcde5b6pbDN+uUUxp0rJly2rLOTk5KC8vR3BwMG7dMuxXQ1xcHCZMmIB79+4ZlN9SaNoBy8ktA1ZdFkGm5NDcleGlDmo4iixdKtLY0ZQmxBhySoFlF0Rg4PB2FxUCahx6xoAfr/O4XMDD35nhjc5qSMx+342Yk9mmNFGpVOzDDz9ky5cvF7R9u3btWPv27bWv0NBQ5ubmxn766aeGFsViaEoTw9IMnXbgVmY+6//J3yw0KpoN/zKWZRcaJ5Y0pQmdczXX0ZQm9nmcrX1Kkw/3XWahUdFs6g/H68yXmV/Eui89yEKjotn0lXupbjHyOWfq2FntlCYikQjvvPMO/P398dZbb9W7/XfffVdt2dXVFW3btm3Qr1prQVOaGJamz1D5QgUwc/MF3CksQ6ivCzbP6oOmRh7pSlOaGMaezrnKdYaU0RSsaWoOezrO1jiliUqtwZ6ETADApF4hUKVk15rP31uCzyd0xvPrzyI2k8eZNBkGt/PX+72pbqEpTarRaDTYunUrXF1dBW1/5swZDB48WPvq2bMnPDw8sGLFioYWhdi59IISfHVFhFu5JQj0dMLmmX3QjKYuIYTYkbgbucgpUsDH1QGRbZvq3Pbhdn54plcwAOCt3y9DWmKaPoHEdujdqHN2doaLi4v25ejoiHffffeBK3B1Wbp0aa3rly1bpm9RSCOSnCPH5B/PIE/BobmPM7bP6YsQH+pjRAixLzvOpQMARncNhIO4/v+i336kLZo6MWTJFFi4+5J2ujDSOOl9+/XatWvVll1dXdGkSZN6823fvh0AoFKpsGPHjmonXkpKCnx8fPQtCmkk4tMKMXfLBeQVl8PPmWHLzF4I9qYGHSHEvhQUl+PvxIqJ+Cf0CBGUx8VBjGfD1FiVKEH0xUwMa++HMd2CTFlMYsX0btSFhho2D9i3334LACgvL8eaNWu06zmOQ7NmzWieOlKr87kctq47i3KVBh0C3TE5sICeFkEIsUv7LmagXK1BRIAHIgI9BE9jEeoOzItsha8OJ+P9PZfRq6UPgrycTVxaYo3M9kSJmJgYAMBHH32E9957z1xvS2yURsOwJvYWNtwQAdBgWHs/fDG+A478c9DSRSOEEJPYcfYOAOCpHsF65507qCXibuYhPq0Qr/96Ab/M6gOxiOY5aWzMcsRzc3O1/37hhRe0z3qt+SIEAKSlSryw6Sz+989NAMBz/UKx9tkecHU0+1PtCCHELK7dk+HSXSkkIs6g26diEY//Pd0VLg4inLqdj4W7LlP/ukbILP9LtmzZEkVFRQAefPZrJY7j6NmvBOlyYMyaE7hTWAYHMY+xzZV499FwiHgOGjo9CCF2aue5iqt0D7drBh9XB4P20aKJK1ZN6ob/23QWv55NR4CXE+YNbll/RmI3DGrUpaam4rfffkNGRgYCAwMxbty4B540UVVlgw6omALFXtFjwgx/lI9KrcG3R5Kx+rIIalaGYG9nrHyqA+5ePmnVj/KxlcfR2OujfOgxYXSc7eExYUq1Brvi7wIAxnYJ0KtcNbeJbOODRU+0x6J9V7Hy7xsQQYPmteyD6hbL18tCyqjvdno/Jiw6OhpTpkzB448/jtDQUKSlpWH//v3YtGkTRo0apc+ubB49ysc47pUAv9wUIa2YAwB09tHgmdYauNDdVmJj6DFhxBCX8zn8cF0ENwnD0u5qGKMr3B/pPP68U7Gjx0LUGBlMt2JtmckeE9axY0cWExNTbd2RI0dYRESEoPxpaWls1qxZrFevXtUeF9a+fXt9i2I16DFhhqXlFMjY7K/2srB397PQqGjW8YM/2cIf9jC5XG72x9EYun9beByNqWNnS+ccPSaMjrO54yZk/7M3nGahUdFsyZ5LesdO1zb/O3iNhUZFs9CoaPb2jnhWUlqmV9wsHTt6TNh/L5M9Juzu3bvo379/tXV9+/ZFRkaGoPwTJ05EmzZtsGTJErv75UmPCROWJhaL8cfle/gwOhGZUh4AQ2R4U3z4ZHucP3oYDg4OVv8oH0Pz0GPCDM9Hjwmzjsdd2dNxtoa6Jb+4HDHXcwAAT/duLvj7L2SbV4eHw1nC49M/r2Pr2btIL1Tg62e6wbtKnz2qW+zrMWGCG3V37txBcHAw+vTpg8WLF2Px4sWQSCRQKpVYsmQJ+vTpI2g/ly9fxtGjR8HzNNS6MTqenIeVh5MRn1YIAPBxZPhwXFc81jkIKpXKsoUjhBAz23vhLpRqhk5Bnmjnb/xnoD/fvwVybl/FltsOOHozF4+uisOKp7ugV6in0d+LWJ7gllVERAQAYO3atYiNjYWPjw9at24NHx8fHD58GN9//72g/TzyyCM4efKkYaUlNokxhpO38vHNFR7T159DfFohnCQ8XopshXe6qDEiwg8cx1m6mIQQYnY7zhk+N51QnXwYfp3dG62auuKerAxTfjqFZQeuoYxmFLA7gq/UsfvjKZo3b45jx44hPT1dO/o1JETY40yAimfHPvLIIxgxYgSaNWtWLa3qkyaI7VOo1NiXkImfj95GYqYMAA+JiMOUPqF4cUhreDuJcOBAkqWLSQghFpGYIcOVDBkkIg5Pdgk06Xu183dH9PwB+DD6KraeTsP6E2nwlIjg2OIeRncLph/WdkKvPnXp6enV5pcLCAgAYwxpaWkAKhp89WnVqhUWLFigZzGJLbmRJceei/ew8/xd5MoVAAAnCY+ePip8/GwkmjdxB2C66QMIIcQWbD+bDgAY1t6vWj83U3FxEOOTcZ0wsoMfPthzGWn5pXh1+0X8fDwVrw1vi/4tvUxeBmJaght1xcXFCA8Pr3OGao7jUFJSUu9+Fi1aJLx0xGbcKSjBH5cysPGiCOknjmvX+3k4YlrfFpjQPQAnYv9GgCc9t5UQQkrKVdh5vuLW66Te9V8QMabI8GY48FI/vPnzQRzJdsDFO1I8t+4MugR7opszh+FqDUw4XoSYkOBGnaura7VJhA312Wef1bre0dERwcHBGDp0KLy8vBr8PsS01BqGxPRC/HMtG4cSs3A1U3Y/hYOY5zCkXTOM7x6Mh9s1g4OYp6tyhBBSxb6EDBSVqRDq64KBYU3M/v6OEhEeCWFYNGUAfjqeho0nUpFwR4oEiPDHijhM6ROKcd2D4OdGrTtbIrhRZ6z77efPn8euXbvQp08fBAcH486dOzh16hRGjRqFjIwMzJw5E7///jsefvhho7wfMY5ylQbX7slw/GYO9l3jsfB8DOSK/0ar8hzQI9QbIcjFW5OGwt/L1YKlJYQQ68UYw6aTqQCAKX2ag+ct15/N180RCx+PwOxBrbDx2G2sP5aMLJkCKw4lYcWhJPQM9UIrEYeHisvh50UNPGun90CJhlKpVNi5cyeeeOIJ7br9+/dj/fr1OH78OH755Re8/vrruHDhglHej+hPWqrErRw5EjNluHxXikt3pbh+rwhKdeU5wANQwd1RjH5hvhge4Y+H2zWDuwOHAwcOwNcMfUMIIcRWJdyR4vJdGRzEPCb0ED7Q0JSauTvhlaFhaFmaBBbcFTvjM3Hydh7OphbiLETYsTwW3UK8MLhNE4iLjdcmIMYluFFnjFuvAHDo0CH8+uuv1daNHDkSkydPBgA888wzmDt3rlHei9ROpdYgu0iBTGkZMqWlyCgsxc2sIpxLEmHpxVjkFZfXms/DSYweoV7wKMvCjEf7o3NzH4iq/MKkW6yEEFK/zfev0j3RKcAsAyT0IeaBx7oG4qleociUlmLX+XRsOZqEO8UczqcV4nxaIQAxfk4+gj6tfNCjuRcUxRVdcug6nuWZ/emaERER+Pjjj/HOO+9ALBZDrVbj008/Rfv27QFUjLC1VJ+6119/HWfOnEG3bt3w1VdfWaQM+mCMQaHSoFihQkm5GsXlKuQXlSEhj4P87B1IFWoUliiRX1yOwpJy5MrLcU9ahuyiMmhq/ZHFAaho0DVzd0RbP3d0DPJEp/uvEB9nqFQqHDhwAB2DPKo16AghhNSvoLgc+xIqnsA0tW+ohUujW4CnM2YPaIkg2VV06/8wjiYX4O/Eezh6Ixt5xeU4cOkeDly6B0CMNddj0DHIA52CPLX/b7TwdbXoreXGyOyNug0bNmDy5Mn4/PPP0axZM2RnZyM8PBxbtmwBAGRlZWHlypXmLhbOnz8PuVyOuLg4zJ07F2fOnEGvXr2M/j7Hk/PwbyaHzGMpUDMO5SoNlOqKV7lKg3I1067T/lVroFBpUHq/4VaiuP+3XA11ra0zEZCUqLMcEhEHPw8nBHg6IcDTGc29nSC9cwPjhvVHmL8H3J3oNxchhBjb5pOpUKg06BjkgW4hXpYujmABnk6Y3Kc5JnQPwN7oAwjq1Bfn0mU4dSsXp5JzIVeocPJWPk7eytfmcXMUI6yZ23+vphV/Q3xc6KKAiZi9Ude2bVucPXsWKSkpyMrKgr+/P0JD//u10rt3b/Tu3dvcxcKJEycwbNgwAMCwYcNw8uRJkzTqdl/IwK4UEZBi3El3nSUiuDqK4OogBldejJZBTeHj6gQfVwm8XBzg4+oAbxeHikaclxOauDpW+wWlVCpx4EASOgZ5mPTZh4QQ0lgplGpsOJECAJg9sJXNTvgr5isGxj0U1gwvDAjFvv0HENZ9IK5lFePS/X7YVzNlkCtUuJBeiAvphdXyO4h4BHk7I1j7ctH+DfRygq+rIxzE9ChRQ5i9UVepWbNmEIlEek9eLMSiRYuwY8cOXLt2DVu2bMGkSZO0aTk5OZgxYwZiYmIQEhKCNWvWYOjQoSgsLETr1q0BAJ6enrhy5YpRylJTl2BP3E6/i9DgIDhKRHAQ85CIeDiIeTiI/vv3f+s47bKLQ0WjzdVRXPHv+39dHMTaXz0VjbMDeOyx7tQ4I4QQK7I7IRO58nIEeTnjsU4Bli6O0Yg4oH2AOzo398HTvSoGfqjUGiTnFONmtrzilVPx91aOHAqVBrdzi3E7t7jOfXq7SNDEzQGcgsc/xZfg5+kEH1dHeDiL4eEkgaezBB7OEng4ie//lVBDEBZo1F26dAnTpk3DxYsXAfw3VYqDg4OgyYuFaNOmDVatWoX333//gbR58+YhMDAQubm5OHjwICZMmIDk5GR4eXlBJquYa00mk5msX9+UPs3hnXcZjz3WiRpdhBDSSGgY8POxFADA8wNaQiKy7waIWMQj3N8d4f7u1darNQwZhaW4U1CKOwUluFNQivT7f+/klyC7SAGVhqGgRImCEiUAHkkXM4W9J8/BWSKCo4QHU4rw9c1jcHEUw0ksgpODCI7iikdVinkeYp4DxzFk3uFxet9VOEhEEPMcxKKKNBHPAYzhxh0OqUduQSQSgeMADhw0GjWu3+WQcTQF4vvrNRoNrmZyyD6RWrEOFesS73EoOJUGkVgMjVqNK1kcpGcqniRyOYtDd1kZQnyN1xYwe6Nuzpw5GD16NE6cOIGAgABkZmbigw8+0F4lM4apU6cCAJYtW1ZtvVwux549e5CSkgIXFxeMGTMGK1aswL59+9C3b1+sXbsWTz/9NP7++2/MmDGjzv0rFAooFArtcmVjUKlUal+Vy7X9rflvY6rtvYyZT9d2+qbVFychcTQmQ/ZvjLjpShcSt9rWmTN29nTO1beuPg2Nb0PrFjrOta+zhrolsYDDrdwSuDuJMa6rv6D3ElIuW6xb/N0l8HeXoGdzjwfSNBqGwlIlcuUKZBaWIPbkefi3aIv8EhUKSpUoKlVCVqaCrPJvmUo7Z6pKw1CkUKFIAQAc8nLqvhL4Hx7Hs9N1pIuwP/1mrev3ptXsRiXCrpTrD6z77fa1asvbb13V/vuRezL4e9T/pCWh8eWYmSeb8fLyQn5+Pnieh7e3NwoKClBeXo5WrVrhzp07Rn2vyMhIzJkzR3v7NT4+HiNHjkR2drZ2m/nz58PFxQXLly/Hq6++inPnzqFLly745ptv6tzv4sWLsWTJkgfWb9myBS4uLkb9DIQQ21FSUoLJkydDKpXCw+PB/7DqQ3WLfWIMWHVFhNtFHIYGavBkqMbSRbIrGgaUqYFyNVCuAZT3X+Ua7r/l+2kaBmju51Gzyr+c9t+V69Ws4rgBAEP1f2v/svtplesEbFN1OwB4NESDIAFz9QutW8x+pc7LywuFhYXw8fFBUFAQEhIS4OPjA7lcbvL3lsvlDwTDw8MDhYWFACB41O0777yD119/Xbssk8kQEhKCIUOGwMPDAyqVCjExMRgyZAjEYnG1ZQDV0oyt5nsbO5+u7fRN0xUnIcvGZsj+jRE3XelC4lbbOnPGzp7OuZrbAPp9XyuvrBmqIXULHWfrrVvibuTg9snLcBTz+GBiPzR1dxSUT0i5qG7RlS9S4DlX+3amjB1gmrrF7FfqPvroI3To0AFjx47FDz/8gAULFoDnecyePRuff/65Ud9L3yt1+lq9ejVWr14NtVqNpKQk+jVNSCPX0Ct1lahusR9Vr9INDtBgXAu6Skf0J7huYRaWkpLCLl++bJJ9Dx48mG3dulW7XFRUxBwcHFhmZqZ23cCBA9mGDRsa9D5SqZQBYLm5uay8vJwVFxez3bt3s+Li4geWa6YZ+2Xo/oXm07Wdvmm64iRk2RpiZ4y46UoXEjdLx86ezrma6/T9bLm5uQwAk0qlDapTDKlb6DhbZ91yODGThUZFs7C397GUe/lGjx3VLaY550wdO1PVLWa7/RoREVHvNomJuifMFUqpVEKtVkOj0UCpVKKsrAwODg5wc3PDk08+iUWLFmHlypU4dOgQLl++jFGjRhnlfQkhhJBKjDF8HZMMAOjnzwTfdiXEUGa7/ers7IzmzZtjypQpGDRoUK2TLg4ePNgo7zVjxgxs2LCh2rqYmBhERkYiJycH06dPR2xsLIKDg7FmzRrtpMP6olskhJCq6PYrqSqxgMPaayJIOIb3u6vhaV2PeSU2xOpuv8pkMrZ+/Xo2fPhw1rJlS/bWW2+xhIQEc729SdHtV8PSrOkWiaH7t4XL/KaOnT2dczXX0e1X+zzO5ohbaZmCDf8yloVGRbNFuxJMFjuqW0xzzpk6djZ/+9Xd3R3Tp0/H9OnTkZWVhW3btuGFF15AcXExfv31V0G3Z62dRCKpNqFwbct1pZm6LMbOp2s7fdOExM3aY2eMuOlKFxK32taZM3b2dM5VrjOkjKZgTd8RezrOpozbrrPpSMqWw8NJjHlDwnA89rZJY0d1i+H5LBE7Q8oohEUeE+bo6AhnZ2c4OTkhLy8PGo19jAaiyYdtf4JQffdPkw/b1zlX37r6mPLcpMmHbaduKS1X48u/KiahfTGyFVwl1csllL1OPiyUJc85XenGip2QMuq7ndn61CkUCuzduxebN29GfHw8xowZg8mTJ+Ohhx4yx9ubBPV7IYRURX3qCAAcvMNhf7oIPo4M73ZVQ2LfTwQjZmB1feo8PT1ZeHg4W7x4MTt27Bg7derUAy9bRX3qDEuzhn4vDY2dLfTdMHXs7Omcq7mO+tTZ53E2ZdzScmUs4v0/WGhUNPvtTKrJY0d1i2nOOVPHzub71Hl5eUGhUGD9+vXYsGEDWI0LhBzH4datW+YqjklQnzrD0qypv5Ch+7fmvhuNod8L9amj42wtdcvyvy6huFyN7s29MLZ7CHj+v5keqE+dYahPnRX2qUtJSTHXW1kM9amzrX4vQsporDyW7rthr/1eqE8dHWdrqluOJ+ch+mImeA744PF2UKtVUKtNGzuqWwzPZ+nYCSmjvtuZ/TFh9oT6vRBCqqI+dY2XSgN8dlGErFIOA/01eKqlfQwAJNbB6vrU2TPqU2dYGvWpM0/fDVPHzp7OuZrrqE+dfR5nU8Tt67+vs9CoaNZt6V8sV1r/99hYsaO6xTTnnKljZ/N96hoD6lNnWJo19RcydP/W3HejMfR7oT51dJwtWbfcypFrHwf27mMR8PWo/aoq9akzDPWpE1630EBrQgghxEAaDUPUzotQqDQY2KYJxncPsnSRSCNGV+qMiAZK2EZn5rrQQAnD2NM5V9+6+tBACcPz2WrdsuFEKs6kFMDVQYQPn2wPlUqlV/l1oYESNFBC3+1ooEQDUGdmQkhVNFCiccktA5YniFCu4TChpRoD/Om/U2IaNFDCjGighGFpNFDCPB1yTR07ezrnaq6jgRL2eZyNEbeS0jI2dvVRFhoVzZ7+7hgrK1NYJHZUt5jmnDN17GighA2ggRKGpVlTJ3BD92/NHXIbQ2dmGihBx9ncdcvXsUk4n1YId0cxvpjQFY6ODvXmoYEShqGBEjRQghBCCDGJ07fz8c3hGwCAZeM6IcSHbo0T60BX6oyIBkpYb2dmIWighGHs6Zyrb119aKCE4flspW6RlirxyrZ4aBgwtlsgHo1o2uDvf0PyUd1ieD5Lx05IGfXdjgZKNAB1ZiaEVEUDJeybhgHfX+NxtZBHEyeGNzur4SSydKlIY0ADJcyIBkoYlkYDJczTIdfUsbOnc67mOhooYZ/H2dC4ffZHIguNimZtFx5g8Sm5VhE7qltMc86ZOnY0UMIG0EAJw9KsqRO4ofu35g65jaEzMw2UoONs6rrl4JV7WB17CwDw6fhO6BrqW+9n0af8Dc1HdYvh+WigBCGEENJI3MyWY8H2BADAjH4tMLZbsIVLREjtqFFHCCGE1CGnSIHn1p9GkUKF3i18sPDx9pYuEiF1okYdIYQQUovScjVmbTyL9PxSNPdxwZqp3SER0X+bxHrR2UkIIYTUoNYwvLwtHgnphfBykWD9c73QxM3R0sUiRCcaKGFENE+d9cwlZQiap84w9nTO1beuPjRPneH5rKluYYzh/b2JOJSYBQcxj28nd0WIl6PBcaV56gxD89Q9+J71oXnqGoDmkiKEVEXz1Nk+xoDfU3j8e48HB4bpbTXo5kv/TRLLonnqzIjmqTMsjeapM898SKaOnT2dczXX0Tx19nmc61qWy+VsWfRlFhoVzUKjotnWk7etPnZUt5jmnDN17GieOhtA89QZlmZNc3AZun9rng+pMcwlRfPU0XFu6PeBMeCbI6n4Pi4FAPDhmI6Y1Ce03vLqg+apMwzNUye8bqFGHSGEkEZNo2HYeZtHXNZtAMB7j7fHsw8Zt0FHiDlQo44QQkijpVJr8NbvlxGXxYPjgA9Hd8RUatARG0WNOkIIIY1SUZkSr/8Wj9jrOeDB8Pn4zhjfs7mli0WIwahRRwghpNHJKwMm/nAaN7KL4STh8WwrJZ7sEmDpYhHSIDT5MCGEkEblTEoBvrwkwo3sYvh5OGLLzF7o6EPTlhDbR1fqCCGENAoaDcOa2Jv48mAS1BoOHQLd8dP03vB1ESE9wdKlI6ThqFFnRPRECXqihKHb0azvhm1HT5Sg4yz0OMuVwKxN5xB3Mx8A0KOJBmundYOni8gq6xah+ahuMTyfpWMnpIz6bkdPlGgAmvWdEFIVPVHCOl3M57D9Fo8iJQcJxzC+pQYPNWPgOEuXjBBh6IkSZkRPlDAsjZ4oYZ6Zy00dO3s652quoydK2PZxvptTyF765az2CRFDPj/MLqbl2UTdIjQf1S2mOedMHTt6ooQNoCdKGJZmTbPlG7p/a565vDHM+k5PlKDjXDVNrWE4lsVh8ZpTKChRgueAhwM0WDmrL9xcnLS3smyhbhGaj+oWw/PREyUIIYQQK3T6dj4W7bmMq/dEAJQI93PHsjERuHvxGBwlIksXjxCTokYdIYQQm3fxjhRfxdzCkaQcAICziOGNR9pjer+WYBo17l60cAEJMQNq1BFCCLFJjDGcSy3AD9d4XD5xCgAg4jlM6BGETiwFTz/UHGIRD6VGbeGSEmIe1KgjhBBiU8pVGhy4lImfj93GxTtSADx4DhjbLRgvDw1DoIcDDhxIsXQxCTE7atQRQgixeowBVzJk2HsxC3sT7iJXXg4AcBDz6OGjwuJJAxEe6AXAdPPNEWLtqFFHCCHEKjHGkJQlx5+XMrDtogiZJ09q05q6O2LaQ6GY0CMQp478jVZNXS1YUkKsAzXqCCGEWI1ihQoJtwtx5HoODl29h/T80vspHCQiDiMi/DG+RxAGtmkKiYinq3KEVEGNOkIIIRaTJSvDpTtSnL6di78uifD6qRioNf896MhBzKNfKx/4q7LwxqRhaOJBT9YgpC7UqCOEEGJypeVqJOWU4HZuMZLuFeFyhgyX7kqRU6SoshUHgCHY2xl9W/liaHs/DGrbBBKO4cCBA/B0Nt3EwITYA2rU3Zeeno7Ro0cjMTERcrkcYjGFhhBChCotVyNTWop70jJkSsuQKS1FhrQMKTlyJN4R4ZUT/9Saj+eAsGZu6BTkASdZOmaPjkSLptWfbUm3WAkRhlou9zVt2hSHDx/GmDFjLF0UQggxO5VagxKlGiUKNYrLVf/9LVehWKFGYbECJ+9wSPjjOgrLVCgsUaKgpBwFxeXILy6HrEylY+8cAMDbRYJWTd3QqokrOgZ5omOQJyICPODsIIJSqcSBA2kI8nI2zwcmxA5Ro+4+JycnODk5WboYhBBikINX7uGfq/dwK5XHwe0XodYASrUG5WoNylUa7b+VKgalWgNFlXWl5WooVBoB7yIC0lPrTHVxECHA0wkBns73/zohwNMRWTcSMHnUMDTzpBGqhJiSzTbqFi1ahB07duDatWvYsmULJk2apE3LycnBjBkzEBMTg5CQEKxZswZDhw61YGkJIcS0Lt2V4tezdwHwQM49g/cj4jm4Oojg6iiGS9W/DiLI87LQKbwVfN2c4OMqgZeLA7xdHODtIkEzDyd4OInBcVy1/SmVShy4lwBvF4cGfsL/b+9ug6Iqwz6A/1nkbVl2NzGSt0cEUcfAZhh10iSw8RE1a5pGnJEUsSzzdXxrKh3Fl6jog2HlFB/StAk0R8fS8Q0DjNLUkUYtTctRQAURkl12BVzc+/ngw8lFXJbDLrt7+P9mzrjn3Pd9zrXXOV3du2d3IaLOeO2kLj4+Hps2bcLq1asfaVuwYAEiIiJQV1eHI0eOID09HVeuXEFLS4vN5A8ANBoN9u/f31NhExG5xJi4fujjA1z5+xISE4Yh0N8PAb4q+PXxgZ+vCv6+Kvj1efCvfx8V/HxV8PP1gb+vCkH+vgj27wN1gC/8fVWPTMyA/5+cHTiAyWmD4efHLywQeSKvndTNmDEDAJCTk2Oz3WQy4YcffsC1a9egVqvxyiuvYOPGjdi3bx8yMzNRWlra7WO3tLSgpeW/b2wZjUYAD4pe29K23tG/7R87U0fHcuY4e/262tZZnhzJozPJ2b8z8mav3ZG8dbStJ3OnpGuus22d6W5+u1NbRvyPFs+EB6Ho7l/43xER8iZeworWx9yGVdJ59oba4ug41hb549ydO0di7Go/HyGE6Lyb50pNTcXbb78tvQP3+++/Iy0tDbW1tVKfRYsWQa1WIzc397H7aW5uxpQpU3DmzBkkJSVh7dq1SE5O7rDv2rVrsW7duke2FxQUQK3mbygR9VZ3795FRkYGDAYDtFpt5wPaYW0hoo44XFuEl0tJSRGFhYXS+s8//yzi4uJs+qxcuVLMnz/facdsbm4WBoNBWqqqqgQAUVdXJ+7duyfMZrPYu3evMJvNj6y3b3P2Inf/jo6z16+rbfby5Mi6J+TOGXmz1+5I3tydOyVdc+23dfW51dXVCQDCYDD0eG3heVZWbXF0HGuLa645V+fOVbXFa2+/Po5Go5FuWbQxGo3QaDROO0ZAQAACAgKctj8iIoC1hYi6R3G3X00mE0JDQ1FRUYH+/fsDAJ5//nnMmTMHmZmZTj325s2bsXnzZty/fx+XL1/mLRKiXq67t1/bsLYQ0cMcrS1eO6mzWCy4f/8+JkyYgDfffBPp6enw9/eHSqVCeno6+vbti7y8PBQVFSErKwtXrlzBE0884ZJYDAYD9Ho9rl69ipCQEFgsFpSUlGDcuHHw8/OzWQdg0+Zs7Y/t7HH2+nW1zV6eHFl3Njn7d0be7LU7kreOtvVk7pR0zbXvA3Ttv9fGxkYMHDgQDQ0N0Ol0DuficbpSW3ielVVbHB3H2iJ/nDtzB7iotsj64IcHmDVrlgBgs5SUlAghhKitrRWTJk0SQUFBIj4+XhQVFbk0lrbPvXDhwoULAFFVVcXawoULF6cvndUWr32nzpNYrVbcvHkTISEh0u87jRw5EqdPn5b6tK0bjUZER0ejqqqqW7dn7Gl/bGePs9evq22Py1NH656aO2fkzV67I3nraFtP5k5J19zD27qaNyEEGhsbERERAZVK1Wn/znSltgA8z/a2eWNtcXQca4v8ce7Knatqi+K+KOEOKpUKUVFRNtt8fX1tTlT7da1W67Li0f5Yzh5nr19X2zrLU0djPC13zsibvXZH8tbRtp7MnZKuuY62dSVvzrjt2kZObQF4njva5o21xdFxrC3yx7k7d86uLd1/KUkdWrBggd31njy2s8fZ69fVts7y1JN5k3s8Z+TNXrsjeetoG685+Xnq6euuK3ieHWtTQm1xdBxri/xxSssdb7/2MKPRCJ1O1+1vx/VGzJ18zJ083pY3b4vXUzBv8jF38rgqb3ynrocFBAQgOzubv0UlA3MnH3Mnj7flzdvi9RTMm3zMnTyuyhvfqSMiIiJSAL5TR0RERKQAnNQRERERKQAndUREREQKwEkdERERkQJwUueBqqqqkJSUhMDAQLS2tro7HI+3bNkyJCcnY/Hixe4OxavwOpPv2LFjGD16NMaOHYtly5a5O5wu4Xl3HGuLPLzG5OtubeGkzgM9+eSTKC4uxrPPPuvuUDxeeXk5TCYTysrKYLFYZP05md6K15l8gwYNQmlpKX755RfU1NTg/Pnz7g7JYTzvjmFtkY/XmHzdrS2c1HmgwMBA6PV6d4fhFU6cOIHx48cDAMaPH4/ffvvNzRF5D15n8kVGRkq/L+Xn5wdfX183R+Q4nnfHsLbIx2tMvu7WFk7qnCA7OxvDhg2DSqXCjh07bNpu376NF198EWq1GkOGDMFPP/3kpig9n5w8NjQ0SL/GrdPpcOfOnR6P2xPwGpSvO7krLy9HXV0dhg0b5pHx0QOsLfLx+pPPHbWFkzoniI+Px6ZNmzBq1KhH2hYsWICIiAjU1dUhNzcX6enpuHPnDmpqapCammqzTJkyxQ3Rew45edTr9TAajQAe/NmV3vrqUE7u6AG5uaupqcHixYuxZcsWj4uP9cUWa4t8rC3yuaW2CHKalJQUUVhYKK03NjYKf39/cfPmTWlbcnKy2LZtm8P7s1gsTo/T03Ulj2fOnBFvvfWWEEKIefPmiZMnT/Z4vJ5EzjXYW6+z9rqSu6amJjFu3DhRXl7ukfE5ur/edt5ZW+RjbZGvJ2sL36lzob///hs6nQ7h4eHStmeeeQZ//vmn3XHNzc0YP348zp49i7S0NJSVlbk6VI9mL49JSUkICgpCcnIyVCpVh6+IejN7ueN1Zp+93G3duhUXLlzA0qVLkZqaihMnTnhUfPbwvP+HtUU+1hb5XFlb+jg7WPqPyWSSPpPRRqvVoqGhwe64wMBAHD161IWReZfO8piXl9fzQXkJe7njdWafvdzNmzcP8+bNc1NkD7C+dB9ri3ysLfK5srbwnToX0mg00mcy2hiNRmg0GjdF5J2YR/mYO/k8PXeeHp83YA7lY+7kc2XuOKlzofj4eBgMBtTU1Ejbzp49i6efftqNUXkf5lE+5k4+T8+dp8fnDZhD+Zg7+VyZO07qnMBisaC5uRlWq9XmsUajwcsvv4zs7Gw0NTXhxx9/xB9//IGXXnrJ3SF7JOZRPuZOPk/PnafH5w2YQ/mYO/nckrtuf62DxKxZswQAm6WkpEQIIURtba2YNGmSCAoKEvHx8aKoqMi9wXow5lE+5k4+T8+dp8fnDZhD+Zg7+dyROx8hhOj+1JCIiIiI3Im3X4mIiIgUgJM6IiIiIgXgpI6IiIhIATipIyIiIlIATuqIiIiIFICTOiIiIiIF4KSOiIiISAE4qSMiIiJSAE7qiNxo7dq18PPzQ//+/Z22z9TUVOzYsaNLY5YsWYKgoCAMHTrUaXEQkfuwtvROnNSR28XExECtVkOj0UCj0SAmJsbdIfWoN954w+YPO7tCQkICrl279tj2vLw8HDx40KUxEPU01hbWlt6GkzryCMXFxTCZTDCZTB0WCIvF0vNBeQBnPO/r16+jtbW11/0PjQhgbXkc1hZl4qSOPFJpaSmGDh2KVatWoV+/fvjwww/R1NSEhQsXIiIiAlFRUcjNzZX6m81mZGRkQK/XIykpCStXrsTEiRNt9vUwHx8f6RXsv//+i4yMDISFhSE2Nhbbtm2T+qWmpmL9+vUYMWIEtFotpk+fjnv37kntO3fuREJCAkJCQpCYmIhLly4hJycHs2fPtjnec889hz179jj03GNiYvDJJ59gyJAhGDZsGABg/vz5iIiIgF6vx4QJE1BZWSn1P336NIYPHw6tVou5c+fCarXa7O/w4cNIS0sDAGzZsgUDBgyARqNBXFwcSkpKHIqJSClYW1hblIyTOvJY//zzD9RqNaqrq/Huu+9ixYoVMBgMuHz5Mk6dOoXt27dj3759AIB169ahvr4elZWVKCgowLfffuvwcWbOnIno6GhUVVXhwIEDeP/993H27FmpfdeuXdizZw8qKytx7tw57Ny5EwDw66+/YuHChcjPz4fBYMCuXbug1Wrx2muvYe/evWhpaQEAVFRU4MKFC5g8ebLDMe3duxdlZWU4f/48AGDs2LG4ePEiampqEBUVhcWLFwMA7t27h1dffRWLFi1CfX09EhIScPz4cZt9HTp0CGlpaTCbzViyZAmOHj0Kk8mE4uJivsKmXom1hbVFsQSRmw0YMEBoNBqh0+mETqcT7733nigpKREhISGitbVVCCGE1WoVQUFB4tatW9K4zz//XGRmZgohhIiJiRFlZWVS26pVq0RaWpoQQoiSkhIxZMgQm2MCENXV1aK6utrmOEIIsXz5crFmzRohhBApKSli06ZNUts777wjli9fLoQQYs6cOWL16tUdPqexY8eKPXv2CCGE+Pjjj0VWVlaH/bKzs8XcuXMfycf333//uHSJv/76S4SGhgohhCgtLRVxcXFSm9VqFVFRUaKwsFAIIURra6vo37+/MJvNwmQyCa1WK3bv3i2am5sf2W9HeSLyZqwtrC29Dd+pI49QVFSEhoYGNDQ04KOPPgIAhIeHw9fXFwBw+/ZtNDU1YfDgwdDr9dDr9Vi5ciVqa2sBANXV1YiOjpb29/BjeyorK2E2mxEaGirtNz8/H7du3ZL6hIWFSY/VajVMJhOAB58niY2N7XC/M2bMkL4lVlBQgIyMDEdTAQCIioqyWc/JycGgQYOg1WoxatQo1NfXA3j0efv4+NiMPXnyJBISEqBWqxEcHIzCwkJ88cUXCAsLw9SpU3Hz5s0uxUXkbVhbbLG2KBsndeSxfHx8pMf9+vVDYGAgKioqpAJtNBqlb1WFh4ejqqpK6v/w4+DgYNy9e1daf/jbYJGRkdDr9dI+Gxoa0NjYiK+++qrT+KKjo3H16tUO29LT03HkyBGcOnUKtbW1eOGFFxx/4rB97seOHUN+fj4OHjwIg8GAU6dOSW3h4eG4fv26zdiH19tuj7SZPHkyiouLcePGDQQGBmL16tVdiotICVhbHmBtUR5O6sgrqFQqzJo1CytWrEBDQwOsVisuXrwoFaGpU6ciJycHjY2NuHTpErZv3y6NHTx4MOrr63Hs2DG0tLRgw4YNUltkZCRGjhyJNWvW4O7du2htbUV5eTkuXLjQaUxZWVn48ssvceLECQghcOnSJVRXVwMA+vbti5SUFGRlZWHatGnSuwJyNDY2ok+fPggNDYXZbMYHH3wgtY0ePRpNTU34+uuvYbFYsHnzZikGwPaDzLdu3cL+/fvR1NSEgIAAqNXqbsVFpASsLawtSsJJHXmNjRs3Ijg4GImJiejbty8yMzNx584dAEB2djZ0Oh2ioqIwffp0zJw5Uxqn0+nw2WefYdq0aRg4cCBGjRpls9/vvvsOFRUViI2NRVhYGJYsWYKmpqZO4xkzZgzy8vLw+uuvQ6vVIj09HUajUWqfMWMGLl682OXbI+1NnDgRo0ePxoABA5CYmIgxY8ZIbf7+/ti9ezc+/fRThIaG4ty5c1J7fX09qqurkZiYCACwWq3Izc3FU089hbCwMNy4cQPr16/vVmxESsDawtqiGO7+UB+RK2zdulX6MLO7HD9+XMTGxtrts2HDBhEcHCwiIyOdfvyCggIxe/Zsh/ouXbpUhISEiOHDhzs9DiIlYW1hbfFkPkII4e6JJZGzffPNN9ixYwcOHTrkluNbLBZkZmYiISEBq1atcksMhw8fRmhoKEaMGOGW4xMpEWsLa4sn6+PuAIiUpr6+HlFRURg+fDjy8/PdFsfDH2ImIu/H2kKd4Tt1RERERArAL0oQERERKQAndUREREQKwEkdERERkQJwUkdERESkAJzUERERESkAJ3VERERECsBJHREREZECcFJHREREpACc1BEREREpwP8BR2zaFSlI+C0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Check the gang of 4\n", + "ct.gangof4(P, Cnew);" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "id": "wJHJLjXwCNz-", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "array([[list([])]],\n", + " dtype=object)" + ] + }, + "execution_count": 23, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlBElEQVR4nO3dd3xT9f4/8FdGmzbN6KYtLaO0tJQ9RAQRVMCBIFcv13ulAg4cF70qV66Xe9Uqoqj3p9fxFe91XHBUEQdDr3pVEBkqyCiUUmgpLZQOupOmM20+vz/SBAKldCUn4/V8PPKgJCfnvE8D9MVnyoQQAkRERETk8eRSF0BEREREvYPBjoiIiMhLMNgREREReQkGOyIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IqB1vvvkm4uLiIJfL8fLLL0tdTqesWbMGMpkMMpkMDz30kMuvX1BQYL/+qFGjXH59ImKwI5JMWVkZ7rnnHvTr1w8qlQpRUVG45ppr8PPPP9uPkclk2LBhg3RF+iij0Yj7778fjz76KIqKinD33XdLXVKn6XQ6lJSU4Omnn7Y/9/nnn+Oaa65BeHg4ZDIZMjIyLvh+IQSuu+66dv/sPfPMM5g4cSLUajWCg4PPe29cXBxKSkrw5z//uZfuhoi6isGOSCI333wzDhw4gHfffRc5OTnYtGkTpk6diqqqKqlLAwA0NzdLXYJkTp48CbPZjJkzZyI6Ohpqtbpb5zGbzb1c2cXJZDJERUVBq9Xan6urq8OkSZPw3HPPXfT9L7/8MmQyWbuvNTc3Y+7cubjvvvvafV2hUCAqKgoajaZ7xRNRzwkicrnq6moBQGzduvWCx/Tv318AsD/69+9vf23Tpk1izJgxQqVSiYEDB4onn3xSmM1m++sAxKpVq8S1114rAgICxIABA8S6des6rGnKlCli8eLF4uGHHxZhYWHiiiuuEEIIkZWVJa677joRFBQkIiMjRWpqqigvL7e/75NPPhHDhg0TAQEBIjQ0VFx99dXCZDIJIYRYsGCBuPHGG8WTTz4pIiIihFarFXfffbdoamqyv7+xsVE88MADIiIiQqhUKjFp0iSxe/du++s//PCDACC+//57MXbsWBEYGCguu+wyceTIEfsxGRkZYurUqUKj0QitVivGjBkjfv31V/vrO3fuFJMnTxYBAQEiNjZWPPDAA/Yaz7V69WqH7zsAkZ+fL4QQYtWqVSI+Pl74+fmJwYMHi/fee8/hvQDEG2+8IWbPni3UarV44okn2r3G66+/LhISEoRKpRKRkZHi5ptvFkII8e6774rQ0FDR2NjocPxNN90kbrvttove6+rVq4Ver2/3mkIIkZ+fLwCI/fv3t/t6RkaGiI2NFSUlJQKAWL9+/QW/Rx1dJy0tTYwcOfKCrxOR8zDYEUnAbDYLjUYjHnroofN+iNuUlZUJAGL16tWipKRElJWVCSGE+Oabb4ROpxNr1qwReXl54ttvvxUDBgwQTz75pP29AERYWJh46623xNGjR8Vjjz0mFAqFOHz48AVrmjJlitBoNGLp0qXiyJEjIjs7WxQXF4vw8HCxbNkykZ2dLfbt2yemT58urrzySiGEEMXFxUKpVIqXXnpJ5Ofni4MHD4rXX39d1NbWCiGswU6j0YhbbrlFHDp0SHz55ZciIiJC/O1vf7Nf909/+pOIiYkRX331lcjKyhILFiwQISEhorKyUghxJthdeumlYuvWrSIrK0tMnjxZTJw40X6OoUOHitTUVJGdnS1ycnLEunXrREZGhhBCiIMHDwqNRiP++c9/ipycHLFz504xevRosXDhwna/D/X19eL7778XAMTu3btFSUmJaGlpEZ9//rnw8/MTr7/+ujh69Kh48cUXhUKhEFu2bHH4vkdGRop33nlH5OXliYKCgvPO/+uvvwqFQiE+/PBDUVBQIPbt2ydeeeUV+7X1er1DCC8vLxf+/v7263R0rz0JdnV1dWLIkCFiw4YN9nthsCPyPAx2RBL59NNPRUhIiAgICBATJ04Uy5YtEwcOHHA4pr0frpMnTxbPPvusw3Pvv/++iI6Odnjfvffe63DMpZdeKu67774L1jNlyhQxatQoh+cef/xxMWPGDIfnCgsLBQBx9OhRsXfvXgGg3QAjhDXYhYaGirq6Ovtzb7zxhtBoNKK1tVWYTCbh5+cn0tPT7a83NzeLmJgY8cILLwghHFvsbP773/8KAKKhoUEIIYRWqxVr1qxpt4bbbrtN3H333Q7Pbd++Xcjlcvv7z7V//36HljohhJg4caJYtGiRw3Fz584V119/vf33AMRDDz3U7jltPvvsM6HT6YTRaGz39fvuu09cd9119t+//PLLIj4+XlgsFiFEx/fak2B39913izvvvNPhXhjsiDwPx9gRSeTmm29GcXExNm3ahGuuuQZbt27FmDFjsGbNmg7ft3fvXixfvhwajcb+WLRoEUpKSlBfX28/7rLLLnN432WXXYbs7OwOzz1u3LjzrvXDDz84XCs5ORkAkJeXh5EjR+Lqq6/G8OHDMXfuXLz11luorq52OMfIkSMdxqhddtllMJlMKCwsRF5eHsxmMyZNmmR/3c/PD+PHjz+v1hEjRti/jo6OBmCdgAIAS5YswV133YVp06bhueeeQ15ensM9rFmzxuEerrnmGlgsFuTn53f4/Thbdna2Q50AMGnSpPPqPPd7eK7p06ejf//+iI+Px2233Yb09HSHz23RokX49ttvUVRUBABYvXo1Fi5caB/31tG9dtemTZuwZcsWj5n9S0QXxmBHJKGAgABMnz4dTzzxBH766ScsXLgQaWlpHb7HYrHgqaeeQkZGhv2RmZmJ3NxcBAQEdPjeCw2KtwkKCjrvWrNmzXK4VkZGBnJzc3HFFVdAoVDgu+++w9dff42UlBS89tprSEpK6lRgkslkEEK0W5cQ4rzn/Pz8zrsPi8UCAHjyySeRlZWFmTNnYsuWLUhJScH69evtx9xzzz0O9R84cAC5ubkYNGjQRes8t+aL1Xnu9/BcWq0W+/btw0cffYTo6Gg88cQTGDlyJGpqagAAo0ePxsiRI/Hee+9h3759yMzMxMKFC+3v7+heu2vLli3Iy8tDcHAwlEollEolAOt/PqZOndqjcxORazHYEbmRlJQU1NXV2X/v5+eH1tZWh2PGjBmDo0ePIiEh4byHXH7mr/Qvv/zi8L5ffvnF3trWWWPGjEFWVhYGDBhw3rVsAUYmk2HSpEl46qmnsH//fvj7+zsEjQMHDqChocGhDo1Gg9jYWCQkJMDf3x87duywv242m7Fnzx4MGTKkS7UOHjwYDz/8ML799lvcdNNNWL16tcM9tPf98vf37/T5hwwZ4lAnAPz0009drhMAlEolpk2bhhdeeAEHDx5EQUEBtmzZYn/9rrvuwurVq/Gf//wH06ZNQ1xcXKfutbv++te/4uDBgw7hFwD++c9/9vjcRORaSqkLIPJFlZWVmDt3Lu644w6MGDECWq0We/bswQsvvIAbb7zRftyAAQOwefNmTJo0CSqVCiEhIXjiiSdwww03IC4uDnPnzoVcLsfBgweRmZmJFStW2N/7ySefYNy4cbj88suRnp6O3bt345133ulSnYsXL8Zbb72FP/zhD1i6dCnCw8Nx7NgxrF27Fm+99Rb27NmDzZs3Y8aMGYiMjMSuXbtQXl7uEHaam5tx55134rHHHsOJEyeQlpaG+++/H3K5HEFBQbjvvvuwdOlShIaGol+/fnjhhRdQX1+PO++8s1M1NjQ0YOnSpfjtb3+LgQMH4tSpU/j1119x8803AwAeffRRTJgwAYsXL8aiRYsQFBSE7OxsfPfdd3jttdc6/b1YunQpfve732HMmDG4+uqr8cUXX+Dzzz/H999/36Xv6Zdffonjx4/jiiuuQEhICL766itYLBYkJSXZj5k3bx4eeeQRvPXWW3jvvfc6fa8XUlVVhZMnT6K4uBgAcPToUQBAVFSUw+Nc/fr1w8CBA+2/P3nypP1cra2t9gCYkJDAJU6I3IXEY/yIfFJjY6P461//KsaMGSP0er1Qq9UiKSlJPPbYY6K+vt5+3KZNm0RCQoJQKpUOy5188803YuLEiSIwMFDodDoxfvx48eabb9pfByBef/11MX36dKFSqUT//v3FRx991GFNU6ZMEQ8++OB5z+fk5Ijf/OY3Ijg4WAQGBork5GTx0EMPCYvFIg4fPiyuueYa+1IlgwcPFq+99pr9vbblTp544gkRFhYmNBqNuOuuuxxmAjc0NIgHHnhAhIeHd7jcSXV1tf25syc3NDU1id///vciLi5O+Pv7i5iYGHH//fc7TIzYvXu3mD59utBoNCIoKEiMGDFCPPPMMxf8XrQ3eUKIzi13cqEJBzbbt28XU6ZMESEhISIwMFCMGDFCfPzxx+cdd9ttt5239MnF7vVCkxraW8IFgEhLS7tgne3dy4IFC9o9zw8//OBwHCdPEElHJkTbIBci8hoymQzr16/HnDlzJK1j4cKFqKmp4e4Z3TB9+nQMGTIEr776aqffs2bNGjz00EP28XpSefLJJ7Fhw4YOd7ggIufgGDsiIjdSVVWFtWvXYsuWLVi8eHGX328wGKDRaPDoo486obqOnTx5EhqNBs8++6zLr01EVhxjR0TkRsaMGYPq6mo8//zzDuPuOuPmm2/G5ZdfDgDt7uXqbDExMfZWOpVK5fLrExHArlgiIiIiL8GuWCIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdkRERERegsGOiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJZRSFyAli8WC4uJiaLVayGQyqcshIiIiOo8QArW1tYiJiYFc3nGbnE8Hu+LiYsTFxUldBhEREdFFFRYWIjY2tsNjfDrYabVaANZvlE6nk7gaIiIiovMZjUbExcXZc0tHfDrY2bpfdTodgx0RERG5tc4MG+PkCSIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hJKqQsg91NqaMT//ZCLnFIThvbVYfGVCQjXqKQui4iIiC6CwY4c5Jyuxe/+/TNq6s0AgN0FVfg6sxQfLroU8REaiasjIiKijrArluzqmlpwx5pfUVNvRkq0Ds/fPByDIoJQamzEovf2oL65ReoSiYiIqAMMdmT3yuZcnKpuQN/gQHy46FLcckk/fHT3BETpApBXXofXfzgmdYlERETUAQY7AgBUmprw3s8FAIDlNw5FsNofABCpDcDyG4cCAN7alo/TxkapSiQiIqKLYLAjAMC7PxWg0WzB8L56XJUc6fDa9JQ+uGRACJpbLfjPznyJKiQiIqKLYbAjtLRa8OHukwCAe6cMgkwmc3hdJpPh3imDAAAf/nIStY1ml9dIREREF8dgR9hxrAIVpmaEBvljxtA+7R5zZVIk4iOCUNvUgq8zS11cIREREXUGgx1hw/4iAMANI6Lhp2j/j4RcLsNvx8YCAD7dd8pltREREVHnMdj5uKaWVnx7+DQA4MZRfTs89jej+0ImA3bnV+FkZb0ryiMiIqIuYLDzcbvzq1Df3IpIrQpj+gV3eGy0PhATBoYBAL49zO5YIiIid8Ng5+O2Hi0HAExNijhv0kR7bGPwbK18RERE5D4Y7HzcD0fLAFgnR3TGtCHWYLenoArVdc1Oq4uIiIi6jsHOhxXVNOB4eR0UchkmJYZ36j1xoWokR2lhEcCWI2VOrpCIiIi6gsHOh/2aXwUAGBajgy7Ar9Pvm5FibbXbcpTBjoiIyJ0w2Pmw3QXWYHfJgNAuvW/y4AgAwM95lbBYRK/XRURERN3DYOfDbC12lwzsWrAbGRsMtb8CVXXNOHq61hmlERERUTdIFuzS0tKQkpICuVyOtWvXXvC4oUOHQqPR2B9yuRwvvvgiAGDr1q2Qy+UOr2/fvt1Vt+DRquuakVtmAgCM6x/Spff6K+X2Vr6dxyp6vTYiIiLqHsmCXWJiIl555RWMHz++w+OysrJgMplgMplw4sQJ+Pn54cYbb7S/PnjwYPvrJpMJkydPdnbpXmHPiWoAwKCIIIRpVF1+/6QE63p2P+dV9mpdRERE1H2SBbvU1FRMnz4dAQEBnX7PunXrMGbMGCQkJHTrmk1NTTAajQ4PX7XvpDXYdXV8nc3EQdZZtLvyq9DSaum1uoiIiKj7PGqMXXp6OubNm+fwXEFBASIjI5GYmIjly5ejtbX1gu9fuXIl9Hq9/REXF+fskt3WoSIDAGBEbHC33j8kWgetSglTUwuOlHKcHRERkTvwmGBXUFCA3bt343e/+539ueTkZGRkZKC0tBQbN27EunXr8Oqrr17wHMuWLYPBYLA/CgsLXVG62xFCILMt2A3rq+vWORRyGUa1bUG2v631j4iIiKTlMcHuww8/xLRp0xAZeWaHhKioKCQnJ0MulyMlJQWPPfYY1q9ff8FzqFQq6HQ6h4cvOlXdgJp6M/wUMiRFabt9nrFtky72nmCwIyIicgceFezO7YY9l1zuMbcjqaxia2vd4D5aqJSKbp9nTL+2YMcWOyIiIrcgWRIym81obGyExWJx+Lo9GRkZKCgowJw5cxye37p1q707NTc3FytWrMANN9zg7NI9nr0bNkbfo/OM6hcMmQworGpAWW1jb5RGREREPSBZsFu0aBECAwOxfft2zJ8/H4GBgdi2bRvS09MxdOhQh2PT09Nx4403IigoyOH5vXv3YsKECQgKCsKMGTMwZ84cLFmyxJW34ZEyi6yzgYfF9izY6QL8MDjS2pW770RNT8siIiKiHpIJIXx2Tyij0Qi9Xg+DweBT4+3GrfgeFaYmrP/jRIzu17XFic+17PNMfLT7JO65Ih7Lrh/SSxUSERGRTVfyCgel+ZiqumZUmJoAWMfY9dQY+8zYmh6fi4iIiHqGwc7H5LTt7RobEogglbLH5xve1p17uMQIi8VnG3+JiIjcAoOdj8ltC3a90VoHAAkRGgT4yWFqakFBZV2vnJOIiIi6h8HOx+ScNgEAEvtoeuV8SoUcQ6Kt/f222bZEREQkDQY7H3O0rcUuqZda7IAzy6ZkFfvu3rtERETugMHOhwgher0rFgCG97UGu8xTbLEjIiKSEoOdD6kwNaO63gyZDBgU0TtdsQAwtG2/2UPFBvjw6jlERESSY7DzIbbWun6hagT6d38rsXMN7qOFv0KO2sYWnKyq77XzEhERUdcw2PmQo07ohgUAP4UcydHWcx4q4jg7IiIiqTDY+ZC88rYZsZG91w1rM8w2zo4zY4mIiCTDYOdD8ius68wNDA+6yJFdZ5sZe7iELXZERERSYbDzIQUV1vFvzgh2SVHWrtijpQx2REREUmGw8xGN5lYUGxoAODfYnTY2oaa+udfPT0RERBfHYOcjTlTWQwhAG6BEaJB/r59fo1IiNiQQAHCktLbXz09EREQXx2DnI84eXyeTyZxyjWR7dyyDHRERkRQY7HxEQaXzJk7Y2Lpjj3CcHRERkSQY7HxEQVuL3YAwZwY76w4U7IolIiKSBoOdjzjuxKVObIa0tdjllNbCYuHWYkRERK7GYOcjClwQ7AaEB8FfIUddcyuKahqcdh0iIiJqH4OdD6hrakFZbRMAa/hyFj+FHIPadrVgdywREZHrMdj5ANvEidAgf+gD/Zx6rWQuVExERCQZBjsfUFhl3XGiX6ja6deyzYzNZosdERGRyzHY+YBT1dbxbrYFhJ0piWvZERERSYbBzgfYWuziXNBiN7iPNdgVVNTB3Gpx+vWIiIjoDAY7H1DY1mIXF+L8YBejD0CQvwItFoETbWP7iIiIyDUY7HyArcXOFV2xMpnMPjP2WJnJ6dcjIiKiMxjsvJwQwj7GzhVdsQCQEMFgR0REJAUGOy9XWdeMBnMrZDIgJjjAJddM6GMNdrkMdkRERC7FYOflbN2wfbQBUCkVLrkmW+yIiIikwWDn5ewTJ0KdP77OJqFtjF1euYl7xhIREbkQg52XO1XdttSJC2bE2vQLVcNfIUej2cI9Y4mIiFyIwc7LFVa5bnFiG6VCjoFte9KyO5aIiMh1GOy8nK3FLtZFM2JtErjkCRERkcsx2Hm5Uy5cnPhsXMuOiIjI9RjsvJjFIlDkwn1iz5YYaVvyhHvGEhERuQqDnRc7XduI5lYLFHIZovWuWcPO5uyuWCE4M5aIiMgVJAt2aWlpSElJgVwux9q1ay943MKFC6FSqaDRaKDRaDB06FCH19esWYPY2FjodDrcfvvtaG5udnbpHqO4bUZqlC4ASoVrP+qB4UGQywBjYwvKTU0uvTYREZGvkizYJSYm4pVXXsH48eMveuxTTz0Fk8kEk8mErKws+/OZmZlYsmQJNmzYgMLCQhQUFGDFihXOLNujFNc0AnDdjhNnC/BT2Lcw4zg7IiIi15As2KWmpmL69OkICOh+6Pjwww9xyy23YNy4cdDr9Xj88cfxwQcf9GKVnq3EYG2xi9a7dnydjW0HijwGOyIiIpfwiDF2//jHPxAWFoaJEydi27Zt9ucPHz6M4cOH238/cuRI5Ofno6Gh/UVxm5qaYDQaHR7ezNZiFy1Bix0AxEdY17I7XlEnyfWJiIh8jdsHuwcffBDHjh1DSUkJFi9ejFmzZqGwsBAAYDKZoNPp7MfavjaZ2m8hWrlyJfR6vf0RFxfn/BuQkK3FLkaiFrv4tha74+UMdkRERK7g9sFu9OjRCAkJgb+/P+bNm4fLLrsM3333HQBAo9E4tLrZvtZoNO2ea9myZTAYDPaHLSB6qxJDW4udi2fE2th2n8hnix0REZFLKKUuoKvk8jNZNCUlBZmZmfbfHzhwAAMHDkRgYPstVCqVCiqVyuk1uoszkyekarGzBrtT1fVoammFSqmQpA4iIiJfIVmLndlsRmNjIywWi8PX5/rss89QV1eHlpYWfPzxx9ixYweuuuoqAMCtt96KdevWYd++fTAYDHjmmWeQmprq6ltxS80tFlS0LTMiVYtdhEYFrUoJiwBOVtZLUgMREZEvkSzYLVq0CIGBgdi+fTvmz5+PwMBAbNu2Denp6Q5r1f3zn/9ETEwMwsPD8dJLL2H9+vUYMGAAAGD48OF48cUXMWvWLMTGxiIuLg5///vfJboj93LaaG2t81fKERrkL0kNMpkMA9ta7fI4zo6IiMjpZMKHtwUwGo3Q6/UwGAwOkzC8wa7jlbjlzV/QP0yNH5deKVkdD63djw0ZxfjLtUn449QEyeogIiLyVF3JK24/eYK6R+qJEzYDw60TWfLZYkdEROR0DHZeqljipU5suJYdERGR6zDYeakSiRcntuGSJ0RERK7DYOelpN5OzMbWYldV14ya+mZJayEiIvJ2DHZe6swadtK22Kn9lfZxfuyOJSIici4GOy9VarRNnpC2xQ440x3LrcWIiIici8HOCzWaW1FVZ+32lHryBHCmOza/ov09fImIiKh3MNh5IdtSJ2p/BXSB0u8aZ1vyhC12REREzsVg54VKamwTJwIgk8kkrubsFjsGOyIiImdisPNCxQb3GV8HAPFnLXlisfjsRidEREROx2DnhWz7xEZJvOuETWyIGv4KOZpaLChqa00kIiKi3sdg54XK2oJdH51K4kqsFHIZ+oepAbA7loiIyJkY7LzQaWMTAKCPzj1a7ICzlzzhzFgiIiJnYbDzQmW11ha7SK37BLv4COvMWLbYEREROQ+DnReytdhFuklXLHBmAgV3nyAiInIeBjsvI4Swt9i5U1esbckTrmVHRETkPAx2Xqa63gxzq3VJkQiN+7TY2cbYFRsa0GhulbgaIiIi78Rg52VsS52EBfnDX+k+H29okD/0gX4QAiioZKsdERGRM7jPT37qFbZgF+lG3bAAIJPJ7K12+eyOJSIicgoGOy9TZl/qxH26YW04gYKIiMi5pN8hnnqVrcWujxstdWIzMJx7xnZXXVMLimsa4K+UIy5EDblc+j2AiYjI/TDYeZnTte6168TZBkZwkeKuEELg60OlWL0zH3tOVEO0bbOrVSlx7bAo3DMlHgmRWmmLJCIit8Jg52Vsa9hFuNkYOwCID+cixZ1VXdeMBz/OwLaccvtzugAlmlosqG1qwSd7T+Hz/UW4b8ogPDx9MBRswSMiIjDYeZ2y2rYxdlr3a7EbEG7dL7a63ozqumaEBPlLXJF7Kqyqx23v7EJBZT1USjnuviIefxjfDzHBgWhptWB/YQ3+/eNxfJ99Gv/3wzEcOFWDN1LHQqPiX2ciIl/HyRNepszofosT26j9lYjWW+vK55In7aowNdlDXd/gQGy6/3L8eUYSYoIDAQBKhRyXDAjF2wvG4dU/jEagnwLbcyuw4D+7Udtolrh6IiKSGoOdF7FYxJkWOzcMdgC45EkHzK0W3P3eHnuo+/yPE5EUdeExdLNHxuDjeyZAF6DE3hPV+GP6PrS0WlxYMRERuRsGOy9SWdeMVouATAaEa9yzm5MzYy/s5e9zsO9kDbQBSrx35/hOhfMRscH44K5L7S13z3yV7YJKiYjIXTHYeRHbUifhGhWUCvf8aOMjrBMojldwZuzZ9p2sxqqteQCA524agUFt36fOGBEbjH/eMhIAsHpnAb44UOyUGomIyP25509/6pYyN17qxMa+SDG7Yu1aLQJPbDwEIYCbxvTFzBHRXT7HtcOi8cBVCQCAv6/PRHFNQ2+XSUREHoDBzovYljpxx8WJbWxdsQWVdbBYhMTVuIcPd5/EoSIjdAFK/O36Id0+z5+uTsTIuGAYG1uw9NMDEILfXyIiX8Ng50XO7BPrvi12sSGBUMplaDRbUNpWry+rbTTjpW+PAgAeuSYJ4Zruf3Z+CjlevmUUAvzk2HmsEuv3F/VWmURE5CEY7LyIrcUu0o1b7JQKOfqFWdez4wQK4N2fClBdb0Z8RBBuHd+vx+cbGB6EB68eDAB45r/ZqKlv7vE5iYjIczDYeZHyWvddw+5sZ8bZ+fYECmOjGW9uOw4AePDqxF6b8HLX5IEY3EeDyrpmPP/N0V45JxEReQYGOy9iH2Pnxl2xwNkzY327xe7dnQUwNrYgIVKDG0bE9Np5/RRyrJgzHACw9teTyC4x9tq5iYjIvTHYeRH7GDs37ooFuJYdADS1tOLdn08AAO6/MqHX93odPzAUM4dHQwhg5ddHevXcRETkvhjsvESrRaCyzjqeyp0nTwAMdgDw34MlqDA1oY9O1a3lTTrjL9cmwU8hw7accmzPLXfKNYiIyL0w2HmJ6nrrrhMAEBrknrtO2NjG2BVW1aO5xfe2wBJCYPXOAgDA/MsGwM9Ji0n3DwtC6oT+AIBnvzrC5WWIiHyAZMEuLS0NKSkpkMvlWLt27QWPW7JkCeLj46HVajFu3Dhs27bN/trWrVshl8uh0Wjsj+3bt7uifLdTYbKOrwsN8ndaUOgtEVoVgvwVsAjgZFW91OW43L6T1cgsMkCllOMPvTATtiN/uioR2gAlskuM+PpQqVOvRURE0pMsASQmJuKVV17B+PHjOzxOr9fj22+/hcFgwKOPPoo5c+agtrbW/vrgwYNhMpnsj8mTJzu7dLdUXmsNdhE9WAfNVWQyGQZG+O7M2A9+OQkAuHFUjNNbV0OC/HHn5QMBAK9szmGrHRGRl5Ms2KWmpmL69OkICOh4oH9aWhoSEhIgl8sxd+5cBAYGIicnp1vXbGpqgtFodHh4C1uLXbjWvbthbeLDrTNjfW2cnbHRjK8ySwAAt17a3yXXvH3SQGgDlMg5bWKrHRGRl3PvPrtzFBQUoKqqCgkJCQ7PRUZGIjExEcuXL0dra+sF379y5Uro9Xr7Iy4uzhVlu4QntdgBvjuB4ssDJWhqsSAxUoORsXqXXFMf6Ic7JrHVjojIF3hMsDObzViwYAGWLl0Kvd76AzE5ORkZGRkoLS3Fxo0bsW7dOrz66qsXPMeyZctgMBjsj8LCQleV73T2YKf1jGAXb+uK9bFg98le65+5ueNiIZP17hInHbnjcrbaERH5Ao8IdkIILFy4EJGRkXjyySftz0dFRSE5ORlyuRwpKSl47LHHsH79+gueR6VSQafTOTy8RYXJutRJT/YadSVfbLE7VlaL/SdroJDLMGd0X5de++xWu1c357LVjojIS3lEsHvggQdQXFyMDz74AHL5hUvu6DVv52ktdgPagl15bRNqG80SV+Man+0rAgBcmRQhySLSd1w+EBqVEkdP1+KHo2Uuvz4RETmfZEnIbDajsbERFovF4etzpaWlYefOndi4cSNUKsfQsnXrVnt3am5uLlasWIEbbrjBJfW7G08LdroAP3vroi+02gkh8N+D1kkTrm6ts9EH+uHWS63Lq/zrxzxJaiAiIueSLNgtWrQIgYGB2L59O+bPn4/AwEBs27YN6enpGDp0qP245cuXIzs7GzExMfa16tLT0wEAe/fuxYQJExAUFIQZM2Zgzpw5WLJkiVS3JCn7rFgP6YoFzoyz84Vgl1lkwMmqegT6KXBVcqRkddwxaSD8FDL8WlCNvSeqJKuDiIicQynVhdesWYM1a9a0+9q8efPsXwtx4bFAf/7zn/HnP/+5t0vzOC2tFlTVW8fYeUqLHWDdgWJ3fhWOl3t/sPuyrbXuqiGRUPtL9tcOUfoA/GZ0X6zbcwpvbD2OtxeESlYLERH1Pt8dlOZFquqaIQSgkMsQovaMdewA35lAcXY37Cwn7QvbFXdfMQgyGfB99mnknq69+BuIiMhjMNh5gbLaM9uJKeSuW0Kjp3wl2O0vrEFRTQOC/BWYmiRdN6xNQqQGM1L6AAD+ve24xNUQEVFvYrDzAuUmz1qc2Cb+rG3FOupy93S21rppKX0Q4KeQuBqre6cMAgBszChCiaFB4mqIiKi3MNh5gQoPmxFrExeqhlwG1DW32mf1ehshBL5pWxD4+uHSd8PajO4XgksHhsLcKvDO9nypy/FILa0WtHI9QCJyM9KN4qZeU+6BM2IBQKVUIC5UjROV9TheUYdInevXdnO2I6W1KKppgEopxxWJEVKX4+DeqYOwK78KH+0+iQeuSoRe7Sd1SW6rqKYB3x8+jf0nq3G4xIgSQyNqG1sAAP5KOaJ0ARgQHoRRsXpMGBSGMf1C3KZ1loh8C4OdF/C0NezONjA8CCcq65FfUYcJ8WFSl9Prvj98GgAwOTEcgf7u9YN+6uAIJEdpcaS0Fh/sOoHFVyZc/E0+pLnFgq8PlWDNTwXYf7Kmw+NOVtXjZFU9tuWU49Utx6BVKXHd8CjcNCYWlw4Mden2cUTk2xjsvMCZ7cQ8Z0aszcDwIGw9Wu61Eyi+z7YGu+ltkxXciUwmwz1T4vHwxwewemc+7rx8IFuZAFgsAl8cLMYL3xxFUY11/KFcBozrH4rLE8MxrK8O/ULVCFH7QyaTob65BUXVDThWbsLu/Cr8lFeJ8tomrNtzCuv2nMKwvjrcfcUgXD8sCkoFR78QkXMx2HmB8tpGAJ7ZYhcffmYChbc5bWzEgVMGyGTAVcnuF+wA4IYRMfh//8tBUU0DPtt3CvMu7S91SZLKPV2LpZ8eREZhDQDr36n5E/rj9+P7XfDvV2iQP2JD1Lg0PgzzLu0Pi0Xg14IqrN9fhA0ZRThUZMSfPtqPVyKC8NfrhmDakEi24BGR0/C/j17As7tiNQCA417YYmdrrRsVF+y2n42fQo47Lx8IAHhr23GfnQxgsQj8Z0c+Zr62AxmFNVD7K/DIjMHYtvRKPHB1Ypc+P7lchkvjw/DczSPw01+vxsPTBiNE7Ye88josem8PbnnzF2SXGJ14N0TkyxjsvICtK9bTljsBzix5crKyHi2t5+8V7Mls4+umDXHP1jqb34+PQ7DaDwWV9fhfVqnU5bhcXVML7kvfi+VfHkZziwVTkyLwwyNTcf9ViT0eFxka5I8HpyXix79ciT9OHQSVUo7d+VWY9doOPPf1ETQ0t/bSXRARWTHYebimllYYGswAPLPFLkoXgAA/OVosAqeqvWc9tbqmFuzMqwTgnuPrzqb2V2L+BGsX7L9/zPPqNQXPdaq6Hje/8RP+l3Ua/go5np4zDKsXXoI+vTxDWxfgh79cm4wfHpmK64ZFocUi8K8f8zDj5R+xI7eiV69FRL6Nwc7DVba11vkpZNAHet5yFXK5DAPCvG8Hip/zKtHcYkFcaCASIzVSl3NRCyYOgEopx4FTBvx8vFLqclziSKkRc17/CUdKaxGuUWHtPRNw24T+Th3/FhMciDdSx+Kt+eMQrQ9AYVUDUt/ZhbSNh9h6R0S9gsHOw9nG14VrVB47INu+A4UXBbsdx6ytMFckRnjE5xKmUeF34+IAAP/+0fu3GcsorMEt//4FFaYmDInWYdP9kzCmX4jLrj89pQ++WzIFt7W1lL778wnMfG07DrRN2iAi6i7OivVwnjxxwmagF86M3dkW7C5PCJe4ks5bNDke6btO4MecchwuNiIlRid1SU6x90QVFvznV5iaWjCmXzBW3z5ektZujUqJp+cMw7SUPlj6yQEcL6/DTW/8hPuvTMD9VyXAj0ujXJAQAtX1ZtTUN6O2sQXGRjPMbWN0ZZBBIZdBF+gHXYASukA/hKg9ax9top5gsPNwFR66T+zZbDNjvaUr9rSxEbllJshkwGWDPGfR5X5halw/PBpfHizBm9vy8PLvR0tdUq/LKjZg4WprqLssPgxvLxiHIJW0/wxOGRyBbx++Ao9tOIQvD5bglc252Hq0DC/dMgqDIty/G9+ZLBaBgso6ZBUbcajYgNzTJhRW1eNUdQMazJ3vulbKZYjSB6BvcCBiQ9SIjwjC4D5aJEdp0Tc4EHKGPvIiDHYe7uyuWE9l64r1lmBna60b3lePYLVnLRp975RB+PJgCb44WII/z0hCXKha6pJ6zfFyE+a/sxu1jS0YPyAU/1l4idvsBhKs9sf/3ToG01OK8PiGQzhwyoCZr27HsuuG4LYJ/X0meAghkHPahJ/yKvBzXiV+OV4JY9vWbe3RqqwtctoAJVRKOWzTfppbLNaWvAYzapta7JOzTlU3YFd+lcM51P4KJEVpMTI2GKPirI/+YWqPGEJB1B4GOw9n2yfWk7tibYsUlxgaUd/cArW/Z/+xtI2vm+RB3bA2w/rqcXlCOHYcq8A7O/Lx5OyhUpfUK4prGpD69i5U1jVjaIwOby8c5zah7mw3juqL8QND8ZdPD2J7bgXSNmXh++zT+MdvRyJK7317KQNAa9uCzv/LKsX/DpWi2NDo8LpKKceQaB2GxuiQHK1D/1A14kLViAkOgEp58c+wpdWCclMTitqC3anqehwrM+HoaRPyykyob27F/pM1DtvGBav9zgS9fsEYHRfscf9Jc5WWVguaWixobrH+2tTSiqYWC4QAZDLrri0ymQxymQwyAH5KOdR+CgT6K6BSyhmgncCzf4KSvSvWE7cTswlW+yNE7YfqejMKKuo9emyXEMIjx9ed7Z4p8dhxrAIf/1qIB69OREiQ5/7ZAqxLz9z57h4UGxoRHxGE9+4YD12A+84gj9YH4t3bx+P9X05g5dfZ2J5bgRn//BFPzxmGG0f1lbq8XiGEQEZhDT7dewrfHCpFZV2z/bUAPzkuGRCKiYPCMXFQGIbG6Hq0FZtSIUe0PhDR+kCMG+D4Wkurxd7Vm1FYg4zCGmQVG1FTb8aPOeX4MafcfuzA8CCMtge9ECRHa71yHKQQAoYGM4pqGlBc04jimgYU1zSgwtQMQ4MZhgbrrzX1ZhgazGhq6f76ozIZEKBUQO2vQICfAhqVEvpAP+gC/aB3eCihVzs+ZzumM+He1zDYeTj7PrEe3GIHWP/RrD5Zg+MVJo8OdnnlJpw2NkGllGNsf9fNsuxNlyeEY2iMDlnFRrz38wk8OC1R6pK6zWIReOSTA8guMSJc44/37hiPMA8YtiCXy7Bg4gBcnhiOJR9n4MApAx5cm4HvDp/GijnDPLb1qMzYiM/3F+HTvadwrOzMZCl9oB+mDemDa4dFYXJiuMv2LFYq5EiI1CIhUmsPzc0tFhwpbQt6J61h73hFHfLbHp/vLwJgbUkc3leP0f2CMSouBKP7BSNaH+D2LVDmVgtKDdbAVtQW2orOCnDFNQ2o6+bSO0q5DCqlHP5KOeQyGQQAixCwWIT1a4uA2SLQ3BYGhQAazK1dGi95rgA/+Tkh0K9t4sy54dAPerWfPUQG+CkQ6KdAgJ8cAUqFVw13YLDzcJVtLXZhQe7/w6ojA8M12HeyBvnlnj3OzrbY7CUDQl32w6m3yWQy3DNlEP700X6s+Skfd00eKPkEg+56dUsuvj5UCj+FDP9KHYvYEM8aMzgoQoNP75uI1384hte2HMOXB0uwK78KT9yQghtGRLt9iACsQWJz9ml8/Gshfswph23XugA/Oa4bFo2bxvTFhPgwt2n98lfKMSI2GCNigzH/MutzNfXNyCi0dtfaWvYMDWbsOVGNPSeqAeQDACK1KgyJ1iExUoPBfbRI7KNBQqQGWhe1EAshUFXXjBJDY9ujwd7yVlRdj+KaRpyubURn1iAP1/gjJjgQMfpAxAQHIkKrgj7QD8HntJxpVEqo/OTwV8g73bLaahHWQNfcisa2YFff3ApTY0tbq6Djw9jec41mCAE0mi1oNDfhtLGpR987f6UcAUo5/BTytq5jQN72q0wmg1xu/X2rRaDVItBi+7XVglaLwMi4YHy4aEKPaugtnvmvNdnZujA8uSsW8J4JFDuOWRf39cTxdWe7flgUXgpTo6CyHu/9fAL3TR0kdUld9nVmCV7+PhcA8Myc4Rg3IFTiirrHTyHHQ9MG48qkSDy8LgPHy+vwwEf7sW5PIZbfOMy+XJC7OVFZh7W/FuKTPafsQ0YAYFz/EPx2bCxmjoh2WeDpqWC1P6YmRWJqUiQAa8tTfmUdMk7WYH9hNTIKa5BdUouy2iaU1Tp24QLWreVigq2zcmOCAxGtD0BwoD90ZwWlAD8FlHIZlArrci0yyNDcakGTudU+hs3U1ILq+mbrUi911l+r6prsQa7U2GhvDeuIv0KOmOAAxAQH2muy/Wp73pn/MVXIZdColND04D+MFotAbVNLu6Gvo2DY0GwNkk1mC5rP2sayue173F31brTAOIOdBzO3WlBTb91OzBO6lzpim0CR58HBrqXVgl/adm3w1PF1NkqFHH+6OhFL1h3Av7flIXVCP4/5IQwAh4uNWLLuAADg9kkD8LtL4iSuqOdGxgXjqz9Nxr9/PI7Xtx7D9twKXPPyNtx5+UDcO2WQW+w809xiwbeHS/HR7pPYeezMDiYRWhXmjo3F3HFxbhtEu0Iul2FQhAaDIjS4eWwsAKChuRWHSww4WmpCzulaHCuz/lpW24SqumZU1TXjUJHRJfVFaFWI1gcgSheAviHnh7ewIH+P73qUy2X2VsPu/u1utQg0tbS1HLZY0GhuRatFtHUfW7uRhWjrThYCFmENpQqZNXzbQrhSLnOrHhoGOw9W3dZaJ5cBwW7wj3pPDGrbdiuvzAQhhEd0MZ3rwKkamJpaEKz28+hxgjazR8bg/344huPldVizswAPXO0ZY+0qTE1Y9N4eNJhbMTkxHH+/fojUJfWaAD8FHpyWiBtHxeCJTVnYllOON7bm4cNdJ/HHqYMw/7IBksz2zTldi0/3nsJne0/ZexFkMuvOK38Y3w9XD4l0m65WZwn0V2Bs/1CM7e/YMmxoMNvHrhW1PU4bGq0TEM5qUWoyW9BiEWixWGButfaV+ivlUNkf1kkGIWp/BKutiy4HB/khLMgfUfpAe5DrowuAv9K7v9e9RSGXQe2v9PiVGM7lXXfjY2z/gIZ6wf++BoQFQSGXwdTUglJjI6L1gVKX1GU7ctu6YQeFe8Uq90qFHA9enYgH12bgre3HMX/iALdoFepIc4sF932wF0U1DRgQpsb//WFMj2ZUuqsB4UF49/ZL8H12Gf7xvyPIOW3Cyq+P4N/bjiN1Qn/cNqG/05dAKjU0YtOBImzYX4zDJWdaovroVLhlXBzmjovzqnUQu8vWqjQkumv/2fPU/+CS9BjsPFhl24xYT584AVj/ZzogTI288jrknjZ5ZLDb6cHr113IDSNi8H9bjiG3zIT/7MjHw9MHS13SBQkh8MTGQ/i1oBpalRJvL7gEerV7B9GekMlkmJ7SB1clR2L9/iK8/H0OTlU34NXNufjXj3mYPqQP5ozuiymDI3qlBUcIgbxyE77PLsPm7NPYc6LaPgjfTyHDlMGRuOWSOFyZFOGVYdrVGOqouxjsPFhlXduMWA+fOGGTGKlFXnkdjpWZcMXgCKnL6ZK6phbsO1kNwPPH151NIZfh4emD8cf0ffjPjnwsmDgAoW66rt17P5/A2l8LIZMBr946GgmRvrEdl0Iuw2/HxmLOqBj8L+s03tp+HBmFNfhvZgn+m1kCXYASlyeG4/KECIztH4L4iKBOdYs2mluRV25CRmEN9hRUY3d+FYpqGhyOGdc/BHNG98XM4dEev94hkbdgsPNgtjXsPH3ihE1iHw2+yQJyz1rfylPszq9Ci0UgLjQQ/cK8q/vp2qFRSInW4XCJEa98n4OnbhwmdUnn2XmsAsu/PAwAWHZdMq5sm73oS5QKOWaOiMb1w6OQVWzEhv1F2HigGOW1TfgqsxRfZZYCsLauDQwPQh9dACI0KgT4KyCXWQeSV9eZUV3fbB8Ldu6yGP4KOSYMCsO0IZG4ekgf9A32vJZ1Im/HYOfBzqxh5x3/U7a1sBwrq5W4kq7b4eG7TXRELpfhsZlDcOvbu/DBrpO47bIBbtUaVlBRhz+m70OrReCm0X2xaHK81CVJSiaTYVhfPYb11eOv1yXjwCkDduRWYGdeBQ4XG2FqakHOaRNyTl/8P1D6QD8MjdFh3IBQjOsfgjH9Q3q0RAUROR//hnow2xg7T1/DzsYWFnJOe97MWG8cX3e2iQnhmDakD77PPo2VX2XjnYWXSF0SAKC20Yy73tsDQ4MZo+KC8exNwz3qz42zKRXWHVDG9g/Bg9MSIYTAqeoGHK+oQ0VtE8pNTWgyW2ARAnKZDCFBfghW+yNSq0JCpAZhQf78fhJ5GAY7D3ZmjJ13dMUOitBAJrMuD1Bhanb6rL7eUlbbiCOl1lbGiYO8M9gBwLLrk7H1aBk2HynDzmMVkofYVovAnz7aj2NlJvTRqfDmbWPdai0pdySTyRAXquZsVSIvxqlLHuzs5U68QYCfAv3afuDkelB37M951mVOhsbovOazaM+gCA1SJ/QHADy+8RCaWqRdaX3lV9n44Wg5VEo53po/DpG6AEnrISJyBwx2HszbumIBINE+zs5zJlDY9of1xvF153p4+mBEaFU4Xl6HVT/kSVbH2t0n8fYO6/6cL/5uJEbEBktWCxGRO2Gw82BnJk94RpdlZyREagF4TrATQnj9+Lqz6QP9kDYrBQDwxtY8ST6nn/Mq8diGQwCAh6cNxg0jYlxeAxGRu2Kw81ANza2oa9t02FvWsQPOtNjldmLGnjvIr6hDsaER/go5LvHQTea7aubwaFyVHInmVgse/ewgWlq7v3F2Vx0rM+G+9L1osQjMGhmDP12d4LJrExF5AgY7D2WbOOGvlHvV8gO2mbGespadrbVubP8QSfbolIJMJsPyG4dCq1Ji74lqvO6iLtnimgbc9s4u1NRbZ8D+47cjOGOTiOgcDHYeyj6+zsuWIxjUFuwqTE2obpsc4s7s69clen837NliQ9R4eo51oeJXt+Ri74kqp16vqq4Zt72zCyWGRgyKCMJ/Fl7CGbBERO2QLNilpaUhJSUFcrkca9euveBxDQ0NSE1NhVarRb9+/fDRRx85vL5mzRrExsZCp9Ph9ttvR3Oz+4eB3uBtS53YaFRK+2r2x8rdu9Wu1SLwU9uMWF+YOHGuOaP74jej+6LVIrA4fT/KjI1OuY6h3oyFq3cjr7wO0foAvHfnpV49+5iIqCckC3aJiYl45ZVXMH78+A6PS0tLQ1VVFYqKirB27Vrcd999yMnJAQBkZmZiyZIl2LBhAwoLC1FQUIAVK1a4onzJ2VrsvPEHXIKHjLM7eKoGtY0t0AUoMayvXupyJLH8xqFIiNSg1NiIRe/tQaO5d5dAqa5rxq1v/4KDpwwIUfvh/TvHcxsrIqIOSBbsUlNTMX36dAQEdLz21Pvvv4+0tDTodDpMnDgRs2fPtrfwffjhh7jlllswbtw46PV6PP744/jggw9cUb7kbGvYedPECZtE+w4U7r2WnW183cRB4VDIvac7vCu0AX54Z8E4BKv9cOCUAQ+u3Q9zL02mKDE04A9v/YKsYiPCgvzx0d0T7LOmiYiofW49xq66uhqlpaUYPny4/bmRI0ciKysLAHD48OHzXsvPz0dDQ0O752tqaoLRaHR4eCrbUifhXtYVCwCDo6w/vN092NnG103ysfF15+ofFoQ35o2Fv0KO/2WdxkNrM3oc7jJPGTDn9Z04UlqLCK0Ka++egOQoXS9VTETkvdw62JlMJigUCqjVZ7a/0el0MJlM9td1Op3Da7bn27Ny5Uro9Xr7Iy4uzonVO5etKzbMC7tih7T9AM8uMUIIIXE17atvbsG+EzUAfHN83bkuGxSGf902Bn4KGf6bWYLbV/8KQ725y+cRQuCDX05g7r9/wmljExIjNfj8volI7MOWOiKiznDrYKfRaNDa2or6+nr7c0ajERqNxv762a1utq9tr59r2bJlMBgM9kdhYaETq3euCntXrPe12CX20UAuA6rrzSivbZK6nHb9WlCN5lYL+gYHYkAY990EgKuS++DN28ZB7a/AjmMVmP36DuzO7/xs2ZOV9bjz3T14bMMhNJotmDI4Ap/9cSL3NSUi6gK3DnYhISGIiopCZmam/bkDBw5g6NChAICUlJTzXhs4cCACA9sfXK1SqaDT6Rwensq+64QXjrEL8FNgYHgQACC71D27Y8/sNhHmVcvN9NSVyZH49N6J6BsciBOV9fjdv3/GQ2v340jphYc9HCsz4fENhzDtpR+x5UgZ/BVyPDZzCFYvvAS6AD8XVk9E5PkkW9nWbDajtbUVFosFZrMZjY2N8Pf3h1zumDVTU1Px9NNP46OPPkJWVhY2bdqEXbt2AQBuvfVWTJ06FYsWLcKgQYPwzDPPIDU1VYrbcbkz69h5X4sdACRH65BXXocjJUZMGRwhdTnnse0P6wvbiHVVSowOXz04Gc99nY2PdhdiQ0YxNmQUIzlKizH9Q9A3OBBCCBTVNOLXgiqHbckmJ4bj8RtSMJhdr0RE3SJZsFu0aBHeffddAMD27dsxf/58/PDDDygqKsKzzz5rnyCxfPly3HXXXYiOjkZISAhWrVqFpKQkAMDw4cPx4osvYtasWTAajbj55pvx97//XapbchkhBKraumJDvbDFDgCGRGnx34MlOOKGLXaVpiYcLrG2QE0cxGDXHn2gH1beNAK3ju+PN348hv9lncaR0tp2P0+5DLgqORJ3TBqIywaxBZSIqCdkohOj01944YVOnUypVGLJkiU9LspVjEYj9Ho9DAaDR3XLGhvNGPHktwCAI09f65Ur8H9/+DTuem8PkqO0+OahK6Qux8EXB4rxwEf73bI2d1Vd14ztxypwtNRoHzfZRxeAIdE6TBoUDr2aXa5ERBfSlbzSqRa7xx57DPPmzbvocZ9++qlHBTtPZeuG1aiUXhnqACA52toVl1duQnOLBf5K9xkOahtfx9mwnRcS5I/ZI2OAkTFSl0JE5NU6Fez0ej1Wr1590eO++eabHhdEF+fNEyds+gYHQqtSorapBccrTG6zhpkQAttzuX4dERG5p041g5SXl3fqZCUlJT0qhjqnwovXsLORyWT2VrsjJe4zzu5kVT2Kahrgp5Dh0oGhUpdDRETkoFv9W01NTaisrERTk3uuMebtKutsLXbeOSPWxtZKl93BUhmuZtttYky/EKj9JZt7RERE1K5OB7uWlhY8+eSTGDRoENRqNSIiIqBWq5GQkICnnnoKZnPXV5mn7rEvdeLFXbEA3LLFjuPriIjInXU62N1zzz3Ytm0b3n77bZSXl6O5uRnl5eV48803sX37dtx7773OrJPOYl/qxIu7YoEzLXYdLW7rSq0WgZ3HKgFwfB0REbmnTvclffbZZygsLIRWe2bh0NDQUFx11VUYO3Ys+vXrh3feeccpRZKjCtvkCS9dnNgmKcr6Z+20sQmVpibJu56zig0wNJihVSkxoq9e0lqIiIja0+kWO61Wi2PHjrX7Wn5+vkPgI+eydcV686xYwLqci21rsUPF0rfa2cbXTRgUBqXCfZZfISIisul0i93TTz+NadOm4fe//z2GDx8OnU4Ho9GIgwcP4pNPPsGLL77ozDrpLLbJE+FePnkCAIb31SO/og6HigySby1m30ZsUJikdRAREV1Ip4PdwoULMXbsWHz00Uf45ptvYDKZoNFokJKSgh9++AHDhg1zZp10Fl9psQOswW7TgWIcPFUjaR0Nza3YU1ANAJjshnvXEhERAV3cK3b48OEYPny4s2qhTmi1CFTV29ax84EWu1jrWLZDRdJ2xe7Kr0RzqwV9gwMR39Y9TERE5G46NVBo06ZNnTrZl19+2aNi6OKq65shBCCTASE+sL/m0BgdZDKgqKbBvuOGFGy7TUxODOcm9URE5LY6FexSU1M7dbL58+f3qBi6ONtSJ8GBfj4xgF8b4GefQJFZZJCsDtv4usu5zAkREbmxTnXFmkwmqNXqDo8RQkAu9/6gITX7Uic+MHHCZkRfPY6X1yHzlAFTkyJdfv3TxkYcPV0LmQyYNIjBjoiI3Fengl1+fj4Aa3hbv349Zs6cCZXq/GDBLirnq/SBfWLPNayvHhsyiiVrsbN1ww7vq0eID33fiYjI83Qq2PXv39/+9WeffYYVK1Zgzpw5mDdvHq688koGOheyjTPzhaVObEbEBgOQrit2e245AOv4OiIiInfW5b7THTt2YP/+/UhKSsKSJUsQGxuLhx9+GHv27HFGfXSOyjrfWerExjaBosTQiPJa106gsFiEfX/YyYlc5oSIiNxbtwbF9evXD3/5y1+QkZGBDRs24Ntvv8Wll16KxMRErFy5EiaTqbfrpDYVJt9Z6sQmSKXEoAgNACCzqMal184uNaLC1Ay1vwJj+oW49NpERERd1a1gZzabsXHjRvzhD3/Atddei8GDB2PdunV4//33kZmZiRkzZvR2ndSm0j55wnda7ABgVFwwAGDfiRqXXtc2vm5CfBj8lZwcRERE7q1LCxQDwB133IGNGzdi2LBhmDdvHlatWoWQkDMtGWPHjoVezw3SncW23IkvTZ4AgHH9Q/Dp3lPYc6LKpdfdlmMdX3d5AsfXERGR++tysEtISMC+ffscJlSczc/PD6dOnepxYdS+M2PsfKcrFgDG9rf+5+FAoQHmVgv8XLCGn7HRjN351iB5ZbLrl1khIiLqqi7/dPzb3/52wVBnExoa2u2CqGMVPtoVOyhCA12AEg3mVmSXuGZ7sR25FWixCMSHB9kXSSYiInJnHDTkQZpaWlHb2AIACPehyRMAIJfL7K12e09Uu+Sam7PLAABXsbWOiIg8BIOdB7GNr1PKZdAFdrkX3eO5MthZLAJbj7YFuyEMdkRE5BkY7DyIfdcJjb9PLgo9tr+1i98Vwe7AqRpU1jVDq1LikgEcWkBERJ6Bwc6D2MfX+Vg3rM3IOD0UchlKDI0ormlw6rW2HLG21l0xOMIlEzWIiIh6A39ieZAqH9x14mxqfyWGxugAALvyK516LVuw4/g6IiLyJAx2HsTeFetja9id7bJBYQCAncecF+xKDY3IKjZCJgOmJnEbMSIi8hwMdh6kos621IlvdsUCwKRB1oWCfzpWASGEU67xv6xSAMCYfiE+/b0mIiLPw2DnQc6ePOGrLhkQCn+FHMWGRhRU1jvlGl8fKgEAXDcsyinnJyIichYGOw9i2yfW19awO1ugvwKj+wUDAHYeq+j185fXNtl3m7iWwY6IiDwMg50HqfTxyRM2k9r2bf0pr/eD3beHS2ERwMhYPWJD1L1+fiIiImdisPMgZ7pifbfFDgAmJZyZQNHSaunVc3+daR1fd+2w6F49LxERkSsw2HkIIQQqbZMnfHhWLACMjA2GPtAPhgYz9p2s6bXzVtU14+fj1tm2HF9HRESeiMHOQ9Q3t6LRbG2d8vWuWKVCbl9f7vvs07123v8eLEarRWBojA4DwoN67bxERESuwmDnIWzdsIF+Cqj9fW+f2HNNG9IHAPD94d4Ldp/tKwIA3DQmttfOSURE5EoMdh7CtoZdqI93w9pcMTgcfgoZjlfUIa/c1OPz5ZWbkFFYA4VchtkjY3qhQiIiIteTLNiVl5dj5syZUKvVSEpKwubNm9s9bujQodBoNPaHXC7Hiy++CADYunUr5HK5w+vbt2935W24TFVbi124j3fD2mgD/DAh3jqJojda7Tbst7bWTRkcgQitb09OISIizyVZsFu8eDFiYmJQUVGB559/HnPnzkV1dfV5x2VlZcFkMsFkMuHEiRPw8/PDjTfeaH998ODB9tdNJhMmT57syttwmUruOnGeGSnW7tgvD5b06DwtrRZ8tvcUAOA3o/v2uC4iIiKpSBLsTCYTNm7ciOXLl0OtVmPOnDkYNmwYvvjiiw7ft27dOowZMwYJCQkuqtR9VLS12LEr9ozrh0dDIZchs8iAY2Xd7479PrsMxYZGhAb5Y3pbWCQiIvJEkgS73Nxc6PV6REefWSts5MiRyMrK6vB96enpmDdvnsNzBQUFiIyMRGJiIpYvX47W1tYLvr+pqQlGo9Hh4SmquDjxecI0KkwZHAEA2JhR1O3zvP9LAQDglkviEOCn6I3SiIiIJCFZi51Op3N4TqfTwWS6cKtLQUEBdu/ejd/97nf255KTk5GRkYHS0lJs3LgR69atw6uvvnrBc6xcuRJ6vd7+iIuL6/nNuAi3E2vfnLau0/X7i2CxiC6//1hZLXYeq4RcBsy7tF9vl0dERORSkgQ7jUZzXmuZ0WiERqO54Hs+/PBDTJs2DZGRkfbnoqKikJycDLlcjpSUFDz22GNYv379Bc+xbNkyGAwG+6OwsLDnN+Mitu3E2BXraPqQPtAFKHGqugFbc8q6/P53duQDAK5K7sMtxIiIyONJEuwSExNhMBhQWlpqf+7AgQMYOnToBd/z4YcfntcNey65vOPbUalU0Ol0Dg9PcWY7MQa7swX6K3DLJdaW19U7C7r03qKaBnzaNmnininxvV0aERGRy0nWYjd79mykpaWhoaEBmzZtwqFDhzBr1qx2j8/IyEBBQQHmzJnj8PzWrVvtrW65ublYsWIFbrjhBmeXLwnbrNhwzoo9z/zLBkAuA7bnViD3dG2n3/fvH/NgbhW4LD4MlwwIdWKFREREriHZcierVq1CYWEhwsLC8Mgjj2DdunUICQlBenr6eS136enpuPHGGxEU5LjN0969ezFhwgQEBQVhxowZmDNnDpYsWeLK23AJIYR98gS7Ys8XF6q2z2Z9dcuxTr3nWJkJH+46CQB44Grfm2VNRETeSSaE6PqIcy9hNBqh1+thMBjculvW0GDGyKe+BQAcefpaztxsx+FiI65/1bo49ZcPXI5hffUXPFYIgfn/2Y3tuRW4OjkS7yy8xFVlEhERdVlX8gq3FPMAthmxWpWSoe4CUmJ0uHGUdSuwv284hNYOZsiu31+E7bkV8FfI8fgNKa4qkYiIyOkY7DyAfUYsJ050aNl1Q6ANUOJAYQ3+7wJdsrmna/HYhkMAgAeuSsCA8KB2jyMiIvJEDHYewD4jluPrOhSlD0DaLOv4zH9+n4N1vzouZ3OsrBbz3t6F+uZWTIgPxR+v5Ng6IiLyLkqpC6CL4z6xnffbsbE4UmLE2zvy8ZfPDmL7sQpcmRSBnNMmvPdzAeqbW5HUR4s35o2FQi6TulwiIqJexWDnAdhi1zV/u34I/JRyvLE1D18cKMYXB4rtr10WH4bXbh2NEH4viYjICzHYeQDuE9s1crkMj16bjOuHRWPtryeRX1GHMI0K1w+LwjVDoyBnSx0REXkpBjsPUNE2KzaM+8R2yfBYPYbHDpe6DCIiIpfh5AkPwO3EiIiIqDMY7DyAvSuWLXZERETUAQY7D3BmVixb7IiIiOjCGOzcnMUizmqxY7AjIiKiC2Owc3M1DWbYdsfiEh1ERETUEQY7N2fbJzZY7Qc/BT8uIiIiujAmBTdXwcWJiYiIqJMY7NwcZ8QSERFRZzHYuTnOiCUiIqLOYrBzcxVcnJiIiIg6icHOzVW1tdiFsiuWiIiILoLBzs3ZthMLZ4sdERERXQSDnZuz7xPLFjsiIiK6CAY7N1dp74plix0RERF1jMHOzVXWsSuWiIiIOofBzo2ZWy2oqTcDAMI07IolIiKijjHYubHqemtrnVwGBAf6SVwNERERuTsGOzdmmzgRGuQPuVwmcTVERETk7hjs3BhnxBIREVFXMNi5Mc6IJSIioq5gsHNjldxOjIiIiLqAwc6N2VrswjkjloiIiDqBwc6NVdWdmTxBREREdDEMdm6sgl2xRERE1AUMdm6s0mTtiuWsWCIiIuoMBjs3ZuuKZYsdERERdQaDnRs7s44dgx0RERFdHIOdm2pqaUVtUwsA7hNLREREncNg56Zs3bB+Chl0AUqJqyEiIiJPwGDnpipqzyx1IpNxn1giIiK6OMmCXXl5OWbOnAm1Wo2kpCRs3ry53eMWLlwIlUoFjUYDjUaDoUOHOry+Zs0axMbGQqfT4fbbb0dzc7Mryne6ChMXJyYiIqKukSzYLV68GDExMaioqMDzzz+PuXPnorq6ut1jn3rqKZhMJphMJmRlZdmfz8zMxJIlS7BhwwYUFhaioKAAK1ascNUtOFU5gx0RERF1kSTBzmQyYePGjVi+fDnUajXmzJmDYcOG4YsvvujSeT788EPccsstGDduHPR6PR5//HF88MEHFzy+qakJRqPR4eGuymsZ7IiIiKhrJAl2ubm50Ov1iI6Otj83cuRIh9a4s/3jH/9AWFgYJk6ciG3bttmfP3z4MIYPH+5wjvz8fDQ0NLR7npUrV0Kv19sfcXFxvXRHvc/eFavlUidERETUOZK12Ol0OofndDodTCbTecc++OCDOHbsGEpKSrB48WLMmjULhYWF7Z7H9nV75wGAZcuWwWAw2B+287gj23ZiEWyxIyIiok6SJNhpNJrzukGNRiM0Gs15x44ePRohISHw9/fHvHnzcNlll+G7775r9zy2r9s7DwCoVCrodDqHh7uqaOuKjdAy2BEREVHnSBLsEhMTYTAYUFpaan/uwIED5814bY9cfqbklJQUZGZmOpxj4MCBCAwM7N2CJcBZsURERNRVkrXYzZ49G2lpaWhoaMCmTZtw6NAhzJo167xjP/vsM9TV1aGlpQUff/wxduzYgauuugoAcOutt2LdunXYt28fDAYDnnnmGaSmprr6dpyCwY6IiIi6SrLlTlatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrt//vOfiImJQXh4OF566SWsX78eAwYMAAAMHz4cL774ImbNmoXY2FjExcXh73//u0R31HvMrRZU15sBAOEaTp4gIiKizpEJIYTURUjFaDRCr9fDYDC41Xi708ZGXPrsZijkMuSuuA5yOXeeICIi8lVdySvcUswN2dawCw3yZ6gjIiKiTmOwc0McX0dERETdwWDnhmxr2HF8HREREXUFg50bsrXYcXFiIiIi6goGOzdkW5w4nIsTExERURcw2LmhM2Ps2BVLREREncdg54bKOXmCiIiIuoHBzg1V1NomTzDYERERUecx2LkhLndCRERE3cFg52ZaWi2oqm9rsdNyjB0RERF1HoOdm6mqb4YQgEwGhKoZ7IiIiKjzGOzcjG18XViQP5QKfjxERETUeUwObobj64iIiKi7GOzcDIMdERERdReDnZvh4sRERETUXQx2bqbCxDXsiIiIqHsY7NwM94klIiKi7mKwczNlbcEugi12RERE1EUMdm6mrLYRABCpY7AjIiKirmGwczO2FrtIbYDElRAREZGnYbBzI00traipNwMA+rDFjoiIiLqIwc6NlLe11vkr5dAH+klcDREREXkaBjs3ctp4ZuKETCaTuBoiIiLyNAx2bqScEyeIiIioBxjs3MiZiRMMdkRERNR1DHZupMzIGbFERETUfQx2bsS2hh1nxBIREVF3MNi5Ea5hR0RERD3BYOdGbF2xEWyxIyIiom5gsHMjnDxBREREPcFg5yZaWi2orGNXLBEREXUfg52bqDA1QwhAIZchLMhf6nKIiIjIAzHYuQnbjNhwjT/kcu46QURERF3HYOcmbBMn+ujYDUtERETdw2DnJjhxgoiIiHqKwc5N2LpiIzhxgoiIiLpJsmBXXl6OmTNnQq1WIykpCZs3b273uCVLliA+Ph5arRbjxo3Dtm3b7K9t3boVcrkcGo3G/ti+fburbqFXscWOiIiIekop1YUXL16MmJgYVFRU4Ntvv8XcuXORl5eHkJAQh+P0ej2+/fZbxMfH47PPPsOcOXNw4sQJaLVaAMDgwYNx5MgRKW6hV5UarC120Xq22BEREVH3SNJiZzKZsHHjRixfvhxqtRpz5szBsGHD8MUXX5x3bFpaGhISEiCXyzF37lwEBgYiJydHgqqdq6Qt2EUx2BEREVE3SRLscnNzodfrER0dbX9u5MiRyMrK6vB9BQUFqKqqQkJCgsNzkZGRSExMxPLly9Ha2nrB9zc1NcFoNDo83EWpoQEAEK0PlLgSIiIi8lSStdjpdDqH53Q6HUwm0wXfYzabsWDBAixduhR6vR4AkJycjIyMDJSWlmLjxo1Yt24dXn311QueY+XKldDr9fZHXFxc79xQDzWaW1FdbwbAFjsiIiLqPkmCnUajOa+1zGg0QqPRtHu8EAILFy5EZGQknnzySfvzUVFRSE5OhlwuR0pKCh577DGsX7/+gtddtmwZDAaD/VFYWNgr99NTtvF1an8FdAGSDXskIiIiDydJsEtMTITBYEBpaan9uQMHDmDo0KHtHv/AAw+guLgYH3zwAeTyC5fc0WsAoFKpoNPpHB7u4OzxdTIZd50gIiKi7pGsxW727NlIS0tDQ0MDNm3ahEOHDmHWrFnnHZuWloadO3di48aNUKkclwLZunWrvdUtNzcXK1aswA033OCSe+hNJW3j62I4vo6IiIh6QLJ17FatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrvly5cjOzsbMTEx9rXq0tPTAQB79+7FhAkTEBQUhBkzZmDOnDlYsmSJVLfUbZwRS0RERL1BJoQQUhchFaPRCL1eD4PBIGm37OMbDuH9X07ggasS8OcZSZLVQURERO6nK3mFW4q5AbbYERERUW9gsHMDpUbbGnYMdkRERNR9DHZuwLbcSZSOkyeIiIio+xjsJNbU0ooKUzMAttgRERFRzzDYSazM2AQAUCnlCFb7SVwNEREReTIGO4kV15wZX8fFiYmIiKgnGOwkVtQW7PqGcHwdERER9QyDncROVVuDXWywWuJKiIiIyNMx2EmssKoeABDLFjsiIiLqIQY7idla7OJC2WJHREREPcNgJ7FTNWyxIyIiot7BYCehllYLimusixPHhrDFjoiIiHqGwU5CpcZGtFoE/BVyRGpVUpdDREREHo7BTkK28XV9QwIhl3MNOyIiIuoZBjsJcUYsERER9SYGOwnZ17Dj+DoiIiLqBQx2EiqsZosdERER9R4GOwmdqLQGu35cw46IiIh6AYOdhPIr6gAA8RFBEldCRERE3oDBTiKGejOq6poBAAPCGOyIiIio5xjsJJJfaW2ti9IFIEillLgaIiIi8gYMdhLJrzABAAaEc3wdERER9Q4GO4nkl1tb7AaGaySuhIiIiLwFg51EjtsmToRzfB0RERH1DgY7iRwrs3bFDmSwIyIiol7CYCcBc6sFeeXWYJccrZW4GiIiIvIWDHYSOF5eB3OrgFalRN9g7jpBREREvYPBTgLZJUYA1tY6mUwmcTVERETkLRjsJJBd2hbsonQSV0JERETehMFOAkdKagFwfB0RERH1LgY7FxNC4LCtKzaKwY6IiIh6D4Odi52qbkB5bROUchmGxuilLoeIiIi8CIOdi+07WQ0AGNpXjwA/hcTVEBERkTdhsHOxvSeswW5svxCJKyEiIiJvw2DnYjuPVQAAxg1gsCMiIqLexWDnQgUVdcgrr4NSLsPlieFSl0NERERehsHOhb7PPg0AGD8wFLoAP4mrISIiIm8jWbArLy/HzJkzoVarkZSUhM2bN7d7XENDA1JTU6HVatGvXz989NFHDq+vWbMGsbGx0Ol0uP3229Hc3OyK8rtMCIFP954CAMxI6SNxNUREROSNJAt2ixcvRkxMDCoqKvD8889j7ty5qK6uPu+4tLQ0VFVVoaioCGvXrsV9992HnJwcAEBmZiaWLFmCDRs2oLCwEAUFBVixYoWrb6VTvj18GkdKa6FSyvGb0bFSl0NEREReSCaEEK6+qMlkQlhYGAoKChAdHQ0AuOKKK3DXXXdh/vz5DsdGR0djw4YNuPTSSwEA8+fPR0JCAp544gksW7YMNTU1eOONNwAAW7ZswV133YXjx4+3e92mpiY0NTXZf280GhEXFweDwQCdzjnbe63ffwo/51Xiq8xSmJpacN/UQXj02mSnXIuIiIi8j9FohF6v71RekaTFLjc3F3q93h7qAGDkyJHIyspyOK66uhqlpaUYPnx4u8cdPnz4vNfy8/PR0NDQ7nVXrlwJvV5vf8TFxfXmbbVre24F1u05BVNTCy4ZEIIHr050+jWJiIjINymluKjJZDovcep0OtTU1Jx3nEKhgFqtdjjOZDK1ex7b1yaTCYGBgeddd9myZViyZIn997YWO2eakRKFuBA1EiI1uHZYFPwUnK9CREREziFJsNNoNDAajQ7PGY1GaDSa845rbW1FfX29Pdydfdy557F9fe55bFQqFVQqVa/dR2dcOywK1w6Lcuk1iYiIyDdJ0nyUmJgIg8GA0tJS+3MHDhzA0KFDHY4LCQlBVFQUMjMz2z0uJSXlvNcGDhzYbmsdERERkbeTJNhpNBrMnj0baWlpaGhowKZNm3Do0CHMmjXrvGNTU1Px9NNPo7a2Fr/88gs2bdqEW265BQBw6623Yt26ddi3bx8MBgOeeeYZpKamuvp2iIiIiNyCZAO+Vq1ahcLCQoSFheGRRx7BunXrEBISgvT0dIeWu+XLl9snWsydOxerVq1CUlISAGD48OF48cUXMWvWLMTGxiIuLg5///vfpbolIiIiIklJstyJu+jK9GEiIiIiKbj9cidERERE1PsY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvIRS6gKkZNtNzWg0SlwJERERUftsOaUzu8D6dLCrra0FAMTFxUlcCREREVHHamtrodfrOzxGJjoT/7yUxWJBcXExtFotZDKZU65hNBoRFxeHwsLCi27cS67Bz8Q98XNxP/xM3A8/E/fjis9ECIHa2lrExMRALu94FJ1Pt9jJ5XLExsa65Fo6nY5/Cd0MPxP3xM/F/fAzcT/8TNyPsz+Ti7XU2XDyBBEREZGXYLAjIiIi8hIMdk6mUqmQlpYGlUoldSnUhp+Je+Ln4n74mbgffibux90+E5+ePEFERETkTdhiR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdk5UXl6OmTNnQq1WIykpCZs3b5a6JJ/X1NSE22+/HbGxsdDr9Zg6dSoyMzOlLosA/Pzzz5DL5XjuueekLoXaPPfcc4iLi4NWq8WoUaNQU1MjdUk+bd++fZg4cSJ0Oh3i4+OxevVqqUvyOWlpaUhJSYFcLsfatWsdXnvuuecQERGB0NBQ/OUvf+nUvq7OwGDnRIsXL0ZMTAwqKirw/PPPY+7cuaiurpa6LJ/W0tKC+Ph4/PLLL6iqqsLs2bMxZ84cqcvyeRaLBQ8//DAuueQSqUuhNq+99hq+/vpr7NixA0ajER988AECAgKkLsunzZ8/HzNnzkRNTQ0+/fRT/OlPf0JOTo7UZfmUxMREvPLKKxg/frzD81999RXeeOMN7Nq1C1lZWfjyyy8lC95c7sRJTCYTwsLCUFBQgOjoaADAFVdcgbvuugvz58+XuDqyaW5uRkBAAMrLyxEWFiZ1OT7rX//6F7Kzs2EwGJCcnIy//vWvUpfk01pbWxEbG4tt27YhMTFR6nKojVarxcGDBzFw4EAAwPjx4/H4449j1qxZElfme6ZOnYp7770Xv//97wEAf/jDHzBq1Cg8+uijAID//Oc/+OCDD7BlyxaX18YWOyfJzc2FXq+3hzoAGDlyJLKysiSsis71888/o0+fPgx1EqqqqsLLL7+MJ598UupSqM2pU6fQ0NCATz75BH369EFSUhL+9a9/SV2Wz7v//vvx/vvvo6WlBbt370ZhYSEuvfRSqcsiAIcPH8bw4cPtv5fy571Skqv6AJPJdN5mwDqdjmNU3IjBYMA999yDZ555RupSfNrf/vY3PPTQQwgJCZG6FGpTVFQEg8GAvLw8FBQU4Pjx45g2bRqSkpJw5ZVXSl2ez7r22msxf/58LF++HADw5ptvIjIyUuKqCDj/Z75Op4PJZJKkFrbYOYlGo4HRaHR4zmg0QqPRSFQRna2xsRFz5szBzJkzcccdd0hdjs/av38/du/ejUWLFkldCp0lMDAQgHWgeGBgIIYOHYrbbrsNX331lcSV+a7KykrMmjULL7/8MpqampCRkYEnnngCu3btkro0wvk/86X8ec9g5ySJiYkwGAwoLS21P3fgwAEMHTpUwqoIsE6g+P3vf4+YmBj8v//3/6Qux6f9+OOPyMnJQd++fREVFYWPP/4YzzzzDIOexAYPHgx/f3+H5zgcW1rHjx+HXq/Hb37zGygUCgwbNgxTp07Ftm3bpC6NAKSkpDissCDlz3sGOyfRaDSYPXs20tLS0NDQgE2bNuHQoUMc5OoGFi1ahIaGBqxZswYymUzqcnza3XffjWPHjiEjIwMZGRmYPXs2HnzwQfzjH/+QujSfFhQUhN/+9rdYsWIFmpqacPToUaSnp+P666+XujSfNXjwYNTW1uKLL76AEAJHjhzBli1bHMZ1kfOZzWY0NjbCYrE4fJ2amoo33ngD+fn5KC0txUsvvYTU1FRpihTkNGVlZeK6664TgYGBIjExUXz33XdSl+TzCgoKBAAREBAggoKC7I9t27ZJXRoJIRYsWCBWrlwpdRkkhKiurhY33XST0Gg0on///mLVqlVSl+TzvvnmGzFy5Eih0WhEXFyceOaZZ6QuyecsWLBAAHB4/PDDD0IIIZ599lkRFhYmgoODxdKlS4XFYpGkRi53QkREROQl2BVLRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0R0jpMnTyI8PNyp1ygoKIBMJoNGo8GGDRs6PPazzz6DRqOBTCZz2H+aiOhc3HmCiHySRqOxf11XVwe1Wm3fO/jw4cPo16+fU69fUFCA5ORkNDY2dvo9MpkMJSUliIqKcmJlROTJlFIXQEQkBZPJZP86ICAAWVlZGDBggHQFERH1AnbFEhGdo6CgAAEBAfbfy2QyvPHGG+jXrx/Cw8Px8ccf48svv0R8fDwiIyPx8ccf24+tqqrCrbfeisjISMTHx+Pdd9/t9HV/+eUXjB49GlqtFlFRUXjppZd69b6IyPuxxY6IqBN27tyJnJwcfPHFF7j33nsxe/ZsHDp0CJs3b8Ydd9yB3/72t1AoFLjtttswbNgwFBYWIj8/H1dddRVGjRqFkSNHXvQaDz30EJYuXYpbb70V1dXVKCgocP6NEZFXYYsdEVEn/OUvf0FAQABuuukm1NTU4I9//CPUajVmzZqF2tpaFBcXo7S0FNu3b8ezzz4LlUqF5ORk3Hrrrfj88887dQ0/Pz8cPXoUVVVVCAkJwejRo518V0TkbRjsiIg6ITIyEgCgUCjg5+eHiIgI+2sBAQGoq6vDyZMnUVdXh7CwMAQHByM4OBj//ve/cfr06U5d4+2330Z2djYSEhIwceJE/Pzzz065FyLyXuyKJSLqJX379kVwcDAqKyu79f6kpCSsW7cOLS0t+Ne//oXU1FTk5eX1cpVE5M3YYkdE1Ev69u2LSy65BE888QTq6+vR0tKCffv24fDhw516f3p6OiorK6FUKqHVaqFQKJxcMRF5GwY7IqJelJ6ejhMnTthnzD700ENoaGjo1Hu/+uorJCUlQavV4tVXX8Xq1audXC0ReRsuUExEJIETJ04gOTkZKpUK7733HmbPnn3BYz///HPccccdaGxsxIkTJ9CnTx8XVkpEnoTBjoiIiMhLsCuWiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJRjsiIiIiLwEgx0RERGRl2CwIyIiIvISDHZEREREXoLBjoiIiMhLMNgREREReYn/D4UZ8cvFy2MtAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# See what the step response looks like\n", + "Tnew = ct.feedback(Lnew)\n", + "ct.step_response(Tnew, 10).plot()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "WUhz529a-w3q", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From aeb187f622972768a997c75808f712c928bd66aa Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 15 Jun 2024 18:28:22 -0700 Subject: [PATCH 052/199] set up frd() as full factory function for FRD I/Osystems --- LICENSE | 3 +- control/bdalg.py | 4 +- control/frdata.py | 146 ++++++++++++--------------- control/tests/frd_test.py | 190 +++++++++++++++++++++-------------- control/tests/kwargs_test.py | 1 + doc/conventions.rst | 13 +-- 6 files changed, 190 insertions(+), 167 deletions(-) diff --git a/LICENSE b/LICENSE index 5c84d3dcd..fbfc42c67 100644 --- a/LICENSE +++ b/LICENSE @@ -1,5 +1,6 @@ Copyright (c) 2009-2016 by California Institute of Technology -Copyright (c) 2016-2023 by python-control developers +Copyright (c) 2012 by Delft University of Technology +Copyright (c) 2016-2024 by python-control developers All rights reserved. Redistribution and use in source and binary forms, with or without diff --git a/control/bdalg.py b/control/bdalg.py index 63cd9354d..ce8008537 100644 --- a/control/bdalg.py +++ b/control/bdalg.py @@ -279,8 +279,8 @@ def feedback(sys1, sys2=1, sign=-1): if isinstance(sys2, (int, float, complex, np.number, np.ndarray, tf.TransferFunction)): sys1 = tf._convert_to_transfer_function(sys1) - elif isinstance(sys2, frd.FRD): - sys1 = frd._convert_to_FRD(sys1, sys2.omega) + elif isinstance(sys2, frd.FrequencyResponseData): + sys1 = frd._convert_to_frd(sys1, sys2.omega) else: sys1 = ss._convert_to_statespace(sys1) diff --git a/control/frdata.py b/control/frdata.py index e0f7fdcc6..b5d319909 100644 --- a/control/frdata.py +++ b/control/frdata.py @@ -1,41 +1,8 @@ -# Copyright (c) 2010 by California Institute of Technology -# Copyright (c) 2012 by Delft University of Technology -# All rights reserved. -# -# Redistribution and use in source and binary forms, with or without -# modification, are permitted provided that the following conditions -# are met: -# -# 1. Redistributions of source code must retain the above copyright -# notice, this list of conditions and the following disclaimer. -# -# 2. Redistributions in binary form must reproduce the above copyright -# notice, this list of conditions and the following disclaimer in the -# documentation and/or other materials provided with the distribution. -# -# 3. Neither the names of the California Institute of Technology nor -# the Delft University of Technology nor -# the names of its contributors may be used to endorse or promote -# products derived from this software without specific prior -# written permission. -# -# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS -# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL CALTECH -# OR THE CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF -# USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND -# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, -# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT -# OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF -# SUCH DAMAGE. +# frdata.py - frequency response data representation and functions # # Author: M.M. (Rene) van Paassen (using xferfcn.py as basis) # Date: 02 Oct 12 - """ Frequency response data representation and functions. @@ -43,19 +10,18 @@ FRD data. """ -# External function declarations from copy import copy from warnings import warn import numpy as np -from numpy import angle, array, empty, ones, \ - real, imag, absolute, eye, linalg, where, sort -from scipy.interpolate import splprep, splev +from numpy import absolute, angle, array, empty, eye, imag, linalg, ones, \ + real, sort, where +from scipy.interpolate import splev, splprep -from .lti import LTI, _process_frequency_response +from . import config from .exception import pandas_check from .iosys import InputOutputSystem, _process_iosys_keywords, common_timebase -from . import config +from .lti import LTI, _process_frequency_response __all__ = ['FrequencyResponseData', 'FRD', 'frd'] @@ -100,6 +66,10 @@ class constructor, using the :func:~~control.frd` factory function dt : float, True, or None System timebase. + See Also + -------- + frd + Notes ----- The main data members are 'omega' and 'fresp', where 'omega' is a 1D array @@ -120,7 +90,6 @@ class constructor, using the :func:~~control.frd` factory function for a more detailed description. """ - # # Class attributes # @@ -206,11 +175,12 @@ def __init__(self, *args, **kwargs): "Needs 1 or 2 arguments; received %i." % len(args)) # - # Process key word arguments + # Process keyword arguments # - # If data was generated by a system, keep track of that - self.sysname = kwargs.pop('sysname', None) + # If data was generated by a system, keep track of that (used when + # plotting data). Otherwise, use the system name, if given. + self.sysname = kwargs.pop('sysname', kwargs.get('name', None)) # Keep track of default properties for plotting self.plot_phase = kwargs.pop('plot_phase', None) @@ -280,7 +250,7 @@ def __str__(self): """String representation of the transfer function.""" mimo = self.ninputs > 1 or self.noutputs > 1 - outstr = ['Frequency response data'] + outstr = [f"{InputOutputSystem.__str__(self)}"] for i in range(self.ninputs): for j in range(self.noutputs): @@ -322,7 +292,7 @@ def __add__(self, other): # Convert the second argument to a frequency response function. # or re-base the frd to the current omega (if needed) - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) # Check that the input-output sizes are consistent. if self.ninputs != other.ninputs: @@ -359,7 +329,7 @@ def __mul__(self, other): return FRD(self.fresp * other, self.omega, smooth=(self.ifunc is not None)) else: - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) # Check that the input-output sizes are consistent. if self.ninputs != other.noutputs: @@ -386,7 +356,7 @@ def __rmul__(self, other): return FRD(self.fresp * other, self.omega, smooth=(self.ifunc is not None)) else: - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) # Check that the input-output sizes are consistent. if self.noutputs != other.ninputs: @@ -414,7 +384,7 @@ def __truediv__(self, other): return FRD(self.fresp * (1/other), self.omega, smooth=(self.ifunc is not None)) else: - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) if (self.ninputs > 1 or self.noutputs > 1 or other.ninputs > 1 or other.noutputs > 1): @@ -433,7 +403,7 @@ def __rtruediv__(self, other): return FRD(other / self.fresp, self.omega, smooth=(self.ifunc is not None)) else: - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) if (self.ninputs > 1 or self.noutputs > 1 or other.ninputs > 1 or other.noutputs > 1): @@ -572,8 +542,8 @@ def __call__(self, s=None, squeeze=None, return_magphase=None): ------ ValueError If `s` is not purely imaginary, because - :class:`FrequencyDomainData` systems are only defined at imaginary - frequency values. + :class:`FrequencyResponseData` systems are only defined at + imaginary values (corresponding to real frequencies). """ if s is None: @@ -638,7 +608,7 @@ def freqresp(self, omega): def feedback(self, other=1, sign=-1): """Feedback interconnection between two FRD objects.""" - other = _convert_to_FRD(other, omega=self.omega) + other = _convert_to_frd(other, omega=self.omega) if (self.noutputs != other.ninputs or self.ninputs != other.noutputs): raise ValueError( @@ -710,7 +680,7 @@ def to_pandas(self): FRD = FrequencyResponseData -def _convert_to_FRD(sys, omega, inputs=1, outputs=1): +def _convert_to_frd(sys, omega, inputs=1, outputs=1): """Convert a system to frequency response data form (if needed). If sys is already an frd, and its frequency range matches or @@ -721,14 +691,14 @@ def _convert_to_FRD(sys, omega, inputs=1, outputs=1): manually, as in: >>> import numpy as np - >>> from control.frdata import _convert_to_FRD + >>> from control.frdata import _convert_to_frd >>> omega = np.logspace(-1, 1) - >>> frd = _convert_to_FRD(3., omega) # Assumes inputs = outputs = 1 + >>> frd = _convert_to_frd(3., omega) # Assumes inputs = outputs = 1 >>> frd.ninputs, frd.noutputs (1, 1) - >>> frd = _convert_to_FRD(1., omega, inputs=3, outputs=2) + >>> frd = _convert_to_frd(1., omega, inputs=3, outputs=2) >>> frd.ninputs, frd.noutputs (3, 2) @@ -777,51 +747,67 @@ def _convert_to_FRD(sys, omega, inputs=1, outputs=1): sys.__class__) -def frd(*args): - """frd(d, w) - - Construct a frequency response data model. +def frd(*args, **kwargs): + """frd(response, omega[, dt]) - frd models store the (measured) frequency response of a system. + Construct a frequency response data (FRD) model. - This function can be called in different ways: + A frequency response data model stores the (measured) frequency response + of a system. This factory function can be called in different ways: - ``frd(response, freqs)`` + ``frd(response, omega)`` Create an frd model with the given response data, in the form of - complex response vector, at matching frequency freqs [in rad/s] + complex response vector, at matching frequencies ``omega`` [in rad/s]. - ``frd(sys, freqs)`` + ``frd(sys, omega)`` Convert an LTI system into an frd model with data at frequencies - freqs. + ``omega``. Parameters ---------- - response: array_like, or list - complex vector with the system response - freq: array_lik or lis - vector with frequencies - sys: LTI (StateSpace or TransferFunction) - A linear system + response : array_like or LTI system + Complex vector with the system response or an LTI system that can + be used to copmute the frequency response at a list of frequencies. + omega : array_like + Vector of frequencies at which the response is evaluated. + dt : float, True, or None + System timebase. + smooth : bool, optional + If ``True``, create an interpolation function that allows the + frequency response to be computed at any frequency within the range + of frequencies give in ``omega``. If ``False`` (default), + frequency response can only be obtained at the frequencies + specified in ``omega``. Returns ------- - sys: FRD - New frequency response system + sys : :class:`FrequencyResponseData` + New frequency response data system. + + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals of the transformed + system. If not given, the inputs and outputs are the same as the + original system. + name : string, optional + System name. If unspecified, a generic name is generated + with a unique integer id. See Also -------- - FRD, ss, tf + FrequencyResponseData, frequency_response, ss, tf Examples -------- >>> # Create from measurements >>> response = [1.0, 1.0, 0.5] - >>> freqs = [1, 10, 100] - >>> F = ct.frd(response, freqs) + >>> omega = [1, 10, 100] + >>> F = ct.frd(response, omega) >>> G = ct.tf([1], [1, 1]) >>> freqs = [1, 10, 100] - >>> F = ct.frd(G, freqs) + >>> F = ct.frd(G, omega) """ - return FRD(*args) + return FrequencyResponseData(*args, **kwargs) diff --git a/control/tests/frd_test.py b/control/tests/frd_test.py index 25ecc5e21..e50af3c92 100644 --- a/control/tests/frd_test.py +++ b/control/tests/frd_test.py @@ -12,7 +12,7 @@ import control as ct from control.statesp import StateSpace from control.xferfcn import TransferFunction -from control.frdata import FRD, _convert_to_FRD, FrequencyResponseData +from control.frdata import frd, _convert_to_frd, FrequencyResponseData from control import bdalg, evalfr, freqplot from control.tests.conftest import slycotonly from control.exception import pandas_check @@ -25,35 +25,39 @@ class TestFRD: def testBadInputType(self): """Give the constructor invalid input types.""" with pytest.raises(ValueError): - FRD() + frd() with pytest.raises(TypeError): - FRD([1]) + frd([1]) def testInconsistentDimension(self): with pytest.raises(TypeError): - FRD([1, 1], [1, 2, 3]) + frd([1, 1], [1, 2, 3]) - def testSISOtf(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testSISOtf(self, frd_fcn): # get a SISO transfer function h = TransferFunction([1], [1, 2, 2]) omega = np.logspace(-1, 2, 10) - frd = FRD(h, omega) - assert isinstance(frd, FRD) + sys = frd_fcn(h, omega) + assert isinstance(sys, FrequencyResponseData) - mag1, phase1, omega1 = frd.frequency_response([1.0]) + mag1, phase1, omega1 = sys.frequency_response([1.0]) mag2, phase2, omega2 = h.frequency_response([1.0]) np.testing.assert_array_almost_equal(mag1, mag2) np.testing.assert_array_almost_equal(phase1, phase2) np.testing.assert_array_almost_equal(omega1, omega2) - def testOperators(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testOperators(self, frd_fcn): # get two SISO transfer functions h1 = TransferFunction([1], [1, 2, 2]) h2 = TransferFunction([1], [0.1, 1]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(h1, omega) - f2 = FRD(h2, omega) + f1 = frd_fcn(h1, omega) + f2 = frd_fcn(h2, omega) np.testing.assert_array_almost_equal( (f1 + f2).frequency_response(chkpts)[0], @@ -90,14 +94,16 @@ def testOperators(self): (1.3 / f2).frequency_response(chkpts)[1], (1.3 / h2).frequency_response(chkpts)[1]) - def testOperatorsTf(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testOperatorsTf(self, frd_fcn): # get two SISO transfer functions h1 = TransferFunction([1], [1, 2, 2]) h2 = TransferFunction([1], [0.1, 1]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(h1, omega) - f2 = FRD(h2, omega) + f1 = frd_fcn(h1, omega) + f2 = frd_fcn(h2, omega) f2 # reference to avoid pyflakes error np.testing.assert_array_almost_equal( @@ -121,14 +127,16 @@ def testOperatorsTf(self): (h1 / h2).frequency_response(chkpts)[1]) # the reverse does not work - def testbdalg(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testbdalg(self, frd_fcn): # get two SISO transfer functions h1 = TransferFunction([1], [1, 2, 2]) h2 = TransferFunction([1], [0.1, 1]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(h1, omega) - f2 = FRD(h2, omega) + f1 = frd_fcn(h1, omega) + f2 = frd_fcn(h2, omega) np.testing.assert_array_almost_equal( (bdalg.series(f1, f2)).frequency_response(chkpts)[0], @@ -158,11 +166,13 @@ def testbdalg(self): # (bdalg.connect(f3, Q, [2], [1])).frequency_response(chkpts)[0], # (bdalg.connect(h3, Q, [2], [1])).frequency_response(chkpts)[0]) - def testFeedback(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testFeedback(self, frd_fcn): h1 = TransferFunction([1], [1, 2, 2]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(h1, omega) + f1 = frd_fcn(h1, omega) np.testing.assert_array_almost_equal( f1.feedback(1).frequency_response(chkpts)[0], h1.feedback(1).frequency_response(chkpts)[0]) @@ -179,15 +189,17 @@ def testFeedback2(self): def testAuto(self): omega = np.logspace(-1, 2, 10) - f1 = _convert_to_FRD(1, omega) - f2 = _convert_to_FRD(np.array([[1, 0], [0.1, -1]]), omega) - f2 = _convert_to_FRD([[1, 0], [0.1, -1]], omega) + f1 = _convert_to_frd(1, omega) + f2 = _convert_to_frd(np.array([[1, 0], [0.1, -1]]), omega) + f2 = _convert_to_frd([[1, 0], [0.1, -1]], omega) f1, f2 # reference to avoid pyflakes error - def testNyquist(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testNyquist(self, frd_fcn): h1 = TransferFunction([1], [1, 2, 2]) omega = np.logspace(-1, 2, 40) - f1 = FRD(h1, omega, smooth=True) + f1 = frd_fcn(h1, omega, smooth=True) freqplot.nyquist(f1, np.logspace(-1, 2, 100)) # plt.savefig('/dev/null', format='svg') plt.figure(2) @@ -197,14 +209,16 @@ def testNyquist(self): # plt.savefig('/dev/null', format='svg') @slycotonly - def testMIMO(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testMIMO(self, frd_fcn): sys = StateSpace([[-0.5, 0.0], [0.0, -1.0]], [[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]], [[0.0, 0.0], [0.0, 0.0]]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(sys, omega) + f1 = frd_fcn(sys, omega) np.testing.assert_array_almost_equal( sys.frequency_response(chkpts)[0], f1.frequency_response(chkpts)[0]) @@ -213,15 +227,17 @@ def testMIMO(self): f1.frequency_response(chkpts)[1]) @slycotonly - def testMIMOfb(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testMIMOfb(self, frd_fcn): sys = StateSpace([[-0.5, 0.0], [0.0, -1.0]], [[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]], [[0.0, 0.0], [0.0, 0.0]]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(sys, omega).feedback([[0.1, 0.3], [0.0, 1.0]]) - f2 = FRD(sys.feedback([[0.1, 0.3], [0.0, 1.0]]), omega) + f1 = frd_fcn(sys, omega).feedback([[0.1, 0.3], [0.0, 1.0]]) + f2 = frd_fcn(sys.feedback([[0.1, 0.3], [0.0, 1.0]]), omega) np.testing.assert_array_almost_equal( f1.frequency_response(chkpts)[0], f2.frequency_response(chkpts)[0]) @@ -230,7 +246,9 @@ def testMIMOfb(self): f2.frequency_response(chkpts)[1]) @slycotonly - def testMIMOfb2(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testMIMOfb2(self, frd_fcn): sys = StateSpace(np.array([[-2.0, 0, 0], [0, -1, 1], [0, 0, -3]]), @@ -239,8 +257,8 @@ def testMIMOfb2(self): omega = np.logspace(-1, 2, 10) chkpts = omega[::3] K = np.array([[1, 0.3, 0], [0.1, 0, 0]]) - f1 = FRD(sys, omega).feedback(K) - f2 = FRD(sys.feedback(K), omega) + f1 = frd_fcn(sys, omega).feedback(K) + f2 = frd_fcn(sys.feedback(K), omega) np.testing.assert_array_almost_equal( f1.frequency_response(chkpts)[0], f2.frequency_response(chkpts)[0]) @@ -249,15 +267,17 @@ def testMIMOfb2(self): f2.frequency_response(chkpts)[1]) @slycotonly - def testMIMOMult(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testMIMOMult(self, frd_fcn): sys = StateSpace([[-0.5, 0.0], [0.0, -1.0]], [[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0]], [[0.0, 0.0], [0.0, 0.0]]) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(sys, omega) - f2 = FRD(sys, omega) + f1 = frd_fcn(sys, omega) + f2 = frd_fcn(sys, omega) np.testing.assert_array_almost_equal( (f1*f2).frequency_response(chkpts)[0], (sys*sys).frequency_response(chkpts)[0]) @@ -266,7 +286,9 @@ def testMIMOMult(self): (sys*sys).frequency_response(chkpts)[1]) @slycotonly - def testMIMOSmooth(self): + @pytest.mark.parametrize( + "frd_fcn", [ct.frd, ct.FRD, ct.FrequencyResponseData]) + def testMIMOSmooth(self, frd_fcn): sys = StateSpace([[-0.5, 0.0], [0.0, -1.0]], [[1.0, 0.0], [0.0, 1.0]], [[1.0, 0.0], [0.0, 1.0], [1.0, 1.0]], @@ -274,8 +296,8 @@ def testMIMOSmooth(self): sys2 = np.array([[1, 0, 0], [0, 1, 0]]) * sys omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(sys, omega, smooth=True) - f2 = FRD(sys2, omega, smooth=True) + f1 = frd_fcn(sys, omega, smooth=True) + f2 = frd_fcn(sys2, omega, smooth=True) np.testing.assert_array_almost_equal( (f1*f2).frequency_response(chkpts)[0], (sys*sys2).frequency_response(chkpts)[0]) @@ -296,55 +318,55 @@ def testAgainstOctave(self): np.eye(3), np.zeros((3, 2))) omega = np.logspace(-1, 2, 10) chkpts = omega[::3] - f1 = FRD(sys, omega) + f1 = frd(sys, omega) np.testing.assert_array_almost_equal( (f1.frequency_response([1.0])[0] * np.exp(1j * f1.frequency_response([1.0])[1])).reshape(3, 2), np.array([[0.4 - 0.2j, 0], [0, 0.1 - 0.2j], [0, 0.3 - 0.1j]])) def test_string_representation(self, capsys): - sys = FRD([1, 2, 3], [4, 5, 6]) + sys = frd([1, 2, 3], [4, 5, 6]) print(sys) # Just print without checking def test_frequency_mismatch(self, recwarn): # recwarn: there may be a warning before the error! # Overlapping but non-equal frequency ranges - sys1 = FRD([1, 2, 3], [4, 5, 6]) - sys2 = FRD([2, 3, 4], [5, 6, 7]) + sys1 = frd([1, 2, 3], [4, 5, 6]) + sys2 = frd([2, 3, 4], [5, 6, 7]) with pytest.raises(NotImplementedError): - FRD.__add__(sys1, sys2) + sys = sys1 + sys2 # One frequency range is a subset of another - sys1 = FRD([1, 2, 3], [4, 5, 6]) - sys2 = FRD([2, 3], [4, 5]) + sys1 = frd([1, 2, 3], [4, 5, 6]) + sys2 = frd([2, 3], [4, 5]) with pytest.raises(NotImplementedError): - FRD.__add__(sys1, sys2) + sys = sys1 + sys2 def test_size_mismatch(self): - sys1 = FRD(ct.rss(2, 2, 2), np.logspace(-1, 1, 10)) + sys1 = frd(ct.rss(2, 2, 2), np.logspace(-1, 1, 10)) # Different number of inputs - sys2 = FRD(ct.rss(3, 1, 2), np.logspace(-1, 1, 10)) + sys2 = frd(ct.rss(3, 1, 2), np.logspace(-1, 1, 10)) with pytest.raises(ValueError): - FRD.__add__(sys1, sys2) + sys = sys1 + sys2 # Different number of outputs - sys2 = FRD(ct.rss(3, 2, 1), np.logspace(-1, 1, 10)) + sys2 = frd(ct.rss(3, 2, 1), np.logspace(-1, 1, 10)) with pytest.raises(ValueError): - FRD.__add__(sys1, sys2) + sys = sys1 + sys2 # Inputs and outputs don't match with pytest.raises(ValueError): - FRD.__mul__(sys2, sys1) + sys = sys2 * sys1 # Feedback mismatch with pytest.raises(ValueError): - FRD.feedback(sys2, sys1) + ct.feedback(sys2, sys1) def test_operator_conversion(self): sys_tf = ct.tf([1], [1, 2, 1]) - frd_tf = FRD(sys_tf, np.logspace(-1, 1, 10)) - frd_2 = FRD(2 * np.ones(10), np.logspace(-1, 1, 10)) + frd_tf = frd(sys_tf, np.logspace(-1, 1, 10)) + frd_2 = frd(2 * np.ones(10), np.logspace(-1, 1, 10)) # Make sure that we can add, multiply, and feedback constants sys_add = frd_tf + 2 @@ -383,18 +405,18 @@ def test_operator_conversion(self): np.testing.assert_array_almost_equal(sys_rdiv.fresp, chk_rdiv.fresp) sys_pow = frd_tf**2 - chk_pow = FRD(sys_tf**2, np.logspace(-1, 1, 10)) + chk_pow = frd(sys_tf**2, np.logspace(-1, 1, 10)) np.testing.assert_array_almost_equal(sys_pow.omega, chk_pow.omega) np.testing.assert_array_almost_equal(sys_pow.fresp, chk_pow.fresp) sys_pow = frd_tf**-2 - chk_pow = FRD(sys_tf**-2, np.logspace(-1, 1, 10)) + chk_pow = frd(sys_tf**-2, np.logspace(-1, 1, 10)) np.testing.assert_array_almost_equal(sys_pow.omega, chk_pow.omega) np.testing.assert_array_almost_equal(sys_pow.fresp, chk_pow.fresp) # Assertion error if we try to raise to a non-integer power with pytest.raises(ValueError): - FRD.__pow__(frd_tf, 0.5) + frd_tf**0.5 # Selected testing on transfer function conversion sys_add = frd_2 + sys_tf @@ -402,18 +424,18 @@ def test_operator_conversion(self): np.testing.assert_array_almost_equal(sys_add.omega, chk_add.omega) np.testing.assert_array_almost_equal(sys_add.fresp, chk_add.fresp) - # Input/output mismatch size mismatch in rmul - sys1 = FRD(ct.rss(2, 2, 2), np.logspace(-1, 1, 10)) + # Input/output mismatch size mismatch in rmul + sys1 = frd(ct.rss(2, 2, 2), np.logspace(-1, 1, 10)) with pytest.raises(ValueError): - FRD.__rmul__(frd_2, sys1) + FrequencyResponseData.__rmul__(frd_2, sys1) # Make sure conversion of something random generates exception with pytest.raises(TypeError): - FRD.__add__(frd_tf, 'string') + FrequencyResponseData.__add__(frd_tf, 'string') def test_eval(self): sys_tf = ct.tf([1], [1, 2, 1]) - frd_tf = FRD(sys_tf, np.logspace(-1, 1, 3)) + frd_tf = frd(sys_tf, np.logspace(-1, 1, 3)) np.testing.assert_almost_equal(sys_tf(1j), frd_tf.eval(1)) np.testing.assert_almost_equal(sys_tf(1j), frd_tf(1j)) @@ -431,45 +453,55 @@ def test_eval(self): def test_freqresp_deprecated(self): sys_tf = ct.tf([1], [1, 2, 1]) - frd_tf = FRD(sys_tf, np.logspace(-1, 1, 3)) + frd_tf = frd(sys_tf, np.logspace(-1, 1, 3)) with pytest.warns(DeprecationWarning): frd_tf.freqresp(1.) def test_repr_str(self): # repr printing array = np.array - sys0 = FrequencyResponseData([1.0, 0.9+0.1j, 0.1+2j, 0.05+3j], - [0.1, 1.0, 10.0, 100.0]) - sys1 = FrequencyResponseData(sys0.fresp, sys0.omega, smooth=True) + sys0 = ct.frd( + [1.0, 0.9+0.1j, 0.1+2j, 0.05+3j], + [0.1, 1.0, 10.0, 100.0], name='sys0') + sys1 = ct.frd( + sys0.fresp, sys0.omega, smooth=True, name='sys1') ref0 = "FrequencyResponseData(" \ "array([[[1. +0.j , 0.9 +0.1j, 0.1 +2.j , 0.05+3.j ]]])," \ " array([ 0.1, 1. , 10. , 100. ]))" ref1 = ref0[:-1] + ", smooth=True)" - sysm = FrequencyResponseData( - np.matmul(array([[1],[2]]), sys0.fresp), sys0.omega) + sysm = ct.frd( + np.matmul(array([[1], [2]]), sys0.fresp), sys0.omega, name='sysm') assert repr(sys0) == ref0 assert repr(sys1) == ref1 + sys0r = eval(repr(sys0)) np.testing.assert_array_almost_equal(sys0r.fresp, sys0.fresp) np.testing.assert_array_almost_equal(sys0r.omega, sys0.omega) + sys1r = eval(repr(sys1)) np.testing.assert_array_almost_equal(sys1r.fresp, sys1.fresp) np.testing.assert_array_almost_equal(sys1r.omega, sys1.omega) assert(sys1.ifunc is not None) - refs = """Frequency response data + refs = """: {sysname} +Inputs (1): ['u[0]'] +Outputs (1): ['y[0]'] + Freq [rad/s] Response ------------ --------------------- 0.100 1 +0j 1.000 0.9 +0.1j 10.000 0.1 +2j 100.000 0.05 +3j""" - assert str(sys0) == refs - assert str(sys1) == refs + assert str(sys0) == refs.format(sysname='sys0') + assert str(sys1) == refs.format(sysname='sys1') # print multi-input system - refm = """Frequency response data + refm = """: sysm +Inputs (2): ['u[0]', 'u[1]'] +Outputs (1): ['y[0]'] + Input 1 to output 1: Freq [rad/s] Response ------------ --------------------- @@ -490,7 +522,9 @@ def test_unrecognized_keyword(self): h = TransferFunction([1], [1, 2, 2]) omega = np.logspace(-1, 2, 10) with pytest.raises(TypeError, match="unrecognized keyword"): - frd = FRD(h, omega, unknown=None) + sys = FrequencyResponseData(h, omega, unknown=None) + with pytest.raises(TypeError, match="unrecognized keyword"): + sys = ct.frd(h, omega, unknown=None) def test_named_signals(): @@ -498,8 +532,8 @@ def test_named_signals(): h1 = TransferFunction([1], [1, 2, 2]) h2 = TransferFunction([1], [0.1, 1]) omega = np.logspace(-1, 2, 10) - f1 = FRD(h1, omega) - f2 = FRD(h2, omega) + f1 = frd(h1, omega) + f2 = frd(h2, omega) # Make sure that systems were properly named assert f1.name == 'sys[2]' @@ -510,7 +544,7 @@ def test_named_signals(): assert f1.output_labels == ['y[0]'] # Change names - f1 = FRD(h1, omega, name='mysys', inputs='u0', outputs='y0') + f1 = frd(h1, omega, name='mysys', inputs='u0', outputs='y0') assert f1.name == 'mysys' assert f1.ninputs == 1 assert f1.input_labels == ['u0'] @@ -523,7 +557,7 @@ def test_to_pandas(): # Create a SISO frequency response h1 = TransferFunction([1], [1, 2, 2]) omega = np.logspace(-1, 2, 10) - resp = FRD(h1, omega) + resp = frd(h1, omega) # Convert to pandas df = resp.to_pandas() diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index 36477cb0d..d6bd06487 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -243,6 +243,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'dlqr': test_unrecognized_kwargs, 'drss': test_unrecognized_kwargs, 'flatsys.flatsys': test_unrecognized_kwargs, + 'frd': frd_test.TestFRD.test_unrecognized_keyword, 'gangof4': test_matplotlib_kwargs, 'gangof4_plot': test_matplotlib_kwargs, 'input_output_response': test_unrecognized_kwargs, diff --git a/doc/conventions.rst b/doc/conventions.rst index 2844fd47a..680ba1ba8 100644 --- a/doc/conventions.rst +++ b/doc/conventions.rst @@ -61,20 +61,21 @@ Transfer functions can be manipulated using standard arithmetic operations as well as the :func:`feedback`, :func:`parallel`, and :func:`series` function. A full list of functions can be found in :ref:`function-ref`. -FRD (frequency response data) systems +Frequency response data (FRD) systems ------------------------------------- The :class:`FrequencyResponseData` (FRD) class is used to represent systems in frequency response data form. The main data members are `omega` and `fresp`, where `omega` is a 1D array with the frequency points of the response, and `fresp` is a 3D array, with -the first dimension corresponding to the output index of the FRD, the second -dimension corresponding to the input index, and the 3rd dimension +the first dimension corresponding to the output index of the system, the +second dimension corresponding to the input index, and the 3rd dimension corresponding to the frequency points in omega. -FRD systems have a somewhat more limited set of functions that are -available, although all of the standard algebraic manipulations can be -performed. +FRD systems can be created with the :func:`~control.frd` factory function. +Frequency response data systems have a somewhat more limited set of +functions that are available, although all of the standard algebraic +manipulations can be performed. The FRD class is also used as the return type for the :func:`frequency_response` function (and the equivalent method for the From ddb5b7c96357e0e4fd5b62aadca58362032d10b2 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 15 Jun 2024 18:50:59 -0700 Subject: [PATCH 053/199] update unexpected keyword check for GitHub action variation --- control/tests/freqplot_test.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 41894c69b..fc4664e7a 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -547,7 +547,7 @@ def test_suptitle(): ct.suptitle("New title", frame='nowhere') # Bad keyword - with pytest.raises(AttributeError, match=".* no property 'unknown'"): + with pytest.raises(AttributeError, match="unexpected keyword|no property"): ct.suptitle("New title", unknown=None) From 2fde96333f86c242f5c9faa24c4488407bdea5f7 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 16 Jun 2024 07:19:44 -0700 Subject: [PATCH 054/199] allowed Bode/Nyquist for mixed FRD systems --- control/freqplot.py | 35 +++++++++------- control/lti.py | 20 +++++---- control/tests/freqplot_test.py | 31 +++++++++++++- control/tests/nyquist_test.py | 77 +++++++++++++++++++++++++--------- 4 files changed, 118 insertions(+), 45 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index c57a32b32..870b4a739 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -284,7 +284,7 @@ def bode_plot( # # If we were passed a list of systems, convert to data - if all([isinstance( + if any([isinstance( sys, (StateSpace, TransferFunction)) for sys in data]): data = frequency_response( data, omega=omega, omega_limits=omega_limits, @@ -1276,7 +1276,11 @@ def nyquist_response( "Nyquist plot currently only supports SISO systems.") # Figure out the frequency range - omega_sys = np.asarray(omega) + if isinstance(sys, FrequencyResponseData) and sys.ifunc is None \ + and not omega_range_given: + omega_sys = sys.omega # use system frequencies + else: + omega_sys = np.asarray(omega) # use common omega vector # Determine the contour used to evaluate the Nyquist curve if sys.isdtime(strict=True): @@ -2483,18 +2487,6 @@ def _determine_omega_vector(syslist, omega_in, omega_limits, omega_num, and omega_limits are None. """ - # Special processing for FRD systems - # TODO: allow different ranges of frequencies - if omega_in is None: - for sys in syslist: - if isinstance(sys, FrequencyResponseData): - # FRD already has predetermined frequencies - if omega_in is not None and not np.all(omega_in == sys.omega): - raise ValueError( - "List of FrequencyResponseData systems can only have " - "a single frequency range between them") - omega_in = sys.omega - # Handle the special case of a range of frequencies if omega_in is not None and omega_limits is not None: warnings.warn( @@ -2579,6 +2571,15 @@ def _default_frequency_range(syslist, Hz=None, number_of_samples=None, syslist = (syslist,) for sys in syslist: + # For FRD systems, just use the response frequencies + if isinstance(sys, FrequencyResponseData): + # Add the min and max frequency, minus periphery decades + # (keeps frequency ranges from artificially expanding) + features = np.concatenate([features, np.array([ + np.min(sys.omega) * 10**feature_periphery_decades, + np.max(sys.omega) / 10**feature_periphery_decades])]) + continue + try: # Add new features to the list if sys.isctime(): @@ -2593,7 +2594,8 @@ def _default_frequency_range(syslist, Hz=None, number_of_samples=None, # TODO: What distance to the Nyquist frequency is appropriate? freq_interesting.append(fn * 0.9) - features_ = np.concatenate((sys.poles(), sys.zeros())) + features_ = np.concatenate( + (np.abs(sys.poles()), np.abs(sys.zeros()))) # Get rid of poles and zeros on the real axis (imag==0) # * origin and real < 0 # * at 1.: would result in omega=0. (logaritmic plot!) @@ -2608,8 +2610,9 @@ def _default_frequency_range(syslist, Hz=None, number_of_samples=None, # TODO raise NotImplementedError( "type of system in not implemented now") - features = np.concatenate((features, features_)) + features = np.concatenate([features, features_]) except NotImplementedError: + # Don't add any features for anything we don't understand pass # Make sure there is at least one point in the range diff --git a/control/lti.py b/control/lti.py index ec65af407..2d69f6b91 100644 --- a/control/lti.py +++ b/control/lti.py @@ -475,6 +475,7 @@ def frequency_response( #>>> # s = 0.1i, i, 10i. """ + from .frdata import FrequencyResponseData from .freqplot import _determine_omega_vector # Process keyword arguments @@ -489,13 +490,18 @@ def frequency_response( responses = [] for sys_ in syslist: - # Add the Nyquist frequency for discrete time systems - omega_sys = omega_syslist.copy() - if sys_.isdtime(strict=True): - nyquistfrq = math.pi / sys_.dt - if not omega_range_given: - # Limit up to the Nyquist frequency - omega_sys = omega_sys[omega_sys < nyquistfrq] + if isinstance(sys_, FrequencyResponseData) and sys_.ifunc is None and \ + not omega_range_given: + omega_sys = sys_.omega # use system properties + else: + omega_sys = omega_syslist.copy() # use common omega vector + + # Add the Nyquist frequency for discrete time systems + if sys_.isdtime(strict=True): + nyquistfrq = math.pi / sys_.dt + if not omega_range_given: + # Limit up to the Nyquist frequency + omega_sys = omega_sys[omega_sys < nyquistfrq] # Compute the frequency response responses.append(sys_.frequency_response(omega_sys, squeeze=squeeze)) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index fc4664e7a..f7105cb96 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -523,6 +523,34 @@ def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) +def test_mixed_systypes(): + s = ct.tf('s') + sys_tf = ct.tf( + (0.02 * s**3 - 0.1 * s) / (s**4 + s**3 + s**2 + 0.25 * s + 0.04), + name='tf') + sys_ss = ct.ss(sys_tf * 2, name='ss') + sys_frd1 = ct.frd(sys_tf / 2, np.logspace(-1, 1, 15), name='frd1') + sys_frd2 = ct.frd(sys_tf / 4, np.logspace(-3, 2, 20), name='frd2') + + # Simple case: compute responses separately and plot + resp_tf = ct.frequency_response(sys_tf) + resp_ss = ct.frequency_response(sys_ss) + plt.figure() + ct.bode_plot([resp_tf, resp_ss, sys_frd1, sys_frd2], plot_phase=False) + ct.suptitle("bode_plot([resp_tf, resp_ss, sys_frd1, sys_frd2])") + + # Same thing, but using frequency response + plt.figure() + resp = ct.frequency_response([sys_tf, sys_ss, sys_frd1, sys_frd2]) + resp.plot(plot_phase=False) + ct.suptitle("frequency_response([sys_tf, sys_ss, sys_frd1, sys_frd2])") + + # Same thing, but using bode_plot + plt.figure() + resp = ct.bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2], plot_phase=False) + ct.suptitle("bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2])") + + def test_suptitle(): sys = ct.rss(2, 2, 2) @@ -623,5 +651,4 @@ def test_freqplot_errors(plt_fcn): # Run a few more special cases to show off capabilities (and save some # of them for use in the documentation). # - - pass + test_mixed_systypes() diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index 9eb9e88c0..8354932d7 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -162,35 +162,35 @@ def test_nyquist_fbs_examples(): """Run through various examples from FBS2e to compare plots""" plt.figure() - plt.title("Figure 10.4: L(s) = 1.4 e^{-s}/(s+1)^2") + ct.suptitle("Figure 10.4: L(s) = 1.4 e^{-s}/(s+1)^2") sys = ct.tf([1.4], [1, 2, 1]) * ct.tf(*ct.pade(1, 4)) response = ct.nyquist_response(sys) response.plot() assert _Z(sys) == response.count + _P(sys) plt.figure() - plt.title("Figure 10.4: L(s) = 1/(s + a)^2 with a = 0.6") + ct.suptitle("Figure 10.4: L(s) = 1/(s + a)^2 with a = 0.6") sys = 1/(s + 0.6)**3 response = ct.nyquist_response(sys) response.plot() assert _Z(sys) == response.count + _P(sys) plt.figure() - plt.title("Figure 10.6: L(s) = 1/(s (s+1)^2) - pole at the origin") + ct.suptitle("Figure 10.6: L(s) = 1/(s (s+1)^2) - pole at the origin") sys = 1/(s * (s+1)**2) response = ct.nyquist_response(sys) response.plot() assert _Z(sys) == response.count + _P(sys) plt.figure() - plt.title("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2)") + ct.suptitle("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2)") sys = 3 * (s+6)**2 / (s * (s+1)**2) response = ct.nyquist_response(sys) response.plot() assert _Z(sys) == response.count + _P(sys) plt.figure() - plt.title("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2) [zoom]") + ct.suptitle("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2) [zoom]") with pytest.warns(UserWarning, match="encirclements does not match"): response = ct.nyquist_response(sys, omega_limits=[1.5, 1e3]) response.plot() @@ -208,7 +208,7 @@ def test_nyquist_fbs_examples(): def test_nyquist_arrows(arrows): sys = ct.tf([1.4], [1, 2, 1]) * ct.tf(*ct.pade(1, 4)) plt.figure(); - plt.title("L(s) = 1.4 e^{-s}/(s+1)^2 / arrows = %s" % arrows) + ct.suptitle("L(s) = 1.4 e^{-s}/(s+1)^2 / arrows = %s" % arrows) response = ct.nyquist_response(sys) response.plot(arrows=arrows) assert _Z(sys) == response.count + _P(sys) @@ -222,13 +222,13 @@ def test_nyquist_encirclements(): plt.figure(); response = ct.nyquist_response(sys) response.plot() - plt.title("Stable system; encirclements = %d" % response.count) + ct.suptitle("Stable system; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) plt.figure(); response = ct.nyquist_response(sys * 3) response.plot() - plt.title("Unstable system; encirclements = %d" %response.count) + ct.suptitle("Unstable system; encirclements = %d" %response.count) assert _Z(sys * 3) == response.count + _P(sys * 3) # System with pole at the origin @@ -237,7 +237,7 @@ def test_nyquist_encirclements(): plt.figure(); response = ct.nyquist_response(sys) response.plot() - plt.title("Pole at the origin; encirclements = %d" %response.count) + ct.suptitle("Pole at the origin; encirclements = %d" %response.count) assert _Z(sys) == response.count + _P(sys) # Non-integer number of encirclements @@ -251,7 +251,7 @@ def test_nyquist_encirclements(): response = ct.nyquist_response( sys, omega_limits=[0.5, 1e3], encirclement_threshold=0.2) response.plot() - plt.title("Non-integer number of encirclements [%g]" %response.count) + ct.suptitle("Non-integer number of encirclements [%g]" %response.count) @pytest.fixture @@ -266,7 +266,7 @@ def test_nyquist_indent_default(indentsys): plt.figure(); response = ct.nyquist_response(indentsys) response.plot() - plt.title("Pole at origin; indent_radius=default") + ct.suptitle("Pole at origin; indent_radius=default") assert _Z(indentsys) == response.count + _P(indentsys) @@ -293,7 +293,7 @@ def test_nyquist_indent_do(indentsys): indentsys, indent_radius=0.01, return_contour=True) count, contour = response response.plot() - plt.title("Pole at origin; indent_radius=0.01; encirclements = %d" % count) + ct.suptitle("Pole at origin; indent_radius=0.01; encirclements = %d" % count) assert _Z(indentsys) == count + _P(indentsys) # indent radius is smaller than the start of the default omega vector # check that a quarter circle around the pole at origin has been added. @@ -314,7 +314,7 @@ def test_nyquist_indent_left(indentsys): plt.figure(); response = ct.nyquist_response(indentsys, indent_direction='left') response.plot() - plt.title( + ct.suptitle( "Pole at origin; indent_direction='left'; encirclements = %d" % response.count) assert _Z(indentsys) == response.count + _P(indentsys, indent='left') @@ -328,14 +328,14 @@ def test_nyquist_indent_im(): plt.figure(); response = ct.nyquist_response(sys) response.plot() - plt.title("Imaginary poles; encirclements = %d" % response.count) + ct.suptitle("Imaginary poles; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) # Imaginary poles with indentation to the left plt.figure(); response = ct.nyquist_response(sys, indent_direction='left') response.plot(label_freq=300) - plt.title( + ct.suptitle( "Imaginary poles; indent_direction='left'; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys, indent='left') @@ -346,7 +346,7 @@ def test_nyquist_indent_im(): response = ct.nyquist_response( sys, np.linspace(0, 1e3, 1000), indent_direction='none') response.plot() - plt.title( + ct.suptitle( "Imaginary poles; indent_direction='none'; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) @@ -465,6 +465,36 @@ def test_freqresp_omega_limits(): np.array([resp0.contour[1], resp0.contour[-1]])) +def test_nyquist_frd(): + sys = ct.rss(4, 1, 1) + sys1 = ct.frd(sys, np.logspace(-1, 1, 10), name='sys1') + sys2 = ct.frd(sys, np.logspace(-2, 2, 10), name='sys2') + sys3 = ct.frd(sys, np.logspace(-2, 2, 10), smooth=True, name='sys3') + + # Turn off warnings about number of encirclements + warnings.filterwarnings( + 'ignore', message="number of encirclements was a non-integer value", + category=UserWarning) + + # OK to specify frequency with FRD sys if frequencies match + nyqresp = ct.nyquist_response(sys1, np.logspace(-1, 1, 10)) + np.testing.assert_allclose(nyqresp.contour, np.logspace(-1, 1, 10) * 1j) + + # If a fixed FRD omega is used, generate an error on mismatch + with pytest.raises(ValueError, match="not all frequencies .* in .* list"): + nyqresp = ct.nyquist_response(sys2, np.logspace(-1, 1, 10)) + + # OK to specify frequency with FRD sys if interpolating FRD is used + nyqresp = ct.nyquist_response(sys3, np.logspace(-1, 1, 12)) + np.testing.assert_allclose(nyqresp.contour, np.logspace(-1, 1, 12) * 1j) + + # Computing Nyquist response w/ different frequencies OK if given as a list + nyqresp = ct.nyquist_response([sys1, sys2]) + out = nyqresp.plot() + + warnings.resetwarnings() + + if __name__ == "__main__": # # Interactive mode: generate plots for manual viewing @@ -508,7 +538,7 @@ def test_freqresp_omega_limits(): print("Unusual Nyquist plot") sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) plt.figure() - plt.title("Poles: %s" % + ct.suptitle("Poles: %s" % np.array2string(sys.poles(), precision=2, separator=',')) response = ct.nyquist_response(sys) response.plot() @@ -517,10 +547,17 @@ def test_freqresp_omega_limits(): print("Discrete time systems") sys = ct.c2d(sys, 0.01) plt.figure() - plt.title("Discrete-time; poles: %s" % + ct.suptitle("Discrete-time; poles: %s" % np.array2string(sys.poles(), precision=2, separator=',')) response = ct.nyquist_response(sys) response.plot() - - + print("Frequency response data (FRD) systems") + sys = ct.tf( + (0.02 * s**3 - 0.1 * s) / (s**4 + s**3 + s**2 + 0.25 * s + 0.04), + name='tf') + sys1 = ct.frd(sys, np.logspace(-1, 1, 15), name='frd1') + sys2 = ct.frd(sys, np.logspace(-2, 2, 20), name='frd2') + plt.figure() + ct.nyquist_plot([sys, sys1, sys2]) + ct.suptitle("Mixed FRD, tf data") From b7c158b1f6d16d77a8e470692a9a242c6f2963e4 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 26 Jun 2024 08:50:32 -0700 Subject: [PATCH 055/199] update CDS 110 example --- .../{cds101_bode-nyquist.ipynb => cds110_bode-nyquist.ipynb} | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) rename examples/{cds101_bode-nyquist.ipynb => cds110_bode-nyquist.ipynb} (99%) diff --git a/examples/cds101_bode-nyquist.ipynb b/examples/cds110_bode-nyquist.ipynb similarity index 99% rename from examples/cds101_bode-nyquist.ipynb rename to examples/cds110_bode-nyquist.ipynb index dac005338..493746b2c 100644 --- a/examples/cds101_bode-nyquist.ipynb +++ b/examples/cds110_bode-nyquist.ipynb @@ -9,7 +9,7 @@ "source": [ "# Frequency domain analysis using Bode/Nyquist plots\n", "\n", - "**CDS 110/ChE 105, Winter 2024**
\n", + "**CDS 110, Winter 2024**
\n", "Richard M. Murray\n", "\n", "\n", @@ -242,7 +242,7 @@ "source": [ "### Open loop frequency response\n", "\n", - "A standard method for understanding the dynamics is to plot the output of the system in response to sinusoids with unit magnitude at differening frequencies.\n", + "A standard method for understanding the dynamics is to plot the output of the system in response to sinusoids with unit magnitude at different frequencies.\n", "\n", "We use the `frequency_response` function to plot the step response of the linearized, open-loop system." ] From 59a676ecafe35acee49ec32daa00a150ac9e0655 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 28 Jun 2024 22:17:12 -0700 Subject: [PATCH 056/199] fix typos in doc, docstrings pointed out by @slivingston review --- control/frdata.py | 2 +- control/freqplot.py | 8 ++++---- doc/plotting.rst | 19 +++++++++---------- 3 files changed, 14 insertions(+), 15 deletions(-) diff --git a/control/frdata.py b/control/frdata.py index b5d319909..b703a97a0 100644 --- a/control/frdata.py +++ b/control/frdata.py @@ -806,7 +806,7 @@ def frd(*args, **kwargs): >>> F = ct.frd(response, omega) >>> G = ct.tf([1], [1, 1]) - >>> freqs = [1, 10, 100] + >>> omega = [1, 10, 100] >>> F = ct.frd(G, omega) """ diff --git a/control/freqplot.py b/control/freqplot.py index 870b4a739..a63ef20d3 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -111,9 +111,9 @@ def bode_plot( List of LTI systems or :class:`FrequencyResponseData` objects. A single system or frequency response can also be passed. omega : array_like, optoinal - Set of frequencies in rad/sec over to plot over. If not specified, - this will be determined from the proporties of the systems. Ignored - if `data` is not a list of systems. + Set of frequencies in rad/sec to plot over. If not specified, this + will be determined from the proporties of the systems. Ignored if + `data` is not a list of systems. *fmt : :func:`matplotlib.pyplot.plot` format string, optional Passed to `matplotlib` as the format string for all lines in the plot. The `omega` parameter must be present (use omega=None if needed). @@ -2235,7 +2235,7 @@ def singular_values_plot( ------- legend_loc : str, optional For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to supress. + given location. Default is 'center right'. Use False to suppress. lines : array of Line2D 1-D array of Line2D objects. The size of the array matches the number of systems and the value of the array is a list of diff --git a/doc/plotting.rst b/doc/plotting.rst index b7d631409..a3cbc1797 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -223,7 +223,7 @@ sensitivity functions for a feedback control system in standard form:: .. image:: freqplot-gangof4.png -Nyquist analysys can be done using the :func:`~control.nyquist_response` +Nyquist analysis can be done using the :func:`~control.nyquist_response` function, which evaluates an LTI system along the Nyquist contour, and the :func:`~control.nyquist_plot` function, which generates a Nyquist plot:: @@ -233,18 +233,17 @@ the :func:`~control.nyquist_plot` function, which generates a Nyquist plot:: .. image:: freqplot-nyquist-default.png The :func:`~control.nyquist_response` function can be used to compute -the number of encirclement of the -1 point and can return the Nyquist +the number of encirclements of the -1 point and can return the Nyquist contour that was used to generate the Nyquist curve. By default, the Nyquist response will generate small semicircles around poles that are on the imaginary axis. In addition, portions of the Nyquist -curve that far from the origin are scaled to a maximum value, with the line -style is changed to reflect the scaling, and it is possible to offset the -scaled portions to separate out the portions of the Nyquist curve at -\infty. A number of keyword parameters for both are available -for :func:`~control.nyquist_response`and :func:`~control.nyquist_plot` to -tune the computation of the Nyquist curve and the way the data are -plotted:: +curve that are far from the origin are scaled to a maximum value, while the +line style is changed to reflect the scaling, and it is possible to offset +the scaled portions to separate out the portions of the Nyquist curve at +:math:`\infty`. A number of keyword parameters for both are available for +:func:`~control.nyquist_response` and :func:`~control.nyquist_plot` to tune +the computation of the Nyquist curve and the way the data are plotted:: sys = ct.tf([1, 0.2], [1, 0, 1]) * ct.tf([1], [1, 0]) nyqresp = ct.nyquist_response(sys) @@ -267,7 +266,7 @@ array of frequencies as a second argument (after the list of systems):: .. image:: freqplot-siso_bode-omega.png -Alternatively. frequency ranges can be specified by passing a list of the +Alternatively, frequency ranges can be specified by passing a list of the form ``[wmin, wmax]``, where ``wmin`` and ``wmax`` are the minimum and maximum frequencies in the (log-spaced) frequency range:: From 343df2c6b1d5d9123e1d76ebdfdcc2c2ef34db83 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 29 Jun 2024 11:25:54 -0700 Subject: [PATCH 057/199] fix issues in examples/cds110_bode-nyquist.ipynb per @slivingston review --- examples/cds110_bode-nyquist.ipynb | 58 +++++++++++++++--------------- 1 file changed, 29 insertions(+), 29 deletions(-) diff --git a/examples/cds110_bode-nyquist.ipynb b/examples/cds110_bode-nyquist.ipynb index 493746b2c..eb0988e1c 100644 --- a/examples/cds110_bode-nyquist.ipynb +++ b/examples/cds110_bode-nyquist.ipynb @@ -51,7 +51,7 @@ "source": [ "## Stable system: servomechanism\n", "\n", - "We start with a simple example a stable system for which we wish to design a simple controller and analyze its performance, demonstrating along the way that basic frequency domain analysis functions in the Python control toolbox (python-control).\n", + "We start with a simple example a stable system for which we wish to design a simple controller and analyze its performance, demonstrating along the way the basic frequency domain analysis functions in the Python control toolbox (python-control).\n", "\n", "Consider a simple mechanism for positioning a mechanical arm whose equations of motion are given by\n", "\n", @@ -77,7 +77,7 @@ "\n", "$$\n", "k = 1,\\quad J = 100,\\quad b = 10,\n", - "\\quad r = 1,\\quad l = 2,\\quad \\epsilon = 0.01.\n", + "\\quad r = 1,\\quad l = 2,\\quad \\epsilon = 0.01,\n", "$$\n", "\n", "and we assume that time is measured in msec and distance in cm. (The constants here are made up and don't necessarily reflect a real disk drive, though the units and time constants are motivated by computer disk drives.)" @@ -108,8 +108,8 @@ "Outputs (1): ['y']\n", "States (2): ['theta_', 'thdot_']\n", "\n", - "Update: \n", - "Output: \n", + "Update: \n", + "Output: \n", "\n", "Params: {'J': 100, 'b': 10, 'k': 1, 'r': 1, 'l': 2, 'eps': 0.01}\n" ] @@ -168,7 +168,7 @@ "source": [ "### Linearization\n", "\n", - "To study the open loop dynamicsof the system, we compute the linearization of the dynamics about the equilibrium point corresponding to $\\theta_\\text{e} = 15^\\circ$." + "To study the open loop dynamics of the system, we compute the linearization of the dynamics about the equilibrium point corresponding to $\\theta_\\text{e} = 15^\\circ$." ] }, { @@ -256,8 +256,8 @@ { "data": { "text/plain": [ - "array([[list([])],\n", - " [list([])]],\n", + "array([[list([])],\n", + " [list([])]],\n", " dtype=object)" ] }, @@ -267,7 +267,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACMgElEQVR4nOzdd3hUZfbA8e+dkknvCakQeu+hqSAi3YKKqMQC9oKKgroWFLCtYi9Rf6uuYokoNhQRCQhSpPdeQguQkISQTOpkMnN/fyBZkUAyyUzuzOR8nodnMzPvee+ZN5zleKuiqqqKEEIIIYTweDqtExBCCCGEEM4hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SWksRNCCCGE8BLS2AkhhBBCeAlp7IQQQgghvIQ0dkIIIYQQXkIaOyGEEEIILyGNnRDCq4wfP56rrrrK5dtRFIUff/zR6fOqqspdd91FeHg4iqKwadMmp2/D2Xbt2kXfvn3x9fWlW7duWqcjRKMmjZ0QosGNHz8eRVGq/kRERDB8+HC2bNmidWouU9uGc/78+Xz66afMnTuXrKwsOnXq5NQ8/r7uQUFBJCcn8/3339cq9lzfYerUqQQEBLB7924WLVrk1HyFEI6Rxk4IoYnhw4eTlZVFVlYWixYtwmAwcPnll2udluYyMjKIjY3lggsuICYmBoPB4PAcqqpSWVl5zs8/+eQTsrKyWLt2LV27dmXMmDGsXLmyXjlfdNFFNGvWjIiIiDrPI4SoP2nshBCaMJlMxMTEEBMTQ7du3fjXv/5FZmYmubm5VWO2bt3KoEGD8PPzIyIigrvuuovi4uKqz202G5MmTSI0NJSIiAgee+wxVFU9YzuqqjJjxgxatGiBn58fXbt25dtvvz1vbklJSTz33HOkpKQQGBhIXFwc77zzznljzpfrtGnTmDlzJnPmzKnaW7ZkyZKz5hg/fjwPPPAAhw8fRlEUkpKSALBYLDz44INER0fj6+vLRRddxNq1a6vilixZgqIo/PbbbyQnJ2MymVi2bNk5cw0NDSUmJoZ27drxwQcf4Ovry08//XTe73eu76AoCuvXr+fZZ59FURSmTZt23nmEEK4ljZ0QQnPFxcV8+eWXtGrVqmqPT2lpKcOHDycsLIy1a9cye/ZsFi5cyP33318V99prr/Hf//6Xjz/+mOXLl5Ofn88PP/xwxtxTpkzhk08+4f3332f79u08/PDD3HTTTfzxxx/nzemVV16hS5cubNiwgSeeeIKHH36Y9PT0asfWlOsjjzzCddddd8ZeygsuuOCsed566y2effZZEhISqvaoATz22GN89913zJw5kw0bNtCqVSuGDRtGfn7+GfGPPfYY//73v9m5cyddunSpYdVPMRqNGAwGrFbreced6ztkZWXRsWNHJk+eTFZWFo888kittiuEcBFVCCEa2Lhx41S9Xq8GBASoAQEBKqDGxsaq69evrxrzn//8Rw0LC1OLi4ur3vvll19UnU6nZmdnq6qqqrGxsepLL71U9bnValUTEhLUUaNGqaqqqsXFxaqvr6/6559/nrH922+/XR07duw582vWrJk6fPjwM967/vrr1REjRlS9BtQffvih1rmOGzeuKq/zeeONN9RmzZpVvS4uLlaNRqP65ZdfVr1XUVGhxsXFqTNmzFBVVVUXL16sAuqPP/5Y4/x/z7u8vFx97rnnVECdN29ejbHn+g5du3ZVp06dWmO8EML1HD95QwghnOCSSy7h/fffByA/P5/33nuPESNGsGbNGpo1a8bOnTvp2rUrAQEBVTEXXnghdrud3bt34+vrS1ZWFv369av63GAwkJycXHU4dseOHZSXlzNkyJAztl1RUUH37t3Pm9/f5z39+s0336x2bE25NmnSpOYFOYeMjAysVisXXnhh1XtGo5HevXuzc+fOM8YmJyfXas6xY8ei1+spKysjJCSEV199lREjRtQ5RyGE+5DGTgihiYCAAFq1alX1umfPnoSEhPDhhx/y/PPPo6oqiqJUG3uu9//JbrcD8MsvvxAfH3/GZyaTyeGcz7VdZ+R6Lqeb1H/OU902/95Yns8bb7zB4MGDCQ4OJjo6ul75CSHci5xjJ4RwC4qioNPpKCsrA6BDhw5s2rSJkpKSqjErVqxAp9PRpk0bQkJCiI2NZdWqVVWfV1ZWsn79+qrXHTp0wGQycfjwYVq1anXGn8TExPPm8/d5T79u165dtWNryhXAx8cHm81Wy9X4n1atWuHj48Py5cur3rNaraxbt4727ds7PB9ATEwMrVq1cripq+t3EEI0HGnshBCasFgsZGdnk52dzc6dO3nggQcoLi7miiuuAODGG2/E19eXcePGsW3bNhYvXswDDzzAzTffXHVoc+LEibz00kv88MMP7Nq1i/vuu4+CgoKqbQQFBfHII4/w8MMPM3PmTDIyMti4cSOpqanMnDnzvPmtWLGCGTNmsGfPHlJTU5k9ezYTJ06sdmxtck1KSmLLli3s3r2bvLy8Gi9WOC0gIIB7772XRx99lPnz57Njxw7uvPNOSktLuf3222s1h7PU9TsIIRqOHIoVQmhi/vz5xMbGAqcasHbt2jF79mwGDhwIgL+/P7/99hsTJ06kV69e+Pv7M3r0aF5//fWqOU5fiTl+/Hh0Oh233XYbV199NYWFhVVjnnvuOaKjo/n3v//N/v37CQ0NpUePHjz55JPnzW/y5MmsX7+e6dOnExQUxGuvvcawYcOqHVubXO+8806WLFlCcnIyxcXFLF68uOq71uSll17Cbrdz8803U1RURHJyMr/99hthYWG1ineW+nwHIUTDUFT1Hzd9EkKIRi4pKYmHHnqIhx56SOtUhBDCIXIoVgghhBDCS0hjJ4QQAoDAwMBz/jnfkyyEEO5DDsUKIYQAYN++fef8LD4+Hj8/vwbMRghRF9LYCSGEEEJ4CTkUK4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SUMWifgjux2O8eOHSMoKAhFUbRORwghhBCNmKqqFBUVERcXh053/n1y0thV49ixYyQmJmqdhhBCCCFElczMTBISEs47Rhq7agQFBQHw0UcfcdVVV2E0GmsVZ7VaWbBgAUOHDq0xxpGxjZ2nrZXW+bp6+86ev77z1Se+LrFS567haWuldb5S566Ndbc6N5vNJCYmVvUn5yONXTVOH3719/cnODjYob8ItY1xZGxj52lrpXW+rt6+s+ev73z1ia9LrNS5a3jaWmmdr9S5a2Pdtc5rc3qYXDwhhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyEXDwhhKgX1W6nvLSYshIz5aXFVJQVUVFeQpExCrMxijKrDbs5m6ijC1GtpagVpSiVZWAtR6ksQ1dZzk5Le+YWxGFTIbT8CHfkv4bebkWvWjGoVvRqJXpsAPxsGEqaz2gUIMqex2vlz9BNVcna9ASqomBHR4XOjwq9P9uCLmJt9LUEmgwEG+1clDMLxTcQnW8wer8Q/MLjsZaZUe12bRdRCCGcRBo7IRoBa4WF0pIiKsqKKS8toqKsBGt5MdayEk76J3HSEElZhQ19wUESj81HtZagWEvRWUvRV5ait5VhsJXxs+lyFtObE4V65m5O5S3bi/grFvwAv39s8wVrCh/aLgegq7KPOabnz5nfn5WBpO/MAaCVkkMH09ZzjlXLTnKoqBSASqWYpqZjf33w1x8AO1AJ60qi+f7IUQCiKOAR39Sz5msPlL44mZ9NQ/k59kESwvyID/GlV+lSgpo0JyKhNRHR8Sg13BRUCCHcgTR2QjQQ1W6noqKcCks5VksZ1opyLMYQLJiwVNqxFx9Hn7cXW0UZNmsZtooy7NZyVGsZqrWcfaH9yTHGY6m0E1GwhW45P6KzWTDYytDbLehtFoxqOUa7hcW263h+qz/lVjv9K1fynvENQs6R1+PWO5hlGwRAf90WPvc5u/k57YfijuyxdQAU8hTwN1nO+LxM9aFc8aUcE0FBwXQJDMHXqCdRac7Gwouw6X2xG/ywG/xQDX5g9EPV+6AUhDC9Z3v8fIz4q61Zn/cmOqMPOoMJvdEHvdGEotMDcKF/NN8G/HWDzkoLW4+nsX37djp26IBOp0O1WbGWFWErLyLGJ4HH/dpRXF6JvTiXNZkjMVQWY6gsxVRZRFhlLtHk469YyCu1s2R3LgBRnORe30lV3+sEIRz270h5kx4EtuhDpfXM7y2EEO5CGjuhOdVuR7Xbsdlt2GyVp362VWKz2VBtlZTr/CmsgKzCcvQVOVBeiN1mxW6zYbfbTv2vzYrdVklJaDusig82u4pP4X6M5kOo9lPzqDYrdpsV1VYJNisHowdRrg/CalOJOLmR6JMbwVYB9lOfK/ZKsFvBbuWPiLHk6GOotNvpULiM3oXz0alWdPa/DhP+ddhQr1byss/9rCmL48Vtf3BZZTqT7DPxwYqPUokJMP3tu4+veIwl9m4AjNEv4RXjf865Tp9VVDLP3heAkbpt3OUz75xjjZVF5FoqACjR+VS9b1MVyvClXDFhUUxUKL5EhkfQLygCfx89zWjPmoKRqEZ/7EZ/MAagmALQ+QSgMwVwSVRn+oe2YNO61Qy+8HqOqsMw+QfiFxCEn38Qfnp91Z67B//68z9XVpur1Wold948RvZO/Ns9oNqc87udFd9sKPvzKmnXZ1gN95BqC1x01rZ/+GkOPTq2ortFz0uWEI6cLMOSs5edhzsSbs0mSs0nQikkovRPOPAnHHiXjZVDuPJIDD2TwkiOD6BnWAkJLTrKXj0hhOaksdPIy7/toeP2b9lw4GuUquNHgHrqeFKxIYy50fecOrqkqlyW+yFhFcf53/EmFUVVUbBTogvmy6hJqKioKlxz4j/EWA+Dqv4196mxoGJRfHkr4pmqsSkF/6GFdU/VWAX1r5/t2NDzeOgrqCrYVZU7S/6PrtatKNj/GmsHVUX3189jfVKpRIddhUcrP+Bi+xp0f43VY0dR7X+NVbnQ9j5Fdj/sqsq/9f/hesMSdEB1/yz3Kk8llzBYv5Rphk8Zb1hwznUdYHmDw2oTAP5l+Ip7DT+fc+zTFh92qU0BeED/C6OM355z7IyjXdmgVgIQqd9Fd+OKc44tMueTb48Hi4UyvZVAY1m14ypUPYEGlTCDER+DDj0RHKpMxKr4UKkzUanzwabzwaYzYdeb6BTZjsiQZpgMOmIrjawssIHBD52PHzqjPzqTHwaTHxh8ab2/kJ8G9SPQzwd/3UUUKnfiFxCE0ehDoE5H4N/yeOSMrHoBV53zu8GpZqhwN7RNiMRojD3vWE+gMxiJa9mRZkYjvavebQucOoxcXlbCwW0rKdjzJz5Z64gr3s56e2t2Zhed+qPs5irTdE4SxIGA7tg7XEm7/tcSGBym0TcSQjRm0thp5KfNWdxkWU1SxfFqPz9gb8L3R6+oen23zzLa6w5XOzZbDWN+Tsrfxm6gm25vtWPNqj/LT+ZVvb7XuJsO+m3VjrWqerYcKax67W88RnP9wXN+p2OFpVT+9VdKbywmUl9w5oC/3TDbVmmj8q+G1s7576R9uhk06HVU6kyUqiZs6LArOuzosaHDhh6boicu1A+DIQCDTsFeEce+ipbYFT129Nh1hlM/K3pURU+PxHha+Mag1+kIKenBmuJS0OlRdUZUnQFO/6/eyJUxPRkSEI9RrxBVYmB1UQt0eiOKwQfFcOqQoc5oQm/wYWJYe3pv2snAARcRSFcyK27FaPLD6OOL0eSHj8kXHx9ffPR63j3jmw4GHj/nOiSf8aoDMLTacVarlYMn59E+Nsgj7uDv7nz9AmjXazD0GgycWt8e389lcNuubDlqJmD3RiyFRsKUIsJKlsLapZSveYKNAb2xtr2Cygpp8IQQDUcauxpYrVaHx9Ym5vYLElm1fjhHw3zR6XSgnNoHBgooChZjEP+KPXU4SlEgK/sOCioLUFFQFEDRVY216f2YFt/+VLQCRbkTWFWRz18DURRd1c+q3odX4zujADoFlBOTWFeRj6roUFBAp/vrkSU60On4T1x3dAroFIWggqfZXHESRVFOne/017yKokNRdHwV3Q2dTo9ep+BTkshea9Gpbev06HQ6dDr9qbF6HT8HJaDoDeh1CoaKHuSoVvR6A4rOgE6nQ6/Xo9Mb0OsN/G6zsXDRIoYMGYTROASofs8ewOdnvLoAeOGcv4PpZ7zqBNx1zrFnNlWJwKBzjrVarWRl7KR1pB9GYzDQ5KwxNrsdm4uuxHTk76E7zF/f+eoTX5dYq9VKqK+OS9uEM7xjExj6LyosE8nYvoqCTT+TmJ1OIsfoXroCNq7gjYop/FK8gZGdYxnUNoogX/m/3eq4+u+ts2mdr9S5a2MdiWmIvwuOzK2oqqrWPKxxSE1NJTU1FZvNxp49e0hLS8Pf31/rtIQQHkS1q1gKMgnIWUtc2W6uLZ+C/a9bhk4xfE5nn2wOh/bFEJ+MziB7VIUQNSstLSUlJYXCwkKCg4PPO1Yau2qYzWZCQkJIS0tj1KhRDj00OD09nSFDhtTqocG1HdvYedpaaZ2vq7fv7PnrO1994usS60hMRUUFn81ZiDmkJQt25PBV8a1EKwUA5BHKnsQxtBp+P2HR8Q7l7Y20rhtHaZ2v1LlrY93t33Oz2UxkZGStGjs5JlADo9Ho8C/KkZi6zN9YedpaaZ2vq7fv7PnrO1994l1Z53EBcMfQtvxrZEcO7vyWlStn0TLze6LJJzLzQyz/+ZRNYUOIGPwQLTr1qVP+3kTrunGU1vlKnbs21l3+PXdkXrk2XwghGoKikNShF/1uf42wJ3exrter7DG0waRY6VUwjz9mvUbKh6tYuOM4drscSBFC1I3ssRNCiAZm9DGRfNmdMPIOdq1bRMkf7/B5/nD2Z5zgz4wTDAs9yq3N8uh02b1y2xQhhEOksRNCCK0oStWtVD4vKOOzlQf5avVhRpXMpu/uNZh3v8PKpjfT+donpMETQtSKHIoVQgg3EB/qxxMj2rPqyUsJ7zyMTCWOYErpd/j/qHi9C6vSnqO8rETrNIUQbk4aOyGEcCP+Pgb6XvcI8VO2sa7XqxxRYgnHTN89r1LwchdWzvkPlTbX3ANRCOH5pLETQgg3pNPrSb7sTpo8sZnVHZ8hh3BiyGPBmi0Me3Mp87ZmIXerEkL8k5xjJ4QQbszoY6LPmMmUX3Y3y398m7l7u5KbW8J9X27gxugD3NAzjk79r0LRyX+nCyFkj50QQngEX/9ALkp5kkX/GsqDg1oR5AO3FbxL58W3suOli9m7aZnWKQoh3IA0dkII4UGCfY1MGtqWxQ/1IzdmABWqgY4VW2j5wxWsefsmTuYe0zpFIYSGpLETQggPFBkeTt/7/kP+7atYFzwYnaLSO/9n9KnJrJ71byqtFVqnKITQgDR2QgjhwWKatiZ50nfsHPENGfrmBFNCn10vMfXN91i9/4TW6QkhGpg0dkII4QXa9xlG0hPrWN3+KeZxIV+eaMX1/1nFg19tJDvfrHV6QogGIo2dEEJ4Cb3BQJ/rH6Pvoz+S0qcZigLLNu9CfasbK2c+haW8VOsUhRAuJo2dEEJ4mfAAH168ujM/338RD0euIVY5Qb8D75Lzck+2LP5W6/SEEC7k1Y3dpEmT6N+/Pw8++KDWqQghRIPrFB/CzZNeY233l8gjlET1GF3+uJ31r11NXnam1ukJIVzAaxu7DRs2UFxczLJly7Baraxdu1brlIQQosEpOh29Rt2L6eGNrGpyAzZVoWfR7/h80Ic1372J3S5PrxDCm3htY7dy5UoGDx4MwODBg1m1apXGGQkhhHaCQsLpe+//sf/qn9mnb0kwJezb+Ac3/GcV+3KKtE5PCOEkHtHYTZ06lQ4dOqDT6Zg1a9YZn+Xm5nLZZZfh7+9P27ZtWbRoEQAFBQUEBwcDEBISwsmTJxs8byGEcDetu/Un6fFV/NnmMd5SbmTNwXxGvLWMD35ZJRdXCOEFPKKxa926NW+99Ra9e/c+67MJEyYQFxdHXl4eL7/8MmPGjOHkyZOEhoZiNp+6xN9sNhMaGtrAWQshhHsyGH24IOUpvps0kkHtorHa7HRY9QjZM3qxfeWvWqcnhKgHg9YJ1MZNN90EwAsvvHDG+8XFxcyZM4eDBw/i7+/PVVddxeuvv87PP/9Mv379+L//+z+uu+46Fi5cyPjx4885v8ViwWKxVL0+3RACWK3WWud5emxtYhwZ29h52lppna+rt+/s+es7X33i6xLrTXXeJNDIByldWbx2Ex3SM4m0F8BvN7B69WW0HPsKIeHRDZaLu6/VP2mdr9S5a2Pdrc4dmVtRVdVjzpwdOHAg99xzDzfccAMAGzduZNiwYeTk5FSNeeCBB/D39+fll1/moYceYv369XTt2pV33333nPNOmzaN6dOnn/V+Wloa/v7+zv8iQgjhZqyWEsL2fcOlFYsBOKEGsyhqHKbEXhpnJoQoLS0lJSWFwsLCqtPMzsUj9tidS3Fx8VlfMDg4mIKCAgDefPPNWs3zxBNPMGnSpKrXZrOZxMREAIYMGYLRaKzVPFarlfT09FrFODK2sfO0tdI6X1dv39nz13e++sTXJda763wM29amE7TwUZrZj3Bd3jtsKL2I2Js+IDIqxqVb9rS10jpfqXPXxrpbnf/9SGJNPLqxCwwMPOvLms1mAgMDHZrHZDJhMpmq/cxoNDr8i3Ikpi7zN1aetlZa5+vq7Tt7/vrOV594qfP/6XTBSCw9BrLyi6dIzpxJSHEGV/5nM49foXBNj3gURXHp9j1prUD7fKXOXRvrLnXuyLwe3di1bt2awsJCsrOziYk59V+Tmzdv5o477nDaNjz5mLy38LS10jpfOffGtbGNoc51eiPJ42ZwYNtoUhfvJjdHYfLszfy88RDPXxpJk4QWTt+mp62V1vlKnbs21t3q3OvOsbNardhsNoYOHcqdd97JmDFj8PHxQafTMWbMGMLDw3nzzTdJT09n/PjxZGRkEBYW5vB2UlNTSU1NxWazsWfPHjnHTgjR6NlU+P2YwvxMHbfqfuEhw/f8FnI9SvNL0Ok84sYKQng8R86x84jGbvz48cycOfOM9xYvXszAgQPJzc1l3LhxLFmyhISEBN57772qGxPXldlsJiQkhLS0NEaNGuWxx+S9haetldb5yrk3ro1trHWekVNM+adX0826EYAdxk74j36X+JadnDK/p62V1vlKnbs21t3q3Gw2ExkZ6T0XT3z66ad8+umn1X4WFRXFvHnzXLZtTz4m7208ba20zlfOvXFtbGOr83bxYdgfX8Sqb16my6436WDdRvlXQ1jfegK9bngavcE5/5x42lppna/UuWtj3aXOG805dg3Bk4/JewtPWyut85Vzb1wb29jrvOe1j5J9aBQZsyfQ2bKRvvveZPdLv2K4+j2atula53k9ba20zlfq3LWx7lbnXneOXUORc+yEEKJ2VLtK5aFlDD2Zhi8WRllfoGVCPIPiVPSuvXBWiEbH686xa2hyjp178bS10jpfOffGtbFS52fKPbafH36awytHOwLQOT6YV0bE0rJZM4fm8bS10jpfqXPXxrpbnXvdOXZa8uRj8t7G09ZK63zl3BvXxkqdnxLXrC333f8oMRuOMv3n7XBsE80+v4b1SbfR88ZnMfpUf4/Qc/G0tdI6X6lz18a6S53LOXZO5MnH5L2Fp62V1vnKuTeujZU6r96VXZrQJymE7TO/xs9cQd9DH7Dv5QWoV75LUofeNcZ72lppna/UuWtj3a3O5Ry7OpJz7IQQon5Uu4o1cyVDTnxBqFKMVdUzP+BKrC2vcNqVs0I0NnKOXT3JOXbuxdPWSut85dwb18ZKndfOiexMjn31AD1KlwOQoWtO5eVv06Jzv2rHe9paaZ2v1LlrY92tzuUcOyfy5GPy3sbT1krrfOXcG9fGSp2fX0xiC5o88jPrf/0vLdZOo6X9AFO//56QEzHcf0krfAzVP7XC09ZK63ylzl0b6y517si88jwYIYQQLqHodPS87A7s967i5/DxfFZ5KW8v2suV7y5n++EcrdMTwivJHrsaePLJlt7C09ZK63zlpGrXxkqdOy44vAnD732Vt7ZlM/XnnRzOzsX/4zv5M2EEXcc+h4/J1+PWSut8pc5dG+tudS4XT9SRXDwhhBCuVWSFk3uW8UDFhwDsI5H1iXfgG9lc48yEcF9y8UQ9ycUT7sXT1krrfOWkatfGSp07x6YFn9Fy7TTCMVOp6lgddzM5kQMYNmKkR6yV1r9bqXPXxrpbncvFE07kySdbehtPWyut85WTql0bK3VeP70uu538XsNZ/9l99CxewoVZM8nIWsThZuG0Sx6kdXq1pvXvVurctbHuUudy8YQQQgi3Fx4dT89H5rChz5vkE0xLjnDwp3/zym+7sFTatE5PCI8kjZ0QQghN9RhxK5V3r2Ch4WKerhhH6uIMLn97OZsPn9Q6NSE8jjR2QgghNBcWGUtJ59uZesNAIgN92JtTzL4Pb2bl/z1AeVmJ1ukJ4THkHLsaePLl0d7C09ZK63zlNgiujZU6d43TazSoTTi97r+Amd/PYfThZZC1jEMzfqd4+Ju06TFQ2yT/RuvfrdS5a2Pdrc7ldid1JLc7EUII92E5sp5BOZ8SqRRiUxUW+I6ktPXVGIw+WqcmRINy+e1OysrKeOaZZ5g9ezb5+fmYzWZ+++03du7cyUMPPVTXvN2G3O7EvXjaWmmdr9wGwbWxUueuca61KszP4cCXE+llTgfgsBJP0bA3aNNT2ytntf7dSp27Ntbd6tzltzu57777sFqtzJ07l/79+wPQpUsXJk6c6BWN3d958uXR3sbT1krrfOU2CK6NlTp3jX+uVWSTeCInfcumhV8Rv/wJmqpHOfrrvbyS8wMPD++En49ew2y1/91Knbs21l3q3JF569TY/fLLL2RmZmIymVAUBYDY2FiysrLqMp0QQghxXt0Gj6Wwx2DWzpzAe7ldWPznEdL3nOTl0V3o3Txc6/SEcBt1uio2NDSU3NzcM947cOAAcXFxTklKCCGE+KeQ8Ch6PfwNN99yJ02CTRzIK+Hrj15mVeodlBYXap2eEG6hTo3dxIkTueKKK/j222+x2WzMnTuXsWPHet1hWCGEEO5nULsmLHj4Ym7pHsozhs/omzubk6/1YtuKuVqnJoTm6nQodsKECURHR/Pxxx+TkJDA22+/zcMPP8z111/v7Pw058mXR3sLT1srrfOV2yC4Nlbq3DUcXSt/Azx9TW+2R71FzNIniFePE59+I6s2XEXbG18lMCjUhdlq/7uVOndtrLvVudzupI7kdidCCOF5Ki1lhOz7msEVvwNwTI1kaezt+MV21DgzIZzDJbc7mTFjRq02/thjj9VqnDuT2524F09bK63zldsguDZW6tw1nLFWO1bMJeqPx4hTc7CpCq+2/oI7Rw0iyNf968Ddti917l517pLbnezcubPq59LSUn744Qf69OlDYmIimZmZrFmzhmuuuabuWbspT7482tt42lppna/cBsG1sVLnrlGfteo68GpKel7C6pkPsy27jPe3KfxweCX/vqYzl7SLdnKmp2j9u23sdW6z2Wo8TGmz2TAYDNhsNnS62l1a4EhMXeY/H6PRiF6vP+u92qp1Y/fJJ59U/Tx69Ghmz57NqFGjqt776aef+Oyzz2q9YSGEEMLZAoJC6XP/J6gZeTT7fiuHTpQyfeZP+DX5nfY3v0FIRBOtUxROUlxczJEjR6jpwKOqqsTExJCZmVl1i7aaOBJTl/nPR1EUEhISCAwMrFN8nS6eWLhwIV9//fUZ740cOZKbb765TkkIIYQQztS3ZSTzJw7glfm7GLLuefoW7CDvnRVs6Pc8PYbJv1WezmazceTIEfz9/YmKijpvQ2W32ykuLiYwMLDWe9QcianL/Oeiqiq5ubkcOXKE1q1bn7Xnrjbq1Nh16tSJ559/nilTpmAwGKisrOTFF1+kY0c5UVUIIYR78PPR88yVHdkV+xyHfp1IM/sRIlfez/qt35J0cyoRTRK0TlHUkdVqRVVVoqKi8PPzO+9Yu91ORUUFvr6+DjV2tY2py/znExUVxcGDB7FarXVq7OqUweeff878+fMJCwujZcuWhIWF8csvv8ihWCGEEG6nXa/BNHl0DSvjxlGp6uhZvATd+31ZP/dDVLtd6/REPTjj0Ke7qe93qtMeuxYtWrBq1SoOHz5MVlYWsbGxNG3atF6JCCGEEK7i6xdAv7veZu+m69D/NIEW9oP0XPcIHx4+yZU3PUiTYF+tUxTCKeq0xy4nJ4ecnBx8fX1p3rw5vr6+Ve8JIYQQ7qp1t4tI+NdqVja9m832lrx8uC1DXv+D2esyazwJXwhPUKc9djExMSiKUlUEf99taLPZnJOZm/DkO1V7C09bK63zlTvSuzZW6tw1GnKtFJ2e5JtfYPexR2j/0262HjXz5LcbCF38BO2ueZKYpq1rnEPr321jr/PT59jZ7XbsNRxOP92rnB5fG7WJMZlMdOzYkYqKCpKTk/n4449rNXdN7HY7qqqecY5dgz95Ijs7m+eff54+ffp49JWx8uQJIYRoXGwqLDmm0PzYHB42fEuJ6stvIdehNB/klBPhhWsYDAZiYmJITEzEaDRSbnX+uZK+Rt15z3dr27Ytu3fvxmazMWrUKO666y6uvPLKem+3oqKCzMxMsrOzqaysBFz05InaJNKiRQuOHDnijOk0JU+ecC+etlZa5yt3pHdtrNS5a2i9Vpl7t2D54QHaW7cDsMPYEb9r3iWhVedqx2udb2Ov8/LycjIzM0lKSsKuM9BpWnq9c/ynlZP6Eh0Res7mLi4ujmPHjqGqKpMnTyYmJqbap28tWbKEiRMnotfrCQgIYNmyZdW+d1p5eTkHDx4kMTERX99T53665MkTNVm9enVVZ+lN5I707sPT1krrfBv7HeldHSt17hparVWLDj2xt13G6m9fofOO1+lg3U75rKGsb3kvyWOfxmD0qTZO699tY61zm82Goiin9qq6cM9q1TbOQafTUVJSwvLly3nmmWeqHfvGG2/w9ttvc8kll1BYWIhOp6v2vb/PqSjKGWvlkidP/F379u3P6GBLS0s5ceIEb731Vl2mE0IIITSn0+vpc/3jZB26mn1f3UuX8vX03f82v7yaQYvxH9A+9vx7SoQ2/Ix6djw77Jyf2+12isxFBAUHOXQfO2tZyXnHnDhxgm7dugEwaNAgLr/88mrHXXDBBTz++OOMHz+ea6+99pzvOUudGrsPPvjgjNcBAQG0adOmxt2DQgghhLuLbdaWmMcWsmZOKs02v8Yr5kEceWc59w1syYRBrTAZHL9prHAdRVHw9zl3O2O326n00ePvY3CosTOXn/9+chEREWzatOnUWLP5nOOeeOIJRowYwZw5c+jZsycbN26s9r2IiIha5VaTOjV2a9eu5ZFHHjnr/ddff51JkybVOykhhBBCS4pOR++rHyBn4Djazt3Dwe3Hefv3fQRueJ+LB19Ji679tU5ReIj9+/fTrVs3unXrxsKFC8nMzKSwsPCs95zV2NXpwPSzzz5b7fsvvPBCvZIRQggh3El0WDAf3NST1JQeXBqwnzvKPqXVz9ew7sP7qbRatE5PeIDXX3+djh070qVLF7p06ULXrl2rfc9ZHNpj98033wBQWVnJ7Nmzz7iZ48GDBwkPD3daYkIIIYQ7UBSFy7rEcmHcGNZ/vpRehQvolzOLI8cXsSPSSNeBV2udotBAdnZ2rca9++67tXrPWRxq7N5//33g1K1N3nvvvar3FUUhOjqaTz/91KnJCSGEEO4iNDKGXg/PZvPi2TT543ESlFwSloxnzebZtL3lbULCIrVOUQjHGrvFixcD8PzzzzNlyhSXJCSEEEK4s66XjOFk14Es+OBeBlsW0vvkL2S8tYWVoxcwvHOc1ukJjWzdupVx48ad8V6XLl347LPPGjSPWjd2eXl5REae+q+Ru+6665zPhY2OjnZOZkIIIYSbCgwKpazjzeyIup3ghZN53zKSb7/cyMjOWUy7siPRQb5apygaWOfOndm0aZPWadS+sWvevDlFRUXA2c+KPU1RFK97VqwQQghxLm17DcbWfR0xfxxGv3Q/87Zmo+xNZ1zXAHqNmoAijyUTDazWjd3ppg6o9UN0vYE8HFx7nrZWWufb2B8O7upYqXPX8LS1+nu+RqORiZe2ZEiHKJ7/fg1Pn/yAmM0n2brre0LHvEtMszYu3b4ruHudW61WVFXFbrfX2JOc3gl1enxtOBJTl/nPx263o6oqVqsVvf7UPRMdWTenPSvWG6SmppKamorNZmPPnj2kpaXh7++vdVpCCCE8hN1uQ7dvPsOKv8dXsVKqmvgt+FpoMaTWN8cVNTMYDMTExJCYmIiPT/WPe/NUFRUVZGZmkp2dXfWo1tLSUlJSUmr1rNg6NXaZmZk8++yzbN68meLi4jM+27Fjh6PTuR2z2UxISAhpaWmMGjVKHg6uMU9bK63zbewPB3d1rNS5a3jaWtWU79GMbZR89wAdrVsB2G1oi/7Kt2jWPrlBtu9u8zu7zsvLy8nMzCQpKQlf3/Ofz6iqKkVFRQQFBZ3xONT6xphMJjp27EhFRQXJycl8/PHHVXvY/m7Tpk3k5eUxePBgALZv386NN96IXq9nyZIlBAUFnTG+vLycgwcPkpiYWPXdzGYzkZGRtWrs6vTkieuvv57WrVszffp0r9+jJQ8Hdx+etlZa59tYHw7eULFS567haWt1rnyT2nXH/vgfrP7+TTpse4W2lbup+O4yPuv5LTeNvNhpjyVrrHVus9lQFAWdTlfjntDTh0dPj6+N2sScfqSY1Wrlkksu4ccff2TMmDFnjduyZQu7du1i6NChAMydO5ebb76ZRx99tNp5dTodiqKcsVaOrFmdGrtt27axfPly2a0shBBCnINOr6fPmMnkXHAN+768j0NF8NyfZXy1bzkvj+5Mz2ZyU3+nqiip/n27HSrLgeCaxwIoOtCbar1ZvV5PcnIy+/fvP+szm83GM888g8ViYf78+bz66qu89dZbGI1G/vzzT3744Ydab6e26tTYDR8+nFWrVnHBBRc4Ox8hhBDCq0THNyfqkV84viWTyLl72ZdTzH0fzOONhGV0ufklAoPDtE7RO7xY/T0EdUBA0iVwy/f/e/OVVmAtrX6eZhfBuJ9rvdmysjKWL1/OM888c9Zner2eZ599ll27dvHSSy8BcM899xATE8M999xT6204ok6NnZ+fH8OHD2fo0KFn3bfu70+kEEIIIQQoOh3DuzWjb5tYXpy3k0Gb3+CC3LVkv76QjAH/puug67ROUTjoxIkTdOvWDYBBgwZx+eWXa5vQX+rU2LVo0YLJkyc7OxchhBDCq4X6+zDj2q5sa/IAx35/lDj1ODFL72Tdpq9pcdPbhEfHa52i53ryWLVv2+12SopLOOOSg0f3nXsepXanmZ0+x85ut2M2m2ufp4vVqbGbOnWqs/MQQgghGo1O/UdR1v0SVn3+GL2yZ5FsXsjJ9/qwtvuTJF9xj9zYuC58Aqp/324Hg612Y/8e4yRBQUFn3UHElerU2M2YMaPa900mEwkJCVx66aWEhobWJy8hhBDCq/kFBtP33g/YuzEF3dwHaWk7QK+NT/DpwWNcevOTJIZ7910nGouBAwfy8ssv06tXL15++WWXb69Ojd2GDRv44Ycf6NOnDwkJCRw5coTVq1dzxRVXcOzYMW6//Xa+//57Bg0a5Ox8hRBCCK/SuvsArB1Xs/KrZ4ne/z0vZ3Xn5TeWMnloG269sDl6Xe3uvSYaVnZ2dq3GRUREsGbNmqrXru6N6rSvt7Kyku+++46lS5eSlpbG0qVL+f7771EUhT///JPU1FQmTZrk7FyFEEIIr2T0MdFv3Avo7ltJl+ZxlFltvPDLdn6bkULG1lVapyc8SJ0au/T0dEaMGHHGe8OGDWPBggUAjB07ttr7uQghhBDi3Jo3CeWrO/vy0jWdudX3D0aWz6PZtyNY+Z8HKS9tuPO0hOO2bt1Kt27dzvhzyy23NHgedToU26FDB1588UWeeOIJDAYDNpuNl156ifbt2wOnHjkm59gJIYQQjtPpFG7o3ZS8hAfY8OVuepQspd+xmWS+ko558Kt0vPAyrVMU1ejcuTObNm3SOo267bGbOXMmc+bMITw8nFatWhEWFsacOXP4/PPPATh+/DhvvvmmM/MUQgghGpXIuGb0ePRnNvR7l1zCSFSP0TE9hTVv3Yj5ZK7W6bmFOjzu3u3V9zvVaY9dmzZtWLduHQcPHuT48ePExMTQrFmzqs979+5N796965WYEEIIIaDHsJsp7D2C1V9Mos+JOfQ+OZcV7x9hY+JkRnhhY1MbRqMRRVHIzc0lKioKRTn3BSZ2u52KigrKy8sdelZsbWPqMv+5qKpKbm5u1bNi66JOjd1p0dHR6PV6VFXl8OHDADRt2rQ+UwohhBDiH0LCIunzwGfsWDUfvwWP8u+ya9m2R8/hLzfx/NWdiQv10zrFBqXX66vuynHw4MHzjlVVlbKyMvz8/M7bANY1pi7zn4+iKCQkJKDX6+sUX6fGbuvWrdxyyy1s2bKlKgkAHx8fSkvP8ew1IYQQQtRLh77DsfS8lIGL9rHzjwx+353LV69P4qIOTel17aPoDPXaX+NRAgMDad26NVar9bzjrFYrS5cuZcCAAbXeC+ZITF3mPx+j0Vjnpg7q2Njdc889jBo1ipUrVxIbG0tWVhbPPPMMLVu2rHMiQgghhKiZyWhk4qWtCDy5hy055TyQ/zU+u2zsfulHTKNTSWqfrHWKDUav19fYBOn1eiorK/H19a114+VITF3md6U6HQzevn07zzzzDL6+vgD4+vry/PPP89xzzzk1ufrIzMykR48e+Pr6UllZqXU6QgghhFPF+sMbd49iY4fHKFb9aFu5i7hZQ1n10STKy0q0Tk9opE6NXWhoKAUFBQDEx8ezefNmjh8/3qDPQqtJVFQUv//+O3379tU6FSGEEMIldHo9fa5/nJI7V7DR/wJ8FBt9j3xMziu92LHyV63TExqoU2N3xx138McffwAwceJE+vfvT+fOnbnzzjudmlx9+Pr6yr30hBBCNApNElrS7ZFf2NDnTfIIpan9KEnzx/HcN8soLDv/OWjCu9SpsZsyZQpXX301AHfeeSdbt25lxYoVvPLKK3VOZOrUqXTo0AGdTsesWbPO+Cw3N5fLLrsMf39/2rZty6JFi+q8HSGEEMIbKTodPUbcinHietaEX8EblaP5eIOZwa//wS9bsrzynm/ibA5dPNGhQ4cax+zYsaNOibRu3Zq33nqLp59++qzPJkyYQFxcHHl5eSxYsIAxY8aQkZGBxWLhhhtuOGNsYGAgc+fOrVMOQgghhKcLCYuk94NfoGbksejHbezPLWHmV18SN38hsWPfJSaxldYpChdyqLE7cOAATZs25cYbb2TAgAFOuV/LaTfddBMAL7zwwhnvFxcXM2fOHA4ePIi/vz9XXXUVr7/+Oj///DO33HILS5Ysqfe2LRYLFoul6rXZbK76uabLqP/u9NjaxDgytrHztLXSOl9Xb9/Z89d3vvrE1yVW6tw1PG2ttM63Ntvv0TSEn+7rxwdLMrhs1eO0Lz1MyUcXsrLtg3S/ehL689waRercverckbkV1YF9s0VFRXz//fd8+eWX7Nu3jzFjxnDjjTfSpUuXOiVanYEDB3LPPfdU7YnbuHEjw4YNIycnp2rMAw88gL+/Py+//PI55ykvL+fyyy9n/fr19OjRg2nTptG/f/9qx06bNo3p06ef9X5aWhr+/v71/EZCCCGEtspPHqXDoU/orO4BYAct2drsVnzD5aECnqC0tJSUlBQKCwsJDg4+71iH9tgFBQUxbtw4xo0bx/Hjx5k1axZ33XUXJSUlfP3117U6VOuo4uLis75EcHBw1VW55+Lr68vChQtrtY0nnniCSZMmVb02m80kJiYCMGTIEIduaJienl6rGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vnWZft2222s/PEtOu18gw5KBq0PTmVtxY10vuFZfP0D6z2/s/N1Vrw31PnfjyTWpM4PNTOZTPj5+eHr60t5eTl2u72uU51XYGDgWV/IbDYTGBh4jgjHmUwmgoODz/gjhBBCeBOdXk/y6EkU3baUDf4XYVRsXJD1Ga+mpvJnxgmt0xNO4tChWIvFwk8//cQXX3zBxo0bueqqq0hJSXHqveL+eSi2uLiYiIgIDh06RExMDAADBgzgjjvu4JZbbnHadgFSU1NJTU3FZrOxZ88eORQrhBDCa1mOrMeUs4GJlnsAhd5RdkY1tRHo47zz54VzOHIo1qHGLjQ0lJiYGMaOHcuQIUMwVHPiZe/evR3PmFO7Mm02G0OHDuXOO+9kzJgx+Pj4oNPpGDNmDOHh4bz55pukp6czfvx4MjIyCAsLq9O2amI2mwkJCSEtLY1Ro0Z57K5bb+Fpa6V1vnIo1rWxUueu4WlrpXW+ztp+UXklry/cy5drMglSi/nW93kKut5DxyHjWLhokdS5m9S52WwmMjLS+efYhYaGYrFY+PTTT5k5c+ZZ98RRFIX9+/c7njGn7oc3c+ZMAJYtW8Ytt9zC4sWLGThwIO+99x7jxo0jIiKChIQEvvnmG5c1df9kNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+/C0tdI63/puP9xo5Pmru3BNz0S2f/kEbSyHYfOTbN31LZaEFKlzN6lzR+Z1qLE7ePCgo7nU2qeffsqnn35a7WdRUVHMmzfPZds+H0++PNpbeNpaaZ2v3O7EtbFS567haWuldb7O3n7n2EDaPvAKf84OpefBj+hs2UCrfdtY88UBul/3JEYfU73mlzqvH5fd7sTbyTl2QgghGrvywmzaHPiU7uqpBw7spSnrE2/DL7KFxpk1Xi47x66xkHPs3IunrZXW+co5dq6NlTp3DU9bK63zdfX2KywWfv1oGoMLviKUYr61DWBLzxd5eHArAk0OHexzSr6Nvc5ddo5dY+TJx+S9jaetldb5yjl2ro2VOncNT1srrfN16Xldzftj6fUgf37zFC9kj+TkqsOk78zh+ctbc2nnut3YWOq8bhyZt873sRNCCCGEdwuPiuWChz7nrdsGkxjuR1ZhGfZvxrHhlSvIPXZQ6/RENWSPXQ08+WRLb+Fpa6V1vnLxhGtjpc5dw9PWSut8G7rO+zUP5ZcJFzDr13Qu2boJQ4mdov/ry8r2D9HjqofQ6fUuzbex17lcPFFHcvGEEEIIcX7l+YfpfOgTOpABwDZasz3pVnzDEjTOzHvJxRP1JBdPuBdPWyut85WLJ1wbK3XuGp62Vlrnq3Wd2yor2fjD63TZ/TYBSjlWVc/auJvoPPZZfP0CnJ5vY69zuXjCiTz5ZEtv42lrpXW+cvGEa2Olzl3D09ZK63y1qnOj0Ui/lKc4fuQG9qbdT7fSP4k/+ivXfjCSZ65J5sJWkS7Jt7HWuVw8IYQQQgiXa5LQkm6P/cqGfu/yks8EdufbuPGj1Uz+ej0n87K1Tq9Rkj12NfDkky29haetldb5ysUTro2VOncNT1srrfN1tzrvPOgGXrigksiFe/liTSYBW2bCzu9Z3eVRul92D5U2W73ybex1LhdP1JFcPCGEEELUz0GzysUZL9KN3QBsVDqwt/k4TCGxGmfmueTiiXqSiyfci6etldb5an1SdUPP19hPqvYWnrZWWufr7nVurbCw6dt/033/f/BTKrCoRn4LuJIBd71KQEBQg+bjDXUuF084kSefbOltPG2ttM5XLp5wbazUuWt42lppna+71rnRaOSCcS9wdP9NnPhmAl3K13Nl6XccfHsNR0e+S8fkgQ2aT11j3aXO5eIJIYQQQmguvkV7Oj+2kNXdX+aEGkyC7SiPfLeDJ77fSmGpZ5xP6Wlkj50QQgghXEbR6egx8nbmlAVRWpLHzr3N2LnmMOk7jvPKAAMDLxqAopP9TM4ijV0NPPkqGm/haWuldb7udrWcq+dr7FfLeQtPWyut8/XEOjf6BXLtlVfT8mgRT8/ZgfHELi5a9BRb/uxB2LVvENusnUvy8YY6l6ti60iuihVCCCFcr9IO5owVpBR9jEmppEz14bfAa1BbDkWnl31O/yRXxdaTXBXrXjxtrbTO192vlnP2fI39ajlv4WlrpXW+3lLnmXu3UPrjQ3Sq2AJAhq45FcNfo1X3AU7LxxvqXK6KdSJPvorG23jaWmmdr7teLeeq+Rrr1XLextPWSut8Pb3OW3ToidruD9bMSaXN5pdoaT+A/ZfRrFh/I91ufZMgX+N54+uzbWfHyFWxQgghhGj0FJ2O3lc/gP2+NawNGYpOUVl8RGHI60uZv00eS+Yo2WMnhBBCCM2FR8cT/vBstqyYz5IVBrLzy7nni/Xc3rKQ2wb31Do9jyF77IQQQgjhNrpcOJx5D1/ChEta4q+zcmPmdEI/HYB93wJslZVap+f2pLETQgghhFvxNep5dFg75t7egQpTOAFKOVcXfUHmqxexb/NyrdNza3IotgaefN8bb+Fpa6V1vp54f6v6zNfY72/lLTxtrbTOt7HUeWLT5tgnL+bPH9+m0843aG3bh+37y1m54jra3/AiAUEhLtm2u9W53MeujuQ+dkIIIYR7qigpICYjjf62VQBkqRF8nTCN5tE1N3eeTu5jV09yHzv34mlrpXW+3nJ/q4aI94b7W3kLT1srrfNtzHW+e+Vcmiyfwu7KGG61PsbQDk14+rJ2xAT7Om3b7lbnch87J/Lk+954G09bK63z9fT7WzVkvNS5+/C0tdI638ZY590vvY6yviPYtmgLhlWFLNiRw/aMQ7zaPoPe105Gb6i+tfHkOpf72AkhhBDCa/kFBPHAlRcy98GL6N40lAdtn9Nv14tkvNSPjC1/ap2epqSxE0IIIYRHahcTzHf3XECzLhdRpPrRpnIPzb67jFXv30NJUaHW6WlCGjshhBBCeCydTqHvdY9iuXs16wMHYlDs9D3+FUWv9WTTollap9fgpLETQgghhMeLjGtGz0fmsHnAh2QRRQy5dFt2N9/83/MUVmidXcORxk4IIYQQXqProOsIeWQ9q2JuJFsNY8aRDrywSc8Xqw9js3v/jUDkqtgaePINDb2Fp62V1vk2lhuXOiPeG25c6i08ba20zlfq/PyMJn963v4Wuw4/SbN5B9hy1Mz0uTsJWfE8nYbeTvNOfZy2PblBsRuTGxQLIYQQ3sWuworjCrbM1bxheJdKVUe63whKW12FwWjSOr1akRsU15PcoNi9eNpaaZ1vY75xqdyg2HN52lppna/UueOxPTq3Jee7R+lZshSALKLIvug5Ol18bb22Jzco9jCefENDb+Npa6V1vo3xxqVyg2LP52lrpXW+Uue1F5PYksRHf2bTolk0WTaFWHKJXX4PGzZ9RWLK20TFJdVre3KDYiGEEEKIBtbt0huqLq6oVHX0KP6D7P+7hs/+POAVF1dIYyeEEEKIRsU/MIS+97zHodG/sNvQlhetN/DMTzu45v0/2XHMrHV69SKHYoUQQgjRKLXscgG2jqsYseYwW+fvZnNmAd++N4XB8RVURg3SOr06kcZOCCGEEI2WXq/jln5JDOsYw2s/rGDy/lkEHLdwLDudrSGV9BiSonWKDpFDsUIIIYRo9JoE+zJj3KXsHfA22UQSp+TRY8W9bHj1CnKPHdQ6vVqTxk4IIYQQ4i/dLr0Bv4mrmW8a+dfFFUvx/b++rP76JWyVlVqnVyNp7IQQQggh/sY/MARLhxvIuOon9hjaEKSU0WPHDB5I/Y7txwq1Tu+8pLETQgghhKhGi059afn4Sla3f5L3GMO8rECufHcFL87bSWm5Rev0qiWNnRBCCCHEOegNBvpc/y9umPwWl3WOxWZXWbHsd06+3JlNi2Zpnd5Z5KpYIYQQQogaNAn2JfXGHozedRzlm3eItx8nftndrN/wBRVxo7VOr4o0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3D09ZK63ylzl0be76Y/i3DKX3gC/78+hl6Z31Fz5JlvLHzYpIO5dOtWbjD+TmST20oqqp6/vMznCQ1NZXU1FRsNht79uwhLS0Nf39/rdMSQgghhBsqzz/MycxtzFSv4NEuNvQuOsGttLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tIjKWigu/nLeTay1z3d8FsNhMZGVmrxk4OxdbAaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlefeKlz9+Fpa6V1vlLnro2tbUyIj2t/F47MK1fFCiGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIRdPVOP0hcKlpaWYzWaHrqKpbYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tudW42m4H/9SfnI7c7qcaRI0dITEzUOg0hhBBCiCqZmZkkJCScd4w0dtWw2+0cO3aMQYMGsW7dOodie/Xqxdq1a2scZzabSUxMJDMzs8Z70ojar6u70DpfV2/f2fPXd776xNclVurcNbSuG0dpna/UuWtj3anOVVWlqKiIuLg4dLrzn0Unh2KrodPpSEhIwGAwOPxL0uv1DsUEBwfL/+HXgqPrqjWt83X19p09f33nq098XWKlzl1D67pxlNb5Sp27Ntbd6jwkJKRW4+TiifOYMGFCg8SImnnaumqdr6u37+z56ztffeKlzt2Hp62r1vlKnbs2Vuvfb13JoViNnH5sWW0eDyKE8ExS50J4P3erc9ljpxGTycTUqVMxmUxapyKEcBGpcyG8n7vVueyxE0IIIYTwErLHTgghhBDCS0hjJ4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF7CoHUCrpSbm8v48eNZvHgxiYmJvPfee1x66aU1xtntdo4dO0ZQUBCKojRApkIIIYQQ1VNVlaKiIuLi4tDpzr9PzqsbuwkTJhAXF0deXh4LFixgzJgxZGRkEBYWdt64Y8eOkZiY2EBZCiGEEELULDMzk4SEhPOOUVRVVRsonwZVXFxMREQEBw8eJDY2FoABAwZwxx13cMstt5w3trCwkNDQUD766COuuuoqjEZjrbZptVpZsGABQ4cOrTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6V1vlLnro11tzo3m80kJiZSUFBASEjIecd67R67vXv3EhISUtXUAXTt2pXt27efNdZisWCxWKpeFxUVAeDv74+fn1+tf1EGg6HWMY6Mbew8ba20ztfV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudVqBajV6WFeu8du2bJl3Hrrrezbt6/qvaeeeoqCggJSU1PPGDtt2jSmT59+1hxpaWn4+/u7PFchhBBCiHMpLS0lJSWFwsJCgoODzzvWa/fYBQYGYjabz3jPbDYTGBh41tgnnniCSZMmnTHu9Dl2Q4YMcWjXbXp6eq1iHBnb2HnaWmmdr6u37+z56ztffeLrEit17hqetlZa5yt17tpYd6vzf/Yz5+O1jV3r1q0pLCwkOzubmJgYADZv3swdd9xx1liTyYTJZKp2HqPR6PAvypGYuszfWHnaWmmdr6u37+z56ztffeKlzt2Hp62V1vlKnbs21l3q3JF5vfY+doGBgVx55ZVMnTqVsrIyfvrpJ7Zt28YVV1yhdWpCCCGEEC7htXvsAN577z3GjRtHREQECQkJfPPNNzXe6qShPP3TDpJ3fcf6wz+gmoLAFITONwS9XzAGvxAMwVGQ0JsgXwNBvkaCfBSP+q9YIYQQQjQ8r27soqKimDdvntZpVGvhzhzurVhJsxM51X5+wN6ESyreqHr9s8+TtFSyKFYCKNUFUK4PwmIIxGoMpsy3CataPkiwr5EQPyNJJZsJNKr4BUfiHxJBUFg0AYEhKDXc1FAIIYQQns2rGzt39siQ1qxZPoKjwXp01mJ0FcUYrEUYK4sx2UrIJoJok4liSyWlFTaCKcVfseCPBez5YAesQBkcKojm5sOXVc39s88UOukOnrE9q6qnSAnguK4JT0a+RaifkTB/Hy4tmUu4rhidfwTGoEh8giPxD4kmKLwJweHRmHzlqmAhhBDCU0hjp5HRPeKZl30pvUaOrPYQaxtgzV8/V9rsFJ9M5qg5j7Kik5QX5WMtOYm1pBB7WQHFNgPjQ5Mwl1kpLLNizmrKQauNQHsRwWoxPkolRsVGOGbMlX5sPFxQtZ1bfWbT+R9N4GkFagA91P8SHuhDRICJ2yq+IkY5gc0vEiUgAn1QNKbgaPzCmhAcGUdYTHN8DLJXUAghhNCKNHYewKDXERrZhNDIJuccM/iMVz9X/aTa7ZSVlVBUkEdJQQ7FpeX8n39bCkorOFlqJW/fSNYUH8JoOYmvtRB/WyFBdjPBajEn1UBKKmyU5JeRmV9GC59lp/YEFpy9/ULVnzaWjwj1NxIVaOJ++5fE605Q6RcJAdHog2PwDYslICKesCZNCY2MkefwCiGEEE4mjZ2XU3Q6/AKC8AsIgvjmAHT++4CL/11tnN1mI9xcyGKbiRPFFk6UVFC49z5WFhxEKc3DUJaPqeIE/pUFBNsKyFdP3R+woNRKQamVVj6r6Kg7BNXceses+tO28r9EB5toEuzLLZXfEqM3owbGYgiNwzc8nuDopkTGNcc/8PyPThFCCCHE/0hjJ6ql0+sJCQsnBGgeGXDqzY53n3N8hM3OhvJK8oot5BZZKN49mVUFB6HoOPqyXEyWEwRWnCDUnk+eGkSFzc6Rk2UcOVnGcz4L6aA7BNVcR3KUKG4P/S96i441tp0MqFxBhK+Cf1QzQmNbEBWXhNGn+nsQCiGEEI2NNHbCKXR6HeEBPoQH+NCmSRC0GnfOsYEVVlaUVpJdWE6OuZz8nbey8uR+DKXZ+JXnEGTNI8J2gkCljGK7iV3ZRYCO7Wsyucknlfa6zKq57KpCjhLGCWMs+QEtWd3xaRLD/EgI86eZXxlNomPQG+SvuRBCiMZB/sUTDc7Hx0i8j5H4UL9Tb3R+uNpx5oITGHJz+LAihPQV64hIbMWJPclsLwkjxJpDtD0PH6WSaPKJtuazO7+QtxftrYr/1edxopSjZOsiOekTS2lAIvawFvhEtyGsaQdiW3XF16hviK8shBBCNAhp7GpgtVodHlubGEfGNlZ+AcE0DQgm1mqldJ/KkIuTMA7+sOpzu81Gdu4x8o9lUHx8PydKK7neEE/myTKOniynSclJjIqNePU48ZbjYNkE+UAG7FsRR7uKV4kN8aVZuB/jbd8RHBiAKaolIYntiU1qj4/Jt055a/27dfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnXuyNyKqqqqyzLxMKmpqaSmpmKz2dizZw9paWn4+8t93DyV3W7HWnoSe0kuhtI8fC05hFRkE2nLYa89lgcrJvw1UmWL6Q6ClbKqWKuq54jShGx9HIdM7dgWPowYP5VoPzDJTj4hhBANqLS0lJSUFAoLCwkODj7vWGnsqmE2mwkJCSEtLY1Ro0bV+lFeVquV9PR0hgwZUmOMI2MbO1eslaqq5JdaOXSilMO5hcRveRcf80FCyw4TW3mUAKW8auwiW3dutz5a9Xq+3xQspnBKg1uhi+lIaPPuxLfqisnXz2X5OsLV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudlsJjIyslaNnRyKrYHRaHT4F+VITF3mb6ycvVYxPj7EhAbQp2UU9H2z6n3Vbif76H5y92+h5OgOsiwh9LaEsy+3GEryaKfuh/L9UL7u1JW8W/7aw6dPYHv4EA53vBtzgUKvcjtx/tr9bl39d8vZ89d3vvrES527D09bK63zlTp3bay71Lkj80pjJ8Q/KDodMYmtiElsBVxDX+Cmvz47UWBmx85ZFB3ZATk7CCzcTWLFfoKVEprbD7EkO5MZR/YCer7Y+StLfB8hy9Sc4vDOmJr1JK7DhTRJaCnP7RVCCOES0tgJ4YCI0GAi+o0ARlS9p9rtZB/JIHvvevxKAhlR2IT1Gdk0rcgkkgIiLRshayNkfQar4AQhHPFrx+GkawnsehVdEkKICJR78QkhhKg/aeyEqCdFpyOmaWtimramGzDaamXevKNcMvA29mT04GTGepSsjUQUbqdZ5UEilEIiylbz/ZZ2zNwYD0C/4HweNX5DRWxPwjsMpHmnfnLjZSGEEA6Txk4IF/HzD6BNj4HQY2DVe+WlxezbvoqCfasxWbvQMjeAjNwSEkq20MO4FPYthX1vUDrHxG7f9hRFJxPY+iJadB9EQJA8Xk0IIcT5SWMnRAPy9Q+kXa/B0GswfYEngaJyK/t2RLJymy9+2WtpXrqFEKWETpZNkLkJMj/ijt8e5XjMQHolhXNhTCXdm0UQHh2v7ZcRQgjhdqSxE0JjQb5GuvfoAz36AKduvHxwz0aOb1uCLnMV8UWbWWtrTeHRQrYeLSTM8A2XGn4kQ9+CnOgLCGw/lNa9BuPrF6DxNxFCCKE1aeyEcDM6vZ6k9skktU+ueu/XgjLWHsxn3cGTtNlRDBXQ0raflln7IesLyhcZ2eLXhdKE/gRccDdyd0ohhGicpLETwgPEhfoxqls8o7rFw1XfkZedycG181D3/U6zwjVEK/l0KV9Pwd5d9NiWjL9Rz++lW7k6Oose3ZMJiWii9VcQQgjRAKSxE8IDRcYkEnnF3cDdqHY7h3ZvJGvjPDJzTmI6YaDYauenLcd4zDSRgGX5bDd1pqj5cJIuHENM09Zapy+EEMJFpLETwsMpOh3N2vekWfue9AVGlFn4YPZv6EOjqdgUiMGeR8eKzbB7M+x+mX36luQlDKFJ3+tJatcdRVG0/gpCCCGcRBq7GlitVofH1ibGkbGNnaetldb56lQbrUNUhgzugnHEOg4d3MnRVd8RejiddhU7aGXLoNWhDD7N2M+44HsZ0j6aIe2i6J4Ygk6vr3F+Z3+/+s5Xn/i6xEqdu4anrZXW+bp6+1Ln7lXnjsytqKqcZn1aamoqqamp2Gw29uzZQ1paGv7+/lqnJYTTVJSZUbI3kWhez9vlI1lh7whAD2UP7/q8y0b/CymJuQBTaKzGmQohhDittLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfOt7fZLLJUs23eChTtz6LXrZW5S5ld9ttvQhpMtr6LFwJsJizyzyXP296vvfPWJr0us1LlreNpaaZ2vq7cvde5edW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfOtafuhRiNXdEvgim4JlJd+zPrFs9Bv+4ZOpWtpW7kHds/Auus1tgf0Jm/Q6/Tv1haTQV/r+Z2dryvjpc7dh6etldb5unr7UufuUeeOzCuNnRACX/9Ael52B1x2B3nZmez7fSYRGT/Q2raPqJI9XP1tBkFzM7msSxwpHeQZtkII4a6ksRNCnCEyJpHIlCnAFA7tXM/qzVuJOeBPVmE5367Zz8ObH0TRRbFRyab78PEYfaTRE0IIdyGNnRDinE7fRmW0XWX1/hOsXvoroYeKiFYLYMNj5G74N/uaXU/rEfcTGZOodbpCCNHo6bROQAjh/vQ6hQtaRfLwbTdz4o51/Ox/DXmEEsVJ+h36gOD3u7Hu9WvZuW2D1qkKIUSjJo2dEMIhkTGJ2Ntehd8j21jXcwa7DW3xUSpJNqcz6ctVXP3eCuZsOkpFpV3rVIUQotGRQ7FCiDrxMfmSfMXdcMXd7NmwhH0rf2LfsSSshwvYeHgT2YHP061tK7pfOQEfk6/W6QohRKMgjZ0Qot7a9BhImx4D6VVk4as1h1mwcj3jrd9g2l5J1vb3yew8ge5X3CcXWgghhIvJoVghhNNEBZl48NLWfDvpcja2fZg8Qokll95bp5H7706s+e5NrBUWrdMUQgiv5fGN3UsvvYSiKKxatarqvfHjx2MymQgMDCQwMJCOHTtqmKEQjY+vfyB9U6YQ+Nh2VrWeTB6hxKk59N46lZx/d2Zh+jwqbXIOnhBCOJtHN3ZHjx4lLS2NmJiYsz6bPn06xcXFFBcXs337dg2yE0L4+gfS98ZnCHh0G6taT+IEIYTZC/jXogIuff0Pvl1/RBo8IYRwIo9u7CZPnsz06dMxmeS8HSHcmV9AEH1vnIrfI1tZ1ONdCIji0IlSHpm9mbmv3YHl2FatUxRCCK/gsRdPLFmyhLy8PK6++moefvjhsz5/5ZVXeOWVV2jbti0vvfQSAwYMOOdcFosFi+V/5/2Yzeaqn61Wa61zOj22NjGOjG3sPG2ttM7X1duvz/xGkz/DR17NgMGVfLkmk61L5zDG+hMchw1vrCDqmleJadamwfKpS6zUuWt42lppna8717kr5mvsde7I3IqqqqrLMnGRyspKevXqxeeff06nTp1ISkpi1qxZ9O3bF4CNGzeSlJREQEAAs2fP5r777mPbtm0kJlZ/Z/xp06Yxffr0s95PS0vD39/fpd9FiMas0lJKQMaPDC5fgEGxU64aWRhwOZYWl2Ew+midnhBCuIXS0lJSUlIoLCwkODj4vGPdsrEbOnQoS5curfazKVOmEBQUxL59+3jnnXcAzmrs/mn48OFcd9113HbbbdV+Xt0eu8TERNLS0hg1ahRGo7FWeVutVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/FarlZ+/+YSOx2bRqWILAMeUaLL6PE3nS65H0Z3/jJH65FOXWKlz1/C0tdI6X0+s8/rM19jr3Gw2ExkZWavGzi0PxS5YsOC8n1911VUsXbqU2bNnA5Cbm8tll13Gq6++yq233nrWeF0N/zCYTKZznqdnNBod/kU5ElOX+RsrT1srrfN19fadOb9vWAJtxi5k/aIvSFjzAnFqDvaV07nvaAuevLIbLaICXZqP1Ln78LS10jpfT6pzZ8zXWOvckXk98uKJTz/9lB07drBp0yY2bdpEXFwcn3/+Oddffz0A3333HSUlJVRWVvL111+zfPlyBg0apHHWQojzUXQ6eo68ncDJG1gZN44XbONZuLeQYW8u5eV52ykpKtA6RSGEcHtuuceuJqGhoWe81uv1hIeHV50P98Ybb3DbbbehKApt27blhx9+ICkpqeETFUI4LCAolH53vU1MXgllP29nye5czCs+omTNj+wf9DqdB1ytdYpCCOG2PLKx+6eDBw+e8Xr58uXaJCKEcJrmkQF8Mr4Xi3YcJ+67Z4i25xP9+3hWb51Ll/Fv4hcQpHWKQgjhdjzyUKwQonFQFIXBHWNoPnkJqyOvAaBP7rfkvNaXvZuWaZucEEK4IWnshBBuzy8giD73f8KWiz8mlzCa2Y+Q9MMoVn7yLyqtFVqnJ4QQbkMaOyGEx+hyybUY71/FhsABGBUbfQ7+H1P+8w25ZVpnJoQQ7sErzrETQjQeoZExdJ80h3Vz/48/12/iu+xofHJUTE2PcFO/JBRF0TpFIYTQTK0au2+++aZWk+n1ekaPHl2vhIQQoiaKTkfylfcSO6CMFV9vZPWBk3zy80LaLf+J5rekEhnTVOsUhRBCE7Vq7FJSUhgwYAA1PaRi7dq10tgJIRpMfKgfn41P5l8f/8qN2R/Rq3QXJz+4kK2XvEXni6/ROj0hhGhwtWrs/Pz8+P3332scFxYWVu+EhBDCETqdwiXxEHrhm2T8dC8tbQcI/v02Vh3eRJ8bp9X4SDIhhPAmtWrs9u/fX6vJ9uzZU69k3JHVanV4bG1iHBnb2HnaWmmdr6u37+z56zvf6bj41l2xT1zC6v/eS5+CefTNeIt1r2+h9e0f4R8Y4rRtS527hqetldb5NtY6r0u8N9S5I3Mrak3HVxuR1NRUUlNTsdls7Nmzh7S0tKqnWQghPINqV7EfWMQVhV9iVGzspSnrWj2Cf1Co1qkJIUSdlJaWkpKSQmFhIcHBwecd63BjN2LEiGqvOjOZTCQkJHD11Vd7/HNZzWYzISEhpKWlMWrUqFo/fNdqtZKens6QIUNqjHFkbGPnaWuldb6u3r6z56/vfOeK37X6N+IW3schexR3657l1Rt6ckHLiHpvW+rcNTxtrbTOV+rctbHuVudms5nIyMhaNXYO3+4kOTmZzz77jHHjxpGQkMCRI0f4/PPPueGGG1AUhbFjx/L444/z8MMP1/kLuBOj0ejwL8qRmLrM31h52lppna+rt+/s+es73z/jO190OdnN2vH299vJzYJbZ67nyRFtuf2iFmeddyd17j48ba20zrex17mrY92lzh2Z1+HG7tdff2XhwoW0bt266r2bb76ZsWPHsm7dOkaPHs2YMWO8prETQniumMRWfHBfc576YRvfbTiCdcE01q8ro9M9M/H1D9Q6PSGEcDqHLxfLyMggPj7+jPdiY2PZt28fAD169CA3N9c52QkhRD35GvW8OqYLr14axB36eSSbF3LktQFkH96rdWpCCOF0Djd2Q4cOZcyYMaxatYojR46watUqbrjhBoYPHw7AmjVraNasmdMTFUKIulIUhWuHDGDP0M85STCtbBmY/juI3WsXaJ2aEEI4lcON3ccff0zbtm0ZO3YsrVu3JiUlhbZt2/LRRx8BEB8fz5w5c5yeqBBC1FfHCy+j/NaF7NO3JAwzrX8bh+XIeq3TEkIIp3G4sQsMDOT111/nwIEDlJWVsX//fl577TUCA0+dr5KQkEDLli2dnqgQQjhDbLO2xE/6g43+F2BSrIzOeZt1P7ypdVpCCOEUdbol+y+//MKtt97K5ZdfDpx6lFh6erpTExNCCFfxCwii88NzWB12OXpF5etN+byRvqfGxyYKIYS7c7ixmzFjBo8//jjJycksX74cgKCgIKZMmeL05IQQwlUMRh+63/NfZoQ8w4/2i3hr0V6e/GEbNrs0d0IIz+VwY/fuu++Snp7OhAkTqm5U3LZtW/bulSvMhBCeRdHpaNuiFdOvaI+iwMI1W1j65jjKS4u1Tk0IIerE4fvY2Ww2QkJOPXfxdGNnNpurzrETQghPk9I7kSbBvjT59kq6m/ey8419xN07h5DwKK1TE0IIhzi8x+7qq6/mnnvuIS8vD4Di4mIeffRRRo8e7fTkhBCioQzvHIfP8Ocw409763ZOvjuI40cytE5LCCEc4vAeu1dffZXJkyfTrFkzysrKaNKkCePGjePFF190RX6as1qtDo+tTYwjYxs7T1srrfN19fadPX9956tP/D9j2yQP5qD/d5T/cCNJ9sNkfzSUjGtn0bRttzptT+u/C57E09ZK63ylzl0b62517sjcilqPy8Byc3OJjIysOiTr6VJTU0lNTcVms7Fnzx7S0tLw9/fXOi0hRAOzFOXRe98rJJFFoRrA/IRJ+Ea3rjlQCCFcoLS0lJSUFAoLCwkODj7v2Fo1dmvWrKnVhnv37l27DN2c2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7x54s9mZdN/sfX0q5yFzvVJPLGzqdvy0ipcxfxtLXSOl+pc9fGuludm81mIiMja9XY1epQ7PXXX1/1s6IoHDlyBEVRiIiI4MSJE6iqSkJCAvv3769f5m7IaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlef+Opio2MTCXxoAYvfv5snT4wk/4tN/OeWZC5oHurw9rT+u+BJPG2ttM5X6ty1se5S547MW6vG7sCBA1U/T58+ndLSUqZNm4afnx9lZWVMnz6dgIAAxzMVQgg35h8YQr+HvqTDlxtYtCuHO2eu4/+uitU6LSGEOCeHr4p95513eOGFF/Dz8wPAz8+P5557jrfeesvpyQkhhNZ8jXrev6knwzvGMFj9k35zB2PJXKd1WkIIUS2HG7uwsDAWLVp0xntLliwhNDTUWTkJIYRb8THoeDelO+Mid+OrWLkm9102zvtI67SEEOIsDt/u5K233uK6666jT58+JCYmcvjwYdauXcuXX37pivyEEMItGPQ6kh9MY807N9K7cD7JG55grd1Kr6sf1Do1IYSo4vAeu5EjR5KRkcFNN91EmzZtuPnmm9m3bx+XXXaZK/ITQgi3oTcY6HrvTBYaB6FTVHptfprVs1/VOi0hhKji8B47gMjISG655RZn5yKEEG5Pp9dT3GEcK49G0C9vNn22P8cqazl9U6ZonZoQQtRuj93fb3dyPikpKfVKRgghPIGiU+h5ZyorY28CYNeOzXywZJ/GWQkhRC332P3000/Mnj2bmu5lPG/ePKckJYQQ7k7R6eh75zv8+E03pm+KQZ2/G0ulysTB8oQKIYR2atXY9enTh/fee69W4xrK119/zZQpU8jKymLQoEF8+umnhIeHA1BWVsadd97JnDlzCAsL4+WXX2bs2LENlpsQonFQdDquuuFOjjbZxyu/7ebdhTtofXweI8Y+gKJz+BRmIYSot1o1dkuWLHFxGo7ZuXMnd999NwsXLqRr165MmjSJCRMm8NVXXwEwdepU8vPzOXr0KNu2bWPkyJH07NmTNm3aaJy5EMIbTbikFT46SFx4D8P3rmXlx/vpe/sbWqclhGiEPPI/KRcuXMiwYcNITk7GaDTy5JNP8t1331FSUgLA559/ztSpUwkODuaCCy7gyiuvZNasWRpnLYTwZnde3IrQdgMA6Hf0U1Z/+CCq3a5xVkKIxqZOV8W6g7+f76eqKlarlb1799KsWTOys7Pp3Llz1eddu3ZlzZo155zLYrFgsViqXpvN5qqfrVZrrXM6PbY2MY6Mbew8ba20ztfV23f2/PWdrz7xdYk9X0zP655g5Ww9/fbMoG/W5/z5sRU1doTH/N3VktZ14yit85U6d22su/177sjcilrTFRFuaMeOHfTr14/09HS6du3KI488QmpqKsuXLycxMZHmzZtTWVlZNf7DDz/kxx9/5Jdffql2vmnTpjF9+vSz3k9LS8Pf399l30MI4Z1sGYu4xjwTgN9MwylrNxZFp2iclRDCU5WWlpKSkkJhYSHBwcHnHeuWe+yGDh3K0qVLq/1sypQpTJkyhffff59x48Zx4sQJJk6cSFBQEPHx8QQGBmKz2SgtLa1qysxmM4GBgefc3hNPPMGkSZOqXpvNZhITEwEYMmQIRqOxVnlbrVbS09NrFePI2MbO09ZK63xdvX1nz1/f+eoTX5fY2sWMZOX3CfTb+QLDLPNZeiyMvne+jaJIc3cuWteNo7TOV+rctbHu9u/5348k1sThxq6srIxnnnmG2bNnk5+fj9ls5rfffmPnzp089NBDjk5XrQULFtQ4JiUlpeq+efv27eOdd94hISEBvV5PTEwMW7durbpKd/PmzXTs2PGcc5lMJkwmU7WfGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE++KOu93/WOsmq2n07YZvHukFQt/3cP0KztKc1cDrevGUVrnK3Xu2lh3+ffckXkdvnjivvvuIysri7lz56LX6wHo0qULH3zwgaNT1cuGDRuw2+0cPXqUu+++m8cff7wqn5tuuonnnnuOoqIiVq1axU8//VTrmywLIYSz9LzqQd6MfZW1tOezlYeY8uM27HaPO/tFCOFBHG7sfvnlFz7++GM6depU9V+esbGxZGVlOT2587n33nsJDg4mOTmZAQMGMHHixKrPnn32WUJCQoiNjWXMmDG89957tG3btkHzE0IIgM6xwbx0dUcUBdavWc7y9+7BbrNpnZYQwks5fCg2NDSU3NxcEhISqt47cOAAcXFxTk2sJqtXrz7nZ35+fnz55ZcNmI0QQpzbNd3j8VMs9J17H9F5Bax5x0zP+z9Hb3DL05yFEB7M4T12EydO5IorruDbb7/FZrMxd+5cxo4d67Tz64QQwhtd2asth3s9hU1V6F0wj41vXYe1wlJzoBBCOMDh/1ycMGEC0dHRfPzxxyQkJPD222/z8MMPyzlsQghRg+TL72K9zkiX1ZNJLlrExjevov0D3+LrF6B1akIIL1Gn4wBjxoxhzJgxzs5FCCG8Xs+Rt7LZ1492f9xP99I/2frmZbR8YA7+gSFapyaE8AIOH4p988032bx5M3DqPLfWrVvTrl07Vq5c6fTkhBDCG3UddAN7h35CqWqis2UjC997CHO5ZzxxQQjh3hxu7GbMmEFSUhIAkydP5qGHHuKJJ57gwQcfdHZuQgjhtTpdeAWHr/iKZXTn8fzLSflwFfklFVqnJYTwcA43dsXFxYSEhHDy5El27tzJvffey7hx49izZ48r8hNCCK/VLvlSwu+ag19AMNuOmrn+gz/Jzc3VOi0hhAdzuLFr1aoVs2bN4u2332bw4MHodDry8/Px8fFxRX5CCOHVOsaF8PXd/YgJ9mVo/pdY3ruIrEO7tU5LCOGhHL544v333+ehhx7Cx8eHjz76CID58+czbNgwpyfnDqzW2p/3cnpsbWIcGdvYedpaaZ2vq7fv7PnrO1994usS64o6bxZm4qtb2uHz8R/Eq8c5/skIDlz/LQmtOtc6L0+ndd04Sut8pc5dG+tu/547Mreiqqo83+YvqamppKamYrPZ2LNnD2lpafj7+2udlhCikagozid57wyac4wTajALkx7DN7yp1mkJITRWWlpKSkoKhYWFBAcHn3dsnRq7zZs3s2LFCk6cOMHfw5955hnHs3VDZrOZkJAQ0tLSGDVqVK0fvmu1WklPT2fIkCE1xjgytrHztLXSOl9Xb9/Z89d3vvrE1yXW1XWen5tF0cejaGXbTyEBHBn2CW2SB9Uq1pNpXTeO0jpfqXPXxrrbv+dms5nIyMhaNXYOH4p99913mTJlCiNHjuSHH37g6quv5pdffmHUqFF1TtidGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE+9Odd4krim+96ezK/Vy2lXuxHf+jWw5+Qo9R97qUH6eSuu6cZTW+UqduzbWXf49d2Rehy+eeO211/j9999JS0vDZDKRlpbG3LlzKSsrc3QqIYQQ1QgJi6TpQ7+x0f8CTIqVWSt28MEfGciZM0KImji8xy4/P58ePXoA4OPjQ0VFBf379+fyyy93enJCCNFY+QeG0GXSz3z51SfM3h4Hv+4iM7+U6Vd2xKB3+L/JhRCNhMP/79C2bVs2bdoEQLdu3Xj55Zd5++23iYqKcnZuQgjRqOkNBm68+U6eubwDigLzV29l2Rs3UWw+qXVqQgg35fAeu7fffhu73Q6cerzY/fffT1FREf/5z3+cnpwQQgi47aLmxIf6Ejx7NP2Kt5Px1k5Kb/ue6PjmWqcmhHAzDjd2ffv2rfq5Q4cO/P77705NSAghxNmGdYplT8WLnPjpFlra9nP8w0vZf+1XtOjUR+vUhBBuxOHGDuDw4cNs27aN4uLiM96/7rrrnJKUEEKIs7XpMZBjYQs49PlomtmPUDx7FFtPvEfni6/ROjUhhJtwuLGbMWMG06ZNo3PnzmfcvFdRFGnshBDCxeKat6Pw/iVs/+AaOlZsof3vt7M6L5M+oydqnZoQwg043Ni9+uqrrF27lo4dO7oiHyGEEDUICY/Cd9JvrHvvFpLN6URufp+XjP2ZfFk3jHLFrBCNmsP/DxAYGEjLli1dkYsQQohaMvn60/Ohb1jW9D5usz7KB39mMfY/q8guLNc6NSGEhmrV2OXk5FT9eeKJJ7jjjjvYvn37Ge/n5OS4OlchhBB/o+h09L/t3zxx40iCTAbWHTrJp28+xbalP2qdmhBCI7U6FBsTE4OiKGfc9TwtLe2MMYqiYLPZnJudG7BarQ6PrU2MI2MbO09bK63zdfX2nT1/feerT3xdYt2xzi9tG8kP9/Yl9YuveaTov+gWfcyfe++gZ8pz6Ax1ukauwWldN47SOl+pc9fGuludOzK3osozaqqkpqaSmpqKzWZjz549pKWlnXGBiBBCuLNKawWhu7/kUutiANYrnTnQ9m6Mfud/aLgQwr2VlpaSkpJCYWEhwcHnr+daN3aqqvLhhx+ybds2unXrxm233eaUZN2R2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7xdYn1hDrf8PMHdNn8LH5KBTmEkzvsA9okD2qw7deF1nXjKK3zlTp3bay71bnZbCYyMrJWjV2t99FPnjyZr776iv79+/PUU0+xf/9+nn/++Xon6+6MRqPDvyhHYuoyf2PlaWuldb6u3r6z56/vfPWJ97Y673PNAxxo1xf9t+Noaj9K2PyxrDvwCH3HPoGiKA2WR11oXTeO0jpfqXPXxrpLnTsyb62viv3mm29YunQp33zzDYsXL2bWrFl1Sk4IIYTrNe/Qi/CHVrA+6BKMio1ft2dz35cbMJd7xjlsQoi6qXVjZzabad26NQDt2rUjPz/fZUkJIYSov8DgMHo8/D0Le6TyFcP4dVs2I95cxoptGVqnJoRwkVofirXZbKxdu7bqyth/vgbo3bu38zMUQghRZ4pOx+Arb+Lb7gXc/9UGTuafIGn2HaxZ2Ie2494hJCxS6xSFEE5U68YuKirqjEeGhYeHn/FaURT279/v3OyEEEI4RdfEUOZPHMC8We8Rf+AE8QXzyHlrFZsuepFug8dqnZ4Qwklq3dgdPHjQhWkIIYRwtQCTgTHjHmTn6jYEzn+YRPUY0cvvYd2Wb2l587uERcVqnaIQop7koYJCCNHItO8znKhH17Iq9kZsqkKyeSFqam/Wz/sEubWpEJ5NGjshhGiEfP0D6Xv3e2SMmsNBXVPCMZO18ivu/WIDOUXyvFkhPJU0dkII0Yi16XExsY+tZkXTe3jONp7527MZ8vpSfli5A7sXPiZSCG/nto1dZWUlo0ePJj4+HkVRyM7OPuPzqVOnkpiYSHBwMK1bt+aTTz6p+mzJkiXodDoCAwOr/ixbtqyhv4IQQngEk68/F972Mv+9/zI6xgVTWGbFf94DZLzYh+0rf9U6PSGEA9y2sQMYMGAA3333XbWf3XTTTezatQuz2cy8efN46qmn2L59e9Xnbdq0obi4uOpP//79GyptIYTwSB3jQvhxwoU8OyiCC3XbaW3bS8ffbmDjjJFk7t2sdXpCiFpw28bOYDAwceJE+vbtW+3nrVu3JiAgoOq13W7n0KFDDZWeEEJ4JaNexy1D+2K5bx2rI66iUtXRvXQFMV9cwqrUOziZl13zJEIIzdT6difu6KWXXuK5556jtLSU3r17M2jQ/x5yffDgQaKjowkJCeHmm2/mqaeeQq/XVzuPxWLBYrFUvTabzVU/W621f/zO6bG1iXFkbGPnaWuldb6u3r6z56/vfPWJr0tsY6nz4PAm9LjnIw7u3kjx3Cl0K19N39zZmN/9he+6v8ewoSMxGZy3b8DT1krrfKXOXRvrbnXuyNyK6gHXtiuKQlZWFjExMWd9pqoqa9asYeHChfzrX//CYDCQnZ1NQUEBbdq0YdeuXVx33XXcfvvtPPzww9XOP23aNKZPn37W+2lpafj7+zv9+wghhKcpy95Bz6w0/NRSLrW8SoDJyJVN7XSLUFEUrbMTwruVlpaSkpJCYWEhwcHB5x2rWWM3dOhQli5dWu1nU6ZMYcqUKVWvz9fYnXb//ffTuXNn7r777rM+mzVrFu+99945t1fdHrvExETS0tIYNWoURqOxVt/JarWSnp7OkCFDaoxxZGxj52lrpXW+rt6+s+ev73z1ia9LbGOuc1tlJQtWref5P8vJKbKgw86HIZ8QlnwtnQaMRtHVfQ+ep62V1vlKnbs21t3q3Gw2ExkZWavGTrNDsQsWLHDqfHa7nYyM6h9sravh/2xMJhMmk6naz4xGo8O/KEdi6jJ/Y+Vpa6V1vq7evrPnr+989YmXOq8do9HIlZdcxOALK/nP0v3kLv2YSy2LYMUiMlbN4GSPCXQfdit6Q93/afG0tdI6X6lz18a6S507Mq/bXjwBp/aklZeXn/UzwEcffURBQQF2u50//viDL7/8koEDBwKnbneSmZkJwN69e3n++ee5/PLLGzx/IYTwRv4+Bh4a3IaH77mPVTE3UqqaaGk7QPLaR8h6oSOrv30dS3mp1mkK0Si5dWPXtm1b/Pz8AEhKSqr6GWDevHm0bNmSkJAQ7rvvPl555RVGjhwJwPr16+nbty8BAQEMHTqUq666ikmTJmnyHYQQwltFxjWj7z3vYX1wKyub3s1JgkhQs+mzbTqFL3Xki4VrKbFUap2mEI2KW18Ve/DgwXN+9v3335/zs8mTJzN58mQXZCSEEOKfQiKa0O+2GZQWP8Wqn96mxZ7/ctAexZSFObyy4nfGX5DE+D5xhAUHap2qEF7PrffYCSGE8Bz+gSH0TXmakMe3kz34XZpHBlBYZuWzReuxvdaBNW/dyN6N1V/EJoRwDrfeYyeEEMLzmHz9uXJAby67SOXXbVkc/vVNIssKiTw5F+bMZd/clpxodyOdht1GQHCY1ukK4VVkj50QQgiX0OsULu8Sx72PvsSOYbNYFzyYCtVAK1sGfbY/C6+1Y/U7t7Brz26tUxXCa8geOyGEEC6l6HR06DcC+o3gZG4WG377gPiMb0jkGN3yfqHff0eQkJBDR5PCwIpKQjzodidCuBtp7IQQQjSYsKhY+t40HdU+lW1//sKOzaspOhbCliNmtqBn6IzLCAiPwa/79XS4YCR6gzR5QjhCGjshhBANTtHp6HTRFXS66AoGFVuYtfoQi5cu4RJlPZwEfv+FE7+HsC9yMCG9bqBN8qXozvG8byHE/0hjJ4QQQlORgSbuHtCcePN2tkZ+Tummb2lz4nciKCQi7zv49Tuyf41kbYsJNL/0djrGBaPIA2qFqJY0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3DarWi0+lo2XMwxr4jsFZY2LhyLpVbvqN94TJilDzm7zrJLzuWkxThz3VtjQxOhKQOver1jNr65Pv3//W27Uudu1edOzK3oqqq6rJMPExqaiqpqanYbDb27NlDWloa/v7+WqclhBCNmq2ygsqsLXxX2oUNJ/2wqgoP6L9nsvFbstQItpm6kR/aDUN0ewxGH63TFcLpSktLSUlJobCwkODg4POOlcauGmazmZCQENLS0hg1alStH75rtVpJT09nyJAhNcY4Mrax87S10jpfV2/f2fPXd776xNclVurcNWq7VsWWSn7flUvQ0qn0L5yLn1JR9VmZ6sMu/x6UNx9MwoBxxES47h55Wv9upc5dG+tudW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+6hprcKMRkYnN4XkTygvLWbzqnmUb/+FZieWE6Pk0b1sFebtm+mxoQ1tYsO5tH00Q+PKaNemPUYfU4Pn62pS566NdZc6d2ReaeyEEEJ4JF//QLoOug4GXYdqt7N/x1py1s3hUM5JbBUGdmSZ2ZFl5jqfiVQoRezw70JZ/IVEdh5Ci0595Spb4ZWksRNCCOHxFJ2OFp360KJTH/oCg4stLNmdy+rtewnaX0YA5XQtWwP71sC+Nyj8IYD9Ad0xt7yCuAtvpFV0oFxpK7yCNHZCCCG8TkSgidE9ExjdMwG77TAZ29eQu3UBfkdW0LJ0CyFKCd1LlvPpBn/GrUkkMtBE/yR/rtcvJqJdf5I69nHJoVshXE0aOyGEEF5Np9fTsks/WnbpB0CltYLdm5eTv30hh4tb4putI6/YwtHtm+hrmgG7Z1D2ow97TW0pjOiOX4t+NO16MeHR8Rp/EyFqJo2dEEKIRsVg9KFt8iBIHkQ/4F+VNjYeLiBzcxmb9/QmqWw7IUoJHSq2QtZWyPoMVsDLPhM43vI6ujcLo2OEDltlRY3bEqKhSWMnhBCiUTMZ9PRtEUHfFtcC12K32Ti0byvHty+FzNVEFW6huf0wfxY1YfPGo3y/8SjX6RfzguG/HN7+AieC26PGdCGkZS+adeiDX0CQ1l9JNGLS2AkhhBB/o9Prada2G83adqt6rzA/j0nHK1h/pJhNmQV0PpyFERst7QdoWXAACubBLrDNVTioT+SbpOlEtuhOu9gg2kX7Ex4kN7sXDUMaOyGEEKIGIeGRXBwOF7c/9brC8l+++fZLWobrsR7djN+JrSSU7SFCKSDJfphZOyzk79gBwOOGr7jWsIxsU3OKQ9qgb9KBkObdSGjTDf/AUO2+lPBK0tgJIYQQDlJ0OkyBEXQZPBKjcVzV+3nHDpK5ax3j7F3ZdqyQ3dlFtC06TCQFRFo2Qs5GyAG2nhp/VGnCK03fJy42nhZRgbTzN5MYE01IWKQ2X0x4PGnshBBCCCeJjEsiMi6J7n97r6SoO3v2bqLgwCbsx3cQWLibGMtBIikgyF7Ej7vLYHcGAP9nfJ1O+nXkEcpxn0SKA5ujRrTGL7YdUUmdaNKsHXq9TpsvJzyCNHY1sFqtDo+tTYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWypF8fXwDaN75Quh84RnvH8/N4uihPUyxJrE/r4T9uSVEZpeByqk9fBUFkL8V8oG9UPaHD+0rPyE+NICEMF8uPvEHawo34tukFSHxbYhp2gaTX0CDf7+GmK+x17kjcyuqqqouy8TDpKamkpqais1mY8+ePaSlpeHvLye8CiGEaDiVljIqi7LQFWfjV55FWEUWTWxZFNlNXF3xbNW4X33+RXtdZtVru6qQQxjHdU04Zkjkp5CbCfeFcB+VWEMRfn7+6HTyGDVPVFpaSkpKCoWFhQQHB593rDR21TCbzYSEhJCWlsaoUaNq/fBdq9VKeno6Q4YMqTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6VFvjabneNFFg7nl3Egt4jgFS+SqOQQYjlKk8osgpSyqrG77QkMq5hR9fpXn8dprRwhV4ngpLEJJX5xWIMS0IUl4hPVAt9WFxMb4kugyeCS7yd1Xj9ms5nIyMhaNXZyKLYGRqPR4V+UIzF1mb+x8rS10jpfV2/f2fPXd776xEuduw9PW6uGzNdohGa+JppFBdO3RTjzToyiy8iRGI1GVLud/Lwscg7vovjYXvJKrFxvTORoQRlHTpYSXVyAQbETSy6x1lywbgMzcBR22RMZ/uvLAASZDLxvfJ1gvZUgeyCbcv7AEJaAKSKRwMhEwpo0JTQyFp2ubs/VlTqvG0fmlcZOCCGE8HCKTkd4dPxfjz27FIDhf/vcbjtI7vFMThzdR/Hx/VhPHEJnPoJvyVEO2yMJ0RspLLNSZKmkM1sIqSw9FXj0Dzj6v3l22pvSu/JlooJMRAf7MtHyHwKMYA+IQR8SgyksFv/weIIj4wiLisfH5NtgayBOkcZOCCGE8HI6vZ6ouCSi4pLO+qwrcAVQYqkku7CMzN0fsCv3EMf3bSbatwK/suMEVuQQassnWw2j0q6SVVhOVmE5PU0LCFFK4cTZ29xub8ZY3StEBpmICPDhlrwvWH/4RwiMRhcUjTG4CX4h0QSENyE4Io6g0Mg67wkU/yONnRBCCCEIMBloGR0E0aOwWq3MmzePnn8d6j3tokobK0sqOG62kFNYxq4dD6Oas9GVHMdUnkNAxQmCbScJUwvJU0Mwl1diLq9kf24JH5uWE3yi+iZwqz2Jqyr/TZi/D+EBRp6peAN/vR2rKQzVLwK7XyjWvGK2/VGKb0QivondCfM3EuRrRC/N4BmksRNCCCFErRgNemJD/IgN8YPEUOj0WLXj7DYbXcxm0isM5BVXcLyghEVLrqFJoB5DeR4+5Sfws54k0FZAiN1MvhqMza6SV2whr9hCF9NqgpVSKP7HxMths70FIyqeB0BR4BfTUwQr5ZTqgyg3BGM1BlPpE4zdN5SKoKYcTbqGfScUwvafIKbyGIEBAQSERBAYFIre4H1tkPd9IyGEEEJoSqfXExYWRhjQuglYrcHMOzKUXv/YA3ha34oKVpfbOVFcwcnSCvbsfhZbUS72khPoyvLRl59EKcklRFfGMX0igYqBYkslqgoJ6nGCKYXKLKgEyv837yZ7C8Ztagfo+e+e9SzzmUicLrfq82LVjxLFnzJdAEeMzfk4ZgpBvkYCfHR0yUhnbf4q9P4h6HyDMfgFY/QPxhQQiikoHN8mrQgyGdHjXjcXkcZOCCGEEJoy+fjQxAeaBP91sUWrO8/4/PSh4S4jR9LKaGQEUFFpp7DMyskjczlqzqO8MBdryUnspSehrADFUkiOEsFA30gOZeWi8w2kssiHctWIr3Lqhr+BShmBlIH9BIVlBhbv/l/Td5/PfBJLc6nOfnsMvSteB0CngEmn54KBVqJCtL+iWxo7IYQQQngcH4OOqCATtO953nHD/2oKR468EKNxBwCW8lKKC/MpLTpJeVE+5UUFlNl0zAjsgrncSkGJhY0b+5HlZ8VgLcFYWYyPrRSTvQQ/eyknlHAUBVQV7CqU2RT8fNzj5s/S2AkhhBCiUTH5+mPy9SeiScIZ7/f963+tVivzLNfS/RyHjpsAGXaVMquNk8VlzEv/HZPBPZ7h6x5ZVKOyspLRo0cTHx+PoihkZ2ef8fmBAwcYOnQooaGhxMfH8+9///uMzz/99FMSEhIIDg7m1ltvpaKioiHTF0IIIYQX0+kUAkwGmgT70sRP62z+x20bO4ABAwbw3XffVfvZAw88QIsWLcjNzWX58uW88847LFq0CICtW7cyadIkfvzxRzIzMzl48CDPP/98Q6YuhBBCCNHg3LaxMxgMTJw4kb59+1b7+aFDh7j++usxGo00b96ciy66iB07Th07T0tL4/rrryc5OZmQkBCefvppvvjii4ZMXwghhBCiwXnsOXYTJkxg1qxZXHDBBRw+fJhVq1bx9NNPA7Bjxw6GDRtWNbZr164cOHCAsrIy/PzO3l9qsViwWCxVr81mc9XPVqu11jmdHlubGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vlKnbs21t3q3JG5FVVV3esGLNVQFIWsrCxiYmKq3tuyZQs33XQTO3bswGazMW3aNKZOnQrApZdeyq233spNN90EnFoQHx8fcnJyiIqKOmv+adOmMX369LPeT0tLw9/f30XfSgghhBCiZqWlpaSkpFBYWEhwcPB5x2q2x27o0KEsXbq02s+mTJnClClTzhlrs9kYOXIk//rXv7j33ns5cuQIl19+OR07duTaa68lMDDwjL1up38ODAysdr4nnniCSZMmVb0uLCykadOmlJaWcskll1R7RUx1rFYrixcvrlWMI2MbO09bK63zdfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnVeVFQEQG32xWnW2C1YsKDOsfn5+Rw7dox7770Xg8FAUlISV111FYsXL+baa6+lQ4cObN26tWr85s2bad68ebWHYQFMJhMmk6nq9elG8I477qhzjkIIIYQQzlRUVERISMh5x7j1OXYWi6WqO7VYLJSXl+Pr60tUVBSJiYl8+OGH3H333Rw7dow5c+YwYcIEAFJSUhg4cCB33nknLVu25IUXXqg6LFsbcXFxZGZmMmjQINatW+dQzr169WLt2rU1jjObzSQmJpKZmVnjblVR+3V1F1rn6+rtO3v++s5Xn/i6xEqdu4bWdeMorfOVOndtrDvVuaqqFBUVERcXV+NYt27s2rZty6FDhwBISkoC/rcb8ttvv2XixIk8/vjj+Pv7c/3113PnnaceQdK5c2dee+01rrjiCsxmM6NHj+app56q9XZ1Oh0JCQkYDAaHf0l6vd6hmODgYPk//FpwdF21pnW+rt6+s+ev73z1ia9LrNS5a2hdN47SOl+pc9fGulud17Sn7jS3buwOHjx4zs969erFn3/+ec7Px48fz/jx4+u1/dN7AF0dI2rmaeuqdb6u3r6z56/vfPWJlzp3H562rlrnK3Xu2litf7915RFXxXojs9lMSEhIra5wEUJ4JqlzIbyfu9W5296g2NuZTCamTp16xkUbQgjvInUuhPdztzqXPXZCCCGEEF5C9tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0b++OPP+jXrx8XXXTRGc+yFUJ4j8zMTHr06IGvry+VlZVapyOEcJJJkybRv39/HnzwwQbdrjR2bqxVq1YsWbKE5cuXk52dfcbzb4UQ3iEqKorff/+dvn37ap2KEMJJNmzYQHFxMcuWLcNqtTboo+eksXNj8fHxVffFMRqN6PV6jTMSQjibr68voaGhWqchhHCilStXMnjwYAAGDx7MqlWrGmzb0tg50dSpU+nQoQM6nY5Zs2ad8Vlubi6XXXYZ/v7+tG3blkWLFtV63g0bNpCXl0eHDh2cnbIQwkGuqnMhhHuqS80XFBRUPYUiJCSEkydPNli+bv2sWE/TunVr3nrrLZ5++umzPpswYQJxcXHk5eWxYMECxowZQ0ZGBhaLhRtuuOGMsYGBgcydOxeA7OxsHnzwQb777rsG+Q5CiPNzRZ0LIdxXXWo+NDQUs9kMnHrkWIPulVeF01188cXqV199VfW6qKhI9fHxUY8dO1b1Xv/+/dWZM2eed56ysjL1kksuUTds2OCyXIUQdeOsOv/7fFar1el5CiGcw5GaX79+vXrXXXepqqqq9957r7p69eoGy1MOxTaAvXv3EhISQmxsbNV7Xbt2Zfv27eeN++STT9ixYwcPP/wwAwcOZOXKla5OVQhRR3Wt8/LycgYPHszmzZsZNmwYy5Ytc3WqQggnOF/N9+jRAz8/P/r3749Op6N3794Nlpccim0AxcXFVcfaTwsODqagoOC8cffeey/33nuvCzMTQjhLXevc19eXhQsXujAzIYQr1FTzb775ZsMnhVw80SACAwOrjrWfZjabCQwM1CgjIYSzSZ0L0bi4a81LY9cAWrduTWFhIdnZ2VXvbd68mY4dO2qYlRDCmaTOhWhc3LXmpbFzIqvVSnl5OXa7/YyfAwMDufLKK5k6dSplZWX89NNPbNu2jSuuuELrlIUQDpI6F6Jx8biab7DLNBqBcePGqcAZfxYvXqyqqqrm5OSoI0aMUP38/NTWrVur6enp2iYrhKgTqXMhGhdPq3lFVVVVm5ZSCCGEEEI4kxyKFUIIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQggNTZs2DaPRSExMjNPmHDhwILNmzXLafP/0+uuvExAQgK+vr8u2IYSoG2nshBCaS0pKwt/fn8DAQAIDA0lKStI6pQZ1++23n/EgcVfo1KkTBw8edMpckyZNYvv27U6ZSwjhXNLYCSHcwu+//05xcTHFxcXVNiBWq7Xhk3IDzvjeR44cobKystE1zEI0RtLYCSHc0pIlS2jXrh1PPfUUkZGRvPjii5SVlXH//fcTFxdHQkICL7/8ctX4kpISUlJSCA0NpUePHjz55JMMHz78jLn+TlGUqr1k+fn5pKSkEB0dTYsWLZg5c2bVuIEDB/Lss8+SnJxMcHAwY8eOpaKiourzr7/+mk6dOhEUFETnzp3ZvXs3L7zwArfeeusZ27vwwgv5/vvva/Xdk5KSmDFjBm3btqVDhw4A3HfffcTFxREaGsrQoUM5fPhw1fi1a9fSpUsXgoODufvuu7Hb7WfM99tvvzFs2LCq7zN9+nS6d+9OYGAgjz76KPv27aNXr16EhobyyCOPVMXNnTuX/2/njkKa7OI4jn9nLW3ZtrSk6ZYmYl5oXUSKFhRBEnUTkUKmKaIXKwsDQY1SIq1uIhNCBmVmpIZaUiiCeCFakkGQiUspQg1mxmhz6lAr34t4H7J631fLN238P1fPs/Oc/3POrn6cs7NNmzaxevVqTCYT1dXVcxq/EGLxSLATQixZr169QqPRYLPZyM3NJScnB6fTSX9/P11dXVRWVvLw4UMAzp07h91uZ3BwkKqqKm7fvj3n96SkpGAymRgaGqKpqYn8/HyeP3+utNfW1nLv3j0GBwfp7u7m7t27ADx69IisrCwsFgtOp5Pa2lq0Wi1HjhyhoaGByclJAAYGBujt7WXfvn1zHlNDQwPt7e28ePECgB07dmC1WhkeHsZoNHLy5EkApqamOHjwICdOnMButxMZGcnjx49n1WpublaCHUB9fT2NjY309PRQVlaG2Wzm/v379PT0cP36dWXuGRkZlJeX43K5ePr0KVu2bJnz+IUQi0OCnRBiSdizZw96vR69Xk9+fj4AGo2GvLw81Go13t7e3Lx5k8uXL+Pr60tgYCBms5m6ujrgS/g6e/YsWq2WiIgIUlNT5/Te4eFh2tvbuXDhAt7e3kRERJCUlDRrdS0zM5MNGzag1+vZv3+/EnwqKiowm81s374dLy8vIiIiMBgMhISEEBkZSVNTEwA1NTUcOHBgXocNTp06RUBAgNInKSkJnU6Hj48Pubm5dHR0ANDZ2Ym3tzeZmZmo1WqysrIwGAxKnU+fPtHR0cGuXbuUzzIyMggMDCQkJIStW7cSHx+P0WjEaDQSExNDd3c3AGq1mp6eHsbGxli/fr2yeiiEWLok2AkhloSWlhYcDgcOh4OLFy8CYDAYWLZsGQDv37/H7XYTHh6uBMDTp08zMjICgM1mw2QyKfW+vv43g4ODjI+P4+/vr9S1WCy8e/dOeSYgIEC51mg0jI2NAV9+uxYaGvrDusnJycrJ1KqqKpKSkub6VQBgNBpn3RcXFxMWFoZWqyU6Ohq73Q58P2+VSjWr75MnT4iMjESj0fxwPitXrmTdunWz7sfHxwGoq6vjwYMHBAUFER8fz8uXL+c1ByHE77d8sQcghBD/RKVSKddr167Fx8eHgYEBdDrdd88aDAaGhoYIDg4GYGhoSGlbtWoVExMTyv3XJ1CDgoLQ6/VKUJoPk8nEmzdvftiWkJBAXl4eXV1djIyMsHv37nnV/nrubW1tWCwWWltbCQsLo7+/X/nNoMFg4O3bt7P6fn3/7TbsfMTExNDY2Mjk5CQFBQUcP36c1tbWn6olhPg9ZMVOCPFH8PLyIjU1lZycHBwOB58/f8ZqtdLV1QXAoUOHKC4uxuVy0dfXR2VlpdI3PDwcu91OW1sbk5OTnD9/XmkLCgpi27ZtFBQUMDExwcePH3n27Bm9vb3/Oaa0tDTKysro7OxkZmaGvr4+bDYbAH5+fuzcuZO0tDQSExOVlcef4XK5WL58Of7+/oyPj1NUVKS0xcbG4na7uXHjBtPT01y7dk0ZA8w+ODEfU1NTVFVVMTo6ilqtxtfX95fmIIT4PSTYCSH+GH//MW5UVBR+fn4cPXqUDx8+AFBYWIhOp8NoNHL48GFSUlKUfjqdjtLSUhITE9m4cSPR0dGz6t65c4eBgQFCQ0MJCAggOzsbt9v9n+OJi4ujpKSE9PR0tFotCQkJjI6OKu3JyclYrdZ5b8N+a+/evcTGxhIcHExUVBRxcXFK24oVK6ivr+fKlSv4+/vT3d2ttNvtdmw2G1FRUT/13lu3bhEcHMyaNWtoaWnh6tWrvzQPIcT/TzUzMzOz2IMQQoiFVlFRQU1NDc3NzYs2hs7OTpKTk3n9+vU/PlNUVMSlS5fQ6/Xfban+qurqalpaWigvL1/QuiUlJRQWFqJSqXA4HAtaWwjxa2TFTggh/gfT09OUlpaSnp7+r8+dOXOGsbGxBQ918GU7+NixYwteNzs7G6fTKaFOiCVIDk8IIcQCs9vtGI1GNm/ejMViWbRx/OyhCSHEn0u2YoUQQgghPIRsxQohhBBCeAgJdkIIIYQQHkKCnRBCCCGEh5BgJ4QQQgjhISTYCSGEEEJ4CAl2QgghhBAeQoKdEEIIIYSHkGAnhBBCCOEhJNgJIYQQQniIvwDJxx/TV7xczQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACMgElEQVR4nOzdd3hUZfbA8e+dkknvCakQeu+hqSAi3YKKqMQC9oKKgroWFLCtYi9Rf6uuYokoNhQRCQhSpPdeQguQkISQTOpkMnN/fyBZkUAyyUzuzOR8nodnMzPvee+ZN5zleKuiqqqKEEIIIYTweDqtExBCCCGEEM4hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SWksRNCCCGE8BLS2AkhhBBCeAlp7IQQQgghvIQ0dkIIIYQQXkIaOyGEEEIILyGNnRDCq4wfP56rrrrK5dtRFIUff/zR6fOqqspdd91FeHg4iqKwadMmp2/D2Xbt2kXfvn3x9fWlW7duWqcjRKMmjZ0QosGNHz8eRVGq/kRERDB8+HC2bNmidWouU9uGc/78+Xz66afMnTuXrKwsOnXq5NQ8/r7uQUFBJCcn8/3339cq9lzfYerUqQQEBLB7924WLVrk1HyFEI6Rxk4IoYnhw4eTlZVFVlYWixYtwmAwcPnll2udluYyMjKIjY3lggsuICYmBoPB4PAcqqpSWVl5zs8/+eQTsrKyWLt2LV27dmXMmDGsXLmyXjlfdNFFNGvWjIiIiDrPI4SoP2nshBCaMJlMxMTEEBMTQ7du3fjXv/5FZmYmubm5VWO2bt3KoEGD8PPzIyIigrvuuovi4uKqz202G5MmTSI0NJSIiAgee+wxVFU9YzuqqjJjxgxatGiBn58fXbt25dtvvz1vbklJSTz33HOkpKQQGBhIXFwc77zzznljzpfrtGnTmDlzJnPmzKnaW7ZkyZKz5hg/fjwPPPAAhw8fRlEUkpKSALBYLDz44INER0fj6+vLRRddxNq1a6vilixZgqIo/PbbbyQnJ2MymVi2bNk5cw0NDSUmJoZ27drxwQcf4Ovry08//XTe73eu76AoCuvXr+fZZ59FURSmTZt23nmEEK4ljZ0QQnPFxcV8+eWXtGrVqmqPT2lpKcOHDycsLIy1a9cye/ZsFi5cyP33318V99prr/Hf//6Xjz/+mOXLl5Ofn88PP/xwxtxTpkzhk08+4f3332f79u08/PDD3HTTTfzxxx/nzemVV16hS5cubNiwgSeeeIKHH36Y9PT0asfWlOsjjzzCddddd8ZeygsuuOCsed566y2effZZEhISqvaoATz22GN89913zJw5kw0bNtCqVSuGDRtGfn7+GfGPPfYY//73v9m5cyddunSpYdVPMRqNGAwGrFbreced6ztkZWXRsWNHJk+eTFZWFo888kittiuEcBFVCCEa2Lhx41S9Xq8GBASoAQEBKqDGxsaq69evrxrzn//8Rw0LC1OLi4ur3vvll19UnU6nZmdnq6qqqrGxsepLL71U9bnValUTEhLUUaNGqaqqqsXFxaqvr6/6559/nrH922+/XR07duw582vWrJk6fPjwM967/vrr1REjRlS9BtQffvih1rmOGzeuKq/zeeONN9RmzZpVvS4uLlaNRqP65ZdfVr1XUVGhxsXFqTNmzFBVVVUXL16sAuqPP/5Y4/x/z7u8vFx97rnnVECdN29ejbHn+g5du3ZVp06dWmO8EML1HD95QwghnOCSSy7h/fffByA/P5/33nuPESNGsGbNGpo1a8bOnTvp2rUrAQEBVTEXXnghdrud3bt34+vrS1ZWFv369av63GAwkJycXHU4dseOHZSXlzNkyJAztl1RUUH37t3Pm9/f5z39+s0336x2bE25NmnSpOYFOYeMjAysVisXXnhh1XtGo5HevXuzc+fOM8YmJyfXas6xY8ei1+spKysjJCSEV199lREjRtQ5RyGE+5DGTgihiYCAAFq1alX1umfPnoSEhPDhhx/y/PPPo6oqiqJUG3uu9//JbrcD8MsvvxAfH3/GZyaTyeGcz7VdZ+R6Lqeb1H/OU902/95Yns8bb7zB4MGDCQ4OJjo6ul75CSHci5xjJ4RwC4qioNPpKCsrA6BDhw5s2rSJkpKSqjErVqxAp9PRpk0bQkJCiI2NZdWqVVWfV1ZWsn79+qrXHTp0wGQycfjwYVq1anXGn8TExPPm8/d5T79u165dtWNryhXAx8cHm81Wy9X4n1atWuHj48Py5cur3rNaraxbt4727ds7PB9ATEwMrVq1cripq+t3EEI0HGnshBCasFgsZGdnk52dzc6dO3nggQcoLi7miiuuAODGG2/E19eXcePGsW3bNhYvXswDDzzAzTffXHVoc+LEibz00kv88MMP7Nq1i/vuu4+CgoKqbQQFBfHII4/w8MMPM3PmTDIyMti4cSOpqanMnDnzvPmtWLGCGTNmsGfPHlJTU5k9ezYTJ06sdmxtck1KSmLLli3s3r2bvLy8Gi9WOC0gIIB7772XRx99lPnz57Njxw7uvPNOSktLuf3222s1h7PU9TsIIRqOHIoVQmhi/vz5xMbGAqcasHbt2jF79mwGDhwIgL+/P7/99hsTJ06kV69e+Pv7M3r0aF5//fWqOU5fiTl+/Hh0Oh233XYbV199NYWFhVVjnnvuOaKjo/n3v//N/v37CQ0NpUePHjz55JPnzW/y5MmsX7+e6dOnExQUxGuvvcawYcOqHVubXO+8806WLFlCcnIyxcXFLF68uOq71uSll17Cbrdz8803U1RURHJyMr/99hthYWG1ineW+nwHIUTDUFT1Hzd9EkKIRi4pKYmHHnqIhx56SOtUhBDCIXIoVgghhBDCS0hjJ4QQAoDAwMBz/jnfkyyEEO5DDsUKIYQAYN++fef8LD4+Hj8/vwbMRghRF9LYCSGEEEJ4CTkUK4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0QQgghhJeQxk4IIYQQwktIYyeEEEII4SUMWifgjux2O8eOHSMoKAhFUbRORwghhBCNmKqqFBUVERcXh053/n1y0thV49ixYyQmJmqdhhBCCCFElczMTBISEs47Rhq7agQFBQHw0UcfcdVVV2E0GmsVZ7VaWbBgAUOHDq0xxpGxjZ2nrZXW+bp6+86ev77z1Se+LrFS567haWuldb5S566Ndbc6N5vNJCYmVvUn5yONXTVOH3719/cnODjYob8ItY1xZGxj52lrpXW+rt6+s+ev73z1ia9LrNS5a3jaWmmdr9S5a2Pdtc5rc3qYXDwhhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyEXDwhhKgX1W6nvLSYshIz5aXFVJQVUVFeQpExCrMxijKrDbs5m6ijC1GtpagVpSiVZWAtR6ksQ1dZzk5Le+YWxGFTIbT8CHfkv4bebkWvWjGoVvRqJXpsAPxsGEqaz2gUIMqex2vlz9BNVcna9ASqomBHR4XOjwq9P9uCLmJt9LUEmgwEG+1clDMLxTcQnW8wer8Q/MLjsZaZUe12bRdRCCGcRBo7IRoBa4WF0pIiKsqKKS8toqKsBGt5MdayEk76J3HSEElZhQ19wUESj81HtZagWEvRWUvRV5ait5VhsJXxs+lyFtObE4V65m5O5S3bi/grFvwAv39s8wVrCh/aLgegq7KPOabnz5nfn5WBpO/MAaCVkkMH09ZzjlXLTnKoqBSASqWYpqZjf33w1x8AO1AJ60qi+f7IUQCiKOAR39Sz5msPlL44mZ9NQ/k59kESwvyID/GlV+lSgpo0JyKhNRHR8Sg13BRUCCHcgTR2QjQQ1W6noqKcCks5VksZ1opyLMYQLJiwVNqxFx9Hn7cXW0UZNmsZtooy7NZyVGsZqrWcfaH9yTHGY6m0E1GwhW45P6KzWTDYytDbLehtFoxqOUa7hcW263h+qz/lVjv9K1fynvENQs6R1+PWO5hlGwRAf90WPvc5u/k57YfijuyxdQAU8hTwN1nO+LxM9aFc8aUcE0FBwXQJDMHXqCdRac7Gwouw6X2xG/ywG/xQDX5g9EPV+6AUhDC9Z3v8fIz4q61Zn/cmOqMPOoMJvdEHvdGEotMDcKF/NN8G/HWDzkoLW4+nsX37djp26IBOp0O1WbGWFWErLyLGJ4HH/dpRXF6JvTiXNZkjMVQWY6gsxVRZRFhlLtHk469YyCu1s2R3LgBRnORe30lV3+sEIRz270h5kx4EtuhDpfXM7y2EEO5CGjuhOdVuR7Xbsdlt2GyVp362VWKz2VBtlZTr/CmsgKzCcvQVOVBeiN1mxW6zYbfbTv2vzYrdVklJaDusig82u4pP4X6M5kOo9lPzqDYrdpsV1VYJNisHowdRrg/CalOJOLmR6JMbwVYB9lOfK/ZKsFvBbuWPiLHk6GOotNvpULiM3oXz0alWdPa/DhP+ddhQr1byss/9rCmL48Vtf3BZZTqT7DPxwYqPUokJMP3tu4+veIwl9m4AjNEv4RXjf865Tp9VVDLP3heAkbpt3OUz75xjjZVF5FoqACjR+VS9b1MVyvClXDFhUUxUKL5EhkfQLygCfx89zWjPmoKRqEZ/7EZ/MAagmALQ+QSgMwVwSVRn+oe2YNO61Qy+8HqOqsMw+QfiFxCEn38Qfnp91Z67B//68z9XVpur1Wold948RvZO/Ns9oNqc87udFd9sKPvzKmnXZ1gN95BqC1x01rZ/+GkOPTq2ortFz0uWEI6cLMOSs5edhzsSbs0mSs0nQikkovRPOPAnHHiXjZVDuPJIDD2TwkiOD6BnWAkJLTrKXj0hhOaksdPIy7/toeP2b9lw4GuUquNHgHrqeFKxIYy50fecOrqkqlyW+yFhFcf53/EmFUVVUbBTogvmy6hJqKioKlxz4j/EWA+Dqv4196mxoGJRfHkr4pmqsSkF/6GFdU/VWAX1r5/t2NDzeOgrqCrYVZU7S/6PrtatKNj/GmsHVUX3189jfVKpRIddhUcrP+Bi+xp0f43VY0dR7X+NVbnQ9j5Fdj/sqsq/9f/hesMSdEB1/yz3Kk8llzBYv5Rphk8Zb1hwznUdYHmDw2oTAP5l+Ip7DT+fc+zTFh92qU0BeED/C6OM355z7IyjXdmgVgIQqd9Fd+OKc44tMueTb48Hi4UyvZVAY1m14ypUPYEGlTCDER+DDj0RHKpMxKr4UKkzUanzwabzwaYzYdeb6BTZjsiQZpgMOmIrjawssIHBD52PHzqjPzqTHwaTHxh8ab2/kJ8G9SPQzwd/3UUUKnfiFxCE0ehDoE5H4N/yeOSMrHoBV53zu8GpZqhwN7RNiMRojD3vWE+gMxiJa9mRZkYjvavebQucOoxcXlbCwW0rKdjzJz5Z64gr3s56e2t2Zhed+qPs5irTdE4SxIGA7tg7XEm7/tcSGBym0TcSQjRm0thp5KfNWdxkWU1SxfFqPz9gb8L3R6+oen23zzLa6w5XOzZbDWN+Tsrfxm6gm25vtWPNqj/LT+ZVvb7XuJsO+m3VjrWqerYcKax67W88RnP9wXN+p2OFpVT+9VdKbywmUl9w5oC/3TDbVmmj8q+G1s7576R9uhk06HVU6kyUqiZs6LArOuzosaHDhh6boicu1A+DIQCDTsFeEce+ipbYFT129Nh1hlM/K3pURU+PxHha+Mag1+kIKenBmuJS0OlRdUZUnQFO/6/eyJUxPRkSEI9RrxBVYmB1UQt0eiOKwQfFcOqQoc5oQm/wYWJYe3pv2snAARcRSFcyK27FaPLD6OOL0eSHj8kXHx9ffPR63j3jmw4GHj/nOiSf8aoDMLTacVarlYMn59E+Nsgj7uDv7nz9AmjXazD0GgycWt8e389lcNuubDlqJmD3RiyFRsKUIsJKlsLapZSveYKNAb2xtr2Cygpp8IQQDUcauxpYrVaHx9Ym5vYLElm1fjhHw3zR6XSgnNoHBgooChZjEP+KPXU4SlEgK/sOCioLUFFQFEDRVY216f2YFt/+VLQCRbkTWFWRz18DURRd1c+q3odX4zujADoFlBOTWFeRj6roUFBAp/vrkSU60On4T1x3dAroFIWggqfZXHESRVFOne/017yKokNRdHwV3Q2dTo9ep+BTkshea9Gpbev06HQ6dDr9qbF6HT8HJaDoDeh1CoaKHuSoVvR6A4rOgE6nQ6/Xo9Mb0OsN/G6zsXDRIoYMGYTROASofs8ewOdnvLoAeOGcv4PpZ7zqBNx1zrFnNlWJwKBzjrVarWRl7KR1pB9GYzDQ5KwxNrsdm4uuxHTk76E7zF/f+eoTX5dYq9VKqK+OS9uEM7xjExj6LyosE8nYvoqCTT+TmJ1OIsfoXroCNq7gjYop/FK8gZGdYxnUNoogX/m/3eq4+u+ts2mdr9S5a2MdiWmIvwuOzK2oqqrWPKxxSE1NJTU1FZvNxp49e0hLS8Pf31/rtIQQHkS1q1gKMgnIWUtc2W6uLZ+C/a9bhk4xfE5nn2wOh/bFEJ+MziB7VIUQNSstLSUlJYXCwkKCg4PPO1Yau2qYzWZCQkJIS0tj1KhRDj00OD09nSFDhtTqocG1HdvYedpaaZ2vq7fv7PnrO1994usS60hMRUUFn81ZiDmkJQt25PBV8a1EKwUA5BHKnsQxtBp+P2HR8Q7l7Y20rhtHaZ2v1LlrY93t33Oz2UxkZGStGjs5JlADo9Ho8C/KkZi6zN9YedpaaZ2vq7fv7PnrO1994l1Z53EBcMfQtvxrZEcO7vyWlStn0TLze6LJJzLzQyz/+ZRNYUOIGPwQLTr1qVP+3kTrunGU1vlKnbs21l3+PXdkXrk2XwghGoKikNShF/1uf42wJ3exrter7DG0waRY6VUwjz9mvUbKh6tYuOM4drscSBFC1I3ssRNCiAZm9DGRfNmdMPIOdq1bRMkf7/B5/nD2Z5zgz4wTDAs9yq3N8uh02b1y2xQhhEOksRNCCK0oStWtVD4vKOOzlQf5avVhRpXMpu/uNZh3v8PKpjfT+donpMETQtSKHIoVQgg3EB/qxxMj2rPqyUsJ7zyMTCWOYErpd/j/qHi9C6vSnqO8rETrNIUQbk4aOyGEcCP+Pgb6XvcI8VO2sa7XqxxRYgnHTN89r1LwchdWzvkPlTbX3ANRCOH5pLETQgg3pNPrSb7sTpo8sZnVHZ8hh3BiyGPBmi0Me3Mp87ZmIXerEkL8k5xjJ4QQbszoY6LPmMmUX3Y3y398m7l7u5KbW8J9X27gxugD3NAzjk79r0LRyX+nCyFkj50QQngEX/9ALkp5kkX/GsqDg1oR5AO3FbxL58W3suOli9m7aZnWKQoh3IA0dkII4UGCfY1MGtqWxQ/1IzdmABWqgY4VW2j5wxWsefsmTuYe0zpFIYSGpLETQggPFBkeTt/7/kP+7atYFzwYnaLSO/9n9KnJrJ71byqtFVqnKITQgDR2QgjhwWKatiZ50nfsHPENGfrmBFNCn10vMfXN91i9/4TW6QkhGpg0dkII4QXa9xlG0hPrWN3+KeZxIV+eaMX1/1nFg19tJDvfrHV6QogGIo2dEEJ4Cb3BQJ/rH6Pvoz+S0qcZigLLNu9CfasbK2c+haW8VOsUhRAuJo2dEEJ4mfAAH168ujM/338RD0euIVY5Qb8D75Lzck+2LP5W6/SEEC7k1Y3dpEmT6N+/Pw8++KDWqQghRIPrFB/CzZNeY233l8gjlET1GF3+uJ31r11NXnam1ukJIVzAaxu7DRs2UFxczLJly7Baraxdu1brlIQQosEpOh29Rt2L6eGNrGpyAzZVoWfR7/h80Ic1372J3S5PrxDCm3htY7dy5UoGDx4MwODBg1m1apXGGQkhhHaCQsLpe+//sf/qn9mnb0kwJezb+Ac3/GcV+3KKtE5PCOEkHtHYTZ06lQ4dOqDT6Zg1a9YZn+Xm5nLZZZfh7+9P27ZtWbRoEQAFBQUEBwcDEBISwsmTJxs8byGEcDetu/Un6fFV/NnmMd5SbmTNwXxGvLWMD35ZJRdXCOEFPKKxa926NW+99Ra9e/c+67MJEyYQFxdHXl4eL7/8MmPGjOHkyZOEhoZiNp+6xN9sNhMaGtrAWQshhHsyGH24IOUpvps0kkHtorHa7HRY9QjZM3qxfeWvWqcnhKgHg9YJ1MZNN90EwAsvvHDG+8XFxcyZM4eDBw/i7+/PVVddxeuvv87PP/9Mv379+L//+z+uu+46Fi5cyPjx4885v8ViwWKxVL0+3RACWK3WWud5emxtYhwZ29h52lppna+rt+/s+es7X33i6xLrTXXeJNDIByldWbx2Ex3SM4m0F8BvN7B69WW0HPsKIeHRDZaLu6/VP2mdr9S5a2Pdrc4dmVtRVdVjzpwdOHAg99xzDzfccAMAGzduZNiwYeTk5FSNeeCBB/D39+fll1/moYceYv369XTt2pV33333nPNOmzaN6dOnn/V+Wloa/v7+zv8iQgjhZqyWEsL2fcOlFYsBOKEGsyhqHKbEXhpnJoQoLS0lJSWFwsLCqtPMzsUj9tidS3Fx8VlfMDg4mIKCAgDefPPNWs3zxBNPMGnSpKrXZrOZxMREAIYMGYLRaKzVPFarlfT09FrFODK2sfO0tdI6X1dv39nz13e++sTXJda763wM29amE7TwUZrZj3Bd3jtsKL2I2Js+IDIqxqVb9rS10jpfqXPXxrpbnf/9SGJNPLqxCwwMPOvLms1mAgMDHZrHZDJhMpmq/cxoNDr8i3Ikpi7zN1aetlZa5+vq7Tt7/vrOV594qfP/6XTBSCw9BrLyi6dIzpxJSHEGV/5nM49foXBNj3gURXHp9j1prUD7fKXOXRvrLnXuyLwe3di1bt2awsJCsrOziYk59V+Tmzdv5o477nDaNjz5mLy38LS10jpfOffGtbGNoc51eiPJ42ZwYNtoUhfvJjdHYfLszfy88RDPXxpJk4QWTt+mp62V1vlKnbs21t3q3OvOsbNardhsNoYOHcqdd97JmDFj8PHxQafTMWbMGMLDw3nzzTdJT09n/PjxZGRkEBYW5vB2UlNTSU1NxWazsWfPHjnHTgjR6NlU+P2YwvxMHbfqfuEhw/f8FnI9SvNL0Ok84sYKQng8R86x84jGbvz48cycOfOM9xYvXszAgQPJzc1l3LhxLFmyhISEBN57772qGxPXldlsJiQkhLS0NEaNGuWxx+S9haetldb5yrk3ro1trHWekVNM+adX0826EYAdxk74j36X+JadnDK/p62V1vlKnbs21t3q3Gw2ExkZ6T0XT3z66ad8+umn1X4WFRXFvHnzXLZtTz4m7208ba20zlfOvXFtbGOr83bxYdgfX8Sqb16my6436WDdRvlXQ1jfegK9bngavcE5/5x42lppna/UuWtj3aXOG805dg3Bk4/JewtPWyut85Vzb1wb29jrvOe1j5J9aBQZsyfQ2bKRvvveZPdLv2K4+j2atula53k9ba20zlfq3LWx7lbnXneOXUORc+yEEKJ2VLtK5aFlDD2Zhi8WRllfoGVCPIPiVPSuvXBWiEbH686xa2hyjp178bS10jpfOffGtbFS52fKPbafH36awytHOwLQOT6YV0bE0rJZM4fm8bS10jpfqXPXxrpbnXvdOXZa8uRj8t7G09ZK63zl3BvXxkqdnxLXrC333f8oMRuOMv3n7XBsE80+v4b1SbfR88ZnMfpUf4/Qc/G0tdI6X6lz18a6S53LOXZO5MnH5L2Fp62V1vnKuTeujZU6r96VXZrQJymE7TO/xs9cQd9DH7Dv5QWoV75LUofeNcZ72lppna/UuWtj3a3O5Ry7OpJz7IQQon5Uu4o1cyVDTnxBqFKMVdUzP+BKrC2vcNqVs0I0NnKOXT3JOXbuxdPWSut85dwb18ZKndfOiexMjn31AD1KlwOQoWtO5eVv06Jzv2rHe9paaZ2v1LlrY92tzuUcOyfy5GPy3sbT1krrfOXcG9fGSp2fX0xiC5o88jPrf/0vLdZOo6X9AFO//56QEzHcf0krfAzVP7XC09ZK63ylzl0b6y517si88jwYIYQQLqHodPS87A7s967i5/DxfFZ5KW8v2suV7y5n++EcrdMTwivJHrsaePLJlt7C09ZK63zlpGrXxkqdOy44vAnD732Vt7ZlM/XnnRzOzsX/4zv5M2EEXcc+h4/J1+PWSut8pc5dG+tudS4XT9SRXDwhhBCuVWSFk3uW8UDFhwDsI5H1iXfgG9lc48yEcF9y8UQ9ycUT7sXT1krrfOWkatfGSp07x6YFn9Fy7TTCMVOp6lgddzM5kQMYNmKkR6yV1r9bqXPXxrpbncvFE07kySdbehtPWyut85WTql0bK3VeP70uu538XsNZ/9l99CxewoVZM8nIWsThZuG0Sx6kdXq1pvXvVurctbHuUudy8YQQQgi3Fx4dT89H5rChz5vkE0xLjnDwp3/zym+7sFTatE5PCI8kjZ0QQghN9RhxK5V3r2Ch4WKerhhH6uIMLn97OZsPn9Q6NSE8jjR2QgghNBcWGUtJ59uZesNAIgN92JtTzL4Pb2bl/z1AeVmJ1ukJ4THkHLsaePLl0d7C09ZK63zlNgiujZU6d43TazSoTTi97r+Amd/PYfThZZC1jEMzfqd4+Ju06TFQ2yT/RuvfrdS5a2Pdrc7ldid1JLc7EUII92E5sp5BOZ8SqRRiUxUW+I6ktPXVGIw+WqcmRINy+e1OysrKeOaZZ5g9ezb5+fmYzWZ+++03du7cyUMPPVTXvN2G3O7EvXjaWmmdr9wGwbWxUueuca61KszP4cCXE+llTgfgsBJP0bA3aNNT2ytntf7dSp27Ntbd6tzltzu57777sFqtzJ07l/79+wPQpUsXJk6c6BWN3d958uXR3sbT1krrfOU2CK6NlTp3jX+uVWSTeCInfcumhV8Rv/wJmqpHOfrrvbyS8wMPD++En49ew2y1/91Knbs21l3q3JF569TY/fLLL2RmZmIymVAUBYDY2FiysrLqMp0QQghxXt0Gj6Wwx2DWzpzAe7ldWPznEdL3nOTl0V3o3Txc6/SEcBt1uio2NDSU3NzcM947cOAAcXFxTklKCCGE+KeQ8Ch6PfwNN99yJ02CTRzIK+Hrj15mVeodlBYXap2eEG6hTo3dxIkTueKKK/j222+x2WzMnTuXsWPHet1hWCGEEO5nULsmLHj4Ym7pHsozhs/omzubk6/1YtuKuVqnJoTm6nQodsKECURHR/Pxxx+TkJDA22+/zcMPP8z111/v7Pw058mXR3sLT1srrfOV2yC4Nlbq3DUcXSt/Azx9TW+2R71FzNIniFePE59+I6s2XEXbG18lMCjUhdlq/7uVOndtrLvVudzupI7kdidCCOF5Ki1lhOz7msEVvwNwTI1kaezt+MV21DgzIZzDJbc7mTFjRq02/thjj9VqnDuT2524F09bK63zldsguDZW6tw1nLFWO1bMJeqPx4hTc7CpCq+2/oI7Rw0iyNf968Ddti917l517pLbnezcubPq59LSUn744Qf69OlDYmIimZmZrFmzhmuuuabuWbspT7482tt42lppna/cBsG1sVLnrlGfteo68GpKel7C6pkPsy27jPe3KfxweCX/vqYzl7SLdnKmp2j9u23sdW6z2Wo8TGmz2TAYDNhsNnS62l1a4EhMXeY/H6PRiF6vP+u92qp1Y/fJJ59U/Tx69Ghmz57NqFGjqt776aef+Oyzz2q9YSGEEMLZAoJC6XP/J6gZeTT7fiuHTpQyfeZP+DX5nfY3v0FIRBOtUxROUlxczJEjR6jpwKOqqsTExJCZmVl1i7aaOBJTl/nPR1EUEhISCAwMrFN8nS6eWLhwIV9//fUZ740cOZKbb765TkkIIYQQztS3ZSTzJw7glfm7GLLuefoW7CDvnRVs6Pc8PYbJv1WezmazceTIEfz9/YmKijpvQ2W32ykuLiYwMLDWe9QcianL/Oeiqiq5ubkcOXKE1q1bn7Xnrjbq1Nh16tSJ559/nilTpmAwGKisrOTFF1+kY0c5UVUIIYR78PPR88yVHdkV+xyHfp1IM/sRIlfez/qt35J0cyoRTRK0TlHUkdVqRVVVoqKi8PPzO+9Yu91ORUUFvr6+DjV2tY2py/znExUVxcGDB7FarXVq7OqUweeff878+fMJCwujZcuWhIWF8csvv8ihWCGEEG6nXa/BNHl0DSvjxlGp6uhZvATd+31ZP/dDVLtd6/REPTjj0Ke7qe93qtMeuxYtWrBq1SoOHz5MVlYWsbGxNG3atF6JCCGEEK7i6xdAv7veZu+m69D/NIEW9oP0XPcIHx4+yZU3PUiTYF+tUxTCKeq0xy4nJ4ecnBx8fX1p3rw5vr6+Ve8JIYQQ7qp1t4tI+NdqVja9m832lrx8uC1DXv+D2esyazwJXwhPUKc9djExMSiKUlUEf99taLPZnJOZm/DkO1V7C09bK63zlTvSuzZW6tw1GnKtFJ2e5JtfYPexR2j/0262HjXz5LcbCF38BO2ueZKYpq1rnEPr321jr/PT59jZ7XbsNRxOP92rnB5fG7WJMZlMdOzYkYqKCpKTk/n4449rNXdN7HY7qqqecY5dgz95Ijs7m+eff54+ffp49JWx8uQJIYRoXGwqLDmm0PzYHB42fEuJ6stvIdehNB/klBPhhWsYDAZiYmJITEzEaDRSbnX+uZK+Rt15z3dr27Ytu3fvxmazMWrUKO666y6uvPLKem+3oqKCzMxMsrOzqaysBFz05InaJNKiRQuOHDnijOk0JU+ecC+etlZa5yt3pHdtrNS5a2i9Vpl7t2D54QHaW7cDsMPYEb9r3iWhVedqx2udb2Ov8/LycjIzM0lKSsKuM9BpWnq9c/ynlZP6Eh0Res7mLi4ujmPHjqGqKpMnTyYmJqbap28tWbKEiRMnotfrCQgIYNmyZdW+d1p5eTkHDx4kMTERX99T53665MkTNVm9enVVZ+lN5I707sPT1krrfBv7HeldHSt17hparVWLDj2xt13G6m9fofOO1+lg3U75rKGsb3kvyWOfxmD0qTZO699tY61zm82Goiin9qq6cM9q1TbOQafTUVJSwvLly3nmmWeqHfvGG2/w9ttvc8kll1BYWIhOp6v2vb/PqSjKGWvlkidP/F379u3P6GBLS0s5ceIEb731Vl2mE0IIITSn0+vpc/3jZB26mn1f3UuX8vX03f82v7yaQYvxH9A+9vx7SoQ2/Ix6djw77Jyf2+12isxFBAUHOXQfO2tZyXnHnDhxgm7dugEwaNAgLr/88mrHXXDBBTz++OOMHz+ea6+99pzvOUudGrsPPvjgjNcBAQG0adOmxt2DQgghhLuLbdaWmMcWsmZOKs02v8Yr5kEceWc59w1syYRBrTAZHL9prHAdRVHw9zl3O2O326n00ePvY3CosTOXn/9+chEREWzatOnUWLP5nOOeeOIJRowYwZw5c+jZsycbN26s9r2IiIha5VaTOjV2a9eu5ZFHHjnr/ddff51JkybVOykhhBBCS4pOR++rHyBn4Djazt3Dwe3Hefv3fQRueJ+LB19Ji679tU5ReIj9+/fTrVs3unXrxsKFC8nMzKSwsPCs95zV2NXpwPSzzz5b7fsvvPBCvZIRQggh3El0WDAf3NST1JQeXBqwnzvKPqXVz9ew7sP7qbRatE5PeIDXX3+djh070qVLF7p06ULXrl2rfc9ZHNpj98033wBQWVnJ7Nmzz7iZ48GDBwkPD3daYkIIIYQ7UBSFy7rEcmHcGNZ/vpRehQvolzOLI8cXsSPSSNeBV2udotBAdnZ2rca9++67tXrPWRxq7N5//33g1K1N3nvvvar3FUUhOjqaTz/91KnJCSGEEO4iNDKGXg/PZvPi2TT543ESlFwSloxnzebZtL3lbULCIrVOUQjHGrvFixcD8PzzzzNlyhSXJCSEEEK4s66XjOFk14Es+OBeBlsW0vvkL2S8tYWVoxcwvHOc1ukJjWzdupVx48ad8V6XLl347LPPGjSPWjd2eXl5REae+q+Ru+6665zPhY2OjnZOZkIIIYSbCgwKpazjzeyIup3ghZN53zKSb7/cyMjOWUy7siPRQb5apygaWOfOndm0aZPWadS+sWvevDlFRUXA2c+KPU1RFK97VqwQQghxLm17DcbWfR0xfxxGv3Q/87Zmo+xNZ1zXAHqNmoAijyUTDazWjd3ppg6o9UN0vYE8HFx7nrZWWufb2B8O7upYqXPX8LS1+nu+RqORiZe2ZEiHKJ7/fg1Pn/yAmM0n2brre0LHvEtMszYu3b4ruHudW61WVFXFbrfX2JOc3gl1enxtOBJTl/nPx263o6oqVqsVvf7UPRMdWTenPSvWG6SmppKamorNZmPPnj2kpaXh7++vdVpCCCE8hN1uQ7dvPsOKv8dXsVKqmvgt+FpoMaTWN8cVNTMYDMTExJCYmIiPT/WPe/NUFRUVZGZmkp2dXfWo1tLSUlJSUmr1rNg6NXaZmZk8++yzbN68meLi4jM+27Fjh6PTuR2z2UxISAhpaWmMGjVKHg6uMU9bK63zbewPB3d1rNS5a3jaWtWU79GMbZR89wAdrVsB2G1oi/7Kt2jWPrlBtu9u8zu7zsvLy8nMzCQpKQlf3/Ofz6iqKkVFRQQFBZ3xONT6xphMJjp27EhFRQXJycl8/PHHVXvY/m7Tpk3k5eUxePBgALZv386NN96IXq9nyZIlBAUFnTG+vLycgwcPkpiYWPXdzGYzkZGRtWrs6vTkieuvv57WrVszffp0r9+jJQ8Hdx+etlZa59tYHw7eULFS567haWt1rnyT2nXH/vgfrP7+TTpse4W2lbup+O4yPuv5LTeNvNhpjyVrrHVus9lQFAWdTlfjntDTh0dPj6+N2sScfqSY1Wrlkksu4ccff2TMmDFnjduyZQu7du1i6NChAMydO5ebb76ZRx99tNp5dTodiqKcsVaOrFmdGrtt27axfPly2a0shBBCnINOr6fPmMnkXHAN+768j0NF8NyfZXy1bzkvj+5Mz2ZyU3+nqiip/n27HSrLgeCaxwIoOtCbar1ZvV5PcnIy+/fvP+szm83GM888g8ViYf78+bz66qu89dZbGI1G/vzzT3744Ydab6e26tTYDR8+nFWrVnHBBRc4Ox8hhBDCq0THNyfqkV84viWTyLl72ZdTzH0fzOONhGV0ufklAoPDtE7RO7xY/T0EdUBA0iVwy/f/e/OVVmAtrX6eZhfBuJ9rvdmysjKWL1/OM888c9Zner2eZ599ll27dvHSSy8BcM899xATE8M999xT6204ok6NnZ+fH8OHD2fo0KFn3bfu70+kEEIIIQQoOh3DuzWjb5tYXpy3k0Gb3+CC3LVkv76QjAH/puug67ROUTjoxIkTdOvWDYBBgwZx+eWXa5vQX+rU2LVo0YLJkyc7OxchhBDCq4X6+zDj2q5sa/IAx35/lDj1ODFL72Tdpq9pcdPbhEfHa52i53ryWLVv2+12SopLOOOSg0f3nXsepXanmZ0+x85ut2M2m2ufp4vVqbGbOnWqs/MQQgghGo1O/UdR1v0SVn3+GL2yZ5FsXsjJ9/qwtvuTJF9xj9zYuC58Aqp/324Hg612Y/8e4yRBQUFn3UHElerU2M2YMaPa900mEwkJCVx66aWEhobWJy8hhBDCq/kFBtP33g/YuzEF3dwHaWk7QK+NT/DpwWNcevOTJIZ7910nGouBAwfy8ssv06tXL15++WWXb69Ojd2GDRv44Ycf6NOnDwkJCRw5coTVq1dzxRVXcOzYMW6//Xa+//57Bg0a5Ox8hRBCCK/SuvsArB1Xs/KrZ4ne/z0vZ3Xn5TeWMnloG269sDl6Xe3uvSYaVnZ2dq3GRUREsGbNmqrXru6N6rSvt7Kyku+++46lS5eSlpbG0qVL+f7771EUhT///JPU1FQmTZrk7FyFEEIIr2T0MdFv3Avo7ltJl+ZxlFltvPDLdn6bkULG1lVapyc8SJ0au/T0dEaMGHHGe8OGDWPBggUAjB07ttr7uQghhBDi3Jo3CeWrO/vy0jWdudX3D0aWz6PZtyNY+Z8HKS9tuPO0hOO2bt1Kt27dzvhzyy23NHgedToU26FDB1588UWeeOIJDAYDNpuNl156ifbt2wOnHjkm59gJIYQQjtPpFG7o3ZS8hAfY8OVuepQspd+xmWS+ko558Kt0vPAyrVMU1ejcuTObNm3SOo267bGbOXMmc+bMITw8nFatWhEWFsacOXP4/PPPATh+/DhvvvmmM/MUQgghGpXIuGb0ePRnNvR7l1zCSFSP0TE9hTVv3Yj5ZK7W6bmFOjzu3u3V9zvVaY9dmzZtWLduHQcPHuT48ePExMTQrFmzqs979+5N796965WYEEIIIaDHsJsp7D2C1V9Mos+JOfQ+OZcV7x9hY+JkRnhhY1MbRqMRRVHIzc0lKioKRTn3BSZ2u52KigrKy8sdelZsbWPqMv+5qKpKbm5u1bNi66JOjd1p0dHR6PV6VFXl8OHDADRt2rQ+UwohhBDiH0LCIunzwGfsWDUfvwWP8u+ya9m2R8/hLzfx/NWdiQv10zrFBqXX66vuynHw4MHzjlVVlbKyMvz8/M7bANY1pi7zn4+iKCQkJKDX6+sUX6fGbuvWrdxyyy1s2bKlKgkAHx8fSkvP8ew1IYQQQtRLh77DsfS8lIGL9rHzjwx+353LV69P4qIOTel17aPoDPXaX+NRAgMDad26NVar9bzjrFYrS5cuZcCAAbXeC+ZITF3mPx+j0Vjnpg7q2Njdc889jBo1ipUrVxIbG0tWVhbPPPMMLVu2rHMiQgghhKiZyWhk4qWtCDy5hy055TyQ/zU+u2zsfulHTKNTSWqfrHWKDUav19fYBOn1eiorK/H19a114+VITF3md6U6HQzevn07zzzzDL6+vgD4+vry/PPP89xzzzk1ufrIzMykR48e+Pr6UllZqXU6QgghhFPF+sMbd49iY4fHKFb9aFu5i7hZQ1n10STKy0q0Tk9opE6NXWhoKAUFBQDEx8ezefNmjh8/3qDPQqtJVFQUv//+O3379tU6FSGEEMIldHo9fa5/nJI7V7DR/wJ8FBt9j3xMziu92LHyV63TExqoU2N3xx138McffwAwceJE+vfvT+fOnbnzzjudmlx9+Pr6yr30hBBCNApNElrS7ZFf2NDnTfIIpan9KEnzx/HcN8soLDv/OWjCu9SpsZsyZQpXX301AHfeeSdbt25lxYoVvPLKK3VOZOrUqXTo0AGdTsesWbPO+Cw3N5fLLrsMf39/2rZty6JFi+q8HSGEEMIbKTodPUbcinHietaEX8EblaP5eIOZwa//wS9bsrzynm/ibA5dPNGhQ4cax+zYsaNOibRu3Zq33nqLp59++qzPJkyYQFxcHHl5eSxYsIAxY8aQkZGBxWLhhhtuOGNsYGAgc+fOrVMOQgghhKcLCYuk94NfoGbksejHbezPLWHmV18SN38hsWPfJSaxldYpChdyqLE7cOAATZs25cYbb2TAgAFOuV/LaTfddBMAL7zwwhnvFxcXM2fOHA4ePIi/vz9XXXUVr7/+Oj///DO33HILS5Ysqfe2LRYLFoul6rXZbK76uabLqP/u9NjaxDgytrHztLXSOl9Xb9/Z89d3vvrE1yVW6tw1PG2ttM63Ntvv0TSEn+7rxwdLMrhs1eO0Lz1MyUcXsrLtg3S/ehL689waRercverckbkV1YF9s0VFRXz//fd8+eWX7Nu3jzFjxnDjjTfSpUuXOiVanYEDB3LPPfdU7YnbuHEjw4YNIycnp2rMAw88gL+/Py+//PI55ykvL+fyyy9n/fr19OjRg2nTptG/f/9qx06bNo3p06ef9X5aWhr+/v71/EZCCCGEtspPHqXDoU/orO4BYAct2drsVnzD5aECnqC0tJSUlBQKCwsJDg4+71iH9tgFBQUxbtw4xo0bx/Hjx5k1axZ33XUXJSUlfP3117U6VOuo4uLis75EcHBw1VW55+Lr68vChQtrtY0nnniCSZMmVb02m80kJiYCMGTIEIduaJienl6rGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vnWZft2222s/PEtOu18gw5KBq0PTmVtxY10vuFZfP0D6z2/s/N1Vrw31PnfjyTWpM4PNTOZTPj5+eHr60t5eTl2u72uU51XYGDgWV/IbDYTGBh4jgjHmUwmgoODz/gjhBBCeBOdXk/y6EkU3baUDf4XYVRsXJD1Ga+mpvJnxgmt0xNO4tChWIvFwk8//cQXX3zBxo0bueqqq0hJSXHqveL+eSi2uLiYiIgIDh06RExMDAADBgzgjjvu4JZbbnHadgFSU1NJTU3FZrOxZ88eORQrhBDCa1mOrMeUs4GJlnsAhd5RdkY1tRHo47zz54VzOHIo1qHGLjQ0lJiYGMaOHcuQIUMwVHPiZe/evR3PmFO7Mm02G0OHDuXOO+9kzJgx+Pj4oNPpGDNmDOHh4bz55pukp6czfvx4MjIyCAsLq9O2amI2mwkJCSEtLY1Ro0Z57K5bb+Fpa6V1vnIo1rWxUueu4WlrpXW+ztp+UXklry/cy5drMglSi/nW93kKut5DxyHjWLhokdS5m9S52WwmMjLS+efYhYaGYrFY+PTTT5k5c+ZZ98RRFIX9+/c7njGn7oc3c+ZMAJYtW8Ytt9zC4sWLGThwIO+99x7jxo0jIiKChIQEvvnmG5c1df9kNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+/C0tdI63/puP9xo5Pmru3BNz0S2f/kEbSyHYfOTbN31LZaEFKlzN6lzR+Z1qLE7ePCgo7nU2qeffsqnn35a7WdRUVHMmzfPZds+H0++PNpbeNpaaZ2v3O7EtbFS567haWuldb7O3n7n2EDaPvAKf84OpefBj+hs2UCrfdtY88UBul/3JEYfU73mlzqvH5fd7sTbyTl2QgghGrvywmzaHPiU7uqpBw7spSnrE2/DL7KFxpk1Xi47x66xkHPs3IunrZXW+co5dq6NlTp3DU9bK63zdfX2KywWfv1oGoMLviKUYr61DWBLzxd5eHArAk0OHexzSr6Nvc5ddo5dY+TJx+S9jaetldb5yjl2ro2VOncNT1srrfN16Xldzftj6fUgf37zFC9kj+TkqsOk78zh+ctbc2nnut3YWOq8bhyZt873sRNCCCGEdwuPiuWChz7nrdsGkxjuR1ZhGfZvxrHhlSvIPXZQ6/RENWSPXQ08+WRLb+Fpa6V1vnLxhGtjpc5dw9PWSut8G7rO+zUP5ZcJFzDr13Qu2boJQ4mdov/ry8r2D9HjqofQ6fUuzbex17lcPFFHcvGEEEIIcX7l+YfpfOgTOpABwDZasz3pVnzDEjTOzHvJxRP1JBdPuBdPWyut85WLJ1wbK3XuGp62Vlrnq3Wd2yor2fjD63TZ/TYBSjlWVc/auJvoPPZZfP0CnJ5vY69zuXjCiTz5ZEtv42lrpXW+cvGEa2Olzl3D09ZK63y1qnOj0Ui/lKc4fuQG9qbdT7fSP4k/+ivXfjCSZ65J5sJWkS7Jt7HWuVw8IYQQQgiXa5LQkm6P/cqGfu/yks8EdufbuPGj1Uz+ej0n87K1Tq9Rkj12NfDkky29haetldb5ysUTro2VOncNT1srrfN1tzrvPOgGXrigksiFe/liTSYBW2bCzu9Z3eVRul92D5U2W73ybex1LhdP1JFcPCGEEELUz0GzysUZL9KN3QBsVDqwt/k4TCGxGmfmueTiiXqSiyfci6etldb5an1SdUPP19hPqvYWnrZWWufr7nVurbCw6dt/033/f/BTKrCoRn4LuJIBd71KQEBQg+bjDXUuF084kSefbOltPG2ttM5XLp5wbazUuWt42lppna+71rnRaOSCcS9wdP9NnPhmAl3K13Nl6XccfHsNR0e+S8fkgQ2aT11j3aXO5eIJIYQQQmguvkV7Oj+2kNXdX+aEGkyC7SiPfLeDJ77fSmGpZ5xP6Wlkj50QQgghXEbR6egx8nbmlAVRWpLHzr3N2LnmMOk7jvPKAAMDLxqAopP9TM4ijV0NPPkqGm/haWuldb7udrWcq+dr7FfLeQtPWyut8/XEOjf6BXLtlVfT8mgRT8/ZgfHELi5a9BRb/uxB2LVvENusnUvy8YY6l6ti60iuihVCCCFcr9IO5owVpBR9jEmppEz14bfAa1BbDkWnl31O/yRXxdaTXBXrXjxtrbTO192vlnP2fI39ajlv4WlrpXW+3lLnmXu3UPrjQ3Sq2AJAhq45FcNfo1X3AU7LxxvqXK6KdSJPvorG23jaWmmdr7teLeeq+Rrr1XLextPWSut8Pb3OW3ToidruD9bMSaXN5pdoaT+A/ZfRrFh/I91ufZMgX+N54+uzbWfHyFWxQgghhGj0FJ2O3lc/gP2+NawNGYpOUVl8RGHI60uZv00eS+Yo2WMnhBBCCM2FR8cT/vBstqyYz5IVBrLzy7nni/Xc3rKQ2wb31Do9jyF77IQQQgjhNrpcOJx5D1/ChEta4q+zcmPmdEI/HYB93wJslZVap+f2pLETQgghhFvxNep5dFg75t7egQpTOAFKOVcXfUHmqxexb/NyrdNza3IotgaefN8bb+Fpa6V1vp54f6v6zNfY72/lLTxtrbTOt7HUeWLT5tgnL+bPH9+m0843aG3bh+37y1m54jra3/AiAUEhLtm2u9W53MeujuQ+dkIIIYR7qigpICYjjf62VQBkqRF8nTCN5tE1N3eeTu5jV09yHzv34mlrpXW+3nJ/q4aI94b7W3kLT1srrfNtzHW+e+Vcmiyfwu7KGG61PsbQDk14+rJ2xAT7Om3b7lbnch87J/Lk+954G09bK63z9fT7WzVkvNS5+/C0tdI638ZY590vvY6yviPYtmgLhlWFLNiRw/aMQ7zaPoPe105Gb6i+tfHkOpf72AkhhBDCa/kFBPHAlRcy98GL6N40lAdtn9Nv14tkvNSPjC1/ap2epqSxE0IIIYRHahcTzHf3XECzLhdRpPrRpnIPzb67jFXv30NJUaHW6WlCGjshhBBCeCydTqHvdY9iuXs16wMHYlDs9D3+FUWv9WTTollap9fgpLETQgghhMeLjGtGz0fmsHnAh2QRRQy5dFt2N9/83/MUVmidXcORxk4IIYQQXqProOsIeWQ9q2JuJFsNY8aRDrywSc8Xqw9js3v/jUDkqtgaePINDb2Fp62V1vk2lhuXOiPeG25c6i08ba20zlfq/PyMJn963v4Wuw4/SbN5B9hy1Mz0uTsJWfE8nYbeTvNOfZy2PblBsRuTGxQLIYQQ3sWuworjCrbM1bxheJdKVUe63whKW12FwWjSOr1akRsU15PcoNi9eNpaaZ1vY75xqdyg2HN52lppna/UueOxPTq3Jee7R+lZshSALKLIvug5Ol18bb22Jzco9jCefENDb+Npa6V1vo3xxqVyg2LP52lrpXW+Uue1F5PYksRHf2bTolk0WTaFWHKJXX4PGzZ9RWLK20TFJdVre3KDYiGEEEKIBtbt0huqLq6oVHX0KP6D7P+7hs/+POAVF1dIYyeEEEKIRsU/MIS+97zHodG/sNvQlhetN/DMTzu45v0/2XHMrHV69SKHYoUQQgjRKLXscgG2jqsYseYwW+fvZnNmAd++N4XB8RVURg3SOr06kcZOCCGEEI2WXq/jln5JDOsYw2s/rGDy/lkEHLdwLDudrSGV9BiSonWKDpFDsUIIIYRo9JoE+zJj3KXsHfA22UQSp+TRY8W9bHj1CnKPHdQ6vVqTxk4IIYQQ4i/dLr0Bv4mrmW8a+dfFFUvx/b++rP76JWyVlVqnVyNp7IQQQggh/sY/MARLhxvIuOon9hjaEKSU0WPHDB5I/Y7txwq1Tu+8pLETQgghhKhGi059afn4Sla3f5L3GMO8rECufHcFL87bSWm5Rev0qiWNnRBCCCHEOegNBvpc/y9umPwWl3WOxWZXWbHsd06+3JlNi2Zpnd5Z5KpYIYQQQogaNAn2JfXGHozedRzlm3eItx8nftndrN/wBRVxo7VOr4o0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3D09ZK63ylzl0be76Y/i3DKX3gC/78+hl6Z31Fz5JlvLHzYpIO5dOtWbjD+TmST20oqqp6/vMznCQ1NZXU1FRsNht79uwhLS0Nf39/rdMSQgghhBsqzz/MycxtzFSv4NEuNvQuOsGttLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tIjKWigu/nLeTay1z3d8FsNhMZGVmrxk4OxdbAaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlefeKlz9+Fpa6V1vlLnro2tbUyIj2t/F47MK1fFCiGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIRdPVOP0hcKlpaWYzWaHrqKpbYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWSut8pc5dG+tudW42m4H/9SfnI7c7qcaRI0dITEzUOg0hhBBCiCqZmZkkJCScd4w0dtWw2+0cO3aMQYMGsW7dOodie/Xqxdq1a2scZzabSUxMJDMzs8Z70ojar6u70DpfV2/f2fPXd776xNclVurcNbSuG0dpna/UuWtj3anOVVWlqKiIuLg4dLrzn0Unh2KrodPpSEhIwGAwOPxL0uv1DsUEBwfL/+HXgqPrqjWt83X19p09f33nq098XWKlzl1D67pxlNb5Sp27Ntbd6jwkJKRW4+TiifOYMGFCg8SImnnaumqdr6u37+z56ztffeKlzt2Hp62r1vlKnbs2Vuvfb13JoViNnH5sWW0eDyKE8ExS50J4P3erc9ljpxGTycTUqVMxmUxapyKEcBGpcyG8n7vVueyxE0IIIYTwErLHTgghhBDCS0hjJ4QQQgjhJaSxE0IIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQgghhPAS0tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF7CoHUCrpSbm8v48eNZvHgxiYmJvPfee1x66aU1xtntdo4dO0ZQUBCKojRApkIIIYQQ1VNVlaKiIuLi4tDpzr9PzqsbuwkTJhAXF0deXh4LFixgzJgxZGRkEBYWdt64Y8eOkZiY2EBZCiGEEELULDMzk4SEhPOOUVRVVRsonwZVXFxMREQEBw8eJDY2FoABAwZwxx13cMstt5w3trCwkNDQUD766COuuuoqjEZjrbZptVpZsGABQ4cOrTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6V1vlLnro11tzo3m80kJiZSUFBASEjIecd67R67vXv3EhISUtXUAXTt2pXt27efNdZisWCxWKpeFxUVAeDv74+fn1+tf1EGg6HWMY6Mbew8ba20ztfV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudVqBajV6WFeu8du2bJl3Hrrrezbt6/qvaeeeoqCggJSU1PPGDtt2jSmT59+1hxpaWn4+/u7PFchhBBCiHMpLS0lJSWFwsJCgoODzzvWa/fYBQYGYjabz3jPbDYTGBh41tgnnniCSZMmnTHu9Dl2Q4YMcWjXbXp6eq1iHBnb2HnaWmmdr6u37+z56ztffeLrEit17hqetlZa5yt17tpYd6vzf/Yz5+O1jV3r1q0pLCwkOzubmJgYADZv3swdd9xx1liTyYTJZKp2HqPR6PAvypGYuszfWHnaWmmdr6u37+z56ztffeKlzt2Hp62V1vlKnbs21l3q3JF5vfY+doGBgVx55ZVMnTqVsrIyfvrpJ7Zt28YVV1yhdWpCCCGEEC7htXvsAN577z3GjRtHREQECQkJfPPNNzXe6qShPP3TDpJ3fcf6wz+gmoLAFITONwS9XzAGvxAMwVGQ0JsgXwNBvkaCfBSP+q9YIYQQQjQ8r27soqKimDdvntZpVGvhzhzurVhJsxM51X5+wN6ESyreqHr9s8+TtFSyKFYCKNUFUK4PwmIIxGoMpsy3CataPkiwr5EQPyNJJZsJNKr4BUfiHxJBUFg0AYEhKDXc1FAIIYQQns2rGzt39siQ1qxZPoKjwXp01mJ0FcUYrEUYK4sx2UrIJoJok4liSyWlFTaCKcVfseCPBez5YAesQBkcKojm5sOXVc39s88UOukOnrE9q6qnSAnguK4JT0a+RaifkTB/Hy4tmUu4rhidfwTGoEh8giPxD4kmKLwJweHRmHzlqmAhhBDCU0hjp5HRPeKZl30pvUaOrPYQaxtgzV8/V9rsFJ9M5qg5j7Kik5QX5WMtOYm1pBB7WQHFNgPjQ5Mwl1kpLLNizmrKQauNQHsRwWoxPkolRsVGOGbMlX5sPFxQtZ1bfWbT+R9N4GkFagA91P8SHuhDRICJ2yq+IkY5gc0vEiUgAn1QNKbgaPzCmhAcGUdYTHN8DLJXUAghhNCKNHYewKDXERrZhNDIJuccM/iMVz9X/aTa7ZSVlVBUkEdJQQ7FpeX8n39bCkorOFlqJW/fSNYUH8JoOYmvtRB/WyFBdjPBajEn1UBKKmyU5JeRmV9GC59lp/YEFpy9/ULVnzaWjwj1NxIVaOJ++5fE605Q6RcJAdHog2PwDYslICKesCZNCY2MkefwCiGEEE4mjZ2XU3Q6/AKC8AsIgvjmAHT++4CL/11tnN1mI9xcyGKbiRPFFk6UVFC49z5WFhxEKc3DUJaPqeIE/pUFBNsKyFdP3R+woNRKQamVVj6r6Kg7BNXceses+tO28r9EB5toEuzLLZXfEqM3owbGYgiNwzc8nuDopkTGNcc/8PyPThFCCCHE/0hjJ6ql0+sJCQsnBGgeGXDqzY53n3N8hM3OhvJK8oot5BZZKN49mVUFB6HoOPqyXEyWEwRWnCDUnk+eGkSFzc6Rk2UcOVnGcz4L6aA7BNVcR3KUKG4P/S96i441tp0MqFxBhK+Cf1QzQmNbEBWXhNGn+nsQCiGEEI2NNHbCKXR6HeEBPoQH+NCmSRC0GnfOsYEVVlaUVpJdWE6OuZz8nbey8uR+DKXZ+JXnEGTNI8J2gkCljGK7iV3ZRYCO7Wsyucknlfa6zKq57KpCjhLGCWMs+QEtWd3xaRLD/EgI86eZXxlNomPQG+SvuRBCiMZB/sUTDc7Hx0i8j5H4UL9Tb3R+uNpx5oITGHJz+LAihPQV64hIbMWJPclsLwkjxJpDtD0PH6WSaPKJtuazO7+QtxftrYr/1edxopSjZOsiOekTS2lAIvawFvhEtyGsaQdiW3XF16hviK8shBBCNAhp7GpgtVodHlubGEfGNlZ+AcE0DQgm1mqldJ/KkIuTMA7+sOpzu81Gdu4x8o9lUHx8PydKK7neEE/myTKOniynSclJjIqNePU48ZbjYNkE+UAG7FsRR7uKV4kN8aVZuB/jbd8RHBiAKaolIYntiU1qj4/Jt055a/27dfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnXuyNyKqqqqyzLxMKmpqaSmpmKz2dizZw9paWn4+8t93DyV3W7HWnoSe0kuhtI8fC05hFRkE2nLYa89lgcrJvw1UmWL6Q6ClbKqWKuq54jShGx9HIdM7dgWPowYP5VoPzDJTj4hhBANqLS0lJSUFAoLCwkODj7vWGnsqmE2mwkJCSEtLY1Ro0bV+lFeVquV9PR0hgwZUmOMI2MbO1eslaqq5JdaOXSilMO5hcRveRcf80FCyw4TW3mUAKW8auwiW3dutz5a9Xq+3xQspnBKg1uhi+lIaPPuxLfqisnXz2X5OsLV23f2/PWdrz7xdYmVOncNT1srrfOVOndtrLvVudlsJjIyslaNnRyKrYHRaHT4F+VITF3mb6ycvVYxPj7EhAbQp2UU9H2z6n3Vbif76H5y92+h5OgOsiwh9LaEsy+3GEryaKfuh/L9UL7u1JW8W/7aw6dPYHv4EA53vBtzgUKvcjtx/tr9bl39d8vZ89d3vvrES527D09bK63zlTp3bay71Lkj80pjJ8Q/KDodMYmtiElsBVxDX+Cmvz47UWBmx85ZFB3ZATk7CCzcTWLFfoKVEprbD7EkO5MZR/YCer7Y+StLfB8hy9Sc4vDOmJr1JK7DhTRJaCnP7RVCCOES0tgJ4YCI0GAi+o0ARlS9p9rtZB/JIHvvevxKAhlR2IT1Gdk0rcgkkgIiLRshayNkfQar4AQhHPFrx+GkawnsehVdEkKICJR78QkhhKg/aeyEqCdFpyOmaWtimramGzDaamXevKNcMvA29mT04GTGepSsjUQUbqdZ5UEilEIiylbz/ZZ2zNwYD0C/4HweNX5DRWxPwjsMpHmnfnLjZSGEEA6Txk4IF/HzD6BNj4HQY2DVe+WlxezbvoqCfasxWbvQMjeAjNwSEkq20MO4FPYthX1vUDrHxG7f9hRFJxPY+iJadB9EQJA8Xk0IIcT5SWMnRAPy9Q+kXa/B0GswfYEngaJyK/t2RLJymy9+2WtpXrqFEKWETpZNkLkJMj/ijt8e5XjMQHolhXNhTCXdm0UQHh2v7ZcRQgjhdqSxE0JjQb5GuvfoAz36AKduvHxwz0aOb1uCLnMV8UWbWWtrTeHRQrYeLSTM8A2XGn4kQ9+CnOgLCGw/lNa9BuPrF6DxNxFCCKE1aeyEcDM6vZ6k9skktU+ueu/XgjLWHsxn3cGTtNlRDBXQ0raflln7IesLyhcZ2eLXhdKE/gRccDdyd0ohhGicpLETwgPEhfoxqls8o7rFw1XfkZedycG181D3/U6zwjVEK/l0KV9Pwd5d9NiWjL9Rz++lW7k6Oose3ZMJiWii9VcQQgjRAKSxE8IDRcYkEnnF3cDdqHY7h3ZvJGvjPDJzTmI6YaDYauenLcd4zDSRgGX5bDd1pqj5cJIuHENM09Zapy+EEMJFpLETwsMpOh3N2vekWfue9AVGlFn4YPZv6EOjqdgUiMGeR8eKzbB7M+x+mX36luQlDKFJ3+tJatcdRVG0/gpCCCGcRBq7GlitVofH1ibGkbGNnaetldb56lQbrUNUhgzugnHEOg4d3MnRVd8RejiddhU7aGXLoNWhDD7N2M+44HsZ0j6aIe2i6J4Ygk6vr3F+Z3+/+s5Xn/i6xEqdu4anrZXW+bp6+1Ln7lXnjsytqKqcZn1aamoqqamp2Gw29uzZQ1paGv7+/lqnJYTTVJSZUbI3kWhez9vlI1lh7whAD2UP7/q8y0b/CymJuQBTaKzGmQohhDittLSUlJQUCgsLCQ4OPu9YaeyqYTabCQkJIS0tjVGjRtX64btWq5X09HSGDBlSY4wjYxs7T1srrfOt7fZLLJUs23eChTtz6LXrZW5S5ld9ttvQhpMtr6LFwJsJizyzyXP296vvfPWJr0us1LlreNpaaZ2vq7cvde5edW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfOtafuhRiNXdEvgim4JlJd+zPrFs9Bv+4ZOpWtpW7kHds/Auus1tgf0Jm/Q6/Tv1haTQV/r+Z2dryvjpc7dh6etldb5unr7UufuUeeOzCuNnRACX/9Ael52B1x2B3nZmez7fSYRGT/Q2raPqJI9XP1tBkFzM7msSxwpHeQZtkII4a6ksRNCnCEyJpHIlCnAFA7tXM/qzVuJOeBPVmE5367Zz8ObH0TRRbFRyab78PEYfaTRE0IIdyGNnRDinE7fRmW0XWX1/hOsXvoroYeKiFYLYMNj5G74N/uaXU/rEfcTGZOodbpCCNHo6bROQAjh/vQ6hQtaRfLwbTdz4o51/Ox/DXmEEsVJ+h36gOD3u7Hu9WvZuW2D1qkKIUSjJo2dEMIhkTGJ2Ntehd8j21jXcwa7DW3xUSpJNqcz6ctVXP3eCuZsOkpFpV3rVIUQotGRQ7FCiDrxMfmSfMXdcMXd7NmwhH0rf2LfsSSshwvYeHgT2YHP061tK7pfOQEfk6/W6QohRKMgjZ0Qot7a9BhImx4D6VVk4as1h1mwcj3jrd9g2l5J1vb3yew8ge5X3CcXWgghhIvJoVghhNNEBZl48NLWfDvpcja2fZg8Qokll95bp5H7706s+e5NrBUWrdMUQgiv5fGN3UsvvYSiKKxatarqvfHjx2MymQgMDCQwMJCOHTtqmKEQjY+vfyB9U6YQ+Nh2VrWeTB6hxKk59N46lZx/d2Zh+jwqbXIOnhBCOJtHN3ZHjx4lLS2NmJiYsz6bPn06xcXFFBcXs337dg2yE0L4+gfS98ZnCHh0G6taT+IEIYTZC/jXogIuff0Pvl1/RBo8IYRwIo9u7CZPnsz06dMxmeS8HSHcmV9AEH1vnIrfI1tZ1ONdCIji0IlSHpm9mbmv3YHl2FatUxRCCK/gsRdPLFmyhLy8PK6++moefvjhsz5/5ZVXeOWVV2jbti0vvfQSAwYMOOdcFosFi+V/5/2Yzeaqn61Wa61zOj22NjGOjG3sPG2ttM7X1duvz/xGkz/DR17NgMGVfLkmk61L5zDG+hMchw1vrCDqmleJadamwfKpS6zUuWt42lppna8717kr5mvsde7I3IqqqqrLMnGRyspKevXqxeeff06nTp1ISkpi1qxZ9O3bF4CNGzeSlJREQEAAs2fP5r777mPbtm0kJlZ/Z/xp06Yxffr0s95PS0vD39/fpd9FiMas0lJKQMaPDC5fgEGxU64aWRhwOZYWl2Ew+midnhBCuIXS0lJSUlIoLCwkODj4vGPdsrEbOnQoS5curfazKVOmEBQUxL59+3jnnXcAzmrs/mn48OFcd9113HbbbdV+Xt0eu8TERNLS0hg1ahRGo7FWeVutVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/FarlZ+/+YSOx2bRqWILAMeUaLL6PE3nS65H0Z3/jJH65FOXWKlz1/C0tdI6X0+s8/rM19jr3Gw2ExkZWavGzi0PxS5YsOC8n1911VUsXbqU2bNnA5Cbm8tll13Gq6++yq233nrWeF0N/zCYTKZznqdnNBod/kU5ElOX+RsrT1srrfN19fadOb9vWAJtxi5k/aIvSFjzAnFqDvaV07nvaAuevLIbLaICXZqP1Ln78LS10jpfT6pzZ8zXWOvckXk98uKJTz/9lB07drBp0yY2bdpEXFwcn3/+Oddffz0A3333HSUlJVRWVvL111+zfPlyBg0apHHWQojzUXQ6eo68ncDJG1gZN44XbONZuLeQYW8u5eV52ykpKtA6RSGEcHtuuceuJqGhoWe81uv1hIeHV50P98Ybb3DbbbehKApt27blhx9+ICkpqeETFUI4LCAolH53vU1MXgllP29nye5czCs+omTNj+wf9DqdB1ytdYpCCOG2PLKx+6eDBw+e8Xr58uXaJCKEcJrmkQF8Mr4Xi3YcJ+67Z4i25xP9+3hWb51Ll/Fv4hcQpHWKQgjhdjzyUKwQonFQFIXBHWNoPnkJqyOvAaBP7rfkvNaXvZuWaZucEEK4IWnshBBuzy8giD73f8KWiz8mlzCa2Y+Q9MMoVn7yLyqtFVqnJ4QQbkMaOyGEx+hyybUY71/FhsABGBUbfQ7+H1P+8w25ZVpnJoQQ7sErzrETQjQeoZExdJ80h3Vz/48/12/iu+xofHJUTE2PcFO/JBRF0TpFIYTQTK0au2+++aZWk+n1ekaPHl2vhIQQoiaKTkfylfcSO6CMFV9vZPWBk3zy80LaLf+J5rekEhnTVOsUhRBCE7Vq7FJSUhgwYAA1PaRi7dq10tgJIRpMfKgfn41P5l8f/8qN2R/Rq3QXJz+4kK2XvEXni6/ROj0hhGhwtWrs/Pz8+P3332scFxYWVu+EhBDCETqdwiXxEHrhm2T8dC8tbQcI/v02Vh3eRJ8bp9X4SDIhhPAmtWrs9u/fX6vJ9uzZU69k3JHVanV4bG1iHBnb2HnaWmmdr6u37+z56zvf6bj41l2xT1zC6v/eS5+CefTNeIt1r2+h9e0f4R8Y4rRtS527hqetldb5NtY6r0u8N9S5I3Mrak3HVxuR1NRUUlNTsdls7Nmzh7S0tKqnWQghPINqV7EfWMQVhV9iVGzspSnrWj2Cf1Co1qkJIUSdlJaWkpKSQmFhIcHBwecd63BjN2LEiGqvOjOZTCQkJHD11Vd7/HNZzWYzISEhpKWlMWrUqFo/fNdqtZKens6QIUNqjHFkbGPnaWuldb6u3r6z56/vfOeK37X6N+IW3schexR3657l1Rt6ckHLiHpvW+rcNTxtrbTOV+rctbHuVudms5nIyMhaNXYO3+4kOTmZzz77jHHjxpGQkMCRI0f4/PPPueGGG1AUhbFjx/L444/z8MMP1/kLuBOj0ejwL8qRmLrM31h52lppna+rt+/s+es73z/jO190OdnN2vH299vJzYJbZ67nyRFtuf2iFmeddyd17j48ba20zrex17mrY92lzh2Z1+HG7tdff2XhwoW0bt266r2bb76ZsWPHsm7dOkaPHs2YMWO8prETQniumMRWfHBfc576YRvfbTiCdcE01q8ro9M9M/H1D9Q6PSGEcDqHLxfLyMggPj7+jPdiY2PZt28fAD169CA3N9c52QkhRD35GvW8OqYLr14axB36eSSbF3LktQFkH96rdWpCCOF0Djd2Q4cOZcyYMaxatYojR46watUqbrjhBoYPHw7AmjVraNasmdMTFUKIulIUhWuHDGDP0M85STCtbBmY/juI3WsXaJ2aEEI4lcON3ccff0zbtm0ZO3YsrVu3JiUlhbZt2/LRRx8BEB8fz5w5c5yeqBBC1FfHCy+j/NaF7NO3JAwzrX8bh+XIeq3TEkIIp3G4sQsMDOT111/nwIEDlJWVsX//fl577TUCA0+dr5KQkEDLli2dnqgQQjhDbLO2xE/6g43+F2BSrIzOeZt1P7ypdVpCCOEUdbol+y+//MKtt97K5ZdfDpx6lFh6erpTExNCCFfxCwii88NzWB12OXpF5etN+byRvqfGxyYKIYS7c7ixmzFjBo8//jjJycksX74cgKCgIKZMmeL05IQQwlUMRh+63/NfZoQ8w4/2i3hr0V6e/GEbNrs0d0IIz+VwY/fuu++Snp7OhAkTqm5U3LZtW/bulSvMhBCeRdHpaNuiFdOvaI+iwMI1W1j65jjKS4u1Tk0IIerE4fvY2Ww2QkJOPXfxdGNnNpurzrETQghPk9I7kSbBvjT59kq6m/ey8419xN07h5DwKK1TE0IIhzi8x+7qq6/mnnvuIS8vD4Di4mIeffRRRo8e7fTkhBCioQzvHIfP8Ocw409763ZOvjuI40cytE5LCCEc4vAeu1dffZXJkyfTrFkzysrKaNKkCePGjePFF190RX6as1qtDo+tTYwjYxs7T1srrfN19fadPX9956tP/D9j2yQP5qD/d5T/cCNJ9sNkfzSUjGtn0bRttzptT+u/C57E09ZK63ylzl0b62517sjcilqPy8Byc3OJjIysOiTr6VJTU0lNTcVms7Fnzx7S0tLw9/fXOi0hRAOzFOXRe98rJJFFoRrA/IRJ+Ea3rjlQCCFcoLS0lJSUFAoLCwkODj7v2Fo1dmvWrKnVhnv37l27DN2c2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7x54s9mZdN/sfX0q5yFzvVJPLGzqdvy0ipcxfxtLXSOl+pc9fGuludm81mIiMja9XY1epQ7PXXX1/1s6IoHDlyBEVRiIiI4MSJE6iqSkJCAvv3769f5m7IaDQ6/ItyJKYu8zdWnrZWWufr6u07e/76zlef+Opio2MTCXxoAYvfv5snT4wk/4tN/OeWZC5oHurw9rT+u+BJPG2ttM5X6ty1se5S547MW6vG7sCBA1U/T58+ndLSUqZNm4afnx9lZWVMnz6dgIAAxzMVQgg35h8YQr+HvqTDlxtYtCuHO2eu4/+uitU6LSGEOCeHr4p95513eOGFF/Dz8wPAz8+P5557jrfeesvpyQkhhNZ8jXrev6knwzvGMFj9k35zB2PJXKd1WkIIUS2HG7uwsDAWLVp0xntLliwhNDTUWTkJIYRb8THoeDelO+Mid+OrWLkm9102zvtI67SEEOIsDt/u5K233uK6666jT58+JCYmcvjwYdauXcuXX37pivyEEMItGPQ6kh9MY807N9K7cD7JG55grd1Kr6sf1Do1IYSo4vAeu5EjR5KRkcFNN91EmzZtuPnmm9m3bx+XXXaZK/ITQgi3oTcY6HrvTBYaB6FTVHptfprVs1/VOi0hhKji8B47gMjISG655RZn5yKEEG5Pp9dT3GEcK49G0C9vNn22P8cqazl9U6ZonZoQQtRuj93fb3dyPikpKfVKRgghPIGiU+h5ZyorY28CYNeOzXywZJ/GWQkhRC332P3000/Mnj2bmu5lPG/ePKckJYQQ7k7R6eh75zv8+E03pm+KQZ2/G0ulysTB8oQKIYR2atXY9enTh/fee69W4xrK119/zZQpU8jKymLQoEF8+umnhIeHA1BWVsadd97JnDlzCAsL4+WXX2bs2LENlpsQonFQdDquuuFOjjbZxyu/7ebdhTtofXweI8Y+gKJz+BRmIYSot1o1dkuWLHFxGo7ZuXMnd999NwsXLqRr165MmjSJCRMm8NVXXwEwdepU8vPzOXr0KNu2bWPkyJH07NmTNm3aaJy5EMIbTbikFT46SFx4D8P3rmXlx/vpe/sbWqclhGiEPPI/KRcuXMiwYcNITk7GaDTy5JNP8t1331FSUgLA559/ztSpUwkODuaCCy7gyiuvZNasWRpnLYTwZnde3IrQdgMA6Hf0U1Z/+CCq3a5xVkKIxqZOV8W6g7+f76eqKlarlb1799KsWTOys7Pp3Llz1eddu3ZlzZo155zLYrFgsViqXpvN5qqfrVZrrXM6PbY2MY6Mbew8ba20ztfV23f2/PWdrz7xdYk9X0zP655g5Ww9/fbMoG/W5/z5sRU1doTH/N3VktZ14yit85U6d22su/177sjcilrTFRFuaMeOHfTr14/09HS6du3KI488QmpqKsuXLycxMZHmzZtTWVlZNf7DDz/kxx9/5Jdffql2vmnTpjF9+vSz3k9LS8Pf399l30MI4Z1sGYu4xjwTgN9MwylrNxZFp2iclRDCU5WWlpKSkkJhYSHBwcHnHeuWe+yGDh3K0qVLq/1sypQpTJkyhffff59x48Zx4sQJJk6cSFBQEPHx8QQGBmKz2SgtLa1qysxmM4GBgefc3hNPPMGkSZOqXpvNZhITEwEYMmQIRqOxVnlbrVbS09NrFePI2MbO09ZK63xdvX1nz1/f+eoTX5fY2sWMZOX3CfTb+QLDLPNZeiyMvne+jaJIc3cuWteNo7TOV+rctbHu9u/5348k1sThxq6srIxnnnmG2bNnk5+fj9ls5rfffmPnzp089NBDjk5XrQULFtQ4JiUlpeq+efv27eOdd94hISEBvV5PTEwMW7durbpKd/PmzXTs2PGcc5lMJkwmU7WfGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE++KOu93/WOsmq2n07YZvHukFQt/3cP0KztKc1cDrevGUVrnK3Xu2lh3+ffckXkdvnjivvvuIysri7lz56LX6wHo0qULH3zwgaNT1cuGDRuw2+0cPXqUu+++m8cff7wqn5tuuonnnnuOoqIiVq1axU8//VTrmywLIYSz9LzqQd6MfZW1tOezlYeY8uM27HaPO/tFCOFBHG7sfvnlFz7++GM6depU9V+esbGxZGVlOT2587n33nsJDg4mOTmZAQMGMHHixKrPnn32WUJCQoiNjWXMmDG89957tG3btkHzE0IIgM6xwbx0dUcUBdavWc7y9+7BbrNpnZYQwks5fCg2NDSU3NxcEhISqt47cOAAcXFxTk2sJqtXrz7nZ35+fnz55ZcNmI0QQpzbNd3j8VMs9J17H9F5Bax5x0zP+z9Hb3DL05yFEB7M4T12EydO5IorruDbb7/FZrMxd+5cxo4d67Tz64QQwhtd2asth3s9hU1V6F0wj41vXYe1wlJzoBBCOMDh/1ycMGEC0dHRfPzxxyQkJPD222/z8MMPyzlsQghRg+TL72K9zkiX1ZNJLlrExjevov0D3+LrF6B1akIIL1Gn4wBjxoxhzJgxzs5FCCG8Xs+Rt7LZ1492f9xP99I/2frmZbR8YA7+gSFapyaE8AIOH4p988032bx5M3DqPLfWrVvTrl07Vq5c6fTkhBDCG3UddAN7h35CqWqis2UjC997CHO5ZzxxQQjh3hxu7GbMmEFSUhIAkydP5qGHHuKJJ57gwQcfdHZuQgjhtTpdeAWHr/iKZXTn8fzLSflwFfklFVqnJYTwcA43dsXFxYSEhHDy5El27tzJvffey7hx49izZ48r8hNCCK/VLvlSwu+ag19AMNuOmrn+gz/Jzc3VOi0hhAdzuLFr1aoVs2bN4u2332bw4MHodDry8/Px8fFxRX5CCOHVOsaF8PXd/YgJ9mVo/pdY3ruIrEO7tU5LCOGhHL544v333+ehhx7Cx8eHjz76CID58+czbNgwpyfnDqzW2p/3cnpsbWIcGdvYedpaaZ2vq7fv7PnrO1994usS64o6bxZm4qtb2uHz8R/Eq8c5/skIDlz/LQmtOtc6L0+ndd04Sut8pc5dG+tu/547Mreiqqo83+YvqamppKamYrPZ2LNnD2lpafj7+2udlhCikagozid57wyac4wTajALkx7DN7yp1mkJITRWWlpKSkoKhYWFBAcHn3dsnRq7zZs3s2LFCk6cOMHfw5955hnHs3VDZrOZkJAQ0tLSGDVqVK0fvmu1WklPT2fIkCE1xjgytrHztLXSOl9Xb9/Z89d3vvrE1yXW1XWen5tF0cejaGXbTyEBHBn2CW2SB9Uq1pNpXTeO0jpfqXPXxrrbv+dms5nIyMhaNXYOH4p99913mTJlCiNHjuSHH37g6quv5pdffmHUqFF1TtidGY1Gh39RjsTUZf7GytPWSut8Xb19Z89f3/nqE+9Odd4krim+96ezK/Vy2lXuxHf+jWw5+Qo9R97qUH6eSuu6cZTW+UqduzbWXf49d2Rehy+eeO211/j9999JS0vDZDKRlpbG3LlzKSsrc3QqIYQQ1QgJi6TpQ7+x0f8CTIqVWSt28MEfGciZM0KImji8xy4/P58ePXoA4OPjQ0VFBf379+fyyy93enJCCNFY+QeG0GXSz3z51SfM3h4Hv+4iM7+U6Vd2xKB3+L/JhRCNhMP/79C2bVs2bdoEQLdu3Xj55Zd5++23iYqKcnZuQgjRqOkNBm68+U6eubwDigLzV29l2Rs3UWw+qXVqQgg35fAeu7fffhu73Q6cerzY/fffT1FREf/5z3+cnpwQQgi47aLmxIf6Ejx7NP2Kt5Px1k5Kb/ue6PjmWqcmhHAzDjd2ffv2rfq5Q4cO/P77705NSAghxNmGdYplT8WLnPjpFlra9nP8w0vZf+1XtOjUR+vUhBBuxOHGDuDw4cNs27aN4uLiM96/7rrrnJKUEEKIs7XpMZBjYQs49PlomtmPUDx7FFtPvEfni6/ROjUhhJtwuLGbMWMG06ZNo3PnzmfcvFdRFGnshBDCxeKat6Pw/iVs/+AaOlZsof3vt7M6L5M+oydqnZoQwg043Ni9+uqrrF27lo4dO7oiHyGEEDUICY/Cd9JvrHvvFpLN6URufp+XjP2ZfFk3jHLFrBCNmsP/DxAYGEjLli1dkYsQQohaMvn60/Ohb1jW9D5usz7KB39mMfY/q8guLNc6NSGEhmrV2OXk5FT9eeKJJ7jjjjvYvn37Ge/n5OS4OlchhBB/o+h09L/t3zxx40iCTAbWHTrJp28+xbalP2qdmhBCI7U6FBsTE4OiKGfc9TwtLe2MMYqiYLPZnJudG7BarQ6PrU2MI2MbO09bK63zdfX2nT1/feerT3xdYt2xzi9tG8kP9/Yl9YuveaTov+gWfcyfe++gZ8pz6Ax1ukauwWldN47SOl+pc9fGuludOzK3osozaqqkpqaSmpqKzWZjz549pKWlnXGBiBBCuLNKawWhu7/kUutiANYrnTnQ9m6Mfud/aLgQwr2VlpaSkpJCYWEhwcHnr+daN3aqqvLhhx+ybds2unXrxm233eaUZN2R2WwmJCSEtLQ0Ro0aVeuH71qtVtLT0xkyZEiNMY6Mbew8ba20ztfV23f2/PWdrz7xdYn1hDrf8PMHdNn8LH5KBTmEkzvsA9okD2qw7deF1nXjKK3zlTp3bay71bnZbCYyMrJWjV2t99FPnjyZr776iv79+/PUU0+xf/9+nn/++Xon6+6MRqPDvyhHYuoyf2PlaWuldb6u3r6z56/vfPWJ97Y673PNAxxo1xf9t+Noaj9K2PyxrDvwCH3HPoGiKA2WR11oXTeO0jpfqXPXxrpLnTsyb62viv3mm29YunQp33zzDYsXL2bWrFl1Sk4IIYTrNe/Qi/CHVrA+6BKMio1ft2dz35cbMJd7xjlsQoi6qXVjZzabad26NQDt2rUjPz/fZUkJIYSov8DgMHo8/D0Le6TyFcP4dVs2I95cxoptGVqnJoRwkVofirXZbKxdu7bqyth/vgbo3bu38zMUQghRZ4pOx+Arb+Lb7gXc/9UGTuafIGn2HaxZ2Ie2494hJCxS6xSFEE5U68YuKirqjEeGhYeHn/FaURT279/v3OyEEEI4RdfEUOZPHMC8We8Rf+AE8QXzyHlrFZsuepFug8dqnZ4Qwklq3dgdPHjQhWkIIYRwtQCTgTHjHmTn6jYEzn+YRPUY0cvvYd2Wb2l587uERcVqnaIQop7koYJCCNHItO8znKhH17Iq9kZsqkKyeSFqam/Wz/sEubWpEJ5NGjshhGiEfP0D6Xv3e2SMmsNBXVPCMZO18ivu/WIDOUXyvFkhPJU0dkII0Yi16XExsY+tZkXTe3jONp7527MZ8vpSfli5A7sXPiZSCG/nto1dZWUlo0ePJj4+HkVRyM7OPuPzqVOnkpiYSHBwMK1bt+aTTz6p+mzJkiXodDoCAwOr/ixbtqyhv4IQQngEk68/F972Mv+9/zI6xgVTWGbFf94DZLzYh+0rf9U6PSGEA9y2sQMYMGAA3333XbWf3XTTTezatQuz2cy8efN46qmn2L59e9Xnbdq0obi4uOpP//79GyptIYTwSB3jQvhxwoU8OyiCC3XbaW3bS8ffbmDjjJFk7t2sdXpCiFpw28bOYDAwceJE+vbtW+3nrVu3JiAgoOq13W7n0KFDDZWeEEJ4JaNexy1D+2K5bx2rI66iUtXRvXQFMV9cwqrUOziZl13zJEIIzdT6difu6KWXXuK5556jtLSU3r17M2jQ/x5yffDgQaKjowkJCeHmm2/mqaeeQq/XVzuPxWLBYrFUvTabzVU/W621f/zO6bG1iXFkbGPnaWuldb6u3r6z56/vfPWJr0tsY6nz4PAm9LjnIw7u3kjx3Cl0K19N39zZmN/9he+6v8ewoSMxGZy3b8DT1krrfKXOXRvrbnXuyNyK6gHXtiuKQlZWFjExMWd9pqoqa9asYeHChfzrX//CYDCQnZ1NQUEBbdq0YdeuXVx33XXcfvvtPPzww9XOP23aNKZPn37W+2lpafj7+zv9+wghhKcpy95Bz6w0/NRSLrW8SoDJyJVN7XSLUFEUrbMTwruVlpaSkpJCYWEhwcHB5x2rWWM3dOhQli5dWu1nU6ZMYcqUKVWvz9fYnXb//ffTuXNn7r777rM+mzVrFu+99945t1fdHrvExETS0tIYNWoURqOxVt/JarWSnp7OkCFDaoxxZGxj52lrpXW+rt6+s+ev73z1ia9LbGOuc1tlJQtWref5P8vJKbKgw86HIZ8QlnwtnQaMRtHVfQ+ep62V1vlKnbs21t3q3Gw2ExkZWavGTrNDsQsWLHDqfHa7nYyM6h9sravh/2xMJhMmk6naz4xGo8O/KEdi6jJ/Y+Vpa6V1vq7evrPnr+989YmXOq8do9HIlZdcxOALK/nP0v3kLv2YSy2LYMUiMlbN4GSPCXQfdit6Q93/afG0tdI6X6lz18a6S507Mq/bXjwBp/aklZeXn/UzwEcffURBQQF2u50//viDL7/8koEDBwKnbneSmZkJwN69e3n++ee5/PLLGzx/IYTwRv4+Bh4a3IaH77mPVTE3UqqaaGk7QPLaR8h6oSOrv30dS3mp1mkK0Si5dWPXtm1b/Pz8AEhKSqr6GWDevHm0bNmSkJAQ7rvvPl555RVGjhwJwPr16+nbty8BAQEMHTqUq666ikmTJmnyHYQQwltFxjWj7z3vYX1wKyub3s1JgkhQs+mzbTqFL3Xki4VrKbFUap2mEI2KW18Ve/DgwXN+9v3335/zs8mTJzN58mQXZCSEEOKfQiKa0O+2GZQWP8Wqn96mxZ7/ctAexZSFObyy4nfGX5DE+D5xhAUHap2qEF7PrffYCSGE8Bz+gSH0TXmakMe3kz34XZpHBlBYZuWzReuxvdaBNW/dyN6N1V/EJoRwDrfeYyeEEMLzmHz9uXJAby67SOXXbVkc/vVNIssKiTw5F+bMZd/clpxodyOdht1GQHCY1ukK4VVkj50QQgiX0OsULu8Sx72PvsSOYbNYFzyYCtVAK1sGfbY/C6+1Y/U7t7Brz26tUxXCa8geOyGEEC6l6HR06DcC+o3gZG4WG377gPiMb0jkGN3yfqHff0eQkJBDR5PCwIpKQjzodidCuBtp7IQQQjSYsKhY+t40HdU+lW1//sKOzaspOhbCliNmtqBn6IzLCAiPwa/79XS4YCR6gzR5QjhCGjshhBANTtHp6HTRFXS66AoGFVuYtfoQi5cu4RJlPZwEfv+FE7+HsC9yMCG9bqBN8qXozvG8byHE/0hjJ4QQQlORgSbuHtCcePN2tkZ+Tummb2lz4nciKCQi7zv49Tuyf41kbYsJNL/0djrGBaPIA2qFqJY0djWwWq0Oj61NjCNjGztPWyut83X19p09f33nq098XWKlzl3DarWi0+lo2XMwxr4jsFZY2LhyLpVbvqN94TJilDzm7zrJLzuWkxThz3VtjQxOhKQOver1jNr65Pv3//W27Uudu1edOzK3oqqq6rJMPExqaiqpqanYbDb27NlDWloa/v7+WqclhBCNmq2ygsqsLXxX2oUNJ/2wqgoP6L9nsvFbstQItpm6kR/aDUN0ewxGH63TFcLpSktLSUlJobCwkODg4POOlcauGmazmZCQENLS0hg1alStH75rtVpJT09nyJAhNcY4Mrax87S10jpfV2/f2fPXd776xNclVurcNWq7VsWWSn7flUvQ0qn0L5yLn1JR9VmZ6sMu/x6UNx9MwoBxxES47h55Wv9upc5dG+tudW42m4mMjKxVYyeHYmtgNBod/kU5ElOX+RsrT1srrfN19fadPX9956tPvNS5+6hprcKMRkYnN4XkTygvLWbzqnmUb/+FZieWE6Pk0b1sFebtm+mxoQ1tYsO5tH00Q+PKaNemPUYfU4Pn62pS566NdZc6d2ReaeyEEEJ4JF//QLoOug4GXYdqt7N/x1py1s3hUM5JbBUGdmSZ2ZFl5jqfiVQoRezw70JZ/IVEdh5Ci0595Spb4ZWksRNCCOHxFJ2OFp360KJTH/oCg4stLNmdy+rtewnaX0YA5XQtWwP71sC+Nyj8IYD9Ad0xt7yCuAtvpFV0oFxpK7yCNHZCCCG8TkSgidE9ExjdMwG77TAZ29eQu3UBfkdW0LJ0CyFKCd1LlvPpBn/GrUkkMtBE/yR/rtcvJqJdf5I69nHJoVshXE0aOyGEEF5Np9fTsks/WnbpB0CltYLdm5eTv30hh4tb4putI6/YwtHtm+hrmgG7Z1D2ow97TW0pjOiOX4t+NO16MeHR8Rp/EyFqJo2dEEKIRsVg9KFt8iBIHkQ/4F+VNjYeLiBzcxmb9/QmqWw7IUoJHSq2QtZWyPoMVsDLPhM43vI6ujcLo2OEDltlRY3bEqKhSWMnhBCiUTMZ9PRtEUHfFtcC12K32Ti0byvHty+FzNVEFW6huf0wfxY1YfPGo3y/8SjX6RfzguG/HN7+AieC26PGdCGkZS+adeiDX0CQ1l9JNGLS2AkhhBB/o9Prada2G83adqt6rzA/j0nHK1h/pJhNmQV0PpyFERst7QdoWXAACubBLrDNVTioT+SbpOlEtuhOu9gg2kX7Ex4kN7sXDUMaOyGEEKIGIeGRXBwOF7c/9brC8l+++fZLWobrsR7djN+JrSSU7SFCKSDJfphZOyzk79gBwOOGr7jWsIxsU3OKQ9qgb9KBkObdSGjTDf/AUO2+lPBK0tgJIYQQDlJ0OkyBEXQZPBKjcVzV+3nHDpK5ax3j7F3ZdqyQ3dlFtC06TCQFRFo2Qs5GyAG2nhp/VGnCK03fJy42nhZRgbTzN5MYE01IWKQ2X0x4PGnshBBCCCeJjEsiMi6J7n97r6SoO3v2bqLgwCbsx3cQWLibGMtBIikgyF7Ej7vLYHcGAP9nfJ1O+nXkEcpxn0SKA5ujRrTGL7YdUUmdaNKsHXq9TpsvJzyCNHY1sFqtDo+tTYwjYxs7T1srrfN19fadPX9956tPfF1ipc5dw9PWypF8fXwDaN75Quh84RnvH8/N4uihPUyxJrE/r4T9uSVEZpeByqk9fBUFkL8V8oG9UPaHD+0rPyE+NICEMF8uPvEHawo34tukFSHxbYhp2gaTX0CDf7+GmK+x17kjcyuqqqouy8TDpKamkpqais1mY8+ePaSlpeHvLye8CiGEaDiVljIqi7LQFWfjV55FWEUWTWxZFNlNXF3xbNW4X33+RXtdZtVru6qQQxjHdU04Zkjkp5CbCfeFcB+VWEMRfn7+6HTyGDVPVFpaSkpKCoWFhQQHB593rDR21TCbzYSEhJCWlsaoUaNq/fBdq9VKeno6Q4YMqTHGkbGNnaetldb5unr7zp6/vvPVJ74usVLnruFpa6VFvjabneNFFg7nl3Egt4jgFS+SqOQQYjlKk8osgpSyqrG77QkMq5hR9fpXn8dprRwhV4ngpLEJJX5xWIMS0IUl4hPVAt9WFxMb4kugyeCS7yd1Xj9ms5nIyMhaNXZyKLYGRqPR4V+UIzF1mb+x8rS10jpfV2/f2fPXd776xEuduw9PW6uGzNdohGa+JppFBdO3RTjzToyiy8iRGI1GVLud/Lwscg7vovjYXvJKrFxvTORoQRlHTpYSXVyAQbETSy6x1lywbgMzcBR22RMZ/uvLAASZDLxvfJ1gvZUgeyCbcv7AEJaAKSKRwMhEwpo0JTQyFp2ubs/VlTqvG0fmlcZOCCGE8HCKTkd4dPxfjz27FIDhf/vcbjtI7vFMThzdR/Hx/VhPHEJnPoJvyVEO2yMJ0RspLLNSZKmkM1sIqSw9FXj0Dzj6v3l22pvSu/JlooJMRAf7MtHyHwKMYA+IQR8SgyksFv/weIIj4wiLisfH5NtgayBOkcZOCCGE8HI6vZ6ouCSi4pLO+qwrcAVQYqkku7CMzN0fsCv3EMf3bSbatwK/suMEVuQQassnWw2j0q6SVVhOVmE5PU0LCFFK4cTZ29xub8ZY3StEBpmICPDhlrwvWH/4RwiMRhcUjTG4CX4h0QSENyE4Io6g0Mg67wkU/yONnRBCCCEIMBloGR0E0aOwWq3MmzePnn8d6j3tokobK0sqOG62kFNYxq4dD6Oas9GVHMdUnkNAxQmCbScJUwvJU0Mwl1diLq9kf24JH5uWE3yi+iZwqz2Jqyr/TZi/D+EBRp6peAN/vR2rKQzVLwK7XyjWvGK2/VGKb0QivondCfM3EuRrRC/N4BmksRNCCCFErRgNemJD/IgN8YPEUOj0WLXj7DYbXcxm0isM5BVXcLyghEVLrqFJoB5DeR4+5Sfws54k0FZAiN1MvhqMza6SV2whr9hCF9NqgpVSKP7HxMths70FIyqeB0BR4BfTUwQr5ZTqgyg3BGM1BlPpE4zdN5SKoKYcTbqGfScUwvafIKbyGIEBAQSERBAYFIre4H1tkPd9IyGEEEJoSqfXExYWRhjQuglYrcHMOzKUXv/YA3ha34oKVpfbOVFcwcnSCvbsfhZbUS72khPoyvLRl59EKcklRFfGMX0igYqBYkslqgoJ6nGCKYXKLKgEyv837yZ7C8Ztagfo+e+e9SzzmUicLrfq82LVjxLFnzJdAEeMzfk4ZgpBvkYCfHR0yUhnbf4q9P4h6HyDMfgFY/QPxhQQiikoHN8mrQgyGdHjXjcXkcZOCCGEEJoy+fjQxAeaBP91sUWrO8/4/PSh4S4jR9LKaGQEUFFpp7DMyskjczlqzqO8MBdryUnspSehrADFUkiOEsFA30gOZeWi8w2kssiHctWIr3Lqhr+BShmBlIH9BIVlBhbv/l/Td5/PfBJLc6nOfnsMvSteB0CngEmn54KBVqJCtL+iWxo7IYQQQngcH4OOqCATtO953nHD/2oKR468EKNxBwCW8lKKC/MpLTpJeVE+5UUFlNl0zAjsgrncSkGJhY0b+5HlZ8VgLcFYWYyPrRSTvQQ/eyknlHAUBVQV7CqU2RT8fNzj5s/S2AkhhBCiUTH5+mPy9SeiScIZ7/f963+tVivzLNfS/RyHjpsAGXaVMquNk8VlzEv/HZPBPZ7h6x5ZVKOyspLRo0cTHx+PoihkZ2ef8fmBAwcYOnQooaGhxMfH8+9///uMzz/99FMSEhIIDg7m1ltvpaKioiHTF0IIIYQX0+kUAkwGmgT70sRP62z+x20bO4ABAwbw3XffVfvZAw88QIsWLcjNzWX58uW88847LFq0CICtW7cyadIkfvzxRzIzMzl48CDPP/98Q6YuhBBCCNHg3LaxMxgMTJw4kb59+1b7+aFDh7j++usxGo00b96ciy66iB07Th07T0tL4/rrryc5OZmQkBCefvppvvjii4ZMXwghhBCiwXnsOXYTJkxg1qxZXHDBBRw+fJhVq1bx9NNPA7Bjxw6GDRtWNbZr164cOHCAsrIy/PzO3l9qsViwWCxVr81mc9XPVqu11jmdHlubGEfGNnaetlZa5+vq7Tt7/vrOV5/4usRKnbuGp62V1vlKnbs21t3q3JG5FVVV3esGLNVQFIWsrCxiYmKq3tuyZQs33XQTO3bswGazMW3aNKZOnQrApZdeyq233spNN90EnFoQHx8fcnJyiIqKOmv+adOmMX369LPeT0tLw9/f30XfSgghhBCiZqWlpaSkpFBYWEhwcPB5x2q2x27o0KEsXbq02s+mTJnClClTzhlrs9kYOXIk//rXv7j33ns5cuQIl19+OR07duTaa68lMDDwjL1up38ODAysdr4nnniCSZMmVb0uLCykadOmlJaWcskll1R7RUx1rFYrixcvrlWMI2MbO09bK63zdfX2nT1/feerT3xdYqXOXcPT1krrfKXOXRvrbnVeVFQEQG32xWnW2C1YsKDOsfn5+Rw7dox7770Xg8FAUlISV111FYsXL+baa6+lQ4cObN26tWr85s2bad68ebWHYQFMJhMmk6nq9elG8I477qhzjkIIIYQQzlRUVERISMh5x7j1OXYWi6WqO7VYLJSXl+Pr60tUVBSJiYl8+OGH3H333Rw7dow5c+YwYcIEAFJSUhg4cCB33nknLVu25IUXXqg6LFsbcXFxZGZmMmjQINatW+dQzr169WLt2rU1jjObzSQmJpKZmVnjblVR+3V1F1rn6+rtO3v++s5Xn/i6xEqdu4bWdeMorfOVOndtrDvVuaqqFBUVERcXV+NYt27s2rZty6FDhwBISkoC/rcb8ttvv2XixIk8/vjj+Pv7c/3113PnnaceQdK5c2dee+01rrjiCsxmM6NHj+app56q9XZ1Oh0JCQkYDAaHf0l6vd6hmODgYPk//FpwdF21pnW+rt6+s+ev73z1ia9LrNS5a2hdN47SOl+pc9fGulud17Sn7jS3buwOHjx4zs969erFn3/+ec7Px48fz/jx4+u1/dN7AF0dI2rmaeuqdb6u3r6z56/vfPWJlzp3H562rlrnK3Xu2litf7915RFXxXojs9lMSEhIra5wEUJ4JqlzIbyfu9W5296g2NuZTCamTp16xkUbQgjvInUuhPdztzqXPXZCCCGEEF5C9tgJIYQQQngJaeyEEEIIIbyENHZCCCGEEF5CGjshhBBCCC8hjZ0b++OPP+jXrx8XXXTRGc+yFUJ4j8zMTHr06IGvry+VlZVapyOEcJJJkybRv39/HnzwwQbdrjR2bqxVq1YsWbKE5cuXk52dfcbzb4UQ3iEqKorff/+dvn37ap2KEMJJNmzYQHFxMcuWLcNqtTboo+eksXNj8fHxVffFMRqN6PV6jTMSQjibr68voaGhWqchhHCilStXMnjwYAAGDx7MqlWrGmzb0tg50dSpU+nQoQM6nY5Zs2ad8Vlubi6XXXYZ/v7+tG3blkWLFtV63g0bNpCXl0eHDh2cnbIQwkGuqnMhhHuqS80XFBRUPYUiJCSEkydPNli+bv2sWE/TunVr3nrrLZ5++umzPpswYQJxcXHk5eWxYMECxowZQ0ZGBhaLhRtuuOGMsYGBgcydOxeA7OxsHnzwQb777rsG+Q5CiPNzRZ0LIdxXXWo+NDQUs9kMnHrkWIPulVeF01188cXqV199VfW6qKhI9fHxUY8dO1b1Xv/+/dWZM2eed56ysjL1kksuUTds2OCyXIUQdeOsOv/7fFar1el5CiGcw5GaX79+vXrXXXepqqqq9957r7p69eoGy1MOxTaAvXv3EhISQmxsbNV7Xbt2Zfv27eeN++STT9ixYwcPP/wwAwcOZOXKla5OVQhRR3Wt8/LycgYPHszmzZsZNmwYy5Ytc3WqQggnOF/N9+jRAz8/P/r3749Op6N3794Nlpccim0AxcXFVcfaTwsODqagoOC8cffeey/33nuvCzMTQjhLXevc19eXhQsXujAzIYQr1FTzb775ZsMnhVw80SACAwOrjrWfZjabCQwM1CgjIYSzSZ0L0bi4a81LY9cAWrduTWFhIdnZ2VXvbd68mY4dO2qYlRDCmaTOhWhc3LXmpbFzIqvVSnl5OXa7/YyfAwMDufLKK5k6dSplZWX89NNPbNu2jSuuuELrlIUQDpI6F6Jx8biab7DLNBqBcePGqcAZfxYvXqyqqqrm5OSoI0aMUP38/NTWrVur6enp2iYrhKgTqXMhGhdPq3lFVVVVm5ZSCCGEEEI4kxyKFUIIIYTwEtLYCSGEEEJ4CWnshBBCCCG8hDR2QgghhBBeQho7IYQQQggvIY2dEEIIIYSXkMZOCCGEEMJLSGMnhBBCCOElpLETQggNTZs2DaPRSExMjNPmHDhwILNmzXLafP/0+uuvExAQgK+vr8u2IYSoG2nshBCaS0pKwt/fn8DAQAIDA0lKStI6pQZ1++23n/EgcVfo1KkTBw8edMpckyZNYvv27U6ZSwjhXNLYCSHcwu+//05xcTHFxcXVNiBWq7Xhk3IDzvjeR44cobKystE1zEI0RtLYCSHc0pIlS2jXrh1PPfUUkZGRvPjii5SVlXH//fcTFxdHQkICL7/8ctX4kpISUlJSCA0NpUePHjz55JMMHz78jLn+TlGUqr1k+fn5pKSkEB0dTYsWLZg5c2bVuIEDB/Lss8+SnJxMcHAwY8eOpaKiourzr7/+mk6dOhEUFETnzp3ZvXs3L7zwArfeeusZ27vwwgv5/vvva/Xdk5KSmDFjBm3btqVDhw4A3HfffcTFxREaGsrQoUM5fPhw1fi1a9fSpUsXgoODufvuu7Hb7WfM99tvvzFs2LCq7zN9+nS6d+9OYGAgjz76KPv27aNXr16EhobyyCOPVMXNnTuX/2/njkKa7OI4jn9nLW3ZtrSk6ZYmYl5oXUSKFhRBEnUTkUKmKaIXKwsDQY1SIq1uIhNCBmVmpIZaUiiCeCFakkGQiUspQg1mxmhz6lAr34t4H7J631fLN238P1fPs/Oc/3POrn6cs7NNmzaxevVqTCYT1dXVcxq/EGLxSLATQixZr169QqPRYLPZyM3NJScnB6fTSX9/P11dXVRWVvLw4UMAzp07h91uZ3BwkKqqKm7fvj3n96SkpGAymRgaGqKpqYn8/HyeP3+utNfW1nLv3j0GBwfp7u7m7t27ADx69IisrCwsFgtOp5Pa2lq0Wi1HjhyhoaGByclJAAYGBujt7WXfvn1zHlNDQwPt7e28ePECgB07dmC1WhkeHsZoNHLy5EkApqamOHjwICdOnMButxMZGcnjx49n1WpublaCHUB9fT2NjY309PRQVlaG2Wzm/v379PT0cP36dWXuGRkZlJeX43K5ePr0KVu2bJnz+IUQi0OCnRBiSdizZw96vR69Xk9+fj4AGo2GvLw81Go13t7e3Lx5k8uXL+Pr60tgYCBms5m6ujrgS/g6e/YsWq2WiIgIUlNT5/Te4eFh2tvbuXDhAt7e3kRERJCUlDRrdS0zM5MNGzag1+vZv3+/EnwqKiowm81s374dLy8vIiIiMBgMhISEEBkZSVNTEwA1NTUcOHBgXocNTp06RUBAgNInKSkJnU6Hj48Pubm5dHR0ANDZ2Ym3tzeZmZmo1WqysrIwGAxKnU+fPtHR0cGuXbuUzzIyMggMDCQkJIStW7cSHx+P0WjEaDQSExNDd3c3AGq1mp6eHsbGxli/fr2yeiiEWLok2AkhloSWlhYcDgcOh4OLFy8CYDAYWLZsGQDv37/H7XYTHh6uBMDTp08zMjICgM1mw2QyKfW+vv43g4ODjI+P4+/vr9S1WCy8e/dOeSYgIEC51mg0jI2NAV9+uxYaGvrDusnJycrJ1KqqKpKSkub6VQBgNBpn3RcXFxMWFoZWqyU6Ohq73Q58P2+VSjWr75MnT4iMjESj0fxwPitXrmTdunWz7sfHxwGoq6vjwYMHBAUFER8fz8uXL+c1ByHE77d8sQcghBD/RKVSKddr167Fx8eHgYEBdDrdd88aDAaGhoYIDg4GYGhoSGlbtWoVExMTyv3XJ1CDgoLQ6/VKUJoPk8nEmzdvftiWkJBAXl4eXV1djIyMsHv37nnV/nrubW1tWCwWWltbCQsLo7+/X/nNoMFg4O3bt7P6fn3/7TbsfMTExNDY2Mjk5CQFBQUcP36c1tbWn6olhPg9ZMVOCPFH8PLyIjU1lZycHBwOB58/f8ZqtdLV1QXAoUOHKC4uxuVy0dfXR2VlpdI3PDwcu91OW1sbk5OTnD9/XmkLCgpi27ZtFBQUMDExwcePH3n27Bm9vb3/Oaa0tDTKysro7OxkZmaGvr4+bDYbAH5+fuzcuZO0tDQSExOVlcef4XK5WL58Of7+/oyPj1NUVKS0xcbG4na7uXHjBtPT01y7dk0ZA8w+ODEfU1NTVFVVMTo6ilqtxtfX95fmIIT4PSTYCSH+GH//MW5UVBR+fn4cPXqUDx8+AFBYWIhOp8NoNHL48GFSUlKUfjqdjtLSUhITE9m4cSPR0dGz6t65c4eBgQFCQ0MJCAggOzsbt9v9n+OJi4ujpKSE9PR0tFotCQkJjI6OKu3JyclYrdZ5b8N+a+/evcTGxhIcHExUVBRxcXFK24oVK6ivr+fKlSv4+/vT3d2ttNvtdmw2G1FRUT/13lu3bhEcHMyaNWtoaWnh6tWrvzQPIcT/TzUzMzOz2IMQQoiFVlFRQU1NDc3NzYs2hs7OTpKTk3n9+vU/PlNUVMSlS5fQ6/Xfban+qurqalpaWigvL1/QuiUlJRQWFqJSqXA4HAtaWwjxa2TFTggh/gfT09OUlpaSnp7+r8+dOXOGsbGxBQ918GU7+NixYwteNzs7G6fTKaFOiCVIDk8IIcQCs9vtGI1GNm/ejMViWbRx/OyhCSHEn0u2YoUQQgghPIRsxQohhBBCeAgJdkIIIYQQHkKCnRBCCCGEh5BgJ4QQQgjhISTYCSGEEEJ4CAl2QgghhBAeQoKdEEIIIYSHkGAnhBBCCOEhJNgJIYQQQniIvwDJxx/TV7xczQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -303,7 +303,7 @@ "C(s) = \\frac{k_\\text{p} s + k_\\text{i}}{s}\n", "$$\n", "\n", - "We will learn how to choose $k_\\text{p}$ and $k_\\text{i}$ more formally in W9. For how we just pick different values to see how the dynamics are impacted." + "We will learn how to choose $k_\\text{p}$ and $k_\\text{i}$ more formally in W9. For now we just pick different values to see how the dynamics are impacted." ] }, { @@ -359,7 +359,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADUNUlEQVR4nOydZ3hc1bWw3zNFozLqXZYsuci9YMCAbdxwxRQ7EIcaYwgkJoTcALkJ3IRrnEt6woXkYhJIAv4IvTcDtrFsMO7GlnuT1Wz1OhqV0ZTz/RhpJFltNKPRqKz3ec5zzpy91tp7j7a2ltZuiqqqKoIgCIIgCMKAR+PvAgiCIAiCIAi9gzh2giAIgiAIgwRx7ARBEARBEAYJ4tgJgiAIgiAMEsSxEwRBEARBGCSIYycIgiAIgjBIEMdOEARBEARhkCCOnSAIgiAIwiBBHDtBEARBEIRBgjh2giD0G5544gkuueQS1+fVq1ezYsUKn+R18uRJrrrqKgIDA9vkKfQ+8+bN4yc/+YnP8/FlexGEgYI4doLQT1m9ejWKoqAoCnq9npEjR/LTn/6U2tpaAHJyclAUhUOHDvm1nIqi8P777/u1DJ6wdu1aQkJCOHXqFF988YW/iyP0As888wwvvfSSv4shCH5F5+8CCILQOUuXLuXFF1/EarXy1Vdfce+991JbW8tzzz3n76L1CKvVil6v7/N8VVXFbrej07Xv6rKysrjuuutITU312H5jYyMBAQHeFLFf5TPQCQ8P93cRBMHvSMROEPoxBoOBhIQEUlJSuP3227njjjt6FB2zWCz87Gc/IyUlBYPBQHp6Ov/85z9d6du3b+eKK67AYDCQmJjIo48+is1mc6XPmzePH//4x/zsZz8jKiqKhIQEnnjiCVd6WloaAN/61rdQFMX1uXlI9V//+hcjR47EYDCgqip5eXksX74co9FIWFgY3/nOdyguLna7Pqqq8oc//IGRI0cSFBTE1KlTefvtt13p27ZtQ1EUPv/8cy6//HIMBgNfffVVOzuKonDgwAF+9atfoSiKq05HjhzhmmuuISgoiOjoaL7//e9jNptdes1Dfb/97W9JSkpizJgxHZYzMzOT+fPnExoaSlhYGJdddhn79+93pe/cuZM5c+YQFBRESkoKP/7xj12R2Obv9cknn2T16tWEh4dz3333MWPGDB599NE2+ZSWlqLX68nIyACgsrKSVatWERkZSXBwMNdeey1nzpxxyb/00ktERETw8ccfM3bsWIKDg/n2t79NbW0tGzZsIC0tjcjISB588EHsdrtLr7GxkZ/97GcMGzaMkJAQrrzySrZt29amLF9//TVz584lODiYyMhIlixZQmVlpSvd4XB02o4AnnrqKSZPnkxISAgpKSn88Ic/bPPdN5f9888/Z/z48RiNRpYuXUphYWG7n08zb7/9NpMnT3b9PBcuXOj6nptlf/Ob3xAfH09ERATr1q3DZrPxn//5n0RFRZGcnMy//vWvDn/GgtBfEcdOEAYQQUFBWK1Wt+VXrVrF66+/zl/+8hdOnDjB3/72N4xGIwAXLlxg2bJlTJ8+nczMTJ577jn++c9/8uSTT7axsWHDBkJCQtizZw9/+MMf+NWvfsXmzZsB2LdvHwAvvvgihYWFrs8AZ8+e5c033+Sdd95xDRevWLGCiooKtm/fzubNm8nKyuKWW25xuz6//OUvefHFF3nuuec4duwYDz30EHfeeSfbt29vI/ezn/2M3/72t5w4cYIpU6a0s1NYWMjEiRN55JFHKCws5Kc//Sl1dXUsXbqUyMhI9u3bx1tvvcWWLVv40Y9+1Eb3iy++4MSJE2zevJmPP/64w3LecccdJCcns2/fPg4cOMCjjz7qilgeOXKEJUuWcNNNN3H48GHeeOMNduzY0S6fP/7xj0yaNIkDBw7w+OOPc8cdd/Daa6+hqqpL5o033iA+Pp65c+cCTmdl//79fPjhh+zatQtVVVm2bFmbNlNXV8df/vIXXn/9dT777DO2bdvGTTfdxMaNG9m4cSMvv/wyzz//fBuH+e677+brr7/m9ddf5/Dhw6xcuZKlS5e6nMZDhw6xYMECJk6cyK5du9ixYwc33HBDG+ewq3YEoNFo+Mtf/sLRo0fZsGEDW7du5Wc/+1mb76Suro4//elPvPzyy3z55Zfk5eXx05/+tMOfQWFhIbfddhv33HMPJ06ccNWz9fe3detWCgoK+PLLL3nqqad44oknuP7664mMjGTPnj2sWbOGNWvWkJ+f32EegtAvUQVB6Jfcdddd6vLly12f9+zZo0ZHR6vf+c53VFVV1ezsbBVQDx482KH+qVOnVEDdvHlzh+n/9V//pY4dO1Z1OByud88++6xqNBpVu92uqqqqzp07V7366qvb6E2fPl39+c9/7voMqO+9914bmbVr16p6vV4tKSlxvdu0aZOq1WrVvLw817tjx46pgLp3716X3tSpUzv8DsxmsxoYGKju3LmzTV7f+9731Ntuu01VVVXNyMhQAfX999/vsM6tmTp1qrp27VrX5+eff16NjIxUzWaz690nn3yiajQataioyFWe+Ph41WKxdGk7NDRUfemllzpM++53v6t+//vfb/Puq6++UjUajVpfX6+qqqqmpqaqK1asaCNTUlKi6nQ69csvv3S9mzFjhvqf//mfqqqq6unTp1VA/frrr13pZWVlalBQkPrmm2+qqqqqL774ogqoZ8+edcn84Ac/UIODg9WamhrXuyVLlqg/+MEPVFVV1bNnz6qKoqgXLlxoU54FCxaojz32mKqqqnrbbbeps2bN6vT7cKcdXcybb76pRkdHuz53VPZnn31WjY+Pd31u3V4OHDigAmpOTk6H9u+66y41NTXV1dZVVVXHjh2rzp492/XZZrOpISEh6muvvdZpOQWhvyFz7AShH/Pxxx9jNBqx2WxYrVaWL1/OX//6V7d0Dx06hFardUVzLubEiRPMmDEDRVFc72bNmoXZbOb8+fMMHz4coF3EKzExkZKSkm7zT01NJTY2tk1+KSkppKSkuN5NmDCBiIgITpw4wfTp07u0d/z4cRoaGli0aFGb942NjUybNq3Nu8svv7zb8l3MiRMnmDp1KiEhIa53s2bNwuFwcOrUKeLj4wGYPHlyt/PdHn74Ye69915efvllFi5cyMqVKxk1ahQABw4c4OzZs7zyyisueVVVcTgcZGdnM378+A7rEBsby6JFi3jllVeYPXs22dnZ7Nq1yzXf8sSJE+h0Oq688kqXTnR0NGPHjuXEiROud8HBwa6yAMTHx5OWluaK5Da/a/4Zf/PNN6iq2m7Y2WKxEB0dDTjb2sqVK7v8TrprRxkZGfzmN7/h+PHjmEwmbDYbDQ0N1NbWun4mF5e9q7Y4depUFixYwOTJk1myZAmLFy/m29/+NpGRkS6ZiRMnotG0DFzFx8czadIk12etVkt0dLRb7V0Q+gvi2AlCP2b+/Pk899xz6PV6kpKSerQAISgoqMt0VVXbOHXN74A27y/OU1EUHA5Ht/m3dpA6y6+r9xfTnOcnn3zCsGHD2qQZDIYu83aHrsrR+r07tp944gluv/12PvnkEz799FPWrl3L66+/zre+9S0cDgc/+MEP+PGPf9xOr9mZ7iyfO+64g//4j//gr3/9K6+++ioTJ05k6tSprvK7U6+Ofp5d/YwdDgdarZYDBw6g1WrbyDU7g921tc7ybc4jNzeXZcuWsWbNGv7nf/6HqKgoduzYwfe+9702w8gd2eis3lqtls2bN7Nz5042bdrEX//6V37xi1+wZ88eRowY4dF3IQgDAZljJwj9mJCQEEaPHk1qamqPV5VOnjwZh8PRbv5ZMxMmTGDnzp1t/jDu3LmT0NDQdo5TV+j1+jZzqTpjwoQJ5OXltZmvdPz4caqrq11Rqu70DQYDeXl5jB49us3VOgroKRMmTODQoUNtFjF8/fXXaDSaThdJdMWYMWN46KGH2LRpEzfddBMvvvgiAJdeeinHjh1rV4fRo0d3GwlcsWIFDQ0NfPbZZ7z66qvceeedbcpvs9nYs2eP6115eTmnT5926/vtjGnTpmG32ykpKWlX3oSEBMAZjfNmy5j9+/djs9n485//zFVXXcWYMWMoKCjw2F4ziqIwa9Ys1q1bx8GDBwkICOC9997z2q4g9GfEsROEQUpaWhp33XUX99xzD++//z7Z2dls27aNN998E4Af/vCH5Ofn8+CDD3Ly5Ek++OAD1q5dy8MPP9xmeMqdfL744guKiorarIK8mIULFzJlyhTuuOMOvvnmG/bu3cuqVauYO3euW0OnoaGh/PSnP+Whhx5iw4YNZGVlcfDgQZ599lk2bNjgdnk744477iAwMJC77rqLo0ePkpGRwYMPPsh3v/td1zCsO9TX1/OjH/2Ibdu2kZuby9dff82+fftcztXPf/5zdu3axQMPPMChQ4c4c+YMH374IQ8++GC3tkNCQli+fDmPP/44J06c4Pbbb3elpaens3z5cu677z527NhBZmYmd955J8OGDWP58uU9/0KaGDNmDHfccQerVq3i3XffJTs7m3379vH73/+ejRs3AvDYY4+xb98+fvjDH3L48GFOnjzJc889R1lZmVt5jBo1CpvNxl//+lfOnTvHyy+/zN/+9jePywywZ88efvOb37B//37y8vJ49913KS0t9crJFYSBgDh2gjCIee655/j2t7/ND3/4Q8aNG8d9993nikgNGzaMjRs3snfvXqZOncqaNWv43ve+xy9/+cse5fHnP/+ZzZs3k5KS0m6uW2uaNzKOjIxkzpw5LFy4kJEjR/LGG2+4ndf//M//8N///d/89re/Zfz48SxZsoSPPvrINbTmDcHBwXz++edUVFQwffp0vv3tb7NgwQL+7//+r0d2tFot5eXlrFq1ijFjxvCd73yHa6+9lnXr1gHO6Nb27ds5c+YMs2fPZtq0aTz++OMkJia6Zf+OO+4gMzOT2bNntxm6Befq5Msuu4zrr7+eGTNmoKoqGzdu9HoPwRdffJFVq1bxyCOPMHbsWG688Ub27NnjipSOGTOGTZs2kZmZyRVXXMGMGTP44IMPOtw/sCMuueQSnnrqKX7/+98zadIkXnnlFX772996VeawsDC+/PJLli1bxpgxY/jlL3/Jn//8Z6699lqv7ApCf0dRO5ugIAiCIAiCIAwoJGInCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEnb8L0B9xOBwUFBQQGhqKoij+Lo4gCIIgCEMYVVWpqakhKSkJjabrmJw4dq149tlnefbZZ2lsbCQrK8vfxREEQRAEQXCRn59PcnJylzKKqqpqH5VnwFBdXU1ERATZ2dmEhoZ2KGO1WsnIyGD+/Pno9foey7ijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0za2pqGDFiBFVVVYSHh3cpKxG7Dmgefo2KiiIsLKxDGavVSnBwMNHR0V12Up3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNbkLbpuf5Q7TOb7bozPUwcuy6wWq1YrdZO01rfeyrjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xB2qbn+kO1z+yJbRmKbUXzHDu73c7p06d59dVXCQ4O9nexBEEQBEEYwtTV1XH77bdTXV3d6UhiM+LYdYDJZCI8PJyysrIuh2I3b97MokWLuhxW6EzGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9Ydqn2kymYiJiXHLsZOh2C7Q6/Xd/pA8lamz1qGqqlv6AwF/1aO38+0Ne57Y6ImOu7LdyXmbPlDwRz18kae3Nn3dLt2V91ZmsLRLkLbpjf5Q6zN7YlccOz+xetNqLpgu8PamtxkZMZKR4SMZET6CEeEjGGYchlaj9XcRBUEQBEEYYIhj1wW+WjzhUB3km/OxqBYyyzLJLMtsk67X6EkNTSUtLI20sDRGhI9wPQfpgrypUq8jiye8szFUJwL3BTJB3XN9WTzhW6Rteq4/VPtMWTzhIX25eKJRbaTcUU6ZvYwSewlljjJK7aWUOcqwYetUL1wJJ1YbS6wmlhhtDLGaWGK1sRgVo5ySIQiCIAiDEFk84SX+XDxhd9gpqisix5RDtimb7Opsckw55JhyqLRUdlrmUH2oM6oXnsaIMGeEb0SYc1hXp/FdYFYWT3hnY6hOBO4LZIK65/qyeMK3SNv0XH+o9pmyeALYvn07jz76KFqtliuuuIKnnnqqxzb8MRFYj540QxppkWnMY14b2aqGKpezl12dzbnqc2RXZ3PBfIEaaw1Hyo9wpPxIGx2dRsfw0OFt5vCNDB9JWngaIfqQLsvdE2TxhHc2htpE4L5EJqh7ri+LJ3yLtE3P9YdanymLJ4DRo0ezbds2DAYDt99+O0eOHGHy5Mn+LpZXRARGMC1wGtPiprV5b7FbyDXluhy+5ivHlEO9rZ5z1ec4V32unb244DiXo9fa6YsNipVhXUEQBEEYgAxax27YsGGuZ71ej1Y7eFeZGrQGxkSOYUzkmDbvHaqD4tpiV2QvuzqbbFM256rOUd5QTkldCSV1Jewp3NNGL0QfwoiwJkcvYqTrOSUsBb1mcPynLAiCIAiDkQHh2K1du5a33nqLkydP8uqrr3Lrrbe60kpLS1m9ejUZGRmkpKSwfv16FixY4Er/5ptvKCsrY8KECf4oul/RKBoSjYkkGhOZNWxWm7RqSzU5phzOVZ1rmctXnUN+TT611lqOlh/laPnRNjo6RUdyaHKbKF9KSAoNakNfVksQBEEQhE4YEI5deno6zzzzDI8//ni7tAceeICkpCTKysrYtGkTK1euJCsri8jISIqKivjxj3/MO++844dSd43mm5cYXn4C5XwMJEyAoMg+zT/cEM7U2KlMjZ3a5n2jvZH8mvw2c/iarzpbnWshR0Z+Rhu9v733tzZDuiPCRpAankpiSCIaRdOXVRMEQRCEIcuAcOzuvPNOAH7961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx/xne98h9tvv52//vWvxMfHd2nfYrFgsVhcn00mE+C7fewAtF/9iWnmItjwTwDUkDjUmHTUmLEQPQY1ZgxqTDoYE6AP57spKAwPGc7wkOHMTZrreq+qKiX1Jc7Vuk1DujmmHHKqcyhtKKWsvoyy+jL2Fu1tY8+gNZBiTCE1LJXhocNJC0sjNSyV1NBUwg3hHpdT9rHzXK4/7MnUF8heYZ7ryz52vkXapuf6Q7XPHLT72M2bN481a9a4hmIPHjzIkiVLKCkpcck8+OCDBAcHk5aWxrp16xg3bhwAv/3tb5kxY0aHdp944gnWrVvX7r3P9rFTHUy68CqhDRcIbSggyNr5NiZWTRA1gUmYA5OoabrMgUnUBsRCP4mENagNlNnLKHWUUmovpdRRSrm9nHJHOXbsneoFK8HEaGKI0cYQrYkmVhNLtDaaaE00OmVA/M8hCIIgCD6nJ/vYDei/nmazuV0Fw8LCqKqq4v777+f+++93y85jjz3Gww8/zAsvvMALL7yA3W7n7NmzviiyE0XD0eQ7XR919nqMDQWENl1Gi/MeYilB76gnqi6LqLqsNibsih6zIaGd01drSMDRxwscApVAknXJJJPc5r1DdVDlqKLMUUaZvcx5b3o2qSbq1Dry7Hnk2fPa6CkoRGginE5fk+MXo4khWhtNmBImQ7uCIAiC0AkD2rEzGo2uYdNmTCYTRqOxR3YMBgMGg4HAwEA0Gg19HcS0aYOoChlFVcioNu81DishlmKns9dQ4IrwGS1FaFUr4Q35hDfkt9FRUag1xFFjaHH4mu82bd8eR6ZRNERpo4jSRjFG33bFrkW1UGGvcJ640RTha3b6LFiodFRS6ajkDGfa6OnRE62Jdjl7re+BSmBfVk8QBEEQ+h0D2rFLT0+nurqaoqIiEhISAMjMzOTee+/1yN4DDzzAAw884Dp5Yv78+Z2GPG02GxkZGcyfPx+druOvsSsZd/Q7w+Kwo1Tno5SfQVN+Bk3FGdezYjFhtBRjtBSD6WAbPYcxATV6DI7odNTodBxNF8ExHs/j86YeHaGqKhWWCvJq8sitySW3Jpf8mnxya3K5UHsBq2qlyFFEkaOonW6UIYrhocMZHjqcFGMKycZkko3JpBhTuj1jtzfq4YmNnui4K9udnLfpAwV/1MMXeXpr09ft0l15f/aZ/Q1pm57rD9U+8+IgVlcMiDl2VqsVu93O4sWLue+++1i5ciUBAQFoNBpWrlxJVFQUTz/9NJs3b2b16tWuVbE9pS/PivUJqorBVu0a0g1tuOAa4g20VXeq1qgNaYnsGVqifHUB0f1mHh+AXbVT6ahsO7TbdDer5i51Q5VQojRRrjl8zVeUNgqDYuijGgiCIAhCzxl0Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FV+zRG7wsLCfhmx84iGamdErznKV34GpeIMSlUeCh03AVUXiBo12hXZa47yqZEjQBvgn3o0cXG+ZquZ/Jp88sx55NXkcd58nnxzPvnmfEyNXf+nE2WIItmYjLZGy/TR00kNS3VF+4x694f15b/P/oVERTzXl4idb5G26bn+UO0zTSYTiYmJg8ex6ysGfMTOAzSORowNRYRa2s/j06gdr2h1oKHWEH/RSt1EagxJ2LX9b55bnaOOCkcF5Q7nSt0Ke8tznVrXpW6IEuKM7F0c7dNGy5w+QRAEoU8YdBG7vmZQRux6isOGUpXbJsrnultrO1cLG+aM7EW1jfIRHN2rxeut76+msYbz5vPkmnL58siXBMQFcKH2AvnmfCotnW9DAxAREOGcwxfqnM83LGgYRSeLWD53OVHBUb1ej8H032dfIFERz/UlYudbpG16rj9U+0yJ2HnIUIzY9RhVJdBa2bI1S8MFQpu2ZzHYajpVs+hCW63UTXTN46vXR/fpBsw9oUFtaBPdax3t625OX7AS7IzyNUX3XHP6NFEEa6RNCYIgCO4jETsvkYid+7Sph9XUfh5f+Rk0pvOd6qv6EBzRo1vm7zVF+9TINNB4/h+WV/Vww16ttZbz5vOcrz1Pfk0+583nyavJ41zFOWrUzh1cgLCAMFKMKaQYU0gKTsKUZ2Lx9MWkhad1eRrHYPrvsy+QqIjn+hKx8y3SNj3Xl4idOHY9QiJ2vkFrt2C0FLZbqRtiKUHTyckUDkWL2ZDQtFK3JcJnDkzErunfq1gtqoUKR4Vrn74KR4XrJI7unL4gJagl0tcU7YvVxBKrjSVACeijGgiCIAj9CYnYeUlzxK6srKzTL9BqtbJ582YWLVqEXt/xSQ9dybijPxDwqh52K1Rmo5Sddl7lzjvlZ1GsHS9qUFEgYjiOqNFkmwNIuXQh2vjxqNFjICjCP/XogY16Wz35Nc7Vuvk1+eRW55KZl0ltQC2l9aWd2lZQSApJItQSypWjryQ9Mp3REaNJDUvFoG3r6HZXDm/TBwr+qIcv8vTWpif6PdXxtj90R2awtEuQtumNfk903JUdCH2myWQiJiZm8B8p5mv0en23PyRvZdzRHwh4VA+9HhInOq/WOBxgOg+lp6H0JJSdcj6XnUKpr4SqXLRVuYwG+OzTFr2QOIgdCzFjWt3HQWiC2/P4euPn0d3Pe2LQRCbGOetstVrZWLmRZcuWYcXq3KbF5NyQOc+UR64pl3PV56hoqOBC7QUATp486bKnUTSkhqUyIXoCE6MnMjF6IqPDRrtVF2/TBwr+qIcv8vTWpif6PdWRPrNnSNv0XL8nOu7K9uc+syd2xbHrAqvVitVq7TSt9b2nMu7oDwR8Vo+QROeVNrflnapCXRlK2WkcxSfIP7SVtJAGNOVnUWoKoLbEeeV81caUagh1RvRixqDGpKNGj0GNGQMRqaDR9lo9PLHRWkev1zPCOIIRxhHt5CoaKjhVfopP936KPlFPdk02WVVZ1FhryK7OJrs6m0/OfQKABg0xmhh2fb2LqXFTuTTuUkaEjUBpcm67K6e0zf6Vp7c2vW2XvSUvfWYL0jY91++Jjruy3vaJffHz7IltGYpthcyxG7jo7PUYG1rN47O0zOPrbANmu6JvmseX2Go/viTMhgQcmv4/n01VVWrUGgrthRTYC7hgu8AF+4UO5/EFK8Gk6lJJ06aRpksjUZuIph+dKiIIgiB0jsyx8xKZY+c+/qqH2/naLFBxzjV/z3mdgYqzKLaGDlVURQMRqagxzsheS7RvDBhCvS+ThzruyhaaCnkt4zUChgdwpOIIR8qO0GBvW9cQJYTZKbO5etjVzEicQWRgyxF80jb7V579fR6Tu/LSZ7YgbdNzfZljJ3PsvELmi7iPv+rRbb56PQyb4rxa47BDVR6UnYbSUziKT1B1dg+R9lIUi8m5qKMyG8583lYvNPGiOXxjnfP4QmLdL5Mn9eiBbGJYIuP041g2bRl6vR6r3crxiuMcKD7gvIoOUGur5bO8z/gs7zMUFCZGT2RuylwWpS5ieMhwj+vRH5F5TJ7ryxw73yJt03N9mWPXOeLYdYHMsesef9WjV/INTXZeI67BarXy1ebNLFq4EL2loinCdwZardZVzMVQU+i8sre3MaUGRqCJTueShmDUr7OwxY9zRvjCU6CLIc++mi8yIWICEyIm8N2x36XeUs+/Pv8X1mQre4r3cKryFEfLj3K0/CjPHnqWtNA00hrTSCtNY3zMeNfcvIGGzGPyXF/m2PkWaZue68scu+6RodhWyBw7oSt0tlpCLYVt9uILbSgkuLG003l8NiUAc2BCy7m6hpZ5fGoXGzD3JTWOGk5bT3PcepyztrPYW+0tGKuJ5ZKAS7gk4BLCNZ1vniwIgiD4Dplj5yUyx859+v0cu76wZ62HiiwcxSfI3vc5o8PtaCvOQkUWir2xQxVV0ULUCOxRozln0pN6+SK0ceNRY9IhwOhVGb2ZD1LTWMO2vG28fvB1suxZNDqc5VdQuDLhSq4fcT3zU+YTpAty99vxGzKPyXN9mWPnW6Rteq4vc+yG8By7/Px8li9fzvHjxzGbzR4d8yHzRdyn386x6wt7ej0ET8MaP4lT50MYtWwZil4PdhtU5ULpqab9+Jzz+Sg7jdJohvKz6MrPMgbgk49a7IUlQ+wYiBnrvMeOcz4HhPWojJ7MB4nSR3HD6BvQntYyZ9EcMi5k8MHZD/im5Bt2F+1md9FuQvaHcMPIG7hl7C2Mjhzds+/KD8g8Js/1ZY6db5G26bm+zLHrnEHr2MXGxrJ161ZWrFjh76IIQxWtDqJHOa9xy1reqyqYCqDsFPbiE+R9s4XU4AY05WegttS5ObPpPGRtbWNOFxzNLCUGDVsgbnyL8xee7PYGzD3BqDdyU/pN3JR+E/k1+XyU9REfZn3IBfMFXj/1Oq+fep3L4y/nlrG3sGD4AvTawfHHVhAEYSAzaB27wMBAAgMD/V0MQWiPokD4MAgfhmP4bA6XJpO8bBkavR7qKpoieyddp21Qehqq81DqyomhHA6eamtPHwIx6a6VukrkaIwNReCwAb3jbKWEpvDDS37Imqlr2FO4hzdOvUFGfgb7i/ezv3g/0YHR3DzmZm4deyuxwbHdGxQEQRB8woBw7NauXctbb73FyZMnefXVV7n11ltdaaWlpaxevZqMjAxSUlJYv349CxYs8GNpBcELgqNg+FXOqzWNtViLTnD4i7e4JDkYbcUZp8NXkQXWWig85Lxw/lIvANRTv3RGC13bszQN7YaneVw8jaJhRtIMZiTNoKi2iHfOvMPbp9+mrL6M5w8/z4tHX2TZiGXcNfEu0iPTPc5HEARB8IwB4dilp6fzzDPP8Pjjj7dLe+CBB0hKSqKsrIxNmzaxcuVKsrKyiIyM7MCSIAxQAkIgcSrnoy4wZd4ytM3zLexWqMhuiuw5o3xq6UnsJSfRORqb3p2EEy2mdCgsDIhGa/p/EDeu5Uzd2DEQ5P7vTUJIAg9c8gDfn/J9tuZt5ZUTr3Cw5CAfZH3AB1kfMCtpFqsmrmJG4owBu2WKIAjCQGNAOHZ33nknAL/+9a/bvDebzXzwwQfk5OQQHBzMihUreOqpp/joo49YtWqV2/YtFgsWi8X12WQyAbKPnTsM6H3setme3/ZkihjhvEYvdaVv3vQ5i6+cgL4623XiBuVnnM/1FYQ0lkHWFufVCjUkDk3UaKbUB6LuzsMWP9558kZoQpfz+K4Zdg3XDLuGw2WH+feJf7P1/Fa+Lviarwu+Jj0inTvH3cnStKXoNX27crr1faDm2d/3CnNXXvrMFqRteq4v+9h1z4Da7mTevHmsWbPGNRR78OBBlixZQklJiUvmwQcfJDg4mHXr1nH99ddz4MABLr30Up544glmz57dod0nnniCdevWtXsv+9gJg5EAq8m5B5+loNV+fAUEWSs61bFqgtqdqVsTOIzagNgON2CusFewy7KLA40HaMS5ZUq4Es7swNlcFnAZekUWWgiCILhLT/axGxARu84wm83tKhgWFkZVVRWBgYFs2bKlE822PPbYYzz88MOuzyaTiZSUFObPn9/pF2iz2cjIyGD+/PmdbqXSlYw7+gMBf9Wjt/PtDXue2OiJjruy3ck1p0+58X5XugrUWcxoKs6ilp4k/+AXjDA2oq3IQqnKQe+oJ7LuHJF159rYUrUG1KiROKLSUaPTcTRdatRsbtHdgqnRxHvn3uP1069TYang4/qP2enYye1jbuemUTcRog9x63vyBH+0TV/k6a1NX7dLd+Wlz2xB2qbn+v7sMz1N7w2aRxLdYdBG7H7/+9/32L6cPCEI7dE4rIRYigltaBXhsxRgbChEq3Y8PKCiUBsQ6zpxozwwgS16M5+rJ6hSqwEIUoK4KuAqZhhmEKyR3zNBEITOGDIRu/T0dKqrqykqKiIhIQGAzMxM7r33Xj+XTBAGDw6NnpqgZGqCktsmqA6CG8s6cPgKCLDXYWwswdhYQoLpEOnAVcDPgffDY3kxLJh8XT0Zlgx2Wr7iKt1UrgpaQKi26w5LEARB6JoBEbGzWq3Y7XYWL17Mfffdx8qVKwkICECj0bBy5UqioqJ4+umn2bx5M6tXr/Z6VWzzkWKFhYUyFNsNMhTrnY1BOaygqlBbiqb8DJry0yjlZ9CUn3Hea4sBsANfBAfxQkQ4Jw0BAASoKjfZDNxtHEtMzATUqNE4okajRo4Afc+PMJPhLs/1ZSjWt0jb9Fx/UPaZbmAymUhMTBw8Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FE+MhQrCL5FZ6sl1FLYFOUrJMRSwBG1mH+H2DkUaABAr6rcXGPme1UmEux2VBTqAmIwGxKbFnAkYjYkYQ5MwKIL98mpG4IgCP2JngzFDgjHrq8Qx04Q/ITdSkHDQTZbv+YM5QDoVVhhruf7lRUk2O0dqlm1wdQ0OXytHb/agHhUzcCO6giCIDQjjp2XNA/FlpWVdfoFWq1WNm/ezKJFizo9nLcrGXf0BwL+qkdv59sb9jyx0RMdd2W7k/M23Zeoqsr+kv08f+R5DpQcAECv0bMi7iruDhlNUk0JStkZlPKzUJWLQsfdl6poUSNSKbaHEzNuBkrsGIh2rtwlOMpn5ffFd+etTV+3S3flpc9swR91GYptczD1mSaTiZiYmMG/eEIQhMGFoihMj5/O9Pjp7C92Onj7S/bzVtFXvKfZxfKRy7l7xlMkhSSBrQEqslGa5u8p5Weg/KzzubEWpfIciQB7D7bJQw2ORo0aDdGjUWOczp4aPRoiUkGifIIgDHAkYtcKGYoVhP5Hti2brQ1bybZlA6BFy7SAacwNnEukpoNFUqpKoLUSo6UQY0MhoU13Y0MBwV1swuxQtJgNCa4hXbOheT5fAjad7/bbEwRB6A4ZivUSWRXrPrIq1jsbQ3WFlyccLD3IP47/g/0l+wHQKlquT7ue1eNXOyN4F9FhPRrrUCqz0JSfRVNxFqUiy3VXbA2d5q0GR+OIHIkaNQpH5AjUyJE4okahRqS1WbE7FFceuisvfWYLsirWc/2h2mcOulWxfYVE7ASh/5NjyyGjIYMsWxYAGjTOCJ5hLlFaD+fPqQ6CGssxWgoJbShsifY1FBBoq+5StU4fRa0hAXNgAmZDgvPZkECdIQZVGdgOiCAI/QOJ2HmJLJ5wH1k84Z2NoToRuDc4VHqI5488z+6i3YAzgnfdiOv43sTvkRKa0nv1sNRAxTlnVK/pTkWW83ND506fqtFBxHDUqFGoUaMgaiRq1GjU6FEQmtjhGbsd0d8nqLsrL31mC7J4wnP9odpnyuIJQRAGPZfEXsL6a9aTWZrJ34/8nd1Fu/nw3Id8kv0Jy9KWcde4u3onI0MoJE5FTZzadg2uqkJ9hdPRK3c6fWr5GWpzMwmzlTqHdivOoVScAza3ManqgiBqhMvpU6NGQtQo1Mg0CImTvfkEQfAYidi1QoZiBWHgkm/LZ2vDVs7YzgCgoDBVP5V5gfOI0cb0bWFUB4HWKoyWIkIsRRgbijBanFewpRQNHe/LB2DTGKgNiKPOEEetIY7aAOe9zhBHXUC0DO8KwhBEhmK9RIZi3UeGYr2zMVSHFXzJkbIjvHD0BXYU7ACcc/CWpC3h3on3MiJ8hE/zduu7c9igKs81tOsa1q04B6YLKKqjU/uqooXwZNTINOfCjcg01MgRzkhfZBoEGD0rk5c6MhTbM2Qo1nP9odpnylBsL6HX67v9IXkr447+QMBf9fA0X1VVsTtUbA4Vq91BvVXF1AhldXYUDVjtDleaza5iczTf276z2p12rHYHFquNzCKF0v0FqGiwOVRsdgdWh4q9Sd/abKsprdFqJ++8hk9Nx7GruGzZmuzaVRWN4tzfTUGlolzDGyWZaDUaNIqCRgGDTktQgJZAvZYgvRaDFvLOK5TsLyA2NIiIYD1RIQFEBgcQGRJAQNOqre6+u4HaNi9NvJTnEp/jUNEhnvziSU7ZTvFpzqd8lvMZS0csZc2UNYyMGOnTMnT93ekhfqzzuhhbI1TlQWU2VGRDZTaO8izM+UcJtZU7h3erclGqcoHt7fVDYiFyBESNcN4j01BCkwhqLEOvVXr88+xpG5A+s2f4oy6+yNNbm57o90THXVlv+0Rf/jx7YlccOz+xM6ucY5UKgadK0Wq0qDidDecdQEVVcX1Wmz47U5yyXJTWIu+0Q+u0pnzVi9+1yrN1/h3lQZs05zu7zc7J8wo5286h0WhcaQ5VdV12R9PnJkfF4VBxqLR6biXT5HA55S+SUXE92+wOysq1bLiwF4dK27wcKtZmR6zJsbLZWxyzZoesPTo48KWXP1ktZJ/qoY4Gyovdlj1j6nwvttbl+CS/43KEGLSEarS8W/4NyZHBDIsMIjkymNGxRkbGhqB1u9z9m4nRE/mu8bukXZXGP479g2352/g0+1M+y/6MJWlL+MGUHzA6crS/i9kWXQDEjHZeTditVjI2bmTZtUvRN5S7HL529/pKqC11Xuf3tpgEFgPq8f+E8GHOjZgjhrdc4SnOe9gw0MqfBEEY6MhvcRdYrVasVmunaa3vPZX56dtHKDVr4eTBdmkDDy2f5J/1Q74K1FT1qkWdRkGnVdBpNOi1StNnjfN+cdpF77UKlJeVkpSQQIBOi06roNcqaDWt7Wmcn7UKeo0CqJw7e5qJ48dh0OvRapQ2+WqUFkfZarNz+PBhJk6ajEajcTnHjTYH9VY79Y12GqwOai1WzubkERGTgKnBRkWdlaq6RirqrDTaHNRa7NSiUHS6rF39NQokRwYRpmo4qjnJlJRIpgwLIzE8EGWATehv/r1LD03nqdlPcbLiJC8cfYGM8xl8lvMZn+d8zsLhC7l30r2kR6T3ap5d9Qse27TZISgWhsXCsCvaCzZUQ2U2SmUOSlUuSmW2M/pXlQ/VeWhUe9PnvA7zURUthCWhhqeghA5jbLkVxzfl2CJTUcMSITQJAjreqNnb/tAdGV98t/7CH3Xxadv00KYn+j3RcVe2Ozlv03uDntj2aI5dfX09//3f/81bb71FRUUFJpOJzz//nBMnTvCTn/ykp+b6DX25eOJvJzSYrQoKLQvgmv9stv7c+k+p873apVzrv72t3ykdvGuXhztyykVl6iQPRQFN8/umZ02TjEZplncOM7Z5z0Xyrey47hfJdySnVVS0GmeattV18WfXO02L/mBFVaHRAVWNUGlRqLRAhUWhshHKGhSK66DO3vEXYNSpDDc6r1FhkGZUCRigob1CeyHbGrZxzHrM9W6CfgLzA+eTqE30Y8l8SNNijuDGMoIaywhuc5US1FiOVrV1a6ZRG0K9PoqGgEjq9VFtnhv0UdQHRGHTBnVrRxCEnuHzxRN33303VquVRx99lNmzZ1NZWUlhYSHz58/n5MmTHhe8vyCLJ9xHFk94Z6M/TQRWVZXy2kZOFlTzyY4DKJEpHCus4XSxGZujbTeh1ypMGRbO9LRIrkiL5LLUCIID+tcAQHffw5mqM/zj6D/YkrfFNdVgfvJ87pt0H+OixvkkT3/YdEtfdYC5BKXaGd1zVORy4dguhoc60JiLoKYAxVLjVn6qIRRCk1DDksCYiGqMB2MctqAY9h7P4fJ516GLSOrxQo/B0meCLJ7wRr8/9Zne1KOn+HzxxCeffEJ+fj4Gg8E1PJOYmEhhYaEn5nzGww8/zL59+5g2bRp/+ctfeqwvE4HdZ6AtnvClvYE8ETgxIIAYowHTWZVlyyah1+tpsNo5UWjiyIVqDuRWsudcBUWmBg7kVXEgr4q/fZlNgFbDFSOimDsmlnljYxkdZ+w3Q7edfQ8TYifw1PynOFt5lr8f/juf53xOxvkMMs5nMC9lHmumrmFi9MRezdMbfD5BPSrFeTETq9XK4ZqNJC9bhrZZp8EENYVQfR5MBU3XBTAVoJouYC3PIcBe53QALadQytrO8dQCswHO/Nr5IsAIxjhocvwwxqMJjmV4eREBuXp0YQkQHO28Wg0BD5Y+E2TxhDf63vaZdrvdNbxpt9vR6XTY7XY0mvYbh3ub3lP0ej1arbbdO3fxyLGLiIigtLSU5ORk17vs7GySktqf1+gvvvnmG8xmM1999RX3338/+/btY/r06f4uliAMOAL1WqYNj2Ta8EhWzUhDVVXyKurYc66C3dnl7DlXwYWqenacLWPH2TJ+vfEESeGBzB0by7yxccxOj+l30bzWjI4czR/n/pE1U9fw98N/57Psz9iWv41t+duYmzyX+6fez8QYzxy8QUVgmPOKbb+a12a18unGjSxbOAd9fZnL4cN0AcwlYC7GUVNMXUk2IQ4zirUWGs1QYYaKcy47WmAaQN4/22agC0QXFMVcmw5t1T8hJKbF6bv4CoqEwHCnM9hP/rkQ+hdms5nz58+3WiCokpCQQH5+fof/kHqb3lMURSE5ORmjsX1U2x086m3/4z/+gxtuuIFf/OIX2O12Pv74Y5588sl+Nb9u165dLFy4EICFCxeye/ducewEoRdQFIXU6BBSo0P4zvQUVFUlq7SW7adL2X66lN3nyimobuC1vfm8tjcfg07D7PRYFk+MZ+H4eKJCAvxdhQ4ZFTGKP8z5A2umruH5w8/zafanbD+/ne3ntzN72Gzun3o/k2Mn+7uY/ZsAI4REQkz7xSh2q5UvNm5k2bJl6B0WMBe7nL7my2EqoiT7KPFBDpT6CqgtA7sFbA0oNQVEAGR3vPijHRqd08Frc0W0f9fsCBrCwGB01iHA6HQMdQZxDgcZdrud8+fPExwcTGxsLIqi4HA4MJvNGI3GDiNu3qb3BFVVKS0t5fz586Snp7eL3LmDR47dAw88QFxcHP/85z9JTk7mL3/5Cw899BC33HKLJ+a6Ze3atbz11lucPHmSV199lVtvvdWVVlpayurVq8nIyCAlJYX169ezYMECqqqqGDVqFADh4eEcO3asM/OCIHiBoiiMjjMyOs7I964eQX2jnd3Z5Ww/VcoXJ4vJr6hny4litpwoRqPA9LQoFk9MYPGEeFKi+t/JLiPDR/K72b9jzZQ1vHDkBT4+9zFfXfiKry58xaxhs7h/6v1MjZ3q72IObAxG5xU9qs1ru9XKnmbnT693rvix1kFdObbqIvZ9+TnTJ45EZ6mGuvKmqwzqKpzPtWXQUOXcBNpha5HxFI3O6eAFhDbdQ9o7fwEhzmd9IOiC3LujQ2u3OOc2Cn2K1WpFVVViY2MJCnIu9HE4HDQ2NhIYGNip4+ZNek+JjY0lJycHq9Xad44dwMqVK1m5cqWn6j0iPT2dZ555hscff7xd2gMPPEBSUhJlZWVs2rSJlStXkpWVRUREBCaTCXBOOoyIiOiTsgrCUCcoQMv8sXHMHxvH2hsmcLKohk3Hitl0vIhjBSb2ZFewJ7uC//n4OBMSw7huSiLXTU4kLabjrTT8RVp4Gr+++tf8YMoPeP7w83x87mO+vvA1X1/4mhmJM/j+lO9zecLl/i7m4EZRXM6TGpJISVgh6uRl0NV8o2ZnsKHaedVXtTw3VDsdv9b31umNtc7LVu+05bC1pPUieuB6gMP3gTagxeHTGkCrd77T6i96DnDzuemu0TkvRQMaHYoKKeXHUI6YQW8AjRYUbZOctoPPuqbPHaU1fbY7CLRWQk0RBBicedG87YGm5U7z51bvFI3TsfXT4Vf9ZQ5wR3hbNrcduz/84Q9uyf3sZz/zuDCdceeddwLw61//us17s9nMBx98QE5ODsHBwaxYsYKnnnqKjz76iBkzZvD3v/+d73znO2zZsoXVq1d3at9isWCxWFyfmx1CX+5jN1j2ZPJXPXo7396wJ3sydczomCBGz03jh3PTOF9Zz5aTJWw5UcK+nEqOF5o4Xmjij5+fYkJiKMsmJbB0UjypvRDJ6616JAYlsvbKtdwz4R7+dexffJz9MbsKd7GrcBeXxF7CvRPvZUbiDBRFGZJ7hbkr36d9phLg3PMvKBYiuxdvh8MGjXXOeYCNtSiNZtcz1lqwNM0TtJidnxtrnaeCWOvB1uC8rA0otnrXs/N9vfO9o1Ud7I3Oy9K7zuPF6IBLAdwcyXYHPbAE4Kjn+ssB9ZCC2trha+MI0uadTlFYarWhO2VAbXYUm51JaPOsBRbVN6DN+i+nLKAGJ8IlP0cts6HqNc0ahDocKBYt7dxMBRS1Kb2xg/QmfaPdgWoMwZ0YrMFgYOLEiTQ2Nrp8ldaRPofDgaqqbSJ2PtnH7u6773Y919XV8d5773HllVeSkpJCfn4+e/fu5aabbuK1115zO/OeMm/ePNasWeMaij148CBLliyhpKTEJfPggw8SHBzM73//e37yk59w4MABpk6dyv/93/91aveJJ55g3bp17d77ch87QRjqmK1wpELhULnC6WoFR6sdElNCVKZFO7gkWiU60I+F7IAKewU7LDs40HgAO3YAkrRJzDPMY5x+HBrF+6EYYZCjOtA6Gp2X2ojWYUXjaESj2tGoNjSqDUW1tXx22FzvNaq9bVpTett3VhTVgaI60OBoerajuJ4dTc/2Vs8t7zWqHbrVdQAqiqqiNLkzSoduT/+iwZhC9qw/M2JYLIG63o3aVQWlNjmhXTN27FhOnTqF3W5n+fLlfP/73+fGG290pTc2NpKfn09RURE2m3N/yZ7sY+d2xO7FF190Pd9888289dZbLF++3PXuww8/5P/9v//nrrlewWw2t6tgWFgYVVVVADz99NNu2Xnsscd4+OGHXZ9NJhMpKSnMnz+/0y/QZrORkZHB/Pnz0ek6/hq7knFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv03uTbzXdK+sa2XKyjM+OlbAnp5L8WoX8Wi0f5sHkpFCWTIhjyYQ4hkW47+X5sh63cAsl9SW8eupV3jv3HgX2Al6te5URoSO43H45Dy5+EIPe0Ct5eVsPX7dLd+Wlz2yhuS5zFl7bZ3Xx9PtToVN3rZ1NtUlaVZuGWZuu1u9oSbPbbOz46iuunjUDrVbrdBYvlm9tCxW7zcrePXu4YvrlaLUXD+c6Hc2W8lk5cOAAl192mVMWsNhAbTTiCB+Ow+BcyKWqKnV1dQQHBzuDfRdVWEWlvq6OoOBgOnIFVVWlvr6O0NAwtxbbKIpCaGgoADNnzqSgoMD1GaChoYHAwEBmzpyJweDsR5pHEt3Bow2Kw8PDKS8vb9M4bDYb0dHRVFf7Lpzc04hdT+nLkycEQeiYGiscrlA4WKZw1qS0OmsFUo3OSN60aJWI3vGbvKbWUctOy052W3ZjwTmlI1oTzRzDHKYGTEWnDGwnRBAGEzqdjoSEBFJSUpr26ez9BSyBek2X8+SaI3b19fXccMMN/PSnP2Xp0qWu9D6L2LVm0qRJPPnkk/zyl79Ep9Nhs9n4zW9+w8SJfbvXU3p6OtXV1RQVFZGQkABAZmYm9957b5+WQxCE3iNUD7PiVWbFq5gam5y8coUsk0KuWSHXrOX9XBgRqnJp03BtmB93UAnRhLAoaBFXG65md+Nudlp2Uu4o573699jasJXZgbO5LOAy9Mrg2FRXEAYLDVYHM57a3et2dz18FUFdnLlYUVHB7NmzAVi0aFEbp6438Mixe/nll7n99tv585//TFxcHCUlJUyYMIFXXnmlVwvXjNVqxW6343A4sFqtNDQ0EBAQgNFo5MYbb2Tt2rU8/fTTbN68maNHj3LDDTf4pByCIPQtYQFwdYLK1Qkq1Y2QWa5wsFzDuRqF7BqF7Bot7+aojA5TmRajMjVKxegn/ylIE8T8wPnMNMxkn2UfOyw7qFar+bj+Y7Y1bONqw9VMN0zHoPSTUKMgCH4hKiqKr776ymf2PRqKbSYvL4/CwkISExMZPnx4b5arDatXr2bDhg1t3mVkZDBv3jxKS0u566672LZtG8nJyaxfv961MbGnNJ8VW1hYKHPsukHm2HlnY6jPsfOUwuoGPj9ewqfHSjhS0HKGqVZRuGpEBEsnxjN/dAQHdu/o03q0/u7sip2Psj/i5VMvU1RXBEBYQBi3pd/GytErCQ0I7cZae5syx65/t0t38UddfJFnf2+bHclaLBYKCgpIS0vDYDBQb3UugDLXmDGGdn7SQ0/Sg/TaLodihw0bxoULFzpNb2hoICcnh6SkpDZz7BITE90aivXIsWs9p+1i4uLiemqu3yBz7ARh4FHeAAebInnna1s6U62iMi5CZVq0yuRIlUA/+QI21UZmYyZfWr6k3OHcLNeAgasMVzHTMJMQTf/av08QBjOt59gFBPhnDkfzHLvO8HaOnUeOnUbjnBjYrNraM7Xb7T011++QiJ37SMTOOxsSsetdcsrr+OxYCZ8eL+FMSa3rfYBWw5z0KK6dGMfc9BiCu5j/4g1dfXd21c4X+V/w0omXyDJlARCoDWTFyBXcPuZ24oPje2zT2zL1lo5E7HqGROw81+/NiF1gYMsq+5qamjYrUy/G2/Se4JeI3cUUFRXx5JNPcuWVV/Ld737XW3N+QyJ2gjB4KKyDg2UaDpYrlDS0/PMZoFGZGOmM5E2IVNH38bZzDtXBKdsptjVs44LdORyjRcvUgKnMNswmVhvbtwUShCFEf4jYdYdfInadFWTkyJGcP3++N8z5leaIXVlZWadfoNVqZfPmzSxatMh5pmEPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IFCcz0WLlzI2fIGNh4p5pOjRZyvrHfJhBi0LBwXx7LJCVw9KpoAnXdeXk++O1VV2VW4ixePv8iBkgMAKCjMT5nP3RPuZmL0xB7b9LZMnup42x+6IzNY2iX4py6+yLO/t82OZBsaGsjPz28TsVNV1RVx62hunLfpPaU5YpeSkuIqo8lkIiYmxnfbnXTEnj17XJ6lIAhCf0FRFCYkhjEhMYxHFo3myAUTnxwpYuPRIopMFj7ILOSDzELCAnUsmhDHdZMTmDEiCp3Wt6E8RVGYmTSTmUkzySzNZMOJDWw7v42t+VvZmr+V6fHTuWfiPUyLmubTcgiCMLjwKGI3fvz4Nl5pXV0d5eXlPPPMM9xzzz29WsC+RIZiBWHo4FAhpwYOlms4VK5gsrb0aSE6lanRKpdGq4wKU9H00XnhJfYSvmr4ikxrJo6mY5qStEnMMcxhgn6CHFcmCF4iQ7GdsH379jafQ0JCGDNmTLeZDRRkKNZ9ZCjWOxsyFOs7elIPu0Nlf24lnxwp4rNjxVTWtRy4HWsMYOnEeK6bnMC0lAg0XXh5vfXdFdYW8u+T/+a9s+/RYG8AIMWYwuoJq7luxHUEaN3/gyRDsf0PGYr1XF+GYn00FLtv3z5++tOftnv/1FNPtTlzVRAEYSCg1ShcOSKKK0dE8d/XjWNXdgUbjxSz6XgxpeZGXt6Tz8t78kkIM7BsUgLLJicwZVhYr3TiHZEYksh/Xvaf3DvxXl47+RqvnHiFfHM+/7P3f3juyHPcOe5Obh59MyF62SpFEIS2eBSxCwsL6/BA2ujoaMrLy3ulYP5AhmIFQWiNzQGnqp3n1h6uVLDYWxy5aIPKJdEql8Y4GBbs1tnfHmNRLey37Odry9eYVGffG6gEclXAVcwwzJC98ATBTfrDUOz58+f5+c9/zvHjxzEYDEyePJk//vGPREREAH08FPvmm28CLSdBtFbNycnhhRde4MyZMz2tY79DhmLdR4ZivbMhQ7G+o7frYbHa+fJMOZ8cLWLryRLqWx0ePiI6mGsnJbBkfAw5mTt9NtyFBjbmbGTDiQ3kmHIA5154y0ct57vjvkuSMalLfRmK7R/IUKzn+gN9KFZVVa688kp+9KMfsWrVKgDef/99Jk+ezKhRo1xl7LOh2Oeeew5wepPr1693vVcUhbi4OF566aWemOv36PX6bhuOtzLu6A8E/FWP3s63N+x5YqMnOu7KdifnbfpAobfqodfrWTZ1GMumDqOu0cbWkyV8nFlIxqkSssvrWL/9HOu3nyMhSMu5oDyWT0tmZGznRxB5kr9er+fb477NTWNvIiMvg38c+QdHy4/yxuk3ePvM2ywdsZTVE1czLmpcp/qe5Nmb8tJntuCPuvgiT29t9mWfabfbURQFjUaDRlHAWofD4QBrHYpVi0bTfoFSj9P1nYfwt2zZgtFoZPXq1a53N910UxuZ5kMgWpe7J99Pjxy7jIwMAJ588kl++ctf9kRVEARh0BAcoOP6KUlcPyUJs8XGluPFfHy4gO2nSymqh2e2ZvHM1iwmJIZx/dREbpiSREpU703r0CgaFqQu4Jrh17CvaB//OPIPdhXu4pNzn/DJuU+4KvEqVk9czcykmb2WpyAMOqx18JskNEBEF2I9Tv+vAgjoeHrE8ePHmTbNt1sYue3YlZWVERMTA8D3v//9Ts+LHchnxV6M1WrFarV2mtb63lMZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oNBX9TBo4LpJcVw3KY4yUx1/eXc7+cSyK7uS44Umjhea+MNnp5iSHMZ1kxK4dlICieGB3Rtuort6TIuZxrPzn+VExQlePvEym/M2s7twN7sLdzM6YjR3pN+Boio+a5fuykuf2YI/6uKLPL216Y8+02q1oqoqDocDBw58sYGQw+EAh6PztFb3zmRUVcVqtaLVOo8/7Ml35PYcu9DQUGpqaoD2Z8W6jCnKgD4rVhZPCILQW5itcLhC4ZsyhbMmBZWWoZkRoSqXRju4JFolrJfnb1c6Ktll2cV+y34aaQQgTAljhmEG0w3TCVTcdyoFYbDRZvGEXg+2+u6VepxJUKdDsRkZGfzv//4vH374Yafq/eZIscGELJ5wH1k84Z0NWTzhO/rTBPXSGgufHStm49Ei9udWud4rClyRFsnSifEsnhBPXKjBbZvdYWo08c6Zd3jt1GuUNZQBEKIL4abRN3Hb2NtICEnocT28kZc+s4X+1Db9aXOoLp6YPn06P/nJT7jzzjsB+Oijj5g4cSIjR450lbFfHCnW38jPz2f58uUcP34cs9mMTtfzqspEYPeRxRPe2ZDFE76jP0xQT4rSc89sI/fMHkVhdT2fHC7k48OFHMqvYk92JXuyK/nVJyeZnhrFtZMTuHZSIgkXDdf2tB7R+mi+f8n3uWPcHfz+w9+TGZDJuepzvHzyZV479ZprocXYqLFu16On9faFzGBpl9A/2mZ/sOm3xRNNCyGah0Wb31+Mt+kX8/777/OjH/2IX/3qVxgMBi699FLmzp3r0u3TxRPN5Ofn86tf/YrMzEzMZnObtOPHj3tisteJjY1l69atrFixwt9FEQRBcJEYHsS9s0dy7+yR5FfU8dnRIj454nTy9uZUsDengnUfHeey1EiunZTA4vGxXuUXoA3gMsNl/PLaX7KnZA8vHXuJvUV7+fjcx3x87mNmJM5g9aTVzEic4bMNlwVBaGH48OFdDsV6i0eO3S233EJ6ejrr1q3rt3PQAgMDXSFMQRCE/khKVDD3zRnJfXNGcqGqns+OFrHxSCEHcitd15OfnCDVqKUwPIfrpgzzeHWtoijMTp7N7OTZHCs/xoajG9iUu4ldhbvYVbiLMZFjWD1xNUtHLO3lWgqC0Jd45NgdPXqUHTt2uBVydJe1a9fy1ltvcfLkSV599VVuvfVWV1ppaSmrV68mIyODlJQU1q9fz4IFC3otb0EQBH8zLCKI7109gu9dPYKi6gY+O1rIxiNF7MutINes8LvPTvO7z04zJTmcZZMTWTYpkeHRnjl5E6Mn8oe5f+A/zP/Bv4//m3fOvMPpytP8147/4ulvnuY76d8hzDE4zv4WhKGGR47d0qVL2b17NzNn9t4eSenp6TzzzDM8/vjj7dIeeOABkpKSKCsrY9OmTaxcuZKsrCwsFksbBxDAaDTy8ccf91q5BEEQ+pqE8EBWzxrB6lkjuFBh5n/f2ko+MezLqeTw+WoOn6/md5+eZGJSmNPJm5zIiJieHys2zDiMn1/xc9ZMXcNbp9/ilROvUFJXwv9l/h969Jzae4pVk1YxMnykD2opCIIv8MixCwoKYunSpSxevLjdvnWtT6ToCc2rQ37961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx+xatUqtm3b5lF+rbFYLFgsFtfn5nNwZR+77pF97LyzIfvY+Y7BsldYZKCG2QkqixZdQrXFwabjJXx+rJjd2RUcKzBxrMDEHz8/xbiEUJZOjGfpxHhGxbY4ee6UKVgTzF3j7uL29Nv5PO9zXjnxCqeqTvHO2Xd45+w7zEqcxe3jbueqhKs6nIcn+9j1jMHSNgf8PnZNix6aNwdpfn8x3qb3lD7bx64169at6zRt7dq1PTXXhnnz5rFmzRpXJO7gwYMsWbKkzYbIDz74IMHBwfz+97/v1E5DQwPXX389Bw4c4NJLL+WJJ55g9uzZHco+8cQTHdZJ9rETBKG/0rxPXma5wulqBUerffISg1SmNu2Tl+hBF6aqKjn2HHZZdnHCegIV55+JOE0cMwwzuCTgEvTK4FiZKgwt2uxjF9DLm0j2Et7uY+dRxM5b560nmM3mdpUICwujqqqqS73AwEC2bNniVh6PPfYYDz/8MC+88AIvvPACdruds2fPelpkQRAEn2PUw8x4lZnxKrVWOFKpcKhc4VS1QmG9QuF5LZ+dh/gglUuiVC6JdpDY+RGWbVAUhRG6EYzQjaDCXsEuyy4ONB6gxFHCB/UfsLlhM9MDpnOl4UrCNDIXTxD6Ex45dn/4wx86fG8wGEhOTmbBggVERER4Uy4XRqPRNTTajMlkwmjsvcO1DQYDBoOBRx55hEceecS1QfH8+fM79YxtNhsZGRnMnz+/0z3yupJxR38g4K969Ha+vWHPExs90XFXtjs5b9MHCv6ohy/ydNfmiqZ7db2VjNNlbDpeytfnKiiuh88vKHx+QUNadBBLxsexeEIs4+KNnW5vcnGet3ALZquZj7I/4o0zb1BYV8h2y3Z2NO5gUcoiVo5cSeGhQo/7Q3dkBku7hKHXNntT39s+02KxUFBQQEhISJudM5o3GO4Mb9NbM2zYMC5cuNBpekNDA4GBgcycORODwblp+cV+UFd4NBR766238t5773HllVeSnJzM+fPn2bNnDzfccAMFBQUcP36cd999l2uuuaanptsNxZrNZqKjo8nNzSUhwblT+pw5c7j33ntZtWpVj+13hRwpJgjCYKLeBkebInknqxRsaosjFxPYEslLDnEvkgfgUB2csJ5gp2UnufZc1/tUbSozDTMZpx+HVtH2dlUEoVfoD0OxY8eO5dSpU52m+2Uo1maz8c4773D99de73n3yySe89NJL7Ny5k1deeYWHH36YQ4cOuW3TarVit9txOBxYrVYaGhoICAjAaDRy4403snbtWp5++mk2b97M0aNHueGGGzwpuiAIwpAhSAfTY1Wmx6o02OBYldPJO1GpUNagsKVAYUuBhmiDypQmJ2+4ETRdOHkaRcPEgIlMDJjIBdsFdlp2csR6hFx7Lrl1uYQr4VxhuILLAy4nRNPzlbqC0FeoqkqDvaHX7QZqA/262bdHEbvw8HAqKipcqzXA6exFR0dTXV2Nw+EgIiKiR6HD1atXs2HDhjbvMjIymDdvHqWlpdx1111s27aN5ORk1q9fz8KFC3tabLdpHootLCyUodhukKFY72zIUKzvkOGuzvVrG218eaaCz4+X8OWZchpsLSv54kMNLBgbTXRdHvfcOA9DQPeLJAprCvnfjP8lU82kqrEKgABNgHOYNn0l4yPHS5/ZCmmbnuv31lBsWloaqk5lxuszelzu7th16y6CdEGdprszFJuTk0NSUlKbodjExES3InYeOXYzZsxg2bJlPPbYY+h0Oux2O7/97W/5+OOP2b17N7m5ucyePZu8vLyemvYrMhQrCMJQw2KHE1XO1bXHqhQs9pZIg1GvMiVSZWq0SnqYirabPemtqpUj1iPstuymwF7gep+iTeFKw5VM0k9Cpwxsp0wY2LQeirVr7Cz+ZHGv57Hpuk1dOna+Hor1yLE7ffo0t99+O6dPnyYuLo6SkhLGjh3Lq6++Snp6Onv37uX8+fPcdNNNPTXdL5CInftIxM47GxKx8x0SFem5vsVmZ9e5Sj4/XsLmY0XUtXLywgJ1XDM2hkXjYpk5KhKDru2ITes8VFXlaMVR3j77Nlvyt2BTnX+cjIqRb4/5Njen30xcUFy7/IdCnwnSNr3R782IncFgcA3F9ubiie6GYvtlxK6ZnJwciouLSUhIIDU11VMz/QaJ2AmCIDixO+CMyRnJO1ypYLa2/KEyaFUmRjgjeeMjVAxdrJUwO8zsa9zHXsteatQaADRomKCfwFWGq0jVpvp1PpIwtBgKiye8cuzq6uooLy+ntYnhw4d7aq7f0ByxKysr6/QLtFqtbN68mUWLFqHXdzwHpSsZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oOCPevgiT29t9ka7tDtU9uc6I3mbjhdTbGo5qSdQr2H2qGgSbEU8ePM8Io0dD0HVW+r566d/5VTwKQ6WHXS9T49I55Yxt3Bt2rXoVN2g7zNB2qY3+t72mQ0NDeTn55OWluba7kRVVVfEraN/MrxNvxi9Xk9iYqLr89/+9jeWLVvm+twcsUtJSXGV0WQyERMT47tVsUeOHGHVqlUcPnwYwFWRgIAA6urqPDEpCIIg9FO0GoUrR0Rx5YgofnntWDIvVPP5sWI+P17C+cp6Np8sBbS8/qcdzBoVzZKJ8SwcF0dEcMsfXp1Gx6SASTw0/yGyzdm8cfoNPs35lDNVZ3hy75M8c/AZrku7jnh7vP8qKgh9gK+PkvMoYjdr1iwWLVrEo48+SmJiIoWFhfz3f/83o0aN4gc/+IEvytknyFCsIAiC+6gqXKiDzHINmRUKxfUt0QoNKqPDVS6JVpkcqRLWwahXvaOebxq/YXfjbiodla73I3QjuCLgCsbrx8tiC6FX6Q9Dsd3hl6HYiIgIKioq0Gg0REZGUllZSWNjIyNHjuT8+fOe1aQfIUOx7iNDsd7ZkKFY3yHDXZ7r91SnWX7EJTPZcqqcTceKOVlsdqUrClyWEs5wTQU/WnE1KdFtJ6HbHXZ2F+3mzdNvsqNgh+ts2qjAKJaPXM5No28izhA3KNolSNv0Rn8wDMV2h1+GYiMiIqiqqiIqKophw4aRmZlJVFQUZrO5e2VBEARhUDI6NoTxSRE8OH8UueV1fHasmE3Hizl8wcT+vGr2o+Xdp3cxNTmcJRPjWDIhnuFRwWg1WmYlzeKK2Ct46/O3qEyu5IPsDyirL+PF4y/y0vGXuCrhKkZaRzLfMR89A9uxEwRf4lHE7sknn2TixIl861vf4oUXXuCRRx5Bo9Fw33338cc//tEX5ewTZChWEASh96mwwOEKhcxyDdk1oNIS1RgWrDI12sHUKJWEVt2tXbVzynqKvY17OWs763ofpoRxueFyLg+4nDBN15ELQbgYrVZLYmIiMTExBAV1vtecP6mvr6esrIzCwkLsdjvQh6tim8nNzcVsNjNx4kRvTfULZCjWfWQo1jsbMhTrO2S4y3N9T4di3ekPL7lqDhlnK9l0rJg9OZXYHS1/gkbFBjM6wMwPrruSSckRrmGt/Jp83jn9Dm+ffps61blAT6tomTNsDjePvpmrEq9Co3Sze3I/Qtqm5/re9pmqqlJcXExNTY1LTlVVGhoaCAzseP85b9M9ITQ0lPj4eJc9nw3FTpgwoVuZ48eP98Rkv0av13fbcLyVcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvySVFGVs+KZPWskVTUNrL5eBGfHi3i67NlZJXWkYWGz5/fR2p0MEsnJXDtpESmJo/gJ5f9hJFFIwmYGMA7We9woPgAGeczyDifwTDjMFaMXsGK0StICEnoUR39ibRNz/W96TNTUlKw2WyuhQlWq5Uvv/ySOXPmdPrPrjfpPUWn07XbfLkndnvk2GVnZzN8+HDuuOMO5syZI5tKCoIgCB4TFRLALdOHc8v04VTXW9l8tIANWw9zukZHbnkdf99+jr9vP0dSeCCLJsQRXqPjh8OXcEP6DWRVZfH26bf5IOsDLpgv8OyhZ3ku8zlmJc3i5vSbmZMyB71m4P9jIviG1s6TVqvFZrMRGBjYoQPlbXpf0yPHrqSkhHfffZdXXnmFl156iZUrV3LHHXcwZcoUX5XPr1it1k73m2l+39V+NF3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l357mSCdbBsYiz6Agcz585iV3Y1nx8rYdvpUgqqG9iwKw/Q8eoft7NofBxLJ8bz4yk/4f7J97M1fyvvZ73PgZIDfHXhK7668BVRgVFcP+J6VoxaQVpYmtt17wukbXquP1T7zJ7Y9niOXXFxMa+//jqvvfYatbW1vPHGG24N1fZnZPGEIAhC/6LRDqeqnUebHa1UqG91fm2ITmVSpPNos7HhKlVqGd80fsM3jd9gVlt2aUjVpnKZ4TIm6ScRoPTPvcsEoSv6ZPFEVVUVb775Jq+++ioXLlzgvffeY9KkSR4VuL8hiyfcRxZPeGdDFk/4Dpmg7rm+LxdPeNNnfvr5ZoyjLuWLU+VsPlFCZV1LFMNo0HHN2FiWTIxj5qgI9pfu4v2s99lRsAOH6nDK6I0sTV3KitErGB853m/TiaRteq4/VPtMny2esFgsfPjhh/z73//m4MGDrFixgt/97ndcddVVXhXYV2zfvp1HH30UrVbLFVdcwVNPPdUjfVk84T6yeMI7G7J4wnfIBHXP9X2xeMIbGZ0GrhmfwJIpKdjsDvbmVPDZ0SI+O1pESY2FDw8X8uHhQoL0WuaPi2XppF/wyGXwRf4nvHvmXc6bz/P22bd5++zbjI0cy03pN3HdyOsIN4S7XcfeRNqm5/pDrc/02eKJ+Ph4EhISuO222/j5z3/umni4d+9el8wVV1zRE5M+ZfTo0Wzbtg2DwcDtt9/OkSNHmDx5sr+LJQiCIHiJTqth5qgYZo6K4YkbJnIwv5JPjzhX2F6oqmfjkSI2HikiQKdhTvol3D1hMTGx5/k870O25G7hVOUpfrv3t/xp/5+YlzKPFaNXMDNpJjqNHGEmDGx61IIjIiKwWCy89NJLbNiwgYtHcRVF4dy5c71aQG8YNmyY61mv16PVav1YGkEQBMEXaDQKl6VGcVlqFL+4bjxHL5j49Gghnx4tIrusli0nSthyogStRmHGyJtYM/67OEIOsCX/Y05WnGRz7mY2524mOjCa60dez/LRy0mPTPd3tQTBI3rk2OXk5PioGE7Wrl3LW2+9xcmTJ3n11Ve59dZbXWmlpaWsXr2ajIwMUlJSWL9+PQsWLHDL7jfffENZWdmAX9whCIIgdI2iKExODmdycjj/uWQsp4vNfHa0iE+PFnKyqIYdZ8vYcbYMRYnh8tSHuH10PfWGPWwv+JzyhnI2HN/AhuMbmBA9geWjlrNsxDIiAiP8XS1BcJt+FXNOT0/nmWee4fHHH2+X9sADD5CUlERZWRmbNm1i5cqVZGVlYbFY2jiAAEajkY8//hiAoqIifvzjH/POO+/0SR0EQRCE/oGiKIxNCGVsQij/sTCdnLJaPjvmnJN3KL+KfTmV7MsBmMqkYbO4YuQFqrQ72V/6NcfLj3O8/Dh/3P9H5iXPY/no5cwaNkv2xhP6Pf3KsbvzzjsB+PWvf93mvdls5oMPPiAnJ4fg4GBWrFjBU089xUcffcSqVavYtm1bh/YaGhq4/fbb+etf/0p8fHyn+VosFiwWi+uzyWQCZB87d5B97LyzMVT3ZOoLZK8wz/X9sY9ddzK98d0OCw/gezOH872ZwymsbmDziRI+P1bM/txKjl4wc/RCOHAto+KXkpZ6mhL1a3LMp9mSt4UteVuICozi2tRruWHkDYyJHONxOaRteq4/VPvMPtnHzpfMmzePNWvWuCJxBw8eZMmSJZSUlLhkHnzwQYKDg/n973/fqZ3nnnuOdevWMW7cOAB++9vfMmPGjHZyTzzxBOvWrWv3XvaxEwRBGPzUWOFIhXOvvNMmBYfasg1KVGgBUbHfUG04SAO1rveJ2kSm6acxJWAKRo3RH8UWhhA92ceuX0XsOsNsNrerSFhYGFVVVV3q3X///dx///3d2n/sscd4+OGHeeGFF3jhhRew2+2cPXvWmyILgiAIA4RQPcyMV5kZr1Jng2OVTifvZJVCRU0SFTVJwLWERZwiPPoApoCTFNoLKbQX8lnDZ4zSjWJqwFQm6CfIBsiC3xkQjp3RaHQNjzZjMpkwGnvnvySDwYDBYOCRRx7hkUcecW1QPH/+/E49Y5vNRkZGBvPnz293WK87Mu7oDwT8VY/ezrc37Hlioyc67sp2J+dt+kDBH/XwRZ7e2vR1u3RXfiD1mcub7rWNNnacrWDziVK2nSnHVDUBU9UE0NYSHnOU0OjDVKtZnLGd4YztDEHaIOYOm8u1qddyedzlnW6dIm3Tc/2h2mde7AN1xYAYijWbzURHR5Obm0tCQgIAc+bM4d5772XVqlW9lq8cKSYIgiB0hNXhPNrscLnCkUqFOptzuFbRlxEceRBDxEGs2gqXvFExMiVgClP1U0nSJvntlAthcDBgh2KtVit2ux2Hw4HVaqWhoYGAgACMRiM33ngja9eu5emnn2bz5s0cPXqUG264wd9FFgRBEIYAeg1MinSeTWt3wNka53DtkYpoTCWLqC1ZiCYwn8CIb9CHH8asMbPTspOdlp3EamKZGjCVqfqpRGoj/V0VYZDTryJ2q1evZsOGDW3eZWRkMG/ePEpLS7nrrrvYtm0bycnJrF+/noULF/qkHM1DsYWFhTIU2w0yFOudjaE6rNAXyHCX5/pDfSi2JzhUlUP51Ww+Ucrmk2UUVDcAdrTG0xjCD6ILPYGqtKxonBozlcXJi9Gf03PdguukbUqf6RYmk4nExES3Inb9yrHzNzIUKwiCIHiKqsL5Wsis0JBZrlDSoICmAV3oUQLCD6INPgeK80+uFi1j9GOYqp/KWP1Y9Irsjyd0Tk+GYsWx6wCJ2LmPROy8szFU//vsCyRi57m+ROy8R1VVssrqmiJ5pZwsMqPoqtGFZaIPP4g2sNAlG6wLZu6wuSxOWcwV8Vf45Lzaodg2B1OfKRE7D5GInSAIguALyhrgcIVCZrmGHLOCxlCELuwg+rBMNAFVLrlgJZhJ+klMDphMqjYVjaLxX6GFfoNE7LykOWJXVlbW6RdotVrZvHkzixYtQq/vOITelYw7+gMBf9Wjt/PtDXue2OiJjruy3cl5mz5Q8Ec9fJGntzZ93S7dlZc+s4X88hqefX8H+Wo0+/MqITAPfdghdGFH0OjMLrm4oDgWpy5maepSxkeN92pl7VBsm4OpzzSZTMTExAy8VbGCIAiCMNhJCAtkTqLKokXTMDWqfHGihE3HL2PnuRIcgVnO4drQo5TUl/Dvk//m3yf/TYoxhSWpS1iatpSR4SP9XQWhHyMRu1bIUKwgCILgL+pscLxSIbNC4US1HTXoNLqwTHShJ1A0LStr4zUJTAmYzBT9FNk+ZYggQ7FeIkOx7iNDsd7ZGKrDCn2BDMV6ri9Dsb7FnbrUNdr48kw5m44Xs/X0eSwBR9GHHUJrPIOi2F1yk6Inc23aUhYNX0RMUIxXefqiHr2tP1T7TBmKFQRBEIQBTHCAjqUT41k6MR6LbRI7s6az6XgJW07nUKs7iC4sE23wOY6WH+Fo+RH+dODPXBZ3GUvTljA/eT6RgRLJG6pIxK4VMhQrCIIg9GfsKmSZnKdeZFbX0BB0BH14JtqgfJeMomoYoRvJ1IDJjNePJ1gjf8cGOjIU6yUyFOs+MhTrnY2hOqzQF8hQrOf6MhTrW3qrLg6HyqHz1Ww6XsynJ49Txl50YUfQBha4ZDRouTzuCpakLsRxysGNS24cMm1zMPWZMhTbS+j1+m5/SN7KuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNb6I26XDkqlitHxfLL6ydyrGAJnx0t4qPjmRTa9qALOwyBRewt2cXekl0oqpbN27exYsx1zE+ZjzHA2C/qIX1m9/TErjh2giAIgjDAURSFScPCmTQsnJ8uGcvZkmv59EgRH504RE7DTnShR9AGFrO35Gv2lnyNVtEzPW4GK8YsY17KPEL0If6ugtBLiGPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLfRFXVIjA1kzJ401c9LIq1jMZ0cLeW3f15TojjgjeYZSdhd/ye7iL9ESwGWxV/GtMdcyO2k2wXr35uT197Y5mPrMntiWOXatkMUTgiAIwmCmuhEyK+BAdQmF2iPoQo+gMZS50jWqnjTNGKYHTWasfgwBSoAfSys0I4snvEQWT7iPLJ7wzsZQnQjcF8jiCc/1ZfGEb+kvbbOitpEtJ0p4/8R+jlZ9hSY0E01AhUtHi4FLY2aycuwyrh42i0BdYK/WQ/pM95HFE0BBQQHf/va30el0hIWF8eabb/Y4+iYTgd1HFk94Z2OoTQTuS2TxhOf6snjCt/i7bcZH6LljxgjumDECU8MKtp4o5u0je/imYhtKSCYEVLKvLIN9ZRnoCOTSmFncOvF6Zidf3cbJ6+9tczD0mbJ4AoiPj2fHjh1oNBrWrl3LJ598wsqVK/1dLEEQBEHod4QF6lkxLZkV05Kpb1zBtlPFvHVkF/tKM3CEZGLTV7G37Av2bv8CLQamRM1g5bhraVQb/V104SIGrWOn1Wpdz4qiMHbsWD+WRhAEQRAGBkEBWq6dnMS1k2/GYlvB12fLeD1zB7tLtmIPOgz6Kg5WbOPgzm0oqp53P9nKbZNuYGHqPLcXXgi+Q+PvAjSzdu1aJkyYgEaj4fXXX2+TVlpaynXXXUdwcDBjx47liy++cMvmjh07uOyyy9iyZQupqam+KLYgCIIgDFoMOi3XjIvn+Vtu5psf/pXn573LPOP/oKuZj6MxElWxcrR6B7/4+ufMePVqvvPeD3j71IeYG83+LvqQpd9E7NLT03nmmWd4/PHH26U98MADJCUlUVZWxqZNm1i5ciVZWVlYLBZuvfXWNrJGo5GPP/4YgKuvvpoDBw7wpz/9iX/961889NBDfVIXQRAEQRhs6LQaZo2OZdboFTgcy9l3rpSnPnuXLOUU9QEHIaCcE6adrNu9k1/t0jE69DJWjlvGdekLCQvoesK/0Hv0G8fuzjvvBODXv/51m/dms5kPPviAnJwcgoODWbFiBU899RQfffQRq1atYtu2bR3as1gsGAwGAMLDw7Hb7Z3mbbFYsFgsrs8mkwmQfezcQfax887GUN2TqS+Qfew815d97HzLYGmbk5OM3J6SyMKF3+VMWT2vZ+5j24UvqNEeQGMo44x5D7/Zv4ff7PsVI0KmsSJ9CTeOXki4IdzjMg3VPnNA72M3b9481qxZ44rEHTx4kCVLllBSUuKSefDBBwkODub3v/99p3Z27NjBL37xCzQaDVFRUbz88sudrop94oknWLduXbv3so+dIAiCIPSMojqVXVWlHLUepS7wKFpDy99vVA1R9lFcGjiR6cHjCdHIiRfu0JN97PpNxK4zzGZzu0qEhYVRVVXVpd7VV1/N9u3b3crjscce4+GHH+aFF17ghRdewG63c/bsWU+LLAiCIAhDloRghW8Fx/EtrqG84Rp2VpZypPEYNYajaAOLqNCdYYvtDFuqPyTCPoJLDJO4Mng8odreObt2qNPvHTuj0egaGm3GZDJhNPZeAzAYDBgMBgIDA9FoNPSzIKYgCIIgDEiiA+GGxFhuYB7VjfPYVVnGIcsxqgOOog0spEqXxTZ7FttMHxJmH8GUgInMDJlAmDbU30UfsPR7xy49PZ3q6mqKiopISEgAIDMzk3vvvbfX83rggQd44IEHXCdPzJ8/v9OQp81mIyMjg/nz56PTdfw1diXjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xhKLfNbzfdK+saeftwJm8d+4jKgKNoAi9g0p1jh+McO0wfE6MbyzXJ13DnpGuJD47zKM/B1GdeHODqin4zx85qtWK321m8eDH33XcfK1euJCAgAI1Gw8qVK4mKiuLpp59m8+bNrF69mqysLCIjI3u1DHJWrCAIgiD0LQ022FtVyYH645TqjqAJOt8mPdiaygT9ROYYJxCli/BPIf3MgDwrdvXq1WzYsKHNu4yMDObNm0dpaSl33XUX27ZtIzk5mfXr17Nw4UKflaU5YldYWCgRu26QiJ13Nobqf599wVCOinirLxE73yJts3P9equdj0+c5L0zm8iq2w2BOW10wpRRjHSk87OFdzMqKq1XyjcQ+kyTyURiYuLAcuz6AxKxEwRBEIT+gc0BmdUmdtcdp0BzFAJzUZQWl8VgTWK0diJzQicwTB/rx5L6ngEZsetPSMTOfSRi550Nidj5DomKeK4vETvfIm2z5/o2h4OMs+d4/cTnHK3egRqY3cbJC1KTuCxmNt+ddC1TY8ehKMqg6jMlYuchErETBEEQhP6NQ4VTNbV8bT5JLsdwBJ1FURyudK0tmlQmcrVxIumGJBRF8WNpeweJ2HmJROzcRyJ23tmQiJ3vkKiI5/oSsfMt0jY9179YR1VVvjlfxL+PbeJA2Vc06E+gaGwueY0tgskRs7htwjLmDr8UjaLpcTn6Q58pETsPkYidIAiCIAxc8ussfGk6zVnHMRoDT6FoWo7iUmxhJKnjuSp4IlOCU9EqWj+WtGdIxM5LmiN2ZWVlnX6BVquVzZs3s2jRIvR6fY9l3NEfCPirHr2db2/Y88RGT3Tcle1Oztv0gYI/6uGLPL216et26a689JktSNv0XL8nOqeKSvnNpxvI0ZzFpMlE0bacCa9xGBkdciU3j13KspFXsX3r9n7dZ5pMJmJiYgbHkWL+RK/Xd/tD8lbGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9d3RGZsQyy3xE1i27KcUm+v554FNfJG/hQr1IA6tmdP1X/DbQ1/wu2+CiLaNo/Q43HnJEgJ1gR7l6cufZ0/simPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLUjb9Fzf0z4z3hjEf81dzn+xnDJzPS8d3MrmvC2U2A+AzkxZwEGeOXaQZ478D8mGS7lu5CLumLwYY0Bwv+gze2JbhmJbIXPsBEEQBGHoUGdzsKMqj8zGY1Tpj6Poq1sSHXrCbOlMDpjInNCxhGg7juT1STlljp13yBw795E5dt7ZkDl2vkPmMXmuL3PsfIu0Tc/1fdlnzpo7j3dO7OfDs5+TZ9kD+gqXjOrQEqOdxILhC7hn6rXEGaO9qkdPkTl2vYTMF3EfmWPnnQ2ZY+c7ZB6T5/oyx863SNv0XN8XfWZ4SDA/mLGAH8xYgMVq562je3jn5EbO1u5C0ZdQrmbyZm4mb+Q8TaRmPPOSr+G+y5aTGBzlcT3cRebYCYIgCIIgeIhBr+XOaTO5c9pM6hss/PrNDZwOKOSUeScOfQFV6jHezz/Ge3n/RxjppNrTmVZzFcOj4v1ddHHsukIWT3SPLJ7wzoYsnvAdMkHdc31ZPOFbpG16ru+PPlN12JkeHs9/LboTnU7HprPHef3YRo5Wf41dn0cNpzmqO82FqrtIDI1yuy49QRZPeIgsnhAEQRAEwR1UFU7XVvKV+QQVahk/S7zRZ3nJ4gkvkcUT7iOLJ7yzIYsnfIdMUPdcXxZP+BZpm57rD9U+UxZP9BIyEdh9ZPGEdzZk8YTvkAnqnuvL4gnfIm3Tc/2h1mf2xG7703AFQRAEQRCEAYk4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBJk8UQHNC8UNplMncpYrVbq6uowmUxdrvDqTMYd/YGAv+rR2/n2hj1PbPREx13Z7uS8TR8o+KMevsjTW5u+bpfuykuf2YK0Tc/1h2qf2eyPuLORiTh2HVBTUwNASkqKn0siCIIgCILgpKamhvDw8C5lZB+7DnA4HBQUFBAaGoqiKJ3KTZ8+nX379nVpqzMZk8lESkoK+fn53e5J099x53sYCPn2hj1PbPREx13Z7uS6Spe22f/y9Namr9ulu/LSZ7YgbdNz/aHYZ6qqSk1NDUlJSWg0Xc+ik4hdB2g0GpKTk7uV02q13f4Qu5MJCwsb8J2UO9/DQMi3N+x5YqMnOu7Kdifnjh1pm/0nT29t+rpduisvfWYL0jY91x+qfWZ3kbpmZPGEFzzwwAO9IjPQ8Vcdezvf3rDniY2e6Lgr253cUGiX4J96+iJPb236ul26Ky99ZgvSNj3Xlz6za2Qo1k80H1vmzvEggtCXSNsU+iPSLoX+Sn9rmxKx8xMGg4G1a9diMBj8XRRBaIO0TaE/Iu1S6K/0t7YpETtBEARBEIRBgkTsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEgQx04QBEEQBGGQII6dIAiCIAjCIEEcO0EQBEEQhEGCOHaCIAiCIAiDBHHsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEjQ+bsA/RGHw0FBQQGhoaEoiuLv4giCIAiCMIRRVZWamhqSkpLQaLqOyYlj1wEFBQWkpKT4uxiCIAiCIAgu8vPzSU5O7lJmUDt2paWlrF69moyMDFJSUli/fj0LFizoVi80NBRwfoFhYWEdylitVjZt2sTixYvR6/U9lnFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv0wcK/qiHL/L01qav26W78tJntiBt03P9odpnmkwmUlJSXP5JVwxqx+6BBx4gKSmJsrIyNm3axMqVK8nKyiIyMrJLvebh17CwsC4du+DgYMLCwrrspDqTcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvy0me2IG3Tc/2h3me6Mz1s0C6eMJvNfPDBB/zqV78iODiYFStWMGnSJD766CN/F00QBEEQBMEnDNqI3ZkzZwgPDycxMdH1burUqRw7dqydrMViwWKxuD6bTCbA6YVbrdYO7Te/7yy9Oxl39AcC/qpHb+fbG/Y8sdETHXdlu5PzNn2g4I96+CJPb236ul26Ky99ZgvSNj3XH6p9Zk9sK6qqqj4riR/56quvuPvuuzl79qzr3S9+8Quqqqp49tln28g+8cQTrFu3rp2NV199leDgYJ+XVRAEQRAEoTPq6uq4/fbbqa6u7nSKWDODNmJnNBpdkbdmTCYTRqOxnexjjz3Gww8/3EYuJSWFxYsXdznHbvPmzSxatKjL+SKdybijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0zL/ZnumLQOnbp6elUV1dTVFREQkICAJmZmdx7773tZA0GAwaDod17vV7f7Q/JU5ltp0s5XqmQWFRLdGgQ4UF6woP06LUDc9qjO9/DQMi3N+x5YqMnOu7KdifnbfpAwR/18EWe3tr0dbt0V95bmcHSLkHapjf6fdpnqipauwV9fSn6mlqwmKDB1HSvRlNXxfiCg+h11/rs59kTu4PWsTMajdx4442sXbuWp59+ms2bN3P06FFuuOEGfxcNgMc/OE6RScvfT+5t8z44QOty8sKa7p1dkSEBRIcEEBUSQHCAVjZTFgRBEITOsFmgrhzqK6G+ChqqoL4KTW054wr3o/n8S6ezVl/pSqOhCl19Fdc7rHC4Y7NaYAxgtdZCQEBf1aZTBq1jB7B+/XruuusuoqOjSU5O5s033+x2q5O+YnxiKFpbAwQEYaq3UWOxAVDXaKeu0U5hdUOP7Bl0GqJDAog2Gohq5fBFGZufne9jjAHEhQYSFKD1RbUEQRAEwfeoKljMUFcGteVN97JW9wq05hJmF2Shy/5vp0PXWNOhKS0wFqCo46yaQyaqRocSGA6GMAgMa7qH49CHkFNUQUo/WbIwqB272NhYNm7c6O9idMjzd17Kxo0bWbZsDnq9HpvdQU2Djep6a4eXqYN3lbWNlNc2YrE5sNgcFFQ3UOCmQxgWqCMuLJD4MAPxoYHENt3jwgzEhwW6ngP14gAKgiAIfYTD4XTOaorAXNx0L4KaYjAXoTUVsbA0G92R74Ot6793GiAKoK7VS0ULQREQGOG8B0XiMISRW1zN8LFT0YZENaVFuuSseiOfb9/Dkuu/hb6DiJzdauXIxo2kGLrfPLgvGNSO3UBCp9UQGRJAZEjPwriqqlLXaKfc3Eh5rYWKJmevoukqNzdS0ep9mdlCg9WBqcGGqcHM2RJzl/bDAnUkRQQxLCLIeY9seU6ODCLCMDDnBAqCIAh9jK0Ragqg+jxUX0BTmceU/J1o3/g31JY4HTlzCaj2Tk1ogJDWL3SBEBwDIdFN9xjnPTgKW2AkB07kctnsxejCEpwygRFw0bQlu9XK4Y0bSZ63DG1Hc9msVuzawHZ6/RVx7AY4iqIQYtARYtAxPLr7rVlUVaXGYqPE1ECxyUJJTdPdZKG4poESUwMlNRaKTQ0tDmBRDSeLOg5h67UKYTotrxXtY1hkCKnRwaRGBzMiJoTU6BDCgwbHJGdBEAShC1TVOTetMhuq8p3Om+lCkxPX9GwuAVqGK7XACICyi40pEBILofFgTGi6O59twTHsPHyOGYuWow9PhICQTh0u1WqlqHAjasqVMEgW3LiDOHZDDEVRCAvUExaoZ3Rc52FjVVUxNTgdwAtV9RRUNXChqo4Llc3P9RSZGrDaVcrtCuXZlZBd2c5OVEgAqdHBpEWHOK8Y5/PI2BBCA4fOL5ogCMKAx9YI1flO560yB035Oaaf24PuH3+EqlznwoPu0BogPBnCh+EITeJMcR2jLp2LLiK5xZELiQVtx+6JarVSeW4jRKYNKWetJ4hj1wVD/eSJYB2kRQWSFhXYYbrN7uBCZS0fbvmKpPTJFNdYyausI7fceZWaW4aED+ZVtdNPCDOQHmckPc7I6LgQRscZGR1rJDSw+2YpJ094LtcfdlHvC2R3f8/15eQJ39Kv26bDBlV5KOVnUSrOQvlZlIoslMpcMF1AuSjilgRQ3aKuGhNQI4ZDWBJqWDKEDUNtuggbBsHRrgib1Wrl5ObNpExehNraSXOo4PC+fxpMfaacPOEhzz77LM8++yx2u53Tp0/LyRNeYrFDaQOUNSiUNkBpveJ6Nlk7n6sQEaCSEKQyLASSQ1SSQ1RiAkEzMKY3CIIg9Hv0thpCGwoxWgoxNhQ575YiQizFaLqY42bTBFAXEEetIbaDeywOjf+3+xiM9OTkCXHsOsBkMhEeHk5ZWZmcPNENntajut7K2RIzZ0pqOVtq5kyJmbMltZTUWDqUDwnQMj4xlAmJYUxIDGVsXDDZmbtYulhOnuipXH/YRb0vkN39PdeXkyd8S5/WxVKDUnYKe+FRzn+zibTgejRlp1BqSzpVUXVBEDUSNXo0atRo1OhREDkCNSLVOUzaKuLWn9vmYOozTSYTMTExQ/tIsd5AdlF3n57WI0avJyYsmKtGt31fXWflTEkNp4prOF5g4liBiROFJmob7ezPrWJ/bpVLNkCj5Y3iQ1yWGsWlwyOZNjyCaGP7E0R8WY/esiEnT/gO2d3fc305ecK39GpdbBYoPQUlJ6DkeNP9BFTnAc4/9qMu1glPgejREJPuvDc9K2HJoNHg7iBJf2+bg6HPlJMnhAFLeLCey9OiuDwtyvXOZndwrqyWoxeqOVZgct3NFht7sivZ02rRRlp0MJcOj+TS1EhmjIpmZEyInMghCMLgwmKG4qNQeBgKM6EoE0pOdjovjdBEHLHjOFdjIO3KZegSJ0HsOOeKUmHQIY6d0O/RaTWMiQ9lTHwoN13qfGexNPLiu58SmjaFzAsmvsmr4myJmZzyOnLK63j34AUA4sMMzBgZzcxRMcwYFU1KlMyZFARhAFFXAUVNDlyzI1d+ltbbhrgIjID4iRA3vuma4HTggqOwW60c27iR1KnLZDXpIEccO2FAotEoJAbDssuTuWOGs5OqrrNyML+Sb3Ir2ZtTwTd5VRSbLLx/qID3DxUAkBwZxKxRMcwfF8us0TGy5YogCP0Hm8XpvF3YDxcOwPn9zq1FOiI0ERKmQOJUSGy6h6cMmE10Bd8hjp0waAgP1jNvbBzzxsYB0GC1801uJTuzytl1rpzM/CrOV9bzxv583tifj16rMD0timvGxTF7VBSyjEgQhD5DVZ2Rt+ImR+78fig60vFwauSIFuctocmRM8b1fZmFAYE4dsKgJVCvZeboGGaOjgGg1mJjb04FX50uI+NUCdlltezMKmdnVjkAMYFajutPc8PUZCYNC5O5eYIg9B6NdU4HLm832txdXJu7B/2h2vZywTGQfDkMuxySL4OkS51nlgqCm4hjJwwZQgw65o+NY/7YOP77hglkl9Wy9WQJGSdL2JNdTlkDPP9VDs9/lUNKVBDLJiWybHIiU5LDxckTBKFn1JZB3m7I2+W8Fx5ybv6L87zTAEDVGlASpzY5cpc57xGpMpwqeIU4dsKQZURMCN+7egTfu3oEleZ6nnljM0UBSWw7XUp+RT1///Icf//yHClRQdw0LZlvX5Ysiy8EQWiPqjrnwrV25MpOt5cLTYLUGdiTpvNVroVZ37oPfaCsTBV6F3HsumCoHynmDv6qR2/na9CoTItRWbRoAlZVYfvpMj47VkzGKaeT98wXZ3jmizNcOSKSm6YlsXRiPMEBbX995Eix/kW/PrapD23KkWI+QFWhKgclZwea3B0ouV+jmIvai8WOw5F8JWrKlajDZ0BYMigKVquV6tLNWB0K9FF9hmLbHEx9phwp5iFypJhwMY12OFyhsLdU4XS1gtq0ZadBo3JpjMrsBAfD5B9uQRj0BDWWEVNzghjzCWJqThBsLW+T7lC0VAaPpCJkDOXGMVSEpGPVGf1UWmGwIUeKeYkcKeY+/qpHb+frjr3C6gbeO1jAuwcLyK2oc72fnhbJd69MYe7oSLZt/UKOx+knyJFinuvLkWJATRFKbquI3EXbjqgaPeqwy1BTZ6GmXo067HLQB7llWtqm5/pDtc+UI8V6CTkex338VY/ezrcre8Nj9PzHorH8eOEY9mZX8P925fLZsSL25VSyL6eS+DADV0QozLYrBAfL8Tj9BTlSzHP9IXWkmMUMOTsg6ws4t639HDlFC0nTYMRsSJuNMvwqFC9PbpC26bn+UOsz5UgxQfAhiqJw5chorhwZTWF1Pa/uyeO1vXkUmyx8ZNKy7c9fcteMNO6eleb12bWCIPgIh8N5okPWVueVt/uiPeQU535xI+ZA2hwYfhUEdh0pEYT+gDh2guAFieFBPLJ4LD+6ZjTvHcjnfz87SnG9jf/LOMs/dpzj1unD+eG8UcSFBfq7qIIg1BS3OHLnMqC2tG16ZBqMWgCj5kPa1RAU6ZdiCoI3iGMnCL2AQafl5kuHYSjMJGDEZfz9qxwOn6/mpZ05vL4vj7tnjWDNnFGE93CIVhAEL7BZnNuPnP3C6cwVH22bHmB0RuRGXeO8okf5p5yC0IuIYycIvYhGgcUT4lk2ZRg7zpbx1ObTHMyr4rltWbyyO5cfzB3F3bPS2m2VIghCL6CqzrlxWVudzlzODrDVtxJQnMdyjV7gjMwlTwddgN+KKwi+YMD/dfnd737HY489xq5du7jqqqsAWL16Na+99pprsmFqairHjh3zZzGFIYaiKMxOj+Xq0TFsOVHCnz4/xaniGv74+Sn+vTuX/1o2nuunJPq7mIIw8KmvdC52yNoKZ7eC6XzbdGOCMxo3egGMnAchMf4opSD0GQPasbtw4QKvvvoqCQkJ7dLWrVvHo48+6odSCUILiqKwaEI814yL46PMAv606RTnK+t58LWD/Ht3Lr9cNtbfRRSEgYXDBnnfOFevZm2FCwdAdbSkaw2QOrPFmYubIEd0CUOKAe3YPfLII6xbt46HHnrIKzsWiwWLxeL6bDKZADl5wh0Gy8kTvWGvOxvXTYpjwdho/rEjh79/lc2e7AqWr9/FrDgNV9XUExXaO2UcCLuo9wVy8oTn+v3u5InqfBynNzP93JvonvoRWExtktWYsThGzkcdOd95woO+1cbyNptbdehLpG16ri8nT3TPgN2geNu2bTz55JNs2bKFtLQ0Xn/99TZDsR999BEAY8eO5Xe/+x1z5szp1NYTTzzBunXr2r2XkycEX1FhgQ9yNRwq1wAQHqByy0gHEyMH5K+jIPQqWnsDMeaTxNUcIc50BKOl7XFdjdoQSkMnUhI2mZLQyTQERPmppILQNwz6kydsNhvTp0/n5ZdfZtKkSe0cu4MHD5KWlkZISAhvvfUWP/zhDzl69CgpKSkd2usoYpeSkiInT7jBUDp5whc2vjxVzM/fOkSZxTlUdOOURH6xbCxRIe0ndA+mXdT7Atnd33P9Pj95QnVA8VHUs19QfeBdYurOorTaU05VtDiGXcZpezIjFt6LNvky0Gjdqkt/RNqm5/py8sQAPXli8eLFfPnllx2m/fKXvyQ0NJSrr76aSZMmdSgzbdo01/Mdd9zByy+/zObNm7nnnns6lDcYDBgM7TeSHdC7qPcxQ+HkCV/YmDM2np9PtXNSP4oXd+by4eFCvs4q5w/fnsKC8fFe2e/Pu6j3JbK7v+f6Pj15wlTo3EsuaytkZUBdGQCxzYIRqU2rV69BGTEHhzaY0xs3Mnr4FYOiXYK0TW/05eSJzumXjt2mTZu6TF+xYgVffvklb731FgClpaVcd911/OlPf+Luu+9uJ6/RaHxSTkHoDQK08OjSsdxwSTI/f/swp4pr+N6G/ayakcp/LRtPoH7gRiYEwYW1nljTETRbdkP2Nig53jY9wIgjdRZH6+MYf8OP0MeNbbvoYYDP+RSEvqJfOnbd8dJLL9HQ0OD6PH36dP7+978zb948AN555x2WLl2KwWDgnXfeYceOHaxfv95PpRUE97gkJYIPH5zFHz47xT93ZPP/duWy+1w5f7ltGuMS5CgjYYChqlB8zHXSgy53JzPtFshqFlCcZ682bw6cPB27qpC9cSPjo0bJSlZB8JAB6dhFRES0+azVaomKinItdPjf//1f7rnnHhRFYezYsbz33nukpaX1fUEFoYcYdFoev34Cc8bE8sibmZwuNnPj/33Nk8sn8a1L2m/rIwj9CnMJ5O1oObLLXOxKUoB6fRSGCdeiSV/o3FMu+KJFDxKVEwSvGZCO3cXk5OS0+bxjxw7/FEQQeom5Y2L57Cez+c+3Msk4VcrP3jnMgdwKrpBRWaE/UV8FOTvQZG1j/omN6A9eaJuuD3aeuTpqAdbUOWzac5pl112HZpDMkROE/sigcOwEYTASYzTwz7um82zGWZ7acpo39p9nt1HL9NkNDI+RP4yCH2isdZ69mv2l8yrMBNWBFnBNFkiY4lr0QMqVoGtamGa1gnLGTwUXhKGDOHaC0I/RaBQeXJDO5ORw/uP1g+Sabax4bhcvrLqcy1Jl7y7Bx9gscGFPiyN3fj84LhoujRmDPfVqDlSEMG3Fg+jDO17NLQhC3yCOnSAMAOaNjePdNVex6u9fcaHWym0v7OFPK6dy49QkfxdNGEw01sL5fWiydzDzzMfojvwAbPVtZcKHw8g5MGIupM2GsEQcViuFGzcy7eI5c4Ig9Dni2HWBHCnWPXKkmHc2eqKTGKrnPybZ+aw6ga2nyvjxawfJLqnh/rkjUFqtIBwIx+P0BXJskxv69ZUo+budV94ulKLDKA4bWlr2k1ND4lDTrsaROht1xBzn/nJtM/D9kWJu6g8UpG16ri9HinXPgDx5wlc8++yzPPvss9jtdk6fPi1Hign9EofqPI5sW6Fzf8YrYh3cOtKBVrZrFLohsLGCaPMpomtPEW0+TVjD+XYydfooyo3jKDeOoSJkLDWBSbL1iCD4mUF/pJivMZlMhIeHy5FibiBHinlnw5vjcV7Zm8//fHISu0Nl7pgY/nrLVIICtAPieJy+YMgf22StRyk6jCNvD2WHPiXBdh6NubCdmBqdjppyFY7hM1CHz4DwlL4/UswNmcHSLkHapjf6cqTYAD1SrL8gR4q5jxwp5p0NT47HWT1rJKnRRu5/5QDbT5fxvZe/4R93TSe4yU5/Ph6nLxkSxzapKlRmOxc3nN/nvIqOgMMGgGsmpqKFhEmQOguGz4DhM1CMsShARwFfnx4p5qHMYGmXMETapo/05UixzhHHThAGMPPHxfHv713J3S/tY19OJbc+v5t/fnda94rCwEVVoaYQCg45txspPOR06JrOWm1DSByOYZdzwmxk7II70aVcDgEhfV1iQRD6EHHsBGGAc3laFG98fwar/rWXE4UmbvvHPlan+btUQq+gqlB9nsSq/Wi2HYLiI05Hrra0vaw2ABKnQvJ0SL7ceQ9PwW6zcXbjRsYMnwmDJNIlCELniGMnCIOACUlhvL1mBt/91x5yK+r4v1ot8+fXkxYrf8gHDLZGKD8Dxceh+CgUHYbCTPR15VwBkN1KVtFC7DinI5d0ifPM1cSpLZsBC4IwZBHHThAGCWkxIbz5gxnc+vfd5FbUcec/9/Ha92eQEiUru/sVqgqmC04HruQYFB9zPpedbr/5L6BqdJgMSYSOmY1m2DRIvATiJ0KA/FwFQWiPOHaCMIhIDA/i39+7nG/9dTvnqxq49fndvP79q8S58wcOh9OBKz8DZWeg9BSUnHA6cw3VHesEhEL8BIibAAmTIekSbFFj2LZpK8uWLZMzVgVB6BZx7ARhkJEQFsiDE+y8mBtGTnmdOHe+xloP5VlQdhpNyUkuy9mO7h9/hIossNZ1rKNoIWZMixMXP9F5hae03zNuEGzIKwhC3+GWY/fmm2+6ZUyr1XLzzTd7VSBBELwnwgD/vudyVr14gHNltdz2wm7eWjODxPAgfxdtYGKpgcocqMh23iuznc8V56AqD3BuB6oFklvraXQQNQpi0p1X7HinMxczRubDCYLgE9xy7G6//XbmzJlDd3sZ79u3b1A5dnKkWPfIkWLe2fDl8ThRQVr+392Xccc/95NbUccdL+zh1XunExagdGlnSLZNhx3MxSjVeVCZg1KZg1KV0/Lc0VYirVADI1Cj03FEjeJUucroK69FEz/OefyWtoPhUxW3I3H9/dgmd+Wlz2xBjhTzXF+OFOset06eCA0NpaampltjkZGRVFZWup15f0OOFBMGIxUWeOaolqpGheQQlQcm2AkeYpMwdPY6ghrLCW4sJ6ixnCBrhfPeWE6wtZzAxgo0OLq0YdEaqTPEUWuIozYgjjpDHGZDPGZDIo26UDl2SxAEn9HrR4qVlpYSGxvbnZjbcv0dOVLMfeRIMe9s9NXxONlltdz2j32U1zYyLTmM25IquH7pIDhSzN4I5hIUcxHUFKOYi52RN3MRak0htQWnCXVUozR2/4+pqmghLAk1Mg0i0lAjR6BGpqFGpELkCAjsujOFoXlsk7vy0me2IEeKea4vR4r10pFi7jprg8Gpa40cj+M+cqSYdzZ8fTzOmMQIXv7eldz6/C4OnjdRV6Nh2bXa/nmkmN0GdeXOkxRqy5x3cyk0OW/Oe9NVX9GlqTbdX1AUhA9zLlAIT251OT8rxnjQaOmNuNtQPLbJXXnpM1uQI8U815cjxTqnxwMy1157LUoHQw4Gg4Hk5GS+9a1vcc011/TUrCAIPmZCUhgv3XMFd/5jD6eq4aE3D/PcnZeh03Z0SmgvoarOhQcNVVBf1eSsXeS01ZY5HbnaUudzQ1XP8tDoITQBjPHOe2gCGBOwBcew9+QFpi+8CX10qhylJQjCkKDHjt3ll1/O//t//4+77rqL5ORkzp8/z8svv8ytt96KoijcdtttPProozz00EO+KK8gCF5w6fBI/nbHJdzz0n42nyjhZ+8c5k/fnopG00WcymGHRrPTQauvanHSGqqgvrLtu/rKi9KrQLV7UFIFgiIhJAaCY5z3Vk5bm+fgqA7nt6lWK6UFG52rUQdJhEcQBKE7euzYffrpp2zZsoX09HTXu+9+97vcdttt7N+/n5tvvpmVK1eKYycI/kJV0TganU5WXSM01kFjDVicztnMuir+mriHoyX/v737Do+qzB44/r3Tk0x6ISEJhBogNFEpFlARUCyLa1sQRdeKICroKgICiu6ubW3o2nX9SVHsgkgTQUU6CaGGUALpfVImk2m/PyYMRALpmUlyPs8zz8zc+77vnJu9ez3c8h4LfklmtuVquTBKg2IphcoS1BUmRhZkoUl53NXHWtb4mNR68AkC31DX6/SE7YzvYa5kTaVu/O8KIUQ7U+/ELjU1lejo6GrLoqKiOHToEACDBg0iN7eGAtVCtGdOJ9itYKtw3fBvqwCbBSpKCSo7jHL8D3DaXMtsFa5Jb61lrvfKcrCWobKUMfDYAdRff+VqU1m13lruelW63jXWcq5zOiCx5lA0wNXA1Sf/359b9aqiAowAlj91VGldyZkhqPq7T/CflgWf2U7rI0+NCiFEC6h3Yjd69Ghuvvlm5syZ474Uu2DBAq666ioAtmzZQufOnZs80D9bunQps2fPJjMzkyuuuIKPP/6YkJAQAMxmM/feey/ffvstwcHB/Pvf/2b8+PHNHpPwEKcTHDZX4mSvrPpcWfXd6qq/aa903ZRvr6zxu1JZQaf87ai2ZwOOs/SxnvqNk0mazQJ2C9gsqK1mRhTkoEl7tmrZaQmcrYKTk9ieTguMADhY+2aqgc4A535eoPrN/yqtq6aozh/0/qA34tAZySwoJapTD/YVwpojZsqcBi4f0I1hvbtgU/vwx85khgwfhdYvuKqfv0yoK4QQrUC9E7sPPviAp59+mvHjx5OVlUVUVBQ33HAD8+fPByA6Oppvv/22yQM93b59+7j//vtZs2YNAwYMYPr06UyZMoXFixcDMHfuXAoKCkhPTyc5OZmxY8dy/vnn07Nnz2aNq16KT+BryXaVHVKrwelw3cvkdPzp5axhWWPbNNHvOGyobFYSTqSgWvUrroTI5toOh931O+7vthqWnf79bMuqxvxTP43DxrV2K6pdVbE0kgY4DyCt4WOogCAAcx0aq3WgMeDU6DFXOvDxD0LR+lQt14PW13WWS+dX9dkXu9rAgcNpxPc7D7XB3738VDsf0PpiVXSsWv8ro8f+Ba3hzHkY7VYr21asYOzYsSRotfy0+iDvrk3h3R3wWs+BjO0VQX6KzVWrVO5NE0KIVqXeiZ3RaOSVV17hlVdeqXF9TExMjcub0po1axgzZgwXXHABAE899RSdO3emrKwMPz8/Pv30U7755hsCAgK46KKLuP7661myZAlPP/10jeNZLBYsllPXnUwmE9C8lSfUH41hVFk27K3DBnsxNdAdql3KawlK1W+fjVOlcZ2tUmtdyZJK43pXV72rtDjVWncbp6Imt6CYsA5RqLT6quU61zhqXdU42tPG1LoSM7UeNAbQ6LGjZnvSHgZdOAyNwYhTo3claeqq96p2qHWguJ5Ere+cTCnlq4kbWPucTDa1L1YHNVY3+PN+OXVEHIWlFXy6+TgzPk9Ed0vfautbK5ndv+H9pfJE85J9s+H9pfJE7eo0QfGfLV++nGXLlpGbm8sPP/zA1q1bKSoqYtSoUfUdqkHeeOMNNm7c6K5hm5GRQXR0NDt37qRz586EhIRQVlbmrhrx8ssvs2XLFpYuXVrjePPmzXOfcTxdc1aeGLn3cfTWYlBUOFFwooCi4ESFU1FB1TKnogCqqveTy+q4vmo83O1Ojl/1ueq3a4rhVP+zrXdN6OpQVIAKh6J2jaeocHL6ZxXOqnWO0z6f3E7XS40TVaPHcigaHIrGNdGs3M9VLw4n/N8hFdvzVGgVJ5P72OlW+3y8QgghWkB9Kk/U+4zdCy+8wKeffsoDDzzArFmzAFfJsalTp7ZYYjdy5Ehmz57Nli1bGDBgAP/85z9RFIXy8nJKS0tRq9XVErKAgABKS0vPOt7MmTOZPn26+7vJZCI2NpbRo0c3X+WJUaNYcdq61pqGSOWJxo3hTbOoj7E7eHDRLtYfzOPd/Wr+7+8XMqBTSJ22wxvJ7P4N7y+VJ5qX7JsN7+9Nx8zGbEd9nbySWBf1TuzefPNNtmzZQmRkJLNnzwYgPj6elJSU+g51VqNHj2bDhg01rps9ezazZ8/m7bffZtKkSeTn5/Pwww/j7+9PdHQ0RqMRu91OeXm5O7kzmUwYjcaz/p5er0evP/PGcJlFve6k8kTjxvCGWdS1Wvjv7Rcw8f0/2HasiPsXJbFs8kV0CWvdE/vK7P4N7y+VJ5qX7JsN7+8Nx8zGxFRfzVp5wm63ExgYCOCuQFFb4lRfq1atqrXNhAkTmDBhAgCHDh3ijTfeICYmBrVaTWRkJLt372bIkCEAJCYmkpCQ0GTxNYXxP44nqziLj5d/TIA+AKPOiL/OH6PWSIDu1Hd/rb9r+Z++69X6GiuACNEYBq2adyeex3X/WUd6WSUT39/MssnDiAr08XRoQggh6qDeid0NN9zAAw88wMsvvwxAaWkpjz/+ODfeeGOTB3cuO3bsYODAgWRmZnL//ffz5JNPola7bqefOHEizz77LIsXL2bPnj189913bN68uUXjq012eTbFzmKKi4sb1F+j0hCgCyBIH3TqZQgiUB9IsD6YIH3VZ0MwgfpA13ddIGqZ9FXUwt+gZXIfO+8fCeBofjm3f7CFz+8fRoifztOhCSGEqEW9E7uXXnqJGTNm0LlzZ8xmMx06dGDSpEk8//zzzRHfWU2ePJk9e/bg7+/PAw88wMMPP+xe98wzz3DPPfcQFRVFcHAwb731FvHx8S0aX20+Hv0xP/38E/0H98fsMFNSWeJ+lVpLz/q91FqKw+nA5rBRUFFAQUUtk5qdRkHBX+dPkD6IUJ9QwnzCCDW43k++Tl+uVbeNyx2i/vy18PGd5/O397ZyKKeUuz7awmf3DsWor/chQwghRAuq91HaYDCwcOFCFi5cSG5uLmFhYR65JHiuM3A+Pj589tlnLRhN/XXy70S0JpohkUPqde3c6XRSbiunpLKEYksxxZZiCi2FFFuKKbIUUVhReMayoooiSqwlOHFiqjRhqjSRVlL7hG2B+kDCDFVJn28YHXw7EOkX6X6P9IvEqGq6S/DCu0QH+fB/9wzm5v9uIvFEMff9bxsf3nkhBq2c9RVCCG9Vp8Ruy5YtZ1135MgR9+fBgwc3PiJxToqi4Kf1w0/rR6RfZJ37WR3WU4lgRSEFFQXkmfPIM+eRX5Hvejeferc5be72qcWpZx1Xp9JhxMg3a74hyhhFB78ORPpGEu0fTYwxhmhjtJz5a8W6R/jz8V2DmfDeH/yems+0xTt567ZBaNQqT4cmhBCiBnVK7G699Vb3Z0VROHHiBIqiEBoaSn5+Pk6nk5iYGA4fPtxsgYrG0aq07suttXE4HZgspmpJX055Dtnl2WSVZZFdlk1WeRZ55jwqHZUUUEBBTgHknDmWgkKkXyQx/jHEGGOI9Y+t9jlQHygPgXi5AbFBvHfHBdz50VZW7c1m5le7eeGm/vK/mxBCeKE6JXann5WbP38+5eXlzJs3Dx8fH8xmM/Pnz8fPr3VPiSBOUSkqggyuhzG6u+pK1Mhqt5JuSufbdd/SpX8XcityyS7PJrMsk/TSdE6UnMBsM5NZlklmWSZb2XrGGIH6QLoEdKFrUNdq7x2NHeVBDy9yUfcw3phwHpP/bztfbD9BoI+WWdf0luROCCG8TL3vsXvjjTfIyspCo3F19fHx4dlnnyUqKoo5c+Y0eYCe1JwlxdpKeZwIfQRxmjiujL7yjHsFnU4nBRUFnCg9wYnSE6SXppNems7x0uOkl6aTa86l2FLMrtxd7MrdVa2vTqWjU0AnugR0oXtgd3oG96RHcA+ifKNQFKXJ/35NMV5bL49zRc9Qnh+XwJNf7+H9X48QYFAzeUTXWuP2FCnb1PD+UlKsecm+2fD+remY2ZSataRYjx49ePPNNxkzZox72erVq5k8eTKHDh2qz1Be5+RDIXa7nYMHDzZrSTEBlc5K8h355NpzXS9HLnn2PPIcediw1djHoBiIVEUSpY4iUh1JpDqSDuoOaBR5WrOl/Jyh8M0x19nUm7vYuSSy3lUJhRBC1EN9SorVO7FbsWIF48ePZ8iQIcTGxpKWlsbWrVv57LPPuOaaaxoVuLcwmUwEBgaSl5fXfCXF2kh5nObYDrvDTmZ5JkeLj3LYdJiUwhQOFh3kSPERbM4zEz6tSkt8cDx9Q/uSEJpAv9B+xPrH1usyoZQUq9/vvLImhbd/OYKiwMs39eO6/lG1bGnLk7JNDe8vJcWal+ybDe/fWo+ZjWUymQgLC2ueWrFjx44lNTWVFStWkJmZyYgRI1i8eDFhYbXflN/aSHmcumvK7dCipYu+C12Cu3A5l7uXW+1WDhcfZn/Bfvbl7WNT6ibyVfkUVxaTnJ9Mcn6yu22ALoB+Yf3oH96f8zucT//w/vhoaq+e0J5LitVn/T+u6o2pws5nm9N4bNluVCo1486Lrj14D5CyTQ3vLyXFmpfsmw3v39qOmY3VrCXFAMLCwrjjjjsa0lWIBtOqtcSHxBMfEs/YzmNZkb2Cq6++muyKbHbn7Xa/9uXvw1Rp4reM3/gt4zfAVamjX1g/LuhwARd0uICBEQPx1cpl9oZSFIVn/tKXSpuDL7af4NHPd1Fpd3DLBbGeDk0IIdq1Ok93snTp0lrbTZgwgUWLFjU6KCHqSlEUYgNiiQ2IZWzXsYDrzN7BooPszt3NzpydbMveRk55DjtzdrIzZyfv7X4PjaIhISyBiztezCXRl9AjoIeHt6T1UasU/n1jf3QaFZ9tTuMfy5Kw2h3cNqSzp0MTQoh2q06J3XfffccXX3xBbbfjrVixokmCEqIxtGotCaEJJIQm8Ldef8PpdHKi5ATbsrexLXsbW7O2klmWSWJuIom5ibyV+BZB+iA6OTrhOOJgeOxwQn1CPb0ZrYJKpbBgXF90GhUf/XaUWV8nY7U5uPPiLp4OTQgh2qU6JXZDhgzhrbfeqlM7IbzN6Wf1buhxAwDppen8kfEHv2X8xqaMTa7SaxSRtCkJZZPCeRHnMbLTSEZ2Hkm00TvvHfMWiqLw9LV90GlUvPPLYeZ9v5dis41pI7vLPHdCCNHC6pTYrV+/vpnDEKJlRRujubHnjdzY80asDis7Mnfw6cZPyfbNZn/hfnbk7GBHzg5e3PYivUN6c2XnKxkTN4bOAXKZsSaKovDkVb0waNS8tjaF/6w5SE5JBc/8pS9qlSR3QgjRUmTyL9HuaVVaBkUMIssni7FXjyW/Mp+1aWtZm7aW7dnb2Vewj30F+3hj5xv0D+vPtd2u5aq4qwg2BHs6dK+iKAqPjupJqFHH3O/28NnmNPJKLbz2t/MwaKWKiBBCtARJ7IT4k0i/SG7rfRu39b6NgooC1h9fz6qjq9iUuYmkvCSS8pJ4YcsLXBJzCdd3u57LYi9Dq2ob0y80hTuGxRFm1PPIkl38tCebOz7Ywrt3nE+Qr87ToQkhRJsnid05SEmx2nlqO1qqpJi/2p/r4q7jurjryDPnsfLYSlYcWcH+wv2sP76e9cfXE+YTxg3dbuC6ztfVO6a2Wh5nVK8wPpw0iAc+28WWowX85c3feGfieXQLb7ma0lK2qeH9paRY85J9s+H92+oxszbNWlKsLZOSYqKusu3Z7Krcxc7KnZQ6SwFQUOil6cVg/WC6a+TBAYCMMnjvgJoCi4KP2smkng56B8khRwgh6qNZS4qZzWaefvppvvjiCwoKCjCZTPz000/s27ePRx55pDFxew0pKVZ3ntqOpv7dho5ntVv5+cTPLEtZxracbe7l3YO6M6n3JEZ3Hn3Oy7TtoTxOfqmFqUsS2XasCJUCM6+OZ9LQTs2e+ErZpob3l5JizUv2zYb3bw/HzJo0a0mxBx98EKvVyg8//MCll14KQP/+/Xn44YfbTGJ3kpTHqTtPbUdT/25DSihd0/0arul+DQfyDvDS6pdIciRxqOgQczbNYWHSQu7ocwc39rjxnJUu2nJ5nMhgLZ/dO5TZXyfzxfYTPLfiAMkZJTx/Qz/89M1/N4iUbWp4fykp1rxk32x4/7Z8zDzb2HWlqu/gy5cv54MPPqBv377uf3FHRUWRmZlZ36GEaFO6BnblWt9rWTFuBdPOm0aIIYSssixe2PoCV391NZ/s+YQKW4Wnw/QIvUbNCzf1Z861fVCrFL7dlcH1b/7KwewST4cmhBBtSr0Tu6CgIHJzc6stO3LkCB07dmyyoIRozQJ0Adzb/15W3bSKp4c9Tax/LAUVBby07SWu+eoalu5fitXe+m8Ary9FUbj7ki4svW8okQEGUnPL+Mubv/Hl9hOeDk0IIdqMeid2Dz/8MNdddx3Lli3Dbrfzww8/MH78+DZ3GVaIxtKr9dzc82a+Hfct8y+aT5RfFDnmHBZsXsB131zHyqMray3T1xZdEBfC8mmXcGmPMMxWOzO+SGTa4p0Ul7e/ZFcIIZpavW9wmTJlChEREXzwwQfExMTw+uuv8+ijj3Lrrbc2R3xCtHpalZa/9vgr13a9li9TvuS9pPdIL03n8V8eZ2D4QIbZhnk6xBYXatTz8V2DWfjzIV5bm8J3iRlsOVLAizf359Ie4Z4OTwghWq16n7EDuPnmm/nxxx/Zs2cPq1atapakzmazceONNxIdHY2iKGRlZVVbP3fuXGJjYwkICKBHjx589NFH7nXr169HpVJhNBrdr40bNzZ5jELUh06tY3yv8Sz/63IeHPggPhofduXu4r+l/2XeH/MoqCjwdIgtSq1SmDayB8seGEaXMD+yTBXc/sEW5n6bTJnF5unwhBCiVap3Yvfqq6+SmJgIwObNm+nRowe9evVi06ZNTR7c8OHD+fLLL2tcN3HiRPbv34/JZGLFihXMmjWLPXv2uNf37NmT0tJS9+vkE7xCeJqPxofJAybz3bjvuDruapw4+e7wd/zlm7/w7aFv293l2fM6BbN82iXcPtRVh/eTTccY/Z8NrNuf7eHIhBCi9an3pdgXXniBu+66C4AZM2bwyCOPYDQamTZtGlu3bm26wDQaHn744bOu79GjR7XvDoeDY8eOkZCQUO/fslgsWCwW93eTyQRI5Ym6aOuVJ5pzjFBdKPMunEdsXizr1Os4VHyI2b/N5ttD3zJr8Cw6+Xdq0PitYRb1P9Mq8PQ18VzeM5Q53+0lvcjM3z/extUJHZh9TS8i/PX1HlNm9294f6k80bxk32x4f6k8Ubt6T1AcEBCAyWSisLCQ7t27k5ubi0qlIjAwkOLi4noHW6cgFYXMzEwiIyOrLf/Xv/7Fs88+S3l5OYMHD+aXX37BYDCwfv16rrrqKgICAggMDOT2229n1qxZqNU1FyKfN28e8+fPP2O5VJ4QLcXutPO75XfWVqzFhg0NGsb4jGGIbggqpUF3TLRaFjusPK5ifaaCAwWD2smYGAfDI51o2tefQgghgGauPDFo0CD+8Y9/cODAAfbu3cvSpUspKCggPj7+jGlQmsrZEjsAp9PJli1bWLNmDU888QQajYasrCyKioro2bMn+/fv55ZbbuHuu+/m0UcfrXH8ms7YxcbGSuWJOmjvlScaO8af+xwvOc7zW59nc9ZmAIZGDmXe0HlE+Ea0qVnU62Jvpok53+4lKd11Br1TiA9PjOnJqN4RdapaIbP7N7y/VJ5oXrJvNry/VJ5ohsoTb7/9No888gg6nY73338fgJUrVzJmzJh6jTN69Gg2bNhQ47rZs2cze/bsOo2jKApDhgzh008/5YMPPuD+++8nMjLSnQT26dOH2bNn89Zbb501sdPr9ej1Z17qkVnU6669Vp5oqjFO9uka0pX3Rr/H5wc+56VtL/FH1h/csuIW5gydw8iYkfUa35tnUa+LAZ1C+XrKJXy5/QQvrjpAWoGZKYsTGdo1hKfG9qZ/TFCdxpHZ/RveXypPNC/ZNxveXypPnF29E7shQ4ac8aDEhAkTmDBhQr3GWbVqVX1/+pwcDgepqak1rlOp5PqNaD0UReHWXrcyOGowT218iuT8ZB7f8Dh/7f5X+jn7eTq8FqVWKdxyYSxj+0fx3/WpvLfxMH8cLuD6N39jVJ8OPHplT/p0PPe/XoUQoj1pUKHGxMREfvvtN/Lz86s9wff00083WWDgukR6cnyLxUJFRQUGgwGA999/n5tuuomAgAA2btzIZ599xuLFiwHXdCfdunUjNjaWlJQUFixYwMSJE5s0NiGaW5fALvxv7P94J/Ed3k16l68OfcUm9SbOLz2fLsFdPB1eizLqNTw2Jp7xQzrx0k8H+GZXOqv3ZrN6bzZj+0Xy8MiexEf6ezpMIYTwuHqfynrzzTcZMWIEv/76K88//zz79+/n5Zdf5tChQ00eXHx8PD4+PgDExcW5PwOsWLGCbt26ERgYyIMPPsiLL77I2LFjAdi+fTtDhw7Fz8+P0aNHM27cOKZPn97k8QnR3LQqLVPPm8p/R/2XIH0QmfZMJvw4gbVpaz0dmkdEB/nwn1sHsvrR4Vw3oCOKAit2ZzHm1Q3c88k2thwpaHfTxQghxOnqfcbu5ZdfZt26dQwaNIigoCAWLVrExo0bef3115s8uKNHj5513VdffXXWdTNmzGDGjBlNHo8QnnJRx4tYfPVi7vv+Po5bj/PIz48wecBkHhjwQLt7ahage4Q/b4w/j6mXd+fVNQf5MTmLNfuyWbMvm4GxQdw3vCtX9Az1dJhCCNHi6v1fhIKCAgYNGgSATqejsrKSSy+9tMnvmRNCVNfBtwP3GO9hfPx4AN5OfJvHf3kcs83s4cg8Jz7Sn7cnns/aGSMYP7gTOo2KXceLePCzHYx69VfWpivkl1V6OkwhhGgx9U7s4uPj2bVrFwADBw7k3//+N6+//jrh4VLfUYjmplbUPH7+4zxz0TNoVBpWHVvFnSvvJLusfVdp6BZu5J9/7cdvT1zBtCu6E+Sr5Xihme/S1Fz64i9MW7yTzYfz5TKtEKLNq3di9/rrr+NwOABXebGff/6ZTz/9lHfffbfJgxNC1OyGHjfw3qj3CNIHsTd/LxOWT2B/wX5Ph+Vx4f56po+O5/cnr+D5cX3o5OfEanfyXWIGt777B1e+8gsLfz7EicJyT4cqhBDNot732A0dOtT9uU+fPqxbt65JA/ImUlKsdlJSrHFjNKY8zoDQAXw65lMe+eURUotTuWvlXbwy/BUGhAw455jeUB6nuWkVGNe/A37ZSUT3HcoXO7P4PimT1NwyXvzpAC/+dIAL44L5y4AorkroQKBP003Yevq7N4wpJcW8j5QUa3h/KSlWu3pXngBIS0sjOTmZ0tLSastvueWW+g7lVRYuXMjChQux2+0cPHhQSoqJVsHsMPNZ2WcctR9FjZqbfW+mr66vp8PyOhU22FWgsC1X4ZBJwYmreoVacdI7yEn/ECd9g534tY25b4UQbUizlhR74YUXmDdvHv369auW9CiK0mbO3plMJgIDA6WkWB1ISbHGjdFU5XEsdguzfp/FuuPrUFC4xuca5lw7x2vL47SEc21HZnEF3ydl8u2uTA7mnPoHqlqlMDgumFG9I7iydwRRgYYm+83m2I7m6i8lxZqXlBRreH8pKdYMJcVeeukltm7dSkJCQoMDbC2kPE7dSUmxxo3R2PI4Wq2WVy57hX9u+SdLDyzlB/MPRO2L4qFBD521rqq3lxRrKjVtR6cwLVOu8OfBy3uwP6uElclZ/LQni/1ZJWw6XMCmwwU8s3w/faMDGNEznOE9whnUORitum63JbfHsk11bS/HzFOkpFjD+0tJsbOrd2JnNBrp1q1bfbsJIZqZWqVm1pBZhOhCeHv327yX/B42bDw66NGzJnftnaIo9I4KoHdUAI+O6smx/DJ+2pPFT3uy2X6skOR0E8npJhb+nIpRr+GibqGMiHclerEhcpuGEML71Cmxy8nJcX+eOXMm99xzDzNnzjxjipOIiIimjU4IUS+KonBvv3tJO5TGcvNyPkr+CKvdyj8u/Ickd3XQOdSP+4Z3477h3cgpqWDjwTx+OZjLxpRcCsutrNqbzaq9rqllooN8GNIlhMFdQhjSNZS4UEn0hBCeV6fELjIyEkVRqs0BtWjRomptFEXBbrc3bXRCiAYZph/GgL4DeH7r8/zfvv+j0l7JrKGz2mWVioaK8Ddw4/kx3Hh+DHaHk+T0YjYczGVDSi470opILzLz1c50vtqZXtVez4Wdg/EpU+iUbiIhJhidRv7eQoiWVafE7uS8dUKI1uOmHjdh0BqY+/tcPj/4OVaHlbnD5no6rFZJrVIYEBvEgNggHhrZgzKLjR1phWw5UsDmwwXsOl5ETomF5clZgJpl//0DnUZF344BDIgNYmDVq1OIr5w5FUI0qzrfY+d0OnnvvfdITk5m4MCB/P3vf2/OuIQQTeCGHjegVWuZ9essvj70NXannTkXzvF0WK2en17DpT3CubSH63aUCqudXceL2HQol5+2p5BZqaPYbGNHWhE70orc/YJ9tfSNDqRP1X19fToG0DXMD00dH8oQQoja1DmxmzFjBosXL+bSSy9l1qxZHD58mAULFjRnbEKIJnBt12vRqrQ8seEJvkv9DjVqznOe5+mw2hSDVs3QrqGcHxtAV/MBrr76ctJNVhKPF7Gr6rU3w0RhuZWNKXlsTMlz99VpVPTsYHQne/Ed/OkeYSTcXy9n94QQ9VbnxO7zzz9nw4YN9OjRg/3793Pttde2+cROKk/UTipPNG6MlppF/YroK3juoud46ven+Dr1azJ0GYyuHN3omLyZJ2f3t9lsxATqiAmM4Jq+rofKLDYHB7JK2JdVwr7MEvZnuV5llXb307en8zdo6BbuR5dQH+wFCprkTOKjAokJ9kGtqnvCJ5UnvI9Unmh4f6k8Ubs6T1AcEBCAyXTqwBMSEkJBQUH9o/NiUnlCtHW7KnfxZfmXOHFykf4irjZcLWeFPMjhhAILnChTyChTSC+HrHKFfAvuyhh/plGchBkgzOAkVF/1ftp3eV5DiLanWSpP+Pn5sX79eveTsaNGjWLNmjXVnpQdPHhwI8L2HlJ5ou6k8kTjxvDELOpfHvyS57Y9B8Bdfe5i6oCp1ZI72Tc9/5sWq52j+eWk5pZxMNvE78mHKdf4cyTfTKXt7A+zKQpEBRjoFOJDbIgvMUE+RBi1pKckc+0VFxMTakRfh8xPKk80r9a8bzblmK3lmNlmK0+Eh4dXqwUbEhJS7buiKBw+fLgB4XovmUW97qTyROPGaMlZ1G/seSNJe5L43vw9H+39CB+tD5MHTm5UTN6sNc7ur9Vq6etroG9sCFarlZ6Vhxg79mJUag3phWaO5pdxrKCctPwyjuWXk1ZQzrH8csxWOxnFFWQUV/DHkcLTRlTz5t4/AAj319Mx0EDHIB+iAn3oGGQgOsiHiAADEf56wv317til8kTzao37ZnOM6e3HzKZa3xjNUnni6NGjDYlFCOGFhuiH0KN3D17Z8QpvJb6FVq3lnn73eDosUQu1SqFTqC+dapgM2el0kltqIe20RC+9yExGYTkpGfmYbGosNge5JRZySywknig+6+8EGDT4KGqWZG+jQ4CBcH89Ef4GIgL0hBv1RAToCfXTE+ijRVWP+/2EEM2v3iXFhBBtw8ReE7Fj57Udr/HajtfQqXTckXCHp8MSDaQoiiv58jdwQVyIe7nVamXFihVcffVoSiqdZBZXkF5kJrPI7Dq7V2Qmo8hMtslCbqmFSpsDU4UNEwrZh899H7VKgWBfHcG+WpwValYU7yLU30Con45gXx2hRtd7iJ+OAL2KSpnDXohmJ4mdEO3YPf3uodJeyduJb/PithfRq/X8tdtfPR2WaAaKohBq1BFq1NM3OrDGNk6nE5PZRnphKcvXbqRLn4EUlFvJLbGQU2Ihpyr5yzFVYKqw4XBCflkl+WWVgELq3pwaxz1Fw6wdawgwaAn00RDgoyWw6hVg0GLUq8jIUCjbfoIQo4EAg9bdxlfjethECHFuktgJ0c5NHjAZi93Ch8kfsmDzAlSo0KHzdFjCAxRFIdBXi6/WSM9AJ2MHRJ313p5Km4OicldSl2sqZ+2vW4iLT6DIbKewvJKCsuqvwvJKrHYnlTYHeaUW8kotZ4lCzbfH9p5lnYaZ29dg1Gsw6jX4Vb2M7nf1aZ9PX6/GqNfip1fjo1Xjo1Pjq9Vg0KnQqVXyZLhoUySxE6KdUxSFRwY9QqW9kv/b9388u/lZbvK9ibGM9XRowovpNCrXAxcBBrqH+VC438nYIZ3OnghWVvL19z8yZPjllFuh2GzFVGF1vVe9Csss7Es9hjEkglKLnWKz1d2uwup6GrjC6qDCWkleaWWTbIdKwZ3s+eiqEj+tGsPJBFBX9VmrPqOdXqNGr1Gh17oSRL1WXfWuci3XqNBr1Oj+9FmI5uS1iZ3NZuPWW2/ljz/+ICMjg8zMTCIjI93rjxw5wv3338+WLVvw8/Nj6tSpzJw5073+448/Zvbs2ZhMJm688UbeeecddDo5CyFETRRF4R8X/gOL3cIXB7/gy/IvGZw2mKu6XeXp0EQboSgKBg1EB/mcc7qTFSuOMHbsoDPalJktfLt8JUOHX4bFrlBmsVFa9XJ9tlNW9bmk6r3Mvd7ublthtWOutGOruq7rcEJZpZ2yFrwBUKNSUKFmXuLP1RK/09+16pMvBY1ahValoFWr0KhV6KqWadQKOrUKjUqFVqOgVbmWnex3sr1WpaDgYF+hQvDhfAw6nbuvWqW44ql6V5/+UhQ0KhVqtevzyeUqBTnL6cW8NrEDGD58OI8//jjDhg07Y91DDz1E165dWb58OSdOnODiiy9m8ODBjBw5kt27dzN9+nRWrVpFjx49GDduHAsWLOCZZ57xwFYI0TooisLsobOpsFXw/eHvmfnbTAw6A5fFXubp0IRAp1Hhp4XYYN+mmbvS7sBstVNRacdsdb3KK6t/N1f+6b2qfXmlnXKrnUqbA4vNgcVqp9LuwGJ1uN5t9lOfra7vp98f6EoqFSrLrUBLVtJQ89/925tkpJPJIA41s3asQ6OuShCVsyWKKtQqUKtUruWKgkpxUlCgYlnudtRqFSrlVNKoUlxPgbs+u76rFAWcDjLSVfz6zR40VZfRT65Tnd5WpeB0ODhyTMX+NSlo1erqY6lOfXY6HezPUMjZdAytWn3G7zocDpJzFCw7M9Bo1KgUBaUqTgVwOuzsylcYZXfgDTPxeG1ip9FoePjhh8+6/tixY8yYMQOtVkuXLl245JJL2Lt3LyNHjmTRokXceuutXHDBBQDMmTOHe+6556yJncViwWI5db/HyQobUlKsdlJSrHFjeGN5nJmDZnL0+FF2W3czff10Xh3xKsOizvzHlbeTsk0N799eSor5qMHHR02wj7rJxjwbm92VBFbaHZSZK1n3ywYuHHoRDlTuBPH0RNDmcGK1O7HaHdgcTmx2R7XvVrsDW9V3q8Pp/myzO6m0O7A5Tq23OZxYrHYKi034+Bldy6vGsDuc1V9O17vN4eRc5QtsDmfV0ywKlRZbI/4yKg4W59e7z+bc9Dq3XZNxpA7t1Hxz7MA51y9KTT7n+gfNFrTq5rnU3iwlxTxJUZQzLsX+97//ZefOnbz++uukpaUxcuRIli9fTr9+/fjLX/7CmDFjePDBBwHIz88nLCyM8vJyfHx8zhh/3rx5zJ8//4zlUlJMtFd2p52l5UvZa92LFi23+91OV21XT4clhGhBDic4neCo+myv+m6vyulOLq/2qnGZcmZ/Tn12Vn0++e6o93el2vdz9jv5+eTy09o4ahjjz8vBNQ7V2rkuSz/Q246umf6NUJ+SYl57xq42F110EW+99RZ+fn7Y7XbmzZtHv379ACgtLa224Sc/l5aW1pjYzZw5k+nTp7u/m0wmYmNjGT16tJQUq4WUFGvcGN5cHufd69/lyU1P8mvGryy2LOati95iQPiAOm2XN5CyTQ3vLyXFmpfsmw3v783HzOYuKVZXHkvsRo8ezYYNG2pcN3v2bGbPnn3Wvna7nbFjx/LEE08wefJkTpw4wbXXXktCQgI33XQTRqOx2h/h5Gej0VjjeHq9Hr1ef8ZyKY9Td1JSrHFjeGN5HF+9L69e8SpT107lj8w/eGj9Q7w/+n0SwhLqFKe3kLJNDe8vJcWal+ybDe/vqWOmRqOhwl5BmbWM0spSymxlFJuL2Wfdx9Waq1tXSbGmtmrVqgb3LSgoICMjg8mTJ6PRaIiLi2PcuHH8/PPP3HTTTfTp04fdu3e72ycmJtKlS5caz9YJIc5Or9bz2uWv8eDaB9mevZ37Vt/Hh2M+JD4k3tOhCSFEvdkcNkoqSyipLMFUacJUaaKwvJCtlq3k7M2hzFaGqdLkamMtoazSlcDlmnJ5YdkLlFnLsDtrfoJ6in2KV8wB6tWXYi0WCydvAbRYLFRUVGAwGAgPDyc2Npb33nuP+++/n4yMDL799lumTJkCwIQJE7jsssu499576datG8899xwTJ0705KYI0Wr5an1ZOHIh962+j6TcJO5edTfvjnqXPqF9PB2aEKKdcjqdFFuKKbIUUVhR6H4vtBRSVFHkfj9acpSPV3xMqbUUk8VEua387IPuquVHT5s6UUHBT+uHn9YPX40v1jIrVod3PAzp1YldfHw8x44dAyAuLg7AnegtW7aMhx9+mCeffBJfX19uvfVW7r33XgD69evHyy+/zHXXXeeex27WrFke2QYh2gI/rR9vX/k2D6x+gN15u7nnp3t468q3GBgx0NOhCSHaiHJrOfnmfPIq8sgzn3qdTNQKK1yvbFM2c5fMPeuZszMUnbnIV+NLgD4Af50/Ro0Rc6GZ7rHdCTIE4a/zJ0AXgFFnxKg1YlAZSNySyKgRowj0CcSoM+Kj8UGluJ6APVmP2V/n33R/jEbw6sTu6NGjZ1134YUX8vvvv591/Z133smdd97Z9EEJ0U4F6AJ4d9S7TFk7hR05O7hv9X0sHLmQCyMv9HRoQggvdfLMWnZ5NjnlOeSZ88ivyCe3PJfc8lwOlhzk3e/fJb8inzJrWb3H99P6EaQPIlgfTJAhiBBDiOu7IRg/tR+pe1IZPmQ4Ib4h7oTNX+ePRnUq/TmZmI0dNvasD0fka/LpEtilVdzf6dWJnRDCuxh1Rt6+8m2m/TyNzZmbmbxmMq9d/hoXR1/s6dCEEC3M6XRS7ijnYOFB8ivzySrLIqssi+zybLLLsskqzyK7LJsKe8W5Byo59dGgNhDmE0aYTxjhvuGEGELcyVqIIQSjxkjy1mSuG3kd4cZwdOqz39NmtVpZkbKCYVHDWkVC1lQksRNC1MvJe+6mr5/OhhMbeGjdQ7w04iWu6HSFp0MTQjQhp9NJoaWQ9JJ00kvTOVF6gvTSdDJKM8gozSCrLMuVtP1Y+1ghhhDCfcIJ8w0jzOBK3EL0IaTtS+PKi64k0hhJuG84vhrfc5Yrs1qt5KvzifCNQKtuP8lafUhiJ4SoN71az6uXvcoTG59g9bHVPLr+UZ4e+jQ39rzR06EJIeqh0l7J8ZLjHDMdI73UlcCll5xK4sw2c61jBOuDifSLpINfByJ9Xe8dfDsQ6RdJpG8kEX4R6NVnTilmtVpZkbqC8yPOb1dn1JqbJHbnICXFaiclxRo3hjeWFKtPTM8New4ftQ/fHf6OeZvmkVmayX197/OKAuFSUqzh/dtLSTFPaeltsTlsHC8+zkHrQQr2FnCi7ARpJWmklaSRWZaJk7MXoFJQCPcJp6OxI9F+0XQ0dqSjX0c6GjsSpgsj6fckxo6u+d40Nwc1PjHaHo+ZDdXmSoq1lIULF7Jw4ULsdjsHDx6UkmJC1IHT6WRtxVrWW9YDcL7ufK73uR610vz1N4UQp1Q4K8i155JtzybXkUu+PZ98Rz4FjgLsnP0JUj16QtWhhKhCCFYFV3sFqYLQKHIOyNPqU1JMErsamEwmAgMDycvLk5JitZCSYo0boy2Vx1mWsox/bfsXDqeDi6Mu5vmLn/fo4/9Stqnh/aWkWPNq7LaUWks5XHzY/UotTuVw8WGyy7PP2ken0hFMML2jetMlsAux/rF09u9M54DOBOuDG3SW3dv3TW8/ZtaHyWQiLCysbdeKbQlSHqfupKRY48bwxpJi9d2O8X3G08HYgX9s+Ae/Zf7GXavv4o0r3qBTQKc6j9EcpGxTw/tLSbHmVdu2WO1WUotTOVBwgIOFB0ktSuVQ0aFzJnARPhF0DepKt6BuxAXE0TmgM3EBcYToQlj540rGjqjlsmkzbEdz9G8Lx8z6aBUlxYQQbc8Vna7gk6s/Ydq6aRwuPsz45eN5+bKXGRo11NOhCeHViiqKOFB4gAMFB9zvqcWp2By2GttH+ETQLahbtVfXwK4E6gNrbN8W7k0UdSOJnRCiSSWEJrDkmiU88vMjJOUl8cDqB5hxwQwm9p7oFQ9VCOFJTqeT9NJ0kiuTOZp4lJTiFPYX7D/rWTh/nT/xwfHEh8TTPag73YO60yWwy1kTOCEksRNCNLlw33A+vOpDntn0DN+lfscLW19gW9Y2nrn4GfkPkmg3nE4n2eXZ7Mnfw568PezN38ue/D0UWYpcDfZUbx9jjCE+xJXE9QruRXxIPFF+UfIPIlEvktgJIZqFXq1nwcUL6BPah5e3vcy64+vY//1+XhzxIv3D+3s6PCGaXL45353E7cl3vfLMeWe006g0RCgRDI4bTO/Q3sSHxNMzuKfX1BoVrZskdkKIZqMoCrf1vo2BEQN5bP1jnCg9waQfJzH1vKncmXAnapVMiSJapwpbBXvy95CYm0hSbhJ78veQVZZ1Rju1oqZbUDcSQhPoG9aXhNAE4oxxrPlpDWOHNP2DDEJIYieEaHYJoQl8ft3nzN80n5+O/sSrO17l5+M/8+zFz9IlsIunwxPinJxOJ1llWSTmJpKYm8iunF3sL9iPzVn9wQYFhS6BXUgITSAhLIGE0ATiQ+Lx0fhUaycPMojmJIndOUjlidpJ5YnGjdGeZlE3KAaeH/Y8QzoM4eXtL5OYm8jN39/MlAFTmBA/AZWiatLfk8oTDe/f3itPVNor2V+4n6TcJJLyXK8cc84Z7cJ8wugf1p/+Yf1JCE2gV3Av/LR+1Rs5z4xZ9s2G929Px8yafqMuZILi00jlCSFaRpGjiK/LvybVlgpArDqW63yuo6Omo4cjE+2RyWHiuO04afY00mxpZNgzzqjUoEJFpDqSTupOxGpi6aTpRJASJA82iBYhlScaSSpP1J1UnmjcGO11FnVwXd76KvUr/rPjP5TbylEpKm7qfhMPDniQAN25D1x1IZUnGt6/LVeesDqspBSmkJSXRGJeIkl5SWSWZZ7RLkgfxICwAe4zcn1C+5xxSbXBMci+2eD+7fWYKZUnmojMol53UnmicWO0t1nUT/pb779xWafLeHnby6w8upLPUz5nzfE1PHTeQ4zrPg6NqvGHKKk80fD+baHyRL45331vXGJuInvy9lBhr6jWRqWo6BHUgwHhAxgQMYCB4QOJ9Y9t9rNxsm82vH97O2ZK5QkhRKsR6RfJiyNe5KaeN/H85uc5XHyY+Zvm88meT5g2aBpXdrpSLneJOrE5bBwqOkRiTtVDDrm7OF5y/Ix2AboA+of3Z2D4QAZEDKBfWL8z740TopWSxE4I4RWGRA1h2XXLWHJgCe8mvctR01Gmr59Ov7B+TB04lWEdh0mCJ6opqigiKS+JXTm7SMpNYnfebspt5We06xbYjYERA11n5MIHEBcY1+QP6wjhLSSxE0J4Da1ay+19bueG7jfw8Z6P+d/e/7E7bzf3r7mfPqF9uLvv3YzsNFLmv2uH7A47WfYslqUsI7kgmaTcJI6ajp7Rzk/rR7+wfu5Erl9YP6l2ItoVSeyEEF7HqDMy9byp/K3X3/hg9wd8mfIle/P3MuOXGcQFxHF7n9u5tuu1+GrlqfW26qxn47ZWbxcXEEf/8P4MCB/AwIiBdAvsJom/aNe8NrE7cOAAM2bM4I8//kBRFMaMGcMbb7xBcHAwANOnT+ebb74hNzeX+Ph4XnnlFYYPHw7A+vXrueKKK6pNVfLjjz9y6aWXemRbhBANE+YTxhODn+C+/vexaP8iFu1bxFHTUZ7941le2f4K13e7nlvjb6VbUDdPhyoaweqwklqUys6snfxY9iPvff8ex0qOndFOh46BHQYysIPrbFz/sP4EGYJaPmAhvJjXJnbFxcXccsstfPbZZ2g0Gu666y4ee+wxPvjgAwACAwNZtWoVXbt25csvv2TcuHEcO3YMf39Xrb2ePXuyf/9+T26CEKKJBBuCmTJwCncl3MVXKV+x5MASjpmOsXj/YhbvX8x5EedxbddrGRM3Ri67eTmH08HhosPsyd9Dcl4ye/L3sL9gPxa75VSjqrlY4wLi3E+qJgQncOC3A1w78to2MZOAEM3FaxO7wYMHM3jwYPf3e++9l+nTp7u/z5071/355ptv5pFHHuHgwYOcf/75LRqnEKLl+Gp9mdhnIhN6T2Bz5maWHljKz8d/ZmfOTnbm7OSfW/7J8OjhXNP1GoZEDPF0uO2e0+nkROkJ9uTtISk3iY0lG/nnF/+kzFZ2Rlt/rb9rrrhCH24cdiPnRZ5XLUm3Wq2kKCktGb4QrZLXJnZ/9vvvv5OQkFDjuqNHj1JQUED37t2rLYuIiCAwMJDbb7+dWbNmoVbXfN+FxWLBYjn1r0WTyQRISbG6kJJijRujvZbHaQoXhF/ABeEXkFuey8pjK1lxdAUHCg+w7vg61h1fh06lI04VR+mBUi7vdDnhPuHNHlN7LNt0sp3VaSUpJ4nDJYdJKUzhYNFBUopSMFWazmhvUBvoFdKLPiF9SAhNoE9IH2L9Y7Hb7KxevZrB4YPRqrTVfr+17Jd1ISXFGt6/vR4z21xJsV27djFy5Eg2bNhwRnJntVq58sorGTFiBM888wwAWVlZFBUVuS/H3nLLLdx99908+uijNY4/b9485s+ff8ZyKSkmROuSbc9mV+Uukq3JFDoKq62LUkfRTdONrpqudNZ0Rq/oPRRl6+Z0Oil2FpNjzyHLnuV+5TnycOA4o70aNZHqSGLUMXRUdyRGE0OYKgy1Ig84CFFXraKk2OjRo9mwYUON62bPns3s2bMBOHLkCMOHD+eNN95g3Lhx1do5nU4mTpxIZWUlS5cuRaWqeV6iJUuW8NZbb53192o6YxcbGyslxepASoo1boz2Wh6nuTmdTg7mH+SDDR+Q6ZvJnoI91dZrFA0JoQmcF3EeCaEJ9A3tSwffDo3+3bZUtmnlqpX0Htab42XHOWI6wpHiIxwxHeGo6WiNc8UBBOoC6Rnck55BPV3vwT3pGtAVrVorx8zTSEmxhvdvr8fMVlFSbNWqVbW2ycrKYtSoUcyZM+eMpA7goYceIiMjg5UrV541qQPOuQ5Ar9ej15/5r3dvLI/jraSkWOPGaG/lcVpCfFg8lxkuY+xVYym2FbMlcwubszazOXMz6aXpJOYlkpiX6G4f4RNB37C+9ArpRffg7nQL6kYn/04NKmvWWso2VdgqSC9N50TJCY6XHOdE6QlOlJwgzZRGmikN+0p7jWOpFTWdAjrRM7gn8cHxdAvoRvrOdG695lZ0Ol2jt6M9HDNBSoo1pn97O2a2iZJixcXFjBkzhjvuuIP77rvvjPVz587lt99+45dffjkjKVu/fj3dunUjNjaWlJQUFixYwMSJE1sqdCGElwnzCWNs17GM7ToWgBMlJ9iatZWkvCSS85JJKUwhx5zjvj/vJK1KS1xgHN0CuxHjH0NHY0eijdHEGGOI8otCq/beBKPSXklOeQ4Zpgx2V+4mf18+eZY8cspzyC7LJqM0gxxzzjnHMKgNdAnsQtegrnQNdL26BHahk3+nattutVpZkbhCKoMI4QW8NrH75ptvSEpKIjU1lRdeeMG9vLS0FIBnnnkGvV5Px44d3eveeecdbrvtNrZv385tt91GUVERERER3H777dWeqBVCtG8x/jHE+MdwQ48bACi3lrO/YD+783aTUphCalEqqcWpmG1mUgpTSCk882lMBYVgQzChPqGEGkIJMYQQrAsmtyIX8yEzgYZA/LR+p14aP3RqHRqVptpLrahRK2rsTrvr5Tj1bnPaKKsoI9ueTVJeEpXOSsw2M+W2csqt5ZgqTRRWFFJkKXK9KoootBRSVFFEibWkesA7a/5bGLVGYv1j3X+TGGMMHX07cmjbIcZfMx69Tu5FFKI18drEbtKkSUyaNOms6891a+CMGTOYMWNGc4QlhGiDfLW+DOowiEEdBrmXOZwOMssySS1K5UjxEdJL012vknQyyjIw28wUVBRQUFFACtUTv1Vbar/VpN4aMKROpSPCNwKNWUOvmF5EGiPp4NuBCN8IOho7EusfS4Au4IwzbVarlXxVvtRTFaIV8trETgghPEmlqIg2RhNtjGZ4zPBq65xOJwUVBeSZ88g355NfkU++OZ/c8lySDiURGBGI2W6m1FpKmbXM/aq0V2J31nzf2tkY1AbUDjWBvoH4an1dL40vPhofAnQBBBuCCdIHnfmuDyZQH4jNZmPFihWMvXhsm7k3TQhxdpLYCSFEPSmK4roE6xNabbnVamVF5grGjjh7EuVwOrA77dgcNtflVocNu9N+6rKsSu2+PKtSVKcSs7GSmAkhaieJnRBCtCCVokKlqNCqJEkTQjQ9uYFCCCGEEKKNkDN25yAlxWonJcUaN0Z7LY/TEqRsU8P7N6SkWG3t5Zh5iuybDe/fXo+Zba6kWEtZuHAhCxcuxG63c/DgQSkpJoQQQgiPaxUlxbyZyWQiMDBQSorVgZQUa9wY7bU8TkuQsk0N71/fPo09HtalTVvZL0H2zcb0b6/HzFZRUsybncx1zWbzOQ9A5eXlmM1mbDZbvdvUpX9r4KntaOrfbYrxGjJGffrUtW1t7Rq7vrXwxHY0x282dszm3i/r2l6OmafIvtnw/u31mGk2m4Fzz+F7kiR2NSgpcc3YHhsb6+FIhBBCCCFcSkpKCAwMPGcbuRRbA4fDQUZGBv7+/uesfXjhhReydevWc451tjYmk4nY2FiOHz9e62lVb1eXv0Nr+N2mGK8hY9SnT13b1tbuXOtl3/S+32zsmM29X9a1vRwzT5F9s+H92+Mx0+l0UlJSQseOHVGpzj2hiZyxq4FKpSImJqbWdmq1utb/EWtrExAQ0OoPUnX5O7SG322K8RoyRn361LVtbe3qMo7sm97zm40ds7n3y7q2l2PmKbJvNrx/ez1m1nam7iSZx64RpkyZ0iRtWjtPbWNT/25TjNeQMerTp65ta2vXHvZL8Mx2NsdvNnbM5t4v69pejpmnyL7Z8P5yzDw3uRTrISefvK3LEy5CtCTZN4U3kv1SeCtv2zfljJ2H6PV65s6di16v93QoQlQj+6bwRrJfCm/lbfumnLETQgghhGgj5IydEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdF/vll18YNmwYl1xyCdOnT/d0OEK4HT9+nEGDBmEwGFp93U7R+k2fPp1LL72UadOmeToUIQDPHiMlsfNi3bt3Z/369fz6669kZWWxe/duT4ckBADh4eGsW7eOoUOHejoU0c7t2LGD0tJSNm7ciNVq9Uh5QyH+zJPHSEnsvFh0dLR7XhytVotarfZwREK4GAwGgoKCPB2GEGzatIkrr7wSgCuvvJI//vjDwxEJ4dljpCR2TWju3Ln06dMHlUrFkiVLqq3Lzc3lmmuuwdfXl/j4eNauXVvncXfs2EFeXh59+vRp6pBFO9Fc+6YQTakh+2lRUZF7tv/AwEAKCwtbPG7RtrW246fG0wG0JT169OC1115jzpw5Z6ybMmUKHTt2JC8vj1WrVnHzzTeTmpqKxWLhb3/7W7W2RqORH374AYCsrCymTZvGl19+2SLbINqm5tg3hWhqDdlPg4KCMJlMgKu0k5xJFk2tIftlcHCwByKt4hRNbsSIEc7Fixe7v5eUlDh1Op0zIyPDvezSSy91fvLJJ+ccx2w2Oy+//HLnjh07mi1W0b401b55+nhWq7XJ4xTtW3320+3btzvvu+8+p9PpdE6ePNm5efPmFo9XtA8NOX564hgpl2JbQEpKCoGBgURFRbmXDRgwgD179pyz30cffcTevXt59NFHueyyy9i0aVNzhyramYbumxUVFVx55ZUkJiYyZswYNm7c2NyhinbsXPvpoEGD8PHx4dJLL0WlUjF48GAPRirak3Ptl548Rsql2BZQWlrqvgfkpICAAIqKis7Zb/LkyUyePLkZIxPtXUP3TYPBwJo1a5oxMiFOqW0/ffXVV1s+KNHunWu/9OQxUs7YtQCj0ei+B+Qkk8mE0Wj0UERCuMi+KVoD2U+FN/LW/VISuxbQo0cPiouLycrKci9LTEwkISHBg1EJIfumaB1kPxXeyFv3S0nsmpDVaqWiogKHw1Hts9Fo5Prrr2fu3LmYzWa+++47kpOTue666zwdsmgnZN8UrYHsp8Ibtbr9skUf1WjjJk2a5ASqvX7++Wen0+l05uTkOK+++mqnj4+Ps0ePHs7Vq1d7NljRrsi+KVoD2U+FN2pt+6XidDqdLZ9OCiGEEEKIpiaXYoUQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQwoPmzZuHVqslMjKyyca87LLLWLJkSZON92evvPIKfn5+GAyGZvsNIUTDSGInhPC4uLg4fH19MRqNGI1G4uLiPB1Si7r77rurFRJvDn379uXo0aNNMtb06dPZs2dPk4wlhGhaktgJIbzCunXrKC0tpbS0tMYExGq1tnxQXqAptvvEiRPYbLZ2lzAL0R5JYieE8Err16+nV69ezJo1i7CwMJ5//nnMZjNTp06lY8eOxMTE8O9//9vdvqysjAkTJhAUFMSgQYN46qmnuOqqq6qNdTpFUdxnyQoKCpgwYQIRERF07dqVTz75xN3usssu45lnnuGCCy4gICCA8ePHU1lZ6V6/dOlS+vbti7+/P/369ePAgQM899xz3HXXXdV+7+KLL+arr76q07bHxcXxwgsvEB8fT58+fQB48MEH6dixI0FBQYwePZq0tDR3+61bt9K/f38CAgK4//77cTgc1cb76aefGDNmjHt75s+fz3nnnYfRaOTxxx/n0KFDXHjhhQQFBfHYY4+5+/3www/Ex8fj7+9PbGwsixcvrlP8QgjPkcROCOG1Dh06hK+vL5mZmTzxxBM89thjFBcXc/DgQbZs2cL//vc/vv/+ewDmz59Pfn4+aWlpLFq0iE8//bTOv3P77bcTGxvL8ePHWbFiBTNnziQxMdG9/osvvuCrr74iLS2NpKQkli5dCsBvv/3G1KlTeeeddyguLuaLL74gICCA2267jW+++QaLxQLAsWPH2Lt3L2PHjq1zTN988w0bN25k9+7dAFxyySXs27ePrKwsYmJimDZtGgCVlZX89a9/5aGHHiI/P5++ffvy+++/Vxtr5cqV7sQO4Msvv2T58uUkJyfz9ttvM3nyZL7++muSk5N5//333dt+zz338OGHH1JSUsLWrVsZMGBAneMXQniGJHZCCK8watQogoKCCAoKYubMmQD4+vry5JNPotVq0ev1fPTRR7z88ssYjUY6duzI5MmTWbZsGeBKvubMmUNAQAC9evVi0qRJdfrdrKwsNm7cyPPPP49er6dXr15MmDCh2tm1e++9l06dOhEUFMQ111zjTnw+/vhjJk+ezMUXX4xKpaJXr15ERUURFxdH3759WbFiBQBLlixh3Lhx9XrY4NFHHyUiIsLdZ8KECQQGBmIwGHjiiSf49ddfAdi0aRN6vZ57770XrVbL1KlTiYqKco9jt9v59ddfueyyy9zL7rnnHjp27EhcXBznn38+o0ePJiYmhpiYGIYMGUJSUhIAWq2W5ORkSktLiYyMdJ89FEJ4L0nshBBeYfXq1RQVFVFUVMQ///lPAKKiolCr1QDk5uZiNpvp2bOnOwF86qmnyMnJASAzM5PY2Fj3eKd/Ppe0tDTKysoIDQ11j/vOO++QnZ3tbhMREeH+7OvrS2lpKeC6d61r1641jjtx4kT3k6mLFi1iwoQJdf1TABATE1Pt+3PPPUf37t0JCAhg8ODB5OfnA2dut6Io1fpu3ryZvn374uvrW+P2+Pj4EB4eXu17WVkZAMuWLeO7774jOjqa0aNHs3///nptgxCi5Wk8HYAQQpyNoijuz2FhYRgMBo4dO0ZgYOAZbaOiojh+/DidO3cG4Pjx4+51fn5+lJeXu7+f/gRqdHQ0QUFB7kSpPmJjYzly5EiN626++WaefPJJtmzZQk5ODldccUW9xj5923/55Rfeeecd1q5dS/fu3Tl48KD7nsGoqChOnDhRre/p3/98GbY+hgwZwvLly7FYLDz99NNMmTKFtWvXNmgsIUTLkDN2QohWQaVSMWnSJB577DGKiopwOBzs27ePLVu2AHDTTTfx3HPPUVJSwoEDB/jf//7n7tuzZ0/y8/P55ZdfsFgsPPvss+510dHRXHjhhTz99NOUl5djs9nYsWMHe/furTWmO++8k7fffptNmzbhdDo5cOAAmZmZAISEhDBixAjuvPNObrnlFveZx4YoKSlBo9EQGhpKWVkZCxYscK8bNmwYZrOZDz74AKvVysKFC90xQPUHJ+qjsrKSRYsWYTKZ0Gq1GI3GRm2DEKJlSGInhGg1Tk6M269fP0JCQrjjjjsoLCwEYO7cuQQGBhITE8P48eO5/fbb3f0CAwN5/fXXueWWW+jSpQuDBw+uNu5nn33GsWPH6Nq1KxERETzyyCOYzeZa47nooot49dVX+fvf/05AQAA333wzJpPJvX7ixIns27ev3pdh/+yqq65i2LBhdO7cmX79+nHRRRe51+l0Or788kv+85//EBoaSlJSknt9fn4+mZmZ9OvXr0G/+8knn9C5c2eCg4NZvXo1r732WqO2QwjR/BSn0+n0dBBCCNHUPv74Y5YsWcLKlSs9FsOmTZuYOHEiqampZ22zYMEC/vWvfxEUFHTGJdXGWrx4MatXr+bDDz9s0nFfffVV5s6di6IoFBUVNenYQojGkTN2QgjRDKxWK6+//jp///vfz9lu9uzZlJaWNnlSB67LwQ8++GCTj/vII49QXFwsSZ0QXkgenhBCiCaWn59PTEwM/fv355133vFYHA19aEII0XrJpVghhBBCiDZCLsUKIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQR/w+Yr86HtC/uJwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADUNUlEQVR4nOydZ3hc1bWw3zNFozLqXZYsuci9YMCAbdxwxRQ7EIcaYwgkJoTcALkJ3IRrnEt6woXkYhJIAv4IvTcDtrFsMO7GlnuT1Wz1OhqV0ZTz/RhpJFltNKPRqKz3ec5zzpy91tp7j7a2ltZuiqqqKoIgCIIgCMKAR+PvAgiCIAiCIAi9gzh2giAIgiAIgwRx7ARBEARBEAYJ4tgJgiAIgiAMEsSxEwRBEARBGCSIYycIgiAIgjBIEMdOEARBEARhkCCOnSAIgiAIwiBBHDtBEARBEIRBgjh2giD0G5544gkuueQS1+fVq1ezYsUKn+R18uRJrrrqKgIDA9vkKfQ+8+bN4yc/+YnP8/FlexGEgYI4doLQT1m9ejWKoqAoCnq9npEjR/LTn/6U2tpaAHJyclAUhUOHDvm1nIqi8P777/u1DJ6wdu1aQkJCOHXqFF988YW/iyP0As888wwvvfSSv4shCH5F5+8CCILQOUuXLuXFF1/EarXy1Vdfce+991JbW8tzzz3n76L1CKvVil6v7/N8VVXFbrej07Xv6rKysrjuuutITU312H5jYyMBAQHeFLFf5TPQCQ8P93cRBMHvSMROEPoxBoOBhIQEUlJSuP3227njjjt6FB2zWCz87Gc/IyUlBYPBQHp6Ov/85z9d6du3b+eKK67AYDCQmJjIo48+is1mc6XPmzePH//4x/zsZz8jKiqKhIQEnnjiCVd6WloaAN/61rdQFMX1uXlI9V//+hcjR47EYDCgqip5eXksX74co9FIWFgY3/nOdyguLna7Pqqq8oc//IGRI0cSFBTE1KlTefvtt13p27ZtQ1EUPv/8cy6//HIMBgNfffVVOzuKonDgwAF+9atfoSiKq05HjhzhmmuuISgoiOjoaL7//e9jNptdes1Dfb/97W9JSkpizJgxHZYzMzOT+fPnExoaSlhYGJdddhn79+93pe/cuZM5c+YQFBRESkoKP/7xj12R2Obv9cknn2T16tWEh4dz3333MWPGDB599NE2+ZSWlqLX68nIyACgsrKSVatWERkZSXBwMNdeey1nzpxxyb/00ktERETw8ccfM3bsWIKDg/n2t79NbW0tGzZsIC0tjcjISB588EHsdrtLr7GxkZ/97GcMGzaMkJAQrrzySrZt29amLF9//TVz584lODiYyMhIlixZQmVlpSvd4XB02o4AnnrqKSZPnkxISAgpKSn88Ic/bPPdN5f9888/Z/z48RiNRpYuXUphYWG7n08zb7/9NpMnT3b9PBcuXOj6nptlf/Ob3xAfH09ERATr1q3DZrPxn//5n0RFRZGcnMy//vWvDn/GgtBfEcdOEAYQQUFBWK1Wt+VXrVrF66+/zl/+8hdOnDjB3/72N4xGIwAXLlxg2bJlTJ8+nczMTJ577jn++c9/8uSTT7axsWHDBkJCQtizZw9/+MMf+NWvfsXmzZsB2LdvHwAvvvgihYWFrs8AZ8+e5c033+Sdd95xDRevWLGCiooKtm/fzubNm8nKyuKWW25xuz6//OUvefHFF3nuuec4duwYDz30EHfeeSfbt29vI/ezn/2M3/72t5w4cYIpU6a0s1NYWMjEiRN55JFHKCws5Kc//Sl1dXUsXbqUyMhI9u3bx1tvvcWWLVv40Y9+1Eb3iy++4MSJE2zevJmPP/64w3LecccdJCcns2/fPg4cOMCjjz7qilgeOXKEJUuWcNNNN3H48GHeeOMNduzY0S6fP/7xj0yaNIkDBw7w+OOPc8cdd/Daa6+hqqpL5o033iA+Pp65c+cCTmdl//79fPjhh+zatQtVVVm2bFmbNlNXV8df/vIXXn/9dT777DO2bdvGTTfdxMaNG9m4cSMvv/wyzz//fBuH+e677+brr7/m9ddf5/Dhw6xcuZKlS5e6nMZDhw6xYMECJk6cyK5du9ixYwc33HBDG+ewq3YEoNFo+Mtf/sLRo0fZsGEDW7du5Wc/+1mb76Suro4//elPvPzyy3z55Zfk5eXx05/+tMOfQWFhIbfddhv33HMPJ06ccNWz9fe3detWCgoK+PLLL3nqqad44oknuP7664mMjGTPnj2sWbOGNWvWkJ+f32EegtAvUQVB6Jfcdddd6vLly12f9+zZo0ZHR6vf+c53VFVV1ezsbBVQDx482KH+qVOnVEDdvHlzh+n/9V//pY4dO1Z1OByud88++6xqNBpVu92uqqqqzp07V7366qvb6E2fPl39+c9/7voMqO+9914bmbVr16p6vV4tKSlxvdu0aZOq1WrVvLw817tjx46pgLp3716X3tSpUzv8DsxmsxoYGKju3LmzTV7f+9731Ntuu01VVVXNyMhQAfX999/vsM6tmTp1qrp27VrX5+eff16NjIxUzWaz690nn3yiajQataioyFWe+Ph41WKxdGk7NDRUfemllzpM++53v6t+//vfb/Puq6++UjUajVpfX6+qqqqmpqaqK1asaCNTUlKi6nQ69csvv3S9mzFjhvqf//mfqqqq6unTp1VA/frrr13pZWVlalBQkPrmm2+qqqqqL774ogqoZ8+edcn84Ac/UIODg9WamhrXuyVLlqg/+MEPVFVV1bNnz6qKoqgXLlxoU54FCxaojz32mKqqqnrbbbeps2bN6vT7cKcdXcybb76pRkdHuz53VPZnn31WjY+Pd31u3V4OHDigAmpOTk6H9u+66y41NTXV1dZVVVXHjh2rzp492/XZZrOpISEh6muvvdZpOQWhvyFz7AShH/Pxxx9jNBqx2WxYrVaWL1/OX//6V7d0Dx06hFardUVzLubEiRPMmDEDRVFc72bNmoXZbOb8+fMMHz4coF3EKzExkZKSkm7zT01NJTY2tk1+KSkppKSkuN5NmDCBiIgITpw4wfTp07u0d/z4cRoaGli0aFGb942NjUybNq3Nu8svv7zb8l3MiRMnmDp1KiEhIa53s2bNwuFwcOrUKeLj4wGYPHlyt/PdHn74Ye69915efvllFi5cyMqVKxk1ahQABw4c4OzZs7zyyisueVVVcTgcZGdnM378+A7rEBsby6JFi3jllVeYPXs22dnZ7Nq1yzXf8sSJE+h0Oq688kqXTnR0NGPHjuXEiROud8HBwa6yAMTHx5OWluaK5Da/a/4Zf/PNN6iq2m7Y2WKxEB0dDTjb2sqVK7v8TrprRxkZGfzmN7/h+PHjmEwmbDYbDQ0N1NbWun4mF5e9q7Y4depUFixYwOTJk1myZAmLFy/m29/+NpGRkS6ZiRMnotG0DFzFx8czadIk12etVkt0dLRb7V0Q+gvi2AlCP2b+/Pk899xz6PV6kpKSerQAISgoqMt0VVXbOHXN74A27y/OU1EUHA5Ht/m3dpA6y6+r9xfTnOcnn3zCsGHD2qQZDIYu83aHrsrR+r07tp944gluv/12PvnkEz799FPWrl3L66+/zre+9S0cDgc/+MEP+PGPf9xOr9mZ7iyfO+64g//4j//gr3/9K6+++ioTJ05k6tSprvK7U6+Ofp5d/YwdDgdarZYDBw6g1WrbyDU7g921tc7ybc4jNzeXZcuWsWbNGv7nf/6HqKgoduzYwfe+9702w8gd2eis3lqtls2bN7Nz5042bdrEX//6V37xi1+wZ88eRowY4dF3IQgDAZljJwj9mJCQEEaPHk1qamqPV5VOnjwZh8PRbv5ZMxMmTGDnzp1t/jDu3LmT0NDQdo5TV+j1+jZzqTpjwoQJ5OXltZmvdPz4caqrq11Rqu70DQYDeXl5jB49us3VOgroKRMmTODQoUNtFjF8/fXXaDSaThdJdMWYMWN46KGH2LRpEzfddBMvvvgiAJdeeinHjh1rV4fRo0d3GwlcsWIFDQ0NfPbZZ7z66qvceeedbcpvs9nYs2eP6115eTmnT5926/vtjGnTpmG32ykpKWlX3oSEBMAZjfNmy5j9+/djs9n485//zFVXXcWYMWMoKCjw2F4ziqIwa9Ys1q1bx8GDBwkICOC9997z2q4g9GfEsROEQUpaWhp33XUX99xzD++//z7Z2dls27aNN998E4Af/vCH5Ofn8+CDD3Ly5Ek++OAD1q5dy8MPP9xmeMqdfL744guKiorarIK8mIULFzJlyhTuuOMOvvnmG/bu3cuqVauYO3euW0OnoaGh/PSnP+Whhx5iw4YNZGVlcfDgQZ599lk2bNjgdnk744477iAwMJC77rqLo0ePkpGRwYMPPsh3v/td1zCsO9TX1/OjH/2Ibdu2kZuby9dff82+fftcztXPf/5zdu3axQMPPMChQ4c4c+YMH374IQ8++GC3tkNCQli+fDmPP/44J06c4Pbbb3elpaens3z5cu677z527NhBZmYmd955J8OGDWP58uU9/0KaGDNmDHfccQerVq3i3XffJTs7m3379vH73/+ejRs3AvDYY4+xb98+fvjDH3L48GFOnjzJc889R1lZmVt5jBo1CpvNxl//+lfOnTvHyy+/zN/+9jePywywZ88efvOb37B//37y8vJ49913KS0t9crJFYSBgDh2gjCIee655/j2t7/ND3/4Q8aNG8d9993nikgNGzaMjRs3snfvXqZOncqaNWv43ve+xy9/+cse5fHnP/+ZzZs3k5KS0m6uW2uaNzKOjIxkzpw5LFy4kJEjR/LGG2+4ndf//M//8N///d/89re/Zfz48SxZsoSPPvrINbTmDcHBwXz++edUVFQwffp0vv3tb7NgwQL+7//+r0d2tFot5eXlrFq1ijFjxvCd73yHa6+9lnXr1gHO6Nb27ds5c+YMs2fPZtq0aTz++OMkJia6Zf+OO+4gMzOT2bNntxm6Befq5Msuu4zrr7+eGTNmoKoqGzdu9HoPwRdffJFVq1bxyCOPMHbsWG688Ub27NnjipSOGTOGTZs2kZmZyRVXXMGMGTP44IMPOtw/sCMuueQSnnrqKX7/+98zadIkXnnlFX772996VeawsDC+/PJLli1bxpgxY/jlL3/Jn//8Z6699lqv7ApCf0dRO5ugIAiCIAiCIAwoJGInCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBLEsRMEQRAEQRgkiGMnCIIgCIIwSBDHThAEQRAEYZAgjp0gCIIgCMIgQRw7QRAEQRCEQYI4doIgCIIgCIMEnb8L0B9xOBwUFBQQGhqKoij+Lo4gCIIgCEMYVVWpqakhKSkJjabrmJw4dq149tlnefbZZ2lsbCQrK8vfxREEQRAEQXCRn59PcnJylzKKqqpqH5VnwFBdXU1ERATZ2dmEhoZ2KGO1WsnIyGD+/Pno9foey7ijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0za2pqGDFiBFVVVYSHh3cpKxG7Dmgefo2KiiIsLKxDGavVSnBwMNHR0V12Up3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNbkLbpuf5Q7TOb7bozPUwcuy6wWq1YrdZO01rfeyrjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xB2qbn+kO1z+yJbRmKbUXzHDu73c7p06d59dVXCQ4O9nexBEEQBEEYwtTV1XH77bdTXV3d6UhiM+LYdYDJZCI8PJyysrIuh2I3b97MokWLuhxW6EzGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9Ydqn2kymYiJiXHLsZOh2C7Q6/Xd/pA8lamz1qGqqlv6AwF/1aO38+0Ne57Y6ImOu7LdyXmbPlDwRz18kae3Nn3dLt2V91ZmsLRLkLbpjf5Q6zN7YlccOz+xetNqLpgu8PamtxkZMZKR4SMZET6CEeEjGGYchlaj9XcRBUEQBEEYYIhj1wW+WjzhUB3km/OxqBYyyzLJLMtsk67X6EkNTSUtLI20sDRGhI9wPQfpgrypUq8jiye8szFUJwL3BTJB3XN9WTzhW6Rteq4/VPtMWTzhIX25eKJRbaTcUU6ZvYwSewlljjJK7aWUOcqwYetUL1wJJ1YbS6wmlhhtDLGaWGK1sRgVo5ySIQiCIAiDEFk84SX+XDxhd9gpqisix5RDtimb7Opsckw55JhyqLRUdlrmUH2oM6oXnsaIMGeEb0SYc1hXp/FdYFYWT3hnY6hOBO4LZIK65/qyeMK3SNv0XH+o9pmyeALYvn07jz76KFqtliuuuIKnnnqqxzb8MRFYj540QxppkWnMY14b2aqGKpezl12dzbnqc2RXZ3PBfIEaaw1Hyo9wpPxIGx2dRsfw0OFt5vCNDB9JWngaIfqQLsvdE2TxhHc2htpE4L5EJqh7ri+LJ3yLtE3P9YdanymLJ4DRo0ezbds2DAYDt99+O0eOHGHy5Mn+LpZXRARGMC1wGtPiprV5b7FbyDXluhy+5ivHlEO9rZ5z1ec4V32unb244DiXo9fa6YsNipVhXUEQBEEYgAxax27YsGGuZ71ej1Y7eFeZGrQGxkSOYUzkmDbvHaqD4tpiV2QvuzqbbFM256rOUd5QTkldCSV1Jewp3NNGL0QfwoiwJkcvYqTrOSUsBb1mcPynLAiCIAiDkQHh2K1du5a33nqLkydP8uqrr3Lrrbe60kpLS1m9ejUZGRmkpKSwfv16FixY4Er/5ptvKCsrY8KECf4oul/RKBoSjYkkGhOZNWxWm7RqSzU5phzOVZ1rmctXnUN+TT611lqOlh/laPnRNjo6RUdyaHKbKF9KSAoNakNfVksQBEEQhE4YEI5deno6zzzzDI8//ni7tAceeICkpCTKysrYtGkTK1euJCsri8jISIqKivjxj3/MO++844dSd43mm5cYXn4C5XwMJEyAoMg+zT/cEM7U2KlMjZ3a5n2jvZH8mvw2c/iarzpbnWshR0Z+Rhu9v733tzZDuiPCRpAankpiSCIaRdOXVRMEQRCEIcuAcOzuvPNOAH7961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx/xne98h9tvv52//vWvxMfHd2nfYrFgsVhcn00mE+C7fewAtF/9iWnmItjwTwDUkDjUmHTUmLEQPQY1ZgxqTDoYE6AP57spKAwPGc7wkOHMTZrreq+qKiX1Jc7Vuk1DujmmHHKqcyhtKKWsvoyy+jL2Fu1tY8+gNZBiTCE1LJXhocNJC0sjNSyV1NBUwg3hHpdT9rHzXK4/7MnUF8heYZ7ryz52vkXapuf6Q7XPHLT72M2bN481a9a4hmIPHjzIkiVLKCkpcck8+OCDBAcHk5aWxrp16xg3bhwAv/3tb5kxY0aHdp944gnWrVvX7r3P9rFTHUy68CqhDRcIbSggyNr5NiZWTRA1gUmYA5OoabrMgUnUBsRCP4mENagNlNnLKHWUUmovpdRRSrm9nHJHOXbsneoFK8HEaGKI0cYQrYkmVhNLtDaaaE00OmVA/M8hCIIgCD6nJ/vYDei/nmazuV0Fw8LCqKqq4v777+f+++93y85jjz3Gww8/zAsvvMALL7yA3W7n7NmzviiyE0XD0eQ7XR919nqMDQWENl1Gi/MeYilB76gnqi6LqLqsNibsih6zIaGd01drSMDRxwscApVAknXJJJPc5r1DdVDlqKLMUUaZvcx5b3o2qSbq1Dry7Hnk2fPa6CkoRGginE5fk+MXo4khWhtNmBImQ7uCIAiC0AkD2rEzGo2uYdNmTCYTRqOxR3YMBgMGg4HAwEA0Gg19HcS0aYOoChlFVcioNu81DishlmKns9dQ4IrwGS1FaFUr4Q35hDfkt9FRUag1xFFjaHH4mu82bd8eR6ZRNERpo4jSRjFG33bFrkW1UGGvcJ640RTha3b6LFiodFRS6ajkDGfa6OnRE62Jdjl7re+BSmBfVk8QBEEQ+h0D2rFLT0+nurqaoqIiEhISAMjMzOTee+/1yN4DDzzAAw884Dp5Yv78+Z2GPG02GxkZGcyfPx+druOvsSsZd/Q7w+Kwo1Tno5SfQVN+Bk3FGdezYjFhtBRjtBSD6WAbPYcxATV6DI7odNTodBxNF8ExHs/j86YeHaGqKhWWCvJq8sitySW3Jpf8mnxya3K5UHsBq2qlyFFEkaOonW6UIYrhocMZHjqcFGMKycZkko3JpBhTuj1jtzfq4YmNnui4K9udnLfpAwV/1MMXeXpr09ft0l15f/aZ/Q1pm57rD9U+8+IgVlcMiDl2VqsVu93O4sWLue+++1i5ciUBAQFoNBpWrlxJVFQUTz/9NJs3b2b16tWuVbE9pS/PivUJqorBVu0a0g1tuOAa4g20VXeq1qgNaYnsGVqifHUB0f1mHh+AXbVT6ahsO7TbdDer5i51Q5VQojRRrjl8zVeUNgqDYuijGgiCIAhCzxl0Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FV+zRG7wsLCfhmx84iGamdErznKV34GpeIMSlUeCh03AVUXiBo12hXZa47yqZEjQBvgn3o0cXG+ZquZ/Jp88sx55NXkcd58nnxzPvnmfEyNXf+nE2WIItmYjLZGy/TR00kNS3VF+4x694f15b/P/oVERTzXl4idb5G26bn+UO0zTSYTiYmJg8ex6ysGfMTOAzSORowNRYRa2s/j06gdr2h1oKHWEH/RSt1EagxJ2LX9b55bnaOOCkcF5Q7nSt0Ke8tznVrXpW6IEuKM7F0c7dNGy5w+QRAEoU8YdBG7vmZQRux6isOGUpXbJsrnultrO1cLG+aM7EW1jfIRHN2rxeut76+msYbz5vPkmnL58siXBMQFcKH2AvnmfCotnW9DAxAREOGcwxfqnM83LGgYRSeLWD53OVHBUb1ej8H032dfIFERz/UlYudbpG16rj9U+0yJ2HnIUIzY9RhVJdBa2bI1S8MFQpu2ZzHYajpVs+hCW63UTXTN46vXR/fpBsw9oUFtaBPdax3t625OX7AS7IzyNUX3XHP6NFEEa6RNCYIgCO4jETsvkYid+7Sph9XUfh5f+Rk0pvOd6qv6EBzRo1vm7zVF+9TINNB4/h+WV/Vww16ttZbz5vOcrz1Pfk0+583nyavJ41zFOWrUzh1cgLCAMFKMKaQYU0gKTsKUZ2Lx9MWkhad1eRrHYPrvsy+QqIjn+hKx8y3SNj3Xl4idOHY9QiJ2vkFrt2C0FLZbqRtiKUHTyckUDkWL2ZDQtFK3JcJnDkzErunfq1gtqoUKR4Vrn74KR4XrJI7unL4gJagl0tcU7YvVxBKrjSVACeijGgiCIAj9CYnYeUlzxK6srKzTL9BqtbJ582YWLVqEXt/xSQ9dybijPxDwqh52K1Rmo5Sddl7lzjvlZ1GsHS9qUFEgYjiOqNFkmwNIuXQh2vjxqNFjICjCP/XogY16Wz35Nc7Vuvk1+eRW55KZl0ltQC2l9aWd2lZQSApJItQSypWjryQ9Mp3REaNJDUvFoG3r6HZXDm/TBwr+qIcv8vTWpif6PdXxtj90R2awtEuQtumNfk903JUdCH2myWQiJiZm8B8p5mv0en23PyRvZdzRHwh4VA+9HhInOq/WOBxgOg+lp6H0JJSdcj6XnUKpr4SqXLRVuYwG+OzTFr2QOIgdCzFjWt3HQWiC2/P4euPn0d3Pe2LQRCbGOetstVrZWLmRZcuWYcXq3KbF5NyQOc+UR64pl3PV56hoqOBC7QUATp486bKnUTSkhqUyIXoCE6MnMjF6IqPDRrtVF2/TBwr+qIcv8vTWpif6PdWRPrNnSNv0XL8nOu7K9uc+syd2xbHrAqvVitVq7TSt9b2nMu7oDwR8Vo+QROeVNrflnapCXRlK2WkcxSfIP7SVtJAGNOVnUWoKoLbEeeV81caUagh1RvRixqDGpKNGj0GNGQMRqaDR9lo9PLHRWkev1zPCOIIRxhHt5CoaKjhVfopP936KPlFPdk02WVVZ1FhryK7OJrs6m0/OfQKABg0xmhh2fb2LqXFTuTTuUkaEjUBpcm67K6e0zf6Vp7c2vW2XvSUvfWYL0jY91++Jjruy3vaJffHz7IltGYpthcyxG7jo7PUYG1rN47O0zOPrbANmu6JvmseX2Go/viTMhgQcmv4/n01VVWrUGgrthRTYC7hgu8AF+4UO5/EFK8Gk6lJJ06aRpksjUZuIph+dKiIIgiB0jsyx8xKZY+c+/qqH2/naLFBxzjV/z3mdgYqzKLaGDlVURQMRqagxzsheS7RvDBhCvS+ThzruyhaaCnkt4zUChgdwpOIIR8qO0GBvW9cQJYTZKbO5etjVzEicQWRgyxF80jb7V579fR6Tu/LSZ7YgbdNzfZljJ3PsvELmi7iPv+rRbb56PQyb4rxa47BDVR6UnYbSUziKT1B1dg+R9lIUi8m5qKMyG8583lYvNPGiOXxjnfP4QmLdL5Mn9eiBbGJYIuP041g2bRl6vR6r3crxiuMcKD7gvIoOUGur5bO8z/gs7zMUFCZGT2RuylwWpS5ieMhwj+vRH5F5TJ7ryxw73yJt03N9mWPXOeLYdYHMsesef9WjV/INTXZeI67BarXy1ebNLFq4EL2loinCdwZardZVzMVQU+i8sre3MaUGRqCJTueShmDUr7OwxY9zRvjCU6CLIc++mi8yIWICEyIm8N2x36XeUs+/Pv8X1mQre4r3cKryFEfLj3K0/CjPHnqWtNA00hrTSCtNY3zMeNfcvIGGzGPyXF/m2PkWaZue68scu+6RodhWyBw7oSt0tlpCLYVt9uILbSgkuLG003l8NiUAc2BCy7m6hpZ5fGoXGzD3JTWOGk5bT3PcepyztrPYW+0tGKuJ5ZKAS7gk4BLCNZ1vniwIgiD4Dplj5yUyx859+v0cu76wZ62HiiwcxSfI3vc5o8PtaCvOQkUWir2xQxVV0ULUCOxRozln0pN6+SK0ceNRY9IhwOhVGb2ZD1LTWMO2vG28fvB1suxZNDqc5VdQuDLhSq4fcT3zU+YTpAty99vxGzKPyXN9mWPnW6Rteq4vc+yG8By7/Px8li9fzvHjxzGbzR4d8yHzRdyn386x6wt7ej0ET8MaP4lT50MYtWwZil4PdhtU5ULpqab9+Jzz+Sg7jdJohvKz6MrPMgbgk49a7IUlQ+wYiBnrvMeOcz4HhPWojJ7MB4nSR3HD6BvQntYyZ9EcMi5k8MHZD/im5Bt2F+1md9FuQvaHcMPIG7hl7C2Mjhzds+/KD8g8Js/1ZY6db5G26bm+zLHrnEHr2MXGxrJ161ZWrFjh76IIQxWtDqJHOa9xy1reqyqYCqDsFPbiE+R9s4XU4AY05WegttS5ObPpPGRtbWNOFxzNLCUGDVsgbnyL8xee7PYGzD3BqDdyU/pN3JR+E/k1+XyU9REfZn3IBfMFXj/1Oq+fep3L4y/nlrG3sGD4AvTawfHHVhAEYSAzaB27wMBAAgMD/V0MQWiPokD4MAgfhmP4bA6XJpO8bBkavR7qKpoieyddp21Qehqq81DqyomhHA6eamtPHwIx6a6VukrkaIwNReCwAb3jbKWEpvDDS37Imqlr2FO4hzdOvUFGfgb7i/ezv3g/0YHR3DzmZm4deyuxwbHdGxQEQRB8woBw7NauXctbb73FyZMnefXVV7n11ltdaaWlpaxevZqMjAxSUlJYv349CxYs8GNpBcELgqNg+FXOqzWNtViLTnD4i7e4JDkYbcUZp8NXkQXWWig85Lxw/lIvANRTv3RGC13bszQN7YaneVw8jaJhRtIMZiTNoKi2iHfOvMPbp9+mrL6M5w8/z4tHX2TZiGXcNfEu0iPTPc5HEARB8IwB4dilp6fzzDPP8Pjjj7dLe+CBB0hKSqKsrIxNmzaxcuVKsrKyiIyM7MCSIAxQAkIgcSrnoy4wZd4ytM3zLexWqMhuiuw5o3xq6UnsJSfRORqb3p2EEy2mdCgsDIhGa/p/EDeu5Uzd2DEQ5P7vTUJIAg9c8gDfn/J9tuZt5ZUTr3Cw5CAfZH3AB1kfMCtpFqsmrmJG4owBu2WKIAjCQGNAOHZ33nknAL/+9a/bvDebzXzwwQfk5OQQHBzMihUreOqpp/joo49YtWqV2/YtFgsWi8X12WQyAbKPnTsM6H3setme3/ZkihjhvEYvdaVv3vQ5i6+cgL4623XiBuVnnM/1FYQ0lkHWFufVCjUkDk3UaKbUB6LuzsMWP9558kZoQpfz+K4Zdg3XDLuGw2WH+feJf7P1/Fa+Lviarwu+Jj0inTvH3cnStKXoNX27crr1faDm2d/3CnNXXvrMFqRteq4v+9h1z4Da7mTevHmsWbPGNRR78OBBlixZQklJiUvmwQcfJDg4mHXr1nH99ddz4MABLr30Up544glmz57dod0nnniCdevWtXsv+9gJg5EAq8m5B5+loNV+fAUEWSs61bFqgtqdqVsTOIzagNgON2CusFewy7KLA40HaMS5ZUq4Es7swNlcFnAZekUWWgiCILhLT/axGxARu84wm83tKhgWFkZVVRWBgYFs2bKlE822PPbYYzz88MOuzyaTiZSUFObPn9/pF2iz2cjIyGD+/PmdbqXSlYw7+gMBf9Wjt/PtDXue2OiJjruy3ck1p0+58X5XugrUWcxoKs6ilp4k/+AXjDA2oq3IQqnKQe+oJ7LuHJF159rYUrUG1KiROKLSUaPTcTRdatRsbtHdgqnRxHvn3uP1069TYang4/qP2enYye1jbuemUTcRog9x63vyBH+0TV/k6a1NX7dLd+Wlz2xB2qbn+v7sMz1N7w2aRxLdYdBG7H7/+9/32L6cPCEI7dE4rIRYigltaBXhsxRgbChEq3Y8PKCiUBsQ6zpxozwwgS16M5+rJ6hSqwEIUoK4KuAqZhhmEKyR3zNBEITOGDIRu/T0dKqrqykqKiIhIQGAzMxM7r33Xj+XTBAGDw6NnpqgZGqCktsmqA6CG8s6cPgKCLDXYWwswdhYQoLpEOnAVcDPgffDY3kxLJh8XT0Zlgx2Wr7iKt1UrgpaQKi26w5LEARB6JoBEbGzWq3Y7XYWL17Mfffdx8qVKwkICECj0bBy5UqioqJ4+umn2bx5M6tXr/Z6VWzzkWKFhYUyFNsNMhTrnY1BOaygqlBbiqb8DJry0yjlZ9CUn3Hea4sBsANfBAfxQkQ4Jw0BAASoKjfZDNxtHEtMzATUqNE4okajRo4Afc+PMJPhLs/1ZSjWt0jb9Fx/UPaZbmAymUhMTBw8Z8WuXr2aDRs2tHmXkZHBvHnzKC0t5a677mLbtm0kJyezfv16Fi5c6FE+MhQrCL5FZ6sl1FLYFOUrJMRSwBG1mH+H2DkUaABAr6rcXGPme1UmEux2VBTqAmIwGxKbFnAkYjYkYQ5MwKIL98mpG4IgCP2JngzFDgjHrq8Qx04Q/ITdSkHDQTZbv+YM5QDoVVhhruf7lRUk2O0dqlm1wdQ0OXytHb/agHhUzcCO6giCIDQjjp2XNA/FlpWVdfoFWq1WNm/ezKJFizo9nLcrGXf0BwL+qkdv59sb9jyx0RMdd2W7k/M23Zeoqsr+kv08f+R5DpQcAECv0bMi7iruDhlNUk0JStkZlPKzUJWLQsfdl6poUSNSKbaHEzNuBkrsGIh2rtwlOMpn5ffFd+etTV+3S3flpc9swR91GYptczD1mSaTiZiYmMG/eEIQhMGFoihMj5/O9Pjp7C92Onj7S/bzVtFXvKfZxfKRy7l7xlMkhSSBrQEqslGa5u8p5Weg/KzzubEWpfIciQB7D7bJQw2ORo0aDdGjUWOczp4aPRoiUkGifIIgDHAkYtcKGYoVhP5Hti2brQ1bybZlA6BFy7SAacwNnEukpoNFUqpKoLUSo6UQY0MhoU13Y0MBwV1swuxQtJgNCa4hXbOheT5fAjad7/bbEwRB6A4ZivUSWRXrPrIq1jsbQ3WFlyccLD3IP47/g/0l+wHQKlquT7ue1eNXOyN4F9FhPRrrUCqz0JSfRVNxFqUiy3VXbA2d5q0GR+OIHIkaNQpH5AjUyJE4okahRqS1WbE7FFceuisvfWYLsirWc/2h2mcOulWxfYVE7ASh/5NjyyGjIYMsWxYAGjTOCJ5hLlFaD+fPqQ6CGssxWgoJbShsifY1FBBoq+5StU4fRa0hAXNgAmZDgvPZkECdIQZVGdgOiCAI/QOJ2HmJLJ5wH1k84Z2NoToRuDc4VHqI5488z+6i3YAzgnfdiOv43sTvkRKa0nv1sNRAxTlnVK/pTkWW83ND506fqtFBxHDUqFGoUaMgaiRq1GjU6FEQmtjhGbsd0d8nqLsrL31mC7J4wnP9odpnyuIJQRAGPZfEXsL6a9aTWZrJ34/8nd1Fu/nw3Id8kv0Jy9KWcde4u3onI0MoJE5FTZzadg2uqkJ9hdPRK3c6fWr5GWpzMwmzlTqHdivOoVScAza3ManqgiBqhMvpU6NGQtQo1Mg0CImTvfkEQfAYidi1QoZiBWHgkm/LZ2vDVs7YzgCgoDBVP5V5gfOI0cb0bWFUB4HWKoyWIkIsRRgbijBanFewpRQNHe/LB2DTGKgNiKPOEEetIY7aAOe9zhBHXUC0DO8KwhBEhmK9RIZi3UeGYr2zMVSHFXzJkbIjvHD0BXYU7ACcc/CWpC3h3on3MiJ8hE/zduu7c9igKs81tOsa1q04B6YLKKqjU/uqooXwZNTINOfCjcg01MgRzkhfZBoEGD0rk5c6MhTbM2Qo1nP9odpnylBsL6HX67v9IXkr447+QMBf9fA0X1VVsTtUbA4Vq91BvVXF1AhldXYUDVjtDleaza5iczTf276z2p12rHYHFquNzCKF0v0FqGiwOVRsdgdWh4q9Sd/abKsprdFqJ++8hk9Nx7GruGzZmuzaVRWN4tzfTUGlolzDGyWZaDUaNIqCRgGDTktQgJZAvZYgvRaDFvLOK5TsLyA2NIiIYD1RIQFEBgcQGRJAQNOqre6+u4HaNi9NvJTnEp/jUNEhnvziSU7ZTvFpzqd8lvMZS0csZc2UNYyMGOnTMnT93ekhfqzzuhhbI1TlQWU2VGRDZTaO8izM+UcJtZU7h3erclGqcoHt7fVDYiFyBESNcN4j01BCkwhqLEOvVXr88+xpG5A+s2f4oy6+yNNbm57o90THXVlv+0Rf/jx7YlccOz+xM6ucY5UKgadK0Wq0qDidDecdQEVVcX1Wmz47U5yyXJTWIu+0Q+u0pnzVi9+1yrN1/h3lQZs05zu7zc7J8wo5286h0WhcaQ5VdV12R9PnJkfF4VBxqLR6biXT5HA55S+SUXE92+wOysq1bLiwF4dK27wcKtZmR6zJsbLZWxyzZoesPTo48KWXP1ktZJ/qoY4Gyovdlj1j6nwvttbl+CS/43KEGLSEarS8W/4NyZHBDIsMIjkymNGxRkbGhqB1u9z9m4nRE/mu8bukXZXGP479g2352/g0+1M+y/6MJWlL+MGUHzA6crS/i9kWXQDEjHZeTditVjI2bmTZtUvRN5S7HL529/pKqC11Xuf3tpgEFgPq8f+E8GHOjZgjhrdc4SnOe9gw0MqfBEEY6MhvcRdYrVasVmunaa3vPZX56dtHKDVr4eTBdmkDDy2f5J/1Q74K1FT1qkWdRkGnVdBpNOi1StNnjfN+cdpF77UKlJeVkpSQQIBOi06roNcqaDWt7Wmcn7UKeo0CqJw7e5qJ48dh0OvRapQ2+WqUFkfZarNz+PBhJk6ajEajcTnHjTYH9VY79Y12GqwOai1WzubkERGTgKnBRkWdlaq6RirqrDTaHNRa7NSiUHS6rF39NQokRwYRpmo4qjnJlJRIpgwLIzE8EGWATehv/r1LD03nqdlPcbLiJC8cfYGM8xl8lvMZn+d8zsLhC7l30r2kR6T3ap5d9Qse27TZISgWhsXCsCvaCzZUQ2U2SmUOSlUuSmW2M/pXlQ/VeWhUe9PnvA7zURUthCWhhqeghA5jbLkVxzfl2CJTUcMSITQJAjreqNnb/tAdGV98t/7CH3Xxadv00KYn+j3RcVe2Ozlv03uDntj2aI5dfX09//3f/81bb71FRUUFJpOJzz//nBMnTvCTn/ykp+b6DX25eOJvJzSYrQoKLQvgmv9stv7c+k+p873apVzrv72t3ykdvGuXhztyykVl6iQPRQFN8/umZ02TjEZplncOM7Z5z0Xyrey47hfJdySnVVS0GmeattV18WfXO02L/mBFVaHRAVWNUGlRqLRAhUWhshHKGhSK66DO3vEXYNSpDDc6r1FhkGZUCRigob1CeyHbGrZxzHrM9W6CfgLzA+eTqE30Y8l8SNNijuDGMoIaywhuc5US1FiOVrV1a6ZRG0K9PoqGgEjq9VFtnhv0UdQHRGHTBnVrRxCEnuHzxRN33303VquVRx99lNmzZ1NZWUlhYSHz58/n5MmTHhe8vyCLJ9xHFk94Z6M/TQRWVZXy2kZOFlTzyY4DKJEpHCus4XSxGZujbTeh1ypMGRbO9LRIrkiL5LLUCIID+tcAQHffw5mqM/zj6D/YkrfFNdVgfvJ87pt0H+OixvkkT3/YdEtfdYC5BKXaGd1zVORy4dguhoc60JiLoKYAxVLjVn6qIRRCk1DDksCYiGqMB2MctqAY9h7P4fJ516GLSOrxQo/B0meCLJ7wRr8/9Zne1KOn+HzxxCeffEJ+fj4Gg8E1PJOYmEhhYaEn5nzGww8/zL59+5g2bRp/+ctfeqwvE4HdZ6AtnvClvYE8ETgxIIAYowHTWZVlyyah1+tpsNo5UWjiyIVqDuRWsudcBUWmBg7kVXEgr4q/fZlNgFbDFSOimDsmlnljYxkdZ+w3Q7edfQ8TYifw1PynOFt5lr8f/juf53xOxvkMMs5nMC9lHmumrmFi9MRezdMbfD5BPSrFeTETq9XK4ZqNJC9bhrZZp8EENYVQfR5MBU3XBTAVoJouYC3PIcBe53QALadQytrO8dQCswHO/Nr5IsAIxjhocvwwxqMJjmV4eREBuXp0YQkQHO28Wg0BD5Y+E2TxhDf63vaZdrvdNbxpt9vR6XTY7XY0mvYbh3ub3lP0ej1arbbdO3fxyLGLiIigtLSU5ORk17vs7GySktqf1+gvvvnmG8xmM1999RX3338/+/btY/r06f4uliAMOAL1WqYNj2Ta8EhWzUhDVVXyKurYc66C3dnl7DlXwYWqenacLWPH2TJ+vfEESeGBzB0by7yxccxOj+l30bzWjI4czR/n/pE1U9fw98N/57Psz9iWv41t+duYmzyX+6fez8QYzxy8QUVgmPOKbb+a12a18unGjSxbOAd9fZnL4cN0AcwlYC7GUVNMXUk2IQ4zirUWGs1QYYaKcy47WmAaQN4/22agC0QXFMVcmw5t1T8hJKbF6bv4CoqEwHCnM9hP/rkQ+hdms5nz58+3WiCokpCQQH5+fof/kHqb3lMURSE5ORmjsX1U2x086m3/4z/+gxtuuIFf/OIX2O12Pv74Y5588sl+Nb9u165dLFy4EICFCxeye/ducewEoRdQFIXU6BBSo0P4zvQUVFUlq7SW7adL2X66lN3nyimobuC1vfm8tjcfg07D7PRYFk+MZ+H4eKJCAvxdhQ4ZFTGKP8z5A2umruH5w8/zafanbD+/ne3ntzN72Gzun3o/k2Mn+7uY/ZsAI4REQkz7xSh2q5UvNm5k2bJl6B0WMBe7nL7my2EqoiT7KPFBDpT6CqgtA7sFbA0oNQVEAGR3vPijHRqd08Frc0W0f9fsCBrCwGB01iHA6HQMdQZxDgcZdrud8+fPExwcTGxsLIqi4HA4MJvNGI3GDiNu3qb3BFVVKS0t5fz586Snp7eL3LmDR47dAw88QFxcHP/85z9JTk7mL3/5Cw899BC33HKLJ+a6Ze3atbz11lucPHmSV199lVtvvdWVVlpayurVq8nIyCAlJYX169ezYMECqqqqGDVqFADh4eEcO3asM/OCIHiBoiiMjjMyOs7I964eQX2jnd3Z5Ww/VcoXJ4vJr6hny4litpwoRqPA9LQoFk9MYPGEeFKi+t/JLiPDR/K72b9jzZQ1vHDkBT4+9zFfXfiKry58xaxhs7h/6v1MjZ3q72IObAxG5xU9qs1ru9XKnmbnT693rvix1kFdObbqIvZ9+TnTJ45EZ6mGuvKmqwzqKpzPtWXQUOXcBNpha5HxFI3O6eAFhDbdQ9o7fwEhzmd9IOiC3LujQ2u3OOc2Cn2K1WpFVVViY2MJCnIu9HE4HDQ2NhIYGNip4+ZNek+JjY0lJycHq9Xad44dwMqVK1m5cqWn6j0iPT2dZ555hscff7xd2gMPPEBSUhJlZWVs2rSJlStXkpWVRUREBCaTCXBOOoyIiOiTsgrCUCcoQMv8sXHMHxvH2hsmcLKohk3Hitl0vIhjBSb2ZFewJ7uC//n4OBMSw7huSiLXTU4kLabjrTT8RVp4Gr+++tf8YMoPeP7w83x87mO+vvA1X1/4mhmJM/j+lO9zecLl/i7m4EZRXM6TGpJISVgh6uRl0NV8o2ZnsKHaedVXtTw3VDsdv9b31umNtc7LVu+05bC1pPUieuB6gMP3gTagxeHTGkCrd77T6i96DnDzuemu0TkvRQMaHYoKKeXHUI6YQW8AjRYUbZOctoPPuqbPHaU1fbY7CLRWQk0RBBicedG87YGm5U7z51bvFI3TsfXT4Vf9ZQ5wR3hbNrcduz/84Q9uyf3sZz/zuDCdceeddwLw61//us17s9nMBx98QE5ODsHBwaxYsYKnnnqKjz76iBkzZvD3v/+d73znO2zZsoXVq1d3at9isWCxWFyfmx1CX+5jN1j2ZPJXPXo7396wJ3sydczomCBGz03jh3PTOF9Zz5aTJWw5UcK+nEqOF5o4Xmjij5+fYkJiKMsmJbB0UjypvRDJ6616JAYlsvbKtdwz4R7+dexffJz9MbsKd7GrcBeXxF7CvRPvZUbiDBRFGZJ7hbkr36d9phLg3PMvKBYiuxdvh8MGjXXOeYCNtSiNZtcz1lqwNM0TtJidnxtrnaeCWOvB1uC8rA0otnrXs/N9vfO9o1Ud7I3Oy9K7zuPF6IBLAdwcyXYHPbAE4Kjn+ssB9ZCC2trha+MI0uadTlFYarWhO2VAbXYUm51JaPOsBRbVN6DN+i+nLKAGJ8IlP0cts6HqNc0ahDocKBYt7dxMBRS1Kb2xg/QmfaPdgWoMwZ0YrMFgYOLEiTQ2Nrp8ldaRPofDgaqqbSJ2PtnH7u6773Y919XV8d5773HllVeSkpJCfn4+e/fu5aabbuK1115zO/OeMm/ePNasWeMaij148CBLliyhpKTEJfPggw8SHBzM73//e37yk59w4MABpk6dyv/93/91aveJJ55g3bp17d77ch87QRjqmK1wpELhULnC6WoFR6sdElNCVKZFO7gkWiU60I+F7IAKewU7LDs40HgAO3YAkrRJzDPMY5x+HBrF+6EYYZCjOtA6Gp2X2ojWYUXjaESj2tGoNjSqDUW1tXx22FzvNaq9bVpTett3VhTVgaI60OBoerajuJ4dTc/2Vs8t7zWqHbrVdQAqiqqiNLkzSoduT/+iwZhC9qw/M2JYLIG63o3aVQWlNjmhXTN27FhOnTqF3W5n+fLlfP/73+fGG290pTc2NpKfn09RURE2m3N/yZ7sY+d2xO7FF190Pd9888289dZbLF++3PXuww8/5P/9v//nrrlewWw2t6tgWFgYVVVVADz99NNu2Xnsscd4+OGHXZ9NJhMpKSnMnz+/0y/QZrORkZHB/Pnz0ek6/hq7knFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv03uTbzXdK+sa2XKyjM+OlbAnp5L8WoX8Wi0f5sHkpFCWTIhjyYQ4hkW47+X5sh63cAsl9SW8eupV3jv3HgX2Al6te5URoSO43H45Dy5+EIPe0Ct5eVsPX7dLd+Wlz2yhuS5zFl7bZ3Xx9PtToVN3rZ1NtUlaVZuGWZuu1u9oSbPbbOz46iuunjUDrVbrdBYvlm9tCxW7zcrePXu4YvrlaLUXD+c6Hc2W8lk5cOAAl192mVMWsNhAbTTiCB+Ow+BcyKWqKnV1dQQHBzuDfRdVWEWlvq6OoOBgOnIFVVWlvr6O0NAwtxbbKIpCaGgoADNnzqSgoMD1GaChoYHAwEBmzpyJweDsR5pHEt3Bow2Kw8PDKS8vb9M4bDYb0dHRVFf7Lpzc04hdT+nLkycEQeiYGiscrlA4WKZw1qS0OmsFUo3OSN60aJWI3vGbvKbWUctOy052W3ZjwTmlI1oTzRzDHKYGTEWnDGwnRBAGEzqdjoSEBFJSUpr26ez9BSyBek2X8+SaI3b19fXccMMN/PSnP2Xp0qWu9D6L2LVm0qRJPPnkk/zyl79Ep9Nhs9n4zW9+w8SJfbvXU3p6OtXV1RQVFZGQkABAZmYm9957b5+WQxCE3iNUD7PiVWbFq5gam5y8coUsk0KuWSHXrOX9XBgRqnJp03BtmB93UAnRhLAoaBFXG65md+Nudlp2Uu4o573699jasJXZgbO5LOAy9Mrg2FRXEAYLDVYHM57a3et2dz18FUFdnLlYUVHB7NmzAVi0aFEbp6438Mixe/nll7n99tv585//TFxcHCUlJUyYMIFXXnmlVwvXjNVqxW6343A4sFqtNDQ0EBAQgNFo5MYbb2Tt2rU8/fTTbN68maNHj3LDDTf4pByCIPQtYQFwdYLK1Qkq1Y2QWa5wsFzDuRqF7BqF7Bot7+aojA5TmRajMjVKxegn/ylIE8T8wPnMNMxkn2UfOyw7qFar+bj+Y7Y1bONqw9VMN0zHoPSTUKMgCH4hKiqKr776ymf2PRqKbSYvL4/CwkISExMZPnx4b5arDatXr2bDhg1t3mVkZDBv3jxKS0u566672LZtG8nJyaxfv961MbGnNJ8VW1hYKHPsukHm2HlnY6jPsfOUwuoGPj9ewqfHSjhS0HKGqVZRuGpEBEsnxjN/dAQHdu/o03q0/u7sip2Psj/i5VMvU1RXBEBYQBi3pd/GytErCQ0I7cZae5syx65/t0t38UddfJFnf2+bHclaLBYKCgpIS0vDYDBQb3UugDLXmDGGdn7SQ0/Sg/TaLodihw0bxoULFzpNb2hoICcnh6SkpDZz7BITE90aivXIsWs9p+1i4uLiemqu3yBz7ARh4FHeAAebInnna1s6U62iMi5CZVq0yuRIlUA/+QI21UZmYyZfWr6k3OHcLNeAgasMVzHTMJMQTf/av08QBjOt59gFBPhnDkfzHLvO8HaOnUeOnUbjnBjYrNraM7Xb7T011++QiJ37SMTOOxsSsetdcsrr+OxYCZ8eL+FMSa3rfYBWw5z0KK6dGMfc9BiCu5j/4g1dfXd21c4X+V/w0omXyDJlARCoDWTFyBXcPuZ24oPje2zT2zL1lo5E7HqGROw81+/NiF1gYMsq+5qamjYrUy/G2/Se4JeI3cUUFRXx5JNPcuWVV/Ld737XW3N+QyJ2gjB4KKyDg2UaDpYrlDS0/PMZoFGZGOmM5E2IVNH38bZzDtXBKdsptjVs44LdORyjRcvUgKnMNswmVhvbtwUShCFEf4jYdYdfInadFWTkyJGcP3++N8z5leaIXVlZWadfoNVqZfPmzSxatMh5pmEPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IFCcz0WLlzI2fIGNh4p5pOjRZyvrHfJhBi0LBwXx7LJCVw9KpoAnXdeXk++O1VV2VW4ixePv8iBkgMAKCjMT5nP3RPuZmL0xB7b9LZMnup42x+6IzNY2iX4py6+yLO/t82OZBsaGsjPz28TsVNV1RVx62hunLfpPaU5YpeSkuIqo8lkIiYmxnfbnXTEnj17XJ6lIAhCf0FRFCYkhjEhMYxHFo3myAUTnxwpYuPRIopMFj7ILOSDzELCAnUsmhDHdZMTmDEiCp3Wt6E8RVGYmTSTmUkzySzNZMOJDWw7v42t+VvZmr+V6fHTuWfiPUyLmubTcgiCMLjwKGI3fvz4Nl5pXV0d5eXlPPPMM9xzzz29WsC+RIZiBWHo4FAhpwYOlms4VK5gsrb0aSE6lanRKpdGq4wKU9H00XnhJfYSvmr4ikxrJo6mY5qStEnMMcxhgn6CHFcmCF4iQ7GdsH379jafQ0JCGDNmTLeZDRRkKNZ9ZCjWOxsyFOs7elIPu0Nlf24lnxwp4rNjxVTWtRy4HWsMYOnEeK6bnMC0lAg0XXh5vfXdFdYW8u+T/+a9s+/RYG8AIMWYwuoJq7luxHUEaN3/gyRDsf0PGYr1XF+GYn00FLtv3z5++tOftnv/1FNPtTlzVRAEYSCg1ShcOSKKK0dE8d/XjWNXdgUbjxSz6XgxpeZGXt6Tz8t78kkIM7BsUgLLJicwZVhYr3TiHZEYksh/Xvaf3DvxXl47+RqvnHiFfHM+/7P3f3juyHPcOe5Obh59MyF62SpFEIS2eBSxCwsL6/BA2ujoaMrLy3ulYP5AhmIFQWiNzQGnqp3n1h6uVLDYWxy5aIPKJdEql8Y4GBbs1tnfHmNRLey37Odry9eYVGffG6gEclXAVcwwzJC98ATBTfrDUOz58+f5+c9/zvHjxzEYDEyePJk//vGPREREAH08FPvmm28CLSdBtFbNycnhhRde4MyZMz2tY79DhmLdR4ZivbMhQ7G+o7frYbHa+fJMOZ8cLWLryRLqWx0ePiI6mGsnJbBkfAw5mTt9NtyFBjbmbGTDiQ3kmHIA5154y0ct57vjvkuSMalLfRmK7R/IUKzn+gN9KFZVVa688kp+9KMfsWrVKgDef/99Jk+ezKhRo1xl7LOh2Oeeew5wepPr1693vVcUhbi4OF566aWemOv36PX6bhuOtzLu6A8E/FWP3s63N+x5YqMnOu7KdifnbfpAobfqodfrWTZ1GMumDqOu0cbWkyV8nFlIxqkSssvrWL/9HOu3nyMhSMu5oDyWT0tmZGznRxB5kr9er+fb477NTWNvIiMvg38c+QdHy4/yxuk3ePvM2ywdsZTVE1czLmpcp/qe5Nmb8tJntuCPuvgiT29t9mWfabfbURQFjUaDRlHAWofD4QBrHYpVi0bTfoFSj9P1nYfwt2zZgtFoZPXq1a53N910UxuZ5kMgWpe7J99Pjxy7jIwMAJ588kl++ctf9kRVEARh0BAcoOP6KUlcPyUJs8XGluPFfHy4gO2nSymqh2e2ZvHM1iwmJIZx/dREbpiSREpU703r0CgaFqQu4Jrh17CvaB//OPIPdhXu4pNzn/DJuU+4KvEqVk9czcykmb2WpyAMOqx18JskNEBEF2I9Tv+vAgjoeHrE8ePHmTbNt1sYue3YlZWVERMTA8D3v//9Ts+LHchnxV6M1WrFarV2mtb63lMZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oNBX9TBo4LpJcVw3KY4yUx1/eXc7+cSyK7uS44Umjhea+MNnp5iSHMZ1kxK4dlICieGB3Rtuort6TIuZxrPzn+VExQlePvEym/M2s7twN7sLdzM6YjR3pN+Boio+a5fuykuf2YI/6uKLPL216Y8+02q1oqoqDocDBw58sYGQw+EAh6PztFb3zmRUVcVqtaLVOo8/7Ml35PYcu9DQUGpqaoD2Z8W6jCnKgD4rVhZPCILQW5itcLhC4ZsyhbMmBZWWoZkRoSqXRju4JFolrJfnb1c6Ktll2cV+y34aaQQgTAljhmEG0w3TCVTcdyoFYbDRZvGEXg+2+u6VepxJUKdDsRkZGfzv//4vH374Yafq/eZIscGELJ5wH1k84Z0NWTzhO/rTBPXSGgufHStm49Ei9udWud4rClyRFsnSifEsnhBPXKjBbZvdYWo08c6Zd3jt1GuUNZQBEKIL4abRN3Hb2NtICEnocT28kZc+s4X+1Db9aXOoLp6YPn06P/nJT7jzzjsB+Oijj5g4cSIjR450lbFfHCnW38jPz2f58uUcP34cs9mMTtfzqspEYPeRxRPe2ZDFE76jP0xQT4rSc89sI/fMHkVhdT2fHC7k48OFHMqvYk92JXuyK/nVJyeZnhrFtZMTuHZSIgkXDdf2tB7R+mi+f8n3uWPcHfz+w9+TGZDJuepzvHzyZV479ZprocXYqLFu16On9faFzGBpl9A/2mZ/sOm3xRNNCyGah0Wb31+Mt+kX8/777/OjH/2IX/3qVxgMBi699FLmzp3r0u3TxRPN5Ofn86tf/YrMzEzMZnObtOPHj3tisteJjY1l69atrFixwt9FEQRBcJEYHsS9s0dy7+yR5FfU8dnRIj454nTy9uZUsDengnUfHeey1EiunZTA4vGxXuUXoA3gMsNl/PLaX7KnZA8vHXuJvUV7+fjcx3x87mNmJM5g9aTVzEic4bMNlwVBaGH48OFdDsV6i0eO3S233EJ6ejrr1q3rt3PQAgMDXSFMQRCE/khKVDD3zRnJfXNGcqGqns+OFrHxSCEHcitd15OfnCDVqKUwPIfrpgzzeHWtoijMTp7N7OTZHCs/xoajG9iUu4ldhbvYVbiLMZFjWD1xNUtHLO3lWgqC0Jd45NgdPXqUHTt2uBVydJe1a9fy1ltvcfLkSV599VVuvfVWV1ppaSmrV68mIyODlJQU1q9fz4IFC3otb0EQBH8zLCKI7109gu9dPYKi6gY+O1rIxiNF7MutINes8LvPTvO7z04zJTmcZZMTWTYpkeHRnjl5E6Mn8oe5f+A/zP/Bv4//m3fOvMPpytP8147/4ulvnuY76d8hzDE4zv4WhKGGR47d0qVL2b17NzNn9t4eSenp6TzzzDM8/vjj7dIeeOABkpKSKCsrY9OmTaxcuZKsrCwsFksbBxDAaDTy8ccf91q5BEEQ+pqE8EBWzxrB6lkjuFBh5n/f2ko+MezLqeTw+WoOn6/md5+eZGJSmNPJm5zIiJieHys2zDiMn1/xc9ZMXcNbp9/ilROvUFJXwv9l/h969Jzae4pVk1YxMnykD2opCIIv8MixCwoKYunSpSxevLjdvnWtT6ToCc2rQ37961+3eW82m/nggw/IyckhODiYFStW8NRTT/HRRx+xatUqtm3b5lF+rbFYLFgsFtfn5nNwZR+77pF97LyzIfvY+Y7BsldYZKCG2QkqixZdQrXFwabjJXx+rJjd2RUcKzBxrMDEHz8/xbiEUJZOjGfpxHhGxbY4ee6UKVgTzF3j7uL29Nv5PO9zXjnxCqeqTvHO2Xd45+w7zEqcxe3jbueqhKs6nIcn+9j1jMHSNgf8PnZNix6aNwdpfn8x3qb3lD7bx64169at6zRt7dq1PTXXhnnz5rFmzRpXJO7gwYMsWbKkzYbIDz74IMHBwfz+97/v1E5DQwPXX389Bw4c4NJLL+WJJ55g9uzZHco+8cQTHdZJ9rETBKG/0rxPXma5wulqBUerffISg1SmNu2Tl+hBF6aqKjn2HHZZdnHCegIV55+JOE0cMwwzuCTgEvTK4FiZKgwt2uxjF9DLm0j2Et7uY+dRxM5b560nmM3mdpUICwujqqqqS73AwEC2bNniVh6PPfYYDz/8MC+88AIvvPACdruds2fPelpkQRAEn2PUw8x4lZnxKrVWOFKpcKhc4VS1QmG9QuF5LZ+dh/gglUuiVC6JdpDY+RGWbVAUhRG6EYzQjaDCXsEuyy4ONB6gxFHCB/UfsLlhM9MDpnOl4UrCNDIXTxD6Ex45dn/4wx86fG8wGEhOTmbBggVERER4Uy4XRqPRNTTajMlkwmjsvcO1DQYDBoOBRx55hEceecS1QfH8+fM79YxtNhsZGRnMnz+/0z3yupJxR38g4K969Ha+vWHPExs90XFXtjs5b9MHCv6ohy/ydNfmiqZ7db2VjNNlbDpeytfnKiiuh88vKHx+QUNadBBLxsexeEIs4+KNnW5vcnGet3ALZquZj7I/4o0zb1BYV8h2y3Z2NO5gUcoiVo5cSeGhQo/7Q3dkBku7hKHXNntT39s+02KxUFBQQEhISJudM5o3GO4Mb9NbM2zYMC5cuNBpekNDA4GBgcycORODwblp+cV+UFd4NBR766238t5773HllVeSnJzM+fPn2bNnDzfccAMFBQUcP36cd999l2uuuaanptsNxZrNZqKjo8nNzSUhwblT+pw5c7j33ntZtWpVj+13hRwpJgjCYKLeBkebInknqxRsaosjFxPYEslLDnEvkgfgUB2csJ5gp2UnufZc1/tUbSozDTMZpx+HVtH2dlUEoVfoD0OxY8eO5dSpU52m+2Uo1maz8c4773D99de73n3yySe89NJL7Ny5k1deeYWHH36YQ4cOuW3TarVit9txOBxYrVYaGhoICAjAaDRy4403snbtWp5++mk2b97M0aNHueGGGzwpuiAIwpAhSAfTY1Wmx6o02OBYldPJO1GpUNagsKVAYUuBhmiDypQmJ2+4ETRdOHkaRcPEgIlMDJjIBdsFdlp2csR6hFx7Lrl1uYQr4VxhuILLAy4nRNPzlbqC0FeoqkqDvaHX7QZqA/262bdHEbvw8HAqKipcqzXA6exFR0dTXV2Nw+EgIiKiR6HD1atXs2HDhjbvMjIymDdvHqWlpdx1111s27aN5ORk1q9fz8KFC3tabLdpHootLCyUodhukKFY72zIUKzvkOGuzvVrG218eaaCz4+X8OWZchpsLSv54kMNLBgbTXRdHvfcOA9DQPeLJAprCvnfjP8lU82kqrEKgABNgHOYNn0l4yPHS5/ZCmmbnuv31lBsWloaqk5lxuszelzu7th16y6CdEGdprszFJuTk0NSUlKbodjExES3InYeOXYzZsxg2bJlPPbYY+h0Oux2O7/97W/5+OOP2b17N7m5ucyePZu8vLyemvYrMhQrCMJQw2KHE1XO1bXHqhQs9pZIg1GvMiVSZWq0SnqYirabPemtqpUj1iPstuymwF7gep+iTeFKw5VM0k9Cpwxsp0wY2LQeirVr7Cz+ZHGv57Hpuk1dOna+Hor1yLE7ffo0t99+O6dPnyYuLo6SkhLGjh3Lq6++Snp6Onv37uX8+fPcdNNNPTXdL5CInftIxM47GxKx8x0SFem5vsVmZ9e5Sj4/XsLmY0XUtXLywgJ1XDM2hkXjYpk5KhKDru2ITes8VFXlaMVR3j77Nlvyt2BTnX+cjIqRb4/5Njen30xcUFy7/IdCnwnSNr3R782IncFgcA3F9ubiie6GYvtlxK6ZnJwciouLSUhIIDU11VMz/QaJ2AmCIDixO+CMyRnJO1ypYLa2/KEyaFUmRjgjeeMjVAxdrJUwO8zsa9zHXsteatQaADRomKCfwFWGq0jVpvp1PpIwtBgKiye8cuzq6uooLy+ntYnhw4d7aq7f0ByxKysr6/QLtFqtbN68mUWLFqHXdzwHpSsZd/QHAv6qR2/n2xv2PLHREx13ZbuT8zZ9oOCPevgiT29t9ka7tDtU9uc6I3mbjhdTbGo5qSdQr2H2qGgSbEU8ePM8Io0dD0HVW+r566d/5VTwKQ6WHXS9T49I55Yxt3Bt2rXoVN2g7zNB2qY3+t72mQ0NDeTn55OWluba7kRVVVfEraN/MrxNvxi9Xk9iYqLr89/+9jeWLVvm+twcsUtJSXGV0WQyERMT47tVsUeOHGHVqlUcPnwYwFWRgIAA6urqPDEpCIIg9FO0GoUrR0Rx5YgofnntWDIvVPP5sWI+P17C+cp6Np8sBbS8/qcdzBoVzZKJ8SwcF0dEcMsfXp1Gx6SASTw0/yGyzdm8cfoNPs35lDNVZ3hy75M8c/AZrku7jnh7vP8qKgh9gK+PkvMoYjdr1iwWLVrEo48+SmJiIoWFhfz3f/83o0aN4gc/+IEvytknyFCsIAiC+6gqXKiDzHINmRUKxfUt0QoNKqPDVS6JVpkcqRLWwahXvaOebxq/YXfjbiodla73I3QjuCLgCsbrx8tiC6FX6Q9Dsd3hl6HYiIgIKioq0Gg0REZGUllZSWNjIyNHjuT8+fOe1aQfIUOx7iNDsd7ZkKFY3yHDXZ7r91SnWX7EJTPZcqqcTceKOVlsdqUrClyWEs5wTQU/WnE1KdFtJ6HbHXZ2F+3mzdNvsqNgh+ts2qjAKJaPXM5No28izhA3KNolSNv0Rn8wDMV2h1+GYiMiIqiqqiIqKophw4aRmZlJVFQUZrO5e2VBEARhUDI6NoTxSRE8OH8UueV1fHasmE3Hizl8wcT+vGr2o+Xdp3cxNTmcJRPjWDIhnuFRwWg1WmYlzeKK2Ct46/O3qEyu5IPsDyirL+PF4y/y0vGXuCrhKkZaRzLfMR89A9uxEwRf4lHE7sknn2TixIl861vf4oUXXuCRRx5Bo9Fw33338cc//tEX5ewTZChWEASh96mwwOEKhcxyDdk1oNIS1RgWrDI12sHUKJWEVt2tXbVzynqKvY17OWs763ofpoRxueFyLg+4nDBN15ELQbgYrVZLYmIiMTExBAV1vtecP6mvr6esrIzCwkLsdjvQh6tim8nNzcVsNjNx4kRvTfULZCjWfWQo1jsbMhTrO2S4y3N9T4di3ekPL7lqDhlnK9l0rJg9OZXYHS1/gkbFBjM6wMwPrruSSckRrmGt/Jp83jn9Dm+ffps61blAT6tomTNsDjePvpmrEq9Co3Sze3I/Qtqm5/re9pmqqlJcXExNTY1LTlVVGhoaCAzseP85b9M9ITQ0lPj4eJc9nw3FTpgwoVuZ48eP98Rkv0av13fbcLyVcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvySVFGVs+KZPWskVTUNrL5eBGfHi3i67NlZJXWkYWGz5/fR2p0MEsnJXDtpESmJo/gJ5f9hJFFIwmYGMA7We9woPgAGeczyDifwTDjMFaMXsGK0StICEnoUR39ibRNz/W96TNTUlKw2WyuhQlWq5Uvv/ySOXPmdPrPrjfpPUWn07XbfLkndnvk2GVnZzN8+HDuuOMO5syZI5tKCoIgCB4TFRLALdOHc8v04VTXW9l8tIANWw9zukZHbnkdf99+jr9vP0dSeCCLJsQRXqPjh8OXcEP6DWRVZfH26bf5IOsDLpgv8OyhZ3ku8zlmJc3i5vSbmZMyB71m4P9jIviG1s6TVqvFZrMRGBjYoQPlbXpf0yPHrqSkhHfffZdXXnmFl156iZUrV3LHHXcwZcoUX5XPr1it1k73m2l+39V+NF3JuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l357mSCdbBsYiz6Agcz585iV3Y1nx8rYdvpUgqqG9iwKw/Q8eoft7NofBxLJ8bz4yk/4f7J97M1fyvvZ73PgZIDfHXhK7668BVRgVFcP+J6VoxaQVpYmtt17wukbXquP1T7zJ7Y9niOXXFxMa+//jqvvfYatbW1vPHGG24N1fZnZPGEIAhC/6LRDqeqnUebHa1UqG91fm2ITmVSpPNos7HhKlVqGd80fsM3jd9gVlt2aUjVpnKZ4TIm6ScRoPTPvcsEoSv6ZPFEVVUVb775Jq+++ioXLlzgvffeY9KkSR4VuL8hiyfcRxZPeGdDFk/4Dpmg7rm+LxdPeNNnfvr5ZoyjLuWLU+VsPlFCZV1LFMNo0HHN2FiWTIxj5qgI9pfu4v2s99lRsAOH6nDK6I0sTV3KitErGB853m/TiaRteq4/VPtMny2esFgsfPjhh/z73//m4MGDrFixgt/97ndcddVVXhXYV2zfvp1HH30UrVbLFVdcwVNPPdUjfVk84T6yeMI7G7J4wnfIBHXP9X2xeMIbGZ0GrhmfwJIpKdjsDvbmVPDZ0SI+O1pESY2FDw8X8uHhQoL0WuaPi2XppF/wyGXwRf4nvHvmXc6bz/P22bd5++zbjI0cy03pN3HdyOsIN4S7XcfeRNqm5/pDrc/02eKJ+Ph4EhISuO222/j5z3/umni4d+9el8wVV1zRE5M+ZfTo0Wzbtg2DwcDtt9/OkSNHmDx5sr+LJQiCIHiJTqth5qgYZo6K4YkbJnIwv5JPjzhX2F6oqmfjkSI2HikiQKdhTvol3D1hMTGx5/k870O25G7hVOUpfrv3t/xp/5+YlzKPFaNXMDNpJjqNHGEmDGx61IIjIiKwWCy89NJLbNiwgYtHcRVF4dy5c71aQG8YNmyY61mv16PVav1YGkEQBMEXaDQKl6VGcVlqFL+4bjxHL5j49Gghnx4tIrusli0nSthyogStRmHGyJtYM/67OEIOsCX/Y05WnGRz7mY2524mOjCa60dez/LRy0mPTPd3tQTBI3rk2OXk5PioGE7Wrl3LW2+9xcmTJ3n11Ve59dZbXWmlpaWsXr2ajIwMUlJSWL9+PQsWLHDL7jfffENZWdmAX9whCIIgdI2iKExODmdycjj/uWQsp4vNfHa0iE+PFnKyqIYdZ8vYcbYMRYnh8tSHuH10PfWGPWwv+JzyhnI2HN/AhuMbmBA9geWjlrNsxDIiAiP8XS1BcJt+FXNOT0/nmWee4fHHH2+X9sADD5CUlERZWRmbNm1i5cqVZGVlYbFY2jiAAEajkY8//hiAoqIifvzjH/POO+/0SR0EQRCE/oGiKIxNCGVsQij/sTCdnLJaPjvmnJN3KL+KfTmV7MsBmMqkYbO4YuQFqrQ72V/6NcfLj3O8/Dh/3P9H5iXPY/no5cwaNkv2xhP6Pf3KsbvzzjsB+PWvf93mvdls5oMPPiAnJ4fg4GBWrFjBU089xUcffcSqVavYtm1bh/YaGhq4/fbb+etf/0p8fHyn+VosFiwWi+uzyWQCZB87d5B97LyzMVT3ZOoLZK8wz/X9sY9ddzK98d0OCw/gezOH872ZwymsbmDziRI+P1bM/txKjl4wc/RCOHAto+KXkpZ6mhL1a3LMp9mSt4UteVuICozi2tRruWHkDYyJHONxOaRteq4/VPvMPtnHzpfMmzePNWvWuCJxBw8eZMmSJZSUlLhkHnzwQYKDg/n973/fqZ3nnnuOdevWMW7cOAB++9vfMmPGjHZyTzzxBOvWrWv3XvaxEwRBGPzUWOFIhXOvvNMmBYfasg1KVGgBUbHfUG04SAO1rveJ2kSm6acxJWAKRo3RH8UWhhA92ceuX0XsOsNsNrerSFhYGFVVVV3q3X///dx///3d2n/sscd4+OGHeeGFF3jhhRew2+2cPXvWmyILgiAIA4RQPcyMV5kZr1Jng2OVTifvZJVCRU0SFTVJwLWERZwiPPoApoCTFNoLKbQX8lnDZ4zSjWJqwFQm6CfIBsiC3xkQjp3RaHQNjzZjMpkwGnvnvySDwYDBYOCRRx7hkUcecW1QPH/+/E49Y5vNRkZGBvPnz293WK87Mu7oDwT8VY/ezrc37Hlioyc67sp2J+dt+kDBH/XwRZ7e2vR1u3RXfiD1mcub7rWNNnacrWDziVK2nSnHVDUBU9UE0NYSHnOU0OjDVKtZnLGd4YztDEHaIOYOm8u1qddyedzlnW6dIm3Tc/2h2mde7AN1xYAYijWbzURHR5Obm0tCQgIAc+bM4d5772XVqlW9lq8cKSYIgiB0hNXhPNrscLnCkUqFOptzuFbRlxEceRBDxEGs2gqXvFExMiVgClP1U0nSJvntlAthcDBgh2KtVit2ux2Hw4HVaqWhoYGAgACMRiM33ngja9eu5emnn2bz5s0cPXqUG264wd9FFgRBEIYAeg1MinSeTWt3wNka53DtkYpoTCWLqC1ZiCYwn8CIb9CHH8asMbPTspOdlp3EamKZGjCVqfqpRGoj/V0VYZDTryJ2q1evZsOGDW3eZWRkMG/ePEpLS7nrrrvYtm0bycnJrF+/noULF/qkHM1DsYWFhTIU2w0yFOudjaE6rNAXyHCX5/pDfSi2JzhUlUP51Ww+Ucrmk2UUVDcAdrTG0xjCD6ILPYGqtKxonBozlcXJi9Gf03PdguukbUqf6RYmk4nExES3Inb9yrHzNzIUKwiCIHiKqsL5Wsis0JBZrlDSoICmAV3oUQLCD6INPgeK80+uFi1j9GOYqp/KWP1Y9Irsjyd0Tk+GYsWx6wCJ2LmPROy8szFU//vsCyRi57m+ROy8R1VVssrqmiJ5pZwsMqPoqtGFZaIPP4g2sNAlG6wLZu6wuSxOWcwV8Vf45Lzaodg2B1OfKRE7D5GInSAIguALyhrgcIVCZrmGHLOCxlCELuwg+rBMNAFVLrlgJZhJ+klMDphMqjYVjaLxX6GFfoNE7LykOWJXVlbW6RdotVrZvHkzixYtQq/vOITelYw7+gMBf9Wjt/PtDXue2OiJjruy3cl5mz5Q8Ec9fJGntzZ93S7dlZc+s4X88hqefX8H+Wo0+/MqITAPfdghdGFH0OjMLrm4oDgWpy5maepSxkeN92pl7VBsm4OpzzSZTMTExAy8VbGCIAiCMNhJCAtkTqLKokXTMDWqfHGihE3HL2PnuRIcgVnO4drQo5TUl/Dvk//m3yf/TYoxhSWpS1iatpSR4SP9XQWhHyMRu1bIUKwgCILgL+pscLxSIbNC4US1HTXoNLqwTHShJ1A0LStr4zUJTAmYzBT9FNk+ZYggQ7FeIkOx7iNDsd7ZGKrDCn2BDMV6ri9Dsb7FnbrUNdr48kw5m44Xs/X0eSwBR9GHHUJrPIOi2F1yk6Inc23aUhYNX0RMUIxXefqiHr2tP1T7TBmKFQRBEIQBTHCAjqUT41k6MR6LbRI7s6az6XgJW07nUKs7iC4sE23wOY6WH+Fo+RH+dODPXBZ3GUvTljA/eT6RgRLJG6pIxK4VMhQrCIIg9GfsKmSZnKdeZFbX0BB0BH14JtqgfJeMomoYoRvJ1IDJjNePJ1gjf8cGOjIU6yUyFOs+MhTrnY2hOqzQF8hQrOf6MhTrW3qrLg6HyqHz1Ww6XsynJ49Txl50YUfQBha4ZDRouTzuCpakLsRxysGNS24cMm1zMPWZMhTbS+j1+m5/SN7KuKM/EPBXPXo7396w54mNnui4K9udnLfpAwV/1MMXeXpr09ft0l156TNb6I26XDkqlitHxfLL6ydyrGAJnx0t4qPjmRTa9qALOwyBRewt2cXekl0oqpbN27exYsx1zE+ZjzHA2C/qIX1m9/TErjh2giAIgjDAURSFScPCmTQsnJ8uGcvZkmv59EgRH504RE7DTnShR9AGFrO35Gv2lnyNVtEzPW4GK8YsY17KPEL0If6ugtBLiGPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLfRFXVIjA1kzJ401c9LIq1jMZ0cLeW3f15TojjgjeYZSdhd/ye7iL9ESwGWxV/GtMdcyO2k2wXr35uT197Y5mPrMntiWOXatkMUTgiAIwmCmuhEyK+BAdQmF2iPoQo+gMZS50jWqnjTNGKYHTWasfgwBSoAfSys0I4snvEQWT7iPLJ7wzsZQnQjcF8jiCc/1ZfGEb+kvbbOitpEtJ0p4/8R+jlZ9hSY0E01AhUtHi4FLY2aycuwyrh42i0BdYK/WQ/pM95HFE0BBQQHf/va30el0hIWF8eabb/Y4+iYTgd1HFk94Z2OoTQTuS2TxhOf6snjCt/i7bcZH6LljxgjumDECU8MKtp4o5u0je/imYhtKSCYEVLKvLIN9ZRnoCOTSmFncOvF6Zidf3cbJ6+9tczD0mbJ4AoiPj2fHjh1oNBrWrl3LJ598wsqVK/1dLEEQBEHod4QF6lkxLZkV05Kpb1zBtlPFvHVkF/tKM3CEZGLTV7G37Av2bv8CLQamRM1g5bhraVQb/V104SIGrWOn1Wpdz4qiMHbsWD+WRhAEQRAGBkEBWq6dnMS1k2/GYlvB12fLeD1zB7tLtmIPOgz6Kg5WbOPgzm0oqp53P9nKbZNuYGHqPLcXXgi+Q+PvAjSzdu1aJkyYgEaj4fXXX2+TVlpaynXXXUdwcDBjx47liy++cMvmjh07uOyyy9iyZQupqam+KLYgCIIgDFoMOi3XjIvn+Vtu5psf/pXn573LPOP/oKuZj6MxElWxcrR6B7/4+ufMePVqvvPeD3j71IeYG83+LvqQpd9E7NLT03nmmWd4/PHH26U98MADJCUlUVZWxqZNm1i5ciVZWVlYLBZuvfXWNrJGo5GPP/4YgKuvvpoDBw7wpz/9iX/961889NBDfVIXQRAEQRhs6LQaZo2OZdboFTgcy9l3rpSnPnuXLOUU9QEHIaCcE6adrNu9k1/t0jE69DJWjlvGdekLCQvoesK/0Hv0G8fuzjvvBODXv/51m/dms5kPPviAnJwcgoODWbFiBU899RQfffQRq1atYtu2bR3as1gsGAwGAMLDw7Hb7Z3mbbFYsFgsrs8mkwmQfezcQfax887GUN2TqS+Qfew815d97HzLYGmbk5OM3J6SyMKF3+VMWT2vZ+5j24UvqNEeQGMo44x5D7/Zv4ff7PsVI0KmsSJ9CTeOXki4IdzjMg3VPnNA72M3b9481qxZ44rEHTx4kCVLllBSUuKSefDBBwkODub3v/99p3Z27NjBL37xCzQaDVFRUbz88sudrop94oknWLduXbv3so+dIAiCIPSMojqVXVWlHLUepS7wKFpDy99vVA1R9lFcGjiR6cHjCdHIiRfu0JN97PpNxK4zzGZzu0qEhYVRVVXVpd7VV1/N9u3b3crjscce4+GHH+aFF17ghRdewG63c/bsWU+LLAiCIAhDloRghW8Fx/EtrqG84Rp2VpZypPEYNYajaAOLqNCdYYvtDFuqPyTCPoJLDJO4Mng8odreObt2qNPvHTuj0egaGm3GZDJhNPZeAzAYDBgMBgIDA9FoNPSzIKYgCIIgDEiiA+GGxFhuYB7VjfPYVVnGIcsxqgOOog0spEqXxTZ7FttMHxJmH8GUgInMDJlAmDbU30UfsPR7xy49PZ3q6mqKiopISEgAIDMzk3vvvbfX83rggQd44IEHXCdPzJ8/v9OQp81mIyMjg/nz56PTdfw1diXjjv5AwF/16O18e8OeJzZ6ouOubHdy3qYPFPxRD1/k6a1NX7dLd+Wlz2xhKLfNbzfdK+saeftwJm8d+4jKgKNoAi9g0p1jh+McO0wfE6MbyzXJ13DnpGuJD47zKM/B1GdeHODqin4zx85qtWK321m8eDH33XcfK1euJCAgAI1Gw8qVK4mKiuLpp59m8+bNrF69mqysLCIjI3u1DHJWrCAIgiD0LQ022FtVyYH645TqjqAJOt8mPdiaygT9ROYYJxCli/BPIf3MgDwrdvXq1WzYsKHNu4yMDObNm0dpaSl33XUX27ZtIzk5mfXr17Nw4UKflaU5YldYWCgRu26QiJ13Nobqf599wVCOinirLxE73yJts3P9equdj0+c5L0zm8iq2w2BOW10wpRRjHSk87OFdzMqKq1XyjcQ+kyTyURiYuLAcuz6AxKxEwRBEIT+gc0BmdUmdtcdp0BzFAJzUZQWl8VgTWK0diJzQicwTB/rx5L6ngEZsetPSMTOfSRi550Nidj5DomKeK4vETvfIm2z5/o2h4OMs+d4/cTnHK3egRqY3cbJC1KTuCxmNt+ddC1TY8ehKMqg6jMlYuchErETBEEQhP6NQ4VTNbV8bT5JLsdwBJ1FURyudK0tmlQmcrVxIumGJBRF8WNpeweJ2HmJROzcRyJ23tmQiJ3vkKiI5/oSsfMt0jY9179YR1VVvjlfxL+PbeJA2Vc06E+gaGwueY0tgskRs7htwjLmDr8UjaLpcTn6Q58pETsPkYidIAiCIAxc8ussfGk6zVnHMRoDT6FoWo7iUmxhJKnjuSp4IlOCU9EqWj+WtGdIxM5LmiN2ZWVlnX6BVquVzZs3s2jRIvR6fY9l3NEfCPirHr2db2/Y88RGT3Tcle1Oztv0gYI/6uGLPL216et26a689JktSNv0XL8nOqeKSvnNpxvI0ZzFpMlE0bacCa9xGBkdciU3j13KspFXsX3r9n7dZ5pMJmJiYgbHkWL+RK/Xd/tD8lbGHf2BgL/q0dv59oY9T2z0RMdd2e7kvE0fKPijHr7I01ubvm6X7spLn9mCtE3P9d3RGZsQyy3xE1i27KcUm+v554FNfJG/hQr1IA6tmdP1X/DbQ1/wu2+CiLaNo/Q43HnJEgJ1gR7l6cufZ0/simPXBVarFavV2mla63tPZdzRHwj4qx69nW9v2PPERk903JXtTs7b9IGCP+rhizy9tenrdumuvPSZLUjb9Fzf0z4z3hjEf81dzn+xnDJzPS8d3MrmvC2U2A+AzkxZwEGeOXaQZ478D8mGS7lu5CLumLwYY0Bwv+gze2JbhmJbIXPsBEEQBGHoUGdzsKMqj8zGY1Tpj6Poq1sSHXrCbOlMDpjInNCxhGg7juT1STlljp13yBw795E5dt7ZkDl2vkPmMXmuL3PsfIu0Tc/1fdlnzpo7j3dO7OfDs5+TZ9kD+gqXjOrQEqOdxILhC7hn6rXEGaO9qkdPkTl2vYTMF3EfmWPnnQ2ZY+c7ZB6T5/oyx863SNv0XN8XfWZ4SDA/mLGAH8xYgMVq562je3jn5EbO1u5C0ZdQrmbyZm4mb+Q8TaRmPPOSr+G+y5aTGBzlcT3cRebYCYIgCIIgeIhBr+XOaTO5c9pM6hss/PrNDZwOKOSUeScOfQFV6jHezz/Ge3n/RxjppNrTmVZzFcOj4v1ddHHsukIWT3SPLJ7wzoYsnvAdMkHdc31ZPOFbpG16ru+PPlN12JkeHs9/LboTnU7HprPHef3YRo5Wf41dn0cNpzmqO82FqrtIDI1yuy49QRZPeIgsnhAEQRAEwR1UFU7XVvKV+QQVahk/S7zRZ3nJ4gkvkcUT7iOLJ7yzIYsnfIdMUPdcXxZP+BZpm57rD9U+UxZP9BIyEdh9ZPGEdzZk8YTvkAnqnuvL4gnfIm3Tc/2h1mf2xG7703AFQRAEQRCEAYk4doIgCIIgCIMEcewEQRAEQRAGCeLYCYIgCIIgDBJk8UQHNC8UNplMncpYrVbq6uowmUxdrvDqTMYd/YGAv+rR2/n2hj1PbPREx13Z7uS8TR8o+KMevsjTW5u+bpfuykuf2YK0Tc/1h2qf2eyPuLORiTh2HVBTUwNASkqKn0siCIIgCILgpKamhvDw8C5lZB+7DnA4HBQUFBAaGoqiKJ3KTZ8+nX379nVpqzMZk8lESkoK+fn53e5J099x53sYCPn2hj1PbPREx13Z7uS6Spe22f/y9Namr9ulu/LSZ7YgbdNz/aHYZ6qqSk1NDUlJSWg0Xc+ik4hdB2g0GpKTk7uV02q13f4Qu5MJCwsb8J2UO9/DQMi3N+x5YqMnOu7Kdifnjh1pm/0nT29t+rpduisvfWYL0jY91x+qfWZ3kbpmZPGEFzzwwAO9IjPQ8Vcdezvf3rDniY2e6Lgr253cUGiX4J96+iJPb236ul26Ky99ZgvSNj3Xlz6za2Qo1k80H1vmzvEggtCXSNsU+iPSLoX+Sn9rmxKx8xMGg4G1a9diMBj8XRRBaIO0TaE/Iu1S6K/0t7YpETtBEARBEIRBgkTsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEgQx04QBEEQBGGQII6dIAiCIAjCIEEcO0EQBEEQhEGCOHaCIAiCIAiDBHHsBEEQBEEQBgni2AmCIAiCIAwSxLETBEEQBEEYJIhjJwiCIAiCMEjQ+bsA/RGHw0FBQQGhoaEoiuLv4giCIAiCMIRRVZWamhqSkpLQaLqOyYlj1wEFBQWkpKT4uxiCIAiCIAgu8vPzSU5O7lJmUDt2paWlrF69moyMDFJSUli/fj0LFizoVi80NBRwfoFhYWEdylitVjZt2sTixYvR6/U9lnFHfyDgr3r0dr69Yc8TGz3RcVe2Ozlv0wcK/qiHL/L01qav26W78tJntiBt03P9odpnmkwmUlJSXP5JVwxqx+6BBx4gKSmJsrIyNm3axMqVK8nKyiIyMrJLvebh17CwsC4du+DgYMLCwrrspDqTcUd/IOCvevR2vr1hzxMbPdFxV7Y7OW/TBwr+qIcv8vTWpq/bpbvy0me2IG3Tc/2h3me6Mz1s0C6eMJvNfPDBB/zqV78iODiYFStWMGnSJD766CN/F00QBEEQBMEnDNqI3ZkzZwgPDycxMdH1burUqRw7dqydrMViwWKxuD6bTCbA6YVbrdYO7Te/7yy9Oxl39AcC/qpHb+fbG/Y8sdETHXdlu5PzNn2g4I96+CJPb236ul26Ky99ZgvSNj3XH6p9Zk9sK6qqqj4riR/56quvuPvuuzl79qzr3S9+8Quqqqp49tln28g+8cQTrFu3rp2NV199leDgYJ+XVRAEQRAEoTPq6uq4/fbbqa6u7nSKWDODNmJnNBpdkbdmTCYTRqOxnexjjz3Gww8/3EYuJSWFxYsXdznHbvPmzSxatKjL+SKdybijPxDwVz16O9/esOeJjZ7ouCvbnZy36QMFf9TDF3l6a9PX7dJdeekzW5C26bn+UO0zL/ZnumLQOnbp6elUV1dTVFREQkICAJmZmdx7773tZA0GAwaDod17vV7f7Q/JU5ltp0s5XqmQWFRLdGgQ4UF6woP06LUDc9qjO9/DQMi3N+x5YqMnOu7KdifnbfpAwR/18EWe3tr0dbt0V95bmcHSLkHapjf6fdpnqipauwV9fSn6mlqwmKDB1HSvRlNXxfiCg+h11/rs59kTu4PWsTMajdx4442sXbuWp59+ms2bN3P06FFuuOEGfxcNgMc/OE6RScvfT+5t8z44QOty8sKa7p1dkSEBRIcEEBUSQHCAVjZTFgRBEITOsFmgrhzqK6G+ChqqoL4KTW054wr3o/n8S6ezVl/pSqOhCl19Fdc7rHC4Y7NaYAxgtdZCQEBf1aZTBq1jB7B+/XruuusuoqOjSU5O5s033+x2q5O+YnxiKFpbAwQEYaq3UWOxAVDXaKeu0U5hdUOP7Bl0GqJDAog2Gohq5fBFGZufne9jjAHEhQYSFKD1RbUEQRAEwfeoKljMUFcGteVN97JW9wq05hJmF2Shy/5vp0PXWNOhKS0wFqCo46yaQyaqRocSGA6GMAgMa7qH49CHkFNUQUo/WbIwqB272NhYNm7c6O9idMjzd17Kxo0bWbZsDnq9HpvdQU2Djep6a4eXqYN3lbWNlNc2YrE5sNgcFFQ3UOCmQxgWqCMuLJD4MAPxoYHENt3jwgzEhwW6ngP14gAKgiAIfYTD4XTOaorAXNx0L4KaYjAXoTUVsbA0G92R74Ot6793GiAKoK7VS0ULQREQGOG8B0XiMISRW1zN8LFT0YZENaVFuuSseiOfb9/Dkuu/hb6DiJzdauXIxo2kGLrfPLgvGNSO3UBCp9UQGRJAZEjPwriqqlLXaKfc3Eh5rYWKJmevoukqNzdS0ep9mdlCg9WBqcGGqcHM2RJzl/bDAnUkRQQxLCLIeY9seU6ODCLCMDDnBAqCIAh9jK0Ragqg+jxUX0BTmceU/J1o3/g31JY4HTlzCaj2Tk1ogJDWL3SBEBwDIdFN9xjnPTgKW2AkB07kctnsxejCEpwygRFw0bQlu9XK4Y0bSZ63DG1Hc9msVuzawHZ6/RVx7AY4iqIQYtARYtAxPLr7rVlUVaXGYqPE1ECxyUJJTdPdZKG4poESUwMlNRaKTQ0tDmBRDSeLOg5h67UKYTotrxXtY1hkCKnRwaRGBzMiJoTU6BDCgwbHJGdBEAShC1TVOTetMhuq8p3Om+lCkxPX9GwuAVqGK7XACICyi40pEBILofFgTGi6O59twTHsPHyOGYuWow9PhICQTh0u1WqlqHAjasqVMEgW3LiDOHZDDEVRCAvUExaoZ3Rc52FjVVUxNTgdwAtV9RRUNXChqo4Llc3P9RSZGrDaVcrtCuXZlZBd2c5OVEgAqdHBpEWHOK8Y5/PI2BBCA4fOL5ogCMKAx9YI1flO560yB035Oaaf24PuH3+EqlznwoPu0BogPBnCh+EITeJMcR2jLp2LLiK5xZELiQVtx+6JarVSeW4jRKYNKWetJ4hj1wVD/eSJYB2kRQWSFhXYYbrN7uBCZS0fbvmKpPTJFNdYyausI7fceZWaW4aED+ZVtdNPCDOQHmckPc7I6LgQRscZGR1rJDSw+2YpJ094LtcfdlHvC2R3f8/15eQJ39Kv26bDBlV5KOVnUSrOQvlZlIoslMpcMF1AuSjilgRQ3aKuGhNQI4ZDWBJqWDKEDUNtuggbBsHRrgib1Wrl5ObNpExehNraSXOo4PC+fxpMfaacPOEhzz77LM8++yx2u53Tp0/LyRNeYrFDaQOUNSiUNkBpveJ6Nlk7n6sQEaCSEKQyLASSQ1SSQ1RiAkEzMKY3CIIg9Hv0thpCGwoxWgoxNhQ575YiQizFaLqY42bTBFAXEEetIbaDeywOjf+3+xiM9OTkCXHsOsBkMhEeHk5ZWZmcPNENntajut7K2RIzZ0pqOVtq5kyJmbMltZTUWDqUDwnQMj4xlAmJYUxIDGVsXDDZmbtYulhOnuipXH/YRb0vkN39PdeXkyd8S5/WxVKDUnYKe+FRzn+zibTgejRlp1BqSzpVUXVBEDUSNXo0atRo1OhREDkCNSLVOUzaKuLWn9vmYOozTSYTMTExQ/tIsd5AdlF3n57WI0avJyYsmKtGt31fXWflTEkNp4prOF5g4liBiROFJmob7ezPrWJ/bpVLNkCj5Y3iQ1yWGsWlwyOZNjyCaGP7E0R8WY/esiEnT/gO2d3fc305ecK39GpdbBYoPQUlJ6DkeNP9BFTnAc4/9qMu1glPgejREJPuvDc9K2HJoNHg7iBJf2+bg6HPlJMnhAFLeLCey9OiuDwtyvXOZndwrqyWoxeqOVZgct3NFht7sivZ02rRRlp0MJcOj+TS1EhmjIpmZEyInMghCMLgwmKG4qNQeBgKM6EoE0pOdjovjdBEHLHjOFdjIO3KZegSJ0HsOOeKUmHQIY6d0O/RaTWMiQ9lTHwoN13qfGexNPLiu58SmjaFzAsmvsmr4myJmZzyOnLK63j34AUA4sMMzBgZzcxRMcwYFU1KlMyZFARhAFFXAUVNDlyzI1d+ltbbhrgIjID4iRA3vuma4HTggqOwW60c27iR1KnLZDXpIEccO2FAotEoJAbDssuTuWOGs5OqrrNyML+Sb3Ir2ZtTwTd5VRSbLLx/qID3DxUAkBwZxKxRMcwfF8us0TGy5YogCP0Hm8XpvF3YDxcOwPn9zq1FOiI0ERKmQOJUSGy6h6cMmE10Bd8hjp0waAgP1jNvbBzzxsYB0GC1801uJTuzytl1rpzM/CrOV9bzxv583tifj16rMD0timvGxTF7VBSyjEgQhD5DVZ2Rt+ImR+78fig60vFwauSIFuctocmRM8b1fZmFAYE4dsKgJVCvZeboGGaOjgGg1mJjb04FX50uI+NUCdlltezMKmdnVjkAMYFajutPc8PUZCYNC5O5eYIg9B6NdU4HLm832txdXJu7B/2h2vZywTGQfDkMuxySL4OkS51nlgqCm4hjJwwZQgw65o+NY/7YOP77hglkl9Wy9WQJGSdL2JNdTlkDPP9VDs9/lUNKVBDLJiWybHIiU5LDxckTBKFn1JZB3m7I2+W8Fx5ybv6L87zTAEDVGlASpzY5cpc57xGpMpwqeIU4dsKQZURMCN+7egTfu3oEleZ6nnljM0UBSWw7XUp+RT1///Icf//yHClRQdw0LZlvX5Ysiy8EQWiPqjrnwrV25MpOt5cLTYLUGdiTpvNVroVZ37oPfaCsTBV6F3HsumCoHynmDv6qR2/na9CoTItRWbRoAlZVYfvpMj47VkzGKaeT98wXZ3jmizNcOSKSm6YlsXRiPMEBbX995Eix/kW/PrapD23KkWI+QFWhKgclZwea3B0ouV+jmIvai8WOw5F8JWrKlajDZ0BYMigKVquV6tLNWB0K9FF9hmLbHEx9phwp5iFypJhwMY12OFyhsLdU4XS1gtq0ZadBo3JpjMrsBAfD5B9uQRj0BDWWEVNzghjzCWJqThBsLW+T7lC0VAaPpCJkDOXGMVSEpGPVGf1UWmGwIUeKeYkcKeY+/qpHb+frjr3C6gbeO1jAuwcLyK2oc72fnhbJd69MYe7oSLZt/UKOx+knyJFinuvLkWJATRFKbquI3EXbjqgaPeqwy1BTZ6GmXo067HLQB7llWtqm5/pDtc+UI8V6CTkex338VY/ezrcre8Nj9PzHorH8eOEY9mZX8P925fLZsSL25VSyL6eS+DADV0QozLYrBAfL8Tj9BTlSzHP9IXWkmMUMOTsg6ws4t639HDlFC0nTYMRsSJuNMvwqFC9PbpC26bn+UOsz5UgxQfAhiqJw5chorhwZTWF1Pa/uyeO1vXkUmyx8ZNKy7c9fcteMNO6eleb12bWCIPgIh8N5okPWVueVt/uiPeQU535xI+ZA2hwYfhUEdh0pEYT+gDh2guAFieFBPLJ4LD+6ZjTvHcjnfz87SnG9jf/LOMs/dpzj1unD+eG8UcSFBfq7qIIg1BS3OHLnMqC2tG16ZBqMWgCj5kPa1RAU6ZdiCoI3iGMnCL2AQafl5kuHYSjMJGDEZfz9qxwOn6/mpZ05vL4vj7tnjWDNnFGE93CIVhAEL7BZnNuPnP3C6cwVH22bHmB0RuRGXeO8okf5p5yC0IuIYycIvYhGgcUT4lk2ZRg7zpbx1ObTHMyr4rltWbyyO5cfzB3F3bPS2m2VIghCL6CqzrlxWVudzlzODrDVtxJQnMdyjV7gjMwlTwddgN+KKwi+YMD/dfnd737HY489xq5du7jqqqsAWL16Na+99pprsmFqairHjh3zZzGFIYaiKMxOj+Xq0TFsOVHCnz4/xaniGv74+Sn+vTuX/1o2nuunJPq7mIIw8KmvdC52yNoKZ7eC6XzbdGOCMxo3egGMnAchMf4opSD0GQPasbtw4QKvvvoqCQkJ7dLWrVvHo48+6odSCUILiqKwaEI814yL46PMAv606RTnK+t58LWD/Ht3Lr9cNtbfRRSEgYXDBnnfOFevZm2FCwdAdbSkaw2QOrPFmYubIEd0CUOKAe3YPfLII6xbt46HHnrIKzsWiwWLxeL6bDKZADl5wh0Gy8kTvWGvOxvXTYpjwdho/rEjh79/lc2e7AqWr9/FrDgNV9XUExXaO2UcCLuo9wVy8oTn+v3u5InqfBynNzP93JvonvoRWExtktWYsThGzkcdOd95woO+1cbyNptbdehLpG16ri8nT3TPgN2geNu2bTz55JNs2bKFtLQ0Xn/99TZDsR999BEAY8eO5Xe/+x1z5szp1NYTTzzBunXr2r2XkycEX1FhgQ9yNRwq1wAQHqByy0gHEyMH5K+jIPQqWnsDMeaTxNUcIc50BKOl7XFdjdoQSkMnUhI2mZLQyTQERPmppILQNwz6kydsNhvTp0/n5ZdfZtKkSe0cu4MHD5KWlkZISAhvvfUWP/zhDzl69CgpKSkd2usoYpeSkiInT7jBUDp5whc2vjxVzM/fOkSZxTlUdOOURH6xbCxRIe0ndA+mXdT7Atnd33P9Pj95QnVA8VHUs19QfeBdYurOorTaU05VtDiGXcZpezIjFt6LNvky0Gjdqkt/RNqm5/py8sQAPXli8eLFfPnllx2m/fKXvyQ0NJSrr76aSZMmdSgzbdo01/Mdd9zByy+/zObNm7nnnns6lDcYDBgM7TeSHdC7qPcxQ+HkCV/YmDM2np9PtXNSP4oXd+by4eFCvs4q5w/fnsKC8fFe2e/Pu6j3JbK7v+f6Pj15wlTo3EsuaytkZUBdGQCxzYIRqU2rV69BGTEHhzaY0xs3Mnr4FYOiXYK0TW/05eSJzumXjt2mTZu6TF+xYgVffvklb731FgClpaVcd911/OlPf+Luu+9uJ6/RaHxSTkHoDQK08OjSsdxwSTI/f/swp4pr+N6G/ayakcp/LRtPoH7gRiYEwYW1nljTETRbdkP2Nig53jY9wIgjdRZH6+MYf8OP0MeNbbvoYYDP+RSEvqJfOnbd8dJLL9HQ0OD6PH36dP7+978zb948AN555x2WLl2KwWDgnXfeYceOHaxfv95PpRUE97gkJYIPH5zFHz47xT93ZPP/duWy+1w5f7ltGuMS5CgjYYChqlB8zHXSgy53JzPtFshqFlCcZ682bw6cPB27qpC9cSPjo0bJSlZB8JAB6dhFRES0+azVaomKinItdPjf//1f7rnnHhRFYezYsbz33nukpaX1fUEFoYcYdFoev34Cc8bE8sibmZwuNnPj/33Nk8sn8a1L2m/rIwj9CnMJ5O1oObLLXOxKUoB6fRSGCdeiSV/o3FMu+KJFDxKVEwSvGZCO3cXk5OS0+bxjxw7/FEQQeom5Y2L57Cez+c+3Msk4VcrP3jnMgdwKrpBRWaE/UV8FOTvQZG1j/omN6A9eaJuuD3aeuTpqAdbUOWzac5pl112HZpDMkROE/sigcOwEYTASYzTwz7um82zGWZ7acpo39p9nt1HL9NkNDI+RP4yCH2isdZ69mv2l8yrMBNWBFnBNFkiY4lr0QMqVoGtamGa1gnLGTwUXhKGDOHaC0I/RaBQeXJDO5ORw/uP1g+Sabax4bhcvrLqcy1Jl7y7Bx9gscGFPiyN3fj84LhoujRmDPfVqDlSEMG3Fg+jDO17NLQhC3yCOnSAMAOaNjePdNVex6u9fcaHWym0v7OFPK6dy49QkfxdNGEw01sL5fWiydzDzzMfojvwAbPVtZcKHw8g5MGIupM2GsEQcViuFGzcy7eI5c4Ig9Dni2HWBHCnWPXKkmHc2eqKTGKrnPybZ+aw6ga2nyvjxawfJLqnh/rkjUFqtIBwIx+P0BXJskxv69ZUo+budV94ulKLDKA4bWlr2k1ND4lDTrsaROht1xBzn/nJtM/D9kWJu6g8UpG16ri9HinXPgDx5wlc8++yzPPvss9jtdk6fPi1Hign9EofqPI5sW6Fzf8YrYh3cOtKBVrZrFLohsLGCaPMpomtPEW0+TVjD+XYydfooyo3jKDeOoSJkLDWBSbL1iCD4mUF/pJivMZlMhIeHy5FibiBHinlnw5vjcV7Zm8//fHISu0Nl7pgY/nrLVIICtAPieJy+YMgf22StRyk6jCNvD2WHPiXBdh6NubCdmBqdjppyFY7hM1CHz4DwlL4/UswNmcHSLkHapjf6cqTYAD1SrL8gR4q5jxwp5p0NT47HWT1rJKnRRu5/5QDbT5fxvZe/4R93TSe4yU5/Ph6nLxkSxzapKlRmOxc3nN/nvIqOgMMGgGsmpqKFhEmQOguGz4DhM1CMsShARwFfnx4p5qHMYGmXMETapo/05UixzhHHThAGMPPHxfHv713J3S/tY19OJbc+v5t/fnda94rCwEVVoaYQCg45txspPOR06JrOWm1DSByOYZdzwmxk7II70aVcDgEhfV1iQRD6EHHsBGGAc3laFG98fwar/rWXE4UmbvvHPlan+btUQq+gqlB9nsSq/Wi2HYLiI05Hrra0vaw2ABKnQvJ0SL7ceQ9PwW6zcXbjRsYMnwmDJNIlCELniGMnCIOACUlhvL1mBt/91x5yK+r4v1ot8+fXkxYrf8gHDLZGKD8Dxceh+CgUHYbCTPR15VwBkN1KVtFC7DinI5d0ifPM1cSpLZsBC4IwZBHHThAGCWkxIbz5gxnc+vfd5FbUcec/9/Ha92eQEiUru/sVqgqmC04HruQYFB9zPpedbr/5L6BqdJgMSYSOmY1m2DRIvATiJ0KA/FwFQWiPOHaCMIhIDA/i39+7nG/9dTvnqxq49fndvP79q8S58wcOh9OBKz8DZWeg9BSUnHA6cw3VHesEhEL8BIibAAmTIekSbFFj2LZpK8uWLZMzVgVB6BZx7ARhkJEQFsiDE+y8mBtGTnmdOHe+xloP5VlQdhpNyUkuy9mO7h9/hIossNZ1rKNoIWZMixMXP9F5hae03zNuEGzIKwhC3+GWY/fmm2+6ZUyr1XLzzTd7VSBBELwnwgD/vudyVr14gHNltdz2wm7eWjODxPAgfxdtYGKpgcocqMh23iuznc8V56AqD3BuB6oFklvraXQQNQpi0p1X7HinMxczRubDCYLgE9xy7G6//XbmzJlDd3sZ79u3b1A5dnKkWPfIkWLe2fDl8ThRQVr+392Xccc/95NbUccdL+zh1XunExagdGlnSLZNhx3MxSjVeVCZg1KZg1KV0/Lc0VYirVADI1Cj03FEjeJUucroK69FEz/OefyWtoPhUxW3I3H9/dgmd+Wlz2xBjhTzXF+OFOset06eCA0NpaampltjkZGRVFZWup15f0OOFBMGIxUWeOaolqpGheQQlQcm2AkeYpMwdPY6ghrLCW4sJ6ixnCBrhfPeWE6wtZzAxgo0OLq0YdEaqTPEUWuIozYgjjpDHGZDPGZDIo26UDl2SxAEn9HrR4qVlpYSGxvbnZjbcv0dOVLMfeRIMe9s9NXxONlltdz2j32U1zYyLTmM25IquH7pIDhSzN4I5hIUcxHUFKOYi52RN3MRak0htQWnCXVUozR2/4+pqmghLAk1Mg0i0lAjR6BGpqFGpELkCAjsujOFoXlsk7vy0me2IEeKea4vR4r10pFi7jprg8Gpa40cj+M+cqSYdzZ8fTzOmMQIXv7eldz6/C4OnjdRV6Nh2bXa/nmkmN0GdeXOkxRqy5x3cyk0OW/Oe9NVX9GlqTbdX1AUhA9zLlAIT251OT8rxnjQaOmNuNtQPLbJXXnpM1uQI8U815cjxTqnxwMy1157LUoHQw4Gg4Hk5GS+9a1vcc011/TUrCAIPmZCUhgv3XMFd/5jD6eq4aE3D/PcnZeh03Z0SmgvoarOhQcNVVBf1eSsXeS01ZY5HbnaUudzQ1XP8tDoITQBjPHOe2gCGBOwBcew9+QFpi+8CX10qhylJQjCkKDHjt3ll1/O//t//4+77rqL5ORkzp8/z8svv8ytt96KoijcdtttPProozz00EO+KK8gCF5w6fBI/nbHJdzz0n42nyjhZ+8c5k/fnopG00WcymGHRrPTQauvanHSGqqgvrLtu/rKi9KrQLV7UFIFgiIhJAaCY5z3Vk5bm+fgqA7nt6lWK6UFG52rUQdJhEcQBKE7euzYffrpp2zZsoX09HTXu+9+97vcdttt7N+/n5tvvpmVK1eKYycI/kJV0TganU5WXSM01kFjDVicztnMuir+mriHoyX/v737Do+qzB44/r3Tk0x6ISEJhBogNFEpFlARUCyLa1sQRdeKICroKgICiu6ubW3o2nX9SVHsgkgTQUU6CaGGUALpfVImk2m/PyYMRALpmUlyPs8zz8zc+77vnJu9ez3c8h4LfklmtuVquTBKg2IphcoS1BUmRhZkoUl53NXHWtb4mNR68AkC31DX6/SE7YzvYa5kTaVu/O8KIUQ7U+/ELjU1lejo6GrLoqKiOHToEACDBg0iN7eGAtVCtGdOJ9itYKtw3fBvqwCbBSpKCSo7jHL8D3DaXMtsFa5Jb61lrvfKcrCWobKUMfDYAdRff+VqU1m13lruelW63jXWcq5zOiCx5lA0wNXA1Sf/359b9aqiAowAlj91VGldyZkhqPq7T/CflgWf2U7rI0+NCiFEC6h3Yjd69Ghuvvlm5syZ474Uu2DBAq666ioAtmzZQufOnZs80D9bunQps2fPJjMzkyuuuIKPP/6YkJAQAMxmM/feey/ffvstwcHB/Pvf/2b8+PHNHpPwEKcTHDZX4mSvrPpcWfXd6qq/aa903ZRvr6zxu1JZQaf87ai2ZwOOs/SxnvqNk0mazQJ2C9gsqK1mRhTkoEl7tmrZaQmcrYKTk9ieTguMADhY+2aqgc4A535eoPrN/yqtq6aozh/0/qA34tAZySwoJapTD/YVwpojZsqcBi4f0I1hvbtgU/vwx85khgwfhdYvuKqfv0yoK4QQrUC9E7sPPviAp59+mvHjx5OVlUVUVBQ33HAD8+fPByA6Oppvv/22yQM93b59+7j//vtZs2YNAwYMYPr06UyZMoXFixcDMHfuXAoKCkhPTyc5OZmxY8dy/vnn07Nnz2aNq16KT+BryXaVHVKrwelw3cvkdPzp5axhWWPbNNHvOGyobFYSTqSgWvUrroTI5toOh931O+7vthqWnf79bMuqxvxTP43DxrV2K6pdVbE0kgY4DyCt4WOogCAAcx0aq3WgMeDU6DFXOvDxD0LR+lQt14PW13WWS+dX9dkXu9rAgcNpxPc7D7XB3738VDsf0PpiVXSsWv8ro8f+Ba3hzHkY7VYr21asYOzYsSRotfy0+iDvrk3h3R3wWs+BjO0VQX6KzVWrVO5NE0KIVqXeiZ3RaOSVV17hlVdeqXF9TExMjcub0po1axgzZgwXXHABAE899RSdO3emrKwMPz8/Pv30U7755hsCAgK46KKLuP7661myZAlPP/10jeNZLBYsllPXnUwmE9C8lSfUH41hVFk27K3DBnsxNdAdql3KawlK1W+fjVOlcZ2tUmtdyZJK43pXV72rtDjVWncbp6Imt6CYsA5RqLT6quU61zhqXdU42tPG1LoSM7UeNAbQ6LGjZnvSHgZdOAyNwYhTo3claeqq96p2qHWguJ5Ere+cTCnlq4kbWPucTDa1L1YHNVY3+PN+OXVEHIWlFXy6+TgzPk9Ed0vfautbK5ndv+H9pfJE85J9s+H9pfJE7eo0QfGfLV++nGXLlpGbm8sPP/zA1q1bKSoqYtSoUfUdqkHeeOMNNm7c6K5hm5GRQXR0NDt37qRz586EhIRQVlbmrhrx8ssvs2XLFpYuXVrjePPmzXOfcTxdc1aeGLn3cfTWYlBUOFFwooCi4ESFU1FB1TKnogCqqveTy+q4vmo83O1Ojl/1ueq3a4rhVP+zrXdN6OpQVIAKh6J2jaeocHL6ZxXOqnWO0z6f3E7XS40TVaPHcigaHIrGNdGs3M9VLw4n/N8hFdvzVGgVJ5P72OlW+3y8QgghWkB9Kk/U+4zdCy+8wKeffsoDDzzArFmzAFfJsalTp7ZYYjdy5Ehmz57Nli1bGDBgAP/85z9RFIXy8nJKS0tRq9XVErKAgABKS0vPOt7MmTOZPn26+7vJZCI2NpbRo0c3X+WJUaNYcdq61pqGSOWJxo3hTbOoj7E7eHDRLtYfzOPd/Wr+7+8XMqBTSJ22wxvJ7P4N7y+VJ5qX7JsN7+9Nx8zGbEd9nbySWBf1TuzefPNNtmzZQmRkJLNnzwYgPj6elJSU+g51VqNHj2bDhg01rps9ezazZ8/m7bffZtKkSeTn5/Pwww/j7+9PdHQ0RqMRu91OeXm5O7kzmUwYjcaz/p5er0evP/PGcJlFve6k8kTjxvCGWdS1Wvjv7Rcw8f0/2HasiPsXJbFs8kV0CWvdE/vK7P4N7y+VJ5qX7JsN7+8Nx8zGxFRfzVp5wm63ExgYCOCuQFFb4lRfq1atqrXNhAkTmDBhAgCHDh3ijTfeICYmBrVaTWRkJLt372bIkCEAJCYmkpCQ0GTxNYXxP44nqziLj5d/TIA+AKPOiL/OH6PWSIDu1Hd/rb9r+Z++69X6GiuACNEYBq2adyeex3X/WUd6WSUT39/MssnDiAr08XRoQggh6qDeid0NN9zAAw88wMsvvwxAaWkpjz/+ODfeeGOTB3cuO3bsYODAgWRmZnL//ffz5JNPola7bqefOHEizz77LIsXL2bPnj189913bN68uUXjq012eTbFzmKKi4sb1F+j0hCgCyBIH3TqZQgiUB9IsD6YIH3VZ0MwgfpA13ddIGqZ9FXUwt+gZXIfO+8fCeBofjm3f7CFz+8fRoifztOhCSGEqEW9E7uXXnqJGTNm0LlzZ8xmMx06dGDSpEk8//zzzRHfWU2ePJk9e/bg7+/PAw88wMMPP+xe98wzz3DPPfcQFRVFcHAwb731FvHx8S0aX20+Hv0xP/38E/0H98fsMFNSWeJ+lVpLz/q91FqKw+nA5rBRUFFAQUUtk5qdRkHBX+dPkD6IUJ9QwnzCCDW43k++Tl+uVbeNyx2i/vy18PGd5/O397ZyKKeUuz7awmf3DsWor/chQwghRAuq91HaYDCwcOFCFi5cSG5uLmFhYR65JHiuM3A+Pj589tlnLRhN/XXy70S0JpohkUPqde3c6XRSbiunpLKEYksxxZZiCi2FFFuKKbIUUVhReMayoooiSqwlOHFiqjRhqjSRVlL7hG2B+kDCDFVJn28YHXw7EOkX6X6P9IvEqGq6S/DCu0QH+fB/9wzm5v9uIvFEMff9bxsf3nkhBq2c9RVCCG9Vp8Ruy5YtZ1135MgR9+fBgwc3PiJxToqi4Kf1w0/rR6RfZJ37WR3WU4lgRSEFFQXkmfPIM+eRX5Hvejeferc5be72qcWpZx1Xp9JhxMg3a74hyhhFB78ORPpGEu0fTYwxhmhjtJz5a8W6R/jz8V2DmfDeH/yems+0xTt567ZBaNQqT4cmhBCiBnVK7G699Vb3Z0VROHHiBIqiEBoaSn5+Pk6nk5iYGA4fPtxsgYrG0aq07suttXE4HZgspmpJX055Dtnl2WSVZZFdlk1WeRZ55jwqHZUUUEBBTgHknDmWgkKkXyQx/jHEGGOI9Y+t9jlQHygPgXi5AbFBvHfHBdz50VZW7c1m5le7eeGm/vK/mxBCeKE6JXann5WbP38+5eXlzJs3Dx8fH8xmM/Pnz8fPr3VPiSBOUSkqggyuhzG6u+pK1Mhqt5JuSufbdd/SpX8XcityyS7PJrMsk/TSdE6UnMBsM5NZlklmWSZb2XrGGIH6QLoEdKFrUNdq7x2NHeVBDy9yUfcw3phwHpP/bztfbD9BoI+WWdf0luROCCG8TL3vsXvjjTfIyspCo3F19fHx4dlnnyUqKoo5c+Y0eYCe1JwlxdpKeZwIfQRxmjiujL7yjHsFnU4nBRUFnCg9wYnSE6SXppNems7x0uOkl6aTa86l2FLMrtxd7MrdVa2vTqWjU0AnugR0oXtgd3oG96RHcA+ifKNQFKXJ/35NMV5bL49zRc9Qnh+XwJNf7+H9X48QYFAzeUTXWuP2FCnb1PD+UlKsecm+2fD+remY2ZSataRYjx49ePPNNxkzZox72erVq5k8eTKHDh2qz1Be5+RDIXa7nYMHDzZrSTEBlc5K8h355NpzXS9HLnn2PPIcediw1djHoBiIVEUSpY4iUh1JpDqSDuoOaBR5WrOl/Jyh8M0x19nUm7vYuSSy3lUJhRBC1EN9SorVO7FbsWIF48ePZ8iQIcTGxpKWlsbWrVv57LPPuOaaaxoVuLcwmUwEBgaSl5fXfCXF2kh5nObYDrvDTmZ5JkeLj3LYdJiUwhQOFh3kSPERbM4zEz6tSkt8cDx9Q/uSEJpAv9B+xPrH1usyoZQUq9/vvLImhbd/OYKiwMs39eO6/lG1bGnLk7JNDe8vJcWal+ybDe/fWo+ZjWUymQgLC2ueWrFjx44lNTWVFStWkJmZyYgRI1i8eDFhYbXflN/aSHmcumvK7dCipYu+C12Cu3A5l7uXW+1WDhcfZn/Bfvbl7WNT6ibyVfkUVxaTnJ9Mcn6yu22ALoB+Yf3oH96f8zucT//w/vhoaq+e0J5LitVn/T+u6o2pws5nm9N4bNluVCo1486Lrj14D5CyTQ3vLyXFmpfsmw3v39qOmY3VrCXFAMLCwrjjjjsa0lWIBtOqtcSHxBMfEs/YzmNZkb2Cq6++muyKbHbn7Xa/9uXvw1Rp4reM3/gt4zfAVamjX1g/LuhwARd0uICBEQPx1cpl9oZSFIVn/tKXSpuDL7af4NHPd1Fpd3DLBbGeDk0IIdq1Ok93snTp0lrbTZgwgUWLFjU6KCHqSlEUYgNiiQ2IZWzXsYDrzN7BooPszt3NzpydbMveRk55DjtzdrIzZyfv7X4PjaIhISyBiztezCXRl9AjoIeHt6T1UasU/n1jf3QaFZ9tTuMfy5Kw2h3cNqSzp0MTQoh2q06J3XfffccXX3xBbbfjrVixokmCEqIxtGotCaEJJIQm8Ldef8PpdHKi5ATbsrexLXsbW7O2klmWSWJuIom5ibyV+BZB+iA6OTrhOOJgeOxwQn1CPb0ZrYJKpbBgXF90GhUf/XaUWV8nY7U5uPPiLp4OTQgh2qU6JXZDhgzhrbfeqlM7IbzN6Wf1buhxAwDppen8kfEHv2X8xqaMTa7SaxSRtCkJZZPCeRHnMbLTSEZ2Hkm00TvvHfMWiqLw9LV90GlUvPPLYeZ9v5dis41pI7vLPHdCCNHC6pTYrV+/vpnDEKJlRRujubHnjdzY80asDis7Mnfw6cZPyfbNZn/hfnbk7GBHzg5e3PYivUN6c2XnKxkTN4bOAXKZsSaKovDkVb0waNS8tjaF/6w5SE5JBc/8pS9qlSR3QgjRUmTyL9HuaVVaBkUMIssni7FXjyW/Mp+1aWtZm7aW7dnb2Vewj30F+3hj5xv0D+vPtd2u5aq4qwg2BHs6dK+iKAqPjupJqFHH3O/28NnmNPJKLbz2t/MwaKWKiBBCtARJ7IT4k0i/SG7rfRu39b6NgooC1h9fz6qjq9iUuYmkvCSS8pJ4YcsLXBJzCdd3u57LYi9Dq2ob0y80hTuGxRFm1PPIkl38tCebOz7Ywrt3nE+Qr87ToQkhRJsnid05SEmx2nlqO1qqpJi/2p/r4q7jurjryDPnsfLYSlYcWcH+wv2sP76e9cfXE+YTxg3dbuC6ztfVO6a2Wh5nVK8wPpw0iAc+28WWowX85c3feGfieXQLb7ma0lK2qeH9paRY85J9s+H92+oxszbNWlKsLZOSYqKusu3Z7Krcxc7KnZQ6SwFQUOil6cVg/WC6a+TBAYCMMnjvgJoCi4KP2smkng56B8khRwgh6qNZS4qZzWaefvppvvjiCwoKCjCZTPz000/s27ePRx55pDFxew0pKVZ3ntqOpv7dho5ntVv5+cTPLEtZxracbe7l3YO6M6n3JEZ3Hn3Oy7TtoTxOfqmFqUsS2XasCJUCM6+OZ9LQTs2e+ErZpob3l5JizUv2zYb3bw/HzJo0a0mxBx98EKvVyg8//MCll14KQP/+/Xn44YfbTGJ3kpTHqTtPbUdT/25DSihd0/0arul+DQfyDvDS6pdIciRxqOgQczbNYWHSQu7ocwc39rjxnJUu2nJ5nMhgLZ/dO5TZXyfzxfYTPLfiAMkZJTx/Qz/89M1/N4iUbWp4fykp1rxk32x4/7Z8zDzb2HWlqu/gy5cv54MPPqBv377uf3FHRUWRmZlZ36GEaFO6BnblWt9rWTFuBdPOm0aIIYSssixe2PoCV391NZ/s+YQKW4Wnw/QIvUbNCzf1Z861fVCrFL7dlcH1b/7KwewST4cmhBBtSr0Tu6CgIHJzc6stO3LkCB07dmyyoIRozQJ0Adzb/15W3bSKp4c9Tax/LAUVBby07SWu+eoalu5fitXe+m8Ary9FUbj7ki4svW8okQEGUnPL+Mubv/Hl9hOeDk0IIdqMeid2Dz/8MNdddx3Lli3Dbrfzww8/MH78+DZ3GVaIxtKr9dzc82a+Hfct8y+aT5RfFDnmHBZsXsB131zHyqMray3T1xZdEBfC8mmXcGmPMMxWOzO+SGTa4p0Ul7e/ZFcIIZpavW9wmTJlChEREXzwwQfExMTw+uuv8+ijj3Lrrbc2R3xCtHpalZa/9vgr13a9li9TvuS9pPdIL03n8V8eZ2D4QIbZhnk6xBYXatTz8V2DWfjzIV5bm8J3iRlsOVLAizf359Ie4Z4OTwghWq16n7EDuPnmm/nxxx/Zs2cPq1atapakzmazceONNxIdHY2iKGRlZVVbP3fuXGJjYwkICKBHjx589NFH7nXr169HpVJhNBrdr40bNzZ5jELUh06tY3yv8Sz/63IeHPggPhofduXu4r+l/2XeH/MoqCjwdIgtSq1SmDayB8seGEaXMD+yTBXc/sEW5n6bTJnF5unwhBCiVap3Yvfqq6+SmJgIwObNm+nRowe9evVi06ZNTR7c8OHD+fLLL2tcN3HiRPbv34/JZGLFihXMmjWLPXv2uNf37NmT0tJS9+vkE7xCeJqPxofJAybz3bjvuDruapw4+e7wd/zlm7/w7aFv293l2fM6BbN82iXcPtRVh/eTTccY/Z8NrNuf7eHIhBCi9an3pdgXXniBu+66C4AZM2bwyCOPYDQamTZtGlu3bm26wDQaHn744bOu79GjR7XvDoeDY8eOkZCQUO/fslgsWCwW93eTyQRI5Ym6aOuVJ5pzjFBdKPMunEdsXizr1Os4VHyI2b/N5ttD3zJr8Cw6+Xdq0PitYRb1P9Mq8PQ18VzeM5Q53+0lvcjM3z/extUJHZh9TS8i/PX1HlNm9294f6k80bxk32x4f6k8Ubt6T1AcEBCAyWSisLCQ7t27k5ubi0qlIjAwkOLi4noHW6cgFYXMzEwiIyOrLf/Xv/7Fs88+S3l5OYMHD+aXX37BYDCwfv16rrrqKgICAggMDOT2229n1qxZqNU1FyKfN28e8+fPP2O5VJ4QLcXutPO75XfWVqzFhg0NGsb4jGGIbggqpUF3TLRaFjusPK5ifaaCAwWD2smYGAfDI51o2tefQgghgGauPDFo0CD+8Y9/cODAAfbu3cvSpUspKCggPj7+jGlQmsrZEjsAp9PJli1bWLNmDU888QQajYasrCyKioro2bMn+/fv55ZbbuHuu+/m0UcfrXH8ms7YxcbGSuWJOmjvlScaO8af+xwvOc7zW59nc9ZmAIZGDmXe0HlE+Ea0qVnU62Jvpok53+4lKd11Br1TiA9PjOnJqN4RdapaIbP7N7y/VJ5oXrJvNry/VJ5ohsoTb7/9No888gg6nY73338fgJUrVzJmzJh6jTN69Gg2bNhQ47rZs2cze/bsOo2jKApDhgzh008/5YMPPuD+++8nMjLSnQT26dOH2bNn89Zbb501sdPr9ej1Z17qkVnU6669Vp5oqjFO9uka0pX3Rr/H5wc+56VtL/FH1h/csuIW5gydw8iYkfUa35tnUa+LAZ1C+XrKJXy5/QQvrjpAWoGZKYsTGdo1hKfG9qZ/TFCdxpHZ/RveXypPNC/ZNxveXypPnF29E7shQ4ac8aDEhAkTmDBhQr3GWbVqVX1/+pwcDgepqak1rlOp5PqNaD0UReHWXrcyOGowT218iuT8ZB7f8Dh/7f5X+jn7eTq8FqVWKdxyYSxj+0fx3/WpvLfxMH8cLuD6N39jVJ8OPHplT/p0PPe/XoUQoj1pUKHGxMREfvvtN/Lz86s9wff00083WWDgukR6cnyLxUJFRQUGgwGA999/n5tuuomAgAA2btzIZ599xuLFiwHXdCfdunUjNjaWlJQUFixYwMSJE5s0NiGaW5fALvxv7P94J/Ed3k16l68OfcUm9SbOLz2fLsFdPB1eizLqNTw2Jp7xQzrx0k8H+GZXOqv3ZrN6bzZj+0Xy8MiexEf6ezpMIYTwuHqfynrzzTcZMWIEv/76K88//zz79+/n5Zdf5tChQ00eXHx8PD4+PgDExcW5PwOsWLGCbt26ERgYyIMPPsiLL77I2LFjAdi+fTtDhw7Fz8+P0aNHM27cOKZPn97k8QnR3LQqLVPPm8p/R/2XIH0QmfZMJvw4gbVpaz0dmkdEB/nwn1sHsvrR4Vw3oCOKAit2ZzHm1Q3c88k2thwpaHfTxQghxOnqfcbu5ZdfZt26dQwaNIigoCAWLVrExo0bef3115s8uKNHj5513VdffXXWdTNmzGDGjBlNHo8QnnJRx4tYfPVi7vv+Po5bj/PIz48wecBkHhjwQLt7ahage4Q/b4w/j6mXd+fVNQf5MTmLNfuyWbMvm4GxQdw3vCtX9Az1dJhCCNHi6v1fhIKCAgYNGgSATqejsrKSSy+9tMnvmRNCVNfBtwP3GO9hfPx4AN5OfJvHf3kcs83s4cg8Jz7Sn7cnns/aGSMYP7gTOo2KXceLePCzHYx69VfWpivkl1V6OkwhhGgx9U7s4uPj2bVrFwADBw7k3//+N6+//jrh4VLfUYjmplbUPH7+4zxz0TNoVBpWHVvFnSvvJLusfVdp6BZu5J9/7cdvT1zBtCu6E+Sr5Xihme/S1Fz64i9MW7yTzYfz5TKtEKLNq3di9/rrr+NwOABXebGff/6ZTz/9lHfffbfJgxNC1OyGHjfw3qj3CNIHsTd/LxOWT2B/wX5Ph+Vx4f56po+O5/cnr+D5cX3o5OfEanfyXWIGt777B1e+8gsLfz7EicJyT4cqhBDNot732A0dOtT9uU+fPqxbt65JA/ImUlKsdlJSrHFjNKY8zoDQAXw65lMe+eURUotTuWvlXbwy/BUGhAw455jeUB6nuWkVGNe/A37ZSUT3HcoXO7P4PimT1NwyXvzpAC/+dIAL44L5y4AorkroQKBP003Yevq7N4wpJcW8j5QUa3h/KSlWu3pXngBIS0sjOTmZ0tLSastvueWW+g7lVRYuXMjChQux2+0cPHhQSoqJVsHsMPNZ2WcctR9FjZqbfW+mr66vp8PyOhU22FWgsC1X4ZBJwYmreoVacdI7yEn/ECd9g534tY25b4UQbUizlhR74YUXmDdvHv369auW9CiK0mbO3plMJgIDA6WkWB1ISbHGjdFU5XEsdguzfp/FuuPrUFC4xuca5lw7x2vL47SEc21HZnEF3ydl8u2uTA7mnPoHqlqlMDgumFG9I7iydwRRgYYm+83m2I7m6i8lxZqXlBRreH8pKdYMJcVeeukltm7dSkJCQoMDbC2kPE7dSUmxxo3R2PI4Wq2WVy57hX9u+SdLDyzlB/MPRO2L4qFBD521rqq3lxRrKjVtR6cwLVOu8OfBy3uwP6uElclZ/LQni/1ZJWw6XMCmwwU8s3w/faMDGNEznOE9whnUORitum63JbfHsk11bS/HzFOkpFjD+0tJsbOrd2JnNBrp1q1bfbsJIZqZWqVm1pBZhOhCeHv327yX/B42bDw66NGzJnftnaIo9I4KoHdUAI+O6smx/DJ+2pPFT3uy2X6skOR0E8npJhb+nIpRr+GibqGMiHclerEhcpuGEML71Cmxy8nJcX+eOXMm99xzDzNnzjxjipOIiIimjU4IUS+KonBvv3tJO5TGcvNyPkr+CKvdyj8u/Ickd3XQOdSP+4Z3477h3cgpqWDjwTx+OZjLxpRcCsutrNqbzaq9rqllooN8GNIlhMFdQhjSNZS4UEn0hBCeV6fELjIyEkVRqs0BtWjRomptFEXBbrc3bXRCiAYZph/GgL4DeH7r8/zfvv+j0l7JrKGz2mWVioaK8Ddw4/kx3Hh+DHaHk+T0YjYczGVDSi470opILzLz1c50vtqZXtVez4Wdg/EpU+iUbiIhJhidRv7eQoiWVafE7uS8dUKI1uOmHjdh0BqY+/tcPj/4OVaHlbnD5no6rFZJrVIYEBvEgNggHhrZgzKLjR1phWw5UsDmwwXsOl5ETomF5clZgJpl//0DnUZF344BDIgNYmDVq1OIr5w5FUI0qzrfY+d0OnnvvfdITk5m4MCB/P3vf2/OuIQQTeCGHjegVWuZ9essvj70NXannTkXzvF0WK2en17DpT3CubSH63aUCqudXceL2HQol5+2p5BZqaPYbGNHWhE70orc/YJ9tfSNDqRP1X19fToG0DXMD00dH8oQQoja1DmxmzFjBosXL+bSSy9l1qxZHD58mAULFjRnbEKIJnBt12vRqrQ8seEJvkv9DjVqznOe5+mw2hSDVs3QrqGcHxtAV/MBrr76ctJNVhKPF7Gr6rU3w0RhuZWNKXlsTMlz99VpVPTsYHQne/Ed/OkeYSTcXy9n94QQ9VbnxO7zzz9nw4YN9OjRg/3793Pttde2+cROKk/UTipPNG6MlppF/YroK3juoud46ven+Dr1azJ0GYyuHN3omLyZJ2f3t9lsxATqiAmM4Jq+rofKLDYHB7JK2JdVwr7MEvZnuV5llXb307en8zdo6BbuR5dQH+wFCprkTOKjAokJ9kGtqnvCJ5UnvI9Unmh4f6k8Ubs6T1AcEBCAyXTqwBMSEkJBQUH9o/NiUnlCtHW7KnfxZfmXOHFykf4irjZcLWeFPMjhhAILnChTyChTSC+HrHKFfAvuyhh/plGchBkgzOAkVF/1ftp3eV5DiLanWSpP+Pn5sX79eveTsaNGjWLNmjXVnpQdPHhwI8L2HlJ5ou6k8kTjxvDELOpfHvyS57Y9B8Bdfe5i6oCp1ZI72Tc9/5sWq52j+eWk5pZxMNvE78mHKdf4cyTfTKXt7A+zKQpEBRjoFOJDbIgvMUE+RBi1pKckc+0VFxMTakRfh8xPKk80r9a8bzblmK3lmNlmK0+Eh4dXqwUbEhJS7buiKBw+fLgB4XovmUW97qTyROPGaMlZ1G/seSNJe5L43vw9H+39CB+tD5MHTm5UTN6sNc7ur9Vq6etroG9sCFarlZ6Vhxg79mJUag3phWaO5pdxrKCctPwyjuWXk1ZQzrH8csxWOxnFFWQUV/DHkcLTRlTz5t4/AAj319Mx0EDHIB+iAn3oGGQgOsiHiAADEf56wv317til8kTzao37ZnOM6e3HzKZa3xjNUnni6NGjDYlFCOGFhuiH0KN3D17Z8QpvJb6FVq3lnn73eDosUQu1SqFTqC+dapgM2el0kltqIe20RC+9yExGYTkpGfmYbGosNge5JRZySywknig+6+8EGDT4KGqWZG+jQ4CBcH89Ef4GIgL0hBv1RAToCfXTE+ijRVWP+/2EEM2v3iXFhBBtw8ReE7Fj57Udr/HajtfQqXTckXCHp8MSDaQoiiv58jdwQVyIe7nVamXFihVcffVoSiqdZBZXkF5kJrPI7Dq7V2Qmo8hMtslCbqmFSpsDU4UNEwrZh899H7VKgWBfHcG+WpwValYU7yLU30Con45gXx2hRtd7iJ+OAL2KSpnDXohmJ4mdEO3YPf3uodJeyduJb/PithfRq/X8tdtfPR2WaAaKohBq1BFq1NM3OrDGNk6nE5PZRnphKcvXbqRLn4EUlFvJLbGQU2Ihpyr5yzFVYKqw4XBCflkl+WWVgELq3pwaxz1Fw6wdawgwaAn00RDgoyWw6hVg0GLUq8jIUCjbfoIQo4EAg9bdxlfjethECHFuktgJ0c5NHjAZi93Ch8kfsmDzAlSo0KHzdFjCAxRFIdBXi6/WSM9AJ2MHRJ313p5Km4OicldSl2sqZ+2vW4iLT6DIbKewvJKCsuqvwvJKrHYnlTYHeaUW8kotZ4lCzbfH9p5lnYaZ29dg1Gsw6jX4Vb2M7nf1aZ9PX6/GqNfip1fjo1Xjo1Pjq9Vg0KnQqVXyZLhoUySxE6KdUxSFRwY9QqW9kv/b9388u/lZbvK9ibGM9XRowovpNCrXAxcBBrqH+VC438nYIZ3OnghWVvL19z8yZPjllFuh2GzFVGF1vVe9Csss7Es9hjEkglKLnWKz1d2uwup6GrjC6qDCWkleaWWTbIdKwZ3s+eiqEj+tGsPJBFBX9VmrPqOdXqNGr1Gh17oSRL1WXfWuci3XqNBr1Oj+9FmI5uS1iZ3NZuPWW2/ljz/+ICMjg8zMTCIjI93rjxw5wv3338+WLVvw8/Nj6tSpzJw5073+448/Zvbs2ZhMJm688UbeeecddDo5CyFETRRF4R8X/gOL3cIXB7/gy/IvGZw2mKu6XeXp0EQboSgKBg1EB/mcc7qTFSuOMHbsoDPalJktfLt8JUOHX4bFrlBmsVFa9XJ9tlNW9bmk6r3Mvd7ublthtWOutGOruq7rcEJZpZ2yFrwBUKNSUKFmXuLP1RK/09+16pMvBY1ahValoFWr0KhV6KqWadQKOrUKjUqFVqOgVbmWnex3sr1WpaDgYF+hQvDhfAw6nbuvWqW44ql6V5/+UhQ0KhVqtevzyeUqBTnL6cW8NrEDGD58OI8//jjDhg07Y91DDz1E165dWb58OSdOnODiiy9m8ODBjBw5kt27dzN9+nRWrVpFjx49GDduHAsWLOCZZ57xwFYI0TooisLsobOpsFXw/eHvmfnbTAw6A5fFXubp0IRAp1Hhp4XYYN+mmbvS7sBstVNRacdsdb3KK6t/N1f+6b2qfXmlnXKrnUqbA4vNgcVqp9LuwGJ1uN5t9lOfra7vp98f6EoqFSrLrUBLVtJQ89/925tkpJPJIA41s3asQ6OuShCVsyWKKtQqUKtUruWKgkpxUlCgYlnudtRqFSrlVNKoUlxPgbs+u76rFAWcDjLSVfz6zR40VZfRT65Tnd5WpeB0ODhyTMX+NSlo1erqY6lOfXY6HezPUMjZdAytWn3G7zocDpJzFCw7M9Bo1KgUBaUqTgVwOuzsylcYZXfgDTPxeG1ip9FoePjhh8+6/tixY8yYMQOtVkuXLl245JJL2Lt3LyNHjmTRokXceuutXHDBBQDMmTOHe+6556yJncViwWI5db/HyQobUlKsdlJSrHFjeGN5nJmDZnL0+FF2W3czff10Xh3xKsOizvzHlbeTsk0N799eSor5qMHHR02wj7rJxjwbm92VBFbaHZSZK1n3ywYuHHoRDlTuBPH0RNDmcGK1O7HaHdgcTmx2R7XvVrsDW9V3q8Pp/myzO6m0O7A5Tq23OZxYrHYKi034+Bldy6vGsDuc1V9O17vN4eRc5QtsDmfV0ywKlRZbI/4yKg4W59e7z+bc9Dq3XZNxpA7t1Hxz7MA51y9KTT7n+gfNFrTq5rnU3iwlxTxJUZQzLsX+97//ZefOnbz++uukpaUxcuRIli9fTr9+/fjLX/7CmDFjePDBBwHIz88nLCyM8vJyfHx8zhh/3rx5zJ8//4zlUlJMtFd2p52l5UvZa92LFi23+91OV21XT4clhGhBDic4neCo+myv+m6vyulOLq/2qnGZcmZ/Tn12Vn0++e6o93el2vdz9jv5+eTy09o4ahjjz8vBNQ7V2rkuSz/Q246umf6NUJ+SYl57xq42F110EW+99RZ+fn7Y7XbmzZtHv379ACgtLa224Sc/l5aW1pjYzZw5k+nTp7u/m0wmYmNjGT16tJQUq4WUFGvcGN5cHufd69/lyU1P8mvGryy2LOati95iQPiAOm2XN5CyTQ3vLyXFmpfsmw3v783HzOYuKVZXHkvsRo8ezYYNG2pcN3v2bGbPnn3Wvna7nbFjx/LEE08wefJkTpw4wbXXXktCQgI33XQTRqOx2h/h5Gej0VjjeHq9Hr1ef8ZyKY9Td1JSrHFjeGN5HF+9L69e8SpT107lj8w/eGj9Q7w/+n0SwhLqFKe3kLJNDe8vJcWal+ybDe/vqWOmRqOhwl5BmbWM0spSymxlFJuL2Wfdx9Waq1tXSbGmtmrVqgb3LSgoICMjg8mTJ6PRaIiLi2PcuHH8/PPP3HTTTfTp04fdu3e72ycmJtKlS5caz9YJIc5Or9bz2uWv8eDaB9mevZ37Vt/Hh2M+JD4k3tOhCSFEvdkcNkoqSyipLMFUacJUaaKwvJCtlq3k7M2hzFaGqdLkamMtoazSlcDlmnJ5YdkLlFnLsDtrfoJ6in2KV8wB6tWXYi0WCydvAbRYLFRUVGAwGAgPDyc2Npb33nuP+++/n4yMDL799lumTJkCwIQJE7jsssu499576datG8899xwTJ0705KYI0Wr5an1ZOHIh962+j6TcJO5edTfvjnqXPqF9PB2aEKKdcjqdFFuKKbIUUVhR6H4vtBRSVFHkfj9acpSPV3xMqbUUk8VEua387IPuquVHT5s6UUHBT+uHn9YPX40v1jIrVod3PAzp1YldfHw8x44dAyAuLg7AnegtW7aMhx9+mCeffBJfX19uvfVW7r33XgD69evHyy+/zHXXXeeex27WrFke2QYh2gI/rR9vX/k2D6x+gN15u7nnp3t468q3GBgx0NOhCSHaiHJrOfnmfPIq8sgzn3qdTNQKK1yvbFM2c5fMPeuZszMUnbnIV+NLgD4Af50/Ro0Rc6GZ7rHdCTIE4a/zJ0AXgFFnxKg1YlAZSNySyKgRowj0CcSoM+Kj8UGluJ6APVmP2V/n33R/jEbw6sTu6NGjZ1134YUX8vvvv591/Z133smdd97Z9EEJ0U4F6AJ4d9S7TFk7hR05O7hv9X0sHLmQCyMv9HRoQggvdfLMWnZ5NjnlOeSZ88ivyCe3PJfc8lwOlhzk3e/fJb8inzJrWb3H99P6EaQPIlgfTJAhiBBDiOu7IRg/tR+pe1IZPmQ4Ib4h7oTNX+ePRnUq/TmZmI0dNvasD0fka/LpEtilVdzf6dWJnRDCuxh1Rt6+8m2m/TyNzZmbmbxmMq9d/hoXR1/s6dCEEC3M6XRS7ijnYOFB8ivzySrLIqssi+zybLLLsskqzyK7LJsKe8W5Byo59dGgNhDmE0aYTxjhvuGEGELcyVqIIQSjxkjy1mSuG3kd4cZwdOqz39NmtVpZkbKCYVHDWkVC1lQksRNC1MvJe+6mr5/OhhMbeGjdQ7w04iWu6HSFp0MTQjQhp9NJoaWQ9JJ00kvTOVF6gvTSdDJKM8gozSCrLMuVtP1Y+1ghhhDCfcIJ8w0jzOBK3EL0IaTtS+PKi64k0hhJuG84vhrfc5Yrs1qt5KvzifCNQKtuP8lafUhiJ4SoN71az6uXvcoTG59g9bHVPLr+UZ4e+jQ39rzR06EJIeqh0l7J8ZLjHDMdI73UlcCll5xK4sw2c61jBOuDifSLpINfByJ9Xe8dfDsQ6RdJpG8kEX4R6NVnTilmtVpZkbqC8yPOb1dn1JqbJHbnICXFaiclxRo3hjeWFKtPTM8New4ftQ/fHf6OeZvmkVmayX197/OKAuFSUqzh/dtLSTFPaeltsTlsHC8+zkHrQQr2FnCi7ARpJWmklaSRWZaJk7MXoFJQCPcJp6OxI9F+0XQ0dqSjX0c6GjsSpgsj6fckxo6u+d40Nwc1PjHaHo+ZDdXmSoq1lIULF7Jw4ULsdjsHDx6UkmJC1IHT6WRtxVrWW9YDcL7ufK73uR610vz1N4UQp1Q4K8i155JtzybXkUu+PZ98Rz4FjgLsnP0JUj16QtWhhKhCCFYFV3sFqYLQKHIOyNPqU1JMErsamEwmAgMDycvLk5JitZCSYo0boy2Vx1mWsox/bfsXDqeDi6Mu5vmLn/fo4/9Stqnh/aWkWPNq7LaUWks5XHzY/UotTuVw8WGyy7PP2ken0hFMML2jetMlsAux/rF09u9M54DOBOuDG3SW3dv3TW8/ZtaHyWQiLCysbdeKbQlSHqfupKRY48bwxpJi9d2O8X3G08HYgX9s+Ae/Zf7GXavv4o0r3qBTQKc6j9EcpGxTw/tLSbHmVdu2WO1WUotTOVBwgIOFB0ktSuVQ0aFzJnARPhF0DepKt6BuxAXE0TmgM3EBcYToQlj540rGjqjlsmkzbEdz9G8Lx8z6aBUlxYQQbc8Vna7gk6s/Ydq6aRwuPsz45eN5+bKXGRo11NOhCeHViiqKOFB4gAMFB9zvqcWp2By2GttH+ETQLahbtVfXwK4E6gNrbN8W7k0UdSOJnRCiSSWEJrDkmiU88vMjJOUl8cDqB5hxwQwm9p7oFQ9VCOFJTqeT9NJ0kiuTOZp4lJTiFPYX7D/rWTh/nT/xwfHEh8TTPag73YO60yWwy1kTOCEksRNCNLlw33A+vOpDntn0DN+lfscLW19gW9Y2nrn4GfkPkmg3nE4n2eXZ7Mnfw568PezN38ue/D0UWYpcDfZUbx9jjCE+xJXE9QruRXxIPFF+UfIPIlEvktgJIZqFXq1nwcUL6BPah5e3vcy64+vY//1+XhzxIv3D+3s6PCGaXL45353E7cl3vfLMeWe006g0RCgRDI4bTO/Q3sSHxNMzuKfX1BoVrZskdkKIZqMoCrf1vo2BEQN5bP1jnCg9waQfJzH1vKncmXAnapVMiSJapwpbBXvy95CYm0hSbhJ78veQVZZ1Rju1oqZbUDcSQhPoG9aXhNAE4oxxrPlpDWOHNP2DDEJIYieEaHYJoQl8ft3nzN80n5+O/sSrO17l5+M/8+zFz9IlsIunwxPinJxOJ1llWSTmJpKYm8iunF3sL9iPzVn9wQYFhS6BXUgITSAhLIGE0ATiQ+Lx0fhUaycPMojmJIndOUjlidpJ5YnGjdGeZlE3KAaeH/Y8QzoM4eXtL5OYm8jN39/MlAFTmBA/AZWiatLfk8oTDe/f3itPVNor2V+4n6TcJJLyXK8cc84Z7cJ8wugf1p/+Yf1JCE2gV3Av/LR+1Rs5z4xZ9s2G929Px8yafqMuZILi00jlCSFaRpGjiK/LvybVlgpArDqW63yuo6Omo4cjE+2RyWHiuO04afY00mxpZNgzzqjUoEJFpDqSTupOxGpi6aTpRJASJA82iBYhlScaSSpP1J1UnmjcGO11FnVwXd76KvUr/rPjP5TbylEpKm7qfhMPDniQAN25D1x1IZUnGt6/LVeesDqspBSmkJSXRGJeIkl5SWSWZZ7RLkgfxICwAe4zcn1C+5xxSbXBMci+2eD+7fWYKZUnmojMol53UnmicWO0t1nUT/pb779xWafLeHnby6w8upLPUz5nzfE1PHTeQ4zrPg6NqvGHKKk80fD+baHyRL45331vXGJuInvy9lBhr6jWRqWo6BHUgwHhAxgQMYCB4QOJ9Y9t9rNxsm82vH97O2ZK5QkhRKsR6RfJiyNe5KaeN/H85uc5XHyY+Zvm88meT5g2aBpXdrpSLneJOrE5bBwqOkRiTtVDDrm7OF5y/Ix2AboA+of3Z2D4QAZEDKBfWL8z740TopWSxE4I4RWGRA1h2XXLWHJgCe8mvctR01Gmr59Ov7B+TB04lWEdh0mCJ6opqigiKS+JXTm7SMpNYnfebspt5We06xbYjYERA11n5MIHEBcY1+QP6wjhLSSxE0J4Da1ay+19bueG7jfw8Z6P+d/e/7E7bzf3r7mfPqF9uLvv3YzsNFLmv2uH7A47WfYslqUsI7kgmaTcJI6ajp7Rzk/rR7+wfu5Erl9YP6l2ItoVSeyEEF7HqDMy9byp/K3X3/hg9wd8mfIle/P3MuOXGcQFxHF7n9u5tuu1+GrlqfW26qxn47ZWbxcXEEf/8P4MCB/AwIiBdAvsJom/aNe8NrE7cOAAM2bM4I8//kBRFMaMGcMbb7xBcHAwANOnT+ebb74hNzeX+Ph4XnnlFYYPHw7A+vXrueKKK6pNVfLjjz9y6aWXemRbhBANE+YTxhODn+C+/vexaP8iFu1bxFHTUZ7941le2f4K13e7nlvjb6VbUDdPhyoaweqwklqUys6snfxY9iPvff8ex0qOndFOh46BHQYysIPrbFz/sP4EGYJaPmAhvJjXJnbFxcXccsstfPbZZ2g0Gu666y4ee+wxPvjgAwACAwNZtWoVXbt25csvv2TcuHEcO3YMf39Xrb2ePXuyf/9+T26CEKKJBBuCmTJwCncl3MVXKV+x5MASjpmOsXj/YhbvX8x5EedxbddrGRM3Ri67eTmH08HhosPsyd9Dcl4ye/L3sL9gPxa75VSjqrlY4wLi3E+qJgQncOC3A1w78to2MZOAEM3FaxO7wYMHM3jwYPf3e++9l+nTp7u/z5071/355ptv5pFHHuHgwYOcf/75LRqnEKLl+Gp9mdhnIhN6T2Bz5maWHljKz8d/ZmfOTnbm7OSfW/7J8OjhXNP1GoZEDPF0uO2e0+nkROkJ9uTtISk3iY0lG/nnF/+kzFZ2Rlt/rb9rrrhCH24cdiPnRZ5XLUm3Wq2kKCktGb4QrZLXJnZ/9vvvv5OQkFDjuqNHj1JQUED37t2rLYuIiCAwMJDbb7+dWbNmoVbXfN+FxWLBYjn1r0WTyQRISbG6kJJijRujvZbHaQoXhF/ABeEXkFuey8pjK1lxdAUHCg+w7vg61h1fh06lI04VR+mBUi7vdDnhPuHNHlN7LNt0sp3VaSUpJ4nDJYdJKUzhYNFBUopSMFWazmhvUBvoFdKLPiF9SAhNoE9IH2L9Y7Hb7KxevZrB4YPRqrTVfr+17Jd1ISXFGt6/vR4z21xJsV27djFy5Eg2bNhwRnJntVq58sorGTFiBM888wwAWVlZFBUVuS/H3nLLLdx99908+uijNY4/b9485s+ff8ZyKSkmROuSbc9mV+Uukq3JFDoKq62LUkfRTdONrpqudNZ0Rq/oPRRl6+Z0Oil2FpNjzyHLnuV+5TnycOA4o70aNZHqSGLUMXRUdyRGE0OYKgy1Ig84CFFXraKk2OjRo9mwYUON62bPns3s2bMBOHLkCMOHD+eNN95g3Lhx1do5nU4mTpxIZWUlS5cuRaWqeV6iJUuW8NZbb53192o6YxcbGyslxepASoo1boz2Wh6nuTmdTg7mH+SDDR+Q6ZvJnoI91dZrFA0JoQmcF3EeCaEJ9A3tSwffDo3+3bZUtmnlqpX0Htab42XHOWI6wpHiIxwxHeGo6WiNc8UBBOoC6Rnck55BPV3vwT3pGtAVrVorx8zTSEmxhvdvr8fMVlFSbNWqVbW2ycrKYtSoUcyZM+eMpA7goYceIiMjg5UrV541qQPOuQ5Ar9ej15/5r3dvLI/jraSkWOPGaG/lcVpCfFg8lxkuY+xVYym2FbMlcwubszazOXMz6aXpJOYlkpiX6G4f4RNB37C+9ArpRffg7nQL6kYn/04NKmvWWso2VdgqSC9N50TJCY6XHOdE6QlOlJwgzZRGmikN+0p7jWOpFTWdAjrRM7gn8cHxdAvoRvrOdG695lZ0Ol2jt6M9HDNBSoo1pn97O2a2iZJixcXFjBkzhjvuuIP77rvvjPVz587lt99+45dffjkjKVu/fj3dunUjNjaWlJQUFixYwMSJE1sqdCGElwnzCWNs17GM7ToWgBMlJ9iatZWkvCSS85JJKUwhx5zjvj/vJK1KS1xgHN0CuxHjH0NHY0eijdHEGGOI8otCq/beBKPSXklOeQ4Zpgx2V+4mf18+eZY8cspzyC7LJqM0gxxzzjnHMKgNdAnsQtegrnQNdL26BHahk3+nattutVpZkbhCKoMI4QW8NrH75ptvSEpKIjU1lRdeeMG9vLS0FIBnnnkGvV5Px44d3eveeecdbrvtNrZv385tt91GUVERERER3H777dWeqBVCtG8x/jHE+MdwQ48bACi3lrO/YD+783aTUphCalEqqcWpmG1mUgpTSCk882lMBYVgQzChPqGEGkIJMYQQrAsmtyIX8yEzgYZA/LR+p14aP3RqHRqVptpLrahRK2rsTrvr5Tj1bnPaKKsoI9ueTVJeEpXOSsw2M+W2csqt5ZgqTRRWFFJkKXK9KoootBRSVFFEibWkesA7a/5bGLVGYv1j3X+TGGMMHX07cmjbIcZfMx69Tu5FFKI18drEbtKkSUyaNOms6891a+CMGTOYMWNGc4QlhGiDfLW+DOowiEEdBrmXOZwOMssySS1K5UjxEdJL012vknQyyjIw28wUVBRQUFFACtUTv1Vbar/VpN4aMKROpSPCNwKNWUOvmF5EGiPp4NuBCN8IOho7EusfS4Au4IwzbVarlXxVvtRTFaIV8trETgghPEmlqIg2RhNtjGZ4zPBq65xOJwUVBeSZ88g355NfkU++OZ/c8lySDiURGBGI2W6m1FpKmbXM/aq0V2J31nzf2tkY1AbUDjWBvoH4an1dL40vPhofAnQBBBuCCdIHnfmuDyZQH4jNZmPFihWMvXhsm7k3TQhxdpLYCSFEPSmK4roE6xNabbnVamVF5grGjjh7EuVwOrA77dgcNtflVocNu9N+6rKsSu2+PKtSVKcSs7GSmAkhaieJnRBCtCCVokKlqNCqJEkTQjQ9uYFCCCGEEKKNkDN25yAlxWonJcUaN0Z7LY/TEqRsU8P7N6SkWG3t5Zh5iuybDe/fXo+Zba6kWEtZuHAhCxcuxG63c/DgQSkpJoQQQgiPaxUlxbyZyWQiMDBQSorVgZQUa9wY7bU8TkuQsk0N71/fPo09HtalTVvZL0H2zcb0b6/HzFZRUsybncx1zWbzOQ9A5eXlmM1mbDZbvdvUpX9r4KntaOrfbYrxGjJGffrUtW1t7Rq7vrXwxHY0x282dszm3i/r2l6OmafIvtnw/u31mGk2m4Fzz+F7kiR2NSgpcc3YHhsb6+FIhBBCCCFcSkpKCAwMPGcbuRRbA4fDQUZGBv7+/uesfXjhhReydevWc451tjYmk4nY2FiOHz9e62lVb1eXv0Nr+N2mGK8hY9SnT13b1tbuXOtl3/S+32zsmM29X9a1vRwzT5F9s+H92+Mx0+l0UlJSQseOHVGpzj2hiZyxq4FKpSImJqbWdmq1utb/EWtrExAQ0OoPUnX5O7SG322K8RoyRn361LVtbe3qMo7sm97zm40ds7n3y7q2l2PmKbJvNrx/ez1m1nam7iSZx64RpkyZ0iRtWjtPbWNT/25TjNeQMerTp65ta2vXHvZL8Mx2NsdvNnbM5t4v69pejpmnyL7Z8P5yzDw3uRTrISefvK3LEy5CtCTZN4U3kv1SeCtv2zfljJ2H6PV65s6di16v93QoQlQj+6bwRrJfCm/lbfumnLETQgghhGgj5IydEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdEEIIIUQbIYmdF/vll18YNmwYl1xyCdOnT/d0OEK4HT9+nEGDBmEwGFp93U7R+k2fPp1LL72UadOmeToUIQDPHiMlsfNi3bt3Z/369fz6669kZWWxe/duT4ckBADh4eGsW7eOoUOHejoU0c7t2LGD0tJSNm7ciNVq9Uh5QyH+zJPHSEnsvFh0dLR7XhytVotarfZwREK4GAwGgoKCPB2GEGzatIkrr7wSgCuvvJI//vjDwxEJ4dljpCR2TWju3Ln06dMHlUrFkiVLqq3Lzc3lmmuuwdfXl/j4eNauXVvncXfs2EFeXh59+vRp6pBFO9Fc+6YQTakh+2lRUZF7tv/AwEAKCwtbPG7RtrW246fG0wG0JT169OC1115jzpw5Z6ybMmUKHTt2JC8vj1WrVnHzzTeTmpqKxWLhb3/7W7W2RqORH374AYCsrCymTZvGl19+2SLbINqm5tg3hWhqDdlPg4KCMJlMgKu0k5xJFk2tIftlcHCwByKt4hRNbsSIEc7Fixe7v5eUlDh1Op0zIyPDvezSSy91fvLJJ+ccx2w2Oy+//HLnjh07mi1W0b401b55+nhWq7XJ4xTtW3320+3btzvvu+8+p9PpdE6ePNm5efPmFo9XtA8NOX564hgpl2JbQEpKCoGBgURFRbmXDRgwgD179pyz30cffcTevXt59NFHueyyy9i0aVNzhyramYbumxUVFVx55ZUkJiYyZswYNm7c2NyhinbsXPvpoEGD8PHx4dJLL0WlUjF48GAPRirak3Ptl548Rsql2BZQWlrqvgfkpICAAIqKis7Zb/LkyUyePLkZIxPtXUP3TYPBwJo1a5oxMiFOqW0/ffXVV1s+KNHunWu/9OQxUs7YtQCj0ei+B+Qkk8mE0Wj0UERCuMi+KVoD2U+FN/LW/VISuxbQo0cPiouLycrKci9LTEwkISHBg1EJIfumaB1kPxXeyFv3S0nsmpDVaqWiogKHw1Hts9Fo5Prrr2fu3LmYzWa+++47kpOTue666zwdsmgnZN8UrYHsp8Ibtbr9skUf1WjjJk2a5ASqvX7++Wen0+l05uTkOK+++mqnj4+Ps0ePHs7Vq1d7NljRrsi+KVoD2U+FN2pt+6XidDqdLZ9OCiGEEEKIpiaXYoUQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQQggh2ghJ7IQQwoPmzZuHVqslMjKyyca87LLLWLJkSZON92evvPIKfn5+GAyGZvsNIUTDSGInhPC4uLg4fH19MRqNGI1G4uLiPB1Si7r77rurFRJvDn379uXo0aNNMtb06dPZs2dPk4wlhGhaktgJIbzCunXrKC0tpbS0tMYExGq1tnxQXqAptvvEiRPYbLZ2lzAL0R5JYieE8Err16+nV69ezJo1i7CwMJ5//nnMZjNTp06lY8eOxMTE8O9//9vdvqysjAkTJhAUFMSgQYN46qmnuOqqq6qNdTpFUdxnyQoKCpgwYQIRERF07dqVTz75xN3usssu45lnnuGCCy4gICCA8ePHU1lZ6V6/dOlS+vbti7+/P/369ePAgQM899xz3HXXXdV+7+KLL+arr76q07bHxcXxwgsvEB8fT58+fQB48MEH6dixI0FBQYwePZq0tDR3+61bt9K/f38CAgK4//77cTgc1cb76aefGDNmjHt75s+fz3nnnYfRaOTxxx/n0KFDXHjhhQQFBfHYY4+5+/3www/Ex8fj7+9PbGwsixcvrlP8QgjPkcROCOG1Dh06hK+vL5mZmTzxxBM89thjFBcXc/DgQbZs2cL//vc/vv/+ewDmz59Pfn4+aWlpLFq0iE8//bTOv3P77bcTGxvL8ePHWbFiBTNnziQxMdG9/osvvuCrr74iLS2NpKQkli5dCsBvv/3G1KlTeeeddyguLuaLL74gICCA2267jW+++QaLxQLAsWPH2Lt3L2PHjq1zTN988w0bN25k9+7dAFxyySXs27ePrKwsYmJimDZtGgCVlZX89a9/5aGHHiI/P5++ffvy+++/Vxtr5cqV7sQO4Msvv2T58uUkJyfz9ttvM3nyZL7++muSk5N5//333dt+zz338OGHH1JSUsLWrVsZMGBAneMXQniGJHZCCK8watQogoKCCAoKYubMmQD4+vry5JNPotVq0ev1fPTRR7z88ssYjUY6duzI5MmTWbZsGeBKvubMmUNAQAC9evVi0qRJdfrdrKwsNm7cyPPPP49er6dXr15MmDCh2tm1e++9l06dOhEUFMQ111zjTnw+/vhjJk+ezMUXX4xKpaJXr15ERUURFxdH3759WbFiBQBLlixh3Lhx9XrY4NFHHyUiIsLdZ8KECQQGBmIwGHjiiSf49ddfAdi0aRN6vZ57770XrVbL1KlTiYqKco9jt9v59ddfueyyy9zL7rnnHjp27EhcXBznn38+o0ePJiYmhpiYGIYMGUJSUhIAWq2W5ORkSktLiYyMdJ89FEJ4L0nshBBeYfXq1RQVFVFUVMQ///lPAKKiolCr1QDk5uZiNpvp2bOnOwF86qmnyMnJASAzM5PY2Fj3eKd/Ppe0tDTKysoIDQ11j/vOO++QnZ3tbhMREeH+7OvrS2lpKeC6d61r1641jjtx4kT3k6mLFi1iwoQJdf1TABATE1Pt+3PPPUf37t0JCAhg8ODB5OfnA2dut6Io1fpu3ryZvn374uvrW+P2+Pj4EB4eXu17WVkZAMuWLeO7774jOjqa0aNHs3///nptgxCi5Wk8HYAQQpyNoijuz2FhYRgMBo4dO0ZgYOAZbaOiojh+/DidO3cG4Pjx4+51fn5+lJeXu7+f/gRqdHQ0QUFB7kSpPmJjYzly5EiN626++WaefPJJtmzZQk5ODldccUW9xj5923/55Rfeeecd1q5dS/fu3Tl48KD7nsGoqChOnDhRre/p3/98GbY+hgwZwvLly7FYLDz99NNMmTKFtWvXNmgsIUTLkDN2QohWQaVSMWnSJB577DGKiopwOBzs27ePLVu2AHDTTTfx3HPPUVJSwoEDB/jf//7n7tuzZ0/y8/P55ZdfsFgsPPvss+510dHRXHjhhTz99NOUl5djs9nYsWMHe/furTWmO++8k7fffptNmzbhdDo5cOAAmZmZAISEhDBixAjuvPNObrnlFveZx4YoKSlBo9EQGhpKWVkZCxYscK8bNmwYZrOZDz74AKvVysKFC90xQPUHJ+qjsrKSRYsWYTKZ0Gq1GI3GRm2DEKJlSGInhGg1Tk6M269fP0JCQrjjjjsoLCwEYO7cuQQGBhITE8P48eO5/fbb3f0CAwN5/fXXueWWW+jSpQuDBw+uNu5nn33GsWPH6Nq1KxERETzyyCOYzeZa47nooot49dVX+fvf/05AQAA333wzJpPJvX7ixIns27ev3pdh/+yqq65i2LBhdO7cmX79+nHRRRe51+l0Or788kv+85//EBoaSlJSknt9fn4+mZmZ9OvXr0G/+8knn9C5c2eCg4NZvXo1r732WqO2QwjR/BSn0+n0dBBCCNHUPv74Y5YsWcLKlSs9FsOmTZuYOHEiqampZ22zYMEC/vWvfxEUFHTGJdXGWrx4MatXr+bDDz9s0nFfffVV5s6di6IoFBUVNenYQojGkTN2QgjRDKxWK6+//jp///vfz9lu9uzZlJaWNnlSB67LwQ8++GCTj/vII49QXFwsSZ0QXkgenhBCiCaWn59PTEwM/fv355133vFYHA19aEII0XrJpVghhBBCiDZCLsUKIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQRktgJIYQQQrQR/w+Yr86HtC/uJwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -405,7 +405,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWnklEQVR4nOzdd1hT1xsH8G8SQth7b5AhIKCiouJeiHXXUa2zarVuadVaa9UObbVVW1erto7+tFq12jrqFtwLRVQQUEGQIbI3hOT8/qBEIytAIAm8n+fh0dx77r3vPQk3L/eewWGMMRBCCCGEEKJiuIoOgBBCCCGEkLqgRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWENLoOBwOjh49Kpd99ejRA/Pnz6/z9kePHoWzszN4PF699lOV9PR0mJmZIS4uTu77lrcVK1agdevW1ZaZNGkShg4dKvM+Hzx4ABsbG+Tn59cvuGamvp9rWdX2/SRE2agpOgBCmqNJkyYhKytLbslcc/bXX3+Bz+fXefvp06dj8uTJmDt3LnR1deUYWZnVq1dj0KBBcHBwkPu+q6JMny8vLy906NAB69evx+eff67ocMhbfvzxR9BM9USV0R1ZQohKMzIyqnMCmpeXh9TUVAQEBMDKyqrO+ykpKal0eWFhIX799VdMnTq1TvttKiZPnoytW7dCJBI12jGrek+INH19fRgYGCg6DELqjBJZQpRQSEgIOnToAIFAAEtLS3z66acoLS2VrC8uLsbcuXNhZmYGDQ0NdOnSBbdv35asDw4OBofDwYkTJ+Dj4wMNDQ34+fnhwYMH1R533bp18PLygra2NmxtbTFz5kzk5eVJ1u/atQsGBgY4ffo03N3doaOjg/79+yM5OVlS5vbt2+jbty9MTEygr6+P7t274+7du1Ues1evXpg9e7bUsvT0dAgEAly4cAEAsGXLFri4uEBDQwPm5uYYMWKEpOzbj2CrK/um4OBgSeLaq1cvcDgcBAcHAwAOHz4MT09PCAQCODg44IcffpDa1sHBAV9//TUmTZoEfX19TJs2rdJj/Pvvv1BTU0OnTp0q1OGbjh49Cg6HI3ld/oj/999/h4ODA/T19fHee+8hNzdXUubQoUPw8vKCpqYmjI2N0adPH+Tn52PFihXYvXs3/v77b3A4HKnzWrx4MVxdXaGlpQUnJycsW7YMQqGwQty//PILbG1toaWlhZEjRyIrK6vS8wMAxhjWrFkDJycnaGpqwsfHB4cOHZIqExAQgPT0dISEhFS5n/v376Nnz57Q1dWFnp4efH19cefOHcn6a9euoVu3btDU1IStrS3mzp0r1VyhsvekU6dO+PTTT6WO8+rVK/D5fFy8eBEAkJmZiQkTJsDQ0BBaWloIDAxETEyMpHz5+3X8+HG4ublBS0sLI0aMQH5+Pnbv3g0HBwcYGhpizpw5Uol6SUkJFi1aBGtra2hra8PPz0/yPpS7evUqunfvDi0tLRgaGiIgIACZmZmS9WKxGIsWLYKRkREsLCywYsUKqe3l8fv6dtOCqj5Xb5ZdtWoVzM3NYWBggJUrV6K0tBQLFy6EkZERbGxs8Ntvv1X5PhMid4wQ0ugmTpzIhgwZUum6Fy9eMC0tLTZz5kwWGRnJjhw5wkxMTNjy5cslZebOncusrKzYyZMn2aNHj9jEiROZoaEhS09PZ4wxdvHiRQaAubu7szNnzrDw8HA2cOBA5uDgwEpKSqqMa/369ezChQvs2bNn7Pz588zNzY199NFHkvU7d+5kfD6f9enTh92+fZuFhoYyd3d3NnbsWEmZ8+fPs99//51FRESwiIgINmXKFGZubs5ycnIkZQCwI0eOMMYY27t3LzM0NGRFRUWS9T/++CNzcHBgYrGY3b59m/F4PLZv3z4WFxfH7t69y3788UdJ2e7du7N58+YxxliNZd9UXFzMoqKiGAB2+PBhlpyczIqLi9mdO3cYl8tlX375JYuKimI7d+5kmpqabOfOnZJt7e3tmZ6eHlu7di2LiYlhMTExlR5j3rx5rH///lLLdu7cyfT19aWWHTlyhL15OV6+fDnT0dFhw4cPZw8ePGCXLl1iFhYW7LPPPmOMMZaUlMTU1NTYunXrWGxsLAsPD2ebN29mubm5LDc3l40aNYr179+fJScnS86LMca++uordvXqVRYbG8v++ecfZm5uzr777jup42pra7NevXqxe/fusZCQEObs7Cz1/r792f3ss89Yy5Yt2alTp9jTp0/Zzp07mUAgYMHBwVLn2KFDB7ZixYpK64kxxjw9Pdm4ceNYZGQki46OZn/++ScLCwtjjDEWHh7OdHR02Pr161l0dDS7evUqa9OmDZs0aVK178nGjRuZnZ0dE4vFknIbN25k1tbWTCQSMcYYGzx4MHN3d2eXLl1iYWFhLCAggDk7O0t+T8o/83379mV3795lISEhzNjYmPXr14+NGjWKPXr0iB07doypq6uz/fv3S44zduxY1rlzZ3bp0iX25MkTtnbtWiYQCFh0dDRjjLF79+4xgUDAPvroIxYWFsYePnzINm7cyF69esUYK/tc6+npsRUrVrDo6Gi2e/duxuFw2JkzZyTHkMfv65vvZ3Wfq/Kyurq6bNasWezx48fs119/ZQBYQEAA++abb1h0dDT76quvGJ/PZ/Hx8VW+14TIEyWyhChAdYnsZ599xtzc3KS+fDdv3sx0dHSYSCRieXl5jM/ns71790rWl5SUMCsrK7ZmzRrG2OtE9s0v1vT0dKapqckOHDggc5x//vknMzY2lrzeuXMnA8CePHkiFZu5uXmV+ygtLWW6urrs2LFjkmVvJrJFRUXMyMhIKq7WrVtLkp7Dhw8zPT09qUT4TW8msjWVfVtmZiYDwC5evChZNnbsWNa3b1+pcgsXLmQeHh6S1/b29mzo0KE17n/IkCHsgw8+kFomayKrpaUldR4LFy5kfn5+jDHGQkNDGQAWFxdX6XGr+3y9ac2aNczX11fquDwejyUkJEiW/fvvv4zL5bLk5OQK+87Ly2MaGhrs2rVrUvudMmUKGzNmjNSyYcOGSSWeb9PV1WW7du2qdN348ePZhx9+KLXs8uXLjMvlssLCQsZY5e9JamoqU1NTY5cuXZIs69SpE1u4cCFjjLHo6GgGgF29elWyPi0tjWlqarI///yTMVb5Z3769OlMS0tLkuAxxlhAQACbPn06Y4yxJ0+eMA6HwxITE6Xi6d27N1uyZAljjLExY8Ywf3//Kuuje/furEuXLlLL2rdvzxYvXlzlNnX5fX3z/ZTlc2Vvby/5I4Axxtzc3FjXrl0lr0tLS5m2tjb7448/qoyTEHmipgWEKJnIyEh06tRJ6lGzv78/8vLy8OLFCzx9+hRCoRD+/v6S9Xw+Hx06dEBkZKTUvt58pG1kZAQ3N7cKZd508eJF9O3bF9bW1tDV1cWECROQnp4u9QhXS0sLLVq0kLy2tLREamqq5HVqaipmzJgBV1dX6OvrQ19fH3l5eYiPj6/0mAKBAOPGjZM8jgwLC8P9+/cxadIkAEDfvn1hb28PJycnjB8/Hnv37kVBQUGl+6pN2apERkZK1S1QVv8xMTFSj47btWtX474KCwuhoaFRq+OXc3BwkGqz+2Y9+/j4oHfv3vDy8sLIkSOxfft2qUfSVTl06BC6dOkCCwsL6OjoYNmyZRXeFzs7O9jY2Ehed+rUCWKxGFFRURX2FxERgaKiIvTt2xc6OjqSnz179uDp06dSZTU1Nat9L4KCgjB16lT06dMH3377rdT2oaGh2LVrl9QxAgICIBaLERsbKyn39ntiamqKvn37Yu/evQCA2NhYXL9+He+//z6AsvdaTU0Nfn5+km2MjY0r/J68/Zk3NzeHg4MDdHR0pJaVvz93794FYwyurq5SMYeEhEjOKywsDL17966yPgDA29tb6vXbv2vy+H19kyyfK09PT3C5r1MHc3NzeHl5SV7zeDwYGxtXeQxC5I0SWUKUDGNMKoktXwaUDVv15v9r2q4yVZV5/vw5BgwYgFatWuHw4cMIDQ3F5s2bAUCqHeXbIwS8GRNQ1o4uNDQUGzZswLVr1xAWFgZjY+NqO99MnToVZ8+exYsXL/Dbb7+hd+/esLe3BwDo6uri7t27+OOPP2BpaYkvvvgCPj4+lbbbrE3ZqlRX/2/S1taucV8mJiYVEgEul1thf5W1U62snsViMYCyZOHs2bP4999/4eHhgY0bN8LNzU0qqXvbjRs38N577yEwMBDHjx/HvXv3sHTp0ho7RZXXRWWfm/J4Tpw4gbCwMMlPREREhXayGRkZMDU1rfI4K1aswKNHj/DOO+/gwoUL8PDwwJEjRyTHmT59utQx7t+/j5iYGKkkrbL35P3338ehQ4cgFAqxb98+eHp6wsfHB0Dl72v58jfPt7L3orr3RywWg8fjITQ0VCrmyMhI/PjjjwDKEvuaVHcMef2+vkmWz1Vt64KQhkaJLCFKxsPDA9euXZP6srl27Rp0dXVhbW0NZ2dnqKur48qVK5L1QqEQd+7cgbu7u9S+bty4Ifl/ZmYmoqOj0bJly0qPe+fOHZSWluKHH35Ax44d4erqiqSkpFrHf/nyZcydOxcDBgyQdJhKS0urdhsvLy+0a9cO27dvx759+/DBBx9IrVdTU0OfPn2wZs0ahIeHIy4uTtIR7G21KVsZDw8PqboFyurf1dUVPB5P5v0AQJs2bRARESG1zNTUFLm5uVJ3zcLCwmq1X6AsWfD398fKlStx7949qKurSxI/dXX1CiMEXL16Ffb29li6dCnatWsHFxcXPH/+vMJ+4+Pjpd7369evg8vlwtXVtUJZDw8PCAQCxMfHw9nZWerH1tZWquzDhw/Rpk2bas/J1dUVCxYswJkzZzB8+HDs3LkTANC2bVs8evSowjHKfxeqM3ToUBQVFeHUqVPYt28fxo0bJxV/aWkpbt68KVmWnp6O6OjoCr9LtdGmTRuIRCKkpqZWiNfCwgJA2d3W8+fP1/kY8vp9fVt1nytClBGNI0uIgmRnZ1dIYIyMjDBz5kxs2LABc+bMwezZsxEVFYXly5cjKCgIXC4X2tra+OijjyS9hO3s7LBmzRoUFBRgypQpUvv78ssvYWxsDHNzcyxduhQmJiZVDn7eokULlJaWYuPGjRg0aBCuXr2Kn3/+udbn5ezsjN9//x3t2rVDTk4OFi5cKNPdp6lTp2L27NnQ0tLCsGHDJMuPHz+OZ8+eoVu3bjA0NMTJkychFovh5uZWYR+1KVuVjz/+GO3bt8dXX32F0aNH4/r169i0aRO2bNki8z7KBQQEYMmSJcjMzIShoSEAwM/PD1paWvjss88wZ84c3Lp1C7t27arVfm/evInz58+jX79+MDMzw82bN/Hq1StJ8uXg4IDTp08jKioKxsbG0NfXh7OzM+Lj47F//360b98eJ06cqDRB0dDQwMSJE/H9998jJycHc+fOxahRoyQJ2Jt0dXXxySefYMGCBRCLxejSpQtycnJw7do16OjoYOLEiQCAuLg4JCYmok+fPpWeT2FhIRYuXIgRI0bA0dERL168wO3bt/Huu+8CKBttoWPHjpg1axamTZsGbW1tREZG4uzZs9i4cWO1daWtrY0hQ4Zg2bJliIyMxNixYyXrXFxcMGTIEEybNg2//PILdHV18emnn8La2hpDhgyR7c2ohKurK95//31MmDABP/zwA9q0aYO0tDRcuHABXl5eGDBgAJYsWQIvLy/MnDkTM2bMgLq6Oi5evIiRI0fCxMSkxmPI6/f1TTV9rghRSgppmUtIMzdx4kQGoMLPxIkTGWOMBQcHs/bt2zN1dXVmYWHBFi9ezIRCoWT7wsJCNmfOHGZiYsIEAgHz9/dnt27dkqwv7+x17Ngx5unpydTV1Vn79u0lvcCrsm7dOmZpack0NTVZQEAA27NnDwPAMjMzGWOydVS6e/cua9euHRMIBMzFxYUdPHiQ2dvbs/Xr10vK4I3OXuVyc3MlozW86fLly6x79+7M0NCQaWpqMm9vb6mOYW929qqp7Nsq6+zFGGOHDh1iHh4ejM/nMzs7O7Z27Vqp9W+fT3U6duzIfv75Z6llR44cYc7OzkxDQ4MNHDiQbdu2rUJnLx8fH6lt1q9fz+zt7RljjEVERLCAgABmamrKBAIBc3V1ZRs3bpSUTU1NZX379mU6OjpS57dw4UJmbGzMdHR02OjRo9n69eul3s/y427ZsoVZWVkxDQ0NNnz4cJaRkSEp83ZHMrFYzH788Ufm5ubG+Hw+MzU1ZQEBASwkJERSZtWqVSwgIKDKOiouLmbvvfces7W1Zerq6szKyorNnj1b0pGLMcZu3bolOSdtbW3m7e3NvvnmG8n66t6TEydOMACsW7duFdZlZGSw8ePHM319fcnnvnxkAcYq/8xX9v68XS8lJSXsiy++YA4ODozP5zMLCws2bNgwFh4eLikTHBzMOnfuzAQCATMwMGABAQGS37U3P9flhgwZIrlGMCaf39c3467pc1VZJ8LK4qzN7wch9cVhjKb0IKSpCQ4ORs+ePZGZmakyg50nJCTAwcEBt2/fRtu2bRUdjtycPHkSn3zyCR4+fCjVSaa5KC4uhouLC/74448KnegIIaS+qGkBIUShhEIhkpOT8emnn6Jjx45NKokFgAEDBiAmJgaJiYkV2o02B8+fP8fSpUspiSWENAhKZAkhCnX16lX07NkTrq6uFXq6NxXz5s1TdAgK4+rqWmlHMUIIkQdqWkAIIYQQQlRS82uwRQghhBBCmgRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmQJIYQQQohKokSWEEIIIYSoJEpkCSGEEEKISqJElhBCCCGEqCRKZAkhhBBCiEqiRJYQQgghhKgkSmRJkzRp0iQMHTq0wY/D4XBw9OhRue+XMYYPP/wQRkZG4HA4CAsLk/sxCCGktlasWIHWrVs3+nF79OiB+fPnN8i+t23bBltbW3C5XGzYsKFBjkEaDiWyRGEmTZoEDocj+TE2Nkb//v0RHh6u6NAajKwJ9qlTp7Br1y4cP34cycnJaNWqlVzjaKgEnBAiX+XXyW+//VZq+dGjR8HhcBo9nk8++QTnz5+Xqayikl4A2LVrFwwMDGosl5OTg9mzZ2Px4sVITEzEhx9+KNc4GjIBJ2UokSUK1b9/fyQnJyM5ORnnz5+HmpoaBg4cqOiwFO7p06ewtLRE586dYWFhATU1tVrvgzGG0tLSBoiOENKYNDQ08N133yEzM1PRoUBHRwfGxsaKDkNu4uPjIRQK8c4778DS0hJaWlp12o9QKJRzZERWlMgShRIIBLCwsICFhQVat26NxYsXIyEhAa9evZKUefDgAXr16gVNTU0YGxvjww8/RF5enmS9SCRCUFAQDAwMYGxsjEWLFoExJnUcxhjWrFkDJycnaGpqwsfHB4cOHao2NgcHB3z11VcYO3YsdHR0YGVlhY0bN1a7TXWxrlixArt378bff/8tuQsdHBxcYR+TJk3CnDlzEB8fDw6HAwcHBwBAcXEx5s6dCzMzM2hoaKBLly64ffu2ZLvg4GBwOBycPn0a7dq1g0AgwOXLl6uNlxCi/Pr06QMLCwusXr260vX5+fnQ09OrcE07duwYtLW1kZubCwC4desW2rRpAw0NDbRr1w5HjhyRarpU2V3Mt+/8vn2XNTg4GB06dIC2tjYMDAzg7++P58+fY9euXVi5ciXu378vud7t2rWr0vjLn1StXLkSZmZm0NPTw/Tp01FSUlJlnWRmZmLChAkwNDSElpYWAgMDERMTI4lp8uTJyM7Olhx7xYoVFfaxa9cueHl5AQCcnJzA4XAQFxcHANi6dStatGgBdXV1uLm54ffff5falsPh4Oeff8aQIUOgra2Nr7/+uspYScOiRJYojby8POzduxfOzs6Sv/gLCgrQv39/GBoa4vbt2zh48CDOnTuH2bNnS7b74Ycf8Ntvv+HXX3/FlStXkJGRgSNHjkjt+/PPP8fOnTuxdetWPHr0CAsWLMC4ceMQEhJSbUxr166Ft7c37t69iyVLlmDBggU4e/ZspWVrivWTTz7BqFGjpO5Cd+7cucJ+fvzxR3z55ZewsbFBcnKyJFldtGgRDh8+jN27d+Pu3btwdnZGQEAAMjIypLZftGgRVq9ejcjISHh7e9dQ64QQZcfj8bBq1Sps3LgRL168qLBeW1sb7733Hnbu3Cm1fOfOnRgxYgR0dXWRn5+PgQMHws3NDaGhoVixYgU++eSTesVVWlqKoUOHonv37ggPD8f169fx4YcfgsPhYPTo0fj444/h6ekpud6NHj26yn2dP38ekZGRuHjxIv744w8cOXIEK1eurLL8pEmTcOfOHfzzzz+4fv06GGMYMGAAhEIhOnfujA0bNkBPT09y7MrOdfTo0Th37hyAsiQ/OTkZtra2OHLkCObNm4ePP/4YDx8+xPTp0zF58mRcvHhRavvly5djyJAhePDgAT744IM61iKpN0aIgkycOJHxeDymra3NtLW1GQBmaWnJQkNDJWW2bdvGDA0NWV5enmTZiRMnGJfLZSkpKYwxxiwtLdm3334rWS8UCpmNjQ0bMmQIY4yxvLw8pqGhwa5duyZ1/ClTprAxY8ZUGZ+9vT3r37+/1LLRo0ezwMBAyWsA7MiRIzLHOnHiRElc1Vm/fj2zt7eXvM7Ly2N8Pp/t3btXsqykpIRZWVmxNWvWMMYYu3jxIgPAjh49WuP+34ybEKK83rxmdOzYkX3wwQeMMcaOHDnC3vwKv3nzJuPxeCwxMZExxtirV68Yn89nwcHBjDHGfvnlF2ZkZMTy8/Ml22zdupUBYPfu3WOMMbZz506mr68vdfy3j7N8+XLm4+PDGGMsPT2dAZAc421vlq3pHCuLTUdHh4lEIsYYY927d2fz5s1jjDEWHR3NALCrV69KyqelpTFNTU32559/Vnkulbl37x4DwGJjYyXLOnfuzKZNmyZVbuTIkWzAgAGS1wDY/Pnza9z/m3GThkF3ZIlC9ezZE2FhYQgLC8PNmzfRr18/BAYG4vnz5wCAyMhI+Pj4QFtbW7KNv78/xGIxoqKikJ2djeTkZHTq1EmyXk1NDe3atZO8joiIQFFREfr27QsdHR3Jz549e/D06dNq43tzv+WvIyMjKy1bU6z18fTpUwiFQvj7+0uW8fl8dOjQoUI8b547IaTp+O6777B7925ERERUWNehQwd4enpiz549AIDff/8ddnZ26NatG4DX16c324C+fX2rLSMjI0yaNAkBAQEYNGgQfvzxRyQnJ9dpX5XFlpeXh4SEhAplIyMjoaamBj8/P8kyY2NjuLm5VXl9ro3IyEipay1Qdi2na61yokSWKJS2tjacnZ3h7OyMDh064Ndff0V+fj62b98OoKxta1U9c2XtsSsWiwEAJ06ckCTNYWFhiIiIqLGdbG2OK49Yq8L+a/P79n4qO+abiTQhpOno1q0bAgIC8Nlnn1W6furUqZLmBTt37sTkyZMl1wf2Vr+BynC53ArlaurEtHPnTly/fh2dO3fGgQMH4Orqihs3bshyOjKp7NpZ1blUdw2u73HpWqu8KJElSoXD4YDL5aKwsBAA4OHhgbCwMOTn50vKXL16FVwuF66urtDX14elpaXUhbO0tBShoaGS1x4eHhAIBIiPj5ckzeU/tra21cbz9gX5xo0baNmyZaVla4oVANTV1SESiWSsjdecnZ2hrq6OK1euSJYJhULcuXMH7u7utd4fIUQ1ffvttzh27BiuXbtWYd24ceMQHx+Pn376CY8ePcLEiRMl6zw8PHD//n3JtRWoeH0zNTVFbm6u1DVMljGs27RpgyVLluDatWto1aoV9u3bB6B217vKYtPR0YGNjU2Fsh4eHigtLcXNmzcly9LT0xEdHS25Htb1WgsA7u7uUtdaALh27Rpda5UUJbJEoYqLi5GSkoKUlBRERkZizpw5yMvLw6BBgwAA77//PjQ0NDBx4kQ8fPgQFy9exJw5czB+/HiYm5sDAObNm4dvv/0WR44cwePHjzFz5kxkZWVJjqGrq4tPPvkECxYswO7du/H06VPcu3cPmzdvxu7du6uN7+rVq1izZg2io6OxefNmHDx4EPPmzau0rCyxOjg4IDw8HFFRUUhLS5N5yBZtbW189NFHWLhwIU6dOoWIiAhMmzYNBQUFmDJlikz7eFtsbKzUHeqwsDCp0SAIIcrHy8sL77//fqUjqBgaGmL48OFYuHAh+vXrJ5UEjh07FlwuF1OmTEFERAROnjyJ77//Xmp7Pz8/aGlp4bPPPsOTJ0+wb9++KkcaAMquIUuWLMH169fx/PlznDlzRiqZdHBwkFxn0tLSUFxcXOW+SkpKJLH9+++/WL58OWbPng0ut2Ka4uLigiFDhmDatGm4cuUK7t+/j3HjxsHa2hpDhgyRHDsvLw/nz59HWloaCgoKqq3XNy1cuBC7du3Czz//jJiYGKxbtw5//fVXnTvHvXr1qsK1NiUlpU77IpVQWOtc0uxNnDiRAZD86Orqsvbt27NDhw5JlQsPD2c9e/ZkGhoazMjIiE2bNo3l5uZK1guFQjZv3jymp6fHDAwMWFBQEJswYYJUpyqxWMx+/PFH5ubmxvh8PjM1NWUBAQEsJCSkyvjs7e3ZypUr2ahRo5iWlhYzNzdnGzZskCqDtzpN1RRramoq69u3L9PR0WEA2MWLFys99tudvRhjrLCwkM2ZM4eZmJgwgUDA/P392a1btyTryzt7ZWZmVnlOb8Zd2U9V8RBCFKOyDqJxcXFMIBCwyr7Cz58/zwBIOj296fr168zHx4epq6uz1q1bs8OHD0t19mKsrHOXs7Mz09DQYAMHDmTbtm2rsrNXSkoKGzp0KLO0tGTq6urM3t6effHFF5IOWkVFRezdd99lBgYGDADbuXNntef4xRdfMGNjY6ajo8OmTp3KioqKJGXe7jSVkZHBxo8fz/T19ZmmpiYLCAhg0dHRUvudMWMGMzY2ZgDY8uXLKz12ZZ29GGNsy5YtzMnJifH5fObq6sr27Nkjtf7ta39VunfvXum1tqp4SO1xGJOh4QwhzZCDgwPmz59Ps7IQQlTG3r17MW/ePCQlJUFdXb3asnFxcXB0dMS9e/cUNgMXUDaUVlZWFs02SOqk9tMFEUIIIUSpFBQUIDY2FqtXr8b06dNrTGIJaSqojSwhhBCi4tasWYPWrVvD3NwcS5YsUXQ4hDQaalpACCGEEEJUEt2RJYQQQgghKokSWUIIIYQQopIokSWEEEIIISqJRi2oA7FYjKSkJOjq6sptOjxCSNPAGENubi6srKwqHcydlKHrKCGkKrW5jlIiWwdJSUk1Tm1KCGneEhISKp1ek5Sh6yghpCayXEcpka0DXV1dAGUVrKenB6FQiDNnzqBfv37g8/k1vpa3uu5f1u2qK1fbdbIsa071V916qj/Zyilb/eXk5MDW1lZynSCVe/s6WhORSISoqCi4ubmBx+M1dHgKR+fbtNH5Vq8211FKZOug/DGYnp6eJJHV0tKCnp6e5IuvutfyVtf9y7pddeVqu06WZc2p/qpbT/UnWzllrT96XF69t6+jNRGJRNDR0YGenl6z+eKn82266HxlI8t1lBpwEUIIIYQQlUR3ZBvY1Sdp+CfsBTgZHDgm58LD2gBqPPr7gRBCCCGkvpplIpuQkIDx48cjNTUVampqWLZsGUaOHNkgx7oU/QoH7iQC4GH/luvQ4HPhaaUPbxt9tLY1gLeNARyMtegxJCGEEEJILTXLRFZNTQ0bNmxA69atkZqairZt22LAgAHQ1taW+7F6u5uDMTEu3n+G5GJ15BWXIvR5JkKfZ0rK6GmowdvGAN42+vCxNYCPjQEs9DXkHgshhNRk9erV+Ouvv/D48WNoamqic+fO+O677+Dm5iYpwxjDypUrsW3bNmRmZsLPzw+bN2+Gp6enAiMnhDRHzTKRtbS0hKWlJQDAzMwMRkZGyMjIaJBEtoOjEdrY6MKz9An69++JFzklCH+RhfsJ2bj/IguPknKQU1SKK0/ScOVJmmQ7M10BvG0M4GOjD2/bsn8NtNTlHh8hhLwpJCQEs2bNQvv27VFaWoqlS5eiX79+iIiIkFwj16xZg3Xr1mHXrl1wdXXF119/jb59+yIqKopGayCENCqVTGQvXbqEtWvXIjQ0FMnJyThy5AiGDh0qVWbLli1Yu3YtkpOT4enpiQ0bNqBr164V9nXnzh2IxeJGGc+Qy+WghakOWpjqYFibsnHRhCIxolJyEf4iuyzBfZGN6Je5SM0txrnIlzgX+VKyvb2x1uvk1sYAraz1oKWukm8hIURJnTp1Sur1zp07YWZmhtDQUHTr1g2MMWzYsAFLly7F8OHDAQC7d++Gubk59u3bh+nTpysibEJIM6WSWVB+fj58fHwwefJkvPvuuxXWHzhwAPPnz8eWLVvg7++PX375BYGBgYiIiICdnZ2kXHp6OiZMmIAdO3Y0ZvhS+DwuWlnro5W1Psb6lcVWWCLCo6Rs3P8vuQ1/kY3YtHw8Ty/A8/QCHLufBADgcgBXc120stIDJ5MDu8QceNoYQl2NOpMRQuQjOzsbAGBkZAQAiI2NRUpKCvr16ycpIxAI0L17d1y7do0SWUJIo1LJRDYwMBCBgYFVrl+3bh2mTJmCqVOnAgA2bNiA06dPY+vWrVi9ejUAoLi4GMOGDcOSJUvQuXPnao9XXFyM4uJiyeucnBwAZeNPlv+Uv5bl35qocQAfa134WOsCfmV3brMLhXiQmIMHidl4kJiD8MRsvMwpxuOUXDxOyQXAw8Gfb0BdjQt3C114W+vBy1ofXtZ6cDLRBpdbsTOZrHFVV66262RZVt/6q6267l8e9Vfdeqo/2copW/01VD0rAmMMQUFB6NKlC1q1agUASElJAQCYm5tLlTU3N8fz58+r3FdV11GRSASRSFRjLOVlZCnbFND5Nm10vrKVlwWHMcbqFJWS4HA4Uk0LSkpKoKWlhYMHD2LYsGGScvPmzUNYWBhCQkLAGMPYsWPh5uaGFStW1HiMFStWYOXKlRWW79u3D1paWvI6lVrLLgHi8zj//ZT9v0BUMWEVcBmstQEbbSb5sdAEaBQwQuSvoKAAY8eORXZ2tkwD/SuzWbNm4cSJE7hy5Ypkmshr167B398fSUlJkr4GADBt2jQkJCRUaJpQrqrr6PXr16Gjo9MwJ0CUUqFQjFf5peByOLDRfz3JSFGpGOo8Drg0ik+zl5eXh06dOsl0HVXJO7LVSUtLg0gkqvRuQfmdhKtXr+LAgQPw9vbG0aNHAQC///47vLy8Kt3nkiVLEBQUJHldPnVav379JDN7nT17Fn379pXMBFTda3kr33+fPn2QnFeKBy9e37V9lJSDQqEYz3KBZ7mvLw7qaly4mWlDV5SNfu3c4WVjADdzHQj4FWfcqC7+2q6TZZmi6q+2+5d1u5rKVbWe6k+2cspWf+V3GlXdnDlz8M8//+DSpUtSc51bWFgAKLsz+2Yim5qaWuG6+6aqrqNubm4yz+wVHR0NV1fXZjMTkiqdb3ahEI+ScsDhAJ2cjCXLZ+27h/DEbKwb6Y32DmXNU4KjXmHmgVB4Wunhn1llT0RFIhHe23oZ4S+L8cNIbwz0LvtspWQX4WDoC9gba2Gwj5Vkv4wxlR62UtXe3/qq7fnW5jra5BLZcm9/wN/80Hfp0gVisVjmfQkEAggEggrL+Xy+1BdbbV/Lm7q6OpzNteFsro9hvmXLRGKGZ6/y8DApG48ScyT/5haX4kFSLgAurp2IAgCocTlwNtMpa7NrpYdW1vpwt9SD+n8xVxd/bdfJsqyx66+u+5d1u5rKVbWe6k+2cspSfw1Zx42BMYY5c+bgyJEjCA4OhqOjo9R6R0dHWFhY4OzZs2jTpg2AsidhISEh+O6776rcb1XXUR6PV6sv8tqWV3XKeL5nI17iUVI2hrexgZ1x2VPJ289fYfrvofCxNcDfs8wkZdPySpCUVYSMglLJeeho8GGoxYeeBl/q3DIKRSgVMxhoCyTLn6UXYMP5J3A118Gwtq87ZU/eeQuPknLwzTAv9PUo+wMqNbcIZx69hK2RFrq7mjZ4PciDMr6/DUnW861NnTS5RNbExAQ8Hk9y97VcTXcLmioelwMXc124mOtiWNl3DsRihoTMAtyPz8A/l8NQpGWKiORcZOSXSNrcHgotK8vhAI7GWjBgXCTqxcLbxgieVnow1KahwAhpimbNmoV9+/bh77//hq6uruRaqq+vD01NTXA4HMyfPx+rVq2Ci4sLXFxcsGrVKmhpaWHs2LEKjp7IU35xKa4/TUdmQQlGtnudRG4NfoK78VlwNNGWJLJ2RlpoYaoNeyPp5nbLB3lCxBgcTV4Pb+nnZIx7X/TD29YHWsLExhEmupqSZUba6nivvS1MdKT/CErOLkJqbjEEb3Rufpyci8+PPoSbua5UIjt7313EpuXj436u6NWy+eUBTV2TS2TV1dXh6+uLs2fPSrWRPXv2LIYMGaLAyJQHl8uBvbE2rPTUweLFGDDAF2pqakjOLsLD/5ojPErKxsPEHKTkFOFZWgEALu6ejpHsw9pAEx5WenA310FhBgdtsotga6ym0o96CCHA1q1bAQA9evSQWr5z505MmjQJALBo0SIUFhZi5syZkgkRzpw5Q2PIqricIiHEYiYZszzqZS6m7rkDAy0+RvjaSK7vA7ws0cJUB1YGrxNOd0s9nP+4R4V9etnoy3x8Po8DKwNNqbtxnlb6+PZd7wpl90zpgNScYtgbv06cdTTU0MfdHDaGmlJlY17mIeplLjT5r1OeqJRc/HErHj3cTNHDzQxEdalkIpuXl4cnT55IXsfGxiIsLAxGRkaws7NDUFAQxo8fj3bt2qFTp07Ytm0b4uPjMWPGDAVGrdw4nLILiJWBJvp5WkiWv8otxv34dBwJvgORnhUiU3LxPL0AiVmFSMwqxNmIlwB42B51CUba6vC00oOnlT48rfTgZqYFsUp3JSSk+ZGl/y+Hw8GKFStk6ixLVMPa04/xc8gzzOvtgrm9XQAAXtZl13IPSz0UCkWSccundnVSZKgAADNdDZjpSs+A2dbOEDsmtqtQduPYNniamoc2dgaSZRejUrHrWhxeZBZIJbKhzzPRyloPArXm87hf1alkInvnzh307NlT8rq8A8HEiROxa9cujB49Gunp6fjyyy+RnJyMVq1a4eTJk7C3t1dUyCrLVFeA7q6myH/CMGCAD/h8PnKKhIhIysGjpBw8fJGJG1FJSC3mIiO/BJdj0nA55vUMZQIuD3uTb6GVtQE8/ktuS2VvnkwIIUSOGGN4mJiD4+FJmNvbBdqCsjTAykATIjFDbFq+pCyfx8WJuRUnElI1rua6cDWXflrga2+I8R3t0dbeQLKsoKQU7227Dg0+D6fmd4O1gSaI8lPJRLZHjx413jWYOXMmZs6c2UgRNS96Gnx0dDJGRydjCIU2OHkyAb369sGz9KKyzmT/JbmPk3NQXCrGnedZuPM8S7I9j8PDbwnX0c7eCJ2dTdDOVrWHKCKEEFXBGDD99ztIyi5CW3tDBPz3BG6gtxW6OJvA3lj+U7Uro/YORpJRFMolZRXBSFsdGnwerPRf3+099TAFmuo8dG5hDL6M41Y+Sc2FuZ4GdDVUu/OnKlDJRJYoHw0+Dz62BvCxNZAsKywqxq4jp2Di3BqPX+bjYWI2IpJzkFtUikdJuXiUlIvd15+DywFstHiIETzBwNbWcDLSqPpAhBBCZFJQUorDdxNxOzYDP40p6+3L5XIwsp0tnrzKg4Xe62utviYf+prNO+lyNtPB9U97IzmnSNIemDGG7049RmxaPn4a00ZqCLCqMMbw2ZGHcDbTwaphlQ/rSeSHElnSYNR4XFhpAQNaW0mGJCopKcHvR/6FiUtb3I7PwrUn6XiWlo/4fA42BT/DpuBncDDWgosGF57pBXC2kL2jACGEkNeKhGJ8dSwCJSIxZvV0hptF2eP1BX1dFRyZ8uJyOVJNCopLxejibAKhSIzeLV+3pb0Vm4Hk7EL0b2VRoT3tiQfJuBWbgVuxGRjoZYnOziaNFn9zRIksaVQcDgcmGsAALwsM+W9MwPi0XPx85CJe8i1w+Uk64tILEAcuzm64An9nY4xqaw0RdRojhJAqCUVinAhPRmJWIWb1dAZQNnTV1K6OMNYRwEKfnnTVhQafh6+GtqowAcOmi09wKfoV5vZyRlA/N8nywhIRVp2IlLxe/Fc4Ts/vJukoR+SPapYonKW+BvzMGAYMaINiMQdnHyZh29n7eJzNxdUn6bj6JB3GAh5yTBPwXgd7aFQy+xghhDRnDxOzMf9AGNR5XIxsZyPp0b+of0sFR9Y0vJnEMsbQzt4QT17mYoTv6/F1U7KLsPFCDJKyiyTLEjIK8f3paHwxyKNR421OZGu1XI2ioqKaCxEiIx2BGgZ6W2KGuxgXg7pibi9nGGnzkV7MwYpjkejy3UXsuPwMxaUiRYdKCCEKk5lfgrvxmZLXbewM0c/DHHN6OdPQUQ2Mw+Fgbm8XXFncSzIhBFA2hNnem/EVyu+8FovQ5xmNGWKzUqdEViwW46uvvoK1tTV0dHTw7NkzAMCyZcvw66+/yjVA0nxZG2giqJ8bgoO64V0HEaz0NZCWV4yvT0Si9w8hOHovEWIaqJYQ0szci89El+8uYNbeu1J/1G+b0A5zers0+05bjYXLlb5Le+NZeqXlGAMWHgpHkZBuwDSEOiWyX3/9NXbt2oU1a9ZAXf31VKVeXl7YsWOH3IIjBAA01XnoZslwbkEXfPeuF8z1BHiRWYj5B8IwaNMV3Imjv3QJIc2Hu6UedDTUYKiljpfZxYoOhwC4/iwdiVlVP6F+9iofP52PqXI9qbs6JbJ79uzBtm3b8P7770tNJeft7Y3Hjx/LLThC3sTncTG6vR2CP+mJhQFu0BGo4VFSDkb8fB2fHLyP9Dy6oBNCmpZSkRi/33iOoANhkmUafB4OzeiME3O7SD3aJopRKhLjy2MRNZb75dIzPHiR3QgRNS91SmQTExPh7OxcYblYLIZQKKx3UIRUR1Odh1k9nRGysAdGtytraH8o9AV6/RCC/914DhE1NyCENBFJ2UX48tgj/HUvEdeevp410dZIS6oDElGcP27F43FKbo3lRGKGhYfuIz49HwUlpY0QWfNQp1ELPD09cfny5QpTvh48eBBt2rSRS2CE1MRYR4DvRnhjVHtbLDv6EBHJOfj86EMcDH2BNe96S8ZMJIQQVVJYIoL6fw877Yy0MLunCwy0+BVmoiLKYVR7WwR6WSK7UIicQiFyikqRXShEdqEQuUVC5BSWvc4pEiK7oATT9oQiu7AE8/0M4O6u6OhVX50S2eXLl2P8+PFITEyEWCzGX3/9haioKOzZswfHjx+Xd4yEVMvX3hD/zPbH/248xw9nonE/IQsDN17GrJ7OmNnDGepq9R6cgxBCGpxQJMbW4KfYfS0Of8/qLFk+r4+LAqMiNRGo8SDQ4cFER1Bj2dTcIry79RoyCoQw0abRJeShTt/wgwYNwoEDB3Dy5ElwOBx88cUXiIyMxLFjx9C3b195x0hIjdR4XEzyd8TZoO7o424OoYhhw7kYDNp4BWEJWYoOjxBCasTjcBAclYr0/BIcvpuo6HBIAzDT1cDZBd2xc6IvLHRejy4R+jwDJaViBUamuuo8IUJAQAACAgLkGQsh9Wahr4HtE3xxPDwZK/55hKiXuRi+5SqmdHFEUF83aKrTX8CEEOVRWCKCBp8LDocDLpeDVcO9EP0yDwM8zajzdBOlweeho5MxIiNTAQBxafkYu/0m7I218L8pfjDTo1nYaoOeuZImh8PhYJCPFc4GdcewNtYQM2D75VgEbLgk1VmCEEIU6U5cBvr/eAn/e2MQ/ZYWehjsY0UduZqRxKxC6AjUYKarIVPzBCJN5juyhoaGMv9iZWTQuJ5E8Yy01bF+dGsM8rHE0iMPEZ9RgLHbb2Ksnx2WBLaErgYNGk4IUZwHidl4nl6AXVdjMaa9LdR4dG+pOfJ3NsG5oO4QisWSSRZEYoaEjAI4mGgrODrlJ3Miu2HDBsn/09PT8fXXXyMgIACdOnUCAFy/fh2nT5/GsmXL5B4kIfXRq6U5ziwwwrf/lk0fuO9mPC4+TsWq4V7o6Wam6PAIIc0IY0xyU2hiJwcUl4ox1s+OkthmzlBbXer1L5ee4sdzMfhqSCuMam+roKhUg8yJ7MSJEyX/f/fdd/Hll19i9uzZkmVz587Fpk2bcO7cOSxYsEC+URJST7oafHwzzAsDva2w+HA44jMKMHnnbQxva40lAa6KDo8Q0gz8HZaIY/eT8Mv4duBxy9rEzujeQtFhESXDGMPd51koLhUD1MKkRnX6E/D06dPo379/heUBAQE4d+5cvYMipKF0amGMU/O7YkoXR3A4wF93ExG48Srup9PVghDScF7lFuOzvx7gXGQqDoUmKDocosQ4HA62jffFrxPbYaSvjWQ5YzTZT2XqlMgaGxvjyJEjFZYfPXoUxsbG9Q6KkIakpa6GZQM9cGhGZ7Qw1UZaXgl+i+Zh7v77SKNpbgkhDcBUV4BvhnlhXm8XjPClR8WkelwuB73dzSXNUIpLRRiz/QaO3Huh4MiUT50S2ZUrV+LTTz/FO++8g6+//hpff/01Bg4ciCVLlmDlypXyjpGQBuFrb4gTc7vio26O4ILh30cv0XddCP4OS6S/fEmzdunSJQwaNAhWVmW9548ePSq1ftKkSeBwOFI/HTt2VEywSux2XAbi0vIlr4e2scaCvq7gcekJEKmdP27G48azDKz4JwJZBSWKDkep1CmRnTRpEq5duwYDAwP89ddfOHz4MPT19XH16lVMmjRJziHK3/Hjx+Hm5gYXFxfs2LFD0eEQBdLg8xDU1wVBXiK0tNBFZoEQ8/aHYdqeO0jJLlJ0eIQoRH5+Pnx8fLBp06Yqy/Tv3x/JycmSn5MnTzZihMrv1MMUjNl2Ax/+fgf5xaWKDoeouAmdHDCnlzM2jmkDAy31mjdoRuo8IYKfnx/27t0rz1gaRWlpKYKCgnDx4kXo6emhbdu2GD58OIyMaA7r5sxWB/jrXT/8ejUeP12IwbnIVNyMDcHn77hjVDtbGtORNCuBgYEIDAystoxAIICFhUUjRaR62tgZwEhbHa7muqDLB6kvLpeDj/u5SS17kpoHdR4XdsZaCopKOdQpkY2Pj692vZ2dXZ2CaQy3bt2Cp6cnrK2tAQADBgzA6dOnMWbMGAVHRhSNz+NiTm8XBLSywMKD93H/RTYWH36AY/eTsXq4F2yNmvfFgpA3BQcHw8zMDAYGBujevTu++eYbmJlVPZxdcXExiotft0HPyckBAIhEIohEohqPV15GlrLKwESbj78+6gQLPQE4HE6t41a1860vOt/aScsrxqSdt1BQXIrfJrWDl7W+PMOTu9qeb23qpU6JrIODQ7V3qBryg3jp0iWsXbsWoaGhSE5OxpEjRzB06FCpMlu2bMHatWuRnJwMT09PbNiwAV27dgUAJCUlSZJYALCxsUFiIs1pTV5zNdfF4Y8647ersfjhTDSuPElDwIZLWNy/JcZ3tJcMWE1IcxUYGIiRI0fC3t4esbGxWLZsGXr16oXQ0FAIBJXPTLR69epK+1BERUVBR0dH5mNHR0fXOe6GlFsswporaRjrbQB309d1kJVUv/0q6/k2FDpf2WQUlEKDI4KIx5CXmoDInHp+0BqJrOebl5cn8z7rlMjeu3dP6rVQKMS9e/ewbt06fPPNN3XZpczK225NnjwZ7777boX1Bw4cwPz587Flyxb4+/vjl19+QWBgICIiImBnZ1dpJx56bEzepsbj4sNuLdDXwwKLD4XjVlwGlv/zCMfDk/Ddu95wMpX9i5eQpmb06NGS/7dq1Qrt2rWDvb09Tpw4geHDh1e6zZIlSxAUFCR5nZOTA1tbW7i5uUFPT6/GY4pEIkRHR8PV1RU8Hq/+JyFnK49H4F5yEdKLc3B2fpd6T3Cg7Ocrb3S+tXfEqxRZBUJYGWjKOTr5q+35lj+xkUWdElkfH58Ky9q1awcrKyusXbu2yguZPNTUdmvdunWYMmUKpk6dCqBsRrLTp09j69atWL16NaytraXuwL548QJ+fn7VHrOqR2JCoVDyU/5aln/lra77l3W76srVdp0sy5Sp/mz01fH7ZF/8cTsBa87E4HZcJgJ/vIx5vVtgXHsrmeKqKf6q1jeF+pPHdqpWfw1Vz8rM0tIS9vb2iImJqbKMQCCo9G4tj8er1Rd5bcs3lk8D3fEypxhBfd0gUJff9NfKer4Nhc5XdrqaPOhqvv6duvksHVEvczGhk4OcopM/Wc+3NnXCYXIcZygmJgatW7dGfn5+zYXlgMPhSDUtKCkpgZaWFg4ePIhhw4ZJys2bNw9hYWEICQlBaWkp3N3dERwcLOnsdePGjWrHv12xYkWlj8T27dsHLS1qN9lcpBcBB55xEZVddqfFTpthjLMIVvQRIG8oKCjA2LFjkZ2dLdOdRmX39nW2Munp6bC2tsa2bdswYcIEmfabk5MDfX19metJJBIhMjIS7u7uSpPo5BWXQkdQ5z7T1VLG821IdL71k5BRgIANl1BQIsLP49qifytLOUQpP7U939pcH+r0G/j2LV/GGJKTk7FixQq4uLjUZZdykZaWBpFIBHNzc6nl5ubmSElJAQCoqanhhx9+QM+ePSEWi7Fo0aIaJ3Go6pFYv379oKenB6FQiLNnz6Jv377g8/k1vpa3uu5f1u2qK1fbdbIsU+b6G8cYDt1NwupTUYjPL8X34Tx81M0RM3o4Q6BW+aPEmvZf1fqmWH912U7V6q82j8SUVV5eHp48eSJ5HRsbi7CwMBgZGcHIyAgrVqzAu+++C0tLS8TFxeGzzz6DiYmJ1A2Epu5RUjYm/nYLS99xx7A2NjVvQEgDsjHUxAf+jrj/Igs93KrudNkU1SmRNTAwqNCulDEGW1tb7N+/Xy6B1Udlsb25bPDgwRg8eLDM+6vqkRifz5f6Yqvta3mr6/5l3a66crVdJ8syZa2/sR0d0NvDAksOh+NC1CtsConDqcg0rBrmhQ6OVQ/jVtP+q1rf1OqvrtupSv01ZB03ljt37qBnz56S1+V/yE+cOBFbt27FgwcPsGfPHmRlZcHS0hI9e/bEgQMHoKurq6iQG92Ru4lIyyvB7mvPMdjHmiY5IArF4XDwcT9XlIoZ+PVsn61q6pTIXrx4Ueo1l8uFqakpnJ2doabWMI9ZZGFiYgIejye5+1ouNTW1wl1aQurDXE8DP7/fGt/8fgrHkzTxJDUPo365jvfa22JJoDv0tVQ/mSHNV48ePaqd3e706dONGI1y+myAOywNNDGynQ0lsUQpcDgc8HmvP4v7bsYju1CIj3q0UGBUDa9OaTuHw4G/vz+6d++O7t27o2vXrmjZsiWAsuGxFEVdXR2+vr44e/as1PKzZ8+ic+fOCoqKNFUcDgdtTRhOzfXHmA5lc6fvv52A3uuCaZpbQpqgrIISye81l8vBlC6O0NOgP1qJ8nmYmI3PjjzAd6ceIzgqVdHhNKg6JbI9e/ZERkZGheXZ2dlSj6MaQl5eHsLCwhAWFgbgddut8kkagoKCsGPHDvz222+IjIzEggULEB8fjxkzZjRoXKT5MtDiY/Vwb/w5vROczXSQlleCefvDMHHnbcSnFyg6PEKIHKRkF+Gdn65g9b+P6Y9UovRaWesjqK8rZnRvge6upooOp0HVqR3A221Oy6Wnp0NbW7veQVWnurZbu3btwujRo5Geno4vv/wSycnJaNWqFU6ePAl7e/sGjYuQDo5GODG3C34JeYZNF57gUvQr9NsQgtk9WsBKrOjoCCH1cSn6FRKzCnE24iVm9XSGvibdiSXKbW5vxXW+b0y1SmTLx4flcDiYNGmSVAcokUiE8PDwBn+EX1PbLQCYOXMmZs6c2aBxEFIZgRoPc3u7YKC3JZYeeYjrz9Lx/dkYWGrxYOOThQ5OTfsvY0KaqlHtbaGpzkNrWwNKYonKEYsZ1p2NRv9WFmil5NPZ1latmhbo6+tDX18fjDHo6upKXuvr68PCwgIffvgh/ve//zVUrISoDCdTHeyb5oe1I7xhoMlHcgEHo7ffwrKjD5FT1PwGzCdEFTHGUCp6/ThlkI8VbI1o4GiierZffoZNF59g8q7byG1i30G1uiO7c+dOAICDgwM++eSTBm9GQIgq43A4GNnOFl2djTDn1wu4/YqL3288x6lHKfj8HXcM9rGi6ZEJUWLfn4nC4+RcbBzbBlrqihuRh5D6GuNnh5MPkjGxswN0m1gHxTp19lq+fDklsYTIyFhbHeOcxdg9yReOJtp4lVuMefvDMGb7DcS8zFV0eISQSrzILMD2y7E4/zgVl2PSFB0OIfWip8HHXzP9Mbxt05u8Q+Y/Mdu2bYvz58/D0NAQbdq0qfZO0t27d+USHCFNSecWxjg1vyu2hZQ94rnxLAOBP17GpM72cBUpOjpCyJtsDLVw4MOOuPEsAwGeFooOh5B6e3O84yKhCGcjXmKQj5UCI5IPmRPZIUOGSDp3VTfnNiGkagI1Hub0dsHQNtZYeSwC5yJfYseVOOir86DhmIJBrW2ouQEhSqKNnSHa2BkqOgxC5KpIKMLIn6/jQWI2GIDBKp7MypzILl++vNL/E0Jqz9ZICzsmtsP5yJdY/s8jvMgsxNwD4Th4NwkrBnuihamOokMkpNkRisT45kQkPuzmBCsDTUWHQ0iD0ODz4O9sgsSsQpjqCGreQMnVq/V6SUkJUlNTIRZLD5JpZ2dXr6AIaS56u5ujg70+Fv52FhdS1HA5Jg39N1zCh92cML2Lg6LDI6RZ+el8DHZdi0NwVCrOBXWHWjObs540HwsD3DDZ3wHmehqKDqXe6vRbGh0dja5du0JTUxP29vZwdHSEo6MjHBwc4OjoKO8YCWnSNPg8BNqKcXJ2Z/RwM4VQxLD54lP0/+kqwtI5NIsQIY3k3bY28LLWx+L+LSmJJU0aj8uRSmLzi0tV9rumTndkJ0+eDDU1NRw/fhyWlpbUpo8QObA31sLOSe1xJuIlvjwWgcSsQuzM5uHRb3ewfLAnPK2a1iDWhCgbBxNtHJ3lL9UphpCmLvR5Bub+EYbZvZwxpoPqPVGvUyIbFhaG0NBQtGzZUt7xENKscTgcBHhaoJuLKbZcjMbPwU9xKy4TgzZewej2dpjXy0nRIRLSpIjFDC8yC2FnXDbRASWxpLm5E5eJxKxC7Loah5G+Nir3NKJOiayHhwfS0mhcPUIaiqY6D3N7OcMoOxp3Smxw4mEK/rgVj+PhSehtzkGfUjH4TWtMa0IU4pdLz/Dj+Wh8PdQLI3yb3hibhNRkWlcnMADv+9mpXBIL1LGN7HfffYdFixYhODgY6enpyMnJkfohhMiHkQDYMNobf07vBE8rPeQWleLocx4Gbb6Gi1Gpig6PEJUmFjNce5qGIqEYorc6LRPSXHC5HMzo3kJlZ/yq0x3ZPn36AAB69+4ttZwxBg6HA5GIRncnRJ46OBrhn9ldcOBWHFadeIRnaQWYvPM2eriZ4tMAV0WHR4hK4nI52D25Ay5GpaJXSzNFh0OIUrgU/Qo6GmpoqyJjKNcpkb148aK84yCE1IDH5WCkrw24ieGIUW+BPTfiERz1Cpdj0tDRlIsOecWwNFTNv6gJURQul4Pe7uaKDoMQpfDnnQQsOhQOJxNtnJzXFRp8nqJDqlGdEtnu3bvLOw5CiIw01YBP+7thXCdHfHMiAuciU3H1JRd91l/B9O4tMLEjtfMjpDoxL3MRHPUKH3RxpM5dhLwhwMMC6/Si0c3VFKoyGledEtnw8PBKl3M4HGhoaMDOzk4ynS0hpGE4mmhjx8T2uBL9EksO3EZCvgjrzkbjfzeeo5cpB/1E1CGMkLeJxAwLD4UjLCELafnFWBLoruiQCFEa+lp8nPu4O3QE9Zovq1HVqbNX69at0aZNmwo/rVu3RsuWLaGvr4+JEyeiqKhI3vESQt7i52iEIC8R1o/0gq2RJlJzi7H/GQ+Dt1zHhccvVXaQa6I4ly5dwqBBg2BlZQUOh4OjR49KrWeMYcWKFbCysoKmpiZ69OiBR48eKSbYWuJygPfa28LaQBOTO9MEPoS8TZWSWKCOieyRI0fg4uKCbdu2ISwsDPfu3cO2bdvg5uaGffv24ddff8WFCxfw+eefyzteQkgluBxgoLclzgV1x2eBbtDiMcSk5uODXXcwfucdxOcpOkKiSvLz8+Hj44NNmzZVun7NmjVYt24dNm3ahNu3b8PCwgJ9+/ZFbm5uI0daexwOB+91sEPwwh6w0Ff96TkJaSivcovxycH72HM9TtGhVKtOafc333yDH3/8EQEBAZJl3t7esLGxwbJly3Dr1i1oa2vj448/xvfffy+3YAkh1ROo8TC5sz100x7hqcAZe27E42ZsJm5CDQ9EYVgY0BIu5rqKDpMoucDAQAQGBla6jjGGDRs2YOnSpRg+fDgAYPfu3TA3N8e+ffswffr0xgy1VspH1gEAvgqOl0lIYzoTkYJDoS9wLvIlRvjaQEtdOe/U1imqBw8ewN7evsJye3t7PHjwAEBZ84Pk5OT6RUcIqRMtNWBxgCsm+Tvi+1OP8ff9JJyJSMXZyFQMa22N+X1cJTMZEVIbsbGxSElJQb9+/STLBAIBunfvjmvXrlWZyBYXF6O4uFjyunzMcZFIJNOQjeVl6jq84+24DHx7KgorBnnAy1r5p3uu7/mqGjpf5TOyrTXuPs/E2A62EPDqN7Rqbc+3NseqUyLbsmVLfPvtt9i2bRvU1dUBAEKhEN9++61k2trExESYmyvnkCYJCQkYP348UlNToaamhmXLlmHkyJGKDosQubMx1MLaEV5wQwLulljhbGQq/rqXiH/uJ2FUe1vM7eVCj1dJraSkpABAheu7ubk5nj9/XuV2q1evxsqVKyssj4qKgo6OjszHj46Olrnsm746k4JHqcX4+cwDzO5oXKd9KEJdz1dV0fkql8keakBeMiIj5XNjUtbzzcuTvT1cnRLZzZs3Y/DgwbCxsYG3tzc4HA7Cw8MhEolw/PhxAMCzZ88wc+bMuuy+wampqWHDhg1o3bo1UlNT0bZtWwwYMADa2tqKDo2QBmGlBUwd0RqRL/Px/ZloXIp+hX0343Eo9AUmdLTHRz1awFiHRhohsit/RF/uzcf2lVmyZAmCgoIkr3NycmBraws3Nzfo6enVeDyRSITo6Gi4urqCx6v92JbbrByxOfgp5vV2hokKfNbre76qhs5X+RWUlEKTz6v297wqtT3f2swSW6dEtnPnzoiLi8P//vc/REdHgzGGESNGYOzYsdDVLWt/N378+LrsulFYWlrC0tISAGBmZgYjIyNkZGRQIkuaPG8bA+z5oANuPkvH92eicDsuEzuuxOKPW/GY7O+IKV0cYaitrugwiRKzsLAAUHZntvw6CgCpqanVPoUTCASVDsvI4/Fq9UVe2/LlrI20sWq4d623U7S6nq+qovNVTvtvxeP7M1H4drg3+njU/Wm7rOdbmzqpc2t3HR0dzJgxA+vWrcP69esxffp0SRJbXzUN/QIAW7ZsgaOjIzQ0NODr64vLly/X6Vh37tyBWCyGra1tPaMmRHX4ORnjz+mdsGtye3hZ6yO/RIRNF5+gy3cXsObUY2Tklyg6RKKkHB0dYWFhgbNnz0qWlZSUICQkBJ07d1ZgZJUrEipvG0RCVEV8RgHS8kqw/3aCokOpoF5d0CIiIhAfH4+SEukvvcGDB9crqPKhXyZPnox33323wvoDBw5g/vz52LJlC/z9/fHLL78gMDAQERERsLOzAwD4+vpKdSwod+bMGVhZWQEA0tPTMWHCBOzYsaNe8RKiijgcDnq4maG7qylOP3qJH8/HIDI5B1uCn2LXtTiM72SPaV2dVOIxLJGvvLw8PHnyRPI6NjYWYWFhMDIygp2dHebPn49Vq1bBxcUFLi4uWLVqFbS0tDB27FgFRl1RTpEQvX8IwYBWFljUvyW0VWx8TEKUxfTuLWBtqIlR7ZTvpl+dfqufPXuGYcOG4cGDB+BwOJIB18vbTdS3F151Q78AwLp16zBlyhRMnToVALBhwwacPn0aW7duxerVqwEAoaGh1R6juLgYw4YNw5IlS2q8i1BVb1uhUCj5KX8ty7/yVtf9y7pddeVqu06WZc2p/qpb35j119vNGL1cjXD+8StsCn6KR0m5+CXkGfZci8PYDraY4u8AU93KE1qqv8rjUWV37txBz549Ja/L27ZOnDgRu3btwqJFi1BYWIiZM2ciMzMTfn5+OHPmjNyeysnLqQcpeJVbjGtP01ViznhClJW+Jh/v+1UcrUoZcFgdpv0ZNGgQeDwetm/fDicnJ9y6dQvp6emScWO7du0qvwA5HBw5cgRDhw4FUPYIS0tLCwcPHsSwYcMk5ebNm4ewsDCEhITUuE/GGMaOHQs3NzesWLGixvIrVqyotLftvn37oKVFQxiRpoUxICKLg1MJXMTn/zfmJoehszlDb2sx9KkJbbUKCgowduxYZGdny9SJqbnKycmBvr6+zPUkEokQGRkJd3f3WrWfu/Y0DWBAZ2eT+oTb6Op6vqqKzld1MMaQlldS5c2NytT2fGtzfajTHdnr16/jwoULMDU1BZfLBZfLRZcuXbB69WrMnTsX9+7dq8tuZZKWlgaRSFTp0C/lw8LU5OrVqzhw4AC8vb0l7W9///13eHl5VVq+qt62/fr1g56eHoRCIc6ePYu+ffuCz+fX+Fre6rp/Wberrlxt18myrDnVX3XrFVl/7wD4hDFcfpKOjRefIiwhGyEpHFxPU8OItlaY2sUBtoZataqH2taLrOWUrf5q09uWNLzOLVQrgSVEmSVkFGD+gTCkZBcheGEPpZhYpE6JrEgkkoz7Z2JigqSkJLi5ucHe3h5RUVFyDbAqtR365U1dunSBWCyW+VhV9bbl8/lSX2y1fS1vdd2/rNtVV66262RZ1pzqr7r1iqy/3h6W6OVugStP0vDjuRjceZ6Jfbde4MCdRAz0tsRHPVqghbFmnfdfm+1Upf4a8jNKZFMkFIHH5SjFlywhTYmprgDP0wuQUyTEg8RstLUzVHRIdUtkW7VqhfDwcDg5OcHPzw9r1qyBuro6tm3bBicnJ3nHKMXExAQ8Hq/C3deahn4hhNQNh8NBVxdTdHE2wY1nGdga8hSXol/h77Ak/B2WhB6uJvCm3I0okd3X4rDn+nMs6u+GIa2tFR0OIU2GBp+HjWPaoIWpNsz0lGMynTr9ufr5559L7mh+/fXXeP78Obp27YqTJ0/ixx9/lGuAb1NXV4evr6/U0C8AcPbsWaUc+oWQpoLD4aBTC2Ps+aADjs/pgne8LcHlAMHRafjpkRre234LFx6/RB2a3RMiN4wx/HM/CYlZhSgplf3JGyFENp1aGCtNEgvU8Y5sQECA5P9OTk6IiIhARkYGDA0N6zTjw9tqGvolKCgI48ePR7t27dCpUyds27YN8fHxmDFjRr2PTQipWStrfWwe2xaxafn4OfgJDoUmIDQ+Cx/suoOWFrqY0b0FBnpbQo0e7ZJGxuFwcPijzvgnLInuxhLSwDLzS2CgxZdL7ldXtUpkP/jgA5nK/fbbb3UKplxNQ7+MHj0a6enp+PLLL5GcnIxWrVrh5MmTsLdXzqEhCGmqHE208fUQD3iyOMRrOuOPWwl4nJKL+QfC8P2ZKEzp4ohR7Wxp/E7SqDT4PIxqr3zjXRLSVDDG8NmRBzgcmoj90zsqtK1srb5ddu3aBXt7e7Rp06ZBHx/26NGjxv3PnDkTM2fObLAYCCGy01cHFge4Yk4vV/x+Iw47r8bhRWYhVh6LwPqz0Xi/oz0mdXaAuRI9jiJNj1Akpg5ehDQCDoeDklKGEpEYFx+nqk4iO2PGDOzfvx/Pnj3DBx98gHHjxsHIyKihYiOEqBh9LT5m93LBlC5OOHT3BX69/Axx6QXYGvwUOy4/w2Afa0zr5oiWFjS+ak1OnToFHR0ddOnSBQCwefNmbN++HR4eHti8eTMMDRXfW1jZzN8fhqzCEiwJdEcra31Fh0NIkza7lzPGd7JHa1sDhcZRqz9dt2zZguTkZCxevBjHjh2Dra0tRo0ahdOnT1MHD0KIhKY6D+M72uP8xz3wy3hftHcwhFDEcPjuC/TfcBnjf72JK0/SQZeNqi1cuFAyJu2DBw/w8ccfY8CAAXj27JnUuNakTHaBEGcjX+Lqk3So8RTXXo+Q5sLRRFvhSSxQh85eAoEAY8aMwZgxY/D8+XPs2rULM2fOhFAoREREhGR8WUII4XE5CPC0QICnBe7FZ2LH5Vj8+zAZl2PScDkmDVZaPJRYJWFoW1uoq9Ej4TfFxsbCw8MDAHD48GEMHDgQq1atwt27dzFgwAAFR6d89LX4uPBxd1yMekV3/AlpZGJx2V0JLrfx/4is1zcHh8MBh8MBY6xWEwwQQpqfNnaG2Px+W4Qs7IlJnR2gpc5DUgEHi/56iK5rLmBr8FNkFwgVHabSUFdXR0FBAQDg3Llz6NevHwDAyMiIZg+rgo2hFsZ3pE6/hDSm7Zeeoeuai7gU80ohx691IltcXIw//vgDffv2hZubGx48eIBNmzYhPj6e7sYSQmpka6SFFYM9cemTbhhoJ4KZrgAvc4rx3anH6PTteaz45xHi0vIVHabCdenSBUFBQfjqq69w69YtvPPOOwCA6Oho2NjYKDg6Qggpk5hViMSsQhy7n6yQ49eqacHMmTOxf/9+2NnZYfLkydi/fz+MjY0bKjZCSBOmr8lHX2uG7yZ3xamIV9h++Rkep+Ri17U47L4eh94tzfFBFwe0s22ej4k3bdqEmTNn4tChQ9i6dSusrcvGRP3333/Rv39/BUenXFb88whCkRhTuzrB0URb0eEQ0qyM62gPX3tD9PVQzOyqtUpkf/75Z9jZ2cHR0REhISEICQmptNxff/0ll+AIIU2fuhoX7/raYHhba1x5kobfrsTiYtQrnIt8iXORL9HSXAdtdDjoLRSBz28+c+Ha2dnh+PHjFZavX79eAdEor7ziUhy4nYBCoQjv+trAEZTIEtKYnM104GymuCfytUpkJ0yYoNDZGwghTReHw0FXF1N0dTHF01d52HU1DodCX+Dxyzw8fsnD6R8uYVxHB4zraAcz3aY5Hm1OTg709PQk/69OebnmTpPPw/YJ7RAclYo2StCDmhDSuGo9IQIhhDS0FqY6+GpoK3zSzw37bsZh28UoZOQL8dP5GGwNfoJB3lb4oItjkxsr1NDQEMnJyTAzM4OBgUGlNw4YY+BwOBCJRAqIUPnwuBx0cTFBFxcTRYdCSLP25+0EnHiQjNXDvWBloNlox6V5IwkhSktfi4+pXRxgnh0BNfu22HMjAXeeZ+Kve4n4614iOjgYYUJHW4ibyHi0Fy5ckEwyc+HCBXoCRghRGQdDE3A7LhOnHqbggy6OjXZcSmQJIUqPxwECW1lgcBtb3E/Iws6rsTgenoxbcRm4FZcBIwEPqQZxGNPRAXoaqtuOtnv37pL/9+jRQ3GBqIhL0a8Qk5qHAV4WsNRvvDtAhJCKJnRyQA83M/Rxb9xOXzQCOSFEpfjYGmDDe21w9dNemN3TGYZafGQUc7D6VDQ6rSobviu2CQzftWzZskqbD2RnZ2PMmDEKiEj57Ln+HF8dj8AftxIUHQohzd4gHyvM6ukMO2OtRj0uJbKEEJVkrqeBTwLccOmTbnjPSQQXM23kl4iw61ocev0QjA//dxdR2RyVnT57z5498Pf3x9OnTyXLgoOD4eXlhbi4OMUFpkR6uJmig4MRBnhZKDoUQoiCUCJLCFFpGnweOpkznJjdGf+b4odeLc3AGHAxKg1bInh4Z9M17LsZj8IS1eocFR4eDgcHB7Ru3Rrbt2/HwoUL0a9fP0yaNAlXrlxRaGwrVqyQzOxY/mNh0fjJ5LiO9vhzRieakpYQJSEUiXHzWToO3mm8pyTURpYQ0iRwOK97rz97lYffrjzDn7fjEZOaj8+OPMB3px5jlK81rIoVHals9PX1sX//fixduhTTp0+Hmpoa/v33X/Tu3VvRoQEAPD09ce7cOclrHo+nwGgIIcog5mUeRm+7AU0+D4NbW0Gg1vDXBUpkCSFNjpOpDpYPdIenOBa5Jp74380ExGcUYPuVOHDAw/WiMHzQxQl+jkaKDrVaGzduxPr16zFmzBiEhoZi7ty52LdvH3x8fBQdGtTU1BRyFxYoG4LsdlwmWtsaQF2NHiwSoizcLXXR0qLsJ6ewFKa6lMgSQkidaakBIzrbY0rXFrj4OBW/XXmGa88ycCYiFWciUuFuqYfxfrbgK2Grg8DAQNy+fRt79uzBiBEjUFhYiKCgIHTs2BErV67EokWLFBpfTEwMrKysIBAI4Ofnh1WrVsHJyanK8sXFxSgufn07vHzCB5FIJNOYuOVlRCIRYtPyMeqX6zDQ5OP6pz2bZDL75vk2B3S+TceJOf6S/799nrKeb23qhRJZQkiTx+Ny0MfDHN1djPDroZOIU3fA0bAkRCbn4LOjj6CtxsNTjRhM9HeEiZZyXBZLS0sRHh4OKysrAICmpia2bt2KgQMHYurUqQpNZP38/LBnzx64urri5cuX+Prrr9G5c2c8evQIxsbGlW6zevVqrFy5ssLyqKgo6OjIPr1ldHQ07iQWwkCDCzt9Hp7GRNX5PFRBdHS0okNoVHS+TZus55uXlyfzPpXjik0IIY3EUguYMsADnwa64887Cdh9LQ6JWUX4+VIstl+JQ4CHGVwYFD7awdmzZytd/s477+DBgweNHI20wMBAyf+9vLzQqVMntGjRArt370ZQUFCl2yxZskRqXU5ODmxtbeHm5ibTdLsikQjR0dFwdXWFuzsP43oz5BWXQleFxw2uzpvn2xzaH9P5Nj3ZhUII1LjQ4PNqfb41TdH9JkpkCSHNkoGWOj7s1gLjO9hg7b7TeCQ0wc3YTJx8+BKAGs7/fBOT/R0R4GGq6FArMDFRrulYtbW14eXlhZiYmCrLCAQCCASCCst5PF6tvsjfLG+g1vS/wmpbP6qOzrdpmPF7KE5HpODncb4I8Hzdll7W861NnTS9hkWEEFILajwufIwZ/vdBe/w7rytG+lqDz2F4mJSDjw/eR/fvL+FkArfR79CKRCJ8//336NChAywsLGBkZCT1o0yKi4sRGRkJS0tLRYdCCFECRjrqYAyIeZnb4MeiRJYQQv7jbqmHVUM9scJXhE/6usBSXwPp+SVIyCsb3qsxrVy5EuvWrcOoUaOQnZ2NoKAgDB8+HFwuFytWrGjUWN72ySefICQkBLGxsbh58yZGjBiBnJwcTJw4scGPfejuCwzaeAW/X49r8GMRQupmdk9n3F7aB7N7uTT4sZr+cxlCCKklHT4wqpsjZvRwxsnwRMQ+utvoMezduxfbt2/HO++8g5UrV2LMmDFo0aIFvL29cePGDcydO7fRYyr34sULjBkzBmlpaTA1NUXHjh1x48YN2NvbN/ixbz7LwIPEbHR3Vb4mH4SQMlYGmo12LEpkCSGkCmo8LgJbWeBkfOMfOyUlBV5eXgAAHR0dZGdnAwAGDhyIZcuWNX5Ab9i/f7/Cjj2vtzN6tjRHSwtdhcXQUIqEIrzILERCZgHi0/Jx/2kmOBEPkF1YiuzCEmQWCJFfXAqhiEEkFqNUxCBmDAI+Dxr/darRVOfBSFsdpjoCGOuow1xPA7ZGWrA31oKdkRa01OlrnzQt9IkmhBAlZGNjg+TkZNjZ2cHZ2RlnzpxB27Ztcfv27Uo7TTUXNoZasDdR7SSWMYbErEI8SspBRFIOHiXlIDI5B4lZhZWUrrn3dn4tpl+2N9ZCKyt9eFrroZWVPlpZ68NIW70W0RMim4uPU/Hvw2R0dTHFgFbmDXYcSmTroLzTR/nwEEKhEAUFBcjJyQGfz6/xtbzVdf+yblddudquk2VZc6q/6tZT/clWTtnqr/y6UN/OYcOGDcP58+fh5+eHefPmYcyYMfj1118RHx+PBQsW1GvfpHExxvD0VR6uP03H9WfpuPksA+n5JZWW1VbnwdZICzYGmtBCIVztLGCkrQEDLT4MtPjQFfChxuNAjcsBj8sBl8NBcakYRUIRioQiFJSIkJ5fgvS8YqTnlyApqxDxGQV4nl6A7EIhnqeX/f/Eg2TJMVta6MLf2QRdnE3QwdEI2gJKDUj93X+RhT/vvIBIDEpklU1ublkvPFtbWwVHQghRVrm5udDX16/z9t9++63k/yNGjICtrS2uXr0KZ2dnDB48WB4hqpxHqUWIKk5CB0dj2BppKTqcauUVl+Li41ScjXiJa0/TkZZXLLVejcuBi7kuPK304GGpB08rPbiY68JQiw8OhwORSITIyEi4u7eQ2/BMmfkliEjOwcPEbDxMysGjxGw8S8vH45RcPE7Jxa9XYsHncdC5hQne8bJEXw9zGNLdWlJH3V1NIRYzdGxR+SQp8kKJbB1YWVkhISEBurq6kp7M7du3x+3btyVl3nxdPvB3QkKCTAN/18Xbx5f3dtWVq+06WZY1p/qrbj3Vn2zllKn+GGPIzc2VzMglL35+fvDz85PrPlXN2ad5OPf0Jeb2ckZQPzdFh1NBZn4Jzka+xOmHKbgck4YSkViyTqDGha+9ITo5GaNTC2N42ehDoNa444caaqvD39kE/s6vxyFOyyvG9afpuPokDVeepOFFZiFCol8hJPoVeEc48Hc2weh2tujrYd4kpwImDaeNnSHa2BkCaNipeCmRrQMulwsbGxupZTweT+pL7u3XAKCnp9dgiURlx5PndtWVq+06WZY1p/qrbj3Vn2zllK3+6nMnllTNWpeP9g6vvxyVgVAkxvnIVBy4HY9LMWkQiV83KXE00UaApwV6upmitZ1BoyeusjDREWCQjxUG+ZT94fUkNQ//PkjGyYcpiEzOwaXoV7gU/QpG2up4t601JnZ2gI2hct8NJ80LJbJyMmvWrGpfN/bx5b1ddeVqu06WZc2p/qpbT/UnWzlVrz8im5Gt9OHu7q4UMyHFpuVj/+14HA59gbS81+1dPSz10L+VBfq3soCLmU6jjz9cX85mOpjT2wVzersgNi0fh0Nf4GBoAl7mFGP75Vj8djUOg32sML27E1paNMwfxqTpKBKKEJuWDx31hrubz2GKnlC8GcjJyYG+vj6ys7Mb7I5YU0b1Vz9Uf/VD9dcwaluvr9uMKi6RFYsZLjxOxfbLz3AzNkOy3ERHgJHtbDDS1wZOpjpyOZYynG+5UpEYF6NeYfe1OFx5kiZZ3rulGT4JcIO7Zf1/L5TpfBtDcznfRYfu4887LzCvlzP6WgllPt/aXB/ojmwjEAgEWL58ebMeMqc+qP7qh+qvfqj+lINYrLh7LkKRGMfuJ+HnkKeIfpkHAOBygB5uZhjd3ha9WpqBz2u67UfVeFz09TBHXw9zPHiRjZ8vPcW/D5Jx/nEqLkSlYngbGwT1c4V1Iw6CT1RDC1Md6GmoobQBf3/pjiwhhCihSZMm4YMPPkC3bt0UHUqDqO0d2d+vx2LtqccY1d4Onw/0bIQIgcISEQ7cjsf2y7GSMV51BGoY19EeEzrZN+jsRcp+xy42LR/fn4nCifCyYbwEalzM7e2CaV2d6tQpTNnPV96ay/mWisTgcTkQi8W1Ol+6I0sIISouNzcX/fr1g62tLSZPnoyJEyfC2tpa0WEpzPP0AuQUixv0zk65UpEY+28nYMO5aEn7VxMddUz2d8S4jvbQ15T/eMyqxtFEG5vHtsWHXbOw6mQkbsZmYO3pKPwTloRVw1vB195I0SESJaDWCE8qmu6zEEIIUWGHDx9GYmIiZs+ejYMHD8LBwQGBgYE4dOgQhEKhosNrdLN7tsBP71hiYif7BjsGYwznI18iYMMlfH70IdLySmBjqImvhnjiyuJemNXTmZLYt/jYGmD/hx2xfrQPjLTVEfUyFyN+vo7VJyNRUiqueQeE1BMlsoQQoqSMjY0xb9483Lt3D7du3YKzszPGjx8PKysrLFiwADExMYoOsdHoavDhZKgOuwaaCOHBi2yM2X4DU3bfwdNX+TDU4mPFIA9c+LgHxndygAa/6T7+rS8Oh4NhbWxwPqg7RvjagDHgl0vPMPLna3ienq/o8IiCrTz2CON/u43EnIb5A5wSWUIIUXLJyck4c+YMzpw5Ax6PhwEDBuDRo0fw8PDA+vXrFR2eSkvLK0bQn2EYtOkKbjzLgLoaFzO6t0DIop6Y5O9IkwDUgqG2Or4f6YOfx/lCX5OP+y+y8c5PV3D6UYqiQyMKdP1pOq49TUdKXmmD7J/ayBJCiBISCoX4559/sHPnTpw5cwbe3t5YsGAB3n//fejq6gIA9u/fj48++ggLFixQcLQNSyRm+OXSM4jy8tDCRQxNOXSOEYsZDtxJwLf/PkZ2YdmdomFtrPFxP1ca8L+e+reygJeNPubvv4fbcZmY8b9QLApoiRndnVRuXF1Sf7N6OqNYWAoTcUbNheuA/tRUIgkJCejRowc8PDzg7e2NgwcPKjoklTNs2DAYGhpixIgRig5FJRw/fhxubm5wcXHBjh07FB2OymnIz5ulpSWmTZsGe3t73Lp1C3fu3MGMGTMkSSwABAQEwMDAQO7HVjZZBSVYczoaP1xNhzzyoLi0fLy37QaW/PUA2YVCeFjq4egsf6wf3ZqSWDmxNtDEvmkdMb6jPRgDvjv1GIsOhaNURO1mm5tBPlYY1sYaJloNc++U7sgqETU1NWzYsAGtW7dGamoq2rZtiwEDBkBbW1vRoamMuXPn4oMPPsDu3bsVHYrSKy0tRVBQEC5evAg9PT20bdsWw4cPh5ER9TaWVUN+3tatW4dRo0ZBQ0OjyjKGhoaIjY2V+7GVjZ4mH52cjKDPLUGpqO6jFojFDLuuxWHN6ccoEoqhpc7Dx/3cMLGTfaP0rm5u+DwuvhraCi7mOlh5LAIHQ18gv6QUG0a3oSYbRG7ok6RELC0t0bp1awCAmZkZjIyMkJHRMLfim6qePXtK3bEiVbt16xY8PT1hbW0NXV1dDBgwAKdPn1Z0WCqloT5vpaWl+OCDD/DkyRO571sV8Xlc/G9KB3zga4icorp1GEnKKsSY7Tfw5fEIFAnF6NzCGKfnd8OULo6UxDawCZ0c8PM4X6jzuDj5IAUz94aiuFSk6LBII8ktEiIyOQfxWSU1F64D+u2thUuXLmHQoEGwsrICh8PB0aNHK5TZsmULHB0doaGhAV9fX1y+fLlOx7pz5w7EYjFsbW3rGbXyaMz6aw7qW59JSUlS45La2NggMTGxMUJXCsr8eVRTU4O9vT1EIvqyL5dbVIrlF1IxdsctvMwpqtW2/z5IRuCPl3EzNgNa6jx8PbQV9k71g20DjYBAKurrYY5tE3whUOPiXGQqgv68r9DZ2kjjOfUwBQM3XcOO0MwG2T8lsrWQn58PHx8fbNq0qdL1Bw4cwPz587F06VLcu3cPXbt2RWBgIOLj4yVlfH190apVqwo/SUlJkjLp6emYMGECtm3b1uDn1Jgaq/6ai/rWZ2WT+jWnjhjy+Dw2pM8//xxLliyhpzL/yS0SIqOgFHHpBRiz7QZSZUhmi4QiLD3yAB/tvYvsQiG8bfRxYm5XjOto36w+68qih5sZdkxsBz6PgxPhyfjmZKSiQyKNwERHAGNtdWjxGyjlZKROALAjR45ILevQoQObMWOG1LKWLVuyTz/9VOb9FhUVsa5du7I9e/bII0yl1VD1xxhjFy9eZO+++259Q1QpdanPq1evsqFDh0rWzZ07l+3du7fBY1VG9fk8NtTnrXXr1kxHR4cJBALm6urK2rRpI/Wj6rKzsxkAlp2dLVP50tJSdu76PdZp9Tlmv/g46/n9RZaUVVBl+fj0fDbwp8vMfvFx5vDpcfbtv5GsWCiSV/gNrrS0lD148ICVlpYqOhS5O3rvBbNffJzZLz7Odl+LZYw17fOtDJ1v9WpzfaDOXnJSUlKC0NBQfPrpp1LL+/Xrh2vXrsm0D8YYJk2ahF69emH8+PENEabSkkf9kddkqc8OHTrg4cOHSExMhJ6eHk6ePIkvvvhCEeEqHWX4PA4dOrRRjlMfW7Zswdq1a5GcnAxPT09s2LABXbt2bbDjmeuoYe+UDnh/xy08e5WPkT9fx96pfrA3lu4QGxL9CnP/uIfsQiEMtfhYP7o1eriZNVhcpBaSkzHk6HZkdwjAF7cy8NXxCPjYGKCVFfVtIHVDiaycpKWlQSQSwdzcXGq5ubk5UlJkGwz66tWrOHDgALy9vSXt9X7//Xd4eXnJO1ylI4/6A8qGI7p79y7y8/NhY2ODI0eOoH379vIOV+nJUp9qamr44Ycf0LNnT4jFYixatAjGxsaKCFfpyPp5bMjP2/Lly+Wyn4ZS3vRiy5Yt8Pf3xy+//ILAwEBERETAzs6uwY5rZ6SFP2d0wrgdNxGXXoCRP1/H/6b6wdVcF4wx/HolFqtORkLMgNa2Btj8fltYG2g2WDyklpKTgZUrMf7OIFzLt8CpRymYufcu/pnVSdGRkQZy6mEyNpyLwdPUXLQwy8D8Pi7o38pSbvunRFbO3m53xRiTuS1Wly5dIBY37zH26lN/AKjX/Vtqqs/Bgwdj8ODBjR2Wyqip/prz523dunWYMmUKpk6dCgDYsGEDTp8+ja1bt2L16tUNemwbw7JkdvyOW3iVVwx1HhfFpSJ8fuQhDoa+AACMameDr4a2gkCNppZVRhwOB2tGeiEyJQfP0wvw+d+PMNNHoOiwiJydepiMGf+7K3kdlZKLGf+7i5/HtZVbMkuJrJyYmJiAx+NVuHuYmppa4a4OqYjqT76oPutHGepPJBJh/fr1+PPPPxEfH4+SEumhaxTZCawuTS+Ki4tRXFwseZ2TkwOg7DxlGZ2hvEz5v8ZafOyb2h5JWUXQ1+Bh4q+3cCM2A1wO8NmAlpjUyR4cDlR25Ie3z1elJSeX/QDg3LsHLgDxnTvQFonwiwcw6VQG/n0IuOgYwc2tCZyvDJrU+1uNDediwAFQ3rWYAeBwypb3da+6uU9t6oUSWTlRV1eHr68vzp49i2HDhkmWnz17FkOGDFFgZKqB6k++qD7rRxnqb+XKldixYweCgoKwbNkyLF26FHFxcTh69KjC2zLXpSnQ6tWrsXLlygrLo6KioKOjI/Oxo6OjpWPJL8Ws/6UiPlsIdS7Q3VEbfgYFePz4scz7VGZvn68qMtuyBWZbt0ot406fDgBoCWBWn3FY5vsefg3NRFf7x9BsqN7tSqgpvL/VeZqai7fHx2GsbHlkZNWjVuTl5cl8DEpkayEvL09qgPLY2FiEhYXByMgIdnZ2CAoKwvjx49GuXTt06tQJ27ZtQ3x8PGbMmKHAqJUH1Z98UX3Wj7LX3969e7F9+3a88847WLlyJcaMGYMWLVrA29sbN27cwNy5cxsljurUpinQkiVLEBQUJHmdk5MDW1tbuLm5QU9Pr8ZjiUQiREdHw9XVFVwuF09S8/HP/ST8ejUBxaVi6GuqIbuwFGef5uPCs3xY6AnQuYUx/JyM0cnJGBb6Vc+QpozePF8eT8WbR3z2GUSTJwP4747s9OkQ//ILWJs2uP4sAz9dTgUATGprCB/Plqp/vjJoUu9vNVqYZSAqRTqZ5XAAZzNduLu7V7ld+RMbWVAiWwt37txBz549Ja/LL8oTJ07Erl27MHr0aKSnp+PLL79EcnIyWrVqhZMnT8Le3l5RISsVqj/5ovqsH2Wvv5SUFElHTx0dHWRnZwMABg4ciGXLljVKDFWpS9MLgUAAgaBiG0gejyfTF3lKdtm4sUuPPkJwTDpe5b5upqCvyceJuV0w8bfbePoqDyIGJGYX4+DdJBy8WzbGtJOJNvydTeDvbIJOTsbQ1+LLfL6KJGv9KDUbm7IfAPjvXLjt2iHHwwuzTl5Eto4RpndzRKCduGmcby009fOd38dFqo0sh1N2R3Zen+oT+NrUCYexSkZFJ4QQolBubm7Ys2cP/Pz80LVrV7zzzjv49NNPceDAAcyZMwepqakKjc/Pzw++vr7YsmWLZJmHhweGDBkiU2evnJwc6OvrIzs7u9I7stkFQlx/lo6rT9Jw9UkakrMLcHC0HUYeiEehUPpra/+0jujYwhinH6Vg+u+hNR7b3lgLJ+Z2hY5Aee/liEQiREZGwt3dvWklOnfvAr6+QGgo0LYtzkW8xN6bz7FlbBs8jYlqeudbhSb7/lbi4J0ELDwUDgBoaaGL+X1c0b+VRbXb1HR9eJPy/hYTQkgzNmzYMJw/fx5+fn6YN28exowZg19//RXx8fFYsGCBosNr8KYXV5+mYda+uyi/1aLJL2uyIHprWlNvG310bFE2bFzvlmYw1xPgZU4xqqKvycevE9srdRLbpFlaAsuXl/0LoI+HOfp4mDf5Tk/NWa+Wrzt1HZ/dGWpq8v3do99kQghRQt9++63k/yNGjICNjQ2uXbsGZ2dnpRgyraGbXgzwssTSAe74+sTrDiEPXxah5K18Z3zH18dT43Exur0dfjofU+k+1dW42DGxHZzNZO9cRuTM0hK/9ZmI3up6oEZOzYPov79GOWiYadApkSWEEBXQsWNHdOzYUdFhSJk5cyZmzpzZYPuf2tUJSVlF+O1qLERihhUXpZtT6GmoYaC3ldSy99rbYtOFGLx147ZsyJ/RreFto99g8ZKa7boaiy+PR2BL8BOcXdAdhtrqig6JNLDC//761FCTfxILUCJLCCFKKzo6GsHBwUhNTa0wWYqih+BqLJ+/446krAKcevQSAJMak3J4Wxtoqku3L7Qy0ESvluY4F/nyrf14oJ+HOUZvuwFXcx18NsAduhqq0eGrqdhx+ZnkDvu4jvaUxDYTBf8lsgJKZAkhpPnYvn07PvroI5iYmMDCwkLqkRyHw2k2iSyXy8GG99qg1fLTKBUz8HmQNC9436/yqXDf72gnlch+4O+IKV0ccTEqFaHPMxH6PBOXotPw3bve6OJi0hin0awxxrDpwhP8cLZszNRZPVtgXm8XBUdFGktBSSkAQFOtYcYHpkSWEEKU0Ndff41vvvkGixcvVnQoCpdbVIpScdndWO5/+XwHRyO4mOtWWr6biymsDTSRmFWIAV4W+PydsvEqe7qZ4Y9pHbHo8H0kZBRi3K83MbytNZYOcIexDk2P2hBKSsVYeuSBZOrgoL6umEtJbLPS0Hdkm8/0GYQQokIyMzMxcuRIRYehFLIKyqbn1eJzYKJTNrFBVXdjAYDH5WCsnx3a2Rti3ajW4HJff4F2amGMU/O6YVJnB3A4wF93E9HrhxD8cSse4rcb1pJ6++l8DA6GvgCXAywf5EFJbDOUX/zfHdkGmrGNEllCCFFCI0eOxJkzZxQdhlIob0uZL2TY+F5r2Bhq1jgO5XvtbbF9Qjto8CuO0aktUMOKwZ44MtMfHpZ6yC4U4sjdRDRAh+pmb3p3J7S1M8Cvk9pjsr+josMhCpCRLwQA6AmoaQEhhDQbzs7OWLZsGW7cuAEvLy/w+dIdk5RhitrGYqilDlMdATR5YtibaOPvWf4QqFU/iLwsTQVa2xrgn9n+2HP9OXztDSXtkLMLhEjMKoSHVc1T5xJppSIxjoUnYWhra3A4HOhq8HH4o84NMuwSUQ3peWXjOutrNMzED5TIEkKIEtq2bRt0dHQQEhKCkJAQqXUcDqdZJbI8Lgc3lvREZGQk9DX5cp0JSY3HxQddpO8Ubg5+gu2Xn+Hdtjb4uJ8rLPU15Xa8puxhYjY+/SscDxNzkF0gxKT/7sBSEtu8WRlooquzMZwMG6bpDiWyhBCihGJjYxUdQrPEGENaXjEYAw6FvsDfYYkY3sYG07s7wcmUJlKoTH5xKdadjcbOq7EQs7LxfanzHCn3rq8Nhra2RGRkZM2F64ASWUIIIeQ/HA4H60a1xriO9vj238e4FZuBA3cS8GdoAgJbWeCj7s7wokkVAJQ1I/jzzgtsOBeN1Nyyx8eDfKywbKA7zHQ1FBwdaS4okSWEECURFBSEr776Ctra2ggKCqq27Lp16xopKuWw/XIs9l5PwoQMTUzr1qLBj9fWzhB/Tu+EO3EZ+DnkKc5FpuLkgxSY6WpQIvufJX+9HlbLzkgLXw7xRA83MwVHRZRNkVCEBhqwAAAlsoQQojTu3bsHoVAo+X9VmmObw7ziUiRkC/HsVX6jHredgxF2OBghKiUXv1x6imndnCTrbjxLx7UnaRjZzha2RlqNGpciFJeKUCQUQ1+zrOPh+x3tcf5xKub0csb7fvZQb6AB74nqEokZvFachq5ADT8GmjfIMSiRJYQQJXHx4sVK/0+AIT6WsODmoodvw9+NrYybhS7WjWottWzX1TicepSCjRefoIuzCUa1s0VvdzNoqTetr9akrEL8eScB+27GY4CXJVYM9gRQNurDtU97VTrEGSEAkJpbBKGIIaeolIbfIoQQ0nw5meqg2FITlvrK0/ZySGsr5BWX4sqTNFyOKfsRqHHR3dUU/VtZYFgba5W9e55fXIoLj1Nx+O4LhES/Avuvw/ml6FcQiRl4/00yQUksqY6lvibuL++H5KwClKYnNMgxKJElhBAlNGzYsEqTIA6HAw0NDTg7O2Ps2LFwc3NTQHQEAAK9LBHoZYn49AIcuBOPf+4nISGjEGciXiIlpwjD29pIyj57lQcHY22pWcaU1VfHI7D35nMUCcWSZZ2cjPFeB1sEtrKUJLGEyEJfkw8ddR1EpjfM/imRJYQQJaSvr4+jR4/CwMAAvr6+YIzh3r17yMrKQr9+/XDgwAF89913OH/+PPz9/RUdbqO4/DwfJxKiMdnfEWZ6ynNn1s5YCwsDWuKTfm6ISM7B6UcvYWP4euzZnCIh+qwLgb4mH36OxujUwhi+9oZwMdepcWKHhpRXXIp78Zm48iQNs3s6Q1ejrO2rBp+LIqEYdkZaGOhtiZHtbOFooq2wOAmpDiWyhBCihCwsLDB27Fhs2rQJXG5Z2zKxWIx58+ZBV1cX+/fvx4wZM7B48WJcuXJFwdE2jv0PsvE8Kw3tHY3QS4kS2XIcDgeeVvrwtJIe1eBJah40+DxkFghx6lEKTj1KAQCocTlwMdfF1C6OeNe37O5tqUgMMQN4cr7pmVVQggeJ2YhIysHDpBw8SszGs7TXHec6OBiht3tZZ5z3/ewR2MoSnlZ6Kts0giiHH85EIatAiDHtbWouXEdNKpG9e/cuFi9ejNu3b4PH4+Hdd9/FunXroKPzehDr+Ph4zJo1CxcuXICmpibGjh2L77//Hurq6gqMnBBCpP3666+4evWqJIkFAC6Xizlz5qBz585YtWoVZs+eja5duyowysZlp8/H8ywhol/moVfLhukB3RDa2hni/vJ+CH+RjRvP0nHjWTrCX2Qju1CIyOQcFJe+foQf+jwT722/AXM9DRgLGOzCimCoLYCBJh+GWuro2dIMzmZl32mpuUW4FZuBYqEYRf+NKFBQXIr0/BKk55fgfT87dHQyBgCERL/CvP1hFWKzNtBERydjmLwxgYGVgSasDGg2M1J/x+4nIS69AP08zGDYQMdoMolsUlIS+vTpg9GjR2PTpk3IycnB/PnzMWnSJBw6dAgAIBKJ8M4778DU1BRXrlxBeno6Jk6cCMYYNm7cqOAzIISQ10pLS/H48WO4urpKLX/8+DFEIhEAQENDo1ndMbPTL3v0HfMyT8GR1B6fx4WvvSF87Q0xq6czGGNIyi7Co8RstLJ+fQf3RWYhGANSsouQAuBR6kup/ehr8SWJ7KOkHMzeV/Uwbe3sDSWJrJOJDpxMteFuoQdPaz20stKHp5UezcBFGkyRUIT4jAIAgIuZDtJepDbIcZpMInv8+HHw+Xxs3rxZcgdj8+bNaNOmDZ48eQJnZ2ecOXMGERERSEhIgJWVFQDghx9+wKRJk/DNN99AT09PpmOJxWIkJSVBV1e3WX2JEEJqxhhDbm4urKyspO6m1tb48eMxZcoUfPbZZ2jfvj04HA5u3bqFVatWYcKECQCAkJAQeHp6yit0pWdvUPbkLCY1V8GR1B+Hw4G1gSas37rzObytNbq5muJ5Wh5uPnoCTQNT5BSVIqtAiKyCEtgavh6vVk9DDR0cjSBQ40KDz4MGnwctPg9GOuow1lZHewcjSVkvG31c+LhHY50eIXj6Kg9iBhho8WGio460BjpOk0lki4uLoa6uLvXFoalZdoG4cuUKnJ2dcf36dbRq1UqSxAJAQEAAiouLERoaip49e1a57+LiYsnrxMREeHh4NNCZEEKagoSEBNjY1L1d2Pr162Fubo41a9bg5cuyu3Lm5uZYsGABFi9eDADo168f+vfvL5d4VYG9Qdkd2ccpuRCKxODzmt4A/BwOB6a6AhhpqUEjXxvu7vbg8SrvEOZrb4Q/p3dq5AgJkc3DxGwAgLtFw7a1bjKJbK9evRAUFIS1a9di3rx5yM/Px2effQYASE5OBgCkpKTA3Fy6XZWhoSHU1dWRkpJS5b5Xr16NlStXVli+Y8cOaGk1/dlcCCGyKygowNSpU6Grq1uv/fB4PCxduhRLly5FTk4OAFR4amRnZ1evY9SVg4MDnj9/LrVs8eLF+Pbbbxv0uFa6atDTUENOUSmiUnKlHskTQpTL/Rdliay3bcP+nip9IrtixYpKk8g33b59G+3atcPu3bsRFBSEJUuWgMfjYe7cuTA3N5f6a7ayvwoYY9X+tbBkyRKpec9zcnJga2uLoUOHQk9PD0KhEGfPnkXfvn3B5/NrfC1vdd2/rNtVV66262RZ1pzqr7r1VH+ylVO2+svJycHUqVPlegdC1mZPjenLL7/EtGnTJK/f7FTbUDgcDnxs9HH5STrCErIokSVEid1PyAIA+NgYNOhxlD6RnT17Nt57771qyzg4OAAAxo4di7Fjx+Lly5fQ1tYGh8PBunXr4OjoCKBsOJubN29KbZuZmQmhUFjhTu2bBAIBBIKKDeL5fL7UF1ttX8tbXfcv63bVlavtOlmWNaf6q2491Z9s5ZSl/uRZx4cOHcKff/6J+Ph4lJSUSK27e/eu3I5TF7q6urCwsGj043rbGODyk3SEv8gCYN/oxyeE1KxIKEJUSllbdh9bgwY9ltI3MDIxMUHLli2r/dHQkB5P0NzcHDo6Ojhw4AA0NDTQt29fAECnTp3w8OFDSVMDADhz5gwEAgF8fX0bJP7fr8eh5w+XsOkRF58dfYTNF5/gn/tJuBefifS8YrDyef8IIeQNP/30EyZPngwzMzPcu3cPHTp0gLGxMZ49e4bAwEBFh4fvvvsOxsbGaN26Nb755psKiXZD8bEpuwt7PyG7UY5HCKm9iOQclIoZTHTUYdXA00or/R3Z2ti0aRM6d+4MHR0dnD17FgsXLsS3334LAwMDAGUdIzw8PDB+/HisXbsWGRkZ+OSTTzBt2rQGe3QXm1aAF1lFALiICU2ssF5bnQc7Y224mOmU/ZjrwMVcF/ZGWlBrgh0ZCCGy2bJlC7Zt24YxY8Zg9+7dWLRoEZycnPDFF18gIyNDobHNmzcPbdu2haGhIW7duoUlS5YgNjYWO3bsqHKbtzvNlrf7FYlEkuHEqlNeppVVWROG6NRcZOQVQV+z4Z4yKFL5+cpSN00BnW/TcvNZ2Xy0rW0MIBaLa32+tamXJpXI3rp1C8uXL0deXh5atmyJX375BePHj5es5/F4OHHiBGbOnAl/f3+pCREayuxezgjwMMWxi9dhZOeKxKxiJGQWICGjAMnZRcgvESEyOQeRyTlS26nzuHA00UZLS114WevDy1ofntb60BE0qbeMEFKF+Ph4dO7cGUDZCCy5uWWP6caPH4+OHTti06ZNcj1ebfojLFiwQLLM29sbhoaGGDFihOQubWWq6jQbFRVVq/a1GUnPYaOnhhc5pfjrcjg62jbtDrfR0dGKDqFR0fk2DefCy0ZacdAWIjIyUrJc1vPNy5N9rOgmlRXt2bOnxjJ2dnY4fvx4I0RTxkhbHW3tDJBiyjCgZwup9nNFQhESswoR+yofMal5iEnNxZPUPMS8zEOhUISol7mIepmLv8OSAAAcDuBkog1vGwO0tjVAB0cjuJnXr2c0IUQ5WVhYID09Hfb29rC3t8eNGzfg4+OD2NjYBmmSVJv+CG/r2LEjAODJkydVJrJVdZp1c3OT6YmYSCRCdHQ0XF1d0a2lGPtuJeCFUAvu7u41bquK3jzfqobfakrofJuOUpEYj/98AQAY0tEd7lZ6tT7f8ic2smhSiayq0eDz0MJUBy1MddDH43VnM7GYITGrEDGpuYhIykH4i2w8SMxGcnYRnr7Kx9NX+Thyr6yZgp6GGtrZG0K3iAObF9loY28MLpcmaSBE1fXq1QvHjh1D27ZtMWXKFCxYsACHDh3CnTt3MHz4cLkfz8TEBCYmJnXa9t69stmlLC0tqyxTVadZHo9Xqy9yHo+H3u7myCwQor2DcZNLAt5W2/pRdXS+qu9BUi7yS0TQ1+TD09pAKieR9XxrUyeUyCohLpcDWyMt2BppSc0n/iq3GA8TsxH+Iht3nmcg9HkmcopKcSHqFQAe/v7lJoy11dHN1RQ93EzRzcUUhtrqijsRQkidbdu2DWKxGAAwY8YMGBkZ4cqVKxg0aBBmzJihsLiuX7+OGzduoGfPntDX18ft27exYMECDB48uNHGte3tbo7e7lWPNEMIURwbQ018PbQVCkpKG+XGGiWyKsRUV4CeLc3Qs6UZgLLb94+ScnDj6Sscu/kYcQXqSM8vwZF7iThyLxFcDuBrb4h3vCwxwMsSZnoN23OQECI/XC5XaqbCUaNGYdSoUQqMqIxAIMCBAwewcuVKFBcXw97eHtOmTcOiRYsUHRohRAmY6AgwrmPjDY1HiWw9CIVCyU/5a1n+lScPC224GKvDIjsCPXr542FKPkKi0xASnYaol3m4HZeJ23GZWHk8Au3tDTHAywIDvSygr8mXOa7qytV2nSzLGrP+6rN/edRfdeup/mQrp2z1J896LioqQnh4OFJTUyV3Z8sNHjxYbsepjbZt2+LGjRsKOfbbnqfnIzYtHz3czBQdCiFEQTiMBjKV2ebNm7F582ZJo+V9+/Yp9RS1GcVAeAYH99K4iMt7fXufz2FobcLQ2UwMR92yTmSEEPkoKCjA2LFjkZ2dXa9h/U6dOoUJEyYgLS2twjoOh6Pyw/bk5ORAX19f5noSiUSIjIyEu7s7eDwe7sVnYtiWazDQ4iP0877gNbG+AW+fb1NH59s03IrNQGRyDnq7m8HG8HV+VNvzrc31ge7I1sKsWbMwa9YsSQX369dPZaaoTcwqxL8PX+JoWFLZndpXHNx+xYWFJsOMXi0xwtcGAn7lHy6aorZ+26naFKu1RfUnrTa9basze/ZsjBw5El988UW1Mw82V17W+jDREcDVXAfp+cUw06WmU4Qo2v7b8fjrbiISswrx2YDGGVGEEtl6UKUpah1M+fiopx5m9HBGWEIW/rgVj2P3k5BSKMaKE1HYFBKHyf4OGOdnD30t+UxDW906mmJV9vVUf7KVU5b6k1cdp6amIigoiJLYKqjxuLj6aU8I1JrO3SxCVJ2vvSFeZBaid8vGa+5DU0c1MxwOB23sDLFmhA+uLuqBYQ4iWOlrIC2vGGtPR8H/uwvYeD4G+cWlig6VkGZtxIgRCA4OVnQYSo2SWEKUy/t+9vhzeif4OVU+nnRDoDuyzZiuhhp6WDJ8M6kLTke+wi8hz/A4JRc/nI3G7uvPMbe3M8Z0aJzhdAgh0jZt2oSRI0fi8uXL8PLyqnCnd+7cuQqKTPmkZBeBywGNzEJIMyRTImtkZFSrnXI4HNy9exf29o03/AKpOz6Pi2FtbDDExxrHHyTjhzNReJ5egC/+foS9N+KxclBLRYdISLOzb98+nD59GpqamggODgbnjV6ZHA6HEtn/rDsThY0Xn+DDbk5YEtg0Z/kiRNmVisT4624i+nqYN/r49TIlsllZWdiwYQP09fVrLMsYw8yZM1W+R21zxOVyMNjHCv09LXDgdjzWnY1G1MtcvLfjNvxMuehcIISpfsO1sSSEvPb555/jyy+/xKeffio1niyR1tJSD4wBJ8KT8Wn/llIJPyGkcVx7mo5Fh8NhcVYD1z7t1agzjMrctOC9996DmZlsjXfnzJlT54CI4qmrcTG+kwMGelvhu1OPsf92Am6+4mLgpmv4fpQPurqYKjpEQpq8kpISjB49mpLYGvR0M4OWOg8vMgtxLyELbe0MFR0SIc3OsftJAIA+HmaNmsQCMnb2EovFMiexAJCbmwsnJ6c6B0WUg6G2Or591xsHpnWAmQbDy9xijP/1Fr48FoEiId1xJ6QhTZw4EQcOHFB0GEpPU52Hfh5lIzscDn2h4GgIaX4KSkrx78MUAMBAb6tGPz519iI1amtngIXeIoTBEXtvJeC3q7EIjc/EL+N8YaxFvYYJaQgikQhr1qzB6dOn4e3tXaGz17p16xQUmfIZ1c4WR8OS8E9YEj5/xwOa6nRdIqSxnAhPRl5xKeyNtdDBoXZ9quSh1onsP//8U+lyDocDDQ0NODs7w9HRsd6BqQJlmKK2PvuvzRSh6jxgaV9ndHc1wcLDD3A/IQsDN17GhhGeVe6DpliVrZyyTbFaW1R/lcdTXw8ePECbNm0AAA8fPpRaR+1ApXV0MoatkSYSMgrx78NkDG9ro+iQCGk2DtxOAFD2B2VjNysA6jBFLff/7d13XFPX+wfwTxIgjLBB9hQEFVQEtYgDtILVr6PuWSjWVgWtWvXX1jpbtcNVR7VaC9qq1bbuOnDgRFFUnAiCIFuW7J3c3x+UaMpKICEJPO/Xi5fee09unnOMl5N7zzkPmw0Wi4X/vqx2H4vFQr9+/XDs2DHo67etsUrKlqJWVnLKgV9iOcgoZYHDYjDdUQA3Q8p0TAggvRS1bV1LU9T+15aLz7HxfBz62Bng0Ceesgi5VbXVFKYNofoqp/isIry78So4bBZufj6owSXwFCpF7fnz57F06VKsWbMGvXv3BgDcvn0bX331FZYtWwZdXV188sknWLRoEfbs2SPp6RWaMqeobcnr6is3rrIai/9+jLCnWdgbx4b1MCdM97Rt8nWUYlXxU6xKitpPlLRS1BLJjHO3xKYLcYhMzENCdjE6GvPkHRIhbV7t3dhBzh3kto6zxB3ZTz/9FLt27ULfvn2F+wYPHgx1dXV8/PHHePLkCTZv3ozAwECpBqqIlClFrTRe93Y5XVVV7Jjmga+OPsTBO6lYfToOZXwWgnwcxDo/pVgV/zi1n3jlFKX9WtrGY8aMEavckSNHWvQ+bY25ngYGO3fAhZgs7ItIwqpRLvIOiZA2raySj7/+nWA50cNKbnFIvK5LQkJCvbd5dXR08OLFCwCAo6MjcnJyWh4dUWgcNgurRnSGn6UAAPDDuVjsupog56gIUW66urpi/ZC6AvrWzM/4624qCstlMyacEFLjyP1UvC6tgpWBBnycxV/ZStokviPr7u6OxYsXY9++fTA2rllPNDs7G0uWLEGvXr0AAM+fP4elJQ22bw9YLBaGWQnQ2akTNl+Mx9rTz6CuysEH/xlmQAgRT0hIiLxDUFpeDoZw7MDD86xi/BWVisB+7WPiMSGtTSBg8Ov1RADAh33twJHDJK9aEt+R3bNnDxITE2FpaQkHBwc4OjrC0tISSUlJ+OWXXwAAxcXFWLZsmdSDJYoryNseQT4dAQDLjz/BPw8z5BwRIaS9YbFYCPCyBQDsvZkEgYAmoRIiC1fispGQXQJtrgom9JLfsAKgGXdknZycEBMTg3PnziEuLg4Mw8DZ2RlDhgwRZqAZPXq0tOMkSmCRrxOKy6ux9+ZLLDwcjf0zesk7JEJIO/O+mwUiX+QhwMtWLksBEdIeHL2fBgCY1NsKPK58UxI0K/chi8XC0KFD8fHHH2PevHnw8/OTeRrFNWvWoG/fvtDU1ISenl6d47m5uRg6dCjMzc3B5XJhZWWF4OBgkRnESUlJYLFYdX7Onj0r09jbCxaLheUjumKQcwdUVAswa/995FXIOypCSHuiqaaCLZPdKFUtITK0YUJ3/DipBwK85D98R+Lep0AgwNdffw0LCwvweDwkJtaMkVi2bJlMl9uqrKzE+PHjMXv27HqPs9lsjBo1CidOnEBcXBxCQ0Nx4cIFzJo1q07ZCxcuICMjQ/gzaNAgmcXd3nDYLGyZ7AZnU23kFFciJJaDymqBvMMihLRTEi6VTggRgyqHjVE9LGChpyHvUCTvyH7zzTcIDQ3F999/DzU1NeF+V1dX4RhZWVi1ahUWLFgAV1fXeo/r6+tj9uzZ8PDwgI2NDQYPHow5c+bg2rVrdcoaGhrC1NRU+PN2PUjL8bgq+MXfA7oaKkguYeH7sDh5h0QIEVNTT78AIDk5GSNGjICWlhaMjIwwb948VFZWtm6gTcgprsDKE0/wwa+35R0KIW1GTnGFwt2ckrgju2/fPuzatQtTp04Vyc7QrVs3PHv2TKrBtUR6ejqOHDmCgQMH1jk2cuRIdOjQAV5eXvjrr7/kEF3bZ6mvie/G1KzjuPdmMs4+zpRzRIQQcTT19IvP52P48OEoKSnB9evX8ccff+Dvv//GZ5991sqRNo4vYHAgMhnXnufgQUq+vMMhpE348sgjeP8QjuvPFWeJVYlH6KalpcHBoe6i9wKBQGa53CUxefJkHD9+HGVlZRgxYoTIXWIej4eNGzfCy8sLbDYbJ06cwMSJE7F3715MmzatwXNWVFSgouLNYM/acbdVVVXCn9ptcf6UNnnmum/s2ICO+hhkJsClDDaW/PUAXc20YKjBqVO+PbdfY8fr2y/OPmq/hve3RvspwnWwJVatWgUACA0Nrfd4WFgYnj59ipSUFJibmwMANmzYgICAAKxZs0Zh0vKa6Khj6fDOcOjAQ3crPXmHQ4jSKyyvwsPUArwqKoepLlfe4QixGAkHEHl4eGD+/PmYNm0atLW18eDBA9jb22PVqlW4cOFCvY/yG7Jy5UrhRbMhd+7cgYeHh3A7NDQU8+fPR35+fr3lMzMzkZ+fj9jYWHz55ZcYOHAgfvrppwbPP3fuXFy5cgUPHz6UOM4DBw5AU1Oz0fjbO74A2PSYg5QSFrroCfCxswAsmkhM2rDS0lJMmTJFrBzhiqyha+3y5ctx/PhxPHjwQLjv9evXMDAwwKVLl+Dj4yPW+SXJpQ60ndz04qL6tm3KWt/yKj5uvciFt5NkCRAkra8k1weJ78iuWLEC06dPR1paGgQCAY4cOYLY2Fjs27cPp06dkuhcwcHBmDRpUqNlbG1tJTpn7bhXZ2dnGBoaon///li2bBnMzMzqLf/OO+80Obb3iy++wMKFC4XbhYWFsLKygq+vL3R0dNp1rntxjm2b3hvjdkfhaT4b5aZdofHqkUxz3UtKnu3X2PH69ouzj9qv4f2t0X5vr5TSFmVmZsLExERkn76+PtTU1JCZ2fAQooaebPH5fPD5/Cbft7aMOGXr87q0EjrqqnJduF0SLa2vsqH6KgdVNtDfwVDiuCWtryTnl7gjO2LECBw6dAhr166tWW5p+XL07NkTJ0+exJAhQyQ6l5GREYyMjCQNQWy1N5vfvnj+1/379xvs5NbicrngcuveRpc0N3tbznXf2LEuFvqY/24n/HAuFmvPPseirrLNdd9c8my/xo6L01b17aP2a3i/LNtPlm3cXM15+tUYVj2PVRiGqXd/rXXr1tUbQ2xsLHg8nljvCwBxcZJPHj3ytBAHH+XjYw8DDOko/nspgubUV5lRfRWPgGEQkVwKTyvNFn8RFLe+xcXFYp+zWavY+vn5wc/Przkvbbbk5GTk5eUhOTkZfD4f0dHRAAAHBwfweDycPn0ar169Qq9evcDj8fD06VMsWbIEXl5ewru6e/fuhaqqKtzc3MBms3Hy5Els2bIF3333XavWpT36ZIA9zj7OxKO0Ahx/ycZkeQdESDsizadfpqamiIyMFNn3+vVrVFVV1blT+7aGnmw5OTmJPbQgLi4OnTp1kvhRbIecRJRVvcaBR8UIHOIm9wXcxdGS+iojqq/iOno/Dd9eS4a7jR4OzezT6BfWhkhaX0mebCn+/+Z/LV++HHv37hVuu7m5AQDCw8Ph7e0NDQ0N7N69GwsWLEBFRQWsrKwwZswYfP755yLn+eabb/Dy5UtwOBx06tQJv/76a6MTvYh0qHDYWPu+K0Zuv467OWzcTsqDl2PDv/QIIdIjzadfnp6eWLNmDTIyMoRPs8LCwsDlcuHu7t7g6xp6ssXhcCT6RS5peQD4sJ8dDt5JwcvcUuy+loRFfk4SvV6emlNfZUb1VSzlVXxsOP8cADC4swlUVFrWbRS3vpK0iVgR6evri90Dz8vLE/vNJREaGtrgLFoA8PHxQURERKPn8Pf3h7+/v5QjI+JytdTFBHdLHIpKxdennuHUPGOocGSbEY4QIpmmnn75+vqiS5cumD59On744Qfk5eVh0aJFmDlzpsJObuOqcPDlsM745Le72H3tBSb2soKVAU3UJaQpu6++QEZBOSz0NBCoAFm86iNWR3bz5s3Cv+fm5uKbb76Bn58fPD09AQA3b97EuXPnsGzZMpkESdqOhe864OT9FDx7VYz9kcnw72sr75AIIW9p6ukXh8PBP//8gzlz5sDLywsaGhqYMmUK1q9fL6+QxeLbxQSe9oa4+SIXq04+xS/+4o0HJqS9eplbgm3h8QCAJUOdoK6qmHeOxerIvn0Xc+zYsVi9ejWCg4OF++bNm4dt27bhwoULWLBggfSjJG2GgZYahlkL8FciB5svxOH9nhbQUMz/G4S0S009/QIAa2triVepkTcWi4VVo7pi2I/XcCHmFc4/fYUhXWh4EyH1YRgGXx17jIpqAbwcDDGyu7m8Q2qQxM91z507h6FDh9bZ7+fnhwsXLkglKNK29TVhYG+khdelVdh99YW8wyGEtBOdTLTxUX97AMDKE09QWlkt54gIUUwnH2bg2vMcqKmw8fUol2ZN8GotEndkDQ0NcfTo0Tr7jx07BkNDQ6kERdo2DqtmiAEA/HItETnFDS+PRggh0jRvsAMs9DSQll+GjWGKv/QRIa2toKwKq08+BQAEeTvA3lixl6yTePrZqlWrMGPGDFy+fFk4RvbWrVs4e/Zsk4kF2hpKUSv5sdq/+zjqo5ulDh6mFmLrpXj0UWmf7dfYcUpRK145RWs/ZU9R29Zpqqng69FdERgahT03EjHUxRQetgbyDosQhfH92WfIKa6AvbEWZnnbyzucJkmcohYAIiMjsWXLFsTExIBhGHTp0gXz5s1Dnz59ZBGjwti+fTu2b98uXA+NUtS2zPMCFrY95YDDYrC0Bx+G6vKOiJCWayspamVN3ilqF/35AH/dTYWtoSbOfDoAGmqKNVhfWVOYNhfVVzFcicuG/6+3AQAHZvZB347SWbZPoVLUAkCfPn2wf//+5rxUqQUFBSEoKEjYwJSiVvJjb+8bpqqKe6FRiEjIw4V0Nn75ZHC7a7/GjlOKWvHKKVr7tfUUtW3Fsv91wfXnOUjKLcV3Z59h5ciu8g6JELl6XVKJxX8+AAD4e9pIrRMra2J1ZAsLCyW6s1BUVARtbe1mB6UsKEVt84/V7vt0cCdEJNxCZBYLOaV8WBtpNvi6ttx+jR2nFLXilVOU9lPEFLWkLl0NVXw71hVfHXsM3660egEhP12OR1ZRzZCCz9/rLO9wxCbWZC99fX1kZWWJfVILCwu8eEGz0UnT+tgbopetPvgMC3tuJMk7HEJIO+Lt1AEXPxuoNHeeCJGlz3ydEOhlh00TeijcUJvGiHVHlmEY/PLLL+DxxJu5RpMdiCTmDLTHh0l38cedVAQP6gQ9dcr2RQhpHVyVN7+wU1+XwkJPQ6GXGiJEVtRVOVg+oou8w5CYWB1Za2tr7N69W+yTmpqa0uM1Ijavjgaw4TF4WSzAL9deYNEQB3mHRAhpZ/66m4qvjj3C0mGdMd3TVt7hENIqKqsFOBSVgim9rcFhK+cXOLE6sklJSTIOg7RnLBYLvpYC7H7Gwf7IZHzS30beIRFC2pn80kqUVwlwJS4b096xobuypF1YezoGoRFJuJmQg5+muss7nGZp1qoFhEhbVz0GDsZaiM8uwaGoNChuMjxCSFs0o58dTHTUMdzVjDqxpN1ws9bDn1EcjHGzlHcozUaDEYlCYLGAQC9bAMDemy/BF8g3HkJI+8JisTCiuznY/z5eZRgGAoHEy6wTolRG9bDAtf8bhHe7KO/KHdSRJQpjZHczGPG4yCyswP1cuiNCCJGP8io+Fv35EJsuUApb0vYUV1Qjq6hcuG2gpSbHaFqOhha0AKWobX6K2vr2sRk+pvWxwuaL8QjPYOPzykqJ4mwuSrHaMtR+9cdDlNf15zn4+14qAMDJVBv/60aDnUjbUM0XYO6Be3iSXogd03rC3Ub50zM3K0Vte0UpamWvpApYcY+DKgELQV346KRLH0+iXChFrXjknaK2KWv+eYrd1xKhrsrGX7P6wsVCV+bv+TZFTWEqK1Rf2WMYBsuPP8Fvt15CXZWNPz72RA8rvVZ5b4VLUXvt2jX8/PPPSEhIwF9//QULCwv89ttvsLOzQ79+/ZpzSqVAKWqlm6K2oX2P8AQHo9LwqNIY84d5tOn2a+w4pagVr5yitR+lqG0bPn+vM+JeFeNKXDY+2huFI3P6wlxPQ95hEdJse64n4rdbL8FiAZsnurVaJ1bWJO7I/v3335g+fTqmTp2K+/fvo6KiAkBNWtq1a9fi9OnTUg9SUVGK2uYfa2zfjH52+CMqFVfj85CUVw5bA3WJ4mwuSrHaMtR+b8oR5cdhs7BlshvG7ohAfFYxAkJu489P+kJXk/59ifI5+zgTa07HAACWDuuMoS6mco5IeiSe7PXNN99g586d2L17t8gFu2/fvrh3755UgyPtk42hJlz0a4YU/HojUc7REELaK10NVewN7A0THS7iXhVj5m9RKK/iyzssQiQSnZKP+Yfug2GAae9YY0Y/O3mHJFUSd2RjY2MxYMCAOvt1dHSQn58vjZgIgY95zfpbf99LQ25JpZyjIYS0VxZ6Ggj9sDe0uSq4nZiHhYejwadluYiSiHtVhMDQOyivEsDHyRgrR3Rtc+skS9yRNTMzQ3x8fJ39169fh729vVSCIsReG+hmoYPKagEORKbIOxxCSDvW2UwHP3/gDjUOG6cfZeLLI49ojVmi8F5kF2PK7kjklVSim6Uutk7pCRVO21t1VeIaffLJJ/j0008RGRkJFouF9PR07N+/H4sWLcKcOXNkESNph1gs4MO+Nalqf7+djCpKkEBIq1izZg369u0LTU1N6Onp1VuGxWLV+dm5c2frBtrK+nY0wuZJPcBmAYeiUrDixBPQoj9EUSXnlmLK7kjkFFegs5kO9gX2Bo/bNldclbgju2TJEowePRo+Pj4oLi7GgAED8NFHH+GTTz5BcHCwLGIEIN7F9c6dOxg8eDD09PSgr68PX19fREdHi5R59OgRBg4cCA0NDVhYWGD16tV0MVJQfl1NYK6rjrySKkRlt61HIYQoqsrKSowfPx6zZ89utFxISAgyMjKEP/7+/q0UofwMczXDhgndwWIBv916ifVhsfIOiZA60vLLMHn3LWQWlsOxAw+/z+gNPU3lTnrQmGbdY16zZg1ycnJw+/Zt3Lp1C9nZ2fj666+lHZuIpi6uRUVF8PPzg7W1NSIjI3H9+nXo6OjAz89PuEB5YWEhhgwZAnNzc9y5cwdbt27F+vXrsXHjRpnGTppHlcPGh141g9IvZ7DpCwchrWDVqlVYsGABXF1dGy2np6cHU1NT4Y+GRvtYmup9N0t8O8YVuhqqGNKl7cz8Jm3HjxfikJZfBjsjLeyf2QeGPK68Q5KpZg+W0NTUhIeHB5ydnXHhwgXExMRIM646mrq4xsbG4vXr11i9ejWcnJzQtWtXrFixAllZWUhOTgYA7N+/H+Xl5QgNDYWLiwvGjBmDL7/8Ehs3bqROkoKa2NsKWmocZJaxcD0+V97hEEL+FRwcDCMjI/Tq1Qs7d+6EQNB+xv9M7GWNK4u928w6nKRtWT3KBZN7W+HAzD7ooK0u73BkTuIBExMmTMCAAQMQHByMsrIy9OrVC4mJiWAYBn/88QfGjh0rizib5OTkBCMjI+zZswdffvkl+Hw+9uzZg65du8LGpmas5c2bNzFw4EBwuW++nfj5+eGLL75AUlIS7OzqX5KioqJCuF4u8GbBc0pRK90UtfX9qaGqirFuZtgXmYo91xPR39FIjJpJhlKstgy1X/3xtGVff/01Bg8eDA0NDVy8eBGfffYZcnJy8NVXXzX4moauo3w+H3x+00ta1ZYRp2xr0OZyhLFEp+Tj2P10LPtfZ3DY0hkGpWj1lTWqb8vkFFfAUEsNLBYLqmzgm1FdpXr+lpK0vpLELXGKWlNTU5w7dw7du3fHgQMHsGLFCjx48AB79+7Frl27cP/+fUlOJ7HQ0FDMnz+/3qW+njx5glGjRiExsWbt0U6dOuHcuXOwtrYGAPj6+sLW1ha7du0SviY9PR0WFhaIiIiAp6dnve+5cuVKrFq1qs5+SlHbOnLLga/vc8CAhf/rXg1zanKiwBQxRW1D17C33blzBx4eHsLtxq61/7VhwwasXr0aBQUFEsdw8+ZN8Hi8Jt9DUZVWCfDRsTQUVggQ2FMfY7ooxr85aT+SXldi2cUsvNtRC/5u+vIORyqKi4vh6ekpmxS1BQUFMDAwAACcPXsWY8eOhaamJoYPH47FixdLdK7mXFwbUlZWhsDAQHh5eeHgwYPg8/lYv349hg0bhjt37gjHb/13/bTafnxj66p98cUXWLhwoXC7sLAQVlZWlKK2GceamyL0RPJFROeykMCxwUfDuopdR2m2Q3Nfp2wpViVF7SdKEVPUBgcHY9KkSY2WsbW1bfb533nnHRQWFuLVq1cwMTGpt0xD11EnJyexOvx8Ph9xcXHo1KlTq+WmF9c6tiFCIl5iwQh3aKpJZ2a4ItdXFqi+zRdzPw2vyzPwKJeBTUdHqX0GpUnS+kpyHZW4tlZWVrh58yYMDAxw9uxZ/PHHHwCA169fQ11dsrEY0ry4HjhwAElJSbh58ybYbLZwn76+Po4fP45JkybB1NQUmZmZIq/LysoCgAYvvgDA5XJFhiPUohS1zT8maYpQHzMBonPZOPEgA0vec5bJuB9KsdoybbX9SiqqUVyl3ClqjYyMYGQk/WE5te7fvw91dfUGV5QBGr6OcjgciX6RS1q+NQzvboH3XM3B/ndYAcMwyCuplMokG0WsryxRfSU33sMabBYb73Y2gbaG4l1/3iZufSVpE4k7svPnz8fUqVPB4/FgY2MDb29vAMDVq1ebnOX6X9K8uJaWloLNZovcWa3drp2E4OnpiS+//BKVlZVQU6tZiiIsLAzm5uYtuhtBZM9WG3Cz0sX9lAL8fvMlFvo6yTsk0kaUVlYjvQQ4/zQL6YUVSMwuRvRzNna8iEBGYQUKyqrQw5CNCfIOtJUkJycjLy8PycnJ4PP5wiUMHRwcwOPxcPLkSWRmZsLT0xMaGhoIDw/H0qVL8fHHH9fbUW0v2G+Njf3x4nPsj0xGSEAvuFjoyjEq0hYxDIN9N19ieDczGP37ZWmsu6Wco5IfiTuyc+bMQZ8+fZCcnIwhQ4YI737a29vjm2++kXqAtZq6uA4ZMgSLFy9GUFAQ5s6dC4FAgG+//RYqKirw8fEBAEyZMgWrVq1CQEAAvvzySzx//hxr167F8uXL21zKtrbow742uH/oIX679RJzfBygrtp+vrWTlqnmC5CcV4qY9HyEpbIQ/tcjpOSXIzmvFNlFFQBUgIfRb72CDaBYuFXS9udvCS1fvhx79+4Vbru5uQEAwsPD4e3tDVVVVfz0009YuHAhBAIB7O3tsXr1agQFBckrZIVSXsXH2ceZyC6qwISfb2LjhO4Y6mIm77BIG1Fexcfnfz/Eseh0/H0vFX/O8gRXpX3/LmzWQAp3d3e4u7uL7Bs+fLhUAmpIUxdXZ2dnnDx5EqtWrYKnpyfYbDbc3Nxw9uxZmJnVXER0dXVx/vx5BAUFwcPDA/r6+li4cKHIuC2iuIZ07gBLfQ2kvi7DkXtpmNLHWt4hEQXDMAxeFVbgUVoBnqTl42pczZ3VF7mlqKyuXR6KA6RkiLxOk8Ogo6kurA21YKWnjtep8fDt1wtWhjwYaarg2qWw1q+MnISGhiI0NLTB40OHDsXQoUNbLyAlo67KweFZnpjz+z1cj8/BrN/vYe4gByx4t5PIXVtCGnInKQ8djXkw0BJNYpBVWI6Zv93Fg5R8cNgsjPewavedWKCZHdnU1FScOHECycnJqKysFDkmq+QCTV1cAWDIkCEYMmRIo2VcXV1x9epVKUZGWosKh41ALzusPvUUe66/wKReVvSLoZ3LLCjH/Ze5OJ3MxpHf7uFJehFyiiveKvHmzqqGKgcdjbWgUZmP/j06wc5YGzaGmjDXUcON8PMYNuwd4eSu06efY4CjkXCbEEnoqKsi9MNeWHfmGfZcT8TWS/F4ml6ITZN6QEddsccwEvkqr+Jj0Z8P0LejIdaN6SbcH/kiF8EH7yO7qAK6GqrYMbUn+jrIbty7MpG4I3vx4kWMHDkSdnZ2iI2NhYuLC5KSksAwDHr27CmLGAkRmtDLCpsuxCEhuwRhT19hqAtl1mkvBAIGzzILcSfpNaKS8hCV9Bpp+WX/HmUDyAEAcNgsOHbgobMpD/y8VAwf4IEu5nqw0NMAn1+N06dPY9hAe5FVCwiRNhUOG8v+1wUuFjr4/O9HuPgsC6O33cD2qT3R2YyW6CL1+/Hic7zMLUVyXikmeFihh5Uedl97ge/OxoIvYNDJhIdd0z1ga6Ql71AVhsQd2S+++AKfffYZVq9eDW1tbfz999/o0KEDpk6dSo+biMzxuCrw97TFtvB4bLn4HH5dTWh8cxvFMAyeZxXj8rNXOBbDxrL74SgsrxYpw2Gz4GisBV1BIYb26YLu1gbobKoDDTXOv3dWUzDIyVjYaVWQtcFJO/K+myUcjLXxyW9ReJFTglHbb2DZ/7pgWh9runYRETEZhdh19QUAgGGAL48+gpW+JsKevgIAvO9mgTXvuyjk8lryJHFrxMTE4ODBgzUvVlFBWVkZeDweVq9ejVGjRmH27NlSD5KQt83oZ4eQG4l4mlGI809fwbcr3ZVtK3KLK3A9PgdX43JwPT4brwprhwmwAVRDU42Dntb68LDVRy9bA/Sw0oMam6m5y9rHWiGXviLE1VIXp+b1x6I/H+DSsywsO/YYEfE5+HZsN+gq+HJJpHXwBQw+P/IIfMGbHFUxGUWIySiCGoeN5SO6YCp9+amXxB1ZLS0tYZpBc3NzJCQkoGvXmgXqc3JypBudgqMUtbJPUVvfnzw1Fqa/Y42dVxOx+UIcvB0NWvSfm1KstkxL2+95ZgEux+fhYkw27qXk4+1cg1wVNnrZ6MGwOhvThvSBi6UeVDjst87CKFz70VAFUh8DLTXs8ffAnuuJ+O7sM5x5nImHqQXYMrkH3G0M5B0ekbPfbibhQUp+nf1sFvBrgAf6ORq3flBKQuIUtaNHj8bw4cMxc+ZMLFmyBEePHkVAQACOHDkCfX19XLhwQVaxyt327duxfft2YYYKSlErP8VVwKp7HFQKWJjpxIeLgUQfYyJHDAOklgDReWw8zmMhs0z0S4iFJgNnPQZOegzstRmoshs4kYJSxBS1iqiwsBC6urpitxOfz0dMTAw6d+6s9AvmP0jJx9yD95FRUIaTc/vB2bRu/dtSfcXRnuv7qqgSQzZeQUll/WOfJnhY4vtx3Vs5QumS9N9XkuuDxHdkN27ciOLimlnAK1euRHFxMQ4dOgQHBwds2rRJ0tMplaCgIAQFBQkbmFLUtl6K2vreI0k9DruvJ+FGoR4WTXmn2SsYUIrVlhH3/C9zS3HiYQZOPczAi5xS4X4VNgu97fQxpHMHDHbuADNd0axtytZ+ipiiliiW7lZ6OPNpf0S9fC3Sic0oKIOZroYcIyOtjWEYLDv2uMFOLAAcjkrFxF7WcLfRb8XIlIfEHVl7e3vh3zU1NfHTTz9JNSBlQilqm39MGilWZ3k74OCdVDzNKMLpp1l4361lmU3aaopVSeNsrvrOn1tcgRMP0nEsOl3ksRlXhQ3vTkboUJmB+RPehaFO0082lKX9aJwuEYcWVwUDO715XPwwNR9jd0RgvIcVvh7lIsfISGvadfUFLj7LarLcsmOPcXJuP3Boyck6mj31rbKyEllZWcL0r7WsrWmRetI6DHlczPbuiB/OxWL9uTi852JG2b4UgEDAICIhFwfvJCPsSSaq+DXDPtgsoJ+jMUZ1N4dvVxOoc4DTp9OhQ5NdCMHVuGxU8RmUVFSDw2bRChvtQGmVAD+EPW+ynCqHhZziClyIeQU/mtxch8Qd2bi4OMyYMQMREREi+xmGAYvFAp/+95FWFOhlh99vvURafhlCI5Iwa2BHeYfUbmUVVeDYg5c4dCcFyXlvhg50s9TFGDcLDO9mDmNtrnA/TYoi5I3gQY5wtzFAxw5v1gfNKa1G3KsidDbXk19gRKpq+0oAoKnKRmdTHkqrBPBx6gALfQ3oa6pBX0sVBlpcGPz7dx5XhVYraITEHdkPP/wQKioqOHXqFMzMzKhxiVxpqHHwma8TFv35ANvD4zHe3RKGPG7TLyRSE52Sj71xbHwWeRXV/y4do81VwWg3C0zqbYWu5rpyjpAQ5eDZ0VBke1fUa9w6moaJvayxYIgjOmirN/BKogwi4nOw7swzLBnqhL72NStVnAj2gooKrQvbEhK3XnR0NO7evQtnZ2dZxEOIxN53s8Cv12vWlf32zDP8MF65Z3cqgyq+AGceZyLkRiLuJ+ejZp1XBu42+pjUywrDu5nRot2EtEBFVc3TTQEDHLydjOPRaZg1sCNm9reHhhoNoVImzzJrfjddjs0GAKw/F4u/Z70DAHQzUAok/k3TpUuXdrdeLFFsHDYLX492wdgdEfjzbirGe1ihtx2tyygLBaVV2H/7JfZFvERmYTmAmvFbbgZ8LB3fF92tDZs4AyFEHFxVDr4cYIwSDVOsPRuLByn52Hg+DvsjX2KOtwMm9rKiOQEKLvV1KTZfeI6/76WCYWpWaJnaxxpzBztSB1aKxOrIvr2czHfffYclS5Zg7dq1cHV1rTNDl9ZNJPLgbqOPyb2tcfB2Mr469gin5vaHmoqSLUCqwHKLK/DL9UT8dvMliitq0sQa8biY/o4NJrib4fbVi+hC+eMJkToPW30cm9MXJx9m4Lszz5CWX4YVJ57gp8vx1KFVUIk5JdhxOR5H7qUJh1sNdzXDYj8n2BrVjIGm+UTSI1ZHVk9PT+TbA8MwGDx4sEgZmuxF5O3/hjoh7Ekm4l4VY3t4PBYM6STvkJReVmE5dl19gf2RySj791Gns6k2Zva3x/+6m4GrwqFJW4TIGIvFwsju5vDraoLDUan4KTweGQXlwg7trIEdMcHDClpcGs4jT88yC7E9PAH/PExHbaZZLwdDLPZzRg8rPbnG1paJ9akPDw+XdRxKiVLUyidFbUO0VFn4apgTFvz5CNvC49HfwQDdLZueaEQpauvKKCjH7muJOHQ3DZXVNUvsuZjrIMjbHoOcjGuSTzACVFUJqP0aiIcQaeOqcGqegnhY4s9/O7TpBeVYdfIpNp2Pw+pRLhjtZiHvMNudWy9y8cu1RFyIeSXcN9i5A4IGOaCnNSUxkDWJU9S2Z5SiVjnsjWPjXi4bxuoMFnfjg0tP3cSWWw5cSGMjMpsFPlPzFMaWx8DPUoDOegxoWFfTKEWteNpzilpxiFPfimo+/rqbil+uJSIxpwR/zvJEL9ua+QHlVXxwVdhKMxZTmf99V554gtCIJLBYwDAXM8zx6djkai3KXN/mUIgUtaWlpVi8eDGOHTuGqqoqvPvuu9iyZQuMjIzEPYXSoxS1ipWitiF9vavwv+0ReFVYgchqa6z7X9dGL+aUohZIyi3BjiuJOP4gA/x/n4n1sdNHkLc93rEzoPajFLVEAXFVOJjaxwaTe1nj1otceLyVwnTt6RjcepGLL4Z1ho9TBzlG2bbEZhZh780kjO1pAXebmi8N096xgYBh8IGnLRw68OQcYfsjdkd2xYoVCA0NxdSpU6Guro6DBw9i9uzZ+PPPP2UZn0KjFLXNPybLFKHGuqrYOKEHpu+JxN/30uFuY4gpfZrOONceU9Q+f1WEbeHxOPngzZiu/o5GmDvIUeKVH9pj+zUUByGtic1moa/Dm5tKfAGDs48zkVVUAZW3UpoWlFVBU40DVQ5NhG2uA5EvcSAyGYVlVcKOrEMHHlZTWmG5Ebsje+TIEezZsweTJk0CAEybNg1eXl7g8/nt4rY4US5eDkZY7OeM784+w4oTj+Fspk1jld7yJL0A2y7F4+yTTNQOLhrs3AHBgxzgRu1EiFLjsFk4v3Agzj3OhFfHNx3cLRdrloIa5mqGkd3N0dvWoGa8O6kjq6gc/zzMwMkH6fi/oc7oY1+ztODIHhbILq7A9Hds5BwhqSV2RzYlJQX9+/cXbvfu3RsqKipIT0+HlZWVTIIjpCVmDbTHw9R8nHmciZl7o/DX7L6wM9Jq+oVt2IOUfGy99BwXYrKE+4Z2NUXwIAe4WFAGrvYuKSkJX3/9NS5duoTMzEyYm5tj2rRpWLp0KdTU1ITlkpOTERQUhEuXLkFDQwNTpkzB+vXrRcoQ+dLVUMWEXqK/myMTc5FfWoUDkck4EJkMIx4Xg5yNMbizCfo7GrXrJCYMwyAhuwQRCTk4+zgTt17kCp9SHX+QLuzIutvow93GXY6Rkv8S+1PL5/PrXKRUVFRQXV0t9aAIkQYWi4UfxndHyutSPE4rxAe/RuLv2X3bZZrHhEIgcO9dXIvPBQCwWMD/upkj2McBTqbaco6OKIpnz55BIBDg559/hoODAx4/foyZM2eipKQE69evB1Dzu2D48OEwNjbG9evXkZubC39/fzAMg61bt8q5BqQxx4P64daLXByPTsOZx5nIKa7A4ahUHI5KhZoKG572hhjYyRieHQ3hZKLd5u/WpuWXISI+BxEJuYhIyMGrwgqR427WehjZ3RzDXc3kFCERh9gdWYZhEBAQAC73TR778vJyzJo1C1pab+5yHTlyRLoREtICPK4KQgJ6Y9zOCLzMLcX0X27j94/6wFib2/SLlRzDMLgal42tl57jTpIKgFxw2CyM6mGOIB8HdDSmSQlE1NChQzF06FDhtr29PWJjY7Fjxw5hRzYsLAxPnz5FSkoKzM3NAQAbNmxAQEAA1qxZQys1KDAOmwUvByN4ORjhm9GuuJ2Yh4vPXuFiTBaS80pxJS4bV+Jq0qgaaKmhj50BFg7pBEeTtvNlNyopD0fupyEiPgdJuaUix7gqbHjY6qO/ozGGu5rByoBWJVIGYndk/f396+ybNm2aVINpiDiPux48eIBvv/0W169fR05ODmxtbTFr1ix8+umnIuexs7Orc/4zZ86IXLxJ22KszcW+wN4Yv/MmYl8VYeKum9j/UR+Y6WrIOzSZEAgYPMpjYc/PkXiYVjODnsNiMM7dEnN8HGFj2L6HVxDJFBQUwMDgzcS/mzdvwsXFRdiJBQA/Pz9UVFTg7t278PHxkUeYREJqKmz0czRCP0cjLP9fF8RnFePisyxEJOQiKikPeSWVOPM4E0uGOgtfczw6DfeT8/Gei6nwUbsiEAgYvC6tRH5ZlcgX9O3h8XiQko/Z3h2FY/8fphbgQGQygJqOfTdLXXh1NELfjoboaaNPWdKUkNgd2ZCQEFnG0ShxHnfdvXsXxsbG+P3332FlZYWIiAh8/PHH4HA4CA4OFjnfhQsX0LVrV+H22xdp0jbZGGrh8CeemPpLJF5kl2Dcjpv4NaBXm3qsXs0X4PSTNGy/FI+4LA6AQqirsjHRwxL2FS8wZVRXmlFPJJKQkICtW7diw4YNwn2ZmZkwMTERKaevrw81NTVkZmY2eK6KigpUVLx5dFu7TBmfzxcrI2RtmfaSPbK162tvpAn7fraY2c8WVXwBHqYWIDolH1Z6XGEMZx9n4MzjV+igrQYPGz0ANelY1515ho7GPFjqa8BcTwMWeuqw0NOQKNNYffVlGAYFZVV4VVSBrMIKvCoqR3ZRBV4VViCrqAJZheV4VVSB7KIKVPEZ6Gmo4u5Xb7KO3krIwbX4XLzbuQO6WdQ8KejvYICAvjboa2+I3nb60FZXrTcOWaPPs3jlxaEUI7vFedwVGBgo8hp7e3vcvHkTR44cqdORNTQ0hKmpqewDJwrF1kgLhz55B9N+iURSbinG/HQDP05yw0BH5f4iU1hWhYtpLHy76ToyCsoBAFwOgw+97PHRgI7Q5bJx+vQLOUdJ5GnlypVYtWpVo2Xu3LkDDw8P4XZ6ejqGDh2K8ePH46OPPhIpW9+6wrVpyhuybt26emOIjY0Fjyf+MJe4uDixy7YF8qqvJoC+hjU3kmp5GAmg6qwNc3YhYmJiAADXX5bg4rMcXHyWXeccPDU2dLls6KhzoK3Gho46GzpqHHBVWJjSTVf4eYnOKEN8XiX6WGoC/9b3+ssSbLiRgyqB+DEzAj4ePn4KVU7Nefubs+FqYADdqlzExLxZ33mcPQDkIjUxV7JGkQH6PNevuLhY7HMqRUe2Pv993CVJmZEjR6K8vByOjo5YsGABxo0bJ6swiYKx1NfE0TlemLP/Hm6+yMVH+6IQ2NcGXSS4WCqKl7klCLmRhMNRKSit5AAohxFPDVN7W8G0KBbjhjgKF/Qn7VtwcLBw6cSG2NraCv+enp4OHx8feHp6YteuXSLlTE1NERkZKbLv9evXqKqqqnOn9m1ffPEFFi5cKNwuLCyElZUVnJycxM7sFRcXh06dOrWLJR8Vsb6dO9fdp2VSCq5uNl7klCA9vwxp+eVIzy9DYXk1iisFKK4UIK1IdFK4GoeFbyZ5Crc3Rd3FxWf50FPnYHCvruBwOMhWyUbVtRwAgJ6GKjrocGGizUUHHXV00ObCRIeLDtpcdNBWh4kOF0Y8LtRURNfHrS9eRaGI/76yJGl9JUkso5Qd2foed/3XzZs3cfjwYfzzzz/CfTweDxs3boSXlxfYbDZOnDiBiRMnYu/evY2O923okVhVVZXwp3ZbnD+lTZ657iU91hq57pvCU2NhzwduWHcmFr9FpuDXiJcw0+TAxjUPPWzEvzsrjfZr7Hh9+0vLKxCdy8KfoVG48SJPuAasmQaDoCGdMbqHBdgQ4Pz52Hbx+WvsuLw+f4r4xcHIyEjsLIxpaWnw8fGBu7s7QkJCwGaLdg48PT2xZs0aZGRkwMysZjZ3WFgYuFwu3N0bXpaIy+WKTBauxeFwJPpFLml5Zafo9bUz1oadcd0hWkXlVcgoKEdeSSXySyvxurQKeSWVKCirgkDAiNSpq7kudDRU0UGLL6xvH3sjXFviA2Ntbpset6ro/77SJm59JWkTFsPU/ipsfc193DVw4EAMHDgQv/zyS72vefLkCXx8fDBv3jx89dVXjZ5/7ty5uHLlCh4+fChxnAcOHICmJs1qVGaP81g4mMBGcTULLDB4pwOD/1kLwFOwoaSvyoDILDYis1kornrz+LaLngDeZgw66TJQkpTqbV5paSmmTJkiVo5wRVN7fbW2tsa+fftEfpnUDsfi8/no0aMHTExM8MMPPyAvLw8BAQEYPXq0RMtvSZJLvfZ9KTd920X1bdskra8k1we53pGV5uOuWk+fPsWgQYMwc+bMJjuxAPDOO+802CGu1dAjMV9fX+jo6Eg9V7uk5JnrXtJjrZHrXhLDAEx/XYIF+67hbg4bN7NYeJiviim9rRDoZQMjXsPLdEmj/Ro7nphViC3HbyC+UhfPMt+MF9JRZTCxtw0m9raGjYFmu/78NXZcXp8/SR6JKZqwsDDEx8cjPj4elpaWIsdq73lwOBz8888/mDNnDry8vEQSIhBCSGuTa0dWmo+7gJo7sYMGDYK/vz/WrFkj1nnv378vfDzWkIYeiUmam725uejFJc9c95Iek2Wue0mZ6WvhA0cBFo3ugzVnYvE4rRC7rydh361kvOdiigm9rPCOnWGDi4NLo/0AgM1RwcP0YlyJzUJ4bDYepRUA4AAohgqbhQGdjDHOzRzlL6IwYqizwrRfS88vrfZr6Hhrf/6UeWWIgIAABAQENFnO2toap06dkn1AhBDSBKUYI5ueng5vb29YW1tj/fr1yM5+Mzuy9nFX7XACX19fLFy4ULgMDIfDgbGxMQBg7969UFVVhZubG9hsNk6ePIktW7bgu+++a/1KEYXjYaOPk8H9cOlZFrZeikd0Sj6ORafjWHQ6zHXV4ePcAYM7d0AvW4M6S7Y0R3kVH4/SCnAnMQdnY9lYHh2OgrI3kyLYLKCjtgD+Pi4Y3s0C+lpqqKqqwumkFr81IYQQ0iYoRUdWnMddf/75J7Kzs7F//37s379feNzGxgZJSUnC7W+++QYvX74Eh8NBp06d8Ouvv7ZaYgei+FgsFgZ3NsEg5w54kFqAw1EpOBmdjvSCcuyPTMb+yGSwWIC9kRZczXVQmcdC1YMM2BjxoKOuCi0uB1pqKuAzDKr5DCqrBcgqLMXjPBaKolKRXlCB+KxiJGQX42VuKaprk3mDDaAauhqq6O9ohIGdjNGvoz5uX72IYR6WSn2XjxBCCJEVpejIivO4a+XKlVi5cmWjZfz9/evNUEbIf7FYLPSw0kMPKz0s/18XRCTk4NKzLFyJy0ZKXhkSskuQkF0CgIPTKY/EOCMHiH1aZ6+xNhc9LHWhUZKBaX6e6GlrCBVOzbAZRZz9TgghhCgSpejIEiJP6qocDHI2wSDnmjUyc4or8DA1Hw+SX+PWo+cAzxCZhRUoLq9GcUU1KqprFqVV5bCgymFDT0MVKtVl6GhpDAt9TXQ05qGjMQ8OHXgw01VHdXU1Tp9Oh5u1nrATSwghhJCmUUeWEAkZ8bgY5GyC/h0NYF8Wi2HDeok8+ucLGLBZb7IfVVVV4fTp0xg2rCcNESCEEEKkiDqyhEgZp4HVDQghhBAiXfQckxBCCCGEKCW6I9sMtSsl5OXlCVPUlpaWIjc3V7iAemPb0tbc84v7usbKSXpMnH3tqf0aO07tJ145RWu/oqIiAG+uE6R+te0jbgIJPp+P4uJiFBYWtptMSFTftovq27ja64I411HqyEpg+/bt2L59OyorKwEAdnZ2co6IEKKoioqKoKurK+8wFFZth9/KykrOkRBCFJU411EWQ7cNJCYQCJCeng5tbW3hhJ5evXrhzp07wjJvb9emtE1JSZFZ7vX/vr+0X9dYOUmPibOvPbVfY8ep/cQrp0jtxzAMioqKYG5uXm8GQlKjvutoY1rjc6xIqL5tG9W3cZJcR+mObDOw2ew6iRk4HI7IP85/twFAR0dHZh/Y+t5Pmq9rrJykx8TZ157ar7Hj1H7ilVO09qM7sU2r7zoqDll+jhUR1bdto/o2TNzrKN0ukJKgoKBGt1v7/aX9usbKSXpMnH3tqf0aO07tJ145ZW8/QgghzUNDC1pBYWEhdHV1UVBQ0K6+eUkLtV/LUPu1DLWfYmhv/w5U37aN6is9dEe2FXC5XKxYsQJcLlfeoSglar+WofZrGWo/xdDe/h2ovm0b1Vd66I4sIYQQQghRSnRHlhBCCCGEKCXqyBJCCCGEEKVEHVlCCCGEEKKUqCNLCCGEEEKUEnVkFUhKSgq8vb3RpUsXdOvWDX/++ae8Q1I677//PvT19TFu3Dh5h6IUTp06BScnJzg6OuKXX36RdzhKhz5vspWUlIQZM2bAzs4OGhoa6NixI1asWCFME14rOTkZI0aMgJaWFoyMjDBv3rw6ZZTFmjVr0LdvX2hqakJPT6/eMm2pvgDw008/wc7ODurq6nB3d8e1a9fkHZLUXL16FSNGjIC5uTlYLBaOHTsmcpxhGKxcuRLm5ubQ0NCAt7c3njx5Ip9gW2jdunXo1asXtLW10aFDB4wePRqxsbEiZWRRX+rIKhAVFRVs3rwZT58+xYULF7BgwQKUlJTIOyylMm/ePOzbt0/eYSiF6upqLFy4EJcuXcK9e/fw3XffIS8vT95hKRX6vMnWs2fPIBAI8PPPP+PJkyfYtGkTdu7ciS+//FJYhs/nY/jw4SgpKcH169fxxx9/4O+//8Znn30mx8ibr7KyEuPHj8fs2bPrPd7W6nvo0CHMnz8fS5cuxf3799G/f3+89957SE5OlndoUlFSUoLu3btj27Zt9R7//vvvsXHjRmzbtg137tyBqakphgwZgqKiolaOtOWuXLmCoKAg3Lp1C+fPn0d1dTV8fX1F+jEyqS9DFJarqyuTnJws7zCUTnh4ODN27Fh5h6Hwbty4wYwePVq4PW/ePObAgQNyjEg50eetdX3//feMnZ2dcPv06dMMm81m0tLShPsOHjzIcLlcpqCgQB4hSkVISAijq6tbZ39bq2/v3r2ZWbNmiexzdnZmPv/8czlFJDsAmKNHjwq3BQIBY2pqynz77bfCfeXl5Yyuri6zc+dOOUQoXVlZWQwA5sqVKwzDyK6+dEdWAk09IgCk94gkKioKAoEAVlZWLYxacbRm+7UHLW3P9PR0WFhYCLctLS2RlpbWGqErBPo8KqeCggIYGBgIt2/evAkXFxeYm5sL9/n5+aGiogJ3796VR4gy1ZbqW1lZibt378LX11dkv6+vLyIiIuQUVetJTExEZmamSP25XC4GDhzYJupfUFAAAML/r7KqL3VkJdDUIwJxHpG4u7vDxcWlzk96erqwTG5uLj744APs2rVL5nVqTa3Vfu1FS9uTqScXCovFkmnMikQan0fSuhISErB161bMmjVLuC8zMxMmJiYi5fT19aGmpobMzMzWDlHm2lJ9c3JywOfz69THxMRE6erSHLV1bIv1ZxgGCxcuRL9+/eDi4gJAdvVVaX6Y7c97772H9957r8HjGzduxIwZM/DRRx8BADZv3oxz585hx44dWLduHQA0+Y25oqIC77//Pr744gv07dtXesErgNZov/akpe1pYWEhcgc2NTUVffr0kXncikIan0fSPCtXrsSqVasaLXPnzh14eHgIt9PT0zF06FCMHz9e+G9Sq74vYAzDKMwXs+bUtzGKXl9J/TduZa5Lc7TF+gcHB+Phw4e4fv16nWPSri91ZKWk9hHJ559/LrJfkkckDMMgICAAgwYNwvTp02URpsKSRvuRN8Rpz969e+Px48dIS0uDjo4OTp8+jeXLl8sjXIVDn0fZCg4OxqRJkxotY2trK/x7eno6fHx84OnpWedJlampKSIjI0X2vX79GlVVVXXu/MiLpPVtjDLUV1xGRkbgcDh17sZlZWUpXV2aw9TUFEDNnUozMzPhfmWv/9y5c3HixAlcvXoVlpaWwv2yqi91ZKVEGo9Ibty4gUOHDqFbt27C8Xq//fYbXF1dpR2uwpHWIyY/Pz/cu3cPJSUlsLS0xNGjR9GrVy9ph6vwxGlPFRUVbNiwAT4+PhAIBFiyZAkMDQ3lEa7CEffzSJ+35jEyMoKRkZFYZdPS0uDj4wN3d3eEhISAzRYdEefp6Yk1a9YgIyND+MsxLCwMXC4X7u7uUo+9OSSpb1OUob7iUlNTg7u7O86fP4/3339fuP/8+fMYNWqUHCNrHXZ2djA1NcX58+fh5uYGoOZL9JUrV/Ddd9/JOTrJMQyDuXPn4ujRo7h8+TLs7OxEjsuqvtSRlbKW3DLv168fBAKBLMJSGi195HDu3Dlph6TUmmrPkSNHYuTIka0dltJoqv3o8yZb6enp8Pb2hrW1NdavX4/s7Gzhsdq7O76+vujSpQumT5+OH374AXl5eVi0aBFmzpwJHR0deYXebMnJycjLy0NycjL4fD6io6MBAA4ODuDxeG2uvgsXLsT06dPh4eEhvOOenJwsMg5amRUXFyM+Pl64nZiYiOjoaBgYGMDa2hrz58/H2rVr4ejoCEdHR6xduxaampqYMmWKHKNunqCgIBw4cADHjx+Htra28Eu/rq4uNDQ0wGKxZFJf6shKSXt/RNJS1H7SRe3ZMtR+iiEsLAzx8fGIj48XeUQJvJmsyOFw8M8//2DOnDnw8vKChoYGpkyZgvXr18sj5BZbvnw59u7dK9yuvXMVHh4Ob2/vNlffiRMnIjc3F6tXr0ZGRgZcXFxw+vRp2NjYyDs0qYiKioKPj49we+HChQAAf39/hIaGYsmSJSgrK8OcOXPw+vVr9OnTB2FhYdDW1pZXyM22Y8cOAIC3t7fI/pCQEAQEBACATOrLYuqbukyaxGKxcPToUYwePVq4r0+fPnB3d8dPP/0k3NelSxeMGjWKJof8B7WfdFF7tgy1HyGEKCe6IyuBph4RtPVHJC1F7Sdd1J4tQ+1HCCFtQLNTKbRD4eHhDIA6P/7+/sIy27dvZ2xsbBg1NTWmZ8+ewowWhNpP2qg9W4bajxBClB8NLSCEEEIIIUqJMnsRQgghhBClRB1ZQgghhBCilKgjSwghhBBClBJ1ZAkhhBBCiFKijiwhhBBCWt3KlSvRo0cPmb5HaGgo9PT0ZPoeRL6oI0sIIYQQoYCAALBYLLBYLKioqMDa2hqzZ8/G69ev5R2axCZOnIi4uDh5h0FkiBIiEEIIIUTE0KFDERISgurqajx9+hSBgYHIz8/HwYMH5R2aRDQ0NKChoSHvMIgM0R1ZQgghhIjgcrkwNTWFpaUlfH19MXHiRISFhYmUCQkJQefOnaGurg5nZ2eRdM4A8H//93/o1KkTNDU1YW9vj2XLlqGqqkrsGPh8PmbMmAE7OztoaGjAyckJP/74o/B4eXk5unbtio8//li4LzExEbq6uti9ezeAukMLHjx4AB8fH2hra0NHRwfu7u6IioqSpGmIgqE7soQQQghp0IsXL3D27FmoqqoK9+3evRsrVqzAtm3b4Obmhvv372PmzJnQ0tKCv78/AEBbWxuhoaEwNzfHo0ePMHPmTGhra2PJkiViva9AIIClpSUOHz4MIyMjRERE4OOPP4aZmRkmTJgAdXV17N+/H3369MGwYcMwYsQITJ8+HT4+Ppg5c2a955w6dSrc3NywY8cOcDgcREdHi9SLKCF5pxYjpL3w9/cXpkE9evSoTN5j4MCBzKeffiqTczdkxYoVwnpt2rSpVd+bECJ9/v7+DIfDYbS0tBh1dXXh/++NGzcKy1hZWTEHDhwQed3XX3/NeHp6Nnje77//nnF3dxdur1ixgunevbtEsc2ZM4cZO3ZsnfMaGRkxc+fOZUxNTZns7GzhsZCQEEZXV1e4ra2tzYSGhkr0nkSx0dAC0mxvTwh4+yc+Pl7eoSmsoUOHIiMjA++9916rvq+3tzd27twpk3MvWrQIGRkZsLS0lMn5CSGtz8fHB9HR0YiMjMTcuXPh5+eHuXPnAgCys7ORkpKCGTNmgMfjCX+++eYbJCQkCM/x119/oV+/fjA1NQWPx8OyZcuQnJwsURw7d+6Eh4cHjI2NwePxsHv37jrn+Oyzz+Dk5IStW7ciJCQERkZGDZ5v4cKF+Oijj/Duu+/i22+/FYmXKCfqyJIWqe2Yvf1jZ2dXp1xlZaUcolM8tePOuFxug2UkGUMmjry8PERERGDEiBFSPW8tHo8HU1NTcDgcmZyfENL6tLS04ODggG7dumHLli2oqKjAqlWrANQ88gdqhhdER0cLfx4/foxbt24BAG7duoVJkybhvffew6lTp3D//n0sXbpUot8Fhw8fxoIFCxAYGIiwsDBER0fjww8/rHOOrKwsxMbGgsPh4Pnz542ec+XKlXjy5AmGDx+OS5cuoUuXLjh69KgkTUMUDHVkSYvUdsze/uFwOPD29kZwcDAWLlwIIyMjDBkyBADw9OlTDBs2DDweDyYmJpg+fTpycnKE5yspKcEHH3wAHo8HMzMzbNiwAd7e3pg/f76wDIvFwrFjx0Ti0NPTQ2hoqHA7LS0NEydOhL6+PgwNDTFq1CgkJSUJjwcEBGD06NFYv349zMzMYGhoiKCgIJFOZEVFBZYsWQIrKytwuVw4Ojpiz549YBgGDg4OWL9+vUgMjx8/BpvNlugbflJSElgsFg4fPgxvb2+oq6vj999/R25uLiZPngxLS0toamrC1dW1zmzh+tqqPv/88w+6d+8OCwsLXL58GSwWC+fOnYObmxs0NDQwaNAgZGVl4cyZM+jcuTN0dHQwefJklJaWCs/x119/wdXVFRoaGjA0NMS7776LkpISsetJCFFuK1aswPr165Geng4TExNYWFjgxYsXcHBwEPmpvZFx48YN2NjYYOnSpfDw8ICjoyNevnwp0Xteu3YNffv2xZw5c+Dm5gYHB4d6r6+BgYFwcXHBvn37sGTJEjx9+rTR83bq1AkLFixAWFgYxowZg5CQEIniIoqFOrJEZvbu3QsVFRXcuHEDP//8MzIyMjBw4ED06NEDUVFROHv2LF69eoUJEyYIX7N48WKEh4fj6NGjCAsLw+XLl3H37l2J3re0tBQ+Pj7g8Xi4evUqrl+/Dh6Ph6FDh4p8kw8PD0dCQgLCw8Oxd+9ehIaGinSGP/jgA/zxxx/YsmULYmJisHPnTvB4PLBYLAQGBta5+P3666/o378/OnbsKHFb/d///R/mzZuHmJgY+Pn5oby8HO7u7jh16hQeP36Mjz/+GNOnT0dkZKTEbXXixAmMGjVKZN/KlSuxbds2REREICUlBRMmTMDmzZtx4MAB/PPPPzh//jy2bt0KAMjIyMDkyZMRGBiImJgYXL58GWPGjAHDMBLXkxCinLy9vdG1a1esXbsWQM01ZN26dfjxxx8RFxeHR48eISQkBBs3bgQAODg4IDk5GX/88QcSEhKwZcsWie98Ojg4ICoqCufOnUNcXByWLVuGO3fuiJTZvn07bt68iX379mHKlCkYN24cpk6dWu+d37KyMgQHB+Py5ct4+fIlbty4gTt37qBz587NbBWiEOQ9SJcor7cnBNT+jBs3jmGYmklHPXr0ECm/bNkyxtfXV2RfSkoKA4CJjY1lioqKGDU1NeaPP/4QHs/NzWU0NDREJjChnslSurq6TEhICMMwDLNnzx7GycmJEQgEwuMVFRWMhoYGc+7cOWHsNjY2THV1tbDM+PHjmYkTJzIMwzCxsbEMAOb8+fP11j09PZ3hcDhMZGQkwzAMU1lZyRgbGzc6icDf358ZNWqUyL7ExEQGALN58+YGX1dr2LBhzGeffcYwDCN2W5WXlzPa2trMw4cPGYZhmPDwcAYAc+HCBWGZdevWMQCYhIQE4b5PPvmE8fPzYxiGYe7evcsAYJKSkhqNz8bGhiZ7EdIG1HetYhiG2b9/P6OmpsYkJycLt3v06MGoqakx+vr6zIABA5gjR44Iyy9evJgxNDRkeDweM3HiRGbTpk0iE6+amuxVXl7OBAQEMLq6uoyenh4ze/Zs5vPPPxe+JiYmhtHQ0BCZdFZQUMDY2toyS5YsYRhGdLJXRUUFM2nSJMbKyopRU1NjzM3NmeDgYKasrKx5DUUUAi2/RVrEx8cHO3bsEG5raWkJ/+7h4SFS9u7duwgPDwePx6tznoSEBJSVlaGyshKenp7C/QYGBnBycpIoprt37yI+Ph7a2toi+8vLy0UeS3Xt2lVkXKeZmRkePXoEAIiOjgaHw8HAgQPrfQ8zMzMMHz4cv/76K3r37o1Tp06hvLwc48ePlyjWWv9tKz6fj2+//RaHDh1CWloaKioqUFFRIWzfhIQEsdrq0qVLMDQ0hKurq8j+bt26Cf9uYmIiXOfx7X23b98GAHTv3h2DBw+Gq6sr/Pz84Ovri3HjxkFfX79ZdSWEKLa3n0y9bcqUKZgyZUqD2//1/fff4/vvvxfZ9/YwsZUrV2LlypUNvp7L5SIkJKTO069169YBAJydnUWGQAGAjo4OEhMThdsBAQEICAgAAKipqSldQgfSNOrIkhapnRDQ0LG3CQQCjBgxAt99912dsmZmZk0O0q/FYrHqPNZ+e2yrQCCAu7s79u/fX+e1xsbGwr//d+1AFoslnMQgTiaYjz76CNOnT8emTZsQEhKCiRMnQlNTU6w6/Nd/22rDhg3YtGkTNm/eDFdXV2hpaWH+/PnCx2X/rX9D6htWAIjWncViNdoWHA4H58+fR0REBMLCwrB161YsXboUkZGR9U7sI4QQQloLjZElraZnz5548uQJbG1t60wQqO0Qq6qqCme9AsDr16/r5Mk2NjZGRkaGcPv58+ci38p79uyJ58+fo0OHDnXeR1dXV6xYXV1dIRAIcOXKlQbLDBs2DFpaWtixYwfOnDmDwMBAcZuiSdeuXcOoUaMwbdo0dO/eHfb29iIdfXHaimEYnDx5EiNHjmxxPCwWC15eXli1ahXu378PNTU1mulLCCFE7qgjS1pNUFAQ8vLyMHnyZNy+fRsvXrxAWFgYAgMDwefzwePxMGPGDCxevBgXL17E48ePERAQADZb9GM6aNAgbNu2Dffu3UNUVBRmzZolckdx6tSpMDIywqhRo3Dt2jUkJibiypUr+PTTT5GamipWrLa2tvD390dgYCCOHTuGxMREXL58GYcPHxaW4XA4CAgIwBdffAEHBweRx/wt5eDgILwLGhMTg08++QSZmZnC4+K01d27d1FSUoIBAwa0KJbIyEisXbsWUVFRSE5OxpEjR5CdnU0TJAghhMgddWRJqzE3N8eNGzfA5/Ph5+cHFxcXfPrpp9DV1RV2wH744QcMGDAAI0eOxLvvvot+/frB3d1d5DwbNmyAlZUVBgwYgClTpmDRokUij/Q1NTVx9epVWFtbY8yYMejcuTMCAwNRVlYGHR0dsePdsWMHxo0bhzlz5sDZ2RkzZ86ss+TUjBkzUFlZKdW7sQCwbNky9OzZE35+fvD29oapqSlGjx4tUqaptjp+/DiGDx8OFZWWjSDS0dHB1atXMWzYMHTq1AlfffUVNmzY0OpJHQghhJD/YjHiDrYjRE68vb3Ro0cPbN68Wd6h1HHjxg14e3sjNTUVJiYmjZYNCAhAfn5+nTVwZaVbt2746quvRJY3kyVbW1vMnz9fZDIHIYQQIkt0R5aQZqioqEB8fDyWLVuGCRMmNNmJrXXq1CnweDycOnVKpvFVVlZi7NixrXLXdO3ateDxeBKnniSEEEJaiu7IEoWniHdkQ0NDMWPGDPTo0QMnTpyAhYVFk6/JyspCYWEhgJpVGv67UoGyysvLQ15eHoCaiXjiTqgjhBBCWoo6soQQQgghRCnR0AJCCCGEEKKUqCNLCCGEEEKUEnVkCSGEEEKIUqKOLCGEEEIIUUrUkSWEEEIIIUqJOrKEEEIIIUQpUUeWEEIIIYQoJerIEkIIIYQQpUQdWUIIIYQQopT+Hx5f54TlT8H+AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADWkUlEQVR4nOzdd1xT1/sH8E8SSNh7b5AhIOBGwb1wrzqqdY9qrZNWrbXW0Vartmp/rjpaR79abbXaOuqoCu6FIioIKCDIkL1XSM7vD0pqZAUMJIHn/Xrx0tx77r3POQk3D/eeew6HMcZACCGEEEKIiuEqOgBCCCGEEELqgxJZQgghhBCikiiRJYQQQgghKokSWUIIIYQQopIokSWEEEIIISqJEllCCCGEEKKSKJElhBBCCCEqiRJZQgghhBCikiiRJYQQQgghKokSWUJIo+NwODh58qRc9tWjRw8sXLiw3tufPHkSzs7O4PF477Sf6mRkZMDMzAxxcXFy37e8rVq1Cq1bt66xzJQpUzB8+HCZ9/n48WPY2NigoKDg3YJrZt71cy2rur6fhCgbNUUHQEhzNGXKFGRnZ8stmWvO/vjjD6irq9d7+1mzZmHq1KmYP38+dHV15RhZuXXr1mHIkCFwcHCQ+76ro0yfLy8vL3Ts2BGbN2/GF198oehwyFt++OEH0Ez1RJXRFVlCiEozMjKqdwKan5+P1NRUBAQEwMrKqt77KS0trXJ5UVERfvrpJ8yYMaNe+20qpk6dip07d0IkEjXaMat7T4g0fX19GBgYKDoMQuqNEllClFBwcDA6duwIgUAAS0tLfPbZZygrK5OsLykpwfz582FmZgYNDQ106dIF9+7dk6wPCgoCh8PBmTNn4OPjAw0NDfj6+uLx48c1HnfTpk3w8vKCtrY2bG1tMWfOHOTn50vW79+/HwYGBjh//jzc3d2ho6OD/v37Izk5WVLm3r176Nu3L0xMTKCvr4/u3bvjwYMH1R6zV69emDt3rtSyjIwMCAQCXL58GQCwY8cOuLi4QENDA+bm5hg1apSk7Nu3YGsq+6agoCBJ4tqrVy9wOBwEBQUBAI4fPw5PT08IBAI4ODjg+++/l9rWwcEBX3/9NaZMmQJ9fX3MnDmzymP8/fffUFNTQ+fOnSu14ZtOnjwJDocjeV1xi/+XX36Bg4MD9PX18f777yMvL09S5tixY/Dy8oKmpiaMjY3Rp08fFBQUYNWqVThw4AD+/PNPcDgcqXotXboUrq6u0NLSgpOTE1asWAGhUFgp7l27dsHW1hZaWloYPXo0srOzq6wfADDGsGHDBjg5OUFTUxM+Pj44duyYVJmAgABkZGQgODi42v08evQIPXv2hK6uLvT09NCuXTvcv39fsv7mzZvo1q0bNDU1YWtri/nz50t1V6jqPencuTM+++wzqeOkpaVBXV0dV65cAQBkZWVh0qRJMDQ0hJaWFgYMGIDo6GhJ+Yr36/Tp03Bzc4OWlhZGjRqFgoICHDhwAA4ODjA0NMS8efOkEvXS0lIsWbIE1tbW0NbWhq+vr+R9qHDjxg10794dWlpaMDQ0REBAALKysiTrxWIxlixZAiMjI1hYWGDVqlVS28vj9/XtrgXVfa7eLLt27VqYm5vDwMAAq1evRllZGRYvXgwjIyPY2Njg559/rvZ9JkTuGCGk0U2ePJkNGzasynWvXr1iWlpabM6cOSwiIoKdOHGCmZiYsJUrV0rKzJ8/n1lZWbGzZ8+yp0+fssmTJzNDQ0OWkZHBGGPsypUrDABzd3dnFy5cYGFhYWzw4MHMwcGBlZaWVhvX5s2b2eXLl1lMTAy7dOkSc3NzYx999JFk/b59+5i6ujrr06cPu3fvHgsJCWHu7u5s/PjxkjKXLl1iv/zyCwsPD2fh4eFs+vTpzNzcnOXm5krKAGAnTpxgjDF26NAhZmhoyIqLiyXrf/jhB+bg4MDEYjG7d+8e4/F47PDhwywuLo49ePCA/fDDD5Ky3bt3ZwsWLGCMsVrLvqmkpIRFRkYyAOz48eMsOTmZlZSUsPv37zMul8vWrFnDIiMj2b59+5impibbt2+fZFt7e3ump6fHNm7cyKKjo1l0dHSVx1iwYAHr37+/1LJ9+/YxfX19qWUnTpxgb56OV65cyXR0dNjIkSPZ48eP2dWrV5mFhQX7/PPPGWOMJSUlMTU1NbZp0yYWGxvLwsLC2Pbt21leXh7Ly8tjY8aMYf3792fJycmSejHG2FdffcVu3LjBYmNj2V9//cXMzc3Z+vXrpY6rra3NevXqxR4+fMiCg4OZs7Oz1Pv79mf3888/Zy1btmTnzp1jL168YPv27WMCgYAFBQVJ1bFjx45s1apVVbYTY4x5enqyCRMmsIiICBYVFcV+++03FhoayhhjLCwsjOno6LDNmzezqKgoduPGDdamTRs2ZcqUGt+TrVu3Mjs7OyYWiyXltm7dyqytrZlIJGKMMTZ06FDm7u7Orl69ykJDQ1lAQABzdnaW/J5UfOb79u3LHjx4wIKDg5mxsTHr168fGzNmDHv69Ck7deoU4/P57MiRI5LjjB8/nvn5+bGrV6+y58+fs40bNzKBQMCioqIYY4w9fPiQCQQC9tFHH7HQ0FD25MkTtnXrVpaWlsYYK/9c6+npsVWrVrGoqCh24MABxuFw2IULFyTHkMfv65vvZ02fq4qyurq67OOPP2bPnj1jP/30EwPAAgIC2DfffMOioqLYV199xdTV1Vl8fHy17zUh8kSJLCEKUFMi+/nnnzM3NzepL9/t27czHR0dJhKJWH5+PlNXV2eHDh2SrC8tLWVWVlZsw4YNjLH/Etk3v1gzMjKYpqYmO3r0qMxx/vbbb8zY2Fjyet++fQwAe/78uVRs5ubm1e6jrKyM6erqslOnTkmWvZnIFhcXMyMjI6m4WrduLUl6jh8/zvT09KQS4Te9mcjWVvZtWVlZDAC7cuWKZNn48eNZ3759pcotXryYeXh4SF7b29uz4cOH17r/YcOGsWnTpkktkzWR1dLSkqrH4sWLma+vL2OMsZCQEAaAxcXFVXncmj5fb9qwYQNr166d1HF5PB5LSEiQLPv7778Zl8tlycnJlfadn5/PNDQ02M2bN6X2O336dDZu3DipZSNGjJBKPN+mq6vL9u/fX+W6iRMnsg8//FBq2bVr1xiXy2VFRUWMsarfk9TUVKampsauXr0qWda5c2e2ePFixhhjUVFRDAC7ceOGZH16ejrT1NRkv/32G2Os6s/8rFmzmJaWliTBY4yxgIAANmvWLMYYY8+fP2ccDoclJiZKxdO7d2+2bNkyxhhj48aNY/7+/tW2R/fu3VmXLl2klnXo0IEtXbq02m3q8/v65vspy+fK3t5e8kcAY4y5ubmxrl27Sl6XlZUxbW1t9uuvv1YbJyHyRF0LCFEyERER6Ny5s9StZn9/f+Tn5+PVq1d48eIFhEIh/P39JevV1dXRsWNHRERESO3rzVvaRkZGcHNzq1TmTVeuXEHfvn1hbW0NXV1dTJo0CRkZGVK3cLW0tNCiRQvJa0tLS6Smpkpep6amYvbs2XB1dYW+vj709fWRn5+P+Pj4Ko8pEAgwYcIEye3I0NBQPHr0CFOmTAEA9O3bF/b29nBycsLEiRNx6NAhFBYWVrmvupStTkREhFTbAuXtHx0dLXXruH379rXuq6ioCBoaGnU6fgUHBwepPrtvtrOPjw969+4NLy8vjB49Gnv27JG6JV2dY8eOoUuXLrCwsICOjg5WrFhR6X2xs7ODjY2N5HXnzp0hFosRGRlZaX/h4eEoLi5G3759oaOjI/k5ePAgXrx4IVVWU1OzxvciMDAQM2bMQJ8+ffDtt99KbR8SEoL9+/dLHSMgIABisRixsbGScm+/J6ampujbty8OHToEAIiNjcWtW7fwwQcfACh/r9XU1ODr6yvZxtjYuNLvydufeXNzczg4OEBHR0dqWcX78+DBAzDG4OrqKhVzcHCwpF6hoaHo3bt3te0BAN7e3lKv3/5dk8fv65tk+Vx5enqCy/0vdTA3N4eXl5fkNY/Hg7GxcbXHIETeKJElRMkwxqSS2IplQPmwVW/+v7btqlJdmZcvX2LgwIFo1aoVjh8/jpCQEGzfvh0ApPpRvj1CwJsxAeX96EJCQrBlyxbcvHkToaGhMDY2rvHhmxkzZuDixYt49eoVfv75Z/Tu3Rv29vYAAF1dXTx48AC//vorLC0t8eWXX8LHx6fKfpt1KVudmtr/Tdra2rXuy8TEpFIiwOVyK+2vqn6qVbWzWCwGUJ4sXLx4EX///Tc8PDywdetWuLm5SSV1b7t9+zbef/99DBgwAKdPn8bDhw+xfPnyWh+KqmiLqj43FfGcOXMGoaGhkp/w8PBK/WQzMzNhampa7XFWrVqFp0+fYtCgQbh8+TI8PDxw4sQJyXFmzZoldYxHjx4hOjpaKkmr6j354IMPcOzYMQiFQhw+fBienp7w8fEBUPX7WrH8zfpW9V7U9P6IxWLweDyEhIRIxRwREYEffvgBQHliX5uajiGv39c3yfK5qmtbENLQKJElRMl4eHjg5s2bUl82N2/ehK6uLqytreHs7Aw+n4/r169L1guFQty/fx/u7u5S+7p9+7bk/1lZWYiKikLLli2rPO79+/dRVlaG77//Hp06dYKrqyuSkpLqHP+1a9cwf/58DBw4UPLAVHp6eo3beHl5oX379tizZw8OHz6MadOmSa1XU1NDnz59sGHDBoSFhSEuLk7yINjb6lK2Kh4eHlJtC5S3v6urK3g8nsz7AYA2bdogPDxcapmpqSny8vKkrpqFhobWab9AebLg7++P1atX4+HDh+Dz+ZLEj8/nVxoh4MaNG7C3t8fy5cvRvn17uLi44OXLl5X2Gx8fL/W+37p1C1wuF66urpXKenh4QCAQID4+Hs7OzlI/tra2UmWfPHmCNm3a1FgnV1dXLFq0CBcuXMDIkSOxb98+AEDbtm3x9OnTSseo+F2oyfDhw1FcXIxz587h8OHDmDBhglT8ZWVluHPnjmRZRkYGoqKiKv0u1UWbNm0gEomQmppaKV4LCwsA5VdbL126VO9jyOv39W01fa4IUUY0jiwhCpKTk1MpgTEyMsKcOXOwZcsWzJs3D3PnzkVkZCRWrlyJwMBAcLlcaGtr46OPPpI8JWxnZ4cNGzagsLAQ06dPl9rfmjVrYGxsDHNzcyxfvhwmJibVDn7eokULlJWVYevWrRgyZAhu3LiBH3/8sc71cnZ2xi+//IL27dsjNzcXixcvlunq04wZMzB37lxoaWlhxIgRkuWnT59GTEwMunXrBkNDQ5w9exZisRhubm6V9lGXstX55JNP0KFDB3z11VcYO3Ysbt26hW3btmHHjh0y76NCQEAAli1bhqysLBgaGgIAfH19oaWlhc8//xzz5s3D3bt3sX///jrt986dO7h06RL69esHMzMz3LlzB2lpaZLky8HBAefPn0dkZCSMjY2hr68PZ2dnxMfH48iRI+jQoQPOnDlTZYKioaGByZMn47vvvkNubi7mz5+PMWPGSBKwN+nq6uLTTz/FokWLIBaL0aVLF+Tm5uLmzZvQ0dHB5MmTAQBxcXFITExEnz59qqxPUVERFi9ejFGjRsHR0RGvXr3CvXv38N577wEoH22hU6dO+PjjjzFz5kxoa2sjIiICFy9exNatW2tsK21tbQwbNgwrVqxAREQExo8fL1nn4uKCYcOGYebMmdi1axd0dXXx2WefwdraGsOGDZPtzaiCq6srPvjgA0yaNAnff/892rRpg/T0dFy+fBleXl4YOHAgli1bBi8vL8yZMwezZ88Gn8/HlStXMHr0aJiYmNR6DHn9vr6pts8VIUpJIT1zCWnmJk+ezABU+pk8eTJjjLGgoCDWoUMHxufzmYWFBVu6dCkTCoWS7YuKiti8efOYiYkJEwgEzN/fn929e1eyvuJhr1OnTjFPT0/G5/NZhw4dJE+BV2fTpk3M0tKSaWpqsoCAAHbw4EEGgGVlZTHGZHtQ6cGDB6x9+/ZMIBAwFxcX9vvvvzN7e3u2efNmSRm88bBXhby8PMloDW+6du0a6969OzM0NGSamprM29tb6sGwNx/2qq3s26p62Isxxo4dO8Y8PDyYuro6s7OzYxs3bpRa/3Z9atKpUyf2448/Si07ceIEc3Z2ZhoaGmzw4MFs9+7dlR728vHxkdpm8+bNzN7enjHGWHh4OAsICGCmpqZMIBAwV1dXtnXrVknZ1NRU1rdvX6ajoyNVv8WLFzNjY2Omo6PDxo4dyzZv3iz1flYcd8eOHczKyoppaGiwkSNHsszMTEmZtx8kE4vF7IcffmBubm5MXV2dmZqasoCAABYcHCwps3btWhYQEFBtG5WUlLD333+f2draMj6fz6ysrNjcuXMlD3Ixxtjdu3clddLW1mbe3t7sm2++kayv6T05c+YMA8C6detWaV1mZiabOHEi09fXl3zuK0YWYKzqz3xV78/b7VJaWsq+/PJL5uDgwNTV1ZmFhQUbMWIECwsLk5QJCgpifn5+TCAQMAMDAxYQECD5XXvzc11h2LBhknMEY/L5fX0z7to+V1U9RFhVnHX5/SDkXXEYoyk9CGlqgoKC0LNnT2RlZanMYOcJCQlwcHDAvXv30LZtW0WHIzdnz57Fp59+iidPnkg9JNNclJSUwMXFBb/++mulh+gIIeRdUdcCQohCCYVCJCcn47PPPkOnTp2aVBILAAMHDkR0dDQSExMr9RttDl6+fInly5dTEksIaRCUyBJCFOrGjRvo2bMnXF1dKz3p3lQsWLBA0SEojKura5UPihFCiDxQ1wJCCCGEEKKSml+HLUIIIYQQ0iRQIksIIYQQQlQSJbKEEEIIIUQlUSJLCCGEEEJUEiWyhBBCCCFEJVEiSwghhBBCVBIlsoQQQgghRCVRIksIIYQQQlQSJbKEEEIIIUQlUSJLCCGEEEJUEiWyhBBCCCFEJVEiSwghhBBCVBIlsoQQQgghRCVRIksIIYQQQlQSJbKEEEIIIUQlUSJLCCGEEEJUEiWyhBBCCCFEJVEiSwghhBBCVBIlsoQQQgghRCVRIksIIYQQQlQSJbKEEEIIIUQlUSJLmqQpU6Zg+PDhDX4cDoeDkydPyn2/jDF8+OGHMDIyAofDQWhoqNyPQQghdbVq1Sq0bt260Y/bo0cPLFy4sEH2vXv3btja2oLL5WLLli0NcgzScCiRJQozZcoUcDgcyY+xsTH69++PsLAwRYfWYGRNsM+dO4f9+/fj9OnTSE5ORqtWreQaR0Ml4IQQ+ao4T3777bdSy0+ePAkOh9Po8Xz66ae4dOmSTGUVlfQCwP79+2FgYFBrudzcXMydOxdLly5FYmIiPvzwQ7nG0ZAJOClHiSxRqP79+yM5ORnJycm4dOkS1NTUMHjwYEWHpXAvXryApaUl/Pz8YGFhATU1tTrvgzGGsrKyBoiOENKYNDQ0sH79emRlZSk6FOjo6MDY2FjRYchNfHw8hEIhBg0aBEtLS2hpadVrP0KhUM6REVlRIksUSiAQwMLCAhYWFmjdujWWLl2KhIQEpKWlSco8fvwYvXr1gqamJoyNjfHhhx8iPz9fsl4kEiEwMBAGBgYwNjbGkiVLwBiTOg5jDBs2bICTkxM0NTXh4+ODY8eO1Ribg4MDvvrqK4wfPx46OjqwsrLC1q1ba9ymplhXrVqFAwcO4M8//5RchQ4KCqq0jylTpmDevHmIj48Hh8OBg4MDAKCkpATz58+HmZkZNDQ00KVLF9y7d0+yXVBQEDgcDs6fP4/27dtDIBDg2rVrNcZLCFF+ffr0gYWFBdatW1fl+oKCAujp6VU6p506dQra2trIy8sDANy9exdt2rSBhoYG2rdvjxMnTkh1XarqKubbV37fvsoaFBSEjh07QltbGwYGBvD398fLly+xf/9+rF69Go8ePZKc7/bv319l/BV3qlavXg0zMzPo6elh1qxZKC0trbZNsrKyMGnSJBgaGkJLSwsDBgxAdHS0JKapU6ciJydHcuxVq1ZV2sf+/fvh5eUFAHBycgKHw0FcXBwAYOfOnWjRogX4fD7c3Nzwyy+/SG3L4XDw448/YtiwYdDW1sbXX39dbaykYVEiS5RGfn4+Dh06BGdnZ8lf/IWFhejfvz8MDQ1x7949/P777/jnn38wd+5cyXbff/89fv75Z/z000+4fv06MjMzceLECal9f/HFF9i3bx927tyJp0+fYtGiRZgwYQKCg4NrjGnjxo3w9vbGgwcPsGzZMixatAgXL16ssmxtsX766acYM2aM1FVoPz+/Svv54YcfsGbNGtjY2CA5OVmSrC5ZsgTHjx/HgQMH8ODBAzg7OyMgIACZmZlS2y9ZsgTr1q1DREQEvL29a2l1Qoiy4/F4WLt2LbZu3YpXr15VWq+trY33338f+/btk1q+b98+jBo1Crq6uigoKMDgwYPh5uaGkJAQrFq1Cp9++uk7xVVWVobhw4eje/fuCAsLw61bt/Dhhx+Cw+Fg7Nix+OSTT+Dp6Sk5340dO7bafV26dAkRERG4cuUKfv31V5w4cQKrV6+utvyUKVNw//59/PXXX7h16xYYYxg4cCCEQiH8/PywZcsW6OnpSY5dVV3Hjh2Lf/75B0B5kp+cnAxbW1ucOHECCxYswCeffIInT55g1qxZmDp1Kq5cuSK1/cqVKzFs2DA8fvwY06ZNq2crknfGCFGQyZMnMx6Px7S1tZm2tjYDwCwtLVlISIikzO7du5mhoSHLz8+XLDtz5gzjcrksJSWFMcaYpaUl+/bbbyXrhUIhs7GxYcOGDWOMMZafn880NDTYzZs3pY4/ffp0Nm7cuGrjs7e3Z/3795daNnbsWDZgwADJawDsxIkTMsc6efJkSVw12bx5M7O3t5e8zs/PZ+rq6uzQoUOSZaWlpczKyopt2LCBMcbYlStXGAB28uTJWvf/ZtyEEOX15jmjU6dObNq0aYwxxk6cOMHe/Aq/c+cO4/F4LDExkTHGWFpaGlNXV2dBQUGMMcZ27drFjIyMWEFBgWSbnTt3MgDs4cOHjDHG9u3bx/T19aWO//ZxVq5cyXx8fBhjjGVkZDAAkmO87c2ytdWxqth0dHSYSCRijDHWvXt3tmDBAsYYY1FRUQwAu3HjhqR8eno609TUZL/99lu1danKw4cPGQAWGxsrWebn58dmzpwpVW706NFs4MCBktcA2MKFC2vd/5txk4ZBV2SJQvXs2ROhoaEIDQ3FnTt30K9fPwwYMAAvX74EAERERMDHxwfa2tqSbfz9/SEWixEZGYmcnBwkJyejc+fOkvVqampo37695HV4eDiKi4vRt29f6OjoSH4OHjyIFy9e1Bjfm/uteB0REVFl2dpifRcvXryAUCiEv7+/ZJm6ujo6duxYKZ43604IaTrWr1+PAwcOIDw8vNK6jh07wtPTEwcPHgQA/PLLL7Czs0O3bt0A/Hd+erMP6Nvnt7oyMjLClClTEBAQgCFDhuCHH35AcnJyvfZVVWz5+flISEioVDYiIgJqamrw9fWVLDM2Noabm1u15+e6iIiIkDrXAuXncjrXKidKZIlCaWtrw9nZGc7OzujYsSN++uknFBQUYM+ePQDK+7ZW92SurE/sisViAMCZM2ckSXNoaCjCw8Nr7Sdbl+PKI9bqsH/7/L69n6qO+WYiTQhpOrp164aAgAB8/vnnVa6fMWOGpHvBvn37MHXqVMn5gb313EBVuFxupXK1PcS0b98+3Lp1C35+fjh69ChcXV1x+/ZtWaojk6rOndXVpaZz8Lsel861yosSWaJUOBwOuFwuioqKAAAeHh4IDQ1FQUGBpMyNGzfA5XLh6uoKfX19WFpaSp04y8rKEBISInnt4eEBgUCA+Ph4SdJc8WNra1tjPG+fkG/fvo2WLVtWWba2WAGAz+dDJBLJ2Br/cXZ2Bp/Px/Xr1yXLhEIh7t+/D3d39zrvjxCimr799lucOnUKN2/erLRuwoQJiI+Px//93//h6dOnmDx5smSdh4cHHj16JDm3ApXPb6ampsjLy5M6h8kyhnWbNm2wbNky3Lx5E61atcLhw4cB1O18V1VsOjo6sLGxqVTWw8MDZWVluHPnjmRZRkYGoqKiJOfD+p5rAcDd3V3qXAsAN2/epHOtkqJElihUSUkJUlJSkJKSgoiICMybNw/5+fkYMmQIAOCDDz6AhoYGJk+ejCdPnuDKlSuYN28eJk6cCHNzcwDAggUL8O233+LEiRN49uwZ5syZg+zsbMkxdHV18emnn2LRokU4cOAAXrx4gYcPH2L79u04cOBAjfHduHEDGzZsQFRUFLZv347ff/8dCxYsqLKsLLE6ODggLCwMkZGRSE9Pl3nIFm1tbXz00UdYvHgxzp07h/DwcMycOROFhYWYPn26TPt4W2xsrNQV6tDQUKnRIAghysfLywsffPBBlSOoGBoaYuTIkVi8eDH69esnlQSOHz8eXC4X06dPR3h4OM6ePYvvvvtOantfX19oaWnh888/x/Pnz3H48OFqRxoAys8hy5Ytw61bt/Dy5UtcuHBBKpl0cHCQnGfS09NRUlJS7b5KS0slsf39999YuXIl5s6dCy63cpri4uKCYcOGYebMmbh+/ToePXqECRMmwNraGsOGDZMcOz8/H5cuXUJ6ejoKCwtrbNc3LV68GPv378ePP/6I6OhobNq0CX/88Ue9H45LS0urdK5NSUmp175IFRTWO5c0e5MnT2YAJD+6urqsQ4cO7NixY1LlwsLCWM+ePZmGhgYzMjJiM2fOZHl5eZL1QqGQLViwgOnp6TEDAwMWGBjIJk2aJPVQlVgsZj/88ANzc3Nj6urqzNTUlAUEBLDg4OBq47O3t2erV69mY8aMYVpaWszc3Jxt2bJFqgzeemiqtlhTU1NZ3759mY6ODgPArly5UuWx337YizHGioqK2Lx585iJiQkTCATM39+f3b17V7K+4mGvrKysauv0ZtxV/VQXDyFEMap6QDQuLo4JBAJW1Vf4pUuXGADJQ09vunXrFvPx8WF8Pp+1bt2aHT9+XOphL8bKH+5ydnZmGhoabPDgwWz37t3VPuyVkpLChg8fziwtLRmfz2f29vbsyy+/lDygVVxczN577z1mYGDAALB9+/bVWMcvv/ySGRsbMx0dHTZjxgxWXFwsKfP2Q1OZmZls4sSJTF9fn2lqarKAgAAWFRUltd/Zs2czY2NjBoCtXLmyymNX9bAXY4zt2LGDOTk5MXV1debq6soOHjwotf7tc391unfvXuW5trp4SN1xGJOh4wwhzZCDgwMWLlxIs7IQQlTGoUOHsGDBAiQlJYHP59dYNi4uDo6Ojnj48KHCZuACyofSys7OptkGSb3UfbogQgghhCiVwsJCxMbGYt26dZg1a1atSSwhTQX1kSWEEEJU3IYNG9C6dWuYm5tj2bJlig6HkEZDXQsIIYQQQohKoiuyhBBCCCFEJVEiSwghhBBCVBIlsoQQQgghRCXRqAX1IBaLkZSUBF1dXblNh0cIaRoYY8jLy4OVlVWVg7mTcnQeJYRUpy7nUUpk6yEpKanWqU0JIc1bQkJCldNrknJ0HiWE1EaW8yglsvWgq6sLoLyB9fT0IBQKceHCBfTr1w/q6uq1vpa3+u5f1u1qKlfXdbIsa07tV9N6aj/Zyilb++Xm5sLW1lZyniBVe/s8KguRSITIyEi4ubmBx+M1ZHhKgerbdDWnugJ1r29dzqOUyNZDxW0wPT09SSKrpaUFPT09yRdfTa/lrb77l3W7msrVdZ0sy5pT+9W0ntpPtnLK2n50u7xmb59HZSESiaCjowM9Pb1m8+VP9W2amlNdgfrXV5bzKHXgIoQQQgghKomuyDawG8/T8VfoK3AyOXBMzoOHtQHUePT3AyGEEELIu2qWiWxCQgImTpyI1NRUqKmpYcWKFRg9enSDHOtqVBqO3k8EwMORHbegoc6Fp5U+vG300drWAN42BnAw1qLbkIQQQgghddQsE1k1NTVs2bIFrVu3RmpqKtq2bYuBAwdCW1tb7sfq7W4OxsS48igGySV85JeUIeRlFkJeZknK6GmowdvGAN42+vCxNYCPjQEs9DXkHgshhNRm3bp1+OOPP/Ds2TNoamrCz88P69evh5ubm6QMYwyrV6/G7t27kZWVBV9fX2zfvh2enp4KjJwQ0hw1y0TW0tISlpaWAAAzMzMYGRkhMzOzQRLZjo5GaGOjC8+y5+jfvyde5ZYi7FU2HiXk4NGrbDxNykVucRmuP0/H9efpku3MdAXwtjGAj40+vG3L/zXQ4ss9PkIIeVNwcDA+/vhjdOjQAWVlZVi+fDn69euH8PBwyTlyw4YN2LRpE/bv3w9XV1d8/fXX6Nu3LyIjI2m0BkJIo1LJRPbq1avYuHEjQkJCkJycjBMnTmD48OFSZXbs2IGNGzciOTkZnp6e2LJlC7p27VppX/fv34dYLG6U8Qy5XA5amOqghakORrQpHxdNKBIjMiUPYa9yyhPcVzmIep2H1LwS/BPxGv9EvJZsb2+s9V9ya2OAVtZ60OKr5FtICFFS586dk3q9b98+mJmZISQkBN26dQNjDFu2bMHy5csxcuRIAMCBAwdgbm6Ow4cPY9asWYoImxDSTKlkFlRQUAAfHx9MnToV7733XqX1R48excKFC7Fjxw74+/tj165dGDBgAMLDw2FnZycpl5GRgUmTJmHv3r2NGb4UdR4Xraz10cpaH+N9y2MrKhXhaVIOHv2b3Ia9ykFsegFeZhTiZUYhTj1KAgBwOYCruS5aWemBk8WBXWIuPG0MwVejh8kIIfKRk5MDADAyMgIAxMbGIiUlBf369ZOUEQgE6N69O27evEmJLCGkUalkIjtgwAAMGDCg2vWbNm3C9OnTMWPGDADAli1bcP78eezcuRPr1q0DAJSUlGDEiBFYtmwZ/Pz8ajxeSUkJSkpKJK9zc3MBlI8/WfFT8VqWf2ujxgF8rHXhY60L+JZfuc0pEuJxYi4eJ+bgcWIuwhJz8Dq3BM9S8vAsJQ8AD7//eBt8NS7cLXThba0HL2t9eFnrwclEG1xu5YfJZI2rpnJ1XSfLsndtv7qq7/7l0X41raf2k62csrVfQ7WzIjDGEBgYiC5duqBVq1YAgJSUFACAubm5VFlzc3O8fPmy2n1Vdx4ViUQQiUQyxVNRTtbyqo7q23Q1p7oCda9vXdqFwxhj9YpKSXA4HKmuBaWlpdDS0sLvv/+OESNGSMotWLAAoaGhCA4OBmMM48ePh5ubG1atWlXrMVatWoXVq1dXWn748GFoaWnJqyp1llMKxOdz/v0p/3+hqHLCKuAyWGsDNtpM8mOhCdAoYITIX2FhIcaPH4+cnByZB/pXVh9//DHOnDmD69evS6aJvHnzJvz9/ZGUlCR51gAAZs6ciYSEhEpdEypUdx69desWdHR0GqYCRCmJxAxpBWUoFTHY6qtLRu3JLxFBxABdARdcGsmnWcvPz0fnzp1lOo+q5BXZmqSnp0MkElV5taDiSsKNGzdw9OhReHt74+TJkwCAX375BV5eXlXuc9myZQgMDJS8rpg6rV+/fpKZvS5evIi+fftKZgKq6bW8Vey/T58+SM4vw+NX/121fZqUiyKhGDF5QEzefycGvhoXbmba0BXloF97d3jZGMDNXAcC9cozbtQUf13XybJMUe1X1/3Lul1t5apbT+0nWzlla7+KK42qbt68efjrr79w9epVqbnOLSwsAJRfmX0zkU1NTa103n1TdedRNze3Os3sFRUVBVdX12YzG5Kq1FcsZkjOKUZqXgna2BlIlu8MfoG/n7zG++1tJN3nsgtLMeybywCAZ2v6Qf3fqyqbLkZhe1AMxnWwwdfDy+8AMMbw1ZlnMNLmY4qfPXQE5WlLSZkY6lxOlXcbVYEqvbfyUNf61uU82uQS2Qpvj8vKGJMs69KlC8Riscz7EggEEAgElZarq6tLfbHV9bW88fl8OJtrw9lcHyPalS8TiRli0vLxJCkHTxNzJf/mlZThcVIeAC5unokEAKhxOXA20ynvs2ulh1bW+nC31AP/35hrir+u62RZ1tjtV9/9y7pdbeWqW0/tJ1s5ZWm/hmzjxsAYw7x583DixAkEBQXB0dFRar2joyMsLCxw8eJFtGnTBkD5nbDg4GCsX7++2v1Wdx7l8Xh1/iKvzzaqTNnqm5ZXgkcJ2bA00ICnlT4AIDm3EN2+CwaPy0HkV/0lE//kFYvwNCkXCdnFkjpoa/ChxedBoMaFiHGg8e/ywtLy28nmehqSsnnFQhy4Vd5lZWY3J8nyHy+/wI4rzzGzmxOW9m8JoPyzuyPoBYy1+RjexhoaVVyYUTbK9t42NFnrW5c2aXKJrImJCXg8nuTqa4XarhY0VTwuBy7munAx18WI8u8ciMUMCVmFeBSfib+uhaJYyxThyXnILCiV9Lk9FlJelsMBHI21YMC4SNSLhbeNETyt9GCoTUOBEdIUffzxxzh8+DD+/PNP6OrqSs6l+vr60NTUBIfDwcKFC7F27Vq4uLjAxcUFa9euhZaWFsaPH6/g6Im8FQtFCE3Ihq+jkeRi0LbL0Thw6yWm+TtKElkrfU0YaKnDQFMd2UVCmOiU/9Eyur0NfJ2M4GTyX/cRDXUewtf0r3SsLwa5Y6g9g4vrf388MQDzejkjq7BUapSe1NxilIkZNNT+S3jySsqw8Xz5hZlhra0ly3/4JxqH777E8NbWWDbQXQ6tQpRJk0tk+Xw+2rVrh4sXL0r1kb148SKGDRumwMiUB5fLgb2xNqz0+GDxYgwc2A5qampIzinGk3+7IzxNysGTxFyk5BYjJr0QABcPzkdL9mFtoAkPKz24m+ugKJODNjnFsDVWoxnKCFFxO3fuBAD06NFDavm+ffswZcoUAMCSJUtQVFSEOXPmSCZEuHDhAo0h28QUC0Vo+9VFFJaKcG1JT9galT8T0sbOELdiMmCm998Vdi6Xgwdf9K10q9/ZTBfOZrJ/LtR5HGjy/0tO9TTU8Uk/t0rlvhreCgv6uID/xsMeZSKGse1tkVsslNpHUnYRXueWSJLrirpN3XcPHRwM8XEvZwjUms9V0aZGJRPZ/Px8PH/+XPI6NjYWoaGhMDIygp2dHQIDAzFx4kS0b98enTt3xu7duxEfH4/Zs2crMGrlxuFwYGWgCSsDTfTztJAsT8srwaP4DJwIug+RnhUiUvLwMqMQidlFSMwuwsXw1wB42BN5FUbafHha6cHTSh+eVnpwM9OCWKUfJSSk+ZHl+V8Oh4NVq1bJ9LAsUQ2PX+VgR9BzGGipY91IbwDlV05dzXWRlF2E1LwSSSI7vI01hrexrrSPxuyvqs7jwlJfU2qZkTYf60d5Vyq7pL8bPuhkB2uD/8o/eJmFWzEZiE0vwKK+rpLl16LTYKhV/l1GF2ZUg0omsvfv30fPnj0lryseIJg8eTL279+PsWPHIiMjA2vWrEFycjJatWqFs2fPwt7eXlEhqyxTXQG6u5qi4DnDwIE+UFdXR26xEOFJuXialIsnr7JwOzIJqSVcZBaU4lp0Oq5F/zdDmYDLw6Hku2hlbQCPf5PbMtm7JxNCCGkAyTlF4PO4MP73KmWpSIS/n6RAV0MNa4a1kjyAdWBqR+hpqvbdNmMdgaSeFVwtdPHtSC8IxUyqbt+cicCzlDz88H5rqe4JRHmpZCLbo0ePWq8azJkzB3PmzGmkiJoXPQ11dHIyRicnYwiFNjh7NgG9+vZBTEZx+cNk/ya5z5JzUVImxv2X2bj/MluyPY/Dw88Jt9De3gh+ziZob6vaQxQRQogqWXc2AruvxSCwjyvm9XYBALS2NcQnfV3RzdUUvDcSO30t1X54sTomOgK839FOaplIzOBooo3E7CJ0dzWVLL8WnYZ7sZkY1sYaLUxpqDhlo5KJLFE+Guo8+NgawMfWQLKsqLgE+0+cg4lzazx7XYAniTkIT85FXnEZnibl4WlSHg7cegkuB7DR4iFa8ByDW1vDyUhDcRUhhJAmRCxmuPY8HZ2djCWzPjqb6YAxID6zUFKOx+VIktrmisflYOeEdigtE0vNkHnkbgLOPE5GiUiMZQPq/rBYWl4JTHUrj9hB5IMSWdJg1HhcWGkBA1tbSYYkKi0txS8n/oaJS1vci8/GzecZiEkvQHwBB9uCYrAtKAYOxlpw0eDCM6MQzhb6Cq4FIYSorjG7buH+yyxsH98Wg7zLx/0d6GUJP2cTqT6j5D9vT/M+0MsSxUIRhnhbSZbFpRfgx+AXmNDJHq2sq/+eyi4sxbBt13F4Zic4mGg3WMzNGSWypFFxOByYaAADvSwwrK0tACA+PQ8/nriC1+oWuPY8A3EZhYgDFxe3XIe/szHGtLWGiB4aI4SQWsWmF8DxjYSpcwtjRL3OQ1ZhqWSZtkAN2gL6+pfVIG9LyR8BFQ7fjceRewl4nVuMfVM7VrvtpotRSMopxmd/hOHwjE4qO4GDMqNPMlE4S30N+JoxDBzYBiViDi4+ScLui4/wLIeLG88zcON5BowFPOSaJuD9jvYqMcg1IYQ0JpGYYcq+u7gWnY4z87tIxned2c0JH/d0pvOmnAV4WiA5pxgj3xi9oVgowtF7CRjVzgbaAjVEJOfif7fLJ3O4HZOJI/cSJLObEfnh1l6kZsXFxfKIgxAAgI5ADYO9LTHbXYwrgV0xv5czjLTVkVHCwapTEeiy/gr2XotBSZlI0aESQojS4HE5MNDig8fl4GF8tmS5noY6JbENoJ29IbaOa4OeLc0ky34PeYWVfz3FmF23IBaLsfKvp1JDUK49G4HknCIFRNu01SuRFYvF+Oqrr2BtbQ0dHR3ExMQAAFasWIGffvpJrgGS5svaQBOB/dwQFNgN7zmIYKWvgfT8Enx9JgK9vw/GyYeJENNAtYSQZoYxhvNPUzBm1y1kv9FlYEmAG64u6YkJnWioSUUw1ubDwVgLo9vZ4MzjFNyNzZRan19ShuUnnsg0VjORXb0S2a+//hr79+/Hhg0bwOf/N1Wpl5cX9u7dK7fgCAEATT4P3SwZ/lnUBevf84K5ngCvsoqw8Ggohmy7jvtxmbXvhBBCmgjGgM0Xo3A3NhP7bsRJltsaadEDXAo00MsSlz7pgeFtrLH2bESVZS4/S8Vfj5IaObKmrV6J7MGDB7F792588MEH4PH+u2Xh7e2NZ8+eyS04Qt6kzuNibAc7BH3aE4sD3KAjUMPTpFyM+vEWPv39ETLySxQdIiGENIjY9ALJlTwul4NP+7lhbk9nTPFzUGxgRAqPy8FP12ORnFN9t8vVp8KRWUDfV/JSr0Q2MTERzs7OlZaLxWIIhcJ3DoqQmmjyefi4pzOCF/fA2PblIx8cC3mFXt8H43+3X0JE3Q0IIU3I2rPP0Pv7IJx5nCxZ1sfDHJ8GuMFQm1/DlqSxxWcUYtfVmBrLZBaU4tPfwxopoqavXomsp6cnrl27Vmn577//jjZt2rxzUITIwlhHgPWjvHH8Iz94WOohp0iIL04+wcidNxGZkqfo8AghRC50BGoQMyDkZZaiQyG1+OpMOEplmIc9ODoDhx5lN3xAzUC9ht9auXIlJk6ciMTERIjFYvzxxx+IjIzEwYMHcfr0aXnHSEiN2tkb4q+5/vjf7Zf4/kIUHiVkY/DWa/i4pzPm9HCuNLg1IYQosyeJOTDQUoelXvlsUDO6OqCLqyk6OBgpODJSE5GYYUYXR4xuZ4PsIiFyi4TIKRIiu7D83/L/lyImvQB5xWXwMtdAXokQBlo0qsS7qFciO2TIEBw9ehRr164Fh8PBl19+ibZt2+LUqVPo27evvGMkpFZqPC6m+DuifytLfHHyCf6JeI0t/0Tj78cpWD/KG63fmDqXEEKU1f9uv8SXfz5BTzcz7JpQfodTi69GSawK4HE58HUylqlsbFoeCl6/hLZ6eRp283k6THQFcDXXbcgQm6R6T4gQEBCAgIAAecZCyDuz0NfAnkntcDosGav+eorI13kYueMGpndxRGBfN2jy6S9fQojy6uRkBB6XA22Bmky3qIlqsjPSQsTr8gf3coqEWHA0FNmFpdg/tSP8nU0UHZ5KoXuupMnhcDgY4mOFi4HdMaKNNcQM2HMtFgFbruLmi3RFh0cIIRLFQhEexP/X99XZTBeXP+mB/xvXBgKayKBZKC0Tw8dGH7ZGWmhnb6jocFSOzFdkDQ0NweHINkdwZiaN60kUz0ibj81jW2OIjyWWn3iC+MxCjN9zB+N97bBsQEvoaqgrOkRCSDOWmluMD/beQVJ2Ec4t7AZbIy0AkPxLmgdTXQH2TGqPrEKh1CxswVFp6OpsAi5XttyruZI5kd2yZYvk/xkZGfj6668REBCAzp07AwBu3bqF8+fPY8WKFXIPkpB30aulOS4sMsK3fz/DoTvxOHwnHleepWLtSC/0dDOrfQeEENIAjHUEMNTiI6tQiOScYkpgmzEOhwOjN4ZSO/UoCfN+fYheLc2wZ1J78CiZrZbMiezkyZMl/3/vvfewZs0azJ07V7Js/vz52LZtG/755x8sWrRIvlES8o50NdTxzQgvDPa2wtLjYYjPLMTUffcwsq01lgW4Kjo8QkgzkV9SBm0+DxwOBzwuB1vebw0NdZ5UEkNIUakIAjUuWlnpURJbi3r1kT1//jz69+9faXlAQAD++eefdw6KkIbSuYUxzi3siuldHMHhAH88SMSArTfwKINOFISQhhX2Khv9t1yVmlbWykCTklhSyZgOtji7oCsW9PnvQkuxUCSZ3Y38p16JrLGxMU6cOFFp+cmTJ2FsLNvQE4QoihZfDSsGe+DYbD+0MNVGen4pfo7iYf6RR0inaW4JIQ3kbmwmXmUV4dCdlzQiAalVC1MdydVYsZhh3q8PMffwQxSUlCk4MuVSr+G3Vq9ejenTpyMoKEjSR/b27ds4d+4c9u7dK9cACWko7ewNcWZ+V/xwMRK7rsbg76evcTs2E6uGemKoj5XMDzcS0tRcvXoVGzduREhICJKTk3HixAkMHz5csn7KlCk4cOCA1Da+vr64fft2I0eqWqZ3cQSPy8HItjY0UQupk6dJuQiKTAUHHMSkFcDLRl/RISmNev0mTZkyBTdv3oSBgQH++OMPHD9+HPr6+rhx4wamTJki5xDl7/Tp03Bzc4OLiwsl3s2chjoPgX1dEOglQksLXWQVCrHgSChmHryPlJxiRYdHiEIUFBTAx8cH27Ztq7ZM//79kZycLPk5e/ZsI0aoGnIKhfj+QiTKROVXXzkcDqb6O0Jfk0ZMIXXjZaOPX2d2wsbR3pTEvqXeEyL4+vri0KFD8oylUZSVlSEwMBBXrlyBnp4e2rZti5EjR8LIiGZNac5sdYA/3vPFTzfi8X+Xo/FPRCruxAbji0HuGNPelq7OkmZlwIABGDBgQI1lBAIBLCwsGiki1SMWM3zw0208ScxFsVCE5YM8FB0SUXHtHYzQ/o3Xr3OLcT8uC4O8LRUWkzKoVyIbHx9f43o7O7t6BdMY7t69C09PT1hbWwMABg4ciPPnz2PcuHEKjowomjqPi3m9XRDQygKLf3+ER69ysPT4Y5x6lIx1I71oaBxC3hAUFAQzMzMYGBige/fu+Oabb2BmVv1wdiUlJSgp+a8Pem5uLgBAJBJBJBLJdMyKcrKWV7SPe7TA12ciMNTbsl4xq1p931Vzqu+71rWoVIRp++/haVIu0vLcMbGTvTzDk7u61rcu7VKvRNbBwaHGK1QN+SGsre8WAOzYsQMbN25EcnIyPD09sWXLFnTt2hUAkJSUJEliAcDGxgaJiYkNFi9RPa7mujj+kR9+vhGL7y9E4frzdARsuYql/VtiYid7GpyaNHsDBgzA6NGjYW9vj9jYWKxYsQK9evVCSEgIBAJBldusW7cOq1evrrQ8MjISOjo6dTp+VFRUveJuDCIxkzygY8sBtg4wAycnERE59f+eUeb6NoTmVN/61lXMGNwMgMRMLqy4OYiIiJBvYA1E1vrm5+fLvM96JbIPHz6Uei0UCvHw4UNs2rQJ33zzTX12KbOKvltTp07Fe++9V2n90aNHsXDhQuzYsQP+/v7YtWsXBgwYgPDwcNjZ2VU5dAXdNiZvU+Nx8WG3FujrYYGlx8JwNy4TK/96itNhSVj/njecTOv2xUtIUzJ27FjJ/1u1aoX27dvD3t4eZ86cwciRI6vcZtmyZQgMDJS8zs3Nha2tLdzc3KCnpyfTcUUiEaKiouDq6goeT/mmbz0Vloy912Lxy7QO0JNDP1hlr6+8Naf6yqOuGz2ArMJSGGop//Btda1vxR0bWdQrkfXx8am0rH379rCyssLGjRurPZHJQ219tzZt2oTp06djxowZAMpnJDt//jx27tyJdevWwdraWuoK7KtXr+Dr61vjMau7JSYUCiU/Fa9l+Vfe6rt/WberqVxd18myTJnaz0afj1+mtsOv9xKw4UI07sVlYcAP17CgdwtM6GAlU1y1xV/d+qbQfvLYTtXar6HaWZlZWlrC3t4e0dHR1ZYRCARVXq3l8Xh1/iKvzzYNraCkDN+cfYa0vBIcupuAub1c5LZvZaxvQ2pO9X3Xuproakr+/zQpBzuCXuD70T5SU90qE1nrW5c24TA5jq4bHR2N1q1bo6CgQF67rBGHw5HqWlBaWgotLS38/vvvGDFihKTcggULEBoaiuDgYJSVlcHd3R1BQUGSh71u375d4/i3q1atqvKW2OHDh6GlRf0mm4uMYuBoDBeROeWDfdhpM4xzFsGKPgLkDYWFhRg/fjxycnJkvtKozN4+z1YlIyMD1tbW2L17NyZNmiTTfnNzc6Gvr1+ndhKJRIiIiIC7u7tSJjrPUnJx8mESlgS4yaULkrLXV96aU33lXdcykRi9NwXjZUYhZnRxxBeDlevhwrrWty7nh3pdkX37ki9jDMnJyVi1ahVcXOT3V2hdpaenQyQSwdzcXGq5ubk5UlJSAABqamr4/vvv0bNnT4jFYixZsqTWSRyquyXWr18/6OnpQSgU4uLFi+jbty/U1dVrfS1v9d2/rNvVVK6u62RZpsztN4ExHHuQhHXnIhFfUIbvwnj4qJsjZvdwhqCacSFr239165ti+9VnO1Vrv7rcElNW+fn5eP78ueR1bGwsQkNDYWRkBCMjI6xatQrvvfceLC0tERcXh88//xwmJiZSFxCai+zCUhj8e2u3pYUePhug+n+8ENWjxuNi/Xve2PJPFOb1Vlwepgj1SmQNDAwq9StljMHW1hZHjhyRS2DvoqrY3lw2dOhQDB06VOb9VXdLTF1dXeqLra6v5a2++5d1u5rK1XWdLMuUtf3Gd3JAbw8LLDsehsuRadgWHIdzEelYO8ILHR2rH8attv1Xt76ptV99t1OV9mvINm4s9+/fR8+ePSWvK/6Qnzx5Mnbu3InHjx/j4MGDyM7OhqWlJXr27ImjR49CV1dXUSErxL4bsdh+5QWOzuqEFtRvnihYJydj/Dqzk1S+83b+0xTVK5G9cuWK1GsulwtTU1M4OztDTa3eQ9O+MxMTE/B4PMnV1wqpqamVrtIS8i7M9TTw4wet8c0v53A6SRPPU/MxZtctvN/BFssGuENfS/WTGdJ89ejRo8Y53c+fP9+I0SinkjIRjt5LQHp+CS5FvKZEliiFN5PW809T8Nu9BGz/oK3S9pmVh3rN7MXhcODv74/u3buje/fu6Nq1K1q2bAmgfHgsReHz+WjXrh0uXrwotfzixYvw8/NTUFSkqeJwOGhrwnBuvj/GdbQFABy5l4Dem4LwZ2hijYkAIUS1CdR4+HVmJ6wa4oGZXZ0UHQ4hUnKKhFj8+yNcepaKn67HKjqcBlWvRLZnz57IzMystDwnJ0fqdlRDyM/PR2hoKEJDQwH813erYpKGwMBA7N27Fz///DMiIiKwaNEixMfHY/bs2Q0aF2m+DLTUsW6kN36b1RnOZjpIzy/FgiOhmLzvHuIzChUdHiFEjgpLyyT/N9TmY4q/Y5O/dUtUj76mOvZMao9Jne0xq1vT/kOrXv0AqutzkZGRAW1t7XcOqiY19d3av38/xo4di4yMDKxZswbJyclo1aoVzp49C3t75Z71gqi+jo5GODO/C3YFx2Db5ee4GpWGfluCMbdHC1iJFR0dIeRdhSZkY9r+e9jwnjf6eFB3NaLcfJ2M4etU88PsTUGdEtmK8WE5HA6mTJki9QCUSCRCWFhYg9/Cr63vFgDMmTMHc+bMadA4CKmKQI2H+b1dMNjbEstPPMGtmAx8dzEallo82Phko6OTqaJDJITU04GbccgsKMWvd+PR292MrsQSlcEYw4/BMdDTVMMHvk3rwl6dEll9fX0A5Q2iq6sLTc3/BuLl8/no1KkTZs6cKd8ICVFBTqY6ODzTF8dCXuGbMxFILhRi7J67mOBrj8X93aCnQQ+DEaJqNozyRgtTbepOQFROUGQa1p97Bi4H6OBgBFfzpjPCSJ0S2X379gEAHBwc8OmnnzZ4NwJCVBmHw8Ho9rbo6myEeT9dxr00Ln65/RLnnqbgi0HuGOpjRV+GhCi5N7vSqfO4cp2xi5DG0sPNFOM62sHZTKdJJbFAPR/2WrlyJSWxhMjIWJuPCc5iHJjSDo4m2kjLK8GCI6EYt+c2ol/nKTo8Qkg1GGP44uQT7L0WQ6OQEJXG4XCwdkQrTO/iqOhQ5E7mK7Jt27bFpUuXYGhoiDZt2tR4JenBgwdyCY6QpsSvhTHOLeyK3cEx2HblOW7HZGLAD9cwxc8eriJFR0cIedvNFxk4dCceXA7QuYUxPK30FR0SIfX2Zt4mFInxy62XmNjZHuq8el3TVBoyJ7LDhg2TPNxV05zbhJDqCdR4mNfbBcPbWGP1qXD8E/Eae6/HQZ/Pg4ZjCoa0tqHuBoQoCb8Wxlg1xAOlIjElsaRJmfVLCC4/S0V8ZiFWDfVUdDjvROZEduXKlVX+nxBSd7ZGWtg7uT0uRbzGyr+e4lVWEeYfDcPvD5KwaqgnzRJEiBLgcDiY4t/0bsUS8n4HW9yLy0QXZxNFh/LO3mk+2dLSUqSmpkIslh4k087O7p2CIqS56O1ujo72+lj880VcTlHDteh09N9yFR92c8KsLg6KDo+QZqdMJMav9xLwfgdblb/lSkh1+nla4LqjcZOYTr1ev6VRUVHo2rUrNDU1YW9vD0dHRzg6OsLBwQGOjvTXKyF1oaHOwwBbMc7O9UMPN1MIRQzbr7xA//+7gdAMDj1kQkgj2nr5OVacfIJp++/R7x5p0t5MYgtLy1BUqpoPa9TriuzUqVOhpqaG06dPw9LSkvr0ESIH9sZa2DelAy6Ev8aaU+FIzC7Cvhwenv58HyuHelIfPUIagZuFLvQ01DCqHfVXJ83D06QczPv1ITo5GWPtCC9Fh1Nn9UpkQ0NDERISgpYtW8o7HkKaNQ6HgwBPC3RzMcWOK1H4MegF7sZlYcjW6xjbwQ4LejXtObMJUbSBXpbo7GQMQ22+okMhpFFkFwoRm16AwhIRsgNKYaClWp/9eiWyHh4eSE9Pl3cshJB/afJ5mN/LGUY5UbhfaoMzT1Lw6914nA5LQm9zDvqUiaGu+l2bCFEKjDEIRQx8tfLedpTEkubE39kEm8e0RndXU5VLYoF69pFdv349lixZgqCgIGRkZCA3N1fqhxAiH0YCYMtYb/w2qzM8rfSQV1yGky95GLL9Jq5Epio6PEKahJOhiRi89RoeJWQrOhRCFGJ4G2uV/QOuXldk+/TpAwDo3bu31PKKqfxEItXsMEyIsuroaIS/5nbB0btxWHvmKWLSCzF13z30cDPFZwGuig6PEJUlFjNsu/wcL9IKcC06DT62BooOiRCFuhOTgfT8UgzytlR0KDKpVyJ75coVecdBCKkFj8vB6HY24CaGIZrfAgdvxyMoMg3XotPRyZSLjvklsDSk/gaE1AWXy8Hvs/3w0/UYzOreQtHhEKJQN5+nY/zeO9ARqKGtvQEs9TUVHVKt6pXIdu/eXd5xEEJkpKkGfNbfDRM6O+KbM+H4JyIVN15z0Wfzdczq3gKTO9koOkRCVIqRNh+LA+jhZUJ8nYzR1s4Abha60Ba801QDjaZeUYaFhVW5nMPhQENDA3Z2dpLpbAkhDcPRRBt7J3fA9ajXWHb0HhIKRNh0MQr/u/0SvUw56CeiB8IIqU5WQSli0gvQzt5Q0aEQojR4XA4Oz+wEDXWeokORWb0e9mrdujXatGlT6ad169Zo2bIl9PX1MXnyZBQXF8s7XkLIW3wdjRDoJcLm0V6wNdJEal4JjsTwMHTHLVx+9poGdSd1dvXqVQwZMgRWVlbgcDg4efKk1HrGGFatWgUrKytoamqiR48eePr0qWKCrad1f0dg1I83sfdajKJDIUSpvJ3EKvt3SL0S2RMnTsDFxQW7d+9GaGgoHj58iN27d8PNzQ2HDx/GTz/9hMuXL+OLL76Qd7yEkCpwOcBgb0v8E9gdnw9wgxaPITq1ANP238fEffcRn6/oCIkqKSgogI+PD7Zt21bl+g0bNmDTpk3Ytm0b7t27BwsLC/Tt2xd5eXmNHGn9iMUMZaLyL+c2dgaKDYYQJZVZUIrPTzzGmtPhig6lRvXqWvDNN9/ghx9+QEBAgGSZt7c3bGxssGLFCty9exfa2tr45JNP8N1338ktWEJIzQRqPEz1s4du+lO8EDjj4O143InNwh2o4bEoFIsDWsLFXFfRYRIlN2DAAAwYMKDKdYwxbNmyBcuXL8fIkSMBAAcOHIC5uTkOHz6MWbNmNWao9cLlcrBpbGvM7eUMJ1MdRYdDiFJ6lpyLw3fiweNyMLOrE6wMlPPBr3olso8fP4a9vX2l5fb29nj8+DGA8u4HycnJ7xYdIaRetNSApQGumOLviO/OPcOfj5JwITwVFyNSMaK1NRb2cYWdsZaiwyQqKDY2FikpKejXr59kmUAgQPfu3XHz5s1qE9mSkhKUlJRIXleMOS4SiWQesrGinLyGeLQ30lTq4SLlXV9l15zqqwp19XU0xEfdndDNxQTmuvx3irWu9a3LseqVyLZs2RLffvstdu/eDT6/fABdoVCIb7/9VjJtbWJiIszNzeuz+waXkJCAiRMnIjU1FWpqalixYgVGjx6t6LAIkTsbQy1sHOUFNyTgQakVLkak4o+HifjrURLGdLDF/F4usNDXUHSYRIWkpKQAQKXzu7m5OV6+fFntduvWrcPq1asrLY+MjISOTt2uikZFRdWpfIXCUjFORORiuLsetPn16lmnEPWtr6pqTvVV9roOsgVQ/BoREa/lsj9Z65ufL3t/uHolstu3b8fQoUNhY2MDb29vcDgchIWFQSQS4fTp0wCAmJgYzJkzpz67b3BqamrYsmULWrdujdTUVLRt2xYDBw6Etra2okMjpEFYaQEzRrVGxOsCfHchClej0nD4TjyOhbzCpE72+KhHCxjr0EgjRHYcDkfqdcWEONVZtmwZAgMDJa9zc3Nha2sLNzc36OnpyXRMkUiEqKgouLq6gser+1PV312Iwq+PcxCVy8FvH3aq8/aN7V3rq2qaU31Vsa7FQhE4HA4EanX/I7Cu9a3LLLH1SmT9/PwQFxeH//3vf4iKigJjDKNGjcL48eOhq1ve/27ixIn12XWjsLS0hKVl+YwVZmZmMDIyQmZmJiWypMnztjHAwWkdcScmA99diMS9uCzsvR6LX+/GY6q/I6Z3cVTZaQpJ47CwsABQfmW24jwKAKmpqTXehRMIBFUOy8jj8er8RV6fbQCgg6MRLoS/xofdWqhM8gDUv76qqjnVV1Xq+mdoItaejcCsbi0wrYtjvfcja33r0ib1vreio6OD2bNnY9OmTdi8eTNmzZolSWLfVW1DvwDAjh074OjoCA0NDbRr1w7Xrl2r17Hu378PsVgMW1vbd4yaENXh62SM32Z1xv6pHeBlrY+CUhG2XXmOLusvY8O5Z8gsKFV0iERJOTo6wsLCAhcvXpQsKy0tRXBwMPz8/BQYWe16tTTH+YXd0M9DObu9EaKsCkpEeJ1bgj9DE5VuOK53mrYhPDwc8fHxKC2V/tIbOnToOwVVMfTL1KlT8d5771Vaf/ToUSxcuBA7duyAv78/du3ahQEDBiA8PBx2dnYAgHbt2kk9WFDhwoULsLKyAgBkZGRg0qRJ2Lt37zvFS4gq4nA46OFmhu6upjj/9DV+uBSNiORc7Ah6gf034zCxsz1mdnWCCXU5aHby8/Px/PlzyevY2FiEhobCyMgIdnZ2WLhwIdauXQsXFxe4uLhg7dq10NLSwvjx4xUYtWzUeKrTN5YQZTG6vQ14XGB4G+sauxApQr0S2ZiYGIwYMQKPHz8Gh8ORZOcVlXvXp/BqGvoFADZt2oTp06djxowZAIAtW7bg/Pnz2LlzJ9atWwcACAkJqfEYJSUlGDFiBJYtW1brVYTqnrYVCoWSn4rXsvwrb/Xdv6zb1VSurutkWdac2q+m9Y3Zfr3djNHL1QiXnqVhW9ALPE3Kw67gGBy8GYfxHW0x3d8BprpVJ7TUflXHo8ru37+Pnj17Sl5X9G2dPHky9u/fjyVLlqCoqAhz5sxBVlYWfH19ceHCBbndlZO3TRci0dJSD/09LcDlKteXMCGqQJ3HxdgOdooOo0ocVo9rxEOGDAGPx8OePXvg5OSEu3fvIiMjQzJubNeuXeUXIIeDEydOYPjw4QDKb2FpaWnh999/x4gRIyTlFixYgNDQUAQHB9e6T8YYxo8fDzc3N6xatarW8qtWraryadvDhw9DS4uGMCJNC2NAeDYH5xK4iC8o/9JX5zD4mTP0thZDn7rQ1qiwsBDjx49HTk6OzA8xNUe5ubnQ19evUzuJRCJERETA3d1d5j50z1Pz0W9zMMQM+HtBV7hbqs57Up/6qrLmVF9Vr2tyThEs9WUfV7au9a3L+aFeV2Rv3bqFy5cvw9TUFFwuF1wuF126dMG6deswf/58PHz4sD67lUl6ejpEIlGVQ79UDAtTmxs3buDo0aPw9vaW9L/95Zdf4OXlVWX56p627devH/T09CAUCnHx4kX07dsX6urqtb6Wt/ruX9btaipX13WyLGtO7VfTekW23yAAnzKGa88zsPXKC4Qm5CA4hYNb6WoY1dYKM7o4wNZQq07tUNd2kbWcsrVfXZ62JQ3PVFeAub1c8CqzUKWSWEKUUWZBKWb/LwThSbm48Vkv6GvK/zu5ruqVyIpEIsm4fyYmJkhKSoKbmxvs7e0RGRkp1wCrU9ehX97UpUsXiMVimY9V3dO26urqUl9sdX0tb/Xdv6zb1VSurutkWdac2q+m9Ypsv94elujlboHrz9Pxwz/RuP8yC4fvvsLR+4kY7G2Jj3q0QAtjzXrvvy7bqUr7NeRnlNSdvqY6Avu6KjoMQpoEA0115BQKUVImQsjLTPRqqfgHJ+uVyLZq1QphYWFwcnKCr68vNmzYAD6fj927d8PJyUneMUoxMTEBj8erdPW1tqFfCCH1w+Fw0NXFFF2cTXA7JhM7g1/galQa/gxNwp+hSejhagJvyt0IIaTJ43I52DjaG2a6GkozmU69Ht/84osvJFc0v/76a7x8+RJdu3bF2bNn8cMPP8g1wLfx+Xy0a9dOaugXALh48aLSD/1CiCrjcDjo3MIYB6d1xOl5XTDI2xJcDhAUlY7/e6qG9/fcxeVnr5VuaBbSPGXkl+DT3x8hIpm6ehAiT942BkqTxAL1vCIbEBAg+b+TkxPCw8ORmZkJQ0NDuQzLUNvQL4GBgZg4cSLat2+Pzp07Y/fu3YiPj8fs2bPf+diEkNq1stbH9vFtEZtegB+DnuNYSAJC4rMxbf99tLTQxezuLTDY25KGOiIKc+DWSxwLeYWo13n4a24XRYdDSJOUWVAKfU118BQ4GkidEtlp06bJVO7nn3+uVzAVahv6ZezYscjIyMCaNWuQnJyMVq1a4ezZs7C3t3+n4xJC6sbRRBtfD/OAJ4tDvKYzfr2bgGcpeVh4NBTfXYjE9C6OGNPeFtqCdxqympA66+dhjhdp+RjsZVl7YUJInX19OhwHb7/E9vFt0VeBk4zU6dtl//79sLe3R5s2bRr09mGPHj1q3f+cOXMwZ86cBouBECI7fT6wNMAV83q54pfbcdh3Iw6vsoqw+lQ4Nl+Mwged7DHFzwHmespzO4o0bRV3DQghDYPH46C0TIyrUWmqk8jOnj0bR44cQUxMDKZNm4YJEybAyMiooWIjhKgYfS11zO3lguldnHDswSv8dC0GcRmF2Bn0AnuvxWCojzVmdnNESwsaBqk2586dg46ODrp0Kb8tvn37duzZswceHh7Yvn07DA0NFRwhIaQ5m+rniABPC7SxNVBoHHXqwLZjxw4kJydj6dKlOHXqFGxtbTFmzBicP3+eHvAghEho8nmY2Mkelz7pgV0T26GDgyGEIobjD16h/5ZrmPjTHVx/ngE6bVRv8eLFkjFpHz9+jE8++QQDBw5ETEyM1LjWRNqzlFzsDHqBjPzKU5QTQuTHQl8Dbe3k82zUu6hzxzWBQIBx48Zh3LhxePnyJfbv3485c+ZAKBQiPDxcMr4sIYTwuBwEeFogwNMCD+OzsPdaLP5+koxr0em4Fp0OKy0eSq2SMLytLfhq9GDYm2JjY+Hh4QEAOH78OAYPHoy1a9fiwYMHGDhwoIKjU177b8ThyL0EPEvJxQ/vt1F0OIQ0C2Ixg5gxhTzg+05H5HA44HA4YIzVaYIBQkjz08bOENs/aIvgxT0xxc8BWnwekgo5WPLHE3TdcBk7g14gp1Co6DCVBp/PR2FhIQDgn3/+Qb9+/QAARkZGNHtYDTo4GKGtnQHGd1TOeeEJaWoO3opDt41XcOZxskKOX+dEtqSkBL/++iv69u0LNzc3PH78GNu2bUN8fDxdjSWE1MrWSAurhnri6qfdMNhOBDNdAV7nlmD9uWfo/O0lrPrrKeLSCxQdpsJ16dIFgYGB+Oqrr3D37l0MGjQIABAVFQUbGxsFR6e83mtngz/m+MPXyVjRoRDSLGTkl+JVVhFOhykmka1T14I5c+bgyJEjsLOzw9SpU3HkyBEYG9PJghBSd/qa6uhrzbB+alecC0/DnmsxeJaSh/0343DgVhx6tzTHtC4OaG/bPB8M27ZtG+bMmYNjx45h586dsLa2BgD8/fff6N+/v4KjI4SQcqPb28DJVBsBnhYKOX6dEtkff/wRdnZ2cHR0RHBwMIKDg6ss98cff8glOEJI08dX4+K9djYY2dYa15+n4+frsbgSmYZ/Il7jn4jXaGmugzY6HPQWiqCu3nzmwrWzs8Pp06crLd+8ebMColF+qXnFeJSQgx5uplCniTgIaTQ2hlqwMdRS2PHrlMhOmjRJ4U+nEUKaJg6Hg64upujqYooXafnYfyMOx0Je4dnrfDx7zcP5769iQicHTOhkBzPdpjkebW5uLvT09CT/r0lFOVLujweJ+PbvZ+jjboa9kzsoOhxCSCOp84QIhBDS0FqY6uCr4a3waT83HL4Th91XIpFZIMT/XYrGzqDnGOJthWldHNHKWl/RocqVoaEhkpOTYWZmBgMDgyovHDDGwOFwIBKJFBCh8lLjcmCmK0DPlmaKDoWQZumPB6/w16MkfDHIHc5muo12XJo3khCitPS11DGjiwPMc8KhZt8WB28n4P7LLPzxMBF/PExERwcjTOpkC3ETGY/28uXLkklmLl++THfA6mBGVydM83dEWVP5MBCiYk49SkJQZBra2RliXm9KZAkhRILHAQa0ssDQNrZ4lJCNfTdicTosGXfjMnE3LhNGAh5SDeIwrpMD9DRUtx9t9+7dJf/v0aOH4gJRUVwuB3wuJf+EKMIHvvZoa2eIwT5WjXpc6hFPCFEpPrYG2PJ+G9z4rBfm9nSGoZY6Mks4WHcuCp3Xlg/fFdsEhu9asWJFld0HcnJyMG7cOAVEpLxe5xYrOgRCmr0+HuaY19sFjibajXpcSmQJISrJXE8Dnwa44eqn3fC+kwguZtooKBVh/8049Po+CB/+7wEiczgqO332wYMH4e/vjxcvXkiWBQUFwcvLC3FxcYoLTMmk5ZWg07pLGPR/11AspH7DhDQ3lMgSQlSahjoPnc0Zzsz1w/+m+6JXSzMwBlyJTMeOcB4GbbuJw3fiUVSqWklOWFgYHBwc0Lp1a+zZsweLFy9Gv379MGXKFFy/fl2hsa1atUoys2PFj4WFYsaQfJSQDQDgcMo/C4QQxRGKxLgTk4Ff78Y32jGpjywhpEngcDjo4mKCLi4miEnLx8/XY/DbvXhEpxbg8xOPsf7cM4xpZw2rEkVHKht9fX0cOXIEy5cvx6xZs6Cmpoa///4bvXv3VnRoAABPT0/8888/ktc8nmKSyD4e5njwRV+8zqPuBYQo2qusIozdfRvqPA6G+lhBW9DwaSYlsoSQJsfJVAcrB7vDUxyLPBNP/O9OAuIzC7Hnehw44OFWcSimdXGCr6ORokOt0datW7F582aMGzcOISEhmD9/Pg4fPgwfHx9FhwY1NTWFXYV9m6E2H4bafEWHQUiz52Cshda2BrA31kJecRklsoQQ8i601IBRfvaY3rUFrjxLxc/XY3AzJhMXwlNxITwV7pZ6mOhrC3Ul7HUwYMAA3Lt3DwcPHsSoUaNQVFSEwMBAdOrUCatXr8aSJUsUGl90dDSsrKwgEAjg6+uLtWvXwsnJqdryJSUlKCn573J4xYQPIpFI5jFxK8o1lzF0qb5NV1Ou6/HZnST/f7uedf1dlwUlsoSQJo/H5aCPhzm6uxjhp2NnEcd3wMnQJEQk5+Lzk0+hrcbDC41oTPZ3hImWcpwWy8rKEBYWBiur8qFsNDU1sXPnTgwePBgzZsxQaCLr6+uLgwcPwtXVFa9fv8bXX38NPz8/PH36FMbGxlVus27dOqxevbrS8sjISOjo6NTp+FFRUQCAU89yEZFWgv4uuvC2aJqzvQH/1be5aE71bU51BWSvb35+vsz7VI4zNiGENBJLLWD6QA98NsAdv91PwIGbcUjMLsaPV2Ox53ocAjzM4MKg8NEOLl68WOXyQYMG4fHjx40cjbQBAwZI/u/l5YXOnTujRYsWOHDgAAIDA6vcZtmyZVLrcnNzYWtrCzc3N5mn2xWJRIiKioKrqyt4PB6+vX0P118Wore3A9zd7d6tUkro7fo2dc2pvs2hrrlFQqjzuNDk8+pc39qm6H4TJbKEkGbJQIuPD7u1wMSONth4+DyeCk1wJzYLZ5+8BqCGSz/ewVR/RwR4mCo61EpMTEwUHYIUbW1teHl5ITo6utoyAoEAAoGg0nIej1fnL/KKbeb3dkU7+3R0dzNrsskAUL82UmXNqb5Nta7zf32IU2FJ+L/322DIGxMkyFrfurQJJbKEkGZNjceFjzHDsoEd8Dy9CD9fj8HJB6/wJCkXn/z+CGu1+WhvyMWARr5CKxKJsHnzZvz222+Ij49HaWmp1PrMzMxGjacmJSUliIiIQNeuXRv1uB0djdBRyR/YI6Q5MtLmgzEgOlX2LgL1RePIEkLIv9wt9bB2uCdWtRPh074usNTXQEZBKRLyy4f3akyrV6/Gpk2bMGbMGOTk5CAwMBAjR44El8vFqlWrGjWWt3366acIDg5GbGws7ty5g1GjRiE3NxeTJ09WaFyEEOUwu3sL3F3eG4F9XRv8WHRFlhBC3qKjDozp5ojZPZxxNiwRsU8fNHoMhw4dwp49ezBo0CCsXr0a48aNQ4sWLeDt7Y3bt29j/vz5jR5ThVevXmHcuHFIT0+HqakpOnXqhNu3b8Pe3r7RYrgY/hqmugJ4WulBnUfXZAhRJhb6jffwJSWyhBBSDTUeFwNaWeBs401SI5GSkgIvLy8AgI6ODnJycgAAgwcPxooVKxo/oDccOXJEoccHgFV/PUVidhGOfNgJnZyqHilBFTHGkJ5fivjMQsRn5CMkMhss6imyi8uQUyhEVmEpcoqEKC0TQyRmEIrK/+VxOdBQ50GTz4OGGg/6Wuow1RHAWIcPUx0BbI20YGesBXsjLRhp8xv9DgMhDYUSWUIIUUI2NjZITk6GnZ0dnJ2dceHCBbRt2xb37t2r8qGp5qS0TAwXcx2UisTwtJJtxANlVCwUITIlD0+ScvA0KRdPk3IRlZKHIuHbY2jmyLS/3OIymcoZafPhaaUHL2t9tLLWRysrfdgaaVJyS+QqKDIVZx8no3MLYwz1tmyw41AiWw8Vw/JUDA8hFApRWFiI3NxcqKur1/pa3uq7f1m3q6lcXdfJsqw5tV9N66n9ZCunbO1XcV541+G7RowYgUuXLsHX1xcLFizAuHHj8NNPPyE+Ph6LFi16p32rOr4aF/undlR0GHVWVCrC/ZeZuPUiAzdfZOBxYg5E4sqfEw4HsNTTgK2RJnQ5pWhpbwEjbQEMtdVhoMWHvqY6BGpcqHG5UONxwONwUCZmKBaKUCwUoUgoQnahEOn5JcjIL8Xr3OLyK7yZhUjJLUZmQSmuRafjWnS65JhW+hrwczZBF2cT+Dkbw0y36Y7LSxrHk8Qc/Hb/FUrKxJTIKpu8vDwAgK2trYIjIYQoq7y8POjr69d7+2+//Vby/1GjRsHW1hY3btyAs7Mzhg4dKo8QSSOIScvH309SEBSZitCEbAhF0omrsTYfHlZ68LTSh6eVHtwt9WBrpAmBWvnYmxEREXB3d5HbEE1vXgV+kpiLJ4k5eJaSi6ScYhwLeYVjIa8AAN42+hjoZYlBXpawNdKSy7FJ89LN1RQlZeIG7/pDiWw9WFlZISEhAbq6upJbMR06dMC9e/ckZd58XTHwd0JCgswDf9fV28eX93Y1lavrOlmWNaf2q2k9tZ9s5ZSp/RhjyMvLk8zIJS++vr7w9fWV6z6J/DHG8CwlD38/ScG5J8mIei09/JCVvgY6tzBB5xbG6ORkBGuDxr2lr6HOg4+tAXxsDSTLKq4UX3+ejhvP0/E0KRdhr3IQ9ioH3/79DN42+hjd3hbDWltBT0P+d3VI0+RtYwBvGwMADTsVLyWy9cDlcmFjYyO1jMfjSX3Jvf0aAPT09BoskajqePLcrqZydV0ny7Lm1H41raf2k62csrXfu1yJJbUbtes2ykQMG0Z5w91SOfrIpueX4HjIKxy9n4CYtALJcjUuB37OJujnYY6uLiawM9JSur6omnweurqYoqtL+eQfaXklOP80BWfCknEnNkOS1K49E4HB3paY4u8ATyv6jBPlQImsnHz88cc1vm7s48t7u5rK1XWdLMuaU/vVtJ7aT7Zyqt5+RHYiMcPTxByUihh0BIr9ChOLGW68SMeRuwm4EJ4i6TbAV+Oim4spBrSyQB93c+hrqdZVTFNdASZ0sseETvZIyyvBX4+ScORuPKJT8/F7yCv8HvIK3V1N8VGPFvB1NFK6xJwoj2KhCLHpBdDhN9wQeRym6AnFm4Hc3Fzo6+sjJyenwa6INWXUfu+G2u/dUPs1jPq0q0gkwtPwcAhM7BCbUYS+HubgcRs/iSooKcOvd+Nx4FYcEjKLJMt9bA0wroMtBvtYySXJ/q+PrLvCpzFljCHkZRYO3HqJM2FJqHhGra2dARYHtETnFu/eD1KZ6tvQmktdl/0Rhl/vJuDjHi0wwKZM5vrW5fxAV2QbgUAgwMqVK5v9kDn1Re33bqj93g21n3LhcjhwNtOBm2Xj39rOKijF/ptxOHArDtmFQgCAroYaRraxxvsd7ZSmm0ND4HA4aO9ghPYORvi0nyv2XIvBb/df4UF8NsbtuY3eLc3w2YCWcDHXVXSoRIk4mehAX1Md4ga8ZkpXZAkhRAlNmTIF06ZNQ7du3RQdSoOo7xVZRVzFSskpxt5rMTh8Nx6FpeUPrTiaaGNWNycMa20NTX7DxKLsV+1S84qx9dJzHL4bD5GYgcsBpvk7IrCfK7T4db9Opuz1lafmUtcykRg8LgdisbhO9aUrsoQQouLy8vLQr18/2NraYurUqZg8eTKsra0VHZbChSQVIaI4ER0djWFvrN2gx8opFGLr5WgcvPUSpSIxAMDTSg9zejijfysLhXRrUCZmuhr4angrTPF3wPq/n+FC+GvsvR6Lv5+k4OsRrdDTzUzRIRIFU2uE6aNpgmpCCFFCx48fR2JiIubOnYvff/8dDg4OGDBgAI4dOwahUKjo8BTmbFQeFh97LDWYv7yVlonx8/VYdP/uCvZej0WpSIyODkY4MK0jTs/rgkHels0+iX1TC1Md7J7UHj9PaQ9rA00kZhdh6r57+Ox4GIpKG27YJUIASmQJIURpGRsbY8GCBXj48CHu3r0LZ2dnTJw4EVZWVli0aBGio6MVHWKja2HEh38LY7Qw1ZH7vhlj+PtxMvpuDsaa0+HILhTCzVwXB6Z1xG+zO6O7qyk9oV+DXi3NcWFRN0zzdwSHAxy5l4Ah267jWUquokMjCrT61FNM+vkeEnMb5g9wSmQJIUTJJScn48KFC7hw4QJ4PB4GDhyIp0+fwsPDA5s3b1Z0eI1qvLcBDk7rIJen5N8UmZKHsbtu46NDD/AyoxAmOgKsG+mFM/O7oLurqVyP1ZRpC9Tw5RAPHJruC1NdAZ6n5mPYthv448ErRYdGFOR2TCZuvMhAUl5Zg+yf+sgSQogSEgqF+Ouvv7Bv3z5cuHAB3t7eWLRoET744APo6pY/GX7kyBF89NFHWLRokYKjVV1FpSJsvRyN3VdjUCZm0FDn4sOuTviwewuFj1OryvycTfD3gq745LdHCI5KQ+BvjxCTVoDAvq7gUreMZuXjni1QVFoGU3Fmg+yfrsgqkYSEBPTo0QMeHh7w9vbG77//ruiQVM6IESNgaGiIUaNGKToUlXD69Gm4ubnBxcUFe/fuVXQ4KqchP2+WlpaYOXMm7O3tcffuXdy/fx+zZ8+WJLEAEBAQAAMDA7kfW9mJxQzyGHDnbmwm+v9wFTuCXqBMzNDPwxyXP+mBwH5ulMTKgYmOAPumdMBHPVoAALZdeY75Rx6itEys4MhIYxrsbYWRbaxhotUwv1OUyCoRNTU1bNmyBeHh4fjnn3+waNEiFBQU1L4hkZg/fz4OHjyo6DBUQllZGQIDA3H58mU8ePAA69evR2Zmw/zF3FQ15Odt06ZNSEpKwvbt29G6desqyxgaGiI2NrZBjq+MykRizDuTBK81F5FZUFrv/RQLRfjqdDjG7r6FlxmFsNTXwK6J7bB7UntYGWjKMWLC5XKwtH9LbBzlDXUeB6fDkvHR/0JQLKSHwIh8UCKrRCwtLSVfWGZmZjAyMqLEoo569uwpdcWKVO/u3bvw9PSEtbU1dHV1MXDgQJw/f17RYamUhvq8lZWVYdq0aXj+/Lnc963K1Hhc5JeIUSwU42FCdr328TQpB4P+7xp+uh4LxoCx7W1xflE3BHhayDdYImV0e1v8PKUDBGpcXHqWipkH71My20zkFQsRkZyL+Oz6//FZE0pk6+Dq1asYMmQIrKyswOFwcPLkyUplduzYAUdHR2hoaKBdu3a4du1avY51//59iMVi2NravmPUyqMx2685eNf2TEpKkhqX1MbGBomJiY0RulJQ5s+jmpoa7O3tIRLRF/3b5ncygqu5Nr49G4GM/BKZtxOLGfZei8GI7TfxIq0A5noC7JvaAetHeUNPQ70BIyYVurqYYt/UDtBU5+FadDoWHHkIkZjmZGrqzj99jcHbbmJvSFaD7J8S2TooKCiAj48Ptm3bVuX6o0ePYuHChVi+fDkePnyIrl27YsCAAYiPj5eUadeuHVq1alXpJykpSVImIyMDkyZNwu7duxu8To2psdqvuXjX9qyqj2FzGlpIHp/HhvTFF19g2bJldFfmLZa66sgpLMPztAJ8sPeOTF0McgqFmHHwPr4+E4FSkRh9PcxxbkE3GrBfAfxamGDf1A7gq3Fx/ulrrDn1VC79nYnyMtbmw1ibDy31Bko5GakXAOzEiRNSyzp27Mhmz54ttaxly5bss88+k3m/xcXFrGvXruzgwYPyCFNpNVT7McbYlStX2HvvvfeuIaqU+rTnjRs32PDhwyXr5s+fzw4dOtTgsSqjd/k8NtTnrXXr1kxHR4cJBALm6urK2rRpI/Wj6nJychgAlpOTI/M2ZWVl7PHjxyw6JYe1//ois196mvXfcpWl5xVXu83jV9nM/9tLzH7paeay/Cw7eDOWicVieVShwVXUt6ysTNGhyN3pR0nM4bPTzH7pafbz9RjGWNOu79uaU10Zq3t963J+oMcy5aS0tBQhISH47LPPpJb369cPN2/elGkfjDFMmTIFvXr1wsSJExsiTKUlj/Yj/5GlPTt27IgnT54gMTERenp6OHv2LL788ktFhKt0lOHzOHz48EY5zrvYsWMHNm7ciOTkZHh6emLLli3o2rVrgx/X0UQbv87shPd330ZEci7G7r6N/033hYW+hlS54yGvsOzEY5SWiWFrpImdH7RDK2v9Bo+P1CI5GYP+2IXsjv2x/E4G1p6NQBs7Q3hZ0fMNpO4okZWT9PR0iEQimJubSy03NzdHSkqKTPu4ceMGjh49Cm9vb0l/vV9++QVeXl7yDlfpyKP9gPLhiB48eICCggLY2NjgxIkT6NChg7zDVXqytKeamhq+//579OzZE2KxGEuWLIGxsXwHmVdVsn4eG/LztnLlSrnsp6FUdL3YsWMH/P39sWvXLgwYMADh4eGws7Nr8OM7m+ngt1md8MHeO3iemo/Ru27i8IxOsDXSgkjMsOHcM+y6GgMA6N3SDJvGtIa+FvWFVQrJycDq1Rh/fwhuFlrizONkfHzoAU7N9VN0ZKQBnHuSjC3/RONFah5amGViYR8X9G9lKbf9UyIrZ2/3MWSMydzvsEuXLhCLm/f4eu/SfgDoqfu31NaeQ4cOxdChQxs7LJVRW/s158/bpk2bMH36dMyYMQMAsGXLFpw/fx47d+7EunXrGiUGJ1Md/DarMyb8dAeFpSLkFJbCUJuPBb8+xKVnqQCA+b2csbAPDcKvjDgcDta954UnSTl4mVGIL04+xUc+fEWHReTo3JNkzP7fA8nryJQ8zP7fA/w4oa3ckllKZOXExMQEPB6v0tXD1NTUSld1SGXUfvJF7flulKH9RCIRNm/ejN9++w3x8fEoLZV+qEmRD4HVp+tFSUkJSkr+G2UgNzcXQHk9ZR2doaLcm+Wt9AX4dUZHpOWXYNYv95FZKESRUAx1HgfrhrfCiLbWYEwMVRwAoqr6qqzk5PIfAJyHD8EFIL5/H9oiEXZ5AFPOZeLsE8BN1xhubk2gvrVoUu9tDbb8Ew0OgIrH+RgADqd8eV/36h+2rEu7UCIrJ3w+H+3atcPFixcxYsQIyfKLFy9i2LBhCoxMNVD7yRe157tRhvZbvXo19u7di8DAQKxYsQLLly9HXFwcTp48qfC+zPXpCrRu3TqsXr260vLIyEjo6OjU6fhRUVGVliXlCCEsK0ORUAwtNQ6GuuuhpWYuIiJy67RvZVRVfVWN2Y4dMNu5U2oZd9YsAEBLAHP6TMCX7d7HnpBM+Ns/g4Za8xhUqSm8tzV5kZqHt8ekYKx8eURERLXb5efny3wMSmTrID8/X2qA8tjYWISGhsLIyAh2dnYIDAzExIkT0b59e3Tu3Bm7d+9GfHw8Zs+ercColQe1n3xRe74bZW+/Q4cOYc+ePRg0aBBWr16NcePGoUWLFvD29sbt27cxf/78RomjJnXpCrRs2TIEBgZKXufm5sLW1hZubm7Q09OT6XgikQhRUVFwdXUFj8eTLA97lYNlx+8ju6j8Kk5hGcORxzk49jQHatz/4jTU4sPX0Qh+LYzh18Kk0sNhyqa6+qqkzz+HaOpUAP9ekZ01C+Jdu8DatMHNFxnYej0NADCtrSG8PVqqfn1r0aTe2xq0MMtEZIp0MsvhAM5munB3d692u4o7NrKgRLYO7t+/j549e0peV5yUJ0+ejP3792Ps2LHIyMjAmjVrkJycjFatWuHs2bOwt7dXVMhKhdpPvqg9342yt19KSorkQU8dHR3k5OQAAAYPHowVK1Y0SgzVqU/XC4FAAIFAUGk5j8er8xd5xTYiMcOh2y/x1ZlwCEUMPrYGEPA4uBtXPvB6mbj8p+LGZlFOCU6EJuPPR8nYM6k9rI2063RcRalPGykdG5vyHwD4ty7c9u2Btm2haZoJXsxDzG5tiX524qZRXxk19bou7OMi1UeWwym/IrugT80JfF3ahMMYjURMCCHKxs3NDQcPHoSvry+6du2KQYMG4bPPPsPRo0cxb948pKamKjQ+X19ftGvXDjt27JAs8/DwwLBhw2R62Cs3Nxf6+vrIycmp0xXZiIgIJMEIFyPScO5JCvJKysqPbamH32d3xtWoNHx06EGN+1k30gvjOjb8yArvqqK+7u7uTSvZefAAaNcOCAkB2rYFAGQWlEJTjYMX0ZFNr75VaLLvbRV+v5+AxcfCAAAtLXSxsI8r+reqeUroupwf6IosIYQooREjRuDSpUvw9fXFggULMG7cOPz000+Ij4/HokWLFB1eo3a9SM0txj8Rqbga+Rpz22piwdFQFAn/uwYjUOPi2OzO0BKooY+HOUx0BEivZvra+b1dVCKJbdIsLcG+/BLxfD1U3N8w0uY3+QefmqteLf97qOv0XD+oqck39aRElhBClNC3334r+f+oUaNgY2ODmzdvwtnZWSmGTGvorhciMcOuqy9w/ulrPErIBgBoqnMwt60dRGLpG4kTO9tDS1D+dabO42JMexvsCHpRaZ8elrpY1MdFLvGRd2Bpif/rOgHbj0Rjy1htDPSS35iiRPmI/r3xz0HDTINOiSwhhKiATp06oVOnTooOQ8qcOXMwZ86cBtk3j8uBua6GJImt8CilCKVvXbgb3c5W6vW4jnaVEllXcx0c/8hP8kUqEjPwaGxZhTh8Jx6b/yl/Wj+zoLSW0kTVFf37CytQa5jfN0pkCSFESUVFRSEoKAipqamVJktR9BBcjeG9djYoLC3Dij+fAigfFeGroDSpMu6WenCzkJ7a1NZIC11dTHAtOh0A4GWtjyMfdoImv/wrr6RMhLG7bqOvhzlmdXOCGq95DPWkDH65/RIrTj4BAHzcswUmdKKHT5u6wn8TWQ1KZAkhpPnYs2cPPvroI5iYmMDCwkLqlhyHw2kWiSwATOzsgMJSEdb9/azK9SPbWFe5/ANfO1yLToedkRZ+ntIB2oL/vu7+DE1CaEI2QhOycf5pCr4f7QMXc90q90Pk56frsfjqdDgAYHoXR3zaz03BEZHGUFha/kBmQ40NTIksIYQooa+//hrffPMNli5dquhQFG5W9xYoKCnDrqvPUVL2X/9YLgcY2tqqym16u5ujpYUudk5oB1Nd6WG/RrezgRqXg1V/PUXYqxwM/L9r+KiHM+b0aAEN9ab9BLkiiMUMa06HY//NOADARz1aYEmAW4P0lyTKp6GvyNL9FEIIUUJZWVkYPXq0osNQGov6umLQW3Oz+zubwFyv6kkN1HlcHP/ID44mlceK5XA4GNnWBhcWdUevlmYQihj+71I0BvxwDdei06rYG3kXHA4gFJV3jVnS342S2GamoKRhr8hSIksIIUpo9OjRuHDhgqLDUBocDgcrBrtjkZ8x+P9eNB1RTbeCCm92J6iKhb4GfprcHjs+aAszXQFi0wvw8/VYeYXc7In/HV2Cw+Fg1VBPHJ7pizk9nCmJbWYyC4QAAD0BdS0ghJBmw9nZGStWrMDt27fh5eUFdXV1qfXKMEVtY9PT5KO3kw4SigU48/g1AjxrHlRdFhwOBwO9LNHFxQSbLkThA9//xpjNLCiFmDGY6FSekYxUjzGGn67H4kpkKg5M7Qg1HhfqPC78WpgoOjSiAJkF5WM662tQIksIIc3G7t27oaOjg+DgYAQHB0ut43A4zTKRrfD18Fbo3MK01iuudaGnoY5VQz2lln13IRJ/hSbhox4tMM3fEZp86j9bm5i0fHx+4jFux2QCAM48Tsaw1jVfOSdNm5WBJro6G8PJQFx74XqgRJYQQpRQbCzd4q7K49fFCC9KRjdXs9oLvwOhSIzwpFzkl5Rh4/lI/Hw9FtO6OGJCJ3voa6rXvoNmprRMjN1XX+D/Lj9HaZkYGupcLB/ojqE+VT+MR5qPkW1tMMzHEhEREQ2yf0pkCSGEqIx9D7IQlfEauya2g4X+u3ctqI46j4s/PvLDX4+S8N2FSLzKKsLG85H4MegFJnS2xzR/x0qjITRHjDGce5KCDecjEZteAADo6mKCtSO8YGukpeDoSHNAiSwhhCiJwMBAfPXVV9DW1kZgYGCNZTdt2tRIUSkXd1MBzI30oCvHbgXV4XI5GN7GGoO9LXEqLAk7g14g6nU+dga9gDqPi8C+rg0egyrYfzMOsekFMNHh44tBHhjW2ooe6CISxUIR1BtwaAFKZAkhREk8fPgQQqFQ8v/qNOckYWZ7I7i7u4PHa7z+qmo8Lka0scEwH2tcepaKn6/HYoqfg2T99eh0JOcUYbC3VZPvRysWM1wIf402dgYw19MAh8PB8kHu+CciFR92c4JOI/yBQVSHWMzgveoCtAU8/NC/YboD0SeOEEKUxJUrV6r8P1EOXC4HfT3M0dfDXGr5tivRuB2TiTWnwjGsjRVGtbOFj41+k/qDI6dQiBMPX+GX2y/xIq0AH3ZzwucD3QEA3jYG8LYxUGyARCml5ZegVCSGqJhBX6Nh/sijRJYQQojKKSoVKcXVT8YYurmaIim7GPGZhfjf7Xj873Y8rPQ1ENDKAoO8LNHewUjRYdZLmUiM2zGZ+OPBK5x5nIySsvKnznU11OiBNyITcz0NhK3qh6SsQpRlJDTIMSiRJYQQJTRixIgqr+hxOBxoaGjA2dkZ48ePh5tb85qvPilPiAlfXwID8GhlP0WHAw6Hgzk9nDG7WwvcisnAkXsJuBTxGkk5xdh3Iw4v0gpwcFpHSfnMglIYafMVGLHsBm+9jmcpeZLXLS108X4HW7zXzga6GpTIEtnoaahD20wHERkNs39KZAkhRAnp6+vj5MmTMDAwQLt27cAYw8OHD5GdnY1+/frh6NGjWL9+PS5dugR/f39Fh9tojDR5yCkWgjEgI78ExkoyWQGXy4G/swn8nU1QLBThWnQ6/n6SjG4uppIyCZmF6LrhCtzMddG5hTE6tzCGt40+LP7ta6oIpWViPEvJxY3nGbgfl4ldE9tBjVf+ZE5HRyOk5pUgwNMCY9rboLWtQZPqLkGaBkpkCSFECVlYWGD8+PHYtm0buNzyxEIsFmPBggXQ1dXFkSNHMHv2bCxduhTXr19XcLSNR0ONC1tDTcRnFiHqdT46K0ki+yYNdV6VfWkfJ+YAACJf5yHydR7234wDABhp8+FppYcPuzmh67+Jr1jMwBiTe2zxGYW49jwNTxJz8SQxB5EpeSgV/TdQ/aNXOWhnbwgA+KSfG74c7CFJbAmpq80Xo5BZUIqx7RtuUowmlcg+ePAAS5cuxb1798Dj8fDee+9h06ZN0NHRkZSJj4/Hxx9/jMuXL0NTUxPjx4/Hd999Bz5fNW71EEKah59++gk3btyQJLEAwOVyMW/ePPj5+WHt2rWYO3cuunbtqsAoFcPZVAfxmUV4npqHzi2MFR2OzAZ6WSLkiz64E5uJWy8ycC8uE9Gp+cgsKMW16HRM6GQvKfv3kxQsPf4IJppcON4rhKE2H4ZafBhqqUNfUx293M1hbaAJoPxK74P4LBQLRSgqFaG4TIyswlJk5JciPb8En/ZzQytrfQDAPxGvseZ0uFRcehpq6OhojC7OxrA10pQsp36w5F2dDkvCi7QC9G5pioaaoLjJJLJJSUno06cPxo4di23btiE3NxcLFy7ElClTcOzYMQCASCTCoEGDYGpqiuvXryMjIwOTJ08GYwxbt25VcA0IIeQ/ZWVlePbsGVxdpccqffbsGUQiEQBAQ0Nxt6QVycVcB5cj0xCdmq/oUOrMWEeAgV6WGOhlCaB8jM3IlDw8TcqVXAkFgISsQuSXiJBfIkJcdlql/dgYaUkS2VsvMrDkeFi1xxzT3laSyLa00EVXFxO0staHl7U+Wlnpw9ZIs1l+jkjDKi0TIy6jEADgbKaD7KTKn2N5aDKJ7OnTp6Guro7t27dLrmBs374dbdq0wfPnz+Hs7IwLFy4gPDwcCQkJsLIqnzbv+++/x5QpU/DNN99AT09PpmOJxWIkJSVBV1eXfvkJIVIYY8jLy4OVlZXU1dS6mjhxIqZPn47PP/8cHTp0AIfDwd27d7F27VpMmjQJABAcHAxPT095ha4ynM3K77JFvc6rpaTy01DnwcfWAD62BlLLp/g5oJebCW48igJf3xS5xSJkF5Uiu0CI7KJSmL7RpcJQmw+/FsbQUOdBU50HgToXBpp8mOjyYaItgNe/SSwA+DmbwM+5oa6NEfKfuIwCiMQMugI1WOgJkJ3UMMdpMolsSUkJ+Hy+1BeHpmb5X6vXr1+Hs7Mzbt26hVatWkmSWAAICAhASUkJQkJC0LNnz2r3XVJSInmdmJgIDw+PBqoJIaQpSEhIgI2NTb2337x5M8zNzbFhwwa8fv0aAGBubo5FixZh6dKlAIB+/fqhf//+colXlbiZ6wIAwpNywRhrkhcUNNR5aGGqg1JrTbi729Y4AURV/XEJUbTHr8r7hLtZNOxFvyaTyPbq1QuBgYHYuHEjFixYgIKCAnz++ecAgOTkZABASkoKzM2lf9kNDQ3B5/ORkpJS7b7XrVuH1atXV1q+d+9eaGnRXNKEkP8UFhZixowZ0NXVfaf98Hg8LF++HMuXL0dubi4AVLprZGdn907HqC8HBwe8fPlSatnSpUvx7bffNsrxXc11IFDjIre4DHEZhXA00W6U4xJCZBf2KhsAGnyyDKVPZFetWlVlEvmme/fuoX379jhw4AACAwOxbNky8Hg8zJ8/H+bm5lJ/yVb1V0Ftf9EvW7ZMat7z3Nxc2NraYvjw4dDT04NQKMTFixfRt29fqKur1/pa3uq7f1m3q6lcXdfJsqw5tV9N66n9ZCunbO2Xm5uLGTNmyPUKhKzdnhrTmjVrMHPmTMnrNx+qbWjqPC48rPTwMD4bjxKyKZElRAk9+veKrI+tfi0l343SJ7Jz587F+++/X2MZBwcHAMD48eMxfvx4vH79Gtra2uBwONi0aRMcHR0BlA9nc+fOHalts7KyIBQKK12pfZNAIIBAUHmIF3V1dakvtrq+lrf67l/W7WoqV9d1sixrTu1X03pqP9nKKUv7ybONjx07ht9++w3x8fEoLS2VWvfgwQO5Hac+dHV1YWFhobDj+9gYlCeyr7IxvE3DDe1DCKm70jIxwpPL7yQ19BVZpR8czsTEBC1btqzxR0NDQ2obc3Nz6Ojo4OjRo9DQ0EDfvn0BAJ07d8aTJ08kXQ0A4MKFCxAIBGjXrl2DxP/LrTj0/P4qtj3l4vOTT7H9ynP89SgJD+OzkJFf0iDjBBJCVN///d//YerUqTAzM8PDhw/RsWNHGBsbIyYmBgMGDFB0eFi/fj2MjY3RunVrfPPNN5US7YZWcZUn7N+rPoQQ5RH1Og+lZWLoaajBwbhhu2Aq/RXZuti2bRv8/Pygo6ODixcvYvHixfj2229hYGAAoPzBCA8PD0ycOBEbN25EZmYmPv30U8ycObPBbt3FphfiVXYxAC6iQxIrrdfm82BnrA0XM53yH3MduJjrwt5IiwahJqQZ27FjB3bv3o1x48bhwIEDWLJkCZycnPDll18iMzNTobEtWLAAbdu2haGhIe7evYtly5YhNjYWe/furXabtx+arej3KxKJJMOJ1aainEgkgpdV+Tn7cWIOCotLIVCv/mEoVfVmfZuD5lTfpl7XOzHpAAAfWwOIxeI617cu7dKkEtm7d+9i5cqVyM/PR8uWLbFr1y5MnDhRsp7H4+HMmTOYM2cO/P39pSZEaChzezkjwMMUp67cgpGdKxKzS5CQVYiEzEIk5xSjoFSEiORcRPx7Cb4Cn8eFo4k2Wlrqwuvf8f48rfWhI2hSbxkhpBrx8fHw8/MDUD4CS15e+VBTEydORKdOnbBt2za5Hq8uzyMsWrRIsszb2xuGhoYYNWqU5CptVap7aDYyMrLO/WujoqLAGIORJg+ZRSKcvfUYLU2Vb4YveYmKilJ0CI2qOdW3qdb1n7BUAICTdhkiIiIky2Wtb36+7GNEN6ms6ODBg7WWsbOzw+nTpxshmnJG2ny0tTNAiinDwJ4tpPrPFQtFSMwuQmxaAaJT8xGdmofnqfmIfp2PIqFIMo3hn6Hlg69xOICTiTa8bQzQ2tYAHR2NJMPQEEKaFgsLC2RkZMDe3h729va4ffs2fHx8EBsb2yBdkuryPMLbOnXqBAB4/vx5tYlsdQ/Nurm5yXxHTCQSISoqCq6uruDxeNijawUbQ02YKOE0tfLwdn2buuZU36ZcV7GY4dkf5XnLYF83uNsZ1rm+FXdsZNGkEllVUzFOYAtTHfR5YwxAsZghMbsI0al5CE/KRdirHDxOzEFyTjFepBXgRVoBTjws76agp6GG9vaG0C3mwOZVDtrYG4PLbXpjKhLS3PTq1QunTp1C27ZtMX36dCxatAjHjh3D/fv3MXLkSLkfz8TEBCYm9Rso/+HDhwAAS0vLastU99Asj8er8xd5xTbtHFRnetp3UZ82UmXNqb5Nsa7RabnIKhRCU52H1nZG4L3RTVLW+talTSiRVUJcLge2RlqwNdJCr5b/JbhpeSV4kpiDsFc5uP8yEyEvs5BbXIbLkWkAePhz1x0Ya/PRzdUUPdxM0c3FFIbafMVVhBBSb7t374ZYLAYAzJ49G0ZGRrh+/TqGDBmC2bNnKyyuW7du4fbt2+jZsyf09fVx7949LFq0CEOHDlXYuLaEEOVhqiPA18NbIadICPVGeNaHElkVYqorQM+WZujZ0gwAUCYS42lSLm6/SMOpO88QV8hHRkEpTjxMxImHieBygHb2hhj077zeZnoatRyBEKIsuFyu1EyFY8aMwZgxYxQYUTmBQICjR49i9erVKCkpgb29PWbOnIklS5YoJJ4jd+Nx4mEi5vd2gT9NvUqIwhnrCDChk32jHY8S2XcgFAolPxWvZflXnjwstOFizIdFTjh69PLHk5QCBEelIzgqHZGv83EvLgv34rKw+nQ4OtgbYqCXBQZ7WUBfU13muGoqV9d1sixrzPZ7l/3Lo/1qWk/tJ1s5ZWs/ebZzcXExwsLCkJqaKrk6W2Ho0KFyO05dtG3bFrdv31bIsasSmpCNO7GZuBj+mhJZQpohDqOBTGW2fft2bN++XdJp+fDhw0o9RW1mCRCWycHDdC7i8v/rN6vOYWhtwuBnJoajbvlDZIQQ+SgsLMT48eORk5PzTsP6nTt3DpMmTUJ6enqldRwOR+WH7cnNzYW+vn6d2kkkEiEiIgLu7u6SPnQhLzPxJDEXvVqawdZIec/H9VFVfZuy5lTfplrX0IRshMZnobe7udTvY13rW5fzA12RrYOPP/4YH3/8saSB+/XrpzJT1CZmF+HvJ69xMjSp/EptGgf30riw0GSY3aslRrWzqXYcRpqi9t22U7UpVuuK2k9aXZ62rcncuXMxevRofPnllzXOPNjctbM3Qjt7I0WHQQgBcCwkAf+7HY/o1Hx8M8KrUY5Jiew7UKUpah1M1fFRTz3M7uGM0IRs/Ho3HqceJSGlSIxVZyKxLTgOU/0dMMHXHvpa8pmGtqZ1NMWq7Oup/WQrpyztJ682Tk1NRWBgICWxhBCV4W1tAF/HfKmRmBoaTR3VzHA4HLSxM8SGUT64saQHRjiIYKWvgfT8Emw8Hwn/9Zex9VI0CkrKFB0qIc3aqFGjEBQUpOgwVEJ+SRmO3I3HmlPhig6FkGZtTAdbHJ3VGT3dzBrtmHRFthnT1VBDD0uGb6Z0wfmINOwKjsGzlDx8fzEKB269xPzezhjXkYbTIUQRtm3bhtGjR+PatWvw8vKqdKV3/vz5CopM+RSUlGHZicdgDJjR1RFWBpqKDokQ0khkSmSNjOrW/4jD4eDBgwewt2+84RdI/anzuBjRxgbDfKxx+nEyvr8QiZcZhfjyz6c4dDseq4e0VHSIhDQ7hw8fxvnz56GpqYmgoCBw3ngqk8PhUCL7BnM9DXRwMMLd2EycfZyMGV2dFB0SIc0KYwx/PEhEz5ZmMGrk8etlSmSzs7OxZcsW6Ovr11qWMYY5c+ao/BO1zRGXy8FQHyv097TA0Xvx2HQxCpGv8/D+3nvwNeXCr1AIU/2G62NJCPnPF198gTVr1uCzzz6TGk+WVG2ItyXuxmbiVBglsoQ0tocJ2fjk90fQ01BDyIq+jTIRQgWZuxa8//77MDOTrc/DvHnz6h0QUTy+GhcTOztgsLcV1p97hiP3EnAnjYvB227iuzE+6OpiqugQCWnySktLMXbsWEpiZRTQygIr/3qKRwnZSMgsbHJDcRGizE4/SgYA9HAza9QkFpDxYS+xWCxzEgsAeXl5cHKiv4hVnaE2H9++542jMzvCTIPhdV4JJv50F2tOhaNYSFfcCWlIkydPxtGjRxUdhsow09VA5xbGAIDjD14pOBpCmo8ykRinwpIAAIO9LRv9+PSwF6lVWzsDLPYWIRSOOHQ3AT/fiEVIfBZ2TWgHY62mM5AzIcpEJBJhw4YNOH/+PLy9vSs97LVp0yYFRaa8xrS3xY3nGfj9/ivM7+UCLpdmeyGkoV2JTENaXglMdPjo0YijFVSocyL7119/Vbmcw+FAQ0MDzs7OcHR0fOfAVIEyTFH7LvuvyxShfB6wvK8zuruaYPHxx3iUkI3BW69hyyjPavdBU6zKVk7ZplitK2q/quN5V48fP0abNm0AAE+ePJFax6Hp+KoU4GkBXQ01JGYX4VZMBk1ZS0gjOHovHgAwsq0N+GqN3xWqzlPUcrlccDgcvL1ZxTIOh4MuXbrg5MmTMDQ0lGuwiqZqU9Q2lPRiYG8kD8mFHPA4DBNdxGhjTDMdEwLIb4rapk5eU9S+bfmJxzh0Jx7DWv9/e3ceF1XVP3D8MzPsDJvsuyAK7houuYOmmD4ulVsuSZqVa2rmrzJTK21TM82yxUCfLNs0zcyd3CU33AVxA1lEQUWQdeb+/uBhklicYZsZOO/Xi5fee8/c+Z7jeDlz7znn68GnI9pWZ8i1rq6mMS1PfapvXanrzcxcOn+wB5VaYtfMHgS4KMssZ1Apanfu3MmcOXNYuHAhHTp0AODvv//mrbfeYu7cudjZ2fHSSy8xa9YsVq9erevpDZoxp6ityuvKKjckv5DXfj3LjvNprImT49MvkDGdGj7ydSLFquGnWNWVaL+SqitFrVA5w9p5sy46gT/PpjI/Ox+HWl4KSBDqk1+O30Cllmjn61BuJ7am6dyRfeWVV/jqq6/o3LmzZl+vXr2wsLDgxRdf5Ny5cyxbtoxx48ZVa6CGyJhS1FbH6x4uZ2dqyhej2/HWxtP8cPQG72yNI0clY3JogFbnFylWtT8u2k+7cobSflVt46efflqrchs2bKjS+9RVrbzsaO5hy7nkTNYfTWRiSCN9hyQIdZJKLbH+f8MKhrX31lscOg9muHz5cpm3eW1tbbly5QoAjRs35vbt21WPTjBoCrmMBQOaEualBuDj7bF8te+ynqMSBONmZ2en1Y9QNplMxtjODQH47sh1ClVq/QYkCHXUzvM3SczIwd7KlAGtPPQWh853ZIODg3nttddYu3Ytzs5F64neunWL2bNn0759ewAuXbqEl5dX9UYqGCSZTEY/bzVNA5uwbHc8i7ZexMJUwXP/GmYgCIJ2IiIi9B2C0RvY2oP3t17gfm4Bl29lE+hmo++QBKHO+fbgVQBGdvDB0kx/43x17siuXr2aQYMG4eXlhbe3NzKZjISEBPz9/dm0aRMAWVlZzJ07t9qDFQzX5BB/CtQSK6Mu8/amczham9OnqZgxLAhC7bMwVRD5fAcauyqxMhOrTApCdTubdI+/r2ZgIpfp/caVzv/DAwMDuXDhAtu3bycuLg5JkggKCqJ3796aDDSDBw+u7jgFIzCrTyBZuYWsOXydmT/FsG58e32HJAhCPdXa217fIQhCnfXL8aKkI/1bueNmZ6HXWCq14JdMJqNv3768+OKLTJs2jbCwsBpPo7hw4UI6d+6MlZUV9vb2pY6np6fTt29fPDw8MDc3x9vbmylTppSYQXzt2jVkMlmpn23bttVo7PWFTCbj7QHN6RnkQl6hmpfXnSQjT99RCYJQn0mSxKnEu/oOQxDqlLf6N2XlyMcMYjKlzr1PtVrNu+++i6enJ0qlkqtXi8ZIzJ07t0aX28rPz2fo0KFMnDixzONyuZxBgwaxefNm4uLiiIyMZNeuXbz88sulyu7atYuUlBTNT8+ePWss7vpGIZex/Nm2BLnZcDsrn4hYBfmFYrKFIAi1L7dARf/lBxi08iDxaff1HY4g1BkmCjn9W7kT5Kb/tbJ17si+9957REZG8tFHH2Fm9s/6fC1btuSbb76p1uAetmDBAmbMmEHLli3LPO7g4MDEiRNp164dvr6+9OrVi0mTJrF///5SZR0dHXFzc9P8PFwPoeqU5iZ8M7YddpYmJGTL+GhHnL5DEgRBS496+gWQkJDAgAEDsLa2xsnJiWnTppGfn1+7gWrBwlSBl4Ml1mYKLqaKjqwgVFVmbgG5BSp9h1GCzh3ZtWvX8tVXXzFq1KgS2RlatWrFxYsXqzW4qkhOTmbDhg306NGj1LGBAwfi4uJCly5d+OWXX/QQXd3n5WDFh0+3AGDN4QS2nU3Vc0SCIGjjUU+/VCoV/fv3Jzs7mwMHDrB+/Xp+/fVXXn311VqOVDtvD2jGodd78R89Lg8kCHXF0h1x9Pg4yqB+p+s82SspKYmAgNKL3qvV6hrL5a6LZ599lk2bNpGTk8OAAQNK3CVWKpUsXbqULl26IJfL2bx5M8OHD2fNmjWMHj263HPm5eWRl/fPYM/icbcFBQWan+Jtbf6sbvrMdV/Rse6NHOjprmZPipzZv5yiubs1jpaKUuXrc/tVdLys/drsE+1X/v7aaD9DuA5WxYIFCwCIjIws8/iOHTs4f/48iYmJeHgUdQ6XLFlCeHg4CxcuNLi0vF4O9S+NuCDUhAKVmr1xt7iZmYeNheGsBiKTJEnS5QXt2rVj+vTpjB49GhsbG06dOoW/vz8LFixg165dZT7KL8/8+fM1F83yHD16lHbt2mm2IyMjmT59Onfv3i2zfGpqKnfv3iU2NpY333yTHj168Pnnn5d7/qlTp7J3715Onz6tc5zff/89VlbiIlkRlRo+OasgMVtGM3s1Lwapkcn0HZUg1JwHDx4wcuRIrXKEG7LyrrVvv/02mzZt4tSpU5p9d+7coUGDBuzZs4fQ0FCtzq9LLvViVclPL0kSB+PTcbe3oJGzflJp6qoq9TVG9am+xlrXvEIVey6k0beFGzIdfpnrWl9drg86d6nnzZvHmDFjSEpKQq1Ws2HDBmJjY1m7di1btmzR6VxTpkxhxIgRFZZp2LChTucsHvcaFBSEo6Mj3bp1Y+7cubi7u5dZ/vHHH3/k2N433niDmTNnarYzMzPx9vamT58+2Nra1utc99oc+2xMB4Z8fYzzd+XkujXH8uaZGs11ryt9tl9Fx8var80+0X7l76+N9nt4pZS6KDU1FVdX1xL7HBwcMDMzIzW1/MeN5T3ZUqlUqFTajbkrLqdt+Yd9uvsSy/dcJqy5K5+PbKvz6/WhKvU1RvWpvsZaVxMZ9Gnmglqt2yRuXeurS7vo3JEdMGAAP/74I4sWLSpabuntt3nsscf4/fff6d27t07ncnJywsmp5hbNL77Z/PDF899OnjxZbie3mLm5Oebm5qX265qbvS7nuq/oWDNPB6Y/0YSPt8eyaNslZjWv2Vz3laXP9qvouDZtVdY+0X7l76/J9qvJNq6syjz9qkhZd2IkSarwDs37779fZgyxsbEolbrdIY2L030CaaBVPjJg+7mbbNgXQ1Pn0td0Q1WZ+hqz+lRfY6nr8eQc2rhZoJBX7ZGqtvXNysrS+pyVGuQQFhZGWFhYZV5aaQkJCWRkZJCQkIBKpSImJgaAgIAAlEolW7du5ebNm7Rv3x6lUsn58+eZPXs2Xbp00dzVXbNmDaamprRt2xa5XM7vv//O8uXL+fDDD2u1LvXRS9392XY2lTNJ99h0Xc6z+g5IEOqR6nz65ebmRnR0dIl9d+7coaCgoNSd2oeV92QrMDBQp6EFcXFxNGnSROfHsU2BoSkKfjp+g3Xnc/jlpdY6PRrVh6rU1xjVp/oaU12PX7/DvD3RNHZRsmlSJ8xNdY9X1/rq8mTLcEbrPsLbb7/NmjVrNNtt2xY9GoqKiiIkJARLS0u+/vprZsyYQV5eHt7e3jz99NO8/vrrJc7z3nvvcf36dRQKBU2aNOHbb7+tcKKXUD1MFHIWPdWSgSsPcPy2nL+vZdClcfm/9ARBqD7V+fSrU6dOLFy4kJSUFM3TrB07dmBubk5wcHC5ryvvyZZCodD5F3llXgMwq28gW86kEJN4j63n0hjY2jhWMqhsfY1VfaqvoddVkiQ+2BYLQLCvA1YWVVuuVNv66tImWnVkHRwctP7mmpGRofWb6yIyMrLcWbQAoaGhHDp0qMJzjB07lrFjx1ZzZIK2WnrZMSzYix+P3eDdLRfZMs0ZE0XNZoQTBEE3j3r61adPH5o1a8aYMWP4+OOPycjIYNasWUyYMMHgJ7e52FgwKaQRi3fE8eGfF+nTzBWLStxdEoT64o8zKZxIuIulqYKZvZvoO5wyadWRXbZsmebv6enpvPfee4SFhdGpUycADh8+zPbt25k7d26NBCnUHTOfCOD3k4lcvJnFuugExnZuqO+QBEF4yKOefikUCv744w8mTZpEly5dsLS0ZOTIkSxevFhfIevkhW7+/PB3Ikl3c/g8Kp6ZfQL1HZIgGKT7uQW8u+U8AC/3aISLrYWeIyqbVh3Zh+9iPvPMM7zzzjtMmTJFs2/atGl89tln7Nq1ixkzZlR/lEKd0cDajH4+an65qmDZrjieeswTS3FDRBAMxqOefgH4+PjovEqNobAwVTD3P015+bsTrNp7hcFtPfE3kuW4BKE2Ld0Zx83MPBo6WvFSD399h1MunZ/rbt++nb59+5baHxYWxq5du6olKKFu6+wq4e9kzZ0HBXy974q+wxEEoZ4Ja+5GSKAz+So1b286h47LqQtCnXc26R5rDl0D4N3BLQx6CI7OHVlHR0c2btxYav9vv/2Go6NjtQQl1G0KWdEQA4Bv9l/ldlb5y6MJgiBUN5lMxoKBzTEzkXMg/jabYpL1HZIgGAyVWmLOxjOoJRjQ2oNujZ31HVKFdF61YMGCBYwfP56//vpLM0b2yJEjbNu27ZGJBeoakaJW92PFfw9t7EArL1tO38hkxZ54OprUz/ar6LhIUatdOUNrP2NPUVtf+DpaM61nAIt3xDH/93N0DnDExcYwxwAKQm367sh1Tt24h425CXP7N9V3OI+kc4pagOjoaJYvX86FCxeQJIlmzZoxbdo0OnbsWBMxGoyVK1eycuVKzXpoIkVt1Vy6J+Oz8woUMok5bVQ4it8hQh1QV1LU1rTaTlFblgKVmqc+P8jZpEyebuvJ0uFtqnzO6mSsaUwrqz7V11Dreu12Nk9+up+cAhXvDGrOc50aVst5DSpFLUDHjh1Zt25dZV5q1CZPnszkyZM1DSxS1Op+7OF9/UxNORF5jEOXM9iVLOebl3rVu/ar6LhIUatdOUNrv7qeorYuMVXIWTy0Nct3X+L1fkH6DkcQ9Eqllpj5Uww5BSoe92/A6I6++g5JK1p1ZDMzM3W6s3D//n1sbGwqHZSxEClqK3+seN8rvZpw6PIRotNk3H6gwsfJqtzX1eX2q+i4SFGrXTlDaT9DTFErlC/IzZbPR5WfyEEQ6osfjyZyIuEuSnMTFg9tjbyK6Whri1aTvRwcHEhLS9P6pJ6enly5ImajC4/W0d+R9g0dUEkyVh+8pu9wBEGo5w5cui1WMRDqpSHBXkwJDWD+wOZ4ORjPsEmt7shKksQ333yDUqndWntisoOgi0k9/Hn+2nHWH73BlJ5NsLcQ2b4EQah9b/12hu+OJPBW/6a80M1w180UhJpgZiJnVpjxJQjRqiPr4+PD119/rfVJ3dzcxOM1QWtdGjXAVylxPUvNN/uvMKt3gL5DEgShHgp0s0Uug9wClb5DEYRa88fpFHo3c8XMxDhvImnVkb127VoNhyHUZzKZjD5ear6+qGBddAIvdTOOAeaCINQtozv60L6hA0FuYrUJoX7YePIGM348RbCvA+tffBxThfF1Zo0vYqFOam4vEeBsTVZeIT8eS9J3OIIg1EMymaxEJza/UC3Gywp1mq2FKbYWJnQNcDLKTiyIjqxgIGQyGNelIQBrDl9HpdZvPIIg1G9XbmUxaOVBvhWTUIU6rFdTV7bP6M60Xo31HUqliY6sYDAGtnbHSWlOamYeJ9ONY9kPQRDqpv2XbnMhJZOFf5znwKXb+g5HEKqNJEklUsO721miMJKltspSqYQIQhGRorbyKWrL2ieXVIzu6M2y3fFEpch5PT9fpzgrS6RYrRrRfmXHIxi35zr5cjbpHj8fv8Hk70+weUoXfB2t9R2WIFTZyqh4vjlwlWXD2xAS6KLvcKqsUilq6yuRorbmZRfAvBMKCtQyJjdT0cROfDwF4yJS1GrHEFLUPkpeoYrhXx4hJvEuTVyVbJjUBaV57d3/MdQ0pjWlPtVXX3X9/VQyU384CcC7g5ozpppS0D6KwaWo3b9/P19++SWXL1/ml19+wdPTk//+97/4+fnRtWvXypzSKIgUtdWbora8fWc4xw/HkjiT78z0fu3qdPtVdFykqNWunKG1n0hRW3eYmyj4ckwwA1YcIO5mFlO/P8HXz7XDxEgnxQj12/HrGbz68ykAxnf1q7VObE3TuSP766+/MmbMGEaNGsXJkyfJyysaZ3H//n0WLVrE1q1bqz1IQyVS1Fb+WEX7xnf1Y/2xG+yLz+BaRi4NG1joFGdliRSrVSPa759yQt3hamvBl2OCGfHVEaJib/HWb2d5/+mWyGTGO6ZQqH8S0h8wYe1x8gvVPNHUlTf7NdV3SNVG56+V7733HqtWreLrr78uccHu3LkzJ06cqNbghPrJ19GKFg5FQwq+PXhVz9EIglDftfVxYMWzbZHLYP3RRFbsidd3SIKgtXsPCgiP/JuM7HxaeNqy/Nk2Rj2569907sjGxsbSvXv3UvttbW25e/dudcQkCIR6FK2/9euJJNKz8/UcjSAI9V2f5m4sGNQCgKU74/jpWKKeIxKER8vOK2TcmqNcuZWNu50Fq8e2x8qsbs3z17kj6+7uTnx86W+jBw4cwN9f5KYWqoe/DbTytCW/UM330eIXhiAI+jfmcV8mhjQC4I0NZ/jzTIqeIxKE8uUWqJiw9hjHr9/B1sKEb8Pb42proe+wqp3OHdmXXnqJV155hejoaGQyGcnJyaxbt45Zs2YxadKkmohRqIdkMni+c1Gq2u/+TqBAJEgQhFqxcOFCOnfujJWVFfb29mWWkclkpX5WrVpVu4HqyeywQIYGe6FSS0xbf5JD8WKNWcHw5BWqePm74xy6nI61mYI14zrQ1L1urqKic0d29uzZDB48mNDQULKysujevTsvvPACL730ElOmTKmJGAHtLq5Hjx6lV69e2Nvb4+DgQJ8+fYiJiSlR5syZM/To0QNLS0s8PT155513RApCAxXW3BUPOwsysgs4dqvujOcRBEOWn5/P0KFDmThxYoXlIiIiSElJ0fyMHTu2liLUL5lMxgfPtOI/rdxp5m5LM4+62TkQjFehSs20H07yV+wtLEzlfBvenrY+DvoOq8ZUag2RhQsXcvv2bf7++2+OHDnCrVu3ePfdd6s7thIedXG9f/8+YWFh+Pj4EB0dzYEDB7C1tSUsLEyzQHlmZia9e/fGw8ODo0ePsmLFChYvXszSpUtrNHahckwVcp7v4gfAXyly8YVDEGrBggULmDFjBi1btqywnL29PW5ubpofS0vLWopQ/xRyGZ8Mb8O6CY9jb2Wm73AEoYTvjlxn+7mbmCnkfP1cOzr6O+o7pBpV6cXwrKysaNeuHUFBQezatYsLFy5UZ1ylPOriGhsby507d3jnnXcIDAykefPmzJs3j7S0NBISEgBYt24dubm5REZG0qJFC55++mnefPNNli5dKjpJBmp4B2+szRSk5sg4EJ+u73AEQfifKVOm4OTkRPv27Vm1ahVqdf0a/2OqkJdIjrD6wFX2xt3SY0SCUGT0474MCfbi81GP0a2xs77DqXE6T10bNmwY3bt3Z8qUKeTk5NC+fXuuXr2KJEmsX7+eZ555pibifKTAwECcnJxYvXo1b775JiqVitWrV9O8eXN8fYvGWh4+fJgePXpgbm6ueV1YWBhvvPEG165dw8/Pr8xz5+XladbLhX8WPBcpaqs3RW1Zf1qamvJMW3fWRt9g9YGrdGvspEXNdCNSrFaNaL+y46nL3n33XXr16oWlpSW7d+/m1Vdf5fbt27z11lvlvqa866hKpUKlUmn1vsXltC1fW3ZfSOPdLecxU8jYOq0rfk7Vk8rWUOtbU+pTfau7rvmFauQyMFHIkQEfPt2iWs9fVbrWV5e4dU5R6+bmxvbt22ndujXff/898+bN49SpU6xZs4avvvqKkydP6nI6nUVGRjJ9+vQyl/o6d+4cgwYN4urVorVHmzRpwvbt2/Hx8QGgT58+NGzYkK+++krzmuTkZDw9PTl06BCdOnUq8z3nz5/PggULSu0XKWprR3ouvHtSgYSM/2tdiIdocsGAGWKK2vKuYQ87evQo7dq102xXdK39tyVLlvDOO+9w7949nWM4fPgwSqXyke9hyApUEosP3sbT1oTn2tTdsYiCYcotVPP+vls4WCiY1skReR1I1pGVlUWnTp1qJkXtvXv3aNCgAQDbtm3jmWeewcrKiv79+/Paa6/pdK7KXFzLk5OTw7hx4+jSpQs//PADKpWKxYsX069fP44ePaoZv/XvbCzF/fiKsrS88cYbzJw5U7OdmZmJt7e3SFFbiWOVTRG6OWE3MekyLit8eaFfc63rWJ3tUNnXGVuKVV2J9ivJEFPUTpkyhREjRlRYpmHDhpU+/+OPP05mZiY3b97E1dW1zDLlXUcDAwO17vCrVCri4uJo0qRJrean10ZEMwm57J/fJXkFKsxM5FXKAGbI9a0J9am+1VnX6KsZxKTewFQhY9YAHxq7GN4XQ13rq8t1VOeOrLe3N4cPH6ZBgwZs27aN9evXA3Dnzh0sLHRbn6w6L67ff/89165d4/Dhw8jlcs0+BwcHNm3axIgRI3BzcyM1NbXE69LS0gDKvfgCmJublxiOUEykqK38MV1ThIa6q4lJl7P5VAqznwzCxab618ITKVarpq62X3ZeIVkFxp2i1snJCSen6h+WU+zkyZNYWFiUu6IMlH8dVSgUOv8ir8xratrD4eQWqHgu4hgtvex4q3+zKmdRMsT61qT6VN/qqGvnAGcWD22Ft4MVQe521RRZzdC2vrq0ic4d2enTpzNq1CiUSiW+vr6EhIQAsG/fvkfOcv236ry4PnjwALm85Lff4u3iSQidOnXizTffJD8/HzOzopmmO3bswMPDo0p3I4Sa19AG2nrbcTLxHt8dvs7MPoH6DkmoIx7kF5KcDTvPp5GcmcfVW1nEXJLzxZVDpGTmcS+ngDaOcobpO9BakpCQQEZGBgkJCahUKs0ShgEBASiVSn7//XdSU1Pp1KkTlpaWREVFMWfOHF588cUyO6r10f5Ltzl2/Q7Hrt8h9V4unwxvg4Vp/eiYCdWnQKWmUCVhaVb6s3Mq8S7W5iYE/O/u61NtvWo7PIOhc0d20qRJdOzYkYSEBHr37q25++nv7897771X7QEWe9TFtXfv3rz22mtMnjyZqVOnolar+eCDDzAxMSE0NBSAkSNHsmDBAsLDw3nzzTe5dOkSixYt4u23367S4x+hdjzf2ZeTP57mv0euMyk0QPxiELRWqFKTkPGAC8l32XFDRtQvZ0i8m0tCxgNu3c8DTOB0zEOvkANZmq3suj9/S+Ptt99mzZo1mu22bdsCEBUVRUhICKampnz++efMnDkTtVqNv78/77zzDpMnT9ZXyAandzNXlj/bllk/neLPs6mkZh7hy9HBuNTBrEpCzfk+OoHr6Q94e0CzEvt/P5XMrJ9P4W5nwW+Tu9T7JeAqlXA3ODiY4ODgEvv69+9fLQGV51EX16CgIH7//XcWLFhAp06dkMvltG3blm3btuHu7g6AnZ0dO3fuZPLkybRr1w4HBwdmzpxZYtyWYLh6N3XBy8GSG3dy2HAiiZEdffQdkmBgJEniZmYeZ5LucS7pLvviiu6sXkl/QH5h8fJQCkgsmVrUSiHRyM0OH0drvO0tuHMjnj5d2+PtqMTJyoT9e3bUfmX0JDIyksjIyHKP9+3bl759+9ZeQEZqYGsPnJXmvPTfY5xMuMuAzw6wanRwnV6YXqg+dx/k88muOO7lFNC3hRsd/BqgVkt8uvsSn+6+BEAjZyUmikqvolpnVKoje+PGDTZv3kxCQgL5+fkljtVUcoFHXVwBevfuTe/evSss07JlS/bt21eNkQm1xUQhZ1wXP97Zcp7VB64wor038iqOPROMW+q9XE5eT2drgpwN/z3BueT73M7Ke6jEP3dWLU0VNHK2xjL/Lt3aNMHP2QZfRys8bM04GLWTfv0e10zu2rr1Et0bO2m2BaEyOjVyZPOUrkxYe4xLaVkM//IIi55uyZDg+vsYWNDOsl2XuPug6Noz+5dT/PhiJ+b8doZdF4rm9bzY3Z//6xtU5fHXdYHOHdndu3czcOBA/Pz8iI2NpUWLFly7dg1JknjsscdqIkZB0BjW3ptPdsVx+VY2O87fpG8LN32HJNQStVriYmomR6/d4di1DI5du0PS3Zz/HZUDRTnvFXIZjV2UNHVTosq4Qf/u7WjmYY+nvSUqVSFbt26lXw//EqsWCEJNaehkzcbJXZjxYww7z99k1s+nOH3jLnP6N8XcRAyPEkq7dPM+/z1yXbN9Lf0BT3yyl/u5hZiZyHlvcAuGtfPWY4SGReeO7BtvvMGrr77KO++8g42NDb/++isuLi6MGjVKPG4SapzS3ISxnRryWVQ8y3dfIqy5qxjfXEdJksSltCz+uniT3y7ImXsyiszcwhJlFHIZjZ2tsVNn0rdjM1r7NKCpmy2WZor/3VlNpGegs6bTaiBrgwv1jNLchC9HB2seC689fJ0TCXf47NnHaFhNyROEukGSJN794wIqdckl/u/nFuKsNOfb8Pa09DLslQlqm84d2QsXLvDDDz8UvdjEhJycHJRKJe+88w6DBg1i4sSJ1R6kIDxsfFc/Ig5e5XxKJjvP36RPc3FXtq5Iz8rjQPxt9sXd5kD8LW5mFg8TkAOFWJkpeMzHgXYNHWjfsAFtvO0xk0tFd1k7+hjk0leCACCXy5jRuwltvO2Z+VMMZ5My+c+KA7z/dEsGtPbQd3iCgfgr9hb7ykl1bGmmoLGr4a0Rq286d2Stra01aQY9PDy4fPkyzZsXLVB/+/bt6o3OwIkUtTWforasP5VmMsY87sOqfVdZtiuOkMYNqnRXVqRYrZqqtt+l1Hv8FZ/B7gu3OJF4l4dzDZqbyGnva49j4S1G9+5ICy/7f01ukAyu/cRQBaEioUEubH2lG9N+OMnRa3f4ev8V+rV0F2MdBQpUat7943y5xxMyHrBkRyxz+jcrt0x9pHOK2sGDB9O/f38mTJjA7Nmz2bhxI+Hh4WzYsAEHBwd27dpVU7Hq3cqVK1m5cqUmQ4VIUas/WQWw4ISCfLWMCYEqWjTQ6WMs6JEkwY1siMmQczZDRmpOyV/gnlYSQfYSgfYS/jYSpkY2KdcQU9QaoszMTOzs7HRqJ5VKxYULF2jatKnRL5hfqFLz6e5LDGztQWNXG6DosfLDX8rrUn21UZ/qW1ZdVx+4yrtbyu/IAshk8MvLnQj2bVAbYVYbXf9tdbk+6HxHdunSpWRlFc0Cnj9/PllZWfz4448EBATwySef6Ho6ozJ58mQmT56saWCRorb2UtSW9R7XLOL4+sA1DmbaM2vk45VewUCkWK0abc9/Pf0Bm0+nsOV0ClduP9DsN5HL6ODnQO+mLvQKcsHdruRam8bWfoaYolYwPCYKOa/+K7HLkh1xZOYW8PqTQViZVWpRIcFIZWTn8+muuEeWkyR47ZfT/PlKNzFZ8H90/p/i7++v+buVlRWff/55tQZkTESK2sofq44Uqy+HBPDD0RucT7nP1vNpVc5sUldTrOoaZ2WVdf70rDw2n0rmt5hkTiXe1ew3N5ET0sQJl/wUpg97AkfbRz/ZMJb2E+N0hcq4cecBX+y9jEot0aupKz2aOOs7JKEW5OSrWBt9lcT0ByUmszopzfB0sMLL3hIvh6IfTwdLvBys8LS3FJ3Yh1T6K19+fj5paWma9K/FfHzEIvVC7XBUmjMxpBEfb49l8fY4nmzhLrJ9GQC1WuLQ5XR+OJrAjnOpFKiKhn3IZdC1sTODWnvQp7krFgrYujUZW0vR8RMELwcrIp9vz+4LaSU6sYVqMWyqLhu/9jjRVzPoGuBI5PPtNR3VstLSCmXTuSMbFxfH+PHjOXToUIn9xWN7VGJ9G6EWjevix3dHrpN0N4fIQ9d4uUcjfYdUb6Xdz+O3U9f58WgiCRn/DB1o5WXH02096d/KA2cbc81+MSlKEErq1tiZbo3/6cTeup/HhN+SePmeFc919sNUZHGqc17o2pAbd3II7+xHSKCLvsMxSjp3ZJ9//nlMTEzYsmUL7u7uYg1PQa8szRS82ieQWT+fYmVUPEODvXBUmj/6hUK1iUm8y5o4Oa9G79PcPbIxN2FwW09GdPCmuYdY81AQKuO76ARuPVDx7h8XWfd3InP6NaVnkIv4vWuk7ucW8OXeK3g5WDI02BOAnkEudGviIp4mVoHOHdmYmBiOHz9OUFBQTcQjCDp7qq0n3x4oWlf2gz8v8vHQ1voOqc4rUKn582wqEQevcjLhLkXrvEoE+zowor03/Vu5i8kqglBF03oGoM6+w/qz97lyK5vxa47RJcCROf2a0cxDrIhhLPIL1fzwdwKf7r5ERnY+thYmPNH0nzvvohNbNTr/pmnWrFm9Wy9WMGwKuYx3B7fgmS8O8fPxGwxt500HP+NamsRY3HtQwLq/r7P20HVSM3MBMFXIaNtAxZyhnWnt46jnCAWh7lDIZfRrYsOLYW35Yt9VIg5c42B8Ov1X7GdwG0+m9WqMn8gMZrDUaok/z6by8faLXEsvGm7l72zN632DsLc0JVXP8dUVWnVkH15O5sMPP2T27NksWrSIli1blpqhK9ZNFPQh2NeBZzv48MPfCbz12xm2TO2GmYkYT1Zd0rPy+ObAVf57+DpZeUUza52U5ox53Jdhwe78vW83zdzF/31BqAk2Fqa88WRTRnf05cNtF9lyOoWNJ5PYFJPE4LaeTOvZWKS6NSAqtcQfZ1JYuSee2Jv3gaJVCKY/0YQR7b0xUcjFfKJqpFVH1t7evsSYHEmS6NWrV4kyYrKXoG//1zeQHedSibuZxcqoeGb0bqLvkIxeWmYuX+27wrroBHIKiv5vB7nZMKGbP/9p7Y65iUJM2hKEWuLdwIrPRj7GS93vsWxXHLsvprHhRBKbYpIZ3MaTiSH+BLjY6DvMeqtApWZTTDKfR8Vz5XY2UDRfYFxXPyZ090dpLoZb1QStWjUqKqqm4zBKIkWtflLUlsfaVMZb/QKZ8fMZPouKp1tAA1p7PXqikUhRW1rKvVy+3n+VH48nkV9YtMReCw9bJof40zPQuSj5hKSmoEAt2q+ceAShprT0smN1eHtOJd5l2a44omJv8euJG8TezGTL1G76Dq/eycwt4JdjN4g4dJXEjBwA7K1MGdfFj7GdG2InlhisUTqnqK3PRIpa47AmTs6JdDnOFhKvtVJhLsbRay09F3YlyYm+JUMlFT2FaaiUCPNS09ReQkyWfjSRolY79T1FrTa0rW9M4l1WRsXzn1buDGpTNBs+K6+Q7WdT6d/KeNbXNtZ/3x/+TuCNDWeAoiEEL3TzZ/TjvhXegTXWulaWQaSoffDgAa+99hq//fYbBQUFPPHEEyxfvhwnJydtT2H0RIpaw0pRW57OIQX8Z+UhbmbmEV3ow/v/aV7hcjUiRS1cS8/mi71X2XQqBdX/ltDq6OfA5BB/HvdrINpPpKgVDFgbb3u+fq5diX3r/07gvT8u8NOxRH58qZOeIqt7ClRqdp2/ialCzhPNXAEY1MaDX4/fYFBbT4Y85iWSGdQyrTuy8+bNIzIyklGjRmFhYcEPP/zAxIkT+fnnn2syPoMmUtRW/lhNpgh1tjNl6bA2jFkdza8nkgn2dWRkx0dnnKuPKWov3bzPZ1Hx/H4qmeIEQt0aOzG1Z2OdV36oj+1XXhyCoG/W5iZ42lvyn9Yemn13H+Tzx5kU+rVwx8HaTI/RGa+NJ5OY/ctpmrgq6dW0aE1fKzMTfpnYWd+h1Vtad2Q3bNjA6tWrGTFiBACjR4+mS5cuqFSqenFbXDAuXQKceC0siA+3XWTe5rMEudvwmI+DvsMyGOeS7/HZnni2nUuleHBRryAXpvQMoK1oJ0Ewes928GFYO2/NExaAP8+mMmfjWeZtOkePJs4MbONB72auYs3nMkiSxLnkTDafSibQ1YZngr0ACGvmxjK7OMKau5GvUmNuIvo/+qb1pzcxMZFu3f4ZRN6hQwdMTExITk7G29u7RoIThKp4uYc/p2/c5c+zqUxYc4xfJnau92sunkq8y4o9l9h1IU2zr29zN6b0DKCFp8jAVd9du3aNd999lz179pCamoqHhwejR49mzpw5mJn9cwcvISGByZMns2fPHiwtLRk5ciSLFy8uUUbQP4VchkL+z7AgWwtTmnvYci45k90X09h9MQ1zEzndGjvRq6krvYJccLG10GPE+lWgUhOTeJf9l26z5XQyV24VrTzQxtte05G1szLl4Os9RXY1A6J1R1alUpW6SJmYmFBYWFjtQQlCdZDJZHw8tDWJdx5wNimT576N5teJnXGxqX8X6suZMG7NcfbHpwMgk8F/WnkwJTSAQDexXI9Q5OLFi6jVar788ksCAgI4e/YsEyZMIDs7m8WLFwNFvwv69++Ps7MzBw4cID09nbFjxyJJEitWrNBzDYSK9G/lTv9W7sSn3WdTTDKbYpJJyHjArgtpmi+3rb3sCA1yoXMjJ9p429fp9bjVaomLqfc5dPk2B+NvE301gwf5/ywham4ip1dTFwa29tQsMQqITqyB0bojK0kS4eHhmJv/k8c+NzeXl19+GWvrf+5ybdiwoXojFIQqUJqbEBHegSGrDnE9/QFjvvmb717oiLON+aNfbOQkSWJf3C1W7LnE0WsmQDoKuYxBbTyYHBpAI2elvkMUDEzfvn3p27evZtvf35/Y2Fi++OILTUd2x44dnD9/nsTERDw8isZfLlmyhPDwcBYuXChWajACAS42vNonkJm9m3Ax9T67zt9k18U0TiXe5dSNe5y6cY9luy5hYSpndlgQ47r66TvkapOelceO8zc5GH+bw5fTSc/OL3G8gbUZnRo50ivIhd7NXLGxEGPeDZ3WHdmxY8eW2jd69OhqDaY82jzuOnXqFB988AEHDhzg9u3bNGzYkJdffplXXnmlxHn8/Er/h/zzzz9LXLyFusXZxpy14zowdNVhYm/eZ/hXh1n3Qkfc7Sz1HVqNUKslzmTIWP1lNKeTimbQK2QSQ4K9mBTaGF/H+j28QtDNvXv3aNDgn4l/hw8fpkWLFppOLEBYWBh5eXkcP36c0NBQfYQpVIJMJqOpuy1N3W2Z2qsxaZm57L6YxoH42xz5XyfP9aGhBkeupLPg9/M80dSFV/sE6jHy0lRqifTsPBpYmWGiKLqLvONcKlGxaXRu5MSA/016u3wrW7NUFoCVmYIOfg3o0siJLgFOBLnZFK2TLRgNrTuyERERNRlHhbR53HX8+HGcnZ357rvv8Pb25tChQ7z44osoFAqmTJlS4ny7du2iefPmmu2HL9JC3eTraM1PL3Vi1DfRXLmVzZAvDvNtePs69Vi9UKVm67kkVu6JJy5NAWRiYSpneDsv/POuMHJQczGjXtDJ5cuXWbFiBUuWLNHsS01NxdXVtUQ5BwcHzMzMSE0tP3t8Xl4eeXl5mu3iZcpUKpXWGSGLy9WXDJK1XV9Ha1OGBXsyLLjoUfqltCzc7Sw173/8WgYXUjLxc7LS7FOrJfouP4CnvSUBLtZ4O1jhaW+Jp4MlnvYWOt3RLKu+kiRxN6eAm5l53MzMJS0zj5v380jLzP3fn3mk3c/lVlY+KrXEnpnd8XUsWt/9VOJdfvg7ETnQr0XRZ7alhw2dGznSzteezo0cae1VcviEJKmpjeYWn2XtymvDKKYqavO4a9y4cSVe4+/vz+HDh9mwYUOpjqyjoyNubm41H7hgUBo6WfPjS48z+ptorqU/4OnPD/LpiLb0aGzcX2QycwrYnSTjg08OkHIvFwBzhcTzXfx5oXsj7MzlbN16Rc9RCvo0f/58FixYUGGZo0eP0q7dP2uRJicn07dvX4YOHcoLL7xQomxZYwQfHkNYlvfff7/MGGJjY1EqdRvmEhcXp1N5Y6fP+t7I+OfvrWxUvNndGVsLiQsXLgCQmlXA5VvZXL6Vzb5Lt0u93tpUhp2FAltzBTbmcuzM5diYKxgYZIOzdVEX5MqdfC7dzsPbzpRmLhbExcWRllXIGztTSc9R8b/kgo8kl8Hxc3E8cC4aOuZlmsuoVnYE2eRp4gV4s5MSKIScm1y+dLNyDVNNxGe5bFlZWVqf0yg6smX59+MuXcoMHDiQ3NxcGjduzIwZMxgyZEhNhSkYGC8HKzZO6sKkdSc4fCWdF9YeY1xnX5ppeaE0JNfTs4k4eI2fjiXyIF8B5OKkNGNUB2/c7scypHdjzYL+Qv02ZcoUzdKJ5WnYsKHm78nJyYSGhtKpUye++uqrEuXc3NyIjo4use/OnTsUFBSUulP7sDfeeIOZM2dqtjMzM/H29iYwMFCnzF5xcXE0adKkXiz7aIj1/fdqqf4FKn508ebSzSyu3M7ixp1cku7mkHw3hzsPCsgukMguKCT5fsmJ4eN6tqCpR9G/e9Rfl1kRncKIdp40c4EmTZrgVaDm5m9JmvINrExxsbXAxcYcN1sLXGzNcbUx1+xztTXH0fqfYQUATZvCsBpriaoxxH/bmqRrfXVJLGOUHdmyHnf92+HDh/npp5/4448/NPuUSiVLly6lS5cuyOVyNm/ezPDhw1mzZk2F433LeyRWUFCg+Sne1ubP6qbPXPe6HquNXPePojSTsfq5trz/Zyz/jU7k20PXcbdS4Nsygza+2t+drY72q+h4Wfsf5OYRky7j58hjHLySoVkD1t1SYnLvpgxu44kcNTt3xtaLz19Fx/X1+TPELw5OTk5aZ2FMSkoiNDSU4OBgIiIikMtLzlrv1KkTCxcuJCUlBXd3d6BoApi5uTnBwcHlntfc3LzEZOFiCoVC51/klXmNMTPk+lopFHT0d6Kjf+nPV3ZeISn3csjILiAjO5+7D/LJeJDP3QcFuNpbaurk66SkZ5ALAS42QA4KhQI7U1N+ndgZV1tznG3M6+x6rYb8b1sTtK2vLm0ikyRJenSxmlHZx109evSgR48efPPNN2W+5ty5c4SGhjJt2jTeeuutCs8/depU9u7dy+nTp3WO8/vvv8fKyqrC8wuG7WyGjB8uy8kqlCFD4nEXif/4qFEa2FDSmzkQnSYn+paMrIJ/Ht82s1cT4i7RxE5CrAhjGB48eMDIkSO1yhFuaIqvrz4+Pqxdu7bEL5Pi4VgqlYo2bdrg6urKxx9/TEZGBuHh4QwePFin5bd0yaVeTOSnr9vqU33rU11B9/rqcn3Q6x3Z6nzcVez8+fP07NmTCRMmPLITC/D444+X2yEuVt4jsT59+mBra1vtudp1pc9c97oeq41c97roB4y5k82Mtfs5flvO4TQZp++aMrKDN+O6+OKkLH+Zrupov4qOX03LZPmmg8Tn23Ex9Z/xQramEsM7+DK8gw++Dazq9eevouP6+vzp8kjM0OzYsYP4+Hji4+Px8vIqcaz4nodCoeCPP/5g0qRJdOnSpURCBEEQhNqm145sdT7ugqI7sT179mTs2LEsXLhQq/OePHlS83isPOU9EtM1N3tlc9FrS5+57nU9VpO57nXl7mDNc43VzBrckYV/xnI2KZOvD1xj7ZEEnmzhxrD23jzu51jukizV0X4AcoUJp5Oz2BubRlTsLc4k3QMUQBYmchndmzgzpK0HuVeOMaBvkMG0X1XPX13tV97x2v78GfPKEOHh4YSHhz+ynI+PD1u2bKn5gARBEB7BKMbIJicnExISgo+PD4sXL+bWrVuaY8WPu4qHE/Tp04eZM2dqloFRKBQ4OzsDsGbNGkxNTWnbti1yuZzff/+d5cuX8+GHH9Z+pQSD087Xgd+ndGXPxTRW7IknJvEuv8Uk81tMMh52FoQGudCrqQvtGzaolkWycwtUnEm6x9Grt9kWK+ftmCju5fwzIUIug0Y2asaGtqB/K08crM0oKChg67Uqv7UgCIIg1AlG0ZHV5nHXzz//zK1bt1i3bh3r1q3THPf19eXatWua7ffee4/r16+jUCho0qQJ3377ba0ldhAMn0wmo1dTV3oGuXDqxj1+OpbI7zHJJN/LZV10AuuiE5DJwN/JmpYetuRnyCg4lYKvkxJbC1OszRVYm5mgkiQKVRL5hWrSMh9wNkPG/WM3SL6XR3xaFpdvZXE9/QGF6uIh6nKgEDtLU7o1dqJHE2e6NnLg73276dfOy6jv8gmCIAhCTTGKjqw2j7vmz5/P/PnzKywzduzYMjOUCcK/yWQy2njb08bbnrf/04xDl2+z52Iae+NukZiRo1k3ERRsTTzzyPOBAmLPl9rrbGNOGy87LLNTGB3WiccaOmqWjzHE2e+CIAiCYEiMoiMrCPpkYaqgZ5ArPYOK1si8nZXH6Rt3OZVwhyNnLoHSkdTMPLJyC8nKKyTvf6t3mypkmCrk2FuaYlKYQyMvZzwdrGjkrKSRs5IAFyXudhYUFhaydWsybX3sS6yBKAiCIAhCxURHVhB05KQ0p2eQK90aNcA/J5Z+/dqXePSvUkvIZf9kPyooKGDr1q306/eYGCIgCIIgCNVIdGQFoZopylndQBAEQRCE6iWeYwqCIAiCIAhGSdyRrYTilRIyMjI0KWofPHhAenq6ZgH1irarW2XPr+3rKiqn6zFt9tWn9qvouGg/7coZWvvdv38f+Oc6IZStuH10SSChUqnIysoiMzOz3mRDEvWtm+pTXUH3+hZfF7S5joqOrA5WrlzJypUryc/PB8DPz0/PEQmCYKju37+PnZ2dvsMwWMUdfm9vbz1HIgiCodLmOiqTxG0DnanVapKTk7GxsdFM6Gnfvj1Hjx7VlHl4uzilbWJiYo3lXv/3+1f36yoqp+sxbfbVp/ar6LhoP+3KGVL7SZLE/fv38fDwKDMDoVCkrOvoo9TGZ9mQiPrWXfWprlCz11FxR7YS5HJ5qcQMCoWixD/Ov7cBbG1ta+wDW9b7VefrKiqn6zFt9tWn9qvouGg/7coZWvuJO7GPVtZ1VFs1+Vk2RKK+dVd9qivUzHVU3C6oJpMnT65wu7bfv7pfV1E5XY9ps68+tV9Fx0X7aVfO2NtPEARBqBwxtKAWZGZmYmdnx7179+rVN6/qItqvakT7VY1oP8NR3/4tRH3rrvpUV6jZ+oo7srXA3NycefPmYW5uru9QjJJov6oR7Vc1ov0MR337txD1rbvqU12hZusr7sgKgiAIgiAIRknckRUEQRAEQRCMkujICoIgCIIgCEZJdGQFQRAEQRAEoyQ6soIgCIIgCIJREh1ZA5KYmEhISAjNmjWjVatW/Pzzz/oOyeg89dRTODg4MGTIEH2HYhS2bNlCYGAgjRs35ptvvtF3OEZHfN5qx7Vr1xg/fjx+fn5YWlrSqFEj5s2bp0kXXiwhIYEBAwZgbW2Nk5MT06ZNK1XGWCxcuJDOnTtjZWWFvb19mWXqUn0///xz/Pz8sLCwIDg4mP379+s7pGqxb98+BgwYgIeHBzKZjN9++63EcUmSmD9/Ph4eHlhaWhISEsK5c+f0E2wVvf/++7Rv3x4bGxtcXFwYPHgwsbGxJcrURH1FR9aAmJiYsGzZMs6fP8+uXbuYMWMG2dnZ+g7LqEybNo21a9fqOwyjUFhYyMyZM9mzZw8nTpzgww8/JCMjQ99hGRXxeasdFy9eRK1W8+WXX3Lu3Dk++eQTVq1axZtvvqkpo1Kp6N+/P9nZ2Rw4cID169fz66+/8uqrr+ox8srLz89n6NChTJw4sczjdam+P/74I9OnT2fOnDmcPHmSbt268eSTT5KQkKDv0KosOzub1q1b89lnn5V5/KOPPmLp0qV89tlnHD16FDc3N3r37s39+/drOdKq27t3L5MnT+bIkSPs3LmTwsJC+vTpU6IfUyP1lQSD1bJlSykhIUHfYRidqKgo6ZlnntF3GAbv4MGD0uDBgzXb06ZNk77//ns9RmScxOdNPz766CPJz89Ps71161ZJLpdLSUlJmn0//PCDZG5uLt27d08fIVaLiIgIyc7OrtT+ulTfDh06SC+//HKJfUFBQdLrr7+up4hqBiBt3LhRs61WqyU3Nzfpgw8+0OzLzc2V7OzspFWrVukhwuqVlpYmAdLevXslSaq5+oo7sjp41CMCqL7HI8eOHUOtVuPt7V3FqA1HbbZffVDV9kxOTsbT01Oz7eXlRVJSUm2EbhDE59G43bt3jwYNGmi2Dx8+TIsWLfDw8NDsCwsLIy8vj+PHj+sjxBpVV+qbn5/P8ePH6dOnT4n9ffr04dChQ3qKqnZcvXqV1NTUEnU3NzenR48edaLu9+7dA9D8P62p+oqOrA4e9YhAm8cjwcHBtGjRotRPcnKypkx6ejrPPfccX331VY3XqTbVVvvVF1VtT6mMXCgymaxGYzYk1fF5FPTj8uXLrFixgpdfflmzLzU1FVdX1xLlHBwcMDMzIzU1tbZDrHF1pb63b99GpVKVqourq6tR1aMyiutXF+suSRIzZ86ka9eutGjRAqi5+ppUPsz658knn+TJJ58s9/jSpUsZP348L7zwAgDLli1j+/btfPHFF7z//vsAj/ymnJeXx1NPPcUbb7xB586dqy94A1Ab7VefVLU9PT09S9yBvXHjBh07dqzxuA1FdXwehaqZP38+CxYsqLDM0aNHadeunWY7OTmZvn37MnToUM2/TbGyvohJkmQwX9AqU9+KGHp9dfHvmI21HpVRF+s+ZcoUTp8+zYEDB0odq+76io5sNSl+PPL666+X2K/L4xFJkggPD6dnz56MGTOmJsI0WNXRfsI/tGnPDh06cPbsWZKSkrC1tWXr1q28/fbb+gjX4IjPY+2YMmUKI0aMqLBMw4YNNX9PTk4mNDSUTp06lXpi5ebmRnR0dIl9d+7coaCgoNQdIH3Rtb4VMYb6asPJyQmFQlHqjlxaWppR1aMy3NzcgKI7le7u7pr9xl73qVOnsnnzZvbt24eXl5dmf03VV3Rkq0l1PB45ePAgP/74I61atdKM1/vvf/9Ly5Ytqztcg1Ndj5fCwsI4ceIE2dnZeHl5sXHjRtq3b1/d4Ro8bdrTxMSEJUuWEBoailqtZvbs2Tg6OuojXIOj7edRfN6qxsnJCScnJ63KJiUlERoaSnBwMBEREcjlJUfGderUiYULF5KSkqL5Jbljxw7Mzc0JDg6u9tgrQ5f6Poox1FcbZmZmBAcHs3PnTp566inN/p07dzJo0CA9Rlbz/Pz8cHNzY+fOnbRt2xYo+hK9d+9ePvzwQz1HpztJkpg6dSobN27kr7/+ws/Pr8Txmqqv6MhWs6rcMu/atStqtbomwjIaVX3ksH379uoOyag9qj0HDhzIwIEDazsso/Go9hOft9qRnJxMSEgIPj4+LF68mFu3bmmOFd/l6dOnD82aNWPMmDF8/PHHZGRkMGvWLCZMmICtra2+Qq+0hIQEMjIySEhIQKVSERMTA0BAQABKpbJO1XfmzJmMGTOGdu3aae62JyQklBgDbayysrKIj4/XbF+9epWYmBgaNGiAj48P06dPZ9GiRTRu3JjGjRuzaNEirKysGDlypB6jrpzJkyfz/fffs2nTJmxsbDRf+u3s7LC0tEQmk9VIfUVHtprU58cj1UG0X/US7Vk1ov0My44dO4iPjyc+Pr7Eo0r4Z9KiQqHgjz/+YNKkSXTp0gVLS0tGjhzJ4sWL9RFylb399tusWbNGs118BysqKoqQkJA6Vd/hw4eTnp7OO++8Q0pKCi1atGDr1q34+vrqO7QqO3bsGKGhoZrtmTNnAjB27FgiIyOZPXs2OTk5TJo0iTt37tCxY0d27NiBjY2NvkKutC+++AKAkJCQEvsjIiIIDw8HqJH6yqSypi4LjySTydi4cSODBw/W7OvYsSPBwcF8/vnnmn3NmjVj0KBBYnLIv4j2q16iPatGtJ8gCIJxEndkdfCoRwR1+fFIdRDtV71Ee1aNaD9BEIQ6oNKpFOqhqKgoCSj1M3bsWE2ZlStXSr6+vpKZmZn02GOPaTJaCKL9qptoz6oR7ScIgmD8xNACQRAEQRAEwSiJzF6CIAiCIAiCURIdWUEQBEEQBMEoiY6sIAiCIAiCYJRER1YQBEEQBEEwSqIjKwiCIAhCrZs/fz5t2rSp0feIjIzE3t6+Rt9D0C/RkRUEQRAEQSM8PByZTIZMJsPExAQfHx8mTpzInTt39B2azoYPH05cXJy+wxBqkEiIIAiCIAhCCX379iUiIoLCwkLOnz/PuHHjuHv3Lj/88IO+Q9OJpaUllpaW+g5DqEHijqwgCIIgCCWYm5vj5uaGl5cXffr0Yfjw4ezYsaNEmYiICJo2bYqFhQVBQUEl0jkD/N///R9NmjTBysoKf39/5s6dS0FBgdYxqFQqxo8fj5+fH5aWlgQGBvLpp59qjufm5tK8eXNefPFFzb6rV69iZ2fH119/DZQeWnDq1ClCQ0OxsbHB1taW4OBgjh07pkvTCAZG3JEVBEEQBKFcV65cYdu2bZiammr2ff3118ybN4/PPvuMtm3bcvLkSSZMmIC1tTVjx44FwMbGhsjISDw8PDhz5gwTJkzAxsaG2bNna/W+arUaLy8vfvrpJ5ycnDh06BAvvvgi7u7uDBs2DAsLC9atW0fHjh3p168fAwYMYMyYMYSGhjJhwoQyzzlq1Cjatm3LF198gUKhICYmpkS9BCOk79RiglBfjB07VpMGdePGjTXyHj169JBeeeWVGjl3eebNm6ep1yeffFKr7y0IQvUbO3aspFAoJGtra8nCwkLz/3vp0qWaMt7e3tL3339f4nXvvvuu1KlTp3LP+9FHH0nBwcGa7Xnz5kmtW7fWKbZJkyZJzzzzTKnzOjk5SVOnTpXc3NykW7duaY5FRERIdnZ2mm0bGxspMjJSp/cUDJsYWiBU2sMTAh7+iY+P13doBqtv376kpKTw5JNP1ur7hoSEsGrVqho596xZs0hJScHLy6tGzi8IQu0LDQ0lJiaG6Ohopk6dSlhYGFOnTgXg1q1bJCYmMn78eJRKpebnvffe4/Lly5pz/PLLL3Tt2hU3NzeUSiVz584lISFBpzhWrVpFu3btcHZ2RqlU8vXXX5c6x6uvvkpgYCArVqwgIiICJyencs83c+ZMXnjhBZ544gk++OCDEvEKxkl0ZIUqKe6YPfzj5+dXqlx+fr4eojM8xePOzM3Nyy2jyxgybWRkZHDo0CEGDBhQrectplQqcXNzQ6FQ1Mj5BUGofdbW1gQEBNCqVSuWL19OXl4eCxYsAIoe+UPR8IKYmBjNz9mzZzly5AgAR44cYcSIETz55JNs2bKFkydPMmfOHJ1+F/z000/MmDGDcePGsWPHDmJiYnj++edLnSMtLY3Y2FgUCgWXLl2q8Jzz58/n3Llz9O/fnz179tCsWTM2btyoS9MIBkZ0ZIUqKe6YPfyjUCgICQlhypQpzJw5EycnJ3r37g3A+fPn6devH0qlEldXV8aMGcPt27c158vOzua5555DqVTi7u7OkiVLCAkJYfr06ZoyMpmM3377rUQc9vb2REZGaraTkpIYPnw4Dg4OODo6MmjQIK5du6Y5Hh4ezuDBg1m8eDHu7u44OjoyefLkEp3IvLw8Zs+ejbe3N+bm5jRu3JjVq1cjSRIBAQEsXry4RAxnz55FLpfr9A3/2rVryGQyfvrpJ0JCQrCwsOC7774jPT2dZ599Fi8vL6ysrGjZsmWp2cJltVVZ/vjjD1q3bo2npyd//fUXMpmM7du307ZtWywtLenZsydpaWn8+eefNG3aFFtbW5599lkePHigOccvv/xCy5YtsbS0xNHRkSeeeILs7Gyt6ykIgnGbN28eixcvJjk5GVdXVzw9Pbly5QoBAQElfopvZBw8eBBfX1/mzJlDu3btaNy4MdevX9fpPffv30/nzp2ZNGkSbdu2JSAgoMzr67hx42jRogVr165l9uzZnD9/vsLzNmnShBkzZrBjxw6efvppIiIidIpLMCyiIyvUmDVr1mBiYsLBgwf58ssvSUlJoUePHrRp04Zjx46xbds2bt68ybBhwzSvee2114iKimLjxo3s2LGDv/76i+PHj+v0vg8ePCA0NBSlUsm+ffs4cOAASqWSvn37lvgmHxUVxeXLl4mKimLNmjVERkaW6Aw/99xzrF+/nuXLl3PhwgVWrVqFUqlEJpMxbty4Uhe/b7/9lm7dutGoUSOd2+r//u//mDZtGhcuXCAsLIzc3FyCg4PZsmULZ8+e5cUXX2TMmDFER0fr3FabN29m0KBBJfbNnz+fzz77jEOHDpGYmMiwYcNYtmwZ33//PX/88Qc7d+5kxYoVAKSkpPDss88ybtw4Lly4wF9//cXTTz+NJEk611MQBOMUEhJC8+bNWbRoEVB0DXn//ff59NNPiYuL48yZM0RERLB06VIAAgICSEhIYP369Vy+fJnly5frfOczICCAY8eOsX37duLi4pg7dy5Hjx4tUWblypUcPnyYtWvXMnLkSIYMGcKoUaPKvPObk5PDlClT+Ouvv7h+/ToHDx7k6NGjNG3atJKtIhgEfQ/SFYzXwxMCin+GDBkiSVLRpKM2bdqUKD937lypT58+JfYlJiZKgBQbGyvdv39fMjMzk9avX685np6eLllaWpaYwEQZk6Xs7OykiIgISZIkafXq1VJgYKCkVqs1x/Py8iRLS0tp+/btmth9fX2lwsJCTZmhQ4dKw4cPlyRJkmJjYyVA2rlzZ5l1T05OlhQKhRQdHS1JkiTl5+dLzs7OFU4iGDt2rDRo0KAS+65evSoB0rJly8p9XbF+/fpJr776qiRJktZtlZubK9nY2EinT5+WJEmSoqKiJEDatWuXpsz7778vAdLly5c1+1566SUpLCxMkiRJOn78uARI165dqzA+X19fMdlLEOqAsq5VkiRJ69atk8zMzKSEhATNdps2bSQzMzPJwcFB6t69u7RhwwZN+ddee01ydHSUlEqlNHz4cOmTTz4pMfHqUZO9cnNzpfDwcMnOzk6yt7eXJk6cKL3++uua11y4cEGytLQsMens3r17UsOGDaXZs2dLklRysldeXp40YsQIydvbWzIzM5M8PDykKVOmSDk5OZVrKMEgiOW3hCoJDQ3liy++0GxbW1tr/t6uXbsSZY8fP05UVBRKpbLUeS5fvkxOTg75+fl06tRJs79BgwYEBgbqFNPx48eJj4/HxsamxP7c3NwSj6WaN29eYlynu7s7Z86cASAmJgaFQkGPHj3KfA93d3f69+/Pt99+S4cOHdiyZQu5ubkMHTpUp1iL/butVCoVH3zwAT/++CNJSUnk5eWRl5enad/Lly9r1VZ79uzB0dGRli1bltjfqlUrzd9dXV016zw+vO/vv/8GoHXr1vTq1YuWLVsSFhZGnz59GDJkCA4ODpWqqyAIhu3hJ1MPGzlyJCNHjix3+98++ugjPvrooxL7Hh4mNn/+fObPn1/u683NzYmIiCj19Ov9998HICgoqMQQKABbW1uuXr2q2Q4PDyc8PBwAMzMzo0voIDya6MgKVVI8IaC8Yw9Tq9UMGDCADz/8sFRZd3f3Rw7SLyaTyUo91n54bKtarSY4OJh169aVeq2zs7Pm7/9eO1Amk2kmMWiTCeaFF15gzJgxfPLJJ0RERDB8+HCsrKy0qsO//butlixZwieffMKyZcto2bIl1tbWTJ8+XfO47N/1L09ZwwqgZN1lMlmFbaFQKNi5cyeHDh1ix44drFixgjlz5hAdHV3mxD5BEARBqC1ijKxQax577DHOnTtHw4YNS00QKO4Qm5qaama9Aty5c6dUnmxnZ2dSUlI025cuXSrxrfyxxx7j0qVLuLi4lHofOzs7rWJt2bIlarWavXv3llumX79+WFtb88UXX/Dnn38ybtw4bZvikfbv38+gQYMYPXo0rVu3xt/fv0RHX5u2kiSJ33//nYEDB1Y5HplMRpcuXViwYAEnT57EzMxMzPQVBEEQ9E50ZIVaM3nyZDIyMnj22Wf5+++/uXLlCjt27GDcuHGoVCqUSiXjx4/ntddeY/fu3Zw9e5bw8HDk8pIf0549e/LZZ59x4sQJjh07xssvv1zijuKoUaNwcnJi0KBB7N+/n6tXr7J3715eeeUVbty4oVWsDRs2ZOzYsYwbN47ffvuNq1ev8tdff/HTTz9pyigUCsLDw3njjTcICAgo8Zi/qgICAjR3QS9cuMBLL71Eamqq5rg2bXX8+HGys7Pp3r17lWKJjo5m0aJFHDt2jISEBDZs2MCtW7fEBAlBEARB70RHVqg1Hh4eHDx4EJVKRVhYGC1atOCVV17Bzs5O0wH7+OOP6d69OwMHDuSJJ56ga9euBAcHlzjPkiVL8Pb2pnv37owcOZJZs2aVeKRvZWXFvn378PHx4emnn6Zp06aMGzeOnJwcbG1ttY73iy++YMiQIUyaNImgoCAmTJhQasmp8ePHk5+fX613YwHmzp3LY489RlhYGCEhIbi5uTF48OASZR7VVps2baJ///6YmFRtBJGtrS379u2jX79+NGnShLfeeoslS5bUelIHQRAEQfg3maTtYDtB0JOQkBDatGnDsmXL9B1KKQcPHiQkJIQbN27g6upaYdnw8HDu3r1bag3cmtKqVSveeuutEsub1aSGDRsyffr0EpM5BEEQBKEmiTuyglAJeXl5xMfHM3fuXIYNG/bITmyxLVu2oFQq2bJlS43Gl5+fzzPPPFMrd00XLVqEUqnUOfWkIAiCIFSVuCMrGDxDvCMbGRnJ+PHjadOmDZs3b8bT0/ORr0lLSyMzMxMoWqXh3ysVGKuMjAwyMjKAool42k6oEwRBEISqEh1ZQRAEQRAEwSiJoQWCIAiCIAiCURIdWUEQBEEQBMEoiY6sIAiCIAiCYJRER1YQBEEQBEEwSqIjKwiCIAiCIBgl0ZEVBEEQBEEQjJLoyAqCIAiCIAhGSXRkBUEQBEEQBKMkOrKCIAiCIAiCUfp/mPAERLNJN5wAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -460,7 +460,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUklEQVR4nO3deVxU9f4/8NeZGWAYhmHflE3cccHd3O2qWZrLtcXKJbVsMbvtda3M1qvZrVu/vmnXbum9tlpZmalZrpn7AiqgKAKigIDIwLDPzOf3xzCjo6iowGHOvJ6PBwlzhnPeMwfj5WeVhBACREREROTyVHIXQEREREQNg8GOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiByWLFmCqKgoqFQqvP/++w1+/qNHjyI8PBylpaUNfu6GNm3aNIwfP/6Kzxk6dCiefPLJep9z9erV6N69O6xW640V52ZiY2Mb5efxYtd6P4maIwY7alL5+fl4+OGHER0dDS8vL4SHh2PkyJHYsWOH4zmSJOHHH3+Ur0g3VVJSgtmzZ+OFF17A6dOn8dBDDzX4NV566SU89thj8PX1bfBzX05z+mV9++23Q5IkfPnll3KXQnVYuXIl3njjDbnLILohDHbUpO644w4kJSXhv//9L9LS0rBq1SoMHToURUVFcpcGAKiurpa7BNmcPHkSNTU1GD16NCIiIqDT6a7rPDU1NXU+furUKaxatQrTp0+/kTJd3vTp0/Hhhx826TUvd0/IWWBgYJP+o4OoMTDYUZMpLi7Gtm3b8Pbbb+Pmm29GTEwM+vTpgzlz5mD06NEAbF0uAPDXv/4VkiQ5vgaAn3/+GT179oRWq0VcXBxee+01mM1mx3FJkrB48WLcdttt8Pb2RqtWrfDtt99esaahQ4di9uzZePrppxEcHIwRI0YAAFJSUjBq1Cjo9XqEhYVhypQpKCwsdHzfd999hy5dusDb2xtBQUEYPnw4ysrKAJzvwnvttdcQGhoKg8GAhx9+2Ck0VlVV4W9/+xtCQ0Oh1WoxcOBA7Nmzx3F88+bNkCQJGzZsQK9evaDT6dC/f38cPXrU8ZykpCTcfPPN8PX1hcFgQM+ePbF3717H8e3bt2Pw4MHw9vZGVFQU/va3vzlqvNiyZcvQpUsXAEBcXBwkSUJmZiYAYPHixWjdujU8PT3Rvn17LF++3Ol7JUnCxx9/jHHjxsHHxwdvvvlmnddYsWIFEhISEBkZ6Xjs1VdfRbdu3Zye9/777zvdd/v7+c9//hMREREICgrCY4895hRWFi1ahLZt20Kr1SIsLAx33nmn43u3bNmCDz74AJIkOV6XxWLBAw88gFatWsHb2xvt27fHBx98UGfdV7qPF6uursbzzz+Pli1bwsfHB3379sXmzZudnjN27Fjs3r0bJ06cuOx5Nm/ejD59+sDHxwf+/v4YMGAAsrKyHMfr83fhwnvy+uuvIzIyEh9//LHTdfbv3w9Jkhy1nDx5EuPGjYNer4fBYMDdd9+NM2fOOJ5vv1+fffYZoqOjodfr8eijj8JisWDhwoUIDw9HaGgo3nrrLafrGI1GPPTQQ4738S9/+QuSkpKcnrNq1Sr06tULWq0WwcHBmDBhgtPx8vJyzJgxA76+voiOjsaSJUucjr/wwgto164ddDod4uLiMHfuXKefEXvty5cvR2xsLPz8/HDPPfc4DQu4uHX3cj9X9uc+/vjjePLJJxEQEICwsDAsWbIEZWVlmD59Onx9fdG6dWusXbu27ptM1FgEUROpqakRer1ePPnkk6KysrLO5+Tn5wsAYunSpSI3N1fk5+cLIYRYt26dMBgMYtmyZSI9PV2sX79exMbGildffdXxvQBEUFCQ+OSTT8TRo0fFyy+/LNRqtUhJSblsTUOGDBF6vV4899xz4siRIyI1NVXk5OSI4OBgMWfOHJGamir2798vRowYIW6++WYhhBA5OTlCo9GI9957T2RkZIiDBw+Kjz76SJSWlgohhLj//vuFXq8XEydOFIcPHxarV68WISEh4sUXX3Rc929/+5to0aKFWLNmjUhOThb333+/CAgIEGfPnhVCCLFp0yYBQPTt21ds3rxZJCcni0GDBon+/fs7ztGpUycxefJkkZqaKtLS0sSKFStEYmKiEEKIgwcPCr1eL/71r3+JtLQ08eeff4ru3buLadOm1fk+lJeXi99//10AELt37xa5ubnCbDaLlStXCg8PD/HRRx+Jo0ePinfffVeo1WqxceNGp/c9NDRUfPrppyI9PV1kZmbWeY1x48aJRx55xOmxefPmiYSEBKfH/vWvf4mYmBjH1/fff78wGAzikUceEampqeLnn38WOp1OLFmyRAghxJ49e4RarRZffvmlyMzMFPv37xcffPCBEEKI4uJi0a9fPzFz5kyRm5vreF3V1dXilVdeEbt37xYnTpwQn3/+udDpdOKbb75xuu7V7uOQIUPEE0884fj6vvvuE/379xdbt24Vx48fF++8847w8vISaWlpTq8xNDRULFu2rM73qaamRvj5+Ylnn31WHD9+XKSkpIhly5aJrKwsIUT9/y5cfE+eeeYZMXDgQKdrPfPMM6Jfv35CCCGsVqvo3r27GDhwoNi7d6/YuXOn6NGjhxgyZIjT/dLr9eLOO+8UycnJYtWqVcLT01OMHDlSPP744+LIkSPis88+EwDEjh07HOcdMGCAGDNmjNizZ49IS0sTzzzzjAgKCnL8vK9evVqo1WrxyiuviJSUFJGYmCjeeustx3VjYmJEYGCg+Oijj8SxY8fE/PnzhUqlEqmpqY7nvPHGG+LPP/8UGRkZYtWqVSIsLEy8/fbbl9Q+YcIEcejQIbF161YRHh5+2ft5pZ8r+3N9fX3FG2+8IdLS0sQbb7whVCqVuO2228SSJUtEWlqaePTRR0VQUJAoKyur814TNQYGO2pS3333nQgICBBarVb0799fzJkzRyQlJTk9B4D44YcfnB4bNGiQ+Mc//uH02PLly0VERITT910cHPr27SseffTRy9YzZMgQ0a1bN6fH5s6dK2655Ranx7KzswUAcfToUbFv3z4B4LIB5v777xeBgYFO/zNfvHix0Ov1wmKxCJPJJDw8PMQXX3zhOF5dXS1atGghFi5cKIQ4H+x+//13x3N++eUXAUBUVFQIIYTw9fW9bDiYMmWKeOihh5we++OPP4RKpXJ8/8UOHDggAIiMjAzHY/379xczZ850et5dd90lRo0a5fgagHjyySfrPOeFEhISxOuvv+70WH2DXUxMjDCbzU41TJw4UQghxPfffy8MBoMoKSmp87oXh6/LmTVrlrjjjjucrnul+3jxuY8fPy4kSRKnT592Ou+wYcPEnDlznB7r3r27UxC70NmzZwUAsXnz5jqP1/fvwsX3ZP/+/UKSJMfPrcViES1bthQfffSREEKI9evXC7VaLU6ePOn4nuTkZEfYF8J2v3Q6ndN7PXLkSBEbG+t4T4QQon379mL+/PlCCCE2bNggDAbDJf+Ya926tfj3v/8thBCiX79+YtKkSXW+XiFswW7y5MmOr61WqwgNDRWLFy++7PcsXLhQ9OzZ0/F1XbU/99xzom/fvo6vL7yf9fm5ujAom81m4ePjI6ZMmeJ4LDc31ynkEjUFdsVSk7rjjjuQk5ODVatWYeTIkdi8eTN69OiBZcuWXfH79u3bh9dffx16vd7xMXPmTOTm5qK8vNzxvH79+jl9X79+/ZCamnrFc/fq1euSa23atMnpWh06dAAApKenIyEhAcOGDUOXLl1w11134ZNPPsG5c+eczpGQkOA0Rq1fv34wmUzIzs5Geno6ampqMGDAAMdxDw8P9OnT55Jau3bt6vg8IiICgG0CCgA8/fTTePDBBzF8+HAsWLAA6enpTq9h2bJlTq9h5MiRsFqtyMjIuOL7caHU1FSnOgFgwIABl9R58XtYl4qKCmi12npf+0KdOnWCWq12fB0REeF4H0aMGIGYmBjExcVhypQp+OKLL5x+Ji7n448/Rq9evRASEgK9Xo9PPvkEJ0+edHrOle7jxfbv3w8hBNq1a+f0vm/ZssXp3gCAt7f3ZWsMDAzEtGnTMHLkSIwZMwYffPABcnNzHcfr+3fh4nvSvXt3dOjQAV999RUAYMuWLcjPz8fdd98NwHavo6KiEBUV5fie+Ph4+Pv7O93v2NhYp3FoYWFhiI+Ph0qlcnrMfn/27dsHk8mEoKAgp5ozMjIc70tiYiKGDRtW5/thd+HfBUmSEB4e7rgGYBseMXDgQISHh0Ov12Pu3LmX3M+La7/w5+hi9fm5urAmtVqNoKAgx5AG+/sA4LLXIGoMDHbU5LRaLUaMGIFXXnkF27dvx7Rp0zBv3rwrfo/VasVrr72GxMREx8ehQ4dw7Nixq4YFSZKueNzHx+eSa40ZM8bpWomJiTh27BgGDx4MtVqN3377DWvXrkV8fDw+/PBDtG/fvl6BSZIkCCHqrEsIccljHh4el7wO+1IZr776KpKTkzF69Ghs3LgR8fHx+OGHHxzPefjhh53qT0pKwrFjx9C6deur1nlxzVer8+L3sC7BwcGXBGCVSuV4P+zqGuh/4ftgr8n+Pvj6+mL//v346quvEBERgVdeeQUJCQkoLi6+bC0rVqzAU089hRkzZmD9+vVITEzE9OnT6z15pq6fKavVCrVajX379jm976mpqZeM3ysqKkJISMhlz7906VLs2LED/fv3xzfffIN27dph586djuvU5+9CXfdk0qRJjhm5X375JUaOHIng4GAAdd/Xuh6v615c6f5YrVZERERc8vfp6NGjeO655wDYgu7VXOkaO3fuxD333IPbbrsNq1evxoEDB/DSSy9dcj+vdI6L1efn6mrvxcV/Z4maAoMdyS4+Pt5pUL+HhwcsFovTc3r06IGjR4+iTZs2l3xc2FJg/+V34df21rb66tGjB5KTkxEbG3vJtey/LCVJwoABA/Daa6/hwIED8PT0dIQqwDaxoaKiwqkOvV6PyMhItGnTBp6enti2bZvjeE1NDfbu3YuOHTteU63t2rXDU089hfXr12PChAlYunSp02uo6/3y9PSs9/k7duzoVCdgm5RxrXUCthajlJQUp8dCQkKQl5fnFO4SExOv+dwajQbDhw/HwoULcfDgQWRmZmLjxo0AAE9Pz0t+nv744w/0798fs2bNQvfu3dGmTZtLWtWAK9/Hul6fxWJBfn7+Je95eHi443mVlZVIT09H9+7dr/iaunfvjjlz5mD79u3o3LmzI5DV9+9CXe677z4cOnQI+/btw3fffYdJkyY5jsXHx+PkyZNOrZEpKSkwGo3Xdb/tevTogby8PGg0mkvqtYfKrl27YsOGDdd9jT///BMxMTF46aWX0KtXL7Rt29Zpssn1utLPFVFzpZG7AHIfZ8+exV133YUZM2aga9eu8PX1xd69e7Fw4UKMGzfO8bzY2Fhs2LABAwYMgJeXFwICAvDKK6/g9ttvR1RUFO666y6oVCocPHgQhw4dcpqF+e2336JXr14YOHAgvvjiC+zevRuffvrpNdX52GOP4ZNPPsG9996L5557DsHBwTh+/Di+/vprfPLJJ9i7dy82bNiAW265BaGhodi1axcKCgqcfvlVV1fjgQcewMsvv4ysrCzMmzcPs2fPhkqlgo+PDx599FE899xzCAwMRHR0NBYuXIjy8nI88MAD9aqxoqICzz33HO688060atUKp06dwp49e3DHHXcAsM0QvOmmm/DYY49h5syZ8PHxQWpqKn777bdrWmrjueeew913340ePXpg2LBh+Pnnn7Fy5Ur8/vvv1/SeAsDIkSPx4IMPwmKxOLpVhw4dioKCAixcuBB33nkn1q1bh7Vr18JgMNT7vKtXr8aJEycwePBgBAQEYM2aNbBarWjfvj0A28/Trl27kJmZCb1ej8DAQLRp0wb/+9//8Ouvv6JVq1ZYvnw59uzZg1atWjmd+0r38WLt2rXDpEmTMHXqVLz77rvo3r07CgsLsXHjRnTp0gWjRo0CYAuHXl5elwwbsMvIyMCSJUswduxYtGjRAkePHkVaWhqmTp0KAPX+u1CXVq1aoX///njggQdgNpud/t4NHz4cXbt2xaRJk/D+++/DbDZj1qxZGDJkSL262i9n+PDh6NevH8aPH4+3334b7du3R05ODtasWYPx48ejV69emDdvHoYNG4bWrVvjnnvugdlsxtq1a/H888/X6xpt2rTByZMn8fXXX6N379745ZdfnP6hdT2u9nNF1FyxxY6ajF6vR9++ffGvf/0LgwcPRufOnTF37lzMnDkT//d//+d43rvvvovffvsNUVFRjlaNkSNHYvXq1fjtt9/Qu3dv3HTTTXjvvfcQExPjdI3XXnsNX3/9Nbp27Yr//ve/+OKLLxAfH39NdbZo0QJ//vknLBYLRo4cic6dO+OJJ56An58fVCoVDAYDtm7dilGjRqFdu3Z4+eWX8e677+K2225znGPYsGFo27YtBg8ejLvvvhtjxozBq6++6ji+YMEC3HHHHZgyZQp69OiB48eP49dff0VAQEC9alSr1Th79iymTp2Kdu3a4e6778Ztt92G1157DYCtBWTLli04duwYBg0ahO7du2Pu3LmOcXr1NX78eHzwwQd455130KlTJ/z73//G0qVLMXTo0Gs6DwCMGjUKHh4eTqGwY8eOWLRoET766CMkJCRg9+7dePbZZ6/pvP7+/li5ciX+8pe/oGPHjvj444/x1VdfoVOnTgCAZ599Fmq1GvHx8QgJCcHJkyfxyCOPYMKECZg4cSL69u2Ls2fPYtasWZec+2r38WJLly7F1KlT8cwzz6B9+/YYO3Ysdu3a5TRu7auvvsKkSZMuu06gTqfDkSNHcMcdd6Bdu3Z46KGHMHv2bDz88MMA6v934XImTZqEpKQkTJgwwakL1L4weEBAAAYPHozhw4cjLi4O33zzTb3OezmSJGHNmjUYPHgwZsyYgXbt2uGee+5BZmamYwza0KFD8e2332LVqlXo1q0b/vKXv2DXrl31vsa4cePw1FNPYfbs2ejWrRu2b9+OuXPn3lDdV/u5ImquJHHxABciFyVJEn744YerbgPV2KZNm4bi4mLunlGHRYsW4aeffsKvv/4qdymyKCgoQIcOHbB3795LWgeJiBoCu2KJqMk89NBDOHfuHEpLS91yhf+MjAwsWrSIoY6IGg2DHRE1GY1Gg5deeknuMmTTp08f9OnTR+4yiEjB2BVLREREpBCcPEFERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERAqhkbuA5shqtSInJwe+vr6QJEnucoiIiMiNCSFQWlqKFi1aQKW6cpscg10dcnJyEBUVJXcZRERERA7Z2dmIjIy84nMY7Org6+sLwPYGGgwGmashIiIid1ZSUoKoqChHPrkSBrs62LtfDQYDgx0RERE1C/UZHsbJE0REREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREdB2EELjtgz9w75KdOFdWLXc5AACN3AUQERERuaKSSjNSc0sAAN6eapmrsWGLHREREdF1KCitAgD4ajXQejDYEREREbkse7AL8fWSuZLzGOyIiIiIrkOBqTbY6RnsiIiIiFwaW+yIiIiIFKLQxGBHREREpAj2FrtgdsUSERERuTZ2xRIREREpBIMdERERkUJwViwRERGRAlisAkW124iFssWOiIiIyHWdK6+GxSogSUCgj6fc5Tgw2BERERFdI/v4ukCdJzTq5hOnmk8lRERERC6iOU6cABjsiIiIiK4Zgx0RERGRQhQ2wxmxAIMdERER0TVz7DrBFjsiIiIi19Yc17ADGOyIiIiIrhnH2BEREREpBIMdERERkUI4Jk8w2BERERG5rmqzFefKawAAwRxjR0REROS6zpbZWus0Kgn+3h4yV+OMwY6IiIjoGjiWOtF7QaWSZK7GGYMdERER0TVorhMnAAY7IiIiomvSXCdOAAx2RERERNfkfFesp8yVXIrBjoiIiOgasCuWiIiISCGa63ZiAIMdERER0TU532KnlbmSSzHYEREREV2DQlM1AHbFEhEREbk8Tp4gIiIiUoDyajNMVWYAbLEjIiIicmmFpbZuWK2HCnovjczVXIrBjoiIiKieCkyVAGytdZLUvLYTAxjsiIiIiOqtoLbFrjkudQIw2BERERHVm30Nu2AGOyIiIiLX1px3nQAY7IiIiIjqjcGOiIiISCEY7IiIiIgUojnvEwsw2BERERHVW6F91wm22BERERG5LiEEW+yIiIiIlKCk0oxqsxUAx9gRERERuTT7xAlfrQZaD7XM1dSNwY6IiIioHpr7jFiAwY6IiIioXgqb+a4TAIMdERERUb2wxY6IiIhIIZr7jFiAwY6IiIioXthiR0RERKQQDHZERERECmGfPMFgR0REROTiHC12HGNHRERE5LosVoGzZdUA2GJHRERE5NLOlVfDYhWQJCDQx1Puci6LwY6IiIjoKuzdsIE6T3iom298ar6VXWTHjh1QqVRYsGCB47EFCxYgJCQEgYGBeP755yGEcBzbs2cPEhISoNPpMGTIEGRlZclRNhERESmAK0ycAFwk2FmtVjz11FPo3bu347E1a9Zg8eLF2LVrF5KTk7F69WosXboUAFBVVYUJEybgiSeeQFFREW666SZMmTJFrvKJiIjIxdlb7JrzdmKAiwS7JUuWoG/fvujYsaPjseXLl2PWrFmIi4tDREQEnn32WXz++ecAgM2bN0Ov12PGjBnQarV45ZVXsHfvXrbaERER0XVxhTXsABcIdkVFRXj//ffx6quvOj2ekpKCLl26OL5OSEhAcnJyncd8fHzQunVrpKSk1HmNqqoqlJSUOH0QERER2THYNZAXX3wRTz75JAICApweN5lMMBgMjq8NBgNMJlOdxy4+frH58+fDz8/P8REVFdXAr4KIiIhcmSvsEws082B34MAB7N69GzNnzrzkmF6vd2pZKykpgV6vr/PYxccvNmfOHBiNRsdHdnZ2A74KIiIicnWuMnlCI3cBV7JlyxakpaWhZcuWAACj0QiNRoP09HTEx8fj0KFDGDVqFAAgKSkJnTp1AgDEx8djyZIljvOUlZU5vqcuXl5e8PJq3jeKiIiI5MPJEw3goYcewvHjx5GYmIjExESMHTsWTzzxBN555x1MnjwZixcvRkZGBvLy8vDee+9h8uTJAIChQ4fCZDJh2bJlqKqqwptvvolevXohJiZG5ldERERErshVxtg16xY7nU4HnU7n+Nrb2xt6vR7+/v4YPXo0Dh48iN69e8NisWDmzJmYPn06AFsL3MqVK/HAAw/g0UcfRe/evbF8+XK5XgYRERG5sGqzFefKawA0/2AniQtX9SUAtvF4fn5+MBqNl0zCICIiIveSa6xAv/kboVFJSHvzNqhUUpNe/1pySbPuiiUiIiKSW2FpNQDb+LqmDnXXisGOiIiI6AoKTJUAgGBfT5kruToGOyIiIqIrcEycaOYzYgEGOyIiIqIrcpUZsQCDHREREdEVMdgRERERKYSrbCcGMNgRERERXZF9VmyIr1bmSq6OwY6IiIjoCgpcZJ9YgMGOiIiI6IrO7xPL5U6IiIiIXFZ5tRmmKjMAttgRERERuTT7+Dqthwp6L43M1Vwdgx0RERHRZdh3nQjx9YIkNe/txAAGOyIiIqLLcqVdJwAGOyIiIqLLcqXFiQEGOyIiIqLLKjDZ17BjsCMiIiJyaeeXOmGwIyIiInJp7IolIiIiUghX2icWYLAjIiIiuqxCttgRERERuT4hBLtiiYiIiJSgpMKMaosVACdPEBEREbk0+/g6g1YDrYda5mrqh8GOiIiIqA6OpU5cpBsWYLAjIiIiqpOrzYgFGOyIiIiI6uRqEycABjsiIiKiOjHYERERESkEgx0RERGRQnCMHREREZFCuNquEwCDHREREVGd7C12rrI4McBgR0RERHQJi1XgbG2wC2WLHREREZHrKiqrhlUAkgQE+njKXU69MdgRERERXcQ+IzbIxxMatevEJdeplIiIiKiJuOL4OoDBjoiIiOgSrriGHcBgR0RERHSJQhODHREREZEiOFrs2BVLRERE5NrYFUtERESkEAx2RERERArhivvEAgx2RERERJdgix0RERGRAlSZLTBW1ABgsCMiIiJyaWdN1QAAD7UEP28Pmau5Ngx2RERERBewd8MG670gSZLM1VwbBjsiIiKiC7jq+DqAwY6IiIjIiavOiAUY7IiIiIicsMWOiIiISCEY7IiIiIgUgsGOiIiISCEKOcaOiIiISBnskyeC2WJHRERE5NocXbFssSMiIiJyXWVVZpRXWwBwjB0RERGRS7O31uk81fDx0shczbVjsCMiIiKq5Vic2AVb6wAGOyIiIiIHVx5fBzDYERERETkUssWOiIiISBnsLXbBbLEjIiIicm2uvOsEwGBHRERE5MBgR0RERKQQBS68nRjAYEdERETkwBY7IiIiIgUQQnBWLBEREZESGCtqUGMRAIAgvafM1VwfBjsiIiIinO+G9fP2gJdGLXM114fBjoiIiAiuP74OYLAjIiIiAuD6M2KBZh7sqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn4cQwnFsz549SEhIgE6nw5AhQ5CVlSXHSyAiIiIXwRa7RmY2mxEXF4edO3eiqKgIY8eOxfjx4wEAa9asweLFi7Fr1y4kJydj9erVWLp0KQBbIJwwYQKeeOIJFBUV4aabbsKUKVNkfCVERETU3Ln6dmJAMw92Pj4+mDt3LiIjI6FWqzF79mxkZGTg7NmzWL58OWbNmoW4uDhERETg2Wefxeeffw4A2Lx5M/R6PWbMmAGtVotXXnkFe/fuZasdERERXVZ+bbALNTDYNYkdO3YgLCwMQUFBSElJQZcuXRzHEhISkJycDACXHPPx8UHr1q2RkpJS53mrqqpQUlLi9EFERETuJb+0EgAQyq7Yxmc0GvHwww/jrbfeAgCYTCYYDAbHcYPBAJPJVOexi49fbP78+fDz83N8REVFNdKrICIiouYqv6S2xc5XK3Ml188lgl1lZSXGjx+P0aNHY8aMGQAAvV7v1LJWUlICvV5f57GLj19szpw5MBqNjo/s7OxGeiVERETUXNm7YsPYFdt4zGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZBNSkpCp06d6jxWVlaG9PR0xMfH13kNLy8vGAwGpw8iIiJyH5U1FhgragCwxa5RzZw5ExUVFVi2bBkkSXI8PnnyZCxevBgZGRnIy8vDe++9h8mTJwMAhg4dCpPJhGXLlqGqqgpvvvkmevXqhZiYGLleBhERETVj9hmxnhoVDN4amau5fs268qysLCxbtgxarRYBAQGOx9euXYvRo0fj4MGD6N27NywWC2bOnInp06cDsLXArVy5Eg888AAeffRR9O7dG8uXL5frZRAREVEz55gR6+vl1JDkaiRx4aq+BMA2Hs/Pzw9Go5HdskRERG5g3eFcPPL5fvSI9sfKWQPkLsfJteSSZt8VS0RERNTYzrfYue74OoDBjoiIiOj8UicuPCMWYLAjIiIiUsTixACDHRERERG7YomIiIiU4kxtV2wIu2KJiIiIXFsBu2KJiIiIXJ/ZYsXZsmoA7IolIiIicmmFpmoIAahVEoJ8POUu54Yw2BEREZFbs8+IDdZ7QqVy3V0nAAY7IiIicnOONexcvBsWYLAjIiIiN3fhPrGujsGOiIiI3JpjcWIXX+oEYLAjIiIiN2dvsQthVywRERGRazs/xo4tdkREREQuTSmLEwMMdkREROTmHJMnDOyKJSIiInJZVqtAAWfFEhEREbm+c+XVMFsFACBYz2BHRERE5LLs3bCBPp7w1Lh+LHL9V0BERER0nZS0ODHAYEdERERuLL/Evjix60+cAABNfZ60cOHC+p1Mo8HTTz99QwURERG5KiEELLXjtSRJgkqy/UnNl9Ja7OoV7F5++WVMmjTpqs/77rvvGOyIiMitGCtq8MexAmw+WoAtaQWOGZYA4OftgWEdQnFLp3AMaRcCb0+1jJVSXZQ0IxaoZ7Dz8/PD0qVLr/q8devW3XBBRERErsBUZcaSrSfwnz9OoLzaUudzjBU1WHngNFYeOA29lwbPjWyPKTfFQKViK15zka+gxYmBega7goKCep0sNzf3hoohIiJq7qxWgS93n8T7v6eh0FQNAIgL8cGwDqEY2j4U8REGSBIgBHAs34Rfk/Pwa3IeTp2rwLxVyVh9MAdv39EVcSF6mV8JAcCZ2u3EwtxpjN3FqqqqYDKZoNfr4eWljIRLRER0NcXl1Xh6RRI2HskHALQK9sFzI9vjts7hdY6l69MqEH1aBeKlUR3xxa4sLFh7BHsyz+G2D/7A+xO74bYuEU39EugieUZbi12YnzKCXb1nxZrNZrz66qto3bo1dDodQkJCoNPp0KZNG7z22muoqalpzDqJiIhkdeiUEbd/uA0bj+TDS6PCvDHxWP/UYIzqEnHVCRIqlYQp/WLx61ODMahtMKrMVjz+1QGsO8yeLjkJIRxdsUppsat3sHv44YexdetW/Oc//0FBQQGqq6tRUFCAJUuW4I8//sAjjzzSmHUSERHJZt3hPNzx8XacOleB6EAdvn+0P6YPaAUP9bWtGhYZoMOy6X3w1+4tYbYKzP7yAH5NzmukqulqisqqUWOxzWJWyhg7SQgh6vNEf39/ZGdnw9fX95JjRqMR0dHRMBqNDV6gHEpKSuDn5wej0QiDwSB3OUREJKOfEk/j6RVJsFgFhnUIxXsTu8HP2+OGzmmxCjy9IhE/JeZAo5Lwn/t7YWj70AaqmOorJacEo/7fHwjWe2LvyyPkLueyriWX1PufGr6+vjh+/HidxzIyMuoMfERERK5sxZ5sPPlNIixWgTt6RGLJ1F43HOoAQK2S8O5dCRib0AJmq8BT3yQ6xnpR0zlToqxuWOAaJk+88cYbGD58OO655x506dIFBoMBJSUlOHjwIL799lu8++67jVknERFRk/p2bzae//4gAOC+vtF4c1znBl2mRKNW4Z27uuJEoQmHT5fgia8P4MuZN0HNpVCajBKDXb1b7KZNm4bNmzfDz88P69atw2effYZ169bB398fmzZtwtSpUxuzTiIioiaz6Wg+/r7yEABgWv9YvDW+YUOdnZdGjQ/v7QGdpxq7MoqwaFPdPWPUOPIUGOyuabmTLl26oEuXLo1VCxERkewOnirGY1/sh8UqMKF7S8wbE9+o24K1CvbBG+M645lvk/D+hmPo1zoIvWIDG+16dN75NeyUMXECqGeL3apVq+p1stWrV99QMURERHI6ebYcM5btQXm1BQPbBGPBHV2bZK/XO3pG4q/dW8JiFXjh+4OosVgb/Zp0vis2XEEtdvUKdpMnT67XydgdS0RErspUZcaD/9uDQlM14iMMWDy5Bzw117acyY14bVwnBPl4Ir2gDMt3ZDXZdd2Z246xM5lM0Ol0V/zw9vZGVVXV1U9GRETUzAgh8Ny3SUg7Y0KorxeWTu8NX+2Nz369FgatB565pT0A4P3f01BUVt2k13dHSgx29Rpjl5GRAcD2g//DDz9g9OjRdW4l1hTN1URERA1t0eZ0rD2cBw+1hMWTe8r2i35i7ygs35mF1NwSvPfbUbw5nuPaG0uNxerY69ftxtjFxMQgJiYGsbGx+P7779GvXz+8/vrrSE9PR3R0tON4dHR0Y9dLRETUoDYdzcc/1x8FALw+rjN6xgTIVotaJeGV2+MBAF/uOokjeSWy1aJ0+aW2XkYPtYRAH0+Zq2k41zx4YNu2bThw4ADat2+Pp59+GpGRkXjqqaewd+/exqiPiIio0eQUV+CpbxIhBHBvn2jc20f+Bop+rYNwa6dwWAXwjzVH5C5HsezdsKG+WkX1OF7XqNDo6Gg8//zzSExMxI8//oj169ejb9++aNu2LebPnw+TydTQdRIRETWoGosVj391AMXlNega6YdXx8bLXZLDi6M6Qq2SsDWtAAdPFctdjiKdqd3pI9xPOePrgOsMdjU1Nfjpp59w77334tZbb0W7du2wYsUKLF++HIcOHcItt9zS0HUSERE1qHfXp2Ff1jn4emnwf/f2gJdGLXdJDtFBOoxLaAEAWLQpXeZqlOn8xAnljK8DrnGBYgCYMWMGfvrpJ3Tu3BmTJk3CokWLEBBwfjxCz5494efn16BFEhERNaRNR/Px8RZbYHr7zq6IDtLJXNGlHh3aGisPnMa65Dwczy9Fm1Duyd6Q8hyLEyurxe6ag12bNm2wf/9+xMTE1Hncw8MDp06duuHCiIiIGkNBaRWeXZEEAJhyUwxGdYmQuaK6tQ3zxS3xYVifcgaLN5/Au3cnyF2SouQrcKkT4Dq6Yl988cXLhjq7wEBuhUJERM2PEALPf5eEs2XV6BDui5dGd5S7pCuadXMbAMBPiadx6ly5zNUoS54Cd50ArnOMHRERkSv6fGcWNh0tgKdGhQ/u6Q6tR/MZV1eXblH+GNgmGGarwCdbT8hdjqI4ZsUqbIwdgx0REbmF4/mlePOXVADA32/tgPbhrjFmbdbQ1gCAb/Zmw1heI3M1ynGmdowdW+yIiIhcTLXZiie+TkSV2YpBbYMxrX+s3CXVW7/WQegQ7ovKGitWHuAY9oZgqjLDVGUGwDF2RERELue939KQnFOCAJ0H/nlXAlQq11mQVpIkTOprWzj5i10nIYSQuSLXZ++G9fXSwMfrmueRNmsMdkREpGg7T5zFv7faljaZP6GLS7bQjO/eEjpPNY7nm7A7o0juclyefXFipY2vAxjsiIhIwYwVNXi6dsuwu3tF4tbOzXNpk6vx1XpgXDfbgsVf7DopczWu70ypMnedABjsiIhIweb+eBg5xkrEBOkwb0wnucu5Iff1sS01tvZwLgpNVTJX49ryjLWLE/sy2BEREbmEnxJPY1VSDtQqCf+a2M3lx1J1ifRDQqQfaiwC3+3jJIob4dhOjC12REREzd+pc+V4+YfDAIDH/9IGPaIDrvIdrmFSX1ur3Ze7TsJq5SSK6+UIdr4cY0dERNSsWawCT69IQmmVGd2j/TG7dvcGJRiT0AK+XhqcLCrHnkxOorheZxS6nRjAYEdERArz763p2J1RBB9PNd6f2A0atXJ+1Xl7qnFbl3AAwI+JOTJX47pya2fFRvh7y1xJw1POTzsREbm9g6eK8d76NADAvLGdEBPkI3NFDW98t5YAgF8O5qDKbJG5GtdjtliRX2qbPBHBMXZERETNk6nKjMe/OgCzVeC2zuG4q2ek3CU1ir5xQQg3aFFSacbmowVyl+NyCkxVsFgFNCoJwXqOsSMiImqW5v54GFlny9HCT4sFE7pCklxnd4lroVZJGFu7pt2PB07LXI3rsXfDhhm0ULvQDiT1xWBHREQu7/t9p/DDgdNQScAH93aHn85D7pIalX2x4g1H8lFSWSNzNa4lt7h2fJ0Cu2EBBjsiInJxJwpMmPuTbWmTJ4e3Q+/YQJkranzxEQa0C9Oj2mzFukN5cpfjUnKNFQCUuesEwGBHREQurMpswd++PoDyagtuigvEYwpa2uRKJEnCuNpJFD+wO/aa2LtiWyhwRizAYEdERC5s4bqjOHy6BAE6D7w/sbsix0xdjr07dmfGWeTVhhW6OkeLnQLXsAMY7IiIyEVtOpKPT7dlAADeuTNBsV1rlxMZoEOvmAAIAaw7nCt3OS7jfIudMn9eXHvjPCKieqixWHGmpBK5xkqcK6uGqcoMU5UZpZW2P02VZlTWnF8PTCVJ8PZUw9tTDZ2HGoF6TwT5eCHE1xMt/XUI9fWCyo1ahpqj/JJKPPNtEgBgWv9YDI8Pk7kiedzaORx7s85hXXIepg1oJXc5LuH85AlldsUy2BGRIpwrq0Z6gQnpBSacKCjDqeIK5BRXILe4EvmllWjIbTU9NSpEBXijbagvOkT4okO4AV0j/RQ7Zqe5qbFY8diX+1FUVo2OEQb8/bYOcpckm5GdwvHmL6nYnVGEs6YqBClwXbaGZFucWNmzYhnsiMilGCtqkJpbgtTcEhzNK60Nc2UoKqu+4vd5qCWE+2kR5OMFX60GvloNfDw10Gs18PXSwMtDDfuyZ1arQEWNBRXVVpRVmXG2rBpny6pQUFqFXGMlqs1WpBeUIb2gDOuSz89IjPDTokdMAPq2CsTgtiGIDVbergfNwVu/pGJP5jn4emnw0X3dofVQy12SbKICdejc0oDDp0vwW8oZ3NMnWu6SmrX80ipYBRS7ODHAYEdEzZTVKpBVVO4IcbaPUpwurrjs97T090ZciA9ah+gRFahDCz8tWvh7I8Jfi2Cfhuk+NVusyDVWIvNsGdLOmHAktwQpuSU4kleKXGMlfjmYi18O2sY7RQfqMLR9CG7tFI4+rQIVtWepXH44cArLtmcCAN6b2A1xIXp5C2oGbuscgcOnS7AuOY/B7iouXJxYqcMpFB3sCgoKMG3aNGzatAlRUVFYtGgRhg0bJndZRHSR0soapJ0pRUpuqVNrXHl13ftgtvT3RscIAzpG+KJNqB6tQ/SIC/GBzrPx/5emUasQFahDVKAOg9qGOB4vrzYjMbsY+zLPYdvxQuzLOoeTReX4344s/G9HFgJ9PHFLfBj+2r0lescGKvaXSmNKySnBnJWHAACP/6UNRrjpuLqLjewUjnd+PYo/jxfCWFEDP29lL858I+wzYpU6cQJQeLB77LHH0KJFCxQWFmL9+vW46667kJ6ejoCAALlLoysQQsBsFTBbBGqsVtSYrTBbBapr/7TUDpaSJEACHNsGSY7HJMdx+58ealXthwQPtQqeahV/scqgxmLFiYIyHMmzBbejeaU4knf5VjgvjQrtw33RMdwW4jpGGNAhwtAsf3HpPDXo3zoY/VsH4/FhbWGqMmNH+ln8lpKH31LOoKisGl/vycbXe7IRGeCNCd1b4p4+0RyXV0/5pZV48L97UFljxZB2IXhyeDu5S2o22oTq0TZUj2P5Jmw6ko/x3VvKXVKzZV8WJlyhEycABQc7k8mEn376CZmZmdDpdBg/fjzee+89/Pzzz5g6darc5dWLEAJCAKL2c6sABGyP2Y6f/9r+HAFbF5Y9ANVYrLDU82uzRcBitV5wTMBssaLGKmrDlRU1Ftv3nA9dovZx6/nn259Te37H8+3PueA8lzvWFNQqySnoeWpU0HmqofPUQOepho+XBt6eavhc/JiHGj5etsd8tRoYvD3g5+0Bg9b2p6eG3W2llTXILCzHiUITMgvLkV5gQtoZ23i4y93fcIPWFuJqW+LiIwxoFezjst2Xei8NRsSHYUR8GMwWK3ZlFGFVYg5+OZSLU+cq8P82HsdHm9MxslMY7u8Xiz6tAhW7t+mNqqi2YOb/9iHHWIm4YB/8v3vca726+ri1cziObTyOdYfzGOyuIKd2RmwLhU6cABQc7I4dOwY/Pz9EREQ4HktISEBycvIlz62qqkJVVZXj65KSkkavb9DCjThTUnVJeLP92eiXdzmqC1rdLvz/uaj9j/0tu/g9tAdfe3i9kKU2wFbWWBu0Vq2Hyino2YOf7TFbELwwDBq8NbV/esDXS+MSLYnl1WbkFFfgdHFl7cxT2+fZ58qRUViGgtKqy36v3kuDdmF6tK9thWsf5ov24b7w13k24StoWhq1CgPaBGNAm2C8OrYT1qfk4avdJ7HzRBHWHMrDmkN56BhhwLT+MRjXraVbTwa4mNUq8My3iUjKLoa/zgOfTeut+H1gr8fITuH4cONxbE7LR3m1uUmGJbgipW8nBig42JlMJhgMBqfHDAYDiouLL3nu/Pnz8dprrzVRZTZVNVZUmxs2UFxMo5KgVkmOPz3UqvNfqyV4qGxfq1USNGoJapUKHnV8ralt1bJ3ZWrUtsc91Crb52r757Zz2p/jWfuY7XMJGpXta8/a7zv/ee35VRd8br9O7TkbIuxYrbWtjBZbC2SNxYrqC1oYK2ssKK+2oLzabPuzyoIy++fVZpRVWVBRbXusotriWAfNWFGDksoalFaaAQCVNVZU1lThTMnlw83lSJIt+NiDnt8Foc+g9YCPlxpaDzV0nmp4e9jWWfP2sLUeenuq4O2hgadG5bjn9g+VJEElARZhC7O21lkBi7B9bn/NZVVmlNW+1rIqM4oralBkss0IPVtWjaKyahSZqlFaZb7qawnWe6JVsA9aBfsgNtgH7UJtAS4ywNutW6a8PdUY160lxnVriSN5Jfjv9iz8cOAUUnNL8ML3hzB/7RFM7ReLGQNiFR1262vhr0ex5lAePNQS/j25J2caX0anFgZEBXoju6gCW9MKcWvncLlLapbskyeUuoYdoOBgp9frL2l5KykpgV5/6QyqOXPm4Omnn3Z6XlRUVKPW99PsAbAK53Fh9jFjkGwLpNrHjzmNHZNsrVcXP37heDK1ZPtl7s6/POuiUknwUqnhpQHQCLPcLVYB0wVBr6SixvG5saIGJRVmp6+NFbYwWFL7WGWNFUIApZW2wHil2Z/Nga+XBi38vdHCX1v7pzda+ns7glxzHAfX3HQIN2D+hC544db2WLE3G//bkWXrpt1wDJ/+cQJT+sXiwUGtFLssw9X8e0s6Pt6SDgCYP6Er+sYFyVxR8yVJEkZ0DMdnf2Zg45EzDHaXYW+xU+oadoCCg13btm1hNBqRl5eH8HDbD3hSUhIefPDBS57r5eUFL6+m/R+nkv+14K7UKgl+Oo/r7iaqMlsuCHpmp2BYUmFGSWUNKi5oUbS3MNrWW7P9WV5tQVWNBVZxvqvZ3kpn56G2t+Seb8G1jSXUwMfLNo5QV/u1wdsDwXpPBPp4IdDHE0F6TwT6eCLE1wsGLYNbQ/HXeeKhwa3xwMA4/Jqchw83Hkdqbgk+3pKOZdszcF+fGDw8JA5hCt3bsi5f7T6J+WuPAAD+flsH3NkzUuaKmr+/dAjFZ39mYNPRAlitwiWGdTSlGosV+bXDRCI4K9b16PV6jB07FvPmzcP777+P3377DYcPH8aYMWPkLo2oTl4aNbz06kZpnbGP5eT/6Js3tUrCqC4RuK1zODak5uPDjceQdMqIz/7MwOc7s3BPnyjMGtpG0eODAGD1wRy8+INtWZNHhrTGI0Nay1yRa+jTKhA+nmoUlFbhcI4RXSP95S6pWckvrYIQtn/cBvsotxXcNaeb1dOiRYuQnZ2NoKAgPPvss1ixYgWXOiG3JEkSQ50LkSQJw+PD8ONjA/C/GX3QOzYA1RYr/rcjC4Pf2YTXf05xbIukND8eOI0nvk6EEMC9faLxwq3t5S7JZXhqVBjczra24obUfJmraX7yarthlbw4MaDwYBcSEoI1a9agvLwcaWlpGD58uNwlERHVmyRJGNwuBN8+0h9fzuxrC3hmKz77MwODF27C/DWpV91KzZV8tfsknlqRCItV4I4ekXhzfGeOFb5GN3cIBQBsPMJgd7HzS50oeyiUooMdEZFS9G8djBUP98PyB/qgW5Q/Kmus+PfWExj09kb889ejMJbXyF3idRNC4D9/nMCclYcgBDDlphi8c2dXrlV3HW5ubwt2h04bkV+izFbd6+UOS50ADHZERC5DkiQMahuCH2b1x2fTeqFzSwPKqi34v03HMfDtjXj/9zSUVLpWwKuxWPHyj4fx5i+pAICHB8fh9XGdFN1V1phCfL2QEOUPANh0lK12F3IsdaLgiRMAgx0RkcuRJAl/6RCGn2cPxMeTe6JDuC9Kq8x4//djGPT2Jny06TjK6rHWoNzOlVVjyqe78MWuk5Ak2+zXv9/Wgd2vN+gvta12HGfnLLe2KzZC4bPLGeyIiFyUJEm4tXM41vxtEP7vvu5oHeIDY0UN3vn1KAYt3IQlW9NhaqYBb19WEcZ+tA07TxTBx1ONT6b0wiNDWjPUNYBhHW3BbtvxQlSZLTJX03zklthb7DjGjoiImjGVSsLtXVtg/VND8K+JCYgN0qGorBr/WHME/eZvwIK1Rxybn8utxmLFP389irs+3oHsogpEBXpj5awBGB4fJndpitGphQFhBi+UV1uw80SR3OU0G7nFyl+cGGCwIyJSDLVKwl+7R+L3p4dg4Z1dERfsg9JKMz7eko5BCzfi6RWJSM1t/L2wL2df1jn8ddGf+L9Nx2EVwITuLfHL3wahfbivbDUpkSRJjkkUmznODoBtAXj74sQtFd5ip9gFiomI3JVGrcLdvaJwZ49IbDiSj0+2nsDuzCKs3H8aK/efxqC2wZhyUwxu7hAKD3Xj//s+u6gcb687gtUHcwEA/joPvDW+C0Z3jWj0a7urwe1C8PWebGxNK5C7lGbBPr5O66FCoI+y92BmsCMiUiiVSsKI+DCMiA9DYnYxPvnjBNYeysUfxwrxx7FCBOs9Mb5bS4zr1hKdWxoafHzb4dNGLNueiVWJOai2WCFJwF09I/HsLe0RqvAB7HIb0DoYKglILyjD6eIKxbdSXc2pc7Zu2MgAneLHcTLYERG5gW5R/vjovh7ILirH8p1ZWLn/NApNVfjPtgz8Z1sGWvp7Y0R8GIa2D0HPmAD4XudewKfOlWNDaj5WH8zBnsxzjsf7xQXh5ds7olMLv4Z6SXQFfjoPdIvyx/6TxfgjrQD39ImWuyRZnS4uB6D8bliAwY6IyK1EBerw4qiOeG5ke2w5WoDv95/C5qMFOF1cgWXbM7FseyZUEhDfwoCukf6IC/ZBXIgPWvh7Q++lga+XB9RqCaZKM0ora1BQWoUjeaU4mleKxOxiHD1T6riWpnbv2+kDYtE9mts5NrVBbUOw/2Qxth5jsLO32LUMYLAjIiIF8lCrMDw+DMPjw1BZY8EfxwrxW0oedp4owsmichw+XYLDp699ooVKAnrFBmJYh1CM794SYexylc3gdiH4YMMxbDtWCLPFCk0TjKdsrk47umIZ7IiISOG0HmrHWDwAyDNWYndmEdLySnGi0IQTBWXIL62CqcqMarMVgG0Grq9WgwCdJ9qE6tEh3BcdIwzo3zoI/jplD053FQmRfjBoNSipNCPplBE9Y9y31fRU7VIn7IolIiK3E+6nxdiEFkDCpceqzVZYrAJaD5XiB6G7Oo1ahYFtg7HmUB62phW4dbBzpxY7922XJSKia+apUcHbU81Q5yIGtw0BAGw95r7LnpgtVuTV7joRGaCTuZrGx2BHRESkUIPa2YJdUnYxjOU1Mlcjj7ySSlisAp5qFUL0XnKX0+gY7IiIiBSqpb83Wof4wCpse8e6I/uM2Bb+WqhUym9pZrAjIiJSsMG1rXbbjrtnd+xpN1rqBGCwIyIiUrSBbYIBAH8ePytzJfI47UYzYgEGOyIiIkXr0yoQapWEk0XlyC4ql7ucJnfqnO01u8PECYDBjoiISNF8tR7oGmnbym1Huvu12rHFjoiIiBRlQOva7th095tA4U7biQEMdkRERIrXv00QAGB7+lkIIWSupulYrQK5xfY17BjsiIiISAF6RAfAS6NCQWkVjueb5C6nyRSYqlBtsUKtkhDuJvsWM9gREREpnNZDjV6xti3FtrvRODv7xIlwgxYatXtEHvd4lURERG6uv32cnRstVOxu4+sABjsiIiK30L+1bZzdzhNnYbG6xzg7+4zYSDeZEQsw2BEREbmFLi394OulQUmlGck5RrnLaRL2Fjt3mTgBMNgRERG5BY1ahb5xgQDcZxcKd9tODGCwIyIichv2cXbb3WQ9u/OLE7vHrhMAgx0REZHbGFC7b+yezCJUmS0yV9O4hBAXbCfGFjsiIiJSmHZhegTrPVFZY0XiyWK5y2lUhaZqVNZYIUlAhL97rGEHMNgRERG5DUmS0M+xvZiyx9mdLCoDALTw84aXRi1zNU2HwY6IiMiN2Jc92a7w9ewyC23dsNGB7jO+DmCwIyIicisDalvsErOLUVZllrmaxpNVZAt2scEMdkRERKRQ0UE6RAZ4w2wV2J1ZJHc5jebkWVtXbHSgj8yVNC0GOyIiIjdj747doeBxdvYWu5ggttgRERGRgtmXPVHyvrFZZznGjoiIiNxAvzhbi11KbgnOlVXLXE3DK62sQVHt62KLHRERESlaqEGLtqF6CAHsPKG87lh7a12Qjyd8tR4yV9O0GOyIiIjckKM7VoHbi52sHV8X7WatdQCDHRERkVvqZ1/PToETKOwtdjFuNr4OYLAjIiJySze1CoIkAScKynCmpFLuchpUln2pkyD3WuoEYLAjIiJyS346D3RqYQCgvGVP7C12seyKJSIiIndhnx2rtGB30k3XsAMY7IiIiNyWfZzdDgXNjK0yW5BjrADgfrtOAAx2REREbqt3bCDUKgkni8pxurhC7nIaRHZRBYQAdJ5qBOs95S6nyTHYERERuSlfrQe6tPQDoJzu2JNF9j1idZAkSeZqmh6DHRERkRvrp7B9Y89PnHC/bliAwY6IiMitnZ9AUQghhMzV3DjHGnZuOHECYLAjIiJya71iA+ChlpBjrHTMJnVl59ewY7AjIiIiN6Pz1KBblD8AZXTHZtmXOnHDGbEAgx0REZHbc3THuviyJxarwKki2+xedsUSERGRW7rpggkUrjzOLq+kEtUWKzzUElr4e8tdjiwY7IiIiNxcj+gAeGpUyC+tQnpBmdzlXLf0fBMA21InapX7LXUCMNgRERG5Pa2HGj2i/QG4dndseoEt2LUO0ctciXwY7IiIiAj9WwcDAHa68ASK47Utdm1CGeyIiIjIjdkXKt55wnXH2THYMdgRERERgIRIf3h7qHG2rBppZ0xyl3Nd7OMD2RVLREREbs1To0Kv2AAAtl0oXI2xvAaFpioAQGu22BEREZG7s3fHbnfBcXbHC0oBAOEGLfReGpmrkQ+DHREREQE4v1DxrowiWK2uNc4uPd/WDevO4+sABjsiIiKq1aWlH/ReGhgrapCSWyJ3OdfkeAEnTgAMdkRERFRLo1ahd+04u50utp6dfXHi1iHuuUesHYMdEREROfS7YHsxV2JvsXPniRMAgx0RERFdwL5Q8a6MIpgtVpmrqZ/KGguyi8oBsCuWwY6IiIgcOkYY4OftAVOVGYdOG+Uup14yz5bBKgBfrQYhei+5y5EVgx0RERE5qFWSY3bsn8ddYz27C3eckCRJ5mrkxWBHRERETga0sQc71xhnZ1/qxJ13nLBrtsHu6NGjuP322xEcHIyQkBBMnjwZ586dcxyvqKjA5MmT4evri+joaHz11VdO379s2TJERkbCYDBg+vTpqK6ubuqXQERE5JIGtLGNs9uXdQ4V1RaZq7k6LnVyXrMNdkajEXfffTfS09ORmZmJ6upqPPvss47j8+bNQ1FREU6fPo2vv/4ajz76KNLS0gAAhw4dwtNPP40ff/wR2dnZyMzMxJtvvinXSyEiInIprYJ90MJPi2qLFXuziuQu56ocXbFssWu+wa5Pnz6YOnUq/Pz84OPjg5kzZ2L37t2O48uXL8e8efNgMBjQv39/jB07Fl9//TUA4Msvv8TEiRPRq1cv+Pn5Ye7cufj8888ve62qqiqUlJQ4fRAREbkrSZLQv7bVblszH2dntQqc4FInDs022F1s+/bt6NSpEwDg3LlzyMvLQ5cuXRzHExISkJycDABISUm55FhGRgYqKirqPPf8+fPh5+fn+IiKimrEV0JERNT8DawNdtub+Ti708UVqDJb4alWISrAW+5yZOcSwS4xMRH/7//9P8ydOxcAYDKZoFarodPpHM8xGAwwmUyO4waDwemY/fG6zJkzB0aj0fGRnZ3dWC+FiIjIJfSvXaj4cI4RxeXNd5z6sfxSAEBssA4atUvEmkYl2ztwyy23QKvV1vlx4Xi4jIwMjBkzBp9++qmjxU6v18NisaC8vNzxvJKSEuj1esfxC7tT7Z/bj1/My8sLBoPB6YOIiMidhRq0aBemhxDNexeKlBzb7/iOEfzdDQAauS68fv36qz4nLy8PI0aMwNy5czF+/HjH4wEBAQgPD8ehQ4fQt29fAEBSUpIj+MXHx+PQoUOO5yclJaFVq1bw9mYTLRERUX31bx2MtDMmbDteiNu6RMhdTp1Scm3BrlMLBjugGXfFGo1GjBw5ElOnTsVDDz10yfHJkyfjjTfeQGlpKXbu3IlVq1Zh4sSJAID77rsPK1aswP79+2E0GvHWW29h8uTJTf0SiIiIXJpjnJ0LtNjFR/jJXEnz0GyD3Y8//oiDBw9i4cKF0Ov1jg+7119/HX5+foiIiMBdd92FRYsWoX379gCALl264N1338WYMWMQGRmJqKgovPTSS3K9FCIiIpfUNy4QapWEjMIynDpXfvVvaGKmKjMyz9rq6hjhK3M1zYMkhBByF9HclJSUwM/PD0ajkePtiIjIrd2xeDv2ZZ3D/AldcG+faLnLcbInswh3fbwD4QYtdr44TO5yGs215JJm22JHRERE8hvSLgQAsDWtQOZKLmXvhuX4uvMY7IiIiOiyBtcGu23HC2G2WGWuxpljfB2DnQODHREREV1Wl5Z+8Nd5oLTSjMTsYrnLcWKfERvPpU4cGOyIiIjostQqCYPa2lrttjSj7tgaixVHz9gWJ2aL3XkMdkRERHRFg9valj1pTuPs0gtMqDZb4eulQVSA7urf4CYY7IiIiOiK7BMoDp42oqiseWwvduGOEyqVJHM1zQeDHREREV1RqEGLDuG+EAL441jzaLXjxIm6MdgRERHRVZ1f9qRQ5kpsOHGibgx2REREdFWOYHesAHLvbSCEQDJb7OrEYEdERERX1TM2AN4eahSUVjlay+SSY6yEsaIGGpWEtmH6q3+DG2GwIyIioqvy0qgxoE0QAGDTkXxZa7GPr2sTqoeXRi1rLc0Ngx0RERHVy7COYQCA31LlDXaJ2ecAAJ1b+slaR3PEYEdERET1MqxDKAAgKbsY+SWVstWxJ9MW7HrHBshWQ3PFYEdERET1EmrQIiHKHwCwQabu2GqzFUm1W5v1jAmUpYbmjMGOiIiI6m1ER1ur3YbUM7Jc/3COEVVmKwJ0Hmgd4iNLDc0Zgx0RERHV2/B42zi7P44VoqLa0uTX35tZBADoFRsISeKOExdjsCMiIqJ6ax/mi8gAb1SZrdh2vOkXK95bO76uVwzH19WFwY6IiIjqTZIkDK+dHft7StN2xwohsC+rNtjFcnxdXRjsiIiI6JqMqO2O3XDkDKzWptuFIqOwDGfLquGlUaFzS+44URcGOyIiIromvWMD4eulQaGpGomnipvsuvZu2IRIfy5MfBkMdkRERHRNPDUqDGlv2zt23eG8JrvuHsfECY6vuxwGOyIiIrpmt3eNAACsTsppsu5Y+/i63hxfd1kMdkRERHTNhrYPhd5LgxxjJfadPNfo1ys0VeFEYRkAoEc0W+wuh8GOiIiIrpnWQ41bOtkmUfyclNPo17OPr2sf5gs/nUejX89VMdgRERHRdRmb0AIAsOZQLswWa6Nea+eJswCAnhxfd0UMdkRERHRdBrQJRoDOA4WmauyoDV6NQQiB32u3MBvaLqTRrqMEDHZERER0XTzUKozqYptEsSqx8bpjj54pxalzFfDSqDCwbXCjXUcJGOyIiIjouo2p7Y5dl5yHKnPj7B1r3+FiYJtg6Dw1jXINpWCwIyIiouvWJzYQYQYvlFaaseVoQaNc47fUfADA8NodL+jyGOyIiIjouqlUEm7vamu1+3bfqQY/f35JJZKyiwEAwzqENvj5lYbBjoiIiG7IPb2jAAAbUs/gdHFFg557wxFba123KH+EGrQNem4lYrAjIiKiG9I2zBf94oJgFcBXu0426Lnt4+tGsBu2XhjsiIiI6IZN6RcDAPh6z8kGm0RRXm3GtuOFAIDhHRns6oPBjoiIiG7YiPgwhBm8UGiqxrrDeQ1yzm3HClFltiIq0BvtwvQNck6lY7AjIiKiG+ahVuHePtEAgM93ZjXIOdfWBsThHcMgSVKDnFPpGOyIiIioQdzbJxoalYQ9meeQmltyQ+fKL63ELwdzAQDjurVsiPLcAoMdERERNYgwgxYjO4UDAJb+mXFD5/pi50lUW6zoEe2PblH+DVCde2CwIyIiogYzY2ArAMB3+07heH7pdZ2jssaCL3ZlOZ2P6ofBjoiIiBpMz5gA3BIfBqsAFqw9cl3n+DkpB4WmarTw0+LW2hZAqh8GOyIiImpQz9/aAWqVhN9T87HzxNlr+l4hBD77MxMAMLV/LDRqRpVrwXeLiIiIGlSbUL1jN4r5a1IhhKj39+48UYTU3BJ4e6gd56D6Y7AjIiKiBvfk8HbQeaqRdMqI1bWzW6/GahX4cOMxAMAdPVvCX+fZmCUqEoMdERERNbgQXy88PLg1AOC1n5ORXVR+1e/5eGs6tqefhdZDhQcHxjV2iYrEYEdERESN4qHBcYiPMKDQVI1pS3fDWF5z2efuySzCu+vTAACvje2E2GCfpipTURjsiIiIqFF4e6rx2bTeiPDTIr2gDA8t31vnPrJFZdV4/MsDsFgF/tq9Je7uxbF114vBjoiIiBpNuJ8Wn03rDb2XBrsyivDAsr3483ghrFYBs8WKtYdyMfk/u5BXUom4EB+8Ob4ztw+7AZK4lqkqbqKkpAR+fn4wGo0wGAxyl0NEROTy/jhWgOlL98BstcWOmCAdzBaB08UVAAC9lwbfPtIPHSP4e/di15JLNE1UExEREbmxQW1D8MvfBmH5zkz8eCAHWWdtkykCfTwxqW80Jt8UgzCDVuYqXR9b7OrAFjsiIqLGU15txm8pZwAAIzuFQ+uhlrmi5o0tdkRERNRs6Tw1GNetpdxlKBInTxAREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUJo5C6gORJCAABKSkpkroSIiIjcnT2P2PPJlTDY1aG0tBQAEBUVJXMlRERERDalpaXw8/O74nMkUZ/452asVitycnLg6+sLSZIa5RolJSWIiopCdnY2DAZDo1yD5Mf7rHy8x+6B91n5mvM9FkKgtLQULVq0gEp15VF0bLGrg0qlQmRkZJNcy2AwNLsfIGp4vM/Kx3vsHnifla+53uOrtdTZcfIEERERkUIw2BEREREpBIOdTLy8vDBv3jx4eXnJXQo1It5n5eM9dg+8z8qnlHvMyRNERERECsEWOyIiIiKFYLAjIiIiUggGOyIiIiKFYLAjIiIiUggGOxkUFBRg9OjR0Ol0aN++PTZs2CB3SXSDqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn6/Xfn/UfO3YsQMqlQoLFixwPMZ7rCwLFixAVFQUfH190a1bNxQXFzse531Whv3796N///4wGAyIi4vD0qVLHcdc+T5z5wkZPPbYY2jRogUKCwuxfv163HXXXUhPT0dAQIDcpdF1MpvNiIuLw86dOxEREYEPPvgA48ePR3p6OtasWYPFixdj165d8Pb2xrBhw9ChQwfMmDFD7rLpOlitVjz11FPo3bu34zHeY2X58MMPsXbtWmzbtg3R0dFITk6GVqvlfVaYqVOn4t5778W2bduQmJiIIUOGYMCAATh+/LhL32cud9LETCYTgoKCkJmZiYiICADA4MGD8eCDD2Lq1KkyV0cNpbq6GlqtFgUFBZg9eza6deuGF154AQDw2Wef4fPPP8fGjRtlrpKux8cff4zU1FQYjUZ06NABf//733HvvffyHiuExWJBZGQktm7dirZt2zod431WFl9fXxw8eBCtWrUCAPTp0wdz587Fl19+6dL3mV2xTezYsWPw8/NzhDoASEhIQHJysoxVUUPbsWMHwsLCEBQUhJSUFHTp0sVxjPfbdRUVFeH999/Hq6++6vQ477FynDp1ChUVFfj2228RFhaG9u3b4+OPPwbA+6w0s2fPxvLly2E2m7F7925kZ2ejb9++Ln+f2RXbxEwm0yWbCxsMBsf4DXJ9RqMRDz/8MN566y0Al95zg8EAk8kkV3l0A1588UU8+eSTlwyb4D1WjtOnT8NoNCI9PR2ZmZk4ceIEhg8fjvbt2/M+K8ytt96KqVOn4vXXXwcALFmyBKGhoS5/nxnsmpher0dJSYnTYyUlJdDr9TJVRA2psrIS48ePx+jRox3jMS6+57zfrunAgQPYvXs3Pvroo0uO8R4rh7e3NwBg3rx58Pb2RqdOnTBlyhSsWbOG91lBzp49izFjxuC///0vxo4di9TUVNx6663o1KmTy99ndsU2sbZt28JoNCIvL8/xWFJSEjp16iRjVdQQzGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZDl/XZNW7ZsQVpaGlq2bInw8HB88803eOuttzBz5kzeYwVp164dPD09nR6zD0XnfVaOEydOwM/PD3/961+hVqvRuXNnDB06FFu3bnX9+yyoyd15553ioYceEuXl5eKnn34SAQEBoqioSO6y6AZNmzZN3HLLLaK6utrp8dWrV4uYmBhx4sQJkZubKzp16iQ+/fRTmaqk61VWViZyc3MdH3fffbd46aWXxLlz53iPFea+++4TM2fOFJWVleLIkSMiIiJCbNy4kfdZQYqLi4Wfn59YtWqVsFqtIjU1VURERIi1a9e6/H1mV6wMFi1ahPvvvx9BQUGIjIzEihUruNSJi8vKysKyZcug1Wqd7uXatWsxevRoHDx4EL1794bFYsHMmTMxffp0Gaul66HT6aDT6Rxfe3t7Q6/Xw9/fn/dYYT766CM88MADCA4ORlBQEObOnYubb74ZAHifFcLPzw/ffPMNXnjhBdx3330ICAjA7NmzceuttwJw7fvM5U6IiIiIFIJj7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIAJw8eRLBwcGNeo3MzExIkgS9Xo8ff/yxwc67Z88e6PV6qFQq7Ny5s8HOS0Suh1uKEZHb0Ov1js/Lysqg0+kgSRIAICUlBYWFhY1eg5eXF0wmU4Oes3fv3jCZTIiNjW3Q8xKR62GwIyK3cWGg0mq1SE5OZhgiIkVhVywREWzdpFqt1vG1JElYvHgxoqOjERwcjG+++QarV69GXFwcQkND8c033zieW1RUhPvuuw+hoaGIi4vDf//733pf99VXX8WUKVMwfvx46PV6jBgxAvn5+bj77rthMBhw6623orS0FACQlpaGgQMHwmAwIDg4GM8880zDvQFEpAgMdkREl/Hnn38iLS0NixcvxqxZs/D999/j8OHD+PTTTzF79mxYLBYAwJQpUxAVFYXs7GysWbMGc+bMQVJSUr2v8+OPP+KFF15Afn4+iouLMXDgQDz++OPIz8+HyWTCZ599BgB45ZVXMHr0aBiNRmRlZWHixImN8rqJyHUx2BERXcbzzz8PrVaLCRMmoLi4GLNmzYJOp8OYMWNQWlqKnJwc5OXl4Y8//sA//vEPeHl5oUOHDrjvvvuwcuXKel9nxIgR6NevH3Q6HUaNGoW2bdti0KBB0Gq1GD16NA4ePAgA8PDwQEZGBvLy8uDj44M+ffo01ksnIhfFYEdEdBmhoaEAALVaDQ8PD4SEhDiOabValJWV4eTJkygrK0NQUBD8/f3h7++Pf//73zhz5sw1XwcAvL29na7j7e2NsrIyAMDChQthNpvRrVs3JCQk4Oeff77Rl0hECsPJE0REN6Bly5bw9/fH2bNnG/1aERER+OyzzyCEwKpVqzBx4kQUFxfD09Oz0a9NRK6BLXZERDegZcuW6N27N1555RWUl5fDbDZj//79SElJafBrfffdd8jJyYEkSfD394ckSY7lWoiIAAY7IqIb9sUXXyArK8sxY/bJJ59ERUVFg19n9+7d6NmzJ/R6PR599FF8+eWX8PDwaPDrEJHrkoQQQu4iiIjcQVZWFjp06AAvLy/873//w9ixYxvkvHv37sXw4cNRVVWFLVu2cFIFkRtjsCMiIiJSCHbFEhERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQvx/PES2Nz102fIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYUklEQVR4nO3deVxU9f4/8NeZGWAYhmHflE3cccHd3O2qWZrLtcXKJbVsMbvtda3M1qvZrVu/vmnXbum9tlpZmalZrpn7AiqgKAKigIDIwLDPzOf3xzCjo6iowGHOvJ6PBwlzhnPeMwfj5WeVhBACREREROTyVHIXQEREREQNg8GOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiByWLFmCqKgoqFQqvP/++w1+/qNHjyI8PBylpaUNfu6GNm3aNIwfP/6Kzxk6dCiefPLJep9z9erV6N69O6xW640V52ZiY2Mb5efxYtd6P4maIwY7alL5+fl4+OGHER0dDS8vL4SHh2PkyJHYsWOH4zmSJOHHH3+Ur0g3VVJSgtmzZ+OFF17A6dOn8dBDDzX4NV566SU89thj8PX1bfBzX05z+mV9++23Q5IkfPnll3KXQnVYuXIl3njjDbnLILohDHbUpO644w4kJSXhv//9L9LS0rBq1SoMHToURUVFcpcGAKiurpa7BNmcPHkSNTU1GD16NCIiIqDT6a7rPDU1NXU+furUKaxatQrTp0+/kTJd3vTp0/Hhhx826TUvd0/IWWBgYJP+o4OoMTDYUZMpLi7Gtm3b8Pbbb+Pmm29GTEwM+vTpgzlz5mD06NEAbF0uAPDXv/4VkiQ5vgaAn3/+GT179oRWq0VcXBxee+01mM1mx3FJkrB48WLcdttt8Pb2RqtWrfDtt99esaahQ4di9uzZePrppxEcHIwRI0YAAFJSUjBq1Cjo9XqEhYVhypQpKCwsdHzfd999hy5dusDb2xtBQUEYPnw4ysrKAJzvwnvttdcQGhoKg8GAhx9+2Ck0VlVV4W9/+xtCQ0Oh1WoxcOBA7Nmzx3F88+bNkCQJGzZsQK9evaDT6dC/f38cPXrU8ZykpCTcfPPN8PX1hcFgQM+ePbF3717H8e3bt2Pw4MHw9vZGVFQU/va3vzlqvNiyZcvQpUsXAEBcXBwkSUJmZiYAYPHixWjdujU8PT3Rvn17LF++3Ol7JUnCxx9/jHHjxsHHxwdvvvlmnddYsWIFEhISEBkZ6Xjs1VdfRbdu3Zye9/777zvdd/v7+c9//hMREREICgrCY4895hRWFi1ahLZt20Kr1SIsLAx33nmn43u3bNmCDz74AJIkOV6XxWLBAw88gFatWsHb2xvt27fHBx98UGfdV7qPF6uursbzzz+Pli1bwsfHB3379sXmzZudnjN27Fjs3r0bJ06cuOx5Nm/ejD59+sDHxwf+/v4YMGAAsrKyHMfr83fhwnvy+uuvIzIyEh9//LHTdfbv3w9Jkhy1nDx5EuPGjYNer4fBYMDdd9+NM2fOOJ5vv1+fffYZoqOjodfr8eijj8JisWDhwoUIDw9HaGgo3nrrLafrGI1GPPTQQ4738S9/+QuSkpKcnrNq1Sr06tULWq0WwcHBmDBhgtPx8vJyzJgxA76+voiOjsaSJUucjr/wwgto164ddDod4uLiMHfuXKefEXvty5cvR2xsLPz8/HDPPfc4DQu4uHX3cj9X9uc+/vjjePLJJxEQEICwsDAsWbIEZWVlmD59Onx9fdG6dWusXbu27ptM1FgEUROpqakRer1ePPnkk6KysrLO5+Tn5wsAYunSpSI3N1fk5+cLIYRYt26dMBgMYtmyZSI9PV2sX79exMbGildffdXxvQBEUFCQ+OSTT8TRo0fFyy+/LNRqtUhJSblsTUOGDBF6vV4899xz4siRIyI1NVXk5OSI4OBgMWfOHJGamir2798vRowYIW6++WYhhBA5OTlCo9GI9957T2RkZIiDBw+Kjz76SJSWlgohhLj//vuFXq8XEydOFIcPHxarV68WISEh4sUXX3Rc929/+5to0aKFWLNmjUhOThb333+/CAgIEGfPnhVCCLFp0yYBQPTt21ds3rxZJCcni0GDBon+/fs7ztGpUycxefJkkZqaKtLS0sSKFStEYmKiEEKIgwcPCr1eL/71r3+JtLQ08eeff4ru3buLadOm1fk+lJeXi99//10AELt37xa5ubnCbDaLlStXCg8PD/HRRx+Jo0ePinfffVeo1WqxceNGp/c9NDRUfPrppyI9PV1kZmbWeY1x48aJRx55xOmxefPmiYSEBKfH/vWvf4mYmBjH1/fff78wGAzikUceEampqeLnn38WOp1OLFmyRAghxJ49e4RarRZffvmlyMzMFPv37xcffPCBEEKI4uJi0a9fPzFz5kyRm5vreF3V1dXilVdeEbt37xYnTpwQn3/+udDpdOKbb75xuu7V7uOQIUPEE0884fj6vvvuE/379xdbt24Vx48fF++8847w8vISaWlpTq8xNDRULFu2rM73qaamRvj5+Ylnn31WHD9+XKSkpIhly5aJrKwsIUT9/y5cfE+eeeYZMXDgQKdrPfPMM6Jfv35CCCGsVqvo3r27GDhwoNi7d6/YuXOn6NGjhxgyZIjT/dLr9eLOO+8UycnJYtWqVcLT01OMHDlSPP744+LIkSPis88+EwDEjh07HOcdMGCAGDNmjNizZ49IS0sTzzzzjAgKCnL8vK9evVqo1WrxyiuviJSUFJGYmCjeeustx3VjYmJEYGCg+Oijj8SxY8fE/PnzhUqlEqmpqY7nvPHGG+LPP/8UGRkZYtWqVSIsLEy8/fbbl9Q+YcIEcejQIbF161YRHh5+2ft5pZ8r+3N9fX3FG2+8IdLS0sQbb7whVCqVuO2228SSJUtEWlqaePTRR0VQUJAoKyur814TNQYGO2pS3333nQgICBBarVb0799fzJkzRyQlJTk9B4D44YcfnB4bNGiQ+Mc//uH02PLly0VERITT910cHPr27SseffTRy9YzZMgQ0a1bN6fH5s6dK2655Ranx7KzswUAcfToUbFv3z4B4LIB5v777xeBgYFO/zNfvHix0Ov1wmKxCJPJJDw8PMQXX3zhOF5dXS1atGghFi5cKIQ4H+x+//13x3N++eUXAUBUVFQIIYTw9fW9bDiYMmWKeOihh5we++OPP4RKpXJ8/8UOHDggAIiMjAzHY/379xczZ850et5dd90lRo0a5fgagHjyySfrPOeFEhISxOuvv+70WH2DXUxMjDCbzU41TJw4UQghxPfffy8MBoMoKSmp87oXh6/LmTVrlrjjjjucrnul+3jxuY8fPy4kSRKnT592Ou+wYcPEnDlznB7r3r27UxC70NmzZwUAsXnz5jqP1/fvwsX3ZP/+/UKSJMfPrcViES1bthQfffSREEKI9evXC7VaLU6ePOn4nuTkZEfYF8J2v3Q6ndN7PXLkSBEbG+t4T4QQon379mL+/PlCCCE2bNggDAbDJf+Ya926tfj3v/8thBCiX79+YtKkSXW+XiFswW7y5MmOr61WqwgNDRWLFy++7PcsXLhQ9OzZ0/F1XbU/99xzom/fvo6vL7yf9fm5ujAom81m4ePjI6ZMmeJ4LDc31ynkEjUFdsVSk7rjjjuQk5ODVatWYeTIkdi8eTN69OiBZcuWXfH79u3bh9dffx16vd7xMXPmTOTm5qK8vNzxvH79+jl9X79+/ZCamnrFc/fq1euSa23atMnpWh06dAAApKenIyEhAcOGDUOXLl1w11134ZNPPsG5c+eczpGQkOA0Rq1fv34wmUzIzs5Geno6ampqMGDAAMdxDw8P9OnT55Jau3bt6vg8IiICgG0CCgA8/fTTePDBBzF8+HAsWLAA6enpTq9h2bJlTq9h5MiRsFqtyMjIuOL7caHU1FSnOgFgwIABl9R58XtYl4qKCmi12npf+0KdOnWCWq12fB0REeF4H0aMGIGYmBjExcVhypQp+OKLL5x+Ji7n448/Rq9evRASEgK9Xo9PPvkEJ0+edHrOle7jxfbv3w8hBNq1a+f0vm/ZssXp3gCAt7f3ZWsMDAzEtGnTMHLkSIwZMwYffPABcnNzHcfr+3fh4nvSvXt3dOjQAV999RUAYMuWLcjPz8fdd98NwHavo6KiEBUV5fie+Ph4+Pv7O93v2NhYp3FoYWFhiI+Ph0qlcnrMfn/27dsHk8mEoKAgp5ozMjIc70tiYiKGDRtW5/thd+HfBUmSEB4e7rgGYBseMXDgQISHh0Ov12Pu3LmX3M+La7/w5+hi9fm5urAmtVqNoKAgx5AG+/sA4LLXIGoMDHbU5LRaLUaMGIFXXnkF27dvx7Rp0zBv3rwrfo/VasVrr72GxMREx8ehQ4dw7Nixq4YFSZKueNzHx+eSa40ZM8bpWomJiTh27BgGDx4MtVqN3377DWvXrkV8fDw+/PBDtG/fvl6BSZIkCCHqrEsIccljHh4el7wO+1IZr776KpKTkzF69Ghs3LgR8fHx+OGHHxzPefjhh53qT0pKwrFjx9C6deur1nlxzVer8+L3sC7BwcGXBGCVSuV4P+zqGuh/4ftgr8n+Pvj6+mL//v346quvEBERgVdeeQUJCQkoLi6+bC0rVqzAU089hRkzZmD9+vVITEzE9OnT6z15pq6fKavVCrVajX379jm976mpqZeM3ysqKkJISMhlz7906VLs2LED/fv3xzfffIN27dph586djuvU5+9CXfdk0qRJjhm5X375JUaOHIng4GAAdd/Xuh6v615c6f5YrVZERERc8vfp6NGjeO655wDYgu7VXOkaO3fuxD333IPbbrsNq1evxoEDB/DSSy9dcj+vdI6L1efn6mrvxcV/Z4maAoMdyS4+Pt5pUL+HhwcsFovTc3r06IGjR4+iTZs2l3xc2FJg/+V34df21rb66tGjB5KTkxEbG3vJtey/LCVJwoABA/Daa6/hwIED8PT0dIQqwDaxoaKiwqkOvV6PyMhItGnTBp6enti2bZvjeE1NDfbu3YuOHTteU63t2rXDU089hfXr12PChAlYunSp02uo6/3y9PSs9/k7duzoVCdgm5RxrXUCthajlJQUp8dCQkKQl5fnFO4SExOv+dwajQbDhw/HwoULcfDgQWRmZmLjxo0AAE9Pz0t+nv744w/0798fs2bNQvfu3dGmTZtLWtWAK9/Hul6fxWJBfn7+Je95eHi443mVlZVIT09H9+7dr/iaunfvjjlz5mD79u3o3LmzI5DV9+9CXe677z4cOnQI+/btw3fffYdJkyY5jsXHx+PkyZNOrZEpKSkwGo3Xdb/tevTogby8PGg0mkvqtYfKrl27YsOGDdd9jT///BMxMTF46aWX0KtXL7Rt29Zpssn1utLPFVFzpZG7AHIfZ8+exV133YUZM2aga9eu8PX1xd69e7Fw4UKMGzfO8bzY2Fhs2LABAwYMgJeXFwICAvDKK6/g9ttvR1RUFO666y6oVCocPHgQhw4dcpqF+e2336JXr14YOHAgvvjiC+zevRuffvrpNdX52GOP4ZNPPsG9996L5557DsHBwTh+/Di+/vprfPLJJ9i7dy82bNiAW265BaGhodi1axcKCgqcfvlVV1fjgQcewMsvv4ysrCzMmzcPs2fPhkqlgo+PDx599FE899xzCAwMRHR0NBYuXIjy8nI88MAD9aqxoqICzz33HO688060atUKp06dwp49e3DHHXcAsM0QvOmmm/DYY49h5syZ8PHxQWpqKn777bdrWmrjueeew913340ePXpg2LBh+Pnnn7Fy5Ur8/vvv1/SeAsDIkSPx4IMPwmKxOLpVhw4dioKCAixcuBB33nkn1q1bh7Vr18JgMNT7vKtXr8aJEycwePBgBAQEYM2aNbBarWjfvj0A28/Trl27kJmZCb1ej8DAQLRp0wb/+9//8Ouvv6JVq1ZYvnw59uzZg1atWjmd+0r38WLt2rXDpEmTMHXqVLz77rvo3r07CgsLsXHjRnTp0gWjRo0CYAuHXl5elwwbsMvIyMCSJUswduxYtGjRAkePHkVaWhqmTp0KAPX+u1CXVq1aoX///njggQdgNpud/t4NHz4cXbt2xaRJk/D+++/DbDZj1qxZGDJkSL262i9n+PDh6NevH8aPH4+3334b7du3R05ODtasWYPx48ejV69emDdvHoYNG4bWrVvjnnvugdlsxtq1a/H888/X6xpt2rTByZMn8fXXX6N379745ZdfnP6hdT2u9nNF1FyxxY6ajF6vR9++ffGvf/0LgwcPRufOnTF37lzMnDkT//d//+d43rvvvovffvsNUVFRjlaNkSNHYvXq1fjtt9/Qu3dv3HTTTXjvvfcQExPjdI3XXnsNX3/9Nbp27Yr//ve/+OKLLxAfH39NdbZo0QJ//vknLBYLRo4cic6dO+OJJ56An58fVCoVDAYDtm7dilGjRqFdu3Z4+eWX8e677+K2225znGPYsGFo27YtBg8ejLvvvhtjxozBq6++6ji+YMEC3HHHHZgyZQp69OiB48eP49dff0VAQEC9alSr1Th79iymTp2Kdu3a4e6778Ztt92G1157DYCtBWTLli04duwYBg0ahO7du2Pu3LmOcXr1NX78eHzwwQd455130KlTJ/z73//G0qVLMXTo0Gs6DwCMGjUKHh4eTqGwY8eOWLRoET766CMkJCRg9+7dePbZZ6/pvP7+/li5ciX+8pe/oGPHjvj444/x1VdfoVOnTgCAZ599Fmq1GvHx8QgJCcHJkyfxyCOPYMKECZg4cSL69u2Ls2fPYtasWZec+2r38WJLly7F1KlT8cwzz6B9+/YYO3Ysdu3a5TRu7auvvsKkSZMuu06gTqfDkSNHcMcdd6Bdu3Z46KGHMHv2bDz88MMA6v934XImTZqEpKQkTJgwwakL1L4weEBAAAYPHozhw4cjLi4O33zzTb3OezmSJGHNmjUYPHgwZsyYgXbt2uGee+5BZmamYwza0KFD8e2332LVqlXo1q0b/vKXv2DXrl31vsa4cePw1FNPYfbs2ejWrRu2b9+OuXPn3lDdV/u5ImquJHHxABciFyVJEn744YerbgPV2KZNm4bi4mLunlGHRYsW4aeffsKvv/4qdymyKCgoQIcOHbB3795LWgeJiBoCu2KJqMk89NBDOHfuHEpLS91yhf+MjAwsWrSIoY6IGg2DHRE1GY1Gg5deeknuMmTTp08f9OnTR+4yiEjB2BVLREREpBCcPEFERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERArBYEdERESkEAx2RERERAqhkbuA5shqtSInJwe+vr6QJEnucoiIiMiNCSFQWlqKFi1aQKW6cpscg10dcnJyEBUVJXcZRERERA7Z2dmIjIy84nMY7Org6+sLwPYGGgwGmashIiIid1ZSUoKoqChHPrkSBrs62LtfDQYDgx0RERE1C/UZHsbJE0REREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREpBAMdkREREQKwWBHREREdB2EELjtgz9w75KdOFdWLXc5AACN3AUQERERuaKSSjNSc0sAAN6eapmrsWGLHREREdF1KCitAgD4ajXQejDYEREREbkse7AL8fWSuZLzGOyIiIiIrkOBqTbY6RnsiIiIiFwaW+yIiIiIFKLQxGBHREREpAj2FrtgdsUSERERuTZ2xRIREREpBIMdERERkUJwViwRERGRAlisAkW124iFssWOiIiIyHWdK6+GxSogSUCgj6fc5Tgw2BERERFdI/v4ukCdJzTq5hOnmk8lRERERC6iOU6cABjsiIiIiK4Zgx0RERGRQhQ2wxmxAIMdERER0TVz7DrBFjsiIiIi19Yc17ADGOyIiIiIrhnH2BEREREpBIMdERERkUI4Jk8w2BERERG5rmqzFefKawAAwRxjR0REROS6zpbZWus0Kgn+3h4yV+OMwY6IiIjoGjiWOtF7QaWSZK7GGYMdERER0TVorhMnAAY7IiIiomvSXCdOAAx2RERERNfkfFesp8yVXIrBjoiIiOgasCuWiIiISCGa63ZiAIMdERER0TU532KnlbmSSzHYEREREV2DQlM1AHbFEhEREbk8Tp4gIiIiUoDyajNMVWYAbLEjIiIicmmFpbZuWK2HCnovjczVXIrBjoiIiKieCkyVAGytdZLUvLYTAxjsiIiIiOqtoLbFrjkudQIw2BERERHVm30Nu2AGOyIiIiLX1px3nQAY7IiIiIjqjcGOiIiISCEY7IiIiIgUojnvEwsw2BERERHVW6F91wm22BERERG5LiEEW+yIiIiIlKCk0oxqsxUAx9gRERERuTT7xAlfrQZaD7XM1dSNwY6IiIioHpr7jFiAwY6IiIioXgqb+a4TAIMdERERUb2wxY6IiIhIIZr7jFiAwY6IiIioXthiR0RERKQQDHZERERECmGfPMFgR0REROTiHC12HGNHRERE5LosVoGzZdUA2GJHRERE5NLOlVfDYhWQJCDQx1Puci6LwY6IiIjoKuzdsIE6T3iom298ar6VXWTHjh1QqVRYsGCB47EFCxYgJCQEgYGBeP755yGEcBzbs2cPEhISoNPpMGTIEGRlZclRNhERESmAK0ycAFwk2FmtVjz11FPo3bu347E1a9Zg8eLF2LVrF5KTk7F69WosXboUAFBVVYUJEybgiSeeQFFREW666SZMmTJFrvKJiIjIxdlb7JrzdmKAiwS7JUuWoG/fvujYsaPjseXLl2PWrFmIi4tDREQEnn32WXz++ecAgM2bN0Ov12PGjBnQarV45ZVXsHfvXrbaERER0XVxhTXsABcIdkVFRXj//ffx6quvOj2ekpKCLl26OL5OSEhAcnJyncd8fHzQunVrpKSk1HmNqqoqlJSUOH0QERER2THYNZAXX3wRTz75JAICApweN5lMMBgMjq8NBgNMJlOdxy4+frH58+fDz8/P8REVFdXAr4KIiIhcmSvsEws082B34MAB7N69GzNnzrzkmF6vd2pZKykpgV6vr/PYxccvNmfOHBiNRsdHdnZ2A74KIiIicnWuMnlCI3cBV7JlyxakpaWhZcuWAACj0QiNRoP09HTEx8fj0KFDGDVqFAAgKSkJnTp1AgDEx8djyZIljvOUlZU5vqcuXl5e8PJq3jeKiIiI5MPJEw3goYcewvHjx5GYmIjExESMHTsWTzzxBN555x1MnjwZixcvRkZGBvLy8vDee+9h8uTJAIChQ4fCZDJh2bJlqKqqwptvvolevXohJiZG5ldERERErshVxtg16xY7nU4HnU7n+Nrb2xt6vR7+/v4YPXo0Dh48iN69e8NisWDmzJmYPn06AFsL3MqVK/HAAw/g0UcfRe/evbF8+XK5XgYRERG5sGqzFefKawA0/2AniQtX9SUAtvF4fn5+MBqNl0zCICIiIveSa6xAv/kboVFJSHvzNqhUUpNe/1pySbPuiiUiIiKSW2FpNQDb+LqmDnXXisGOiIiI6AoKTJUAgGBfT5kruToGOyIiIqIrcEycaOYzYgEGOyIiIqIrcpUZsQCDHREREdEVMdgRERERKYSrbCcGMNgRERERXZF9VmyIr1bmSq6OwY6IiIjoCgpcZJ9YgMGOiIiI6IrO7xPL5U6IiIiIXFZ5tRmmKjMAttgRERERuTT7+Dqthwp6L43M1Vwdgx0RERHRZdh3nQjx9YIkNe/txAAGOyIiIqLLcqVdJwAGOyIiIqLLcqXFiQEGOyIiIqLLKjDZ17BjsCMiIiJyaeeXOmGwIyIiInJp7IolIiIiUghX2icWYLAjIiIiuqxCttgRERERuT4hBLtiiYiIiJSgpMKMaosVACdPEBEREbk0+/g6g1YDrYda5mrqh8GOiIiIqA6OpU5cpBsWYLAjIiIiqpOrzYgFGOyIiIiI6uRqEycABjsiIiKiOjHYERERESkEgx0RERGRQnCMHREREZFCuNquEwCDHREREVGd7C12rrI4McBgR0RERHQJi1XgbG2wC2WLHREREZHrKiqrhlUAkgQE+njKXU69MdgRERERXcQ+IzbIxxMatevEJdeplIiIiKiJuOL4OoDBjoiIiOgSrriGHcBgR0RERHSJQhODHREREZEiOFrs2BVLRERE5NrYFUtERESkEAx2RERERArhivvEAgx2RERERJdgix0RERGRAlSZLTBW1ABgsCMiIiJyaWdN1QAAD7UEP28Pmau5Ngx2RERERBewd8MG670gSZLM1VwbBjsiIiKiC7jq+DqAwY6IiIjIiavOiAUY7IiIiIicsMWOiIiISCEY7IiIiIgUgsGOiIiISCEKOcaOiIiISBnskyeC2WJHRERE5NocXbFssSMiIiJyXWVVZpRXWwBwjB0RERGRS7O31uk81fDx0shczbVjsCMiIiKq5Vic2AVb6wAGOyIiIiIHVx5fBzDYERERETkUssWOiIiISBnsLXbBbLEjIiIicm2uvOsEwGBHRERE5MBgR0RERKQQBS68nRjAYEdERETkwBY7IiIiIgUQQnBWLBEREZESGCtqUGMRAIAgvafM1VwfBjsiIiIinO+G9fP2gJdGLXM114fBjoiIiAiuP74OYLAjIiIiAuD6M2KBZh7sqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn4cQwnFsz549SEhIgE6nw5AhQ5CVlSXHSyAiIiIXwRa7RmY2mxEXF4edO3eiqKgIY8eOxfjx4wEAa9asweLFi7Fr1y4kJydj9erVWLp0KQBbIJwwYQKeeOIJFBUV4aabbsKUKVNkfCVERETU3Ln6dmJAMw92Pj4+mDt3LiIjI6FWqzF79mxkZGTg7NmzWL58OWbNmoW4uDhERETg2Wefxeeffw4A2Lx5M/R6PWbMmAGtVotXXnkFe/fuZasdERERXVZ+bbALNTDYNYkdO3YgLCwMQUFBSElJQZcuXRzHEhISkJycDACXHPPx8UHr1q2RkpJS53mrqqpQUlLi9EFERETuJb+0EgAQyq7Yxmc0GvHwww/jrbfeAgCYTCYYDAbHcYPBAJPJVOexi49fbP78+fDz83N8REVFNdKrICIiouYqv6S2xc5XK3Ml188lgl1lZSXGjx+P0aNHY8aMGQAAvV7v1LJWUlICvV5f57GLj19szpw5MBqNjo/s7OxGeiVERETUXNm7YsPYFdt4zGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZBNSkpCp06d6jxWVlaG9PR0xMfH13kNLy8vGAwGpw8iIiJyH5U1FhgragCwxa5RzZw5ExUVFVi2bBkkSXI8PnnyZCxevBgZGRnIy8vDe++9h8mTJwMAhg4dCpPJhGXLlqGqqgpvvvkmevXqhZiYGLleBhERETVj9hmxnhoVDN4amau5fs268qysLCxbtgxarRYBAQGOx9euXYvRo0fj4MGD6N27NywWC2bOnInp06cDsLXArVy5Eg888AAeffRR9O7dG8uXL5frZRAREVEz55gR6+vl1JDkaiRx4aq+BMA2Hs/Pzw9Go5HdskRERG5g3eFcPPL5fvSI9sfKWQPkLsfJteSSZt8VS0RERNTYzrfYue74OoDBjoiIiOj8UicuPCMWYLAjIiIiUsTixACDHRERERG7YomIiIiU4kxtV2wIu2KJiIiIXFsBu2KJiIiIXJ/ZYsXZsmoA7IolIiIicmmFpmoIAahVEoJ8POUu54Yw2BEREZFbs8+IDdZ7QqVy3V0nAAY7IiIicnOONexcvBsWYLAjIiIiN3fhPrGujsGOiIiI3JpjcWIXX+oEYLAjIiIiN2dvsQthVywRERGRazs/xo4tdkREREQuTSmLEwMMdkREROTmHJMnDOyKJSIiInJZVqtAAWfFEhEREbm+c+XVMFsFACBYz2BHRERE5LLs3bCBPp7w1Lh+LHL9V0BERER0nZS0ODHAYEdERERuLL/Evjix60+cAABNfZ60cOHC+p1Mo8HTTz99QwURERG5KiEELLXjtSRJgkqy/UnNl9Ja7OoV7F5++WVMmjTpqs/77rvvGOyIiMitGCtq8MexAmw+WoAtaQWOGZYA4OftgWEdQnFLp3AMaRcCb0+1jJVSXZQ0IxaoZ7Dz8/PD0qVLr/q8devW3XBBRERErsBUZcaSrSfwnz9OoLzaUudzjBU1WHngNFYeOA29lwbPjWyPKTfFQKViK15zka+gxYmBega7goKCep0sNzf3hoohIiJq7qxWgS93n8T7v6eh0FQNAIgL8cGwDqEY2j4U8REGSBIgBHAs34Rfk/Pwa3IeTp2rwLxVyVh9MAdv39EVcSF6mV8JAcCZ2u3EwtxpjN3FqqqqYDKZoNfr4eWljIRLRER0NcXl1Xh6RRI2HskHALQK9sFzI9vjts7hdY6l69MqEH1aBeKlUR3xxa4sLFh7BHsyz+G2D/7A+xO74bYuEU39EugieUZbi12YnzKCXb1nxZrNZrz66qto3bo1dDodQkJCoNPp0KZNG7z22muoqalpzDqJiIhkdeiUEbd/uA0bj+TDS6PCvDHxWP/UYIzqEnHVCRIqlYQp/WLx61ODMahtMKrMVjz+1QGsO8yeLjkJIRxdsUppsat3sHv44YexdetW/Oc//0FBQQGqq6tRUFCAJUuW4I8//sAjjzzSmHUSERHJZt3hPNzx8XacOleB6EAdvn+0P6YPaAUP9bWtGhYZoMOy6X3w1+4tYbYKzP7yAH5NzmukqulqisqqUWOxzWJWyhg7SQgh6vNEf39/ZGdnw9fX95JjRqMR0dHRMBqNDV6gHEpKSuDn5wej0QiDwSB3OUREJKOfEk/j6RVJsFgFhnUIxXsTu8HP2+OGzmmxCjy9IhE/JeZAo5Lwn/t7YWj70AaqmOorJacEo/7fHwjWe2LvyyPkLueyriWX1PufGr6+vjh+/HidxzIyMuoMfERERK5sxZ5sPPlNIixWgTt6RGLJ1F43HOoAQK2S8O5dCRib0AJmq8BT3yQ6xnpR0zlToqxuWOAaJk+88cYbGD58OO655x506dIFBoMBJSUlOHjwIL799lu8++67jVknERFRk/p2bzae//4gAOC+vtF4c1znBl2mRKNW4Z27uuJEoQmHT5fgia8P4MuZN0HNpVCajBKDXb1b7KZNm4bNmzfDz88P69atw2effYZ169bB398fmzZtwtSpUxuzTiIioiaz6Wg+/r7yEABgWv9YvDW+YUOdnZdGjQ/v7QGdpxq7MoqwaFPdPWPUOPIUGOyuabmTLl26oEuXLo1VCxERkewOnirGY1/sh8UqMKF7S8wbE9+o24K1CvbBG+M645lvk/D+hmPo1zoIvWIDG+16dN75NeyUMXECqGeL3apVq+p1stWrV99QMURERHI6ebYcM5btQXm1BQPbBGPBHV2bZK/XO3pG4q/dW8JiFXjh+4OosVgb/Zp0vis2XEEtdvUKdpMnT67XydgdS0RErspUZcaD/9uDQlM14iMMWDy5Bzw117acyY14bVwnBPl4Ir2gDMt3ZDXZdd2Z246xM5lM0Ol0V/zw9vZGVVXV1U9GRETUzAgh8Ny3SUg7Y0KorxeWTu8NX+2Nz369FgatB565pT0A4P3f01BUVt2k13dHSgx29Rpjl5GRAcD2g//DDz9g9OjRdW4l1hTN1URERA1t0eZ0rD2cBw+1hMWTe8r2i35i7ygs35mF1NwSvPfbUbw5nuPaG0uNxerY69ftxtjFxMQgJiYGsbGx+P7779GvXz+8/vrrSE9PR3R0tON4dHR0Y9dLRETUoDYdzcc/1x8FALw+rjN6xgTIVotaJeGV2+MBAF/uOokjeSWy1aJ0+aW2XkYPtYRAH0+Zq2k41zx4YNu2bThw4ADat2+Pp59+GpGRkXjqqaewd+/exqiPiIio0eQUV+CpbxIhBHBvn2jc20f+Bop+rYNwa6dwWAXwjzVH5C5HsezdsKG+WkX1OF7XqNDo6Gg8//zzSExMxI8//oj169ejb9++aNu2LebPnw+TydTQdRIRETWoGosVj391AMXlNega6YdXx8bLXZLDi6M6Qq2SsDWtAAdPFctdjiKdqd3pI9xPOePrgOsMdjU1Nfjpp59w77334tZbb0W7du2wYsUKLF++HIcOHcItt9zS0HUSERE1qHfXp2Ff1jn4emnwf/f2gJdGLXdJDtFBOoxLaAEAWLQpXeZqlOn8xAnljK8DrnGBYgCYMWMGfvrpJ3Tu3BmTJk3CokWLEBBwfjxCz5494efn16BFEhERNaRNR/Px8RZbYHr7zq6IDtLJXNGlHh3aGisPnMa65Dwczy9Fm1Duyd6Q8hyLEyurxe6ag12bNm2wf/9+xMTE1Hncw8MDp06duuHCiIiIGkNBaRWeXZEEAJhyUwxGdYmQuaK6tQ3zxS3xYVifcgaLN5/Au3cnyF2SouQrcKkT4Dq6Yl988cXLhjq7wEBuhUJERM2PEALPf5eEs2XV6BDui5dGd5S7pCuadXMbAMBPiadx6ly5zNUoS54Cd50ArnOMHRERkSv6fGcWNh0tgKdGhQ/u6Q6tR/MZV1eXblH+GNgmGGarwCdbT8hdjqI4ZsUqbIwdgx0REbmF4/mlePOXVADA32/tgPbhrjFmbdbQ1gCAb/Zmw1heI3M1ynGmdowdW+yIiIhcTLXZiie+TkSV2YpBbYMxrX+s3CXVW7/WQegQ7ovKGitWHuAY9oZgqjLDVGUGwDF2RERELue939KQnFOCAJ0H/nlXAlQq11mQVpIkTOprWzj5i10nIYSQuSLXZ++G9fXSwMfrmueRNmsMdkREpGg7T5zFv7faljaZP6GLS7bQjO/eEjpPNY7nm7A7o0juclyefXFipY2vAxjsiIhIwYwVNXi6dsuwu3tF4tbOzXNpk6vx1XpgXDfbgsVf7DopczWu70ypMnedABjsiIhIweb+eBg5xkrEBOkwb0wnucu5Iff1sS01tvZwLgpNVTJX49ryjLWLE/sy2BEREbmEnxJPY1VSDtQqCf+a2M3lx1J1ifRDQqQfaiwC3+3jJIob4dhOjC12REREzd+pc+V4+YfDAIDH/9IGPaIDrvIdrmFSX1ur3Ze7TsJq5SSK6+UIdr4cY0dERNSsWawCT69IQmmVGd2j/TG7dvcGJRiT0AK+XhqcLCrHnkxOorheZxS6nRjAYEdERArz763p2J1RBB9PNd6f2A0atXJ+1Xl7qnFbl3AAwI+JOTJX47pya2fFRvh7y1xJw1POTzsREbm9g6eK8d76NADAvLGdEBPkI3NFDW98t5YAgF8O5qDKbJG5GtdjtliRX2qbPBHBMXZERETNk6nKjMe/OgCzVeC2zuG4q2ek3CU1ir5xQQg3aFFSacbmowVyl+NyCkxVsFgFNCoJwXqOsSMiImqW5v54GFlny9HCT4sFE7pCklxnd4lroVZJGFu7pt2PB07LXI3rsXfDhhm0ULvQDiT1xWBHREQu7/t9p/DDgdNQScAH93aHn85D7pIalX2x4g1H8lFSWSNzNa4lt7h2fJ0Cu2EBBjsiInJxJwpMmPuTbWmTJ4e3Q+/YQJkranzxEQa0C9Oj2mzFukN5cpfjUnKNFQCUuesEwGBHREQurMpswd++PoDyagtuigvEYwpa2uRKJEnCuNpJFD+wO/aa2LtiWyhwRizAYEdERC5s4bqjOHy6BAE6D7w/sbsix0xdjr07dmfGWeTVhhW6OkeLnQLXsAMY7IiIyEVtOpKPT7dlAADeuTNBsV1rlxMZoEOvmAAIAaw7nCt3OS7jfIudMn9eXHvjPCKieqixWHGmpBK5xkqcK6uGqcoMU5UZpZW2P02VZlTWnF8PTCVJ8PZUw9tTDZ2HGoF6TwT5eCHE1xMt/XUI9fWCyo1ahpqj/JJKPPNtEgBgWv9YDI8Pk7kiedzaORx7s85hXXIepg1oJXc5LuH85AlldsUy2BGRIpwrq0Z6gQnpBSacKCjDqeIK5BRXILe4EvmllWjIbTU9NSpEBXijbagvOkT4okO4AV0j/RQ7Zqe5qbFY8diX+1FUVo2OEQb8/bYOcpckm5GdwvHmL6nYnVGEs6YqBClwXbaGZFucWNmzYhnsiMilGCtqkJpbgtTcEhzNK60Nc2UoKqu+4vd5qCWE+2kR5OMFX60GvloNfDw10Gs18PXSwMtDDfuyZ1arQEWNBRXVVpRVmXG2rBpny6pQUFqFXGMlqs1WpBeUIb2gDOuSz89IjPDTokdMAPq2CsTgtiGIDVbergfNwVu/pGJP5jn4emnw0X3dofVQy12SbKICdejc0oDDp0vwW8oZ3NMnWu6SmrX80ipYBRS7ODHAYEdEzZTVKpBVVO4IcbaPUpwurrjs97T090ZciA9ah+gRFahDCz8tWvh7I8Jfi2Cfhuk+NVusyDVWIvNsGdLOmHAktwQpuSU4kleKXGMlfjmYi18O2sY7RQfqMLR9CG7tFI4+rQIVtWepXH44cArLtmcCAN6b2A1xIXp5C2oGbuscgcOnS7AuOY/B7iouXJxYqcMpFB3sCgoKMG3aNGzatAlRUVFYtGgRhg0bJndZRHSR0soapJ0pRUpuqVNrXHl13ftgtvT3RscIAzpG+KJNqB6tQ/SIC/GBzrPx/5emUasQFahDVKAOg9qGOB4vrzYjMbsY+zLPYdvxQuzLOoeTReX4344s/G9HFgJ9PHFLfBj+2r0lescGKvaXSmNKySnBnJWHAACP/6UNRrjpuLqLjewUjnd+PYo/jxfCWFEDP29lL858I+wzYpU6cQJQeLB77LHH0KJFCxQWFmL9+vW46667kJ6ejoCAALlLoysQQsBsFTBbBGqsVtSYrTBbBapr/7TUDpaSJEACHNsGSY7HJMdx+58ealXthwQPtQqeahV/scqgxmLFiYIyHMmzBbejeaU4knf5VjgvjQrtw33RMdwW4jpGGNAhwtAsf3HpPDXo3zoY/VsH4/FhbWGqMmNH+ln8lpKH31LOoKisGl/vycbXe7IRGeCNCd1b4p4+0RyXV0/5pZV48L97UFljxZB2IXhyeDu5S2o22oTq0TZUj2P5Jmw6ko/x3VvKXVKzZV8WJlyhEycABQc7k8mEn376CZmZmdDpdBg/fjzee+89/Pzzz5g6darc5dWLEAJCAKL2c6sABGyP2Y6f/9r+HAFbF5Y9ANVYrLDU82uzRcBitV5wTMBssaLGKmrDlRU1Ftv3nA9dovZx6/nn259Te37H8+3PueA8lzvWFNQqySnoeWpU0HmqofPUQOepho+XBt6eavhc/JiHGj5etsd8tRoYvD3g5+0Bg9b2p6eG3W2llTXILCzHiUITMgvLkV5gQtoZ23i4y93fcIPWFuJqW+LiIwxoFezjst2Xei8NRsSHYUR8GMwWK3ZlFGFVYg5+OZSLU+cq8P82HsdHm9MxslMY7u8Xiz6tAhW7t+mNqqi2YOb/9iHHWIm4YB/8v3vca726+ri1cziObTyOdYfzGOyuIKd2RmwLhU6cABQc7I4dOwY/Pz9EREQ4HktISEBycvIlz62qqkJVVZXj65KSkkavb9DCjThTUnVJeLP92eiXdzmqC1rdLvz/uaj9j/0tu/g9tAdfe3i9kKU2wFbWWBu0Vq2Hyino2YOf7TFbELwwDBq8NbV/esDXS+MSLYnl1WbkFFfgdHFl7cxT2+fZ58qRUViGgtKqy36v3kuDdmF6tK9thWsf5ov24b7w13k24StoWhq1CgPaBGNAm2C8OrYT1qfk4avdJ7HzRBHWHMrDmkN56BhhwLT+MRjXraVbTwa4mNUq8My3iUjKLoa/zgOfTeut+H1gr8fITuH4cONxbE7LR3m1uUmGJbgipW8nBig42JlMJhgMBqfHDAYDiouLL3nu/Pnz8dprrzVRZTZVNVZUmxs2UFxMo5KgVkmOPz3UqvNfqyV4qGxfq1USNGoJapUKHnV8ralt1bJ3ZWrUtsc91Crb52r757Zz2p/jWfuY7XMJGpXta8/a7zv/ee35VRd8br9O7TkbIuxYrbWtjBZbC2SNxYrqC1oYK2ssKK+2oLzabPuzyoIy++fVZpRVWVBRbXusotriWAfNWFGDksoalFaaAQCVNVZU1lThTMnlw83lSJIt+NiDnt8Foc+g9YCPlxpaDzV0nmp4e9jWWfP2sLUeenuq4O2hgadG5bjn9g+VJEElARZhC7O21lkBi7B9bn/NZVVmlNW+1rIqM4oralBkss0IPVtWjaKyahSZqlFaZb7qawnWe6JVsA9aBfsgNtgH7UJtAS4ywNutW6a8PdUY160lxnVriSN5Jfjv9iz8cOAUUnNL8ML3hzB/7RFM7ReLGQNiFR1262vhr0ex5lAePNQS/j25J2caX0anFgZEBXoju6gCW9MKcWvncLlLapbskyeUuoYdoOBgp9frL2l5KykpgV5/6QyqOXPm4Omnn3Z6XlRUVKPW99PsAbAK53Fh9jFjkGwLpNrHjzmNHZNsrVcXP37heDK1ZPtl7s6/POuiUknwUqnhpQHQCLPcLVYB0wVBr6SixvG5saIGJRVmp6+NFbYwWFL7WGWNFUIApZW2wHil2Z/Nga+XBi38vdHCX1v7pzda+ns7glxzHAfX3HQIN2D+hC544db2WLE3G//bkWXrpt1wDJ/+cQJT+sXiwUGtFLssw9X8e0s6Pt6SDgCYP6Er+sYFyVxR8yVJEkZ0DMdnf2Zg45EzDHaXYW+xU+oadoCCg13btm1hNBqRl5eH8HDbD3hSUhIefPDBS57r5eUFL6+m/R+nkv+14K7UKgl+Oo/r7iaqMlsuCHpmp2BYUmFGSWUNKi5oUbS3MNrWW7P9WV5tQVWNBVZxvqvZ3kpn56G2t+Seb8G1jSXUwMfLNo5QV/u1wdsDwXpPBPp4IdDHE0F6TwT6eCLE1wsGLYNbQ/HXeeKhwa3xwMA4/Jqchw83Hkdqbgk+3pKOZdszcF+fGDw8JA5hCt3bsi5f7T6J+WuPAAD+flsH3NkzUuaKmr+/dAjFZ39mYNPRAlitwiWGdTSlGosV+bXDRCI4K9b16PV6jB07FvPmzcP777+P3377DYcPH8aYMWPkLo2oTl4aNbz06kZpnbGP5eT/6Js3tUrCqC4RuK1zODak5uPDjceQdMqIz/7MwOc7s3BPnyjMGtpG0eODAGD1wRy8+INtWZNHhrTGI0Nay1yRa+jTKhA+nmoUlFbhcI4RXSP95S6pWckvrYIQtn/cBvsotxXcNaeb1dOiRYuQnZ2NoKAgPPvss1ixYgWXOiG3JEkSQ50LkSQJw+PD8ONjA/C/GX3QOzYA1RYr/rcjC4Pf2YTXf05xbIukND8eOI0nvk6EEMC9faLxwq3t5S7JZXhqVBjczra24obUfJmraX7yarthlbw4MaDwYBcSEoI1a9agvLwcaWlpGD58uNwlERHVmyRJGNwuBN8+0h9fzuxrC3hmKz77MwODF27C/DWpV91KzZV8tfsknlqRCItV4I4ekXhzfGeOFb5GN3cIBQBsPMJgd7HzS50oeyiUooMdEZFS9G8djBUP98PyB/qgW5Q/Kmus+PfWExj09kb889ejMJbXyF3idRNC4D9/nMCclYcgBDDlphi8c2dXrlV3HW5ubwt2h04bkV+izFbd6+UOS50ADHZERC5DkiQMahuCH2b1x2fTeqFzSwPKqi34v03HMfDtjXj/9zSUVLpWwKuxWPHyj4fx5i+pAICHB8fh9XGdFN1V1phCfL2QEOUPANh0lK12F3IsdaLgiRMAgx0RkcuRJAl/6RCGn2cPxMeTe6JDuC9Kq8x4//djGPT2Jny06TjK6rHWoNzOlVVjyqe78MWuk5Ak2+zXv9/Wgd2vN+gvta12HGfnLLe2KzZC4bPLGeyIiFyUJEm4tXM41vxtEP7vvu5oHeIDY0UN3vn1KAYt3IQlW9NhaqYBb19WEcZ+tA07TxTBx1ONT6b0wiNDWjPUNYBhHW3BbtvxQlSZLTJX03zklthb7DjGjoiImjGVSsLtXVtg/VND8K+JCYgN0qGorBr/WHME/eZvwIK1Rxybn8utxmLFP389irs+3oHsogpEBXpj5awBGB4fJndpitGphQFhBi+UV1uw80SR3OU0G7nFyl+cGGCwIyJSDLVKwl+7R+L3p4dg4Z1dERfsg9JKMz7eko5BCzfi6RWJSM1t/L2wL2df1jn8ddGf+L9Nx2EVwITuLfHL3wahfbivbDUpkSRJjkkUmznODoBtAXj74sQtFd5ip9gFiomI3JVGrcLdvaJwZ49IbDiSj0+2nsDuzCKs3H8aK/efxqC2wZhyUwxu7hAKD3Xj//s+u6gcb687gtUHcwEA/joPvDW+C0Z3jWj0a7urwe1C8PWebGxNK5C7lGbBPr5O66FCoI+y92BmsCMiUiiVSsKI+DCMiA9DYnYxPvnjBNYeysUfxwrxx7FCBOs9Mb5bS4zr1hKdWxoafHzb4dNGLNueiVWJOai2WCFJwF09I/HsLe0RqvAB7HIb0DoYKglILyjD6eIKxbdSXc2pc7Zu2MgAneLHcTLYERG5gW5R/vjovh7ILirH8p1ZWLn/NApNVfjPtgz8Z1sGWvp7Y0R8GIa2D0HPmAD4XudewKfOlWNDaj5WH8zBnsxzjsf7xQXh5ds7olMLv4Z6SXQFfjoPdIvyx/6TxfgjrQD39ImWuyRZnS4uB6D8bliAwY6IyK1EBerw4qiOeG5ke2w5WoDv95/C5qMFOF1cgWXbM7FseyZUEhDfwoCukf6IC/ZBXIgPWvh7Q++lga+XB9RqCaZKM0ora1BQWoUjeaU4mleKxOxiHD1T6riWpnbv2+kDYtE9mts5NrVBbUOw/2Qxth5jsLO32LUMYLAjIiIF8lCrMDw+DMPjw1BZY8EfxwrxW0oedp4owsmichw+XYLDp699ooVKAnrFBmJYh1CM794SYexylc3gdiH4YMMxbDtWCLPFCk0TjKdsrk47umIZ7IiISOG0HmrHWDwAyDNWYndmEdLySnGi0IQTBWXIL62CqcqMarMVgG0Grq9WgwCdJ9qE6tEh3BcdIwzo3zoI/jplD053FQmRfjBoNSipNCPplBE9Y9y31fRU7VIn7IolIiK3E+6nxdiEFkDCpceqzVZYrAJaD5XiB6G7Oo1ahYFtg7HmUB62phW4dbBzpxY7922XJSKia+apUcHbU81Q5yIGtw0BAGw95r7LnpgtVuTV7joRGaCTuZrGx2BHRESkUIPa2YJdUnYxjOU1Mlcjj7ySSlisAp5qFUL0XnKX0+gY7IiIiBSqpb83Wof4wCpse8e6I/uM2Bb+WqhUym9pZrAjIiJSsMG1rXbbjrtnd+xpN1rqBGCwIyIiUrSBbYIBAH8ePytzJfI47UYzYgEGOyIiIkXr0yoQapWEk0XlyC4ql7ucJnfqnO01u8PECYDBjoiISNF8tR7oGmnbym1Huvu12rHFjoiIiBRlQOva7th095tA4U7biQEMdkRERIrXv00QAGB7+lkIIWSupulYrQK5xfY17BjsiIiISAF6RAfAS6NCQWkVjueb5C6nyRSYqlBtsUKtkhDuJvsWM9gREREpnNZDjV6xti3FtrvRODv7xIlwgxYatXtEHvd4lURERG6uv32cnRstVOxu4+sABjsiIiK30L+1bZzdzhNnYbG6xzg7+4zYSDeZEQsw2BEREbmFLi394OulQUmlGck5RrnLaRL2Fjt3mTgBMNgRERG5BY1ahb5xgQDcZxcKd9tODGCwIyIichv2cXbb3WQ9u/OLE7vHrhMAgx0REZHbGFC7b+yezCJUmS0yV9O4hBAXbCfGFjsiIiJSmHZhegTrPVFZY0XiyWK5y2lUhaZqVNZYIUlAhL97rGEHMNgRERG5DUmS0M+xvZiyx9mdLCoDALTw84aXRi1zNU2HwY6IiMiN2Jc92a7w9ewyC23dsNGB7jO+DmCwIyIicisDalvsErOLUVZllrmaxpNVZAt2scEMdkRERKRQ0UE6RAZ4w2wV2J1ZJHc5jebkWVtXbHSgj8yVNC0GOyIiIjdj747doeBxdvYWu5ggttgRERGRgtmXPVHyvrFZZznGjoiIiNxAvzhbi11KbgnOlVXLXE3DK62sQVHt62KLHRERESlaqEGLtqF6CAHsPKG87lh7a12Qjyd8tR4yV9O0GOyIiIjckKM7VoHbi52sHV8X7WatdQCDHRERkVvqZ1/PToETKOwtdjFuNr4OYLAjIiJySze1CoIkAScKynCmpFLuchpUln2pkyD3WuoEYLAjIiJyS346D3RqYQCgvGVP7C12seyKJSIiIndhnx2rtGB30k3XsAMY7IiIiNyWfZzdDgXNjK0yW5BjrADgfrtOAAx2REREbqt3bCDUKgkni8pxurhC7nIaRHZRBYQAdJ5qBOs95S6nyTHYERERuSlfrQe6tPQDoJzu2JNF9j1idZAkSeZqmh6DHRERkRvrp7B9Y89PnHC/bliAwY6IiMitnZ9AUQghhMzV3DjHGnZuOHECYLAjIiJya71iA+ChlpBjrHTMJnVl59ewY7AjIiIiN6Pz1KBblD8AZXTHZtmXOnHDGbEAgx0REZHbc3THuviyJxarwKki2+xedsUSERGRW7rpggkUrjzOLq+kEtUWKzzUElr4e8tdjiwY7IiIiNxcj+gAeGpUyC+tQnpBmdzlXLf0fBMA21InapX7LXUCMNgRERG5Pa2HGj2i/QG4dndseoEt2LUO0ctciXwY7IiIiAj9WwcDAHa68ASK47Utdm1CGeyIiIjIjdkXKt55wnXH2THYMdgRERERgIRIf3h7qHG2rBppZ0xyl3Nd7OMD2RVLREREbs1To0Kv2AAAtl0oXI2xvAaFpioAQGu22BEREZG7s3fHbnfBcXbHC0oBAOEGLfReGpmrkQ+DHREREQE4v1DxrowiWK2uNc4uPd/WDevO4+sABjsiIiKq1aWlH/ReGhgrapCSWyJ3OdfkeAEnTgAMdkRERFRLo1ahd+04u50utp6dfXHi1iHuuUesHYMdEREROfS7YHsxV2JvsXPniRMAgx0RERFdwL5Q8a6MIpgtVpmrqZ/KGguyi8oBsCuWwY6IiIgcOkYY4OftAVOVGYdOG+Uup14yz5bBKgBfrQYhei+5y5EVgx0RERE5qFWSY3bsn8ddYz27C3eckCRJ5mrkxWBHRERETga0sQc71xhnZ1/qxJ13nLBrtsHu6NGjuP322xEcHIyQkBBMnjwZ586dcxyvqKjA5MmT4evri+joaHz11VdO379s2TJERkbCYDBg+vTpqK6ubuqXQERE5JIGtLGNs9uXdQ4V1RaZq7k6LnVyXrMNdkajEXfffTfS09ORmZmJ6upqPPvss47j8+bNQ1FREU6fPo2vv/4ajz76KNLS0gAAhw4dwtNPP40ff/wR2dnZyMzMxJtvvinXSyEiInIprYJ90MJPi2qLFXuziuQu56ocXbFssWu+wa5Pnz6YOnUq/Pz84OPjg5kzZ2L37t2O48uXL8e8efNgMBjQv39/jB07Fl9//TUA4Msvv8TEiRPRq1cv+Pn5Ye7cufj8888ve62qqiqUlJQ4fRAREbkrSZLQv7bVblszH2dntQqc4FInDs022F1s+/bt6NSpEwDg3LlzyMvLQ5cuXRzHExISkJycDABISUm55FhGRgYqKirqPPf8+fPh5+fn+IiKimrEV0JERNT8DawNdtub+Ti708UVqDJb4alWISrAW+5yZOcSwS4xMRH/7//9P8ydOxcAYDKZoFarodPpHM8xGAwwmUyO4waDwemY/fG6zJkzB0aj0fGRnZ3dWC+FiIjIJfSvXaj4cI4RxeXNd5z6sfxSAEBssA4atUvEmkYl2ztwyy23QKvV1vlx4Xi4jIwMjBkzBp9++qmjxU6v18NisaC8vNzxvJKSEuj1esfxC7tT7Z/bj1/My8sLBoPB6YOIiMidhRq0aBemhxDNexeKlBzb7/iOEfzdDQAauS68fv36qz4nLy8PI0aMwNy5czF+/HjH4wEBAQgPD8ehQ4fQt29fAEBSUpIj+MXHx+PQoUOO5yclJaFVq1bw9mYTLRERUX31bx2MtDMmbDteiNu6RMhdTp1Scm3BrlMLBjugGXfFGo1GjBw5ElOnTsVDDz10yfHJkyfjjTfeQGlpKXbu3IlVq1Zh4sSJAID77rsPK1aswP79+2E0GvHWW29h8uTJTf0SiIiIXJpjnJ0LtNjFR/jJXEnz0GyD3Y8//oiDBw9i4cKF0Ov1jg+7119/HX5+foiIiMBdd92FRYsWoX379gCALl264N1338WYMWMQGRmJqKgovPTSS3K9FCIiIpfUNy4QapWEjMIynDpXfvVvaGKmKjMyz9rq6hjhK3M1zYMkhBByF9HclJSUwM/PD0ajkePtiIjIrd2xeDv2ZZ3D/AldcG+faLnLcbInswh3fbwD4QYtdr44TO5yGs215JJm22JHRERE8hvSLgQAsDWtQOZKLmXvhuX4uvMY7IiIiOiyBtcGu23HC2G2WGWuxpljfB2DnQODHREREV1Wl5Z+8Nd5oLTSjMTsYrnLcWKfERvPpU4cGOyIiIjostQqCYPa2lrttjSj7tgaixVHz9gWJ2aL3XkMdkRERHRFg9valj1pTuPs0gtMqDZb4eulQVSA7urf4CYY7IiIiOiK7BMoDp42oqiseWwvduGOEyqVJHM1zQeDHREREV1RqEGLDuG+EAL441jzaLXjxIm6MdgRERHRVZ1f9qRQ5kpsOHGibgx2REREdFWOYHesAHLvbSCEQDJb7OrEYEdERERX1TM2AN4eahSUVjlay+SSY6yEsaIGGpWEtmH6q3+DG2GwIyIioqvy0qgxoE0QAGDTkXxZa7GPr2sTqoeXRi1rLc0Ngx0RERHVy7COYQCA31LlDXaJ2ecAAJ1b+slaR3PEYEdERET1MqxDKAAgKbsY+SWVstWxJ9MW7HrHBshWQ3PFYEdERET1EmrQIiHKHwCwQabu2GqzFUm1W5v1jAmUpYbmjMGOiIiI6m1ER1ur3YbUM7Jc/3COEVVmKwJ0Hmgd4iNLDc0Zgx0RERHV2/B42zi7P44VoqLa0uTX35tZBADoFRsISeKOExdjsCMiIqJ6ax/mi8gAb1SZrdh2vOkXK95bO76uVwzH19WFwY6IiIjqTZIkDK+dHft7StN2xwohsC+rNtjFcnxdXRjsiIiI6JqMqO2O3XDkDKzWptuFIqOwDGfLquGlUaFzS+44URcGOyIiIromvWMD4eulQaGpGomnipvsuvZu2IRIfy5MfBkMdkRERHRNPDUqDGlv2zt23eG8JrvuHsfECY6vuxwGOyIiIrpmt3eNAACsTsppsu5Y+/i63hxfd1kMdkRERHTNhrYPhd5LgxxjJfadPNfo1ys0VeFEYRkAoEc0W+wuh8GOiIiIrpnWQ41bOtkmUfyclNPo17OPr2sf5gs/nUejX89VMdgRERHRdRmb0AIAsOZQLswWa6Nea+eJswCAnhxfd0UMdkRERHRdBrQJRoDOA4WmauyoDV6NQQiB32u3MBvaLqTRrqMEDHZERER0XTzUKozqYptEsSqx8bpjj54pxalzFfDSqDCwbXCjXUcJGOyIiIjouo2p7Y5dl5yHKnPj7B1r3+FiYJtg6Dw1jXINpWCwIyIiouvWJzYQYQYvlFaaseVoQaNc47fUfADA8NodL+jyGOyIiIjouqlUEm7vamu1+3bfqQY/f35JJZKyiwEAwzqENvj5lYbBjoiIiG7IPb2jAAAbUs/gdHFFg557wxFba123KH+EGrQNem4lYrAjIiKiG9I2zBf94oJgFcBXu0426Lnt4+tGsBu2XhjsiIiI6IZN6RcDAPh6z8kGm0RRXm3GtuOFAIDhHRns6oPBjoiIiG7YiPgwhBm8UGiqxrrDeQ1yzm3HClFltiIq0BvtwvQNck6lY7AjIiKiG+ahVuHePtEAgM93ZjXIOdfWBsThHcMgSVKDnFPpGOyIiIioQdzbJxoalYQ9meeQmltyQ+fKL63ELwdzAQDjurVsiPLcAoMdERERNYgwgxYjO4UDAJb+mXFD5/pi50lUW6zoEe2PblH+DVCde2CwIyIiogYzY2ArAMB3+07heH7pdZ2jssaCL3ZlOZ2P6ofBjoiIiBpMz5gA3BIfBqsAFqw9cl3n+DkpB4WmarTw0+LW2hZAqh8GOyIiImpQz9/aAWqVhN9T87HzxNlr+l4hBD77MxMAMLV/LDRqRpVrwXeLiIiIGlSbUL1jN4r5a1IhhKj39+48UYTU3BJ4e6gd56D6Y7AjIiKiBvfk8HbQeaqRdMqI1bWzW6/GahX4cOMxAMAdPVvCX+fZmCUqEoMdERERNbgQXy88PLg1AOC1n5ORXVR+1e/5eGs6tqefhdZDhQcHxjV2iYrEYEdERESN4qHBcYiPMKDQVI1pS3fDWF5z2efuySzCu+vTAACvje2E2GCfpipTURjsiIiIqFF4e6rx2bTeiPDTIr2gDA8t31vnPrJFZdV4/MsDsFgF/tq9Je7uxbF114vBjoiIiBpNuJ8Wn03rDb2XBrsyivDAsr3483ghrFYBs8WKtYdyMfk/u5BXUom4EB+8Ob4ztw+7AZK4lqkqbqKkpAR+fn4wGo0wGAxyl0NEROTy/jhWgOlL98BstcWOmCAdzBaB08UVAAC9lwbfPtIPHSP4e/di15JLNE1UExEREbmxQW1D8MvfBmH5zkz8eCAHWWdtkykCfTwxqW80Jt8UgzCDVuYqXR9b7OrAFjsiIqLGU15txm8pZwAAIzuFQ+uhlrmi5o0tdkRERNRs6Tw1GNetpdxlKBInTxAREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUIw2BEREREpBIMdERERkUJo5C6gORJCAABKSkpkroSIiIjcnT2P2PPJlTDY1aG0tBQAEBUVJXMlRERERDalpaXw8/O74nMkUZ/452asVitycnLg6+sLSZIa5RolJSWIiopCdnY2DAZDo1yD5Mf7rHy8x+6B91n5mvM9FkKgtLQULVq0gEp15VF0bLGrg0qlQmRkZJNcy2AwNLsfIGp4vM/Kx3vsHnifla+53uOrtdTZcfIEERERkUIw2BEREREpBIOdTLy8vDBv3jx4eXnJXQo1It5n5eM9dg+8z8qnlHvMyRNERERECsEWOyIiIiKFYLAjIiIiUggGOyIiIiKFYLAjIiIiUggGOxkUFBRg9OjR0Ol0aN++PTZs2CB3SXSDqqqqMH36dERGRsLPzw9Dhw7FoUOHHMcXLFiAkJAQBAYG4vnnn6/Xfn/UfO3YsQMqlQoLFixwPMZ7rCwLFixAVFQUfH190a1bNxQXFzse531Whv3796N///4wGAyIi4vD0qVLHcdc+T5z5wkZPPbYY2jRogUKCwuxfv163HXXXUhPT0dAQIDcpdF1MpvNiIuLw86dOxEREYEPPvgA48ePR3p6OtasWYPFixdj165d8Pb2xrBhw9ChQwfMmDFD7rLpOlitVjz11FPo3bu34zHeY2X58MMPsXbtWmzbtg3R0dFITk6GVqvlfVaYqVOn4t5778W2bduQmJiIIUOGYMCAATh+/LhL32cud9LETCYTgoKCkJmZiYiICADA4MGD8eCDD2Lq1KkyV0cNpbq6GlqtFgUFBZg9eza6deuGF154AQDw2Wef4fPPP8fGjRtlrpKux8cff4zU1FQYjUZ06NABf//733HvvffyHiuExWJBZGQktm7dirZt2zod431WFl9fXxw8eBCtWrUCAPTp0wdz587Fl19+6dL3mV2xTezYsWPw8/NzhDoASEhIQHJysoxVUUPbsWMHwsLCEBQUhJSUFHTp0sVxjPfbdRUVFeH999/Hq6++6vQ477FynDp1ChUVFfj2228RFhaG9u3b4+OPPwbA+6w0s2fPxvLly2E2m7F7925kZ2ejb9++Ln+f2RXbxEwm0yWbCxsMBsf4DXJ9RqMRDz/8MN566y0Al95zg8EAk8kkV3l0A1588UU8+eSTlwyb4D1WjtOnT8NoNCI9PR2ZmZk4ceIEhg8fjvbt2/M+K8ytt96KqVOn4vXXXwcALFmyBKGhoS5/nxnsmpher0dJSYnTYyUlJdDr9TJVRA2psrIS48ePx+jRox3jMS6+57zfrunAgQPYvXs3Pvroo0uO8R4rh7e3NwBg3rx58Pb2RqdOnTBlyhSsWbOG91lBzp49izFjxuC///0vxo4di9TUVNx6663o1KmTy99ndsU2sbZt28JoNCIvL8/xWFJSEjp16iRjVdQQzGYz7rnnHrRo0QL//Oc/HY/Hx8c7zZDl/XZNW7ZsQVpaGlq2bInw8HB88803eOuttzBz5kzeYwVp164dPD09nR6zD0XnfVaOEydOwM/PD3/961+hVqvRuXNnDB06FFu3bnX9+yyoyd15553ioYceEuXl5eKnn34SAQEBoqioSO6y6AZNmzZN3HLLLaK6utrp8dWrV4uYmBhx4sQJkZubKzp16iQ+/fRTmaqk61VWViZyc3MdH3fffbd46aWXxLlz53iPFea+++4TM2fOFJWVleLIkSMiIiJCbNy4kfdZQYqLi4Wfn59YtWqVsFqtIjU1VURERIi1a9e6/H1mV6wMFi1ahPvvvx9BQUGIjIzEihUruNSJi8vKysKyZcug1Wqd7uXatWsxevRoHDx4EL1794bFYsHMmTMxffp0Gaul66HT6aDT6Rxfe3t7Q6/Xw9/fn/dYYT766CM88MADCA4ORlBQEObOnYubb74ZAHifFcLPzw/ffPMNXnjhBdx3330ICAjA7NmzceuttwJw7fvM5U6IiIiIFIJj7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIiIgUgsGOiIiISCEY7IiIAJw8eRLBwcGNeo3MzExIkgS9Xo8ff/yxwc67Z88e6PV6qFQq7Ny5s8HOS0Suh1uKEZHb0Ov1js/Lysqg0+kgSRIAICUlBYWFhY1eg5eXF0wmU4Oes3fv3jCZTIiNjW3Q8xKR62GwIyK3cWGg0mq1SE5OZhgiIkVhVywREWzdpFqt1vG1JElYvHgxoqOjERwcjG+++QarV69GXFwcQkND8c033zieW1RUhPvuuw+hoaGIi4vDf//733pf99VXX8WUKVMwfvx46PV6jBgxAvn5+bj77rthMBhw6623orS0FACQlpaGgQMHwmAwIDg4GM8880zDvQFEpAgMdkREl/Hnn38iLS0NixcvxqxZs/D999/j8OHD+PTTTzF79mxYLBYAwJQpUxAVFYXs7GysWbMGc+bMQVJSUr2v8+OPP+KFF15Afn4+iouLMXDgQDz++OPIz8+HyWTCZ599BgB45ZVXMHr0aBiNRmRlZWHixImN8rqJyHUx2BERXcbzzz8PrVaLCRMmoLi4GLNmzYJOp8OYMWNQWlqKnJwc5OXl4Y8//sA//vEPeHl5oUOHDrjvvvuwcuXKel9nxIgR6NevH3Q6HUaNGoW2bdti0KBB0Gq1GD16NA4ePAgA8PDwQEZGBvLy8uDj44M+ffo01ksnIhfFYEdEdBmhoaEAALVaDQ8PD4SEhDiOabValJWV4eTJkygrK0NQUBD8/f3h7++Pf//73zhz5sw1XwcAvL29na7j7e2NsrIyAMDChQthNpvRrVs3JCQk4Oeff77Rl0hECsPJE0REN6Bly5bw9/fH2bNnG/1aERER+OyzzyCEwKpVqzBx4kQUFxfD09Oz0a9NRK6BLXZERDegZcuW6N27N1555RWUl5fDbDZj//79SElJafBrfffdd8jJyYEkSfD394ckSY7lWoiIAAY7IqIb9sUXXyArK8sxY/bJJ59ERUVFg19n9+7d6NmzJ/R6PR599FF8+eWX8PDwaPDrEJHrkoQQQu4iiIjcQVZWFjp06AAvLy/873//w9ixYxvkvHv37sXw4cNRVVWFLVu2cFIFkRtjsCMiIiJSCHbFEhERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQjDYERERESkEgx0RERGRQvx/PES2Nz102fIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -508,7 +508,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFQCAYAAACoKiaXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOtklEQVR4nOzdd1hT1xsH8G8SkhD2XjIFQRAHiiJurYraWkfr3lV/te6itnW0Vdu66qp1VWvRtiq2VWuto1gVB6IoQxEQEBkqIILsTXJ+f1CikZWwQvD9PA+P5tybe9+TcfLm5gwOY4yBEEIIIYQQFcJVdgCEEEIIIYQoipJYQgghhBCiciiJJYQQQgghKoeSWEIIIYQQonIoiSWEEEIIISqHklhCCCGEEKJyKIklhBBCCCEqh5JYQgghhBCiciiJJYQQQgghKoeSWEJIs7B69Wp06tRJ2WGopIKCArz33nvQ0dEBh8NBVlaWskOqxNbWFtu3b1d2GNVKSEgAh8NBWFiYskMBAPj7+yv8XNJ7iLxpKIkl5A01ffp0cDgcbNiwQab8zz//BIfDafJ4li5diosXL8q1b3P6sO7Xrx8WL16s1BgOHTqEa9eu4caNG0hJSYGurq5S41EWeV8X06dPx8iRIxs9nvro0aOHws+lIu8hQloCSmIJeYOpq6tj48aNyMzMVHYo0NLSgqGhobLDaNZKS0urLI+Li4OzszNcXV1hZmZWpy8hYrEYEomkviGSBlBaWgqBQKDwc0nvIfKmoSSWkDfYwIEDYWZmhvXr11e5PT8/Hzo6Ovjjjz9kyk+fPg1NTU3k5uYCAIKCguDm5gZ1dXW4u7vj5MmTMj/NHjx4EHp6ejLHeP2K7+tX0fz9/dGtWzdoampCT08PPXv2RGJiIg4ePIg1a9bg7t274HA44HA4OHjwYLV1/Omnn9CuXTsIhUKYm5tj/vz50m1JSUkYMWIEtLS0oKOjg7Fjx+LZs2eVYvrll19ga2sLXV1djB8/Xlrv6dOn48qVK/juu++ksSQkJAAArly5gm7duknP+9lnn6GsrEx67Kp+Xu/UqRNWr14tvc3hcLB3716MGDECmpqa+PrrryvVr1+/ftiyZQuuXr0KDoeDfv36AQAyMzMxdepU6OvrQ0NDA0OHDkVsbKz0fhXPyd9//w0XFxcIhUIkJiZWOn7Fz9pnzpxBx44doa6uDg8PD4SHh8vsd/z4cenjbGtriy1btlT7nABAdnY2/ve//8HExAQ6OjoYMGAA7t69W+N9Pv30Uzg6OkJDQwOtW7fG559/Lk3s5X1drF69GocOHcKpU6ek+/n7+0u3P3r0CP3794eGhgY6duyIwMBAmfvfuHEDffr0gUgkgpWVFRYuXIj8/Pwa496zZw/s7e0hEAjg5OSEX375RWZ7Vc9zVd0J9u/fDysrK2hoaGDUqFHYunWrzPvq9fdQxRXnzZs3w9zcHIaGhpg3b161X4YIUTmMEPJGmjZtGhsxYgQ7ceIEU1dXZ48fP2aMMXby5En2atMwe/ZsNmzYMJn7jho1ik2dOpUxxlheXh4zNjZm48aNY/fv32enT59mrVu3ZgBYaGgoY4wxHx8fpqurK3OM18/z5Zdfso4dOzLGGCstLWW6urps6dKl7OHDhywyMpIdPHiQJSYmsoKCArZkyRLWrl07lpKSwlJSUlhBQUGVddy9ezdTV1dn27dvZ9HR0SwoKIht27aNMcaYRCJhbm5urFevXuzOnTvs5s2brHPnzqxv374yMWlpabHRo0ez8PBwdvXqVWZmZsZWrFjBGGMsKyuLeXp6stmzZ0tjKSsrY0+ePGEaGhps7ty5LCoqip08eZIZGRmxL7/8UnpsGxsbaSwVOnbsKLMPAGZiYsIOHDjA4uLiWEJCQqU6ZmRksNmzZzNPT0+WkpLCMjIyGGOMvfvuu8zZ2ZldvXqVhYWFMS8vL+bg4MBKSkqkzwmfz2c9evRgAQEB7MGDBywvL6/S8S9fvswAMGdnZ+bn58fu3bvH3nnnHWZrays91p07dxiXy2Vr165l0dHRzMfHh4lEIubj41NlfSUSCevZsycbPnw4u337NouJiWFLlixhhoaG0vir8tVXX7GAgAAWHx/P/vrrL2Zqaso2btzIGGNyvy5yc3PZ2LFj2ZAhQ6T7FRcXs/j4eAaAtW3blv39998sOjqavf/++8zGxoaVlpYyxhi7d+8e09LSYtu2bWMxMTEsICCAubm5senTp1cb84kTJxifz2e7du1i0dHRbMuWLYzH47FLly7V+DxXPO6ZmZmMMcauX7/OuFwu+/bbb1l0dDTbtWsXMzAwkHlfvfoeYqz8Pa6jo8PmzJnDoqKi2OnTp5mGhgbbt29ftfESokooiSXkDVWRxDLGWPfu3dkHH3zAGKucXN66dYvxeDz29OlTxhhjz58/Z3w+n/n7+zPGGPvhhx+YgYEBy8/Pl95nz5499UpiMzIyGADpOV73+od1dSwsLNjKlSur3Obn58d4PB5LSkqSlkVERDAALCgoSHoeDQ0NlpOTI91n2bJlzMPDQ3q7b9++bNGiRTLHXrFiBXNycmISiURatmvXLqalpcXEYjFjTP4kdvHixbXWc9GiRTLJd0xMDAPAAgICpGXp6elMJBKx3377jTFW/pwAYGFhYTUeuyKZ8vX1lZZlZGQwkUjEjh07xhhjbOLEiWzQoEEy91u2bBlzcXGR3n61vhcvXmQ6OjqsqKhI5j729vbshx9+qLW+FTZt2sS6dOkivS3v6+LV136FiiT2xx9/lJZVvB6ioqIYY4xNmTKF/e9//5O537Vr1xiXy2WFhYVVnqtHjx5s9uzZMmVjxoyR+WJY1fP8ehI7btw49vbbb8vsM2nSpFqTWBsbG1ZWViZz7nHjxlUZKyGqhroTEEKwceNGHDp0CJGRkZW2devWDe3atcPPP/8MAPjll19gbW2NPn36AACioqLQsWNHaGhoSO/j6elZr3gMDAwwffp0eHl5Yfjw4fjuu++QkpKi0DHS0tKQnJyMt956q8rtUVFRsLKygpWVlbTMxcUFenp6iIqKkpbZ2tpCW1tbetvc3BxpaWk1njsqKgqenp4y3SV69uyJvLw8PHnyRKF6uLu7K7R/xfnV1NTg4eEhLTM0NISTk5NM3QQCATp06CDXMV99Tg0MDGSOFRUVhZ49e8rs37NnT8TGxkIsFlc6VnBwMPLy8mBoaAgtLS3pX3x8POLi4qqN4Y8//kCvXr1gZmYGLS0tfP7550hKSpIrfnm9+niYm5sDgPT5Dg4OxsGDB2Vi9vLygkQiQXx8fJXHq+6xefV5AGp/nqOjo9GtWzeZstdvV6Vdu3bg8Xgydart9UuIqqAklhCCPn36wMvLCytWrKhy+6xZs+Dj4wMA8PHxwYwZM6QJGmOs1uNzudxK+9XWL8/HxweBgYHo0aMHjh07BkdHR9y8eVOe6gAARCJRjdsZY1UOmnm9nM/ny2zncDi1DoCq6tgV9a8ol/cx0dTUrPFc1Z1fnrhEIlG9ZqJ49TVQXX2rIpFIYG5ujrCwMJm/6OhoLFu2rMr73Lx5E+PHj8fQoUPx999/IzQ0FCtXrkRJSUmd46/Kq893RZ0qnm+JRIIPP/xQJua7d+8iNjYW9vb21R6zqsfm9bLanmdFH+Oq6lMRCw3gIy0FJbGEEADAhg0bcPr0ady4caPStsmTJyMpKQk7duxAREQEpk2bJt3m4uKCu3fvorCwUFr2erJpbGyM3NxcmQEw8szH6ebmhuXLl+PGjRtwdXXFkSNHAJRfQazqCt+rtLW1YWtrW+2UQy4uLkhKSsLjx4+lZZGRkcjOzoazs3OtsVWoKhYXFxfcuHFDJsm4ceMGtLW10apVKwDlj8mrV5dzcnKqvZqnKBcXF5SVleHWrVvSsoyMDMTExChUt1e9+pxmZmYiJiYGbdu2lZ7v+vXrMvvfuHEDjo6OMlcBK3Tu3BmpqalQU1ODg4ODzJ+RkVGV5w8ICICNjQ1WrlwJd3d3tGnTptJANHleF4rsV1XcERERlWJ2cHCAQCCo8j7Ozs5VPjaKPg9t27ZFUFCQTNmdO3cUqwAhLQwlsYQQAED79u0xadIkfP/995W26evrY/To0Vi2bBkGDx4MS0tL6baJEyeCy+Vi5syZiIyMxNmzZ7F582aZ+3t4eEBDQwMrVqzAw4cPceTIkRpnFIiPj8fy5csRGBiIxMRE+Pn5ySRgtra2iI+PR1hYGNLT01FcXFzlcVavXo0tW7Zgx44diI2NRUhIiLR+AwcORIcOHTBp0iSEhIQgKCgIU6dORd++fRX6Cd/W1ha3bt1CQkIC0tPTIZFIMHfuXDx+/BgLFizAgwcPcOrUKXz55Zfw9vYGl1ve7A4YMAC//PILrl27hvv372PatGlVJnx10aZNG4wYMQKzZ8/G9evXcffuXUyePBmtWrXCiBEj6nTMtWvX4uLFi7h//z6mT58OIyMj6VyrS5YswcWLF/HVV18hJiYGhw4dws6dO7F06dIqjzVw4EB4enpi5MiR+Oeff5CQkIAbN25g1apV1SZmDg4OSEpKgq+vL+Li4rBjxw6cPHlSZh95Xxe2tra4d+8eoqOjkZ6eLvdo/U8//RSBgYGYN28ewsLCEBsbi7/++gsLFiyo9j7Lli3DwYMHsXfvXsTGxmLr1q04ceJEtY9NdRYsWICzZ89i69atiI2NxQ8//IBz584pZU5nQpoNJfTDJYQ0A1UNbklISGBCoZBV1TRcvHiRAZAODHpVYGAg69ixIxMIBKxTp07s+PHjMgO7GCsfyOXg4MDU1dXZO++8w/bt21ftwK7U1FQ2cuRIZm5uzgQCAbOxsWFffPGFdFBUUVERe++995ienh4DIDMK/nV79+5lTk5OjM/nM3Nzc7ZgwQLptsTERPbuu+8yTU1Npq2tzcaMGcNSU1OrjKnCtm3bmI2NjfR2dHQ06969OxOJRAwAi4+PZ4wx5u/vz7p27coEAgEzMzNjn376qXSUO2OMZWdns7FjxzIdHR1mZWXFDh48WOXArpMnT1ZbtwqvD+xijLEXL16wKVOmMF1dXSYSiZiXlxeLiYmRbq9qsF1VKgYYnT59mrVr144JBALWtWvXSgPC/vjjD+bi4sL4fD6ztrZm3377rcz21wey5eTksAULFjALCwvG5/OZlZUVmzRpksxAu9ctW7aMGRoaMi0tLTZu3Di2bds2mTrI+7pIS0tjgwYNYlpaWgwAu3z5snRg16uv2czMTOn2CkFBQdL7ampqsg4dOrBvvvmmxsdw9+7drHXr1ozP5zNHR0f2888/y2yv6nl+fWAXY4zt27ePtWrViolEIjZy5Ej29ddfMzMzM+n2qgZ2vf4er+q1Qoiq4jAmR6caQsgb7/Dhw1i0aBGSk5Or/em0QkJCAuzs7BAaGtpsVtYidePv74/+/fsjMzOz0ly/RLlmz56NBw8e4Nq1a8oOhRClUFN2AISQ5q2goADx8fFYv349Pvzww1oTWEJI49i8eTMGDRoETU1NnDt3DocOHcLu3buVHRYhSkN9YgkhNdq0aRM6deoEU1NTLF++XNnhEPLGCgoKwqBBg9C+fXvs3bsXO3bswKxZs5QdFiFKQ90JCCGEEEKIyqErsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbGEEEIIIUTlUBJLCCGEEEJUDiWxhBBCCCFE5VASSwghhJAmt3r1anTq1EnZYRAVRkksqRd/f39wOJxq//r376/sEJvM9OnTpfXm8/kwNTXFoEGD8NNPP0EikSg7POlzlZWVpexQCCFKUNFGbdiwQab8zz//BIfDafJ4li5diosXL8q1LyW8pCqUxJJ66dGjB1JSUir9/fDDD+BwOJg7d66yQ2xSQ4YMQUpKChISEnDu3Dn0798fixYtwjvvvIOysjJlh9dkSktLlR0CIaQK6urq2LhxIzIzM5UdCrS0tGBoaKjsMGrEGHuj2m5VQ0ksqReBQAAzMzOZv8zMTCxbtgwrVqzAmDFjpPteuXIF3bp1g1AohLm5OT777DOZxqG4uBgLFy6EiYkJ1NXV0atXL9y+fVu6veJK4j///AM3NzeIRCIMGDAAaWlpOHfuHJydnaGjo4MJEyagoKCgxriPHz+Odu3aQSgUwtbWFlu2bJHZbmtri3Xr1uGDDz6AtrY2rK2tsW/fvlofD6FQCDMzM7Rq1QqdO3fGihUrcOrUKZw7dw4HDx6s8b5PnjzB+PHjYWBgAE1NTbi7u+PWrVvS7Xv27IG9vT0EAgGcnJzwyy+/yNyfw+Hgxx9/xKhRo6ChoYE2bdrgr7/+AgAkJCRIr4rr6+uDw+Fg+vTpAGp/3A8ePAg9PT2Zc71+5abiKslPP/2E1q1bQygUgjFW6+NFCGlaAwcOhJmZGdavX1/l9vz8fOjo6OCPP/6QKT99+jQ0NTWRm5sLAAgKCoKbmxvU1dXh7u6OkydPgsPhICwsDIBi7UYFf39/dOvWDZqamtDT00PPnj2RmJiIgwcPYs2aNbh79670166a2tOffvpJ2r6bm5tj/vz5AMrbwVdjBICsrCxwOBz4+/tLY6j4nHF3d4dQKMSBAwfA4XDw4MEDmfNs3boVtra20rYuMjISw4YNg5aWFkxNTTFlyhSkp6dXGydpAIyQBpSZmckcHR3Z8OHDmUQikZY/efKEaWhosLlz57KoqCh28uRJZmRkxL788kvpPgsXLmQWFhbs7NmzLCIigk2bNo3p6+uzjIwMxhhjly9fZgBY9+7d2fXr11lISAhzcHBgffv2ZYMHD2YhISHs6tWrzNDQkG3YsKHaGO/cucO4XC5bu3Yti46OZj4+PkwkEjEfHx/pPjY2NszAwIDt2rWLxcbGsvXr1zMul8uioqKqPe60adPYiBEjqtzWsWNHNnTo0Grvm5uby1q3bs169+7Nrl27xmJjY9mxY8fYjRs3GGOMnThxgvH5fLZr1y4WHR3NtmzZwng8Hrt06ZL0GACYpaUlO3LkCIuNjWULFy5kWlpaLCMjg5WVlbHjx48zACw6OpqlpKSwrKwsuR53Hx8fpqurKxPvyZMn2avNx5dffsk0NTWZl5cXCwkJYXfv3pV5/gkhylfRRp04cYKpq6uzx48fM8Yqv59nz57Nhg0bJnPfUaNGsalTpzLGGMvLy2PGxsZs3Lhx7P79++z06dOsdevWDAALDQ1ljMnfbnTs2JExxlhpaSnT1dVlS5cuZQ8fPmSRkZHs4MGDLDExkRUUFLAlS5awdu3asZSUFJaSksIKCgqqrOPu3buZuro62759O4uOjmZBQUFs27ZtjDHG4uPjZWJkrPwzCwC7fPkyY+zl50yHDh2Yn58fe/jwIUtPT2ddunRhq1atkjlXly5d2PLlyxljjCUnJzMjIyO2fPlyFhUVxUJCQtigQYNY//79a35SSL1QEksajFgsZkOHDmXOzs4sOztbZtuKFSuYk5OTTGKza9cupqWlxcRiMcvLy2N8Pp8dPnxYur2kpIRZWFiwTZs2McZeNi7//vuvdJ/169czACwuLk5a9uGHHzIvL69q45w4cSIbNGiQTNmyZcuYi4uL9LaNjQ2bPHmy9LZEImEmJiZsz5491R63piR23LhxzNnZudr7/vDDD0xbW1uaOL6uR48ebPbs2TJlY8aMkfmgASDTyObl5TEOh8POnTvHGHv5+GVmZsrsU9vjLu+HEZ/PZ2lpadXWkRCiXK+2Ud27d2cffPABY6zy+/nWrVuMx+Oxp0+fMsYYe/78OePz+czf358xVt5eGRgYsPz8fOl99uzZU68kNiMjgwGQnuN1r+5bEwsLC7Zy5coqtymSxP75558y9926dStr3bq19HZ0dDQDwCIiIhhjjH3++eds8ODBMvd5/Pix9MIBaRzUnYA0mBUrViAwMBCnTp2Cjo6OzLaoqCh4enrK/JTUs2dP5OXl4cmTJ4iLi0NpaSl69uwp3c7n89GtWzdERUXJHKtDhw7S/5uamkJDQwOtW7eWKUtLS6s2zqioKJnzVMQSGxsLsVhc5Xk4HA7MzMxqPG5NGGPSus+ZMwdaWlrSPwAICwuDm5sbDAwMFIq5psdGU1MT2traNcasyONeGxsbGxgbGyt0H0KIcmzcuBGHDh1CZGRkpW3dunVDu3bt8PPPPwMAfvnlF1hbW6NPnz4Aytujjh07QkNDQ3ofT0/PesVjYGCA6dOnw8vLC8OHD8d3332HlJQUhY6RlpaG5ORkvPXWW/WKBQDc3d1lbo8fPx6JiYm4efMmAODw4cPo1KkTXFxcAADBwcG4fPmyTNvetm1bAOXtLGkclMSSBnHs2DFs3rwZvr6+aNOmTaXtryZxr5YB5Qniq/+v7X58Pl/6/4qZAF7F4XBqnA2gpliqO488x61JVFQU7OzsAABr165FWFiY9A8ARCJRrcdQ9LGRJ2Z5Hncul1vp8alq4JampmYtNSCENBd9+vSBl5cXVqxYUeX2WbNmwcfHBwDg4+ODGTNmSNuEqtrL18nbbrzKx8cHgYGB6NGjB44dOwZHR0dp0iiP2tpRLrc85Xk1rupier09Mzc3R//+/XHkyBEAwNGjRzF58mTpdolEguHDh8u07WFhYYiNjZUm/6ThURJL6i0sLAwffPABNmzYAC8vryr3cXFxwY0bN2Qajxs3bkBbWxutWrWCg4MDBAIBrl+/Lt1eWlqKO3fuwNnZuUHjdXFxkTlPRSyOjo7g8XgNei4AuHTpEsLDw/Hee+8BAExMTODg4CD9A8qvoIaFheHFixdVHsPZ2bnKmBV5bAQCAQDIXG2W53E3NjZGbm4u8vPzpfu8OjCCEKKaNmzYgNOnT+PGjRuVtk2ePBlJSUnYsWMHIiIiMG3aNOk2FxcX3L17F4WFhdKy15PNurYbbm5uWL58OW7cuAFXV1dp0igQCGTarqpoa2vD1ta22mm7Kn4pevUKryJt2aRJk3Ds2DEEBgYiLi4O48ePl27r3LkzIiIiYGtrK9O+Ozg40Bf8RkRJLKmX9PR0jBw5Ev369cPkyZORmpoq8/f8+XMAwNy5c/H48WMsWLAADx48wKlTp/Dll1/C29sbXC4Xmpqa+Oijj7Bs2TKcP38ekZGRmD17NgoKCjBz5swGjXnJkiW4ePEivvrqK8TExODQoUPYuXMnli5dWu9jFxcXIzU1FU+fPkVISAjWrVuHESNG4J133sHUqVOrvd+ECRNgZmaGkSNHIiAgAI8ePcLx48cRGBgIAFi2bBkOHjyIvXv3IjY2Flu3bsWJEycUitnGxgYcDgd///03nj9/jry8PLkedw8PD2hoaGDFihV4+PAhjhw5UutMC4SQ5q99+/aYNGkSvv/++0rb9PX1MXr0aCxbtgyDBw+GpaWldNvEiRPB5XIxc+ZMREZG4uzZs9i8ebPM/RVtN+Lj47F8+XIEBgYiMTERfn5+iImJkX6ZtrW1RXx8PMLCwpCeno7i4uIqj7N69Wps2bIFO3bsQGxsLEJCQqT1E4lE6N69OzZs2IDIyEhcvXoVq1atkvvxGj16NHJycvDRRx+hf//+aNWqlXTbvHnz8OLFC0yYMAFBQUF49OgR/Pz88MEHH9SafJN6UEI/XNKCHDx4kAGo9s/Gxka6r7+/P+vatSsTCATMzMyMffrpp6y0tFS6vbCwkC1YsIAZGRkxoVDIevbsyYKCgqTbqxqYVNXgAXkGAPzxxx/MxcWF8fl8Zm1tzb799luZ7TY2NtIRrRU6duwoM5vC66ZNmyatt5qaGjM2NmYDBw5kP/30ExOLxTXGwxhjCQkJ7L333mM6OjpMQ0ODubu7s1u3bkm37969m7Vu3Zrx+Xzm6OjIfv75Z5n7A2AnT56UKdPV1ZWZdWHt2rXMzMyMcTgcNm3aNMZY7Y87Y+UDMhwcHJi6ujp755132L59+6odoEEIaZ6qGnyakJDAhEIhqyoduHjxIgPAfvvtt0rbAgMDWceOHZlAIGCdOnWSzn7y6qApRdqN1NRUNnLkSGZubs4EAgGzsbFhX3zxhbTtLCoqYu+99x7T09NjAGTatdft3buXOTk5MT6fz8zNzdmCBQuk2yIjI1n37t2ZSCRinTp1Yn5+flUO7Hr1c+ZVY8aMYQDYTz/9VGlbTEwMGzVqFNPT02MikYi1bduWLV68mGZqaUQcxmgyR0IIIYTIOnz4MBYtWoTk5GRpd6TqJCQkwM7ODqGhobSyFmkyasoOgBBCCCHNR0FBAeLj47F+/Xp8+OGHtSawhCgL9YklhBBCiNSmTZvQqVMnmJqaYvny5coOh5BqUXcCQgghhBCiclTiSuz69evB4XCwePHieh/rypUr6NKlC9TV1dG6dWvs3bu32n19fX3B4XAwcuTIep+XEEIIIYQ0nGafxN6+fRv79u2TWYmoruLj4zFs2DD07t0boaGhWLFiBRYuXIjjx49X2jcxMRFLly5F7969631eQgghhBDSsJp1EpuXl4dJkyZh//790NfXl9lWUlKCTz75BK1atYKmpiY8PDzg7+9f4/H27t0La2trbN++Hc7Ozpg1axY++OCDSvPbicViTJo0CWvWrJFZzpQQQgghhDQPzXp2gnnz5uHtt9/GwIED8fXXX8tsmzFjBhISEuDr6wsLCwucPHkSQ4YMQXh4eJXLngJAYGAgBg8eLFPm5eWFAwcOoLS0VLpk59q1a2FsbIyZM2fi2rVrtcZZXFwsM/GyRCLBixcvYGhoWGk5T0JIy8AYQ25uLiwsLKTLWZLGJ5FIkJycDG1tbWpfCWmh5G1fm20S6+vri5CQENy+fbvStri4OBw9ehRPnjyBhYUFAGDp0qU4f/48fHx8sG7duiqPmZqaClNTU5kyU1NTlJWVIT09Hebm5ggICMCBAwcUWopu/fr1WLNmjfyVI4S0GI8fP5ZZzYg0ruTkZFhZWSk7DEJIE6itfW2WSezjx4+xaNEi+Pn5QV1dvdL2kJAQMMbg6OgoU15cXAxDQ0MAgJaWlrR88uTJ0gFcr39zr5icgcPhIDc3F5MnT8b+/fthZGQkd7zLly+Ht7e39HZ2djasra3x+PFj6OjoyH2c5mbwtitIzirC4Vnd0NFKv/Y7EPIGycnJgZWVFbS1tZUdyhul4vGWp30Vi8WIjo6Gk5MTeDxeU4TX5KiOLQPVUZa87WuzTGKDg4ORlpaGLl26SMvEYjGuXr2KnTt34vDhw+DxeAgODq70QFQkr69eSa1o6MzMzJCamiqzf1paGtTU1GBoaIiIiAgkJCRg+PDh0u0SiQQAoKamhujoaNjb21eKVygUQigUVirX0dFR6SRWTV0TXCEXWtqqXQ9CGhP9pN20Kh5vedpXsVgMLS0t6OjotOjEgOqo+qiOVautfW2WSexbb72F8PBwmbIZM2agbdu2+PTTTyEQCCAWi5GWllbt7AEODg6Vyjw9PXH69GmZMj8/P7i7u4PP56Nt27aVzrtq1Srk5ubiu+++o5+wCCGEEEKaiWaZxGpra8PV1VWmTFNTE4aGhtLySZMmYerUqdiyZQvc3NyQnp6OS5cuoX379hg2bFiVx50zZw527twJb29vzJ49G4GBgThw4ACOHj0KAFBXV690Xj09PQCoVE4IIYQQQpRHZYfU+vj4YOrUqViyZAmcnJzw7rvv4tatWzVeLbWzs8PZs2fh7++PTp064auvvsKOHTvw3nvvNWHkhBDS8qxfvx5du3aFtrY2TExMMHLkSERHR8vswxjD6tWrYWFhAZFIhH79+iEiIkJJERNCVF2zvBJbldfngOXz+VizZo3CswL07dsXISEhcu9/8OBBhY5PCCFvoitXrmDevHno2rUrysrKsHLlSgwePBiRkZHQ1NQEAGzatAlbt27FwYMH4ejoiK+//hqDBg1CdHQ0DZAjhChMZZJYQgghzdf58+dlbvv4+MDExATBwcHo06cPGGPYvn07Vq5cidGjRwMADh06BFNTUxw5cgQffvihMsImhKgwSmIJIYQ0uOzsbACAgYEBgPJlv1NTU2UWnBEKhejbty9u3LhRbRL7+mIyOTk5AMpHOovF4hpjqNhe236qjOrYMlAdq963NpTEEkIIaVCMMXh7e6NXr17SQbEV0xtWteBMYmJitceqbjGZ6OhomfnAaxITEyNv6CqruddRwhi4r0yXdDEuDyl5ZRjQWhMW2uWrZUY9L8LuoBew0OZjeR9j6b67bmUgIasUE5IL0dlCBADIKRYjOLkQhiI1dDCrPJ+8qmruz2NDkKeOeXl5ch2LklhCCCENav78+bh37x6uX79eaVtVC87UNBfk64vJVEyC7uTkJNc8sTExMXB0dGzRc282lzoWl0mQmJEPc10RtNXL04ursc/xyR/30dpYE0dmdZPuu9I/EHefZKN/R3s4O5sAAF4IMhCf+Qx8gRDOzs7SfZP9AxH1PA+GpuZwdjYHANxOeIEtvwfB1lADF73dpPsuPnYX4U+z8dkQJwxyKf/ClJ5XjNN3U2Cuq44hrmbSfSUSBi63eczz3Jyex8aiSB0rfnGpDSWxhBBCGsyCBQvw119/4erVqzLLRZqZlScPqampMDc3l5anpaVVujr7quoWk+HxeHJ/2Cuyr6pq6joWlJQhNbsIrY1fXg0ftSMA0c9y8eNUdwz8L4HUUhfgeV4xRALZ+LxczdDBUg+t9DWk5e1b6eHnD7pBR8SX2Xf1cBfcjniIztb60nIhXw2erQ1hrqsus29SZiESMgrA5XKl5fEZhfj67APYGWni7Y6tpPv+75fbuPskC5+/44IRnV6WKxO9Vl/uIw9KYgkhhNQbYwwLFizAyZMn4e/vDzs7O5ntdnZ2MDMzw4ULF+DmVn7lrKSkBFeuXMHGjRuVETJRwKtXzG8+ysDE/TdhZaCBK8v6S/dxsdDB06xCZBeWSsvaWejg7wW9YK4r+5P/3H6VFyTS1xSgj6NxpfIOlrrg52rAROflMdys9XH0f90r7btjfCc8yylGG5OXybW2uhre7mAOYy3ZL0Pp+SVIzyuBvoZAWnb3cRaW/H4X/RyNseodl2ofD9I8UBJLCCGk3ubNm4cjR47g1KlT0NbWlvaB1dXVhUgkAofDweLFi7Fu3Tq0adMGbdq0wbp166ChoYGJEycqOXpSnR+vPcLRoCRM72mHKd1tAADO5jpgAIpLJSgqFUOdX37VbP3o9tg6tqNM9xANgRpcW+k2Wbw2hpqwMdSUKWtnoYtdEztX2vfQjK54lJ6PtmYvp3cLScrEw7Q8WBtoyOy77UIMjLWFeKeDOfReSXrlkZZbhICH6RjlZln7zkQhlMQSQgiptz179gAA+vXrJ1Pu4+OD6dOnAwA++eQTFBYWYu7cucjMzISHhwf8/PxojthmIimjAJej0zC5uw14//UVLSgRI+55Pm49ypAmsboiPm6vHAij165sViSzqkJPQ4DO1rIJ6chOrWBtoAGR4GVdCkrKsMc/DiViCbq3NpQmsdkFpRAJeBCo1bxu1A9XHuHXm4lwNtdBW7Oa+3ETxVASSwghpN4YY7Xuw+FwsHr1aqxevbrxAyIKKSmT4O0d15BbXAbXVrroYqMPoDypczLTRjdbA5n9X09gWwp9TQHecpbto10qZlg0sA0ikrNhb/zyKu93F2Px253H+GSIE6Z62lZ5vLTcIhy+lYjiMgnmHQ7BX/N7QVNIqVdDoUeSEEIIeYNkF5Ti9+DHSMjIx9cj2wMABGpcDG5nhuSsQpkvJNaGGrA21KjuUG8EXREf8/pX7sMb/jQLecVlMNF+2Vc3u7AUkck58LAzAJfLwb4rj1BUKgEAxD3Px6o/71fqckHqjpJYQggh5A2SWVCCr89EgcsBFg90lF5V/fb9Ds1myilVcOx/nghJypTp83s2PAXLT4Sjh70hvhvvhl9vyc6BfDL0KTzsDDC+m3VTh9siURJLCCGEtFCp2UX45WYCBDweFg1sAwCwNdLElO42cDLTlunHSgmsYrhcDtxf62aRX1wGbXU19HMyxr6rcdKrsK/68q8IdLTSg7M59Y+tL0piCSGEkBbq/tNs7LocB30NPj7qZy8dhPTVSFclR9YyzerdGlM8bZCWU4xB265UuY+0f+yCXtCi/rH1UvOQOkIIIYSoBLGE4e97yfCPTpOW9W9rghGdLLBuVHvpjAOkcQnVePjlZmKVV2ErPErPx9Lf7so1IJJUj5JYQgghpAX4OTAB84+EYv3ZB5BIypMjHpeD78a7YWh7c0pim0h6XjF+CUysdb/zEakYvfsGikrFTRBVy0RJLCGEEKKCysQSZBWUSG+P7mwJS30RhrY3Q6mk+quApHHtv/oIhXImpmGPsxD3PK+RI2q5qDMGIYQQomJuPcrAZyfC4WKujY86ls8uoCvi48qy/nTFVck+7GuPmb1fLrvMwcvno2JmLQ6AiORsqHG5sP1vhbFSMcOG89H4oJcdzHVFTRmyyqIklhBCCFExOiI+EjLykVNYiiltTaTllMAqn4GmfMvS9nF8+byJxWKcj83F/juZOB+RCv+l9GVEHpTEEkIIIc1cQno+HqXnYUDb8tWknM11sHtiZ/SwN8DjR7FKjo40BEcjIbra6mOkWyuZBJYxRosjVIP6xBJCCCHN2N3HWRi87SoW+4YhI69YWj60vTlN0dSCOBkJcXRWN0zo+nIhhNCkTLy7MwDBiS+UGFnzRUksIYQQ0oy5ttJFG1MtdLTSk3vAEFFNHA5HZtGJLX4xCH+ajaNBj5UYVfNFX+EIIYSQZiQ9rxhHbyVh/gAHcDgc8LgcHJ7lAV0Rn35WfsNsH98J3/0bi4VvtZGWlYolUONy6LUASmIJIYSQZqOkTIIROwPwNKsQhlpCTPQo/2lZT0O+wUKkZTHSElZaXW3d2SgkZRRg/ej2MNFRV1JkzQN1JyCEEEKaCYEaFx/0soOzuQ46WOoqOxzSzKTnFeNoUBIuPkjD/eRsZYejdHQllhBCCFGiy9FpcDDWgpWBBgBgeg9bTPW0AZ9H15mILCMtIf6a3wv/Rj2TzlTxJqN3CCGEEKIkvwQmYIbPbSzyDUWZuHyVLR6XQwksqZajqTbm9nOQ3s4vLsOsQ7cRlZKjxKiUg94lhBBCiJL0czKBtroaOljqQcyYssMhKmizXzT+jUrDR78GS78IvSmoOwEhhBDShNLzimGkVb5UrJWBBi4t6QdjbaGSoyKqasGANnj8ohAf9m0NtTfsCv6bVVtCCCFESSQShp2XYtF302VEJr/86ZcSWFIfBpoC/DjNHV1tDaRl959mIyE9X4lRNQ1KYgkhhJAmwAAEJWQiv0SMfyJSlR0OaaGeZhVixsHbGLk7APeftuwZDKg7ASGEENIEeFwOdozvBP/o5xjp1krZ4ZAWis/jwEJPhOJSMWyNNJUdTqOiJJYQQghpJFEpObj3JAvjur5ctIASWNKYTLTVcex/3ZFdWAot4cs0jzHW4lb5oiSWEEIIaQTx6fkYszcQ+SVlMNFRR38nE2WHRN4Q6nwe1Pk86e2z4Sk4dz8VW8Z0hECt5fQkpSSWEEIIaQS2hhoY5dYKMc9y0dlKX9nhkDdUTlEpPj1+D7lFZXCz0sMHveyUHVKDoSSWEEIIaQQcDgdr3m2HMglrUVe/iGrRUedj18TO+DP0KaZ62ig7nAZFSSwhhBDSQH65mYiHz3Kx+t124HA44HI5EHBbVj9Eonr6OBqjj6OxTFlRqVimy4Eqoq+GhBBCSAN4mJaLL07dx6HARFx6kKbscAip1q7LDzFyVwAy80uUHUq9UBJLCCGENAAHE21sHN0BH/ZtjQFtaRAXaZ6yC0px6EYCHqTm4tx91Z6vmLoTEEIIIfXw6tRFY7taKTkaQmqmq8HHkdkeCHiYgYke1soOp17oSiwhhBBSRxejnuGDg7dRWCJWdiiEyM3BRBvTethKb4slDCVlEuUFVEeUxBJCCCF1kF9chqW/38Xl6Of4OTBB2eEQUielYgkWHwvD4mOhkEiYssNRCHUnIIQQQupAU6iGH6e545fAxBY19yZ5s0Sl5OCf+6kQM4awJ1nobK06cxpTEksIIYTUURcbA3SxMVB2GITUWQdLPWwZ2xF6GnyVSmAB6k5ACCGEyK2kTIIvT91HanaRskMhpMEM72iB3m2Ma9+xmaEklhBCCJHTFr9oHApMxMT9N1EmVr2BMITUJiOvGB8cvI2HaXnKDqVWzTKJ3bNnDzp06AAdHR3o6OjA09MT586dq/dxr1y5gi5dukBdXR2tW7fG3r17q93X19cXHA4HI0eOrPd5CSGEtAyTPGzgbK6DFcOcocZrlh+hhNTLV39H4tKDNCz5/S4Ya94DvZpln1hLS0ts2LABDg4OAIBDhw5hxIgRCA0NRbt27ep0zPj4eAwbNgyzZ8/Gr7/+ioCAAMydOxfGxsZ47733ZPZNTEzE0qVL0bt373rXhRBCSMthbaiBvxf0Ao+WkiUt1Mq3XfA8rxirh7eTzn/cXDXLr5HDhw/HsGHD4OjoCEdHR3zzzTfQ0tLCzZs3AQAlJSX45JNP0KpVK2hqasLDwwP+/v41HnPv3r2wtrbG9u3b4ezsjFmzZuGDDz7A5s2bZfYTi8WYNGkS1qxZg9atW8sVb3FxMXJycmT+CCGEtAzZBaUyP61SAktaMmNtIQ7P6o42ptrKDqVWzTKJfZVYLIavry/y8/Ph6ekJAJgxYwYCAgLg6+uLe/fuYcyYMRgyZAhiY2OrPU5gYCAGDx4sU+bl5YU7d+6gtLRUWrZ27VoYGxtj5syZcse4fv166OrqSv+srGjFFkLIm+fq1asYPnw4LCwswOFw8Oeff8psZ4xh9erVsLCwgEgkQr9+/RAREaGcYOXEGMOKk+F45/trOH03WdnhENLkHj3PQ2Ry87w412yT2PDwcGhpaUEoFGLOnDk4efIkXFxcEBcXh6NHj+L3339H7969YW9vj6VLl6JXr17w8fGp9nipqakwNTWVKTM1NUVZWRnS09MBAAEBAThw4AD279+vUKzLly9Hdna29O/x48eKV5gQQlRcfn4+OnbsiJ07d1a5fdOmTdi6dSt27tyJ27dvw8zMDIMGDUJubm4TRyq/olIJsgpLUCZmsDLQUHY4hDSpOwkv8O7OAMw/GtIsV6Vrln1iAcDJyQlhYWHIysrC8ePHMW3aNFy5cgURERFgjMHR0VFm/+LiYhgaGgIAtLS0pOWTJ0+WDuB6vW9HRYdlDoeD3NxcTJ48Gfv374eRkZFCsQqFQgiFQoXrSAghLcnQoUMxdOjQKrcxxrB9+3asXLkSo0ePBlA+3sHU1BRHjhzBhx9+2JShyk0k4OGXDzxw90kWOlnpKTscQpqUg4kWNIU8GGoKkFtUCpGAp+yQZDTbJFYgEEgHdrm7u+P27dv47rvvMGDAAPB4PAQHB4PHk30wK5LXsLAwaZmOjg4AwMzMDKmpqTL7p6WlQU1NDYaGhoiIiEBCQgKGDx8u3S6RlE+foqamhujoaNjb2zd4PQkh5E0QHx+P1NRUmW5dQqEQffv2xY0bN6pNYouLi1FcXCy9XTHmQCwWQyyu+cpQxfba9pNHh1Y6DXKchtaQdWyuqI7Koy3k4egsD1jqi8DjcuoVnyJ1lPc8zTaJfR1jDMXFxXBzc4NYLEZaWlq1swdUJL+v8vT0xOnTp2XK/Pz84O7uDj6fj7Zt2yI8PFxm+6pVq5Cbm4vvvvuO+rkSQkg9VFxEqKpbV2JiYrX3W79+PdasWVOpPDo6WuZXt5rExMQoEGm5U1E5KJUwjHLWUYmBXHWpo6qhOipPTFoDHkuOOublyTdHbbNMYlesWIGhQ4fCysoKubm58PX1hb+/P86fPw9HR0dMmjQJU6dOxZYtW+Dm5ob09HRcunQJ7du3x7Bhw6o85pw5c7Bz5054e3tj9uzZCAwMxIEDB3D06FEAgLq6OlxdXWXuo6enBwCVygkhhNRNVd26aprGZ/ny5fD29pbezsnJgZWVFZycnKS/tFVHLBYjJiYGjo6OlX65q8nTzEIc8r2GkjIJujnbwcvZtPY7KUld66hKqI7Ng1jC8PPNRKRmF2H50LaK31+BOso7y1OzTGKfPXuGKVOmICUlBbq6uujQoQPOnz+PQYMGAQB8fHzw9ddfY8mSJXj69CkMDQ3h6elZbQILAHZ2djh79iw+/vhj7Nq1CxYWFtixY0elOWIJIYQ0PDMzMwDlV2TNzc2l5WlpaZWuzr6qujEHPB5P7g97RfYFACtDTXw90hVXY55jaHvzZj9XJqB4HVUR1VG57j3NxNdnHoDDAUa6WcK1lW6djiNPHeV9DBROYs+fPw8tLS306tULALBr1y7s378fLi4u2LVrF/T19RU9ZCUHDhyocTufz8eaNWuq/ImpJn379kVISIjc+x88eFCh4xNCiLI1RRtdF3Z2djAzM8OFCxfg5uYGoHzO7ytXrmDjxo1Kiak6HA4HY92tMNadupERUsHNWh8f9LSDg4kWXMxr/hWkqSg8xdayZcukl3nDw8OxZMkSDBs2DI8ePZL5yYcQQkjTU2YbnZeXh7CwMOng2vj4eISFhSEpKQkcDgeLFy/GunXrcPLkSdy/fx/Tp0+HhoYGJk6c2KhxyauoVAyxpHkvs0mIMn0x3AUTPazBbSb9xBW+EhsfHw8XFxcAwPHjx/HOO+9g3bp1CAkJqfHnfEIIIY1PmW30nTt30L9/f+ntiqR52rRpOHjwID755BMUFhZi7ty5yMzMhIeHB/z8/KCt3TxWBtp0Phq34jOwfnR7dLDUU3Y4hDRrjDEUl0mgzlde9weFk1iBQICCggIAwL///oupU6cCAAwMDGi5VUIIUTJlttH9+vWTzr9dFQ6Hg9WrV2P16tWNGkdd5BaV4njIE2QXliKroLT2OxDyBgt/ko3PT91HOwsdfDOqvdLiUDiJ7dWrF7y9vdGzZ08EBQXh2LFjAMqnTLC0tGzwAAkhhMiP2ui60Vbn4+KSvvgnIhV9HI2VHQ4hzVphqRhhj7MQ9zwPnwxpC10RXylxKNwndufOnVBTU8Mff/yBPXv2oFWrVgCAc+fOYciQIQ0eICGEEPlRG113RlpCTPKwUXYYhDR73ewM8NVIV1xc0ldpCSxQhyux1tbW+PvvvyuVb9u2rUECIoQQUnfURiuGMYbUnCKY64qUHQohKmVKd+V/4ZMric3JyZFOKl1bn6raJp8mhBDSsKiNrrvARxmYciAIY92tsG6Uq0rMCUtIc/M8txjG2pXnc25sciWx+vr6SElJgYmJCfT09Kp8k1esutLc1v0lhJCWjtrourvxMANiCQOfx6EElhAFMcaw6s/7OHb7MX6f4wk366adh1quJPbSpUswMDCQ/p/e6IQQ0nxQG113S72cMMjFFKY66soOhRCVw+FwUFImQZmE4dKDtOaZxPbt21f6/379+jVWLIQQQuqA2uj66Wilp+wQCFFZC99qg/HdrNHFpulXA1R4doLPP/+8yp+jsrOzMWHChAYJihBCSN1QGy2frIISFJVS1wpC6svKQEMpCSxQhyT2559/Rs+ePREXFyct8/f3R/v27ZGQkNCQsRFCCFEQtdHy2eIXg14bL+Gvu8nKDoWQFqOkTIKCkrImO5/CSey9e/dga2uLTp06Yf/+/Vi2bBkGDx6M6dOn4/r1640RIyGEEDlRG107iYQh8FEG0vNKYKgpUHY4hLQIJ0KeoNfGS/jxWnyTnVPheWJ1dXXh6+uLlStX4sMPP4SamhrOnTuHt956qzHiI4QQogBqo2vH5XJwflFvXIl5jh72hsoOh5AWgcflIC23GGfDU7BggEOTDDBV+EosAHz//ffYtm0bJkyYgNatW2PhwoW4e/duQ8dGCCGkDqiNrp0aj4u3nE1pJgdCGshQV3PsndwZf83v1WTvK4WT2KFDh2LNmjX4+eefcfjwYYSGhqJPnz7o3r07Nm3a1BgxEkIIkRO10TUrFUuUHQIhLZJAjYshruYQqNXp+midKHymsrIy3Lt3D++//z4AQCQSYc+ePfjjjz9oWUNCCFEyaqNrtvZ0JEbsCkDAw3Rlh0JIi8YYa/RzKNwn9sKFC1WWv/322wgPD693QIQQQuqO2ujqiSUMZ8JT8CK/BJIm+IAl5E106cEz7PGPw9vtzTG9p12jnkvhJLYmRkZGDXk4QgghDehNb6N5/w3ouhD1DD3s3+zHgpDGEp9egNsJmQDQ/JJYsViMbdu24bfffkNSUhJKSkpktr948aLBgiOEEKIYaqNrZqKjjkkeNsoOg5AWa1h7MzDGMMTVrNHPpXCf2DVr1mDr1q0YO3YssrOz4e3tjdGjR4PL5WL16tWNECIhhBB5URtNCFEmc10RZvVuDUt9jUY/l8JJ7OHDh7F//34sXboUampqmDBhAn788Ud88cUXuHnzZmPESAghRE7URlftdsILeP8WRgO6CGlBFE5iU1NT0b59ewCAlpYWsrOzAQDvvPMOzpw507DREUIIUQi10VW7EPkMJ0Ke4kTIU2WHQkiLxxjD5QdpWP1XBPKLG28ZWoWTWEtLS6SkpAAAHBwc4OfnBwC4ffs2hEJhw0ZHCCFEIdRGV82rnRlm9bLD8I7myg6FkDfCF3/dx8EbCQiMy2i0cyg8sGvUqFG4ePEiPDw8sGjRIkyYMAEHDhxAUlISPv7448aIkRBCiJyoja5aFxt9dLHRV3YYhLwROBwO3utsiWc5xTDTVW+08yicxG7YsEH6//fffx9WVlYICAiAg4MD3n333QYNjhBCiGKojX7zMMaQW1SG/NIS5BSWIreoDAUlZRBLGMokDBJJ+Zy4Qj4XQjUehGpcaKvzYaApgL4GH2q8plthibw5Fg90bPRz1HueWA8PD3h4eDRELIQQQhoYtdFAUPwLGGmrw95YC1xu06zp3tCyC0rx8HkuHqbl4VF6PlKyipCaXYTk7EKkZheiTJJUp+NyOICeiA9DLSFMdYSwM9KEraEmWhuX/2tjqAmeij5mpOVr0MUOCCGEkOZm1akIxD3Px4Fp7njL2VTZ4dQqLacIoY+zEJqUhfCnWYh5lofnucW13o/P40BXxIeOOh8iAQ9qXA64XA7UuBwwBpSIJSgulaCoTIycwlJkFZaCMSCzoBSZBaV4mJaHgIey/Rc1BDy4Wuiig6Uu2lvqoqutASz0RI1VddICpWQXAgBMtAQNfmxKYgkhhLRYpWIGY20hUrKL0Nm6efaJfZJZgGux6Qh4mI7QpCw8zSqscj8LXXXYm2jB3lgLrfREMNNVh4m2APlpT+DRyQUaQj44HPmvmpaJJcgsKMWL/BJk5BXjaVYhEjLyEZ+ej0fP85GQkY+CEjGCEl4gKOHlIhl2RproYW+IXg5G6O1oDC0hpRKkahvOPcDeK3GY3dsOnw1xavDj0yuPEEJIi8XncXB4ZjcwcJpN38+iUjECHqbjWmw6rsY8x6P0fJntXA7gaKoNN2s9dLTUg7O5DuxNtKpMFsViMaIKUqHO5ymUwAKAGo8LY20hjLWFALQrH1vCEPc8D/eeZOPekyzcfZyF+8k5iE8vT3QP30qCQI2Lvo7GGOpqhrecTaEr4isUA2nZHE21wONykFlQ2ijHpySWEEJIi6fsBLaoVIyrMc9xJjwF/0Y+Q36JWLqNx+XAzUoPvdoYoZudATpY6jWLq5s8LgeOptpwNNXG+10sAQA5RaW49egFAh6mwz86DQkZBbgQ+QwXIp+Bz+PgrbammOBhjd4ORirb/5g0nKGu5vBqZwZNoRrEYnHtd1CQwu+S6dOn44MPPkCfPn0aPBhCCCH1Q2108yGRMFx7mI4/Q5/iQuQz5L0y6buFrjr6tzVB7zbG8LQ3VJkrmDrqfAxyMcUgF1Mw5oIHqbk4dz8V58JTEJuWh/MRqTgfkQpLfREmdLPGJA9r6Gk0fF9IohpEAl6jHl/hJDY3NxeDBw+GlZUVZsyYgWnTpqFVq1aNERshhBAFURsta+n5VOgG5GLd6PawN9ZqknOm5Rbh9ztPcDQoCU8yX/ZvNddVx7D25ni7gzk6Weqp/JVKDocDZ3MdOJvrwHuQI6JScnDs9mOcCHmCJ5mF+PafaOy+/BATPawxq3drmOo03nyh5M2kcBJ7/PhxZGRk4Ndff8XBgwfx5ZdfYuDAgZg5cyZGjBgBPl81vk0SQkhLRG30S4UlYkSnF4OlF0NHvXHrzRjD9YfpOHwzCf9GPUPZf3Oz6qirYZRbK7zbyQJuVvoqn7jWxNlcB6vfbYfPhrbFmXsp2H/tER6k5mL/tXgcupGI8d2ssPCtNjDSenNXjnsT/Rv5DH8EP0FXWz14NPDYyjp1EjI0NMSiRYsQGhqKoKAgODg4YMqUKbCwsMDHH3+M2NjYho2SEEKI3KiNLqfG42DzEDN8P77Tf4OXGp5YwnD6bjLe3nEdUw4E4XxEKsokDF1s9LFlTEcErRyINSNc0cXGoEUnsK9S5/PwXhdLnFvUGz7Tu6KrrT5KxBL8HJiIft/6Y9flhygqbfj+kaR5SsjIx/mIVAQnZjX4sevVczwlJQV+fn7w8/MDj8fDsGHDEBERARcXF2zatOmNXuKQEEKU7U1vo/k8LpyMhHB2NmvwYxeXiXEy5Cl+uPoI8f/NLqAh4OH9LpaY6GGNtmY6DX5OVcPhcNC/rQn6tzXBjbh0rD/7AOFPs/HtP9H47c5jrBvVHj0djJQdJmlkvdoY4cvhLnA20wIKnzXosRVOYktLS/HXX3/Bx8cHfn5+6NChAz7++GNMmjQJ2trlU3T4+vrio48+avENJCGENDfURjeuUrEER4OSsOvyQzzLKV+AQE+Dj+k9bDHN0xb6mjSIqSo97I1wal5P/HU3GRvOPUBiRgEm/XgL73W2xBfDXVRmYBtRXFszHbQ10ymfDi5KyUmsubk5JBIJJkyYgKCgIHTq1KnSPl5eXtDT02uA8AghhCiC2uiXAuIyEJWUDz2LIlgaaNbrWIwx/BORio3no6VXXs101DGrtx0mdLOGZjOYEqu543I5GOnWCm85m+Dbf6Lxy81EHA95glvxGfh+ghvcmuliFKT5Uvhdt3XrVowdOxbq6tWPMtTX10d8fHy9AiOEEKI4aqNfOhqUhHP308HVSsXsPvZ1Pk5wYibWnY1CcGImAMBIS4BFb7XB2K5WEKo17hRCLZG2Oh9rR7hiRCcLLD4WhscvCjFmbyA+G9oWM3vZKbxoA2n+Hr8oQGp2ASQlkgY9rkIDu8rKyvDBBx/g4cOHDRoEIYSQ+qM2WpazmQ46mAphol23n/hTsgsx93Aw3ttzA8GJmVDnc7FggAP8l/XHFE9bSmDrqYuNAc4s7I2325ujTMLw9ZkofHY8HKXihk10iPJ9cPA2xvxwC7EZxQ16XIWuxKqpqcHGxqZRVl0ghBBSP9RGy5rX3x6thXn49t+HsDTQQhcb+X6uFksYfr2ZiG//iUZecRk4HGBMF0t4D3KCmS7NddqQdNT52DnRDV1v6GPt35E4ducxnmYVYs/kztBu5GnRSNOx1BehsFQMMWvY4yo8xdaqVauwfPlyvHjxomEjIYQQUm/URsv69W4WEjMKMGHfTZwMfVLr/tGpuXh/7w18+VcE8orL4Gath7MLe2PT+x0pgW0kHA4H03vaYf9Ud2gIeLj+MB3TfgqSWeGMqDafGd1wZWlfdLEQNehxFe4Tu2PHDjx8+BAWFhawsbGBpqZsZ/mQkJAGC44QQohiqI2WtaSnEfbdK8aFqDR8fOwuYp/lYelgp0pzthaVirHr8kPsvRKHUjGDllANnwxxwiQPG/DekPldle0tPQku5/ljAqcDQpKAGT5BODijG9TV6PEnVVM4iR05cmQjhEEIIaQhqEIbvXv3bnz77bdISUlBu3btsH37dvTu3btRziXic7F7ohu2X3qIXZfjsNs/Dg/T8rBtXCfpjAKxz3Kx4GgoHqTmAgAGOpviq5HtYK7bsFeNSC1SUmC6bSN+OOuP0beKcDshEx8fC8OuCZ2UHRmpp/P3U7D931jEpeXC3uQFFg9sgyGu5vU+rsJJ7Jdfflnvk9Zm/fr1OHHiBB48eACRSIQePXpg48aNcHJyqvexr1y5Am9vb0RERMDCwgKffPIJ5syZU+W+vr6+mDBhAkaMGIE///yz3ucmhJDG1hRtdH0cO3YMixcvxu7du9GzZ0/88MMPGDp0KCIjI2Ftbd0o5+RyOVjm1RYOJlr49Hg4/CKf4b09N/DLzG64EJmGtX9HoKhUAiMtAb4a4YohrmY0Ql6J2phq4+CM9piw7xb8Ip9h67+xeNtK2VGRujp/PwVzfn35C1B0ai7m/BqCvZM71zuRbZYT2125cgXz5s1D165dUVZWhpUrV2Lw4MGIjIys9NOYIuLj4zFs2DDMnj0bv/76KwICAjB37lwYGxvjvffek9k3MTERS5cubbSrA4QQ8ibaunUrZs6ciVmzZgEAtm/fjn/++Qd79uzB+vXrK+1fXFyM4uKXI5pzcnIAAGKxuNYBbBXbK/59t4M5LPXU8dHhUOiJ+Pj8z3Ccj0gDAPR2MMTmMR1gpCWERKI6o+Nfr6PKSUkp/wPACQ0FF4Dkzh10chNjt7MEy2++wJ4rAL+7ARwdVbSOclD557EG2/+VXeaaAeBwyssHOZtUeR95HweFk1ixWIxt27bht99+Q1JSEkpKSmS2N8RggvPnz8vc9vHxgYmJCYKDg9GnTx8AQElJCVatWoXDhw8jKysLrq6u2LhxI/r161ftcffu3Qtra2ts374dAODs7Iw7d+5g8+bNMkmsWCzGpEmTsGbNGly7dg1ZWVn1rhMhhDSFpmij66qkpATBwcH47LPPZMoHDx6MGzduVHmf9evXY82aNZXKo6OjoaWlJdd5Y2JipP8XAfjIXQe7g14go0ACHgeY2EEXwxxFeP74EZ7LX51m5dU6qhKT3bthsmePTBn3ww8BAAMBJPafhK+6TcD+Oy/gaRUFbWHLntZMVZ/HmsSl5VYqY6y8PCoqqsr75OXlyXVshZPYNWvW4Mcff4S3tzc+//xzrFy5EgkJCfjzzz/xxRdfKHo4uWRnZwMADAwMpGUzZsxAQkICfH19YWFhgZMnT2LIkCEIDw9HmzZtqjxOYGAgBg8eLFPm5eWFAwcOoLS0FHx++XQea9euhbGxMWbOnIlr167VGl91VwoIIaSpKaONlld6ejrEYjFMTU1lyk1NTZGamlrlfZYvXw5vb2/p7ZycHFhZWcHJyQk6Ojo1nk8sFpcnBXrmiHlWgAcpObgc8xyxaeUrblnqiZBfXIIj4dn49W42BDxAXY2H1saaaGuuAydTbTiaaaGtmTZ0Rc1zOdmKOjo6OoLHU8EEb8UKiGfMAPDfldgPP4Tkhx/A3NxwKDARe2MKweUAs7oYoEt7Z9WsoxxU/nmsgb3JC2l/8wocDuBgog1nZ+cq7yNvHqVwEnv48GHs378fb7/9NtasWYMJEybA3t4eHTp0wM2bN7Fw4UJFD1kjxhi8vb3Rq1cvuLq6AgDi4uJw9OhRPHnyBBYWFgCApUuX4vz58/Dx8cG6deuqPFZqamqVjWdZWRnS09Nhbm6OgIAAHDhwAGFhYXLHWN2VAkIIaWpN3UbXxev9TRlj1fZBFQqFEAqFlcp5PF6lD/v0vGJEpeT895eLR2k5+Ka/Acb8cAuFpbITVLpa6ODo/7pj56WH+OHqIwBAsRgoFosR+iQHoU9kP0QtdNWxf5o72lnoKlzfplDV46ESLC3L/wDgv/i57u5IsXfGt39loFBLhG1jOqCNIFt166iAlljHxQPbyPSJ5XDKr8QuGlh9wi7vY6DwPLGpqalo3749AEBLS0t6lfSdd97BmTNnFD1crebPn4979+7h6NGj0rKQkBAwxuDo6AgtLS3p35UrVxAXFyeNreLv1YFbVTWeFeW5ubmYPHky9u/fDyMjI7ljXL58ObKzs6V/jx8/rk+VCSGkzpq6jVaEkZEReDxepauuaWlplS4w1MXuy3GYciAI684+wMnQp4hJK/9JsqKdr6AlVMMfH3lCW52Puf0coCWo/QOzr5NJs01gWyJzXRF+n+OJlcOc8W5HC2WHQ+phiKs53u/cCkB50ulkqo29k7tgiKtZvY+t8JVYS0tLpKSkwNraGg4ODvDz80Pnzp1x+/btKr8t18eCBQvw119/4erVq7Cs+KYGQCKRgMfjITg4uFK2XtFH6tUrqRU/OZmZmVXZeKqpqcHQ0BARERFISEjA8OHDZc4FlK+EEx0dDXv7yutvV3elgBBCmlpTttGKEggE6NKlCy5cuIBRo0ZJyy9cuIARI0bU+/ifDW2L4KRM3H2cJS1LyS3F63PmfzLECer88o8/XQ0+Puhlhx2Xql+q19lcB18Od6l3fKQW5ubI/2wlNM3LR6y7ttKFayvdFjnY6U3jaKYNAOhrp4kfZ/VssKvNCiexo0aNwsWLF+Hh4YFFixZhwoQJOHDgAJKSkvDxxx83SFCMMSxYsAAnT56Ev78/7OzsZLa7ublBLBYjLS2t2tkDHBwcKpV5enri9OnTMmV+fn5wd3cHn89H27ZtER4eLrN91apVyM3NxXfffQcrK5rjgxDSvDVFG10f3t7emDJlCtzd3eHp6Yl9+/YhKSmp2qkOFSFQ42LXRDe8veM6sgtLUSZm+PhsCl69DmuqI8RYd9m2/INedvgpIKHKFaI0BTzsntQZ6vyW9RNvc8MYw/eRedgn6I1jTAPtlB0QaVD5xeVfRET8hp26TuEkdsOGDdL/v//++7C0tMSNGzfg4OCAd999t0GCmjdvHo4cOYJTp05BW1tbevVUV1cXIpEIjo6OmDRpEqZOnYotW7bAzc0N6enpuHTpEtq3b49hw4ZVedw5c+Zg586d8Pb2xuzZsxEYGIgDBw5Iuyqoq6tL+91W0NPTA4BK5YQQ0hw1RRtdH+PGjUNGRgbWrl2LlJQUuLq64uzZs7CxsWmQ41vqa2DLmI6Y9fMdSBiQ91pf2I/62ldKSPU0BJjewxY7L1e+Grvx/Q6wM9KERMIQkpQJd1uDSvuQ+iksEWPln+E4EfIUAOAf/Zy6brQwFV8QRWoK92KtUb3nie3evTu6d+/eELFI7flvuo3Xp8vy8fHB9OnTpf//+uuvsWTJEjx9+hSGhobw9PSsNoEFADs7O5w9exYff/wxdu3aBQsLC+zYsaPSHLGEENJSNEYbXV9z587F3LlzG+34A11M8b8+rXHgWvmALR4HEDPARFuI8d2qXlBhZi87+ATEI7/k5U/XU7rb4J0O5f0x/w5PwcKjoejjaIzlQ9vC2bzmmRGIfGKe5WLe4RDEpuWBx+VgzbvtMLl7w3yhIc1H/n9JrAa/GSSxMTEx8Pf3R1paWqVJoRtiCpfXO+FXhc/nY82aNQrPCtC3b1+F1g4/ePCgQscnhBBla+w2WhUs83KCb1AScorKwOUCYjHwUb/KV2Er6GsKML2nLXZdLh8c7NpKB6veeTn9z9PMQvB5HFyNeY5rsc/xfmdLzB/gABvDui/A8yYTSxh+vZmI9eeiUFQqgbG2EN+N64QeDvIPqiaqI7fovyuxyu5OsH//fnz00UcwMjKCmZns0nwcDueNaSAJIaQ5oja6HJ/HxfKhTkhNTcXe2xkw1hZiQjVXYSvM6tUaBwMSwOVwsGtiZwjVXia8H/Wzx7D2Zth0PhpnwlPwe/ATHA95gnc6WOCjfvZ0ZVZBZ8NT8OVfEQCA3m2MsG1cJxhp0QDplup5bvlc+nrqDdu3XOEk9uuvv8Y333yDTz/9tEEDIYQQUn/URr801t0KUVF52HfnBeZU0Rf2dfqaAkzrYYv2rXSrvMJqY6iJXZM6Y1ZSJr67GAv/6Of4624yUrIL8fucHo1VjRZDImHgcsu/VL3d3hy/Bz/BQGcTTPawkZaTlikttwgAYCBSchKbmZmJMWPGNGgQhBBCGga10ZV9Mtip2r6wr/t4kCP4vJr77blZ6+PgjG6ISM7GHv84vNfl5RSQz3KKcCX6Od7paA4NQb2HnbQIBSVl+CUwEX8EP8Gp+T2hIVADl8vBoRldq13kgrQcjDE8yym/Emug0bBJrMI9bMeMGQM/P78GDYIQQkjDoDb6pdyiUoQkF8LSQAMiORY0AFBrAvuqdha62DmxM/o7mUjLfIMe45Pj9+Cx7iK+OHUfD1Lf3GXIswpKsP3fGPTYcAnrzz1AbFoefr/zRLqdEtg3Q25xGQpLywdMKv1KrIODAz7//HPcvHkT7du3B5/Pl9neHJY0JISQNxW10S9Fp+bhi0tpsNLPxaB25k1yTlMdIawNNJD0ogA/Bybi58BEdLLSw7sdLTCsvTnMdNWbJA5lik7NxdGgJPx25zEK/pvtwdZQA/P6O2B0Z8ta7k1amuJSCd7taIGMvGKoK3uKrX379kmXeL1y5YrMNg6H80Y1kIQQ0txQG/2Spb4I1rp8OJppgzHWJFf+xnezxlh3KwTEpePIrSRciHyGsMdZCHuche3/xiD480EKXe1VNRl5xRi24xrEkvJZhpzNdTC3nz2GtTcHj/q9vpGMtYXYMaF8kaqoqKgGPbbCSWx8fHyDBkAIIaThUBv9kpmuOnYPt4Czs3OT/nTN5XLQu40xercxRlpuEc7cS8GZeymwNtSQJrCMMcw4eBsu5jro3cYYXWz0IWjgq1SN7UV+CS5EpiLmWR4+f6d8WV5DLSG82plCIgEmelijdxsj6jZAGg31OieEEEIaiYm2Omb0tMOMnnbSq5MA8DAtD/7Rz+Ef/Ry7/eOgIeDBs7UhutoZwM1KD+0tdZvdwLDiMjFCk7IQ8DAdAQ/TcfdJtrROs3rbwVxXBADYOaEzzTZApJ7lFMFQU4DGeEXI9Q7x9vbGV199BU1NTXh7e9e479atWxskMEIIIfKhNrpmjDEUlJQpPSl89ed0Ex11bB3bEddi03Et9jnS80pw8UEaLj5IAwDM7WePT4a0BQBkF5QiIiUbbUy0YaQlaJIrm0WlYvC4HOmV431X47DZLwYlZbKLZ7iY62CoqxkEr3SRoASWvGraT0GIT8/HT9O6oKEXE5brHR0aGorS0lLp/6tDPxkQQkjToza6ev7x+Zjwx0X0aWOMXZM6KzscKV0RH6M7W2J0Z0tIJAxRqTkIeJiO0KQshCZlwc1aX7rvncQXmHnojvR+9saasNATwVxXHabaQliplaJibbGiUjFKxZLyaaw4ss85YwyMvUwy03KKEP40Gxn5JcjIK0FyViESMvLx6Hk+krMLcXimh3QFLUNNIUrKJDDSEqKngyF62huhh4MhLPU1muYBIyqpTCxBak4RissksDbQQHZKwx5friT28uXLVf6fEEKI8lEbXT1ddS5yi8oQ/jRb2aFUi8vloJ2FLtpZvLxO9ery6yVlEtgYls94kF1YipCkLIQkZUm3f9b75VKt/0Y9w/wjL7/I8Lic8ivADCgRS7BnUmcMbV8+U8P1h+nw/u1utXElvihAxRIOA11M4b+0H2wMNd7IL0OkbtR4XISsGoTEFwUw1xUqJ4klhBBCVJGjoRAcDpD0ogDpecUqs7Tpq4ni0PbmGNreHEWlYjx6no+EjHykZBchJasQydmFsNR5uW/FGvUVxBIm0xe3+JXuAK30RGjfSheGWgIYaApgqqMOOyNN6Z+hpkC6r66ID12R7HRthMiDy+XAzkgTYrG4wY+tcBI7atSoKr+FcTgcqKurw8HBARMnToSTk1ODBEgIIUR+1EbL0hRw4WCshdi0PIQmZWGQi6myQ6ozdT4PLhY6cLHQkZa9Pm3RhG7WGOXWCgUlYmkCK/7vqq5QjQtt9Zcf+x6tDXF6Qa+mqwAhDUzh+Tx0dXVx6dIlhISESBvK0NBQXLp0CWVlZTh27Bg6duyIgICABg+WEEJIzaiNrszNSg8AEJqUqdxAmog6nwcDTQGMtYUw01VHKz0RWumJYKQlhFCtYVdMIqQmY/bewCLfUKRkFzbK8RVOYs3MzDBx4kQ8evQIx48fx4kTJxAXF4fJkyfD3t4eUVFRmDZtGj799NPGiJcQQkgNqI2urLO1HgDgVvwL5QZCyBskOasQtxMycfpuMrTVG6crisJJ7IEDB7B48WJwua9Op8HFggULsG/fPnA4HMyfPx/3799v0EAJIYTUjtroynrYGwIAwh5nIaeoVMnREPJmCPrvS6NrK11oCRtnCJbCSWxZWRkePHhQqfzBgwfSTrvq6uo0epEQQpSA2ujKWumLygeWSBgC4zKUHQ4hb4Srsc8BAN1bGzbaORROjadMmYKZM2dixYoV6Nq1KzgcDoKCgrBu3TpMnToVAHDlyhW0a9euwYMlhBBSM2qjq9a7jRHi0/NxPTYdXu3MlB0OIS2aRMJwJbo8ie3nZNxo51E4id22bRtMTU2xadMmPHv2DABgamqKjz/+WNrHavDgwRgyZEjDRkoIIaRW1EZXrXcbY/wcmIjL0WlgjL1RV6IJaWp3n2QhI78E2kI1dLU1aLTzKJzE8ng8rFy5EitXrkROTg4AQEdHR2Yfa2vrhomOEEKIQqiNrlpPB0Oo87l4klmIiOQcuLZq6AUwCSEVLv+3fHIfR2Pp0sWNoV5H1tHRqdQ4EkIIaR6ojX5JQ6CGvo7lP2v+E5Gq5GgIadnO//ceG9DWpFHPU6fhYn/88Qd+++03JCUloaSkRGZbSEhIgwRGCCGkbqiNrtpQV3P4RT5DanaRskMhpMV6kJqDmGd5EPC4GNjIi4sofCV2x44dmDFjBkxMTBAaGopu3brB0NAQjx49wtChQxsjRkIIIXKiNrp6Xu3MELRiIL4d01HZoRDSYp2+mwygfEBXYy9VrHASu3v3buzbtw87d+6EQCDAJ598ggsXLmDhwoXIzs5ujBgJIYTIidro6okEPBhrC5UdBiEtFmMMp++mAACGd7Ro9PMpnMQmJSWhR48eAACRSITc3FwA5dO6HD16tGGjI4QQohBqo+WTkl2IMrFE2WEQ0qLcScxE0osCaAh4eMu5cfvDAnVcdjYjo3yyaBsbG9y8eRMAEB8fD8ZYw0ZHCCFEIdRG126xbyh6bLiEa7Hpyg6FkBbl7uMscDnAOx3MoSFonFW6XqVwEjtgwACcPn0aADBz5kx8/PHHGDRoEMaNG4dRo0Y1eICEEELkR2107fQ1BWAMuPfkze5eQUhDm9W7Na5/OgAL32rTJOdTOE3et28fJJLyn2DmzJkDAwMDXL9+HcOHD8ecOXMaPEBCCCHyoza6drN7t8aU7jZobayl7FAIaXEs9ERNdi6Fk1gulwsu9+UF3LFjx2Ls2LENGhQhhJC6oTa6dk35IUvIm0AiYUh8UQA7I80mPW+dOiwUFRXh3r17SEtLk37jr/Duu+82SGCEEELqhtpo+aVkF0JfQwB1Pk/ZoRCisv6NeoYPfw3GaDdLbBnbdFPYKZzEnj9/HlOnTkV6euUO8RwOB2KxuEECI4QQojhqo+X3zZlI/BSQgC/eccG0HrbKDocQlRX+NBuMASY6TTuFncIDu+bPn48xY8YgJSUFEolE5o8aR0IIUS5qo+VnbagJsYThhytxKCmj6bYIqaslg53wr3dfzOxl16TnVTiJTUtLg7e3N0xNG3cpMUIIIYqjNlp+Y7pYwkhLiOTsIpwKe6rscAhRaQ4mWjDSauZXYt9//334+/s3QiiEEELqi9po+anzeZjdu/zK0R7/OFr8gBAFPUzLQ2JGvtLOr3Cf2J07d2LMmDG4du0a2rdvDz5fdl3chQsXNlhwhBBCFENttGImdbfB3itxeJSejxMhTzG2q5WyQyJEZaw5HYHAuAxsfK8D3uti2eTnVziJPXLkCP755x+IRCL4+/uDw+FIt3E4HGogCSFEiaiNVoyWUA3z+jvg6zNR2PZvDN7tZEEzFRAih5uPMnAtNh18Hgfd7AyUEoPCSeyqVauwdu1afPbZZzJzERJCCFE+aqMVN7m7DX66Ho/k7CL8EpiI2X1aKzskQpo1xhi+/ScaADCuqxWsDDSUEofCLVxJSQnGjRtHjSMhhDRD1EYrTp3Pw+KBjgCA7y/F4kV+iZIjIqR5++tuMoITMyHi87BgQNMsMVsVhVu5adOm4dixY40RCyGEkHpSVhv9zTffoEePHtDQ0ICenl6V+yQlJWH48OHQ1NSEkZERFi5ciJKS5pEwvtfFEs7mOsgpKsMWv2hlh0NIs1VQUob1Zx8AAOb2s4epjrrSYlG4O4FYLMamTZvwzz//oEOHDpUGDWzdurXBgiOEEKIYZbXRJSUlGDNmDDw9PXHgwIEq43r77bdhbGyM69evIyMjA9OmTQNjDN9//32jxKQIHpeD1cNdMG7fTRwNSsIkDxu4WOgoOyxCmp09/nFIzSmClYFI6V1vFE5iw8PD4ebmBgC4f/++zLZXBxAQQghpespqo9esWQMAOHjwYJXb/fz8EBkZicePH8PCwgIAsGXLFkyfPh3ffPMNdHSUnzB6tDbE2x3MceZeCr44dR+/fegJLpc+1wipkJRRgB+uPgIArBzmovRBkAonsZcvX26MOAghhDSA5tpGBwYGwtXVVZrAAoCXlxeKi4sRHByM/v37V3m/4uJiFBcXS2/n5OQAKL+yW9sKZBXbFVmp7DMvR/g/SAOPC2TmF0FPQyD3fZWhLnVUNVTH5oExhk+P30VJmQQ97Q0xsK2RQvEqUkd5j6twEksIIYQoKjU1tdIqYvr6+hAIBEhNTa32fuvXr5de5X1VdHQ0tLS05Dp3TEyMQrF+O9gElrp8pCTGIUWheyqPonVURVRH5Tofm4vARy8g5HEw3VWIBw8e1Ok48tQxLy9PrmPJncSOHj1arv1OnDgh7yEJIYQ0kMZoo1evXl1lAvmq27dvw93dXa7jVdWdgTFWYzeH5cuXw9vbW3o7JycHVlZWcHJyqrULglgsRkxMDBwdHcHjyf+zp7PceypfXeuoSqiOypeSXYSDv18HACwZ7IgB3ewUPoYidaz4xaU2ciexurq68u5KCCGkiTVGGz1//nyMHz++xn1sbW3lOpaZmRlu3bolU5aZmYnS0tJKV2hfJRQKIRRWXo+dx+PJ/WGvyL6vKigpw9dnotChlS7Gd7NW+P5Nqa51VCVUR+X55uwD5BWXoaOVHmb2tgevHn3F5amjvI+B3Emsj4+PvLs2iKtXr+Lbb79FcHAwUlJScPLkSYwcObLex71y5Qq8vb0REREBCwsLfPLJJ5gzZ06V+/r6+mLChAkYMWIE/vzzz3qfmxBCGktjtNFGRkYwMjJqkGN5enrim2++QUpKCszNzQGUD/YSCoXo0qVLg5yjoZ0MfYojt5JwSsDDEFezZt8/lpDGsmBAGyRkFGDTex3qlcA2tGY7G3Z+fj46duyInTt3Ntgx4+PjMWzYMPTu3RuhoaFYsWIFFi5ciOPHj1faNzExEUuXLkXv3r0b7PyEENJSJSUlISwsDElJSRCLxQgLC0NYWJi0b9vgwYPh4uKCKVOmIDQ0FBcvXsTSpUsxe/bsZjEzQVUmdLXGyE4W2DfVnRJY8kZzsdDBmQW94GSmrexQZDTbgV1Dhw7F0KFDq91eUlKCVatW4fDhw8jKyoKrqys2btyIfv36VXufvXv3wtraGtu3bwcAODs7486dO9i8eTPee+896X5isRiTJk3CmjVrcO3aNWRlZdUYa3WjZ1uKvVfi4GKuC3M9dVjoimCupw5zXXVoCJrty4cQ0sS++OILHDp0SHq7Ypqvy5cvo1+/fuDxeDhz5gzmzp2Lnj17QiQSYeLEidi8ebOyQq4Vl8vB9vFuyg6DEKUoKhXjYVoeXFuVd1VqjtPNqWwWMmPGDCQkJMDX1xcWFhY4efIkhgwZgvDwcLRpU/USaIGBgRg8eLBMmZeXFw4cOIDS0lLppOBr166FsbExZs6ciWvXrtUaS3WjZ1WdsbYQTzIL8U/EM/wT8azSdl0RH+a66rDQE8HGUAM97Y3Q3d4QWkKVfVkRQuro4MGD1c4RW8Ha2hp///130wTUCOKe5yEtpxie9obKDoWQRvf1mUj4Bj3G6nfbYXJ3G2WHUyWVzDbi4uJw9OhRPHnyRDrn4NKlS3H+/Hn4+Phg3bp1Vd6vqileTE1NUVZWhvT0dJibmyMgIAAHDhxAWFiY3PFUN3pW1e2b4o7LD9KQnF2IlKwiJGcXIjW7CCnZRcgrLkN2YSmyC0vxIDUXAOATkAA+j4PO1vro62SM4R0sYGWgoeRaEEJI/YU/ycaE/TfB43Lw94Je1LaRFk0sYcgpLEOZhMG6Gb/WVTKJDQkJAWMMjo6OMuXFxcUwNCz/hvzq/IGTJ0/G3r17AVSe4oUxJi3Pzc3F5MmTsX//foUGM1Q3elbVGWsLMbZr1cl4TlGpNLFNySpCRHI2rsWmI+lFAW7Fv8Ct+BfYdD4aHnYGeK+zJYZ3tIBI0PxGXBJCiDwczbRgb6KFu4+z8OEvwTgxt4fSVysipLHwuBx8N74TpnjaoKutgbLDqZZKJrESiQQ8Hg/BwcGVpmGoSF5fvZJaMWjAzMys0qTaaWlpUFNTg6GhISIiIpCQkIDhw4fLnAsA1NTUEB0dDXt7+8aoksrRUedDx4xfqZN3Qno+rsY+x/n7qQh8lCFNaNedi8LEbtaY1sMWpjrqSoqaEELqRqjGw55JnTH8++uITMnBipPh2DKmIy23TlqUnKJSaAnUwOVywOFwmnUCC6hoEuvm5gaxWIy0tLRqZw9wcHCoVObp6YnTp0/LlPn5+cHd3R18Ph9t27ZFeHi4zPZVq1YhNzcX3333XYvoItDYbI00YWukiametkjOKsSfYU9xNCgJj18UYrd/HH68Ho+J3awxt789TLQpmSWEqA4LPRG+n+iGyT/ewomQp2hjoo2P+tGFDdIyFJeJMf2nIBhrC7FlbCeVGN/SbCPMy8vDw4cPpbfj4+MRFhYGAwMDODo6YtKkSZg6dSq2bNkCNzc3pKen49KlS2jfvj2GDRtW5THnzJmDnTt3wtvbG7Nnz0ZgYCAOHDiAo0ePAgDU1dXh6uoqcx89PT0AqFROamehJ8Lcfg74sI89LkQ+w4/XHuFOYiYO3kjAsduPMX+AA2b3bg2BWrOd6Y0QQmT0sDfCF++4YPXpSGw8/wAWeuoY0amVssMipF4kEoZP/riHkKQs6KirIT23WCWS2GabPdy5cwdubm7SaVq8vb3h5uaGL774AkD5xN5Tp07FkiVL4OTkhHfffRe3bt2q8WqpnZ0dzp49C39/f3Tq1AlfffUVduzYITO9Fml4PC4HQ1zN8PscT/w60wNu1nooLBXj23+iMeS7q7gem67sEAkhRG7Te9rhg57ly24u+/0ebj3KUHJEhNQdYwzfnI3CqbBkqHE52DmxM2yNNJUdllw4rGJkE2kwOTk50NXVRXZ2drOdxFuZGGM4GfoU685GIT2vBADwbkcLfDXSFboivpKjI0Q+9D5XDkUed7FYjKioKDg7Ozf4Up5iCcPcw8H4J+IZdEV8/DHHE21Mm34i+MasY3NBdWxcP1yJw/pzDwAA28Z1xCg3y0Y5jyJ1lPd93myvxJKWi8PhYHRnS1xc0g/Te9iCywH+upuMYd9dw52EF8oOjxBCasXjcrB9nBvcrPWQXViKST/eQmJGvrLDIkQhJ0KeSBPYlcOcGy2BbSyUxBKl0RXxsfrddjgxtydsDDXwNKsQY38IxI6LsZBI6AcCQkjzJhLw8NO0rnAy1UZabjEm7r+Fp1mFyg6LELmcv5+CT/64BwD4X5/WmN2ntZIjUhwlsUTpOlnp4e8FvTDKrRUkDNh6IQbzj4agsESs7NAIIaRG+poC/DKrG1obaeJpViEOXItXdkiE1OpseArmHQlFmYRhdOdW+GxIW2WHVCeUxJJmQVudj23jOmHT+x3A53FwNjwVY38IxLOcImWHRgghNTLRVsevszzwvz6tsWKYaiYD5M3x971kLDgaCrGEYbRbK3z7fkdwuao53zElsaRZGetuhcOzukNfg4/wp9kYvfsGkjIKlB0WIYTUyEJPhBXDnKHGK/9YFUsY0nLpSzhpXv66m4xFvmEQSxje62yJb8d0BE9FE1iAkljSDHWzM8Cpeb1g99/Pc2N+uIGHaXnKDosQQuQikTCsOBGOETsD8Og5tV2keSgsEeOrvyMhljCM6WKJTe93UOkEFqAkljRT1oYaOPZhdziaauFZTjHG7wukDwNCiErILSpDcFImnuUUIYFmLCDNhEjAw74pXTDV0wYb31P9BBagJJY0Yyba6vD9nydczHWQnleCKQeCkJpNP88RQpo3XQ0+jv2vO3ZMcMOAtqbKDoe8wcrEEkQm50hvu1nrY+0IV5XtA/s6SmJJs2agKcDPM7tJuxZMOXAL2QWlyg6LEEJqZKglxDsdLKS3H78owK83E5UYEXnTFJSUYfbPd/D+3hu4/zRb2eE0CkpiSbNnpCXELzO7wUxHHbFpeZh/NARlYomywyKEELnkF5dhmk8QVv15H2tOR1D7RZqEGpeLMgmDhLXcQYaUxBKVYKmvgQPT3SHi83AtNh3rzj5QdkiEECIXDQEPY92tAAA+AQmY5hOEjLxiJUdFWirGyhcLEqhxsXtSZ/z+YY8W262FkliiMtpZ6GLr2I4AgJ8C4nHmXoqSIyKEkNpxOBzM6WuP3ZM6Q0PAQ8DDDLy7MwD3nmQpOzTSgjDG8MOVOKz88760TFudj/aWukqMqnFREktUytD25vionz0A4LPj9/D4Bc0hSwhRDcPam+PPeT2lffzf3xuI324/VnZYpAXILSrFR7+GYP25BzhyKwmBcRnKDqlJUBJLVI73IEd0ttZDbnEZFh8Lg0TClB0SIYTIxdFUG3/O64mBziYoKZPgk+P3sNg3FLlFNGCVVK+ii0BVYp7lYsSuAJyPSAWfx8E3o1zRvbVBE0anPJTEEpXD53Hx3Xg3aAp4CE7MxC804pcQokJ0RXzsm+KOpYMdweNy8GdYMobtuIaQpExlh0aaoeSsQnx+6n6lcsYYDgbEY/j31/HoeT7MddXx24eemORhAw6nZUyhVRtKYolKsjLQwKdDy9co33T+AZ5mFSo5IkIIkR+Xy8H8AW3w24fdYakvwuMXhRizNxA7LsbS7AVEqkwswWLfMPx6M0lmvte0nCJM97mN1acjUVwmQX8nY/y9oBfcrPWVGG3ToySWqKzJHjZwt9FHfokYq06GKzscQghRWBcbA5xd1BvDO1pALGHYeiEGvtRPlvzn+0sPEZTwAgCw9UIMGGM4HvwEg7ZdxZWY5xCqcbF2RDv8NL0rDLWESo626VESS1QWl8vBhvc6gM/j4HL0c1yJea7skAghRGE66nzsGN8J28Z1hGdrQ4zraqXskEgzcPNRBr6/FCu9/W/UM7y/NxBLfr+L7MJStG+li9MLemGqp+0b033gdZTEEpXmYKKFqZ62AID1Z6MgpkFehBAVxOFwMMrNEkdme4DPK/9oLimT4MNf7rwxI83JS5n5JVjsG4bXP9KCEzMh4HGxzMsJJ+f2gKOptnICbCYoiSUqb8EAB+ioq+FBai6OhzxRdjiEEFJnr15RO3QjAf9EPMOCo6EoKhUrMSrSlBhjWPbHPaTmVL3K1vrRrpjX3wFqPErh6BEgKk9PQ4D5AxwAAN/9G4tSGhRBCGkBxrhbYkp3G6x8uy3U+TwAgFjCUFxGCW1LduhGAv6Nelbt9mO3n9Q45dabhJJY0iJM9bSFkZYAT7MK8fe9ZGWHQwgh9aanIcBXI10xys1SWvZn6FO8teUK/gx9SnNkt0BRqTn45kxUjfsEJbzA9YfpTRRR80ZJLGkR1Pk8zOhpBwDY4x9HjTshpEU6fCsRTzILsfhYGN75/jquxVIy0xJU/IL4ye/3UCrH59cWvxi6GgtKYkkLMrm7DbSEaoh5lkczFRBCWqTDs7pjmZcTtIVqiEzJwfSDd7DiQipuPsqgpEYFlZRJ8EtgAvp+ewUPM4qRllMEbXU16IrUYKDBh7G2EGY66milJ4KVgQi2hhpobayJ/OIy3H2SrezwlU5N2QEQ0lB0RXyM62qFA9fjcfhWEvq3NVF2SIQQ0qBEAh7m9XfAxG7W2HX5IX4OTMC9Z8WYdOA23G30MX+AA/o6Gr+xUy6pivziMvjefowD1x4hObt8ANfp6FzcWjkQPB5PydGpDkpiSYsyoVt5Ens5Og3PcopgqqOu7JAIIaTB6WsKsOodF0zztMaGUyG48CgfdxIzMd3nNtq30sWs3nYY1t5cOl0XaR4y8opx6EYCDgUmIruwFABgoi3EvH726KCVp+ToVA+9ukmL4mCiDXcbfYglDH8E03RbhJCWzUJPhI+6GcB/SR/M6mUHEZ+H8KfZWOQbhl4bL+HQjQRlh0gA3H+ajc+O30PPjZew49JDZBeWwtZQA+tGtcfVT/pjcndr8Hl09VxRdCWWtDjjulrhTmImToY+xbz+DsoOhxBCGp2pjjpWveOCj/rZ49ebSfj1ViKe5RTjeW6xdB+JhIHDAXU1aCJFpWKcuZeCX24mIuxxlrS8g6Uu5vS1h1c7M/C45c+FWEzTptUFJbGkxRnczgwrTobjYVoeHqblwcFES9khEUJIkzDUEmLRwDb4qJ89zoQno4e9kXTbv1HPsPH8A8zq3RoTulkrMcqWr6hUjF4bLyM9r/xLBJ/HwRBXc0z2sEY3OwP6ItFAKIklLY6uiI+eDkbwj36O8/dTMH9AG2WHRAghTUqgxpWZXxYAToY+RdzzfCSk50vLSsUSFJaKoaPOb+oQW5SE9HwExb/A2K5WAMqnfWxnoYOHaXmY6GGNse5WMNYWKjnKloeSWNIiDWlnBv/o5/gn4hklsYQQAmDT+x3Q19EY3VsbSsuux6bjw1+C0cfRGO90MMdbzibQpoRWIWm5Rei/xR+MAb3aGMFCTwQA+HZMBxhqCqVdBkjDoySWtEgD/pte635yNrIKSqCnIVByRIQQolza6nyMf60bwc34DJSIJfg36hn+jXoGPo+DbnYG6Odogv5tjWFvrEU/ff+nqFSMm48ycPlBGnKKyrBtXCcAgIm2OrrbGYKvxkVuUZl0fxNtmh2nsVESS1okEx11OJho4WFaHm4+eoEhrmbKDomQFishIQFfffUVLl26hNTUVFhYWGDy5MlYuXIlBIKXXyCTkpIwb948XLp0CSKRCBMnTsTmzZtl9iFN67MhbTHazRJnwlPw971kPHqej4CHGQh4mIFvzkbBUl+EPo7G8LAzgIedIcx035zErKRMgsiUHIQkZiLwUQaux6ajsLR8ABaPy8Hq4e2gq1F+1fqXmd2gRtOZNTlKYkmL1cPeEA/T8nAjLp2SWEIa0YMHDyCRSPDDDz/AwcEB9+/fx+zZs5Gfn4/NmzcDKB99/fbbb8PY2BjXr19HRkYGpk2bBsYYvv/+eyXX4M3F4XDgZKYNJzNteA9yRHx6Pvyj03A5+jluPsrAk8xCHLmVhCO3kgAANoYamN27NSZ3t1Fy5A0vLacIIUmZCEnKQkhiJsKfZqO4TCKzj6mOEAPamuKttiZQF7xMWimBVQ5KYkmL5WFniJ8DExGalKXsUAhp0YYMGYIhQ4ZIb7du3RrR0dHYs2ePNIn18/NDZGQkHj9+DAsLCwDAli1bMH36dHzzzTfQ0dFRSuxElp2RJuyM7DCjpx0KSsoQGJeBG3EZCIp/gYjkbCRmFEDyyvK20am5+OzEPXi2NsQnQ9oqMXL5ZBeUIvFFPtT5PDiaagMAnmYVYuzeQDzNKqy0v74GH27W+uhio49+TsZwMdeh7hXNCCWxpMXqYKkLoLyRLSmTQKBG35QJaSrZ2dkwMDCQ3g4MDISrq6s0gQUALy8vFBcXIzg4GP3796/yOMXFxSgufjnXaU5ODoDyK7u1za1Zsb0lz8HZmHUU8jjo52iEfo7l03TlFpUhODETbc20pecLTXyB0KQsCHhcmRhG7r4BDYEaWhtpwspABHNddVjolv9roiNUaCWx6upYJpYgq7AUGXklSM8vQUZeMTLyS5CRV4IX+SXl/88vwRdvO0s/D06GPsbq01EY0s4Uuya6AQCMNNSQWVACDgdwMtWGm5Ue3Kz10NlaD7aGGjJJq0Qie2W2odBrtep9a0NJLGmxLPVF0BXxkV1YiphnuXBtpavskAh5I8TFxeH777/Hli1bpGWpqakwNTWV2U9fXx8CgQCpqanVHmv9+vVYs2ZNpfLo6Ghoack3B3RMTIyckauupqqjKYDM5HRkJpffNueUYWlPI4j4HERFRQEACkolCH9a/mXjVvyLSsfgcgBtARfaQi60hTxoC7jQEXIx0lkHtvrl/aMTs0oQllIEW30+OpqVj/YPj3yALy+lIbtYguwiMXKLJWCVjl5ZUEQs+LmaAICS7AIYavAgLsqTxgsA37xljFbafGhIuwjkoOh5Dh48V/wxqg96rZbLy5NvCV5KYkmLxeFw4NpKBwEPMxCZnENJLCEKWr16dZUJ5Ktu374Nd3d36e3k5GQMGTIEY8aMwaxZs2T2repnWMZYjT/PLl++HN7e3tLbOTk5sLKygpOTU61dEMRiMWJiYuDo6Agej1fjvqqqOdSx12u3y8QSnPzIEnHP8/AoPR/JWUVIyS5ESnYRUrKLUCpm5YlosQTAy9H8k/q0hXMbYwBA+J0n2B98H4NdTDGmjyNiYmLg6uyE6N+foFT8MnXlcAB9DQEMNQUw1BLAQPO///9321BTCDcrXZjolA9Ic3YGZnpVroNzQz8oCmoOz2NjU6SOFb+41IaSWNKi2RtrIeBhBhIy8mvfmRAiY/78+Rg/fnyN+9ja2kr/n5ycjP79+8PT0xP79u2T2c/MzAy3bt2SKcvMzERpaWmlK7SvEgqFEAorTxLP4/Hk/rBXZF9V1ZzqyOPx4GZjADcbg0rbJBKG9PxivMgvQWZ+KbILS5BZUIqsglLYG+tI62BtqIl3O1rA1lBDWqampoadEztDW6gGQy0hDLUE0NcQtKh5WJvT89hY5KmjvI8BJbGkRbMxLP8JKTGjQMmREKJ6jIyMYGRkVPuOAJ4+fYr+/fujS5cu8PHxAZcr2+fR09MT33zzDVJSUmBubg6gfLCXUChEly5dGjx20jxxuRyYaKvXOodqTwcj9HQof+292j/Sqx3NNENeoiSWtGi2hhoAQFdiCWlEycnJ6NevH6ytrbF582Y8f/6yI6GZWXnSMXjwYLi4uGDKlCn49ttv8eLFCyxduhSzZ8+mmQkIIXVCSSxp0cx1ywcEPMsprmVPQkhd+fn54eHDh3j48CEsLS1ltrH/pmPi8Xg4c+YM5s6di549e8osdkAIIXVBSSxp0Qy1yke6ZhaUQCJh4LagvlOENBfTp0/H9OnTa93P2toaf//9d+MHRAh5I9DEmaRF09coT2LFEobswlIlR0MIIYSQhqL0JHb37t2ws7ODuro6unTpgmvXrjXq+Y4fPw4XFxcIhUK4uLjg5MmTSo+JNB6BGhdawvIfHLIoiSWEEEJaDKUmsceOHcPixYuxcuVKhIaGonfv3hg6dCiSkpLqdLyDBw+iX79+1W4PDAzEuHHjMGXKFNy9exdTpkzB2LFjZaZ9aeiYiPIJ/1upq6SscVZaIYQQQkjTU2oSu3XrVsycOROzZs2Cs7Mztm/fDisrK+zZswcAUFJSgk8++QStWrWCpqYmPDw84O/vX+fzbd++HYMGDcLy5cvRtm1bLF++HG+99Ra2b98ud0xE9QgoiSWEEEJaHKUN7CopKUFwcDA+++wzmfLBgwfjxo0bAIAZM2YgISEBvr6+sLCwwMmTJzFkyBCEh4ejTZs2Cp8zMDAQH3/8sUyZl5eXNImVJ6aqvL62d3Z2NgD5V5wgjYtbVghJcSFeZGUiR4cGdpGGUfH+rhh9T5pGxeMtT/sqFouRl5eHnJycFjuBPNWxZaA6ypK3fVVaEpueng6xWFxppRZTU1OkpqYiLi4OR48exZMnT2BhYQEAWLp0Kc6fPw8fHx+sW7dO4XNWtXZ3xfnkiak61a3tbWVlpXCMpPH0267sCEhLlJGRAV1dWtK4qeTm5gKg9pWQN0Fubm6N7avSp9h6fc3sinW0Q0JCwBiDo6OjzPbi4mIYGhoCAJKSkuDi4iLdVlZWhtLSUmhpaUnLJk+ejL1799Z6Pnliqs7ra3tnZWXBxsYGSUlJKv3hVrFG+ePHj1V6MnKqR/PSUuqRnZ0Na2trGBhUXlqTNB4LCws8fvwY2traNbbLQMt5rdWE6tgyUB1lMcaQm5srvYhZHaUlsUZGRuDxeJWucKalpcHU1BQSiQQ8Hg/BwcGVLjtXJKkWFhYICwuTlp84cQLHjx/H4cOHpWWvPlBmZmbVnk+emKpT3dreurq6LeLFqKOjQ/VoRqgezcvry6uSxsXlcistqFCblvJaqwnVsWWgOr4kz0VApbW+AoEAXbp0wYULF2TKL1y4gB49esDNzQ1isRhpaWlwcHCQ+atYxlBNTU2m3MTEBCKRqFJZBU9Pz0rn8/PzQ48ePeSKiRBCCCGENA9K7U7g7e2NKVOmwN3dHZ6enti3bx+SkpIwZ84c2NjYYNKkSZg6dSq2bNkCNzc3pKen49KlS2jfvj2GDRum8PkWLVqEPn36YOPGjRgxYgROnTqFf//9F9evX5crJkIIIYQQ0jwoNYkdN24cMjIysHbtWqSkpMDV1RVnz56FjY0NAMDHxwdff/01lixZgqdPn8LQ0BCenp51SmABoEePHvD19cWqVavw+eefw97eHseOHYOHh4fcMclDKBTiyy+/rLKLgSqhejQvVI/mpaXUoyV7E54jqmPLQHWsGw6j+WEIIYQQQoiKoREJhBBCCCFE5VASSwghhBBCVA4lsYQQQgghROVQEksIIYQQQlQOJbFVOHHiBLy8vGBkZAQOhyOzoEJ9HT9+HC4uLhAKhXBxccHJkyer3Xf9+vXgcDhYvHix3MffvXs37OzsoK6uji5duuDatWsNEHX15KlPfWK6evUqhg8fDgsLC3A4HPz5558NEveVK1fQpUsXqKuro3Xr1jKrur3O19cXHA4HI0eOrNO51q9fj65du0JbWxsmJiYYOXIkoqOj6xi5rKasx549e9ChQwfpRNWenp44d+5cHSN/qSnrUJW6vM+qo+y6kHIJCQmYOXMm7OzsIBKJYG9vjy+//BIlJSUy+yUlJWH48OHQ1NSEkZERFi5cWGmf5uybb75Bjx49oKGhAT09vSr3UfU6NvVnWmOq7fOMMYbVq1fDwsICIpEI/fr1Q0REhHKCrSN5Pu8atJ6MVPLzzz+zNWvWsP379zMALDQ0tEGOe+PGDcbj8di6detYVFQUW7duHVNTU2M3b96stG9QUBCztbVlHTp0YIsWLZLr+L6+vozP57P9+/ezyMhItmjRIqapqckSExPrFK+Pjw/r27dvvepT35jOnj3LVq5cyY4fP84AsJMnT9apLq969OgR09DQYIsWLWKRkZFs//79jM/nsz/++KPSvgkJCaxVq1asd+/ebMSIEXU6n5eXF/Px8WH3799nYWFh7O2332bW1tYsLy9Pperx119/sTNnzrDo6GgWHR3NVqxYwfh8Prt//77K1OF1dXmfVUfZdSEvnTt3jk2fPp39888/LC4ujp06dYqZmJiwJUuWSPcpKytjrq6urH///iwkJIRduHCBWVhYsPnz5ysxcsV88cUXbOvWrczb25vp6upW2q7qdWzozzRlq+3zbMOGDUxbW5sdP36chYeHs3HjxjFzc3OWk5OjnIDrQJ7Pu4asJyWxNYiPj682ic3KymKzZ89mxsbGTFtbm/Xv35+FhYXVeLyxY8eyIUOGyJR5eXmx8ePHy5Tl5uayNm3asAsXLrC+ffvK/eHarVs3NmfOHJmytm3bss8++4wxxlhxcTFbtmwZs7CwYBoaGqxbt27s8uXL1R6vtiRWnvrUFpMiqnrTK1onxhj75JNPWNu2bWXKPvzwQ9a9e3eZsrKyMtazZ0/2448/smnTpjVYspGWlsYAsCtXrqh0PRhjTF9fn/34448qWYea3meqVhdSu02bNjE7Ozvp7bNnzzIul8uePn0qLTt69CgTCoUsOztbGSHWmY+PT5VJrKrXsSE/P5qb1z/PJBIJMzMzYxs2bJCWFRUVMV1dXbZ3714lRNgwXv+8a+h6UneCOmCM4e2330ZqairOnj2L4OBgdO7cGW+99RZevHhR7f0CAwMxePBgmTIvLy/cuHFDpmzevHl4++23MXDgQLljKikpQXBwcKXjDx48WHr8GTNmICAgAL6+vrh37x7GjBmDIUOGIDY2Vu7zKFIfeWKqr7rUqbq479y5g9LSUmnZ2rVrYWxsjJkzZzZIrBWys7MBAAYGBipbD7FYDF9fX+Tn58PT01Ml61DT+0zV6kJql52dLfOeCwwMhKurKywsLKRlXl5eKC4uRnBwsDJCbHCqXMem+PxoTuLj45GamipTX6FQiL59+6p0fV//vGvoeip1xS5VdfnyZYSHhyMtLU268sTmzZvx559/4o8//sD//ve/Ku+XmpoKU1NTmTJTU1OkpqZKb/v6+iIkJAS3b99WKKb09HSIxeJqjx8XF4ejR4/iyZMn0gZt6dKlOH/+PHx8fLBu3TqFzidPfWqLqb7qWqfq4i4rK0N6ejrMzc0REBCAAwcONGh/aKD8C5C3tzd69eoFV1dXlatHeHg4PD09UVRUBC0tLZw8eRIuLi4qVQeg5veZqtWF1C4uLg7ff/89tmzZIi2r6vnS19eHQCBokPapOVDlOjb250dzU1GnquqbmJiojJDqrarPu4au5xt/Jfbw4cPQ0tKS/snTaTw4OBh5eXkwNDSUuW98fDzi4uKQlJQkU/7qhx6Hw5E5FmNMWvb48WMsWrQIv/76K9TV1etUn+qOHxISAsYYHB0dZWK7cuUK4uLiAKBS3HPmzMG1a9cqlclzPkX3qQt56lRd7FXFVFGem5uLyZMnY//+/TAyMqp3nK+aP38+7t27h6NHj6pkPZycnBAWFoabN2/io48+wrRp0xAZGalSdajtfaZKdXnTrF69GhwOp8a/O3fuyNwnOTkZQ4YMwZgxYzBr1iyZbVW1Qw3VPtVVXepYk+ZYR0U01udHc9WS6lvV512FhqrnG38l9t1334WHh4f0dqtWrWq9j0Qigbm5Ofz9/Stt09PTg56ensyVlorL6GZmZpW+QaalpUm/kQQHByMtLQ1dunSRbheLxbh69Sp27tyJ4uJi8Hi8KmMyMjICj8er9vgSiQQ8Hg/BwcGVjqGlpQUAsLCwkIn7xIkTOH78OA4fPiwt09HRkf6/tvrUFlN9yVOnV+tTEXt1caupqcHQ0BARERFISEjA8OHDZc4FAGpqaoiOjoa9vb3C8S5YsAB//fUXrl69CktLS5Wsh0AggIODAwDA3d0dt2/fxnfffYcBAwaoTB1qe58dPnxYZeryppk/fz7Gjx9f4z62trbS/ycnJ6N///7w9PTEvn37ZPYzMzPDrVu3ZMoyMzNRWlraIO1TXSlax5o01zrKo7E/P5obMzMzAOVXKs3NzaXlqlrf6j7vGrqeb3wSq62tDW1tbYXu07lzZ6SmpkJNTa3axqTig/5Vnp6euHDhAj7++GNpmZ+fH3r06AEAeOuttxAeHi5znxkzZqBt27b49NNPq01ggfLkokuXLrhw4QJGjRolLb9w4QJGjBgBNzc3iMVipKWloXfv3lUeQ01NTSZuExMTiESiKusiT31qi6m+5KlTdc/D6dOnZcr8/Pzg7u4OPp+Ptm3bVnoeVq1ahdzcXHz33XewsrJSKE7GGBYsWICTJ0/C398fdnZ2KlmPqjDGUFxcrFJ1qO19JhAIVKYubxojIyO5r2I/ffoU/fv3R5cuXeDj4wMuV/aHR09PT3zzzTdISUmRfpj6+flBKBTKfMFpaorUsTbNtY7yaOzPj+bGzs4OZmZmuHDhAtzc3ACU9wu+cuUKNm7cqOTo5Ffb512D11PhoWBvgIyMDBYaGsrOnDnDADBfX18WGhrKUlJSGGPlo+t69erFOnbsyM6fP8/i4+NZQEAAW7lyJbt9+3a1xw0ICGA8Ho9t2LCBRUVFsQ0bNlQ7xVYFRWYnqJiO5MCBAywyMpItXryYaWpqsoSEBMYYY5MmTWK2trbs+PHj7NGjRywoKIht2LCBnTlzpsrj1TY7gTz1qS2m2uTm5rLQ0FAWGhrKALCtW7ey0NBQ6RQritaJsZdTIX388ccsMjKSHThwoNqpkCrUZxT5Rx99xHR1dZm/vz9LSUmR/hUUFEj3UYV6LF++nF29epXFx8eze/fusRUrVjAul8v8/PxUpg7Vef19psp1IYw9ffqUOTg4sAEDBrAnT57IvO8qVEw/9dZbb7GQkBD277//MktLS5WZfooxxhITE1loaChbs2YN09LSkraVubm5jDHVr2N9Pz+am9o+zzZs2MB0dXXZiRMnWHh4OJswYYLKTbElz+ddQ9aTktgq+Pj4MACV/r788kvpPjk5OWzBggXMwsKC8fl8ZmVlxSZNmsSSkpJqPPbvv//OnJycGJ/PZ23btmXHjx+vcX9FkljGGNu1axezsbFhAoGAde7cWWYap5KSEvbFF18wW1tbxufzmZmZGRs1ahS7d+//7dxfSFNtHAfwr6yma81ZLVim5Wqs0iiHRNSFNIxoSURYzRgx25qgaKChBRJbBF100V/LQGEjsUKiCArLiwqiMhS07A9ZGbOu8sKCaJstn/ei9z28e9Vyae889v2AF+ecZ8/ze87wd347Z8+ejHoeflTEjnU+P4rpZ+7cuTPie+FwOH5pTv+4e/euMJvNQqlUioyMDFFXV/fD9uMpNkaKH4Dw+XxSGznMw+l0Su/j3LlzRV5enlTAymUOo/nv/5mc50Kj5/D/3rcJBAIiPz9fqFQqMXv2bFFWViZCoVCcoo6dw+EYcY7//jk4uc9xPNePyeZn17OhoSHh8XiEXq8XiYmJIjc3V3R3d8c36BiN5Xo3kfNM+HtQIiIiIiLZ+ON/nYCIiIiI5IdFLBERERHJDotYIiIiIpIdFrFEREREJDssYomIiIhIdljEEhEREZHssIglIiIiItlhEUtEREREssMilugXeb1eZGdn/9Yx/H4/UlJSfusYRESTDfMrjQWLWJpyioqKkJCQgISEBEybNg0LFixASUkJBgYG4h1azGw2G3p6euIdBhERAOZXmlymxTsAot9h48aN8Pl8iEQieP78OZxOJz5+/IiLFy/GO7SYqFQqqFSqeIdBRCRhfqXJgndiaUpKTEyEXq9HWloaNmzYAJvNhtbW1qg2Pp8Py5YtQ1JSEpYuXYqzZ89GHd+/fz9MJhNmzJiBRYsW4eDBg/j69euYY/j27RtcLhcMBgNUKhWWLFmCkydPSsdDoRCysrJQXFws7Xv79i20Wi3q6+sBDH/c9fjxY1gsFmg0GiQnJyMnJwcdHR2xnBoionFhfqXJgndiacrr7e3FzZs3MX36dGlffX09PB4PamtrYTab0dnZCbfbDbVaDYfDAQDQaDTw+/1ITU1Fd3c33G43NBoNqqurxzTu0NAQ0tLS0NzcDJ1OhwcPHqC4uBjz5s3Djh07kJSUhKamJqxevRqbNm3C5s2bsWvXLlgsFrjd7hH7tNvtMJvNqKurg0KhQFdXV9S8iIj+T8yvFFeCaIpxOBxCoVAItVotkpKSBAABQBw7dkxqk56eLi5cuBD1usOHD4s1a9aM2u/Ro0dFTk6OtO3xeMTKlStjiq20tFQUFBQM61en04ny8nKh1+tFf3+/dMzn8wmtVittazQa4ff7YxqTiGiiML/SZMI7sTQlWSwW1NXV4cuXL2hoaEBPTw/Ky8sBAP39/Xj37h1cLlfUJ/JIJAKtVittX758GSdOnMDr16/x+fNnRCIRJCcnxxTHuXPn0NDQgEAggGAwiMHBwWErbvft24dr167h9OnTaGlpgU6nG7W/yspK7NmzB42NjVi/fj22b9+OxYsXxxQTEdF4ML/SZMHvxNKUpFarYTQasWLFCpw6dQrhcBiHDh0C8P0xFPD9kVdXV5f09/TpU7S1tQEA2traUFhYCKvViuvXr6OzsxM1NTUYHBwccwzNzc2oqKiA0+lEa2srurq6sHv37mF9fPjwAS9fvoRCocCrV69+2KfX68WzZ8+Qn5+P27dvIzMzE1evXo3l1BARjQvzK00WvBNLfwSPxwOr1YqSkhKkpqZi/vz56O3thd1uH7H9/fv3sXDhQtTU1Ej7AoFATGPeu3cPa9euRWlpqbTvzZs3w9o5nU4sX74cbrcbLpcLeXl5yMzMHLVfk8kEk8mEiooK7Ny5Ez6fD1u3bo0pNiKiicL8SvHCIpb+COvWrUNWVhaOHDmC2tpaeL1e7N27F8nJybBarQiHw+jo6MDAwAAqKythNBrR19eHS5cuYdWqVbhx40bMn8iNRiPOnz+PW7duwWAwoLGxEe3t7TAYDFKbM2fO4OHDh3jy5AnS09PR0tICu92OR48eQalURvUXDAZRVVWFbdu2wWAw4P3792hvb0dBQcGEnCMiol/B/EpxE+8v5RJNNIfDIbZs2TJsf1NTk1AqlaKvr0/azs7OFkqlUsyaNUvk5uaKK1euSO2rqqrEnDlzxMyZM4XNZhPHjx+PWgTws4UHoVBIFBUVCa1WK1JSUkRJSYk4cOCA9JoXL14IlUoVtQDi06dPIiMjQ1RXVwshohcehMNhUVhYKNLT04VSqRSpqamirKxMBIPBXztRREQxYn6lySRBCCHiXUgTEREREcWCC7uIiIiISHZYxBIRERGR7LCIJSIiIiLZYRFLRERERLLDIpaIiIiIZIdFLBERERHJDotYIiIiIpIdFrFEREREJDssYomIiIhIdljEEhEREZHssIglIiIiItn5C/RDpaXSmxg3AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAFQCAYAAACoKiaXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOGklEQVR4nOzdd1iT19sH8G8SkhD2nrKRJQ4UB+6Jq9bR2mrdVVvrFrX9OVpHW0frbq1Wa7FDxb5Va7VqsSpOFGUoAgIiQwVEkL1JzvsHJTWyEgiE4P25rlya86z7JOTkzvOc5xwOY4yBEEIIIYQQNcJVdQCEEEIIIYQoipJYQgghhBCidiiJJYQQQgghaoeSWEIIIYQQonYoiSWEEEIIIWqHklhCCCGEEKJ2KIklhBBCCCFqh5JYQgghhBCidiiJJYQQQgghaoeSWEJIi7B27Vp06tRJ1WGopaKiIrz11lvQ09MDh8NBTk6OqkOqxt7eHjt27FB1GLVKSkoCh8NBRESEqkMBAAQFBSn8XtJniLxuKIkl5DU1ffp0cDgcbNq0Sab8jz/+AIfDafZ4li1bhgsXLsi1bkv6su7fvz8WL16s0hh++uknXL16FTdu3EBaWhr09fVVGo+qyPt3MX36dIwZM6bJ42mMnj17KvxeKvIZIqQ1oCSWkNeYpqYmNm/ejOzsbFWHAh0dHRgbG6s6jBatvLy8xvKEhAS4u7vD09MTFhYWDfoRIhaLIZFIGhsiUYLy8nIIBAKF30v6DJHXDSWxhLzGBg8eDAsLC2zcuLHG5YWFhdDT08Pvv/8uU37q1Cloa2sjPz8fABASEgIvLy9oamrC29sbJ06ckLk0e/DgQRgYGMjs49Uzvq+eRQsKCkK3bt2gra0NAwMD9OrVC8nJyTh48CDWrVuHu3fvgsPhgMPh4ODBg7XW8ccff0S7du0gFAphaWmJ+fPnS5elpKRg9OjR0NHRgZ6eHt555x08e/asWky//PIL7O3toa+vjwkTJkjrPX36dFy+fBk7d+6UxpKUlAQAuHz5Mrp16yY97v/+9z9UVFRI913T5fVOnTph7dq10uccDgd79+7F6NGjoa2tjS+++KJa/fr374+tW7fiypUr4HA46N+/PwAgOzsbU6dOhaGhIbS0tDB8+HDEx8dLt6t6T06fPg0PDw8IhUIkJydX23/VZe2//voLHTt2hKamJrp3747IyEiZ9Y4dOyZ9ne3t7bF169Za3xMAyM3NxQcffAAzMzPo6elh4MCBuHv3bp3bfPLJJ3BxcYGWlhYcHR3x6aefShN7ef8u1q5di59++gknT56UrhcUFCRd/ujRIwwYMABaWlro2LEjgoODZba/ceMG+vbtC5FIBBsbGyxcuBCFhYV1xr1nzx44OTlBIBDA1dUVv/zyi8zymt7nmroT7N+/HzY2NtDS0sLYsWOxbds2mc/Vq5+hqjPOW7ZsgaWlJYyNjTFv3rxafwwRonYYIeS1NG3aNDZ69Gh2/PhxpqmpyR4/fswYY+zEiRPs5aZh9uzZbMSIETLbjh07lk2dOpUxxlhBQQEzNTVl7777Lrt//z47deoUc3R0ZABYeHg4Y4wxf39/pq+vL7OPV4+zZs0a1rFjR8YYY+Xl5UxfX58tW7aMPXz4kEVHR7ODBw+y5ORkVlRUxJYuXcratWvH0tLSWFpaGisqKqqxjt999x3T1NRkO3bsYLGxsSwkJIRt376dMcaYRCJhXl5erHfv3uzOnTvs5s2brHPnzqxfv34yMeno6LBx48axyMhIduXKFWZhYcFWrlzJGGMsJyeH+fj4sNmzZ0tjqaioYE+ePGFaWlps7ty5LCYmhp04cYKZmJiwNWvWSPdtZ2cnjaVKx44dZdYBwMzMzNiBAwdYQkICS0pKqlbHrKwsNnv2bObj48PS0tJYVlYWY4yxN998k7m7u7MrV66wiIgINnToUObs7MzKysqk7wmfz2c9e/Zk169fZw8ePGAFBQXV9n/p0iUGgLm7u7PAwEB279499sYbbzB7e3vpvu7cucO4XC5bv349i42NZf7+/kwkEjF/f/8a6yuRSFivXr3YqFGj2O3bt1lcXBxbunQpMzY2lsZfk88//5xdv36dJSYmsj///JOZm5uzzZs3M8aY3H8X+fn57J133mHDhg2TrldaWsoSExMZAObm5sZOnz7NYmNj2dtvv83s7OxYeXk5Y4yxe/fuMR0dHbZ9+3YWFxfHrl+/zry8vNj06dNrjfn48eOMz+ez3bt3s9jYWLZ161bG4/HYxYsX63yfq1737Oxsxhhj165dY1wul3399dcsNjaW7d69mxkZGcl8rl7+DDFW+RnX09Njc+bMYTExMezUqVNMS0uL7du3r9Z4CVEnlMQS8pqqSmIZY6xHjx7s/fffZ4xVTy5v3brFeDwee/r0KWOMsefPnzM+n8+CgoIYY4x9//33zMjIiBUWFkq32bNnT6OS2KysLAZAeoxXvfplXRsrKyu2atWqGpcFBgYyHo/HUlJSpGVRUVEMAAsJCZEeR0tLi+Xl5UnXWb58Oevevbv0eb9+/diiRYtk9r1y5Urm6urKJBKJtGz37t1MR0eHicVixpj8SezixYvrreeiRYtkku+4uDgGgF2/fl1alpmZyUQiEfvtt98YY5XvCQAWERFR576rkqmAgABpWVZWFhOJROzo0aOMMcbee+89NmTIEJntli9fzjw8PKTPX67vhQsXmJ6eHispKZHZxsnJiX3//ff11rfKV199xbp06SJ9Lu/fxct/+1WqktgffvhBWlb19xATE8MYY2zKlCnsgw8+kNnu6tWrjMvlsuLi4hqP1bNnTzZ79myZsvHjx8v8MKzpfX41iX333XfZyJEjZdaZNGlSvUmsnZ0dq6iokDn2u+++W2OshKgb6k5ACMHmzZvx008/ITo6utqybt26oV27dvj5558BAL/88gtsbW3Rt29fAEBMTAw6duwILS0t6TY+Pj6NisfIyAjTp0/H0KFDMWrUKOzcuRNpaWkK7SMjIwOpqakYNGhQjctjYmJgY2MDGxsbaZmHhwcMDAwQExMjLbO3t4eurq70uaWlJTIyMuo8dkxMDHx8fGS6S/Tq1QsFBQV48uSJQvXw9vZWaP2q42toaKB79+7SMmNjY7i6usrUTSAQoEOHDnLt8+X31MjISGZfMTEx6NWrl8z6vXr1Qnx8PMRicbV9hYaGoqCgAMbGxtDR0ZE+EhMTkZCQUGsMv//+O3r37g0LCwvo6Ojg008/RUpKilzxy+vl18PS0hIApO93aGgoDh48KBPz0KFDIZFIkJiYWOP+anttXn4fgPrf59jYWHTr1k2m7NXnNWnXrh14PJ5Mner7+yVEXVASSwhB3759MXToUKxcubLG5bNmzYK/vz8AwN/fHzNmzJAmaIyxevfP5XKrrVdfvzx/f38EBwejZ8+eOHr0KFxcXHDz5k15qgMAEIlEdS5njNV408yr5Xw+X2Y5h8Op9waomvZdVf+qcnlfE21t7TqPVdvx5YlLJBI1aiSKl/8GaqtvTSQSCSwtLRERESHziI2NxfLly2vc5ubNm5gwYQKGDx+O06dPIzw8HKtWrUJZWVmD46/Jy+93VZ2q3m+JRIIPP/xQJua7d+8iPj4eTk5Ote6zptfm1bL63mdFX+Oa6lMVC93AR1oLSmIJIQCATZs24dSpU7hx40a1ZZMnT0ZKSgp27dqFqKgoTJs2TbrMw8MDd+/eRXFxsbTs1WTT1NQU+fn5MjfAyDMep5eXF1asWIEbN27A09MThw8fBlB5BrGmM3wv09XVhb29fa1DDnl4eCAlJQWPHz+WlkVHRyM3Nxfu7u71xlalplg8PDxw48YNmSTjxo0b0NXVhbW1NYDK1+Tls8t5eXm1ns1TlIeHByoqKnDr1i1pWVZWFuLi4hSq28tefk+zs7MRFxcHNzc36fGuXbsms/6NGzfg4uIicxawSufOnZGeng4NDQ04OzvLPExMTGo8/vXr12FnZ4dVq1bB29sbbdu2rXYjmjx/F4qsV1PcUVFR1WJ2dnaGQCCocRt3d/caXxtF3wc3NzeEhITIlN25c0exChDSylASSwgBALRv3x6TJk3CN998U22ZoaEhxo0bh+XLl8PX1xdt2rSRLnvvvffA5XIxc+ZMREdH48yZM9iyZYvM9t27d4eWlhZWrlyJhw8f4vDhw3WOKJCYmIgVK1YgODgYycnJCAwMlEnA7O3tkZiYiIiICGRmZqK0tLTG/axduxZbt27Frl27EB8fj7CwMGn9Bg8ejA4dOmDSpEkICwtDSEgIpk6din79+il0Cd/e3h63bt1CUlISMjMzIZFIMHfuXDx+/BgLFizAgwcPcPLkSaxZswZ+fn7gciub3YEDB+KXX37B1atXcf/+fUybNq3GhK8h2rZti9GjR2P27Nm4du0a7t69i8mTJ8Pa2hqjR49u0D7Xr1+PCxcu4P79+5g+fTpMTEykY60uXboUFy5cwOeff464uDj89NNP+Pbbb7Fs2bIa9zV48GD4+PhgzJgx+Pvvv5GUlIQbN25g9erVtSZmzs7OSElJQUBAABISErBr1y6cOHFCZh15/y7s7e1x7949xMbGIjMzU+679T/55BMEBwdj3rx5iIiIQHx8PP78808sWLCg1m2WL1+OgwcPYu/evYiPj8e2bdtw/PjxWl+b2ixYsABnzpzBtm3bEB8fj++//x5nz55VyZjOhLQYKuiHSwhpAWq6uSUpKYkJhUJWU9Nw4cIFBkB6Y9DLgoODWceOHZlAIGCdOnVix44dk7mxi7HKG7mcnZ2ZpqYme+ONN9i+fftqvbErPT2djRkzhllaWjKBQMDs7OzYZ599Jr0pqqSkhL311lvMwMCAAZC5C/5Ve/fuZa6urozP5zNLS0u2YMEC6bLk5GT25ptvMm1tbaarq8vGjx/P0tPTa4ypyvbt25mdnZ30eWxsLOvRowcTiUQMAEtMTGSMMRYUFMS6du3KBAIBs7CwYJ988on0LnfGGMvNzWXvvPMO09PTYzY2NuzgwYM13th14sSJWutW5dUbuxhj7MWLF2zKlClMX1+fiUQiNnToUBYXFyddXtPNdjWpusHo1KlTrF27dkwgELCuXbtWuyHs999/Zx4eHozP5zNbW1v29ddfyyx/9Ua2vLw8tmDBAmZlZcX4fD6zsbFhkyZNkrnR7lXLly9nxsbGTEdHh7377rts+/btMnWQ9+8iIyODDRkyhOno6DAA7NKlS9Ibu17+m83OzpYurxISEiLdVltbm3Xo0IF9+eWXdb6G3333HXN0dGR8Pp+5uLiwn3/+WWZ5Te/zqzd2McbYvn37mLW1NROJRGzMmDHsiy++YBYWFtLlNd3Y9epnvKa/FULUFYcxOTrVEEJee4cOHcKiRYuQmppa66XTKklJSXBwcEB4eHiLmVmLNExQUBAGDBiA7OzsamP9EtWaPXs2Hjx4gKtXr6o6FEJUQkPVARBCWraioiIkJiZi48aN+PDDD+tNYAkhTWPLli0YMmQItLW1cfbsWfz000/47rvvVB0WISpDfWIJIXX66quv0KlTJ5ibm2PFihWqDoeQ11ZISAiGDBmC9u3bY+/evdi1axdmzZql6rAIURnqTkAIIYQQQtQOnYklhBBCCCFqh5JYQgghhBCidiiJJYQQQgghaoeSWEIIIYQQonYoiSWEEEIIIWqHklhCCCGEEKJ2KIklhBBCCCFqh5JYQgghhBCidiiJJYQQQgghaoeSWEIIIYQQonYoiSWEEEIIIWqHklhCCCGEEKJ2KIklhBBCCCFqh5JYQgghhBCidiiJJYQQQgghaoeSWEIIIYQQonYoiSWEEEIIIWqHklhCCCGENLu1a9eiU6dOqg6DqDFKYkmjBAUFgcPh1PoYMGCAqkNsNtOnT5fWm8/nw9zcHEOGDMGPP/4IiUSi6vCk71VOTo6qQyGEqEBVG7Vp0yaZ8j/++AMcDqfZ41m2bBkuXLgg17qU8JKaUBJLGqVnz55IS0ur9vj+++/B4XAwd+5cVYfYrIYNG4a0tDQkJSXh7NmzGDBgABYtWoQ33ngDFRUVqg6v2ZSXl6s6BEJIDTQ1NbF582ZkZ2erOhTo6OjA2NhY1WHUiTH2WrXd6oaSWNIoAoEAFhYWMo/s7GwsX74cK1euxPjx46XrXr58Gd26dYNQKISlpSX+97//yTQOpaWlWLhwIczMzKCpqYnevXvj9u3b0uVVZxL//vtveHl5QSQSYeDAgcjIyMDZs2fh7u4OPT09TJw4EUVFRXXGfezYMbRr1w5CoRD29vbYunWrzHJ7e3ts2LAB77//PnR1dWFra4t9+/bV+3oIhUJYWFjA2toanTt3xsqVK3Hy5EmcPXsWBw8erHPbJ0+eYMKECTAyMoK2tja8vb1x69Yt6fI9e/bAyckJAoEArq6u+OWXX2S253A4+OGHHzB27FhoaWmhbdu2+PPPPwEASUlJ0rPihoaG4HA4mD59OoD6X/eDBw/CwMBA5livnrmpOkvy448/wtHREUKhEIyxel8vQkjzGjx4MCwsLLBx48YalxcWFkJPTw+///67TPmpU6egra2N/Px8AEBISAi8vLygqakJb29vnDhxAhwOBxEREQAUazeqBAUFoVu3btDW1oaBgQF69eqF5ORkHDx4EOvWrcPdu3elV7vqak9//PFHaftuaWmJ+fPnA6hsB1+OEQBycnLA4XAQFBQkjaHqe8bb2xtCoRAHDhwAh8PBgwcPZI6zbds22NvbS9u66OhojBgxAjo6OjA3N8eUKVOQmZlZa5xECRghSpSdnc1cXFzYqFGjmEQikZY/efKEaWlpsblz57KYmBh24sQJZmJiwtasWSNdZ+HChczKyoqdOXOGRUVFsWnTpjFDQ0OWlZXFGGPs0qVLDADr0aMHu3btGgsLC2POzs6sX79+zNfXl4WFhbErV64wY2NjtmnTplpjvHPnDuNyuWz9+vUsNjaW+fv7M5FIxPz9/aXr2NnZMSMjI7Z7924WHx/PNm7cyLhcLouJial1v9OmTWOjR4+ucVnHjh3Z8OHDa902Pz+fOTo6sj59+rCrV6+y+Ph4dvToUXbjxg3GGGPHjx9nfD6f7d69m8XGxrKtW7cyHo/HLl68KN0HANamTRt2+PBhFh8fzxYuXMh0dHRYVlYWq6ioYMeOHWMAWGxsLEtLS2M5OTlyve7+/v5MX19fJt4TJ06wl5uPNWvWMG1tbTZ06FAWFhbG7t69K/P+E0JUr6qNOn78ONPU1GSPHz9mjFX/PM+ePZuNGDFCZtuxY8eyqVOnMsYYKygoYKampuzdd99l9+/fZ6dOnWKOjo4MAAsPD2eMyd9udOzYkTHGWHl5OdPX12fLli1jDx8+ZNHR0ezgwYMsOTmZFRUVsaVLl7J27dqxtLQ0lpaWxoqKimqs43fffcc0NTXZjh07WGxsLAsJCWHbt29njDGWmJgoEyNjld9ZANilS5cYY/99z3To0IEFBgayhw8fsszMTNalSxe2evVqmWN16dKFrVixgjHGWGpqKjMxMWErVqxgMTExLCwsjA0ZMoQNGDCg7jeFNAolsURpxGIxGz58OHN3d2e5ubkyy1auXMlcXV1lEpvdu3czHR0dJhaLWUFBAePz+ezQoUPS5WVlZczKyop99dVXjLH/Gpd//vlHus7GjRsZAJaQkCAt+/DDD9nQoUNrjfO9995jQ4YMkSlbvnw58/DwkD63s7NjkydPlj6XSCTMzMyM7dmzp9b91pXEvvvuu8zd3b3Wbb///numq6srTRxf1bNnTzZ79myZsvHjx8t80QCQaWQLCgoYh8NhZ8+eZYz99/plZ2fLrFPf6y7vlxGfz2cZGRm11pEQolovt1E9evRg77//PmOs+uf51q1bjMfjsadPnzLGGHv+/Dnj8/ksKCiIMVbZXhkZGbHCwkLpNnv27GlUEpuVlcUASI/xqpfXrYuVlRVbtWpVjcsUSWL/+OMPmW23bdvGHB0dpc9jY2MZABYVFcUYY+zTTz9lvr6+Mts8fvxYeuKANA3qTkCUZuXKlQgODsbJkyehp6cnsywmJgY+Pj4yl5J69eqFgoICPHnyBAkJCSgvL0evXr2ky/l8Prp164aYmBiZfXXo0EH6f3Nzc2hpacHR0VGmLCMjo9Y4Y2JiZI5TFUt8fDzEYnGNx+FwOLCwsKhzv3VhjEnrPmfOHOjo6EgfABAREQEvLy8YGRkpFHNdr422tjZ0dXXrjFmR170+dnZ2MDU1VWgbQohqbN68GT/99BOio6OrLevWrRvatWuHn3/+GQDwyy+/wNbWFn379gVQ2R517NgRWlpa0m18fHwaFY+RkRGmT5+OoUOHYtSoUdi5cyfS0tIU2kdGRgZSU1MxaNCgRsUCAN7e3jLPJ0yYgOTkZNy8eRMAcOjQIXTq1AkeHh4AgNDQUFy6dEmmbXdzcwNQ2c6SpkFJLFGKo0ePYsuWLQgICEDbtm2rLX85iXu5DKhMEF/+f33b8fl86f+rRgJ4GYfDqXM0gLpiqe048uy3LjExMXBwcAAArF+/HhEREdIHAIhEonr3oehrI0/M8rzuXC632utT041b2tra9dSAENJS9O3bF0OHDsXKlStrXD5r1iz4+/sDAPz9/TFjxgxpm1BTe/kqeduNl/n7+yM4OBg9e/bE0aNH4eLiIk0a5VFfO8rlVqY8L8dVW0yvtmeWlpYYMGAADh8+DAA4cuQIJk+eLF0ukUgwatQombY9IiIC8fHx0uSfKB8lsaTRIiIi8P7772PTpk0YOnRojet4eHjgxo0bMo3HjRs3oKurC2trazg7O0MgEODatWvS5eXl5bhz5w7c3d2VGq+Hh4fMcapicXFxAY/HU+qxAODixYuIjIzEW2+9BQAwMzODs7Oz9AFUnkGNiIjAixcvatyHu7t7jTEr8toIBAIAkDnbLM/rbmpqivz8fBQWFkrXefnGCEKIetq0aRNOnTqFGzduVFs2efJkpKSkYNeuXYiKisK0adOkyzw8PHD37l0UFxdLy15NNhvabnh5eWHFihW4ceMGPD09pUmjQCCQabtqoqurC3t7+1qH7aq6UvTyGV5F2rJJkybh6NGjCA4ORkJCAiZMmCBd1rlzZ0RFRcHe3l6mfXd2dqYf+E2IkljSKJmZmRgzZgz69++PyZMnIz09Xebx/PlzAMDcuXPx+PFjLFiwAA8ePMDJkyexZs0a+Pn5gcvlQltbGx999BGWL1+Oc+fOITo6GrNnz0ZRURFmzpyp1JiXLl2KCxcu4PPPP0dcXBx++uknfPvtt1i2bFmj911aWor09HQ8ffoUYWFh2LBhA0aPHo033ngDU6dOrXW7iRMnwsLCAmPGjMH169fx6NEjHDt2DMHBwQCA5cuX4+DBg9i7dy/i4+Oxbds2HD9+XKGY7ezswOFwcPr0aTx//hwFBQVyve7du3eHlpYWVq5ciYcPH+Lw4cP1jrRACGn52rdvj0mTJuGbb76ptszQ0BDjxo3D8uXL4evrizZt2kiXvffee+ByuZg5cyaio6Nx5swZbNmyRWZ7RduNxMRErFixAsHBwUhOTkZgYCDi4uKkP6bt7e2RmJiIiIgIZGZmorS0tMb9rF27Flu3bsWuXbsQHx+PsLAwaf1EIhF69OiBTZs2ITo6GleuXMHq1avlfr3GjRuHvLw8fPTRRxgwYACsra2ly+bNm4cXL15g4sSJCAkJwaNHjxAYGIj333+/3uSbNIIK+uGSVuTgwYMMQK0POzs76bpBQUGsa9euTCAQMAsLC/bJJ5+w8vJy6fLi4mK2YMECZmJiwoRCIevVqxcLCQmRLq/pxqSabh6Q5waA33//nXl4eDA+n89sbW3Z119/LbPczs5OekdrlY4dO8qMpvCqadOmSeutoaHBTE1N2eDBg9mPP/7IxGJxnfEwxlhSUhJ76623mJ6eHtPS0mLe3t7s1q1b0uXfffcdc3R0ZHw+n7m4uLCff/5ZZnsA7MSJEzJl+vr6MqMurF+/nllYWDAOh8OmTZvGGKv/dWes8oYMZ2dnpqmpyd544w22b9++Wm/QIIS0TDXdfJqUlMSEQiGrKR24cOECA8B+++23asuCg4NZx44dmUAgYJ06dZKOfvLyTVOKtBvp6elszJgxzNLSkgkEAmZnZ8c+++wzadtZUlLC3nrrLWZgYMAAyLRrr9q7dy9zdXVlfD6fWVpasgULFkiXRUdHsx49ejCRSMQ6derEAgMDa7yx6+XvmZeNHz+eAWA//vhjtWVxcXFs7NixzMDAgIlEIubm5sYWL15MI7U0IQ5jNJgjIYQQQmQdOnQIixYtQmpqqrQ7Um2SkpLg4OCA8PBwmlmLNBsNVQdACCGEkJajqKgIiYmJ2LhxIz788MN6E1hCVIX6xBJCCCFE6quvvkKnTp1gbm6OFStWqDocQmpF3QkIIYQQQojaUYszsRs3bgSHw8HixYsbva/Lly+jS5cu0NTUhKOjI/bu3VvrugEBAeBwOBgzZkyjj0sIIYQQQpSnxSext2/fxr59+2RmImqoxMREjBgxAn369EF4eDhWrlyJhQsX4tixY9XWTU5OxrJly9CnT59GH5cQQgghhChXi05iCwoKMGnSJOzfvx+GhoYyy8rKyvDxxx/D2toa2tra6N69O4KCgurc3969e2Fra4sdO3bA3d0ds2bNwvvvv19tfDuxWIxJkyZh3bp1MtOZEkIIIYSQlqFFj04wb948jBw5EoMHD8YXX3whs2zGjBlISkpCQEAArKyscOLECQwbNgyRkZE1TnsKAMHBwfD19ZUpGzp0KA4cOIDy8nLplJ3r16+HqakpZs6ciatXr9YbZ2lpqczAyxKJBC9evICxsXG16TwJIa0DYwz5+fmwsrKSTmdJmp5EIkFqaip0dXWpfSWklZK3fW2xSWxAQADCwsJw+/btassSEhJw5MgRPHnyBFZWVgCAZcuW4dy5c/D398eGDRtq3Gd6ejrMzc1lyszNzVFRUYHMzExYWlri+vXrOHDggEJT0W3cuBHr1q2Tv3KEkFbj8ePHMrMZkaaVmpoKGxsbVYdBCGkG9bWvLTKJffz4MRYtWoTAwEBoampWWx4WFgbGGFxcXGTKS0tLYWxsDADQ0dGRlk+ePFl6A9erv9yrBmfgcDjIz8/H5MmTsX//fpiYmMgd74oVK+Dn5yd9npubC1tbWzx+/Bh6enpy76el8d1+Gak5JTg0qxs62hjWvwEhr5G8vDzY2NhAV1dX1aG8Vqpe74a0r2KxGLGxsXB1dQWPx2uK8FSK6qfeqH7/kbd9bZFJbGhoKDIyMtClSxdpmVgsxpUrV/Dtt9/i0KFD4PF4CA0NrfZCVCWvL59JrWroLCwskJ6eLrN+RkYGNDQ0YGxsjKioKCQlJWHUqFHS5RKJBACgoaGB2NhYODk5VYtXKBRCKBRWK9fT01PrJFZDUxtcIRc6uupdD0KaEl3Sbl5Vr3dD2lexWAwdHR3o6em12iSB6qe+qH7V1de+tsgkdtCgQYiMjJQpmzFjBtzc3PDJJ59AIBBALBYjIyOj1tEDnJ2dq5X5+Pjg1KlTMmWBgYHw9vYGn8+Hm5tbteOuXr0a+fn52LlzJ13CIoQQQghpIVpkEqurqwtPT0+ZMm1tbRgbG0vLJ02ahKlTp2Lr1q3w8vJCZmYmLl68iPbt22PEiBE17nfOnDn49ttv4efnh9mzZyM4OBgHDhzAkSNHAACamprVjmtgYAAA1coJIYQQQojqqO0ttf7+/pg6dSqWLl0KV1dXvPnmm7h161adZ0sdHBxw5swZBAUFoVOnTvj888+xa9cuvPXWW80YOSGEtD4bN25E165doaurCzMzM4wZMwaxsbEy6zDGsHbtWlhZWUEkEqF///6IiopSUcSEEHXXIs/E1uTVMWD5fD7WrVun8KgA/fr1Q1hYmNzrHzx4UKH9E0LI6+jy5cuYN28eunbtioqKCqxatQq+vr6Ijo6GtrY2AOCrr77Ctm3bcPDgQbi4uOCLL77AkCFDEBsbSzfIEUIUpjZJLCGEkJbr3LlzMs/9/f1hZmaG0NBQ9O3bF4wx7NixA6tWrcK4ceMAAD/99BPMzc1x+PBhfPjhh6oImxCixiiJJYQQonS5ubkAACMjIwCV036np6fLTDgjFArRr18/3Lhxo9Yk9tXJZPLy8gBU3uksFosViqlqfUW3UxdUP/VG9au+bn0oiSWEEKJUjDH4+fmhd+/e0ptiq4Y3rGnCmeTk5Fr3VdtkMrGxsTLjgSsiLi6uQdupC3WoX3pBOWIzy2CgyUVHC5G0/IugDGSXiLG8lwksdCtn0byQUIADYdnwstTE8t6m0vqdjctHBWPoaaMFY63KdEYsqRz7ncdV36Hv1OH9awx56ldQUCDXviiJJYQQolTz58/HvXv3cO3atWrLappwpq6xIF+dTKZqEHRXV9cGjRMbFxcHFxeXVjsOZ0urn0TC8OmfUUh4XohvJnSCqW7lmOo3byTh62sPMMLTAhMGuEvXT/ozHel5ZTBrYw93q8r3N6r4CfKCs6CpVfmjpap+H5wOQmpOCYZ2cYW7jQEA4PS9NCz57S4Guprh+ymdpfv9/sojlFVI8FZna1gZVCbNJeVilFZIoKep0SLGe26J758yKVK/qisu9aEklhBCiNIsWLAAf/75J65cuSIzXaSFhQWAyjOylpaW0vKMjIxqZ2dfVttkMjwer8Ff9I3ZVh2oqn6XYjOw++JDeFjpYf1oz39jAa7GZ+FpTjFS80phYaAFAHAx10M3ByO4W8oOfP/5mPZgjMHOREdaPszTCp1sjMDjMJQ8T5HWb7inJdJyi2FtpC1dN7uoHBIGCPhcmf3+ejMFqbkl6O9mDhvjyvKL959hwZFw9HQyxuHZPaTrZuSXwERbCK6KzubS3yfkrj8lsYQQQhqNMYYFCxbgxIkTCAoKgoODg8xyBwcHWFhY4Pz58/Dy8gIAlJWV4fLly9i8ebMqQiaNcOBaIi7HPceaUR5wMq08Q1ohZriTnI2C0gqZdZcMcYEGlwN7Y21pWV8XU/R1Ma223yEe1X/Q6Iv40BfxIRaLEfP8v/JP3/Cotu6kHnYY0d4S7JXyd7vaIj2vGFYG/01ln1NcDgAw1BLIrDvuuxvIL6nA4dnd0c5KH0D9VwyIalASSwghpNHmzZuHw4cP4+TJk9DV1ZX2gdXX14dIJAKHw8HixYuxYcMGtG3bFm3btsWGDRugpaWF9957T8XRk9owxpDwvACPnhfCt52FtPyf6GcIfpSF4IQsaRLrbWeIbe90RIc2+jL7eLtLGzQXPo8LMz3NauWLBretVjalhx3Gd2mD0gqJtCy3qBzP80tRJpbA7qWk++CNJBwLe4KpPvZ4x5tm72wpKIklhBDSaHv27AEA9O/fX6bc398f06dPBwB8/PHHKC4uxty5c5GdnY3u3bsjMDCQxohtwaJS8/DGN9egI9RA2KdmEGhUzpE0uYcdfNuZo2/b/86mGmoLMK5z8yWsyqDJ50GT/9+la30tPiLXDsWjzALoCP9Lke4kZ+P+0zw8z/9vpIwKsQR/Rz1D77Ym0Bfx5Tpeem4JLj7IwHvdbZVXidcYJbGEEEIajbFXL+BWx+FwsHbtWqxdu7bpAyIKu/s4B7/eTIaHlR5m9KrsDuJhqQdrAxGczHTworAMFvqVZzlHdrCsa1dqTaDBhZuF7E2Da0Z5oL+LKbo5GEnLwlJyMO9wGAy1+Li9ajA0ePVPgvpd0EMEhDxGhzb68LTWr3d9Uje1nXaWEEIIIQ3HGINE8t+Pj9hn+fi/0Cc4evuxtIzL5eDy8v74+f1u0gT2dWSmq4nx3jYyXQwKSyvgZKqNwe7mMgnsrgvxCIxKR2mF7FinT3OKERDyGGViCeYfDkN+SXmzxd9a0ZlYQggh5DXz2+3H+OHaIyz1dcXQf/u6DvWwQGSPXIzsYClzI5M8ZxhfRwPczDDAzQxlL/WpfZZXgu3/xIEx4OrHA2BjpCVdtvvSQ5SJK9dNyirCyhP3sWtCJ7phrBHoL5MQQgh5zSRkFiDuWQGOhz2Rlulr8fH5GE/0cDSmxEoBVf2Eq8zq7YAR7S1kE9iLD3E0JEVmvVN3U2XOehPF0ZlYQgghpBU7GfEUP15PwtbxHeFsVjmSwMSutrAx1MKojlYqjq51MdfTxKqRskN/lZSLsfNCPMQ1dBtf82cUvGwN4WpBNzc2BJ2JJYQQQlqxU3dTcfdxDn4OTpKW2ZtoY3IPO7nvqicNl/i8EOViSY3LSiskmHc4DEVlFTUuJ3WjJJYQQghpJQrLJPj+yiOZpOjDfk5YOsQFCwdVHyuVNL0frydWm3zhZQ8zCrD2z6hmi6c1oe4EhBBCSCvAGMMngelIyimHQIOHWX0cAQBd7Y3Q1d6onq1JU0jMLMTx8Kf1rvfbnSfo5WQER436h6oj/6EzsYQQQoiaEr80RBaHw8FYdz04m2rL3FREVOebC/Ey71Fd1p+Kxo7gLKw9FY2sgtL6NyB0JpYQQghRR+fup+Orcw+wfrQnerc1AQAMcNTG3BHe4PPp670l+OrtDtj0VgcwMDCGykfV/wFIWFU5w+OsAry5OxjsUSHe7mIDYx2hqsNv8eivnBBCCFFD1x4+x6PMQuy7+kiaxHI5HHC5NDxWS6HIGLu6Qn18OdgczyS66GhjIC1Pyy2GhZ4mDXtWA0piCSGEEDVQUFoBsYRJRxRY5usKM11NzOhlr9rAiNJ0sNCEu7uz9HlucTne2HUNHlZ62P5uJ5jQ2VkZ1CeWEEIIaeGCYjMwaGsQNp6JkZYZaAmwcFBb6GrSMFmtVWjyC+SXVCAttwR69D5XQ2diCSGEkBZOxOfhWV4pbiW+QFFZBbQE9PX9OhjoZo6/l/RFfkm5dGYwxhgSnhdKJ654ndGZWEIIIaQFysgvkf6/u6MxDkzzxtlFfSiBfc04mGijQxsD6fPT99IwZPtlfP33A9UF1UJQEksIIYS0ILnF5Zh3OAwjd11DTlGZtHyQuzk0+TwVRkZagvCUHDAG8LiUwtHPOUIIIaQF0eByEJOWhxeFZQhOyMLw9paqDom0IJ+N8sBANzN0d/xvAouScjGEGtzXbgQDSmIJIYQQFWOMSRMQbaEGdr/XGeViicxlZEKqVA2pBlT+7cw/HA4hn4vNb3WAjvD1Se3oXDQhhBCiQlkFpZhyIATn7qdJy9wt9SiBJXK5/zQPQbEZOB/1DEmZhaoOp1m9Puk6IYQQ0gL9FJyMaw8z8TCjAAPczCDUoH6vRH7t2+jj6Ic+ePyiCJ7W+qoOp1lREksIIYSo0IKBzkjLKcbsvo6UwJIG6WJniC52htLnT3OK8fONJCwf6qrQrGHqhpJYQgghpBlJJAxn76djRHsLcDgc8HlcfD2+o6rDIq0EYwwLj4QjNDkbxeVirB/tqeqQmkzrTc8JIYSQFoYxhgVHwjHvcBj8ryepOhzSCnE4HHzY1xE2RiLM7uOo6nCaFJ2JJYQQQpoJh8OBl60Bzkc/g7GOQNXhkFbKt50F+ruaSWf5AoDiMjFEgtbVXYXOxBJCCCHNaGZvB/y9pC9Gd7JWdSikFXs5gb3/NBd9vrqEK3HPVRiR8lESSwghhDShpMxCrP4jEuViCYDKs7EOJtoqjoq8Tn68lojMglLsv/oIjDFVh6M01J2AEEIIaSJlFRJM/TEEKS+KoC3QwIoR7qoOibyGNr3VAW0MRfign1OrmtWLzsQSQgghTUSgwcW6N9uhvbU+ZrXym2xIyyXQ4MLP11VmNq/HL4pUGJFyUBJLCCGENKEBbmY4Oa8XTHWFqg6FEADAqbupGLAlCL+HPlF1KI1CSSwhhBCiREmZhZh58DZeFJZJy7jc1nMJl6i/0ORsVEgYbj3KUnUojUJ9YgkhhBAlYYxhUUA47j7JxWcn7+Pb9zqrOiRCqlkzygOd7QzxRntLVYfSKHQmlhBCCFESDoeDre90RE8nY6wZ1U7V4RBSIw6Hgzc7WslcIcjIK1FhRA1DSSwhhBCiRM5mujg8uwf1gSVqgTGGTWcfYMj2K3iYka/qcBRCSSwhhBDSCBIJw/pT0Yh7pl4JACEAUFohwa3ELOQWl+NafKaqw1EI9YklhBBCGmH/1Uf48XoiTkY8xZWPB0BbSF+tRH1o8nn4Yao3bie9wDBP9eojS580QgghpBHe8bbBPzHPMLGbLSWwRC0Z6whlEliJhIHDQYufGIE+bYQQQkgjGGoLEPCBD3g0jBZpBQpLK7DkaAS6ORi1+Ak6WmSf2D179qBDhw7Q09ODnp4efHx8cPbs2Ubv9/Lly+jSpQs0NTXh6OiIvXv31rpuQEAAOBwOxowZ0+jjEkIIaV1yisoQkvhC+pwSWNJa/B2VjsDoZ9gSGIvn+aWqDqdOLTKJbdOmDTZt2oQ7d+7gzp07GDhwIEaPHo2oqKgG7zMxMREjRoxAnz59EB4ejpUrV2LhwoU4duxYtXWTk5OxbNky9OnTpzHVIIQQ0gpJJAyLj0Zg4v6b+O32Y1WHQ4hSjfWyxgd9HdVihI0WmcSOGjUKI0aMgIuLC1xcXPDll19CR0cHN2/eBACUlZXh448/hrW1NbS1tdG9e3cEBQXVuc+9e/fC1tYWO3bsgLu7O2bNmoX3338fW7ZskVlPLBZj0qRJWLduHRwd5TuNXlpairy8PJkHIYSQ1qm0QgJ9ER98Hgee1vqqDocQpeJwOFg5wh2dbQ1VHUq9WmQS+zKxWIyAgAAUFhbCx8cHADBjxgxcv34dAQEBuHfvHsaPH49hw4YhPj6+1v0EBwfD19dXpmzo0KG4c+cOysvLpWXr16+HqakpZs6cKXeMGzduhL6+vvRhY2OjYC0JIUT9XblyBaNGjYKVlRU4HA7++OMPmeWMMaxduxZWVlYQiUTo379/o66wqYpIwMPOCV44v6QfPKz0VB0OIU3qWV4JTkY8VXUYNWqxSWxkZCR0dHQgFAoxZ84cnDhxAh4eHkhISMCRI0fwf//3f+jTpw+cnJywbNky9O7dG/7+/rXuLz09Hebm5jJl5ubmqKioQGZm5bho169fx4EDB7B//36FYl2xYgVyc3Olj8eP6fISIeT1U1hYiI4dO+Lbb7+tcflXX32Fbdu24dtvv8Xt27dhYWGBIUOGID9fPcZXZYzJPLcx0lJRJIQ0j4y8EozYeRVLf7uL+09zVR1ONS12dAJXV1dEREQgJycHx44dw7Rp03D58mVERUWBMQYXFxeZ9UtLS2FsbAwA0NHRkZZPnjxZegPXq0NFVDVIHA4H+fn5mDx5Mvbv3w8TExOFYhUKhRAKW3a/EUIIaWrDhw/H8OHDa1zGGMOOHTuwatUqjBs3DgDw008/wdzcHIcPH8aHH37YnKE2yKcn74PP4+KTYW7Q5PNUHQ4hTc5UV4jujkZIyiyCQKPlnfdssUmsQCCAs7MzAMDb2xu3b9/Gzp07MXDgQPB4PISGhoLHk21EqpLXiIgIaZmeXuWlHgsLC6Snp8usn5GRAQ0NDRgbGyMqKgpJSUkYNWqUdLlEIgEAaGhoIDY2Fk5OTkqvJyGEvA4SExORnp4u061LKBSiX79+uHHjRq1JbGlpKUpL/7tDuuqeA7FYDLFYrFAMVesruh0ARKXm4debKQCAIe5m6O5gpPA+mlpj6qcOqH6qsWFMOwg1eBBocBsVmyL1k/c4LTaJfRVjDKWlpfDy8oJYLEZGRkatowdUJb8v8/HxwalTp2TKAgMD4e3tDT6fDzc3N0RGRsosX716NfLz87Fz507q50oIIY1QdRKhpm5dycnJtW63ceNGrFu3rlp5bGyszFU3RcTFxSm8DRfA2gFmSMwug17JM8TEPGvQsZtDQ+qnTqh+qsUYa9QkCPLUr6CgQK59tcgkduXKlRg+fDhsbGyQn5+PgIAABAUF4dy5c3BxccGkSZMwdepUbN26FV5eXsjMzMTFixfRvn17jBgxosZ9zpkzB99++y38/Pwwe/ZsBAcH48CBAzhy5AgAQFNTE56enjLbGBgYAEC1ckIIIQ1TU7euur4QV6xYAT8/P+nzvLw82NjYwNXVVXqlTV5isRhxcXFwcXGpdiVPHu7uCm/SrBpbv5aO6qdaEgnD72FP8UdEKn6a4Q0+T7HuBYrUT95RnlpkEvvs2TNMmTIFaWlp0NfXR4cOHXDu3DkMGTIEAODv748vvvgCS5cuxdOnT2FsbAwfH59aE1gAcHBwwJkzZ7BkyRLs3r0bVlZW2LVrF956663mqhYhhLy2LCwsAFSekbW0/G96y4yMjGpnZ19W2z0HPB6vwV/0imz7JLsIRtoCaAla5NdljRrz2qgDqp9qFJSW46u/Y5FdVI4/ItIwoZttg/YjT/3krb/Cn8pz585BR0cHvXv3BgDs3r0b+/fvh4eHB3bv3g1Dw8aPK3bgwIE6l/P5fKxbt67GS0x16devH8LCwuRe/+DBgwrtnxBCVK052uiGcHBwgIWFBc6fPw8vLy8AlWN+X758GZs3b1ZJTPURSxjmHQ5HZn4pdk/qjE42BqoOiRCV0dfiY82odsgsKMXbXdqoOhwADRhia/ny5dLTvJGRkVi6dClGjBiBR48eyVzyIYQQ0vxU2UYXFBQgIiJCenNtYmIiIiIikJKSAg6Hg8WLF2PDhg04ceIE7t+/j+nTp0NLSwvvvfdek8bVUCkvipCRV4Lc4nJY6muqOhxCVG6MlzVm9XGEhoJdCZqKwmdiExMT4eHhAQA4duwY3njjDWzYsAFhYWF1Xs4nhBDS9FTZRt+5cwcDBgyQPq9KmqdNm4aDBw/i448/RnFxMebOnYvs7Gx0794dgYGB0NXVbdK4GsrBRBsXl/ZH7LN8mOtREkvIyxhjyCuugL4WX2UxKJzECgQCFBUVAQD++ecfTJ06FQBgZGRE060SQoiKqbKN7t+/f7UJAV7G4XCwdu1arF27tknjUCaRgEfdCAh5RWJmIf537B5KysX4Y16vRo1W0BgKJ7G9e/eGn58fevXqhZCQEBw9ehRA5ZAJbdq0jD4ShBDyuqI2uvGe5hQj8XkherdVbOIbQl4XOkINRD7NhVjCEPssH24Wqpl+WeFODd9++y00NDTw+++/Y8+ePbC2tgYAnD17FsOGDVN6gIQQQuRHbXTj7fonHpMP3MLWwFhVh0JIi2SqK8TOCV64tKy/yhJYoAFnYm1tbXH69Olq5du3b1dKQIQQQhqO2ujGYYxBJOCBz+Ogv6uZqsMhpMUa4lH70HjNRa4kNi8vTzqodH19qhQdfJoQQkjjUButPBwOB2vfbIf5A51holN9fFpCSHXP8kpgpC1QeAKExpIriTU0NERaWhrMzMxgYGBQYwfeqllXWtqcv4QQ0tpRG618lMASIp+tgbH4/vIjbBjXvtnHj5Urib148SKMjIyk/1fVXWiEEEKqozZaOQKj0tHRxoCG0yJEAdpCDZSJJbj5KKtlJrH9+vWT/r9///5NFQshhJAGoDa68V4UlmFhQDjEEoazi/rC2UxH1SERohYm97BDJxsD9HA0bvZjK9x54dNPP63xclRubi4mTpyolKAIIYQ0DLXRDfOisAztrfXhaqELJ1NtVYdDiNrQEWqoJIEFGpDE/vzzz+jVqxcSEhKkZUFBQWjfvj2SkpKUGRshhBAFURvdMM5mOvi/OT1xeHYP6o5BSANViCXILSpvtuMpnMTeu3cP9vb26NSpE/bv34/ly5fD19cX06dPx7Vr15oiRkIIIXKiNrpx9DRVN4UmIersfPQz9PnqEjaciWm2Yyo8Tqy+vj4CAgKwatUqfPjhh9DQ0MDZs2cxaNCgpoiPEEKIAqiNVtz1h5nwtjeEUIOn6lAIUVuGWnyk5ZYgKC4D5WJJswy31aAjfPPNN9i+fTsmTpwIR0dHLFy4EHfv3lV2bIQQQhqA2mj5JWUWYtIPt9Br0yUUllaoOhxC1FYXO0McmOaNy8sHNNt4sQofZfjw4Vi3bh1+/vlnHDp0COHh4ejbty969OiBr776qiliJIQQIidqoxWTmFkIcz0hPK31oC1U+OIkIeRfHA4Hg9zNoclvvisaCiexFRUVuHfvHt5++20AgEgkwp49e/D777/TtIaEEKJi1EYrZoCbGW78bxC2vdNJ1aEQ0qowxpr8GAr/7Dx//nyN5SNHjkRkZGSjAyKEENJw1EYrjsflwEhboOowCGkVrj/MxDcX49HN3gh+vq5NeiyldlowMTFR5u4IIYQoEbXRsrILy1QdAiGtTmZBKW4+eoG/ItOa/FgKn4kVi8XYvn07fvvtN6SkpKCsTLYRePHihdKCI4QQohhqo+UjkTAM2X4F5npCfD+lC9oYaqk6JEJahYFuZlg5wg3D2lk2+bEUPhO7bt06bNu2De+88w5yc3Ph5+eHcePGgcvlYu3atU0QIiGEEHlRGy2fh88L8KKwFMlZRTDT1VR1OIS0GrqafHzQ1wm2xk3/w1DhJPbQoUPYv38/li1bBg0NDUycOBE//PADPvvsM9y8ebMpYiSEECInaqPl42Kuizurh+CHad4QaDTPcECEEOVS+JObnp6O9u3bAwB0dHSQm5sLAHjjjTfw119/KTc6QgghCqE2Wn5G2gKVzflOSGsXFJuBdaei8Dy/tMmOoXAS26ZNG6SlVXbWdXZ2RmBgIADg9u3bEAqFyo2OEEKIQqiNJoS0BF//HQv/60m4/jCzyY6hcBI7duxYXLhwAQCwaNEifPrpp2jbti2mTp2K999/X+kBEkIIkR+10fX7JyYDiwPCcT76mapDIaTVGutljYndbGBvot1kx1B4dIJNmzZJ///222/DxsYG169fh7OzM958802lBkcIIUQx1EbX78KDDPwRkQozPU0M8TBXdThKJZYw5BaXo7CsFLnF5cgrKUdphQRiMUOFhEHCGHhcDoQaXAg1eNDkc2GoJYCxjgA6Qg1wOBxVV4G0ErP6ODb5MRo9x1737t3RvXt3ZcRCCCFEyaiNru6dLm1goaeJfq5mqg6lQbILyxCfUYD4jHwkZRYiNbcEaTnFSM0tQUZeCSQspUH7FWhwYaItgLGOELZGWnAw0YajqTYcTLThZKYDPU2+kmtCSOPQRNGEEEJeK162BvB2UI8bup7nlyI8JRthKTm49yQHcc/ykVlQ/yQNmnwu9DT50BPxocnngsflQoPLAY/DQYVEgtKKykdxmRjZRWUoKhOjrEKC1NwSpOaWIPJpbrV9Oppoo0MbfXS0MUAnGwO0t9aHBo9GdiB1S8sthoQBFrrKnxWPklhCCCGkhcjIK8GV+ExcjX+O0ORsPMkurnE9awMRXMx14GiqAysDEaz0NWGmK0B+xmN069gOWkLFzpoWlVUgq6AMWYVleJ5fiuSsQjzKLETi80I8yizAs7xSPMqsLPsjIhUAoKupAR9HY/Rua4IBrmawMaIJI4isbefjsOtCPKb0sMPaUe5K3z8lsYQQQl4bsZmlKH+SCw9rfQg1eKoOBxViCW4nZSMoLgNX4jIRk5Yns5zDAVzMdOFlW3n208NKD06mOtAWVv/6FovFiClIg7AB495qCTSgZaRRayL6orAM957k4O7jXNx9koM7SS+QV1KBwOhnCIx+BiAKHdroY0R7S4xsb0kJLQEAuFnogssBcovLm2T/lMQSQgh5bRy6m4Owc8H4fHQ7TPGxV0kMEgnD7aQXOH0vDWfvp8l0D+BwgPbW+ujb1hQ9HI3RwUa/RfRFNdIWoL+rGfr/249YLGG4/zQX1x5m4nLcc9xJeoF7T3Jx70kuNp19AC9bA7zXzRZvdLCCSKD6HwtENQa6mSFy7VBoCzUgFouVvn+Fk9jp06fj/fffR9++fZUeDCGEkMahNrpuukIuDER8dGhj0OzHjknLw//deYK/IlPxLO+/AeANtfgY4GaGfi6m6O1sAmOdlj+eL4/LQUcbA3S0McC8Ac54nl+Kv6PScSYyDTcfZSE8JQfhKTn4/HQ0xnVug5m9Hejs7GtIk9+0P2AUTmLz8/Ph6+sLGxsbzJgxA9OmTYO1tXVTxEYIIURB1EbXbXlvU7i5uYHHa56zgyXlYpyJTMOvN5MRlpIjLdfV1MDQdhYY1dEKPZ2MwVfzG6RMdYWY3MMOk3vYISO/BL+HPsGRkBQ8flGMgzeS8MvNZIzuZIW5/Z3hbKaj6nBJK6FwEnvs2DFkZWXh119/xcGDB7FmzRoMHjwYM2fOxOjRo8Hnq/6yByGEvK6oja4fh8Np8vFQU7KK8MvNJPxf6BPkFFX2B9TgcuDbzhzjvNqgj4tJi+iT2xTMdDUxt78z5vR1wtWHmThwLRFX4p7jeNhTnAh/ipHtLfHJMDc6M/uauPjgGX67/QRd7AzgY6TcfTfop5+xsTEWLVqE8PBwhISEwNnZGVOmTIGVlRWWLFmC+Ph45UZJCCFEbtRGq07cs3wsCghH/y2XsP9qInKKymFtIMIyXxfc+N9AfDepCwZ7mLfaBPZlXC4H/VxM8fP73XByXi/4epiDMeD0vTQM2noZG8/GIK+kaW74IS1HSlYRzkWl43ZSttL33ajrF2lpaQgMDERgYCB4PB5GjBiBqKgoeHh4YPv27cqKkRBCSANQGy1r14WHWHYuHX/eTVX6vu89ycEHP9+B7/YrOBmRCgkD+rQ1wQ9TvXHl4wGYP7AtzPQ0lX5cddHRxgD7pnrjzMI+6OVsjDKxBN9ffoTBWy8jMCpd1eGRJtTT2QRrRnlgRk87pe9b4e4E5eXl+PPPP+Hv74/AwEB06NABS5YswaRJk6CrqwsACAgIwEcffYQlS5YoPWBCCCG1oza6dlFpeXiQWarU4X7uP83FV3/H4krccwCVowsM97TA3P7O8LTWV9pxWgsPKz38OrM7LsVm4PPTMUjMLMQHv4RiZAdLfD7aE0bayh8Qn6iWi7kuXMx1K4eAi3mm1H0rnMRaWlpCIpFg4sSJCAkJQadOnaqtM3ToUBgYGCghPEIIIYqgNrp2fkPaoqupBP1cTBu9r/TcEnz9dyyOhz8BY5V361feuOQEZzNdJUTbenE4HAx0M0dPJxPsvBCPfVce4a97aQhLzsY3E73gba/kjpOk1VI4id22bRveeecdaGrWflnE0NAQiYmJjQqMEEKI4qiNrp2ruS4kttqwbcQNRYWlFfj+cgL2XX2EknIJAGB0JyssHeIKW2O6UUkRmnwePhnmhpHtLbHwSDgeZRbi3X038ckwV8zu49jkN9+R5vMkuwjpOcUQl0mUul+F+sRWVFTg/fffx8OHD5UaBCGEkMajNlo+FWLFv0gZYzgR/gT9twRh18WHKCmXwNvOEH/M64WdE7wogW0ET2t9/LmgN97saAWxhGHDmQdYcTyyQe8TaZlmHryDt7+/ibis0vpXVoBCZ2I1NDRgZ2fXJLMuEEIIaRxqo+t3ObEQKy7dxA/TusJczhutnmQXYeWJ+9J+r7ZGWlgx3A3DPC3obKGS6Ag1sHNCJ3SxM8S6U1EIuP0Y6Xkl+G5SZ2gJaHJRddfGUITCsgpImHL3q/DoBKtXr8aKFSvw4sUL5UZCCCGk0aiNrl1puRj+4dmIfJqHMbuvIyo1t871JRKGg9cT4bv9Cq7EPYdAg4tlvi4479cXw9tbUgKrZBwOB9N62uP7Kd7Q5HMRFPscMw/eQUk5/ShTdwemd8XlZf3QxUqk1P0q/PNm165dePjwIaysrGBnZwdtbW2Z5WFhYUoLjhBCiGKoja6dkM/DxiHm2HQjFwnPCzF+bzB2TfDCYA/zaus+zMjHJ8ciEZpcObZlV3tDbHqrA5xMabappjbEUIKL+UF4j9sRwY+AD34Jxf6pXaBBvxnIKxROYseMGdMEYRBCCFEGdWijv/vuO3z99ddIS0tDu3btsGPHDvTp06dZjm2py8fvH/bA/IAIXH+Yhdm/3MGqEe6Y2dsBHA4HjDEcupWC9aejUVYhgbaAh/+NcMekbrbgcimLahZpabDa+RV2n7qIt2+V4krcc6w+cR8bx7ZTdWSkgc7dT8OOf+KRkJEPJ7MXWDy4LYZ5WjZ6vwonsWvWrGn0QeuzceNGHD9+HA8ePIBIJELPnj2xefNmuLq6Nnrfly9fhp+fH6KiomBlZYWPP/4Yc+bMqXHdgIAATJw4EaNHj8Yff/zR6GMTQkhTa442ujGOHj2KxYsX47vvvkOvXr3w/fffY/jw4YiOjoatrW2zxKAn4uPgjG747GQUjoSk4Iu/YhD3LB+rRrpj5fH7+CsyDQDQz8UUG8e1h5WBci+BEvm0s9LH3ik2mOEfgv8LfQJXCx30MFR1VERR5+6nYc6v/10Bik3Px5xfw7B3cudGJ7Itsrf05cuXMW/ePHTt2hUVFRVYtWoVfH19ER0dXe3SmCISExMxYsQIzJ49G7/++iuuX7+OuXPnwtTUFG+99ZbMusnJyVi2bFmznR0ghJDXwbZt2zBz5kzMmjULALBjxw78/fff2LNnDzZu3Fht/dLSUpSW/ndHc15eHgBALBYrfANb1fpisRg8Hg+fv+kOB2MRNp2LxcUHz3AmMg0FpWLwuBz4DW6LD/tWnp1VlxvlXq6f2klLq3wA4ISHgwtAcucOenuJscWpAhsj8vDlXw+wur8pXFzUsH5yUOv3rw47/pGd5pqhclKQHf/EY4i7WY3byPsaKJzEisVibN++Hb/99htSUlJQVlYms1wZNxOcO3dO5rm/vz/MzMwQGhqKvn37AgDKysqwevVqHDp0CDk5OfD09MTmzZvRv3//Wve7d+9e2NraYseOHQAAd3d33LlzB1u2bJFJYsViMSZNmoR169bh6tWryMnJaXSdCCGkOTRHG91QZWVlCA0Nxf/+9z+Zcl9fX9y4caPGbTZu3Ih169ZVK4+NjYWOTsP6p8bFxUn/72PEMMpVF6dj8yFmgLk2Dwt6GKOjaQkePHjQoP2r2sv1Uxdm330Hsz17ZMq4H34IABgHIKPfe9jU4z18F5KFzpax4PNab9cOdXz/6pKQkV+tjLHK8piYmBq3KSgokGvfCiex69atww8//AA/Pz98+umnWLVqFZKSkvDHH3/gs88+U3R3csnNrbyD1Mjov1k8ZsyYgaSkJAQEBMDKygonTpzAsGHDEBkZibZt29a4n+DgYPj6+sqUDR06FAcOHEB5eTn4fD4AYP369TA1NcXMmTNx9erVeuOr7UwBIYQ0N1W00fLKzMyEWCyGubnsjVTm5uZIT0+vcZsVK1bAz89P+jwvLw82NjZwdXWFnp6eQscXi8WIi4uDi4sLeDweSsvF+PhYJE4/qPyS5XKAnBIxPr2QAS4H4PNQbQSCNoYiTOpmhyk+yp8HvrFerZ9aWbkS4hkzAPx7JvbDDyH5/nswLy/kFJXh2pUM8Es4mN/dGO3cXdWvfnJQ6/evDk5mL/AgXTaR5XAAZzNduLu717iNvHmUwknsoUOHsH//fowcORLr1q3DxIkT4eTkhA4dOuDmzZtYuHChorusE2MMfn5+6N27Nzw9PQEACQkJOHLkCJ48eQIrKysAwLJly3Du3Dn4+/tjw4YNNe4rPT29xsazoqICmZmZsLS0xPXr13HgwAFERETIHWNtZwoIIaS5NXcb3RCvJoaMsVqHqxIKhRAKhdXKeTxeg7/oL8dl4mrCCxwPe1LZfYDDwZo3PXAt/jkCozMAAGIGiCuAyouf/8ktFmNER6sWnWQ05rVRmTZtKh8A8G/sXG9voHNnGAP4oacYsWm54OWlqmf9FNDa6rd4cFuZPrEcTuWZ2EWDa0/W5a2/wuPEpqeno3379gAAHR0d6VnSN954A3/99Zeiu6vX/Pnzce/ePRw5ckRaFhYWBsYYXFxcoKOjI31cvnwZCQkJ0tiqHi/fuFVT41lVnp+fj8mTJ2P//v0wMTGRO8YVK1YgNzdX+nj8+HFjqkwIIQ3W3G20IkxMTMDj8aqddc3IyKh2gkEZJBKG2PR8HLqVDL/fIjByV+WVtfkB4fg5OBkFpWJwOcDBGV0x1cceCwe51Lk/HpeDbyZ6wUxXvkkSSOMkZRZK/6/J58HTWl+F0ZCGGuZpibc7WwOoTDpdzXWxd3IXDPO0aPS+FT4T26ZNG6SlpcHW1hbOzs4IDAxE586dcfv27Rp/LTfGggUL8Oeff+LKlStoU/ULDYBEIgGPx0NoaGi1bL2qj9TLZ1KrLjlZWFjU2HhqaGjA2NgYUVFRSEpKwqhRo2SOBVTOhBMbGwsnJ6dqcdZ2poAQQppbc7bRihIIBOjSpQvOnz+PsWPHSsvPnz+P0aNHK+04DzPysf50DMJTspFfUiEtF/E5CE8rRul/RZg/sC36uJgCqJz+dICrKS7FPq9xv292tER3R2OlxUlqYWmJ+7MW4/1TSZjGt8S8Ac6qjog0kouFLgCgn4M2fpjVS2lnmhVOYseOHYsLFy6ge/fuWLRoESZOnIgDBw4gJSUFS5YsUUpQjDEsWLAAJ06cQFBQEBwcHGSWe3l5QSwWIyMjo9bRA5ydq//R+/j44NSpUzJlgYGB8Pb2Bp/Ph5ubGyIjI2WWr169Gvn5+di5cydsbGwaWTNCCGlazdFGN4afnx+mTJkCb29v+Pj4YN++fUhJSal1qMOGcDLVgZ6mhkwCCwDlFQxrLmZIn+uJNDCnn6PMOvMHtq01iU3NKamz6wNpPMYYdtzPx07jwQCAZ3n0mrcGhaWVow2I+Mp9HxVOYjdt2iT9/9tvv402bdrgxo0bcHZ2xptvvqmUoObNm4fDhw/j5MmT0NXVlZ491dfXh0gkgouLCyZNmoSpU6di69at8PLyQmZmJi5evIj27dtjxIgRNe53zpw5+Pbbb+Hn54fZs2cjODgYBw4ckHZV0NTUlPa7rWJgYAAA1coJIaQlao42ujHeffddZGVlYf369UhLS4OnpyfOnDkDOzvl3SjF4XDw9dsdkZhZiKjU/24QYQAkrPKSpgTAlB520BLIfg12sTNEL2djXH+YJS2zMRRheHtLTOxmK02mcovKweECepp8pcX9uispF2PVifs4FvYEADBvgBOW+bpSAtsKFPx7+UOkoXAv1jo1epzYHj16oEePHsqIRWrPv8NsvDpclr+/P6ZPny79/xdffIGlS5fi6dOnMDY2ho+PT60JLAA4ODjgzJkzWLJkCXbv3g0rKyvs2rWr2hixhBDSWjRFG91Yc+fOxdy5c5v0GCIBD/uneuPNb68hs6BymDE+D1juY4IdwZkQMw6m+djXuO2CgW2lSaxAg4s9k7tU64/5deADnIlMx5LBbTGxmy00eMr9cn7dJDwvwLxDYXiQng8uB/hiTHu81715Jr8gTa+wKolV9ZlYoHIMs6CgIGRkZEj7jFZRxhAuVTdb1YXP52PdunUKjwrQr18/heYOP3jwoEL7J4QQVWvqNlpdWBmI8P2ULpiw7ybKxZWXpHvbaWPnzSy82cEaZno136DVw9EY3eyNEJL0AuvfbFctgS2rkCAk8QVeFJbh05NR+Ck4Gct8XeHrYU5T0zZASbkY7+wNRlZhGYy1Bdg5wQu928p/czVp+fKlSayKz8Tu378fH330EUxMTGBhYSFzmp/D4bxWDSQhhLQ01EbL6mJnhC/HtMfHx+5BLGG4kFAAxhhm9XGoc7sFg5xxMiIV73atfi+EQIOLvxb2wZGQFOz4Jx4PMwow59dQuJjrYG5/Z7zRwZLOzCpAk8/DB30dcfFBBnZN9IJ5LT8uiPrKzK8cS99AqNyhwxROYr/44gt8+eWX+OSTT5QaCCGEkMajNrq6d7raICY9DwdvJGF7cBbaW+nC3bLuiRJ6O5ugm4NRrf0x+TwupvrYY4yXNfZfeYSD15MQ96wAi49GID2vBHP6VR/JhlQqKqvA95cfoZuDEXo5V55xndnbATN7O1Dy30o9/zeJNRSpOInNzs7G+PHjlRoEIYQQ5aA2umarRrjjn+h0mGgCQ9rXPz4lh8OBUKP+L1w9TT6W+rpidl9H/BKcjCMhKXjH+7+ztzFpeTDQ4sNSX9So+FuDcrEEJ8KeYktgLDLyS+Fqrou/FvaGBo9LyWsrl/FvEmuk6iR2/PjxCAwMVOpwKIQQQpSD2uiaafC4ODmvJ1KTEuDm5lj/BgrS0+Rj3gBnfNTPSaZf7Jo/o3An6QUGuZtjcg879HE2ee36zZaUi/F/oU/w/eUEPMkuBlA5fe/CQW3Be81ei9dRYWmFdHQClSexzs7O+PTTT3Hz5k20b98efL7s8CItYUpDQgh5XVEbXTt9kQCpqD5zozK9nKCWlFdOaSthwPnoZzgf/Qw2RiKM6WSNUR2t4GKu22RxtBSn76Vi/alo6Zk4Ex0BPujriKk+9tDkt56pVUntSsrFeLOjFZ7nl0BLoOIbu/bt2yed4vXy5csyyzgczmvdQBJCiKpRG12/orIK6Cr5jFBNNPk8HPmgBx5m5OPXmyk4FvYEj18U45uLD/HNxYeY0sMOn49pXWOQl4slKCkXQ/ff8XM1NXjIyC+Flb4mPujriHe72kIkoOT1dWKsI8SuiZWTVMXExCh13wonsYmJiUoNgBBCiPJQG1275KwivPd/j8HhpuLuGt9mO66zmS7WvtkOnwxzw99R6Th9LxWX456js52BdJ1Hzwvw680U9HM1RXcHI7U6S1kuluBGQhb+upeKwOhnmNDVFv8b7gYAGOBmhl0TvTCsnQUESh7onpBGT3ZACCGEqAMzXSHySiUAJHhRWAYjbUGzHl8k4GGMlzXGeFkjt7gcwpeSugsxGfjxeiJ+vJ4IoQYX3RyM0MPRGF62BujYxgDawpbzdc0YQ1JWEa7FP8e1h5m4kZAlM8XvrcT/ZjvjcTl4s6OVKsIkLURGfgmMtARoik48cn0q/Pz88Pnnn0NbWxt+fn51rrtt2zalBEYIIUQ+1EbLRyTgwUybh4xCMR6k56Gnk+oG1NcXyfZV7mhjgAldbXA57jnScktwNT4TV+MzAQBcDvDn/N7SSRee5ZWAz+M2SxLOGMPz/FKk5Zago42BtHzivptIzyuRPjfREWCYpwVGtLdEdwfjJo+LqI9ZP93Bg/R87J/SGcr+y5AriQ0PD0d5ebn0/7Wh+Y0JIaT5URstPycjATIKixGdqtok9lXdHIzQzcEIjDE8zCjAlfhMhCVnIzwlG88LSuFspiNdd8c/8TgSkgJjbQEcTbVhZSCCpb4I5roCiPOL0NZFAh6vsjtCuVgCHodTbUQEsYShtEIMLcF/aUBwQhbiM/KRmV+KxKwiJGYWIPF5IQrLxNDV1MDdz3zB5XLA4XAwwM0MSZmF6N3WBL2cTdDeWp9GGiDVSCQMT7OLUVYhQRtDEYozlLt/uZLYS5cu1fh/QgghqkdttPwcDQUIflyMqNQ8VYdSIw6Hg7bmumhrrouZvStnFcsqKJXpI5tXXPmDJauwDFmFZQCyZfYxedB//1/62138eTcVHA6gweWAy+FALGGokFRO7/7wy+HSMVp/Dk7C2fvp1WLicgATHSEyC0thpls5m9aGsZ70o4jUi8vl4PaqwUh+UYQ2+kLEqiKJJYQQQloDJ6PKS/D3n+aqOBL5GesIZZ7vntQZX5dV4NHzQiRmFiIttxipOSVIzSnG08wc8F+aOCCvpDLhZQwoFzMATGZfZWKJNIntYmcIxgBjHQFsjbTgYKINR1Nt2BhpVZv4gRJYIi8ulwMHE22IxWKl71vhJHbs2LE1/vFyOBxoamrC2dkZ7733HlxdXZUSICGEEPlRG10353+T2IfPC5BXUg49TX49W7RMWgINeFrrS/vJAqhxCKPvJnVGSbkEFRJJ5RlYMQOfx4VQgwshnwvRS2d4Z/VxxKw+zVYFQhpN4fEu9PX1cfHiRYSFhUkbyvDwcFy8eBEVFRU4evQoOnbsiOvXrys9WEIIIXWjNrpuRloasDXSAmNAaFJ2/RuoOS2BBoy0BTDT1YSlvgg2Rlqw0NeEobYAWgINOqNKmtSUA7ew8Eg4Hr8oapL9K5zEWlhY4L333sOjR49w7NgxHD9+HAkJCZg8eTKcnJwQExODadOm4ZNPPmmKeAkhhNSB2uj6dbM3BACEJL1QcSSEtF7ZhWW4Gp+JP++mQquJJrhQOIk9cOAAFi9eDC73v025XC4WLFiAffv2gcPhYP78+bh//75SAyWEEFI/aqPr19Xh3yQ2kZJYQprKneTKKx1OptrV+nUri8JJbEVFBR48eFCt/MGDB9JOu5qamnSJghBCVIDa6Pp1szcCANx9nIP8f298IoQo1/WHleMcd3dsunGDFb6xa8qUKZg5cyZWrlyJrl27gsPhICQkBBs2bMDUqVMBAJcvX0a7du2UHiwhhJC6URtdv6o77xMzC3H9YSaGeVqqOiRCWhXGGC4+qBxPa4CrWZMdR+Ekdvv27TA3N8dXX32FZ8+eAQDMzc2xZMkSaR8rX19fDBs2TLmREkIIqRe10fIZ4GqGxMxERKflUxJLiJIlZhYi5UURBDwuejq1oDOxPB4Pq1atwqpVq5CXVzlYtJ6ensw6tra2yomOEEKIQqiNls/svg74oK8jLPQ1VR0KIa3OpdjnACpnotMWNt2UBI3a86sNIyGEkJaD2ujaWeqLVB0CIa3W31GVM7/1dzVt0uM0KIn9/fff8dtvvyElJQVlZWUyy8LCwpQSGCGEkIahNloxZRUSCDQUvs+ZEFKD9NwS3P53+LoR7Zu2q47Cn9pdu3ZhxowZMDMzQ3h4OLp16wZjY2M8evQIw4cPb4oYCSGEyInaaPml5RZjun8IBm0LgkTC6t+AEFKvvyLTwFjlNMZWBk17xUPhJPa7777Dvn378O2330IgEODjjz/G+fPnsXDhQuTmqs9c1IQQ0hpRGy0/I20BQpOy8fhFMe6n0mtDiDKcvpcKAHijQ9PfMKlwEpuSkoKePXsCAEQiEfLz8wFUDuty5MgR5UZHCCFEIdRGy0+owcOWdzriwtJ+6NDGQNXhEKL2kjILEZ6SAw6n6bsSAA2cdjYrKwsAYGdnh5s3bwIAEhMTwRhdjiGEEFWiNloxQ9tZwMlUR9VhENIq3EnOBo/LQd+2pjDXa/qRPxS+sWvgwIE4deoUOnfujJkzZ2LJkiX4/fffcefOHYwbN64pYiSEECInaqMbTixh4HFf35nMCGmst7u0QZ+2Js02E57CSey+ffsgkUgAAHPmzIGRkRGuXbuGUaNGYc6cOUoPkBBCiPyojVZcUmYhNp97gBeFZTj6oY+qwyFErZnraTbLWVigAUksl8sFl/tfL4R33nkH77zzjlKDIoQQ0jDURitOS8jD+ehnqJAw3H+aC09rfVWHRIjaeZJdhDaGWs16zAaNE1tSUoJ79+4hIyND+ou/yptvvqmUwAghhDQMtdGKMdPVxMgOljgZkYofryVi27udVB0SIWolJi0Pw3dexWB3M3w/xbvZuuUonMSeO3cOU6dORWZmZrVlHA4HYrFYKYERQghRHLXRDTOztwNORqTiz7up+GS4W7NdDiWkNQhJfAEOBxDyec3ar1zh0Qnmz5+P8ePHIy0tDRKJROZBjSMhhKgWtdEN06GNAbraG6JCwnDwRpKqwyFErUzraY9LS/tjua9rsx5X4SQ2IyMDfn5+MDc3b4p4CCGENAK10Q03q48jAODX4GTkFjXP3dWEtBb2JtqwN9Fu1mMqnMS+/fbbCAoKaoJQCCGENBa10Q03xN0cbha6yC+twI/XE1UdDiEtXlZBKR5mFKjs+Ar3if32228xfvx4XL16Fe3btwefz5dZvnDhQqUFRwghRDHURjccl8vBgoFtMe9wGH68noj3eztAX8Svf0NCXlN7ghLw4/VELPV1xbwBzs1+fIWT2MOHD+Pvv/+GSCRCUFAQOJz/OvByOBxqIAkhRIWojW6c4Z4WcDHXQdyzAhy4+gh+zdzHjxB18SyvBL/cTIaEQWXD0incnWD16tVYv349cnNzkZSUhMTEROnj0aNHTREjIYQQOVEb3ThcLgdLBrsAAPZfTcSzvBIVR0RIy/TtxYcorZDA284QfduaqCQGhZPYsrIyvPvuuzKDaRNCCGkZqI1uvGGeFvCyNUBxuRg7/olTdTiEtDjxz/JxOCQFAODn6yJzxac5KdzKTZs2DUePHm2KWAghhDSSqtroL7/8Ej179oSWlhYMDAxqXCclJQWjRo2CtrY2TExMsHDhQpSVlTVvoHLgcDhYOcIdAPB/d57Q2VhCXsIYw+d/xUAsYfD1MEdPJ9WchQUa0CdWLBbjq6++wt9//40OHTpUu2lg27ZtSguOEEKIYlTVRpeVlWH8+PHw8fHBgQMHaoxr5MiRMDU1xbVr15CVlYVp06aBMYZvvvmmSWJqjK72RviovxMGu5vRxAeEvORSbAauxD0Hn/ffjz1VUTiJjYyMhJeXFwDg/v37MstUdTqZEEJIJVW10evWrQMAHDx4sMblgYGBiI6OxuPHj2FlZQUA2Lp1K6ZPn44vv/wSenp6TRZbQ30yzE3VIRDSopRWiPHF6RgAwPu9HJp9XNhXKZzEXrp0qSniIIQQogQttY0ODg6Gp6enNIEFgKFDh6K0tBShoaEYMGBAjduVlpaitLRU+jwvLw9A5ZldRWcgq1q/ITOXpbwogr6I36KH3GpM/dQB1U/1vrv4EI8yC2GsLcBH/RwVilWR+sm7X4WTWEIIIURR6enp1WYRMzQ0hEAgQHp6eq3bbdy4UXqW92WxsbHQ0dFpUCxxcYrdrBX4MB97b2djoKM25nc3btAxm5Oi9VM3VD/VSMkpw+6gNADArM56eJIY36D9yFO/ggL5JlCQO4kdN26cXOsdP35c3l0SQghRkqZoo9euXVtjAvmy27dvw9vbW6791dSdgTFWZzeHFStWwM/PT/o8Ly8PNjY2cHV1VbgLglgsRlxcHFxcXMDj8eTeLl/zBXbdDEEBE6Ktiys0eC1z5IeG1k9dUP1URyJh+HT/LVRIgEFuppg9tLPC3ZMUqV/VFZf6yJ3E6uurZiBbQggh9WuKNnr+/PmYMGFCnevY29vLtS8LCwvcunVLpiw7Oxvl5eXVztC+TCgUQigUVivn8XgN/qJXdFsfZ1Mc+6gnOtsaqMW9H415bdQB1a/5HQpJQnhKDnSEGvhibHtoaDT8Qr489ZO3/nJH4e/vL++qSnHlyhV8/fXXCA0NRVpaGk6cOIExY8Y0er+XL1+Gn58foqKiYGVlhY8//hhz5sypcd2AgABMnDgRo0ePxh9//NHoYxNCSFNpijbaxMQEJibKGT7Hx8cHX375JdLS0mBpaQmg8mYvoVCILl26KOUYTamLnaGqQyBEZfq2NUXHNvp4q0sbWOqLVB2OVMu8JgKgsLAQHTt2xLfffqu0fSYmJmLEiBHo06cPwsPDsXLlSixcuBDHjh2rtm5ycjKWLVuGPn36KO34hBDSWqWkpCAiIgIpKSkQi8WIiIhARESEtG+br68vPDw8MGXKFISHh+PChQtYtmwZZs+e3SJHJqhNfkk5lv3fXVyIeabqUAhpNvYm2vj9o56Y3N1O1aHIaLE3dg0fPhzDhw+vdXlZWRlWr16NQ4cOIScnB56enti8eTP69+9f6zZ79+6Fra0tduzYAQBwd3fHnTt3sGXLFrz11lvS9cRiMSZNmoR169bh6tWryMnJqTPW2u6ebS32Xk6Ah6U+LA00YaUvgqWBJiz1NaElaLF/PoSQZvbZZ5/hp59+kj6vGubr0qVL6N+/P3g8Hv766y/MnTsXvXr1gkgkwnvvvYctW7aoKuQG+fFaEn4PfYKg2Of4e7EBjHWqd3UgpLVIySqCrbEWAIDfAvuCq20WMmPGDCQlJSEgIABWVlY4ceIEhg0bhsjISLRt27bGbYKDg+Hr6ytTNnToUBw4cADl5eXSQcHXr18PU1NTzJw5E1evXq03ltrunlV3prpCPMkuxt9Rz/B3VPWzDvoiPiz1NWFlIIKdsRZ6OZmgh5MxdIRq+2dFCGmggwcP1jpGbBVbW1ucPn26eQJqIh/2c8RfkamIe1aAxUcjcHBGN/C4Lb+fLCGKuhL3HNP9Q/BhPyd8PNS1RfYHV8tsIyEhAUeOHMGTJ0+kYw4uW7YM586dg7+/PzZs2FDjdjUN8WJubo6KigpkZmbC0tIS169fx4EDBxARESF3PLXdPavu9k3xxqUHGUjNLUZaTglSc4uRnluCtNwSFJRWILe4HLnF5XiQng8A8L+eBD6Pg862hujnaopRHaxgY6Sl4loQQojyaPJ5+GZiZ4zZfR1X4zOx8584+Pm6qjosQpQuNDkbElbZhaYlJrCAmiaxYWFhYIzBxcVFpry0tBTGxpVj+L08fuDkyZOxd+9eANWHeGGMScvz8/MxefJk7N+/X6GbGWq7e1bdmeoK8U7XmpPxvJJyaWKbllOCqNRcXI3PRMqLItxKfIFbiS/w1blYdHcwwlud22BURyuIBC3rbktCCGkIVwtdbBzXHouPRmDXxYfoZGuAgW61j7BAiDpaMsQFHlZ66NvWVNWh1Eotk1iJRAIej4fQ0NBqwzBUJa8vn0mtumnAwsKi2qDaGRkZ0NDQgLGxMaKiopCUlIRRo0bJHAsANDQ0EBsbCycnp6aoktrR0+RDz4IPVwtdmfKkzEJciX+Oc/fTEfwoS5rQbjgbg/e62WJaT3uah5wQovbGeFkjLCUbPwcnY8nRuzi9oDddeSJqjzEGsYRJx0Ie2s5CxRHVTS2TWC8vL4jFYmRkZNQ6eoCzs3O1Mh8fH5w6dUqmLDAwEN7e3uDz+XBzc0NkZKTM8tWrVyM/Px87d+5sFV0Empq9iTbsTbQx1cceqTnF+CPiKY6EpODxi2J8F5SAH64l4r1utpg7wAlmupTMEkLU16qR7rj3JBcRj3Mw86fb+P2jntDTbLnT0hJSn19uJuP0vTR8N6kzTNTgpsWWd6vZvwoKCqRDtACVw2NVDd/i4uKCSZMmYerUqTh+/DgSExNx+/ZtbN68GWfOnKl1n3PmzEFycjL8/PwQExODH3/8EQcOHMCyZcsAAJqamvD09JR5GBgYQFdXF56enhAIBM1R9VbDykCEuf2dEbRsAPZO7gJvO0OUVUhw8EYS+n0VhN2XHqKsQqLqMAkhpEGEGjzsmdwZZrpCxD0rwLxDYSgXU5tG1FNQbAbWn4pGSOILnI1MU3U4cmmxSeydO3fg5eUlHabFz88PXl5e+OyzzwBUDuw9depULF26FK6urnjzzTdx69atOs+WOjg44MyZMwgKCkKnTp3w+eefY9euXTLDaxHl43E5GOZpgf+b44NfZ3aHl60BisvF+PrvWAzbeQXX4jNVHSIhhDSIpb4IB6Z1hYjPw9X4THx2Mkp6rwUh6iLySS7mHgpDhYRhrJc1JvdoWePB1obD6NOmdHl5edDX10dubq5aDeLdXBhjOBH+FBvOxCCzoAwA8GZHK3w+xhP6IroUR9QDfc5VozGvu1gsRkxMDNzd3ZU+ref56Gf44Jc7YAz433A3zOnX/PdPNGX9WgKqX9NIySrCuD3XkVlQht7OJvhxelcINJR/jlOR+sn7OW+xZ2JJ68XhcDCucxtcWNof03vag8sB/rybihE7r+JO0gtVh0cIIQob4mGO1SM9AAC/BCejoLRCxRERUr8XhWWY5h+CzIIyuFvqYc/kzk2SwDYVtbyxi7QO+iI+1r7ZDmO8rLEoIBzJWUV45/tgLB7sgvkDnMGlAcQJIWrk/V72kEgYRnSwpElfSIuXW1yO6f4hSMwshLWBCAdndIWumt2YqD7pNmm1OtkY4PSC3hjrZQ0JA7adj8P8I2EoLhOrOjRCCJEbh8PB7L6OsDYQSctyi8pVGBEhNcsrKcfUH0Nw70kuDLX4+On9rmo5/CUlsaRF0NXkY/u7nfDV2x3A53FwJjId73wfjGd5JaoOjRBCGuRMZBp6bb6ISw8yVB0KIVL5JeWY9mMI7j7OgYEWH4dm9YCzmW79G7ZAlMSSFuUdbxscmtUDhlp8RD7NxbjvbiAlq0jVYRFCiEIYYzh9LxUFpRU4dz+9/g0IaQYFpRWY9mMIwlNyoC/i49Cs7vCwUt8bUymJJS1ONwcjnJzXGw4m2niaU4zx39/Aw4wCVYdFCCFy43A42DnBC+vebIcN49qrOhxCAABr/4xC2EsJbDsrfVWH1CiUxJIWydZYC0c/7AEXcx08yyvFhH3BePScEllCiPrg87iY1tMevH9vUq0QSxAUS10LiOosGeICV3Nd/DqzOzyt1TuBBSiJJS2Yma4mAj7wgYelHjILyjDlQAjSc6mPLCFE/TDGsPJEJKb738Y3F+JpQgTSbPJK/ru50NpAhLOL+qB9G/VPYAFKYkkLZ6QtwM8zu0m7Fkw5cIvu9iWEqCUz3cq7v7eej8OnJ++jgqaoJU3s1qMs9P3qEs68NI1saxq+kpJY0uKZ6Ajxy8xusNDTRHxGAeYfCaPGnxCiVjgcDpYNdcX60e3A4QC/3kzB+z/dQW4x/SgnTefs/XTkFJXj0K3kVnn2n5JYohbaGGrhwHRv6fzkG848UHVIhBCisKk+9tgzqTNEfB6uxD3H2N3XkUD9/UkT+fQND6wc4YYD07qCw2k9Z2CrUBJL1EY7K31se6cjAODH64n4615aPVsQQkjLM8zTEr9/5AMrfU08yizEmN3XcTnuuarDIq3Ai8IybDgTg7KKyquVPC4HH/R1giafp+LImgYlsUStDG9viY/6OwEA/nfsHh6/oDFkCSHqp52VPk7O7w1vO0Pkl1Rghn8IvrkQD7Gk9V3yJcqTnltSa3e6+09zMeqba9h35RE2nX09rlZSEkvUjt8QF3S2NUB+aQUWH42AhBp9QogaMtUV4tDs7pjQ1QYSVnnD17QfQ/A8v1TVoZEWSCJhWHw0HAG3H1dbdiz0Cd7acwNPc4phZ6yFd7vaqCDC5kdJLFE7fB4XOyd4QVvAQ2hyNn65mazqkAghpEGEGjxseqsDtozvCBGfh2sPMzFi11WEJmerOjTSwvx6Kxk3H73AtvNx0hsC80vKseRoBJb+312UVkgwwNUUf87rDVcL9ZxGVlGUxBK1ZGOkhU+GuwEAvjr3AE9zilUcESGENNzbXdrgz/m90NZMByVlYpjqCFUdEmlBUrKKpF0EXhSW4ZsL8QhLycbIXddwIvwpuBxgyWAXHJjWFfpafBVH23woiSVqa3J3O3jbGaKwTIzVJyJVHQ4hhDRKW3Nd/Dm/N36Z1R22xlrScvqR/nqTSBg+PnYXRWViadmBa4l4e88NpLwogrWBCL996INFg9u2qjFg5UFJLFFbXC4Hm97qAD6Pg0uxz+nuXkKI2hMJeOhkYyB9fiXuOfp9dQnbAmNb5TifpH6HQlJw89ELmTIGQMKAMZ2scGZRH3jbG6kmOBWjJJaoNWczHUz1sQcAbDwTQ3f2EkJalctxz1EhYcgtLm+V43ySuj1+UYSNZ2JqXT6ucxvoi16f7gOvoiSWqL0FA52hp6mBB+n5OBb2RNXhEEKI0nz6hgf2TekivQcAqExssgpoBIPWjjGGT47dk+lG8KrPT0e/1jNYUhJL1J6BlgDzBzoDAHb+E4/y1/gDTQhpfXzbWUBLoAGgMrFZ+ttdDNx6Gb/cTH6tE5jWbvs/cbiRkFXnOvEZBTgcktJMEbU8lMSSVmGqjz1MdAR4mlOM0/dSVR0OIYQ0iReFZSgorUBucTk+/eM+hu28in+in1F/2VZmw5lo7LrwUK51t52PQ05RWRNH1DJpqDoAQpRBk8/DjF4O+PrvWOwJSsDojtav3V2ahJDWz1hHiD/n98KvN5Ox40I8HmYUYNbPd9DdwQj/G+aK17d3ZOvBGMP9p3kAACNtAdpb60FXk//vQwO6Qg3oampA56Xnr+tvGEpiSasxuYcd9gQlIO5ZAS7HPccANzNVh0QIIUqnweNiei8HjO3cBt8FPYT/9STcSnyBsXuC0dtWCysN28DD2kDVYRI5lZSLcfhWCjQ1OOigA3A4HBya1R33n+ahfRt9VYfXolF3AtJq6Iv40qn2Dt16ffsIEUJeD/oiPlYMd8elZf0xzssaHA5wLaUII765jo9+DUVUaq6qQyR1KCytwA9XH6H/10FYfzoaXwfGoaisso8zh8OhBFYOlMSSVmVit8ok9lJsBp7llag4GkIIaXrWBiJse7cTTs/vhV62lZMknL2fjpG7rmHWT3eQ8LxAxRGSl+UUlWHHP3HotfkivvgrBul5JbDQ08QyXxcINKgbnCKoOwFpVZzNdOFtZ4g7ydn4PfQJ5g1wVnVIhBDSLNwsdLGirym4Rm2w53IiTt9LxYUHz/DpG+6qDo0AiH+Wj19uJuP30CfSYbPsjbXwYT8njOtsDQ0OEBNT+5iwpDpKYkmr825XG9xJzsaJ8KeUxBJCXjuu5rr4ZqIXFg1qi+CETNgZa0uXfXbyPoy1hZjcwxbGOkIVRvl6qBBL8E/MM/x0IxnBj/4bLsvdUg9z+zthRHtL8P69CVksrn08WFIzSmJJq+PbzgIrT0TiYUYBHmYUwNlMR9UhEUJIs3M205Fp/x6/KMKvN5MhYcAbHS0piW1iASEp2HkhHmm5lV3buBxgsLs5pvrYo5ezMc3ApgSUxJJWR1/ERy9nEwTFPse5+2mYP7CtqkMihBCVM9fTxLZ3OuHukxw4mf6X3H528j64HA5GdbSEl40hDU/YQFkFpdDk86AtrEytysQSpOWWwEhbgAldbTCphx2sDUQqjrJ1oSSWtErD2lkgKPY5/o56RkksIYQAEGhwMcbLGmO8rKVlWQWlOBKSgnIxw8EbSbA2EGFkB0u80cES7a316WyhnDafe4D9Vx5h3eh2mNTdDgAwqoMVDLQE8PUwhyafp+IIWydKYkmrNPDfMWLvp+Yip6gMBloCFUdECCEtj56Ij72Tu+D0vTQERqXjaU4x9l15hH1XHsFSXxMD3Mww0NUMvZxNIBJQIsYYQ3RaHi7EZGBKDzsYald+t+iL+KiQMNx/+t+wZobaArzZ0UpVob4WKIklrZKZniaczXTwMKMANx+9wDBPC1WHREirlZSUhM8//xwXL15Eeno6rKysMHnyZKxatQoCwX8/IFNSUjBv3jxcvHgRIpEI7733HrZs2SKzDmlefB4Xg9zNMcjdHCXlYgTFZuDU3TRcePAMabklOHwrBYdvpUCgwYWPozF6ORuju4Mx2lvrvxbdDhhjeJJdjLCUbIQkvsClBxlI/bePaxtDEcZ1bgMAGNfZGoPdzeBspqvKcF87lMSSVqunkzEeZhTgRkImJbGENKEHDx5AIpHg+++/h7OzM+7fv4/Zs2ejsLAQW7ZsAVB55/XIkSNhamqKa9euISsrC9OmTQNjDN98842Ka0CAyum7h3laYpinJUrKxQhOyMLFBxm4+CADT3OKcTnuOS7HPYeIz8O9tb7gojKJfZhRAAt9TegI1T+lKK0QIyo1D2HJ2Qj995GRXyqzjiafi97OpjDX05SWmelqwkxX89XdkSam/n9xhNSiu4Mxfg5ORnhKjqpDIaRVGzZsGIYNGyZ97ujoiNjYWOzZs0eaxAYGBiI6OhqPHz+GlVXlJdatW7di+vTp+PLLL6Gnp6eS2EnNNPk8DHAzwwA3M6xnDHHPCnAl7jluJWZBoMEFn/ffXEmzf76DpKxCBMzuge6OxgCAjPwSgAGmusIW1a+WMYa84gpkFZbC8aWb246EpOB42BPcfZKLsgqJzDYaXA7aWeujs60B+rQ1QU8nE+rj2kJQEktarQ7/TtkXm56PsgoJBBo0QR0hzSU3NxdGRkbS58HBwfD09JQmsAAwdOhQlJaWIjQ0FAMGDKhxP6WlpSgt/e9MWF5eHoDKM7uKjqtZtX5rHY+zKevnbKoFZ1M7vN/LTuYYpeVilFaIwRjgaKIlLd93OQE/XEuCrqYGnEy14WSqA1sjLVgZaMJKXxNWBiJY6Gkq1C7XVr/SCgleFJYhs6AUWQVlyCr891FQisyCMrS31sP0nvYAgPyScnT6/AIAIGrtEGkyejsxC7eTsgEARlp8dLY1RGc7A3S2NUB7a/1qSWtTvMb091l93fpQEktarTaGIuiL+MgtLkfcs3x4WtM81IQ0h4SEBHzzzTfYunWrtCw9PR3m5uYy6xkaGkIgECA9Pb3WfW3cuBHr1q2rVh4bGwsdnYaNAR0XF9eg7dRFc9dv3xvmyC0R41lKAp79W5aSngUuB8gvqUDE41xEPM6tth0HgK6QC10BF7pCHjpbaeK9DgYAKs+YHonMhYDHwRuuutD8N9n9KzYfGy5fR06JGDklYuSWiFFYzuqMLz0rG90Ni6X71eACQh4Hd+5Fw1irMg1qp1cOOx9juJkKYaWr8e/Z41Kg+BkSHz6rY+/KR3+fQEGBfFMlUxJLWi0OhwNPaz1cf5iF6NQ8SmIJUdDatWtrTCBfdvv2bXh7e0ufp6amYtiwYRg/fjxmzZols25Nl5UZY3Vebl6xYgX8/Pykz/Py8mBjYwNXV1eFuyCIxWLExcXBxcUFPF7ruxzckuq3x73yLG1SVhEePi/Ao+eFeJpTjNScEqTmVv5bWiFBXmnlA/kVcGtjDHf3yilyyyokOHwoEACw+I0u0NXkQywWY0fwDdx4XFTteBpcDoy1BTDWEcBYR/jf/7UFcDXXhburqXTdyDVu1c4Au7eAmXlb0vvXFBSpX9UVl/pQEktaNSdTHVx/mIWkrEJVh0KI2pk/fz4mTJhQ5zr29vbS/6empmLAgAHw8fHBvn37ZNazsLDArVu3ZMqys7NRXl5e7Qzty4RCIYTC6jNL8Xi8Bn/RN2ZbddBS6qfF48HDWgAPa4Nqyxhj/3YBKEN2URlyispgqqspjZvLgMk9bFFaLoGWUADev31w+9lro7eHLcz0RP8mqkKY6AigL+LL3fdW1AJem7q0lPevqchTP3nrT0ksadWq5gxPzqr+y50QUjcTExOYmJjIte7Tp08xYMAAdOnSBf7+/uByZc90+fj44Msvv0RaWhosLS0BVN7sJRQK0aVLF6XHTlo2DodTeca0lqlvhRo8fDGmfbVyL0sR3N3tWnWSR+RHSSxp1eyNtQCAzsQS0oRSU1PRv39/2NraYsuWLXj+/Ll0mYVF5fB2vr6+8PDwwJQpU/D111/jxYsXWLZsGWbPnk0jExBCGoSSWNKqWepXzlP9LK+0njUJIQ0VGBiIhw8f4uHDh2jTpo3MMsYqb7rh8Xj466+/MHfuXPTq1UtmsgNCCGkISmJJq2asUzkTUHZRGSQS9lrMMENIc5s+fTqmT59e73q2trY4ffp00wdECHkt0MCZpFUz1KpMYsUShtzichVHQwghhBBlUXkS+91338HBwQGampro0qULrl692qTHO3bsGDw8PCAUCuHh4YETJ06oPCbSdAQaXOlUiDmUxBJCCCGthkqT2KNHj2Lx4sVYtWoVwsPD0adPHwwfPhwpKSkN2t/BgwfRv3//WpcHBwfj3XffxZQpU3D37l1MmTIF77zzjsywL8qOiaie8N/xAF+dSpAQQggh6kulSey2bdswc+ZMzJo1C+7u7tixYwdsbGywZ88eAEBZWRk+/vhjWFtbQ1tbG927d0dQUFCDj7djxw4MGTIEK1asgJubG1asWIFBgwZhx44dcsdE1I+AklhCCCGk1VHZjV1lZWUIDQ3F//73P5lyX19f3LhxAwAwY8YMJCUlISAgAFZWVjhx4gSGDRuGyMhItG3bVuFjBgcHY8mSJTJlQ4cOlSax8sRUk1fn9s7NrZxeT94ZJ0jT4lYUQ1JajBc52cjToxu7iHJUfb6r7r4nzaPq9W5I+yoWi1FQUIC8vLxWOc4o1U+9Uf3+I2/7qrIkNjMzE2KxuNpMLebm5khPT0dCQgKOHDmCJ0+ewMrKCgCwbNkynDt3Dv7+/tiwYYPCx6xp7u6q48kTU21qm9vbxsZG4RhJ0+m/Q9URkNYoKysL+vo0pXFzyc/PB0DtKyGvg/z8/DrbV5UPsfXqNHFV82iHhYWBMQYXFxeZ5aWlpTA2NgYApKSkwMPDQ7qsoqIC5eXl0NHRkZZNnjwZe/furfd48sRUm1fn9s7JyYGdnR1SUlLU+sutao7yx48fq/Vg5FSPlqW11CM3Nxe2trYwMjJSdSivFSsrKzx+/Bi6urpyTzNapbX87dWG6qfeqH7/YYwhPz9fehKzNipLYk1MTMDj8aqd4czIyIC5uTkkEgl4PB5CQ0OrnXauSlKtrKwQEREhLT9+/DiOHTuGQ4cOSctefqEsLCxqPZ48MdWmtrm99fX1W8Ufop6eHtWjBaF6tCyvTq9KmhaXy602oYKiWsvfXm2ofuqN6ldJnpOAKmt9BQIBunTpgvPnz8uUnz9/Hj179oSXlxfEYjEyMjLg7Ows86iaxlBDQ0Om3MzMDCKRqFpZFR8fn2rHCwwMRM+ePeWKiRBCCCGEtAwq7U7g5+eHKVOmwNvbGz4+Pti3bx9SUlIwZ84c2NnZYdKkSZg6dSq2bt0KLy8vZGZm4uLFi2jfvj1GjBih8PEWLVqEvn37YvPmzRg9ejROnjyJf/75B9euXZMrJkIIIYQQ0jKoNIl99913kZWVhfXr1yMtLQ2enp44c+YM7OzsAAD+/v744osvsHTpUjx9+hTGxsbw8fFpUAILAD179kRAQABWr16NTz/9FE5OTjh69Ci6d+8ud0zyEAqFWLNmTY1dDNQJ1aNloXq0LK2lHq+T1v6eUf3UG9VPcRxG48MQQgghhBA1Q3ckEEIIIYQQtUNJLCGEEEIIUTuUxBJCCCGEELVDSSwhhBBCCFE7lMTW4Pjx4xg6dChMTEzA4XBkJlRorGPHjsHDwwNCoRAeHh44ceJEretu3LgRHA4Hixcvlnv/3333HRwcHKCpqYkuXbrg6tWrSoi6dvLUpzExXblyBaNGjYKVlRU4HA7++OMPpcR9+fJldOnSBZqamnB0dJSZ1e1VAQEB4HA4GDNmTIOOtXHjRnTt2hW6urowMzPDmDFjEBsb28DIZTVnPfbs2YMOHTpIB6r28fHB2bNnGxj5f5qzDjVpyOesNqquC6lZUlISZs6cCQcHB4hEIjg5OWHNmjUoKyuTWS8lJQWjRo2CtrY2TExMsHDhwmrrtFRffvklevbsCS0tLRgYGNS4jjrXr7m/25pKfd9pjDGsXbsWVlZWEIlE6N+/P6KiolQTbAPI832n1DoyUs3PP//M1q1bx/bv388AsPDwcKXs98aNG4zH47ENGzawmJgYtmHDBqahocFu3rxZbd2QkBBmb2/POnTowBYtWiTX/gMCAhifz2f79+9n0dHRbNGiRUxbW5slJyc3KF5/f3/Wr1+/RtWnsTGdOXOGrVq1ih07dowBYCdOnGhQXV726NEjpqWlxRYtWsSio6PZ/v37GZ/PZ7///nu1dZOSkpi1tTXr06cPGz16dIOON3ToUObv78/u37/PIiIi2MiRI5mtrS0rKChQq3r8+eef7K+//mKxsbEsNjaWrVy5kvH5fHb//n21qcOrGvI5q42q60Jqd/bsWTZ9+nT2999/s4SEBHby5ElmZmbGli5dKl2noqKCeXp6sgEDBrCwsDB2/vx5ZmVlxebPn6/CyOX32WefsW3btjE/Pz+mr69fbbk610/Z322qVN932qZNm5iuri47duwYi4yMZO+++y6ztLRkeXl5qglYQfJ83ymzjpTE1iExMbHWJDYnJ4fNnj2bmZqaMl1dXTZgwAAWERFR5/7eeecdNmzYMJmyoUOHsgkTJsiU5efns7Zt27Lz58+zfv36yf3l2q1bNzZnzhyZMjc3N/a///2PMcZYaWkpW758ObOysmJaWlqsW7du7NKlS7Xur74kVp761BeTImr6wCtaJ8YY+/jjj5mbm5tM2Ycffsh69OghU1ZRUcF69erFfvjhBzZt2jSlJRsZGRkMALt8+bJa14MxxgwNDdkPP/yglnWo63OmbnUhivvqq6+Yg4OD9PmZM2cYl8tlT58+lZYdOXKECYVClpubq4oQG8Tf37/GJFad66fM75GW5NXvNIlEwiwsLNimTZukZSUlJUxfX5/t3btXBRE23qvfd8quI3UnaADGGEaOHIn09HScOXMGoaGh6Ny5MwYNGoQXL17Uul1wcDB8fX1lyoYOHYobN27IlM2bNw8jR47E4MGD5Y6prKwMoaGh1fbv6+sr3f+MGTNw/fp1BAQE4N69exg/fjyGDRuG+Ph4uY+jSH3kiamxGlKn2uK+c+cOysvLpWXr16+HqakpZs6cqZRYq+Tm5gIAjIyM1LYeYrEYAQEBKCwshI+Pj1rWoa7PmbrVhSguNzdX5jMYHBwMT09PWFlZScuGDh2K0tJShIaGqiJEpVLX+jXH90hLkZiYiPT0dJm6CoVC9OvXT23r+ur3nbLrqNIZu9TVpUuXEBkZiYyMDOnME1u2bMEff/yB33//HR988EGN26Wnp8Pc3FymzNzcHOnp6dLnAQEBCAsLw+3btxWKKTMzE2KxuNb9JyQk4MiRI3jy5Im0EVu2bBnOnTsHf39/bNiwQaHjyVOf+mJqrIbWqba4KyoqkJmZCUtLS1y/fh0HDhxQan9ooPIHkJ+fH3r37g1PT0+1q0dkZCR8fHxQUlICHR0dnDhxAh4eHmpVB6Duz5m61YUoLiEhAd988w22bt0qLavp/TM0NIRAIFBKe6Vq6lq/pv4eaUmq6lNTXZOTk1URUqPU9H2n7Dq+9mdiDx06BB0dHelDns7ioaGhKCgogLGxscy2iYmJSEhIQEpKikz5y196HA5HZl+MMWnZ48ePsWjRIvz666/Q1NRsUH1q239YWBgYY3BxcZGJ7fLly0hISACAanHPmTMHV69erVYmz/EUXach5KlTbbHXFFNVeX5+PiZPnoz9+/fDxMSk0XG+bP78+bh37x6OHDmilvVwdXVFREQEbt68iY8++gjTpk1DdHS0WtWhvs+ZOtXldbd27VpwOJw6H3fu3JHZJjU1FcOGDcP48eMxa9YsmWU1tUvKaq8aoiH1q0tLq58imup7pCVqLXWt6fuuirLq+NqfiX3zzTfRvXt36XNra+t6t5FIJLC0tERQUFC1ZQYGBjAwMJA501J1Gt3CwqLaL8eMjAzpL5LQ0FBkZGSgS5cu0uVisRhXrlzBt99+i9LSUvB4vBpjMjExAY/Hq3X/EokEPB4PoaGh1faho6MDALCyspKJ+/jx4zh27BgOHTokLdPT05P+v7761BdTY8lTp5frUxV7bXFraGjA2NgYUVFRSEpKwqhRo2SOBQAaGhqIjY2Fk5OTwvEuWLAAf/75J65cuYI2bdqoZT0EAgGcnZ0BAN7e3rh9+zZ27tyJgQMHqk0d6vucHTp0SG3q8rqbP38+JkyYUOc69vb20v+npqZiwIAB8PHxwb59+2TWs7CwwK1bt2TKsrOzUV5erpT2qiEUrV9dWmL95NHU3yMtiYWFBYDKs5WWlpbScnWsa23fd8qu42ufxOrq6kJXV1ehbTp37oz09HRoaGjU2oBUfdG/zMfHB+fPn8eSJUukZYGBgejZsycAYNCgQYiMjJTZZsaMGXBzc8Mnn3xSawILVCYXXbp0wfnz5zF27Fhp+fnz5zF69Gh4eXlBLBYjIyMDffr0qXEfGhoaMnGbmZlBJBLVWBd56lNfTI0lT51qex9OnTolUxYYGAhvb2/w+Xy4ublVex9Wr16N/Px87Ny5EzY2NgrFyRjDggULcOLECQQFBcHBwUEt61ETxhhKS0vVqg71fc4EAoHa1OV1Z2JiIvdZ7adPn2LAgAHo0qUL/P39weXKXoj08fHBl19+ibS0NOmXa2BgIIRCocwPnuakSP3q0xLrJ4+m/h5pSRwcHGBhYYHz58/Dy8sLQGWf4MuXL2Pz5s0qjk4+9X3fKb2OCt8K9hrIyspi4eHh7K+//mIAWEBAAAsPD2dpaWmMscq763r37s06duzIzp07xxITE9n169fZqlWr2O3bt2vd7/Xr1xmPx2ObNm1iMTExbNOmTbUOsVVFkdEJqoYhOXDgAIuOjmaLFy9m2traLCkpiTHG2KRJk5i9vT07duwYe/ToEQsJCWGbNm1if/31V437q290AnnqU19M9cnPz2fh4eEsPDycAWDbtm1j4eHh0qFVFK0TY/8NhbRkyRIWHR3NDhw4UOtQSFUacxf5Rx99xPT19VlQUBBLS0uTPoqKiqTrqEM9VqxYwa5cucISExPZvXv32MqVKxmXy2WBgYFqU4favPo5U+e6kOqePn3KnJ2d2cCBA9mTJ09kPodVqoagGjRoEAsLC2P//PMPa9OmjVoMQcUYY8nJySw8PJytW7eO6ejoSNvN/Px8xph616+x3yMtSX3faZs2bWL6+vrs+PHjLDIykk2cOFGthtiS5/tOmXWkJLYG/v7+DEC1x5o1a6Tr5OXlsQULFjArKyvG5/OZjY0NmzRpEktJSalz3//3f//HXF1dGZ/PZ25ubuzYsWN1rq9IEssYY7t372Z2dnZMIBCwzp07ywzjVFZWxj777DNmb2/P+Hw+s7CwYGPHjmX37t2r9XWoK4mVtz51xVSfS5cu1fheTJs2rUF1qhIUFMS8vLyYQCBg9vb2bM+ePXWu35hko6b4ATB/f3/pOupQj/fff1/6PpqamrJBgwZJE1h1qUNtXv2cqXNdSHW1temvnsdJTk5mI0eOZCKRiBkZGbH58+ezkpISFUWtmGnTptVYv5eHhlPn+jXme6Qlqe87TSKRsDVr1jALCwsmFApZ3759WWRkpGqDVoA833fKrCPn34MSQgghhBCiNl770QkIIYQQQoj6oSSWEEIIIYSoHUpiCSGEEEKI2qEklhBCCCGEqB1KYgkhhBBCiNqhJJYQQgghhKgdSmIJIYQQQojaoSSWEEIIIYSoHUpiCWmgtWvXolOn/2/f/kKaauM4gH/HbG2tbUa7sOWq1VilYYpE1EU0imhFRFjOGDHbnDDRQEMLJGYEXXTRX8tAYSOxQqIICs0Lb6IyFFxpReYftK7ywoJozlbPexEcGNb7esrebfb9wC7Oc57zPL+dix+/85zz5P7ROUKhENLT0//oHEREyYb5lWaCRSzNOcXFxVAoFFAoFEhLS8OyZcvg9/sxMTGR6NBkczqdGBgYSHQYREQAmF8puaQlOgCiP2Hnzp0IBoOIxWJ4+fIlPB4PPnz4gBs3biQ6NFk0Gg00Gk2iwyAikjC/UrLgSizNSfPnz0dGRgYyMzOxY8cOOJ1OdHR0xPUJBoNYu3Yt1Go11qxZgytXrsSdP3bsGGw2GxYsWICVK1fixIkT+PLly4xj+Pr1K7xeLywWCzQaDVavXo0LFy5I5ycnJ5GdnY3S0lKpbWRkBAaDAY2NjQCmv+569uwZ7HY7dDod9Ho98vPz0dPTI+fWEBH9FuZXShZciaU5b3h4GO3t7Zg3b57U1tjYiEAggPr6euTl5aG3txc+nw9arRZutxsAoNPpEAqFYDKZ0NfXB5/PB51Oh5qamhnN++3bN2RmZqK1tRVGoxGPHz9GaWkplixZgsLCQqjVarS0tGDjxo3YtWsX9uzZg0OHDsFut8Pn8/1wTJfLhby8PDQ0NECpVCIcDsf9LyKi/xPzKyWUIJpj3G63UCqVQqvVCrVaLQAIAOLs2bNSH7PZLK5fvx533alTp8SmTZt+Ou6ZM2dEfn6+dBwIBMT69etlxVZWViYKCgqmjWs0GkVFRYXIyMgQ4+Pj0rlgMCgMBoN0rNPpRCgUkjUnEdFsYX6lZMKVWJqT7HY7Ghoa8PnzZzQ1NWFgYAAVFRUAgPHxcbx9+xZerzfuiTwWi8FgMEjHt27dwvnz5zE4OIhPnz4hFotBr9fLiuPq1atoamrC6OgoIpEIpqampu24PXr0KO7evYtLly6hra0NRqPxp+NVVVWhpKQEzc3N2L59Ow4cOIBVq1bJiomI6Hcwv1Ky4DexNCdptVpYrVbk5OTg4sWLiEajOHnyJIDvr6GA76+8wuGw9Ovv70dXVxcAoKurC0VFRXA4HLh37x56e3tRW1uLqampGcfQ2tqKyspKeDwedHR0IBwO4/Dhw9PGeP/+PV6/fg2lUok3b97865h1dXV48eIFdu/ejc7OTmRlZeHOnTtybg0R0W9hfqVkwZVY+isEAgE4HA74/X6YTCYsXboUw8PDcLlcP+z/6NEjLF++HLW1tVLb6OiorDkfPnyIzZs3o6ysTGobGhqa1s/j8WDdunXw+Xzwer3Ytm0bsrKyfjquzWaDzWZDZWUlDh48iGAwiH379smKjYhotjC/UqKwiKW/wtatW5GdnY3Tp0+jvr4edXV1OHLkCPR6PRwOB6LRKHp6ejAxMYGqqipYrVaMjY3h5s2b2LBhA+7fvy/7idxqteLatWt48OABLBYLmpub0d3dDYvFIvW5fPkynjx5gufPn8NsNqOtrQ0ulwtPnz6FSqWKGy8SiaC6uhr79++HxWLBu3fv0N3djYKCglm5R0REv4L5lRIm0R/lEs02t9st9u7dO629paVFqFQqMTY2Jh3n5uYKlUolFi1aJLZs2SJu374t9a+urhaLFy8WCxcuFE6nU5w7dy5uE8B/bTyYnJwUxcXFwmAwiPT0dOH3+8Xx48ela169eiU0Gk3cBoiPHz+KFStWiJqaGiFE/MaDaDQqioqKhNlsFiqVSphMJlFeXi4ikciv3SgiIpmYXymZKIQQItGFNBERERGRHNzYRUREREQph0UsEREREaUcFrFERERElHJYxBIRERFRymERS0REREQph0UsEREREaUcFrFERERElHJYxBIRERFRymERS0REREQph0UsEREREaUcFrFERERElHL+AfFso6ptDuPIAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -560,7 +560,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGMCAYAAAAm4UHAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADzXUlEQVR4nOzdd3wURf/A8c/d5dJ7QhppQCAEQu+9SUdARH1AkSZSRNBYUB8V8FER9YeNoqACIgiCgNJ7770l9EACJAQS0tvlbn5/xBw50skll4R5v173yu3s3Mx39u72JruzswohhECSJEmSJEmSKhmlqQOQJEmSJEmSpMchO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuykiRJkiRJUqUkO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuykiRJkiRJUqUkO7KSJEmSJElSpSQ7spIkSZIkSVKlJDuyUoW1aNEiFAoFx48fN3UolcLu3btRKBTs3r27TMr39/dnxIgRRinr1KlTdOrUCQcHBxQKBd9++61Ryi3MtWvXsLCw4NChQyV63eeff87atWsfu94bN26gUCj4+uuvi8yb85m/ceNGiev55ZdfqF69OikpKY8RpfQ4cr5zq1atMkn9xvxOSlJlZWbqACRJqhzWrFmDvb29UcoaNWoUKSkpLF++HCcnJ/z9/Y1SbmHefvttunfvTps2bUr0us8//5zBgwczcODAsgnMSIYPH87MmTP58ssvmT59uqnDkcqBMb+TklRZyY6sJEnF0qRJE6OVdf78ecaMGUPv3r2NUp5Go0GhUGBmlv8uLSwsjLVr17J582aj1FcRmZmZMXbsWP73v/8xZcoUrK2tTRpPamqqyWOo6oz5nZSkykoOLZAqvf3799OtWzfs7Oywtrambdu2bNiwIU++8+fPM2DAAJycnLC0tKRx48YsXrzYIE/OqcLff/+dkJAQPDw8sLKyolOnTpw6darIWO7du8eECROoV68etra2uLm50bVrV/bt22eQL/fp5lmzZlGjRg1sbW1p06YNhw8fNsh7/Phx/vOf/+Dv74+VlRX+/v4MGTKEmzdvFhrLkiVLUCgU+Z5K/+STT1Cr1dy5cwfIPtXfr18/3NzcsLCwwMvLi759+3Lr1i39ax49janT6fj0008JDAzEysoKR0dHGjZsyHfffVdgTDmnzrOyspg3bx4KhQKFQqFfX5L3aMmSJbz11ltUr14dCwsLrl69WmC98+bNw8PDg+7duxukF9VuhUJBSkoKixcv1sfauXNnoPjvde7t9dlnn+Hr64ulpSXNmzdnx44dBcac2/bt2+nWrRv29vZYW1vTrl27fF/74osvkpiYyPLly4ssszjvuRCCuXPn0rhxY6ysrHBycmLw4MFcv37doKzOnTsTHBzM3r17adu2LdbW1owaNYqBAwfi5+eHTqfLU3+rVq1o2rSpfjk9PZ3333+fGjVqYG5uTvXq1XnttdeIj483eJ2/vz/9+vVj/fr1NGnSBCsrK4KCgli/fj2Q/RkLCgrCxsaGli1b5js06fjx4/Tv3x9nZ2csLS1p0qQJf/75Z558t2/f5tVXX8XHxwdzc3O8vLwYPHgwd+/eNcin0Wj473//i5eXF/b29jz11FNcunTJIM+2bdsYMGAA3t7eWFpaEhAQwNixY7l//75BvmnTpqFQKLhw4QJDhgzBwcEBd3d3Ro0aRUJCQp5tUdLvZE75Z8+e5bnnnsPBwQFnZ2dCQkLIysri0qVL9OrVCzs7O/z9/fnyyy/zbBdJqlCEJFVQCxcuFIA4duxYgXl2794t1Gq1aNasmVixYoVYu3at6NGjh1AoFGL58uX6fBcvXhR2dnaiVq1a4rfffhMbNmwQQ4YMEYCYOXOmPt+uXbsEIHx8fMSAAQPEunXrxO+//y4CAgKEvb29uHbtWqExX7x4UYwfP14sX75c7N69W6xfv16MHj1aKJVKsWvXLn2+8PBwAQh/f3/Rq1cvsXbtWrF27VrRoEED4eTkJOLj4/V5V65cKT7++GOxZs0asWfPHrF8+XLRqVMnUa1aNXHv3r08sefUk5GRITw8PMSLL75oEKNGoxFeXl7iueeeE0IIkZycLFxcXETz5s3Fn3/+Kfbs2SNWrFghxo0bJ0JDQ/Wv8/PzE8OHD9cvz5gxQ6hUKjF16lSxY8cOsXnzZvHtt9+KadOmFbh9YmJixKFDhwQgBg8eLA4dOiQOHTr0WO9R9erVxeDBg8U///wj1q9fL2JjYwust2bNmuL55583SCtOuw8dOiSsrKxEnz599LFeuHDhsd5rHx8f0b59e/HXX3+JlStXihYtWgi1Wi0OHjyoz5vzmQ8PD9enLVmyRCgUCjFw4ECxevVqsW7dOtGvXz+hUqnE9u3b87Q1KChIDBo0qMBtUdy2CyHEmDFjhFqtFm+99ZbYvHmzWLZsmahbt65wd3cX0dHR+nydOnUSzs7OwsfHR/zwww9i165dYs+ePeLvv/8WgNi2bZtB/WFhYQIQ33//vRBCCJ1OJ3r27CnMzMzERx99JLZu3Sq+/vprYWNjI5o0aSLS09P1r/Xz8xPe3t4iODhY/PHHH2Ljxo2iVatWQq1Wi48//li0a9dOrF69WqxZs0bUqVNHuLu7i9TUVP3rd+7cKczNzUWHDh3EihUrxObNm8WIESMEIBYuXKjPd+vWLeHp6SlcXV3FrFmzxPbt28WKFSvEqFGjRFhYmBDi4WfR399fvPjii2LDhg3ijz/+EL6+vqJ27doiKytLX968efPEjBkzxD///CP27NkjFi9eLBo1aiQCAwNFZmamPt/UqVMFIAIDA8XHH38stm3bJmbNmiUsLCzEyJEjDbbj43wnc5f/v//9T2zbtk28++67AhATJ04UdevWFd9//73Ytm2bGDlypADEX3/9VejnSZJMSXZkpQqrOB3Z1q1bCzc3N5GUlKRPy8rKEsHBwcLb21vodDohhBD/+c9/hIWFhYiIiDB4fe/evYW1tbW+45jzw9S0aVP9a4UQ4saNG0KtVotXXnmlRG3IysoSGo1GdOvWTTzzzDP69JzOTYMGDQx+7I4ePSoA8ccffxRaZnJysrCxsRHfffedPv3RjqwQ2T9a5ubm4u7du/q0FStWCEDs2bNHCCHE8ePHBSDWrl1baFse/dHs16+faNy4cZHbID+AeO211wzSSvoedezYsVh13b17VwDiiy++MEgvbrttbGwM2l2Qot5rLy8vkZaWpk9PTEwUzs7O4qmnntKnPdqRTUlJEc7OzuLpp582qEur1YpGjRqJli1b5onjxRdfFO7u7oXGWpy25/zD8X//938G6ZGRkcLKykq8++67+rROnToJQOzYscMgr0ajEe7u7mLo0KEG6e+++64wNzcX9+/fF0IIsXnzZgGIL7/80iBfzmd1/vz5+jQ/Pz9hZWUlbt26pU87ffq0AISnp6dISUnRp69du1YA4p9//tGn1a1bVzRp0kRoNBqDuvr16yc8PT2FVqsVQggxatQooVarDTr2j8r5LPbp08cg/c8//xSA/p+0R+l0OqHRaMTNmzcFIP7++2/9upyO5qPbYsKECcLS0tJgv/Q438mc8h99Xxs3biwAsXr1an2aRqMR1apVK/IfI0kyJTm0QKq0UlJSOHLkCIMHD8bW1lafrlKpGDZsGLdu3dKf3tu5cyfdunXDx8fHoIwRI0aQmpqa5/T70KFDDU55+/n50bZtW3bt2lVkXD/++CNNmzbF0tISMzMz1Go1O3bsICwsLE/evn37olKp9MsNGzYEMBg2kJyczJQpUwgICMDMzAwzMzNsbW1JSUnJt8zcxo8fD8CCBQv0abNnz6ZBgwZ07NgRgICAAJycnJgyZQo//vgjoaGhRbYRoGXLlpw5c4YJEyawZcsWEhMTi/W6gpT0PXr22WeLVW7O8Ak3NzeD9Mdtd24lea8HDRqEpaWlftnOzo6nn36avXv3otVq8y3/4MGDxMXFMXz4cLKysvQPnU5Hr169OHbsWJ5ZCtzc3IiJiSErK6vAuIvT9vXr16NQKHjppZcM6vbw8KBRo0Z5ZsdwcnKia9euBmlmZma89NJLrF69Wn9aXKvVsmTJEgYMGICLiwuQ/d4Dea7Af+6557CxsckzjKJx48ZUr15dvxwUFARkD3HIPS43Jz3n+3T16lUuXrzIiy++CGDQrj59+hAVFaXfZ2zatIkuXbroyyhM//79DZbz+x7HxMQwbtw4fHx89J8VPz8/gHw/L/mVmZ6eTkxMTIFxlOQ72a9fP4PloKAgFAqFwbh1MzMzAgICihzGJEmmJDuyUqX14MEDhBB4enrmWefl5QVAbGys/m9x8uXw8PDIk9fDwyNPvkfNmjWL8ePH06pVK/766y8OHz7MsWPH6NWrF2lpaXny5/yQ57CwsAAwyDt06FBmz57NK6+8wpYtWzh69CjHjh2jWrVq+ZaZm7u7Oy+88AI//fQTWq2Ws2fPsm/fPiZOnKjP4+DgwJ49e2jcuDEffPAB9evXx8vLi6lTp6LRaAos+/333+frr7/m8OHD9O7dGxcXF7p16/bY06WV9D3KL29+crZR7k4kPH67c5T0vS7oM5WZmUlycnK+deSMxRw8eDBqtdrgMXPmTIQQxMXFGbzG0tISIQTp6ekFxl6ctt+9exchBO7u7nnqPnz4cJ6xnQW9H6NGjSI9PV0/bnfLli1ERUUxcuRIfZ7Y2FjMzMyoVq2awWsVCkW+3ztnZ2eDZXNz80LTc7ZFzvZ8++2387RpwoQJAPp23bt3D29v7wK3YW5FfY91Oh09evRg9erVvPvuu+zYsYOjR4/qx8M/7r7hUSX5Tua3raytrfN8T8zNzQv9LEmSqclZC6RKy8nJCaVSSVRUVJ51OUfhXF1dgewfheLkyxEdHZ0nb3R0dJ4fl0f9/vvvdO7cmXnz5hmkJyUlFfq6giQkJLB+/XqmTp3Ke++9p0/PyMjI04EpyOTJk1myZAl///03mzdvxtHRUX9EKkeDBg1Yvnw5QgjOnj3LokWL+OSTT7CysjKoNzczMzNCQkIICQkhPj6e7du388EHH9CzZ08iIyNLfMV6Sd+j3EfMC5Pzuvy21+O0O0dJ3+uCPlPm5uYGZxTyi/2HH36gdevW+eZxd3c3WI6Li8PCwqLAMnMU1XZXV1cUCgX79u3Td6JyezStoPejXr16tGzZkoULFzJ27FgWLlyIl5cXPXr00OdxcXEhKyuLe/fuGXRmhRBER0fTokWLQttSXDnb8/3332fQoEH55gkMDASgWrVqBhe+lcb58+c5c+YMixYtYvjw4fr0wi5QfBzG/k5KUmUgj8hKlZaNjQ2tWrVi9erVBkcpdDodv//+O97e3tSpUweAbt26sXPnTn2nKMdvv/2GtbV1nk7CH3/8gRBCv3zz5k0OHjyov2K9IAqFIs8P/NmzZ0s8CX/u8oQQecr8+eefCzwd/ahmzZrRtm1bZs6cydKlSxkxYgQ2NjYF1teoUSO++eYbHB0dOXnyZLHqcHR0ZPDgwbz22mvExcU91oT+JX2PisvPzw8rKyuuXbtWYJ7C2m1hYZHvUbCSvterV682OLKVlJTEunXr6NChg8HwktzatWuHo6MjoaGhNG/ePN9HzlHHHNevX6devXoFtrW4be/Xrx9CCG7fvp1vvQ0aNCh2HSNHjuTIkSPs37+fdevWMXz4cIM2d+vWDcj+5yC3v/76i5SUFP360goMDKR27dqcOXOmwO1pZ2cHQO/evdm1a1ee2QceR04n/9HPy08//VTqsgtijO+kJFUG8oisVOHt3Lkz351wnz59mDFjBt27d6dLly68/fbbmJubM3fuXM6fP88ff/yh/wGZOnUq69evp0uXLnz88cc4OzuzdOlSNmzYwJdffomDg4NB2TExMTzzzDOMGTOGhIQEpk6diqWlJe+//36hsfbr14///e9/TJ06lU6dOnHp0iU++eQTatSoUeiYxYLY29vTsWNHvvrqK1xdXfH392fPnj388ssvODo6FrucyZMn88ILL6BQKPSnUHOsX7+euXPnMnDgQGrWrIkQgtWrVxMfH59nuqrcnn76aYKDg2nevDnVqlXj5s2bfPvtt/j5+VG7du0St7Wk71FxmZub5zutWXHb3aBBA3bv3s26devw9PTEzs6OwMDAEr/XKpWK7t27ExISgk6nY+bMmSQmJhZ68wJbW1t++OEHhg8fTlxcHIMHD8bNzY179+5x5swZ7t27Z3BEWKfTcfToUUaPHl3oNilO29u1a8err77KyJEjOX78OB07dsTGxoaoqCj2799PgwYN9GOwizJkyBBCQkIYMmQIGRkZecbCdu/enZ49ezJlyhQSExNp164dZ8+eZerUqTRp0oRhw4YVq57i+Omnn+jduzc9e/ZkxIgRVK9enbi4OMLCwjh58iQrV64Esqeo27RpEx07duSDDz6gQYMGxMfHs3nzZkJCQqhbt26x66xbty61atXivffeQwiBs7Mz69atY9u2bUZrFxj/OylJlYIJLjCTpGLJuYK7oEfOld379u0TXbt2FTY2NsLKykq0bt1arFu3Lk95586dE08//bRwcHAQ5ubmolGjRgbT7Qjx8CrkJUuWiEmTJolq1aoJCwsL0aFDB3H8+PEiY87IyBBvv/22qF69urC0tBRNmzYVa9euFcOHDxd+fn76fDlXsn/11Vd5ygDE1KlT9cu3bt0Szz77rHBychJ2dnaiV69e4vz583muWM5v1oLccVlYWIhevXrlWXfx4kUxZMgQUatWLWFlZSUcHBxEy5YtxaJFiwzyPVrf//3f/4m2bdsKV1dXYW5uLnx9fcXo0aPFjRs3itxO5DNrgRAle49WrlxZZD05fvnlF6FSqcSdO3dK3O7Tp0+Ldu3aCWtrawGITp06CSFK/l7PnDlTTJ8+XXh7ewtzc3PRpEkTsWXLFoO68pt+Swgh9uzZI/r27SucnZ2FWq0W1atXF3379s2zDXbs2CEAceLEiUK3R3HbLoQQv/76q2jVqpX++1WrVi3x8ssvG3wfOnXqJOrXr19onUOHDhWAaNeuXb7r09LSxJQpU4Sfn59Qq9XC09NTjB8/Xjx48MAgn5+fn+jbt2+e1+f3mSroe3bmzBnx/PPPCzc3N6FWq4WHh4fo2rWr+PHHHw3yRUZGilGjRgkPDw+hVquFl5eXeP755/WzgBT0WcypN/dnNzQ0VHTv3l3Y2dkJJycn8dxzz4mIiIg83/ecWQVyT60nRP6fjcf5ThZU/vDhw4WNjU2e7Vqc91aSTEkhRK7zp5L0hNu9ezddunRh5cqVDB482NThGM26devo378/GzZsoE+fPqYOp9ylp6fj6+vLW2+9xZQpU0wdTpkZNmwY169f58CBA6YORZIkqVzIMbKSVIWFhoayadMm3nrrLRo3bmy0W8JWNpaWlkyfPp1Zs2blma6qqrh27RorVqxg5syZpg5FkiSp3MgxspJUhU2YMIEDBw7QtGlT/W1Wn1Svvvoq8fHxXL9+vUQXKlUWERERzJ49m/bt25s6FEmSpHIjhxZIkiRJkiRJlZIcWiBJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIytJkiRJkiRVSrIjK0mSJEmSJFVKsiMrSZIkSZIkVUqyIyuVyogRIxg4cGCZ16NQKFi7dq3RyxVC8Oqrr+Ls7IxCoeD06dNGr0Mqns6dO/PGG28Umsff359vv/22XOKRpKpo2rRpNG7cuNzrLc73+3HNnz8fHx8flEql3D88gWRH9gkwYsQIFAqF/uHi4kKvXr04e/asqUMrM8XtYG/evJlFixaxfv16oqKiCA4ONmocZdUBNxXZkZSkksnZ/37xxRcG6WvXrkWhUJR7PG+//TY7duwoVl5TdXoBFi1ahKOjY5H5EhMTmThxIlOmTOH27du8+uqrRo2jLDvgknHIjuwTolevXkRFRREVFcWOHTswMzOjX79+pg7L5K5du4anpydt27bFw8MDMzOzEpchhCArK6sMopMkqSqwtLRk5syZPHjwwNShYGtri4uLi6nDMJqIiAg0Gg19+/bF09MTa2vrxypHo9EYOTKpvMiO7BPCwsICDw8PPDw8aNy4MVOmTCEyMpJ79+7p85w7d46uXbtiZWWFi4sLr776KsnJyfr1Wq2WkJAQHB0dcXFx4d1330UIYVCPEIIvv/ySmjVrYmVlRaNGjVi1alWhsfn7+/O///2PoUOHYmtri5eXFz/88EOhryks1mnTprF48WL+/vtv/VHo3bt35yljxIgRvP7660RERKBQKPD39wcgIyODSZMm4ebmhqWlJe3bt+fYsWP61+3evRuFQsGWLVto3rw5FhYW7Nu3r9B4SyrnaMSWLVsICgrC1tZW/89IbgsXLiQoKAhLS0vq1q3L3Llz9eueffZZXn/9df3yG2+8gUKh4MKFCwBkZWVhZ2fHli1bjBp7Qfbs2UPLli2xsLDA09OT9957r9B/AGJiYnj66aexsrKiRo0aLF26tFzilCRje+qpp/Dw8GDGjBn5rk9JScHe3j7PvnLdunXY2NiQlJQEwNGjR2nSpAmWlpY0b96cNWvWGAyJyu8o5qNHfh89yrp7925atmyJjY0Njo6OtGvXjps3b7Jo0SKmT5/OmTNn9PvRRYsW5Rt/zhmw6dOn4+bmhr29PWPHjiUzM7PAbfLgwQNefvllnJycsLa2pnfv3ly5ckUf08iRI0lISNDXPW3atDxlLFq0iAYNGgBQs2ZNFAoFN27cAGDevHnUqlULc3NzAgMDWbJkicFrFQoFP/74IwMGDMDGxoZPP/20wFgLcuPGDRQKBatXr6ZLly5YW1vTqFEjDh06ZJDv4MGDdOzYESsrK3x8fJg0aRIpKSkA/PDDD/o2wMP3a86cOfq0nj178v7775c4vieGkKq84cOHiwEDBuiXk5KSxNixY0VAQIDQarVCCCFSUlKEl5eXGDRokDh37pzYsWOHqFGjhhg+fLj+dTNnzhQODg5i1apVIjQ0VIwePVrY2dkZlP3BBx+IunXris2bN4tr166JhQsXCgsLC7F79+4C4/Pz8xN2dnZixowZ4tKlS+L7778XKpVKbN26VZ8HEGvWrClWrElJSeL5558XvXr1ElFRUSIqKkpkZGTkqTc+Pl588sknwtvbW0RFRYmYmBghhBCTJk0SXl5eYuPGjeLChQti+PDhwsnJScTGxgohhNi1a5cARMOGDcXWrVvF1atXxf379/NtW+64S2LhwoVCrVaLp556Shw7dkycOHFCBAUFiaFDh+rzzJ8/X3h6eoq//vpLXL9+Xfz111/C2dlZLFq0SAghxPfffy+Cg4P1+Rs3bixcXV3FnDlzhBBCHDx4UJiZmYmkpKRix+Xn5ye++eabErfn1q1bwtraWkyYMEGEhYWJNWvWCFdXVzF16lR9nk6dOonJkyfrl3v37i2Cg4PFwYMHxfHjx0Xbtm2FlZXVY9UvSaaSs/9dvXq1sLS0FJGRkUIIIdasWSNy/wSPGTNG9OnTx+C1zzzzjHj55ZeFEEIkJyeLatWqiRdeeEGcP39erFu3TtSsWVMA4tSpU0KI7P2Gg4ODQRmP1jN16lTRqFEjIYQQGo1GODg4iLfffltcvXpVhIaGikWLFombN2+K1NRU8dZbb4n69evr96OpqakFttHW1lYf2/r160W1atXEBx98oM/z6Pe7f//+IigoSOzdu1ecPn1a9OzZUwQEBIjMzEyRkZEhvv32W2Fvb6+vO7/9VGpqqti+fbsAxNGjR0VUVJTIysoSq1evFmq1WsyZM0dcunRJ/N///Z9QqVRi586d+tcCws3NTfzyyy/i2rVr4saNG/m27dG4cwsPDxeAqFu3rli/fr24dOmSGDx4sPDz8xMajUYIIcTZs2eFra2t+Oabb8Tly5fFgQMHRJMmTcSIESP06xUKhbh3754QQog33nhDuLq6iueee07/Htna2opNmzblG4MkhOzIPgGGDx8uVCqVsLGxETY2NgIQnp6e4sSJE/o88+fPF05OTiI5OVmftmHDBqFUKkV0dLQQQghPT0/xxRdf6NdrNBrh7e2t78gmJycLS0tLcfDgQYP6R48eLYYMGVJgfH5+fqJXr14GaS+88ILo3bu3fjl3h7A4sT7aeS/IN998I/z8/PTLycnJQq1Wi6VLl+rTMjMzhZeXl/jyyy+FEA87smvXri2y/NJ0ZAFx9epVfdqcOXOEu7u7ftnHx0csW7bM4HX/+9//RJs2bYQQhjvIuLg4oVarxaeffqrfQX7++eeiVatWJYrrcTuyH3zwgQgMDBQ6nc6gPba2tvp/pnL/YFy6dEkA4vDhw/r8YWFhApAdWalSyb0vat26tRg1apQQIm8H88iRI0KlUonbt28LIYS4d++eUKvV+oMAP/30k3B2dhYpKSn618ybN69UHdnY2FgBFHigIXfeotqYX2wFfb8vX74sAHHgwAF9/vv37wsrKyvx559/FtiW/Jw6dUoAIjw8XJ/Wtm1bMWbMGIN8zz33nME/CoB44403iiy/OB3Zn3/+WZ924cIFAYiwsDAhhBDDhg0Tr776qsHr9u3bJ5RKpUhLSxM6nU64urqKVatWCSGyDzjMmDFDuLm5CSEe74DDk0YOLXhCdOnShdOnT3P69GmOHDlCjx496N27Nzdv3gQgLCyMRo0aYWNjo39Nu3bt0Ol0XLp0iYSEBKKiomjTpo1+vZmZGc2bN9cvh4aGkp6eTvfu3bG1tdU/fvvtN65du1ZofLnLzVkOCwvLN29RsZbGtWvX0Gg0tGvXTp+mVqtp2bJlnnhyt70sWFtbU6tWLf2yp6cnMTExANy7d4/IyEhGjx5tsK0//fRT/bYODg7GxcWFPXv2sG/fPho1akT//v3Zs2cPkH36rlOnTmXahhxhYWG0adPG4BRnu3btSE5O5tatW/nmf/TzVbdu3WJd/CFJFdXMmTNZvHgxoaGheda1bNmS+vXr89tvvwGwZMkSfH196dixI/Bwv5d7DOij+82ScnZ2ZsSIEfTs2ZOnn36a7777Ls/wpeLKL7bk5GQiIyPz5M35frdq1Uqf5uLiQmBgYIH7/ZIICwsz2IdD9v6mrPbhDRs21D/39PQE0O+rT5w4waJFiwz20z179kSn0xEeHo5CoaBjx47s3r2b+Ph4Lly4wLhx49BqtYSFhbF7926aNm2Kra2tUWKtikp+ZYtUKdnY2BAQEKBfbtasGQ4ODixYsIBPP/0UIUSBV9AW98panU4HwIYNG6hevbrBOgsLixLHXFC9xoi1IOLfMb+PlpNfnbk70mVBrVYbLCsUCn18Odt6wYIFBj8GACqVSp8/Zwdpbm5O586dCQ4ORqvVcu7cOQ4ePFhuV+Pmt/0K2tZFrZOkyqpjx4707NmTDz74gBEjRuRZ/8orrzB79mzee+89Fi5cyMiRI/XfAfHI9Qj5USqVefIVdRHTwoULmTRpEps3b2bFihV8+OGHbNu2jdatWxe/YYUo7PudX7qxvvPluQ/Pva/OqSNnH63T6Rg7diyTJk3K8zpfX18ge2aE+fPn6w84ODo60rFjR/bs2cPu3bvp3LmzUeKsquQR2SeUQqFAqVSSlpYGQL169Th9+rR+ADrAgQMHUCqV1KlTBwcHBzw9PTl8+LB+fVZWFidOnNAv16tXDwsLCyIiIggICDB4+Pj4FBpP7nJzluvWrZtv3qJiBTA3N0er1RZzazwUEBCAubk5+/fv16dpNBqOHz9OUFBQicsrK+7u7lSvXp3r16/n2dY1atTQ5+vcuTO7d+/W7wwVCgUdOnTg66+/Ji0tLc9Ri7JSr149Dh48aPADdvDgQezs7PL80wMQFBREVlYWx48f16ddunSJ+Pj48ghXksrMF198wbp16zh48GCedS+99BIRERF8//33XLhwgeHDh+vX1atXjzNnzuj32ZB3v1mtWjWSkpIM9o3FmRu7SZMmvP/++xw8eJDg4GCWLVsGlGw/ml9stra2eHt758lbr149srKyOHLkiD4tNjaWy5cv6/ezj7sPh+z9R+59OGTvb0yxD2/atCkXLlzIs5/O+a2B7P30hQsXWLVqlb7T2qlTJ7Zv387BgwfL7cxZZSU7sk+IjIwMoqOjiY6OJiwsjNdff53k5GSefvppAF588UUsLS0ZPnw458+fZ9euXbz++usMGzYMd3d3ACZPnswXX3zBmjVruHjxIhMmTDDoWNjZ2fH222/z5ptvsnjxYq5du8apU6eYM2cOixcvLjS+AwcO8OWXX3L58mXmzJnDypUrmTx5cr55ixOrv78/Z8+e5dKlS9y/f7/YU6vY2Ngwfvx43nnnHTZv3kxoaChjxowhNTWV0aNHF6uMR4WHh+uHdeQ8cs8G8bimTZvGjBkz+O6777h8+TLnzp1j4cKFzJo1S58nZwd57tw5OnTooE9bunQpTZs2xd7evsT13r59O0974uLiCn3NhAkTiIyM5PXXX+fixYv8/fffTJ06lZCQEJTKvLuhwMBAevXqxZgxYzhy5AgnTpzglVdewcrKqsTxSlJF0qBBA1588cV8Z2ZxcnJi0KBBvPPOO/To0cOgEzh06FCUSiWjR48mNDSUjRs38vXXXxu8vlWrVlhbW/PBBx9w9epVli1bVuBMA5C9b3r//fc5dOgQN2/eZOvWrQadSX9/f/3+6/79+2RkZBRYVmZmpj62TZs2MXXqVCZOnJjv97t27doMGDCAMWPGsH//fs6cOcNLL71E9erVGTBggL7u5ORkduzYwf3790lNTS10u+b2zjvvsGjRIn788UeuXLnCrFmzWL16NW+//Xaxy8jt3r17efZ50dHRxXrtlClTOHToEK+99hqnT5/mypUr/PPPPwYzyuQMA1u6dKm+I9u5c2fWrl1LWloa7du3f6y4nximGJgrla/hw4cLQP+ws7MTLVq00A8uz3H27FnRpUsXYWlpKZydncWYMWMMBphrNBoxefJkYW9vLxwdHUVISIh4+eWXDS6q0ul04rvvvhOBgYFCrVaLatWqiZ49e4o9e/YUGJ+fn5+YPn26eP7554W1tbVwd3cX3377rUEeHrloqqhYY2JiRPfu3YWtra0AxK5du/Kt+9GLvYQQIi0tTbz++uvC1dVVWFhYiHbt2omjR4/q1+dc7PXgwYMC25Q77vweBcWTozgXbQghxNKlS0Xjxo2Fubm5cHJyEh07dhSrV6/Wr9fpdKJatWqiefPm+rSciyPefvvtPHUWtUvw8/PLtz0LFy4s9HVCCLF7927RokULYW5uLjw8PMSUKVP0V/YKkfeiiqioKNG3b19hYWEhfH19xW+//fbYF5tJkqnkd+HpjRs3hIWFRb7ftx07dghAf9FTbocOHRKNGjUS5ubmonHjxuKvv/4yuNhLiOz9REBAgLC0tBT9+vUT8+fPL/Bir+joaDFw4EDh6ekpzM3NhZ+fn/j444/1F2ilp6eLZ599Vjg6Ohb6Pc9p48cffyxcXFyEra2teOWVV0R6ero+z6Pf77i4ODFs2DDh4OAgrKysRM+ePcXly5cNyh03bpxwcXERgMEMJ7nld7GXEELMnTtX1KxZU6jValGnTh3x22+/Gax/9DelIJ06dcp3nzd16lT9xV65t/+DBw/y7OOPHj2q/z2ysbERDRs2FJ999plBPc8++6xQqVQiISFBCJG973Z2djbYd0v5UwhRjIE3klSG/P39eeONN+TdU0xs2rRp+mEIkiSZxtKlS5k8eTJ37tzRn3ouyI0bN6hRowanTp0y2R24IHse2fj4+Cp1F0Op8pAXe0mSBMCWLVv47rvvTB2GJD2RUlNTCQ8PZ8aMGYwdO7bITqwkSdnkGFlJMoHevXsbTMeS+/H555+bJKZDhw7RsmXLx3rtuHHjCmzPuHHjjBypJFU9X375JY0bN8bd3V3exUmSSkAOLZAkE7h9+7bBFb65OTs74+zsXM4RlU5MTAyJiYn5rrO3t8fNza2cI5IkSZKeBLIjK0mSJEmSJFVKcmiBJEmSJEmSVCnJi70eg06n486dO9jZ2ck7D0mSVCghBElJSXh5eeU7p+aTQO4zJUkqiZLsN2VH9jHcuXOnyDtVSZIk5RYZGZnvXY6eBHKfKUnS4yjOflN2ZB+DnZ0dkH1XlEOHDtGjRw/UajUajYatW7fSo0cPgHyf574nc0nlLr+ocorKm9/64qQVtizbXDnaXNI2PiltfjRPQe0saZsTExPx8fHR7zeeRDltj4yMfKy7yVVEWq2WS5cuERgYiEqlMnU4lZbcjqVXFbdhSfabsiP7GHJOjdnZ2WFtbY29vb3+hzFnGcj3eWl/7ItbTlF581tfnLTClmWbK0ebS9rGJ6XNj+YpqJ2P2+Yn+ZR6Ttvt7e2rVEfW1tYWe3v7KtN5MAW5HUuvKm/D4uw3n8wBW5IkSZIkSVKlJzuyZS3lPsrN7+L14DAkRZk6GkmSJEmSpCrjiRxakJSURNeuXdFoNGi1WiZNmsSYMWPKpC5F5GFUJ36lBcD3c8G5Jvi1Bb922X8d/eAJPuUoSZIkSZL0uJ7Ijqy1tTV79uzB2tqa1NRUgoODGTRoEC4uLkavSzj5o205lqRzW3BIj0ARdx3irsOp37Mz2Ff/t2P7b+fWtY7s2EqSJEmSJBXDE9mRValUWFtbA5Ceno5Wq6XMbnDmHoyu+2fs0bSjT9f2qKNPws0DcPMg3D4Jibfh3MrsB4C1C/i2eXjE1qMBKKvW4G1JkiRJkiRjqJRjZPfu3cvTTz+Nl5cXCoWCtWvX5skzd+5catSogaWlJc2aNWPfvn0G6+Pj42nUqBHe3t68++67uLq6ln3glvZQuzs8NQ1Gb4X3ImD4Ouj8PtToCGZWkBoLF9fDlvdhfieY6Q+/D4Z9s1DcOopCl1X2cUqSJEmSJFUClfKIbEpKCo0aNWLkyJE8++yzedavWLGCN954g7lz59KuXTt++uknevfuTWhoKL6+vgA4Ojpy5swZ7t69y6BBgxg8eDDu7u751peRkUFGRoZ+OTExEcieqqewv4U9B0ChBu822Y92b4E2E0XUGRQRh1BEHERx6wiKjES4ug2ubsMM6KMwR/HgF7R+bRG+bRDVm4PaOk/M+cVS1PripJW6zSVUVDtKkle2ueB02eaCX1vaNpd220iSJEkFU4gyO6dePhQKBWvWrGHgwIH6tFatWtG0aVPmzZunTwsKCmLgwIHMmDEjTxnjx4+na9euPPfcc/nWMW3aNKZPn54nfdmyZfohCmVC6HBIi8Al+VL2I+USFllJBll0qIi3qUGsTSD3besSZ1ubLFUZxiRJUomkpqYydOhQEhISqswcqiWVmJiIg4NDldoGWq2WsLAwgoKCqtzcneVJbsfSq4rbsCT7jEp5RLYwmZmZnDhxgvfee88gvUePHhw8eBCAu3fvYmVlhb29PYmJiezdu5fx48cXWOb7779PSEiIfjnnjhNdunThyJEjdO/eXT/B+rZt2+jevTtAvs9LNWl8ZiY71i+mg48Ss9tHUUQcQpl0B+eUqzinXKV2zAYECnAPJsu7FafirAju8ypqR8+8ZeWKNfdk8EWlFbZcJm3OJ6bHzSvbrC4wXbY573tfUDtL2uacMzhS1XY3MZ0dYTG0rOFEgJsdOp3g2I04zFRKGnk7YKbKHskXn5pJaqYWBys1NhZV7idYkspdlfsW3b9/H61Wm2eYgLu7O9HR0QDcunWL0aNHI4RACMHEiRNp2LBhgWVaWFhgYWGRJz3nR0ytVhv8oBX2vDQ/9gDJltVRtOiDsu04EALiI7IvHPv3AjJF3DW4ew713XO0BJjzQ/ZMCLmn/HJ4eN/i/GIqTlp5trmk5RSVV7a54HTZ5odpxXlenFiNsV2kiu+Fnw5xIzaVLoHVWDiyJRlZOl6YfxiAmtVsmPtiU+p62PPzvnBm77qKuUrJktEtaVUze7acjl/uQq1SsGJsG1xts39vDly9z97L92jm50SP+h76uq7cTcLeSk01WwuUSjnLjfRkq3Id2RyP3tZMCKFPa9asGadPnzZBVEamUICTX/aj8ZDstKRouHkQbfh+ki9sxSE9Eu5fzn6cWJSdx9EXlU8bfBNsIS4Q3ALllF+SJEml8EILX2ZuvkgNV1sAdEJQs5oN1++lcP1eCqp/97E5u9pMrY4f91yjVU0XMrN0RMSlAtB2xk5WjmtDIx9HjobH8dPe6wDMGdqUvg2zz671+2E/GVk6tod0JMAt+170uy7GsOl8FO0CXBnQuLo+roRUDfZWZk/0LZKlqq3KdWRdXV1RqVT6o685YmJiCryYq0qx84DgQegCn2a3rhN9urRBfef4wym/os5AfATK+AiaAMz7BWzdwa8tSu/W2KVlgdCZuhWSJEmVyvjOtRjfuZZ+2cbCjJ1vdeZ0ZDyxyRl4O2Vfu/BWj0Ca+Dry++EImvg4AqBSKvhnYjv6zz5AplaHtXn2OMemfk7YWZiRlJHFXydv0behJxlZWuwszchIzuSpWXtZNa4Nzf2dORXxgD+P3+LP47dISNPwcht/hBC0m7mT5Iwslr7Sihb+zpibKQmLSuT6vRQCPewIcLMt920lScZU5Tqy5ubmNGvWjG3btvHMM8/o07dt28aAAQNMGJmJWDlB3T7ZD4CMJIg8ijZ8Pw9Ob8AlPRxF8l24sAbVhTV0BcSsr/Q3aVB4tUQh5JRfkiRJj6Pxv53V3LrWdadr3YcHVlRKBQ29HTn8fjfiUjLxdcnu9HaqU41fRrTg79O3CfTIPvJqYabi+IfdafzJVuJTNThaZw9d6VCnGn+dvM3t+DT2XLrHy238SUzLIjkje//94s9H+HNsG1rWcGbjuSh+2HkVtUrB36+1p55X9sU00/65QHVHK4a08sVWjt+VKolK+UlNTk7m6tWr+uXw8HBOnz6Ns7Mzvr6+hISEMGzYMJo3b06bNm2YP38+ERERjBs3zoRRVxAWdhDQDZ1fRw6kNqZPj66oY87BzQPobhxAd+MgZunxcGkjXNqYPeWX0gJlwm/g3x6Fd0uUukxTt0KSJKnK8XCwxMPB0iCtZQ1nWtZwzpP35IfdSUzX6DucLfydmf9yM3Zfuoe3kxUADtZqLv6vF00+2YZA4GxjDoCbfXYdGq3gyy0XWTSyJXEpmSw6eAMAawsV/Rp64WCl5s/jkRy4ep+nG3rxVL0n4KymVOlUyo7s8ePH6dKli345Z0aB4cOHs2jRIl544QViY2P55JNPiIqKIjg4mI0bN+Ln52eqkCsuM0v90VdtmzfYtOEf+jTxxuz2Ubh5EHHz345t+G4I3/3vXLZmKOJ+/rdj2wozbZqJGyFJkvRkUSoVOFqbG6TV93KgvpeDQZqlWkXY/3oB6O9gOay1Hy425vx++CYt/B92kl/rUos5u67x3zXnaR/gioOVmv1X7vPPmTtsPBfFb6Na0aaWC8kZWYxedIwgT3s+7Bukn5FBkkyhUnZkO3fuXOQtZSdMmMCECRPKKaKqQyjMEF5Nwa8VtH2drMwM9q1eQCc/M1S3DiNuHECVEgORhyHyMGZAb5Rw70eEbxs8EswhrU32kAZJkiSpwsh9wVefBp70afBwakZnG3PGdw4gIU1D+P0UfP4d0/tiK1/+OXMHjVaw5UI0bWq5cCk6iSPhcRwJj6NrXTda13TB3EzJL/vDiU5IY2CT6nk61JJUViplR1YqRwolSVY+6Jr3QdVmHFmZmexZs5DONc0xu3UEceMAyoQIiDoFUadoBTDrW4RbPRrovFCEZkLNDtkXoUmSJEkVlq2FGZ8ObGCQ1qqmC/OHNWPnxRja1sqeKszfxZqQ7nWYte0yoxYd4/z0ngCsOXWL87cTsVKrqOthj0qp4E58GqtP3qJVTReDo7+SZCyyIyuVjEJBiqUHonEfaDGSLI2GXWt/o2uAFYqIw6SGbcMu/Q6KmFBqEgprtme/zrmm4Vy2jn5yyi9JkqRKoEd9D4N5bF1sLXi6kRfX7iWTodFhqc6eZWF0+xq8ueIM3++8ioO1OaPb1+DgtVi+3nqZ4Or2rH+9g76MUxEPCHCzxVothyVIpSM7slKppZm7IoL7IIKfYycb6dOpBYrII9zcu4yayigUd89D3PXsx6nfs19kX10/Nhe/dtk3bZAdW0mSpEqhhqsN3/2niUHaM0282XnxHrsuxuhna/BysKSanQXnbyfy+h+n+GFIE3Q6wYiFx7AxV7EjpKMJopeqEtmRlYzPphqibj/OX1fi26cP6qwUiDz6cC7bOych8TacW5n9ALB2Bb82D4/YugeDsmrcM1qSJOlJ8cOQJmh1D69haRvgysh2/ny5+RI5hyruJ2eQkKYhIU3D11sv85SX1jTBSlWC7MhKZc/KEer0yH4AZKbCrWMPb6176xik3oewddkPAAt78G2NsnpLXJJ1oOkMannxgCRJUkWneuS2ueM71aJHPXdyrtF2s7fExcac2JRMfjlwg06DHt6J7G5iOtbmKuws5a2dpeKRHVmp/JlbQ81O2Q+ArEy4cyq7UxtxCCIOQ0YiXNmK6spW2gPi6y/BsxH4tAKfluDTGuw9C61GkiRJMj2FQqG/le7DxOw/Peu542z9sCvyzbbL/HXyFh/2rcfwtv7lF6RUaZVJRzY9PR1LS8uiM0oSgJk5+LbKfgDotHD3PNw4gO7mITKv7sUyKx5un8h+HJ6bnc/BN7tT69s6+69zHZM1QZIkSSo+5b/XRLzetRbE39anh99PQaMV1Kxmo0+LiE3lt0M36FHfI9+bQ0hPNqN1ZHU6HZ999hk//vgjd+/e5fLly9SsWZOPPvoIf39/Ro8ebayqpKpOqco++urZCG3zMWzZsIE+7RuivnMCIo9kP+6eh4SI7Mf5VQCYmdvQ1twP5Z4z2eNsvZtnD2uQJEmSKpScYQYKhYLcs8KvGNuG8PspVHe00qdtDY3m5/3hnL+TwPJX2+QqQxjMjSs9mYzWkf30009ZvHgxX375JWPGjNGnN2jQgG+++UZ2ZKXHp1CAgw+41oSGz2WnZSRlH52NPJo9FOHWMRQZiVTLDIX9obD//wAFuAWBd4vsI7YeTR/uPSVJkqQKqYarjcFyg+oODGpanba1XPVpGVlaen27j7a1XHi/T5D+Vr3Sk8do7/xvv/3G/Pnz6datG+PGjdOnN2zYkIsXLxqrGknKZmEHNTtnPwB0OjRR57mw+RcaOqahvH0se7qvmNDsx8nFqIHeKhtUSW3+HY7QAtwamrARkiRJUlFa1XShVU0Xg7T9V+4Tfj+F1Mws/jcgWJ8em5yBs415sY/UJqZriE3OzNN5lioPo3Vkb9++TUBAQJ50nU6HRqMxVjWSlD+lEtyCuOnalfp9+qBUqyE5JvuI7a2jEHkMceck5lkpcG179gMwUyjpbFEdJTuyp//yaQl2PiZujCRJ0pNBATzOebKOdarx26iWxKdpUOaaJeHlX4+Smqnlu/80pqG3Y5Hl/HEkglUnbrHmtXbyqG4lZbR3rX79+uzbtw8/Pz+D9JUrV9KkSZMCXiVJZcjWDYL6ZT+ArPRUDq75ifZ+5qjunIDIYygSInBIj4RTi7MfgJm1C63MfFAeuAR+rcGtQWG1SJIkSSXULsCFxDQNNhYqkh7j9WqVko51qhmk3U1M5/q9FLJ0OnycrPXptx6kYmepxsHKcEqvjCwtvx4I525iBm//eYZ5LzWVY24rIaN1ZKdOncqwYcO4ffs2Op2O1atXc+nSJX777TfWr19vrGok6fGp1MRb10TXog8qdfYOTRMXwal182nmps3u3N45jSI1Fg9iYfdpAMwUKjpZeqNU7s4eklC9henaIEmSVAXk3BVMq9USFm2cMt3tLTn+4VOciYzHycZcn/7FpotsD7vLZwMb8Gwzb33636fvcDcxA4DNF6KZs+sqE7vWNk4wUrkxWkf26aefZsWKFXz++ecoFAo+/vhjmjZtyrp16+jevbuxqpEk47LzJMqxBbqn/u3cZmWQdesUYdsWU98+BeXt4ygSb+OYdhNO/AonfkUNdLLyR+l4FV29gaZugSRJkvQvGwsz2gY8vChMpxNExKWSrtER6PFwLtu45Azm7b5m8Nr/23aZel72dK3rXm7xSqWnNGZhPXv2ZM+ePSQnJ5Oamsr+/fvp0aOHMauQpLJlZoGo3ozrbr3QDvoFQkLRvH6WY/4T0bYcB9WbIxRKHNNuoNr1CWZzmtHq2v+huLI1e/5bSariZsyYgUKh4I033jB1KJJUJKVSwd+vtWPDpPYEV394d8ip/1wg/H6KQV4hYPLy01y/l1zeYUqlYNSOrCRVSfZe3HFqia77pzBmB1mTL3DaZwQ6/w4oEHgknsHsz6GYzW+P14PDIHSmjliSysSxY8eYP38+DRvK2T6k0mn3xU7qfrSJKzFl32lUKBTU9zK8xfneK/fzzZuUnsWrS06QlC4vUq8sStWRdXJywtnZuViPiuaZZ57BycmJwYMHmzoUqbKxqcZN165oX1yDZvxRrlbrhbB0QBF7hRY35mK2oBNc3WHqKCXJqJKTk3nxxRdZsGABTk5Opg5HquTSNVrSNTqECeb2PnHzAQlpBXdUr8Yk89afZ9Dp5LzjlUGpxsh+++23+uexsbF8+umn9OzZkzZtsu+8cejQIbZs2cJHH31UqiDLwqRJkxg1ahSLFy82dShSZeZckwveQ/HrNg/l0R/RHfgB9b0w+H0QBPWHnp+Do5zOS6r8XnvtNfr27ctTTz3Fp59+WmjejIwMMjIy9MuJiYlA9oU9Wm3VGIKT046q0p7yltOB1emyz2CV53ZcuP8aVuq8sxNkZAl0AsyUsO9KDPN2X2Fcp1rlFtfjqoqfxZK0pVQd2eHDh+ufP/vss3zyySdMnDhRnzZp0iRmz57N9u3befPNN0tTldF16dKF3bt3mzoMqaqwsEPX4R22PfCnp9VpVMd+hrB/4Op26DYVWr6aPdetJFVCy5cv5+TJkxw7dqxY+WfMmMH06dPzpF+6dAlbW1tjh2dSly9fNnUIlVLWvx2Vmzdu4OtoXq7bcVwjS8Y18s0bk05wMCKVBu6WOFmpgEzWHzjDsrPxPFvPnnpuluUW4+OoSp/F5OTiDzkx2qwFW7ZsYebMmXnSe/bsyXvvvWesagDYu3cvX331FSdOnCAqKoo1a9YwcOBAgzxz587lq6++Iioqivr16/Ptt9/SoUMHo8ZRHPGpGpYciSArXkHHjCyc1OqiXyRVWhozG3TdP0PV9GXY+A5EHITNU+DSBhgwBxzz7jwlqSKLjIxk8uTJbN26FUvL4v2Qv//++4SEhOiXExMT8fHxITAwEHt7+7IKtVxptVouX75MnTp1UKlUpg6n0jFT3QF0+Pv7o4u/U27b8cj1WE5EPMDCTIW5SomFWpn93EyJpZmS4NpKLNQqtGZKzM2UrD9xhSO30nB3ceTZTkFlHt/jqIqfxZyzOMVhtI6si4sLa9as4Z133jFIX7t2LS4uLgW86vGkpKTQqFEjRo4cybPPPptn/YoVK3jjjTeYO3cu7dq146effqJ3796Ehobi61vyjkRBp8ly7lhW0F+AY+H3+X7nNUDFj5/tpI67HU19HWjq40gTX0d8nKyKPQFzfuU/bt781hcnrThtLuj546i0bXYJhJfWojyxCOXOaSjC9yLmtkHb43NEwyFQyHte1m1+nDZW9vc5v/SSfh4Ke16ceCurEydOEBMTQ7NmzfRpWq2WvXv3Mnv2bDIyMvL8eFpYWGBhYZGnLJVKVWV+aHNUxTaVh5zRp0qVCh3ltx3b1najbW23Yud/v08QrnaWvNTaVx9fQqqGw+GxdA9yN7irmKlVpc9iSdqhEEYaab1o0SJGjx5Nr1699GNkDx8+zObNm/n5558ZMWKEMarJQ6FQ5Dki26pVK5o2bcq8efP0aUFBQQwcOJAZM2bo03bv3s3s2bNZtWpVoXVMmzYt39Nky5Ytw9raOp9XPBSeBHujlNxIVhCXkfcDb6cW1LB7+PC2AbU8A12l2KRH0yRiAS4pVwC45diaM74jyVJZmTiysqNUKlE+gUMpdDqdfsxfjtTUVIYOHUpCQkKlPBqZlJTEzZs3DdJGjhxJ3bp1mTJlCsHBwQW88qHExEQcHBwq7TbIj1arJSwsjKCgoCrTeShPTT7ZyoNUDVsmt0cTG1mptuO32y/z7fYrPN3Iix+GmP7OpVXxs1iSfYbRjsiOGDGCoKAgvv/+e1avXo0Qgnr16nHgwAFatWplrGqKlJmZyYkTJ/IMZ+jRowcHDx58rDILOk3WpUsXjhw5Qvfu3VGr1Wg0GrZt26a/AcS2bdt4dVB3Xv33ecNWHTkXlcypyARORsQTGpVIkgbOxik4G5ddtlqlINjLnqa+jjT1daSJjyPV7LKPbOQuX13EEIWi8ua3vjhphS3ntPnR50XFWpp2VJo264ajPTwb5e7P8Y4/THXFXbKeWQCejcu9zSVtY0naLIQgOjq6ROObIPvCj/T0dCwtLYs8Q1FU3oLWP5qeX77caUCRz/Or39bWFg8PD/26kpwiq4js7OzydFZtbGxwcXEpVidWkvLTzM+ZpHQNVmoVle2chYWZClsLM3rV99Cn5RwTlLe4LX9G68hC9pHQpUuXGrPIErt//z5arRZ3d8M7c7i7uxMd/fA+eD179uTkyZOkpKTg7e3NmjVraNEi/1uPFnSaLKdjoFarDToJBT33drGlhocT/ZtkX8WertFy7nYCJ24+4MTNB5y8+YDYlExORSZwKjKBXw5kHwWp7mhFIx8H6nnYkZagoIMWrK2L1zl8NLbirC9OWnHbXFT9xVWScipmm9XQ6W2o2RFWjULxIBz1ot7Q/RNoPT7foQZl3eaC2lSaNqenp5OSkoKrqyt2dnbF3qnrdDqSk5OxtbUt8khuUXkLWv9oen75cqcBRT7PXb4QgqSkJGJjYxFCYG5unmc7SZKU7efhzYHso4mJRrpFbXkZ37kWQ1r6YG/58Lu95cJd5u+9xpRedWlV07jDKaXCGa0jGxERUej6xxmbWhqP/oAKIQzStmzZUq7x5MdSraKFvzMt/LPn2RVCcDM2NbtjG5Hdsb10N4nb8Wncjk9j47loQMWc0F3UdLWhobcDDbwdaeTtQH0vB6zMq8YphSrNpyWM2wd/T4SL62HL+xC+FwbOBeuKN9/y47K3ty/2hUGQ3YHMzMzE0tKyWB3ZwvIWtP7R9Pzy5U4Dinz+aP0KhULfka3K5Iwv0pPO0drcYHne7qucuZXA/qv3ZUe2nBmtI+vv71/o0Zfymt/M1dUVlUplcPQVICYmJs9R2opGoVDg72qDv6sNzzbzBiAxXcP5WwmcvZ3A6YgHHL0aTVyGguv3U7h+P4W1p+8AoFRAgJstgR721PWwI6CaNXEZVPkf1ErJygle+B2O/QxbPoDLm+DHDjD4V/Atv2E4kiRJknEseLk58/de55UONfVp0QnpCASeDlX3eoiKwGgd2VOnThksazQaTp06xaxZs/jss8+MVU2RzM3NadasGdu2beOZZ57Rp2/bto0BAwaUWxzGYm+ppm2AK20DXNFoNGzceJtWnZ7i4t0Uzt1K4MytBM7djuduYgaX7yZz+W4y687kvNqMWaG7qOthR6CHHXXc7ajhaoO/iw3VbIw6qkQqKYUCWo4Bn1awcgTEXYOFvaHbR9BygqmjkyRJKlOdv9pFYnoWf75aNf55d7O35MN+9QzSPt0QyrbQu8wY1IBBTb1NFFnVZ7TeTKNGjfKkNW/eHC8vL7766isGDRpkrKpITk7m6tWr+uXw8HBOnz6Ns7Mzvr6+hISEMGzYMJo3b06bNm2YP38+ERERjBs3zmgxmJKLjTmdA23oHPhwCpG7iemERiVyMSqJS9GJhEUlciUmiaT0LI7deMCxGw8MyjA3U+KsVrE+/jQ13Wzxd7HB3U5NdCqkZGThKMf1lQ/PhjB2D6x/E86thO3TUIXvx9xqoKkjq5Q8PDy4c+eOqcOQJKkID1I1JKRpquxZw3SNlpikDDK1Oup6VI2ZOiqqMj8sV6dOnWLfDaa4jh8/TpcuXfTLOTMKDB8+nEWLFvHCCy8QGxvLJ598QlRUFMHBwWzcuBE/Pz+jxlGRuNtb4m5vSZd/O7cajYZ/1m8ksHkHrt5PIyw6kWsxKYTfTyYiLpXMLB3RWQqiw2IgLCZXSWbMOLMTBys1Xo5WeNibkxmv5MqOq1Szt8LRUsWVBAVX7ibj5miNbT63+ZNKyMIOBi0A/w6w6V2U17bTWX0CRYQv1Opk6ugeixCC1MysYufX6XSkZWoxy8wqcoyshUp+5iSpsquqHdgclmoVK15tzYU7idTzetiR3XQuCh9na4KrO5gwuqrFaB3ZR6eYEUIQFRXFtGnTqF27trGqAaBz585FfgkmTJjAhAlP9ilaMyUEetgR7OPMQKrr07O0Om7eT2Ll5j1Uq1mfiLg0bsalcudBGhGxSaRrFSSkZf+3HBYFoOTA3eu5SlYxO/ThVGYWShWfn9+DjYUZ2nQVK2KOY2thRvw9JcfXh2FlocbCTInFv3dKsTBTZS+rlZirsu+oolJmjxFWKhSoFAqUiuxlodNyPRFORcSjVpuhVCjQCfHvA7S6f5/rIDNLQ+gDBVaX7qFUqtAKgUarIzMr+5GWqeHMHQURe66jEQoys3SkZ2q4cl3JvjUX0OjEv3m1REUrWX3/JDpAq9Nx756SFXePY2upxsZcyf1oJZF7w/FxsiIyGTKzdJiblWLeVIUCmg0H7+aIP4djFXsF8ftA6PIBtH+r0t3eNk2jo+n0srmg8vy07qUuw9/fn5dffpnVq1fj6OjI+vXrcXR05MqVK4wbN47ExERcXFyYPXs2586dY8GCBXz//ff88MMPLFy4kN27d7Nz507+/PNP5s+fb4RWSdKTqSpPV6VQKAw6rPeTM3j3r7MkZ2SxfExreVGYkRitI+vo6JjvTAE+Pj4sX77cWNVIRmCmUuLrbE2Qo6BPa1+D+VM3btxIh67duZei5U5CGpGxyRw4eQEXL18epGZxPzmDiLtxZCrMeZCaPftfhk7B3aQMSMoAFNxM/ndSXJQcvRdpjIj57sLRYuZVwcVTha+/efWRNCXcvZ03Lf6+wfKVxDiD5X3RVx7GF7qDep72VBNKPCPjae7v+nh3fHGvT9aobUT98iK+cQdg56dw4wAMmg+2xb8bjVS0WrVqsX//fj788EP+/PNPXn31VSZOnMh3331HcHAwK1as4KuvvuL777/XD0s6ePAgZmZmJCYmcujQIdq1a2fiVkiSVJl0q+vG1XvJNPevOrPUmJrROrK7du0yWFYqlVSrVo2AgADMzOSFRZWJnaUaZztrAj3s0GiccLh3jj596uknxt+4cSN9+nRBoVRxPymNDVu206x1e5Izsthz4AiBwY1Izsji+NkL+NQIQCsUZGi0ZGp1ZGh0ZGTpyMjS/vs3+2ipEALtv0dWDY64anUkpaRgZWWNTmT/c6RUKlAps4/eKhVkH8X9t9OYnJSIk6MDKqUSpSK7055zNNhMqeDe3Shq+Ppgaa7CXKXCTCm4GX6d4Lp1sLJQY26mRCEEF86fo3GjhqjNzBBCx9kzp2nYsBHpWkhIzeD0hUtYu1bn1oM0wu48IDULztxKAJRsn38UV1sLBjb24oUWPtR2tyvZG2Buyym/sXi1/Q9mm9+F67vgx/bZww9qVo6hBlZqJaGf9Cx2fp1OR1JiEnb2dsUaWpCUXtoIoX///gA0btyYGzdukJSUxMGDB3nxxRdRqVRotVp8fX2xsLDA0dGR6OhoYmJiGDBgAMePH+fAgQMMGTKk9IFI0hOoag8syJ+rrQXf/qcJaZla/W+WTieYsSmMF1v54e9qY+IIKyej9TAVCgVt27bN02nNyspi7969dOzY0VhVSRWEmUqJi405rpZQ/98xQLFhgj6NvQBwij1Pn6dql/rOXtkd5w7FustVdt7WBd7lauPG2/TpU/+Ro9BX6dOppmHavbP0aVpd33lX3z5Fn8ZeDzvzSWH06dMAgA0bNhLcujMnI+L5Y89ZriSbcz85g5/3h/Pz/nCa+joyqn0NetX3wExV/CECotEQ8G0JK4fDvYvw2wDoNAU6vQvKij1nsEKhwMq8+LsXnU5HlrkKa3OzYs0jawwWFhZkZmaiVCrJyspCCEH16tXZt2+f/paIOUOm2rRpw6pVq/D29qZdu3Zs2rSJ69evExAQYJRYJEl6cuSe833F8UgW7Atn1YlbHHivK9Yl2G9K2Yw28K5Lly7ExcXlSU9ISDC4MEuSqhqFAvxcrHmmiRcj6ug48l5nfhnenB713FEpFZyMiGfislN0/b89LDl0g7TMEsyp7FYXxuyCJi8BAvZ8kd2hTapkt8KpBOzt7XFycmLHjh1A9j80ly5dAqBt27bMmzePtm3b0rJlS/7880/q1atXWHGSJBUi2MuBRt4OWJTm2oIqoG0tFzrUdmVSt9qyE/uYjPYJevTOWTliY2OxsZGHy6Unh7mZkm5B7sx/uTmH3uvK5G61cbJWExGXykd/X6DDlzv5ed/14ndoza1hwBx4Zj6obeDGvuyhBtd2lm1DKqF79+7h6+tL/fr18fX1ZePGjSV6/ZIlS5g9ezZNmjShadOmnDhxAsjuyN65c4e2bdtibW2Nq6srbdu2LYsmSNIT4Y9XW/P3xPZ4OT7ZNwvwc7Hht1EtGd7GX5927V4yc3ZdJUtrnLNPVV2pu/8588MqFApGjBiBhYWFfp1Wq+Xs2bNyhy89sdzsLXmzex3GdqrJyuO3WLDvOrcepPHphjB+2nudCZ1rMaSlL5bqYgwVaPQCeDXJvoFCzAVYMghluzdRiAZl3o7KQqvVotPpSExMxN7evsBhCjdu3NDfjnbEiBH6fAEBAaxZsybP0AI3NzcePHigT9+xY4f+uSRJUmkoFApyjgPqdIJ3V53lxM0H3E/OYOrT9U0bXCWgEKWczG3kyJEALF68mOeffx4rq4f/XZmbm+Pv78+YMWNwdXUtXaQVSGJiIg4ODty/f5/9+/fTp0+fRy6E6gNg8Lx///6oVKoix/8VRqfTERMTg5ubW7HGERaWN7/1xUkrbBnI97lsc64YhCA6IZ3r91NI12QfkbUwU1HD1QYvR8vs6cWKarNOC/fCID57RohMM1vMfJqjNM97ZKOgskrSxpK02cXFhREjRuDu7o5KVbJxvFlZWcW+MLSovAWtfzQ9v3y50wp6LoQgICAgz/uTnp5OeHg4NWrUwNLSEni4v0hISHhiO79VcRtotVrCwsIICgoq8WddekhuR0NCCFafvM2sbZf5c1wbqhfjiHVV3IYl2mcII5k2bZpITk42VnEVWkJCggDE/fv3xdq1a0VmZqYQQojMzEz9ckHPS6Mk5RSVN7/1xUkrbFm2ufixZmi04vfDN0Trz7cLvynrhd+U9aLtjB3ijyM3RUpaevHKObtS6D7zFGKqvdDNrCHE5a3F3iYlaWNJ2pyWliZCQ0NFWlpakdsgN61WKx48eCC0Wm2p8+ZeP2HCBNGoUSP9Izg4WOzbt6/AcnKnFef5o/Jrf87+IiEhoUTbpCqpitsgKytLnDt3TmRlZZk6lEqp+6zdou2MHeLGvUS5HfORoTHcv+y6eFfEp+b/m1AVP4sl2WcYbWTx1KlTjVWUJFV55mZKXmzlx+Bm3qw4FsmcXVe5HZ/Ge6vPMXf3VTo6K+ipExQ6T0ODwWS5BZOy6DkcUyNg6WBoPQG6TQW1ZXk1pUKbM2eO/nnuIQeSJJnWnfh0kjOykMNA85f7Bjvnbyfw6m8ncHew4K9xbXGzl/v33ErVkW3atCk7duzAycmJJk2aFHqHjpMnT5amKkmqkizMVLzcxp/nm/uw9EgE83ZfJSIujd/jVByafZA3u9ehT7BnwTdXcK7Fvjof08fsEKoTv8DhuRC+F579GdyCyrcxkiRJxSSq+C1qjc3dwYJAd3uq2VkUnfkJU6qO7IABA/QXdw0cONAY8UjSE8lSrWJ0+xoMaenDr/uuM3fnZa7dS2HislPU9bhKSPc6dK/nnu8/izqlObpeM1HV6QF/vwZ3z8P8ztD9f9BkRLm3RZIkSTKe4OoOrH+9A4iHt/TN0upI1Wixt3z8edqrilJ1ZHMPJ5BDCySp9KzNzRjbsQau8WHcsQ1k4cGbXIxO4tUlJ2jo7UBI9zp0qlMt/7Mfgb1g/EH4ewJc3Q6b3kF1eQsWVgPKvyGSJEnFUMiJXCkXByvDDut3O67w9+k7zBnalHqetiaKqmIw+kzEmZmZ3Lp1i4iICIOHJEnFZ2UGr3etxb4pXZjQuRbW5irO3kpgxMJjPPfjIQ5di83/hXbu8OIq6DUTVBYor22n88X/ori6rXwbIEmSVAg5sODxpWZm8ffpO0TEpXL9frKpwzE5o3VkL1++TIcOHbCyssLPz48aNWpQo0YN/P39qVGjhrGqkaQniqO1Oe/2qsved7vwSvsaWJgpOX7zAUMWHGbogsOcjIjP+yKFAlqPg1d3IaoFYZmViNmKIbDxXdCklXsbypOHh0epXu/l5ZVvetu2beU/5JIkVQjW5masm9iez59pwIDG1U0djskZbdaCkSNHYmZmxvr16/H09Cz0wi9JkkrG1daCD/vVY0zHmszZdZU/jkZw8FosB6/FEuSoxLdRIk38XQxf5F6frFHbiPh1FLXubYWjP/17IdgCcKlbtgELAZkpxc+v04EmFTJVUNS8wyp5xa4kVXa1qtmSrtFiVtCFrFKhHKzVDG3lq1/OyNLx1ZZLvN6tDjYWT9atbo3W2tOnT3PixAnq1i3jH0hJeoK521vyyYBgXu1Yk9k7r7LyxC3C4pU88+NhetRzJ6RHHep65JpeysyS894v4dd1FGbrJ2XfSGF+F5Qd30UhAsouUE0qzKxZ7OxKwLG4md+79RgBGdq6dSvvvvsuGRkZ9OrVi1mzZhn8863Vahk/fjz79u2jUaNGZGZmlrpOSZIeWvd6eyD7u5YQZeJgqoA5R+PYeT2Fc3cS+X10qyfqYKLRhhbUq1eP+/fvG6u4MvfMM8/g5OTE4MGDTR2KJJWYt5M1XzzbkC2T2tHCVYdSAVtD79L7u31MXHaSqzGG46ZEwFPZF4IF9gWdBtXuz2h/+VOIvWKaBphQWloaY8eOZe3atRw4cIDLly+zdu1agzx//fUX8fHxHDlyhClTpnD69GmTxCpJklQcvWvb4eFgyetdaz9RnVgw4hHZmTNn8u677/L555/ToEED1GrDK+wq2iTkkyZNYtSoUSxevNjUoUjSY/Nzseal2jo+GdKe2XvC2XA2ivVno9h4LoqnG3kxvmOu8em21eA/S+HMcsSmd3BOvYb4uQs8NQ2ajjJuYGpr+OBOsbPrdDoSk5Kwt7Mr+pbGKktIT3rs0C5dukRQUBC+vr4kJiby0ksvsXfvXp555hl9nkOHDvHcc88B0KRJE3mmSZKkCi2omgU7QzpibfGw75WRpcXCrGrcsrYwRuvIPvXUUwB069bNIF0IgUKhQKvVGqsqo+jSpQu7d+82dRiSZBQBbrbMGdqU1zon8s32y2wLvcvfp+/wz5k7NHFWUrt5MvWqO2VfCNZ4CFk+bXiwaChuSRdg83uowtZhZTPIeAEpFGBuU/z8Oh2otdmvKaojqzP+rYAePYIhJ2uXpLLV9/t9ZGTpWDyiualDqTIsct0NLCYxnRfmH+a1LgEMbuZtwqjKntGGFuzatYtdu3axc+dOg0dOWkns3buXp59+Gi8vLxQKRZ7TfgBz586lRo0aWFpa0qxZM/bt22eklkhS5VXPy54FLzdn/evt6VHPHSHgZKySvrMP8tqyk1yK/vdIpn11DtV6F23PL0FtjfLmAbpc/C+K079nX6hVhQUGBhIWFkZERAQ6nY6lS5fSoUMHgzxt27Zl5cqVAJw6dYqLFy+aIlRJqrKu3UvmakwyWl3V3t+Yyh9HIwm/n8LsnVdI11SsA4nGZrQjsp06dTJWUaSkpNCoUSNGjhzJs88+m2f9ihUreOONN5g7dy7t2rXjp59+onfv3oSGhuLrm30VX7NmzcjIyMjz2q1btxY4xU5BMjIyDMpKTEwEQKPRFPq3sOePI7/yHzdvYbEWlibbXDnaHOhmzZwhjTgbGcf0VUc5G6dkw9koNpyNold9d8a29wWFgoxGw1DX7Izyn9dQ3z4GG95Ad3E9WT1m5lt+UW3WaDQIIdDpdOhKcOQ05whozmsfN++9e/fw9fXVnwn68ccf6dOnj8HrLC0tmTdvHgMGDCAzM5OePXvSv39/g7IGDRrEtm3baNu2LS1btqRJkyYGZRRUv06nQwiBRqNBpVIZbBtJkh6q4v8vm9ykbgEoFDCwcXUs1VV7eIFCGOkc2tmzZ/OvQKHA0tISX19f/e1sS0KhULBmzRqDW+C2atWKpk2bMm/ePH1aUFAQAwcOZMaMGcUue/fu3cyePZtVq1YVmm/atGlMnz49T/qyZcuwtrYudn2SZCq3U2DrLSWn4x6ehGnorKOntw5vG0DoCIjZRN2ov1CJLDRKSy5U/w83XTqDovgnbszMzPDw8MDHxwdzc3PjN6SCy8zMJDIykujoaLKysgBITU1l6NChJCQkVLhrBcpLYmIiDg4OVWobaLVawsLCCAoK0v/TIhVf4IebyMjSsfftTiRG35DbsRSK+1m8cjeJmtVsUVWCKc9Kss8w2hHZxo0bF3qlnFqt5oUXXuCnn37C0vLx54HMzMzkxIkTvPfeewbpPXr04ODBg49dbmHef/99QkJC9MuJiYn4+PjQpUsXjhw5Qvfu3VGr1Wg0GrZt20b37t0B8n3+6EVwJZG7/KLKKSpvfuuLk1bYsmxzxW3ziIHdGaNWc/luEnN2X2fT+bucjVNyNk7JU3WrMa6DH1fPK6nZazwWm99CfecEjSMX0YBL6Pp9i8bOt1htTk9PJzIyEltb2xJ9z4UQJCUlYWdnV+QVt0XlLWj9o+n55cudBhT5/NH609PTsbKyomPHjvr255zBkSRJMpVztxIYsuAwPeq789XgRpWiM1tcRuvIrlmzhilTpvDOO+/QsmVLhBAcO3aM//u//2Pq1KlkZWXx3nvv8eGHH/L1118/dj33799Hq9Xi7u5ukO7u7k50dHSxy+nZsycnT54kJSUFb29v1qxZQ4sWLfLNa2Fhke/R5JyOg1qtNuhEFPa8NB2cxymnqLz5rS9Ommxz5WxzfW9n5r7kTOjtB3y4bD+n4pRsv3iP7RfvEeykxLeRL01e2Yb20FzEjk8wizyEakGnf+edrVFkm7VaLQqFAqVSWfTsA7nknKLPeW1p8uZe//rrr3PgwAH9Oq1Wy7x582jfvn2+5eROy1HY80frVyqVKBQKg/fDGJ8FSapqck4FP2EzRZnM7fg00jRabsWlkZGlxdq86tw0wWgt+eyzz/juu+/o2bOnPq1hw4Z4e3vz0UcfcfToUWxsbHjrrbdK1ZHNkd9VxiWZO23Lli2ljkGSKqvabrYMr6Pj8xYd+HFvOP+cucP5B9k3Vuha140JnYbwoK4V3dL+QRm+B9XOT+ho5Q/Na4B7cJHlV5Sr/ufMmaN/rtPpSExMLNNT2xWl3ZIkSbn1Cvbgt1EtaeLrWKU6sWDEjuy5c+fw8/PLk+7n58e5c+eA7OEHUVGlu4WHq6srKpUqz9HXmJiYPEdpJUkqXK1qNnz7nyaM71iDD5ft40Sskp0XY9h5MYYgR3ccnvuZlg23IrZ8gGPaDcSvT6Fr/TpKXf18y1Or1SgUCu7du0e1atWK/c+lTqcjMzOT9PT0Yh2RLSxvQesfTc8vX+40oMjnucsXQnDv3j39EVlJkgrm7WhFRpYOpTwkW27aBbgaLJ+9FU+D6g6V/gYKRuvI1q1bly+++IL58+frL/LQaDR88cUX+snEb9++XerOprm5Oc2aNWPbtm0GE5hv27aNAQMGlKpsSXpS1axmw0u1dXz+Ugd+3HuTtadvExav5PkFx+hQuzaT+myi+s7JeMUfQ3XwG7qaV0NR1wYR0N2gHJVKhbe3N7du3eLGjRvFrl8IQVpaGlZWVsUaI1tY3oLWP5qeX77caUCRzx+tX6FQ4O3tLS9akaQi7Hy7M5A93OdB8e+dIhnJ6pO3eHvlGUa1q8F/+wZV6s6s0Tqyc+bMoX///nh7e9OwYUMUCgVnz55Fq9Wyfv16AK5fv86ECROKLCs5OZmrV6/ql8PDwzl9+jTOzs74+voSEhLCsGHDaN68OW3atGH+/PlEREQwbtw4YzVHkp5I/i42/N/zjRjfyZ///r6X47Eq9l25z74r9wmwf4Nv2z+g/pnPsUm6AyuGoAvsi6XZUwZl2NraUrt27RJNO6XRaNi7dy8dO3Ys1gVuheUtaP2j6fnly50GFPk8v3HVshMrSVJFl5GlQycgPk2DToCq8vZjjdeRbdu2LTdu3OD333/n8uXLCCEYPHgwQ4cO1V/pO2zYsGKVdfz4cbp06aJfzpkxYPjw4SxatIgXXniB2NhYPvnkE6KioggODmbjxo35Dm2QJKnk/JytGRqg44thnVhw4CYrj0dyNRH6bXemjff3TFb8SqukLSgvbaCbcjsKjwRoOxFU2R07lUpVog6dSqUiKysLS0vLIjuyReUtaP2j6fnly50GFPlcDiGQJKkyGtLSlzrudjT1dazUR2PBiB1ZyD4SY4yjop07dy7yookJEyYU6+iuJEmPz9vJis+facC4Dv789/fdHLlvxqFbmRziJfq59+ETs19xjj0JO6bBuT+h7yzwa2PqsCVJquAGzT1Alk6wYFhTU4fyxGrm52SwfCc+DS9HKxNF8/iMfulaaGgoERERZGZmGqT379/f2FVJklROPB0sGVxDxxcvd+CX/Tf4/fAN1t91ZgMhvGK1l7fVf2IREwoLe0HDF+CpaWBfsjvoSZL05Dh3OwGNVqDRypk+TE2rE3y6IZRVx2+xcnwb6npUrpuWGK0je/36dZ555hnOnTunv5ACHk6TpdVW7Xv9StKTwM3Ogvd7B1Ir8xqR1rVZciSCBWmdWZnWjM/t/qK3ZhuKsysgbB10CIE2E0Fd+f7DlyRjEUJwNzGDiLhUohLSiEpIJyo+jYlda1PNLnt+8h/3XGPhgXCytAKNVkeWTqBUKFCrFJibKVnwcnMaejsCsO/KPTacjcLd3hJPB0s8HCzxdbbG19kaM1Xx526WpBxZOh0X7iSSlJHF8RsPntyO7OTJk6lRowbbt2+nZs2aHD16lNjYWKPNGytJUsVhq4a3utdmdDt/PlqygwP3nZiQNIIGio58bvU7DTQXYeencPI36PEpBPWXM59LT5SVxyNZeiSCazHJJGVk5Vn/XHMffUdWq8vu7BYk90i7c7cTWH4sMk8ec5WSGq42fPFsA5r4Zp8y1ukEygp+B6eKHd2TwcJMxfxhzTgaHkeP+h6mDqfEjNaRPXToEDt37qRatWr6u/q0b9+eGTNmMGnSJE6dOmWsqiRJqiAcrdX09tHx+fAOLDt2m1/2q3k69SP6Kw/xX4s/cI+PgD9fBv8O0GsGeDQwdciSZDTpWTr2XL7HgWtxHLsRxzcvNKZWNVsAEtI0nI6MB0ClVFDd0QpPB0u8/v3rYmuuL+e55t50qlMNtUqJmUqBWqlEJ7KPzmZqddRwtdHnbVXDhTefqkN0YjrR/x7hvRGbQrpGx6W7SdhZPvxZX3jwBosOhtPU14lmfk60reVKrWo2FeLiHnnvkIrF0drcoBNb0ptMmZLROrJarRZb2+wvsKurK3fu3CEwMBA/Pz8uXbpkrGokSaqA7CzVTOxam5HtarD0yE3m77Wkc3JTxpmtZ5zZeixu7EP81BFFk2HQ5QOwq3z/9T/JZsyYwerVq7l48SJWVla0bduWmTNnEhgYaOrQyl10Qjobz0WxNTSa4zfiyNI9PDp6KiJe35F9KsgdTwcrarvb4udijYVZwbN4uNlZ4mZnWaz6m/k55blIR6cT3I5P42pMMn4uDzu9J28+IDIujci4NP4+nT1Zq7eTFV0C3egcWI12Aa5YquV0cZKhxHQNIStO0y3InSEtfU0dTpGM1pENDg7m7Nmz1KxZk1atWvHll19ibm7O/PnzqVmzprGqkSSpArOxMOPVjrV4uY0/fxyN4Mc9DvyZ2In31X/QT3UYTi5GnFuFou3r0PZ1sLA1dchSMezZs4fXXnuNFi1akJWVxX//+1969OhBaGgoNjY2RRdQRey6GMPIRccM0rwcLekQUI22AS60rfXwzkn+rjb4u5bPtlEqFfg4W+PjbG2QPuPZBvynpQ8nb8Zz7EYcR8PjuPUgjSWHb/LH0QiO/vcpk3dkK8lBvyfK2lO32R4Ww5HrcfRp4ImDVcWeZtBoHdkPP/yQlJQUAD799FP69etHhw4dcHFxYfny5caqRpKkSsBSrWJkuxoMaenLyhO3mLHbl8UJp/hAvYwmmquw5wt0x39F2fk9aPqyqcOVirB582aD5YULF+Lm5saJEyf0N4nILSMjg4yMh2M+ExMTgewzd5Xlwl8hBEfC49AKaFfLBYAmPvaYmylpUN2enkFu+Jkn07lZPczMHv6UVqT22aiVtK3pTNuazkBNUjKyOHw9jt2X75GlEzhYqvTxjvv9JN5OVrzYytdgKENh7iVncD8pgyDPkl8c5GxjTpZOIHQ6oGJtt8omZ9sZaxsObeHNlegkBjWtjq250iTvTUnqNFpHtmfPnvrnNWvWJDQ0lLi4OJycnCrNOAtJkozLUq1iWGs/Xmjuw9pTtXljVxPqxe/mXbPl1Ei5CxtC0B6ai6Lrx3LQXCWSkJAAgLOzc77rZ8yYwfTp0/OkX7p0ST8EraLS6gT7bqay6kICN+I11HI257s+nvr1vz3jha2FCsgA1Fy5csVksT4OL2BonezZDcLCwgCIScliW1gMAAsP3qSJpyX96tjRwtsKZTF+v8Pib5c4jl8HZA8vehB1E4DLly+XuAzJkDG34Qu1FZB0h7Aw09w/ODk5udh5S92RHTVqVLHy/frrr6WtSpKkSsrcTMnzLXwY1LQ6687WYdyODrR6sI7JZqtxibsKq16mjXVtFI3coEZbU4crFUIIQUhICO3btyc4ODjfPO+//77+joyQfUTWx8eHwMBA7O0r5tQ+WVodf528zbw914l8kAaAtbmKlrXcqVk7EAszw6mttFotly9fpk6dOpX+tsS1tTp+tvNg2ZEIdl2+x6modE5FpVPbzZYJnWvSJ9jDYGqvtMwsxvx2nNO3ErBWq9j9dmesLR6vO1GVtqOplPU2jEpIJ/ROIt2C3IxedkFyzuIUR6k7sosWLcLPz48mTZoUeTcuSZKebGYqJc808aZ/o+psOl+fV7b3oWvcH7yi2ohb6hVY3JuMWj2x6P4xeOTfSXqSbd68GVtbW9q3bw/AnDlzWLBgAfXq1WPOnDk4OTkVUULpTZw4kbNnz7J///4C81hYWGBhYZEnvaS3Li4vh6/H8vHf57l8N/sokLONOSPb+vNyG38crIu+ZXJFbFNJqFQqnqrnwVP1PIiMS+X3IzdZdjiCKzHJvPnnWbJ02dOFAWRkaRm/7DSHwuMBSNNksSXsHoObeZc6hsq+HU2tLLZh+P0UBs45QLpGy4ZJ7QlwszNq+QUpSTtK3ZEdN24cy5cv5/r164waNYqXXnqpwNNNkiRJkD0dUb+GXvQJ9mRraGNe3TaQvrGLeE61B4trWxDXtpIeOBCrHh+BSy1Th1thvPPOO8ycOROAc+fO8dZbbxESEsLOnTsJCQlh4cKFZVr/66+/zj///MPevXvx9i5dx6UiSUzTcPluMg5Wal7vGsDQVr5Ymxv9xpeVgo+zNe/3DuK1LgEsOXSTdWfu8HSj7Lv0ZWl1vL7sFPuu3Dd4zV8nbpW4I/uf+YcQAuYMbWys0KUy4OdsTUNvBxLSNKiUFfOGG6WOau7cuURFRTFlyhTWrVuHj48Pzz//PFu2bJFHaCVJKpRSqaBXsAe/vNaX6wGjed1pHuu1rVEgsLq0Bu0PLUheOR4Sbpk61AohPDycevXqAfDXX3/Rr18/Pv/8c+bOncumTZvKrF4hBBMnTmT16tXs3LmTGjVqlFld5UGnE1y/93AMXvd67kzvX5+973ThlQ41n9hObG72lmpe6xLApskdsFSr0OkEU/46y9bQu3nyHroey60HqSUq/0h4HEfC48iSt6it0JRKBT8MacJf49sW+yLA8maU7rWFhQVDhgxh27ZthIaGUr9+fSZMmICfn1+JBuxKkvRkUigU1HcSfDvhWRxfXso7rnPYoW2CCi22F5aR9W1jEte8Bckxpg7VpMzNzUlNze4wbN++nR49egDZF12VZExZSb322mv8/vvvLFu2DDs7O6Kjo4mOjiYtLa3M6iwr95MzePnXowz+8RCxydkzKygUCoa3LXoYwZMo55bzn20M46+TBV/UtbqQdVLl5mhtjjrXGOmKdpDS6MeJFQqF/oOv+3daDUmSpOJQKBS0r+3KVxNfwmbkX0yrNotD2nqYCQ32Z34m4/8akLBhKuqsFFOHahLt27cnJCSE//3vfxw9epS+ffsC2Vcrl+Wp/nnz5pGQkEDnzp3x9PTUP1asWFFmdZaFYzfi6Pv9PvZfvU9appbQqLLr/FclP+y8yi/7wwvNs/rkrcfq4MhJjSoPnU7w++GbvPzrUbS6itOZNUpHNiMjgz/++IPu3bsTGBjIuXPnmD17NhERERV+qhVJkiqm1jVdmPbaaMxHb+Art5mc1tXEQqTjenoOHc+9RdymzyA9wdRhlqvZs2djZmbGqlWrmDdvHtWrVwdg06ZN9OrVq8zqFULk+xgxYkSZ1Wlsa0/dZsj8w9xNzCDAzZa/J7ajQ+1qpg6rwotOSOfYjTjUqsJ7nDdiUzlx80Gxy61gB/WkYohNyWTmpovsu3Kff85UnCPwpR4INGHCBJYvX46vry8jR45k+fLluLi4GCO2MpGUlETXrl3RaDRotVomTZrEmDFjTB2WJEkFaObvTLMJ4zgX+R/mrF9Mt6gF1FVGYnvyG1JO/0xSk7F4dJ8MlhVzWidj8vX1Zf369XnSv/nmGxNEU3nM33uNzzdeBKBvA0++HNwQm8ecLupJ4+FgyZLRrUjOyGL/lXvsCIth16UY7idn5sm76kQkzf3lxd5VVTU7Cz56uh4pGVn0b1Td1OHolfqb/OOPP+Lr60uNGjXYs2cPe/bsyTff6tWrS1uVUVhbW7Nnzx6sra1JTU0lODiYQYMGVejOtyRJ0MDHkQbjJ3Pu5lC+XvYtA9LWUJvb2Jz4muRTP5HQeCzVe0wGlZWpQzWqxMRE/dyrRY2DrahztJrSn8ci9Z3YV9rX4IM+QSiV8nx2SdlamNEr2JNewZ7odIKztxPYeTGGrReiuBidfS3MhrPRTOsfbPLb3kpl5/l/p2GrSErdkX355Zcr1Z27VCoV1tbZ96NOT09Hq9VWuIHLkiQVrK6XI9frtSSr6Zv8tmkxbW/9TAB3sD35NUmnfyK2wSuYibqmDtNonJyciIqKws3NDUdHx3z3t0IIFAqFvM1nPnoGe7D8WATdgtx5rUuAqcOpEpRKBY19HGns40hI9zrcTUxn18UYdlyMYf+V+1R3sqKuh12hfQMr2dmt9IQQJKRpcLQ2N2kcRrkhgjHt3buXr776ihMnThAVFcWaNWsYOHCgQZ65c+fy1VdfERUVRf369fn222/p0KFDseuIj4+nU6dOXLlyha+++gpXV1ejtkGSpLIX4OFA0KtvcSNmDMv+mU+ryF+opbuD3ZlvcMaWCHGRmn1DUFTyIQc7d+7Uz829c+fOSnXgoCJwsFKz/NU2mJtVzDkwqwJ3e0v+09KX/7T05e/Tt+n7/T4mdgkgpEdgga8J+1/2mG6tVsu98gpUMppr95J5d9VZtDrBmgltTbpfqnCDhFJSUmjUqBEjR47k2WefzbN+xYoVvPHGG8ydO5d27drx008/0bt3b0JDQ/H19QWgWbNmZGRk5Hnt1q1b8fLywtHRkTNnznD37l0GDRrE4MGDcXd3LzCmjIwMg/JyTu9pNJpC/xb2/HHkV/7j5i0s1sLSZJsrf5vzS6/Mba7uZMVzwydzK3Y0K9b/TIvIX6ipiML+3Dcknv+F6Pqv4N/rdbKUlsVuU3HaWdw2l3bbdOrUSf+8c+fOpSrrSRERm8qR8Fj93ahkJ7b8xCZnohPw/c6rWKhV8ih4FWVnYUbonUQEgqsxydR2L587fuVHISrweXWFQpHniGyrVq1o2rQp8+bN06cFBQUxcOBAZsyYUeI6xo8fT9euXXnuuecKzDNt2jSmT5+eJ33ZsmX6YQqSJFUMCek60m4epkfyWmooowGIx5bjjn1J9emGMLMs13hSU1MZOnQoCQkJpR7D+tFHHzFt2rQ8t29MSEhg3Lhx/PHHH6Uqv6wkJibi4OBglG1QFJ1O8PxPhzh+8wH/7RPEmI41y6QerVZLWFgYQUFB8taqj8h9cd13/2nMgMYFXxgkt2PpmWobbgu9S4PqDng4GH+fWqJ9hqjAALFmzRr9ckZGhlCpVGL16tUG+SZNmiQ6duxYrDKjo6NFQkKCEEKIhIQEUa9ePXHmzJlCX5Oeni4SEhL0j8jISAGIqKgosXbtWpGSkiIyMzNFSkqKfrmg55mZmY/9KEk5ReXNb31x0gpblm2uHG0uaRsra5tvRt0Taxd9JcI/DhRiqr0QU+1F3NTq4vSyj0RaYmyR772x2nz//n0B6Pc7peHr6ytatWolrl69qk/btWuX8PHxEa1bty51+WUlISHBaNugKAv3Xxd+U9aLeh9tErcepJZZPVlZWeLcuXMiKyurzOqozD7bECr8pqwXtf+7URy/EWewTqfTieG/HhHDfz0iHiSnye1YSlXxs1iSfUaFG1pQmPv376PVavMMA3B3dyc6OrpYZdy6dYvRo0fr50GcOHEiDRs2LPQ1FhYWWFhY5ElXq9X6vznPc6fn9zz38uMqSTlF5c1vfXHSZJsrf5vzS69KbfZ0ccB3+Ns8SJrApr9/pN6Vn/BTRON06TsSLv3KzTojUJgHF/jeF+d5cWI1xnbJcfbsWcaOHUvjxo2ZNWsWly9f5rvvvuO9995j6tSpRqunsnqQksn/bb0MwHt9gqjuWLVmsKhMpvSqy/V7KWwPu8vEZSfZNLmDwUVBuy9lj4zVyFvUVglRCWk425hjYVb+R9UrVUc2x6ODisW/V+wWR7NmzTh9+nQZRCVJUkXkZGdN75dCiI1/hcW/fEqnpH/wJ4qGl3/AX1hzIe0UQc9MwcK24s9/6eDgwPLly/nvf//L2LFjMTMzY9OmTXTr1s3UoVUIP+69RlJGFkGe9rzY0tfU4TzRVEoF3/2nMf1+2E/4/RSWH4tkXKdagLwZQlUzc/NFft53nc8GNuD5FuU/PVelGgHv6uqKSqXKc/Q1Jiam0Iu1JEmS7G2scAxoh2PIcXbU+4zreGOvSKXxtR/RfF2fM4vfJj2x4l8//cMPP/DNN98wZMgQatasyaRJkzhz5oypwzK5pHQNSw7dBODtHnXkXLEVgI2FGd//pwnT+9dnbAFjleUkHJWfk7UajVZw/GacSeqvVB1Zc3NzmjVrxrZt2wzSt23bRtu2bU0UlSRJlYmNlQXdnp+I61tHWewwkasKX2xJpVH4ApQ/NMH60p+kPijeUKXy1rt3b6ZPn85vv/3G0qVLOXXqFB07dqR169Z8+eWXpg7PpP4+fYfUTC0BbrZ0retm6nCkfzXwdmB4W385bVwVNrSVH3+Nb8uXgxuZpP4K15FNTk7m9OnT+tP/4eHhnD59moiICABCQkL4+eef+fXXXwkLC+PNN98kIiKCcePGmTBqSZIqGytLcxxrtsTjnaPsaTyLy4oa2JBO99T1mM9txtlFb6BLSzB1mAaysrI4e/YsgwcPBsDKyop58+axatWqJ/42tXaWZrT0d+alVr6y01RBJWdksfVCNHJkQdVia2FGMz8nk9Vf4cbIHj9+nC5duuiXQ0JCABg+fDiLFi3ihRdeIDY2lk8++YSoqCiCg4PZuHEjfn5+pgpZkqRKzEJtRqeBo9H0G8GejUtwPfkd9blOs9u/U1+s4MwvB6jx9BRThwmQ52xUjr59+3Lu3LlyjqZiGdC4eqHTPEmm9SAlk17f7eVBiobd73TWp8t/OaoWjVZHSkZWud7tq8J1ZDt37lzkLWMnTJjAhAkTyikiSZKeBGozFW17v8g6rSMPLFJwOf4tQbrLNI9eTsb8v7C17MyDJnVx8iybeUlLS96hUKrInGzM8XW25m7iAxYeCEetUsgZC6qYTeeimPrPBToHVivXYQYVriMrSZJkSiqlglbdn0fXdTBLfvmapnHrqK8No1vGNjJ/2cmZav3Icupokti0Wi3ffPMNf/75JxEREWRmZhqsj4szzcUWpnYnPg1rc5XJ7/kuFW5sx1ocu3Gc5UcjOflRdyzMVCjREWXqwCSjcLWzICYpg0PXY8nS6jBTlc/o1Qo3RlaSJKkiUKqU2HsHU/vdPRztsJCTBGGu0NL8/t/0v/wu188eKPeYpk+fzqxZs3j++edJSEggJCSEQYMGoVQqmTZtWrnHU1F8t/0KjT/Zxvy910wdilSIrnXdCHCzJSkji2VHIjA3U8rxzFVIcz8nfhnenB0hncutEwuyIytJklQohVJJk45PE9H4fU52WcIZ88ZEKDzxq9+63GNZunQpCxYs4O2338bMzIwhQ4bw888/8/HHH3P48OFyj6eiiEvNPjJtZS5PMlZkSqWCV/+dhuuX/eFkZGlNHJFkTAqFgm5B7piblW/XUnZkJUmSikGhgAZtexP09jZOBH1okvvCR0dH06BBAwBsbW1JSMieVaFfv35s2LCh3OOpKLS67LGWFuV4FEh6PAMae6FQQExSBu+sPGvqcKQyVNT1TsYiv/WSJEkloFAosLC0Nknd3t7eREVljygMCAhg69atABw7dizf22g/KdSq7NPT6fIIX4VnYabi638vBHKze3I/s1XZ9tC7PPfjQebsulou9cnzMJIkSZXEM888w44dO2jVqhWTJ09myJAh/PLLL0RERPDmm2+aOjyT8XSwAuB2fJqJI5GK49lm3vQM9sBarUIInanDkYzsQWomx248ICk9i4lda5d5fbIj+xhyDpcnJSWRmppKYmIiarUajUajXwbyfa5Wqx+73tzlF1VOUXnzW1+ctMKWZZsrR5tL2sYnpc2P5imonSVtc85rjHGa7YsvvtA/Hzx4MD4+Phw4cICAgAD69+9f6vIrK1/n7CPkN+6nmDgSqbhsLbK7H1p5EL3K6V7PnY/61aN3sEe51Cc7so8hKSkJgBo1apg4EkmSKoukpCQcHByMWmarVq1o1aqVUcusjOp52QNw4mY8Qgh5JbwkmZCjtTmj25df/0h2ZB+Dl5cXkZGR2NnZ0bJlS44dO6Zf16JFC/1yzvPExER8fHyIjIzE3t6+VHXnLr+0efNbX5y0wpZlmytHm/NLl23Om2aMNgshSEpKwsvLq1htk0quia8jTwW50aqGC5laHRZm5X8hniRJpiE7so9BqVTi7e0NgEqlMvgxy7386Dp7e/tS/9g/WmZp8ua3vjhpss2Vv835pcs2500zVpuNfSRWMmRhpuLn4S1MHYYkSf/S6QTbwu5y6Fos7/YKxLoMp8aTsxaU0muvvVbg8qPryqK+0uTNb31x0mSbK3+b80uXbc6bVtZtliRJqooUCvhkXSiLDt7g2I0HZVuXKK+Jvp5giYmJODg4kJCQUOqjVpWFbLNsc1X1JLa5tMprm6VrtCw9EoGthYoXWviWWT2QfbvgsLAwgoKCTDKncFUht2PpVdRtOGvbZR6kZDK0lS9BniX73pdknyGHFpQDCwsLpk6d+kTN8yjb/GSQbS5fI0aMYNSoUXTs2LHc664M1p+N4n/rQ3G2Mad7PQ+cbcxNHZIkPbFCutcpl3rkEVlJkqRK4tlnn2XDhg34+PgwcuRIhg8fTvXq1U0dVpHK64isRquj3/f7uXQ3iQGNvfjuP03KrK6KehSsspHbsfSq4jYsyT5DjpGVJEmqJP766y9u377NxIkTWblyJf7+/vTu3ZtVq1ah0WhMHZ7JqVVKvhzcEKUC/j59h3/O3DF1SJL0RBNCcDs+jfjUzDKrQ3ZkJUmSKhEXFxcmT57MqVOnOHr0KAEBAQwbNgwvLy/efPNNrly5YuoQTaqRjyPjO9cC4N1VZzh/O8HEEUnSk2vC0pO0+2InG85FlVkdsiMrSZJUCUVFRbF161a2bt2KSqWiT58+XLhwgXr16vHNN9+YOjyTCukeSKc61UjX6Bi16BjX7yWbOiRJeiL5udigUiq4l5RRZnXIjqwkSVIlodFo+Ouvv+jXrx9+fn6sXLmSN998k6ioKBYvXszWrVtZsmQJn3zyialDNSmVUsH3Q5oQ6G5HYrqGu4ll9yMqSVLBxneuxYXpPXnjqbK78EvOWiBJklRJeHp6otPpGDJkCEePHqVx48Z58vTs2RNHR8dyj62icbBSs3RMK27GptDMz9nU4UjSE8nBSl3mdcgjshVIUlISLVq0oHHjxjRo0IAFCxaYOqQyFxkZSefOnalXrx4NGzZk5cqVpg6pXDzzzDM4OTkxePBgU4dSZtavX09gYCC1a9fm559/NnU45aKs39dZs2Zx584d5syZk28nFsDJyYnw8PAyqb+ycbW1MOjEno6MZ+XxSORkPZJUdciObAVibW3Nnj17OH36NEeOHGHGjBnExsaaOqwyZWZmxrfffktoaCjbt2/nzTffJCUlxdRhlblJkybx22+/mTqMMpOVlUVISAg7d+7k5MmTzJw5k7i4OFOHVebK8n3Nyspi1KhRXL16tUzKr+piktJ5ZfFx3ll1ltf/OEVCmpzlQZLKw+ydV3ht6UmuxpTNWHXZka1AVCoV1tbWAKSnp6PVaqv8kQNPT0/9kSU3NzecnZ2fiA5Ply5dsLOzM3UYZebo0aPUr1+f6tWrY2dnR58+fdiyZYupwypzZfm+mpmZ4efnh1arLZPyqzoXGwtGtvNHpVSw/mwU3Wft4e/Tt6v8PlaSTG1bWAwbzkXJjmxFsHfvXp5++mm8vLxQKBSsXbs2T565c+dSo0YNLC0tadasGfv27StRHfHx8TRq1Ahvb2/effddXF1djRT94ymPNuc4fvw4Op0OHx+fUkZdOuXZ5oqqtNvgzp07BhP1e3t7c/v27fII/bFVhvf9ww8/5P33338i/tkzNpVSwWtdAlg1rg01XG2IScpg8vLTDFlwmJMRZXsveEl6kg1r7cdH/epR16Ns/smXHdkSSElJoVGjRsyePTvf9StWrOCNN97gv//9L6dOnaJDhw707t2biIgIfZ5mzZoRHByc53HnTvbE3Y6Ojpw5c4bw8HCWLVvG3bt3y6VtBSmPNgPExsby8ssvM3/+/DJvU1HKq80VWWm3QX5HuRQKRZnGXFrGeN/L2vfff8++ffvw8vIiMDCQpk2bGjykojXxdWLT5A6EdK+DhZmSw9fjGDT3oJyiS5LKyOBm3oxuXwN/V5uyqUBIjwUQa9asMUhr2bKlGDdunEFa3bp1xXvvvfdYdYwbN078+eefjxui0ZVVm9PT00WHDh3Eb7/9Zowwjaos3+ddu3aJZ599trQhlrnH2QYHDhwQAwcO1K+bNGmSWLp0aZnHaiyled/L8n2dNm1aoY+yNmfOHOHv7y8sLCxE06ZNxd69e4v1uoSEBAGIhISE4ld2544QU6dm/y0jEbEp4p2Vp8XY344bpO+5FCOS0jWFvjYrK0ucO3dOZGVllVl8TwK5HUuvKm7Dkuwz5PRbRpKZmcmJEyd47733DNJ79OjBwYMHi1XG3bt3sbKywt7ensTERPbu3cv48ePLIlyjMEabhRCMGDGCrl27MmzYsLII06iM0ebKrjjboGXLlpw/f57bt29jb2/Pxo0b+fjjj00RrlFUlPd96tSp5VbXo3KOSM+dO5d27drx008/0bt3b0JDQ/H19TV+hVFRMH069O8Pnp7GLx/wcbbmy8GN0OkenkGITkhn5KJjqJQKOtauRp8GHnSoXY1qdhZlEoMkVXX/nL7NdzuuEBmXRs1qNrzxVG16BRvvOy07skZy//59tFot7u7uBunu7u5ER0cXq4xbt24xevRohBAIIZg4cSINGzYsi3CNwhhtPnDgACtWrKBhw4b6MYlLliyhQYMGxg7XKIzRZsie6/PkyZOkpKTg7e3NmjVraNGihbHDLRPF2QZmZmb83//9H126dEGn0/Huu+/i4uJiinCNorjve2V+X4sya9YsRo8ezSuvvALAt99+y5YtW5g3bx4zZswwcXSlo1Q+HPZyOz4VPxdrrt9LYXvYXbaHZQ/vqlXNhpY1nPlPC18a+TiSrtFyPzWLDI0Wa5XKVKFLUoW2+XwUk5af1i9fik5i3O8n+fGlpkbrzMqOrJE9Og5QCFHssYHNmjXj9OnTZRBV2SpNm9u3b49OpyuLsMpUadoMVIkr+IvaBv3796d///7lHVaZKqrNZf2+arVavvnmG/78808iIiLIzMw0WF9WF4GV9Ih0RkYGGRkP76aVmJgIZMdf6KwLUVHZD0Bx6hRKQHf8OCLnNZ6eZXZ0Nkdjbwe2Tm7P5bvJbL4QzbbQGC5GJ3HtXgrX7qVw+HosD1I0xP87fdcfTl60rFl5/0kztZzPg5yN4/FV5G347fYrKICccx4CUCiy07sHuRX4upK0RXZkjcTV1RWVSpXnqFxMTEyeozhVhWzzQ1W5zY96ErdBRWnz9OnT+fnnnwkJCeGjjz7iv//9Lzdu3GDt2rVlOnSjpGciZsyYwfTp0/OkX7p0CVtb2wLrcZs7F7d58wzSlGPH6p/HjB9PzIQJJQ2/xLQ6wfmYdK7eSuVuQhq5L10Mv5/6MDYFXA6/iV1GTJnHVNVdvnzZ1CFUehVxG16LSeLRS3+FyE4PCwsr8HXJycW/+FJ2ZI3E3NycZs2asW3bNp555hl9+rZt2xgwYIAJIys7ss1PRpsf9SRug4rS5qVLl7JgwQL69u3L9OnTGTJkCLVq1aJhw4YcPnyYSZMmlWn9xT0T8f777xMSEqJfTkxMxMfHh8DAQOzt7Quu4IMP0I4cmV3XqVMox45F99NPiCZNAHDx9MSlDI/IRsal8sexSFaduE1sysOj3eYqBY18HGnu50RdDztqVbPB096cOzevExgYiEoOLXhsWq2Wy5cvU6dOHbkdH1NF3oa13OK4FG3YmVUoIMDNjqCgoAJfl3MWpzhkR7YEkpOTDe6qEx4ezunTp3F2dsbX15eQkBCGDRtG8+bNadOmDfPnzyciIoJx48aZMOrSkW1+Mtr8qCdxG1SGNkdHR+vHj9va2pKQkABAv379+Oijj8qs3pIekbawsMDCIu/FUSqVqvAfWm/v7Ed2ZgCUzZtDGU8tdjoyntk7r7DjYgw5M8c5WavpWd+DXsEetK7pgqXaMG6tVkuUQlF0m6Rikdux9CriNnzjqdqM+/2kflmhyD4iO/mpwjvdJWpH2U2eUPXs2rVLkD3Ew+AxfPhwfZ45c+YIPz8/YW5uLpo2bSr27NljuoCNQLb5yWjzo57EbVAZ2lynTh1x+PBhIYQQ7du3FzNmzBBCCLF8+XJRrVq1Mq27ZcuWYvz48QZpQUFBxZp27rGm3zpxQgjI/ltGLtxOEKMWHhV+U9brHy/9fFhsOR8lNFnaQl9bFac8MgW5HUuvom/DLzaGCb8p64X/lPWi17d7xKZzUUW+piT7DIUQ8v58kiRJlcF7772Hvb09H3zwAatWrWLIkCH4+/sTERHBm2++yRdffFFmda9YsYJhw4bx448/6o9IL1iwgAsXLuDn51foaxMTE3FwcCAhIaHwoQW5RUXBTz/B2LFGv8ArMV3DrK2X+e3QDXQie6zroKbeTOhci5rVCh7Dm5tWqyUsLIygoKAKdxSsMpHbsfQq+jbceiGaV5ecoImvI2smtCvWa0qyz5BDCyRJkiqJ3B3VwYMH4+3tzcGDBwkICCjzGSJeeOEFYmNj+eSTT4iKiiI4OJiNGzcW2Yl9bJ6eMG2a0YvdfSmGd1ad5V5S9qwKfRt48laPOsXuwEqSVDKpmdkzEFibl00nW3ZkJUmSKqnWrVvTunXrcqtvwoQJTCiHWQPKQkaWlpmbLvHrgXAAalaz4ZP+wbSv7WriyCSpaotPzb5w0tHKvEzKlx1ZSZKkSuTy5cvs3r2bmJiYPHMwV+a7p5WluJRMxi05wdEb2fPsjmjrz3u96+a5gEuSJOPLmXPZwVpdJuXLjqwkSVIlsWDBAsaPH4+rqyseHh4GU18pFArZkc1HZFwqL/1yhJuxqdhZmPHNC415ql7VnO9Ykiqi+NTsjqyT7Mj+f3v3HRXF9TZw/Dtb6F2QoggidrGhxhYFY08xRWOL0WiKsaSYxMQYoyZqyi8xeY2mmKKmm2KMvSX2LopdUQRBmkivC7s77x/IRgR0KcuycD/n7HHnzt2Z586uy907d54RBEGo3xYsWMDChQt5/fXXzR2KRbiWlsuo5YeIS8+jsast303oSgtPR3OHJQj1SpqYWiAIgiAApKWlMWLECHOHYRGSszSM/rqoE9vU3Z5fn+2Op5ONucMShHonIT0fgIZOpXNLVweFSbYqCIIgVLsRI0awbds2c4dR62m0Oib/GEZsah5+Dez45RnRiRUEc4lOyQHAr4G9SbYvRmQFQRAsRGBgIHPmzOHQoUMEBQWhVpecc2bqW9RaioUbzxN2NQ1HGxUrJnTFy1l0YgXBHPIKdFy/merOv4GdSfYhOrKCIAgWYvny5Tg4OLB79252795dYp0kSaIjCxyIvMH3B68CsGRUJ5EfVhDMSK2U2DC9N9fScnGxE3NkBUEQ6rWoqChzh1Cr5RfqeOPP0wCMvacJoa0amjkiQajfVEoF7Ro5066Rs8n2IebICoIgCHXCL0diiEnNxcvJhjeGtDJ3OIIg1AAxIisIglCLzZgxg3fffRd7e3tmzJhxx7qLFy+uoahqH41Wx7KdkQC82L85jjamyVkpCILxlu+JRCFJPNDex2Rz1UVHVhAEoRY7ceIEhYWFhuflufXmCPXRtrNJ3MjW4OVkw/DgxuYORxDqPVmWWb4nihvZGjr7uYqOrCAIQn20c+fOMp8LJf0edg2Ax7s0Rq0Us+YEwdy0epkJPf04dS2DNt5OJtuP6MgKgiAIFi2/UMehKykAPNSxkZmjEQQBQK1UMK1fc5PvR3RkBUEQLMQjjzxS5hQCSZKwsbEhMDCQMWPG0LJlSzNEZz7HotMo0OrxcrKhmYdpkq4LglA7iY5sJej1euLj43F0dKz389IEQbgzWZbJysrCx8cHhaJqp7ydnZ1Zu3YtLi4uBAcHI8syJ06cID09nYEDB7J69Wo++OAD/vnnH3r16lVNLaj9LiRmAhDs5yq+kwWhlth4KoGu/q40NPFd9URHtgKWLVvGsmXLKCgoIDIy0tzhCIJgQWJjY2ncuGoXIXl5eTFmzBiWLl1q6BTr9XpefPFFHB0d+fXXX5k8eTKvv/46+/btq46wLUJMai4ATUx05yChesmyTGxqHt4uNiIHaB0Vk5LL1J+Po1JInJo3EDsr03U3RUe2AqZOncrUqVPJyMjAxcWFiIgIjh07RmhoKGq1msLCQnbu3EloaChAmc9vv6VkRdy6/btt5251y1pvTNmdlkWbLaPNFW1jfWnz7XXKa2dF25yVlUXTpk1xdHQ07mDcwbfffsv+/ftLjOwqFAqmT59Oz549WbRoEdOmTePee++t8r4sSWJGPgA+4la0FmHVgWjmrT/HqK6+LHy4rbnDEUxg7+VkADo3cTVpJxZER7ZSik9dubm5YWdnR4MGDQx/GIuXgTKfV/WPvbHbuVvdstYbU3anZdFmy2hzRdtYX9p8e53y2lnRNhfXqY5T3lqtlgsXLtCiRYsS5RcuXECn0wFgY2NT706va/UyANYqpZkjEe4mr0DHvPXnAPjtWKzoyNZRuy8WdWTvbe5u8n2JjqwgCIKFGDduHJMmTeLNN9+ka9euSJLEkSNHWLRoEU8++SQAu3fvpm3b+tU5UCuLOu4arc7MkQh380dYrOG5lUpMLKiLsvIL2R1R1JHt19r0t4kWHVmh1pNl0OtlZFmudyNNgnCrTz75BE9PTz788EOSkpIA8PT05OWXX+b1118HYODAgQwePNicYdY4N3srAG5kF5g5EqEs+YU6bNRKtDo9X++NMpRrtHpkWTZjZIIp7DifhEarJ8DD3qT5Y4uJjqxgNhl5hZxPyCQmJZeY1KJHfHoe6XmFpOcWkplXSIFOD6h46dB2JAkcrFU42ahxtlXTyNWWxq62NHGzo7W3Ey08xIUeQt2mVCqZPXs2s2fPJjOz6Ep9J6eSfyiaNGlijtDMyq9BUcqtyORsM0ci3C42NZeXV4ezamI3dl68TkxqLlYqBQVaPbJc1JkV6pb1JxMAeLC9T40MPomOrFAjdHqZs/EZHIxM4eS1dM7EZRquNDaWLENWvpasfC1x6XmcS8gsVaehjZIjuvOEtPKkR7MGOFiLj7hQN93ega3PWt8c9Tkdl2HmSITbrTsZz7GraUxceYSs/KKpH8/1CeCzfy8DRaO1Qt2RnlvAnpvTCh7s4F0j+xR/5aug+P7n5f17p+fVsb+q1L1TrHcqq0ib0zWw6kAUB6PSORKdRla+tlQcjVxsCHC3x9fNFl9XOxq52OBqZ4WzrRpnWxUK9OzZvZvQkBBQKIs6shotabkFxKXlcS09n6spuZyNzyQ+I5/r+RI/HYnlpyOxqJUSoS09eKSjD32auyPJOpO3+fbnlWHq97msctHm8l9b1TZX9djc7o8//uC3334jJiaGgoKSp9KPHz9erfuyFJ2buKBWSlxNySXqRg5N3cVNEWoDWZZZeyIOgMNRaQDYqBU82cPf0JEV6pZNpxPR6mVaeTkS2LDqmVqMIcligorRivPI6nQ6IiIi+Pnnn7GzE6ezb3U9D06mSpxKURCTU/KUgo1SJtBJJsBRprEDNLaTsa/8he6lZBdCVJbEhfSixw3Nf/t3UMv09dLTy7N69ykId5Obm8uYMWPIyMio8ijqkiVLmD17NuPHj+frr7/mqaeeIjIykqNHjzJ16lQWLlxYTVFXr8zMTJydnavlGJRnzNeHOBCZwmuDWjI1NNAk+7iVTqfj/PnztG7dGqVSZEsoy7n4TIYu2VuizL+BHVte6kOrOVsACJvdj4SrkeI4VkFt+SzKsswDn+3jbHwmbw5txbN9mlV6WxX5zhAjshVQnEe2+ACHhoZy+PBhBgwYYEjns337dgYMGABQ5vOqpigydjt3q1vWemPKylr+e/N28hu2YW14Iifj/jvdLyHTsbEz97X2pEeAG228HVEpK3aVamXaPGNkf9RqNRcSs1gbHs+6kwkkZxewMVbJ9jiZSb38ea5vM+ytVZVusyW/zxVtY31p8+11ymtnRdtcPJe1Onz++ecsX76c0aNHs2rVKmbOnElAQABvv/02qamp1bYfS/RIp0YciEzh16MxPN+3GQqFuDDU3P4OjytVFp2Sy4zfwg3LYiSt7jgek87Z+EysVQpGBPvW2H5FR7YKiv+IqdXqEn/Q7vS8Kn/sK7Odu9Uta70xZSqVimMxmfx4KJqtZ5Ro5QgAFMj0CnRnQJuGSHGnGfVwd7O1OcjXjSBfN94Y2oaNpxL4ctdlLiRl88Xeq/wRnsjrg1vxUFBDo9tc197nsspFm/8rM+Z5RfLIVoeYmBh69uwJgK2tLVlZWUBRWq7u3buzdOnSatuXpXmgvQ/vbjhHbGoem84k8EB7H3OHVK/p9TLrTsaXuW7T6cQajkaoCT8eugrAgx18cL2ZSaQmiCRuQoXkFeg4kCTx4LKDjP76EBtPJ6KVJVo0dOCNwS2YH6zju/HBjO7qi1PNfY7vSK1U8HCnRqyb2oOJLXQ0cbMlOUvDq7+f5JkfT5AhMvYIFsLLy4uUlBQA/Pz8OHToEABRUVH1Po2RrZWSib2bArB4ewRanbga3pwOR6WScPOOa3ei19fvz21dkZKtYeOpomwFT/bwq9F918mOrEajoWPHjkiSRHh4eIl1kiSVenz55ZfmCdSCxKfnsWjTee79aDerryi5mJSNrVrJqK6NeTVIy4ZpPZjUy7/WdF7LIkkSHRrIbJ7ei9cHt8JKpWB3xA3eD1ey99INc4cnCHfVr18/1q9fD8CkSZN4+eWXGTBgACNHjuSRRx4xc3TmN6l3U1zt1FxJzuGbfVF3f4FgMmuOXzOq3k9HYkwciVATXO2s+Hp8F57u3ZT2jV1qdN91cmrBzJkz8fHx4eTJk2WuX7FiRYmE4c7OzjUVmsW5kpzDz5cVvHJ4n+E2kA2sZZ7r14qR3fywU8GmTdEWdaMCK5WC50Oa0b91Q2b8Fs7puEye/uE4Mwe34rk+AeYOTxDKtXz5cvT6opHGyZMn4+bmxr59+3jwwQeZPHmymaMzP0cbNW8Obc1rf5zik+0RDGjjSTMPB3OHVe/kF2pZW8b82GKBHvZcTs4BYEzXJiRfu1JToQkmolBI9G3hQd8WHjW+7zrXkd28eTPbtm3jzz//ZPPmzWXWcXFxwcvLy+htajQaNBqNYbn44o26lqLo1rKz8Zl8tSeKLWeTkFEAMj0C3BjXrRGa6BMM6uqDWmXZbfZ3s+GH8Z2Y/M1ODl1X8P7mC1y9kc3swYFl1q8r73NZ5SL9VvmvrU3ptxQKBQrFfyfSHn/8cR5//PFq235dMDy4MetOxrP30g2e/zGMv6b0wl7kk64xsizzwq/hFOr+mzIgSdDJ14VBbb0Y0MaTpu72NJ21qWiduCjP4un0Mkozvo91Kv1WUlISwcHBrF27Fnd3d5o2bcqJEyfo2LGjoY4kSTRq1Ij8/HyaNm3KpEmTePbZZ0v8cbjdvHnzmD9/fqnyuph+KzITtscpOJ/+3/EIctXTv5Ee/5pJCVfjZBn2JUn8GaVARiLYXc/YZnoqmGBBEMpUnem3APLz8zl16hTXr183jM4We+ihh6q8fVOoifRbt7qemc/9n+0jOUvD0CAvlo7uXO1ZDGpLyqPaRJZlPt4WwdKdRTliW3g68FSvptzXuiENHW1K1PV/YyMAR97sx/UYkX6rKsz5Wcwr0DF0yV7uD/JmSmgz7Kyq50djvUy/JcsyEyZMYPLkyXTp0oXo6Ogy67377rvcd9992Nra8s8///DKK69w48YN3nrrrXK3PWvWLGbMmGFYzszMxNfXt86k31KpVOy5dIPPd13heGzRnXEUEjwQ5M2kno2JPnmwzqZlKi57Z1x/ep2/wWt/niHshgKlBCsm98PKyqrOtbmscpF+yzLSb23ZsoUnn3ySGzdKz+mWJAmdTtwlCaChkw1fjO3MqOWH2HQ6kTl2Z1jwcDuLmgJlaXR6mXfWn2XVwaIr12cNacVzfSufR1SwDOtPxRN1I4e14XG82L+5WWKo9R3Z8kZDb3X06FEOHDhAZmYms2bNumPdWzusxSO177zzzh07stbW1lhbW5cqt/T0W3oZdlxM4cs90YbbvSolmRFdfJkS0pwmDewoLCwk+mTdT8ukVqt5JLgJ9jZWPP/TcY4kK/hkZzRvPdC23NdZepvLKq/r73NZ5ZaUfmvatGmMGDGCt99+G09Pz2rbbl3Uxd+NxSM78uKvJ/jpcAw2aiVv3d9adGZNIK9Axwu/nmD7uSQkCd5+oA1P9Wpq1Gvr0Enheml458Y42aiRpKIMQeZQ6zuy06ZNY9SoUXes4+/vz4IFCzh06FCpDmeXLl0YO3Ysq1atKvO13bt3JzMzk6SkpHrzh6FQp+eP43F8Eq7k+qFTANhZKRndtTF++ZGMfqhNtf7xtSQD23qxcFgb3vjrLN/si6aphwOPdxb5KIXa4fr168yYMaPefFdV1UMdfMjVaHljzWm+3RdFWk4B7z/WHiuVmDdUXWJScpnycxhn4jKxUin4dGRHhgZ5mzssoYYoFBKD2xl/zZEpGNWRdXNzq9BGJUni+PHj+PlVPZeYu7s77u7ud623ZMkSFixYYFiOj49n0KBBrF69mnvuuafc1504cQIbGxtcXFyqHGttl1+oY/XRWJbvuUJceh4g4WyrYkLPpkzo6Y+DlcSmTZHmDtPsHuvciL3HTrExVsm8dWdp7l635kELlmv48OHs2rWLZs3EKVtjjerWBKVC4o01p1lzIo6krHw+G90ZtxpM2F5XbTmTyGt/nCQrX4urnZrlT3ahq3/F+guCZUrJ1qBSKnC2Nf+gl1Ed2fT0dD799FOj0lTJssyUKVNqfK5WkyZNSiw7OBSlXGnWrBmNGzcGYP369SQmJtKjRw9sbW3ZuXMns2fP5tlnny1z6kBdkZVfyI+HYvh23xVuZBdl//dwsKJngzzmjeuHq4MtUL1XV1u6AY1ktI4N2XruOtN/Pcn0luaOSBBg6dKljBgxgr179xIUFFTqzMkLL7xgpshqtxFdfHF3tGbqT8fZfzmF+5fsZemYzgT7uZo7NIuUkVfIwo3n+O1YUa7YYD9XPhvdCR8XWzNHJtSUhRvPsysimfcfDWJgWwsYkQUYNWoUDRs2NKru9OnTKx2QKanVaj7//HNmzJiBXq8nICCAd955h6lTp5o7NJNI18D/tkXw69FrZOZrAWjkYsvkkGY80t6Tf7ZvxUGkpSmTJMH7j7Yj8sYRLl/P5tdIBY+LuVyCmf38889s3boVW1tbdu3aVWK+pyRJoiN7B6EtG7JmSk+m/HicKzdyGPnVQab1C2RKSKCYalAB288lMfuv01zP0iBJ8HTvpswc3KrC8yMlqShjjGB5wmPTWXMiDkkCb2fz/3gxqhdze4qXuym+/7c5+fv7l5pEPnjw4BI3Qqiq2ppr89S1DL7bH8Xms0r0cjQAAe72TO7TlAfae6FWKiqcQ7Ou5he9U5m1Qmbx8CAe/fIQZ9IUrD4ay6huTSy+zWWV1/X3uaxyS8wj+9Zbb/HOO+/wxhtv3DFloFC2Vl5OrJvem1lrTrP+ZDyf7rjE5tOJfDC8PR19XcwdXq0WkZTFwo3n2R2RDBT9TflgeHsxlaCe0ell5q8/C8CjnRoT1Nj8N5SqU3lkTW3ZsmUsW7YMnU5HRERErcojq9PD6TSJ3QkKrmT9N0oT6CQT4q2nrauMyDtdOf/ESayLUWKtkHmjow63ujsLRTCB6swj6+bmxtGjRy1ujmxN55G9G1mW2XAqgXnrzpKSU4AkFf1RfnVQC6NHmOpLHtkb2Ro+2R7BL0di0MugVkpM7N2Ul/u3wEZd+XY3nbURWYZDb4Ry49qVOn8cTakmP4sr9kcxf/05HKxV7JjRFy9nm7u/qBJMmkd23bp1ZZZLkoSNjQ2BgYE0bWpc2g1LM3XqVKZOnWo4wLUhj2xsWi6/H4vjj+NxJN+c/6pSSAxp25CWxDHxkYrnVL1TWV3LL2pMWT9NAaf/bydRWRL7c71Z8kA7i25zWeV1/X02ps231ymvnRVtc3XmkR0/fjyrV6/mzTffrLZt3k10dDTvvvsu//77L4mJifj4+PDEE08we/ZsrKws84IpSZJ4sIMPvQLdWbDhHGtOxPHn8WtsOBXPxN5Nebp3Uxo41O9frAkZeSzfc4VfjsSQX1h0VnZQW0/eGNKapu72Vd6+BIhRNMsSm5rLh1suAvDGkFYm68RWVIU7sg8//DCSJJU6bV9cJkkSvXv3Zu3atbi61u2J9ObKI6tHwfYLN/jlSAx7L/2XGN3dwYqRXX15soc/brZKNm2Kq3RO1buV1bX8oncrGxmg46PTanZcSGZPZJph/a11KxNrVdpRkboij2z55ZaUR1an0/Hhhx+ydetW2rdvX2rbixcvrrZ9Fbtw4QJ6vZ6vvvqKwMBAzpw5wzPPPENOTg4fffRRte+vJrnZW7F4ZEee7OnPoo3nORKdyhe7IlmxP4pRXZvwTJ8AGtWzC5jOxGXw/cFo1p6Ip0BX1IHt4OvCm0NacU9AAzNHJ5iLLMvMWnOavEId3Zq6MaZbk7u/qIZUuCO7fft2Zs+ezcKFC+nWrRsAR44c4a233mLOnDk4Ozvz3HPP8eqrr/Ltt99We8D1lU4vcyAyhZ8vK3jrxG6ybl68BXBvc3fGdGvCfa09DRctiAwE1cvbDp7q6cfX+6J5d+MFXmph7oiE+uj06dN06tQJgDNnzpRYZ6pE/7dfWxAQEMDFixf54osvLL4jW6yjrwurn+vOjvPXWfLPJU7HZbDyQDQ/HLpK/9YNGdWtCX2ae5j1fvKmlKPRsvlMIj8eukp4bLqh/J6mbkzrF0jvQHeTfb7E7EbL8HvYNfZdvoG1SsEHj7Wv9ls+V0WFO7Ivvvgiy5cvp2fPnoay++67DxsbG5599lnOnj3Lp59+ysSJE6s10PpIq9NzNDqNbecS2XgqgetZGkABaPF2tuGRTo0Y1bUJTRrUjnm6dd200AA2nUkiLj2PXQkSD5s7IKHe2blzp7lDACAjI+OO+cU1Gg0ajcawXDy9QqfT1erb6PZr6U5oiwYciEzhi91XOHglla1nk9h6NgkfFxse6diIoUFetPR0MFwEXZvbcycFWj17Lt1g3cl4/rlw3TB9wEopMaSdF090b0LnJkVnVSt6wbcxpJtpC3QWfhxrg+JjZ6pjGJ+ex4IN5wB4qX9zmrjamPz9qsj2K9yRjYyMLHPirZOTE1euXAGgefPmZd4LXLi7rPxC9kTcYPu5RHZeTCYj77+RVRdbNW2cNEx9oBs9mjWsVb+I6gM7KxWvDWrJS6vD2RGvICWngAYiqbpQz0RGRvLZZ5/x8ccfl1vnvffeK/PW4hcvXjTk+K7N3IDZPR252saarZez+fdKDvHp+SzbFcmyXZE0clTRy8+OYB9btPqLqCzkuzglV0tYfD7H4vMIT8gjt/C/0VAfRxX9mzkwMNABFxsl5CRy/nyiyWIpHom9EhmJm52KiIgIk+2rvjDFMdTpZWZtTyIzX0uLBlb0dMvj/Pnz1b6f22VnZxtdt8Id2eDgYF577TW+//57PDw8AEhOTmbmzJl07doVgEuXLhluQlCXVUeKIo1WT3hsOoeupHLwSionr2Wg1f/35eJqpya0pQcD2zSku78zu//9h06NHNHptNzpB0t1p6Kqq2mZKtrmIW08WO7twLmEbJb8c4m3hrQo9/WVVRtSUdW197mscktKv/Xoo48aVW/NmjVGb3PevHlldjZvdfToUbp06WJYjo+PZ/DgwYwYMYKnn3663NfNmjWLGTNmGJYzMzPx9fWlZcuWtSJrgbFaA4N7FN0Vcdu5JDaeTmTPpRvEZWn57Uwmv53JxN5aSY+mDejRzI3OTVxp5eVYK/LSyrLMtbQ8TsSmc/xqOseupnE+sWRqTE9Hax5o780D7b0JauRksukDZZGkGJBlmgYEkJEYQ4sWLUTWgkoqzqRkimO4ePslziVrcLBW8uX47vjV0BngilwkW+H0WxcvXmTYsGFERUXh6+uLJEnExMQQEBDA33//TYsWLVi7di1ZWVmMGzeuwsHXZtWRfitPC1ezJa5mw5VMicgsiUJ9yS8PDxuZIFeZdm56mjoi0mbVMpcyJJaeU6KQZGZ10NGwfl0LIlRQdaTfeuqpp4yqt2LFCqO3eePGjbueOfP398fGpujK5Pj4eEJDQ7nnnntYuXJlhfLY1rb0W1WRrdHyz/kktp1NZG/EdTI1JU+7WykVtPFxon1jZ5o3dKBZQweaN3TE3cHKZB3FbI2Wy9ezuXw9m0vXs4i8ns3JaxkkZ2lK1JMkaN/YhdCWHoS0bEj7Rs5mO7MX+OYmtHqZA6+HkBoXJdJvVYGp0m9dvp7FgE/2IMuwZHQnHurgU23bvpuKfGdUKo+sLMts3bqViIgIZFmmVatWDBgwoN4k6C4+wAkJCXdNv9Wu273svZzK5iPnSZYdiErJLXU3kwb2VnQPcKNngBvdA9xo4lZ257g2pKKqa2mZKtvm4Uv+4Vy6ggeDPOnvEGdRbTa2jXXpfTamzbfXKa+dFW1zZmYm7u7uFt2Ji4uLIzQ0lODgYH788ccK/7GsSx3ZYjqdjrPnzqF3bsSBK6kciUrlZGw6abllj8A7WKvwdrbBy9kGH2dbPBytcbZV42yrxslWha2VCrVCQqVUoFIWZQEq0MoU6vQUaPVkaQpJzy0kI6+QtJwCEjPzSczIJz4jv1SHtZhaKdHWx5nOTVzp7OdCj4AGtSatWHFHdv/MENLiRUe2KkyZR3bdyXhOxqYz54E21brduzFpHlkomqQ9ePBgQkJCsLa2rtHTEbWJMem3wuOymbfxIkUXaeUC0MTNjk5NXOjk60KPZu608HSo0DE0dyqq8pbLe24JaZkq2uahvnrOpSvYeCaJoA6W2eayyuv6+1xWuSWl3zKH+Ph4QkJCaNKkCR999BHJycmGdV5e5r3HurkpJIm2jZzp2MSNKSFFgzwxqbmEx6ZzLiGTy0nZXE7OJjY1l2yNlkvXs7l03fi5fxXR0NGawIYONG/oQGBDB1p7O9GukXOVblpgSvW022BxHurgU6MjsZVR4Y6sXq9n4cKFfPnllyQlJREREUFAQABz5szB39+fSZMmmSJOi9WpiTM9A9xw0NzgsdBguvjXnl/EQuX5OsB9rTz450IyW68pMO7EryBYnm3btnH58mUuX75c6toHkTqpJEmS8Gtgj18De4Z1bGQozy/UEZeeR0J6PvEZRf+m5GjIzCsaYc3IKySvUI9Or0erkynU61FIEmqlAiulArVKgaO1Cme7ohFcF1v1zdFdW7ydbfB1tcPZzrJ/MAm1x8r9UQwJ8sbTqXbc8OBuKtyRXbBgAatWreLDDz/kmWeeMZQHBQXxySefmLUje/z4cV5//XWOHj2KUqnkscceY/HixSWuko2JiWHq1Kn8+++/2NraMmbMGD766COT3aHG19WOVU91YdOmTfRr6WHxozPCf6aHNuOfC8kcvyERmZxDM4+q3+1GEGqbCRMmMGHCBHOHYdFs1EqaeTjQzKP2Z2yoaeKnUO3y+7FY5q0/x1d7rrDt5T442tT+PkuFJ7V+//33LF++nLFjx5aYi9G+fXsuXLhQrcFVRHx8PP379ycwMJDDhw+zZcsWzp49W+ILWKfTcf/995OTk8O+ffv49ddf+fPPP3nllVfMFrdgudr6OHFfKw9kJD7fdcXc4QiCIFgMCTG3oDbq6u9GYEMHRnVtYhGdWKjEiGxcXByBgYGlyvV6vVnvJrVhwwbUajXLli0zXHS2bNkyOnXqxOXLlwkMDGTbtm2cO3eO2NhYfHyK5nx8/PHHTJgwgYULF9aZixCEmlM8KrvhdAJTQgLMHY4gCIIgVJq/uz1/T+2FnVXtnFtdlgp3ZNu2bcvevXvx8/MrUf77778bbp1oDhqNBisrqxKZE2xti/Ii7du3j8DAQA4ePEi7du0MnViAQYMGodFoCAsLIzQ0tNxtl3WXGmPyUuqi9qH+dx73ZmWjSF6KXqkGhQokFSiURc8VpZ/LZZXL0DLhKvLuM+jU1qCyBqUVssoGlFagsrlZZo0OJc65UWjjT4ONvaEclTWobSnUyaViFXlkyy67078tPGxp56rnTJqCpTsvM8Ch9re5rPK6/j6XVW5JeWQFoa4S86zNLyOvkLNxGfQMdAfA3rpSeQDMpsLpt9avX8+4ceOYNWsW77zzDvPnz+fixYt8//33bNiwwZCepqadPXuWjh07smjRIl588UVycnJ4+umnWbNmDYsWLWLWrFk8++yzREdHs23bthKvtba2ZuXKlYwePbrMbZeXONyYPLJe6WHcE/V/lW+YiegkNVqFNVqlDTqFDVqlDVrFzYfSuqjsZnmh0p4ClQMFN/8tVDpQoLJHq7AVl54Csdnw0WkVEjJvdhR5ZYWSqiOPrKWrq+m3TJXyqD5o8dZmCrR69r7Wl4yEaHEcq6Aqn8XcAi3jvj3CiZg0Fj0SxKhuTUwUZcWYNP3Wgw8+yOrVq1m0aBGSJPH222/TuXNn1q9fb5JObEXuPrNq1SpmzJjBrFmzUCqVvPDCC3h6epZ4Y8tKcyXL8h3TX5V3l5rQ0NC75pENGjqJ/MQunDx+jI7t26FUAHot6PU3/9Ui6XUgaw3L6HVlPtdrC7kWE4WvjzcK9KArAK0GtPklnku6AuTCfPJzMrBVS0XlugIkXYGhDUq5EKWuEGtd5VPByJISbF3I1llh59EE2cGL6JR8mrTphuzgybGL1+jcdygqV1+wcqhUp7e25pG9/X0Oad6AXZdS2BanYNXz91l8TlWRR7Z688gKgiDUNgVaPc//eJywq2k42ajo4Oti7pAqpVLjx4MGDWLQoEHVHUuZpk2bxqhRo+5Yx9/fH4AxY8YwZswYkpKSsLe3R5IkFi9eTNOmTYGinIeHDx8u8dq0tDQKCwvx9PQsd/vW1tZYW5dOmWVMHlm1iw+4+JB4RUbRbiiqKvyx1xcWcmrTJhoPHYriLtvRFhayfdMmhg4d+l88ej3oNFCYR2FuBnt3bKJP92BU+nzQZKPNy+Ds8cO0a+GPUldUps/PIDH6Il7O1ijy05FzU9Fl30AlFyDJOshNwRHgWgIAgQC7twLQC+Dy+0X7tnYGVz9wawqu/rc8moKLH9zlZhq1LY9s8XKx6f0C2XUphbBkifjMQgK9qn4bv9qQU1XkkRV5ZAVBqHt0epkZv4WzOyIZW7WSFU91pbW3ZZ4tqfUTIdzd3XF3d6/Qa4o7pd999x02NjaGUZQePXqwcOFCEhIS8Pb2BopyJFpbWxMcHFy9gddGCgUobEFtC2pHsmwbIzcKhpt/aOXCQqJjHWjTYyjKm2W6wkKO3uwQK9RqtIWFbNq0iaEDQlFrsynMSubwzs10D2qGlJ3IlZMHaNbQHrITyUm4jAM5SJpM0GRA4qmix+3UduDREhq2gYatix6eQeBY/o+L2qZ9Y2f6Nndn96UbfL77CotHmm++uCAIQm0nJqWZjyzLzPn7DBtOJaBWSnw5LphgPzdzh1VpRnVkXV1djb7zVGpqapUCqoqlS5fSs2dPHBwc2L59O6+99hrvv/8+Li4uAAwcOJA2bdowbtw4/ve//5Gamsqrr77KM888U2fmbdUYtS3YOYGtBymO0chthiID5240wX/oUAD+LR4RlgsgPQbSov97pEbdfB4FhbkQf6LocSunxih9OtMs0x4p1g18uxTtt5aaFhrA7ks3+PtkAi/2b4FfA5FXVhAEQag9ZFnm/S0X+PlwDJIEn4zsSN8WHuYOq0qM6sh++umnhucpKSksWLCAQYMG0aNHDwAOHjzI1q1bmTNnjkmCNNaRI0eYO3cu2dnZtGrViq+++opx48YZ1iuVSjZu3MiUKVPo1atXiRsiCCZkZf/fSOvtdNqizuz18zcf54oeNy5B5jUUmddoB/D9L0VZF5rcAwEh0DQEfDoWZXWoJTr6utDKWc+FDAWf74zkg+HtzR2SIAhCrSaSFtQcWZZ5d8N5vtsfBcDCh4N4oH3tvv2sMYzqyI4fP97w/LHHHuOdd95h2rRphrIXXniBpUuXsmPHDl5++eXqj9JI33///V3rNGnShA0bNtRANIJRlCpwb170aPPQf+WaLIg/gS7mCEnHN+Gtu4aUnQRRe4oevAM2LtBicNHrmvWjNsyUGexb1JH98/g1pvULxNet6nNlBUEQ6hqR8KZm6fVF0wl+OhwDwLvD2jLmntqRoaCqKvyXf+vWrXzwwQelygcNGsQbb7xRLUFZirqWa7NW5ZFV2EDjHhR6duFoenMG9O+POusqiqi9SNG7kaL3IuWnw6lf4dSvyGp7pGb98ShsTqGmn9na3NQRega4cuBKGkv/jWDBsLYVbnptyKla1z7bZZWLPLKCINQHOr3M63+e4o+wa0gSfPBoex7v6mvusKpNhfPI+vn5MW3aNF577bUS5f/73/9YunQpV69erdYAa5Nly5axbNkydDodERERRuWRFUxDknW45lzGJ/0o3unHsCv8b252rtqNmAZ9uNoghHyrmp/AfiUT/u+sCoUkM6eTDrfSCS+EekTkkRV5ZIXSWs3ZTH6hnt2v9iEr8ao4jlVwp8+iXi/z4upw1p+MR6mQWPx4B4Z1bGSmSI1n0jyy8+fPZ9KkSezatcswR/bQoUNs2bKFb775pnIRW4ipU6cydepUwwE2Jo+sJeXarK6cqjXeZllGm3AC+eRq5JO/YleYSqvEtbS8vhG53Qh0PaaBe4saa/Nzjw3gSN5JDl5J5aLSn3eHtqn+NhtZV+SRFXlkBaE2kkTeghqhUEgEuNujVkosGdWJIUHe5g6p2lW4IzthwgRat27NkiVLWLNmDbIs06ZNG/bv388999xjihhrLaPyyFpgrs2q5lQ1S5v97qHQpzNbdT0Y0lSH6vgqpJgDSKd+RnHqZ2j9EITMLndb1d3ml/q34ODyQ/x5PI6poc0rNVe2NuRUrXXvcwXqijyygiAI8FL/5jzYwZvAho7mDsUkKnV1zD333MNPP/1U3bEIQpXpFVbIbYdCx1EQexT2fwoXNsL5dagubiLILQRy7wFnL5PGcU9AA3oFNmD/5RQ+3HqRz0aLvLKCIAi3E1kLql9kcjYfb7vI/4Z3wN5ahSRJdbYTC3Dn2yndVNFTY1lZWZUKRhCqlW9XGPUTPH8Amg9E0msJuLED1Zc94PQfJv8GnTWkNZIE60/GE3Y1zaT7EgRBsCQia4Fp6PQyz35/jE2nE1m06by5w6kRRnVkXV1duX79utEbbdSoEVeuXKl0UIJQrTzbwNjf0Y5dQ4aNL1JeKvw5CX4ZDdlJJtttu0bODO/cGIAFG89RwesqBUEQ6jzxrVi9lAqJ/43oQPcAN14e0MLc4dQIo6YWyLLMN998g4ODg1EbrS/pZupaiqJalX7rDjFVtm5hox7sbjmfwY7nUR/4FCliM8q447j5PE1h4YByt1OVNr/YL4CNpxM4EZPO2uOxPND+7hPta0MqKot+n0X6LUGo9cSAbPWRZZm4zEKKbznUuYkrvzzT3eg7slo6o9Jv+fv7V/iA7NmzB1/fupOnDET6rbrEMe8aXaKX4ZQfhx4FZxuN4orHIJOc79p6TWJTrBIntcysjjrszH/fBqEGifRbIv2WUFrbt7eQU6Bj5yt9yEkS6bcqK1uj5dXfwtl18Tq/PdeD9r6u5g6pWlToO0MWKiwjI0MG5ISEBHnt2rVyTk6OXFBQIOfk5BiWy3teUFBQ6UdFtnO3umWtN6bsTssW1+bsNLlw9QRZnusky3OdZO2GV+UCTX61tzkrJ08O+fBf2e/1DfLM38PN/j5X9H21+PfZyDYb286KtvnGjRsyIGdkZJj7q8tsir8z69Ix0Gq18unTp2WtVmvuUCxSmzmbZb/XN8iRSZniOFbSleRsuf/Hu2S/1zfIzWZtkP84FmPukKpNRb4zxNhQFYj0WxbeZrULhQ9/xZkMa9rF/YLy6HKUucnw4OdlbqeybVar1bz3WHtGLT/E6mPXeLRzY+4JaGCeNt+lvE6+z3cpF+m3BKHm1ZfT3qay9Wwir/5+kqx8LQ0drXmtpysPd/Qxd1hmYdTFXoJQZ0kSkQ2HoH14OSjUcPYvlH9PBllfrbvpHtCA0d2KptrM/PMU2RpttW5fEARBqPsKtHre3XCO534IIytfS7CfK39P6UFrj/p7C0mL6cguXLiQnj17Ymdnh4uLS6n1KSkpDB48GB8fH6ytrfH19WXatGklUodFR0cjSVKpx5YtW2qwJUJtJLd9FEb9DAo1ivN/0ynmm2rvzL4xpDU+zjZcTcllztoz1bptQRAESySLvAVGu5aWy+NfHeTbfVEAPHNvU359tjsNnWzMHJl5WUxHtqCggBEjRvD888+XuV6hUDBs2DDWrVtHREQEK1euZMeOHUyePLlU3R07dpCQkGB49OvXz9ThC5agxUAYsQJZUtIkdR+KXYuqdfPOtmr+b3QnFBL8dSKOP8OuVev2BUEQLIWYWFAx607GM+T/9hIem46TjYrl44KZfX8b1EqL6caZjMXMkZ0/fz4AK1euLHO9q6triU6un58fU6ZM4X//+1+pug0aNMDLy7R3dhIsVOsH0T34Gap1U1Ae+BQ8W0Obx6pt81393XipfwsWb4/grbVnaOnlSLtGztW2fUEQBKHuyMovZO66s6w5HgdApyYuLBnVqVK3Pa+rKtWR3bt3L1999RWRkZH88ccfNGrUiB9++IGmTZvSu3fv6o6xUuLj41mzZg19+/Ytte6hhx4iPz+f5s2b8/LLLzN8+PA7bkuj0aDRaAzLxdMV6lquzTqfR9bYNrd6hMjDW2iZtA553XR0Dk3KrFvZNj/b24/DV1LYH5nCpFVH+fO5e/C85dRQbcipWtfe57LKRR5ZQTA/cZ+Y8uUX6nho6X6ibuSgkGBaaCDT72suRmFvY1Qe2Vv9+eefjBs3jrFjx/LDDz9w7tw5AgIC+Pzzz9mwYQObNm0yVaxA0YjsSy+9RHp6epnrR48ezd9//01eXh4PPvggv/32GzY2RZ2EGzdu8MMPP9CrVy8UCgXr1q1j4cKFrFq1iieeeKLcfc6bN88wInwrkUe2DpP1dI36DJ+MMHKsGrKr1TtoldX3Xudq4dMzSpLyJHztZaa31WEtUijWSSKPrMgjK5QWNG8rWfladrx8L/nJMeI4luO9TefZcCqBT0Z2pFtTtzLr1MXPoknzyHbs2FFetWqVLMuy7ODgIEdGRsqyLMsnTpyQPT09K7StuXPnyhTdoa7cx9GjR0u8ZsWKFbKzs3O520xISJDPnz8vr127Vm7Tpo38/PPP3zGGadOmyUFBQXesk5+fL2dkZBgesbGxIo9sfWhzSrysX9xOluc6ybGfDJBzsrOrtc2XE9PljvO3yn6vb5CHf7FfTs/OrTU5Veva+2xMG41tp8gjW3Eij6xwu3Zzt8h+r2+QLyVmiON4i7CrqXLk9SzDcl6BVs7IK7jja+riZ9GkeWQvXrxInz59SpU7OTmVO0panmnTpjFq1Kg71vH396/QNr28vPDy8qJVq1Y0aNCAe++9lzlz5uDtXfatQbt3784333xzx21aW1tjbV06tYXII1vH2+zojjT8O+QVg2mcfhhtxDpUnUaXeE15z42JtZmnMyuf6sYT3xzmaHQaU345ybfju5b7uboTkUfW+PUij6wgCLXRb8dief3PU3Ro7MIfk3ugUiqwUSuxUdeNUVZTqXBH1tvbm8uXL5fqYO7bt4+AgIAKbcvd3R13d/eKhmA0+easiVvnt97uxIkT5XZyBQHfrujvfQ3l7vdQbp8NLQaAVfVdnNXB14WVE7vx5LeH2X85hbHfHOaLMR2qbfuCIAi1kchaUNq9zd1xsFIR4G6PRqtHJebCGqXCHdnnnnuOF198ke+++w5JkoiPj+fgwYO8+uqrvP3226aIEYCYmBhSU1OJiYlBp9MRHh4OQGBgIA4ODmzatImkpCS6du2Kg4MD586dY+bMmfTq1cvQ6V61ahVqtZpOnTqhUChYv349S5Ys4YMPPjBZ3ILl0/d4gezDP+KcGwtb3oCHvqjW7Qf7ubJqYjcmrjxK2NU0Ri4/whNNqnUXgiAIQi2TlJnPtnNJjOvuB4C3sy3/vNK33ueFragKd2RnzpxJRkYGoaGh5Ofn06dPH6ytrXn11VeZNm2aKWIE4O2332bVqlWG5U6dOgGwc+dOQkJCsLW15euvv+bll19Go9Hg6+vLo48+yhtvvFFiOwsWLODq1asolUpatGjBd999d8cLvQQBpZpwv0n0iXgH6fTvSNWYjqtYF383/ny+JxNWHCUqJZeP0pX4tL7OkPaNqn1fgiAItYVcD9MWFOr0rNwfzac7Isgp0NHEzY6+LTwARCe2EiqVfmvhwoXMnj2bc+fOodfradOmDQ4ODtUdWwkrV64sN4csQGhoKAcOHLjjNsaPH8/48eOrLaa6lqJIpN8qu6ywsJB0uwC0wc+gPvYVim2zkZrMrvY2+7vZsPqZrkz/JZwT1zJ5/udwnopOY0b/wHLnSIn0W8avF+m3BKH2kKT6ObngYGQKb/99hkvXs4GivLAeDvX39rLVocLpt26XmZnJv//+S8uWLWndunV1xVUrLVu2jGXLlqHT6YiIiBDpt+oZlS6P+869ho02k9ONxnCl4WCT7Eenh3UxCnYlFM2PamgjM6qZjmZ1I2tRvSPSb4n0W0JpHeZvIyOvkO0v9UZzI9bij+OJmDRyC3T0Ciz7up+YlFze23yezWcSAXCzt+KNwa0YHtwYhaJqnfq6+Fk0afqtESNGyJ999pksy7Kcm5srt2jRQlar1bJKpZL/+OOPim7OIhWnhRDpt+pfmwuPfCfLc53kgne85JzkqyZt84bjV+WuC7bLfq9vkP1e3yC/+tsJOfZGZo2koqpr77MxbTS2nSL9VsWJ9FvC7drPK0o9eDEh3eKPY1JmnnzPwh3y6OUHS63LyCuQF208Jzd/c5Ps9/oGuekbG+TZf52S03I01bb/uvhZNGn6rT179jB79mwA/vrrL/R6Penp6axatYoFCxbw2GPVP3+wthLpt+pfm1XBTyIf+xZ10mkUBz9BP/hDw7rKxHonA9t507uVN+9tOs+vR2P5PSyODacSeebepjzTJwBHG+P3KdJvlV8u0m8JQs2rKzMLCrR6pv50nMTMfBIz8zl1LZ32jV0o0OpZfTSGT3dcIiWnACjKSjD7/ta08qobZyVqiwrndsjIyMDNrejuElu2bOGxxx7Dzs6O+++/n0uXLlV7gIJQqyiU6Aa8W/T0xPeQFm3S3Tnbqnn/sfb8+XwPOjdxIa9Qx5J/L9Pz/X/5cMsFkrPKTy0nCIJQ21n6tV4LNp7jaHSaYfmr3Vf4OzyO/ot3M+fvs6TkFNDMw54VE7ry/cRuohNrAhUekfX19eXgwYO4ubmxZcsWfv31VwDS0tIMt4IVhLpM9uvNdcd2NMw6g3Lv/0B1v8n3GexXlNVgy5lEPtp2kcjkHD7fFck3+6Lo5KrAOyadrgHu9fYCCkEQLEtd+Kb67Vgs3x+8WqJs85kEcgu0xKTm4uFozQv9AhnVrQlqkRPWZCrckX3ppZcYO3YsDg4O+Pn5ERISAhRNOQgKCqru+AShVjrvPZyGWWeQzvyOQ6uONbJPSZIYEuTNoLZebD+fxJe7IzkRk87hZAWPf32E5g0dGNnVl6FB3vi42NZITIIgCPVReGw6b/11plS5XgYHaxWvDWrJU738sbOqVHIooQIq/BNhypQpHDp0iO+++459+/ahUBRtIiAggAULFlR7gIJQG6XbB6BvMRRJ1tMqYU2N7luhkBjU1os1z/fk16e70s1Dj41awaXr2SzYeJ6e7//Lw8v289XuSK6m5tZobELdptFo6NixI5IkGW5KIwhVYYkzC5KzNEz+IYwCnb7M9VvPJfF4F1/Ria0hlTrKwcHBBAcHlyi7/37Tn16tbepark2RR7bssvL+1fR6DZuIzTRKP0pebBiyV3ujY61KO27V3seBsYF6Pru3F1vO32D9qQTCYtIJjy16vLcZGlgr2V9whnube9AjwA1nW7XII1tOPZFH9s5mzpyJj48PJ0+eNHcogoWz1GlQmkIdk38IIzEzv9w6BVo9qw5E8+qgljUYWf1VqTyy165dY926dcTExFBQUFBi3eLFi6stuNpG5JEVbtc5+kt80w6Q6NSBw81eMXc4AGQWwKlUifAUicgsCb383x8MCRlPW/B3lPF3kPF3LFquYhpD4Q7qSh7ZzZs3M2PGDP7880/atm3LiRMn6NixY5l1NRoNGs1/FyJmZmbi6+tLamqqRR+DWxX/HWjRokWdyd1Zk7ou/IfU3EI2TeuBPj2+1h/HAq2edafieW/TRbI0hVgp//vSlGW5VMfcyVrFjhl9sbM2/ahsXfwsZmZm4ubmZtT3ZoU7sv/88w8PPfQQTZs25eLFi7Rr147o6GhkWaZz5878+++/VQreEhQn6k1ISODw4cMMGDAAtbpolGv79u0MGDAAoMznVUnFc+v277adu9Uta70xZXdaro9tllKvYP3NvSjQk//EBraeTa1VbU7PzmP537vIc/LjYFQakck5perYWytp4WGPbWE693VuRWsfZwIaWHN476468z6XVX639768dla0zZmZmbi7u1t0RzYpKYng4GDWrl2Lu7s7TZs2vWNHdt68ecyfP79U+cGDB01+F0jBMoz5PZZMjZ5lD3jj52Jl7nDKlVugZ8vlbP6+kElKrg4AVxsl3z3SCLVSjACYSnZ2Nj169DDqe7PCPxVmzZrFK6+8wjvvvIOjoyN//vknDRs2ZOzYsQwebJo7HdVWIo+saDOeLYl164Vf6l6s9n8ELhNrVZtdHKCdq8zQoW1Qq9UkZ2kIj03nWFQK/5yMJC5PRY5Gx4lrmYCCA5sjDK91VCv5Pu4E/u4O+LrakHZDwvd6Lj7ONuhly3yfyyoXeWTvTJZlJkyYwOTJk+nSpQvR0dF3fc2sWbOYMWOGYbl4RLZly5YW25m/XV0cBatJKlUCaArw9/dHroUjstfScvnhUAyrjyWQla8FoKGjNU/18md018aGPN6yLFOg1VOg16Mp1FOok9EU6tBo9VipFDR1tzd5rHXxs5iZmWl03Qp3ZM+fP88vv/xS9GKViry8PBwcHHjnnXcYNmwYzz//fEU3KQgWLcLrYZqkH0QRtQu35r2AoeYOqVwejtYMaONJSHM32mgvMXBQP2LSCzgbl8amAyfR2jckIimb+Ix8sgolwmLSCYtJv/lqJasuHS56Jin5+OJevJys0WcrOKW4iI+rPe4OVjSwt8bVXm3411pVN75Y65ryRk1vdfToUQ4cOEBmZiazZs0yetvW1tZYW5e+f7xSqawzf2iL1cU21YTisUyFQoGO2nEcZVnm4JUUVu6PZsf5JPQ3z1cHeNgzuU8zhnXyKfP7TKWC2jDJsDYcw+pSkXZUuCNrb29vmPvk4+NDZGQkbdu2BeDGjRsV3ZzRFi5cyMaNGwkPD8fKyor09PRSdY4ePcobb7xBWFgYkiTRtWtXPvzwwxKnv06fPs20adM4cuQIbm5uPPfcc8yZM8diJ54L5pdr7YG+wxiUJ76/mcHgZXOHZDSVUkFLL0cCGtigvHaCoUM7o1arSc3K5ed12/Ft3ZlrGRquJGcRfimOLGxIztagkyWupeVxLS0PUHB8/9Vy9+FgrcLVXo2bvTUutmocbVQ42tz811qFg40KO7XExRQJ1yspuNrbYmetxEatxFatxEatwEalrPL9yIWSpk2bxqhRo+5Yx9/fnwULFnDo0KFSHdMuXbowduxYVq1aZcowhTquNmQtyNFo+Ts8nlUHormYlGUov7e5OxN6+hPasqH4/qnFKtyR7d69O/v376dNmzbcf//9vPLKK5w+fZo1a9bQvXt3U8QIQEFBASNGjKBHjx58++23pdZnZWUxaNAghg0bxueff45Wq2Xu3LkMGjSIa9euoVaryczMZMCAAYSGhnL06FEiIiKYMGEC9vb2vPJK7bhQR7BM+t6voDj1Kx7Z59FG74Hm95k7pCpxtFHj6wBDg7wM80k3bYph6NC+FOr0rF63hTbBPUnMyGfn4RO4NQogKbuAlGwNaTmFpOQUkJZbgE4vk63Rkq3REpuad5e9KvkuIqzctdYqBTY3O7a6AiVfXDmArbUKG5USa7UCtVKBWimhlCApQcGBv89hrVbeLFeglGSirknE7onCxkqFUpK5kCSRdzwOK7UKpUICvZ6TKRJW56+jUEicT5NwupyCSiFxORPCrqahVEjEZINOL2PJkwbc3d1xd3e/a70lS5aUSK0YHx/PoEGDWL16Nffcc48pQxTqsNo0djTlp+PsjkgGwM5KyWOdGzO+px+BDR3NHJlgjAp3ZBcvXkx2djZQdGoqOzub1atXExgYyCeffFLtARYrPgW2cuXKMtdfvHiRtLQ03nnnHXx9fQGYO3cu7du3JyYmhmbNmvHTTz+Rn5/PypUrsba2pl27dkRERLB48WJmzJhR7qhsWVfgQt1LUSTSb5VdZlSbbRtChydQH/8Oadd7FPrdW+lv6tqQiupu/7pZQ5C3PUHe9hArM6B/QKm5oHq9TJZGS1puAak5haTlFJCWV1jUsc0v6txm3fw3M6+Qa0kpKG3tydboyCvQkVeoo1D333iNRqtHo9WTkQcgcSM/+w5HRsGR5GtllCvZFHupxPLqK2dL1fkuItzw/MsLxZ1rFZ+dPWp4PmpoflHn9y4sPf1WkyZNSiwXX6zVrFkzGjdubI6QBKHSMvML+Ts8niHtvHB3KDrL8HAnH66m5PBEdz9GdPHF2daSf6LWP5VKv2VOK1eu5KWXXio1tSArK4uAgACmTp3Km2++iU6nY9asWezYsYPw8HBUKhVPPvkkGRkZ/P3334bXnThxgs6dO3PlyhWaNm1a5j7Lm0sm0m8Jt7IpTKP/2VdRyoUcaPYqyU7tzR2SxdPLUKiHAv3Nf3W3LksU3CzTyUUPrf6/50XLUtG/Muj1Rf8W19PL/y3rDQ8JPUX3f9fJRac99beuv2V5dkcdVkZM46or6beKRUdH3zVrwe2KM73UlWMARRfYnD9/ntatW9eZeYk1qcuC7dzILmDT9F7o067V2HF8/KuDHIlK5c2hrXi2TzOg6OyKQrLc3LZ18bNYke+MSic4Kygo4Pr16+j1Je9scfuv95ri6OjIrl27GDZsGO+++y4ALVq0YOvWrahURc1MTEzE39+/xOs8PT0N68rryJZ3BW5oaKhIvyXaXOJ5VNImApO30j33H3QjX6/UqGxtSEVlGe9z/5pLvyXr2bP5T0I6NUfKTuD8sT20GPye0em36hJ/f38sbPxDqJVM32k8n5DJ2hNxPNe3GW72RSm+HunUiLScAho62hjqGXNmRai9KtyRjYiIYNKkSRw4cKBEeXFCYJ1OZ/S2jL1qtkuXLnfdVl5eHhMnTqRXr1788ssv6HQ6PvroI4YOHcrRo0extS269/ztv7iKv5Dv9EusvCtwRfot0ebbn1/yfJBm6XtRJJxAEfUPtBxiVMyVaUdF6lY2FVVde5/LKler1aiVSshKQEq+RJOU3VjvO46UHk3vq2exjXwTshMZrNfCzVurdwQKeQe1+u5nZCw9/ZYgWJLEjHzWnYxjzfE4LiQWXbjV2NWWcT38AXi8iy+juvpa7OirUFqFO7JPPfUUKpWKDRs24O3tXaUPg7FXzRrj559/Jjo6moMHD6JQKAxlrq6u/P3334waNQovLy8SExNLvO769evAfyOzglAVBWon9F2eRnlwCexcCM0Hwc3Po2B+kqyF5IuQGoEi8Qxdr+xC9dUCSI8BbT4qoBNATFH9Bre8VkYCB09kJx8ScxR4FOYBzjXeBkGoS6pjbD8uPY8tZxLZfDqBsJg0ik8YWCkV9GvVkOae/120JUZf654Kd2TDw8MJCwujVatWVd65sVfNGiM3NxeFQlGiY128XDz9oUePHrz55psUFBRgZVV0mmHbtm34+PgY3WEWhLvRd5+GMmwFJJ6GC+uhzTBzh1Q/afMhMRziwiAuDFXSGR5IvogivOiskRLwubW+pER2aUKy1p4GzbuCqz9hkcl0DnkA2dGHzXvDGHL/gwAc3bSJoXYNbt+jIAhGquqA6NWUHDafSWTzmUROxqaXWNfV35VHOjVmaJAXLna1965hQvWocEe2TZs2Js0XW56YmBhSU1OJiYlBp9MRHh4OQGBgIA4ODgwYMIDXXnuNqVOnMn36dPR6Pe+//z4qlYrQ0FAAxowZw/z585kwYQJvvvkmly5dYtGiRbz99tviNINQfezcoPvzsOdD2PketHpQjMrWhMx4iN6PIno/fS/sRHVyIui1htXSzYds5YDUsA169xacTZZp3edhVB7NwdkXrV7m4KZNDB1SdFOLhNRNyI2KpjbJUnjNt0kQhBL+vZDER1sjOJfw39xzSYKu/m4MbefFoHZeeDvbmjFCoaYZ1ZG99WKFDz74gJkzZ7Jo0SKCgoJKzf8y1RWpb7/9donE2506dQJg586dhISE0KpVK9avX8/8+fPp0aMHCoWCTp06sWXLFry9vQFwdnZm+/btTJ06lS5duuDq6sqMGTNKXMglCNWixxQ4/BUkn4fTv0OHkeaOqO7JToJrhyBqD0Tvg9RIoGik1aW4jr0HNOoCjYLRerTh37OJhA4bh9rKCl1hIVc2baJVQCgUf4/pLTtVliBYmjtdOJiVX8j+yzdo4elIgEdR2rdCncy5hEyUConuAW4MaefNwLaeJS7eEuoXozqyLi4uJUYsZVnmvvtKJnyvzMVeFbFy5cpyc8gWGzBggOFq4/IEBQWxZ8+eaolJ5FQVbb79NYbnagcUPaaj3LUAefsctM0GgLVxybUtIY/snZ5XhlFtlvVICeFwcQt9L6xBfSK65GpJgezVHl3j7pxIVhE0eDwqN3/DOczCwkLyLm2nUKsFSarw5+FOz41pmyAI/9HfvP+rLMuG/AW3X3w9a81pNpxK4IV+gcwY2BKA3oHufPBYEAPaeBkyEQj1m1F5ZHfv3m30Bvv27VulgGqzZcuWsWzZMnQ6HRERESKPrHBHCn0BoeffxKHgOpcaDuFco9HmDsniSLIWj6xz+KQdwTPzJDbajBLr0239ueHYmhsOrUixb4FWZW+mSMtX1/LIVobIIytAUUaBg1ducOByCr+HFd2wZNHDbUm+nkhMvg2HrqSyamJXwx21/gi7xuc7LzO2ux+TepedHlOom5/FinxnWNwNEWqD4gOckJAg8siKNt+xzdLl7ahWj0ZWqNA+swfcW5i9zRVtY42/z0oJ6eoBFOf+Qrq4ESkv1VBPtrJH5x/C6XxvWj4wHbVro2pr8+11ymtnRducmZmJu7t7nerEVZToyNZPxWdqATaeSmDqz8fv+ppbb1Sg18soRJaBu6qLn0WT3BAhNzeX1157jbVr11JYWEj//v1ZsmRJtWUdsEQij6xoc3nPDcuth0KLIUgRm1FvfgUmbASFcV809S2PrGPeNax3zUd59k/ISf5vhZ17UeaH1g8i+fVCliViNm2inWsjk7S5uMyY58a0WeSRFeqbHw5Gs/JANCO7+jKorRcnYtL5I6ysW0YXpcMKdFMT0qYRPQM96OrvalgnOrGCMYzuyM6dO5eVK1cyduxYbGxs+OWXX3j++ef5/fffTRmfIFi+IR9A9F6IOQiHvoCe08wdUe2RnwFn/kQZ9j39Ek78V27rCq0fhLaPgv+9oLzlq0rMORUEs8vRaDkbn8mxq6kcv5rG3Afb4mijwsXOirxCHZHJOSzadIFFmy6UeJ1CgqBGznRv1oDuAQ3o7OtM7JVLtG7dss6MJgo1y+iO7Jo1a/j2228NNzB44okn6NWrFzqdTnz4BOFOXP1g0EJY/yL88w40HwAeLc0dlXldOwZHv4Gza0GbhwLQo4SWg1F0fhIC7wOlGMkUhNqguNN6Oi6DM3EZnI7L4PL17BJ1dpy/jkohcWb+IIa086aZhwNrw+PZeiaR1j5O3NPUjR4BDeji74qjzX//t011gbhQfxjdkY2NjeXee+81LHfr1g2VSkV8fDy+vr4mCU4Q6ozO4+H8eri8A36fAE/vAKvad2GSSWk1cPavorRk8bfMlfNoha7DGLYlutF/2CgU4lS8IJjVnohkzidkcj4hkxOx6VxNyS2znqeTNcF+rnRu4sqCjefRyTKXr2fTrpEzvm52dPFz46MR7bFWicEuwXSM7sjqdDrD3bAML1ap0Gq15byi7quVKYqMrCvSbxlfVm1tHvopqm/7IV0/h37dC+ge+qLM29vUufRbmQkojq9EEf490s25r7LSCrnNI+iDJyL7dKZQq6Vg+3aztrmi7RTptwRLl5ylYcOpeHILdIzr4Ufk9Wwik3N49feTRr3+0Kz7DBdz3dvcg0autjhY/9etcLYTP0oF0zM6a4FCoWDIkCFYW1sbytavX0+/fv2wt/9vZGnNmjXVH2UtIdJvCVXVIPsCPS+9jwI9ZxqNJrLhEHOHZBqyjFtOBAHJ2/FOD0NB0enDPLUr0e73Ed0ghAJ13bh6/W5E+i2RtcAcZFnmRnYB0Sk5RN3IIfpGDtEpObTxdqKjryttfJxIydYw4BPj8qp3aOxMMw8HmjV0oJWXIx18XXB3sL77C++ith9HS1AXj6FJshaMHz++VNkTTzxR8egs2NSpU5k6darhAIeGhor0W6LNFWzzUOTDtrBjDu3ifqFV1xDkto/VaJsr2sYKtVmrQTq3FuWRL5GSThv2p/ftjr7rM6haDCVQqSawgu2oiTbfXqe8dpZq813cemdEQagqnV4mM6+QjLxCLiRmcTounXPxmZxPyCIxM/+ur990OhGAL5/ozH2tPRnc1ovolBwuJGbR0NGawIYONPNwKPGvp5O1uI27UGsZ3ZFdsWKFKeOwSCL9lmhzec/vGGuv6ZAVB4e/RLVuKti6QMvBFW5HReqaPP2WJg31kR/g6LeQc72oUGUDQSPgnudQeAWhqIZ2VKSuSL8l1FZanZ7MfC0ZNzukGXmF5Bfq6OLnalj+/uBV8gp0PB/SDH93e+asPcO6k/GV2l/vQHf83e3wb2DPz0diQAatXkatVPDluGDyC3UU6PQ42YjPqmB5jO7ICoJQTSQJBr1XlCv1zJ+weiw88hUEDTd3ZBWXeIpOV5ejWvo06AqKyhx9oNszEDwB7NzMGp4g1KT8Qh1bzyZyLDoNa5XC0Cnddi6p0tscEuRFSy/HUp1YOysluQWlr/h3slHR2tuJ1t5OtPF2wsPRmr4tPAw5WSf1blpqdNVGrcRGXTdOSQv1j0V0ZKOjo3n33Xf5999/SUxMxMfHhyeeeILZs2cbLkA7efIk77//Pvv27ePGjRv4+/szefJkXnzxxRLbadq09G3uNm/ezODBpUfEBMFkFIqizqukhNO/wZ9PQ2Y89Jxu7sjuTleId/pRlD98gSLmIE2Kyxt3hXsmF928QKTOEuqhHI2WF38Nr9I2HKxVONuq0Wj1vHhfIO0bu2CjVjLvwTbYqJX0bu5OQ0cbrFTGnOMoTUwREOoai+jIXrhwAb1ez1dffUVgYCBnzpzhmWeeIScnh48++giAsLAwPDw8+PHHH/H19eXAgQM8++yzKJVKpk0rmYB+x44dtG3b1rDs5iZGjQQzUKqLOrM2TkU5VbfPKUpLNfhjc0dWJltNMoqdC1Gc/IluN6cPyAoVcc5d8Bo2H5V/dzNHKAjmZaNW0jvQnYikLO5v7427gzVOtmr2RCRzPUuDt5MNXs43H042uNlb4WyrNjwcbVSolGV3UCf0Kj0IIwiChXRkBw8eXGLENCAggIsXL/LFF18YOrITJ04s8ZqAgAAOHjzImjVrSnVkGzRogJeXl+kDF4S7UShg6Efg0Qq2vAFn/0IVc5iGHqOBoeaOrij366XNKI+tZMCVf5EoSnKSr3JC3W0S+uCJhO07wdBGwWYOVBDMz95axY9P31OqfFx3PzNEIwj1g0V0ZMuSkZFx15HU8uo89NBD5Ofn07x5c15++WWGD7/z3ESNRoNGozEsF1+FLHKqijbf/hpjYy2l0wQkjzYo101FSouiR9bHaH87S2HoW0Wd3HKYJKeqXofuym46Xv0G1afTQJNpuFBL598HbYdxbItW0r/3kFLbq6zakDv3bmV3em5MvIIgCEL1MzqPbG0SGRlJ586d+fjjj3n66afLrHPw4EH69u3Lxo0bDSlzbty4wQ8//ECvXr1QKBSsW7eOhQsXsmrVqjumEps3bx7z588vVS7yyArVTanX0CphDc2ub0FCRkYi3qUrUR79SbFvWeYNFKqDSpeHR9ZZPDNP4pkRjo02w7AuT+3KNdeeRLuHkGvtaZL912Uij6zIIyuUTxzHqquLx7BC3xmyGc2dO1cG7vg4evRoidfExcXJgYGB8qRJk8rd7pkzZ2QPDw/53XffvWsM06ZNk4OCgu5YJz8/X87IyDA8YmNjZUBOSEiQ165dK+fk5MgFBQVyTk6OYbm85wUFBZV+VGQ7d6tb1npjyu60LNpcfW3e8esyufCn0bI818nw0P9fJ1m7dY5cGHVQLsjPrXSbCwoK5JzURHn/9+/KBVvnybrvhsr6d9xL7us9PzlqyTA57/x2uUCTb/HvszHvq7HvbUXbfOPGDRmQMzIyjPtirIMyMjLq3DHQarXy6dOnZa1Wa+5QLJo4jlVXF49hRb4zzDq1YNq0aYwaNeqOdfz9/Q3P4+PjCQ0NpUePHixfvrzM+ufOnaNfv34888wzvPXWW3eNoXv37nzzzTd3rGNtbV3ijmbFRB5Z0ebynle1zdk2jZCHroKUC3Dkazj9O1JqJMoD/wcH/g/U9tCoM4qGbWianINVtAqVowdYO4HKGvRa0BUi5abjnX4M65OJKLPjIfkiJJ9HlXaVnsgQ+d8+c6waYtPhYZQtB6Nt3J2TW3fQqFnforZIhSZvc0W3I/LICoIgCGbtyLq7u+Pu7m5U3bi4OEJDQwkODmbFihUoFKWv7Dx79iz9+vVj/PjxLFy40KjtnjhxAm9v7wrFLQg1xisIHloCAxfApW1wfj1E/guaTIjeizJ6L+0BfvuxzJergG4AUSXLJSDHygPbFiEo/HtS2Kg7Ow5HMHTg/SjVahDzOgVBEAQLYBEXe8XHxxMSEkKTJk346KOPSE5ONqwrzj5w9uxZQkNDGThwIDNmzCAxseg2fEqlEg8PDwBWrVqFWq2mU6dOKBQK1q9fz5IlS/jggw9qvlGCUBE2TkU3TAgaDnpd0cjqtaPoki+SdP4Q3jYFSJpM0GSBNh8UalCqkdV2pBWqcfFthcLJBzxagkcrCl0D2bH7CEOHDkVR3HGVLpm7lYIgCIJQIRbRkd22bRuXL1/m8uXLNG7cuMQ6+ea1ar///jvJycn89NNP/PTTT4b1fn5+REdHG5YXLFjA1atXUSqVtGjRgu++++6OF3oJQq2jUIJnG/Bsg76wkKOaTQwdOrTMU9jawkL2btr0X4e1mBhxFQRBEOoAi+jITpgwgQkTJtyxzrx585g3b94d64wfP57x48dXW1wiFZVo8+2vMTbWO6kNqajqY5vvVnan58bEKwiCIFQ/i0y/ZS7Lli1j2bJl6HQ6IiIiRPotQRDuSqTfEum3hPKJ41h1dfEYVuQ7wyJGZGuLqVOnMnXqVDIyMnBxcaFLly4cO3aM0NBQ1Go1hYWF7Ny5k9DQUIAyn1flCuZbt3+37dytblnrjSm707Jos2W0uaJtrC9tvr1Oee2saJuzsrKA/6ZB1UfFbS++mUxdoNPpyM7OJjMzs850HsxBHMeqq4vHsPi7wpjvTdGRrYTiP0wtWrQwcySCIFiKrKwsnJ2dzR2GWRR/Z/r6+po5EkEQLIkx35tiakEl6PV64uPjcXR0pFu3bhw9etSwrmvXrobl4ueZmZn4+voSGxtb5dNqt26/qnXLWm9M2Z2WRZsto81llYs2ly6rjjbLskxWVhY+Pj5lpg2sD279zpRMdHe6mladn/36TBzHqquLx7Ai35tiRLYSFAqFIXuCUqks8cG5dfn2dU5OTlX+kN2+zarULWu9MWWizZbf5rLKRZtLl1VXm+vrSGyxW78z65rq+OwL4jhWh7p2DI393qyfwwPVaOrUqeUu377OFPurSt2y1htTJtps+W0uq1y0uXSZqdssCIIgVI2YWlAD6uIVu3cj2izaXFfVxzYLpYnPQfUQx7Hq6vsxFCOyNcDa2pq5c+dibW1t7lBqjGhz/SDaLNRX4nNQPcRxrLr6fgzFiKwgCIIgCIJgkcSIrCAIgiAIgmCRREdWEARBEARBsEiiIysIgiAIgiBYJNGRFQRBEARBECyS6MgKgiAIgiAIFkl0ZGuRrKwsunbtSseOHQkKCuLrr782d0gmFxsbS0hICG3atKF9+/b8/vvv5g6pRjzyyCO4uroyfPhwc4diMhs2bKBly5Y0b96cb775xtzh1Ij68L4KRT7//HOaNm2KjY0NwcHB7N2719whWYz33nuPrl274ujoSMOGDXn44Ye5ePGiucOyaO+99x6SJPHSSy+ZO5QaJ9Jv1SI6nQ6NRoOdnR25ubm0a9eOo0eP0qBBA3OHZjIJCQkkJSXRsWNHrl+/TufOnbl48SL29vbmDs2kdu7cSXZ2NqtWreKPP/4wdzjVTqvV0qZNG3bu3ImTkxOdO3fm8OHDuLm5mTs0k6rr76tQZPXq1YwbN47PP/+cXr168dVXX/HNN99w7tw5mjRpYu7war3BgwczatQounbtilarZfbs2Zw+fZpz587V+e9+Uzh69CiPP/44Tk5OhIaG8umnn5o7pBolRmRrEaVSiZ2dHQD5+fnodDrq+u8Mb29vOnbsCEDDhg1xc3MjNTXVvEHVgNDQUBwdHc0dhskcOXKEtm3b0qhRIxwdHRk6dChbt241d1gmV9ffV6HI4sWLmTRpEk8//TStW7fm008/xdfXly+++MLcoVmELVu2MGHCBNq2bUuHDh1YsWIFMTExhIWFmTs0i5Odnc3YsWP5+uuvcXV1NXc4ZiE6shWwZ88eHnzwQXx8fJAkibVr15aqU9XTTenp6XTo0IHGjRszc+ZM3N3dqyn6yqmJNhc7duwYer0eX1/fKkZdNTXZ5tqqqscgPj6eRo0aGZYbN25MXFxcTYReaeJ9F4xRUFBAWFgYAwcOLFE+cOBADhw4YKaoLFtGRgZAnT9jYwpTp07l/vvvp3///uYOxWxER7YCcnJy6NChA0uXLi1z/erVq3nppZeYPXs2J06c4N5772XIkCHExMQY6gQHB9OuXbtSj/j4eABcXFw4efIkUVFR/PzzzyQlJdVI28pTE20GSElJ4cknn2T58uUmb9Pd1FSba7OqHoOyziRIkmTSmKuqOt53oe67ceMGOp0OT0/PEuWenp4kJiaaKSrLJcsyM2bMoHfv3rRr187c4ViUX3/9lePHj/Pee++ZOxTzkoVKAeS//vqrRFm3bt3kyZMnlyhr1aqV/MYbb1RqH5MnT5Z/++23yoZY7UzV5vz8fPnee++Vv//+++oIs1qZ8n3euXOn/Nhjj1U1RJOrzDHYv3+//PDDDxvWvfDCC/JPP/1k8lirS1Xed0t5X4XKiYuLkwH5wIEDJcoXLFggt2zZ0kxRWa4pU6bIfn5+cmxsrLlDsSgxMTFyw4YN5fDwcENZ37595RdffNF8QZmJGJGtJtVxuikpKYnMzEwAMjMz2bNnDy1btqz2WKtLdbRZlmUmTJhAv379GDdunCnCrFbitKJxx6Bbt26cOXOGuLg4srKy2LRpE4MGDTJHuNVCvO9CMXd3d5RKZanR1+vXr5capRXubPr06axbt46dO3fSuHFjc4djUcLCwrh+/TrBwcGoVCpUKhW7d+9myZIlqFQqdDqduUOsMSpzB1BXVMfppmvXrjFp0iRkWUaWZaZNm0b79u1NEW61qI4279+/n9WrV9O+fXvDnMQffviBoKCg6g63WlTXacVBgwZx/PhxcnJyaNy4MX/99Rddu3at7nBNwphjoFKp+PjjjwkNDUWv1zNz5kyLzr5h7Ptuye+rYBwrKyuCg4PZvn07jzzyiKF8+/btDBs2zIyRWQ5Zlpk+fTp//fUXu3btomnTpuYOyeLcd999nD59ukTZU089RatWrXj99ddRKpVmiqzmiY5sNbt9HqAsy0bPDQwODiY8PNwEUZlWVdrcu3dv9Hq9KcIyqaq0GagTV/Df7Rg89NBDPPTQQzUdlkndrc114X0V7m7GjBmMGzeOLl260KNHD5YvX05MTAyTJ082d2gWYerUqfz888/8/fffODo6Gn4MOjs7Y2tra+boLIOjo2OpOcX29vY0aNCg3s01Fh3ZalIfTzeJNv+nLrf5dvXxGNTHNgvlGzlyJCkpKbzzzjskJCTQrl07Nm3ahJ+fn7lDswjFacpCQkJKlK9YsYIJEybUfECCRRNzZKvJraebbrV9+3Z69uxppqhMS7T5P3W5zberj8egPrZZuLMpU6YQHR2NRqMhLCyMPn36mDski1E8fe72h+jEVs2uXbvq3c0QQIzIVkh2djaXL182LEdFRREeHo6bmxtNmjSpk6ebRJvrR5tvVx+PQX1ssyAIgsUzQ6YEi7Vz504ZKPUYP368oc6yZctkPz8/2crKSu7cubO8e/du8wVcDUSb60ebb1cfj0F9bLMgCIKlk2S5jt8DVRAEQRAEQaiTxBxZQRAEQRAEwSKJjqwgCIIgCIJgkURHVhAEQRAEQbBIoiMrCIIgCIIgWCTRkRUEQRAEoUbMmzePjh07mnQfK1euxMXFxaT7EGoP0ZEVBEEQhHpuwoQJSJKEJEmoVCqaNGnC888/T1pamrlDq7CRI0cSERFh7jCEGiJuiCAIgiAIAoMHD2bFihVotVrOnTvHxIkTSU9P55dffjF3aBVia2uLra2tucMQaogYkRUEQRAEAWtra7y8vGjcuDEDBw5k5MiRbNu2rUSdFStW0Lp1a2xsbGjVqhWff/55ifWvv/46LVq0wM7OjoCAAObMmUNhYaHRMeh0OiZNmkTTpk2xtbWlZcuW/N///Z9hfX5+Pm3btuXZZ581lEVFReHs7MzXX38NlJ5acPLkSUJDQ3F0dMTJyYng4GCOHTtWkUMj1GJiRFYQBEEQhBKuXLnCli1bUKvVhrKvv/6auXPnsnTpUjp16sSJEyd45plnsLe3Z/z48QA4OjqycuVKfHx8OH36NM888wyOjo7MnDnTqP3q9XoaN27Mb7/9hru7OwcOHODZZ5/F29ubxx9/HBsbG3766Sfuuecehg4dyoMPPsi4ceMIDQ3lmWeeKXObY8eOpVOnTnzxxRcolUrCw8NLtEuwcOa+tZgg1Dfjx4833P70r7/+Msk++vbtK7/44osm2XZ55s6da2jXJ598UqP7FgShasaPHy8rlUrZ3t5etrGxMfxfXrx4saGOr6+v/PPPP5d43bvvviv36NGj3O1++OGHcnBwsGF57ty5cocOHSoU25QpU+THHnus1Hbd3d3l6dOny15eXnJycrJh3YoVK2RnZ2fDsqOjo7xy5coK7VOwHGJqgVBlt14kcOvj8uXL5g6t1ho8eDAJCQkMGTKkRvcbEhLCl19+aZJtv/rqqyQkJNC4cWOTbF8QBNMKDQ0lPDycw4cPM336dAYNGsT06dMBSE5OJjY2lkmTJuHg4GB4LFiwgMjISMM2/vjjD3r37o2XlxcODg7MmTOHmJiYCsXx5Zdf0qVLFzw8PHBwcODrr78utY1XXnmFli1b8tlnn7FixQrc3d3L3d6MGTN4+umn6d+/P++//36JeAXLJzqyQrUo7pjd+mjatGmpegUFBWaIrvYpnotmbW1dbp2KzCszRmpqKgcOHODBBx+s1u0Wc3BwwMvLC6VSaZLtC4JgWvb29gQGBtK+fXuWLFmCRqNh/vz5QNEpfyiaXhAeHm54nDlzhkOHDgFw6NAhRo0axZAhQ9iwYQMnTpxg9uzZFfre/+2333j55ZeZOHEi27ZtIzw8nKeeeqrUNq5fv87FixdRKpVcunTpjtucN28eZ8+e5f777+fff/+lTZs2/PXXXxU5NEItJjqyQrUo7pjd+lAqlYSEhDBt2jRmzJiBu7s7AwYMAODcuXMMHToUBwcHPD09GTduHDdu3DBsLycnhyeffBIHBwe8vb35+OOPCQkJ4aWXXjLUkSSJtWvXlojDxcWFlStXGpbj4uIYOXIkrq6uNGjQgGHDhhEdHW1YP2HCBB5++GE++ugjvL29adCgAVOnTi3RidRoNMycORNfX1+sra1p3rw53377LbIsExgYyEcffVQihjNnzqBQKCr0qz86OhpJkvjtt98ICQnBxsaGH3/8kZSUFEaPHk3jxo2xs7MjKCio1BXEZR2rsmzcuJEOHTrQqFEjdu3ahSRJbN26lU6dOmFra0u/fv24fv06mzdvpnXr1jg5OTF69Ghyc3MN2/jjjz8ICgrC1taWBg0a0L9/f3JycoxupyAIlmPu3Ll89NFHxMfH4+npSaNGjbhy5QqBgYElHsWDFvv378fPz4/Zs2fTpUsXmjdvztWrVyu0z71799KzZ0+mTJlCp06dCAwMLPO7dOLEibRr147vv/+emTNncu7cuTtut0WLFrz88sts27aNRx99lBUrVlQoLqH2Eh1ZweRWrVqFSqVi//79fPXVVyQkJNC3b186duzIsWPH2LJlC0lJSTz++OOG17z22mvs3LmTv/76i23btrFr1y7CwsIqtN/c3FxCQ0NxcHBgz5497Nu3DwcHBwYPHlzi1/3OnTuJjIxk586drFq1ipUrV5boDD/55JP8+uuvLFmyhPPnz/Pll1/i4OCAJElMnDix1Bfid999x7333kuzZs0qfKxef/11XnjhBc6fP8+gQYPIz88nODiYDRs2cObMGZ599lnGjRvH4cOHK3ys1q1bx7Bhw0qUzZs3j6VLl3LgwAFiY2N5/PHH+fTTT/n555/ZuHEj27dv57PPPgMgISGB0aNHM3HiRM6fP8+uXbt49NFHkWW5wu0UBKH2CwkJoW3btixatAgo+r547733+L//+z8iIiI4ffo0K1asYPHixQAEBgYSExPDr7/+SmRkJEuWLKnwyGdgYCDHjh1j69atREREMGfOHI4ePVqizrJlyzh48CDff/89Y8aMYfjw4YwdO7bMkd+8vDymTZvGrl27uHr1Kvv37+fo0aO0bt26kkdFqHXMPUlXsHy3XiRQ/Bg+fLgsy0UXHXXs2LFE/Tlz5sgDBw4sURYbGysD8sWLF+WsrCzZyspK/vXXXw3rU1JSZFtb2xIXMFHGxVLOzs7yihUrZFmW5W+//VZu2bKlrNfrDes1Go1sa2srb9261RC7n5+frNVqDXVGjBghjxw5UpZlWb548aIMyNu3by+z7fHx8bJSqZQPHz4sy7IsFxQUyB4eHne8sGD8+PHysGHDSpRFRUXJgPzpp5+W+7piQ4cOlV955RVZlmWjj1V+fr7s6Ogonzp1SpZlWd65c6cMyDt27DDUee+992RAjoyMNJQ999xz8qBBg2RZluWwsDAZkKOjo+8Yn5+fn7jYSxAsTFnfS7Isyz/99JNsZWUlx8TEGJY7duwoW1lZya6urnKfPn3kNWvWGOq/9tprcoMGDWQHBwd55MiR8ieffFLiwqu7XeyVn58vT5gwQXZ2dpZdXFzk559/Xn7jjTcMrzl//rxsa2tb4qKzjIwM2d/fX545c6YsyyUv9tJoNPKoUaNkX19f2crKSvbx8ZGnTZsm5+XlVe5ACbWOSL8lVIvQ0FC++OILw7K9vb3heZcuXUrUDQsLY+fOnTg4OJTaTmRkJHl5eRQUFNCjRw9DuZubGy1btqxQTGFhYVy+fBlHR8cS5fn5+SVOVbVt27bEvE5vb29Onz4NQHh4OEqlkr59+5a5D29vb+6//36+++47unXrxoYNG8jPz2fEiBEVirXY7cdKp9Px/vvvs3r1auLi4tBoNGg0GsPxjYyMNOpY/fvvvzRo0ICgoKAS5e3btzc89/T0NOR+vLXsyJEjAHTo0IH77ruPoKAgBg0axMCBAxk+fDiurq6VaqsgCLXHrWehbjVmzBjGjBlT7vLtPvzwQz788MMSZbdOCZs3bx7z5s0r9/XW1tasWLGi1Jmu9957D4BWrVqVmO4E4OTkRFRUlGF5woQJTJgwAQArKyuLu6GDUDGiIytUi+KLBMpbdyu9Xs+DDz7IBx98UKqut7f3XSfuF5MkqdRp7Vvntur1eoKDg/npp59KvdbDw8Pw/PZ8gpIkGS5sMObuME8//TTjxo3jk08+YcWKFYwcORI7Ozuj2nC724/Vxx9/zCeffMKnn35KUFAQ9vb2vPTSS4ZTaLe3vzxlTSuAkm2XJOmOx0KpVLJ9+3YOHDjAtm3b+Oyzz5g9ezaHDx8u88I+QRAEQTA1MUdWqHGdO3fm7Nmz+Pv7l7pooLhDrFarDVfCAqSlpZW6d7aHhwcJCQmG5UuXLpX4pd65c2cuXbpEw4YNS+3H2dnZqFiDgoLQ6/Xs3r273DpDhw7F3t6eL774gs2bNzNx4kRjD8Vd7d27l2HDhvHEE0/QoUMHAgICSnT0jTlWsiyzfv16HnrooSrHI0kSvXr1Yv78+Zw4cQIrKytx9a8gCIJgNqIjK9S4qVOnkpqayujRozly5AhXrlxh27ZtTJw4EZ1Oh4ODA5MmTeK1117jn3/+4cyZM0yYMAGFouTHtV+/fixdupTjx49z7NgxJk+eXGJEcezYsbi7uzNs2DD27t1LVFQUu3fv5sUXX+TatWtGxerv78/48eOZOHEia9euJSoqil27dvHbb78Z6iiVSiZMmMCsWbMIDAwscZq/qgIDAw2joOfPn+e5554jMTHRsN6YYxUWFkZOTg59+vSpUiyHDx9m0aJFHDt2jJiYGNasWUNycrK4aEIQBEEwG9GRFWqcj48P+/fvR6fTMWjQINq1a8eLL76Is7OzoQP2v//9jz59+vDQQw/Rv39/evfuTXBwcIntfPzxx/j6+tKnTx/GjBnDq6++WuKUvp2dHXv27KFJkyY8+uijtG7dmokTJ5KXl4eTk5PR8X7xxRcMHz6cKVOm0KpVK5555plSKacmTZpEQUFBtY7GAsyZM4fOnTszaNAgQkJC8PLy4uGHHy5R527H6u+//+b+++9HparaTCInJyf27NnD0KFDadGiBW+99RYff/xxjd/UQRAEQRCKSbKxk+wEwcxCQkLo2LEjn376qblDKWX//v2EhIRw7do1PD0971h3woQJpKenl8qBayrt27fnrbfeKpHezJT8/f156aWXSlzgIQiCIAimIEZkBaEKNBoNly9fZs6cOTz++ON37cQW27BhAw4ODmzYsMGk8RUUFPDYY4/VyKjpokWLcHBwqPDtKAVBEAShssSIrGAxauOI7MqVK5k0aRIdO3Zk3bp1NGrU6K6vuX79OpmZmUBRlobbMxVYqtTUVFJTU4GiC/GMvaBOEARBECpLdGQFQRAEQRAEiySmFgiCIAiCIAgWSXRkBUEQBEEQBIskOrKCIAiCIAiCRRIdWUEQBEEQBMEiiY6sIAiCIAiCYJFER1YQBEEQBEGwSKIjKwiCIAiCIFgk0ZEVBEEQBEEQLNL/A7HrOJd2h4oHAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGMCAYAAAAm4UHAAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADy9UlEQVR4nOzdd3gUxf/A8ffd5dJ7T0gDAiEQeu9NOgIi6hcUaSpFBI0FO2BD1B82ioIKiCgIAkrvTXpvCT2QAAmBhPR2uZvfHzFHjnRyySVhXs9zT25n52Y+s3e3N9mdnVUIIQSSJEmSJEmSVMUoTR2AJEmSJEmSJD0M2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSqtRYsWoVAoOHr0qKlDqRJ27dqFQqFg165d5VJ+QEAAI0eONEpZJ06coHPnzjg4OKBQKPjmm2+MUm5Rrly5goWFBQcOHCjV6z777DPWrFnz0PVeu3YNhULBV199VWze3M/8tWvXSl3Pzz//TI0aNUhNTX2IKKWHkfudW7lypUnqN+Z3UpKqKjNTByBJUtWwevVq7O3tjVLW6NGjSU1NZdmyZTg5OREQEGCUcovyxhtv0KNHD9q2bVuq13322WcMGTKEQYMGlU9gRjJixAhmzpzJF198wfTp000djlQBjPmdlKSqSnZkJUkqkaZNmxqtrLNnz/Liiy/Sp08fo5Sn0WhQKBSYmRW8SwsPD2fNmjVs2rTJKPVVRmZmZowdO5aPP/6YKVOmYG1tbdJ40tLSTB5DdWfM76QkVVVyaIFU5f377790794dOzs7rK2tadeuHevXr8+X7+zZswwcOBAnJycsLS1p0qQJixcvNsiTe6rwt99+IzQ0FE9PT6ysrOjcuTMnTpwoNpY7d+4wYcIE6tevj62tLe7u7nTr1o29e/ca5Mt7unnWrFnUrFkTW1tb2rZty8GDBw3yHj16lP/9738EBARgZWVFQEAAQ4cO5fr160XGsmTJEhQKRYGn0j/66CPUajW3bt0Cck719+/fH3d3dywsLPD29qZfv37cuHFD/5oHT2PqdDo++eQTgoKCsLKywtHRkUaNGvHtt98WGlPuqfPs7GzmzZuHQqFAoVDo15fmPVqyZAmvv/46NWrUwMLCgsuXLxda77x58/D09KRHjx4G6cW1W6FQkJqayuLFi/WxdunSBSj5e513e3366af4+flhaWlJixYt2L59e6Ex57Vt2za6d++Ovb091tbWtG/fvsDXPvvssyQlJbFs2bJiyyzJey6EYO7cuTRp0gQrKyucnJwYMmQIV69eNSirS5cuhISEsGfPHtq1a4e1tTWjR49m0KBB+Pv7o9Pp8tXfunVrmjVrpl/OyMjgnXfeoWbNmpibm1OjRg1efvllEhISDF4XEBBA//79WbduHU2bNsXKyorg4GDWrVsH5HzGgoODsbGxoVWrVgUOTTp69CgDBgzA2dkZS0tLmjZtyp9//pkv382bN3nppZfw9fXF3Nwcb29vhgwZwu3btw3yaTQa3nvvPby9vbG3t+exxx7jwoULBnm2bt3KwIED8fHxwdLSksDAQMaOHcvdu3cN8k2bNg2FQsG5c+cYOnQoDg4OeHh4MHr0aBITE/Nti9J+J3PLP336NE899RQODg44OzsTGhpKdnY2Fy5coHfv3tjZ2REQEMAXX3yRb7tIUqUiJKmSWrhwoQDEkSNHCs2za9cuoVarRfPmzcXy5cvFmjVrRM+ePYVCoRDLli3T5zt//ryws7MTtWvXFr/++qtYv369GDp0qADEzJkz9fl27twpAOHr6ysGDhwo1q5dK3777TcRGBgo7O3txZUrV4qM+fz582L8+PFi2bJlYteuXWLdunVizJgxQqlUip07d+rzRURECEAEBASI3r17izVr1og1a9aIhg0bCicnJ5GQkKDPu2LFCvHhhx+K1atXi927d4tly5aJzp07Czc3N3Hnzp18sefWk5mZKTw9PcWzzz5rEKNGoxHe3t7iqaeeEkIIkZKSIlxcXESLFi3En3/+KXbv3i2WL18uxo0bJ8LCwvSv8/f3FyNGjNAvz5gxQ6hUKjF16lSxfft2sWnTJvHNN9+IadOmFbp9YmNjxYEDBwQghgwZIg4cOCAOHDjwUO9RjRo1xJAhQ8Q///wj1q1bJ+Li4gqtt1atWuLpp582SCtJuw8cOCCsrKxE37599bGeO3fuod5rX19f0aFDB/HXX3+JFStWiJYtWwq1Wi3279+vz5v7mY+IiNCnLVmyRCgUCjFo0CCxatUqsXbtWtG/f3+hUqnEtm3b8rU1ODhYDB48uNBtUdK2CyHEiy++KNRqtXj99dfFpk2bxO+//y7q1asnPDw8RExMjD5f586dhbOzs/D19RXff/+92Llzp9i9e7f4+++/BSC2bt1qUH94eLgAxHfffSeEEEKn04levXoJMzMz8cEHH4gtW7aIr776StjY2IimTZuKjIwM/Wv9/f2Fj4+PCAkJEX/88YfYsGGDaN26tVCr1eLDDz8U7du3F6tWrRKrV68WdevWFR4eHiItLU3/+h07dghzc3PRsWNHsXz5crFp0yYxcuRIAYiFCxfq8924cUN4eXkJV1dXMWvWLLFt2zaxfPlyMXr0aBEeHi6EuP9ZDAgIEM8++6xYv369+OOPP4Sfn5+oU6eOyM7O1pc3b948MWPGDPHPP/+I3bt3i8WLF4vGjRuLoKAgkZWVpc83depUAYigoCDx4Ycfiq1bt4pZs2YJCwsLMWrUKIPt+DDfybzlf/zxx2Lr1q3irbfeEoCYOHGiqFevnvjuu+/E1q1bxahRowQg/vrrryI/T5JkSrIjK1VaJenItmnTRri7u4vk5GR9WnZ2tggJCRE+Pj5Cp9MJIYT43//+JywsLERkZKTB6/v06SOsra31HcfcH6ZmzZrpXyuEENeuXRNqtVq88MILpWpDdna20Gg0onv37uKJJ57Qp+d2bho2bGjwY3f48GEBiD/++KPIMlNSUoSNjY349ttv9ekPdmSFyPnRMjc3F7dv39anLV++XABi9+7dQgghjh49KgCxZs2aItvy4I9m//79RZMmTYrdBgUBxMsvv2yQVtr3qFOnTiWq6/bt2wIQn3/+uUF6SdttY2Nj0O7CFPdee3t7i/T0dH16UlKScHZ2Fo899pg+7cGObGpqqnB2dhaPP/64QV1arVY0btxYtGrVKl8czz77rPDw8Cgy1pK0Pfcfjv/7v/8zSI+KihJWVlbirbfe0qd17txZAGL79u0GeTUajfDw8BDDhg0zSH/rrbeEubm5uHv3rhBCiE2bNglAfPHFFwb5cj+r8+fP16f5+/sLKysrcePGDX3ayZMnBSC8vLxEamqqPn3NmjUCEP/8848+rV69eqJp06ZCo9EY1NW/f3/h5eUltFqtEEKI0aNHC7VabdCxf1DuZ7Fv374G6X/++acA9P+kPUin0wmNRiOuX78uAPH333/r1+V2NB/cFhMmTBCWlpYG+6WH+U7mlv/g+9qkSRMBiFWrVunTNBqNcHNzK/YfI0kyJTm0QKqyUlNTOXToEEOGDMHW1lafrlKpGD58ODdu3NCf3tuxYwfdu3fH19fXoIyRI0eSlpaW7/T7sGHDDE55+/v7065dO3bu3FlsXD/88APNmjXD0tISMzMz1Go127dvJzw8PF/efv36oVKp9MuNGjUCMBg2kJKSwpQpUwgMDMTMzAwzMzNsbW1JTU0tsMy8xo8fD8CCBQv0abNnz6Zhw4Z06tQJgMDAQJycnJgyZQo//PADYWFhxbYRoFWrVpw6dYoJEyawefNmkpKSSvS6wpT2PXryySdLVG7u8Al3d3eD9Idtd16lea8HDx6MpaWlftnOzo7HH3+cPXv2oNVqCyx///79xMfHM2LECLKzs/UPnU5H7969OXLkSL5ZCtzd3YmNjSU7O7vQuEvS9nXr1qFQKHjuuecM6vb09KRx48b5ZsdwcnKiW7duBmlmZmY899xzrFq1Sn9aXKvVsmTJEgYOHIiLiwuQ894D+a7Af+qpp7Cxsck3jKJJkybUqFFDvxwcHAzkDHHIOy43Nz33+3T58mXOnz/Ps88+C2DQrr59+xIdHa3fZ2zcuJGuXbvqyyjKgAEDDJYL+h7HxsYybtw4fH199Z8Vf39/gAI/LwWVmZGRQWxsbKFxlOY72b9/f4Pl4OBgFAqFwbh1MzMzAgMDix3GJEmmJDuyUpV17949hBB4eXnlW+ft7Q1AXFyc/m9J8uXy9PTMl9fT0zNfvgfNmjWL8ePH07p1a/766y8OHjzIkSNH6N27N+np6fny5/6Q57KwsAAwyDts2DBmz57NCy+8wObNmzl8+DBHjhzBzc2twDLz8vDw4JlnnuHHH39Eq9Vy+vRp9u7dy8SJE/V5HBwc2L17N02aNOHdd9+lQYMGeHt7M3XqVDQaTaFlv/POO3z11VccPHiQPn364OLiQvfu3R96urTSvkcF5S1I7jbK24mEh293rtK+14V9prKyskhJSSmwjtyxmEOGDEGtVhs8Zs6ciRCC+Ph4g9dYWloihCAjI6PQ2EvS9tu3byOEwMPDI1/dBw8ezDe2s7D3Y/To0WRkZOjH7W7evJno6GhGjRqlzxMXF4eZmRlubm4Gr1UoFAV+75ydnQ2Wzc3Ni0zP3Ra52/ONN97I16YJEyYA6Nt1584dfHx8Ct2GeRX3PdbpdPTs2ZNVq1bx1ltvsX37dg4fPqwfD/+w+4YHleY7WdC2sra2zvc9MTc3L/KzJEmmJmctkKosJycnlEol0dHR+dblHoVzdXUFcn4USpIvV0xMTL68MTEx+X5cHvTbb7/RpUsX5s2bZ5CenJxc5OsKk5iYyLp165g6dSpvv/22Pj0zMzNfB6YwkydPZsmSJfz9999s2rQJR0dH/RGpXA0bNmTZsmUIITh9+jSLFi3io48+wsrKyqDevMzMzAgNDSU0NJSEhAS2bdvGu+++S69evYiKiir1FeulfY/yHjEvSu7rCtpeD9PuXKV9rwv7TJmbmxucUSgo9u+//542bdoUmMfDw8NgOT4+HgsLi0LLzFVc211dXVEoFOzdu1fficrrwbTC3o/69evTqlUrFi5cyNixY1m4cCHe3t707NlTn8fFxYXs7Gzu3Llj0JkVQhATE0PLli2LbEtJ5W7Pd955h8GDBxeYJygoCAA3NzeDC9/K4uzZs5w6dYpFixYxYsQIfXpRFyg+DGN/JyWpKpBHZKUqy8bGhtatW7Nq1SqDoxQ6nY7ffvsNHx8f6tatC0D37t3ZsWOHvlOU69dff8Xa2jpfJ+GPP/5ACKFfvn79Ovv379dfsV4YhUKR7wf+9OnTpZ6EP295Qoh8Zf7000+Fno5+UPPmzWnXrh0zZ85k6dKljBw5Ehsbm0Lra9y4MV9//TWOjo4cP368RHU4OjoyZMgQXn75ZeLj4x9qQv/Svkcl5e/vj5WVFVeuXCk0T1HttrCwKPAoWGnf61WrVhkc2UpOTmbt2rV07NjRYHhJXu3bt8fR0ZGwsDBatGhR4CP3qGOuq1evUr9+/ULbWtK29+/fHyEEN2/eLLDehg0blriOUaNGcejQIf7991/Wrl3LiBEjDNrcvXt3IOefg7z++usvUlNT9evLKigoiDp16nDq1KlCt6ednR0Affr0YefOnflmH3gYuZ38Bz8vP/74Y5nLLowxvpOSVBXII7JSpbdjx44Cd8J9+/ZlxowZ9OjRg65du/LGG29gbm7O3LlzOXv2LH/88Yf+B2Tq1KmsW7eOrl278uGHH+Ls7MzSpUtZv349X3zxBQ4ODgZlx8bG8sQTT/Diiy+SmJjI1KlTsbS05J133iky1v79+/Pxxx8zdepUOnfuzIULF/joo4+oWbNmkWMWC2Nvb0+nTp348ssvcXV1JSAggN27d/Pzzz/j6OhY4nImT57MM888g0Kh0J9CzbVu3Trmzp3LoEGDqFWrFkIIVq1aRUJCQr7pqvJ6/PHHCQkJoUWLFri5uXH9+nW++eYb/P39qVOnTqnbWtr3qKTMzc0LnNaspO1u2LAhu3btYu3atXh5eWFnZ0dQUFCp32uVSkWPHj0IDQ1Fp9Mxc+ZMkpKSirx5ga2tLd9//z0jRowgPj6eIUOG4O7uzp07dzh16hR37twxOCKs0+k4fPgwY8aMKXKblKTt7du356WXXmLUqFEcPXqUTp06YWNjQ3R0NP/++y8NGzbUj8EuztChQwkNDWXo0KFkZmbmGwvbo0cPevXqxZQpU0hKSqJ9+/acPn2aqVOn0rRpU4YPH16iekrixx9/pE+fPvTq1YuRI0dSo0YN4uPjCQ8P5/jx46xYsQLImaJu48aNdOrUiXfffZeGDRuSkJDApk2bCA0NpV69eiWus169etSuXZu3334bIQTOzs6sXbuWrVu3Gq1dYPzvpCRVCSa4wEySSiT3Cu7CHrlXdu/du1d069ZN2NjYCCsrK9GmTRuxdu3afOWdOXNGPP7448LBwUGYm5uLxo0bG0y3I8T9q5CXLFkiJk2aJNzc3ISFhYXo2LGjOHr0aLExZ2ZmijfeeEPUqFFDWFpaimbNmok1a9aIESNGCH9/f32+3CvZv/zyy3xlAGLq1Kn65Rs3bognn3xSODk5CTs7O9G7d29x9uzZfFcsFzRrQd64LCwsRO/evfOtO3/+vBg6dKioXbu2sLKyEg4ODqJVq1Zi0aJFBvkerO///u//RLt27YSrq6swNzcXfn5+YsyYMeLatWvFbicKmLVAiNK9RytWrCi2nlw///yzUKlU4tatW6Vu98mTJ0X79u2FtbW1AETnzp2FEKV/r2fOnCmmT58ufHx8hLm5uWjatKnYvHmzQV0FTb8lhBC7d+8W/fr1E87OzkKtVosaNWqIfv365dsG27dvF4A4duxYkdujpG0XQohffvlFtG7dWv/9ql27tnj++ecNvg+dO3cWDRo0KLLOYcOGCUC0b9++wPXp6eliypQpwt/fX6jVauHl5SXGjx8v7t27Z5DP399f9OvXL9/rC/pMFfY9O3XqlHj66aeFu7u7UKvVwtPTU3Tr1k388MMPBvmioqLE6NGjhaenp1Cr1cLb21s8/fTT+llACvss5tab97MbFhYmevToIezs7ISTk5N46qmnRGRkZL7ve+6sAnmn1hOi4M/Gw3wnCyt/xIgRwsbGJt92Lcl7K0mmpBAiz/lTSXrE7dq1i65du7JixQqGDBli6nCMZu3atQwYMID169fTt29fU4dT4TIyMvDz8+P1119nypQppg6n3AwfPpyrV6+yb98+U4ciSZJUIeQYWUmqxsLCwti4cSOvv/46TZo0MdotYasaS0tLpk+fzqxZs/JNV1VdXLlyheXLlzNz5kxThyJJklRh5BhZSarGJkyYwL59+2jWrJn+NquPqpdeeomEhASuXr1aqguVqorIyEhmz55Nhw4dTB2KJElShZFDCyRJkiRJkqQqSQ4tkCRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlSRJkiRJkqok2ZGVJEmSJEmSqiTZkZUkSZIkSZKqJNmRlcpk5MiRDBo0qNzrUSgUrFmzxujlCiF46aWXcHZ2RqFQcPLkSaPXIZVMly5dePXVV4vMExAQwDfffFMh8UhSdTRt2jSaNGlS4fWW5Pv9sObPn4+vry9KpVLuHx5BsiP7CBg5ciQKhUL/cHFxoXfv3pw+fdrUoZWbknawN23axKJFi1i3bh3R0dGEhIQYNY7y6oCbiuxISlLp5O5/P//8c4P0NWvWoFAoKjyeN954g+3bt5cor6k6vQCLFi3C0dGx2HxJSUlMnDiRKVOmcPPmTV566SWjxlGeHXDJOGRH9hHRu3dvoqOjiY6OZvv27ZiZmdG/f39Th2VyV65cwcvLi3bt2uHp6YmZmVmpyxBCkJ2dXQ7RSZJUHVhaWjJz5kzu3btn6lCwtbXFxcXF1GEYTWRkJBqNhn79+uHl5YW1tfVDlaPRaIwcmVRRZEf2EWFhYYGnpyeenp40adKEKVOmEBUVxZ07d/R5zpw5Q7du3bCyssLFxYWXXnqJlJQU/XqtVktoaCiOjo64uLjw1ltvIYQwqEcIwRdffEGtWrWwsrKicePGrFy5ssjYAgIC+Pjjjxk2bBi2trZ4e3vz/fffF/maomKdNm0aixcv5u+//9Yfhd61a1e+MkaOHMkrr7xCZGQkCoWCgIAAADIzM5k0aRLu7u5YWlrSoUMHjhw5on/drl27UCgUbN68mRYtWmBhYcHevXuLjLe0co9GbN68meDgYGxtbfX/jOS1cOFCgoODsbS0pF69esydO1e/7sknn+SVV17RL7/66qsoFArOnTsHQHZ2NnZ2dmzevNmosRdm9+7dtGrVCgsLC7y8vHj77beL/AcgNjaWxx9/HCsrK2rWrMnSpUsrJE5JMrbHHnsMT09PZsyYUeD61NRU7O3t8+0r165di42NDcnJyQAcPnyYpk2bYmlpSYsWLVi9erXBkKiCjmI+eOT3waOsu3btolWrVtjY2ODo6Ej79u25fv06ixYtYvr06Zw6dUq/H120aFGB8eeeAZs+fTru7u7Y29szduxYsrKyCt0m9+7d4/nnn8fJyQlra2v69OnDpUuX9DGNGjWKxMREfd3Tpk3LV8aiRYto2LAhALVq1UKhUHDt2jUA5s2bR+3atTE3NycoKIglS5YYvFahUPDDDz8wcOBAbGxs+OSTTwqNtTDXrl1DoVCwatUqunbtirW1NY0bN+bAgQMG+fbv30+nTp2wsrLC19eXSZMmkZqaCsD333+vbwPcf7/mzJmjT+vVqxfvvPNOqeN7ZAip2hsxYoQYOHCgfjk5OVmMHTtWBAYGCq1WK4QQIjU1VXh7e4vBgweLM2fOiO3bt4uaNWuKESNG6F83c+ZM4eDgIFauXCnCwsLEmDFjhJ2dnUHZ7777rqhXr57YtGmTuHLlili4cKGwsLAQu3btKjQ+f39/YWdnJ2bMmCEuXLggvvvuO6FSqcSWLVv0eQCxevXqEsWanJwsnn76adG7d28RHR0toqOjRWZmZr56ExISxEcffSR8fHxEdHS0iI2NFUIIMWnSJOHt7S02bNggzp07J0aMGCGcnJxEXFycEEKInTt3CkA0atRIbNmyRVy+fFncvXu3wLbljbs0Fi5cKNRqtXjsscfEkSNHxLFjx0RwcLAYNmyYPs/8+fOFl5eX+Ouvv8TVq1fFX3/9JZydncWiRYuEEEJ89913IiQkRJ+/SZMmwtXVVcyZM0cIIcT+/fuFmZmZSE5OLnFc/v7+4uuvvy51e27cuCGsra3FhAkTRHh4uFi9erVwdXUVU6dO1efp3LmzmDx5sn65T58+IiQkROzfv18cPXpUtGvXTlhZWT1U/ZJkKrn731WrVglLS0sRFRUlhBBi9erVIu9P8Isvvij69u1r8NonnnhCPP/880IIIVJSUoSbm5t45plnxNmzZ8XatWtFrVq1BCBOnDghhMjZbzg4OBiU8WA9U6dOFY0bNxZCCKHRaISDg4N44403xOXLl0VYWJhYtGiRuH79ukhLSxOvv/66aNCggX4/mpaWVmgbbW1t9bGtW7dOuLm5iXfffVef58Hv94ABA0RwcLDYs2ePOHnypOjVq5cIDAwUWVlZIjMzU3zzzTfC3t5eX3dB+6m0tDSxbds2AYjDhw+L6OhokZ2dLVatWiXUarWYM2eOuHDhgvi///s/oVKpxI4dO/SvBYS7u7v4+eefxZUrV8S1a9cKbNuDcecVEREhAFGvXj2xbt06ceHCBTFkyBDh7+8vNBqNEEKI06dPC1tbW/H111+Lixcvin379ommTZuKkSNH6tcrFApx584dIYQQr776qnB1dRVPPfWU/j2ytbUVGzduLDAGSQjZkX0EjBgxQqhUKmFjYyNsbGwEILy8vMSxY8f0eebPny+cnJxESkqKPm39+vVCqVSKmJgYIYQQXl5e4vPPP9ev12g0wsfHR9+RTUlJEZaWlmL//v0G9Y8ZM0YMHTq00Pj8/f1F7969DdKeeeYZ0adPH/1y3g5hSWJ9sPNemK+//lr4+/vrl1NSUoRarRZLly7Vp2VlZQlvb2/xxRdfCCHud2TXrFlTbPll6cgC4vLly/q0OXPmCA8PD/2yr6+v+P333w1e9/HHH4u2bdsKIQx3kPHx8UKtVotPPvlEv4P87LPPROvWrUsV18N2ZN99910RFBQkdDqdQXtsbW31/0zl/cG4cOGCAMTBgwf1+cPDwwUgO7JSlZJ3X9SmTRsxevRoIUT+DuahQ4eESqUSN2/eFEIIcefOHaFWq/UHAX788Ufh7OwsUlNT9a+ZN29emTqycXFxAij0QEPevMW1saDYCvt+X7x4UQBi3759+vx3794VVlZW4s8//yy0LQU5ceKEAERERIQ+rV27duLFF180yPfUU08Z/KMAiFdffbXY8kvSkf3pp5/0aefOnROACA8PF0IIMXz4cPHSSy8ZvG7v3r1CqVSK9PR0odPphKurq1i5cqUQIueAw4wZM4S7u7sQ4uEOODxq5NCCR0TXrl05efIkJ0+e5NChQ/Ts2ZM+ffpw/fp1AMLDw2ncuDE2Njb617Rv3x6dTseFCxdITEwkOjqatm3b6tebmZnRokUL/XJYWBgZGRn06NEDW1tb/ePXX3/lypUrRcaXt9zc5fDw8ALzFhdrWVy5cgWNRkP79u31aWq1mlatWuWLJ2/by4O1tTW1a9fWL3t5eREbGwvAnTt3iIqKYsyYMQbb+pNPPtFv65CQEFxcXNi9ezd79+6lcePGDBgwgN27dwM5p+86d+5crm3IFR4eTtu2bQ1OcbZv356UlBRu3LhRYP4HP1/16tUr0cUfklRZzZw5k8WLFxMWFpZvXatWrWjQoAG//vorAEuWLMHPz49OnToB9/d7eceAPrjfLC1nZ2dGjhxJr169ePzxx/n222/zDV8qqYJiS0lJISoqKl/e3O9369at9WkuLi4EBQUVut8vjfDwcIN9OOTsb8prH96oUSP9cy8vLwD9vvrYsWMsWrTIYD/dq1cvdDodERERKBQKOnXqxK5du0hISODcuXOMGzcOrVZLeHg4u3btolmzZtja2hol1uqo9Fe2SFWSjY0NgYGB+uXmzZvj4ODAggUL+OSTTxBCFHoFbUmvrNXpdACsX7+eGjVqGKyzsLAodcyF1WuMWAsj/hvz+2A5BdWZtyNdHtRqtcGyQqHQx5e7rRcsWGDwYwCgUqn0+XN3kObm5nTp0oWQkBC0Wi1nzpxh//79FXY1bkHbr7BtXdw6SaqqOnXqRK9evXj33XcZOXJkvvUvvPACs2fP5u2332bhwoWMGjVK/x0QD1yPUBClUpkvX3EXMS1cuJBJkyaxadMmli9fzvvvv8/WrVtp06ZNyRtWhKK+3wWlG+s7X5H78Lz76tw6cvfROp2OsWPHMmnSpHyv8/PzA3JmRpg/f77+gIOjoyOdOnVi9+7d7Nq1iy5duhglzupKHpF9RCkUCpRKJenp6QDUr1+fkydP6gegA+zbtw+lUkndunVxcHDAy8uLgwcP6tdnZ2dz7Ngx/XL9+vWxsLAgMjKSwMBAg4evr2+R8eQtN3e5Xr16BeYtLlYAc3NztFptCbfGfYGBgZibm/Pvv//q0zQaDUePHiU4OLjU5ZUXDw8PatSowdWrV/Nt65o1a+rzdenShV27dul3hgqFgo4dO/LVV1+Rnp6e76hFealfvz779+83+AHbv38/dnZ2+f7pAQgODiY7O5ujR4/q0y5cuEBCQkJFhCtJ5ebzzz9n7dq17N+/P9+65557jsjISL777jvOnTvHiBEj9Ovq16/PqVOn9PtsyL/fdHNzIzk52WDfWJK5sZs2bco777zD/v37CQkJ4ffffwdKtx8tKDZbW1t8fHzy5a1fvz7Z2dkcOnRInxYXF8fFixf1+9mH3YdDzv4j7z4ccvY3ptiHN2vWjHPnzuXbT+f+1kDOfvrcuXOsXLlS32nt3Lkz27ZtY//+/RV25qyqkh3ZR0RmZiYxMTHExMQQHh7OK6+8QkpKCo8//jgAzz77LJaWlowYMYKzZ8+yc+dOXnnlFYYPH46HhwcAkydP5vPPP2f16tWcP3+eCRMmGHQs7OzseOONN3jttddYvHgxV65c4cSJE8yZM4fFixcXGd++ffv44osvuHjxInPmzGHFihVMnjy5wLwliTUgIIDTp09z4cIF7t69W+KpVWxsbBg/fjxvvvkmmzZtIiwsjBdffJG0tDTGjBlTojIeFBERoR/WkfvIOxvEw5o2bRozZszg22+/5eLFi5w5c4aFCxcya9YsfZ7cHeSZM2fo2LGjPm3p0qU0a9YMe3v7Utd78+bNfO2Jj48v8jUTJkwgKiqKV155hfPnz/P3338zdepUQkNDUSrz74aCgoLo3bs3L774IocOHeLYsWO88MILWFlZlTpeSapMGjZsyLPPPlvgzCxOTk4MHjyYN998k549exp0AocNG4ZSqWTMmDGEhYWxYcMGvvrqK4PXt27dGmtra959910uX77M77//XuhMA5Czb3rnnXc4cOAA169fZ8uWLQadyYCAAP3+6+7du2RmZhZaVlZWlj62jRs3MnXqVCZOnFjg97tOnToMHDiQF198kX///ZdTp07x3HPPUaNGDQYOHKivOyUlhe3bt3P37l3S0tKK3K55vfnmmyxatIgffviBS5cuMWvWLFatWsUbb7xR4jLyunPnTr59XkxMTIleO2XKFA4cOMDLL7/MyZMnuXTpEv/884/BjDK5w8CWLl2q78h26dKFNWvWkJ6eTocOHR4q7keGKQbmShVrxIgRAtA/7OzsRMuWLfWDy3OdPn1adO3aVVhaWgpnZ2fx4osvGgww12g0YvLkycLe3l44OjqK0NBQ8fzzzxtcVKXT6cS3334rgoKChFqtFm5ubqJXr15i9+7dhcbn7+8vpk+fLp5++mlhbW0tPDw8xDfffGOQhwcumiou1tjYWNGjRw9ha2srALFz584C637wYi8hhEhPTxevvPKKcHV1FRYWFqJ9+/bi8OHD+vW5F3vdu3ev0DbljbugR2Hx5CrJRRtCCLF06VLRpEkTYW5uLpycnESnTp3EqlWr9Ot1Op1wc3MTLVq00KflXhzxxhtv5KuzuF2Cv79/ge1ZuHBhka8TQohdu3aJli1bCnNzc+Hp6SmmTJmiv7JXiPwXVURHR4t+/foJCwsL4efnJ3799deHvthMkkyloAtPr127JiwsLAr8vm3fvl0A+oue8jpw4IBo3LixMDc3F02aNBF//fWXwcVeQuTsJwIDA4WlpaXo37+/mD9/fqEXe8XExIhBgwYJLy8vYW5uLvz9/cWHH36ov0ArIyNDPPnkk8LR0bHI73luGz/88EPh4uIibG1txQsvvCAyMjL0eR78fsfHx4vhw4cLBwcHYWVlJXr16iUuXrxoUO64ceOEi4uLAAxmOMmroIu9hBBi7ty5olatWkKtVou6deuKX3/91WD9g78phencuXOB+7ypU6fqL/bKu/3v3buXbx9/+PBh/e+RjY2NaNSokfj0008N6nnyySeFSqUSiYmJQoicfbezs7PBvlsqmEKIEgy8kaRyFBAQwKuvvirvnmJi06ZN0w9DkCTJNJYuXcrkyZO5deuW/tRzYa5du0bNmjU5ceKEye7ABTnzyCYkJFSruxhKVYe82EuSJAA2b97Mt99+a+owJOmRlJaWRkREBDNmzGDs2LHFdmIlScohx8hKkgn06dPHYDqWvI/PPvvMJDEdOHCAVq1aPdRrx40bV2h7xo0bZ+RIJan6+eKLL2jSpAkeHh7yLk6SVApyaIEkmcDNmzcNrvDNy9nZGWdn5wqOqGxiY2NJSkoqcJ29vT3u7u4VHJEkSZL0KJAdWUmSJEmSJKlKkkMLJEmSJEmSpCpJXuz1EHQ6Hbdu3cLOzk7eeUiSpCIJIUhOTsbb27vAOTUfBXKfKUlSaZRmvyk7sg/h1q1bxd6pSpIkKa+oqKgC73L0KJD7TEmSHkZJ9puyI/sQ7OzsgJy7ohw4cICePXuiVqvRaDRs2bKFnj17AhT4PO89mUsrb/nFlVNc3oLWlyStqGXZ5qrR5tK28VFp84N5CmtnaduclJSEr6+vfr/xKMpte1RU1EPdTa4y0mq1XLhwgaCgIFQqlanDqbLkdiy76rgNS7PflB3Zh5B7aszOzg5ra2vs7e31P4y5y0CBz8v6Y1/ScorLW9D6kqQVtSzbXDXaXNo2PiptfjBPYe182DY/yqfUc9tub29frTqytra22NvbV5vOgynI7Vh21XkblmS/+WgO2JIkSZIkSZKqPNmRLW+pd1FuegvvewchOdrU0UiSJEmSJFUbj+TQguTkZLp164ZGo0Gr1TJp0iRefPHFcqlLEXUQ1bFfaAnw3VxwrgX+7cC/fc5fR394hE85SpIkSZIkPaxHsiNrbW3N7t27sba2Ji0tjZCQEAYPHoyLi4vR6xJOAWhbjSX5zGYcMiJRxF+F+Ktw4recDPY1/uvY/te5da0rO7aSJEmSJEkl8Eh2ZFUqFdbW1gBkZGSg1WoptxuceYSg6/EpuzXt6dutA+qY43B9H1zfDzePQ9JNOLMi5wFg7QJ+be8fsfVsCMrqNXhbkiRJkiTJGKrkGNk9e/bw+OOP4+3tjUKhYM2aNfnyzJ07l5o1a2JpaUnz5s3Zu3evwfqEhAQaN26Mj48Pb731Fq6uruUfuKU91OkBj02DMVvg7UgYsRa6vAM1O4GZFaTFwfl1sPkdmN8ZZgbAb0Ng7ywUNw6j0GWXf5ySJEmSJElVQJU8Ipuamkrjxo0ZNWoUTz75ZL71y5cv59VXX2Xu3Lm0b9+eH3/8kT59+hAWFoafnx8Ajo6OnDp1itu3bzN48GCGDBmCh4dHgfVlZmaSmZmpX05KSgJypuop6m9RzwFQqMGnbc6j/eugzUIRfQpF5AEUkftR3DiEIjMJLm+Fy1sxA/oqzFHc+xmtfzuEX1tEjRagts4Xc0GxFLe+JGllbnMpFdeO0uSVbS48Xba58NeWtc1l3TaSJElS4RSi3M6pVwyFQsHq1asZNGiQPq1169Y0a9aMefPm6dOCg4MZNGgQM2bMyFfG+PHj6datG0899VSBdUybNo3p06fnS//999/1QxTKhdDhkB6JS8qFnEfqBSyykw2y6FCRYFOTOJsg7trWI962DtmqcoxJkqRSSUtLY9iwYSQmJlabOVRLKykpCQcHh2q1DbRaLeHh4QQHB1e7uTsrktyOZVcdt2Fp9hlV8ohsUbKysjh27Bhvv/22QXrPnj3Zv38/ALdv38bKygp7e3uSkpLYs2cP48ePL7TMd955h9DQUP1y7h0nunbtyqFDh+jRo4d+gvWtW7fSo0cPgAKfl2nS+Kwstq9bTEdfJWY3D6OIPIAy+RbOqZdxTr1Mndj1CBTgEUK2T2tOxFsR0vcl1I5e+cvKE2veyeCLSytquVzaXEBMD5tXtlldaLpsc/73vrB2lrbNuWdwpOrtdlIG28NjaVXTiUB3O3Q6wZFr8ZiplDT2ccBMlTOSLyEti7QsLQ5Wamwsqt1PsCRVuGr3Lbp79y5arTbfMAEPDw9iYmIAuHHjBmPGjEEIgRCCiRMn0qhRo0LLtLCwwMLCIl967o+YWq02+EEr6nlZfuwBUixroGjZF2W7cSAEJETmXDj23wVkivgrcPsM6ttnaAUw5/ucmRDyTvnlcP++xQXFVJK0imxzacspLq9sc+Hpss3300ryvCSxGmO7SJXfMz8e4FpcGl2D3Fg4qhWZ2TqemX8QgFpuNsx9thn1PO35aW8Es3dexlylZMmYVrSulTNbTqcvdqJWKVg+ti2utjm/N/su32XPxTs093eiZwNPfV2Xbidjb6XGzdYCpVLOciM92qpdRzbXg7c1E0Lo05o3b87JkydNEJWRKRTg5J/zaDI0Jy05Bq7vRxvxLynntuCQEQV3L+Y8ji3KyePoh8q3LX6JthAfBO5BcsovSZKkMnimpR8zN52npqstADohqOVmw9U7qVy9k4rqv31s7q42S6vjh91XaF3LhaxsHZHxaQC0m7GDFePa0tjXkcMR8fy45yoAc4Y1o1+jnLNr/b//l8xsHdtCOxHonnMv+p3nY9l4Npr2ga4MbFJDH1dimgZ7K7NH+hbJUvVW7Tqyrq6uqFQq/dHXXLGxsYVezFWt2HlCyGB0QY+zS9eZvl3bor519P6UX9GnICESZUIkTQHm/Qy2HuDfDqVPG+zSs0HoTN0KSZKkKmV8l9qM71Jbv2xjYcaO17twMiqBuJRMfJxyrl14vWcQTf0c+e1gJE19HQFQKRX8M7E9A2bvI0urw9o8Z5xjM38n7CzMSM7M5q/jN+jXyIvMbC12lmZkpmTx2Kw9rBzXlhYBzpyIvMefR2/w59EbJKZreL5tAEII2s/cQUpmNktfaE3LAGfMzZSERydx9U4qQZ52BLrbVvi2kiRjqnYdWXNzc5o3b87WrVt54okn9Olbt25l4MCBJozMRKycoF7fnAdAZjJEHUYb8S/3Tq7HJSMCRcptOLca1bnVdAPErC/1N2lQeLdCIeSUX5IkSQ+jyX+d1by61fOgW737B1ZUSgWNfBw5+E534lOz8HPJ6fR2ruvGzyNb8vfJmwR55hx5tTBTcfT9HjT5aAsJaRocrXOGrnSs68Zfx29yMyGd3Rfu8HzbAJLSs0nJzNl/P/vTIf4c25ZWNZ3ZcCaa73dcRq1S8PfLHajvnXMxzbR/zlHD0Yqhrf2wleN3pSqiSn5SU1JSuHz5sn45IiKCkydP4uzsjJ+fH6GhoQwfPpwWLVrQtm1b5s+fT2RkJOPGjTNh1JWEhR0Edkfn34l9aU3o27Mb6tgzcH0fumv70F3bj1lGAlzYABc25Ez5pbRAmfgrBHRA4dMKpS7L1K2QJEmqdjwdLPF0sDRIa1XTmVY1nfPlPf5+D5IyNPoOZ8sAZ+Y/35xdF+7g42QFgIO1mvMf96bpR1sRCJxtzAFwt8+pQ6MVfLH5PItGtSI+NYtF+68BYG2hon8jbxys1Px5NIp9l+/yeCNvHqv/CJzVlKqcKtmRPXr0KF27dtUv584oMGLECBYtWsQzzzxDXFwcH330EdHR0YSEhLBhwwb8/f1NFXLlZWapP/qqbfsqG9f/Q9+mPpjdPAzX9yOu/9exjdgFEbv+m8vWDEX8T/91bFtjpk03cSMkSZIeLUqlAkdrc4O0Bt4ONPB2MEizVKsI/7g3gP4OlsPb+ONiY85vB6/TMuB+J/nlrrWZs/MK760+S4dAVxys1Px76S7/nLrFhjPR/Dq6NW1ru5CSmc2YRUcI9rLn/X7B+hkZJMkUqmRHtkuXLsXeUnbChAlMmDChgiKqPoTCDOHdDPxbQ7tXyM7KZO+qBXT2N0N14yDi2j5UqbEQdRCiDmIG9EEJd35A+LXFM9Ec0tvmDGmQJEmSKo28F3z1behF34b3p2Z0tjFnfJdAEtM1RNxNxfe/Mb3Ptvbjn1O30GgFm8/F0La2CxdikjkUEc+hiHi61XOnTS0XzM2U/PxvBDGJ6QxqWiNfh1qSykuV7MhKFUihJNnKF12LvqjajiM7K4vdqxfSpZY5ZjcOIa7tQ5kYCdEnIPoErQFmfYNwr09DnTeKsCyo1THnIjRJkiSp0rK1MOOTQQ0N0lrXcmH+8ObsOB9Lu9o5U4UFuFgT2qMus7ZeZPSiI5yd3guA1SducPZmElZqFfU87VEpFdxKSGfV8Ru0ruVicPRXkoxFdmSl0lEoSLX0RDTpCy1Hka3RsHPNr3QLtEIReZC08K3YZdxCERtGLcJg9bac1znXMpzL1tFfTvklSZJUBfRs4Gkwj62LrQWPN/bmyp0UMjU6LNU5syyM6VCT15af4rsdl3GwNmdMh5rsvxLHV1suElLDnnWvdNSXcSLyHoHutlir5bAEqWxkR1Yqs3RzV0RIX0TIU+xgA307t0QRdYjre36nljIaxe2zEH8153Hit5wX2dfQj83Fv33OTRtkx1aSJKlKqOlqw7f/a2qQ9kRTH3acv8PO87H62Rq8HSxxs7Pg7M0kXvnjBN8PbYpOJxi58Ag25iq2h3YyQfRSdSI7spLx2bgh6vXn7FUlfn37os5OhajD9+eyvXUckm7CmRU5DwBrV/Bve/+IrUcIKKvHPaMlSZIeFd8PbYpWd/8alnaBroxqH8AXmy6Qe6jibkomiekaEtM1fLXlIo95a00TrFQtyI6sVP6sHKFuz5wHQFYa3Dhy/9a6N45A2l0IX5vzALCwB782KGu0wiVFB5ouoJYXD0iSJFV2qgdumzu+c2161vcg9xptd3tLXGzMiUvN4ud91+g8+P6dyG4nZWBtrsLOUt7aWSoZ2ZGVKp65NdTqnPMAyM6CWydyOrWRByDyIGQmwaUtqC5toQMgvvoCvBqDb2vwbQW+bcDeq8hqJEmSJNNTKBT6W+neT8z506u+B87W97siX2+9yF/Hb/B+v/qMaBdQcUFKVVa5dGQzMjKwtLQsPqMkAZiZg1/rnAeATgu3z8K1feiuHyDr8h4ssxPg5rGcx8G5Ofkc/HI6tX5tcv461zVZEyRJkqSSU/53TcQr3WpDwk19esTdVDRaQS03G31aZFwavx64Rs8GngXeHEJ6tBmtI6vT6fj000/54YcfuH37NhcvXqRWrVp88MEHBAQEMGbMGGNVJVV3SlXO0VevxmhbvMjm9evp26ER6lvHIOpQzuP2WUiMzHmcXQmAmbkN7cz9Ue4+lTPO1qdFzrAGSZIkqVLJHWagUCjIOyv88rFtibibSg1HK33alrAYfvo3grO3Eln2Uts8ZQiDuXGlR5PROrKffPIJixcv5osvvuDFF1/Upzds2JCvv/5admSlh6dQgIMvuNaCRk/lpGUm5xydjTqcMxThxhEUmUm4ZYXBv2Hw7/8BCnAPBp+WOUdsPZvd33tKkiRJlVJNVxuD5YY1HBjcrAbtarvq0zKztfT+Zi/tarvwTt9g/a16pUeP0d75X3/9lfnz59O9e3fGjRunT2/UqBHnz583VjWSlMPCDmp1yXkA6HRoos9ybtPPNHJMR3nzSM50X7FhOY/ji1EDfVQ2qJLb/jccoSW4NzJhIyRJkqTitK7lQutaLgZp/166S8TdVNKysvl4YIg+PS4lE2cb81IdqY2MS8PPxdpo8UoVy2gd2Zs3bxIYGJgvXafTodFojFWNJBVMqQT3YK67dqNB374o1WpIic05YnvjMEQdQdw6jnl2KlzZlvMAzBRKuljUQMn2nOm/fFuBna+JGyNJkvRoUAAPc56sU103fh3dioR0Dco8syQ8/8th0rK0fPu/JjTycSy2nLM3Exm58AhrX2mPl4NVsfmlysdoHdkGDRqwd+9e/P39DdJXrFhB06ZNC3mVJJUjW3cI7p/zALIz0ti/+kc6+JujunUMoo6gSIzEISMKTizOeQBm1i60NvNFue8C+LcB94ZF1SJJkiSVUvtAF5LSNdhYqEh+iNerVUo61XUzSLudlMHVO6lk63T4Ot0/wnrjXhp2lmocrPJP6fXjnqvcTclk3JJjLB/bVn+XMqnqMFpHdurUqQwfPpybN2+i0+lYtWoVFy5c4Ndff2XdunXGqkaSHp5KTYJ1LXQt+6JS5+zQNPGRnFg7n+bu2pzO7a2TKNLi8CQOdp0EwEyhorOlD0rlrpwhCTVamq4NkiRJ1UDuXcG0Wi3hMcYp08PekqPvP8apqAScbMz16Z9vPM+28Nt8OqghTzb30adHxaex/vQtAE7dSOSDNWf5YkgjeQFZFWO0juzjjz/O8uXL+eyzz1AoFHz44Yc0a9aMtWvX0qNHD2NVI0nGZedFtGNLdI/917nNziT7xgnCty6mgX0qyptHUSTdxDH9Ohz7BY79ghrobBWA0vEyuvqDTN0CSZIk6T82Fma0C7x/UZhOJ4iMTyNDoyPI8/5ctglpWczZcYk8NyFjxbEbNPRx4Pm2ARUYsVRWRr3Mr1evXvTq1cuYRUpSxTKzQNRozlX329T7b6ytJu46J9fOp5l7NqqbRxG3juOYfg12foRy58e0tm+E4pIZonZ3U0cvSeVuxowZvPvuu0yePJlvvvnG1OFIUpGUSgV/v9yesOgkGnjfvzvknJ2XWXb0Rr78H60NI8jDLt/FZVLlpTR1AJJU6dl7c8upFboen8CL28mefI6TviPRBXREgcAz6RRmfw7DbH4HvO8dBKEzdcSSVC6OHDnC/PnzadRIzvYhlU37z3dQ74ONXIpNKfe6FAqFQScWYFt4bIF5s3WCCUuPcyshvdzjkoyjTB1ZJycnnJ2dS/SobJ544gmcnJwYMmSIqUORqhobN667dkP77Go04w9z2a03wtIBRdwlWl6bi9mCznB5u6mjlCSjSklJ4dlnn2XBggU4OTmZOhypisvQaMnQ6BAmmNs7PUtLQlpWoevjUrMYu+QYGRptBUYlPawyDS3Ie1opLi6OTz75hF69etG2bc6dNw4cOMDmzZv54IMPyhRkeZg0aRKjR49m8eLFpg5Fqsqca3HOZxj+3eehPPwDun3fo74TDr8NhuAB0OszcJTTeUlV38svv0y/fv147LHH+OSTT4rMm5mZSWZmpn45KSkJyLmwR6utHp2D3HZUl/ZUtNwOrE6XcwarIrfjqmORZGiysVIbXtSVmS3QCTBTwuXYJKb+fYZPB4VU+ou/quNnsTRtKVNHdsSIEfrnTz75JB999BETJ07Up02aNInZs2ezbds2XnvttbJUZXRdu3Zl165dpg5Dqi4s7NB1fJOt9wLoZXUS1ZGfIPwfuLwNuk+FVi/lzHUrSVXQsmXLOH78OEeOHClR/hkzZjB9+vR86RcuXMDW1tbY4ZnUxYsXTR1ClZT9X0fl+rVr+DmaV+h2bGwHK57xyx+TTrA/Mo2GHpY4WeVMw7V+/2l+P53Ak/Xtqe9uWWExPozq9FlMSSn5kBOjXey1efNmZs6cmS+9V69evP3228aqBoA9e/bw5ZdfcuzYMaKjo1m9ejWDBg0yyDN37ly+/PJLoqOjadCgAd988w0dO3Y0ahwlkZCmYcmhSLITFHTKzMZJnX8eO6n60JjZoOvxKapmz8OGNyFyP2yaAhfWw8A54Jh/5ylJlVlUVBSTJ09my5YtWFqW7If8nXfeITQ0VL+clJSEr68vQUFB2Nvbl1eoFUqr1XLx4kXq1q2LSiXnHi0tM9UtQEdAQAC6hFsVth2v3knl1wPXMFcpsVArMTdTYqlWYa7MWXb3cOCeWkkaSizNlPx58RqHbqTj4eLIk52Dyz2+h1EdP4u5Z3FKwmgdWRcXF1avXs2bb75pkL5mzRpcXIx79V9qaiqNGzdm1KhRPPnkk/nWL1++nFdffZW5c+fSvn17fvzxR/r06UNYWBh+fqXvSBR2miz3jmWF/QU4EnGX73ZcAVT88OkO6nrY0czPgWa+jjT1c8TXyarEpy0KKv9h8xa0viRpJWlzYc8fRpVts0sQPLcG5bFFKHdMQxGxBzG3LdqenyEaDYUi3vPybvPDtLGqv88FpZf281DU85LEW1UdO3aM2NhYmjdvrk/TarXs2bOH2bNnk5mZme/H08LCAgsLi3xlqVSqavNDm6s6tqki5I6MVapU6Ki47VjH056Pnyj5xYq+LrYs2BvBc2389PElpmk4GBFHj2APg7uKmVp1+iyWph0KYaSR1osWLWLMmDH07t1bP0b24MGDbNq0iZ9++omRI0cao5p8FApFviOyrVu3plmzZsybN0+fFhwczKBBg5gxY4Y+bdeuXcyePZuVK1cWWce0adMKPE32+++/Y21d9P2ZI5JhT7SSaykK4jPzf+Dt1IKadvcfPjaglmegqxWbjBiaRi7AJfUSADcc23DKbxTZqup7O0SlUonyERxKodPp9GP+cqWlpTFs2DASExOr5NHI5ORkrl+/bpA2atQo6tWrx5QpUwgJCSnklfclJSXh4OBQZbdBQbRaLeHh4QQHB1ebzkNFavrRFu6ladg8uQOauKgqtR2/2XaRb7Zd4vHG3nw/1PR3Lq2On8XS7DOMdkR25MiRBAcH891337Fq1SqEENSvX599+/bRunVrY1VTrKysLI4dO5ZvOEPPnj3Zv3//Q5VZ2Gmyrl27cujQIXr06IFarUaj0bB161b9DSC2bt3KS4N78NJ/zxu17sSZ6BRORCVyPDKBsOgkkjVwOl7B6ficstUqBSHe9jTzc6SZnyNNfR1xs8s5spG3fHUxQxSKy1vQ+pKkFbWc2+YHnxcXa1naUWXarBuB9uBslLs+wyfhIDUUt8l+YgF4NanwNpe2jaVpsxCCmJiYUo1vgpwLPzIyMrC0tCz2DEVxeQtb/2B6QfnypgHFPi+ofltbWzw9PfXrSnOKrDKys7PL11m1sbHBxcWlRJ1YSSpIc39nkjM0WKlVVLVzFhZmKmwtzOjdwFOflntMsLJfGFYdGfWGCK1bt2bp0qXGLLLU7t69i1arxcPDwyDdw8ODmJj798Hr1asXx48fJzU1FR8fH1avXk3LlgXferSw02S5HQO1Wm3QSSjsuY+LLTU9nRjQNOcq9gyNljM3Ezl2/R7Hrt/j+PV7xKVmcSIqkRNRify8L+coSA1HKxr7OlDf0470RAUdtWBtXbLO4YOxlWR9SdJK2ubi6i+p0pRTOdushs5vQK1OsHI0insRqBf1gR4fQZvxBQ41KO82F9amsrQ5IyOD1NRUXF1dsbOzK/FOXafTkZKSgq2tbbFHcovLW9j6B9MLypc3DSj2ed7yhRAkJycTFxeHEAJzc/N820mSpBw/jWgB5BxNTDLSLWoryvgutRnayhd7y/vf7c3nbjN/zxWm9K4nb6ZQwYzWkY2MjCxy/cOMTS2LB39AhRAGaZs3b67QeApiqVbRMsCZlgE58+wKIbgel5bTsY3M6dheuJ3MzYR0biaks+FMDKBiTthOarna0MjHgYY+jjT2caCBtwNW5tXjlEK15tsKxu2FvyfC+XWw+R2I2AOD5oJ15Ztv+WHZ29uX+MIgyOlAZmVlYWlpWaKObFF5C1v/YHpB+fKmAcU+f7B+hUKh78hWZ3LGF+lR52htbrA8b9dlTt1I5N/Ld2VHtoIZrSMbEBBQ5NGXiprfzNXVFZVKZXD0FSA2NjbfUdrKRqFQEOBqQ4CrDU829wEgKUPD2RuJnL6ZyMnIexy+HEN8poKrd1O5ejeVNSdvAaBUQKC7LUGe9tTztCPQzZr4TKr9D2qVZOUEz/wGR36Cze/CxY3wQ0cY8gv4VdwwHEmSJMk4Fjzfgvl7rvJCx1r6tJjEDAQCL4fqez1EZWC0juyJEycMljUaDSdOnGDWrFl8+umnxqqmWObm5jRv3pytW7fyxBNP6NO3bt3KwIEDKywOY7G3VNMu0JV2ga5oNBo2bLhJ686Pcf52KmduJHLqRiJnbiZwOymTi7dTuHg7hbWncl9txqywndTztCPI0466HnbUdLUhwMUGNxujjiqRSkuhgFYvgm9rWDES4q/Awj7Q/QNoNcHU0UmSJJWrLl/uJCkjmz9fqh7/vLvbW/J+//oGaZ+sD2Nr2G1mDG7I4GY+Joqs+jNab6Zx48b50lq0aIG3tzdffvklgwcPNlZVpKSkcPnyZf1yREQEJ0+exNnZGT8/P0JDQxk+fDgtWrSgbdu2zJ8/n8jISMaNG2e0GEzJxcacLkE2dAly16fdTsogLDqJ89HJXIhJIjw6iUuxySRnZHPk2j2OXLtnUIa5mRJntYp1CSep5W5LgIsNHnZqYtIgNTMbRzmur2J4NYKxu2Hda3BmBWybhiriX8ytBpk6sirJ09OTW7dumToMSZKKcS9NQ2K6ptqeNczQaIlNziRLq6OeZ/WYqaOyKvfDcnXr1i3x3WBK6ujRo3Tt2lW/nDujwIgRI1i0aBHPPPMMcXFxfPTRR0RHRxMSEsKGDRvw9/c3ahyViYe9JR72lnT9r3Or0Wj4Z90Gglp05PLddMJjkrgSm0rE3RQi49PIytYRk60gJjwWwmPzlGTGjFM7cLBS4+1ohae9OVkJSi5tv4ybvRWOliouJSq4dDsFd0drbNXyCs0ys7CDwQsgoCNsfAvllW10UR9DEekHtTubOrqHIoQgLSu7xPl1Oh3pWVrMsrKLHSNroZKfOUmq6qprBzaXpVrF8pfacO5WEvW973dkN56JxtfZmpAaDiaMrnoxWkf2wSlmhBBER0czbdo06tSpY6xqAOjSpUuxX4IJEyYwYcKjfYrWTAlBnnaE+DoziBr69Gytjut3k1mxaTdutRoQGZ/O9fg0bt1LJzIumQytgsT0nP+Ww6MBlOy7fTVPySpmh92fysxCqeKzs7uxsTBDm6FieexRbC3MSLij5Oi6cKws1FiYKbEwy7mLioWZKmdZrcRcpcLcTIlKmTNGWKlQoFIoUCpyloVOy9UkOBGZgFpthlKhQCfEfw/Q6v57roOsbA1h9xRYXbiDUqlCKwQarY6s7JxHepaGU7cURO6+ikYoyMrWkZGl4dJVJXtXn0OjE//l1RIdo2TV3ePoAK1Ox507SpbfPoqtpRobcyV3Y5RE7YnA18mKqBTIytZhblaGeVMVCmg+AnxaIP4cgVXcJcRvg6Dru9Dh9Sp3e9t0jY5m08vngsqz03qUuYyAgACef/55Vq1ahaOjI+vWrcPR0ZFLly4xbtw4kpKScHFxYfbs2Zw5c4YFCxbw3Xff8f3337Nw4UJ27drFjh07+PPPP5k/f74RWiVJj6bqPF2VQqEw6LDeTcnkrb9Ok5KZzbIX28iLwozEaB1ZR0fHAmcK8PX1ZdmyZcaqRjICM5USP2drgh0Ffdv4GcyfumHDBjp268GdVC23EtOJikth3/FzuHj7cS8tm7spmUTejidLYc69tJzZ/zJ1Cm4nZ0JyJqDgesp/k+Ki5PCdKGNEzLfnDpcwrwrOnyh6/fXLD6Qp4fbN/GkJdw2WLyXFGyzvjbl0P76w7dT3ssdNKPGKSqBFgOvD3fHFowHZo7cS/fOz+MXvgx2fwLV9MHg+2LoX/3qpxGrXrs2///7L+++/z59//slLL73ExIkT+fbbbwkJCWH58uV8+eWXfPfdd/phSfv378fMzIykpCQOHDhA+/btTdwKSZKqku713Ll8J4UWAdVnlhpTM1pHdufOnQbLSqUSNzc3AgMDMTOTFxZVJXaWapztrAnytEOjccLhzhn69q2vnxh/w4YN9O3bFYVSxd3kdNZv3kbzNh1Iycxm975DBIU0JiUzm6Onz+FbMxCtUJCp0ZKl1ZGp0ZGZrSMzW/vf35yjpUIItP8dWTU44qrVkZyaipWVNTqR88+RUqlApcw5eqtUkHMU979OY0pyEk6ODqiUSpSKnE577tFgM6WCO7ejqenni6W5CnOVCjOl4HrEVULq1cXKQo25mRKFEJw7e4YmjRuhNjNDCB2nT52kUaPGZGghMS2Tk+cuYO1agxv30gm/dY+0bDh1IxFQsm3+YVxtLRjUxJtnWvpSx8OudG+AuS0n/Mfi3e5/mG16C67uhB865Aw/qFU1hhpYqZWEfdSrxPl1Oh3JScnY2duVaGhBckZZI4QBAwYA0KRJE65du0ZycjL79+/n2WefRaVSodVq8fPzw8LCAkdHR2JiYoiNjWXgwIEcPXqUffv2MXTo0LIHIkmPoOo9sKBgrrYWfPO/pqRnafW/WTqdYMbGcJ5t7U+Aq42JI6yajNbDVCgUtGvXLl+nNTs7mz179tCpUydjVSVVEmYqJS425rhaQoP/xgDFhQv6NvEGwCnuLH0fq1PmO3vldJw7luguVzl52xR6l6sNG27St2+DB45CX6Zv51qGaXdO07dZDX3nXX3zBH2beN/vzCeH07dvQwDWr99ASJsuHI9M4I/dp7mUYs7dlEx++jeCn/6NoJmfI6M71KR3A0/MVCUfIiAaDwW/VrBiBNw5D78OhM5ToPNboKzccwYrFAqszEu+e9HpdGSbq7A2NyvRPLLGYGFhQVZWFkqlkuzsbIQQ1KhRg7179+pviZg7ZKpt27asXLkSHx8f2rdvz8aNG7l69SqBgYFGiUWSpEdH3jnflx+NYsHeCFYeu8G+t7thXYr9ppTDaAPvunbtSnx8fL70xMREgwuzJKm6USjA38WaJ5p6M7KujkNvd+HnES3oWd8DlVLB8cgEJv5+gm7/t5slB66RnlWKOZXd68GLO6Hpc4CA3Z/ndGiTq9itcKoAe3t7nJyc2L59O5DzD82FCxcAaNeuHfPmzaNdu3a0atWKP//8k/r16xdVnCRJRQjxdqCxjwMWZbm2oBpoV9uFjnVcmdS9juzEPiSjfYIevHNWrri4OGxs5OFy6dFhbqake7AH859vwYG3uzG5ex2crNVExqfxwd/n6PjFDn7ae7XkHVpzaxg4B56YD2obuLY3Z6jBlR3l25Aq6M6dO/j5+dGgQQP8/PzYsGFDqV6/ZMkSZs+eTdOmTWnWrBnHjh0Dcjqyt27dol27dlhbW+Pq6kq7du3KowmS9Ej446U2/D2xA96Oj/bNAvxdbPh1dCtGtA3Qp125k8KcnZfJ1hrn7FN1V+buf+78sAqFgpEjR2JhYaFfp9VqOX36tNzhS48sd3tLXutRl7Gda7Hi6A0W7L3KjXvpfLI+nB/3XGVCl9oMbeWHpboEQwUaPwPeTXNuoBB7DpYMRtn+NRSiYbm3o6rQarXodDqSkpKwt7cvdJjCtWvX9LejHTlypD5fYGAgq1evzje0wN3dnXv37unTt2/frn8uSZJUFgqFgtzjgDqd4K2Vpzl2/R53UzKZ+ngD0wZXBShEGSdzGzVqFACLFy/m6aefxsrq/n9X5ubmBAQE8OKLL+Lq6lq2SCuRpKQkHBwcuHv3Lv/++y99+/Z94EKovgAGzwcMGIBKpSp2/F9RdDodsbGxuLu7l2gcYVF5C1pfkrSiloECn8s254lBCGISM7h6N5UMTc4RWQszFTVdbfB2tMyZXqy4Nuu0cCccEnJmhMgys8XMtwVK8/xHNgorqzRtLE2bXVxcGDlyJB4eHqhUpRvHm52dXeILQ4vLW9j6B9MLypc3rbDnQggCAwPzvT8ZGRlERERQs2ZNLC0tgfv7i8TExEe281sdt4FWqyU8PJzg4OBSf9al++R2NCSEYNXxm8zaepE/x7WlRgmOWFfHbViqfYYwkmnTpomUlBRjFVepJSYmCkDcvXtXrFmzRmRlZQkhhMjKytIvF/a8LEpTTnF5C1pfkrSilmWbSx5rpkYrfjt4TbT5bJvwn7JO+E9ZJ9rN2C7+OHRdpKZnlKyc0yuE7lMvIabaC93MmkJc3FLibVKaNpamzenp6SIsLEykp6cXuw3y0mq14t69e0Kr1ZY5b971EyZMEI0bN9Y/QkJCxN69ewstJ29aSZ4/qKD25+4vEhMTS7VNqpPquA2ys7PFmTNnRHZ2tqlDqZJ6zNol2s3YLq7dSZLbsQCZGsP9y87zt0VCWsG/CdXxs1iafYbRRhZPnTrVWEVJUrVnbqbk2db+DGnuw/IjUczZeZmbCem8veoMc3ddppOzgl46QZHzNDQcQrZ7CKmLnsIxLRKWDoE2E6D7VFBbVlRTKrU5c+bon+cdciBJkmndSsggJTMbOQy0YHlvsHP2ZiIv/XoMDwcL/hrXDnd7uX/Pq0wd2WbNmrF9+3acnJxo2rRpkXfoOH78eFmqkqRqycJMxfNtA3i6hS9LD0Uyb9dlIuPT+S1exYHZ+3mtR136hngVfnMF59rsrfshfc0OoDr2MxycCxF74MmfwD24YhsjSZJUQqKa36LW2DwcLAjysMfNzqL4zI+YMnVkBw4cqL+4a9CgQcaIR5IeSZZqFWM61GRoK19+2XuVuTsucuVOKhN/P0E9z8uE9qhLj/oeBf6zqFOao+s9E1XdnvD3y3D7LMzvAj0+hqYjK7wtkiRJkvGE1HBg3SsdQdy/pW+2VkeaRou95cPP015dlKkjm3c4gRxaIEllZ21uxthONXFNCOeWbRAL91/nfEwyLy05RiMfB0J71KVzXbeCz34E9Ybx++HvCXB5G2x8E9XFzVhYDaz4hkiSJJVAESdypTwcrAw7rN9uv8TfJ28xZ1gz6nvZmiiqysHoMxFnZWVx48YNIiMjDR6SJJWclRm80q02e6d0ZUKX2libqzh9I5GRC4/w1A8HOHAlruAX2nnAsyuh90xQWaC8so0u599DcXlrxTZAkiSpCHJgwcNLy8rm75O3iIxP4+rdFFOHY3JG68hevHiRjh07YmVlhb+/PzVr1qRmzZoEBARQs2ZNY1UjSY8UR2tz3updjz1vdeWFDjWxMFNy9Po9hi44yLAFBzkemZD/RQoFtBkHL+1EuAVjmZ2E2fKhsOEt0KRXeBsqkqenZ5le7+3tXWB6u3bt5D/kkiRVCtbmZqyd2IHPnmjIwCY1TB2OyRlt1oJRo0ZhZmbGunXr8PLyKvLCL0mSSsfV1oL3+9fnxU61mLPzMn8cjmT/lTj2X4kj2FGJX+Mkmga4GL7IowHZo7cS+ctoat/ZAod//O9CsAXgUq98AxYCslJLnl+nA00aZKmguHmHVfKKXUmq6mq72ZKh0WJW2IWsUpEcrNUMa+2nX87M1vHl5gu80r0uNhaP1q1ujdbakydPcuzYMerVK+cfSEl6hHnYW/LRwBBe6lSL2Tsus+LYDcITlDzxw0F61vcgtGdd6nnmmV7KzJKzPs/h3200Zusm5dxIYX5XlJ3eQiECyy9QTRrMrFXi7ErAsaSZ377xEAEZ2rJlC2+99RaZmZn07t2bWbNmGfzzrdVqGT9+PHv37qVx48ZkZWWVuU5Jku5b+0oHIOe7lhht4mCqgTmH49lxNZUzt5L4bUzrR+pgotGGFtSvX5+7d+8aq7hy98QTT+Dk5MSQIUNMHYoklZqPkzWfP9mIzZPa09JVh1IBW8Ju0+fbvUz8/TiXYw3HTYnAx3IuBAvqBzoNql2f0uHiJxB3yTQNMKH09HTGjh3LmjVr2LdvHxcvXmTNmjUGef766y8SEhI4dOgQU6ZM4eTJkyaJVZIkqST61LHD08GSV7rVeaQ6sWDEI7IzZ87krbfe4rPPPqNhw4ao1YZX2FW2ScgnTZrE6NGjWbx4salDkaSH5u9izXN1dHw0tAOzd0ew/nQ0605Hs+FMNI839mZ8pzzj023d4H9L4dQyxMY3cU67gvipKzw2DZqNNm5gamt491aJs+t0OpKSk7G3syv+lsYqS8hIfujQLly4QHBwMH5+fiQlJfHcc8+xZ88ennjiCX2eAwcO8NRTTwHQtGlTeaZJkqRKLdjNgh2hnbC2uN/3yszWYmFWPW5ZWxSjdWQfe+wxALp3726QLoRAoVCg1WqNVZVRdO3alV27dpk6DEkyikB3W+YMa8bLXZL4ettFtobd5u+Tt/jn1C2aOiup0yKF+jWcci4EazKUbN+23Fs0DPfkc7DpbVTha7GyGWy8gBQKMLcpeX6dDtTanNcU15HVGf9WQA8ewZCTtUtS+er33V4ys3UsHtnC1KFUGxZ57gYWm5TBM/MP8nLXQIY09zFhVOXPaEMLdu7cyc6dO9mxY4fBIzetNPbs2cPjjz+Ot7c3CoUi32k/gLlz51KzZk0sLS1p3rw5e/fuNVJLJKnqqu9tz4LnW7DulQ70rO+BEHA8Tkm/2ft5+ffjXIj570imfQ0O1H4Lba8vQG2N8vo+up5/D8XJ33Iu1KrGgoKCCA8PJzIyEp1Ox9KlS+nYsaNBnnbt2rFixQoATpw4wfnz500RqiRVW1fupHA5NgWtrnrvb0zlj8NRRNxNZfaOS2RoKteBRGMz2hHZzp07G6soUlNTady4MaNGjeLJJ5/Mt3758uW8+uqrzJ07l/bt2/Pjjz/Sp08fwsLC8PPLuYqvefPmZGZm5nvtli1bCp1ipzCZmZkGZSUlJQGg0WiK/FvU84dRUPkPm7eoWItKk22uGm0OcrdmztDGnI6KZ/rKw5yOV7L+dDTrT0fTu4EHYzv4gUJBZuPhqGt1QfnPy6hvHoH1r6I7v47snjMLLL+4Nms0GoQQ6HQ6dKU4cpp7BDT3tQ+b986dO/j5+enPBP3www/07dvX4HWWlpbMmzePgQMHkpWVRa9evRgwYIBBWYMHD2br1q20a9eOVq1a0bRpU4MyCqtfp9MhhECj0aBSqQy2jSRJ91Xz/5dNblL3QBQKGNSkBpbq6j28QCGMdA7t9OnTBVegUGBpaYmfn5/+draloVAoWL16tcEtcFu3bk2zZs2YN2+ePi04OJhBgwYxY8aMEpe9a9cuZs+ezcqVK4vMN23aNKZPn54v/ffff8fa2rrE9UmSqdxMhS03lJyMv38SppGzjl4+OnxsAKEjMHYj9aL/QiWy0SgtOVfjf1x36QKKkp+4MTMzw9PTE19fX8zNzY3fkEouKyuLqKgoYmJiyM7OBiAtLY1hw4aRmJhY6a4VqChJSUk4ODhUq22g1WoJDw8nODhY/0+LVHJB728kM1vHnjc6kxRzTW7HMijpZ/HS7WRqudmiqgJTnpVmn2G0I7JNmjQp8ko5tVrNM888w48//oil5cPPA5mVlcWxY8d4++23DdJ79uzJ/v37H7rcorzzzjuEhobql5OSkvD19aVr164cOnSIHj16oFar0Wg0bN26lR49egAU+PzBi+BKI2/5xZVTXN6C1pckrahl2ebK2+aRg3rwolrNxdvJzNl1lY1nb3M6XsnpeCWP1XNjXEd/Lp9VUqv3eCw2vY761jGaRC2iIRfQ9f8GjZ1fidqckZFBVFQUtra2pfqeCyFITk7Gzs6u2Ctui8tb2PoH0wvKlzcNKPb5g/VnZGRgZWVFp06d9O3PPYMjSZJkKmduJDJ0wUF6NvDgyyGNq0RntqSM1pFdvXo1U6ZM4c0336RVq1YIIThy5Aj/93//x9SpU8nOzubtt9/m/fff56uvvnroeu7evYtWq8XDw8Mg3cPDg5iYmBKX06tXL44fP05qaio+Pj6sXr2ali1bFpjXwsKiwKPJuR0HtVpt0Iko6nlZOjgPU05xeQtaX5I02eaq2eYGPs7Mfc6ZsJv3eP/3fzkRr2Tb+TtsO3+HECclfo39aPrCVrQH5iK2f4RZ1AFUCzr/N+9szWLbrNVqUSgUKJXK4mcfyCP3FH3ua8uSN+/6V155hX379unXabVa5s2bR4cOHQosJ29arqKeP1i/UqlEoVAYvB/G+CxIUnWTeyr4EZspymRuJqSTrtFyIz6dzGwt1ubV56YJRmvJp59+yrfffkuvXr30aY0aNcLHx4cPPviAw4cPY2Njw+uvv16mjmyugq4yLs3caZs3by5zDJJUVdVxt2VEXR2ftezID3si+OfULc7ey7mxQrd67kzoPJR79azonv4PyojdqHZ8RCerAGhREzxCii2/slz1P2fOHP1znU5HUlJSuZ7ariztliRJyqt3iCe/jm5FUz/HatWJBSN2ZM+cOYO/v3++dH9/f86cOQPkDD+Iji7bLTxcXV1RqVT5jr7GxsbmO0orSVLRarvZ8M3/mjK+U03e/30vx+KU7Dgfy47zsQQ7euDw1E+0arQFsfldHNOvIX55DF2bV1DqGhRYnlqtRqFQcOfOHdzc3Er8z6VOpyMrK4uMjIwSHZEtKm9h6x9MLyhf3jSg2Od5yxdCcOfOHf0RWUmSCufjaEVmtg6lPCRbYdoHuhosn76RQMMaDlX+BgpG68jWq1ePzz//nPnz5+sv8tBoNHz++ef6ycRv3rxZ5s6mubk5zZs3Z+vWrQYTmG/dupWBAweWqWxJelTVcrPhuTo6PnuuIz/suc6akzcJT1Dy9IIjdKxTh0l9N1Jjx2S8E46g2v813czdUNSzQQT2MChHpVLh4+PDjRs3uHbtWonrF0KQnp6OlZVVicbIFpW3sPUPpheUL28aUOzzB+tXKBT4+PjIi1YkqRg73ugC5Az3uVfye6dIRrLq+A3eWHGK0e1r8l6/4CrdmTVaR3bOnDkMGDAAHx8fGjVqhEKh4PTp02i1WtatWwfA1atXmTBhQrFlpaSkcPnyZf1yREQEJ0+exNnZGT8/P0JDQxk+fDgtWrSgbdu2zJ8/n8jISMaNG2es5kjSIynAxYb/e7ox4zsH8N5vezgap2LvpbvsvXSXQPtX+abDPRqc+gyb5FuwfCi6oH5Ymj1mUIatrS116tQp1bRTGo2GPXv20KlTpxJd4FZU3sLWP5heUL68aUCxzwsaVy07sZIkVXaZ2Tp0AhLSNegEqKpuP9Z4Hdl27dpx7do1fvvtNy5evIgQgiFDhjBs2DD9lb7Dhw8vUVlHjx6la9eu+uXcGQNGjBjBokWLeOaZZ4iLi+Ojjz4iOjqakJAQNmzYUODQBkmSSs/f2ZphgTo+H96ZBfuus+JoFJeToP82Z9r6fMdkxS+0Tt6M8sJ6uiu3ofBMhHYTQZXTsVOpVKXq0KlUKrKzs7G0tCy2I1tc3sLWP5heUL68aUCxz+UQAkmSqqKhrfyo62FHMz/HKn00FozYkYWcIzHGOCrapUuXYi+amDBhQomO7kqS9PB8nKz47ImGjOsYwHu/7eLQXTMO3MjiAM/R36MvH5n9gnPccdg+Dc78Cf1mgX9bU4ctSVIlN3juPrJ1ggXDm5k6lEdWc38ng+VbCel4O1qZKJqHZ/RL18LCwoiMjCQrK8sgfcCAAcauSpKkCuLlYMmQmjo+f74jP/97jd8OXmPdbWfWE8oLVnt4Q/0nFrFhsLA3NHoGHpsG9qW7g54kSY+OMzcT0WgFGq2c6cPUtDrBJ+vDWHn0BivGt6WeZ9W6aYnROrJXr17liSee4MyZM/oLKeD+NFlabfW+168kPQrc7Sx4p08QtbOuEGVdhyWHIlmQ3oUV6c35zO4v+mi2oji9HMLXQsdQaDsR1FXvP3xJMhYhBLeTMomMTyM6MZ3oxAyiE9KZ2K0ObnY585P/sPsKC/dFkK0VaLQ6snUCpUKBWqXA3EzJgudb0MjHEYC9l+6w/nQ0HvaWeDlY4ulgiZ+zNX7O1pipSj53syTlytbpOHcrieTMbI5eu/fodmQnT55MzZo12bZtG7Vq1eLw4cPExcUZbd5YSZIqD1s1vN6jDmPaB/DBku3su+vEhOSRNFR04jOr32ioOQ87PoHjv0LPTyB4gJz5XHqkrDgaxdJDkVyJTSE5Mzvf+qda+Oo7slpdTme3MHlH2p25mciyI1H58pirlNR0teHzJxvS1C/nlLFOJ1BW8js4Ve7oHg0WZirmD2/O4Yh4ejbwNHU4pWa0juyBAwfYsWMHbm5u+rv6dOjQgRkzZjBp0iROnDhhrKokSaokHK3V9PHV8dmIjvx+5CY//6vm8bQPGKA8wHsWf+CREAl/Pg8BHaH3DPBsaOqQJcloMrJ17L54h31X4jlyLZ6vn2lCbTdbABLTNZyMSgBApVRQw9EKLwdLvP/762Jrri/nqRY+dK7rhlqlxEylQK1UohM5R2eztDpqutro87au6cJrj9UlJimDmP+O8F6LSyVDo+PC7WTsLO//rC/cf41F+yNo5udEc38n2tV2pbabTaW4uEfeO6RycbQ2N+jElvYmU6ZktI6sVqvF1jbnC+zq6sqtW7cICgrC39+fCxcuGKsaSZIqITtLNRO71WFU+5osPXSd+Xss6ZLSjHFm6xhntg6La3sRP3ZC0XQ4dH0X7Kref/2PshkzZrBq1SrOnz+PlZUV7dq1Y+bMmQQFBZk6tAoXk5jBhjPRbAmL4ei1eLJ194+OnohM0HdkHwv2wMvBijoetvi7WGNhVvgsHu52lrjbWZao/ub+Tvku0tHpBDcT0rkcm4K/y/1O7/Hr94iKTycqPp2/T+ZM1urjZEXXIHe6BLnRPtAVS7WcLk4ylJShIXT5SboHezC0lZ+pwymW0TqyISEhnD59mlq1atG6dWu++OILzM3NmT9/PrVq1TJWNZIkVWI2Fma81Kk2z7cN4I/Dkfyw24E/kzrzjvoP+qsOwvHFiDMrUbR7Bdq9Aha2pg5ZKoHdu3fz8ssv07JlS7Kzs3nvvffo2bMnYWFh2NjYFF9ANbHzfCyjFh0xSPN2tKRjoBvtAl1oV/v+nZMCXG0IcK2YbaNUKvB1tsbX2dogfcaTDflfK1+OX0/gyLV4DkfEc+NeOksOXuePw5Ecfu8xk3dkq8hBv0fKmhM32RYey6Gr8fRt6IWDVeWeZtBoHdn333+f1NRUAD755BP69+9Px44dcXFxYdmyZcaqRpKkKsBSrWJU+5oMbeXHimM3mLHLj8WJJ3hX/TtNNZdh9+fojv6Cssvb0Ox5U4crFWPTpk0GywsXLsTd3Z1jx47pbxKRV2ZmJpmZ98d8JiUlATln7qrKhb9CCA5FxKMV0L62CwBNfe0xN1PSsIY9vYLd8TdPoUvz+piZ3f8prUzts1EraVfLmXa1nIFapGZmc/BqPLsu3iFbJ3CwVOnjHffbcXycrHi2tZ/BUIbi3LyXTg2n0l/Q6WxjTrZOIHQ6oHJtt6omd9sZaxsOa+nDpZhkBjerga250iTvTWnqNFpHtlevXvrntWrVIiwsjPj4eJycnKrMOAtJkozLUq1ieBt/nmnhy5oTdXh1Z1PqJ+ziLbNl1Ey9DetD0R6Yi6Lbh3LQXBWSmJgIgLOzc4HrZ8yYwfTp0/OlX7hwQT8ErbLS6gR7r6ex8lwi1xI01HY259u+Xvr1vz7hja2FCsgE1Fy6dMlksT4Mb2BY3ZzZDcLDwwGITc1ma3gsAAv3X6eplyX969rR0scKZQl+v5NiSh/HLwNzhhfdi74OwMWLF0tfiGTAmNvwmToKSL5FeLhp7h+ckpJS4rxl7siOHj26RPl++eWXslYlSVIVZW6m5OmWvgxuVoO1p+sybntHWt9by2SzVbjEX4aVz9PWug6Kxu5Qs52pw5WKIIQgNDSUDh06EBISUmCed955R39HRsg5Iuvr60tQUBD29pVzap9srY6/jt9k3u6rRN1LB8DaXEWr2h7UqhOEhZnh1FZarZaLFy9St27dKn9b4jpaHT/ZefL7oUh2XrzDiegMTkRnUMfdlgldatE3xDPf1F6rjt/gw3/OAbB2YodSHcXNqzptR1Mp720YnZhB2K0kuge7G73swuSexSmJMndkFy1ahL+/P02bNi32blySJD3azFRKnmjqw4DGNdh4tgEvbOtLt/g/eEG1Afe0S7C4D5m1e2HR40PwLLiT9CjbtGkTtra2dOjQAYA5c+awYMEC6tevz5w5c3ByciqmhLKbOHEip0+f5t9//y00j4WFBRYWFvnSS3vr4opy8GocH/59lou3c44COduYM6pdAM+3DcDBuvhbJlfGNpWGSqXisfqePFbfk6j4NH47dJ3fD0ZyKTaF1/48TbYuZ7qwXBvORDNl1Vl0//3krz55izd71StzDFV9O5paeWzDiLupDJqzjwyNlvWTOhDobmfU8gtTmnaUuSM7btw4li1bxtWrVxk9ejTPPfdcoaebJEmSIGc6ov6NvOkb4sWWsCa8tHUQ/eIW8ZRqNxZXNiOubCEjaBBWPT8Al9qmDrfSePPNN5k5cyYAZ86c4fXXXyc0NJQdO3YQGhrKwoULy7X+V155hX/++Yc9e/bg4+NTrnVVpKR0DRdvp+BgpeaVboEMa+2HtbnRb3xZJfg6W/NOn2Be7hrIkgPXWXvqFo83vn+Xvi1hMUxedkLfiQVYdfwmoT2CUJViztr/zT+AEDBnWBMjRi8Zm7+zNY18HEhM16BSVs4bbpQ5qrlz5xIdHc2UKVNYu3Ytvr6+PP3002zevFkeoZUkqUhKpYLeIZ78/HI/rgaO4RWneazTtkGBwOrCarTftyRlxXhIvGHqUCuFiIgI6tevD8Bff/1F//79+eyzz5g7dy4bN24st3qFEEycOJFVq1axY8cOatasWW51VQSdTnD1zv0xeD3qezB9QAP2vNmVFzrWemQ7sXnZW6p5uWsgGyd31M9scDgijrG/Hst3W9noxAwOXIkrVfmHIuI5FBFPtrxFbaWmVCr4fmhT/hrf7qGHj5Q3o3SvLSwsGDp0KFu3biUsLIwGDRowYcIE/P39SzVgV5KkR5NCoaCBk+CbCU/i+PxS3nSdw3ZtU1RosT33O9nfNCFp9euQEmvqUE3K3NyctLQ0ALZt20bPnj2BnIuuSjOmrLRefvllfvvtN37//Xfs7OyIiYkhJiaG9PT0cquzvNxNyeT5Xw4z5IcDxKXkzKygUCgY0a74YQSPotyLtcNuJTHil8MU1u3867j8Z7O6crQ2R51njHRlO0hp9OPECoUChUKBEALdf9NqSJIklYRCoaBDHVe+nPgcNqP+YprbLA5o62MmNNif+onM/2tI4vqpqLNTTR2qSXTo0IHQ0FA+/vhjDh8+TL9+/YCcq5XL81T/vHnzSExMpEuXLnh5eekfy5cvL7c6y8ORa/H0+24v/16+S3qWlrDo8uv8VycRd1N5/pdDpGsK/03fdDaGlAJuxVscOalR1aHTCX47eJ3nfzmMVld5OrNG6chmZmbyxx9/0KNHD4KCgjhz5gyzZ88mMjKy0k+1IklS5dSmlgvTXh6D+Zj1fOk+k5O6WliIDFxPzqHTmdeJ3/gpZCSaOswKNXv2bMzMzFi5ciXz5s2jRo0aAGzcuJHevXuXW71CiAIfI0eOLLc6jW3NiZsMnX+Q20mZBLrb8vfE9nSs42bqsCo9jVbH23+d5m5KVpH50jVaNpyJLnG5leygnlQCcalZzNx4nr2X7vLPqZumDkevzAOBJkyYwLJly/Dz82PUqFEsW7YMFxcXY8RWLpKTk+nWrRsajQatVsukSZN48cUXTR2WJEmFaB7gTPMJ4zgT9T/mrFtM9+gF1FNGYXv8a1JP/kRy07F49pgMlpVzWidj8vPzY926dfnSv/76axNEU3XM33OFzzacB6BfQy++GNIIGws5DrYk1Coly15qw8XbKWw/f5sd4bEcj7xHQQfkVh6N4uk8sxtI1YubnQUfPF6f1MxsBjSuYepw9Mr8Tf7hhx/w8/OjZs2a7N69m927dxeYb9WqVWWtyiisra3ZvXs31tbWpKWlERISwuDBgyt151uSJGjo60jD8ZM5c30YX/3+DQPTV1OHm9gc+4qUEz+S2GQsNXpOBlXp7zJUmSUlJennXi1uHGxlnaPVlP48EqXvxL7QoSbv9g1GWYqr66WcIT9BnnYEedoxoUsg91Kz2HUxlh3n77Dz/G1SMnPuwnT42j2i4tPy3SpXqj4q4z8qZe7IPv/881Xqzl0qlQpr65wvWUZGBlqtttINXJYkqXD1vB25Wr8V2c1e49eNi2l34ycCuYXt8a9IPvkjcQ1fwEyUbU7LysTJyYno6Gjc3d1xdHQscH8rhEChUMjbfBagV4gny45E0j3Yg5e7Bpo6nGrBycacJ5r68ERTH7K1Oo5dv8eO87FsPx/LX8dv0KuBJ/U87YrsG1ip5ZyxVZ0QgsR0DY7W5iaNwyg3RDCmPXv28OWXX3Ls2DGio6NZvXo1gwYNMsgzd+5cvvzyS6Kjo2nQoAHffPMNHTt2LHEdCQkJdO7cmUuXLvHll1/i6upq1DZIklT+Aj0dCH7pda7Fvsjv/8ynddTP1Nbdwu7U1zhjS6Q4T61+oSiq+JCDHTt26Ofm3rFjR5U6cFAZOFipWfZSW8zNKuccmFWdmUpJ61outK7lwjt9g/njUCT9vtvLxK6BhPYMKvR14R/njOnWarXcqahgJaO5cieFt1aeRqsTrJ7QzqT7pUo3SCg1NZXGjRszatQonnzyyXzrly9fzquvvsrcuXNp3749P/74I3369CEsLAw/Pz8AmjdvTmZmZr7XbtmyBW9vbxwdHTl16hS3b99m8ODBDBkyBA8Pj0JjyszMNCgv9/SeRqMp8m9Rzx9GQeU/bN6iYi0qTba56re5oPSq3OYaTlY8NWIyN+LGsHzdT7SM+plaimjsz3xN0tmfiWnwAgG9XyFbaVniNpWknSVtc1m3TefOnfXPu3TpUqayHhWRcWkciojT341KdmIrTrpGi07AdzsuY6FWyaPg1ZSdhRlht5IQCC7HplDHo2Lu+FUQhajE59UVCkW+I7KtW7emWbNmzJs3T58WHBzMoEGDmDFjRqnrGD9+PN26deOpp54qNM+0adOYPn16vvTff/9dP0xBkqTKITFDR/r1g/RMWUNNZQwACdhy1LEfab7dEWaWFRpPWloaw4YNIzExscxjWD/44AOmTZuW7/aNiYmJjBs3jj/++KNM5ZeXpKQkHBwcjLINiqPTCZ7+8QBHr9/jvb7BvNipVrnUo9VqCQ8PJzg4WN5a9QF5L6779n9NGNik8AuD5HYsO1Ntw61ht2lYwwFPB+PvU0u1zxCVGCBWr16tX87MzBQqlUqsWrXKIN+kSZNEp06dSlRmTEyMSExMFEIIkZiYKOrXry9OnTpV5GsyMjJEYmKi/hEVFSUAER0dLdasWSNSU1NFVlaWSE1N1S8X9jwrK+uhH6Upp7i8Ba0vSVpRy7LNVaPNpW1jVW3z9eg7Ys2iL0XEh0FCTLUXYqq9iJ9aQ5z8/QORnhRX7HtvrDbfvXtXAPr9Tln4+fmJ1q1bi8uXL+vTdu7cKXx9fUWbNm3KXH55SUxMNNo2KM7Cf68K/ynrRP0PNoob99LKrZ7s7Gxx5swZkZ2dXW51VGWfrg8T/lPWiTrvbRBHr8UbrNPpdGLEL4fEiF8OiXsp6XI7llF1/CyWZp9R6YYWFOXu3btotdp8wwA8PDyIiYkpURk3btxgzJgx+nkQJ06cSKNGjYp8jYWFBRYWFvnS1Wq1/m/u87zpBT3Pu/ywSlNOcXkLWl+SNNnmqt/mgtKrU5u9XBzwG/EG95InsPHvH6h/6Uf8FTE4XfiWxAu/cL3uSBTmIYW+9yV5XpJYjbFdcp0+fZqxY8fSpEkTZs2axcWLF/n22295++23mTp1qtHqqarupWbxf1suAvB232BqOFavGSyqkim963H1Tirbwm8z8ffjbJzc0eCioF0XckbGPni7W6lqik5Mx9nGHAuzij+qXqU6srkeHFQs/rtitySaN2/OyZMnyyEqSZIqIyc7a/o8F0pcwgss/vkTOif/QwDRNLr4PQHCmnPpJwh+YgoWts6mDrVYDg4OLFu2jPfee4+xY8diZmbGxo0b6d69u6lDqxR+2HOF5Mxsgr3sebaVn6nDeaSplAq+/V8T+n//LxF3U1l2JIpxnWsD8mYI1c3MTef5ae9VPh3UkKdbVvz0XFVqBLyrqysqlSrf0dfY2NgiL9aSJEmyt7HCMbA9jqFH2V7/U67ig70ijSZXfkDzVQNOLX6DjKTKf/30999/z9dff83QoUOpVasWkyZN4tSpU6YOy+SSMzQsOXAdgDd61pVzxVYCNhZmfPe/pkwf0ICxhYxVlpNwVH1O1mo0WsHR6/Emqb9KdWTNzc1p3rw5W7duNUjfunUr7dq1M1FUkiRVJTZWFnR/eiKurx9mscNELiv8sCWNxhELUH7fFOsLf5J2r2RDlSpanz59mD59Or/++itLly7lxIkTdOrUiTZt2vDFF1+YOjyT+vvkLdKytAS629Ktnrupw5H+09DHgRHtAuS0cdXYsNb+/DW+HV8MaWyS+itdRzYlJYWTJ0/qT/9HRERw8uRJIiMjAQgNDeWnn37il19+ITw8nNdee43IyEjGjRtnwqglSapqrCzNcazVCs83D7O7ySwuKmpiQwY90tZhPrc5pxe9ii490dRhGsjOzub06dMMGTIEACsrK+bNm8fKlSsf+dvU2lma0SrAmeda+8lOUyWVkpnNlnMxyJEF1YuthRnN/Z1MVn+lGyN79OhRunbtql8ODQ0FYMSIESxatIhnnnmGuLg4PvroI6KjowkJCWHDhg34+/ubKmRJkqowC7UZnQeNQdN/JLs3LMH1+Lc04CrNb/5GA7GcUz/vo+bjU0wdJkC+s1G5+vXrx5kzZyo4msplYJMaRU7zJJnWvdQsen+7h3upGna92UWfLv/lqF40Wh2pmdkVerevSteR7dKlS7G3jJ0wYQITJkyooIgkSXoUqM1UtOvzLGu1jtyzSMXl6DcE6y7SImYZmfP/wtayC/ea1sPJq3zmJS0reYdCqTJzsjHHz9ma20n3WLgvArVKIWcsqGY2nolm6j/n6BLkVqHDDCpdR1aSJMmUVEoFrXs8ja7bEJb8/BXN4tfSQBtO98ytZP28g1Nu/cl26mSS2LRaLV9//TV//vknkZGRZGVlGayPjzfNxRamdishHWtzlcnv+S4VbWyn2hy5dpRlh6M4/kEPLMxUKNERberAJKNwtbMgNjmTA1fjyNbqMFNVzOjVSjdGVpIkqTJQqpTY+4RQ563dHO64kOMEY67Q0uLu3wy4+BZXT++r8JimT5/OrFmzePrpp0lMTCQ0NJTBgwejVCqZNm1ahcdTWXy77RJNPtrK/D1XTB2KVIRu9dwJdLclOTOb3w9FYm6mlOOZq5EW/k78PKIF20O7VFgnFmRHVpIkqUgKpZKmnR4nssk7HO+6hFPmTYhUeOHfoE2Fx7J06VIWLFjAG2+8gZmZGUOHDuWnn37iww8/5ODBgxUeT2URn5ZzZNrKXJ5krMyUSgUv/TcN18//RpCZrTVxRJIxKRQKugd7YG5WsV1L2ZGVJEkqAYUCGrbrQ/AbWzkW/L5J7gsfExNDw4YNAbC1tSUxMWdWhf79+7N+/foKj6ey0OpyxlpaVOBRIOnhDGzijUIBscmZvLnitKnDkcpRcdc7GYv81kuSJJWCQqHAwtLaJHX7+PgQHZ0zojAwMJAtW7YAcOTIkQJvo/2oUKtyTk9nyCN8lZ6FmYqv/rsQyN3u0f3MVmfbwm7z1A/7mbPzcoXUJ8/DSJIkVRFPPPEE27dvp3Xr1kyePJmhQ4fy888/ExkZyWuvvWbq8EzGy8EKgJsJ6SaORCqJJ5v70CvEE2u1CiF0pg5HMrJ7aVkcuXaP5IxsJnarU+71yY7sQ8g9XJ6cnExaWhpJSUmo1Wo0Go1+GSjwuVqtfuh685ZfXDnF5S1ofUnSilqWba4abS5tGx+VNj+Yp7B2lrbNua8xxmm2zz//XP98yJAh+Pr6sm/fPgIDAxkwYECZy6+q/JxzjpBfu5tq4kikkrK1yOl+aOVB9GqnR30PPuhfnz4hnhVSn+zIPoTk5GQAatasaeJIJEmqKpKTk3FwcDBqma1bt6Z169ZGLbMqqu9tD8Cx6wkIIeSV8JJkQo7W5ozpUHH9I9mRfQje3t5ERUVhZ2dHq1atOHLkiH5dy5Yt9cu5z5OSkvD19SUqKgp7e/sy1Z23/LLmLWh9SdKKWpZtrhptLihdtjl/mjHaLIQgOTkZb2/vErVNKr2mfo48FuxO65ouZGl1WJhV/IV4kiSZhuzIPgSlUomPjw8AKpXK4Mcs7/KD6+zt7cv8Y/9gmWXJW9D6kqTJNlf9NheULtucP81YbTb2kVjJkIWZip9GtDR1GJIk/UenE2wNv82BK3G81TsI63KcGk/OWlBGL7/8cqHLD64rj/rKkreg9SVJk22u+m0uKF22OX9aebdZkiSpOlIo4KO1YSzaf40j1+6Vb12ioib6eoQlJSXh4OBAYmJimY9aVRWyzbLN1dWj2OayqqhtlqHRsvRQJLYWKp5p6Vdu9UDO7YLDw8MJDg42yZzC1YXcjmVXWbfhrK0XuZeaxbDWfgR7le57X5p9hhxaUAEsLCyYOnXqIzXPo2zzo0G2uWKNHDmS0aNH06lTpwqvuypYdzqaj9eF4WxjTo/6njjbmJs6JEl6ZIX2qFsh9cgjspIkSVXEk08+yfr16/H19WXUqFGMGDGCGjVqmDqsYlXUEVmNVkf/7/7lwu1kBjbx5tv/NS23uirrUbCqRm7HsquO27A0+ww5RlaSJKmK+Ouvv7h58yYTJ05kxYoVBAQE0KdPH1auXIlGozF1eCanVin5YkgjlAr4++Qt/jl1y9QhSdIjTQjBzYR0EtKyyq0O2ZGVJEmqQlxcXJg8eTInTpzg8OHDBAYGMnz4cLy9vXnttde4dOmSqUM0qca+jozvUhuAt1ae4uzNRBNHJEmPrglLj9P+8x2sPxNdbnXIjqwkSVIVFB0dzZYtW9iyZQsqlYq+ffty7tw56tevz9dff23q8EwqtEcQneu6kaHRMXrREa7eSTF1SJL0SPJ3sUGlVHAnObPc6pAdWUmSpCpCo9Hw119/0b9/f/z9/VmxYgWvvfYa0dHRLF68mC1btrBkyRI++ugjU4dqUiqlgu+GNiXIw46kDA23k8rvR1SSpMKN71Kbc9N78epj5Xfhl5y1QJIkqYrw8vJCp9MxdOhQDh8+TJMmTfLl6dWrF46OjhUeW2XjYKVm6YutuR6XSnN/Z1OHI0mPJAcrdbnXIY/IViLJycm0bNmSJk2a0LBhQxYsWGDqkMpdVFQUXbp0oX79+jRq1IgVK1aYOqQK8cQTT+Dk5MSQIUNMHUq5WbduHUFBQdSpU4effvrJ1OFUiPJ+X2fNmsWtW7eYM2dOgZ1YACcnJyIiIsql/qrG1dbCoBN7MiqBFUejkJP1SFL1ITuylYi1tTW7d+/m5MmTHDp0iBkzZhAXF2fqsMqVmZkZ33zzDWFhYWzbto3XXnuN1NRUU4dV7iZNmsSvv/5q6jDKTXZ2NqGhoezYsYPjx48zc+ZM4uPjTR1WuSvP9zU7O5vRo0dz+fLlcim/uotNzuCFxUd5c+VpXvnjBInpcpYHSaoIs3dc4uWlx7kcWz5j1WVHthJRqVRYW1sDkJGRgVarrfZHDry8vPRHltzd3XF2dn4kOjxdu3bFzs7O1GGUm8OHD9OgQQNq1KiBnZ0dffv2ZfPmzaYOq9yV5/tqZmaGv78/Wq22XMqv7lxsLBjVPgCVUsG609H0mLWbv0/erPb7WEkyta3hsaw/Ey07spXBnj17ePzxx/H29kahULBmzZp8eebOnUvNmjWxtLSkefPm7N27t1R1JCQk0LhxY3x8fHjrrbdwdXU1UvQPpyLanOvo0aPodDp8fX3LGHXZVGSbK6uyboNbt24ZTNTv4+PDzZs3KyL0h1YV3vf333+fd95555H4Z8/YVEoFL3cNZOW4ttR0tSE2OZPJy04ydMFBjkeW773gJelRNryNPx/0r089z/L5J192ZEshNTWVxo0bM3v27ALXL1++nFdffZX33nuPEydO0LFjR/r06UNkZKQ+T/PmzQkJCcn3uHUrZ+JuR0dHTp06RUREBL///ju3b9+ukLYVpiLaDBAXF8fzzz/P/Pnzy71NxamoNldmZd0GBR3lUigU5RpzWRnjfS9v3333HXv37sXb25ugoCCaNWtm8JCK19TPiY2TOxLaoy4WZkoOXo1n8Nz9coouSSonQ5r7MKZDTQJcbcqnAiE9FECsXr3aIK1Vq1Zi3LhxBmn16tUTb7/99kPVMW7cOPHnn38+bIhGV15tzsjIEB07dhS//vqrMcI0qvJ8n3fu3CmefPLJsoZY7h5mG+zbt08MGjRIv27SpEli6dKl5R6rsZTlfS/P93XatGlFPsrbnDlzREBAgLCwsBDNmjUTe/bsKdHrEhMTBSASExNLXtmtW0JMnZrzt5xExqWKN1ecFGN/PWqQvvtCrEjO0BT52uzsbHHmzBmRnZ1dbvE9CuR2LLvquA1Ls8+Q028ZSVZWFseOHePtt982SO/Zsyf79+8vURm3b9/GysoKe3t7kpKS2LNnD+PHjy+PcI3CGG0WQjBy5Ei6devG8OHDyyNMozJGm6u6kmyDVq1acfbsWW7evIm9vT0bNmzgww8/NEW4RlFZ3vepU6dWWF0Pyj0iPXfuXNq3b8+PP/5Inz59CAsLw8/Pz/gVRkfD9OkwYAB4eRm/fMDX2ZovhjRGp7t/BiEmMYNRi46gUiroVMeNvg096VjHDTc7i3KJQZKqu39O3uTb7ZeIik+nlpsNrz5Wh94hxvtOy46skdy9exetVouHh4dBuoeHBzExMSUq48aNG4wZMwYhBEIIJk6cSKNGjcojXKMwRpv37dvH8uXLadSokX5M4pIlS2jYsKGxwzUKY7QZcub6PH78OKmpqfj4+LB69Wpatmxp7HDLRUm2gZmZGf/3f/9H165d0el0vPXWW7i4uJgiXKMo6fteld/X4syaNYsxY8bwwgsvAPDNN9+wefNm5s2bx4wZM0wcXdkolfeHvdxMSMPfxZqrd1LZFn6bbeE5w7tqu9nQqqYz/2vpR2NfRzI0Wu6mZZOp0WKtUpkqdEmq1DadjWbSspP65QsxyYz77Tg/PNfMaJ1Z2ZE1sgfHAQohSjw2sHnz5pw8ebIcoipfZWlzhw4d0Ol05RFWuSpLm4FqcQV/cdtgwIABDBgwoKLDKlfFtbm831etVsvXX3/Nn3/+SWRkJFlZWQbry+sisNIekc7MzCQz8/7dtJKSkoCc+IucdSE6OucBKE6cQAnojh5F5L7Gy6vcjs7mauLjwJbJHbh4O4VN52LYGhbL+ZhkrtxJ5cqdVA5ejeNeqoaE/6bv+sPJm1a1qu4/aaaW+3mQs3E8vMq8Db/ZdgkFkHvOQwAKRU56j2D3Ql9XmrbIjqyRuLq6olKp8h2Vi42NzXcUp7qQbb6vOrf5QY/iNqgsbZ4+fTo//fQToaGhfPDBB7z33ntcu3aNNWvWlOvQjdKeiZgxYwbTp0/Pl37hwgVsbW0Lrcd97lzc580zSFOOHat/Hjt+PLETJpQ2/FLT6gRnYzO4fCON24np5L10MeJu2v3YFHAx4jp2mbHlHlN1d/HiRVOHUOVVxm14JTaZBy/9FSInPTw8vNDXpaSU/OJL2ZE1EnNzc5o3b87WrVt54okn9Olbt25l4MCBJoys/Mg2PxptftCjuA0qS5uXLl3KggUL6NevH9OnT2fo0KHUrl2bRo0acfDgQSZNmlSu9Zf0TMQ777xDaGiofjkpKQlfX1+CgoKwt7cvvIJ330U7alROXSdOoBw7Ft2PPyKaNgXAxcsLl3I8IhsVn8YfR6JYeewmcan3j3abqxQ09nWkhb8T9TztqO1mg5e9ObeuXyUoKAiVHFrw0LRaLRcvXqRu3bpyOz6kyrwNa7vHcyHGsDOrUECgux3BwcGFvi73LE5JyI5sKaSkpBjcVSciIoKTJ0/i7OyMn58foaGhDB8+nBYtWtC2bVvmz59PZGQk48aNM2HUZSPb/Gi0+UGP4jaoCm2OiYnRjx+3tbUlMTERgP79+/PBBx+UW72lPSJtYWGBhUX+i6NUKlXRP7Q+PjmPnMwAKFu0gHKeWuxkVAKzd1xi+/lYcmeOc7JW06uBJ71DPGlTywVLtWHcWq2WaIWi+DZJJSK3Y9lVxm346mN1GPfbcf2yQpFzRHbyY0V3ukvVjvKbPKH62blzpyBniIfBY8SIEfo8c+bMEf7+/sLc3Fw0a9ZM7N6923QBG4Fs86PR5gc9itugKrS5bt264uDBg0IIITp06CBmzJghhBBi2bJlws3NrVzrbtWqlRg/frxBWnBwcImmnXuo6beOHRMCcv6Wk3M3E8XohYeF/5R1+sdzPx0Um89GC022tsjXVscpj0xBbseyq+zb8PMN4cJ/yjoRMGWd6P3NbrHxTHSxrynNPkMhhLw/nyRJUlXw9ttvY29vz7vvvsvKlSsZOnQoAQEBREZG8tprr/H555+XW93Lly9n+PDh/PDDD/oj0gsWLODcuXP4+/sX+dqkpCQcHBxITEwsemhBXtHR8OOPMHas0S/wSsrQMGvLRX49cA2dyBnrOriZDxO61KaWW+FjePPSarWEh4cTHBxc6Y6CVSVyO5ZdZd+GW87F8NKSYzT1c2T1hPYlek1p9hlyaIEkSVIVkbejOmTIEHx8fNi/fz+BgYHlPkPEM888Q1xcHB999BHR0dGEhISwYcOGYjuxD83LC6ZNM3qxuy7E8ubK09xJzplVoV9DL17vWbfEHVhJkkonLStnBgJr8/LpZMuOrCRJUhXVpk0b2rRpU2H1TZgwgQkVMGtAecjM1jJz4wV+2RcBQC03Gz4aEEKHOq4mjkySqreEtJwLJx2tzMulfNmRlSRJqkIuXrzIrl27iI2NzTcHc1W+e1p5ik/NYtySYxy+ljPP7sh2Abzdp16+C7gkSTK+3DmXHazV5VK+7MhKkiRVEQsWLGD8+PG4urri6elpMPWVQqGQHdkCRMWn8dzPh7gel4adhRlfP9OEx+pXz/mOJakySkjL6cg6yY6sJEnSo+2TTz7h008/ZcqUKaYO5f/bu+/oKKq3gePf2ZLeSSCFkBBCJ7QA0oQE6YpYUJoIgigSsKCiiAgo2H6KvggWLIAdCyK9Kb0TCB0CISEhjRRSSdvdef8IWQlJYDdts5v7OWcPO3fuzjx3dtncnbnzXLNw9foNRi07SHxGHo1dbfluQldaNHI0dViCUK9cF0MLBEEQBIDr16/z2GOPmToMs5CSXcDor4s7sU3d7fn1me40crIxdViCUO8kZuQD0NCpbG7p6qCoka0KgiAI1e6xxx5j69atpg6jzivQaJnyYzhx6Xn4NbDjl8miEysIphKTlguAXwP7Gtm+OCMrCIJgJgIDA5kzZw4HDx4kKCgItbr0mLOanqLWXCzccI7wK9dxtFGxfEJXPJ1FJ1YQTCGvUMu1m6nu/BvY1cg+REdWEATBTCxbtgwHBwd27drFrl27Sq2TJEl0ZIH9Ual8f+AKAItHdRL5YQXBhNRKifXTe3P1+g1c7MQYWUEQhHotOjra1CHUaflFWl7/8xQAY+9pQmirhiaOSBDqN5VSQTsfZ9r5ONfYPsQYWUEQBMEi/HI4ltj0G3g62fD6kFamDkcQhFogzsgKgiDUYTNmzOCdd97B3t6eGTNm3LHuokWLaimquqdAo2XpjigAXujfHEebmslZKQiC4ZbtjkIhSTzQ3rvGxqqLjqwgCEIddvz4cYqKivTPK3Lr5Aj10dYzyaTmFODpZMOI4MamDkcQ6j1Zllm2O5rUnAI6+7mKjqwgCEJ9tGPHjnKfC6X9Hn4VgMe7NEatFKPmBMHUNDqZCT39OHk1kzZeTjW2H9GRFQRBEMxafpGWg5fTAHiwo4+JoxEEAUCtVDCtX/Ma34/oyAqCIJiJhx9+uNwhBJIkYWNjQ2BgIGPGjKFly5YmiM50jsZcp1Cjw9PJhmYeNZN0XRCEukl0ZCtBp9ORkJCAo6NjvR+XJgjCncmyTHZ2Nt7e3igUVbvk7ezszJo1a3BxcSE4OBhZljl+/DgZGRkMHDiQVatW8cEHH/DPP//Qq1evampB3Xc+KQuAYD9X8Z0sCHXEhpOJdPV3pWENz6onOrJGWLp0KUuXLqWwsJCoqChThyMIghmJi4ujceOq3YTk6enJmDFjWLJkib5TrNPpeOGFF3B0dOTXX39lypQpvPbaa+zdu7c6wjYLsek3AGhSQzMHCdVLlmXi0vPwcrEROUAtVGzaDcJ+PoZKIXFy3kDsrGquuyk6skYICwsjLCyMzMxMXFxciIyM5OjRo4SGhqJWqykqKmLHjh2EhoYClPv89ikljXHr9u+2nbvVLW+9IWV3WhZtNo82G9vG+tLm2+tU1E5j25ydnU3Tpk1xdHQ07GDcwbfffsu+fftKndlVKBRMnz6dnj178u677zJt2jTuvffeKu/LnCRl5gPgLaaiNQsr98cwb91ZRnX1ZeFDbU0djlAD9lxKAaBzE9ca7cSC6MhWSsmlKzc3N+zs7GjQoIH+D2PJMlDu86r+sTd0O3erW956Q8rutCzabB5tNraN9aXNt9epqJ3GtrmkTnVc8tZoNJw/f54WLVqUKj9//jxarRYAGxubend5XaOTAbBWKU0ciXA3eYVa5q07C8BvR+NER9ZC7bpQ3JG9t7l7je9LdGQFQRDMxLhx45g0aRJvvPEGXbt2RZIkDh8+zLvvvsuTTz4JwK5du2jbtn51DtTK4o57gUZr4kiEu/kjPE7/3EolBhZYouz8InZFFndk+7Wu+WmiRUdWqPNkGXQ6GVmW692ZJkG41SeffEKjRo348MMPSU5OBqBRo0a89NJLvPbaawAMHDiQwYMHmzLMWudmbwVAak6hiSMRynPpWg6BDR3QaHV8vSdaX16g0SHLsgkjE2rC9nPJFGh0BHjY12j+2BKiIyuYTGZeEecSs4hNu0FsevEjISOPjLwiMm4UkZVXRKFWB6h48eA2JAkcrFU42ahxtlXj42pLY1dbmrjZ0drLiRYe4kYPwbIplUpmz57N7NmzycoqvlPfyan0H4omTZqYIjST8mtQnHIrKiXHxJEIt4tKyeGhpfv4flI3EjLyiE2/gZVKQaFGhywXd2YFy7LuRCIAw9p718rJJ9GRFWqFVidzJiGTA1FpnLiawen4LP2dxoaSZcjO15CdryE+I4+ziVll6jS0UXJYe46QVo3o0awBDtbiIy5Ypts7sPVZ65tnfU7FZ5o4EuF2G04mklOg4clvDtHw5s14z/YJ4LN/LwHFk1kIliPjRiG7bw4rGNbBq1b2Kf7KV0HJ/OcV/Xun59Wxv6rUvVOsdyozps0ZBbByfzQHojM4HHOd7HxNmTh8XGwIcLfH180WX1c7fFxscLWzwtlWjbOtCgU6du/aRWhICCiUxR3ZAg3XbxQSfz2Pqxn5XEm7wZmELBIy87mWL/HT4Th+OhyHWikR2tKDhzt606e5O5KsrfE23/68Mmr6fS6vXLS54tdWtc1VPTa3++OPP/jtt9+IjY2lsLD0pfRjx45V677MRecmLqiVElfSbhCdmktTdzEpQl2x/mQCADmFWnJScrFSKXiyh7++IytYlo2nktDoZFp5OhLYsOqZWgwhyWKAisFK8shqtVoiIyP5+eefsbMTl7NvdS0PTqRLnExTEJtb+pKCjVIm0EkmwFGmsQM0tpOxr/yN7mXkFEF0tsT5jOJHasF/+3dQy/T11NGrUfXuUxDu5saNG4wZM4bMzMwqn0VdvHgxs2fPZvz48Xz99dc89dRTREVFceTIEcLCwli4cGE1RV29srKycHZ2rpZjUJExXx9kf1Qarw5qSVhoYI3s41ZarZZz587RunVrlEqRLaE8kcnZDPxkd6kyK6XEb8/25KHP9wEQPrsfiVeixHGsgrryWZRlmQc+28uZhCzeGNqKZ/o0q/S2jPnOEGdkjVCSR7bkAIeGhnLo0CEGDBigT+ezbds2BgwYAFDu86qmKDJ0O3erW956Q8rKW/570zbyG7ZhTUQSJ+L/u9wvIdOxsTP3tW5EjwA32ng5olIad5dqZdo8Y2R/1Go155OyWRORwNoTiaTkFLIhTsm2eJlJvfx5tm8z7K1VlW6zOb/PxraxvrT59joVtdPYNpeMZa0On3/+OcuWLWP06NGsXLmSmTNnEhAQwFtvvUV6enq17cccPdzJh/1Rafx6JJbn+jZDoRA3hpra+pOJZcoKtTJPfndIvyzOpFmOY7EZnEnIwlql4LFg31rbr+jIVkHJHzG1Wl3qD9qdnlflj31ltnO3uuWtN6RMpVJxNDaLHw/GsOW0Eo0cCYACmV6B7gxo0xAp/hSjHupusjYH+boR5OvG60PbsOFkIl/uvMT55By+2HOFPyKSeG1wKx4Mamhwmy3tfS6vXLT5vzJDnhuTR7Y6xMbG0rNnTwBsbW3Jzs4GitNyde/enSVLllTbvszNA+29eWf9WeLS89h4OpEH2nubOqR6TZZl/bCC22WVM8xMMH8/HrwCwLAO3rjezCRSG0QSN8EoeYVa9idLDFt6gNFfH2TDqSQ0skSLhg68PrgF84O1fDc+mNFdfXGqvc/xHamVCh7q5MPasB5MbKGliZstKdkFvPL7CSb/eJxMkbFHMBOenp6kpaUB4Ofnx8GDBwGIjo6u92mMbK2UTOzdFIBF2yLRaMXd8KZ0Pimbyym5d60XmSwyTViCtJwCNtw8A/9kD79a3bdFdmQLCgro2LEjkiQRERFRap0kSWUeX375pWkCNSMJGXm8u/Ec9360i1WXlVxIzsFWrWRU18a8EqRh/bQeTOrlX2c6r+WRJIkODWQ2Te/Fa4NbYaVSsCsylfcjlOy5mGrq8AThrvr168e6desAmDRpEi+99BIDBgxg5MiRPPzwwyaOzvQm9W6Kq52ayym5fLM3+u4vEGrM3xHxBtXbK757LYKrnRVfj+/C072b0r6xS63u2yKHFsycORNvb29OnDhR7vrly5eXShju7OxcW6GZncspufx8ScHLh/bqp4FsYC3zbL9WjOzmh50KNm6MMauJCqxUCp4LaUb/1g2Z8VsEp+KzePqHY8wc3Ipn+wSYOjxBqNCyZcvQ6YrPNE6ZMgU3Nzf27t3LsGHDmDJliomjMz1HGzVvDG3Nq3+c5JNtkQxo04hmHg6mDqve0el0+svMt/N2tmFwO0++2xcDwFO9/EmOjarF6ISaoFBI9G3hQd8WHrW+b4vryG7atImtW7fy559/smnTpnLruLi44OnpafA2CwoKKCgo0C+X3LxhaSmKbi07k5DFV7uj2XwmGRkFINMjwI1x3XwoiDnOoK7eqFXm3WZ/Nxt+GN+JKd/s4OA1Be9vOs+V1BxmDw4st76lvM/llYv0WxW/ti6l31IoFCgU/11Ie/zxx3n88cerbfuWYERwY9aeSGDPxVSe+zGcv6b2wl7kk641sizz6h8nySn4Lz9sY1db7g/yYnA7Tzr6ugDoO7L1e0CMZdDqZJQmvLnSotJvJScnExwczJo1a3B3d6dp06YcP36cjh076utIkoSPjw/5+fk0bdqUSZMm8cwzz5T643C7efPmMX/+/DLllph+KyoLtsUrOJfx3/EIctXR30eHf+2khKt1sgx7kyX+jFYgIxHsrmNsMx1GJlgQhHJVZ/otgPz8fE6ePMm1a9f0Z2dLPPjgg1Xefk2ojfRbt7qWlc/9n+0lJbuAoUGeLBndudqzGNSVlEd1iSzLfLw1kiU7inPE9m3hzquDWtHW26nMVTv/1zcAcPiNflyLFem3qsKUn8W8Qi1DF+/h/iAvpoY2w86qen401sv0W7IsM2HCBKZMmUKXLl2IiYkpt94777zDfffdh62tLf/88w8vv/wyqampvPnmmxVue9asWcyYMUO/nJWVha+vr8Wk31KpVOy+mMrnOy9zLK54ZhyFBA8EeTGpZ2NiThyw2LRMJWVvj+tPr3OpvPrnacJTFSglWD6lH1ZWVhbX5vLKRfot80i/tXnzZp588klSU8uOK5QkCa1WzJIE0NDJhi/GdmbUsoNsPJXEHLvTLHionVkNgTI3Wp3M2+vOsPJA8ZCCucPa8FSvpiaOSqhp604mEJ2ay5qIeF7o39wkMdT5jmxFZ0NvdeTIEfbv309WVhazZs26Y91bO6wlZ2rffvvtO3Zkra2tsba2LlNu7um3dDJsv5DGl7tj9NO9KiWZx7r4MjWkOU0a2FFUVETMCctPy6RWq3k4uAn2NlY899MxDqco+GRHDG8+0LbC15l7m8srt/T3ubxyc0q/NW3aNB577DHeeustGjVqVG3btURd/N1YNLIjL/x6nJ8OxWKjVvLm/a1FZ7YG5BVqef7X42w7m4wkwVsPGN6JtaCLwvXSiM6NcbJRI0nFGYJMoc53ZKdNm8aoUaPuWMff358FCxZw8ODBMh3OLl26MHbsWFauXFnua7t3705WVhbJycn15g9DkVbHH8fi+SRCybWDJwGws1Iyumtj/PKjGP1gm2r942tOBrb1ZOHwNrz+1xm+2RtDUw8HHu8s8lEKdcO1a9eYMWNGvfmuqqoHO3hzo0DD66tP8e3eaK7nFvL+o+2xUolxQ9UlNu0GU38O53R8FlYqBZ+O7MjQIC9ThyXUEoVCYnA7w+85qgkGdWTd3NyM2qgkSRw7dgw/v6rnEnN3d8fd3f2u9RYvXsyCBQv0ywkJCQwaNIhVq1Zxzz33VPi648ePY2Njg4uLS5Vjrevyi7SsOhLHst2Xic/IAyScbVVM6NmUCT39cbCS2LhR3D36aGcf9hw9yYY4JfPWnqG5u2WNgxbM14gRI9i5cyfNmlV+6sf6ZlS3JigVEq+vPsXq4/EkZ+fz2ejOuNViwnZLtfl0Eq/+cYLsfA2udmqWPdmFrv7G9RcE85SWU4BKqcDZ1vQnvQzqyGZkZPDpp58alKZKlmWmTp1a62O1mjRpUmrZwaE45UqzZs1o3LgxAOvWrSMpKYkePXpga2vLjh07mD17Ns8880y5QwcsRXZ+ET8ejOXbvZdJzSnO/u/hYEXPBnnMG9cPVwdboHrvrjZ3A3xkNI4N2XL2GtN/PcH0lqaOSBBgyZIlPPbYY+zZs4egoKAyV06ef/55E0VWtz3WxRd3R2vCfjrGvktp3L94D0vGdCbYz9XUoZmlzLwiFm44y29HrwIQ7OfKZ6M74e1ia+LIhNqycMM5dkam8P4jQQxsawZnZAFGjRpFw4YNDao7ffr0SgdUk9RqNZ9//jkzZsxAp9MREBDA22+/TVhYmKlDqxEZBfC/rZH8euSqfkpAHxdbpoQ04+H2jfhn2xYcRFqackkSvP9IO6JSD3PpWg6/Ril4XIzlEkzs559/ZsuWLdja2rJz585S4z0lSRId2TsIbdmQ1VN7MvXHY1xOzWXkVweY1i+QqSGBYqiBEbadTWb2X6e4ll2AJMHTvZsyc3Aro8dHSlJxxhjB/ETEZbD6eDySBF7Opv/xYlAv5vYUL3dTMv+3Kfn7+5cZRD548OBSEyFUVV3NtXnyaibf7Ytm0xklOjkGgAB3e6b0acoD7T1RKxVG59C01PyidyqzVsgsGhHEI18e5PR1BauOxDGqWxOzb3N55Zb+PpdXbo55ZN98803efvttXn/99TumDBTK18rTibXTezNr9SnWnUjg0+0X2XQqiQ9GtNfnNxXKF5mczcIN59gVmQIU/035YER7MZSgntHqZOavOwPAI50aE9TY9BNKWVQe2Zq2dOlSli5dilarJTIysk7lkdXq4NR1iV2JCi5n/3eWJtBJJsRLR1tXGRPmKzZr/8RLrI1VYq2Qeb2jFjfLHYUi1IDqzCPr5ubGkSNHzG6MbG3nkb0bWZZZfzKReWvPkJZbiCQV/1F+ZVALg88w1Zc8sqk5BXyyLZJfDseik0GtlJjYuykv9W+Bjbry7W46awOyDAdfDyX16mWLP441qTY/i8v3RTN/3VkcrFVsn9EXT2ebGtlPjeaRXbt2bbnlkiRhY2NDYGAgTZtaZu64sLAwwsLC9Ae4LuSRjbt+g9+PxvPHsXhSbo5/VSkkhrRtSEvimfiw8TlV71RmaflFDSnrV1DIqf/bQXS2xL4bXix+oJ1Zt7m8ckt/nw1p8+11KmqnsW2uzjyy48ePZ9WqVbzxxhvVts27iYmJ4Z133uHff/8lKSkJb29vnnjiCWbPno2VlXneMCVJEsM6eNMr0J0F68+y+ng8fx67yvqTCUzs3ZSnezelgUP9/sWamJnHst2X+eVwLPlFxVdlB7VtxOtDWtPU3b7K25cQs3qZm7j0G3y4+QIArw9pVWOdWGMZ3ZF96KGHkCSpzGX7kjJJkujduzdr1qzB1dWyB9KbKo+sDgXbzqfyy+FY9lz8LzG6u4MVI7v68mQPf9xslWzcGF/pnKp3K7O0/KJ3KxsZoOWjU2q2n09hd9R1/fpb61Ym1qq0w5i6Io9sxeXmlEdWq9Xy4YcfsmXLFtq3b19m24sWLaq2fZU4f/48Op2Or776isDAQE6fPs3kyZPJzc3lo48+qvb91SY3eysWjezIkz39eXfDOQ7HpPPFziiW74tmVNcmTO4TgE89u4HpdHwm3x+IYc3xBAq1xR3YDr4uvDGkFfcENDBxdIKpyLLMrNWnyCvS0q2pG2O6Nbn7i2qJ0R3Zbdu2MXv2bBYuXEi3bt0AOHz4MG+++SZz5szB2dmZZ599lldeeYVvv/222gOur7Q6mf1Rafx8ScGbx3eRffPmLYB7m7szplsT7mvdSH/TgshAUL287OCpnn58vTeGdzac58UWpo5IqI9OnTpFp06dADh9+nSpdTWV6P/2ewsCAgK4cOECX3zxhdl3ZEt09HVh1bPd2X7uGov/ucip+ExW7I/hh4NX6N+6IaO6NaFPcw+Tzidfk3ILNGw6ncSPB68QEZehL7+nqRvT+gXSO9C9xj5fYnSjefg9/Cp7L6VirVLwwaPtq33K56owuiP7wgsvsGzZMnr27Kkvu++++7CxseGZZ57hzJkzfPrpp0ycOLFaA62PNFodR2Kus/VsEhtOJnItuwBQABq8nG14uJMPo7o2oUmDujFO19JNCw1g4+lk4jPy2Jko8ZCpAxLqnR07dpg6BAAyMzPvmF+8oKCAgoIC/XLJ8AqtVlunp9Ht19Kd0BYN2B+Vxhe7LnPgcjpbziSz5Uwy3i42PNzRh6FBnrRs5KC/Cbout+dOCjU6dl9MZe2JBP45f00/fMBKKTGknSdPdG9C5ybFV1WNveHbENLNtAVaMz+OdUHJsaupY5iQkceC9WcBeLF/c5q42tT4+2XM9o3uyEZFRZU78NbJyYnLly8D0Lx583LnAhfuLju/iN2RqWw7m8SOCylk5v13ZtXFVk0bpwLCHuhGj2YN69QvovrAzkrFq4Na8uKqCLYnKEjLLaSBSKou1DNRUVF89tlnfPzxxxXWee+998qdWvzChQv6HN91mRswu6cjV9pYs+VSDv9eziUhI5+lO6NYujMKH0cVvfzsCPa2RaO7gMpMvovTbmgIT8jnaEIeEYl53Cj672yot6OK/s0cGBjogIuNEnKTOHcuqcZiKTkTezkqCjc7FZGRkTW2r/qiJo6hVicza1syWfkaWjSwoqdbHufOnav2/dwuJyfH4LpGd2SDg4N59dVX+f777/Hw8AAgJSWFmTNn0rVrVwAuXryon4TAklVHiqICjY6IuAwOXk7nwOV0TlzNRKP778vF1U5NaEsPBrZpSHd/Z3b9+w+dfBzRajXc6QdLdaeistS0TMa2eUgbD5Z5OXA2MYfF/1zkzSEtKnx9ZdWFVFSW9j6XV25O6bceeeQRg+qtXr3a4G3Omzev3M7mrY4cOUKXLl30ywkJCQwePJjHHnuMp59+usLXzZo1ixkzZuiXs7Ky8PX1pWXLlnUia4GhWgODexTPirj1bDIbTiWx+2Iq8dkafjudxW+ns7C3VtKjaQN6NHOjcxNXWnk61om8tLIsc/V6HsfjMjh2JYOjV65zLql0asxGjtY80N6LB9p7EeTjVGPDB8ojSbEgyzQNCCAzKZYWLVqIrAWVVJJJqSaO4aJtFzmbUoCDtZIvx3fHr5auABtzk6zR6bcuXLjA8OHDiY6OxtfXF0mSiI2NJSAggL///psWLVqwZs0asrOzGTdunNHB12XVkX4rTwNXciSu5MDlLImobIkiXekvDw8bmSBXmXZuOpo6ItJm1TEXMyWWnFWikGRmddDSsH7dCyIYqTrSbz311FMG1Vu+fLnB20xNTb3rlTN/f39sbIrvTE5ISCA0NJR77rmHFStWGJXHtq6l36qKnAIN/5xLZuuZJPZEXiOroPRldyulgjbeTrRv7Ezzhg40a+hA84aOuDtY1VhHMadAw6VrOVy6lsPFa9lEXcvhxNVMUrILStWTJGjf2IXQlh6EtGxIex9nk13ZC3xjIxqdzP7XQkiPjxbpt6qgptJvXbqWzYBPdiPLsHh0Jx7s4F1t274bY74zKpVHVpZltmzZQmRkJLIs06pVKwYMGFBvEnSXHODExMS7pt9q1+1e9lxKZ9Phc6TIDkSn3Sgzm0kDeyu6B7jRM8CN7gFuNHErv3NcF1JRWVpapsq2ecTifziboWBYUCP6O8SbVZsNbaMlvc+GtPn2OhW109g2Z2Vl4e7ubtaduPj4eEJDQwkODubHH380+o+lJXVkS2i1Ws6cPYvO2Yf9l9M5HJ3OibgMrt8o/wy8g7UKL2cbPJ1t8Ha2xcPRGmdbNc62apxsVdhaqVArJFRKBSplcRagQo1MkVZHoUZHdkERGTeKyMwr4npuIUlZ+SRl5pOQmV+mw1pCrZRo6+1M5yaudPZzoUdAgzqTVqykI7tvZgjXE0RHtipqMo/s2hMJnIjLYM4Dbap1u3dTo3lkoXiQ9uDBgwkJCcHa2rpWL0fUJYak34qIz2HehgsU36R1A4AmbnZ0auJCJ18XejRzp0UjB6OOoalTUVW0XNFzc0jLZGybh/rqOJuhYMPpZII6mGebyyu39Pe5vHJzSr9lCgkJCYSEhNCkSRM++ugjUlJS9Os8PU07x7qpKSSJtj7OdGzixtSQ4pM8sek3iIjL4GxiFpeSc7iUkkNc+g1yCjRcvJbDxWuGj/0zRkNHawIbOtC8oQOBDR1o7eVEOx/nKk1aUJPqabfB7DzYwbtWz8RWhtEdWZ1Ox8KFC/nyyy9JTk4mMjKSgIAA5syZg7+/P5MmTaqJOM1WpybO9Axww6EglUdDg+niX3d+EQuV5+sA97Xy4J/zKWy5qsCwC7+CYH62bt3KpUuXuHTpUpl7H0TqpNIkScKvgT1+DewZ3tFHX55fpCU+I4/EjHwSMov/TcstICuv+AxrZl4ReUU6tDodGq1MkU6HQpJQKxVYKRWoVQocrVU42xWfwXWxVd88u2uLl7MNvq52ONuZ9w8moe5YsS+aIUFeNHKqGxMe3I3RHdkFCxawcuVKPvzwQyZPnqwvDwoK4pNPPjFpR/bYsWO89tprHDlyBKVSyaOPPsqiRYtK3SUbGxtLWFgY//77L7a2towZM4aPPvqoxmao8XW1Y+VTXdi4cSP9WnqY/dkZ4T/TQ5vxz/kUjqVKRKXk0syj6rPdCEJdM2HCBCZMmGDqMMyajVpJMw8HmnnU/YwNtU38FKpbfj8ax7x1Z/lq92W2vtQHR5u632cxelDr999/z7Jlyxg7dmypsRjt27fn/Pnz1RqcMRISEujfvz+BgYEcOnSIzZs3c+bMmVJfwFqtlvvvv5/c3Fz27t3Lr7/+yp9//snLL79ssrgF89XW24n7WnkgI/H5zsumDkcQBMFsSIixBXVRV383Ahs6MKprE7PoxEIlzsjGx8cTGBhYplyn05l0Nqn169ejVqtZunSp/qazpUuX0qlTJy5dukRgYCBbt27l7NmzxMXF4e1dPObj448/ZsKECSxcuNBibkIQak/JWdn1pxKZGhJg6nAEQRAEodL83e35O6wXdlZ1c2x1eYzuyLZt25Y9e/bg5+dXqvz333/XT51oCgUFBVhZWZXKnGBrW5wXae/evQQGBnLgwAHatWun78QCDBo0iIKCAsLDwwkNDa1w2+XNUmNIXkpt9F7U/87j3uwcFClL0CnVoFCBpAKFsvi5ouxzubxyGVomXkHedRqt2hpU1qC0QlbZgNIKVDY3y6zRosT5RjSahFNgY68vR2UNaluKtHKZWEUe2fLL7vRvCw9b2rnqOH1dwZIdlxjgUPfbXF65pb/P5ZWbUx5ZQbBUYpy16WXmFXEmPpOege4A2FtXKg+AyRidfmvdunWMGzeOWbNm8fbbbzN//nwuXLjA999/z/r16/XpaWrbmTNn6NixI++++y4vvPACubm5PP3006xevZp3332XWbNm8cwzzxATE8PWrVtLvdba2poVK1YwevTocrddUeJwQ/LIemaEc0/0/1W+YTVEK6nRKKzRKG3QKmzQKG3QKG4+lNbFZTfLi5T2FKocKLz5b5HSgUKVPRqFrbj1FIjLgY9OqZCQeaOjyCsrlFYdeWTNnaWm36qplEf1QYs3N1Go0bHn1b5kJsaI41gFVfks3ijUMO7bwxyPvc67DwcxqluTGorSODWafmvYsGGsWrWKd999F0mSeOutt+jcuTPr1q2rkU6sMbPPrFy5khkzZjBr1iyUSiXPP/88jRo1KvXGlpfmSpblO6a/qmiWmtDQ0LvmkQ0aOon8pC6cOHaUju3boVQAOg3odDf/1SDptCBr9MvotOU+12mKuBobja+3Fwp0oC0ETQFo8ks9l7SFyEX55OdmYquWisu1hUjaQn0blHIRSm0R1trKp4KRJSXYupCjtcLOowmygycxafk0adMN2aERRy9cpXPfoahcfcHKoVKd3rqaR/b29zmkeQN2Xkxja7yClc/dZ/Y5VUUe2erNIysIglDXFGp0PPfjMcKvXMfJRkUHXxdTh1QplTp/PGjQIAYNGlTdsZRr2rRpjBo16o51/P39ARgzZgxjxowhOTkZe3t7JEli0aJFNG3aFCjOeXjo0KFSr71+/TpFRUU0atSowu1bW1tjbV02ZZYheWTVLt7g4k3SZRlFu6GoqvDHXldUxMmNG2k8dCiKu2xHU1TEto0bGTp06H/x6HSgLYCiPIpuZLJn+0b6dA9GpcuHghw0eZmcOXaIdi38UWqLy3T5mSTFXMDT2RpFfgbyjXS0Oamo5EIkWQs30nAEuJoIQCDAri0A9AK49H7xvq2dwdUP3JqCq/8tj6bg4gd3mUyjruWRLVkuMb1fIDsvphGeIpGQVUSgZ9Wn8asLOVVFHlmRR1YQBMuj1cnM+C2CXZEp2KqVLH+qK629zPNqSZ0fCOHu7o67u7tRrynplH733XfY2Njoz6L06NGDhQsXkpiYiJeXF1CcI9Ha2prg4ODqDbwuUihAYQtqW1A7km3bGNknGG7+oZWLioiJc6BNj6Eob5Zpi4o4crNDrFCr0RQVsXHjRoYOCEWtyaEoO4VDOzbRPagZUk4Sl0/sp1lDe8hJIjfxEg7kIhVkQUEmJJ0sftxObQceLaFhG2jYuvjRKAgcK/5xUde0b+xM3+bu7LqYyue7LrNopOnGiwuCINR1YlCa6ciyzJy/T7P+ZCJqpcSX44IJ9nMzdViVZlBH1tXV1eCZp9LT06sUUFUsWbKEnj174uDgwLZt23j11Vd5//33cXFxAWDgwIG0adOGcePG8b///Y/09HReeeUVJk+ebDHjtmqN2hbsnMDWgzTHGOQ2Q5GBs6lN8B86FIB/S84Iy4WQEQvXY/57pEfffB4NRTcg4Xjx41ZOjVF6d6ZZlj1SnBv4dinebx01LTSAXRdT+ftEIi/0b4FfA5FXVhAEQag7ZFnm/c3n+flQLJIEn4zsSN8WHqYOq0oM6sh++umn+udpaWksWLCAQYMG0aNHDwAOHDjAli1bmDNnTo0EaajDhw8zd+5ccnJyaNWqFV999RXjxo3Tr1cqlWzYsIGpU6fSq1evUhMiCDXIyv6/M62302qKO7PXzt18nC1+pF6ErKsosq7SDuD7X4qzLjS5BwJCoGkIeHcszupQR3T0daGVs47zmQo+3xHFByPamzokQRCEOk0kLag9sizzzvpzfLcvGoCFDwXxQPu6Pf2sIQzqyI4fP17//NFHH+Xtt99m2rRp+rLnn3+eJUuWsH37dl566aXqj9JA33///V3rNGnShPXr19dCNIJBlCpwb178aPPgf+UF2ZBwHG3sYZKPbcRLexUpJxmidxc/eBtsXKDF4OLXNetHXRgpM9i3uCP757GrTOsXiK9b1cfKCoIgWBqR8KZ26XTFwwl+OhQLwDvD2zLmnrqRoaCqjP7Lv2XLFj744IMy5YMGDeL111+vlqDMhaXl2qxTeWQVNtC4B0WNunAkozkD+vdHnX0FRfQepJhdSDF7kPIz4OSvcPJXZLU9UrP+eBQ1p6ign8na3NQRega4sv/ydZb8G8mC4W2NbnpdyKlqaZ/t8spFHllBEOoDrU7mtT9P8kf4VSQJPnikPY939TV1WNXG6Dyyfn5+TJs2jVdffbVU+f/+9z+WLFnClStXqjXAumTp0qUsXboUrVZLZGSkQXlkhZohyVpccy/hnXEEr4yj2BX9Nzb7htqN2AZ9uNIghHyr2h/AfjkL/u+MCoUkM6eTFreyCS+EekTkkRV5ZIWyWs3ZRH6Rjl2v9CE76Yo4jlVwp8+iTifzwqoI1p1IQKmQWPR4B4Z39DFRpIar0Tyy8+fPZ9KkSezcuVM/RvbgwYNs3ryZb775pnIRm4mwsDDCwsL0B9iQPLLmlGuzunKq1nqbZRlN4nHkE6uQT/yKXVE6rZLW0PLaBuR2j6HtMQ3cW9Ram599dACH805w4HI6F5T+vDO0TfW32cC6Io+syCMrCHWRJPIW1AqFQiLA3R61UmLxqE4MCfIydUjVzuiO7IQJE2jdujWLFy9m9erVyLJMmzZt2LdvH/fcc09NxFhnGZRH1gxzbVY1p6pJ2ux3D0Xendmi7cGQplpUx1Yixe5HOvkzipM/Q+sHIWR2hduq7ja/2L8FB5Yd5M9j8YSFNq/UWNm6kFO1zr3PRtQVeWQFQRDgxf7NGdbBi8CGjqYOpUZU6u6Ye+65h59++qm6YxGEKtMprJDbDoWOoyDuCOz7FM5vgHNrUV3YSJBbCNy4B5w9azSOewIa0CuwAfsupfHhlgt8NlrklRUEQbidyFpQ/aJScvh46wX+N6ID9tYqJEmy2E4swJ2nU7rJ2Etj2dnZlQpGEKqVb1cY9RM8tx+aD0TSaQhI3Y7qyx5w6o8a/wadNaQ1kgTrTiQQfuV6je5LEATBnIisBTVDq5N55vujbDyVxLsbz5k6nFphUEfW1dWVa9euGbxRHx8fLl++XOmgBKFaNWoDY39HM3Y1mTa+SHnp8Ock+GU05CTX2G7b+TgzonNjABZsOIuR91UKgiBYPPGtWL2UCon/PdaB7gFuvDSghanDqRUGDS2QZZlvvvkGBwcHgzZaX9LNWFqKojqVfusOMVW2bpFPD3a1nM9gx3Oo93+KFLkJZfwx3LyfpqhoQIXbqUqbX+gXwIZTiRyPzWDNsTgeaH/3gfZ1IRWVWb/PIv2WINR54oRs9ZFlmfisIkqmHOrcxJVfJnc3eEZWc2dQ+i1/f3+jD8ju3bvx9bWcPGUg0m9ZEse8q3SJWYpTfjw6FJzxGcVlj0E1cr1ry1WJjXFKnNQyszpqsTP9vA1CLRLpt0T6LaGstm9tJrdQy46X+5CbLNJvVVZOgYZXfotg54Vr/PZsD9r7upo6pGph1HeGLBgtMzNTBuTExER5zZo1cm5urlxYWCjn5ubqlyt6XlhYWOmHMdu5W93y1htSdqdls2tzznW5aNUEWZ7rJMtznWTN+lfkwoL8am9zdm6eHPLhv7Lfa+vlmb9HmPx9NvZ9Nfv32cA2G9pOY9ucmpoqA3JmZqapv7pMpuQ705KOgUajkU+dOiVrNBpTh2KW2szZJPu9tl6OSs4Sx7GSLqfkyP0/3in7vbZebjZrvfzH0VhTh1RtjPnOEOeGqkCk3zLzNqtdKHroK05nWtMu/heUR5ahvJECwz4vdzuVbbNarea9R9szatlBVh29yiOdG3NPQAPTtPku5Rb5Pt+lXKTfEoTaV18ue9eULWeSeOX3E2Tna2joaM2rPV15qKO3qcMyCYNu9hIEiyVJRDUcguahZaBQw5m/UP49BWRdte6me0ADRncrHmoz88+T5BRoqnX7giAIguUr1Oh4Z/1Znv0hnOx8DcF+rvw9tQetPervFJJm05FduHAhPXv2xM7ODhcXlzLr09LSGDx4MN7e3lhbW+Pr68u0adNKpQ6LiYlBkqQyj82bN9diS4S6SG77CIz6GRRqFOf+plPsN9XemX19SGu8nW24knaDOWtOV+u2BUEQzJEs8hYY7Or1Gzz+1QG+3RsNwOR7m/LrM91p6GRj4shMy2w6soWFhTz22GM899xz5a5XKBQMHz6ctWvXEhkZyYoVK9i+fTtTpkwpU3f79u0kJibqH/369avp8AVz0GIgPLYcWVLSJH0vip3vVuvmnW3V/N/oTigk+Ot4PH+GX63W7QuCIJgLMbDAOGtPJDDk//YQEZeBk42KZeOCmX1/G9RKs+nG1RizGSM7f/58AFasWFHueldX11KdXD8/P6ZOncr//ve/MnUbNGiAp2fNzuwkmKnWw9AO+wzV2qko938KjVpDm0erbfNd/d14sX8LFm2L5M01p2np6Ug7H+dq274gCIJgObLzi5i79gyrj8UD0KmJC4tHdarUtOeWqlId2T179vDVV18RFRXFH3/8gY+PDz/88ANNmzald+/e1R1jpSQkJLB69Wr69u1bZt2DDz5Ifn4+zZs356WXXmLEiBF33FZBQQEFBQX65ZLhCpaWa9Pi88ga2uZWDxN1aDMtk9cir52O1qFJuXUr2+Znevtx6HIa+6LSmLTyCH8+ew+Nbrk0VBdyqlra+1xeucgjKwimJ+aJqVh+kZYHl+wjOjUXhQTTQgOZfl9zcRb2Ngblkb3Vn3/+ybhx4xg7diw//PADZ8+eJSAggM8//5z169ezcePGmooVKD4j++KLL5KRkVHu+tGjR/P333+Tl5fHsGHD+O2337CxKe4kpKam8sMPP9CrVy8UCgVr165l4cKFrFy5kieeeKLCfc6bN09/RvhWIo+sBZN1dI3+DO/McHKtGrKz1dtolNX3Xt/QwKenlSTnSfjay0xvq8VapFC0SCKPrMgjK5QVNG8L2fkatr90L/kpseI4VuC9jedYfzKRT0Z2pFtTt3LrWOJnsUbzyHbs2FFeuXKlLMuy7ODgIEdFRcmyLMvHjx+XGzVqZNS25s6dK1M8Q12FjyNHjpR6zfLly2VnZ+cKt5mYmCifO3dOXrNmjdymTRv5ueeeu2MM06ZNk4OCgu5YJz8/X87MzNQ/4uLiRB7Z+tDmtARZt6idLM91kuM+GSDn5uRUa5svJWXIHedvkf1eWy+P+GKfnJFzo87kVLW099mQNhraTpFH1ngij6xwu3ZzN8t+r62XLyZliuN4i/Ar6XLUtWz9cl6hRs7MK7zjayzxs1ijeWQvXLhAnz59ypQ7OTlVeJa0ItOmTWPUqFF3rOPv72/UNj09PfH09KRVq1Y0aNCAe++9lzlz5uDlVf7UoN27d+ebb7654zatra2xti6b2kLkkbXwNju6I434Dnn5YBpnHEITuRZVp9GlXlPRc0NibdbImRVPdeOJbw5xJOY6U385wbfju1b4uboTkUfW8PUij6wgCHXRb0fjeO3Pk3Ro7MIfU3qgUiqwUSuxUVvGWdaaYnRH1svLi0uXLpXpYO7du5eAgACjtuXu7o67u7uxIRhMvjlq4tbxrbc7fvx4hZ1cQcC3K7p7X0W56z2U22ZDiwFgVX03Z3XwdWHFxG48+e0h9l1KY+w3h/hiTIdq274gCEJdJLIWlHVvc3ccrFQEuNtToNGhEmNhDWJ0R/bZZ5/lhRde4LvvvkOSJBISEjhw4ACvvPIKb731Vk3ECEBsbCzp6enExsai1WqJiIgAIDAwEAcHBzZu3EhycjJdu3bFwcGBs2fPMnPmTHr16qXvdK9cuRK1Wk2nTp1QKBSsW7eOxYsX88EHH9RY3IL50/V4npxDP+J8Iw42vw4PflGt2w/2c2XlxG5MXHGE8CvXGbnsME80qdZdCIIgCLUsPbeQ9NxCAhs6lLs+OSufrWeTGdfdDwAvZ1v+eblvvc8LayyjO7IzZ84kMzOT0NBQ8vPz6dOnD9bW1rzyyitMmzatJmIE4K233mLlypX65U6dOgGwY8cOQkJCsLW15euvv+all16ioKAAX19fHnnkEV5//fVS21mwYAFXrlxBqVTSokULvvvuuzve6CUIKNVE+E2iT+TbSKd+R6rGdFwluvi78edzPZmw/AjRaTf4KEOJd+trDGnvU+37EgRBqCtkC01boNPJzPgtAjsrJZ+PDS61rkirY8W+GD7dHkluoZYmbnb0beEBIDqxlVCp9FsLFy5k9uzZnD17Fp1OR5s2bXBwKP8XR3VZsWJFhTlkAUJDQ9m/f/8dtzF+/HjGjx9fbTFZWooikX6r/LKioiIy7ALQBE9GffQrFFtnIzWZXe1t9nezYdXkrkz/JYLjV7N47ucInoq5zoz+gRWOkRLptwxfL9JvCULdIUmWPbjgy91R7LyQAsCFpGxaejoCcCAqjbf+Ps3FazlAcV5YD4f6O71sdTA6/dbtsrKy+Pfff2nZsiWtW7eurrjqpKVLl7J06VK0Wi2RkZEi/VY9o9Lmcd/ZV7HRZHHKZwyXGw6ukf1odbA2VsHOxOLxUQ1tZEY109LMMrIW1Tsi/ZZIvyWU1WH+VjLzitj2Ym8KUuMs6jgeupzGmG8OodUVd6/ub+/Fa4Na8d6mc2w6nQSAm70Vrw9uxYjgxigUVevUW+Jn0ZjvDKPPyD7++OP06dOHadOmkZeXR9euXYmOjkaWZX799VcefbT6L7vWFWFhYYSFhekPcGhoKIcOHWLAgAGo1WqKiorYtm0bAwYMACj3eVXuYL51+3fbzt3qlrfekLI7LVt6m0MHP4jKNw82vEirpDU0e3gW2LnXSJuV27bxWJ8OzN8YybXsAhafUfFYsA8v9GtWZvIEY9t8pzZa6vtsSJtvr1NRO41tc8kEKoIglGVpAwtScwqY/stxfScWYMPJRLaeSaJIK6OQYMw9TXhlYEtc7KxMGKnlMLoju3v3bmbPng3AX3/9hU6nIyMjg5UrV7JgwQKL7sjeTqTfqn9tVgU/iXz0W9TJp1Ac+ATd4A/16yoT650MbOdF71ZevLfxHL8eieP38HjWn0xi8r1NmdwnAEcbw/cp0m9VXC7SbwlC7bPEkQVancxLqyK4ll02U1KRVube5u7Mvr81rTwt46pEXWF0bofMzEzc3Ipnl9i8eTOPPvoodnZ23H///Vy8eLHaAxSEOkWhRDvgneKnx7+H6zE1ujtnWzXvP9qeP5/rQecmLuQVaVn87yV6vv8vH24+T0o5X5iCIAjmwpLu9Vq64xJ7LqZWuP6tB0QntiYY3ZH19fXlwIED5ObmsnnzZgYOHAjA9evX9VPBCoIlk/16c82xHZJOg3LP/2pln8F+xVkNvhjbmWYe9mTna/h8ZxQhi/bw8yUFx2MzLPbuX0EQLI+lnZDdH5XKp9sj71jns3+jaima+sXojuyLL77I2LFjady4Md7e3oSEhADFQw6CgoKqOz5BqJPOeY0AQDr9Ow758bWyT0mSGBLkxbaX+vLVuGA6NXGhUKPjUIqCx78+zMBPdvPNnsskZOTVSjyCIAj1nSzL/B0RT9hPx9Hd5VzCupMJXLqZrUCoPkZ3ZKdOncrBgwf57rvv2Lt3LwpF8SYCAgJYsGBBtQcoCHVRhn0AuhZDkWQdrRJX1+q+FQqJQW09Wf1cT359uivdPHTYqBVcvJbDgg3n6Pn+vzy0dB9f7YriSvqNWo1NsGwFBQV07NgRSZL0k9IIQlWY+3WkBRvO8cKvEVy/UXjXurIMS/4VQzCrW6XyyAYHBxMcXDrB7/33318tAZkTS8u1KfLIll9W0b8FvV7FJnITPhlHyIsLR/Zsb3CsVWnHrdp7OzA2UMdn9/Zi87lU1p1MJDw2g4i44sd7m6CBtZJ9hae5t7kHPQLccLZVizyyFdQTeWTvbObMmXh7e3PixAlThyKYOXPNI6vTyeRrtNhZFXefQlp68P2BGEJaevBwRx8kSULmv7G/MjKyzM0yGaVCQpZls21/XVSpPLJXr15l7dq1xMbGUlhY+lfIokWLqi24ukbkkRVu1znmS3yv7yfJqQOHmr1s6nAAyCqEk+kSEWkSUdkSOvm/L0wJmUa24O8o4+8g4+9YvFzFNIbCHVhKHtlNmzYxY8YM/vzzT9q2bcvx48fp2LFjuXULCgooKPjvRsSsrCx8fX1JT08362Nwq5K/Ay1atLCY3J21qevCf0i/UcTGaT3QZSTU+eNYqNGx9mQC3+yJoXtTN+Y92Ea/LiuvCCdb02UnscTPYlZWFm5ubgZ9bxrdkf3nn3948MEHadq0KRcuXKBdu3bExMQgyzKdO3fm33//rVLw5qAkj2xiYqLII1vP2yylX8b6m3tRoCP/ifVsOZNep9qckZPHsr93kufkx4Ho60Sl5JapY2+tpIWHPbZFGdzXuRWtvZ0JaGDNoT07LeZ9Lq+8NvPIuru7m3VHNjk5meDgYNasWYO7uztNmza9Y0d23rx5zJ8/v0z5gQMHanwWSME8jPk9jqwCHUsf8MLPpe7mU71RqGPzpRz+Pp9F2g0tAK42Sr572Ae1UpwBqCk5OTn06NGjZiZEmDVrFi+//DJvv/02jo6O/PnnnzRs2JCxY8cyeHDNzHRUV4k8sqLNNGpJnFsv/NL3YLXvI3CZWKfa7OIA7Vxlhg5tg1qtJiW7gIi4DI5Gp/HPiSji81TkFmg5fjULULB/03933TqqlXwffxx/dwd8XW24nirhe+0G3s426GTzfJ/LKxd5ZO9MlmUmTJjAlClT6NKlCzExMXd9zaxZs5gxY4Z+ueSMbMuWLc22M387SzwLVptUqkQoKMTf3x+5Dp6RvXr9Bj8cjGXV0USy8zUANHS05qle/ozu2rhUHm9Ts8TPojETyRjdkT137hy//PJL8YtVKvLy8nBwcODtt99m+PDhPPfcc8ZuUhDMWqTnQzTJOIAieiduzXsBQ00dUoU8HK0Z0KYRIc3daKO5yMBB/YjNKORM/HU27j+Bxr4hkck5JGTmk10kER6bQXhsxs1XK1l58VDxM0nJxxf24OlkjS5HwUnFBbxd7XF3sKKBvTWu9mr9v9Yqy/hitTQVnTW91ZEjR9i/fz9ZWVnMmjXL4G1bW1tjbV12/nilUmkxf2hLWGKbakPJuUyFQoGWunEcZVnmwOU0VuyLYfu5ZH0WggAPe6b0acbwTt51+vusLhzD6mJMO4zuyNrb2+vHPnl7exMVFUXbtm0BSE2tOBFwVS1cuJANGzYQERGBlZUVGRkZZeocOXKE119/nfDwcCRJomvXrnz44YelLn+dOnWKadOmcfjwYdzc3Hj22WeZM2eOGHgtVNoNaw90HcagPP79zQwGL5k6JIOplApaejoS0MAG5dXjDB3aGbVaTXr2DX5euw3f1p25mlnA5ZRsIi7Gk40NKTkFaGWJq9fzuHo9D1BwbN+VCvfhYK3C1V6Nm701LrZqHG1UONrc/NdahYONCju1xIU0CdfLabja22JnrcRGrcRWrcRGrcBGpazyfORCadOmTWPUqFF3rOPv78+CBQs4ePBgmY5ply5dGDt2LCtXrqzJMAULVxeyFuQWaPg7IoGV+2O4kJytL7+3uTsTevoT2rKh+P6pw4zuyHbv3p19+/bRpk0b7r//fl5++WVOnTrF6tWr6d69e03ECEBhYSGPPfYYPXr04Ntvvy2zPjs7m0GDBjF8+HA+//xzNBoNc+fOZdCgQVy9ehW1Wk1WVhYDBgwgNDSUI0eOEBkZyYQJE7C3t+fll+vGjTqCedL1fhnFyV/xyDmHJmY3NL/P1CFViaONGl8HGBrkqR9PunFjLEOH9qVIq2PV2s20Ce5JUmY+Ow4dx80ngOScQtJyCrieW0RabiHXbxSi1cnkFGjIKdAQl363/LZKvosMr3CttUqBzc2OrbZQyReX92NrrcJGpcRarUCtVKBWSiglSE5UsP/vs1irlTfLFSglmeirEnG7o7GxUqGUZM4nS+Qdi8dKrUKpkECn40SahNW5aygUEueuSzhdSkOlkLiUBeFXrqNUSMTmFE9HWXcuLhrP3d0dd3f3u9ZbvHhxqdSKCQkJDBo0iFWrVnHPPffUZIiCBatL546m/nSMXZEpANhZKXm0c2PG9/QjsKGjiSMTDGF0R3bRokXk5BQn9J03bx45OTmsWrWKwMBAPvnkk2oPsETJJbAVK1aUu/7ChQtcv36dt99+G19fXwDmzp1L+/btiY2NpVmzZvz000/k5+ezYsUKrK2tadeuHZGRkSxatIgZM2ZUeFa2vDtwwfJSFIn0W+WXGdRm24bQ4QnUx75D2vkeRX73Vvqbui6korrbv27WEORlT5CXPcTJDOgfUGYsqE4nk12g4fqNQtJzi7ieW8j1vKLijm1+cec2++a/WXlFXE1OQ2lrT06BlrxCLXlFWoq0/52vKdDoKNDoyMwDkEjNv1NicQWHU66WU65kY9zFUsurLp8pU+e7yAj98y/Pl3SuVXx25oj++aih+cWd37sw9/RbTZo0KbVccrNWs2bNaNy4sSlCEoRKy8ov4u+IBIa088Tdofgqw0OdvLmSlssT3f14rIsvzibMQCAYr1Lpt0xpxYoVvPjii2WGFmRnZxMQEEBYWBhvvPEGWq2WWbNmsX37diIiIlCpVDz55JNkZmby999/6193/PhxOnfuzOXLl2natGm5+6xoLJlIvyXcyqboOv3PvIJSLmJ/s1dIcWpv6pDMnk6GIh0U6m7+q711WaLwZplWLn5odP89L16Wiv+VQacr/reknk7+b1mnf0joKM4Bqb2Z+1F36/pblmd31GJlwDAuS0m/VSImJuauWQtuV5LpxVKOARTfYHPu3Dlat25tMeMSa1OXBdtIzSlk4/Re6K5frbXj+PhXBzgcnc4bQ1vxTJ9mQPHVFYVkvrltLfGzaMx3RqUmRIDiS/3Xrl1Dp9OVKr/913ttcXR0ZOfOnQwfPpx33nkHgBYtWrBlyxZUquJmJiUl4e/vX+p1jRo10q+rqCNb0R24oaGhIv2WaHOp59HJGwlM2UL3G/+gHflapc7K1oVUVObxPvevvfRbso7dm/4kpFNzpJxEzh3dTYvB7xmcfsuS+Pv7Y2bnP4Q6qeY7jecSs1hzPJ5n+zbDzb44xdfDnXy4nltIQ0cbfT1DrqwIdZfRHdnIyEgmTZrE/v37S5WXzFSh1WoN3pahd8126dLlrtvKy8tj4sSJ9OrVi19++QWtVstHH33E0KFDOXLkCLa2tkDZX1wlX8h3+iVW0R24Iv2WaPPtzy82GkazjD0oEo+jiP4HWg4xKObKtMOYupVNRWVp73N55Wq1GrVSCdmJSCkXaZK2C+u9x5AyYuh95Qy2UW9AThKDdRo4XfyajkARb6NW3/2KjLmn3xIEc5KUmc/aE/GsPhbP+aTiG7cau9oyroc/AI938WVUV1+zPfsqlGV0R/app55CpVKxfv16vLy8qvRhMPSuWUP8/PPPxMTEcODAARQKhb7M1dWVv//+m1GjRuHp6UlSUlKp1127dg3478ysIFRFodoJXZenUR5YDDsWQvNBcPPzKJieJGsg5QKkR6JIOk3XyztRfbUAMmJBk48K6AQQW1y/wS2vlZHAoRGykzdJuQo8ivIA51pvgyBYkuo4tx+fkcfm00lsOpVIeOx1/fSwVkoF/Vo1pHmj/27aEmdfLY/RHdmIiAjCw8Np1apVlXdu6F2zhrhx4wYKhaJUx7pkuWT4Q48ePXjjjTcoLCzEyqr4MsPWrVvx9vY2uMMsCHej6z4NZfhySDoF59dBm+GmDql+0uRDUgTEh0N8OKrk0zyQcgFFRPFVIyXgfWt9SYns0oQUjT0NmncFV3/Co1LoHPIAsqM3m/aEM+T+YQAc2biRoXYNbt+jIAgGquoJ0StpuWw6ncSm00mciMsota6rvysPd2rM0CBPXOzq7qxhQvUwuiPbpk2bGs0XW5HY2FjS09OJjY1Fq9USEREBQGBgIA4ODgwYMIBXX32VsLAwpk+fjk6n4/3330elUhEaGgrAmDFjmD9/PhMmTOCNN97g4sWLvPvuu7z11lviMoNQfezcoPtzsPtD2PEetBomzsrWhqwEiNmHImYffc/vQHViIug0+tXSzYds5YDUsA069xacSZFp3echVB7NwdkXjU7mwMaNDB1SPKlFYvpGZJ/ioU2yFFH7bRIEoZR/zyfz0ZZIzib+N/ZckqCrvxtD23kyqJ0nXs62JoxQqG0GdWRvvVnhgw8+YObMmbz77rsEBQWVGf9VU3ekvvXWW6USb3fq1AmAHTt2EBISQqtWrVi3bh3z58+nR48eKBQKOnXqxObNm/Hy8gLA2dmZbdu2ERYWRpcuXXB1dWXGjBmlbuQShGrRYyoc+gpSzsGp36HDSFNHZHlykuHqQYjeDTF7IT0KKD7T6lJSx94DfLqATzAajzb8eyaJ0OHjUFtZoS0q4vLGjbQKCIWS7zGdeafKEgRzc6cbB7Pzi9h3KZUWjRwJ8ChO+1aklTmbmIVSIdE9wI0h7bwY2LZRqZu3hPrFoI6si4tLqTOWsixz332lE75X5mYvY6xYsaLCHLIlBgwYoL/buCJBQUHs3r27WmISOVVFm29/jf652gFFj+kody5A3jYHTbMBYG1Ycm1zyCN7p+eVYVCbZR1SYgRc2Ezf86tRH48pvVpSIHu2R9u4O8dTVAQNHo/KzV9/DbOoqIi8i9so0mhAkoz+PNzpuSFtEwThP7qb87/KsqzPX3D7zdezVp9i/clEnu8XyIyBLQHoHejOB48GMaCNpz4TgVC/GZRHdteuXQZvsG/fvlUKqC5bunQpS5cuRavVEhkZKfLICnek0BUSeu4NHAqvcbHhEM76jDZ1SGZHkjV4ZJ/F+/phGmWdwEaTWWp9hq0/qY6tSXVoRZp9CzQqexNFWjFLyyNbGSKPrADFGQUOXE5l/6U0fg8vnrDk3YfaknItidh8Gw5eTmflxK76GbX+CL/K5zsuMba7H5N6l58eU7DMz6Ix3xlmNyFCXVBygBMTE0UeWdHmO7ZZurQN1arRyAoVmsm7wb2FydtsbBtr/X1WSkhX9qM4+xfShQ1Ieen6erKVPVr/EE7le9HygemoXX2qrc2316monca2OSsrC3d3d4vqxBlLdGTrp5IrtQAbTiYS9vOxu77m1okKdDoZhcgycFeW+FmskQkRbty4wauvvsqaNWsoKiqif//+LF68uNqyDpgjkUdWtLmi5/rl1kOhxRCkyE2oN70MEzaAwrAvmvqWR9Yx7yrWO+ejPPMn5Kb8t8LOvTjzQ+thSH69kGWJ2I0baefqUyNtLikz5LkhbRZ5ZIX65ocDMazYH8PIrr4MauvJ8dgM/ggvb8ro4nRYgW5qQtr40DPQg67+rvp1ohMrGMLgjuzcuXNZsWIFY8eOxcbGhl9++YXnnnuO33//vSbjEwTzN+QDiNkDsQfg4BfQc5qpI6o78jPh9J8ow7+nX+Lx/8ptXaH1MGj7CPjfC8pbvqrEmFNBMLncAg1nErI4eiWdY1euM3dYWxxtVLjYWZFXpCUqJZd3N57n3Y3nS71OIUGQjzPdmzWge0ADOvs6E3f5Iq1bt7SYs4lC7TK4I7t69Wq+/fZb/QQGTzzxBL169UKr1YoPnyDciasfDFoI616Af96G5gPAo6WpozKtq0fhyDdwZg1o8lAAOpTQcjCKzk9C4H2gFGcyBaEuKOm0norP5HR8JqfiM7l0LadUne3nrqFSSJyeP4gh7bxo5uHAmogEtpxOorW3E/c0daNHQAO6+LviaPPf/+2aukFcqD8M7sjGxcVx77336pe7deuGSqUiISEBX1/fGglOECxG5/Fwbh1c2g6/T4Cnt4NV3bsxqUZpCuDMX8VpyRJuGSvn0QpthzFsTXKj//BRKMSleEEwqd2RKZxLzOJcYhbH4zK4knaj3HqNnKwJ9nOlcxNXFmw4h1aWuXQth3Y+zvi62dHFz42PHmuPtUqc7BJqjsEdWa1Wq58NS/9ilQqNRlPBKyxfnUxRZGBdkX7L8LJqa/PQT1F92w/p2ll0a59H++AX5U5vY3Hpt7ISURxbgSLie6SbY19lpRVym4fRBU9E9u5MkUZD4bZtJm2zse0U6bcEc5eSXcD6kwncKNQyrocfUddyiErJ5ZXfTxj0+oOz7tPfzHVvcw98XG1xsP6vW+FsJ36UCjXP4KwFCoWCIUOGYG1trS9bt24d/fr1w97+vzNLq1evrv4o6wiRfkuoqgY55+l58X0U6DjtM5qohkNMHVLNkGXcciMJSNmGV0Y4CoovH+apXYlxv4+YBiEUqi3j7vW7Eem3RNYCU5BlmdScQmLScolOzSUmNZeYtFzaeDnR0deVNt5OpOUUMOATw/Kqd2jsTDMPB5o1dKCVpyMdfF1wd7C++wvvoq4fR3NgicewRrIWjB8/vkzZE088YXx0ZiwsLIywsDD9AQ4NDRXpt0SbjWzzUORDtrB9Du3if6FV1xDkto/WapuNbaNRbdYUIJ1dg/Lwl0jJp/T70/l2R9d1MqoWQwlUqgk0sh210ebb61TUzjJtvotbZ0YUhKrS6mSy8orIzCvifFI2p+IzOJuQxbnEbJKy8u/6+o2nkgD48onO3Ne6EYPbehKTlsv5pGwaOloT2NCBZh4Opf5t5GQtpnEX6iyDO7LLly+vyTjMkki/Jdpc0fM7xtprOmTHw6EvUa0NA1sXaDnY6HYYU7fG028VXEd9+Ac48i3kXisuVNlA0GNwz7MoPINQVEM7jKkr0m8JdZVGqyMrX0PmzQ5pZl4R+UVauvi56pe/P3CFvEItz4U0w9/dnjlrTrP2REKl9tc70B1/dzv8G9jz8+FYkEGjk1ErFXw5Lpj8Ii2FWh1ONuKzKpgfgzuygiBUE0mCQe8V50o9/SesGgsPfwVBI0wdmfGSTtLpyjJUS54GbWFxmaM3dJsMwRPAzs2k4QlCbcov0rLlTBJHY65jrVLoO6VbzyZXeptDgjxp6elYphNrZ6XkRmHZO/6dbFS09nKitZcTbbyc8HC0pm8LD31O1km9m5Y5u2qjVmKjtoxL0kL9YxYd2ZiYGN555x3+/fdfkpKS8Pb25oknnmD27Nn6G9BOnDjB+++/z969e0lNTcXf358pU6bwwgsvlNpO06Zlp7nbtGkTgweXPSMmCDVGoSjuvEpKOPUb/Pk0ZCVAz+mmjuzutEV4ZRxB+cMXKGIP0KSkvHFXuGdK8eQFInWWUA/lFmh44deIKm3DwVqFs62aAo2OF+4LpH1jF2zUSuYNa4ONWknv5u40dLTBSmXINY6yxBABwdKYRUf2/Pnz6HQ6vvrqKwIDAzl9+jSTJ08mNzeXjz76CIDw8HA8PDz48ccf8fX1Zf/+/TzzzDMolUqmTSudgH779u20bdtWv+zmJs4aCSagVBd3Zm2cinOqbptTnJZq8MemjqxctgUpKHYsRHHiJ7rdHD4gK1TEO3fBc/h8VP7dTRyhIJiWjVpJ70B3IpOzub+9F+4O1jjZqtkdmcK17AK8nGzwdL75cLLBzd4KZ1u1/uFoo0KlLL+DOqFX2ZMwgiCYSUd28ODBpc6YBgQEcOHCBb744gt9R3bixImlXhMQEMCBAwdYvXp1mY5sgwYN8PT0rPnABeFuFAoY+hF4tILNr8OZv1DFHqKhx2hgqKmjK879enETyqMrGHD5XySKk5zkq5xQd5uELngi4XuPM9Qn2MSBCoLp2Vur+PHpe8qUj+vuZ4JoBKF+MIuObHkyMzPveia1ojoPPvgg+fn5NG/enJdeeokRI+48NrGgoICCggL9csldyCKnqmjz7a8xNNYyOk1A8miDcm0Y0vVoemR/jOa3MxSFvlncya1AjeRU1WnRXt5FxyvfoPp0GhRk6W/U0vr3QdNhHFtjlPTvPaTM9iqrLuTOvVvZnZ4bEq8gCIJQ/QzOI1uXREVF0blzZz7++GOefvrpcuscOHCAvn37smHDBn3KnNTUVH744Qd69eqFQqFg7dq1LFy4kJUrV94xldi8efOYP39+mXKRR1aobkpdAa0SV9Ps2mYkZGQkEly6Eu3RnzT7luVOoFAdVNo8PLLP0CjrBI0yI7DRZOrX5alduerakxj3EG5YN6qR/VsykUdW5JEVKiaOY9VZ4jE06jtDNqG5c+fKwB0fR44cKfWa+Ph4OTAwUJ40aVKF2z19+rTs4eEhv/POO3eNYdq0aXJQUNAd6+Tn58uZmZn6R1xcnAzIiYmJ8po1a+Tc3Fy5sLBQzs3N1S9X9LywsLDSD2O2c7e65a03pOxOy6LN1dfm7b8ulYt+Gi3Lc530D93/dZI1W+bIRdEH5ML8G5Vuc2FhoZybniTv+/4duXDLPFn73VBZ97Z76X295ydHLx4u553bJhcW5Jv9+2zI+2roe2tsm1NTU2VAzszMNOyL0QJlZmZa3DHQaDTyqVOnZI1GY+pQzJo4jlVnicfQmO8Mkw4tmDZtGqNGjbpjHX9/f/3zhIQEQkND6dGjB8uWLSu3/tmzZ+nXrx+TJ0/mzTffvGsM3bt355tvvrljHWtr61IzmpUQeWRFmyt6XtU259j4IA9dCWnn4fDXcOp3pPQolPv/D/b/H6jtwaczioZtaJqSi1WMCpWjB1g7gcoadBrQFiHdyMAr4yjWJ5JQ5iRAygVIOYfq+hV6IkPUf/vMtWqITYeHULYcjKZxd05s2Y5Ps77FbZGKarzNxm5H5JEVBEEQTNqRdXd3x93d3aC68fHxhIaGEhwczPLly1Eoyt7ZeebMGfr168f48eNZuHChQds9fvw4Xl5eRsUtCLXGMwgeXAwDF8DFrXBuHUT9CwVZELMHZcwe2gP89mO5L1cB3QCiS5dLQK6VB7YtQlD496TIpzvbD0UydOD9KNVqEOM6BUEQBDNgFjd7JSQkEBISQpMmTfjoo49ISUnRryvJPnDmzBlCQ0MZOHAgM2bMICmpeBo+pVKJh4cHACtXrkStVtOpUycUCgXr1q1j8eLFfPDBB7XfKEEwho1T8YQJQSNApy0+s3r1CNqUCySfO4iXTSFSQRYUZIMmHxRqUKqR1XZcL1Lj4tsKhZM3eLQEj1YUuQayfddhhg4diqKk4ypdNHUrBUEQBMEoZtGR3bp1K5cuXeLSpUs0bty41Dr55r1qv//+OykpKfz000/89NNP+vV+fn7ExMTolxcsWMCVK1dQKpW0aNGC77777o43eglCnaNQQqM20KgNuqIijhRsZOjQoeVewtYUFbFn48b/OqwlxBlXQRAEwQKYRUd2woQJTJgw4Y515s2bx7x58+5YZ/z48YwfP77a4hKpqESbb3+NobHeSV1IRVUf23y3sjs9NyReQRAEofqZZfotU1m6dClLly5Fq9USGRkp0m8JgnBXIv2WSL8lVEwcx6qzxGNozHeGWZyRrSvCwsIICwsjMzMTFxcXunTpwtGjRwkNDUWtVlNUVMSOHTsIDQ0FKPd5Ve5gvnX7d9vO3eqWt96QsjstizabR5uNbWN9afPtdSpqp7Ftzs7OBv4bBlUflbS9ZDIZS6DVasnJySErK8tiOg+mII5j1VniMSz5rjDke1N0ZCuh5A9TixYtTByJIAjmIjs7G2dnZ1OHYRIl35m+vr4mjkQQBHNiyPemGFpQCTqdjoSEBBwdHenWrRtHjhzRr+vatat+ueR5VlYWvr6+xMXFVfmy2q3br2rd8tYbUnanZdFm82hzeeWizWXLqqPNsiyTnZ2Nt7d3uWkD64NbvzOlGpqdrrZV52e/PhPHseos8Rga870pzshWgkKh0GdPUCqVpT44ty7fvs7JyanKH7Lbt1mVuuWtN6RMtNn821xeuWhz2bLqanN9PRNb4tbvTEtTHZ99QRzH6mBpx9DQ7836eXqgGoWFhVW4fPu6mthfVeqWt96QMtFm829zeeWizWXLarrNgiAIQtWIoQW1wBLv2L0b0WbRZktVH9sslCU+B9VDHMeqq+/HUJyRrQXW1tbMnTsXa2trU4dSa0Sb6wfRZqG+Ep+D6iGOY9XV92MozsgKgiAIgiAIZkmckRUEQRAEQRDMkujICoIgCIIgCGZJdGQFQRAEQRAEsyQ6soIgCIIgCIJZEh1ZQRAEQRAEwSyJjmwdkp2dTdeuXenYsSNBQUF8/fXXpg6pxsXFxRESEkKbNm1o3749v//+u6lDqhUPP/wwrq6ujBgxwtSh1Jj169fTsmVLmjdvzjfffGPqcGpFfXhfhWKff/45TZs2xcbGhuDgYPbs2WPqkMzGe++9R9euXXF0dKRhw4Y89NBDXLhwwdRhmbX33nsPSZJ48cUXTR1KrRPpt+oQrVZLQUEBdnZ23Lhxg3bt2nHkyBEaNGhg6tBqTGJiIsnJyXTs2JFr167RuXNnLly4gL29valDq1E7duwgJyeHlStX8scff5g6nGqn0Who06YNO3bswMnJic6dO3Po0CHc3NxMHVqNsvT3VSi2atUqxo0bx+eff06vXr346quv+Oabbzh79ixNmjQxdXh13uDBgxk1ahRdu3ZFo9Ewe/ZsTp06xdmzZy3+u78mHDlyhMcffxwnJydCQ0P59NNPTR1SrRJnZOsQpVKJnZ0dAPn5+Wi1Wiz9d4aXlxcdO3YEoGHDhri5uZGenm7aoGpBaGgojo6Opg6jxhw+fJi2bdvi4+ODo6MjQ4cOZcuWLaYOq8ZZ+vsqFFu0aBGTJk3i6aefpnXr1nz66af4+vryxRdfmDo0s7B582YmTJhA27Zt6dChA8uXLyc2Npbw8HBTh2Z2cnJyGDt2LF9//TWurq6mDsckREfWCLt372bYsGF4e3sjSRJr1qwpU6eql5syMjLo0KEDjRs3ZubMmbi7u1dT9JVTG20ucfToUXQ6Hb6+vlWMumpqs811VVWPQUJCAj4+Pvrlxo0bEx8fXxuhV5p43wVDFBYWEh4ezsCBA0uVDxw4kP3795soKvOWmZkJYPFXbGpCWFgY999/P/379zd1KCYjOrJGyM3NpUOHDixZsqTc9atWreLFF19k9uzZHD9+nHvvvZchQ4YQGxurrxMcHEy7du3KPBISEgBwcXHhxIkTREdH8/PPP5OcnFwrbatIbbQZIC0tjSeffJJly5bVeJvuprbaXJdV9RiUdyVBkqQajbmqquN9FyxfamoqWq2WRo0alSpv1KgRSUlJJorKfMmyzIwZM+jduzft2rUzdThm5ddff+XYsWO89957pg7FtGShUgD5r7/+KlXWrVs3ecqUKaXKWrVqJb/++uuV2seUKVPk3377rbIhVruaanN+fr587733yt9//311hFmtavJ93rFjh/zoo49WNcQaV5ljsG/fPvmhhx7Sr3v++efln376qcZjrS5Ved/N5X0VKic+Pl4G5P3795cqX7BggdyyZUsTRWW+pk6dKvv5+clxcXGmDsWsxMbGyg0bNpQjIiL0ZX379pVfeOEF0wVlIuKMbDWpjstNycnJZGVlAZCVlcXu3btp2bJltcdaXaqjzbIsM2HCBPr168e4ceNqIsxqJS4rGnYMunXrxunTp4mPjyc7O5uNGzcyaNAgU4RbLcT7LpRwd3dHqVSWOft67dq1MmdphTubPn06a9euZceOHTRu3NjU4ZiV8PBwrl27RnBwMCqVCpVKxa5du1i8eDEqlQqtVmvqEGuNytQBWIrquNx09epVJk2ahCzLyLLMtGnTaN++fU2EWy2qo8379u1j1apVtG/fXj8m8YcffiAoKKi6w60W1XVZcdCgQRw7dozc3FwaN27MX3/9RdeuXas73BphyDFQqVR8/PHHhIaGotPpmDlzplln3zD0fTfn91UwjJWVFcHBwWzbto2HH35YX75t2zaGDx9uwsjMhyzLTJ8+nb/++oudO3fStGlTU4dkdu677z5OnTpVquypp56iVatWvPbaayiVShNFVvtER7aa3T4OUJZlg8cGBgcHExERUQNR1ayqtLl3797odLqaCKtGVaXNgEXcwX+3Y/Dggw/y4IMP1nZYNepubbaE91W4uxkzZjBu3Di6dOlCjx49WLZsGbGxsUyZMsXUoZmFsLAwfv75Z/7++28cHR31PwadnZ2xtbU1cXTmwdHRscyYYnt7exo0aFDvxhqLjmw1qY+Xm0Sb/2PJbb5dfTwG9bHNQsVGjhxJWloab7/9NomJibRr146NGzfi5+dn6tDMQkmaspCQkFLly5cvZ8KECbUfkGDWxBjZanLr5aZbbdu2jZ49e5ooqpol2vwfS27z7erjMaiPbRbubOrUqcTExFBQUEB4eDh9+vQxdUhmo2T43O0P0Ymtmp07d9a7yRBAnJE1Sk5ODpcuXdIvR0dHExERgZubG02aNLHIy02izfWjzberj8egPrZZEATB7JkgU4LZ2rFjhwyUeYwfP15fZ+nSpbKfn59sZWUld+7cWd61a5fpAq4Gos31o823q4/HoD62WRAEwdxJsmzhc6AKgiAIgiAIFkmMkRUEQRAEQRDMkujICoIgCIIgCGZJdGQFQRAEQRAEsyQ6soIgCIIgCIJZEh1ZQRAEQRBqxbx58+jYsWON7mPFihW4uLjU6D6EukN0ZAVBEAShnpswYQKSJCFJEiqViiZNmvDcc89x/fp1U4dmtJEjRxIZGWnqMIRaIiZEEARBEASBwYMHs3z5cjQaDWfPnmXixIlkZGTwyy+/mDo0o9ja2mJra2vqMIRaIs7ICoIgCIKAtbU1np6eNG7cmIEDBzJy5Ei2bt1aqs7y5ctp3bo1NjY2tGrVis8//7zU+tdee40WLVpgZ2dHQEAAc+bMoaioyOAYtFotkyZNomnTptja2tKyZUv+7//+T78+Pz+ftm3b8swzz+jLoqOjcXZ25uuvvwbKDi04ceIEoaGhODo64uTkRHBwMEePHjXm0Ah1mDgjKwiCIAhCKZcvX2bz5s2o1Wp92ddff83cuXNZsmQJnTp14vjx40yePBl7e3vGjx8PgKOjIytWrMDb25tTp04xefJkHB0dmTlzpkH71el0NG7cmN9++w13d3f279/PM888g5eXF48//jg2Njb89NNP3HPPPQwdOpRhw4Yxbtw4QkNDmTx5crnbHDt2LJ06deKLL75AqVQSERFRql2CmTP11GKCUN+MHz9eP/3pX3/9VSP76Nu3r/zCCy/UyLYrMnfuXH27Pvnkk1rdtyAIVTN+/HhZqVTK9vb2so2Njf7/8qJFi/R1fH195Z9//rnU69555x25R48eFW73ww8/lIODg/XLc+fOlTt06GBUbFOnTpUfffTRMtt1d3eXp0+fLnt6esopKSn6dcuXL5ednZ31y46OjvKKFSuM2qdgPsTQAqHKbr1J4NbHpUuXTB1anTV48GASExMZMmRIre43JCSEL7/8ska2/corr5CYmEjjxo1rZPuCINSs0NBQIiIiOHToENOnT2fQoEFMnz4dgJSUFOLi4pg0aRIODg76x4IFC4iKitJv448//qB37954enri4ODAnDlziI2NNSqOL7/8ki5duuDh4YGDgwNff/11mW28/PLLtGzZks8++4zly5fj7u5e4fZmzJjB008/Tf/+/Xn//fdLxSuYP9GRFapFScfs1kfTpk3L1CssLDRBdHVPyVg0a2vrCusYM67MEOnp6ezfv59hw4ZV63ZLODg44OnpiVKprJHtC4JQs+zt7QkMDKR9+/YsXryYgoIC5s+fDxRf8ofi4QURERH6x+nTpzl48CAABw8eZNSoUQwZMoT169dz/PhxZs+ebdT3/m+//cZLL73ExIkT2bp1KxERETz11FNltnHt2jUuXLiAUqnk4sWLd9zmvHnzOHPmDPfffz///vsvbdq04a+//jLm0Ah1mOjICtWipGN260OpVBISEsK0adOYMWMG7u7uDBgwAICzZ88ydOhQHBwcaNSoEePGjSM1NVW/vdzcXJ588kkcHBzw8vLi448/JiQkhBdffFFfR5Ik1qxZUyoOFxcXVqxYoV+Oj49n5MiRuLq60qBBA4YPH05MTIx+/YQJE3jooYf46KOP8PLyokGDBoSFhZXqRBYUFDBz5kx8fX2xtramefPmfPvtt8iyTGBgIB999FGpGE6fPo1CoTDqV39MTAySJPHbb78REhKCjY0NP/74I2lpaYwePZrGjRtjZ2dHUFBQmTuIyztW5dmwYQMdOnTAx8eHnTt3IkkSW7ZsoVOnTtja2tKvXz+uXbvGpk2baN26NU5OTowePZobN27ot/HHH38QFBSEra0tDRo0oH///uTm5hrcTkEQzMfcuXP56KOPSEhIoFGjRvj4+HD58mUCAwNLPUpOWuzbtw8/Pz9mz55Nly5daN68OVeuXDFqn3v27KFnz55MnTqVTp06ERgYWO536cSJE2nXrh3ff/89M2fO5OzZs3fcbosWLXjppZfYunUrjzzyCMuXLzcqLqHuEh1ZocatXLkSlUrFvn37+Oqrr0hMTKRv37507NiRo0ePsnnzZpKTk3n88cf1r3n11VfZsWMHf/31F1u3bmXnzp2Eh4cbtd8bN24QGhqKg4MDu3fvZu/evTg4ODB48OBSv+537NhBVFQUO3bsYOXKlaxYsaJUZ/jJJ5/k119/ZfHixZw7d44vv/wSBwcHJEli4sSJZb4Qv/vuO+69916aNWtm9LF67bXXeP755zl37hyDBg0iPz+f4OBg1q9fz+nTp3nmmWcYN24chw4dMvpYrV27luHDh5cqmzdvHkuWLGH//v3ExcXx+OOP8+mnn/Lzzz+zYcMGtm3bxmeffQZAYmIio0ePZuLEiZw7d46dO3fyyCOPIMuy0e0UBKHuCwkJoW3btrz77rtA8ffFe++9x//93/8RGRnJqVOnWL58OYsWLQIgMDCQ2NhYfv31V6Kioli8eLHRZz4DAwM5evQoW7ZsITIykjlz5nDkyJFSdZYuXcqBAwf4/vvvGTNmDCNGjGDs2LHlnvnNy8tj2rRp7Ny5kytXrrBv3z6OHDlC69atK3lUhDrH1IN0BfN3600CJY8RI0bIslx801HHjh1L1Z8zZ448cODAUmVxcXEyIF+4cEHOzs6Wrays5F9//VW/Pi0tTba1tS11AxPl3Czl7OwsL1++XJZlWf7222/lli1byjqdTr++oKBAtrW1lbds2aKP3c/PT9ZoNPo6jz32mDxy5EhZlmX5woULMiBv27at3LYnJCTISqVSPnTokCzLslxYWCh7eHjc8caC8ePHy8OHDy9VFh0dLQPyp59+WuHrSgwdOlR++eWXZVmWDT5W+fn5sqOjo3zy5ElZlmV5x44dMiBv375dX+e9996TATkqKkpf9uyzz8qDBg2SZVmWw8PDZUCOiYm5Y3x+fn7iZi9BMDPlfS/Jsiz/9NNPspWVlRwbG6tf7tixo2xlZSW7urrKffr0kVevXq2v/+qrr8oNGjSQHRwc5JEjR8qffPJJqRuv7nazV35+vjxhwgTZ2dlZdnFxkZ977jn59ddf17/m3Llzsq2tbambzjIzM2V/f3955syZsiyXvtmroKBAHjVqlOzr6ytbWVnJ3t7e8rRp0+S8vLzKHSihzhHpt4RqERoayhdffKFftre31z/v0qVLqbrh4eHs2LEDBweHMtuJiooiLy+PwsJCevTooS93c3OjZcuWRsUUHh7OpUuXcHR0LFWen59f6lJV27ZtS43r9PLy4tSpUwBERESgVCrp27dvufvw8vLi/vvv57vvvqNbt26sX7+e/Px8HnvsMaNiLXH7sdJqtbz//vusWrWK+Ph4CgoKKCgo0B/fqKgog47Vv//+S4MGDQgKCipV3r59e/3zRo0a6XM/3lp2+PBhADp06MB9991HUFAQgwYNYuDAgYwYMQJXV9dKtVUQhLrj1qtQtxozZgxjxoypcPl2H374IR9++GGpsluHhM2bN4958+ZV+Hpra2uWL19e5krXe++9B0CrVq1KDXcCcHJyIjo6Wr88YcIEJkyYAICVlZXZTeggGEd0ZIVqUXKTQEXrbqXT6Rg2bBgffPBBmbpeXl53HbhfQpKkMpe1bx3bqtPpCA4O5qeffirzWg8PD/3z2/MJSpKkv7HBkNlhnn76acaNG8cnn3zC8uXLGTlyJHZ2dga14Xa3H6uPP/6YTz75hE8//ZSgoCDs7e158cUX9ZfQbm9/RcobVgCl2y5J0h2PhVKpZNu2bezfv5+tW7fy2WefMXv2bA4dOlTujX2CIAiCUNPEGFmh1nXu3JkzZ87g7+9f5qaBkg6xWq3W3wkLcP369TJzZ3t4eJCYmKhfvnjxYqlf6p07d+bixYs0bNiwzH6cnZ0NijUoKAidTseuXbsqrDN06FDs7e354osv2LRpExMnTjT0UNzVnj17GD58OE888QQdOnQgICCgVEffkGMlyzLr1q3jwQcfrHI8kiTRq1cv5s+fz/Hjx7GyshJ3/wqCIAgmIzqyQq0LCwsjPT2d0aNHc/jwYS5fvszWrVuZOHEiWq0WBwcHJk2axKuvvso///zD6dOnmTBhAgpF6Y9rv379WLJkCceOHePo0aNMmTKl1BnFsWPH4u7uzvDhw9mzZw/R0dHs2rWLF154gatXrxoUq7+/P+PHj2fixImsWbOG6Ohodu7cyW+//aavo1QqmTBhArNmzSIwMLDUZf6qCgwM1J8FPXfuHM8++yxJSUn69YYcq/DwcHJzc+nTp0+VYjl06BDvvvsuR48eJTY2ltWrV5OSkiJumhAEQRBMRnRkhVrn7e3Nvn370Gq1DBo0iHbt2vHCCy/g7Oys74D973//o0+fPjz44IP079+f3r17ExwcXGo7H3/8Mb6+vvTp04cxY8bwyiuvlLqkb2dnx+7du2nSpAmPPPIIrVu3ZuLEieTl5eHk5GRwvF988QUjRoxg6tSptGrVismTJ5dJOTVp0iQKCwur9WwswJw5c+jcuTODBg0iJCQET09PHnrooVJ17nas/v77b+6//35UqqqNJHJycmL37t0MHTqUFi1a8Oabb/Lxxx/X+qQOgiAIglBCkg0dZCcIJhYSEkLHjh359NNPTR1KGfv27SMkJISrV6/SqFGjO9adMGECGRkZZXLg1pT27dvz5ptvlkpvVpP8/f158cUXS93gIQiCIAg1QZyRFYQqKCgo4NKlS8yZM4fHH3/8rp3YEuvXr8fBwYH169fXaHyFhYU8+uijtXLW9N1338XBwcHo6SgFQRAEobLEGVnBbNTFM7IrVqxg0qRJdOzYkbVr1+Lj43PX11y7do2srCygOEvD7ZkKzFV6ejrp6elA8Y14ht5QJwiCIAiVJTqygiAIgiAIglkSQwsEQRAEQRAEsyQ6soIgCIIgCIJZEh1ZQRAEQRAEwSyJjqwgCIIgCIJglkRHVhAEQRAEQTBLoiMrCIIgCIIgmCXRkRUEQRAEQRDMkujICoIgCIIgCGbp/wEuY8VGOJjBnwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -621,7 +621,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABTuUlEQVR4nO3deXxU1cH/8e9kmyyThCQECISdsK8iWLciUquspVZcAB9pax8XtBW1Kq0VxQWLu/1J9WkVFRFBUEGKiAVEW7VgVRBwASQQdgJkX2fm/P5IZpLJRgI3uWTyeb9e85rMnTN3zpk7JF/OuedchzHGCAAAAM1eiN0VAAAAgDUIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYtxH/+8x/9/Oc/V6dOneR0OtW2bVude+65uuOOOwLKzZs3Ty+//LI9lYRl0tPTNXbsWCUmJsrhcOi2225r9PfMyspS69at9cYbbzTodVZ85xwOh2655ZaTlvvwww/lcDj04YcfNvg91q5dK5fLpf37959CDRvP6bQJ9uD3LBqTg0uKBb9//OMfmjBhgi666CL95je/UUpKig4ePKjPP/9cb7zxhvbt2+cv279/f7Vu3Zo/Es3cz3/+c3388cf6+9//rnbt2iklJUWdO3du1PecMWOG1q5dq82bN8vhcNT7dVZ85xwOh6ZPn67/9//+X53lPvzwQ40cOVLr16/XRRdd1OD3ufjii9WxY0e98sorp1hT6+Xk5Gj79u3q27ev4uLi7K4O6oHfs2hMYXZXAI1v7ty56tq1q95//32FhVUc8quvvlpz5861sWb14/F45Ha75XQ67a5Ks7F161YNHz5cEydOtGR/JzsGx48f1wsvvKCnnnqqQaGuuZk+fbquuuoqPfTQQ+rYsaOtdSktLZXD4VBcXJx+9KMf2VoXAGcOhmJbgGPHjql169YBoc4nJKTiK9ClSxdt27ZNGzZskMPhkMPhUJcuXfzP5+Tk6M4771TXrl0VERGhDh066LbbblN+fn7APn3DYi+88IJ69uwpp9Opvn371muILj09XQ6HQ3PnztVDDz2krl27yul0av369ZKkzz//XBMmTFBiYqIiIyM1ZMgQLVmyJGAfBQUF/npGRkYqMTFRZ599thYtWuQvM23aNLlcLm3btk2jRo1STEyMkpOTdcstt6igoCBgf0VFRZo5c2ZAu6dPn66srKyAcl26dNG4ceO0evVqnXXWWYqKilLv3r310ksvNbh+9W1rVb5huZ07d+q9997zH8f09HRJ0t69ezV16lS1adNGTqdTffr00RNPPCGv11vvY1CTl19+WW63W1dddVXA9h9++EFXX3212rdv7z8FYNSoUfrqq6/8n1lt37mioiLdcccdGjx4sOLj45WYmKhzzz1Xy5cvr7Uep/Kdk+r/WY8fP14ul0t/+9vfTrrPk7Xd1/5x48bp7bff1sCBAxUZGalu3brp2WefDdiX77guWLBAd9xxhzp06CCn06mdO3fWOBTr+37v3LlTY8aMkcvlUseOHXXHHXeouLg4YN/79u3TFVdcodjYWLVq1UpTpkzRpk2b5HA46jVceP/998vhcGjLli2aNGmS/1jdfvvtcrvd+u6773TZZZcpNjZWXbp0qfafyYYc5zfffFPnnHOO4uPjFR0drW7duulXv/qV/3mv16uHHnpIvXr1UlRUlFq1aqWBAwfqmWeeqbMNJ3vdxx9/LIfDUe3fqCS9+uqrcjgc2rRpk6TT+85LDf89O3/+fH+9zz77bH322Wcyxuixxx5T165d5XK5dPHFF2vnzp11fgYIIgZB7/rrrzeSzK233mo+++wzU1JSUmO5L774wnTr1s0MGTLEfPrpp+bTTz81X3zxhTHGmPz8fDN48GDTunVr8+STT5p//vOf5plnnjHx8fHm4osvNl6v178fSaZjx46mb9++ZtGiRWbFihXmsssuM5LMm2++WWddd+/ebSSZDh06mJEjR5qlS5eaNWvWmN27d5t169aZiIgIc+GFF5rFixeb1atXm2nTphlJZv78+f593HDDDSY6Oto8+eSTZv369WblypXm0UcfNX/5y1/8Za677joTERFhOnXqZB5++GGzZs0ac//995uwsDAzbtw4fzmv12suvfRSExYWZv70pz+ZNWvWmMcff9zExMSYIUOGmKKiIn/Zzp07m9TUVNO3b1/z6quvmvfff99MmjTJSDIbNmxoUP3q29aqsrOzzaeffmratWtnzj//fP9xLCoqMkeOHDEdOnQwycnJ5vnnnzerV682t9xyi5Fkbrrppnodg9pcfPHFZvjw4dW29+rVy/To0cMsWLDAbNiwwSxbtszccccdZv369caYur9zWVlZZtq0aWbBggVm3bp1ZvXq1ebOO+80ISEh5pVXXgl4n/p+59avX28k+d//VD7r0aNHm7POOqvWz6K+bTem7DvToUMH06lTJ/PSSy+ZVatWmSlTphhJ5rHHHqtW7w4dOpgrrrjCrFixwqxcudIcO3asxjb5vt99+vQxjz/+uPnnP/9p7rvvPuNwOMwDDzzgL5eXl2d69OhhEhMTzXPPPWfef/99M2PGDNO1a9eTftd8Zs2aZSSZXr16mQcffNB88MEH5q677jKSzC233GJ69+5tnn32WfPBBx+YX/7yl0aSWbZsmf/19T3On3zyiXE4HObqq682q1atMuvWrTPz58831157rb/MnDlzTGhoqJk1a5ZZu3atWb16tXn66afN/fffX2cb6vO6IUOGmPPPP7/aa4cNG2aGDRvmf3w63/mG/p7t3LmzOe+888xbb71l3n77bdOzZ0+TmJhoZsyYYX72s5+ZlStXmoULF5q2bduagQMHBrwewYtg1wJkZmaaCy64wEgykkx4eLg577zzzJw5c0xubm5A2X79+pkRI0ZU28ecOXNMSEiI2bRpU8D2pUuXGklm1apV/m2STFRUlDl06JB/m9vtNr179zY9evSos66+UNG9e/dqAbR3795myJAhprS0NGD7uHHjTEpKivF4PMYYY/r3728mTpxY5/tcd911RpJ55plnArY//PDDRpL517/+ZYwxZvXq1UaSmTt3bkC5xYsXG0nm//7v//zbOnfubCIjI82ePXv82woLC01iYqK54YYb/NvqU7/6trU2nTt3NmPHjg3Yds899xhJ5j//+U/A9ptuusk4HA7z3XffGWPqPga1iY6ONjfeeGPAtszMTCPJPP3003W+trbvXFVut9uUlpaaX//612bIkCEBz9X3O1dTCGroZ/3HP/7RhISEmLy8vFrrWt+2d+7c2TgcDvPVV18FbL/kkktMXFycyc/PD6j3j3/842r7qC3YSTJLliwJKDtmzBjTq1cv/+PnnnvOSDLvvfdeQLkbbrihwcHuiSeeCNg+ePBgI8m89dZb/m2lpaUmOTnZXH755bXur7bj/PjjjxtJJisrq9bXjhs3zgwePPikdT6V182fP99IMl9++aV/28aNG40kfwA93e98Q3/PtmvXLuB7+M477xhJZvDgwQEh7umnnzaSzJYtW+qsF4IDQ7EtQFJSkj7++GNt2rRJjz76qH72s5/p+++/18yZMzVgwABlZmaedB8rV65U//79NXjwYLndbv/t0ksvrXFG3qhRo9S2bVv/49DQUF111VXauXNnwGSN2kyYMEHh4eH+xzt37tS3336rKVOmSFJAHcaMGaODBw/qu+++kyQNHz5c7733nu655x59+OGHKiwsrPV9fPvzmTx5siT5hx3XrVsnqWxoq7JJkyYpJiZGa9euDdg+ePBgderUyf84MjJSPXv21J49e/zbTla/hrS1IdatW6e+fftq+PDhAdunTZsmY4y/rT5Vj0FtsrKyVFBQoDZt2gRsT0xMVPfu3fXYY4/pySef1Jdffhkw5Fsfb775ps4//3y5XC6FhYUpPDxcL774or755ptqZU/lO3cqn3WbNm3k9Xp16NChWuvdkLb369dPgwYNCtg2efJk5eTk6IsvvgjY/otf/KLW96zK4XBo/PjxAdsGDhwY8F3csGGDYmNjddlllwWUu+aaawIeG2MCPhu3213t/caNGxfwuE+fPnI4HBo9erR/W1hYmHr06BFQB6l+x3nYsGGSpCuvvFJLliypcXby8OHDtXnzZt188816//33lZOTU+Nncyqvu+aaa9SmTRs999xz/m1/+ctflJyc7D8F4XS/8w39PTty5EjFxMT4H/fp00eSNHr06IBzXX3bq37uCE4Euxbk7LPP1t13360333xTBw4c0IwZM5Senl6vCRSHDx/Wli1bFB4eHnCLjY2VMaZaOGzXrl21ffi2HTt27KTvl5KSUu39JenOO++sVoebb75Zkvx1ePbZZ3X33XfrnXfe0ciRI5WYmKiJEydqx44dAfsMCwtTUlJSnXU8duyYwsLClJycHFDO4XCoXbt21dpSdX+S5HQ6A8LbyerXkLY2xLFjx6p9rpLUvn37gDb71FS2Jr62RUZGBmx3OBxau3atLr30Us2dO1dnnXWWkpOT9dvf/la5ubkn3e9bb72lK6+8Uh06dNBrr72mTz/9VJs2bdKvfvUrFRUVVSt/Kt+5U/msfe2s6z8MDWl7Q+pd32MiSdHR0dWOidPpDPjsjh07FhCGfapu27BhQ7XPx3fepk9iYmLA44iIiBrrEBEREVCH+h7nH//4x3rnnXfkdrv1P//zP0pNTVX//v0DznubOXOmHn/8cX322WcaPXq0kpKSNGrUKH3++ed1flb1eZ3T6dQNN9yg119/XVlZWTp69KiWLFmi66+/3j+p6HS/8w39PVvTZ17X9pr+3SD4MCu2hQoPD9esWbP01FNPaevWrSct37p1a0VFRVWbCFD5+cpq6s3wbasp/FRVdWalb/8zZ87U5ZdfXuNrevXqJUmKiYnRAw88oAceeECHDx/2946NHz9e3377rb+82+3WsWPHAupTtY5JSUlyu906evRoQLgzxujQoUP+XoSGOFn9GtLWhkhKStLBgwerbT9w4ICk6sewvrNbfZ/V8ePHqz3XuXNnvfjii5Kk77//XkuWLNH999+vkpISPf/883Xu97XXXlPXrl21ePHigLpUPfnf51S+c6fyWfvaWfXzqqq+bW9Iva2ecZyUlKSNGzfW+v4+Q4cO9U8O8PH9h+B0NeQ4/+xnP9PPfvYzFRcX67PPPtOcOXM0efJkdenSReeee67CwsJ0++236/bbb1dWVpb++c9/6g9/+IMuvfRSZWRkKDo6usY61Pd1N910kx599FG99NJLKioqktvt1o033hiwr9P5zjf09yxQE4JdC3Dw4MEa/6fvG+ao/Au6au+Sz7hx4/TII48oKSlJXbt2Pel7rl27VocPH/b/z9/j8Wjx4sXq3r27UlNTG9yGXr16KS0tTZs3b9YjjzxS79e1bdtW06ZN0+bNm/X000+roKAg4Jf7woUL9dvf/tb/+PXXX5ck/xpno0aN0ty5c/Xaa69pxowZ/nLLli1Tfn6+Ro0a1eC2nKx+p9rWkxk1apTmzJmjL774QmeddZZ/u29W38iRI09pvxEREerWrZt27dpVZ7mePXvq3nvv1bJlywKGGGv7zjkcDkVERAT8sT906FCts2JP5Tt3Kp/1Dz/8oKSkpBp7umpTW9sladu2bdq8eXPAcOzrr7+u2NjYgOPUGEaMGKElS5bovffeCxgyrTqbODY2VmeffXaj1KGhx1kq+86MGDFCrVq10vvvv68vv/xS5557bkCZVq1a6YorrtD+/ft12223KT09XX379j1pfep6XUpKiiZNmqR58+appKRE48ePDzj1oqqGfucb+nsWqAnBrgW49NJLlZqaqvHjx6t3797yer366quv9MQTT8jlcul3v/udv+yAAQP0xhtvaPHixerWrZsiIyM1YMAA3XbbbVq2bJl+/OMfa8aMGRo4cKC8Xq/27t2rNWvW6I477tA555zj30/r1q118cUX609/+pNiYmI0b948ffvttw2+KkFlL7zwgkaPHq1LL71U06ZNU4cOHXT8+HF98803+uKLL/Tmm29Kks455xyNGzdOAwcOVEJCgr755hstWLBA5557bkCoi4iI0BNPPKG8vDwNGzZMn3zyiR566CGNHj1aF1xwgSTpkksu0aWXXqq7775bOTk5Ov/887VlyxbNmjVLQ4YM0bXXXtvgdtSnfvVta0PMmDFDr776qsaOHavZs2erc+fO+sc//qF58+bppptuUs+ePRu8T5+LLrpI7733XsC2LVu26JZbbtGkSZOUlpamiIgIrVu3Tlu2bNE999zjL1fbd27cuHF66623dPPNN+uKK65QRkaGHnzwQaWkpFQbVpdO/TvX0M/6s88+04gRI+rsPatv26Wy/1hNmDBB999/v1JSUvTaa6/pgw8+0J///Odae5isct111+mpp57S1KlT9dBDD6lHjx5677339P7770sKXA6psdT3ON93333at2+fRo0apdTUVGVlZemZZ55ReHi4RowYIalsOZr+/fvr7LPPVnJysvbs2aOnn35anTt3VlpaWq11aMjrfve73/l/182fPz/gudP9zjf09yxQI1unbqBJLF682EyePNmkpaUZl8tlwsPDTadOncy1115rtm/fHlA2PT3d/PSnPzWxsbH+6fQ+eXl55t577zW9evUyERERJj4+3gwYMMDMmDEjYDaiJDN9+nQzb9480717dxMeHm569+5tFi5ceNK6+mZkVl7qobLNmzebK6+80rRp08aEh4ebdu3amYsvvtg8//zz/jL33HOPOfvss01CQoJxOp2mW7duZsaMGSYzM9Nf5rrrrjMxMTFmy5Yt5qKLLjJRUVEmMTHR3HTTTdVmOxYWFpq7777bdO7c2YSHh5uUlBRz0003mRMnTgSUq2kmqjHGjBgxImAGXH3qV9+21qa2uuzZs8dMnjzZJCUlmfDwcNOrVy/z2GOPBcz8PNkxqMnatWuNJLNx40b/tsOHD5tp06aZ3r17m5iYGONyuczAgQPNU089Zdxut79cXd+5Rx991HTp0sU4nU7Tp08f87e//c0/C7Oy+n7nappBakz9P+udO3dWW66jJvVtu+84LV261PTr189ERESYLl26mCeffLLGete0XFBts2JjYmKqla3ps9u7d6+5/PLLjcvlMrGxseYXv/iFWbVqlZFkli9fXmc7K+/z6NGjAdtrq8OIESNMv379ArbV5zivXLnSjB492nTo0MFERESYNm3amDFjxpiPP/7YX+aJJ54w5513nmndurV/OaNf//rXJj09vc42NPR1Xbp0MX369Km23YrvfEN/z1ZW27/dur4/CD5cUgyWq+/lnew0bdo0LV26VHl5eXZXJWgMHDhQ559/vv7617/aXZVG86c//Umvvvqqdu3aVeOC3w3VpUsX9e/fXytXrrSgdtZ55JFHdO+992rv3r2ndOpEMNuyZYsGDRqk5557zj/BBjiTMBQLwBJz587Vz3/+c/3xj38MyjCQlZWl5557Tn/5y18sCXVnCt9/wHr37q3S0lKtW7dOzz77rKZOnRqUx/FU7dq1S3v27NEf/vAHpaSkVFsCCThTBM9vJwC2uuyyy/TYY49p9+7dQRkIdu/erZkzZ/rXOgwW0dHReuqpp5Senq7i4mJ16tRJd999t+699167q3ZGefDBB7VgwQL16dNHb775ZqOf/wicKoZiAQAAggQLFAMAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAIs7sCjc3r9erAgQOKjY2Vw+GwuzoAAAANYoxRbm6u2rdvr5CQuvvkgj7YHThwQB07drS7GgAAAKclIyNDqampdZYJ+mAXGxsrqezDiIuLs7k2AAAADZOTk6OOHTv6M01dgj7Y+YZf4+LiCHYAAKDZqs8pZUyeAAAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIErYFu1mzZqlv374KCQnRG2+8UWu5wsJCTZ06VbGxserUqZMWLVrUhLUEAABoPmwLdmlpaXrmmWc0fPjwOsvNmjVLx48f1/79+/XGG2/opptu0vfff99EtQQAAGg+wux646lTp0qSHn744TrLLViwQO+8847i4uJ03nnnacKECXrjjTd033331Vi+uLhYxcXF/sc5OTnWVRoAcEYzxshrJI/XyGvKbh6vkdcreXw/l99X/rnsXoHPGyNTx3avVzKSvMbImIr3Niq/L9/uNdUf+17nNZLK772Vnw/Yj2+b7/mKfZjyNvq2G9++vRV1MVX27TVSWc1VXu+ycv7H5fdlpco2+N7L90pfOd9nXmmX/vesa7/ylamyj6rbpMC6+PYb8Lim965hv/5i1baZip/99atej4rvWOUyZQ9uHNFdl5+VqjOBbcGuPk6cOKFDhw5pwIAB/m2DBg3Sxo0ba33NnDlz9MADDzRF9QCg2fJ6jUo83rKb26vS8vsSd+Vtxv9ccfm92+uV22Pk9pbfPJUee7zl28vvPWVBqLRyGf9z3vLnKsp4vEalAc+V3bu9Rt7yQOXxqlJYM9XCmtecvO2A1U4UlNpdBb8zOtjl5eUpNDRU0dHR/m1xcXHKy8ur9TUzZ87U7bff7n+ck5Ojjh07Nmo9AaChvF6jYrdXRaUeFbk9Kiot+9m/rbRsW7G74mf/faVtxeWvLy4tC2TFlUJaaaWAVuz2qsTtKQtr5YGppQoNcSjEIYU4HAoNcSjU4VBIiKN8u0OhIQrYFupwyOFQpefLbg5JDkfZvirfO1S275AQyaGy14Y4Ku5DHJJUUYfKz/v2E+Koun9fGV/5qmUCt6vSezlUqW4Bj8s+D0f5D/7H8pWTf7tvm1TxGkfAayr273usamVq3q+q7qPya+p476rPV94mOarXrfJranlvf90D9lVetkp7KwpJXZJidKY4o4Ody+WSx+NRQUGBP9zl5OTI5XLV+hqn0ymn09lUVQQQ5IwxKir1KreoVPklHuUXu1VQ4lFBSdl9frFbhaUe5ReXbcsv9qiw1O1/XFDiUX6JRwWVXpdf4lGJ22t30wJEhIYoPNShiLAQhYeGKCIsRBG++/Jt4aEOhYeGKCzEodCQssehIWXbyu7LHof5n6teJsx3C61eJiwkpPy58p9Dy/bpC1OVQ1VgKFP1MuXbq29znPzDAJqxMzrYJSQkqF27dvr66691zjnnSJI2b96sfv362VwzAM1FUalHWQWlyi4sVW5RqXKL3Motdlf8XH6fV+RWTqXHucWlyityK7fILXcj926FhTgUGR6qyPAQOcPK7ssel/8cVvazMyxEzvBKzweU9YWxUH9A8wWz8EoBreq28FCHIkJD/L0VAJo324JdaWmpPB6PvF6vSktLVVRUpIiICIWEBE7UnTp1qh588EEtWrRI27Zt04oVK/Sf//zHploDsEuJ26sTBSU6UVCirILS8luJsgor/VxQqqzCSs8Xlqio1JqeMYdDckWEKSoiVDHOMEVHhCrG/zhU0RFl26IjwhQTEapop+9xWbno8m0xEaGKigitCG5hIQoLZUlRANZwmKrTPZrItGnT9MorrwRsW79+vfbv369HHnlE27Ztk1S2jt3111+v5cuXKyEhQX/+8581efLker9PTk6O4uPjlZ2drbi4OEvbAODUGWOUU+RWZl6xjuWV6FhesTLzS5SZW6xj+b5tJcrML1ZmbrFyityn/F6hIQ7FR4UrNjKs7OYMl6v857jIsu0uZ5hiIyuViaz8OFzR4aEM4wGwRUOyjG3BrqkQ7ICm5Qtsh3OKdDinSIeyi3Qkt1iHssseH84t1pGcImXmFavU07BfPyEOqVV0hFpFh6tVVHiln8vuE6LDFR8doYRK21pFh8vlDGOoEUCz1ZAsc0afYwfgzJNbVKr9WYXaf6LQf38wu0iHcop0JKfsviHDn7HOMCW5ItTa5VSSK0JJLqdax5Td+7a3dkUoKcap+Khwes0AoA4EOwABcopKtfdYgfadKNC+E4XaVynA7c8qVHZh/dZrio8KV7u4SLWJc6ptXKTaxUWqbfnPbeMilRzrVGJMhCLDQxu5RQDQchDsgBYou6BUu4/la8+xfKVnFpTdH8tX+rECHc8vOenr46PClZoQpQ6totQhIUrt46PUNj4wvBHYAKDpEewayZNrvtM/vzmiRb/5keKjw+2uDlogt8erPccLtONwnnYdzdOOw7nafawsxGWdZJX01q4IpSZEq0NClFJbRZWFuIQodWhVts3l5FcHAJyJ+O3cSJ5dt1OSNP+T3brtJz1trg2CWbHbo92Z+dpxOE87j5TddhzJ1e7M/DonJ7SNc6pzUoy6JEWrc1KMuraOUefynwluANA88du7EVSeaPzD0Xwba4Jgk5lXrG8O5mj7gZyy+4M52nU0v9bLQ0VHhKp7sktpbVzq3sal7skx6tI6Rp0SoxUdwT9/AAg2/GZvBJVPLm/J12PEqTPGaM+xAm3Znx0Q4o7mFtdYPi4yTGltY9Uj2aW0tmUhLq2NS+3jo5hFCgAtCMGuEVT+41t8hl0PEmemI7lF2pKRrc37svRVRpa27Muucfapo/xi031T4tQnJVZ928epT0qc2sVFsk4bAIBg1xgq/0HOK67f0hBoOYrdHn29L1uf7zmhzRlZ2pyRpQPZRdXKRYSGqE/7OPVrH1ce5OLUu12sYjj/DQBQC/5CNILKi7PmFZ/6ZZAQHLILS/XFnhPalH5cn6ef0Ff7slRSpSfX4ZDS2rg0KLWVBnZspcGprdSrXawiwriGKACg/gh2jaCo1OP/Oe80rm+J5ulYXrE+2XVMG3cf16b04/rucK6qXrivtStCZ3dO1JBOrTSoYyv17xDPTFQAwGnjL0kjKHJXCnb02AW9/GK3NqYf1yc7M/Wvncf0zcGcamW6to7R2Z0TNKxLooZ1TVSXpGjOiQMAWI5g1wgqD8Xm0mMXdDxeo68ysvSvHZn6985MfZlxotp6cb3bxerc7kka3iVRQ7skqE1spE21BQC0JAS7RlB5KLbY7ZUxht6ZZi6roEQbvj+q9d8e0Ybvj+pElSs3dGgVpQt6tNZ5PZJ0XvfWSo512lRTAEBLRrBrBJWDnVQW7rhuZvNijNH3h/O07tsjWv/tEX2+57gqL0kYFxmmC9Ja64IeyTq/R5I6JTK0CgCwH8GuEVRdu45g1zx4vUZf7cvS6q2H9N7Wg8o4XhjwfM+2Lo3s3UYX92qjoZ0TFBbKjFUAwJmFYNcIqvfYeSSF21MZ1MnjNfrvnhNa9fVBvb/tkA5WWk8uIixE53VP0sW922hkrzbqmBhtY00BADg5gl0jqBrsqq5ZBnt5vUb/3XtCy7/ar9VbDyszr+JKITERobq4T1uN7t9OF/VK5nqqAIBmhb9ajaDyrFiJy4qdKXYeydU7Xx7QO1/t174TFcOscZFh+knfthrdP0UXprVm2BwA0GwR7BpBqadKsCsl2NnlSE6RVmwuC3Nb91esLxcTEarL+qdo/KAUnde9NVd4AAAEBYJdIyipGuzcnlpKojG4PV6t/+6oFm/aq3XfHvHPZg0LcWhEz2RNHNJBP+nTVlER9MwBAIILwa4RuKssVstQbNPIOF6gxZsy9OZ/M3Q4p+K8ubM6tdLPh3TQ2IHtlRgTYWMNAQBoXAS7RlBtKJZg12jcHq/WbD+sRRv36uMdmf7tSTER+sXQVF01rKO6J7tsrCEAAE2HYNcIql5eqriUoVirHc8v0aKNe/XaZ3v8S5Q4HNIFPVrrmuGd9JM+bTlvDgDQ4hDsGkHVHruq59zh1G07kK2X/52u5ZsP+JeRae2K0NXDOumqYR1Zaw4A0KIR7BqB28usWCt5vUbrvzuiFzb8oI3px/3bB3SI1y/P76KxA1PkDGMiBAAABLtGUG0olnPsTkmpx6t3Nx/Q8xt26fvDeZLKZraOHpCiaed10VmdWnF9VgAAKiHYNQLfUGxEWIhK3F6WO2mgghK3Fm/K0N8/3q39WWULCbucYZryo0765Xld1S4+0uYaAgBwZiLYNQLfcicuZ5iOu0vosaunvGK3XvkkXX//+AedKCiVJLV2OfWrC7poyjmdFR/F9XYBAKgLwa4R+HrsXM4wHc8v4Ry7kygocevVT/fo/z76QcfzSyRJnRKjdcOIbvrFWalc4gsAgHoi2DUCX7CLcZZ9vCUehmJrUlji0cL/7NHzG3YpM68s0HVtHaPfjuqh8QPbKyyU5UoAAGgIgl0j8E2eiC0PdvTYBSr1ePXGpgw9u3aHjuaWXSGiU2K0fjsqTRMHE+gAADhVBLtG4Pb32JUNIXKOXRljjNZsP6w/r/5WPxzNlySlJkTptxen6edndVA4gQ4AgNNCsGsEJeU9dr6hWGbFSl/sPaE5q77RpvQTkqTEmAj9blSarhneiStEAABgEYJdI/AtUOzyB7uW22OXcbxAj773rf7x9UFJkjMsRNdf2FU3juiu2EhmuQIAYCWCXSOovNyJ1DLPsSsq9eiFDT9o3oc7Vez2yuGQrjgrVbf/tKdS4qPsrh4AAEGJYNcIfLNio/2zYltWsPvn9sN6YOU2ZRwvW1z43G5Jum98X/VJibO5ZgAABDeCXSPweMt67KIjfJMnWsY5dumZ+Zq9crvWfXtEktQuLlJ/HNtH4wamcOkvAACaAMGuEXhMWbCLKl9Yt9Rt6ire7JW4vXphwy79Zd1OlXi8Cg916PoLu+mWkT38E0gAAEDj46+uxbxeo/Jc5w92xUE8FPvl3hO6Z9nX+u5wriTpwrTWun9CP3VPdtlcMwAAWh6CncV8vXWSFBnh67ELvmCXX+zW42u+08ufpMuYsuVLZo3vqwmD2jPsCgCATQh2FvOdXydV9NgF2+SJf+3I1N3Ltmh/VtnkiMuHdNC94/oqMSbC5poBANCyEewsVlOwKw2SYFdY4tGfV3+rlz9JlyR1aBWlRy4foBE9k+2tGAAAkESws1zlodioiLIrKpQEwVDsVxlZun3xV/ohs+xSYNf+qLPuGd2byREAAJxB+KtsMY+n0jl2QdBjV+rx6i/rduq59Tvl8Rq1jXNq7hWD6KUDAOAMRLCzWMDkCd+s2GbaY5eema9bF32pr/dnS5ImDGqv2T/rp1bRnEsHAMCZiGBnMd85diEOKSK0bCi2OfbYrdh8QH9462vlFbsVHxWuhyb21/hB7e2uFgAAqAPBzmK+YBcWEiJnmC/YNZ8FiotKPXrg3W1atDFDkjS8S6KeuWYw13cFAKAZINhZzN9jFyKFl/fYebxGHq9RaMiZvb7bziN5mr7wC313OFcOh3TLyB763ag0hZW3AwAAnNkIdhar3GMXEVYRiEo9XoWGhNpVrZNa9fVB/f7Nzcov8ai1y6lnrh6s83u0trtaAACgAQh2FvNNnghxVPTYSWUTKHyTKc4kbo9Xf179rf728W5J0o+6JerZa4aoTWykzTUDAAANRbCzmL/HLjRE4aEVQ69n4gSKo7nFuuX1L/Sf3cclSTf8uJt+f2kvhl4BAGimCHYWq5gV65DD4VBEaIhKPN4zbpHi/+45rpsXfqHDOcWKiQjV45MGafSAFLurBQAATgPBzmK+YOfr9AoPdajEc2b12L2xca/+tHyrSj1GPdq49PzUoerRxmV3tQAAwGki2Fms8uQJSYoIC1F+ieeM6LHzeo0eW/Od/vrhLknS2AEpmnvFQC4LBgBAkOAvusXclZY7kSomUJTY3GNXVOrRnW9u1sotByVJvxuVptt+kiaH48xeggUAANQfwc5iXlO9x06SrT12mXnF+t9XP9cXe7MUFuLQo78YqCuGptpWHwAA0DgIdhZzeyqWO5EqX1bMnqtPfHcoV79+ZZP2nShUXGSYnp86VOexPh0AAEHJtnUtjh49qrFjxyo6Olq9evXS2rVrayy3e/du/fSnP1WrVq3UoUMHzZkzp4lr2jBnUo/d+u+O6Bd//UT7ThSqS1K03p5+PqEOAIAgZluP3fTp09W+fXtlZmZqzZo1mjRpknbt2qWEhISAcrfeequ6deumf/zjH9q3b5/OP/98DR8+XKNGjbKp5nWrOMeurMsu3N9j17TB7uV/79bsldvlNdI5XRP1/NShSoiJaNI6AACApmVLj11eXp6WL1+u2bNnKzo6WhMnTlT//v317rvvViu7Z88eXXXVVQoPD1fXrl11wQUXaPv27TbUun68/lmxZcHO32PXRMHO7fHqvuVbdf+7ZaFu0tBULfj1OYQ6AABaAFuC3Y4dOxQfH6+UlIoFcQcNGqRt27ZVKzt9+nS98cYbKi4u1o4dO/TZZ5/poosuqnXfxcXFysnJCbg1JU+1Hruy+6YYis0vdutXr3yuVz/dI4dDumd0b829YmDANWsBAEDwsq3HLi4uLmBbXFyc8vLyqpU977zz9OmnnyomJkY9e/bUr3/9aw0YMKDWfc+ZM0fx8fH+W8eOHS2vf13c1Xrsyq4P29hDsblFpbrupY366PujigoP1fNTh+rGEd1ZzgQAgBbElmDncrmq9aTl5OTI5Qq8+oHH49GYMWP0m9/8RkVFRdq9e7fefPNNLV26tNZ9z5w5U9nZ2f5bRkZGo7ShNr7JE6HlgSqiCXrsPF6jmxd+oc/3nFBcZJhe/805urRfu0Z7PwAAcGayJdilpaUpOztbhw4d8m/bvHmz+vXrF1Du+PHjOnDggG666SaFhYWpS5cumjhxotavX1/rvp1Op+Li4gJuTcntv6RY002eeG79Tn28I1OR4SFaeP2PNKRTwslfBAAAgo5tPXYTJkzQrFmzVFhYqBUrVmjr1q0aP358QLnk5GR17NhRf/vb3+T1erVv3z4tX768zqFYu3mrBDvf+W3FjdRj98muTD39z+8lSQ9NHKABqfGN8j4AAODMZ9tZ9fPmzVNGRoaSkpJ05513asmSJUpISNDChQsDeu6WLl2qBQsWKCEhQcOGDdOoUaP0m9/8xq5qn1TtPXbWL1B8JLdIv130lbxGuvLsVK4mAQBAC2fbOnbJyclatWpVte1TpkzRlClT/I+HDRumTz75pCmrdlpq67Gz+hy7olKPbnrtC2XmFatX21g9MKG/pfsHAADND+tgWKxqj13ESc6xW7PtkF76127/Mikn4/UaZRwv0E2v/Vf/LZ8sMW/qWYqKCLWg9gAAoDnjWrEW81SdFVvHAsVf7j2h/13wX0lSeFiIrv1R55r36TV6+p/fa9HGvTqeXyJfBowIC9HzU4eqe7KrxtcBAICWhR47i3nKA1xo6MkXKF719UH/z+98ub/WfT763jf6y7qdyswrC3UOhzSsS4KW3ngu134FAAB+9NhZzDdHomIdu7Ih0pp67LYdqFjL78u9J1RQ4lZ0ROAh2XU0T3//125J0kMT++unfdsqISbCPykDAADAh3RgsarXig0PK7svraHH7vvDuRWvM9I3B6tf/uzvH++WMdIlfdtq6o86q01cJKEOAADUiIRgMXeVa8X6Jk9U7bErdnuUmVciSTqrUytJ0tf7sgPKeL1GH2w/LEm67twujVVlAAAQJAh2Fqt2SbGwmmfFHskp9j9/QVqyJOnr/YE9dtsO5Cgzr1guZ5iGd01s1HoDAIDmj2BnMXf5SXa+yRP+Hjt34HImR3LLgl2yy6n+7csue7btQGCP3frvjkiSLujR2h8QAQAAakNasFjV5U7CaxmKPZpbJElqG+dUvw5llwHbeSRPRaUef5l135YFu5G9kxu30gAAICgQ7Czm8ZYvd1LlyhNVJ08cLh+KbRMbqfbxkWoVHS6312jH4TxJ0rG8Ym3elyVJuqhXm6aoOgAAaOYIdhbzdcxVvVZs1R67I+U9dm3inHI4HOpXZTj2ox1HZYzUNyVObeMim6LqAACgmSPYWczXYxfm77ErX+7EU3OPnS+09WtfNhzrW9tu3bdHJUkX96a3DgAA1A/BzmK+/Fax3En5AsVVhmKP55ctdZIUEyGprGdOkrYeyJbb49VH35cFO86vAwAA9UWws1jVHjv/JcWq9NjlFJZKkuKjwiVJZ3VKkFS2lt2H3x1VdmGpWkWHa3DHhCapNwAAaP4IdhbzzYoNqbKOXdUeu9wityQpNrIs2HVKila31jFye41mLPlKknRJn7b+c/UAAABOhmBnMV/HXFiVyRNVz7HLLSrrsYuNrLg2rG/2qy/0TTq7Y6PWFQAABBeCncV8Q7G+c+ycJ+2xqwh2U3/Uyd/DN7RzgoZ1YRgWAADUX9jJi6Ahau+xM5XKGOUWBw7FSlK3ZJeW3XieNqYf1xVDU+VwMAwLAADqj2BnsdoWKK7cY5dXHuqkwB47SRqQGq8BqfGNXU0AABCEGIq1mK9jrqYFik35xArf+XURoSGKDA9t+koCAICgRLCzWG09dpLk9vqCXVmPXVwUHaYAAMA6BDuLecrDmz/YhVZ8xL7h2KpLnQAAAFiBYGcxf7BzVO+x8y15UtNSJwAAAKeLYGex8lznX+4kNMQh3xrDvh67HIIdAABoBAQ7i/l67EIqLVVSeQKFVGko1slQLAAAsA7BzmJe4zvHrmJb1SVPalqcGAAA4HQR7CzmNdV77CKqLFLsG4qNi6LHDgAAWIdgZ7Hy1U4Cgx09dgAAoAkQ7CzmqaHHzne92GK3RxLLnQAAgMZBsLOYqeEcO9/VJQpLy4JdTiGzYgEAgPUIdhbzzYp1VOqx8wW7otLAdeziCHYAAMBCBDuL+dexCwh2ZR9zUSlDsQAAoPEQ7CxW11Bs9WBHjx0AALAOwc5ivskTAUOxYeXBzl11KJYeOwAAYB2CncV8y52EVgp2URHlwa7EI7fHq/ySsp47euwAAICVCHYWq2mB4srn2OUVu/3bOccOAABYiWBnMX+wq/TJOv1DsR7/+XXOsBD/wsUAAABWIFlYzLfcSUgty534LidGbx0AALAawc5i5R12Cg2pdI5dpQWKfT12rGEHAACsRrCzWMUlxSq2VT7HjqVOAABAYyHYWazmyRNlPXbFpd6KpU6iGIoFAADWIthZzLfcSeVgF1VpgWKuEwsAABoLwc5iNfXYOcuHYiufYxfrpMcOAABYi2BnsZqWO6l8SbHcYs6xAwAAjYNgZzFPDUOxlZc7yS4oG4qN5xw7AABgMYKdxUx5j11Ny50UuT3KKiyRJLWKJtgBAABrEewsVudyJyUeZRcyKxYAADQOgp3FvHVdecLtVXZh2Tl2raIjmr5yAAAgqBHsLFae62pc7qSgxK3sgrKhWM6xAwAAViPYWcxbwzl2vhmwRaVeZeaXn2NHsAMAABYj2FnMU95lV6nDTi5nxdImJe6yabP02AEAAKsR7CxW3mEX0GMXFhqi6IjQgHJMngAAAFYj2FmspitPSIELEsdGhgUEPwAAACsQ7CzmW+6kSq5TbGRFDx1r2AEAgMZAsLOQMaZiKLZKsour1GPXKoqlTgAAgPUIdhbyLXUiVR+Kbe1y+n9uGxfZVFUCAAAtCMHOQr7z6yQppMo5dO3iK8JcSjzBDgAAWI9gZyFPpS67qnMjKvfStSPYAQCARkCws1ClDrtqs167to7x/9y3fVxTVQkAALQgtgW7o0ePauzYsYqOjlavXr20du3aWsvOnz9faWlpiomJUZ8+ffT99983YU3rz1N5KLbKOXYje7VRSnyk2sQ6dU7XxKauGgAAaAHCTl6kcUyfPl3t27dXZmam1qxZo0mTJmnXrl1KSEgIKPfuu+/qiSee0DvvvKO+ffvqhx9+qFbmTOGtI9hFRYRq1W8vlJEUHWHbxw4AAIKYLT12eXl5Wr58uWbPnq3o6GhNnDhR/fv317vvvlut7IMPPqinnnpK/fr1k8PhUPfu3ZWYeGb2eHnrOMdOkhJiIpQYw1InAACgcdgS7Hbs2KH4+HilpKT4tw0aNEjbtm0LKOfxePTll1/q66+/Vmpqqrp27arZs2fLVD6ZrYri4mLl5OQE3JpKXcudAAAANDbbeuzi4gInEMTFxSkvLy9g2+HDh+V2u7V27Vpt3bpVGzZs0OLFi/Xyyy/Xuu85c+YoPj7ef+vYsWNjNKFGdS13AgAA0NhsCXYul6taT1pOTo5cLlfAtqioKEnS3XffrVatWqlTp06aPn26Vq1aVeu+Z86cqezsbP8tIyPD+gbUwjcUS6YDAAB2sCXYpaWlKTs7W4cOHfJv27x5s/r16xdQLiEhQe3btw/YVtcwrCQ5nU7FxcUF3JqKbyi26lInAAAATcG2HrsJEyZo1qxZKiws1IoVK7R161aNHz++Wtlp06Zp7ty5ys3N1YEDB/T8889r7NixNtT65HzLnTg4vw4AANjAtnXs5s2bp4yMDCUlJenOO+/UkiVLlJCQoIULFwb03M2aNUspKSlKTU3VsGHDdPnll+u6666zq9p18g3FhhLsAACADRzmZGObzVxOTo7i4+OVnZ3d6MOye47la8RjHyomIlTbZl/WqO8FAABahoZkGS4pZiHfOXbMiAUAAHYg2FnI458VS7ADAABNj2BnId+oNrNiAQCAHQh2FvIPxZLrAACADQh2FvINxbLcCQAAsAPBzkK+S4qx3AkAALADwc5CvmDHUCwAALADwc5CLHcCAADsRLCzEMudAAAAOxHsLMRyJwAAwE4EOwtVzIq1uSIAAKBFIthZyHeOHbNiAQCAHQh2FqqYFUuwAwAATY9gZyFfsCPXAQAAOxDsLOQfimXyBAAAsAHBzkJeljsBAAA2IthZyH+OHT12AADABgQ7C1UsUGxzRQAAQItEsLMQy50AAAA7EewsxHInAADATmH1KTR37tz67SwsTLfffvtpVag5qzjHzuaKAACAFqlewe7ee+/VlClTTlpu6dKlLTrYeZgVCwAAbFSvYBcfH6/58+eftNzq1atPu0LNmWEdOwAAYKN6DRoePXq0Xjs7ePDgaVWmuau48gTBDgAANL1TOhusuLhYx44dU3FxsdX1adZY7gQAANip3sHO7Xbr/vvvV/fu3RUdHa3k5GRFR0erR48eeuCBB1RaWtqY9WwWDMudAAAAG9U72N1www366KOP9Pe//11Hjx5VSUmJjh49qv/7v//Txx9/rBtvvLEx69kseBiKBQAANqrX5AlJWrZsmTIyMhQbG+vflpiYqIsvvlhDhw5Vp06d9OKLLzZKJZsL3zl2oSx3AgAAbFDvCBIbG6udO3fW+Nzu3bsDAl9L5WW5EwAAYKN699g9+OCD+slPfqKrr75aAwYMUFxcnHJycrRlyxa9+eabeuKJJxqzns2C75JiIcyeAAAANqh3sJs2bZqGDh2qRYsWafXq1crLy5PL5VLfvn21fv169e/fvzHr2SywQDEAALBTvYOdJA0YMEADBgxorLo0e/5z7Mh1AADABvU6x27FihX12tnKlStPqzLNnf9asfTYAQAAG9Qr2E2dOrVeO/uf//mf06pMc+c7x47lTgAAgB3qNRSbl5en6OjoOssYYxQS0rLX+WC5EwAAYKd6Bbvdu3dLKgtvb7/9tsaOHSun01mtXEvvqWK5EwAAYKd6BbvOnTv7f162bJkeeughTZw4UVOmTNHIkSNbfKDzYbkTAABgpwYPGv7rX//Sl19+qV69eun2229XamqqZsyYoc8//7wx6tesVCx3YnNFAABAi3RKZ4N16tRJd911l7766iu98847WrNmjc455xylpaVpzpw5ysvLs7qezYLxL3dCsgMAAE3vlIJdaWmpli9frmuuuUaXXXaZevbsqSVLlmjBggX6+uuv9dOf/tTqejYLnvJgx9A0AACwQ4MWKJakX/3qV1q+fLn69++vKVOmaN68eUpISPA/P3ToUMXHx1tayebCd45dKGOxAADABg0Odj169NAXX3wRMKGisvDwcO3bt++0K9YceTnHDgAA2KjBwe4Pf/jDScskJiaeUmWaO/+VJ0h2AADABiylayH/ciecYwcAAGxAsLMQy50AAAA7EewsxHInAADATgQ7C7HcCQAAsBPBzkIsdwIAAOxEsLMQy50AAAA7EewsxHInAADATgQ7C3m8ZfcsdwIAAOxAsLMQs2IBAICdCHYWqpgVa3NFAABAi0SwsxBXngAAAHYi2FnIN3mC5U4AAIAdCHYWYrkTAABgJ4KdhVjuBAAA2IlgZyGWOwEAAHYi2FmI5U4AAICdbAt2R48e1dixYxUdHa1evXpp7dq1dZZPT09XVFSUbrzxxiaqYcOx3AkAALBTmF1vPH36dLVv316ZmZlas2aNJk2apF27dikhIaHG8jNmzNBZZ53VxLVsGN9yJ8yKBQAAdrClxy4vL0/Lly/X7NmzFR0drYkTJ6p///569913ayz//vvvyxijSy65pIlr2jAVs2IJdgAAoOnZEux27Nih+Ph4paSk+LcNGjRI27Ztq1a2pKREv//97/X444/Xa9/FxcXKyckJuDUVZsUCAAA72dZjFxcXF7AtLi5OeXl51co++eSTGjNmjHr06FGvfc+ZM0fx8fH+W8eOHS2pc334gx25DgAA2MCWYOdyuar1pOXk5MjlcgVs279/v1566SX98Y9/rPe+Z86cqezsbP8tIyPDkjrXh5flTgAAgI1smTyRlpam7OxsHTp0SO3atZMkbd68Wddff31AuU2bNikjI0NpaWmSynr6vF6v0tPTtXr16hr37XQ65XQ6G7cBtajosSPYAQCApmdLsHO5XJowYYJmzZqlp59+Wh988IG2bt2q8ePHB5QbPXq0du/e7X/8+OOP6+jRo3ryySebusr14mEoFgAA2Mi2dezmzZunjIwMJSUl6c4779SSJUuUkJCghQsXql+/fpLKet/atWvnv7lcLkVFRSkpKcmuateJ5U4AAICdHMZ3uYQglZOTo/j4eGVnZ1ebsGG18X/5l77en63504ZpZO82jfpeAACgZWhIluGSYhZiuRMAAGAngp2FPF7OsQMAAPYh2FnIN6gdyqxYAABgA4KdhXyzYh0EOwAAYAOCnYW48gQAALATwc5ChuVOAACAjQh2FvJNnmAoFgAA2IFgZyHfUCw9dgAAwA4EOwt5We4EAADYiGBnId8lxUIYigUAADYg2FnI458VS7ADAABNj2BnIcM5dgAAwEYEOwtxSTEAAGAngp2F/OfYkewAAIANCHYW8nKOHQAAsBHBzkIsdwIAAOxEsLMQy50AAAA7Eews5F/uhC47AABgA4KdhfzLndBjBwAAbECwsxDLnQAAADsR7CzEcicAAMBOBDuL+GbESkyeAAAA9iDYWcS3hp3EOXYAAMAeBDuLeCoFOwefKgAAsAERxCKVch1DsQAAwBYEO4swFAsAAOxGsLOIp9LkCXIdAACwA8HOIpVynUJZ7gQAANiAYGcRljsBAAB2I9hZpPI5dnTYAQAAOxDsLOJb7sThkBz02AEAABsQ7Czi67BjRiwAALALwc4ivlmxnF8HAADsQrCziO8cuxA+UQAAYBNiiEV8Q7H02AEAALsQ7CzCUCwAALAbwc4i/qFYch0AALAJwc4iFefYkewAAIA9CHYW8bLcCQAAsBnBziK+c+xYnBgAANiFYGcRX7AL5RMFAAA2IYZYxHeOHUOxAADALgQ7i/iXO2HyBAAAsAnBziJeFigGAAA2I9hZxD8US48dAACwCcHOIhVXnrC5IgAAoMUi2FnE66XHDgAA2ItgZxGP4VqxAADAXgQ7i3josQMAADYj2FmEyRMAAMBuBDuLeLxl9wzFAgAAuxDsLMJQLAAAsBvBziJcUgwAANiNYGeRikuK2VwRAADQYhFDLMLkCQAAYDeCnUUqrjxBsAMAAPYg2FmkPNcR7AAAgG0IdhbhkmIAAMBuBDuLcEkxAABgN9uC3dGjRzV27FhFR0erV69eWrt2bY3lbr/9dnXr1k2xsbE6++yz9dFHHzVxTeunYh07mysCAABaLNtiyPTp09W+fXtlZmbqz3/+syZNmqQTJ05UKxcfH681a9YoOztbd999tyZOnKjc3Fwbalw3ZsUCAAC72RLs8vLytHz5cs2ePVvR0dGaOHGi+vfvr3fffbda2VmzZqlHjx4KCQnRpEmTFBUVpe+//96GWteNWbEAAMBuYXa86Y4dOxQfH6+UlBT/tkGDBmnbtm11vi49PV3Hjx9Xjx49ai1TXFys4uJi/+OcnJzTr3A9cEkxAABgN9t67OLi4gK2xcXFKS8vr9bXlJaW6rrrrtPvf/97xcfH11puzpw5io+P9986duxoWb3rwiXFAACA3WwJdi6Xq1pPWk5OjlwuV43ljTGaNm2a2rRpo/vvv7/Ofc+cOVPZ2dn+W0ZGhlXVrpPHW3YfQo8dAACwiS3BLi0tTdnZ2Tp06JB/2+bNm9WvX78ay9966606cOCAXnvtNYWc5GKsTqdTcXFxAbemQI8dAACwm209dhMmTNCsWbNUWFioFStWaOvWrRo/fny1srNmzdK///1vLV++XE6n04ba1o9/8gQ9dgAAwCa2LXcyb948ZWRkKCkpSXfeeaeWLFmihIQELVy4MKDnbvbs2frmm2/Uvn17uVwuuVwuLVy40K5q14p17AAAgN1smRUrScnJyVq1alW17VOmTNGUKVP8j035EOeZznDlCQAAYDP6lyzCJcUAAIDdCHYW8c2KZR07AABgF4KdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EUMswgLFAADAbgQ7i7BAMQAAsBvBziL02AEAALsR7CxCjx0AALAbwc4irGMHAADsRrCzCEOxAADAbgQ7izAUCwAA7Eaws4jXf61YmysCAABaLIKdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EewswqxYAABgN4KdRZgVCwAA7Eaws0jF5AmbKwIAAFosYohFmDwBAADsRrCziC/YMXkCAADYhWBnESZPAAAAuxHsLMLkCQAAYDeCnUU8ZbmOHjsAAGAbgp1FjO9asXyiAADAJsQQizArFgAA2I1gZxFmxQIAALsR7CzCrFgAAGA3gp1FmBULAADsRrCziNc3K5ZgBwAAbEKwswiTJwAAgN0IdhZh8gQAALAbwc4iTJ4AAAB2I9hZpGLyhM0VAQAALRYxxCL+HjuGYgEAgE0Idhbxn2PHUCwAALAJwc4ibiZPAAAAmxHsLOLrsQvjJDsAAGATUohF3J7yYBdKjx0AALAHwc4ipV6vJIIdAACwD8HOAh6vUfmkWIUzFAsAAGxCCrFAqcfr/5keOwAAYBeCnQV8M2IlKTyUjxQAANiDFGIBd+UeO5Y7AQAANiHYWaDUU9Fjxzp2AADALgQ7C1SsYeeQgytPAAAAmxDsLOCbPMHECQAAYCeCnQV8kydY6gQAANiJJGIBNz12AADgDECws0Cp/3JifJwAAMA+JBELuMsvJxbOjFgAAGAjgp0F6LEDAABnApKIBfzn2NFjBwAAbESws4BvViyTJwAAgJ0IdhbwBzuWOwEAADYiiVig1F0+eSKMjxMAANiHJGKB/BK3JMnlDLW5JgAAoCUj2Fkgt6gs2MVEhNlcEwAA0JIR7CyQX1zeYxdJsAMAAPaxLdgdPXpUY8eOVXR0tHr16qW1a9fWWK6wsFBTp05VbGysOnXqpEWLFjVxTU/OH+ycBDsAAGAf25LI9OnT1b59e2VmZmrNmjWaNGmSdu3apYSEhIBys2bN0vHjx7V//35t3bpVY8aM0dChQ9WzZ0+bal5dbnmwiyHYAQAAG9nSY5eXl6fly5dr9uzZio6O1sSJE9W/f3+9++671couWLBAs2bNUlxcnM477zxNmDBBb7zxhg21rh09dgAA4ExgSxLZsWOH4uPjlZKS4t82aNAgbdu2LaDciRMndOjQIQ0YMCCg3MaNG2vdd3FxsYqLi/2Pc3JyLKx5zfIIdgAA4AxgW49dXFxcwLa4uDjl5eVVKxcaGqro6Og6y1U2Z84cxcfH+28dO3a0tvI1uKRvW/36gq7q3yHu5IUBAAAaiS3BzuVyVetJy8nJkcvlqlbO4/GooKCgznKVzZw5U9nZ2f5bRkaGtZWvwc+HpOpP4/pqaOfERn8vAACA2tgS7NLS0pSdna1Dhw75t23evFn9+vULKJeQkKB27drp66+/rrNcZU6nU3FxcQE3AACAlsC2HrsJEyZo1qxZKiws1IoVK7R161aNHz++WtmpU6fqwQcfVG5urj777DOtWLFCV111lQ21BgAAOLPZto7dvHnzlJGRoaSkJN15551asmSJEhIStHDhwoAeudmzZ/snWkyaNEnz5s1Tr1697Ko2AADAGcthjDF2V6Ix5eTkKD4+XtnZ2QzLAgCAZqchWYZLigEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkAizuwKNzXfFtJycHJtrAgAA0HC+DFOfq8AGfbDLzc2VJHXs2NHmmgAAAJy63NxcxcfH11nGYeoT/5oxr9erAwcOKDY2Vg6Ho1HeIycnRx07dlRGRsZJL84bjFpy+2k7baftLUdLbrvUsttvd9uNMcrNzVX79u0VElL3WXRB32MXEhKi1NTUJnmvuLi4Fvdlr6wlt5+20/aWhra3zLZLLbv9drb9ZD11PkyeAAAACBIEOwAAgCBBsLOA0+nUrFmz5HQ67a6KLVpy+2k7bW9paHvLbLvUstvfnNoe9JMnAAAAWgp67AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsTtPRo0c1duxYRUdHq1evXlq7dq3dVbJMcXGxfvnLXyo1NVXx8fG66KKL9PXXX0uSXn75ZYWFhcnlcvlve/fu9b9206ZNGjRokKKjozVixAjt2bPHrmaclosuukiRkZH+No4ePdr/3KOPPqrk5GQlJibqrrvuCriGX3Nvf+Xj6nK55HA4tGzZMknBeexnzZqlvn37KiQkRG+88UbAc6d6nAsLCzV16lTFxsaqU6dOWrRoUZO1pyFqa/vLL7+swYMHKzY2Vt26ddPzzz8f8DqHw6GYmBj/d+CRRx7xPxcMbT/V73hzb/uNN94Y0O7w8HCNHz/e/3wwHPe6/rZJQfBv3uC0TJo0yVx//fUmPz/fvP322yYhIcEcP37c7mpZIi8vz8yePdtkZGQYt9ttnnjiCdOtWzdjjDHz5883l156aY2vKyoqMqmpqebFF180hYWF5q677jIXXnhhU1bdMiNGjDCLFi2qtv0f//iH6dSpk9m1a5c5cOCA6dOnj3nxxReNMcHVfmOM2bx5s4mKijI5OTnGmOA89gsWLDBr1qwx55xzTsDxPp3j/Pvf/96MHj3aZGdnm3//+98mPj7efPfdd03etpOpre3PP/+8+fTTT01paanZunWradOmjdmwYYP/eUnm4MGDNe6zubf9dL7jzb3tVQ0ZMsT8/e9/9z8OhuNe19+2YPg3T7A7Dbm5uSYiIsIcOHDAv+3CCy80r7zyio21ajzFxcXG4XCYzMzMOn/xrV692vTu3dv/OC8vz0RFRZn09PSmqqplagt2V199tXn00Uf9j1988UUzcuRIY0xwtd8YY+666y5z9dVX+x8H87GverxP5zi3a9fOfPbZZ/7nr732WvPAAw80dhNOWW3fdZ/Jkyebxx9/3P+4rj/wzb3tp/Mdb+5tr2z79u3G6XSarKws/7ZgOu4+lf+2BcO/eYZiT8OOHTsUHx+vlJQU/7ZBgwZp27ZtNtaq8Xz66adq27atkpKSJEn//ve/lZSUpL59+wYM02zfvl0DBgzwP46JiVH37t21ffv2Jq+zFW699VYlJyfrkksu0ZYtWyRVb2Pl4x5M7TfGaNGiRZoyZUrA9pZy7E/1OJ84cUKHDh2q9bXNjcfj0caNG9WvX7+A7WeddZY6dOigadOm6dixY5IUNG0/le94sLTdZ+HChRo3bly1a5QG23Gv/LctGP7NE+xOQ15eXrWLAcfFxSkvL8+mGjWe7Oxs3XDDDXr44YclSSNGjNDXX3+to0ePav78+Zo9e7befvttScH1ucydO1e7d+/W3r17dckll2jMmDHKy8ur1sbK7Qum9n/00UcqKCjQpZde6t/WUo69VL099T3OeXl5Cg0NVXR0dI2vbW7uvfdedejQIeB78NFHH2nPnj366quvVFBQoF/96leSFBRtP9XveDC0vbLXX3+92n/qgu24V/3bFgz/5gl2p8HlciknJydgW05Ojlwul001ahxFRUWaOHGixo4d6/9H3LVrV3Xp0kUhISE655xz9Nvf/tb/iy+YPpfhw4fL5XIpKipKd911l1wulzZu3FitjZXbF0ztX7hwoa688kqFh4f7t7WUYy9Vb099j7PL5ZLH41FBQUGNr21Onn/+eb311ltaunSpHA6Hf/uFF16o8PBwJScn69lnn9WqVatUUlISFG0/1e94MLTd55NPPtGJEyc0ZsyYgO3BdNxr+tsWDP/mCXanIS0tTdnZ2Tp06JB/2+bNm6sNVzRnbrdbV199tdq3b6/HH3+81nIhIRVfpb59+wbMMMrPz9euXbvUt2/fRq1rU/C1s2obKx/3YGl/SUmJli5dWu1/7FUF87E/1eOckJCgdu3a1fra5mLx4sV6+OGH9f7776t169a1lvN9B4wxQdP2yur7HQ+mti9cuFBXXHFFnddGbc7Hvba/bUHxb77Jz+oLMldccYX53//9X1NQUGCWL18eVLNijTFm2rRp5qc//akpKSkJ2P7ee++ZI0eOGGOM+e9//2s6dOhgFi9ebIypmDk0f/58U1RUZO65555mMTOyqhMnTpg1a9aYoqIiU1xcbJ588knTtm1bk52dbVauXGk6d+5sfvjhB3Pw4EHTr1+/ajOnmnv73377bdOlSxfj9XoDtgfjsS8pKTGFhYXmwgsvNK+++qopLCw0Ho/ntI7znXfeacaOHWtycnLMp59+auLj4823335rVxNrVVvb33//fZOcnGw2b95c7TVbt241X331lXG73eb48ePmmmuuMaNHj/Y/39zbfjrf8ebedmOMKS0tNa1btzbr168PeE2wHHdjav/bFgz/5gl2p+nIkSNm9OjRJioqyqSlpZkPPvjA7ipZJj093UgykZGRJiYmxn/76KOPzO23326Sk5NNTEyM6dmzp3n22WcDXrtx40YzYMAAExkZaS688MJmMyuysiNHjpihQ4eamJgYk5CQYEaOHGn++9//+p9/5JFHTFJSkmnVqpX5/e9/HxCAgqH9V1xxhfnDH/5QbXswHvvrrrvOSAq4+f6onepxLigoMJMnTzYxMTEmNTXVLFy4sKmbVS+1tf2iiy4yYWFhAf/2b7jhBmOMMWvXrjVpaWkmOjratG3b1kydOtUcPnzYv8/m3vbT+Y4397YbUxZuUlNT/UHPJ1iOe11/24xp/v/mHcZUWnkPAAAAzRbn2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBaDH27t1b5zVPrZCeni6HwyGXy6V33nnHsv1u2rRJLpdLISEh+uyzzyzbL4DgEmZ3BQDASi6Xy/9zfn6+oqOj5XA4JEnbt29XZmZmo9fB6XQqLy/P0n0OGzZMeXl56tKli6X7BRBcCHYAgkrlQBUZGalt27YRhgC0GAzFAmgx0tPTFRkZ6X/scDj017/+VZ06dVLr1q21ePFirVy5Ut26dVObNm20ePFif9njx49r8uTJatOmjbp166ZXXnml3u97//3369prr9XEiRPlcrl0ySWX6MiRI7ryyisVFxenyy67TLm5uZKk77//XhdccIHi4uLUunVr3XHHHdZ9AACCHsEOQIv273//W99//73++te/6uabb9ayZcu0detWvfjii7rlllvk8XgkSddee606duyojIwMrVq1SjNnztTmzZvr/T7vvPOO7r77bh05ckRZWVm64IILdOutt+rIkSPKy8vTSy+9JEm67777NHbsWGVnZ2vPnj266qqrGqXdAIITwQ5Ai3bXXXcpMjJSl19+ubKysnTzzTcrOjpa48ePV25urg4cOKBDhw7p448/1iOPPCKn06nevXtr8uTJeuutt+r9PpdcconOPfdcRUdHa8yYMUpLS9OFF16oyMhIjR07Vlu2bJEkhYeHa/fu3Tp06JBiYmI0fPjwxmo6gCBEsAPQorVp00aSFBoaqvDwcCUnJ/ufi4yMVH5+vvbu3av8/HwlJSWpVatWatWqlV544QUdPny4we8jSVFRUQHvExUVpfz8fEnS3Llz5Xa7NXjwYA0aNEjvvvvu6TYRQAvC5AkAOIkOHTqoVatWOnbsWKO/V0pKil566SUZY7RixQpdddVVysrKUkRERKO/N4Dmjx47ADiJDh06aNiwYbrvvvtUUFAgt9utL774Qtu3b7f8vZYuXaoDBw7I4XCoVatWcjgc/uVaAOBkCHYAUA8LFy7Unj17/DNmb7vtNhUWFlr+Phs3btTQoUPlcrl000036fXXX1d4eLjl7wMgODmMMcbuSgBAsNizZ4969+4tp9OpV199VRMmTLBkv59//rl+8pOfqLi4WBs2bGBSBYAaEewAAACCBEOxAAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAk/j8o9/CxCfe8zQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABTuUlEQVR4nO3deXxU1cH/8e9kmyyThCQECISdsK8iWLciUquspVZcAB9pax8XtBW1Kq0VxQWLu/1J9WkVFRFBUEGKiAVEW7VgVRBwASQQdgJkX2fm/P5IZpLJRgI3uWTyeb9e85rMnTN3zpk7JF/OuedchzHGCAAAAM1eiN0VAAAAgDUIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYtxH/+8x/9/Oc/V6dOneR0OtW2bVude+65uuOOOwLKzZs3Ty+//LI9lYRl0tPTNXbsWCUmJsrhcOi2225r9PfMyspS69at9cYbbzTodVZ85xwOh2655ZaTlvvwww/lcDj04YcfNvg91q5dK5fLpf37959CDRvP6bQJ9uD3LBqTg0uKBb9//OMfmjBhgi666CL95je/UUpKig4ePKjPP/9cb7zxhvbt2+cv279/f7Vu3Zo/Es3cz3/+c3388cf6+9//rnbt2iklJUWdO3du1PecMWOG1q5dq82bN8vhcNT7dVZ85xwOh6ZPn67/9//+X53lPvzwQ40cOVLr16/XRRdd1OD3ufjii9WxY0e98sorp1hT6+Xk5Gj79u3q27ev4uLi7K4O6oHfs2hMYXZXAI1v7ty56tq1q95//32FhVUc8quvvlpz5861sWb14/F45Ha75XQ67a5Ks7F161YNHz5cEydOtGR/JzsGx48f1wsvvKCnnnqqQaGuuZk+fbquuuoqPfTQQ+rYsaOtdSktLZXD4VBcXJx+9KMf2VoXAGcOhmJbgGPHjql169YBoc4nJKTiK9ClSxdt27ZNGzZskMPhkMPhUJcuXfzP5+Tk6M4771TXrl0VERGhDh066LbbblN+fn7APn3DYi+88IJ69uwpp9Opvn371muILj09XQ6HQ3PnztVDDz2krl27yul0av369ZKkzz//XBMmTFBiYqIiIyM1ZMgQLVmyJGAfBQUF/npGRkYqMTFRZ599thYtWuQvM23aNLlcLm3btk2jRo1STEyMkpOTdcstt6igoCBgf0VFRZo5c2ZAu6dPn66srKyAcl26dNG4ceO0evVqnXXWWYqKilLv3r310ksvNbh+9W1rVb5huZ07d+q9997zH8f09HRJ0t69ezV16lS1adNGTqdTffr00RNPPCGv11vvY1CTl19+WW63W1dddVXA9h9++EFXX3212rdv7z8FYNSoUfrqq6/8n1lt37mioiLdcccdGjx4sOLj45WYmKhzzz1Xy5cvr7Uep/Kdk+r/WY8fP14ul0t/+9vfTrrPk7Xd1/5x48bp7bff1sCBAxUZGalu3brp2WefDdiX77guWLBAd9xxhzp06CCn06mdO3fWOBTr+37v3LlTY8aMkcvlUseOHXXHHXeouLg4YN/79u3TFVdcodjYWLVq1UpTpkzRpk2b5HA46jVceP/998vhcGjLli2aNGmS/1jdfvvtcrvd+u6773TZZZcpNjZWXbp0qfafyYYc5zfffFPnnHOO4uPjFR0drW7duulXv/qV/3mv16uHHnpIvXr1UlRUlFq1aqWBAwfqmWeeqbMNJ3vdxx9/LIfDUe3fqCS9+uqrcjgc2rRpk6TT+85LDf89O3/+fH+9zz77bH322Wcyxuixxx5T165d5XK5dPHFF2vnzp11fgYIIgZB7/rrrzeSzK233mo+++wzU1JSUmO5L774wnTr1s0MGTLEfPrpp+bTTz81X3zxhTHGmPz8fDN48GDTunVr8+STT5p//vOf5plnnjHx8fHm4osvNl6v178fSaZjx46mb9++ZtGiRWbFihXmsssuM5LMm2++WWddd+/ebSSZDh06mJEjR5qlS5eaNWvWmN27d5t169aZiIgIc+GFF5rFixeb1atXm2nTphlJZv78+f593HDDDSY6Oto8+eSTZv369WblypXm0UcfNX/5y1/8Za677joTERFhOnXqZB5++GGzZs0ac//995uwsDAzbtw4fzmv12suvfRSExYWZv70pz+ZNWvWmMcff9zExMSYIUOGmKKiIn/Zzp07m9TUVNO3b1/z6quvmvfff99MmjTJSDIbNmxoUP3q29aqsrOzzaeffmratWtnzj//fP9xLCoqMkeOHDEdOnQwycnJ5vnnnzerV682t9xyi5Fkbrrppnodg9pcfPHFZvjw4dW29+rVy/To0cMsWLDAbNiwwSxbtszccccdZv369caYur9zWVlZZtq0aWbBggVm3bp1ZvXq1ebOO+80ISEh5pVXXgl4n/p+59avX28k+d//VD7r0aNHm7POOqvWz6K+bTem7DvToUMH06lTJ/PSSy+ZVatWmSlTphhJ5rHHHqtW7w4dOpgrrrjCrFixwqxcudIcO3asxjb5vt99+vQxjz/+uPnnP/9p7rvvPuNwOMwDDzzgL5eXl2d69OhhEhMTzXPPPWfef/99M2PGDNO1a9eTftd8Zs2aZSSZXr16mQcffNB88MEH5q677jKSzC233GJ69+5tnn32WfPBBx+YX/7yl0aSWbZsmf/19T3On3zyiXE4HObqq682q1atMuvWrTPz58831157rb/MnDlzTGhoqJk1a5ZZu3atWb16tXn66afN/fffX2cb6vO6IUOGmPPPP7/aa4cNG2aGDRvmf3w63/mG/p7t3LmzOe+888xbb71l3n77bdOzZ0+TmJhoZsyYYX72s5+ZlStXmoULF5q2bduagQMHBrwewYtg1wJkZmaaCy64wEgykkx4eLg577zzzJw5c0xubm5A2X79+pkRI0ZU28ecOXNMSEiI2bRpU8D2pUuXGklm1apV/m2STFRUlDl06JB/m9vtNr179zY9evSos66+UNG9e/dqAbR3795myJAhprS0NGD7uHHjTEpKivF4PMYYY/r3728mTpxY5/tcd911RpJ55plnArY//PDDRpL517/+ZYwxZvXq1UaSmTt3bkC5xYsXG0nm//7v//zbOnfubCIjI82ePXv82woLC01iYqK54YYb/NvqU7/6trU2nTt3NmPHjg3Yds899xhJ5j//+U/A9ptuusk4HA7z3XffGWPqPga1iY6ONjfeeGPAtszMTCPJPP3003W+trbvXFVut9uUlpaaX//612bIkCEBz9X3O1dTCGroZ/3HP/7RhISEmLy8vFrrWt+2d+7c2TgcDvPVV18FbL/kkktMXFycyc/PD6j3j3/842r7qC3YSTJLliwJKDtmzBjTq1cv/+PnnnvOSDLvvfdeQLkbbrihwcHuiSeeCNg+ePBgI8m89dZb/m2lpaUmOTnZXH755bXur7bj/PjjjxtJJisrq9bXjhs3zgwePPikdT6V182fP99IMl9++aV/28aNG40kfwA93e98Q3/PtmvXLuB7+M477xhJZvDgwQEh7umnnzaSzJYtW+qsF4IDQ7EtQFJSkj7++GNt2rRJjz76qH72s5/p+++/18yZMzVgwABlZmaedB8rV65U//79NXjwYLndbv/t0ksvrXFG3qhRo9S2bVv/49DQUF111VXauXNnwGSN2kyYMEHh4eH+xzt37tS3336rKVOmSFJAHcaMGaODBw/qu+++kyQNHz5c7733nu655x59+OGHKiwsrPV9fPvzmTx5siT5hx3XrVsnqWxoq7JJkyYpJiZGa9euDdg+ePBgderUyf84MjJSPXv21J49e/zbTla/hrS1IdatW6e+fftq+PDhAdunTZsmY4y/rT5Vj0FtsrKyVFBQoDZt2gRsT0xMVPfu3fXYY4/pySef1Jdffhkw5Fsfb775ps4//3y5XC6FhYUpPDxcL774or755ptqZU/lO3cqn3WbNm3k9Xp16NChWuvdkLb369dPgwYNCtg2efJk5eTk6IsvvgjY/otf/KLW96zK4XBo/PjxAdsGDhwY8F3csGGDYmNjddlllwWUu+aaawIeG2MCPhu3213t/caNGxfwuE+fPnI4HBo9erR/W1hYmHr06BFQB6l+x3nYsGGSpCuvvFJLliypcXby8OHDtXnzZt188816//33lZOTU+Nncyqvu+aaa9SmTRs999xz/m1/+ctflJyc7D8F4XS/8w39PTty5EjFxMT4H/fp00eSNHr06IBzXX3bq37uCE4Euxbk7LPP1t13360333xTBw4c0IwZM5Senl6vCRSHDx/Wli1bFB4eHnCLjY2VMaZaOGzXrl21ffi2HTt27KTvl5KSUu39JenOO++sVoebb75Zkvx1ePbZZ3X33XfrnXfe0ciRI5WYmKiJEydqx44dAfsMCwtTUlJSnXU8duyYwsLClJycHFDO4XCoXbt21dpSdX+S5HQ6A8LbyerXkLY2xLFjx6p9rpLUvn37gDb71FS2Jr62RUZGBmx3OBxau3atLr30Us2dO1dnnXWWkpOT9dvf/la5ubkn3e9bb72lK6+8Uh06dNBrr72mTz/9VJs2bdKvfvUrFRUVVSt/Kt+5U/msfe2s6z8MDWl7Q+pd32MiSdHR0dWOidPpDPjsjh07FhCGfapu27BhQ7XPx3fepk9iYmLA44iIiBrrEBEREVCH+h7nH//4x3rnnXfkdrv1P//zP0pNTVX//v0DznubOXOmHn/8cX322WcaPXq0kpKSNGrUKH3++ed1flb1eZ3T6dQNN9yg119/XVlZWTp69KiWLFmi66+/3j+p6HS/8w39PVvTZ17X9pr+3SD4MCu2hQoPD9esWbP01FNPaevWrSct37p1a0VFRVWbCFD5+cpq6s3wbasp/FRVdWalb/8zZ87U5ZdfXuNrevXqJUmKiYnRAw88oAceeECHDx/2946NHz9e3377rb+82+3WsWPHAupTtY5JSUlyu906evRoQLgzxujQoUP+XoSGOFn9GtLWhkhKStLBgwerbT9w4ICk6sewvrNbfZ/V8ePHqz3XuXNnvfjii5Kk77//XkuWLNH999+vkpISPf/883Xu97XXXlPXrl21ePHigLpUPfnf51S+c6fyWfvaWfXzqqq+bW9Iva2ecZyUlKSNGzfW+v4+Q4cO9U8O8PH9h+B0NeQ4/+xnP9PPfvYzFRcX67PPPtOcOXM0efJkdenSReeee67CwsJ0++236/bbb1dWVpb++c9/6g9/+IMuvfRSZWRkKDo6usY61Pd1N910kx599FG99NJLKioqktvt1o033hiwr9P5zjf09yxQE4JdC3Dw4MEa/6fvG+ao/Au6au+Sz7hx4/TII48oKSlJXbt2Pel7rl27VocPH/b/z9/j8Wjx4sXq3r27UlNTG9yGXr16KS0tTZs3b9YjjzxS79e1bdtW06ZN0+bNm/X000+roKAg4Jf7woUL9dvf/tb/+PXXX5ck/xpno0aN0ty5c/Xaa69pxowZ/nLLli1Tfn6+Ro0a1eC2nKx+p9rWkxk1apTmzJmjL774QmeddZZ/u29W38iRI09pvxEREerWrZt27dpVZ7mePXvq3nvv1bJlywKGGGv7zjkcDkVERAT8sT906FCts2JP5Tt3Kp/1Dz/8oKSkpBp7umpTW9sladu2bdq8eXPAcOzrr7+u2NjYgOPUGEaMGKElS5bovffeCxgyrTqbODY2VmeffXaj1KGhx1kq+86MGDFCrVq10vvvv68vv/xS5557bkCZVq1a6YorrtD+/ft12223KT09XX379j1pfep6XUpKiiZNmqR58+appKRE48ePDzj1oqqGfucb+nsWqAnBrgW49NJLlZqaqvHjx6t3797yer366quv9MQTT8jlcul3v/udv+yAAQP0xhtvaPHixerWrZsiIyM1YMAA3XbbbVq2bJl+/OMfa8aMGRo4cKC8Xq/27t2rNWvW6I477tA555zj30/r1q118cUX609/+pNiYmI0b948ffvttw2+KkFlL7zwgkaPHq1LL71U06ZNU4cOHXT8+HF98803+uKLL/Tmm29Kks455xyNGzdOAwcOVEJCgr755hstWLBA5557bkCoi4iI0BNPPKG8vDwNGzZMn3zyiR566CGNHj1aF1xwgSTpkksu0aWXXqq7775bOTk5Ov/887VlyxbNmjVLQ4YM0bXXXtvgdtSnfvVta0PMmDFDr776qsaOHavZs2erc+fO+sc//qF58+bppptuUs+ePRu8T5+LLrpI7733XsC2LVu26JZbbtGkSZOUlpamiIgIrVu3Tlu2bNE999zjL1fbd27cuHF66623dPPNN+uKK65QRkaGHnzwQaWkpFQbVpdO/TvX0M/6s88+04gRI+rsPatv26Wy/1hNmDBB999/v1JSUvTaa6/pgw8+0J///Odae5isct111+mpp57S1KlT9dBDD6lHjx5677339P7770sKXA6psdT3ON93333at2+fRo0apdTUVGVlZemZZ55ReHi4RowYIalsOZr+/fvr7LPPVnJysvbs2aOnn35anTt3VlpaWq11aMjrfve73/l/182fPz/gudP9zjf09yxQI1unbqBJLF682EyePNmkpaUZl8tlwsPDTadOncy1115rtm/fHlA2PT3d/PSnPzWxsbH+6fQ+eXl55t577zW9evUyERERJj4+3gwYMMDMmDEjYDaiJDN9+nQzb9480717dxMeHm569+5tFi5ceNK6+mZkVl7qobLNmzebK6+80rRp08aEh4ebdu3amYsvvtg8//zz/jL33HOPOfvss01CQoJxOp2mW7duZsaMGSYzM9Nf5rrrrjMxMTFmy5Yt5qKLLjJRUVEmMTHR3HTTTdVmOxYWFpq7777bdO7c2YSHh5uUlBRz0003mRMnTgSUq2kmqjHGjBgxImAGXH3qV9+21qa2uuzZs8dMnjzZJCUlmfDwcNOrVy/z2GOPBcz8PNkxqMnatWuNJLNx40b/tsOHD5tp06aZ3r17m5iYGONyuczAgQPNU089Zdxut79cXd+5Rx991HTp0sU4nU7Tp08f87e//c0/C7Oy+n7nappBakz9P+udO3dWW66jJvVtu+84LV261PTr189ERESYLl26mCeffLLGete0XFBts2JjYmKqla3ps9u7d6+5/PLLjcvlMrGxseYXv/iFWbVqlZFkli9fXmc7K+/z6NGjAdtrq8OIESNMv379ArbV5zivXLnSjB492nTo0MFERESYNm3amDFjxpiPP/7YX+aJJ54w5513nmndurV/OaNf//rXJj09vc42NPR1Xbp0MX369Km23YrvfEN/z1ZW27/dur4/CD5cUgyWq+/lnew0bdo0LV26VHl5eXZXJWgMHDhQ559/vv7617/aXZVG86c//Umvvvqqdu3aVeOC3w3VpUsX9e/fXytXrrSgdtZ55JFHdO+992rv3r2ndOpEMNuyZYsGDRqk5557zj/BBjiTMBQLwBJz587Vz3/+c/3xj38MyjCQlZWl5557Tn/5y18sCXVnCt9/wHr37q3S0lKtW7dOzz77rKZOnRqUx/FU7dq1S3v27NEf/vAHpaSkVFsCCThTBM9vJwC2uuyyy/TYY49p9+7dQRkIdu/erZkzZ/rXOgwW0dHReuqpp5Senq7i4mJ16tRJd999t+699167q3ZGefDBB7VgwQL16dNHb775ZqOf/wicKoZiAQAAggQLFAMAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAIs7sCjc3r9erAgQOKjY2Vw+GwuzoAAAANYoxRbm6u2rdvr5CQuvvkgj7YHThwQB07drS7GgAAAKclIyNDqampdZYJ+mAXGxsrqezDiIuLs7k2AAAADZOTk6OOHTv6M01dgj7Y+YZf4+LiCHYAAKDZqs8pZUyeAAAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIErYFu1mzZqlv374KCQnRG2+8UWu5wsJCTZ06VbGxserUqZMWLVrUhLUEAABoPmwLdmlpaXrmmWc0fPjwOsvNmjVLx48f1/79+/XGG2/opptu0vfff99EtQQAAGg+wux646lTp0qSHn744TrLLViwQO+8847i4uJ03nnnacKECXrjjTd033331Vi+uLhYxcXF/sc5OTnWVRoAcEYzxshrJI/XyGvKbh6vkdcreXw/l99X/rnsXoHPGyNTx3avVzKSvMbImIr3Niq/L9/uNdUf+17nNZLK772Vnw/Yj2+b7/mKfZjyNvq2G9++vRV1MVX27TVSWc1VXu+ycv7H5fdlpco2+N7L90pfOd9nXmmX/vesa7/ylamyj6rbpMC6+PYb8Lim965hv/5i1baZip/99atej4rvWOUyZQ9uHNFdl5+VqjOBbcGuPk6cOKFDhw5pwIAB/m2DBg3Sxo0ba33NnDlz9MADDzRF9QCg2fJ6jUo83rKb26vS8vsSd+Vtxv9ccfm92+uV22Pk9pbfPJUee7zl28vvPWVBqLRyGf9z3vLnKsp4vEalAc+V3bu9Rt7yQOXxqlJYM9XCmtecvO2A1U4UlNpdBb8zOtjl5eUpNDRU0dHR/m1xcXHKy8ur9TUzZ87U7bff7n+ck5Ojjh07Nmo9AaChvF6jYrdXRaUeFbk9Kiot+9m/rbRsW7G74mf/faVtxeWvLy4tC2TFlUJaaaWAVuz2qsTtKQtr5YGppQoNcSjEIYU4HAoNcSjU4VBIiKN8u0OhIQrYFupwyOFQpefLbg5JDkfZvirfO1S275AQyaGy14Y4Ku5DHJJUUYfKz/v2E+Koun9fGV/5qmUCt6vSezlUqW4Bj8s+D0f5D/7H8pWTf7tvm1TxGkfAayr273usamVq3q+q7qPya+p476rPV94mOarXrfJranlvf90D9lVetkp7KwpJXZJidKY4o4Ody+WSx+NRQUGBP9zl5OTI5XLV+hqn0ymn09lUVQQQ5IwxKir1KreoVPklHuUXu1VQ4lFBSdl9frFbhaUe5ReXbcsv9qiw1O1/XFDiUX6JRwWVXpdf4lGJ22t30wJEhIYoPNShiLAQhYeGKCIsRBG++/Jt4aEOhYeGKCzEodCQssehIWXbyu7LHof5n6teJsx3C61eJiwkpPy58p9Dy/bpC1OVQ1VgKFP1MuXbq29znPzDAJqxMzrYJSQkqF27dvr66691zjnnSJI2b96sfv362VwzAM1FUalHWQWlyi4sVW5RqXKL3Motdlf8XH6fV+RWTqXHucWlyityK7fILXcj926FhTgUGR6qyPAQOcPK7ssel/8cVvazMyxEzvBKzweU9YWxUH9A8wWz8EoBreq28FCHIkJD/L0VAJo324JdaWmpPB6PvF6vSktLVVRUpIiICIWEBE7UnTp1qh588EEtWrRI27Zt04oVK/Sf//zHploDsEuJ26sTBSU6UVCirILS8luJsgor/VxQqqzCSs8Xlqio1JqeMYdDckWEKSoiVDHOMEVHhCrG/zhU0RFl26IjwhQTEapop+9xWbno8m0xEaGKigitCG5hIQoLZUlRANZwmKrTPZrItGnT9MorrwRsW79+vfbv369HHnlE27Ztk1S2jt3111+v5cuXKyEhQX/+8581efLker9PTk6O4uPjlZ2drbi4OEvbAODUGWOUU+RWZl6xjuWV6FhesTLzS5SZW6xj+b5tJcrML1ZmbrFyityn/F6hIQ7FR4UrNjKs7OYMl6v857jIsu0uZ5hiIyuViaz8OFzR4aEM4wGwRUOyjG3BrqkQ7ICm5Qtsh3OKdDinSIeyi3Qkt1iHssseH84t1pGcImXmFavU07BfPyEOqVV0hFpFh6tVVHiln8vuE6LDFR8doYRK21pFh8vlDGOoEUCz1ZAsc0afYwfgzJNbVKr9WYXaf6LQf38wu0iHcop0JKfsviHDn7HOMCW5ItTa5VSSK0JJLqdax5Td+7a3dkUoKcap+Khwes0AoA4EOwABcopKtfdYgfadKNC+E4XaVynA7c8qVHZh/dZrio8KV7u4SLWJc6ptXKTaxUWqbfnPbeMilRzrVGJMhCLDQxu5RQDQchDsgBYou6BUu4/la8+xfKVnFpTdH8tX+rECHc8vOenr46PClZoQpQ6totQhIUrt46PUNj4wvBHYAKDpEewayZNrvtM/vzmiRb/5keKjw+2uDlogt8erPccLtONwnnYdzdOOw7nafawsxGWdZJX01q4IpSZEq0NClFJbRZWFuIQodWhVts3l5FcHAJyJ+O3cSJ5dt1OSNP+T3brtJz1trg2CWbHbo92Z+dpxOE87j5TddhzJ1e7M/DonJ7SNc6pzUoy6JEWrc1KMuraOUefynwluANA88du7EVSeaPzD0Xwba4Jgk5lXrG8O5mj7gZyy+4M52nU0v9bLQ0VHhKp7sktpbVzq3sal7skx6tI6Rp0SoxUdwT9/AAg2/GZvBJVPLm/J12PEqTPGaM+xAm3Znx0Q4o7mFtdYPi4yTGltY9Uj2aW0tmUhLq2NS+3jo5hFCgAtCMGuEVT+41t8hl0PEmemI7lF2pKRrc37svRVRpa27Muucfapo/xi031T4tQnJVZ928epT0qc2sVFsk4bAIBg1xgq/0HOK67f0hBoOYrdHn29L1uf7zmhzRlZ2pyRpQPZRdXKRYSGqE/7OPVrH1ce5OLUu12sYjj/DQBQC/5CNILKi7PmFZ/6ZZAQHLILS/XFnhPalH5cn6ef0Ff7slRSpSfX4ZDS2rg0KLWVBnZspcGprdSrXawiwriGKACg/gh2jaCo1OP/Oe80rm+J5ulYXrE+2XVMG3cf16b04/rucK6qXrivtStCZ3dO1JBOrTSoYyv17xDPTFQAwGnjL0kjKHJXCnb02AW9/GK3NqYf1yc7M/Wvncf0zcGcamW6to7R2Z0TNKxLooZ1TVSXpGjOiQMAWI5g1wgqD8Xm0mMXdDxeo68ysvSvHZn6985MfZlxotp6cb3bxerc7kka3iVRQ7skqE1spE21BQC0JAS7RlB5KLbY7ZUxht6ZZi6roEQbvj+q9d8e0Ybvj+pElSs3dGgVpQt6tNZ5PZJ0XvfWSo512lRTAEBLRrBrBJWDnVQW7rhuZvNijNH3h/O07tsjWv/tEX2+57gqL0kYFxmmC9Ja64IeyTq/R5I6JTK0CgCwH8GuEVRdu45g1zx4vUZf7cvS6q2H9N7Wg8o4XhjwfM+2Lo3s3UYX92qjoZ0TFBbKjFUAwJmFYNcIqvfYeSSF21MZ1MnjNfrvnhNa9fVBvb/tkA5WWk8uIixE53VP0sW922hkrzbqmBhtY00BADg5gl0jqBrsqq5ZBnt5vUb/3XtCy7/ar9VbDyszr+JKITERobq4T1uN7t9OF/VK5nqqAIBmhb9ajaDyrFiJy4qdKXYeydU7Xx7QO1/t174TFcOscZFh+knfthrdP0UXprVm2BwA0GwR7BpBqadKsCsl2NnlSE6RVmwuC3Nb91esLxcTEarL+qdo/KAUnde9NVd4AAAEBYJdIyipGuzcnlpKojG4PV6t/+6oFm/aq3XfHvHPZg0LcWhEz2RNHNJBP+nTVlER9MwBAIILwa4RuKssVstQbNPIOF6gxZsy9OZ/M3Q4p+K8ubM6tdLPh3TQ2IHtlRgTYWMNAQBoXAS7RlBtKJZg12jcHq/WbD+sRRv36uMdmf7tSTER+sXQVF01rKO6J7tsrCEAAE2HYNcIql5eqriUoVirHc8v0aKNe/XaZ3v8S5Q4HNIFPVrrmuGd9JM+bTlvDgDQ4hDsGkHVHruq59zh1G07kK2X/52u5ZsP+JeRae2K0NXDOumqYR1Zaw4A0KIR7BqB28usWCt5vUbrvzuiFzb8oI3px/3bB3SI1y/P76KxA1PkDGMiBAAABLtGUG0olnPsTkmpx6t3Nx/Q8xt26fvDeZLKZraOHpCiaed10VmdWnF9VgAAKiHYNQLfUGxEWIhK3F6WO2mgghK3Fm/K0N8/3q39WWULCbucYZryo0765Xld1S4+0uYaAgBwZiLYNQLfcicuZ5iOu0vosaunvGK3XvkkXX//+AedKCiVJLV2OfWrC7poyjmdFR/F9XYBAKgLwa4R+HrsXM4wHc8v4Ry7kygocevVT/fo/z76QcfzSyRJnRKjdcOIbvrFWalc4gsAgHoi2DUCX7CLcZZ9vCUehmJrUlji0cL/7NHzG3YpM68s0HVtHaPfjuqh8QPbKyyU5UoAAGgIgl0j8E2eiC0PdvTYBSr1ePXGpgw9u3aHjuaWXSGiU2K0fjsqTRMHE+gAADhVBLtG4Pb32JUNIXKOXRljjNZsP6w/r/5WPxzNlySlJkTptxen6edndVA4gQ4AgNNCsGsEJeU9dr6hWGbFSl/sPaE5q77RpvQTkqTEmAj9blSarhneiStEAABgEYJdI/AtUOzyB7uW22OXcbxAj773rf7x9UFJkjMsRNdf2FU3juiu2EhmuQIAYCWCXSOovNyJ1DLPsSsq9eiFDT9o3oc7Vez2yuGQrjgrVbf/tKdS4qPsrh4AAEGJYNcIfLNio/2zYltWsPvn9sN6YOU2ZRwvW1z43G5Jum98X/VJibO5ZgAABDeCXSPweMt67KIjfJMnWsY5dumZ+Zq9crvWfXtEktQuLlJ/HNtH4wamcOkvAACaAMGuEXhMWbCLKl9Yt9Rt6ire7JW4vXphwy79Zd1OlXi8Cg916PoLu+mWkT38E0gAAEDj46+uxbxeo/Jc5w92xUE8FPvl3hO6Z9nX+u5wriTpwrTWun9CP3VPdtlcMwAAWh6CncV8vXWSFBnh67ELvmCXX+zW42u+08ufpMuYsuVLZo3vqwmD2jPsCgCATQh2FvOdXydV9NgF2+SJf+3I1N3Ltmh/VtnkiMuHdNC94/oqMSbC5poBANCyEewsVlOwKw2SYFdY4tGfV3+rlz9JlyR1aBWlRy4foBE9k+2tGAAAkESws1zlodioiLIrKpQEwVDsVxlZun3xV/ohs+xSYNf+qLPuGd2byREAAJxB+KtsMY+n0jl2QdBjV+rx6i/rduq59Tvl8Rq1jXNq7hWD6KUDAOAMRLCzWMDkCd+s2GbaY5eema9bF32pr/dnS5ImDGqv2T/rp1bRnEsHAMCZiGBnMd85diEOKSK0bCi2OfbYrdh8QH9462vlFbsVHxWuhyb21/hB7e2uFgAAqAPBzmK+YBcWEiJnmC/YNZ8FiotKPXrg3W1atDFDkjS8S6KeuWYw13cFAKAZINhZzN9jFyKFl/fYebxGHq9RaMiZvb7bziN5mr7wC313OFcOh3TLyB763ag0hZW3AwAAnNkIdhar3GMXEVYRiEo9XoWGhNpVrZNa9fVB/f7Nzcov8ai1y6lnrh6s83u0trtaAACgAQh2FvNNnghxVPTYSWUTKHyTKc4kbo9Xf179rf728W5J0o+6JerZa4aoTWykzTUDAAANRbCzmL/HLjRE4aEVQ69n4gSKo7nFuuX1L/Sf3cclSTf8uJt+f2kvhl4BAGimCHYWq5gV65DD4VBEaIhKPN4zbpHi/+45rpsXfqHDOcWKiQjV45MGafSAFLurBQAATgPBzmK+YOfr9AoPdajEc2b12L2xca/+tHyrSj1GPdq49PzUoerRxmV3tQAAwGki2Fms8uQJSYoIC1F+ieeM6LHzeo0eW/Od/vrhLknS2AEpmnvFQC4LBgBAkOAvusXclZY7kSomUJTY3GNXVOrRnW9u1sotByVJvxuVptt+kiaH48xeggUAANQfwc5iXlO9x06SrT12mXnF+t9XP9cXe7MUFuLQo78YqCuGptpWHwAA0DgIdhZzeyqWO5EqX1bMnqtPfHcoV79+ZZP2nShUXGSYnp86VOexPh0AAEHJtnUtjh49qrFjxyo6Olq9evXS2rVrayy3e/du/fSnP1WrVq3UoUMHzZkzp4lr2jBnUo/d+u+O6Bd//UT7ThSqS1K03p5+PqEOAIAgZluP3fTp09W+fXtlZmZqzZo1mjRpknbt2qWEhISAcrfeequ6deumf/zjH9q3b5/OP/98DR8+XKNGjbKp5nWrOMeurMsu3N9j17TB7uV/79bsldvlNdI5XRP1/NShSoiJaNI6AACApmVLj11eXp6WL1+u2bNnKzo6WhMnTlT//v317rvvViu7Z88eXXXVVQoPD1fXrl11wQUXaPv27TbUun68/lmxZcHO32PXRMHO7fHqvuVbdf+7ZaFu0tBULfj1OYQ6AABaAFuC3Y4dOxQfH6+UlIoFcQcNGqRt27ZVKzt9+nS98cYbKi4u1o4dO/TZZ5/poosuqnXfxcXFysnJCbg1JU+1Hruy+6YYis0vdutXr3yuVz/dI4dDumd0b829YmDANWsBAEDwsq3HLi4uLmBbXFyc8vLyqpU977zz9OmnnyomJkY9e/bUr3/9aw0YMKDWfc+ZM0fx8fH+W8eOHS2vf13c1Xrsyq4P29hDsblFpbrupY366PujigoP1fNTh+rGEd1ZzgQAgBbElmDncrmq9aTl5OTI5Qq8+oHH49GYMWP0m9/8RkVFRdq9e7fefPNNLV26tNZ9z5w5U9nZ2f5bRkZGo7ShNr7JE6HlgSqiCXrsPF6jmxd+oc/3nFBcZJhe/805urRfu0Z7PwAAcGayJdilpaUpOztbhw4d8m/bvHmz+vXrF1Du+PHjOnDggG666SaFhYWpS5cumjhxotavX1/rvp1Op+Li4gJuTcntv6RY002eeG79Tn28I1OR4SFaeP2PNKRTwslfBAAAgo5tPXYTJkzQrFmzVFhYqBUrVmjr1q0aP358QLnk5GR17NhRf/vb3+T1erVv3z4tX768zqFYu3mrBDvf+W3FjdRj98muTD39z+8lSQ9NHKABqfGN8j4AAODMZ9tZ9fPmzVNGRoaSkpJ05513asmSJUpISNDChQsDeu6WLl2qBQsWKCEhQcOGDdOoUaP0m9/8xq5qn1TtPXbWL1B8JLdIv130lbxGuvLsVK4mAQBAC2fbOnbJyclatWpVte1TpkzRlClT/I+HDRumTz75pCmrdlpq67Gz+hy7olKPbnrtC2XmFatX21g9MKG/pfsHAADND+tgWKxqj13ESc6xW7PtkF76127/Mikn4/UaZRwv0E2v/Vf/LZ8sMW/qWYqKCLWg9gAAoDnjWrEW81SdFVvHAsVf7j2h/13wX0lSeFiIrv1R55r36TV6+p/fa9HGvTqeXyJfBowIC9HzU4eqe7KrxtcBAICWhR47i3nKA1xo6MkXKF719UH/z+98ub/WfT763jf6y7qdyswrC3UOhzSsS4KW3ngu134FAAB+9NhZzDdHomIdu7Ih0pp67LYdqFjL78u9J1RQ4lZ0ROAh2XU0T3//125J0kMT++unfdsqISbCPykDAADAh3RgsarXig0PK7svraHH7vvDuRWvM9I3B6tf/uzvH++WMdIlfdtq6o86q01cJKEOAADUiIRgMXeVa8X6Jk9U7bErdnuUmVciSTqrUytJ0tf7sgPKeL1GH2w/LEm67twujVVlAAAQJAh2Fqt2SbGwmmfFHskp9j9/QVqyJOnr/YE9dtsO5Cgzr1guZ5iGd01s1HoDAIDmj2BnMXf5SXa+yRP+Hjt34HImR3LLgl2yy6n+7csue7btQGCP3frvjkiSLujR2h8QAQAAakNasFjV5U7CaxmKPZpbJElqG+dUvw5llwHbeSRPRaUef5l135YFu5G9kxu30gAAICgQ7Czm8ZYvd1LlyhNVJ08cLh+KbRMbqfbxkWoVHS6312jH4TxJ0rG8Ym3elyVJuqhXm6aoOgAAaOYIdhbzdcxVvVZs1R67I+U9dm3inHI4HOpXZTj2ox1HZYzUNyVObeMim6LqAACgmSPYWczXYxfm77ErX+7EU3OPnS+09WtfNhzrW9tu3bdHJUkX96a3DgAA1A/BzmK+/Fax3En5AsVVhmKP55ctdZIUEyGprGdOkrYeyJbb49VH35cFO86vAwAA9UWws1jVHjv/JcWq9NjlFJZKkuKjwiVJZ3VKkFS2lt2H3x1VdmGpWkWHa3DHhCapNwAAaP4IdhbzzYoNqbKOXdUeu9wityQpNrIs2HVKila31jFye41mLPlKknRJn7b+c/UAAABOhmBnMV/HXFiVyRNVz7HLLSrrsYuNrLg2rG/2qy/0TTq7Y6PWFQAABBeCncV8Q7G+c+ycJ+2xqwh2U3/Uyd/DN7RzgoZ1YRgWAADUX9jJi6Ahau+xM5XKGOUWBw7FSlK3ZJeW3XieNqYf1xVDU+VwMAwLAADqj2BnsdoWKK7cY5dXHuqkwB47SRqQGq8BqfGNXU0AABCEGIq1mK9jrqYFik35xArf+XURoSGKDA9t+koCAICgRLCzWG09dpLk9vqCXVmPXVwUHaYAAMA6BDuLecrDmz/YhVZ8xL7h2KpLnQAAAFiBYGcxf7BzVO+x8y15UtNSJwAAAKeLYGex8lznX+4kNMQh3xrDvh67HIIdAABoBAQ7i/l67EIqLVVSeQKFVGko1slQLAAAsA7BzmJe4zvHrmJb1SVPalqcGAAA4HQR7CzmNdV77CKqLFLsG4qNi6LHDgAAWIdgZ7Hy1U4Cgx09dgAAoAkQ7CzmqaHHzne92GK3RxLLnQAAgMZBsLOYqeEcO9/VJQpLy4JdTiGzYgEAgPUIdhbzzYp1VOqx8wW7otLAdeziCHYAAMBCBDuL+dexCwh2ZR9zUSlDsQAAoPEQ7CxW11Bs9WBHjx0AALAOwc5ivskTAUOxYeXBzl11KJYeOwAAYB2CncV8y52EVgp2URHlwa7EI7fHq/ySsp47euwAAICVCHYWq2mB4srn2OUVu/3bOccOAABYiWBnMX+wq/TJOv1DsR7/+XXOsBD/wsUAAABWIFlYzLfcSUgty534LidGbx0AALAawc5i5R12Cg2pdI5dpQWKfT12rGEHAACsRrCzWMUlxSq2VT7HjqVOAABAYyHYWazmyRNlPXbFpd6KpU6iGIoFAADWIthZzLfcSeVgF1VpgWKuEwsAABoLwc5iNfXYOcuHYiufYxfrpMcOAABYi2BnsZqWO6l8SbHcYs6xAwAAjYNgZzFPDUOxlZc7yS4oG4qN5xw7AABgMYKdxUx5j11Ny50UuT3KKiyRJLWKJtgBAABrEewsVudyJyUeZRcyKxYAADQOgp3FvHVdecLtVXZh2Tl2raIjmr5yAAAgqBHsLFae62pc7qSgxK3sgrKhWM6xAwAAViPYWcxbwzl2vhmwRaVeZeaXn2NHsAMAABYj2FnMU95lV6nDTi5nxdImJe6yabP02AEAAKsR7CxW3mEX0GMXFhqi6IjQgHJMngAAAFYj2FmspitPSIELEsdGhgUEPwAAACsQ7CzmW+6kSq5TbGRFDx1r2AEAgMZAsLOQMaZiKLZKsour1GPXKoqlTgAAgPUIdhbyLXUiVR+Kbe1y+n9uGxfZVFUCAAAtCMHOQr7z6yQppMo5dO3iK8JcSjzBDgAAWI9gZyFPpS67qnMjKvfStSPYAQCARkCws1ClDrtqs167to7x/9y3fVxTVQkAALQgtgW7o0ePauzYsYqOjlavXr20du3aWsvOnz9faWlpiomJUZ8+ffT99983YU3rz1N5KLbKOXYje7VRSnyk2sQ6dU7XxKauGgAAaAHCTl6kcUyfPl3t27dXZmam1qxZo0mTJmnXrl1KSEgIKPfuu+/qiSee0DvvvKO+ffvqhx9+qFbmTOGtI9hFRYRq1W8vlJEUHWHbxw4AAIKYLT12eXl5Wr58uWbPnq3o6GhNnDhR/fv317vvvlut7IMPPqinnnpK/fr1k8PhUPfu3ZWYeGb2eHnrOMdOkhJiIpQYw1InAACgcdgS7Hbs2KH4+HilpKT4tw0aNEjbtm0LKOfxePTll1/q66+/Vmpqqrp27arZs2fLVD6ZrYri4mLl5OQE3JpKXcudAAAANDbbeuzi4gInEMTFxSkvLy9g2+HDh+V2u7V27Vpt3bpVGzZs0OLFi/Xyyy/Xuu85c+YoPj7ef+vYsWNjNKFGdS13AgAA0NhsCXYul6taT1pOTo5cLlfAtqioKEnS3XffrVatWqlTp06aPn26Vq1aVeu+Z86cqezsbP8tIyPD+gbUwjcUS6YDAAB2sCXYpaWlKTs7W4cOHfJv27x5s/r16xdQLiEhQe3btw/YVtcwrCQ5nU7FxcUF3JqKbyi26lInAAAATcG2HrsJEyZo1qxZKiws1IoVK7R161aNHz++Wtlp06Zp7ty5ys3N1YEDB/T8889r7NixNtT65HzLnTg4vw4AANjAtnXs5s2bp4yMDCUlJenOO+/UkiVLlJCQoIULFwb03M2aNUspKSlKTU3VsGHDdPnll+u6666zq9p18g3FhhLsAACADRzmZGObzVxOTo7i4+OVnZ3d6MOye47la8RjHyomIlTbZl/WqO8FAABahoZkGS4pZiHfOXbMiAUAAHYg2FnI458VS7ADAABNj2BnId+oNrNiAQCAHQh2FvIPxZLrAACADQh2FvINxbLcCQAAsAPBzkK+S4qx3AkAALADwc5CvmDHUCwAALADwc5CLHcCAADsRLCzEMudAAAAOxHsLMRyJwAAwE4EOwtVzIq1uSIAAKBFIthZyHeOHbNiAQCAHQh2FqqYFUuwAwAATY9gZyFfsCPXAQAAOxDsLOQfimXyBAAAsAHBzkJeljsBAAA2IthZyH+OHT12AADABgQ7C1UsUGxzRQAAQItEsLMQy50AAAA7EewsxHInAADATmH1KTR37tz67SwsTLfffvtpVag5qzjHzuaKAACAFqlewe7ee+/VlClTTlpu6dKlLTrYeZgVCwAAbFSvYBcfH6/58+eftNzq1atPu0LNmWEdOwAAYKN6DRoePXq0Xjs7ePDgaVWmuau48gTBDgAANL1TOhusuLhYx44dU3FxsdX1adZY7gQAANip3sHO7Xbr/vvvV/fu3RUdHa3k5GRFR0erR48eeuCBB1RaWtqY9WwWDMudAAAAG9U72N1www366KOP9Pe//11Hjx5VSUmJjh49qv/7v//Txx9/rBtvvLEx69kseBiKBQAANqrX5AlJWrZsmTIyMhQbG+vflpiYqIsvvlhDhw5Vp06d9OKLLzZKJZsL3zl2oSx3AgAAbFDvCBIbG6udO3fW+Nzu3bsDAl9L5WW5EwAAYKN699g9+OCD+slPfqKrr75aAwYMUFxcnHJycrRlyxa9+eabeuKJJxqzns2C75JiIcyeAAAANqh3sJs2bZqGDh2qRYsWafXq1crLy5PL5VLfvn21fv169e/fvzHr2SywQDEAALBTvYOdJA0YMEADBgxorLo0e/5z7Mh1AADABvU6x27FihX12tnKlStPqzLNnf9asfTYAQAAG9Qr2E2dOrVeO/uf//mf06pMc+c7x47lTgAAgB3qNRSbl5en6OjoOssYYxQS0rLX+WC5EwAAYKd6Bbvdu3dLKgtvb7/9tsaOHSun01mtXEvvqWK5EwAAYKd6BbvOnTv7f162bJkeeughTZw4UVOmTNHIkSNbfKDzYbkTAABgpwYPGv7rX//Sl19+qV69eun2229XamqqZsyYoc8//7wx6tesVCx3YnNFAABAi3RKZ4N16tRJd911l7766iu98847WrNmjc455xylpaVpzpw5ysvLs7qezYLxL3dCsgMAAE3vlIJdaWmpli9frmuuuUaXXXaZevbsqSVLlmjBggX6+uuv9dOf/tTqejYLnvJgx9A0AACwQ4MWKJakX/3qV1q+fLn69++vKVOmaN68eUpISPA/P3ToUMXHx1tayebCd45dKGOxAADABg0Odj169NAXX3wRMKGisvDwcO3bt++0K9YceTnHDgAA2KjBwe4Pf/jDScskJiaeUmWaO/+VJ0h2AADABiylayH/ciecYwcAAGxAsLMQy50AAAA7EewsxHInAADATgQ7C7HcCQAAsBPBzkIsdwIAAOxEsLMQy50AAAA7EewsxHInAADATgQ7C3m8ZfcsdwIAAOxAsLMQs2IBAICdCHYWqpgVa3NFAABAi0SwsxBXngAAAHYi2FnIN3mC5U4AAIAdCHYWYrkTAABgJ4KdhVjuBAAA2IlgZyGWOwEAAHYi2FmI5U4AAICdbAt2R48e1dixYxUdHa1evXpp7dq1dZZPT09XVFSUbrzxxiaqYcOx3AkAALBTmF1vPH36dLVv316ZmZlas2aNJk2apF27dikhIaHG8jNmzNBZZ53VxLVsGN9yJ8yKBQAAdrClxy4vL0/Lly/X7NmzFR0drYkTJ6p///569913ayz//vvvyxijSy65pIlr2jAVs2IJdgAAoOnZEux27Nih+Ph4paSk+LcNGjRI27Ztq1a2pKREv//97/X444/Xa9/FxcXKyckJuDUVZsUCAAA72dZjFxcXF7AtLi5OeXl51co++eSTGjNmjHr06FGvfc+ZM0fx8fH+W8eOHS2pc334gx25DgAA2MCWYOdyuar1pOXk5MjlcgVs279/v1566SX98Y9/rPe+Z86cqezsbP8tIyPDkjrXh5flTgAAgI1smTyRlpam7OxsHTp0SO3atZMkbd68Wddff31AuU2bNikjI0NpaWmSynr6vF6v0tPTtXr16hr37XQ65XQ6G7cBtajosSPYAQCApmdLsHO5XJowYYJmzZqlp59+Wh988IG2bt2q8ePHB5QbPXq0du/e7X/8+OOP6+jRo3ryySebusr14mEoFgAA2Mi2dezmzZunjIwMJSUl6c4779SSJUuUkJCghQsXql+/fpLKet/atWvnv7lcLkVFRSkpKcmuateJ5U4AAICdHMZ3uYQglZOTo/j4eGVnZ1ebsGG18X/5l77en63504ZpZO82jfpeAACgZWhIluGSYhZiuRMAAGAngp2FPF7OsQMAAPYh2FnIN6gdyqxYAABgA4KdhXyzYh0EOwAAYAOCnYW48gQAALATwc5ChuVOAACAjQh2FvJNnmAoFgAA2IFgZyHfUCw9dgAAwA4EOwt5We4EAADYiGBnId8lxUIYigUAADYg2FnI458VS7ADAABNj2BnIcM5dgAAwEYEOwtxSTEAAGAngp2F/OfYkewAAIANCHYW8nKOHQAAsBHBzkIsdwIAAOxEsLMQy50AAAA7Eews5F/uhC47AABgA4KdhfzLndBjBwAAbECwsxDLnQAAADsR7CzEcicAAMBOBDuL+GbESkyeAAAA9iDYWcS3hp3EOXYAAMAeBDuLeCoFOwefKgAAsAERxCKVch1DsQAAwBYEO4swFAsAAOxGsLOIp9LkCXIdAACwA8HOIpVynUJZ7gQAANiAYGcRljsBAAB2I9hZpPI5dnTYAQAAOxDsLOJb7sThkBz02AEAABsQ7Czi67BjRiwAALALwc4ivlmxnF8HAADsQrCziO8cuxA+UQAAYBNiiEV8Q7H02AEAALsQ7CzCUCwAALAbwc4i/qFYch0AALAJwc4iFefYkewAAIA9CHYW8bLcCQAAsBnBziK+c+xYnBgAANiFYGcRX7AL5RMFAAA2IYZYxHeOHUOxAADALgQ7i/iXO2HyBAAAsAnBziJeFigGAAA2I9hZxD8US48dAACwCcHOIhVXnrC5IgAAoMUi2FnE66XHDgAA2ItgZxGP4VqxAADAXgQ7i3josQMAADYj2FmEyRMAAMBuBDuLeLxl9wzFAgAAuxDsLMJQLAAAsBvBziJcUgwAANiNYGeRikuK2VwRAADQYhFDLMLkCQAAYDeCnUUqrjxBsAMAAPYg2FmkPNcR7AAAgG0IdhbhkmIAAMBuBDuLcEkxAABgN9uC3dGjRzV27FhFR0erV69eWrt2bY3lbr/9dnXr1k2xsbE6++yz9dFHHzVxTeunYh07mysCAABaLNtiyPTp09W+fXtlZmbqz3/+syZNmqQTJ05UKxcfH681a9YoOztbd999tyZOnKjc3Fwbalw3ZsUCAAC72RLs8vLytHz5cs2ePVvR0dGaOHGi+vfvr3fffbda2VmzZqlHjx4KCQnRpEmTFBUVpe+//96GWteNWbEAAMBuYXa86Y4dOxQfH6+UlBT/tkGDBmnbtm11vi49PV3Hjx9Xjx49ai1TXFys4uJi/+OcnJzTr3A9cEkxAABgN9t67OLi4gK2xcXFKS8vr9bXlJaW6rrrrtPvf/97xcfH11puzpw5io+P9986duxoWb3rwiXFAACA3WwJdi6Xq1pPWk5OjlwuV43ljTGaNm2a2rRpo/vvv7/Ofc+cOVPZ2dn+W0ZGhlXVrpPHW3YfQo8dAACwiS3BLi0tTdnZ2Tp06JB/2+bNm9WvX78ay9966606cOCAXnvtNYWc5GKsTqdTcXFxAbemQI8dAACwm209dhMmTNCsWbNUWFioFStWaOvWrRo/fny1srNmzdK///1vLV++XE6n04ba1o9/8gQ9dgAAwCa2LXcyb948ZWRkKCkpSXfeeaeWLFmihIQELVy4MKDnbvbs2frmm2/Uvn17uVwuuVwuLVy40K5q14p17AAAgN1smRUrScnJyVq1alW17VOmTNGUKVP8j035EOeZznDlCQAAYDP6lyzCJcUAAIDdCHYW8c2KZR07AABgF4KdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EUMswgLFAADAbgQ7i7BAMQAAsBvBziL02AEAALsR7CxCjx0AALAbwc4irGMHAADsRrCzCEOxAADAbgQ7izAUCwAA7Eaws4jXf61YmysCAABaLIKdRbikGAAAsBvBziJcUgwAANiNYGcRZsUCAAC7EewswqxYAABgN4KdRZgVCwAA7Eaws0jF5AmbKwIAAFosYohFmDwBAADsRrCziC/YMXkCAADYhWBnESZPAAAAuxHsLMLkCQAAYDeCnUU8ZbmOHjsAAGAbgp1FjO9asXyiAADAJsQQizArFgAA2I1gZxFmxQIAALsR7CzCrFgAAGA3gp1FmBULAADsRrCziNc3K5ZgBwAAbEKwswiTJwAAgN0IdhZh8gQAALAbwc4iTJ4AAAB2I9hZpGLyhM0VAQAALRYxxCL+HjuGYgEAgE0Idhbxn2PHUCwAALAJwc4ibiZPAAAAmxHsLOLrsQvjJDsAAGATUohF3J7yYBdKjx0AALAHwc4ipV6vJIIdAACwD8HOAh6vUfmkWIUzFAsAAGxCCrFAqcfr/5keOwAAYBeCnQV8M2IlKTyUjxQAANiDFGIBd+UeO5Y7AQAANiHYWaDUU9Fjxzp2AADALgQ7C1SsYeeQgytPAAAAmxDsLOCbPMHECQAAYCeCnQV8kydY6gQAANiJJGIBNz12AADgDECws0Cp/3JifJwAAMA+JBELuMsvJxbOjFgAAGAjgp0F6LEDAABnApKIBfzn2NFjBwAAbESws4BvViyTJwAAgJ0IdhbwBzuWOwEAADYiiVig1F0+eSKMjxMAANiHJGKB/BK3JMnlDLW5JgAAoCUj2Fkgt6gs2MVEhNlcEwAA0JIR7CyQX1zeYxdJsAMAAPaxLdgdPXpUY8eOVXR0tHr16qW1a9fWWK6wsFBTp05VbGysOnXqpEWLFjVxTU/OH+ycBDsAAGAf25LI9OnT1b59e2VmZmrNmjWaNGmSdu3apYSEhIBys2bN0vHjx7V//35t3bpVY8aM0dChQ9WzZ0+bal5dbnmwiyHYAQAAG9nSY5eXl6fly5dr9uzZio6O1sSJE9W/f3+9++671couWLBAs2bNUlxcnM477zxNmDBBb7zxhg21rh09dgAA4ExgSxLZsWOH4uPjlZKS4t82aNAgbdu2LaDciRMndOjQIQ0YMCCg3MaNG2vdd3FxsYqLi/2Pc3JyLKx5zfIIdgAA4AxgW49dXFxcwLa4uDjl5eVVKxcaGqro6Og6y1U2Z84cxcfH+28dO3a0tvI1uKRvW/36gq7q3yHu5IUBAAAaiS3BzuVyVetJy8nJkcvlqlbO4/GooKCgznKVzZw5U9nZ2f5bRkaGtZWvwc+HpOpP4/pqaOfERn8vAACA2tgS7NLS0pSdna1Dhw75t23evFn9+vULKJeQkKB27drp66+/rrNcZU6nU3FxcQE3AACAlsC2HrsJEyZo1qxZKiws1IoVK7R161aNHz++WtmpU6fqwQcfVG5urj777DOtWLFCV111lQ21BgAAOLPZto7dvHnzlJGRoaSkJN15551asmSJEhIStHDhwoAeudmzZ/snWkyaNEnz5s1Tr1697Ko2AADAGcthjDF2V6Ix5eTkKD4+XtnZ2QzLAgCAZqchWYZLigEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkAizuwKNzXfFtJycHJtrAgAA0HC+DFOfq8AGfbDLzc2VJHXs2NHmmgAAAJy63NxcxcfH11nGYeoT/5oxr9erAwcOKDY2Vg6Ho1HeIycnRx07dlRGRsZJL84bjFpy+2k7baftLUdLbrvUsttvd9uNMcrNzVX79u0VElL3WXRB32MXEhKi1NTUJnmvuLi4Fvdlr6wlt5+20/aWhra3zLZLLbv9drb9ZD11PkyeAAAACBIEOwAAgCBBsLOA0+nUrFmz5HQ67a6KLVpy+2k7bW9paHvLbLvUstvfnNoe9JMnAAAAWgp67AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsTtPRo0c1duxYRUdHq1evXlq7dq3dVbJMcXGxfvnLXyo1NVXx8fG66KKL9PXXX0uSXn75ZYWFhcnlcvlve/fu9b9206ZNGjRokKKjozVixAjt2bPHrmaclosuukiRkZH+No4ePdr/3KOPPqrk5GQlJibqrrvuCriGX3Nvf+Xj6nK55HA4tGzZMknBeexnzZqlvn37KiQkRG+88UbAc6d6nAsLCzV16lTFxsaqU6dOWrRoUZO1pyFqa/vLL7+swYMHKzY2Vt26ddPzzz8f8DqHw6GYmBj/d+CRRx7xPxcMbT/V73hzb/uNN94Y0O7w8HCNHz/e/3wwHPe6/rZJQfBv3uC0TJo0yVx//fUmPz/fvP322yYhIcEcP37c7mpZIi8vz8yePdtkZGQYt9ttnnjiCdOtWzdjjDHz5883l156aY2vKyoqMqmpqebFF180hYWF5q677jIXXnhhU1bdMiNGjDCLFi2qtv0f//iH6dSpk9m1a5c5cOCA6dOnj3nxxReNMcHVfmOM2bx5s4mKijI5OTnGmOA89gsWLDBr1qwx55xzTsDxPp3j/Pvf/96MHj3aZGdnm3//+98mPj7efPfdd03etpOpre3PP/+8+fTTT01paanZunWradOmjdmwYYP/eUnm4MGDNe6zubf9dL7jzb3tVQ0ZMsT8/e9/9z8OhuNe19+2YPg3T7A7Dbm5uSYiIsIcOHDAv+3CCy80r7zyio21ajzFxcXG4XCYzMzMOn/xrV692vTu3dv/OC8vz0RFRZn09PSmqqplagt2V199tXn00Uf9j1988UUzcuRIY0xwtd8YY+666y5z9dVX+x8H87GverxP5zi3a9fOfPbZZ/7nr732WvPAAw80dhNOWW3fdZ/Jkyebxx9/3P+4rj/wzb3tp/Mdb+5tr2z79u3G6XSarKws/7ZgOu4+lf+2BcO/eYZiT8OOHTsUHx+vlJQU/7ZBgwZp27ZtNtaq8Xz66adq27atkpKSJEn//ve/lZSUpL59+wYM02zfvl0DBgzwP46JiVH37t21ffv2Jq+zFW699VYlJyfrkksu0ZYtWyRVb2Pl4x5M7TfGaNGiRZoyZUrA9pZy7E/1OJ84cUKHDh2q9bXNjcfj0caNG9WvX7+A7WeddZY6dOigadOm6dixY5IUNG0/le94sLTdZ+HChRo3bly1a5QG23Gv/LctGP7NE+xOQ15eXrWLAcfFxSkvL8+mGjWe7Oxs3XDDDXr44YclSSNGjNDXX3+to0ePav78+Zo9e7befvttScH1ucydO1e7d+/W3r17dckll2jMmDHKy8ur1sbK7Qum9n/00UcqKCjQpZde6t/WUo69VL099T3OeXl5Cg0NVXR0dI2vbW7uvfdedejQIeB78NFHH2nPnj366quvVFBQoF/96leSFBRtP9XveDC0vbLXX3+92n/qgu24V/3bFgz/5gl2p8HlciknJydgW05Ojlwul001ahxFRUWaOHGixo4d6/9H3LVrV3Xp0kUhISE655xz9Nvf/tb/iy+YPpfhw4fL5XIpKipKd911l1wulzZu3FitjZXbF0ztX7hwoa688kqFh4f7t7WUYy9Vb099j7PL5ZLH41FBQUGNr21Onn/+eb311ltaunSpHA6Hf/uFF16o8PBwJScn69lnn9WqVatUUlISFG0/1e94MLTd55NPPtGJEyc0ZsyYgO3BdNxr+tsWDP/mCXanIS0tTdnZ2Tp06JB/2+bNm6sNVzRnbrdbV199tdq3b6/HH3+81nIhIRVfpb59+wbMMMrPz9euXbvUt2/fRq1rU/C1s2obKx/3YGl/SUmJli5dWu1/7FUF87E/1eOckJCgdu3a1fra5mLx4sV6+OGH9f7776t169a1lvN9B4wxQdP2yur7HQ+mti9cuFBXXHFFnddGbc7Hvba/bUHxb77Jz+oLMldccYX53//9X1NQUGCWL18eVLNijTFm2rRp5qc//akpKSkJ2P7ee++ZI0eOGGOM+e9//2s6dOhgFi9ebIypmDk0f/58U1RUZO65555mMTOyqhMnTpg1a9aYoqIiU1xcbJ588knTtm1bk52dbVauXGk6d+5sfvjhB3Pw4EHTr1+/ajOnmnv73377bdOlSxfj9XoDtgfjsS8pKTGFhYXmwgsvNK+++qopLCw0Ho/ntI7znXfeacaOHWtycnLMp59+auLj4823335rVxNrVVvb33//fZOcnGw2b95c7TVbt241X331lXG73eb48ePmmmuuMaNHj/Y/39zbfjrf8ebedmOMKS0tNa1btzbr168PeE2wHHdjav/bFgz/5gl2p+nIkSNm9OjRJioqyqSlpZkPPvjA7ipZJj093UgykZGRJiYmxn/76KOPzO23326Sk5NNTEyM6dmzp3n22WcDXrtx40YzYMAAExkZaS688MJmMyuysiNHjpihQ4eamJgYk5CQYEaOHGn++9//+p9/5JFHTFJSkmnVqpX5/e9/HxCAgqH9V1xxhfnDH/5QbXswHvvrrrvOSAq4+f6onepxLigoMJMnTzYxMTEmNTXVLFy4sKmbVS+1tf2iiy4yYWFhAf/2b7jhBmOMMWvXrjVpaWkmOjratG3b1kydOtUcPnzYv8/m3vbT+Y4397YbUxZuUlNT/UHPJ1iOe11/24xp/v/mHcZUWnkPAAAAzRbn2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBaDH27t1b5zVPrZCeni6HwyGXy6V33nnHsv1u2rRJLpdLISEh+uyzzyzbL4DgEmZ3BQDASi6Xy/9zfn6+oqOj5XA4JEnbt29XZmZmo9fB6XQqLy/P0n0OGzZMeXl56tKli6X7BRBcCHYAgkrlQBUZGalt27YRhgC0GAzFAmgx0tPTFRkZ6X/scDj017/+VZ06dVLr1q21ePFirVy5Ut26dVObNm20ePFif9njx49r8uTJatOmjbp166ZXXnml3u97//3369prr9XEiRPlcrl0ySWX6MiRI7ryyisVFxenyy67TLm5uZKk77//XhdccIHi4uLUunVr3XHHHdZ9AACCHsEOQIv273//W99//73++te/6uabb9ayZcu0detWvfjii7rlllvk8XgkSddee606duyojIwMrVq1SjNnztTmzZvr/T7vvPOO7r77bh05ckRZWVm64IILdOutt+rIkSPKy8vTSy+9JEm67777NHbsWGVnZ2vPnj266qqrGqXdAIITwQ5Ai3bXXXcpMjJSl19+ubKysnTzzTcrOjpa48ePV25urg4cOKBDhw7p448/1iOPPCKn06nevXtr8uTJeuutt+r9PpdcconOPfdcRUdHa8yYMUpLS9OFF16oyMhIjR07Vlu2bJEkhYeHa/fu3Tp06JBiYmI0fPjwxmo6gCBEsAPQorVp00aSFBoaqvDwcCUnJ/ufi4yMVH5+vvbu3av8/HwlJSWpVatWatWqlV544QUdPny4we8jSVFRUQHvExUVpfz8fEnS3Llz5Xa7NXjwYA0aNEjvvvvu6TYRQAvC5AkAOIkOHTqoVatWOnbsWKO/V0pKil566SUZY7RixQpdddVVysrKUkRERKO/N4Dmjx47ADiJDh06aNiwYbrvvvtUUFAgt9utL774Qtu3b7f8vZYuXaoDBw7I4XCoVatWcjgc/uVaAOBkCHYAUA8LFy7Unj17/DNmb7vtNhUWFlr+Phs3btTQoUPlcrl000036fXXX1d4eLjl7wMgODmMMcbuSgBAsNizZ4969+4tp9OpV199VRMmTLBkv59//rl+8pOfqLi4WBs2bGBSBYAaEewAAACCBEOxAAAAQYJgBwAAECQIdgAAAEGCYAcAABAkCHYAAABBgmAHAAAQJAh2AAAAQYJgBwAAECQIdgAAAEGCYAcAABAk/j8o9/CxCfe8zQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -655,7 +655,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADWKUlEQVR4nOzdd3wUZf4H8M/2vpveOwmh944ISlcUUBEFBVRUDgWV0zsVFbjD8lPh0BPO806BA1FBilKkiIDSQ+8tJJDes5vdZEt2n98fk0yyyaaXTfm+X695ZXbm2Zlnd5+d/eZpI2CMMRBCCCGEkFZP6O4MEEIIIYSQxkGBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGNJCIiAitWrGjy88yaNQuTJk1q8vO4MmLECLz66quNcqyDBw9CIBAgPz+/UY5XnW3btiE6OhoikajR8k9cEwgE2LZtW5Ofp7m+b61ZxWtFY35/ScsldncGCHFl1qxZyM/Pb5YfiNbms88+Q1u4E+CQIUOQlpYGnU7X5Od68cUX8cwzz2D+/PnQaDRNfj7S9OLi4qBSqdydjUaVmJiIyMhInD17Fr169XJ3dkgrRYEdIa1McwRCzUEqlSIgIKDJz2M0GpGZmYmxY8ciKCio3sexWq2QSqWNmDPXbDYbJBJJk5+ntfP19XV3FtymucpiRXa7HQKBAEIhNfa1ZPTpkFbp0KFDGDBgAGQyGQIDA/Hmm2+iuLiY32+xWDB//nz4+flBLpfjnnvuQVxcHL+/tBlw586d6NmzJ+RyOQYOHIiLFy9We97FixcjLCwMMpkMQUFBmD9/vtP+wsJCPPvss9BoNAgLC8NXX33ltP+vf/0rOnbsCKVSiaioKLz77ruw2WxOx+/Vqxf+/e9/IzQ0FEqlElOmTHFqrnTVvDJ//nz85S9/gZeXFwICArB48WKn8167dg333HMP5HI5unTpgl9//bXGJjOTyYQZM2ZArVYjMDAQy5Ytq5TGarXiL3/5C4KDg6FSqTBw4EAcPHiQ33/nzh089NBD8PT0hEqlQteuXbFr1y4Arpti//Of//Cve/LkyVi+fDk8PDwqvT/r1q1DREQEdDodnnjiCRQUFLh8DQcPHuRr6O6//34IBAI+f5s3b0bXrl0hk8kQERFR6fVFRERg6dKlmDVrFnQ6HZ5//nmX5/jxxx/RvXt3KBQKeHt7Y9SoUTCZTPz+1atXo3PnzpDL5ejUqRNWrVrF70tMTIRAIMDGjRsxYsQIyOVyrFq1CgqFArt373Y6z5YtW6BSqWA0GgEAFy9exP3338+f94UXXuD3AWXl5IMPPoC/vz88PDywZMkSFBcX44033oCXlxdCQkLwzTffOJ0nJSUFU6dOhaenJ7y9vTFx4kQkJiY6pfnmm2/49y4wMBAvv/yy0/7s7GxMnjwZSqUSMTEx+Pnnn/l9drsdzz33HCIjI6FQKBAbG4vPPvvM6fmlef/0008RGBgIb29vvPTSS07flYpNsdV9N0s/y9LyHB4ejp9++glZWVmYOHEi1Go1unfvjlOnTrn8jEvl5+fjhRdegL+/P+RyObp164YdO3bw+2tTpj744IMqrxGRkZEAgN69e0MgEGDEiBFO78eHH36IoKAgdOzYEUDNZaAmNX1/16xZAw8PD+zYsQNdunSBTCbDnTt3an184iaMkBZo5syZbOLEiS73JScnM6VSyebOncuuXr3Ktm7dynx8fNiiRYv4NPPnz2dBQUFs165d7PLly2zmzJnM09OT5eTkMMYYO3DgAAPAOnfuzPbu3csuXLjAJkyYwCIiIpjVanV53k2bNjGtVst27drF7ty5w06cOMG++uorfn94eDjz8vJiK1euZDdv3mQffvghEwqF7OrVq3yav//97+zIkSMsISGB/fzzz8zf35/93//9H79/0aJFTKVSsfvvv5+dPXuWHTp0iEVHR7Np06ZV+d4MHz6cabVatnjxYnbjxg22du1aJhAI2N69exljjNntdhYbG8tGjx7Nzp07x/744w82YMAABoBt3bq1ys/gT3/6EwsJCXF6f9RqNXvllVf4NNOmTWNDhgxhv//+O7t16xb75JNPmEwmYzdu3GCMMfbggw+y0aNHswsXLrD4+Hi2fft2dujQIafPIC8vjzHG2OHDh5lQKGSffPIJu379Olu5ciXz8vJiOp3O6f1Rq9XskUceYRcvXmS///47CwgIYG+//bbL12CxWNj169cZALZ582aWlpbGLBYLO3XqFBMKhexvf/sbu379Olu9ejVTKBRs9erVTp+nVqtln3zyCbt58ya7efNmpeOnpqYysVjMli9fzhISEtiFCxfYypUrWUFBAWOMsa+++ooFBgayzZs3s9u3b7PNmzczLy8vtmbNGsYYYwkJCQwAi4iI4NOkpKSwRx99lD311FNO53r00UfZk08+yRhjzGQysaCgIP592L9/P4uMjGQzZ87k08+cOZNpNBr20ksvsWvXrrGvv/6aAWBjx45l77//Prtx4wb7+9//ziQSCbt79y5/3JiYGPbss8+yCxcusCtXrrBp06ax2NhYZrFYGGOMrVq1isnlcrZixQp2/fp1dvLkSfaPf/yDPy8AFhISwjZs2MBu3rzJ5s+fz9RqNf/ds1qt7L333mMnT55kt2/fZuvXr2dKpZL98MMPTnnXarVszpw57OrVq2z79u1MqVRW+r6Vnre2380vv/yS3bhxg/3pT39iGo2GjRs3jm3cuJFdv36dTZo0iXXu3Jk5HA6XZclut7NBgwaxrl27sr179/LledeuXYwxVusyVd014uTJkwwA+/XXX1laWhr/ns2cOZOp1Wr29NNPs0uXLrGLFy/WugxUvFbU5fu7evVqJpFI2JAhQ9iRI0fYtWvXmNFodPn+kJaDAjvSIlUX2L399tssNjbW6QK8cuVKplarmd1uZ0ajkUkkEvbtt9/y+61WKwsKCmIff/wxY6wsqPj+++/5NDk5OUyhUDj9wJS3bNky1rFjxyoDv/DwcKcfY4fDwfz8/Ni//vWvKl/nxx9/zPr27cs/XrRoEROJRCwpKYnf9ssvvzChUMjS0tIYY64v1vfcc4/Tcfv378/++te/8s8Xi8X88xljbN++fdUGdgUFBUwqlbp8f0p/GG7dusUEAgFLSUlxeu7IkSPZW2+9xRhjrHv37mzx4sUuz1ExsJs6dSp78MEHndJMnz69UmCnVCqZwWDgt73xxhts4MCBLs/BGGN5eXkMADtw4AC/bdq0aWz06NFO6d544w3WpUsX/nF4eDibNGlSlcdljLHTp08zACwxMdHl/tDQULZhwwanbX//+9/Z4MGDGWNlgd2KFSuc0mzZsoWp1WpmMpkYY4zp9Xoml8vZzp07GWNcwOjp6en0I7tz504mFApZeno6Y4wrJ+Hh4cxut/NpYmNj2bBhw/jHxcXFTKVSse+++44xxtjXX39d6btlsViYQqFge/bsYYwxFhQUxBYuXFjlewKAvfPOO/xjo9HIBAIB++WXX6p8zty5c9mjjz7KPy7Ne3FxMb9typQpbOrUqfzj8oFdXb+baWlpDAB79913+W3Hjh1jAJy+J+Xt2bOHCYVCdv36dZf7a1umqrtGlJaHs2fPOh1n5syZzN/fnw+uGat9GagqsKvN93f16tUMADt37pzL10xaJmqKJa3O1atXMXjwYAgEAn7b0KFDYTQakZycjPj4eNhsNgwdOpTfL5FIMGDAAFy9etXpWIMHD+bXvby8EBsbWylNqSlTpqCoqAhRUVF4/vnnsXXrVqfmXwDo0aMHvy4QCBAQEIDMzEx+248//oh77rkHAQEBUKvVePfdd3H37l2nY4SFhSEkJMQpjw6HA9evX6/yPSl/XgAIDAzkz3v9+nWEhoY69WcbMGBAlccCgPj4eFitVpfvT6kzZ86AMYaOHTtCrVbzy6FDhxAfHw8AmD9/PpYuXYqhQ4di0aJFuHDhQpXnvH79eqV8ucpnRESE0wCI8q+1tq5evepUPgCuDN28eRN2u53f1q9fv2qP07NnT4wcORLdu3fHlClT8J///Ad5eXkAgKysLCQlJeG5555zen+WLl3Kvz9VnefBBx+EWCzmmzA3b94MjUaDMWPG8Pnv2bOn0+CBoUOHVionXbt2deoP5e/vj+7du/OPRSIRvL29+ffv9OnTuHXrFjQaDZ9fLy8vmM1mxMfHIzMzE6mpqRg5cmS170v58qhSqaDRaJw+oy+//BL9+vWDr68v1Go1/vOf/1T6HnTt2hUikYh/XN3nXNfvpr+/PwA4vRel26o6x7lz5xASEsI3g1ZU2zJV0zWiKt27d3fqV1fbMlCV2nx/Aa4vbMXrC2nZaPAEaXUYY05BXek2gLtQll+v6XmuVJUmNDQU169fx759+/Drr79i7ty5+OSTT3Do0CG+s3vFTu8CgQAOhwMAcPz4cTzxxBNYsmQJxo4dC51Oh++//95l3zVX+aku79Wdt7avuzxWi1G3DocDIpEIp0+fdvoBBgC1Wg0AmD17NsaOHYudO3di7969+PDDD7Fs2TLMmzfP5Tmr+lzLq+611lZtz1XTqEuRSIR9+/bh6NGj2Lt3L/75z39i4cKFOHHiBJRKJQCu3+DAgQMrPa+680ilUjz22GPYsGEDnnjiCWzYsAFTp06FWCyuMv+lym939V5V9/45HA707dsX3377baXj+vr61rrTfHXn2LhxI1577TUsW7YMgwcPhkajwSeffIITJ07U+hgV1fW7WfoeudpW1TkUCkW1r7mpy2/FMlLbMlCV2nx/Ae511/X6QdyLauxIq9OlSxccPXrU6aJ59OhRaDQaBAcHIzo6GlKpFIcPH+b322w2nDp1Cp07d3Y61vHjx/n1vLw83LhxA506dary3AqFAg8//DA+//xzHDx4EMeOHatxwEWpI0eOIDw8HAsXLkS/fv0QExPjsiPy3bt3kZqayj8+duwYhEJhlTUFNenUqRPu3r2LjIwMflv5gSSuREdHQyKRuHx/SvXu3Rt2ux2ZmZmIjo52WsrXDoaGhmLOnDnYsmUL/vznP+M///lPlfk8efKk07aaOrPXV5cuXZzKB8CVoY4dO1b6kauJQCDA0KFDsWTJEpw9exZSqRRbt26Fv78/goODcfv27UrvT2kn+epMnz4du3fvxuXLl3HgwAFMnz7dKf/nzp1zGqRx5MiRBpUTAOjTpw9u3rwJPz+/SnnW6XTQaDSIiIjA/v37632OP/74A0OGDMHcuXPRu3dvREdHV6rBrI+GfDdro0ePHkhOTnb6DpTXGGWqtEaufA1fVRpaBmr7/SWtD9XYkRZLr9fj3LlzTtu8vLwwd+5crFixAvPmzcPLL7+M69evY9GiRViwYAGEQiFUKhX+9Kc/8SP/wsLC8PHHH6OwsBDPPfec0/H+9re/wdvbG/7+/li4cCF8fHyqnPx3zZo1sNvtGDhwIJRKJdatWweFQoHw8PBavZ7o6GjcvXsX33//Pfr374+dO3di69atldLJ5XLMnDkTn376KQwGA+bPn4/HH3+83hfb0aNHo0OHDpg5cyY+/vhjFBQUYOHChQCq/s9erVbjueeewxtvvOH0/pSvsenYsSOmT5+OGTNmYNmyZejduzeys7Px22+/oXv37njggQfw6quvYvz48ejYsSPy8vLw22+/VQquS82bNw/33nsvli9fjoceegi//fYbfvnllyapLfjzn/+M/v374+9//zumTp2KY8eO4YsvvnAasVobJ06cwP79+zFmzBj4+fnhxIkTyMrK4l/j4sWLMX/+fGi1WowfPx4WiwWnTp1CXl4eFixYUO2xhw8fDn9/f0yfPh0REREYNGgQv2/69OlYtGgRZs6cicWLFyMrKwvz5s3D008/zTcp1sf06dPxySefYOLEifjb3/6GkJAQ3L17F1u2bMEbb7yBkJAQLF68GHPmzIGfnx/Gjx+PgoICHDlyxGUtrCvR0dH43//+hz179iAyMhLr1q1DXFxcrYLdqjT0u1kbw4cPx7333otHH30Uy5cvR3R0NK5duwaBQIBx48Y1Spny8/PjR0SHhIRALpdXOb1RQ8tAbb6/pHWiGjvSYh08eBC9e/d2Wt577z0EBwdj165dOHnyJHr27Ik5c+bgueeewzvvvMM/96OPPsKjjz6Kp59+Gn369MGtW7ewZ88eeHp6Op3jo48+wiuvvIK+ffsiLS0NP//8c5XzQ3l4eOA///kPhg4dih49emD//v3Yvn07vL29a/V6Jk6ciNdeew0vv/wyevXqhaNHj+Ldd9+tlC46OhqPPPIIHnjgAYwZMwbdunWrc8BRnkgkwrZt22A0GtG/f3/Mnj2bf6/kcnmVz/vkk09w77334uGHH8aoUaNwzz33oG/fvk5pVq9ejRkzZuDPf/4zYmNj8fDDD+PEiRMIDQ0FwNU8vPTSS+jcuTPGjRuH2NjYKl/L0KFD8eWXX2L58uXo2bMndu/ejddee63aPNZXnz59sHHjRnz//ffo1q0b3nvvPfztb3/DrFmz6nQcrVaL33//HQ888AA6duyId955B8uWLcP48eMBcE3R//3vf7FmzRp0794dw4cPx5o1a2oVxAgEAjz55JM4f/68U20dACiVSuzZswe5ubno378/HnvsMYwcORJffPFFnfJfkVKpxO+//46wsDA88sgj6Ny5M5599lkUFRVBq9UCAGbOnIkVK1Zg1apV6Nq1KyZMmICbN2/W+hxz5szBI488gqlTp2LgwIHIycnB3LlzG5Tvhn43a2vz5s3o378/nnzySXTp0gV/+ctf+Nq1xihTYrEYn3/+Of79738jKCgIEydOrDJtY5SBmr6/pHUSsNp0piGkjTl48CDuu+8+5OXlOc2T5m6LFy/Gtm3bKtVUNrYjR47gnnvuwa1bt9ChQ4cmPVdDPP/887h27Rr++OMPd2eFEEJaBWqKJaQd2Lp1K9RqNWJiYnDr1i288sorGDp0aIsL6j799FOMHj0aKpUKv/zyC9auXdug2kpCCGlvKLAjpB0oKCjAX/7yFyQlJcHHxwejRo2qcTSuO5w8eZLvBxgVFYXPP/8cs2fPdne2CCGk1aCmWEIIIYSQNoIGTxBCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2JEWLSIiAsePH3d3NkgVPv30U3z44YfuzobbrFmzBuPGjavTcw4ePIjHH3+8iXJEDh48iE6dOjXJsV9++WV89913TXLs1mDx4sWYM2dOnZ6zZs0a/OUvf2miHBFXKLAjTaItB2Q5OTn405/+hODgYGg0GkRHR+Pll19Gamqq2/L0yy+/IDo6GiqVChMnTkReXl6VaePi4tCzZ08olUoMHz4cd+7c4fctWrQIoaGh0Gq1iImJwerVq6s8jtlsxueff46XXnqpxvwlJiZCLpdXmyYrKwsPPvgglEolYmNjsX///irT1pTPNWvWICQkBFqtFs888wysVmuNeWwsn376KZYsWVLl/hEjRuD27du4dOlSrY63Zs0aiMViqNVq6HQ6DBo0CMeOHWus7NbJt99+C7VazS9yuRwajYbf/8ILLyAwMBBarRbdu3fHjh07qjzWrFmzIJPJ+GN17dqV3+dwOPD2228jODgYXl5eeP3118EYa9LXVpOUlBTs2bOnVkF5bYLLBx98EH5+ftDpdBg4cGC1n2l1343CwkK8+OKL8PPzg7+/Pz799NPav6hG8PLLL2Pt2rVV7p8+fTo2bdqE7OzsZsxV+0aBHSF1UFRUhBEjRiA1NRUHDx6EwWDA8ePHER0d7bZANjMzE9OmTcM///lPZGZmQqPR4JVXXnGZ1mKx4JFHHsErr7yC3NxcDBo0CE8//TS//6mnnsK1a9dgMBiwa9cuLFy4EJcvX3Z5rC1btmDgwIHQarWN8jpeeuklBAUFITs7G//3f/+HKVOmVBmgVpfPixcvYsGCBdi2bRuSkpKQmJiIpUuX1ioPxcXFDX4du3fvxtixY6tN8/jjj+Obb76p9TFHjRoFo9GI7Oxs3HvvvXjkkUfcEuhMnz4dRqORX+bOnYtJkybx+xcsWIDExEQYDAZ88803eOqpp6r9J2PJkiX8scqXs6+//ho7d+7EmTNncOvWLRw9ehRfffVVU760Gq1duxaTJk2CSCRqlON9/PHHSE1NhV6vxzvvvIPJkydX+ZlW9914//33kZCQgFu3buHUqVP497//jT179tR4fofDAYfD0eDXsWfPHowZM6bK/RKJBOPHj8eGDRsafC5SS4yQJhAeHs6OHTtW6/Tvv/8+CwgIYGq1mnXp0oVdvnyZP84//vEP1qlTJ+bh4cHmzZvHP+fGjRts2LBhTKfTscDAQPbWW2/x+1avXs1GjRrFZsyYwdRqNevfvz+7fv06v//ChQts2LBhzMPDg/Xp04fFxcXVKp//+te/WHBwMCsqKqoyzaJFi9hTTz3FJk6cyFQqFRs1ahTLyMhgU6ZMYRqNho0dO5YZDIZavzc1+fLLL9m4ceP4x7du3WJyuZyZzeZKaXfv3s06derEPzYajUyhULDExMRKaW/cuMH8/f3Zzp07XZ53xowZ7PPPP+cfZ2dns7FjxzJvb2/m4+PDnn/+eT4PMTExDABTqVRMpVKxlJQUp2MVFBQwqVTKUlNT+W3Dhg1ja9eurfH1V8znm2++yebMmcPv379/P4uMjHT53EWLFrFp06bxn9WBAwfYTz/9xLp168bUajWLjo5mGzdu5NMbjUb25JNPMp1Ox3r37s3eeustNnbsWH6/yWRiAQEBrLi4mF2/fp0NHTqUaTQa5u3tzRYsWMCnO3bsGOvcuXONr40xriyXP8elS5cYAJaVldXsZa08u93OAgMD2e7du13uj4uLYzKZjP8uVzRz5kz24Ycfutz3yCOPsFWrVvGPN2zYwIYMGeIyrc1mY/PmzWNeXl6sY8eO7IMPPmCxsbH8/uq+60ePHmVdu3ZlGo2Gvfjii+zee+9l3333ncvz3Hvvveznn3/mH1d1/SkuLmZyuZwJBAKmUqmYTqdzebxSDoeD7dixgwFgRqOx0v6avht9+vRhu3bt4vd98MEHbNq0aS7PNXPmTDZv3jw2fPhwplAoWEJCAvvqq69YdHQ0U6vVrHv37uzAgQN8+szMTDZu3Dim0WjYiBEj2J/+9Cf24osv8vtv3brFevTowRjjynSvXr2YWq1m/v7+bNmyZXy67777jo0fP77a94E0HqqxI2537do1/Otf/8LZs2dhMBiwefNmeHl58ft//vlnHD58GBcvXsT333+PP/74g9+3dOlSZGdn49ChQ1i/fj22bdvG7ztw4ABGjBiBnJwcjB8/HtOnTwcAFBQUYPz48XjttdeQnZ2Nd999F5MnT4bZbAYAzJ07F3PnznWZ1wMHDmD06NE1Nitu27YNf/3rX5GZmYn8/Hzcc889mDdvHjIzM2E0Gqusrfnoo4/g4eHhcpkwYYLL51y5cgXdu3fnH3fo0AFisRi3b9+uMa1KpUKHDh1w5coVpzyoVCp07NgR4eHhuP/++12e9/Lly4iJieEfOxwOvPzyy0hJScGFCxdw6tQp/Otf/wIA7N27FzKZjK+dCQoKcjrWzZs3odPpEBgYyG/r2bNnlbWF1eWz4mvs2bMnEhISUFRU5PI4W7Zswcsvv4yCggIMHjwYWq0WP/74I/R6PT7//HM888wzSE9PB8DVMOXk5ODu3bvYsGED1q1b53SsAwcOYNiwYRCJRHjvvffw4IMPQq/X486dO5g6dSqfLjY2FteuXatzDaHVasXatWsRHBwMHx8fAM1b1sr77bffYLfbMWrUKKftc+fOhUKhQP/+/TFu3Dh06dKlymN88skn8Pb2xpAhQ/D777877WPlaq8YY1WWha+++gq///47rly5ggMHDjj1gavuu26xWPDoo4/itddeQ05ODnr06IGjR49WmdeK5R1wff0RiUT45Zdf0LFjRxiNRuTn51d5zAkTJkAul2PChAmYP38+VCpVpTS1+W7U9r0CgO+//x7Lly9HQUEBQkJCEBQUhP3790Ov12PevHl44oknYLFYAHA1hQEBAcjMzMT777+P9evXOx2rfO30q6++ijfeeAMFBQW4evUq7rvvPj5dbGwsLl68WGWeSOOiwI64nVgshtlsxpUrV2C329GpUycEBATw+1999VV4e3sjJCQEI0aMwPnz5wEAMTExuPfeeyEWixETE4Pp06fj8OHD/PMiIyPxzDPPQCqV4u2338aVK1dw584d7Ny5Ez169MDkyZMhEokwadIk+Pv7831cVq1ahVWrVrnMa05OjlPetmzZAg8PD6jVasybN4/fPnr0aAwePBhKpRIPPPAAYmJiMGzYMMjlcjz44IO4cOGCy+O/+eabyM/Pd7lU1V/JaDRWag7VarUwGo31Svvmm2/CaDTi+PHjePjhhyEWi12eV6/XQ61W8499fX0xYcIEyGQyBAYG4sUXX3T6PKpTl9dQUz4rHqt0vapj3X///Rg1ahQEAgFkMhlGjBiB2NhYCIVCjB8/Ht27d8epU6cAAJs2bcK7774LrVaLTp06YebMmU7HKv9DJ5FIkJCQgPT0dKhUKgwYMIBPp9FowBiDXq+v1fuzf/9+eHh4IDg4GCdPnsTWrVv5fc1Z1sr79ttv8cQTT1Rqmly1ahWMRiP27duH4cOHV/n8V155Bbdu3UJaWhpeeuklPPTQQ0hKSgIAjBkzBv/+97+RlpaG7OxsrFy5EoWFhS6Ps2nTJrz++uvw9/dHUFAQ5s+fz++r7rt+7NgxqFQqPPfcc5BIJJg7d65T8FRRxfJe0/WnNnbs2IGCggL8+OOP6NOnj8s0NX03xowZgxUrViA/Px+JiYlYs2ZNle8VAEyZMgV9+vSBSCSCWCzGgw8+iLCwMAiFQjz//PMQCAS4efMm7HY7tm7dir///e+Qy+UYMmQIHn74YadjVSzv169fR25uLjw9PdG7d28+nUajqTbAJY2LAjvidtHR0Vi+fDkWLlwIX19fPPfcczAYDPx+Pz8/fl2pVPIXtJSUFEyePBkBAQHQ6XRYsWIFcnJy+LShoaH8ukwmg5+fH9LS0nD37l3+h7J0uXr1KtLS0mrMq7e3N197AwCPPPII8vPz8frrr8Nms7nMs0KhgK+vr9Njk8lU27enRmq12un9AgCDweD0I1TXtAKBAAMHDkRaWhq+/vprl+fV6XQoKCjgHxcUFGDGjBn8oIUFCxY4fR6N9RpqymfFY5WuV3WskJAQp8eHDx/G0KFD4eXlBQ8PD5w6dYp/HWlpaU7lqvw6wPU3Kv2h+/jjj1FcXIxevXqhZ8+e2L59O5+uoKAAAoEAOp2u2tdXauTIkcjPz0dWVhYOHjyI/v378/uas6yVMpvN2LJlC18LXpFIJMKoUaOwf//+Kvt79e7dG56enpBKpZg+fToGDx6Mffv2AQBmz56N8ePHY8CAAejfvz8eeOABBAcHuzxOdZ9Jdd/19PT0Sp9fVecAKpf3mq4/tSWVSvHoo49i2bJluHr1aqX9NX033nnnHURERKBz584YP348pkyZUu3rqFjet23bhj59+vDvT2ZmJnJycpCVlQWHw+F0rPLvl9VqRVxcHIYNGwYA+O9//4urV68iOjoaQ4YMcRoMUlBQAA8Pj9q/KaRBKLAjLcLTTz+NY8eO4ebNm7hz5w4+++yzGp/zzjvvwNfXFzdu3IBer8err77q1CSRnJzMr1utVmRmZiIgIADBwcF48MEHnWooTCYTpk2bVuM577vvPuzbt49vtm1sH3zwgdOow/LL+PHjXT6nS5cuTs0ct2/fRnFxMaKiompMazKZEB8fX2VzmcPhQHx8vMt93bt3x/Xr1/nHy5cvR25uLs6dOweDwYDly5fzn4dAIKj2dcfExECv1zsFzefPn3caKVmd8vms+BrPnz+PyMhIKBQKl8+tmLenn34azz77LDIyMpCfn49+/frxryMwMJCvVQLgtJ6QkACpVMr/cAYGBuKbb75Beno6/va3v2Hq1Kn86Nxr166hU6dOVdaGNof6lLVS27dvh5+fn1MtpCvVlZ+KhMKynyORSISPPvoISUlJSEhIgL+/P/r16+fyedV9JtV91wMCApyuEQAXrFWlYnmv7vpTU3l3pbi4GAkJCZW21/TdUKlU+Oqrr5CWloarV69CIBBU+V5VzJvFYsGTTz6Jjz76CDk5OcjPz4efnx8YY/D19YVQKHR6T8q/t4cPH0a/fv0glUoBcM2tGzdu5AdzPfXUU3zaa9euOXWPIE2LAjvSZKxWK8xmM79UNQLr+vXrOHjwIKxWK5RKJWQyWa1GnhUUFEClUkGtVuPSpUuV+n/cvn0ba9euhc1mw4cffohOnTohIiICEyZMwKlTp/Dzzz/DbrejqKgIu3fvrlWz2MyZM+Hp6YmpU6fi5s2bYIwhLy/P5X/a9fH22287jTosv/zyyy8unzN58mQcP34ce/bsQWFhIRYtWoQpU6ZAJpNVSjtixAgYjUasWbMGFosFS5cuRb9+/RAeHg6A+687Pz8fDocDhw4dwrfffosRI0a4PO+4ceOc+kUVFBRAoVBAp9Phzp07Ts3ZPj4+sNlsVdaKqtVqPPzww1i0aBGKiorw888/49KlS3jooYdcpq8un9OmTcPGjRtx5swZ6PV6vP/++04/MjUpKCiAl5cXxGIxNm/ejNOnT/P7HnvsMbz//vsoKCjA9evX8b///Y/fV3E07I8//ojU1FQIBAJ4eHhAIBDwP6p//PGHU9rFixdX+T43lfqUtVLffvttpdo6o9GIb7/9FkajEcXFxdi8eTPf59CVzZs3w2Qyobi4GD/88AMOHz7M95PMyclBYmIiGGM4deoU3n//fbz55psuj/PYY49h+fLlyMzMRFpaGr744gt+X3Xf9cGDB8NoNGL16tUoLi7Gl19+WW2tvavyXtX1x8/PD5mZmVX267xz5w527NjB9/X74osvkJycjL59+1ZKW9N3Izk5Genp6bDb7di3bx9Wr16N1157rcrXUZ7FYoHVauVreT/77DNkZWUBAN90vWjRIpjNZhw/ftyp1rl87TTAlYmcnByIxWJoNBqna3jF8k6aFgV2pMkMHz4cCoWCX7Zs2eIyncViwRtvvAFvb2+EhYVBp9NVOV1Hee+99x72798PrVaL+fPn49FHH3Xaf9999+HAgQPw8vLCjh078O233wLgmlR27NiBzz77DL6+voiIiHCaSmHOnDlVTsKpUChw8OBBBAYGYvjw4dBoNBgwYAB8fX3x7rvv1vataVR+fn749ttvMXfuXPj4+ECv1zvVeI4fPx4ffPABAK5JesuWLVi+fDk8PDxw5MgRpwEAu3btQocOHaDT6TB37lx88skneOCBB1yed+LEiTh16hTfd+aVV15BSkoKPD098eijj2Ly5Ml8WpVKhb/+9a/o3r07PDw8XM75t2rVKiQlJcHb2xuvv/46Nm7cCE9PTwDcj0b52rvq8tm9e3csW7YMDz30EEJCQhAaGoqFCxfW+v385z//iZdffhmenp7Ys2ePUz+xRYsWQafTISQkBE8++aTTVDEVA7uTJ0+ib9++UKvV+NOf/oQNGzZAIpEAADZu3Ihnn32WT5ucnIyhQ4fWOo/ulJeXh19++aVSYCcQCPD1118jJCQE3t7e+OCDD7Bhwwa+pqbiZ/iPf/wDQUFB8PHxwfLly7F161ZEREQA4KbwGTVqFFQqFZ566iksW7bMZdADAC+++CKGDBmCTp06YcSIEXjiiSf4fdV912UyGTZv3oxly5bBy8sL586dQ//+/V3+QwQAM2bMwE8//QS73Q6g+utP586dMWHCBISEhPCDXCp6//334efnh4CAAPzwww/Yvn07/P39AXC1qeVrTav7bty8eRP9+/eHRqPBX//6V3z//feVBidVRavV4pNPPsHo0aMREBCAnJwcREdH8/tLA05fX1+89dZbTp95xfK+a9cuxMbGQqPR4PPPP+fnlrTZbNi1a1etWkRI4xAw5uZZHwlpAmvWrMH333+P3bt3uzsrbdqyZctgNpvrFDi1RTabDSEhIbhz506NI6YPHjyIlStXYtOmTfy2vn37Yu/evfD29m7qrJIqMMYQEhKCbdu2OfVhLG/evHkYNGhQlX0L24u0tDQMHTrU5cj7itasWYPLly/jk08+aYacEYACO9JGUWBHmlNGRga2b9+O2bNnuzsrpA4OHDiALl26wNPTE8uXL8eXX36JW7duubXvY2tw/fp1XLx4EY899pi7s0JcoKZY0mweeughlx21Dx486O6sEdIg/v7+FNS1QpcvX0bPnj3h7e2Nbdu2YcuWLRTU1UJsbCwFdS0Y1dgRQgghhLQRVGNHCCGEENJGUGBHCCGEENJGUGBHCCGEENJGUC9RFxwOB1JTU6HRaOo1gzghhBBCSGNhjKGgoABBQUFOd2lxhQI7F1JTUyvdQ5AQQgghxJ2SkpIq3e+3IgrsXNBoNAC4N1Cr1bo5N4SQls5sNvO3LVu/fn2NkxQT4g5UTlsvg8GA0NBQPj6pDk134oLBYIBOp4Ner6fAjhBSI5PJBLVaDYC7Z6pKpXJzjgipjMpp61WXuIRq7AghpIGkUil/b0ypVOrm3BDiGpXT9oFq7FygGjtCCCGEtBR1iUtouhNCCCGEkDaCAjs3yS7Khs1hc3c2CCGNwG6349y5czh37hzsdru7s0OIS1RO2wfqY+cmz+x+BncL7sJX4YtAVSAC1YEIVAUiSBVUtq4OgkpCnVsJaenMZjN69+4NgDqlk5aLymn7QIGdGzDGkGvOhYM5kFGYgYzCDJzLOucyrUaq4YK9kuAvSBWEAHUAv81b4Q2hgCpeCXEngUCAoKAgfp2QlojKaftAgydcaI7BEw7mQK45F2nGNKSZypZUYyq/rrfoazyORChBgCrAqabPKQhUBUAqotFPhBBCSGtVl7iEAjsXWsqoWJPNhHRTulOwl2pM5baZUpFZmAkHc9R4HB+FDx/kBamD+ECwdF0r1dJ/b4QQQkgLRYFdA7WUwK4mxY5iZBZmOgV+aaY0p1rAouKiGo+jkqj4mr7ygV9pDaCvwhcioagZXhEhhBBCKqIJitsJsVCMIDVX8+YKYwz5lnynYC/VlOpUC5hrzoXJZsKt/Fu4lX/L9XkEYvir/J2aecsP9AhQBUAhVjTlSyWkRTObzXj66acBAOvWraNbNZEWicpp+0A1di40S43doY8Bhx3wCAU8wgBdKKANBsTN2x/OXGx2WdNXGvhlmDJQzIprPI6X3Iuv6Stt8i0d6OGv9Ie33Juae0mbRbdqIq0BldPWi2rsWoOT/wFMmRU2CgBNIBfs6ULLBX1hZdukykbNhlwsR6QuEpG6SJf77Q47souyKw3sKP/YZDMh15yLXHMuruRccXkciVACf6U/AlQBZYsywOkx9fUjrZVUKsUXX3zBrxPSElE5bR+oxs6FJq+xYwz4YxmQfxfQJwH5SdzfYnPNz1V6lwV9ujAu8CsfCMo9gGYOjgxWQ1lTb7nBHaW1gNlF2WCouZgpxAr4K/3hr/KvFPSVPlZL1c3wigghhJCWgwZPNJBbBk8wBpiySoK8u2XBHv/3LmAx1HwcqaZcoBfmvK4LBdR+zR742Rw2ZBVmId2Uzi2F6WXrpnRkFGYg15xbq2OpJWqnmj9XQSD19yOEENKWUGDXQC12VGxRfuVgr/RvfhJQmF3zMUQyQBfiupnXIxTQBAGi5m+ht9gtyDBxkzWXD/rKB4EGay0CWwBaqdapps9P6VdpoWZf0pgcDgfi4+MBAB06dIBQSJOGk5aHymnrRYEdgNTUVDz22GMQi8XQarXYuHEjlMra9U9rsYFdTayFgD65co1faQBYkAbUNO+dQARog8pq+MoHfbowLiiUuGckVaGtkA/0MkwZSC8s+VsuCDTZTLU6llwkh6/Slwv0FOWCPpXzY5rcmdQGdUonrQGV09aLAjtwNzsWCAQQCoVYtGgRunXrhilTptTqua02sKuJ3QYYUio0894tq/HTJwMOW83HUfm5buYtfSx333tWYC1wCvQyTBnIKspCRmEGMgszkVmYWas7epTylHnyAaC/0t9p3U/pB1+FLzzlnnRbt3bOZDIhODgYAJCSkkI/mKRFonLaiBwObgBk6e+oMQsYNKfJTkejYgGIRGUT6goEAsTGxroxNy2ESAJ4RnCLKw4HYMyo0MxbYd1m4gqzKRNIOeX6OHKPcoM7QivU/IVxA0CaqBlUI9VAI9UgxjOmyjTmYjOyirL4QK+qxeqwIs+ShzxLHm7k3ajyeGKhGH4Kv0pBX+lS+lgupjmj2iqVSoX8/Hx3Z4OQalE5rYMqK0JKHuuTAbvV+Tl9ZjT6zBX10Spq7BYtWoRNmzbh2rVr2LBhA5544gl+X1ZWFmbNmoUDBw4gNDQUq1atwsiRIwEAhw8fxiuvvAKFQoGdO3dCp9PV6nxttsauoRgDivKqCPpK/hbl1XwcidJ1M2/pY00A4OY7XTDGoLfo+Zq+irV+WYVZdRr0AXB9/6oL/PyUflT7RwghzaGqrkulfwtSa9F1Scj1Sy/97Rr3EaDybpLstrmm2PXr18Pf3x/vvvsuXn31VafA7vHHH4dOp8Nnn32GvXv34tlnn0V8fDw8PT35NJ9++ilEIhFee+21Wp2PArsGsBiraOYt2WZMr/kYQgmgC3bdzOsR5paJnKtis9tc1v6VDwIzCzNhttdiKhuU1f5VFfj5q7gRwRKhpIlfGSGEtFKMAeZ817NLlD6u1WBDaeXfn/KPtUFcS1gzaHNNsU899RQA4P3333fabjQa8dNPPyExMRFKpRKTJk3C8uXLsX37dkydOhUymQwAoNPpYLfbqzy+xWKBxWLhHxsMtRt9SVyQqQG/ztziSrGl5L8kF828+ruAIZXr55eXyC0uuZjImZ/epWSAh7R5+o5IRJJqb+sGcLV/BqvBqabPVRCYa85FsaMYqaZUpJpSqzyeSCBCgCoAIeoQBGuCEaIOQYgmBMHqYIRoQuAp86QRv83MYrHgxRdfBAD8+9//5q89hLQkbaacMgYYMysHa+VnibAW1Hwcp+nBXLQgqfyAVjhyuFXU2JUaMWIE5syZw9fYnT17FmPHjkVmZtkdHObNmwelUomHHnoICxcuhFAohJeXF9atW1flqNjFixdjyZIllbZTjZ0bOOzc6F0+6HNRTV6viZwr/Lflhomca2Jz2JBdmO0c+BU51wSmm9JhsVuqPY5KokKULgpRuih08OjArXtEIVgdTM28TYRGG5LWoNWUU7uN+ye/qto2fTJQw3UQgPPvgEd45QCuBf4OVKXN1dhVxWg0VnqBWq0W+fn5uOeee3Do0KFaHeett97CggUL+McGgwGhoaGNmldSS0IRV+OmCwHCB1fezxhgynbdzFv616IHCnO4Je2c6/O4/E8tDO6cyFkilCBQHYhAdWCVaRzMgZyiHCQbk5FckFz2t2Q9szATJpsJF7Mv4mL2RafnykXc7eO6eHfhl46eHWlKl0YgkUjw8ccf8+uEtEQtppyaDWUDEMoHa6WPazM1FwRcU2iV/bWbr+WmpWnVgZ1ara7UbGowGPj/SGpLJpO13irp9kYgANS+3BLc13Uas971wI7S4M+UxVXTZ17hFlfKT+RcMejzCOWagpupb0V5QoEQvkpf+Cp90duvd6X9FrsFSYYk3NbfRrw+Hrfzb+O2/jYS9Akw2824mnsVV3OvYvPNzQAAsUCMaM9odPHugh4+PdDHvw8itBHUlFtHUqkUb7zxhruzQUi1mqWcOuxAQXpZkKYvF7SVBnC1mXJKKCl3Da4ww0JpX2s3XINbg1Yd2MXExECv1yM9PR0BAQEAgPPnz2P27NluzhlxK7kOCNABAd1c77cVlVxk7lQ9GspuAXLjucUVgRBQB5TVLlZctCGA0qvZa/1kIhmiPaMR7RnttL3YUYwUYwpu5N3AlZwr/JJvyce13Gu4lnsNW25uAQB4yb3Q2683+vj1QR//Pujk1QliYau+VBBCGovVVHVNmz6ppJ90cc3HUXiWXC9LArbSa2dpP+lW2r+tJWgVfexsNhvsdjvGjBmD559/HlOmTIFUKoVQKMSUKVPg5eWFFStWYN++fZg1a1alUbF1RaNi27n6zF/kilhRLtgLdr54aUu2Sdx3X1vGGNJMabiScwWXcy7jbOZZXMy6CKvD+bVpJBoMDByIwUGDMSRoCEI0IW7KccvlcDiQlpYGAAgMDKRbNZEWqcZy6nBwLRql04A41bSVXPuKajHFk0DE1ah5lLvmVQzgZHVrWWvv2tx0J7NmzcLatWudth04cAAjRoxAVlYWZs6ciYMHDyIkJASrVq3CqFGjGnQ+CuxItRwObqh8+SYGfUrZY0MKN9FzbSh9XAR95R6r/Zv1v1ar3YorOVdwOuM0zmaexZnMMyioMLosTBOGwUGDMTRoKAYGDoRS4v4JOd2t1XRKJ+2aKS8LfWMCEKIVYOeGLyEryqrcXFqbf1pl2gq1bOWDtpYxF2lb0+YCu+ZGgR1psGILF+DxQV+yc+BXehePmgglgDaw7KKpDS73329JrZ+8dhNv14fdYceVnCs4mnoUR1OP4kLWBRSzsmYWmUiGwYGDMSJ0BIaHDoePwqfJ8tKSmUwmeHh4AADy8/MpsCPNz1ZUMpK05BpjSOGuPYaUsu3m/JqPIxByfYidatpCyg1OCGnSaw5xjQK7BqLAjjS50gk0K9b2lV6U9cncxZhVPf8iT6Z1Dvq0wVwwqA3iZkXXBjXa/XuNViPi0uNwJPUI/kj+w2m+PQEE6OHbAyNCR+D+0PsRqYukQRiENIZiC3c94IO1kutD6bo+pXZNpAA3I4AuuEJTabkat2acdJfUHgV2DUSBHWkR7MXcnTpcBn6l/V1qcQs3gLuYlwZ72mDuP/LSdW0g97eO9/BljOFG3g0cTDqIA0kHcDnnstP+CG0ExkSMwZjwMejo2ZGCPEJcsZm577khzfmfOn49hev3VhsSZck/eMFl/Xi1Qc7rVNvWKlFg10AU2JFWw2qq3L/PkFq2FKRy07/UhkhaEvAFuwgCS34U1P6AyPUI2QxTBg4lH8KBpAM4kXYCNoeN3xehjcDo8NEYGzGWgjzSPjjs3JybBanc9B+Gkr/84zRuvrba1rSJ5WXfQ76GvqTmrXS9FU24S+qGArsGosCOtCkWI/cDUj7YM1RYTJk1HwcomebFn+scrfZ3XtcEcFPAaPxhlCpxKO0Y9ibuxeGUw04jbcO14RgTPgZjIsYg1jO2TQR5FouFn+R8+fLlNC9mW8YYYDFUEaylct+1gnRuqU1XCoAL2jQBFWrZgsuaRhtp+iQqp60XBXYNRIEdaXeKrSXNQamVa/wMqSW1C7Wcn6qUwgvQBMCo8sUhhQR7WQEOWzJhLfdjF6YOwZjIcRgXMa5V1+TRqNg2wFbE3X/UmMmNajdmcOumituygOKi2h1TIOTmY9MElPR5DSjp9xpYtq4J4OZ0a4ayT+W09Wo3txQjhDQSsbTs7hpVKZ3jqnQ6l4L0kh+8dKAgo9zfDMBh45qYinKhBvBgyWISCHBIqcBelRKHFXLcNSbjvxf/i/9e/C8imAhjRV4YqwpHjDYCUPkAKl+u75/Kl3us9OHy2sJIJBIsWrSIXyctgMPBDVAqzOWmJyrM4ZpGTVllgZopqyyAsxhqPKQTuY7rplC6aAMrP1b5Vdl1wR2onLYPVGPnAtXYEdIADgc3qMOYXhIAZrgI/tJhMmbgkIRhr0qJPxQKWIVlNRYdrFaMNRVirKkQUbYKtYQyXVnQp/IpC/iUXlzNR+ki9yhZ9wDE1OTUqpU2f5r1XNkqzOECNlNJwMYHbjnlHufWvim0lEhW0sXAr9xfv3KP/blyp/Zrt/chJe5BTbENRIEdIc3EYgSMGTDq7+JgymHsyTqFIwWJsKHsBuAxDiHGFlowLj8H4bZaTJ7qikTFBXh84OdRLvDz5KaDkWkBqRqQaSovYjl1Sm8IezF3f2arifvMrUYuSDPnA0X51ayXPtbX4qbwVZBpuaBf6cPV/qp9uZo0p8CtZF2mpc+ZtEgU2DUQBXaEuI/BasDBpIPYnbAbx1KPOU2I3MkjGmP9B2KsrhNCmYBrSjPlcH+L8pyX0uAAjXCJE4pLgj5tuYBPzU0vIVGAiRWwOoRgYjlkag8IJArudnESBRcU8usKQCLnJp4WSbjjiiRVP27sIMPh4PpJOi32cus2bvqN4vKLhet/Vmzh+pZVfGwzc4Ga1VgWtFlNgKWgbL3Y3Dj5F8m4oLy0hlbpXVJj6122reJjqq3lMcag13Oj5HU6Xavt09oeUWDXQBTYEdIy6C16/Hb3N+xJ3IPjacdhL9e01tW7K8ZGjMXYiLEIUge5PoDDAVj0XIBXKejLK9tuMXCBiKWAC05K1yvcTq3ZCURlAR9KfoT5H2OB0x/nbQKu+ZKVC+TsNjRKkNsQQgkXEEvVXB81ua6k5tSjwnrJY75mteSxG++t3BbQ4InWiwK7BqLAjpCWJ8+ch/1392NP4h6cTD8JR7mmuR4+PTAmYgzGRoxFgCqg8U7qcHC3fuODvgqLrRCwFcFaaMCy/1sKhRh46YVnIUExV6tlK+Jqq2yFJTVhJTVcDhsXaJUGXA5b/ZsaG4NQXLaI5SW1jCV/xTKuplEsK6l1dPG4tAlbqipZLwnepGpum0zDrbfAgS/tCQV2rRcFdg1EgR0hLVtOUQ72392P3Ym7cSr9FFi5mqhevr0wLnIcRoePhp/Sr1nywxhDcTHXZCwWi+vXxMU3k7oI+kqnmal4uXZ6zCpvE4qcgzahmNtWWgsoFHNTclCTXLvQKOWUuAUFdg1EgR0hrUd2UTb23dmH3Qm7cTbzLB/kCSBAH/8+GBsxFqPDR8NH4ePmnBJCSP1QYNdAFNgR0jplmDKw784+7Encg3NZ5/jtQoEQ/fz7YWzEWIwKHwUvuZf7MkkIIXVEgV0DUWBHSOuXbkrHnsQ92Ju4FxeyL/DbRQIR+gf0x7iIcRgZNhIeco8Gn8tqtWLhwoUAgPfffx9SKfUlIy0PldPWiwK7BqLAjpC2JcWYgr2Je7E7cTeu5Fzht4sFYgwMGoix4WMxInQEPOWe9To+dUonrQGV09aLbilGCCHlBKuD8Uy3Z/BMt2eQZEjCnjt7sCdxD67lXsORlCM4knIEQoEQffz64P6w+3F/2P0IVgfX+vgSiQSvv/46v05IS0TltH2gGjsXqMaOkPYhUZ+IPYl78OvdX3Et95rTvk5enXB/KBfkdfTsSCMICSFuQ02xDUSBHSHtT4oxBQfuHsBvSb/hdMZpp3nygtXBuC/0Ptwfdj96+/WGWEiNHYSQ5kOBXQNRYEdI+5ZnzsOh5EP47e5vOJp6FBa7hd/nKfPE8NDhuC/0PgwKHASlREnzg5FWgcpp60WBXQNRYEcIKVVoK8SxtGP47e5vOJh0EAargd8nFUrRP7A/BvoMxIujX4Qt24aCggK+gzohLQkNnmi9KLBrIArsCCGuFDuKcSbjDH5L+g0H7h5AqinVab85xYwZ98zAuI7j0MuvFyRC6qBOWg4K7FovCuwaiAI7QkhNGGOIz4/H7ym/48CdAzibcRYCUVnTlkaqwdCgobg35F7cE3xPvadSIaSxMMag1+sBADqdjppiWxEK7BqIAjtCSF2YTCZo/bTQdNfg+Q+fx/GM48i35PP7BRCgh28P3BN8D4YGDUUX7y4QCUXuyzAhpFWhwK6BKLAjhNRFxSYuuUKOi9kX8Xvy7/g9+Xdcz7vulF4n02FQ4CAMDRqKwUGDEaAKcEe2CSGtBAV2DUSBHSGkLvLy8uDlxd1/Njc3F56ezs2u6aZ0/J78O46lHsOJtBMosBU47e+g64DBQYMxNHgo+vr3hUKsaLa8k/bDarXigw8+AAC8/fbbdEuxVoQCuwaiwI4QUheZmZnw9/cHAGRkZMDPz6/KtMWOYlzKvoQjqUdwNPUoLmVfcpozTyqUoo9/HwwJGoIhQUMQ4xkDoUDY5K+BtH00eKL1avLArqioCO+99x42bdqE3NxcGAwG7NmzB1evXsWrr75a33y3GBTYEULqIjc3F97e3gCAnJwcvvauNvQWPU6kncDR1KM4knoE6aZ0p/2eMk/0D+iPAQEDMCBwACK0EdTpndSLxWLBggULAADLly+HTCZzc45IbTV5YPfMM8/AZrPhzTffxLBhw5CXl4e0tDTcd999uHbtWs0HaAZJSUmYOHEirly5AqPRCLG49jPFU2BHCKmLxqoJYYwhwZCAY6nHcCTlCE5lnEJRcZFTGj+FHzd3XsBADAgcUKd72hLibna7HTabzd3ZaNEkEglEIufBVU0e2Pn5+SEpKQkymQxeXl7Izc0FAP6kLYHZbIbZbMakSZPw66+/UmBHCGkyTdXEZbPbcCnnEk6mncTJ9JM4l3kOVofVKU2wOpivzRsQMAB+yqqbgQlxJ6PRiOTkZFAPsOoJBAKEhIQ4TXRel7ikXjc89PDwQFZWFkJCQvhtCQkJCAoKqs/hmoRcLodcLnd3NgghpN4kIgl6+/VGb7/eeLHni7DYLTifeR4n0k8gLj0OF7MuIsWYgq23tmLrra0AgHBtOHr79UYfvz7o698XoZpQarolbme325GcnAylUglfX18qk1VgjCErKwvJycmIiYmpVHNXG/UK7F555RU89NBDWLhwIex2O3bs2IGlS5c2Wf+6RYsWYdOmTbh27Ro2bNiAJ554gt+XlZWFWbNm4cCBAwgNDcWqVaswcuTIJskHIYS4YjKZnNabqlO6TCTjauYCBwDgbnd2NvMsTqSfwMm0k7iaexV3DHdwx3AH225tAwD4Kny5QM+fC/RiPGJoDr12ymQywcPDAwCQn5/frIMnbDYbGGPw9fWFQkGjvqvj6+uLxMRE2Gy25gvsXnrpJfj5+eHrr79GSEgIPv/8c7z22muYOnVqfQ5Xo5iYGHz22Wd49913XeYlKCgI2dnZ2Lt3L6ZMmYL4+PhK0w0QQkhbo5QoMTR4KIYGDwUAGKwGnMs8hzMZZ3Am8wwuZV9CVlEW9t7Zi7139gIA1BI1evr1RF+/vujj3wfdfLpBJqJO9O1FcXGxW89PNXU1a+h71KqmOxkxYgTmzJnD19gZjUZ4e3sjMTERgYGBAIB7770Xs2fPxowZM/jn1NTHzmKxwGKx8I8NBgNCQ0Opjx0hpFYKCgr4a4XBYIBGo3FzjjgWuwUXsy7ibOZZnM48jXOZ52CymZzSSIQSdPbujB4+PdDTtyd6+vZEgCqAfoDbIIfDgbS0NABAYGAghMLmm0bHbDYjISEBkZGRbusmJZFI0LVrV1itVgwZMgRfffVVs74HteXqvWqSPnYff/xxrdL95S9/qe0hG+zmzZvQ6XR8UAcAPXv2xOXLl2E2mzFhwgScP38eY8eOxeLFizFs2DCXx/nwww+xZMmS5so2IaSNKf/j0JJ+KGQiGfoF9EO/gH54Hs/D7rDjRt4NnMk8g9MZp3Em4wxyzDm4kHUBF7IuYP3V9QC45tsevlyg18O3B7p4d6FJk9sAoVCI4OD2O4ra29sb586dg91ux8iRI7F161Y8+uij7s5Wo6t1YHf16lV+vbCwEFu3bsXAgQMRGhqKpKQknDx5Eo888kiTZLIqRqOxUuSq1WqRn58PuVyOX3/9tVbHeeutt/i5fYCyGjtCCGlLREIROnt3RmfvzpjeeToYY0guSMb57PO4kHUB57PO40buDWQVZWH/3f3Yf3c/9zyBCB09O/KBXnef7gjThtHEyaRVEolEGDRoEOLj492dlSZR68Bu9erV/Pqjjz6KTZs2YeLEify2n3/+Gf/73/8aN3c1UKvVMBgMTtsMBoPTEOHakMlkNFEjIaTerFar03prmdFfIBAgVBuKUG0oJkRNAAAUFRfhas5VnM8qC/ayirJwNfcqruZexffXvwfA9dXr4t0FXb27oosP9zdEHUJNuC2Y1WrFZ599BoAbBOmuW4oxxlBkszf6cRUSUa3KX1FREQ4cOOCy335bUK/BE7/++it++OEHp20PPPAAnn766UbJVG3FxMRAr9cjPT0dAQHcTbTPnz+P2bNnN2s+CCHtW/kJV1v75KsKsQJ9/Pugj38fANyPcLop3alW73rudRhtRpxM5+bXK6WVatHVuyu6+nTl/np3pf56LYjNZuO7S82dO9dtgV2RzY4u7+1p9ONe+dtYKKVVhzU5OTno1asXAC5mmTBhQqPnoSWoV2DXrVs3LF26FO+88w7EYjGKi4vxwQcfoGvXro2dPwBcYbTb7XA4HLDZbDCbzZBKpVCr1Xj44YexaNEirFixAvv27cOlS5fw0EMPNUk+CCHElfKDs+oyGXprIBAIEKgORKA6EOMixgEAbA4bbuffxuWcy7icfRlXcq7get51GKwGHEs7hmNpx/jne8m90MW7Czp7dUasVyw6eXVCqCaUmnHdQCwWY+bMmfx6e1Pax66tq9eo2Nu3b2PatGm4fPky/Pz8kJmZiS5duuDbb79FdHR0o2dy1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDzkd3niCE1AXdXJ27S8bN/JtOwd7NvJsoZpWn11CIFejo2RGdvDoh1isWsZ6xiPGMoQEabVj5kZ4ymcwtTbEBAQFIT0+vcn9L0dBRsQ2a7uTu3btIS0tDYGAgwsLC6nuYFocCO0JIXVBg55rFbsGN3Bu4nHMZ13Kv4XruddzMvwmL3VIprVAgRLg2HLGesXzNXievTvBR+Lgh56SxtYTpTtpLYFevutjMzEwA3G27IiMjnbb5+dF9CgkhhHDTrXT37Y7uvt35bcWOYtw13MW13Gu4lncNN3Jv4GruVeSac5GgT0CCPgG7E3fz6T1lnoj2jEa0B7fEeMagg0cHaKX0Tzepm9YQ1DWGegV2AQFcZ9jSyr7yVZ92e+NXrxJCSEvWXLcUawvEQjGiPKIQ5RGFB/AAvz27KBvXc6/zNXvX864j0ZCIPEse4tLjEJce53QcP6UfYjxiuIDPMxoxHjGI1EVCKVE290tqNUwmEz+PXUpKCpXTNqpegZ3D4XB6nJ6ejqVLl2LgwIGNkilCCCHti4/CBz7BPvzt0QBu6pXb+tuIz4/HrbxbuJl/E7fybyHdlI7MwkxkFmbiSOoRPr0AAgSrg/lAL8ojCpG6SERqKeArpdfr3Z0F0sQa7ZZiVqsVUVFRSE5ObozDuRX1sSOE1EVLvaVYW1VgLeCCvfxb3FIS9OWac6t8ToAqAJHaSC7Q00UiSscFfT4Kn3YzHYvD4eAn5e3QoUO7u6VYa+GWPnaunDhxwu03FyaEEHdoqbcUa6s0Ug16+fVCL79eTttzzbmIz4/HzTyuZu+2/jYS9AnINeci3ZSOdFO601QsADfRcmmwV34J1YRCIpQ046tqekKhEDExMe7OBmli9QrsOnfu7PQfTmFhIXJycvgZrUnrwxgDYwArWQdK1wGGkscM/N/y20qfw1C2H1WkcTDur71k3eFgcJSs2x2MT2Pnt7ve53QMxkqOU3kfY6zkWGXnspek57eXpCnbDtgZ459bfnv5tPx+h6tjOB+b319u3encVWx3lByz/DmcXwcgFgkgl4ggEwtLFhHkkpK/UhG0cjE8lBLoFM6Lr0YGf60cfho5pGIKRkjr5yX3gleAF/oH9Hfarrfo+YEZpctt/W0kG5NhtBlxMfsiLmZfdHqOWCBGqDYU4dpwRGgjEKYNQ7gmHGHaMPgp/WgePtJi1Suw+/LLL50eq1QqdOzYkZot6+DBz/9AVoGFD544ZcEVUBYsMeYcbKGqNBUCqdJEDFUHbaT1s9qBQmvDBi35qKXw08gRoJMj1FOBCB8VInxUiPRWIdhTAYmIfsSq05buPNEW6WQ6lzV8VrsVdw13kWAoC/ZKA7+i4iJ+vSK5SM4FetpwhGlK/pY89pZ7t9imXZvNhq+++goA8MILL0AiaVs1koRTr8AuLi4Or7/+eqXty5cvx4IFCxqcqfYgq8CCzILKczm1ByKhAEIBN5paJODWhUIBhCXrIqEAgtJ1Abde+hyhQFCStmRdIIBQWJau/PNFJfv4dBX2iYRlxxKVHJf/K6y8TShwvV1Usi4oOb6IT+t8PKGgbB+/v9z28scrfX1Ox6pw3NLzFdsZLMV2mG0OWIrtsBQ7YLZxfwutduiLbNAX2WAosiG/0Ap9kQ35RTauDBossNodyDZakW204kqaodLnJRYKEOKpQLSfBl0CNegUqEXnQC3CvZQQClvmD1hzq3ivWNI6SEVSbioVT+eJ9RljyCjMwG39bdwx3MFdw13ub8FdJBckw2w340beDdzIu1HpmCqJyinYK1/b5yH3aKZX5prVasXLL78MgJv4nwK7tqlegye0Wi0Mhso/AN7e3sjJyWmUjLlTcwyeuJ5egGKHAwJwP9Cl/+Dxj0vScdsrbhNAgMrPQfltVaQpOVwV5yp7jqAsUY1pyp+7/DYByqbC4Z/TQv+Tba8YY8g1WZFuMCPTYEGa3ow7uSYkZpuQmF2IxBwTLMUOl89VSESIDdCgc6AWvUJ16BXqiWg/NUTtMNjLycmBjw83kW52dja8vb3dnCPSVGwOG1KNqU4BX2nQl2pMRVmnlMq0Ui3CNGEI1YQiRBPi9Lc5mnfNZjN/T/d169Y16yCGljB4IikpCfPmzcPFixchk8nQu3dvfPHFF/D09KzxuYsXL0ZAQADmzJnT5Pls1sETGzduBAAUFxdj06ZNKB8TJiYmwsvLq675b7diA2jUHHE/gUAAb7UM3moZugZV3u9wMGQUmJGQZcL1jAJcTTPgWnoBrqcXoMhmx7mkfJxLysd3JfeBV8vE6B6sQ68wD/QK9UDvUA/4adv+CLjyP1Q04q9tkwglCNeGI1wbXmmf1W5FckEyEg2JXNBXUBb8ZRRmwGA14FLOJVzKuVTpuVKhFMGaYIRqQvklRM0FfcGaYMhEsgbnXS6XY9OmTQ0+ToMxBtgKG/+4EmVZTUOlUzJMnjwZ8+fPx7Zt2wAA27ZtQ25ubq0Cu9akToHdv/71LwBcde6qVav47QKBAH5+flizZk2jZo4Q4l5CoQCBOgUCdQoMiS67tZPdwZCQbcK1dAMupRhwLikPF5L1MFqKcex2Do7dLqu5D/dWYkCEF/pHemFgpBfCvJRUc0vaJKlIyk++XFFRcRHuGrim3KSCJCQVJCHZyK2nGdNgdVir7NMngAB+Sj++dq9i4KeT6VrXd8pWCHzg4j/Jhno7FZC6nnR5//79UKvVmDFjBr9t0qRJLtP+8MMPWLJkCSQSCTp27MgHw6dPn8Y999yDtLQ0rFy5EuPGjUN8fDxmzpyJwsJCyOVyfPPNN+jUqRPWrFmDXbt2IT09Henp6fjzn/+MF198EQDw/vvvY9u2bbBYLJg3bx6ef/75Rn0b6hTYHThwAACwdOlSvPPOO42aEUJI6yESChDtp0a0nxoTenAXaLuD4WZmAc7dzedr8q5nFOBOTiHu5BRi02lujks/jQwDIr34paOfhvrqkTZPIVYg1ou7D25FxY5ipJnS+KCP/1sS+JlsJmQUZiCjMAOnM05Xer5GokGIJsSpeTdYHYwQdQgCVYGQiKgv3ZUrV9C7d+9apV26dCl27tyJyMhIpwmd79y5g0OHDuHcuXOYN28exo0bh8DAQOzfvx8ymQwnT57E22+/jS1btgAATp06hfPnz4MxhgEDBuChhx7ChQsXkJWVhbi4OFgsFtxzzz2YMGECAgMDG+211jqwy87O5vuQvPDCC/y9YStqS/eKNZlM0Gg0/H9CVqsVNpsNYrEYMpnMKR0AKBQKfg4rm80Gq9UKkUjk1DRTl7SFhYVgjEEul0MkEgHgmsEtFguEQiEUCkW90hYVFcHhcEAmk0Es5oqA3W6H2WyuU1qBQAClsmw2d7PZDLvdDqlUynfKrUtah8OBoqIiAHC61Y3FYkFxcTEkEgmkUmmd0zLGUFjIVfsrlcpKn2dd0tbms2+McuLq82yMclL6eTa0nFT8PEvTRvso0SlAiycGhMFutyMr34hzyQacTzMhLiEX55PzkVlgwY4LadhxIQ0AoFNIMDDSC/3CNBgY4Yke4b78+97QclL+82xoOanq81QqlfzzACArK4uuEXSNqPbzrJhWLBQjVBMKL6EXeuh6VEqbacxEWmEaMq2ZfG3fHf0dpBhTkG3ORoGtAFdzr+Jq7lVUJBQI4Sv3RZAqCIHKQPz4zY9w5Dmw9vO1XN8+lR9UyrL3p6muEWazGQ6Hg+vCJVECb6dyU1iV3Mmq9Fylnx1jjBsQV/I+1Cptyd1FXKUt7Tpmt9trPO6QIUPwwgsvYNq0aZg8eTJ/rgce4G6B16NHD9y9excAV57mzp2LixcvQiQSwWw28+nHjRsHpVIJoVCIkSNHIi4uDocOHcL27dtx8OBBANydQOLj4/nYqfw8mDabDXa73en11gqrJbVaza8LBAImFAqZQCBwWoRCYW0P16Lp9fqSmdjAMjMz+e1Lly5lANjs2bOd0iuVSgaAJSQk8Nv+8Y9/MABs2rRpTml9fHwYAHbp0iV+21dffcUAsIkTJzqlDQ8PZwDYyZMn+W3r169nANioUaOc0nbp0oUBYAcOHOC3bd26lQFgQ4YMcUrbr18/BoDt2LGD37Z3714GgPXs2dMp7fDhwxkAtnHjRn7b4cOHGQAWHR3tlPaBBx5gANjq1av5bWfPnmUAWFBQkFPaxx57jAFgX3zxBb/txo0bDADT6XROaWfOnMkAsI8//pjflpyczAAwsVjslHbu3LkMAFu0aBG/LS8vj/88rVYrv/31119nANjrr7/Ob7NarXzavLw8fvuiRYsYADZ37lyn84nFYgaAJScn89s+/vhjBoDNnDnTKa1Op2MA2I0bN/htX3zxBQPAHnvsMae0QUFBDAA7e/Ysv2316tUMAHvggQec0kZHRzMA7PDhw/y2jRs3MgBs+PDhTml79uzJALC9e/fy23bs2MEAsH79+jmlHTJkCAPAtm7dym87cOAAA8C6dOnilHbUqFEMAFu/fj2/7eTJkwwACw8P57cVWYvZyCdeZLohT7ARizezzu/+wsL/usNp6fv3fWzehjPsuxN32CNPP88AsH/84x/8MRISEhgAplQqnfIwe/ZsBoAtXbqU35aZmcl/nuW98sorDAB7++23+W1Go5FPazQa+e1vv/02A8BeeeUVp2OUv0ZkZGTwj+kaQdeI8pr6GnH89HF2M/cm++3Ob+zl1S+zwKcCWb8P+rGHtz7M+q3rx7qt6Vb98nU39uCWB9kLe19gS44uYd2f6860/bXsvzv+y3KLcpnD4WiUa8STTz7JfvnlF5aamspvMxqNLC4ujp0/f94p7c2bN1lcXJzT729hYSGLi4tzuiYyxlh8fDyLi4tj6enp/Daz2czi4uLY6dOn+W179+5lgwcPZnFxcU55sFqtLC4ujsXFxfHbHA4H27x5M3vqqadYZGQks9lsbNGiRWzlypV8Wn9/f8YYY++++y5bsGABO3nyJDtz5gx/vVu9ejV77LHHWFxcHLNarexPf/oT27ZtG3vhhRfY3//+d6drAWOMnT59msXFxTGz2cyKiorYlStX2JdffslfI0rjEr1ez2pS6yE4BQUF/LrD4YDdbofD4XBa7PaGzaVFCGnb5BIR1EXp0B/9HtOCcnB+0RhsmTsEM3t5oCjxLFixFdlGC34+n4o3t1zE6aCJCJ7zNfbq/bD1bDIyDOaaT+IGNGCCuItMKEO0ZzTuC7sPfdEXaevT4HfYDz9N+gknp5/EgccPwLLagqQvk/CQ50MY7jUcXdRd4CHwALMzQATcMdzB0dSj2HRjE9gwhrCXwrAiewXu/eFeDNowCCvyViBsfhhs99iw/sp6HLh7ADfyboCJW89kqKNGjYLBYMCuXbv4bdu3b8ft27crpU1ISEC/fv0wb9482Gw2p/inooKCAvj5+UEgEODHH3902nf06FGYTCYUFBTgt99+Q//+/TFs2DD89NNPsFi46c6uX7/uVMvXGBrtXrFtSemw4tTUVAQEBFBTLDWzUFNsLZti61tOSj9PS7Ed17NtOBafjaPxOTiXlI9ih/MlKspHhQEROgyM8MSIzkHwVElr9dk3ZVNs6edgtVohkUggkUjoGkHXiCo/z5ZyjTAVmZBtyUaOLQcpxhQkG5NxN/8uUk2pSCtMQ1ZRFmriIfVAsCYYwepgBGuCEaQMgq/UF8HqYET5REEq4t63/Px8pKSkICoqii8/rLGbYmtIm5iYiHnz5uHq1auQyWTo06cPPv/8c376kNK0kydPxq1btwAAU6dOxTvvvIPFixfD398fL7zwAgAgODgY6enpuH79Oh577DGo1WqMGTMGa9euRWJiItasWYN9+/YhMzMTd+/exYIFC/Diiy/C4XDg448/xrfffgvGGPz8/LB9+3b+8xIKhbBYLEhISEBISAiEQiFEIhGsVmutpzupV2CXlJSEv/3tbzh//jyMRqPTvitXrtT1cC1Oc8xjRwipmclSjLjEXByLz8HR+BxcStVXumNKl0AthnTwxtBoH/SP9IJa1mi3wCakXbPYLUg1piLFmIKUghQ++Esxcut6i77a5wsggK+SC/JiNbEYpRmFiIgIqBQqSEQSSISSNntrtjVr1uDatWv46KOP6vzcZp3HrtTUqVMRExODJUuWOP2HRQghjUklE2NErB9GxHIdi/WFNhxPyCkJ9LJxI8OIK2kGXEkz4L+HEyAWCtAz1ANDO3hjcAcf9An3gExcx47H9WCz2fDtt98CAKZPn04z+pMWqa7lVCaSIVIXiUhdpMv9RquxLNgrCfzKL0XFRcgszERmYSbS89MxKHoQMgszIbSVBXNioRgSkQRSoRQSoaRsvY0Hfk2p3neeyM/Pdxq90ZZQjR0hrUNmgZkL8m7l4Eh8NpLzipz2y8RC9I/wwpBobwzp4IPuwbomuTOGyWSCWq0GABiNRqemP0JaiuYsp4wx5JpzuRo/UwpyDDno4OgA3xBfMBGDzWGDg7m+q015VQZ+JesNCfz27NmDv/71r07bxo0bV69atsbklhq7cePG4fjx4xgyZEh9nk4IIY3CTyPHxF7BmNgrGACQlFuIo/HZOHKLa7rNNlpw+FY2Dt/KBnAdGrkYAyO9MbQk0Ovor26UiV1FIhE/FUKdpyYgpJk0ZzkVCATwVnjDW+GN7r7d+WAlWB0MuVwOxhjszA6b3Qarwwqbwwarnftrs9v4wK/YUYxiRzGKUOTyPA0J/MaOHYuxY8c21VvgNvWqsZs5cya2bt2KMWPGVJq3rvwdKVorqrEjpPVjjOFmphFHb2XjSHwOjt/OQYG52CmNj1qKwR18MLQDF+iFeVPXEkKaQl3vFesq8Ku4Xt8aP4mwrLm3JTb1uqXGLioqCn/+85/r81RCCGkWAoEAHf016OivwayhkSi2O3A51YAj8dk4Fp+DuMRcZBut2H4+FdvPpwIAQjwVGNrBB0OivTG4gzf8NDSNCSHuIBAIIBaIIRaKoYCi0v6qAj+bo+SxvQ41fi769rXkwK8mNN2JC1RjR0jbZym24+zdfBy9VfXUKjF+agyN9sHgDt4YFOUNnYIGRRBSH3WtsWsoPvArX9PnIvCriUgochnwNWXg55Yau48//tjldplMhpCQEIwcORIeHh71OTQhhDQLmViEQVFcwLYAgLFkapXSQO9KmgE3M424mWnEmqOJEAqAbsE6DOnggyEdvNE/wgsKKddPqbCwED179gQAnD9/nmYLIC1SeyqnTjV+4mpq/GoI/OwOO4ocRSgqdl3jVz7wC1QFQix0/3RL9crBmTNnsHXrVgwcOBAhISFITk7GiRMn8NBDDyE1NRXPPfcctmzZgvvvv7+x80sIIU1CLRPjvlg/3FcytUqeyYrjt7nRtkfjc3A7y4QLyXpcSNbjy0PxkIgE6B3miaEdfNA7WIlbtxMAhx3UCEJaKsYYP/FueyynAQEBSE9PB1D3wK9bx244dOYQRBJRlYFfsDq4uV+SS/UK7IqLi7F582ZMmDCB37Zz506sWbMGR48exbfffosFCxbg3LlzjZVPQghpVp4qKcZ3D8T47oEAgDR9EY7F55SMuM1Gmt6Mkwm5OJmQCwDo+OZP6OQtxrq4NNwT44sugVoIm2BqFULqSy6X4/Dhw/y6uzDGqqwBawiFWNEoo9yByoGfUCBEoCqQf98qBn7FjuIW0x+vXn3sdDodcnNznYZLFxcXw9vbG3q9Hg6HAx4eHjAYDI2a2eZCfewIIdVhjCExh5ta5WhJoJdXaHNK46GUYHCUN4Z08MaQaB9E+aga7UeHkNamfL8xh8iBgRsGNvo5Tkw7AaWk6ubl8jV2VbHb7Zg1axbOnDkDoVCIt956C9OmTUNERARmzpyJbdu2QaPRYMeOHfDw8MCXX36Jr7/+GhaLBQMGDMBXX30FoVCIESNGoG/fvti/fz8kEgm+++47REdHIyMjAy+88AJSUlKgUCjw9ddfo2PHjk55cEsfuy5duuCDDz7AW2+9BbFYDLvdjo8++gidO3cGwN1yjPrYEULaKoFAgEgfFSJ9VJg+MBwOB8O19AIu0IvPwYnbOcgvtOGXS+n45RL3QxKglZcMwvDC4CgfhHo1Xu0CIaRxnDt3Dnfv3sXly5cBAHp92W3ToqOjcf78ecybNw8bN27ECy+8gMcffxxz5swBAMydOxc7duzAww8/DIC7Tpw7dw47duzAa6+9hu3bt+O1117DokWL0KdPH5w4cQILFizAjh07GvU11CuwW7t2LaZNm4ZPPvkEfn5+yMzMRGxsLDZs2AAAyMjIwIoVKxozn3WWlJSEiRMn4sqVKzAajfzNqQkhpLE5HHZcPrIHOgBfPTUZTCDEhWQ9PxDj9J08pBvM2Ho2BVvPpgAAgj0UGBjlhUFR3hgc5Y1Qr7bbkZ20DMXFxdi6dSsA7kb37vpdVIgVODHtRJMct6GioqKQlJSEV199FZMmTcKIESP4faUBW+/evXH79m0A3CCUd955BwaDAfn5+QgNDeXTTZ06FQAwYcIEPvj77bffcOXKFf6YTTFRdL0+1Y4dO+LUqVNITExERkYGAgICEB4ezu8fMGAABgwY0GiZrA9fX1/89ttvmDRpklvzQQhp+ywWCx5//HEAZbdq6hvuib7hnpg3MgZmmx2n7+ThWMlEyeeS8pGSX4QtZ1Kw5UxZoFc6rcrgDt4I9mj4jxQh5VUsp+4K7AQCQbVNpu7k6emJ8+fPY9euXVi8eDFGjBiBxYsXA+Bm/gAAoVCI4mJusvPZs2dj9+7diImJwSeffAKTyVTt8QUCAd/M21Qa9Kn6+flBJBKBMYa7d+8CAMLCwholYw0ll8vd2jmUENJ+CIVCDB8+nF+vSC4RYWi0D4ZG+wAACq3FToHehWQ9UvKL8OPpZPx4OhkAEOqlwOCoskAvUEeBHmmYmsopAbKzsyGVSjF16lT4+Pjgn//8Z7XpCwsL4evrC7PZjI0bN+LBBx/k9/3www/o378/duzYgd69ewMAhg0bhv/+97944YUX4HA4cPnyZXTv3r1RX0O9AruLFy9ixowZuHDhAgDw/USkUikKCwvrlZFFixZh06ZNuHbtGjZs2IAnnniC35eVlYVZs2bhwIEDCA0NxapVqzBy5Mh6nYcQQhqbQqHAwYMHa51eKRVjWIwvhsX4AgBMlmKcupOH47dzcCw+BxdT9EjKLUJSbjI2nuICvXBvJR/oDYryRoCO/nEldVPXctrWZGVlISQkhH/81Vdf8ffOLZWcnIxnnnkGjDFIJBKsXLmy2mMuXLgQffv2RXh4OB+8lZJKpRg0aBDsdju+++47AMA///lPzJkzBytXroTNZsOMGTNaRmA3Z84cTJw4EceOHUNgYCDS0tLw3nvvoUOHDvXOSExMDD777DO8++67lfa99NJLCAoKQnZ2Nvbu3YspU6YgPj4eFovFKQAEALVa3egdEQkhpCmpZGIM7+iL4R25QK90suTjt3NwvCTQu5NTiDs5hfg+LgkAEOmjwqByffT8tBToEVIdu91eY5pevXrh7NmzlbYnJiby67NmzeLXX375Zbz88ssujzVjxgx88MEHTtv8/f35fo5NpV6B3eXLl/HHH3/wVblyuRxLly5FVFQUXnzxxXpl5KmnngIAvP/++07bjUYjfvrpJyQmJkKpVGLSpElYvnw5tm/fjhkzZjTKfx8WiwUWi4V/3FqnaSGEtA0VJ0suMNtwKjEPx25zTbeXUvRIyDYhIduE705ygV6Ur4oP8gZGedF9bglpp+oV2Hl4eCA/Px9eXl4IDg7G+fPn4eXlBaPR2Nj5w82bN6HT6RAYGMhv69mzJz8UuSpmsxkTJkzA+fPnMXbsWCxevBjDhg1zmfbDDz/EkiVLGjXfhJD2o6ioCIMHDwYAHDt2DApF4/aH08gluK+TH+7rxAV6+iIbTiXmcn30EnJwOdWA21km3M4yYcMJrr9ztJ+an1plYJQXfNSyRs0TaX2aupy2Ni+99BKOHDnitG3VqlUYMmRIg4/tzibvegV2s2fPxqFDhzB58mS88sorGDZsGIRCIZ5//vnGzh+MRmOlyfi0Wi3y8/OrfZ5cLsevv/5aq3O89dZbWLBgAf/YYDAgNDS0znklhLRPDocD58+f59ebmk4hwcjO/hjZ2R8AoC+04WRJ0+2x+BxcTTfgVqYRtzKNWH+cC/Q6+qv5/nkDI73gTYFeu9Pc5dSVlnQrs5r6z7lLQ9+jegV277zzDr/+/PPPY8yYMTAajejatWuDMuOKWq2u1DRqMBigVqsb7RwymYwfxkwIIXUll8uxd+9efr256ZQSjO7ij9FduEAvv9CKEwllgd619ALcyDDiRoYR/zt2BwAQ66/h++gNoECvXXBnOZVIJBAIBMjKyoKvry9Nzl0FxhiysrIgEAggkUjqdYw6BXZdunSpMU35ifcaQ0xMDPR6PdLT0xEQEACAmxBw9uzZjXoeQgipL5FIhNGjR7s7GzwPpRRjuwZgbFfumplnsuJEQg6O3+aCvWvpBbiewS1rSwK9GD+uRm9glBcGRnrDV0OBXlvjznIqEokQEhKC5ORkp4EIpDKBQICQkJB6T15cp8AuISEBYWFhmD59Ou69995GjbhtNhvsdjscDgdsNhvMZjOkUinUajUefvhhLFq0CCtWrMC+fftw6dIlPPTQQ412bkIIacs8VVKM6xaIcd24vso5RgtOJOTixO0cnEjIxbX0AtzMNOJmphHrjnOBXgdfFQaWNNsOivKGP426JQ2kVqsRExMDm81Wc+J2TCKRNOiOFAJWh8bcgoICbNmyBd9++y1u3bqFKVOmYPr06ejRo0e9M1Bq1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDz1mVutxslxBCiouLsWfPHgDA2LFjW90tDHNNVpxMyOVr9a6lG1DxlyHSR8UHeQOjvGjC5FaotZfT9qwucUmdArvyMjIy8P333+O7776DyWTCDz/8UKum2taAAjtCSF2YTCa+32/pLcVas/KDMU4k5OBKqgGOCr8U4d5KDIzkmm0HRnkhxLNl3iKKlGlr5bQ9qUtcUu9wXSaTQaFQQC6XIycnx20jbAghxN2EQiH69evHr7d2FQdjlE6vUjog41K5CZNL74wR4qngg7zBUd4I8VRQB/kWpq2VU+JanWrsLBYLfv75Z6xfvx5nz57FpEmTMG3aNAwaNKgp89jsqMaOEEKqVmC28bdAO3E7FxdT9LBXqNIL0smdBmOEeysp0COknpqsKdbDwwMBAQF48sknMXr0aJft8wMGDKh7jlsYCuwIIaT2jJZinL6Txw/GOJ+Uj+IKgV6AVs4HeYOivBDpo6JAj5BaarLALiIigv8iCgSCSpPoCQQC3L59ux5ZblkosCOEkPortBbjzJ38ksEYOTiXlA+b3fn3wlcj4wdjDIryQgdfNQV6hFShWQZPtGUU2BFC6qKoqIgfqf/rr7+2+1s1VWS22XHmbh6O3+amWDmblA9rsXO/bB+1lO+jNzDSGzF+agiFFOg1JiqnrRcFdg1EgR0hpC5otGHdmG12nEvKx4mSCZPP3M2DpUKg56WSYkCEFwaW3B0j1l9DgV4DUTltvZplVCwhhBCOTCbD1q1b+XVSPblExN+39hXEwFJsx4VkPY7Hc330Tt/JQ67Jit2X07H7cjoAwEMpQf8IL/5et50DtRBRoFcnVE7bB6qxc4Fq7AghxH2sxQ5cTMnnb4F2+k4eCq12pzRauRgDys2j1yVQC7GIpvAgbRM1xTYQBXaEENJy2OwOXErRc330EnJwKjEPRkuxUxqNTIx+EZ4YWFIT2C2IAj3SdlBg10AU2BFC6sJut+OPP/4AAAwbNqxB93kkNSu2O3A51YATCdw8eicTclFQIdBTSUXoG+GFQSWDMXqE6CBp54EeldPWiwK7BqLAjhBSF9Qp3b3sDoaraQYcv83d6zYuMRf6IucbzSulIvQN9+RugxbFBXoycfsKbKictl40eIIQQpqRQCDg75VNc7E1P5FQgG7BOnQL1mH2sCg4HAzX0gv4e92eTMhFXqENf9zMxh83swEAMrEQvcM8+D56fcI8IZe07UCPymn7QDV2LlCNHSGEtB0OB8ONzAKcKOmjd+J2LnJMVqc0UpEQPUN1fKDXN9wTSinVfZCWgZpiG4gCO0IIabsYY4jPMpYMxuAmTc4ssDilEQsF6B5SFuj1C/eERi5xU45Je0eBXQNRYEcIIe0HYwyJOYU4WVKbdyIhFyn5RU5phAKga5CO76M3IMILOiUFeqR5UGDXQBTYEULqoqioCA8//DAA4Oeff6ZbNbUBSbmFfG3eiYRc3M0tdNovEACdArQl97v1woBIb3ippG7Kbe1QOW29KLBrIArsCCF1QaMN2740fZFTH73b2aZKaTr6q/mm2wGRXvDTyN2Q06pROW29aFQsIYQ0I5lMhvXr1/PrpO0J1CkwqXcwJvUOBgBkGsw4mZjLB3s3Moz8su74HQBAlI8KA6PK7o4RqHNvDRmV0/aBauxcoBo7QgghdZFjtCAuMZcfkHEt3YCKv65hXkq+j97ASC+Eeindk1nS6lBTbANRYEcIIaQh9IW2kho9ro/e5VQ9HBV+bYM9FCWBHtdHL8JbSfPLEZcosGsgCuwIIXVht9tx5swZAECfPn3oVk2kEoPZhtN38vim24vJehRXiPT8tTIMiPTmB2R08FU3aqBH5bT1osCugSiwI4TUBXVKJ3VlshTjzN2yQO98kh5Wu8MpjY9aigGRZX30OvppIBTWP9Cjctp60eAJQghpRgKBAOHh4fw6ITVRycQYFuOLYTG+AACzze4U6J29m49soxW7LqZj18V0AICHUoIBEWV99DoHaiGqQ6BH5bR9oBo7F6jGjhBCiDtZiu24kKzn++idSsxDkc3ulEYjF6N/hBc/IKNbkBZikdBNOSZNiZpiG4gCO0IIIS2Jze7AxRQ9X6N3KjEPRkuxUxqVVIS+JYHeoCgvdA/2gFRMgV5bQIFdA1FgRwghpCUrtjtwJc3AB3onE3JhMDsHenKJEH3DPTEgguuj1yvUA3IJDZhojSiwayAK7AghdWE2m/HEE08AAL7//nvI5S3rjgOk7XM4GK6lF/B3xjiZmItck9UpjVQkhKQgBerCNHy04DkMivaHQkqBXmtAgV0DUWBHCKkLGm1IWhqHg+FWlhEnbufgeAJ3h4xso8UpjUQkQI8QD76PXt9wT6hlNKayJaLADkBqaioee+wxiMViaLVabNy4EUpl7Wb5psCOEFIXNpsNa9asAQDMmjULEonEvRkipALGGG6k6bHiu51IKpIiW+iJdINzoCcSCtAtWMcFepFe6BfhBZ2CynJLQIEduIkYBQIBhEIhFi1ahG7dumHKlCm1ei4FdoQQQtoyxhiScotwvKTp9kRCDpLzipzSCARAl0AtP4/egAgveKqkbspx+0bz2AFOM2oLBALExsa6MTeEEEJIyyEQCBDmrUSYtxKP9wsFAKTkF3HTq5QEeok5hbicasDlVAO+OZIAAOgUoOGbbgdEesFHLXPnyyAutJgau0WLFmHTpk24du0aNmzYwHdEBoCsrCzMmjULBw4cQGhoKFatWoWRI0fWeMzDhw/jlVdegUKhwM6dO6HT6WqVF6qxI4TUhcPhwNWrVwEAnTt3hlBIU0yQlqeu5TTDYMbx29yI2xMJubiVaayUJtpPjYGRXhgQ6YVBUd7w19LAoabQKpti169fD39/f7z77rt49dVXnQK7xx9/HDqdDp999hn27t2LZ599FvHx8bBYLE7pAECtVmPHjh1O2z799FOIRCK89tprtcoLBXaEkLqgwROkNWhoOc02Wrggr2TS5GvpBZXSRHgr+abbgVHeCPZQNEre27tW2RT71FNPAQDef/99p+1GoxE//fQTEhMToVQqMWnSJCxfvhzbt2/HjBkzcPDgQZfHs1gskMm4KmKdTge73e4yXWlai6WsE6nBYGjgqyGEtDc+Pj7uzgIhNWpIOfVRy/BA90A80D0QAJBnsuJkYi7fdHslzYDEnEIk5hTih1NJAIAQTwUf6A2K9Eaol4JuZ9bEWkxgV5WbN29Cp9MhMDCQ39azZ09cvny52ufFxcVh4cKFEAqF8PLywrp166pM++GHH2LJkiWNlmdCSPuiUqmQlZXl7mwQUq3GLqeeKinGdg3A2K4BAAB9kQ2n73CB3vGEXFxK0SM5rwjJecnYfCYZABCok2NApBcf7EX5qCjQa2QtPrAzGo2Vqh21Wi3y8/Orfd4999yDQ4cO1eocb731FhYsWMA/NhgMCA0NrXNeCSGEkPZKp5Dg/k7+uL+TPwDAaCnG6Tt5fNPtheR8pOnN+OlcKn46lwoA8NXIuP55JQMyYvzUFOg1UIsP7NRqdaWmUYPBwPcTaAwymYxvtiWEEEJIw6llYgzv6IvhHX0BAEVWO87czeMnTT6XlI+sAgt2XkjDzgtpAAAvlRQDIry4PnqR3ugUoIFQSIFeXbT4wC4mJgZ6vR7p6ekICOCqe8+fP4/Zs2e7OWeEEMIxm8147rnnAABff/013VKMtEjuLqcKqQhDo30wNJrr52e22XE+KR8nErg+eqfv5CHXZMXuy+nYfTkdAKCVi52abrsEaiEW0ajz6rSYUbE2mw12ux1jxozB888/jylTpkAqlUIoFGLKlCnw8vLCihUrsG/fPsyaNQvx8fHw9PRskrzQqFhCSF3QqFjSGrT0cmotduBiSj6O3+amVzmdmAuT1Xngo1omRr8ITz7Q6x6sg6QdBHqtcrqTWbNmYe3atU7bDhw4gBEjRiArKwszZ87EwYMHERISglWrVmHUqFFNlhcK7AghdWGz2bBy5UoAwEsvvUS3FCMtUmsrp8V2By6lGvg+enGJuSgwFzulUUpF6BvuyU+a3CNEB5lYVMURW69WGdi1JBTYEUIIIS2L3cFwNc3ANd3ezsHJxFzkF9qc0sjEQvQO8+Br9PqEeUIuaf2BHgV2DUSBHSGEENKyORwMNzIL+Hn0TtzORY7J6pRGKhKiZ6iOD/T6hntCKW3xwwsqocCugSiwI4TUhcPhwN27dwEAYWFhdEsx0iK19XLKGEN8lpHvo3fidg4yCyxOacRCAbqHlAV6/cI9oZG37CZpgAK7BqPAjhBSFy29UzohQPsrp4wx3Mkp5GvzTiTkIiW/yCmNUAB0DdLxffQGRHhBp2x5gV6rvKUYIYS0Zkql0t1ZIKRG7amcCgQCRPioEOGjwtT+YQCApNxCvjbvREIu7uYW4mKKHhdT9Pjv4QQIBECnAC0GRnphUJQXBkR6w0sldfMrqRuqsXOBauwIIYSQti9NX8TX5p1IyMHtLFOlNB391XzT7YBIL/hpmn+eSmqKbSAK7AghhJD2J7PAjJMJufyAjBsZxkpponxU/J0xBkZ5IVCnaPJ8UWDXQBTYEUIIISTHaEFcYi4/IONaugEVo6YwLyUGRnrh9bGx8Nc2TW0eBXYNRIEdIaQuLBYLXn75ZQDAF198QfeeJi0SldOG0xfacDIxFycTuD56l1L0cDBuEMb5RWOabIQtBXYNRIEdIaQu2ttoQ9I6UTltfAVmG07dyUNitgnPDI1ssvPQqFhCCGlGEokES5cu5dcJaYmonDY+jVyC+2L9gFh356QM1di5QDV2hBBCCGkp6hKXtK1ppwkhhBBC2jFqiiWEkAZijCE7OxsA4OPjA4FA4OYcEVIZldP2gQI7QghpoMLCQvj5+QGgTumk5aJy2j5QYOdCabdDg8Hg5pwQQloDk6lstnqDwQC73e7G3BDiGpXT1qs0HqnNsAgaPOFCcnIyQkND3Z0NQgghhBBeUlISQkJCqk1DgZ0LDocDqamp0Gg01fZB6N+/P+Li4qo9VlVpDAYDQkNDkZSU1OpH3tbmfWgN522M49XnGHV5Tm3T1pSuuv1UNlveORt6zKYul7VNT9fMMlQ26//89njNZIyhoKAAQUFBEAqrH/dKTbEuCIXCGiNiABCJRDV+iDWl0Wq1rf4iVZv3oTWctzGOV59j1OU5tU1bU7raHIfKZss5Z0OP2dTlsrbp6ZpZhspm/Z/fXq+ZOp2uVuloupMGeOmllxolTWvnrtfY2OdtjOPV5xh1eU5t09aUrj2US8A9r7MpztnQYzZ1uaxterpmlqGyWf/n0zWzetQU6yY0CTJpqahskpaIyiVpqVpa2aQaOzeRyWRYtGgR3YSZtDhUNklLROWStFQtrWxSjR0hhBBCSBtBNXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW2E2N0ZaIkcDgdSU1Oh0WggEAjcnR1CCCGEtGOMMRQUFCAoKAhCYfV1chTYuZCamorQ0FB3Z4MQQgghhJeUlISQkJBq07TqwO7cuXOYO3cuLl68iOjoaHzzzTfo3bs3AOCjjz7CsmXLYLfbMXv2bPzf//1frWvfNBoNAO4N1Gq1TZZ/QkjbYDab8dRTTwEA1q9fD7lc7uYcEVIZldPWy2AwIDQ0lI9PqtNqAzubzYbJkyfjrbfewnPPPYcff/wRkydPxo0bN/Drr7/iX//6F06cOAGFQoGRI0eiU6dOePbZZ2t17NIAUKvVUmBHCKmRSCTCvn37AAAqlQoqlcrNOSKkMiqnrV9tKqhabWB37do1FBYW4oUXXgAATJ06Fe+99x4OHTqEdevWYe7cuYiKigIAvP7661i/fn2tAztCCKkLqVSK1atX8+uEtERUTtuHVhvYucIYw+XLl3HlyhU8/fTT/PaePXvirbfeqvJ5FosFFouFf2wwGJo0n4SQtkUikWDWrFnuzgYh1aJy2j602ulOYmNjIZfL8eWXX8Jms+G7777DrVu3UFhYCKPR6NSEqtVqYTQaqzzWhx9+CJ1Oxy80cIIQQgghrVGrDeykUim2bt2KdevWISAgANu2bcOoUaMQHBwMtVrtVOtmMBigVqurPNZbb70FvV7PL0lJSc3xEgghbYTdbse5c+dw7tw52O12d2eHEJeonLYPrboptk+fPjhy5AgArsB26NABffv2RZcuXXDx4kU88MADAIDz58+ja9euVR5HJpNBJpM1S54JIW2P2WzmR+QbjUbqlE5aJCqnLtiLAYuBW8zl/xaUbC8ArEbAauL+WkrXTYC1oNy6CfhrIiCSuPsVte7A7uLFi+jYsSOsViv+9re/oVevXujWrRueeuopvPTSS3j88cehUCiwfPlyLFiwwN3ZJYS0UQKBAEFBQfw6IS1RmyynDgdg0QNFeWVLYbl1iwEw68uCNHOFIM5W2Hh5sRoBhWfjHa+eWnVg980332D16tVgjOHhhx/GmjVrAAAPPvggLly4gP79+8Nut+P555/HM888497MEkLaLKVSiZSUFHdng5Bqtfhy6nBwwZgpCzBllvzNdg7aivKAwtyydXM+wBwNP7dYAci1gEwLyDTO61I1IFUBMnXZulRdYbuKS98CCBhjzN2ZaGkMBgN0Oh30ej3NY0cIIYTUl72YC9IK0gBjabBWErCZskq2lawXZtc/SJOouNoypSf3V+EJyD0Aua4kSNM5B2x84Fay3gKaUKtTl7ikVdfYEUIIIcQNGONqzAypQEE6F7jxS3rZdlNm3YM1hSeg8uUWpTe3KMoFbEqvco+9AIUHIKZ+8qUosCOEkAYym8383Jnr1q2jWzWRFqlO5dRuAwwpQH4SoE8q+Xu37LE+BbBbqn5+eQIRoPYH1H7cUhq08YuP83oLrz1r6agptpyVK1di5cqVsNvtuHHjBjXFEkJqxWQy8VMq0WhD0lI5ldMCA1SOAiD3NpCbAOQlAPnlAreCtNrVtCm9AU1gyRLA/dWWfxzEBWtCURO/uratLk2xFNi5QH3sCCF1YbPZ8NVXXwEAXnjhBUgkVONAWgCHHdAnlwRvt2HPvoU7Zw9CZ8+Bl8AAQXFR9c8XyQBdCOARCuhCAY+wkr+h3HZNIDWBNhMK7BqIAjtCCCGthq0IyL4JZN8Asq4DWde49Zx4wGGr+nkCEReseUUBnhHcukcooAvj1lW+gLDV3segTaHBE4QQQkhbYzUBmVe5pTR4y7rONaGiijoakZQL2ryiAM9I7q9XFOAVyQVv1J+tzaHAjhBCGsjhcCA+Ph4A0KFDBwiploM0BGNcsJZxCUi/xP3NuMT1hasqgFN4Aj6xgG/Hkr+xgE8M13Ra0r/NqZx6RlI5baMosCOEkAYqKipCx44dAdDgCVJHdhtXA5d6Fki/AGRc5haLwXV6tT/g17lCENeJG6BQw90kqJy2DxTYEUJII9DpdO7OAmnpHHau+TT1LJBypiSYu+h62hCRlKt18+9WsnTl/qp9G5QFKqdtHwV2hBDSQCqVCvn5+e7OBmlJGOOmDUk6WRLEnQHSzru+N6lcBwT1BgJ6AAHduQDOJ6bR+79ROW0fKLAjhBBCGspu45pS754Akk5wAV1BauV0EhUQ1IsL5EoXr6gam1EJqS0K7MopP0ExIYQQUqWivHJB3AmuVq7ivHACERDYAwjpDwT14YI4nxiarJc0KZrHzgWax44QUhcWiwUvvvgiAODf//43ZDKatLXNMeuBO8eAxD+4Je0CKo1QlXsAoQOB0AFA2CAukJO2nAEKVE5bL5qguIEosCOE1AXdUqwNMhuAuyWBXMIfXDNrxVtseXUAwgeXBHMDAe+YFj2hL5XT1osmKCaEkGYkkUjw8ccf8+ukFbLbgORTQPxv3JJ6xnUgF3EPEHkvED6UuydqK0LltH2gGjsXqMaOEELagbxE4NZ+LpBL+L3y3HGekc6BnC7YLdkkpN3V2B07dgxDhw7FBx98gDfffBNr1qzB7NmzIZfL+TRXrlxBWFiYG3NJCCHErawmLoC7tR+I3w/k3nber/AEou4DokcCUSO4G90T0sq0+sDO4XDgtddeQ//+/Z22jxo1Crt373ZTrggh7YnD4UBaWhoAIDAwkG7V1JLok4HrvwA39nBBXfnJgIViIGQA0OF+IPp+ILBXmx6xSuW0fWj1gd1XX32FgQMHQq/X1/sYFosFFkvZl91gqOJWLoQQ4kJRURFCQrjaHeqU7mYOB3dHhxu/ANd3AxkXnfd7hAHRo7lgLvJeQN5+uttQOW0fWnVgl5ubixUrVuDYsWN47bXXnPYdOXIE3t7e8Pf3x/z58zFnzpwqj/Phhx9iyZIlTZ1dQkgbJha36stp62YrAuIPANd3Ajf2AqbMsn0CIVcr13EsEDueu69qO54MmMpp29eqP+G3334br776Kjw9PZ22Dx8+HBcvXkRYWBji4uIwefJk+Pv7Y/LkyS6P89Zbb2HBggX8Y4PBgNDQ0CbNOyGk7VCpVLDZbO7ORvtiKQBu7gWu/Azc3AfYTGX7pBquabXjeCBmDKDydl8+WxAqp+1Dqw3szp49i5MnT2LlypWV9kVGRvLrAwcOxPz587F169YqAzuZTEYTNRJCSEtXlMc1r179mRsAUb6/nDYE6DwB6DiOG8Eqlrovn4S4UasN7A4dOoQbN24gOJgbfq7X6yEWixEfH4///Oc/TmmpgyghhLRSpmzg2g6uZi7hEOAoLtvnFQV0fhjo8jB3y6523MRKSKlWO49dYWGh0yCHV155BTExMXj99ddx/Phx9O3bF76+vjhz5gwefvhhLF++HI8//nitjk3z2BFC6sJisfDdOZYvX04tAA1VlM8Fc5c2A7cPAazc/bt9O3OBXOeHAf+uFMzVAZXT1qtd3lJs1qxZ6NSpE9588038+c9/xrp161BYWIjg4GC8/PLLmDdvXq2PRYEdIaQu6FZNjcBayI1kvbSF6ztnt5btC+wJdJnIBXM+Me7LYytH5bT1ancTFAPAmjVr+PVly5Zh2bJl7ssMIaRdkUgkWLRoEb9OaqnYyt314dKPwLVdzgMgfDsB3R4Duj0CeHdwXx7bECqn7UObqbFrTFRjRwghTcThAO4eBS78wPWbM+eX7fMIB7o9CnR/DPDrQs2shJRolzV2hBBCWrDsW8CF74HzPwD6u2Xb1QFA18lcMBfcl4I5QhqIArtyVq5ciZUrV8Jut9ecmBBCSjDG+Lvf6HQ6CCg44RTmApe3Aue/B5JPlm2Xabk+cz0e56YmacO38WpJqJy2D9QU6wI1xRJC6oI6pZdjt3ETBp//Drixu2wQhEAERI8Eej4BxD4ASBTuzWc7ROW09aKmWEIIIc2HMSDtHFczd3ETUJhTts+/OxfMdZ8CaPzdlkVC2gsK7AghpIGUSiWsVq5mql3di7MoH7iwETi9Bsi8XLZd5cc1s/Z8Agjo7q7ckQrabTltZ+iTJYSQBhIIBO1n+gjGgKQTXDB3eStQbOa2i+VApweBnk8CUfcBIvp5aWnaVTltx+ibRwghpGaFuVy/udNrgezrZdv9ugJ9Z3I1dApP9+WPEAKAAjtCCGkwq9WKhQsXAgDef/99SKVt5Ab0jAGJh7nauas/lw2EkCi5iYP7zAJC+tEUJa1Emy2nxAmNinWBRsUSQuqizY02NGYB5zdwtXO58WXbA3oAfWdxAyHkdG1sbdpcOW1HaFQsIYQ0I4lEgtdff51fb5UcDiDhIBfMXdsJOGzcdqmamzy47ywgqLc7c0gaqE2UU1IjqrErp/wExTdu3KAaO0JI21eQDpxdD5z5H5B/p2x7cF+gz0zuFl8ytfvyRwipU40dBXYuUFMsIaRNc9iB+N+4vnPXfwFYyd12ZDpuEETfmTRNCSEtCDXFEkJIM2KMobi4GAA3P1iLvVWTPoWrnTu7DtAnlW0PHcg1tXaZBEiV7sodaWKtppySBqHAjhBCGqiwsLDldkq3FwM39wJn1nJ/mYPbLvfg5pzrOxPw6+zWLJLm0aLLKWk0tQrsNm7cWKuDiUQiPProow3KUGPKysrCrFmzcODAAYSGhmLVqlUYOXKku7NFCCFNL+8OVzN3dj1QkFa2PfweLpjr/DAgkbsvf4SQJlGrwG7atGm49957UVN3vLi4uBYV2L300ksICgpCdnY29u7diylTpiA+Ph6enjSJJiGk8SiVSuTl5fHrbmO3cX3mTq/h+tCh5Jqt9AZ6TeMGQ/jEuC9/xK1aTDklTapWgyc0Gg0KCgpqPJinpydfaNzNaDTC29sbiYmJCAwMBADce++9mD17NmbMmFHtc2nwBCGkVcm9zY1qPfstYMos2x45nOs71+lBQCxzW/YIIQ3T6IMnbt++XasT37hxo1bpmsPNmzeh0+n4oA4AevbsicuXL1dKa7FYYLFY+McGg6FZ8kgIIfVWbAGu7eDmnUs4VLZd5Qf0ng70mQF4Rbkvf4QQt6hVYOfr61urg9U2XXMwGo2VolqtVov8/PxKaT/88EMsWbKkmXJGCGlrrFYrPvjgAwDA22+/3bS3asq+yTW1nv8OKMwp2SgAokdytXMdxwEimnyWVNas5ZS4TZ3nsRs/frzLIdIymQwhISGYPHky7r///kbLYH2dPXsWY8eORWZmWbPEvHnzoFQq8X//939OaV3V2IWGhlJTLCGkVpr8Vk02M3ev1tNrgDtHyrZrAoHeTwO9nwI8wxv3nKTNoVuKtV5NOo9dv3798L///Q8zZ85ESEgIkpOTsW7dOjzxxBMQCAR48skn8eabb+K1116r9wtoDDExMdDr9UhPT0dAQAAA4Pz585g9e3altDKZDDJZ8/Y/+eiXazDb7NDIxVDJxFDLxNDIub9qGbeNfywXQyYWNWv+CCG1JxaLMXfuXH690WRe5Zpaz38HmPO5bQIhEDOGq52LHg2IaNYqUjtNVk5Ji1LnGrt+/frhu+++Q0xM2ciqmzdv4sknn8SpU6dw+vRpTJkypdb98prSlClT4OXlhRUrVmDfvn2YNWtWrUbFNsfgif7v/4qsAkvNCUtIRUKoZCKo5WKoZRJoZGKoZCJo5BJ4KCXQKcoWD6W05G/ZNrmEAkNCWgVrIXB5KzfvXNKJsu260LLaOV2w+/JHCGl2TVpjFx8fj+Bg54tKYGAgbt26BQDo06cPsrKy6nrYJrFq1SrMnDkT3t7eCAkJwcaNG1vMVCcv3huFvEIrTBY7CszFMFpsMFqKYTQXc39L1k1W7lY/VrsD1kIH8gptAIrqfD6ZWMgHeh4KKbQKCTyVEnippfBRyeCtlsJLJYWPumydagkJaUZpF7hg7sImwKLntglEQOx4rnauw/2AkL6ThJDq1TmwGzNmDKZMmYJ3332Xb4pdunQpxo0bBwA4efIkwsNbRl8PX19f7Nq1y93ZcGn2sNqNVrM7GEzWYphKAr2CCsGfocgGQ5EN+UU26ItsyC/k/pZf7A4GS7EDGQYLMgy1ryXUyMR8kOetlsGnZN1PI4e/Vg5/rQwBOjl81DJIRML6vhWEtF9mA3DpR665Ne1c2XbPCG5Ua6/pgCbAXbkjhLRCdW6KNRqNeO+997B161akp6cjMDAQkydPxpIlS6BWq5GcnAyLxYIOHTo0VZ6bXFuax44xBqOl2GXAl2uyItdkRY7RghyTFTlGK3JMFuQYrSh21L5YCASAj1rGBXpaOfy0cvhr5AjQyeCnlSPEQ4FgTwWUUurTQdomk8kEDw8PAEB+fn71ndIZA5JOcvPOXd4C2Aq57UIJ0HkCF9BFjgCE9M8SaVx1KqekRalLXFLnwK49aEuBXX0wxmAoKuaCvAqBX7bRgkyDBRkFZmTozcgssNQ6CPRWSRHsqUCIpwIhnsqSv9x6sIcCKhkFfqR1qtVoQ1MOcOF7LqDLula23SeWC+Z6PgmovJspx6Q9olGxrVeT9rEDgJ07d+LHH39EVlYWduzYgbi4OOTn52P06NH1yjBpWQQCAXRKCXRKCaJqmJrQ4WDIMVmRYTCXLBakG8zILHmcpjcjNb8IBnMxFxyarLiQrHd5LG+VFBE+KkSWLFE+KkT6qhDhraLBH6RFUygUSE5O5td5Dgc3efCZ/3GTCdut3HaxAuj2CBfQhQ7kqr0JaWJVllPSptS5xu7jjz/GunXrMGfOHCxcuBD5+fm4du0aZs6ciRMnTtR8gBZs5cqVWLlyJex2O27cuNFua+yagr7IhpS8IiTnFSI5rwjJeUVIyS9b1xfZqn1+kE6OSF8u4Iv2VSM2QIvYAA28VDTBJmmBDGnAufXAmXVA/p2y7YG9uGCu+2OAXOe27BFCWpcmbYoNCwvDyZMnERAQwN8bljEGb29v5ObmNijjLUV7b4p1B4PZhrs5hUjMMSEhy4SEbBNuZ5twO8sIg7m4yuf5amToFKBBR38NYgM0iPXn1hVSquEjzazYCtzcw92v9eYegDm47TIt0ONxLqAL7OnePBJCWqUmbYq12+3Q6bj/NEvvQGEwGPh2e0LqQyuXoFuwDt2CnWsxGGPIK7QhIduIhOxCxGcZ/7+9+w6PqkwfPv6dmpn0QnoFEkILIFWaAioodkX5iahgV3BF1y4KrN3VFQvrq+vapSy6lhUVQTpSpffQ0ntPZjL1vH8MDAkgBNJmkvtzXXOdM+c8c+aZ5MnJPU8lvaCK/QVVZJWaKaqyUFRlYXV6sfs1ahUkR/iTFhtMr7gg0uKC6B4dKM25onnkbcfxxxdYNn+Jb92piBIGQ987oPu1oPdtvfwJcYzVauXtt98G4OGHH5Ylxdqoc66xmzp1KlVVVbz55pt06dKFzMxMHn30Ufz8/HjrrbeaK58tSmrsvEO1xe4K8vJdgd6BY/vF1dZT0mrUKrpEBtArNogLEoLpnxRK53C/0y6PJ8RZVRfBzoWwbS4U7HQfzq1y0uGSqegHTILw1NbLnxCnIYMnvFez1ti98cYb/PWvfyUxMRGz2UxkZCR33HGHe2FhIVqKv4+WCxJCuCCh/qTTBZW17MyuYEdOBbtyKtiRXU5xtZW9eZXszatkweYsAEL99PRPDGFAUij9k0LoEROEXitTTIg/4bDBgcWuYC59MTiPdRHQ6HF0uYLZKwrZbY7g/UtmQgsvUShEQ2i1Wu644w73vmibGjXdSVFRER06dGhztR5SY9e2KIpCfmUtO7Ir2J5Vzh8ZZWzLKsdid9ZLZ9CpGZAUyrDkDgxL6UC3qEDU6rZVtsU5UhTI3+laq3XHf8B0osmfmL7QZwL0vBF8Q1svj0KINq/JB09s3LixQW88cODAhuXQw0lg1/ZZ7U525Vaw6Ugpm46WsTmjlHJT/ZG5YX56hh4L8i5KCScqyNBKuRUtrjzT1dS6YyEU7T1x3D8Seo13BXQR3Vovf0KIdqXJA7uOHTueeIFKRXZ2NiqVirCwMEpKSlAUhbi4OA4fPtz43HsACezaH6dT4WBRNWvSi1lzsJj1h0swHVun97i02CAu6x7J6B6RpEYGtLma6nbPVAp7vnPVzGWuO3Fco4cul8MFE6HzJaCRJiwhRMtq1ulOZs2ahclkYubMmRiNRsxmM7NmzcLPz4/nnnuuURlvbTKPnTjOaneyNbOM1enFrD5YzI7scur+pcSHGhndPYrR3SMZkBQqTbbeymaG/T+7aufSl4DzeK2tCpKGuaYp6XYNGIPPeJmamhpiY2MByMnJkU7pwiNJOfVezRrYdejQgfz8/HodL202G9HR0RQXF5/hld5DauzEyYqqLCzbV8CvuwtYfbAYa53+edFBBq7pHcO1fWLpFi01eR7PYYejq1zNrHv/B9aqE+ei0iDtZle/uaDYBl9SRhsKbyDl1Hs166jYkJAQfvvtN8aMGeM+tmLFCvfCwkK0ReEBPowfkMD4AQnUWOysTi/i190FLNlbQF5FLR+sOswHqw6TEuHPdRfEcv0FscQEy5I9HsNhh6OrYfe3rqW9TCUnzgUlQK+bXAFdRNfzurzRaOTAgQPufSE8kZTT9uGca+x++uknbrnlFgYNGkR8fDyZmZls2rSJr776iiuvvLK58tmipMZONFStzcGK/YV8tzWXZfsKsTpcNXlqFYxIjWDCwARGpIaj1cg0Ki3uTMGcb5hr4uC0m11rtarl9yOE8FzN2hQLUFxczE8//UReXh7R0dGMHTuWDh06nHeGPY0EduJ8VJhtLN6Vz3+3ZrP+8Inl9aKDDNzcP54JgxKIDJSRtc3qeDC35ztXM+vJwVy3q6H7dZA0XAZBCCG8RrMHdp7k1Vdf5emnn2bdunVceOGFAEyaNIl58+ah0+kASExMZPfu3Q2+pgR2orEOF1Uzf1MWCzdnUXZsGhWdRsXVvWK4e3gnusdIuWoyVhMcXg77FsGBX+oHc8ZQ6H5NswdzNpuNDz/8EIB7773Xfe8RwpNIOfVeTR7YjR8/ngULFpz1jSdMmMDcuXMbntNGysnJ4YorrqCoqIhvv/22XmDXtWtXnnrqqfO6rgR2oqlY7A5+2ZXPl+sz2HS0zH18aHIY9wzvxMVdwmWwxfmoKXEFcfsWwaFlYK+zRqsx1FUz1+P6FquZk07pwhtIOfVeTT544ocffmDhwoWcLQb86aefGp7LJvDXv/6VWbNm8cgjj7To+wrRUD5aDdf2ieXaPrFszyrnX6sP8/OufNYeLGHtwRJ6xwUx7dIujEiVAO+sSo+4Arn9P7nmmVPqrBwSlABdx0LXKyFhSIs3s2o0GsaNG+feF8ITSTltHxpUYzdixIgG/dPR6/UsXry4STJ2NitWrODFF19k6dKlJCUlMX/+/Ho1dv/73/8ASE1N5dVXX+Wiiy7602tZLBYsFov7eWVlJfHx8VJjJ5pFdpmJT9YeZe6GTMw21yTIEuCdht3qCuDSf4WDS6FoX/3zUWnQ9SpIHeval5+bEKKNavN97Ox2OwMGDOCLL76gZ8+epwR2W7duJSkpCT8/PxYuXMiDDz7Irl27iI+PP+31Zs6cyaxZs045LoGdaE7F1Rb+teown6/LcAd4/RJDePbKbvRNCGnl3LWSimzXRMHpS+DISrBWnzin0kDSUEi90lU7F5zQevkUQogW5PWB3ejRo1m1atVpz02fPp2AgAAOHjzIu+++C3BKYHeyyy+/nJtvvpk777zztOelxk60puJqCx+uOszn645Sa3M1L17VK5onL+9KfKhvK+eumdktkLXBVSOXvgQK99Q/7xcBKZdB8qXQeSQY22nAK4Ro17w+sDub6667jlWrVqHX6wEoKioiODiYN954g8mTJ5+SfuzYsYwbN+5PA7uTyeAJ0RryK2p589f9fL0lG0UBvUbN5GFJPDQqBX+fNjI1h9MB+Tvg8Eo4vAIy19cf+KBSQ9yAY8HcZRDVyyvmmDOZTKSkpACQnp6Or28bD8iFV5Jy6r3afGBXXl5ObW2t+/mAAQP44IMPGDFiBL6+vnzzzTdcfvnl+Pj48M0333DPPfewY8cOkpKSGnR9CexEa9qdW8HLP+1l7UHXtB3RQQZmXN2DMT0iva//naJAySE4ssIVyB1ZDbXl9dP4RUDnUa5grvMo8A1thYw2jow2FN5Ayqn3atYlxTzBycuXaTQaQkND3d8+3nrrLe68805UKhWpqal8++23DQ7qhGhtPWKC+PKuQSzbV8jM/+0mq9TM/V/+waXdIph5TQ/iQjz4W7aiQPEByPjdNfDh6FqozK6fRh8AScOg0wjodDGEd/X6gQ8Gg4GtW7e694XwRFJO24dzrrEzm808//zzLFy4kNLSUiorK1m8eDF79+5l2rRpzZTNliU1dsJTmK0O3luezoerDmNzKBh1Gh4bk8rkIUmo1R4QDDnsrqbVzHXHgrn1YCqun0ajdy3b1fFiVzAXc4Gs+iCEEOegWZtiJ0+ejM1m46mnnmL48OGUlZWRl5fHyJEj2bdv39kv4AUksBOeJr2gime/3cXGo66lygZ1DOWNm3q3/OAKcznk/OF6ZK6DrI31R64CaA0Q2x8SB0PiEIi/EPQeXMsohBAerlkDu4iICLKysvDx8SE0NJTSUtc/muNv2BZIYCc8kaIozN2YyUuL9mKyOvDTa3j+6u7c3D++efreOWxQsAuyN7sCuezNUJJ+ajqfIEi40BXIJQyBmD6g9Wn6/Hgwm83GV199BcCtt94qSzUJjyTl1Hs1a2DXpUsXli1bRlxcnDuwO3LkCGPHjmXv3r2NynhrmzNnDnPmzMHhcHDgwAEJ7IRHyiip4bGF291LlI3qGsHr43rRwb8RwZTTCaWHIX87ZP8BOZshbzvYa09NG5LkqpGLH+SqkYvo7hUjV5uTdEoX3kDKqfdq1sETDz/8MFdffTXPPvssDoeDH3/8kRdffLFN9K+bMmUKU6ZMcf8AhfBEiWF+zL93MP9ec5g3Fh9g2b5Cxr69mnduuYALO4Wd/QJ2KxTthbwdrv5xeTtcNXMnN6kCGIIhth/E9XcFc7H9wK8B79HOaDQaxo4d694XwhNJOW0fzmu6k4ULF/Lxxx+TmZlJbGwsd911F+PHj2+O/LUKaYoV3mJffiVT527lYGE1ahVMu7QLU0Ymo1GrXCNUa4qgcK/rkb/TVSNXuA+ctlMvpjVCZA/X4IbjgVxYZ68fsSqEEN6uzc9j19wksBPexGS188rXv7N/50a6qLO5OLiYi0NK0JfuB1PJ6V9kCIboXq4JgKN7u7ZhyTJaVQghPFCzNsXOnj2bkSNH0rt3bzZs2MDEiRPRaDR88sknDB48+LwzLYQ4C6cDyjNdE/6WHITSQ1C0H9+ifbxQXQDHu9jVHHsAoILQjhDezVUbF93bFdAFxUtNnBBCtEHnXGMXExPD3r17CQoKYtiwYdxyyy34+/vz3nvvsWnTpubKZ4uSGjvRahQFqgtcgdvxAO74tuwIOKx//trgBGqCUvhfXjAbqiM4ok7gjqsv4/pBKS2X/3bKZDLRu3dvALZv3y5LNQmPJOXUezVrU2xgYCCVlZWUlZWRnJxMUVERarVapjsRoqHM5VCeAWUZdbaZrv3yTLCZ/vy1Gh9Xv7ewzq6m07BkV21ceCr4uEa7VdXaeGTBdpbuLQBg0pAknr2yGzpN+x652pxktKHwBlJOvVezNsUmJyczf/589u/fz6WXXoparaa0tBS9Xn/eGRaizXDYXTVulblQmXNiWzeQqz3LFyCVGoITTgRuYcknArnAuLNOLRJg0PHhbf2Y/Vs67/yWzqe/H2V/fhVzbu1LqJ/8nTYHg8HAmjVr3PtCeCIpp+3DOdfYbdiwgWnTpqHX6/noo49ISUlh7ty5/PTTT3z55ZfNlc8WJTV24rSsNVBdeCxwOxa0VeTUCeByoTofFOfZr+XbAUISXQFccOKx/UTXHHFBcU02we8vu/J49D/bMVkdJIT68vGkASRH+DfJtYUQQrQMGRV7nmSC4nbIbjkWrBVCzbGg7fjz6gLXdCHHj51unrfTUWshIBoCY449Yl2DFY4Hb8EJ7mbTlrA/v4q7P99EVqmZQIOWD27rz+DOMhedEEJ4i2YP7LZv387atWspKSmh7suff/75c8+tB5IaOy/lsIGp1DXFh/nY1lRne/Ixc+nZm0VPpjWAf6QrWDseuAXF1Q/i/MJB7VmTf5ZUW7jn881sySxHp1Hxyg29GNcvrrWz1WbY7Xa+/fZbAK6//nq0Wpk2RngeKafeq1kDu/fee4/p06czduxYvv32W66//noWLVrEtddey+eff96ojHsKCexaiaK4asVqK10B18kPy2mO1VYcC9rKwFJ5fu+r1oF/hOvhd2zrH3nimH/kieM+AV47TUitzcFfF25n0Y48AB4alcyjl3VpnnVm2xnplC68gZRT79WsgyfefPNNli1bRt++fQkODmbu3LmsXr2ad95557wzLLyYwwaWKlf/M2v1ia3l+P6xcyc/dx+rqhOkVYLiaGSGVGAMAd8w8A11bY2hx/brPj923i/clb4dBDcGnYZ3/+8CEkN9+eeKQ7y77CAZJSZeH9cLg86zahi9jVqt5uKLL3bvC+GJpJy2D+dcY1d3WpOIiAiys7PR6/Uy3YmnUBRw2l19xxxW19Zmci3mbjO7HvZa1zFbbZ1zJz8/yzlrtetxpnnVzpdaB4agOo/Ak54HgU+dc3UDNUOQxzWDeqL/bMrimW93Yncq9E8M4V+39ydERswKIYRHatYau9TUVLZt20afPn3o06cPr732GkFBQYSHh593hs/HggULmD59Onl5eYwaNYpPP/2U0NBQAMxmM/fccw/ff/89ISEhvPbaa9xyyy0tmr+z2jbP1XRot4DD4lqY3WE9EYy5j51ua3HVlP3ZOVphPIzGB/R+rkEB+uOPMz33c219Ak4N2rSGdlGD1ppuHhBPbIiR+7/8g80ZZdzw/u98OnkAiWHSNCOEEN7snGvs1q9fj16vp2/fvuzZs4epU6dSVVXFa6+9xqhRo5orn/Xs3buXwYMHs3TpUnr37s2jjz5KcXEx8+bNA+CJJ55g165dzJ8/n127djF27Fg2btxIly5dGnT9Fqmxe6OLa7Rlc1NpQOcLOoNrkXed0bWv83UFUOd07thDazwWmNUJ1DS65v8soskdKKhi8iebyCk3E+qn51+396dfYkhrZ0sIIUQdbX66k3fffZc1a9awYMECAPLy8khMTKSsrAw/Pz+io6P57rvvGDRoEAC33347ycnJfzpq12KxYLFY3M8rKyuJj49v3sDuh4dcfcq0PqDRH9v6gFZ/0vbYeY3+1GN/9lqN7sQxWdRdnEVhZS13fraJXTmV+GjVzB7fhyvSols7W17FbDa718pet24dRqOxlXMkxKmknHqvZm2KBcjMzGTXrl1UV9ef1+vmm28+n8udl7rxqKIo2Gw20tPTSUxMJD8/n7S0NPf53r17s3Hjxj+91iuvvMKsWbOaNb8ns1z5BlqVFo30BxOtLCLQwIJ7B/OXeVv5bV8hD87dwrNju3HXsI4yYraBnE4n27dvd+8L4YmknLYP5xzYvf7668ycOZO0tLR6CwirVKoWC+wuueQSpk+fzsaNG+nduzevvPIKKpUKk8lEdXU1Go2mXt4CAwNPCULrevrpp3n00Ufdz4/X2DWnq769ivyafLQqLXqNHh+NDzqNDh+Nj2tf7drXa/Tu83p1nX3NSfvq+scNWgNGjRGjzohBY8CoNWLUGjFoDfhqfdGqtfJPW7j5+Wj54LZ+zPrfHr5Yn8GLi/aSWWpixtU90KilnJyNwWDg119/de8L4YmknLYP5xzYvfHGG2zatIkePXo0R34AGD16NKtWrTrtuenTpzN9+nTef/997rjjDkpKSnj44YcJCAggNjYWf39/HA4HJpPJHdxVVla65+45HR8fH3x8mmYJp4ayHhtNalfs2O12TPYzLPzeDDQqjTvQqxv0GbVGV0CodQWFRq0RP50fAboA/PR++Ov88dPV2er93ftatTT7ejOtRs3fru1BYpgvL/20l8/XZZBbbuadWy7AVy+/2zPRaDRcdtllrZ0NIc5Iyml9TsWJ2W7GZDNhspsw2Uyu58f2T3esbvq6+7X2Wn684Ud06tbvb37Ofew6derEnj17PCraP3jwIMOGDSMnJweNRnPOfexO1hKDJ0w2ExaHBavDitVhde07rfWfO6xYndZT0/3JcZvThsVhweKwUGuvxWw3n7K1K/Zm+TwABo2hXqDnr/Mn0CeQQH0gwT7BBPkEuR76oBP7xx4+mpYNrMWZ/bwzj2kLtmGxO0mLDeLfk/oTEeA5f/NCiPbN7rRTba2mylZFtbWaals1VdaqE9uTjtVLe2zfbDc3aZ7W3rKWQH3zxAxNPniisLDQvf/999+zcuVKnn766VOmOImIiDjPLJ+7LVu20KdPH/Ly8rj99tu5+uqrmTZtGgCPP/44e/fuZd68eezevZvLL7+cDRs2kJqa2qBre/U8dmdhc9gwO8yYbWZqHa5gr+7jeAB4fL/GVuN+VNuq62+trm2to7bR+TJqjQTqAwnyCSLUEEqYMYwwQxhhxjA6GDu498MMYYQYQqR2sAX8kVHGPZ9vprTGSmywkU8mD6BLZEBrZ8sj2e12Fi9eDMCYMWNkqSbhkTyxnDqcDqqsVZRbyqmwVlBhcT3KLeX1tsf3K62VlFvKqbHVNFke1Co1vlpf10Pni1FrPLE9dqzu9vj5uumNWiOpoanNVmPX5IGdWq1GpVJxpqQqlQqHo7GrBjTcoEGD2L17NwEBAdx///08//zz7j5jZrOZu+++u948dhMmTGjwtdtyYNccbE4bJpuJKmtVvcCvylpFpbXS/UdZYamo94d7/LlTObdOvCpUhBhCCDWEEukbSZRfFJF+kUT5RhHld+Jh1MqIr8Y6WlzD5E83caS4hgCDqx/ekM4dWjtbHkeWahLeoCXKqaIo1NhqKK0tpbS2lBJzCSW1rkepudS1PXa8tLaUKmsVSiPmXjVqjfjr/PHX+xOgC3Bt9QH4605s/+yYn84PP50ferXe4/uct/npTpqbBHYtx6k4qbZVU2GpoNLi+iZWWltKsbn4xA3BXEJxret5WW1Zg28CwT7B7iAvISCBhIAE4gPjSQhIIMovSmr9Gqisxso9n29mc0YZOo2KV2/oxY394lo7Wx7FbDZz0UUXAbBq1SqZRkJ4pMaUU0VRqLBUUGgupNBUSJGpiAJTgXu/2FzsDtosDsvZL3gSP50fwT7Bp3TdOb5/8rFAfSD+en+P6NPWEpolsFMUhX/961/s2rWLPn36cOeddzZJZj2RBHaey+F0UGYpcwV75mIKTYXk1+STb8p3bY89zjYYRavSEhsQS3yAK9DrFNSJzsGdSQlJIcgnqIU+jfeotTn468LtLNqRB8Ajl3bhL5cke/y3XCHE2SmKQkltCXnVeeTW5JJfk0+BqYAiUxGFpkL3vtXZ8CUkfbW+hBpCCTWGEmYIc3exCTWEurvWhPiEEGwIJkgfhE4muT+jZgnsHn30UebNm8fw4cNZvXo1d911Fy+++GKTZNjTSGDn3RRFocpW5Q7ycqpzyKrKcj0qXdsz3aDCjeF0Du5McnAyycHJpISkkBqa2u4HeDidCq8v3s//W3kIgHH94nj5+jT0WllMXAhP5nA6KDIXkVOVw5HSI+Sb8im2FpNXk0dutSuQa2hf6RCfECJ8Iwj3DSfSN9K9H24MdwVwxlBCDaHSFaaJNUtgFxcXx/Lly0lJSWHfvn1cddVVHDx4sEky7CnmzJnDnDlzcDgcHDhwQAK7NsqpOCk0FZJZmUlmVSaZlZkcqjjEwbKD5NbknvY1WpWWlJAUenToQY+wHvTs0JPOwZ3bTTNAXV9tyOD573fjcCr0TQjm/Yn9iAyUEbNCtCabw0ZOdQ6ZVZlkVWW5729ZVVnkVOWcdUYEFSrCfcOJ8Ysh2i+aSL/IUwM4Yzh6jb6FPpGoq1kCu8DAQCorK93PQ0NDKS0tbVxOPZTU2LVfNbYaDpUf4mD5QdLL0jlUfoh9pfsos5SdktZH40OPsB70j+pPv8h+9Anvg6/O9zRXbXtW7C/kL/O2UllrJzzAh/dv7Uv/pNDWzlarMZvNXHrppQAsXbpU+tiJZuFwOsipzuFwxWEyKjPIrDwWxFVlkleTd8aBaFq1lghDBAc2H8BWYmPandPoHN6ZGP8YYvxjiPKNkuZQD9YsgZ2fnx8rVqxwj4y97LLLWLp0ab2RsgMHDmxEtj2HBHaiLkVRyKvJY3fJbnYV72J3yW72FO+hylZVL51WpaV7WHf6RfbjwugL6RfVr0033x4truG+L/5gf0EVWrWKGVd3Z+KFie2y352MihVNyeqwklGZweGKwxwuP+zaVhzmaMXRM3YjMWqNroFigQnu/sPH98ON4ZQUlxAZGQlAQUFBi05RJhqnWQK7pKSkM96wVSoVhw8fPreceigJ7MTZOBUnmZWZbCncwub8zfxR8McpzbhGrZEBUQMYHjucYbHDiAtoeyNJayx2nvhmh3tQxU394njhup4YdO1rDWS73c6PP/4IwFVXXeUR84MJz+dwOsioyuBA6QEOlB3gYPlBjlQcIasqC4dy+unDfDQ+JAUmkRiYSGJgIgmBCe4ALswQdsb/0xUVFQQHBwNQXl5OUJAMFPMWMt1JI0lgJ85HbnUufxT8wab8TazNWUuhubDe+Y5BHbk04VLGJI2hS0iXNlOzpSgKH646zGu/7MOpQGpkAO9NuIAUmcxYCLcKSwUHyg64H/tL93Ow/OCfTg3ir/OnU3AnOgXVf8T4x6BRn98XJ6lZ9l4S2DWSBHaisRRF4UDZAVbnrGZNzhq2FW6r9w08KTCJyxIvY0zSGFJDG7Yiiqdbk17MtAVbKa62YtCpmXl1D8YPiG8zAawQDVVsLmZ38W5Xt42SPRwoO0BeTd5p0xq1RlKCU+gS2oXk4GQ6B3emU1Anwo3hTf63I4Gd95LArpEksBNNrdJayers1Sw+upi1OWvr9ZPpGtqV65Kv48qOVxJsCG69TDaBoioLj/5nG6vTiwG4slc0r9yQRqChbXfKdjgcrF69GoDhw4ej0bSvpuj2rLy2nN0lriDueDBXYCo4bdoYvxi6hHahS0gXUkNSSQ1NJT4gHrWqZaYMOv6/DZD/b15GArtGksBONKdqazUrs1fy69FfWZ2zGpvTBoBOrWNk/EjGdRnHhdEXem1Nl9Op8OHqw7yxeD92p0JssJHXbuzFsJS2uxSZ1IS0DxaHhT0le9hWuM09kCqnOueUdCpUdArqRI8OPege1p3UkFS6hHZptgXiG6qwsFAGT3gpCezOk8xjJ1paeW05i44s4vuD37O3dK/7eOegzkzoNoGrOl3ltVOobM0s4+H528gsda0CMmFQAs+M7Ya/T9sbWGAymRgwYAAAmzZtwtfXO39nor4iUxHbiraxrXAb24q2sadkD3bnqfPBJQYm0j2sOz3CXPNcdgvrhp/O84L7oqIidzBXWFhIeHh4K+dINJQEdo0kNXaiNewv3c836d/w/cHv3UuiBegDuDHlRm7rfhsRvt737brGYue1X/bx+boMAGKDjfx9XC+GJLfd2jvhnRxOBwfKDrgDue1F209bGxdqCKVPeB/SwtPo2aEn3UK7ec0yhFKz7L0ksGskCexEa6qyVvH9we+Zu28uWVVZAOjVeq5PuZ47e95JjH9MK+fw3P1+qJgnvt5BdpkZgBv7xvH02K508G+78/wJz2Z32tlXuo/N+ZvZVLCJLQVbqLZV10ujVqlJCU6hT0Qfeof3pk94H+IC4ry2m4QEdt5LArtGksBOeAKn4mR19mr+vevfbC3cCrgmQb6689Xck3YP8YHxrZzDc1NjsfPKz3v5akMmigKBBi2Pj0llwqBENGrv/EcpvIfdaWdvyV42FWxic/5mthRuocZWUy+Nv86f3uG96R3hCuLSOqThr/dvpRw3PQnsvJcEdo0kgZ3wJIqisLlgMx/u+JD1eesBV4B3U+pN3NfrPsKMYa2cw3OzNbOM6d/tYneua4nCtNggZl3bg74JIa2cs/NnNpu55pprAPjhhx9kSTEP4FSc7Cvdx/q89WzM38jWgq3uLg7HBegD6BfRj/5R/RkQNYDUkNTzniPOGxQXF7v71RUVFdGhg3SJ8BZtIrCz2+2MHz+e9evXk5ubS15eHlFRUe7zM2bM4OOPP6aiooLIyEieeeYZJk+eDMCKFSsYNWpUvQ7MP//8M8OHD2/Qe0tgJzzV9qLtvL/9fdbmrAXAV+vLpJ6TuKP7HV41yMLhVPhqQwZ/X7yfqlpXZ/SxaVE8PqYrHTt4Xy2C1IR4hrzqPNblrWNd7jo25G04ZY3nQH0g/SL7MSBqAP0j+9MlpEubDuROJqNivVebCezmzJnDoEGDGDx48CmBXXp6OjExMfj5+ZGens7FF1/MkiVL6NGjBytWrOD+++9n37595/XeEtgJT7cxbyP/+OMf7C7ZDUCYIYxp/aZxTedrWmxOrKZQVGXh74v3sfCPbBQFtGoVtw5K4KFLUryq/53dbmfBggUAjB8/XpYUayHV1mo25m9kXe461uet52jl0XrnfbW+DIwayKDoQQyIGkBKSIpX/X00NVlSzHu1icCuLpVKdUpgV1d6ejrDhw/n448/ZuzYsRLYiXZBURQWZyzmnS3vuAdZ9A7vzbODnqVbWLdWzt252ZdfyWs/72P5/iIA/PQabh+SxN3DOhLmRQGeaF5Oxcmekj2szlnNutx17CjaUW9FF41KQ88OPRkcM5jB0YNJC09Dp27bk2OfC6lZ9l7tJrB79dVXeeGFFzCZTAwcOJCVK1diMBhYsWIFl19+OYGBgQQFBXHbbbfx7LPP/uls8BaLBYvlxHp9lZWVxMfHS2AnvILNYePLvV/y/vb3MdvNqFVqbupyEw9d8JDXTMNw3O+Hinn1533syK4AwKjTMPHCBO65qBMRAYZWzp1oDRWWCtblrWN1tmt5vtLa0nrnEwMTuTD6QgbHDGZg1EAC9LJG8Z+RwM57tZvADly1Fhs3bmTp0qU8+eSTaLVa8vPzKS8vp0uXLuzbt4+bb76Zu+66i0ceeeS01585cyazZs065bgEdsKbFNQU8OYfb/LzkZ8BCPEJ4YmBT3Blxyu9anoGRVFYureQd5eluwM8H62am/rHMXloRzqHe94oRYfDwZYtWwDo27evLCnWCHXXWV6dvZrtRdvr1cr56fwYEjOEoTFDGRwz2Cun/2ktsqSY9/KKwG706NGsWrXqtOemT5/O9OnT3c/P1hQLMHXqVNLS0rjvvvtOOTd//nz++c9//un7SY2daEs25W/i5Q0vc7D8IADDYofx/IXPE+0f3co5OzeKorDiQBHv/pbOlsxy9/ERqeHcObQjw1M6eEzAKjUhjVNjq2F93npWZ69mdc5qCk2F9c4nByczPHY4w+OG0ye8DzqNNK+eDxk84b3OJbBrtR6+v/76a5Nez+l0cujQodOeU6vP3FnWx8cHHx/pxyPahgFRA/jP1f/hk12f8P+2/z/W5Kzhuu+vY1q/aYxPHe81ncdVKhUjUyMY0SWcdYdL+HjNUX7bV8CK/UWs2F9EcoQ/tw9O5NresQT5tu4/epVKRWJiontfnF1+TT4rslawPGs5G/M31luqy6AxMCh6EMNjhzMsbhix/rGtl9E2pG7ZlHLadnl0U6zFYkFRFIxGI0ePHiUyMhKDwdXP5qOPPmLcuHEEBgayevVqrrnmGubNm+cePNG5c2fi4+NJT0/nxhtvZOLEiTzxxBMNel8ZPCHaisMVh5n5+0z3BMd9I/oyc8hMOgZ1bOWcnZ+Mkho+/f0oCzdnU21xBQJ6rZorekZxc/94BncKQy2THXskRVFIL09nWeYylmctZ0/Jnnrn4/zjuCjuIi6Ku4j+Uf3x0ciX7aYmNcveyyuaYhsiKSmJjIyMeseOZ/eGG25g5cqVWK1WEhISePjhh7n33nsBePPNN/nHP/5BeXk5ERER3HbbbTz//PMNnoJAAjvRljgVJwv2L2D2H7Mx2U3o1XqmXjCV27vf7rVzeFXV2vjmj2zmb8piX36V+3h8qJHrL4jjmt7RJEdIJ/rWZnfa2Vq41R3M1V17VYWK3uG9GZkwkhHxI+gY2FFqkZqZBHbeq80Edq1FAjvRFuVW5/K3dX9jba5rcuO0Dmm8MPQFOgd3buWcnT9FUdiZU8GCTVn8sC2XKsuJ5ryuUQFc3TuGq3pFkxgm/8BaislmYm3uWpZnLmdVzioqLBXucz4aHy6MvpBRCaO4KO4iOhhl5YOWJIGd95LArpEksBNtlaIofHfwO/6+6e9U2arQqXU82OdBJvWYhFbt3ZPqmq0OFu/O53/bc1mVXoTNceLW1isuiMu6RTKqWwTdowObvGaotraW//u//wNcg7WOdxlpL4rNxe7+cutz12N1Wt3ngn2CuSjuIkbFj2JwzGCvWiGlrSkpKXEvI1ZcXExYmHctR9ieSWDXSBLYibYuvyafv637G6tzVgPQI6wHLwx9gZSQlFbOWdOoMNlcQd6OXH4/VILDeeI2FxNkYFS3CC7pFsngTmEYdI1vjm5vNSGKonCk4gjLslxNrDuLdqJw4mcc5x/HyISRjIofRZ+IPl7/paGtkFGx3ksCu/M0Z84c5syZg8Ph4MCBAxLYiTZNURT+d/h/vLrxVaqsVWjVWh7o/QCTe05uU7P1F1dbWLqngN/2FbImvRiz7cScaAadmgFJoQxN7sDQzh3oHhOI5jwGX9hsNj799FMAJk2ahE7Xdn5+xzmcDnYU73D3l8uorN//uWdYT0YmjGRk/EiSg5Olv5wHKi8vJyQkBICysjL38mLC80lg10hSYyfak0JTIS+se4EV2SsA6BbajReGvkBqaGrrZqwZ1NocrDtUwtK9BSzbV0heRW2980FGHYM7hTE0OYwLO4XROdy/XY+yrbXXsi53HcuzlrMye2W9VR+0ai2DogYxKmEUF8ddTKRfZCvmVDREe6tZbksksGskCexEe6MoCouOLOKVDa9Qaa1Eq9Zyb9q93J12d5udDFZRFA4UVLP2YDG/Hypm/eFS9xQqxwUatPRNDKFfQgj9EkPoHR+Mn0/bblYsqy1jZfZKlmcu5/fc36l1nAh+A3QBDI8bzsiEkQyLGYa/3vNWARF/TgI77yWBXSNJYCfaq2JzMS+se4FlWcsASA1J5cVhL9I1tGsr56z52R1OduRU8PvBYtYeLGFbVnm9ZlsAtQq6RQfSJz6YnrFBpMUGkRLpj06tYu/evQB069btrJOie5rMykyWZy1nWeYythVtw6k43eei/KIYFT+KkQkj6RfZr00107c3VVVV7v9plZWVBATIlEDeQgK7RpLATrRniqLwy9FfeHnDy5RbytGqtNzd627uTbu3zdbenY7N4WRfXhV/ZJTyR2Y5fxwtJfekplsAnUZFcrgfGxd/gzX/IL8u+De9EsM9umbPqTjZVbyL5VnLWZ65nEMV9Vft6RralZHxrv5yXUO7Sn+5NkIGT3gvCewaSQI7IVy1dy9veJklGUsASAlJ4cWhL9I9rHsr56z15Jab2ZJZxs6cCnblVLArp5IKs+20aWODjaRGBZAS6U+XiAC6RAaQHOGPUd86k0JbHBY25G1w9ZfLWkmRuch9TqvS0i+qnzuYi/GPaZU8iuYlgZ33ksCukSSwE+KExUcX89L6lyizlKFRabiz553c3/t+9Bp9a2et1SmKQnaZ2RXk5VawM6eSPbmVFFdbTptepYKEUF86h/uTFOZHUgdfksL86NjBj5hg43mNyD2TCksFq7JXsTxrOWtz1mKym9zn/HR+DIsdxsj4kQyLHUaQT1CTvrfwPNLHzntJYNdIEtgJUV9pbSmvbHiFX47+AkBycDIvDH2Bnh16tnLOPFNZjZUDBVUcKKzmQH6Va7+gijLT6Wv3APQaNfGhRjp28CMxzI+kMF/iQnyJDTESG2xsUNPu8fnlVmWvYlXOKrYUbMGhnOgnGOEb4a6VGxA1QILzdkYCO+8lgV0jSWAnxOktzVjKC+tfoLS2FLVKzQ0pNzClzxRZGqoBFEWhuNpKekEVh4tryCip4UixiaMlNWSWmLA6nGd8fbCvjthgV5BXN+CLCFSTZ93FtuL1rM5ZVW89VnA1oY+Md00W3D2su/SXa8cksPNeEtidJ5mgWIizK68t59VNr7Lo8CLA1aR3d9rd3Nb9Nnw0Pq2cu9ZRW1vLXXfdBcC///3vc15SzOFUyC03c7SkhqMlJo4W15BRYiKn3ExOmYnK2vrTsKi05Wj996H134fG7xAq9YmaQJWiJUjVlQRjP3qGXEhySCKRgYZjDx+CjDoJ7topWVLMe0lg10hSYyfE2W0p2MLrm15nd8luAGL8Ynio70NckXQFGnXrDBBoLc1dE1JUU83yIxtZm/M7O0o3UGw9Wu+80xaEvbor9upUHDXJoPx5E6teoybMX0+on+vRwd+HUD89Yf56wvz0hPr5uPfD/H3w02skEGwjZPCE95LArpEksBOiYZyKk0WHFzF7y2wKTYUAJAUmcV/v+9pVgGez2ZgzZw4AU6ZMafSSYoqicKDsAOvz1vN77u9sKdhSb6JgtUpN7/DeXBR3EcNjh9MxMJniaiuFVRYKKmsprKyloNK1X1BlOfa89ox9/P6MXqsmzE9PkFFHkFFHsO/xretYoFFH8MnnjHoCDNp2vWqHJ5IlxbyXBHaNJIGdEOfGbDfz5Z4v+WzPZ1RYKgBXgHdnzzsZ22lsu22iPRcFNQWsz1vPurx1rM9dT0ltSb3z4cZwBscMZkjMEIbGDCXYEHzO71Frc1BcbaG0xkpJtZWSGislx5/X2S+utlJSY6HWduZ+f2eiUkGgQUeAQYu/j9a99auz7++jw9+gJeDYcf+T0vobtPjptU0+Wri9kj523ksCu0aSwE6I81NtrWbevnn1ArxQQyjjuoxjfOp4Inyl6ee4nOocNudv5o+CP9hcsJmsqqx6541aI/0i+zEkZgiDowfTObhzizeJmqx2SqqtlNZYqTDbqDDbKDfbqDTbKDfVOWayufcrzDZMVsfZL34OfLRqjHoNvjqNa6vXYnTva+rvHzvn2j/5vBYfrdr10GlO7Gs16DSqNt/kLIGd92oTgZ3dbmf8+PGsX7+e3Nxc8vLyiIqKcp8/cuQI9913Hxs3bsTPz4+pU6fy9NNPu89/+umnTJ8+ncrKSm688UY++OAD9PqGDe2XwE6Ixqmx1bBg/wLm7ZtHfk0+4JoEd2TCSK7tfC1DYoe0qaWpnE4nmZmZACQkJJyypJhTcZJRmcGWgi1sLnAFc3k1efXSqFVquoV2c9fK9Q7v7bXTkVjtzmNBnpWqWjvVFjvVtXaqjm1rLK5jx5/XPe8+V2vD5mi5f08qFe4gzxX4qTFoNfjo6hw7fl6nrpdWr1Wj0xzfqtBp1McedffrP9drVWjVJ/aPH9dqVOhPek1TBZyypJj3ajOB3Zw5cxg0aBCDBw8+JbC76qqriIuL49133yU7O5uhQ4fyxRdfcMkll7Bz504uvvhifv31V1JSUrjuuusYPnw4f/vb3xr03sd/gLm5uURFRbn/qKxWKzabDa1Wi4/PiaalmpoaAIxGo/uGbrPZsFqtaDSaeiPkziWtyWRCURQMBgMajcb9c7FYLKjVaoxG43mlNZvNOJ1OfHx80Gpdc2M5HA5qa2vPKa1KpcLX19edtra2FofDgV6vd/cxOpe0TqcTs9kMUO+bpMViwW63o9Pp3MH5uaRVFAWTyTUxq6+v7ym/z3NJ25DffVOUk9P9PpuinBz/fTa2nJz8+/yztNWmalblrmLh4YVsLdzqTh/iE8LliZcztvNY0jqkoUJ12t9nY8tJ3d9nY8vJn/0+fX19MZlM7pqQgoICnD5ODlQdYEfRDnYW72Rn0U6qbFXUpVVp6RrSlb4RfRkUO4gLIi4gQB8g94g6ac0WGxZFjV1RYbY6qLbYKK8yUWtz4lTrMFnt1NocVJos1FhsWBxgdYDJ6sBktVNTa8Vsc2A5dsxsdWCxO7DYHFgcClb7+Tc1tyStWoVOo0KrUaNVq9Co1WhUoFGDVqNBq1GhVatQq1SoUdBq1Oi0GjRq13GV4kSjVqE4HSz++WcUxcF111yD0UePVqPG51hzt1atxulwoFGDj07rvoYaBcXpPJbWNapao3KVHxUKPnodWo3G1adSUXDYbWjUagwGH9Qq0KhU2Gw2d1qd9lj/S8WJ3WZDo1ZhNBjQqF1BrN1mBcWJj16PTnesKV5RsFktqFUq/Hx9j6UFm/VEWr1eh+uvVnGVVZXr716tUqHC9bfsdNjR63T4+PigUoEKMJtNqMD9NwxNf49obBxhtVq9P7CrS6VSnRLYpaWl8c477zBy5EgAbr75ZoYPH85DDz3E008/TXl5Oe+//z4Ay5Yt4+677+bw4cOnvb7FYsFiOTFTfGVlJfHx8YBrFFF4eDgAL730EtOnT+fuu+/mX//6lzu9n58fJpOJI0eOkJSUBMDs2bN55JFHmDBhAl999ZU7bXh4OMXFxezatYsePXoA8K9//Yt7772Xa6+9lu+++86dNikpiYyMDDZu3MiAAQMA+Oqrr5g4cSKXXnopS5Yscaft0aMHe/bsYfny5YwYMQKA7777juuvv54hQ4awdu1ad9oBAwawefNmfvzxR6688koAlixZwujRo+nduzfbtm1zpx0xYgQrV67kP//5DzfddBMAa9euZdiwYSQnJ5Oenu5Oe+WVV/LTTz/xySefMGnSJAC2bdvGBRdcQExMDDk5J+bXuummm/j666957733mDJlCgDp6el06dKFoKAgysvL3WknTZrEZ599xuuvv87jjz8OQE5ODnFxcWi1Wmy2Ex3Cp0yZwj//+U9mzJjBzJkzgfodhq1Wq/sfyuOPP84bb7zBY489xt///nfA9Yd0/I+4bufimTNnMmvWLB588EF3J3kAnU6H3W4nOzub2NhYAP7+97/zxBNPcMcdd/Dpp5+60wYHB1NRUcGBAwdISUkBXFPsTJ06lXHjxrFw4UJ32tjYWHJzc9m6dSt9+vQBXLXQkydPZuzYsSxatMidNiUlhYMHD7JmzRqGDh0KwMKFC7n55pu5+OKLWbFihTttnz592L59O7/++iuXXXYZAIsWLeKqq66if//+bNq0yZ126NCh/P7773z77bdcd911AKxYsYKRI0fSvXt3du/e7U572WWXsXTpUr788ktuvfVWADZt2sTAgQNJTEzk6NGj7Cvdxw+HfmDulrk4DCea6kJ8QkjzT+PLWV/ik+9DYVah+9ytt97K3Llzeeutt5g2bRoAR48epWPHjvj6+rpvhgD33HMPH330ES+++CLPPvssAEVFRe6Rf3VvddOmTePtt9/mmWee4aWXXgL+vJnq2Wef5eWXX+bhhx9m9uzZ7mscv1HvzthNjjWHSU9MQhutxZBkQB9xak2b0+okLTyNoYlD6R/ZnzX/WcMTjzwh94hWvEc8//wMrA4nhSVldExOQaXRs2vvfhyoqLU5eee9f/Kf/37L9TfcxPhbJ2KxOzFZbPxl2qOotHqefGY6Kq0Oi83Jug0b+WPrNlK7deeCfgOwOZzYHAo//bIYVBoGXDgYlUaLzaGQX1hEYXEJ/oFBBAaHutLanVSbzKi03llL21aoVKBWqXA6HK4gV6tBr9PiCg0VaqqrAYXgoCBUKhVqletLk6mmhms1W3hv9pt1ruW6RzRFHPH+++83OLDz3FWqz2LKlCnMnz+fIUOGkJmZyfr163nuuecA2LNnD2PGjHGn7d27N0eOHMFsNtf7pnncK6+8wqxZs1os70K0R11Du9I1tCtrX17LskPLGDNtDLnGXMosZayyrCJhagKKU+HGH26kb0Rf+kb2xWK0gCd0e1JBra6WDXkbyKjM4EjFEZKeTMIQb2D88vEAhF4bWu8lHYM6ktYhjV4denH/dfdTfrCcRQcXuW/aG9jQ0p9CnEStVmFQawg0aHHWlAPQOdzP/eUvgnJqD/9BLCO5to/ri5vNZmPy5u8BeHD4hye+/G1ZyK8/v0Ofjg/y3oT73O+hu2cIdrud//fGSV/+Xj725e/vn7rTHv/yt3fffhI7dsbmdPLBhx/x9LPPMfaqq5n9zrs4nAp2p8Klo8dQXFzCZ198QafOKdidTn7+ZTFv/OMtBgwYyLPPPe9O+8gjj1JQVMyjjz3OW7PfRqXWMPG22/hy7nw6Jydz1933YHcqOJwKH370bwqLirlx3E3ExSdgdzo5cjSTxUuWENYhnLFjr8ThVHAqCkt/W0ZJaSkXXjiYyKgonAoUF5ewYdMm/Pz9ufDCwTicCooCO3btoqKiks7JyYSEhuFUFKprTKQfPIhe70On5GQUBZyKQl5eASazmZDQMIy+vjgVsNpslJWXo1ZrCAgMwqm48mCx2nA6FVQaDU1xs1AUcCgKqNSotGqcUG8QkdrHVatcf25JHRq/YKjFI3htjd2OHTuYOHEie/bsweFwMHPmTGbMmAHAJZdcwuTJk5k4cSJwohambtRc15/V2ElTrDTFSlNs45piz/a7RwPbCrexPHM5q7JXkVGVwcl8tb4kByeTGppKYmAi0X7RhGnDiPaLJjo42v07akxTrNVhpchUREZpBoXmQiocFRSYCsirzuNoxVGyqrOwOE6//qtGpSEpMIkuoV1IDkwmOTCZXuG96BBwYjUOuUec+ruXe0TL3yN8fHzc/+v0ej1Wq9Xj7xFn+92fnFZRFBwOJzVmE4oCRl9fFMUVsNVaLNjsNrQaHVq9DsXp6v9aYzqR1qko4E5rR6PRotXp3EGnyWR2/SwNBpRjtXgWqw2bzUZqVBBG46l/y+2mKXb06NGsWrXqtOemT5/O9OnT3c9PDuwcDgeJiYk8+eSTPPDAA2RnZ3PVVVcxc+ZMxo0bx7XXXsuYMWN48MEHgROzbZtMptPW2J1MBk8I0TqKzcVsKdjC1sKtbCncQnpZOjbnn8+9plVrCdIHEewTTJBPEIH6QHQaHTq1Dr1Gj1atRVEUbE4bNocNm9OG1Wml2lpNpbWSSmslVdYqzHbzWfOmUWmIC4gjISCBxMBEuoR0ITU0lc7BnWU6FyFEszqXuKTVmmJ//fXX835taWkpubm5PPDAA2i1WpKSkrjuuutYvnw548aNo3v37uzcudOdfvv27XTs2LFBQZ0QovV0MHZgdNJoRieNBsDmtJFZmcmBsgOkl6WTXZVNTk0OudW5FJuLsTvtlNSWnDLn2/nQqXVE+EYQ6RtJpG8kEb4RRPlFkRDoCuRi/GP+dCSvxWJh6tSpALz33nv1vokL4SmknLYPHt0Ua7FYUBQFo9HI0aNHiYyMdFcvJyYm8tRTT3HfffeRm5vLFVdcwZQpU7j//vvZuXMnI0aMYMmSJXTu3JkbbriBoUOHnvOoWKmxE8Jz1dprKbeU13tUW6vr1c7ZnDY0Kg06tQ6tWotOrUOn0eGr8yVQH+iu5Tv+ON9pJWR+MOENpJx6L6+osWuI1NRUMjJcfW6Odzg+Hod+/fXXPPzwwzz11FP4+voyfvx47rnnHsA1YvbNN9/k6quvds9jd3yUnBCibTBoDURpo4jyizp74mam0+l48cUX3ftCeCIpp+2DR9fYtRapsRNCCCGEpziXuER9xrNCCCGEEMJreHRTrBBCeANFUSguLgagQ4cObX7NUeGdpJy2DxLY1TFnzhzmzJmDw9G0C1gLIdo2k8nkXuFCOqULTyXltH2QPnanUVFRQXBwMFlZWdLHTghxVjU1NcTExACQm5sr/zCFR5Jy6r2OL5xQXl5OUFDQGdNKYHca2dnZ7rVihRBCCCE8QVZWFnFxcWdMI4HdaTidTnJzcwkICDhjH4QBAwbUWzT9XNIcj77bQq1gQ34O3vC+TXG987nGubymoWnPlu5M56Vset57NvaazV0uG5pe7pknSNk8/9e3x3umoihUVVURExPjXnLsz0gfu9NQq9VnjYgBNBrNWX+JZ0sTGBjo9TephvwcvOF9m+J653ONc3lNQ9OeLV1DriNl03Pes7HXbO5y2dD0cs88Qcrm+b++vd4zz9YEe5xMd9IIU6ZMaZI03q61PmNTv29TXO98rnEur2lo2rOlaw/lElrnczbHezb2ms1dLhuaXu6ZJ0jZPP/Xyz3zzKQptpXIJMjCU0nZFJ5IyqXwVJ5WNqXGrpX4+PgwY8YMWYRZeBwpm8ITSbkUnsrTyqbU2AkhhBBCtBFSYyeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYOfBVq5cyeDBgxk2bBiPPvpoa2dHCLesrCz69u2LwWDAbre3dnZEO/foo48yfPhw/vKXv7R2VoQAWvceKYGdB0tOTmbFihWsWbOG/Px8du7c2dpZEgKA8PBwli1bxoUXXtjaWRHt3JYtW6iurmb16tXYbLZWWd5QiJO15j1SAjsPFhsb654XR6fTodFoWjlHQrgYDAaCg4NbOxtCsG7dOi699FIALr30UtavX9/KORKide+REtg1oRkzZtC9e3fUajXz58+vd66oqIgrr7wSX19fUlNT+e233xp83S1btlBcXEz37t2bOsuinWiusilEUzqfclpeXu6e7T8oKIiysrIWz7do27zt/qlt7Qy0JSkpKbz99ts899xzp5ybMmUKMTExFBcX8+uvv3LTTTdx6NAhLBYL//d//1cvrb+/Pz/++CMA+fn5/OUvf+Gbb75pkc8g2qbmKJtCNLXzKafBwcFUVlYCrqWdpCZZNLXzKZchISGtkNNjFNHkLr74YmXevHnu51VVVYper1dyc3Pdx4YPH6589tlnZ7yO2WxWRo4cqWzZsqXZ8iral6Yqm3WvZ7PZmjyfon07l3L6xx9/KPfee6+iKIrywAMPKBs2bGjx/Ir24Xzun61xj5Sm2BaQnp5OUFAQ0dHR7mO9e/dm9+7dZ3zdJ598wp49e3jkkUcYMWIE69ata+6sinbmfMtmbW0tl156Kdu3b2fMmDGsXr26ubMq2rEzldO+fftiNBoZPnw4arWagQMHtmJORXtypnLZmvdIaYptAdXV1e4+IMcFBgZSXl5+xtc98MADPPDAA82YM9HenW/ZNBgMLF26tBlzJsQJZyuns2fPbvlMiXbvTOWyNe+RUmPXAvz9/d19QI6rrKzE39+/lXIkhIuUTeENpJwKT+Sp5VICuxaQkpJCRUUF+fn57mPbt2+nR48erZgrIaRsCu8g5VR4Ik8tlxLYNSGbzUZtbS1Op7Pevr+/P9dccw0zZszAbDbzww8/sGvXLq6++urWzrJoJ6RsCm8g5VR4Iq8rly06VKONu+OOOxSg3mP58uWKoihKYWGhcsUVVyhGo1FJSUlRlixZ0rqZFe2KlE3hDaScCk/kbeVSpSiK0vLhpBBCCCGEaGrSFCuEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEK1o5syZ6HQ6oqKimuyaI0aMYP78+U12vZP94x//wM/PD4PB0GzvIYQ4PxLYCSFaXVJSEr6+vvj7++Pv709SUlJrZ6lF3XXXXfUWEm8OPXv25OjRo01yrUcffZTdu3c3ybWEEE1LAjshhEdYtmwZ1dXVVFdXnzYAsdlsLZ8pD9AUnzs7Oxu73d7uAmYh2iMJ7IQQHmnFihV07dqVZ599lg4dOvDyyy9jNpuZOnUqMTExxMXF8dprr7nT19TUMGHCBIKDg+nbty/PPPMMl19+eb1r1aVSqdy1ZKWlpUyYMIGIiAg6derEZ5995k43YsQI/va3v9G/f38CAwO55ZZbsFqt7vMLFiygZ8+eBAQEkJaWxv79+3nppZeYPHlyvfcbOnQo//3vfxv02ZOSknj99ddJTU2le/fuADz44IPExMQQHBzM6NGjyczMdKfftGkTvXr1IjAwkPvuuw+n01nveosXL2bMmDHuzzNr1iwuuOAC/P39efzxxzl48CADBgwgODiYxx57zP26H3/8kdTUVAICAoiPj2fevHkNyr8QovVIYCeE8FgHDx7E19eXvLw8nnzySR577DEqKio4cOAAGzdu5PPPP+d///sfALNmzaKkpITMzEzmzp3LF1980eD3ue2224iPjycrK4uffvqJp59+mu3bt7vPL1y4kP/+979kZmayY8cOFixYAMDatWuZOnUqH3zwARUVFSxcuJDAwEBuvfVWvvvuOywWCwAZGRns2bOHsWPHNjhP3333HatXr2bnzp0ADBs2jL1795Kfn09cXBx/+ctfALBardxwww089NBDlJSU0LNnT37//fd61/rll1/cgR3AN998w6JFi9i1axfvv/8+DzzwAN9++y27du3io48+cn/2u+++m48//piqqio2bdpE7969G5x/IUTrkMBOCOERLrvsMoKDgwkODubpp58GwNfXl6eeegqdToePjw+ffPIJb775Jv7+/sTExPDAAw/w9ddfA67g67nnniMwMJCuXbtyxx13NOh98/PzWb16NS+//DI+Pj507dqVCRMm1Ktdu+eee0hISCA4OJgrr7zSHfh8+umnPPDAAwwdOhS1Wk3Xrl2Jjo4mKSmJnj178tNPPwEwf/58rrvuunMabPDII48QERHhfs2ECRMICgrCYDDw5JNPsmbNGgDWrVuHj48P99xzDzqdjqlTpxIdHe2+jsPhYM2aNYwYMcJ97O677yYmJoakpCT69evH6NGjiYuLIy4ujkGDBrFjxw4AdDodu3btorq6mqioKHftoRDCc0lgJ4TwCEuWLKG8vJzy8nJeeeUVAKKjo9FoNAAUFRVhNpvp0qWLOwB85plnKCwsBCAvL4/4+Hj39erun0lmZiY1NTWEhYW5r/vBBx9QUFDgThMREeHe9/X1pbq6GnD1XevUqdNprztx4kT3yNS5c+cyYcKEhv4oAIiLi6v3/KWXXiI5OZnAwEAGDhxISUkJcOrnVqlU9V67YcMGevbsia+v72k/j9FoJDw8vN7zmpoaAL7++mt++OEHYmNjGT16NPv27TunzyCEaHna1s6AEEL8GZVK5d7v0KEDBoOBjIwMgoKCTkkbHR1NVlYWiYmJAGRlZbnP+fn5YTKZ3M/rjkCNjY0lODjYHSidi/j4eI4cOXLaczfddBNPPfUUGzdupLCwkFGjRp3Ttet+9pUrV/LBBx/w22+/kZyczIEDB9x9BqOjo8nOzq732rrPT26GPReDBg1i0aJFWCwWnn/+eaZMmcJvv/12XtcSQrQMqbETQngFtVrNHXfcwWOPPUZ5eTlOp5O9e/eyceNGAMaNG8dLL71EVVUV+/fv5/PPP3e/tkuXLpSUlLBy5UosFgsvvPCC+1xsbCwDBgzg+eefx2QyYbfb2bJlC3v27DlrniZNmsT777/PunXrUBSF/fv3k5eXB0BoaCgXX3wxkyZN4uabb3bXPJ6PqqoqtFotYWFh1NTU8OKLL7rPDR48GLPZzL///W9sNhtz5sxx5wHqD5w4F1arlblz51JZWYlOp8Pf379Rn0EI0TIksBNCeI3jE+OmpaURGhrK7bffTllZGQAzZswgKCiIuLg4brnlFm677Tb364KCgnjnnXe4+eab6dixIwMHDqx33a+++oqMjAw6depEREQE06ZNw2w2nzU/Q4YMYfbs2dx5550EBgZy0003UVlZ6T4/ceJE9u7de87NsCe7/PLLGTx4MImJiaSlpTFkyBD3Ob1ezzfffMNbb71FWFgYO3bscJ8vKSkhLy+PtLS083rfzz77jMTEREJCQliyZAlvv/12oz6HEKL5qRRFUVo7E0II0dQ+/fRT5s+fzy+//NJqeVi3bh0TJ07k0KFDf5rmxRdf5NVXXyU4OPiUJtXGmjdvHkuWLOHjjz9u0uvOnj2bGTNmoFKpKC8vb9JrCyEaR2rshBCiGdhsNt555x3uvPPOM6abPn061dXVTR7Ugas5+MEHH2zy606bNo2KigoJ6oTwQDJ4QgghmlhJSQlxcXH06tWLDz74oNXycb6DJoQQ3kuaYoUQQggh2ghpihVCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCP+PwXWcC4Tl5c1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADWKUlEQVR4nOzdd3wUZf4H8M/2vpveOwmh944ISlcUUBEFBVRUDgWV0zsVFbjD8lPh0BPO806BA1FBilKkiIDSQ+8tJJDes5vdZEt2n98fk0yyyaaXTfm+X695ZXbm2Zlnd5+d/eZpI2CMMRBCCCGEkFZP6O4MEEIIIYSQxkGBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGEEEJIG0GBHSGNJCIiAitWrGjy88yaNQuTJk1q8vO4MmLECLz66quNcqyDBw9CIBAgPz+/UY5XnW3btiE6OhoikajR8k9cEwgE2LZtW5Ofp7m+b61ZxWtFY35/ScsldncGCHFl1qxZyM/Pb5YfiNbms88+Q1u4E+CQIUOQlpYGnU7X5Od68cUX8cwzz2D+/PnQaDRNfj7S9OLi4qBSqdydjUaVmJiIyMhInD17Fr169XJ3dkgrRYEdIa1McwRCzUEqlSIgIKDJz2M0GpGZmYmxY8ciKCio3sexWq2QSqWNmDPXbDYbJBJJk5+ntfP19XV3FtymucpiRXa7HQKBAEIhNfa1ZPTpkFbp0KFDGDBgAGQyGQIDA/Hmm2+iuLiY32+xWDB//nz4+flBLpfjnnvuQVxcHL+/tBlw586d6NmzJ+RyOQYOHIiLFy9We97FixcjLCwMMpkMQUFBmD9/vtP+wsJCPPvss9BoNAgLC8NXX33ltP+vf/0rOnbsCKVSiaioKLz77ruw2WxOx+/Vqxf+/e9/IzQ0FEqlElOmTHFqrnTVvDJ//nz85S9/gZeXFwICArB48WKn8167dg333HMP5HI5unTpgl9//bXGJjOTyYQZM2ZArVYjMDAQy5Ytq5TGarXiL3/5C4KDg6FSqTBw4EAcPHiQ33/nzh089NBD8PT0hEqlQteuXbFr1y4Arpti//Of//Cve/LkyVi+fDk8PDwqvT/r1q1DREQEdDodnnjiCRQUFLh8DQcPHuRr6O6//34IBAI+f5s3b0bXrl0hk8kQERFR6fVFRERg6dKlmDVrFnQ6HZ5//nmX5/jxxx/RvXt3KBQKeHt7Y9SoUTCZTPz+1atXo3PnzpDL5ejUqRNWrVrF70tMTIRAIMDGjRsxYsQIyOVyrFq1CgqFArt373Y6z5YtW6BSqWA0GgEAFy9exP3338+f94UXXuD3AWXl5IMPPoC/vz88PDywZMkSFBcX44033oCXlxdCQkLwzTffOJ0nJSUFU6dOhaenJ7y9vTFx4kQkJiY6pfnmm2/49y4wMBAvv/yy0/7s7GxMnjwZSqUSMTEx+Pnnn/l9drsdzz33HCIjI6FQKBAbG4vPPvvM6fmlef/0008RGBgIb29vvPTSS07flYpNsdV9N0s/y9LyHB4ejp9++glZWVmYOHEi1Go1unfvjlOnTrn8jEvl5+fjhRdegL+/P+RyObp164YdO3bw+2tTpj744IMqrxGRkZEAgN69e0MgEGDEiBFO78eHH36IoKAgdOzYEUDNZaAmNX1/16xZAw8PD+zYsQNdunSBTCbDnTt3an184iaMkBZo5syZbOLEiS73JScnM6VSyebOncuuXr3Ktm7dynx8fNiiRYv4NPPnz2dBQUFs165d7PLly2zmzJnM09OT5eTkMMYYO3DgAAPAOnfuzPbu3csuXLjAJkyYwCIiIpjVanV53k2bNjGtVst27drF7ty5w06cOMG++uorfn94eDjz8vJiK1euZDdv3mQffvghEwqF7OrVq3yav//97+zIkSMsISGB/fzzz8zf35/93//9H79/0aJFTKVSsfvvv5+dPXuWHTp0iEVHR7Np06ZV+d4MHz6cabVatnjxYnbjxg22du1aJhAI2N69exljjNntdhYbG8tGjx7Nzp07x/744w82YMAABoBt3bq1ys/gT3/6EwsJCXF6f9RqNXvllVf4NNOmTWNDhgxhv//+O7t16xb75JNPmEwmYzdu3GCMMfbggw+y0aNHswsXLrD4+Hi2fft2dujQIafPIC8vjzHG2OHDh5lQKGSffPIJu379Olu5ciXz8vJiOp3O6f1Rq9XskUceYRcvXmS///47CwgIYG+//bbL12CxWNj169cZALZ582aWlpbGLBYLO3XqFBMKhexvf/sbu379Olu9ejVTKBRs9erVTp+nVqtln3zyCbt58ya7efNmpeOnpqYysVjMli9fzhISEtiFCxfYypUrWUFBAWOMsa+++ooFBgayzZs3s9u3b7PNmzczLy8vtmbNGsYYYwkJCQwAi4iI4NOkpKSwRx99lD311FNO53r00UfZk08+yRhjzGQysaCgIP592L9/P4uMjGQzZ87k08+cOZNpNBr20ksvsWvXrrGvv/6aAWBjx45l77//Prtx4wb7+9//ziQSCbt79y5/3JiYGPbss8+yCxcusCtXrrBp06ax2NhYZrFYGGOMrVq1isnlcrZixQp2/fp1dvLkSfaPf/yDPy8AFhISwjZs2MBu3rzJ5s+fz9RqNf/ds1qt7L333mMnT55kt2/fZuvXr2dKpZL98MMPTnnXarVszpw57OrVq2z79u1MqVRW+r6Vnre2380vv/yS3bhxg/3pT39iGo2GjRs3jm3cuJFdv36dTZo0iXXu3Jk5HA6XZclut7NBgwaxrl27sr179/LledeuXYwxVusyVd014uTJkwwA+/XXX1laWhr/ns2cOZOp1Wr29NNPs0uXLrGLFy/WugxUvFbU5fu7evVqJpFI2JAhQ9iRI0fYtWvXmNFodPn+kJaDAjvSIlUX2L399tssNjbW6QK8cuVKplarmd1uZ0ajkUkkEvbtt9/y+61WKwsKCmIff/wxY6wsqPj+++/5NDk5OUyhUDj9wJS3bNky1rFjxyoDv/DwcKcfY4fDwfz8/Ni//vWvKl/nxx9/zPr27cs/XrRoEROJRCwpKYnf9ssvvzChUMjS0tIYY64v1vfcc4/Tcfv378/++te/8s8Xi8X88xljbN++fdUGdgUFBUwqlbp8f0p/GG7dusUEAgFLSUlxeu7IkSPZW2+9xRhjrHv37mzx4sUuz1ExsJs6dSp78MEHndJMnz69UmCnVCqZwWDgt73xxhts4MCBLs/BGGN5eXkMADtw4AC/bdq0aWz06NFO6d544w3WpUsX/nF4eDibNGlSlcdljLHTp08zACwxMdHl/tDQULZhwwanbX//+9/Z4MGDGWNlgd2KFSuc0mzZsoWp1WpmMpkYY4zp9Xoml8vZzp07GWNcwOjp6en0I7tz504mFApZeno6Y4wrJ+Hh4cxut/NpYmNj2bBhw/jHxcXFTKVSse+++44xxtjXX39d6btlsViYQqFge/bsYYwxFhQUxBYuXFjlewKAvfPOO/xjo9HIBAIB++WXX6p8zty5c9mjjz7KPy7Ne3FxMb9typQpbOrUqfzj8oFdXb+baWlpDAB79913+W3Hjh1jAJy+J+Xt2bOHCYVCdv36dZf7a1umqrtGlJaHs2fPOh1n5syZzN/fnw+uGat9GagqsKvN93f16tUMADt37pzL10xaJmqKJa3O1atXMXjwYAgEAn7b0KFDYTQakZycjPj4eNhsNgwdOpTfL5FIMGDAAFy9etXpWIMHD+bXvby8EBsbWylNqSlTpqCoqAhRUVF4/vnnsXXrVqfmXwDo0aMHvy4QCBAQEIDMzEx+248//oh77rkHAQEBUKvVePfdd3H37l2nY4SFhSEkJMQpjw6HA9evX6/yPSl/XgAIDAzkz3v9+nWEhoY69WcbMGBAlccCgPj4eFitVpfvT6kzZ86AMYaOHTtCrVbzy6FDhxAfHw8AmD9/PpYuXYqhQ4di0aJFuHDhQpXnvH79eqV8ucpnRESE0wCI8q+1tq5evepUPgCuDN28eRN2u53f1q9fv2qP07NnT4wcORLdu3fHlClT8J///Ad5eXkAgKysLCQlJeG5555zen+WLl3Kvz9VnefBBx+EWCzmmzA3b94MjUaDMWPG8Pnv2bOn0+CBoUOHVionXbt2deoP5e/vj+7du/OPRSIRvL29+ffv9OnTuHXrFjQaDZ9fLy8vmM1mxMfHIzMzE6mpqRg5cmS170v58qhSqaDRaJw+oy+//BL9+vWDr68v1Go1/vOf/1T6HnTt2hUikYh/XN3nXNfvpr+/PwA4vRel26o6x7lz5xASEsI3g1ZU2zJV0zWiKt27d3fqV1fbMlCV2nx/Aa4vbMXrC2nZaPAEaXUYY05BXek2gLtQll+v6XmuVJUmNDQU169fx759+/Drr79i7ty5+OSTT3Do0CG+s3vFTu8CgQAOhwMAcPz4cTzxxBNYsmQJxo4dC51Oh++//95l3zVX+aku79Wdt7avuzxWi1G3DocDIpEIp0+fdvoBBgC1Wg0AmD17NsaOHYudO3di7969+PDDD7Fs2TLMmzfP5Tmr+lzLq+611lZtz1XTqEuRSIR9+/bh6NGj2Lt3L/75z39i4cKFOHHiBJRKJQCu3+DAgQMrPa+680ilUjz22GPYsGEDnnjiCWzYsAFTp06FWCyuMv+lym939V5V9/45HA707dsX3377baXj+vr61rrTfHXn2LhxI1577TUsW7YMgwcPhkajwSeffIITJ07U+hgV1fW7WfoeudpW1TkUCkW1r7mpy2/FMlLbMlCV2nx/Ae511/X6QdyLauxIq9OlSxccPXrU6aJ59OhRaDQaBAcHIzo6GlKpFIcPH+b322w2nDp1Cp07d3Y61vHjx/n1vLw83LhxA506dary3AqFAg8//DA+//xzHDx4EMeOHatxwEWpI0eOIDw8HAsXLkS/fv0QExPjsiPy3bt3kZqayj8+duwYhEJhlTUFNenUqRPu3r2LjIwMflv5gSSuREdHQyKRuHx/SvXu3Rt2ux2ZmZmIjo52WsrXDoaGhmLOnDnYsmUL/vznP+M///lPlfk8efKk07aaOrPXV5cuXZzKB8CVoY4dO1b6kauJQCDA0KFDsWTJEpw9exZSqRRbt26Fv78/goODcfv27UrvT2kn+epMnz4du3fvxuXLl3HgwAFMnz7dKf/nzp1zGqRx5MiRBpUTAOjTpw9u3rwJPz+/SnnW6XTQaDSIiIjA/v37632OP/74A0OGDMHcuXPRu3dvREdHV6rBrI+GfDdro0ePHkhOTnb6DpTXGGWqtEaufA1fVRpaBmr7/SWtD9XYkRZLr9fj3LlzTtu8vLwwd+5crFixAvPmzcPLL7+M69evY9GiRViwYAGEQiFUKhX+9Kc/8SP/wsLC8PHHH6OwsBDPPfec0/H+9re/wdvbG/7+/li4cCF8fHyqnPx3zZo1sNvtGDhwIJRKJdatWweFQoHw8PBavZ7o6GjcvXsX33//Pfr374+dO3di69atldLJ5XLMnDkTn376KQwGA+bPn4/HH3+83hfb0aNHo0OHDpg5cyY+/vhjFBQUYOHChQCq/s9erVbjueeewxtvvOH0/pSvsenYsSOmT5+OGTNmYNmyZejduzeys7Px22+/oXv37njggQfw6quvYvz48ejYsSPy8vLw22+/VQquS82bNw/33nsvli9fjoceegi//fYbfvnllyapLfjzn/+M/v374+9//zumTp2KY8eO4YsvvnAasVobJ06cwP79+zFmzBj4+fnhxIkTyMrK4l/j4sWLMX/+fGi1WowfPx4WiwWnTp1CXl4eFixYUO2xhw8fDn9/f0yfPh0REREYNGgQv2/69OlYtGgRZs6cicWLFyMrKwvz5s3D008/zTcp1sf06dPxySefYOLEifjb3/6GkJAQ3L17F1u2bMEbb7yBkJAQLF68GHPmzIGfnx/Gjx+PgoICHDlyxGUtrCvR0dH43//+hz179iAyMhLr1q1DXFxcrYLdqjT0u1kbw4cPx7333otHH30Uy5cvR3R0NK5duwaBQIBx48Y1Spny8/PjR0SHhIRALpdXOb1RQ8tAbb6/pHWiGjvSYh08eBC9e/d2Wt577z0EBwdj165dOHnyJHr27Ik5c+bgueeewzvvvMM/96OPPsKjjz6Kp59+Gn369MGtW7ewZ88eeHp6Op3jo48+wiuvvIK+ffsiLS0NP//8c5XzQ3l4eOA///kPhg4dih49emD//v3Yvn07vL29a/V6Jk6ciNdeew0vv/wyevXqhaNHj+Ldd9+tlC46OhqPPPIIHnjgAYwZMwbdunWrc8BRnkgkwrZt22A0GtG/f3/Mnj2bf6/kcnmVz/vkk09w77334uGHH8aoUaNwzz33oG/fvk5pVq9ejRkzZuDPf/4zYmNj8fDDD+PEiRMIDQ0FwNU8vPTSS+jcuTPGjRuH2NjYKl/L0KFD8eWXX2L58uXo2bMndu/ejddee63aPNZXnz59sHHjRnz//ffo1q0b3nvvPfztb3/DrFmz6nQcrVaL33//HQ888AA6duyId955B8uWLcP48eMBcE3R//3vf7FmzRp0794dw4cPx5o1a2oVxAgEAjz55JM4f/68U20dACiVSuzZswe5ubno378/HnvsMYwcORJffPFFnfJfkVKpxO+//46wsDA88sgj6Ny5M5599lkUFRVBq9UCAGbOnIkVK1Zg1apV6Nq1KyZMmICbN2/W+hxz5szBI488gqlTp2LgwIHIycnB3LlzG5Tvhn43a2vz5s3o378/nnzySXTp0gV/+ctf+Nq1xihTYrEYn3/+Of79738jKCgIEydOrDJtY5SBmr6/pHUSsNp0piGkjTl48CDuu+8+5OXlOc2T5m6LFy/Gtm3bKtVUNrYjR47gnnvuwa1bt9ChQ4cmPVdDPP/887h27Rr++OMPd2eFEEJaBWqKJaQd2Lp1K9RqNWJiYnDr1i288sorGDp0aIsL6j799FOMHj0aKpUKv/zyC9auXdug2kpCCGlvKLAjpB0oKCjAX/7yFyQlJcHHxwejRo2qcTSuO5w8eZLvBxgVFYXPP/8cs2fPdne2CCGk1aCmWEIIIYSQNoIGTxBCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2BFCCCGEtBEU2JEWLSIiAsePH3d3NkgVPv30U3z44YfuzobbrFmzBuPGjavTcw4ePIjHH3+8iXJEDh48iE6dOjXJsV9++WV89913TXLs1mDx4sWYM2dOnZ6zZs0a/OUvf2miHBFXKLAjTaItB2Q5OTn405/+hODgYGg0GkRHR+Pll19Gamqq2/L0yy+/IDo6GiqVChMnTkReXl6VaePi4tCzZ08olUoMHz4cd+7c4fctWrQIoaGh0Gq1iImJwerVq6s8jtlsxueff46XXnqpxvwlJiZCLpdXmyYrKwsPPvgglEolYmNjsX///irT1pTPNWvWICQkBFqtFs888wysVmuNeWwsn376KZYsWVLl/hEjRuD27du4dOlSrY63Zs0aiMViqNVq6HQ6DBo0CMeOHWus7NbJt99+C7VazS9yuRwajYbf/8ILLyAwMBBarRbdu3fHjh07qjzWrFmzIJPJ+GN17dqV3+dwOPD2228jODgYXl5eeP3118EYa9LXVpOUlBTs2bOnVkF5bYLLBx98EH5+ftDpdBg4cGC1n2l1343CwkK8+OKL8PPzg7+/Pz799NPav6hG8PLLL2Pt2rVV7p8+fTo2bdqE7OzsZsxV+0aBHSF1UFRUhBEjRiA1NRUHDx6EwWDA8ePHER0d7bZANjMzE9OmTcM///lPZGZmQqPR4JVXXnGZ1mKx4JFHHsErr7yC3NxcDBo0CE8//TS//6mnnsK1a9dgMBiwa9cuLFy4EJcvX3Z5rC1btmDgwIHQarWN8jpeeuklBAUFITs7G//3f/+HKVOmVBmgVpfPixcvYsGCBdi2bRuSkpKQmJiIpUuX1ioPxcXFDX4du3fvxtixY6tN8/jjj+Obb76p9TFHjRoFo9GI7Oxs3HvvvXjkkUfcEuhMnz4dRqORX+bOnYtJkybx+xcsWIDExEQYDAZ88803eOqpp6r9J2PJkiX8scqXs6+//ho7d+7EmTNncOvWLRw9ehRfffVVU760Gq1duxaTJk2CSCRqlON9/PHHSE1NhV6vxzvvvIPJkydX+ZlW9914//33kZCQgFu3buHUqVP497//jT179tR4fofDAYfD0eDXsWfPHowZM6bK/RKJBOPHj8eGDRsafC5SS4yQJhAeHs6OHTtW6/Tvv/8+CwgIYGq1mnXp0oVdvnyZP84//vEP1qlTJ+bh4cHmzZvHP+fGjRts2LBhTKfTscDAQPbWW2/x+1avXs1GjRrFZsyYwdRqNevfvz+7fv06v//ChQts2LBhzMPDg/Xp04fFxcXVKp//+te/WHBwMCsqKqoyzaJFi9hTTz3FJk6cyFQqFRs1ahTLyMhgU6ZMYRqNho0dO5YZDIZavzc1+fLLL9m4ceP4x7du3WJyuZyZzeZKaXfv3s06derEPzYajUyhULDExMRKaW/cuMH8/f3Zzp07XZ53xowZ7PPPP+cfZ2dns7FjxzJvb2/m4+PDnn/+eT4PMTExDABTqVRMpVKxlJQUp2MVFBQwqVTKUlNT+W3Dhg1ja9eurfH1V8znm2++yebMmcPv379/P4uMjHT53EWLFrFp06bxn9WBAwfYTz/9xLp168bUajWLjo5mGzdu5NMbjUb25JNPMp1Ox3r37s3eeustNnbsWH6/yWRiAQEBrLi4mF2/fp0NHTqUaTQa5u3tzRYsWMCnO3bsGOvcuXONr40xriyXP8elS5cYAJaVldXsZa08u93OAgMD2e7du13uj4uLYzKZjP8uVzRz5kz24Ycfutz3yCOPsFWrVvGPN2zYwIYMGeIyrc1mY/PmzWNeXl6sY8eO7IMPPmCxsbH8/uq+60ePHmVdu3ZlGo2Gvfjii+zee+9l3333ncvz3Hvvveznn3/mH1d1/SkuLmZyuZwJBAKmUqmYTqdzebxSDoeD7dixgwFgRqOx0v6avht9+vRhu3bt4vd98MEHbNq0aS7PNXPmTDZv3jw2fPhwplAoWEJCAvvqq69YdHQ0U6vVrHv37uzAgQN8+szMTDZu3Dim0WjYiBEj2J/+9Cf24osv8vtv3brFevTowRjjynSvXr2YWq1m/v7+bNmyZXy67777jo0fP77a94E0HqqxI2537do1/Otf/8LZs2dhMBiwefNmeHl58ft//vlnHD58GBcvXsT333+PP/74g9+3dOlSZGdn49ChQ1i/fj22bdvG7ztw4ABGjBiBnJwcjB8/HtOnTwcAFBQUYPz48XjttdeQnZ2Nd999F5MnT4bZbAYAzJ07F3PnznWZ1wMHDmD06NE1Nitu27YNf/3rX5GZmYn8/Hzcc889mDdvHjIzM2E0Gqusrfnoo4/g4eHhcpkwYYLL51y5cgXdu3fnH3fo0AFisRi3b9+uMa1KpUKHDh1w5coVpzyoVCp07NgR4eHhuP/++12e9/Lly4iJieEfOxwOvPzyy0hJScGFCxdw6tQp/Otf/wIA7N27FzKZjK+dCQoKcjrWzZs3odPpEBgYyG/r2bNnlbWF1eWz4mvs2bMnEhISUFRU5PI4W7Zswcsvv4yCggIMHjwYWq0WP/74I/R6PT7//HM888wzSE9PB8DVMOXk5ODu3bvYsGED1q1b53SsAwcOYNiwYRCJRHjvvffw4IMPQq/X486dO5g6dSqfLjY2FteuXatzDaHVasXatWsRHBwMHx8fAM1b1sr77bffYLfbMWrUKKftc+fOhUKhQP/+/TFu3Dh06dKlymN88skn8Pb2xpAhQ/D777877WPlaq8YY1WWha+++gq///47rly5ggMHDjj1gavuu26xWPDoo4/itddeQ05ODnr06IGjR49WmdeK5R1wff0RiUT45Zdf0LFjRxiNRuTn51d5zAkTJkAul2PChAmYP38+VCpVpTS1+W7U9r0CgO+//x7Lly9HQUEBQkJCEBQUhP3790Ov12PevHl44oknYLFYAHA1hQEBAcjMzMT777+P9evXOx2rfO30q6++ijfeeAMFBQW4evUq7rvvPj5dbGwsLl68WGWeSOOiwI64nVgshtlsxpUrV2C329GpUycEBATw+1999VV4e3sjJCQEI0aMwPnz5wEAMTExuPfeeyEWixETE4Pp06fj8OHD/PMiIyPxzDPPQCqV4u2338aVK1dw584d7Ny5Ez169MDkyZMhEokwadIk+Pv7831cVq1ahVWrVrnMa05OjlPetmzZAg8PD6jVasybN4/fPnr0aAwePBhKpRIPPPAAYmJiMGzYMMjlcjz44IO4cOGCy+O/+eabyM/Pd7lU1V/JaDRWag7VarUwGo31Svvmm2/CaDTi+PHjePjhhyEWi12eV6/XQ61W8499fX0xYcIEyGQyBAYG4sUXX3T6PKpTl9dQUz4rHqt0vapj3X///Rg1ahQEAgFkMhlGjBiB2NhYCIVCjB8/Ht27d8epU6cAAJs2bcK7774LrVaLTp06YebMmU7HKv9DJ5FIkJCQgPT0dKhUKgwYMIBPp9FowBiDXq+v1fuzf/9+eHh4IDg4GCdPnsTWrVv5fc1Z1sr79ttv8cQTT1Rqmly1ahWMRiP27duH4cOHV/n8V155Bbdu3UJaWhpeeuklPPTQQ0hKSgIAjBkzBv/+97+RlpaG7OxsrFy5EoWFhS6Ps2nTJrz++uvw9/dHUFAQ5s+fz++r7rt+7NgxqFQqPPfcc5BIJJg7d65T8FRRxfJe0/WnNnbs2IGCggL8+OOP6NOnj8s0NX03xowZgxUrViA/Px+JiYlYs2ZNle8VAEyZMgV9+vSBSCSCWCzGgw8+iLCwMAiFQjz//PMQCAS4efMm7HY7tm7dir///e+Qy+UYMmQIHn74YadjVSzv169fR25uLjw9PdG7d28+nUajqTbAJY2LAjvidtHR0Vi+fDkWLlwIX19fPPfcczAYDPx+Pz8/fl2pVPIXtJSUFEyePBkBAQHQ6XRYsWIFcnJy+LShoaH8ukwmg5+fH9LS0nD37l3+h7J0uXr1KtLS0mrMq7e3N197AwCPPPII8vPz8frrr8Nms7nMs0KhgK+vr9Njk8lU27enRmq12un9AgCDweD0I1TXtAKBAAMHDkRaWhq+/vprl+fV6XQoKCjgHxcUFGDGjBn8oIUFCxY4fR6N9RpqymfFY5WuV3WskJAQp8eHDx/G0KFD4eXlBQ8PD5w6dYp/HWlpaU7lqvw6wPU3Kv2h+/jjj1FcXIxevXqhZ8+e2L59O5+uoKAAAoEAOp2u2tdXauTIkcjPz0dWVhYOHjyI/v378/uas6yVMpvN2LJlC18LXpFIJMKoUaOwf//+Kvt79e7dG56enpBKpZg+fToGDx6Mffv2AQBmz56N8ePHY8CAAejfvz8eeOABBAcHuzxOdZ9Jdd/19PT0Sp9fVecAKpf3mq4/tSWVSvHoo49i2bJluHr1aqX9NX033nnnHURERKBz584YP348pkyZUu3rqFjet23bhj59+vDvT2ZmJnJycpCVlQWHw+F0rPLvl9VqRVxcHIYNGwYA+O9//4urV68iOjoaQ4YMcRoMUlBQAA8Pj9q/KaRBKLAjLcLTTz+NY8eO4ebNm7hz5w4+++yzGp/zzjvvwNfXFzdu3IBer8err77q1CSRnJzMr1utVmRmZiIgIADBwcF48MEHnWooTCYTpk2bVuM577vvPuzbt49vtm1sH3zwgdOow/LL+PHjXT6nS5cuTs0ct2/fRnFxMaKiompMazKZEB8fX2VzmcPhQHx8vMt93bt3x/Xr1/nHy5cvR25uLs6dOweDwYDly5fzn4dAIKj2dcfExECv1zsFzefPn3caKVmd8vms+BrPnz+PyMhIKBQKl8+tmLenn34azz77LDIyMpCfn49+/frxryMwMJCvVQLgtJ6QkACpVMr/cAYGBuKbb75Beno6/va3v2Hq1Kn86Nxr166hU6dOVdaGNof6lLVS27dvh5+fn1MtpCvVlZ+KhMKynyORSISPPvoISUlJSEhIgL+/P/r16+fyedV9JtV91wMCApyuEQAXrFWlYnmv7vpTU3l3pbi4GAkJCZW21/TdUKlU+Oqrr5CWloarV69CIBBU+V5VzJvFYsGTTz6Jjz76CDk5OcjPz4efnx8YY/D19YVQKHR6T8q/t4cPH0a/fv0glUoBcM2tGzdu5AdzPfXUU3zaa9euOXWPIE2LAjvSZKxWK8xmM79UNQLr+vXrOHjwIKxWK5RKJWQyWa1GnhUUFEClUkGtVuPSpUuV+n/cvn0ba9euhc1mw4cffohOnTohIiICEyZMwKlTp/Dzzz/DbrejqKgIu3fvrlWz2MyZM+Hp6YmpU6fi5s2bYIwhLy/P5X/a9fH22287jTosv/zyyy8unzN58mQcP34ce/bsQWFhIRYtWoQpU6ZAJpNVSjtixAgYjUasWbMGFosFS5cuRb9+/RAeHg6A+687Pz8fDocDhw4dwrfffosRI0a4PO+4ceOc+kUVFBRAoVBAp9Phzp07Ts3ZPj4+sNlsVdaKqtVqPPzww1i0aBGKiorw888/49KlS3jooYdcpq8un9OmTcPGjRtx5swZ6PV6vP/++04/MjUpKCiAl5cXxGIxNm/ejNOnT/P7HnvsMbz//vsoKCjA9evX8b///Y/fV3E07I8//ojU1FQIBAJ4eHhAIBDwP6p//PGHU9rFixdX+T43lfqUtVLffvttpdo6o9GIb7/9FkajEcXFxdi8eTPf59CVzZs3w2Qyobi4GD/88AMOHz7M95PMyclBYmIiGGM4deoU3n//fbz55psuj/PYY49h+fLlyMzMRFpaGr744gt+X3Xf9cGDB8NoNGL16tUoLi7Gl19+WW2tvavyXtX1x8/PD5mZmVX267xz5w527NjB9/X74osvkJycjL59+1ZKW9N3Izk5Genp6bDb7di3bx9Wr16N1157rcrXUZ7FYoHVauVreT/77DNkZWUBAN90vWjRIpjNZhw/ftyp1rl87TTAlYmcnByIxWJoNBqna3jF8k6aFgV2pMkMHz4cCoWCX7Zs2eIyncViwRtvvAFvb2+EhYVBp9NVOV1Hee+99x72798PrVaL+fPn49FHH3Xaf9999+HAgQPw8vLCjh078O233wLgmlR27NiBzz77DL6+voiIiHCaSmHOnDlVTsKpUChw8OBBBAYGYvjw4dBoNBgwYAB8fX3x7rvv1vataVR+fn749ttvMXfuXPj4+ECv1zvVeI4fPx4ffPABAK5JesuWLVi+fDk8PDxw5MgRpwEAu3btQocOHaDT6TB37lx88skneOCBB1yed+LEiTh16hTfd+aVV15BSkoKPD098eijj2Ly5Ml8WpVKhb/+9a/o3r07PDw8XM75t2rVKiQlJcHb2xuvv/46Nm7cCE9PTwDcj0b52rvq8tm9e3csW7YMDz30EEJCQhAaGoqFCxfW+v385z//iZdffhmenp7Ys2ePUz+xRYsWQafTISQkBE8++aTTVDEVA7uTJ0+ib9++UKvV+NOf/oQNGzZAIpEAADZu3Ihnn32WT5ucnIyhQ4fWOo/ulJeXh19++aVSYCcQCPD1118jJCQE3t7e+OCDD7Bhwwa+pqbiZ/iPf/wDQUFB8PHxwfLly7F161ZEREQA4KbwGTVqFFQqFZ566iksW7bMZdADAC+++CKGDBmCTp06YcSIEXjiiSf4fdV912UyGTZv3oxly5bBy8sL586dQ//+/V3+QwQAM2bMwE8//QS73Q6g+utP586dMWHCBISEhPCDXCp6//334efnh4CAAPzwww/Yvn07/P39AXC1qeVrTav7bty8eRP9+/eHRqPBX//6V3z//feVBidVRavV4pNPPsHo0aMREBCAnJwcREdH8/tLA05fX1+89dZbTp95xfK+a9cuxMbGQqPR4PPPP+fnlrTZbNi1a1etWkRI4xAw5uZZHwlpAmvWrMH333+P3bt3uzsrbdqyZctgNpvrFDi1RTabDSEhIbhz506NI6YPHjyIlStXYtOmTfy2vn37Yu/evfD29m7qrJIqMMYQEhKCbdu2OfVhLG/evHkYNGhQlX0L24u0tDQMHTrU5cj7itasWYPLly/jk08+aYacEYACO9JGUWBHmlNGRga2b9+O2bNnuzsrpA4OHDiALl26wNPTE8uXL8eXX36JW7duubXvY2tw/fp1XLx4EY899pi7s0JcoKZY0mweeughlx21Dx486O6sEdIg/v7+FNS1QpcvX0bPnj3h7e2Nbdu2YcuWLRTU1UJsbCwFdS0Y1dgRQgghhLQRVGNHCCGEENJGUGBHCCGEENJGUGBHCCGEENJGUC9RFxwOB1JTU6HRaOo1gzghhBBCSGNhjKGgoABBQUFOd2lxhQI7F1JTUyvdQ5AQQgghxJ2SkpIq3e+3IgrsXNBoNAC4N1Cr1bo5N4SQls5sNvO3LVu/fn2NkxQT4g5UTlsvg8GA0NBQPj6pDk134oLBYIBOp4Ner6fAjhBSI5PJBLVaDYC7Z6pKpXJzjgipjMpp61WXuIRq7AghpIGkUil/b0ypVOrm3BDiGpXT9oFq7FygGjtCCCGEtBR1iUtouhNCCCGEkDaCAjs3yS7Khs1hc3c2CCGNwG6349y5czh37hzsdru7s0OIS1RO2wfqY+cmz+x+BncL7sJX4YtAVSAC1YEIVAUiSBVUtq4OgkpCnVsJaenMZjN69+4NgDqlk5aLymn7QIGdGzDGkGvOhYM5kFGYgYzCDJzLOucyrUaq4YK9kuAvSBWEAHUAv81b4Q2hgCpeCXEngUCAoKAgfp2QlojKaftAgydcaI7BEw7mQK45F2nGNKSZypZUYyq/rrfoazyORChBgCrAqabPKQhUBUAqotFPhBBCSGtVl7iEAjsXWsqoWJPNhHRTulOwl2pM5baZUpFZmAkHc9R4HB+FDx/kBamD+ECwdF0r1dJ/b4QQQkgLRYFdA7WUwK4mxY5iZBZmOgV+aaY0p1rAouKiGo+jkqj4mr7ygV9pDaCvwhcioagZXhEhhBBCKqIJitsJsVCMIDVX8+YKYwz5lnynYC/VlOpUC5hrzoXJZsKt/Fu4lX/L9XkEYvir/J2aecsP9AhQBUAhVjTlSyWkRTObzXj66acBAOvWraNbNZEWicpp+0A1di40S43doY8Bhx3wCAU8wgBdKKANBsTN2x/OXGx2WdNXGvhlmDJQzIprPI6X3Iuv6Stt8i0d6OGv9Ie33Juae0mbRbdqIq0BldPWi2rsWoOT/wFMmRU2CgBNIBfs6ULLBX1hZdukykbNhlwsR6QuEpG6SJf77Q47souyKw3sKP/YZDMh15yLXHMuruRccXkciVACf6U/AlQBZYsywOkx9fUjrZVUKsUXX3zBrxPSElE5bR+oxs6FJq+xYwz4YxmQfxfQJwH5SdzfYnPNz1V6lwV9ujAu8CsfCMo9gGYOjgxWQ1lTb7nBHaW1gNlF2WCouZgpxAr4K/3hr/KvFPSVPlZL1c3wigghhJCWgwZPNJBbBk8wBpiySoK8u2XBHv/3LmAx1HwcqaZcoBfmvK4LBdR+zR742Rw2ZBVmId2Uzi2F6WXrpnRkFGYg15xbq2OpJWqnmj9XQSD19yOEENKWUGDXQC12VGxRfuVgr/RvfhJQmF3zMUQyQBfiupnXIxTQBAGi5m+ht9gtyDBxkzWXD/rKB4EGay0CWwBaqdapps9P6VdpoWZf0pgcDgfi4+MBAB06dIBQSJOGk5aHymnrRYEdgNTUVDz22GMQi8XQarXYuHEjlMra9U9rsYFdTayFgD65co1faQBYkAbUNO+dQARog8pq+MoHfbowLiiUuGckVaGtkA/0MkwZSC8s+VsuCDTZTLU6llwkh6/Slwv0FOWCPpXzY5rcmdQGdUonrQGV09aLAjtwNzsWCAQQCoVYtGgRunXrhilTptTqua02sKuJ3QYYUio0894tq/HTJwMOW83HUfm5buYtfSx333tWYC1wCvQyTBnIKspCRmEGMgszkVmYWas7epTylHnyAaC/0t9p3U/pB1+FLzzlnnRbt3bOZDIhODgYAJCSkkI/mKRFonLaiBwObgBk6e+oMQsYNKfJTkejYgGIRGUT6goEAsTGxroxNy2ESAJ4RnCLKw4HYMyo0MxbYd1m4gqzKRNIOeX6OHKPcoM7QivU/IVxA0CaqBlUI9VAI9UgxjOmyjTmYjOyirL4QK+qxeqwIs+ShzxLHm7k3ajyeGKhGH4Kv0pBX+lS+lgupjmj2iqVSoX8/Hx3Z4OQalE5rYMqK0JKHuuTAbvV+Tl9ZjT6zBX10Spq7BYtWoRNmzbh2rVr2LBhA5544gl+X1ZWFmbNmoUDBw4gNDQUq1atwsiRIwEAhw8fxiuvvAKFQoGdO3dCp9PV6nxttsauoRgDivKqCPpK/hbl1XwcidJ1M2/pY00A4OY7XTDGoLfo+Zq+irV+WYVZdRr0AXB9/6oL/PyUflT7RwghzaGqrkulfwtSa9F1Scj1Sy/97Rr3EaDybpLstrmm2PXr18Pf3x/vvvsuXn31VafA7vHHH4dOp8Nnn32GvXv34tlnn0V8fDw8PT35NJ9++ilEIhFee+21Wp2PArsGsBiraOYt2WZMr/kYQgmgC3bdzOsR5paJnKtis9tc1v6VDwIzCzNhttdiKhuU1f5VFfj5q7gRwRKhpIlfGSGEtFKMAeZ817NLlD6u1WBDaeXfn/KPtUFcS1gzaHNNsU899RQA4P3333fabjQa8dNPPyExMRFKpRKTJk3C8uXLsX37dkydOhUymQwAoNPpYLfbqzy+xWKBxWLhHxsMtRt9SVyQqQG/ztziSrGl5L8kF828+ruAIZXr55eXyC0uuZjImZ/epWSAh7R5+o5IRJJqb+sGcLV/BqvBqabPVRCYa85FsaMYqaZUpJpSqzyeSCBCgCoAIeoQBGuCEaIOQYgmBMHqYIRoQuAp86QRv83MYrHgxRdfBAD8+9//5q89hLQkbaacMgYYMysHa+VnibAW1Hwcp+nBXLQgqfyAVjhyuFXU2JUaMWIE5syZw9fYnT17FmPHjkVmZtkdHObNmwelUomHHnoICxcuhFAohJeXF9atW1flqNjFixdjyZIllbZTjZ0bOOzc6F0+6HNRTV6viZwr/Lflhomca2Jz2JBdmO0c+BU51wSmm9JhsVuqPY5KokKULgpRuih08OjArXtEIVgdTM28TYRGG5LWoNWUU7uN+ye/qto2fTJQw3UQgPPvgEd45QCuBf4OVKXN1dhVxWg0VnqBWq0W+fn5uOeee3Do0KFaHeett97CggUL+McGgwGhoaGNmldSS0IRV+OmCwHCB1fezxhgynbdzFv616IHCnO4Je2c6/O4/E8tDO6cyFkilCBQHYhAdWCVaRzMgZyiHCQbk5FckFz2t2Q9szATJpsJF7Mv4mL2RafnykXc7eO6eHfhl46eHWlKl0YgkUjw8ccf8+uEtEQtppyaDWUDEMoHa6WPazM1FwRcU2iV/bWbr+WmpWnVgZ1ara7UbGowGPj/SGpLJpO13irp9kYgANS+3BLc13Uas971wI7S4M+UxVXTZ17hFlfKT+RcMejzCOWagpupb0V5QoEQvkpf+Cp90duvd6X9FrsFSYYk3NbfRrw+Hrfzb+O2/jYS9Akw2824mnsVV3OvYvPNzQAAsUCMaM9odPHugh4+PdDHvw8itBHUlFtHUqkUb7zxhruzQUi1mqWcOuxAQXpZkKYvF7SVBnC1mXJKKCl3Da4ww0JpX2s3XINbg1Yd2MXExECv1yM9PR0BAQEAgPPnz2P27NluzhlxK7kOCNABAd1c77cVlVxk7lQ9GspuAXLjucUVgRBQB5TVLlZctCGA0qvZa/1kIhmiPaMR7RnttL3YUYwUYwpu5N3AlZwr/JJvyce13Gu4lnsNW25uAQB4yb3Q2683+vj1QR//Pujk1QliYau+VBBCGovVVHVNmz6ppJ90cc3HUXiWXC9LArbSa2dpP+lW2r+tJWgVfexsNhvsdjvGjBmD559/HlOmTIFUKoVQKMSUKVPg5eWFFStWYN++fZg1a1alUbF1RaNi27n6zF/kilhRLtgLdr54aUu2Sdx3X1vGGNJMabiScwWXcy7jbOZZXMy6CKvD+bVpJBoMDByIwUGDMSRoCEI0IW7KccvlcDiQlpYGAAgMDKRbNZEWqcZy6nBwLRql04A41bSVXPuKajHFk0DE1ah5lLvmVQzgZHVrWWvv2tx0J7NmzcLatWudth04cAAjRoxAVlYWZs6ciYMHDyIkJASrVq3CqFGjGnQ+CuxItRwObqh8+SYGfUrZY0MKN9FzbSh9XAR95R6r/Zv1v1ar3YorOVdwOuM0zmaexZnMMyioMLosTBOGwUGDMTRoKAYGDoRS4v4JOd2t1XRKJ+2aKS8LfWMCEKIVYOeGLyEryqrcXFqbf1pl2gq1bOWDtpYxF2lb0+YCu+ZGgR1psGILF+DxQV+yc+BXehePmgglgDaw7KKpDS73329JrZ+8dhNv14fdYceVnCs4mnoUR1OP4kLWBRSzsmYWmUiGwYGDMSJ0BIaHDoePwqfJ8tKSmUwmeHh4AADy8/MpsCPNz1ZUMpK05BpjSOGuPYaUsu3m/JqPIxByfYidatpCyg1OCGnSaw5xjQK7BqLAjjS50gk0K9b2lV6U9cncxZhVPf8iT6Z1Dvq0wVwwqA3iZkXXBjXa/XuNViPi0uNwJPUI/kj+w2m+PQEE6OHbAyNCR+D+0PsRqYukQRiENIZiC3c94IO1kutD6bo+pXZNpAA3I4AuuEJTabkat2acdJfUHgV2DUSBHWkR7MXcnTpcBn6l/V1qcQs3gLuYlwZ72mDuP/LSdW0g97eO9/BljOFG3g0cTDqIA0kHcDnnstP+CG0ExkSMwZjwMejo2ZGCPEJcsZm577khzfmfOn49hev3VhsSZck/eMFl/Xi1Qc7rVNvWKlFg10AU2JFWw2qq3L/PkFq2FKRy07/UhkhaEvAFuwgCS34U1P6AyPUI2QxTBg4lH8KBpAM4kXYCNoeN3xehjcDo8NEYGzGWgjzSPjjs3JybBanc9B+Gkr/84zRuvrba1rSJ5WXfQ76GvqTmrXS9FU24S+qGArsGosCOtCkWI/cDUj7YM1RYTJk1HwcomebFn+scrfZ3XtcEcFPAaPxhlCpxKO0Y9ibuxeGUw04jbcO14RgTPgZjIsYg1jO2TQR5FouFn+R8+fLlNC9mW8YYYDFUEaylct+1gnRuqU1XCoAL2jQBFWrZgsuaRhtp+iQqp60XBXYNRIEdaXeKrSXNQamVa/wMqSW1C7Wcn6qUwgvQBMCo8sUhhQR7WQEOWzJhLfdjF6YOwZjIcRgXMa5V1+TRqNg2wFbE3X/UmMmNajdmcOumituygOKi2h1TIOTmY9MElPR5DSjp9xpYtq4J4OZ0a4ayT+W09Wo3txQjhDQSsbTs7hpVKZ3jqnQ6l4L0kh+8dKAgo9zfDMBh45qYinKhBvBgyWISCHBIqcBelRKHFXLcNSbjvxf/i/9e/C8imAhjRV4YqwpHjDYCUPkAKl+u75/Kl3us9OHy2sJIJBIsWrSIXyctgMPBDVAqzOWmJyrM4ZpGTVllgZopqyyAsxhqPKQTuY7rplC6aAMrP1b5Vdl1wR2onLYPVGPnAtXYEdIADgc3qMOYXhIAZrgI/tJhMmbgkIRhr0qJPxQKWIVlNRYdrFaMNRVirKkQUbYKtYQyXVnQp/IpC/iUXlzNR+ki9yhZ9wDE1OTUqpU2f5r1XNkqzOECNlNJwMYHbjnlHufWvim0lEhW0sXAr9xfv3KP/blyp/Zrt/chJe5BTbENRIEdIc3EYgSMGTDq7+JgymHsyTqFIwWJsKHsBuAxDiHGFlowLj8H4bZaTJ7qikTFBXh84OdRLvDz5KaDkWkBqRqQaSovYjl1Sm8IezF3f2arifvMrUYuSDPnA0X51ayXPtbX4qbwVZBpuaBf6cPV/qp9uZo0p8CtZF2mpc+ZtEgU2DUQBXaEuI/BasDBpIPYnbAbx1KPOU2I3MkjGmP9B2KsrhNCmYBrSjPlcH+L8pyX0uAAjXCJE4pLgj5tuYBPzU0vIVGAiRWwOoRgYjlkag8IJArudnESBRcU8usKQCLnJp4WSbjjiiRVP27sIMPh4PpJOi32cus2bvqN4vKLhet/Vmzh+pZVfGwzc4Ga1VgWtFlNgKWgbL3Y3Dj5F8m4oLy0hlbpXVJj6122reJjqq3lMcag13Oj5HU6Xavt09oeUWDXQBTYEdIy6C16/Hb3N+xJ3IPjacdhL9e01tW7K8ZGjMXYiLEIUge5PoDDAVj0XIBXKejLK9tuMXCBiKWAC05K1yvcTq3ZCURlAR9KfoT5H2OB0x/nbQKu+ZKVC+TsNjRKkNsQQgkXEEvVXB81ua6k5tSjwnrJY75mteSxG++t3BbQ4InWiwK7BqLAjpCWJ8+ch/1392NP4h6cTD8JR7mmuR4+PTAmYgzGRoxFgCqg8U7qcHC3fuODvgqLrRCwFcFaaMCy/1sKhRh46YVnIUExV6tlK+Jqq2yFJTVhJTVcDhsXaJUGXA5b/ZsaG4NQXLaI5SW1jCV/xTKuplEsK6l1dPG4tAlbqipZLwnepGpum0zDrbfAgS/tCQV2rRcFdg1EgR0hLVtOUQ72392P3Ym7cSr9FFi5mqhevr0wLnIcRoePhp/Sr1nywxhDcTHXZCwWi+vXxMU3k7oI+kqnmal4uXZ6zCpvE4qcgzahmNtWWgsoFHNTclCTXLvQKOWUuAUFdg1EgR0hrUd2UTb23dmH3Qm7cTbzLB/kCSBAH/8+GBsxFqPDR8NH4ePmnBJCSP1QYNdAFNgR0jplmDKw784+7Encg3NZ5/jtQoEQ/fz7YWzEWIwKHwUvuZf7MkkIIXVEgV0DUWBHSOuXbkrHnsQ92Ju4FxeyL/DbRQIR+gf0x7iIcRgZNhIeco8Gn8tqtWLhwoUAgPfffx9SKfUlIy0PldPWiwK7BqLAjpC2JcWYgr2Je7E7cTeu5Fzht4sFYgwMGoix4WMxInQEPOWe9To+dUonrQGV09aLbilGCCHlBKuD8Uy3Z/BMt2eQZEjCnjt7sCdxD67lXsORlCM4knIEQoEQffz64P6w+3F/2P0IVgfX+vgSiQSvv/46v05IS0TltH2gGjsXqMaOkPYhUZ+IPYl78OvdX3Et95rTvk5enXB/KBfkdfTsSCMICSFuQ02xDUSBHSHtT4oxBQfuHsBvSb/hdMZpp3nygtXBuC/0Ptwfdj96+/WGWEiNHYSQ5kOBXQNRYEdI+5ZnzsOh5EP47e5vOJp6FBa7hd/nKfPE8NDhuC/0PgwKHASlREnzg5FWgcpp60WBXQNRYEcIKVVoK8SxtGP47e5vOJh0EAargd8nFUrRP7A/BvoMxIujX4Qt24aCggK+gzohLQkNnmi9KLBrIArsCCGuFDuKcSbjDH5L+g0H7h5AqinVab85xYwZ98zAuI7j0MuvFyRC6qBOWg4K7FovCuwaiAI7QkhNGGOIz4/H7ym/48CdAzibcRYCUVnTlkaqwdCgobg35F7cE3xPvadSIaSxMMag1+sBADqdjppiWxEK7BqIAjtCSF2YTCZo/bTQdNfg+Q+fx/GM48i35PP7BRCgh28P3BN8D4YGDUUX7y4QCUXuyzAhpFWhwK6BKLAjhNRFxSYuuUKOi9kX8Xvy7/g9+Xdcz7vulF4n02FQ4CAMDRqKwUGDEaAKcEe2CSGtBAV2DUSBHSGkLvLy8uDlxd1/Njc3F56ezs2u6aZ0/J78O46lHsOJtBMosBU47e+g64DBQYMxNHgo+vr3hUKsaLa8k/bDarXigw8+AAC8/fbbdEuxVoQCuwaiwI4QUheZmZnw9/cHAGRkZMDPz6/KtMWOYlzKvoQjqUdwNPUoLmVfcpozTyqUoo9/HwwJGoIhQUMQ4xkDoUDY5K+BtH00eKL1avLArqioCO+99x42bdqE3NxcGAwG7NmzB1evXsWrr75a33y3GBTYEULqIjc3F97e3gCAnJwcvvauNvQWPU6kncDR1KM4knoE6aZ0p/2eMk/0D+iPAQEDMCBwACK0EdTpndSLxWLBggULAADLly+HTCZzc45IbTV5YPfMM8/AZrPhzTffxLBhw5CXl4e0tDTcd999uHbtWs0HaAZJSUmYOHEirly5AqPRCLG49jPFU2BHCKmLxqoJYYwhwZCAY6nHcCTlCE5lnEJRcZFTGj+FHzd3XsBADAgcUKd72hLibna7HTabzd3ZaNEkEglEIufBVU0e2Pn5+SEpKQkymQxeXl7Izc0FAP6kLYHZbIbZbMakSZPw66+/UmBHCGkyTdXEZbPbcCnnEk6mncTJ9JM4l3kOVofVKU2wOpivzRsQMAB+yqqbgQlxJ6PRiOTkZFAPsOoJBAKEhIQ4TXRel7ikXjc89PDwQFZWFkJCQvhtCQkJCAoKqs/hmoRcLodcLnd3NgghpN4kIgl6+/VGb7/eeLHni7DYLTifeR4n0k8gLj0OF7MuIsWYgq23tmLrra0AgHBtOHr79UYfvz7o698XoZpQarolbme325GcnAylUglfX18qk1VgjCErKwvJycmIiYmpVHNXG/UK7F555RU89NBDWLhwIex2O3bs2IGlS5c2Wf+6RYsWYdOmTbh27Ro2bNiAJ554gt+XlZWFWbNm4cCBAwgNDcWqVaswcuTIJskHIYS4YjKZnNabqlO6TCTjauYCBwDgbnd2NvMsTqSfwMm0k7iaexV3DHdwx3AH225tAwD4Kny5QM+fC/RiPGJoDr12ymQywcPDAwCQn5/frIMnbDYbGGPw9fWFQkGjvqvj6+uLxMRE2Gy25gvsXnrpJfj5+eHrr79GSEgIPv/8c7z22muYOnVqfQ5Xo5iYGHz22Wd49913XeYlKCgI2dnZ2Lt3L6ZMmYL4+PhK0w0QQkhbo5QoMTR4KIYGDwUAGKwGnMs8hzMZZ3Am8wwuZV9CVlEW9t7Zi7139gIA1BI1evr1RF+/vujj3wfdfLpBJqJO9O1FcXGxW89PNXU1a+h71KqmOxkxYgTmzJnD19gZjUZ4e3sjMTERgYGBAIB7770Xs2fPxowZM/jn1NTHzmKxwGKx8I8NBgNCQ0Opjx0hpFYKCgr4a4XBYIBGo3FzjjgWuwUXsy7ibOZZnM48jXOZ52CymZzSSIQSdPbujB4+PdDTtyd6+vZEgCqAfoDbIIfDgbS0NABAYGAghMLmm0bHbDYjISEBkZGRbusmJZFI0LVrV1itVgwZMgRfffVVs74HteXqvWqSPnYff/xxrdL95S9/qe0hG+zmzZvQ6XR8UAcAPXv2xOXLl2E2mzFhwgScP38eY8eOxeLFizFs2DCXx/nwww+xZMmS5so2IaSNKf/j0JJ+KGQiGfoF9EO/gH54Hs/D7rDjRt4NnMk8g9MZp3Em4wxyzDm4kHUBF7IuYP3V9QC45tsevlyg18O3B7p4d6FJk9sAoVCI4OD2O4ra29sb586dg91ux8iRI7F161Y8+uij7s5Wo6t1YHf16lV+vbCwEFu3bsXAgQMRGhqKpKQknDx5Eo888kiTZLIqRqOxUuSq1WqRn58PuVyOX3/9tVbHeeutt/i5fYCyGjtCCGlLREIROnt3RmfvzpjeeToYY0guSMb57PO4kHUB57PO40buDWQVZWH/3f3Yf3c/9zyBCB09O/KBXnef7gjThtHEyaRVEolEGDRoEOLj492dlSZR68Bu9erV/Pqjjz6KTZs2YeLEify2n3/+Gf/73/8aN3c1UKvVMBgMTtsMBoPTEOHakMlkNFEjIaTerFar03prmdFfIBAgVBuKUG0oJkRNAAAUFRfhas5VnM8qC/ayirJwNfcqruZexffXvwfA9dXr4t0FXb27oosP9zdEHUJNuC2Y1WrFZ599BoAbBOmuW4oxxlBkszf6cRUSUa3KX1FREQ4cOOCy335bUK/BE7/++it++OEHp20PPPAAnn766UbJVG3FxMRAr9cjPT0dAQHcTbTPnz+P2bNnN2s+CCHtW/kJV1v75KsKsQJ9/Pugj38fANyPcLop3alW73rudRhtRpxM5+bXK6WVatHVuyu6+nTl/np3pf56LYjNZuO7S82dO9dtgV2RzY4u7+1p9ONe+dtYKKVVhzU5OTno1asXAC5mmTBhQqPnoSWoV2DXrVs3LF26FO+88w7EYjGKi4vxwQcfoGvXro2dPwBcYbTb7XA4HLDZbDCbzZBKpVCr1Xj44YexaNEirFixAvv27cOlS5fw0EMPNUk+CCHElfKDs+oyGXprIBAIEKgORKA6EOMixgEAbA4bbuffxuWcy7icfRlXcq7get51GKwGHEs7hmNpx/jne8m90MW7Czp7dUasVyw6eXVCqCaUmnHdQCwWY+bMmfx6e1Pax66tq9eo2Nu3b2PatGm4fPky/Pz8kJmZiS5duuDbb79FdHR0o2dy1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDzkd3niCE1AXdXJ27S8bN/JtOwd7NvJsoZpWn11CIFejo2RGdvDoh1isWsZ6xiPGMoQEabVj5kZ4ymcwtTbEBAQFIT0+vcn9L0dBRsQ2a7uTu3btIS0tDYGAgwsLC6nuYFocCO0JIXVBg55rFbsGN3Bu4nHMZ13Kv4XruddzMvwmL3VIprVAgRLg2HLGesXzNXievTvBR+Lgh56SxtYTpTtpLYFevutjMzEwA3G27IiMjnbb5+dF9CgkhhHDTrXT37Y7uvt35bcWOYtw13MW13Gu4lncNN3Jv4GruVeSac5GgT0CCPgG7E3fz6T1lnoj2jEa0B7fEeMagg0cHaKX0Tzepm9YQ1DWGegV2AQFcZ9jSyr7yVZ92e+NXrxJCSEvWXLcUawvEQjGiPKIQ5RGFB/AAvz27KBvXc6/zNXvX864j0ZCIPEse4tLjEJce53QcP6UfYjxiuIDPMxoxHjGI1EVCKVE290tqNUwmEz+PXUpKCpXTNqpegZ3D4XB6nJ6ejqVLl2LgwIGNkilCCCHti4/CBz7BPvzt0QBu6pXb+tuIz4/HrbxbuJl/E7fybyHdlI7MwkxkFmbiSOoRPr0AAgSrg/lAL8ojCpG6SERqKeArpdfr3Z0F0sQa7ZZiVqsVUVFRSE5ObozDuRX1sSOE1EVLvaVYW1VgLeCCvfxb3FIS9OWac6t8ToAqAJHaSC7Q00UiSscFfT4Kn3YzHYvD4eAn5e3QoUO7u6VYa+GWPnaunDhxwu03FyaEEHdoqbcUa6s0Ug16+fVCL79eTttzzbmIz4/HzTyuZu+2/jYS9AnINeci3ZSOdFO601QsADfRcmmwV34J1YRCIpQ046tqekKhEDExMe7OBmli9QrsOnfu7PQfTmFhIXJycvgZrUnrwxgDYwArWQdK1wGGkscM/N/y20qfw1C2H1WkcTDur71k3eFgcJSs2x2MT2Pnt7ve53QMxkqOU3kfY6zkWGXnspek57eXpCnbDtgZ459bfnv5tPx+h6tjOB+b319u3encVWx3lByz/DmcXwcgFgkgl4ggEwtLFhHkkpK/UhG0cjE8lBLoFM6Lr0YGf60cfho5pGIKRkjr5yX3gleAF/oH9Hfarrfo+YEZpctt/W0kG5NhtBlxMfsiLmZfdHqOWCBGqDYU4dpwRGgjEKYNQ7gmHGHaMPgp/WgePtJi1Suw+/LLL50eq1QqdOzYkZot6+DBz/9AVoGFD544ZcEVUBYsMeYcbKGqNBUCqdJEDFUHbaT1s9qBQmvDBi35qKXw08gRoJMj1FOBCB8VInxUiPRWIdhTAYmIfsSq05buPNEW6WQ6lzV8VrsVdw13kWAoC/ZKA7+i4iJ+vSK5SM4FetpwhGlK/pY89pZ7t9imXZvNhq+++goA8MILL0AiaVs1koRTr8AuLi4Or7/+eqXty5cvx4IFCxqcqfYgq8CCzILKczm1ByKhAEIBN5paJODWhUIBhCXrIqEAgtJ1Abde+hyhQFCStmRdIIBQWJau/PNFJfv4dBX2iYRlxxKVHJf/K6y8TShwvV1Usi4oOb6IT+t8PKGgbB+/v9z28scrfX1Ox6pw3NLzFdsZLMV2mG0OWIrtsBQ7YLZxfwutduiLbNAX2WAosiG/0Ap9kQ35RTauDBossNodyDZakW204kqaodLnJRYKEOKpQLSfBl0CNegUqEXnQC3CvZQQClvmD1hzq3ivWNI6SEVSbioVT+eJ9RljyCjMwG39bdwx3MFdw13ub8FdJBckw2w340beDdzIu1HpmCqJyinYK1/b5yH3aKZX5prVasXLL78MgJv4nwK7tqlegye0Wi0Mhso/AN7e3sjJyWmUjLlTcwyeuJ5egGKHAwJwP9Cl/+Dxj0vScdsrbhNAgMrPQfltVaQpOVwV5yp7jqAsUY1pyp+7/DYByqbC4Z/TQv+Tba8YY8g1WZFuMCPTYEGa3ow7uSYkZpuQmF2IxBwTLMUOl89VSESIDdCgc6AWvUJ16BXqiWg/NUTtMNjLycmBjw83kW52dja8vb3dnCPSVGwOG1KNqU4BX2nQl2pMRVmnlMq0Ui3CNGEI1YQiRBPi9Lc5mnfNZjN/T/d169Y16yCGljB4IikpCfPmzcPFixchk8nQu3dvfPHFF/D09KzxuYsXL0ZAQADmzJnT5Pls1sETGzduBAAUFxdj06ZNKB8TJiYmwsvLq675b7diA2jUHHE/gUAAb7UM3moZugZV3u9wMGQUmJGQZcL1jAJcTTPgWnoBrqcXoMhmx7mkfJxLysd3JfeBV8vE6B6sQ68wD/QK9UDvUA/4adv+CLjyP1Q04q9tkwglCNeGI1wbXmmf1W5FckEyEg2JXNBXUBb8ZRRmwGA14FLOJVzKuVTpuVKhFMGaYIRqQvklRM0FfcGaYMhEsgbnXS6XY9OmTQ0+ToMxBtgKG/+4EmVZTUOlUzJMnjwZ8+fPx7Zt2wAA27ZtQ25ubq0Cu9akToHdv/71LwBcde6qVav47QKBAH5+flizZk2jZo4Q4l5CoQCBOgUCdQoMiS67tZPdwZCQbcK1dAMupRhwLikPF5L1MFqKcex2Do7dLqu5D/dWYkCEF/pHemFgpBfCvJRUc0vaJKlIyk++XFFRcRHuGrim3KSCJCQVJCHZyK2nGdNgdVir7NMngAB+Sj++dq9i4KeT6VrXd8pWCHzg4j/Jhno7FZC6nnR5//79UKvVmDFjBr9t0qRJLtP+8MMPWLJkCSQSCTp27MgHw6dPn8Y999yDtLQ0rFy5EuPGjUN8fDxmzpyJwsJCyOVyfPPNN+jUqRPWrFmDXbt2IT09Henp6fjzn/+MF198EQDw/vvvY9u2bbBYLJg3bx6ef/75Rn0b6hTYHThwAACwdOlSvPPOO42aEUJI6yESChDtp0a0nxoTenAXaLuD4WZmAc7dzedr8q5nFOBOTiHu5BRi02lujks/jQwDIr34paOfhvrqkTZPIVYg1ou7D25FxY5ipJnS+KCP/1sS+JlsJmQUZiCjMAOnM05Xer5GokGIJsSpeTdYHYwQdQgCVYGQiKgv3ZUrV9C7d+9apV26dCl27tyJyMhIpwmd79y5g0OHDuHcuXOYN28exo0bh8DAQOzfvx8ymQwnT57E22+/jS1btgAATp06hfPnz4MxhgEDBuChhx7ChQsXkJWVhbi4OFgsFtxzzz2YMGECAgMDG+211jqwy87O5vuQvPDCC/y9YStqS/eKNZlM0Gg0/H9CVqsVNpsNYrEYMpnMKR0AKBQKfg4rm80Gq9UKkUjk1DRTl7SFhYVgjEEul0MkEgHgmsEtFguEQiEUCkW90hYVFcHhcEAmk0Es5oqA3W6H2WyuU1qBQAClsmw2d7PZDLvdDqlUynfKrUtah8OBoqIiAHC61Y3FYkFxcTEkEgmkUmmd0zLGUFjIVfsrlcpKn2dd0tbms2+McuLq82yMclL6eTa0nFT8PEvTRvso0SlAiycGhMFutyMr34hzyQacTzMhLiEX55PzkVlgwY4LadhxIQ0AoFNIMDDSC/3CNBgY4Yke4b78+97QclL+82xoOanq81QqlfzzACArK4uuEXSNqPbzrJhWLBQjVBMKL6EXeuh6VEqbacxEWmEaMq2ZfG3fHf0dpBhTkG3ORoGtAFdzr+Jq7lVUJBQI4Sv3RZAqCIHKQPz4zY9w5Dmw9vO1XN8+lR9UyrL3p6muEWazGQ6Hg+vCJVECb6dyU1iV3Mmq9Fylnx1jjBsQV/I+1Cptyd1FXKUt7Tpmt9trPO6QIUPwwgsvYNq0aZg8eTJ/rgce4G6B16NHD9y9excAV57mzp2LixcvQiQSwWw28+nHjRsHpVIJoVCIkSNHIi4uDocOHcL27dtx8OBBANydQOLj4/nYqfw8mDabDXa73en11gqrJbVaza8LBAImFAqZQCBwWoRCYW0P16Lp9fqSmdjAMjMz+e1Lly5lANjs2bOd0iuVSgaAJSQk8Nv+8Y9/MABs2rRpTml9fHwYAHbp0iV+21dffcUAsIkTJzqlDQ8PZwDYyZMn+W3r169nANioUaOc0nbp0oUBYAcOHOC3bd26lQFgQ4YMcUrbr18/BoDt2LGD37Z3714GgPXs2dMp7fDhwxkAtnHjRn7b4cOHGQAWHR3tlPaBBx5gANjq1av5bWfPnmUAWFBQkFPaxx57jAFgX3zxBb/txo0bDADT6XROaWfOnMkAsI8//pjflpyczAAwsVjslHbu3LkMAFu0aBG/LS8vj/88rVYrv/31119nANjrr7/Ob7NarXzavLw8fvuiRYsYADZ37lyn84nFYgaAJScn89s+/vhjBoDNnDnTKa1Op2MA2I0bN/htX3zxBQPAHnvsMae0QUFBDAA7e/Ysv2316tUMAHvggQec0kZHRzMA7PDhw/y2jRs3MgBs+PDhTml79uzJALC9e/fy23bs2MEAsH79+jmlHTJkCAPAtm7dym87cOAAA8C6dOnilHbUqFEMAFu/fj2/7eTJkwwACw8P57cVWYvZyCdeZLohT7ARizezzu/+wsL/usNp6fv3fWzehjPsuxN32CNPP88AsH/84x/8MRISEhgAplQqnfIwe/ZsBoAtXbqU35aZmcl/nuW98sorDAB7++23+W1Go5FPazQa+e1vv/02A8BeeeUVp2OUv0ZkZGTwj+kaQdeI8pr6GnH89HF2M/cm++3Ob+zl1S+zwKcCWb8P+rGHtz7M+q3rx7qt6Vb98nU39uCWB9kLe19gS44uYd2f6860/bXsvzv+y3KLcpnD4WiUa8STTz7JfvnlF5aamspvMxqNLC4ujp0/f94p7c2bN1lcXJzT729hYSGLi4tzuiYyxlh8fDyLi4tj6enp/Daz2czi4uLY6dOn+W179+5lgwcPZnFxcU55sFqtLC4ujsXFxfHbHA4H27x5M3vqqadYZGQks9lsbNGiRWzlypV8Wn9/f8YYY++++y5bsGABO3nyJDtz5gx/vVu9ejV77LHHWFxcHLNarexPf/oT27ZtG3vhhRfY3//+d6drAWOMnT59msXFxTGz2cyKiorYlStX2JdffslfI0rjEr1ez2pS6yE4BQUF/LrD4YDdbofD4XBa7PaGzaVFCGnb5BIR1EXp0B/9HtOCcnB+0RhsmTsEM3t5oCjxLFixFdlGC34+n4o3t1zE6aCJCJ7zNfbq/bD1bDIyDOaaT+IGNGCCuItMKEO0ZzTuC7sPfdEXaevT4HfYDz9N+gknp5/EgccPwLLagqQvk/CQ50MY7jUcXdRd4CHwALMzQATcMdzB0dSj2HRjE9gwhrCXwrAiewXu/eFeDNowCCvyViBsfhhs99iw/sp6HLh7ADfyboCJW89kqKNGjYLBYMCuXbv4bdu3b8ft27crpU1ISEC/fv0wb9482Gw2p/inooKCAvj5+UEgEODHH3902nf06FGYTCYUFBTgt99+Q//+/TFs2DD89NNPsFi46c6uX7/uVMvXGBrtXrFtSemw4tTUVAQEBFBTLDWzUFNsLZti61tOSj9PS7Ed17NtOBafjaPxOTiXlI9ih/MlKspHhQEROgyM8MSIzkHwVElr9dk3ZVNs6edgtVohkUggkUjoGkHXiCo/z5ZyjTAVmZBtyUaOLQcpxhQkG5NxN/8uUk2pSCtMQ1ZRFmriIfVAsCYYwepgBGuCEaQMgq/UF8HqYET5REEq4t63/Px8pKSkICoqii8/rLGbYmtIm5iYiHnz5uHq1auQyWTo06cPPv/8c376kNK0kydPxq1btwAAU6dOxTvvvIPFixfD398fL7zwAgAgODgY6enpuH79Oh577DGo1WqMGTMGa9euRWJiItasWYN9+/YhMzMTd+/exYIFC/Diiy/C4XDg448/xrfffgvGGPz8/LB9+3b+8xIKhbBYLEhISEBISAiEQiFEIhGsVmutpzupV2CXlJSEv/3tbzh//jyMRqPTvitXrtT1cC1Oc8xjRwipmclSjLjEXByLz8HR+BxcStVXumNKl0AthnTwxtBoH/SP9IJa1mi3wCakXbPYLUg1piLFmIKUghQ++Esxcut6i77a5wsggK+SC/JiNbEYpRmFiIgIqBQqSEQSSISSNntrtjVr1uDatWv46KOP6vzcZp3HrtTUqVMRExODJUuWOP2HRQghjUklE2NErB9GxHIdi/WFNhxPyCkJ9LJxI8OIK2kGXEkz4L+HEyAWCtAz1ANDO3hjcAcf9An3gExcx47H9WCz2fDtt98CAKZPn04z+pMWqa7lVCaSIVIXiUhdpMv9RquxLNgrCfzKL0XFRcgszERmYSbS89MxKHoQMgszIbSVBXNioRgSkQRSoRQSoaRsvY0Hfk2p3neeyM/Pdxq90ZZQjR0hrUNmgZkL8m7l4Eh8NpLzipz2y8RC9I/wwpBobwzp4IPuwbomuTOGyWSCWq0GABiNRqemP0JaiuYsp4wx5JpzuRo/UwpyDDno4OgA3xBfMBGDzWGDg7m+q015VQZ+JesNCfz27NmDv/71r07bxo0bV69atsbklhq7cePG4fjx4xgyZEh9nk4IIY3CTyPHxF7BmNgrGACQlFuIo/HZOHKLa7rNNlpw+FY2Dt/KBnAdGrkYAyO9MbQk0Ovor26UiV1FIhE/FUKdpyYgpJk0ZzkVCATwVnjDW+GN7r7d+WAlWB0MuVwOxhjszA6b3Qarwwqbwwarnftrs9v4wK/YUYxiRzGKUOTyPA0J/MaOHYuxY8c21VvgNvWqsZs5cya2bt2KMWPGVJq3rvwdKVorqrEjpPVjjOFmphFHb2XjSHwOjt/OQYG52CmNj1qKwR18MLQDF+iFeVPXEkKaQl3vFesq8Ku4Xt8aP4mwrLm3JTb1uqXGLioqCn/+85/r81RCCGkWAoEAHf016OivwayhkSi2O3A51YAj8dk4Fp+DuMRcZBut2H4+FdvPpwIAQjwVGNrBB0OivTG4gzf8NDSNCSHuIBAIIBaIIRaKoYCi0v6qAj+bo+SxvQ41fi769rXkwK8mNN2JC1RjR0jbZym24+zdfBy9VfXUKjF+agyN9sHgDt4YFOUNnYIGRRBSH3WtsWsoPvArX9PnIvCriUgochnwNWXg55Yau48//tjldplMhpCQEIwcORIeHh71OTQhhDQLmViEQVFcwLYAgLFkapXSQO9KmgE3M424mWnEmqOJEAqAbsE6DOnggyEdvNE/wgsKKddPqbCwED179gQAnD9/nmYLIC1SeyqnTjV+4mpq/GoI/OwOO4ocRSgqdl3jVz7wC1QFQix0/3RL9crBmTNnsHXrVgwcOBAhISFITk7GiRMn8NBDDyE1NRXPPfcctmzZgvvvv7+x80sIIU1CLRPjvlg/3FcytUqeyYrjt7nRtkfjc3A7y4QLyXpcSNbjy0PxkIgE6B3miaEdfNA7WIlbtxMAhx3UCEJaKsYYP/FueyynAQEBSE9PB1D3wK9bx244dOYQRBJRlYFfsDq4uV+SS/UK7IqLi7F582ZMmDCB37Zz506sWbMGR48exbfffosFCxbg3LlzjZVPQghpVp4qKcZ3D8T47oEAgDR9EY7F55SMuM1Gmt6Mkwm5OJmQCwDo+OZP6OQtxrq4NNwT44sugVoIm2BqFULqSy6X4/Dhw/y6uzDGqqwBawiFWNEoo9yByoGfUCBEoCqQf98qBn7FjuIW0x+vXn3sdDodcnNznYZLFxcXw9vbG3q9Hg6HAx4eHjAYDI2a2eZCfewIIdVhjCExh5ta5WhJoJdXaHNK46GUYHCUN4Z08MaQaB9E+aga7UeHkNamfL8xh8iBgRsGNvo5Tkw7AaWk6ubl8jV2VbHb7Zg1axbOnDkDoVCIt956C9OmTUNERARmzpyJbdu2QaPRYMeOHfDw8MCXX36Jr7/+GhaLBQMGDMBXX30FoVCIESNGoG/fvti/fz8kEgm+++47REdHIyMjAy+88AJSUlKgUCjw9ddfo2PHjk55cEsfuy5duuCDDz7AW2+9BbFYDLvdjo8++gidO3cGwN1yjPrYEULaKoFAgEgfFSJ9VJg+MBwOB8O19AIu0IvPwYnbOcgvtOGXS+n45RL3QxKglZcMwvDC4CgfhHo1Xu0CIaRxnDt3Dnfv3sXly5cBAHp92W3ToqOjcf78ecybNw8bN27ECy+8gMcffxxz5swBAMydOxc7duzAww8/DIC7Tpw7dw47duzAa6+9hu3bt+O1117DokWL0KdPH5w4cQILFizAjh07GvU11CuwW7t2LaZNm4ZPPvkEfn5+yMzMRGxsLDZs2AAAyMjIwIoVKxozn3WWlJSEiRMn4sqVKzAajfzNqQkhpLE5HHZcPrIHOgBfPTUZTCDEhWQ9PxDj9J08pBvM2Ho2BVvPpgAAgj0UGBjlhUFR3hgc5Y1Qr7bbkZ20DMXFxdi6dSsA7kb37vpdVIgVODHtRJMct6GioqKQlJSEV199FZMmTcKIESP4faUBW+/evXH79m0A3CCUd955BwaDAfn5+QgNDeXTTZ06FQAwYcIEPvj77bffcOXKFf6YTTFRdL0+1Y4dO+LUqVNITExERkYGAgICEB4ezu8fMGAABgwY0GiZrA9fX1/89ttvmDRpklvzQQhp+ywWCx5//HEAZbdq6hvuib7hnpg3MgZmmx2n7+ThWMlEyeeS8pGSX4QtZ1Kw5UxZoFc6rcrgDt4I9mj4jxQh5VUsp+4K7AQCQbVNpu7k6emJ8+fPY9euXVi8eDFGjBiBxYsXA+Bm/gAAoVCI4mJusvPZs2dj9+7diImJwSeffAKTyVTt8QUCAd/M21Qa9Kn6+flBJBKBMYa7d+8CAMLCwholYw0ll8vd2jmUENJ+CIVCDB8+nF+vSC4RYWi0D4ZG+wAACq3FToHehWQ9UvKL8OPpZPx4OhkAEOqlwOCoskAvUEeBHmmYmsopAbKzsyGVSjF16lT4+Pjgn//8Z7XpCwsL4evrC7PZjI0bN+LBBx/k9/3www/o378/duzYgd69ewMAhg0bhv/+97944YUX4HA4cPnyZXTv3r1RX0O9AruLFy9ixowZuHDhAgDw/USkUikKCwvrlZFFixZh06ZNuHbtGjZs2IAnnniC35eVlYVZs2bhwIEDCA0NxapVqzBy5Mh6nYcQQhqbQqHAwYMHa51eKRVjWIwvhsX4AgBMlmKcupOH47dzcCw+BxdT9EjKLUJSbjI2nuICvXBvJR/oDYryRoCO/nEldVPXctrWZGVlISQkhH/81Vdf8ffOLZWcnIxnnnkGjDFIJBKsXLmy2mMuXLgQffv2RXh4OB+8lZJKpRg0aBDsdju+++47AMA///lPzJkzBytXroTNZsOMGTNaRmA3Z84cTJw4EceOHUNgYCDS0tLw3nvvoUOHDvXOSExMDD777DO8++67lfa99NJLCAoKQnZ2Nvbu3YspU6YgPj4eFovFKQAEALVa3egdEQkhpCmpZGIM7+iL4R25QK90suTjt3NwvCTQu5NTiDs5hfg+LgkAEOmjwqByffT8tBToEVIdu91eY5pevXrh7NmzlbYnJiby67NmzeLXX375Zbz88ssujzVjxgx88MEHTtv8/f35fo5NpV6B3eXLl/HHH3/wVblyuRxLly5FVFQUXnzxxXpl5KmnngIAvP/++07bjUYjfvrpJyQmJkKpVGLSpElYvnw5tm/fjhkzZjTKfx8WiwUWi4V/3FqnaSGEtA0VJ0suMNtwKjEPx25zTbeXUvRIyDYhIduE705ygV6Ur4oP8gZGedF9bglpp+oV2Hl4eCA/Px9eXl4IDg7G+fPn4eXlBaPR2Nj5w82bN6HT6RAYGMhv69mzJz8UuSpmsxkTJkzA+fPnMXbsWCxevBjDhg1zmfbDDz/EkiVLGjXfhJD2o6ioCIMHDwYAHDt2DApF4/aH08gluK+TH+7rxAV6+iIbTiXmcn30EnJwOdWA21km3M4yYcMJrr9ztJ+an1plYJQXfNSyRs0TaX2aupy2Ni+99BKOHDnitG3VqlUYMmRIg4/tzibvegV2s2fPxqFDhzB58mS88sorGDZsGIRCIZ5//vnGzh+MRmOlyfi0Wi3y8/OrfZ5cLsevv/5aq3O89dZbWLBgAf/YYDAgNDS0znklhLRPDocD58+f59ebmk4hwcjO/hjZ2R8AoC+04WRJ0+2x+BxcTTfgVqYRtzKNWH+cC/Q6+qv5/nkDI73gTYFeu9Pc5dSVlnQrs5r6z7lLQ9+jegV277zzDr/+/PPPY8yYMTAajejatWuDMuOKWq2u1DRqMBigVqsb7RwymYwfxkwIIXUll8uxd+9efr256ZQSjO7ij9FduEAvv9CKEwllgd619ALcyDDiRoYR/zt2BwAQ66/h++gNoECvXXBnOZVIJBAIBMjKyoKvry9Nzl0FxhiysrIgEAggkUjqdYw6BXZdunSpMU35ifcaQ0xMDPR6PdLT0xEQEACAmxBw9uzZjXoeQgipL5FIhNGjR7s7GzwPpRRjuwZgbFfumplnsuJEQg6O3+aCvWvpBbiewS1rSwK9GD+uRm9glBcGRnrDV0OBXlvjznIqEokQEhKC5ORkp4EIpDKBQICQkJB6T15cp8AuISEBYWFhmD59Ou69995GjbhtNhvsdjscDgdsNhvMZjOkUinUajUefvhhLFq0CCtWrMC+fftw6dIlPPTQQ412bkIIacs8VVKM6xaIcd24vso5RgtOJOTixO0cnEjIxbX0AtzMNOJmphHrjnOBXgdfFQaWNNsOivKGP426JQ2kVqsRExMDm81Wc+J2TCKRNOiOFAJWh8bcgoICbNmyBd9++y1u3bqFKVOmYPr06ejRo0e9M1Bq1qxZWLt2rdO2AwcOYMSIEcjKysLMmTNx8OBBhISEYNWqVRg1alSDz1mVutxslxBCiouLsWfPHgDA2LFjW90tDHNNVpxMyOVr9a6lG1DxlyHSR8UHeQOjvGjC5FaotZfT9qwucUmdArvyMjIy8P333+O7776DyWTCDz/8UKum2taAAjtCSF2YTCa+32/pLcVas/KDMU4k5OBKqgGOCr8U4d5KDIzkmm0HRnkhxLNl3iKKlGlr5bQ9qUtcUu9wXSaTQaFQQC6XIycnx20jbAghxN2EQiH69evHr7d2FQdjlE6vUjog41K5CZNL74wR4qngg7zBUd4I8VRQB/kWpq2VU+JanWrsLBYLfv75Z6xfvx5nz57FpEmTMG3aNAwaNKgp89jsqMaOEEKqVmC28bdAO3E7FxdT9LBXqNIL0smdBmOEeysp0COknpqsKdbDwwMBAQF48sknMXr0aJft8wMGDKh7jlsYCuwIIaT2jJZinL6Txw/GOJ+Uj+IKgV6AVs4HeYOivBDpo6JAj5BaarLALiIigv8iCgSCSpPoCQQC3L59ux5ZblkosCOEkPortBbjzJ38ksEYOTiXlA+b3fn3wlcj4wdjDIryQgdfNQV6hFShWQZPtGUU2BFC6qKoqIgfqf/rr7+2+1s1VWS22XHmbh6O3+amWDmblA9rsXO/bB+1lO+jNzDSGzF+agiFFOg1JiqnrRcFdg1EgR0hpC5otGHdmG12nEvKx4mSCZPP3M2DpUKg56WSYkCEFwaW3B0j1l9DgV4DUTltvZplVCwhhBCOTCbD1q1b+XVSPblExN+39hXEwFJsx4VkPY7Hc330Tt/JQ67Jit2X07H7cjoAwEMpQf8IL/5et50DtRBRoFcnVE7bB6qxc4Fq7AghxH2sxQ5cTMnnb4F2+k4eCq12pzRauRgDys2j1yVQC7GIpvAgbRM1xTYQBXaEENJy2OwOXErRc330EnJwKjEPRkuxUxqNTIx+EZ4YWFIT2C2IAj3SdlBg10AU2BFC6sJut+OPP/4AAAwbNqxB93kkNSu2O3A51YATCdw8eicTclFQIdBTSUXoG+GFQSWDMXqE6CBp54EeldPWiwK7BqLAjhBSF9Qp3b3sDoaraQYcv83d6zYuMRf6IucbzSulIvQN9+RugxbFBXoycfsKbKictl40eIIQQpqRQCDg75VNc7E1P5FQgG7BOnQL1mH2sCg4HAzX0gv4e92eTMhFXqENf9zMxh83swEAMrEQvcM8+D56fcI8IZe07UCPymn7QDV2LlCNHSGEtB0OB8ONzAKcKOmjd+J2LnJMVqc0UpEQPUN1fKDXN9wTSinVfZCWgZpiG4gCO0IIabsYY4jPMpYMxuAmTc4ssDilEQsF6B5SFuj1C/eERi5xU45Je0eBXQNRYEcIIe0HYwyJOYU4WVKbdyIhFyn5RU5phAKga5CO76M3IMILOiUFeqR5UGDXQBTYEULqoqioCA8//DAA4Oeff6ZbNbUBSbmFfG3eiYRc3M0tdNovEACdArQl97v1woBIb3ippG7Kbe1QOW29KLBrIArsCCF1QaMN2740fZFTH73b2aZKaTr6q/mm2wGRXvDTyN2Q06pROW29aFQsIYQ0I5lMhvXr1/PrpO0J1CkwqXcwJvUOBgBkGsw4mZjLB3s3Moz8su74HQBAlI8KA6PK7o4RqHNvDRmV0/aBauxcoBo7QgghdZFjtCAuMZcfkHEt3YCKv65hXkq+j97ASC+Eeindk1nS6lBTbANRYEcIIaQh9IW2kho9ro/e5VQ9HBV+bYM9FCWBHtdHL8JbSfPLEZcosGsgCuwIIXVht9tx5swZAECfPn3oVk2kEoPZhtN38vim24vJehRXiPT8tTIMiPTmB2R08FU3aqBH5bT1osCugSiwI4TUBXVKJ3VlshTjzN2yQO98kh5Wu8MpjY9aigGRZX30OvppIBTWP9Cjctp60eAJQghpRgKBAOHh4fw6ITVRycQYFuOLYTG+AACzze4U6J29m49soxW7LqZj18V0AICHUoIBEWV99DoHaiGqQ6BH5bR9oBo7F6jGjhBCiDtZiu24kKzn++idSsxDkc3ulEYjF6N/hBc/IKNbkBZikdBNOSZNiZpiG4gCO0IIIS2Jze7AxRQ9X6N3KjEPRkuxUxqVVIS+JYHeoCgvdA/2gFRMgV5bQIFdA1FgRwghpCUrtjtwJc3AB3onE3JhMDsHenKJEH3DPTEgguuj1yvUA3IJDZhojSiwayAK7AghdWE2m/HEE08AAL7//nvI5S3rjgOk7XM4GK6lF/B3xjiZmItck9UpjVQkhKQgBerCNHy04DkMivaHQkqBXmtAgV0DUWBHCKkLGm1IWhqHg+FWlhEnbufgeAJ3h4xso8UpjUQkQI8QD76PXt9wT6hlNKayJaLADkBqaioee+wxiMViaLVabNy4EUpl7Wb5psCOEFIXNpsNa9asAQDMmjULEonEvRkipALGGG6k6bHiu51IKpIiW+iJdINzoCcSCtAtWMcFepFe6BfhBZ2CynJLQIEduIkYBQIBhEIhFi1ahG7dumHKlCm1ei4FdoQQQtoyxhiScotwvKTp9kRCDpLzipzSCARAl0AtP4/egAgveKqkbspx+0bz2AFOM2oLBALExsa6MTeEEEJIyyEQCBDmrUSYtxKP9wsFAKTkF3HTq5QEeok5hbicasDlVAO+OZIAAOgUoOGbbgdEesFHLXPnyyAutJgau0WLFmHTpk24du0aNmzYwHdEBoCsrCzMmjULBw4cQGhoKFatWoWRI0fWeMzDhw/jlVdegUKhwM6dO6HT6WqVF6qxI4TUhcPhwNWrVwEAnTt3hlBIU0yQlqeu5TTDYMbx29yI2xMJubiVaayUJtpPjYGRXhgQ6YVBUd7w19LAoabQKpti169fD39/f7z77rt49dVXnQK7xx9/HDqdDp999hn27t2LZ599FvHx8bBYLE7pAECtVmPHjh1O2z799FOIRCK89tprtcoLBXaEkLqgwROkNWhoOc02Wrggr2TS5GvpBZXSRHgr+abbgVHeCPZQNEre27tW2RT71FNPAQDef/99p+1GoxE//fQTEhMToVQqMWnSJCxfvhzbt2/HjBkzcPDgQZfHs1gskMm4KmKdTge73e4yXWlai6WsE6nBYGjgqyGEtDc+Pj7uzgIhNWpIOfVRy/BA90A80D0QAJBnsuJkYi7fdHslzYDEnEIk5hTih1NJAIAQTwUf6A2K9Eaol4JuZ9bEWkxgV5WbN29Cp9MhMDCQ39azZ09cvny52ufFxcVh4cKFEAqF8PLywrp166pM++GHH2LJkiWNlmdCSPuiUqmQlZXl7mwQUq3GLqeeKinGdg3A2K4BAAB9kQ2n73CB3vGEXFxK0SM5rwjJecnYfCYZABCok2NApBcf7EX5qCjQa2QtPrAzGo2Vqh21Wi3y8/Orfd4999yDQ4cO1eocb731FhYsWMA/NhgMCA0NrXNeCSGEkPZKp5Dg/k7+uL+TPwDAaCnG6Tt5fNPtheR8pOnN+OlcKn46lwoA8NXIuP55JQMyYvzUFOg1UIsP7NRqdaWmUYPBwPcTaAwymYxvtiWEEEJIw6llYgzv6IvhHX0BAEVWO87czeMnTT6XlI+sAgt2XkjDzgtpAAAvlRQDIry4PnqR3ugUoIFQSIFeXbT4wC4mJgZ6vR7p6ekICOCqe8+fP4/Zs2e7OWeEEMIxm8147rnnAABff/013VKMtEjuLqcKqQhDo30wNJrr52e22XE+KR8nErg+eqfv5CHXZMXuy+nYfTkdAKCVi52abrsEaiEW0ajz6rSYUbE2mw12ux1jxozB888/jylTpkAqlUIoFGLKlCnw8vLCihUrsG/fPsyaNQvx8fHw9PRskrzQqFhCSF3QqFjSGrT0cmotduBiSj6O3+amVzmdmAuT1Xngo1omRr8ITz7Q6x6sg6QdBHqtcrqTWbNmYe3atU7bDhw4gBEjRiArKwszZ87EwYMHERISglWrVmHUqFFNlhcK7AghdWGz2bBy5UoAwEsvvUS3FCMtUmsrp8V2By6lGvg+enGJuSgwFzulUUpF6BvuyU+a3CNEB5lYVMURW69WGdi1JBTYEUIIIS2L3cFwNc3ANd3ezsHJxFzkF9qc0sjEQvQO8+Br9PqEeUIuaf2BHgV2DUSBHSGEENKyORwMNzIL+Hn0TtzORY7J6pRGKhKiZ6iOD/T6hntCKW3xwwsqocCugSiwI4TUhcPhwN27dwEAYWFhdEsx0iK19XLKGEN8lpHvo3fidg4yCyxOacRCAbqHlAV6/cI9oZG37CZpgAK7BqPAjhBSFy29UzohQPsrp4wx3Mkp5GvzTiTkIiW/yCmNUAB0DdLxffQGRHhBp2x5gV6rvKUYIYS0Zkql0t1ZIKRG7amcCgQCRPioEOGjwtT+YQCApNxCvjbvREIu7uYW4mKKHhdT9Pjv4QQIBECnAC0GRnphUJQXBkR6w0sldfMrqRuqsXOBauwIIYSQti9NX8TX5p1IyMHtLFOlNB391XzT7YBIL/hpmn+eSmqKbSAK7AghhJD2J7PAjJMJufyAjBsZxkpponxU/J0xBkZ5IVCnaPJ8UWDXQBTYEUIIISTHaEFcYi4/IONaugEVo6YwLyUGRnrh9bGx8Nc2TW0eBXYNRIEdIaQuLBYLXn75ZQDAF198QfeeJi0SldOG0xfacDIxFycTuD56l1L0cDBuEMb5RWOabIQtBXYNRIEdIaQu2ttoQ9I6UTltfAVmG07dyUNitgnPDI1ssvPQqFhCCGlGEokES5cu5dcJaYmonDY+jVyC+2L9gFh356QM1di5QDV2hBBCCGkp6hKXtK1ppwkhhBBC2jFqiiWEkAZijCE7OxsA4OPjA4FA4OYcEVIZldP2gQI7QghpoMLCQvj5+QGgTumk5aJy2j5QYOdCabdDg8Hg5pwQQloDk6lstnqDwQC73e7G3BDiGpXT1qs0HqnNsAgaPOFCcnIyQkND3Z0NQgghhBBeUlISQkJCqk1DgZ0LDocDqamp0Gg01fZB6N+/P+Li4qo9VlVpDAYDQkNDkZSU1OpH3tbmfWgN522M49XnGHV5Tm3T1pSuuv1UNlveORt6zKYul7VNT9fMMlQ26//89njNZIyhoKAAQUFBEAqrH/dKTbEuCIXCGiNiABCJRDV+iDWl0Wq1rf4iVZv3oTWctzGOV59j1OU5tU1bU7raHIfKZss5Z0OP2dTlsrbp6ZpZhspm/Z/fXq+ZOp2uVuloupMGeOmllxolTWvnrtfY2OdtjOPV5xh1eU5t09aUrj2US8A9r7MpztnQYzZ1uaxterpmlqGyWf/n0zWzetQU6yY0CTJpqahskpaIyiVpqVpa2aQaOzeRyWRYtGgR3YSZtDhUNklLROWStFQtrWxSjR0hhBBCSBtBNXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW0EBXaEEEIIIW2E2N0ZaIkcDgdSU1Oh0WggEAjcnR1CCCGEtGOMMRQUFCAoKAhCYfV1chTYuZCamorQ0FB3Z4MQQgghhJeUlISQkJBq07TqwO7cuXOYO3cuLl68iOjoaHzzzTfo3bs3AOCjjz7CsmXLYLfbMXv2bPzf//1frWvfNBoNAO4N1Gq1TZZ/QkjbYDab8dRTTwEA1q9fD7lc7uYcEVIZldPWy2AwIDQ0lI9PqtNqAzubzYbJkyfjrbfewnPPPYcff/wRkydPxo0bN/Drr7/iX//6F06cOAGFQoGRI0eiU6dOePbZZ2t17NIAUKvVUmBHCKmRSCTCvn37AAAqlQoqlcrNOSKkMiqnrV9tKqhabWB37do1FBYW4oUXXgAATJ06Fe+99x4OHTqEdevWYe7cuYiKigIAvP7661i/fn2tAztCCKkLqVSK1atX8+uEtERUTtuHVhvYucIYw+XLl3HlyhU8/fTT/PaePXvirbfeqvJ5FosFFouFf2wwGJo0n4SQtkUikWDWrFnuzgYh1aJy2j602ulOYmNjIZfL8eWXX8Jms+G7777DrVu3UFhYCKPR6NSEqtVqYTQaqzzWhx9+CJ1Oxy80cIIQQgghrVGrDeykUim2bt2KdevWISAgANu2bcOoUaMQHBwMtVrtVOtmMBigVqurPNZbb70FvV7PL0lJSc3xEgghbYTdbse5c+dw7tw52O12d2eHEJeonLYPrboptk+fPjhy5AgArsB26NABffv2RZcuXXDx4kU88MADAIDz58+ja9euVR5HJpNBJpM1S54JIW2P2WzmR+QbjUbqlE5aJCqnLtiLAYuBW8zl/xaUbC8ArEbAauL+WkrXTYC1oNy6CfhrIiCSuPsVte7A7uLFi+jYsSOsViv+9re/oVevXujWrRueeuopvPTSS3j88cehUCiwfPlyLFiwwN3ZJYS0UQKBAEFBQfw6IS1RmyynDgdg0QNFeWVLYbl1iwEw68uCNHOFIM5W2Hh5sRoBhWfjHa+eWnVg980332D16tVgjOHhhx/GmjVrAAAPPvggLly4gP79+8Nut+P555/HM888497MEkLaLKVSiZSUFHdng5Bqtfhy6nBwwZgpCzBllvzNdg7aivKAwtyydXM+wBwNP7dYAci1gEwLyDTO61I1IFUBMnXZulRdYbuKS98CCBhjzN2ZaGkMBgN0Oh30ej3NY0cIIYTUl72YC9IK0gBjabBWErCZskq2lawXZtc/SJOouNoypSf3V+EJyD0Aua4kSNM5B2x84Fay3gKaUKtTl7ikVdfYEUIIIcQNGONqzAypQEE6F7jxS3rZdlNm3YM1hSeg8uUWpTe3KMoFbEqvco+9AIUHIKZ+8qUosCOEkAYym8383Jnr1q2jWzWRFqlO5dRuAwwpQH4SoE8q+Xu37LE+BbBbqn5+eQIRoPYH1H7cUhq08YuP83oLrz1r6agptpyVK1di5cqVsNvtuHHjBjXFEkJqxWQy8VMq0WhD0lI5ldMCA1SOAiD3NpCbAOQlAPnlAreCtNrVtCm9AU1gyRLA/dWWfxzEBWtCURO/uratLk2xFNi5QH3sCCF1YbPZ8NVXXwEAXnjhBUgkVONAWgCHHdAnlwRvt2HPvoU7Zw9CZ8+Bl8AAQXFR9c8XyQBdCOARCuhCAY+wkr+h3HZNIDWBNhMK7BqIAjtCCCGthq0IyL4JZN8Asq4DWde49Zx4wGGr+nkCEReseUUBnhHcukcooAvj1lW+gLDV3segTaHBE4QQQkhbYzUBmVe5pTR4y7rONaGiijoakZQL2ryiAM9I7q9XFOAVyQVv1J+tzaHAjhBCGsjhcCA+Ph4A0KFDBwiploM0BGNcsJZxCUi/xP3NuMT1hasqgFN4Aj6xgG/Hkr+xgE8M13Ra0r/NqZx6RlI5baMosCOEkAYqKipCx44dAdDgCVJHdhtXA5d6Fki/AGRc5haLwXV6tT/g17lCENeJG6BQw90kqJy2DxTYEUJII9DpdO7OAmnpHHau+TT1LJBypiSYu+h62hCRlKt18+9WsnTl/qp9G5QFKqdtHwV2hBDSQCqVCvn5+e7OBmlJGOOmDUk6WRLEnQHSzru+N6lcBwT1BgJ6AAHduQDOJ6bR+79ROW0fKLAjhBBCGspu45pS754Akk5wAV1BauV0EhUQ1IsL5EoXr6gam1EJqS0K7MopP0ExIYQQUqWivHJB3AmuVq7ivHACERDYAwjpDwT14YI4nxiarJc0KZrHzgWax44QUhcWiwUvvvgiAODf//43ZDKatLXNMeuBO8eAxD+4Je0CKo1QlXsAoQOB0AFA2CAukJO2nAEKVE5bL5qguIEosCOE1AXdUqwNMhuAuyWBXMIfXDNrxVtseXUAwgeXBHMDAe+YFj2hL5XT1osmKCaEkGYkkUjw8ccf8+ukFbLbgORTQPxv3JJ6xnUgF3EPEHkvED6UuydqK0LltH2gGjsXqMaOEELagbxE4NZ+LpBL+L3y3HGekc6BnC7YLdkkpN3V2B07dgxDhw7FBx98gDfffBNr1qzB7NmzIZfL+TRXrlxBWFiYG3NJCCHErawmLoC7tR+I3w/k3nber/AEou4DokcCUSO4G90T0sq0+sDO4XDgtddeQ//+/Z22jxo1Crt373ZTrggh7YnD4UBaWhoAIDAwkG7V1JLok4HrvwA39nBBXfnJgIViIGQA0OF+IPp+ILBXmx6xSuW0fWj1gd1XX32FgQMHQq/X1/sYFosFFkvZl91gqOJWLoQQ4kJRURFCQrjaHeqU7mYOB3dHhxu/ANd3AxkXnfd7hAHRo7lgLvJeQN5+uttQOW0fWnVgl5ubixUrVuDYsWN47bXXnPYdOXIE3t7e8Pf3x/z58zFnzpwqj/Phhx9iyZIlTZ1dQkgbJha36stp62YrAuIPANd3Ajf2AqbMsn0CIVcr13EsEDueu69qO54MmMpp29eqP+G3334br776Kjw9PZ22Dx8+HBcvXkRYWBji4uIwefJk+Pv7Y/LkyS6P89Zbb2HBggX8Y4PBgNDQ0CbNOyGk7VCpVLDZbO7ORvtiKQBu7gWu/Azc3AfYTGX7pBquabXjeCBmDKDydl8+WxAqp+1Dqw3szp49i5MnT2LlypWV9kVGRvLrAwcOxPz587F169YqAzuZTEYTNRJCSEtXlMc1r179mRsAUb6/nDYE6DwB6DiOG8Eqlrovn4S4UasN7A4dOoQbN24gOJgbfq7X6yEWixEfH4///Oc/TmmpgyghhLRSpmzg2g6uZi7hEOAoLtvnFQV0fhjo8jB3y6523MRKSKlWO49dYWGh0yCHV155BTExMXj99ddx/Phx9O3bF76+vjhz5gwefvhhLF++HI8//nitjk3z2BFC6sJisfDdOZYvX04tAA1VlM8Fc5c2A7cPAazc/bt9O3OBXOeHAf+uFMzVAZXT1qtd3lJs1qxZ6NSpE9588038+c9/xrp161BYWIjg4GC8/PLLmDdvXq2PRYEdIaQu6FZNjcBayI1kvbSF6ztnt5btC+wJdJnIBXM+Me7LYytH5bT1ancTFAPAmjVr+PVly5Zh2bJl7ssMIaRdkUgkWLRoEb9OaqnYyt314dKPwLVdzgMgfDsB3R4Duj0CeHdwXx7bECqn7UObqbFrTFRjRwghTcThAO4eBS78wPWbM+eX7fMIB7o9CnR/DPDrQs2shJRolzV2hBBCWrDsW8CF74HzPwD6u2Xb1QFA18lcMBfcl4I5QhqIArtyVq5ciZUrV8Jut9ecmBBCSjDG+Lvf6HQ6CCg44RTmApe3Aue/B5JPlm2Xabk+cz0e56YmacO38WpJqJy2D9QU6wI1xRJC6oI6pZdjt3ETBp//Drixu2wQhEAERI8Eej4BxD4ASBTuzWc7ROW09aKmWEIIIc2HMSDtHFczd3ETUJhTts+/OxfMdZ8CaPzdlkVC2gsK7AghpIGUSiWsVq5mql3di7MoH7iwETi9Bsi8XLZd5cc1s/Z8Agjo7q7ckQrabTltZ+iTJYSQBhIIBO1n+gjGgKQTXDB3eStQbOa2i+VApweBnk8CUfcBIvp5aWnaVTltx+ibRwghpGaFuVy/udNrgezrZdv9ugJ9Z3I1dApP9+WPEAKAAjtCCGkwq9WKhQsXAgDef/99SKVt5Ab0jAGJh7nauas/lw2EkCi5iYP7zAJC+tEUJa1Emy2nxAmNinWBRsUSQuqizY02NGYB5zdwtXO58WXbA3oAfWdxAyHkdG1sbdpcOW1HaFQsIYQ0I4lEgtdff51fb5UcDiDhIBfMXdsJOGzcdqmamzy47ywgqLc7c0gaqE2UU1IjqrErp/wExTdu3KAaO0JI21eQDpxdD5z5H5B/p2x7cF+gz0zuFl8ytfvyRwipU40dBXYuUFMsIaRNc9iB+N+4vnPXfwFYyd12ZDpuEETfmTRNCSEtCDXFEkJIM2KMobi4GAA3P1iLvVWTPoWrnTu7DtAnlW0PHcg1tXaZBEiV7sodaWKtppySBqHAjhBCGqiwsLDldkq3FwM39wJn1nJ/mYPbLvfg5pzrOxPw6+zWLJLm0aLLKWk0tQrsNm7cWKuDiUQiPProow3KUGPKysrCrFmzcODAAYSGhmLVqlUYOXKku7NFCCFNL+8OVzN3dj1QkFa2PfweLpjr/DAgkbsvf4SQJlGrwG7atGm49957UVN3vLi4uBYV2L300ksICgpCdnY29u7diylTpiA+Ph6enjSJJiGk8SiVSuTl5fHrbmO3cX3mTq/h+tCh5Jqt9AZ6TeMGQ/jEuC9/xK1aTDklTapWgyc0Gg0KCgpqPJinpydfaNzNaDTC29sbiYmJCAwMBADce++9mD17NmbMmFHtc2nwBCGkVcm9zY1qPfstYMos2x45nOs71+lBQCxzW/YIIQ3T6IMnbt++XasT37hxo1bpmsPNmzeh0+n4oA4AevbsicuXL1dKa7FYYLFY+McGg6FZ8kgIIfVWbAGu7eDmnUs4VLZd5Qf0ng70mQF4Rbkvf4QQt6hVYOfr61urg9U2XXMwGo2VolqtVov8/PxKaT/88EMsWbKkmXJGCGlrrFYrPvjgAwDA22+/3bS3asq+yTW1nv8OKMwp2SgAokdytXMdxwEimnyWVNas5ZS4TZ3nsRs/frzLIdIymQwhISGYPHky7r///kbLYH2dPXsWY8eORWZmWbPEvHnzoFQq8X//939OaV3V2IWGhlJTLCGkVpr8Vk02M3ev1tNrgDtHyrZrAoHeTwO9nwI8wxv3nKTNoVuKtV5NOo9dv3798L///Q8zZ85ESEgIkpOTsW7dOjzxxBMQCAR48skn8eabb+K1116r9wtoDDExMdDr9UhPT0dAQAAA4Pz585g9e3altDKZDDJZ8/Y/+eiXazDb7NDIxVDJxFDLxNDIub9qGbeNfywXQyYWNWv+CCG1JxaLMXfuXH690WRe5Zpaz38HmPO5bQIhEDOGq52LHg2IaNYqUjtNVk5Ji1LnGrt+/frhu+++Q0xM2ciqmzdv4sknn8SpU6dw+vRpTJkypdb98prSlClT4OXlhRUrVmDfvn2YNWtWrUbFNsfgif7v/4qsAkvNCUtIRUKoZCKo5WKoZRJoZGKoZCJo5BJ4KCXQKcoWD6W05G/ZNrmEAkNCWgVrIXB5KzfvXNKJsu260LLaOV2w+/JHCGl2TVpjFx8fj+Bg54tKYGAgbt26BQDo06cPsrKy6nrYJrFq1SrMnDkT3t7eCAkJwcaNG1vMVCcv3huFvEIrTBY7CszFMFpsMFqKYTQXc39L1k1W7lY/VrsD1kIH8gptAIrqfD6ZWMgHeh4KKbQKCTyVEnippfBRyeCtlsJLJYWPumydagkJaUZpF7hg7sImwKLntglEQOx4rnauw/2AkL6ThJDq1TmwGzNmDKZMmYJ3332Xb4pdunQpxo0bBwA4efIkwsNbRl8PX19f7Nq1y93ZcGn2sNqNVrM7GEzWYphKAr2CCsGfocgGQ5EN+UU26ItsyC/k/pZf7A4GS7EDGQYLMgy1ryXUyMR8kOetlsGnZN1PI4e/Vg5/rQwBOjl81DJIRML6vhWEtF9mA3DpR665Ne1c2XbPCG5Ua6/pgCbAXbkjhLRCdW6KNRqNeO+997B161akp6cjMDAQkydPxpIlS6BWq5GcnAyLxYIOHTo0VZ6bXFuax44xBqOl2GXAl2uyItdkRY7RghyTFTlGK3JMFuQYrSh21L5YCASAj1rGBXpaOfy0cvhr5AjQyeCnlSPEQ4FgTwWUUurTQdomk8kEDw8PAEB+fn71ndIZA5JOcvPOXd4C2Aq57UIJ0HkCF9BFjgCE9M8SaVx1KqekRalLXFLnwK49aEuBXX0wxmAoKuaCvAqBX7bRgkyDBRkFZmTozcgssNQ6CPRWSRHsqUCIpwIhnsqSv9x6sIcCKhkFfqR1qtVoQ1MOcOF7LqDLula23SeWC+Z6PgmovJspx6Q9olGxrVeT9rEDgJ07d+LHH39EVlYWduzYgbi4OOTn52P06NH1yjBpWQQCAXRKCXRKCaJqmJrQ4WDIMVmRYTCXLBakG8zILHmcpjcjNb8IBnMxFxyarLiQrHd5LG+VFBE+KkSWLFE+KkT6qhDhraLBH6RFUygUSE5O5td5Dgc3efCZ/3GTCdut3HaxAuj2CBfQhQ7kqr0JaWJVllPSptS5xu7jjz/GunXrMGfOHCxcuBD5+fm4du0aZs6ciRMnTtR8gBZs5cqVWLlyJex2O27cuNFua+yagr7IhpS8IiTnFSI5rwjJeUVIyS9b1xfZqn1+kE6OSF8u4Iv2VSM2QIvYAA28VDTBJmmBDGnAufXAmXVA/p2y7YG9uGCu+2OAXOe27BFCWpcmbYoNCwvDyZMnERAQwN8bljEGb29v5ObmNijjLUV7b4p1B4PZhrs5hUjMMSEhy4SEbBNuZ5twO8sIg7m4yuf5amToFKBBR38NYgM0iPXn1hVSquEjzazYCtzcw92v9eYegDm47TIt0ONxLqAL7OnePBJCWqUmbYq12+3Q6bj/NEvvQGEwGPh2e0LqQyuXoFuwDt2CnWsxGGPIK7QhIduIhOxCxGcZ/7+9+w6PqkwfPv6dmpn0QnoFEkILIFWaAioodkX5iahgV3BF1y4KrN3VFQvrq+vapSy6lhUVQTpSpffQ0ntPZjL1vH8MDAkgBNJmkvtzXXOdM+c8c+aZ5MnJPU8lvaCK/QVVZJWaKaqyUFRlYXV6sfs1ahUkR/iTFhtMr7gg0uKC6B4dKM25onnkbcfxxxdYNn+Jb92piBIGQ987oPu1oPdtvfwJcYzVauXtt98G4OGHH5Ylxdqoc66xmzp1KlVVVbz55pt06dKFzMxMHn30Ufz8/HjrrbeaK58tSmrsvEO1xe4K8vJdgd6BY/vF1dZT0mrUKrpEBtArNogLEoLpnxRK53C/0y6PJ8RZVRfBzoWwbS4U7HQfzq1y0uGSqegHTILw1NbLnxCnIYMnvFez1ti98cYb/PWvfyUxMRGz2UxkZCR33HGHe2FhIVqKv4+WCxJCuCCh/qTTBZW17MyuYEdOBbtyKtiRXU5xtZW9eZXszatkweYsAEL99PRPDGFAUij9k0LoEROEXitTTIg/4bDBgcWuYC59MTiPdRHQ6HF0uYLZKwrZbY7g/UtmQgsvUShEQ2i1Wu644w73vmibGjXdSVFRER06dGhztR5SY9e2KIpCfmUtO7Ir2J5Vzh8ZZWzLKsdid9ZLZ9CpGZAUyrDkDgxL6UC3qEDU6rZVtsU5UhTI3+laq3XHf8B0osmfmL7QZwL0vBF8Q1svj0KINq/JB09s3LixQW88cODAhuXQw0lg1/ZZ7U525Vaw6Ugpm46WsTmjlHJT/ZG5YX56hh4L8i5KCScqyNBKuRUtrjzT1dS6YyEU7T1x3D8Seo13BXQR3Vovf0KIdqXJA7uOHTueeIFKRXZ2NiqVirCwMEpKSlAUhbi4OA4fPtz43HsACezaH6dT4WBRNWvSi1lzsJj1h0swHVun97i02CAu6x7J6B6RpEYGtLma6nbPVAp7vnPVzGWuO3Fco4cul8MFE6HzJaCRJiwhRMtq1ulOZs2ahclkYubMmRiNRsxmM7NmzcLPz4/nnnuuURlvbTKPnTjOaneyNbOM1enFrD5YzI7scur+pcSHGhndPYrR3SMZkBQqTbbeymaG/T+7aufSl4DzeK2tCpKGuaYp6XYNGIPPeJmamhpiY2MByMnJkU7pwiNJOfVezRrYdejQgfz8/HodL202G9HR0RQXF5/hld5DauzEyYqqLCzbV8CvuwtYfbAYa53+edFBBq7pHcO1fWLpFi01eR7PYYejq1zNrHv/B9aqE+ei0iDtZle/uaDYBl9SRhsKbyDl1Hs166jYkJAQfvvtN8aMGeM+tmLFCvfCwkK0ReEBPowfkMD4AQnUWOysTi/i190FLNlbQF5FLR+sOswHqw6TEuHPdRfEcv0FscQEy5I9HsNhh6OrYfe3rqW9TCUnzgUlQK+bXAFdRNfzurzRaOTAgQPufSE8kZTT9uGca+x++uknbrnlFgYNGkR8fDyZmZls2rSJr776iiuvvLK58tmipMZONFStzcGK/YV8tzWXZfsKsTpcNXlqFYxIjWDCwARGpIaj1cg0Ki3uTMGcb5hr4uC0m11rtarl9yOE8FzN2hQLUFxczE8//UReXh7R0dGMHTuWDh06nHeGPY0EduJ8VJhtLN6Vz3+3ZrP+8Inl9aKDDNzcP54JgxKIDJSRtc3qeDC35ztXM+vJwVy3q6H7dZA0XAZBCCG8RrMHdp7k1Vdf5emnn2bdunVceOGFAEyaNIl58+ah0+kASExMZPfu3Q2+pgR2orEOF1Uzf1MWCzdnUXZsGhWdRsXVvWK4e3gnusdIuWoyVhMcXg77FsGBX+oHc8ZQ6H5NswdzNpuNDz/8EIB7773Xfe8RwpNIOfVeTR7YjR8/ngULFpz1jSdMmMDcuXMbntNGysnJ4YorrqCoqIhvv/22XmDXtWtXnnrqqfO6rgR2oqlY7A5+2ZXPl+sz2HS0zH18aHIY9wzvxMVdwmWwxfmoKXEFcfsWwaFlYK+zRqsx1FUz1+P6FquZk07pwhtIOfVeTT544ocffmDhwoWcLQb86aefGp7LJvDXv/6VWbNm8cgjj7To+wrRUD5aDdf2ieXaPrFszyrnX6sP8/OufNYeLGHtwRJ6xwUx7dIujEiVAO+sSo+4Arn9P7nmmVPqrBwSlABdx0LXKyFhSIs3s2o0GsaNG+feF8ITSTltHxpUYzdixIgG/dPR6/UsXry4STJ2NitWrODFF19k6dKlJCUlMX/+/Ho1dv/73/8ASE1N5dVXX+Wiiy7602tZLBYsFov7eWVlJfHx8VJjJ5pFdpmJT9YeZe6GTMw21yTIEuCdht3qCuDSf4WDS6FoX/3zUWnQ9SpIHeval5+bEKKNavN97Ox2OwMGDOCLL76gZ8+epwR2W7duJSkpCT8/PxYuXMiDDz7Irl27iI+PP+31Zs6cyaxZs045LoGdaE7F1Rb+teown6/LcAd4/RJDePbKbvRNCGnl3LWSimzXRMHpS+DISrBWnzin0kDSUEi90lU7F5zQevkUQogW5PWB3ejRo1m1atVpz02fPp2AgAAOHjzIu+++C3BKYHeyyy+/nJtvvpk777zztOelxk60puJqCx+uOszn645Sa3M1L17VK5onL+9KfKhvK+eumdktkLXBVSOXvgQK99Q/7xcBKZdB8qXQeSQY22nAK4Ro17w+sDub6667jlWrVqHX6wEoKioiODiYN954g8mTJ5+SfuzYsYwbN+5PA7uTyeAJ0RryK2p589f9fL0lG0UBvUbN5GFJPDQqBX+fNjI1h9MB+Tvg8Eo4vAIy19cf+KBSQ9yAY8HcZRDVyyvmmDOZTKSkpACQnp6Or28bD8iFV5Jy6r3afGBXXl5ObW2t+/mAAQP44IMPGDFiBL6+vnzzzTdcfvnl+Pj48M0333DPPfewY8cOkpKSGnR9CexEa9qdW8HLP+1l7UHXtB3RQQZmXN2DMT0iva//naJAySE4ssIVyB1ZDbXl9dP4RUDnUa5grvMo8A1thYw2jow2FN5Ayqn3atYlxTzBycuXaTQaQkND3d8+3nrrLe68805UKhWpqal8++23DQ7qhGhtPWKC+PKuQSzbV8jM/+0mq9TM/V/+waXdIph5TQ/iQjz4W7aiQPEByPjdNfDh6FqozK6fRh8AScOg0wjodDGEd/X6gQ8Gg4GtW7e694XwRFJO24dzrrEzm808//zzLFy4kNLSUiorK1m8eDF79+5l2rRpzZTNliU1dsJTmK0O3luezoerDmNzKBh1Gh4bk8rkIUmo1R4QDDnsrqbVzHXHgrn1YCqun0ajdy3b1fFiVzAXc4Gs+iCEEOegWZtiJ0+ejM1m46mnnmL48OGUlZWRl5fHyJEj2bdv39kv4AUksBOeJr2gime/3cXGo66lygZ1DOWNm3q3/OAKcznk/OF6ZK6DrI31R64CaA0Q2x8SB0PiEIi/EPQeXMsohBAerlkDu4iICLKysvDx8SE0NJTSUtc/muNv2BZIYCc8kaIozN2YyUuL9mKyOvDTa3j+6u7c3D++efreOWxQsAuyN7sCuezNUJJ+ajqfIEi40BXIJQyBmD6g9Wn6/Hgwm83GV199BcCtt94qSzUJjyTl1Hs1a2DXpUsXli1bRlxcnDuwO3LkCGPHjmXv3r2NynhrmzNnDnPmzMHhcHDgwAEJ7IRHyiip4bGF291LlI3qGsHr43rRwb8RwZTTCaWHIX87ZP8BOZshbzvYa09NG5LkqpGLH+SqkYvo7hUjV5uTdEoX3kDKqfdq1sETDz/8MFdffTXPPvssDoeDH3/8kRdffLFN9K+bMmUKU6ZMcf8AhfBEiWF+zL93MP9ec5g3Fh9g2b5Cxr69mnduuYALO4Wd/QJ2KxTthbwdrv5xeTtcNXMnN6kCGIIhth/E9XcFc7H9wK8B79HOaDQaxo4d694XwhNJOW0fzmu6k4ULF/Lxxx+TmZlJbGwsd911F+PHj2+O/LUKaYoV3mJffiVT527lYGE1ahVMu7QLU0Ymo1GrXCNUa4qgcK/rkb/TVSNXuA+ctlMvpjVCZA/X4IbjgVxYZ68fsSqEEN6uzc9j19wksBPexGS188rXv7N/50a6qLO5OLiYi0NK0JfuB1PJ6V9kCIboXq4JgKN7u7ZhyTJaVQghPFCzNsXOnj2bkSNH0rt3bzZs2MDEiRPRaDR88sknDB48+LwzLYQ4C6cDyjNdE/6WHITSQ1C0H9+ifbxQXQDHu9jVHHsAoILQjhDezVUbF93bFdAFxUtNnBBCtEHnXGMXExPD3r17CQoKYtiwYdxyyy34+/vz3nvvsWnTpubKZ4uSGjvRahQFqgtcgdvxAO74tuwIOKx//trgBGqCUvhfXjAbqiM4ok7gjqsv4/pBKS2X/3bKZDLRu3dvALZv3y5LNQmPJOXUezVrU2xgYCCVlZWUlZWRnJxMUVERarVapjsRoqHM5VCeAWUZdbaZrv3yTLCZ/vy1Gh9Xv7ewzq6m07BkV21ceCr4uEa7VdXaeGTBdpbuLQBg0pAknr2yGzpN+x652pxktKHwBlJOvVezNsUmJyczf/589u/fz6WXXoparaa0tBS9Xn/eGRaizXDYXTVulblQmXNiWzeQqz3LFyCVGoITTgRuYcknArnAuLNOLRJg0PHhbf2Y/Vs67/yWzqe/H2V/fhVzbu1LqJ/8nTYHg8HAmjVr3PtCeCIpp+3DOdfYbdiwgWnTpqHX6/noo49ISUlh7ty5/PTTT3z55ZfNlc8WJTV24rSsNVBdeCxwOxa0VeTUCeByoTofFOfZr+XbAUISXQFccOKx/UTXHHFBcU02we8vu/J49D/bMVkdJIT68vGkASRH+DfJtYUQQrQMGRV7nmSC4nbIbjkWrBVCzbGg7fjz6gLXdCHHj51unrfTUWshIBoCY449Yl2DFY4Hb8EJ7mbTlrA/v4q7P99EVqmZQIOWD27rz+DOMhedEEJ4i2YP7LZv387atWspKSmh7suff/75c8+tB5IaOy/lsIGp1DXFh/nY1lRne/Ixc+nZm0VPpjWAf6QrWDseuAXF1Q/i/MJB7VmTf5ZUW7jn881sySxHp1Hxyg29GNcvrrWz1WbY7Xa+/fZbAK6//nq0Wpk2RngeKafeq1kDu/fee4/p06czduxYvv32W66//noWLVrEtddey+eff96ojHsKCexaiaK4asVqK10B18kPy2mO1VYcC9rKwFJ5fu+r1oF/hOvhd2zrH3nimH/kieM+AV47TUitzcFfF25n0Y48AB4alcyjl3VpnnVm2xnplC68gZRT79WsgyfefPNNli1bRt++fQkODmbu3LmsXr2ad95557wzLLyYwwaWKlf/M2v1ia3l+P6xcyc/dx+rqhOkVYLiaGSGVGAMAd8w8A11bY2hx/brPj923i/clb4dBDcGnYZ3/+8CEkN9+eeKQ7y77CAZJSZeH9cLg86zahi9jVqt5uKLL3bvC+GJpJy2D+dcY1d3WpOIiAiys7PR6/Uy3YmnUBRw2l19xxxW19Zmci3mbjO7HvZa1zFbbZ1zJz8/yzlrtetxpnnVzpdaB4agOo/Ak54HgU+dc3UDNUOQxzWDeqL/bMrimW93Yncq9E8M4V+39ydERswKIYRHatYau9TUVLZt20afPn3o06cPr732GkFBQYSHh593hs/HggULmD59Onl5eYwaNYpPP/2U0NBQAMxmM/fccw/ff/89ISEhvPbaa9xyyy0tmr+z2jbP1XRot4DD4lqY3WE9EYy5j51ua3HVlP3ZOVphPIzGB/R+rkEB+uOPMz33c219Ak4N2rSGdlGD1ppuHhBPbIiR+7/8g80ZZdzw/u98OnkAiWHSNCOEEN7snGvs1q9fj16vp2/fvuzZs4epU6dSVVXFa6+9xqhRo5orn/Xs3buXwYMHs3TpUnr37s2jjz5KcXEx8+bNA+CJJ55g165dzJ8/n127djF27Fg2btxIly5dGnT9Fqmxe6OLa7Rlc1NpQOcLOoNrkXed0bWv83UFUOd07thDazwWmNUJ1DS65v8soskdKKhi8iebyCk3E+qn51+396dfYkhrZ0sIIUQdbX66k3fffZc1a9awYMECAPLy8khMTKSsrAw/Pz+io6P57rvvGDRoEAC33347ycnJfzpq12KxYLFY3M8rKyuJj49v3sDuh4dcfcq0PqDRH9v6gFZ/0vbYeY3+1GN/9lqN7sQxWdRdnEVhZS13fraJXTmV+GjVzB7fhyvSols7W17FbDa718pet24dRqOxlXMkxKmknHqvZm2KBcjMzGTXrl1UV9ef1+vmm28+n8udl7rxqKIo2Gw20tPTSUxMJD8/n7S0NPf53r17s3Hjxj+91iuvvMKsWbOaNb8ns1z5BlqVFo30BxOtLCLQwIJ7B/OXeVv5bV8hD87dwrNju3HXsI4yYraBnE4n27dvd+8L4YmknLYP5xzYvf7668ycOZO0tLR6CwirVKoWC+wuueQSpk+fzsaNG+nduzevvPIKKpUKk8lEdXU1Go2mXt4CAwNPCULrevrpp3n00Ufdz4/X2DWnq769ivyafLQqLXqNHh+NDzqNDh+Nj2tf7drXa/Tu83p1nX3NSfvq+scNWgNGjRGjzohBY8CoNWLUGjFoDfhqfdGqtfJPW7j5+Wj54LZ+zPrfHr5Yn8GLi/aSWWpixtU90KilnJyNwWDg119/de8L4YmknLYP5xzYvfHGG2zatIkePXo0R34AGD16NKtWrTrtuenTpzN9+nTef/997rjjDkpKSnj44YcJCAggNjYWf39/HA4HJpPJHdxVVla65+45HR8fH3x8mmYJp4ayHhtNalfs2O12TPYzLPzeDDQqjTvQqxv0GbVGV0CodQWFRq0RP50fAboA/PR++Ov88dPV2er93ftatTT7ejOtRs3fru1BYpgvL/20l8/XZZBbbuadWy7AVy+/2zPRaDRcdtllrZ0NIc5Iyml9TsWJ2W7GZDNhspsw2Uyu58f2T3esbvq6+7X2Wn684Ud06tbvb37Ofew6derEnj17PCraP3jwIMOGDSMnJweNRnPOfexO1hKDJ0w2ExaHBavDitVhde07rfWfO6xYndZT0/3JcZvThsVhweKwUGuvxWw3n7K1K/Zm+TwABo2hXqDnr/Mn0CeQQH0gwT7BBPkEuR76oBP7xx4+mpYNrMWZ/bwzj2kLtmGxO0mLDeLfk/oTEeA5f/NCiPbN7rRTba2mylZFtbWaals1VdaqE9uTjtVLe2zfbDc3aZ7W3rKWQH3zxAxNPniisLDQvf/999+zcuVKnn766VOmOImIiDjPLJ+7LVu20KdPH/Ly8rj99tu5+uqrmTZtGgCPP/44e/fuZd68eezevZvLL7+cDRs2kJqa2qBre/U8dmdhc9gwO8yYbWZqHa5gr+7jeAB4fL/GVuN+VNuq62+trm2to7bR+TJqjQTqAwnyCSLUEEqYMYwwQxhhxjA6GDu498MMYYQYQqR2sAX8kVHGPZ9vprTGSmywkU8mD6BLZEBrZ8sj2e12Fi9eDMCYMWNkqSbhkTyxnDqcDqqsVZRbyqmwVlBhcT3KLeX1tsf3K62VlFvKqbHVNFke1Co1vlpf10Pni1FrPLE9dqzu9vj5uumNWiOpoanNVmPX5IGdWq1GpVJxpqQqlQqHo7GrBjTcoEGD2L17NwEBAdx///08//zz7j5jZrOZu+++u948dhMmTGjwtdtyYNccbE4bJpuJKmtVvcCvylpFpbXS/UdZYamo94d7/LlTObdOvCpUhBhCCDWEEukbSZRfFJF+kUT5RhHld+Jh1MqIr8Y6WlzD5E83caS4hgCDqx/ekM4dWjtbHkeWahLeoCXKqaIo1NhqKK0tpbS2lBJzCSW1rkepudS1PXa8tLaUKmsVSiPmXjVqjfjr/PHX+xOgC3Bt9QH4605s/+yYn84PP50ferXe4/uct/npTpqbBHYtx6k4qbZVU2GpoNLi+iZWWltKsbn4xA3BXEJxret5WW1Zg28CwT7B7iAvISCBhIAE4gPjSQhIIMovSmr9Gqisxso9n29mc0YZOo2KV2/oxY394lo7Wx7FbDZz0UUXAbBq1SqZRkJ4pMaUU0VRqLBUUGgupNBUSJGpiAJTgXu/2FzsDtosDsvZL3gSP50fwT7Bp3TdOb5/8rFAfSD+en+P6NPWEpolsFMUhX/961/s2rWLPn36cOeddzZJZj2RBHaey+F0UGYpcwV75mIKTYXk1+STb8p3bY89zjYYRavSEhsQS3yAK9DrFNSJzsGdSQlJIcgnqIU+jfeotTn468LtLNqRB8Ajl3bhL5cke/y3XCHE2SmKQkltCXnVeeTW5JJfk0+BqYAiUxGFpkL3vtXZ8CUkfbW+hBpCCTWGEmYIc3exCTWEurvWhPiEEGwIJkgfhE4muT+jZgnsHn30UebNm8fw4cNZvXo1d911Fy+++GKTZNjTSGDn3RRFocpW5Q7ycqpzyKrKcj0qXdsz3aDCjeF0Du5McnAyycHJpISkkBqa2u4HeDidCq8v3s//W3kIgHH94nj5+jT0WllMXAhP5nA6KDIXkVOVw5HSI+Sb8im2FpNXk0dutSuQa2hf6RCfECJ8Iwj3DSfSN9K9H24MdwVwxlBCDaHSFaaJNUtgFxcXx/Lly0lJSWHfvn1cddVVHDx4sEky7CnmzJnDnDlzcDgcHDhwQAK7NsqpOCk0FZJZmUlmVSaZlZkcqjjEwbKD5NbknvY1WpWWlJAUenToQY+wHvTs0JPOwZ3bTTNAXV9tyOD573fjcCr0TQjm/Yn9iAyUEbNCtCabw0ZOdQ6ZVZlkVWW5729ZVVnkVOWcdUYEFSrCfcOJ8Ysh2i+aSL/IUwM4Yzh6jb6FPpGoq1kCu8DAQCorK93PQ0NDKS0tbVxOPZTU2LVfNbYaDpUf4mD5QdLL0jlUfoh9pfsos5SdktZH40OPsB70j+pPv8h+9Anvg6/O9zRXbXtW7C/kL/O2UllrJzzAh/dv7Uv/pNDWzlarMZvNXHrppQAsXbpU+tiJZuFwOsipzuFwxWEyKjPIrDwWxFVlkleTd8aBaFq1lghDBAc2H8BWYmPandPoHN6ZGP8YYvxjiPKNkuZQD9YsgZ2fnx8rVqxwj4y97LLLWLp0ab2RsgMHDmxEtj2HBHaiLkVRyKvJY3fJbnYV72J3yW72FO+hylZVL51WpaV7WHf6RfbjwugL6RfVr0033x4truG+L/5gf0EVWrWKGVd3Z+KFie2y352MihVNyeqwklGZweGKwxwuP+zaVhzmaMXRM3YjMWqNroFigQnu/sPH98ON4ZQUlxAZGQlAQUFBi05RJhqnWQK7pKSkM96wVSoVhw8fPreceigJ7MTZOBUnmZWZbCncwub8zfxR8McpzbhGrZEBUQMYHjucYbHDiAtoeyNJayx2nvhmh3tQxU394njhup4YdO1rDWS73c6PP/4IwFVXXeUR84MJz+dwOsioyuBA6QEOlB3gYPlBjlQcIasqC4dy+unDfDQ+JAUmkRiYSGJgIgmBCe4ALswQdsb/0xUVFQQHBwNQXl5OUJAMFPMWMt1JI0lgJ85HbnUufxT8wab8TazNWUuhubDe+Y5BHbk04VLGJI2hS0iXNlOzpSgKH646zGu/7MOpQGpkAO9NuIAUmcxYCLcKSwUHyg64H/tL93Ow/OCfTg3ir/OnU3AnOgXVf8T4x6BRn98XJ6lZ9l4S2DWSBHaisRRF4UDZAVbnrGZNzhq2FW6r9w08KTCJyxIvY0zSGFJDG7Yiiqdbk17MtAVbKa62YtCpmXl1D8YPiG8zAawQDVVsLmZ38W5Xt42SPRwoO0BeTd5p0xq1RlKCU+gS2oXk4GQ6B3emU1Anwo3hTf63I4Gd95LArpEksBNNrdJayers1Sw+upi1OWvr9ZPpGtqV65Kv48qOVxJsCG69TDaBoioLj/5nG6vTiwG4slc0r9yQRqChbXfKdjgcrF69GoDhw4ej0bSvpuj2rLy2nN0lriDueDBXYCo4bdoYvxi6hHahS0gXUkNSSQ1NJT4gHrWqZaYMOv6/DZD/b15GArtGksBONKdqazUrs1fy69FfWZ2zGpvTBoBOrWNk/EjGdRnHhdEXem1Nl9Op8OHqw7yxeD92p0JssJHXbuzFsJS2uxSZ1IS0DxaHhT0le9hWuM09kCqnOueUdCpUdArqRI8OPege1p3UkFS6hHZptgXiG6qwsFAGT3gpCezOk8xjJ1paeW05i44s4vuD37O3dK/7eOegzkzoNoGrOl3ltVOobM0s4+H528gsda0CMmFQAs+M7Ya/T9sbWGAymRgwYAAAmzZtwtfXO39nor4iUxHbiraxrXAb24q2sadkD3bnqfPBJQYm0j2sOz3CXPNcdgvrhp/O84L7oqIidzBXWFhIeHh4K+dINJQEdo0kNXaiNewv3c836d/w/cHv3UuiBegDuDHlRm7rfhsRvt737brGYue1X/bx+boMAGKDjfx9XC+GJLfd2jvhnRxOBwfKDrgDue1F209bGxdqCKVPeB/SwtPo2aEn3UK7ec0yhFKz7L0ksGskCexEa6qyVvH9we+Zu28uWVVZAOjVeq5PuZ47e95JjH9MK+fw3P1+qJgnvt5BdpkZgBv7xvH02K508G+78/wJz2Z32tlXuo/N+ZvZVLCJLQVbqLZV10ujVqlJCU6hT0Qfeof3pk94H+IC4ry2m4QEdt5LArtGksBOeAKn4mR19mr+vevfbC3cCrgmQb6689Xck3YP8YHxrZzDc1NjsfPKz3v5akMmigKBBi2Pj0llwqBENGrv/EcpvIfdaWdvyV42FWxic/5mthRuocZWUy+Nv86f3uG96R3hCuLSOqThr/dvpRw3PQnsvJcEdo0kgZ3wJIqisLlgMx/u+JD1eesBV4B3U+pN3NfrPsKMYa2cw3OzNbOM6d/tYneua4nCtNggZl3bg74JIa2cs/NnNpu55pprAPjhhx9kSTEP4FSc7Cvdx/q89WzM38jWgq3uLg7HBegD6BfRj/5R/RkQNYDUkNTzniPOGxQXF7v71RUVFdGhg3SJ8BZtIrCz2+2MHz+e9evXk5ubS15eHlFRUe7zM2bM4OOPP6aiooLIyEieeeYZJk+eDMCKFSsYNWpUvQ7MP//8M8OHD2/Qe0tgJzzV9qLtvL/9fdbmrAXAV+vLpJ6TuKP7HV41yMLhVPhqQwZ/X7yfqlpXZ/SxaVE8PqYrHTt4Xy2C1IR4hrzqPNblrWNd7jo25G04ZY3nQH0g/SL7MSBqAP0j+9MlpEubDuROJqNivVebCezmzJnDoEGDGDx48CmBXXp6OjExMfj5+ZGens7FF1/MkiVL6NGjBytWrOD+++9n37595/XeEtgJT7cxbyP/+OMf7C7ZDUCYIYxp/aZxTedrWmxOrKZQVGXh74v3sfCPbBQFtGoVtw5K4KFLUryq/53dbmfBggUAjB8/XpYUayHV1mo25m9kXe461uet52jl0XrnfbW+DIwayKDoQQyIGkBKSIpX/X00NVlSzHu1icCuLpVKdUpgV1d6ejrDhw/n448/ZuzYsRLYiXZBURQWZyzmnS3vuAdZ9A7vzbODnqVbWLdWzt252ZdfyWs/72P5/iIA/PQabh+SxN3DOhLmRQGeaF5Oxcmekj2szlnNutx17CjaUW9FF41KQ88OPRkcM5jB0YNJC09Dp27bk2OfC6lZ9l7tJrB79dVXeeGFFzCZTAwcOJCVK1diMBhYsWIFl19+OYGBgQQFBXHbbbfx7LPP/uls8BaLBYvlxHp9lZWVxMfHS2AnvILNYePLvV/y/vb3MdvNqFVqbupyEw9d8JDXTMNw3O+Hinn1533syK4AwKjTMPHCBO65qBMRAYZWzp1oDRWWCtblrWN1tmt5vtLa0nrnEwMTuTD6QgbHDGZg1EAC9LJG8Z+RwM57tZvADly1Fhs3bmTp0qU8+eSTaLVa8vPzKS8vp0uXLuzbt4+bb76Zu+66i0ceeeS01585cyazZs065bgEdsKbFNQU8OYfb/LzkZ8BCPEJ4YmBT3Blxyu9anoGRVFYureQd5eluwM8H62am/rHMXloRzqHe94oRYfDwZYtWwDo27evLCnWCHXXWV6dvZrtRdvr1cr56fwYEjOEoTFDGRwz2Cun/2ktsqSY9/KKwG706NGsWrXqtOemT5/O9OnT3c/P1hQLMHXqVNLS0rjvvvtOOTd//nz++c9//un7SY2daEs25W/i5Q0vc7D8IADDYofx/IXPE+0f3co5OzeKorDiQBHv/pbOlsxy9/ERqeHcObQjw1M6eEzAKjUhjVNjq2F93npWZ69mdc5qCk2F9c4nByczPHY4w+OG0ye8DzqNNK+eDxk84b3OJbBrtR6+v/76a5Nez+l0cujQodOeU6vP3FnWx8cHHx/pxyPahgFRA/jP1f/hk12f8P+2/z/W5Kzhuu+vY1q/aYxPHe81ncdVKhUjUyMY0SWcdYdL+HjNUX7bV8CK/UWs2F9EcoQ/tw9O5NresQT5tu4/epVKRWJiontfnF1+TT4rslawPGs5G/M31luqy6AxMCh6EMNjhzMsbhix/rGtl9E2pG7ZlHLadnl0U6zFYkFRFIxGI0ePHiUyMhKDwdXP5qOPPmLcuHEEBgayevVqrrnmGubNm+cePNG5c2fi4+NJT0/nxhtvZOLEiTzxxBMNel8ZPCHaisMVh5n5+0z3BMd9I/oyc8hMOgZ1bOWcnZ+Mkho+/f0oCzdnU21xBQJ6rZorekZxc/94BncKQy2THXskRVFIL09nWeYylmctZ0/Jnnrn4/zjuCjuIi6Ku4j+Uf3x0ciX7aYmNcveyyuaYhsiKSmJjIyMeseOZ/eGG25g5cqVWK1WEhISePjhh7n33nsBePPNN/nHP/5BeXk5ERER3HbbbTz//PMNnoJAAjvRljgVJwv2L2D2H7Mx2U3o1XqmXjCV27vf7rVzeFXV2vjmj2zmb8piX36V+3h8qJHrL4jjmt7RJEdIJ/rWZnfa2Vq41R3M1V17VYWK3uG9GZkwkhHxI+gY2FFqkZqZBHbeq80Edq1FAjvRFuVW5/K3dX9jba5rcuO0Dmm8MPQFOgd3buWcnT9FUdiZU8GCTVn8sC2XKsuJ5ryuUQFc3TuGq3pFkxgm/8BaislmYm3uWpZnLmdVzioqLBXucz4aHy6MvpBRCaO4KO4iOhhl5YOWJIGd95LArpEksBNtlaIofHfwO/6+6e9U2arQqXU82OdBJvWYhFbt3ZPqmq0OFu/O53/bc1mVXoTNceLW1isuiMu6RTKqWwTdowObvGaotraW//u//wNcg7WOdxlpL4rNxe7+cutz12N1Wt3ngn2CuSjuIkbFj2JwzGCvWiGlrSkpKXEvI1ZcXExYmHctR9ieSWDXSBLYibYuvyafv637G6tzVgPQI6wHLwx9gZSQlFbOWdOoMNlcQd6OXH4/VILDeeI2FxNkYFS3CC7pFsngTmEYdI1vjm5vNSGKonCk4gjLslxNrDuLdqJw4mcc5x/HyISRjIofRZ+IPl7/paGtkFGx3ksCu/M0Z84c5syZg8Ph4MCBAxLYiTZNURT+d/h/vLrxVaqsVWjVWh7o/QCTe05uU7P1F1dbWLqngN/2FbImvRiz7cScaAadmgFJoQxN7sDQzh3oHhOI5jwGX9hsNj799FMAJk2ahE7Xdn5+xzmcDnYU73D3l8uorN//uWdYT0YmjGRk/EiSg5Olv5wHKi8vJyQkBICysjL38mLC80lg10hSYyfak0JTIS+se4EV2SsA6BbajReGvkBqaGrrZqwZ1NocrDtUwtK9BSzbV0heRW2980FGHYM7hTE0OYwLO4XROdy/XY+yrbXXsi53HcuzlrMye2W9VR+0ai2DogYxKmEUF8ddTKRfZCvmVDREe6tZbksksGskCexEe6MoCouOLOKVDa9Qaa1Eq9Zyb9q93J12d5udDFZRFA4UVLP2YDG/Hypm/eFS9xQqxwUatPRNDKFfQgj9EkPoHR+Mn0/bblYsqy1jZfZKlmcu5/fc36l1nAh+A3QBDI8bzsiEkQyLGYa/3vNWARF/TgI77yWBXSNJYCfaq2JzMS+se4FlWcsASA1J5cVhL9I1tGsr56z52R1OduRU8PvBYtYeLGFbVnm9ZlsAtQq6RQfSJz6YnrFBpMUGkRLpj06tYu/evQB069btrJOie5rMykyWZy1nWeYythVtw6k43eei/KIYFT+KkQkj6RfZr00107c3VVVV7v9plZWVBATIlEDeQgK7RpLATrRniqLwy9FfeHnDy5RbytGqtNzd627uTbu3zdbenY7N4WRfXhV/ZJTyR2Y5fxwtJfekplsAnUZFcrgfGxd/gzX/IL8u+De9EsM9umbPqTjZVbyL5VnLWZ65nEMV9Vft6RralZHxrv5yXUO7Sn+5NkIGT3gvCewaSQI7IVy1dy9veJklGUsASAlJ4cWhL9I9rHsr56z15Jab2ZJZxs6cCnblVLArp5IKs+20aWODjaRGBZAS6U+XiAC6RAaQHOGPUd86k0JbHBY25G1w9ZfLWkmRuch9TqvS0i+qnzuYi/GPaZU8iuYlgZ33ksCukSSwE+KExUcX89L6lyizlKFRabiz553c3/t+9Bp9a2et1SmKQnaZ2RXk5VawM6eSPbmVFFdbTptepYKEUF86h/uTFOZHUgdfksL86NjBj5hg43mNyD2TCksFq7JXsTxrOWtz1mKym9zn/HR+DIsdxsj4kQyLHUaQT1CTvrfwPNLHzntJYNdIEtgJUV9pbSmvbHiFX47+AkBycDIvDH2Bnh16tnLOPFNZjZUDBVUcKKzmQH6Va7+gijLT6Wv3APQaNfGhRjp28CMxzI+kMF/iQnyJDTESG2xsUNPu8fnlVmWvYlXOKrYUbMGhnOgnGOEb4a6VGxA1QILzdkYCO+8lgV0jSWAnxOktzVjKC+tfoLS2FLVKzQ0pNzClzxRZGqoBFEWhuNpKekEVh4tryCip4UixiaMlNWSWmLA6nGd8fbCvjthgV5BXN+CLCFSTZ93FtuL1rM5ZVW89VnA1oY+Md00W3D2su/SXa8cksPNeEtidJ5mgWIizK68t59VNr7Lo8CLA1aR3d9rd3Nb9Nnw0Pq2cu9ZRW1vLXXfdBcC///3vc15SzOFUyC03c7SkhqMlJo4W15BRYiKn3ExOmYnK2vrTsKi05Wj996H134fG7xAq9YmaQJWiJUjVlQRjP3qGXEhySCKRgYZjDx+CjDoJ7topWVLMe0lg10hSYyfE2W0p2MLrm15nd8luAGL8Ynio70NckXQFGnXrDBBoLc1dE1JUU83yIxtZm/M7O0o3UGw9Wu+80xaEvbor9upUHDXJoPx5E6teoybMX0+on+vRwd+HUD89Yf56wvz0hPr5uPfD/H3w02skEGwjZPCE95LArpEksBOiYZyKk0WHFzF7y2wKTYUAJAUmcV/v+9pVgGez2ZgzZw4AU6ZMafSSYoqicKDsAOvz1vN77u9sKdhSb6JgtUpN7/DeXBR3EcNjh9MxMJniaiuFVRYKKmsprKyloNK1X1BlOfa89ox9/P6MXqsmzE9PkFFHkFFHsO/xretYoFFH8MnnjHoCDNp2vWqHJ5IlxbyXBHaNJIGdEOfGbDfz5Z4v+WzPZ1RYKgBXgHdnzzsZ22lsu22iPRcFNQWsz1vPurx1rM9dT0ltSb3z4cZwBscMZkjMEIbGDCXYEHzO71Frc1BcbaG0xkpJtZWSGislx5/X2S+utlJSY6HWduZ+f2eiUkGgQUeAQYu/j9a99auz7++jw9+gJeDYcf+T0vobtPjptU0+Wri9kj523ksCu0aSwE6I81NtrWbevnn1ArxQQyjjuoxjfOp4Inyl6ee4nOocNudv5o+CP9hcsJmsqqx6541aI/0i+zEkZgiDowfTObhzizeJmqx2SqqtlNZYqTDbqDDbKDfbqDTbKDfVOWayufcrzDZMVsfZL34OfLRqjHoNvjqNa6vXYnTva+rvHzvn2j/5vBYfrdr10GlO7Gs16DSqNt/kLIGd92oTgZ3dbmf8+PGsX7+e3Nxc8vLyiIqKcp8/cuQI9913Hxs3bsTPz4+pU6fy9NNPu89/+umnTJ8+ncrKSm688UY++OAD9PqGDe2XwE6Ixqmx1bBg/wLm7ZtHfk0+4JoEd2TCSK7tfC1DYoe0qaWpnE4nmZmZACQkJJyypJhTcZJRmcGWgi1sLnAFc3k1efXSqFVquoV2c9fK9Q7v7bXTkVjtzmNBnpWqWjvVFjvVtXaqjm1rLK5jx5/XPe8+V2vD5mi5f08qFe4gzxX4qTFoNfjo6hw7fl6nrpdWr1Wj0xzfqtBp1McedffrP9drVWjVJ/aPH9dqVOhPek1TBZyypJj3ajOB3Zw5cxg0aBCDBw8+JbC76qqriIuL49133yU7O5uhQ4fyxRdfcMkll7Bz504uvvhifv31V1JSUrjuuusYPnw4f/vb3xr03sd/gLm5uURFRbn/qKxWKzabDa1Wi4/PiaalmpoaAIxGo/uGbrPZsFqtaDSaeiPkziWtyWRCURQMBgMajcb9c7FYLKjVaoxG43mlNZvNOJ1OfHx80Gpdc2M5HA5qa2vPKa1KpcLX19edtra2FofDgV6vd/cxOpe0TqcTs9kMUO+bpMViwW63o9Pp3MH5uaRVFAWTyTUxq6+v7ym/z3NJ25DffVOUk9P9PpuinBz/fTa2nJz8+/yztNWmalblrmLh4YVsLdzqTh/iE8LliZcztvNY0jqkoUJ12t9nY8tJ3d9nY8vJn/0+fX19MZlM7pqQgoICnD5ODlQdYEfRDnYW72Rn0U6qbFXUpVVp6RrSlb4RfRkUO4gLIi4gQB8g94g6ac0WGxZFjV1RYbY6qLbYKK8yUWtz4lTrMFnt1NocVJos1FhsWBxgdYDJ6sBktVNTa8Vsc2A5dsxsdWCxO7DYHFgcClb7+Tc1tyStWoVOo0KrUaNVq9Co1WhUoFGDVqNBq1GhVatQq1SoUdBq1Oi0GjRq13GV4kSjVqE4HSz++WcUxcF111yD0UePVqPG51hzt1atxulwoFGDj07rvoYaBcXpPJbWNapao3KVHxUKPnodWo3G1adSUXDYbWjUagwGH9Qq0KhU2Gw2d1qd9lj/S8WJ3WZDo1ZhNBjQqF1BrN1mBcWJj16PTnesKV5RsFktqFUq/Hx9j6UFm/VEWr1eh+uvVnGVVZXr716tUqHC9bfsdNjR63T4+PigUoEKMJtNqMD9NwxNf49obBxhtVq9P7CrS6VSnRLYpaWl8c477zBy5EgAbr75ZoYPH85DDz3E008/TXl5Oe+//z4Ay5Yt4+677+bw4cOnvb7FYsFiOTFTfGVlJfHx8YBrFFF4eDgAL730EtOnT+fuu+/mX//6lzu9n58fJpOJI0eOkJSUBMDs2bN55JFHmDBhAl999ZU7bXh4OMXFxezatYsePXoA8K9//Yt7772Xa6+9lu+++86dNikpiYyMDDZu3MiAAQMA+Oqrr5g4cSKXXnopS5Yscaft0aMHe/bsYfny5YwYMQKA7777juuvv54hQ4awdu1ad9oBAwawefNmfvzxR6688koAlixZwujRo+nduzfbtm1zpx0xYgQrV67kP//5DzfddBMAa9euZdiwYSQnJ5Oenu5Oe+WVV/LTTz/xySefMGnSJAC2bdvGBRdcQExMDDk5J+bXuummm/j666957733mDJlCgDp6el06dKFoKAgysvL3WknTZrEZ599xuuvv87jjz8OQE5ODnFxcWi1Wmy2Ex3Cp0yZwj//+U9mzJjBzJkzgfodhq1Wq/sfyuOPP84bb7zBY489xt///nfA9Yd0/I+4bufimTNnMmvWLB588EF3J3kAnU6H3W4nOzub2NhYAP7+97/zxBNPcMcdd/Dpp5+60wYHB1NRUcGBAwdISUkBXFPsTJ06lXHjxrFw4UJ32tjYWHJzc9m6dSt9+vQBXLXQkydPZuzYsSxatMidNiUlhYMHD7JmzRqGDh0KwMKFC7n55pu5+OKLWbFihTttnz592L59O7/++iuXXXYZAIsWLeKqq66if//+bNq0yZ126NCh/P7773z77bdcd911AKxYsYKRI0fSvXt3du/e7U572WWXsXTpUr788ktuvfVWADZt2sTAgQNJTEzk6NGj7Cvdxw+HfmDulrk4DCea6kJ8QkjzT+PLWV/ik+9DYVah+9ytt97K3Llzeeutt5g2bRoAR48epWPHjvj6+rpvhgD33HMPH330ES+++CLPPvssAEVFRe6Rf3VvddOmTePtt9/mmWee4aWXXgL+vJnq2Wef5eWXX+bhhx9m9uzZ7mscv1HvzthNjjWHSU9MQhutxZBkQB9xak2b0+okLTyNoYlD6R/ZnzX/WcMTjzwh94hWvEc8//wMrA4nhSVldExOQaXRs2vvfhyoqLU5eee9f/Kf/37L9TfcxPhbJ2KxOzFZbPxl2qOotHqefGY6Kq0Oi83Jug0b+WPrNlK7deeCfgOwOZzYHAo//bIYVBoGXDgYlUaLzaGQX1hEYXEJ/oFBBAaHutLanVSbzKi03llL21aoVKBWqXA6HK4gV6tBr9PiCg0VaqqrAYXgoCBUKhVqletLk6mmhms1W3hv9pt1ruW6RzRFHPH+++83OLDz3FWqz2LKlCnMnz+fIUOGkJmZyfr163nuuecA2LNnD2PGjHGn7d27N0eOHMFsNtf7pnncK6+8wqxZs1os70K0R11Du9I1tCtrX17LskPLGDNtDLnGXMosZayyrCJhagKKU+HGH26kb0Rf+kb2xWK0gCd0e1JBra6WDXkbyKjM4EjFEZKeTMIQb2D88vEAhF4bWu8lHYM6ktYhjV4denH/dfdTfrCcRQcXuW/aG9jQ0p9CnEStVmFQawg0aHHWlAPQOdzP/eUvgnJqD/9BLCO5to/ri5vNZmPy5u8BeHD4hye+/G1ZyK8/v0Ofjg/y3oT73O+hu2cIdrud//fGSV/+Xj725e/vn7rTHv/yt3fffhI7dsbmdPLBhx/x9LPPMfaqq5n9zrs4nAp2p8Klo8dQXFzCZ198QafOKdidTn7+ZTFv/OMtBgwYyLPPPe9O+8gjj1JQVMyjjz3OW7PfRqXWMPG22/hy7nw6Jydz1933YHcqOJwKH370bwqLirlx3E3ExSdgdzo5cjSTxUuWENYhnLFjr8ThVHAqCkt/W0ZJaSkXXjiYyKgonAoUF5ewYdMm/Pz9ufDCwTicCooCO3btoqKiks7JyYSEhuFUFKprTKQfPIhe70On5GQUBZyKQl5eASazmZDQMIy+vjgVsNpslJWXo1ZrCAgMwqm48mCx2nA6FVQaDU1xs1AUcCgKqNSotGqcUG8QkdrHVatcf25JHRq/YKjFI3htjd2OHTuYOHEie/bsweFwMHPmTGbMmAHAJZdcwuTJk5k4cSJwohambtRc15/V2ElTrDTFSlNs45piz/a7RwPbCrexPHM5q7JXkVGVwcl8tb4kByeTGppKYmAi0X7RhGnDiPaLJjo42v07akxTrNVhpchUREZpBoXmQiocFRSYCsirzuNoxVGyqrOwOE6//qtGpSEpMIkuoV1IDkwmOTCZXuG96BBwYjUOuUec+ruXe0TL3yN8fHzc/+v0ej1Wq9Xj7xFn+92fnFZRFBwOJzVmE4oCRl9fFMUVsNVaLNjsNrQaHVq9DsXp6v9aYzqR1qko4E5rR6PRotXp3EGnyWR2/SwNBpRjtXgWqw2bzUZqVBBG46l/y+2mKXb06NGsWrXqtOemT5/O9OnT3c9PDuwcDgeJiYk8+eSTPPDAA2RnZ3PVVVcxc+ZMxo0bx7XXXsuYMWN48MEHgROzbZtMptPW2J1MBk8I0TqKzcVsKdjC1sKtbCncQnpZOjbnn8+9plVrCdIHEewTTJBPEIH6QHQaHTq1Dr1Gj1atRVEUbE4bNocNm9OG1Wml2lpNpbWSSmslVdYqzHbzWfOmUWmIC4gjISCBxMBEuoR0ITU0lc7BnWU6FyFEszqXuKTVmmJ//fXX835taWkpubm5PPDAA2i1WpKSkrjuuutYvnw548aNo3v37uzcudOdfvv27XTs2LFBQZ0QovV0MHZgdNJoRieNBsDmtJFZmcmBsgOkl6WTXZVNTk0OudW5FJuLsTvtlNSWnDLn2/nQqXVE+EYQ6RtJpG8kEb4RRPlFkRDoCuRi/GP+dCSvxWJh6tSpALz33nv1vokL4SmknLYPHt0Ua7FYUBQFo9HI0aNHiYyMdFcvJyYm8tRTT3HfffeRm5vLFVdcwZQpU7j//vvZuXMnI0aMYMmSJXTu3JkbbriBoUOHnvOoWKmxE8Jz1dprKbeU13tUW6vr1c7ZnDY0Kg06tQ6tWotOrUOn0eGr8yVQH+iu5Tv+ON9pJWR+MOENpJx6L6+osWuI1NRUMjJcfW6Odzg+Hod+/fXXPPzwwzz11FP4+voyfvx47rnnHsA1YvbNN9/k6quvds9jd3yUnBCibTBoDURpo4jyizp74mam0+l48cUX3ftCeCIpp+2DR9fYtRapsRNCCCGEpziXuER9xrNCCCGEEMJreHRTrBBCeANFUSguLgagQ4cObX7NUeGdpJy2DxLY1TFnzhzmzJmDw9G0C1gLIdo2k8nkXuFCOqULTyXltH2QPnanUVFRQXBwMFlZWdLHTghxVjU1NcTExACQm5sr/zCFR5Jy6r2OL5xQXl5OUFDQGdNKYHca2dnZ7rVihRBCCCE8QVZWFnFxcWdMI4HdaTidTnJzcwkICDhjH4QBAwbUWzT9XNIcj77bQq1gQ34O3vC+TXG987nGubymoWnPlu5M56Vset57NvaazV0uG5pe7pknSNk8/9e3x3umoihUVVURExPjXnLsz0gfu9NQq9VnjYgBNBrNWX+JZ0sTGBjo9TephvwcvOF9m+J653ONc3lNQ9OeLV1DriNl03Pes7HXbO5y2dD0cs88Qcrm+b++vd4zz9YEe5xMd9IIU6ZMaZI03q61PmNTv29TXO98rnEur2lo2rOlaw/lElrnczbHezb2ms1dLhuaXu6ZJ0jZPP/Xyz3zzKQptpXIJMjCU0nZFJ5IyqXwVJ5WNqXGrpX4+PgwY8YMWYRZeBwpm8ITSbkUnsrTyqbU2AkhhBBCtBFSYyeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYOfBVq5cyeDBgxk2bBiPPvpoa2dHCLesrCz69u2LwWDAbre3dnZEO/foo48yfPhw/vKXv7R2VoQAWvceKYGdB0tOTmbFihWsWbOG/Px8du7c2dpZEgKA8PBwli1bxoUXXtjaWRHt3JYtW6iurmb16tXYbLZWWd5QiJO15j1SAjsPFhsb654XR6fTodFoWjlHQrgYDAaCg4NbOxtCsG7dOi699FIALr30UtavX9/KORKide+REtg1oRkzZtC9e3fUajXz58+vd66oqIgrr7wSX19fUlNT+e233xp83S1btlBcXEz37t2bOsuinWiusilEUzqfclpeXu6e7T8oKIiysrIWz7do27zt/qlt7Qy0JSkpKbz99ts899xzp5ybMmUKMTExFBcX8+uvv3LTTTdx6NAhLBYL//d//1cvrb+/Pz/++CMA+fn5/OUvf+Gbb75pkc8g2qbmKJtCNLXzKafBwcFUVlYCrqWdpCZZNLXzKZchISGtkNNjFNHkLr74YmXevHnu51VVVYper1dyc3Pdx4YPH6589tlnZ7yO2WxWRo4cqWzZsqXZ8iral6Yqm3WvZ7PZmjyfon07l3L6xx9/KPfee6+iKIrywAMPKBs2bGjx/Ir24Xzun61xj5Sm2BaQnp5OUFAQ0dHR7mO9e/dm9+7dZ3zdJ598wp49e3jkkUcYMWIE69ata+6sinbmfMtmbW0tl156Kdu3b2fMmDGsXr26ubMq2rEzldO+fftiNBoZPnw4arWagQMHtmJORXtypnLZmvdIaYptAdXV1e4+IMcFBgZSXl5+xtc98MADPPDAA82YM9HenW/ZNBgMLF26tBlzJsQJZyuns2fPbvlMiXbvTOWyNe+RUmPXAvz9/d19QI6rrKzE39+/lXIkhIuUTeENpJwKT+Sp5VICuxaQkpJCRUUF+fn57mPbt2+nR48erZgrIaRsCu8g5VR4Ik8tlxLYNSGbzUZtbS1Op7Pevr+/P9dccw0zZszAbDbzww8/sGvXLq6++urWzrJoJ6RsCm8g5VR4Iq8rly06VKONu+OOOxSg3mP58uWKoihKYWGhcsUVVyhGo1FJSUlRlixZ0rqZFe2KlE3hDaScCk/kbeVSpSiK0vLhpBBCCCGEaGrSFCuEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEEII0UZIYCeEEK1o5syZ6HQ6oqKimuyaI0aMYP78+U12vZP94x//wM/PD4PB0GzvIYQ4PxLYCSFaXVJSEr6+vvj7++Pv709SUlJrZ6lF3XXXXfUWEm8OPXv25OjRo01yrUcffZTdu3c3ybWEEE1LAjshhEdYtmwZ1dXVVFdXnzYAsdlsLZ8pD9AUnzs7Oxu73d7uAmYh2iMJ7IQQHmnFihV07dqVZ599lg4dOvDyyy9jNpuZOnUqMTExxMXF8dprr7nT19TUMGHCBIKDg+nbty/PPPMMl19+eb1r1aVSqdy1ZKWlpUyYMIGIiAg6derEZ5995k43YsQI/va3v9G/f38CAwO55ZZbsFqt7vMLFiygZ8+eBAQEkJaWxv79+3nppZeYPHlyvfcbOnQo//3vfxv02ZOSknj99ddJTU2le/fuADz44IPExMQQHBzM6NGjyczMdKfftGkTvXr1IjAwkPvuuw+n01nveosXL2bMmDHuzzNr1iwuuOAC/P39efzxxzl48CADBgwgODiYxx57zP26H3/8kdTUVAICAoiPj2fevHkNyr8QovVIYCeE8FgHDx7E19eXvLw8nnzySR577DEqKio4cOAAGzdu5PPPP+d///sfALNmzaKkpITMzEzmzp3LF1980eD3ue2224iPjycrK4uffvqJp59+mu3bt7vPL1y4kP/+979kZmayY8cOFixYAMDatWuZOnUqH3zwARUVFSxcuJDAwEBuvfVWvvvuOywWCwAZGRns2bOHsWPHNjhP3333HatXr2bnzp0ADBs2jL1795Kfn09cXBx/+ctfALBardxwww089NBDlJSU0LNnT37//fd61/rll1/cgR3AN998w6JFi9i1axfvv/8+DzzwAN9++y27du3io48+cn/2u+++m48//piqqio2bdpE7969G5x/IUTrkMBOCOERLrvsMoKDgwkODubpp58GwNfXl6eeegqdToePjw+ffPIJb775Jv7+/sTExPDAAw/w9ddfA67g67nnniMwMJCuXbtyxx13NOh98/PzWb16NS+//DI+Pj507dqVCRMm1Ktdu+eee0hISCA4OJgrr7zSHfh8+umnPPDAAwwdOhS1Wk3Xrl2Jjo4mKSmJnj178tNPPwEwf/58rrvuunMabPDII48QERHhfs2ECRMICgrCYDDw5JNPsmbNGgDWrVuHj48P99xzDzqdjqlTpxIdHe2+jsPhYM2aNYwYMcJ97O677yYmJoakpCT69evH6NGjiYuLIy4ujkGDBrFjxw4AdDodu3btorq6mqioKHftoRDCc0lgJ4TwCEuWLKG8vJzy8nJeeeUVAKKjo9FoNAAUFRVhNpvp0qWLOwB85plnKCwsBCAvL4/4+Hj39erun0lmZiY1NTWEhYW5r/vBBx9QUFDgThMREeHe9/X1pbq6GnD1XevUqdNprztx4kT3yNS5c+cyYcKEhv4oAIiLi6v3/KWXXiI5OZnAwEAGDhxISUkJcOrnVqlU9V67YcMGevbsia+v72k/j9FoJDw8vN7zmpoaAL7++mt++OEHYmNjGT16NPv27TunzyCEaHna1s6AEEL8GZVK5d7v0KEDBoOBjIwMgoKCTkkbHR1NVlYWiYmJAGRlZbnP+fn5YTKZ3M/rjkCNjY0lODjYHSidi/j4eI4cOXLaczfddBNPPfUUGzdupLCwkFGjRp3Ttet+9pUrV/LBBx/w22+/kZyczIEDB9x9BqOjo8nOzq732rrPT26GPReDBg1i0aJFWCwWnn/+eaZMmcJvv/12XtcSQrQMqbETQngFtVrNHXfcwWOPPUZ5eTlOp5O9e/eyceNGAMaNG8dLL71EVVUV+/fv5/PPP3e/tkuXLpSUlLBy5UosFgsvvPCC+1xsbCwDBgzg+eefx2QyYbfb2bJlC3v27DlrniZNmsT777/PunXrUBSF/fv3k5eXB0BoaCgXX3wxkyZN4uabb3bXPJ6PqqoqtFotYWFh1NTU8OKLL7rPDR48GLPZzL///W9sNhtz5sxx5wHqD5w4F1arlblz51JZWYlOp8Pf379Rn0EI0TIksBNCeI3jE+OmpaURGhrK7bffTllZGQAzZswgKCiIuLg4brnlFm677Tb364KCgnjnnXe4+eab6dixIwMHDqx33a+++oqMjAw6depEREQE06ZNw2w2nzU/Q4YMYfbs2dx5550EBgZy0003UVlZ6T4/ceJE9u7de87NsCe7/PLLGTx4MImJiaSlpTFkyBD3Ob1ezzfffMNbb71FWFgYO3bscJ8vKSkhLy+PtLS083rfzz77jMTEREJCQliyZAlvv/12oz6HEKL5qRRFUVo7E0II0dQ+/fRT5s+fzy+//NJqeVi3bh0TJ07k0KFDf5rmxRdf5NVXXyU4OPiUJtXGmjdvHkuWLOHjjz9u0uvOnj2bGTNmoFKpKC8vb9JrCyEaR2rshBCiGdhsNt555x3uvPPOM6abPn061dXVTR7Ugas5+MEHH2zy606bNo2KigoJ6oTwQDJ4QgghmlhJSQlxcXH06tWLDz74oNXycb6DJoQQ3kuaYoUQQggh2ghpihVCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCMksBNCCCGEaCP+PwXWcC4Tl5c1AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -709,7 +709,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABMyUlEQVR4nO3deXxU1cH/8e8kmUyWSYYQAiSEgEAAgYAKouKCCIiA0NSKGyiU6mMVfX5CcaGLUVyoVKm0T1GrFVwoi1jZBAQBl1pQrMrmAipLAANhywbZz++PZIYMWUhgZm4YPu/Xa14mN2fOPXNn7vD1nHvOtRljjAAAAHDWC7G6AQAAAPANgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYJdgHz66af6+c9/rpSUFDkcDrVo0UKXXXaZfvOb33iVmzFjhmbNmmVNI+EzO3fu1NChQ9W0aVPZbDY98MADVjcJp/DYY4/JZrPp4MGDAd/3zp07ZbPZzupz3338qqrt++yDDz6QzWbTggULTmtfs2bNks1m8zzCwsKUnJysX/7yl9q7d2+d+zn5uREREWrZsqX69eunKVOm6MCBA6fVpkBZtmyZHnvsMb/U7T5eH3zwgWdbTe8rGjeCXQC8++676tOnj3JzczV16lStXLlS06dP1+WXX6558+Z5lSXYBYfx48fr008/1auvvqp169Zp/PjxVjcJjVhiYqLWrVunoUOHWt2U03bnnXdq3bp1Xtv8/X02c+ZMrVu3TqtWrdJdd92lOXPm6Morr1RBQUGDnvu3v/1NF1xwgZ555hmdf/75ev/99/3W5jO1bNkyPf7441Y3A41YmNUNOBdMnTpV5513nt577z2FhZ045LfccoumTp1qYcvqp6ysTKWlpXI4HFY35ayxZcsW9e7dW+np6T6pz8r3wBijwsJCRUZGBnzf5wqHw6FLL73U6mackeTkZCUnJwd0n926dVOvXr0kSf369VNZWZmeeOIJLVy4UCNHjqz3cyXpF7/4hcaPH68rrrhCN9xwg7Zv364WLVr4tf3+1hjP3WPHjikqKsrqZgQ1euwC4NChQ2rWrJlXqHMLCTnxFrRt21Zbt27Vhx9+6BkmaNu2refvubm5mjhxos477zyFh4erVatWeuCBB6r936nNZtN9992nl156SR07dpTD4VCXLl00d+7cU7bVPSQ0depUPfnkkzrvvPPkcDi0du1aSdLnn3+u4cOHq2nTpoqIiNCFF16o+fPne9Vx7NgxTzsjIiLUtGlT9erVS3PmzPGUGTNmjJxOp7Zu3ar+/fsrOjpaCQkJuu+++3Ts2DGv+goLCzVp0iSv1z1u3DgdPXrUq1zbtm11/fXXa8WKFbrooosUGRmpzp0769VXX21w++r7Wk/mHsr4/vvvtXz5cs/7uHPnTknS7t27NWrUKDVv3lwOh0Pnn3++nnvuOZWXl9f7PajJW2+9pUsuuUQul0tRUVFq166dxo4d61WmoZ+fF198Ueeff74cDodeeeUVNW/eXLfffnu1fR89elSRkZGaMGGCZ1tDXuef/vQnPfPMM2rbtq0iIyN19dVXa9u2bSopKdEjjzyipKQkuVwu/fznP69xmGzevHm67LLLFB0dLafTqUGDBunLL7+sVu7TTz/VsGHDFB8fr4iICLVv377GIfL9+/fr1ltvlcvlUosWLTR27Fjl5OR4lfnb3/6mq666Ss2bN1d0dLTS0tI0depUlZSUeJW7+uqr1a1bN23YsEFXXnml57354x//WOOxqNq7lZ2drf/5n/9R69at5XA4lJCQoMsvv9yrN8ld/7p169SnTx9FRkaqbdu2mjlzpqSK0YKLLrpIUVFRSktL04oVK6q93qqMMWrRooXGjRvn2VZWVqa4uDiFhIRo//79nu3Tpk1TWFiY5zw8ecjuVN9nklRSUqLf/e53SkpKUmxsrAYMGKDvvvuuzjbWxR2Od+3adVrPT0lJ0XPPPae8vDy99NJLpyy/d+9ez3sUHh6upKQk3XjjjV7HqSHnwrPPPqtp06bpvPPOk9Pp1GWXXab169d7yo0ZM0Z/+9vfJMlrONn9/VLTufvaa69Jkv7973+rf//+iomJUVRUlPr06aN33333tI6TVL/zzv09v3nzZl177bWKiYlR//79T3ufqCcDv7vzzjuNJHP//feb9evXm+Li4hrLffHFF6Zdu3bmwgsvNOvWrTPr1q0zX3zxhTHGmIKCAnPBBReYZs2amWnTppn333/fTJ8+3bhcLnPNNdeY8vJyTz2STOvWrU2XLl3MnDlzzOLFi811111nJJm33nqrzrbu2LHDSDKtWrUy/fr1MwsWLDArV640O3bsMGvWrDHh4eHmyiuvNPPmzTMrVqwwY8aMMZLMzJkzPXXcfffdJioqykybNs2sXbvWLF261Pzxj380f/3rXz1lRo8ebcLDw01KSop56qmnzMqVK81jjz1mwsLCzPXXX+8pV15ebgYNGmTCwsLMH/7wB7Ny5Urz7LPPmujoaHPhhReawsJCT9k2bdqY5ORk06VLF/P666+b9957z4wYMcJIMh9++GGD2lff13qynJwcs27dOtOyZUtz+eWXe97HwsJCc+DAAdOqVSuTkJBgXnzxRbNixQpz3333GUnmnnvuqdd7UJP//Oc/xmazmVtuucUsW7bMrFmzxsycOdPcfvvtnjIN/fy0atXKdO/e3fzzn/80a9asMVu2bDHjx483kZGRJicnx2v/M2bMMJLMpk2bjDGmwa+zTZs2ZtiwYWbp0qXmzTffNC1atDAdO3Y0t99+uxk7dqxZvny5efHFF43T6TTDhg3z2vdTTz1lbDabGTt2rFm6dKn517/+ZS677DITHR1ttm7d6im3YsUKY7fbTffu3c2sWbPMmjVrzKuvvmpuueUWT5mMjAwjyXTq1Mk8+uijZtWqVWbatGnG4XCYX/7yl177HT9+vHnhhRfMihUrzJo1a8yf//xn06xZs2rl+vbta+Lj401qaqp58cUXzapVq8y9995rJJnXXnut2rGo+tkaNGiQSUhIMH//+9/NBx98YBYuXGgeffRRM3fu3Gr1d+rUyfzjH/8w7733nrn++uuNJPP444+btLQ0M2fOHLNs2TJz6aWXGofDYfbu3Vvj58jtlltuMR07dvT8vn79eiPJREZGmtmzZ3u2Dx482PTu3bva8XOr6/ts7dq1RpJp27atGTlypHn33XfNnDlzTEpKiklNTTWlpaV1tnHmzJlGktmwYYPX9unTpxtJ5u9//7vXfqp+79X2XLf8/HwTGhpq+vfvX2cb9uzZYxITE73OqXnz5pmxY8eab775xhjT8HOhbdu25rrrrjMLFy40CxcuNGlpaSYuLs4cPXrUGGPM999/b2688UYjyXNM3d8vxtR+7n7wwQfGbrebnj17mnnz5pmFCxeaa6+91thsNq/Pk/t4rV271rPt5PfVmPqfd6NHjzZ2u920bdvWTJkyxaxevdq89957dR5XnDmCXQAcPHjQXHHFFUaSkWTsdrvp06ePmTJlisnLy/Mq27VrV9O3b99qdUyZMsWEhIRU+zJasGCBkWSWLVvm2eb+Es7KyvJsKy0tNZ07dzYdOnSos63uL5j27dtXC6CdO3c2F154oSkpKfHafv3115vExERTVlZmjDGmW7duJj09vc79jB492kgy06dP99r+1FNPGUnm3//+tzGm4h9kSWbq1Kle5ebNm+f1BW5MRbCLiIgwu3bt8mw7fvy4adq0qbn77rs92+rTvvq+1tq0adPGDB061GvbI488YiSZTz/91Gv7PffcY2w2m/nuu++MMXW/BzV59tlnjSTPl39NGvr5cblc5vDhw15lN23aVO2YG2NM7969Tc+ePU/7dfbo0cPreD7//PNGkhk+fLjX8x944AEjyRMsd+/ebcLCwsz999/vVS4vL8+0bNnS3HTTTZ5t7du3N+3btzfHjx+v9Ri5/wE7+bN27733moiICK/wW1VZWZkpKSkxr7/+ugkNDfU6bn379q3xWHTp0sUMGjTI83tNwc7pdJoHHnig1vZWrf/zzz/3bDt06JAJDQ01kZGRXiHuq6++MpLMX/7ylzrrfOWVV4wks3v3bmOMMU8++aTp3LmzGT58uCe4FhcXm+joaPPb3/7W87yaAkBt32fuADFkyBCv7fPnz/eElrq4w9n69etNSUmJycvLM0uXLjUJCQkmJibG8913OsHOGGNatGhhzj///DrbMHbsWGO3283XX39da5mGngtpaWleofazzz4zksycOXM828aNG1ftOLvVdu5eeumlpnnz5l7/3pSWlppu3bqZ5ORkz2e7PsGuIeed+3v+1VdfrfUYwfcYig2A+Ph4ffzxx9qwYYP++Mc/6mc/+5m2bdumSZMmKS0trV6z8JYuXapu3brpggsuUGlpqecxaNCgarOYJKl///5e14eEhobq5ptv1vfff689e/accn/Dhw+X3W73/P7999/r22+/9Vy3UrUNQ4YM0U8//eQZQundu7eWL1+uRx55RB988IGOHz9e635Ovg7mtttukyTPsOOaNWskVXTpVzVixAhFR0dr9erVXtsvuOACpaSkeH6PiIhQx44dvYZmTtW+hrzWhlizZo26dOmi3r17e20fM2aMjDGe1+p28ntQm4svvliSdNNNN2n+/PleswLdGvr5ueaaaxQXF+e1LS0tTT179vQM80nSN998o88++8xr2Lehr3PIkCFelyScf/75klRtIoF7++7duyVJ7733nkpLS3XHHXd4vaaIiAj17dvX85q2bdumH374Qb/61a8UERFR80GsYvjw4V6/d+/eXYWFhV7DwF9++aWGDx+u+Ph4hYaGym6364477lBZWZm2bdvm9fyWLVtWOxbdu3c/5XBh7969NWvWLD355JNav359tWFet8TERPXs2dPze9OmTdW8eXNdcMEFSkpK8mx3H79T7XfAgAGS5BnyXbVqlQYOHKgBAwZo1apVkqR169apoKDAU/Z01XSs69NGt0svvVR2u10xMTG6/vrr1bJlSy1fvvyMr40zxpyyzPLly9WvXz/Pca1JQ8+FoUOHKjQ01PN7Q4+HVP3cLSgo0Keffqobb7xRTqfTsz00NFS333679uzZ06Dvs/qed1X94he/qHf9OHMEuwDq1auXHn74Yb311lvat2+fxo8fr507d9ZrAsX+/fu1adMm2e12r0dMTIyMMdXCYcuWLavV4d526NChU+4vMTGx2v4laeLEidXacO+990qSpw1/+ctf9PDDD2vhwoXq16+fmjZtqvT0dG3fvt2rzrCwMMXHx9fZxkOHDiksLEwJCQle5Ww2m1q2bFnttZxcn1RxYXrV8Haq9jXktTbEoUOHqh1XSZ5/fE9+LTWVrclVV12lhQsXer5sk5OT1a1bN69rBhv6+alt32PHjtW6dev07bffSqqYWehwOHTrrbee9uts2rSp1+/h4eF1bi8sLPS8Jqki2J78uubNm+d5TdnZ2ZJU7wv7T/4MuSesuD9Du3fv1pVXXqm9e/dq+vTpnv9pc1/7dPL/KNTnM1mTefPmafTo0XrllVd02WWXqWnTprrjjjuUlZXlVe7k4yRVHKtTHb/atGnTRu3bt9f777+vY8eOad26dZ5g5w4B77//viIjI9WnT5866zqVUx3rU3n99de1YcMGffnll9q3b582bdqkyy+//IzaVFBQoEOHDnmF4ppkZ2ef8jPV0HPhTI+HVP3cPXLkiIwxDWpHXep73rlFRUUpNja23vXjzDEr1iJ2u10ZGRn685//rC1btpyyfLNmzRQZGVltIkDVv1d18pd/1W01/UNzspPXLXLXP2nSJN1www01PqdTp06SpOjoaD3++ON6/PHHtX//fk/v2LBhwzyBQKroCTt06JBXe05uY3x8vEpLS5Wdne0V7owxysrK8vRWNcSp2teQ19oQ8fHx+umnn6pt37dvn6Tq72FD1o762c9+pp/97GcqKirS+vXrNWXKFN12221q27atLrvssgZ/fmrb96233qoJEyZo1qxZeuqpp/TGG28oPT3dq4egoa/zdLnrWbBggdq0aVNrOffnpj491fWxcOFCFRQU6F//+pfXfr/66iuf1O/WrFkzPf/883r++ee1e/duLV68WI888ogOHDhwykkQZ6p///5atGiRPvzwQ5WXl+vqq69WTEyMkpKStGrVKr3//vu68sorLZ8pf/7553vNbPWFd999V2VlZbr66qvrLJeQkHDKz1SgzoWqTj533RNffNWO+p53tbUH/kePXQDUdEJJFcNYkrz+z7C2/5O//vrr9cMPPyg+Pl69evWq9jh5ttnq1au9ZmaVlZVp3rx5at++/WktSdCpUyelpqZq48aNNe6/V69eiomJqfa8Fi1aaMyYMbr11lv13XffVZvxOnv2bK/f//nPf0qS50vVPYPqzTff9Cr39ttvq6Cg4IxnWNXUvtN9rafSv39/ff311/riiy+8tr/++uuy2Wzq16/fGb0WqeLz07dvXz3zzDOS5Jml1tDPT23i4uKUnp6u119/XUuXLlVWVla12beBeJ2SNGjQIIWFhemHH36o9X2SpI4dO6p9+/Z69dVXVVRUdMb7df9DVTXUGGP08ssvn3HdtUlJSdF9992ngQMHVjuu/jBgwADt379fzz//vC699FLP571///565513tGHDhnoNw9anZ7Ix2b17tyZOnCiXy6W77767zrKDBw/W2rVr6xzG9Me50NBevOjoaF1yySX617/+5fWc8vJyvfnmm0pOTlbHjh3rvf/6nnewDj12ATBo0CAlJydr2LBh6ty5s8rLy/XVV1/pueeek9Pp1P/7f//PUzYtLU1z587VvHnz1K5dO0VERCgtLU0PPPCA3n77bV111VUaP368unfvrvLycu3evVsrV67Ub37zG11yySWeepo1a6ZrrrlGf/jDHxQdHa0ZM2bo22+/rdeSJ7V56aWXNHjwYA0aNEhjxoxRq1atdPjwYX3zzTf64osv9NZbb0mSLrnkEl1//fXq3r274uLi9M033+iNN97QZZdd5rV+UXh4uJ577jnl5+fr4osv1n/+8x89+eSTGjx4sK644gpJ0sCBAzVo0CA9/PDDys3N1eWXX65NmzYpIyNDF154YY3Lb5xKfdpX39faEOPHj9frr7+uoUOHavLkyWrTpo3effddzZgxQ/fcc0+DvlyrevTRR7Vnzx71799fycnJOnr0qKZPny673a6+fftKUoM/P3UZO3as5s2bp/vuu0/JycnV/oH31+s8Wdu2bTV58mT97ne/048//qjrrrtOcXFx2r9/vz777DNPz6xUsTzJsGHDdOmll2r8+PFKSUnR7t279d5771X7n4tTGThwoMLDw3XrrbfqoYceUmFhoV544QUdOXLEJ69LknJyctSvXz/ddttt6ty5s2JiYrRhwwatWLGi1l5kX7rmmmtks9m0cuVKr8VwBwwYoNGjR3t+PpXavs8agy1btniuDztw4IA+/vhjzZw5U6GhoXrnnXeqXf5xssmTJ2v58uW66qqr9Nvf/lZpaWk6evSoVqxYoQkTJqhz585+ORfcx++ZZ57R4MGDFRoaqu7du3uG2msyZcoUDRw4UP369dPEiRMVHh6uGTNmaMuWLZozZ06DetUact7BIpZN2ziHzJs3z9x2220mNTXVOJ1OY7fbTUpKirn99turzajauXOnufbaa01MTIxnKQi3/Px88/vf/9506tTJhIeHG5fLZdLS0sz48eO9ZsBKMuPGjTMzZsww7du3N3a73XTu3NlrqYLauGdn/elPf6rx7xs3bjQ33XSTad68ubHb7aZly5bmmmuuMS+++KKnzCOPPGJ69epl4uLijMPhMO3atTPjx483Bw8e9JQZPXq0iY6ONps2bTJXX321iYyMNE2bNjX33HOPyc/P99rn8ePHzcMPP2zatGlj7Ha7SUxMNPfcc485cuSIV7maZqIaUzFzsOrMvPq0r76vtTa1tWXXrl3mtttuM/Hx8cZut5tOnTqZP/3pT16zQk/1Hpxs6dKlZvDgwaZVq1YmPDzcNG/e3AwZMsR8/PHHXuUa+vmpTVlZmWndurWRZH73u9/VWOZMXmdNMxmNqX0248KFC02/fv1MbGyscTgcpk2bNubGG28077//vle5devWmcGDBxuXy2UcDodp3769GT9+vOfv7tl/2dnZNe636nIzS5YsMT169DARERGmVatW5sEHHzTLly+vNqOwb9++pmvXrtWOz+jRo73O7ZNnxRYWFppf//rXpnv37iY2NtZERkaaTp06mYyMDFNQUHDK+mv7/J3qva3qwgsvNJLMJ5984tm2d+9eI8nEx8dXmyVc06zY2r7PanuPa5odXJP6zGytbT/u57of7nOmb9++5umnnzYHDhyos86qMjMzzdixY03Lli2N3W43SUlJ5qabbjL79+/3lDnTc16SycjI8PxeVFRk7rzzTpOQkGBsNpvXZ7Ou9/fjjz8211xzjYmOjjaRkZHm0ksvNUuWLKnxeJ1quRNj6nfeub/nEVg2Y+ox/QdnFZvNpnHjxun//u//rG5KrcaMGaMFCxYoPz/f6qYAABA0uMYOAAAgSBDsAAAAggRDsQAAAEGCHjsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSYVY3wN/Ky8u1b98+xcTEyGazWd0cAACABjHGKC8vT0lJSQoJqbtPLuiD3b59+9S6dWurmwEAAHBGMjMzlZycXGeZoA92MTExkioORmxsrMWtAQAAaJjc3Fy1bt3ak2nqEvTBzj38GhsbS7ADAABnrfpcUmbZ5ImMjAx16dJFISEhmjt3bq3lJkyYoHbt2ikmJka9evXSRx99FMBWAgAAnD0sC3apqamaPn26evfuXWc5l8ullStXKicnRw8//LDS09OVl5cXoFYCAACcPSwLdqNGjdLAgQMVERFRZ7mMjAx16NBBISEhGjFihCIjI7Vt27YAtRIAAODscVZdY7dz504dPnxYHTp0qLVMUVGRioqKPL/n5uYGomkAAACWO2sWKC4pKdHo0aP14IMPyuVy1VpuypQpcrlcngdLnQAAgHPFWRHsjDEaM2aMmjdvrscee6zOspMmTVJOTo7nkZmZGZhGAgAAWOysGIq9//77tW/fPq1YseKUKy47HA45HI4AtQwAAKDxsCzYlZSUqKysTOXl5SopKVFhYaHCw8OrBbeMjAx98skn+vDDDwlsAAAAdbAZY4wVOx4zZoxee+01r21r167V3r179fTTT2vr1q0VDbTZ5HA4FBZ2IoO+9NJLGjlyZL32k5ubK5fLpZycHBYoBgAAZ52GZBnLgl2gEOwAAMDZrCFZ5qyYPAEAAIBTI9gBAAAECYIdAABAkDgrljs5lxljtHlvjuZuyNR3WXk6PzFGV3Ropmu7tFRIiM3q5gEAgEaEYNeIGWM0eenXmvnJTs+2/+46ojfX79YVHZrpTyO6K9EVaV0DAQBAo8JQbCP2+rpdmvnJTtls0s8uSNKfbuyuMX3aKsIeon9/f1DXPf+xNu/JsbqZAACgkWC5k0bqPz8c1KhXPlW5kX47pLP+56r2nr/9kJ2vB+Z+pc17c+SKtGvOXZeqS9LZ89oAAED9sdzJWc4Yo2dWfKdyI/3iomTddWU7r7+3T3Dqn3ddogtaN1HO8RLd/o9PtefIMYtaCwAAGguCXSP0+a4j2ph5VOFhIZo0pLNstuqTJGIi7HptbG91SYzVoYJi3fPmFyosKbOgtQAAoLEg2DVCL3/0oyTpFxe1UjNn7ffHdUXa9fc7eiouyq7Ne3P0h4VbAtVEAADQCBHsGpkdBwu06pv9kqRfXdHuFKWl5Lgo/d9tFynEJr313z16d9NP/m4iAABopAh2jcxbn2fKGOmazs3VobmzXs+5vEMzjevXQZL0+4WbdSCv0J9NBAAAjRTBrpH54LtsSdLwHkkNet7916Sqa1Ksjhwr0aS3NyvIJzsDAIAaEOwakQO5hfr6p1zZbNKVqc0a9NzwsBBNu+kChYeGaPW3B/TW53v81EoAANBYEewakQ+3VfTWdW/lUnwdkyZq06lljCZc21GSNHnp18o8zBIoAACcSwh2jYg72PXtmHDaddx1ZTv1ahOn/KJSPbRgE0OyAACcQwh2jURpWbk+3n5QktS30+kHu9AQm567qYci7aFa9+Mhzfks01dNBAAAjRzBrpHYuCdHOcdL5Iq0q0dykzOqq018tCYO6iRJmrLsG/2Uc9wHLQQAAI0dwa6R+GzHYUlSn/bxCgs987dlTJ+2ujClifKKSvX7d7YwJAsAwDmAYNdIbNmXI0nqfoa9dW6hITZN/UV3zyzZxRv3+aReAADQeBHsGomv9+VKkrq1ivVZnaktYnT/NRULFz+2eKsO5hf5rG4AAND4EOwagbzCEu04WCBJ6prk8mndv766vTq3jNGRYyV6bPFWn9YNAAAaF4JdI+DurUtyRahpdLhP67aHhuhPN/ZQaIhNSzf9pJVbs3xaPwAAaDwIdo3A1spg18XHvXVuacku3XVlO0nS7xduUc7xEr/sBwAAWItg1wi4J0748vq6kz0wIFXtmkXrQF6RJi/52m/7AQAA1iHYNQLuoVhfX19XVYQ9VFNv7K4Qm/T2F3u0fPNPftsXAACwBsHOYoUlZdp+IF+Sf3vsJKlX26b6dd/2kqRJ72zW/txCv+4PAAAEFsHOYt9m5ams3KhpdLhaxkb4fX8PDOiobq1idfRYiR7kXrIAAAQVgp3Ftu3PkyR1bhkjm83m9/2Fh4Xo+ZsvkCMsRB9ty9br63b5fZ8AACAwCHYW233omCSpbbPogO2zQ/MY/XbI+ZKkp5d94wmXAADg7Eaws9jOQxULE7eNjwrofu+4rI36dkxQUWm5fv3mf5VXyBIoAACc7Qh2Ftt9uKLHrk184HrsJMlms+m5m3oo0RWhH7ML9OBbXG8HAMDZjmBnsZ2VtxJrE+AeO0lq5nRoxsiLFB4aohVbs/Tihz8GvA0AAMB3CHYWOnqsWLmFpZKklKaBD3aSdGFKnDKGd5Ek/em9b/XJ9wctaQcAADhzBDsL7aycONEi1qGo8DDL2nFb7xSN6JmsciPdP+dLZVYODwMAgLMLwc5CuyonTrRpGtjr605ms9n0RHo3pbVy6XBBscbM/ExHjxVb2iYAANBwBDsL7TrknjhhzTBsVRH2UL0yupeSXBH6IbtA//P6f1VYUmZ1swAAQAMQ7CzUmIKdJLWIjdDMX/ZWjCNMn+08rHtnf6Hi0nKrmwUAAOqJYGchz1BsgJc6qUunljF6ZXQvOcJCtObbAxo/7yuVlhHuAAA4GxDsLLSrcpJC20YU7CTpknbxeun2nrKH2vTu5p903z+/pOcOAICzAMHOIgVFpcrOK5IkpTSSodiqru7UXC+M7OlZ4+7uNz7XseJSq5sFAADqQLCziPuOE3FRdrki7Ra3pmYDurTQK6N7KcIeorXfZevWlz/Vwfwiq5sFAABqQbCzyL6jxyVJreIiLW5J3a7qmKDZd16iJlF2bcw8qvS/faKv9+Va3SwAAFADgp1F9udW9Hy1jI2wuCWn1rNNU719Tx+lNI3SniPHdcMLn+idL/dY3SwAAHASgp1FsnILJVUsMXI2aJ/g1OL7LtdVHRNUWFKu8fM2asL8r5RfxHV3AAA0FgQ7ixw4y4KdJDWJCtfMMRfrgQGpCrFJ//pir66d9qFWbMmSMcbq5gEAcM4j2FnE3WN3NgzFVhUaYtMDAzpq3t2XqXXTSO3LKdSv3/yvfvXa59p9iHvMAgBgJYKdRdzX2DWPdVjcktNzcdumWvlAX93Xr4PsoTat+faABv75Q01Z/o1nGRcAABBYBDuLnI1DsSeLDA/VxEGdtOKBq9SnfbyKSsv10oc/6opn1uixxVv1U85xq5sIAMA5xbJgl5GRoS5duigkJERz586ttdzx48c1atQoxcTEKCUlRXPmzAlgK/2jqLRMhwqKJZ19Q7E1aZ/g1Ow7L9E/RvfSBa2bqKi0XLP+s1NXTV2re978r9Z8u5/bkgEAEABhVu04NTVV06dP1x/+8Ic6y2VkZOjw4cPau3evtmzZoiFDhqhnz57q2LFjgFrqe+6hyvDQEDWJapyLEzeUzWZT//Nb6JrOzfWfHw7pL6u369Mdh7V8S5aWb8lSQoxD6RckacD5LXRRmzjZQ+ksBgDA1ywLdqNGjZIkPfXUU3WWe+ONN7Rw4ULFxsaqT58+Gj58uObOnatHH300EM30i/2Vw7DNYx2y2WwWt8a3bDabLu/QTJd3aKZvfsrVW5/v0cKv9io7r0gvf7xDL3+8QzERYboytZmuTE3QhSlNlNo8RqEhwXUcAACwgmXBrj6OHDmirKwspaWlebb16NFDn332Wa3PKSoqUlHRiYv3c3Mb310SzqbFic/E+YmxenRYFz0yuLPWfHtA723N0ofbsnW4oFjLNmdp2eYsSVJ0eKjSkl3qluRSh+ZOtW/uVIcEp+Kiwy1+BcHJGKNyI5Ubo7Jyc+K/5VJZ5c/GGM/PVbeXm5rLV63Lvb28vGJbmams76Tt5cbIVLbDSJV1S6r8b9V2qvLvFeWrbCuvLCvv51atU+ZE3eak+qrWKVW0vdbnVttW8dyKZ6ryZ1N5jN3bjNff3YsCebZ7nl9RV7XfPW/aiW0n6jNV6qsse9L+aq5bXssTmVPUrVpfS5XXWmW1I6/nqur2GrbVUPLkcvWtq6aSNe+zpvpqeG499lvf59W00aftOIPXXnPbfHss6+tMF82yctWt3w89X3de2c66BlTRqINdfn6+QkNDFRUV5dkWGxur/Pz8Wp8zZcoUPf7444Fo3mnbHwQTJxoiPCxE13Vrqeu6tVRZudGmPUf1wXfZ+mzHYW3ac1QFxWVa/+Nhrf/xsNfzosND1cIVoRYxEWoR61ALV4Sax0QoNiJMMRF2xUSEVT7sig4PlT00RGGhNtlDQ2QPDTntXsCycqOSsnKVlRuVlhmVlJd7tpWWGZWWG5WWV/m5rLzyv5Vlyyr+XlJmvOoqKTcqc5etfJ6njOd51euueF7l9sr9eJWppS3uv5VVeQ1llUEIABCcGnWwczqdKisr07FjxzzhLjc3V06ns9bnTJo0SRMmTPD8npubq9atW/u9rQ1xtt11wpdCQ2y6MCVOF6bESaoIUdsP5Omr3Uf13f48fX8gXz9mF2jv0eMqKC7Tj9kF+jG74LT2ZbNJ9pAQ2UNtCrHZvHoiqvZSuDtajCrCEGstVxy7UJtNISE2hdpsCg2xKcSmyv+etD3kRNkQm+3E80K866h4XpU6Kp9vU8UQfoitYr/uv6nyZ5ukkMqf5fm7ZFNFfZLN83dblf/a5F2nzfP3E/XaKvfl3m6rWoeq1OXZpxQSUllX5XGq+Mn9c8V/K1pVuUHy7MtW5fie/FxVljlR/kQ9thNVVW63Vfl7zXVXbcOJv9lqrNtdj2p8PTW/vlO2wfOb9+fqVGoqc3JdNZY53efVsw0nl6x/XbZ6lKmprlPvryYnl6vpcp/6tKG+7189DtUZq6ktZ1ynj6uMDm88carxtKQGcXFxatmypTZv3qxLLrlEkrRx40Z17dq11uc4HA45HI17bbgDlUOxLc7SNex8KTTEps4tY9W5ZazX9mPFpcrKKdT+3CLtzy2sfBTpQF6h8gpLlVdYovyiUuUVliq/sFT5xaU1DJNIxWXlKi4783aGhVSEEHdPoD3UprCQKj+HhigsxKawyu1eP4faKn4PCVFoqE32EJtCKwNn1fIVfztRp7tMaEiV+qvtw7v+Gn+ufG5oiM0TqtxBzTu4ndgebNd+AsC5wrJgV1JSorKyMpWXl6ukpESFhYUKDw9XSIj3bMlRo0bpiSee0Jw5c7R161YtXrxYn376qUWt9o2snHO3x66+osLD1C7BqXYJtffOnsw97OkeMi2pHMYsKS2X0YneBq9eCncvTeXPVUOZO8SFVfbQAADQ2FkW7O666y699tprkqSPP/5Yd9xxh9auXau9e/fq6aef1tatWyVJkydP1p133qnExETFxcVpxowZ6tSpk1XN9on9eQQ7f6jokQpVhD3U6qYAAGAJmwnyu7fn5ubK5XIpJydHsbGxp35CAHTLeE/5RaVa85u+DeqRAgAA556GZBlWiQ2w/KJS5ReVSqLHDgAA+BbBLsDcS504HWGKdjTquSsAAOAsQ7ALsCOV94iNd7L4LgAA8C2CXYAdrgx2cVEEOwAA4FsEuwA7cqwi2DXldlkAAMDHCHYBdrigRBI9dgAAwPcIdgHm7rHjGjsAAOBrBLsA4xo7AADgLwS7AHPPim0abbe4JQAAINgQ7ALs8DF67AAAgH8Q7ALscAGzYgEAgH8Q7ALMc40dwQ4AAPgYwS6ASsrKlVdYcZ/YpgzFAgAAHyPYBZB7qZMQmxQbyeQJAADgWwS7ADpSuThxk6hwhYbYLG4NAAAINgS7ADqxhh29dQAAwPcIdgHEfWIBAIA/EewCiLtOAAAAfyLYBdAR1rADAAB+RLALIM9dJwh2AADADwh2AeTpsWMoFgAA+AHBLoAOH6tY7oQeOwAA4A8EuwA6cY0dy50AAADfI9gFELNiAQCAPxHsAoh17AAAgD8R7AKksKRMx4rLJHGNHQAA8A+CXYDkHK+YOBEaYlOMI8zi1gAAgGBEsAuQ3MpgFxMRJpvNZnFrAABAMCLYBUhuYakkKTaCGbEAAMA/CHYBklt4oscOAADAHwh2AZJHjx0AAPAzgl2AVL3GDgAAwB8IdgHiHoqNjaTHDgAA+AfBLkDcQ7H02AEAAH8h2AWIeyiWa+wAAIC/EOwChB47AADgbwS7AOEaOwAA4G8EuwBhuRMAAOBvBLsAOXGNHUOxAADAPwh2AcJQLAAA8DeCXYAweQIAAPgbwS4ASsrKday4TBLX2AEAAP8h2AVAfmVvnSQ56bEDAAB+QrALAPf1dVHhobKHcsgBAIB/kDICgOvrAABAIBDsAoDbiQEAgEAg2AVALj12AAAgAAh2AcAadgAAIBAIdgHgHoqNYSgWAAD4EcEuAE7cJ5ahWAAA4D+WBbvs7GwNHTpUUVFR6tSpk1avXl1juR07dujaa69VkyZN1KpVK02ZMiXALT1zDMUCAIBAsCzYjRs3TklJSTp48KCeeeYZjRgxQkeOHKlW7v7771e7du2UnZ2tf//73/rrX/9aawhsrFjuBAAABIIlwS4/P1+LFi3S5MmTFRUVpfT0dHXr1k1LliypVnbXrl26+eabZbfbdd555+mKK67Q119/XWvdRUVFys3N9XpYjeVOAABAIFgS7LZv3y6Xy6XExETPth49emjr1q3Vyo4bN05z585VUVGRtm/frvXr1+vqq6+ute4pU6bI5XJ5Hq1bt/bHS2gQeuwAAEAgWNZjFxsb67UtNjZW+fn51cr26dNH69atU3R0tDp27Khf/epXSktLq7XuSZMmKScnx/PIzMz0efsbimvsAABAIFgS7JxOZ7Uh0tzcXDmdTq9tZWVlGjJkiO666y4VFhZqx44deuutt7RgwYJa63Y4HIqNjfV6WI1ZsQAAIBAsCXapqanKyclRVlaWZ9vGjRvVtWtXr3KHDx/Wvn37dM899ygsLExt27ZVenq61q5dG+gmnxFPjx3X2AEAAD+yrMdu+PDhysjI0PHjx7V48WJt2bJFw4YN8yqXkJCg1q1b6+WXX1Z5ebn27NmjRYsW1TkU29gYY6pcY0ewAwAA/mPZciczZsxQZmam4uPjNXHiRM2fP19xcXGaPXu2V8/dggUL9MYbbyguLk4XX3yx+vfvr7vuusuqZjdYUWm5ysqNJMnJUCwAAPAjmzHGWN0If8rNzZXL5VJOTo4l19sdyi9SzyfflyT98PQQhYbYAt4GAABw9mpIluGWYn52rLhMkhRpDyXUAQAAvyLY+Vl+UcX1ddGOUItbAgAAgh3Bzs+OFVcEu6hwrq8DAAD+RbDzs4KiiqHYaAfBDgAA+BfBzs/cPXbR4QzFAgAA/yLY+Zm7xy6KHjsAAOBnBDs/K6DHDgAABAjBzs88PXZMngAAAH5GsPMz9zV2TpY7AQAAfkaw8zOusQMAAIFCsPMzZsUCAIBAIdj5mfvOE1xjBwAA/I1g52fue8VySzEAAOBvBDs/K/DcK5YeOwAA4F8EOz/z9NgxFAsAAPyMYOdn7gWKo5g8AQAA/Ixg52cMxQIAgEAh2PnZMc+dJ+ixAwAA/kWw8yNjjGco1kmPHQAA8DOCnR8VlZar3FT8zJ0nAACAvxHs/Mh9fZ0kRdoZigUAAP5FsPMj931iI+2hCg2xWdwaAAAQ7Ah2fuS+vo67TgAAgEAg2PnRsWKWOgEAAIFDsPOjAs9SJwQ7AADgfwQ7P/L02LGGHQAACACCnR/lu3vsGIoFAAABQLDzo2OexYnpsQMAAP5HsPMjrrEDAACBRLDzI66xAwAAgUSw86MCrrEDAAABRLDzI/ctxeixAwAAgUCw86MCFigGAAABRLDzo2PFFUOx0UyeAAAAAUCw8yP3UGwUy50AAIAAINj5ET12AAAgkAh2fuTpsWPyBAAACACCnR8xeQIAAAQSwc6P3EOxkfTYAQCAACDY+VFRSbkkKdJOsAMAAP5HsPOT0rJyFZcR7AAAQOAQ7PyksLTc8zNDsQAAIBAIdn5SWFLm+dkRxmEGAAD+R+Lwk+OVEyci7CGy2WwWtwYAAJwLCHZ+4u6x4/o6AAAQKAQ7PymsnBEbQbADAAABQrDzk+P02AEAgAAj2PmJO9jRYwcAAAKFYOcnVSdPAAAABEK9bmI6derU+lUWFqYJEybUq2x2drbGjBmjtWvXqnXr1poxY4b69+9fY9mZM2fq6aef1r59+5SSkqJFixapY8eO9dqPVYpKuZ0YAAAIrHoFu9///vcaOXLkKcstWLCg3sFu3LhxSkpK0sGDB7Vy5UqNGDFCP/zwg+Li4rzKLVmyRM8995wWLlyoLl266Mcff6xWpjFy99hxjR0AAAiUegU7l8ulmTNnnrLcihUr6rXT/Px8LVq0SDt37lRUVJTS09M1bdo0LVmyRHfccYdX2SeeeEJ//vOf1bVrV0lS+/bt66y7qKhIRUVFnt9zc3Pr1SZf4xo7AAAQaPW6ACw7O7telf3000/1Krd9+3a5XC4lJiZ6tvXo0UNbt271KldWVqYvv/xSmzdvVnJyss477zxNnjxZxpha654yZYpcLpfn0bp163q1yddY7gQAAATaaV3ZX1RUpEOHDnn1jDVEfn6+YmNjvbbFxsYqPz/fa9v+/ftVWlqq1atXa8uWLfrwww81b948zZo1q9a6J02apJycHM8jMzPztNp4pljuBAAABFq9g11paakee+wxtW/fXlFRUUpISFBUVJQ6dOigxx9/XCUlJfXeqdPprDZEmpubK6fT6bUtMjJSkvTwww+rSZMmSklJ0bhx47Rs2bJa63Y4HIqNjfV6WMFz5wkmTwAAgACpd7C7++679dFHH+mVV15Rdna2iouLlZ2drb///e/6+OOP9etf/7reO01NTVVOTo6ysrI82zZu3Oi5js4tLi5OSUlJXtvqGoZtTNzBLiKM5U4AAEBg1Dt1vP3221q0aJH69eunpk2bKiwsTE2bNtU111yjt99+WwsWLKj3Tp1Op4YPH66MjAwdP35cixcv1pYtWzRs2LBqZceMGaOpU6cqLy9P+/bt04svvqihQ4fWe19W8axjR48dAAAIkHoHu5iYGH3//fc1/m3Hjh2KiYlp0I5nzJihzMxMxcfHa+LEiZo/f77i4uI0e/Zsr567jIwMJSYmKjk5WRdffLFuuOEGjR49ukH7sgLX2AEAgECr13InUsWyIwMGDNAtt9yitLQ0xcbGKjc3V5s2bdJbb72l5557rkE7TkhIqPFauZEjR3qtmRceHq6XX35ZL7/8coPqt1ohy50AAIAAq3ewGzNmjHr27Kk5c+ZoxYoVys/Pl9PpVJcuXbR27Vp169bNn+0867iXO6HHDgAABEq9g50kpaWlKS0tzV9tCSosUAwAAAKtXtfYLV68uF6VLV269IwaE0w8txRj8gQAAAiQegW7UaNG1auyk28Hdi4rLGW5EwAAEFj1GorNz89XVFRUnWWMMQoJIcS4FdJjBwAAAqxewW7Hjh2SKsLbO++8o6FDh8rhcFQrZ7PZfNu6sxjLnQAAgECrV7Br06aN5+e3335bTz75pNLT0zVy5Ej169ePQFcD96xYJk8AAIBAafDY6b///W99+eWX6tSpkyZMmKDk5GSNHz9en3/+uT/ad1YyxjArFgAABNxpXRSXkpKihx56SF999ZUWLlyolStX6pJLLlFqaqqmTJmi/Px8X7fzrFJUWu75mWvsAABAoJxWsCspKdGiRYt066236rrrrlPHjh01f/58vfHGG9q8ebOuvfZaX7fzrOJe6kRiViwAAAicBi1QLEljx47VokWL1K1bN40cOVIzZsxQXFyc5+89e/aUy+XyaSPPNu6lTuyhNoWFEuwAAEBgNDjYdejQQV988YXXhIqq7Ha79uzZc8YNO5u5e+y4vg4AAARSg4Pdb3/721OWadq06Wk1Jliw1AkAALAC44R+wFInAADACgQ7Pyikxw4AAFiAYOcHnmvsWOoEAAAEEMHOD9yzYlnqBAAABBLJww/cPXYsTgwAAAKJYOcHXGMHAACsQLDzA5Y7AQAAViDY+YF7uRMHwQ4AAAQQwc4P6LEDAABWINj5wYnJExxeAAAQOCQPPyjyLHdCjx0AAAgcgp0fsNwJAACwAsHOD9zX2HGvWAAAEEgEOz9wz4ol2AEAgEAi2PkBs2IBAIAVCHZ+4LnzBLNiAQBAAJE8/MAd7JgVCwAAAolg5wdFpdx5AgAABB7Bzg+K3LcUC+PwAgCAwCF5+IF7gWKCHQAACCSShx94hmK5xg4AAAQQwc4Pij3X2HF4AQBA4JA8fKy0rFyl5UaSFB7K4QUAAIFD8vCx4rJyz8/02AEAgEAiefiYe0asRI8dAAAILJKHj7knToSF2BRGsAMAAAFE8vAxz8QJljoBAAABRvrwMfcaduEEOwAAEGCkDx9jDTsAAGAVgp2Pee46wYxYAAAQYKQPH+M+sQAAwCqkDx8rKmMoFgAAWINg52PuHjsmTwAAgEAjffiY5xo7gh0AAAgw0oePFbGOHQAAsAjpw8eKWe4EAABYxLJgl52draFDhyoqKkqdOnXS6tWr6yy/c+dORUZG6te//nWAWnh6PD12LHcCAAACLMyqHY8bN05JSUk6ePCgVq5cqREjRuiHH35QXFxcjeXHjx+viy66KMCtbDjPnSe4TywAAAgwS9JHfn6+Fi1apMmTJysqKkrp6enq1q2blixZUmP59957T8YYDRw48JR1FxUVKTc31+sRSJ517OixAwAAAWZJ+ti+fbtcLpcSExM923r06KGtW7dWK1tcXKwHH3xQzz77bL3qnjJlilwul+fRunVrn7W7PrilGAAAsIplPXaxsbFe22JjY5Wfn1+t7LRp0zRkyBB16NChXnVPmjRJOTk5nkdmZqZP2lxfxcyKBQAAFrHkGjun01ltiDQ3N1dOp9Nr2969e/Xqq6/qv//9b73rdjgccjgcPmnn6fBcY0ewAwAAAWZJsEtNTVVOTo6ysrLUsmVLSdLGjRt15513epXbsGGDMjMzlZqaKqmip6+8vFw7d+7UihUrAt7u+mAoFgAAWMWyHrvhw4crIyNDzz//vFatWqUtW7Zo2LBhXuUGDx6sHTt2eH5/9tlnlZ2drWnTpgW6yfXGAsUAAMAqlqWPGTNmKDMzU/Hx8Zo4caLmz5+vuLg4zZ49W127dpVUMazasmVLz8PpdCoyMlLx8fFWNfuUikoqbynGrFgAABBgNmOMsboR/pSbmyuXy6WcnJxqEzb8YczMz/TBd9l6dkQP3dgz2e/7AwAAwa0hWYZuJR9zr2PH5AkAABBopA8fc8+K5Ro7AAAQaKQPH2PyBAAAsArpw8eKWe4EAABYhGDnY54eO2bFAgCAACN9+JjnzhOhHFoAABBYpA8fc/fYRdBjBwAAAoz04WPu5U64xg4AAAQawc7HisuYFQsAAKxB+vCh0rJylZVX3MiDBYoBAECgkT58yH19ncRQLAAACDyCnQ9VDXb02AEAgEAjffiQe6kTe6hNoSE2i1sDAADONQQ7H+KuEwAAwEoEOx9yD8UyDAsAAKxAAvGhE2vYcVgBAEDgkUB8yH2NHcEOAABYgQTiQ1xjBwAArESw8yH3NXYO7hMLAAAsQALxIfdQbHgohxUAAAQeCcSH6LEDAABWIoH40IlZsVxjBwAAAo9g50NFZSx3AgAArEMC8aGikspr7Ah2AADAAiQQH/JcY0ewAwAAFiCB+FAR69gBAAALEex8iDtPAAAAK5FAfKiY5U4AAICFSCA+5B6KDQ9lKBYAAAQewc6HPOvY0WMHAAAsQALxIa6xAwAAViKB+FAxs2IBAICFCHY+xDp2AADASiQQH3IPxXLnCQAAYAUSiA+VlBlJBDsAAGANEogPFXuWO+GwAgCAwCOB+FBJWUWwsxPsAACABUggPlRcGewYigUAAFYggfiQeyjWHmqzuCUAAOBcRLDzIYZiAQCAlUggPuSeFcs6dgAAwAokEB86MRTLYQUAAIFHAvEh9+QJOz12AADAAiQQHzHGVLnGjskTAAAg8Ah2PlJWbmQqLrGTIzTU2sYAAIBzEsHOR9zDsJJkD6PHDgAABB7BzkdKSo3nZyZPAAAAK5BAfMTdY2ezSWEh9NgBAIDAI9j5SHGVxYltNoIdAAAIPMuCXXZ2toYOHaqoqCh16tRJq1evrrHchAkT1K5dO8XExKhXr1766KOPAtzS+impXMMunGFYAABgEctSyLhx45SUlKSDBw/qmWee0YgRI3TkyJFq5Vwul1auXKmcnBw9/PDDSk9PV15engUtrpt7qZNw1rADAAAWsSSF5Ofna9GiRZo8ebKioqKUnp6ubt26acmSJdXKZmRkqEOHDgoJCdGIESMUGRmpbdu21Vp3UVGRcnNzvR6BUMwadgAAwGKWBLvt27fL5XIpMTHRs61Hjx7aunVrnc/buXOnDh8+rA4dOtRaZsqUKXK5XJ5H69atfdbuunA7MQAAYDXLeuxiY2O9tsXGxio/P7/W55SUlGj06NF68MEH5XK5ai03adIk5eTkeB6ZmZk+a3ddSsoqljvhGjsAAGCVMCt26nQ6qw2R5ubmyul01ljeGKMxY8aoefPmeuyxx+qs2+FwyOFw+Kqp9cY1dgAAwGqWpJDU1FTl5OQoKyvLs23jxo3q2rVrjeXvv/9+7du3T2+++aZCQhpncGIoFgAAWM2SFOJ0OjV8+HBlZGTo+PHjWrx4sbZs2aJhw4ZVK5uRkaFPPvlEixYtsqQnrr6YPAEAAKxmWffSjBkzlJmZqfj4eE2cOFHz589XXFycZs+e7dVzN3nyZH3zzTdKSkqS0+mU0+nU7NmzrWp2rRiKBQAAVrPkGjtJSkhI0LJly6ptHzlypEaOHOn53RhTrUxjxFAsAACwGinERzw9dgQ7AABgEVKIjxS7lzthKBYAAFiEFOIjJQzFAgAAi5FCfOTErFgOKQAAsAYpxEfcPXbhYSx3AgAArEGw8xEmTwAAAKuRQnykiKFYAABgMVKIj5SUVsyKtTMrFgAAWIQU4iMMxQIAAKuRQnykuJRbigEAAGuRQnykxHONHbNiAQCANQh2PsI6dgAAwGqkEB/xXGPHUCwAALAIKcRHirmlGAAAsBgpxEdKyiqWO2FWLAAAsAopxEeKGYoFAAAWI4X4CEOxAADAaqQQH2G5EwAAYDWCnY8wKxYAAFiNFOIjTJ4AAABWI4X4CNfYAQAAq5FCfIQ7TwAAAKuRQnyEa+wAAIDVSCE+4h6K5Ro7AABgFVKIj3iWOwljuRMAAGANgp0PGGOYFQsAACxHCvEB98QJSbJzjR0AALAIKcQH3L11Ej12AADAOqQQHygprdJjR7ADAAAWIYX4gHviRGiITaEhTJ4AAADWINj5QJHnrhOEOgAAYB2CnQ+UcNcJAADQCJBEfMA9ecLBjFgAAGAhkogPFJfSYwcAAKxHEvGBYoZiAQBAI0AS8QH3NXbhDMUCAAALkUR8gMkTAACgMSCJ+ID7GrtwljsBAAAWItj5AD12AACgMSCJ+EBx5XInXGMHAACsRBLxAZY7AQAAjQFJxAcYigUAAI0BScQH3MGOO08AAAArkUR84MRQLLNiAQCAdQh2PsCdJwAAQGNAEvGBklJmxQIAAOuRRHyAyRMAAKAxIIn4QDH3igUAAI0AScQHmDwBAAAaA8uCXXZ2toYOHaqoqCh16tRJq1evrrHc8ePHNWrUKMXExCglJUVz5swJcEtPzT0UGx4aanFLAADAuSzMqh2PGzdOSUlJOnjwoFauXKkRI0bohx9+UFxcnFe5jIwMHT58WHv37tWWLVs0ZMgQ9ezZUx07drSo5dV5euzC6LEDAADWsaTHLj8/X4sWLdLkyZMVFRWl9PR0devWTUuWLKlW9o033lBGRoZiY2PVp08fDR8+XHPnzrWg1bU70WPHyDYAALCOJT1227dvl8vlUmJiomdbjx49tHXrVq9yR44cUVZWltLS0rzKffbZZ7XWXVRUpKKiIs/vubm5Pmx5zUrKWO4EAABYz7Ieu9jYWK9tsbGxys/Pr1YuNDRUUVFRdZarasqUKXK5XJ5H69atfdv4GvQ/v7nuvOI8dUmMPXVhAAAAP7Ek2Dmdzmo9abm5uXI6ndXKlZWV6dixY3WWq2rSpEnKycnxPDIzM33b+BrccFGyfn99F/Vq29Tv+wIAAKiNJcEuNTVVOTk5ysrK8mzbuHGjunbt6lUuLi5OLVu21ObNm+ssV5XD4VBsbKzXAwAA4FxgWY/d8OHDlZGRoePHj2vx4sXasmWLhg0bVq3sqFGj9MQTTygvL0/r16/X4sWLdfPNN1vQagAAgMbNsqv9Z8yYoczMTMXHx2vixImaP3++4uLiNHv2bK8eucmTJ3smWowYMUIzZsxQp06drGo2AABAo2UzxhirG+FPubm5crlcysnJYVgWAACcdRqSZVifAwAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCRJjVDfA39x3TcnNzLW4JAABAw7kzTH3uAhv0wS4vL0+S1Lp1a4tbAgAAcPry8vLkcrnqLGMz9Yl/Z7Hy8nLt27dPMTExstlsftlHbm6uWrdurczMzFPenBf+xXvRePBeNA68D40H70XjcDa+D8YY5eXlKSkpSSEhdV9FF/Q9diEhIUpOTg7IvmJjY8+aD0mw471oPHgvGgfeh8aD96JxONveh1P11LkxeQIAACBIEOwAAACCBMHOBxwOhzIyMuRwOKxuyjmP96Lx4L1oHHgfGg/ei8Yh2N+HoJ88AQAAcK6gxw4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTB7gxlZ2dr6NChioqKUqdOnbR69Wqrm3TOuvrqqxURESGn0ymn06nBgwdb3aRzQkZGhrp06aKQkBDNnTvX629//OMflZCQoKZNm+qhhx6q130Ocfpqey9mzZqlsLAwz7nhdDq1e/duC1sa3IqKivTLX/5SycnJcrlcuvrqq7V582bP3zkvAqeu9yJYzwuC3RkaN26ckpKSdPDgQT3zzDMaMWKEjhw5YnWzzlmzZs1Sfn6+8vPztXz5cqubc05ITU3V9OnT1bt3b6/ty5Yt0wsvvKBPP/1UW7du1dKlSzVz5kyLWnluqO29kKQBAwZ4zo38/HylpKRY0MJzQ2lpqdq1a6f169fr8OHDGj58uNLT0yVxXgRaXe+FFJznBcHuDOTn52vRokWaPHmyoqKilJ6erm7dumnJkiVWNw0ImFGjRmngwIGKiIjw2v7GG2/o3nvvVbt27ZSYmKiJEyfqzTfftKiV54ba3gsEVnR0tP7whz8oOTlZoaGhuu+++7Rjxw4dOnSI8yLA6novghXB7gxs375dLpdLiYmJnm09evTQ1q1bLWzVue3+++9XQkKCBg4cqE2bNlndnHPa119/rbS0NM/vnBvW+uSTTxQfH68uXbroxRdftLo555R169apRYsWio+P57ywWNX3QgrO8yLM6gaczfLz86vdQDg2NlZHjx61pkHnuKlTp6pLly4KDQ3VX//6Vw0ZMkTffvutnE6n1U07J518fsTGxio/P9/CFp27+vbtq82bNyslJUUbNmzQz3/+c7Vo0UI///nPrW5a0MvJydHdd9+tp556ShLnhZVOfi+C9bygx+4MOJ1O5ebmem3Lzc0lSFikd+/ecjqdioyM1EMPPSSn06nPPvvM6mads04+Pzg3rHPeeeepbdu2CgkJ0SWXXKL//d//1TvvvGN1s4JeYWGh0tPTNXToUI0dO1YS54VVanovgvW8INidgdTUVOXk5CgrK8uzbePGjeratauFrYJbSAgfbyt16dLFayYg50bjwbnhf6WlpbrllluUlJSkZ5991rOd8yLwansvThYs50VwvAqLOJ1ODR8+XBkZGTp+/LgWL16sLVu2aNiwYVY37Zxz9OhRrVq1SkVFRSouLtaf//xnHT58WL169bK6aUGvpKREhYWFKi8v9/p51KhReuGFF7Rjxw5lZWVp2rRpGjVqlNXNDWq1vRcrVqxQdna2JOmLL77QX/7yF11//fUWtza43XXXXTp+/LhmzZolm83m2c55EXi1vRdBe14YnJEDBw6YwYMHm8jISJOammpWrVpldZPOSQcOHDA9e/Y00dHRJi4uzvTr18/897//tbpZ54TRo0cbSV6PtWvXGmOMefrpp018fLxp0qSJefDBB015ebm1jQ1ytb0XEyZMMAkJCSY6Otp07NjR/OUvf7G6qUFt586dRpKJiIgw0dHRnsdHH31kjOG8CKS63otgPS9sxrAyIgAAQDBgKBYAACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOwDlj9+7datasmV/3sXPnTtlsNjmdTi1cuNBn9W7YsEFOp1MhISFav369z+oFEFzCrG4AAPiS0+n0/FxQUKCoqCjP/SG//vprHTx40O9tcDgcys/P92mdF198sfLz89W2bVuf1gsguBDsAASVqoEqIiJCW7duJQwBOGcwFAvgnLFz505FRER4frfZbHrhhReUkpKiZs2aad68eVq6dKnatWun5s2ba968eZ6yhw8f1m233abmzZurXbt2eu211+q938cee0y333670tPT5XQ6NXDgQB04cEA33XSTYmNjdd111ykvL0+StG3bNl1xxRWKjY1Vs2bN9Jvf/MZ3BwBA0CPYATinffLJJ9q2bZteeOEF3XvvvXr77be1ZcsW/eMf/9B9992nsrIySdLtt9+u1q1bKzMzU8uWLdOkSZO0cePGeu9n4cKFevjhh3XgwAEdPXpUV1xxhe6//34dOHBA+fn5evXVVyVJjz76qIYOHaqcnBzt2rVLN998s19eN4DgRLADcE576KGHFBERoRtuuEFHjx7Vvffeq6ioKA0bNkx5eXnat2+fsrKy9PHHH+vpp5+Ww+FQ586dddttt+lf//pXvfczcOBAXXbZZYqKitKQIUOUmpqqK6+8UhERERo6dKg2bdokSbLb7dqxY4eysrIUHR2t3r17++ulAwhCBDsA57TmzZtLkkJDQ2W325WQkOD5W0REhAoKCrR7924VFBQoPj5eTZo0UZMmTfTSSy9p//79Dd6PJEVGRnrtJzIyUgUFBZKkqVOnqrS0VBdccIF69OihJUuWnOlLBHAOYfIEAJxCq1at1KRJEx06dMjv+0pMTNSrr74qY4wWL16sm2++WUePHlV4eLjf9w3g7EePHQCcQqtWrXTxxRfr0Ucf1bFjx1RaWqovvvhCX3/9tc/3tWDBAu3bt082m01NmjSRzWbzLNcCAKdCsAOAepg9e7Z27drlmTH7wAMP6Pjx4z7fz2effaaePXvK6XTqnnvu0T//+U/Z7Xaf7wdAcLIZY4zVjQCAYLFr1y517txZDodDr7/+uoYPH+6Tej///HMNGDBARUVF+vDDD5lUAaBGBDsAAIAgwVAsAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAASJ/w/T9oJqkxzJSgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABMyUlEQVR4nO3deXxU1cH/8e8kmUyWSYYQAiSEgEAAgYAKouKCCIiA0NSKGyiU6mMVfX5CcaGLUVyoVKm0T1GrFVwoi1jZBAQBl1pQrMrmAipLAANhywbZz++PZIYMWUhgZm4YPu/Xa14mN2fOPXNn7vD1nHvOtRljjAAAAHDWC7G6AQAAAPANgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYJdgHz66af6+c9/rpSUFDkcDrVo0UKXXXaZfvOb33iVmzFjhmbNmmVNI+EzO3fu1NChQ9W0aVPZbDY98MADVjcJp/DYY4/JZrPp4MGDAd/3zp07ZbPZzupz3338qqrt++yDDz6QzWbTggULTmtfs2bNks1m8zzCwsKUnJysX/7yl9q7d2+d+zn5uREREWrZsqX69eunKVOm6MCBA6fVpkBZtmyZHnvsMb/U7T5eH3zwgWdbTe8rGjeCXQC8++676tOnj3JzczV16lStXLlS06dP1+WXX6558+Z5lSXYBYfx48fr008/1auvvqp169Zp/PjxVjcJjVhiYqLWrVunoUOHWt2U03bnnXdq3bp1Xtv8/X02c+ZMrVu3TqtWrdJdd92lOXPm6Morr1RBQUGDnvu3v/1NF1xwgZ555hmdf/75ev/99/3W5jO1bNkyPf7441Y3A41YmNUNOBdMnTpV5513nt577z2FhZ045LfccoumTp1qYcvqp6ysTKWlpXI4HFY35ayxZcsW9e7dW+np6T6pz8r3wBijwsJCRUZGBnzf5wqHw6FLL73U6mackeTkZCUnJwd0n926dVOvXr0kSf369VNZWZmeeOIJLVy4UCNHjqz3cyXpF7/4hcaPH68rrrhCN9xwg7Zv364WLVr4tf3+1hjP3WPHjikqKsrqZgQ1euwC4NChQ2rWrJlXqHMLCTnxFrRt21Zbt27Vhx9+6BkmaNu2refvubm5mjhxos477zyFh4erVatWeuCBB6r936nNZtN9992nl156SR07dpTD4VCXLl00d+7cU7bVPSQ0depUPfnkkzrvvPPkcDi0du1aSdLnn3+u4cOHq2nTpoqIiNCFF16o+fPne9Vx7NgxTzsjIiLUtGlT9erVS3PmzPGUGTNmjJxOp7Zu3ar+/fsrOjpaCQkJuu+++3Ts2DGv+goLCzVp0iSv1z1u3DgdPXrUq1zbtm11/fXXa8WKFbrooosUGRmpzp0769VXX21w++r7Wk/mHsr4/vvvtXz5cs/7uHPnTknS7t27NWrUKDVv3lwOh0Pnn3++nnvuOZWXl9f7PajJW2+9pUsuuUQul0tRUVFq166dxo4d61WmoZ+fF198Ueeff74cDodeeeUVNW/eXLfffnu1fR89elSRkZGaMGGCZ1tDXuef/vQnPfPMM2rbtq0iIyN19dVXa9u2bSopKdEjjzyipKQkuVwu/fznP69xmGzevHm67LLLFB0dLafTqUGDBunLL7+sVu7TTz/VsGHDFB8fr4iICLVv377GIfL9+/fr1ltvlcvlUosWLTR27Fjl5OR4lfnb3/6mq666Ss2bN1d0dLTS0tI0depUlZSUeJW7+uqr1a1bN23YsEFXXnml57354x//WOOxqNq7lZ2drf/5n/9R69at5XA4lJCQoMsvv9yrN8ld/7p169SnTx9FRkaqbdu2mjlzpqSK0YKLLrpIUVFRSktL04oVK6q93qqMMWrRooXGjRvn2VZWVqa4uDiFhIRo//79nu3Tpk1TWFiY5zw8ecjuVN9nklRSUqLf/e53SkpKUmxsrAYMGKDvvvuuzjbWxR2Od+3adVrPT0lJ0XPPPae8vDy99NJLpyy/d+9ez3sUHh6upKQk3XjjjV7HqSHnwrPPPqtp06bpvPPOk9Pp1GWXXab169d7yo0ZM0Z/+9vfJMlrONn9/VLTufvaa69Jkv7973+rf//+iomJUVRUlPr06aN33333tI6TVL/zzv09v3nzZl177bWKiYlR//79T3ufqCcDv7vzzjuNJHP//feb9evXm+Li4hrLffHFF6Zdu3bmwgsvNOvWrTPr1q0zX3zxhTHGmIKCAnPBBReYZs2amWnTppn333/fTJ8+3bhcLnPNNdeY8vJyTz2STOvWrU2XLl3MnDlzzOLFi811111nJJm33nqrzrbu2LHDSDKtWrUy/fr1MwsWLDArV640O3bsMGvWrDHh4eHmyiuvNPPmzTMrVqwwY8aMMZLMzJkzPXXcfffdJioqykybNs2sXbvWLF261Pzxj380f/3rXz1lRo8ebcLDw01KSop56qmnzMqVK81jjz1mwsLCzPXXX+8pV15ebgYNGmTCwsLMH/7wB7Ny5Urz7LPPmujoaHPhhReawsJCT9k2bdqY5ORk06VLF/P666+b9957z4wYMcJIMh9++GGD2lff13qynJwcs27dOtOyZUtz+eWXe97HwsJCc+DAAdOqVSuTkJBgXnzxRbNixQpz3333GUnmnnvuqdd7UJP//Oc/xmazmVtuucUsW7bMrFmzxsycOdPcfvvtnjIN/fy0atXKdO/e3fzzn/80a9asMVu2bDHjx483kZGRJicnx2v/M2bMMJLMpk2bjDGmwa+zTZs2ZtiwYWbp0qXmzTffNC1atDAdO3Y0t99+uxk7dqxZvny5efHFF43T6TTDhg3z2vdTTz1lbDabGTt2rFm6dKn517/+ZS677DITHR1ttm7d6im3YsUKY7fbTffu3c2sWbPMmjVrzKuvvmpuueUWT5mMjAwjyXTq1Mk8+uijZtWqVWbatGnG4XCYX/7yl177HT9+vHnhhRfMihUrzJo1a8yf//xn06xZs2rl+vbta+Lj401qaqp58cUXzapVq8y9995rJJnXXnut2rGo+tkaNGiQSUhIMH//+9/NBx98YBYuXGgeffRRM3fu3Gr1d+rUyfzjH/8w7733nrn++uuNJPP444+btLQ0M2fOHLNs2TJz6aWXGofDYfbu3Vvj58jtlltuMR07dvT8vn79eiPJREZGmtmzZ3u2Dx482PTu3bva8XOr6/ts7dq1RpJp27atGTlypHn33XfNnDlzTEpKiklNTTWlpaV1tnHmzJlGktmwYYPX9unTpxtJ5u9//7vXfqp+79X2XLf8/HwTGhpq+vfvX2cb9uzZYxITE73OqXnz5pmxY8eab775xhjT8HOhbdu25rrrrjMLFy40CxcuNGlpaSYuLs4cPXrUGGPM999/b2688UYjyXNM3d8vxtR+7n7wwQfGbrebnj17mnnz5pmFCxeaa6+91thsNq/Pk/t4rV271rPt5PfVmPqfd6NHjzZ2u920bdvWTJkyxaxevdq89957dR5XnDmCXQAcPHjQXHHFFUaSkWTsdrvp06ePmTJlisnLy/Mq27VrV9O3b99qdUyZMsWEhIRU+zJasGCBkWSWLVvm2eb+Es7KyvJsKy0tNZ07dzYdOnSos63uL5j27dtXC6CdO3c2F154oSkpKfHafv3115vExERTVlZmjDGmW7duJj09vc79jB492kgy06dP99r+1FNPGUnm3//+tzGm4h9kSWbq1Kle5ebNm+f1BW5MRbCLiIgwu3bt8mw7fvy4adq0qbn77rs92+rTvvq+1tq0adPGDB061GvbI488YiSZTz/91Gv7PffcY2w2m/nuu++MMXW/BzV59tlnjSTPl39NGvr5cblc5vDhw15lN23aVO2YG2NM7969Tc+ePU/7dfbo0cPreD7//PNGkhk+fLjX8x944AEjyRMsd+/ebcLCwsz999/vVS4vL8+0bNnS3HTTTZ5t7du3N+3btzfHjx+v9Ri5/wE7+bN27733moiICK/wW1VZWZkpKSkxr7/+ugkNDfU6bn379q3xWHTp0sUMGjTI83tNwc7pdJoHHnig1vZWrf/zzz/3bDt06JAJDQ01kZGRXiHuq6++MpLMX/7ylzrrfOWVV4wks3v3bmOMMU8++aTp3LmzGT58uCe4FhcXm+joaPPb3/7W87yaAkBt32fuADFkyBCv7fPnz/eElrq4w9n69etNSUmJycvLM0uXLjUJCQkmJibG8913OsHOGGNatGhhzj///DrbMHbsWGO3283XX39da5mGngtpaWleofazzz4zksycOXM828aNG1ftOLvVdu5eeumlpnnz5l7/3pSWlppu3bqZ5ORkz2e7PsGuIeed+3v+1VdfrfUYwfcYig2A+Ph4ffzxx9qwYYP++Mc/6mc/+5m2bdumSZMmKS0trV6z8JYuXapu3brpggsuUGlpqecxaNCgarOYJKl///5e14eEhobq5ptv1vfff689e/accn/Dhw+X3W73/P7999/r22+/9Vy3UrUNQ4YM0U8//eQZQundu7eWL1+uRx55RB988IGOHz9e635Ovg7mtttukyTPsOOaNWskVXTpVzVixAhFR0dr9erVXtsvuOACpaSkeH6PiIhQx44dvYZmTtW+hrzWhlizZo26dOmi3r17e20fM2aMjDGe1+p28ntQm4svvliSdNNNN2n+/PleswLdGvr5ueaaaxQXF+e1LS0tTT179vQM80nSN998o88++8xr2Lehr3PIkCFelyScf/75klRtIoF7++7duyVJ7733nkpLS3XHHXd4vaaIiAj17dvX85q2bdumH374Qb/61a8UERFR80GsYvjw4V6/d+/eXYWFhV7DwF9++aWGDx+u+Ph4hYaGym6364477lBZWZm2bdvm9fyWLVtWOxbdu3c/5XBh7969NWvWLD355JNav359tWFet8TERPXs2dPze9OmTdW8eXNdcMEFSkpK8mx3H79T7XfAgAGS5BnyXbVqlQYOHKgBAwZo1apVkqR169apoKDAU/Z01XSs69NGt0svvVR2u10xMTG6/vrr1bJlSy1fvvyMr40zxpyyzPLly9WvXz/Pca1JQ8+FoUOHKjQ01PN7Q4+HVP3cLSgo0Keffqobb7xRTqfTsz00NFS333679uzZ06Dvs/qed1X94he/qHf9OHMEuwDq1auXHn74Yb311lvat2+fxo8fr507d9ZrAsX+/fu1adMm2e12r0dMTIyMMdXCYcuWLavV4d526NChU+4vMTGx2v4laeLEidXacO+990qSpw1/+ctf9PDDD2vhwoXq16+fmjZtqvT0dG3fvt2rzrCwMMXHx9fZxkOHDiksLEwJCQle5Ww2m1q2bFnttZxcn1RxYXrV8Haq9jXktTbEoUOHqh1XSZ5/fE9+LTWVrclVV12lhQsXer5sk5OT1a1bN69rBhv6+alt32PHjtW6dev07bffSqqYWehwOHTrrbee9uts2rSp1+/h4eF1bi8sLPS8Jqki2J78uubNm+d5TdnZ2ZJU7wv7T/4MuSesuD9Du3fv1pVXXqm9e/dq+vTpnv9pc1/7dPL/KNTnM1mTefPmafTo0XrllVd02WWXqWnTprrjjjuUlZXlVe7k4yRVHKtTHb/atGnTRu3bt9f777+vY8eOad26dZ5g5w4B77//viIjI9WnT5866zqVUx3rU3n99de1YcMGffnll9q3b582bdqkyy+//IzaVFBQoEOHDnmF4ppkZ2ef8jPV0HPhTI+HVP3cPXLkiIwxDWpHXep73rlFRUUpNja23vXjzDEr1iJ2u10ZGRn685//rC1btpyyfLNmzRQZGVltIkDVv1d18pd/1W01/UNzspPXLXLXP2nSJN1www01PqdTp06SpOjoaD3++ON6/PHHtX//fk/v2LBhwzyBQKroCTt06JBXe05uY3x8vEpLS5Wdne0V7owxysrK8vRWNcSp2teQ19oQ8fHx+umnn6pt37dvn6Tq72FD1o762c9+pp/97GcqKirS+vXrNWXKFN12221q27atLrvssgZ/fmrb96233qoJEyZo1qxZeuqpp/TGG28oPT3dq4egoa/zdLnrWbBggdq0aVNrOffnpj491fWxcOFCFRQU6F//+pfXfr/66iuf1O/WrFkzPf/883r++ee1e/duLV68WI888ogOHDhwykkQZ6p///5atGiRPvzwQ5WXl+vqq69WTEyMkpKStGrVKr3//vu68sorLZ8pf/7553vNbPWFd999V2VlZbr66qvrLJeQkHDKz1SgzoWqTj533RNffNWO+p53tbUH/kePXQDUdEJJFcNYkrz+z7C2/5O//vrr9cMPPyg+Pl69evWq9jh5ttnq1au9ZmaVlZVp3rx5at++/WktSdCpUyelpqZq48aNNe6/V69eiomJqfa8Fi1aaMyYMbr11lv13XffVZvxOnv2bK/f//nPf0qS50vVPYPqzTff9Cr39ttvq6Cg4IxnWNXUvtN9rafSv39/ff311/riiy+8tr/++uuy2Wzq16/fGb0WqeLz07dvXz3zzDOS5Jml1tDPT23i4uKUnp6u119/XUuXLlVWVla12beBeJ2SNGjQIIWFhemHH36o9X2SpI4dO6p9+/Z69dVXVVRUdMb7df9DVTXUGGP08ssvn3HdtUlJSdF9992ngQMHVjuu/jBgwADt379fzz//vC699FLP571///565513tGHDhnoNw9anZ7Ix2b17tyZOnCiXy6W77767zrKDBw/W2rVr6xzG9Me50NBevOjoaF1yySX617/+5fWc8vJyvfnmm0pOTlbHjh3rvf/6nnewDj12ATBo0CAlJydr2LBh6ty5s8rLy/XVV1/pueeek9Pp1P/7f//PUzYtLU1z587VvHnz1K5dO0VERCgtLU0PPPCA3n77bV111VUaP368unfvrvLycu3evVsrV67Ub37zG11yySWeepo1a6ZrrrlGf/jDHxQdHa0ZM2bo22+/rdeSJ7V56aWXNHjwYA0aNEhjxoxRq1atdPjwYX3zzTf64osv9NZbb0mSLrnkEl1//fXq3r274uLi9M033+iNN97QZZdd5rV+UXh4uJ577jnl5+fr4osv1n/+8x89+eSTGjx4sK644gpJ0sCBAzVo0CA9/PDDys3N1eWXX65NmzYpIyNDF154YY3Lb5xKfdpX39faEOPHj9frr7+uoUOHavLkyWrTpo3effddzZgxQ/fcc0+DvlyrevTRR7Vnzx71799fycnJOnr0qKZPny673a6+fftKUoM/P3UZO3as5s2bp/vuu0/JycnV/oH31+s8Wdu2bTV58mT97ne/048//qjrrrtOcXFx2r9/vz777DNPz6xUsTzJsGHDdOmll2r8+PFKSUnR7t279d5771X7n4tTGThwoMLDw3XrrbfqoYceUmFhoV544QUdOXLEJ69LknJyctSvXz/ddttt6ty5s2JiYrRhwwatWLGi1l5kX7rmmmtks9m0cuVKr8VwBwwYoNGjR3t+PpXavs8agy1btniuDztw4IA+/vhjzZw5U6GhoXrnnXeqXf5xssmTJ2v58uW66qqr9Nvf/lZpaWk6evSoVqxYoQkTJqhz585+ORfcx++ZZ57R4MGDFRoaqu7du3uG2msyZcoUDRw4UP369dPEiRMVHh6uGTNmaMuWLZozZ06DetUact7BIpZN2ziHzJs3z9x2220mNTXVOJ1OY7fbTUpKirn99turzajauXOnufbaa01MTIxnKQi3/Px88/vf/9506tTJhIeHG5fLZdLS0sz48eO9ZsBKMuPGjTMzZsww7du3N3a73XTu3NlrqYLauGdn/elPf6rx7xs3bjQ33XSTad68ubHb7aZly5bmmmuuMS+++KKnzCOPPGJ69epl4uLijMPhMO3atTPjx483Bw8e9JQZPXq0iY6ONps2bTJXX321iYyMNE2bNjX33HOPyc/P99rn8ePHzcMPP2zatGlj7Ha7SUxMNPfcc485cuSIV7maZqIaUzFzsOrMvPq0r76vtTa1tWXXrl3mtttuM/Hx8cZut5tOnTqZP/3pT16zQk/1Hpxs6dKlZvDgwaZVq1YmPDzcNG/e3AwZMsR8/PHHXuUa+vmpTVlZmWndurWRZH73u9/VWOZMXmdNMxmNqX0248KFC02/fv1MbGyscTgcpk2bNubGG28077//vle5devWmcGDBxuXy2UcDodp3769GT9+vOfv7tl/2dnZNe636nIzS5YsMT169DARERGmVatW5sEHHzTLly+vNqOwb9++pmvXrtWOz+jRo73O7ZNnxRYWFppf//rXpnv37iY2NtZERkaaTp06mYyMDFNQUHDK+mv7/J3qva3qwgsvNJLMJ5984tm2d+9eI8nEx8dXmyVc06zY2r7PanuPa5odXJP6zGytbT/u57of7nOmb9++5umnnzYHDhyos86qMjMzzdixY03Lli2N3W43SUlJ5qabbjL79+/3lDnTc16SycjI8PxeVFRk7rzzTpOQkGBsNpvXZ7Ou9/fjjz8211xzjYmOjjaRkZHm0ksvNUuWLKnxeJ1quRNj6nfeub/nEVg2Y+ox/QdnFZvNpnHjxun//u//rG5KrcaMGaMFCxYoPz/f6qYAABA0uMYOAAAgSBDsAAAAggRDsQAAAEGCHjsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSBDsAAIAgQbADAAAIEgQ7AACAIEGwAwAACBIEOwAAgCBBsAMAAAgSYVY3wN/Ky8u1b98+xcTEyGazWd0cAACABjHGKC8vT0lJSQoJqbtPLuiD3b59+9S6dWurmwEAAHBGMjMzlZycXGeZoA92MTExkioORmxsrMWtAQAAaJjc3Fy1bt3ak2nqEvTBzj38GhsbS7ADAABnrfpcUmbZ5ImMjAx16dJFISEhmjt3bq3lJkyYoHbt2ikmJka9evXSRx99FMBWAgAAnD0sC3apqamaPn26evfuXWc5l8ullStXKicnRw8//LDS09OVl5cXoFYCAACcPSwLdqNGjdLAgQMVERFRZ7mMjAx16NBBISEhGjFihCIjI7Vt27YAtRIAAODscVZdY7dz504dPnxYHTp0qLVMUVGRioqKPL/n5uYGomkAAACWO2sWKC4pKdHo0aP14IMPyuVy1VpuypQpcrlcngdLnQAAgHPFWRHsjDEaM2aMmjdvrscee6zOspMmTVJOTo7nkZmZGZhGAgAAWOysGIq9//77tW/fPq1YseKUKy47HA45HI4AtQwAAKDxsCzYlZSUqKysTOXl5SopKVFhYaHCw8OrBbeMjAx98skn+vDDDwlsAAAAdbAZY4wVOx4zZoxee+01r21r167V3r179fTTT2vr1q0VDbTZ5HA4FBZ2IoO+9NJLGjlyZL32k5ubK5fLpZycHBYoBgAAZ52GZBnLgl2gEOwAAMDZrCFZ5qyYPAEAAIBTI9gBAAAECYIdAABAkDgrljs5lxljtHlvjuZuyNR3WXk6PzFGV3Ropmu7tFRIiM3q5gEAgEaEYNeIGWM0eenXmvnJTs+2/+46ojfX79YVHZrpTyO6K9EVaV0DAQBAo8JQbCP2+rpdmvnJTtls0s8uSNKfbuyuMX3aKsIeon9/f1DXPf+xNu/JsbqZAACgkWC5k0bqPz8c1KhXPlW5kX47pLP+56r2nr/9kJ2vB+Z+pc17c+SKtGvOXZeqS9LZ89oAAED9sdzJWc4Yo2dWfKdyI/3iomTddWU7r7+3T3Dqn3ddogtaN1HO8RLd/o9PtefIMYtaCwAAGguCXSP0+a4j2ph5VOFhIZo0pLNstuqTJGIi7HptbG91SYzVoYJi3fPmFyosKbOgtQAAoLEg2DVCL3/0oyTpFxe1UjNn7ffHdUXa9fc7eiouyq7Ne3P0h4VbAtVEAADQCBHsGpkdBwu06pv9kqRfXdHuFKWl5Lgo/d9tFynEJr313z16d9NP/m4iAABopAh2jcxbn2fKGOmazs3VobmzXs+5vEMzjevXQZL0+4WbdSCv0J9NBAAAjRTBrpH54LtsSdLwHkkNet7916Sqa1Ksjhwr0aS3NyvIJzsDAIAaEOwakQO5hfr6p1zZbNKVqc0a9NzwsBBNu+kChYeGaPW3B/TW53v81EoAANBYEewakQ+3VfTWdW/lUnwdkyZq06lljCZc21GSNHnp18o8zBIoAACcSwh2jYg72PXtmHDaddx1ZTv1ahOn/KJSPbRgE0OyAACcQwh2jURpWbk+3n5QktS30+kHu9AQm567qYci7aFa9+Mhzfks01dNBAAAjRzBrpHYuCdHOcdL5Iq0q0dykzOqq018tCYO6iRJmrLsG/2Uc9wHLQQAAI0dwa6R+GzHYUlSn/bxCgs987dlTJ+2ujClifKKSvX7d7YwJAsAwDmAYNdIbNmXI0nqfoa9dW6hITZN/UV3zyzZxRv3+aReAADQeBHsGomv9+VKkrq1ivVZnaktYnT/NRULFz+2eKsO5hf5rG4AAND4EOwagbzCEu04WCBJ6prk8mndv766vTq3jNGRYyV6bPFWn9YNAAAaF4JdI+DurUtyRahpdLhP67aHhuhPN/ZQaIhNSzf9pJVbs3xaPwAAaDwIdo3A1spg18XHvXVuacku3XVlO0nS7xduUc7xEr/sBwAAWItg1wi4J0748vq6kz0wIFXtmkXrQF6RJi/52m/7AQAA1iHYNQLuoVhfX19XVYQ9VFNv7K4Qm/T2F3u0fPNPftsXAACwBsHOYoUlZdp+IF+Sf3vsJKlX26b6dd/2kqRJ72zW/txCv+4PAAAEFsHOYt9m5ams3KhpdLhaxkb4fX8PDOiobq1idfRYiR7kXrIAAAQVgp3Ftu3PkyR1bhkjm83m9/2Fh4Xo+ZsvkCMsRB9ty9br63b5fZ8AACAwCHYW233omCSpbbPogO2zQ/MY/XbI+ZKkp5d94wmXAADg7Eaws9jOQxULE7eNjwrofu+4rI36dkxQUWm5fv3mf5VXyBIoAACc7Qh2Ftt9uKLHrk184HrsJMlms+m5m3oo0RWhH7ML9OBbXG8HAMDZjmBnsZ2VtxJrE+AeO0lq5nRoxsiLFB4aohVbs/Tihz8GvA0AAMB3CHYWOnqsWLmFpZKklKaBD3aSdGFKnDKGd5Ek/em9b/XJ9wctaQcAADhzBDsL7aycONEi1qGo8DDL2nFb7xSN6JmsciPdP+dLZVYODwMAgLMLwc5CuyonTrRpGtjr605ms9n0RHo3pbVy6XBBscbM/ExHjxVb2iYAANBwBDsL7TrknjhhzTBsVRH2UL0yupeSXBH6IbtA//P6f1VYUmZ1swAAQAMQ7CzUmIKdJLWIjdDMX/ZWjCNMn+08rHtnf6Hi0nKrmwUAAOqJYGchz1BsgJc6qUunljF6ZXQvOcJCtObbAxo/7yuVlhHuAAA4GxDsLLSrcpJC20YU7CTpknbxeun2nrKH2vTu5p903z+/pOcOAICzAMHOIgVFpcrOK5IkpTSSodiqru7UXC+M7OlZ4+7uNz7XseJSq5sFAADqQLCziPuOE3FRdrki7Ra3pmYDurTQK6N7KcIeorXfZevWlz/Vwfwiq5sFAABqQbCzyL6jxyVJreIiLW5J3a7qmKDZd16iJlF2bcw8qvS/faKv9+Va3SwAAFADgp1F9udW9Hy1jI2wuCWn1rNNU719Tx+lNI3SniPHdcMLn+idL/dY3SwAAHASgp1FsnILJVUsMXI2aJ/g1OL7LtdVHRNUWFKu8fM2asL8r5RfxHV3AAA0FgQ7ixw4y4KdJDWJCtfMMRfrgQGpCrFJ//pir66d9qFWbMmSMcbq5gEAcM4j2FnE3WN3NgzFVhUaYtMDAzpq3t2XqXXTSO3LKdSv3/yvfvXa59p9iHvMAgBgJYKdRdzX2DWPdVjcktNzcdumWvlAX93Xr4PsoTat+faABv75Q01Z/o1nGRcAABBYBDuLnI1DsSeLDA/VxEGdtOKBq9SnfbyKSsv10oc/6opn1uixxVv1U85xq5sIAMA5xbJgl5GRoS5duigkJERz586ttdzx48c1atQoxcTEKCUlRXPmzAlgK/2jqLRMhwqKJZ19Q7E1aZ/g1Ow7L9E/RvfSBa2bqKi0XLP+s1NXTV2re978r9Z8u5/bkgEAEABhVu04NTVV06dP1x/+8Ic6y2VkZOjw4cPau3evtmzZoiFDhqhnz57q2LFjgFrqe+6hyvDQEDWJapyLEzeUzWZT//Nb6JrOzfWfHw7pL6u369Mdh7V8S5aWb8lSQoxD6RckacD5LXRRmzjZQ+ksBgDA1ywLdqNGjZIkPfXUU3WWe+ONN7Rw4ULFxsaqT58+Gj58uObOnatHH300EM30i/2Vw7DNYx2y2WwWt8a3bDabLu/QTJd3aKZvfsrVW5/v0cKv9io7r0gvf7xDL3+8QzERYboytZmuTE3QhSlNlNo8RqEhwXUcAACwgmXBrj6OHDmirKwspaWlebb16NFDn332Wa3PKSoqUlHRiYv3c3Mb310SzqbFic/E+YmxenRYFz0yuLPWfHtA723N0ofbsnW4oFjLNmdp2eYsSVJ0eKjSkl3qluRSh+ZOtW/uVIcEp+Kiwy1+BcHJGKNyI5Ubo7Jyc+K/5VJZ5c/GGM/PVbeXm5rLV63Lvb28vGJbmams76Tt5cbIVLbDSJV1S6r8b9V2qvLvFeWrbCuvLCvv51atU+ZE3eak+qrWKVW0vdbnVttW8dyKZ6ryZ1N5jN3bjNff3YsCebZ7nl9RV7XfPW/aiW0n6jNV6qsse9L+aq5bXssTmVPUrVpfS5XXWmW1I6/nqur2GrbVUPLkcvWtq6aSNe+zpvpqeG499lvf59W00aftOIPXXnPbfHss6+tMF82yctWt3w89X3de2c66BlTRqINdfn6+QkNDFRUV5dkWGxur/Pz8Wp8zZcoUPf7444Fo3mnbHwQTJxoiPCxE13Vrqeu6tVRZudGmPUf1wXfZ+mzHYW3ac1QFxWVa/+Nhrf/xsNfzosND1cIVoRYxEWoR61ALV4Sax0QoNiJMMRF2xUSEVT7sig4PlT00RGGhNtlDQ2QPDTntXsCycqOSsnKVlRuVlhmVlJd7tpWWGZWWG5WWV/m5rLzyv5Vlyyr+XlJmvOoqKTcqc5etfJ6njOd51euueF7l9sr9eJWppS3uv5VVeQ1llUEIABCcGnWwczqdKisr07FjxzzhLjc3V06ns9bnTJo0SRMmTPD8npubq9atW/u9rQ1xtt11wpdCQ2y6MCVOF6bESaoIUdsP5Omr3Uf13f48fX8gXz9mF2jv0eMqKC7Tj9kF+jG74LT2ZbNJ9pAQ2UNtCrHZvHoiqvZSuDtajCrCEGstVxy7UJtNISE2hdpsCg2xKcSmyv+etD3kRNkQm+3E80K866h4XpU6Kp9vU8UQfoitYr/uv6nyZ5ukkMqf5fm7ZFNFfZLN83dblf/a5F2nzfP3E/XaKvfl3m6rWoeq1OXZpxQSUllX5XGq+Mn9c8V/K1pVuUHy7MtW5fie/FxVljlR/kQ9thNVVW63Vfl7zXVXbcOJv9lqrNtdj2p8PTW/vlO2wfOb9+fqVGoqc3JdNZY53efVsw0nl6x/XbZ6lKmprlPvryYnl6vpcp/6tKG+7189DtUZq6ktZ1ynj6uMDm88carxtKQGcXFxatmypTZv3qxLLrlEkrRx40Z17dq11uc4HA45HI17bbgDlUOxLc7SNex8KTTEps4tY9W5ZazX9mPFpcrKKdT+3CLtzy2sfBTpQF6h8gpLlVdYovyiUuUVliq/sFT5xaU1DJNIxWXlKi4783aGhVSEEHdPoD3UprCQKj+HhigsxKawyu1eP4faKn4PCVFoqE32EJtCKwNn1fIVfztRp7tMaEiV+qvtw7v+Gn+ufG5oiM0TqtxBzTu4ndgebNd+AsC5wrJgV1JSorKyMpWXl6ukpESFhYUKDw9XSIj3bMlRo0bpiSee0Jw5c7R161YtXrxYn376qUWt9o2snHO3x66+osLD1C7BqXYJtffOnsw97OkeMi2pHMYsKS2X0YneBq9eCncvTeXPVUOZO8SFVfbQAADQ2FkW7O666y699tprkqSPP/5Yd9xxh9auXau9e/fq6aef1tatWyVJkydP1p133qnExETFxcVpxowZ6tSpk1XN9on9eQQ7f6jokQpVhD3U6qYAAGAJmwnyu7fn5ubK5XIpJydHsbGxp35CAHTLeE/5RaVa85u+DeqRAgAA556GZBlWiQ2w/KJS5ReVSqLHDgAA+BbBLsDcS504HWGKdjTquSsAAOAsQ7ALsCOV94iNd7L4LgAA8C2CXYAdrgx2cVEEOwAA4FsEuwA7cqwi2DXldlkAAMDHCHYBdrigRBI9dgAAwPcIdgHm7rHjGjsAAOBrBLsA4xo7AADgLwS7AHPPim0abbe4JQAAINgQ7ALs8DF67AAAgH8Q7ALscAGzYgEAgH8Q7ALMc40dwQ4AAPgYwS6ASsrKlVdYcZ/YpgzFAgAAHyPYBZB7qZMQmxQbyeQJAADgWwS7ADpSuThxk6hwhYbYLG4NAAAINgS7ADqxhh29dQAAwPcIdgHEfWIBAIA/EewCiLtOAAAAfyLYBdAR1rADAAB+RLALIM9dJwh2AADADwh2AeTpsWMoFgAA+AHBLoAOH6tY7oQeOwAA4A8EuwA6cY0dy50AAADfI9gFELNiAQCAPxHsAoh17AAAgD8R7AKksKRMx4rLJHGNHQAA8A+CXYDkHK+YOBEaYlOMI8zi1gAAgGBEsAuQ3MpgFxMRJpvNZnFrAABAMCLYBUhuYakkKTaCGbEAAMA/CHYBklt4oscOAADAHwh2AZJHjx0AAPAzgl2AVL3GDgAAwB8IdgHiHoqNjaTHDgAA+AfBLkDcQ7H02AEAAH8h2AWIeyiWa+wAAIC/EOwChB47AADgbwS7AOEaOwAA4G8EuwBhuRMAAOBvBLsAOXGNHUOxAADAPwh2AcJQLAAA8DeCXYAweQIAAPgbwS4ASsrKday4TBLX2AEAAP8h2AVAfmVvnSQ56bEDAAB+QrALAPf1dVHhobKHcsgBAIB/kDICgOvrAABAIBDsAoDbiQEAgEAg2AVALj12AAAgAAh2AcAadgAAIBAIdgHgHoqNYSgWAAD4EcEuAE7cJ5ahWAAA4D+WBbvs7GwNHTpUUVFR6tSpk1avXl1juR07dujaa69VkyZN1KpVK02ZMiXALT1zDMUCAIBAsCzYjRs3TklJSTp48KCeeeYZjRgxQkeOHKlW7v7771e7du2UnZ2tf//73/rrX/9aawhsrFjuBAAABIIlwS4/P1+LFi3S5MmTFRUVpfT0dHXr1k1LliypVnbXrl26+eabZbfbdd555+mKK67Q119/XWvdRUVFys3N9XpYjeVOAABAIFgS7LZv3y6Xy6XExETPth49emjr1q3Vyo4bN05z585VUVGRtm/frvXr1+vqq6+ute4pU6bI5XJ5Hq1bt/bHS2gQeuwAAEAgWNZjFxsb67UtNjZW+fn51cr26dNH69atU3R0tDp27Khf/epXSktLq7XuSZMmKScnx/PIzMz0efsbimvsAABAIFgS7JxOZ7Uh0tzcXDmdTq9tZWVlGjJkiO666y4VFhZqx44deuutt7RgwYJa63Y4HIqNjfV6WI1ZsQAAIBAsCXapqanKyclRVlaWZ9vGjRvVtWtXr3KHDx/Wvn37dM899ygsLExt27ZVenq61q5dG+gmnxFPjx3X2AEAAD+yrMdu+PDhysjI0PHjx7V48WJt2bJFw4YN8yqXkJCg1q1b6+WXX1Z5ebn27NmjRYsW1TkU29gYY6pcY0ewAwAA/mPZciczZsxQZmam4uPjNXHiRM2fP19xcXGaPXu2V8/dggUL9MYbbyguLk4XX3yx+vfvr7vuusuqZjdYUWm5ysqNJMnJUCwAAPAjmzHGWN0If8rNzZXL5VJOTo4l19sdyi9SzyfflyT98PQQhYbYAt4GAABw9mpIluGWYn52rLhMkhRpDyXUAQAAvyLY+Vl+UcX1ddGOUItbAgAAgh3Bzs+OFVcEu6hwrq8DAAD+RbDzs4KiiqHYaAfBDgAA+BfBzs/cPXbR4QzFAgAA/yLY+Zm7xy6KHjsAAOBnBDs/K6DHDgAABAjBzs88PXZMngAAAH5GsPMz9zV2TpY7AQAAfkaw8zOusQMAAIFCsPMzZsUCAIBAIdj5mfvOE1xjBwAA/I1g52fue8VySzEAAOBvBDs/K/DcK5YeOwAA4F8EOz/z9NgxFAsAAPyMYOdn7gWKo5g8AQAA/Ixg52cMxQIAgEAh2PnZMc+dJ+ixAwAA/kWw8yNjjGco1kmPHQAA8DOCnR8VlZar3FT8zJ0nAACAvxHs/Mh9fZ0kRdoZigUAAP5FsPMj931iI+2hCg2xWdwaAAAQ7Ah2fuS+vo67TgAAgEAg2PnRsWKWOgEAAIFDsPOjAs9SJwQ7AADgfwQ7P/L02LGGHQAACACCnR/lu3vsGIoFAAABQLDzo2OexYnpsQMAAP5HsPMjrrEDAACBRLDzI66xAwAAgUSw86MCrrEDAAABRLDzI/ctxeixAwAAgUCw86MCFigGAAABRLDzo2PFFUOx0UyeAAAAAUCw8yP3UGwUy50AAIAAINj5ET12AAAgkAh2fuTpsWPyBAAACACCnR8xeQIAAAQSwc6P3EOxkfTYAQCAACDY+VFRSbkkKdJOsAMAAP5HsPOT0rJyFZcR7AAAQOAQ7PyksLTc8zNDsQAAIBAIdn5SWFLm+dkRxmEGAAD+R+Lwk+OVEyci7CGy2WwWtwYAAJwLCHZ+4u6x4/o6AAAQKAQ7PymsnBEbQbADAAABQrDzk+P02AEAgAAj2PmJO9jRYwcAAAKFYOcnVSdPAAAABEK9bmI6derU+lUWFqYJEybUq2x2drbGjBmjtWvXqnXr1poxY4b69+9fY9mZM2fq6aef1r59+5SSkqJFixapY8eO9dqPVYpKuZ0YAAAIrHoFu9///vcaOXLkKcstWLCg3sFu3LhxSkpK0sGDB7Vy5UqNGDFCP/zwg+Li4rzKLVmyRM8995wWLlyoLl266Mcff6xWpjFy99hxjR0AAAiUegU7l8ulmTNnnrLcihUr6rXT/Px8LVq0SDt37lRUVJTS09M1bdo0LVmyRHfccYdX2SeeeEJ//vOf1bVrV0lS+/bt66y7qKhIRUVFnt9zc3Pr1SZf4xo7AAAQaPW6ACw7O7telf3000/1Krd9+3a5XC4lJiZ6tvXo0UNbt271KldWVqYvv/xSmzdvVnJyss477zxNnjxZxpha654yZYpcLpfn0bp163q1yddY7gQAAATaaV3ZX1RUpEOHDnn1jDVEfn6+YmNjvbbFxsYqPz/fa9v+/ftVWlqq1atXa8uWLfrwww81b948zZo1q9a6J02apJycHM8jMzPztNp4pljuBAAABFq9g11paakee+wxtW/fXlFRUUpISFBUVJQ6dOigxx9/XCUlJfXeqdPprDZEmpubK6fT6bUtMjJSkvTwww+rSZMmSklJ0bhx47Rs2bJa63Y4HIqNjfV6WMFz5wkmTwAAgACpd7C7++679dFHH+mVV15Rdna2iouLlZ2drb///e/6+OOP9etf/7reO01NTVVOTo6ysrI82zZu3Oi5js4tLi5OSUlJXtvqGoZtTNzBLiKM5U4AAEBg1Dt1vP3221q0aJH69eunpk2bKiwsTE2bNtU111yjt99+WwsWLKj3Tp1Op4YPH66MjAwdP35cixcv1pYtWzRs2LBqZceMGaOpU6cqLy9P+/bt04svvqihQ4fWe19W8axjR48dAAAIkHoHu5iYGH3//fc1/m3Hjh2KiYlp0I5nzJihzMxMxcfHa+LEiZo/f77i4uI0e/Zsr567jIwMJSYmKjk5WRdffLFuuOEGjR49ukH7sgLX2AEAgECr13InUsWyIwMGDNAtt9yitLQ0xcbGKjc3V5s2bdJbb72l5557rkE7TkhIqPFauZEjR3qtmRceHq6XX35ZL7/8coPqt1ohy50AAIAAq3ewGzNmjHr27Kk5c+ZoxYoVys/Pl9PpVJcuXbR27Vp169bNn+0867iXO6HHDgAABEq9g50kpaWlKS0tzV9tCSosUAwAAAKtXtfYLV68uF6VLV269IwaE0w8txRj8gQAAAiQegW7UaNG1auyk28Hdi4rLGW5EwAAEFj1GorNz89XVFRUnWWMMQoJIcS4FdJjBwAAAqxewW7Hjh2SKsLbO++8o6FDh8rhcFQrZ7PZfNu6sxjLnQAAgECrV7Br06aN5+e3335bTz75pNLT0zVy5Ej169ePQFcD96xYJk8AAIBAafDY6b///W99+eWX6tSpkyZMmKDk5GSNHz9en3/+uT/ad1YyxjArFgAABNxpXRSXkpKihx56SF999ZUWLlyolStX6pJLLlFqaqqmTJmi/Px8X7fzrFJUWu75mWvsAABAoJxWsCspKdGiRYt066236rrrrlPHjh01f/58vfHGG9q8ebOuvfZaX7fzrOJe6kRiViwAAAicBi1QLEljx47VokWL1K1bN40cOVIzZsxQXFyc5+89e/aUy+XyaSPPNu6lTuyhNoWFEuwAAEBgNDjYdejQQV988YXXhIqq7Ha79uzZc8YNO5u5e+y4vg4AAARSg4Pdb3/721OWadq06Wk1Jliw1AkAALAC44R+wFInAADACgQ7Pyikxw4AAFiAYOcHnmvsWOoEAAAEEMHOD9yzYlnqBAAABBLJww/cPXYsTgwAAAKJYOcHXGMHAACsQLDzA5Y7AQAAViDY+YF7uRMHwQ4AAAQQwc4P6LEDAABWINj5wYnJExxeAAAQOCQPPyjyLHdCjx0AAAgcgp0fsNwJAACwAsHOD9zX2HGvWAAAEEgEOz9wz4ol2AEAgEAi2PkBs2IBAIAVCHZ+4LnzBLNiAQBAAJE8/MAd7JgVCwAAAolg5wdFpdx5AgAABB7Bzg+K3LcUC+PwAgCAwCF5+IF7gWKCHQAACCSShx94hmK5xg4AAAQQwc4Pij3X2HF4AQBA4JA8fKy0rFyl5UaSFB7K4QUAAIFD8vCx4rJyz8/02AEAgEAiefiYe0asRI8dAAAILJKHj7knToSF2BRGsAMAAAFE8vAxz8QJljoBAAABRvrwMfcaduEEOwAAEGCkDx9jDTsAAGAVgp2Pee46wYxYAAAQYKQPH+M+sQAAwCqkDx8rKmMoFgAAWINg52PuHjsmTwAAgEAjffiY5xo7gh0AAAgw0oePFbGOHQAAsAjpw8eKWe4EAABYxLJgl52draFDhyoqKkqdOnXS6tWr6yy/c+dORUZG6te//nWAWnh6PD12LHcCAAACLMyqHY8bN05JSUk6ePCgVq5cqREjRuiHH35QXFxcjeXHjx+viy66KMCtbDjPnSe4TywAAAgwS9JHfn6+Fi1apMmTJysqKkrp6enq1q2blixZUmP59957T8YYDRw48JR1FxUVKTc31+sRSJ517OixAwAAAWZJ+ti+fbtcLpcSExM923r06KGtW7dWK1tcXKwHH3xQzz77bL3qnjJlilwul+fRunVrn7W7PrilGAAAsIplPXaxsbFe22JjY5Wfn1+t7LRp0zRkyBB16NChXnVPmjRJOTk5nkdmZqZP2lxfxcyKBQAAFrHkGjun01ltiDQ3N1dOp9Nr2969e/Xqq6/qv//9b73rdjgccjgcPmnn6fBcY0ewAwAAAWZJsEtNTVVOTo6ysrLUsmVLSdLGjRt15513epXbsGGDMjMzlZqaKqmip6+8vFw7d+7UihUrAt7u+mAoFgAAWMWyHrvhw4crIyNDzz//vFatWqUtW7Zo2LBhXuUGDx6sHTt2eH5/9tlnlZ2drWnTpgW6yfXGAsUAAMAqlqWPGTNmKDMzU/Hx8Zo4caLmz5+vuLg4zZ49W127dpVUMazasmVLz8PpdCoyMlLx8fFWNfuUikoqbynGrFgAABBgNmOMsboR/pSbmyuXy6WcnJxqEzb8YczMz/TBd9l6dkQP3dgz2e/7AwAAwa0hWYZuJR9zr2PH5AkAABBopA8fc8+K5Ro7AAAQaKQPH2PyBAAAsArpw8eKWe4EAABYhGDnY54eO2bFAgCAACN9+JjnzhOhHFoAABBYpA8fc/fYRdBjBwAAAoz04WPu5U64xg4AAAQawc7HisuYFQsAAKxB+vCh0rJylZVX3MiDBYoBAECgkT58yH19ncRQLAAACDyCnQ9VDXb02AEAgEAjffiQe6kTe6hNoSE2i1sDAADONQQ7H+KuEwAAwEoEOx9yD8UyDAsAAKxAAvGhE2vYcVgBAEDgkUB8yH2NHcEOAABYgQTiQ1xjBwAArESw8yH3NXYO7hMLAAAsQALxIfdQbHgohxUAAAQeCcSH6LEDAABWIoH40IlZsVxjBwAAAo9g50NFZSx3AgAArEMC8aGikspr7Ah2AADAAiQQH/JcY0ewAwAAFiCB+FAR69gBAAALEex8iDtPAAAAK5FAfKiY5U4AAICFSCA+5B6KDQ9lKBYAAAQewc6HPOvY0WMHAAAsQALxIa6xAwAAViKB+FAxs2IBAICFCHY+xDp2AADASiQQH3IPxXLnCQAAYAUSiA+VlBlJBDsAAGANEogPFXuWO+GwAgCAwCOB+FBJWUWwsxPsAACABUggPlRcGewYigUAAFYggfiQeyjWHmqzuCUAAOBcRLDzIYZiAQCAlUggPuSeFcs6dgAAwAokEB86MRTLYQUAAIFHAvEh9+QJOz12AADAAiQQHzHGVLnGjskTAAAg8Ah2PlJWbmQqLrGTIzTU2sYAAIBzEsHOR9zDsJJkD6PHDgAABB7BzkdKSo3nZyZPAAAAK5BAfMTdY2ezSWEh9NgBAIDAI9j5SHGVxYltNoIdAAAIPMuCXXZ2toYOHaqoqCh16tRJq1evrrHchAkT1K5dO8XExKhXr1766KOPAtzS+impXMMunGFYAABgEctSyLhx45SUlKSDBw/qmWee0YgRI3TkyJFq5Vwul1auXKmcnBw9/PDDSk9PV15engUtrpt7qZNw1rADAAAWsSSF5Ofna9GiRZo8ebKioqKUnp6ubt26acmSJdXKZmRkqEOHDgoJCdGIESMUGRmpbdu21Vp3UVGRcnNzvR6BUMwadgAAwGKWBLvt27fL5XIpMTHRs61Hjx7aunVrnc/buXOnDh8+rA4dOtRaZsqUKXK5XJ5H69atfdbuunA7MQAAYDXLeuxiY2O9tsXGxio/P7/W55SUlGj06NF68MEH5XK5ai03adIk5eTkeB6ZmZk+a3ddSsoqljvhGjsAAGCVMCt26nQ6qw2R5ubmyul01ljeGKMxY8aoefPmeuyxx+qs2+FwyOFw+Kqp9cY1dgAAwGqWpJDU1FTl5OQoKyvLs23jxo3q2rVrjeXvv/9+7du3T2+++aZCQhpncGIoFgAAWM2SFOJ0OjV8+HBlZGTo+PHjWrx4sbZs2aJhw4ZVK5uRkaFPPvlEixYtsqQnrr6YPAEAAKxmWffSjBkzlJmZqfj4eE2cOFHz589XXFycZs+e7dVzN3nyZH3zzTdKSkqS0+mU0+nU7NmzrWp2rRiKBQAAVrPkGjtJSkhI0LJly6ptHzlypEaOHOn53RhTrUxjxFAsAACwGinERzw9dgQ7AABgEVKIjxS7lzthKBYAAFiEFOIjJQzFAgAAi5FCfOTErFgOKQAAsAYpxEfcPXbhYSx3AgAArEGw8xEmTwAAAKuRQnykiKFYAABgMVKIj5SUVsyKtTMrFgAAWIQU4iMMxQIAAKuRQnykuJRbigEAAGuRQnykxHONHbNiAQCANQh2PsI6dgAAwGqkEB/xXGPHUCwAALAIKcRHirmlGAAAsBgpxEdKyiqWO2FWLAAAsAopxEeKGYoFAAAWI4X4CEOxAADAaqQQH2G5EwAAYDWCnY8wKxYAAFiNFOIjTJ4AAABWI4X4CNfYAQAAq5FCfIQ7TwAAAKuRQnyEa+wAAIDVSCE+4h6K5Ro7AABgFVKIj3iWOwljuRMAAGANgp0PGGOYFQsAACxHCvEB98QJSbJzjR0AALAIKcQH3L11Ej12AADAOqQQHygprdJjR7ADAAAWIYX4gHviRGiITaEhTJ4AAADWINj5QJHnrhOEOgAAYB2CnQ+UcNcJAADQCJBEfMA9ecLBjFgAAGAhkogPFJfSYwcAAKxHEvGBYoZiAQBAI0AS8QH3NXbhDMUCAAALkUR8gMkTAACgMSCJ+ID7GrtwljsBAAAWItj5AD12AACgMSCJ+EBx5XInXGMHAACsRBLxAZY7AQAAjQFJxAcYigUAAI0BScQH3MGOO08AAAArkUR84MRQLLNiAQCAdQh2PsCdJwAAQGNAEvGBklJmxQIAAOuRRHyAyRMAAKAxIIn4QDH3igUAAI0AScQHmDwBAAAaA8uCXXZ2toYOHaqoqCh16tRJq1evrrHc8ePHNWrUKMXExCglJUVz5swJcEtPzT0UGx4aanFLAADAuSzMqh2PGzdOSUlJOnjwoFauXKkRI0bohx9+UFxcnFe5jIwMHT58WHv37tWWLVs0ZMgQ9ezZUx07drSo5dV5euzC6LEDAADWsaTHLj8/X4sWLdLkyZMVFRWl9PR0devWTUuWLKlW9o033lBGRoZiY2PVp08fDR8+XHPnzrWg1bU70WPHyDYAALCOJT1227dvl8vlUmJiomdbjx49tHXrVq9yR44cUVZWltLS0rzKffbZZ7XWXVRUpKKiIs/vubm5Pmx5zUrKWO4EAABYz7Ieu9jYWK9tsbGxys/Pr1YuNDRUUVFRdZarasqUKXK5XJ5H69atfdv4GvQ/v7nuvOI8dUmMPXVhAAAAP7Ek2Dmdzmo9abm5uXI6ndXKlZWV6dixY3WWq2rSpEnKycnxPDIzM33b+BrccFGyfn99F/Vq29Tv+wIAAKiNJcEuNTVVOTk5ysrK8mzbuHGjunbt6lUuLi5OLVu21ObNm+ssV5XD4VBsbKzXAwAA4FxgWY/d8OHDlZGRoePHj2vx4sXasmWLhg0bVq3sqFGj9MQTTygvL0/r16/X4sWLdfPNN1vQagAAgMbNsqv9Z8yYoczMTMXHx2vixImaP3++4uLiNHv2bK8eucmTJ3smWowYMUIzZsxQp06drGo2AABAo2UzxhirG+FPubm5crlcysnJYVgWAACcdRqSZVifAwAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCRJjVDfA39x3TcnNzLW4JAABAw7kzTH3uAhv0wS4vL0+S1Lp1a4tbAgAAcPry8vLkcrnqLGMz9Yl/Z7Hy8nLt27dPMTExstlsftlHbm6uWrdurczMzFPenBf+xXvRePBeNA68D40H70XjcDa+D8YY5eXlKSkpSSEhdV9FF/Q9diEhIUpOTg7IvmJjY8+aD0mw471oPHgvGgfeh8aD96JxONveh1P11LkxeQIAACBIEOwAAACCBMHOBxwOhzIyMuRwOKxuyjmP96Lx4L1oHHgfGg/ei8Yh2N+HoJ88AQAAcK6gxw4AACBIEOwAAACCBMEOAAAgSBDsAAAAggTB7gxlZ2dr6NChioqKUqdOnbR69Wqrm3TOuvrqqxURESGn0ymn06nBgwdb3aRzQkZGhrp06aKQkBDNnTvX629//OMflZCQoKZNm+qhhx6q130Ocfpqey9mzZqlsLAwz7nhdDq1e/duC1sa3IqKivTLX/5SycnJcrlcuvrqq7V582bP3zkvAqeu9yJYzwuC3RkaN26ckpKSdPDgQT3zzDMaMWKEjhw5YnWzzlmzZs1Sfn6+8vPztXz5cqubc05ITU3V9OnT1bt3b6/ty5Yt0wsvvKBPP/1UW7du1dKlSzVz5kyLWnluqO29kKQBAwZ4zo38/HylpKRY0MJzQ2lpqdq1a6f169fr8OHDGj58uNLT0yVxXgRaXe+FFJznBcHuDOTn52vRokWaPHmyoqKilJ6erm7dumnJkiVWNw0ImFGjRmngwIGKiIjw2v7GG2/o3nvvVbt27ZSYmKiJEyfqzTfftKiV54ba3gsEVnR0tP7whz8oOTlZoaGhuu+++7Rjxw4dOnSI8yLA6novghXB7gxs375dLpdLiYmJnm09evTQ1q1bLWzVue3+++9XQkKCBg4cqE2bNlndnHPa119/rbS0NM/vnBvW+uSTTxQfH68uXbroxRdftLo555R169apRYsWio+P57ywWNX3QgrO8yLM6gaczfLz86vdQDg2NlZHjx61pkHnuKlTp6pLly4KDQ3VX//6Vw0ZMkTffvutnE6n1U07J518fsTGxio/P9/CFp27+vbtq82bNyslJUUbNmzQz3/+c7Vo0UI///nPrW5a0MvJydHdd9+tp556ShLnhZVOfi+C9bygx+4MOJ1O5ebmem3Lzc0lSFikd+/ecjqdioyM1EMPPSSn06nPPvvM6mads04+Pzg3rHPeeeepbdu2CgkJ0SWXXKL//d//1TvvvGN1s4JeYWGh0tPTNXToUI0dO1YS54VVanovgvW8INidgdTUVOXk5CgrK8uzbePGjeratauFrYJbSAgfbyt16dLFayYg50bjwbnhf6WlpbrllluUlJSkZ5991rOd8yLwansvThYs50VwvAqLOJ1ODR8+XBkZGTp+/LgWL16sLVu2aNiwYVY37Zxz9OhRrVq1SkVFRSouLtaf//xnHT58WL169bK6aUGvpKREhYWFKi8v9/p51KhReuGFF7Rjxw5lZWVp2rRpGjVqlNXNDWq1vRcrVqxQdna2JOmLL77QX/7yF11//fUWtza43XXXXTp+/LhmzZolm83m2c55EXi1vRdBe14YnJEDBw6YwYMHm8jISJOammpWrVpldZPOSQcOHDA9e/Y00dHRJi4uzvTr18/897//tbpZ54TRo0cbSV6PtWvXGmOMefrpp018fLxp0qSJefDBB015ebm1jQ1ytb0XEyZMMAkJCSY6Otp07NjR/OUvf7G6qUFt586dRpKJiIgw0dHRnsdHH31kjOG8CKS63otgPS9sxrAyIgAAQDBgKBYAACBIEOwAAACCBMEOAAAgSBDsAAAAggTBDgAAIEgQ7AAAAIIEwQ4AACBIEOwAAACCBMEOwDlj9+7datasmV/3sXPnTtlsNjmdTi1cuNBn9W7YsEFOp1MhISFav369z+oFEFzCrG4AAPiS0+n0/FxQUKCoqCjP/SG//vprHTx40O9tcDgcys/P92mdF198sfLz89W2bVuf1gsguBDsAASVqoEqIiJCW7duJQwBOGcwFAvgnLFz505FRER4frfZbHrhhReUkpKiZs2aad68eVq6dKnatWun5s2ba968eZ6yhw8f1m233abmzZurXbt2eu211+q938cee0y333670tPT5XQ6NXDgQB04cEA33XSTYmNjdd111ykvL0+StG3bNl1xxRWKjY1Vs2bN9Jvf/MZ3BwBA0CPYATinffLJJ9q2bZteeOEF3XvvvXr77be1ZcsW/eMf/9B9992nsrIySdLtt9+u1q1bKzMzU8uWLdOkSZO0cePGeu9n4cKFevjhh3XgwAEdPXpUV1xxhe6//34dOHBA+fn5evXVVyVJjz76qIYOHaqcnBzt2rVLN998s19eN4DgRLADcE576KGHFBERoRtuuEFHjx7Vvffeq6ioKA0bNkx5eXnat2+fsrKy9PHHH+vpp5+Ww+FQ586dddttt+lf//pXvfczcOBAXXbZZYqKitKQIUOUmpqqK6+8UhERERo6dKg2bdokSbLb7dqxY4eysrIUHR2t3r17++ulAwhCBDsA57TmzZtLkkJDQ2W325WQkOD5W0REhAoKCrR7924VFBQoPj5eTZo0UZMmTfTSSy9p//79Dd6PJEVGRnrtJzIyUgUFBZKkqVOnqrS0VBdccIF69OihJUuWnOlLBHAOYfIEAJxCq1at1KRJEx06dMjv+0pMTNSrr74qY4wWL16sm2++WUePHlV4eLjf9w3g7EePHQCcQqtWrXTxxRfr0Ucf1bFjx1RaWqovvvhCX3/9tc/3tWDBAu3bt082m01NmjSRzWbzLNcCAKdCsAOAepg9e7Z27drlmTH7wAMP6Pjx4z7fz2effaaePXvK6XTqnnvu0T//+U/Z7Xaf7wdAcLIZY4zVjQCAYLFr1y517txZDodDr7/+uoYPH+6Tej///HMNGDBARUVF+vDDD5lUAaBGBDsAAIAgwVAsAABAkCDYAQAABAmCHQAAQJAg2AEAAAQJgh0AAECQINgBAAAECYIdAABAkCDYAQAABAmCHQAAQJAg2AEAAASJ/w/T9oJqkxzJSgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -745,7 +745,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACOIklEQVR4nO3dd3hUxd4H8O/uZlM2PSEhCQmhhUAoKghID9JUpFgiRS7gFRTk2rAXBFRUfBVBBcu9CqgUQVGKKDU0pUnvJSQhkIT0bDZls2XePwIrKZvsbrZl8/08T57kzJwyO2fyy+ScOXMkQggBIiIiImrQpI4uABERERHVHzt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RGQTJSUleOihh+Dn5weJRIKCggJHF6lOs2fPRtOmTSGRSPDrr786ujh2J4TAE088gaCgIEgkEhw7dszRRbIJiUQCiUSCgIAAq+970qRJhv03xjZEjsVOHZETyszMxLPPPos2bdrA09MTTZs2RZ8+ffDll1+ipKTE0cUzybJly7Bnzx789ddfyMjIgL+/f7V1li5davgDeOvX//73P7uX9+zZs5gzZw6++uorZGRk4N5777Xq/lu0aGH4fAqFAh07dsRXX31l8f5u7TzI5XK0atUKL774IoqLi+vcdufOnTV2tP/44w8sXboUGzduREZGBjp27GhyeY4ePYqEhAQ0bdoUnp6eaNu2LaZMmYILFy6Y+9HsYsmSJZXKdrNOqn6dO3fOsE58fHyN6wwbNsywzsKFC5GRkWHXz0J0k5ujC0BElV2+fBm9e/dGQEAA3nvvPXTq1AlarRYXLlzAt99+i4iICIwYMcLRxaxTUlIS2rdvX2fHwM/PD+fPn6+UVlMH0FrKy8vh7u5eLT0pKQkAMHLkSEgkEov3r9FoIJfLa8x7++23MWXKFKhUKixduhRTp05FQEAARo8ebdGx7rnnHixZsgQajQZ79uzB5MmTUVxcjC+++MKi/SUlJSE8PBy9evUya7uNGzfioYcewtChQ7F8+XK0bt0aWVlZWLNmDWbOnIkff/zRovLYUkBAAEJDQ6ulnz9/Hn5+foblkJAQw89r165FeXm5YTk3Nxe33XYbEhISDGn+/v42bb9EtRJE5FSGDh0qIiMjhUqlqjFfr9cbfv74449Fx44dhUKhEJGRkWLatGmiqKjIkL9kyRLh7+8v/vjjD9GuXTvh7e0thg4dKtLT0w3raDQa8fTTTwt/f38RFBQkXn75ZTFhwgQxcuTIWsv5008/ibi4OOHu7i6io6PFRx99ZMjr37+/AGD46t+/f437uFk+Y1JTU8WIESOEt7e38PX1FQkJCSIzM9OQP3HixGrlfPbZZysdr3///mL69Oni+eefF8HBwaJfv37VjjNr1qxK5b0ZGnU6nZgzZ45o1qyZcHd3F7fddpv4/fffDdslJycLAOLHH38U/fv3Fx4eHuLbb7+t8bNER0eLTz75pFJaTEyMGDNmjNHPX5uaPvvkyZNFWFhYrdvdLPOtXxMnThQTJ06slBYdHW1SOYqLi0WTJk3EqFGjaszPz883aT9VHTt2TMTHxwsfHx/h6+srunTpIg4dOiRUKpXw9fUVa9asqbT++vXrhUKhEEqlUqjVajF9+nQRFhYmPDw8RHR0tHjvvfcM6wIQv/zyS6XtExMTBQCzyvvJJ58IX1/fGn9XazoGka3x9iuRE8nNzcWWLVswffp0eHt717jOrVeRpFIpPv30U5w6dQrLli3Djh078PLLL1dav6SkBB999BG+//577N69G1euXMGLL75oyJ83bx6WL1+OJUuW4M8//4RSqaxzLNDhw4fxyCOPYMyYMTh58iRmz56NmTNnYunSpQAqrmhMmTIFPXv2REZGBtauXWt2XQghMGrUKOTl5WHXrl3YunUrkpKSLLqqtWzZMri5ueHPP/+s8Zbniy++iCVLlgAAMjIyDLfPFi5ciI8//hgfffQRTpw4gaFDh2LEiBG4ePFipe1feeUVPPPMMzh79iyGDh1qcrk8PT2h0WgAAHv27IGPj0+tX++9916t+/Py8jLsz5ioqCj8/PPPACquSmVkZGDhwoVYuHAh3n77bURGRiIjIwOHDh0y6TNs3rwZOTk51drdTbeOW6vr8916y/vRRx9FZGQkDh06hMOHD+PVV1+FXC6Ht7c3xowZYzhfNy1ZsgQPP/wwfH198emnn2L9+vVYvXo1zp8/jx9++AEtWrQw6fPccccdCA8Px8CBA5GYmFjrut988w3GjBlj9HeVyN54+5XIiVy6dAlCCMTGxlZKb9KkCcrKygAA06dPx7x58wAAzz33nGGdli1b4p133sG0adOwePFiQ7pGo8GXX36J1q1bAwD+85//4O233zbkf/bZZ3jttdfwwAMPAAA+//xzbNq0qdZyzp8/HwMHDsTMmTMBAG3btsWZM2fwf//3f5g0aRKCgoKgUCjg7u6OsLCwWvdVWFgIHx8fw7KPjw8yMzOxbds2nDhxAsnJyYiKigIAfP/99+jQoQMOHTqEbt261brfW7Vp0wYffvih0XwfHx9D5+PW8n700Ud45ZVXMGbMGAAVHeDExEQsWLAAixYtMqz33HPP4cEHHzS5PFqtFj/88ANOnjyJadOmAQDuvPPOOh9MCAoKMpp38OBBrFixAgMHDqx1HzKZzLCf0NDQSp0uX19fyGSyOs/ZrW52cNu1a1fnunV9Pi8vL8PPV65cwUsvvWTYb0xMjCFv8uTJ6NWrF9LT0xEREYGcnBxs3LgRW7duNWwbExODPn36QCKRIDo6us6yhYeH4+uvv0bXrl2hVqvx/fffY+DAgdi5cyf69etXbf2DBw/i1KlT+Oabb+rcN5G9sFNH5ISqjuk6ePAg9Ho9Hn30UajVakN6YmIi3nvvPZw5cwZKpRJarRZlZWUoLi42XD1QKBSGDh1Q8ccrKysLQEWH6vr16+jevbshXyaToWvXrtDr9UbLd/bsWYwcObJSWu/evbFgwQLodDrIZDKTP6uvry+OHDliWJZKpYZjREVFGTp0ABAXF4eAgACcPXvWrE7dnXfeafK6NymVSqSnp6N3796V0nv37o3jx49btP9XXnkFb775JtRqNdzd3fHSSy/hySefBFDRoWnTpo1ZZdy4cSN8fHyg1Wqh0WgwcuRIfPbZZ2bto76EECava87nmzFjBiZPnozvv/8egwYNQkJCgqEdd+/eHR06dMB3332HV199Fd9//z2aN29u6HxNmjQJgwcPRmxsLO655x7cf//9GDJkSK3Hi42NrfTPVM+ePZGWloaPPvqoxk7dN998g44dO1b63SFyNN5+JXIibdq0qfbEHQC0atUKbdq0qXQlIzU1Fffddx86duyIn3/+GYcPHzZcPbr1FlzVQfsSiaTaH+Kqnci6/lALIczexhipVIo2bdoYvlq1amX0GFXTpVJptePWdPuxPrfHavqcVdNM3f9LL72EY8eOITU1FSqVCh9++KGhE2vJ7dcBAwbg2LFjOH/+PMrKyrB27doaB//bUtu2bQGgWputiTm3X2fPno3Tp09j2LBh2LFjB+Li4vDLL78Y8idPnmy4BbtkyRI89thjhvPSpUsXJCcn45133kFpaSkeeeQRPPzww2Z/trvuuqvarXagYkjDqlWrMHnyZLP3SWRLvFJH5ESCg4MxePBgfP7553j66adr7Sz8/fff0Gq1+Pjjjw0dg9WrV5t1PH9/fzRt2hQHDx5E3759AQA6nQ5Hjx7F7bffbnS7uLg47N27t1LaX3/9hbZt25p1la42cXFxuHLlCtLS0gxX686cOYPCwkK0b98eQMWTiadOnaq03bFjx4w+fWoOPz8/REREYO/evZWu1Pz1118WX51p0qSJ0atVltx+9fb2NvvqHgDD0786nc7sbasaMmQImjRpgg8//LBSp+umgoICwy1ec26/AhUdxrZt2+L555/H2LFjsWTJEsMwgfHjx+Pll1/Gp59+itOnT2PixImVtvXz88Po0aMxevRoPPzww7jnnnuQl5dX6y3sqo4ePYrw8PBq6atXr4Zarcb48eNN3heRPbBTR+RkFi9ejN69e+POO+/E7Nmz0blzZ0ilUhw6dAjnzp1D165dAQCtW7eGVqvFZ599huHDh+PPP//El19+afbxnn76abz//vto06YN2rVrh88++wz5+fm1TuvxwgsvoFu3bnjnnXcwevRo7Nu3D59//nmlsXz1NWjQIHTu3BmPPvooFixYAK1Wi6eeegr9+/c33O68++678X//93/47rvv0LNnT/zwww84deoU7rjjDquU4aWXXsKsWbPQunVr3H777ViyZAmOHTuG5cuXW2X/t7Lk9quloqOjIZFIsHHjRtx3333w8vKqNK7RHN7e3vjf//6HhIQEjBgxAs888wzatGmDnJwcrF69GleuXMGqVasAmH77tbS0FC+99BIefvhhtGzZElevXsWhQ4fw0EMPGdYJDAzEgw8+iJdeeglDhgxBZGSkIe+TTz5BeHg4br/9dkilUqxZswZhYWG1Tja8YMECtGjRAh06dEB5eTl++OEH/Pzzz4aHSm71zTffYNSoUQgODjaxlojsg7dfiZxM69atcfToUQwaNAivvfYabrvtNtx555347LPP8OKLL+Kdd94BANx+++2YP38+5s2bh44dO2L58uV4//33zT7eK6+8grFjx2LChAno2bMnfHx8MHToUHh6ehrdpkuXLli9ejVWrVqFjh074q233sLbb7+NSZMmWfqxq7k5I39gYCD69euHQYMGoVWrVpXmPBs6dChmzpyJl19+Gd26dUNRUREmTJhgtTI888wzeOGFF/DCCy+gU6dO+OOPP7B+/fpKg/YbombNmmHOnDl49dVX0bRpU/znP/8xuu7NCaJrM3LkSPz111+Qy+UYN24c2rVrh7Fjx6KwsBDvvvuu2eWTyWTIzc3FhAkT0LZtWzzyyCO49957MWfOnErrPf744ygvL8e///3vSuk+Pj6YN28e7rzzTnTr1g0pKSnYtGmT4Yp2TcrLy/Hiiy+ic+fO6Nu3L/bu3Yvffvut2gMwFy5cwN69e/H444+b/bmIbE0iLB0IQ0QuSa/Xo3379njkkUcMHUhqvGbPno2dO3di586dji5KNcuXL8ezzz6L9PT0GieUNkYikeCXX37BqFGjbFY2exyDqCpeqSNq5FJTU/Hf//4XFy5cMEyxkZycjHHjxjm6aOQENm/eXOt0MI5QUlKC06dP4/3338eTTz5pVofuprFjx1a6ZWstU6dOtfhWNlF98UodUSOXlpaGMWPG4NSpUxBCoGPHjvjggw9qnMaBGoapU6fihx9+qDFv/PjxFo29dCazZ8/G3Llz0a9fP6xbt87sTtSlS5cAVNzmbdmypVXLlpWVBaVSCaBi+iBOTEz2xE4dEZGLubVjUZWfn5/dpz0hIvtgp46IiIjIBXBMHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiagQmTZqEDz74wNHFIBtip44IQIsWLaBQKODj4wMfHx+0aNHC0UUiogaOcYXsjZ06oht27NgBlUoFlUqFlJSUavkajcYu5bDXcYjI9pwlrlDjwE4dkRE7d+5Eu3bt8MYbb6BJkyZ47733kJeXhzFjxqBJkyZo06YN/ve//xnWnzRpEp577jn0798fPj4+GDduHDIzMzFo0CD4+/vj0UcfhU6nq/FYLVq0wIcffojY2FjExcXZ6yMSkZ3ZM64kJSWhV69e8PX1xYMPPoiSkhJ7fUxyEDdHF4DImV26dAkKhQIZGRnQ6XR47LHH4ObmhitXruDSpUsYNGgQ2rVrhz59+gAA1qxZg+3btyMkJARdunTB/fffj++++w4RERG48847sXHjRowcObLGY/3666/Ys2cP/Pz87PkRicjO7BVXxo0bhyFDhmDnzp3YtGkTEhIS0KVLF3t/XLIjduqIbhg8eDBkMhkAYNq0aRg6dCgUCgVeffVVyGQySKVS/Pzzz0hKSoJCoUDnzp3x+OOPY+XKlYbgO3r0aLRr1w4AEB8fDx8fH8OVt4EDB+LEiRNGO3XPP/88QkND7fBJicheHBVXUlNTcerUKezZswfu7u4YNWoUevToYcdPTo7A269EN2zduhUFBQUoKCjA+++/DwAIDw83BOTs7GzodDpERkYatomOjkZ6erph+dZOmZeXF0JCQiotFxcXGz3+rfslItfgqLiSkZGB0NBQuLu7G9KioqKs98HIKbFTR1QLiURi+DkkJARSqRRXr141pF25cgURERFWPxYRuS57xJXw8HBkZWWhvLzckJaWllavfZLzY6eOyEQymQwPPvgg3njjDZSWluLUqVP45ptvMGbMGEcXjYgaKFvFlejoaMTFxeG9996DRqPB+vXrcfDgQSuVmpwVO3VEZli0aBHKysoQGRmJESNG4O2330bfvn0dXSwiasBsFVdWrFiBzZs3IygoCEuXLsUDDzxghdKSM5MIIYSjC0FERERE9cMrdUREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgFsFNHRERE5AL4mrB60uv1SE9Ph6+vLyePJWrkhBAoKipCREQEpNL6/8/M+EJEgOmxhZ26ekpPT+erV4iokrS0NKu89o3xhYhuVVdsYaeunnx9fQFUVLSfnx8AQKPRYMuWLRgyZAjkcnmlZQCV8qyt6rGtvV1t6xnLMzXd3GVrcmS91ZZfU7opaY29zRnLs3WbUyqViIqKMsSF+qoaX3ieneM8m8uWdefI2MK4bL+4bGpsYaeunm7eEvHz86vUqVMoFPDz8zOcyJvLACrlWVvVY1t7u9rWM5Znarq5y9bkyHqrLb+mdFPSGnubM5ZnrzZnrVulVeMLz7NznWdr14El2zkytjAu2z8u1xVb+KAEERERkQtgp46IiIjIBbBTd8OMGTPQt29fPPPMM44uChEREZHZ2KkDcOTIEahUKuzZswcajQaHDh1ydJGIiIiIzMIHJQDs27cPgwYNAgAMGjQI+/fvR7du3RxcKiLjhACKyrQoLtIgv6QcOcpS/J0tQe7+K1CqdchVqXHmkhS//nAEao0eGdkyfJ26D2qtQJlGByEAqRSQSiSQSSSQSiXwksvg5+UGP085fD3dEKBwR1M/T0T4eyI8wAsRAZ4I8fHgfGlERE7K5Tp1s2bNwpo1a3Du3DmsWLECY8aMMeRlZ2dj0qRJSExMRFRUFBYvXoyBAweioKAArVu3BgD4+/vj9OnTjio+NVJqrR4FauBsRhGUaj1yi9XILy5HdlEZjl2W4vdVx1FQqkFecfmNLxn0+3dU2YsMuHTulmUpkJNz42cJUFRU73L6erihTVMftA31RUxTH3SI8Ef7pop675eIiOrP5Tp1MTExWLhwIWbOnFktb/r06YiIiEBOTg62bNmChIQEJCUlISAgAEqlEkDFXDABAQF2LjU1NBqdHmUaHVSlauSWARezVNAKCco0epRqdCi78VVUpkVRmRaFJWqcvCzFtjUnUFyuR1GZBkVlWihLNVCWaaFSawG4AUf21XA0KXD9epW0iqtlnnIpAhXu8Pd0g65UidZR4Qjy8YCfhwwZqZfQ/fZO8JDLcPrEMfTqcSe8Pd3hKZdBJpFAJwT0egG9AHR6gVKNtlKZ8ovLkaEsQ0ZBKTIKy3BdWYYitRZHrxTg6JWCf0onAcK9ZNinPYNuLYLRJ6YJmvp52qrqiYjICJfr1I0fPx4AMHfu3ErpKpUK69atQ0pKChQKBUaNGoX58+djw4YN6NmzJ7766is88sgj2LZtGyZNmmR0/2q1Gmq12rB8szOo0Wig0WgMPxv7/mniZRy9JMWun09CIv3nNpYQlY9TabFK5q2Lokq6XuiRkSHF1tXHK90mq33/FdtlZkrxe+ExSI2US6DitUVZ16X4reBo5f0DEHqB61lSbMg/Aonkn+Gaer0eWVlSrM87UmkbnV4gO1uKX3OPQCqVQK/X31g+DEgkEHqB7Bwpfsm5sSwq1v85+29Ibr4mpdrn+iehts8sBKDT66HVC+j0AhqdHvkFMnye9Cd0+oqy6fR6aG7k6/TCsG65tmK7f7gBR/9C3aTA9cxacgUCvT0Q7O2OQG85ghTu8PeSIT/zKu7sGIsmvp4I8naHr7sUJ//eh+FD74avoqLzpNFosHXrVgweHGeYD2nr1osYfFtTAID8mkDvlgH1mkeqXKtHSm4xLmYV42KWCheuq3AqXYmMwjJcK5Fg1aGrWHXoKgAgJtQbvVsHo0+bYPRoGQRPuaza/qr+fhhT23rm5pnyO1rb97qYup4xdcUXU8pX3zIYY25dmLtdQzrP5rJl3dW1jrF8U+qtpjR71p0j21xt+daqO1PKaO56EiGq/ulzDfHx8Zg6darh9uvRo0cxdOhQZGVlGdZ5+umnoVAoMG/ePDz33HM4fPgwbrvtNnz++edG9zt79mzMmTOnWvqKFSugUNR9G+q9YzJcL+WYJFfiLhWQSwG5FHC/8b3iS8BTBni5oeK7DPByq5LmJuAlA3zkFcvSBtg0CtRAqkqClCIJLioluFoMCPzzQdylAnEBAp2DK757udy/kv8oKSnBuHHjUFhYaJhg1Bz1jS9E5JpMjS0uHF4rU6lU1SrCz88PBQUFAIAFCxaYtJ/XXnsNM2bMMCzffHXHgAEDDPvXarVITEzEgAED4ObmVmk5NyADR06fR+tWrSGVSlF1zHmlxSqZEuNZhjy9Xo9Lly4hJibG8NLf2ra7mavX63Dp4sWK7WQyo9vpdXpcuHgBbdu2hUwqq5Sn0+lw4cIFxMbG/nNsScU25y+cR2zbWMhk/1yx0et1OH/+PGJjK9L1ej3OnzuH2Hbt4CaTQqfT49y5c2jXrt2NfB3OnTuH9u3aGcpYd71IjOa5SSWQ3fiSCD1OnzqJLrffBg+5G2RSCdxk0krruN34ksuk8JBL4SWXQir02Llzp+FcG1O1TZiaX1O6KWm3LgOo9dj1dfNYzz0cDzc3NxSUaLA/JR/7Ludhz6U8ZCrVOJYnwbG8ijrv2SoQ93VoigExgTjw5+561Z25ebXVkynLdbl5Zc1SdcUXZzjP5u7f1O0a0nk2ly3rzpGxxdZ158g2V1u+I+KyqbGFV+puXKkz16JFi7Bo0SJDR4b/SRNVJwRwtRg4kSfF8TxJpavU7lKBTkEC3UIE2voLyBrgVcqq6nul7ibGFyK6lamxpdF06lQqFYKDg5GamoqwsDAAQL9+/TB58mRMmDDB4uMolUr4+/sjIyPDpCt1QOP7b9rUdP5H6Bz/EZrLnLq7nFOMzWeysf5EJlLzSg3pTXzcMbxTUyR0iUCL4Mqdl4Z0BUepVCI8PLzenbpb93drfGko59mS7RrSeTYXr9RZhnH5H6bGFpfr1Gk0Guh0OgwZMgRTpkxBQkIC3N3dIZVKkZCQgKCgICxYsABbt27FpEmTkJSUhMDAQLOPw/+kiSwnBJCqAv7OluJIrgTF2n8u08X46dE7TKBToIBbA5senVfqiMgWTI4twsVMnDhR4MbDmDe/EhMThRBCZGVliXvvvVd4eXmJmJgYsXXr1nofr7CwUAAQOTk5ory8XJSXl4vi4mLx66+/iuLi4mrLVfOs/WXp/k3drrb1jOWZmm7usqvUm7l1Z0paQ2pz+coisen4VTHxm/2ixasbRfQrFV9d3t4i3v/ttDh/NcfsNmdJPVmjzeXk5AgAorCwsN6xpab40pDPsy1ii6POszPVnSNji63rjnH5ny9TY4vLPSixdOlSLF26tMa8kJAQbNq0yb4FIqJaucukGNQ+FIPah+JaQSlW/30NPx25hqwiNb7cnYyvdiejY6AUATH56NkmhG+0ICIywuVuv9oLb48Q2Y5OD5zKl+DP6xKcL/znHmykt0D/cD26BDvnrVnefiUiW2j0D0rYCx+UqDuPD0o0rAG55rJ13V3IVOL/1h3C4Vw3lGn1AIBgb3eMvTMCD93eFCcO/uk0A+j5oITl2/FBCcu244MSlm/XkOJyo31Qwl74nzSRfRVrgH1ZEuzOlKKwvOIWrJtEoHuIwIAIPUK9HFxA8EodEdlGo31Qwt74oIRlg0otGYDLAbn2GZDr7HVXXFom1v6dKoZ/ttvwUEWLVzaKJ787JA4nZ1tcT9Zoc3xQwja/I3xQgg9K2LvN2bru+KCEk5PL5dXeq1k1rerP9XkPpyXlseZ2ta1nLM/UdHOXrcmR9VZbvintq6Y0V2xzcjnwQNfmeKBrc+y7lIV3fz6A0/lS/HH6Ov44fR292wRjWv826B7tZ3T/tmpz9mqXjeE8WyPPmWJLffZvynaOiC2My/aLy6Z+fnbqrMSUl2031pdum5rOF0c7x4ujzeXIurstwgdPtNOjxW09sGTfVWw4mYk/L+Xiz0u5iAv3QXcfCe5Wlxvdl7XbnC3r2JQYY+syWLJ/W8YWY3nOFFvqs39TtnN0bGFcNj2tPr+vpq7HMXUW4pgXIueTpwYS06XYlyWBRl8x7q6Jh8CgZnp0C7H9E7McU0dEtsAxdXbCMXWWjT+wZKwGx27YZ+xGQ6o7Y3mZ+Sox77dTov0bGwzj7nq+t038b+cFsWYtx9S5ynm25PfBGufZmeqOY+ps0+ZsXXccU+fkGuv4JnPyOKauYYzdsJQztbmmAXI8P7gtWpRdQn5QHP73ZyrSC8vwzu8X4C+XIS8oHf/q2dKwDcfUWV4Wa2/HMXWWbccxdZZv1xDiMsfU2RnH1HFMXX3Wc6axG+ZyxjZ3M81DBvyrezOM6x6FNYev4es9ychUqvHe7+fx1e5kTLorEk11HFNnahks2T/H1HFMnaUYl6sfsy4cU2chjnkhani0euBAtgTbrkmRp64Yc6dwE4gP16NfmIBXPf/N5Zg6IrIFjqmzE46ps2z8gSVjNTh2wz5jNxpS3Vk61qpAWSRW7E8WfedtN4y56zjrD/HBxpNi+RqOqXOV8+wMscXWdccxdbZpc7auO46pc3Ic31R3HsfUNYyxG5ZyxjZnLE/h6YGxPVpg1G3heO+Hzfir0A9J2cX4Yk8qPKQypClS8ET/NvBxr3nMXW1ltAWOqbMsz5liS332zzF1jMumfn4nfCU2EZF9uMmkuDNEYNN/emHRuC5o19QHar0EX+xORp95OzB/60UU22aYFRGR1fFKnZXwQQk+KFGf9ZxpQK65nLHNGcszVj86nRZD2jdB/9Z++GT1dvxZ6I9zmSp8sTsZHlIZ2nfNR8fIQJM/k7XxQQk+KGHpOnxQwvL1nCku80EJG+NAZiLXJQRwKl+C39Ok0Arg1dt0kErq3o4PShCRLfBBCTvhgxKWDSq1ZAAuB+TaZ0BuQ6o7Ww+gV6lUYtlqPijh6ue5IdcdH5SwTZuzdd3xQQknx0HrdefxQYmGMSDXUs7Y5ozlmdPG/N35oERtZbH2dnxQwrLt+KCE5ds1hLjMByWIiIiIGhF26oiIiIhcADt1RERERC6AY+qshFOacEqT+qznTI/Om8sZ25yxPFu3OU5pYvl2Dek8m4tTmliGcbn6MevCKU0sxCkHiKgqTmlCRLbAKU3shFOaWPb4tyWPyvPRefs8Ot+Q6s7ZprrglCaN4zw7U91xShPbtDlb1x2nNHFynF6i7jxOadIwHp23lDO2OWN5tmpznNKk/ts1hPNsKU5pYhnGZU5pQkRERNSosFNHRERE5ALYqSMiIiJyAezU3ZCWloYuXbrA09MTWq3W0cUhIiIiMgs7dTeEhIRgx44duOuuuxxdFCIiIiKz8enXGzw9PeHp6enoYhARERFZpMFeqZs1axbi4uIglUqxatWqSnnZ2dkYNmwYFAoFYmNjsX37dgeVkoiIiMg+GuyVupiYGCxcuBAzZ86sljd9+nREREQgJycHW7ZsQUJCApKSkqBWqzFmzJhK6/r4+GDjxo32KjYRERGRTTTYTt348eMBAHPnzq2UrlKpsG7dOqSkpEChUGDUqFGYP38+NmzYgAkTJmDnzp31Oq5arYZarTYsK5VKAHz3a215fPdrw3rHoLmcsc0Zy3P2d7/WFV94np3jPJuL7361DONy9WPWpcG/+zU+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P2VlZbj//vtx+PBhdOnSBbNnz0bfvn2rrTd79mzMmTOnWjrfzUhE9X33K+MLEdXE1NjSYK/UGaNSqap9YD8/PxQUFNS6naenJ7Zt21bn/l977TXMmDHDsKxUKhEVFYUBAwYYjqvVapGYmIgBAwbAzc2t0jKASnnWVvXY1t6utvWM5Zmabu6yNTmy3mrLryndlLTG3uaM5dm6zd28smapuuILz7NznGdz2bLuHBlbGJftF5dNjS28UmehRYsWYdGiRdDpdLhw4QL/kyaiel+pu4nxhYhuZWpscblOnUqlQnBwMFJTUxEWFgYA6NevHyZPnowJEyZY/fhKpRL+/v7IyMjglTpeqbN4PWf6j9BcztjmjOXZ40pdeHh4vTt1t+7v1vjC8+wc59lcvFJnGcblf5gaWxpsp06j0UCn02HIkCGYMmUKEhIS4O7uDqlUioSEBAQFBWHBggXYunUrJk2ahKSkJAQGBlrt+PxPmoiq4pU6IrIFl79SN2nSJCxbtqxSWmJiIuLj45GdnY2JEydi586diIyMxOLFizFo0CCblINX6urO45W6hvUfobmcsc0Zy+OVOsvxPFuOV+osw7j8D6e9UldaWoq33noLa9asQV5eHpRKJTZv3oyzZ8/iueees2dR6oX/SRNRVbxSR0S2YHJsEXY2adIk8eijj4qTJ0+KgIAAIYQQ6enpIjY21t5FsYrCwkIBQOTk5Ijy8nJRXl4uiouLxa+//iqKi4urLVfNs/aXpfs3dbva1jOWZ2q6ucuuUm/m1p0paY29zVlST9Zoczk5OQKAKCwstEl84Xl2jvPsTHXnyNhi67pjXP7ny9TYYvcpTX777TekpaXBw8MDEokEABAeHo6MjAx7F4WIiIjIZdj99mvbtm2xY8cOREZGIigoCHl5eUhOTsZ9992Hs2fP2rMo9cLbI0RUFW+/EpEtOO3t188//1zcfvvtYs2aNcLPz09s2LBB9OjRQ3z55Zf2LopV8ParZZeqLbmsz8v89rnM35Dqztluy/H2a+M4z85Ud7z9aps2Z+u6c5nbr9OnT0doaCi++eYbREZG4tNPP8Xzzz+P0aNH27soRERERC6jwU5p4mi8PUJEVfH2KxHZglPNU/fhhx+atN7LL79s45JY3815pHJycgwVrdFosHXrVgwePBhyubzSMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2brNKZVKNGnSxOrz1N2MLzzPznGezWXLunNkbGFctl9cNjW22OX2660PQJSUlOCXX35Bjx49EBUVhbS0NBw8eBAPPvigPYpiM3K5vNqJqZpW9WdbBI/67t/U7Wpbz1ieqenmLluTI+uttnxT2ldNaY29zRnLs1Wbs1e75Hk2Lc+ZYkt99m/Kdo6ILYzL9ovLpn5+u3TqlixZYvj5oYcewpo1azBy5EhD2vr16/Hdd9/Zoyg2o9FooNFoDD/X9r3qz9YuhyX7N3W72tYzlmdqurnfrcmR9VZbfm1tp7a0xt7mjOXZus3Zso5NiTG2LoMl+3fF82wuW9ado2ML47LpafX5fTV1PbuPqfP390dubm61V24EBwejsLDQnkWpF455IaKqOKaOiGzBaac06dWrl5g1a5bQaDRCCCE0Go2YM2eO6Nmzp72LYhWc0sSyx78teVSej87b59H5hlR3zjbVBac0aRzn2ZnqjlOa2KbN2bruXGZKk++//x7jxo3Dxx9/jNDQUGRlZSEuLg7Lly+3d1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e0awnm2FMfUWYZx2cnG1N2qVatW2L9/P65cuYKMjAyEh4ejefPm9i4GERERkUuxe6cuKysLAODp6YmWLVtWSgsNDbV3cayGD0rwQYn6rOdMA3LN5YxtzlgeH5SoXxks2b8rnmdz8UEJyzAuVz9mXez+oIRUKoVEIsHNw0okEkOeTqezZ1HqhQOZiagqPihBRLbgtA9KVJWRkSGmT58uvvvuO0cXxSJ8UMKyQaWWDMDlgFz7DMhtSHXnbAPo+aBE4zjPzlR3fFDCNm3O1nXnNA9KHDt2DLfffruFfc3qwsLCMH/+fLRq1Qr/+te/rLZfe+Og9brz+KBEwxiQaylnbHPG8vighPXKYu3tGsJ5thQflLAM47LpsUVq0lq3GDFiBOLi4vDOO+8gKSnJ3M1rdODAAWi1Wqvsi4iIiKgxMvtK3ZUrV7Bnzx6sXLkSPXv2RMuWLTFu3DiMHj0aYWFhdW7fvn37SuPoSkpKkJubi4ULF5pbFCIiIiK6waKnX/v27Yu+ffvis88+w+bNm/HSSy/hxRdfRHx8PP79739j9OjRkEprvgj45ZdfVlr29vZG27ZtrfLyayIiIqLGyuIpTY4fP45Vq1Zh5cqVCAwMxAcffIBmzZrhiy++wMqVK7F+/foatzt06BBefPHFaunz58/HjBkzLC2Ow3FKE05pUp/1nOnReXM5Y5szlscpTepXBkv274rn2Vyc0sQyjMvVj1kXs6c0efvtt7Fy5UqUlZVh7NixGD9+POLi4gz5paWlCA4ORklJSY3b+/n5QalUVksPDg5Gbm6uOUVxKE45QERVcUoTIrIFm01pMmXKFLFr165a1zl69Gi1tB9//FH8+OOPwsvLS6xevdqw/OOPP4p58+aJNm3amFsUp8ApTSx7/NuSR+X56Lx9Hp1vSHXnbFNdcEqTxnGenanuOKWJbdqcrevOaaY0+frrr+tcp6YpT7744gsAQHl5ORYvXmxIl0gkCA0NxdKlS80tilPh9BJ153FKk4bx6LylnLHNGcvjlCbWK4u1t2sI59lSnNLEMozLTvju18TERADAu+++izfffNNehyUiIiJqFOzSqcvJyUGTJk0AAE888YThXa9VNeR3vxIRERE5kl06dS1btkRRURGAijdI3Pru15skEkmDevcrERERkTOxqFOXmpqKn376Cenp6YiIiMCDDz6Ili1bGl3/ZocOAPR6vSWHtLldu3bh1VdfhUwmQ/fu3TF//nxHF4mIiIjIZGa/Jmzjxo3o3LkzDh8+DHd3dxw5cgR33HEHNmzYYIvy2U2bNm2wc+dO7N27F5mZmTh58qSji0RERERkMrOv1L322mtYt24d4uPjDWm7d+/GtGnTMHz48Dq3T0tLw9tvv43jx49DpVJVyjtz5oy5xbGaZs2aGX6Wy+WQyWQOKwsRERGRuczu1F27dg29e/eulNazZ0+kp6ebtP3o0aMRExODOXPm1GsyzVmzZmHNmjU4d+4cVqxYgTFjxhjysrOzMWnSJCQmJiIqKgqLFy/GwIEDTdrvkSNHkJOTU2lCZSIiIiJnZ3Kn7urVq4iMjESPHj0we/ZszJ49G3K5HBqNBnPmzEGPHj1M2s+pU6ewd+9eo++GNVVMTAwWLlyImTNnVsubPn06IiIikJOTgy1btiAhIQFJSUlQq9WVOn8A4OPjg40bNwIAMjMz8cwzz+Dnn3+uV9mIiIiI7M3kTl1cXByUSiW++uorjB07FkFBQQgNDUVWVhY6deqEVatWmbSfe+65B/v370evXr0sLjQAjB8/HgAwd+7cSukqlQrr1q1DSkoKFAoFRo0ahfnz52PDhg2YMGECdu7cWeP+ysrKMG7cOHz22Wdo2rRpvcpGREREZG8md+puTkHSvHlz/Pnnn0hLSzM8/RoVFWXyAb28vHDPPfdgyJAh1ealu/VNE5a6ePEi/P39ER4ebki77bbbcPr06Vq3W7JkCc6cOYPnn38eAPD++++jZ8+e1dZTq9VQq9WG5ZvvsTXlZduN9aXbpqbzxdHO8eJoczljmzOWZ+s2V986riu+8Dw7x3k2ly3rztGxhXHZ9LT6/L6aup5EVJ0wzghfX1+cOXOm2vxyt2revHmd+5kzZ47RvFmzZplSlEri4+MxdepUw23VPXv24LHHHsOlS5cM67zxxhsoKCjAokWLzN5/VbNnz67xM/CF20Rk8ku3jWB8IaKamBpbTL5SV1xcjNjYWKOdOolEgpKSkjr3Y0nHzRw+Pj6G/25vUiqV8PHxscr+X3vtNcyYMQP//e9/8d///hc6na5SB5KIyFKML0RUH2Zdqbt1EmFLffjhhzWme3h4IDIyEgMHDkRAQIDJ+6t6pU6lUiE4OBipqakICwsDAPTr1w+TJ0/GhAkT6l3+qpRKJfz9/ZGRkWHoPWu1WiQmJmLAgAFwc3OrtAygUp61VT22tberbT1jeaamm7tsTY6st9rya0o3Ja2xtzljebZuc0qlEuHh4RZfqatpf7fGF55n5zjP5rJl3TkytjAu2y8umxpbTO7U+fn5VbsCZokxY8bgl19+QY8ePRAZGYmrV6/iwIEDGD58ONLT03HmzBmsXbsWd999d6370Wg00Ol0GDJkCKZMmYKEhAS4u7tDKpUiISEBQUFBWLBgAbZu3YpJkyYhKSkJgYGB9S7/TYsWLcKiRYug0+lw4cIF3h4honrffr2J8YWIbmVqbLH7lbqHH34YkyZNwv33329I++2337B06VKsWbMGy5cvx//93//h2LFjte5n0qRJWLZsWaW0xMRExMfHIzs7GxMnTsTOnTsRGRmJxYsXY9CgQfUue01u/iedk5NjqGiNRoOtW7di8ODBhmlfbi4DqJRnbVWPbe3talvPWJ6p6eYuW5Mj6622/JrSTUlr7G3OWJ6t25xSqUSTJk2sfqXuZnzheXaO82wuW9WdRqfHtTwV1m/fi+axnaEq16OwVIvCUg0KSjUoUWtRrtUhMysbfgFB0ImKoVLuMincpEB+bjaiIsIR5O2OAIUcvh4ypF06h0G9uqJFiC+a+nlCr9MyLjtBXDY1tph8PdMaHTqg4kP8+OOPldKGDh2KcePGAQDGjh2LadOm1bmfpUuXYunSpTXmhYSEYNOmTfUuKxERkSPpBZCWX4qU/AJcylIhKbsYyTnFSC8sQ1aRGhWXZdyA07W9kUkKFBTUmH4i73qVNBm+v3QMAOAmlSDc3wPeeimO4xLiIvzRpokXdM75CneCGVfqrKVnz56477778Nprr8HNzQ06nQ7vv/8+Nm7ciP379yM1NRV9+/bFlStX7Fkss/H2CBFVxduvVB9CANllwBWVBFdUEqSqJLhWAmj0EqPbyCQCge6AvzvgLRfwdgMUboCXm4CnDHCTADJpxXepBBAAtHpAJyq+l+uBEq0ExVqgRAOotEBBuQT5akAnaj6uXCoQ7SPQ2hdo7SfQwlfAg2/WtCmr3361lgsXLmDcuHG4cOGCYfLi2NhYrFixAjExMTh48CCuXr2KBx980J7FshgflKg7jw9KNKwBueZyxjZnLI8PSliO59lyxvavFwIXs4pxMCUf+5MLcPhKAZRl2mrbu8skaNlEgdZNvNE6xBstmyjQzN8T4f6e8POQYNfOnVaPLRKpDNkqNVJzivHHX0chCYzEhawSXMhSQaXWVTqGTCLQo2UQBrRtgvi2TdAswNOm9Wat7RpSXLb6gxLWlpKSguvXryMsLAzR0dGOKEK98D9pIqqKV+qoLoXlwJl8Cc4VSHBRKUGxtvLVMDeJQKQ30NxHGL5CPCuusjkDIYDrpcDlIgmSlBVf+eWVCxfpLdAtRI8uwQJ+7g4qqItx2it1N5WUlCA3N7fSvHemTF7sbPigRN15fFCiYQ3INZcztjljeXxQwnI8z5YRQuBEWj6++f0AruoDcDK98vh0hbsMXZsHoEfLINzVKgjtw3zh7iat83ObUje15VsjtsjlcpSXl2P5hm1QN4nF7kt5OJyaD/2NP+syqQS9Wwdh9J2RGNguFDIze6aMy/+w+oMS1nLy5ElMmDABJ06cAFDxJA4AuLu7mzR5sbOSy+XVTkzVtKo/2yLw1nf/pm5X23rG8kxNN3fZmhxZb7Xlm9K+akpr7G3OWJ6t2py92iXPs2l5jootQgicvFaIjScysPF4OtILywDIAFR06G6L9Mfd7Zqid5tgdI4MMHTijDGlXI6ILTeXm3oB9/VvjacHtUNecTl+O5GOn49cw7G0Auy+mIvdF3PRLMALE3pGY3S3KAQozLt8x7hsemyxe6du6tSpGDlyJPbt24fw8HBkZGTgrbfeQuvWre1dFKvSaPjuV2N5pqab+92aHFlvteXX1nZqS2vsbc5Ynq3bnC3r2JQYY+syWLJ/VzzPxly4XoSNJzPx28lMXMkrNaR7yaVo46PFI33aY2D7MIT4evyzkdBBo9HVsDfTyuXo2FL1u6+7BGPubIYxdzZDck4x1h5Nx49/X8W1glK8//s5fLLtAsbcGYkpfVsi9NZ6sPDz12c7R9edKWU0dz27334NCAhAXl4epFIpAgMDkZ+fj/LycrRq1QpXr161Z1HqhWNeiKgqjqlrfFQa4FC2BAeypcgo+ef2olwq0DFQ4I5ggfYBAu6N+OnQch1wJFeC3RlSXLtRR3KJQM+mAoOa6eHPcXd1Mjm2CDuLjo4Wubm5QgghOnToII4dOyauXLki/P397V0UqygsLBQARE5OjigvLxfl5eWiuLhY/Prrr6K4uLjactU8a39Zun9Tt6ttPWN5pqabu+wq9WZu3ZmS1tjbnCX1ZI02l5OTIwCIwsJCm8QXnmfnOM8lpWVi88lrYsqyg6L1a7+J6Fc2iuhXNoo2r/8mHl9yQKz9O1XkF5XYpe4cGVvM/WxqtVpsP5MuHli011Bnbd/YJD7YdFrk3VJfztDmbF13tootdr/9OnnyZOzatQsPPPAAnn32WfTt2xdSqRRTpkyxd1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e2c+Tyn5ZVgxcEr+PnwVWQVqQ3pnSP9kXBnFEZ0joC/wvzf77o4+5g6U8sIAHe3D8eAdmH481IuPtl2AYdT8/HFrmT8dCQdLw5pi4e7RlV7oIJx2YnH1L355puGn6dMmYIhQ4ZApVKhQ4cO9i6KVXFMHcfU1Wc9Zxq7YS5nbHPG8jimrn5lsGT/Df086/UCfybl4vsDV7DzQg5uDlgKVMgx8rZwPNSlGdqF+VY7tqnlr01DHFNnqh4t/LHy8Tux7Ww25m2+gNS8Erzy80ks+ysF74yIQ+dIf8blGo5ZF7uNqYuLi6tznTNnanvNiXPhmBciqopj6lxHiRY4mC3Bnkwpcsr+uXIU669Hr6YV4+XqeGiVTKTVA3syJdh8VYpSnQQSCPQNExjWXA/PRjwW8VZON0+dl5cXmjdvjkcffRT9+vUzTGVyq/79+9ujKFbFeerqzjM13dxla3JkvdWWX1O6KWmNvc0Zy7N1m+M8dZZv5yznOSVPjWX7r2D98XSUaipecurj4YYH74jAo92j0CrE2+TPbm4dWLKdI2OLteNyrkqN936/gPUnMgAAYX4euD+8BDNGD2r0cdnp5qnLysrC2rVrsXz5cixduhQJCQl49NFH0blzZ3sVwaZsdR/dmuWx5naWjHsxNd1aYzcswbEblnPGNmcsz1Ztzl7tkufZtDxTz6sQAucLJfh55QnsvphryI9t6osJvaIx6vZm8Pao/59LW9adI2KLtdtdWKAcn47rgoRu2Xjjl1O4kleC/yllyN94HrNHdISvp3n7d6W4bGrd2u3isa+vLyZOnIgtW7Zg3759iIiIwBNPPIFOnTo1qNuuRETkGjQ6PX45ehUjF+/H4jMy7L6YC6kEuLdjGH584i788VxfPNoj2iodOjJd35gQbH6uHx7vHQ0JBH4+ko57F+7BweQ8RxfN6TmkpXp4eMDLywuenp7Izc2FXq93RDGsypRBzI11MLOp6bYakGsKDsi1nDO2OWN5tm5ztqxjU2KMrctgyf6d8TznFZVi+zUJ3p+/B5nKiqdY3aUCD3eNxL/7tER0UMX4Ra1Wa8pHrJMt687RscVWcdlNArwwsBUUBUlYe80HV/NLMfrrfZjSpwWevbtNrW/hcMW4bOp6dhtTp1arsX79evzwww84evQoRo0ahXHjxuGuu+6yx+GtjgOZiagqPijh3ArUQGKGFPuyJFDrKsZ1+8oF+oXp0bupgLft7lpTPZRpgbUpUhzIrujItfARmNhWh6DaX0jhUpzuQYmAgACEhYVh7NixGDx4MNzcql8k7N69uz2KYlV8UKLuPFPTzV22JkfWW235NaWbktbY25yxPFu3OT4oYfl2tjzPl64X4u3V+3AoRwbtjbfNh3kJ/Gdwe4y6IxJSoWuwdefI2GLvuLzlzHW89stpKMu0CPCS48OHOmJAbIjZdWLqes4Ul53uQYmAgACo1WosXboUy5YtQ9W+pEQiweXLl+1VHKuz1eBIa5bHmttZMpjZ1HR7DMg1xpH1Vlu+PQfkWsoZ25yxPFu1OXu1S55n0/Iu55bh673nsfFEOvRCCkCgR8sgTO4TjeKLhzCsW3PDH1tzymgpW9adI2KLvePysNsi0TkqCNNXHMGJq4V44oejmBbfGi8Mbgs3WfXbsa4Ul02tW7t16lJSUux1KCIiasSOpRXgv+ekOLVvnyEtLkCPtx7ugbvahEKj0WDTJQcWkCwWFaTAmqk98f6mc1j6Vwq+2JmEo1fysWhcFwT7NKL7sUZw6kQiImrwhBD481IOxv13PxK+PohT+VJIJMCwTuFY99RdeLK9Hl2jAx1dTLICDzcZZo/ogEXjusDbXYb9l/Mw4vM/cSZd6eiiORyf0yYiogZLrxc4mSfBt18fxPGrhQAAN6kEXYN1eHtsX8RGBECj0SDlqIMLSlY3rHM4Ypr6YMp3fyM1twQPffEXPn7kNgxu18TRRXMYduqsxJTpBhrrtAOmpjvq0fn67NsVH503lzO2OWN5tm5ztqxjU2KMrctgyf5tdZ71eoEtZ7PweeIlnL8uA1AIDzcpHunaDBPvisTpg3sQFeBuVmxuiHXn6Nji6LjcMsgTPz3RA8+tPoE/k3Lx1PIjmNY3Gm2Fa8VlU9ez29OvroZTDhBRVZzSxPb0AjiRJ8EfaVJklFZMS+IhE+jTVCA+XA8/dwcXkBxCJ4D1qVLszKgYVdY5SI9/tdHD3UXeHWtybBFUL4WFhQKAyMnJEeXl5aK8vFwUFxeLX3/9VRQXF1dbrppn7S9L92/qdrWtZyzP1HRzl12l3sytO1PSGnubs6SerNHmcnJyBABRWFhok/jSmM/z2l9+FWsPJYvBH+8U0a9sFNGvbBQd3vpDfLDxpFi+xr7n2ZnqzpGxxdZ1Z8m+fzyQItq8/puIfmWjuH/hLpGeV+SUdWer2MLbr1bC6SXqzuOUJg3j0XlLOWObM5bHKU2sVxZrb1d1Pb1e4PdTmfjwuAwZ+08DAHw93PBYn5Z4vHdLKOTApk1Jdj3PluKUJpYxZ9+PdI9GVJAXHl96ECfTi5Dw9UEsfawb2oT6Wrx/Z4jLTjelCRERkan0eoFNpzLw6faLuHBdBUACX083/Lt3S/y7d0v4K/6Z4JXoVndGB+L5jjp8f8UXV/JK8eDiv/DVv+5Ez9bBji6azbFTR0RETkOnF/jjeDo+23GzMwf4erqhdxM15k4YgGA/ji2kuoV6Aauf6IHpK4/jcGo+Jnx7APMe6owHu0Q6umg2xXnqiIjI4XR6gSM5Etz/+V94euVRXLiugq+nG54bFIOdM/ri3igBPy/b3Rol1xPs7Y7lk3tgWKdwaHQCM1Yfx6LES9XeaOVKeKXuhvT0dDz88MNwc3ODn58fVq9ezafNiIhsTKcX+O1kBhZuu4CkbBmAYvh5uuHxPq0wqXcL+HvJeYuVLOYpl+GzsXcgMsgLX+26jP/bfB65qnK8Oay9o4tmE+zU3dC0aVPs3bsXUqkUs2bNwm+//YaEhARHF4uIyCXd7Mx9uv0iLmVV3Gb1kgk80b8NHu/XGn6evCpH1iGVSvDave0R6uuJdzaewbd/JiOvWI25I+McXTSrY6fuBpnsn8lsJBIJYmNjHVgaIiLXpNcL/HE6E59svYCLNzpzfp5ueKxXNMKLzuOhAa1t+gQqNV6P92mJYG93vLjmOH49lo5clRrDgxxdKutqsGPqZs2ahbi4OEilUqxatapSXnZ2NoYNGwaFQoHY2Fhs377dpH3u3bsXXbt2xbZt2xAdHW2LYhMRNUpCCGw9cx3DPtuLp5YfwcUsFfw83TBjcFvsffVu/GdAa3jxMgPZ2Kg7muG/E++El1yGPZdyseiMDPkl5Y4ultU02E5dTEwMFi5ciO7du1fLmz59OiIiIpCTk4N58+YhISEB+fn5yMzMRHx8fKWv+++/37Bdnz59cPjwYYwaNQrffvutPT8OEZFLEkLgbL4ED391AFO++xtnM5Tw8XDDMwNjsOeVu/HMwBjeaiW7GhAbiuVTeiDAS45UlQRj/3cI6QWlji6WVTTY/4vGjx8PAJg7d26ldJVKhXXr1iElJQUKhQKjRo3C/PnzsWHDBkyYMAE7d+6scX9qtRoeHh4AAH9/f+h0OqPrqdVqw7JSqQTAd7/Wlsd3vzasdwyayxnbnLE8Z3/3a13xpaGd5/2X8/DJtos4kiYDoISXXIoJd0Xj8T7RCFS417jfhnCezcV3v1rGlvXWKdwH3026AxO+OYCk7GI89MVfWDapK1o28a5zP3z3qw3Fx8dj6tSpGDNmDADg6NGjGDp0KLKysgzrPP3001AoFJg3b57R/ezduxdvvPEGpFIpgoKC8P3339f49Ovs2bMxZ86caul8NyMR1ffdr64SXy4rgU1pUlxUVtwMkksEeocJDGqmhy8vypETyVcDX5yV4XqpBL5ygafa6xDhXfd29mZqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFAYMGGA4rlarRWJiIgYMGAA3N7dKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii/Ofp5PXFPi853J2JuUBwBwk0rw8B1hiEMaRg11nfNsLlv+jjgytrhKXF71xF2Y9uNpnMtU4cuLnvjvo7ehY0T137fa9m/ruGxqbOGVOgstWrQIixYtgk6nw4ULFxrcf9JEZH31vVJ3U0OLL1eLgd/TpDiVX3FlTioR6BEiMCRSjyAPBxeOyAQlWuDLszKkqiTwkAk82U6H1pb/CludqbHF5Tp1KpUKwcHBSE1NRVhYGACgX79+mDx5MiZMmGD14yuVSvj7+yMjI4NX6nilzuL1nOk/QnM5Y5szlmePK3Xh4eH17tTdur9b44uzneeLWcVYtCsZW85mAwCkEmBE5zBM69cCUYFeRrczdf+W5jlTbDGnDizZjlfqLN+u6nrFai2mrzqJg6kF8HSTYsHDcVCnHnOKuGxqbGmwnTqNRgOdTochQ4ZgypQpSEhIgLu7O6RSKRISEhAUFIQFCxZg69atmDRpEpKSkhAYGGi14ze0/6SJyPYay5W6rFLgj6tSHMmRQEACCQTuCBa4J0qPpl6OLh2R5cp1wLcXpDhbIIVMIvBYWz06BTm+m+TyV+omTZqEZcuWVUpLTExEfHw8srOzMXHiROzcuRORkZFYvHgxBg0aZJNy8Epd3Xm8UscrdfXZriFdwXH1K3U//Z6I47pm2HDyOvQ3/nIMbheC/8S3QEyoj9HtXO08m4tX6izjqNhSrtPj5bVnsOVsNqQQeG9kO4y4LaLW7XilroFz9v+kicj+XPVKXb4a2HJViv3ZEuiFBADQIVCP+6L0iHTCJwWJ6ksngJVJUhzKlkICgdGt9OjZ1HHdJZNji6B6KSwsFABETk6OKC8vF+Xl5aK4uFj8+uuvori4uNpy1Txrf1m6f1O3q209Y3mmppu77Cr1Zm7dmZLW2NucJfVkjTaXk5MjAIjCwkKbxBd7n+eruUXizbXHRZvXfxPRr2wU0a9sFOO++lMcTMpq1OfZmX5HHBlbbF13jo7LRSqVGDd/vaHtL9mbZLW6s1VscbkpTYiIqH5yVWp8vScFyw+mQa3VAwC6RQegp08Opj50O9/NSo2CVCJBQks92rSMxrL9aZi94Sx0eoGxXcMdXTSjePvVQs52e4SIHK+h334t1gA7MqTYnSFBub7iNmsLH4H7muvR1k9AIrF5EYicjhDAhitSbE+vmLJnVLQOAyLs23Xi7Vc74e1Xyy7zW3JZ35Uv8/P2q3XbnCX1ZI0211Bvv+Yqi8VHf5wRHd76w3Cr6f5Pd4utp64JtVrN8+zEvyO8/WqbNlc1X61Wiw82nTb8fjy9aB1vvxIRkfMoVmvx3f4r+ObPFBSWagEA7Zr64NmBbTCwXQgkvDRHBACQSCR4fmAbuEkl+CzxMtZfkaHV3lRMH9DG0UWrhLdfLcTbr0RUVUO5/VquA/Zel2DbNSmKtRUdt6ZeAvdG6XFbkICUfTkiozZflWBTmgwAcF+UDkMjbd+N4u1XO+HtV8su81tyWb+xXOavK523Xy3Pa+y3X4uKS8V/d10Ud76zxXAbqd+8HWLNwRRRWqbmeW6AvyO8/WqbNldX3U1ftM7wO/R/v58RKpWKt19diVwur/ZEWNW0qj/b8gkyS/dv6na1rWcsz9R0c5etyZH1Vlu+Ke2rprTG3uaM5dmqzdmrXZp7nsu1eqw5nIbPd1xCRmEZAKBZgBeeHRiDB7s0g5tManFZrL1dQzjPlrJl3TkitjTmuDy4mUBc+xh8uPkiPt95GTohECtsF5dN/fzs1FmJRqOBRqMx/Fzb96o/W7scluzf1O1qW89Ynqnp5n63JkfWW235tbWd2tIae5szlmfrNmfLOjYlxlT9WavT49fjGViUmISrBRWduaZ+Hniqfys83KUZ3N2kEHodNHqdSWWoun9Ty27Kdg3pPJvLlnXn6NjSmOPypB6RcJNK8d7v5/HFrmQMjJBicHm50e3rE5dNXY9j6izEMXVEVJWzjKnTC+BIjgR/XJUiu6xigJyvXGBwMz16NRWQm35hjojqsDtDgp9TKsbYxYfrMSpab/Xpfzimzk44ps6ysRuWjNVorGM3OKau4Yy1cvSYurW//CrWHkoWAz9KNIz3uX3OZrF4xwVRqCrleeaYOrPqzdF115Di8v92XjD8zs1Zd1Ko1WqOqWvIOL6p7jyOqeOYuvps1xDGWjlyTN32c1n46IQM1/afBgD4ebrhyf6tMbFXC/h4WC/U8zxbjmPqLNMQ4vKEXi1w/vxZrL4sw7d/pUImk+KlwW1q3J5j6oiIqFZrDl/DtRIJvD1keLxPKzzepyX8vfg6LyJ76d1UoEOH9pi14Sz+uycZQgh0tPMAN3bqrIQPSvBBifqsxwclLFvP2QbQO/JBien9WkCivI63x/VBiL/C6uXhebYcH5SwTEOMywl3hEEAmL3hLP63N6XSwxN8UMKJ8UEJIqrKWR6UICLH2pMpwU/JFQ9PDIrQ4/7m9Xt4gg9K2AkflLBsUKklA3A5INf0tMbe5iypJ2u0OUc/KMHzbJ/z7Ex1xwclbNPmrFF3/9153vDwxPu/na40QTEflHByHLRedx4flOCDEvXZriEMoHfkgxLG8mxdFmtv1xDOs6X4oIRlGmpcntirJc6ePYefU2T4cncyJIBhgmJLymgKzlZEREREZAP9wgXevC8WAPDF7mRsSpNC2HDUGzt1RERERDYysWc0Zt4fBwDYck2KT3ck2exYvP1KREREZEOP92kJnU6H934/j893XoZEArSxwXHYqbMSTmnCKU3qsx6nNLFsPWeb6sKRU5rYowyW7N8Vz7O5OKWJZVwtLo/vFoEzZ87g11QZPku8jHsiJRjMKU2cA6ccIKKqOKUJEdVlR7oE61IrpjsZ3UqHXk3r7oZxShM74ZQmlj3+bcmj8nx03vS0xt7mLKkna7Q5TmnSOM6zM9UdpzSxTZuzdd19uvWs6P32BnEtp8Ckz8QpTeyM00vUnccpTTilSX22awhTXXBKk/pv1xDOs6U4pYllXDEuT+3fGhFF5xHip+CUJkREREQNmZsNemDs1BERERG5AHbqiIiIiFwAO3VERERELoAPStSTuDEjjFKpNKRpNBqUlJRAqVRCLpdXWgZQKc/aqh7b2tvVtp6xPFPTzV22JkfWW235NaWbktbY25yxPFu3uZv1Law0U1TV+MLz7Bzn2Vy2rDtHxhbGZfvFZVNjCzt19VRUVAQAiIqKcnBJiMhZFBUVwd/f3yr7ARhfiKhCXbGFkw/Xk16vR3p6Onx9fSGRSAzp3bp1w6FDh6otK5VKREVFIS0trV6Tk9am6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9//3q/G7IxYt1ZhvVmuYZUdw2prM6GdWc51p1lbFVvvFJnZx4eHpg1axY8PDwcXZQGh3VnGdab5RpS3TWksjob1p3lWHeWsVW98UodERERkQvglToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtwcXYCGTq/XIz09Hb6+vpBIJI4uDhE5kBACRUVFiIiIgFRa//+ZGV+ICDA9trBTV0/p6emIiopydDGIyImkpaUhMjKy3vthfCGiW9UVW9ipqydfX18AFRXt5+cHANBoNNiyZQuGDBkCuVxeaRlApTxrq3psa29X23rG8kxNN3fZmhxZb7Xl15RuSlpjb3PG8mzd5pRKJaKiogxxob6qxheeZ+c4z+ayZd05MrYwLtsvLpsaW9ipq6ebt0T8/PwqdeoUCgX8/PwMJ/LmMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2avNWetWadX4wvPsXOfZ2nVgyXaOjC2My/aPy3XFFj4oQUREROQC2KkjIiIicgHs1BERERG5AI6pQ8UTZg8//DDc3Nzg5+eH1atXQ6FQOLpYRORgRWUaJBc5uhRERKbhlToATZs2xd69e7F792507doVv/32m6OLREQOIIRAZgnw373JGP3VPnR7fye+OiuDRqd3dNGIiOrEK3UAZDKZ4WeJRILY2FgHloaI7EmjB/ZczMHuS3nYdvY6rua7AccvGvL9vIBMZRlaeXo4sJRERHVzuSt1s2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b99uyNu7dy+6du2Kbdu2ITo62t7FJiI7uq4sw6qDVzBt+VG8fkiGf393BEv/SsHV/FLIJAJ92wRj9vA4bH++D16/XYeoQA7HICLn53JX6mJiYrBw4ULMnDmzWt706dMRERGBnJwcbNmyBQkJCUhKSkJgYCD69OmDw4cP46OPPsK3336L559/3gGlJyJb0OsFTlwrxNbTGVh3Qoar+3bfkitBqK8H7m4Xiv4xwSi69DceGN7VMK/UKYeVmojIPC7XqRs/fjwAYO7cuZXSVSoV1q1bh5SUFCgUCowaNQrz58/Hhg0bMHr0aHh4VNxa8ff3h06nM7p/tVoNtVptWFYqlQAqJhnUaDSGn2v7XvVna6rpWNbcrrb1jOWZmm7ud2tyZL3Vll9b26ktrbG3OQAoUJXiWK4EiT+dwJ5LecgtLr+RI4EEQKdIP/RvEwyP3It4bFQ83N3dodFosDXZ8jZX3zquK77wPJuW50yxpT77N2U7R8cWxmXT0+rz+2rqehIhhDBpzQYmPj4eU6dOxZgxYwAAR48exdChQ5GVlWVY5+mnn4ZCocDw4cPxxhtvQCqVIigoCN9//73Rp19nz56NOXPmVEtfsWIFn5glcrDCcuBUvgQn8yS4UCiBTvwz+7qHTKC9v0BcoED7AAE/d+sfv6SkBOPGjUNhYaFh1nhzML4QUU1Mji3CRfXv31+sXLnSsLx7927RunXrSuu8/vrr4qmnnjJrv2VlZaKwsNDwlZaWJgCInJwcUV5eLsrLy0VxcbH49ddfRXFxcbXlqnnW/rJ0/6ZuV9t6xvJMTTd32VXqzdy6MyWtMbW5r1b+KhZsPiNGfLZHRL+ysdJX11kbxFtrj4ld5zKEqqTM5m0uJydHABCFhYUWxa264ktjPs/m5DlTbLF13Tkytti67hiX//kyNba43O1XY3x8fAy3Mm5SKpXw8fExaz8eHh6GW7W3ksvl1d7fVjWt6s+2eMdgffdv6na1rWcsz9R0c5etyZH1Vlu+Ke2rpjRXbHN6vcDRtHxsOXMdW05lIjnXDcBlw3q3RQVgSFxTDGgbjAuHdmPYsLhK72Ks6ZjWanP1rV9T40tjOM/WyHOm2FKf/ZuynSNiC+Oy/eKyqZ+/0XTqYmJiUFhYiMzMTISFhQEAjh8/jsmTJzu4ZERUF50A9l3OxR9nsrHl9HXkqP4ZdyaTCPRu0wRDOoRjcFxTNPXzBFDRgbtY+7uviYhcist16jQaDXQ6HfR6PTQaDcrKyuDu7g4fHx+MGDECs2bNwoIFC7B161acOnUKw4cPd3SRiagGWp0eB5LzsOH4NWw8KoNq/2FDnq+nGwbEhmJgbBOUJR/BgyO62vQKCxFRQ+BynbopU6Zg2bJlAIA9e/ZgwoQJSExMRHx8PBYvXoyJEyciODgYkZGRWL16NQIDAx1cYiK66WZH7reTGdh8KrPSE6sBXnIM7RCG+zqHo2erYLi7SaHRaLApzaFFJiJyGi7XqVu6dCmWLl1aY15ISAg2bdpk3wIRUa2EEDh6JR+/Hr2GjScybunIAYEKOQa3D0VwyRU8PXoQFHyrAxGRUS7XqSOihiE1rwR/pEnwycI/kZJbYkgPVFRckRvWORx3tQoG9Dps2pQKuczlXoBDRGRV7NQRkd0Ulmiw/kQ6fj16DYdT8wHIAJTASy7D0A5NMfKOZujTpkmlDpxGb3wycCIi+gc7dURkU0II7L+chx8PXcGmU5ko1+oBAFIJ0NZPj8cHdca9nZvBx4PhiIioPhhFicgmsovU+PnIVfx4KA3JOcWG9HZhvni4ayTuiQvB4b07cN/tEZDLGYqIiOqLkZSIrEYIgQPJefhuXwq2nL4Orb7iLYTe7jKMuD0CY7o1R+dIf0gkEpu9Z5OIqLFip46I6q1cB6w5fA3fH0jD2Yx/3txye1QAxnaPwv2dI+DN26tERDbFKEtEFssoLMWyP5Px/REZig+eBgB4yWV4sEszjL8rGu3DzX+pPRERWYadOiIy24XrRfhyZxLWHU+HTi8ASNAswBMTe7XA6Dubw1/BtzsQEdkbO3VEZLIjV/KxODEJ285eN6R1axGITu45eGlcH3hxcmAiIodhp46IaiWEwJ6LOVi88xL2X84DAEgkwNC4MEyLb424MG9s2rQJbpwcmIjIodipIyKj/rqUg4+2nMeRKwUAADepBKPuaIap/VujTagPAPApViIiJ8FOHRFVcyglDx9vOW+4MufhJsXY7s0xpV8rNAvwcnDpiIioJuzUEZHB8bQCfLz1AnZfyAYAuMukGNs9Ck8NaIOmfp4OLh0REdWGnToiQkpOMT7cfA6bTmYCqLjNmnBnFP5zdxtemSMiaiDYqSNqxPKLy/Hpjov4YX8qNDoBqQR44I5IPDswBs2DFY4uHhERmYGdOqJGqEyjw7K/UvB54iUUlWkBAPGxIXjt3vaIDfN1cOmIiMgS7NQRNSJ6vcCGE+n48I/zuFZQCgBoH+6HN+5rjz4xTRxcOiIiqg926ogaiTMZSrz923kcTs0HAIT5eeLFobF44I5mkEklDi4dERHVFzt1RC6uqEyDn5Ol2Lt/P/QCULjL8FR8azzepxW83GWOLh4REVkJO3VELkoIYN3xDMz74zyyVRVvexjWORxvDmuPcH8+0UpE5GrYqSNyQRezVPj8jBSX9p8EAIR4Cnw4+k4MaB/m4JIREZGtsFNH5EKK1Vp8sfUSvtmbDK1eCk+5FNP6tUKk6hz6tAl2dPGIiMiG2KkjcgFCCBzLleD9T/9EplINAOgYqMdnj/VFZKAXNm065+ASEhGRrbFTR9TAXc5W4a11p7D3kgyAGlFBXnjzvnYoSzqEyECOnSMiaizYqSNqoErLdVi44zK+3n0Z5To9ZBKBaf1b4z8D20IGPTYlObqERERkT+zUETVAJ/Mk+L/P/sTVgjIAQL+YYPTzvo6JA9tALpdBo9E7uIRERGRv7NQRNSBpeSV4a91JJJ6XAShDhL8n3hoeh7vbBuP33393dPGIiMiB2KkjagDUWj2+2H0RixIvQa3VQyoRmNynJZ4bHAuFuxs0Go2ji0hERA7GTh2RkztbIMH8z/5Cal4JAOCuloEY4JeNfw9pC7mcv8JERFSBfxGInFR6QSnmrD+FzWdlAEoQ6uuBN4a1x71xIbzVSkRE1bBTR+RkyrV6fPtnMj7dfhEl5TpIITChZzReGNoOvp5y3molIqIasVN3Q1paGkaOHIkzZ85ApVLBzY1VQ/Z3IDkPszeew6UsFQCga/MADAzIwZT72kEulzu4dERE5MzYc7khJCQEO3bswKhRoxxdFGqEsorU+O6iFIf3/Q0ACPZ2x6v3tsOITk3xxx+81UpERHVjp+4GT09PeHp6OroY1MhodXp8ty8V87degEothUQCjO8RjReHxMJfwVutRERkOqmjC2ALs2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b9/uoFJSY3c4NQ/DP/8Tb288A5Vai+beAj8/2QPvjOoIfwVvtRIRkXlc8kpdTEwMFi5ciJkzZ1bLmz59OiIiIpCTk4MtW7YgISEBSUlJCAwMdEBJqTHKVanxwe/nsObwVQCAv5ccLwxuA9+sk+jUzN/BpSMioobKJTt148ePBwDMnTu3UrpKpcK6deuQkpIChUKBUaNGYf78+diwYQMmTJhg0r7VajXUarVhWalUAgA0Go3hVlld36v+bE01Hcua29W2nrE8U9PN/W5N9qg3vQC+35eChYmXUViqBQA83KUZXhwSAz93CbZuPWlS3ZmS1tjbnLE8W7e5+tZxXfGF59k5zrO5bFl3da1jTly2Rl1akyPbXG35jojLpq4nEUIIk9ZsgOLj4zF16lSMGTMGAHD06FEMHToUWVlZhnWefvppKBQKzJkzB/fffz8OHz6MLl26YPbs2ejbt2+1fc6ePRtz5syplr5ixQooFArbfRhq0FJVwJrLMqQVSwAAzRQCCa10aOnr4IKRVZWUlGDcuHEoLCyEn5+f2dszvhBRTUyOLcKF9e/fX6xcudKwvHv3btG6detK67z++uviqaeeMnmfZWVlorCw0PCVlpYmAIicnBxRXl4uysvLRXFxsfj1119FcXFxteWqedb+snT/pm5X23rG8kxNN3e5IdRbVkGxeOWnY6LFKxtF9CsbRYe3fhf/3XVRlJSWWVx3pqQ19jZnST1Zo83l5OQIAKKwsNCimFVXfOF5do7z7Ex1V9c6towttq47R7Y5W9edrWKL3W+/lpaW4q233sKaNWuQl5cHpVKJzZs34+zZs3juuedsemwfHx/D7YyblEolfHx8TN6Hh4cHPDw8qqXL5fJq84hVTav6sy3nHbN0/6ZuV9t6xvJMTTd32ZqsVW96vcBPh6/igz/OIa+4HABwZxM9Pv13f0QEGW9v5tQd25zlebZqc/WtX1PjC8+zaXnOFFvqs39TtqtrHVvEloYWly1dzxnisqmf3+5Pvz711FPIyMjAxo0bIZPJAACdO3fGl19+afNjx8TEoLCwEJmZmYa048ePo0OHDjY/NjUep9MLkfDVPrz88wnkFZcjJtQHP/z7TvwrRo8Q3+p/sImIiKzB7lfqfvvtN6SlpcHDwwMSScX4ovDwcGRkZFjtGBqNBjqdDnq9HhqNBmVlZXB3d4ePjw9GjBiBWbNmYcGCBdi6dStOnTqF4cOHW+3Y1HgpyzSYv+UCvtuXAr0AFO4yPDcoBo/1bgnoddh01tElJCIiV2b3K3UBAQHIzs6ulJacnIyIiAirHWPKlCnw8vLCnj17MGHCBHh5eWH37t0AgMWLFyMtLQ3BwcF48cUXsXr1ak5nQvUiBLDueAYGfrwLS/+q6NAN6xSO7S/0xxP9WkMuc8npIImIyMnY/Urds88+i+HDh+ONN96ATqfDxo0b8e6771p1PN3SpUuxdOnSGvNCQkKwadMmqx2LGreLWSp8fkaKS/tPAgBaNvHGnBEd0K9tiINLRkREjY3dO3XTp09HaGgovvnmG0RGRuLTTz/F888/j9GjR9u7KEQWK1Zr8en2i/hmbzK0eik85VL8Z0AbTOnXCh5uMkcXj4iIGiGHTD6ckJCAhIQERxyaqF6EEPj9VCbe2XgGGYVlAICOgXp89lhftAw1f14yIiIia7FLp+7DDz80ab2XX37ZxiUhslxyTjHeWncKey7mAACigrzw5n3tUJZ0CJGBXg4uHRERNXZ26dSdPfvPY38lJSX45Zdf0KNHD0RFRSEtLQ0HDx7Egw8+aI+iEJmttFyHxTsv4atdl1Gu08NdJsXU+NZ4Kr41ZNBjU5KjS0hERGSnTt2SJUsMPz/00ENYs2YNRo4caUhbv349vvvuO3sUhcgs285cx+wNp3E1vxQA0K9tCOaM6ICWTbwBABqN3pHFIyIiMrD7mLpt27bhxx9/rJR233334V//+pe9i0JkVFpeCeZsOI1tZyveExzu74m37o/DPR3DDPMrEhERORO7T6DVsWNHvPvuu9BqtQAArVaL9957j291IKeg1urx2faLGDR/F7adzYKbVIIn+7fCthn9cW+ncHboiIjIadn9St3333+PcePG4eOPP0ZoaCiysrIQFxeH5cuX27soRJWcLZBg/md/ITWvBABwV6sgvDOyI2Ka+jq4ZERERHWze6euVatW2L9/P65cuYKMjAyEh4ejefPm9i4GkUF6QSnmrD+FzWdlAEoQ4uuBN4e1x4jbInhljoiIGgy7d+qysirGKHl6eqJly5aV0kJDQ+1dHGrEyrV6fLM3GZ9uv4hSjQ5SCEzoGY0XhraDr6fc0cUjIiIyi907dWFhFQPNhRAAUOlKiE6ns3dxqJHaczEbs9afxuXsYgBA1+YBGBiQgyn3tYNczg4dERE1PHbv1On1laeAyMzMxLvvvosePXrYuyjUCKUXlOLd385g08lMAEATH3e8dm97DO8Uit9//93BpSMiIrKc2Z26gwcPGs3r3r272QUICwvD/Pnz0apVK05rQjaj1urwvz3J+HzHpYpbrRJgQs8WeH5wW/h7yaHRaBxdRCIionoxu1M3evToSsvZ2dkoLy9HZGQkLl++bFEhDhw4YJjihMjadl/Ixuz1p3E5p+JWa7cWgXh7ZEe0D+e7WomIyHaEALQ6PXTQQV2uRakWyC8ph14vUFheMY2WNUf8mN2pS05OrrSs0+nw/vvvw93d3aTt27dvX2kcXUlJCXJzc7Fw4UJzi0JUq4vXi/DeprNIPJ8NAGji44HX72uHB+5oxqdaiYgaISEESjU65BWXI7eoFElKYOeFbKh1QLFai2K1ruJ7uQ5FpeW4mCzF1tUnoNELlGv1KNfpodbocD1HhsWX/4JGJ6DW6lGu1aG4VIbXj2yHXg/o9AJavR564Qbs33ZLCdyAQzsNP7e6rQB92ja12uer95g6mUyG1157DWFhYXj55ZfrXP/LL7+stOzt7Y22bdvCz49XTcg6clVqLNh2ESsOXoFOL+AmlWBCzxZ4bnAM/PhUKxGRyynT6HBdWYaMwjJcyyvGrmsSHP7tHHKLNcgrLkd+STkKSjTIKylHufbWsf1uwOmjtexZCmRn1pAuAYpV1dPMeOBTKhG48cyo1dS7U6fX67Fy5Up4e3ubtP6hQ4fw4osvVkufP38+ZsyYUd/iUCOmUmux7K8UfLkzCUXqitv5Q+Ka4tV726FViI+DS0dERPWh1upwObsYyTkVXyk5xUjJLUZKbgmyi9RV1pYBV64Y3Ze7TAp/LzdItGqEBPnBx0MObw+3ii93Gbw93ODpJsGVyxfRqUMcvDzk8HCTwsNNCikEThw7gt53dYfCwx3ublJIhR77/9qDu+Pj4eEuh5tMAr1Oh507tmPokMHwcJdD6HTYumUzht13L6QS4Pfff8ddrYKsWkdmd+q8vLwq3brSaDQIDw/H119/bdL2b7/9do2durlz57JTRxZRqbX4bl8K/rv7MvJLKh546BDhhzeHxaFn62AHl46IiMylLNPgWGouEtMlSPzpJM5dV+FSlgpavfFLW55yKcL9vRDq6w5dUS66tG+F8AAFgrzdEai48eUtR6DCHQp3GbRaLTZt2oT77utZ41RWGo0Gm9QXcF+v6Er5Go0G+lSB3q2DDekajQbJXkB0sKJSmo8c8PeSQy6XQ6MB3KSATGq74T9md+rOnTtXadnb2xtNmjSpc7vVq1cDqHjX65o1awzz1AFASkoKgoKs21sl15dRWIof9qdixYErhs5cqybeeGZgDEbcFgGpDX9xiIjIOoQQSMsrxeErefg7JR+HU/Nx/nrRjVuTMiA1w7Cun6cbWoX4oGUTb7QI9kaLJgq0bOKN5kEK+HvJIZFIKjpjmzbhviFtG928o2Z36qKjoy060BdffAEAKC8vx+LFiw3pEokEoaGhWLp0qUX7pcZFqwd2nM/G+uOZ+ON0JnQ3/mtr2cQbT9/dBiNui4CbTOrgUhIRUW2UZRr8dSkHuy7kYPeFbFwrKK22TmSgF4IkxRhweww6RQaifYQfIvw9+aBbLew2+XBiYiIA4N1338Wbb75pr8M6nWNpBbhYKMGB5Dy4y+WQSgCJpKJzK5VIKpYhgUQCSCX/fJfeWKfS8s31pP8s63RaKMsrHhZwdxeQSiou9cplUrhJJZBJJQ3uFyK7SI1DV7Kw+0IWfj8uQ8mBfwa19mgZhMd6t8Cg9k3ZmSMicmKpucX4/VQmtp25jqNpBYZ/ygFALpOgYzN/dG0eiDtbBKJLdCACPWUVV9wGtG50V9wsZZdOXU5OjuEW7RNPPGF412tVjeHdr6/+chpJ2TJ8fuZvGx7FDTMP7zKaK5f908mTy6Rwk0ngJpWgvEyGzy79CbmbDPIbaXKZFJ5yGTzlUnjJZXCXSZB5TYpTmy/A21NekedWsY5cCpzOlcDnYg68Pd3hJZdBLpNCInTILq14m4OXh85wTI1GiyINkFFYBh3KkVdUipN5EhQeSsP1onKcTVfiWIoMeftu/SwShPp6YFjncCR0jUJcBJ+aJiJyVpeyVPj9ZAZ+P5WJMxnKSnmtQrzRLyYE/duGoEerICjcK3dJOCm8+ezSqWvZsiWKiooAVH/3600SiaRRvPu1eZAXilUqKLx9AEnFxIR6IYx+r/hHpuK7Xgjo9QICtWyHiieSBYxfjdPoBDQ11rUE2WXFJnwKKXZnphjJk+HbC0dqSHfDu8f21JiOv3dX2h7nz1Yqk0RS8eBDjxaB8Mq/jP+M7gdPD9PmRSQiIvvKKy7HumPX8NPhqzid/k9HTiaV4K5WQbinQxjiY0MRFaRwYCldk0WdutTUVPz0009IT09HREQEHnzwQbRs2dLo+jc7dED1d782Nl+P73LjaZveNrmcbBgget99cHNzg04voBMCGp2AVqev+K7XQ6MV0Oj10OoENDo9yso12L33T3TrfheERFqxjq5iskW1Vo9SjQ5qjQ7FZRqcPncBzaJbolwnUKbRo0yrQ1m5DqXlWmRk58LLxw9lWj3UmoqJGjVaPUrLyyEkMmh0+mrz8shlEni4yeDtIYO7rgwxkaEID/BC6yYK5CefwsRRg9HET3HjsyXZ9MkhIiIyn0anR+KFTPx0+CoSz2dBo6sI9HKZBH3aNMG9HcMxKK4pgrz5D7ktmd2p27hxIx599FEMGzYM0dHROHLkCN555x18//33GD58uC3KSBaSSCQVt1YBeNRxpjUaDa75AXe1Cqq1s6nRaLCp5Bzuuze22nr/dCh7Vnv8uyJ9KORyOXT6io6kRqPBti2bcf+w+2487n1zvTv+Wc47BX8vjqUgInJGWUVq/J4mwdyP9yDrlrniOkf64+GukRjeOQKB7MjZjdmdutdeew3r1q1DfHy8IW337t2YNm2aSZ26tLQ0vP322zh+/DhUqsqzMZ85c8bc4lADJJNKIJPKIIMevOhGRNSwCAH8nZqP5Qev4o9TmdDqZQDUaOLjgQe7NMNDXSIRG+br6GI2SmZ36q5du4bevXtXSuvZsyfS09NN2n706NGIiYnBnDlzoFDwfjoREVFDoNXpsf54BuafkOHa/kOG9Ja+As/c0xnDbouEuxtnIXAkkzt1V69eRWRkJHr06IHZs2dj9uzZhltkc+bMQY8ePUzaz6lTp7B3715IpTzxREREzq5cB/xw4Aq++TMVV/NLAUjg4SbFqNubYWy3Zkg9thf3dQ6HnB06hzO5UxcXFwelUomvvvoKY8eORVBQEEJDQ5GVlYVOnTph1apVJu3nnnvuwf79+9GrVy+LC01ERES2VViiwZI/L+N/R2RQaSveJhWokKNncBlmj49HqL83NBoNUo85tpz0D5M7dTenIGnevDn+/PNPpKWlGZ5+jYqKMvmAXl5euOeeezBkyJBq89Ld+qYJIiIisj9lqQbf7UzGt3uTUaTWApAgMsATT/RvjVGdw5C4bTMCFXz4wRmZNaYuLS2t0vxy4eHhEELgypUrACo6fHVp1aoVXnjhBTOLSURERLakUmux5aoEM+fvgbJMCwBoG+qDHn6FeH18H3h5enBCYCdncqeuuLgYsbGx1SYNvkkikaCkpKTO/cyaNcv00tlRWloaRo4ciTNnzkClUsHNzW5vUCMiInKYknItvtuXiq92JSG/RAZAizahPnh+UFsMig3GH3/8ztcwNhAm91y8vb0rTSJsqQ8//LDGdA8PD0RGRmLgwIEICAio93HMFRISgh07dmDUqFF2PzYREZG96QSw8lAaPt1xGTmqijnmQj0FXrm/M0Z1iYJMKuGVuQbG5E6dtV4Cf+TIEfzyyy/o0aMHIiMjcfXqVRw4cADDhw9Heno6Hn/8caxduxZ33323VY5nKk9PT3h6etr1mERERPYmhMD2c1mYd1yG66UVr2VsHqTA9PiWkKcfx/DbwvnmngbK5Oupxm67mkur1eLnn3/G7t27sWLFCuzevRtr166FRCLBX3/9hUWLFmHGjBl17mfWrFmIi4uDVCqt9uRtdnY2hg0bBoVCgdjYWGzfvt0qZSciImrITlwtwJiv92Pq8mO4XipBoEKOWcPjsG1Gfzx4RzPI2Jdr0Ey+UmeNW68AsHXrVvz444+V0oYOHYpx48YBAMaOHYtp06bVuZ+YmBgsXLgQM2fOrJY3ffp0REREICcnB1u2bEFCQgKSkpKgVqsxZsyYSuv6+Phg48aN9fhEREREzi29oBQfbzuF9ccrXhTg4SZF31AtPnysD4J8K14EoNHoHFlEsgK7Pw0QFxeH9957D6+99lrFC+d1OnzwwQdo3749gIoHFkwZUzd+/HgAwNy5cyulq1QqrFu3DikpKVAoFBg1ahTmz5+PDRs2YMKECdi5c2e9yq9Wq6FW//N+O6VSCaDi/aY3xx7U9b3qz9ZU07GsuV1t6xnLMzXd3O/W5Mh6qy2/trZTW1pjb3PG8mzd5upbx3XFF55n5zjP5rJl3dW1jqq0DJuvSvDKwj9RptVDIgFG3RaO6f1b4PTBPfCUmdaeGJdrT7d1XDZ1PYmw1n1VE124cAHjxo3DhQsXDJMXx8bGYsWKFYiJicHBgwdx9epVPPjggybtLz4+HlOnTjVcgTt69CiGDh2KrKwswzpPP/00FAoF5s2bZ3Q/ZWVluP/++3H48GF06dIFs2fPRt++fautN3v2bMyZM6da+ooVK/jaM6JGrqSkBOPGjUNhYSH8/PzM3p7xhaxFCOBUvgS/pEiRq664p9raV+DBljpEeju4cGQ2k2OLcJDk5GSxf/9+kZKSUq/99O/fX6xcudKwvHv3btG6detK67z++uviqaeeqtdxbiorKxOFhYWGr7S0NAFA5OTkiPLyclFeXi6Ki4vFr7/+KoqLi6stV82z9pel+zd1u9rWM5Znarq5y65Sb+bWnSlpjb3NWVJP1mhzOTk5AoAoLCy0SXzheXaO8+xMdVfTOufT88W//rdPRL+yUUS/slF0nrlBrDlwWajVarPqzdF1x7j8z5epscVhk7GFhoZCJpOZPXlxXXx8fAy3LG5SKpXw8fGp976BiqlXPDw8qqXL5XLI5fJa06r+XHV9a7J0/6ZuV9t6xvJMTTd32ZocWW+15ZvSvmpKa+xtzlierdpcfevX1PjC82xanjPFlvrs35Tt5HI5tEKKhdsv4pu9l6HRCbjLpPh372i0KruIkXdEWj22MC7bLy6b+vnt3qk7efIkJkyYgBMnTgD4Z6oUd3d3kyYvrktMTAwKCwuRmZmJsLAwAMDx48cxefLkeu+biIjIGe25mINZG88iLa8UAHB3u1DMvD8Okf7u2LTpooNLR/Zi907d1KlTMXLkSOzbtw/h4eHIyMjAW2+9hdatW5u1H41GA51OB71eD41Gg7KyMri7u8PHxwcjRozArFmzsGDBAmzduhWnTp3C8OHDbfSJiIiIHCNHpcayC1Ic2XcEABDh74m3R3bEoLimAGz38Ac5J7t36k6fPo09e/ZAKq2YIs/T0xPvvvsuWrVqhSeffNLk/UyZMgXLli0DAOzZswcTJkxAYmIi4uPjsXjxYkycOBHBwcGIjIzE6tWrERgYaJPPQ0REZG96vcDqv9Pw/u9nUVgqhVQCPNa7JWYMbgtvD77msrGy+5kPCAhAQUEBgoKC0KxZMxw/fhxBQUFQqVRm7Wfp0qVYunRpjXkhISHYtGmTFUpLRETkXJKyVXht7UkcTM4DAER6C3z2r564o0Wwg0tGjmb3Tt3kyZOxa9cuPPDAA3j22WfRt29fSKVSTJkyxd5FISIiajB0eoFv9ybjoy3nodbq4SWX4flBbdAk/zQ6NjN/Ch1yPXbv1L355puGn6dMmYIhQ4ZApVKhQ4cO9i4KERFRg3A5W4WXfjqBw6n5AIC+MU3w/oOd0NRHjk2bTju4dOQs7Napi4uLq3OdM2fO2KEkREREDYNeAEv+SsXHWy9CrdXDx8MNbw5rj9HdoiCRSPggBFVit05dcnIymjdvjkcffRT9+vUzTGVCRERE1aXmluCz0zJcLjoPAOjTpgnmPdwZzQK8HFwyclZ269RlZWVh7dq1WL58OZYuXYqEhAQ8+uij6Ny5s72KQERE5PSEEFh5MA3vbDyNUo0E3u4yvDEsDmO7R/GCCNVKaq8D+fr6YuLEidiyZQv27duHiIgIPPHEE+jUqRNvuxIREQHIKy7HE98fxuu/nESpRo8YPz02/qcXxvVozg4d1ckhk9l4eHjAy8sLnp6eyM3NhV6vd0QxiIiInMbuC9l4Yc1xZBep4S6T4oXBbRBacAaRgbzdSqax25U6tVqNNWvWYOTIkejcuTNOnTqFDz74ABcvXkTHjh3tVQwiIiKnUqbR4Z2NZzDh24PILlKjTagPfpneC//u3QJSXpwjM9jtSl3Tpk0RFhaGsWPH4pVXXoGbW8WhDx48aFine/fu9ioOERGRw124XoRnVh7FucwiAMCEntF47d728HKX8clWMpvdOnUBAQFQq9VYunQpli1bBiFEpXyJRILLly/bqzhEREQO9cvRq3h97SmUanQI9nbHhw93xsD2TR1dLGrA7NapS0lJsdehiIiInJZaW3G79Yf9VwBUTCQ8/5HbEeLr4eCSUUPHt/4SERHZydX8EkxffgTHrxZCIgGevjsGzw6MgYyD58gK2KkjIiKyg90Xc/DCTydRUKJBgEKOT0bfjgGxoY4uFrkQduqIiIhsSKcX+D1Nis37j0AIoHOkPxaN64KoIIWji0Yuhp06IiIiG8krLsezK49gz9WKGcQe7dEcbw2Pg4ebzMElI1fETh0REZENHEsrwPTlR3CtoBRyqcDcUZ3wSPdoRxeLXBg7dURERFYkhMAPB67g7Q2nodEJtAhWYHQzJR64I8LRRSMXZ7c3ShAREbm6knItZqw+jpm/noJGJzC0Q1OsndoDEd6OLhk1BrxSR0REZAVJ2SpM++EwLlxXQSaV4NV72mFy35bQarWOLho1EuzUERER1dPvJzPw0k8noFJrEeLrgc/H3oEerYIdXSxqZNipIyIispBGp8e838/hf3uTAQDdWwbh87F3INTP08Elo8aInToiIiILXFeW4T8rjuBQSj4A4Ml+rfDS0Fi4yThcnRyDnToiIiIz7UvKxdMrjyBHVQ5fDzf8X8JtuKdjmKOLRY0cO3VEREQm0usFvtp9Gf+3+Rz0AmgX5osvxndFyyZ8vJUcj506IiIiE+QXl2PG6mNIPJ8NAHiwSzPMHdUJXu58OwQ5B3bqiIiI6nDkSj7+s/wI0gvL4O4mxZwRHTCmWxQkEomji0ZkwE4dERGREUIIfPtnCt7fdBZafcXbIRY92gUdIvwdXTSiatipIyIiqkGWsgwv/3wCO2/cbh3WKRwfPNQJvp5yB5eMqGbs1BEREVWx6WQG3vjlJPJLNHB3k+LNYe3xr7uiebuVnBo7dURERDfkqNR4d+MZ/HosHQDQIcIPn4y+HW2b+jq4ZER1Y6eOiIgaPb0AVh5Kw0dbLkJZpoVUAkyLb41nB7aFuxsnE6aGgZ26G9LT0/Hwww/Dzc0Nfn5+WL16NRQKhaOLRURENrb/ch4+OSnDleKzACquzs19oBNujwpwbMGIzMRO3Q1NmzbF3r17IZVKMWvWLPz2229ISEhwdLGIiMhGjqUV4NPEy9hzMQeABN4eMrw4JBb/uiuar/qiBomduhtksn8mj5RIJIiNjXVgaYiIyBZ0eoHNp69jwSkZkvcdBADIZRLcFaLDvAn9ERHk4+ASElmuwf4rMmvWLMTFxUEqlWLVqlWV8rKzszFs2DAoFArExsZi+/btJu1z79696Nq1K7Zt24bo6GhbFJuIiBwgvQSYt/kCer6/Hf9ZdRzJRRLIZRIkdI3E5md74+GWeoT4eji6mET10mCv1MXExGDhwoWYOXNmtbzp06cjIiICOTk52LJlCxISEpCUlAS1Wo0xY8ZUWtfHxwcbN24EAPTp0weHDx/GRx99hG+//RbPP/+8XT4LERFZl14AR9MKsPtiHraeycT5624AUgAAgQo5ugWqMevRAWgW5AONRoOTDi0tkXU02E7d+PHjAQBz586tlK5SqbBu3TqkpKRAoVBg1KhRmD9/PjZs2IAJEyZg586dNe5PrVbDw6PivzR/f3/odDqj66nVasOyUqkEAGg0Gmg0GsPPtX2v+rM11XQsa25X23rG8kxNN/e7NTmy3mrLr63t1JbW2NucsTxbt7n61nFd8YXn2XheeXk5LmcX4+/UfBxIzsWOszKo9h80rCeTCAyIDcGDd0SiVyt/7NqxHYGe0hrr1dpsWXeOji2My6an1ef31dT1JEIIYdKaTio+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P3v37sUbb7wBqVSKoKAgfP/99zU+/Tp79mzMmTOnWvqKFSv4tCxRI1dSUoJx48ahsLAQfn5+Zm/P+GI6vai4pXpJKcFlpQRJRRKoNJUnBvaUCbQPEOgQKBAXIODNF0FQA2VqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFIYMGWI4rkajwdatWzF48GDI5fJKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii+N+Tz/vnkrQtt3w7GrRfg7tQCHrxRApdZWWs/dTYrbIv3RNcoPstzLeOKBu6Hw9HBobDGnDizZzpGxhXHZfnHZ1Njicp06Hx+fah9eqVTCx8c6TzR5eHgYbtPeSi6XVzsxVdOq/myL4FHf/Zu6XW3rGcszNd3cZWtyZL3Vlm9K+6oprbG3OWN5tmpz9a1fU+NLYzjPKrUWR1LzcSglD/sv5+JoqgzaA0crrevr4YYuzQPgq76O8UPuwh0tguHhJoNGo8GmTUlQeHo4TWypz/5N2c4RsYVx2X5x2dTP73KdupiYGBQWFiIzMxNhYWEAgOPHj2Py5MkOLhkRERmTW1yO47kSHPv9PP5OLcCZDCV0+ltHB0kQ7O2O7i2D0L1lELq1CEL7cD/odVps2rQJXaMDIXeTGd0/UWPQYDt1Go0GOp0Oer0eGo0GZWVlcHd3h4+PD0aMGIFZs2ZhwYIF2Lp1K06dOoXhw4c7ushERHTDtYJSHEzOxcHkiqtxl7JUAGTAhVTDOpGBXujeMghdo/xRknoCEx8cDHd390r70df8TBtRo9RgO3VTpkzBsmXLAAB79uzBhAkTkJiYiPj4eCxevBgTJ05EcHAwIiMjsXr1agQGBjq4xEREjVd6QSkOpmZiX1IuDiTn4VpBabV1wrwEBnSMwl2tm6B7yyCE+3sBqPgnflPWCUgkkmrbENE/GmynbunSpVi6dGmNeSEhIdi0aZN9C0RERAY5KjX2JeVi78UsbD8pQ86+PZXyZVIJOkb4GW6l3h7pi307t+G+++JsOq6NyJU12E4dERE5j8JSDQ5czsVfSbnYl5SL89eLbsmVQCaVoHOkP3q1DsZdrYLRpXkgvD3++RNkqzniiBoTduqIiMhsJeVa/J2Sj7+ScvFXUg5OXSuEvsqsp+3D/dCzZSDc8i5j6kODEeTr5ZjCEjUS7NQREVGddHqBVBWweOdl/HU5D0eu5EOjq9yLaxXijV6tg9GrdRPc1SoYQd7uhulFfD3554bI1vhbRkRENbpWUIq9F7Ox+2IO/ryYg4JSNwCXDPnNArwqOnFtgtGzVROE+Xs6rrBExE4dERFVKFZrsf9yLvZczMGei9lIyi6ulO8pE+jbtin6x4aiT5smiA5W8IlUIifCTh0RUSOl0wucTi/Enos52H0hu9otVakEuKN5IPq0aYJerQJx7eRfGD7sdj6dSuSk2KkjImpE0gtKsefmLdVLOSgoqfzUaVSQF/rFhKBvTAh6tg6Gv9c/77HMPOWIEhORqdipIyJyYcVqLQ4k52L3hZpvqfp6uKFn62D0bRuCfjFNEB3s7aCSElF9sVNHRORC9HqBE1cLar2lentUAPrGhKBf2ya4LTIAbjKpA0tMRNbCTh0RkQv4/VQmll6QYvbxncg38ZYqEbkWduqIiFzA9nPZOJorBaDhLVWiRoqdOiIiFzDytnCU5V7DY/f0QNeWTSDnLVWiRoedOiIiF9A3pgmKLurRNTqQHTqiRoq/+UREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgF8EGJehKiYlJPpVJpSNNoNCgpKYFSqYRcLq+0DKBSnrVVPba1t6ttPWN5pqabu2xNjqy32vJrSjclrbG3OWN5tm5zN+v7Zlyor6rxhefZOc6zuWxZd46MLYzL9ovLpsYWdurqqaioCAAQFRXl4JIQkbMoKiqCv7+/VfYDML4QUYW6YotEWOtfykZKr9cjPT0dvr6+kEgkhvRu3brh0KFD1ZaVSiWioqKQlpYGPz8/m5Sp6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9/fxQWFtrsP0JXxbqzDOvNcg2p7hpSWZ0N685yrDvL2KreeKXOzjw8PDBr1ix4eHg4uigNDuvOMqw3yzWkumtIZXU2rDvLse4sY6t645U6IiIiIhfAK3VERERELoCdOiIiIiIXwE4dERERkQtgp46IiIjIBbBT54R27dqFnj17ok+fPpgxY4aji9OgpKWloUuXLvD09IRWq3V0cZzejBkz0LdvXzzzzDOOLkqD0ZDbGGOL5RryeXcExhbL1LedsVPnhNq0aYOdO3di7969yMzMxMmTJx1dpAYjJCQEO3bswF133eXooji9I0eOQKVSYc+ePdBoNBa9iqcxashtjLHFcg35vNsbY4vl6tvO2KlzQs2aNTPMXSOXyyGTyRxcoobD09MTAQEBji5Gg7Bv3z4MGjQIADBo0CDs37/fwSVqGBpyG2NssVxDPu/2xthiufq2M3bqrGDWrFmIi4uDVCrFqlWrKuVlZ2dj2LBhUCgUiI2Nxfbt203e75EjR5CTk4O4uDhrF9lp2KruGhtL6rGgoMAwk7m/vz/y8/PtXm5Hc/b2x9hiOWc/tw0FY4vlHNEG3ayyl0YuJiYGCxcuxMyZM6vlTZ8+HREREcjJycGWLVuQkJCApKQkqNVqjBkzptK6Pj4+2LhxIwAgMzMTzzzzDH7++We7fAZHsUXdNUaW1GNAQACUSiWAilfWNMarEJbUW2BgoFOXj7GlAmOLdTC2WM4h8UWQ1fTv31+sXLnSsFxUVCTc3d1Fenq6Ia1v375i2bJlte6ntLRUDBgwQBw5csRmZXU21qq7W/en0WisXk5nZ049Hj58WDzxxBNCCCGmTZsmDhw4YPfyOgtL2p892xhji+UYW6yDscVy9owvvP1qQxcvXoS/vz/Cw8MNabfddhtOnz5d63ZLlizBmTNn8PzzzyM+Ph779u2zdVGdjqV1V1ZWhkGDBuH48eMYOnQo9uzZY+uiOrXa6rFLly7w8vJC3759IZVK0b17dweW1LnUVm/O0MYYWyzH2GIdjC2Ws2V84e1XG1KpVIZxBTf5+fmhoKCg1u2mTZuGadOm2bBkzs/SuvP09MS2bdtsWLKGpa56XLBggf0L1QDUVm/O0MYYWyzH2GIdjC2Ws2V84ZU6G/Lx8TGMK7hJqVTCx8fHQSVqOFh31sF6tIyz15uzl8+Zse6sg/VoOVvWHTt1NhQTE4PCwkJkZmYa0o4fP44OHTo4sFQNA+vOOliPlnH2enP28jkz1p11sB4tZ8u6Y6fOCjQaDcrKyqDX6yv97OPjgxEjRmDWrFkoLS3F+vXrcerUKQwfPtzRRXYarDvrYD1axtnrzdnL58xYd9bBerScQ+qufs90kBBCTJw4UQCo9JWYmCiEECIrK0vce++9wsvLS8TExIitW7c6trBOhnVnHaxHyzh7vTl7+ZwZ6846WI+Wc0TdSYQQov5dQyIiIiJyJN5+JSIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipI7KT2bNnQy6XIywszGr7jI+Px6pVq6y2v6rmz58Pb29veHp62uwYRFQ/jC10Ezt1ZFctWrSAQqGAj48PfHx80KJFC0cXya4ef/zxSi9xtoWOHTsiJSXFKvuaMWMGTp8+bZV9EdkSYwtjC7FTRw6wY8cOqFQqqFSqGgOERqOxf6GcgDU+99WrV6HVahvdHzQigLHFGMaWxoOdOnK4nTt3ol27dnjjjTfQpEkTvPfeeygtLcV//vMfREREIDIyEvPmzTOsX1xcjHHjxiEgIABdunTB66+/jnvuuafSvm4lkUgM/8Hm5eVh3LhxCA0NRatWrbBs2TLDevHx8Xj77bdx5513ws/PD2PHjkV5ebkh/8cff0THjh3h6+uLTp064fz585g7dy4ee+yxSsfr3bs31q5da9Jnb9GiBT788EPExsYiLi4OAPDUU08hIiICAQEBGDJkCK5cuWJY/9ChQ+jcuTP8/Pzw5JNPQq/XV9rf5s2bMXToUMPnmTNnDu644w74+PjgpZdewqVLl9CtWzcEBATgxRdfNGy3ceNGxMbGwtfXF1FRUVi5cqVJ5SdyZowtjC2NjiCyo+joaLFv375KaYmJiUImk4l3331XlJeXi9LSUvHUU0+J8ePHi6KiInHt2jURFxcn1q9fL4QQ4qWXXhJDhgwRhYWF4uzZsyIyMlIMHTrUsK/Y2NhK+wcgMjIyhBBC3HfffeLll18WZWVl4uzZsyI8PFwcO3ZMCCFE//79RceOHUVqaqrIz88XcXFx4rvvvhNCCLF3717RpEkTsXfvXqHT6cTZs2dFenq6SE5OFgEBAaKsrEwIIURKSooICAgQpaWl1T77rFmzxJNPPlmtPnr27CmuX79u2Gb58uWioKBAlJaWiscee0yMHDlSCCGEWq0WkZGR4uuvvxbl5eXi008/FTKZTKxcudKwv4cfflj89ttvhs/TqVMnce3aNZGcnCy8vb3FoEGDRFpamkhLSxP+/v6Gz960aVOxd+9eIYQQGRkZ4vTp04Z9JicnCw8Pj7pPLpEDMbYwtpAQ7NSRXUVHRwsfHx/h7+8v/P39xauvvioSExOFr6+v0Gq1Qggh9Hq98PLyEtevXzds99lnn4kJEyYIIYRo0aKF2LNnjyHvjTfeMCnwZmRkVDqOEEK88MIL4q233hJCVASqhQsXGvJeeukl8cILLwghhJg8ebKYOXNmjZ+pT58+Yu3atUIIIT744AMxadKkGtczFnhXr15trLrEuXPnRHBwsBBCiJ07d4rWrVsb8vR6vYiMjDQEXq1WK8LCwkRxcXGNn6dfv37iww8/NCwPGTLE8IclMjJSfPnll6KoqKhaGRh4qSFgbGFsISF4+5XsbuvWrSgoKEBBQQHef/99AEB4eDhkMhkAIDs7G6WlpWjbti0CAgIQEBCA119/HVlZWQCAjIwMREVFGfZ368+1uXLlCoqLixEcHGzY71dffYXr168b1gkNDTX8rFAooFKpAFSMJ2nVqlWN+x0/frzhKbEVK1Zg3LhxplYFACAyMrLS8ty5c9GmTRv4+fmhe/fuyM3NBVD9c0skkkrbHjhwAB07doRCoajx83h5eSEkJKTScnFxMQDgp59+wvr169GsWTMMGTIE586dM+szEDkDxpbKGFsaHzdHF4AIqAgiNzVp0gSenp5ITU2Fv79/tXXDw8ORlpaG6OhoAEBaWpohz9vbGyUlJYblW58Ga9asGQICAgyBzBxRUVFITk6uMS8hIQGvvvoqDh48iKysLNx9991m7fvWz75r1y589dVX2L59O9q0aYMLFy4YxvGEh4fj6tWrlba9dfmPP/4wjHkxV48ePfDbb79BrVbjrbfewvTp07F9+3aL9kXkTBhbKjC2NA68UkdORyqVYuLEiXjxxRdRUFAAvV6Ps2fP4uDBgwCAhx9+GHPnzkVRURHOnz+P7777zrBt27ZtkZubi127dkGtVuOdd94x5DVr1gzdunXDW2+9hZKSEmi1Whw5cgRnzpyps0yTJk3CF198gX379kEIgfPnzyMjIwMAEBQUhP79+2PSpEl45JFHDFcFLFFUVAQ3NzcEBwejuLgY7777riGvZ8+eKC0txTfffAONRoNFixYZygBUHshsjvLycqxYsQJKpRJyuRw+Pj71+gxEzoqxhbHF1bFTR07p5sSUnTp1QlBQECZMmID8/HwAwKxZs+Dv74/IyEiMHTsW//rXvwzb+fv749NPP8UjjzyCli1bonv37pX2u3z5cqSmpqJVq1YIDQ3Fc889h9LS0jrL06tXLyxYsAD//ve/4efnh4SEBCiVSkP++PHjcfbsWbNvj1R1zz33oGfPnoiOjkanTp3Qq1cvQ567uzt+/vlnfPLJJwgODsaJEycM+bm5ucjIyECnTp0sOu6yZcsQHR2NwMBAbN26FQsXLqzX5yByVowtjC0uzdGD+ojqa8mSJYbBzI7y119/iVatWtW6zjvvvCO8vb1Fs2bNrH78FStWiMcee8zq+/3kk0+En5+f8Pf3t/q+iZwdYwtjS0PDK3VE9aTRaPDpp5/i3//+d63rvfnmm1CpVNXGrlhDUFAQnnrqKavv97nnnkNhYSEKCgqsvm8iqh1jC5mLD0oQ1UNubi4iIyPRuXNnfPXVVw4rh6WDmInIOTG2kCUkQgjh6EIQERERUf3w9isRERGRC2CnjoiIiMgFsFNHRERE5ALYqSMiIiJyAezUEREREbkAduqIiIiIXAA7dUREREQugJ06IiIiIhfATh0RERGRC/h/AKmBj9VWyAIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACOIklEQVR4nO3dd3hUxd4H8O/uZlM2PSEhCQmhhUAoKghID9JUpFgiRS7gFRTk2rAXBFRUfBVBBcu9CqgUQVGKKDU0pUnvJSQhkIT0bDZls2XePwIrKZvsbrZl8/08T57kzJwyO2fyy+ScOXMkQggBIiIiImrQpI4uABERERHVHzt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RGQTJSUleOihh+Dn5weJRIKCggJHF6lOs2fPRtOmTSGRSPDrr786ujh2J4TAE088gaCgIEgkEhw7dszRRbIJiUQCiUSCgIAAq+970qRJhv03xjZEjsVOHZETyszMxLPPPos2bdrA09MTTZs2RZ8+ffDll1+ipKTE0cUzybJly7Bnzx789ddfyMjIgL+/f7V1li5davgDeOvX//73P7uX9+zZs5gzZw6++uorZGRk4N5777Xq/lu0aGH4fAqFAh07dsRXX31l8f5u7TzI5XK0atUKL774IoqLi+vcdufOnTV2tP/44w8sXboUGzduREZGBjp27GhyeY4ePYqEhAQ0bdoUnp6eaNu2LaZMmYILFy6Y+9HsYsmSJZXKdrNOqn6dO3fOsE58fHyN6wwbNsywzsKFC5GRkWHXz0J0k5ujC0BElV2+fBm9e/dGQEAA3nvvPXTq1AlarRYXLlzAt99+i4iICIwYMcLRxaxTUlIS2rdvX2fHwM/PD+fPn6+UVlMH0FrKy8vh7u5eLT0pKQkAMHLkSEgkEov3r9FoIJfLa8x7++23MWXKFKhUKixduhRTp05FQEAARo8ebdGx7rnnHixZsgQajQZ79uzB5MmTUVxcjC+++MKi/SUlJSE8PBy9evUya7uNGzfioYcewtChQ7F8+XK0bt0aWVlZWLNmDWbOnIkff/zRovLYUkBAAEJDQ6ulnz9/Hn5+foblkJAQw89r165FeXm5YTk3Nxe33XYbEhISDGn+/v42bb9EtRJE5FSGDh0qIiMjhUqlqjFfr9cbfv74449Fx44dhUKhEJGRkWLatGmiqKjIkL9kyRLh7+8v/vjjD9GuXTvh7e0thg4dKtLT0w3raDQa8fTTTwt/f38RFBQkXn75ZTFhwgQxcuTIWsv5008/ibi4OOHu7i6io6PFRx99ZMjr37+/AGD46t+/f437uFk+Y1JTU8WIESOEt7e38PX1FQkJCSIzM9OQP3HixGrlfPbZZysdr3///mL69Oni+eefF8HBwaJfv37VjjNr1qxK5b0ZGnU6nZgzZ45o1qyZcHd3F7fddpv4/fffDdslJycLAOLHH38U/fv3Fx4eHuLbb7+t8bNER0eLTz75pFJaTEyMGDNmjNHPX5uaPvvkyZNFWFhYrdvdLPOtXxMnThQTJ06slBYdHW1SOYqLi0WTJk3EqFGjaszPz883aT9VHTt2TMTHxwsfHx/h6+srunTpIg4dOiRUKpXw9fUVa9asqbT++vXrhUKhEEqlUqjVajF9+nQRFhYmPDw8RHR0tHjvvfcM6wIQv/zyS6XtExMTBQCzyvvJJ58IX1/fGn9XazoGka3x9iuRE8nNzcWWLVswffp0eHt717jOrVeRpFIpPv30U5w6dQrLli3Djh078PLLL1dav6SkBB999BG+//577N69G1euXMGLL75oyJ83bx6WL1+OJUuW4M8//4RSqaxzLNDhw4fxyCOPYMyYMTh58iRmz56NmTNnYunSpQAqrmhMmTIFPXv2REZGBtauXWt2XQghMGrUKOTl5WHXrl3YunUrkpKSLLqqtWzZMri5ueHPP/+s8Zbniy++iCVLlgAAMjIyDLfPFi5ciI8//hgfffQRTpw4gaFDh2LEiBG4ePFipe1feeUVPPPMMzh79iyGDh1qcrk8PT2h0WgAAHv27IGPj0+tX++9916t+/Py8jLsz5ioqCj8/PPPACquSmVkZGDhwoVYuHAh3n77bURGRiIjIwOHDh0y6TNs3rwZOTk51drdTbeOW6vr8916y/vRRx9FZGQkDh06hMOHD+PVV1+FXC6Ht7c3xowZYzhfNy1ZsgQPP/wwfH198emnn2L9+vVYvXo1zp8/jx9++AEtWrQw6fPccccdCA8Px8CBA5GYmFjrut988w3GjBlj9HeVyN54+5XIiVy6dAlCCMTGxlZKb9KkCcrKygAA06dPx7x58wAAzz33nGGdli1b4p133sG0adOwePFiQ7pGo8GXX36J1q1bAwD+85//4O233zbkf/bZZ3jttdfwwAMPAAA+//xzbNq0qdZyzp8/HwMHDsTMmTMBAG3btsWZM2fwf//3f5g0aRKCgoKgUCjg7u6OsLCwWvdVWFgIHx8fw7KPjw8yMzOxbds2nDhxAsnJyYiKigIAfP/99+jQoQMOHTqEbt261brfW7Vp0wYffvih0XwfHx9D5+PW8n700Ud45ZVXMGbMGAAVHeDExEQsWLAAixYtMqz33HPP4cEHHzS5PFqtFj/88ANOnjyJadOmAQDuvPPOOh9MCAoKMpp38OBBrFixAgMHDqx1HzKZzLCf0NDQSp0uX19fyGSyOs/ZrW52cNu1a1fnunV9Pi8vL8PPV65cwUsvvWTYb0xMjCFv8uTJ6NWrF9LT0xEREYGcnBxs3LgRW7duNWwbExODPn36QCKRIDo6us6yhYeH4+uvv0bXrl2hVqvx/fffY+DAgdi5cyf69etXbf2DBw/i1KlT+Oabb+rcN5G9sFNH5ISqjuk6ePAg9Ho9Hn30UajVakN6YmIi3nvvPZw5cwZKpRJarRZlZWUoLi42XD1QKBSGDh1Q8ccrKysLQEWH6vr16+jevbshXyaToWvXrtDr9UbLd/bsWYwcObJSWu/evbFgwQLodDrIZDKTP6uvry+OHDliWJZKpYZjREVFGTp0ABAXF4eAgACcPXvWrE7dnXfeafK6NymVSqSnp6N3796V0nv37o3jx49btP9XXnkFb775JtRqNdzd3fHSSy/hySefBFDRoWnTpo1ZZdy4cSN8fHyg1Wqh0WgwcuRIfPbZZ2bto76EECava87nmzFjBiZPnozvv/8egwYNQkJCgqEdd+/eHR06dMB3332HV199Fd9//z2aN29u6HxNmjQJgwcPRmxsLO655x7cf//9GDJkSK3Hi42NrfTPVM+ePZGWloaPPvqoxk7dN998g44dO1b63SFyNN5+JXIibdq0qfbEHQC0atUKbdq0qXQlIzU1Fffddx86duyIn3/+GYcPHzZcPbr1FlzVQfsSiaTaH+Kqnci6/lALIczexhipVIo2bdoYvlq1amX0GFXTpVJptePWdPuxPrfHavqcVdNM3f9LL72EY8eOITU1FSqVCh9++KGhE2vJ7dcBAwbg2LFjOH/+PMrKyrB27doaB//bUtu2bQGgWputiTm3X2fPno3Tp09j2LBh2LFjB+Li4vDLL78Y8idPnmy4BbtkyRI89thjhvPSpUsXJCcn45133kFpaSkeeeQRPPzww2Z/trvuuqvarXagYkjDqlWrMHnyZLP3SWRLvFJH5ESCg4MxePBgfP7553j66adr7Sz8/fff0Gq1+Pjjjw0dg9WrV5t1PH9/fzRt2hQHDx5E3759AQA6nQ5Hjx7F7bffbnS7uLg47N27t1LaX3/9hbZt25p1la42cXFxuHLlCtLS0gxX686cOYPCwkK0b98eQMWTiadOnaq03bFjx4w+fWoOPz8/REREYO/evZWu1Pz1118WX51p0qSJ0atVltx+9fb2NvvqHgDD0786nc7sbasaMmQImjRpgg8//LBSp+umgoICwy1ec26/AhUdxrZt2+L555/H2LFjsWTJEsMwgfHjx+Pll1/Gp59+itOnT2PixImVtvXz88Po0aMxevRoPPzww7jnnnuQl5dX6y3sqo4ePYrw8PBq6atXr4Zarcb48eNN3heRPbBTR+RkFi9ejN69e+POO+/E7Nmz0blzZ0ilUhw6dAjnzp1D165dAQCtW7eGVqvFZ599huHDh+PPP//El19+afbxnn76abz//vto06YN2rVrh88++wz5+fm1TuvxwgsvoFu3bnjnnXcwevRo7Nu3D59//nmlsXz1NWjQIHTu3BmPPvooFixYAK1Wi6eeegr9+/c33O68++678X//93/47rvv0LNnT/zwww84deoU7rjjDquU4aWXXsKsWbPQunVr3H777ViyZAmOHTuG5cuXW2X/t7Lk9quloqOjIZFIsHHjRtx3333w8vKqNK7RHN7e3vjf//6HhIQEjBgxAs888wzatGmDnJwcrF69GleuXMGqVasAmH77tbS0FC+99BIefvhhtGzZElevXsWhQ4fw0EMPGdYJDAzEgw8+iJdeeglDhgxBZGSkIe+TTz5BeHg4br/9dkilUqxZswZhYWG1Tja8YMECtGjRAh06dEB5eTl++OEH/Pzzz4aHSm71zTffYNSoUQgODjaxlojsg7dfiZxM69atcfToUQwaNAivvfYabrvtNtx555347LPP8OKLL+Kdd94BANx+++2YP38+5s2bh44dO2L58uV4//33zT7eK6+8grFjx2LChAno2bMnfHx8MHToUHh6ehrdpkuXLli9ejVWrVqFjh074q233sLbb7+NSZMmWfqxq7k5I39gYCD69euHQYMGoVWrVpXmPBs6dChmzpyJl19+Gd26dUNRUREmTJhgtTI888wzeOGFF/DCCy+gU6dO+OOPP7B+/fpKg/YbombNmmHOnDl49dVX0bRpU/znP/8xuu7NCaJrM3LkSPz111+Qy+UYN24c2rVrh7Fjx6KwsBDvvvuu2eWTyWTIzc3FhAkT0LZtWzzyyCO49957MWfOnErrPf744ygvL8e///3vSuk+Pj6YN28e7rzzTnTr1g0pKSnYtGmT4Yp2TcrLy/Hiiy+ic+fO6Nu3L/bu3Yvffvut2gMwFy5cwN69e/H444+b/bmIbE0iLB0IQ0QuSa/Xo3379njkkUcMHUhqvGbPno2dO3di586dji5KNcuXL8ezzz6L9PT0GieUNkYikeCXX37BqFGjbFY2exyDqCpeqSNq5FJTU/Hf//4XFy5cMEyxkZycjHHjxjm6aOQENm/eXOt0MI5QUlKC06dP4/3338eTTz5pVofuprFjx1a6ZWstU6dOtfhWNlF98UodUSOXlpaGMWPG4NSpUxBCoGPHjvjggw9qnMaBGoapU6fihx9+qDFv/PjxFo29dCazZ8/G3Llz0a9fP6xbt87sTtSlS5cAVNzmbdmypVXLlpWVBaVSCaBi+iBOTEz2xE4dEZGLubVjUZWfn5/dpz0hIvtgp46IiIjIBXBMHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiagQmTZqEDz74wNHFIBtip44IQIsWLaBQKODj4wMfHx+0aNHC0UUiogaOcYXsjZ06oht27NgBlUoFlUqFlJSUavkajcYu5bDXcYjI9pwlrlDjwE4dkRE7d+5Eu3bt8MYbb6BJkyZ47733kJeXhzFjxqBJkyZo06YN/ve//xnWnzRpEp577jn0798fPj4+GDduHDIzMzFo0CD4+/vj0UcfhU6nq/FYLVq0wIcffojY2FjExcXZ6yMSkZ3ZM64kJSWhV69e8PX1xYMPPoiSkhJ7fUxyEDdHF4DImV26dAkKhQIZGRnQ6XR47LHH4ObmhitXruDSpUsYNGgQ2rVrhz59+gAA1qxZg+3btyMkJARdunTB/fffj++++w4RERG48847sXHjRowcObLGY/3666/Ys2cP/Pz87PkRicjO7BVXxo0bhyFDhmDnzp3YtGkTEhIS0KVLF3t/XLIjduqIbhg8eDBkMhkAYNq0aRg6dCgUCgVeffVVyGQySKVS/Pzzz0hKSoJCoUDnzp3x+OOPY+XKlYbgO3r0aLRr1w4AEB8fDx8fH8OVt4EDB+LEiRNGO3XPP/88QkND7fBJicheHBVXUlNTcerUKezZswfu7u4YNWoUevToYcdPTo7A269EN2zduhUFBQUoKCjA+++/DwAIDw83BOTs7GzodDpERkYatomOjkZ6erph+dZOmZeXF0JCQiotFxcXGz3+rfslItfgqLiSkZGB0NBQuLu7G9KioqKs98HIKbFTR1QLiURi+DkkJARSqRRXr141pF25cgURERFWPxYRuS57xJXw8HBkZWWhvLzckJaWllavfZLzY6eOyEQymQwPPvgg3njjDZSWluLUqVP45ptvMGbMGEcXjYgaKFvFlejoaMTFxeG9996DRqPB+vXrcfDgQSuVmpwVO3VEZli0aBHKysoQGRmJESNG4O2330bfvn0dXSwiasBsFVdWrFiBzZs3IygoCEuXLsUDDzxghdKSM5MIIYSjC0FERERE9cMrdUREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgFsFNHRERE5AL4mrB60uv1SE9Ph6+vLyePJWrkhBAoKipCREQEpNL6/8/M+EJEgOmxhZ26ekpPT+erV4iokrS0NKu89o3xhYhuVVdsYaeunnx9fQFUVLSfnx8AQKPRYMuWLRgyZAjkcnmlZQCV8qyt6rGtvV1t6xnLMzXd3GVrcmS91ZZfU7opaY29zRnLs3WbUyqViIqKMsSF+qoaX3ieneM8m8uWdefI2MK4bL+4bGpsYaeunm7eEvHz86vUqVMoFPDz8zOcyJvLACrlWVvVY1t7u9rWM5Znarq5y9bkyHqrLb+mdFPSGnubM5ZnrzZnrVulVeMLz7NznWdr14El2zkytjAu2z8u1xVb+KAEERERkQtgp46IiIjIBbBTd8OMGTPQt29fPPPMM44uChEREZHZ2KkDcOTIEahUKuzZswcajQaHDh1ydJGIiIiIzMIHJQDs27cPgwYNAgAMGjQI+/fvR7du3RxcKiLjhACKyrQoLtIgv6QcOcpS/J0tQe7+K1CqdchVqXHmkhS//nAEao0eGdkyfJ26D2qtQJlGByEAqRSQSiSQSSSQSiXwksvg5+UGP085fD3dEKBwR1M/T0T4eyI8wAsRAZ4I8fHgfGlERE7K5Tp1s2bNwpo1a3Du3DmsWLECY8aMMeRlZ2dj0qRJSExMRFRUFBYvXoyBAweioKAArVu3BgD4+/vj9OnTjio+NVJqrR4FauBsRhGUaj1yi9XILy5HdlEZjl2W4vdVx1FQqkFecfmNLxn0+3dU2YsMuHTulmUpkJNz42cJUFRU73L6erihTVMftA31RUxTH3SI8Ef7pop675eIiOrP5Tp1MTExWLhwIWbOnFktb/r06YiIiEBOTg62bNmChIQEJCUlISAgAEqlEkDFXDABAQF2LjU1NBqdHmUaHVSlauSWARezVNAKCco0epRqdCi78VVUpkVRmRaFJWqcvCzFtjUnUFyuR1GZBkVlWihLNVCWaaFSawG4AUf21XA0KXD9epW0iqtlnnIpAhXu8Pd0g65UidZR4Qjy8YCfhwwZqZfQ/fZO8JDLcPrEMfTqcSe8Pd3hKZdBJpFAJwT0egG9AHR6gVKNtlKZ8ovLkaEsQ0ZBKTIKy3BdWYYitRZHrxTg6JWCf0onAcK9ZNinPYNuLYLRJ6YJmvp52qrqiYjICJfr1I0fPx4AMHfu3ErpKpUK69atQ0pKChQKBUaNGoX58+djw4YN6NmzJ7766is88sgj2LZtGyZNmmR0/2q1Gmq12rB8szOo0Wig0WgMPxv7/mniZRy9JMWun09CIv3nNpYQlY9TabFK5q2Lokq6XuiRkSHF1tXHK90mq33/FdtlZkrxe+ExSI2US6DitUVZ16X4reBo5f0DEHqB61lSbMg/Aonkn+Gaer0eWVlSrM87UmkbnV4gO1uKX3OPQCqVQK/X31g+DEgkEHqB7Bwpfsm5sSwq1v85+29Ibr4mpdrn+iehts8sBKDT66HVC+j0AhqdHvkFMnye9Cd0+oqy6fR6aG7k6/TCsG65tmK7f7gBR/9C3aTA9cxacgUCvT0Q7O2OQG85ghTu8PeSIT/zKu7sGIsmvp4I8naHr7sUJ//eh+FD74avoqLzpNFosHXrVgweHGeYD2nr1osYfFtTAID8mkDvlgH1mkeqXKtHSm4xLmYV42KWCheuq3AqXYmMwjJcK5Fg1aGrWHXoKgAgJtQbvVsHo0+bYPRoGQRPuaza/qr+fhhT23rm5pnyO1rb97qYup4xdcUXU8pX3zIYY25dmLtdQzrP5rJl3dW1jrF8U+qtpjR71p0j21xt+daqO1PKaO56EiGq/ulzDfHx8Zg6darh9uvRo0cxdOhQZGVlGdZ5+umnoVAoMG/ePDz33HM4fPgwbrvtNnz++edG9zt79mzMmTOnWvqKFSugUNR9G+q9YzJcL+WYJFfiLhWQSwG5FHC/8b3iS8BTBni5oeK7DPByq5LmJuAlA3zkFcvSBtg0CtRAqkqClCIJLioluFoMCPzzQdylAnEBAp2DK757udy/kv8oKSnBuHHjUFhYaJhg1Bz1jS9E5JpMjS0uHF4rU6lU1SrCz88PBQUFAIAFCxaYtJ/XXnsNM2bMMCzffHXHgAEDDPvXarVITEzEgAED4ObmVmk5NyADR06fR+tWrSGVSlF1zHmlxSqZEuNZhjy9Xo9Lly4hJibG8NLf2ra7mavX63Dp4sWK7WQyo9vpdXpcuHgBbdu2hUwqq5Sn0+lw4cIFxMbG/nNsScU25y+cR2zbWMhk/1yx0et1OH/+PGJjK9L1ej3OnzuH2Hbt4CaTQqfT49y5c2jXrt2NfB3OnTuH9u3aGcpYd71IjOa5SSWQ3fiSCD1OnzqJLrffBg+5G2RSCdxk0krruN34ksuk8JBL4SWXQir02Llzp+FcG1O1TZiaX1O6KWm3LgOo9dj1dfNYzz0cDzc3NxSUaLA/JR/7Ludhz6U8ZCrVOJYnwbG8ijrv2SoQ93VoigExgTjw5+561Z25ebXVkynLdbl5Zc1SdcUXZzjP5u7f1O0a0nk2ly3rzpGxxdZ158g2V1u+I+KyqbGFV+puXKkz16JFi7Bo0SJDR4b/SRNVJwRwtRg4kSfF8TxJpavU7lKBTkEC3UIE2voLyBrgVcqq6nul7ibGFyK6lamxpdF06lQqFYKDg5GamoqwsDAAQL9+/TB58mRMmDDB4uMolUr4+/sjIyPDpCt1QOP7b9rUdP5H6Bz/EZrLnLq7nFOMzWeysf5EJlLzSg3pTXzcMbxTUyR0iUCL4Mqdl4Z0BUepVCI8PLzenbpb93drfGko59mS7RrSeTYXr9RZhnH5H6bGFpfr1Gk0Guh0OgwZMgRTpkxBQkIC3N3dIZVKkZCQgKCgICxYsABbt27FpEmTkJSUhMDAQLOPw/+kiSwnBJCqAv7OluJIrgTF2n8u08X46dE7TKBToIBbA5senVfqiMgWTI4twsVMnDhR4MbDmDe/EhMThRBCZGVliXvvvVd4eXmJmJgYsXXr1nofr7CwUAAQOTk5ory8XJSXl4vi4mLx66+/iuLi4mrLVfOs/WXp/k3drrb1jOWZmm7usqvUm7l1Z0paQ2pz+coisen4VTHxm/2ixasbRfQrFV9d3t4i3v/ttDh/NcfsNmdJPVmjzeXk5AgAorCwsN6xpab40pDPsy1ii6POszPVnSNji63rjnH5ny9TY4vLPSixdOlSLF26tMa8kJAQbNq0yb4FIqJaucukGNQ+FIPah+JaQSlW/30NPx25hqwiNb7cnYyvdiejY6AUATH56NkmhG+0ICIywuVuv9oLb48Q2Y5OD5zKl+DP6xKcL/znHmykt0D/cD26BDvnrVnefiUiW2j0D0rYCx+UqDuPD0o0rAG55rJ13V3IVOL/1h3C4Vw3lGn1AIBgb3eMvTMCD93eFCcO/uk0A+j5oITl2/FBCcu244MSlm/XkOJyo31Qwl74nzSRfRVrgH1ZEuzOlKKwvOIWrJtEoHuIwIAIPUK9HFxA8EodEdlGo31Qwt74oIRlg0otGYDLAbn2GZDr7HVXXFom1v6dKoZ/ttvwUEWLVzaKJ787JA4nZ1tcT9Zoc3xQwja/I3xQgg9K2LvN2bru+KCEk5PL5dXeq1k1rerP9XkPpyXlseZ2ta1nLM/UdHOXrcmR9VZbvintq6Y0V2xzcjnwQNfmeKBrc+y7lIV3fz6A0/lS/HH6Ov44fR292wRjWv826B7tZ3T/tmpz9mqXjeE8WyPPmWJLffZvynaOiC2My/aLy6Z+fnbqrMSUl2031pdum5rOF0c7x4ujzeXIurstwgdPtNOjxW09sGTfVWw4mYk/L+Xiz0u5iAv3QXcfCe5Wlxvdl7XbnC3r2JQYY+syWLJ/W8YWY3nOFFvqs39TtnN0bGFcNj2tPr+vpq7HMXUW4pgXIueTpwYS06XYlyWBRl8x7q6Jh8CgZnp0C7H9E7McU0dEtsAxdXbCMXWWjT+wZKwGx27YZ+xGQ6o7Y3mZ+Sox77dTov0bGwzj7nq+t038b+cFsWYtx9S5ynm25PfBGufZmeqOY+ps0+ZsXXccU+fkGuv4JnPyOKauYYzdsJQztbmmAXI8P7gtWpRdQn5QHP73ZyrSC8vwzu8X4C+XIS8oHf/q2dKwDcfUWV4Wa2/HMXWWbccxdZZv1xDiMsfU2RnH1HFMXX3Wc6axG+ZyxjZ3M81DBvyrezOM6x6FNYev4es9ychUqvHe7+fx1e5kTLorEk11HFNnahks2T/H1HFMnaUYl6sfsy4cU2chjnkhani0euBAtgTbrkmRp64Yc6dwE4gP16NfmIBXPf/N5Zg6IrIFjqmzE46ps2z8gSVjNTh2wz5jNxpS3Vk61qpAWSRW7E8WfedtN4y56zjrD/HBxpNi+RqOqXOV8+wMscXWdccxdbZpc7auO46pc3Ic31R3HsfUNYyxG5ZyxjZnLE/h6YGxPVpg1G3heO+Hzfir0A9J2cX4Yk8qPKQypClS8ET/NvBxr3nMXW1ltAWOqbMsz5liS332zzF1jMumfn4nfCU2EZF9uMmkuDNEYNN/emHRuC5o19QHar0EX+xORp95OzB/60UU22aYFRGR1fFKnZXwQQk+KFGf9ZxpQK65nLHNGcszVj86nRZD2jdB/9Z++GT1dvxZ6I9zmSp8sTsZHlIZ2nfNR8fIQJM/k7XxQQk+KGHpOnxQwvL1nCku80EJG+NAZiLXJQRwKl+C39Ok0Arg1dt0kErq3o4PShCRLfBBCTvhgxKWDSq1ZAAuB+TaZ0BuQ6o7Ww+gV6lUYtlqPijh6ue5IdcdH5SwTZuzdd3xQQknx0HrdefxQYmGMSDXUs7Y5ozlmdPG/N35oERtZbH2dnxQwrLt+KCE5ds1hLjMByWIiIiIGhF26oiIiIhcADt1RERERC6AY+qshFOacEqT+qznTI/Om8sZ25yxPFu3OU5pYvl2Dek8m4tTmliGcbn6MevCKU0sxCkHiKgqTmlCRLbAKU3shFOaWPb4tyWPyvPRefs8Ot+Q6s7ZprrglCaN4zw7U91xShPbtDlb1x2nNHFynF6i7jxOadIwHp23lDO2OWN5tmpznNKk/ts1hPNsKU5pYhnGZU5pQkRERNSosFNHRERE5ALYqSMiIiJyAezU3ZCWloYuXbrA09MTWq3W0cUhIiIiMgs7dTeEhIRgx44duOuuuxxdFCIiIiKz8enXGzw9PeHp6enoYhARERFZpMFeqZs1axbi4uIglUqxatWqSnnZ2dkYNmwYFAoFYmNjsX37dgeVkoiIiMg+GuyVupiYGCxcuBAzZ86sljd9+nREREQgJycHW7ZsQUJCApKSkqBWqzFmzJhK6/r4+GDjxo32KjYRERGRTTTYTt348eMBAHPnzq2UrlKpsG7dOqSkpEChUGDUqFGYP38+NmzYgAkTJmDnzp31Oq5arYZarTYsK5VKAHz3a215fPdrw3rHoLmcsc0Zy3P2d7/WFV94np3jPJuL7361DONy9WPWpcG/+zU+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P2VlZbj//vtx+PBhdOnSBbNnz0bfvn2rrTd79mzMmTOnWjrfzUhE9X33K+MLEdXE1NjSYK/UGaNSqap9YD8/PxQUFNS6naenJ7Zt21bn/l977TXMmDHDsKxUKhEVFYUBAwYYjqvVapGYmIgBAwbAzc2t0jKASnnWVvXY1t6utvWM5Zmabu6yNTmy3mrLryndlLTG3uaM5dm6zd28smapuuILz7NznGdz2bLuHBlbGJftF5dNjS28UmehRYsWYdGiRdDpdLhw4QL/kyaiel+pu4nxhYhuZWpscblOnUqlQnBwMFJTUxEWFgYA6NevHyZPnowJEyZY/fhKpRL+/v7IyMjglTpeqbN4PWf6j9BcztjmjOXZ40pdeHh4vTt1t+7v1vjC8+wc59lcvFJnGcblf5gaWxpsp06j0UCn02HIkCGYMmUKEhIS4O7uDqlUioSEBAQFBWHBggXYunUrJk2ahKSkJAQGBlrt+PxPmoiq4pU6IrIFl79SN2nSJCxbtqxSWmJiIuLj45GdnY2JEydi586diIyMxOLFizFo0CCblINX6urO45W6hvUfobmcsc0Zy+OVOsvxPFuOV+osw7j8D6e9UldaWoq33noLa9asQV5eHpRKJTZv3oyzZ8/iueees2dR6oX/SRNRVbxSR0S2YHJsEXY2adIk8eijj4qTJ0+KgIAAIYQQ6enpIjY21t5FsYrCwkIBQOTk5Ijy8nJRXl4uiouLxa+//iqKi4urLVfNs/aXpfs3dbva1jOWZ2q6ucuuUm/m1p0paY29zVlST9Zoczk5OQKAKCwstEl84Xl2jvPsTHXnyNhi67pjXP7ny9TYYvcpTX777TekpaXBw8MDEokEABAeHo6MjAx7F4WIiIjIZdj99mvbtm2xY8cOREZGIigoCHl5eUhOTsZ9992Hs2fP2rMo9cLbI0RUFW+/EpEtOO3t188//1zcfvvtYs2aNcLPz09s2LBB9OjRQ3z55Zf2LopV8ParZZeqLbmsz8v89rnM35Dqztluy/H2a+M4z85Ud7z9aps2Z+u6c5nbr9OnT0doaCi++eYbREZG4tNPP8Xzzz+P0aNH27soRERERC6jwU5p4mi8PUJEVfH2KxHZglPNU/fhhx+atN7LL79s45JY3815pHJycgwVrdFosHXrVgwePBhyubzSMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2brNKZVKNGnSxOrz1N2MLzzPznGezWXLunNkbGFctl9cNjW22OX2660PQJSUlOCXX35Bjx49EBUVhbS0NBw8eBAPPvigPYpiM3K5vNqJqZpW9WdbBI/67t/U7Wpbz1ieqenmLluTI+uttnxT2ldNaY29zRnLs1Wbs1e75Hk2Lc+ZYkt99m/Kdo6ILYzL9ovLpn5+u3TqlixZYvj5oYcewpo1azBy5EhD2vr16/Hdd9/Zoyg2o9FooNFoDD/X9r3qz9YuhyX7N3W72tYzlmdqurnfrcmR9VZbfm1tp7a0xt7mjOXZus3Zso5NiTG2LoMl+3fF82wuW9ado2ML47LpafX5fTV1PbuPqfP390dubm61V24EBwejsLDQnkWpF455IaKqOKaOiGzBaac06dWrl5g1a5bQaDRCCCE0Go2YM2eO6Nmzp72LYhWc0sSyx78teVSej87b59H5hlR3zjbVBac0aRzn2ZnqjlOa2KbN2bruXGZKk++//x7jxo3Dxx9/jNDQUGRlZSEuLg7Lly+3d1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e0awnm2FMfUWYZx2cnG1N2qVatW2L9/P65cuYKMjAyEh4ejefPm9i4GERERkUuxe6cuKysLAODp6YmWLVtWSgsNDbV3cayGD0rwQYn6rOdMA3LN5YxtzlgeH5SoXxks2b8rnmdz8UEJyzAuVz9mXez+oIRUKoVEIsHNw0okEkOeTqezZ1HqhQOZiagqPihBRLbgtA9KVJWRkSGmT58uvvvuO0cXxSJ8UMKyQaWWDMDlgFz7DMhtSHXnbAPo+aBE4zjPzlR3fFDCNm3O1nXnNA9KHDt2DLfffruFfc3qwsLCMH/+fLRq1Qr/+te/rLZfe+Og9brz+KBEwxiQaylnbHPG8vighPXKYu3tGsJ5thQflLAM47LpsUVq0lq3GDFiBOLi4vDOO+8gKSnJ3M1rdODAAWi1Wqvsi4iIiKgxMvtK3ZUrV7Bnzx6sXLkSPXv2RMuWLTFu3DiMHj0aYWFhdW7fvn37SuPoSkpKkJubi4ULF5pbFCIiIiK6waKnX/v27Yu+ffvis88+w+bNm/HSSy/hxRdfRHx8PP79739j9OjRkEprvgj45ZdfVlr29vZG27ZtrfLyayIiIqLGyuIpTY4fP45Vq1Zh5cqVCAwMxAcffIBmzZrhiy++wMqVK7F+/foatzt06BBefPHFaunz58/HjBkzLC2Ow3FKE05pUp/1nOnReXM5Y5szlscpTepXBkv274rn2Vyc0sQyjMvVj1kXs6c0efvtt7Fy5UqUlZVh7NixGD9+POLi4gz5paWlCA4ORklJSY3b+/n5QalUVksPDg5Gbm6uOUVxKE45QERVcUoTIrIFm01pMmXKFLFr165a1zl69Gi1tB9//FH8+OOPwsvLS6xevdqw/OOPP4p58+aJNm3amFsUp8ApTSx7/NuSR+X56Lx9Hp1vSHXnbFNdcEqTxnGenanuOKWJbdqcrevOaaY0+frrr+tcp6YpT7744gsAQHl5ORYvXmxIl0gkCA0NxdKlS80tilPh9BJ153FKk4bx6LylnLHNGcvjlCbWK4u1t2sI59lSnNLEMozLTvju18TERADAu+++izfffNNehyUiIiJqFOzSqcvJyUGTJk0AAE888YThXa9VNeR3vxIRERE5kl06dS1btkRRURGAijdI3Pru15skEkmDevcrERERkTOxqFOXmpqKn376Cenp6YiIiMCDDz6Ili1bGl3/ZocOAPR6vSWHtLldu3bh1VdfhUwmQ/fu3TF//nxHF4mIiIjIZGa/Jmzjxo3o3LkzDh8+DHd3dxw5cgR33HEHNmzYYIvy2U2bNm2wc+dO7N27F5mZmTh58qSji0RERERkMrOv1L322mtYt24d4uPjDWm7d+/GtGnTMHz48Dq3T0tLw9tvv43jx49DpVJVyjtz5oy5xbGaZs2aGX6Wy+WQyWQOKwsRERGRuczu1F27dg29e/eulNazZ0+kp6ebtP3o0aMRExODOXPm1GsyzVmzZmHNmjU4d+4cVqxYgTFjxhjysrOzMWnSJCQmJiIqKgqLFy/GwIEDTdrvkSNHkJOTU2lCZSIiIiJnZ3Kn7urVq4iMjESPHj0we/ZszJ49G3K5HBqNBnPmzEGPHj1M2s+pU6ewd+9eo++GNVVMTAwWLlyImTNnVsubPn06IiIikJOTgy1btiAhIQFJSUlQq9WVOn8A4OPjg40bNwIAMjMz8cwzz+Dnn3+uV9mIiIiI7M3kTl1cXByUSiW++uorjB07FkFBQQgNDUVWVhY6deqEVatWmbSfe+65B/v370evXr0sLjQAjB8/HgAwd+7cSukqlQrr1q1DSkoKFAoFRo0ahfnz52PDhg2YMGECdu7cWeP+ysrKMG7cOHz22Wdo2rRpvcpGREREZG8md+puTkHSvHlz/Pnnn0hLSzM8/RoVFWXyAb28vHDPPfdgyJAh1ealu/VNE5a6ePEi/P39ER4ebki77bbbcPr06Vq3W7JkCc6cOYPnn38eAPD++++jZ8+e1dZTq9VQq9WG5ZvvsTXlZduN9aXbpqbzxdHO8eJoczljmzOWZ+s2V986riu+8Dw7x3k2ly3rztGxhXHZ9LT6/L6aup5EVJ0wzghfX1+cOXOm2vxyt2revHmd+5kzZ47RvFmzZplSlEri4+MxdepUw23VPXv24LHHHsOlS5cM67zxxhsoKCjAokWLzN5/VbNnz67xM/CF20Rk8ku3jWB8IaKamBpbTL5SV1xcjNjYWKOdOolEgpKSkjr3Y0nHzRw+Pj6G/25vUiqV8PHxscr+X3vtNcyYMQP//e9/8d///hc6na5SB5KIyFKML0RUH2Zdqbt1EmFLffjhhzWme3h4IDIyEgMHDkRAQIDJ+6t6pU6lUiE4OBipqakICwsDAPTr1w+TJ0/GhAkT6l3+qpRKJfz9/ZGRkWHoPWu1WiQmJmLAgAFwc3OrtAygUp61VT22tberbT1jeaamm7tsTY6st9rya0o3Ja2xtzljebZuc0qlEuHh4RZfqatpf7fGF55n5zjP5rJl3TkytjAu2y8umxpbTO7U+fn5VbsCZokxY8bgl19+QY8ePRAZGYmrV6/iwIEDGD58ONLT03HmzBmsXbsWd999d6370Wg00Ol0GDJkCKZMmYKEhAS4u7tDKpUiISEBQUFBWLBgAbZu3YpJkyYhKSkJgYGB9S7/TYsWLcKiRYug0+lw4cIF3h4honrffr2J8YWIbmVqbLH7lbqHH34YkyZNwv33329I++2337B06VKsWbMGy5cvx//93//h2LFjte5n0qRJWLZsWaW0xMRExMfHIzs7GxMnTsTOnTsRGRmJxYsXY9CgQfUue01u/iedk5NjqGiNRoOtW7di8ODBhmlfbi4DqJRnbVWPbe3talvPWJ6p6eYuW5Mj6622/JrSTUlr7G3OWJ6t25xSqUSTJk2sfqXuZnzheXaO82wuW9WdRqfHtTwV1m/fi+axnaEq16OwVIvCUg0KSjUoUWtRrtUhMysbfgFB0ImKoVLuMincpEB+bjaiIsIR5O2OAIUcvh4ypF06h0G9uqJFiC+a+nlCr9MyLjtBXDY1tph8PdMaHTqg4kP8+OOPldKGDh2KcePGAQDGjh2LadOm1bmfpUuXYunSpTXmhYSEYNOmTfUuKxERkSPpBZCWX4qU/AJcylIhKbsYyTnFSC8sQ1aRGhWXZdyA07W9kUkKFBTUmH4i73qVNBm+v3QMAOAmlSDc3wPeeimO4xLiIvzRpokXdM75CneCGVfqrKVnz56477778Nprr8HNzQ06nQ7vv/8+Nm7ciP379yM1NRV9+/bFlStX7Fkss/H2CBFVxduvVB9CANllwBWVBFdUEqSqJLhWAmj0EqPbyCQCge6AvzvgLRfwdgMUboCXm4CnDHCTADJpxXepBBAAtHpAJyq+l+uBEq0ExVqgRAOotEBBuQT5akAnaj6uXCoQ7SPQ2hdo7SfQwlfAg2/WtCmr3361lgsXLmDcuHG4cOGCYfLi2NhYrFixAjExMTh48CCuXr2KBx980J7FshgflKg7jw9KNKwBueZyxjZnLI8PSliO59lyxvavFwIXs4pxMCUf+5MLcPhKAZRl2mrbu8skaNlEgdZNvNE6xBstmyjQzN8T4f6e8POQYNfOnVaPLRKpDNkqNVJzivHHX0chCYzEhawSXMhSQaXWVTqGTCLQo2UQBrRtgvi2TdAswNOm9Wat7RpSXLb6gxLWlpKSguvXryMsLAzR0dGOKEK98D9pIqqKV+qoLoXlwJl8Cc4VSHBRKUGxtvLVMDeJQKQ30NxHGL5CPCuusjkDIYDrpcDlIgmSlBVf+eWVCxfpLdAtRI8uwQJ+7g4qqItx2it1N5WUlCA3N7fSvHemTF7sbPigRN15fFCiYQ3INZcztjljeXxQwnI8z5YRQuBEWj6++f0AruoDcDK98vh0hbsMXZsHoEfLINzVKgjtw3zh7iat83ObUje15VsjtsjlcpSXl2P5hm1QN4nF7kt5OJyaD/2NP+syqQS9Wwdh9J2RGNguFDIze6aMy/+w+oMS1nLy5ElMmDABJ06cAFDxJA4AuLu7mzR5sbOSy+XVTkzVtKo/2yLw1nf/pm5X23rG8kxNN3fZmhxZb7Xlm9K+akpr7G3OWJ6t2py92iXPs2l5jootQgicvFaIjScysPF4OtILywDIAFR06G6L9Mfd7Zqid5tgdI4MMHTijDGlXI6ILTeXm3oB9/VvjacHtUNecTl+O5GOn49cw7G0Auy+mIvdF3PRLMALE3pGY3S3KAQozLt8x7hsemyxe6du6tSpGDlyJPbt24fw8HBkZGTgrbfeQuvWre1dFKvSaPjuV2N5pqab+92aHFlvteXX1nZqS2vsbc5Ynq3bnC3r2JQYY+syWLJ/VzzPxly4XoSNJzPx28lMXMkrNaR7yaVo46PFI33aY2D7MIT4evyzkdBBo9HVsDfTyuXo2FL1u6+7BGPubIYxdzZDck4x1h5Nx49/X8W1glK8//s5fLLtAsbcGYkpfVsi9NZ6sPDz12c7R9edKWU0dz27334NCAhAXl4epFIpAgMDkZ+fj/LycrRq1QpXr161Z1HqhWNeiKgqjqlrfFQa4FC2BAeypcgo+ef2olwq0DFQ4I5ggfYBAu6N+OnQch1wJFeC3RlSXLtRR3KJQM+mAoOa6eHPcXd1Mjm2CDuLjo4Wubm5QgghOnToII4dOyauXLki/P397V0UqygsLBQARE5OjigvLxfl5eWiuLhY/Prrr6K4uLjactU8a39Zun9Tt6ttPWN5pqabu+wq9WZu3ZmS1tjbnCX1ZI02l5OTIwCIwsJCm8QXnmfnOM8lpWVi88lrYsqyg6L1a7+J6Fc2iuhXNoo2r/8mHl9yQKz9O1XkF5XYpe4cGVvM/WxqtVpsP5MuHli011Bnbd/YJD7YdFrk3VJfztDmbF13tootdr/9OnnyZOzatQsPPPAAnn32WfTt2xdSqRRTpkyxd1GsiuOb6s7jmLqGMXbDUs7Y5ozlcUyd9cpi7e2c+Tyn5ZVgxcEr+PnwVWQVqQ3pnSP9kXBnFEZ0joC/wvzf77o4+5g6U8sIAHe3D8eAdmH481IuPtl2AYdT8/HFrmT8dCQdLw5pi4e7RlV7oIJx2YnH1L355puGn6dMmYIhQ4ZApVKhQ4cO9i6KVXFMHcfU1Wc9Zxq7YS5nbHPG8jimrn5lsGT/Df086/UCfybl4vsDV7DzQg5uDlgKVMgx8rZwPNSlGdqF+VY7tqnlr01DHFNnqh4t/LHy8Tux7Ww25m2+gNS8Erzy80ks+ysF74yIQ+dIf8blGo5ZF7uNqYuLi6tznTNnanvNiXPhmBciqopj6lxHiRY4mC3Bnkwpcsr+uXIU669Hr6YV4+XqeGiVTKTVA3syJdh8VYpSnQQSCPQNExjWXA/PRjwW8VZON0+dl5cXmjdvjkcffRT9+vUzTGVyq/79+9ujKFbFeerqzjM13dxla3JkvdWWX1O6KWmNvc0Zy7N1m+M8dZZv5yznOSVPjWX7r2D98XSUaipecurj4YYH74jAo92j0CrE2+TPbm4dWLKdI2OLteNyrkqN936/gPUnMgAAYX4euD+8BDNGD2r0cdnp5qnLysrC2rVrsXz5cixduhQJCQl49NFH0blzZ3sVwaZsdR/dmuWx5naWjHsxNd1aYzcswbEblnPGNmcsz1Ztzl7tkufZtDxTz6sQAucLJfh55QnsvphryI9t6osJvaIx6vZm8Pao/59LW9adI2KLtdtdWKAcn47rgoRu2Xjjl1O4kleC/yllyN94HrNHdISvp3n7d6W4bGrd2u3isa+vLyZOnIgtW7Zg3759iIiIwBNPPIFOnTo1qNuuRETkGjQ6PX45ehUjF+/H4jMy7L6YC6kEuLdjGH584i788VxfPNoj2iodOjJd35gQbH6uHx7vHQ0JBH4+ko57F+7BweQ8RxfN6TmkpXp4eMDLywuenp7Izc2FXq93RDGsypRBzI11MLOp6bYakGsKDsi1nDO2OWN5tm5ztqxjU2KMrctgyf6d8TznFZVi+zUJ3p+/B5nKiqdY3aUCD3eNxL/7tER0UMX4Ra1Wa8pHrJMt687RscVWcdlNArwwsBUUBUlYe80HV/NLMfrrfZjSpwWevbtNrW/hcMW4bOp6dhtTp1arsX79evzwww84evQoRo0ahXHjxuGuu+6yx+GtjgOZiagqPijh3ArUQGKGFPuyJFDrKsZ1+8oF+oXp0bupgLft7lpTPZRpgbUpUhzIrujItfARmNhWh6DaX0jhUpzuQYmAgACEhYVh7NixGDx4MNzcql8k7N69uz2KYlV8UKLuPFPTzV22JkfWW235NaWbktbY25yxPFu3OT4oYfl2tjzPl64X4u3V+3AoRwbtjbfNh3kJ/Gdwe4y6IxJSoWuwdefI2GLvuLzlzHW89stpKMu0CPCS48OHOmJAbIjZdWLqes4Ul53uQYmAgACo1WosXboUy5YtQ9W+pEQiweXLl+1VHKuz1eBIa5bHmttZMpjZ1HR7DMg1xpH1Vlu+PQfkWsoZ25yxPFu1OXu1S55n0/Iu55bh673nsfFEOvRCCkCgR8sgTO4TjeKLhzCsW3PDH1tzymgpW9adI2KLvePysNsi0TkqCNNXHMGJq4V44oejmBbfGi8Mbgs3WfXbsa4Ul02tW7t16lJSUux1KCIiasSOpRXgv+ekOLVvnyEtLkCPtx7ugbvahEKj0WDTJQcWkCwWFaTAmqk98f6mc1j6Vwq+2JmEo1fysWhcFwT7NKL7sUZw6kQiImrwhBD481IOxv13PxK+PohT+VJIJMCwTuFY99RdeLK9Hl2jAx1dTLICDzcZZo/ogEXjusDbXYb9l/Mw4vM/cSZd6eiiORyf0yYiogZLrxc4mSfBt18fxPGrhQAAN6kEXYN1eHtsX8RGBECj0SDlqIMLSlY3rHM4Ypr6YMp3fyM1twQPffEXPn7kNgxu18TRRXMYduqsxJTpBhrrtAOmpjvq0fn67NsVH503lzO2OWN5tm5ztqxjU2KMrctgyf5tdZ71eoEtZ7PweeIlnL8uA1AIDzcpHunaDBPvisTpg3sQFeBuVmxuiHXn6Nji6LjcMsgTPz3RA8+tPoE/k3Lx1PIjmNY3Gm2Fa8VlU9ez29OvroZTDhBRVZzSxPb0AjiRJ8EfaVJklFZMS+IhE+jTVCA+XA8/dwcXkBxCJ4D1qVLszKgYVdY5SI9/tdHD3UXeHWtybBFUL4WFhQKAyMnJEeXl5aK8vFwUFxeLX3/9VRQXF1dbrppn7S9L92/qdrWtZyzP1HRzl12l3sytO1PSGnubs6SerNHmcnJyBABRWFhok/jSmM/z2l9+FWsPJYvBH+8U0a9sFNGvbBQd3vpDfLDxpFi+xr7n2ZnqzpGxxdZ1Z8m+fzyQItq8/puIfmWjuH/hLpGeV+SUdWer2MLbr1bC6SXqzuOUJg3j0XlLOWObM5bHKU2sVxZrb1d1Pb1e4PdTmfjwuAwZ+08DAHw93PBYn5Z4vHdLKOTApk1Jdj3PluKUJpYxZ9+PdI9GVJAXHl96ECfTi5Dw9UEsfawb2oT6Wrx/Z4jLTjelCRERkan0eoFNpzLw6faLuHBdBUACX083/Lt3S/y7d0v4K/6Z4JXoVndGB+L5jjp8f8UXV/JK8eDiv/DVv+5Ez9bBji6azbFTR0RETkOnF/jjeDo+23GzMwf4erqhdxM15k4YgGA/ji2kuoV6Aauf6IHpK4/jcGo+Jnx7APMe6owHu0Q6umg2xXnqiIjI4XR6gSM5Etz/+V94euVRXLiugq+nG54bFIOdM/ri3igBPy/b3Rol1xPs7Y7lk3tgWKdwaHQCM1Yfx6LES9XeaOVKeKXuhvT0dDz88MNwc3ODn58fVq9ezafNiIhsTKcX+O1kBhZuu4CkbBmAYvh5uuHxPq0wqXcL+HvJeYuVLOYpl+GzsXcgMsgLX+26jP/bfB65qnK8Oay9o4tmE+zU3dC0aVPs3bsXUqkUs2bNwm+//YaEhARHF4uIyCXd7Mx9uv0iLmVV3Gb1kgk80b8NHu/XGn6evCpH1iGVSvDave0R6uuJdzaewbd/JiOvWI25I+McXTSrY6fuBpnsn8lsJBIJYmNjHVgaIiLXpNcL/HE6E59svYCLNzpzfp5ueKxXNMKLzuOhAa1t+gQqNV6P92mJYG93vLjmOH49lo5clRrDgxxdKutqsGPqZs2ahbi4OEilUqxatapSXnZ2NoYNGwaFQoHY2Fhs377dpH3u3bsXXbt2xbZt2xAdHW2LYhMRNUpCCGw9cx3DPtuLp5YfwcUsFfw83TBjcFvsffVu/GdAa3jxMgPZ2Kg7muG/E++El1yGPZdyseiMDPkl5Y4ultU02E5dTEwMFi5ciO7du1fLmz59OiIiIpCTk4N58+YhISEB+fn5yMzMRHx8fKWv+++/37Bdnz59cPjwYYwaNQrffvutPT8OEZFLEkLgbL4ED391AFO++xtnM5Tw8XDDMwNjsOeVu/HMwBjeaiW7GhAbiuVTeiDAS45UlQRj/3cI6QWlji6WVTTY/4vGjx8PAJg7d26ldJVKhXXr1iElJQUKhQKjRo3C/PnzsWHDBkyYMAE7d+6scX9qtRoeHh4AAH9/f+h0OqPrqdVqw7JSqQTAd7/Wlsd3vzasdwyayxnbnLE8Z3/3a13xpaGd5/2X8/DJtos4kiYDoISXXIoJd0Xj8T7RCFS417jfhnCezcV3v1rGlvXWKdwH3026AxO+OYCk7GI89MVfWDapK1o28a5zP3z3qw3Fx8dj6tSpGDNmDADg6NGjGDp0KLKysgzrPP3001AoFJg3b57R/ezduxdvvPEGpFIpgoKC8P3339f49Ovs2bMxZ86caul8NyMR1ffdr64SXy4rgU1pUlxUVtwMkksEeocJDGqmhy8vypETyVcDX5yV4XqpBL5ygafa6xDhXfd29mZqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFAYMGGA4rlarRWJiIgYMGAA3N7dKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii/Ofp5PXFPi853J2JuUBwBwk0rw8B1hiEMaRg11nfNsLlv+jjgytrhKXF71xF2Y9uNpnMtU4cuLnvjvo7ehY0T137fa9m/ruGxqbOGVOgstWrQIixYtgk6nw4ULFxrcf9JEZH31vVJ3U0OLL1eLgd/TpDiVX3FlTioR6BEiMCRSjyAPBxeOyAQlWuDLszKkqiTwkAk82U6H1pb/CludqbHF5Tp1KpUKwcHBSE1NRVhYGACgX79+mDx5MiZMmGD14yuVSvj7+yMjI4NX6nilzuL1nOk/QnM5Y5szlmePK3Xh4eH17tTdur9b44uzneeLWcVYtCsZW85mAwCkEmBE5zBM69cCUYFeRrczdf+W5jlTbDGnDizZjlfqLN+u6nrFai2mrzqJg6kF8HSTYsHDcVCnHnOKuGxqbGmwnTqNRgOdTochQ4ZgypQpSEhIgLu7O6RSKRISEhAUFIQFCxZg69atmDRpEpKSkhAYGGi14ze0/6SJyPYay5W6rFLgj6tSHMmRQEACCQTuCBa4J0qPpl6OLh2R5cp1wLcXpDhbIIVMIvBYWz06BTm+m+TyV+omTZqEZcuWVUpLTExEfHw8srOzMXHiROzcuRORkZFYvHgxBg0aZJNy8Epd3Xm8UscrdfXZriFdwXH1K3U//Z6I47pm2HDyOvQ3/nIMbheC/8S3QEyoj9HtXO08m4tX6izjqNhSrtPj5bVnsOVsNqQQeG9kO4y4LaLW7XilroFz9v+kicj+XPVKXb4a2HJViv3ZEuiFBADQIVCP+6L0iHTCJwWJ6ksngJVJUhzKlkICgdGt9OjZ1HHdJZNji6B6KSwsFABETk6OKC8vF+Xl5aK4uFj8+uuvori4uNpy1Txrf1m6f1O3q209Y3mmppu77Cr1Zm7dmZLW2NucJfVkjTaXk5MjAIjCwkKbxBd7n+eruUXizbXHRZvXfxPRr2wU0a9sFOO++lMcTMpq1OfZmX5HHBlbbF13jo7LRSqVGDd/vaHtL9mbZLW6s1VscbkpTYiIqH5yVWp8vScFyw+mQa3VAwC6RQegp08Opj50O9/NSo2CVCJBQks92rSMxrL9aZi94Sx0eoGxXcMdXTSjePvVQs52e4SIHK+h334t1gA7MqTYnSFBub7iNmsLH4H7muvR1k9AIrF5EYicjhDAhitSbE+vmLJnVLQOAyLs23Xi7Vc74e1Xyy7zW3JZ35Uv8/P2q3XbnCX1ZI0211Bvv+Yqi8VHf5wRHd76w3Cr6f5Pd4utp64JtVrN8+zEvyO8/WqbNlc1X61Wiw82nTb8fjy9aB1vvxIRkfMoVmvx3f4r+ObPFBSWagEA7Zr64NmBbTCwXQgkvDRHBACQSCR4fmAbuEkl+CzxMtZfkaHV3lRMH9DG0UWrhLdfLcTbr0RUVUO5/VquA/Zel2DbNSmKtRUdt6ZeAvdG6XFbkICUfTkiozZflWBTmgwAcF+UDkMjbd+N4u1XO+HtV8su81tyWb+xXOavK523Xy3Pa+y3X4uKS8V/d10Ud76zxXAbqd+8HWLNwRRRWqbmeW6AvyO8/WqbNldX3U1ftM7wO/R/v58RKpWKt19diVwur/ZEWNW0qj/b8gkyS/dv6na1rWcsz9R0c5etyZH1Vlu+Ke2rprTG3uaM5dmqzdmrXZp7nsu1eqw5nIbPd1xCRmEZAKBZgBeeHRiDB7s0g5tManFZrL1dQzjPlrJl3TkitjTmuDy4mUBc+xh8uPkiPt95GTohECtsF5dN/fzs1FmJRqOBRqMx/Fzb96o/W7scluzf1O1qW89Ynqnp5n63JkfWW235tbWd2tIae5szlmfrNmfLOjYlxlT9WavT49fjGViUmISrBRWduaZ+Hniqfys83KUZ3N2kEHodNHqdSWWoun9Ty27Kdg3pPJvLlnXn6NjSmOPypB6RcJNK8d7v5/HFrmQMjJBicHm50e3rE5dNXY9j6izEMXVEVJWzjKnTC+BIjgR/XJUiu6xigJyvXGBwMz16NRWQm35hjojqsDtDgp9TKsbYxYfrMSpab/Xpfzimzk44ps6ysRuWjNVorGM3OKau4Yy1cvSYurW//CrWHkoWAz9KNIz3uX3OZrF4xwVRqCrleeaYOrPqzdF115Di8v92XjD8zs1Zd1Ko1WqOqWvIOL6p7jyOqeOYuvps1xDGWjlyTN32c1n46IQM1/afBgD4ebrhyf6tMbFXC/h4WC/U8zxbjmPqLNMQ4vKEXi1w/vxZrL4sw7d/pUImk+KlwW1q3J5j6oiIqFZrDl/DtRIJvD1keLxPKzzepyX8vfg6LyJ76d1UoEOH9pi14Sz+uycZQgh0tPMAN3bqrIQPSvBBifqsxwclLFvP2QbQO/JBien9WkCivI63x/VBiL/C6uXhebYcH5SwTEOMywl3hEEAmL3hLP63N6XSwxN8UMKJ8UEJIqrKWR6UICLH2pMpwU/JFQ9PDIrQ4/7m9Xt4gg9K2AkflLBsUKklA3A5INf0tMbe5iypJ2u0OUc/KMHzbJ/z7Ex1xwclbNPmrFF3/9153vDwxPu/na40QTEflHByHLRedx4flOCDEvXZriEMoHfkgxLG8mxdFmtv1xDOs6X4oIRlGmpcntirJc6ePYefU2T4cncyJIBhgmJLymgKzlZEREREZAP9wgXevC8WAPDF7mRsSpNC2HDUGzt1RERERDYysWc0Zt4fBwDYck2KT3ck2exYvP1KREREZEOP92kJnU6H934/j893XoZEArSxwXHYqbMSTmnCKU3qsx6nNLFsPWeb6sKRU5rYowyW7N8Vz7O5OKWJZVwtLo/vFoEzZ87g11QZPku8jHsiJRjMKU2cA6ccIKKqOKUJEdVlR7oE61IrpjsZ3UqHXk3r7oZxShM74ZQmlj3+bcmj8nx03vS0xt7mLKkna7Q5TmnSOM6zM9UdpzSxTZuzdd19uvWs6P32BnEtp8Ckz8QpTeyM00vUnccpTTilSX22awhTXXBKk/pv1xDOs6U4pYllXDEuT+3fGhFF5xHip+CUJkREREQNmZsNemDs1BERERG5AHbqiIiIiFwAO3VERERELoAPStSTuDEjjFKpNKRpNBqUlJRAqVRCLpdXWgZQKc/aqh7b2tvVtp6xPFPTzV22JkfWW235NaWbktbY25yxPFu3uZv1Law0U1TV+MLz7Bzn2Vy2rDtHxhbGZfvFZVNjCzt19VRUVAQAiIqKcnBJiMhZFBUVwd/f3yr7ARhfiKhCXbGFkw/Xk16vR3p6Onx9fSGRSAzp3bp1w6FDh6otK5VKREVFIS0trV6Tk9am6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9//3q/G7IxYt1ZhvVmuYZUdw2prM6GdWc51p1lbFVvvFJnZx4eHpg1axY8PDwcXZQGh3VnGdab5RpS3TWksjob1p3lWHeWsVW98UodERERkQvglToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipIyIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtwcXYCGTq/XIz09Hb6+vpBIJI4uDhE5kBACRUVFiIiIgFRa//+ZGV+ICDA9trBTV0/p6emIiopydDGIyImkpaUhMjKy3vthfCGiW9UVW9ipqydfX18AFRXt5+cHANBoNNiyZQuGDBkCuVxeaRlApTxrq3psa29X23rG8kxNN3fZmhxZb7Xl15RuSlpjb3PG8mzd5pRKJaKiogxxob6qxheeZ+c4z+ayZd05MrYwLtsvLpsaW9ipq6ebt0T8/PwqdeoUCgX8/PwMJ/LmMoBKedZW9djW3q629YzlmZpu7rI1ObLeasuvKd2UtMbe5ozl2avNWetWadX4wvPsXOfZ2nVgyXaOjC2My/aPy3XFFj4oQUREROQC2KkjIiIicgHs1BERERG5AI6pQ8UTZg8//DDc3Nzg5+eH1atXQ6FQOLpYRORgRWUaJBc5uhRERKbhlToATZs2xd69e7F792507doVv/32m6OLREQOIIRAZgnw373JGP3VPnR7fye+OiuDRqd3dNGIiOrEK3UAZDKZ4WeJRILY2FgHloaI7EmjB/ZczMHuS3nYdvY6rua7AccvGvL9vIBMZRlaeXo4sJRERHVzuSt1s2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b99uyNu7dy+6du2Kbdu2ITo62t7FJiI7uq4sw6qDVzBt+VG8fkiGf393BEv/SsHV/FLIJAJ92wRj9vA4bH++D16/XYeoQA7HICLn53JX6mJiYrBw4ULMnDmzWt706dMRERGBnJwcbNmyBQkJCUhKSkJgYCD69OmDw4cP46OPPsK3336L559/3gGlJyJb0OsFTlwrxNbTGVh3Qoar+3bfkitBqK8H7m4Xiv4xwSi69DceGN7VMK/UKYeVmojIPC7XqRs/fjwAYO7cuZXSVSoV1q1bh5SUFCgUCowaNQrz58/Hhg0bMHr0aHh4VNxa8ff3h06nM7p/tVoNtVptWFYqlQAqJhnUaDSGn2v7XvVna6rpWNbcrrb1jOWZmm7ud2tyZL3Vll9b26ktrbG3OQAoUJXiWK4EiT+dwJ5LecgtLr+RI4EEQKdIP/RvEwyP3It4bFQ83N3dodFosDXZ8jZX3zquK77wPJuW50yxpT77N2U7R8cWxmXT0+rz+2rqehIhhDBpzQYmPj4eU6dOxZgxYwAAR48exdChQ5GVlWVY5+mnn4ZCocDw4cPxxhtvQCqVIigoCN9//73Rp19nz56NOXPmVEtfsWIFn5glcrDCcuBUvgQn8yS4UCiBTvwz+7qHTKC9v0BcoED7AAE/d+sfv6SkBOPGjUNhYaFh1nhzML4QUU1Mji3CRfXv31+sXLnSsLx7927RunXrSuu8/vrr4qmnnjJrv2VlZaKwsNDwlZaWJgCInJwcUV5eLsrLy0VxcbH49ddfRXFxcbXlqnnW/rJ0/6ZuV9t6xvJMTTd32VXqzdy6MyWtMbW5r1b+KhZsPiNGfLZHRL+ysdJX11kbxFtrj4ld5zKEqqTM5m0uJydHABCFhYUWxa264ktjPs/m5DlTbLF13Tkytti67hiX//kyNba43O1XY3x8fAy3Mm5SKpXw8fExaz8eHh6GW7W3ksvl1d7fVjWt6s+2eMdgffdv6na1rWcsz9R0c5etyZH1Vlu+Ke2rpjRXbHN6vcDRtHxsOXMdW05lIjnXDcBlw3q3RQVgSFxTDGgbjAuHdmPYsLhK72Ks6ZjWanP1rV9T40tjOM/WyHOm2FKf/ZuynSNiC+Oy/eKyqZ+/0XTqYmJiUFhYiMzMTISFhQEAjh8/jsmTJzu4ZERUF50A9l3OxR9nsrHl9HXkqP4ZdyaTCPRu0wRDOoRjcFxTNPXzBFDRgbtY+7uviYhcist16jQaDXQ6HfR6PTQaDcrKyuDu7g4fHx+MGDECs2bNwoIFC7B161acOnUKw4cPd3SRiagGWp0eB5LzsOH4NWw8KoNq/2FDnq+nGwbEhmJgbBOUJR/BgyO62vQKCxFRQ+BynbopU6Zg2bJlAIA9e/ZgwoQJSExMRHx8PBYvXoyJEyciODgYkZGRWL16NQIDAx1cYiK66WZH7reTGdh8KrPSE6sBXnIM7RCG+zqHo2erYLi7SaHRaLApzaFFJiJyGi7XqVu6dCmWLl1aY15ISAg2bdpk3wIRUa2EEDh6JR+/Hr2GjScybunIAYEKOQa3D0VwyRU8PXoQFHyrAxGRUS7XqSOihiE1rwR/pEnwycI/kZJbYkgPVFRckRvWORx3tQoG9Dps2pQKuczlXoBDRGRV7NQRkd0Ulmiw/kQ6fj16DYdT8wHIAJTASy7D0A5NMfKOZujTpkmlDpxGb3wycCIi+gc7dURkU0II7L+chx8PXcGmU5ko1+oBAFIJ0NZPj8cHdca9nZvBx4PhiIioPhhFicgmsovU+PnIVfx4KA3JOcWG9HZhvni4ayTuiQvB4b07cN/tEZDLGYqIiOqLkZSIrEYIgQPJefhuXwq2nL4Orb7iLYTe7jKMuD0CY7o1R+dIf0gkEpu9Z5OIqLFip46I6q1cB6w5fA3fH0jD2Yx/3txye1QAxnaPwv2dI+DN26tERDbFKEtEFssoLMWyP5Px/REZig+eBgB4yWV4sEszjL8rGu3DzX+pPRERWYadOiIy24XrRfhyZxLWHU+HTi8ASNAswBMTe7XA6Dubw1/BtzsQEdkbO3VEZLIjV/KxODEJ285eN6R1axGITu45eGlcH3hxcmAiIodhp46IaiWEwJ6LOVi88xL2X84DAEgkwNC4MEyLb424MG9s2rQJbpwcmIjIodipIyKj/rqUg4+2nMeRKwUAADepBKPuaIap/VujTagPAPApViIiJ8FOHRFVcyglDx9vOW+4MufhJsXY7s0xpV8rNAvwcnDpiIioJuzUEZHB8bQCfLz1AnZfyAYAuMukGNs9Ck8NaIOmfp4OLh0REdWGnToiQkpOMT7cfA6bTmYCqLjNmnBnFP5zdxtemSMiaiDYqSNqxPKLy/Hpjov4YX8qNDoBqQR44I5IPDswBs2DFY4uHhERmYGdOqJGqEyjw7K/UvB54iUUlWkBAPGxIXjt3vaIDfN1cOmIiMgS7NQRNSJ6vcCGE+n48I/zuFZQCgBoH+6HN+5rjz4xTRxcOiIiqg926ogaiTMZSrz923kcTs0HAIT5eeLFobF44I5mkEklDi4dERHVFzt1RC6uqEyDn5Ol2Lt/P/QCULjL8FR8azzepxW83GWOLh4REVkJO3VELkoIYN3xDMz74zyyVRVvexjWORxvDmuPcH8+0UpE5GrYqSNyQRezVPj8jBSX9p8EAIR4Cnw4+k4MaB/m4JIREZGtsFNH5EKK1Vp8sfUSvtmbDK1eCk+5FNP6tUKk6hz6tAl2dPGIiMiG2KkjcgFCCBzLleD9T/9EplINAOgYqMdnj/VFZKAXNm065+ASEhGRrbFTR9TAXc5W4a11p7D3kgyAGlFBXnjzvnYoSzqEyECOnSMiaizYqSNqoErLdVi44zK+3n0Z5To9ZBKBaf1b4z8D20IGPTYlObqERERkT+zUETVAJ/Mk+L/P/sTVgjIAQL+YYPTzvo6JA9tALpdBo9E7uIRERGRv7NQRNSBpeSV4a91JJJ6XAShDhL8n3hoeh7vbBuP33393dPGIiMiB2KkjagDUWj2+2H0RixIvQa3VQyoRmNynJZ4bHAuFuxs0Go2ji0hERA7GTh2RkztbIMH8z/5Cal4JAOCuloEY4JeNfw9pC7mcv8JERFSBfxGInFR6QSnmrD+FzWdlAEoQ6uuBN4a1x71xIbzVSkRE1bBTR+RkyrV6fPtnMj7dfhEl5TpIITChZzReGNoOvp5y3molIqIasVN3Q1paGkaOHIkzZ85ApVLBzY1VQ/Z3IDkPszeew6UsFQCga/MADAzIwZT72kEulzu4dERE5MzYc7khJCQEO3bswKhRoxxdFGqEsorU+O6iFIf3/Q0ACPZ2x6v3tsOITk3xxx+81UpERHVjp+4GT09PeHp6OroY1MhodXp8ty8V87degEothUQCjO8RjReHxMJfwVutRERkOqmjC2ALs2bNQlxcHKRSKVatWlUpLzs7G8OGDYNCoUBsbCy2b9/uoFJSY3c4NQ/DP/8Tb288A5Vai+beAj8/2QPvjOoIfwVvtRIRkXlc8kpdTEwMFi5ciJkzZ1bLmz59OiIiIpCTk4MtW7YgISEBSUlJCAwMdEBJqTHKVanxwe/nsObwVQCAv5ccLwxuA9+sk+jUzN/BpSMioobKJTt148ePBwDMnTu3UrpKpcK6deuQkpIChUKBUaNGYf78+diwYQMmTJhg0r7VajXUarVhWalUAgA0Go3hVlld36v+bE01Hcua29W2nrE8U9PN/W5N9qg3vQC+35eChYmXUViqBQA83KUZXhwSAz93CbZuPWlS3ZmS1tjbnLE8W7e5+tZxXfGF59k5zrO5bFl3da1jTly2Rl1akyPbXG35jojLpq4nEUIIk9ZsgOLj4zF16lSMGTMGAHD06FEMHToUWVlZhnWefvppKBQKzJkzB/fffz8OHz6MLl26YPbs2ejbt2+1fc6ePRtz5syplr5ixQooFArbfRhq0FJVwJrLMqQVSwAAzRQCCa10aOnr4IKRVZWUlGDcuHEoLCyEn5+f2dszvhBRTUyOLcKF9e/fX6xcudKwvHv3btG6detK67z++uviqaeeMnmfZWVlorCw0PCVlpYmAIicnBxRXl4uysvLRXFxsfj1119FcXFxteWqedb+snT/pm5X23rG8kxNN3e5IdRbVkGxeOWnY6LFKxtF9CsbRYe3fhf/3XVRlJSWWVx3pqQ19jZnST1Zo83l5OQIAKKwsNCimFVXfOF5do7z7Ex1V9c6towttq47R7Y5W9edrWKL3W+/lpaW4q233sKaNWuQl5cHpVKJzZs34+zZs3juuedsemwfHx/D7YyblEolfHx8TN6Hh4cHPDw8qqXL5fJq84hVTav6sy3nHbN0/6ZuV9t6xvJMTTd32ZqsVW96vcBPh6/igz/OIa+4HABwZxM9Pv13f0QEGW9v5tQd25zlebZqc/WtX1PjC8+zaXnOFFvqs39TtqtrHVvEloYWly1dzxnisqmf3+5Pvz711FPIyMjAxo0bIZPJAACdO3fGl19+afNjx8TEoLCwEJmZmYa048ePo0OHDjY/NjUep9MLkfDVPrz88wnkFZcjJtQHP/z7TvwrRo8Q3+p/sImIiKzB7lfqfvvtN6SlpcHDwwMSScX4ovDwcGRkZFjtGBqNBjqdDnq9HhqNBmVlZXB3d4ePjw9GjBiBWbNmYcGCBdi6dStOnTqF4cOHW+3Y1HgpyzSYv+UCvtuXAr0AFO4yPDcoBo/1bgnoddh01tElJCIiV2b3K3UBAQHIzs6ulJacnIyIiAirHWPKlCnw8vLCnj17MGHCBHh5eWH37t0AgMWLFyMtLQ3BwcF48cUXsXr1ak5nQvUiBLDueAYGfrwLS/+q6NAN6xSO7S/0xxP9WkMuc8npIImIyMnY/Urds88+i+HDh+ONN96ATqfDxo0b8e6771p1PN3SpUuxdOnSGvNCQkKwadMmqx2LGreLWSp8fkaKS/tPAgBaNvHGnBEd0K9tiINLRkREjY3dO3XTp09HaGgovvnmG0RGRuLTTz/F888/j9GjR9u7KEQWK1Zr8en2i/hmbzK0eik85VL8Z0AbTOnXCh5uMkcXj4iIGiGHTD6ckJCAhIQERxyaqF6EEPj9VCbe2XgGGYVlAICOgXp89lhftAw1f14yIiIia7FLp+7DDz80ab2XX37ZxiUhslxyTjHeWncKey7mAACigrzw5n3tUJZ0CJGBXg4uHRERNXZ26dSdPfvPY38lJSX45Zdf0KNHD0RFRSEtLQ0HDx7Egw8+aI+iEJmttFyHxTsv4atdl1Gu08NdJsXU+NZ4Kr41ZNBjU5KjS0hERGSnTt2SJUsMPz/00ENYs2YNRo4caUhbv349vvvuO3sUhcgs285cx+wNp3E1vxQA0K9tCOaM6ICWTbwBABqN3pHFIyIiMrD7mLpt27bhxx9/rJR233334V//+pe9i0JkVFpeCeZsOI1tZyveExzu74m37o/DPR3DDPMrEhERORO7T6DVsWNHvPvuu9BqtQAArVaL9957j291IKeg1urx2faLGDR/F7adzYKbVIIn+7fCthn9cW+ncHboiIjIadn9St3333+PcePG4eOPP0ZoaCiysrIQFxeH5cuX27soRJWcLZBg/md/ITWvBABwV6sgvDOyI2Ka+jq4ZERERHWze6euVatW2L9/P65cuYKMjAyEh4ejefPm9i4GkUF6QSnmrD+FzWdlAEoQ4uuBN4e1x4jbInhljoiIGgy7d+qysirGKHl6eqJly5aV0kJDQ+1dHGrEyrV6fLM3GZ9uv4hSjQ5SCEzoGY0XhraDr6fc0cUjIiIyi907dWFhFQPNhRAAUOlKiE6ns3dxqJHaczEbs9afxuXsYgBA1+YBGBiQgyn3tYNczg4dERE1PHbv1On1laeAyMzMxLvvvosePXrYuyjUCKUXlOLd385g08lMAEATH3e8dm97DO8Uit9//93BpSMiIrKc2Z26gwcPGs3r3r272QUICwvD/Pnz0apVK05rQjaj1urwvz3J+HzHpYpbrRJgQs8WeH5wW/h7yaHRaBxdRCIionoxu1M3evToSsvZ2dkoLy9HZGQkLl++bFEhDhw4YJjihMjadl/Ixuz1p3E5p+JWa7cWgXh7ZEe0D+e7WomIyHaEALQ6PXTQQV2uRakWyC8ph14vUFheMY2WNUf8mN2pS05OrrSs0+nw/vvvw93d3aTt27dvX2kcXUlJCXJzc7Fw4UJzi0JUq4vXi/DeprNIPJ8NAGji44HX72uHB+5oxqdaiYgaISEESjU65BWXI7eoFElKYOeFbKh1QLFai2K1ruJ7uQ5FpeW4mCzF1tUnoNELlGv1KNfpodbocD1HhsWX/4JGJ6DW6lGu1aG4VIbXj2yHXg/o9AJavR564Qbs33ZLCdyAQzsNP7e6rQB92ja12uer95g6mUyG1157DWFhYXj55ZfrXP/LL7+stOzt7Y22bdvCz49XTcg6clVqLNh2ESsOXoFOL+AmlWBCzxZ4bnAM/PhUKxGRyynT6HBdWYaMwjJcyyvGrmsSHP7tHHKLNcgrLkd+STkKSjTIKylHufbWsf1uwOmjtexZCmRn1pAuAYpV1dPMeOBTKhG48cyo1dS7U6fX67Fy5Up4e3ubtP6hQ4fw4osvVkufP38+ZsyYUd/iUCOmUmux7K8UfLkzCUXqitv5Q+Ka4tV726FViI+DS0dERPWh1upwObsYyTkVXyk5xUjJLUZKbgmyi9RV1pYBV64Y3Ze7TAp/LzdItGqEBPnBx0MObw+3ii93Gbw93ODpJsGVyxfRqUMcvDzk8HCTwsNNCikEThw7gt53dYfCwx3ublJIhR77/9qDu+Pj4eEuh5tMAr1Oh507tmPokMHwcJdD6HTYumUzht13L6QS4Pfff8ddrYKsWkdmd+q8vLwq3brSaDQIDw/H119/bdL2b7/9do2durlz57JTRxZRqbX4bl8K/rv7MvJLKh546BDhhzeHxaFn62AHl46IiMylLNPgWGouEtMlSPzpJM5dV+FSlgpavfFLW55yKcL9vRDq6w5dUS66tG+F8AAFgrzdEai48eUtR6DCHQp3GbRaLTZt2oT77utZ41RWGo0Gm9QXcF+v6Er5Go0G+lSB3q2DDekajQbJXkB0sKJSmo8c8PeSQy6XQ6MB3KSATGq74T9md+rOnTtXadnb2xtNmjSpc7vVq1cDqHjX65o1awzz1AFASkoKgoKs21sl15dRWIof9qdixYErhs5cqybeeGZgDEbcFgGpDX9xiIjIOoQQSMsrxeErefg7JR+HU/Nx/nrRjVuTMiA1w7Cun6cbWoX4oGUTb7QI9kaLJgq0bOKN5kEK+HvJIZFIKjpjmzbhviFtG928o2Z36qKjoy060BdffAEAKC8vx+LFiw3pEokEoaGhWLp0qUX7pcZFqwd2nM/G+uOZ+ON0JnQ3/mtr2cQbT9/dBiNui4CbTOrgUhIRUW2UZRr8dSkHuy7kYPeFbFwrKK22TmSgF4IkxRhweww6RQaifYQfIvw9+aBbLew2+XBiYiIA4N1338Wbb75pr8M6nWNpBbhYKMGB5Dy4y+WQSgCJpKJzK5VIKpYhgUQCSCX/fJfeWKfS8s31pP8s63RaKMsrHhZwdxeQSiou9cplUrhJJZBJJQ3uFyK7SI1DV7Kw+0IWfj8uQ8mBfwa19mgZhMd6t8Cg9k3ZmSMicmKpucX4/VQmtp25jqNpBYZ/ygFALpOgYzN/dG0eiDtbBKJLdCACPWUVV9wGtG50V9wsZZdOXU5OjuEW7RNPPGF412tVjeHdr6/+chpJ2TJ8fuZvGx7FDTMP7zKaK5f908mTy6Rwk0ngJpWgvEyGzy79CbmbDPIbaXKZFJ5yGTzlUnjJZXCXSZB5TYpTmy/A21NekedWsY5cCpzOlcDnYg68Pd3hJZdBLpNCInTILq14m4OXh85wTI1GiyINkFFYBh3KkVdUipN5EhQeSsP1onKcTVfiWIoMeftu/SwShPp6YFjncCR0jUJcBJ+aJiJyVpeyVPj9ZAZ+P5WJMxnKSnmtQrzRLyYE/duGoEerICjcK3dJOCm8+ezSqWvZsiWKiooAVH/3600SiaRRvPu1eZAXilUqKLx9AEnFxIR6IYx+r/hHpuK7Xgjo9QICtWyHiieSBYxfjdPoBDQ11rUE2WXFJnwKKXZnphjJk+HbC0dqSHfDu8f21JiOv3dX2h7nz1Yqk0RS8eBDjxaB8Mq/jP+M7gdPD9PmRSQiIvvKKy7HumPX8NPhqzid/k9HTiaV4K5WQbinQxjiY0MRFaRwYCldk0WdutTUVPz0009IT09HREQEHnzwQbRs2dLo+jc7dED1d782Nl+P73LjaZveNrmcbBgget99cHNzg04voBMCGp2AVqev+K7XQ6MV0Oj10OoENDo9yso12L33T3TrfheERFqxjq5iskW1Vo9SjQ5qjQ7FZRqcPncBzaJbolwnUKbRo0yrQ1m5DqXlWmRk58LLxw9lWj3UmoqJGjVaPUrLyyEkMmh0+mrz8shlEni4yeDtIYO7rgwxkaEID/BC6yYK5CefwsRRg9HET3HjsyXZ9MkhIiIyn0anR+KFTPx0+CoSz2dBo6sI9HKZBH3aNMG9HcMxKK4pgrz5D7ktmd2p27hxIx599FEMGzYM0dHROHLkCN555x18//33GD58uC3KSBaSSCQVt1YBeNRxpjUaDa75AXe1Cqq1s6nRaLCp5Bzuuze22nr/dCh7Vnv8uyJ9KORyOXT6io6kRqPBti2bcf+w+2487n1zvTv+Wc47BX8vjqUgInJGWUVq/J4mwdyP9yDrlrniOkf64+GukRjeOQKB7MjZjdmdutdeew3r1q1DfHy8IW337t2YNm2aSZ26tLQ0vP322zh+/DhUqsqzMZ85c8bc4lADJJNKIJPKIIMevOhGRNSwCAH8nZqP5Qev4o9TmdDqZQDUaOLjgQe7NMNDXSIRG+br6GI2SmZ36q5du4bevXtXSuvZsyfS09NN2n706NGIiYnBnDlzoFDwfjoREVFDoNXpsf54BuafkOHa/kOG9Ja+As/c0xnDbouEuxtnIXAkkzt1V69eRWRkJHr06IHZs2dj9uzZhltkc+bMQY8ePUzaz6lTp7B3715IpTzxREREzq5cB/xw4Aq++TMVV/NLAUjg4SbFqNubYWy3Zkg9thf3dQ6HnB06hzO5UxcXFwelUomvvvoKY8eORVBQEEJDQ5GVlYVOnTph1apVJu3nnnvuwf79+9GrVy+LC01ERES2VViiwZI/L+N/R2RQaSveJhWokKNncBlmj49HqL83NBoNUo85tpz0D5M7dTenIGnevDn+/PNPpKWlGZ5+jYqKMvmAXl5euOeeezBkyJBq89Ld+qYJIiIisj9lqQbf7UzGt3uTUaTWApAgMsATT/RvjVGdw5C4bTMCFXz4wRmZNaYuLS2t0vxy4eHhEELgypUrACo6fHVp1aoVXnjhBTOLSURERLakUmux5aoEM+fvgbJMCwBoG+qDHn6FeH18H3h5enBCYCdncqeuuLgYsbGx1SYNvkkikaCkpKTO/cyaNcv00tlRWloaRo4ciTNnzkClUsHNzW5vUCMiInKYknItvtuXiq92JSG/RAZAizahPnh+UFsMig3GH3/8ztcwNhAm91y8vb0rTSJsqQ8//LDGdA8PD0RGRmLgwIEICAio93HMFRISgh07dmDUqFF2PzYREZG96QSw8lAaPt1xGTmqijnmQj0FXrm/M0Z1iYJMKuGVuQbG5E6dtV4Cf+TIEfzyyy/o0aMHIiMjcfXqVRw4cADDhw9Heno6Hn/8caxduxZ33323VY5nKk9PT3h6etr1mERERPYmhMD2c1mYd1yG66UVr2VsHqTA9PiWkKcfx/DbwvnmngbK5Oupxm67mkur1eLnn3/G7t27sWLFCuzevRtr166FRCLBX3/9hUWLFmHGjBl17mfWrFmIi4uDVCqt9uRtdnY2hg0bBoVCgdjYWGzfvt0qZSciImrITlwtwJiv92Pq8mO4XipBoEKOWcPjsG1Gfzx4RzPI2Jdr0Ey+UmeNW68AsHXrVvz444+V0oYOHYpx48YBAMaOHYtp06bVuZ+YmBgsXLgQM2fOrJY3ffp0REREICcnB1u2bEFCQgKSkpKgVqsxZsyYSuv6+Phg48aN9fhEREREzi29oBQfbzuF9ccrXhTg4SZF31AtPnysD4J8K14EoNHoHFlEsgK7Pw0QFxeH9957D6+99lrFC+d1OnzwwQdo3749gIoHFkwZUzd+/HgAwNy5cyulq1QqrFu3DikpKVAoFBg1ahTmz5+PDRs2YMKECdi5c2e9yq9Wq6FW//N+O6VSCaDi/aY3xx7U9b3qz9ZU07GsuV1t6xnLMzXd3O/W5Mh6qy2/trZTW1pjb3PG8mzd5upbx3XFF55n5zjP5rJl3dW1jqq0DJuvSvDKwj9RptVDIgFG3RaO6f1b4PTBPfCUmdaeGJdrT7d1XDZ1PYmw1n1VE124cAHjxo3DhQsXDJMXx8bGYsWKFYiJicHBgwdx9epVPPjggybtLz4+HlOnTjVcgTt69CiGDh2KrKwswzpPP/00FAoF5s2bZ3Q/ZWVluP/++3H48GF06dIFs2fPRt++fautN3v2bMyZM6da+ooVK/jaM6JGrqSkBOPGjUNhYSH8/PzM3p7xhaxFCOBUvgS/pEiRq664p9raV+DBljpEeju4cGQ2k2OLcJDk5GSxf/9+kZKSUq/99O/fX6xcudKwvHv3btG6detK67z++uviqaeeqtdxbiorKxOFhYWGr7S0NAFA5OTkiPLyclFeXi6Ki4vFr7/+KoqLi6stV82z9pel+zd1u9rWM5Znarq5y65Sb+bWnSlpjb3NWVJP1mhzOTk5AoAoLCy0SXzheXaO8+xMdVfTOufT88W//rdPRL+yUUS/slF0nrlBrDlwWajVarPqzdF1x7j8z5epscVhk7GFhoZCJpOZPXlxXXx8fAy3LG5SKpXw8fGp976BiqlXPDw8qqXL5XLI5fJa06r+XHV9a7J0/6ZuV9t6xvJMTTd32ZocWW+15ZvSvmpKa+xtzlierdpcfevX1PjC82xanjPFlvrs35Tt5HI5tEKKhdsv4pu9l6HRCbjLpPh372i0KruIkXdEWj22MC7bLy6b+vnt3qk7efIkJkyYgBMnTgD4Z6oUd3d3kyYvrktMTAwKCwuRmZmJsLAwAMDx48cxefLkeu+biIjIGe25mINZG88iLa8UAHB3u1DMvD8Okf7u2LTpooNLR/Zi907d1KlTMXLkSOzbtw/h4eHIyMjAW2+9hdatW5u1H41GA51OB71eD41Gg7KyMri7u8PHxwcjRozArFmzsGDBAmzduhWnTp3C8OHDbfSJiIiIHCNHpcayC1Ic2XcEABDh74m3R3bEoLimAGz38Ac5J7t36k6fPo09e/ZAKq2YIs/T0xPvvvsuWrVqhSeffNLk/UyZMgXLli0DAOzZswcTJkxAYmIi4uPjsXjxYkycOBHBwcGIjIzE6tWrERgYaJPPQ0REZG96vcDqv9Pw/u9nUVgqhVQCPNa7JWYMbgtvD77msrGy+5kPCAhAQUEBgoKC0KxZMxw/fhxBQUFQqVRm7Wfp0qVYunRpjXkhISHYtGmTFUpLRETkXJKyVXht7UkcTM4DAER6C3z2r564o0Wwg0tGjmb3Tt3kyZOxa9cuPPDAA3j22WfRt29fSKVSTJkyxd5FISIiajB0eoFv9ybjoy3nodbq4SWX4flBbdAk/zQ6NjN/Ch1yPXbv1L355puGn6dMmYIhQ4ZApVKhQ4cO9i4KERFRg3A5W4WXfjqBw6n5AIC+MU3w/oOd0NRHjk2bTju4dOQs7Napi4uLq3OdM2fO2KEkREREDYNeAEv+SsXHWy9CrdXDx8MNbw5rj9HdoiCRSPggBFVit05dcnIymjdvjkcffRT9+vUzTGVCRERE1aXmluCz0zJcLjoPAOjTpgnmPdwZzQK8HFwyclZ269RlZWVh7dq1WL58OZYuXYqEhAQ8+uij6Ny5s72KQERE5PSEEFh5MA3vbDyNUo0E3u4yvDEsDmO7R/GCCNVKaq8D+fr6YuLEidiyZQv27duHiIgIPPHEE+jUqRNvuxIREQHIKy7HE98fxuu/nESpRo8YPz02/qcXxvVozg4d1ckhk9l4eHjAy8sLnp6eyM3NhV6vd0QxiIiInMbuC9l4Yc1xZBep4S6T4oXBbRBacAaRgbzdSqax25U6tVqNNWvWYOTIkejcuTNOnTqFDz74ABcvXkTHjh3tVQwiIiKnUqbR4Z2NZzDh24PILlKjTagPfpneC//u3QJSXpwjM9jtSl3Tpk0RFhaGsWPH4pVXXoGbW8WhDx48aFine/fu9ioOERGRw124XoRnVh7FucwiAMCEntF47d728HKX8clWMpvdOnUBAQFQq9VYunQpli1bBiFEpXyJRILLly/bqzhEREQO9cvRq3h97SmUanQI9nbHhw93xsD2TR1dLGrA7NapS0lJsdehiIiInJZaW3G79Yf9VwBUTCQ8/5HbEeLr4eCSUUPHt/4SERHZydX8EkxffgTHrxZCIgGevjsGzw6MgYyD58gK2KkjIiKyg90Xc/DCTydRUKJBgEKOT0bfjgGxoY4uFrkQduqIiIhsSKcX+D1Nis37j0AIoHOkPxaN64KoIIWji0Yuhp06IiIiG8krLsezK49gz9WKGcQe7dEcbw2Pg4ebzMElI1fETh0REZENHEsrwPTlR3CtoBRyqcDcUZ3wSPdoRxeLXBg7dURERFYkhMAPB67g7Q2nodEJtAhWYHQzJR64I8LRRSMXZ7c3ShAREbm6knItZqw+jpm/noJGJzC0Q1OsndoDEd6OLhk1BrxSR0REZAVJ2SpM++EwLlxXQSaV4NV72mFy35bQarWOLho1EuzUERER1dPvJzPw0k8noFJrEeLrgc/H3oEerYIdXSxqZNipIyIispBGp8e838/hf3uTAQDdWwbh87F3INTP08Elo8aInToiIiILXFeW4T8rjuBQSj4A4Ml+rfDS0Fi4yThcnRyDnToiIiIz7UvKxdMrjyBHVQ5fDzf8X8JtuKdjmKOLRY0cO3VEREQm0usFvtp9Gf+3+Rz0AmgX5osvxndFyyZ8vJUcj506IiIiE+QXl2PG6mNIPJ8NAHiwSzPMHdUJXu58OwQ5B3bqiIiI6nDkSj7+s/wI0gvL4O4mxZwRHTCmWxQkEomji0ZkwE4dERGREUIIfPtnCt7fdBZafcXbIRY92gUdIvwdXTSiatipIyIiqkGWsgwv/3wCO2/cbh3WKRwfPNQJvp5yB5eMqGbs1BEREVWx6WQG3vjlJPJLNHB3k+LNYe3xr7uiebuVnBo7dURERDfkqNR4d+MZ/HosHQDQIcIPn4y+HW2b+jq4ZER1Y6eOiIgaPb0AVh5Kw0dbLkJZpoVUAkyLb41nB7aFuxsnE6aGgZ26G9LT0/Hwww/Dzc0Nfn5+WL16NRQKhaOLRURENrb/ch4+OSnDleKzACquzs19oBNujwpwbMGIzMRO3Q1NmzbF3r17IZVKMWvWLPz2229ISEhwdLGIiMhGjqUV4NPEy9hzMQeABN4eMrw4JBb/uiuar/qiBomduhtksn8mj5RIJIiNjXVgaYiIyBZ0eoHNp69jwSkZkvcdBADIZRLcFaLDvAn9ERHk4+ASElmuwf4rMmvWLMTFxUEqlWLVqlWV8rKzszFs2DAoFArExsZi+/btJu1z79696Nq1K7Zt24bo6GhbFJuIiBwgvQSYt/kCer6/Hf9ZdRzJRRLIZRIkdI3E5md74+GWeoT4eji6mET10mCv1MXExGDhwoWYOXNmtbzp06cjIiICOTk52LJlCxISEpCUlAS1Wo0xY8ZUWtfHxwcbN24EAPTp0weHDx/GRx99hG+//RbPP/+8XT4LERFZl14AR9MKsPtiHraeycT5624AUgAAgQo5ugWqMevRAWgW5AONRoOTDi0tkXU02E7d+PHjAQBz586tlK5SqbBu3TqkpKRAoVBg1KhRmD9/PjZs2IAJEyZg586dNe5PrVbDw6PivzR/f3/odDqj66nVasOyUqkEAGg0Gmg0GsPPtX2v+rM11XQsa25X23rG8kxNN/e7NTmy3mrLr63t1JbW2NucsTxbt7n61nFd8YXn2XheeXk5LmcX4+/UfBxIzsWOszKo9h80rCeTCAyIDcGDd0SiVyt/7NqxHYGe0hrr1dpsWXeOji2My6an1ef31dT1JEIIYdKaTio+Ph5Tp041XIE7evQohg4diqysLMM6Tz/9NBQKBebNm2d0P3v37sUbb7wBqVSKoKAgfP/99zU+/Tp79mzMmTOnWvqKFSv4tCxRI1dSUoJx48ahsLAQfn5+Zm/P+GI6vai4pXpJKcFlpQRJRRKoNJUnBvaUCbQPEOgQKBAXIODNF0FQA2VqbGmwV+qMUalU1T6wn58fCgoKat2uT58+2LVrV537f+211zBjxgzDslKpRFRUFIYMGWI4rkajwdatWzF48GDI5fJKywAq5Vlb1WNbe7va1jOWZ2q6ucvW5Mh6qy2/pnRT0hp7mzOWZ+s2d/PKmqXqii+N+Tz/vnkrQtt3w7GrRfg7tQCHrxRApdZWWs/dTYrbIv3RNcoPstzLeOKBu6Hw9HBobDGnDizZzpGxhXHZfnHZ1Njicp06Hx+fah9eqVTCx8c6TzR5eHgYbtPeSi6XVzsxVdOq/myL4FHf/Zu6XW3rGcszNd3cZWtyZL3Vlm9K+6oprbG3OWN5tmpz9a1fU+NLYzjPKrUWR1LzcSglD/sv5+JoqgzaA0crrevr4YYuzQPgq76O8UPuwh0tguHhJoNGo8GmTUlQeHo4TWypz/5N2c4RsYVx2X5x2dTP73KdupiYGBQWFiIzMxNhYWEAgOPHj2Py5MkOLhkRERmTW1yO47kSHPv9PP5OLcCZDCV0+ltHB0kQ7O2O7i2D0L1lELq1CEL7cD/odVps2rQJXaMDIXeTGd0/UWPQYDt1Go0GOp0Oer0eGo0GZWVlcHd3h4+PD0aMGIFZs2ZhwYIF2Lp1K06dOoXhw4c7ushERHTDtYJSHEzOxcHkiqtxl7JUAGTAhVTDOpGBXujeMghdo/xRknoCEx8cDHd390r70df8TBtRo9RgO3VTpkzBsmXLAAB79uzBhAkTkJiYiPj4eCxevBgTJ05EcHAwIiMjsXr1agQGBjq4xEREjVd6QSkOpmZiX1IuDiTn4VpBabV1wrwEBnSMwl2tm6B7yyCE+3sBqPgnflPWCUgkkmrbENE/GmynbunSpVi6dGmNeSEhIdi0aZN9C0RERAY5KjX2JeVi78UsbD8pQ86+PZXyZVIJOkb4GW6l3h7pi307t+G+++JsOq6NyJU12E4dERE5j8JSDQ5czsVfSbnYl5SL89eLbsmVQCaVoHOkP3q1DsZdrYLRpXkgvD3++RNkqzniiBoTduqIiMhsJeVa/J2Sj7+ScvFXUg5OXSuEvsqsp+3D/dCzZSDc8i5j6kODEeTr5ZjCEjUS7NQREVGddHqBVBWweOdl/HU5D0eu5EOjq9yLaxXijV6tg9GrdRPc1SoYQd7uhulFfD3554bI1vhbRkRENbpWUIq9F7Ox+2IO/ryYg4JSNwCXDPnNArwqOnFtgtGzVROE+Xs6rrBExE4dERFVKFZrsf9yLvZczMGei9lIyi6ulO8pE+jbtin6x4aiT5smiA5W8IlUIifCTh0RUSOl0wucTi/Enos52H0hu9otVakEuKN5IPq0aYJerQJx7eRfGD7sdj6dSuSk2KkjImpE0gtKsefmLdVLOSgoqfzUaVSQF/rFhKBvTAh6tg6Gv9c/77HMPOWIEhORqdipIyJyYcVqLQ4k52L3hZpvqfp6uKFn62D0bRuCfjFNEB3s7aCSElF9sVNHRORC9HqBE1cLar2lentUAPrGhKBf2ya4LTIAbjKpA0tMRNbCTh0RkQv4/VQmll6QYvbxncg38ZYqEbkWduqIiFzA9nPZOJorBaDhLVWiRoqdOiIiFzDytnCU5V7DY/f0QNeWTSDnLVWiRoedOiIiF9A3pgmKLurRNTqQHTqiRoq/+UREREQugJ06IiIiIhfATh0RERGRC2CnjoiIiMgF8EGJehKiYlJPpVJpSNNoNCgpKYFSqYRcLq+0DKBSnrVVPba1t6ttPWN5pqabu2xNjqy32vJrSjclrbG3OWN5tm5zN+v7Zlyor6rxhefZOc6zuWxZd46MLYzL9ovLpsYWdurqqaioCAAQFRXl4JIQkbMoKiqCv7+/VfYDML4QUYW6YotEWOtfykZKr9cjPT0dvr6+kEgkhvRu3brh0KFD1ZaVSiWioqKQlpYGPz8/m5Sp6rGtvV1t6xnLMzW9tmVb150j6622/JrSTUlr7G3OWJ4t25wQAkVFRYiIiIBUWv/RLTXFF55n0/KcKbYYK6O1tnNUbAEYl81Ns/T31dTYwit19SSVShEZGVktXSaTVTpRVZf9/PxsFjyqHsva29W2nrE8U9PrWgZsV3eOrLfa8mtKNyWtsbc5Y3m2bnPWuEJ3U03xhefZtDxnii3Gjmet7RwdWwDGZVPT6vP7akps4YMSNjJ9+vRal+15bGtvV9t6xvJMTW+s9VZbfk3ppqQ1lrozN8+Z2pwleJ5Ny3O282zLumNssXw7V6s73n61M6VSCX9/fxQWFtrsP0JXxbqzDOvNcg2p7hpSWZ0N685yrDvL2KreeKXOzjw8PDBr1ix4eHg4uigNDuvOMqw3yzWkumtIZXU2rDvLse4sY6t645U6IiIiIhfAK3VERERELoCdOiIiIiIXwE4dERERkQtgp46IiIjIBbBT54R27dqFnj17ok+fPpgxY4aji9OgpKWloUuXLvD09IRWq3V0cZzejBkz0LdvXzzzzDOOLkqD0ZDbGGOL5RryeXcExhbL1LedsVPnhNq0aYOdO3di7969yMzMxMmTJx1dpAYjJCQEO3bswF133eXooji9I0eOQKVSYc+ePdBoNBa9iqcxashtjLHFcg35vNsbY4vl6tvO2KlzQs2aNTPMXSOXyyGTyRxcoobD09MTAQEBji5Gg7Bv3z4MGjQIADBo0CDs37/fwSVqGBpyG2NssVxDPu/2xthiufq2M3bqrGDWrFmIi4uDVCrFqlWrKuVlZ2dj2LBhUCgUiI2Nxfbt203e75EjR5CTk4O4uDhrF9lp2KruGhtL6rGgoMAwk7m/vz/y8/PtXm5Hc/b2x9hiOWc/tw0FY4vlHNEG3ayyl0YuJiYGCxcuxMyZM6vlTZ8+HREREcjJycGWLVuQkJCApKQkqNVqjBkzptK6Pj4+2LhxIwAgMzMTzzzzDH7++We7fAZHsUXdNUaW1GNAQACUSiWAilfWNMarEJbUW2BgoFOXj7GlAmOLdTC2WM4h8UWQ1fTv31+sXLnSsFxUVCTc3d1Fenq6Ia1v375i2bJlte6ntLRUDBgwQBw5csRmZXU21qq7W/en0WisXk5nZ049Hj58WDzxxBNCCCGmTZsmDhw4YPfyOgtL2p892xhji+UYW6yDscVy9owvvP1qQxcvXoS/vz/Cw8MNabfddhtOnz5d63ZLlizBmTNn8PzzzyM+Ph779u2zdVGdjqV1V1ZWhkGDBuH48eMYOnQo9uzZY+uiOrXa6rFLly7w8vJC3759IZVK0b17dweW1LnUVm/O0MYYWyzH2GIdjC2Ws2V84e1XG1KpVIZxBTf5+fmhoKCg1u2mTZuGadOm2bBkzs/SuvP09MS2bdtsWLKGpa56XLBggf0L1QDUVm/O0MYYWyzH2GIdjC2Ws2V84ZU6G/Lx8TGMK7hJqVTCx8fHQSVqOFh31sF6tIyz15uzl8+Zse6sg/VoOVvWHTt1NhQTE4PCwkJkZmYa0o4fP44OHTo4sFQNA+vOOliPlnH2enP28jkz1p11sB4tZ8u6Y6fOCjQaDcrKyqDX6yv97OPjgxEjRmDWrFkoLS3F+vXrcerUKQwfPtzRRXYarDvrYD1axtnrzdnL58xYd9bBerScQ+qufs90kBBCTJw4UQCo9JWYmCiEECIrK0vce++9wsvLS8TExIitW7c6trBOhnVnHaxHyzh7vTl7+ZwZ6846WI+Wc0TdSYQQov5dQyIiIiJyJN5+JSIiInIB7NQRERERuQB26oiIiIhcADt1RERERC6AnToiIiIiF8BOHREREZELYKeOiIiIyAWwU0dERETkAtipI7KT2bNnQy6XIywszGr7jI+Px6pVq6y2v6rmz58Pb29veHp62uwYRFQ/jC10Ezt1ZFctWrSAQqGAj48PfHx80KJFC0cXya4ef/zxSi9xtoWOHTsiJSXFKvuaMWMGTp8+bZV9EdkSYwtjC7FTRw6wY8cOqFQqqFSqGgOERqOxf6GcgDU+99WrV6HVahvdHzQigLHFGMaWxoOdOnK4nTt3ol27dnjjjTfQpEkTvPfeeygtLcV//vMfREREIDIyEvPmzTOsX1xcjHHjxiEgIABdunTB66+/jnvuuafSvm4lkUgM/8Hm5eVh3LhxCA0NRatWrbBs2TLDevHx8Xj77bdx5513ws/PD2PHjkV5ebkh/8cff0THjh3h6+uLTp064fz585g7dy4ee+yxSsfr3bs31q5da9Jnb9GiBT788EPExsYiLi4OAPDUU08hIiICAQEBGDJkCK5cuWJY/9ChQ+jcuTP8/Pzw5JNPQq/XV9rf5s2bMXToUMPnmTNnDu644w74+PjgpZdewqVLl9CtWzcEBATgxRdfNGy3ceNGxMbGwtfXF1FRUVi5cqVJ5SdyZowtjC2NjiCyo+joaLFv375KaYmJiUImk4l3331XlJeXi9LSUvHUU0+J8ePHi6KiInHt2jURFxcn1q9fL4QQ4qWXXhJDhgwRhYWF4uzZsyIyMlIMHTrUsK/Y2NhK+wcgMjIyhBBC3HfffeLll18WZWVl4uzZsyI8PFwcO3ZMCCFE//79RceOHUVqaqrIz88XcXFx4rvvvhNCCLF3717RpEkTsXfvXqHT6cTZs2dFenq6SE5OFgEBAaKsrEwIIURKSooICAgQpaWl1T77rFmzxJNPPlmtPnr27CmuX79u2Gb58uWioKBAlJaWiscee0yMHDlSCCGEWq0WkZGR4uuvvxbl5eXi008/FTKZTKxcudKwv4cfflj89ttvhs/TqVMnce3aNZGcnCy8vb3FoEGDRFpamkhLSxP+/v6Gz960aVOxd+9eIYQQGRkZ4vTp04Z9JicnCw8Pj7pPLpEDMbYwtpAQ7NSRXUVHRwsfHx/h7+8v/P39xauvvioSExOFr6+v0Gq1Qggh9Hq98PLyEtevXzds99lnn4kJEyYIIYRo0aKF2LNnjyHvjTfeMCnwZmRkVDqOEEK88MIL4q233hJCVASqhQsXGvJeeukl8cILLwghhJg8ebKYOXNmjZ+pT58+Yu3atUIIIT744AMxadKkGtczFnhXr15trLrEuXPnRHBwsBBCiJ07d4rWrVsb8vR6vYiMjDQEXq1WK8LCwkRxcXGNn6dfv37iww8/NCwPGTLE8IclMjJSfPnll6KoqKhaGRh4qSFgbGFsISF4+5XsbuvWrSgoKEBBQQHef/99AEB4eDhkMhkAIDs7G6WlpWjbti0CAgIQEBCA119/HVlZWQCAjIwMREVFGfZ368+1uXLlCoqLixEcHGzY71dffYXr168b1gkNDTX8rFAooFKpAFSMJ2nVqlWN+x0/frzhKbEVK1Zg3LhxplYFACAyMrLS8ty5c9GmTRv4+fmhe/fuyM3NBVD9c0skkkrbHjhwAB07doRCoajx83h5eSEkJKTScnFxMQDgp59+wvr169GsWTMMGTIE586dM+szEDkDxpbKGFsaHzdHF4AIqAgiNzVp0gSenp5ITU2Fv79/tXXDw8ORlpaG6OhoAEBaWpohz9vbGyUlJYblW58Ga9asGQICAgyBzBxRUVFITk6uMS8hIQGvvvoqDh48iKysLNx9991m7fvWz75r1y589dVX2L59O9q0aYMLFy4YxvGEh4fj6tWrlba9dfmPP/4wjHkxV48ePfDbb79BrVbjrbfewvTp07F9+3aL9kXkTBhbKjC2NA68UkdORyqVYuLEiXjxxRdRUFAAvV6Ps2fP4uDBgwCAhx9+GHPnzkVRURHOnz+P7777zrBt27ZtkZubi127dkGtVuOdd94x5DVr1gzdunXDW2+9hZKSEmi1Whw5cgRnzpyps0yTJk3CF198gX379kEIgfPnzyMjIwMAEBQUhP79+2PSpEl45JFHDFcFLFFUVAQ3NzcEBwejuLgY7777riGvZ8+eKC0txTfffAONRoNFixYZygBUHshsjvLycqxYsQJKpRJyuRw+Pj71+gxEzoqxhbHF1bFTR07p5sSUnTp1QlBQECZMmID8/HwAwKxZs+Dv74/IyEiMHTsW//rXvwzb+fv749NPP8UjjzyCli1bonv37pX2u3z5cqSmpqJVq1YIDQ3Fc889h9LS0jrL06tXLyxYsAD//ve/4efnh4SEBCiVSkP++PHjcfbsWbNvj1R1zz33oGfPnoiOjkanTp3Qq1cvQ567uzt+/vlnfPLJJwgODsaJEycM+bm5ucjIyECnTp0sOu6yZcsQHR2NwMBAbN26FQsXLqzX5yByVowtjC0uzdGD+ojqa8mSJYbBzI7y119/iVatWtW6zjvvvCO8vb1Fs2bNrH78FStWiMcee8zq+/3kk0+En5+f8Pf3t/q+iZwdYwtjS0PDK3VE9aTRaPDpp5/i3//+d63rvfnmm1CpVNXGrlhDUFAQnnrqKavv97nnnkNhYSEKCgqsvm8iqh1jC5mLD0oQ1UNubi4iIyPRuXNnfPXVVw4rh6WDmInIOTG2kCUkQgjh6EIQERERUf3w9isRERGRC2CnjoiIiMgFsFNHRERE5ALYqSMiIiJyAezUEREREbkAduqIiIiIXAA7dUREREQugJ06IiIiIhfATh0RERGRC/h/AKmBj9VWyAIAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -775,7 +775,7 @@ "\n", "The first two of the items can be computed either by looking at the frequeny response or by using the `margin` command.\n", "\n", - "The stabilty margin is the minimum distance between -1 and $L(jw)$, which is just the minimum value of $|1 - L(j\\omega)\n", + "The stabilty margin is the minimum distance between -1 and $L(jw)$, which is just the minimum value of $|1 - L(j\\omega)|$.\n", "\n" ] }, @@ -796,7 +796,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAF3CAYAAACygxMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADjE0lEQVR4nOzdd1wT9/8H8NdlkABhL9kgKIJbEFFBpe49sK6qoKh11dlq1VrHV2trW/cqal3VarWuulDrVlQUUVw4EWQoexMyPr8/+HE1EpBAIBA+z8cjD8jlc3fvu1wu79x9BkMIIaAoiqIoiqKoWoSj6QAoiqIoiqIoSlU0iaUoiqIoiqJqHZrEUhRFURRFUbUOTWIpiqIoiqKoWocmsRRFURRFUVStQ5NYiqIoiqIoqtahSSxFURRFURRV69AklqIoiqIoiqp1aBJLURRFURRF1To0iaVKFRQUhB9//FGty9y5cyd69OihlmUlJSWhXbt2MDAwwLp169SyzNqqcePGCA8PV/paTEwMhEJhNUekurK2gaIoiqI+RpNYLePk5AQ9PT2IRCKYmZlh+PDhyMrK0nRYFcIwDJKSkkp9PSQkBK6ursjOzsa0adMqta7akuiV5tGjR2jdujWAqvnxUR0+3AaKoiiK+hSaxGqhCxcuICcnBzExMUhPT6+VCU15xMbGwsPDQ+X55HI55HJ5FURElUYikWg6BIqiKErL0CRWixkYGKBfv3548uQJOy0qKgrt27eHsbExvLy8cPPmTfa1ly9fsrfnBw0ahLy8PIXlbdy4EQ0aNIC5uTkCAwORm5urdL2dOnXCwoUL0axZM5iammLy5MmQSqVKyx48eBCNGjWCqakp+vbti8TERABAt27dAAAuLi4QiUQICwtTmG/ixInYtWsXFi1aBJFIhKioKKSlpWHYsGEwNzeHq6srtm3bxpYPCgrCtGnT0KlTJ4hEIsTGxpZ7Pzo5OWHNmjVwd3eHiYlJiau+pe2Xdu3a4dy5cwCAXbt2gWEYvH//HgAwc+ZMrFix4pPrtrW1xfPnzwEAS5YsgaGhIWQyGQBg4MCB+PPPP9kYb968iV27dmHv3r3sfpk6dSq7rK1bt8La2hr16tXDnj17lK6v+Ir05s2bYWlpCXt7e1y6dAnbt2+HtbU1HBwccPnyZbb8//73Pzg6OsLQ0BBt27bFgwcPFPbbypUr4ebmxv7YWLx4MSwtLeHk5IT169crXP0u3gag6BhaunQpvLy8YGhoiOHDh6OwsBAA8OzZM/j6+sLQ0BDm5uaYPXv2J/cjRVEUpX1oEqvFMjMzcfz4cbRp0wYAUFhYiL59+2LEiBFITk7G119/jT59+iAzMxMAMGLECHTu3BmpqakYPXo0jhw5wi7r4MGDCAkJwfnz5xEXFweJRILvv/++1HXv27cPR48eRXR0NG7cuIEtW7aUKPPkyROMGzcOv//+OxITE+Hs7IxRo0YBAM6ePQugKLHOyclB27ZtFebdsmULvvjiCyxZsgQ5OTlo2rQppkyZAh6Ph9jYWBw+fBjz58/HtWvX2Hn279+PVatWITs7G3Z2dirty+PHj+PatWuIiorC/v37cfXq1U/uFz8/P7bctWvX4OzszMZz7do1+Pr6fnK9vr6+CsswNzfH/fv3AQDXr18vsYzAwECF/bJhwwYARe99dHQ03rx5g927d2PKlCklfqQUKywsRExMDOLj4zF9+nSMHDkSjx8/xps3bzBnzhzMmDGDLevh4YE7d+4gLS0NXbt2xejRoxWWdfToUVy9ehVRUVE4fvw4duzYgbCwMNy/fx8nTpwoc9sPHjyIw4cPIzY2Fg8ePMCBAwcAAN9//z169+6NzMxMvHnzBkOHDv3kfqQoiqK0D01itVDXrl1hbGwMU1NTxMXFITg4GABw8+ZNcLlcTJkyBXw+H8OGDUODBg1w9uxZvHnzBg8fPsTChQuho6ODAQMGsMkvAGzfvh0LFiyAo6MjdHV1MX/+fBw6dKjUGIKDg1G/fn1YWFjg66+/xt9//12izMGDBzF48GC0a9cOAoEAP/zwAy5fvozk5GSVt1kmk+Hvv//GihUroKenh2bNmiE4OJi9UgkAn3/+OVq1agUulwsej6fS8mfMmAEzMzPY2dmhU6dObCJZ1n75MAG9fv06Zs+ejatXryInJwePHz8uV/3P4mVIpVJER0cjODgYV69exdOnT6Grqwt7e/tyxU8Iwffffw8dHR1069YNQqEQr169KrXsggULwOfzERAQgPj4eHz77bfQ0dFBQEAAHj16xFbHCAgIgIWFBXg8HubPn48HDx4gJyeHXdbMmTNhaWkJoVCIw4cPY8KECXBxcYGRkRHmzJlTZszjx4+Hg4MDjI2N0bt3b3af8/l8vH79GklJSdDX14e3t3e59gFFURSlXWgSq4XOnTuHjIwM5OXloW/fvujZsycAICEhAQ4ODgplHR0dkZCQgMTERFhaWkJHR4d97cMEKTY2FsHBwTA2NoaxsTF8fX2RkpJSagwfXum0t7dnqwl86ON4ihujJSQkqLzNycnJkMlkCust3jZlManK0tKS/V9PT49N1MraL76+vggPD0d8fDz4fD769++Pa9euISwsDC1atChXQ7Liq7n37t1DixYt0KFDB1y9ehVXr14t15XcYgKBAIaGhkq3oayyurq6AAALCwv2uUQiYW/tb926FY0bN4aRkRHq1asHQghSU1PZZX24z5OSkhSOqU+9H6Xt85UrV0IqlaJFixZo3rw5/vnnn0/vAIqiKErr0CRWiwkEAowaNQp3795FSkoKbGxsEBcXp1AmNjYWNjY2sLa2xvv379nkBIBCWVtbW+zduxcZGRnso7Q6sQDw9u1bheXUq1evRBkbGxuFuqm5ublITU2FjY2NyttqYWEBDoejsN7ibSvGMIzKy/2UsvaLiYkJnJycsHbtWvj6+sLOzg7p6ek4ffp0uRPQZs2aISUlBQcPHoSfnx+8vb1x586dMqsjVMV2KhMTE4NZs2Zhz549yMjIQGJiIjgcDgghSmOpV6+ewvvz4f+qsLa2xu+//46kpCQsXboUQ4cOVThuKYqiqLqBJrFaTCKRYN++fbC0tISZmRl8fHwgkUiwefNmSKVSHDx4ENHR0ejWrRscHR3h4eGBH374ARKJBMePH8ft27fZZQUHB2P58uXsLejExEScOXOm1HX//vvviImJQXJyMlatWoWAgIASZQICAvD333/j5s2bEIvFWLBgATp06MBe9bO0tERMTEy5tpXL5WLQoEFYsGAB8vPz8fDhQ2zfvh3Dhg1TYY8BBQUFCo9P+dR+8fPzw5YtW9ChQwcAQNu2bbFt2zaFBHTx4sXo1KmT0uVzOBy0bduWXYZAIIC9vT2OHDlSahKryn6rjJycHDAMAzMzM0gkEixatEghgf3YoEGDEBISglevXiErKwu//PJLhdZ76NAhJCQkgGEYGBsbg2GYakvcKYqiqJqDJrFa6LPPPoNIJIK5uTkuXryIo0ePgmEY6Ojo4NixY9izZw/MzMzw448/4vjx4zAyMgJQ1BgrNDQUpqam2LlzJwYOHMguc9iwYQgKCkKvXr1gYGCAjh074vHjx6XGMHz4cPTr1w8NGzaEt7c3Jk6cWKJM48aNsWXLFgQGBqJevXp48eIFdu/ezb7+/fffo3///jA2NlboRaE0GzduREFBAezs7NCvXz8sXboUfn5+5d5vYrEYurq6Co+yqkwAn94vfn5+yM7OZuPw8/NDTk4O2rdvz5Z5+/atwvOP+fn5QSaToVWrVuxzLpeLxo0bKy0/duxYXL9+HcbGxpXuP7csTZo0wYQJE9CsWTM4OTnB2dlZoTrKx/r164egoCC0adMGTZs2RdeuXSEQCFRe7+3bt+Hp6QmRSIRJkyZh37594PP5ldkUiqIoqhZiSFmXTiiqAjp16oSJEyeqfBW0rvL09MTZs2dhZmam6VCqVWhoKGbNmoVHjx5pOhSKoiiqFqJXYilKw+7evVtnEtjDhw+jsLCQrc86YMAATYdEURRF1VI0iaUoqtqsX78eFhYWaNasGdzd3TF//nxNh0RRFEXVUjSJpdTu0qVLtCoBpdTFixeRmZmJ9+/fY9u2bdDX19d0SFQ12rlzJxiGgVAoxJs3b0q83qlTJzRp0kQDkSnHMAwWL16s0jynTp1SeZ6qjAco6s5w8eLFiIyMLPc8//77L7y8vKCvrw+GYXD06FGV11teMTExYBimwo09a4LFixezjUxFIpGmw9G4S5cugWEYXLp0iZ02Y8YMte8jmsRSFEVR1UosFuO7777TdBifFBYWhnHjxqk0z6lTp7BkyZIqiqhiEhISsGTJknInsYQQDBkyBHw+H8ePH0dYWBg6duxYtUFqibCwMFy8eFHTYdRIM2fORFhYGHr16qW2ZdIkthbq2bOn0hGwlDl06BBsbW0hEokUOqEv9vbtW7Rs2ZIdgakuYBgGSUlJ5S4vk8nQokULvH//vgqjqtucnJzK1QOFqu7cuYMePXqofbm1RUxMTLkG1fhQZmYmmjZtCrFYXEVRAT169MC+ffvYUdhqKh8fn0oNklJbJSQkIC0tDQMHDkTnzp3h4+MDExOTSi0zPz+/zC74tIWPj0+5RmOsixwdHeHj48N2o6kOGkliq+oLq6ocO3YMbdu2hb6+PqysrNChQwccPHhQY/GcPn1aab+rysyZMwe7d+9GTk6O0sZDK1aswOTJk8HhfPpQ6NSpE/bv369yvDVdcnIy6tevX+rrXC4XwcHB+Pnnn8u9TIZhoK+vD5FIBEdHR6xYsUIdoVZKWFgYOBwOfvzxR3baxIkTIRKJ2Aefz0ffvn1LXcbOnTthZ2cHQ0NDjBkzRmGQgfPnz6N58+YwMDCAh4cHTp48WaXbUx6LFi3C7Nmzy1X2U+cluVyOGTNmwNjYGFZWVli9enWpZa9cuYIOHTpAX19faRL94fEhEonwww8/lCtGdbhz5w78/f1Lfd3IyAjdunXDtm3bqiyGOXPmwMzMDHPnzi2zXOfOndGoUaMSyQ8hBK6urujduzc7LSEhAUOGDIGBgQGMjIwwdOhQ3Lx5EwzDYOfOnWy5Tp06Ke2XOSgoCE5OTgrTPr59n5eXh6+//hrOzs4QCoUwNTWFl5cXO7x1UFAQNm7cyM5b/Cir3+biKhRXr16Fj48PdHV1YWtri4ULF0Imk5W5fwDg4cOH6N+/P0xMTCAUCtGiRQvs2rWLff3SpUtsUjVmzBg2ptKqJSxevJhN3OfOnQuGYRT2y7Vr19C5c2cYGBhAT08P7dq1K/FZL642cvbsWYwdOxYWFhbQ09Or9A8jhmEwdepU7NmzB+7u7tDT00Pz5s1x4sSJEmWfP3+OESNGwNLSEgKBAO7u7ux7AxQdQ1ZWVpgyZQo7TSaTwcTEBBwOB+/evWOnr1q1CjweDxkZGSrHXLwvlD0+PA4LCgowb948tqtCW1tbTJkypcQ65XI5Vq5ciUaNGkEgEMDS0hKjR48uMXhM8XEVFhaGdu3aQVdXF05OTtixYwcA4OTJk2jVqhX09PTQtGlTpf2+f2ofFnv69Cl69OgBPT09mJubY+LEicjOzlZ5X1UI0QBHR0cSFhamiVWrbPfu3cTY2Jj88ccfJCsri8hkMnLjxg0yYcIETYdWLlwulyQmJip9LS8vj5ibm5P09PRyLatjx47kzz//VGN0lVdYWKjyPAAU9smePXvIl19+WeY8iYmJxMrKikgkEpXXERYWRnR1dcnp06dVjlVdZDIZadOmDfH29iYrVqwotVzLli3Jtm3blL724MEDYmJiQsLDw0lGRgbp1KkTWbhwISGEEIlEQoyMjMiePXuIXC4np06dIiKRiGRmZpYrvqo4J8TFxREbGxsik8nUEsPGjRtJy5Ytybt378jTp09JvXr1yL///qu0bHh4ONm7dy/53//+R7p3717i9Y+PwfJS9Xh//fo1EQgECtP+97//lXkMEELIrVu3SMuWLVWO71N27NhBAJDw8HCydu1aAkBhH3bs2JE0btyYfX7s2DECgJw7d05hOSdPniQAyMmTJwkhRecyd3d3YmRkRNavX09CQ0PJtGnTiIODAwFAduzYobCOjh07logtMDCQODo6KkwDQBYtWsQ+//LLL4menh5ZtWoVuXjxIjlx4gT58ccfyfr16wkhhLx48YIMHjyYACBhYWHso6CgoNR90rFjR2JmZkZsbGzIunXr2NgBkClTppQZz9OnT4mBgQFxcXEhu3fvJidPniTDhw8nAMhPP/1ECCEkMzOT3e/fffcdG1NcXJzSeOLi4sjhw4cJAPLVV1+RsLAwEhERQQgh5NKlS4TP5xNPT09y4MABcvToUdKtWzfCMAzZv38/u4zi9dna2pIJEyaQ06dPk0OHDhGpVKp0na9fvyYAyM8//1zqfireficnJ+Lt7U3++usvcurUKdKpUyfC4/HIy5cv2XKPHj0iRkZGpGnTpmT37t3k7NmzZPbs2YTD4ZDFixez5YYNG0YaNmzIPr958yYBQHR1dcnevXvZ6T179iTe3t5lxrZo0SKiLKV6//69wrEQFhZGVq1aRQCQyZMnE0IIkcvlpHv37oTH45GFCxeSs2fPkl9++YXo6+uTli1bKhw/EyZMIADI1KlTyZkzZ8iWLVuIhYUFsbe3J8nJyWy54uPKzc2NbN++nYSGhpI+ffoQAGTJkiWkadOm5M8//ySnTp0iPj4+RCAQkPj4eJX3YVJSErG0tCS2trZkx44d5NSpU+SLL75gP3sXL14ssU8CAwOJvr5+mfuzvGpFEuvo6EhWr15NGjVqRIyNjclXX32l8PqGDRuIq6srMTMzI6NHjyY5OTmEEELatm1Lzp49SwghZOfOnQQAeffuHSGEkBkzZpAffvihzPXKZDJibW1N1q1bV2Y5AGTTpk3E3t6emJmZkf3795N//vmHODs7EwsLC4UPtzp8mEwGBgaSmTNnks8++4yIRCLSrVs3kpaWRgghRF9fnwAgenp6pG3btiWWc+HCBdKqVSuFaUuXLiUODg7EwMCA+Pj4kPv377PTORwOEQgERF9fnz1BfqisWGQyGRk4cCCxsLAgJiYmZPDgwSQ1NZUQ8t8XbUhICKlXrx6xsrIiu3fvVrrtxWXXr19PrK2tSVBQEElJSSHdu3cnZmZmxNzcnIwfP17hQ79t2zZia2tLrKysyJYtW0okECNHjiSHDx8mMpmMfPXVV8TMzIwYGBiQli1bKpwU3NzcyK1btz79BpGSSYqXlxf5+eef2fg3bdpELCwsiJ2dHbl48SLZtm0bqVevHrG3tyeXLl0q1zpUsXnzZjJt2jQSGBhYagLz+PFjIhAISEZGhtLXv/32WzJx4kT2+b///kucnZ0JIYSkpKQQhmEUvqQsLCzIgwcPlC7r5MmTxMXFhZiYmJBFixYpnBPy8vLIlClTiLW1NbG1tSU//vgjO19WVhYZMmQIMTIyIi1btiQLFixQmiQSQsjvv/9OBg0apDBt0qRJxNramhgZGZGuXbuSN2/eEEIICQ4OJgzDEF1dXaKvr6/0M+vj46MwfeHChWTMmDFK111sx44dlUpiL168SNzc3Mj8+fOJmZkZWbx4MXn27Bnx8/MjRkZGxNramsybN09hnmXLlhELCwvi6OhI1qxZUyKJ9fX1JRERESQvL48MGzaMGBsbEyMjI9KuXTu2jFQqJfr6+uz5Ul0+TGLFYjGpX78+8fLyInK5nBBSMomVyWSkfv36pH///grL6dmzJ3FxcWHn27x5MwFAjh07plBu/Pjxak1imzRpQgYMGFDmNk6ZMkVpMlOajh07lho7h8Nhj1Fl8QwbNowIBAISGxurMG/Pnj2Jnp4e+1kODw8vsR/KUlpS6ePjQywtLUl2djY7TSqVkiZNmhA7Ozv2/Sh+n0ePHl2p9X0MALGysiJZWVnstKSkJMLhcBTOa927dyd2dnYlfkRPnTqVCIVC9ntp27ZtBAC7/5YtW0YaNWpE+vXrx362CwsLib6+Ppk/f36ZsZWWxH7s6dOnxMzMjPj7+xOxWEwIIeTMmTMEAFm5cqVC2QMHDhAAJCQkhBBCyJMnTxSS32K3bt0iABRiLD6u7ty5w05LTU0lXC6X6OrqKiSskZGRBIBCrlPefTh37lzCMAyJjIxUKNe1a9dqSWJrTZ3Y48eP49q1a4iKisL+/ftx9epVAMDBgwcREhKC8+fPIy4uDhKJBN9//z2AopGNistdu3YNzs7OuHbtGvvc19cXsbGxMDY2RmxsbIl1RkdHIzExEf369ftkfNevX8ezZ8+wefNmTJ48GX///Tc79OnUqVNLvS1kbGxc6qM41k85cOAA1q5di+TkZEilUmzYsAFA0bCgAPDy5UvcuHGjxHyPHj1CgwYNFKZ5eHjgzp07SEtLQ9euXTF69GgAwMKFC+Hn54edO3ciJycHc+bMUSkWoGjY0devX+P169fIzs7G0qVL2dcKCwsRHR2NN2/eYPfu3ZgyZQry8vKUrqOwsBCPHz/Gq1evsHnzZsjlckydOhXx8fF48OAB7ty5g82bN7PbOHv2bBw5cgSvX78usU8JIbh48SI+++wznD17Fjdu3MCrV6+Qnp6Obdu2KdQndHNzQ1RUlPI3oQw3btzAo0eP0Lx5czb+mJgYxMfHY/r06Rg5ciQeP36MN2/eYM6cOZgxY4bS5RQfq6U9lB3DAJCWloY1a9Z8slXz3r170adPH3YEt489fvwYTZs2ZZ83b94cr1+/Rn5+PszMzDB06FDs2bMHMpkM//zzD/T19dGwYcMSy0lOTsawYcOwbt06JCUlIS8vT+FW2Ndff43MzEw8e/YMt2/fxu7du/HPP/8AKKoekJWVhbi4OOzfv19hhLePKTu+fX198eTJEyQlJcHOzo4d0Wzbtm1wcHDAhQsXkJOTg6FDh5Zr+yszUEOrVq1ga2uLoKAgpfXVi7148QJ6enpITExkb78vW7YMKSkpuHz5Mv744w+25fipU6ewZcsW3LhxA5GRkex+K5aZmYnXr1+zt5xzc3ORkJCAlJQUhWomXC4XLi4uFTrey0tHRwfLli3DnTt38Ndffyktw+FwMHXqVJw4cYI9vl++fIkzZ85g8uTJ7HDDFy9ehIGBQYlz9YgRI9Qas7e3N06fPo1vv/0Wly5dQn5+vlqWW1rscrkcV65cKXW+CxcuoHPnzrC3t1eYHhQUhLy8PISFhaklPgDIzc3FrVu3MHjwYIWW5VwuF6NGjcLbt28RHR2tME95q72pwt/fHwYGBuxzKysrWFpasr1dFBQU4N9//8XAgQOhp6cHqVTKPnr16oWCggK22lCXLl0AFFWFAoBz586ha9eu6NKlC86dOwegqBpWbm4uW7YykpKS0KNHD1hbW+PIkSPsCIcXLlwAUPS+fejzzz+Hvr4+/v33XwBgG4x9XM7b2xvu7u5suWLW1tbw9PRkn5uamsLS0hItWrSAjY0NO93d3R0AKrQPL168iMaNG7Pfb8XU/dkrTa1JYmfMmAEzMzPY2dmhU6dObIOA7du3Y8GCBXB0dISuri7mz5+PQ4cOASj6wipOYq9fv47Zs2fj6tWryMnJwePHj9G6dWs4ODggIyMDDg4OJdZZ/MVSr149dpq3tzeMjY0hFAoV6szMmTMHQqEQgwYNQkZGBiZPngw9PT307dsX2dnZSEhIULpdGRkZpT58fX3LtW+GDh2KJk2aQCgUIiAgoNyNJTIzM0t0cxEQEAALCwvweDzMnz8fDx48YJPhysTC4XAwcuRI6Ovrw8jICDNnzlRIKAkh+P7776Gjo4Nu3bpBKBTi1atXStdBCMGSJUsgFAohFAphYWGBPn36QCAQwNraGl9++SW77EOHDmHw4MFo3bo1dHV1sWjRIoVlRUREwNnZGUZGRuDz+cjKysLTp0/B4XDQqlUrhf1jYGCgUp0oNzc3mJiYYMyYMVi+fDm6du3Kxr9gwQLw+XwEBAQgPj4e3377LXR0dBAQEIBHjx4pbWhXfKyW9lB2DAPA/PnzMWPGjE82zNi3bx+++OKLUl/PycmBoaEh+7z4/+LjY/DgwZg9ezYEAgGGDh2KzZs3Kx1W9tSpU/D29kavXr2go6ODxYsXs3WyCSHYsWMHfv31V4hEItjY2GDSpEnsZ/rw4cP47rvvYGBggIYNGyIwMLDUeJUd3yNGjICRkRGEQiHmzp1b7h+KpW2/Kp+ND125cgVv3rxBZGQk8vLyMHbs2FLL6unp4dtvvwWfz4dQKESDBg3QoUMH8Hg8NGjQAF988QW7HQcPHsSXX34JV1dXGBsb49tvv1VY1vnz5+Hv7w+GYcDn85GcnIxXr16Bx+OVGKJZ1eO9IoYNG4ZWrVphwYIFkEgkSsuMHTsWurq62LJlC4Ci4aV1dXUV9llqaiqsrKxKzPvhuVsd1q1bh7lz5+Lo0aPw9/eHqakpBgwYgOfPn1dquWXFXtYPnNTUVFhbW5eYXpyglDWvqtLT00EIUWl9yspWlrK2HQKBgP1BkZqaCqlUivXr14PP5ys8ilvFFw8n7ujoCBcXF5w/f55N+ouT2OKk/Pz589DV1UW7du0qFXd2djZ69eoFiUSC06dPK1wsSE1NBY/HK9HgiWEY1KtXj92vxX9Lew8+3v+mpqYlyuno6JSYXpxMFxQUsOsp7z5MTU1V+jlT92evNLUmibW0tGT/19PTY788YmNjERwczF6N8vX1ZXeur68vwsPDER8fDz6fj/79++PatWsICwtDixYtPtlqt/jD8mFL9tu3byMjIwNisVihsUFxfFwuF3w+X+FgFAqFyM3NreQeKF1p++ZTjIyMSlS+3rp1Kxo3bgwjIyPUq1cPhBCVToSlxSKVSjFjxgw4OjrC0NAQgwcPVliuQCBQSBDK2g4dHR2F/ZudnY3Ro0ezDY5mzZrFLjsxMVHhKsXHVyxCQ0PZhjedO3fGpEmTMGHCBFhaWmL27NkKX6zZ2dkwNjYu976Ijo5Geno6oqOjMXPmTKXbqqurCwDs9ujq6kIikSg0mKqMe/fu4fbt2xg/fnyZ5W7cuIH09PQyuz4RiUTIyspinxf/LxKJ8OTJE4wZMwbHjh1DYWEhQkNDMWrUKKVXhz9+T/T09NjPWnJyMvLz89GwYUP2Mz1//ny2Z4ikpCSFectqOa7s+F6+fDlcXV1haGgIb29vlY5tZdtf0b4O/fz82PPEunXrcOrUqVLfc2tra3C5XPZ5fHw8Bg4ciHr16sHIyAhr1qyp0PE+atQodO3aFQMHDoSdnV2JxmWqHu8VwTAMfvrpJ7x8+RIhISFKyxgZGSEwMBDbtm1DWloaduzYgREjRijEZmZmpnBRoZiyXkiEQqHSBkbF3xtl0dfXx5IlS/D06VMkJSVh8+bNuHnzZpmNIcujrNjLGs3PzMwMiYmJJaYXXzQxNzevVFwfKm7wpMr6iq+UVycTExNwuVwEBQUhPDxc6ePD81znzp3x77//4vLly5DL5ejUqRPc3d1hY2ODc+fO4fz58/Dz81P6g7y8JBIJAgIC8PLlS5w6darEecvMzAxSqRTJyckK0wkhSEpKYvdr8bFQ2nugrvdblX1oZmam9HOmSg9AlVFrktjS2NraYu/evQpXpIoTRhMTEzg5OWHt2rXw9fWFnZ0d0tPTcfr06XJd5XRzc4O1tTWOHz9eZfF/2DL840fxVeSq0rRpU4XbPzExMZg1axb27NmDjIwMJCYmgsPhsMl6ZU5Ie/fuxdWrVxEWFoasrCwcOnSowt2tfBzHqlWrkJaWhsjISGRlZWHVqlXssq2trREXF8eW/fB/ADhz5gy6d+/OPp85cyYiIyMRERGBs2fPKvTG8PTpU4XbydUtNja2zONFWcJ4+fJlPHv2DLa2tqhXrx4OHDiA5cuXl0hq9+7di8GDB5d5ovbw8FC4vXz//n04OztDV1cXDx8+RPPmzeHr6wsOhwM/Pz+4ubnh1q1bJZbz8XuSn5/PJmHm5uZsR/jFn+esrCycPn0aQNGv+w+rHnzcIvdDHx/fly9fxm+//YbTp08jMzMTt2/fVij/qeNb2fY3bty4zHnK48Or0Mp8HNd3330HCwsLPHv2DJmZmZgxY0a5j/fi26VA0Y/BpUuX4tmzZzh//jzWrVvHnnNkMhlevnxZLcd7ly5d0LVrVyxdurTUH67Tpk1DSkoKBg8ejIyMDEydOlXhdX9/f2RnZ5c4V+/bt6/EspycnPDs2TOFRDY1NVVplauyWFlZISgoCMOHD0d0dDRb/an4M6RKVYPSYudwOOjQoUOp83Xu3BkXLlwocadv9+7d0NPTg4+PT4Vj+pi+vj7atGmDw4cPKyxHLpfjjz/+gJ2dndLqQ9VNT08P/v7+uHfvHpo1awYvL68Sjw9/GHTp0gXv3r3DmjVr4OPjw1ZV6Ny5M44cOYLw8PBKVyUIDg7GpUuXcPjwYTRr1qzE6507dwYA/PHHHwrT//77b+Tm5rKvf/bZZ0rLhYeH48mTJ2y5ylJlH/r7++PRo0cl7gAr++xVBV61rEWJwsJC9tI1UHRCLU83Tx8LDg7G8uXL0aRJE9SvXx+JiYm4f/8+e7XBz88PW7ZswdatWwEAbdu2xbZt27B3795PLpvD4eCnn37CtGnTYGZmhr59+0JfXx/h4eEqx1mait6OVAcfHx/Ex8cjLS0NpqamyMnJAcMwMDMzg0QiwaJFi0pcbS6rq5iyZGdnQyAQwNjYGCkpKWodmSU7Oxu6urowMjLCmzdvsGnTJvbWeUBAAHx9fTFp0iR4eHhg2bJl7HxZWVl48eIFWrVqBaCo6yFCCFq2bAkDAwPw+Xz2ClhSUhIyMjLYsjExMXB2dsbr169LdMtTVRwcHFQ+XiZMmKAwetr06dPRoEEDfP311+w0qVSKv/7665Pdxo0YMQKdOnXC+PHj4eLiguXLl2PkyJEAgBYtWiAqKgq3bt1CmzZtEBYWVmqS16tXL3z11VcIDQ2Fv78/lixZwlaf4HA4CAwMxNdff42ff/4ZhoaGiI6ORnZ2Nry9vTFo0CAsW7YMBw4cQFJSEvbs2YNGjRopjbdr166YO3cuZDIZuFwusrOzwePxYGZmhtzcXIVjAfjv+C7+4v/YyJEj8fPPP+Ozzz5j60zv2bNHaVm5XI7CwkJIJBLI5XIUFBSwd2kePXoEqVSKJk2aICsrCzNmzEDXrl3LfaUnOzsb9vb2EIlEePjwIf744w/2y2vw4MGYNGkShg8fDnNzc6xcuZKd78mTJ2ydOKCoLpulpSXc3d1haGgIHo/HHu93795FgwYNFO6sVKWffvoJnp6eeP/+vdJjpmHDhujRowd7AeLj+nejR4/G6tWrMXr0aCxfvhwNGjTAqVOnEBoaWmJZo0aNwm+//YaRI0di/PjxSE1NxcqVKxXuBJWmTZs26NOnD5o1awYTExM8efIEe/bsQdu2baGnpwcAbOL/008/oWfPnuByuWjWrBl7y1YZMzMzTJo0CbGxsWjYsCFOnTqFrVu3YtKkSaVWEwKK6oifOHEC/v7++P7772Fqaoq9e/fi5MmTWLlyJXvL2sXFBbq6uti7dy/c3d3Zqjof1ossjxUrVqBr167w9/fH119/DR0dHWzatAkPHz7En3/+Wekrr1FRUWzVoQ+1bt0ajo6O5V5O8YUrPz8/TJo0CU5OTsjOzsaLFy/wzz//sHVQgaLEsLg7sA8HqejSpQtbXakySezPP/+MPXv24KuvvoK+vr5CN36Ghobw8PBA165d0b17d8ydOxdZWVlo3749Hjx4gEWLFqFly5YYNWoUgKILaxMmTMD69evB4XDQs2dPxMTEYOHChbC3t1e441dZ5d2HM2bMwO+//47evXtj2bJlsLKywt69e/H06VO1xVImtTQPU5GjoyMBoPA4ePBgmeU/7M3g4xbWmzZtIm5ubkQkEpEGDRqQX3/9lX1t7969BADbEu+3334jDMOwLePfvHlD9PX1FVqAfuzIkSOkTZs2RE9Pj1haWhJfX1/y119/sS0x8VFLY4FAQF6/fs0+NzIyIk+ePCnn3vm0j3sn+HBffNwa+uPYPjZ16lSyZcsW9vns2bOJoaEhsba2Jps2bVLYlqtXrxIXFxdibGystBVpWbFkZmaSHj16EH19fdKoUSPyyy+/sC2BlXUDVFoPFsrKxsbGkrZt2xJ9fX3i6elJFi1apND6OCQkhNja2hJLS0vy22+/sfvk8OHDZPjw4Wy58+fPkyZNmhB9fX1iaWlJpk6dyra2X7duHZk9ezZb9urVq8TR0bHULo9K2+8fx5+YmKjQojU9PZ0AIPn5+UqXW1nKeic4ceIEsbOzU9oVlb6+Prly5Qr7fMeOHcTGxoaIRCISGBio0AvEnj17SMOGDYlIJCKurq6ldtVFCCHHjx8n9evXJyYmJmTx4sUK73dubi6ZPn06sbOzI0ZGRsTLy4ucOXOGEPJf7wSGhoakZcuWZM6cOaRfv36lrqdPnz7svBKJhIwYMYKIRCLi5ORENm3apLDv//77b2Jra0uMjIzIgQMHSixLJpOR6dOnEyMjI2JhYaFwnvn4PHLx4sUS57jAwEBCSFGvDg0aNCB6enrEysqKjBw5stReAIp7J/jQ/fv3SdOmTYm+vj7x9/cn06dPZ5dNCCFLliwhFhYWxMHBgaxdu5Y93latWqXQk8HevXuJq6sr0dfXJzY2NmTp0qXsa7NmzWK7jVKnD3sn+NiIESMIAIXeCT5U3MNMab29vH37lgQEBBCRSEQMDAxIQEAAuXHjhtJW+bt27SLu7u5EKBQSDw8PcuDAgXL1TvDtt98SLy8vYmJiQgQCAalfvz6ZOXMmSUlJYcuIxWIybtw4YmFhQRiGIQAUvg8+Vtwjw6VLl4iXlxcRCATE2tqazJ8/v0SXfh/HQwghUVFRpG/fvsTIyIjo6OiQ5s2bK+2F4M8//ySNGjUifD5f6XI+VFZvAVevXiWfffYZ0dfXJ7q6usTHx4f8888/CmXKep/LWl9pj+LtgZJuxwgp+r748DNQvMyxY8cSW1tbwufziYWFBWnXrh1ZtmxZiflbtmxJAJDr16+z0+Lj4wkAYmZmxn7Xl6W03gkCAwNL3a4Pv6fy8/PJ3LlziaOjI+Hz+cTa2ppMmjSpRBeYMpmM/PTTT6Rhw4aEz+cTc3NzMnLkyBJdpn3c08eH+6p3794lpivbt+Xdh48fPyZdu3YlQqGQmJqakuDgYLZ7PK3sYouqOeLi4kjz5s3L3ZemNpkwYQLZtWvXJ8tJpVLSrFkzkpSUxE774YcfFJJ/SjO+/fbbEt3NfCg8PJx07dq1GiOqubp160YuX778yXKZmZmkcePGVfZDqqIGDRpEbGxsVOortzg5Km/XUppQWrJB1S7FSaxEIim1P9y6TiaTEYlEQkaPHq22JFZj1QmomsHOzq7c42lrm1atWpVrDGcul1uivs+8efOqKiyqDHFxcYiPj4e3tzfu3buH7du3l1k1yMvLC2fPnq3GCGuuzp07o23btp8sZ2hoiIcPH1ZDRJ8mFosRERGB27dv48iRI1i1ahX4fL6mw6KoUvH5fOjr62u0qmBNNWvWLKxduxZAUR1rdagxSWzfvn3ZPtA+dOLECaVDBFJUZX355ZeaDoFSkVgsRnBwMGJiYmBhYYE5c+awDZWospXWt3NNlpiYiHbt2sHQ0BBffvklvvrqK02HRFFKTZgwAX369AEAhd5EqP/Mnj2bbUehrn3EEFLBJuIURVEURVEUpSG1vostiqIoiqIoqu6hSSxFURRFURRV69AklqIoiqIoiqp1akzDrtpELpcjISEBBgYGGhlWj6Komo8QguzsbNjY2FRoIBdtQM+VFEWVR0XPl3U2iR04cCAuXbqEzp07Kx0hpCwJCQklxiSnKIpSJi4ursRY6XUFPVdSFKUKVc+XdTaJnTZtGsaOHYtdu3apPG/x2MpxcXHlGqqQoqi6JysrC/b29uz5oi4q3vaYmBh2KGhtIJPJEB0dDTc3N63pToluU80W9Ptt3HmTjp8DmsKRl6EV2/Sh9PR0ODk5qXy+rLNJrL+/Py5dulSheYtvixkaGtIklqKoMtXl2+jaeq6UyWQQiUQwNDTUmkSCblPNxtfVB0cghp7IACKeVCu26UMymQyA6ufLWllR68qVK+jbty9sbGzAMAyOHj1aosymTZvg7OwMoVAIT09PXL16tfoDpaharLCwEIsXL8bixYtRWFio6XAoiqIoSkGtTGJzc3PRvHlzbNiwQenrBw4cwIwZM7BgwQLcu3cPfn5+6NmzJ2JjY6s5UiA9txDfHLyPxwlZ1b5uiqoMiUSCJUuWYMmSJZBIJJoOh6Ioqs6io1IpVyurE/Ts2RM9e/Ys9fVVq1YhODgY48aNAwCsWbMGoaGh2Lx5M1asWKHy+sRiMcRiMfs8K6v8CeneW29w8O5bHLz7Fr6u5hjn54yODS3q9C1Gqnbg8XiYPHky+z9FURSlWTR1UKR130yFhYW4e/cuvv32W4Xp3bp1w40bNyq0zBUrVmDJkiUVmreTmyWeJmXj9MMkXHuRgmsvUtDQSoRxvvXRv6UNBDztqdNCaReBQICNGzdqOgyKoiiKUqpWVicoS0pKCmQyGaysrBSmW1lZISkpiX3evXt3fP755zh16hTs7OwQHh5e6jLnzZuHzMxM9hEXF1fueJrYGmHDiFa4/E0nBPs6Q1+Hi2fvcjDn7wdo/+NFrP/3OdJzaX1DiqIoiqKUszAQwNZYF0I+vfD1Ia27Elvs49v1hBCFaaGhoeVelkAgYK9Kbdy4kW1Fpwo7Ez0s7OOB6V0aYP/tWOy4HoPEzAL8eu4ZNl56gc897RHs6wwnc32Vl01RFEVRlPbaOKIVgKJW/E+epGg4mppD667Empubg8vlKlx1BYD379+XuDqrqilTpuDx48dlXrX9FEMhHxM6uODKHH+sGdoCjW0MUSCRY8/NN/D/9RIm7L6D8Jg0EEKrcVOalZubCz6fDz6fj9zcXE2HQ1EURVEKtC6J1dHRgaenJ86dO6cw/dy5c2jXrl2llr1x40Z4eHigdevWlVoOAPC5HAxoaYsTX/li3/g2+KyRJQgBzj5+h8+3hGHAphs48SABEpm80uuiqIqSSqWQSqWaDoOiKIqiSqiV1QlycnLw4sUL9vnr168RGRkJU1NTODg4YNasWRg1ahS8vLzQtm1bhISEIDY2FhMnTqzUeqdMmYIpU6YgKysLRkZGld0MAEXVHtq5mKOdizlevM/GtquvcfhePO7HZWDqvnuoZyjEqLaOGNbaHmYigVrWSVHloauri7dv37L/UxRFUZrx7d8P8DgxC193awhTTQdTg9TKJPbOnTvw9/dnn8+aNQsAEBgYiJ07d2Lo0KFITU3F0qVLkZiYiCZNmuDUqVNwdHSs1HorUye2PFwtDfBjQDPM7uaGPTffYO/NN0jKKsDPodFY++9z9G1mg6B2Tmhqp54EmqLKwuFwYGtrq+kwKIqi6ryXyTl48DYT2fkSmNK2XSyG0MqXKiu+EpuZmVmlQymKpTKcfJCInTdi8OBtJjvd09EEge2c0LNJPfC5WlcjhKK0QnWdJ2qy4n2QlpYGExMTTYejNkWNa57A3d1da4b+pNtUs32+5QbCY9KxcXgLOHLTtWKbPpSeng5TU1OVz5e18kpsXSHgcTGolR0GtrTFvbgM7LoRg1NRibj7Jh1336TD0kCAkT6OGO7tAAsDWtWAUq/CwkKsXbsWADB9+nTo6OhoOCKKoqi6jQ52oIgmsSqo6uoEpWEYBq0cTNDKwQQLerlj3+1Y7L0Vi/fZYqw69wzrLzxH98b1MMLbAW1dzOhoYJRaSCQSzJkzBwAwefJkmsRSFEVpCL1nrhxNYlVQFQ27VGVpKMSMLg0xuZMrTj8sqmpwLzYDJx4k4sSDRDiZ6WGYtwMGe9rBnDYEoyqBx+MhMDCQ/Z+iKIqiahL6zVRL6fA46N/CFv1b2OJhfCb2h8fi6L0ExKTm4cfTT/Hr2Wh086iH4d4OaOdiBg6HXp2lVCMQCLBz505Nh0FRFEWx6Hf5h2gSqwJNVSf4lCa2Rlhm2xTzerrj5INE7Lsdi8i4DJyMSsTJqEQ4mulhcCs7DGhpC3tTPU2HS1EURVGUCgx1+TDT14EOlwFo1QIW7Z2gAmpDq+PHCVnYHx6LIxHxyBb/11m9t7MpBrW0Ra9m1jAU8jUYIUVpt9pwnqhqtHeC2qMqt4kQgmyxFPmFMlgZCtnpN16moEAig4DHha4OF7r8ooe+gAdTfR1wK3kHkb5PtQftnYBS4GFjiKX9m+Dbno1wOioJh++9xY2Xqbj9Og23X6dh0fFH6OJhhYBWtvBrYEG76qJKyM3NZfuJjY+Ph76+voYjoiiqJpPJCc4/eYcniVmISclFUlYB3mWJ8S6rAHmFMng7meKviW3Z8tP+jERKjljpspzN9XHx607s8103YmAg5KFRPUO4WOpDwNOeBI6qOJrEajk9HR4CPO0Q4GmHxMx8HL2XgMMRb/H8fQ5OPkjEyQeJMNLlo5uHFXo1tUZ7V3Po8GhCSxXJzMz8dCGKouqcrAIJbr1KQ75Ehn7NbQAAHAb45uB9ZBUoH6r6445zGtsYIi23EIVSOfIkUuQXylEgkSG3UFqi28hNl17gXVZRwsvjMHCxEKGpnRG8nU3Rtr4ZrSpXR9EkVgU1tU5seVkb6WJSJxdM7FgfjxKycDgiHsfvxyMlpxAH777FwbtvYSDkoauHFXo1sYZfQ3P6a7cO09XVxbNnz9j/KYqqu2RygvCYNFx9nozrL1Lx4G0G5ASwM9Flk1iGYdC7mTUKpQQNrESwNhLCylCIeoZFf3V1FL9Pdo31VrouqUyO3ELF79meTazxODELTxOzkFUgRfS7bES/y8ahu2/R3N4Yx6a0Z8sWSuVadzFm4dGHePYuGzO7uEKk6WBqEJrEqqAmdLGlDgzDoImtEZrYGmFBb3eEx6ThdFQiTj9MwvtsMQ5HxONwRDz0dbjwbWAOfzdLdHKzRD0j4acXTmkNDoeDBg0aaDoMiqI0bN2/z/HHzTd4n61469/ZXB/tXMwglsrYCx4rBjWr9Pp4XA6MdBWT0MX9GgMoql+bmFmAJ4lZuPMmHbdfp6FtfTO2XK5YirYr/oWXkym6NLKAM792XnT62KOETETEZiA9TwIR7aCAVSVJbEFBAYRCmvDUBlwOA5/6ZvCpb4ZFfRvjbmw6TkUl4nRUEpKyChD66B1CH70DALhbG+KzRhbo2NASLeyNte6XLkVRFAW8zyqAhYGAHTgnJUeM99liGOny8VkjS7RzMUN7V3PYGFf/HRqGYWBjrAsbY110drcq8fqt16nIKpDiwtP3uPD0PfgcoHu0FENbO6Cdi3mlG4tRNYvakli5XI7ly5djy5YtePfuHZ49e4b69etj4cKFcHJyQnBwsLpWRVURDodBaydTtHYyxcLeHniUkIWL0e9xMfo9IuMy8CQxC08Ss7Dx4ksI+Rx4OZrCp74pfOqboZkdTWq1jUQiQUhICABgwoQJ4PNpbxYUpc2eJoux+X4kzjx6hwMTfODlZAoAGN3WER0aWKBDQ4saf573d7PE2ZkdcPZREk48SMTTpGyceJCEEw+SYGMkxE+Dm8GvgYWmw6TURG1J7LJly7Br1y6sXLkS48ePZ6c3bdoUq1evpklsLcPhMGhqZ4SmdkaY1rkBUnPEuPI8GReeJuP6ixSk5Rbi2osUXHuRAgAQ8jloaW+CFg7GaG5njBb2xrT6QS1XWFiIqVOnAgCCgoJoEktRWkguJzj1MBHbrr5CZNx/DTmvvUhhk1hXSwO4WhpoKkSVMAyDhlYGaGhlgIkdnHHi+n3cTdfB8fuJSMoqgJPZf72syOSk1lyZpX2hKqe2JHb37t0ICQlB586dMXHiRHZ6s2bN8PTpU3WtRqNqe8OuyjATCTCwpR0GtrSDXE7wIjkHN1+l/v8jDWm5hQh7lYqwV6nsPFaGAjSzM0YTGyO41ROhoZUBHM30a81Jo67jcrkYPHgw+z9V96xYsQKHDx/G06dPoauri3bt2uGnn36Cm5ubpkOjKokQgkvRyfjpzFM8TcoGAPA4wIAWthjrWx8eNrW/b2OGYeBqJkBfX3cs6O2Be7EZCr0YfPVnBIQ8LmZ0aQgHs9rRuwH99lSktiQ2Pj4erq6uJabL5XJIJBJ1rUajtKVhV2VxOP/90h3d1glyOcHz9zmIiE3Hg7cZiIzLRHRSFt5liXHu8Tuce/yOnVfA46CBVVFC62ymDwczPTiY6sHRTB8meny2DhaleUKhEAcPHtR0GJQGXb58GVOmTEHr1q0hlUqxYMECdOvWDY8fP6b9BtdyhTI5FhyJQkJmAQyEPAS1dYS3qRjtWjXRyh+tQj4XbV3+awD2LqsAZx4mQU6A4/cTMKS1PaZ91oDeQaxl1JbENm7cGFevXoWjo6PC9IMHD6Jly5bqWg1VA3E4DNzqGcCtngGGezsAAPIKpXiUkIX7cRl4mpSN6KRsPH+fjQKJHA/js/AwPqvEcgwEPNib6sHWRBdWhgJYGgiL/hoKYWkggJWhECZ6lR/FpaYSS2XIKZAiVyxDjliKHLEUuWIpsv//b65YComMgMMAHIYBwwAGQh7M9AUwE+nA0Uwfpvo6mt4MSoucOXNG4fmOHTtgaWmJu3fvokOHDhqKiqqo1BwxTPV1wDAMBDwu5vRohMeJWZjU0QWGQi6ePHmi6RCrjZWhEEentMcvZ5/hyrNk7LtVNMLlFH8XjPOrDyG/ZiXyAh4Hunxu0fcfrVvAUlsSu2jRIowaNQrx8fGQy+U4fPgwoqOjsXv3bpw4cUJdq6FqCT0dHttIrJhMThCXlofod9l4/i4bMal5iE3NQ2xaHpKyCpAtluJxYhYeJ5ZMcD9kIOTBWI8PY10dGOvxYaRb9DAQ8qFXPHShDlfh/+K/XA4DPpdT9JfDAZfLgMcpfnDA+f82C3JSdLuNEEBOSNFz/PdcJicQS+UolMohlsohlshQKJNDLCl6XiiTQSyRKySjOWIpsgsU///wNYms8mcmCwMBPKwN0d7VDB0aWsDNyoBe3abUpnjwC1NT00+UpGoSQggOhMdh+akn+L6PBz73sgcADGhpiwEti0blq4vV5JrZGWP3WG/cfp2GlWee4s6bdPxy9hn+uvMWIaM90ahezalSsX9C0UhnRcPOpn6idN2htiS2b9++OHDgAH744QcwDIPvv/8erVq1wj///IOuXbuqazVULcblMHAy14eTuT66N66n8FqBRIa36Xl4k5qHhMwCJBcPV5hdgPdZYrzPLkBKTiEAILugKAGMQ74mNqPK6ekUjR1uIOBBX8CDvoALkYAPkYALPpcD+QeJdI5YitQcMZKzxUX7LVuMy9nJuPwsGT+cego3KwN87mWHzz3tYaSnWsOsvLw8tp/Y58+fQ0+vdtQZo6oGIQSzZs2Cr68vmjRporSMWCyGWPxfX6JZWUU/SGUymVYlScXbUhu2KSY1FwuOPsLNV2kAim6dD2xhXeLHbW3apvIq7zZ5Ohhh/3hv/PMgET+ejkZ+oQz1DAQ1cl9o4/sEVHx7GEIIvTCtouI6sZmZmTA0rDm/1LSdRCZHZr4EGXkSZOZLkJlfyP6fnidBrliKvEIZ8gv//69EhvxCGft/gUQGqbwo+ZPI5JDJCaRyAqlMDnk5PgUMU1SpnsMw4HAYCHgcCHjc///LgQ6PAwGfCwGXAwG/aJr+/yeiBgIeRAIeRMIPngv/f9oH0/V1eBWuLpErluLZu2xExGbg2vNkXH+ZikKpHAAgEvAQ2M4R43zrw6ScVQ5yc3MhEhWNDZOTk0PrQKpI284TU6ZMwcmTJ3Ht2jXY2dkpLbN48WIsWbKkxPSwsDD2WKKqByEEp5/nYNvddBTKCARcBiObG6NfIwOtrZKlDvkSOeKzJHA1Kxr2lhCC+0kFaF5PSO9qVaGcnBy0bdtW5fMlTWJV8GHvBM+ePdOaLyeqqJsZGSGQygiYD+qcchgGHAa18uSVmS/BiQcJ2BP2hm19bKzHx5zujTCstT04n/gik8lkiIqKAlDUVZ42NvaoStqUxH711Vc4evQorly5Amdn51LLKbsSa29vj+TkZJiYmFRHqNWi+DugYcOGNfJzkSuW4rtjj3D8fiIAoJ2LGZYPaAwH09LvptT0baoIdWzT4Xvx+OZQFPo1t8bSfo1hINTMQKfLTj7Bq5RcTO1YH7r577TqfQKA9PR0WFhYqHy+rNS7YWJiUu4v97S0tMqsqkagvRNoLw6HAQcMalhd/kox0uXjizaOGN7aAeeevMOqs88Q/S4b849E4eDdOKwZ2gKOZqVfXeVyuWjRokX1BUzVOIQQfPXVVzhy5AguXbpUZgILAAKBAAKBoMR0LperVV+4xWrqdj1MTMc/DxLB5TCY28MN4/3ql/u7uqZuU2VUZpsy86Xgchgcv5+IyLhMrBveEi3sjdUbYDlExGXiflwGvvB2gC60732q6LZUKolds2YN+39qaiqWLVuG7t27o23bogrIYWFhCA0NxcKFCyuzGoqiKoHDYdC9cT10bmSJ3WFvsOrcM9yLzUCvtVexpH8TBLSyrZVXmqmqN2XKFOzbtw/Hjh2DgYEBkpKSAABGRkbQ1a3+IUep8mnnYo7venugmZ2RQuNaSnXj/OqjpYMxpv0Zidi0PHy+5QaWD2iKIa3tNR0aBTVWJwgICIC/vz87wk+xDRs24Pz58zh69Kg6VlMjaNNtQqrueZueh1kH7uN2TNHdkaFe9lg6oDEEPMVfwhKJBHv37gUAfPHFF3TELhVpw3mitB83O3bsQFBQ0CfnL94HaWlpWled4MmTJ3B3d68xV8P+uPkGnzWyhI1xxX5c1MRtqix1blNmvgRzDz3AmUdFP+SC2jnhu97u4HGrZxje/huv435cBkJGtoINUrXqfQKKqhOYmpqqfL5U294PDQ1Fjx49Skzv3r07zp8/r67VUBRVSXYmevhzgg9md20IDgMcuBOHEVtv4X12gUK5wsJCjBkzBmPGjEFhYaGGoqU0qaibuZKP8iSwVPWQywmWn3yM744+RODvt5FXKNV0SFrJSJePTV+0wswuDQEAu8JiEBGbUX0B0OZLSqktiTUzM8ORI0dKTD969CjMzMyUzEFRlKZwOQy+6twAvwe1hoGQh7tv0tF/w3U8e5f9XxkuF7169UKvXr206hc/RWmLQqkcM/+KxNarrwEAAZ520NWmiv01DIfDYHqXBtgy0hMLernD27n6q2rQml+K1NbMbsmSJQgODsalS5fYOrE3b97EmTNnsG3bNnWtRi1OnDiB2bNnQy6XY+7cuRg3bpymQ6IojejkZoljU9pj3O47eJWci8+3hOH3IC94OppCKBTi5MmTmg6RoiglJDI5Ju+9i/NP3oPHYfBTQDMEeCrv+oxSrx5NFPs5f5dVgOwCKVwtaTdy1U1tV2KDgoJw48YNGBsb4/Dhw/j7779hZGSE69ev16hbT1KpFLNmzcKFCxcQERGBn376SSt6TqCoiqpvIcLfE9uhpYMxMvMlGLH1Fs4/fqfpsCiKKoVMTjDzQCTOP3kPAY+DbYFeNIHVkIy8QozafgtDfgtD1NtMTYdT56i1w7M2bdqwDUFqqtu3b6Nx48awtS0aaq9Xr14IDQ3F8OHDNRwZRWmOib4O9o3zwZR9Ebjw9D2+/OMufh7cDINa0S9GiqppVp2LxokHieBzGWwZ5YlObpaaDqnOkhNAyOciLbcQw7fexO5gb7RyUH8jxmNTfQHQYWc/prYrsbGxsWU+1OXKlSvo27cvbGxswDCM0l4PNm3aBGdnZwiFQnh6euLq1avsawkJCWwCCwB2dnaIj49XW3wUVVvp6nDx2yhPDPa0g0xOMPuv+3DpMhINGjRAXl6epsOjKOr/jfRxREMrEdYNawl/msBqlKm+DvaN94FPfVPkiKUI+v02HiXQK7LVRW1XYp2cnMrsa1Jd4/zm5uaiefPmGDNmDAICAkq8fuDAAcyYMQObNm1C+/bt8dtvv6Fnz554/PgxHBwcoKxHsYr2kZmbmwsDAwN2/sLCQkgkEvB4PIUOv3NzcwEAurq64HCKfjdIJBIUFhaCy+VCKBRWqGxeXh4IIRAKhWzDG6lUCrFYDA6Ho9CPoypl8/PzIZfLIRAIwOMVHSIymQwFBQUqlWUYBnp6/40QU1BQAJlMBh0dHba7JlXKyuVy5OfnA4DCEKhisRhSqRR8Ph86OjoqlyWEsEmanp5eifdTlbLlee/VcZwoez/VcZxIC8VY1NMFQh4Hf9yKhcxrON6npiEnJwcMw1T4va/scVLa+1nZ4+TD97Oyx0lp7ydFqZu1kS5OTvMDv5q6d6LKJhLw8HtQa4zefht33qRj1PbbODDBBw2sDDQdmtZT2yfg3r17iIiIYB+3bt3Cli1b0LBhQxw8eFBdq0HPnj2xbNkyDBo0SOnrq1atQnBwMMaNGwd3d3esWbMG9vb22Lx5MwDA1tZW4crr27dvYW1tXeY6xWIxsrKyFB4AYGNjg5SUFLbczz//DJFIVKKvXEtLS4hEIoUr0hs3boRIJEJwcLBCWScnJ4hEIjx58oSdtnPnTohEIgwbNkyhrIeHB0QiESIiIthpBw4cgEgkQr9+/RTKtm7dGiKRSOGq9IkTJyASidClSxeFsh06dIBIJEJoaCg77cKFCxCJRGyjvWI9e/aESCRS6Jni5s2bEIlEaN68uULZgIAAiEQihSonUVFREIlEaNCggULZUaNGQSQSISQkhJ328uVLiEQihSvpAPDll19CJBJh7dq17LTExESIRCIYGxsrlJ01axZEIhF++OEHdlpmZiZEIhFEIhGk0v+6p1mwYAFEIhEWLFjATpNKpWzZzMz/fm3/8MMPEIlEmDVrlsL6jI2NIRKJkJiYyE5bu3YtRCIRvvzyS4Wytra2EIlEePnyJTstJCQEIpEIo0aNUijboEEDiEQidlhYANi7dy9EIlGJH3fNmzeHSCTCzZs32WlHjhyBSCRCz549Fcq2bdsWhgYG6KCfiDHtHAEAZt2nwLXXeHTo0EGhbJcuXSASiXDixAl22tWrVyESidC6dWuFsv369YNIJMKBAwfYaRERERCJRPDw8FAoO2zYMIhEIuzcuZOd9uTJE4hEIjg5OSmUDQ4OhkgkwsaNG9lpsbGxEIlEsLRUvEI1depUiEQi/Pzzz+y0lJQU9v380Ny5cyESibBkyRJ2Wl5eHlv2wyvTS5YsgUgkwty5cxWWYWNjA4pSl+svUnD2//soBUAT2BpGT4eH38e0RjM7I6TlFuKLbbcQl6a+O1g/nn6KyXvv4mE8vcr7IbV9Cpo3b67w8PLywvjx4/HLL79g3bp16lpNmQoLC3H37l1069ZNYXq3bt1w48YNAIC3tzcePnyI+Ph4ZGdn49SpU+jevXuZy12xYgWMjIzYh709HamD0m4Mw+D7vo0xsaMLAMC0ywTkObTXcFQUVTfFpuZhyr4ITNhzF+doo8say1DIx64x3nCzMoCAz4FYKlfbsq+/SMGpqCQk59A+uz+kthG7SvP8+XO0aNGiSm6tMQyDI0eOYMCAAQD+q+96/fp1tGvXji33ww8/YNeuXYiOjgYAHD9+HF9//TXkcjnmzJmDCRMmlLkesVgMsVjMPs/KyoK9vT0SEhJQr149Wp2AVifQmuoExe9ncVlCCH49G40NF4uuDs/v1QgTOrio/N7XxeoEiYmJsLGxqdUjdlUWHbGr8nLFUgzadAPR77LR3N4YByb4QFgFfcHSEbvUJymzADwuA3OR4NOFy6nv+muIis/EttGeqCdP0ar3Caj4iF1qqxNbfIu9GCEEiYmJWLx4cYlbxVXt4zquhBCFaf369Stxu70sAoEAAoEAGzduxMaNG9n6vfr6+grL1dHRYb/wPvThl2MxPp+vdBhPVcp++MVfjMfjsUlCRcsqGxOdy+UqjU2Vsh8mVhUpy+FwlJYtfn8qWpZhGKVllb2fqpQFlL+f6jhOlL2f6jhOFOrHSqU4cuQIHAFM/6wp1l54iR9OPQWXw0Gwr3O1HielvZ+VPU5Kez8re5wAyt9PilLVkn8eIfpdNiwMBPhtpGeVJLCUetUzUjwvxaXlwd605HmYqjy1JbHGxsZKk0d7e3vs379fXaspk7m5ObhcLpKSkhSmv3//HlZWVpVe/pQpUzBlyhT26gJFaTOxWIwhQ4YAAHJyckDAYN2FF/jficfgcRgEtnPSbIAUpeXOPkrCX3fegmGADcNblkiOqJpv7603WHL8MZYNbIIhXhWvikhAh51VRm1J7MWLFxWeczgcWFhYwNXVVekVn6qgo6MDT09PnDt3DgMHDmSnnzt3Dv3796/08j++EktR2ozD4aBjx47s/zO7NoRUTrDp0kssOv4IXA6DkT6OGo6SorRTSo4Y8w4XNdyc4FcfberT4dtro7ScQhTK5Fh49CEa2xiisU3lLoDRUWcVqS27ZBgG7dq1K5GwSqVSXLlypUTL5orKycnBixcv2OevX79GZGQkTE1N4eDggFmzZmHUqFHw8vJC27ZtERISgtjYWEycOLHS66ZXYqm6RFdXF5cuXVKY9k13N8jkBL9deYXvjj4Ej8NgmLeDZgKkKC124n4CUnML4WZlgFndGmo6HKqCpvi7IiI2HRejkzHpjwicmOYLQ2HJal9UxagtifX390diYmKJbm0yMzPh7++vtquXd+7cgb+/P/u8uEujwMBA7Ny5E0OHDkVqaiqWLl2KxMRENGnSBKdOnYKjY+WvGNErsVRdxzAMvu3ZCBIZwe/XX2PekShwOQw+r8RtMoqiSgpq7wxLQyGczPQh4NF6sLUVh8Ng9dAW6LP+GmLT8rDk+GP8OqT5p2ekykVtvRNwOBy8e/cOFhYWCtOfPXsGLy+vEg2/arPiK7F1udUxVbcRQrD4+CPsCnsDhgFWDWmOgS3pELUfoucJ2jtBbUK3qWqFx6RhyG9hIATYMtITPZrUU2n+AokMhABchuBZ9NMasU3qpLHeCYoHHWAYBkFBQQotemUyGR48eKDQ3RVFUbVDfn4+O7hFWFiYQg8DDMNgcb/GkBGCP27GYvZf98FhGPRvYVva4iiKKod/n7xDc3tjtXbPRGleaydTfNnBBVsuv8T8I1HwcjJR6T0u7pWC3glWVOkktrhuKCEEBgYGCl90Ojo68PHxwfjx4yu7mhqBVieg6hK5XI779++z/3+MYRgs7dcEMjnBn7fjMPNAJHgcDno3K3sEPIqilHubnofJeyOgw+PgxFe+cDSj3bRpk5ldGyDsZQq6N6kHE72S3fJRqqt0Ertjxw4ARcOlfv3111rdNyJt2EXVJUKhEGfPnmX/V4bDYbB8QFNIZQQH777FtP33wOUAPZrQRJaiVPVzaDTEUjla2BvDgfYrqnUEPC7+ntQOvAoMGbzqbDTiMwoQ3J72CPMhtTXsWrRokboWRVFUDcDlctG1a9dPluNwGPwY0AwyOcHhe/GYuu8eNn7BoHtj1ep8UVRd9io5B//cTwAALOzjUaLfdUo7fJjASmRyyOSkXANYnH/yHo8Ts9CnmRUsPlm67qhUEtuqVSv8+++/MDExQcuWLcv80EVERFRmVTUCrU5AUcpxOQx+/rw5ZITgWGQCpuyNwOaRnujqUflBRiiqLth48SXkBOjcyBJNbOmdPm0XEZuOeX9Hwb+RJb7t2UjT4dRalUpi+/fvzzbkGjBggDriqdFodQKqLpFKpQgNDQUAdO/e/ZODlnA5DH79vDkIAY7fT8DkvXexZaQnOrvTRJaiyhKXloejkfEAgK86V+8w7ZRmpOYUIvpdNl6l5GCEtwMczGj1kYqoVBL7YRUCWp2AorSLWCxGnz59ABQNMlKekfd4XA5WDWkOOSE48SARk/6IwJZRrfBZI5rIUlRptlx+CZmcwK+BOVrYG2s6HKoadPWwgl8Dc1x9noJfzkZj3fCWZZang84qp3rt4k8oLCzE27dvERsbq/DQBhs3boSHhwdat26t6VAoqspxOBx4eXnBy8sLHE75TxU8LgdrhrZA76bWKJTJMXFPBC5Gv6/CSCmq9tPhcTC5k6umw6CqUXE1guP3ExD1NrNc8zB04FkFaktinz17Bj8/P+jq6sLR0RHOzs5wdnaGk5MTnJ2d1bUajZoyZQoeP36M8PBwTYdCUVVOV1cX4eHhCA8PV+g6rzx4XA7WDGuBnk3qoVAmx5d77uLys+QqipSiarflA5vi9vzO8KlvqulQqGrU2MYIA1rYAAB+PPMEahp7qk5RWxI7ZswYcDgcnDhxAnfv3kVERAQiIiJw7949rWjURVGUavhcDtYNb4nuja1QKJVj/O47uEITWYpSylhPh/ZIUAfN7uYGHS4H11+kIuxVqqbDqXXU1sVWZGQk7t69i0aNaCs7iqKK8LkcrB/eClP2ReDc43cYv/sOtge2hm8Dc02HRlEa9yY1F3mFMrhb181hiSnA3lQPQ1vbY8/NNzgVlYh2LsrPjX+ObwOZnECPz8HL5/RiQDG1XYn18PBASkqKuhZHUZSG5efno3379mjfvj3y8/MrvBwdHgcbR7RCF3dLiKVyjNsdjhsv6LmConbdeIOea69i1dloTYdCadDETi7YEdQa/+vfpNQyxno6MBMJoMNTe1OmWk1te+Onn37CnDlzcOnSJaSmpiIrK0vhoQ1owy6qLpHL5bhx4wZu3LihdNhZVejwONj4RSt81sgSBRI5xu4KR9hLeuuMqrsIIQh9lAQAtF/YOs7WWBf+jSxpdZIKUFt1gi5dugAAOnfurDCdEAKGYbRigADaTyxVlwgEAhw5coT9v9LL43GxeWQrTNxzFxejkzF2Zzh2jGkNn/pmlV42RdU2D+OzEJ+RD10+Fx0a0jGYqCIFEhnEUjmMdPkK0zdceI6krAKMauOgochqJrUlsRcvXlTXoiiKqgF4PJ7aBzEpSmQ92d4Kxu4Mx84x3vB2pq2yqbrlzKNEAIB/I4tyDTtKab+/wuPww+knGOplj3m93BVeO/EgEU+TstHN3RL0bPkftSWxHTt2VNeiKIrSYkI+F7+N8sT43Xdw9XkKgnbcxq6x3mjtRE/NVN1x4WlR45xuHvU0HAlVUxjr8ZGRJ8GBO3GY2bUh/XFTDmpLYh88eKB0OsMwEAqFcHBwUMstSYqiqodMJsPVq1cBAH5+fuBy1XdCFfK52DraC+N23cG1FykI+v02dtJElqojMvMkeJpU1FaknSutTkMV6exuBVtjXcRn5OOf+wn43Mte0yHVeGpLYlu0aFFmpWQ+n4+hQ4fit99+g1AoVNdqKYqqIgUFBfD39wdQNOysvr6+WpfPJrK7w3H9RSoCf7+N34NoHVlK+92OSQMhQH0LfVga0O9DqgiXw2BEGwf8HBqNg3ff0iS2HNTWO8GRI0fQoEEDhISEIDIyEvfu3UNISAjc3Nywb98+bN++HRcuXMB3332nrlVSFFWFGIaBh4cHPDw8qqzVrK4OF9sDW8OvgTnyCmUI2nGbdr9Fab22Lmb4PcgL33Rz03QoVA0zqJUtGAa4/ToNcWl57HR2MC/ag4ECtV2JXb58OdauXYvu3buz05o1awY7OzssXLgQt2/fhr6+PmbPno1ffvlFXautVhs3bsTGjRu1oqcFivoUPT09PHr0qMrXU3xFtrix15id4dgW6AW/BrTFNqWdRAIePmtkpekwqBrI2kgXbeub4cbLVByLjMfUzxpoOqQaTW1XYqOiouDo6FhiuqOjI6KiogAUVTlITExU1yqr3ZQpU/D48WOEh4drOhSK0ipCPhchoz3xWaOiARGCd93Bpej3mg6Loiiq2g1saQsAOHwvHoS9BEspo7YktlGjRvjxxx9RWFjITpNIJPjxxx/ZoWjj4+NhZUV/fVIUVVJxP7JdPaxQKJVjwu67uPD0nabDoii1epdVgDXnn+H8Y3psU8r1bGqNWV0bYs3QFuy0XWO9cXWOPzwdjDUWV02ktuoEGzduRL9+/WBnZ4dmzZqBYRg8ePAAMpkMJ06cAAC8evUKkydPVtcqKYqqQvn5+ejXrx8A4Pjx49DV1a3ydQp4XGwc0QrT/ryHM4+S8OWeu9j0hSe6etAfv5R2iIzLwJrzz+FhbYgu9LimlBAJeJjWWbEaQT2jogaAtDqjIrUlse3atUNMTAz++OMPPHv2DIQQDB48GCNGjICBgQEAYNSoUepaHUVRVUwul+P8+fPs/9VFh8fB+hEtMWN/JE5GJWLSH3exYUQr9GhC+9Okar+XyTkAgIZWIg1HQlG1n9qSWAAQiUSYOHGiOhdZZQYOHIhLly6hc+fOOHTokKbDoagaRyAQ4I8//mD/r058Lgdrh7UAl8Pg+P0ETNkXgXXDWqJ3M+tqjYOi1C0hIx8AYGeip+FIqJpMLic49TARV54lY1Hfxth29TXyCqUY5UOHnf2QWpNYAHj8+DFiY2MV6sYCYG9L1hTTpk3D2LFjsWvXLk2HQlE1Eo/HwxdffKG59XM5WD20BXgcBofvxWPa/nuQEYJ+zW00FhNFVVZSZgEAwNqY9g9LlY5hgB9PP8Xb9Hx0b1wPe2+9wftsMfo0rQfaydZ/1JbEvnr1CgMHDkRUVBQYhmFb1BX3L1nT6nH4+/vj0qVLmg6DoqgycDkMfv68OTgcBofuvsWM/fcglxMM+P/WuxRV2yRk/H8Sa0STWKp0DMOgk5sF/rgZi0vRyZDKi3IqHpdBzcqmNEttvRNMnz4dzs7OePfuHdu/5JUrV+Dl5aVysnjlyhX07dsXNjY2YBgGR48eLVFm06ZNcHZ2hlAohKenJzs8JkVR6iGTyRAeHo7w8HCN/gjlchisDGiGYa3tISfAzL8icejuW43FU5eU51xMqSYlRwwAdKQu6pM6NbQEAFx69h4SWVG7BD5XbWmbVlDb3ggLC8PSpUthYWEBDocDDocDX19frFixAtOmTVNpWbm5uWjevDk2bNig9PUDBw5gxowZWLBgAe7duwc/Pz/07NkTsbGxbBlPT080adKkxCMhIaFS20lRdUVBQQG8vb3h7e2NgoICjcbC4TD4YWBTjGjjAEKAbw7dx4Hw2E/PSFXKp87FlOpyxVIARS3QKaosbV3MoMPlIC4tH9kFRccNj0MrE3xIbZ8imUwGkaiotaW5uTkSEhLg5uYGR0dHREdHq7Ssnj17omfPnqW+vmrVKgQHB2PcuHEAgDVr1iA0NBSbN2/GihUrAAB3796t4JaUJBaLIRaL2edZWVlqWzZF1VQMw7ADmFTVsLOq4HAYLB/QBDwOg91hbzD37yhI5QRftCk5yAqlHp86F1Oq2z+hLbLFErbLJIoqjb6Ah9bOJrj+IpWdxqVJrAK1XYlt0qQJHjx4AABo06YNVq5cievXr2Pp0qWoX7++ulaDwsJC3L17F926dVOY3q1bN9y4cUNt6/nQihUrYGRkxD7s7e2rZD0UVZPo6ekhJiYGMTEx0NOrGS2pGYbBkn6NMaa9EwBgwZGH2Hn9tWaDoigVNLUzQjsXcwj5XE2HQtUCxVUKitHqBIrUdiX2u+++Q25uLgBg2bJl6NOnD/z8/GBmZob9+/erazVISUmBTCYrMfKXlZUVkpKSyr2c7t27IyIiArm5ubCzs8ORI0fQunVrpWXnzZuHWbNmsc+zsrJoIktRGsIwDL7v4wE+l4OQK6+w+J/HKJDKMbGji6ZDq/NKu2slk8lqXOPeyijeltq0TYQQREZGIjo6Gubm5rC0tERISAgKCgowa9YshIaG4uTJk7C0tMS+ffswf/58mJiYwMfHB02aNMHbt2/h4OAAIyMjTW9KudXG9+ljfg3MFJ5zmaIGXrV5m5Sp6PaoLYnt3r07+3/9+vXx+PFjpKWlwcTEpEpuRX68TEKISusJDQ0td1mBQACBQICNGzdi48aNWnfwUFRtwzAM5vVsBAGPg/UXXuDH008hlsgxrbNrjaj6UFetWLECS5YsKTH9xYsXbHUzbfLs2TOVyktkBKeeZ4MQoK+bQZXdGs7MzATDMLh69SrOnDkDPp+PVatWYefOnbC1tYWxsTGkUikGDx4MgUAAmUyG7t27o0ePHgCAJ0+eoEOHDkhJSUFqaipu3bqFo0ePIj4+HuPGjcOjR48AAC1atICzs3OVbIM6qfo+1SSEEPw+0BYMgNQ8GZJiX4FhmFq9Tcrk5ORUaD6GFPeFVUFjx44tV7nff/+9QstnGAZHjhzBgAEDABRVJ9DT08PBgwcxcOBAttz06dMRGRmJy5cvV2g9qsjKyoKRkREyMzNhaGhY5eujKE0oKCjAsGHDAAD79++HUFgz6/BtuPAcv5wtOqFP7uSCb7q71YhEVtvOEx+fi5VRdiXW3t4eycnJMDExqYYoq4dMJsOzZ8/QsGFDcLnlrxaQVyhF0yVFo+A9XNQVujrqqVJACMG7d+8AABMmTIC+vj7mz58PW1tbGBgYgM/nf3IZqmxTQkICbty4gbi4OIwZMwbjxo1D586dMXToUJiamqplm9Shou9TTaaN2wQA6enpsLCwUPl8WekrsTt37oSjoyNatmyJSubD5aKjowNPT0+cO3dOIYk9d+4c+vfvX6XrpldiqbpEJpPh2LFj7P811dTPGkDI52LZySfYdOklCiRyLOzjXiMSWXU4c+YMRCIRfH19ARSdh7Zu3QoPDw9s3LixRiWHxXetPsblcrXqC7eYqtul80EuKQNT6X1CCMGaNWtw5swZ+Pn5Yf78+Thy5Ah0dHQqvMzybJO9vT2GDh3KPt+7dy9OnTqFmJgYhIaGQk9PD7179672kf5Ko43Hn7ZtU0W3pdJJ7MSJE7F//368evUKY8eOxciRIyv9SywnJwcvXrxgn79+/RqRkZEwNTWFg4MDZs2ahVGjRsHLywtt27ZFSEgIYmNjq3zI2ylTpmDKlCnsFRaK0mY6OjoICQlh/6/JxvnVh4DHwcJjj/D79dcolMmwtF8TcLSgJe8333yDn376CQAQFRWF2bNnY9asWbhw4QJmzZqFHTt2VNm6P3UuplQj4HGhw+OgUCpHdoEERrqfvkL6MblcjhMnTmDr1q2YM2cOxo8fj5kzZ7Kva+Kzqqenh8GDBwMAnJyccODAAcycORO//voroqKi4O3tXe0xUXUEUYOCggKyb98+0qVLF6Knp0c+//xzcubMGSKXyyu0vIsXLxIAJR6BgYFsmY0bNxJHR0eio6NDWrVqRS5fvqyOTSnThg0biLu7O2nYsCEBQDIzM6t8nRRFld/+22+I07cniOPcE+TrvyKJVFaxc5A6ZGZmquU8oa+vT16/fk0IIWTRokUkICCAEELI3bt3iZWVVWXDLFN5zsVlKd4HaWlpVRpndZNKpSQqKopIpVKV5/Vado44zj1Bot5mqDRfVlYW2bFjB8nNzSW//vqr2vdpZbapNOnp6WTGjBlk4MCB5O3bt2pbbnlVxTZpmjZuEyGEpKWlVeh8qZa+GgQCAYYPH45z587h8ePHaNy4MSZPngxHR8cKVdbt1KkTCCElHjt37mTLTJ48GTExMRCLxbh79y46dOigjk0p05QpU/D48WOEh4dX+booilLd0NYOWDWkOTgMcPDuW8z6KxLS/x/pprbS0dFBXl4eAOD8+fNs94KmpqZV3md1ec7FlGqKr75m5kvKPU9oaCiGDBkCfX19CIVCzJo1q0ZVIymNsbExVq9ejfXr18PExATz5s3Dw4cPNR0WpUXUPmQIwzBgGAaEEMjltfvLg6LqMrlcjidPngAA3N3dweHUjv4JB7a0g4DHxbQ/7+FYZAIKpXKsHdYSOrzaEf/HfH19MWvWLLRv3x63b9/GgQMHABS1uLazs9NwdJSqLA0EePE+B0mZnx4FLzQ0FGFhYZg3bx66detWa+t529raAihqdLZs2TJ07twZw4cPr7XbQ9Ucajmri8Vi/Pnnn+jatSvc3NwQFRWFDRs2IDY2Vqu6Vdm4cSM8PDxK7U+WorRJfn4+O1xzfn6+psNRSa+m1tgy0hM6XA5OP0zCpD/uokBScxunlWXDhg3g8Xg4dOgQNm/ezCYEp0+fZrtEomoPOxNdAEB8RtmfqXXr1uHChQv4+uuvIRAItCLhc3Z2xvbt2zF8+HD8+OOP+OWXX2p0o1Gq5qt0F1uTJ0/G/v374eDggDFjxmDkyJEwMzP79Iy1mLZ1nUNRyuTm5sLJyQkAEBMTA319fc0GVAGXnyVjwu47EEvl8GtgjpBRXmrr1uhT6Hniv31Q3Ge4tpDJZHjy5Anc3d1VblX9OCELmfkSNLASwVyk2HpfKpVi5cqVMDIywuTJk6s1ca3MNlUEIQTbt29HWloa5syZUyXrqO5tqg7auE1AURdbpqam1d/F1pYtW+Dg4ABnZ2dcvny51H5aDx8+XNlVURRVjfT19ZGcnKzpMCqlY0ML7BjTGuN23cHV5ykI2nEb24NaQyRQe00qtcrKymJP5J+q91pXE+TaysOm9Pdr0aJFcHd3xxdffKEVV17LwjAMxo0bBwBYvXo1DA0NMXbsWK3fbkq9Kn0mHz16dJ056Gg/sRRV+7RzMcfusd4I2hGOW6/TMHr7Lewc6w1DoerdG1UXExMTJCYmwtLSEsbGxkrPseT/Rymk56Pa79atW7h37x6WLVtWZ75PPzRt2jSsWrUKy5cvx3fffafpcKhaRC2DHdQVtJ9YiqqdvJxMsXdcG4z+/TYiYjMwctst7B7rDWO9mtn/7YULF9j+ti9cuFAnExttdiwyHo8SshDs64yLp47i77//xtatW+vs+8zlcvHNN99ALpdj06ZN6NatG1xdXTUdFlUL1Ox7ahRFaUxBQQGCg4MBANu3b6+xw86WV3N7Y+wb3wajtt/Gg7eZGBZyE3+Ma1OiXmJN0LFjR/b/Tp06aS4QqkqEXHmFh7EpkLy5hwkD/DFkyJBa0/tHVeJwOOjXrx+CgoKwcuVKtGrVStMhUTUc/dRQFKWUTCbDvn37sG/fPq25Zd3Yxgj7J/jAwkCAp0nZGBZyE++zPt3VkSYtXLhQ6f7PzMzE8OHDNRARVVktbfSQfOwnPInPgLW1NU1gP2BnZ4dDhw7B0NAQb9++1XQ4VA1HPzkqoF1sUXWJjo4OVq9ejdWrV9f4YWdV0dDKAAcm+MDaSIgX73Mw5LcwJHyiuyNN2r17N9q3b4+XL1+y0y5duoSmTZsiJiZGc4FRFWYheQ+DVr2RYd5E06HUSMbGxnBxccHcuXPxxx9/aDocqgajSawK6IhdVF3C5/MxY8YMzJgxA3x+zW0EVRH1LUT468u2sDPRRUxqHob8Foa4tDxNh6XUgwcP4OTkhBYtWmDr1q345ptv0K1bNwQFBeHatWuaDo9SQWFhIYKCgtC3gyd0nVvhaVI20nMLNR1WjcQwDHbv3o2IiAjExsZqOhyqhqJJLEVRdZK9qR7++rItnMz08DY9H59vCcOrZNWHya5qRkZG2L9/P6ZNm4Yvv/wSa9euxenTp7F06VKt6idS2xFCEBgYiICAANS3tUQDy6KBgK48r93d2FUlLpeLVatWISMjA2fOnNF0OFQNRJNYiqKUksvliImJQUxMjNYOIW1jrIu/vmwLV0sRkrIKMOS3m4hOytZ0WCWsX78eq1evxvDhw1G/fn1MmzYN9+/f13RYVDlJpVIkJSVh+fLl6Nu3LwCgq4cVAODso3eaDK1WcHNzw/r16xEZGanpUKgahiaxFEUplZ+fD2dnZzg7O9e6YWdVYWkoxIEJPnC3NkRKjhjDQsLwMD5T02GxevbsiSVLlmD37t3Yu3cv7t27hw4dOsDHxwcrV67UdHhUOSxevBiXLl1C/fr12Wk9mtQDALzNyEclB87UegKBALt370Z0dLSmQ6FqGJrEqoA27KLqGj09Pejp6Wk6jCpnJhLgz/Ft0NzOCOl5EgzfehN336RrOiwARVfxHjx4gMGDBwMAdHV1sXnzZhw6dAirV6/WcHTUp9y5cwcpKSklepJoamuEC7M74tiU9nW2f1hVmJmZYciQIRg/fjyys2ve3RJKM2gSqwLasIuqS/T19ZGbm4vc3Fzo6+trOpwqZ6yngz/GtYG3kymyC6QYtf0Wwl6majosnDt3DjY2NiWm9+7dG1FRURqIiCqvpKQkuLi4YN26dSVeYxgG9S1EGoiq9mIYBkFBQQgODqZXrykANImlKIpiGQj52Dm2NXxdzZFXKEPQjtu4FP1e02GVytzcXNMhUKWQSCQYO3YskpOTP9lFXVaBBNkFkmqKrHZr3749ZsyYoTV9V1OVQ5NYiqKoD+jp8LAt0AudG1lCLJVj/O47CH2UpLF4ZDIZfvnlF3h7e6NevXowNTVVeFA1U0hICAIDA9GwYcMyy2269ALey89jz8031RRZ7deuXTvMnTsX8fHxmg6F0jCaxFIUpZRYLMb48eMxfvx4iMViTYdTrYR8LjaP9ETvptaQyAgm743AsUjNfGEuWbIEq1atwpAhQ5CZmYlZs2Zh0KBB4HA4WLx4sUZiosr24sULBAUFYejQoZ8sa64vQIFEjr03YyGRaWcvIFUhODgYM2bMoNUK6jiaxFIUpZRUKsW2bduwbds2SKVSTYdT7XR4HKwd1gKDWtpCJieYcSASf4XHVXsce/fuxdatW/H111+Dx+Nh+PDh2LZtG77//nvcvHmz2uOhyiaTyTBp0qRyf2b6tbCBuUgH8Rn5OPEgoYqj0x4eHh4YN24cJBJaDaMuo0msCmjvBFRdwufzsWzZMixbtkzrRuwqLx6Xg18+b47h3g4gBFj773PkFVZvQp+UlISmTZsCAEQiETIzi7r/6tOnD06ePFmtsVCftnfvXgQEBMDIyKhc5YV8Lsa0dwYAbLn0il5ZVEH37t2xfPlyJCVprroPpVk0iVUB7Z2Aqkt0dHSwYMECLFiw4JMNU7QZh8Pgh4FNML1zA/wxrg30dHjVun47OzskJiYCAFxdXXH27FkAQHh4OAQCQbXGQpWtoKAAAQEBGDdunErzjfRxhEjAQ/S7bJx+SBMyVQwaNAgLFizQdBiUhtAklqIo6hMYhsHMrg3hbF79XY0NHDgQ//77LwBg+vTpWLhwIRo0aIDRo0dj7Nix1R4PVbpFixbh7t274PFU+6FjpMvHWN+iq7G/hEbTurEqaN68OXx8fOgV7Dqqei8pUBRVaxBCkJKSAqCoKyfaIbtm/Pjjj+z/gwcPhr29Pa5fvw5XV1f069dPg5FRH3r16hVevXqFDh06VGj+8X7O+OPmGyRk5uNRQhZa2BurN0AtNnbsWOzevRuBgYGaDoWqZjSJpShKqby8PFhaWgIAcnJy6sSAB7VBmzZt0KZNG02HQX3ExMSkUiOoGQj52DC8JVwsRbAyFKoxMu3H5XJx8uRJ+Pv7w8HBQdPhUNWIJrEVUHzbIisrS8ORUFTVyc3NZf/PysqinYurqPj8QG9zar/U1FSsXbsWS5curdRy2rnSwSsqau7cuTh8+DBmzJih6VCoakST2AooHrfZ3t5ew5FQVPVQNuwpVT7Z2dnlbqlO1U47d+5Ue68111+kQMjnwNORDmhRHp6ennB2dkZaWhodBKQOoUlsBdjY2CAuLg4GBgZsPcHWrVsr9Frw4fOsrCzY29sjLi4OhoaGVRLTx+tX93yfKlfa66pML20fVsf+KytWdc1X1fuwth6DqsxbVjlVX1PlGARU34eEEGRnZ9MfAHVEr1691Lasv+7EYc6hB7A31cWpaX4wENbNLu5U9ejRI4SGhmLZsmWaDoWqJjSJrQAOhwM7OzuFaVwuV+GL7ePnAGBoaFhlCYSy9alzvk+VK+11VaZ/ah9W5f4rK1Z1zVfV+7C2HoOqzFtWOVVfq8gxCKi2D+kVWO336NEjDBs2DFwuV23L7NGkHtaef464tHx8f+wRVg9tobZlazNfX18sXboUhBDaELWOoF1sqcmUKVPKfF7d61f3fJ8qV9rrqkyn+7By+7C27j9V5i2rnKqv1cRjUJmgoCBcuXJF02FQpfjf//6n1gQWAAyFfKwd1gIcBjhyLx5H7r1V6/K1FcMwWL9+Pa2HXocwhL7bVS4rKwtGRkbIzMys0iuJ2oruv8qj+7DyNLUPAwICcPLkSdjb22PMmDEIDAyEra1tta2/Mor3WVpaGkxMTDQdjtrIZDI8efIE5ubmmDlzJv78888qWc/qc8+w9t/nEPI5ODSxHZrYVt2V/eJtcnd3V3tSXp2SkpLw559/YubMmVqzTR/Sxm0CgPT0dJiamqp8fqVXYquBQCDAokWL6Og6FUT3X+XRfVh5mtqHf//9N+Lj4zF16lQcPHgQTk5O6NmzJw4dOkTHjdcwCwsL7Nixo8qWP61zA3Rys0CBRI7xu+/gfXZBla1LW1hZWeHUqVP0amwdQZPYaiAQCLB48WKaQFQQ3X+VR/dh5WlyH5qZmWH69Om4d+8ebt++DVdXV4waNQo2NjaYOXMmnj9/Xu0xUcC0adOQn5+vMO3KlSvo27cvbGxswDAMjh49qnTeTp06YcuWLWUun8thsG54S7hY6CMxswChdEjaT2IYBn379sW7d+80HQpVDWgSS1EUVUskJibi7NmzOHv2LLhcLnr16oVHjx7Bw8OjUh3tU6ojhODFixclqknk5uaiefPm2LBhQ6nzpqWl4caNG+jbt+8n12Mo5GNbYGusGtIco9o6VTbsOmHq1KlIS0vTdBhUNaBJLEVRVA0mkUjw999/o0+fPnB0dMTBgwcxc+ZMJCYmYteuXTh79iz27NlT6Y72KdXk5+djyJAhJab37NkTy5Ytw6BBg0qd9+TJk2jevDlbt/n48eNo0KABdHV14e/vj127doFhGGRkZAAALp84iLGfNcGJEyfg5uYGPT09BAQEIDc3F7t27YKTkxNMTEzw1Vdf0UFJUHQ19ptvvtF0GFQ1oF1sURRF1WDW1taQy+UYPnw4bt++jRYtWpQo0717dxgbG1d7bHVZbGwsBg4cWKF5jx8/jv79+wMAYmJiMHjwYEyfPh3jxo3DvXv38PXXX5eYJy8vD+vWrcPWHXsw/2A4Tm5bgAEDB8LUxASnTp3Cq1evEBAQAF9fXwwdOrRS21bbMQwDLpcLqVSq6VCoKkaTWIqiqBps1apVGDJkCIRCYallTExM8Pr162qMitq6dSs6d+6s8nxisRihoaH4/vvvAQBbtmyBm5sbfv75ZwCAm5sbHj58iOXLlyvMJ5FIsHnzZiQRI7zXTwXftS0uXr6EuPgEWJubwMPDA/7+/rh48WKdT2IBYNmyZZDL5ZoOg6pitDpBDZKdnY3WrVujRYsWaNq0KbZu3arpkGqduLg4dOrUCR4eHmjWrBkOHjyo6ZBqnYEDB8LExASDBw/WdCi1RvFt3gYNGmDbtm1qW65UKsXYsWPx4sULtS2TUo+CgoIKdbV24cIFmJmZoWnTpgCA6OjoEkPWent7l5hPT08PLi4uaO9qjl1jvKFraAaOgSWC9z7E2/Q8AEUt89+/f1+BrdFOtH9l7UeT2BpET08Ply9fRmRkJG7duoUVK1YgNTVV02HVKjweD2vWrMHjx49x/vx5zJw5E7m5uZoOq1aZNm0adu/erekwag2pVIpZs2bhwoULiIiIwE8//aS2RiU8Hg+Ojo60nmMNNH/+/ArN92FVAgBKR5dS1j0Un//f0LNtXcwQ4GkHHp+Hx4lZ6LfhOsJepoJhGHr18f/p6uri5MmTmg6DqmI0ia1BuFwu9PT0ABT9ypfJZLSvOxVZW1uzdQYtLS1hampKW6mqyN/fHwYGBpoOo9a4ffs2GjduDFtbWxgYGKBXr14IDQ1V2/K/++47zJs3jx7HNcjr169x+/ZtlecjhOCff/5Bv3792GmNGjVCeHi4Qrk7d+58cllWhkI4m+ujsY0h0nILMXL7LcSn539yvrrCxcUF6enpmg6DqmI0iVVBefr/27RpE5ydnSEUCuHp6YmrV6+qtI6MjAw0b94cdnZ2mDNnDszNzdUUfc1QHfuw2J07dyCXy2Fvb1/JqGuO6tx/dUVl92lCQoLCCFp2dnaIj49XW3zr1q3D1atXYWNjAzc3N7Rq1UrhQVW/p0+foqBA+cADOTk5iIyMRGRkJICihDcyMhKxsbG4e/cucnNz0aFDB7b8l19+iadPn2Lu3Ll49uwZ/vrrL+zcuRMASlyh/RifWzSS14AWNjAU8mAm0lHL9mkDDoeD7du3azoMqorRhl0qKO7/b8yYMQgICCjx+oEDBzBjxgxs2rQJ7du3x2+//YaePXvi8ePHcHBwAAB4enpCLBaXmPfs2bOwsbGBsbEx7t+/j3fv3mHQoEEYPHgwrKysqnzbqkt17EMASE1NxejRo9VaP7EmqK79V5dUdp8qu1vyqeRDFQMGDFDbsij1yMvLg4uLi9LX7ty5A39/f/b5rFmzAACBgYGwt7dH7969weP999Xr7OyMQ4cOYfbs2Vi7di3atm2LBQsWYNKkSeUaWENXh4vVQ1sgPiMf383chwIUXfE98SAR3RvXgw6v7l6rGjp0KNuAjtJShKoQAOTIkSMK07y9vcnEiRMVpjVq1Ih8++23FVrHxIkTyV9//VXREGu8qtqHBQUFxM/Pj+zevVsdYdZYVXkMXrx4kQQEBFQ2xFqnIvv0+vXrZMCAAexr06ZNI3v37q3yWGuDzMxMAoCkpaVpOhS1Sk9PJw8ePCBSqVSl+Zo2bUoOHDjwyXLLli0jdnZ2FQ2PnH2URBznniD+v1wkF568I3K5/JPzSKVSEhUVpfI21WRBQUHk8uXLWrVN2vg+EUJIWloaAUAyMzNVmq/u/kRTs8LCQty9exfdunVTmN6tWzfcuHGjXMt49+4dsrKyAABZWVm4cuUK3Nzc1B5rTaWOfUgIQVBQED777DOMGjWqKsKssdSx/yhF5dmn3t7eePjwIeLj45GdnY1Tp06he/fumgi3ytAqKorGjRwJo/XrgcTEcs9TWFiIgIAA9OzZs8RrmzZtQnh4OF69eoU9e/bg559/RmBgYIXjk8nlMBfp4FVyLsbsDMeATTdw4em7OtfGok+fPuByuZoOg6pCtDqBmqSkpEAmk5W49W9lZYWkpPKNd/327VsEBweDEAJCCKZOnYpmzZpVRbg1kjr24fXr13HgwAE0a9aMrdu4Z88etjsbbaaO/QcUdZwfERGB3Nxc2NnZ4ciRIyW6AKoryrNPeTwefv31V/j7+0Mul2POnDkwMzNTWwwymQyrV6/GX3/9hdjYWBQWFiq8XtUNvspTRaWuEWdlweHkScjGjwfs7Mo1j46ODhYtWqT0tefPn2PZsmVIS0uDg4MDZs+ejXnz5lU4vh5NrNHO1RwbLrzA7rAY3I/LwNidd+BqKcKw1vYY294ZHI76qrzUVI0aNUJKSoqmw6CqEE1i1UxZVynlrR/n6enJNgaoyyqzD319fet8FzOV2X8A1NqyXlt8ap/269dPocW5Oi1ZsgTbtm3DrFmzsHDhQixYsAAxMTE4evRotdT3W7VqFYKDgzFu3DgAwJo1axAaGorNmzdjxYoVVb7+mmhEjx6AGq9Gr169GqtXr1bb8gDAUMjH/F7umNChPrZefYU9YW/w4n0O/nmQiHF+9dlyT5Oy4GIh0spW3v/++y8EAgF8fX01HQpVRWgSqybm5ubgcrklrni9f/9eqxpmVSW6DyuH7j/1qwn7dO/evdi6dSt69+6NJUuWYPjw4XBxcUGzZs1w8+ZNTJs2rcrWXVyd4ttvv1WYXloVFbFYrNBosLh6lEwmq/193SYmstUHmP8fHY3cvQt2q6ytix41jIkuD3O6NcSkDvXxz/0EWBoKIZPJUCCR4ezjd5j51wMwDCDS4aJFPQG2N2yo6ZDVxsjICMnJybX/2PtA8bZo0zYBFd8emsSqiY6ODjw9PXHu3DmF8bTPnTun0LE1VTq6DyuH7j/1qwn7NCkpia0OIxKJkJmZCaCovt/ChQurdN2qVlFZsWIFlixZUmL6ixcvIBKJqizO6mC5aRMsN28GAMwDsBKAzaRJ7BVMsaMjCp2dNRVeucgJQVq+DGl5MmSKZZB/UEX2HYAUUws887PQWHzqlpycDIlEgmfPnmk6FLXTtm3Kycmp0Hw0iVVBTk6OwvCPxf3/mZqawsHBAbNmzcKoUaPg5eWFtm3bIiQkBLGxsZg4caIGo65Z6D6sHLr/1K+m71M7OzskJibCwcEBrq6uOHv2LFq1aoXw8PBydcGkDuWtojJv3jy2Symg6Eqsvb09XF1dYWJiUuVxVqn58yEbMwYA0CQ4GIFRUdjSqBF+XbQITVxcauyVWABIyMjHzhtv8HdEPLLzJeADMAdgbSSEt5MJbE10YSHSgak8Ew0bNtSaxlBisRjx8fFatU0ymQzPnj3Tqm0CUPGBKdTbSYJ2u3jxIgFQ4hEYGMiW2bhxI3F0dCQ6OjqkVatW5PLly5oLuAai+7By6P5Tv5q+T+fOnUuWL19OCCHk4MGDhMfjEVdXV6Kjo0Pmzp1bpesWi8WEy+WSw4cPK0yfNm0a6dChwyfn19Yutl4dP04IQOJOnSKDBg0iv/zyS43s8iguLZfMO/yAuM4/SRznniCOc08Qnx/Ok19Dn5JH8ZkKXW9pY9dNt27dIhcvXtSqbdLG94mQinexxRBSx/rcoCiKqsVu3ryJGzduwNXVtcoak32oTZs28PT0xKZNm9hpHh4e6N+//ycbdmVlZcHIyAhpaWm1/0rsB74fPx5Ltm2D/PZtcLy8sG3bNhw7dgwbNmyAk5OTpsNDXqEUmy6+RMiVVyiUFTV09alvigkd6qNjQ0twlfRMIJPJ8OTJE7i7u2vNFb558+ahdevW6N+/v9Zskza+T0DRlVhTU1NkZmbC0NCw3PPR6gQURVG1iI+PD3x8fKptfZquTlETJeTm4uHo0fCwtgbDMBg/fjw+++wzTJ48GZ9//jmCgoLUOmqbKkIfJWHJ8UdIyCwaFtenvilmdmmINvXV1+1bbZGRkaFSQkTVPjSJpSiKquGePXuGS5cu4f379yW6kKvqbraGDh2K1NRULF26FImJiWjSpAlOnToFR0fHKl1vTdayfXu8sLGBxwd1YF1cXPDPP//gl19+wbBhw7B+/XpYWlpWW0xZBRIsOf4Yf0e8BQDYGutiYR8PdG9spbGEWtMWLFhA+4nVcrQ6AUVRVA22detWTJo0Cebm5qhXr55CQsIwDCIiIjQYXdm0tTqBWCzGgwcP0KpVK6W3dO/fv4/Zs2fjq6++qpZeLO7FpmPqvnuIz8gHhwEmdHDB9M4NoKtT/tvN2nibev78+RgxYoRWbZM2vk9AxasTaGP/xhRFUVpj2bJlWL58OZKSkhAZGYl79+6xj5qcwGqzu3fvYteuXaW+3rx5c5w8eRI3btzAuHHj2P5yq8L+27EY+ttNxGfkw8FUD3992Rbf9mykUgKrre7du6fpEKgqRpNYiqKoGiw9PR2ff/65psOgPuDs7Iy3b9+WWUYgEOCnn35CYGAgBgwYgMuXL6s1BqlMjoVHH+Lbw1EolMnRo3E9nJruBy8nU7Wup7YSi8Vo3LixpsOgqhhNYimKomqwzz//HGfPntV0GNQHLCwsyj2UqZ+fH44dO4Z9+/bh66+/RkFBQaXXXyCRYfLeCOy5+QYMA8zu2hCbvmgFkYA2cylWWFiodOANSrvQI56iKKoGc3V1xcKFC3Hz5k00bdoUfD5f4fWqHHaWUo5hGAgEAsjl8nLVSzQwMMBvv/2Gf/75B3369MHPP/+Mli1bVmjdOWIpJuy+gxsvU6HD5WDd8Jbo0aRehZalzUJCQtCsWTNY19ABKCj1oEksRVFUDRYSEgKRSITLly+XuCXNMAxNYjXk3r17ePjwoUrJaN++feHj44Np06ahadOmmDNnDni88n8N5xVKEfT7bdx5kw59HS62BnqhnYt5RcLXehEREQgMDFQ6PDKlPWh1AoqiqBrs9evXpT5evXql6fDqLB8fH/z7778qz2dhYYF9+/bBzs4Offv2VRjyuCxiqQxf7rmLO2/SYSjkYd94H5rAluGLL77Qqh4xKOXolViKoiiKUlHr1q3RsGHDCs3LMAxGjx6Njh07YurUqejduze+/PLLUvtzlcsJpv8ZiavPU6Cnw8WOMd5obm9ciei1W3p6OqRSqabDoKoBTWIpiqJqmFmzZuF///sf9PX1MWvWrDLLrlq1qpqioj7E5/Mxffp0bNq0CTo6OhVahqOjI44dO4Z169YhICAAGzZsgI2NTYlyv5yNxplHSdDhcrB1tBc8HekVxrIcO3asRN1xSjvRJJaiKKqGuXfvHiQSCft/aerqSEw1haOjI27evIkOHTpUeBkcDgczZsxAt27dEBQUhHHjxmHIkCHs68ci47Hp0ksAwMrBzdDelVYh+JQLFy5gw4YNmg6DqgY0iaUoiqphLl68qPR/qmbp27cvkpOT1bIsDw8PnDhxAsuWLcOJEyewdu1axOdxMOfQAwDAxI4uGNDSVi3r0mYSiQQ7duwAl8uFTCbTdDhUFaNJLEVRFEVVQNOmTXHlyhXIZDK1DAGqo6ODpUuX4tatWxgwaBAyG/SG2NQdnzWyxDfd3dQQsfbbvXs3DA0N6QAhdQRNYimKomqwgQMHKq02wDAMhEIhXF1dMWLECLi50SRHE+7cuYPc3Fz06dNHbcts06YNPMetwLa1P6Fhd1esGtIcXA6tOlIe//zzD/bs2aPpMKhqQrvYoiiKqsGMjIxw4cIFREREsMnsvXv3cOHCBUilUhw4cADNmzfH9evXNRxp3TRmzBjs3r1brcs8//gdDkelwqzzOKwL8oWxnvKGY4cOHULTpk2hq6sLMzMzdOnSBbm5uQgKCsKAAQPwww8/wMrKCsbGxliyZAmkUim++eYbmJqaws7ODr///rta464JgoKCYGBgoOkwqGpCr8RSFEXVYPXq1cOIESOwYcMGcDhF1x3kcjmmT58OAwMD7N+/HxMnTsTcuXNx7do1DUdb95ibm2Pnzp1qq1KQK5bi+2MPAQAT/OqX2hdsYmIihg8fjpUrV2LgwIHIzs7G1atXQQgBUNS4yc7ODleuXMH169cRHByMsLAwdOjQAbdu3cKBAwcwceJEdO3aFfb29pWOuyb4448/0KtXL02HQVUjhhQf8VS5yeVyJCQkwMDAgLYOpihKKUIIsrOzYWNjwyafFWFhYYHr16+X6JP02bNnaNeuHVJSUhAVFQU/Pz9kZGRUMmr1ysrKgpGREdLS0rSq43mZTIYnT57A3d0dXC4XDx48wP79+/HDDz9UetnLTjzGtmuvYW+qi7MzOkJXR3liHBERAU9PT8TExMDR0VHhtaCgIFy6dAmvXr1ij71GjRrB0tISV65cYbfByMgI27Ztw7Bhw0psU22TnZ2NwYMH48yZM+z3cm3fJmW0cZuAor59TU1NkZmZCUNDw3LPR6/EVkBCQoLW/HKlKKpqxcXFwc7OrsLzS6VSPH36tEQS+/TpU7b1tVAopD+oNahp06aYPXs2xGIxBAJBhZfzOCELO27EAACW9m9SagILAM2bN0fnzp3RtGlTdO/eHd26dcPgwYPZHwuNGzdW+PFkZWWFJk2asM+5XC7MzMzw/v37Csdbk1y9ehVTp06ln4M6hiaxFVBc3yYuLk6lXwwURdUdWVlZsLe3r3T9vFGjRiE4OBjz589H69atwTAMbt++jR9++AGjR48GAFy+fBmNGzdWR9hUBTAMgwULFiA7O7tSSeyK008gkxP0aloP/m6WZZblcrk4d+4cbty4gbNnz2L9+vVYsGABbt26BQAlOvtnGEbpNLlcXuF4a4q8vDy4urpWeAQ1qvaiSWwFFP/SMzQ0pEkspbUKCwvZ26Pz58+v8KhEdV1lrwytXr0aVlZWWLlyJd69eweg6KrazJkzMXfuXABAt27d0KNHj0rHSlVcp06dsGHDBgwfPhxmZmYqz3/9RQquPk8Bn8vg2x7u5ZqHYRi0b98e7du3x/fffw9HR0ccOXJE5XXXdiEhIbCxsaFJbB1Ek1iKopSSSCRYsmQJAOCbb76hSayGcLlcLFiwAAsWLEBWVhYAlPjx7ODgoInQqI+0bNkSixcvxvr161WajxCClWeeAgC+aOMIBzO9T85z69Yt/Pvvv+jWrRssLS1x69YtJCcnw93dHQ8ePKhQ/LWRRCLBiRMnEBoaqulQKA2gSSyl1XLEUrxJzUVsah5i0/KQnC1GWm4hUnMLkZ5XiFyxFBIZgUQmh0QmB5fDQMjnQsjjQqjDhakeH5YGQlgYCGBlJISLuT5cLUWwMBBofd0rHo+HyZMns/9Tmkfv/NRs7du3x+XLlyGVSlX6zNx4mYr7bzMh5HMw9TPXcs1jaGiIK1euYM2aNcjKyoKjoyN+/fVX9OzZEwcOHKjoJtQ6hYWFOHDggFY1cqLKj34zUVqBEIKY1Dw8jM/Eo4QsPErIxJPEbKTkiKtkfQZCHjysDeHpaAJPRxO0cjCBib52XakUCATYuHGjpsOgUNQf6F9//YXY2FgUFhYqvBYREaGhqChl5s+fjwMHDmDo0KHlnmfzpZcAgKFe9jAXla9Orbu7O86cOaP0tZ07d5aYdunSpRLTYmJiyhtijRQREYEtW7YgJCRE06FQGkKTWKpWkssJnr3Pxq1Xabj1OhW3X6chJadQaVlTfR04mOrB0UwP9QyFMNHXgam+Dkz1dCAS8sDncqDD5YDPYyCVEYilMhRI5MgrlCEtV4z3WWK8zxYjPiMfr5JzEJuWh+wCKW69TsOt12kAAIYBWtgbo3MjS3zWyAru1rT7NUo91q1bhwULFiAwMBDHjh3DmDFj8PLlS4SHh2PKlCmaDo9SIioqCiKRCL179/5k2Yfxmbj2IgVcDoNxfvWrITrtIJFIMHfuXOzbt0/ToVAaRJNYqtbIK5Ti6vMU/PvkHS48TS5xlVWHx4G7tSEa2xQ/jFDfQh+GQn4pS6yYAokMr1NyEfU2E3ffpOPOmzS8TM7FvdgM3IvNwC9nn6GBpQgBnnYY2NIWVoZCta6fqls2bdqEkJAQDB8+HLt27cKcOXNQv359fP/990hLS9N0eJQS8+bNw8yZM9GrV69P/pjddzsWANCzST3Ym366Liz1n61bt8LCwkLTYVAaRJNYFWzcuBEbN25k+2akql5WgQShD5NwMioRN16molD6X3cwunwuvJxM0MbZFG3qm6GZnREEvKqvFyXkc+FubQh3a0MMaV3UX3BSZgEuRr/Hv0/e4+rzZDx/n4MfTz/FyjNP0b1xPUzoUB8tHWpXZ++5ubkwNjYGAGRkZEBfX1+zAdVRsbGxaNeuHQBAV1cX2dnZAIq63vLx8cGGDRs0GR6lhL6+PkJCQnDkyBH069ev1PqauWIpjkcm4P/au+/wpsr2gePfJN1NFy1QSksHZW9aRplFhOJgqCxBpIIMAX0RFVFfBP2BW1FkOZDxiorKUEEZKnuWUWSUVUZLB9AWumdyfn/URmILNF1pyv25rlwkJ885uc+TkNx9zjMARnSSwXmldfz4cRYvXsyiRYvMHYowM0liTTB58mQmT55sWIVGVI6cfB3bTl/jp8h4/jxzzShxbVDLgd7N6tC7aV06+tfCxqrsKyFVJE8XOx7v2IDHOzYgLSefjX8lsObwFQ5dvsFvJxL57UQiHf1qMbVPo9suI1kdFRQUmDuEe56npyfJycn4+vri6+vL/v37adOmDRcvXkQWXKze0tLSePPNNw2zfPzbxuMJZOQW4OfuQEiA6dNy3YtycnKYNm0aK1euNHcoohqQJFZUG1EJaXxzIIb1R+NIz/0neQqso2VgGy8eaOVJw9raat/X1NnO2pDQnklM54tdF/gpMo6Dl1IY8cUBejWpzcsPNKWpZ/UeaW5vb8+VK1cM94V53Hffffzyyy+0b9+esWPH8vzzz/Pjjz9y6NAhHn30UXOHJ+5g9OjRvPzyy6SmppbY8LHuSBwAQ4J9qv33WnWg1+spKCjg008/pV69euYOR1QDksQKs8rKK2DDXwl8cyCGyNibhu1eLnb0b+vFwDb1LXqQVBNPJz4Y0oYX+zZh8fbzrDoQw7Yz19lx9jpPdw/g+fsb33FpSXNSq9XUr1/f3GHc8z7//HPDqkoTJ06kVq1a7N69m/79+zNx4kQzRyfu5t1332XTpk20bt0aLy8vw/aUzDwOXEwGYEAbr9vtLm7x6quvEhQUxJAhQ8wdiqgmJIkVZhF3M5sVey/x7cEY0nMKW12t1Cr6tqjL4x0b0LWhB2q1ZSauJfF0seONgS0J7+rPe5tO89uJRD7feYFNJxJ557FWFtXFQFQttVqNWv1Pt5mhQ4cydOhQM0ZUc4SGhtKyZUsAvv76azQaDc888wz/93//h0qlws/Pj6effpqzZ8+ydu1a3N3dmT9/Pp06deLZZ58lIiICf39/li1bRnBw8G1fx9/fn/DwcL7//ntDP/Pfo66iV6BZPWcZ0FUKa9euRaVSSQIrjFSPDoUVLDc3l7Zt26JSqYiMjDR6TqVSFbstWbLEPIHeg/66cpPnvj1Kj/e28fnOC6TnFNCglgPT+zVh3yu9WTQyiO6NateoBPZW/h6OLH4iiKWjg6nnYkdMShYjvzzAR1vPotNXr/6NeXl5vP/++7z//vvF5iYVVSsnJ4eDBw+yYcMGfv75Z6ObKJ8VK1ZgZWXFgQMHmD9/PvPmzePLL780PD9v3jy6du3K0aNHeeihhxg1ahTh4eE8/PDDREREEBgYyJNPPnnH/slNmjRh7ty5HDp0yLBty8lEAPq18Ky8k6shTp48Sd++fZk7d665QxHVTI1siZ0+fTpeXl4cO3asxOeXLVtmtM64DNKqXHq9wu9RV/ly10UOXvpnSqCQAHfG9fAntHGdGpu03k7vZoUD0+ZsiGL1oVjm/3GOiIspLBjRDvdSTnZe2fLz85k+fToAkyZNkmVnzWTTpk08+eSTJCUlFXtOpVLJbCnl5OPjw7x581CpVDRp0oTjx48zb948xo0bB8CDDz7IhAkTAHj99ddZvHgxwcHBhIWF0bhxY15++WVCQkK4evUqnp63T0g7dOhAXl4eo0aNYv6Chew5X9iVoE/zupV/khbs6NGjvPrqq6xdu9boioQQUANbYn/77Te2bNnCBx98cNsyrq6ueHp6Gm4yaKVy6PQKPx+Lp98nOxn/v8McvJSClVrFo+3qs+HZbnw7vjP3Na17zyWwRZzsrHl3cGs+HtYWBxsN+y4k88iivURfzzB3aEDhUrOjR49m9OjRsuysGU2ZMoUhQ4aQkJCAXq83ukkCW36dO3c26nMfEhLCuXPnDHXbunVrw3N16xYmnK1atSq27dq1a3d9LRsbGyZMmMCAR4eQlZODi701TT2dKuQ8aiK9Xs9nn33GqlWr5HdalKhG/TJdvXqVcePGsX79ehwcbt/HaMqUKTz99NP4+/szduxYxo8fL3/hVaACnZ5f/orn0z/Pc+F6JlC4TOsTnX0ZHeKHp4tM/n+rQe3q07K+M08tjyAmJYtHF+3liyeD6ehfy6xx2dralrh8paha165dY9q0aYZkSVQta+t/FkspSnZL2lY0+O5uunXrxgPjX2HxnnjaNa5Zff8r0urVq3FwcJDufuKOakwSqygK4eHhTJw4keDg4NuuCf1///d/9O7dG3t7e/744w9eeOEFkpKS+O9//3vbY+fm5pKb+8/qUGlpaRUdfo2Qr9Oz/mgcC7ed51JyFgAu9taM7ebP6C5+uNhX7MpZNUlgHSfWTerK0ysOERl7k9FfHWRpeLAM+BIMHjyY7du307BhQ3OHUiPt37+/2ONGjRrddoGCinAhx5H8lDgivlhCTNjXNGggCx3cavHixRw7dkwW8hB3VaoktlYt01qEVCoVR44cwdfXt0xB3Wr27Nm3nSi6SEREBHv37iUtLY1XXnnljmVvTVbbtm0LwJtvvnnHJPbtt9++awz3srwCPWuPXGHh9vPEpmQD4OZgzbgeAYzq7ItTBS/7WlN5aG35bnxnJvzvMDvOXmfM8gi+Gt2BLoGSyN7LFixYwJAhQ9i1axetWrUyagUEeO6558wUWc0QGxvLtGnTmDBhAkeOHOHTTz/lww8/rLTXUxSFIzE3sfNuzjsT72fVqlXMmDHDYqcRrEh6vZ6oqCjCwsKYOHGi1Im4q1IlsTdv3uTjjz8u1QAoRVGYNGlShfXVmjJlCsOHD79jGT8/P+bMmcP+/fuxtTUeFBMcHMzIkSNZsWJFift27tyZtLQ0rl69etvLda+88grTpk0zPE5LS8PHx8fEM6l5cgt0fH/oCku2RxN3szB59dDaML5HACM7+eJoW2Ma+quMnbWGz0YFMfHrw2w/c50xKyJY9XRngnyrfsnazMxMwzyxcXFxsuysmXzzzTds3rwZe3t7tm/fbvTDrlKpJIktpyeffJLs7Gw6duyIRqPh2WefZfz48ZX2etfTc0nJzEOtgj6dWtO/WzsWL15MRkYGL7744j2buF29epUpU6bQr18/xo4da+5whIVQKaVYt1CtVpOYmEidOnVKdVAnJyeOHTtGQEBAuQMsrZiYGKPL/PHx8YSFhfHjjz/SqVMnvL29S9xvwYIFvPTSS9y8ebNYAnw7RcvOpqam4uxcvVddqgw5+Tq+OxjDkh0XSEzLAaC2ky0TezZkRMcG1XbyfkuSW6Bj/MrCFlk3B2vWPNOFgNraKo0hMzMTrbbwNTMyMiSJNVFFfU94enry3HPPMWPGDIvru19UBykpKbi5Vf0fYncTGhpK27Zt+fjjj03aT6fTERUVRbNmzUzudrDz7HWe/OogAR6O/PliKFDY+LNgwQLS0tJ47bXXTDpeRSnPOZVXUlIS+/fvp0GDBkYD6crLnOdUWWriOQHcuHGDWrVqmfx9WaqmstJ2WC+Snp5uUvmK8O8+RUU/vg0bNjQksL/88guJiYmEhIRgb2/Ptm3beO211xg/fnypE9h7WXaejlUHLvPZzgtcTy/sI+zpbMczoQ0Z1sEHO+ua8x/K3GytNCwa2Z7Hv9jPX1dSCV8WwbpJXap0+i17e3vOnj1ruC/MIy8vj2HDhllcAitKdv5a4ewjjer+80epSqXi2WefRa/Xs3DhQgICAnjggQfMFWKVSU1N5fnnn6dZs2a89NJL5g5HWKB76lvR2tqaRYsWERISQuvWrfnkk0948803K7X/U02QkVvAkh3RdHv3T+ZsjOJ6ei71Xe2ZM6glO6aHMrqLnySwlcDR1oqlozvgU8uemJQsnv32KAU60/6gLA+1Wk2jRo1o1KiRJFBmNHr0aFavXm3uMEQFuXKjsOuVr3vxKxtqtZrRo0ezY8cOXn/99aoOrUplZ2ezceNGxo4dKwmsKDOTOy3eboUYlUqFnZ0dgYGB+Pv7lzuw8vLz8yu2gkq/fv2MFjkQd5aWk8/KvZf4cvdFbmblA+BTy57JoYE82t4bGytJbCpbbSdblo7uwKCFe9gbncyHW8/ycr+m5g5LVCGdTsd7773H5s2bad26dbGBXR999JGZIrN827dvr/LXjLtZOHNLfdeSr25otVreeecdCgoK+OGHHzhz5gwvvvgidnY1Y2rC48ePM2fOHDp27MgLL7xg7nCEhTM5iR00aBAqlapYgli0TaVS0a1bN9avX18t+0CJu0vNyuerPRdZtuciaTkFQOFyqZN7BTKwrRfWGkleq1Ljuk68+1hrnv32KIu3R9O+gVuVrPKTn5/P559/DsD48eOLJU+iahw/fpx27doBcOLECaPn7tVBQJYs/mbhOAKv2ySxRaysrBg8eDBr1qxh0qRJfPHFFwAW2w/y7NmzqFQqjh8/zjvvvFMtGruE5TM5id26dSuvvfYac+fOpWPHjgAcPHiQ//73v8ycORMXFxcmTJjAiy++yNKlSys8YFF5UjLzWLr7Aiv2XiYjtzB5Dayj5dn7Anm4tRcamZTbbPq38eJozE2+2nORl9f8RRuf7tRxqtyWmby8PKZMmQJAeHi4JLFmsm3bNnOHICrQjaw8ANy1d1/GWaVSMXjwYAYPHszZs2d55plnePjhhxk3bpxh3Ed1p9PpmDhxIjk5Obz55puMGDHC3CGJGsTkJPY///kPn3/+OV26dDFs6927N3Z2dowfP56TJ0/y8ccfM2bMmAoNVFSe2JQslu6+yOqIWLLzC6dGa+rpxLP3NeKBlp6yokw18fIDTdh3IZmohDRmrDnO0tHBldoSp9FoGDx4sOG+uPfMnTuXjRs3EhkZiY2NDTdv3jR3SBYvNbuwa5api780btyYLVu28PPPP5OXl8e8efPo378/gYGBlRFmueTk5PDLL7/www8/sHTpUmbOnCkLOohKYXISGx0dXeL0B87Ozly4cAGARo0akZSUVP7oRKU6EZfKZzsv8OvxBHT6wu4hLbycea53I/o0qyvJazVja6Xh42Ft6b9gN3+evsa3B2MZ0anyfhjs7Oz44YcfKu344s4effTRUpVbu3ZtpcWQl5fHkCFDCAkJkStrFUCnV0j/u4tWWVYw1Gg0PPLIIwD07NmTuXPn0rVrV8LCwlCr1YZ5nc1Br9eze/dubty4gbu7O0lJSSxevBgnJyecnJzMFldNEZuSRT0XO+RX2ZjJSWxQUBAvvfQSK1eupHbt2gBcv36d6dOn06FDBwDOnTt323lZLdnChQtZuHBhhS3kYA6KorDzXBKf74xmz/lkw/ZugR5M6BlAt0AP6WdXjTXxdGJ6WBPmbIzi7V+j6N2sDnWda8aAD2GsNIvLVLailQqXL19u3kBqiLyCf2YXsS/njC7t27dn2bJlKIrCsWPHmD9/PvHx8axZs4bLly/TpEmTSr+CEhcXx969e3nooYeYOnUqXl5ejBo1ioYNG9KtW7dKfe17yca/Epj8zREebl2PT4a1MXc41YrJSezSpUsZOHAg3t7e+Pj4oFKpiImJISAggJ9++gkonBh95syZFR6suU2ePJnJkycbJvC2JJm5Baw9Gsf/9l3i7NXCeQo1ahUPt67HuO4BtKxvWedzL3uqqz+/HIvn2JVU3txwioUj2ps7JFEJli1bZu4QRAXT3TIguqLGGKhUKtq2bctXX32FXq9HrVazfv16du3axQMPPMCDDz7Ijh07aNasGe3atSvTnM9FA7kPHTrEvn378PX1xdbWljVr1tClSxcURTEMAhUVb97vhfN1b/grQZLYfzE5iW3SpAlRUVFs3ryZs2fPoigKTZs2pU+fPoa5JAcNGlTRcYoyir6ewf/2XWbN4Suk/z1Yy8FGw7AOPozt5o+3m4OZIxSm0qhVvPVoKwYs2MPGvxIYHHSNXk1Kt5qeKbKysmjUqBFQeHXFwUE+K+LOcnNzyc3NNTwuWkVRp9NZ9BWsfys6F1PPqaCgwHBf0eupjCrR6XS8/PLLvPzyyyiKQkpKCi4uLvzxxx94eHiwZs0adu/eTd26dfn88895+umnsbOzo1evXtja2rJq1SpSUlJ47rnn2LBhA7t378bNzY2vvvqKDRs20KFDBzp37oybmxt9+vQxet3qpqzvU3WSnlNgWCADICuncGCgJZ9TScp6PqVadvZ2cnJysLW1vecuP1f3ZWdzC3T8EXWNbw/GsOvcP32T/T0cGdXZl8eCvMvUH0tUL3M2nOLL3RfxdrPn92k9K3zBCVl2tnyq6/fE7NmzDd0EbiciIoLg4GDD4+XLlzN16tS7Duy63bH37dtnMaPpK1NGnp7h38cCsO7xBlhrzPfbqdPpUKvVpKamkpeXh42NDWq1mvj4eNzc3PDw8JABndXA3pgs3tp53fD468HeuNrVvPclIyODkJCQyll29lZ6vZ65c+eyZMkSrl69ytmzZwkICGDmzJn4+fkxduxYUw8pKsjJ+FR+OHSF9ZFxhsUJVCro3bQOT4b40S3QQwZr1SDP92nMr8cTuHIjm6W7LzK5V8WOUrazs+Po0aOG+6JmmDJlCsOHD79jGT8/vzId+5VXXmHatGmGx2lpafj4+BAYGFij5g3X6XScPXuWxo0bm5ToFfaJLUxifRs2qlaNCUXnFBwcXGOS17K+T9XJ/04bzw3t6+dPamKMRZ9TSW7cuFGm/UxOYufMmcOKFSt47733GDdunGF7q1atmDdvniSxVexaeg4b/0rgh0NXOJWQZtju6WzHo+3r83jHBvjUksvANZGjrRXT+zVl6upIFm07z9BgH2o72VbY8TUaDW3btq2w44nqwcPDAw8Pj0o5tq2tLba2xT+DGo2mRv3gFjH1vOw1Gmw0avJ0erILFGpVwzqpie+VpZ5T0UBso20Udtu01HO6nbKei8lJ7MqVK/n888/p3bs3EydONGxv3bo1p0+fLlMQwjRJGblsOpHIhr/iOXAxhaIOITYaNX1a1GVIkDfdG9WWxQnuAQPaeLFsz0WOXUnlo61nefvRVuYOSdQgMTExpKSkEBMTg06nIzIyEoDAwEDpHlBGjrYa8rL0ZOYW3L2wuKedvZpBQmoOtlZqdHqFAr1Cvl5/9x3vISYnsXFxcSVOrqzX68nPz6+QoERxV9Ny+CPqGr8eT2BvdBL6W3oyt/Vx5ZF29RnY1gtXh7uvAiNqDrVaxX8fbs6QJftYHRFDeBc/mnhWzJyM+fn5rFq1CoCRI0fKil33oNdff50VK1YYHhctf7tt2zZCQ0PNFJVlc7G35kZWPjcy88wdiqjmtp+5BkDnAHciY2+Smp1vmNNdFDI5iW3RogW7du3C19fXaPsPP/xg+IIT5afXKxyPS+WP09f48/RVTsSlGT3f2tuFh1rV48FW9aS7wD2ug18tHmjpyW8nEnl/8xm+HB18951KIS8vj6eeegqAIUOGSBJ7D1q+fLnMEVvBPF3suJScRWJajrlDEdXc9jOFA7pCm9TmZHwqAAU6SWJvZXISO2vWLEaNGkVcXBx6vZ61a9dy5swZVq5cyYYNGyojxntGQmo2+6KT2XM+mR1nr5OU8c9UNSoVtPF2pU/zujzcuh6+7jJSXPzjxbAmbD6ZyO9RVzkWe5M2Pq7lPqZGo+HBBx803BdClF89l8J5WuNvShIrbi8jt4BDl1MACG1Sh892FK6Imq/TI9/G/zA5ie3fvz+rV6/mrbfeQqVS8frrr9O+fXt++eUXoznjaqKKXrHrenouBy4mszc6mX3RyVxMyjR63tFGQ4/GtbmvaR1Cm9Sp0EE7omZpWFvLoHb1WXskjo+2nmXFmI7lPqadnR0bN26sgOiEEEXquRTO9JGQmm3mSER1tud8Evk6BV93B/w9HLH6ezq2Ar0iSewtTE5iAcLCwggLC6voWKq98qzYlVegJyohjaMxNzgae5MjMTeITTH+ElOroFV9F0IaetAt0IOO/rWwsVJX5CmIGuw/vRvxU2Q8O85e5/DlFIJ8a5k7JCHEvzT4u/vXvxsthLiVoStB49oAWKn/SWKlOesfZUpiRelt/CuBZXsucjwuldwC41GFKhU0qetEl4YehDR0p6N/rWo1b6CwLL7ujgwJ8ua7iFg+3HKWb8Z1NndIQoh/KRp4eTox3cyRiOpKURR2ni3qD1u4GqOVprBBq0AnsxPcqlRJrJubW6lX5UpJSSlXQDVNRm4+hy4XTuLrYm9NuwautG/gRrsGrrTxccXZTpJWUXGm3BfImiNXDF1UQhq6l/lYWVlZtGlTuE73sWPHZNlZISpA47qFSez19FySM3Jx10q7mjB27EoqcTezsbNW0zmg8Dtc83cOJuO6jJUqif34448N95OTk5kzZw5hYWGEhIQAhUsKbt68mZkzZ1ZKkJase6PafDikDe0auOLv4XjPLdErqpa3mwPDOvjw9f4YFmw7V64kVlEUzp8/b7gvhCg/R1srfN0duJycxenEdLoGShIrjK07cgWAvs09sbcp7AErqUPJSpXEjh492nD/scce480332TKlCmGbc899xwLFizg999/5/nnn6/4KC2Yl6s9jwV5mzsMcQ+Z2LMh3x2MZc/5ZI7G3KBdg7It92lnZ8fu3bsN94UQFaOllwuXk7M4cvkGXQMrZ/U0YZnydXp++SsBgEfa1zdzNNWfyaOGNm/eTL9+/YptDwsL4/fff6+QoMrqyJEj9OnTB1dXV9zd3Rk/fjwZGRlGZWJiYujfvz+Ojo54eHjw3HPPkZcnk06LmsPbzYGBbQu//BZtjy7zcTQaDV27dqVr164yxZYQFahTQOGgywMXpfudMLbjzHVSMvPw0NrSXf7AuSuTk1h3d3fWrVtXbPv69etxdy/7pcvyio+P5/777ycwMJADBw6wadMmTp48SXh4uKGMTqfjoYceIjMzk927d/Pdd9+xZs0aXnjhBbPFLURleCY0AJUKtp66yhkZQCJEtdLJv/C38tDlFPIKZKCO+Me3B2MAGNjWyzCYy4h07TJi8uwEb7zxBmPHjmX79u2GPrH79+9n06ZNfPnllxUeYGlt2LABa2trFi5ciFpd+MYvXLiQdu3acf78eQIDA9myZQunTp0iNjYWLy8vAD788EPCw8OZO3cuzs7OZotfiIoUWMeJfi0KV/FasiOaecPamnyMgoICwx+sjzzyCFZWMpmJEBWhUR0tbg6Fy8/+deUmwX4yHZ6A2JQs/vx7qdmRnRqYORrLYHJLbHh4OHv37sXV1ZW1a9eyZs0aXFxc2LNnj1GrZ1XLzc3FxsbGkMAC2NsXroxS1K9v3759tGzZ0pDAQmE3iNzcXA4fPly1AQtRySaFBgLw87F4YpKzTN4/NzeXoUOHMnToUHJzc+++gxCiVNRqFV0aFl4q/vP0NTNHI6qLrw9cRlGgeyMPAmprzR2ORSjTTPqdOnVi1apVHDlyhKNHj7Jq1So6depU0bGZ5L777iMxMZH333+fvLw8bty4wauvvgpAQkJhJ+nExETq1q1rtJ+bmxs2NjYkJibe9ti5ubmkpaUZ3YSo7lp5u9CjcW10eoXPdpreN1atVtOzZ0969uxp9MehEKL8+rYo/C3adCJRZv8Q5OTr+D4iFoBRnX3NHI3lKNUvk6lJW3p6xfXBmz17NiqV6o63Q4cO0aJFC1asWMGHH36Ig4MDnp6eBAQEULduXaNBKSVNcaUoyh2nvnr77bdxcXEx3Hx8fCrs/ISoTJNDGwLww6ErXEszba12e3t7tm/fzvbt2w1XNYQQFeO+pnWw0ai5kJTJ+WsZd99B1Gg/HIrlRlY+9V3t6d2s7m3LyZ87xkqVxLq5uXHtWukvedSvX58LFy6UOahbTZkyhaioqDveWrZsCcCIESNITEwkLi6O5ORkZs+ezfXr1/H39wfA09OzWIvrjRs3yM/PL9ZCe6tXXnmF1NRUwy02NrZCzk2IytbRvxbBvm7k6fR8sati/k8KIcrPyc6abo0KuxT8duL2VwJFzZev0/PZzsLv5wk9A9CoizeqyRzzJSvVSA1FUfjyyy/RakvXRyM/P79cQd3Kw8MDDw/TppkoSki/+uor7Ozs6NOnDwAhISHMnTuXhIQE6tWrB8CWLVuwtbUlKCjotseztbXF1lYmpBaWR6VSMblXIE8tj2DVgRgmhQbi5mhj7rCEEEC/lp78efoa647G8ex9gZKo3KN+ORbPlRvZeGhtGBosV3pNUaoktkGDBnzxxRelPqinpyfW1lW/nOqCBQvo0qULWq2WrVu38tJLL/HOO+/g6uoKQN++fWnevDmjRo3i/fffJyUlhRdffJFx48bJzASixgptUpvm9Zw5lZDGsr2XmNancan2y87ONlqVT7oUCFGxHmpVjzd/OcXFpEz2XUg2DPYS944CnZ6F2wpXRhzbLQA7a5mT2xSlSmIvXbpUyWFUjIMHDzJr1iwyMjJo2rQpn332GaNGjTI8r9Fo2LhxI5MmTaJr167Y29szYsQIPvjgAzNGLUTlKmqNnfzNEZbvuci47v442d39j0y9Xs+xY8cM94UQFcvR1oqBbb1YdSCGbw7ESBJ7D/rx8BWir2fi5mDNE53vPq2WjAE0VqMmfly5cuVdyzRo0IANGzZUQTRCVB/9WnoSUNuRC9cz+Xp/DM/8PeDrTuzs7NiyZYvhvhCi4j3esQGrDsSw+WQiSRm5eGil69q9IjtPx7zfzwIw5b5GpWpcEMZk3hwh7gEatcowb+zS3RfIydfdfR+Nhj59+tCnTx9ZdlaIStKyvgttvF3I1yn8b99lc4cjqtBXey5yNS0Xbzf7u7bCSm/pkkkSK8Q9YmBbL7zd7EnKyOO7v5c2FEKY3/gehVdGlu25SHpOxQ2MFtXX9fRclmwvnL/7xb5NsLWShoKykCRWiHuEtUbNhJ6FP5af77xw1zXbCwoK2LhxIxs3bqSgoKAqQhTintSvpScNazuSllPASmmNvSe89WsU6bkFtKrvwoA2Xnff4W+KzBRrRJJYIe4hQ4K8qeNkS3xqDuuPxt2xbG5uLg8//DAPP/ywLDsrRCXSqFVMua+wu8+Xuy6QmSt/NNZke6OTWHc0DpUK5j7SEnUJ88KK0ilTErtr1y6eeOIJQkJCiIsr/CH83//+x+7duys0uOpm4cKFNG/enA4dOpg7FCHKxM5aw7juAQAs3hGNTn/7v+rVajXBwcEEBwfLsrNCVLL+rb3wdXfgRlY+X+2+aO5wRCXJK9Azc/0JAJ7o5Etrb9dS7SdTCJfM5F+mNWvWEBYWhr29PUePHjW00KSnp/PWW29VeIDVyeTJkzl16hQRERHmDkWIMhvRqQGuDtZcTMpk4/GE25azt7cnIiKCiIgImSNWiEpmpVEb5nBetD2a+JvZZo5IVIaPfz9L9PVMPLS2vBjWxNzhWDyTk9g5c+awZMkSvvjiC6MFDbp06cKRI0cqNDghRMVztLViTNfCpZjn/3Hujq2xQoiqM6CNFx383MjO1/H2b6fNHY6oYIcvp7BkR+FgrjmDWuBib/qUWjJPrDGTk9gzZ87Qo0ePYtudnZ25efNmRcQkhKhk4V39cHWw5vy1DNbdpW+sEKJqqFQqZvVvgUpVuBTpwYsp5g5JVJDM3AKeX30MvQKPtq9Pv5b1zB1SjWByEluvXj3Onz9fbPvu3bsJCAiokKCEEJXL2c6aSX8veDBv61lyC4rPG5udnU3Xrl3p2rUr2dlyaVOIqtCyvgvDOxTOGTpz/YkS/28KyzNn4yliUrKo72rP7AEtTN5f+sSWzOQkdsKECfznP//hwIEDqFQq4uPjWbVqFS+++CKTJk2qjBiFEJXgyRA/6jrbEnczm+8OxhZ7Xq/Xs3fvXvbu3SvLzgpRhV4Ka4K7ow1nrqbz0daz5g5HlNPaI1f49u/v2PeHtMZZVuaqMCYnsdOnT2fQoEH06tWLjIwMevTowdNPP82ECROYMmVKZcQohKgEdtYanr2vEQCf/nmerDzjaX1sbW1Zt24d69atw9ZWlsIUoqrUcrTh7UdbAYVzOku3Ast1OjGNV9cdB+C53o3o0tCjXMeTPrHGyjRvzty5c0lKSuLgwYPs37+f69ev83//938VHZsQopIN6+BDg1oOJGXksnSX8bQ+VlZWDBo0iEGDBmFlZWWmCIW4N/Vt4cngIG8UBV74IZIMmTvW4qRm5/PM10fIydfTvZEH/+ndyNwh1ThlnvzRwcGB4OBgmjZtyu+//05UVFRFxiWEqALWGjUv9C2c1mfxjmgSU3PMHJEQosis/s2p72pPbEo2/113HEWa4SxGXoGeZ74+zMWkTLxc7PhkeDs0sqhBhTM5iR06dCgLFiwACgd+dOjQgaFDh9K6dWvWrFlT4QEKISrXgDZeBPm6kZWn453f/vljVKfTsX37drZv345OJ4NLhKhqTnbWfDS0DRq1ivWR8SyVRRAsgqIo/Hf9cfZGJ+Noo+HL0R2o5WhTrmOqkAS4JCYnsTt37qR79+4ArFu3Dr1ez82bN5k/fz5z5syp8ACrE1mxS9REKpWK2X9P67M+Mp7Dlwv73+Xk5NCrVy969epFTo600AphDp0C3PnvQ80AeOvXKHadu27miMTdLNoezfeHrqBWwYIR7Wnu5Vxhx5a2eGMmJ7GpqanUqlULgE2bNvHYY4/h4ODAQw89xLlz5yo8wOpEVuwSNVUrbxeGBfsAMPvnU+j0CiqViubNm9O8eXNUMr+LEGYT3sWPIUHe6BWY8s1RLidnmjskcRsr913i/c1nAJjVvwW9mtYxc0Q1m8lJrI+PD/v27SMzM5NNmzbRt29fAG7cuIGdnV2FByiEqBovhjXByc6K43GpfL3/Mg4ODpw8eZKTJ0/i4OBg7vCEuGepVCrmPNKStj6upGbn89TyCJIycs0dlviX7w/F8vpPJwGY0iuQ0V38zBvQPcDkJHbq1KmMHDkSb29vvLy8CA0NBQq7GbRq1aqi4xNCVBEPrS3T/17L+91Np4lNyTJzREKIIrZWGj4bFYSXix0XrmcyaulBUrPyzR2W+NtPkXHMWPMXAGO6+hsGzFYUuRhWMpOT2EmTJrF//36++uordu/ejVpdeIiAgIAa3ydWiJpuZCdfOvrVIitPx6syGlqIaqWusx2rxnXGQ2tLVEIao5cdlKm3qoFvD8YwdXUkegUe79iAmQ83q7wuWPKdbKRMU2wFBQXxyCOPoNVqDdseeughunbtWmGBCSGqnlqt4p3HWmFrpWbXuSQ6PT6VPn36yLKzQlQT/h6OrHq6E64O1kTG3uTpFRFk58nsIeayZEc0r6w9jqLAiE4NmDuopYwhqEJlSmKvXLnCokWLmDFjBtOmTTO6VZa5c+fSpUsXHBwccHV1LfZ8cnIy/fr1w8vLC1tbW3x8fJgyZQppaWmGMpcuXUKlUhW7bdq0qdLiFsLSBNTW8nyfwkthiV7d2X74lCw7K0Q10sTTiZVjOqK1tWL/hRSeWHqAm1l55g7rnqLXK7zz22ne+e00AJNCGzJ3UEvUMhdslTJ5GZ4//viDAQMG4O/vz5kzZ2jZsiWXLl1CURTat29fGTECkJeXx5AhQwgJCWHp0qXFnler1QwcOJA5c+ZQu3Ztzp8/z+TJk0lJSeGbb74xKvv777/TokULw+Oi2RaEEIXGdQ9g2+mrHLgIQc8uRFHLil1CVCetvV1ZMaYDTy2L4PDlGwxeso8VYzpS39Xe3KHVeFl5Bbzw/TF+O5EIwIwHmjKxZ8NKfU1JjUtmckvsK6+8wgsvvMCJEyews7NjzZo1xMbG0rNnT4YMGVIZMQLwxhtv8Pzzz9928JibmxvPPPMMwcHB+Pr60rt3byZNmsSuXbuKlXV3d8fT09Nws7Ep3yTEQtQ0GrWKtwc0RZeVSmKuNe9tOm3ukIQQ/xLkW4sfn+lCPRc7zl/L4NFFezidmHb3HUWZXbmRxWOL9/HbiUSsNSreH9y60hNYcXsmJ7FRUVGMHj0aKFxbPTs7G61Wy5tvvsm7775b4QGWVXx8PGvXrqVnz57FnhswYAB16tSha9eu/Pjjj3c9Vm5uLmlpaUY3IWq6us62JP/6CQArD1zhl2PxZo5ICPFvjes6seaZLjSqo+VqWi5Dluzjj6ir5g6rRjpwIZkBC/YQlZCGh9aGb8d1Zsjf82tXFRnWZczkJNbR0ZHc3ML56by8vIiOjjY8l5SUVHGRldHjjz+Og4MD9evXx9nZmS+//NLwnFar5aOPPuLHH3/k119/pXfv3gwbNoyvv/76jsd8++23cXFxMdx8fKr2QyuEOeh0OrKjD5J6oHA56Rd/OMZfV26aNyhRZS5dusTYsWPx9/fH3t6ehg0bMmvWLPLypO9ldePlas+PE7vQwc+N9JwCxq44xHubTlOgk77sFUGnV1jw5zlGfHmAlMw8WtZ35ucp3Qj2k66I5mZyEtu5c2f27NkDFM5I8MILLzB37lzGjBlD586dTTrW7NmzSxxodevt0KFDJh1z3rx5HDlyhPXr1xMdHW002MzDw4Pnn3+ejh07EhwczJtvvsmkSZN477337njMV155hdTUVMMtNjbWpJiEsERFS83e3LGCrv4u5BboGb/yMFfTZAnae8Hp06fR6/V89tlnnDx5knnz5rFkyRJeffVVc4cmSuDiYM2qpzsT/vcE+4u2RzPyywNcS5f/r+WRmJrDyC/388GWs+j0Co+0q88PE7rgJX2PqwWTR2t89NFHZGRkAIVJaEZGBqtXryYwMJB58+aZdKwpU6YwfPjwO5bx8/Mz6ZhF/VybNm2Ku7s73bt3Z+bMmdSrV6/E8p07dzZqrS2Jra0ttra2JsUhhKUzTBOj6JnzUCDjvj/D+WsZjP7qIKvHh+DiYG3eAEWl6tevH/369TM8DggI4MyZMyxevJgPPvjAjJGJ27GxUjN7QAuCfN2YseYvDlxM4cFPdvP+kNb0aiLLn5pCURR+OHyF/9twivScAhxsNLw5sCWPta9vnim0ZNquEpmcxAYEBBjuOzg4sGjRojK/uIeHBx4eHmXe/26KJmov6v5QkqNHj942wRXiXnbrUrN13Jz4anQHBi/Zy+nEdJ5afpCvn+6Eg43MWnAvSU1NldlcLED/Nl4093Jm0tdHOHM1naeWRfBIu/rMfLg5tRxlIPPdxN3M5pW1x9l59joArb1d+HhYWwJqa++yZ+WTtQ6MlfkXKC8vj2vXrhWbP7JBgwblDqokMTExpKSkEBMTg06nIzIyEoDAwEC0Wi2//vorV69epUOHDmi1Wk6dOsX06dPp2rWroTV3xYoVWFtb065dO9RqNb/88gvz58+vVgPShKiuGrg78L+xnRj62T6OxNxk3MpDfPFksCSy94jo6Gg+/fRTPvzww9uWyc3NNWo0KBoEq9Pp0OlqzoT8RedSnc/Jr5Y9ayZ25qPfz7Js72XWHY1jx5lrzHy4Gf1b1yvWmmgJ52QqU88pN1/HF7svsXhHNDn5emys1EztHcjYrn5YadTmrZu/s1e9Xg/qmvU+QdnPR6WYuK7k2bNnGTt2LHv37jXarigKKpWq0io2PDycFStWFNu+bds2QkND2bZtG6+99hqnTp0iNzcXHx8fHn30UWbMmGFYHGHFihW8++67XL58GY1GQ+PGjZk6dSpPPPGESbGkpaXh4uJCamoqzs7OFXF6QlQ7mZmZhlX5MjIycHR0BOBozA1GfnmArDwdwb5uLA3vgIu9dC34t+r6PTF79mzeeOONO5aJiIggODjY8Dg+Pp6ePXvSs2fPO3a/ut2x9+3bZ7TCo6haZ5Jymb8/mcs38wEI8rLjqfZu+LlKqywU5i/7r2Tz5eEbXM0oXMa3RR1bnu3kjrdL9fhum/ZbAmeT85gZWptO3g5338HCZGRkEBISYvL3pclJbNeuXbGysmLGjBnUq1f8r7k2bdqYcjiLVF1/nISoSMnJyYbuPklJSbi7uxueOxJzg/CvDpKWU0ALL2dWjOmIh1b6jd+qun5PJCUl3XUmGT8/P+zs7IDCBLZXr1506tSJ5cuXo1bffjxwSS2xPj4+XL9+HTc3t4o5gWpAp9Nx9uxZGjdujEajMXc4pZJXoOeznRdYtD2aPJ2CSgWD2nrxfO9G1Hezt8hzupu7nZOiKOyNTuaj388RGZsKgKezLS/3a1Jia7U5PbZkH5GxqSwZ0RZv9Y0a9T4B3Lhxg9q1a5v8fWnydcDIyEgOHz5M06ZNTd1VCGFBbr2q8u8rLO0buPHd+BCe/OoAJ+PTGLRwD1+ODqapZ/VJ1kTJTBmLEBcXR69evQgKCmLZsmV3TGDh9oNgNRpNjfrBLWJJ52Wv0TC1TxMGtK3PB1vO8OvxRNYdjWfjX4mMCvFlQg9/wLLOqbT+fU6KorAvOpn5f55j/4UUAOys1Yzt5s+k0EAcbatjF6nChFr19//BmvY+lfVcTH6nmjdvXi3mgxVCVK5bV7IraVW75l7OfD8hhKeWR3A5OYvHFu3l4+Ht6NO8blWGKSpJfHw8oaGhNGjQgA8++IDr168bnvP09DRjZKI8AmprWTQyiMjYm7z722n2XUhm6e6LfL3/Mj39HJhaK53mXq7mDrNS5Ov0bPgrni92XuRUQmF/bRuNmhGdGjCpV0PqONmZOUJhqlIlsbeuUPXuu+8yffp03nrrLVq1aoW1tXF/kep02UwIUXa3/t/+9//zIgG1tayf1JXJ3xxhb3Qy4/93iAk9GvJC38ZYa0yehlpUI1u2bOH8+fOcP38eb29vo+dM7IUmqqG2Pq58M64TO88l8eGWM/x1JZUt5zPYMn8P3Rt5MKarPz0b10atrj6X1MsqNiWLtZEJfB8RS+Lf81zbW2sYEuzNxJ4NZc5XC1aqJNbV1dWob4iiKPTu3duoTGUP7KoOFi5cyMKFC2v0OQphKjdHG1aM6cicDadYse8yS3ZEsy86ifmPt8PX3dHc4YkyCg8PJzw83NxhiEqkUqno2bg2PRp5cPBCMp9sPs7+2Cx2nUti17kkvFzseLiNFwPaeNHCy7la9RG9m/ScfDafSGDlrkT+unrZsL22ky3hXfwY2akBrg6WM7DNgqq+SpUqid22bVtlx2ERJk+ezOTJkw0DNoSoyW6dPu/fU+n9m7VGzRsDWxLS0J2X1xzn2JVUHvhkFy/2bcLoLn5oakBrjhA1lUqlItjPjVd71MbJ05evD8TyXUQs8ak5fL7zAp/vvECAhyP923jRt0Vdmnk6V8sW2mvpOWw9dZUtJ6+yNzqJfF3hFQOVCroFejA4yJt+LT2xtbLcvqSKohR1jxWUMont2bNnZcchhKhmsrOzje47OTnddZ9+LevR2tuV51dHcuBiCm9uOMX6yDjeeqQVLevLH35CVHfebg689lBzXujbhO1nrvHzsXj+iLrGhaRMPvnjHJ/8cY5ajjaENHSna0MPuga606CWg1laaVMy8zh4MZn9F1I4cDGF04lpRosB+Hs40MXLmolhbfFxlyneaqJSD+zKysripZdeYv369eTn53P//fczf/78Sl1xSwhhebxc7fl2XGe+jYjhnd9O89eVVAYs2M2wDj48f39j6jjL4Akhqjs7aw39WtajX8t6pOfks/XUVTb+lcC+C8mkZOax8a8ENv6VAEAdJ1ua1XOmaT0nmtdzpqmnMwG1HSusX7xerxB3M5sziemcTkwjKjGdqIQ0LlzPLFa2jY8rYS3q0re5J/7u9kRFRUmf1xqs1EnsrFmzWL58OSNHjsTOzo5vv/2WZ555hh9++KEy4xNCmEnR4gb/vl8aarWKkZ186dOsLm9sOMXGvxL49mAs64/GM667P+N6BOBkVz0mERdC3JmTnTWPtvfm0fbe5BXoOXblJnvOJ7H3fDJHY29wLT2Xa+nX2XH2nxks1Crw0Nri6WJHXWc7PJ3t8NDaYm+jxtZKg62VGltrNVZqNTn5OnLydWTl6cjO15GRU0BiWg6JqTkkpOZwNS2HAn3Jgwkb19XSyd+dTgG16Ohfy2iGARm/UvOVOoldu3YtS5cuZfjw4QA88cQTdO3aFZ1OV6PmKhNCVJw6znYsHNGep7qk8NavURyJucn8P8+zfO8lngzxI7yrnyySIIQFsbFS08GvFh38ajH1fsjKKyAq4e8W0oQ0TiekczoxnYzcgr+T21wgtdyva61R0bC2trDF19OJpvWcaenljPs98v1R1FlD5gUxVuokNjY2lu7duxsed+zYESsrK+Lj4/Hx8amU4IQQNUOwXy3WPNOFzSev8sGWM5y/lsGCbef5cvcFhgb78GSIH4F1pM+aEJbGwcaKIF83gnz/WZFNr1dIyszlamouiWmFLalX03JIysgjN19HboGe3ILCf/MK9NhZa3Cw0WBvrcHeRoOjrRV1ne2o52KHp0vhv7W1tljJtH3iX0qdxOp0umITnltZWVFQUFDhQQkhzC8nJ8fovqldCv5NpVLRr6UnfZvXZcupqyzefp5jV1JZue8yK/ddpnNALUZ28iWshSc2VvJjJYSlUqtV1HGyo46THa2QAZ2i8pQ6iVUUhfDwcKMlBXNycpg4caLRj9vatWsrNkIhhFncadnZ8lCrC5PZsBZ12RudzLI9l/jz9FX2X0hh/4UUajna8FCregxs60X7Bm7VciofIYQQ5lfqJHb06NHFtj3xxBMVGowQovq427Kz5aVSqega6EHXQA/ib2bzXUQs3x2M4Vp6Lv/bf5n/7b9MfVd7Hm5djz7N69KugZvMNyuEuCcVTWGmKMg8sbcodRK7bNmyyoxDCFHNlGbZ2Yri5WrPtD6Nee6+QPZEJ/NTZBxbTl4l7mY2n+28wGc7L1DL0YbQJrXp3bQu3Rt74CyzGwghxD2t1EmskGVnhahsVho1PRvXpmfj2uTk6/jz9DU2nUhk+5lrpGTmsfZIHGuPxKFWQcv6LoQEuNM5wJ0O/rXQ2srXmRBC3EvkW98EsuysuJeYsuxsZbCz1vBgq3o82Koe+To9hy/f4I+oq/xx+hoXrmfy15VU/rqSymc7L6BRq2jh5UxbH1faeLvStoEr/u6O0p9WCCFqMElihRAlKsuys5XFWqOm89+trq891JzE1Bz2XUhiX3Qy+y4kE5uSbUhq4TIATnZWtPF2pbmXM03qOtHE04nAOlrsrGVeayGEZfnnz3GZKfZWksQKISyOp4sdj7Tz5pF23gBcuZHF0ZibHIu9ybErNzkel0p6TgG7zyex+3ySYT+1Cvw8HGnq6URgHSf83B3w83DE390RVwdrs6z/LoQQomwkiRVClKg8y85WNW83B7zdHOjfxguAfJ2es1fT+etKqmG99TOJ6dzIyufC9cy/11xPNDqGs50V/h6O+Lo70qCWA16u9ni52uHtZk89F3scpc+tEEJUKxbzrTx37lw2btxIZGQkNjY23Lx5s1iZiIgIZsyYweHDh1GpVHTo0IH33nuPtm3bGsocP36cKVOmcPDgQWrVqsWECROYOXOmtMAIUYNYa9S08HKhhdc/fdcVReF6ei6nE9M5k5jOhaQMLiVlcSk5k4TUHNJyCjh2JZVjV0peItPVwZqOfrX4/MngqjoNIYQQd2AxSWxeXh5DhgwhJCSEpUuXFns+PT2dsLAwBg4cyKJFiygoKGDWrFmEhYVx5coVrK2tSUtLo0+fPvTq1YuIiAjOnj1LeHg4jo6OvPDCC2Y4KyFEVVGpVNRxtqOOsx09Gtc2ei47T0dMShYXkzK5lJzJlRtZxN/MIf5mNnE3s0nPKeBmVj5ZeTIziRDCfBTpEmvEYpLYN954A4Dly5eX+PyZM2e4ceMGb775Jj4+PgDMmjWL1q1bExMTQ8OGDVm1ahU5OTksX74cW1tbWrZsydmzZ/noo4+YNm2atMYKcYvc3Fyj+9W9S0F52NtoaOJZOPirJGk5+STczEEvvyBCCDOQ9KRkNWaB8iZNmuDh4cHSpUvJy8sjOzubpUuX0qJFC3x9fQHYt28fPXv2NFo6NywsjPj4eC5dumTya2ZmZqLc8qOWl5dHZmam0Y9/UbnMzEyjaYry8/PJzMw0Wp/e1LJZWVlkZmYazVtbUFBAZmam0chyU8tmZ2eTmZlJQUGBYZtOpzO5bFZWllHZnJwcMjMzyc/PL1NZvV5vqJ9b5ebmkpmZSV5eXpnKKopiKFvS+2lK2dK89xXxOSnp/ayIz0nR+6nT6Yze09TU1HK99+X9nNzu/Szv5+TW9/NOZZ3trGlcV0sDZ41J770QQojKU2OSWCcnJ7Zv387XX3+Nvb09Wq2WzZs38+uvv2JlVdjgnJiYSN26dY32K3qcmJhY7JhFcnNzSUtLM7oBeHl5kZT0z8jn999/H61Wy5QpU4z2r1OnDlqtlpiYGMO2hQsXotVqGTt2rFFZPz8/tFotUVFRhm3Lly9Hq9UyfPhwo7LNmzdHq9Vy5MgRw7bVq1ej1WoZMGCAUdkOHTqg1WrZtWuXYduGDRvQarXcf//9RmV79OhhqL8if/75J1qtlpCQEKOyDzzwAFqtlnXr1hm27d+/H61WS5s2bYzKPvbYY2i1WlatWmXYdvz4cbRaLY0aNTIqO2rUKLRaLZ9//rlhW3R0NFqtlvr16xuVnTBhAlqtlk8++cSwLSEhAa1Wi6urq1HZadOmodVqeeuttwzbUlNT0Wq1aLVaoyTrtddeQ6vV8tprrxm2FRQUGMqmpv7Td/Ktt95Cq9Uybdo0o9dzdXVFq9WSkJBg2PbJJ5+g1WqZMGGCUdn69euj1WqJjo42bPv888/RarWMGjXKqGyjRo3QarUcP37csG3VqlVotVoee+wxo7Jt2rRBq9Wyf/9+w7Z169ah1Wp54IEHjMqGhISg1Wr5888/jVbpCggIoEePHkZl77//frRaLRs2bDBs27VrF1qtlg4dOhiVHTBgAFqtltWrVxu2HTlyBK1WS/PmzY3KDh8+HK1Wa3TVJSoqCq1Wi5+fn1HZsWPHotVqWbhwoWFbTEwMWq2WOnXqGJWdMmUKWq2W999/37AtKSnJ8H7e6uWXX0ar1RquAEHhHwNFZW9NvN944w20Wi0vv/yy0TG8vLwQQghRecyaxM6ePRuVSnXH26FDh0p1rOzsbMaMGUPXrl3Zv38/e/bsoUWLFjz44INGLUj/7jJQ1KJyp64Eb7/9Ni4uLoZbUXcFIWoyGxsbc4cghBDiFtKhyZhKUczXySspKcmoJbMkfn5+2NnZGR4vX76cqVOnFpudYOnSpbz66qskJCSgVhfm5nl5ebi5ubF06VKGDx/Ok08+SWpqKj/99JNhv6NHj9K+fXsuXLiAv79/iTHk5uYaXSpMS0vDx8eH+Ph4PD09DQlwXl4e+fn5WFlZGXVZKLqsaG9vb4gtPz+fvLw8NBqN0fmZUjYrKwtFUbCzs0OjKZzAvaCggNzcXNRqNfb29mUqm52djV6vx9bW1tCKrdPpyMnJMamsSqXCwcHBUDYnJwedToeNjY2hlc+Usnq93vAHya39M3NzcykoKMDa2tqQeJlSVlEUQ8uag4NDsffTlLKlee8r4nNS0vtZEZ+TovfTzs4OtVpNVlYWBQUFaDQaNBpNmd/78n5Obvd+lvdzcuv7Wd7Pyb/fz4SEBLy8vEhNTcXZ2Zl7UdHqhikpKbi5uZk7nAqj0+mIioqiWbNmhv9Tlk7OqXobumQfBy+lsODxtvhpbtSIc7rVjRs3qFWrlsnfl2Yd2OXh4YGHh0eFHCsrKwu1Wm3Uolr0uKiPYUhICK+++ip5eXmGH6YtW7bg5eVV7DLlrWxtbY1+nIo4OjoavZ6NjU2JrVclDYixtrY2ulxblrK3/vAXsbKyMiQJZS17a6JSRKPRlBibKWVvTazKUlatVpdYtqT3x5SyKpWqxLIlvZ+mlIWS38+K+JyU9H5WxOfk1vfz1qTNw8Oj2NWKqvyc3O79LO/n5HbvZ3k/J1D959YVQghLZzF9YmNiYoiMjCQmJgadTkdkZCSRkZFkZGQA0KdPH27cuMHkyZOJiori5MmTPPXUU1hZWdGrVy8ARowYga2tLeHh4Zw4cYJ169bx1ltvycwEQpQgKyuLOnXqUKdOnWKDr4QQQghzs5gptl5//XVWrFhheNyuXTsAtm3bRmhoKE2bNuWXX37hjTfeICQkBLVaTbt27di0aRP16tUDwMXFha1btzJ58mSCg4Nxc3Nj2rRpxQbj3E1RD4yiAV5C1ES3jq5PS0szmt1A3F3R94MZe2yZ3a3flTXp0qdOpyMjI6NGnZecU/WWn52JPjeLzPR0Mqxqxjndqqzfl2btE2uprly5IoO7hBClEhsbi7e3t7nDMIsLFy7QsGFDc4chhLAQ0dHRBAQElLq8xbTEVideXl7Exsbi5ORk6IbQoUMHIiIiDGVufVw0ECw2NrbSBnj8+/Urer+7lbvd86Zsv10dVkX93SnWitqvsuvQUj+Dpux7p3KmPmfKZxBMr0NFUUhPT7+np9qqVasWUNgdzMXF5S6lLUdVfSdVJTkny1ATzwkKp7ps0KCB4TujtCSJLQO1Wl2sZUWj0Rh9oP79GMDZ2bnSPnQlvV5F7ne3crd73pTtd6vDyqy/O8VaUftVdh1a6mfQlH3vVM7U58ryGQTT6rAmJW5lUTTLhouLS436wS1S2d9J5iDnZBlq4jnBP98ZpS5fSXHccyZPnnzHx1X9+hW9393K3e55U7ZLHZavDi21/kzZ907lTH2uOn4GhRBClJ70ia0CRXMl3svzRZaH1F/5SR2Wn9Sh6WpqndXE85Jzsgw18Zyg7OclLbFVwNbWllmzZpU416y4O6m/8pM6LD+pQ9PV1Dqriecl52QZauI5QdnPS1pihRBCCCGExZGWWCGEEEIIYXEkiRVCCCGEEBZHklghhBBCCGFxJIkVQgghhBAWR5LYaiQ9PZ0OHTrQtm1bWrVqxRdffGHukCxObGwsoaGhNG/enNatW/PDDz+YOySL88gjj+Dm5sbgwYPNHYrF2LBhA02aNKFRo0Z8+eWX5g6nWrp06RJjx47F398fe3t7GjZsyKxZs8jLyzN3aOUyd+5cunTpgoODA66uruYOp0wWLVqEv78/dnZ2BAUFsWvXLnOHVC47d+6kf//+eHl5oVKpWL9+vblDKre3336bDh064OTkRJ06dRg0aBBnzpwxd1jlsnjxYlq3bm1YuCEkJITffvvNpGNIEluNODg4sGPHDiIjIzlw4ABvv/02ycnJ5g7LolhZWfHxxx9z6tQpfv/9d55//nkyMzPNHZZFee6551i5cqW5w7AYBQUFTJs2jT///JMjR47w7rvvkpKSYu6wqp3Tp0+j1+v57LPPOHnyJPPmzWPJkiW8+uqr5g6tXPLy8hgyZAjPPPOMuUMpk9WrVzN16lRee+01jh49Svfu3XnggQeIiYkxd2hllpmZSZs2bViwYIG5Q6kwO3bsYPLkyezfv5+tW7dSUFBA3759Lfr3zdvbm3feeYdDhw5x6NAh7rvvPgYOHMjJkydLfxBFVEvJyclKgwYNlOvXr5s7FIvWqlUrJSYmxtxhWJxt27Ypjz32mLnDsAh79uxRBg0aZHj83HPPKd98840ZI7Ic7733nuLv72/uMCrEsmXLFBcXF3OHYbKOHTsqEydONNrWtGlTZcaMGWaKqGIByrp168wdRoW7du2aAig7duwwdygVys3NTfnyyy9LXV5aYk1QmksU5b0sc/PmTdq0aYO3tzfTp0/Hw8OjgqKvHqqiDoscOnQIvV6Pj49POaOuPqqy/u4V5a3T+Ph46tevb3js7e1NXFxcVYRu8VJTU6lVq5a5w7hn5eXlcfjwYfr27Wu0vW/fvuzdu9dMUYnSSE1NBagx/390Oh3fffcdmZmZhISElHo/SWJNcLdLFKW5LBMUFETLli2L3eLj4wFwdXXl2LFjXLx4kW+++YarV69WyblVlaqoQ4Dk5GSefPJJPv/880o/p6pUVfV3LylvnSolrBejUqkqNeaaIDo6mk8//ZSJEyeaO5R7VlJSEjqdjrp16xptr1u3LomJiWaKStyNoihMmzaNbt260bJlS3OHUy7Hjx9Hq9Via2vLxIkTWbduHc2bNy/9ASqtTbiGo4RLFBV9WWbixInK999/X9YQq73KqsOcnByle/fuysqVKysizGqrMj+D92p3grLUaUndCVatWlXpsVYXs2bNUoA73iIiIoz2iYuLUwIDA5WxY8eaKeo7K8s5WWJ3gri4OAVQ9u7da7R9zpw5SpMmTcwUVcUq6f+0pZs0aZLi6+urxMbGmjuUcsvNzVXOnTunREREKDNmzFA8PDyUkydPlnp/q4rIpMU/l2VmzJhhtN2UyzJXr17F3t4eZ2dn0tLS2Llzp8UOFiiLiqhDRVEIDw/nvvvuY9SoUZURZrVVEfUnjJWmTjt27MiJEyeIi4vD2dmZX3/9lddff90c4ZrFlClTGD58+B3L+Pn5Ge7Hx8fTq1cvQkJCqu2VElPPyVJ5eHig0WiKtbpeu3atWOusqB6effZZfv75Z3bu3Im3t7e5wyk3GxsbAgMDAQgODiYiIoJPPvmEzz77rFT7SxJbQSrissyVK1cYO3YsiqKgKApTpkyhdevWlRFutVQRdbhnzx5Wr15N69atDX0b//e//9GqVauKDrfaqahLg2FhYRw5coTMzEy8vb1Zt24dHTp0qOhwLUJp6tTKyooPP/yQXr16odfrmT59Ou7u7uYI1yw8PDxK3Xc/Li6OXr16ERQUxLJly1Crq2ePNlPOyZLZ2NgQFBTE1q1beeSRRwzbt27dysCBA80Ymfg3RVF49tlnWbduHdu3b8ff39/cIVUKRVHIzc0tdXlJYivYv/vCKYpS6v5xQUFBREZGVkJUlqU8dditWzf0en1lhGUxylN/AJs3b67okCze3ep0wIABDBgwoKrDsijx8fGEhobSoEEDPvjgA65fv254ztPT04yRlU9MTAwpKSnExMSg0+kM3+GBgYFotVrzBlcK06ZNY9SoUQQHBxtax2NiYiy6r3JGRgbnz583PL548SKRkZHUqlWLBg0amDGysps8eTLffPMNP/30E05OToY/ol1cXLC3tzdzdGXz6quv8sADD+Dj40N6ejrfffcd27dvZ9OmTaU+hiSxFUQuy5Sf1GH5SP1VPKnTirNlyxbOnz/P+fPni10GVUoYHGcpXn/9dVasWGF43K5dOwC2bdtGaGiomaIqvWHDhpGcnMybb75JQkICLVu25Ndff8XX19fcoZXZoUOH6NWrl+HxtGnTABg9ejTLly83U1Tls3jxYoBin6lly5YRHh5e9QFVgKtXrzJq1CgSEhJwcXGhdevWbNq0iT59+pT6GNXzWo4FuvWyzK22bt1Kly5dzBSVZZE6LB+pv4ondVpxwsPDDV2l/n2zZMuXLy/xnCwhgS0yadIkLl26RG5uLocPH6ZHjx7mDqlcQkNDS3xPLDWBBW77f8dSE1iApUuXGj53165d4/fffzcpgQVpiTXJ3S5R1MTLMhVN6rB8pP4qntSpEEJYqHLMjHDP2bZtW4lTrYwePdpQZuHChYqvr69iY2OjtG/fvsatplFeUoflI/VX8aROhRDCMqkUxcKv5QghhBBCiHuO9IkVQgghhBAWR5JYIYQQQghhcSSJFUIIIYQQFkeSWCGEEEIIYXEkiRVCCCFEpZk9ezZt27at1NdYvnw5rq6ulfoaovqRJFYIIYS4B4WHh6NSqVCpVFhZWdGgQQOeeeYZbty4Ye7QTDZs2DDOnj1r7jBEFZPFDoQQQoh7VL9+/Vi2bBkFBQWcOnWKMWPGcPPmTb799ltzh2YSe3t77O3tzR2GqGLSEiuEEELco2xtbfH09MTb25u+ffsybNgwtmzZYlRm2bJlNGvWDDs7O5o2bcqiRYuMnn/55Zdp3LgxDg4OBAQEMHPmTPLz80sdg06nY+zYsfj7+2Nvb0+TJk345JNPDM/n5OTQokULxo8fb9h28eJFXFxc+OKLL4Di3QmOHTtGr169cHJywtnZmaCgIA4dOmRK1QgLIC2xQgghhODChQts2rQJa2trw7YvvviCWbNmsWDBAtq1a8fRo0cZN24cjo6OjB49GgAnJyeWL1+Ol5cXx48fZ9y4cTg5OTF9+vRSva5er8fb25vvv/8eDw8P9u7dy/jx46lXrx5Dhw7Fzs6OVatW0alTJx588EH69+/PqFGj6NWrF+PGjSvxmCNHjqRdu3YsXrwYjUZDZGSk0XmJGsLcS4YJcS8ZPXq0YVnTdevWVcpr9OzZU/nPf/5TKce+nVmzZhnOa968eVX62kKIshk9erSi0WgUR0dHxc7OzvB/+KOPPjKU8fHxUb755huj/f7v//5PCQkJue1x33vvPSUoKMjweNasWUqbNm1Mim3SpEnKY489Vuy4Hh4eyrPPPqt4enoq169fNzy3bNkyxcXFxfDYyclJWb58uUmvKSyPdCcQ5XLrwIBbb+fPnzd3aNVWv379SEhI4IEHHqjS1w0NDWXJkiWVcuwXX3yRhIQEvL29K+X4QojK0atXLyIjIzlw4ADPPvssYWFhPPvsswBcv36d2NhYxo4di1arNdzmzJlDdHS04Rg//vgj3bp1w9PTE61Wy8yZM4mJiTEpjiVLlhAcHEzt2rXRarV88cUXxY7xwgsv0KRJEz799FOWLVuGh4fHbY83bdo0nn76ae6//37eeecdo3hFzSFJrCi3oqTs1pu/v3+xcnl5eWaIrvop6oNma2t72zKm9CcrjZSUFPbu3Uv//v0r9LhFtFotnp6eaDSaSjm+EKJyODo6EhgYSOvWrZk/fz65ubm88cYbQOFlfijsUhAZGWm4nThxgv379wOwf/9+hg8fzgMPPMCGDRs4evQor732mknf999//z3PP/88Y8aMYcuWLURGRvLUU08VO8a1a9c4c+YMGo2Gc+fO3fGYs2fP5uTJkzz00EP8+eefNG/enHXr1plSNcICSBIryq0oKbv1ptFoCA0NZcqUKUybNg0PDw/69OkDwKlTp3jwwQfRarXUrVuXUaNGkZSUZDheZmYmTz75JFqtlnr16vHhhx8SGhrK1KlTDWVUKhXr1683isPV1ZXly5cbHsfFxTFs2DDc3Nxwd3dn4MCBXLp0yfB8eHg4gwYN4oMPPqBevXq4u7szefJkowQyNzeX6dOn4+Pjg62tLY0aNWLp0qUoikJgYCAffPCBUQwnTpxArVab9Ff/pUuXUKlUfP/994SGhmJnZ8fXX39NcnIyjz/+ON7e3jg4ONCqVatiI4ZLqquSbNy4kTZt2lC/fn22b9+OSqVi8+bNtGvXDnt7e+677z6uXbvGb7/9RrNmzXB2dubxxx8nKyvLcIwff/yRVq1aYW9vj7u7O/fffz+ZmZmlPk8hRPU3a9YsPvjgA+Lj46lbty7169fnwoULBAYGGt2KGir27NmDr68vr732GsHBwTRq1IjLly+b9Jq7du2iS5cuTJo0iXbt2hEYGFjid+iYMWNo2bIlK1euZPr06Zw6deqOx23cuDHPP/88W7Zs4dFHH2XZsmUmxSWqP0liRaVasWIFVlZW7Nmzh88++4yEhAR69uxJ27ZtOXToEJs2beLq1asMHTrUsM9LL73Etm3bWLduHVu2bGH79u0cPnzYpNfNysqiV69eaLVadu7cye7du9FqtfTr18/or/tt27YRHR3Ntm3bWLFiBcuXLzdKhJ988km+++475s+fT1RUFEuWLEGr1aJSqRgzZkyxL8WvvvqK7t2707BhQ5Pr6uWXX+a5554jKiqKsLAwcnJyCAoKYsOGDZw4cYLx48czatQoDhw4YHJd/fzzzwwcONBo2+zZs1mwYAF79+4lNjaWoUOH8vHHH/PNN9+wceNGtm7dyqeffgpAQkICjz/+OGPGjCEqKort27fz6KOPoiiKyecphKi+QkNDadGiBW+99RZQ+D3x9ttv88knn3D27FmOHz/OsmXL+OijjwAIDAwkJiaG7777jujoaObPn29yi2dgYCCHDh1i8+bNnD17lpkzZxIREWFUZuHChezbt4+VK1cyYsQIBg8ezMiRI0ts8c3OzmbKlCls376dy5cvs2fPHiIiImjWrFkZa0VUW+bulCss260DA4pugwcPVhSlcIBR27ZtjcrPnDlT6du3r9G22NhYBVDOnDmjpKenKzY2Nsp3331neD45OVmxt7c3GqxECQOjXFxclGXLlimKoihLly5VmjRpouj1esPzubm5ir29vbJ582ZD7L6+vkpBQYGhzJAhQ5Rhw4YpiqIoZ86cUQBl69atJZ57fHy8otFolAMHDiiKoih5eXlK7dq17ziYYPTo0crAgQONtl28eFEBlI8//vi2+xV58MEHlRdeeEFRFKXUdZWTk6M4OTkpf/31l6IoirJt2zYFUH7//XdDmbffflsBlOjoaMO2CRMmKGFhYYqiKMrhw4cVQLl06dId4/P19ZWBXUJYiJK+jxRFUVatWqXY2NgoMTExhsdt27ZVbGxsFDc3N6VHjx7K2rVrDeVfeuklxd3dXdFqtcqwYcOUefPmGQ2yutvArpycHCU8PFxxcXFRXF1dlWeeeUaZMWOGYZ+oqCjF3t7eaIBZamqq4ufnp0yfPl1RFOOBXbm5ucrw4cMVHx8fxcbGRvHy8lKmTJmiZGdnl62iRLUlU2yJcuvVqxeLFy82PHZ0dDTcDw4ONip7+PBhtm3bhlarLXac6OhosrOzycvLIyQkxLC9Vq1aNGnSxKSYDh8+zPnz53FycjLanpOTY3SZqkWLFkb9OOvVq8fx48cBiIyMRKPR0LNnzxJfo169ejz00EN89dVXdOzYkQ0bNpCTk8OQIUNMirXIv+tKp9PxzjvvsHr1auLi4sjNzSU3N9dQv9HR0aWqqz///BN3d3datWpltL1169aG+3Xr1jXM8XjrtoMHDwLQpk0bevfuTatWrQgLC6Nv374MHjwYNze3Mp2rEML8br3qdKsRI0YwYsSI2z7+t/fee4/33nvPaNut3b9mz57N7Nmzb7u/ra0ty5YtK3Zl6+233wagadOmRl2bAJydnbl48aLhcXh4OOHh4QDY2NhY3GINomwkiRXlVjQw4HbP3Uqv19O/f3/efffdYmXr1at31876RVQqVbFL2bf2ZdXr9QQFBbFq1api+9auXdtw/9/zBqpUKsNghtKs/vL0008zatQo5s2bx7Jlyxg2bBgODg6lOod/+3ddffjhh8ybN4+PP/6YVq1a4ejoyNSpUw2Xz/59/rdTUlcCMD53lUp1x7rQaDRs3bqVvXv3smXLFj799FNee+01Dhw4UOIgPiGEEKKySZ9YUaXat2/PyZMn8fPzKzZQoCgZtra2Nox8Bbhx40axNbFr165NQkKC4fG5c+eM/lJv3749586do06dOsVex8XFpVSxtmrVCr1ez44dO25b5sEHH8TR0ZHFixfz22+/MWbMmNJWxV3t2rWLgQMH8sQTT9CmTRsCAgKMkvzS1JWiKPzyyy8MGDCg3PGoVCq6du3KG2+8wdGjR7GxsZHRvkIIIcxGklhRpSZPnkxKSgqPP/44Bw8e5MKFC2zZsoUxY8ag0+nQarWMHTuWl156iT/++IMTJ04QHh6OWm38Ub3vvvtYsGABR44c4dChQ0ycONGoJXHkyJF4eHgwcOBAdu3axcWLF9mxYwf/+c9/uHLlSqli9fPzY/To0YwZM4b169dz8eJFtm/fzvfff28oo9FoCA8P55VXXiEwMNDo0n55BQYGGlo/o6KimDBhAomJiYbnS1NXhw8fJjMzkx49epQrlgMHDvDWW29x6NAhYmJiWLt2LdevX5eBEkIIIcxGklhRpby8vNizZw86nY6wsDBatmzJf/7zH1xcXAzJ1/vvv0+PHj0YMGAA999/P926dSMoKMjoOB9++CE+Pj706NGDESNG8OKLLxpdxndwcGDnzp00aNCARx99lGbNmjFmzBiys7NxdnYudbyLFy9m8ODBTJo0iaZNmzJu3Lhi00qNHTuWvLy8Cm2FBZg5cybt27cnLCyM0NBQPD09GTRokFGZu9XVTz/9xEMPPYSVVfl6Djk7O7Nz504efPBBGjduzH//+18+/PDDKl+wQQghhCiiUkrbsU4IMwoNDaVt27Z8/PHH5g6lmD179hAaGsqVK1eoW7fuHcuGh4dz8+bNYnPcVpbWrVvz3//+12gKs8rk5+fH1KlTjQZ1CCGEEJVBWmKFKKPc3FzOnz/PzJkzGTp06F0T2CIbNmxAq9WyYcOGSo0vLy+Pxx57rEpaS9966y20Wq3JS00KIYQQZSUtscIiVMeW2OXLlzN27Fjatm3Lzz//TP369e+6z7Vr10hLSwMKZ2P494wEliolJYWUlBSgcNBdaQfPCSGEEGUlSawQQgghhLA40p1ACCGEEEJYHElihRBCCCGExZEkVgghhBBCWBxJYoUQQgghhMWRJFYIIYQQQlgcSWKFEEIIIYTFkSRWCCGEEEJYHElihRBCCCGExZEkVgghhBBCWJz/B/RUkgb9RJvGAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAF3CAYAAACygxMZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADjE0lEQVR4nOzdd1wT9/8H8NdlkABhL9kgKIJbEFFBpe49sK6qoKh11dlq1VrHV2trW/cqal3VarWuulDrVlQUUVw4EWQoexMyPr8/+HE1EpBAIBA+z8cjD8jlc3fvu1wu79x9BkMIIaAoiqIoiqKoWoSj6QAoiqIoiqIoSlU0iaUoiqIoiqJqHZrEUhRFURRFUbUOTWIpiqIoiqKoWocmsRRFURRFUVStQ5NYiqIoiqIoqtahSSxFURRFURRV69AklqIoiqIoiqp1aBJLURRFURRF1To0iaVKFRQUhB9//FGty9y5cyd69OihlmUlJSWhXbt2MDAwwLp169SyzNqqcePGCA8PV/paTEwMhEJhNUekurK2gaIoiqI+RpNYLePk5AQ9PT2IRCKYmZlh+PDhyMrK0nRYFcIwDJKSkkp9PSQkBK6ursjOzsa0adMqta7akuiV5tGjR2jdujWAqvnxUR0+3AaKoiiK+hSaxGqhCxcuICcnBzExMUhPT6+VCU15xMbGwsPDQ+X55HI55HJ5FURElUYikWg6BIqiKErL0CRWixkYGKBfv3548uQJOy0qKgrt27eHsbExvLy8cPPmTfa1ly9fsrfnBw0ahLy8PIXlbdy4EQ0aNIC5uTkCAwORm5urdL2dOnXCwoUL0axZM5iammLy5MmQSqVKyx48eBCNGjWCqakp+vbti8TERABAt27dAAAuLi4QiUQICwtTmG/ixInYtWsXFi1aBJFIhKioKKSlpWHYsGEwNzeHq6srtm3bxpYPCgrCtGnT0KlTJ4hEIsTGxpZ7Pzo5OWHNmjVwd3eHiYlJiau+pe2Xdu3a4dy5cwCAXbt2gWEYvH//HgAwc+ZMrFix4pPrtrW1xfPnzwEAS5YsgaGhIWQyGQBg4MCB+PPPP9kYb968iV27dmHv3r3sfpk6dSq7rK1bt8La2hr16tXDnj17lK6v+Ir05s2bYWlpCXt7e1y6dAnbt2+HtbU1HBwccPnyZbb8//73Pzg6OsLQ0BBt27bFgwcPFPbbypUr4ebmxv7YWLx4MSwtLeHk5IT169crXP0u3gag6BhaunQpvLy8YGhoiOHDh6OwsBAA8OzZM/j6+sLQ0BDm5uaYPXv2J/cjRVEUpX1oEqvFMjMzcfz4cbRp0wYAUFhYiL59+2LEiBFITk7G119/jT59+iAzMxMAMGLECHTu3BmpqakYPXo0jhw5wi7r4MGDCAkJwfnz5xEXFweJRILvv/++1HXv27cPR48eRXR0NG7cuIEtW7aUKPPkyROMGzcOv//+OxITE+Hs7IxRo0YBAM6ePQugKLHOyclB27ZtFebdsmULvvjiCyxZsgQ5OTlo2rQppkyZAh6Ph9jYWBw+fBjz58/HtWvX2Hn279+PVatWITs7G3Z2dirty+PHj+PatWuIiorC/v37cfXq1U/uFz8/P7bctWvX4OzszMZz7do1+Pr6fnK9vr6+CsswNzfH/fv3AQDXr18vsYzAwECF/bJhwwYARe99dHQ03rx5g927d2PKlCklfqQUKywsRExMDOLj4zF9+nSMHDkSjx8/xps3bzBnzhzMmDGDLevh4YE7d+4gLS0NXbt2xejRoxWWdfToUVy9ehVRUVE4fvw4duzYgbCwMNy/fx8nTpwoc9sPHjyIw4cPIzY2Fg8ePMCBAwcAAN9//z169+6NzMxMvHnzBkOHDv3kfqQoiqK0D01itVDXrl1hbGwMU1NTxMXFITg4GABw8+ZNcLlcTJkyBXw+H8OGDUODBg1w9uxZvHnzBg8fPsTChQuho6ODAQMGsMkvAGzfvh0LFiyAo6MjdHV1MX/+fBw6dKjUGIKDg1G/fn1YWFjg66+/xt9//12izMGDBzF48GC0a9cOAoEAP/zwAy5fvozk5GSVt1kmk+Hvv//GihUroKenh2bNmiE4OJi9UgkAn3/+OVq1agUulwsej6fS8mfMmAEzMzPY2dmhU6dObCJZ1n75MAG9fv06Zs+ejatXryInJwePHz8uV/3P4mVIpVJER0cjODgYV69exdOnT6Grqwt7e/tyxU8Iwffffw8dHR1069YNQqEQr169KrXsggULwOfzERAQgPj4eHz77bfQ0dFBQEAAHj16xFbHCAgIgIWFBXg8HubPn48HDx4gJyeHXdbMmTNhaWkJoVCIw4cPY8KECXBxcYGRkRHmzJlTZszjx4+Hg4MDjI2N0bt3b3af8/l8vH79GklJSdDX14e3t3e59gFFURSlXWgSq4XOnTuHjIwM5OXloW/fvujZsycAICEhAQ4ODgplHR0dkZCQgMTERFhaWkJHR4d97cMEKTY2FsHBwTA2NoaxsTF8fX2RkpJSagwfXum0t7dnqwl86ON4ihujJSQkqLzNycnJkMlkCust3jZlManK0tKS/V9PT49N1MraL76+vggPD0d8fDz4fD769++Pa9euISwsDC1atChXQ7Liq7n37t1DixYt0KFDB1y9ehVXr14t15XcYgKBAIaGhkq3oayyurq6AAALCwv2uUQiYW/tb926FY0bN4aRkRHq1asHQghSU1PZZX24z5OSkhSOqU+9H6Xt85UrV0IqlaJFixZo3rw5/vnnn0/vAIqiKErr0CRWiwkEAowaNQp3795FSkoKbGxsEBcXp1AmNjYWNjY2sLa2xvv379nkBIBCWVtbW+zduxcZGRnso7Q6sQDw9u1bheXUq1evRBkbGxuFuqm5ublITU2FjY2NyttqYWEBDoejsN7ibSvGMIzKy/2UsvaLiYkJnJycsHbtWvj6+sLOzg7p6ek4ffp0uRPQZs2aISUlBQcPHoSfnx+8vb1x586dMqsjVMV2KhMTE4NZs2Zhz549yMjIQGJiIjgcDgghSmOpV6+ewvvz4f+qsLa2xu+//46kpCQsXboUQ4cOVThuKYqiqLqBJrFaTCKRYN++fbC0tISZmRl8fHwgkUiwefNmSKVSHDx4ENHR0ejWrRscHR3h4eGBH374ARKJBMePH8ft27fZZQUHB2P58uXsLejExEScOXOm1HX//vvviImJQXJyMlatWoWAgIASZQICAvD333/j5s2bEIvFWLBgATp06MBe9bO0tERMTEy5tpXL5WLQoEFYsGAB8vPz8fDhQ2zfvh3Dhg1TYY8BBQUFCo9P+dR+8fPzw5YtW9ChQwcAQNu2bbFt2zaFBHTx4sXo1KmT0uVzOBy0bduWXYZAIIC9vT2OHDlSahKryn6rjJycHDAMAzMzM0gkEixatEghgf3YoEGDEBISglevXiErKwu//PJLhdZ76NAhJCQkgGEYGBsbg2GYakvcKYqiqJqDJrFa6LPPPoNIJIK5uTkuXryIo0ePgmEY6Ojo4NixY9izZw/MzMzw448/4vjx4zAyMgJQ1BgrNDQUpqam2LlzJwYOHMguc9iwYQgKCkKvXr1gYGCAjh074vHjx6XGMHz4cPTr1w8NGzaEt7c3Jk6cWKJM48aNsWXLFgQGBqJevXp48eIFdu/ezb7+/fffo3///jA2NlboRaE0GzduREFBAezs7NCvXz8sXboUfn5+5d5vYrEYurq6Co+yqkwAn94vfn5+yM7OZuPw8/NDTk4O2rdvz5Z5+/atwvOP+fn5QSaToVWrVuxzLpeLxo0bKy0/duxYXL9+HcbGxpXuP7csTZo0wYQJE9CsWTM4OTnB2dlZoTrKx/r164egoCC0adMGTZs2RdeuXSEQCFRe7+3bt+Hp6QmRSIRJkyZh37594PP5ldkUiqIoqhZiSFmXTiiqAjp16oSJEyeqfBW0rvL09MTZs2dhZmam6VCqVWhoKGbNmoVHjx5pOhSKoiiqFqJXYilKw+7evVtnEtjDhw+jsLCQrc86YMAATYdEURRF1VI0iaUoqtqsX78eFhYWaNasGdzd3TF//nxNh0RRFEXVUjSJpdTu0qVLtCoBpdTFixeRmZmJ9+/fY9u2bdDX19d0SFQ12rlzJxiGgVAoxJs3b0q83qlTJzRp0kQDkSnHMAwWL16s0jynTp1SeZ6qjAco6s5w8eLFiIyMLPc8//77L7y8vKCvrw+GYXD06FGV11teMTExYBimwo09a4LFixezjUxFIpGmw9G4S5cugWEYXLp0iZ02Y8YMte8jmsRSFEVR1UosFuO7777TdBifFBYWhnHjxqk0z6lTp7BkyZIqiqhiEhISsGTJknInsYQQDBkyBHw+H8ePH0dYWBg6duxYtUFqibCwMFy8eFHTYdRIM2fORFhYGHr16qW2ZdIkthbq2bOn0hGwlDl06BBsbW0hEokUOqEv9vbtW7Rs2ZIdgakuYBgGSUlJ5S4vk8nQokULvH//vgqjqtucnJzK1QOFqu7cuYMePXqofbm1RUxMTLkG1fhQZmYmmjZtCrFYXEVRAT169MC+ffvYUdhqKh8fn0oNklJbJSQkIC0tDQMHDkTnzp3h4+MDExOTSi0zPz+/zC74tIWPj0+5RmOsixwdHeHj48N2o6kOGkliq+oLq6ocO3YMbdu2hb6+PqysrNChQwccPHhQY/GcPn1aab+rysyZMwe7d+9GTk6O0sZDK1aswOTJk8HhfPpQ6NSpE/bv369yvDVdcnIy6tevX+rrXC4XwcHB+Pnnn8u9TIZhoK+vD5FIBEdHR6xYsUIdoVZKWFgYOBwOfvzxR3baxIkTIRKJ2Aefz0ffvn1LXcbOnTthZ2cHQ0NDjBkzRmGQgfPnz6N58+YwMDCAh4cHTp48WaXbUx6LFi3C7Nmzy1X2U+cluVyOGTNmwNjYGFZWVli9enWpZa9cuYIOHTpAX19faRL94fEhEonwww8/lCtGdbhz5w78/f1Lfd3IyAjdunXDtm3bqiyGOXPmwMzMDHPnzi2zXOfOndGoUaMSyQ8hBK6urujduzc7LSEhAUOGDIGBgQGMjIwwdOhQ3Lx5EwzDYOfOnWy5Tp06Ke2XOSgoCE5OTgrTPr59n5eXh6+//hrOzs4QCoUwNTWFl5cXO7x1UFAQNm7cyM5b/Cir3+biKhRXr16Fj48PdHV1YWtri4ULF0Imk5W5fwDg4cOH6N+/P0xMTCAUCtGiRQvs2rWLff3SpUtsUjVmzBg2ptKqJSxevJhN3OfOnQuGYRT2y7Vr19C5c2cYGBhAT08P7dq1K/FZL642cvbsWYwdOxYWFhbQ09Or9A8jhmEwdepU7NmzB+7u7tDT00Pz5s1x4sSJEmWfP3+OESNGwNLSEgKBAO7u7ux7AxQdQ1ZWVpgyZQo7TSaTwcTEBBwOB+/evWOnr1q1CjweDxkZGSrHXLwvlD0+PA4LCgowb948tqtCW1tbTJkypcQ65XI5Vq5ciUaNGkEgEMDS0hKjR48uMXhM8XEVFhaGdu3aQVdXF05OTtixYwcA4OTJk2jVqhX09PTQtGlTpf2+f2ofFnv69Cl69OgBPT09mJubY+LEicjOzlZ5X1UI0QBHR0cSFhamiVWrbPfu3cTY2Jj88ccfJCsri8hkMnLjxg0yYcIETYdWLlwulyQmJip9LS8vj5ibm5P09PRyLatjx47kzz//VGN0lVdYWKjyPAAU9smePXvIl19+WeY8iYmJxMrKikgkEpXXERYWRnR1dcnp06dVjlVdZDIZadOmDfH29iYrVqwotVzLli3Jtm3blL724MEDYmJiQsLDw0lGRgbp1KkTWbhwISGEEIlEQoyMjMiePXuIXC4np06dIiKRiGRmZpYrvqo4J8TFxREbGxsik8nUEsPGjRtJy5Ytybt378jTp09JvXr1yL///qu0bHh4ONm7dy/53//+R7p3717i9Y+PwfJS9Xh//fo1EQgECtP+97//lXkMEELIrVu3SMuWLVWO71N27NhBAJDw8HCydu1aAkBhH3bs2JE0btyYfX7s2DECgJw7d05hOSdPniQAyMmTJwkhRecyd3d3YmRkRNavX09CQ0PJtGnTiIODAwFAduzYobCOjh07logtMDCQODo6KkwDQBYtWsQ+//LLL4menh5ZtWoVuXjxIjlx4gT58ccfyfr16wkhhLx48YIMHjyYACBhYWHso6CgoNR90rFjR2JmZkZsbGzIunXr2NgBkClTppQZz9OnT4mBgQFxcXEhu3fvJidPniTDhw8nAMhPP/1ECCEkMzOT3e/fffcdG1NcXJzSeOLi4sjhw4cJAPLVV1+RsLAwEhERQQgh5NKlS4TP5xNPT09y4MABcvToUdKtWzfCMAzZv38/u4zi9dna2pIJEyaQ06dPk0OHDhGpVKp0na9fvyYAyM8//1zqfireficnJ+Lt7U3++usvcurUKdKpUyfC4/HIy5cv2XKPHj0iRkZGpGnTpmT37t3k7NmzZPbs2YTD4ZDFixez5YYNG0YaNmzIPr958yYBQHR1dcnevXvZ6T179iTe3t5lxrZo0SKiLKV6//69wrEQFhZGVq1aRQCQyZMnE0IIkcvlpHv37oTH45GFCxeSs2fPkl9++YXo6+uTli1bKhw/EyZMIADI1KlTyZkzZ8iWLVuIhYUFsbe3J8nJyWy54uPKzc2NbN++nYSGhpI+ffoQAGTJkiWkadOm5M8//ySnTp0iPj4+RCAQkPj4eJX3YVJSErG0tCS2trZkx44d5NSpU+SLL75gP3sXL14ssU8CAwOJvr5+mfuzvGpFEuvo6EhWr15NGjVqRIyNjclXX32l8PqGDRuIq6srMTMzI6NHjyY5OTmEEELatm1Lzp49SwghZOfOnQQAeffuHSGEkBkzZpAffvihzPXKZDJibW1N1q1bV2Y5AGTTpk3E3t6emJmZkf3795N//vmHODs7EwsLC4UPtzp8mEwGBgaSmTNnks8++4yIRCLSrVs3kpaWRgghRF9fnwAgenp6pG3btiWWc+HCBdKqVSuFaUuXLiUODg7EwMCA+Pj4kPv377PTORwOEQgERF9fnz1BfqisWGQyGRk4cCCxsLAgJiYmZPDgwSQ1NZUQ8t8XbUhICKlXrx6xsrIiu3fvVrrtxWXXr19PrK2tSVBQEElJSSHdu3cnZmZmxNzcnIwfP17hQ79t2zZia2tLrKysyJYtW0okECNHjiSHDx8mMpmMfPXVV8TMzIwYGBiQli1bKpwU3NzcyK1btz79BpGSSYqXlxf5+eef2fg3bdpELCwsiJ2dHbl48SLZtm0bqVevHrG3tyeXLl0q1zpUsXnzZjJt2jQSGBhYagLz+PFjIhAISEZGhtLXv/32WzJx4kT2+b///kucnZ0JIYSkpKQQhmEUvqQsLCzIgwcPlC7r5MmTxMXFhZiYmJBFixYpnBPy8vLIlClTiLW1NbG1tSU//vgjO19WVhYZMmQIMTIyIi1btiQLFixQmiQSQsjvv/9OBg0apDBt0qRJxNramhgZGZGuXbuSN2/eEEIICQ4OJgzDEF1dXaKvr6/0M+vj46MwfeHChWTMmDFK111sx44dlUpiL168SNzc3Mj8+fOJmZkZWbx4MXn27Bnx8/MjRkZGxNramsybN09hnmXLlhELCwvi6OhI1qxZUyKJ9fX1JRERESQvL48MGzaMGBsbEyMjI9KuXTu2jFQqJfr6+uz5Ul0+TGLFYjGpX78+8fLyInK5nBBSMomVyWSkfv36pH///grL6dmzJ3FxcWHn27x5MwFAjh07plBu/Pjxak1imzRpQgYMGFDmNk6ZMkVpMlOajh07lho7h8Nhj1Fl8QwbNowIBAISGxurMG/Pnj2Jnp4e+1kODw8vsR/KUlpS6ePjQywtLUl2djY7TSqVkiZNmhA7Ozv2/Sh+n0ePHl2p9X0MALGysiJZWVnstKSkJMLhcBTOa927dyd2dnYlfkRPnTqVCIVC9ntp27ZtBAC7/5YtW0YaNWpE+vXrx362CwsLib6+Ppk/f36ZsZWWxH7s6dOnxMzMjPj7+xOxWEwIIeTMmTMEAFm5cqVC2QMHDhAAJCQkhBBCyJMnTxSS32K3bt0iABRiLD6u7ty5w05LTU0lXC6X6OrqKiSskZGRBIBCrlPefTh37lzCMAyJjIxUKNe1a9dqSWJrTZ3Y48eP49q1a4iKisL+/ftx9epVAMDBgwcREhKC8+fPIy4uDhKJBN9//z2AopGNistdu3YNzs7OuHbtGvvc19cXsbGxMDY2RmxsbIl1RkdHIzExEf369ftkfNevX8ezZ8+wefNmTJ48GX///Tc79OnUqVNLvS1kbGxc6qM41k85cOAA1q5di+TkZEilUmzYsAFA0bCgAPDy5UvcuHGjxHyPHj1CgwYNFKZ5eHjgzp07SEtLQ9euXTF69GgAwMKFC+Hn54edO3ciJycHc+bMUSkWoGjY0devX+P169fIzs7G0qVL2dcKCwsRHR2NN2/eYPfu3ZgyZQry8vKUrqOwsBCPHz/Gq1evsHnzZsjlckydOhXx8fF48OAB7ty5g82bN7PbOHv2bBw5cgSvX78usU8JIbh48SI+++wznD17Fjdu3MCrV6+Qnp6Obdu2KdQndHNzQ1RUlPI3oQw3btzAo0eP0Lx5czb+mJgYxMfHY/r06Rg5ciQeP36MN2/eYM6cOZgxY4bS5RQfq6U9lB3DAJCWloY1a9Z8slXz3r170adPH3YEt489fvwYTZs2ZZ83b94cr1+/Rn5+PszMzDB06FDs2bMHMpkM//zzD/T19dGwYcMSy0lOTsawYcOwbt06JCUlIS8vT+FW2Ndff43MzEw8e/YMt2/fxu7du/HPP/8AKKoekJWVhbi4OOzfv19hhLePKTu+fX198eTJEyQlJcHOzo4d0Wzbtm1wcHDAhQsXkJOTg6FDh5Zr+yszUEOrVq1ga2uLoKAgpfXVi7148QJ6enpITExkb78vW7YMKSkpuHz5Mv744w+25fipU6ewZcsW3LhxA5GRkex+K5aZmYnXr1+zt5xzc3ORkJCAlJQUhWomXC4XLi4uFTrey0tHRwfLli3DnTt38Ndffyktw+FwMHXqVJw4cYI9vl++fIkzZ85g8uTJ7HDDFy9ehIGBQYlz9YgRI9Qas7e3N06fPo1vv/0Wly5dQn5+vlqWW1rscrkcV65cKXW+CxcuoHPnzrC3t1eYHhQUhLy8PISFhaklPgDIzc3FrVu3MHjwYIWW5VwuF6NGjcLbt28RHR2tME95q72pwt/fHwYGBuxzKysrWFpasr1dFBQU4N9//8XAgQOhp6cHqVTKPnr16oWCggK22lCXLl0AFFWFAoBz586ha9eu6NKlC86dOwegqBpWbm4uW7YykpKS0KNHD1hbW+PIkSPsCIcXLlwAUPS+fejzzz+Hvr4+/v33XwBgG4x9XM7b2xvu7u5suWLW1tbw9PRkn5uamsLS0hItWrSAjY0NO93d3R0AKrQPL168iMaNG7Pfb8XU/dkrTa1JYmfMmAEzMzPY2dmhU6dObIOA7du3Y8GCBXB0dISuri7mz5+PQ4cOASj6wipOYq9fv47Zs2fj6tWryMnJwePHj9G6dWs4ODggIyMDDg4OJdZZ/MVSr149dpq3tzeMjY0hFAoV6szMmTMHQqEQgwYNQkZGBiZPngw9PT307dsX2dnZSEhIULpdGRkZpT58fX3LtW+GDh2KJk2aQCgUIiAgoNyNJTIzM0t0cxEQEAALCwvweDzMnz8fDx48YJPhysTC4XAwcuRI6Ovrw8jICDNnzlRIKAkh+P7776Gjo4Nu3bpBKBTi1atXStdBCMGSJUsgFAohFAphYWGBPn36QCAQwNraGl9++SW77EOHDmHw4MFo3bo1dHV1sWjRIoVlRUREwNnZGUZGRuDz+cjKysLTp0/B4XDQqlUrhf1jYGCgUp0oNzc3mJiYYMyYMVi+fDm6du3Kxr9gwQLw+XwEBAQgPj4e3377LXR0dBAQEIBHjx4pbWhXfKyW9lB2DAPA/PnzMWPGjE82zNi3bx+++OKLUl/PycmBoaEh+7z4/+LjY/DgwZg9ezYEAgGGDh2KzZs3Kx1W9tSpU/D29kavXr2go6ODxYsXs3WyCSHYsWMHfv31V4hEItjY2GDSpEnsZ/rw4cP47rvvYGBggIYNGyIwMLDUeJUd3yNGjICRkRGEQiHmzp1b7h+KpW2/Kp+ND125cgVv3rxBZGQk8vLyMHbs2FLL6unp4dtvvwWfz4dQKESDBg3QoUMH8Hg8NGjQAF988QW7HQcPHsSXX34JV1dXGBsb49tvv1VY1vnz5+Hv7w+GYcDn85GcnIxXr16Bx+OVGKJZ1eO9IoYNG4ZWrVphwYIFkEgkSsuMHTsWurq62LJlC4Ci4aV1dXUV9llqaiqsrKxKzPvhuVsd1q1bh7lz5+Lo0aPw9/eHqakpBgwYgOfPn1dquWXFXtYPnNTUVFhbW5eYXpyglDWvqtLT00EIUWl9yspWlrK2HQKBgP1BkZqaCqlUivXr14PP5ys8ilvFFw8n7ujoCBcXF5w/f55N+ouT2OKk/Pz589DV1UW7du0qFXd2djZ69eoFiUSC06dPK1wsSE1NBY/HK9HgiWEY1KtXj92vxX9Lew8+3v+mpqYlyuno6JSYXpxMFxQUsOsp7z5MTU1V+jlT92evNLUmibW0tGT/19PTY788YmNjERwczF6N8vX1ZXeur68vwsPDER8fDz6fj/79++PatWsICwtDixYtPtlqt/jD8mFL9tu3byMjIwNisVihsUFxfFwuF3w+X+FgFAqFyM3NreQeKF1p++ZTjIyMSlS+3rp1Kxo3bgwjIyPUq1cPhBCVToSlxSKVSjFjxgw4OjrC0NAQgwcPVliuQCBQSBDK2g4dHR2F/ZudnY3Ro0ezDY5mzZrFLjsxMVHhKsXHVyxCQ0PZhjedO3fGpEmTMGHCBFhaWmL27NkKX6zZ2dkwNjYu976Ijo5Geno6oqOjMXPmTKXbqqurCwDs9ujq6kIikSg0mKqMe/fu4fbt2xg/fnyZ5W7cuIH09PQyuz4RiUTIyspinxf/LxKJ8OTJE4wZMwbHjh1DYWEhQkNDMWrUKKVXhz9+T/T09NjPWnJyMvLz89GwYUP2Mz1//ny2Z4ikpCSFectqOa7s+F6+fDlcXV1haGgIb29vlY5tZdtf0b4O/fz82PPEunXrcOrUqVLfc2tra3C5XPZ5fHw8Bg4ciHr16sHIyAhr1qyp0PE+atQodO3aFQMHDoSdnV2JxmWqHu8VwTAMfvrpJ7x8+RIhISFKyxgZGSEwMBDbtm1DWloaduzYgREjRijEZmZmpnBRoZiyXkiEQqHSBkbF3xtl0dfXx5IlS/D06VMkJSVh8+bNuHnzZpmNIcujrNjLGs3PzMwMiYmJJaYXXzQxNzevVFwfKm7wpMr6iq+UVycTExNwuVwEBQUhPDxc6ePD81znzp3x77//4vLly5DL5ejUqRPc3d1hY2ODc+fO4fz58/Dz81P6g7y8JBIJAgIC8PLlS5w6darEecvMzAxSqRTJyckK0wkhSEpKYvdr8bFQ2nugrvdblX1oZmam9HOmSg9AlVFrktjS2NraYu/evQpXpIoTRhMTEzg5OWHt2rXw9fWFnZ0d0tPTcfr06XJd5XRzc4O1tTWOHz9eZfF/2DL840fxVeSq0rRpU4XbPzExMZg1axb27NmDjIwMJCYmgsPhsMl6ZU5Ie/fuxdWrVxEWFoasrCwcOnSowt2tfBzHqlWrkJaWhsjISGRlZWHVqlXssq2trREXF8eW/fB/ADhz5gy6d+/OPp85cyYiIyMRERGBs2fPKvTG8PTpU4XbydUtNja2zONFWcJ4+fJlPHv2DLa2tqhXrx4OHDiA5cuXl0hq9+7di8GDB5d5ovbw8FC4vXz//n04OztDV1cXDx8+RPPmzeHr6wsOhwM/Pz+4ubnh1q1bJZbz8XuSn5/PJmHm5uZsR/jFn+esrCycPn0aQNGv+w+rHnzcIvdDHx/fly9fxm+//YbTp08jMzMTt2/fVij/qeNb2fY3bty4zHnK48Or0Mp8HNd3330HCwsLPHv2DJmZmZgxY0a5j/fi26VA0Y/BpUuX4tmzZzh//jzWrVvHnnNkMhlevnxZLcd7ly5d0LVrVyxdurTUH67Tpk1DSkoKBg8ejIyMDEydOlXhdX9/f2RnZ5c4V+/bt6/EspycnPDs2TOFRDY1NVVplauyWFlZISgoCMOHD0d0dDRb/an4M6RKVYPSYudwOOjQoUOp83Xu3BkXLlwocadv9+7d0NPTg4+PT4Vj+pi+vj7atGmDw4cPKyxHLpfjjz/+gJ2dndLqQ9VNT08P/v7+uHfvHpo1awYvL68Sjw9/GHTp0gXv3r3DmjVr4OPjw1ZV6Ny5M44cOYLw8PBKVyUIDg7GpUuXcPjwYTRr1qzE6507dwYA/PHHHwrT//77b+Tm5rKvf/bZZ0rLhYeH48mTJ2y5ylJlH/r7++PRo0cl7gAr++xVBV61rEWJwsJC9tI1UHRCLU83Tx8LDg7G8uXL0aRJE9SvXx+JiYm4f/8+e7XBz88PW7ZswdatWwEAbdu2xbZt27B3795PLpvD4eCnn37CtGnTYGZmhr59+0JfXx/h4eEqx1mait6OVAcfHx/Ex8cjLS0NpqamyMnJAcMwMDMzg0QiwaJFi0pcbS6rq5iyZGdnQyAQwNjYGCkpKWodmSU7Oxu6urowMjLCmzdvsGnTJvbWeUBAAHx9fTFp0iR4eHhg2bJl7HxZWVl48eIFWrVqBaCo6yFCCFq2bAkDAwPw+Xz2ClhSUhIyMjLYsjExMXB2dsbr169LdMtTVRwcHFQ+XiZMmKAwetr06dPRoEEDfP311+w0qVSKv/7665Pdxo0YMQKdOnXC+PHj4eLiguXLl2PkyJEAgBYtWiAqKgq3bt1CmzZtEBYWVmqS16tXL3z11VcIDQ2Fv78/lixZwlaf4HA4CAwMxNdff42ff/4ZhoaGiI6ORnZ2Nry9vTFo0CAsW7YMBw4cQFJSEvbs2YNGjRopjbdr166YO3cuZDIZuFwusrOzwePxYGZmhtzcXIVjAfjv+C7+4v/YyJEj8fPPP+Ozzz5j60zv2bNHaVm5XI7CwkJIJBLI5XIUFBSwd2kePXoEqVSKJk2aICsrCzNmzEDXrl3LfaUnOzsb9vb2EIlEePjwIf744w/2y2vw4MGYNGkShg8fDnNzc6xcuZKd78mTJ2ydOKCoLpulpSXc3d1haGgIHo/HHu93795FgwYNFO6sVKWffvoJnp6eeP/+vdJjpmHDhujRowd7AeLj+nejR4/G6tWrMXr0aCxfvhwNGjTAqVOnEBoaWmJZo0aNwm+//YaRI0di/PjxSE1NxcqVKxXuBJWmTZs26NOnD5o1awYTExM8efIEe/bsQdu2baGnpwcAbOL/008/oWfPnuByuWjWrBl7y1YZMzMzTJo0CbGxsWjYsCFOnTqFrVu3YtKkSaVWEwKK6oifOHEC/v7++P7772Fqaoq9e/fi5MmTWLlyJXvL2sXFBbq6uti7dy/c3d3Zqjof1ossjxUrVqBr167w9/fH119/DR0dHWzatAkPHz7En3/+Wekrr1FRUWzVoQ+1bt0ajo6O5V5O8YUrPz8/TJo0CU5OTsjOzsaLFy/wzz//sHVQgaLEsLg7sA8HqejSpQtbXakySezPP/+MPXv24KuvvoK+vr5CN36Ghobw8PBA165d0b17d8ydOxdZWVlo3749Hjx4gEWLFqFly5YYNWoUgKILaxMmTMD69evB4XDQs2dPxMTEYOHChbC3t1e441dZ5d2HM2bMwO+//47evXtj2bJlsLKywt69e/H06VO1xVImtTQPU5GjoyMBoPA4ePBgmeU/7M3g4xbWmzZtIm5ubkQkEpEGDRqQX3/9lX1t7969BADbEu+3334jDMOwLePfvHlD9PX1FVqAfuzIkSOkTZs2RE9Pj1haWhJfX1/y119/sS0x8VFLY4FAQF6/fs0+NzIyIk+ePCnn3vm0j3sn+HBffNwa+uPYPjZ16lSyZcsW9vns2bOJoaEhsba2Jps2bVLYlqtXrxIXFxdibGystBVpWbFkZmaSHj16EH19fdKoUSPyyy+/sC2BlXUDVFoPFsrKxsbGkrZt2xJ9fX3i6elJFi1apND6OCQkhNja2hJLS0vy22+/sfvk8OHDZPjw4Wy58+fPkyZNmhB9fX1iaWlJpk6dyra2X7duHZk9ezZb9urVq8TR0bHULo9K2+8fx5+YmKjQojU9PZ0AIPn5+UqXW1nKeic4ceIEsbOzU9oVlb6+Prly5Qr7fMeOHcTGxoaIRCISGBio0AvEnj17SMOGDYlIJCKurq6ldtVFCCHHjx8n9evXJyYmJmTx4sUK73dubi6ZPn06sbOzI0ZGRsTLy4ucOXOGEPJf7wSGhoakZcuWZM6cOaRfv36lrqdPnz7svBKJhIwYMYKIRCLi5ORENm3apLDv//77b2Jra0uMjIzIgQMHSixLJpOR6dOnEyMjI2JhYaFwnvn4PHLx4sUS57jAwEBCSFGvDg0aNCB6enrEysqKjBw5stReAIp7J/jQ/fv3SdOmTYm+vj7x9/cn06dPZ5dNCCFLliwhFhYWxMHBgaxdu5Y93latWqXQk8HevXuJq6sr0dfXJzY2NmTp0qXsa7NmzWK7jVKnD3sn+NiIESMIAIXeCT5U3MNMab29vH37lgQEBBCRSEQMDAxIQEAAuXHjhtJW+bt27SLu7u5EKBQSDw8PcuDAgXL1TvDtt98SLy8vYmJiQgQCAalfvz6ZOXMmSUlJYcuIxWIybtw4YmFhQRiGIQAUvg8+Vtwjw6VLl4iXlxcRCATE2tqazJ8/v0SXfh/HQwghUVFRpG/fvsTIyIjo6OiQ5s2bK+2F4M8//ySNGjUifD5f6XI+VFZvAVevXiWfffYZ0dfXJ7q6usTHx4f8888/CmXKep/LWl9pj+LtgZJuxwgp+r748DNQvMyxY8cSW1tbwufziYWFBWnXrh1ZtmxZiflbtmxJAJDr16+z0+Lj4wkAYmZmxn7Xl6W03gkCAwNL3a4Pv6fy8/PJ3LlziaOjI+Hz+cTa2ppMmjSpRBeYMpmM/PTTT6Rhw4aEz+cTc3NzMnLkyBJdpn3c08eH+6p3794lpivbt+Xdh48fPyZdu3YlQqGQmJqakuDgYLZ7PK3sYouqOeLi4kjz5s3L3ZemNpkwYQLZtWvXJ8tJpVLSrFkzkpSUxE774YcfFJJ/SjO+/fbbEt3NfCg8PJx07dq1GiOqubp160YuX778yXKZmZmkcePGVfZDqqIGDRpEbGxsVOortzg5Km/XUppQWrJB1S7FSaxEIim1P9y6TiaTEYlEQkaPHq22JFZj1QmomsHOzq7c42lrm1atWpVrDGcul1uivs+8efOqKiyqDHFxcYiPj4e3tzfu3buH7du3l1k1yMvLC2fPnq3GCGuuzp07o23btp8sZ2hoiIcPH1ZDRJ8mFosRERGB27dv48iRI1i1ahX4fL6mw6KoUvH5fOjr62u0qmBNNWvWLKxduxZAUR1rdagxSWzfvn3ZPtA+dOLECaVDBFJUZX355ZeaDoFSkVgsRnBwMGJiYmBhYYE5c+awDZWospXWt3NNlpiYiHbt2sHQ0BBffvklvvrqK02HRFFKTZgwAX369AEAhd5EqP/Mnj2bbUehrn3EEFLBJuIURVEURVEUpSG1vostiqIoiqIoqu6hSSxFURRFURRV69AklqIoiqIoiqp1akzDrtpELpcjISEBBgYGGhlWj6Komo8QguzsbNjY2FRoIBdtQM+VFEWVR0XPl3U2iR04cCAuXbqEzp07Kx0hpCwJCQklxiSnKIpSJi4ursRY6XUFPVdSFKUKVc+XdTaJnTZtGsaOHYtdu3apPG/x2MpxcXHlGqqQoqi6JysrC/b29uz5oi4q3vaYmBh2KGhtIJPJEB0dDTc3N63pToluU80W9Ptt3HmTjp8DmsKRl6EV2/Sh9PR0ODk5qXy+rLNJrL+/Py5dulSheYtvixkaGtIklqKoMtXl2+jaeq6UyWQQiUQwNDTUmkSCblPNxtfVB0cghp7IACKeVCu26UMymQyA6ufLWllR68qVK+jbty9sbGzAMAyOHj1aosymTZvg7OwMoVAIT09PXL16tfoDpaharLCwEIsXL8bixYtRWFio6XAoiqIoSkGtTGJzc3PRvHlzbNiwQenrBw4cwIwZM7BgwQLcu3cPfn5+6NmzJ2JjY6s5UiA9txDfHLyPxwlZ1b5uiqoMiUSCJUuWYMmSJZBIJJoOh6Ioqs6io1IpVyurE/Ts2RM9e/Ys9fVVq1YhODgY48aNAwCsWbMGoaGh2Lx5M1asWKHy+sRiMcRiMfs8K6v8CeneW29w8O5bHLz7Fr6u5hjn54yODS3q9C1Gqnbg8XiYPHky+z9FURSlWTR1UKR130yFhYW4e/cuvv32W4Xp3bp1w40bNyq0zBUrVmDJkiUVmreTmyWeJmXj9MMkXHuRgmsvUtDQSoRxvvXRv6UNBDztqdNCaReBQICNGzdqOgyKoiiKUqpWVicoS0pKCmQyGaysrBSmW1lZISkpiX3evXt3fP755zh16hTs7OwQHh5e6jLnzZuHzMxM9hEXF1fueJrYGmHDiFa4/E0nBPs6Q1+Hi2fvcjDn7wdo/+NFrP/3OdJzaX1DiqIoiqKUszAQwNZYF0I+vfD1Ia27Elvs49v1hBCFaaGhoeVelkAgYK9Kbdy4kW1Fpwo7Ez0s7OOB6V0aYP/tWOy4HoPEzAL8eu4ZNl56gc897RHs6wwnc32Vl01RFEVRlPbaOKIVgKJW/E+epGg4mppD667Empubg8vlKlx1BYD379+XuDqrqilTpuDx48dlXrX9FEMhHxM6uODKHH+sGdoCjW0MUSCRY8/NN/D/9RIm7L6D8Jg0EEKrcVOalZubCz6fDz6fj9zcXE2HQ1EURVEKtC6J1dHRgaenJ86dO6cw/dy5c2jXrl2llr1x40Z4eHigdevWlVoOAPC5HAxoaYsTX/li3/g2+KyRJQgBzj5+h8+3hGHAphs48SABEpm80uuiqIqSSqWQSqWaDoOiKIqiSqiV1QlycnLw4sUL9vnr168RGRkJU1NTODg4YNasWRg1ahS8vLzQtm1bhISEIDY2FhMnTqzUeqdMmYIpU6YgKysLRkZGld0MAEXVHtq5mKOdizlevM/GtquvcfhePO7HZWDqvnuoZyjEqLaOGNbaHmYigVrWSVHloauri7dv37L/UxRFUZrx7d8P8DgxC193awhTTQdTg9TKJPbOnTvw9/dnn8+aNQsAEBgYiJ07d2Lo0KFITU3F0qVLkZiYiCZNmuDUqVNwdHSs1HorUye2PFwtDfBjQDPM7uaGPTffYO/NN0jKKsDPodFY++9z9G1mg6B2Tmhqp54EmqLKwuFwYGtrq+kwKIqi6ryXyTl48DYT2fkSmNK2XSyG0MqXKiu+EpuZmVmlQymKpTKcfJCInTdi8OBtJjvd09EEge2c0LNJPfC5WlcjhKK0QnWdJ2qy4n2QlpYGExMTTYejNkWNa57A3d1da4b+pNtUs32+5QbCY9KxcXgLOHLTtWKbPpSeng5TU1OVz5e18kpsXSHgcTGolR0GtrTFvbgM7LoRg1NRibj7Jh1336TD0kCAkT6OGO7tAAsDWtWAUq/CwkKsXbsWADB9+nTo6OhoOCKKoqi6jQ52oIgmsSqo6uoEpWEYBq0cTNDKwQQLerlj3+1Y7L0Vi/fZYqw69wzrLzxH98b1MMLbAW1dzOhoYJRaSCQSzJkzBwAwefJkmsRSFEVpCL1nrhxNYlVQFQ27VGVpKMSMLg0xuZMrTj8sqmpwLzYDJx4k4sSDRDiZ6WGYtwMGe9rBnDYEoyqBx+MhMDCQ/Z+iKIqiahL6zVRL6fA46N/CFv1b2OJhfCb2h8fi6L0ExKTm4cfTT/Hr2Wh086iH4d4OaOdiBg6HXp2lVCMQCLBz505Nh0FRFEWx6Hf5h2gSqwJNVSf4lCa2Rlhm2xTzerrj5INE7Lsdi8i4DJyMSsTJqEQ4mulhcCs7DGhpC3tTPU2HS1EURVGUCgx1+TDT14EOlwFo1QIW7Z2gAmpDq+PHCVnYHx6LIxHxyBb/11m9t7MpBrW0Ra9m1jAU8jUYIUVpt9pwnqhqtHeC2qMqt4kQgmyxFPmFMlgZCtnpN16moEAig4DHha4OF7r8ooe+gAdTfR1wK3kHkb5PtQftnYBS4GFjiKX9m+Dbno1wOioJh++9xY2Xqbj9Og23X6dh0fFH6OJhhYBWtvBrYEG76qJKyM3NZfuJjY+Ph76+voYjoiiqJpPJCc4/eYcniVmISclFUlYB3mWJ8S6rAHmFMng7meKviW3Z8tP+jERKjljpspzN9XHx607s8103YmAg5KFRPUO4WOpDwNOeBI6qOJrEajk9HR4CPO0Q4GmHxMx8HL2XgMMRb/H8fQ5OPkjEyQeJMNLlo5uHFXo1tUZ7V3Po8GhCSxXJzMz8dCGKouqcrAIJbr1KQ75Ehn7NbQAAHAb45uB9ZBUoH6r6445zGtsYIi23EIVSOfIkUuQXylEgkSG3UFqi28hNl17gXVZRwsvjMHCxEKGpnRG8nU3Rtr4ZrSpXR9EkVgU1tU5seVkb6WJSJxdM7FgfjxKycDgiHsfvxyMlpxAH777FwbtvYSDkoauHFXo1sYZfQ3P6a7cO09XVxbNnz9j/KYqqu2RygvCYNFx9nozrL1Lx4G0G5ASwM9Flk1iGYdC7mTUKpQQNrESwNhLCylCIeoZFf3V1FL9Pdo31VrouqUyO3ELF79meTazxODELTxOzkFUgRfS7bES/y8ahu2/R3N4Yx6a0Z8sWSuVadzFm4dGHePYuGzO7uEKk6WBqEJrEqqAmdLGlDgzDoImtEZrYGmFBb3eEx6ThdFQiTj9MwvtsMQ5HxONwRDz0dbjwbWAOfzdLdHKzRD0j4acXTmkNDoeDBg0aaDoMiqI0bN2/z/HHzTd4n61469/ZXB/tXMwglsrYCx4rBjWr9Pp4XA6MdBWT0MX9GgMoql+bmFmAJ4lZuPMmHbdfp6FtfTO2XK5YirYr/oWXkym6NLKAM792XnT62KOETETEZiA9TwIR7aCAVSVJbEFBAYRCmvDUBlwOA5/6ZvCpb4ZFfRvjbmw6TkUl4nRUEpKyChD66B1CH70DALhbG+KzRhbo2NASLeyNte6XLkVRFAW8zyqAhYGAHTgnJUeM99liGOny8VkjS7RzMUN7V3PYGFf/HRqGYWBjrAsbY110drcq8fqt16nIKpDiwtP3uPD0PfgcoHu0FENbO6Cdi3mlG4tRNYvakli5XI7ly5djy5YtePfuHZ49e4b69etj4cKFcHJyQnBwsLpWRVURDodBaydTtHYyxcLeHniUkIWL0e9xMfo9IuMy8CQxC08Ss7Dx4ksI+Rx4OZrCp74pfOqboZkdTWq1jUQiQUhICABgwoQJ4PNpbxYUpc2eJoux+X4kzjx6hwMTfODlZAoAGN3WER0aWKBDQ4saf573d7PE2ZkdcPZREk48SMTTpGyceJCEEw+SYGMkxE+Dm8GvgYWmw6TURG1J7LJly7Br1y6sXLkS48ePZ6c3bdoUq1evpklsLcPhMGhqZ4SmdkaY1rkBUnPEuPI8GReeJuP6ixSk5Rbi2osUXHuRAgAQ8jloaW+CFg7GaG5njBb2xrT6QS1XWFiIqVOnAgCCgoJoEktRWkguJzj1MBHbrr5CZNx/DTmvvUhhk1hXSwO4WhpoKkSVMAyDhlYGaGhlgIkdnHHi+n3cTdfB8fuJSMoqgJPZf72syOSk1lyZpX2hKqe2JHb37t0ICQlB586dMXHiRHZ6s2bN8PTpU3WtRqNqe8OuyjATCTCwpR0GtrSDXE7wIjkHN1+l/v8jDWm5hQh7lYqwV6nsPFaGAjSzM0YTGyO41ROhoZUBHM30a81Jo67jcrkYPHgw+z9V96xYsQKHDx/G06dPoauri3bt2uGnn36Cm5ubpkOjKokQgkvRyfjpzFM8TcoGAPA4wIAWthjrWx8eNrW/b2OGYeBqJkBfX3cs6O2Be7EZCr0YfPVnBIQ8LmZ0aQgHs9rRuwH99lSktiQ2Pj4erq6uJabL5XJIJBJ1rUajtKVhV2VxOP/90h3d1glyOcHz9zmIiE3Hg7cZiIzLRHRSFt5liXHu8Tuce/yOnVfA46CBVVFC62ymDwczPTiY6sHRTB8meny2DhaleUKhEAcPHtR0GJQGXb58GVOmTEHr1q0hlUqxYMECdOvWDY8fP6b9BtdyhTI5FhyJQkJmAQyEPAS1dYS3qRjtWjXRyh+tQj4XbV3+awD2LqsAZx4mQU6A4/cTMKS1PaZ91oDeQaxl1JbENm7cGFevXoWjo6PC9IMHD6Jly5bqWg1VA3E4DNzqGcCtngGGezsAAPIKpXiUkIX7cRl4mpSN6KRsPH+fjQKJHA/js/AwPqvEcgwEPNib6sHWRBdWhgJYGgiL/hoKYWkggJWhECZ6lR/FpaYSS2XIKZAiVyxDjliKHLEUuWIpsv//b65YComMgMMAHIYBwwAGQh7M9AUwE+nA0Uwfpvo6mt4MSoucOXNG4fmOHTtgaWmJu3fvokOHDhqKiqqo1BwxTPV1wDAMBDwu5vRohMeJWZjU0QWGQi6ePHmi6RCrjZWhEEentMcvZ5/hyrNk7LtVNMLlFH8XjPOrDyG/ZiXyAh4Hunxu0fcfrVvAUlsSu2jRIowaNQrx8fGQy+U4fPgwoqOjsXv3bpw4cUJdq6FqCT0dHttIrJhMThCXlofod9l4/i4bMal5iE3NQ2xaHpKyCpAtluJxYhYeJ5ZMcD9kIOTBWI8PY10dGOvxYaRb9DAQ8qFXPHShDlfh/+K/XA4DPpdT9JfDAZfLgMcpfnDA+f82C3JSdLuNEEBOSNFz/PdcJicQS+UolMohlsohlshQKJNDLCl6XiiTQSyRKySjOWIpsgsU///wNYms8mcmCwMBPKwN0d7VDB0aWsDNyoBe3abUpnjwC1NT00+UpGoSQggOhMdh+akn+L6PBz73sgcADGhpiwEti0blq4vV5JrZGWP3WG/cfp2GlWee4s6bdPxy9hn+uvMWIaM90ahezalSsX9C0UhnRcPOpn6idN2htiS2b9++OHDgAH744QcwDIPvv/8erVq1wj///IOuXbuqazVULcblMHAy14eTuT66N66n8FqBRIa36Xl4k5qHhMwCJBcPV5hdgPdZYrzPLkBKTiEAILugKAGMQ74mNqPK6ekUjR1uIOBBX8CDvoALkYAPkYALPpcD+QeJdI5YitQcMZKzxUX7LVuMy9nJuPwsGT+cego3KwN87mWHzz3tYaSnWsOsvLw8tp/Y58+fQ0+vdtQZo6oGIQSzZs2Cr68vmjRporSMWCyGWPxfX6JZWUU/SGUymVYlScXbUhu2KSY1FwuOPsLNV2kAim6dD2xhXeLHbW3apvIq7zZ5Ohhh/3hv/PMgET+ejkZ+oQz1DAQ1cl9o4/sEVHx7GEIIvTCtouI6sZmZmTA0rDm/1LSdRCZHZr4EGXkSZOZLkJlfyP6fnidBrliKvEIZ8gv//69EhvxCGft/gUQGqbwo+ZPI5JDJCaRyAqlMDnk5PgUMU1SpnsMw4HAYCHgcCHjc///LgQ6PAwGfCwGXAwG/aJr+/yeiBgIeRAIeRMIPngv/f9oH0/V1eBWuLpErluLZu2xExGbg2vNkXH+ZikKpHAAgEvAQ2M4R43zrw6ScVQ5yc3MhEhWNDZOTk0PrQKpI284TU6ZMwcmTJ3Ht2jXY2dkpLbN48WIsWbKkxPSwsDD2WKKqByEEp5/nYNvddBTKCARcBiObG6NfIwOtrZKlDvkSOeKzJHA1Kxr2lhCC+0kFaF5PSO9qVaGcnBy0bdtW5fMlTWJV8GHvBM+ePdOaLyeqqJsZGSGQygiYD+qcchgGHAa18uSVmS/BiQcJ2BP2hm19bKzHx5zujTCstT04n/gik8lkiIqKAlDUVZ42NvaoStqUxH711Vc4evQorly5Amdn51LLKbsSa29vj+TkZJiYmFRHqNWi+DugYcOGNfJzkSuW4rtjj3D8fiIAoJ2LGZYPaAwH09LvptT0baoIdWzT4Xvx+OZQFPo1t8bSfo1hINTMQKfLTj7Bq5RcTO1YH7r577TqfQKA9PR0WFhYqHy+rNS7YWJiUu4v97S0tMqsqkagvRNoLw6HAQcMalhd/kox0uXjizaOGN7aAeeevMOqs88Q/S4b849E4eDdOKwZ2gKOZqVfXeVyuWjRokX1BUzVOIQQfPXVVzhy5AguXbpUZgILAAKBAAKBoMR0LperVV+4xWrqdj1MTMc/DxLB5TCY28MN4/3ql/u7uqZuU2VUZpsy86Xgchgcv5+IyLhMrBveEi3sjdUbYDlExGXiflwGvvB2gC60732q6LZUKolds2YN+39qaiqWLVuG7t27o23bogrIYWFhCA0NxcKFCyuzGoqiKoHDYdC9cT10bmSJ3WFvsOrcM9yLzUCvtVexpH8TBLSyrZVXmqmqN2XKFOzbtw/Hjh2DgYEBkpKSAABGRkbQ1a3+IUep8mnnYo7venugmZ2RQuNaSnXj/OqjpYMxpv0Zidi0PHy+5QaWD2iKIa3tNR0aBTVWJwgICIC/vz87wk+xDRs24Pz58zh69Kg6VlMjaNNtQqrueZueh1kH7uN2TNHdkaFe9lg6oDEEPMVfwhKJBHv37gUAfPHFF3TELhVpw3mitB83O3bsQFBQ0CfnL94HaWlpWled4MmTJ3B3d68xV8P+uPkGnzWyhI1xxX5c1MRtqix1blNmvgRzDz3AmUdFP+SC2jnhu97u4HGrZxje/huv435cBkJGtoINUrXqfQKKqhOYmpqqfL5U294PDQ1Fjx49Skzv3r07zp8/r67VUBRVSXYmevhzgg9md20IDgMcuBOHEVtv4X12gUK5wsJCjBkzBmPGjEFhYaGGoqU0qaibuZKP8iSwVPWQywmWn3yM744+RODvt5FXKNV0SFrJSJePTV+0wswuDQEAu8JiEBGbUX0B0OZLSqktiTUzM8ORI0dKTD969CjMzMyUzEFRlKZwOQy+6twAvwe1hoGQh7tv0tF/w3U8e5f9XxkuF7169UKvXr206hc/RWmLQqkcM/+KxNarrwEAAZ520NWmiv01DIfDYHqXBtgy0hMLernD27n6q2rQml+K1NbMbsmSJQgODsalS5fYOrE3b97EmTNnsG3bNnWtRi1OnDiB2bNnQy6XY+7cuRg3bpymQ6IojejkZoljU9pj3O47eJWci8+3hOH3IC94OppCKBTi5MmTmg6RoiglJDI5Ju+9i/NP3oPHYfBTQDMEeCrv+oxSrx5NFPs5f5dVgOwCKVwtaTdy1U1tV2KDgoJw48YNGBsb4/Dhw/j7779hZGSE69ev16hbT1KpFLNmzcKFCxcQERGBn376SSt6TqCoiqpvIcLfE9uhpYMxMvMlGLH1Fs4/fqfpsCiKKoVMTjDzQCTOP3kPAY+DbYFeNIHVkIy8QozafgtDfgtD1NtMTYdT56i1w7M2bdqwDUFqqtu3b6Nx48awtS0aaq9Xr14IDQ3F8OHDNRwZRWmOib4O9o3zwZR9Ebjw9D2+/OMufh7cDINa0S9GiqppVp2LxokHieBzGWwZ5YlObpaaDqnOkhNAyOciLbcQw7fexO5gb7RyUH8jxmNTfQHQYWc/prYrsbGxsWU+1OXKlSvo27cvbGxswDCM0l4PNm3aBGdnZwiFQnh6euLq1avsawkJCWwCCwB2dnaIj49XW3wUVVvp6nDx2yhPDPa0g0xOMPuv+3DpMhINGjRAXl6epsOjKOr/jfRxREMrEdYNawl/msBqlKm+DvaN94FPfVPkiKUI+v02HiXQK7LVRW1XYp2cnMrsa1Jd4/zm5uaiefPmGDNmDAICAkq8fuDAAcyYMQObNm1C+/bt8dtvv6Fnz554/PgxHBwcoKxHsYr2kZmbmwsDAwN2/sLCQkgkEvB4PIUOv3NzcwEAurq64HCKfjdIJBIUFhaCy+VCKBRWqGxeXh4IIRAKhWzDG6lUCrFYDA6Ho9CPoypl8/PzIZfLIRAIwOMVHSIymQwFBQUqlWUYBnp6/40QU1BQAJlMBh0dHba7JlXKyuVy5OfnA4DCEKhisRhSqRR8Ph86OjoqlyWEsEmanp5eifdTlbLlee/VcZwoez/VcZxIC8VY1NMFQh4Hf9yKhcxrON6npiEnJwcMw1T4va/scVLa+1nZ4+TD97Oyx0lp7ydFqZu1kS5OTvMDv5q6d6LKJhLw8HtQa4zefht33qRj1PbbODDBBw2sDDQdmtZT2yfg3r17iIiIYB+3bt3Cli1b0LBhQxw8eFBdq0HPnj2xbNkyDBo0SOnrq1atQnBwMMaNGwd3d3esWbMG9vb22Lx5MwDA1tZW4crr27dvYW1tXeY6xWIxsrKyFB4AYGNjg5SUFLbczz//DJFIVKKvXEtLS4hEIoUr0hs3boRIJEJwcLBCWScnJ4hEIjx58oSdtnPnTohEIgwbNkyhrIeHB0QiESIiIthpBw4cgEgkQr9+/RTKtm7dGiKRSOGq9IkTJyASidClSxeFsh06dIBIJEJoaCg77cKFCxCJRGyjvWI9e/aESCRS6Jni5s2bEIlEaN68uULZgIAAiEQihSonUVFREIlEaNCggULZUaNGQSQSISQkhJ328uVLiEQihSvpAPDll19CJBJh7dq17LTExESIRCIYGxsrlJ01axZEIhF++OEHdlpmZiZEIhFEIhGk0v+6p1mwYAFEIhEWLFjATpNKpWzZzMz/fm3/8MMPEIlEmDVrlsL6jI2NIRKJkJiYyE5bu3YtRCIRvvzyS4Wytra2EIlEePnyJTstJCQEIpEIo0aNUijboEEDiEQidlhYANi7dy9EIlGJH3fNmzeHSCTCzZs32WlHjhyBSCRCz549Fcq2bdsWhgYG6KCfiDHtHAEAZt2nwLXXeHTo0EGhbJcuXSASiXDixAl22tWrVyESidC6dWuFsv369YNIJMKBAwfYaRERERCJRPDw8FAoO2zYMIhEIuzcuZOd9uTJE4hEIjg5OSmUDQ4OhkgkwsaNG9lpsbGxEIlEsLRUvEI1depUiEQi/Pzzz+y0lJQU9v380Ny5cyESibBkyRJ2Wl5eHlv2wyvTS5YsgUgkwty5cxWWYWNjA4pSl+svUnD2//soBUAT2BpGT4eH38e0RjM7I6TlFuKLbbcQl6a+O1g/nn6KyXvv4mE8vcr7IbV9Cpo3b67w8PLywvjx4/HLL79g3bp16lpNmQoLC3H37l1069ZNYXq3bt1w48YNAIC3tzcePnyI+Ph4ZGdn49SpU+jevXuZy12xYgWMjIzYh709HamD0m4Mw+D7vo0xsaMLAMC0ywTkObTXcFQUVTfFpuZhyr4ITNhzF+doo8say1DIx64x3nCzMoCAz4FYKlfbsq+/SMGpqCQk59A+uz+kthG7SvP8+XO0aNGiSm6tMQyDI0eOYMCAAQD+q+96/fp1tGvXji33ww8/YNeuXYiOjgYAHD9+HF9//TXkcjnmzJmDCRMmlLkesVgMsVjMPs/KyoK9vT0SEhJQr149Wp2AVifQmuoExe9ncVlCCH49G40NF4uuDs/v1QgTOrio/N7XxeoEiYmJsLGxqdUjdlUWHbGr8nLFUgzadAPR77LR3N4YByb4QFgFfcHSEbvUJymzADwuA3OR4NOFy6nv+muIis/EttGeqCdP0ar3Caj4iF1qqxNbfIu9GCEEiYmJWLx4cYlbxVXt4zquhBCFaf369Stxu70sAoEAAoEAGzduxMaNG9n6vfr6+grL1dHRYb/wPvThl2MxPp+vdBhPVcp++MVfjMfjsUlCRcsqGxOdy+UqjU2Vsh8mVhUpy+FwlJYtfn8qWpZhGKVllb2fqpQFlL+f6jhOlL2f6jhOFOrHSqU4cuQIHAFM/6wp1l54iR9OPQWXw0Gwr3O1HielvZ+VPU5Kez8re5wAyt9PilLVkn8eIfpdNiwMBPhtpGeVJLCUetUzUjwvxaXlwd605HmYqjy1JbHGxsZKk0d7e3vs379fXaspk7m5ObhcLpKSkhSmv3//HlZWVpVe/pQpUzBlyhT26gJFaTOxWIwhQ4YAAHJyckDAYN2FF/jficfgcRgEtnPSbIAUpeXOPkrCX3fegmGADcNblkiOqJpv7603WHL8MZYNbIIhXhWvikhAh51VRm1J7MWLFxWeczgcWFhYwNXVVekVn6qgo6MDT09PnDt3DgMHDmSnnzt3Dv3796/08j++EktR2ozD4aBjx47s/zO7NoRUTrDp0kssOv4IXA6DkT6OGo6SorRTSo4Y8w4XNdyc4FcfberT4dtro7ScQhTK5Fh49CEa2xiisU3lLoDRUWcVqS27ZBgG7dq1K5GwSqVSXLlypUTL5orKycnBixcv2OevX79GZGQkTE1N4eDggFmzZmHUqFHw8vJC27ZtERISgtjYWEycOLHS66ZXYqm6RFdXF5cuXVKY9k13N8jkBL9deYXvjj4Ej8NgmLeDZgKkKC124n4CUnML4WZlgFndGmo6HKqCpvi7IiI2HRejkzHpjwicmOYLQ2HJal9UxagtifX390diYmKJbm0yMzPh7++vtquXd+7cgb+/P/u8uEujwMBA7Ny5E0OHDkVqaiqWLl2KxMRENGnSBKdOnYKjY+WvGNErsVRdxzAMvu3ZCBIZwe/XX2PekShwOQw+r8RtMoqiSgpq7wxLQyGczPQh4NF6sLUVh8Ng9dAW6LP+GmLT8rDk+GP8OqT5p2ekykVtvRNwOBy8e/cOFhYWCtOfPXsGLy+vEg2/arPiK7F1udUxVbcRQrD4+CPsCnsDhgFWDWmOgS3pELUfoucJ2jtBbUK3qWqFx6RhyG9hIATYMtITPZrUU2n+AokMhABchuBZ9NMasU3qpLHeCYoHHWAYBkFBQQotemUyGR48eKDQ3RVFUbVDfn4+O7hFWFiYQg8DDMNgcb/GkBGCP27GYvZf98FhGPRvYVva4iiKKod/n7xDc3tjtXbPRGleaydTfNnBBVsuv8T8I1HwcjJR6T0u7pWC3glWVOkktrhuKCEEBgYGCl90Ojo68PHxwfjx4yu7mhqBVieg6hK5XI779++z/3+MYRgs7dcEMjnBn7fjMPNAJHgcDno3K3sEPIqilHubnofJeyOgw+PgxFe+cDSj3bRpk5ldGyDsZQq6N6kHE72S3fJRqqt0Ertjxw4ARcOlfv3111rdNyJt2EXVJUKhEGfPnmX/V4bDYbB8QFNIZQQH777FtP33wOUAPZrQRJaiVPVzaDTEUjla2BvDgfYrqnUEPC7+ntQOvAoMGbzqbDTiMwoQ3J72CPMhtTXsWrRokboWRVFUDcDlctG1a9dPluNwGPwY0AwyOcHhe/GYuu8eNn7BoHtj1ep8UVRd9io5B//cTwAALOzjUaLfdUo7fJjASmRyyOSkXANYnH/yHo8Ts9CnmRUsPlm67qhUEtuqVSv8+++/MDExQcuWLcv80EVERFRmVTUCrU5AUcpxOQx+/rw5ZITgWGQCpuyNwOaRnujqUflBRiiqLth48SXkBOjcyBJNbOmdPm0XEZuOeX9Hwb+RJb7t2UjT4dRalUpi+/fvzzbkGjBggDriqdFodQKqLpFKpQgNDQUAdO/e/ZODlnA5DH79vDkIAY7fT8DkvXexZaQnOrvTRJaiyhKXloejkfEAgK86V+8w7ZRmpOYUIvpdNl6l5GCEtwMczGj1kYqoVBL7YRUCWp2AorSLWCxGnz59ABQNMlKekfd4XA5WDWkOOSE48SARk/6IwJZRrfBZI5rIUlRptlx+CZmcwK+BOVrYG2s6HKoadPWwgl8Dc1x9noJfzkZj3fCWZZang84qp3rt4k8oLCzE27dvERsbq/DQBhs3boSHhwdat26t6VAoqspxOBx4eXnBy8sLHE75TxU8LgdrhrZA76bWKJTJMXFPBC5Gv6/CSCmq9tPhcTC5k6umw6CqUXE1guP3ExD1NrNc8zB04FkFaktinz17Bj8/P+jq6sLR0RHOzs5wdnaGk5MTnJ2d1bUajZoyZQoeP36M8PBwTYdCUVVOV1cX4eHhCA8PV+g6rzx4XA7WDGuBnk3qoVAmx5d77uLys+QqipSiarflA5vi9vzO8KlvqulQqGrU2MYIA1rYAAB+PPMEahp7qk5RWxI7ZswYcDgcnDhxAnfv3kVERAQiIiJw7949rWjURVGUavhcDtYNb4nuja1QKJVj/O47uEITWYpSylhPh/ZIUAfN7uYGHS4H11+kIuxVqqbDqXXU1sVWZGQk7t69i0aNaCs7iqKK8LkcrB/eClP2ReDc43cYv/sOtge2hm8Dc02HRlEa9yY1F3mFMrhb181hiSnA3lQPQ1vbY8/NNzgVlYh2LsrPjX+ObwOZnECPz8HL5/RiQDG1XYn18PBASkqKuhZHUZSG5efno3379mjfvj3y8/MrvBwdHgcbR7RCF3dLiKVyjNsdjhsv6LmConbdeIOea69i1dloTYdCadDETi7YEdQa/+vfpNQyxno6MBMJoMNTe1OmWk1te+Onn37CnDlzcOnSJaSmpiIrK0vhoQ1owy6qLpHL5bhx4wZu3LihdNhZVejwONj4RSt81sgSBRI5xu4KR9hLeuuMqrsIIQh9lAQAtF/YOs7WWBf+jSxpdZIKUFt1gi5dugAAOnfurDCdEAKGYbRigADaTyxVlwgEAhw5coT9v9LL43GxeWQrTNxzFxejkzF2Zzh2jGkNn/pmlV42RdU2D+OzEJ+RD10+Fx0a0jGYqCIFEhnEUjmMdPkK0zdceI6krAKMauOgochqJrUlsRcvXlTXoiiKqgF4PJ7aBzEpSmQ92d4Kxu4Mx84x3vB2pq2yqbrlzKNEAIB/I4tyDTtKab+/wuPww+knGOplj3m93BVeO/EgEU+TstHN3RL0bPkftSWxHTt2VNeiKIrSYkI+F7+N8sT43Xdw9XkKgnbcxq6x3mjtRE/NVN1x4WlR45xuHvU0HAlVUxjr8ZGRJ8GBO3GY2bUh/XFTDmpLYh88eKB0OsMwEAqFcHBwUMstSYqiqodMJsPVq1cBAH5+fuBy1XdCFfK52DraC+N23cG1FykI+v02dtJElqojMvMkeJpU1FaknSutTkMV6exuBVtjXcRn5OOf+wn43Mte0yHVeGpLYlu0aFFmpWQ+n4+hQ4fit99+g1AoVNdqKYqqIgUFBfD39wdQNOysvr6+WpfPJrK7w3H9RSoCf7+N34NoHVlK+92OSQMhQH0LfVga0O9DqgiXw2BEGwf8HBqNg3ff0iS2HNTWO8GRI0fQoEEDhISEIDIyEvfu3UNISAjc3Nywb98+bN++HRcuXMB3332nrlVSFFWFGIaBh4cHPDw8qqzVrK4OF9sDW8OvgTnyCmUI2nGbdr9Fab22Lmb4PcgL33Rz03QoVA0zqJUtGAa4/ToNcWl57HR2MC/ag4ECtV2JXb58OdauXYvu3buz05o1awY7OzssXLgQt2/fhr6+PmbPno1ffvlFXautVhs3bsTGjRu1oqcFivoUPT09PHr0qMrXU3xFtrix15id4dgW6AW/BrTFNqWdRAIePmtkpekwqBrI2kgXbeub4cbLVByLjMfUzxpoOqQaTW1XYqOiouDo6FhiuqOjI6KiogAUVTlITExU1yqr3ZQpU/D48WOEh4drOhSK0ipCPhchoz3xWaOiARGCd93Bpej3mg6Loiiq2g1saQsAOHwvHoS9BEspo7YktlGjRvjxxx9RWFjITpNIJPjxxx/ZoWjj4+NhZUV/fVIUVVJxP7JdPaxQKJVjwu67uPD0nabDoii1epdVgDXnn+H8Y3psU8r1bGqNWV0bYs3QFuy0XWO9cXWOPzwdjDUWV02ktuoEGzduRL9+/WBnZ4dmzZqBYRg8ePAAMpkMJ06cAAC8evUKkydPVtcqKYqqQvn5+ejXrx8A4Pjx49DV1a3ydQp4XGwc0QrT/ryHM4+S8OWeu9j0hSe6etAfv5R2iIzLwJrzz+FhbYgu9LimlBAJeJjWWbEaQT2jogaAtDqjIrUlse3atUNMTAz++OMPPHv2DIQQDB48GCNGjICBgQEAYNSoUepaHUVRVUwul+P8+fPs/9VFh8fB+hEtMWN/JE5GJWLSH3exYUQr9GhC+9Okar+XyTkAgIZWIg1HQlG1n9qSWAAQiUSYOHGiOhdZZQYOHIhLly6hc+fOOHTokKbDoagaRyAQ4I8//mD/r058Lgdrh7UAl8Pg+P0ETNkXgXXDWqJ3M+tqjYOi1C0hIx8AYGeip+FIqJpMLic49TARV54lY1Hfxth29TXyCqUY5UOHnf2QWpNYAHj8+DFiY2MV6sYCYG9L1hTTpk3D2LFjsWvXLk2HQlE1Eo/HwxdffKG59XM5WD20BXgcBofvxWPa/nuQEYJ+zW00FhNFVVZSZgEAwNqY9g9LlY5hgB9PP8Xb9Hx0b1wPe2+9wftsMfo0rQfaydZ/1JbEvnr1CgMHDkRUVBQYhmFb1BX3L1nT6nH4+/vj0qVLmg6DoqgycDkMfv68OTgcBofuvsWM/fcglxMM+P/WuxRV2yRk/H8Sa0STWKp0DMOgk5sF/rgZi0vRyZDKi3IqHpdBzcqmNEttvRNMnz4dzs7OePfuHdu/5JUrV+Dl5aVysnjlyhX07dsXNjY2YBgGR48eLVFm06ZNcHZ2hlAohKenJzs8JkVR6iGTyRAeHo7w8HCN/gjlchisDGiGYa3tISfAzL8icejuW43FU5eU51xMqSYlRwwAdKQu6pM6NbQEAFx69h4SWVG7BD5XbWmbVlDb3ggLC8PSpUthYWEBDocDDocDX19frFixAtOmTVNpWbm5uWjevDk2bNig9PUDBw5gxowZWLBgAe7duwc/Pz/07NkTsbGxbBlPT080adKkxCMhIaFS20lRdUVBQQG8vb3h7e2NgoICjcbC4TD4YWBTjGjjAEKAbw7dx4Hw2E/PSFXKp87FlOpyxVIARS3QKaosbV3MoMPlIC4tH9kFRccNj0MrE3xIbZ8imUwGkaiotaW5uTkSEhLg5uYGR0dHREdHq7Ssnj17omfPnqW+vmrVKgQHB2PcuHEAgDVr1iA0NBSbN2/GihUrAAB3796t4JaUJBaLIRaL2edZWVlqWzZF1VQMw7ADmFTVsLOq4HAYLB/QBDwOg91hbzD37yhI5QRftCk5yAqlHp86F1Oq2z+hLbLFErbLJIoqjb6Ah9bOJrj+IpWdxqVJrAK1XYlt0qQJHjx4AABo06YNVq5cievXr2Pp0qWoX7++ulaDwsJC3L17F926dVOY3q1bN9y4cUNt6/nQihUrYGRkxD7s7e2rZD0UVZPo6ekhJiYGMTEx0NOrGS2pGYbBkn6NMaa9EwBgwZGH2Hn9tWaDoigVNLUzQjsXcwj5XE2HQtUCxVUKitHqBIrUdiX2u+++Q25uLgBg2bJl6NOnD/z8/GBmZob9+/erazVISUmBTCYrMfKXlZUVkpKSyr2c7t27IyIiArm5ubCzs8ORI0fQunVrpWXnzZuHWbNmsc+zsrJoIktRGsIwDL7v4wE+l4OQK6+w+J/HKJDKMbGji6ZDq/NKu2slk8lqXOPeyijeltq0TYQQREZGIjo6Gubm5rC0tERISAgKCgowa9YshIaG4uTJk7C0tMS+ffswf/58mJiYwMfHB02aNMHbt2/h4OAAIyMjTW9KudXG9+ljfg3MFJ5zmaIGXrV5m5Sp6PaoLYnt3r07+3/9+vXx+PFjpKWlwcTEpEpuRX68TEKISusJDQ0td1mBQACBQICNGzdi48aNWnfwUFRtwzAM5vVsBAGPg/UXXuDH008hlsgxrbNrjaj6UFetWLECS5YsKTH9xYsXbHUzbfLs2TOVyktkBKeeZ4MQoK+bQZXdGs7MzATDMLh69SrOnDkDPp+PVatWYefOnbC1tYWxsTGkUikGDx4MgUAAmUyG7t27o0ePHgCAJ0+eoEOHDkhJSUFqaipu3bqFo0ePIj4+HuPGjcOjR48AAC1atICzs3OVbIM6qfo+1SSEEPw+0BYMgNQ8GZJiX4FhmFq9Tcrk5ORUaD6GFPeFVUFjx44tV7nff/+9QstnGAZHjhzBgAEDABRVJ9DT08PBgwcxcOBAttz06dMRGRmJy5cvV2g9qsjKyoKRkREyMzNhaGhY5eujKE0oKCjAsGHDAAD79++HUFgz6/BtuPAcv5wtOqFP7uSCb7q71YhEVtvOEx+fi5VRdiXW3t4eycnJMDExqYYoq4dMJsOzZ8/QsGFDcLnlrxaQVyhF0yVFo+A9XNQVujrqqVJACMG7d+8AABMmTIC+vj7mz58PW1tbGBgYgM/nf3IZqmxTQkICbty4gbi4OIwZMwbjxo1D586dMXToUJiamqplm9Shou9TTaaN2wQA6enpsLCwUPl8WekrsTt37oSjoyNatmyJSubD5aKjowNPT0+cO3dOIYk9d+4c+vfvX6XrpldiqbpEJpPh2LFj7P811dTPGkDI52LZySfYdOklCiRyLOzjXiMSWXU4c+YMRCIRfH19ARSdh7Zu3QoPDw9s3LixRiWHxXetPsblcrXqC7eYqtul80EuKQNT6X1CCMGaNWtw5swZ+Pn5Yf78+Thy5Ah0dHQqvMzybJO9vT2GDh3KPt+7dy9OnTqFmJgYhIaGQk9PD7179672kf5Ko43Hn7ZtU0W3pdJJ7MSJE7F//368evUKY8eOxciRIyv9SywnJwcvXrxgn79+/RqRkZEwNTWFg4MDZs2ahVGjRsHLywtt27ZFSEgIYmNjq3zI2ylTpmDKlCnsFRaK0mY6OjoICQlh/6/JxvnVh4DHwcJjj/D79dcolMmwtF8TcLSgJe8333yDn376CQAQFRWF2bNnY9asWbhw4QJmzZqFHTt2VNm6P3UuplQj4HGhw+OgUCpHdoEERrqfvkL6MblcjhMnTmDr1q2YM2cOxo8fj5kzZ7Kva+Kzqqenh8GDBwMAnJyccODAAcycORO//voroqKi4O3tXe0xUXUEUYOCggKyb98+0qVLF6Knp0c+//xzcubMGSKXyyu0vIsXLxIAJR6BgYFsmY0bNxJHR0eio6NDWrVqRS5fvqyOTSnThg0biLu7O2nYsCEBQDIzM6t8nRRFld/+22+I07cniOPcE+TrvyKJVFaxc5A6ZGZmquU8oa+vT16/fk0IIWTRokUkICCAEELI3bt3iZWVVWXDLFN5zsVlKd4HaWlpVRpndZNKpSQqKopIpVKV5/Vado44zj1Bot5mqDRfVlYW2bFjB8nNzSW//vqr2vdpZbapNOnp6WTGjBlk4MCB5O3bt2pbbnlVxTZpmjZuEyGEpKWlVeh8qZa+GgQCAYYPH45z587h8ePHaNy4MSZPngxHR8cKVdbt1KkTCCElHjt37mTLTJ48GTExMRCLxbh79y46dOigjk0p05QpU/D48WOEh4dX+booilLd0NYOWDWkOTgMcPDuW8z6KxLS/x/pprbS0dFBXl4eAOD8+fNs94KmpqZV3md1ec7FlGqKr75m5kvKPU9oaCiGDBkCfX19CIVCzJo1q0ZVIymNsbExVq9ejfXr18PExATz5s3Dw4cPNR0WpUXUPmQIwzBgGAaEEMjltfvLg6LqMrlcjidPngAA3N3dweHUjv4JB7a0g4DHxbQ/7+FYZAIKpXKsHdYSOrzaEf/HfH19MWvWLLRv3x63b9/GgQMHABS1uLazs9NwdJSqLA0EePE+B0mZnx4FLzQ0FGFhYZg3bx66detWa+t529raAihqdLZs2TJ07twZw4cPr7XbQ9Ucajmri8Vi/Pnnn+jatSvc3NwQFRWFDRs2IDY2Vqu6Vdm4cSM8PDxK7U+WorRJfn4+O1xzfn6+psNRSa+m1tgy0hM6XA5OP0zCpD/uokBScxunlWXDhg3g8Xg4dOgQNm/ezCYEp0+fZrtEomoPOxNdAEB8RtmfqXXr1uHChQv4+uuvIRAItCLhc3Z2xvbt2zF8+HD8+OOP+OWXX2p0o1Gq5qt0F1uTJ0/G/v374eDggDFjxmDkyJEwMzP79Iy1mLZ1nUNRyuTm5sLJyQkAEBMTA319fc0GVAGXnyVjwu47EEvl8GtgjpBRXmrr1uhT6Hniv31Q3Ge4tpDJZHjy5Anc3d1VblX9OCELmfkSNLASwVyk2HpfKpVi5cqVMDIywuTJk6s1ca3MNlUEIQTbt29HWloa5syZUyXrqO5tqg7auE1AURdbpqam1d/F1pYtW+Dg4ABnZ2dcvny51H5aDx8+XNlVURRVjfT19ZGcnKzpMCqlY0ML7BjTGuN23cHV5ykI2nEb24NaQyRQe00qtcrKymJP5J+q91pXE+TaysOm9Pdr0aJFcHd3xxdffKEVV17LwjAMxo0bBwBYvXo1DA0NMXbsWK3fbkq9Kn0mHz16dJ056Gg/sRRV+7RzMcfusd4I2hGOW6/TMHr7Lewc6w1DoerdG1UXExMTJCYmwtLSEsbGxkrPseT/Rymk56Pa79atW7h37x6WLVtWZ75PPzRt2jSsWrUKy5cvx3fffafpcKhaRC2DHdQVtJ9YiqqdvJxMsXdcG4z+/TYiYjMwctst7B7rDWO9mtn/7YULF9j+ti9cuFAnExttdiwyHo8SshDs64yLp47i77//xtatW+vs+8zlcvHNN99ALpdj06ZN6NatG1xdXTUdFlUL1Ox7ahRFaUxBQQGCg4MBANu3b6+xw86WV3N7Y+wb3wajtt/Gg7eZGBZyE3+Ma1OiXmJN0LFjR/b/Tp06aS4QqkqEXHmFh7EpkLy5hwkD/DFkyJBa0/tHVeJwOOjXrx+CgoKwcuVKtGrVStMhUTUc/dRQFKWUTCbDvn37sG/fPq25Zd3Yxgj7J/jAwkCAp0nZGBZyE++zPt3VkSYtXLhQ6f7PzMzE8OHDNRARVVktbfSQfOwnPInPgLW1NU1gP2BnZ4dDhw7B0NAQb9++1XQ4VA1HPzkqoF1sUXWJjo4OVq9ejdWrV9f4YWdV0dDKAAcm+MDaSIgX73Mw5LcwJHyiuyNN2r17N9q3b4+XL1+y0y5duoSmTZsiJiZGc4FRFWYheQ+DVr2RYd5E06HUSMbGxnBxccHcuXPxxx9/aDocqgajSawK6IhdVF3C5/MxY8YMzJgxA3x+zW0EVRH1LUT468u2sDPRRUxqHob8Foa4tDxNh6XUgwcP4OTkhBYtWmDr1q345ptv0K1bNwQFBeHatWuaDo9SQWFhIYKCgtC3gyd0nVvhaVI20nMLNR1WjcQwDHbv3o2IiAjExsZqOhyqhqJJLEVRdZK9qR7++rItnMz08DY9H59vCcOrZNWHya5qRkZG2L9/P6ZNm4Yvv/wSa9euxenTp7F06VKt6idS2xFCEBgYiICAANS3tUQDy6KBgK48r93d2FUlLpeLVatWISMjA2fOnNF0OFQNRJNYiqKUksvliImJQUxMjNYOIW1jrIu/vmwLV0sRkrIKMOS3m4hOytZ0WCWsX78eq1evxvDhw1G/fn1MmzYN9+/f13RYVDlJpVIkJSVh+fLl6Nu3LwCgq4cVAODso3eaDK1WcHNzw/r16xEZGanpUKgahiaxFEUplZ+fD2dnZzg7O9e6YWdVYWkoxIEJPnC3NkRKjhjDQsLwMD5T02GxevbsiSVLlmD37t3Yu3cv7t27hw4dOsDHxwcrV67UdHhUOSxevBiXLl1C/fr12Wk9mtQDALzNyEclB87UegKBALt370Z0dLSmQ6FqGJrEqoA27KLqGj09Pejp6Wk6jCpnJhLgz/Ft0NzOCOl5EgzfehN336RrOiwARVfxHjx4gMGDBwMAdHV1sXnzZhw6dAirV6/WcHTUp9y5cwcpKSklepJoamuEC7M74tiU9nW2f1hVmJmZYciQIRg/fjyys2ve3RJKM2gSqwLasIuqS/T19ZGbm4vc3Fzo6+trOpwqZ6yngz/GtYG3kymyC6QYtf0Wwl6majosnDt3DjY2NiWm9+7dG1FRURqIiCqvpKQkuLi4YN26dSVeYxgG9S1EGoiq9mIYBkFBQQgODqZXrykANImlKIpiGQj52Dm2NXxdzZFXKEPQjtu4FP1e02GVytzcXNMhUKWQSCQYO3YskpOTP9lFXVaBBNkFkmqKrHZr3749ZsyYoTV9V1OVQ5NYiqKoD+jp8LAt0AudG1lCLJVj/O47CH2UpLF4ZDIZfvnlF3h7e6NevXowNTVVeFA1U0hICAIDA9GwYcMyy2269ALey89jz8031RRZ7deuXTvMnTsX8fHxmg6F0jCaxFIUpZRYLMb48eMxfvx4iMViTYdTrYR8LjaP9ETvptaQyAgm743AsUjNfGEuWbIEq1atwpAhQ5CZmYlZs2Zh0KBB4HA4WLx4sUZiosr24sULBAUFYejQoZ8sa64vQIFEjr03YyGRaWcvIFUhODgYM2bMoNUK6jiaxFIUpZRUKsW2bduwbds2SKVSTYdT7XR4HKwd1gKDWtpCJieYcSASf4XHVXsce/fuxdatW/H111+Dx+Nh+PDh2LZtG77//nvcvHmz2uOhyiaTyTBp0qRyf2b6tbCBuUgH8Rn5OPEgoYqj0x4eHh4YN24cJBJaDaMuo0msCmjvBFRdwufzsWzZMixbtkzrRuwqLx6Xg18+b47h3g4gBFj773PkFVZvQp+UlISmTZsCAEQiETIzi7r/6tOnD06ePFmtsVCftnfvXgQEBMDIyKhc5YV8Lsa0dwYAbLn0il5ZVEH37t2xfPlyJCVprroPpVk0iVUB7Z2Aqkt0dHSwYMECLFiw4JMNU7QZh8Pgh4FNML1zA/wxrg30dHjVun47OzskJiYCAFxdXXH27FkAQHh4OAQCQbXGQpWtoKAAAQEBGDdunErzjfRxhEjAQ/S7bJx+SBMyVQwaNAgLFizQdBiUhtAklqIo6hMYhsHMrg3hbF79XY0NHDgQ//77LwBg+vTpWLhwIRo0aIDRo0dj7Nix1R4PVbpFixbh7t274PFU+6FjpMvHWN+iq7G/hEbTurEqaN68OXx8fOgV7Dqqei8pUBRVaxBCkJKSAqCoKyfaIbtm/Pjjj+z/gwcPhr29Pa5fvw5XV1f069dPg5FRH3r16hVevXqFDh06VGj+8X7O+OPmGyRk5uNRQhZa2BurN0AtNnbsWOzevRuBgYGaDoWqZjSJpShKqby8PFhaWgIAcnJy6sSAB7VBmzZt0KZNG02HQX3ExMSkUiOoGQj52DC8JVwsRbAyFKoxMu3H5XJx8uRJ+Pv7w8HBQdPhUNWIJrEVUHzbIisrS8ORUFTVyc3NZf/PysqinYurqPj8QG9zar/U1FSsXbsWS5curdRy2rnSwSsqau7cuTh8+DBmzJih6VCoakST2AooHrfZ3t5ew5FQVPVQNuwpVT7Z2dnlbqlO1U47d+5Ue68111+kQMjnwNORDmhRHp6ennB2dkZaWhodBKQOoUlsBdjY2CAuLg4GBgZsPcHWrVsr9Frw4fOsrCzY29sjLi4OhoaGVRLTx+tX93yfKlfa66pML20fVsf+KytWdc1X1fuwth6DqsxbVjlVX1PlGARU34eEEGRnZ9MfAHVEr1691Lasv+7EYc6hB7A31cWpaX4wENbNLu5U9ejRI4SGhmLZsmWaDoWqJjSJrQAOhwM7OzuFaVwuV+GL7ePnAGBoaFhlCYSy9alzvk+VK+11VaZ/ah9W5f4rK1Z1zVfV+7C2HoOqzFtWOVVfq8gxCKi2D+kVWO336NEjDBs2DFwuV23L7NGkHtaef464tHx8f+wRVg9tobZlazNfX18sXboUhBDaELWOoF1sqcmUKVPKfF7d61f3fJ8qV9rrqkyn+7By+7C27j9V5i2rnKqv1cRjUJmgoCBcuXJF02FQpfjf//6n1gQWAAyFfKwd1gIcBjhyLx5H7r1V6/K1FcMwWL9+Pa2HXocwhL7bVS4rKwtGRkbIzMys0iuJ2oruv8qj+7DyNLUPAwICcPLkSdjb22PMmDEIDAyEra1tta2/Mor3WVpaGkxMTDQdjtrIZDI8efIE5ubmmDlzJv78888qWc/qc8+w9t/nEPI5ODSxHZrYVt2V/eJtcnd3V3tSXp2SkpLw559/YubMmVqzTR/Sxm0CgPT0dJiamqp8fqVXYquBQCDAokWL6Og6FUT3X+XRfVh5mtqHf//9N+Lj4zF16lQcPHgQTk5O6NmzJw4dOkTHjdcwCwsL7Nixo8qWP61zA3Rys0CBRI7xu+/gfXZBla1LW1hZWeHUqVP0amwdQZPYaiAQCLB48WKaQFQQ3X+VR/dh5WlyH5qZmWH69Om4d+8ebt++DVdXV4waNQo2NjaYOXMmnj9/Xu0xUcC0adOQn5+vMO3KlSvo27cvbGxswDAMjh49qnTeTp06YcuWLWUun8thsG54S7hY6CMxswChdEjaT2IYBn379sW7d+80HQpVDWgSS1EUVUskJibi7NmzOHv2LLhcLnr16oVHjx7Bw8OjUh3tU6ojhODFixclqknk5uaiefPm2LBhQ6nzpqWl4caNG+jbt+8n12Mo5GNbYGusGtIco9o6VTbsOmHq1KlIS0vTdBhUNaBJLEVRVA0mkUjw999/o0+fPnB0dMTBgwcxc+ZMJCYmYteuXTh79iz27NlT6Y72KdXk5+djyJAhJab37NkTy5Ytw6BBg0qd9+TJk2jevDlbt/n48eNo0KABdHV14e/vj127doFhGGRkZAAALp84iLGfNcGJEyfg5uYGPT09BAQEIDc3F7t27YKTkxNMTEzw1Vdf0UFJUHQ19ptvvtF0GFQ1oF1sURRF1WDW1taQy+UYPnw4bt++jRYtWpQo0717dxgbG1d7bHVZbGwsBg4cWKF5jx8/jv79+wMAYmJiMHjwYEyfPh3jxo3DvXv38PXXX5eYJy8vD+vWrcPWHXsw/2A4Tm5bgAEDB8LUxASnTp3Cq1evEBAQAF9fXwwdOrRS21bbMQwDLpcLqVSq6VCoKkaTWIqiqBps1apVGDJkCIRCYallTExM8Pr162qMitq6dSs6d+6s8nxisRihoaH4/vvvAQBbtmyBm5sbfv75ZwCAm5sbHj58iOXLlyvMJ5FIsHnzZiQRI7zXTwXftS0uXr6EuPgEWJubwMPDA/7+/rh48WKdT2IBYNmyZZDL5ZoOg6pitDpBDZKdnY3WrVujRYsWaNq0KbZu3arpkGqduLg4dOrUCR4eHmjWrBkOHjyo6ZBqnYEDB8LExASDBw/WdCi1RvFt3gYNGmDbtm1qW65UKsXYsWPx4sULtS2TUo+CgoIKdbV24cIFmJmZoWnTpgCA6OjoEkPWent7l5hPT08PLi4uaO9qjl1jvKFraAaOgSWC9z7E2/Q8AEUt89+/f1+BrdFOtH9l7UeT2BpET08Ply9fRmRkJG7duoUVK1YgNTVV02HVKjweD2vWrMHjx49x/vx5zJw5E7m5uZoOq1aZNm0adu/erekwag2pVIpZs2bhwoULiIiIwE8//aS2RiU8Hg+Ojo60nmMNNH/+/ArN92FVAgBKR5dS1j0Un//f0LNtXcwQ4GkHHp+Hx4lZ6LfhOsJepoJhGHr18f/p6uri5MmTmg6DqmI0ia1BuFwu9PT0ABT9ypfJZLSvOxVZW1uzdQYtLS1hampKW6mqyN/fHwYGBpoOo9a4ffs2GjduDFtbWxgYGKBXr14IDQ1V2/K/++47zJs3jx7HNcjr169x+/ZtlecjhOCff/5Bv3792GmNGjVCeHi4Qrk7d+58cllWhkI4m+ujsY0h0nILMXL7LcSn539yvrrCxcUF6enpmg6DqmI0iVVBefr/27RpE5ydnSEUCuHp6YmrV6+qtI6MjAw0b94cdnZ2mDNnDszNzdUUfc1QHfuw2J07dyCXy2Fvb1/JqGuO6tx/dUVl92lCQoLCCFp2dnaIj49XW3zr1q3D1atXYWNjAzc3N7Rq1UrhQVW/p0+foqBA+cADOTk5iIyMRGRkJICihDcyMhKxsbG4e/cucnNz0aFDB7b8l19+iadPn2Lu3Ll49uwZ/vrrL+zcuRMASlyh/RifWzSS14AWNjAU8mAm0lHL9mkDDoeD7du3azoMqorRhl0qKO7/b8yYMQgICCjx+oEDBzBjxgxs2rQJ7du3x2+//YaePXvi8ePHcHBwAAB4enpCLBaXmPfs2bOwsbGBsbEx7t+/j3fv3mHQoEEYPHgwrKysqnzbqkt17EMASE1NxejRo9VaP7EmqK79V5dUdp8qu1vyqeRDFQMGDFDbsij1yMvLg4uLi9LX7ty5A39/f/b5rFmzAACBgYGwt7dH7969weP999Xr7OyMQ4cOYfbs2Vi7di3atm2LBQsWYNKkSeUaWENXh4vVQ1sgPiMf383chwIUXfE98SAR3RvXgw6v7l6rGjp0KNuAjtJShKoQAOTIkSMK07y9vcnEiRMVpjVq1Ih8++23FVrHxIkTyV9//VXREGu8qtqHBQUFxM/Pj+zevVsdYdZYVXkMXrx4kQQEBFQ2xFqnIvv0+vXrZMCAAexr06ZNI3v37q3yWGuDzMxMAoCkpaVpOhS1Sk9PJw8ePCBSqVSl+Zo2bUoOHDjwyXLLli0jdnZ2FQ2PnH2URBznniD+v1wkF568I3K5/JPzSKVSEhUVpfI21WRBQUHk8uXLWrVN2vg+EUJIWloaAUAyMzNVmq/u/kRTs8LCQty9exfdunVTmN6tWzfcuHGjXMt49+4dsrKyAABZWVm4cuUK3Nzc1B5rTaWOfUgIQVBQED777DOMGjWqKsKssdSx/yhF5dmn3t7eePjwIeLj45GdnY1Tp06he/fumgi3ytAqKorGjRwJo/XrgcTEcs9TWFiIgIAA9OzZs8RrmzZtQnh4OF69eoU9e/bg559/RmBgYIXjk8nlMBfp4FVyLsbsDMeATTdw4em7OtfGok+fPuByuZoOg6pCtDqBmqSkpEAmk5W49W9lZYWkpPKNd/327VsEBweDEAJCCKZOnYpmzZpVRbg1kjr24fXr13HgwAE0a9aMrdu4Z88etjsbbaaO/QcUdZwfERGB3Nxc2NnZ4ciRIyW6AKoryrNPeTwefv31V/j7+0Mul2POnDkwMzNTWwwymQyrV6/GX3/9hdjYWBQWFiq8XtUNvspTRaWuEWdlweHkScjGjwfs7Mo1j46ODhYtWqT0tefPn2PZsmVIS0uDg4MDZs+ejXnz5lU4vh5NrNHO1RwbLrzA7rAY3I/LwNidd+BqKcKw1vYY294ZHI76qrzUVI0aNUJKSoqmw6CqEE1i1UxZVynlrR/n6enJNgaoyyqzD319fet8FzOV2X8A1NqyXlt8ap/269dPocW5Oi1ZsgTbtm3DrFmzsHDhQixYsAAxMTE4evRotdT3W7VqFYKDgzFu3DgAwJo1axAaGorNmzdjxYoVVb7+mmhEjx6AGq9Gr169GqtXr1bb8gDAUMjH/F7umNChPrZefYU9YW/w4n0O/nmQiHF+9dlyT5Oy4GIh0spW3v/++y8EAgF8fX01HQpVRWgSqybm5ubgcrklrni9f/9eqxpmVSW6DyuH7j/1qwn7dO/evdi6dSt69+6NJUuWYPjw4XBxcUGzZs1w8+ZNTJs2rcrWXVyd4ttvv1WYXloVFbFYrNBosLh6lEwmq/193SYmstUHmP8fHY3cvQt2q6ytix41jIkuD3O6NcSkDvXxz/0EWBoKIZPJUCCR4ezjd5j51wMwDCDS4aJFPQG2N2yo6ZDVxsjICMnJybX/2PtA8bZo0zYBFd8emsSqiY6ODjw9PXHu3DmF8bTPnTun0LE1VTq6DyuH7j/1qwn7NCkpia0OIxKJkJmZCaCovt/ChQurdN2qVlFZsWIFlixZUmL6ixcvIBKJqizO6mC5aRMsN28GAMwDsBKAzaRJ7BVMsaMjCp2dNRVeucgJQVq+DGl5MmSKZZB/UEX2HYAUUws887PQWHzqlpycDIlEgmfPnmk6FLXTtm3Kycmp0Hw0iVVBTk6OwvCPxf3/mZqawsHBAbNmzcKoUaPg5eWFtm3bIiQkBLGxsZg4caIGo65Z6D6sHLr/1K+m71M7OzskJibCwcEBrq6uOHv2LFq1aoXw8PBydcGkDuWtojJv3jy2Symg6Eqsvb09XF1dYWJiUuVxVqn58yEbMwYA0CQ4GIFRUdjSqBF+XbQITVxcauyVWABIyMjHzhtv8HdEPLLzJeADMAdgbSSEt5MJbE10YSHSgak8Ew0bNtSaxlBisRjx8fFatU0ymQzPnj3Tqm0CUPGBKdTbSYJ2u3jxIgFQ4hEYGMiW2bhxI3F0dCQ6OjqkVatW5PLly5oLuAai+7By6P5Tv5q+T+fOnUuWL19OCCHk4MGDhMfjEVdXV6Kjo0Pmzp1bpesWi8WEy+WSw4cPK0yfNm0a6dChwyfn19Yutl4dP04IQOJOnSKDBg0iv/zyS43s8iguLZfMO/yAuM4/SRznniCOc08Qnx/Ok19Dn5JH8ZkKXW9pY9dNt27dIhcvXtSqbdLG94mQinexxRBSx/rcoCiKqsVu3ryJGzduwNXVtcoak32oTZs28PT0xKZNm9hpHh4e6N+//ycbdmVlZcHIyAhpaWm1/0rsB74fPx5Ltm2D/PZtcLy8sG3bNhw7dgwbNmyAk5OTpsNDXqEUmy6+RMiVVyiUFTV09alvigkd6qNjQ0twlfRMIJPJ8OTJE7i7u2vNFb558+ahdevW6N+/v9Zskza+T0DRlVhTU1NkZmbC0NCw3PPR6gQURVG1iI+PD3x8fKptfZquTlETJeTm4uHo0fCwtgbDMBg/fjw+++wzTJ48GZ9//jmCgoLUOmqbKkIfJWHJ8UdIyCwaFtenvilmdmmINvXV1+1bbZGRkaFSQkTVPjSJpSiKquGePXuGS5cu4f379yW6kKvqbraGDh2K1NRULF26FImJiWjSpAlOnToFR0fHKl1vTdayfXu8sLGBxwd1YF1cXPDPP//gl19+wbBhw7B+/XpYWlpWW0xZBRIsOf4Yf0e8BQDYGutiYR8PdG9spbGEWtMWLFhA+4nVcrQ6AUVRVA22detWTJo0Cebm5qhXr55CQsIwDCIiIjQYXdm0tTqBWCzGgwcP0KpVK6W3dO/fv4/Zs2fjq6++qpZeLO7FpmPqvnuIz8gHhwEmdHDB9M4NoKtT/tvN2nibev78+RgxYoRWbZM2vk9AxasTaGP/xhRFUVpj2bJlWL58OZKSkhAZGYl79+6xj5qcwGqzu3fvYteuXaW+3rx5c5w8eRI3btzAuHHj2P5yq8L+27EY+ttNxGfkw8FUD3992Rbf9mykUgKrre7du6fpEKgqRpNYiqKoGiw9PR2ff/65psOgPuDs7Iy3b9+WWUYgEOCnn35CYGAgBgwYgMuXL6s1BqlMjoVHH+Lbw1EolMnRo3E9nJruBy8nU7Wup7YSi8Vo3LixpsOgqhhNYimKomqwzz//HGfPntV0GNQHLCwsyj2UqZ+fH44dO4Z9+/bh66+/RkFBQaXXXyCRYfLeCOy5+QYMA8zu2hCbvmgFkYA2cylWWFiodOANSrvQI56iKKoGc3V1xcKFC3Hz5k00bdoUfD5f4fWqHHaWUo5hGAgEAsjl8nLVSzQwMMBvv/2Gf/75B3369MHPP/+Mli1bVmjdOWIpJuy+gxsvU6HD5WDd8Jbo0aRehZalzUJCQtCsWTNY19ABKCj1oEksRVFUDRYSEgKRSITLly+XuCXNMAxNYjXk3r17ePjwoUrJaN++feHj44Np06ahadOmmDNnDni88n8N5xVKEfT7bdx5kw59HS62BnqhnYt5RcLXehEREQgMDFQ6PDKlPWh1AoqiqBrs9evXpT5evXql6fDqLB8fH/z7778qz2dhYYF9+/bBzs4Offv2VRjyuCxiqQxf7rmLO2/SYSjkYd94H5rAluGLL77Qqh4xKOXolViKoiiKUlHr1q3RsGHDCs3LMAxGjx6Njh07YurUqejduze+/PLLUvtzlcsJpv8ZiavPU6Cnw8WOMd5obm9ciei1W3p6OqRSqabDoKoBTWIpiqJqmFmzZuF///sf9PX1MWvWrDLLrlq1qpqioj7E5/Mxffp0bNq0CTo6OhVahqOjI44dO4Z169YhICAAGzZsgI2NTYlyv5yNxplHSdDhcrB1tBc8HekVxrIcO3asRN1xSjvRJJaiKKqGuXfvHiQSCft/aerqSEw1haOjI27evIkOHTpUeBkcDgczZsxAt27dEBQUhHHjxmHIkCHs68ci47Hp0ksAwMrBzdDelVYh+JQLFy5gw4YNmg6DqgY0iaUoiqphLl68qPR/qmbp27cvkpOT1bIsDw8PnDhxAsuWLcOJEyewdu1axOdxMOfQAwDAxI4uGNDSVi3r0mYSiQQ7duwAl8uFTCbTdDhUFaNJLEVRFEVVQNOmTXHlyhXIZDK1DAGqo6ODpUuX4tatWxgwaBAyG/SG2NQdnzWyxDfd3dQQsfbbvXs3DA0N6QAhdQRNYimKomqwgQMHKq02wDAMhEIhXF1dMWLECLi50SRHE+7cuYPc3Fz06dNHbcts06YNPMetwLa1P6Fhd1esGtIcXA6tOlIe//zzD/bs2aPpMKhqQrvYoiiKqsGMjIxw4cIFREREsMnsvXv3cOHCBUilUhw4cADNmzfH9evXNRxp3TRmzBjs3r1brcs8//gdDkelwqzzOKwL8oWxnvKGY4cOHULTpk2hq6sLMzMzdOnSBbm5uQgKCsKAAQPwww8/wMrKCsbGxliyZAmkUim++eYbmJqaws7ODr///rta464JgoKCYGBgoOkwqGpCr8RSFEXVYPXq1cOIESOwYcMGcDhF1x3kcjmmT58OAwMD7N+/HxMnTsTcuXNx7do1DUdb95ibm2Pnzp1qq1KQK5bi+2MPAQAT/OqX2hdsYmIihg8fjpUrV2LgwIHIzs7G1atXQQgBUNS4yc7ODleuXMH169cRHByMsLAwdOjQAbdu3cKBAwcwceJEdO3aFfb29pWOuyb4448/0KtXL02HQVUjhhQf8VS5yeVyJCQkwMDAgLYOpihKKUIIsrOzYWNjwyafFWFhYYHr16+X6JP02bNnaNeuHVJSUhAVFQU/Pz9kZGRUMmr1ysrKgpGREdLS0rSq43mZTIYnT57A3d0dXC4XDx48wP79+/HDDz9UetnLTjzGtmuvYW+qi7MzOkJXR3liHBERAU9PT8TExMDR0VHhtaCgIFy6dAmvXr1ij71GjRrB0tISV65cYbfByMgI27Ztw7Bhw0psU22TnZ2NwYMH48yZM+z3cm3fJmW0cZuAor59TU1NkZmZCUNDw3LPR6/EVkBCQoLW/HKlKKpqxcXFwc7OrsLzS6VSPH36tEQS+/TpU7b1tVAopD+oNahp06aYPXs2xGIxBAJBhZfzOCELO27EAACW9m9SagILAM2bN0fnzp3RtGlTdO/eHd26dcPgwYPZHwuNGzdW+PFkZWWFJk2asM+5XC7MzMzw/v37Csdbk1y9ehVTp06ln4M6hiaxFVBc3yYuLk6lXwwURdUdWVlZsLe3r3T9vFGjRiE4OBjz589H69atwTAMbt++jR9++AGjR48GAFy+fBmNGzdWR9hUBTAMgwULFiA7O7tSSeyK008gkxP0aloP/m6WZZblcrk4d+4cbty4gbNnz2L9+vVYsGABbt26BQAlOvtnGEbpNLlcXuF4a4q8vDy4urpWeAQ1qvaiSWwFFP/SMzQ0pEkspbUKCwvZ26Pz58+v8KhEdV1lrwytXr0aVlZWWLlyJd69eweg6KrazJkzMXfuXABAt27d0KNHj0rHSlVcp06dsGHDBgwfPhxmZmYqz3/9RQquPk8Bn8vg2x7u5ZqHYRi0b98e7du3x/fffw9HR0ccOXJE5XXXdiEhIbCxsaFJbB1Ek1iKopSSSCRYsmQJAOCbb76hSayGcLlcLFiwAAsWLEBWVhYAlPjx7ODgoInQqI+0bNkSixcvxvr161WajxCClWeeAgC+aOMIBzO9T85z69Yt/Pvvv+jWrRssLS1x69YtJCcnw93dHQ8ePKhQ/LWRRCLBiRMnEBoaqulQKA2gSSyl1XLEUrxJzUVsah5i0/KQnC1GWm4hUnMLkZ5XiFyxFBIZgUQmh0QmB5fDQMjnQsjjQqjDhakeH5YGQlgYCGBlJISLuT5cLUWwMBBofd0rHo+HyZMns/9Tmkfv/NRs7du3x+XLlyGVSlX6zNx4mYr7bzMh5HMw9TPXcs1jaGiIK1euYM2aNcjKyoKjoyN+/fVX9OzZEwcOHKjoJtQ6hYWFOHDggFY1cqLKj34zUVqBEIKY1Dw8jM/Eo4QsPErIxJPEbKTkiKtkfQZCHjysDeHpaAJPRxO0cjCBib52XakUCATYuHGjpsOgUNQf6F9//YXY2FgUFhYqvBYREaGhqChl5s+fjwMHDmDo0KHlnmfzpZcAgKFe9jAXla9Orbu7O86cOaP0tZ07d5aYdunSpRLTYmJiyhtijRQREYEtW7YgJCRE06FQGkKTWKpWkssJnr3Pxq1Xabj1OhW3X6chJadQaVlTfR04mOrB0UwP9QyFMNHXgam+Dkz1dCAS8sDncqDD5YDPYyCVEYilMhRI5MgrlCEtV4z3WWK8zxYjPiMfr5JzEJuWh+wCKW69TsOt12kAAIYBWtgbo3MjS3zWyAru1rT7NUo91q1bhwULFiAwMBDHjh3DmDFj8PLlS4SHh2PKlCmaDo9SIioqCiKRCL179/5k2Yfxmbj2IgVcDoNxfvWrITrtIJFIMHfuXOzbt0/ToVAaRJNYqtbIK5Ti6vMU/PvkHS48TS5xlVWHx4G7tSEa2xQ/jFDfQh+GQn4pS6yYAokMr1NyEfU2E3ffpOPOmzS8TM7FvdgM3IvNwC9nn6GBpQgBnnYY2NIWVoZCta6fqls2bdqEkJAQDB8+HLt27cKcOXNQv359fP/990hLS9N0eJQS8+bNw8yZM9GrV69P/pjddzsWANCzST3Ym366Liz1n61bt8LCwkLTYVAaRJNYFWzcuBEbN25k+2akql5WgQShD5NwMioRN16molD6X3cwunwuvJxM0MbZFG3qm6GZnREEvKqvFyXkc+FubQh3a0MMaV3UX3BSZgEuRr/Hv0/e4+rzZDx/n4MfTz/FyjNP0b1xPUzoUB8tHWpXZ++5ubkwNjYGAGRkZEBfX1+zAdVRsbGxaNeuHQBAV1cX2dnZAIq63vLx8cGGDRs0GR6lhL6+PkJCQnDkyBH069ev1PqauWIpjkcm4P/au+/wpsr2gePfJN1NFy1QSksHZW9aRplFhOJgqCxBpIIMAX0RFVFfBP2BW1FkOZDxiorKUEEZKnuWUWSUVUZLB9AWumdyfn/URmILNF1pyv25rlwkJ885uc+TkNx9zjMARnSSwXmldfz4cRYvXsyiRYvMHYowM0liTTB58mQmT55sWIVGVI6cfB3bTl/jp8h4/jxzzShxbVDLgd7N6tC7aV06+tfCxqrsKyFVJE8XOx7v2IDHOzYgLSefjX8lsObwFQ5dvsFvJxL57UQiHf1qMbVPo9suI1kdFRQUmDuEe56npyfJycn4+vri6+vL/v37adOmDRcvXkQWXKze0tLSePPNNw2zfPzbxuMJZOQW4OfuQEiA6dNy3YtycnKYNm0aK1euNHcoohqQJFZUG1EJaXxzIIb1R+NIz/0neQqso2VgGy8eaOVJw9raat/X1NnO2pDQnklM54tdF/gpMo6Dl1IY8cUBejWpzcsPNKWpZ/UeaW5vb8+VK1cM94V53Hffffzyyy+0b9+esWPH8vzzz/Pjjz9y6NAhHn30UXOHJ+5g9OjRvPzyy6SmppbY8LHuSBwAQ4J9qv33WnWg1+spKCjg008/pV69euYOR1QDksQKs8rKK2DDXwl8cyCGyNibhu1eLnb0b+vFwDb1LXqQVBNPJz4Y0oYX+zZh8fbzrDoQw7Yz19lx9jpPdw/g+fsb33FpSXNSq9XUr1/f3GHc8z7//HPDqkoTJ06kVq1a7N69m/79+zNx4kQzRyfu5t1332XTpk20bt0aLy8vw/aUzDwOXEwGYEAbr9vtLm7x6quvEhQUxJAhQ8wdiqgmJIkVZhF3M5sVey/x7cEY0nMKW12t1Cr6tqjL4x0b0LWhB2q1ZSauJfF0seONgS0J7+rPe5tO89uJRD7feYFNJxJ557FWFtXFQFQttVqNWv1Pt5mhQ4cydOhQM0ZUc4SGhtKyZUsAvv76azQaDc888wz/93//h0qlws/Pj6effpqzZ8+ydu1a3N3dmT9/Pp06deLZZ58lIiICf39/li1bRnBw8G1fx9/fn/DwcL7//ntDP/Pfo66iV6BZPWcZ0FUKa9euRaVSSQIrjFSPDoUVLDc3l7Zt26JSqYiMjDR6TqVSFbstWbLEPIHeg/66cpPnvj1Kj/e28fnOC6TnFNCglgPT+zVh3yu9WTQyiO6NateoBPZW/h6OLH4iiKWjg6nnYkdMShYjvzzAR1vPotNXr/6NeXl5vP/++7z//vvF5iYVVSsnJ4eDBw+yYcMGfv75Z6ObKJ8VK1ZgZWXFgQMHmD9/PvPmzePLL780PD9v3jy6du3K0aNHeeihhxg1ahTh4eE8/PDDREREEBgYyJNPPnnH/slNmjRh7ty5HDp0yLBty8lEAPq18Ky8k6shTp48Sd++fZk7d665QxHVTI1siZ0+fTpeXl4cO3asxOeXLVtmtM64DNKqXHq9wu9RV/ly10UOXvpnSqCQAHfG9fAntHGdGpu03k7vZoUD0+ZsiGL1oVjm/3GOiIspLBjRDvdSTnZe2fLz85k+fToAkyZNkmVnzWTTpk08+eSTJCUlFXtOpVLJbCnl5OPjw7x581CpVDRp0oTjx48zb948xo0bB8CDDz7IhAkTAHj99ddZvHgxwcHBhIWF0bhxY15++WVCQkK4evUqnp63T0g7dOhAXl4eo0aNYv6Chew5X9iVoE/zupV/khbs6NGjvPrqq6xdu9boioQQUANbYn/77Te2bNnCBx98cNsyrq6ueHp6Gm4yaKVy6PQKPx+Lp98nOxn/v8McvJSClVrFo+3qs+HZbnw7vjP3Na17zyWwRZzsrHl3cGs+HtYWBxsN+y4k88iivURfzzB3aEDhUrOjR49m9OjRsuysGU2ZMoUhQ4aQkJCAXq83ukkCW36dO3c26nMfEhLCuXPnDHXbunVrw3N16xYmnK1atSq27dq1a3d9LRsbGyZMmMCAR4eQlZODi701TT2dKuQ8aiK9Xs9nn33GqlWr5HdalKhG/TJdvXqVcePGsX79ehwcbt/HaMqUKTz99NP4+/szduxYxo8fL3/hVaACnZ5f/orn0z/Pc+F6JlC4TOsTnX0ZHeKHp4tM/n+rQe3q07K+M08tjyAmJYtHF+3liyeD6ehfy6xx2dralrh8paha165dY9q0aYZkSVQta+t/FkspSnZL2lY0+O5uunXrxgPjX2HxnnjaNa5Zff8r0urVq3FwcJDufuKOakwSqygK4eHhTJw4keDg4NuuCf1///d/9O7dG3t7e/744w9eeOEFkpKS+O9//3vbY+fm5pKb+8/qUGlpaRUdfo2Qr9Oz/mgcC7ed51JyFgAu9taM7ebP6C5+uNhX7MpZNUlgHSfWTerK0ysOERl7k9FfHWRpeLAM+BIMHjyY7du307BhQ3OHUiPt37+/2ONGjRrddoGCinAhx5H8lDgivlhCTNjXNGggCx3cavHixRw7dkwW8hB3VaoktlYt01qEVCoVR44cwdfXt0xB3Wr27Nm3nSi6SEREBHv37iUtLY1XXnnljmVvTVbbtm0LwJtvvnnHJPbtt9++awz3srwCPWuPXGHh9vPEpmQD4OZgzbgeAYzq7ItTBS/7WlN5aG35bnxnJvzvMDvOXmfM8gi+Gt2BLoGSyN7LFixYwJAhQ9i1axetWrUyagUEeO6558wUWc0QGxvLtGnTmDBhAkeOHOHTTz/lww8/rLTXUxSFIzE3sfNuzjsT72fVqlXMmDHDYqcRrEh6vZ6oqCjCwsKYOHGi1Im4q1IlsTdv3uTjjz8u1QAoRVGYNGlShfXVmjJlCsOHD79jGT8/P+bMmcP+/fuxtTUeFBMcHMzIkSNZsWJFift27tyZtLQ0rl69etvLda+88grTpk0zPE5LS8PHx8fEM6l5cgt0fH/oCku2RxN3szB59dDaML5HACM7+eJoW2Ma+quMnbWGz0YFMfHrw2w/c50xKyJY9XRngnyrfsnazMxMwzyxcXFxsuysmXzzzTds3rwZe3t7tm/fbvTDrlKpJIktpyeffJLs7Gw6duyIRqPh2WefZfz48ZX2etfTc0nJzEOtgj6dWtO/WzsWL15MRkYGL7744j2buF29epUpU6bQr18/xo4da+5whIVQKaVYt1CtVpOYmEidOnVKdVAnJyeOHTtGQEBAuQMsrZiYGKPL/PHx8YSFhfHjjz/SqVMnvL29S9xvwYIFvPTSS9y8ebNYAnw7RcvOpqam4uxcvVddqgw5+Tq+OxjDkh0XSEzLAaC2ky0TezZkRMcG1XbyfkuSW6Bj/MrCFlk3B2vWPNOFgNraKo0hMzMTrbbwNTMyMiSJNVFFfU94enry3HPPMWPGDIvru19UBykpKbi5Vf0fYncTGhpK27Zt+fjjj03aT6fTERUVRbNmzUzudrDz7HWe/OogAR6O/PliKFDY+LNgwQLS0tJ47bXXTDpeRSnPOZVXUlIS+/fvp0GDBkYD6crLnOdUWWriOQHcuHGDWrVqmfx9WaqmstJ2WC+Snp5uUvmK8O8+RUU/vg0bNjQksL/88guJiYmEhIRgb2/Ptm3beO211xg/fnypE9h7WXaejlUHLvPZzgtcTy/sI+zpbMczoQ0Z1sEHO+ua8x/K3GytNCwa2Z7Hv9jPX1dSCV8WwbpJXap0+i17e3vOnj1ruC/MIy8vj2HDhllcAitKdv5a4ewjjer+80epSqXi2WefRa/Xs3DhQgICAnjggQfMFWKVSU1N5fnnn6dZs2a89NJL5g5HWKB76lvR2tqaRYsWERISQuvWrfnkk0948803K7X/U02QkVvAkh3RdHv3T+ZsjOJ6ei71Xe2ZM6glO6aHMrqLnySwlcDR1oqlozvgU8uemJQsnv32KAU60/6gLA+1Wk2jRo1o1KiRJFBmNHr0aFavXm3uMEQFuXKjsOuVr3vxKxtqtZrRo0ezY8cOXn/99aoOrUplZ2ezceNGxo4dKwmsKDOTOy3eboUYlUqFnZ0dgYGB+Pv7lzuw8vLz8yu2gkq/fv2MFjkQd5aWk8/KvZf4cvdFbmblA+BTy57JoYE82t4bGytJbCpbbSdblo7uwKCFe9gbncyHW8/ycr+m5g5LVCGdTsd7773H5s2bad26dbGBXR999JGZIrN827dvr/LXjLtZOHNLfdeSr25otVreeecdCgoK+OGHHzhz5gwvvvgidnY1Y2rC48ePM2fOHDp27MgLL7xg7nCEhTM5iR00aBAqlapYgli0TaVS0a1bN9avX18t+0CJu0vNyuerPRdZtuciaTkFQOFyqZN7BTKwrRfWGkleq1Ljuk68+1hrnv32KIu3R9O+gVuVrPKTn5/P559/DsD48eOLJU+iahw/fpx27doBcOLECaPn7tVBQJYs/mbhOAKv2ySxRaysrBg8eDBr1qxh0qRJfPHFFwAW2w/y7NmzqFQqjh8/zjvvvFMtGruE5TM5id26dSuvvfYac+fOpWPHjgAcPHiQ//73v8ycORMXFxcmTJjAiy++yNKlSys8YFF5UjLzWLr7Aiv2XiYjtzB5Dayj5dn7Anm4tRcamZTbbPq38eJozE2+2nORl9f8RRuf7tRxqtyWmby8PKZMmQJAeHi4JLFmsm3bNnOHICrQjaw8ANy1d1/GWaVSMXjwYAYPHszZs2d55plnePjhhxk3bpxh3Ed1p9PpmDhxIjk5Obz55puMGDHC3CGJGsTkJPY///kPn3/+OV26dDFs6927N3Z2dowfP56TJ0/y8ccfM2bMmAoNVFSe2JQslu6+yOqIWLLzC6dGa+rpxLP3NeKBlp6yokw18fIDTdh3IZmohDRmrDnO0tHBldoSp9FoGDx4sOG+uPfMnTuXjRs3EhkZiY2NDTdv3jR3SBYvNbuwa5api780btyYLVu28PPPP5OXl8e8efPo378/gYGBlRFmueTk5PDLL7/www8/sHTpUmbOnCkLOohKYXISGx0dXeL0B87Ozly4cAGARo0akZSUVP7oRKU6EZfKZzsv8OvxBHT6wu4hLbycea53I/o0qyvJazVja6Xh42Ft6b9gN3+evsa3B2MZ0anyfhjs7Oz44YcfKu344s4effTRUpVbu3ZtpcWQl5fHkCFDCAkJkStrFUCnV0j/u4tWWVYw1Gg0PPLIIwD07NmTuXPn0rVrV8LCwlCr1YZ5nc1Br9eze/dubty4gbu7O0lJSSxevBgnJyecnJzMFldNEZuSRT0XO+RX2ZjJSWxQUBAvvfQSK1eupHbt2gBcv36d6dOn06FDBwDOnTt323lZLdnChQtZuHBhhS3kYA6KorDzXBKf74xmz/lkw/ZugR5M6BlAt0AP6WdXjTXxdGJ6WBPmbIzi7V+j6N2sDnWda8aAD2GsNIvLVLailQqXL19u3kBqiLyCf2YXsS/njC7t27dn2bJlKIrCsWPHmD9/PvHx8axZs4bLly/TpEmTSr+CEhcXx969e3nooYeYOnUqXl5ejBo1ioYNG9KtW7dKfe17yca/Epj8zREebl2PT4a1MXc41YrJSezSpUsZOHAg3t7e+Pj4oFKpiImJISAggJ9++gkonBh95syZFR6suU2ePJnJkycbJvC2JJm5Baw9Gsf/9l3i7NXCeQo1ahUPt67HuO4BtKxvWedzL3uqqz+/HIvn2JVU3txwioUj2ps7JFEJli1bZu4QRAXT3TIguqLGGKhUKtq2bctXX32FXq9HrVazfv16du3axQMPPMCDDz7Ijh07aNasGe3atSvTnM9FA7kPHTrEvn378PX1xdbWljVr1tClSxcURTEMAhUVb97vhfN1b/grQZLYfzE5iW3SpAlRUVFs3ryZs2fPoigKTZs2pU+fPoa5JAcNGlTRcYoyir6ewf/2XWbN4Suk/z1Yy8FGw7AOPozt5o+3m4OZIxSm0qhVvPVoKwYs2MPGvxIYHHSNXk1Kt5qeKbKysmjUqBFQeHXFwUE+K+LOcnNzyc3NNTwuWkVRp9NZ9BWsfys6F1PPqaCgwHBf0eupjCrR6XS8/PLLvPzyyyiKQkpKCi4uLvzxxx94eHiwZs0adu/eTd26dfn88895+umnsbOzo1evXtja2rJq1SpSUlJ47rnn2LBhA7t378bNzY2vvvqKDRs20KFDBzp37oybmxt9+vQxet3qpqzvU3WSnlNgWCADICuncGCgJZ9TScp6PqVadvZ2cnJysLW1vecuP1f3ZWdzC3T8EXWNbw/GsOvcP32T/T0cGdXZl8eCvMvUH0tUL3M2nOLL3RfxdrPn92k9K3zBCVl2tnyq6/fE7NmzDd0EbiciIoLg4GDD4+XLlzN16tS7Duy63bH37dtnMaPpK1NGnp7h38cCsO7xBlhrzPfbqdPpUKvVpKamkpeXh42NDWq1mvj4eNzc3PDw8JABndXA3pgs3tp53fD468HeuNrVvPclIyODkJCQyll29lZ6vZ65c+eyZMkSrl69ytmzZwkICGDmzJn4+fkxduxYUw8pKsjJ+FR+OHSF9ZFxhsUJVCro3bQOT4b40S3QQwZr1SDP92nMr8cTuHIjm6W7LzK5V8WOUrazs+Po0aOG+6JmmDJlCsOHD79jGT8/vzId+5VXXmHatGmGx2lpafj4+BAYGFij5g3X6XScPXuWxo0bm5ToFfaJLUxifRs2qlaNCUXnFBwcXGOS17K+T9XJ/04bzw3t6+dPamKMRZ9TSW7cuFGm/UxOYufMmcOKFSt47733GDdunGF7q1atmDdvniSxVexaeg4b/0rgh0NXOJWQZtju6WzHo+3r83jHBvjUksvANZGjrRXT+zVl6upIFm07z9BgH2o72VbY8TUaDW3btq2w44nqwcPDAw8Pj0o5tq2tLba2xT+DGo2mRv3gFjH1vOw1Gmw0avJ0erILFGpVwzqpie+VpZ5T0UBso20Udtu01HO6nbKei8lJ7MqVK/n888/p3bs3EydONGxv3bo1p0+fLlMQwjRJGblsOpHIhr/iOXAxhaIOITYaNX1a1GVIkDfdG9WWxQnuAQPaeLFsz0WOXUnlo61nefvRVuYOSdQgMTExpKSkEBMTg06nIzIyEoDAwEDpHlBGjrYa8rL0ZOYW3L2wuKedvZpBQmoOtlZqdHqFAr1Cvl5/9x3vISYnsXFxcSVOrqzX68nPz6+QoERxV9Ny+CPqGr8eT2BvdBL6W3oyt/Vx5ZF29RnY1gtXh7uvAiNqDrVaxX8fbs6QJftYHRFDeBc/mnhWzJyM+fn5rFq1CoCRI0fKil33oNdff50VK1YYHhctf7tt2zZCQ0PNFJVlc7G35kZWPjcy88wdiqjmtp+5BkDnAHciY2+Smp1vmNNdFDI5iW3RogW7du3C19fXaPsPP/xg+IIT5afXKxyPS+WP09f48/RVTsSlGT3f2tuFh1rV48FW9aS7wD2ug18tHmjpyW8nEnl/8xm+HB18951KIS8vj6eeegqAIUOGSBJ7D1q+fLnMEVvBPF3suJScRWJajrlDEdXc9jOFA7pCm9TmZHwqAAU6SWJvZXISO2vWLEaNGkVcXBx6vZ61a9dy5swZVq5cyYYNGyojxntGQmo2+6KT2XM+mR1nr5OU8c9UNSoVtPF2pU/zujzcuh6+7jJSXPzjxbAmbD6ZyO9RVzkWe5M2Pq7lPqZGo+HBBx803BdClF89l8J5WuNvShIrbi8jt4BDl1MACG1Sh892FK6Imq/TI9/G/zA5ie3fvz+rV6/mrbfeQqVS8frrr9O+fXt++eUXoznjaqKKXrHrenouBy4mszc6mX3RyVxMyjR63tFGQ4/GtbmvaR1Cm9Sp0EE7omZpWFvLoHb1WXskjo+2nmXFmI7lPqadnR0bN26sgOiEEEXquRTO9JGQmm3mSER1tud8Evk6BV93B/w9HLH6ezq2Ar0iSewtTE5iAcLCwggLC6voWKq98qzYlVegJyohjaMxNzgae5MjMTeITTH+ElOroFV9F0IaetAt0IOO/rWwsVJX5CmIGuw/vRvxU2Q8O85e5/DlFIJ8a5k7JCHEvzT4u/vXvxsthLiVoStB49oAWKn/SWKlOesfZUpiRelt/CuBZXsucjwuldwC41GFKhU0qetEl4YehDR0p6N/rWo1b6CwLL7ujgwJ8ua7iFg+3HKWb8Z1NndIQoh/KRp4eTox3cyRiOpKURR2ni3qD1u4GqOVprBBq0AnsxPcqlRJrJubW6lX5UpJSSlXQDVNRm4+hy4XTuLrYm9NuwautG/gRrsGrrTxccXZTpJWUXGm3BfImiNXDF1UQhq6l/lYWVlZtGlTuE73sWPHZNlZISpA47qFSez19FySM3Jx10q7mjB27EoqcTezsbNW0zmg8Dtc83cOJuO6jJUqif34448N95OTk5kzZw5hYWGEhIQAhUsKbt68mZkzZ1ZKkJase6PafDikDe0auOLv4XjPLdErqpa3mwPDOvjw9f4YFmw7V64kVlEUzp8/b7gvhCg/R1srfN0duJycxenEdLoGShIrjK07cgWAvs09sbcp7AErqUPJSpXEjh492nD/scce480332TKlCmGbc899xwLFizg999/5/nnn6/4KC2Yl6s9jwV5mzsMcQ+Z2LMh3x2MZc/5ZI7G3KBdg7It92lnZ8fu3bsN94UQFaOllwuXk7M4cvkGXQMrZ/U0YZnydXp++SsBgEfa1zdzNNWfyaOGNm/eTL9+/YptDwsL4/fff6+QoMrqyJEj9OnTB1dXV9zd3Rk/fjwZGRlGZWJiYujfvz+Ojo54eHjw3HPPkZcnk06LmsPbzYGBbQu//BZtjy7zcTQaDV27dqVr164yxZYQFahTQOGgywMXpfudMLbjzHVSMvPw0NrSXf7AuSuTk1h3d3fWrVtXbPv69etxdy/7pcvyio+P5/777ycwMJADBw6wadMmTp48SXh4uKGMTqfjoYceIjMzk927d/Pdd9+xZs0aXnjhBbPFLURleCY0AJUKtp66yhkZQCJEtdLJv/C38tDlFPIKZKCO+Me3B2MAGNjWyzCYy4h07TJi8uwEb7zxBmPHjmX79u2GPrH79+9n06ZNfPnllxUeYGlt2LABa2trFi5ciFpd+MYvXLiQdu3acf78eQIDA9myZQunTp0iNjYWLy8vAD788EPCw8OZO3cuzs7OZotfiIoUWMeJfi0KV/FasiOaecPamnyMgoICwx+sjzzyCFZWMpmJEBWhUR0tbg6Fy8/+deUmwX4yHZ6A2JQs/vx7qdmRnRqYORrLYHJLbHh4OHv37sXV1ZW1a9eyZs0aXFxc2LNnj1GrZ1XLzc3FxsbGkMAC2NsXroxS1K9v3759tGzZ0pDAQmE3iNzcXA4fPly1AQtRySaFBgLw87F4YpKzTN4/NzeXoUOHMnToUHJzc+++gxCiVNRqFV0aFl4q/vP0NTNHI6qLrw9cRlGgeyMPAmprzR2ORSjTTPqdOnVi1apVHDlyhKNHj7Jq1So6depU0bGZ5L777iMxMZH333+fvLw8bty4wauvvgpAQkJhJ+nExETq1q1rtJ+bmxs2NjYkJibe9ti5ubmkpaUZ3YSo7lp5u9CjcW10eoXPdpreN1atVtOzZ0969uxp9MehEKL8+rYo/C3adCJRZv8Q5OTr+D4iFoBRnX3NHI3lKNUvk6lJW3p6xfXBmz17NiqV6o63Q4cO0aJFC1asWMGHH36Ig4MDnp6eBAQEULduXaNBKSVNcaUoyh2nvnr77bdxcXEx3Hx8fCrs/ISoTJNDGwLww6ErXEszba12e3t7tm/fzvbt2w1XNYQQFeO+pnWw0ai5kJTJ+WsZd99B1Gg/HIrlRlY+9V3t6d2s7m3LyZ87xkqVxLq5uXHtWukvedSvX58LFy6UOahbTZkyhaioqDveWrZsCcCIESNITEwkLi6O5ORkZs+ezfXr1/H39wfA09OzWIvrjRs3yM/PL9ZCe6tXXnmF1NRUwy02NrZCzk2IytbRvxbBvm7k6fR8sati/k8KIcrPyc6abo0KuxT8duL2VwJFzZev0/PZzsLv5wk9A9CoizeqyRzzJSvVSA1FUfjyyy/RakvXRyM/P79cQd3Kw8MDDw/TppkoSki/+uor7Ozs6NOnDwAhISHMnTuXhIQE6tWrB8CWLVuwtbUlKCjotseztbXF1lYmpBaWR6VSMblXIE8tj2DVgRgmhQbi5mhj7rCEEEC/lp78efoa647G8ex9gZKo3KN+ORbPlRvZeGhtGBosV3pNUaoktkGDBnzxxRelPqinpyfW1lW/nOqCBQvo0qULWq2WrVu38tJLL/HOO+/g6uoKQN++fWnevDmjRo3i/fffJyUlhRdffJFx48bJzASixgptUpvm9Zw5lZDGsr2XmNancan2y87ONlqVT7oUCFGxHmpVjzd/OcXFpEz2XUg2DPYS944CnZ6F2wpXRhzbLQA7a5mT2xSlSmIvXbpUyWFUjIMHDzJr1iwyMjJo2rQpn332GaNGjTI8r9Fo2LhxI5MmTaJr167Y29szYsQIPvjgAzNGLUTlKmqNnfzNEZbvuci47v442d39j0y9Xs+xY8cM94UQFcvR1oqBbb1YdSCGbw7ESBJ7D/rx8BWir2fi5mDNE53vPq2WjAE0VqMmfly5cuVdyzRo0IANGzZUQTRCVB/9WnoSUNuRC9cz+Xp/DM/8PeDrTuzs7NiyZYvhvhCi4j3esQGrDsSw+WQiSRm5eGil69q9IjtPx7zfzwIw5b5GpWpcEMZk3hwh7gEatcowb+zS3RfIydfdfR+Nhj59+tCnTx9ZdlaIStKyvgttvF3I1yn8b99lc4cjqtBXey5yNS0Xbzf7u7bCSm/pkkkSK8Q9YmBbL7zd7EnKyOO7v5c2FEKY3/gehVdGlu25SHpOxQ2MFtXX9fRclmwvnL/7xb5NsLWShoKykCRWiHuEtUbNhJ6FP5af77xw1zXbCwoK2LhxIxs3bqSgoKAqQhTintSvpScNazuSllPASmmNvSe89WsU6bkFtKrvwoA2Xnff4W+KzBRrRJJYIe4hQ4K8qeNkS3xqDuuPxt2xbG5uLg8//DAPP/ywLDsrRCXSqFVMua+wu8+Xuy6QmSt/NNZke6OTWHc0DpUK5j7SEnUJ88KK0ilTErtr1y6eeOIJQkJCiIsr/CH83//+x+7duys0uOpm4cKFNG/enA4dOpg7FCHKxM5aw7juAQAs3hGNTn/7v+rVajXBwcEEBwfLsrNCVLL+rb3wdXfgRlY+X+2+aO5wRCXJK9Azc/0JAJ7o5Etrb9dS7SdTCJfM5F+mNWvWEBYWhr29PUePHjW00KSnp/PWW29VeIDVyeTJkzl16hQRERHmDkWIMhvRqQGuDtZcTMpk4/GE25azt7cnIiKCiIgImSNWiEpmpVEb5nBetD2a+JvZZo5IVIaPfz9L9PVMPLS2vBjWxNzhWDyTk9g5c+awZMkSvvjiC6MFDbp06cKRI0cqNDghRMVztLViTNfCpZjn/3Hujq2xQoiqM6CNFx383MjO1/H2b6fNHY6oYIcvp7BkR+FgrjmDWuBib/qUWjJPrDGTk9gzZ87Qo0ePYtudnZ25efNmRcQkhKhk4V39cHWw5vy1DNbdpW+sEKJqqFQqZvVvgUpVuBTpwYsp5g5JVJDM3AKeX30MvQKPtq9Pv5b1zB1SjWByEluvXj3Onz9fbPvu3bsJCAiokKCEEJXL2c6aSX8veDBv61lyC4rPG5udnU3Xrl3p2rUr2dlyaVOIqtCyvgvDOxTOGTpz/YkS/28KyzNn4yliUrKo72rP7AEtTN5f+sSWzOQkdsKECfznP//hwIEDqFQq4uPjWbVqFS+++CKTJk2qjBiFEJXgyRA/6jrbEnczm+8OxhZ7Xq/Xs3fvXvbu3SvLzgpRhV4Ka4K7ow1nrqbz0daz5g5HlNPaI1f49u/v2PeHtMZZVuaqMCYnsdOnT2fQoEH06tWLjIwMevTowdNPP82ECROYMmVKZcQohKgEdtYanr2vEQCf/nmerDzjaX1sbW1Zt24d69atw9ZWlsIUoqrUcrTh7UdbAYVzOku3Ast1OjGNV9cdB+C53o3o0tCjXMeTPrHGyjRvzty5c0lKSuLgwYPs37+f69ev83//938VHZsQopIN6+BDg1oOJGXksnSX8bQ+VlZWDBo0iEGDBmFlZWWmCIW4N/Vt4cngIG8UBV74IZIMmTvW4qRm5/PM10fIydfTvZEH/+ndyNwh1ThlnvzRwcGB4OBgmjZtyu+//05UVFRFxiWEqALWGjUv9C2c1mfxjmgSU3PMHJEQosis/s2p72pPbEo2/113HEWa4SxGXoGeZ74+zMWkTLxc7PhkeDs0sqhBhTM5iR06dCgLFiwACgd+dOjQgaFDh9K6dWvWrFlT4QEKISrXgDZeBPm6kZWn453f/vljVKfTsX37drZv345OJ4NLhKhqTnbWfDS0DRq1ivWR8SyVRRAsgqIo/Hf9cfZGJ+Noo+HL0R2o5WhTrmOqkAS4JCYnsTt37qR79+4ArFu3Dr1ez82bN5k/fz5z5syp8ACrE1mxS9REKpWK2X9P67M+Mp7Dlwv73+Xk5NCrVy969epFTo600AphDp0C3PnvQ80AeOvXKHadu27miMTdLNoezfeHrqBWwYIR7Wnu5Vxhx5a2eGMmJ7GpqanUqlULgE2bNvHYY4/h4ODAQw89xLlz5yo8wOpEVuwSNVUrbxeGBfsAMPvnU+j0CiqViubNm9O8eXNUMr+LEGYT3sWPIUHe6BWY8s1RLidnmjskcRsr913i/c1nAJjVvwW9mtYxc0Q1m8lJrI+PD/v27SMzM5NNmzbRt29fAG7cuIGdnV2FByiEqBovhjXByc6K43GpfL3/Mg4ODpw8eZKTJ0/i4OBg7vCEuGepVCrmPNKStj6upGbn89TyCJIycs0dlviX7w/F8vpPJwGY0iuQ0V38zBvQPcDkJHbq1KmMHDkSb29vvLy8CA0NBQq7GbRq1aqi4xNCVBEPrS3T/17L+91Np4lNyTJzREKIIrZWGj4bFYSXix0XrmcyaulBUrPyzR2W+NtPkXHMWPMXAGO6+hsGzFYUuRhWMpOT2EmTJrF//36++uordu/ejVpdeIiAgIAa3ydWiJpuZCdfOvrVIitPx6syGlqIaqWusx2rxnXGQ2tLVEIao5cdlKm3qoFvD8YwdXUkegUe79iAmQ83q7wuWPKdbKRMU2wFBQXxyCOPoNVqDdseeughunbtWmGBCSGqnlqt4p3HWmFrpWbXuSQ6PT6VPn36yLKzQlQT/h6OrHq6E64O1kTG3uTpFRFk58nsIeayZEc0r6w9jqLAiE4NmDuopYwhqEJlSmKvXLnCokWLmDFjBtOmTTO6VZa5c+fSpUsXHBwccHV1LfZ8cnIy/fr1w8vLC1tbW3x8fJgyZQppaWmGMpcuXUKlUhW7bdq0qdLiFsLSBNTW8nyfwkthiV7d2X74lCw7K0Q10sTTiZVjOqK1tWL/hRSeWHqAm1l55g7rnqLXK7zz22ne+e00AJNCGzJ3UEvUMhdslTJ5GZ4//viDAQMG4O/vz5kzZ2jZsiWXLl1CURTat29fGTECkJeXx5AhQwgJCWHp0qXFnler1QwcOJA5c+ZQu3Ztzp8/z+TJk0lJSeGbb74xKvv777/TokULw+Oi2RaEEIXGdQ9g2+mrHLgIQc8uRFHLil1CVCetvV1ZMaYDTy2L4PDlGwxeso8VYzpS39Xe3KHVeFl5Bbzw/TF+O5EIwIwHmjKxZ8NKfU1JjUtmckvsK6+8wgsvvMCJEyews7NjzZo1xMbG0rNnT4YMGVIZMQLwxhtv8Pzzz9928JibmxvPPPMMwcHB+Pr60rt3byZNmsSuXbuKlXV3d8fT09Nws7Ep3yTEQtQ0GrWKtwc0RZeVSmKuNe9tOm3ukIQQ/xLkW4sfn+lCPRc7zl/L4NFFezidmHb3HUWZXbmRxWOL9/HbiUSsNSreH9y60hNYcXsmJ7FRUVGMHj0aKFxbPTs7G61Wy5tvvsm7775b4QGWVXx8PGvXrqVnz57FnhswYAB16tSha9eu/Pjjj3c9Vm5uLmlpaUY3IWq6us62JP/6CQArD1zhl2PxZo5ICPFvjes6seaZLjSqo+VqWi5Dluzjj6ir5g6rRjpwIZkBC/YQlZCGh9aGb8d1Zsjf82tXFRnWZczkJNbR0ZHc3ML56by8vIiOjjY8l5SUVHGRldHjjz+Og4MD9evXx9nZmS+//NLwnFar5aOPPuLHH3/k119/pXfv3gwbNoyvv/76jsd8++23cXFxMdx8fKr2QyuEOeh0OrKjD5J6oHA56Rd/OMZfV26aNyhRZS5dusTYsWPx9/fH3t6ehg0bMmvWLPLypO9ldePlas+PE7vQwc+N9JwCxq44xHubTlOgk77sFUGnV1jw5zlGfHmAlMw8WtZ35ucp3Qj2k66I5mZyEtu5c2f27NkDFM5I8MILLzB37lzGjBlD586dTTrW7NmzSxxodevt0KFDJh1z3rx5HDlyhPXr1xMdHW002MzDw4Pnn3+ejh07EhwczJtvvsmkSZN477337njMV155hdTUVMMtNjbWpJiEsERFS83e3LGCrv4u5BboGb/yMFfTZAnae8Hp06fR6/V89tlnnDx5knnz5rFkyRJeffVVc4cmSuDiYM2qpzsT/vcE+4u2RzPyywNcS5f/r+WRmJrDyC/388GWs+j0Co+0q88PE7rgJX2PqwWTR2t89NFHZGRkAIVJaEZGBqtXryYwMJB58+aZdKwpU6YwfPjwO5bx8/Mz6ZhF/VybNm2Ku7s73bt3Z+bMmdSrV6/E8p07dzZqrS2Jra0ttra2JsUhhKUzTBOj6JnzUCDjvj/D+WsZjP7qIKvHh+DiYG3eAEWl6tevH/369TM8DggI4MyZMyxevJgPPvjAjJGJ27GxUjN7QAuCfN2YseYvDlxM4cFPdvP+kNb0aiLLn5pCURR+OHyF/9twivScAhxsNLw5sCWPta9vnim0ZNquEpmcxAYEBBjuOzg4sGjRojK/uIeHBx4eHmXe/26KJmov6v5QkqNHj942wRXiXnbrUrN13Jz4anQHBi/Zy+nEdJ5afpCvn+6Eg43MWnAvSU1NldlcLED/Nl4093Jm0tdHOHM1naeWRfBIu/rMfLg5tRxlIPPdxN3M5pW1x9l59joArb1d+HhYWwJqa++yZ+WTtQ6MlfkXKC8vj2vXrhWbP7JBgwblDqokMTExpKSkEBMTg06nIzIyEoDAwEC0Wi2//vorV69epUOHDmi1Wk6dOsX06dPp2rWroTV3xYoVWFtb065dO9RqNb/88gvz58+vVgPShKiuGrg78L+xnRj62T6OxNxk3MpDfPFksCSy94jo6Gg+/fRTPvzww9uWyc3NNWo0KBoEq9Pp0OlqzoT8RedSnc/Jr5Y9ayZ25qPfz7Js72XWHY1jx5lrzHy4Gf1b1yvWmmgJ52QqU88pN1/HF7svsXhHNDn5emys1EztHcjYrn5YadTmrZu/s1e9Xg/qmvU+QdnPR6WYuK7k2bNnGTt2LHv37jXarigKKpWq0io2PDycFStWFNu+bds2QkND2bZtG6+99hqnTp0iNzcXHx8fHn30UWbMmGFYHGHFihW8++67XL58GY1GQ+PGjZk6dSpPPPGESbGkpaXh4uJCamoqzs7OFXF6QlQ7mZmZhlX5MjIycHR0BOBozA1GfnmArDwdwb5uLA3vgIu9dC34t+r6PTF79mzeeOONO5aJiIggODjY8Dg+Pp6ePXvSs2fPO3a/ut2x9+3bZ7TCo6haZ5Jymb8/mcs38wEI8rLjqfZu+LlKqywU5i/7r2Tz5eEbXM0oXMa3RR1bnu3kjrdL9fhum/ZbAmeT85gZWptO3g5338HCZGRkEBISYvL3pclJbNeuXbGysmLGjBnUq1f8r7k2bdqYcjiLVF1/nISoSMnJyYbuPklJSbi7uxueOxJzg/CvDpKWU0ALL2dWjOmIh1b6jd+qun5PJCUl3XUmGT8/P+zs7IDCBLZXr1506tSJ5cuXo1bffjxwSS2xPj4+XL9+HTc3t4o5gWpAp9Nx9uxZGjdujEajMXc4pZJXoOeznRdYtD2aPJ2CSgWD2nrxfO9G1Hezt8hzupu7nZOiKOyNTuaj388RGZsKgKezLS/3a1Jia7U5PbZkH5GxqSwZ0RZv9Y0a9T4B3Lhxg9q1a5v8fWnydcDIyEgOHz5M06ZNTd1VCGFBbr2q8u8rLO0buPHd+BCe/OoAJ+PTGLRwD1+ODqapZ/VJ1kTJTBmLEBcXR69evQgKCmLZsmV3TGDh9oNgNRpNjfrBLWJJ52Wv0TC1TxMGtK3PB1vO8OvxRNYdjWfjX4mMCvFlQg9/wLLOqbT+fU6KorAvOpn5f55j/4UUAOys1Yzt5s+k0EAcbatjF6nChFr19//BmvY+lfVcTH6nmjdvXi3mgxVCVK5bV7IraVW75l7OfD8hhKeWR3A5OYvHFu3l4+Ht6NO8blWGKSpJfHw8oaGhNGjQgA8++IDr168bnvP09DRjZKI8AmprWTQyiMjYm7z722n2XUhm6e6LfL3/Mj39HJhaK53mXq7mDrNS5Ov0bPgrni92XuRUQmF/bRuNmhGdGjCpV0PqONmZOUJhqlIlsbeuUPXuu+8yffp03nrrLVq1aoW1tXF/kep02UwIUXa3/t/+9//zIgG1tayf1JXJ3xxhb3Qy4/93iAk9GvJC38ZYa0yehlpUI1u2bOH8+fOcP38eb29vo+dM7IUmqqG2Pq58M64TO88l8eGWM/x1JZUt5zPYMn8P3Rt5MKarPz0b10atrj6X1MsqNiWLtZEJfB8RS+Lf81zbW2sYEuzNxJ4NZc5XC1aqJNbV1dWob4iiKPTu3duoTGUP7KoOFi5cyMKFC2v0OQphKjdHG1aM6cicDadYse8yS3ZEsy86ifmPt8PX3dHc4YkyCg8PJzw83NxhiEqkUqno2bg2PRp5cPBCMp9sPs7+2Cx2nUti17kkvFzseLiNFwPaeNHCy7la9RG9m/ScfDafSGDlrkT+unrZsL22ky3hXfwY2akBrg6WM7DNgqq+SpUqid22bVtlx2ERJk+ezOTJkw0DNoSoyW6dPu/fU+n9m7VGzRsDWxLS0J2X1xzn2JVUHvhkFy/2bcLoLn5oakBrjhA1lUqlItjPjVd71MbJ05evD8TyXUQs8ak5fL7zAp/vvECAhyP923jRt0Vdmnk6V8sW2mvpOWw9dZUtJ6+yNzqJfF3hFQOVCroFejA4yJt+LT2xtbLcvqSKohR1jxWUMont2bNnZcchhKhmsrOzje47OTnddZ9+LevR2tuV51dHcuBiCm9uOMX6yDjeeqQVLevLH35CVHfebg689lBzXujbhO1nrvHzsXj+iLrGhaRMPvnjHJ/8cY5ajjaENHSna0MPuga606CWg1laaVMy8zh4MZn9F1I4cDGF04lpRosB+Hs40MXLmolhbfFxlyneaqJSD+zKysripZdeYv369eTn53P//fczf/78Sl1xSwhhebxc7fl2XGe+jYjhnd9O89eVVAYs2M2wDj48f39j6jjL4Akhqjs7aw39WtajX8t6pOfks/XUVTb+lcC+C8mkZOax8a8ENv6VAEAdJ1ua1XOmaT0nmtdzpqmnMwG1HSusX7xerxB3M5sziemcTkwjKjGdqIQ0LlzPLFa2jY8rYS3q0re5J/7u9kRFRUmf1xqs1EnsrFmzWL58OSNHjsTOzo5vv/2WZ555hh9++KEy4xNCmEnR4gb/vl8aarWKkZ186dOsLm9sOMXGvxL49mAs64/GM667P+N6BOBkVz0mERdC3JmTnTWPtvfm0fbe5BXoOXblJnvOJ7H3fDJHY29wLT2Xa+nX2XH2nxks1Crw0Nri6WJHXWc7PJ3t8NDaYm+jxtZKg62VGltrNVZqNTn5OnLydWTl6cjO15GRU0BiWg6JqTkkpOZwNS2HAn3Jgwkb19XSyd+dTgG16Ohfy2iGARm/UvOVOoldu3YtS5cuZfjw4QA88cQTdO3aFZ1OV6PmKhNCVJw6znYsHNGep7qk8NavURyJucn8P8+zfO8lngzxI7yrnyySIIQFsbFS08GvFh38ajH1fsjKKyAq4e8W0oQ0TiekczoxnYzcgr+T21wgtdyva61R0bC2trDF19OJpvWcaenljPs98v1R1FlD5gUxVuokNjY2lu7duxsed+zYESsrK+Lj4/Hx8amU4IQQNUOwXy3WPNOFzSev8sGWM5y/lsGCbef5cvcFhgb78GSIH4F1pM+aEJbGwcaKIF83gnz/WZFNr1dIyszlamouiWmFLalX03JIysgjN19HboGe3ILCf/MK9NhZa3Cw0WBvrcHeRoOjrRV1ne2o52KHp0vhv7W1tljJtH3iX0qdxOp0umITnltZWVFQUFDhQQkhzC8nJ8fovqldCv5NpVLRr6UnfZvXZcupqyzefp5jV1JZue8yK/ddpnNALUZ28iWshSc2VvJjJYSlUqtV1HGyo46THa2QAZ2i8pQ6iVUUhfDwcKMlBXNycpg4caLRj9vatWsrNkIhhFncadnZ8lCrC5PZsBZ12RudzLI9l/jz9FX2X0hh/4UUajna8FCregxs60X7Bm7VciofIYQQ5lfqJHb06NHFtj3xxBMVGowQovq427Kz5aVSqega6EHXQA/ib2bzXUQs3x2M4Vp6Lv/bf5n/7b9MfVd7Hm5djz7N69KugZvMNyuEuCcVTWGmKMg8sbcodRK7bNmyyoxDCFHNlGbZ2Yri5WrPtD6Nee6+QPZEJ/NTZBxbTl4l7mY2n+28wGc7L1DL0YbQJrXp3bQu3Rt74CyzGwghxD2t1EmskGVnhahsVho1PRvXpmfj2uTk6/jz9DU2nUhk+5lrpGTmsfZIHGuPxKFWQcv6LoQEuNM5wJ0O/rXQ2srXmRBC3EvkW98EsuysuJeYsuxsZbCz1vBgq3o82Koe+To9hy/f4I+oq/xx+hoXrmfy15VU/rqSymc7L6BRq2jh5UxbH1faeLvStoEr/u6O0p9WCCFqMElihRAlKsuys5XFWqOm89+trq891JzE1Bz2XUhiX3Qy+y4kE5uSbUhq4TIATnZWtPF2pbmXM03qOtHE04nAOlrsrGVeayGEZfnnz3GZKfZWksQKISyOp4sdj7Tz5pF23gBcuZHF0ZibHIu9ybErNzkel0p6TgG7zyex+3ySYT+1Cvw8HGnq6URgHSf83B3w83DE390RVwdrs6z/LoQQomwkiRVClKg8y85WNW83B7zdHOjfxguAfJ2es1fT+etKqmG99TOJ6dzIyufC9cy/11xPNDqGs50V/h6O+Lo70qCWA16u9ni52uHtZk89F3scpc+tEEJUKxbzrTx37lw2btxIZGQkNjY23Lx5s1iZiIgIZsyYweHDh1GpVHTo0IH33nuPtm3bGsocP36cKVOmcPDgQWrVqsWECROYOXOmtMAIUYNYa9S08HKhhdc/fdcVReF6ei6nE9M5k5jOhaQMLiVlcSk5k4TUHNJyCjh2JZVjV0peItPVwZqOfrX4/MngqjoNIYQQd2AxSWxeXh5DhgwhJCSEpUuXFns+PT2dsLAwBg4cyKJFiygoKGDWrFmEhYVx5coVrK2tSUtLo0+fPvTq1YuIiAjOnj1LeHg4jo6OvPDCC2Y4KyFEVVGpVNRxtqOOsx09Gtc2ei47T0dMShYXkzK5lJzJlRtZxN/MIf5mNnE3s0nPKeBmVj5ZeTIziRDCfBTpEmvEYpLYN954A4Dly5eX+PyZM2e4ceMGb775Jj4+PgDMmjWL1q1bExMTQ8OGDVm1ahU5OTksX74cW1tbWrZsydmzZ/noo4+YNm2atMYKcYvc3Fyj+9W9S0F52NtoaOJZOPirJGk5+STczEEvvyBCCDOQ9KRkNWaB8iZNmuDh4cHSpUvJy8sjOzubpUuX0qJFC3x9fQHYt28fPXv2NFo6NywsjPj4eC5dumTya2ZmZqLc8qOWl5dHZmam0Y9/UbnMzEyjaYry8/PJzMw0Wp/e1LJZWVlkZmYazVtbUFBAZmam0chyU8tmZ2eTmZlJQUGBYZtOpzO5bFZWllHZnJwcMjMzyc/PL1NZvV5vqJ9b5ebmkpmZSV5eXpnKKopiKFvS+2lK2dK89xXxOSnp/ayIz0nR+6nT6Yze09TU1HK99+X9nNzu/Szv5+TW9/NOZZ3trGlcV0sDZ41J770QQojKU2OSWCcnJ7Zv387XX3+Nvb09Wq2WzZs38+uvv2JlVdjgnJiYSN26dY32K3qcmJhY7JhFcnNzSUtLM7oBeHl5kZT0z8jn999/H61Wy5QpU4z2r1OnDlqtlpiYGMO2hQsXotVqGTt2rFFZPz8/tFotUVFRhm3Lly9Hq9UyfPhwo7LNmzdHq9Vy5MgRw7bVq1ej1WoZMGCAUdkOHTqg1WrZtWuXYduGDRvQarXcf//9RmV79OhhqL8if/75J1qtlpCQEKOyDzzwAFqtlnXr1hm27d+/H61WS5s2bYzKPvbYY2i1WlatWmXYdvz4cbRaLY0aNTIqO2rUKLRaLZ9//rlhW3R0NFqtlvr16xuVnTBhAlqtlk8++cSwLSEhAa1Wi6urq1HZadOmodVqeeuttwzbUlNT0Wq1aLVaoyTrtddeQ6vV8tprrxm2FRQUGMqmpv7Td/Ktt95Cq9Uybdo0o9dzdXVFq9WSkJBg2PbJJ5+g1WqZMGGCUdn69euj1WqJjo42bPv888/RarWMGjXKqGyjRo3QarUcP37csG3VqlVotVoee+wxo7Jt2rRBq9Wyf/9+w7Z169ah1Wp54IEHjMqGhISg1Wr5888/jVbpCggIoEePHkZl77//frRaLRs2bDBs27VrF1qtlg4dOhiVHTBgAFqtltWrVxu2HTlyBK1WS/PmzY3KDh8+HK1Wa3TVJSoqCq1Wi5+fn1HZsWPHotVqWbhwoWFbTEwMWq2WOnXqGJWdMmUKWq2W999/37AtKSnJ8H7e6uWXX0ar1RquAEHhHwNFZW9NvN944w20Wi0vv/yy0TG8vLwQQghRecyaxM6ePRuVSnXH26FDh0p1rOzsbMaMGUPXrl3Zv38/e/bsoUWLFjz44INGLUj/7jJQ1KJyp64Eb7/9Ni4uLoZbUXcFIWoyGxsbc4cghBDiFtKhyZhKUczXySspKcmoJbMkfn5+2NnZGR4vX76cqVOnFpudYOnSpbz66qskJCSgVhfm5nl5ebi5ubF06VKGDx/Ok08+SWpqKj/99JNhv6NHj9K+fXsuXLiAv79/iTHk5uYaXSpMS0vDx8eH+Ph4PD09DQlwXl4e+fn5WFlZGXVZKLqsaG9vb4gtPz+fvLw8NBqN0fmZUjYrKwtFUbCzs0OjKZzAvaCggNzcXNRqNfb29mUqm52djV6vx9bW1tCKrdPpyMnJMamsSqXCwcHBUDYnJwedToeNjY2hlc+Usnq93vAHya39M3NzcykoKMDa2tqQeJlSVlEUQ8uag4NDsffTlLKlee8r4nNS0vtZEZ+TovfTzs4OtVpNVlYWBQUFaDQaNBpNmd/78n5Obvd+lvdzcuv7Wd7Pyb/fz4SEBLy8vEhNTcXZ2Zl7UdHqhikpKbi5uZk7nAqj0+mIioqiWbNmhv9Tlk7OqXobumQfBy+lsODxtvhpbtSIc7rVjRs3qFWrlsnfl2Yd2OXh4YGHh0eFHCsrKwu1Wm3Uolr0uKiPYUhICK+++ip5eXmGH6YtW7bg5eVV7DLlrWxtbY1+nIo4OjoavZ6NjU2JrVclDYixtrY2ulxblrK3/vAXsbKyMiQJZS17a6JSRKPRlBibKWVvTazKUlatVpdYtqT3x5SyKpWqxLIlvZ+mlIWS38+K+JyU9H5WxOfk1vfz1qTNw8Oj2NWKqvyc3O79LO/n5HbvZ3k/J1D959YVQghLZzF9YmNiYoiMjCQmJgadTkdkZCSRkZFkZGQA0KdPH27cuMHkyZOJiori5MmTPPXUU1hZWdGrVy8ARowYga2tLeHh4Zw4cYJ169bx1ltvycwEQpQgKyuLOnXqUKdOnWKDr4QQQghzs5gptl5//XVWrFhheNyuXTsAtm3bRmhoKE2bNuWXX37hjTfeICQkBLVaTbt27di0aRP16tUDwMXFha1btzJ58mSCg4Nxc3Nj2rRpxQbj3E1RD4yiAV5C1ES3jq5PS0szmt1A3F3R94MZe2yZ3a3flTXp0qdOpyMjI6NGnZecU/WWn52JPjeLzPR0Mqxqxjndqqzfl2btE2uprly5IoO7hBClEhsbi7e3t7nDMIsLFy7QsGFDc4chhLAQ0dHRBAQElLq8xbTEVideXl7Exsbi5ORk6IbQoUMHIiIiDGVufVw0ECw2NrbSBnj8+/Urer+7lbvd86Zsv10dVkX93SnWitqvsuvQUj+Dpux7p3KmPmfKZxBMr0NFUUhPT7+np9qqVasWUNgdzMXF5S6lLUdVfSdVJTkny1ATzwkKp7ps0KCB4TujtCSJLQO1Wl2sZUWj0Rh9oP79GMDZ2bnSPnQlvV5F7ne3crd73pTtd6vDyqy/O8VaUftVdh1a6mfQlH3vVM7U58ryGQTT6rAmJW5lUTTLhouLS436wS1S2d9J5iDnZBlq4jnBP98ZpS5fSXHccyZPnnzHx1X9+hW9393K3e55U7ZLHZavDi21/kzZ907lTH2uOn4GhRBClJ70ia0CRXMl3svzRZaH1F/5SR2Wn9Sh6WpqndXE85Jzsgw18Zyg7OclLbFVwNbWllmzZpU416y4O6m/8pM6LD+pQ9PV1Dqriecl52QZauI5QdnPS1pihRBCCCGExZGWWCGEEEIIYXEkiRVCCCGEEBZHklghhBBCCGFxJIkVQgghhBAWR5LYaiQ9PZ0OHTrQtm1bWrVqxRdffGHukCxObGwsoaGhNG/enNatW/PDDz+YOySL88gjj+Dm5sbgwYPNHYrF2LBhA02aNKFRo0Z8+eWX5g6nWrp06RJjx47F398fe3t7GjZsyKxZs8jLyzN3aOUyd+5cunTpgoODA66uruYOp0wWLVqEv78/dnZ2BAUFsWvXLnOHVC47d+6kf//+eHl5oVKpWL9+vblDKre3336bDh064OTkRJ06dRg0aBBnzpwxd1jlsnjxYlq3bm1YuCEkJITffvvNpGNIEluNODg4sGPHDiIjIzlw4ABvv/02ycnJ5g7LolhZWfHxxx9z6tQpfv/9d55//nkyMzPNHZZFee6551i5cqW5w7AYBQUFTJs2jT///JMjR47w7rvvkpKSYu6wqp3Tp0+j1+v57LPPOHnyJPPmzWPJkiW8+uqr5g6tXPLy8hgyZAjPPPOMuUMpk9WrVzN16lRee+01jh49Svfu3XnggQeIiYkxd2hllpmZSZs2bViwYIG5Q6kwO3bsYPLkyezfv5+tW7dSUFBA3759Lfr3zdvbm3feeYdDhw5x6NAh7rvvPgYOHMjJkydLfxBFVEvJyclKgwYNlOvXr5s7FIvWqlUrJSYmxtxhWJxt27Ypjz32mLnDsAh79uxRBg0aZHj83HPPKd98840ZI7Ic7733nuLv72/uMCrEsmXLFBcXF3OHYbKOHTsqEydONNrWtGlTZcaMGWaKqGIByrp168wdRoW7du2aAig7duwwdygVys3NTfnyyy9LXV5aYk1QmksU5b0sc/PmTdq0aYO3tzfTp0/Hw8OjgqKvHqqiDoscOnQIvV6Pj49POaOuPqqy/u4V5a3T+Ph46tevb3js7e1NXFxcVYRu8VJTU6lVq5a5w7hn5eXlcfjwYfr27Wu0vW/fvuzdu9dMUYnSSE1NBagx/390Oh3fffcdmZmZhISElHo/SWJNcLdLFKW5LBMUFETLli2L3eLj4wFwdXXl2LFjXLx4kW+++YarV69WyblVlaqoQ4Dk5GSefPJJPv/880o/p6pUVfV3LylvnSolrBejUqkqNeaaIDo6mk8//ZSJEyeaO5R7VlJSEjqdjrp16xptr1u3LomJiWaKStyNoihMmzaNbt260bJlS3OHUy7Hjx9Hq9Via2vLxIkTWbduHc2bNy/9ASqtTbiGo4RLFBV9WWbixInK999/X9YQq73KqsOcnByle/fuysqVKysizGqrMj+D92p3grLUaUndCVatWlXpsVYXs2bNUoA73iIiIoz2iYuLUwIDA5WxY8eaKeo7K8s5WWJ3gri4OAVQ9u7da7R9zpw5SpMmTcwUVcUq6f+0pZs0aZLi6+urxMbGmjuUcsvNzVXOnTunREREKDNmzFA8PDyUkydPlnp/q4rIpMU/l2VmzJhhtN2UyzJXr17F3t4eZ2dn0tLS2Llzp8UOFiiLiqhDRVEIDw/nvvvuY9SoUZURZrVVEfUnjJWmTjt27MiJEyeIi4vD2dmZX3/9lddff90c4ZrFlClTGD58+B3L+Pn5Ge7Hx8fTq1cvQkJCqu2VElPPyVJ5eHig0WiKtbpeu3atWOusqB6effZZfv75Z3bu3Im3t7e5wyk3GxsbAgMDAQgODiYiIoJPPvmEzz77rFT7SxJbQSrissyVK1cYO3YsiqKgKApTpkyhdevWlRFutVQRdbhnzx5Wr15N69atDX0b//e//9GqVauKDrfaqahLg2FhYRw5coTMzEy8vb1Zt24dHTp0qOhwLUJp6tTKyooPP/yQXr16odfrmT59Ou7u7uYI1yw8PDxK3Xc/Li6OXr16ERQUxLJly1Crq2ePNlPOyZLZ2NgQFBTE1q1beeSRRwzbt27dysCBA80Ymfg3RVF49tlnWbduHdu3b8ff39/cIVUKRVHIzc0tdXlJYivYv/vCKYpS6v5xQUFBREZGVkJUlqU8dditWzf0en1lhGUxylN/AJs3b67okCze3ep0wIABDBgwoKrDsijx8fGEhobSoEEDPvjgA65fv254ztPT04yRlU9MTAwpKSnExMSg0+kM3+GBgYFotVrzBlcK06ZNY9SoUQQHBxtax2NiYiy6r3JGRgbnz583PL548SKRkZHUqlWLBg0amDGysps8eTLffPMNP/30E05OToY/ol1cXLC3tzdzdGXz6quv8sADD+Dj40N6ejrfffcd27dvZ9OmTaU+hiSxFUQuy5Sf1GH5SP1VPKnTirNlyxbOnz/P+fPni10GVUoYHGcpXn/9dVasWGF43K5dOwC2bdtGaGiomaIqvWHDhpGcnMybb75JQkICLVu25Ndff8XX19fcoZXZoUOH6NWrl+HxtGnTABg9ejTLly83U1Tls3jxYoBin6lly5YRHh5e9QFVgKtXrzJq1CgSEhJwcXGhdevWbNq0iT59+pT6GNXzWo4FuvWyzK22bt1Kly5dzBSVZZE6LB+pv4ondVpxwsPDDV2l/n2zZMuXLy/xnCwhgS0yadIkLl26RG5uLocPH6ZHjx7mDqlcQkNDS3xPLDWBBW77f8dSE1iApUuXGj53165d4/fffzcpgQVpiTXJ3S5R1MTLMhVN6rB8pP4qntSpEEJYqHLMjHDP2bZtW4lTrYwePdpQZuHChYqvr69iY2OjtG/fvsatplFeUoflI/VX8aROhRDCMqkUxcKv5QghhBBCiHuO9IkVQgghhBAWR5JYIYQQQghhcSSJFUIIIYQQFkeSWCGEEEIIYXEkiRVCCCFEpZk9ezZt27at1NdYvnw5rq6ulfoaovqRJFYIIYS4B4WHh6NSqVCpVFhZWdGgQQOeeeYZbty4Ye7QTDZs2DDOnj1r7jBEFZPFDoQQQoh7VL9+/Vi2bBkFBQWcOnWKMWPGcPPmTb799ltzh2YSe3t77O3tzR2GqGLSEiuEEELco2xtbfH09MTb25u+ffsybNgwtmzZYlRm2bJlNGvWDDs7O5o2bcqiRYuMnn/55Zdp3LgxDg4OBAQEMHPmTPLz80sdg06nY+zYsfj7+2Nvb0+TJk345JNPDM/n5OTQokULxo8fb9h28eJFXFxc+OKLL4Di3QmOHTtGr169cHJywtnZmaCgIA4dOmRK1QgLIC2xQgghhODChQts2rQJa2trw7YvvviCWbNmsWDBAtq1a8fRo0cZN24cjo6OjB49GgAnJyeWL1+Ol5cXx48fZ9y4cTg5OTF9+vRSva5er8fb25vvv/8eDw8P9u7dy/jx46lXrx5Dhw7Fzs6OVatW0alTJx588EH69+/PqFGj6NWrF+PGjSvxmCNHjqRdu3YsXrwYjUZDZGSk0XmJGsLcS4YJcS8ZPXq0YVnTdevWVcpr9OzZU/nPf/5TKce+nVmzZhnOa968eVX62kKIshk9erSi0WgUR0dHxc7OzvB/+KOPPjKU8fHxUb755huj/f7v//5PCQkJue1x33vvPSUoKMjweNasWUqbNm1Mim3SpEnKY489Vuy4Hh4eyrPPPqt4enoq169fNzy3bNkyxcXFxfDYyclJWb58uUmvKSyPdCcQ5XLrwIBbb+fPnzd3aNVWv379SEhI4IEHHqjS1w0NDWXJkiWVcuwXX3yRhIQEvL29K+X4QojK0atXLyIjIzlw4ADPPvssYWFhPPvsswBcv36d2NhYxo4di1arNdzmzJlDdHS04Rg//vgj3bp1w9PTE61Wy8yZM4mJiTEpjiVLlhAcHEzt2rXRarV88cUXxY7xwgsv0KRJEz799FOWLVuGh4fHbY83bdo0nn76ae6//37eeecdo3hFzSFJrCi3oqTs1pu/v3+xcnl5eWaIrvop6oNma2t72zKm9CcrjZSUFPbu3Uv//v0r9LhFtFotnp6eaDSaSjm+EKJyODo6EhgYSOvWrZk/fz65ubm88cYbQOFlfijsUhAZGWm4nThxgv379wOwf/9+hg8fzgMPPMCGDRs4evQor732mknf999//z3PP/88Y8aMYcuWLURGRvLUU08VO8a1a9c4c+YMGo2Gc+fO3fGYs2fP5uTJkzz00EP8+eefNG/enHXr1plSNcICSBIryq0oKbv1ptFoCA0NZcqUKUybNg0PDw/69OkDwKlTp3jwwQfRarXUrVuXUaNGkZSUZDheZmYmTz75JFqtlnr16vHhhx8SGhrK1KlTDWVUKhXr1683isPV1ZXly5cbHsfFxTFs2DDc3Nxwd3dn4MCBXLp0yfB8eHg4gwYN4oMPPqBevXq4u7szefJkowQyNzeX6dOn4+Pjg62tLY0aNWLp0qUoikJgYCAffPCBUQwnTpxArVab9Ff/pUuXUKlUfP/994SGhmJnZ8fXX39NcnIyjz/+ON7e3jg4ONCqVatiI4ZLqquSbNy4kTZt2lC/fn22b9+OSqVi8+bNtGvXDnt7e+677z6uXbvGb7/9RrNmzXB2dubxxx8nKyvLcIwff/yRVq1aYW9vj7u7O/fffz+ZmZmlPk8hRPU3a9YsPvjgA+Lj46lbty7169fnwoULBAYGGt2KGir27NmDr68vr732GsHBwTRq1IjLly+b9Jq7du2iS5cuTJo0iXbt2hEYGFjid+iYMWNo2bIlK1euZPr06Zw6deqOx23cuDHPP/88W7Zs4dFHH2XZsmUmxSWqP0liRaVasWIFVlZW7Nmzh88++4yEhAR69uxJ27ZtOXToEJs2beLq1asMHTrUsM9LL73Etm3bWLduHVu2bGH79u0cPnzYpNfNysqiV69eaLVadu7cye7du9FqtfTr18/or/tt27YRHR3Ntm3bWLFiBcuXLzdKhJ988km+++475s+fT1RUFEuWLEGr1aJSqRgzZkyxL8WvvvqK7t2707BhQ5Pr6uWXX+a5554jKiqKsLAwcnJyCAoKYsOGDZw4cYLx48czatQoDhw4YHJd/fzzzwwcONBo2+zZs1mwYAF79+4lNjaWoUOH8vHHH/PNN9+wceNGtm7dyqeffgpAQkICjz/+OGPGjCEqKort27fz6KOPoiiKyecphKi+QkNDadGiBW+99RZQ+D3x9ttv88knn3D27FmOHz/OsmXL+OijjwAIDAwkJiaG7777jujoaObPn29yi2dgYCCHDh1i8+bNnD17lpkzZxIREWFUZuHChezbt4+VK1cyYsQIBg8ezMiRI0ts8c3OzmbKlCls376dy5cvs2fPHiIiImjWrFkZa0VUW+bulCss260DA4pugwcPVhSlcIBR27ZtjcrPnDlT6du3r9G22NhYBVDOnDmjpKenKzY2Nsp3331neD45OVmxt7c3GqxECQOjXFxclGXLlimKoihLly5VmjRpouj1esPzubm5ir29vbJ582ZD7L6+vkpBQYGhzJAhQ5Rhw4YpiqIoZ86cUQBl69atJZ57fHy8otFolAMHDiiKoih5eXlK7dq17ziYYPTo0crAgQONtl28eFEBlI8//vi2+xV58MEHlRdeeEFRFKXUdZWTk6M4OTkpf/31l6IoirJt2zYFUH7//XdDmbffflsBlOjoaMO2CRMmKGFhYYqiKMrhw4cVQLl06dId4/P19ZWBXUJYiJK+jxRFUVatWqXY2NgoMTExhsdt27ZVbGxsFDc3N6VHjx7K2rVrDeVfeuklxd3dXdFqtcqwYcOUefPmGQ2yutvArpycHCU8PFxxcXFRXF1dlWeeeUaZMWOGYZ+oqCjF3t7eaIBZamqq4ufnp0yfPl1RFOOBXbm5ucrw4cMVHx8fxcbGRvHy8lKmTJmiZGdnl62iRLUlU2yJcuvVqxeLFy82PHZ0dDTcDw4ONip7+PBhtm3bhlarLXac6OhosrOzycvLIyQkxLC9Vq1aNGnSxKSYDh8+zPnz53FycjLanpOTY3SZqkWLFkb9OOvVq8fx48cBiIyMRKPR0LNnzxJfo169ejz00EN89dVXdOzYkQ0bNpCTk8OQIUNMirXIv+tKp9PxzjvvsHr1auLi4sjNzSU3N9dQv9HR0aWqqz///BN3d3datWpltL1169aG+3Xr1jXM8XjrtoMHDwLQpk0bevfuTatWrQgLC6Nv374MHjwYNze3Mp2rEML8br3qdKsRI0YwYsSI2z7+t/fee4/33nvPaNut3b9mz57N7Nmzb7u/ra0ty5YtK3Zl6+233wagadOmRl2bAJydnbl48aLhcXh4OOHh4QDY2NhY3GINomwkiRXlVjQw4HbP3Uqv19O/f3/efffdYmXr1at31876RVQqVbFL2bf2ZdXr9QQFBbFq1api+9auXdtw/9/zBqpUKsNghtKs/vL0008zatQo5s2bx7Jlyxg2bBgODg6lOod/+3ddffjhh8ybN4+PP/6YVq1a4ejoyNSpUw2Xz/59/rdTUlcCMD53lUp1x7rQaDRs3bqVvXv3smXLFj799FNee+01Dhw4UOIgPiGEEKKySZ9YUaXat2/PyZMn8fPzKzZQoCgZtra2Nox8Bbhx40axNbFr165NQkKC4fG5c+eM/lJv3749586do06dOsVex8XFpVSxtmrVCr1ez44dO25b5sEHH8TR0ZHFixfz22+/MWbMmNJWxV3t2rWLgQMH8sQTT9CmTRsCAgKMkvzS1JWiKPzyyy8MGDCg3PGoVCq6du3KG2+8wdGjR7GxsZHRvkIIIcxGklhRpSZPnkxKSgqPP/44Bw8e5MKFC2zZsoUxY8ag0+nQarWMHTuWl156iT/++IMTJ04QHh6OWm38Ub3vvvtYsGABR44c4dChQ0ycONGoJXHkyJF4eHgwcOBAdu3axcWLF9mxYwf/+c9/uHLlSqli9fPzY/To0YwZM4b169dz8eJFtm/fzvfff28oo9FoCA8P55VXXiEwMNDo0n55BQYGGlo/o6KimDBhAomJiYbnS1NXhw8fJjMzkx49epQrlgMHDvDWW29x6NAhYmJiWLt2LdevX5eBEkIIIcxGklhRpby8vNizZw86nY6wsDBatmzJf/7zH1xcXAzJ1/vvv0+PHj0YMGAA999/P926dSMoKMjoOB9++CE+Pj706NGDESNG8OKLLxpdxndwcGDnzp00aNCARx99lGbNmjFmzBiys7NxdnYudbyLFy9m8ODBTJo0iaZNmzJu3Lhi00qNHTuWvLy8Cm2FBZg5cybt27cnLCyM0NBQPD09GTRokFGZu9XVTz/9xEMPPYSVVfl6Djk7O7Nz504efPBBGjduzH//+18+/PDDKl+wQQghhCiiUkrbsU4IMwoNDaVt27Z8/PHH5g6lmD179hAaGsqVK1eoW7fuHcuGh4dz8+bNYnPcVpbWrVvz3//+12gKs8rk5+fH1KlTjQZ1CCGEEJVBWmKFKKPc3FzOnz/PzJkzGTp06F0T2CIbNmxAq9WyYcOGSo0vLy+Pxx57rEpaS9966y20Wq3JS00KIYQQZSUtscIiVMeW2OXLlzN27Fjatm3Lzz//TP369e+6z7Vr10hLSwMKZ2P494wEliolJYWUlBSgcNBdaQfPCSGEEGUlSawQQgghhLA40p1ACCGEEEJYHElihRBCCCGExZEkVgghhBBCWBxJYoUQQgghhMWRJFYIIYQQQlgcSWKFEEIIIYTFkSRWCCGEEEJYHElihRBCCCGExZEkVgghhBBCWJz/B/RUkgb9RJvGAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -863,7 +863,7 @@ "source": [ "## Unstable system: inverted pendulum\n", "\n", - "When we have a system that is open loop unstable, the Nyquist curve will need to have encirclements to be stable. In this case, the interpreation of the various characteristics can be more complicated.\n", + "When we have a system that is open loop unstable, the Nyquist curve will need to have encirclements to be stable. In this case, the interpretation of the various characteristics can be more complicated.\n", "\n", "To explore this, we consider a simple model for an inverted pendulum, which has (normalized) dynamics:\n", "\n", @@ -969,7 +969,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAGNCAYAAAAGiilmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADHMUlEQVR4nOzdd3hT1f/A8XeS7j2AttAFlFH23kNUpiDgQlGGDOULCFoVRQUBRfyJIipDUWQoKCpDRWSolL33LrtQWkoLdNI2Te7vj0qkdCVt2iTt5/U8fdp7zrn3fnK4pKcnZ6gURVEQQgghhBDChqgtHYAQQgghhBCmkkasEEIIIYSwOdKIFUIIIYQQNkcasUIIIYQQwuZII1YIIYQQQtgcacQKIYQQQgibI41YIYQQQghhc6QRK4QQQgghbI40YoUQQgghhM2RRqwQokJRqVSsWbPGLNd64IEHePnll4t9/po1awgLC0Oj0ZToOvkpaWzWaujQofTr18/SYeQrMjISlUrF7du3jT7Hml+PENbOztIBCCHK1tChQ7l9+7bZGnIV2apVq7C3ty/2+S+++CLPP/8848aNw93d3YyRlTw2c5JnTghRGqQRK4QQxeTj41Psc1NTU4mPj6d79+5UrVq12NfJysrCwcHBrLGZi06nQ6VSWToMIUQ5JcMJhBC5bNmyhVatWuHo6EhAQABvvvkm2dnZhvzMzEzGjRtHlSpVcHJyokOHDuzbt8+Qf/cj1T/++IPGjRvj5ORE69atOXbsWKH3nTVrFg0bNsTV1ZWgoCBGjx5NamqqIX/x4sV4eXmxYcMGwsPDcXNzo0ePHsTGxhrK7Nu3j65du1KpUiU8PT3p3LkzBw8eLPCeDz74IGPHjs2VlpiYiKOjI//88w8A8+bNo1atWjg5OeHn58cTTzxhKHv/R/aFlb1XZGSkoef1wQcfRKVSERkZCcDKlSupX78+jo6OhIaG8sknn+Q6NzQ0lPfff5+hQ4fi6enJyJEj873H/bGFhobywQcfMGzYMNzd3QkODmbBggWG/LZt2/Lmm2/musaNGzewt7dn8+bNQE6DecKECVSrVg1XV1dat25tiBv++zdau3Yt9erVw9HRkeeff54lS5bw66+/olKpcr3WmJgYBgwYgLe3N76+vvTt25dLly4ZrqfT6YiIiMDLywtfX18mTJiAoij5vt77Y1izZg21a9fGycmJrl27cuXKlVzlfv/9d5o3b46TkxM1atRg6tSpuZ5zlUrFN998Q//+/XFxcaFWrVr89ttvua6xbt06ateujbOzM126dMkVO8CUKVNo0qRJrrTZs2cTGhpaYPyhoaHMnj07V1qTJk2YMmVKrti++uorevfujYuLC+Hh4ezatYtz587xwAMP4OrqStu2bTl//nyhdSWErZNGrBDCICYmhl69etGyZUuOHDnC/PnzWbhwIe+//76hzIQJE1i5ciVLlizh4MGDhIWF0b17d27evJnrWq+//joff/wx+/bto0qVKjz66KNotdoC761Wq/n88885fvw4S5Ys4Z9//mHChAm5yqSnp/Pxxx/z3XffsXXrVqKjo3nttdcM+SkpKQwZMoRt27axe/duatWqRa9evUhJScn3niNGjGD58uVkZmYa0pYtW0bVqlXp0qUL+/fvZ9y4cUybNo0zZ86wfv16OnXqlO+1TCnbrl07zpw5A+Q0WmNjY2nXrh0HDhzgqaee4umnn+bYsWNMmTKFSZMmsXjx4lznz5w5kwYNGnDgwAEmTZpUYJ3e75NPPqFFixYcOnSI0aNH87///Y/Tp08D8Oyzz/LDDz/kaiSuWLECPz8/OnfuDMDzzz/Pjh07+PHHHzl69ChPPvkkPXr04OzZs4Zz0tPTmTFjBt988w0nTpzg888/56mnnjL8wXH3taanp9OlSxfc3NzYunUr27dvN/xhkpWVZYj322+/ZeHChWzfvp2bN2+yevXqIl9neno606dPZ8mSJezYsYPk5GSefvppQ/6GDRt47rnnGDduHCdPnuSrr75i8eLFTJ8+Pdd1pk6dylNPPcXRo0fp1asXzz77rOE5v3LlCo899hi9evXi8OHDjBgxIs8fAaXpvffeY/DgwRw+fJi6desycOBAXnzxRSZOnMj+/fsB8vyBJkS5owghKpQhQ4Yoffv2zTfvrbfeUurUqaPo9XpD2ty5cxU3NzdFp9Mpqampir29vbJs2TJDflZWllK1alXlo48+UhRFUTZv3qwAyo8//mgok5iYqDg7OysrVqwwOs6ffvpJ8fX1NRwvWrRIAZRz587lis3Pz6/Aa2RnZyvu7u7K77//bkgDlNWrVyuKoigZGRmKj49PrriaNGmiTJkyRVEURVm5cqXi4eGhJCcn53v9zp07K+PHjzeq7P1u3bqlAMrmzZsNaQMHDlS6du2aq9zrr7+u1KtXz3AcEhKi9OvXr8jr3xvb3fOee+45w7Fer1eqVKmizJ8/X1EURYmPj1fs7OyUrVu3Gsq0bdtWef311xVFUZRz584pKpVKiYmJyXWfhx56SJk4caKiKP/9Gx0+fDhXmfyeuYULF+Z51jIzMxVnZ2dlw4YNiqIoSkBAgPLhhx8a8rVarRIYGFjg83tvDLt37zaknTp1SgGUPXv2KIqiKB07dlQ++OCDXOd99913SkBAgOEYUN555x3DcWpqqqJSqZQ///xTURRFmThxohIeHp4r/jfeeEMBlFu3bimKoijvvvuu0rhx41z3+fTTT5WQkJAC6yYkJET59NNPc53TuHFj5d133y0wtl27dimAsnDhQkPaDz/8oDg5OeVTQ0KUH9ITK4QwOHXqFG3bts01jrF9+/akpqZy9epVzp8/j1arpX379oZ8e3t7WrVqxalTp3Jdq23btoaffXx8qFOnTp4y99q8eTNdu3alWrVquLu7M3jwYBITE0lLSzOUcXFxoWbNmobjgIAA4uPjDcfx8fGMGjWK2rVr4+npiaenJ6mpqURHR+d7T0dHR5577jm+/fZbAA4fPsyRI0cYOnQoAF27diUkJIQaNWowaNAgli1bRnp6er7XMqVsQU6dOpWrbiGn/s+ePYtOpzOktWjRwqTr3tWoUSPDzyqVCn9/f0P9Va5cma5du7Js2TIALl68yK5du3j22WcBOHjwIIqiULt2bdzc3AxfW7ZsyfWxtYODQ677FOTAgQOcO3cOd3d3w7V8fHzIyMjg/PnzJCUlERsbm+s5srOzM+q131+ubt26eHl5GZ6/AwcOMG3atFyvY+TIkcTGxub6N7v3dbi6uuLu7m6or1OnTtGmTZtc/1fujbW03Rubn58fAA0bNsyVlpGRQXJycpnFJERZk4ldQggDRVHyTMRR/v14WaVS5fq5qPPyU1CZy5cv06tXL0aNGsV7772Hj48P27dvZ/jw4bmGINw/2/7emCBnFvyNGzeYPXs2ISEhODo60rZtW8PH0/kZMWIETZo04erVq3z77bc89NBDhISEAODu7s7BgweJjIxk48aNTJ48mSlTprBv3z68vLxyXceUsgUprP7v5erqatT17pdf/en1esPxs88+y/jx4/niiy9Yvnw59evXp3HjxgDo9Xo0Gg0HDhxAo9Hkuo6bm5vhZ2dnZ6OeBb1eT/PmzQ2N5ntVrlzZpNeVn/xiuJum1+uZOnUqjz32WJ4yTk5Ohp8Lq6/8/l3up1ar85QrbEiNKefcG9vd15Vf2r3/vkKUN9ITK4QwqFevHjt37sz1S3Tnzp24u7tTrVo1wsLCcHBwYPv27YZ8rVbL/v37CQ8Pz3Wt3bt3G36+desWUVFR1K1bN9/77t+/n+zsbD755BPatGlD7dq1uXbtmsnxb9u2jXHjxtGrVy/D5KiEhIRCz2nYsCEtWrTg66+/Zvny5QwbNixXvp2dHQ8//DAfffQRR48e5dKlS4ZJX/czpWx+6tWrl6tuIaf+a9eunafhWBr69etHRkYG69evZ/ny5Tz33HOGvKZNm6LT6YiPjycsLCzXl7+/f6HXdXBwyNWTDNCsWTPOnj1LlSpV8lzvbi96QEBArucoOzubAwcOFPk6srOzDeNCAc6cOcPt27cNz1+zZs04c+ZMnvuGhYWhVhv3a7FevXq5YgPyHFeuXJm4uLhc/58OHz5c6HUrV66ca7JicnIyFy9eNComISoa6YkVogJKSkrK88vUx8eH0aNHM3v2bF566SXGjh3LmTNnePfdd4mIiECtVuPq6sr//vc/Xn/9dXx8fAgODuajjz4iPT2d4cOH57retGnT8PX1xc/Pj7fffptKlSoVuKh7zZo1yc7O5osvvqBPnz7s2LGDL7/80uTXFRYWxnfffUeLFi1ITk7m9ddfx9nZucjzRowYwdixY3FxcaF///6G9LVr13LhwgU6deqEt7c369atQ6/XU6dOnTzXMKVsQV599VVatmzJe++9x4ABA9i1axdz5sxh3rx5Rl+jJFxdXenbty+TJk3i1KlTDBw40JBXu3Ztnn32WQYPHswnn3xC06ZNSUhI4J9//qFhw4b06tWrwOuGhoayYcMGzpw5g6+vL56enjz77LPMnDmTvn37Mm3aNAIDA4mOjmbVqlW8/vrrBAYGMn78eD788ENq1apFeHg4s2bNMmojAXt7e1566SU+//xz7O3tGTt2LG3atKFVq1YATJ48md69exMUFMSTTz6JWq3m6NGjHDt2LNckxsKMGjWKTz75hIiICF588UUOHDiQZwLeAw88wI0bN/joo4944oknWL9+PX/++SceHh4FXvfBBx9k8eLF9OnTB29vbyZNmlQmf8AIYYukJ1aICigyMpKmTZvm+po8eTLVqlVj3bp17N27l8aNGzNq1CiGDx/OO++8Yzj3ww8/5PHHH2fQoEE0a9aMc+fOsWHDBry9vXPd48MPP2T8+PE0b96c2NhYfvvtt3zXM4WcJYRmzZrF//3f/9GgQQOWLVvGjBkzTH5d3377Lbdu3aJp06YMGjTIsBRYUZ555hns7OwYOHBgro+Tvby8WLVqFQ8++CDh4eF8+eWX/PDDD9SvXz/PNUwpW5BmzZrx008/8eOPP9KgQQMmT57MtGnTDGN0y8Kzzz7LkSNH6NixI8HBwbnyFi1axODBg3n11VepU6cOjz76KHv27CEoKKjQa44cOZI6derQokULKleuzI4dO3BxcWHr1q0EBwfz2GOPER4ezrBhw7hz546hkffqq68yePBghg4dStu2bXF3d8/1R0ZBXFxceOONNxg4cCBt27bF2dmZH3/80ZDfvXt31q5dy6ZNm2jZsiVt2rRh1qxZhmEkxggODmblypX8/vvvNG7cmC+//JIPPvggV5nw8HDmzZvH3Llzady4MXv37s21mkZ+Jk6cSKdOnejduze9evWiX79+ucaBCyH+o1KMGdgjhBBGioyMpEuXLty6dcvosaCWduXKFUJDQ9m3bx/NmjWzdDiiBBYvXszLL79s0tavQgjbJMMJhBAVllarJTY2ljfffJM2bdpIA1YIIWyIDCcQQlRYO3bsICQkhAMHDhRrDK4QQgjLkeEEQgghhBDC5khPrBBCCCGEsDnSiBVCCCGEEDZHGrFCCCGEEMLmSCNWCCGEEELYHGnECiGEEEIImyONWCGEEEIIYXOkESuEEEIIIWyONGKFEEIIIYTNkUasEEIIIYSwOdKIFUIIIYQQNkcasUIIIYQQwuZII1YIIYQQQtgcacQKIYQQQgibI41YIYQQQghhc6QRK4QQQgghbI40YoUQQgghhM2RRqwQQgghhLA50ogVQgghhBA2RxqxQgghhBDC5kgjVgghhBBC2BxpxAohhBBCCJsjjVhR7gwdOpR+/fqV+n1UKhVr1qwx+3UVReGFF17Ax8cHlUrF4cOHzX4PIYQorilTptCkSZMyv+8DDzzAyy+/XCrXXrBgAUFBQajVambPnl0q9xDmJ41YYRFDhw5FpVIZvnx9fenRowdHjx61dGilxtjG9fr161m8eDFr164lNjaWBg0amDWO0mp8CyFKx933yw8//DBX+po1a1CpVGUez2uvvcbff/9tVFlLNXgBFi9ejJeXV5HlkpOTGTt2LG+88QYxMTG88MILZo2jNBvfFZ00YoXF9OjRg9jYWGJjY/n777+xs7Ojd+/elg7L4s6fP09AQADt2rXD398fOzs7k6+hKArZ2dmlEJ0QwhKcnJz4v//7P27dumXpUHBzc8PX19fSYZhNdHQ0Wq2WRx55hICAAFxcXIp1Ha1Wa+bIRFGkESssxtHREX9/f/z9/WnSpAlvvPEGV65c4caNG4Yyx44d48EHH8TZ2RlfX19eeOEFUlNTDfk6nY6IiAi8vLzw9fVlwoQJKIqS6z6KovDRRx9Ro0YNnJ2dady4Mb/88kuhsYWGhvLee+8xcOBA3NzcqFq1Kl988UWh5xQW65QpU1iyZAm//vqrofc5MjIyzzWGDh3KSy+9RHR0NCqVitDQUAAyMzMZN24cVapUwcnJiQ4dOrBv3z7DeZGRkahUKjZs2ECLFi1wdHRk27ZthcYrhLAdDz/8MP7+/syYMSPf/LS0NDw8PPK8t/3++++4urqSkpICwN69e2natClOTk60aNGC1atX5xq2lF/v5f09vvf3rkZGRtKqVStcXV3x8vKiffv2XL58mcWLFzN16lSOHDlieN9bvHhxvvHf/aRq6tSpVKlSBQ8PD1588UWysrIKrJNbt24xePBgvL29cXFxoWfPnpw9e9YQ0/PPP09SUpLh3lOmTMlzjcWLF9OwYUMAatSogUql4tKlSwDMnz+fmjVr4uDgQJ06dfjuu+9ynatSqfjyyy/p27cvrq6uvP/++wXGKkqHNGKFVUhNTWXZsmWEhYUZ/sJPT0+nR48eeHt7s2/fPn7++Wf++usvxo4dazjvk08+4dtvv2XhwoVs376dmzdvsnr16lzXfuedd1i0aBHz58/nxIkTvPLKKzz33HNs2bKl0JhmzpxJo0aNOHjwIBMnTuSVV15h06ZN+ZYtKtbXXnuNp556Klfvc7t27fJc57PPPmPatGkEBgYSGxtraKhOmDCBlStXsmTJEg4ePEhYWBjdu3fn5s2buc6fMGECM2bM4NSpUzRq1KiIWhdC2AqNRsMHH3zAF198wdWrV/Pku7q68vTTT7No0aJc6YsWLeKJJ57A3d2dtLQ0evfuTZ06dThw4ABTpkzhtddeK1Fc2dnZ9OvXj86dO3P06FF27drFCy+8gEqlYsCAAbz66qvUr1/f8L43YMCAAq/1999/c+rUKTZv3swPP/zA6tWrmTp1aoHlhw4dyv79+/ntt9/YtWsXiqLQq1cvtFot7dq1Y/bs2Xh4eBjund9rHTBgAH/99ReQ08CPjY0lKCiI1atXM378eF599VWOHz/Oiy++yPPPP8/mzZtznf/uu+/St29fjh07xrBhw4pZi6LYFCEsYMiQIYpGo1FcXV0VV1dXBVACAgKUAwcOGMosWLBA8fb2VlJTUw1pf/zxh6JWq5W4uDhFURQlICBA+fDDDw35Wq1WCQwMVPr27asoiqKkpqYqTk5Oys6dO3Pdf/jw4cozzzxTYHwhISFKjx49cqUNGDBA6dmzp+EYUFavXm10rEOGDDHEVZhPP/1UCQkJMRynpqYq9vb2yrJlywxpWVlZStWqVZWPPvpIURRF2bx5swIoa9asKfL698YthLB+9753tGnTRhk2bJiiKIqyevVq5d5f43v27FE0Go0SExOjKIqi3LhxQ7G3t1ciIyMVRVGUr776SvHx8VHS0tIM58yfP18BlEOHDimKoiiLFi1SPD09c93//vu8++67SuPGjRVFUZTExEQFMNzjfveWLeo15hebm5ubotPpFEVRlM6dOyvjx49XFEVRoqKiFEDZsWOHoXxCQoLi7Oys/PTTTwW+lvwcOnRIAZSLFy8a0tq1a6eMHDkyV7knn3xS6dWrl+EYUF5++eUir39v3MK8pCdWWEyXLl04fPgwhw8fZs+ePXTr1o2ePXty+fJlAE6dOkXjxo1xdXU1nNO+fXv0ej1nzpwhKSmJ2NhY2rZta8i3s7OjRYsWhuOTJ0+SkZFB165dcXNzM3wtXbqU8+fPFxrfvde9e3zq1Kl8yxYVa0mcP38erVZL+/btDWn29va0atUqTzz3vnYhRPnzf//3fyxZsoSTJ0/myWvVqhX169dn6dKlAHz33XcEBwfTqVMn4L/3qXvHfN7/PmcqHx8fhg4dSvfu3enTpw+fffYZsbGxxbpWfrGlpqZy5cqVPGVPnTqFnZ0drVu3NqT5+vpSp06dAt+nTXHq1Klc77mQ854u77nWRRqxwmJcXV0JCwsjLCyMVq1asXDhQtLS0vj666+BnLGsBc28NXZGrl6vB+CPP/4wNJgPHz7MyZMnixwXa8p9zRFrQZR/x/jef5387nlvI1oIUf506tSJ7t2789Zbb+WbP2LECMOQgkWLFvH8888b3ieU++YL5EetVucpV9SEpUWLFrFr1y7atWvHihUrqF27Nrt37zbm5Rglv/fQgl5LYe/FJb2vvOdaH2nECquhUqlQq9XcuXMHgHr16nH48GHS0tIMZXbs2IFaraZ27dp4enoSEBCQ680yOzubAwcOGI7r1auHo6Mj0dHRhgbz3a+goKBC47n/TXj37t3UrVs337JFxQrg4OCATqczsjb+ExYWhoODA9u3bzekabVa9u/fT3h4uMnXE0LYtg8//JDff/+dnTt35sl77rnniI6O5vPPP+fEiRMMGTLEkFevXj2OHDlieI+FvO9zlStXJiUlJdd7mTFrVTdt2pSJEyeyc+dOGjRowPLlywHT3vfyi83NzY3AwMA8ZevVq0d2djZ79uwxpCUmJhIVFWV4Xyzuey5AeHh4rvdcgJ07d8p7rpWRRqywmMzMTOLi4oiLi+PUqVO89NJLpKam0qdPHwCeffZZnJycGDJkCMePH2fz5s289NJLDBo0CD8/PwDGjx/Phx9+yOrVqzl9+jSjR4/m9u3bhnu4u7vz2muv8corr7BkyRLOnz/PoUOHmDt3LkuWLCk0vh07dvDRRx8RFRXF3Llz+fnnnxk/fny+ZY2JNTQ0lKNHj3LmzBkSEhKMXo7F1dWV//3vf7z++uusX7+ekydPMnLkSNLT0xk+fLhR17jfxYsXc/VMHz58ONeqD0II69WwYUOeffbZfFdM8fb25rHHHuP111+nW7duuRqAAwcORK1WM3z4cE6ePMm6dev4+OOPc53funVrXFxceOuttzh37hzLly8vcEUByHkvmThxIrt27eLy5cts3LgxV0MyNDTU8H6TkJBAZmZmgdfKysoyxPbnn3/y7rvvMnbsWNTqvE2VWrVq0bdvX0aOHMn27ds5cuQIzz33HNWqVaNv376Ge6empvL333+TkJBAenp6ofV6r9dff53Fixfz5ZdfcvbsWWbNmsWqVauKPRHuxo0bed5z4+LiinUtcQ+LjcYVFdqQIUMUwPDl7u6utGzZUvnll19ylTt69KjSpUsXxcnJSfHx8VFGjhyppKSkGPK1Wq0yfvx4xcPDQ/Hy8lIiIiKUwYMH55pApdfrlc8++0ypU6eOYm9vr1SuXFnp3r27smXLlgLjCwkJUaZOnao89dRTiouLi+Ln56fMnj07VxnumyBVVKzx8fFK165dFTc3NwVQNm/enO+975/YpSiKcufOHeWll15SKlWqpDg6Oirt27dX9u7da8i/O7Hr1q1bBb6me+PO76ugeIQQlpXfpNBLly4pjo6OSn6/xv/++28FMExwuteuXbuUxo0bKw4ODkqTJk2UlStX5prYpSg5E7nCwsIUJycnpXfv3sqCBQsKnNgVFxen9OvXTwkICFAcHByUkJAQZfLkyYbJWBkZGcrjjz+ueHl5KYCyaNGiQl/j5MmTFV9fX8XNzU0ZMWKEkpGRYShz/wSpmzdvKoMGDVI8PT0VZ2dnpXv37kpUVFSu644aNUrx9fVVAOXdd9/N9975TexSFEWZN2+eUqNGDcXe3l6pXbu2snTp0lz59/8OKEjnzp3zfc8tKB5hPJWiGDFIRogKJjQ0lJdffll2WRFC2Jxly5Yxfvx4rl27hoODQ6FlL126RPXq1Tl06JDFdtaCnOWybt++LbsJCpOYvhWQEEIIIaxOeno6Fy9eZMaMGbz44otFNmCFsHUyJlYIIYQoBz766COaNGmCn58fEydOtHQ4QpQ6GU4ghBBCCCFsjvTECiGEEEIImyONWCGEEEIIYXOkESuEEEIIIWxOhV2doH///kRGRvLQQw+ZvP2oXq/n2rVruLu7m217OyGE7VIUhZSUFKpWrZrvwuyiYPJ+KoS4n7HvqRV2YtfmzZtJTU1lyZIlJjdir169WuSWpUKIiufKlSv5bpEpCibvp0KIghT1nlphe2K7dOlCZGRksc51d3cHcirXw8MDrVbLxo0b6datG/b29rmOgVx55nb/vc19XlHlCso3Nt3UY3OzZP2ZmmdM3cizZ1zd5ZdWkmcvOTmZoKAgw3uDMN7976dF0el0nDlzhjp16qDRaEo7PLOz5fhtOXaw7fhtOXYwPX5j31NtshG7detWZs6cyYEDB4iNjWX16tX069cvV5l58+Yxc+ZMYmNjqV+/PrNnz6Zjx45muf/dj7w8PDwMjVgXFxc8PDwMv/zuHgO58szt/nub+7yiyhWUb2y6qcfmZsn6MzXPmLqRZ8+4ussvzRzPnnwcbrr730+LotPpcHNzw8PDw2Z/mdtq/LYcO9h2/LYcOxQ//qLeU21y8FZaWhqNGzdmzpw5+eavWLGCl19+mbfffptDhw7RsWNHevbsSXR0dBlHKoQQQgghSoNN9sT27NmTnj17Fpg/a9Yshg8fzogRIwCYPXs2GzZsYP78+cyYMcPk+2VmZpKZmWk4Tk5OBnJ6cu5+3T2+//ufJ67z+yU1R9adwsHeDo1ahUatwi6f73Yadb55GrUKe40aR7u7Xxqc7NU42WvQoCNTBxmZWSa9pvtjLW65gvKNTTf1u7kV9/rmqD9T84ypm8LSzM2SdVdYvqn1Yo5nr7TqWAghRMFsfmKXSqXKNZwgKysLFxcXfv75Z/r3728oN378eA4fPsyWLVsMaZGRkcyZM6fIiV1Tpkxh6tSpedKXL1+Oi4tLoecuP6dmz42y6fDWqBTs1OCgBidNzpeznZLzXQNOdv9+1yi42oGbPbjbK7jbg7s9aGyyX14Iy0tPT2fgwIEkJSUZ9ZG4+E9ycjKenp5G151Op+PUqVOEh4fb7Meqthq/LccOth2/LccOpsdv7PuCTfbEFiYhIQGdToefn1+udD8/P+Li4gzH3bt35+DBg6SlpREYGMjq1atp2bJlvtecOHEiERERhuO7A467dOmCh4cH2dnZbN68mS5dumBnZ5frODsgAffdJ6gWFISCimy9gu7fr+x/v+49LuhnrU5PZnbOV4ZWT1a2noxsHVrdf3+D6BQVOh1k6iDF0DFk/Bg9T2c7fF0dqOzmQFUvJ6p5OuHv4cD1Cyfp/UBbqnq7olHnvt79r93UdFOPza241zf2vMLKmZpnTN3cmwaU27orLN+YussvrSTP3t1PZ4QQQpSdctcTe+3aNapVq8bOnTtp27atodz06dP57rvvOH36dLHvNXfuXObOnYtOpyMqKsqontjSpldAq8/5ytZD1r8/Z+jgjk5FRjbc0f17nK369zukZ0OKVkWKFlK1oDeisatRKVR2An8XBX/nnO8Bzjlp0osrKjLpiS0+6Ym1HbYcO9h2/LYcO0hPrNEqVaqERqPJ1esKEB8fn6d31lRjxoxhzJgxhso1picWyqY3rMfDxe8NU2s0JN3RkpCq5WZaFtdTMrmWlMG12xlcvXWHc7G3uK1Vk62HuDsQdyd3g9depVC/mieNqnnQqJoHDat54O9mR2RkpPTESk9ssc+TnlghhBCFKXc9sQCtW7emefPmzJs3z5BWr149+vbtW6yJXXdZY09sWdErcDsL4tJVOQ3ZdBVxd1TEpUOmPm8vrru9Qi0PhdqeOV++ThYIWogyIj2xxSc9sbbDlmMH247flmMH6YnNJTU1lXPnzhmOL168yOHDh/Hx8SE4OJiIiAgGDRpEixYtaNu2LQsWLCA6OppRo0aV6L7W3BNb2r1hDz2Yf7ksrZaf/4zENbg+x2NTORaTzOnrqaRo4WCiioOJOeUCvZzoXNuXB8J8SDl/iIcfkp5Y6YmVnlghhBDFZ5M9sXc/pr7fkCFDWLx4MZCz2cFHH31EbGwsDRo04NNPP6VTp04lum9F7ok1RbYeLqVAVJKaqGQVl1NBr/zXW+usUajvrdDIJ+e7nYynFTZOemKLT3pirVuGVkd6lo47Wh2OGoi7fJ7w8HC0ejgWk4RaBWpVzlKQjnYaPJ3t8XC2w9leY3Wbf9ha3d/LlmMH6YnN5YEHHqCotvfo0aMZPXq0We97f09st27dDDt2bdq0ia5duxp2+rl7DOTKM7f7723u84oqV1D+3fRPu3YlU69iz4Wb/HX6Bn+fjudWupb9CSr2J4CHkx0NPbMY06sFLar7kp2dXWBdlrf6MzWvsOcsvzJQsZ+9wuouvzRj6rcg0hMrbJGiKGh1Cg7/9iREJ6bz8cYzxKdkEJ+SyY3kTFIysw3l/9e5Bo8E5fwcn5zJk1/uKvDaz7QKZsZjDQHIzNYxceUxArycCPB0pqqXEyG+roT4uGAns4JFCdhkI1bYFjdHOx4Kr8JD4VXIyKzF16v/Ism9OutPxHM9JZMdGWp2LDpIqK8LTzYLwFvWjRdCCLPS6RXOxqdw5MptDl+5zYlryVy4kcaLnWrw0kO1AMjW6/ntyLV8z3e47yMztRqqV3I1LAWpVxQytDqSM7LR6RU8nP5rXlxPymTVoZg817TXqKheyZWnWgQxomMNQ7qiKFbXiyusk00OJ7AUGU5gXnoFziap2HdDxZGbKrL+nSBmr1ZoXkmho7+eQFcLBymEEWQ4QfHJcILCXbmZTlpWNnX9i/dcXbmZzuu/HOHo1STSs3R58vs3rcanA5oAcCdLx7I9l6ns7khld0equDtR2c0RV0cNdhq1UbErimK4j6tjTkM2ITWTn/ZfIfZ2BrFJd4i5ncGlhDTuaHPKjXuoFhFdawMQn5xBj8+20SjQk8aBXjQJ8qJZsDeeLiX/NMmWnx1bjh1kOIFVkOEEJftIN7/0u8fzOndh46lElu6O5sz1VHbHq9gdr6Z1qBfNnRMZ88RDODg4GP36jCXDCYrPlp49GU4gbJGiKExcdYwsnZ4VL7QpsncyMTWTTSevY6dR80TzQAAquztyKPo2mdl6XB00NAr0onGQF40CPalVxY1g3/86YpwdNLl6RItDpVIZGq93VXJzZPQDYbnS9HqFmNt3OHcjlSDv/2I4cjWJm2lZRJ65QeSZG/9eE+pX9aBdzUr0a1KNelXlD0WRQxqxwiq4OtjxVItA+jWqwler/uIcVdl46gZ7Lt1mDxq2LTzA/zrX5KG6lVGr5WMmIUT5t/JgDNvPJQDw25Fr9G1SLU+Zm2lZbDgRxx9HY9l1IRGdXqG2n5uhEetkr2Hes80I8nGhZmW3PLsuWoparSLIx4Ugn9yfZnaqXYk1Y9pz9GrOsIfD0be5kJDG8ZhkjsckU8fP3dCITUjN5GZaFrWquMnwgwpKhhOYQIYTlK2bmbD5mppd8Sq0/w41CHBR6B2sp76XgrxnCWshwwmKT4YT5O9GSiYPz9pC0p2cSQJ+Ho78/eoDuP3by7n5TDzf77pMZNQNdPr/fo03qOZB13B/XnowzOx/8Fuq7uOTM9h1IZGd5xJ5uWstAjydAfhm2wXe/+MUQT7OPBzux8PhfrSq7oN9AZPFbPnZseXYQYYTWAUZTlB6wwkKOh6g1bJ63SainWqyfH8MsenZfH1aQ/NgL17tWouWod5Gv+aS1ENxz5PhBMU/T4YTiIps6u8nDA1YgOvJmXzxz1km9gwH4NdDMfx9Oh7I+aj9kUYBPNIwgBDf8jeRoIqHE32bVMvTE30rPQsHOzVXbt5h0Y5LLNpxCR9XB3o28OfRxlVpGeojn9yVc9KILQF7e/tcv9zyOy4or7RjMfd5RZUrKN/Y9MKO3ezhte51GP1gHb7cep5FOy5yIPo2Axfuo0udyrzVK5xafu5FvobCWLL+TM0rqu7uppkaY3HZ0rNXnPo0Js7SrF9R8fx96jprj8bmSV+47QJPNg8irIobg9qGUtndkQEtgwmr4maBKC3v9e51GdMljG1nE/j71HX+PhVPYloWy/ZE8/OBq+x/52E8nOT/ZnkmjdgS0Gq1hq+7x/l9v/9nc8dQnOsbe15R5QrKNzbdlO8u9vZEPFSTZ1tWY27kBX46EMPmMzfYejaBQa2DeKlLTTycTXvDsmT9mZpnynMmz57x9WLsd2NiFaKkUjK0vLPmeL552fqcHtqlw1rRPMSb5iEl+ySqPHBxsKN7fX+61/cnW6dn5/lEwzJh9zZg31x5lHB/d+o46y0VqigFMibWBDIm1rrE34HfLqs5ditn/JObXc542dZVFOQTJFGWZExs8cmY2NwmrTnOd7svF3qNL59rTo8G/qUVYoFste7PXk+h66dbAXDQqOjVMICBrUNoGeptMxPCbLXu75IxsVZAxsSW/ZjYou4/FNh2LoH3/zjDhYQ0fryg4XiGB+/3rUd9I5ZhkTGxxWdLz56MiRW2YN+lm0U2YAHeW3uSzrUr4+xge40ZS6ji4cSk3vX4cW80Z+NTWXP4GmsOXyM8wIPn24XyaJOqONlLXdqiUmnEZmRk4OTkVBqXtioyJrbofHOMiS3q/g+GB9Cxth9Ldl7is7/OcvxaMo9/tYfhHarzysO1jXqjlzGxxWdLz56MiRXWKkOr482VR40qm3xHy88HrjC4bWjpBlVOeDrbM7xDdYa0CWLNtiPsSdDw+9FYTsUmM2HlURzt1fkuXyasn9kasXq9nunTp/Pll19y/fp1oqKiqFGjBpMmTSI0NJThw4eb61ZWQ8bElu2Y2KIMaRNEr/pVmL7uDH8cj2PB1gusOxbLe4/Wo0OYb7FeX0FkTKxtPXsyJlZYI0VR+ONYLEHeLlxPzqCOvzvNgr1RqaBWFXc8XezxcrbH29UBbxd7vFwc8HS2L3AJKVE4lUpF3cqO9O8UztuP1OPHfVdYfzyOng0CDGV2nU/Ez8ORGpUr5mQ5W2O2MbHTpk1jyZIlTJs2jZEjR3L8+HFq1KjBTz/9xKeffsquXbvMcRuLkjGxtuPELRU/XVBzOytnvFPLSnr6h+pxlQ4zUQpkTGzxVdQxsR7+obz96wm2nU2gQTUPfh3TwWo2IihIean7guLP1ul54ONIYm7foVeDAP73QE0aVPO0QKR5lfe6v1+Zj4ldunQpCxYs4KGHHmLUqFGG9EaNGnH69Glz3caiZEys9Y2JLUgv4H+Z2Xz61zm+2xPNvgQ1lzKcmN6vPl3qVDa5HkytF2PKyZhYGRMrKh5FUdhwNoVFP28nNVOHg52ah8P90OkVq2/ElndJd7TU9ffg6q07/HEslj+OxfJAncqMf6gWTYNlJQhrZLZGbExMDGFhYXnS9Xp9uf2oTcbEFp1fFmNiC+Jtb8+0fg3p3yyQ1385yrn4VF74/hADWgTxTu9w3J1K/u8jY2Jt69mTMbHCkq4nZzDhlyNsiboJQPMQbz5+sjHVK5W/DQpska+bI98MacHpuGTmR57n9yPXiDxzg8gzN3g4vApv9qxLWJWSrUkuzMtsA2vq16/Ptm3b8qT//PPPNG3a1Fy3EcJkTYO9WftSB0Z0qI5KBSv2X6HH7G3sOp9o6dCEEBXE+Rup9PxsG1uiErBXw8SedfjpxbbSgLVCdf09+Ozppvzz6gM82TwQtQr+OhXPzbTy2SFny8zWE/vuu+8yaNAgYmJi0Ov1rFq1ijNnzrB06VLWrl1rrtsIUSxO9hre6V2Ph+v58drPR7h66w7PfL2bIW2DaaCzdHRCiPIuxMeFWlXcSMnQ8lILd7q1qS7DB6xcaCVXZj7ZmFEP1GTDiThaVfcx5G0+E0+jap74ujlaMEJhtp7YPn36sGLFCtatW4dKpWLy5MmcOnWK33//3TA+TwhLa1PDl/Uvd+KZVsEALNkVzaxjGqKup1g4MiFEeXMzLYtsXc4OUXYaNfOfa84vL7YhyFOGn9iSmpXdGP3Af8Ml45IyGP39QR6YGclXW86TmS09IZZi1nViu3fvTvfu3c15SasmS2xZ1xJbxnJUw7Q+dXmwji9vrjpBbFoW/efvYWLP2jzbKsioHVxkiS3bevZkiS1R1k5eS2bk0v10refHlEfrA+Dj6oBOJw0eW5d0R0vNKq4cj0lmxp+n+X7PZSb2DKdnA3+b2QGsvJBtZ00gS2yVP8lZsPy8mlO3cz6UaOCt55maetyko0SYQJbYKr7yuMTW+uNxRPx0mPQsHaG+Lvw6tgOezjlvKrYQf0FsOXYwb/x6vcKqQzHM3HCa68mZALQK9WFq3/qEB5j/PaCi1X2ZLLHl7W38vsM3b94sya2sgiyxZTtLbBlLq9XivnET1z3r8PFf5zh+S81nZ5z56PEGtK+Z/wYJhb0+U8rJEluyxJYofxZuv8h7a08C0CGsEnMGNjU0YEX5oVareKJ5IL0a+vPllgss2HqevZdu0n/eDna9+RDerg6WDrFCKFEjdvbs2YafExMTef/99+nevTtt27YFYNeuXWzYsIFJkyaVKEhrJUtsFZ1vySW2jKVSwbAO1elYx59xPx7iXHwqQxcf4MVONXi1Wx0c7AoeOi5LbNnWsydLbInSoigK/7f+DF9uOQ/AoDYhvNunHnayu1a55uJgR0TX2jzdMoj31p6kRmVXacCWoRL97xoyZIjha8eOHUybNo0ffviBcePGMW7cOH744QemTZvGli1bzBWvEKWmXlUPfh/bgWdb50z6+mrrBR6fv5OLCWkWjkyIsrF161b69OlD1apVUalUrFmzpshztmzZQvPmzXFycqJGjRp8+eWXpR+oFXpr9TFDA/b17nWY1re+NGArkKpezsx/rjmvdq1jSDsek8QLS/dz9Va6BSMr38z2P2zDhg306NEjT3r37t3566+/zHUbIUqVs4OG6f0b8tWg5ni52HMsJonen29j1cGrlg5NiFKXlpZG48aNmTNnjlHlL168SK9evejYsSOHDh3irbfeYty4caxcubKUI7U+nWpVxtFOzUePN2JMlzCZ4FNBqe9ZNm3KbyfYePI63T7dyne7L6PXyxQkczNbI9bX15fVq1fnSV+zZg2+vgWPLbSEtWvXUqdOHWrVqsU333xj6XCEFepe358/x3ekdXUf0rJ0RPx0hFdWHCY1M9vSoQlRanr27Mn777/PY489ZlT5L7/8kuDgYGbPnk14eDgjRoxg2LBhfPzxx6UcqfXp2TCAbW904amWQZYORViJGY81pGWoN+lZOiatOc6gb/dIr6yZmW2JralTpzJ8+HAiIyMNY2J3797N+vXrraqhmJ2dTUREBJs3b8bDw4NmzZrx2GOP4ePjU/TJokIJ8HRm+cg2zN18jtl/RbH6UAwHo2/xxTNNCfeTXXaE2LVrF926dcuV1r17dxYuXIhWq813rHBmZiaZmZmG47uT4nQ6nVHLT90tY+mlqrJ1ej5cf4bn24VSzdsZAF8X+yLjspb4i8OWY4eyj79GJReWD2/F0t2Xmbkxih3nEun+6Vbe7FmHZ1oat5zjXRWt7o0tZ7ZG7NChQwkPD+fzzz9n1apVKIpCvXr12LFjB61btzbXbUps79691K9fn2rVqgHQq1cvNmzYwDPPPGPhyIQ10qhVjHuoFu1q+jL+x8NcTkznsXk7ebVrLfzlkyFRwcXFxeHn55crzc/Pj+zsbBISEggICMhzzowZM5g6dWqe9DNnzuDm5mb0vaOiokwP2Ez0isLH2xPYejmdTcdjmNO7KnYm7r5lyfhLypZjh7KPv7U3fNbTn892JXLyRiaTfj1J6s14OoaY3hlSUeo+NTXVqHJm3eygdevWLFu2zJyXzGPr1q3MnDmTAwcOEBsby+rVq+nXr1+uMvPmzWPmzJnExsZSv359Zs+eTceOHQG4du2aoQELEBgYSExMTKnGLGxfi1Af1o3ryJurjvLn8Tj+b0MUdT3VtOmcSYC3zEwXFdf9vUl3lx4vqJdp4sSJREREGI6Tk5MJCgqiTp06Rq8TGxUVRe3atS2yXqaiKExde4qtl9Ox16iY/GgjGoZXMfp8S8dfErYcO1g2/nCgS0uFpbsuExl1g+Hdmpu07XBFq3tjly00WyM2Ojq60Pzg4GCz3OfuxIPnn3+exx9/PE/+ihUrePnll5k3bx7t27fnq6++omfPnpw8eZLg4GDy29tBBuALY3i62DPv2Wb8uO8KU38/wekk6D1nF7MGNKFz7cqWDk+IMufv709cXFyutPj4eOzs7AqcC+Ho6IijY9795jUajUm/nE0tby5zN5/ju905v+8+frIx3Rrk7W02hqXiNwdbjh0sF79GAyM61WR4xxqGdkeGVseCrRcY2bEGzg5Fx1RR6t7Y12i2RmxoaGihjUFzjePo2bMnPXv2LDB/1qxZDB8+nBEjRgA5a9lu2LCB+fPnM2PGDKpVq5ar5/Xq1atWNdxBWDeVSsUzrYJpXM2d4Qt3EJuWxZBv9/JCpxq8VsSaskKUN23btuX333/PlbZx40ZatGhRLtfOXbEvmpkbzgAwuXc9+japVsQZQuR1b1tpxrpTLNl1md+OXMuZb1EKu32VZ2ZrxB46dCjXsVar5dChQ8yaNYvp06eb6zaFysrK4sCBA7z55pu50rt168bOnTsBaNWqFcePHycmJgYPDw/WrVvH5MmTC71uQRMRtFqt4evucX7f7//ZnGxp//r80s25f31xFPf6od6ORDTQcUgJYfm+GBZsvcCu8wl8+mQjQnz/24q4sOubmmfKcybPnvH1Yo5nr7TquKylpqZy7tw5w/HFixc5fPgwPj4+BAcHM3HiRGJiYli6dCkAo0aNYs6cOURERDBy5Eh27drFwoUL+eGHHyz1EkrNznMJvLX6OACjH6jJsA7VLRyRKA8erufHumNxnItPpddn22gY6EnX8CrU8fegtp87QT4uJg07qGhUSn6fr5vRH3/8wcyZM4mMjDT7tVUqVa4xsXfHu+7YsYN27doZyn3wwQcsWbKEM2dy/oL+7bffeO2119Dr9UyYMIEXXnih0PtMmTIl34kIy5cvx8XFJZ8zREVy9KaKH86pSdepcFQrPFlDT8vKMuurIklPT2fgwIFF7vNt7SIjI+nSpUue9CFDhrB48WKGDh3KpUuXcr2fb9myhVdeeYUTJ05QtWpV3njjDUaNGmX0PY3dI/0uS+0hH3P7DiOX7KeOvzuznmpc7GFolorfHGw5drDe+BNTMxm0cA8nY1Py5DnZqwmr4kZ9f3cGhdtxQ+NLmJ8ngd7ONjUU0tS6N/Z9wawTu/JTu3Zt9u3bV9q3ySW/iQb3pj366KM8+uijRl/v7kSEr7/+mq+//hqdTpert0JUbI18FIIa6/jurIbzKSq+P6fhTJKeJ6rrcbKe90khivTAAw/kO2/grsWLF+dJ69y5MwcPHizFqKxDNS9nfvlfW9QqlU01HoT183Vz5NcxHWg94y9upuX+VCdDq+d4TDLn41MYFB7M6OWHeKCOH/OebWahaK2L2Rqx988kUxSF2NhYpkyZQq1atcx1m0JVqlQJjUaT70SD+5eBMcXdiQivvvoqr776quEvhC5duuDh4UF2djabN2+mS5cu2NnZ5ToGcuWZ2/33Nvd5RZUrKN/YdFOPzc2c9fe4XmHB9svM3XKRfTfUXNe58lHfOlw/vT/f6xd27/zyjKkbefaMq7v80kry7Bk7k1bYFr1e4WD0LVqE5qwj7uJQ6v0+ooKyt1PzXt+GjFle+B+EVT2d+fCxRvKH1L/MNpxArVbn2wMaFBTEjz/+aNgAwZzuH04AOct8NW/enHnz5hnS6tWrR9++fZkxY0aJ7jd37lzmzp1rWCpChhOI/JxPhqVnNdzOUqFRKfQO1vNAgIIMayq/ystwAkuw5uEEczefY+aGM7zZsy6jOtc0yzWt9SNtY9hy7GD98ev1Co98sZ1TsXn/KHa2V/HzgGAyXP1pUb2SBaIrGasfTrB58+Zcx2q1msqVKxMWFmbWXqCiJh5EREQwaNAgWrRoQdu2bVmwYAHR0dEmjdEqyJgxYxgzZoyhcrt164aHhwdarZZNmzbRtWtX7O3tcx0DufLM7f57m/u8osoVlG9suqnH5lZa9Tf4jpa315xgw8l4fr2sIdHOh5lPNKSSm6NR18gvz5i6kWfPuLrLL60kz570xJY/ey4k8snGnHkUPi4OFo5GVARqtYpXu9ZmxNL9efKyshUys/U0Dfa2QGTWy2ytS5VKRbt27fL9WHTr1q106tTJLPfZv39/rokHdxfNvjvxYMCAASQmJjJt2jRiY2Np0KAB69atIyQkxCz3F8IYns72fPF0Y5bviWb6utNsP3+TPnN3MfPxhnQIy3/9TCGEdUhIzeSlHw6hV+CxZtV4skWgpUMSFcRD4VVoHOTFkSu3c6XrFJi46TpLQmoS4C3bnt9ltuEEGo2G2NhYqlTJvXNJYmIiVapUsdn9fu8lwwlEccSmw5IoDbF3csYTPFRVT68gPbKkbPkhwwmKz9qGEyiKwvOL9xF55gZhVdz4bWx7s46FtfaPtAtjy7GD7cS/7ewNBi3cazh2d8p5/lIysvH3dOKbwS1oUM3TUuEVi9UPJ7h/BYC7EhMTcXUtH3813D+cQCZ2ycQuY+vv17Ht+XTzZX7YH8Pf19TE48n7vWtz6dgemdhVzHIysUuUhuV7o4k8cwMHOzVzBzaTyVyizHUIq0SrUB/2XroJwGdPNyHEx5kh3+zialIGT365iy+eacrD9Yo/Yb28KHFP7GOPPQbAr7/+So8ePXJtJ6jT6Th69Ch16tRh/fr1JYvUCkhPrCipe9eUtVcpPBKsp7NM+rJ50hNbfNbUExufnMEDH0eSnqXjnUfCGdGxhlmvD7bTG5gfW44dbCv+PRcSGbBgN8PaV2dyn3rodDr2HTnB3EN32HY2AbUKPujfkKdbBVs6VKNYbU+sp2dOl7aiKLi7u+Ps7GzIc3BwoE2bNowcObKkt7EKMrFLJnaZet795XoBQ5IyeHvNCbadS2TNZQ1XFU/+7/GGBPu4FHp9mdhlXL5M7BLFVdndkff6NuDP47EMay87cgnLaV3Dl1Gda/JK1/+WKHVzUPP1oGZM+vUkPx+4yv7LtxjQMqhCL7dV4kbsokWLAAgNDeW1114rN0MHhCgtAZ5OLBzcjOV7opnx52n2RyfRZ+4u3uhem2daBlboNyQhLEmlUvF480Aeby4TuYTlvdmzbp40e42aj55oROsavvRtUrXC/74o9W1nyxMZTiDMLTEDlp/XcC45542ojqeeZ2rq8XYs4kRhVWQ4QfFZw3CC+JQMnO01uDuZ/xOL+9nSR9r3s+XYwbbjLyx2nV7h2+0XGdQ2BCd763xdVjmcoFmzZvz99994e3vTtGnTQv8iKA/bEspwAhlOYOp5xqwFu2Z8F348EMvHm85yJgk+PuHAhK418Ug4QbduMpxAhhOI0qQoCm+uPMbxmCRmP92EdjVtbyF5UbG9t/Yki3deYuvZGywY1AJnB+tsyJaGEjVi+/bta5jIde+uWRWFvb19rl9u+R0XlFfasZj7vKLKFZRvbLqpx+ZmyfpzdHBgRKcwHgz359Wfj3Ao+jaT154hzENN/TZZ1PJ3KfRa+V27otRdYfkF1UtRacV59kqzfkXp2nAijn9Ox2OvUVHF3cnS4Qhhsm71/fhp/xW2nU1g6KK9LBzaEjfHirGqRole5bvvvpvvzxWFVqs1fN09zu/7/T+bO4biXN/Y84oqV1C+semmfjc3S9bf/XlBXo78MLwlS3ZdZvbf5ziXDI98sYtxD9ZkWPsQ0OvyPS+/50yePePrxRzPXmnVsShdqZnZTPntJACjOtckrIqbhSMSwnTtalbiu+GtGPrtPvZcvMnghXtYPKwVHmUwPMbSzD4mNisri/j4ePR6fa704GDbWAaiMDImVpSVxAz46YKa00k5OyJUc1F4uqaOYPkda5VkTGzxWXJM7P+tP838yPME+7iw8ZVOZTKesLyOy7QFthy/MbEfuXKbwd/uJemOlkaBniwd1govK9ky2SrHxN4rKiqK4cOHs3PnzlzpdzdBKA87dsmYWBkTa+p5xoyJLSjPZ+MmMvzr8+GGc8Ska/n0uB2d/PV8POQBPF2dZEysjIkVJXD1VjoLt18E4J1Hwq12QowQxmoc5MUPI9vw3MI9HL2axJBF+1j9v3aoy/FC5GZrxD7//PPY2dmxdu1aAgICKsSyDzImtuh8GRNbdLmC8lQqeLx5EA83qMZ7a0/y6+FrRMaqeXT+Xib3qc+DtX0KPL+i1F1h+TImVhRm5oYzZGXraVPDh66y85EoJ+pV9WDFC20Yumgf4x4MK9cNWDBjI/bw4cMcOHCAunXzrmsmhCi+Sm6OfPZ0U/o09GPCTwe5lpTBqO8P0LlWJTrKssxCmCxbp0ev5Pyh+M4j9SpEp4uoOGr5ufPPa51xtCv/ny6YrRFbr149EhISzHU5myATu2RilzkndhWV1666FxMb6zjnUJNvd0Wz5WwC21UaEt3PMLpLGE72Gnn2CkiXiV3iXnYaNV8805TXutUmxFf+EhTlz70N2MuJaczbfJ5p/eqXu4at2SZ2/fPPP7zzzjt88MEHNGzYMM/Ha+VhsoNM7BLWIv4OrLz438QvH0eFx0P1NPCRvUssQSZ2FZ81bHZQlmw5fluOHWw7/uLGnq3T0+3TrVxISKNbPT/mP9ccjQWGGFj9xK6HH34YgIceeihXukzsksk1MrGreBO7ipqINDAri49X/M2fcS7EJWfy9RkND9Typb3rdZ59VJ49mdgl7qcoCnP+OUe/ptUI8pEOCFH+2WnUvN+/AUMX7WPjyetM/vU47/drUG6G0JitEbt582ZzXcpmyMSuovNlYlfR5UzNuzetia/CywPa8+W2y3yz7QKRZxPZptJwzeUCYx6oYVKMxWVLz55M7KrYNp+J55NNUXy97QJ73nq4Qu1sJCqudjUr8fnTTfjfsoMs2xNNgKcTYx+sZemwzMJsjdjOnTub61JCCBO4ONjxRo+6PNE8kPd+P0FkVAKLdl5mzeFrPOSnoptOj7SxREWnKAqz/zoLwDOtgqUBKyqUHg0CmNKnPu/+doKPN0bh5+HEky2CLB1WiZmtEXv06NF801UqFU5OTgQHBxu2qBVCmF/Nym58PagZnyz/k78SPDh3I41fLmo4PHcXk/vUp1PtypYOUQiL2XwmnqNXk3Bx0PBCpxqWDkeIMjekXShxyRnMjzzPm6uOEeDpTIdalSwdVomYrRHbpEmTQsdY2NvbM2DAAL766iucnMrH/tSyOoGsTlCWqxMY+5yFeymMfrwFvxyM5ZONZzh3I43B3+6lc+1KTOxRh5qVzTMb25aePVmdQHy55QIAg9qE4OsmHSqiYprQvQ7XkzI4fyOVugHulg6nxMy2OsGvv/7KG2+8weuvv06rVq1QFIV9+/bxySef8O6775Kdnc2bb77JgAED+Pjjj81xyzInqxMIW5OeDRuuqtkap0KvqFCj0MZPoUegHk/r2I2wXJDVCYqvLFYnOHzlNv3m7sBOrWL7Gw/i72m5jpSKOEPeWthy/OaMPStbT7Zej4uD2foxi2T1qxNMnz6dzz77jO7duxvSGjVqRGBgIJMmTWLv3r24urry6quv2mwjVlYnkNUJTD2vNFcnKKoM5Dx780Y+xNWkLD7aEMVfp2+w87qKQzftGNouhJEdquPuVLy3AVt69mR1gort6205vbCPNqlq0QasENbAwU6NA2rD8ZaoG7St4YuDnbqQs6yT2Rqxx44dIyQkJE96SEgIx44dA3KGHMTGxprrlhYnqxMUnS+rExRdriSrExRW5t6fawe48M3QVuy7dJMP/zzNgcu3mL/lIiv2xzC2SxjPtgku9iLYtvTsyeoEFY+iKIT4uODuZMfIjjIWVoh7zfnnLB9vjOKZVsF80N/2lt4yW7O7bt26fPjhh2RlZRnStFotH374oWEr2piYGPz8ZI9qISylZagPv4xqy1eDmlOzsis307KYtvYkD8/awq+HY9DrZbMEUb6oVCom9KjLvrcfJjxAhnoIca96VT1QqeCHvdF8v/uypcMxmdl6YufOncujjz5KYGAgjRo1QqVScfToUXQ6HWvXrgXgwoULjB492ly3FEIUg0qlont9fx6qW4WfD1zl001RXLl5h/E/HmbB1gu80aMuHWtVsrm/yIUojJO9bY2BFKIsPFjXjzd61OXDP08zbe1JGlTzpGmwt6XDMprZGrHt2rXj0qVLfP/990RFRaEoCk888QQDBw7E3T1nBtygQYPMdTshRAnZadQ80yqYfk2q8e2Oi3wZeZ4T15IZ/O1eWlX34fXudWgZ6mPpMIUotp3nEwBoW8NX/igTogAvdqrBsatJ/HEslrHLD7H2pQ54u9rGzF+zTk1zc3Nj1KhR5rxkqenfvz+RkZE89NBD/PLLL5YORwiLcXbQMKZLGM+0Cmbu5nN8t/syey/e5Mkvd9GpdmVe61abRoFelg5TCJP935+nOXI1iff61mdQ21BLhyOEVVKpVMx4vCEnriVxKTGdiJ8Os3BIS9Rq6//Dz+zrK5w8eZLo6OhcY2MBHn30UXPfqkTGjRvHsGHDWLJkiaVDEcIq+Lg6MKl3PUZ0rM6cf86xYt8VtkbdYGvUDbrV8yOiW23q+suYQmEbjsckceRqEvYaFT0bBlg6HCGsmoeTPXOfbUb/eTvZfOYGO84n0LGW9W+QY7ZG7IULF+jfvz/Hjh1DpVJxd/nZux/h6HQ6c93KLLp06UJkZKSlwxDC6gR4OjO9f0Ne7FSTz/4+y+pDV9l48jqbTl2nT6OqvPxwLWpUdrN0mEIU6oe90UDOdpuVZHMDIYpUv6onH/RviJO92iYasGDG1QnGjx9P9erVuX79Oi4uLpw4cYKtW7fSokULkxuLW7dupU+fPlStWhWVSsWaNWvylJk3bx7Vq1fHycmJ5s2bs23bNvO8ECEEAMG+LnzyVGM2vtKZRxoFoCjw25FrdP10KxN+OcLVW3csHaIQ+crQ6vjtyDUAnmlp+/vDC1FWnmgeSO9GVS0dhtHM1ojdtWsX06ZNo3LlyqjVatRqNR06dGDGjBmMGzfOpGulpaXRuHFj5syZk2/+ihUrePnll3n77bc5dOgQHTt2pGfPnkRHRxvKNG/enAYNGuT5unbtWolepxAVTVgVN+YObMa6cR15OLwKOr3CT/uv0u2z7fx8QU1sUoalQxQil82n40nJyCbA04k2NXwtHY4QNik+JYPvrHzZLbMNJ9DpdLi55XzEWKlSJa5du0adOnUICQnhzJkzJl2rZ8+e9OzZs8D8WbNmMXz4cEaMGAHA7Nmz2bBhA/Pnz2fGjBkAHDhwoJivJK/MzEwyMzMNx3d359FqtYavu8f5fb//Z3Oypf3r80s35/71xWHJ+jM1z5TnrDSevVqVnZk/sAmHr9xm9t/n2XE+ke3X1Tz06TYGtAjkhY7VCTBiNyRLPHvFqU9Tno3Sej5F8aw+FANA3ybVbGJyihDWJumOll6fbSMhNYsADycermeda/yrlLuDV0uoY8eOvPrqq/Tr14+BAwdy69Yt3nnnHRYsWMCBAwc4fvx48QJUqVi9ejX9+vUDICsrCxcXF37++Wf69+9vKDd+/HgOHz7Mli1bjL52ZGQkc+bMKXJ1gilTpjB16tQ86cuXL8fFxcXo+wlRnpxLgj+vajiXnNNI0KgU2lVReLiaHq8KNgQxPT2dgQMHFrnPt8jL2D3S7ypqD/ZsnZ6en23jbHwqG17uRB1/99IIu9hM3UPemthy7GDb8Vsi9vfXnuSb7RfxdXVgwyudSjS23NT4jX1fMFtP7DvvvENaWhoA77//Pr1796Zjx474+vry448/mus2JCQkoNPp8uz85efnR1xcnNHX6d69OwcPHiQtLY3AwEBWr15Ny5Yt8y07ceJEIiIiDMfJyckEBQXRpUsXPDw8yM7OZvPmzXTp0gU7O7tcx0CuPHO7/97mPq+ocgXlG5tu6rG5WbL+TM0zpm7K8tnrkp1N2ObNuNVoypfbr7Dv8m22XVexO0HDk82qMqJ9MP4eeXtmLfHsFac+TXk27n46IyzPTqNm4yudOHEt2eoasELYkte612H7uQROx6Uw9feTfPFMU0uHlIfZemLzc/PmTby9vUu0yPT9PbHXrl2jWrVq7Ny5k7Zt2xrKTZ8+ne+++47Tp0+XNOwCzZ07l7lz56LT6YiKipKeWCHucTZJxfqrKs4l5wy116gU2v7bM+tdzntmy1NP7Lx585g5cyaxsbHUr1+f2bNn07Fjx3zLRkZGGv5gutepU6cM240Xxdw9sdbOluO35djBtuO3VOzHribRd+529AosGtqSLnWrFOs6VtsTO2zYMKPKffvttyW9FZAz3laj0eTpdY2Pj8/TO2tuY8aMYcyYMYbKlZ5Y6YmtyD2x99+/KzAa2HvpFvO2XGLv5dtsv65iT4KGJ5rm9MwGeDpJT6wVuztpdt68ebRv356vvvqKnj17cvLkSYKDgws878yZM7l+0VSubJnleTKzdahVKuw1ZpuzLESF1jDQk+EdqvP1tou8s+Y4G1/phKuj+X+fFFeJe2LVajUhISE0bdqUwi61evXqYl3//p5YgNatW9O8eXPmzZtnSKtXrx59+/Y1TOwqDdITK4TxKlLPbHnpiW3dujXNmjVj/vz5hrTw8HD69euX73vr3Z7YW7du4eXlVax7mrMn9uf9V3j/j1M83z6Ulx+uXax4Spv0BlqOLcdvydjTs7Lp9ulWrt66w0sPhvFqtzomX8Nqe2JHjRrFjz/+yIULFxg2bBjPPfccPj4l2289NTWVc+fOGY4vXrzI4cOH8fHxITg4mIiICAYNGkSLFi1o27YtCxYsIDo6utS3vJWeWOmJNfW8itQTe7/CemZbV9Ix+ck2BPq4Fvv65bUndv369bi5udGhQwcg54/nr7/+mnr16jF37ly8vb3Ndq97ZWVlceDAAd58881c6d26dWPnzp2Fntu0aVMyMjKoV68e77zzTr5DDO4qaLUXnU5n1KY4d8vkV3bD8TiS7mhR9IrVbbBzV2HxWztbjh1sO35Lxu6oUfF+3/r8fTqeER1CixWDqfEbW84sY2IzMzNZtWoV3377LTt37uSRRx5h+PDhdOvWrVjjYQsaZzVkyBAWL14M5Izb+uijj4iNjaVBgwZ8+umndOrUqaQvpVDSEytE8eXXM9u6isLDVfX4Fr0yl1UzZ09sw4YN+b//+z969erFsWPHaNmyJREREfzzzz+Eh4ezaNEiM0Wd2935Bjt27KBdu3aG9A8++IAlS5bku1TimTNn2Lp1K82bNyczM5PvvvuOL7/8ksjIyALfjwta7WXXrl2GZRqL445Wz8Cfr6DVw5xHAgj1dij2tYQQlpWamkrbtm2LfE81+8Suy5cvs3jxYpYuXYpWq+XkyZMlemOyRnd7YmNjY6UnVnpipSfWxOvvOp/AjN+PGBqzdmoVfRr58UKHEEJ8/vuj0NZ6YgMCAszSiHVzc+P48eOEhoYyZcoUjh8/zi+//MLBgwfp1auXSauwmMJck2b79OmDSqXit99+yzc/v57YoKAgbt68afRwgqioKGrXrp3rY8kNJ64zevkhgn1c+CeiY4kmFJemguK3BbYcO9h2/NYUu6IoxCZlUNXL2ehzTI0/OTkZHx+fsm/ERkdHs3jxYhYvXkxWVhanT58uN41Y6YkVwnzOJ8OGq2rOJOU0ZlUoNKuk0K2aHn8b+29lzp5YHx8ftm/fTr169ejQoQODBw/mhRde4NKlS9SrV4/09HQzRZ2budbgnj59Ot9//z2nTp0yqry5xsROXHWMH/ZGM7RdKFMerW/UvS1BxmVaji3Hby2xxybdYfwPh4m+mc4/r3XGxcG4DgyrHRMLuYcTbN++nd69ezNnzhx69OiBWl1+ZonePya2W7dueHh4oNVq2bRpE127dsXe3j7XMZArz9zuv7e5zyuqXEH5xqabemxulqw/U/OMqRtbevZGPd6Vl+ztOXTlNvMiLxAZlcCBBBUHE9V0r+fHC+2DuXJsl1meveLUpymvz5xjYjt06EBERATt27dn7969rFixAoCoqCgCAwPNdp/7OTg40Lx5czZt2pSrEbtp0yb69u1r9HUOHTpEQEBAaYRYIEVR2Bp1A4DOtS2zMoIQFYG3iwPXku4Ql5zB/MjzxZrkZU4lbsSOHj2aH3/8keDgYJ5//nl+/PFHfH1lr2ohhHGaBnnx9aBmnLiWzNzIC2w6Fc/6E9dZf+I6DbzVBNRPpmlIxXlPmTNnDqNHj+aXX35h/vz5VKtWDYA///yTHj16lOq9i5o0O3HiRGJiYli6dCmQs+V3aGgo9evXJysri++//56VK1eycuXKUo3zfhcT0oi5fQcHjZrWNUo2sVgIUTAnew3vPBLOqO8P8vW2CwxqG0IVd8tNajDLElvBwcE0bdq00DFIq1atKsltrIIMJxCi9F1Lg40xag4nqlDIeU8J99LTPVBPdSvdgKm8LLEFhU+aHTp0KJcuXSIyMhKAjz76iAULFhATE4OzszP169dn4sSJ9OrVy+j7mWM4QWzSHZbviSb5jpapfRuY/qLLkLV8LFwcthw72Hb81hS7oig8Nn8nh6JvM6RtiFH/50prOEGJG7FDhw41agB9ac2otYS7lZuQkCDDCWQ4gQwnKKW6i4pNYsrPuziYoEH379tUm+rejHmgJq2re5OdnW1VwwkqVapU7EZscnKy4byihibYeiP5frJjl+2w5djBtuO3tth3nktg4Dd7sNeo2PzaAwR6F96hZ7VjYu8ueVUR2dvb5/rllt9xQXmlHYu5zyuqXEH5xqabemxulqw/U/OMqZvyUHe1Azx5LkzPjOc68c32y6w8eJXdF2+x++J+WoR4M7pzdRTFtGevOPVpzOsraf16e3sTGxtLlSpV8PLyyrdjQFEUVCqVTa5xKYQoX9qFVaJ9mC87ziXy2V9nmflkY4vEYT17h9kgrVZr+Lp7nN/3+382dwzFub6x5xVVrqB8Y9NN/W5ulqw/U/NMec7K07NX1d2e9x4N53+dQlmw7RI/H4xh/+VbDFt6i2BXDfYhsXSt729o+JlaL+Z49kpax//8849hk5h//vnHapeHskYxt+9wOjaZFiE+eLqU3h9rQojcXutWhx3ndnL0ahKZ2Toc7cq+h9jsS2yVZzImVgjLS8qCf66p2XFdhVaf09ir5qLQLVBPIx8FtQXaf+VpTGxZK+lwgm+3X2Ta2pM8UKcyi59vVQYRl4y1fSxsCluOHWw7fmuNffvZBNrW9EVTxBuv1Q4nqEhkiS0ZE2vqeTImtvjnFVbuGSDudhpTftjGrgR7YtJ1LIrSEFbZlRc6hGAfe5Tu3Wxzia1JkyYxZcqUPG/0SUlJjBo1ih9++MFs9yoP9l++CUDLUFmVQIiy1qFWJYveXxqxJSBjYovOlzGxRZeTMbHFK+fv5cqjIXpmDOnI93uusmjnJc7dSGPC6pNUdtKQGRDP4y2CsdeoC72WNYyJvdfSpUvZtGkTy5Yto2bNmkDOVtyDBw82LLclciiKwt6LtwBpxAphSRlaHafjUmgS5FWm9y0/OxEIISokbxcHIrrVYfsbD/Jq19p4OdtzI0PFm6tP0OXjSJbtuUxmtt7SYRrt6NGjhIaG0qRJE77++mtef/11unXrxtChQ9m+fbulw7MqlxPTSUjNxEGjplGgp6XDEaJCik5Mp+NHmxn0zR6SM0pnDkZBpCe2BGRil0zskold1vPsudjBqE6hPN3Mj/d+iGRHohNXb93h7dXH+fyvs7TzVdEhPQMPl/zPt+TErnt5enry448/8vbbb/Piiy9iZ2fHn3/+yUMPPWS2e5QXR67eBqB+NQ+c7K1nnKAQFUmgtzNezvacTcnkp31XGNGxRpndWyZ2mUAmdglhO7J0sCtexd/X1CRl5Uw6cLNT6FJVTwc/BScz/glv7oldX3zxBW+88Qb9+/fnwIEDaDQali9fTuPGllnGpjSVZGLXh+vP8PW2iwxuG8I0K9/k4C5rnaBjDFuOHWw7fmuPfdmey7y9+jjVK7nyz6ud86ywIhO7rIBM7JKJXaaeJxO7in9eSZ+9R3p0pZ+9PZnZen7Zf4Uv/jpNYqaK36M1bL1hx3OtAqmWdo5+vaxrYlfPnj3Zt28fS5cu5YknnuDOnTtERETQpk0bpk6dyoQJE8x2L1t3PCan3htUlaEEQlhS3ybVmLHuNBcT0th1PpF2YWUz4UsasSUgE7uKzpeJXUWXk4ldJStX1DNmbw/PtgnBI/EEumpNmL/1IhdupDF3yyUcNRouOV/khc5heDra53u9sp7YlZ2dzdGjR6latSoAzs7OzJ8/n969ezNixAhpxN5jWt/6HL5yu8x+YQoh8ufmaEe/plX5fnc0y/ZESyNWCCHMSaOCPk2q8ljzYNYfj+OLv6M4fT2VBdsusXR3NANaBFIj09JR5vSe5+eRRx7h2LFjZRyNdavl504tP3dLhyGEAJ5tHcL3u6PZcCKO+JQMqrg7lfo9ZXUCIUSFolGreKRRAL+NacvIOjoaBXqQodWzZFc00w5pmPTbSa7cTLd0mPmqVEl6HIUQ1ik8wIOmwV5k6xW2RiWUyT2lJ1YIUSGpVCoa+Ci8/mxr9lxO4vO/z7Lv0i1+3HeVnw/E8GjjAMItMO1Vp9Px6aef8tNPPxEdHU1WVlau/Js3b5Z9UFbon9PxXL2dQfuwStSW3lghrMLk3vVwd7IjrErZ/J+URmwJyBJbssSWLLFlG89eYWnZ2dm0CfWi+eAmfLlyEwczqrD9/E1WH7rGaS81z5XxEltTp07lm2++ISIigkmTJvH2229z6dIl1qxZw+TJk812H1u3+tA11h2P4+1e4dKIFcJKNA32LtP7yRJbJpAltoSoGC6nwqararpU1VPTiBWzzLnEVs2aNfn888955JFHcHd35/Dhw4a03bt3s3z58hJd39oUd4mtVzYmcjY+lUVDW9KlbpUyiNQ8rH2ppMLYcuxg2/HbYux6vYJanbPUliyxZQVkiS1ZYsvU82SJreKfZ85nrzj1OcJCS2zFxcXRsGFDANzc3EhKSgKgd+/eTJo0yWz3sWU6vcKlxDQAwqq4WTgaIcS9rt2+w/R1p7hyM53fxnYo1XtJI7YEZImtovNlia2iy8kSWyUrZ8qzV5z6LOsltgIDA4mNjSU4OJiwsDA2btxIs2bN2LdvH46Ojma7jy2LS81Gq1NwttdQzcvZ0uEIIe7h6mjH+uNx6PQK0YnpBPuW3ifWsjqBEEJYkf79+/P3338DMH78eCZNmkStWrUYPHgww4YNs3B01uFqUs4Y5BqVXQ0fVwohrIOnsz0tQ3PGxv59+nqp3kt6Yovh7jDiux8harVa0tPTSU5ONnwsefcYyJVnbvff29znFVWuoHxj0009NjdL1p+pecbUjTx7xtVdfmklefbu1rc5phh8+OGHhp+feOIJgoKC2LFjB2FhYTz66KMlvn55EJeWDUBIKfbwCCGK7+FwP3ZfuMk/p+N5vn31UruPNGKLISUlBYCgoCALRyKEsCYpKSl4epp3C9TWrVvTunVrs17T1sWn5jRiA72lESuENXqwbhXe/+MUuy8kkpqZjbNd6XxiIo3YYqhatSpXrlzB3d0dlSrnH6Zly5bs27fPUObucXJyMkFBQVy5cqXEs5YLcv+9zX1eUeUKyjc2vbDj8l5/puYVVXf3ppX3uiss35i6yy+tuM+eoiikpKQYtooVpWtAQ08GP1AfH7fS3xFICGG6GpXdCPJx5srNO+y/dJOOYb6lch9pxBaDWq0mMDAwV5pGo8n1i+7+Yw8Pj1JrSNx/L3OfV1S5gvKNTS/qGMpv/ZmaZ0xdybNnXL3kl1aSZ8/cPbCiYB6OGsKDvGxmqSEhKqLW1X25cvMqey5KI9bqjRkzptDjsry3uc8rqlxB+camW7LuSnI/c9SfqXnG1JU8e8bXi6WfPSGEKK86hFXicmIawT6lN+xHNjsoZaYu5C1yk/orPqm7kpH6Kxum1nNyeiaTf95Do5qBPN++umFIl62wxUXr77Ll2MG247fl2KH0NjuQJbZKmaOjI++++66s71hMUn/FJ3VXMpaqv6FDh7J169YyvactiU/JZM2pFGZtOmtzDVghhHlJI7aUOTo6MmXKFGlIFJPUX/FJ3ZWMpeovJSWFbt26UatWLT744ANiYmLK9P7WLiE1EwBfNwcLRyKEMEZyhpbryRmlcm1pxAohhBVZuXIlMTExjB07lp9//pnQ0FB69uzJL7/8glartXR4FpeQmgVAJWnECmH1vtl2gUZTNvLJprOlcn1pxAohhJXx9fVl/PjxHDp0iL179xIWFsagQYOoWrUqr7zyCmfPls4vBFuQ+G8j1tdVPmEQwtoF/Tup6+S15FK5vjRihRDCSsXGxrJx40Y2btyIRqOhV69enDhxgnr16vHpp59aOjyLuDucQHpihbB+9avmTMo6G5+KVmf+dQSkESuEEFZEq9WycuVKevfuTUhICD///DOvvPIKsbGxLFmyhI0bN/Ldd98xbdo0S4dqEYlpd3tipRErhLWr5uWMk72abL1C/L/bRZuTNGKtTP/+/fH29uaJJ56wdChWb+3atdSpU4datWrxzTffWDocmyPPWvFcuXKFBx54gHr16tGoUSN+/vlns14/ICCAkSNHEhISwt69e9m/fz+jRo3C3d3dUKZ79+54eXmZ9b62IulOzrhgTxd7C0cihCiKSqUixMcVgLhUacSWe+PGjWPp0qWWDsPqZWdnExERwT///MPBgwf5v//7P27evGnpsGyKPGvFY2dnx+zZszl58iR//fUXr7zyCmlpaWa7/qxZs7h27Rpz586lSZMm+Zbx9vbm4sWLZrunLZnYsy6f9vTnkQb+lg5FCGGEEN+ccbHXUsw/MVUasVamS5cuuXpcRP727t1L/fr1qVatGu7u7vTq1YsNGzZYOiybIs9a8QQEBBgal1WqVMHHx8dsf0BlZ2czbNgwzp07Z5brlUcBnk7U8nWkioeTpUMRQhghtFJOT2xsivTEWtTWrVvp06cPVatWRaVSsWbNmjxl5s2bR/Xq1XFycqJ58+Zs27at7AO1ASWty2vXrlGtWjXDcWBgYIVaT1OexeIzZ93t378fvV5PUFCQWWKzs7MjJCQEnU5nlusJIYSlta3hy3Otg6lX2fwrikgj1gRpaWk0btyYOXPm5Ju/YsUKXn75Zd5++20OHTpEx44d6dmzJ9HR0YYyzZs3p0GDBnm+rl27VlYvwyqUtC7z2y25Iu3eY45nsaIyV90lJiYyePBgFixYYNb43nnnHSZOnCjDYwrwzfaL/HIiybBKgRDCunWpW4Wpj9ajQ4ir+S+uiGIBlNWrV+dKa9WqlTJq1KhcaXXr1lXefPNNk669efNm5fHHHy9piDajOHW5Y8cOpV+/foa8cePGKcuWLSv1WK1RSZ7Fivas3a+4dZeRkaF07NhRWbp0qdljatKkieLm5qY4OjoqtWvXVpo2bZrrq7xJSkpSACUpKcmo8k2mblBC3lirnIy5VbqBlZLs7Gzl2LFjSnZ2tqVDMZktx64oth2/LceuKKbHb+z7gp35m8UVU1ZWFgcOHODNN9/Mld6tWzd27txpoahskzF12apVK44fP05MTAweHh6sW7eOyZMnWyJcqyPPYvEZU3eKojB06FAefPBBBg0aZPYY+vXrZ/ZrlieZ2XoAnOw1Fo5ECGEMRVG4nZ7F1SQt4Wa+tjRizSQhIQGdToefn1+udD8/P+Li4oy+Tvfu3Tl48CBpaWkEBgayevVqWrZsae5wrZoxdWlnZ8cnn3xCly5d0Ov1TJgwAV9fX0uEa3WMfRblWcvLmLrbsWMHK1asoFGjRobxtN999x0NGzY0SwzvvvuuWa5TXmXrchqxduqKM3xICFt2IzWTVtP/AeBca/O8T94ljVgzu39cpqIoJo3VlBn2/ymqLh999FEeffTRsg7LZhRVf/KsFaywuuvQoQN6vd4SYZWJefPmMXPmTGJjY6lfvz6zZ8+mY8eOBZbfsmULERERnDhxgqpVqzJhwgRGjRpVavFp9Tnj4aURK4QZxcbCV1/Biy9CQIBZL33vpyZZOgU7M7Y8ZWKXmVSqVAmNRpOn1zU+Pj5Pr44onNRlyUj9FZ811J1Op+Pjjz+mVatW+Pv74+Pjk+urNJk6IfDixYv06tWLjh07cujQId566y3GjRvHypUrSyW+dUdjuTunc9Cifaw/Hlsq9xGiwomNhalTc76bmZPdf43YTK15V16RRqyZODg40Lx5czZt2pQrfdOmTbRr185CUdkmqcuSkforPmuou6lTpzJr1iyeeuopkpKSiIiI4LHHHkOtVjNlypRSvfesWbMYPnw4I0aMIDw8nNmzZxMUFMT8+fPzLf/ll18SHBzM7NmzCQ8PZ8SIEQwbNoyPP/7Y7LGtPx7L6OUHDcfn49MY9f1BacgKYeXsNSrufnCSYeZGrAwnMEFqamquRcgvXrzI4cOH8fHxITg4mIiICAYNGkSLFi1o27YtCxYsIDo6ulQ/WrNVUpclI/VXfNZed8uWLePrr7/mkUceYerUqTzzzDPUrFmTRo0asXv3bsaNG1cq9y3OhMBdu3bRrVu3XGndu3dn4cKFaLVa7O3zbg2bmZlJZuZ/y2MlJycDOT3Qha2PO/uvs6iAu4vrKYBKlZPeNbxK0S/QStx9jba4FrAtxw62HX+pxB4ba+h5VR06hBrQ79+PcvceAQFmG1qgUqlAUbh2K92ojUqMfZ3SiDXB/v376dKli+E4IiICgCFDhrB48WIGDBhAYmIi06ZNIzY2lgYNGrBu3TpCQkIsFbLVkrosGam/4rP2uouLizNMEnNzcyMpKQmA3r17M2nSpFK7b3Emp8bFxeVbPjs7m4SEBALy+QU4Y8YMpk6dmif9zJkzuLm5FRjf+fgU7l8dWlFy0k+dOlXgedYqKirK0iEUmy3HDrYdvzljrzJvHlXu+5RF/eKLhp/j//c/4kePNsu97FUKOiAx7gqn0q8XWT41NdWo66oUJZ9V44UQQlhEnTp1WLp0Ka1bt6Zjx4488sgjvPnmm6xYsYKXXnqJ+Pj4Urnv3V3wdu7cSdu2bQ3p06dP57vvvuP06dN5zqlduzbPP/88EydONKTt2LGDDh06EBsbi7+/f55z8uuJDQoK4ubNm3h4eBQY3yNf7OBMXO6GrEoFdf3cWftSexNfreXodDqioqKoXbs2Go1tLRNmy7GDbcdfKrHf3xP74ovov/oKpWnTnHwz9sTWnbwBrU5hy6sdCfQpetOD5ORkfHx8SEpKKvR9QXpihRDCivTv35+///6b1q1bM378eJ555hkWLlxIdHQ0r7zySqndtziT2vz9/fMtb2dnV+CSd46Ojjg65t1+UqPRFPrL+eWHazHq+//GxKrI6Ykd/7DtNUig6NdrzWw5drDt+M0ae2BgzlfOhQFQt2gBzZqZ5/r/0ukVtLqcPz9dHO2Nit/Y1yiNWCGEsCIffvih4ecnnniCwMBAdu7cSVhYWKkuKXfvpLb+/fsb0jdt2kTfvn3zPadt27b8/vvvudI2btxIixYt8h0PWxI9GgQw/9lm/G9ZTkM2rIorr3arS48GeXt7hRDWIzP7v/GtTvbmXU9AGrFCCGHF2rRpQ5s2bcrkXkVNaps4cSIxMTEsXboUgFGjRjFnzhwiIiIYOXIku3btYuHChfzwww+lEl/PhgHYqVVk6xUWD21JNSM+lhRCGCEgAN591+xrxAJkaP9bV9vRzrw94NKIFUIIKxMVFUVkZCTx8fF5NlYoze2Vi5rUFhsbm2vN2OrVq7Nu3TpeeeUV5s6dS9WqVfn88895/PHHSy1GO01OIza7HG84IUSZCwiAUlrCLy0zGwAHjQqNmTcpkUasEEJYka+//pr//e9/VKpUCX9//1y7h6lUqlJtxAKMHj2a0QXMSF68eHGetM6dO3Pw4MG8hUuJvUZNhlZvGGMnhLBuCak5Ezm9nMy/NYE0YoUQwoq8//77TJ8+nTfeeMPSoVglVwcNKRnZpP7buyOEsG6JqVkAeDqZfzKd7NglhBBW5NatWzz55JOWDsNquTnm9L2kSSNWCJvwX0+sNGKFEKJce/LJJ9m4caOlw7Barv82YlMzbW/XJSEqohspOY1YTxlOIIQQ5VtYWBiTJk1i9+7dNGzYMM9SVaW17aytkJ5YIWzL5ZvpAPi7mb/JKY1YIYSwIgsWLMDNzY0tW7awZcuWXHkqlarCN2L/64mVRqwQtuByYhoAAW7mXTsapBErhBBW5eLFi5YOwaq5OeaMq0vJkEasELbgcmJOT2yAu/mbnDImVgghhM3wcXUA4GZaloUjEUIUJS0zm/h/x8SWRiNWemKFEMLCIiIieO+993B1dSUiIqLQsrNmzSqjqKyTr5sjAInSiBXC6p2OSwagspsj7o7mX51AGrFCCGFhhw4dQqvVGn4uyL0bH1RUldxyemLvLtsjhLBeJ67lNGLrVXUvletLI1YIISxs8+bN+f4s8vqvESs9sUJYuxMx/zZiAzwA8y+LJ2NihRBC2Axf13+HE0gjVgirdyI2CYD6VT1K5frSEyuEEFakf//++Q4bUKlUODk5ERYWxsCBA6lTp44ForO8uz2xN9Oz0OkVNGoZYiGENUrLzOZ0bAoADat5kBJ3y+z3kJ5YIYSwIp6envzzzz8cPHjQ0Jg9dOgQ//zzD9nZ2axYsYLGjRuzY8cOC0dqGZXcHNGoQKdXuJ6cYelwhBAFOBR9m2y9QlVPJ6p5OZfKPaQRK4QQVsTf35+BAwdy4cIFVq5cyapVqzh//jzPPfccNWvW5NSpUwwZMoQ33njD0qFahEatorJrzoeIMbfvWDgaIURB9l5MBKB1Dd9Sm5RarhqxBw8epGvXrnh5eeHr68sLL7xAampqrjLR0dH06dMHV1dXKlWqxLhx48jKkrFVQgjrsHDhQl5++WXU6v/entVqNS+99BILFixApVIxduxYjh8/bsEoLavKv9tXXr2VbuFIhBAF2X3xJgCtqvuU2j3KTSP22rVrPPzww4SFhbFnzx7Wr1/PiRMnGDp0qKGMTqfjkUceIS0tje3bt/Pjjz+ycuVKXn31VcsFLoQQ98jOzub06dN50k+fPo1OlzO718nJqUIvt+XnmrPe5NWb0hMrhDVKy8zmcPRtAFqXYiO23EzsWrt2Lfb29sydO9fQgzF37lyaNm3KuXPnCAsLY+PGjZw8eZIrV65QtWpVAD755BOGDh3K9OnT8fAwbvacXq/n2rVruLu7V+hfJEKIHIqikJKSQtWqVXP1oBbHoEGDGD58OG+99RYtW7ZEpVKxd+9ePvjgAwYPHgzAli1bqF+/vjlCt0lVXO/2xEojVghrtP1cAlk6PcE+LlSv5Ipery+V+5SbRmxmZiYODg65foE4O+cMJN6+fTthYWHs2rWLBg0aGBqwAN27dyczM5MDBw7QpUsXo+517do1goKCzPsChBA278qVKwQGBpboGp9++il+fn589NFHXL9+HQA/Pz9eeeUVwzjYbt260aNHjxLHa6vuDie4IsMJhLBK/5yKB+DBulVKtbOv3DRiH3zwQSIiIpg5cybjx48nLS2Nt956C4DY2FgA4uLi8PPzy3Wet7c3Dg4OxMXFFXjtzMxMMjP/2x1GURQALl68iLu7O1qtls2bN9OlSxfs7e1zHQO58szt/nub+7yiyhWUb2y6qcfmZsn6MzXPmLqRZ8+4ussvrSTPXkpKCtWrV8fdveS70mg0Gt5++23efvttkpNzFgq//1Oi4ODgEt/HllV1z/n3uHAjzcKRCCHup9cr/HMmpxH7cLhfEaVLRqXcbZFZqSlTpjB16tRCy+zbt48WLVqwfPlyIiIiSEhIQKPRMG7cOL777jsiIiKYMGECL7zwApcvX2bDhg25zndwcGDp0qU8/fTTJsWwfPlyXFxciv/ihBDlQnp6OgMHDiQpKcnoYUkiR3JyMp6enkbXnU6nY9+REzz90xUAjk3phruT+f9IKy06nY5Tp04RHh6ORmP+veRLky3HDrYdvy3FfvjKbfrN3YGrg4ZDk7vhYKc2OX5j3xesvid27NixBTYu7woNDQVg4MCBDBw4kOvXr+Pq6opKpWLWrFlUr14dyFm6Zs+ePbnOvXXrFlqtNk8P7b0mTpxIRESE4Tg5OZmgoCC6deuGh4cHWq2WTZs20bVrV0MPzt1jIFeeud1/b3OfV1S5gvKNTTf12NwsWX+m5hlTN/LsGVd3+aXde6xDzdWbqezduYMnexf9+u72mJrLL7/8wk8//UR0dHSe1VMOHjxo1nvZIjcHNZXdHLmRmsn5G2k0CfKydEhCiH/9fuQaAF3qVsHBrnTXD7D6RmylSpWoVKmSSefcbZB+++23ODk5GX6ht23blunTpxMbG0tAQAAAGzduxNHRkebNmxd4PUdHRxwdHfOk29vb5/rllt9xQXnmVtzrG3teUeUKyjc23dRjc7Nk/ZmaZ0zdVJS6Kyy/oHrRaOyIS87g4o0U9sSrOL8tmvjULGJv3yEqRsO7h7dz+44WgAcD1Aw0Ik5z1u/nn3/O22+/zZAhQ/j11195/vnnOX/+PPv27WPMmDFmu4+tC6viyo3UTM5eT5FGrBBWQqdXDI3Yfk2qlfr9rL4Ra4o5c+bQrl073Nzc2LRpE6+//joffvghXl5eQM5kiHr16jFo0CBmzpzJzZs3ee211xg5cqR8BChEOaJXIPpmOpdvZXA+Po2LCSkcPKNmdtR2Ym5nkKW7O1NWA+fP33OmCshpwDrbq9EppTOjtjDz5s1jwYIFPPPMMyxZsoQJEyZQo0YNJk+ezM2bN8s8HmsVVtmNXRducu5GatGFhRBlYs+FROJTMvF0tqdT7cqlfr9y1Yjdu3cv7777LqmpqdStW5evvvqKQYMGGfI1Gg1//PEHo0ePpn379jg7OzNw4EA+/vhjC0YthCguRclZZulMfCJnr6dwNj6Vs9dTOBevQbt7+32l1UDObHY7tYoATyec9Wk0CQuimrcrld3siD59jD4PdyDQxx1nO4U///yzzF9TdHQ07dq1A3JWWElJydl7fNCgQbRp04Y5c+aUeUzWqGYVVwDOXpdGrBDW4tfDOb2wvRoGlPpQAihnjdilS5cWWSY4OJi1a9eWQTRCCHPS6xUuJaZx/FoyJ2KSOHb1Nocva0jfvS2f0irsNSpqVnajZhU3gr2duHXlHI90bk1oZXcCPJ1Q9DrWrVtHr171DWNi110/Sm0/d8OxJfj7+5OYmEhISAghISHs3r2bxo0bc/HiRax8Hm6ZCg/I+fTsxLUkC0cihICcDQ7+OJazGlTfJlWLKG0e5aoRK4QoPzK1Os4nw1dbL3LoShIHom9xO/3+hmVOY7VWFXfqBrhTq4o71X2cuHJyP8/164GzU85Ydq1Wy7p1Z2lTw+e/iV16XRm/IuM8+OCD/P777zRr1ozhw4fzyiuv8Msvv7B//34ee+wxS4dnNeoFuKNSwfXkTOJTMqji7mTpkISo0H49fI3UzGxqVHIt1V267iWNWCGEVdDq9ByKvs22szfYeT6Ro1dvo9XZwYmzhjKOdmrqVfWgQVVPwv1duXXhKEP798DV+b+Jl1qtlnUXwU5jm7tqL1iwwLC7zahRo/Dx8WH79u306dOHUaNGWTg66+HiYEfNym6ci0/lREwyVepKI1YIS1EUhe93XwZgYOvgMtvNVBqxQgiLuZyYxpaoG2yNSmD3hURSM7Nz5bvbK7St5Uer6r60DPWhXlUP7P9tnN79+L8sxl2VJbVanWvnwaeeeoqnnnrKghFZr4bVPDkXn8qxmCS61K1i6XCEqLAOX7nNydhkHOzUPNG8ZLsWmkIasUKIMqMoCieuJbMuWs3cL3YSFZ97Uo63iz0dalWmY1glmgV5cHx3JI880qRUlwizRhkZGRw9epT4+Pg8e44/+uijForK+jSo5snqQzEci5FxsUJY0ne7cnphezcKwMvFoczuK41YIUSpUhSFYzFJ/Hr4GuuPxxFz+w45KwWkYqdW0SLUm061K9OpVmXqBXigVud8DKXVajlRNp9IWZX169czePBgEhIS8uSpVCp0Ouscy2sJDat5AnD06m0URSmzjzCFEP+JuX2H3/5dG3Zw29Ayvbc0YoUQpeLqrXTWHIph9aEYzt+zx72TvZra7tkM6tKIbvWr4ulSsXpZizJ27FiefPJJJk+eXOhOgiKnEWuvUXE9OZOrt+4Q5CPbgAtR1r7dfpFsvUKbGj5lvvGINGKFEGaTla3nz+OxLN8TzZ6L/y3M72inplt9f3o3CqBtqBeb/9pAryZVK9wwAWPEx8cTEREhDVgjODtoaFDNk0PRt9l36aY0YoUoY7fTs/hhbzQAozrXLPP7SyNWCFFiMbfvsHzPZVbsu0JCahYAKhW0qe5L/2bV6NnAH3enf5e2stD6q7biiSeeIDIykpo1y/4Xgi1qFepjaMQ+1qzsJpQIIeD73ZdJz9IRHuBB5zLYoet+0ogVQhTbxRQYvfwwf5+OR//vOvx+Ho480yqYJ1sEUc3L2bIB2qA5c+bw5JNPsm3bNho2bJint3rcuHEWisw6tQj14autF9h36ZalQxGiQknJ0PLN9osAjOpcwyJj0o1qxPr4mLZorUql4uDBg4SEhBQrKCGE9VIUhcgzN5i7+Sz7L9sB8QC0q+nLoDYhPFzPz7AMljDd8uXL2bBhA87OzkRGRub6xaBSqaQRe58WId4AnItP5WZaFj6uZTczWoiKbOH2i9xO11KzsiuPNAywSAxGNWJv377N7Nmz8fT0LLKsoiiMHj1aZtAKUc7o9Qp/Ho/ji3/OcjouBQCNSuGxZoG82LkmYVXcLRxh+fDOO+8wbdo03nzzzVzrxYr8ebs6UNffndNxKew8n0DvRmWz3aUQFdmttCy+2ZbTCxvRtY7FNpcxejjB008/TZUqxi0m/dJLLxU7IFui1WoNX3eP8/t+/8/mjqE41zf2vKLKFZRvbLqp383NkvVnap4pz5k5nz1FUdhyNoFZm85x6t/Gq6uDhqeaVyU08yJPPlIbe3t7o+9jiWevOPVpyrNhzuczKyuLAQMGSAPWBB1rVeJ0XApbo25II1aIMvDllvOkZmZTv6oHPRv4WywOlaIoisXubmPmzp3L3Llz0el0REVFsXz5clxcZDasKL/OJcPaaA0XU3I+0nbUKHQJ0NM5QMFFRtQbpKenM3DgQJKSkvDw8CjRtV555RUqV67MW2+9ZaborFtycjKenp5G151Op+PUqVOEh4ej0WgA2Bp1g8Hf7iXA04mdbz5o1evF5he/rbDl2MG247em2OOSMug8czOZ2XoWDW1p1G55psZv7PuC/BoywZgxYxgzZoyhcrt164aHhwdarZZNmzbRtWtXQ4/U3WMgV5653X9vc59XVLmC8o1NN/XY3CxZf6bmGVM35nr2rt66w4z1Z9h4Mme8q6OdmkFtgnmhYyje/+7GYkvPXnHq05TXl5ycbPTrL4pOp+Ojjz5iw4YNNGrUKM+9Z82aZbZ73evWrVuMGzeO3377DcjZGeyLL77Ay8urwHOGDh3KkiVLcqW1bt2a3bt3l0qMBWlV3QdHOzWxSRmci0+llp8MbRGitPzf+tNkZutpGerNA3XKfkWCe5nciL37Bnc/lUqFk5MTYWFhVK9evcSB2QJ7e/tcv2DyOy4or7RjMfd5RZUrKN/YdFOPzc2S9WdqnjF1U9y6S8/KZn7keb7aeoGsbD1qFTzTKphxD9XCz8PJ5PgLY4lnrzj1aUyc5nw2jx07RtOmTQE4fvx4rrzS7GEcOHAgV69eZf369QC88MILDBo0iN9//73Q83r06MGiRYsMxw4OZT+xysleQ6vqPmw7m8CWqBvSiBWilBy4fIvVh2JQqWBy7/oW/9TD5EZsv379UKlU3D8K4W6aSqWiQ4cOrFmzBm9vb7MFKoQoXeuPxzH19xPEJmUAOasNTO5Tj7r+Jft4XJhm8+bNZX7PU6dOsX79enbv3k3r1q0B+Prrr2nbti1nzpyhTp06BZ7r6OiIv7/lxsTd1bl2ZUMjdkTHGpYOR4hyR69XmPr7CQCebB5Iw8CiJ/uXNpMbsZs2beLtt99m+vTptGrVCoC9e/fyzjvvMGnSJDw9PXnxxRd57bXXWLhwodkDFkKY1/XkDCb/epwNJ64DEOTjzNu96tG9vp/F/8oWZWPXrl14enoaGrAAbdq0wdPTk507dxbaiI2MjKRKlSp4eXnRuXNnpk+fXugk4MzMTDIzMw3Hd4di6HQ6o1a1uVvm/rKdavkCsPtCIrfTMgyba1ibguK3BbYcO9h2/NYQ+y8HrnL0ahJujhpe7VrLpFhMjd/YciY3YsePH8+CBQto166dIe2hhx7CycmJF154gRMnTjB79myGDRtm6qWFEGVIr1f4YV80H647TUpmNnZqFaM612Tsg2E42dvWpIfy4LHHHjOq3KpVq8x+77i4uHwbnlWqVCEuLq7A83r27MmTTz5JSEgIFy9eZNKkSTz44IMcOHAAR0fHfM+ZMWMGU6dOzZN+5swZ3NzcjI45KioqT1qghx1Xk7NZ9s8ROld3NfpalpBf/LbClmMH247fUrGnZOqYse4aAE/Vd+fGlQvcKMZ1jI0/NTXVqHImN2LPnz+f70wxDw8PLly4AECtWrVISEgw9dJCiDJy7fYdXv3pCLsuJALQOMiL/3u8oQwdsCBj1uE21ZQpU/JtMN5r3759QP7jbe8OESvIgAEDDD83aNCAFi1aEBISwh9//FFgo3zixIlEREQYjpOTkwkKCqJOnTpGr04QFRVF7dq188xy7nNFw/wtFziepGFUeHiR17KEwuK3drYcO9h2/JaO/Y2Vx7idoadWFTde79sKBzvTlgA0NX5jJ8ua3Iht3rw5r7/+OkuXLqVy5ZxZaTdu3GDChAm0bNkSgLNnzxIYKHtYC2GNfj0cwztrjpOSkY2zvYbXu9dhSLtQNGoZOmBJ906OMpexY8fy9NNPF1omNDSUo0ePcv369Tx5N27cwM/Pz+j7BQQEEBISwtmzZwss4+jomG8vrUajMemXc37lezYMYP6WC2yJSkCrx6o/UTD19VoTW44dbDt+S8S+41wCvxzMmcz14eMNcXYs/lAdY+M39jWa3IhduHAhffv2JTAwkKCgIFQqFdHR0dSoUYNff/0VyOkGnjRpkqmXFkKUoqQ7WiatOc5vR3I+EmoS5MWnA5pQvZJ1f+wqiq9SpUpUqlSpyHJt27YlKSmJvXv3GuY67Nmzh6SkpFxDx4qSmJjIlStXCAiwzBaUDat5UtXTiWtJGWw7m0DXesY3wIUQeWVodby1+hgAg9qE0DzEx8IR5WZyI7ZOnTqcOnWKDRs2EBUVhaIo1K1bl65duxp2mOnXr5+54xRClMCBy7d4aflBriVloFGreOnBMMZ2CbPYVoHCuoSHh9OjRw9GjhzJV199BeQssdW7d+9ck7rq1q3LjBkz6N+/P6mpqUyZMoXHH3+cgIAALl26xFtvvUWlSpXo37+/RV6HSqWiewN/Fu24xNqj16QRK0QJfbopisuJ6fh7OPF694IneFpKsTY7UKlU9OjRgwceeABHR0eZwSyElVIUWLTzMh9tiCJbrxDi68KnA5rQLFiWvxO5LVu2jHHjxtGtWzcgZ7ODOXPm5Cpz5swZkpKSgJyP+44dO8bSpUu5ffs2AQEBdOnShRUrVuDubrl1Wvs1qcaiHZfYcCKO1Mxs3BxlTx8himPPhUQWbMuZ6/R+vwZWueKHyf+79Xo906dP58svv+T69etERUVRo0YNJk2aRGhoKMOHDy+NOIUQJkrJ0LIoSs2Rm2cAeKRRAP/3eCP5pS7y5ePjw/fff19omXvXB3d2dmbDhg2lHZbJGgV6UqOSKxcS0thwPI7Hm8v8DCFMlZyhJeKnIygKPNUikIet9FMNkz9LfP/991m8eDEfffRRrp1ZGjZsyDfffGPW4IQQxXM6LoX+8/dw5KYae42KqY/WZ84zTaUBK8o9lUpFv6bVAFhzOMbC0Qhhm6b8doKY23cI8nFmcp/6lg6nQCY3YpcuXcqCBQt49tlnc80ea9SoEadPnzZrcEII0x1JVPHUgj1cvpmOt4PC8uEtGdIuVIb9iAqjX5OcRuyOcwlcT86wcDRC2JZ1x2JZdTAGtQo+faqJVXd+mNyIjYmJISwsLE+6Xq9Hq9WaJSghhOkUReGLzef5NkrDHa2e9jV9eb2RjiZBXpYOTYgyFezrQosQb/QKrDx41dLhCGEzrt5KZ+KqnNUIRnWuSYtQ61qN4H4mN2Lr16/Ptm3b8qT//PPPNG3a1CxBCSFMcydLx9jlh/j8n/MADGkbzDeDmuJqfePwhSgTA1oGAfDD3mj0eqWI0kKIrGw9Y5YfIumOlkaBnrz8cG1Lh1Qkk/uI3333XQYNGkRMTAx6vZ5Vq1Zx5swZli5dytq1a0sjRiFEIWKTMhj9w2GOxyRjr1HxeEg27/Sqa+mwhLCo3o2qMm3tSa7cvMO2cwl0rl3Z0iEJYdVm/HmKI1du4+Fkx9yBzUzelcsSTG7E9unThxUrVvDBBx+gUqmYPHkyzZo14/fff6dr166lEaPV0mq1hq+7x/l9v/9nc8dQnOsbe15R5QrKNzbd1O/mZsn6MzUvvzq5lgYffLWH6ymZeLvY89mTDbgVtU+ePQqvu/zSSvLsyVAq6+PsoOHxZoEs3nmJZbsvSyNWiEKsOxbLoh2XAJj1VBOCfFwsG5CRVMq9a6aIQs2dO5e5c+ca9gBevnw5Li628Q8typ+oJBULz6jJ0Knwc1Z4sa4OXydLR1UxpaenM3DgQJKSkvDw8LB0ODYlOTkZT09Po+tOp9Nx6tQpwsPDi9ya8uz1FLp+uhWNWsWONx7E39Py/0FMid/a2HLsYNvxl2bs52+k0nfODlIzs3mxcw0m9gw36/XB9PiNfV+w3ilnVmjMmDGMGTPGULndunXDw8MDrVbLpk2b6Nq1K/b29rmOgVx55nb/vc19XlHlCso3Nt3UY3OzZP2Zmndv2p8nE/hqz3Gy9QrNgz358tlmeLnIs1dQujFpJXn2kpOTjX79ouzU8nOnVagPey/dZOmuS0zoIcNshLhXUrqWkUv2k5qZTatQH17vZn27chXGqEast7e30cvz3Lx5s0QB2RJ7e/tcv9zyOy4or7RjMfd5RZUrKN/YdFOPzc2S9WdKnqLAot1XmbnxLABNfPUsGdoCNxenPOeZGmNx2dKzZ0xacZ690qxfUTLDOlRn76WbLNsTzZguYbha8XJBQpSlbJ2el348xIWENKp6OjH32WY2txW5Uf+bZ8+ebfg5MTGR999/n+7du9O2bVsAdu3axYYNG5g0aVKpBCmEAL1eYdUlNVvjchqwz7cLoZH+PI72tvWxmBBlqWs9P0J9XbiUmM7P+68wtH11S4ckhFWY8edptkbdwNlew9dDWlDZ3dHSIZnMqEbskCFDDD8//vjjTJs2jbFjxxrSxo0bx5w5c/jrr7945ZVXzB+lEBVctk7PG6uOszVOjUoFb/cKZ0ibINatO2/p0ISwahq1iuEdqjPp1xMs3HGRQW1D0ahl4w9Rsf20/woLt18E4JOnGlO/qqeFIyoek/uNN2zYQI8ePfKkd+/enb/++sssQQkh/pOVreelHw6x5kgsahQ+eaIhIzrWsHRYQtiMJ5oH4e1iz5Wbd9hwIs7S4QhhUTvOJfD26pwNDcY/VIteDQMsHFHxmdyI9fX1ZfXq1XnS16xZg6+vr1mCEkLkyNDqeOG7/fx5PA57jYphdfT0aWS7bzhCWIKzg4ZBbUIAmLv5HLIoj6ioTl5L5sXvDqDVKTzSKIDxD9WydEglYvII96lTpzJ8+HAiIyMNY2J3797N+vXr+eabb8weoBAVVYYOhi89yN5Lt3C21zBvYBOSo/ZYOiwhbNLz7auzcPtFTlxLZtPJ63Sr72/pkIQoU1dvpTN00V5SM7NpU8OHWU81Rm3jQ2tM7okdOnQoO3fuxMvLi1WrVrFy5Uo8PT3ZsWMHQ4cOLYUQhah4ku5omXdSw95Lt3B3tGPp8FZ0CJNPOoQoLm9XB4a2DwVg9l9npTdWVCi307MY8u1e4lMyqePnzleDWuBoZ/uTgou11kjr1q1ZtmyZuWMRQgAJqZk89+1+Lqeq8HK257vhrWkY6Cm7QglRQiM61GDJzsucjE1mw4nr9GggvbGi/LuTpWPEkv2cv5FGgKcTi4e1xNO5fCwLaFRPrKkLeaekpBQrGCEqutikOzz11S5Ox6XgYa+wbHgLGgba5qxRIayNt6sDQ9uFAjD7ryj0eumNFeVbZnbOvIr9l2/h4WTHkmGtCPB0tnRYZmNUI9bb25v4+HijL1qtWjUuXLhQ7KCEqIiiE9N58stdXPj3r+WX6uuo7edu6bCEKFdGdKyOu5Mdp+NSWHUoxtLhCFFqtDo9Y5YdYtvZBJztNXw7tGW5+51i1HACRVH45ptvcHNzM+qi8rGnEKY5F5/Cs9/s4XpyJqG+LiwZ2pzDOzdbOiwhyh0vFwfGdgljxp+nmbnhNL0a+uPiILt4ifJFp1d4ZcVh/jp1HQc7Nd8MaUGLUB9Lh2V2Rv3PDQ4O5uuvvzb6ov7+/mbfhnH69On88ccfHD58GAcHB27fvp0rPzExkWeffZajR4+SmJhIlSpV6Nu3Lx988AEeHh4AXLp0ierV8+7W8ueff+a79q0QZeFkbDLPLznIzbQsavu58f3w1ng7azhs6cCEKKeGtAvlu92XuXrrDl9vvcj4h217mSEh7qXXK7yx8ihrj8Zir1Hx1XPNaR9WydJhlQqjGrGXLl0q5TCKlpWVxZNPPknbtm1ZuHBhnny1Wk3fvn15//33qVy5MufOnWPMmDHcvHmT5cuX5yr7119/Ub9+fcOxj0/5++tE2IZLKTDp2/0kZ2TTsJonS4e1wtvVQT7NEKIUOdlreKNHXV764RBfbT3PM62CqOLhZOmwhCgx3b8N2F8OXEWjVvH5003pUreKpcMqNTbzGcrUqVMBWLx4cb753t7e/O9//zMch4SEMHr0aGbOnJmnrK+vL/7+MitVWNbuCzeZe1JDlj6blqHeLBzaEg+n8jFjVAhr17tRAN/uuMih6Nt8tOEMHz/Z2NIhCVEiWp2eiJ+O8PuRa2jUKmY91ZieNrwblzFMXifWVly7do1Vq1bRuXPnPHmPPvooVapUoX379vzyyy8WiE5UdJtPxzPiu4Nk6VW0r+nLkmGtpAErRBlSqVS880g9AH45cJW9F29aOCIhii8rW8/Y5Qf5/cg17NQq5jzTlL5Nqlk6rFJnMz2xxnrmmWf49ddfuXPnDn369Mm1i5ibmxuzZs2iffv2qNVqfvvtNwYMGMCSJUt47rnnCrxmZmYmmZmZhuO7S45ptVrD193j/L7f/7M55Xcvc55XVLmC8o1NN/W7uVmi/v48HservxxDq1No4K1nzoD62KuUfJ+XwtKMKVOc12YsW3r2ilOfprw+Gf5hm5qHePN0yyB+3HeFt1cf449xHXGwK7d9O6KcytDqGL3sIP+cjsdBo2bes814uJ6fpcMqEyrFgtuWTJkyxTBMoCD79u2jRYsWhuPFixfz8ssv55nYdVdcXBy3b9/mzJkzvPXWW3Tu3Jl58+YVeP2XXnqJLVu2cPToUZPjXL58OS4uLoXGL8S99sarWH5ejYKKZr56ngvTo5HfmTYvPT2dgQMHkpSUZJhIKoyTnJyMp6en0XWn0+k4deoU4eHhaDQl33HodnoWD32yhcS0LCb0qMPoB8JKfM3CmDv+smTLsYNtx19Q7CkZWl787gA7zyfiaKfm68Et6FS7sgUjzZ+pdW/s+4JFe2LHjh3L008/XWiZ0NBQk67p7++Pv78/devWxdfXl44dOzJp0iQCAvIfF9KmTZtcvbX5mThxIhEREYbj5ORkgoKC6NatGx4eHmi1WjZt2kTXrl2xt7fPdQzkyjO3++9t7vOKKldQvrHpph6bW1nW348HYlm26zQATzavxuSetfjn77/yvUZ+1zembuTZM67u8ksrybNn6oYwwnp4uTjw9iPhRPx0hM//PkvvhlUJ9pXOCWH94v+/vTuPi6rqHzj+GbZhGTbBBRDcUNwVcQlXLEXN1MpM00zSLLfKrPy1PC71WE+LZVmmZQbWo9lqpfmomKbmlqKYC4K4gaACsu8wc39/kJMjIDMIDiPf9+s1L7znnHvnO8fL5cy5556TXUhY+EFOXsrGyc6azyf1ILhV/VqevFqN2N27d/Ppp59y5swZvv/+e3x8fPjqq69o0aIFffv2Nfo4np6eeHrW3rQP1zqZrx8KcKMjR45U2sC9Rq1Wo1ary6Xb2toa/HGraLuyvJpW3eMbu19V5SrLNzbd1O2aVtv1t2pvIu9tiwdgcp8WzLuvHaWlpVUeo6I8Y+rmTqq7mjz3qlOfxsRZm/Urat8DgT58H3WRvWeu8sL3R1k39S6srFTmDkuISp1NzeWxL/7kYkYBnho7wsN61svVHU1uxP7www9MnDiRCRMmcOTIEX0DMScnhzfffJNNmzbVeJAACQkJpKenk5CQgFarJTo6GgB/f380Gg2bNm3iypUr9OjRA41Gw8mTJ5k7dy59+vTR9+auXr0aW1tbAgMDsbKyYsOGDSxdupS33367VmIWQlEUfrlgxW/JZQ3YZ+9pzexBrVGp5A+kEHWFSqXirQc7M/TDXfx5Lp0v9pzjiX4tzR2WEBWKTsxkcsRB0vOKaebhyJeTe9LMw8ncYZmFyaPxFi1axIoVK1i5cqVB70Pv3r05fPhwjQZ3vfnz5xMYGMiCBQvIzc0lMDCQwMBADh06BICDgwMrV66kb9++tGvXjtmzZ3PfffexcePGcvF3796dHj16sG7dOr744guee+65Wotb1F86ncLCjTH8llz2a/bqve14bnAbacAKUQf5eTgy776y2Qre2RLL6Ss5Zo5IiPJ2nErhkc/2k55XTCcfV36Y3rveNmChGj2xsbGx9O/fv1y6i4tLpQ9b1YSIiIhK54gFGDhwIHv37r3pMSZNmsSkSZNqODIhyivV6pj7/V/8eCQJFQqvj+zAxN7lV4sTQtQd43r4suXEZX6PTeW5b6NZP6MPtvLkpagDFEVh/clsvjhyAUWBfq09WfFoEE7qO26SKZOY/Nvp5eVFfHx8ufQ//viDli3l9osQhSVaZq09wo9HkrC2UjGxtY5xPZqaOywhRBVUKhVvj+6Mq4Mtx5OyWbw11twhCUFxqY6X1x9n1eEMFKXsy9aqST3qfQMWqtGIfeqpp3j22Wc5cOAAKpWK5ORk1qxZwwsvvMCMGTNqI0YhLEZWQQmTvviTzScuY2djxbJxXQjyNNssdkIIEzV2seft0Z0A+HTnWbafumLmiER9lp5XzKOrDvBdVBJWKvjX8Lb858FOMp/x30xuxs+dO5esrCwGDhxIYWEh/fv3R61W88ILLzBr1qzaiFEIi3A5q5Cw8D85dTkHjdqGzyYG0aOZK5vOmTsyIYQphnb0Iqx3cyL2nmfOt0f59Zl++Lg5mDssUc/EXclhyuqDJKYXoFHb8GKfBjzau7k8V3GdajXl33jjDdLS0vjzzz/Zv38/qamp/Pvf/67p2ISwGPEpOYxevpdTl3No6Kzmm6fuord/7U0fJ4SoXS/f25bOTV3JzC9h1trDFJVqzR2SqEc2/pXMA8v2kJhegF8DR36YdhdB3vJF6kbV7o92dHSke/futG3blm3bthETE1OTcQlhMaIuZPDQin0kZRbQsqETP07vTQfv+jdfnxB3ErWNNcvGd8PZ3oYjCZnM/+kEZlzgUtQTxaU6Xttwgllrj5BXrCW4pQc/z+yDfyONuUOrk0xuxD788MN8/PHHABQUFNCjRw8efvhhOnfuzA8//FDjAQpRl209eYUJn+8nM7+Err5ufD+tN74NZLUfIe4Evg0c+eiRQKxU8M2hRML3nDd3SOIOdjmrkEdW7tefZ9NDWvHVlJ64O9mZN7A6zORG7K5du+jXrx8A69evR6fTkZmZydKlS1m0aFGNByhEXaQoCtuSVMz8+iiFJTrubtuItVN70UAuNkLcUUICGvHKve0AWPTrSXbFpZo5InEn2hOfxvClu4m6kIGzfdkzFf83tC02MsXbTZlcO1lZWTRo0ACAzZs3M3r0aBwdHRk+fDinT5+u8QCFqGuKSrX83/oTbEiwBiCsd3M+mxiEo51MdyLEnWhK3xY8FNQUnQIz1x7m1OVsc4ck7hDFpTre+t8pHl11gKt5xbRt4syGWX0J7dDE3KFZBJMbsb6+vuzbt4+8vDw2b95MaGgoABkZGdjb29d4gELUJel5xUz8/E/WH0nGCoUF97Vl4cgO8m1ZWLw33niD3r174+joiJubm1H7KIrCwoUL8fb2xsHBgZCQEE6cOFG7gZqBSqXijQc60qO5OzmFpTy26k8S0/PNHZawcMeTshj24S5W7DyDosAjPX1ZP6MPzT3r7wpcpjK562j27NlMmDABjUZDs2bNCAkJAcqGGXTq1Kmm4xOizoi5lM1TX0WRkJ6PRm3Doy2LeLSXn7nDEqJGFBcXM2bMGIKDg1m1apVR+7zzzju8//77RERE0KZNGxYtWsTgwYOJjY3F2dm5liO+vdQ21nz+WA8e/nQfsVdymPTFn3w3LRgPjdrcoYk6Lr+4lNNXcom9ksPpKznEXs7h6MUssgpKAHC0s+a9MV0Y1snLzJFaHpMbsTNmzKBXr14kJCQwePBgrKzKeqBatmwpY2LFHWv9kYu8/OMxCkt0+DZw4NMJgZw+tMvcYQlRY1577TWAmy7vfT1FUfjggw949dVXefDBBwFYvXo1jRs3Zu3atTz11FO1FarZuDrasnpyT0Yv38vZtDwmRxxkzdS70MjKSeI6ien5rP0zgbjLOcSl5JCYXlBpWUc7a7bO7k9TeSC4Wqr1mxcUFERQUJBB2vDhw2skIEtSUlKif13brujnjf+u6Riqc3xj96uqXGX5xqab+rOmVXX84lIdb22O5asDiQD08/fgvTGd0NiqOG1EXDc7vql5ppxncu4ZXy81ce7VVh3XZefOnePy5cv6IWUAarWaAQMGsHfv3kobsUVFRRQVFem3s7PLxpdqtVq02qrnYr1WxpiytaGhxpbwsCDGfnaAoxezeGzVAb6Y1B1ne+P+nJo7/lthybHD7Yu/ocaWqPNXOZaUBYCDbdniBFqdQvF1b21jBUsf7oyXq7rKmOpb3RtbTqVUY+K7ixcv8ssvv5CQkEBxcbFB3vvvv2/q4SzGsmXLWLZsGVqtlri4ONauXYujo3x7ulNlFkF4nDXnc8suQEN8dAz11WEli6WIG+Tn5zN+/HiysrJwcXExdzi3JCIigtmzZ5OZmXnTcnv37qVPnz4kJSXh7e2tT3/yySe5cOECW7ZsqXC/hQsX6nt9r7dv3z40GsuZCzP+ahGv/pZCXrGOtp5qXr+7EY52MjZelJddpGXFn+nsulA2jtrP1ZbnenvQ2kOGolQmNzeX4ODgKq+pJvfE/vbbb4wcOZIWLVoQGxtLx44dOX/+PIqi0K1bt1sKuq6bOXMmM2fOJDs7G1dXV0JDQ3FxcaGkpITIyEgGDx6Mra2twTZgkFfTbnzvmt6vqnKV5Rubbup2Tavs+L/FpPDBTyfIyC/B2d6GxQ914u6AhkbXizHlTM0zpm7k3DOu7ipKu5Vz71pvYl1TWYPxegcPHqR79+7Vfo8bl8BUFOWmy2K+/PLLzJkzR7+dnZ2Nr68vAQEBRn0BuNaJ0KZNG6ytrasd961qBzRvkcWk8EOcSiviP/tzCDeiR7auxF8dlhw73P74/3f8MnO+jS7X+5qSV8Ir267w2cQgercybmXH+lb3xl5TTW7Evvzyyzz//PO8/vrrODs788MPP9CoUSMmTJjA0KFDTT2cRbO1tTX441bRdmV5tR1LTe9XVbnK8o1NN3W7pl07fmGJljd+jeGr/RcA6ODtwicTutHMo+KnRWui/kzNM6Zu5Nwzru4qSqvOuVeb9XsrZs2axbhx425apnnz5tU6dpMmZVMAXb58GS+vfx5ISUlJoXHjxpXup1arUavL90BZW1ub9MfZ1PK1oatfA9Y80YsJnx/gSEImk8IP8kVYD6Me9qoL8VeXJccOtyf+pMwCfj56yaABC1CqK3v1bO5O39aNbvqFryL1pe6N/YwmN2JjYmL4+uuvy3a2saGgoACNRsPrr7/OqFGjmD59uqmHFKJOOHU5m2e+PkLclVwApvZrwQtDAlDbWO4FQ9Rvnp6eeHoa19NjqhYtWtCkSRMiIyMJDAwEymY42LlzJ2+//XatvGdd1NHHlTVP9OLRVWVjZMes2MfqyT1l5b56qkSrI3zPOZZEnqagRIuNlQqN2obMAsNx88+HtjG5ASvKM3kAj5OTk35Qvre3N2fOnNHnpaWl1VxkQtwmWh0s33mWkR/tIe5KLp4aNV9O7smrw9tLA1bUGwkJCURHR5OQkIBWqyU6Opro6Ghyc3P1Zdq2bcv69euBsmEEs2fP5s0332T9+vUcP36csLAwHB0dGT9+vLk+hll09HHl+2m98XFz4GxaHqOX7yXmUvnboRuOJqPTmfwYirAQURfSGfHRH7y56RQFJVp6NHdn07P9+PrJu7Cz+ae51a+1J71aepgx0juHyT2xd911F3v27KF9+/YMHz6c559/nmPHjvHjjz9y11131UaMQtSaU5dzeP+4NRfz4gEY1K4Rb43ujKfM/Sjqmfnz57N69Wr99rXe1R07dujnA4+NjSUrK0tfZu7cuRQUFDBjxgwyMjLo1asXW7duvePmiDWGfyMNP0zvzaQv/iT2Sg4PLd/Lh+MCGdS+bGhFfEouc76NJvu+dnSpf9VzR0vJLuTdLbF8F3URAHdHW16+tx0PdWuK1d9PAs8b3o55P5ctBPJ8aIDZYr3TmNyIff/99/XfzBcuXEhubi7ffPMN/v7+LFmypMYDFKI2FJVq+WTHGZbtiKdUp8LVwYaFIztwf1cfucUj6qWIiIgq54i9cTIblUrFwoULWbhwYe0FZkGauNrz7VPBTPtvFPvOXmXqV4d4cUgA0/q35LUNJyjRKnyw7TThD3hXfTBR5xWWaFm56yzLd54h/+/Brw93b8pLw9rRwMnOoOyjdzXjj/g0tDro6utmhmjvTCY3Ylu2bKn/t6OjI5988kmNBiREbfs9NoXXNpzkXFoeAJ0b6FjxRB+8G1jO9D5CiLrJ1dGWL6f05LUNJ/jv/gTe2RzLjlOpHDyfDkBucSlQ/guBsBw6ncIvR5N5Z/MpkrMKAQj0c+Nfw9sT1My9wn1UKhVvj+5MWm5Rhfmieqq9zEhxcTEpKSnodDqDdD8/WYZT1E0XM/L598aTbDlxBYCGzmr+NSwAJeEwDZ1l+IAQombYWlux6P5OBDRxYeEvJ/QN2OttPnGF+7r4mCE6cSsOnL3Km/87xdHETAB83ByYOzSAkV28q7yL5+Zoh5uj3U3LCNOY3IiNi4tjypQp7N271yD92tyAlrqahLhz5RWV8vnucyzfGU9hiQ5rKxWP927Os4NaY28NmxLNHaEQ4k408a5mRCdk8MPhJH1aqU5BURT+symGPv4NcXeSRo0lOJqYyeKtsew+XfYAu5OdNTMG+jOlbwvsbeUBYHMxuRH7+OOPY2Njw8aNG/Hy8pLxg6LOKtHqWHcwkQ+3ndbfwunVogGvj+pIQJOyJyvq43KhQojb48LVPDb8dckgrUQL/9mdxtW8Ihb9GsN7D3cxU3TCGKcuZ/Pe1jgiT5bdwbOxUjG2hy/PDmpNI2d7M0cnTG7ERkdHExUVRdu2bWsjHiFumaIo/O/4Zd7dEqsf99rMw5EXhwQwvJN88RJC3B7/3niS4lJdufS9CWXLj/5w+CKjunrTv03DcmWEeR1PyuKT3+P53/HLKApYqeCBwKbMHtRa5gCuQ0xuxLZv317mgxV1kk5X1nj9aPtpTl3OAcDDyY5nB7VmXA8/g3n6hBCiNm0/dYVtMSnl0tU24KWx5Xxm2V2gp76KYvPsfpWuCihurwNnr7Ls9zPsikvVpw3v5MVzg1vj30jmRqtrjGrEXr+G7dtvv83cuXN588036dSpU7nlFo1Z+1qImlSq1bHxr0t8vCOe+JSy6d80ahsm923Bk/1bolFX+/lFIYQwmaIo/Hd/Ag2c7MjML+b69Q2sVCqWDPNizDcJlOqgoETLoPd38tKwdkwKboaNtXzZvt20OoXfYq6wcvdZDp7PAMDaSsXILt5MG9BKP/xM1D1G/XV3c3MzuAWrKAr33HOPQRl5sEvcbnlFpXwfdZEv9pzjwtWy23Mu9jY83qcFj/dpLk+BCiHMQqVS8UVYD6DsDlFOUSlZ+SVk5BeTmVeIbWka84e3I+ZKLpEnr5CWW8y/N57ku0OJLBjRgeBWsprT7ZBdWMK3BxNZve88iekFANhZWzGme1Oe6t8KPw8ZNlDXGdWI3bFjR23HIYTRLmbks3rvedYdTCSnsGzORXdHW57o15KJwc1wsbet4ghCCHF7WFmpcHWwxdXBFj8PR7RaLTExaUy4qxnW1ta8cb/Ct4cSeXvzKU5dzuGRlfsZ0KYhLw4JoKOPq7nDvyOdSc1lzYFEvo+6SN7fixS4OtjySE8/Hu/TnMYu8sCWpTCqETtgwIDajkOIm9LpFPbEp7HmwAU2H7+svz3X0tOJx/s058FuTXGSYQNCCAtjZaViXE8/hnRowpJtcaw9kMDOuFR2xqUyoos3zw1qTcuGshDLrcovLmXD0SRW77rMydQL+vQ2jTWE9W7BA4E+ONjJVFmWxui/+vn5+bz44ov89NNPlJSUMGjQIJYuXYqnp2dtxlenlZSU6F/Xtiv6eeO/azqG6hzf2P2qKldZvrHpVf1MSs9l60UViz/YTWJGof44vVs1ICy4GQNae/69NrVSrTo2Z/2ZmmfKeSbnnvH1YuxPY2IVorrcnex4fVRHpvRtwfuRcfwcncyGo8ls/CuZoR2a8NSAVrJcqYkUReGvi1l8eyiRX6KTySkqu3NnbaViYEAjwno3p4+/h8xYY8FUipFr37344ot88sknTJgwAXt7e77++mtCQkL47rvvajvGOmPZsmUsW7YMrVZLXFwca9euxdFRxszUtFIdxGSq2J+i4mSGCh1lFxh7a4Xungp9Guvwlgd5RR2Sn5/P+PHjycrKkodbTZSdnY2rq6vRdVd2Oz6Gdu3aYW1teT1nxsZ/IjmLJZFxBjMc3NWyAVP7tSQkoBHWVre/4WUpdR93JYdfopPZ8Fey/nkJAL8GjoT42TFtSFe83S3rj4il1H1lTI3f2OuC0T2xP/74I6tWrWLcuHEAPProo/Tp0wetVmuRFVodM2fOZObMmfrKDQ0NxcXFhZKSEiIjIxk8eDC2trYG24BBXk278b1rer+qylWWb2z6te17Bg0iOimXn6OT+fVoEvnafy7QLZ0Vnri7Hfd1rvnbPeasP1PzbnaeVVQG5NyrrO4qSjOmfitz/QwuQtSEDt6ufD6pB3FXcvh051l+jk5i/9l09p9Nx9vVnrE9/Hi4R1O8XB3MHarZKYpCfEouW09eYcPRZP0UiwAOttaEdmjM2B6+9PBzIzb2lIx5vYMY3YhNTEykX79++u2ePXtiY2NDcnIyvr6+tRJcXWdra2vwx62i7cryajuWmt6vqnKV5d8s3cbGhhPJ2fx83oo3P9zHleyiv3NVNNTYMaqrD6MDvYg7tIt7u/vdsfVnal5V5921NFNjrC5LOveqU5/GxFmb9SvqtzaNnXnv4S48H9qG8D3n+C7qIslZhSzZFseHv8UxMKARI7t6c0+7xvVqOsESrY6D59LZFpPCtpgrJKT/0+Nqa61iQJuGjOjizeD2jXG0K6sXmT3pzmP0Ga/VarGzM5yyyMbGhtLS0hoPSty5SrU6TmepWLTpFNtiUknKLACsgCKc7W0Y2qExjQoSeHrsAOzVdpSUlBBn7qCFEMLMvN0ceHV4e54PDWDLicusPZDAgXPp/HYqhd9OpWBnY0VIm4YM7+zF3W0b4XyHzdKiKApnUvPYdyaNvWeu8kd8mn52GiibGiu4lQfDOjZhaMcmMsViPWF0I1ZRFMLCwlCr1fq0wsJCpk2bhpPTP2NLfvzxx5qNUFi8/OJS/jidxtaTV/gt5goZ+dZAAgD2tla0dS7lySHduKdDE6wUHZs2XTDLeC8hhKjr7G2tGdXVh1FdfYhPyeXn6CR+/esSZ9Py2HryCltPXsHaSkWgrxv9WjekXxtPOvu4WtwiCqVaHadTcolOzGT/2avsPXOV1JwigzIeTnYMbNuIQe0a0bd1w3rVEy3KGP0/PmnSpHJpjz76aI0GI+4MiqIQcymH35JUrAs/RNSFTIq1/6wf7mSjMKSTD0M7enFXczd2bNvC4PaNsLWxpqSk/DrjQgghyvNvpOH50ADmDG5DzKUcNh27xKZjZQ3aQxcyOHQhgyXb4nC2tyHQz52uTV3p6udGl6ZueGjUVb/BbVKi1XHhah4xl3I4mpjJXxezOJaURUGJ4e1/Oxsrujdzp3crD4JbedLV1006POo5oxux4eHhtRmHsHBXsguJSkxhZ1wqu0+n/f2N2RpIB8DHzYHQDo25J8CTlJP7GTG8o/7hGSGEENWnUqlo7+1Ce28XXhgSQGJ6PrtPp7H7dCp74tPILixlV1wqu+JS9fs0dXfAv5GGVg01tGzoRKuGGlp4OuGpUddKw7CoVMuVrCKSswq4lFXAudQ8TqfkEp+Sy7m0PEp15SdK0qht6OTjSlAzd3r7e9DNzx172/rxILkwjvS9C5MpisLFjAL2n73K/rNp7DxhTdq+XQZlHGytaOFUyoO92zGwXRNaejqhUqkoKSlhU4yZAhdCiHrAt4Ej43v5Mb6XH6VaHScvZXM0MZMjiZkcTczkTGoeFzMKuJhRwO+xqQb7WqnAU6OmkYuaRs72NNSocVLb4Ghnjb2tiuz0bP7KTcTa2gqtDrSKgk6noNUpFJZqyS4oJbuwhOyCErILS8nMLyY5s5C03KJKoi3jaGdN60YaOjd1o4uvG12autKyoUZ6WsVNSSNWVKlYC0cSMjl+qWx80sHz6VzKKryuhAorFbTzcqGvvyf92zSki48zv23dzL3BzeTJbSGEMBMbays6N3Wjc1M3JgaXpWUVlHAyOZuzabmcTc3jbGru3w3bfHQKpOQUkZJTBFQyddyhjGrFYmdjhberPV6uDjTzcMS/kYbWjZ3xb6TBy8X+74VrhDCeNGKFgeJSHfEpuRxLyuToxSyiEzI4ddka3Z9/GpSztVbRuakb3f3cIDWep0YPooHzPws/yDABIYSom1wdbAlu5UFwKw+D9FKtjvS84r8bsYVcyS7iam4RecVaCoq15BWVcDktA1v7sjtrVlYqrFUqrK3K/q22scLF3hYXB5u/f9ri6mCLl6s9Xq72NHCyk9WxRI2SRmw9pSgKGUWwIzaV+LR8Tl3KIfZyDmdScysYm6TCU2NHV9+yb/Pdm7kT6OeOg5112fCATafvuOlchBCivrGxtqKRiz2NXOwB13L5lr5qlLjzSCP2DpdXVMq5tDz963xaHmfT8jiTmktOoQ0cPlJuH2d7Gzp6u9LF140OXhquxkUx/v7B5eYJFkIIIYQwF2nEWriCYi1XCmB3fBopOSUkZRaQlFk2YP98Wt7f45oqZqVS8G/oTFsvF9p6OdO2iTNtm7jg5Wqvv+VTUlLCpgvILSAhhBBC1CnSiK2j8otLScspJjW3kNScYlJzi0jNKSLt75+XswpJyiwgPa8YsIHow5Uey8PJjuaeTrS47uXrpibu0G5G3tdbHrwSQgghhMWxmEbsG2+8wa+//kp0dDR2dnZkZmaWK3Pw4EFeeukloqKiUKlU9OjRg3feeYeuXbvqyxw7doxZs2bx559/0qBBA5566inmzZtXaz2NpVoduSVwNjWP3BKF7IISMguKycwvITO/hKyCEjLzi8ksKNvOyC8mLadsIL2x1NYKzTyc8XF3wNvNAR93B3zcHGjm4UQLDydcHcs3UktKSjhrWQu4CCGEEELoWUwjtri4mDFjxhAcHMyqVavK5efk5DBkyBBGjRrFJ598QmlpKQsWLGDIkCFcvHgRW1tbsrOzGTx4MAMHDuTgwYPExcURFhaGk5MTzz//fK3E/eIPx9l4zAYO7TF5X3tbKxo6q2moUeOpUZf9++9XY2d7fNwdaORkw+7tkQwfLj2qQgghhKg/LKYR+9prrwEQERFRYX5sbCwZGRm8/vrr+Pr6ArBgwQI6d+5MQkICrVq1Ys2aNRQWFhIREYFaraZjx47ExcXx/vvvM2fOnFrpjXX7uxfU2d4GN0db3BzscHMsm3rEzcFWn+bqeG3bjobOajw1dmjUNlXGVFJSggxXFUIIIUR9YzGN2KoEBATg6enJqlWreOWVV9BqtaxatYoOHTrQrFkzAPbt28eAAQNQq/9ZM3rIkCG8/PLLnD9/nhYtWlR47KKiIoqK/nlAKju7bALokpIS/eva9o0/59zdgm6qcwwNHWhyT2lpaWmVZW58T2MZu19V5SrLNzbd1J81zZz1Z2qeMXVzs7SaZknnXnXq05TPJ/MiCyHE7adSFKX8gsV1WEREBLNnz65wTOyJEycYNWoU586dA6BNmzZs2bIFPz8/AEJDQ2nevDmfffaZfp/k5GR8fHzYu3cvwcHBFb7nwoUL9T3B11u7di2Ojo4V7CGEqE/y8/MZP348WVlZuLi4mDsci5KdnY2rq6vRdWfpc5VacvyWHDtYdvyWHDuYHr+x1wWz9sRW1ji83sGDB+nevXuVxyooKGDy5Mn06dOHr7/+Gq1Wy+LFi7n33ns5ePAgDg4OQPmpoq614W922/7ll19mzpw5+u3s7Gx8fX0JDQ3FxcWFkpISIiMjGTx4MLa2tgbbgEFeTbvxvWt6v6rKVZZvbLqp2zXNnPVnap4xdSPnnnF1V1HarZx71+7OCCGEuH3M2oidNWsW48aNu2mZ5s2bG3WstWvXcv78efbt24eVlZU+zd3dnZ9//plx48bRpEkTLl++bLBfSkoKAI0bN6702Gq12mAIwrWGb0FBgf6PXX5+PgUFBZSWlhpsAwZ5Ne3G967p/aoqV1m+semmbtc0c9afqXnG1I2ce8bVXUVpt3LuXatvC7uxVSdcqzNjvwhotVpyc3PJzs622B4pS43fkmMHy47fkmMH0+O/dj2o6ppq1kasp6cnnp6eNXKs/Px8rKysDHpUr23rdDoAgoODeeWVVyguLtavPrV161a8vb2NbixD2UwIgP4BMiGEgLJrg6tr+eU6ReXkeiqEqExV11SLGRObkJBAeno6v/zyC++++y67d+8GwN/fH41Gw6lTp+jatSuTJ0/m6aefRqfT8dZbb7FhwwZiYmLw8vIiKyuLgIAA7r77bl555RVOnz5NWFgY8+fPN2mKLZ1OR3JyMs7OzvpGc48ePTh48KC+zLXta0MPEhMTa22s3I3vXdP7VVWusnxj02+2fafXn6l5VdXd9Wl3et3dLN+YuqsorbrnnqIo5OTk4O3trb8TJIxT0fX0Zm7HeV2bLDl+S44dLDt+S44dTI/f2GuqxcxOMH/+fFavXq3fDgwMBGDHjh2EhITQtm1bNmzYwGuvvUZwcDBWVlYEBgayefNmvLy8AHB1dSUyMpKZM2fSvXt33N3dmTNnjsF4V2NYWVnRtGlTgzRra2uD/5gbt11cXGrtxLvxvWp6v6rKVZZvbHpV23Dn1p+pecbUlZx7xtVLRWm3cu5JD2z1VHQ9NUZtnte3gyXHb8mxg2XHb8mxg2nxG3NNtZhGbERERKVzxF4zePBg/QMtlenUqRO7du2qwcjKzJw586bbtam672XsflWVqyzf2HRz1t2tvF9N1J+pecbUlZx7xteLuc89IYQQ1WcxwwkslanTxwhDUn/VJ3V3a6T+6iZL/3+x5PgtOXaw7PgtOXaovfhl8FYtU6vVLFiwwGB2A2E8qb/qk7q7NVJ/dZOl/79YcvyWHDtYdvyWHDvUXvzSEyuEEEIIISyO9MQKIYQQQgiLI41YIYQQQghhcaQRK4QQQgghLI40YoUQQgghhMWRRmwd88ADD+Du7s5DDz1k7lDqvI0bNxIQEEDr1q35/PPPzR2OxZFzrXoSExMJCQmhffv2dO7cme+++87cIdUbb7zxBr1798bR0RE3N7cKyyQkJDBixAicnJzw9PTkmWeeobi4+PYGaqS4uDhGjRqFp6cnLi4u9OnThx07dpg7LKP9+uuv9OrVCwcHBzw9PXnwwQfNHZLJioqK6Nq1KyqViujoaHOHY5Tz588zZcoUWrRogYODA61atWLBggV19jwH+OSTT2jRogX29vYEBQXpV129VdKIrWOeeeYZvvzyS3OHUeeVlpYyZ84ctm/fzuHDh3n77bdJT083d1gWRc616rGxseGDDz7g5MmTbNu2jeeee468vDxzh1UvFBcXM2bMGKZPn15hvlarZfjw4eTl5fHHH3+wbt06fvjhB5OWFb+dhg8fTmlpKdu3bycqKoquXbty3333cfnyZXOHVqUffviBiRMn8vjjj3P06FH27NnD+PHjzR2WyebOnYu3t7e5wzDJqVOn0Ol0fPrpp5w4cYIlS5awYsUKXnnlFXOHVqFvvvmG2bNn8+qrr3LkyBH69evHsGHDSEhIuPWDK6LO2bFjhzJ69Ghzh1Gn7dmzR7n//vv1288884yydu1aM0ZkmeRcu3WdOnVSEhISzB1GvRIeHq64urqWS9+0aZNiZWWlJCUl6dO+/vprRa1WK1lZWbcxwqqlpqYqgLJr1y59WnZ2tgIo27ZtM2NkVSspKVF8fHyUzz//3Nyh3JJNmzYpbdu2VU6cOKEAypEjR8wdUrW98847SosWLcwdRoV69uypTJs2zSCtbdu2yksvvXTLx5aeWBPs2rWLESNG4O3tjUql4qeffipXpra6zO80t1qXycnJ+Pj46LebNm1KUlLS7Qi9TpBzsfpqsu4OHTqETqfD19e3lqMWxti3bx8dO3Y06FkbMmQIRUVFREVFmTGy8jw8PGjXrh1ffvkleXl5lJaW8umnn9K4cWOCgoLMHd5NHT58mKSkJKysrAgMDMTLy4thw4Zx4sQJc4dmtCtXrjB16lS++uorHB0dzR3OLcvKyqJBgwbmDqOc4uJioqKiCA0NNUgPDQ1l7969t3x8acSaIC8vjy5duvDxxx9XmG9Ml3lQUBAdO3Ys90pOTr5dH6NOuNW6VCpYo0OlUtVqzHVJTZyL9VVN1d3Vq1d57LHH+Oyzz25H2MIIly9fpnHjxgZp7u7u2NnZ1blb9CqVisjISI4cOYKzszP29vYsWbKEzZs3Vzret644e/YsAAsXLuRf//oXGzduxN3dnQEDBljEsC5FUQgLC2PatGl0797d3OHcsjNnzvDRRx8xbdo0c4dSTlpaGlqtttzvZePGjWvmd/KW+3LrKUBZv369QVpNdZnXt1u81anLioYTrFmzptZjrYtu5Vysb+fajapbd4WFhUq/fv2UL7/88naEeUdbsGCBAtz0dfDgQYN9KhtOMHXqVCU0NLRcuq2trfL111/X1kcwYOzn0el0ysiRI5Vhw4Ypf/zxhxIVFaVMnz5d8fHxUZKTk29LrNWNfc2aNQqgfPrpp/p9CwsLFU9PT2XFihVmid2U+D/88EOld+/eSmlpqaIoinLu3Lk6MZygOr8LSUlJir+/vzJlyhQzRX1zSUlJCqDs3bvXIH3RokVKQEDALR/f5tabwQL+6TJ/6aWXDNJrqsu8PjGmLnv27Mnx48dJSkrCxcWFTZs2MX/+fHOEW+fIuVh9xtSd8ncvzt13383EiRPNEeYdZdasWYwbN+6mZZo3b27UsZo0acKBAwcM0jIyMigpKSnXE1RbjP0827dvZ+PGjWRkZODi4gKUDWOJjIxk9erV5c7B28HY2HNycgBo3769Pl2tVtOyZUuz3u0xNv5Fixaxf/9+1Gq1QV737t2ZMGECq1evrs0wK2Xq70JycjIDBw4kODi4zt4R8vT0xNraulyva0pKSo38TkojtobUVJf5kCFDOHz4MHl5eTRt2pT169fTo0ePmg63TjOmLm1sbHjvvfcYOHAgOp2OuXPn4uHhYY5w6xxjz0U518ozpu727NnDN998Q+fOnfXjab/66is6dep0u8O9I3h6euLp6VkjxwoODuaNN97g0qVLeHl5AbB161bUavVtG2dq7OfJz88HwMrKcFSflZUVOp2uVmKrirGxBwUFoVariY2NpW/fvgCUlJRw/vx5mjVrVtthVsrY+JcuXcqiRYv028nJyQwZMoRvvvmGXr161WaIN2XK70JSUhIDBw4kKCiI8PDwcudRXWFnZ0dQUBCRkZE88MAD+vTIyEhGjRp1y8eXRmwNu3FcpqIoJo3V3LJlS02HZLGqqsuRI0cycuTI2x2Wxaiq/uRcq9zN6q5v375ma2TUdwkJCaSnp5OQkIBWq9XP6+nv749GoyE0NJT27dszceJE3n33XdLT03nhhReYOnWqvrezrggODsbd3Z1JkyYxf/58HBwcWLlyJefOnWP48OHmDu+mXFxcmDZtGgsWLMDX15dmzZrx7rvvAjBmzBgzR1c1Pz8/g22NRgNAq1ataNq0qTlCMklycjIhISH4+fmxePFiUlNT9XlNmjQxY2QVmzNnDhMnTqR79+76XuOEhIQaGcMrjdgaUttd5vWJ1OWtkfqrPqm7um3+/PkGt3oDAwMB2LFjByEhIVhbW/Prr78yY8YM+vTpg4ODA+PHj2fx4sXmCrlSnp6ebN68mVdffZW7776bkpISOnTowM8//0yXLl3MHV6V3n33XWxsbJg4cSIFBQX06tWL7du34+7ubu7Q7nhbt24lPj6e+Pj4co1upYKHns1t7NixXL16lddff51Lly7RsWNHNm3aVCO99nWz/9kCXd9lfr3IyEh69+5tpqgsk9TlrZH6qz6pu7otIiICRVHKvUJCQvRl/Pz82LhxI/n5+Vy9epWPPvqo3NjHuqJ79+5s2bKFq1evkp2dzb59+xg2bJi5wzKKra0tixcv5sqVK2RnZxMZGUmHDh3MHVa1NG/eHEVR6Nq1q7lDMUpYWFiFvwd1sQF7zYwZMzh//rx+urv+/fvXyHGlJ9YEubm5xMfH67fPnTtHdHQ0DRo0wM/Pr1a7zO80Upe3Ruqv+qTuhBDiDnHL8xvUIzt27KhwyotJkybpyyxbtkxp1qyZYmdnp3Tr1k3ZuXOn+QKuw6Qub43UX/VJ3QkhxJ1BpSh1uP9ZCCGEEEKICsiYWCGEEEIIYXGkESuEEEIIISyONGKFEEIIIYTFkUasEEIIIYSwONKIFUIIIYRZLFy4sNbnZ42IiMDNza1W30OYhzRihRBCCGEgLCwMlUqFSqXCxsYGPz8/pk+fTkZGhrlDM9nYsWOJi4szdxiiFshiB0IIIYQoZ+jQoYSHh1NaWsrJkyeZPHkymZmZfP311+YOzSQODg44ODiYOwxRC6QnVgghhBDlqNVqmjRpQtOmTQkNDWXs2LFs3brVoEx4eDjt2rXD3t6etm3b8sknnxjk/9///R9t2rTB0dGRli1bMm/ePEpKSoyOQavVMmXKFFq0aIGDgwMBAQF8+OGH+vzCwkI6dOjAk08+qU87d+4crq6urFy5Eig/nODo0aMMHDgQZ2dnXFxcCAoK4tChQ6ZUjagjpCdWCCGEEDd19uxZNm/ejK2trT5t5cqVLFiwgI8//pjAwECOHDnC1KlTcXJyYtKkSQA4OzsTERGBt7c3x44dY+rUqTg7OzN37lyj3len09G0aVO+/fZbPD092bt3L08++SReXl48/PDD2Nvbs2bNGnr16sW9997LiBEjmDhxIgMHDmTq1KkVHnPChAkEBgayfPlyrK2tiY6ONvhcwoKYe8kwIeqzSZMm6Zc9Xb9+fa28x4ABA5Rnn3222vtfi8/V1bXGYhJC1G2TJk1SrK2tFScnJ8Xe3l5/HXj//ff1ZXx9fZW1a9ca7Pfvf/9bCQ4OrvS477zzjhIUFKTfXrBggdKlSxeTYpsxY4YyevTocsf19PRUnn76aaVJkyZKamqqPi88PNzg+uXs7KxERESY9J6ibpLhBKJGXf8wwPWv+Ph4c4dWZw0dOpRLly4xbNiw2/q+ISEhrFixospyly5d4oMPPqj9gIQQdcrAgQOJjo7mwIEDPP300wwZMoSnn34agNTUVBITE5kyZQoajUb/WrRoEWfOnNEf4/vvv6dv3740adIEjUbDvHnzSEhIMCmOFStW0L17dxo2bIhGo2HlypXljvH8888TEBDARx99RHh4OJ6enpUeb86cOTzxxBMMGjSIt956yyBeYVmkEStq3LVG2fWvFi1alCtXXFxshujqnmvjztRqdaVlTBlDZoz09HT27t3LiBEjqizbpEkTXF1da/T9hRB1n5OTE/7+/nTu3JmlS5dSVFTEa6+9BpTd5oeyIQXR0dH61/Hjx9m/fz8A+/fvZ9y4cQwbNoyNGzdy5MgRXn31VZOu/d9++y3PPfcckydPZuvWrURHR/P444+XO0ZKSgqxsbFYW1tz+vTpmx5z4cKFnDhxguHDh7N9+3bat2/P+vXrTakaUUdII1bUuGuNsutf1tbWhISEMGvWLObMmYOnpyeDBw8G4OTJk9x7771oNBoaN27MxIkTSUtL0x8vLy+Pxx57DI1Gg5eXF++99x4hISHMnj1bX0alUvHTTz8ZxOHm5kZERIR+OykpibFjx+Lu7o6HhwejRo3i/Pnz+vywsDDuv/9+Fi9ejJeXFx4eHsycOdOgAVlUVMTcuXPx9fVFrVbTunVrVq1ahaIo+Pv7s3jxYoMYjh8/jpWVlUnf9M+fP49KpeLbb78lJCQEe3t7/vvf/3L16lUeeeQRmjZtiqOjI506dSr3lHBFdVWRX3/9lS5duuDj40NGRgYTJkygYcOGODg40Lp1a8LDw42OVwhRPyxYsIDFixeTnJxM48aN8fHx4ezZs/j7+xu8rnVa7Nmzh2bNmvHqq6/SvXt3WrduzYULF0x6z927d9O7d29mzJhBYGAg/v7+FV5PJ0+eTMeOHfnyyy+ZO3cuJ0+evOlx27Rpw3PPPcfWrVt58MEH5ZpnoaQRK26r1atXY2Njw549e/j000+5dOkSAwYMoGvXrhw6dIjNmzdz5coVHn74Yf0+L774Ijt27GD9+vVs3bqV33//naioKJPeNz8/n4EDB6LRaNi1axd//PEHGo2GoUOHGnyj37FjB2fOnGHHjh2sXr2aiIgIg4bwY489xrp161i6dCkxMTGsWLECjUaDSqVi8uTJ5S6EX3zxBf369aNVq1Ym19X//d//8cwzzxATE8OQIUMoLCwkKCiIjRs3cvz4cZ588kkmTpzIgQMHTK6rX375hVGjRgEwb948Tp48yf/+9z9iYmJYvnz5TW/FCSHqp5CQEDp06MCbb74JlPVo/uc//+HDDz8kLi6OY8eOER4ezvvvvw+Av78/CQkJrFu3jjNnzrB06VKTezz9/f05dOgQW7ZsIS4ujnnz5nHw4EGDMsuWLWPfvn18+eWXjB8/noceeogJEyZU2ONbUFDArFmz+P3337lw4QJ79uzh4MGDtGvXrpq1IszK3INyxZ3l+ocBrr0eeughRVHKHjDq2rWrQfl58+YpoaGhBmmJiYkKoMTGxio5OTmKnZ2dsm7dOn3+1atXFQcHB4OHlajgwShXV1clPDxcURRFWbVqlRIQEKDodDp9flFRkeLg4KBs2bJFH3uzZs2U0tJSfZkxY8YoY8eOVRRFUWJjYxVAiYyMrPCzJycnK9bW1sqBAwcURVGU4uJipWHDhjd9gGDSpEnKqFGjDNLOnTunAMoHH3xQ6X7X3Hvvvcrzzz+vKIpidF0VFhYqzs7Oyl9//aUoiqKMGDFCefzxx2/6Pjc+GCGEuLNVdG1SFEVZs2aNYmdnpyQkJOi3u3btqtjZ2Snu7u5K//79lR9//FFf/sUXX1Q8PDwUjUajjB07VlmyZInBtaSqB7sKCwuVsLAwxdXVVXFzc1OmT5+uvPTSS/p9YmJiFAcHB4MHzLKyspTmzZsrc+fOVRTF8PpVVFSkjBs3TvH19VXs7OwUb29vZdasWUpBQUH1KkqYlUyxJWrcwIEDWb58uX7byclJ/+/u3bsblI2KimLHjh1oNJpyxzlz5gwFBQUUFxcTHBysT2/QoAEBAQEmxRQVFUV8fDzOzs4G6YWFhQa3pjp06IC1tbV+28vLi2PHjgEQHR2NtbU1AwYMqPA9vLy8GD58OF988QU9e/Zk48aNFBYWMmbMGJNivebGutJqtbz11lt88803JCUlUVRURFFRkb5+z5w5Y1Rdbd++HQ8PDzp16gTA9OnTGT16NIcPHyY0NJT777+f3r17VytmIcSd4fo7UNcbP34848ePr3T7Ru+88w7vvPOOQdr1Q8EWLlzIwoULK91frVYTHh5e7i7Xf/7zHwDatm1Lfn6+QZ6Liwvnzp3Tb4eFhREWFgaAnZ2dxS3WIConjVhR4649DFBZ3vV0Oh0jRozg7bffLlfWy8urygH616hUKhRFMUi7fiyrTqcjKCiINWvWlNu3YcOG+n/fOFegSqXSP8BgzIovTzzxBBMnTmTJkiWEh4czduxYHB0djfoMN7qxrt577z2WLFnCBx98QKdOnXBycmL27Nn6W2Y3fv7KXD+UAGDYsGFcuHCBX3/9lW3btnHPPfcwc+bMcuN7hRBCiLpExsQKs+rWrRsnTpygefPm5R4OuNYYtrW11T/tCpCRkVFuHeyGDRty6dIl/fbp06cNvp1369aN06dP06hRo3LvY+yT9506dUKn07Fz585Ky9x77704OTmxfPly/ve//zF58mRjq6JKu3fvZtSoUTz66KN06dKFli1bGjTyjakrRVHYsGEDI0eONDh2w4YNCQsL47///S8ffPABn332WY3FLYQQQtQGacQKs5o5cybp6ek88sgj/Pnnn5w9e5atW7cyefJktFotGo2GKVOm8OKLL/Lbb79x/PhxwsLCsLIyPHXvvvtuPv74Yw4fPsyhQ4eYNm2aQa/qhAkT8PT0ZNSoUezevZtz586xc+dOnn32WS5evGhUrM2bN2fSpElMnjyZn376iXPnzvH777/z7bff6stYW1sTFhbGyy+/jL+/v8Gt/Vvl7+9PZGQke/fuJSYmhqeeeorLly/r842pq6ioKPLy8ujfv78+bf78+fz888/Ex8dz4sQJNm7cKA85CCGEqPOkESvMytvbmz179qDVahkyZAgdO3bk2WefxdXVVd/4evfdd+nfvz8jR45k0KBB9O3bl6CgIIPjvPfee/j6+tK/f3/Gjx/PCy+8YHAb39HRkV27duHn58eDDz5Iu3btmDx5MgUFBbi4uBgd7/Lly3nooYeYMWMGbdu2ZerUqeTl5RmUmTJlCsXFxTXaCwtlswh069aNIUOGEBISQpMmTbj//vsNylRVVz///DPDhw/HxuafkUR2dna8/PLLdO7cmf79+2Ntbc26detqNHYhhBCipqkUYwfSCVGHhISE0LVr1zq5ktSePXsICQnh4sWLNG7c+KZlw8LCyMzMLDfHbW3p3Lkz//rXvwymMDNGREQEs2fPJjMzs3YCE0IIIUwkD3YJUUOKiopITExk3rx5PPzww1U2YK/ZuHEjGo2GdevWcd9999VafMXFxYwePdrk5W01Gg2lpaXY29vXUmRCCCGE6aQnVlikutgTGxERwZQpU+jatSu//PILPj4+Ve6TkpJCdnY2UDYbw40zEtQF8fHxQNl434qWDxZCCCHMQRqxQgghhBDC4siDXUIIIYQQwuJII1YIIYQQQlgcacQKIYQQQgiLI41YIYQQQghhcaQRK4QQQgghLI40YoUQQgghhMWRRqwQQgghhLA40ogVQgghhBAWRxqxQgghhBDC4vw/YhIkkU6IF78AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArEAAAGNCAYAAAAGiilmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADHA0lEQVR4nOzdd3hT1RvA8W+S7j2AttAFlFH23kNUpiDgQlGGDEVA0KooKggo4k8UURmKIktQVIaKyFApe+9ddqG0lBbopCu5vz9qI6UradMmad/P8/Rp7znn3vvmcElPT85QKYqiIIQQQgghhBVRmzsAIYQQQgghjCWNWCGEEEIIYXWkESuEEEIIIayONGKFEEIIIYTVkUasEEIIIYSwOtKIFUIIIYQQVkcasUIIIYQQwupII1YIIYQQQlgdacQKIYQQQgirI41YIUSFolKpWLt2rUmu9cADD/DKK68U+/y1a9cSEhKCRqMp0XXyU9LYLNXQoUPp16+fucPIV3h4OCqVijt37hh8jiW/HiEsnY25AxBClK2hQ4dy584dkzXkKrLVq1dja2tb7PNffPFFnn/+ecaNG4erq6sJIyt5bKYkz5wQojRII1YIIYrJy8ur2OcmJycTGxtL9+7dqVq1arGvk5GRgZ2dnUljMxWtVotKpTJ3GEKIckqGEwghctm6dSutWrXC3t4ePz8/3nrrLbKysvT56enpjBs3jipVquDg4ECHDh3Yv3+/Pj/nI9U//viDxo0b4+DgQOvWrTl+/Hih9501axYNGzbE2dmZgIAARo8eTXJysj5/8eLFeHh4sHHjRkJDQ3FxcaFHjx5ER0fry+zfv5+uXbtSqVIl3N3d6dy5M4cOHSrwng8++CBjx47NlRYfH4+9vT3//PMPAPPmzaNWrVo4ODjg4+PDE088oS97/0f2hZW9V3h4uL7n9cEHH0SlUhEeHg7AqlWrqF+/Pvb29gQHB/Ppp5/mOjc4OJgPPviAoUOH4u7uzsiRI/O9x/2xBQcH8+GHHzJs2DBcXV0JDAxkwYIF+vy2bdvy1ltv5brGzZs3sbW1ZcuWLUB2g3nChAlUq1YNZ2dnWrdurY8b/vs3WrduHfXq1cPe3p7nn3+eJUuW8Ouvv6JSqXK91qioKAYMGICnpyfe3t707duXy5cv66+n1WoJCwvDw8MDb29vJkyYgKIo+b7e+2NYu3YttWvXxsHBga5du3L16tVc5X7//XeaN2+Og4MDNWrUYOrUqbmec5VKxbfffkv//v1xcnKiVq1a/Pbbb7musX79emrXro2joyNdunTJFTvAlClTaNKkSa602bNnExwcXGD8wcHBzJ49O1dakyZNmDJlSq7Yvv76a3r37o2TkxOhoaHs3r2b8+fP88ADD+Ds7Ezbtm25cOFCoXUlhLWTRqwQQi8qKopevXrRsmVLjh49yvz581m4cCEffPCBvsyECRNYtWoVS5Ys4dChQ4SEhNC9e3du3bqV61pvvPEGn3zyCfv376dKlSo8+uijZGZmFnhvtVrNF198wYkTJ1iyZAn//PMPEyZMyFUmNTWVTz75hGXLlrFt2zYiIyN5/fXX9flJSUkMGTKE7du3s2fPHmrVqkWvXr1ISkrK954jRoxgxYoVpKen69OWL19O1apV6dKlCwcOHGDcuHFMmzaNs2fPsmHDBjp16pTvtYwp265dO86ePQtkN1qjo6Np164dBw8e5KmnnuLpp5/m+PHjTJkyhUmTJrF48eJc58+cOZMGDRpw8OBBJk2aVGCd3u/TTz+lRYsWHD58mNGjR/PSSy9x5swZAJ599ll++OGHXI3ElStX4uPjQ+fOnQF4/vnn2blzJz/++CPHjh3jySefpEePHpw7d05/TmpqKjNmzODbb7/l5MmTfPHFFzz11FP6PzhyXmtqaipdunTBxcWFbdu2sWPHDv0fJhkZGfp4v/vuOxYuXMiOHTu4desWa9asKfJ1pqamMn36dJYsWcLOnTtJTEzk6aef1udv3LiR5557jnHjxnHq1Cm+/vprFi9ezPTp03NdZ+rUqTz11FMcO3aMXr168eyzz+qf86tXr/LYY4/Rq1cvjhw5wogRI/L8EVCa3n//fQYPHsyRI0eoW7cuAwcO5MUXX2TixIkcOHAAIM8faEKUO4oQokIZMmSI0rdv33zz3n77baVOnTqKTqfTp82dO1dxcXFRtFqtkpycrNja2irLly/X52dkZChVq1ZVPv74Y0VRFGXLli0KoPz444/6MvHx8Yqjo6OycuVKg+P86aefFG9vb/3xokWLFEA5f/58rth8fHwKvEZWVpbi6uqq/P777/o0QFmzZo2iKIqSlpameHl55YqrSZMmypQpUxRFUZRVq1Ypbm5uSmJiYr7X79y5szJ+/HiDyt7v9u3bCqBs2bJFnzZw4ECla9euucq98cYbSr169fTHQUFBSr9+/Yq8/r2x5Zz33HPP6Y91Op1SpUoVZf78+YqiKEpsbKxiY2OjbNu2TV+mbdu2yhtvvKEoiqKcP39eUalUSlRUVK77PPTQQ8rEiRMVRfnv3+jIkSO5yuT3zC1cuDDPs5aenq44OjoqGzduVBRFUfz8/JSPPvpIn5+Zman4+/sX+PzeG8OePXv0aadPn1YAZe/evYqiKErHjh2VDz/8MNd5y5YtU/z8/PTHgPLuu+/qj5OTkxWVSqX8+eefiqIoysSJE5XQ0NBc8b/55psKoNy+fVtRFEV57733lMaNG+e6z2effaYEBQUVWDdBQUHKZ599luucxo0bK++9916Bse3evVsBlIULF+rTfvjhB8XBwSGfGhKi/JCeWCGE3unTp2nbtm2ucYzt27cnOTmZa9euceHCBTIzM2nfvr0+39bWllatWnH69Olc12rbtq3+Zy8vL+rUqZOnzL22bNlC165dqVatGq6urgwePJj4+HhSUlL0ZZycnKhZs6b+2M/Pj9jYWP1xbGwso0aNonbt2ri7u+Pu7k5ycjKRkZH53tPe3p7nnnuO7777DoAjR45w9OhRhg4dCkDXrl0JCgqiRo0aDBo0iOXLl5OamprvtYwpW5DTp0/nqlvIrv9z586h1Wr1aS1atDDqujkaNWqk/1mlUuHr66uvv8qVK9O1a1eWL18OwKVLl9i9ezfPPvssAIcOHUJRFGrXro2Li4v+a+vWrbk+trazs8t1n4IcPHiQ8+fP4+rqqr+Wl5cXaWlpXLhwgYSEBKKjo3M9RzY2Nga99vvL1a1bFw8PD/3zd/DgQaZNm5brdYwcOZLo6Ohc/2b3vg5nZ2dcXV319XX69GnatGmT6//KvbGWtntj8/HxAaBhw4a50tLS0khMTCyzmIQoazKxSwihpyhKnok4yr8fL6tUqlw/F3Vefgoqc+XKFXr16sWoUaN4//338fLyYseOHQwfPjzXEIT7Z9vfGxNkz4K/efMms2fPJigoCHt7e9q2bav/eDo/I0aMoEmTJly7do3vvvuOhx56iKCgIABcXV05dOgQ4eHhbNq0icmTJzNlyhT279+Ph4dHrusYU7YghdX/vZydnQ263v3yqz+dTqc/fvbZZxk/fjxffvklK1asoH79+jRu3BgAnU6HRqPh4MGDaDSaXNdxcXHR/+zo6GjQs6DT6WjevLm+0XyvypUrG/W68pNfDDlpOp2OqVOn8thjj+Up4+DgoP+5sPrK79/lfmq1Ok+5wobUGHPOvbHlvK780u799xWivJGeWCGEXr169di1a1euX6K7du3C1dWVatWqERISgp2dHTt27NDnZ2ZmcuDAAUJDQ3Nda8+ePfqfb9++TUREBHXr1s33vgcOHCArK4tPP/2UNm3aULt2ba5fv250/Nu3b2fcuHH06tVLPzkqLi6u0HMaNmxIixYt+Oabb1ixYgXDhg3LlW9jY8PDDz/Mxx9/zLFjx7h8+bJ+0tf9jCmbn3r16uWqW8iu/9q1a+dpOJaGfv36kZaWxoYNG1ixYgXPPfecPq9p06ZotVpiY2MJCQnJ9eXr61vode3s7HL1JAM0a9aMc+fOUaVKlTzXy+lF9/Pzy/UcZWVlcfDgwSJfR1ZWln5cKMDZs2e5c+eO/vlr1qwZZ8+ezXPfkJAQ1GrDfi3Wq1cvV2xAnuPKlSsTExOT6//TkSNHCr1u5cqVc01WTExM5NKlSwbFJERFIz2xQlRACQkJeX6Zenl5MXr0aGbPns3LL7/M2LFjOXv2LO+99x5hYWGo1WqcnZ156aWXeOONN/Dy8iIwMJCPP/6Y1NRUhg8fnut606ZNw9vbGx8fH9555x0qVapU4KLuNWvWJCsriy+//JI+ffqwc+dOvvrqK6NfV0hICMuWLaNFixYkJibyxhtv4OjoWOR5I0aMYOzYsTg5OdG/f399+rp167h48SKdOnXC09OT9evXo9PpqFOnTp5rGFO2IK+99hotW7bk/fffZ8CAAezevZs5c+Ywb948g69REs7OzvTt25dJkyZx+vRpBg4cqM+rXbs2zz77LIMHD+bTTz+ladOmxMXF8c8//9CwYUN69epV4HWDg4PZuHEjZ8+exdvbG3d3d5599llmzpxJ3759mTZtGv7+/kRGRrJ69WreeOMN/P39GT9+PB999BG1atUiNDSUWbNmGbSRgK2tLS+//DJffPEFtra2jB07ljZt2tCqVSsAJk+eTO/evQkICODJJ59ErVZz7Ngxjh8/nmsSY2FGjRrFp59+SlhYGC+++CIHDx7MMwHvgQce4ObNm3z88cc88cQTbNiwgT///BM3N7cCr/vggw+yePFi+vTpg6enJ5MmTSqTP2CEsEbSEytEBRQeHk7Tpk1zfU2ePJlq1aqxfv169u3bR+PGjRk1ahTDhw/n3Xff1Z/70Ucf8fjjjzNo0CCaNWvG+fPn2bhxI56enrnu8dFHHzF+/HiaN29OdHQ0v/32W77rmUL2EkKzZs3if//7Hw0aNGD58uXMmDHD6Nf13Xffcfv2bZo2bcqgQYP0S4EV5ZlnnsHGxoaBAwfm+jjZw8OD1atX8+CDDxIaGspXX33FDz/8QP369fNcw5iyBWnWrBk//fQTP/74Iw0aNGDy5MlMmzZNP0a3LDz77LMcPXqUjh07EhgYmCtv0aJFDB48mNdee406derw6KOPsnfvXgICAgq95siRI6lTpw4tWrSgcuXK7Ny5EycnJ7Zt20ZgYCCPPfYYoaGhDBs2jLt37+obea+99hqDBw9m6NChtG3bFldX11x/ZBTEycmJN998k4EDB9K2bVscHR358ccf9fndu3dn3bp1bN68mZYtW9KmTRtmzZqlH0ZiiMDAQFatWsXvv/9O48aN+eqrr/jwww9zlQkNDWXevHnMnTuXxo0bs2/fvlyraeRn4sSJdOrUid69e9OrVy/69euXaxy4EOI/KsWQgT1CCGGg8PBwunTpwu3btw0eC2puV69eJTg4mP3799OsWTNzhyNKYPHixbzyyitGbf0qhLBOMpxACFFhZWZmEh0dzVtvvUWbNm2kASuEEFZEhhMIISqsnTt3EhQUxMGDB4s1BlcIIYT5yHACIYQQQghhdaQnVgghhBBCWB1pxAohhBBCCKsjjVghhBBCCGF1pBErhBBCCCGsjjRihRBCCCGE1ZFGrBBCCCGEsDrSiBVCCCGEEFZHGrFCCCGEEMLqSCNWCCGEEEJYHWnECiGEEEIIqyONWCGEEEIIYXWkESuEEEIIIayONGKFEEIIIYTVkUasEEIIIYSwOtKIFUIIIYQQVkcasUIIIYQQwupII1YIIYQQQlgdacQKIYQQQgirI41YIYQQQghhdaQRK4QQQgghrI40YoUQQgghhNWRRqwod4YOHUq/fv1K/T4qlYq1a9ea/LqKovDCCy/g5eWFSqXiyJEjJr+HEEIU15QpU2jSpEmZ3/eBBx7glVdeKZVrL1iwgICAANRqNbNnzy6VewjTk0asMIuhQ4eiUqn0X97e3vTo0YNjx46ZO7RSY2jjesOGDSxevJh169YRHR1NgwYNTBpHaTW+hRClI+f98qOPPsqVvnbtWlQqVZnH8/rrr/P3338bVNZcDV6AxYsX4+HhUWS5xMRExo4dy5tvvklUVBQvvPCCSeMozcZ3RSeNWGE2PXr0IDo6mujoaP7++29sbGzo3bu3ucMyuwsXLuDn50e7du3w9fXFxsbG6GsoikJWVlYpRCeEMAcHBwf+97//cfv2bXOHgouLC97e3uYOw2QiIyPJzMzkkUcewc/PDycnp2JdJzMz08SRiaJII1aYjb29Pb6+vvj6+tKkSRPefPNNrl69ys2bN/Vljh8/zoMPPoijoyPe3t688MILJCcn6/O1Wi1hYWF4eHjg7e3NhAkTUBQl130UReHjjz+mRo0aODo60rhxY3755ZdCYwsODub9999n4MCBuLi4ULVqVb788stCzyks1ilTprBkyRJ+/fVXfe9zeHh4nmsMHTqUl19+mcjISFQqFcHBwQCkp6czbtw4qlSpgoODAx06dGD//v3688LDw1GpVGzcuJEWLVpgb2/P9u3bC41XCGE9Hn74YXx9fZkxY0a++SkpKbi5ueV5b/v9999xdnYmKSkJgH379tG0aVMcHBxo0aIFa9asyTVsKb/ey/t7fO/vXQ0PD6dVq1Y4Ozvj4eFB+/btuXLlCosXL2bq1KkcPXpU/763ePHifOPP+aRq6tSpVKlSBTc3N1588UUyMjIKrJPbt28zePBgPD09cXJyomfPnpw7d04f0/PPP09CQoL+3lOmTMlzjcWLF9OwYUMAatSogUql4vLlywDMnz+fmjVrYmdnR506dVi2bFmuc1UqFV999RV9+/bF2dmZDz74oMBYRemQRqywCMnJySxfvpyQkBD9X/ipqan06NEDT09P9u/fz88//8xff/3F2LFj9ed9+umnfPfddyxcuJAdO3Zw69Yt1qxZk+va7777LosWLWL+/PmcPHmSV199leeee46tW7cWGtPMmTNp1KgRhw4dYuLEibz66qts3rw537JFxfr666/z1FNP5ep9bteuXZ7rfP7550ybNg1/f3+io6P1DdUJEyawatUqlixZwqFDhwgJCaF79+7cunUr1/kTJkxgxowZnD59mkaNGhVR60IIa6HRaPjwww/58ssvuXbtWp58Z2dnnn76aRYtWpQrfdGiRTzxxBO4urqSkpJC7969qVOnDgcPHmTKlCm8/vrrJYorKyuLfv360blzZ44dO8bu3bt54YUXUKlUDBgwgNdee4369evr3/cGDBhQ4LX+/vtvTp8+zZYtW/jhhx9Ys2YNU6dOLbD80KFDOXDgAL/99hu7d+9GURR69epFZmYm7dq1Y/bs2bi5uenvnd9rHTBgAH/99ReQ3cCPjo4mICCANWvWMH78eF577TVOnDjBiy++yPPPP8+WLVtynf/ee+/Rt29fjh8/zrBhw4pZi6LYFCHMYMiQIYpGo1GcnZ0VZ2dnBVD8/PyUgwcP6sssWLBA8fT0VJKTk/Vpf/zxh6JWq5WYmBhFURTFz89P+eijj/T5mZmZir+/v9K3b19FURQlOTlZcXBwUHbt2pXr/sOHD1eeeeaZAuMLCgpSevTokSttwIABSs+ePfXHgLJmzRqDYx0yZIg+rsJ89tlnSlBQkP44OTlZsbW1VZYvX65Py8jIUKpWrap8/PHHiqIoypYtWxRAWbt2bZHXvzduIYTlu/e9o02bNsqwYcMURVGUNWvWKPf+Gt+7d6+i0WiUqKgoRVEU5ebNm4qtra0SHh6uKIqifP3114qXl5eSkpKiP2f+/PkKoBw+fFhRFEVZtGiR4u7unuv+99/nvffeUxo3bqwoiqLEx8crgP4e97u3bFGvMb/YXFxcFK1WqyiKonTu3FkZP368oiiKEhERoQDKzp079eXj4uIUR0dH5aeffirwteTn8OHDCqBcunRJn9auXTtl5MiRuco9+eSTSq9evfTHgPLKK68Uef174xamJT2xwmy6dOnCkSNHOHLkCHv37qVbt2707NmTK1euAHD69GkaN26Ms7Oz/pz27duj0+k4e/YsCQkJREdH07ZtW32+jY0NLVq00B+fOnWKtLQ0unbtiouLi/5r6dKlXLhwodD47r1uzvHp06fzLVtUrCVx4cIFMjMzad++vT7N1taWVq1a5Ynn3tcuhCh//ve//7FkyRJOnTqVJ69Vq1bUr1+fpUuXArBs2TICAwPp1KkT8N/71L1jPu9/nzOWl5cXQ4cOpXv37vTp04fPP/+c6OjoYl0rv9iSk5O5evVqnrKnT5/GxsaG1q1b69O8vb2pU6dOge/Txjh9+nSu91zIfk+X91zLIo1YYTbOzs6EhIQQEhJCq1atWLhwISkpKXzzzTdA9ljWgmbeGjojV6fTAfDHH3/oG8xHjhzh1KlTRY6LNea+poi1IMq/Y3zvv05+97y3ES2EKH86depE9+7defvtt/PNHzFihH5IwaJFi3j++ef17xPKffMF8qNWq/OUK2rC0qJFi9i9ezft2rVj5cqV1K5dmz179hjycgyS33toQa+lsPfikt5X3nMtjzRihcVQqVSo1Wru3r0LQL169Thy5AgpKSn6Mjt37kStVlO7dm3c3d3x8/PL9WaZlZXFwYMH9cf16tXD3t6eyMhIfYM55ysgIKDQeO5/E96zZw9169bNt2xRsQLY2dmh1WoNrI3/hISEYGdnx44dO/RpmZmZHDhwgNDQUKOvJ4Swbh999BG///47u3btypP33HPPERkZyRdffMHJkycZMmSIPq9evXocPXpU/x4Led/nKleuTFJSUq73MkPWqm7atCkTJ05k165dNGjQgBUrVgDGve/lF5uLiwv+/v55ytarV4+srCz27t2rT4uPjyciIkL/vljc91yA0NDQXO+5ALt27ZL3XAsjjVhhNunp6cTExBATE8Pp06d5+eWXSU5Opk+fPgA8++yzODg4MGTIEE6cOMGWLVt4+eWXGTRoED4+PgCMHz+ejz76iDVr1nDmzBlGjx7NnTt39PdwdXXl9ddf59VXX2XJkiVcuHCBw4cPM3fuXJYsWVJofDt37uTjjz8mIiKCuXPn8vPPPzN+/Ph8yxoSa3BwMMeOHePs2bPExcUZvByLs7MzL730Em+88QYbNmzg1KlTjBw5ktTUVIYPH27QNe536dKlXD3TR44cybXqgxDCcjVs2JBnn3023xVTPD09eeyxx3jjjTfo1q1brgbgwIEDUavVDB8+nFOnTrF+/Xo++eSTXOe3bt0aJycn3n77bc6fP8+KFSsKXFEAst9LJk6cyO7du7ly5QqbNm3K1ZAMDg7Wv9/ExcWRnp5e4LUyMjL0sf3555+89957jB07FrU6b1OlVq1a9O3bl5EjR7Jjxw6OHj3Kc889R7Vq1ejbt6/+3snJyfz999/ExcWRmppaaL3e64033mDx4sV89dVXnDt3jlmzZrF69epiT4S7efNmnvfcmJiYYl1L3MNso3FFhTZkyBAF0H+5uroqLVu2VH755Zdc5Y4dO6Z06dJFcXBwULy8vJSRI0cqSUlJ+vzMzExl/Pjxipubm+Lh4aGEhYUpgwcPzjWBSqfTKZ9//rlSp04dxdbWVqlcubLSvXt3ZevWrQXGFxQUpEydOlV56qmnFCcnJ8XHx0eZPXt2rjLcN0GqqFhjY2OVrl27Ki4uLgqgbNmyJd973z+xS1EU5e7du8rLL7+sVKpUSbG3t1fat2+v7Nu3T5+fM7Hr9u3bBb6me+PO76ugeIQQ5pXfpNDLly8r9vb2Sn6/xv/++28F0E9wutfu3buVxo0bK3Z2dkqTJk2UVatW5ZrYpSjZE7lCQkIUBwcHpXfv3sqCBQsKnNgVExOj9OvXT/Hz81Ps7OyUoKAgZfLkyfrJWGlpacrjjz+ueHh4KICyaNGiQl/j5MmTFW9vb8XFxUUZMWKEkpaWpi9z/wSpW7duKYMGDVLc3d0VR0dHpXv37kpERESu644aNUrx9vZWAOW9997L9975TexSFEWZN2+eUqNGDcXW1lapXbu2snTp0lz59/8OKEjnzp3zfc8tKB5hOJWiGDBIRogKJjg4mFdeeUV2WRFCWJ3ly5czfvx4rl+/jp2dXaFlL1++TPXq1Tl8+LDZdtaC7OWy7ty5I7sJCqMYvxWQEEIIISxOamoqly5dYsaMGbz44otFNmCFsHYyJlYIIYQoBz7++GOaNGmCj48PEydONHc4QpQ6GU4ghBBCCCGsjvTECiGEEEIIqyONWCGEEEIIYXWkESuEEEIIIaxOhV2doH///oSHh/PQQw8Zvf2oTqfj+vXruLq6mmx7OyGE9VIUhaSkJKpWrZrvwuyiYPJ+KoS4n6HvqRV2YteWLVtITk5myZIlRjdir127VuSWpUKIiufq1av5bpEpCibvp0KIghT1nlphe2K7dOlCeHh4sc51dXUFsivXzc2NzMxMNm3aRLdu3bC1tc11DOTKM7X7723q84oqV1C+oenGHpuaOevP2DxD6kaePcPqLr+0kjx7iYmJBAQE6N8bhOHufz8tilar5ezZs9SpUweNRlPa4ZmcNcdvzbGDdcdvzbGD8fEb+p5qlY3Ybdu2MXPmTA4ePEh0dDRr1qyhX79+ucrMmzePmTNnEh0dTf369Zk9ezYdO3Y0yf1zPvJyc3PTN2KdnJxwc3PT//LLOQZy5Zna/fc29XlFlSso39B0Y49NzZz1Z2yeIXUjz55hdZdfmimePfk43Hj3v58WRavV4uLigpubm9X+MrfW+K05drDu+K05dih+/EW9p1rl4K2UlBQaN27MnDlz8s1fuXIlr7zyCu+88w6HDx+mY8eO9OzZk8jIyDKOVAghhBBClAar7Int2bMnPXv2LDB/1qxZDB8+nBEjRgAwe/ZsNm7cyPz585kxY4bR90tPTyc9PV1/nJiYCGT35OR85Rzf//3Pkzf4/bKao+tPY2drg0atQqNWYZPPdxuNOt88jVqFrUaNvU3OlwYHWzUOtho0aEnXQlp6hlGv6f5Yi1uuoHxD0439bmrFvb4p6s/YPEPqprA0UzNn3RWWb2y9mOLZK606FkIIUTCrn9ilUqlyDSfIyMjAycmJn3/+mf79++vLjR8/niNHjrB161Z9Wnh4OHPmzClyYteUKVOYOnVqnvQVK1bg5ORU6LkrzqvZe7NsOrw1KgUbNdipwUGT/eVoo2R/14CDzb/fNQrONuBiC662Cq624GoLGqvslxfC/FJTUxk4cCAJCQkGfSQu/pOYmIi7u7vBdafVajl9+jShoaFW+7GqtcZvzbGDdcdvzbGD8fEb+r5glT2xhYmLi0Or1eLj45Mr3cfHh5iYGP1x9+7dOXToECkpKfj7+7NmzRpatmyZ7zUnTpxIWFiY/jhnwHGXLl1wc3MjKyuLLVu20KVLF2xsbHIdZ/nF4brnJNUCAlBQkaVT0P77lfXv173HBf2cqdWRnpX9lZapIyNLR1qWlkztf3+DaBUVWi2kayFJ3zFk+Bg9d0cbvJ3tqOxiR1UPB6q5O+DrZseNi6fo/UBbqno6o1Hnvt79r93YdGOPTa241zf0vMLKGZtnSN3cmwaU27orLN+QussvrSTPXs6nM0IIIcpOueuJvX79OtWqVWPXrl20bdtWX2769OksW7aMM2fOFPtec+fOZe7cuWi1WiIiIgzqiS1tOgUyddlfWTrI+PfnNC3c1apIy4K72n+Ps1T/fofULEjKVJGUCcmZoDOgsatRKVR2AF8nBV/H7O9+jtlp0osrKjLpiS0+6Ym1HtYcO1h3/NYcO0hPrMEqVaqERqPJ1esKEBsbm6d31lhjxoxhzJgx+so1pCcWyqY3rMfDxe8NU2s0JNzNJC45k1spGdxISud6QhrX76Rx7fZdzkff5k6mmiwdxNyFmLu5G7y2KoX61dxpVM2NRtXcaFjNDV8XG8LDw6UnVnpii32e9MQKIYQoTLnriQVo3bo1zZs3Z968efq0evXq0bdv32JN7MphiT2xZUWnwJ0MiElVZTdkU1XE3FURkwrpury9uK62CrXcFGq7Z395O5ghaCHKiPTEFp/0xFoPa44drDt+a44dpCc2l+TkZM6fP68/vnTpEkeOHMHLy4vAwEDCwsIYNGgQLVq0oG3btixYsIDIyEhGjRpVovtack9safeGPfRg/uUyMjP5+c9wnAPrcyI6meNRiZy5kUxSJhyKV3EoPrucv4cDnWt780CIF0kXDvPwQ9ITKz2x0hMrhBCi+KyyJzbnY+r7DRkyhMWLFwPZmx18/PHHREdH06BBAz777DM6depUovtW5J5YY2Tp4HISRCSoiUhUcSUZdMp/vbWOGoX6ngqNvLK/28h4WmHlpCe2+KQn1rKlZWpJzdByN1OLvQZirlwgNDSUTB0cj0pArQK1KnspSHsbDe6Otrg52uBoq7G4zT+sre7vZc2xg/TE5vLAAw9QVNt79OjRjB492qT3vb8ntlu3bvoduzZv3kzXrl31O/3kHAO58kzt/nub+ryiyhWUn5P+WdeupOtU7L14i7/O3OTvM7HcTs3kQJyKA3Hg5mBDQ/cMxvRqQYvq3mRlZRVYl+Wt/ozNK+w5y68MVOxnr7C6yy/NkPotiPTECmukKAqZWgW7f3sSIuNT+WTTWWKT0ohNSudmYjpJ6Vn68i91rsEjAdk/xyam8+RXuwu89jOtApnxWEMA0rO0TFx1HD8PB/zcHanq4UCQtzNBXk7YyKxgUQJW2YgV1sXF3oaHQqvwUGgV0tJr8c2av0hwrc6Gk7HcSEpnZ5qanYsOEeztxJPN/PCUdeOFEMKktDqFc7FJHL16hyNX73DyeiIXb6bwYqcavPxQLQCydDp+O3o93/Pt7vvITK2G6pWc9UtB6hSFtEwtiWlZaHUKbg7/NS9uJKSz+nBUnmvaalRUr+TMUy0CGNGxhj5dURSL68UVlskqhxOYiwwnMC2dAucSVOy/qeLoLRUZ/04Qs1UrNK+k0NFXh7+zmYMUwgAynKD4ZDhB4aIT7uLn7ljs+129lcobvxzl2LUEUjO0efL7N63GZwOaAHA3Q8vyvVeo7GpPZVd7qrg6UNnFHmd7DTYatUGxK4qiv4+zfXZDNi45nZ8OXCX6ThrRCXeJupPG5bgU7mZmlxv3UC3CutYGIDYxjR6fb6eRvzuN/T1oEuBBs0BP3J1K/mmSNT871hw7yHACiyDDCUr2kW5+6TnH8zp3YdPpeJbuieTsjWT2xKrYE6umdbAHzR3jGfPEQ9jZ2Rn8+gwlwwmKz5qePRlOIKxRbFIaj87Zyc8vtiW4UtF/0ccnp7P51A1sNGqeaO4PQGVXew5H3iE9S4eznYZG/h40DvCgkb87taq4EOj9X0eMo50mV49ocahUKn3jNUclF3tGPxCSK02nU4i6c5fzN5MJ8PwvhqPXEriVkkH42ZuEn7357zWhflU32tWsRL8m1ahXVf5QFNmkESssgrOdDU+18Kdfoyp8vfovzlOVTadvsvfyHfaiYfvCg7zUuSYP1a2MWi0fMwkhyr8pv53kZlI609ad4ruh+e8oeSslg40nY/jjWDS7L8aj1SnU9nHRN2IdbDXMe7YZAV5O1KzskmfXRXNRq1UEeDkR4JX708xOtSuxdkx7jl3LHvZwJPIOF+NSOBGVyImoROr4uOobsXHJ6dxKyaBWFRcZflBByXACI8hwgrJ1Kx22XFezO1ZF5r9DDfycFHoH6qjvoSDvWcJSyHCC4pPhBPnbeDKGF5cd1B8vHNKCh0L/27Bny9lYvt99hfCIm2h1//0ab1DNja6hvrz8YIjJ/+A3V93HJqax+2I8u87H80rXWvrhFd9uv8gHf5wmwMuRh0N9eDjUh1bVvbAtYLKYNT871hw7yHACiyDDCUpvOEFBxwMyM1mzfjORDjVZcSCK6NQsvjmjoXmgB691rUXLYE+DX3NJ6qG458lwguKfJ8MJREWVmJbJ5F9P5Eqb+vsp2odUwsE2uwHw6+Eo/j4TC2R/1P5IIz8eaehHkHf5m0hQxc2Bvk2q0bdJtVzpt1MzsLNRc/XWXRbtvMyinZfxcrajZwNfHm1clZbBXvLJXTknjdgSsLW1zfXLLb/jgvJKOxZTn1dUuYLyDU0v7NjFFl7vXofRD9bhq20XWLTzEgcj7zBw4X661KnM271CqeXjWuRrKIw568/YvKLqLifN2BiLy5qeveLUpyFxlmb9iornoz/PcCMxPVda5K1U/vfnGd57tD4Ag9oGU9nVngEtAwmp4mKOMM3uje51GdMlhO3n4vj79A3+Ph1LfEoGy/dG8vPBaxx492HcHOT/ZnkmjdgSyMzM1H/lHOf3/f6fTR1Dca5v6HlFlSso39B0Y7472doS9lBNnm1ZjbnhF/npYBRbzt5k27k4BrUO4OUuNXFzNO4Ny5z1Z2yeMc+ZPHuG14uh3w2JVYiS2nMxnhV7I/PNW7rnMsM7Vsff04nmQZ40DyrZJ1HlgZOdDd3r+9K9vi9ZWh27LsTrlwm7twH71qpjhPq6UsdRZ65QRSmQMbFGkDGxliX2Lvx2Rc3x29njn1xsssfLtq6iIJ8gibIkY2KLT8bE/ictU0vPz7dzKS6lwPN7NvBl/nPNSzvMfFlr3Z+7kUTXz7YBYKdR0auhHwNbB9Ey2NNqJoRZa93nkDGxFkDGxJb9mNii7j8U2H4+jg/+OMvFuBR+vKjhRJobH/StR30DlmGRMbHFZ03PnoyJFdbgi7/PFdqABfjzRAzbz92kY63KZRSV9avi5sCk3vX4cV8k52KTWXvkOmuPXCfUz43n2wXzaJOq+rHGwrqUSiM2LS0NBweH0ri0RZExsUXnm2JMbFH3fzDUj461fViy6zKf/3WOE9cTefzrvQzvUJ1XH66No13Rb04yJrb4rOnZkzGxwlKdup7I19suGlT2vd9OsmF8pzy7aIn8uTvaMrxDdYa0CWDt9qPsjdPw+7FoTkcnMmHVMext1XkmjQnrYLJGrE6nY/r06Xz11VfcuHGDiIgIatSowaRJkwgODmb48OGmupXFkDGxZTsmtihD2gTQq34Vpq8/yx8nYliw7SLrj0fz/qP16BDiXazXVxAZE2tdz56MiRWWSFEU/jgeTVV3B6atO42Hoy2uDjY42mmo5uGIu6MdHk62eDrZ4uGU87Md7o626GQkoNFUKhV1K9vTv1Mo7zxSjx/3X2XDiRh6NvDTl9l9IR4fN3tqVK6Yk+WsjcnGxE6bNo0lS5Ywbdo0Ro4cyYkTJ6hRowY//fQTn332Gbt37zbFbcxKxsRaj5O3Vfx0Uc2djOzxTi0r6egfrMNZOsxEKZAxscVXUcfEuvkG886vJ9l+Lo4GVd1YM7o9thbes1pe6r6g+LO0Oh74JJyoO3fp1cCPlx6oSYNq7maINK/yXvf3K/MxsUuXLmXBggU89NBDjBo1Sp/eqFEjzpw5Y6rbmJWMibW8MbEF6QW8lJ7FZ3+dZ9neSPbHqbmc5sD0fvXpUue/sWQyJrb4rOnZkzGxwlIoisLGc0ks+nkHyela7GzUPFzPB+lXNb+Eu5nU9XXj2u27/HE8mj+OR/NAncqMf6gWTQNlJQhLZLJGbFRUFCEhIXnSdTpduf2oTcbEFp1fFmNiC+Jpa8u0fg3p38yfN345xvnYZF74/jADWgTwbu9QXB1K/u8jY2Kt69mTMbHCnG4kpjHhl6NsjbgFQPMgTz55sjHVK5W/DQqskbeLPd8OacGZmETmh1/g96PXCT97k/CzN3k4tApv9axLSJWSrUkuTMtkn13Ur1+f7du350n/+eefadq0qaluI4TRmgZ6su7lDozoUB2VClYeuEqP2dvZfSHe3KEJISqICzeT6fn5drZGxGGrhok96/DTi22lAWuB6vq68fnTTfnntQd4srk/ahX8dTqWWynls0POmpmsJ/a9995j0KBBREVFodPpWL16NWfPnmXp0qWsW7fOVLcRolgcbDW827seD9fz4fWfj3Lt9l2e+WYPQ9oG0kBr7uiEEOVdkJcTtaq4kJSWycstXOnWpjoaWdDaogVXcmbmk40Z9UBNNp6MoVV1L33elrOxNKrmjreLvRkjFCbrie3Tpw8rV65k/fr1qFQqJk+ezOnTp/n999/14/OEMLc2NbzZ8EonnmkVCMCS3ZHMOq4h4kaSmSMTQpQ3t1IyyNJm7xBlo1Ez/7nm/PJiGwLcZfiJNalZ2YXRD/w3XDImIY3R3x/igZnhfL31AulZ0hNiLiZdJ7Z79+50797dlJe0aLLElmUtsWUoezVM61OXB+t489bqk0SnZNB//l4m9qzNs60CDNrBRZbYsq5nT5bYEmXt1PVERi49QNd6Pkx5tD4AXs52aLXS4LF2CXczqVnFmRNRicz48wzf773CxJ6h9GzgazU7gJUXsu2sEWSJrfInMQNWXFBz+k72hxINPHU8U1OHi3SUCCPIElvFVx6X2NpwIoawn46QmqEl2NuJX8d2wN0x+03FGuIviDXHDqaNX6dTWH04ipkbz3AjMR2AVsFeTO1bn1A/078HVLS6L5Mltjw9Dd93+NatWyW5lUWQJbasZ4ktQ2VmZuK6aTM33OvwyV/nOXFbzednHfn48Qa0r5n/BgmFvT5jyskSW7LElih/Fu64xPvrTgHQIaQScwY21TdgRfmhVqt4ork/vRr68tXWiyzYdoF9l2/Rf95Odr/1EJ7OduYOsUIoUSN29uzZ+p/j4+P54IMP6N69O23btgVg9+7dbNy4kUmTJpUoSEslS2wVnW/OJbYMpVLBsA7V6VjHl3E/HuZ8bDJDFx/kxU41eK1bnUK3dpQltqzr2ZMltkRpURSF/204y1dbLwAwqE0Q7/Wph43GsjcwECXjZGdDWNfaPN0ygPfXnaJGZWdpwJahEv3vGjJkiP5r586dTJs2jR9++IFx48Yxbtw4fvjhB6ZNm8bWrVtNFa8QpaZeVTd+H9uBZ1tnT/r6ettFHp+/i0txKWaOTIiysW3bNvr06UPVqlVRqVSsXbu2yHO2bt1K8+bNcXBwoEaNGnz11VelH6gFenvNcX0D9o3udZjWt740YCuQqh6OzH+uOa91raNPOxGVwAtLD3DtdqoZIyvfTPY/bOPGjfTo0SNPevfu3fnrr79MdRshSpWjnYbp/Rvy9aDmeDjZcjwqgd5fbGf1oWvmDk2IUpeSkkLjxo2ZM2eOQeUvXbpEr1696NixI4cPH+btt99m3LhxrFq1qpQjtTydalXG3kbNx483YkyXEJngU0Gp71k2bcpvJ9l06gbdPtvGsj1X0OlkCpKpmawR6+3tzZo1a/Kkr127Fm/vgscWmsO6deuoU6cOtWrV4ttvvzV3OMICda/vy5/jO9K6uhcpGVrCfjrKqyuPkJyeZe7QhCg1PXv25IMPPuCxxx4zqPxXX31FYGAgs2fPJjQ0lBEjRjBs2DA++eSTUo7U8vRs6Mf2N7vwVMsAc4ciLMSMxxrSMtiT1Awtk9aeYNB3e6VX1sRMtsTW1KlTGT58OOHh4foxsXv27GHDhg0W1VDMysoiLCyMLVu24ObmRrNmzXjsscfw8vIq+mRRofi5O7JiZBvmbjnP7L8iWHM4ikORt/nymaaE+sguO0Ls3r2bbt265Urr3r07CxcuJDMzM9+xwunp6aSnp+uPcybFabVag5afyilj7qWqsrQ6PtpwlufbBVPN0xEAbyfbIuOylPiLw5pjh7KPv0YlJ1YMb8XSPVeYuSmCnefj6f7ZNt7qWYdnWhq2nGOOilb3hpYzWSN26NChhIaG8sUXX7B69WoURaFevXrs3LmT1q1bm+o2JbZv3z7q169PtWrVAOjVqxcbN27kmWeeMXNkwhJp1CrGPVSLdjW9Gf/jEa7Ep/LYvF281rUWvvLJkKjgYmJi8PHxyZXm4+NDVlYWcXFx+Pn55TlnxowZTJ06NU/62bNncXFxMfjeERERxgdsIjpF4ZMdcWy7ksrmE1HM6V0VGyN33zJn/CVlzbFD2cff2hM+7+nL57vjOXUznUm/niL5Viwdg4zvDKkodZ+cnGxQOZNudtC6dWuWL19uykvmsW3bNmbOnMnBgweJjo5mzZo19OvXL1eZefPmMXPmTKKjo6lfvz6zZ8+mY8eOAFy/fl3fgAXw9/cnKiqqVGMW1q9FsBfrx3XkrdXH+PNEDP/bGEFddzVtOqfj5ykz00XFdX9vUs7S4wX1Mk2cOJGwsDD9cWJiIgEBAdSpU8fgdWIjIiKoXbu2WdbLVBSFqetOs+1KKrYaFZMfbUTD0CoGn2/u+EvCmmMH88YfCnRpqbB09xXCI24yvFtzo7Ydrmh1b+iyhSZrxEZGRhaaHxgYaJL75Ew8eP7553n88cfz5K9cuZJXXnmFefPm0b59e77++mt69uzJqVOnCAwMJL+9HWQAvjCEu5Mt855txo/7rzL195OcSYDec3Yza0ATOteubO7whChzvr6+xMTE5EqLjY3FxsamwLkQ9vb22Nvn3W9eo9EY9cvZ2PKmMnfLeZbtyf5998mTjenWIG9vsyHMFb8pWHPsYL74NRoY0akmwzvW0Lc70jK1LNh2kZEda+BoV3RMFaXuDX2NJmvEBgcHF9oYNNU4jp49e9KzZ88C82fNmsXw4cMZMWIEkL2W7caNG5k/fz4zZsygWrVquXper127ZlHDHYRlU6lUPNMqkMbVXBm+cCfRKRkM+W4fL3SqwetFrCkrRHnTtm1bfv/991xpmzZtokWLFuVy7dyV+yOZufEsAJN716Nvk2pFnCFEXve2lWasP82S3VdYuf8q/3uiIe1rVpKONSOYrBF7+PDhXMeZmZkcPnyYWbNmMX36dFPdplAZGRkcPHiQt956K1d6t27d2LVrFwCtWrXixIkTREVF4ebmxvr165k8eXKh1y1oIkJmZqb+K+c4v+/3/2xK1rR/fX7ppty/vjiKe/1gT3vCGmg5rASxYn8UC7ZdZPeFOD57shFB3v9tRVzY9Y3NM+Y5k2fP8HoxxbNXWnVc1pKTkzl//rz++NKlSxw5cgQvLy8CAwOZOHEiUVFRLF26FIBRo0YxZ84cwsLCGDlyJLt372bhwoX88MMP5noJpWbX+TjeXnMCgNEP1GRYh+pmjkiUBw/X8+G3o9eJunOX577dh6OthvpVXanj60ZtH1dq+bhQx8cVD0eTjv4sN1RKfp+vm9Aff/zBzJkzCQ8PN/m1VSpVrjGxOeNdd+7cSbt27fTlPvzwQ5YsWcLZs9l/Qf/222+8/vrr6HQ6JkyYwAsvvFDofaZMmZLvRIQVK1bg5OSUzxmiIjl2S8UP59WkalXYqxWerKGjZWWZ9VWRpKamMnDgwCL3+bZ04eHhdOnSJU/6kCFDWLx4MUOHDuXy5cu53s+3bt3Kq6++ysmTJ6latSpvvvkmo0aNMviehu6RnsNce8hH3bnLyCUHqOPryqynGhe7t8xc8ZuCNccOlht/fHI6PT7fzs2k9ALLVHO35+s+vqy5CP2bB9CgmnsZRlhyxta9oe8Lpd60r127Nvv37y/t2+SS30SDe9MeffRRHn30UYOvlzMR4ZtvvuGbb75Bq9Xm6q0QFVsjL4WAxlqWndNwIUnF9+c1nE3Q8UR1HQ6W8z4pRJEeeOCBfOcN5Fi8eHGetM6dO3Po0KFSjMoyVPNw5JeX2qJWqeTjXmFS3i72LBveih6ztxdY5lZqBgA7LsTxave6ZRWaxTNZI/b+mWSKohAdHc2UKVOoVauWqW5TqEqVKqHRaPKdaHD/MjDGyJmI8Nprr/Haa6/p/0Lo0qULbm5uZGVlsWXLFrp06YKNjU2uYyBXnqndf29Tn1dUuYLyDU039tjUTFl/j+sUFuy4wtytl9h/U80NrTMf963DjTMH8r1+YffOL8+QupFnz7C6yy+tJM+eoTNphXXR6RQORd6mRXD2OuJOdvKRrigddX3d6NukKr8euV5ouZlPNMLFXp7DHCYbTqBWq/PtAQ0ICODHH3/Ub4BgSvcPJ4DsZb6aN2/OvHnz9Gn16tWjb9++zJgxo0T3mzt3LnPnztUvFSHDCUR+LiTC0nMa7mSo0KgUegfqeMBPwchlJIUVKS/DCczBkocTzN1ynpkbz/JWz7qM6lzTJNe01I+0DWHNsYPlx3/xZjJdP9uGNp/taR1tVfw8INBiYy+KxQ8n2LJlS65jtVpN5cqVCQkJMWkvUFETD8LCwhg0aBAtWrSgbdu2LFiwgMjISKPGaBVkzJgxjBkzRl+53bp1w83NjczMTDZv3kzXrl2xtbXNdQzkyjO1++9t6vOKKldQvqHpxh6bWmnV3+C7mbyz9iQbT8Xy6xUN8TZezHyiIZVc7A26Rn55htSNPHuG1V1+aSV59qQntvzZezGeTzdlz6PwcrIzczSiIqhR2YXHm1XjpwPX8uR5ONqRnqUzQ1SWzWStS5VKRbt27fL9WHTbtm106tTJJPc5cOBArokHOYtm50w8GDBgAPHx8UybNo3o6GgaNGjA+vXrCQoKMsn9hTCEu6MtXz7dmBV7I5m+/gw7Ltyiz9zdzHy8IR1C8l8/UwhhGeKS03n5h8PoFHisWTWebOFv7pBEBfHyg7VYcziKTO1/vbEqFUQnpjNx8w2WBNXEz1O2Pc9hsuEEGo2G6OhoqlTJvXNJfHw8VapUsdr9fu8lwwlEcUSnwpIIDdF3s8cTPFRVR68AHbKkbPkhwwmKz9KGEyiKwvOL9xN+9iYhVVz4bWx7k46FtfSPtAtjzbGD9cQ/ae0Jlu25AmQ3YCf2rMvcLRdIuJuJr7sD3w5uIasT/Mtk/zPvXwEgR3x8PM7O5eOvhvuHE8jELpnYZWj9/Tq2PZ9tucIPB6L4+7qaWNz5oHdtLh/fKxO7illOJnaJ0rBiXyThZ29iZ6Nm7sBmMplLlLmxD4bw04GrpGfpeKlzTV7oVJOH6lZmyLe7uZaQxpNf7ebLZ5rycL3iT1gvL0rcE/vYY48B8Ouvv9KjR49c2wlqtVqOHTtGnTp12LBhQ8kitQDSEytK6t41ZW1VCo8E6ugsk76snvTEFp8l9cTGJqbxwCfhpGZoefeRUEZ0rGHS64P19Abmx5pjB+uK//11pzgUeZufXmyLrUaNVqtl/9GTzD18l+3n4lCr4MP+DXm6VaC5QzWIxfbEurtnd2krioKrqyuOjo76PDs7O9q0acPIkSNLehuLIBO7ZGKXsefdX64XMCQhjXfWnmT7+XjWXtFwTXHnf483JNDLqdDry8Quw/JlYpcorsqu9rzftwF/nohmWHvZkUuYz0sP1ORuhhZbzX/jzlzs1HwzqBmTfj3FzwevceDKbQa0DKjQ6xaXuBG7aNEiAIKDg3n99dfLzdABIUqLn7sDCwc3Y8XeSGb8eYYDkQn0mbubN7vX5pmW/hX6DUkIc1KpVDze3J/Hm8tELmFe965kcy9bjZqPn2hE6xre9G1StcL/vij1bWfLExlOIEwtPg1WXNBwPjH7jaiOu45naurwzP/9S1goGU5QfJYwnCA2KQ1HWw2uDqb/xOJ+1vSR9v2sOXaw7vgLi12rU/huxyUGtQ3CwdYyX5dFDido1qwZf//9N56enjRt2rTQvwjKw7aEMpxAhhMYe54ha8GuHd+FHw9G88nmc5xNgE9O2jGha03c4k7SrZsMJ5DhBKI0KYrCW6uOcyIqgdlPN6FdzUrmDkkIo7y/7hSLd11m27mbLBjUAkc7y2zIloYSNWL79u2rn8h1765ZFYWtrW2uX275HReUV9qxmPq8osoVlG9ourHHpmbO+rO3s2NEpxAeDPXltZ+PcjjyDpPXnSXETU39NhnU8nUq9Fr5Xbui1F1h+QXVS1FpxXn2SrN+RenaeDKGf87EYqtRUcXVwdzhCGG0bvV9+OnAVbafi2Poon0sHNqywmxNW6JX+d577+X7c0WRmZmp/8o5zu/7/T+bOobiXN/Q84oqV1C+oenGfjc1c9bf/XkBHvb8MLwlS3ZfYfbf5zmfCI98uZtxD9ZkWPsg0GnzPS+/50yePcPrxRTPXmnVsShdyelZTPntFACjOtckpIqLmSMSwnjtalZi2fBWDP1uP3sv3WLwwr0sHtYKtzIYHmNuJh8Tm5GRQWxsLDpd7u3RAgOtYxmIwsiYWFFW4tPgp4tqziRkz0yt5qTwdE0tgfI71iLJmNjiM+eY2P9tOMP88AsEejmx6dVOZTKesLyOy7QG1hy/IbEfvXqHwd/tI+FuJo383Vk6rBUeFrJlskWOib1XREQEw4cPZ9euXbnSczZBKA87dsmYWBkTa+x5hoyJLSjPa9Nm0nzr89HG80SlZvLZCRs6+er4ZMgDuDs7yJhYGRMrSuDa7VQW7rgEwLuPhFrshBghDNU4wIMfRrbhuYV7OXYtgSGL9rPmpXaoy/FC5CZrxD7//PPY2Niwbt06/Pz8KsSyDzImtuh8GRNbdLmC8lQqeLx5AA83qMb7607x65HrhEereXT+Pib3qc+Dtb0KPL+i1F1h+TImVhRm5sazZGTpaFPDi66y85EoJ+pVdWPlC20Yumg/4x4MKdcNWDBhI/bIkSMcPHiQunXrmuqSQgiy1wv8/Omm9Gnow4SfDnE9IY1R3x+kc61KdJRlmYUwWpZWh07J/kPx3UfqVYhOF1Fx1PJx5Z/XO2NvU/4/XTBZI7ZevXrExcWZ6nJWQSZ2ycQuU07sKiqvXXUPJjbWct6uJt/tjmTruTh2qDTEu55ldJcQHGw18uwVkC4Tu8S9bDRqvnymKa93q02Qt/wlKMqfexuwV+JTmLflAtP61S93DVuTTez6559/ePfdd/nwww9p2LBhno/XysNkB5nYJSxF7F1Ydem/iV9e9gqPB+to4CV7l5iDTOwqPkvY7KAsWXP81hw7WHf8xY09S6uj22fbuBiXQrd6Psx/rjkaMwwxsPiJXQ8//DAADz30UK50mdglk2tkYlfxJnYVNRFpYEYGn6z8mz9jnIhJTOebsxoeqOVNe+cbPPuoPHsysUvcT1EU5vxznn5NqxHgJR0Qovyz0aj5oH8Dhi7az6ZTN5j86wk+6Neg3AyhMVkjdsuWLaa6lNWQiV1F58vErqLLGZt3b1oTb4VXBrTnq+1X+Hb7RcLPxbNdpeG600XGPFDDqBiLy5qePZnYVbFtORvLp5sj+Gb7Rfa+/XCF2tlIVFztalbii6eb8NLyQyzfG4mfuwNjH6xl7rBMwmSN2M6dO5vqUkIIIzjZ2fBmj7o80dyf938/SXhEHIt2XWHtkes85KOim1aHtLFERacoCrP/OgfAM60CpQErKpQeDfyY0qc+7/12kk82ReDj5sCTLQLMHVaJmawRe+zYsXzTVSoVDg4OBAYG6reoFUKYXs3KLnwzqBmfrviTv+LcOH8zhV8uaTgydzeT+9SnU+3K5g5RCLPZcjaWY9cScLLT8EKnGuYOR4gyN6RdMDGJacwPv8Bbq4/j5+5Ih1qVzB1WiZisEdukSZNCx1jY2toyYMAAvv76axwcysf+1LI6gaxOUJarExj6nIV6KIx+vAW/HIrm001nOX8zhcHf7aNz7UpM7FGHmpVNMxvbmp49WZ1AfLX1IgCD2gTh7SIdKqJimtC9DjcS0rhwM5m6fq7mDqfETLY6wa+//sqbb77JG2+8QatWrVAUhf379/Ppp5/y3nvvkZWVxVtvvcWAAQP45JNPTHHLMierEwhrk5oFG6+p2RajQqeoUKPQxkehh78Od8vYjbBckNUJiq8sVic4cvUO/ebuxEatYsebD+Lrbr6OlIo4Q95SWHP8pow9I0tHlk6Hk53J+jGLZPGrE0yfPp3PP/+c7t2769MaNWqEv78/kyZNYt++fTg7O/Paa69ZbSNWVieQ1QmMPa80VycoqgxkP3vzRj7EtYQMPt4YwV9nbrLrhorDt2wY2i6IkR2q4+pQvLcBa3r2ZHWCiu2b7dm9sI82qWrWBqwQlsDORo0dav3x1oibtK3hjZ2NupCzLJPJGrHHjx8nKCgoT3pQUBDHjx8HsoccREdHm+qWZierExSdL6sTFF2uJKsTFFbm3p9r+znx7dBW7L98i4/+PMPBK7eZv/USKw9EMbZLCM+2CSz2ItjW9OzJ6gQVj6IoBHk54epgw8iOMhZWiHvN+eccn2yK4JlWgXzY3/qW3jJZs7tu3bp89NFHZGRk6NMyMzP56KOP9FvRRkVF4eMje1QLYS4tg734ZVRbvh7UnJqVnbmVksG0dad4eNZWfj0ShU4nmyWI8kWlUjGhR132v/MwoX4y1EOIe9Wr6oZKBT/si+T7PVfMHY7RTNYTO3fuXB599FH8/f1p1KgRKpWKY8eOodVqWbduHQAXL15k9OjRprqlEKIYVCoV3ev78lDdKvx88BqfbY7g6q27jP/xCAu2XeTNHnXpWKuS1f1FLkRhHGytawykEGXhwbo+vNmjLh/9eYZp607RoJo7TQM9zR2WwUzWiG3Xrh2XL1/m+++/JyIiAkVReOKJJxg4cCCurtkz4AYNGmSq2wkhSshGo+aZVoH0a1KN73Ze4qvwC5y8nsjg7/bRqroXb3SvQ8tgL3OHKUSx7boQB0DbGt7yR5kQBXixUw2OX0vgj+PRjF1xmHUvd8DT2Tpm/pp0apqLiwujRo0y5SVLTf/+/QkPD+ehhx7il19+MXc4QpiNo52GMV1CeKZVIHO3nGfZnivsu3SLJ7/aTafalXm9W20a+XuYO0whjPa/P89w9FoC7/etz6C2weYORwiLpFKpmPF4Q05eT+ByfCphPx1h4ZCWqNWW/4efyddXOHXqFJGRkbnGxgI8+uijpr5ViYwbN45hw4axZMkSc4cihEXwcrZjUu96jOhYnTn/nGfl/qtsi7jJtoibdKvnQ1i32tT1lTGFwjqciErg6LUEbDUqejb0M3c4Qlg0Nwdb5j7bjP7zdrHl7E12XoijYy3L3yDHZI3Yixcv0r9/f44fP45KpSJn+dmcj3C0Wq2pbmUSXbp0ITw83NxhCGFx/Nwdmd6/IS92qsnnf59jzeFrbDp1g82nb9CnUVVeebgWNSq7mDtMIQr1w75IIHu7zUqyuYEQRapf1Z0P+zfEwVZtFQ1YMOHqBOPHj6d69ercuHEDJycnTp48ybZt22jRooXRjcVt27bRp08fqlatikqlYu3atXnKzJs3j+rVq+Pg4EDz5s3Zvn27aV6IEAKAQG8nPn2qMZte7cwjjfxQFPjt6HW6fraNCb8c5drtu+YOUYh8pWVq+e3odQCeaWn9+8MLUVaeaO5P70ZVzR2GwUzWiN29ezfTpk2jcuXKqNVq1Go1HTp0YMaMGYwbN86oa6WkpNC4cWPmzJmTb/7KlSt55ZVXeOeddzh8+DAdO3akZ8+eREZG6ss0b96cBg0a5Pm6fv16iV6nEBVNSBUX5g5sxvpxHXk4tApancJPB67R7fMd/HxRTXRCmrlDFCKXLWdiSUrLws/dgTY1vM0djhBWKTYpjWUWvuyWyYYTaLVaXFyyP2KsVKkS169fp06dOgQFBXH27FmjrtWzZ0969uxZYP6sWbMYPnw4I0aMAGD27Nls3LiR+fPnM2PGDAAOHjxYzFeSV3p6Ounp6frjnN15MjMz9V85x/l9v/9nU7Km/evzSzfl/vXFYc76MzbPmOesNJ69WpUdmT+wCUeu3mH23xfYeSGeHTfUPPTZdga08OeFjtXxM2A3JHM8e8WpT2OejdJ6PkXxrDkcBUDfJtWsYnKKEJYm4W4mvT7fTlxyBn5uDjxczzLX+FcpOYNXS6hjx4689tpr9OvXj4EDB3L79m3effddFixYwMGDBzlx4kTxAlSpWLNmDf369QMgIyMDJycnfv75Z/r3768vN378eI4cOcLWrVsNvnZ4eDhz5swpcnWCKVOmMHXq1DzpK1aswMnJyeD7CVGenE+AP69pOJ+Y3UjQqBTaVVF4uJoOjwo2BDE1NZWBAwcWuc+3yMvQPdJzFLUHe5ZWR8/Pt3MuNpmNr3Sijq9raYRdbMbuIW9JrDl2sO74zRH7B+tO8e2OS3g727Hx1U4lGltubPyGvi+YrCf23XffJSUlBYAPPviA3r1707FjR7y9vfnxxx9NdRvi4uLQarV5dv7y8fEhJibG4Ot0796dQ4cOkZKSgr+/P2vWrKFly5b5lp04cSJhYWH648TERAICAujSpQtubm5kZWWxZcsWunTpgo2NTa5jIFeeqd1/b1OfV1S5gvINTTf22NTMWX/G5hlSN2X57HXJyiJkyxZcajTlqx1X2X/lDttvqNgTp+HJZlUZ0T4QX7e8PbPmePaKU5/GPBs5n84I87PRqNn0aidOXk+0uAasENbk9e512HE+jjMxSUz9/RRfPtPU3CHlYbKe2PzcunULT0/PEi0yfX9P7PXr16lWrRq7du2ibdu2+nLTp09n2bJlnDlzpqRhF2ju3LnMnTsXrVZLRESE9MQKcY9zCSo2XFNxPjF7qL1GpdD2355Zz3LeM1ueemLnzZvHzJkziY6Opn79+syePZuOHTvmWzY8PFz/B9O9Tp8+rd9uvCim7om1dNYcvzXHDtYdv7liP34tgb5zd6BTYNHQlnSpW6VY17HYnthhw4YZVO67774r6a2A7PG2Go0mT69rbGxsnt5ZUxszZgxjxozRV670xEpPbEXuib3//l2B0cC+y7eZt/Uy+67cYccNFXvjNDzRNLtn1s/dQXpiLVjOpNl58+bRvn17vv76a3r27MmpU6cIDAws8LyzZ8/m+kVTubJ5ludJz9KiVqmw1ZhszrIQFVpDf3eGd6jON9sv8e7aE2x6tRPO9qb/fVJcJe6JVavVBAUF0bRpUwq71Jo1a4p1/ft7YgFat25N8+bNmTdvnj6tXr169O3bVz+xqzRIT6wQhqtIPbPlpSe2devWNGvWjPnz5+vTQkND6devX77vrTk9sbdv38bDw6NY9zRlT+zPB67ywR+neb59MK88XLtY8ZQ26Q00H2uO35yxp2Zk0e2zbVy7fZeXHwzhtW51jL6GxfbEjho1ih9//JGLFy8ybNgwnnvuOby8SrbfenJyMufPn9cfX7p0iSNHjuDl5UVgYCBhYWEMGjSIFi1a0LZtWxYsWEBkZGSpb3krPbHSE2vseRWpJ/Z+hfXMtq6kZfKTbfD3ci729ctrT+yGDRtwcXGhQ4cOQPYfz9988w316tVj7ty5eHp6muxe98rIyODgwYO89dZbudK7devGrl27Cj23adOmpKWlUa9ePd599918hxjkKGi1F61Wa9CmODll8iu78UQMCXczUXSKxW2wk6Ow+C2dNccO1h2/OWO316j4oG99/j4Ty4gOwcWKwdj4DS1nkjGx6enprF69mu+++45du3bxyCOPMHz4cLp161as8bAFjbMaMmQIixcvBrLHbX388cdER0fToEEDPvvsMzp16lTSl1Io6YkVovjy65ltXUXh4ao6vItemcuimbIntmHDhvzvf/+jV69eHD9+nJYtWxIWFsY///xDaGgoixYtMlHUueXMN9i5cyft2rXTp3/44YcsWbIk36USz549y7Zt22jevDnp6eksW7aMr776ivDw8ALfjwta7WX37t36ZRqL426mjoE/XyVTB3Me8SPY067Y1xJCmFdycjJt27Yt8j3V5BO7rly5wuLFi1m6dCmZmZmcOnWqRG9MliinJzY6Olp6YqUnVnpijbz+7gtxzPj9qL4xa6NW0aeRDy90CCLI678/Cq2tJ9bPz88kjVgXFxdOnDhBcHAwU6ZM4cSJE/zyyy8cOnSIXr16GbUKizFMNWm2T58+qFQqfvvtt3zz8+uJDQgI4NatWwYPJ4iIiKB27dq5PpbcePIGo1ccJtDLiX/COpZoQnFpKih+a2DNsYN1x29JsSuKQnRCGlU9HA0+x9j4ExMT8fLyKvtGbGRkJIsXL2bx4sVkZGRw5syZctOIlZ5YIUznQiJsvKbmbEJ2Y1aFQrNKCt2q6fC1sv9WpuyJ9fLyYseOHdSrV48OHTowePBgXnjhBS5fvky9evVITU01UdS5mWoN7unTp/P9999z+vRpg8qbakzsxNXH+WFfJEPbBTPl0foG3dscZFym+Vhz/JYSe3TCXcb/cITIW6n883pnnOwM68Cw2DGxkHs4wY4dO+jduzdz5syhR48eqNXlZ5bo/WNiu3XrhpubG5mZmWzevJmuXbtia2ub6xjIlWdq99/b1OcVVa6gfEPTjT02NXPWn7F5htSNNT17ox7vysu2thy+eod54RcJj4jjYJyKQ/Fqutfz4YX2gVw9vtskz15x6tOY12fKMbEdOnQgLCyM9u3bs2/fPlauXAlAREQE/v7+JrvP/ezs7GjevDmbN2/O1YjdvHkzffv2Nfg6hw8fxs/PrzRCLJCiKGyLuAlA59rmWRlBiIrA08mO6wl3iUlMY374hWJN8jKlEjdiR48ezY8//khgYCDPP/88P/74I97esle1EMIwTQM8+GZQM05eT2Ru+EU2n45lw8kbbDh5gwaeavzqJ9I0qOK8p8yZM4fRo0fzyy+/MH/+fKpVqwbAn3/+SY8ePUr13kVNmp04cSJRUVEsXboUyN7yOzg4mPr165ORkcH333/PqlWrWLVqVanGeb9LcSlE3bmLnUZN6xolm1gshCiYg62Gdx8JZdT3h/hm+0UGtQ2iiqv5JjWYZImtwMBAmjZtWugYpNWrV5fkNhZBhhMIUfqup8CmKDVH4lUoZL+nhHro6O6vo7qFbsBUXpbYgsInzQ4dOpTLly8THh4OwMcff8yCBQuIiorC0dGR+vXrM3HiRHr16mXw/UwxnCA64S4r9kaSeDeTqX0bGP+iy5ClfCxcHNYcO1h3/JYUu6IoPDZ/F4cj7zCkbZBB/+dKazhBiRuxQ4cONWgAfWnNqDWHnMqNi4uT4QQynECGE5RS3UVEJzDl590citOg/fdtqk11T8Y8UJPW1T3JysqyqOEElSpVKnYjNjExUX9eUUMTrL2RfD/Zsct6WHPsYN3xW1rsu87HMfDbvdhqVGx5/QH8PQvv0LPYMbE5S15VRLa2trl+ueV3XFBeacdi6vOKKldQvqHpxh6bmjnrz9g8Q+qmPNRdbT93ngvRMeO5Tny74wqrDl1jz6Xb7Ll0gBZBnozuXB1FMe7ZK059GvL6Slq/np6eREdHU6VKFTw8PPLtGFAUBZVKZZVrXAohypd2IZVoH+LNzvPxfP7XOWY+2dgscVjO3mFWKDMzU/+Vc5zf9/t/NnUMxbm+oecVVa6gfEPTjf1uauasP2PzjHnOytOzV9XVlvcfDeWlTsEs2H6Znw9FceDKbYYtvU2gswbboGi61vfVN/yMrRdTPHslreN//vlHv0nMP//8Y7HLQ1miqDt3OROdSIsgL9ydSu+PNSFEbq93q8PO87s4di2B9Cwt9jZl30Ns8iW2yjMZEyuE+SVkwD/X1ey8oSJTl93Yq+ak0M1fRyMvBbUZ2n/laUxsWSvpcILvdlxi2rpTPFCnMoufb1UGEZeMpX0sbAxrjh2sO35LjX3HuTja1vRGU8Qbr8UOJ6hIZIktGRNr7HkyJrb45xVW7hkg5k4KU37Yzu44W6JStSyK0BBS2ZkXOgRhG32M7t2sc4mtSZMmMWXKlDxv9AkJCYwaNYoffvjBZPcqDw5cuQVAy2BZlUCIstahViWz3l8asSUgY2KLzpcxsUWXkzGxxSvn6+HMo0E6ZgzpyPd7r7Fo12XO30xhwppTVHbQkO4Xy+MtArHVqAu9liWMib3X0qVL2bx5M8uXL6dmzZpA9lbcgwcP1i+3JbIpisK+S7cBacQKYU5pmVrOxCTRJMCjTO9bfnYiEEJUSJ5OdoR1q8OONx/kta618XC05WaairfWnKTLJ+Es33uF9CyducM02LFjxwgODqZJkyZ88803vPHGG3Tr1o2hQ4eyY8cOc4dnUa7EpxKXnI6dRk0jf3dzhyNEhRQZn0rHj7cw6Nu9JKaVzhyMgkhPbAnIxC6Z2CUTuyzn2XOygVGdgnm6mQ/v/xDOzngHrt2+yztrTvDFX+do562iQ2oabk75n2/OiV33cnd358cff+Sdd97hxRdfxMbGhj///JOHHnrIZPcoL45euwNA/WpuONhazjhBISoSf09HPBxtOZeUzk/7rzKiY40yu7dM7DKCTOwSwnpkaGF3rIq/r6tJyMiedOBio9Clqo4OPgoOJvwT3tQTu7788kvefPNN+vfvz8GDB9FoNKxYsYLGjc2zjE1pKsnEro82nOWb7ZcY3DaIaRa+yUEOS52gYwhrjh2sO35Lj3353iu8s+YE1Ss5889rnfOssCITuyyATOySiV3GnicTu4p/XkmfvUd6dKWfrS3pWTp+OXCVL/86Q3y6it8jNWy7acNzrfyplnKefr0sa2JXz5492b9/P0uXLuWJJ57g7t27hIWF0aZNG6ZOncqECRNMdi9rdyIqu94bVJWhBEKYU98m1Zix/gyX4lLYfSGediFlM+FLGrElIBO7is6XiV1Fl5OJXSUrV9QzZmsLz7YJwi3+JNpqTZi/7RIXb6Ywd+tl7DUaLjte4oXOIbjb2+Z7vbKe2JWVlcWxY8eoWrUqAI6OjsyfP5/evXszYsQIacTeY1rf+hy5eqfMfmEKIfLnYm9Dv6ZV+X5PJMv3RkojVgghTEmjgj5NqvJY80A2nIjhy78jOHMjmQXbL7N0TyQDWvhTI93cUWb3nufnkUce4fjx42UcjWWr5eNKLR9Xc4chhACebR3E93si2XgyhtikNKq4OpT6PWV1AiFEhaJRq3ikkR+/jWnLyDpaGvm7kZapY8nuSKYd1jDpt1NcvZVq7jDzVamS9DgKISxTqJ8bTQM9yNIpbIuIK5N7Sk+sEKJCUqlUNPBSeOPZ1uy9ksAXf59j/+Xb/Lj/Gj8fjOLRxn6EmmHaq1ar5bPPPuOnn34iMjKSjIyMXPm3bt0q+6As0D9nYrl2J432IZWoLb2xQliEyb3r4epgQ0iVsvk/KY3YEpAltmSJLVliyzqevcLSsrKyaBPsQfPBTfhq1WYOpVVhx4VbrDl8nTMeap4r4yW2pk6dyrfffktYWBiTJk3inXfe4fLly6xdu5bJkyeb7D7Wbs3h66w/EcM7vUKlESuEhWga6Fmm95MltowgS2wJUTFcSYbN19R0qaqjpgErZplyia2aNWvyxRdf8Mgjj+Dq6sqRI0f0aXv27GHFihUlur6lKe4SW69uiudcbDKLhrakS90qZRCpaVj6UkmFsebYwbrjt8bYdToFtTp7qS1ZYssCyBJbssSWsefJElvFP8+Uz15x6nOEmZbYiomJoWHDhgC4uLiQkJAAQO/evZk0aZLJ7mPNtDqFy/EpAIRUcTFzNEKIe12/c5fp609z9VYqv43tUKr3kkZsCcgSW0XnyxJbRZeTJbZKVs6YZ6849VnWS2z5+/sTHR1NYGAgISEhbNq0iWbNmrF//37s7e1Ndh9rFpOcRaZWwdFWQzUPR3OHI4S4h7O9DRtOxKDVKUTGpxLoXXqfWMvqBEIIYUH69+/P33//DcD48eOZNGkStWrVYvDgwQwbNszM0VmGawnZY5BrVHbWf1wphLAM7o62tAzOHhv795kbpXov6YkthpxhxDkfIWZmZpKamkpiYqL+Y8mcYyBXnqndf29Tn1dUuYLyDU039tjUzFl/xuYZUjfy7BlWd/mlleTZy6lvU0wx+Oijj/Q/P/HEEwQEBLBz505CQkJ49NFHS3z98iAmJQuAoFLs4RFCFN/DoT7suXiLf87E8nz76qV2H2nEFkNSUhIAAQEBZo5ECGFJkpKScHc37RaorVu3pnXr1ia9prWLTc5uxPp7SiNWCEv0YN0qfPDHafZcjCc5PQtHm9L5xEQascVQtWpVrl69iqurKypV9j9My5Yt2b9/v75MznFiYiIBAQFcvXq1xLOWC3L/vU19XlHlCso3NL2w4/Jef8bmFVV396aV97orLN+QussvrbjPnqIoJCUl6beKFaVrQEN3Bj9QHy+X0t8RSAhhvBqVXQjwcuTqrbscuHyLjiHepXIfacQWg1qtxt/fP1eaRqPJ9Yvu/mM3N7dSa0jcfy9Tn1dUuYLyDU0v6hjKb/0Zm2dIXcmzZ1i95JdWkmfP1D2womBu9hpCAzysZqkhISqi1tW9uXrrGnsvSSPW4o0ZM6bQ47K8t6nPK6pcQfmGppuz7kpyP1PUn7F5htSVPHuG14u5nz0hhCivOoRU4kp8CoFepTfsRzY7KGXGLuQtcpP6Kz6pu5KR+isbxtZzYmo6k3/eS6Oa/jzfvrp+SJe1sMZF63NYc+xg3fFbc+xQepsdyBJbpcze3p733ntP1ncsJqm/4pO6Kxlz1d/QoUPZtm1bmd7TmsQmpbP2dBKzNp+zugasEMK0pBFbyuzt7ZkyZYo0JIpJ6q/4pO5Kxlz1l5SURLdu3ahVqxYffvghUVFRZXp/SxeXnA6At4udmSMRQhgiMS2TG4lppXJtacQKIYQFWbVqFVFRUYwdO5aff/6Z4OBgevbsyS+//EJmZqa5wzO7uOQMACpJI1YIi/ft9os0mrKJTzefK5XrSyNWCCEsjLe3N+PHj+fw4cPs27ePkJAQBg0aRNWqVXn11Vc5d650fiFYg/h/G7HezvIJgxCWLuDfSV2nrieWyvWlESuEEBYqOjqaTZs2sWnTJjQaDb169eLkyZPUq1ePzz77zNzhmUXOcALpiRXC8tWvmj0p61xsMpla068jII1YIYSwIJmZmaxatYrevXsTFBTEzz//zKuvvkp0dDRLlixh06ZNLFu2jGnTppk7VLOIT8npiZVGrBCWrpqHIw62arJ0CrH/bhdtStKItTD9+/fH09OTJ554wtyhWLx169ZRp04datWqxbfffmvucKyOPGvFc/XqVR544AHq1atHo0aN+Pnnn016fT8/P0aOHElQUBD79u3jwIEDjBo1CldXV32Z7t274+HhYdL7WouEu9njgt2dbM0ciRCiKCqViiAvZwBikqURW+6NGzeOpUuXmjsMi5eVlUVYWBj//PMPhw4d4n//+x+3bt0yd1hWRZ614rGxsWH27NmcOnWKv/76i1dffZWUlBSTXX/WrFlcv36duXPn0qRJk3zLeHp6cunSJZPd05pM7FmXz3r68kgDX3OHIoQwQJB39rjY60mmn5gqjVgL06VLl1w9LiJ/+/bto379+lSrVg1XV1d69erFxo0bzR2WVZFnrXj8/Pz0jcsqVarg5eVlsj+gsrKyGDZsGOfPnzfJ9cojP3cHannbU8XNwdyhCCEMEFwpuyc2Okl6Ys1q27Zt9OnTh6pVq6JSqVi7dm2eMvPmzaN69eo4ODjQvHlztm/fXvaBWoGS1uX169epVq2a/tjf379Cracpz2LxmbLuDhw4gE6nIyAgwCSx2djYEBQUhFarNcn1hBDC3NrW8Oa51oHUq2z6FUWkEWuElJQUGjduzJw5c/LNX7lyJa+88grvvPMOhw8fpmPHjvTs2ZPIyEh9mebNm9OgQYM8X9evXy+rl2ERSlqX+e2WXJF27zHFs1hRmaru4uPjGTx4MAsWLDBpfO+++y4TJ06U4TEF+HbHJX45maBfpUAIYdm61K3C1Efr0SHI2fQXV0SxAMqaNWtypbVq1UoZNWpUrrS6desqb731llHX3rJli/L444+XNESrUZy63Llzp9KvXz993rhx45Tly5eXeqyWqCTPYkV71u5X3LpLS0tTOnbsqCxdutTkMTVp0kRxcXFR7O3tldq1aytNmzbN9VXeJCQkKICSkJBgUPkmUzcqQW+uU05F3S7dwEpJVlaWcvz4cSUrK8vcoRjNmmNXFOuO35pjVxTj4zf0fcHG9M3iiikjI4ODBw/y1ltv5Urv1q0bu3btMlNU1smQumzVqhUnTpwgKioKNzc31q9fz+TJk80RrsWRZ7H4DKk7RVEYOnQoDz74IIMGDTJ5DP369TP5NcuT9CwdAA62GjNHIoQwhKIo3EnN4FpCJqEmvrY0Yk0kLi4OrVaLj49PrnQfHx9iYmIMvk737t05dOgQKSkp+Pv7s2bNGlq2bGnqcC2aIXVpY2PDp59+SpcuXdDpdEyYMAFvb29zhGtxDH0W5VnLy5C627lzJytXrqRRo0b68bTLli2jYcOGJonhvffeM8l1yqssbXYj1kZdcYYPCWHNbian02r6PwCcb22a98kc0og1sfvHZSqKYtRYTZlh/5+i6vLRRx/l0UcfLeuwrEZR9SfPWsEKq7sOHTqg0+nMEVaZmDdvHjNnziQ6Opr69esze/ZsOnbsWGD5rVu3EhYWxsmTJ6latSoTJkxg1KhRpRZfpi57PLw0YoUwoeho+PprePFF8PMz6aXv/dQkQ6tgY8KWp0zsMpFKlSqh0Wjy9LrGxsbm6dURhZO6LBmpv+KzhLrTarV88skntGrVCl9fX7y8vHJ9lSZjJwReunSJXr160bFjRw4fPszbb7/NuHHjWLVqVanEt/5YNDlzOgct2s+GE9Glch8hKpzoaJg6Nfu7iTnY/NeITc807cor0og1ETs7O5o3b87mzZtzpW/evJl27dqZKSrrJHVZMlJ/xWcJdTd16lRmzZrFU089RUJCAmFhYTz22GOo1WqmTJlSqveeNWsWw4cPZ8SIEYSGhjJ79mwCAgKYP39+vuW/+uorAgMDmT17NqGhoYwYMYJhw4bxySefmDy2DSeiGb3ikP74QmwKo74/JA1ZISycrUZFzgcnaSZuxMpwAiMkJyfnWoT80qVLHDlyBC8vLwIDAwkLC2PQoEG0aNGCtm3bsmDBAiIjI0v1ozVrJXVZMlJ/xWfpdbd8+XK++eYbHnnkEaZOncozzzxDzZo1adSoEXv27GHcuHGlct/iTAjcvXs33bp1y5XWvXt3Fi5cSGZmJra2ebeGTU9PJz39v+WxEhMTgewe6MLWx5391zlUQM7iegqgUmWndw2tUvQLtBA5r9Ea1wK25tjBuuMvldijo/U9r6rDh1EDugMHUHLu4ednsqEFKpUKFIXrt1MN2qjE0NcpjVgjHDhwgC5duuiPw8LCABgyZAiLFy9mwIABxMfHM23aNKKjo2nQoAHr168nKCjIXCFbLKnLkpH6Kz5Lr7uYmBj9JDEXFxcSEhIA6N27N5MmTSq1+xZncmpMTEy+5bOysoiLi8Mvn1+AM2bMYOrUqXnSz549i4uLS4HxXYhN4v7VoRUlO/306dMFnmepIiIizB1CsVlz7GDd8Zsy9irz5lHlvk9Z1C++qP859qWXiB092iT3slUpaIH4mKucTr1RZPnk5GSDrqtSlHxWjRdCCGEWderUYenSpbRu3ZqOHTvyyCOP8NZbb7Fy5UpefvllYmNjS+W+Obvg7dq1i7Zt2+rTp0+fzrJlyzhz5kyec2rXrs3zzz/PxIkT9Wk7d+6kQ4cOREdH4+vrm+ec/HpiAwICuHXrFm5ubgXG98iXOzkbk7shq1JBXR9X1r3c3shXaz5arZaIiAhq166NRmNdy4RZc+xg3fGXSuz398S++CK6r79Gado0O9+EPbF1J28kU6uw9bWO+HsVvelBYmIiXl5eJCQkFPq+ID2xQghhQfr378/ff/9N69atGT9+PM888wwLFy4kMjKSV199tdTuW5xJbb6+vvmWt7GxKXDJO3t7e+zt824/qdFoCv3l/MrDtRj1/X9jYlVk98SOf9j6GiRQ9Ou1ZNYcO1h3/CaN3d8/+yv7wgCoW7SAZs1Mc/1/aXUKmdrsPz+d7G0Nit/Q1yiNWCGEsCAfffSR/ucnnngCf39/du3aRUhISKkuKXfvpLb+/fvr0zdv3kzfvn3zPadt27b8/vvvudI2bdpEixYt8h0PWxI9Gvgx/9lmvLQ8uyEbUsWZ17rVpUeDvL29QgjLkZ713/hWB1vTricgjVghhLBgbdq0oU2bNmVyr6ImtU2cOJGoqCiWLl0KwKhRo5gzZw5hYWGMHDmS3bt3s3DhQn744YdSia9nQz9s1CqydAqLh7akmgEfSwohDODnB++9Z/I1YgHSMv9bV9vexrQ94NKIFUIICxMREUF4eDixsbF5NlYoze2Vi5rUFh0dnWvN2OrVq7N+/XpeffVV5s6dS9WqVfniiy94/PHHSy1GG012IzarHG84IUSZ8/ODUlrCLyU9CwA7jQqNiTcpkUasEEJYkG+++YaXXnqJSpUq4evrm2v3MJVKVaqNWIDRo0czuoAZyYsXL86T1rlzZw4dOpS3cCmx1ahJy9Tpx9gJISxbXHL2RE4PB9NvTSCNWCGEsCAffPAB06dP58033zR3KBbJ2U5DUloWyf/27gghLFt8cgYA7g6mn0wnO3YJIYQFuX37Nk8++aS5w7BYLvbZfS8p0ogVwir81xMrjVghhCjXnnzySTZt2mTuMCyW87+N2OR069t1SYiK6GZSdiPWXYYTCCFE+RYSEsKkSZPYs2cPDRs2zLNUVWltO2stpCdWCOty5VYqAL4upm9ySiNWCCEsyIIFC3BxcWHr1q1s3bo1V55Kparwjdj/emKlESuENbgSnwKAn4tp144GacQKIYRFuXTpkrlDsGgu9tnj6pLSpBErhDW4Ep/dE+vnavomp4yJFUIIYTW8nO0AuJWSYeZIhBBFSUnPIvbfMbGl0YiVnlghhDCzsLAw3n//fZydnQkLCyu07KxZs8ooKsvk7WIPQLw0YoWweGdiEgGo7GKPq73pVyeQRqwQQpjZ4cOHyczM1P9ckHs3PqioKrlk98TmLNsjhLBcJ69nN2LrVXUtletLI1YIIcxsy5Yt+f4s8vqvESs9sUJYupNR/zZi/dwA0y+LJ2NihRBCWA1v53+HE0gjVgiLdzI6AYD6Vd1K5frSEyuEEBakf//++Q4bUKlUODg4EBISwsCBA6lTp44ZojO/nJ7YW6kZaHUKGrUMsRDCEqWkZ3EmOgmAhtXcSIq5bfJ7SE+sEEJYEHd3d/755x8OHTqkb8wePnyYf/75h6ysLFauXEnjxo3ZuXOnmSM1j0ou9mhUoNUp3EhMM3c4QogCHI68Q5ZOoaq7A9U8HEvlHtKIFUIIC+Lr68vAgQO5ePEiq1atYvXq1Vy4cIHnnnuOmjVrcvr0aYYMGcKbb75p7lDNQqNWUdk5+0PEqDt3zRyNEKIg+y7FA9C6hnepTUotV43YQ4cO0bVrVzw8PPD29uaFF14gOTk5V5nIyEj69OmDs7MzlSpVYty4cWRkyNgqIYRlWLhwIa+88gpq9X9vz2q1mpdffpkFCxagUqkYO3YsJ06cMGOU5lXl3+0rr91ONXMkQoiC7Ll0C4BW1b1K7R7lphF7/fp1Hn74YUJCQti7dy8bNmzg5MmTDB06VF9Gq9XyyCOPkJKSwo4dO/jxxx9ZtWoVr732mvkCF0KIe2RlZXHmzJk86WfOnEGrzZ7d6+DgUKGX2/Jxzl5v8tot6YkVwhKlpGdxJPIOAK1LsRFbbiZ2rVu3DltbW+bOnavvwZg7dy5Nmzbl/PnzhISEsGnTJk6dOsXVq1epWrUqAJ9++ilDhw5l+vTpuLkZNntOp9Nx/fp1XF1dK/QvEiFENkVRSEpKomrVqrl6UItj0KBBDB8+nLfffpuWLVuiUqnYt28fH374IYMHDwZg69at1K9f3xShW6Uqzjk9sdKIFcIS7TgfR4ZWR6CXE9UrOaPT6UrlPuWmEZueno6dnV2uXyCOjtkDiXfs2EFISAi7d++mQYMG+gYsQPfu3UlPT+fgwYN06dLFoHtdv36dgIAA074AIYTVu3r1Kv7+/iW6xmeffYaPjw8ff/wxN27cAMDHx4dXX31VPw62W7du9OjRo8TxWquc4QRXZTiBEBbpn9OxADxYt0qpdvaVm0bsgw8+SFhYGDNnzmT8+PGkpKTw9ttvAxAdHQ1ATEwMPj4+uc7z9PTEzs6OmJiYAq+dnp5Oevp/u8MoigLApUuXcHV1JTMzky1bttClSxdsbW1zHQO58kzt/nub+ryiyhWUb2i6scemZs76MzbPkLqRZ8+wussvrSTPXlJSEtWrV8fVteS70mg0Gt555x3eeecdEhOzFwq//1OiwMDAEt/HmlV1zf73uHgzxcyRCCHup9Mp/HM2uxH7cKhPEaVLRqXktMgs1JQpU5g6dWqhZfbv30+LFi1YsWIFYWFhxMXFodFoGDduHMuWLSMsLIwJEybwwgsvcOXKFTZu3JjrfDs7O5YuXcrTTz9tVAwrVqzAycmp+C9OCFEupKamMnDgQBISEgweliSyJSYm4u7ubnDdabVa9h89ydM/XQXg+JRuuDqY/o+00qLVajl9+jShoaFoNKbfS740WXPsYN3xW1PsR67eod/cnTjbaTg8uRt2Nmqj4zf0fcHie2LHjh1bYOMyR3BwMAADBw5k4MCB3LhxA2dnZ1QqFbNmzaJ69epA9tI1e/fuzXXu7du3yczMzNNDe6+JEycSFhamP05MTCQgIIBu3brh5uZGZmYmmzdvpmvXrvoenJxjIFeeqd1/b1OfV1S5gvINTTf22NTMWX/G5hlSN/LsGVZ3+aXde6xFzbVbyezbtZMnexf9+nJ6TE3ll19+4aeffiIyMjLP6imHDh0y6b2skYudmsou9txMTufCzRSaBHiYOyQhxL9+P3odgC51q2BnU7rrB1h8I7ZSpUpUqlTJqHNyGqTfffcdDg4O+l/obdu2Zfr06URHR+Pn5wfApk2bsLe3p3nz5gVez97eHnt7+zzptra2uX655XdcUJ6pFff6hp5XVLmC8g1NN/bY1MxZf8bmGVI3FaXuCssvqF40GhtiEtO4dDOJvbEqLmyPJDY5g+g7d4mI0vDekR3cuZsJwIN+agYaEKcp6/eLL77gnXfeYciQIfz66688//zzXLhwgf379zNmzBiT3cfahVRx5mZyOuduJEkjVggLodUp+kZsvybVSv1+Ft+INcacOXNo164dLi4ubN68mTfeeIOPPvoIDw8PIHsyRL169Rg0aBAzZ87k1q1bvP7664wcOVI+AhSiHNEpEHkrlSu307gQm8KluCQOnVUzO2IHUXfSyNDmzJTVwIUL95ypArIbsI62arRK6cyoLcy8efNYsGABzzzzDEuWLGHChAnUqFGDyZMnc+vWrTKPx1KFVHZh98VbnL+ZXHRhIUSZ2HsxntikdNwdbelUu3Kp369cNWL37dvHe++9R3JyMnXr1uXrr79m0KBB+nyNRsMff/zB6NGjad++PY6OjgwcOJBPPvnEjFELIYpLUbKXWTobG8+5G0mci03m3I0kzsdqyNyz477SaiB7NruNWoWfuwOOuhSahARQzdOZyi42RJ45Tp+HO+Dv5YqjjcKff/5Z5q8pMjKSdu3aAdkrrCQlZe89PmjQINq0acOcOXPKPCZLVLOKMwDnbkgjVghL8euR7F7YXg39Sn0oAZSzRuzSpUuLLBMYGMi6devKIBohhCnpdAqX41M4cT2Rk1EJHL92hyNXNKTu2Z5PaRW2GhU1K7tQs4oLgZ4O3L56nkc6tya4sit+7g4oOi3r16+nV6/6+jGx628co7aPq/7YHHx9fYmPjycoKIigoCD27NlD48aNuXTpEhY+D7dMhfplf3p28nqCmSMRQkD2Bgd/HM9eDapvk6pFlDaNctWIFUKUH+mZWi4kwtfbLnH4agIHI29zJ/X+hmV2Y7VWFVfq+rlSq4or1b0cuHrqAM/164GjQ/ZY9szMTNavP0ebGl7/TezSacv4FRnmwQcf5Pfff6dZs2YMHz6cV199lV9++YUDBw7w2GOPmTs8i1HPzxWVCm4kphOblEYVVwdzhyREhfbrkeskp2dRo5Jzqe7SdS9pxAohLEKmVsfhyDtsP3eTXRfiOXbtDplaGzh5Tl/G3kZNvapuNKjqTqivM7cvHmNo/x44O/438TIzM5P1l8BGY527ai9YsEC/u82oUaPw8vJix44d9OnTh1GjRpk5OsvhZGdDzcounI9N5mRUIlXqSiNWCHNRFIXv91wBYGDrwDLbzVQasUIIs7kSn8LWiJtsi4hjz8V4ktOzcuW72iq0reVDq+retAz2ol5VN2z/bZzmfPxfFuOuypJarc618+BTTz3FU089ZcaILFfDau6cj03meFQCXepWMXc4QlRYR67e4VR0InY2ap5oXrJdC40hjVghRJlRFIWT1xNZH6lm7pe7iIjNPSnH08mWDrUq0zGkEs0C3DixJ5xHHmlSqkuEWaK0tDSOHTtGbGxsnj3HH330UTNFZXkaVHNnzeEojkfJuFghzGnZ7uxe2N6N/PBwsiuz+0ojVghRqhRF4XhUAr8euc6GEzFE3blL9koBydioVbQI9qRT7cp0qlWZen5uqNXZH0NlZmZysmw+kbIoGzZsYPDgwcTFxeXJU6lUaLWWOZbXHBpWcwfg2LU7KIpSZh9hCiH+E3XnLr/9uzbs4LbBZXpvacQKIUrFtduprD0cxZrDUVy4Z497B1s1tV2zGNSlEd3qV8XdqWL1shZl7NixPPnkk0yePLnQnQRFdiPWVqPiRmI6127fJcBLtgEXoqx9t+MSWTqFNjW8ynzjEWnECiFMJiNLx58nolmxN5K9l/5bmN/eRk23+r70buRH22APtvy1kV5Nqla4YQKGiI2NJSwsTBqwBnC009CgmjuHI++w//ItacQKUcbupGbww75IAEZ1rlnm95dGrBCixKLu3GXF3ius3H+VuOQMAFQqaFPdm/7NqtGzgS+uDv8ubWWm9VetxRNPPEF4eDg1a5b9LwRr1CrYS9+IfaxZ2U0oEULA93uukJqhJdTPjc5lsEPX/aQRK4QotktJMHrFEf4+E4vu33X4fdzseaZVIE+2CKCah6N5A7RCc+bM4cknn2T79u00bNgwT2/1uHHjzBSZZWoR7MXX2y6y//Jtc4ciRIWSlJbJtzsuATCqcw2zjEk3qBHr5WXcorUqlYpDhw4RFBRUrKCEEJZLURTCz95k7pZzHLhiA8QC0K6mN4PaBPFwPR/9MljCeCtWrGDjxo04OjoSHh6e6xeDSqWSRux9WgR5AnA+NplbKRl4OZfdzGghKrKFOy5xJzWTmpWdeaShn1liMKgRe+fOHWbPno27u3uRZRVFYfTo0TKDVohyRqdT+PNEDF/+c44zMUkAaFQKjzXz58XONQmp4mrmCMuHd999l2nTpvHWW2/lWi9W5M/T2Y66vq6ciUli14U4ejcqm+0uhajIbqdk8O327F7YsK51zLa5jMHDCZ5++mmqVDFsMemXX3652AFZk8zMTP1XznF+3+//2dQxFOf6hp5XVLmC8g1NN/a7qZmz/ozNM+Y5M+WzpygKW8/FMWvzeU7/23h1ttPwVPOqBKdf4slHamNra2vwfczx7BWnPo15Nkz5fGZkZDBgwABpwBqhY61KnIlJYlvETWnEClEGvtp6geT0LOpXdaNnA1+zxaFSFEUx292tzNy5c5k7dy5arZaIiAhWrFiBk5PMhhXl1/lEWBep4VJS9kfa9hqFLn46OvspOMmIer3U1FQGDhxIQkICbm5uJbrWq6++SuXKlXn77bdNFJ1lS0xMxN3d3eC602q1nD59mtDQUDQaDQDbIm4y+Lt9+Lk7sOutBy16vdj84rcW1hw7WHf8lhR7TEIanWduIT1Lx6KhLQ3aLc/Y+A19X5BfQ0YYM2YMY8aM0Vdut27dcHNzIzMzk82bN9O1a1d9j1TOMZArz9Tuv7epzyuqXEH5hqYbe2xq5qw/Y/MMqRtTPXvXbt9lxoazbDqVPd7V3kbNoDaBvNAxGM9/d2OxpmevOPVpzOtLTEw0+PUXRavV8vHHH7Nx40YaNWqU596zZs0y2b3udfv2bcaNG8dvv/0GZO8M9uWXX+Lh4VHgOUOHDmXJkiW50lq3bs2ePXtKJcaCtKruhb2NmuiENM7HJlPLR4a2CFFa/rfhDOlZOloGe/JAnbJfkeBeRjdic97g7qdSqXBwcCAkJITq1auXODBrYGtrm+sXTH7HBeWVdiymPq+ocgXlG5pu7LGpmbP+jM0zpG6KW3epGVnMD7/A19sukpGlQ62CZ1oFMu6hWvi4ORgdf2HM8ewVpz4NidOUz+bx48dp2rQpACdOnMiVV5o9jAMHDuTatWts2LABgBdeeIFBgwbx+++/F3pejx49WLRokf7Yzq7sJ1Y52GpoVd2L7efi2BpxUxqxQpSSg1dus+ZwFCoVTO5d3+yfehjdiO3Xrx8qlYr7RyHkpKlUKjp06MDatWvx9PQ0WaBCiNK14UQMU38/SXRCGpC92sDkPvWo61uyj8eFcbZs2VLm9zx9+jQbNmxgz549tG7dGoBvvvmGtm3bcvbsWerUqVPgufb29vj6mm9MXI7OtSvrG7EjOtYwdzhClDs6ncLU308C8GRzfxr6Fz3Zv7QZ3YjdvHkz77zzDtOnT6dVq1YA7Nu3j3fffZdJkybh7u7Oiy++yOuvv87ChQtNHrAQwrRuJKYx+dcTbDx5A4AAL0fe6VWP7vV9zP5Xtigbu3fvxt3dXd+ABWjTpg3u7u7s2rWr0EZseHg4VapUwcPDg86dOzN9+vRCJwGnp6eTnp6uP84ZiqHVag1a1SanzP1lO9XyBmDPxXjupKTpN9ewNAXFbw2sOXaw7vgtIfZfDl7j2LUEXOw1vNa1llGxGBu/oeWMbsSOHz+eBQsW0K5dO33aQw89hIODAy+88AInT55k9uzZDBs2zNhLCyHKkE6n8MP+SD5af4ak9Cxs1CpGda7J2AdDcLC1rkkP5cFjjz1mULnVq1eb/N4xMTH5NjyrVKlCTExMgef17NmTJ598kqCgIC5dusSkSZN48MEHOXjwIPb29vmeM2PGDKZOnZon/ezZs7i4uBgcc0RERJ40fzcbriVmsfyfo3Su7mzwtcwhv/ithTXHDtYdv7liT0rXMmP9dQCequ/KzasXuVmM6xgaf3JyskHljG7EXrhwId+ZYm5ubly8eBGAWrVqERcXZ+ylhRBl5Pqdu7z201F2X4wHoHGAB/97vKEMHTAjQ9bhNtaUKVPybTDea//+/UD+421zhogVZMCAAfqfGzRoQIsWLQgKCuKPP/4osFE+ceJEwsLC9MeJiYkEBARQp04dg1cniIiIoHbt2nlmOfe5qmH+1oucSNAwKjS0yGuZQ2HxWzprjh2sO35zx/7mquPcSdNRq4oLb/RthZ2NcUsAGhu/oZNljW7ENm/enDfeeIOlS5dSuXL2rLSbN28yYcIEWrZsCcC5c+fw95c9rIWwRL8eieLdtSdISsvC0VbDG93rMKRdMBq1DB0wp3snR5nK2LFjefrppwstExwczLFjx7hx40aevJs3b+Lj42Pw/fz8/AgKCuLcuXMFlrG3t8+3l1aj0Rj1yzm/8j0b+jF/60W2RsSRqcOiP1Ew9vVaEmuOHaw7fnPEvvN8HL8cyp7M9dHjDXG0L/5QHUPjN/Q1Gt2IXbhwIX379sXf35+AgABUKhWRkZHUqFGDX3/9FcjuBp40aZKxlxZClKKEu5lMWnuC345mfyTUJMCDzwY0oXoly/7YVRRfpUqVqFSpUpHl2rZtS0JCAvv27dPPddi7dy8JCQm5ho4VJT4+nqtXr+LnZ54tKBtWc6equwPXE9LYfi6OrvUMb4ALIfJKy9Ty9prjAAxqE0TzIC8zR5Sb0Y3YOnXqcPr0aTZu3EhERASKolC3bl26du2q32GmX79+po5TCFECB6/c5uUVh7iekIZGreLlB0MY2yXEbFsFCssSGhpKjx49GDlyJF9//TWQvcRW7969c03qqlu3LjNmzKB///4kJyczZcoUHn/8cfz8/Lh8+TJvv/02lSpVon///mZ5HSqViu4NfFm08zLrjl2XRqwQJfTZ5giuxKfi6+bAG90LnuBpLsXa7EClUtGjRw8eeOAB7O3tZQazEBZKUWDRrit8vDGCLJ1CkLcTnw1oQrNAWf5O5LZ8+XLGjRtHt27dgOzNDubMmZOrzNmzZ0lISACyP+47fvw4S5cu5c6dO/j5+dGlSxdWrlyJq6v51mnt16Qai3ZeZuPJGJLTs3Cxlz19hCiOvRfjWbA9e67TB/0aWOSKH0b/79bpdEyfPp2vvvqKGzduEBERQY0aNZg0aRLBwcEMHz68NOIUQhgpKS2TRRFqjt46C8Ajjfz43+ON5Je6yJeXlxfff/99oWXuXR/c0dGRjRs3lnZYRmvk706NSs5cjEth44kYHm8u8zOEMFZiWiZhPx1FUeCpFv48bKGfahj9WeIHH3zA4sWL+fjjj3PtzNKwYUO+/fZbkwYnhCieMzFJ9J+/l6O31NhqVEx9tD5znmkqDVhR7qlUKvo1rQbA2iNRZo5GCOs05beTRN25S4CXI5P71Dd3OAUyuhG7dOlSFixYwLPPPptr9lijRo04c+aMSYMTQhjvaLyKpxbs5cqtVDztFFYMb8mQdsEy7EdUGP2aZDdid56P40ZimpmjEcK6rD8ezepDUahV8NlTTSy688PoRmxUVBQhISF50nU6HZmZmSYJSghhPEVR+HLLBb6L0HA3U0f7mt680UhLkwAPc4cmRJkK9HaiRZAnOgVWHbpm7nCEsBrXbqcycXX2agSjOtekRbBlrUZwP6MbsfXr12f79u150n/++WeaNm1qkqCEEMa5m6Fl7IrDfPHPBQCGtA3k20FNcba8cfhClIkBLQMA+GFfJDqdUkRpIURGlo4xKw6TcDeTRv7uvPJwbXOHVCSj+4jfe+89Bg0aRFRUFDqdjtWrV3P27FmWLl3KunXrSiNGIUQhohPSGP3DEU5EJWKrUfF4UBbv9qpr7rCEMKvejaoybd0prt66y/bzcXSuXdncIQlh0Wb8eZqjV+/g5mDD3IHNjN6VyxyMbsT26dOHlStX8uGHH6JSqZg8eTLNmjXj999/p2vXrqURo8XKzMzUf+Uc5/f9/p9NHUNxrm/oeUWVKyjf0HRjv5uaOevP2Lz86uR6Cnz49V5uJKXj6WTL50824HbEfnn2KLzu8ksrybMnQ6ksj6Odhseb+bN412WW77kijVghCrH+eDSLdl4GYNZTTQjwcjJvQAZSKfeumSIKNXfuXObOnavfA3jFihU4OVnHP7QofyISVCw8qyZNq8LHUeHFulq8HcwdVcWUmprKwIEDSUhIwM3NzdzhWJXExETc3d0NrjutVsvp06cJDQ0tcmvKczeS6PrZNjRqFTvffBBfd/P/BzEmfktjzbGDdcdfmrFfuJlM3zk7SU7P4sXONZjYM9Sk1wfj4zf0fcFyp5xZoDFjxjBmzBh95Xbr1g03NzcyMzPZvHkzXbt2xdbWNtcxkCvP1O6/t6nPK6pcQfmGpht7bGrmrD9j8+5N+/NUHF/vPUGWTqF5oDtfPdsMDyd59gpKNyStJM9eYmKiwa9flJ1aPq60CvZi3+VbLN19mQk9ZJiNEPdKSM1k5JIDJKdn0SrYize6Wd6uXIUxqBHr6elp8PI8t27dKlFA1sTW1jbXL7f8jgvKK+1YTH1eUeUKyjc03dhjUzNn/RmTpyiwaM81Zm46B0ATbx1LhrbAxckhz3nGxlhc1vTsGZJWnGevNOtXlMywDtXZd/kWy/dGMqZLCM4WvFyQEGUpS6vj5R8PczEuharuDsx9tpnVbUVu0P/m2bNn63+Oj4/ngw8+oHv37rRt2xaA3bt3s3HjRiZNmlQqQQohQKdTWH1ZzbaY7Abs8+2CaKS7gL2tdX0sJkRZ6lrPh2BvJy7Hp/LzgasMbV/d3CEJYRFm/HmGbRE3cbTV8M2QFlR2tTd3SEYzqBE7ZMgQ/c+PP/4406ZNY+zYsfq0cePGMWfOHP766y9effVV00cpRAWXpdXx5uoTbItRo1LBO71CGdImgPXrL5g7NCEsmkatYniH6kz69SQLd15iUNtgNGrZ+ENUbD8duMrCHZcA+PSpxtSv6m7miIrH6H7jjRs30qNHjzzp3bt356+//jJJUEKI/2Rk6Xj5h8OsPRqNGoVPn2jIiI41zB2WEFbjieYBeDrZcvXWXTaejDF3OEKY1c7zcbyzJntDg/EP1aJXQz8zR1R8Rjdivb29WbNmTZ70tWvX4u3tbZKghBDZ0jK1vLDsAH+eiMFWo2JYHR19GlnvG44Q5uBop2FQmyAA5m45jyzKIyqqU9cTeXHZQTK1Co808mP8Q7XMHVKJGD3CferUqQwfPpzw8HD9mNg9e/awYcMGvv32W5MHKERFlaaF4UsPse/ybRxtNcwb2ITEiL3mDksIq/R8++os3HGJk9cT2XzqBt3q+5o7JCHK1LXbqQxdtI/k9Cza1PBi1lONUVv50Bqje2KHDh3Krl278PDwYPXq1axatQp3d3d27tzJ0KFDSyFEISqehLuZzDulYd/l27ja27B0eCs6hMgnHUIUl6ezHUPbBwMw+69z0hsrKpQ7qRkM+W4fsUnp1PFx5etBLbC3sf5JwcVaa6R169YsX77c1LEIIYC45HSe++4AV5JVeDjasmx4axr6u8uuUEKU0IgONViy6wqnohPZePIGPRpIb6wo/+5maBmx5AAXbqbg5+7A4mEtcXcsH8sCGtQTa+xC3klJScUKRoiKLjrhLk99vZszMUm42SosH96Chv7WOWtUCEvj6WzH0HbBAMz+KwKdTnpjRfmWnpU9r+LAldu4OdiwZFgr/NwdzR2WyRjUiPX09CQ2Ntbgi1arVo2LFy8WOyghKqLI+FSe/Go3F//9a/nl+lpq+7iaOywhypURHavj6mDDmZgkVh+OMnc4QpSaTK2OMcsPs/1cHI62Gr4b2rLc/U4xaDiBoih8++23uLi4GHRR+dhTCOOcj03i2W/3ciMxnWBvJ5YMbc6RXVvMHZYQ5Y6Hkx1ju4Qw488zzNx4hl4NfXGyk128RPmi1Sm8uvIIf52+gZ2Nmm+HtKBFsJe5wzI5g/7nBgYG8s033xh8UV9fX5Nvwzh9+nT++OMPjhw5gp2dHXfu3MmVHx8fz7PPPsuxY8eIj4+nSpUq9O3blw8//BA3NzcALl++TPXqeXdr+fPPP/Nd+1aIsnAqOpHnlxziVkoGtX1c+H54azwdNRwxd2BClFND2gWzbM8Vrt2+yzfbLjH+YeteZkiIe+l0Cm+uOsa6Y9HYalR8/Vxz2odUMndYpcKgRuzly5dLOYyiZWRk8OSTT9K2bVsWLlyYJ1+tVtO3b18++OADKleuzPnz5xkzZgy3bt1ixYoVucr+9ddf1K9fX3/s5VX+/joR1uFyEkz67gCJaVk0rObO0mGt8HS2k08zhChFDrYa3uxRl5d/OMzX2y7wTKsAqrg5mDssIUpM+28D9peD19CoVXzxdFO61K1i7rBKjdV8hjJ16lQAFi9enG++p6cnL730kv44KCiI0aNHM3PmzDxlvb298fWVWanCvPZcvMXcUxoydFm0DPZk4dCWuDmUjxmjQli63o38+G7nJQ5H3uHjjWf55MnG5g5JiBLJ1OoI++kovx+9jkatYtZTjelpxbtxGcLodWKtxfXr11m9ejWdO3fOk/foo49SpUoV2rdvzy+//GKG6ERFt+VMLCOWHSJDp6J9TW+WDGslDVghypBKpeLdR+oB8MvBa+y7dMvMEQlRfBlZOsauOMTvR69jo1Yx55mm9G1SzdxhlTqr6Yk11DPPPMOvv/7K3bt36dOnT65dxFxcXJg1axbt27dHrVbz22+/MWDAAJYsWcJzzz1X4DXT09NJT0/XH+csOZaZman/yjnO7/v9P5tSfvcy5XlFlSso39B0Y7+bmjnq788TMbz2y3EytQoNPHXMGVAfW5WS7/NSWJohZYrz2gxlTc9ecerTmNcnwz+sU/MgT55uGcCP+6/yzprj/DGuI3Y25bZvR5RTaZlaRi8/xD9nYrHTqJn3bDMerudj7rDKhEox47YlU6ZM0Q8TKMj+/ftp0aKF/njx4sW88soreSZ25YiJieHOnTucPXuWt99+m86dOzNv3rwCr//yyy+zdetWjh07ZnScK1aswMnJqdD4hbjXvlgVKy6oUVDRzFvHcyE6NPI70+qlpqYycOBAEhIS9BNJhWESExNxd3c3uO60Wi2nT58mNDQUjabkOw7dSc3goU+3Ep+SwYQedRj9QEiJr1kYU8dflqw5drDu+AuKPSktkxeXHWTXhXjsbdR8M7gFnWpXNmOk+TO27g19XzBrT+zYsWN5+umnCy0THBxs1DV9fX3x9fWlbt26eHt707FjRyZNmoSfX/7jQtq0aZOrtzY/EydOJCwsTH+cmJhIQEAA3bp1w83NjczMTDZv3kzXrl2xtbXNdQzkyjO1++9t6vOKKldQvqHpxh6bWlnW348Ho1m++wwATzavxuSetfjn77/yvUZ+1zekbuTZM6zu8ksrybNn7IYwwnJ4ONnxziOhhP10lC/+PkfvhlUJ9JbOCWH5YhPTGLpoP6eiE3G20/DtkJa0rVmxticvViN2+/btfP3111y4cIFffvl/e3ceF1W9/3H8NWzDMmyKsuOG4q6IS+5YrpnazUzTTNIst8os/bVcl7rWbbEsy7TMwLqadSsrl6timZq4K+WCIoqCoAKy7zBzfn+QkyMgMwgOI5/n4zEPPN+zzJuvh+HL93zP93yHr68vX331Fc2aNaNPnz5GH8fDwwMPj9qb9uF6J/ONQwFuduzYsUobuNep1WrUanW5cltbW4NfbhUtV7auplX3+MbuV9V2la03ttzU5ZpW2/W3OiqR93bEATC5dzPmP9CG0tLSKo9R0Tpj6uZuqruaPPeqU5/G5KzN+hW17x/Bvnx35BJR567x4nd/sH7qPVhZqcwdS4hKnU/N5fEvDnIpowAPjR3hYd3r5dMdTW7Efv/990ycOJEJEyZw7NgxfQMxJyeHN998ky1bttR4SICEhATS09NJSEhAq9USHR0NQGBgIBqNhi1btnD16lW6deuGRqPh1KlTzJs3j969e+t7c9esWYOtrS3BwcFYWVmxceNGli1bxttvv10rmYVQFIWfL1rxS3JZA/a5+1oye2BLVCr5BSlEXaFSqXjroY4M/XA3B+PT+WJvPE/2bW7uWEJUKDoxk8kRh0jPK6ZJQ0e+nNydJg2dzB3LLEwejbd48WJWrlzJqlWrDHofevXqxdGjR2s03I0WLFhAcHAwCxcuJDc3l+DgYIKDgzl8+DAADg4OrFq1ij59+tCmTRtmz57NAw88wKZNm8rl79q1K926dWP9+vV88cUXPP/887WWW9RfOp3Cok0x/JJc9mP26v1teH5QK2nAClEHBTR0ZP4DZbMVvLPtDGev5pg5kRDl7TydwqOf7Sc9r5gOvq58P71XvW3AQjV6Ys+cOUO/fv3Klbu4uFR6s1VNiIiIqHSOWIABAwYQFRV1y2NMmjSJSZMm1XAyIcor1eqY992f/HAsCRUKr49sx8Re5Z8WJ4SoO8Z182fbySv8diaV57+NZsOM3tjKnZeiDlAUhQ2nsvni2EUUBfq29GDlYyE4qe+6SaZMYvJPp7e3N3FxceXKf//9d5o3l8svQhSWaJm17hg/HEvC2krFxJY6xnXzM3csIUQVVCoVb4/uiKuDLSeSslmy/Yy5IwlBcamOlzecYPXRDBSl7I+t1ZO61fsGLFSjEfv000/z3HPPceDAAVQqFcnJyaxdu5YXX3yRGTNm1EZGISxGVkEJk744yNaTV7CzsWL5uE6EeJhtFjshhIk8Xex5e3QHAD7ddZ5fT181cyJRn6XnFfPY6gP890gSVir45/DW/PuhDjKf8V9MbsbPmzePrKwsBgwYQGFhIf369UOtVvPiiy8ya9as2sgohEW4klVIWPhBTl/JQaO24bOJIXRr4sqWeHMnE0KYYmh7b8J6NSUi6gJzvv2Dzc/2xdfNwdyxRD0TezWHKWsOkZhegEZtw9zeDXisV1O5r+IG1WrKv/HGG6SlpXHw4EH2799Pamoq//rXv2o6mxAWIy4lh9Erojh9JYdGzmq+efoeegXW3vRxQoja9fL9reno50pmfgmz1h2lqFRr7kiiHtn0ZzL/WL6XxPQCAho48v20ewjxkT+kblbt/mhHR0e6du1K69at2bFjBzExMTWZSwiLceRiBg+v3EdSZgHNGznxw/RetPOpf/P1CXE3UdtYs3x8F5ztbTiWkMmCH09ixgdcinqiuFTHaxtPMmvdMfKKtfRs3pCfZvYmsLHG3NHqJJMbsY888ggff/wxAAUFBXTr1o1HHnmEjh078v3339d4QCHqsu2nrjLh8/1k5pfQ2d+N76b1wr+BPO1HiLuBfwNHPno0GCsVfHM4kfC9F8wdSdzFrmQV8uiq/frzbHpoC76a0h13JzvzBqvDTG7E7t69m759+wKwYcMGdDodmZmZLFu2jMWLF9d4QCHqIkVR2JGkYubXf1BYouPe1o1ZN7UHDeTDRoi7SmhQY165vw0AizefYndsqpkTibvR3rg0hi/bw5GLGTjbl91T8X9DW2MjU7zdksm1k5WVRYMGDQDYunUro0ePxtHRkeHDh3P27NkaDyhEXVNUquX/NpxkY4I1AGG9mvLZxBAc7WS6EyHuRlP6NOPhED90Csxcd5TTV7LNHUncJYpLdbz1v9M8tvoA1/KKae3lzMZZfRjczsvc0SyCyY1Yf39/9u3bR15eHlu3bmXw4MEAZGRkYG9vX+MBhahL0vOKmfj5QTYcS8YKhYUPtGbRyHby17KweG+88Qa9evXC0dERNzc3o/ZRFIVFixbh4+ODg4MDoaGhnDx5snaDmoFKpeKNf7SnW1N3cgpLeXz1QRLT880dS1i4C2l5PLwiipW7zqEo8Gh3fzbM6E1Tj/r7BC5Tmfybd/bs2UyYMAE/Pz98fHwIDQ0FyoYZdOjQoabzCVFnxFzO5sHlezl4IR2N2oan2uh4rEeAuWMJUSOKi4sZM2YM06dPN3qfd955h/fff5+PP/6YQ4cO4eXlxaBBg8jJufse2aq2sebzx7sR5OlMSk4Rk744yLXcInPHEhZCq1O4eC2PX2KusuK3OB5eEcW97/3Gn0lZuNjbsGJCF/79UEcc7KzNHdWimHz9c8aMGfTo0YOEhAQGDRqElVVZO7h58+YyJlbctTYcu8TLPxynsESHfwMHPp0QzNnDu80dS4ga89prrwHc8vHeN1IUhQ8++IBXX32Vhx56CIA1a9bg6enJunXrePrpp2srqtm4OtqyZnJ3Rq+I4nxaHpMjDrF26j1o5MlJ4gZxKbmcvZrD2ZTcsn+n5HI+NZeiUl25bf3cHfj26Z74yDzE1VKtn7yQkBBCQkIMyoYPH14jgSxJSUmJ/nV9uaKvN/+7pjNU5/jG7lfVdpWtN7bc1K81rarjF5fqeGvrGb46kAhA38CGvDemAxpbFWeNyHWr45u6zpTzTM494+ulJs692qrjuiw+Pp4rV67oh5QBqNVq+vfvT1RUVKWN2KKiIoqK/u7BzM4uG1+q1WrRaquei/X6NsZsWxsaaWwJDwth7GcH+ONSFo+vPsAXk7ribG/cr1Nz578dlpwd7lz+H48msnqv4VNurFRgZw3FN7y1s9qajTN74eJgW2Wm+lb3xm6nUqox8d2lS5f4+eefSUhIoLi42GDd+++/b+rhLMby5ctZvnw5Wq2W2NhY1q1bh6OjTKd0t8osgvBYay7klj0dZYivjqH+OqzkYSniJvn5+YwfP56srCxcXFzMHee2REREMHv2bDIzM2+5XVRUFL179yYpKQkfHx99+VNPPcXFixfZtm1bhfstWrRI3+t7o3379qHRWM5cmHHXinj1lxTyinW09lDz+r2NcbSTsfGivOwiLSsPprP7Ytk46gBXW57v1ZCWDdVmTlZ35ebm0rNnzyo/U03uif3ll18YOXIkzZo148yZM7Rv354LFy6gKApdunS5rdB13cyZM5k5cybZ2dm4uroyePBgXFxcKCkpITIykkGDBmFra2uwDBisq2k3v3dN71fVdpWtN7bc1OWaVtnxf4lJ4YMfT5KRX4KzvQ1LHu7AvUGNjK4XY7YzdZ0xdSPnnnF1V1HZ7Zx713sT65rKGow3OnToEF27dq32e9z8CExFUW75WMyXX36ZOXPm6Jezs7Px9/cnKCjIqD8ArncitGrVCmtr840fbAM0bZbFpPDDnE4r4t/7cwg3oke2ruSvDkvODnc2f8K1fMasjCK7qNSg99XGClLySlh2MIvNz/RBbWtcjvpW98Z+pprciH355Zd54YUXeP3113F2dub777+ncePGTJgwgaFDh5p6OItma2tr8MutouXK1tV2lprer6rtKltvbLmpyzXt+vELS7S8sTmGr/ZfBKCdjwufTOhCk4YV3y1aE/Vn6jpj6kbOPePqrqKy6px7tVm/t2PWrFmMGzfults0bdq0Wsf28iqbAujKlSt4e3vry1NSUvD09Kx0P7VajVpdvgfK2trapF/Opm5fGzoHNGDtkz2Y8PkBjiVkMin8EF+EdaOhpuoetrqQv7osOTvcmfx2djZ4ujmSlmzYGCvVlb2e6h+Io73p84rXl7o39ns0uREbExPD119/XbazjQ0FBQVoNBpef/11Ro0aZdKdrULUJaevZPPs18eIvZoLwNS+zXhxSBBqG8v9wBD1m4eHBx4eHrVy7GbNmuHl5UVkZCTBwcFA2QwHu3bt4u23366V96yL2vu6svbJHjy2umyM7JiV+1gzuXuFT+7T6uSxtXe7Eq2O8L3xLI08S0GJFhVw8/96Mw8nHg7xM0e8u47JA3icnJz0g/J9fHw4d+6cfl1aWlrNJRPiDtHqYMWu84z8aC+xV3Px0Kj5cnJ3Xh3eVhqwot5ISEggOjqahIQEtFot0dHRREdHk5ubq9+mdevWbNiwASgbRjB79mzefPNNNmzYwIkTJwgLC8PR0ZHx48eb69swi/a+rnw3rRe+bg6cT8tj9IooYi4b9sBdSMtj3nd/mimhuBOOXExnxEe/8+aW0xSUaOnW1J3vZ/TCv4HhzAPPD2qFrcwtXiNM7om955572Lt3L23btmX48OG88MILHD9+nB9++IF77rmnNjIKUWtOX8nh/RPWXMqLA2Bgm8a8NbojHkZcDhTibrJgwQLWrFmjX77eu7pz5079fOBnzpwhKytLv828efMoKChgxowZZGRk0KNHD7Zv346zs/MdzV4XBDbW8P30Xkz64iBnrubw8IooPhwXzMC2niiKwoKfT7I7NpURHT2pnb5xYS4p2YW8u+0M/z1yCQB3R1tevr8ND3fxw8pKxYfjghmzch9anUJrL2ce6OBdxRGFsUxuxL7//vv6v8wXLVpEbm4u33zzDYGBgSxdurTGAwpRG4pKtXyy8xzLd8ZRqlPh6mDDopHteLCz7y1vShHibhUREVHlHLE3T2ajUqlYtGgRixYtqr1gFsTL1Z5vn+7JtP8cYd/5a0z96jBzhwQR4O7I7thUABZvjuGDIY2qOJKwBIUlWlbtPs+KXefI/+vurUe6+vHSsDY0cPp7vGuXAHeeH9iSJdtjmTskCCuZ4qbGmNyIbd68uf7fjo6OfPLJJzUaSIja9tuZFF7beIr4tDwAOjbQsfLJ3vg0sJzpfYQQdZOroy1fTunOaxtP8p/9Cbyz9Qz2Nn9fOk7KLDBjOlETdDqFn/9I5p2tp0nOKgQgOMCNfw5vS0gT9wr3mR4aSH6xlntbN76TUe961X7MSHFxMSkpKeh0hk+gCAiQx3CKuulSRj7/2nSKbSevAtDIWc0/hwWhJBylkbMMHxBC1AxbaysWP9iBIC8XFvx4gsIKntQUezWHNj5udz6cuC0Hzl/jzf+d5o/ETAB83RyYNzSIkZ18bnkVz9pKxbyhre9QyvrD5EZsbGwsU6ZMISoqyqD8+tyAlvo0CXH3yisq5fM98azYFUdhiQ5rKxVP9GrKcwNbYm8NWxLNnVAIcTcKCXBHpYIbR2GU6hQUReH1jSdZO7WXXFq2EH8kZrJk+xn2nC27gd3JzpoZAwKZ0qcZ9kbO9SpqnsmN2CeeeAIbGxs2bdqEt7e3jB8UdVaJVsf6Q4l8uOMsabllM2r0aNaA10e1J8ir7MaT+vi4UCFE7dPpFP7543FunlWrRAv/3pPGseR8vj6UwIQeTcwTUBjl9JVs3tseS+Spsit4NlYqxnbz57mBLWnsbG/mdMLkRmx0dDRHjhyhdWvpFhd1k6Io/O/EFd7ddkY/7rVJQ0fmDglieAf5w0sIUfu+PZzI0YTMCtdFJZQ9fvRfm04xqK2nNIbqoBNJWXzyWxz/O3EFRQErFfwj2I/ZA1tWOAewMA+TG7Ft27aV+WBFnaTTlTVeP/r1LKev5ADQ0MmO5wa2ZFy3AOxsZF4+IUTtS88r5q2tpytcp7YBb40tFzJLKCzR8eDyvfw4ozeNXaQhWxccOH+N5b+d088mATC8gzfPD2pJYOP6N3VcXWdUI/bGZ9i+/fbbzJs3jzfffJMOHTqUe9yiMc++FqImlWp1bPrzMh/vjCMupWz6N43ahsl9mvFUv+Zo1NW+f1EIIUx2LbeImaGBpOUVcS23mPS8Yq7lFpGWW0xeYTFLh3kz5psESnWQnFlIv3d3MndIayb1bIKNTIJ/x2l1Cr/EXGXVnvMcupABlN2INbKTD9P6t9APPxN1j1G/3d3c3AwuwSqKwn333WewjdzYJe60vKJSvjtyiS/2xnPxWtnlORd7G57o3YwnejfFzdH051ILIcTtaunpTEvPihs+paWlnD59ml+e78/Bixl88ts54tPy+NemU/z3cCILR7SjZ4uGdzhx/ZRdWMK3hxJZs+8CiellU5/ZWVsxpqsfT/drQUBDGTZQ1xnViN25c2dt5xDCaJcy8lkTdYH1hxLJKSwFyp6Q8mTf5kzs2QQXe9sqjiCEEOZxvUPIr4EDTRppGN3Fj28PJ/L21tOcvpLDo6v2079VI+YOCaK9r6uZ096dzqXmsvZAIt8duUTeXw8pcHWw5dHuATzRuymeMrTDYhjViO3fv39t5xDilnQ6hb1xaaw9cJGtJ67o7/ht7uHEE72b8lAXP5xk2IAQwsJYWakY1z2AIe28WLojlnUHEtgVm8qu2FRGdPLh+YEtad5IHsRyu/KLS9n4RxJrdl/hVOpFfXkrTw1hvZrxj2BfHOxkqixLY/Rv/fz8fObOncuPP/5ISUkJAwcOZNmyZXh41N+nQJeUlOhf15cr+nrzv2s6Q3WOb+x+VW1X2Xpjy6v6mpSey/ZLKpZ8sIfEjEL9cXq1aEBYzyb0b+nx1zyLSrXq2Jz1Z+o6U84zOfeMrxdjvxqTVYjqcney4/VR7ZnSpxnvR8byU3QyG/9IZtOfyQxt58XT/VvQ2d/N3DEtiqIo/Hkpi28PJ/JzdDI5RWVX7qytVAwIakxYr6b0DmwoM9ZYMJVy88OwKzF37lw++eQTJkyYgL29PV9//TWhoaH897//re2Mdcby5ctZvnw5Wq2W2NhY1q1bh6OjjJmpaaU6iMlUsT9FxakMFTrKPmDsrRW6eij09tTh42TmkELcID8/n/Hjx5OVlSU3t5ooOzsbV1dXo+tOq9USExNDmzZtsLa2vJ4zY/OfTM5iaWQsO2JS9GX3NG/A1L7NCQ1qjLUZHpJgKXUfezWHn6OT2fhnsv5+CYCABo6EBtgxbUhnfNwt65eIpdR9ZUzNb+zngtE9sT/88AOrV69m3LhxADz22GP07t0brVZrkRVaHTNnzmTmzJn6yh08eDAuLi6UlJQQGRnJoEGDsLW1NVgGDNbVtJvfu6b3q2q7ytYbW359+b6BA4lOyuWn6GQ2/5FEvvbvD+jmzgpP3tuGBzrW/OUec9afqetudZ5VtA3IuVdZ3VVUZkz9VubGGVyEqAntfFz5fFI3Yq/m8Omu8/wUncT+8+nsP5+Oj6s9Y7sF8Eg3P7xdHcwd1ewURSEuJZftp66y8Y9k/RSLAA621gxu58nYbv50C3DjzJnTMub1LmJ0IzYxMZG+ffvql7t3746NjQ3Jycn4+/vXSri6ztbW1uCXW0XLla2r7Sw1vV9V21W2/lblNjY2nEzO5qcLVrz54T6uZhf9tVZFI40dozr7MjrYm9jDu7m/a8BdW3+mrqvqvLteZmrG6rKkc6869WlMztqsX1G/tfJ05r1HOvHC4FaE743nv0cukZxVyNIdsXz4SywDghozsrMP97XxrFfTCZZodRyKT2dHTAo7Yq6SkP53j6uttYr+rRoxopMPg9p64mhXVi8ye9Ldx+gzXqvVYmdnOGWRjY0NpaWlNR5K3L1KtTrOZqlYvOU0O2JSScosAKyAIpztbRjazpPGBQk8M7Y/9mo7SkpKiDV3aCGEMDMfNwdeHd6WFwYHse3kFdYdSOBAfDq/nE7hl9Mp2NlYEdqqEcM7enNv68Y432WztCiKwrnUPPadSyPq3DV+j0vTz04DZVNj9WzRkGHtvRja3kumWKwnjG7EKopCWFgYarVaX1ZYWMi0adNwcvp7bMkPP/xQswmFxcsvLuX3s2lsP3WVX2KukpFvDSQAYG9rRWvnUp4a0oX72nlhpejYsuWiWcZ7CSFEXWdva82ozr6M6uxLXEouP0UnsfnPy5xPy2P7qatsP3UVaysVwf5u9G3ZiL6tPOjo62pxD1Eo1eo4m5JLdGIm+89fI+rcNVJzigy2aehkx4DWjRnYpjF9WjaqVz3RoozR/+OTJk0qV/bYY4/VaBhxd1AUhZjLOfySpGJ9+GGOXMykWKvTr3eyURjSwZeh7b25p6kbO3dsY1DbxtjaWFNSorvFkYUQQlwX2FjDC4ODmDOoFTGXc9hy/DJbjpc1aA9fzODwxQyW7ojF2d6G4AB3Ovu50jnAjU5+bjTUqKt+gzukRKvj4rU8Yi7n8EdiJn9eyuJ4UhYFJYaX/+1srOjaxJ1eLRrSs4UHnf3dpMOjnjO6ERseHl6bOYSFu5pdyJHEFHbFprLnbNpffzFbA+kA+Lo5MLidJ/cFeZByaj8jhrfX3zwjhBCi+lQqFW19XGjr48KLQ4JITM9nz9k09pxNZW9cGtmFpeyOTWV3bKp+Hz93BwIba2jRSEPzRk60aKShmYcTHhp1rTQMi0q1XM0qIjmrgMtZBcSn5nE2JZe4lFzi0/Io1ZWfKEmjtqGDryshTdzpFdiQLgHu2NvWjxvJhXGk712YTFEULmUUsP/8NfafT2PXSWvS9u022MbB1opmTqU81KsNA9p40dzDCZVKRUlJCVtizBRcCCHqAf8GjozvEcD4HgGUanWcupzNH4mZHEvM5I/ETM6l5nEpo4BLGQX8dibVYF8rFXho1DR2UdPY2Z5GGjVOahsc7ayxt1WRnZ7Nn7mJWFtbodWBVlHQ6RS0OoXCUi3ZBaVkF5aQXVBCdmEpmfnFJGcWkpZbVEnaMo521rRsrKGjnxud/N3o5OdK80Ya6WkVtySNWFGlYi0cS8jkxOWy8UmHLqRzOavwhi1UWKmgjbcLfQI96NeqEZ18nfll+1bu79lE7twWQggzsbG2oqOfGx393JjYs6wsq6CEU8nZnE/L5XxqHudTc/9q2OajUyAlp4iUnCKgkqnjDmdUK4udjRU+rvZ4uzrQpKEjgY01tPR0JrCxBm8X+78eXCOE8aQRKwwUl+qIS8nleFImf1zKIjohg9NXrNEdPGiwna21io5+bnQNcIPUOJ4ePZAGzn8/+EGGCQghRN3k6mBLzxYN6dmioUF5qVZHel7xX43YQq5mF3Ett4i8Yi0FxVryikq4kpaBrX3ZlTUrKxXWKhXWVmX/VttY4WJvi4uDzV9fbXF1sMXb1R5vV3saONnJ07FEjZJGbD2lKAoZRbDzTCpxafmcvpzDmSs5nEvNrWBskgoPjR2d/cv+mu/axJ3gAHcc7KzLhgdsOXvXTecihBD1jY21FY1d7GnsYg+4lltv6U+NEncfacTe5fKKSolPy9O/LqTlcT4tj3OpueQU2sDRY+X2cba3ob2PK5383WjnreFa7BHGPzio3DzBQgghhBDmIo1YC1dQrOVqAeyJSyMlp4SkzAKSMssG7F9Iy/trXFPFrFQKgY2cae3tQmtvZ1p7OdPaywVvV3v9JZ+SkhK2XEQuAQkhhBCiTpFGbB2VX1xKWk4xqbmFpOYUk5pbRGpOEWl/fb2SVUhSZgHpecWADUQfrfRYDZ3saOrhRLMbXv5uamIP72HkA73kxishhBBCWByLacS+8cYbbN68mejoaOzs7MjMzCy3zaFDh3jppZc4cuQIKpWKbt268c4779C5c2f9NsePH2fWrFkcPHiQBg0a8PTTTzN//vxa62ks1erILYHzqXnklihkF5SQWVBMZn4JmfklZBWUkJlfTGZB2XJGfjFpOWUD6Y2ltlZo0tAZX3cHfNwc8HV3wNfNgSYNnWjW0AlXx/KN1JKSEs5b1gNchBBCCCH0LKYRW1xczJgxY+jZsyerV68utz4nJ4chQ4YwatQoPvnkE0pLS1m4cCFDhgzh0qVL2Nrakp2dzaBBgxgwYACHDh0iNjaWsLAwnJyceOGFF2ol99zvT7DpuA0c3mvyvva2VjRyVtNIo8ZDoy77918vT2d7fN0daOxkw55fIxk+XHpUhRBCCFF/WEwj9rXXXgMgIiKiwvVnzpwhIyOD119/HX9/fwAWLlxIx44dSUhIoEWLFqxdu5bCwkIiIiJQq9W0b9+e2NhY3n//febMmVMrvbFuf/WCOtvb4OZoi5uDHW6OZVOPuDnY6stcHa8v29HIWY2Hxg6N2qbKTCUlJchwVSGEEELUNxbTiK1KUFAQHh4erF69mldeeQWtVsvq1atp164dTZo0AWDfvn30798ftfrvZ0YPGTKEl19+mQsXLtCsWbMKj11UVERR0d83SGVnl00AXVJSon9dX77565x7m9FFFc/QwQNM7iktLS2tcpub39NYxu5X1XaVrTe23NSvNc2c9WfqOmPq5lZlNc2Szr3q1Kcp35/MiyyEEHeeSlGU8g8srsMiIiKYPXt2hWNiT548yahRo4iPjwegVatWbNu2jYCAAAAGDx5M06ZN+eyzz/T7JCcn4+vrS1RUFD179qzwPRctWqTvCb7RunXrcHR0rGAPIUR9kp+fz/jx48nKysLFxcXccSxKdnY2rq6uRtedpc9Vasn5LTk7WHZ+S84Opuc39nPBrD2xlTUOb3To0CG6du1a5bEKCgqYPHkyvXv35uuvv0ar1bJkyRLuv/9+Dh06hIODA1B+qqjrbfhbXbZ/+eWXmTNnjn45Ozsbf39/Bg8ejIuLCyUlJURGRjJo0CBsbW0NlgGDdTXt5veu6f2q2q6y9caWm7pc08xZf6auM6Zu5Nwzru4qKrudc+/61RkhhBB3jlkbsbNmzWLcuHG33KZp06ZGHWvdunVcuHCBffv2YWVlpS9zd3fnp59+Yty4cXh5eXHlyhWD/VJSUgDw9PSs9NhqtdpgCML1hm9BQYH+l11+fj4FBQWUlpYaLAMG62raze9d0/tVtV1l640tN3W5ppmz/kxdZ0zdyLlnXN1VVHY75971+rawC1t1wvU6M/YPAa1WS25uLtnZ2RbbI2Wp+S05O1h2fkvODqbnv/55UNVnqlkbsR4eHnh4eNTIsfLz87GysjLoUb2+rNPpAOjZsyevvPIKxcXF+qdPbd++HR8fH6Mby1A2EwKgv4FMCCGg7LPB1bX84zpF5eTzVAhRmao+Uy1mTGxCQgLp6en8/PPPvPvuu+zZsweAwMBANBoNp0+fpnPnzkyePJlnnnkGnU7HW2+9xcaNG4mJicHb25usrCyCgoK49957eeWVVzh79ixhYWEsWLDApCm2dDodycnJODs76xvN3bp149ChQ/ptri9fH3qQmJhYa2Plbn7vmt6vqu0qW29s+a2W7/b6M3VdVXV3Y9ndXne3Wm9M3VVUVt1zT1EUcnJy8PHx0V8JEsap6PP0Vu7EeV2bLDm/JWcHy85vydnB9PzGfqZazOwECxYsYM2aNfrl4OBgAHbu3EloaCitW7dm48aNvPbaa/Ts2RMrKyuCg4PZunUr3t7eALi6uhIZGcnMmTPp2rUr7u7uzJkzx2C8qzGsrKzw8/MzKLO2tjb4j7l52cXFpdZOvJvfq6b3q2q7ytYbW17VMty99WfqOmPqSs494+qlorLbOfekB7Z6Kvo8NUZtntd3giXnt+TsYNn5LTk7mJbfmM9Ui2nERkREVDpH7HWDBg3S39BSmQ4dOrB79+4aTFZm5syZt1yuTdV9L2P3q2q7ytYbW27Ourud96uJ+jN1nTF1Jeee8fVi7nNPCCFE9VnMcAJLZer0McKQ1F/1Sd3dHqm/usnS/18sOb8lZwfLzm/J2aH28svgrVqmVqtZuHChwewGwnhSf9UndXd7pP7qJkv/f7Hk/JacHSw7vyVnh9rLLz2xQgghhBDC4khPrBBCCCGEsDjSiBVCCCGEEBZHGrFCCCGEEMLiSCNWCCGEEEJYHGnE1jH/+Mc/cHd35+GHHzZ3lDpv06ZNBAUF0bJlSz7//HNzx7E4cq5VT2JiIqGhobRt25aOHTvy3//+19yR6o033niDXr164ejoiJubW4XbJCQkMGLECJycnPDw8ODZZ5+luLj4zgY1UmxsLKNGjcLDwwMXFxd69+7Nzp07zR3LaJs3b6ZHjx44ODjg4eHBQw89ZO5IJisqKqJz586oVCqio6PNHccoFy5cYMqUKTRr1gwHBwdatGjBwoUL6+x5DvDJJ5/QrFkz7O3tCQkJ0T919XZJI7aOefbZZ/nyyy/NHaPOKy0tZc6cOfz6668cPXqUt99+m/T0dHPHsihyrlWPjY0NH3zwAadOnWLHjh08//zz5OXlmTtWvVBcXMyYMWOYPn16heu1Wi3Dhw8nLy+P33//nfXr1/P999+b9FjxO2n48OGUlpby66+/cuTIETp37swDDzzAlStXzB2tSt9//z0TJ07kiSee4I8//mDv3r2MHz/e3LFMNm/ePHx8fMwdwySnT59Gp9Px6aefcvLkSZYuXcrKlSt55ZVXzB2tQt988w2zZ8/m1Vdf5dixY/Tt25dhw4aRkJBw+wdXRJ2zc+dOZfTo0eaOUaft3btXefDBB/XLzz77rLJu3TozJrJMcq7dvg4dOigJCQnmjlGvhIeHK66uruXKt2zZolhZWSlJSUn6sq+//lpRq9VKVlbWHUxYtdTUVAVQdu/erS/Lzs5WAGXHjh1mTFa1kpISxdfXV/n888/NHeW2bNmyRWndurVy8uRJBVCOHTtm7kjV9s477yjNmjUzd4wKde/eXZk2bZpBWevWrZWXXnrpto8tPbEm2L17NyNGjMDHxweVSsWPP/5Ybpva6jK/29xuXSYnJ+Pr66tf9vPzIykp6U5ErxPkXKy+mqy7w4cPo9Pp8Pf3r+XUwhj79u2jffv2Bj1rQ4YMoaioiCNHjpgxWXkNGzakTZs2fPnll+Tl5VFaWsqnn36Kp6cnISEh5o53S0ePHiUpKQkrKyuCg4Px9vZm2LBhnDx50tzRjHb16lWmTp3KV199haOjo7nj3LasrCwaNGhg7hjlFBcXc+TIEQYPHmxQPnjwYKKiom77+NKINUFeXh6dOnXi448/rnC9MV3mISEhtG/fvtwrOTn5Tn0bdcLt1qVSwTM6VCpVrWauS2riXKyvaqrurl27xuOPP85nn312J2ILI1y5cgVPT0+DMnd3d+zs7OrcJXqVSkVkZCTHjh3D2dkZe3t7li5dytatWysd71tXnD9/HoBFixbxz3/+k02bNuHu7k7//v0tYliXoiiEhYUxbdo0unbtau44t+3cuXN89NFHTJs2zdxRyklLS0Or1Zb7ufT09KyZn8nb7sutpwBlw4YNBmU11WVe3y7xVqcuKxpOsHbt2lrPWhfdzrlY3861m1W37goLC5W+ffsqX3755Z2IeVdbuHChAtzydejQIYN9KhtOMHXqVGXw4MHlym1tbZWvv/66tr4FA8Z+PzqdThk5cqQybNgw5ffff1eOHDmiTJ8+XfH19VWSk5PvSNbqZl+7dq0CKJ9++ql+38LCQsXDw0NZuXKlWbKbkv/DDz9UevXqpZSWliqKoijx8fF1YjhBdX4WkpKSlMDAQGXKlClmSn1rSUlJCqBERUUZlC9evFgJCgq67ePb3H4zWMDfXeYvvfSSQXlNdZnXJ8bUZffu3Tlx4gRJSUm4uLiwZcsWFixYYI64dY6ci9VnTN0pf/Xi3HvvvUycONEcMe8qs2bNYty4cbfcpmnTpkYdy8vLiwMHDhiUZWRkUFJSUq4nqLYY+/38+uuvbNq0iYyMDFxcXICyYSyRkZGsWbOm3Dl4JxibPScnB4C2bdvqy9VqNc2bNzfr1R5j8y9evJj9+/ejVqsN1nXt2pUJEyawZs2a2oxZKVN/FpKTkxkwYAA9e/ass1eEPDw8sLa2LtfrmpKSUiM/k9KIrSE11WU+ZMgQjh49Sl5eHn5+fmzYsIFu3brVdNw6zZi6tLGx4b333mPAgAHodDrmzZtHw4YNzRG3zjH2XJRzrTxj6m7v3r188803dOzYUT+e9quvvqJDhw53Ou5dwcPDAw8Pjxo5Vs+ePXnjjTe4fPky3t7eAGzfvh21Wn3Hxpka+/3k5+cDYGVlOKrPysoKnU5XK9mqYmz2kJAQ1Go1Z86coU+fPgCUlJRw4cIFmjRpUtsxK2Vs/mXLlrF48WL9cnJyMkOGDOGbb76hR48etRnxlkz5WUhKSmLAgAGEhIQQHh5e7jyqK+zs7AgJCSEyMpJ//OMf+vLIyEhGjRp128eXRmwNu3lcpqIoJo3V3LZtW01HslhV1eXIkSMZOXLknY5lMaqqPznXKneruuvTp4/ZGhn1XUJCAunp6SQkJKDVavXzegYGBqLRaBg8eDBt27Zl4sSJvPvuu6Snp/Piiy8ydepUfW9nXdGzZ0/c3d2ZNGkSCxYswMHBgVWrVhEfH8/w4cPNHe+WXFxcmDZtGgsXLsTf358mTZrw7rvvAjBmzBgzp6taQECAwbJGowGgRYsW+Pn5mSOSSZKTkwkNDSUgIIAlS5aQmpqqX+fl5WXGZBWbM2cOEydOpGvXrvpe44SEhBoZwyuN2BpS213m9YnU5e2R+qs+qbu6bcGCBQaXeoODgwHYuXMnoaGhWFtbs3nzZmbMmEHv3r1xcHBg/PjxLFmyxFyRK+Xh4cHWrVt59dVXuffeeykpKaFdu3b89NNPdOrUydzxqvTuu+9iY2PDxIkTKSgooEePHvz666+4u7ubO9pdb/v27cTFxREXF1eu0a1UcNOzuY0dO5Zr167x+uuvc/nyZdq3b8+WLVtqpNe+bvY/W6Abu8xvFBkZSa9evcyUyjJJXd4eqb/qk7qr2yIiIlAUpdwrNDRUv01AQACbNm0iPz+fa9eu8dFHH5Ub+1hXdO3alW3btnHt2jWys7PZt28fw4YNM3cso9ja2rJkyRKuXr1KdnY2kZGRtGvXztyxqqVp06YoikLnzp3NHcUoYWFhFf4c1MUG7HUzZszgwoUL+unu+vXrVyPHlZ5YE+Tm5hIXF6dfjo+PJzo6mgYNGhAQEFCrXeZ3G6nL2yP1V31Sd0IIcZe47fkN6pGdO3dWOOXFpEmT9NssX75cadKkiWJnZ6d06dJF2bVrl/kC12FSl7dH6q/6pO6EEOLuoFKUOtz/LIQQQgghRAVkTKwQQgghhLA40ogVQgghhBAWRxqxQgghhBDC4kgjVgghhBBCWBxpxAohhBDCLBYtWlTr87NGRETg5uZWq+8hzEMasUIIIYQwEBYWhkqlQqVSYWNjQ0BAANOnTycjI8Pc0Uw2duxYYmNjzR1D1AJ52IEQQgghyhk6dCjh4eGUlpZy6tQpJk+eTGZmJl9//bW5o5nEwcEBBwcHc8cQtUB6YoUQQghRjlqtxsvLCz8/PwYPHszYsWPZvn27wTbh4eG0adMGe3t7WrduzSeffGKw/v/+7/9o1aoVjo6ONG/enPnz51NSUmJ0Bq1Wy5QpU2jWrBkODg4EBQXx4Ycf6tcXFhbSrl07nnrqKX1ZfHw8rq6urFq1Cig/nOCPP/5gwIABODs74+LiQkhICIcPHzalakQdIT2xQgghhLil8+fPs3XrVmxtbfVlq1atYuHChXz88ccEBwdz7Ngxpk6dipOTE5MmTQLA2dmZiIgIfHx8OH78OFOnTsXZ2Zl58+YZ9b46nQ4/Pz++/fZbPDw8iIqK4qmnnsLb25tHHnkEe3t71q5dS48ePbj//vsZMWIEEydOZMCAAUydOrXCY06YMIHg4GBWrFiBtbU10dHRBt+XsCDmfmSYEPXZpEmT9I893bBhQ628R//+/ZXnnnuu2vtfz+fq6lpjmYQQddukSZMUa2trxcnJSbG3t9d/Drz//vv6bfz9/ZV169YZ7Pevf/1L6dmzZ6XHfeedd5SQkBD98sKFC5VOnTqZlG3GjBnK6NGjyx3Xw8NDeeaZZxQvLy8lNTVVvy48PNzg88vZ2VmJiIgw6T1F3STDCUSNuvFmgBtfcXFx5o5WZw0dOpTLly8zbNiwO/q+oaGhrFy5ssrtLl++zAcffFD7gYQQdcqAAQOIjo7mwIEDPPPMMwwZMoRnnnkGgNTUVBITE5kyZQoajUb/Wrx4MefOndMf47vvvqNPnz54eXmh0WiYP38+CQkJJuVYuXIlXbt2pVGjRmg0GlatWlXuGC+88AJBQUF89NFHhIeH4+HhUenx5syZw5NPPsnAgQN56623DPIKyyKNWFHjrjfKbnw1a9as3HbFxcVmSFf3XB93plarK93GlDFkxkhPTycqKooRI0ZUua2Xlxeurq41+v5CiLrPycmJwMBAOnbsyLJlyygqKuK1114Dyi7zQ9mQgujoaP3rxIkT7N+/H4D9+/czbtw4hg0bxqZNmzh27BivvvqqSZ/93377Lc8//zyTJ09m+/btREdH88QTT5Q7RkpKCmfOnMHa2pqzZ8/e8piLFi3i5MmTDB8+nF9//ZW2bduyYcMGU6pG1BHSiBU17nqj7MaXtbU1oaGhzJo1izlz5uDh4cGgQYMAOHXqFPfffz8ajQZPT08mTpxIWlqa/nh5eXk8/vjjaDQavL29ee+99wgNDWX27Nn6bVQqFT/++KNBDjc3NyIiIvTLSUlJjB07Fnd3dxo2bMioUaO4cOGCfn1YWBgPPvggS5Yswdvbm4YNGzJz5kyDBmRRURHz5s3D398ftVpNy5YtWb16NYqiEBgYyJIlSwwynDhxAisrK5P+0r9w4QIqlYpvv/2W0NBQ7O3t+c9//sO1a9d49NFH8fPzw9HRkQ4dOpS7S7iiuqrI5s2b6dSpE76+vmRkZDBhwgQaNWqEg4MDLVu2JDw83Oi8Qoj6YeHChSxZsoTk5GQ8PT3x9fXl/PnzBAYGGryud1rs3buXJk2a8Oqrr9K1a1datmzJxYsXTXrPPXv20KtXL2bMmEFwcDCBgYEVfp5OnjyZ9u3b8+WXXzJv3jxOnTp1y+O2atWK559/nu3bt/PQQw/JZ56FkkasuKPWrFmDjY0Ne/fu5dNPP+Xy5cv079+fzp07c/jwYbZu3crVq1d55JFH9PvMnTuXnTt3smHDBrZv385vv/3GkSNHTHrf/Px8BgwYgEajYffu3fz+++9oNBqGDh1q8Bf9zp07OXfuHDt37mTNmjVEREQYNIQff/xx1q9fz7Jly4iJiWHlypVoNBpUKhWTJ08u90H4xRdf0LdvX1q0aGFyXf3f//0fzz77LDExMQwZMoTCwkJCQkLYtGkTJ06c4KmnnmLixIkcOHDA5Lr6+eefGTVqFADz58/n1KlT/O9//yMmJoYVK1bc8lKcEKJ+Cg0NpV27drz55ptAWY/mv//9bz788ENiY2M5fvw44eHhvP/++wAEBgaSkJDA+vXrOXfuHMuWLTO5xzMwMJDDhw+zbds2YmNjmT9/PocOHTLYZvny5ezbt48vv/yS8ePH8/DDDzNhwoQKe3wLCgqYNWsWv/32GxcvXmTv3r0cOnSINm3aVLNWhFmZe1CuuLvceDPA9dfDDz+sKErZDUadO3c22H7+/PnK4MGDDcoSExMVQDlz5oySk5Oj2NnZKevXr9evv3btmuLg4GBwsxIV3Bjl6uqqhIeHK4qiKKtXr1aCgoIUnU6nX19UVKQ4ODgo27Zt02dv0qSJUlpaqt9mzJgxytixYxVFUZQzZ84ogBIZGVnh956cnKxYW1srBw4cUBRFUYqLi5VGjRrd8gaCSZMmKaNGjTIoi4+PVwDlgw8+qHS/6+6//37lhRdeUBRFMbquCgsLFWdnZ+XPP/9UFEVRRowYoTzxxBO3fJ+bb4wQQtzdKvpsUhRFWbt2rWJnZ6ckJCTolzt37qzY2dkp7u7uSr9+/ZQffvhBv/3cuXOVhg0bKhqNRhk7dqyydOlSg8+Sqm7sKiwsVMLCwhRXV1fFzc1NmT59uvLSSy/p94mJiVEcHBwMbjDLyspSmjZtqsybN09RFMPPr6KiImXcuHGKv7+/Ymdnp/j4+CizZs1SCgoKqldRwqxkii1R4wYMGMCKFSv0y05OTvp/d+3a1WDbI0eOsHPnTjQaTbnjnDt3joKCAoqLi+nZs6e+vEGDBgQFBZmU6ciRI8TFxeHs7GxQXlhYaHBpql27dlhbW+uXvb29OX78OADR0dFYW1vTv3//Ct/D29ub4cOH88UXX9C9e3c2bdpEYWEhY8aMMSnrdTfXlVar5a233uKbb74hKSmJoqIiioqK9PV77tw5o+rq119/pWHDhnTo0AGA6dOnM3r0aI4ePcrgwYN58MEH6dWrV7UyCyHuDjdegbrR+PHjGT9+fKXLN3vnnXd45513DMpuHAq2aNEiFi1aVOn+arWa8PDwcle5/v3vfwPQunVr8vPzDda5uLgQHx+vXw4LCyMsLAwAOzs7i3tYg6icNGJFjbt+M0Bl626k0+kYMWIEb7/9drltvb29qxygf51KpUJRFIOyG8ey6nQ6QkJCWLt2bbl9GzVqpP/3zXMFqlQq/Q0Mxjzx5cknn2TixIksXbqU8PBwxo4di6Ojo1Hfw81urqv33nuPpUuX8sEHH9ChQwecnJyYPXu2/pLZzd9/ZW4cSgAwbNgwLl68yObNm9mxYwf33XcfM2fOLDe+VwghhKhLZEysMKsuXbpw8uRJmjZtWu7mgOuNYVtbW/3drgAZGRnlnoPdqFEjLl++rF8+e/aswV/nXbp04ezZszRu3Ljc+xh7532HDh3Q6XTs2rWr0m3uv/9+nJycWLFiBf/73/+YPHmysVVRpT179jBq1Cgee+wxOnXqRPPmzQ0a+cbUlaIobNy4kZEjRxocu1GjRoSFhfGf//yHDz74gM8++6zGcgshhBC1QRqxwqxmzpxJeno6jz76KAcPHuT8+fNs376dyZMno9Vq0Wg0TJkyhblz5/LLL79w4sQJwsLCsLIyPHXvvfdePv74Y44ePcrhw4eZNm2aQa/qhAkT8PDwYNSoUezZs4f4+Hh27drFc889x6VLl4zK2rRpUyZNmsTkyZP58ccfiY+P57fffuPbb7/Vb2NtbU1YWBgvv/wygYGBBpf2b1dgYCCRkZFERUURExPD008/zZUrV/TrjamrI0eOkJeXR79+/fRlCxYs4KeffiIuLo6TJ0+yadMmuclBCCFEnSeNWGFWPj4+7N27F61Wy5AhQ2jfvj3PPfccrq6u+sbXu+++S79+/Rg5ciQDBw6kT58+hISEGBznvffew9/fn379+jF+/HhefPFFg8v4jo6O7N69m4CAAB566CHatGnD5MmTKSgowMXFxei8K1as4OGHH2bGjBm0bt2aqVOnkpeXZ7DNlClTKC4urtFeWCibRaBLly4MGTKE0NBQvLy8ePDBBw22qaqufvrpJ4YPH46Nzd8jiezs7Hj55Zfp2LEj/fr1w9ramvXr19dodiGEEKKmqRRjB9IJUYeEhobSuXPnOvkkqb179xIaGsqlS5fw9PS85bZhYWFkZmaWm+O2tnTs2JF//vOfBlOYGSMiIoLZs2eTmZlZO8GEEEIIE8mNXULUkKKiIhITE5k/fz6PPPJIlQ3Y6zZt2oRGo2H9+vU88MADtZavuLiY0aNHm/x4W41GQ2lpKfb29rWUTAghhDCd9MQKi1QXe2IjIiKYMmUKnTt35ueff8bX17fKfVJSUsjOzgbKZmO4eUaCuiAuLg4oG+9b0eODhRBCCHOQRqwQQgghhLA4cmOXEEIIIYSwONKIFUIIIYQQFkcasUIIIYQQwuJII1YIIYQQQlgcacQKIYQQQgiLI41YIYQQQghhcaQRK4QQQgghLI40YoUQQgghhMWRRqwQQgghhLA4/w8M7QqW/F9AygAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -1016,13 +1016,13 @@ "name": "stderr", "output_type": "stream", "text": [ - "/Users/murray/Library/CloudStorage/Dropbox/macosx/src/python-control/murrayrm/control/timeresp.py:1009: UserWarning: Non-zero initial condition given for transfer function system. Internal conversion to state space used; may not be consistent with given X0.\n", + "/Users/murray/src/python-control/murrayrm/control/timeresp.py:1027: UserWarning: Non-zero initial condition given for transfer function system. Internal conversion to state space used; may not be consistent with given X0.\n", " warnings.warn(\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABY10lEQVR4nO3deXhTZfo+8PskadOmadJ9o2Vp6UJpBQQEUQQ3UFmsC+MGggyo44JOR8dhRJYOijrqKM4wbr8BR+qCyurXQRBBURZlLy1LKS2UQumeNF3SJjm/P9JEaltoadNzkt6f68rVNjk55zlhu3ne875HEEVRBBERERG5PYXUBRARERFR12CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCOSMUEQsHbt2otuM2PGDKSlpbV7nwUFBRAEAQcOHOhUbT3JwoULER4e3q5fD7lYuHAhBEGAIAh48803u/3427Ztcx6/I78/iahzGOyIuklHAxgAnDt3DrfeeiuAtgPZW2+9hRUrVnRNkdTCkSNHsGjRIrz77rvNfj3cwcCBA3Hu3Dk8/PDDzufee+89jB07FjqdDoIgoKqqqsX7KisrMW3aNOj1euj1ekybNq3ZdgcPHsR9992HmJgY+Pr6YsCAAXjrrbea7WPUqFE4d+4cfve737nq9IioFSqpCyCitkVERFxyG71e7/I6Ghoa4O3t7fLjyFFeXh4A4Pbbb4cgCJe9n8bGRnh5eXVVWe2iUqla/B6qra3FLbfcgltuuQVz585t9X33338/zpw5g40bNwIAHn74YUybNg0bNmwAAOzduxehoaFYuXIlYmJisGPHDjz88MNQKpV44oknAADe3t6IiIiAr68vzGazC8+SiC7Ejh2RRMaOHYs5c+bgz3/+M4KCghAREYGFCxc22+bCob9+/foBAIYMGQJBEDB27FgALTuBGzduxLXXXouAgAAEBwdj4sSJznDSXn379sXixYsxY8YM6PV6zJ49GwCwY8cOXHfddfD19UVMTAzmzJmDmpoa5/uWLVuG+Ph4+Pj4IDw8HHfffXez833iiSfwxBNPOGubN28eRFF0blNZWYkHH3wQgYGB0Gg0uPXWW5Gbm+t8fcWKFQgICMA333yDAQMGQKvV4pZbbsG5c+ec22zbtg1XXXUV/Pz8EBAQgGuuuQanTp1yvr5hwwYMHToUPj4+iI2NxaJFi2CxWFr9HBYuXIhJkyYBABQKhTPY2Ww2ZGRkIDo6Gmq1GoMHD3aGIODX7uqqVaswduxY+Pj4YOXKlW0eo3fv3lCr1YiKisKcOXMAABkZGUhNTW2x/dChQzF//vx2nWtrnn76afzlL3/ByJEjW339yJEj2LhxIz744ANcffXVuPrqq/H+++/jq6++wrFjxwAAM2fOxNKlSzFmzBjExsZi6tSpeOihh7B69eqLHpuIXI/BjkhCH374Ifz8/LB79268+uqryMjIwObNm1vd9ueffwYAfPvttzh37lyb/4jW1NQgPT0dv/zyC7Zs2QKFQoE77rgDNputQ7X9/e9/R0pKCvbu3YsXXngBWVlZGD9+PO68804cOnQIn332GX788Udnh2bPnj2YM2cOMjIycOzYMWzcuBHXXXddi/NVqVTYvXs3li5din/84x/44IMPnK/PmDEDe/bswfr167Fz506IoojbbrsNjY2Nzm1qa2vx2muv4aOPPsIPP/yA06dP45lnngEAWCwWpKWlYcyYMTh06BB27tyJhx9+2BnIvvnmG0ydOhVz5sxBTk4O3n33XaxYsQIvvvhiq5/BM888g+XLlwOwD4s7AuRbb72F119/Ha+99hoOHTqE8ePHY/Lkyc1CKAA899xzmDNnDo4cOYLx48e32P8XX3yBf/zjH3j33XeRm5uLtWvXOsPczJkzkZOTg19++cW5/aFDh7B//37MmDHjkud6uXbu3Am9Xo8RI0Y4nxs5ciT0ej127NjR5vsMBgOCgoI6dWwi6gIiEXWL6dOni7fffrvz5zFjxojXXntts22GDx8uPvfcc86fAYhr1qwRRVEU8/PzRQDi/v37L7rf3yopKREBiFlZWRfdz4X69OkjpqWlNXtu2rRp4sMPP9zsue3bt4sKhUKsq6sTv/zyS1Gn04lGo7HVfY4ZM0YcMGCAaLPZnM8999xz4oABA0RRFMXjx4+LAMSffvrJ+XpZWZno6+srrlq1ShRFUVy+fLkIQDxx4oRzm3/9619ieHi4KIqiWF5eLgIQt23b1moNo0ePFl966aVmz3300UdiZGRkm5/FmjVrxN/+VRkVFSW++OKLzZ4bPny4+Nhjj4mi+Otn/Oabb7a5X1EUxddff11MSEgQGxoaWn391ltvFf/whz84f3766afFsWPHiqJ46XNdsGCBOGjQoDaPvXXrVhGAWFlZ2ez5F198UYyPj2+xfXx8fIvPzmHHjh2il5eXuGnTphavXer3JxF1LXbsiCR0xRVXNPs5MjISJSUlndpnXl4e7r//fsTGxkKn0zmHcE+fPt2h/QwbNqzZz3v37sWKFSug1Wqdj/Hjx8NmsyE/Px8333wz+vTpg9jYWEybNg2ZmZmora1tto+RI0c26yhdffXVyM3NhdVqxZEjR6BSqZp1ioKDg5GYmIgjR444n9NoNIiLi3P+fOFnFhQUhBkzZmD8+PGYNGkS3nrrrWbDtHv37kVGRkazc5g9ezbOnTvXota2GI1GnD17Ftdcc02z56+55ppmdbb2Gf7WlClTUFdXh9jYWMyePRtr1qxpNiw8e/ZsfPLJJ6ivr0djYyMyMzMxc+bMdp1rZ7TW9RNFsdXns7Ozcfvtt2P+/Pm4+eabu+T4RHT5GOyIJPTbi+kFQejwkOlvTZo0CeXl5Xj//fexe/du7N69G4B9AkRH+Pn5NfvZZrPhkUcewYEDB5yPgwcPIjc3F3FxcfD398e+ffvwySefIDIyEvPnz8egQYNanXXZGvGCa+1++/yFgaK1z+zC9y5fvhw7d+7EqFGj8NlnnyEhIQG7du1ynsOiRYuanUNWVhZyc3Ph4+PTrjovPO7F6gRafoa/FRMTg2PHjuFf//oXfH198dhjj+G6665zDj1PmjQJarUaa9aswYYNG2A2m3HXXXe161wvV0REBM6fP9/i+dLSUoSHhzd7LicnBzfccANmz56NefPmdeq4RNQ1GOyI3IRjVqrVam1zm/Lychw5cgTz5s3DjTfeiAEDBqCysrJLjn/llVciOzsb/fv3b/Fw1KZSqXDTTTfh1VdfxaFDh1BQUIDvvvvOuY/fho5du3YhPj4eSqUSycnJsFgsziDqOJ/jx49jwIABHap1yJAhmDt3Lnbs2IGUlBR8/PHHznM4duxYq+egULTvr0OdToeoqCj8+OOPzZ7fsWNHh+sEAF9fX0yePBlLly7Ftm3bsHPnTmRlZQGwf57Tp0/H8uXLsXz5ctx7773QaDTtOtfLdfXVV8NgMDiv6QSA3bt3w2AwYNSoUc7nsrOzcf3112P69OltXqNIRN2Py50QuYmwsDD4+vpi48aNiI6Oho+PT4ulTgIDAxEcHIz33nsPkZGROH36NP7yl790yfGfe+45jBw5Eo8//jhmz54NPz8/HDlyBJs3b8bbb7+Nr776CidPnsR1112HwMBAfP3117DZbEhMTHTuo7CwEOnp6XjkkUewb98+vP3223j99dcBAPHx8bj99tsxe/ZsvPvuu/D398df/vIX9OrVC7fffnu7aszPz8d7772HyZMnIyoqCseOHcPx48fx4IMPAgDmz5+PiRMnIiYmBlOmTIFCocChQ4eQlZWFxYsXt/uzePbZZ7FgwQLExcVh8ODBWL58OQ4cOIDMzMwOfKL2Wb5WqxUjRoyARqPBRx99BF9fX/Tp08e5zaxZs5yB8aeffmr3ubaluLgYxcXFOHHiBAAgKysL/v7+6N27N4KCgjBgwADccsstzl8HwL7cycSJE52/lo5QN27cOKSnp6O4uBgAoFQqERoa2qHPgIi6FoMdkZtQqVRYunQpMjIyMH/+fIwePRrbtm1rto1CocCnn36KOXPmICUlBYmJiVi6dKlzaZTOuOKKK/D999/j+eefx+jRoyGKIuLi4nDPPfcAAAICArB69WosXLgQ9fX1iI+PxyeffIKBAwc69/Hggw+irq4OV111FZRKJZ588slmi+cuX74cTz31FCZOnIiGhgZcd911+Prrr9u9/ptGo8HRo0fx4Ycfory8HJGRkXjiiSfwyCOPAADGjx+Pr776ChkZGXj11Vfh5eWFpKQkzJo1q0OfxZw5c2A0GvGnP/0JJSUlSE5Oxvr16xEfH9+h/QQEBODll19Geno6rFYrUlNTsWHDBgQHBzu3iY+Px6hRo1BeXt7s+sNLnWtb3nnnHSxatMj5s2Pm8vLlyzFjxgwAQGZmJubMmYNx48YBACZPnox//vOfzvd8/vnnKC0tRWZmZrMw26dPHxQUFHToMyCiriWIbV3YQkTUhcaOHYvBgwdLcnsrdyaKIpKSkvDII48gPT293e9buHAh1q5dK/mt42bMmIGqqiq3uRUbkbvjNXZERDJVUlKCN954A0VFRXjooYc6/P6srCxotVosW7bMBdVd3Pbt26HVajs8PE1EncOhWCIimQoPD0dISAjee+89BAYGdui9c+bMwdSpUwFAkuvehg0b5uwWarXabj8+UU/FoVgiIiIiD8GhWCIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCMiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AObDYbzp49C39/fwiCIHU5RERE1IOIoojq6mpERUVBobh4T47Brh3Onj2LmJgYqcsgIiKiHqywsBDR0dEX3YbBrh38/f0B2D9QnU4ncTVERETUkxiNRsTExDjzyMUw2LWDY/hVp9Mx2BEREZEk2nM5GCdPEBEREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2Cwc3NVtQ14+tP9WLolF/WNVqnLISIiIgmppC6AOmfh+mysPXAWALBmfxFevCMFo+JCJK6KiIiIpMCOnRvbnHMeaw+chUIAQv3VyC+rwf3v78aznx9EZU2D1OURERFRN2Owc1NVtQ3465osAMDD18Vhy5/GYNrIPhAE4PO9Z3DjG99j27ESiaskIiKi7sRg56YyvspBabUZcaF+ePqmeOh8vPC3tBR88egoJIb7o6KmAemrDsJs4XV3REREPQWDnRv67uh5rN5XBIUA/H3KIPh4KZ2vDe0TiA1PXosInQ8qahrwTfZ5CSslIiKi7iT7YFdaWooJEyZAo9EgMTERW7ZsaXW79PR0xMbGwt/fH8OGDcMPP/zgfG3btm1QKBTQarXOx/bt27vrFLqUoa4Rc1fbh2BnjY7Flb0DW2zjrVLgnuExAIDMXae6tT4iIiKSjuyD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurna8nJCTAZDI5H6NHj+7O0+gyi7/KwXmjGbEhfki/OaHN7e69KgYKAdidX4ETJaZurJCIiIikIutgZzKZsG7dOmRkZECj0SAtLQ0pKSnYsGFDi20XLFiA/v37Q6FQYMqUKfD19cXx48clqNp1Dp2pwud7z0AQgFfvvqLZEOxvRep9cUNSOADg492nu6tEIiIikpCsg11ubi70ej0iIyOdzw0aNAjZ2dkXfV9BQQEqKirQv3//Zs+FhYUhPj4eGRkZsFrbnlRgNpthNBqbPeRg69FSAMAtAyMwrG/QJbd/YGRvAMAXewu5eDEREVEPIOtgZzKZoNPpmj2n0+lgMrU9tNjY2Ijp06fj2WefhV6vBwAkJSXhwIEDKC4uxrp167Bq1SosXbq0zX0sWbIEer3e+YiJiemaE+qkHXllAIDR8aHt2v66+FD0CvCFsd6C/zt0zpWlERERkQzIOthptdoW3TKj0QitVtvq9qIoYsaMGQgLC8PChQudz0dERCApKQkKhQLJycmYN28e1qxZ0+Zx586dC4PB4HwUFhZ2yfl0Rn2jFftPVwEAro4Lbtd7lAoB94+wd+0yd3MSBRERkaeTdbCLj4+HwWBAcXGx87mDBw9i4MCBrW7/5JNP4uzZs1i5ciUUirZP7WKvAYBarYZOp2v2kNreU5VosNoQqfdB32BNu983ZVg0VAoB+05X4cg5eQwpExERkWvIOthptVpMnjwZCxYsQF1dHdavX4/Dhw9j0qRJLbZdsGABfvrpJ6xbtw5qtbrZa9u2bXN23XJzc7F48WJMnDixW86hqziGYa+ODYYgCO1+X5i/D8YN5CQKIiKinkDWwQ4Ali1bhsLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu4yMDBw5cgRRUVHOteoyMzMBAHv37sXIkSPh5+eHcePGIS0tDenp6VKd0mXZmVcOoP3DsBd6YEQfAMCa/UWoMVu6tC4iIiKSD0EURVHqIuTOaDRCr9fDYDBIMixrMlswaNEmWG0ifnzuekQHtn8oFgBsNhE3vvE98stqsOTOVNx3VW8XVUpERERdrSM5RPYdOwJ+KaiA1Said5Cmw6EOABQKAfddZZ/Z+9kv0k8EISIiItdgsHMDzmHY2I4PwzpMHtQLgH2RY2N9Y5fURURERPLCYOcGHMFuVP/LD3YReh/0C/GDTQR+ya/oqtKIiIhIRhjsZM5Q24jDZw0AOtexA4CRsfa7VTiCIhEREXkWBjuZ251fDlEE4kL9EKbz6dS+RjYFw135DHZERESeiMFO5nZ0YpmT33IEu+yzRhhqeZ0dERGRp2Gwk7ldJ5uur4sL6fS+wnU+iA3xgygCPxfwOjsiIiJPw2AnY2UmM44WVwP4tdvWWSObOn+OwEhERESeg8FOxhzhKynCH0F+3l2yT0dA5AQKIiIiz8NgJ2OduY1YWxwzY48UG1FV29Bl+yUiIiLpMdjJmHP9ui64vs4hzN8HcaH26+x2cz07IiIij8JgJ1PFhnqcLKuBQgCu6hfUpft2LnvC6+yIiIg8CoOdTO07XQkAGBCpg97Xq0v3fbVzAgU7dkRERJ6EwU6m8kpMAICkCF2X73tEP3uwO3LOiMoaXmdHRETkKRjsZOpkWQ0AIDbUr8v3HeqvRnyYFgCvsyMiIvIkDHYydbLU3rGLc0GwA3idHRERkSdisJMhURSRV2rv2MWFal1yDAY7IiIiz8NgJ0Ol1WaYzBYoBKB3sMYlxxjRtJ7d0eJqVPA6OyIiIo/AYCdDJ5qGYXsHaaBWKV1yjBCtGgnhTdfZsWtHRETkERjsZOhkqWPihGuGYR2u5nAsERGRR2GwkyFnsAtxzcQJh1+vs+PMWCIiIk/AYCdDeY4ZsWGu7dhd2ScQAJBbUo26BqtLj0VERESux2AnQyfL7MHO1R27MH81QrRq2ETgaLHRpcciIiIi12Owk5n6RivOVNYBcH3HThAEDIyy39ni8FkGOyIiInfHYCczBeU1EEVA56NCsJ+3y4+X0sse7LKLDC4/FhEREbkWg53MXDgjVhAElx8vJUoPADh8lsGOiIjI3THYyUxeieNWYq4dhnVI6WUPdseLTWiw2LrlmEREROQaDHYyc7LM0bFz7cQJh+hAX+h8VGiw2pBbUt0txyQiIiLXYLCTGedSJ90U7ARBcHbtsos4gYKIiMidMdjJiCiKzmvsumsoFsAFM2N5nR0REZE7Y7CTkdJqM0xmCxQC0DtY023HdXTsDnNmLBERkVtjsJORE03DsL2DNFCrlN123IFNM2OPnKuG1SZ223GJiIioazHYyciFS510p34hftB4K1HXaEV+010viIiIyP0w2MmIY+KEq28l9ltKhYDkyKbr7DiBgoiIyG0x2MmIc+KEi28l1hrnBApeZ0dEROS2GOxk5GSZNB07ABjoWPKE94wlIiJyWwx2MlHfaMWZyjoA0nTsLry1mChyAgUREZE7YrCTiYLyGogioPNRIdjPu9uPHx+uhbdSgep6Cwor6rr9+ERERNR5DHYykVfy64xYQRC6/fheSgWSIv0BcKFiIiIid8VgJxMnnbcS6/5hWAfHBIpsBjsiIiK3xGAnEyfLHB277p844eBYqJhLnhAREbkn2Qe70tJSTJgwARqNBomJidiyZUur26WnpyM2Nhb+/v4YNmwYfvjhh2avr1ixAtHR0dDpdHjooYfQ0NDQHeW3W54MOnYX3lqMEyiIiIjcj+yD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurAQBZWVlIT0/H2rVrUVhYiIKCAixevLi7T6VNoij+uoadhB27pAh/KBUCymsacN5olqwOIiIiujyyDnYmkwnr1q1DRkYGNBoN0tLSkJKSgg0bNrTYdsGCBejfvz8UCgWmTJkCX19fHD9+HADw8ccf45577sGwYcOg1+vxwgsvYOXKld19Om0qqTbDZLZAIQC9gzWS1eHjpUR801IrvM6OiIjI/cg62OXm5kKv1yMyMtL53KBBg5CdnX3R9xUUFKCiogL9+/cHAOTk5CA1NbXZPvLz81FX1/qyHmazGUajsdnDlRzDsL2DNFCrlC491qUkR/HWYkRERO5K1sHOZDJBp9M1e06n08FkavtG9Y2NjZg+fTqeffZZ6PX6Vvfj+L6t/SxZsgR6vd75iImJ6eypXNR5Yz0Ugn2pE6lduFAxERERuReV1AVcjFarbdEtMxqN0GpbD0CiKGLGjBkICwvDwoUL29yP4/u29jN37lykp6c3296V4e6OIdG4LTUS1fUWlx2jvRwTKHJ4azEiIiK3I+uOXXx8PAwGA4qLi53PHTx4EAMHDmx1+yeffBJnz57FypUroVD8emrJycnIyspqto9+/frB19e31f2o1WrodLpmD1dTq5QI0apdfpxLSQy3L1JcVFUHk1n6oElERETtJ+tgp9VqMXnyZCxYsAB1dXVYv349Dh8+jEmTJrXYdsGCBfjpp5+wbt06qNXNA9L999+PVatWYd++fTAYDHjxxRcxderU7joNt6LXeCHM3/755Z6vlrgaIiIi6ghZBzsAWLZsGQoLCxEcHIxnnnkGq1atQmBgIDIzM5t17jIyMnDkyBFERUVBq9VCq9UiMzMTAJCamorXX38dkyZNQnR0NGJiYvD8889LdUqyl9DUtcs93/a1jERERCQ/gsiVaC/JaDRCr9fDYDB0y7Cs1BZtyMbynwow69p+mDcxWepyiIiIerSO5BDZd+yo+zk6dsdL2LEjIiJyJwx21EJCuH22MK+xIyIici8MdtRC/zB7x+6coR7G+kaJqyEiIqL2YrCjFvS+XgjXOWbGcjiWiIjIXTDYUasc19mdKOFwLBERkbtgsKNWxTcNxx5nx46IiMhtMNhRqxwTKI5zAgUREZHbYLCjVsVzkWIiIiK3w2BHrYpv6tgVG+thqOPMWCIiInfAYEet0vl4IVLvA4ATKIiIiNwFgx21yTEcywkURERE7oHBjtqUEMYJFERERO6EwY7aFO+8tRg7dkRERO6AwY7a9OtQLDt2RERE7oDBjtoU3zQUW1JthqGWM2OJiIjkjsGO2uTv44WoppmxxzkzloiISPYY7OiiOBxLRETkPhjs6KISOIGCiIjIbTDY0UWxY0dEROQ+GOzoohK4SDEREZHbYLCji3LMjC0zmVFZ0yBxNURERHQxDHZ0UX5qFXoF+AIAckvYtSMiIpIzBju6JMcdKHidHRERkbwx2NElOa6zy2WwIyIikjUGO7okx3V2nEBBREQkbwx2dEnOjh3vPkFERCRrDHZ0SbGhfgCAMlMDDHW8ZywREZFcMdjRJfn7eCFcpwYAnCzlcCwREZFcMdhRu8SF2q+zyyutkbgSIiIiaguDHbWLYzg2jx07IiIi2WKwo3ZxdOw4FEtERCRfDHbULhyKJSIikj8GO2oXx1DsqfIaWKw2iashIiKi1jDYUbtE6X3h46VAo1VEYWWd1OUQERFRKxjsqF0UCgGxIU3DsSW8zo6IiEiOGOyo3TgzloiISN4Y7Kjdfp0ZywkUREREcsRgR+0WF+aYGcuOHRERkRwx2FG7xYbYh2JPlrFjR0REJEcMdtRujmvsKmoaUFHTIHE1RERE9FsMdtRuGm8VegX4AuAdKIiIiORI9sGutLQUEyZMgEajQWJiIrZs2dLqdsuWLcPgwYOhUqnw8ssvN3tt27ZtUCgU0Gq1zsf27du7o3yP4+jacQIFERGR/KikLuBSHn/8cURFRaGsrAybNm3ClClTkJeXh8DAwGbbRUVFYfHixfjPf/7T6n4SEhJw9OjR7ijZo8WFarE9t4wTKIiIiGRI1h07k8mEdevWISMjAxqNBmlpaUhJScGGDRtabJuWloaJEydCp9NJUGnPEce17IiIiGRL1sEuNzcXer0ekZGRzucGDRqE7OzsDu+roKAAYWFhiI+PR0ZGBqxWa5vbms1mGI3GZg+yi+VadkRERLIl62BnMpladOB0Oh1Mpo51i5KSknDgwAEUFxdj3bp1WLVqFZYuXdrm9kuWLIFer3c+YmJiLqt+T+RYpPhURS0aLDaJqyEiIqILyTrYabXaFt0yo9EIrVbbof1EREQgKSkJCoUCycnJmDdvHtasWdPm9nPnzoXBYHA+CgsLL6t+TxSuU8PPWwmrTcTpCnbtiIiI5ETWwS4+Ph4GgwHFxcXO5w4ePIiBAwd2ar8KxcVPW61WQ6fTNXuQnSAIzuHYPA7HEhERyYqsg51Wq8XkyZOxYMEC1NXVYf369Th8+DAmTZrUYluLxYL6+npYrdZm3wP25U4cXbfc3FwsXrwYEydO7NZz8SScQEFERCRPsg52gH19usLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu8WLF8PX1xcrV67ECy+8AF9fX3z00UcAgL1792LkyJHw8/PDuHHjkJaWhvT0dKlOye05O3Yl7NgRERHJiSCKoih1EXJnNBqh1+thMBg4LAvg/w6dw+Mf78OQ3gFY89g1UpdDRETk0TqSQ2TfsSP5iQtrGootMYH/LyAiIpIPBjvqsL7BfhAEwFhvQXlNg9TlEBERURMGO+owHy8logN9Adi7dkRERCQPDHZ0WeK45AkREZHsMNjRZYkNcdxajB07IiIiuWCwo8vinEDBYEdERCQbDHZ0WTgUS0REJD8MdnRZYpvuPnGmshZmi1XiaoiIiAhgsKPLFKpVQ6tWwSYCp8trpS6HiIiIwGBHl0kQBGfX7mQZh2OJiIjkgMGOLlu/kKZgx+vsiIiIZIHBji6bY8mT/DLOjCUiIpIDBju6bP1C2bEjIiKSEwY7umyxTUOx+bzGjoiISBYY7OiyOa6xK69pgKG2UeJqiIiIiMGOLpufWoUInQ8A4CSvsyMiIpIcgx11CmfGEhERyQeDHXWKYy07XmdHREQkPQY76hRnx45DsURERJJjsKNOiQu1r2XHoVgiIiLpMdhRpzg6dgXlNbDZRImrISIi6tkY7KhTogN94aUUUN9owzljvdTlEBER9WgMdtQpKqUCvYM0AICTpbzOjoiISEoMdtRpsaGOe8byOjsiIiIpMdhRp8VyLTsiIiJZYLCjTnOsZXeSHTsiIiJJMdhRp/ULcSx5wmvsiIiIpMRgR53m6NgVVdWhvtEqcTVEREQ9F4MddVqwnzf8fVQQReBUea3U5RAREfVYDHbUaYIgXDAzlsOxREREUmGwoy7hmBmbx5mxREREkmGwoy7hCHZcy46IiEg6DHbUJfo5ljzhzFgiIiLJMNhRl4gN4d0niIiIpMZgR12ib4j9frGVtY2orGmQuBoiIqKeicGOuoTGW4UovQ8A3oGCiIhIKgx21GV4nR0REZG0GOyoy/A6OyIiImkx2FGX6Rfi6Ngx2BEREUmBwY66jOOesSd59wkiIiJJMNhRl3EMxRaU18JqEyWuhoiIqOeRfbArLS3FhAkToNFokJiYiC1btrS63bJlyzB48GCoVCq8/PLLLV5fsWIFoqOjodPp8NBDD6GhgUtydLVegb7wVinQYLHhbFWd1OUQERH1OLIPdo8//jiioqJQVlaGV155BVOmTEFlZWWL7aKiorB48WJMnjy5xWtZWVlIT0/H2rVrUVhYiIKCAixevLg7yu9RlAoBfYPt69nlcWYsERFRt5N1sDOZTFi3bh0yMjKg0WiQlpaGlJQUbNiwocW2aWlpmDhxInQ6XYvXPv74Y9xzzz0YNmwY9Ho9XnjhBaxcubI7TqHHcQzHcgIFERFR95N1sMvNzYVer0dkZKTzuUGDBiE7O7tD+8nJyUFqamqzfeTn56OurvXhQrPZDKPR2OxB7cMJFERERNKRdbAzmUwtOnA6nQ4mU8dCw2/34/i+rf0sWbIEer3e+YiJielg5T1XbCg7dkRERFKRdbDTarUtumVGoxFarbZT+3F839Z+5s6dC4PB4HwUFhZ2sPKey9mxY7AjIiLqdqr2bPTqq6+2b2cqFdLT0ztV0IXi4+NhMBhQXFyMiIgIAMDBgwcxa9asDu0nOTkZWVlZzp8PHjyIfv36wdfXt9Xt1Wo11Gr15Rfeg8U1XWNXbKxHjdkCP3W7fosRERFRF2jXv7rz5s3DAw88cMntvvjiiy4NdlqtFpMnT8aCBQvw5ptvYvPmzTh8+DAmTZrUYluLxQKLxQKr1QqLxYL6+np4eXlBqVTi/vvvx9ixYzF79mzExcXhxRdfxNSpU7usTvqVXuOFYD9vlNc0IL+sBim99FKXRERE1GO0K9jp9XosX778kttt3Lix0wX91rJlyzB9+nQEBwcjOjoaq1atQmBgIDIzM/HSSy85J1IsXrwYixYtcr7vhRdewPLlyzFjxgykpqbi9ddfx6RJk2A0GnHXXXfh+eef7/JayS421A/lNQ3IKzUx2BEREXUjQRRF3iLgEoxGI/R6PQwGQ6vLqVBzz31xCJ/tKcRTN8bjjzcnSF0OERGRW+tIDrmsyRNmsxnl5eUwm82XVSB5tl+XPOEECiIiou7U7mBnsViwcOFCxMXFQaPRIDQ0FBqNBv3798eiRYvQ2NjoyjrJjfy65AnXsiMiIupO7Q52jzzyCH744Qd88MEHKC0tRUNDA0pLS/Hee+9h+/btePTRR11ZJ7kRR8cuv6wGHOknIiLqPu2+xi4gIACFhYXw9/dv8ZrBYEDv3r1hMBi6vEA54DV2HdNotWHACxthsYnYOfcGROpbX1aGiIiILs0l19j5+/vjxIkTrb6Wn5/fauCjnslLqUDvIA0ALlRMRETUndq9euzf/vY33HTTTbj33nuRmpoKnU4Ho9GIQ4cO4fPPP8frr7/uyjrJzcSG+uFkWQ1OlppwTf8QqcshIiLqEdod7GbMmIGhQ4fik08+wcaNG2EymaDVapGcnIytW7ciJSXFlXWSm4kN1QJHSjgzloiIqBt16H5PqampSE1NdVUt5EFiQ3jPWCIiou7Wrmvs1q9f366dffXVV50qhjyHc8mTMi55QkRE1F3aFezae1/VBx98sFPFkOdwLHlyprIO9Y1WiashIiLqGdo1FGsymaDRaC66jSiKUCgu60YW5IGC/byh81HBWG/BqfJaJEZw1jQREZGrtSvY5efnA7CHtzVr1mDChAlQq9UtthMEoWurI7clCAJiQ7U4UFiFk6UmBjsiIqJu0K5g16dPH+f3X375JRYvXoy0tDQ88MADuP766xnoqFWxoX72YMeZsURERN2iw2OnP/74I/bv34/ExESkp6cjOjoaf/zjH7Fnzx5X1EduzDEzNo/3jCUiIuoWl3VRXO/evfHnP/8ZBw4cwNq1a7Fp0yaMGDEC8fHxWLJkCUwm/kNOF8yM5ZInRERE3eKygl1jYyPWrVuH++67D7fccgsSEhKwatUqfPTRR8jKysK4ceO6uk5yQ46ZsSdLTWjnLYmJiIioEzq0QDEAzJw5E+vWrUNKSgoeeOABLFu2DIGBgc7Xhw4dCr1e36VFknvqG+wHQQCM9RaU1zQgRNtywg0RERF1nQ4Hu/79+2Pfvn3NJlRcyMvLC2fOnOl0YeT+fLyU6BXgizOVdThZWsNgR0RE5GIdHor961//2maocwgKCrrsgsiz/HqdHa+7JCIicjWuKEwu5bxnLJc8ISIicjkGO3KpuAsmUBAREZFrMdiRS3HJEyIiou7DYEcuFdcU7E5V1KLBYpO4GiIiIs/GYEcuFa5TQ6tWwWoTcaqcXTsiIiJXYrAjlxIEwXmd3YkSXmdHRETkSgx25HJxYfbhWN4zloiIyLUY7Mjl+jcFO3bsiIiIXIvBjlyuf9MEihPs2BEREbkUgx25nKNjl1dSA5tNlLgaIiIiz8VgRy7XO0gDb6UCdY1WnDXUSV0OERGRx2KwI5dTKRXoG6IBwOvsiIiIXInBjroFJ1AQERG5HoMddQvHBAoueUJEROQ6DHbULeLYsSMiInI5BjvqFo57xjLYERERuQ6DHXWLuFAtBAGorG1EucksdTlEREQeicGOuoWvtxK9AnwBsGtHRETkKgx21G2cM2M5gYKIiMglGOyo2zhnxpbUSFwJERGRZ2Kwo27Djh0REZFrMdhRt/n1nrEMdkRERK4g+2BXWlqKCRMmQKPRIDExEVu2bGl1u7q6OkydOhX+/v7o3bs3PvnkE+dr27Ztg0KhgFardT62b9/eXadATRzBrqiqDjVmi8TVEBEReR6V1AVcyuOPP46oqCiUlZVh06ZNmDJlCvLy8hAYGNhsuwULFqCiogJFRUU4fPgwbrvtNgwdOhQJCQkAgISEBBw9elSKU6AmARpvhGi9UWZqwMnSGqRG66UuiYiIyKPIumNnMpmwbt06ZGRkQKPRIC0tDSkpKdiwYUOLbT/66CMsWLAAOp0Oo0aNwuTJk/Hpp59KUDVdjHOh4tJqiSshIiLyPLIOdrm5udDr9YiMjHQ+N2jQIGRnZzfbrrKyEsXFxUhNTW1zu4KCAoSFhSE+Ph4ZGRmwWq1tHtdsNsNoNDZ7UNfgrcWIiIhcR9bBzmQyQafTNXtOp9PBZDK12E6pVEKj0bS6XVJSEg4cOIDi4mKsW7cOq1atwtKlS9s87pIlS6DX652PmJiYLjyrnq0/by1GRETkMrIOdlqttkW3zGg0QqvVttjOarWitra21e0iIiKQlJQEhUKB5ORkzJs3D2vWrGnzuHPnzoXBYHA+CgsLu/Cserb+7NgRERG5jKyDXXx8PAwGA4qLi53PHTx4EAMHDmy2XWBgICIiIpCVlXXR7RwUiouftlqthk6na/agruEIdqfKa9FotUlcDRERkWeRdbDTarWYPHkyFixYgLq6Oqxfvx6HDx/GpEmTWmw7depU/O1vf0N1dTV27dqF9evX45577gFgX+7E0XXLzc3F4sWLMXHixG49F7KL1PvAz1sJi03EqXLegYKIiKgryTrYAcCyZctQWFiI4OBgPPPMM1i1ahUCAwORmZnZrCOXkZHhnGgxZcoULFu2DImJiQCAvXv3YuTIkfDz88O4ceOQlpaG9PR0qU6pRxMEgRMoiIiIXEQQRVGUugi5MxqN0Ov1MBgMHJbtAumfHcDq/UV4ZlwCnrghXupyiIiIZK0jOUT2HTvyPI6OXV4ph2KJiIi6EoMddTvOjCUiInINBjvqdhcGO5uNVwIQERF1FQY76nZ9gjTwVilQ12jFmco6qcshIiLyGAx21O1USoXzDhRHi3m7NiIioq7CYEeSSIrwBwAcP18tcSVERESeg8GOJJHQFOyOFjPYERERdRUGO5JEYjg7dkRERF2NwY4kkdjUsTtZWoMGC+8ZS0RE1BUY7EgSkXof+PuoYLGJOFnG9eyIiIi6AoMdSUIQBOdw7DFeZ0dERNQlGOxIMo4JFAx2REREXYPBjiTDJU+IiIi6FoMdSSYhnEueEBERdSUGO5KM4xq7M5V1MJktEldDRETk/hjsSDKBft4I81cD4HAsERFRV2CwI0k51rM7zuFYIiKiTmOwI0kl8jo7IiKiLqOSugDq2RI4M9Zj1TdaYahrhKGuEVW1jaiqbYDFJiIqwBfRgb4I9vOGIAhSl0lE5FEY7EhSSVzLzmM0WGzYU1CBrcdKsPVYKU6UXPyOIr5eSkQH+qJfiB9Gx4fg+qQwRAdquqlaIiLPxGBHkooP84cgAOU1DSgzmRGiVUtdEnWAKIrYcqQEX+w9gx9PlLWY3awQAL2vFwI03tD5ekEpAGer6nG+uh51jVbklpiQW2LCppzzwLpsxIdpcX1SGG5MCsNV/YLY0SMi6iAGO5KUr7cSfYI0KCivxbHiaoT0Z7BzF7tPluOVjUex73SV87kQrRpjE0NxfWIYRsYGIVDjDYWiZTgzW6w4W1WPM5W1yCoyYNvRUuw9XekMeu/9cBJxoX548Oq+uGtoNLRq/lVFRNQegiiKotRFyJ3RaIRer4fBYIBOp5O6HI/z8H/3YFPOecyfmIyZ1/aTuhy6hOyzBvz9m2PYdqwUAODjpcD0q/ti4hVRGBilazXItYehthE/5JZi69ESbMo57+z+adUq3HVlL0y7ui/6h2m77DyIiNxFR3II/xtMkkuK8MemnPO8zk7m6hutyPgqBx/vPg0AUCkE3HtVDObcEI8wnU+n96/XeGHSoChMGhQFk9mC1fvO4MMdBcgrrcGHO0/hw52nMGlQFP54UzxiQxnwiIhaw2BHknPMjD3GmbGyVVRVhz+s3ItDZwwAgEmDovCnmxPQN8TPJcfTqlV48Oq+mDayD346UY4VOwrw7ZHz2HDwLL7OOocpQ6Mx58Z4RAX4uuT4RETuisGOJJd0wZInNpt42UN55Bo/nSjDk5/sR0VNAwI0Xlh67xBclxDaLccWBAHXxofg2vgQ5Jw14o3Nx/DtkRJ8+kshVu8rwgMje+OpG+MRoPHulnqIiOSOCxST5PoE+8FbqUBtgxVFVXVSl0NNRFHEO9/nYdr/242Kmgak9NJhwxPXdluo+63kKB0+mD4cX/5hFEbGBqHBasPynwow9rVtWLnrFKw2Xi5MRMRgR5LzUioQ13RRPO9AIQ9Wm4j0VQfx8v+OwiYCU4ZG44tHRyEmSPp15ob2CcQns0fio99fhcRwf1TVNmLe2sOY/M8fsaegQuryiIgkxWBHspAYbg92vAOF9Gw2EX/58hDW7C+Cl1LAi3ek4NW7r4CPl1Lq0pwEQcDo+FD835xrsXBSMvx9VMg+a8Td7+zEHz87gNJqs9QlEhFJgsGOZMExgYIdO2mJoohFG7Lx+d4zUCoEvH3fEDwwoo9sFwpWKRWYcU0/bH1mLO4ZFgNBANbsL8KNr2/DJz+fho3Ds0TUwzDYkSw4J1Aw2ElGFEW8svEYPtx5CoIAvDblCtySEil1We0SolXjlbuvwNrHrkFKLx2M9RbMXZ2Fe97biVx2gYmoB2GwI1lIjLAvuJhXaoLZYpW4mp7pn9+dwDvf5wEAFqel4I4h0RJX1HGDYgKw9rFrMG/CAGi8lfiloBK3Ld2O1zcdQ30jf18RkedjsCNZiNL7IEDjBYtNxPHii988nrre8p/y8frm4wCAeRMG4IERfSSu6PKplArMGh2LzeljcNOAMDRaRbz93Qnc9tZ27DpZLnV5REQuxWBHsiAIAlJ76QEAh88aJK6mZ9mRV4a/fZUDAEi/OQGzRsdKXFHX6BXgi/cfHIZ/P3AlwvzVOFlWg3vf24XnvjgEQ22j1OUREbkEgx3JxsAoe7DLKmKw6y7njfWY88l+2ETgriuj8eQN/aUuqUsJgoBbUyOxOX0M7h/RGwDw2Z5C3PjG99hw8Cx4q2wi8jQMdiQbKb3s19llM9h1i0arDU98vA9lpgYkRfhjcVqKbGe/dpbe1wsv3ZGKzx+9GnGhfigzmfHkJ/vx0IpfUFhRK3V5RERdhsGOZCOlqWN3pLgajVabxNV4vlc3HsUvBZXQqlX499Sh8PWWzzp1rjK8bxC+fmo0nroxHt5KBbYdK8XN//gey7adQIOFv+eIyP0x2JFs9A7SwF+tQoPFhhMlnEDhShsPn8P72/MB2Jc16RfiJ3FF3UetUuKPNyfgf0+PxsjYINQ32vDqxmOY+PZ2/MI7VxCRm2OwI9lQKAQkR9mHYw9zONZl8stq8OznhwAAs67t5zZr1XW1uFAtPpk9Em/8bhCC/Lxx/LwJU97ZifRVB1BirJe6PCKiy8JgR7KS0jQzNvusUeJKPFOj1YYnP9mHarMFw/sG4rlbk6QuSVKCIODOK6Px3Z/G4N7hMQCA1fuKcP1r2/DvbXlcU5GI3A6DHcmKYwIFO3au8d4PJ3G4yIgAjRfevu9KeCn5VwAABGi88fJdV2Dt49dgcEwAahqseGXjUYz/xw/4Nuc8Z88SkdtQSV3ApZSWlmLGjBnYunUrYmJisGzZMtx4440ttqurq8Ps2bOxbt06BAYG4pVXXsF9993nfH3FihWYN28ejEYj7rrrLrz77rvw9vbuzlOhdnCsZZdzzgirTYRS4ZmzNKVwosSEt7bkAgDmT0xGhN5H4orkZ3BMAFb/YRTW7C/CyxuPoqC8FrP+uwcjY4Pw51uScGXvQKlLpIswW6ww1DXCWNcIQ50FNWYLahusqGts+tpgRYPVBotVhMVqQ6NNhNUmthrcFQoBKoUAlUJh/6pUwFulgFqlgI+X0vnV10sJX28lNN5K+Hmr4OuthFatgo+XwmNnmZO8yT7YPf7444iKikJZWRk2bdqEKVOmIC8vD4GBzf+CXbBgASoqKlBUVITDhw/jtttuw9ChQ5GQkICsrCykp6dj06ZNiI+PR1paGhYvXoyMjAyJzora0i9EC18vJWobrMgvM6F/mL/UJXkEm03EX748hAaLDWMSQnHHkF5SlyRbCoWAu4ZGY3xKBP753Qn856d87DpZgTuX7cDNyeF4dnwiEsL5+7K7iKKI8poGnKuqR1FVHc4Z6lBabUZptRllJjPKTA0oM5lRWduA+kb5zGxWKgT4eSvh7+MFP7U97Pn7eMHfR9X08ILO8dVXBX+1F3S+9tcdX7XeKij4n1vqIEGU8RiDyWRCcHAwCgoKEBlpv8D7uuuuw6xZs/Dggw822zYyMhJr167FiBEjAAAPPvgg+vfvj/nz52Pu3LmoqqrCv//9bwDAd999h1mzZuHkyZPtqsNoNEKv18NgMECn03XhGVJr7vr3Duw9VYk37xmMNAaQLvHfnQWYvy4bft5KbEofg14BvlKX5DaKqurw1rfH8cXeM7CJgCAAdwzphSeu74/YUK3U5XmERqsNpytqcaq8BgVl9q+nKmpxurwWRVV1MHdgKRpBAPzVKug1XvDzVkHjrYSmqZOm8VbCW6mASqmAl7KpG6cU0KKxJgI2UUSj1d7Rs9hsaLSKaLDYYLZYUd/469f6RitqGiyoa7CitunRVRzn8ttA6O+jglatgtZHBX+143svaNX2c/VTq+CnVjY7f3YQL87x62y1Nf91t9pEWJp+toqi82eb2Pw5q03EwCgd/H28XFJfR3KIrDt2ubm50Ov1zlAHAIMGDUJ2dnaz7SorK1FcXIzU1NRm2/38888AgJycHIwfP77Za/n5+airq4Ovb8t/4MxmM8xms/Nno5EX8nenlCgd9p6qxOEiA4NdFzhTWYtX/ncUAPCXW5MY6jqoV4AvXr17EB6+LhavbzqO/x0uxup9RVizvwjjkyPwyJhYDOEQbbs0WGw4WWbCseJqnCgxOR8F5TVotLbdYxAEIFSrRlSAL6ICfBDm74NQfzVCtN4I0aoRolUjUOMNfVOnS8oul80morbRihqzBSazBaZ6+9fqeguq6xubvl7wvbkRxjr7z8am5411FjRYbRBFwFhvgbHe0iW1+XrZw62PlxI+XgqoVfavjqFlr6bhZseQs5dSAZWiKQQrfx2WVigEKBUClIL9e4UACLB3uwUAEJq+Amj2qyqKsDWFZvGCr45wZLPZX7f/bIOl6TmLzRG0RFitIhovCFwWm31o3T6sbg/gFqv9vc1ftzW9t+l1q31/lqbjdEWLa81jo2Txd4Gsg53JZGqRTHU6Haqqqlpsp1QqodFomm1nMpla3Y/je5PJ1GqwW7JkCRYtWtRVp0EdNJD3jO0yoijir2sOo6bBiuF9A/HAiD5Sl+S2+of5499Th+JgYRXe/i4X3x4pwcbsYmzMLsaIfkF4dEwcxiSEcuisSZnJjOyzRuScNeJosRHHiquRV2pqM8D5einRL8QPfYI16BPsh77BGvQO1iAmUINwnQ+8Ve4x0UehEOwdNLUK4Z3YT32jFdX1FhidYfC3X+2BscZsQXVTcKxtCpO1Db8Gywu7nXWNVtQ1cqZ3eykE+5C6sulaS4UAqJQKKAT79ZdKhQCFAlAK9u/l8ntU1sFOq9W26JYZjUZotdoW21mtVtTW1jrD3YXb/XY/ju9/ux+HuXPnIj09vdn2MTExnT8hahfHHSiyi4yw2UT+Q9kJq/cV4YfjpfBWKfDyXVfws+wCg2IC8MH04cg9X413fziJdQeKsDu/ArvzKxAT5IvfDY3B3cOiEanvGZ1RURRRVFWHw0VGZJ81IPus/et5o7nV7f3VKiRG+CM+3B/9w7TOR6TOh78/L2DvqikR6q/u1H6sNhH1jVbn5JHaRotzCNn+sA8rmy02NDgeVvvXRmfnq6kT1tQpsz/gHI60iaK9M3dBF06ECEff7sIRYEdXTyHYh8AVggCFIECpsIeoX39uCk9KwRmcHEPnKsWvrzuG1ZWK5sPrzueatnG8z9GBVCoEe0fygk6kUinAS6Fw7ttdfz/KOtjFx8fDYDCguLgYERERAICDBw9i1qxZzbYLDAxEREQEsrKynNfYHTx4EAMHDgQAJCcnIysry7n9wYMH0a9fv1a7dQCgVquhVnfuDxNdvvhwLbyVClSbLSisrEWf4J5zV4SuZKhtxOL/ywEAPH1TPOJ4PViXig/3x2tTBuFP4xLwnx/z8enPhSisqMPrm4/jH98ex5iEUNwzPAZjE8Pg4+UZt2uz2UScqqhF9lkDDhcZcbjIgMNnDaiqbWyxrSAA/YL9MCBKh+RIHZIi/JEY4Y9eAb681qsbKRVC0zV3sv7nnrqQrCdPAMCUKVMQFBSEN998E5s3b8aMGTNanRX77LPP4siRI/jkk0+QnZ2NW265Bbt370ZiYiKysrIwduxYbN68GXFxcbjzzjtxzTXXtHtWLCdPdL/J//wRh84Y8K/7r8SEK3rmnRE6629f5eD//ZiP+DAtvn5qNNesc7G6Biv+d/gcPv2lED/n/3prMo23EtfFh2LcwHDckBSGAI17LLPUYLEht6QaR85VI+esEYfPGpBz1giTueX1Xl5KAQnh/hgYpcPAKD0GRumQFKmDlmGCqEt4zOQJAFi2bBmmT5+O4OBgREdHY9WqVQgMDERmZiZeeukl50SKjIwMzJo1C5GRkQgMDMSyZcuQmJgIAEhNTcXrr7+OSZMmOdexe/7556U8LbqElF56HDpj7wYw2HVcXqkJH+4oAAC8MDGZoa4b+HorceeV0bjzymicLDVh1Z4zWHegCOcM9c5r8ZQKAcP6BGJkbDCG9Q3E4JgAl82iay+bTcSZyjrkllTj+HkTcs9XI+ecESdKTLDYWv6/31ulwIBIHQZG6ZDaS4+UKD0SIrRQqzyjK0nk7mTfsZMDduy638e7T+Ova7IwOj4EH/1+hNTluJ3fr/gFW46W4IakMPxnxnCpy+mxRFHE4SIjNucUY1POeRwtrm72ukIAEiN0uLJ3ABLC/REb6ofY0K6/3qzRakNptRmnymtxuqIGp8prcappeZETJaY213/T+agwIFKHAZE6pPTSI6WXDnGhWv5HgaibeVTHjnqmC28tJooir8npgB+Ol2LL0RKoFAKenzBA6nJ6NEEQkBqtR2q0HunjElFYUYttx0uxt6ACe05V4kxlHY6cM+LIueaTxHy8FOgb7GdfxsPPG4EaLwRqvBGg8WqalQfnUhOAfQalyWxBrdn+1WS2oLTajJJqM0qM9aiobbjocg7eSgViQ/0QH+6PhDAtkiJ1SI7SIUrvwz97RG6GwY5kKSHcHyqFgMraRpw11HPttXayWG3421f2CRMPXt2XEyZkJiZIg2kj+2DaSPuyM+eN9dh7qhIHC6uQV1qD/DITTlfUor7R1tTdq774DjtApRDQK9AXvYM09iVFgvzQO1iD/mFa9AnSQMUuHJFHYLAjWfLxUiI+3B9Hztln3jHYtc/HP59GbokJgRovPHVjvNTl0CWE63xwW2okbkv99TpSi9WGM5V1OFVRi4oaMypqGlFV24CKmgZU1TXCZvt1iQnHYq+O+5Q67jig8VYhVKtGmE6NMH8fhOnUCNJ4u+3yDUTUfgx2JFspUTocOWdEdpEB4wdGSF2O7BlqG/HG5uMAgPSbE6DXSHtRPl0elVKBviF+6BvCZX6IqOPYeyfZSnHegYK3dGuPt7bkoqq2EQnhWtx3VW+pyyEiIgkw2JFsOSZQZDVNoKC2FVbU4qNdBQCAeROSeb0UEVEPxb/9SbaSI/VQKQSUVptRVFUndTmy9ua3uWi0ihgdH4LrEkKlLoeIiCTCYEey5eutxMAoe9du76lKiauRr9zz1Viz/wwA4JlxiRJXQ0REUmKwI1kb2icIALCngMGuLW9sPg6bCIwfGI5BMQFSl0NERBJisCNZG9bXfk/gPezYterQmSr873AxBAH4E7t1REQ9HoMdydrQPvZgd6zYiOr6RomrkZ/XNtmXN7ljcC8khPtLXA0REUmNwY5kLVzng+hAX9hE4EBhldTlyMquk+X44XgpVAoBT9+UIHU5REQkAwx2JHvDmrp2vM7uV6Io4rVvjgEA7r0qBr2DNRJXREREcsBgR7I3tK99AgVnxv5q27FS7DlVCbVKgSdv4K3DiIjIjsGOZM/Rsdt/uhIWq03iaqQniiJe22Tv1s0Y1RfhOh+JKyIiIrlgsCPZSwj3h79ahZoGK44WV0tdjuQ255xH9lkj/LyVeGRMnNTlEBGRjDDYkewpFQKGNHXt9p3u2cOxoihi6Xe5AIDpo/oiyM9b4oqIiEhOGOzILQztzQkUAPDd0RIcLjJC463ErNGxUpdDREQyw2BHbsGxUHFPnkAhiiLe2mLv1k27ug+7dURE1AKDHbmFwTEBUCoEFFXV4ZyhTupyJLHteCkOnTHA10uJh9mtIyKiVjDYkVvwU6swINJ+Z4WeOBwriiLe+vbXbl2wVi1xRUREJEcMduQ2hvXpuevZ/ZBbhgOFVfDxUmA2u3VERNQGBjtyG477xva0YGfv1tnvCfvAiD4I9We3joiIWsdgR27DMYEi55wRNWaLxNV0n59OlGPf6SqoVQo8MobdOiIiahuDHbmNSL0vegX4wmoTcbCwSupyuoV9Jqy9W3f/iN4I8+ddJoiIqG0MduRWrmwajt3TQ4Zjd52swC8FlfBWKfAo7zJBRESXwGBHbmVYD7vO7p9b7TNh7xkWw3vCEhHRJTHYkVtxTKDYd6oSFqtN4mpca++pSvx0ohwqhYBHx7JbR0REl8ZgR25lQKQOARovVJstOHimSupyXOqfTfeEvevKaPQK8JW4GiIicgcMduRWlAoBo+NDAQDbjpVKXI3rHC4yYOuxUigE4A/s1hERUTsx2JHbGZNgD3bfH/fcYPd2U7fu9sG90DfET+JqiIjIXTDYkdu5LiEEAHDojAFlJrPE1XS9Y8XV+Cb7PAQBeIzdOiIi6gAGO3I7Yf4+GBilAwBsz/W8rt0/t54AANyaEoH4cH+JqyEiInfCYEduyTkc62HX2eWVmvDVobMAgCeuj5e4GiIicjcMduSWxiaGAQB+yC2DzSZKXE3XWbY1D6II3DQgDMlNXUkiIqL2YrAjtzSkdwD81SpU1DQgq8ggdTld4lR5DdYeKAIAPHEDu3VERNRxDHbklryUClzT3z6JwlNmx/5r6wlYbSKuSwjF4JgAqcshIiI3xGBHbmtsomM9uxKJK+m8woparN5n79Y9dSO7dUREdHkY7MhtXdc0geJAYRWqahskrqZz/rX1BCw2EaPjQ5y3TSMiIuooBjtyW1EBvkgI18ImAttzy6Qu57IVVtTii71nAABP38RuHRERXT4GO3Jrjtmx7nyd3bJt9m7dtf1DMLRPkNTlEBGRG5N1sPvll18waNAgaDQajBkzBqdOnWpz27y8PFxzzTXQaDS48sorcfDgQedrCxcuhJeXF7RarfNBnuHC24uJovste3Kmshaf77F3655it46IiDpJtsHObDbjzjvvxFNPPYWKigqMHDkS06ZNa3P7++67D+PGjUNFRQVmzpyJO+64AxaLxfn673//e5hMJueDPMOwvoHQeCtRWm1Gzjmj1OV02LJtebDYRIyKC8bwvuzWERFR58g22G3btg1arRYzZ86Ej48P5s+fjz179rTatTt27BiOHTuGuXPnwsfHB0888QSsVit27NghQeXUndQqJUbFBQNwv+HYoqo6fL6nEABnwhIRUdeQbbDLyclBamqq82c/Pz/ExcUhJyen1W0TExPh7e3tfO6KK65Adna28+dPP/0UQUFBGDJkCFavXn3RY5vNZhiNxmYPki/HcOw2N7u92L+3nUCjVcTI2CCMiA2WuhwiIvIAsg12JpMJOl3zWyrpdLpWh1Evte3vfvc7HD16FCUlJXjllVfw0EMPYc+ePW0ee8mSJdDr9c5HTExMF5wRuYpjAsXeU5UoM5klrqZ9Citq8dkvjm5dgsTVEBGRp5As2I0bNw4+Pj6tPhYvXgytVtuiU2Y0Glud+HCpbZOTkxEREQGVSoVx48bhvvvuw/r169usbe7cuTAYDM5HYWFhF5wxuUpMkAaDovWw2kSsP3BW6nLa5R+bj6PRap8Je3Ucu3VERNQ1JAt2mzZtQn19fauPefPmITk5GVlZWc7ta2pqkJeXh+Tk5Bb7Sk5OxrFjx9DY2Oh87tChQxg4cGCrx1YoLn7aarUaOp2u2YPk7a6h0QCAL/edkbiSSztabMSapnvCPjs+UeJqiIjIk8h2KHbs2LEwmUxYsWIFzGYzFi9ejGHDhqFPnz4ttk1MTERiYiJefvllmM1mLFu2DEqlEqNGjQIArF+/HgaDATabDd999x0yMzNx2223dfcpkQtNuiIKXkoB2WeNOFos72siX/vmGEQRuC01AoN4T1giIupCsg12arUaq1evxhtvvIGAgAD89NNP+Oijj5yvP/roo3j00UedP3/88cfYuHEjAgIC8P7772P16tVQqVTO1/r16we9Xo+nn34a7733HkaOHNnt50SuE+jnjRuTwgEAX+6Vb9ful4IKfHukBEqFgD+NY7eOiIi6liC646qu3cxoNEKv18NgMHBYVsY255zH7P/uQYhWjV1zb4BKKa//t4iiiCnv7MSeU5W476oYLLnzCqlLIiIiN9CRHCKvf/mIOmFsYiiC/bxRZjLL8t6xW4+VYM+pSqhVCs6EJSIil2CwI4/hpVRg8uAoAMAXMhuOtdpEvLrxGABgxjV9EaH3kbgiIiLyRAx25FHuutI+O3ZzznkYahsvsXX3WX+wCEeLq+Hvo8IfxsRJXQ4REXkoBjvyKAOjdEiK8EeD1YYNh+Sxpl19oxWvbzoOAHh0TBwCNN6XeAcREdHlYbAjjyIIAu6W2Zp2y7aewJnKOkTofPDQNX2lLoeIiDwYgx15nNsH94JSIWD/6Srklba8BV13OllqwjvfnwQALJiUDI23StJ6iIjIszHYkccJ9VdjTEIoAGC1hF07URQxf102Gqw2jEkIxS0pEZLVQkREPQODHXkkxySK1fuK0Gi1SVLD/2Wdw48nyuCtUmDR5IEQBEGSOoiIqOdgsCOPdOOAMIRovXHOUI9Pfyns9uObzBb87ascAMBjY+PQN8Sv22sgIqKeh8GOPJKPlxJzbowHALz1bS5qzJZuPf6bm4/jvNGMPsEaPMrlTYiIqJsw2JHHund4b/QO0qDMZMZ/fszvtuMeOWfE8h0FAIBFkwfCx0vZbccmIqKejcGOPJa3SoE/jbPfuuvdH06ioqbB5ce0WG14fk0WrDYRt6VGYGximMuPSURE5MBgRx5t0hVRGBilg8lswT+/O+Hy47226Tj2na6CVq3CCxOTXX48IiKiCzHYkUdTKAQ8d0sSAGDlrlM4U1nrsmNtzjmPd77PAwC8evcViNT7uuxYRERErWGwI483Oj4Eo+KC0WC14Y3Nx11yjFPlNUhfdQAAMPOafrgtNdIlxyEiIroYBjvyeILwa9duzf4iHDln7NL91zda8YeV+1Bdb8GVvQPwl1uTunT/RERE7cVgRz3CoJgATEiNhCgCL//vKERR7LJ9L1yfjZxzRgT5eeNfD1wJbxX/WBERkTT4LxD1GM+MT4RKIeD746V4eePRLtnn53sK8ekvhRAEYOm9Q3hdHRERSYrBjnqMfiF+ePGOFADAu9+fxLJtnZsl++nPpzF3dRYA4I83JeDa+JBO10hERNQZKqkLIOpO9wzvDWOdBS9+fQSvbjwGfx8vTBvZp0P7sNlEvPLNUbz7/UkAwJ1DeuGJ6/u7olwiIqIOYbCjHmf2dbEw1DXin1tPYP66w9D5qHD74F7tem9dgxV//OwANmYXAwCevikeT90YD0EQXFkyERFRuzDYUY/0p3EJMNQ14qNdp/CnVQehVikwfmDERQNaibEes/67B4fOGOCtVODVu69A2pD2BUIiIqLuwGBHPZIgCFg0eSCM9Y1Yd+AsHl25D7Ehfph4RSQmDYpCfLg/AKC02oytR0vw7ZHz2J5bhrpGKwI1XnjvwWEY3jdI4rMgIiJqThC7ct0HD2U0GqHX62EwGKDT6aQuh7pQo9WGBeuz8eXeMzBbbM7nkyL84eutxIHCKlz4JyQx3B/vThuKviF+ElRLREQ9UUdyCINdOzDYeT6T2YJvc85jw8Gz+CG3FI3WX/9YpPTS4aYB4bhpQDgGRul4PR0REXWrjuQQDsUSAdCqVUgb0gtpQ3qhqrYB3x4pgcVqw5jEUK5NR0REboPBjug3AjTeuHtotNRlEBERdRgXKCYiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AORFEEABiNRokrISIiop7GkT8ceeRiGOzaobq6GgAQExMjcSVERETUU1VXV0Ov1190G0FsT/zr4Ww2G86ePQt/f38IguCSYxiNRsTExKCwsBA6nc4lx/AU/Kw6hp9X+/Gz6hh+Xu3Hz6r9+Fm1JIoiqqurERUVBYXi4lfRsWPXDgqFAtHR0d1yLJ1Ox9/I7cTPqmP4ebUfP6uO4efVfvys2o+fVXOX6tQ5cPIEERERkYdgsCMiIiLyEAx2MqFWq7FgwQKo1WqpS5E9flYdw8+r/fhZdQw/r/bjZ9V+/Kw6h5MniIiIiDwEO3ZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWAnA6WlpZgwYQI0Gg0SExOxZcsWqUuSrQULFiA5ORkKhQKffvqp1OXImtlsxkMPPYTo6Gjo9XqMHTsWWVlZUpclWw8//DAiIyOh0+mQmpqKr776SuqSZG/nzp1QKBR4+eWXpS5F1saOHQsfHx9otVpotVrceuutUpckey+//DJiYmLg7++PwYMHo6qqSuqS3AaDnQw8/vjjiIqKQllZGV555RVMmTIFlZWVUpclS/Hx8Xjrrbdw1VVXSV2K7FksFsTGxmLXrl2oqKjA5MmTkZaWJnVZspWeno6CggIYjUb85z//wdSpU/nn8CJsNhv++Mc/Yvjw4VKX4hZWrFgBk8kEk8mE//3vf1KXI2tvv/02/ve//+HHH3+E0WjEypUr4ePjI3VZboPBTmImkwnr1q1DRkYGNBoN0tLSkJKSgg0bNkhdmixNnToVN998M/+Qt4Ofnx9eeOEFREdHQ6lU4oknnkB+fj7Ky8ulLk2WkpKSnOtmCYKA+vp6nDt3TuKq5Ou9997DiBEjMGDAAKlLIQ9itVrx0ksv4YMPPkCfPn0gCAJSUlL4d34HMNhJLDc3F3q9HpGRkc7nBg0ahOzsbAmrIk+0c+dOhIeHIzg4WOpSZOuxxx6Dr68vhg8fjltuuQXJyclSlyRLFRUVePPNN7Fw4UKpS3EbTz75JEJDQ3HzzTfj0KFDUpcjW2fOnEFdXR0+//xzhIeHIzExEe+8847UZbkVBjuJmUymFjc51ul0MJlMElVEnshgMOCRRx7Biy++KHUpsrZs2TKYTCZs3rwZY8aMkboc2frrX/+Kp59+GoGBgVKX4hZeffVV5Ofn4/Tp07j55ptx22238e/4NhQVFcFgMCAvLw8FBQVYvXo1Fi1ahK1bt0pdmttgsJOYVquF0Whs9pzRaIRWq5WoIvI09fX1SEtLw4QJEzBz5kypy5E9pVKJm266CVu2bME333wjdTmys3//fvz888+YPXu21KW4jauuugparRa+vr7485//DK1Wi59//lnqsmTJ19cXgH2inK+vLwYOHIhp06bh66+/lrgy96GSuoCeLj4+HgaDAcXFxYiIiAAAHDx4ELNmzZK4MvIEFosF9957L6KiovDaa69JXY5bsdlsyMvLk7oM2fn+++9x/Phx9OrVC4C9G6xSqZCXl4f3339f4urcg0LBnkpbEhIS4O3t3ew53vm0Y/i7S2JarRaTJ0/GggULUFdXh/Xr1+Pw4cOYNGmS1KXJUmNjI+rr62Gz2Zp9T62bPXs26urqsGLFCgiCIHU5smUymZCZmQmTyQSLxYIvv/wSW7duxejRo6UuTXYefvhhnDhxAgcOHMCBAwcwefJkPPXUU/j73/8udWmyVFVVhc2bN8NsNqOhoQH/+Mc/UFFRgWHDhkldmiz5+fnh7rvvxuLFi2E2m3Hs2DFkZmbitttuk7o09yGS5EpKSsRbb71V9PX1FePj48XNmzdLXZJsTZ8+XQTQ7LF161apy5KlgoICEYDo4+Mj+vn5OR8//PCD1KXJjslkEq+//npRr9eLOp1OvPLKK8XVq1dLXZZbmD59urhkyRKpy5CtkpIScejQoaKfn58YGBgoXn/99eLevXulLkvWKisrxTvvvFPUarVinz59xGXLlkldklsRRJE9TiIiIiJPwKFYIiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyKiSzh9+jRCQkJceoyCggIIggCtVou1a9dedNsvv/wSWq0WgiCguLjYpXURkXvhnSeIiGC/b7NDTU0NNBqN8/66OTk56N27t0uPX1BQgKSkJNTX17f7PYIg4Ny5c4iIiHBhZUTkTlRSF0BEJAcmk8n5vY+PD7Kzs9G3b1/pCiIiugwciiUiuoSCggL4+Pg4fxYEAf/+97/Ru3dvhISE4LPPPsNXX32F2NhYhIWF4bPPPnNuW1FRgfvvvx9hYWGIjY3Fhx9+2O7j7tq1C0OGDIG/vz8iIiLwxhtvdOl5EZHnYceOiOgy/PTTTzh+/Dg2bNiARx99FJMnT8bhw4exZcsWzJw5E3fffTeUSiWmTZuGlJQUFBYWIj8/HzfccAMGDx6MQYMGXfIYTz/9NJ599lncf//9qKysREFBgetPjIjcGjt2RESX4c9//jN8fHxw5513oqqqCo899hg0Gg0mTZqE6upqnD17FsXFxdi+fTteeuklqNVqJCUl4f7778fq1avbdQwvLy8cO3YMFRUVCAwMxJAhQ1x8VkTk7hjsiIguQ1hYGABAqVTCy8sLoaGhztd8fHxQU1OD06dPo6amBsHBwQgICEBAQADeffddnD9/vl3H+OCDD3DkyBH0798fo0aNws6dO11yLkTkOTgUS0TkIr169UJAQADKy8sv6/2JiYlYtWoVLBYL3nnnHUydOhV5eXldXCUReRJ27IiIXKRXr14YPnw45s+fj9raWlgsFuzbtw85OTnten9mZibKy8uhUqng7+8PpVLp4oqJyN0x2BERuVBmZiZOnTrlnDH79NNPo66url3v/frrr5GYmAh/f38sXboUy5cvd3G1ROTuuEAxEZEMnDp1CklJSVCr1fjvf/+LyZMnt7nt6tWrMXPmTNTX1+PUqVMIDw/vxkqJSM4Y7IiIiIg8BIdiiYiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYf4/0XMOvXgGwnoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABY10lEQVR4nO3deXhTZfo+8PskadOmadJ9o2Vp6UJpBQQEUQQ3UFmsC+MGggyo44JOR8dhRJYOijrqKM4wbr8BR+qCyurXQRBBURZlLy1LKS2UQumeNF3SJjm/P9JEaltoadNzkt6f68rVNjk55zlhu3ne875HEEVRBBERERG5PYXUBRARERFR12CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCOSMUEQsHbt2otuM2PGDKSlpbV7nwUFBRAEAQcOHOhUbT3JwoULER4e3q5fD7lYuHAhBEGAIAh48803u/3427Ztcx6/I78/iahzGOyIuklHAxgAnDt3DrfeeiuAtgPZW2+9hRUrVnRNkdTCkSNHsGjRIrz77rvNfj3cwcCBA3Hu3Dk8/PDDzufee+89jB07FjqdDoIgoKqqqsX7KisrMW3aNOj1euj1ekybNq3ZdgcPHsR9992HmJgY+Pr6YsCAAXjrrbea7WPUqFE4d+4cfve737nq9IioFSqpCyCitkVERFxyG71e7/I6Ghoa4O3t7fLjyFFeXh4A4Pbbb4cgCJe9n8bGRnh5eXVVWe2iUqla/B6qra3FLbfcgltuuQVz585t9X33338/zpw5g40bNwIAHn74YUybNg0bNmwAAOzduxehoaFYuXIlYmJisGPHDjz88MNQKpV44oknAADe3t6IiIiAr68vzGazC8+SiC7Ejh2RRMaOHYs5c+bgz3/+M4KCghAREYGFCxc22+bCob9+/foBAIYMGQJBEDB27FgALTuBGzduxLXXXouAgAAEBwdj4sSJznDSXn379sXixYsxY8YM6PV6zJ49GwCwY8cOXHfddfD19UVMTAzmzJmDmpoa5/uWLVuG+Ph4+Pj4IDw8HHfffXez833iiSfwxBNPOGubN28eRFF0blNZWYkHH3wQgYGB0Gg0uPXWW5Gbm+t8fcWKFQgICMA333yDAQMGQKvV4pZbbsG5c+ec22zbtg1XXXUV/Pz8EBAQgGuuuQanTp1yvr5hwwYMHToUPj4+iI2NxaJFi2CxWFr9HBYuXIhJkyYBABQKhTPY2Ww2ZGRkIDo6Gmq1GoMHD3aGIODX7uqqVaswduxY+Pj4YOXKlW0eo3fv3lCr1YiKisKcOXMAABkZGUhNTW2x/dChQzF//vx2nWtrnn76afzlL3/ByJEjW339yJEj2LhxIz744ANcffXVuPrqq/H+++/jq6++wrFjxwAAM2fOxNKlSzFmzBjExsZi6tSpeOihh7B69eqLHpuIXI/BjkhCH374Ifz8/LB79268+uqryMjIwObNm1vd9ueffwYAfPvttzh37lyb/4jW1NQgPT0dv/zyC7Zs2QKFQoE77rgDNputQ7X9/e9/R0pKCvbu3YsXXngBWVlZGD9+PO68804cOnQIn332GX788Udnh2bPnj2YM2cOMjIycOzYMWzcuBHXXXddi/NVqVTYvXs3li5din/84x/44IMPnK/PmDEDe/bswfr167Fz506IoojbbrsNjY2Nzm1qa2vx2muv4aOPPsIPP/yA06dP45lnngEAWCwWpKWlYcyYMTh06BB27tyJhx9+2BnIvvnmG0ydOhVz5sxBTk4O3n33XaxYsQIvvvhiq5/BM888g+XLlwOwD4s7AuRbb72F119/Ha+99hoOHTqE8ePHY/Lkyc1CKAA899xzmDNnDo4cOYLx48e32P8XX3yBf/zjH3j33XeRm5uLtWvXOsPczJkzkZOTg19++cW5/aFDh7B//37MmDHjkud6uXbu3Am9Xo8RI0Y4nxs5ciT0ej127NjR5vsMBgOCgoI6dWwi6gIiEXWL6dOni7fffrvz5zFjxojXXntts22GDx8uPvfcc86fAYhr1qwRRVEU8/PzRQDi/v37L7rf3yopKREBiFlZWRfdz4X69OkjpqWlNXtu2rRp4sMPP9zsue3bt4sKhUKsq6sTv/zyS1Gn04lGo7HVfY4ZM0YcMGCAaLPZnM8999xz4oABA0RRFMXjx4+LAMSffvrJ+XpZWZno6+srrlq1ShRFUVy+fLkIQDxx4oRzm3/9619ieHi4KIqiWF5eLgIQt23b1moNo0ePFl966aVmz3300UdiZGRkm5/FmjVrxN/+VRkVFSW++OKLzZ4bPny4+Nhjj4mi+Otn/Oabb7a5X1EUxddff11MSEgQGxoaWn391ltvFf/whz84f3766afFsWPHiqJ46XNdsGCBOGjQoDaPvXXrVhGAWFlZ2ez5F198UYyPj2+xfXx8fIvPzmHHjh2il5eXuGnTphavXer3JxF1LXbsiCR0xRVXNPs5MjISJSUlndpnXl4e7r//fsTGxkKn0zmHcE+fPt2h/QwbNqzZz3v37sWKFSug1Wqdj/Hjx8NmsyE/Px8333wz+vTpg9jYWEybNg2ZmZmora1tto+RI0c26yhdffXVyM3NhdVqxZEjR6BSqZp1ioKDg5GYmIgjR444n9NoNIiLi3P+fOFnFhQUhBkzZmD8+PGYNGkS3nrrrWbDtHv37kVGRkazc5g9ezbOnTvXota2GI1GnD17Ftdcc02z56+55ppmdbb2Gf7WlClTUFdXh9jYWMyePRtr1qxpNiw8e/ZsfPLJJ6ivr0djYyMyMzMxc+bMdp1rZ7TW9RNFsdXns7Ozcfvtt2P+/Pm4+eabu+T4RHT5GOyIJPTbi+kFQejwkOlvTZo0CeXl5Xj//fexe/du7N69G4B9AkRH+Pn5NfvZZrPhkUcewYEDB5yPgwcPIjc3F3FxcfD398e+ffvwySefIDIyEvPnz8egQYNanXXZGvGCa+1++/yFgaK1z+zC9y5fvhw7d+7EqFGj8NlnnyEhIQG7du1ynsOiRYuanUNWVhZyc3Ph4+PTrjovPO7F6gRafoa/FRMTg2PHjuFf//oXfH198dhjj+G6665zDj1PmjQJarUaa9aswYYNG2A2m3HXXXe161wvV0REBM6fP9/i+dLSUoSHhzd7LicnBzfccANmz56NefPmdeq4RNQ1GOyI3IRjVqrVam1zm/Lychw5cgTz5s3DjTfeiAEDBqCysrJLjn/llVciOzsb/fv3b/Fw1KZSqXDTTTfh1VdfxaFDh1BQUIDvvvvOuY/fho5du3YhPj4eSqUSycnJsFgsziDqOJ/jx49jwIABHap1yJAhmDt3Lnbs2IGUlBR8/PHHznM4duxYq+egULTvr0OdToeoqCj8+OOPzZ7fsWNHh+sEAF9fX0yePBlLly7Ftm3bsHPnTmRlZQGwf57Tp0/H8uXLsXz5ctx7773QaDTtOtfLdfXVV8NgMDiv6QSA3bt3w2AwYNSoUc7nsrOzcf3112P69OltXqNIRN2Py50QuYmwsDD4+vpi48aNiI6Oho+PT4ulTgIDAxEcHIz33nsPkZGROH36NP7yl790yfGfe+45jBw5Eo8//jhmz54NPz8/HDlyBJs3b8bbb7+Nr776CidPnsR1112HwMBAfP3117DZbEhMTHTuo7CwEOnp6XjkkUewb98+vP3223j99dcBAPHx8bj99tsxe/ZsvPvuu/D398df/vIX9OrVC7fffnu7aszPz8d7772HyZMnIyoqCseOHcPx48fx4IMPAgDmz5+PiRMnIiYmBlOmTIFCocChQ4eQlZWFxYsXt/uzePbZZ7FgwQLExcVh8ODBWL58OQ4cOIDMzMwOfKL2Wb5WqxUjRoyARqPBRx99BF9fX/Tp08e5zaxZs5yB8aeffmr3ubaluLgYxcXFOHHiBAAgKysL/v7+6N27N4KCgjBgwADccsstzl8HwL7cycSJE52/lo5QN27cOKSnp6O4uBgAoFQqERoa2qHPgIi6FoMdkZtQqVRYunQpMjIyMH/+fIwePRrbtm1rto1CocCnn36KOXPmICUlBYmJiVi6dKlzaZTOuOKKK/D999/j+eefx+jRoyGKIuLi4nDPPfcAAAICArB69WosXLgQ9fX1iI+PxyeffIKBAwc69/Hggw+irq4OV111FZRKJZ588slmi+cuX74cTz31FCZOnIiGhgZcd911+Prrr9u9/ptGo8HRo0fx4Ycfory8HJGRkXjiiSfwyCOPAADGjx+Pr776ChkZGXj11Vfh5eWFpKQkzJo1q0OfxZw5c2A0GvGnP/0JJSUlSE5Oxvr16xEfH9+h/QQEBODll19Geno6rFYrUlNTsWHDBgQHBzu3iY+Px6hRo1BeXt7s+sNLnWtb3nnnHSxatMj5s2Pm8vLlyzFjxgwAQGZmJubMmYNx48YBACZPnox//vOfzvd8/vnnKC0tRWZmZrMw26dPHxQUFHToMyCiriWIbV3YQkTUhcaOHYvBgwdLcnsrdyaKIpKSkvDII48gPT293e9buHAh1q5dK/mt42bMmIGqqiq3uRUbkbvjNXZERDJVUlKCN954A0VFRXjooYc6/P6srCxotVosW7bMBdVd3Pbt26HVajs8PE1EncOhWCIimQoPD0dISAjee+89BAYGdui9c+bMwdSpUwFAkuvehg0b5uwWarXabj8+UU/FoVgiIiIiD8GhWCIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYdgsCMiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AObDYbzp49C39/fwiCIHU5RERE1IOIoojq6mpERUVBobh4T47Brh3Onj2LmJgYqcsgIiKiHqywsBDR0dEX3YbBrh38/f0B2D9QnU4ncTVERETUkxiNRsTExDjzyMUw2LWDY/hVp9Mx2BEREZEk2nM5GCdPEBEREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2Cwc3NVtQ14+tP9WLolF/WNVqnLISIiIgmppC6AOmfh+mysPXAWALBmfxFevCMFo+JCJK6KiIiIpMCOnRvbnHMeaw+chUIAQv3VyC+rwf3v78aznx9EZU2D1OURERFRN2Owc1NVtQ3465osAMDD18Vhy5/GYNrIPhAE4PO9Z3DjG99j27ESiaskIiKi7sRg56YyvspBabUZcaF+ePqmeOh8vPC3tBR88egoJIb7o6KmAemrDsJs4XV3REREPQWDnRv67uh5rN5XBIUA/H3KIPh4KZ2vDe0TiA1PXosInQ8qahrwTfZ5CSslIiKi7iT7YFdaWooJEyZAo9EgMTERW7ZsaXW79PR0xMbGwt/fH8OGDcMPP/zgfG3btm1QKBTQarXOx/bt27vrFLqUoa4Rc1fbh2BnjY7Flb0DW2zjrVLgnuExAIDMXae6tT4iIiKSjuyD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurna8nJCTAZDI5H6NHj+7O0+gyi7/KwXmjGbEhfki/OaHN7e69KgYKAdidX4ETJaZurJCIiIikIutgZzKZsG7dOmRkZECj0SAtLQ0pKSnYsGFDi20XLFiA/v37Q6FQYMqUKfD19cXx48clqNp1Dp2pwud7z0AQgFfvvqLZEOxvRep9cUNSOADg492nu6tEIiIikpCsg11ubi70ej0iIyOdzw0aNAjZ2dkXfV9BQQEqKirQv3//Zs+FhYUhPj4eGRkZsFrbnlRgNpthNBqbPeRg69FSAMAtAyMwrG/QJbd/YGRvAMAXewu5eDEREVEPIOtgZzKZoNPpmj2n0+lgMrU9tNjY2Ijp06fj2WefhV6vBwAkJSXhwIEDKC4uxrp167Bq1SosXbq0zX0sWbIEer3e+YiJiemaE+qkHXllAIDR8aHt2v66+FD0CvCFsd6C/zt0zpWlERERkQzIOthptdoW3TKj0QitVtvq9qIoYsaMGQgLC8PChQudz0dERCApKQkKhQLJycmYN28e1qxZ0+Zx586dC4PB4HwUFhZ2yfl0Rn2jFftPVwEAro4Lbtd7lAoB94+wd+0yd3MSBRERkaeTdbCLj4+HwWBAcXGx87mDBw9i4MCBrW7/5JNP4uzZs1i5ciUUirZP7WKvAYBarYZOp2v2kNreU5VosNoQqfdB32BNu983ZVg0VAoB+05X4cg5eQwpExERkWvIOthptVpMnjwZCxYsQF1dHdavX4/Dhw9j0qRJLbZdsGABfvrpJ6xbtw5qtbrZa9u2bXN23XJzc7F48WJMnDixW86hqziGYa+ODYYgCO1+X5i/D8YN5CQKIiKinkDWwQ4Ali1bhsLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu4yMDBw5cgRRUVHOteoyMzMBAHv37sXIkSPh5+eHcePGIS0tDenp6VKd0mXZmVcOoP3DsBd6YEQfAMCa/UWoMVu6tC4iIiKSD0EURVHqIuTOaDRCr9fDYDBIMixrMlswaNEmWG0ifnzuekQHtn8oFgBsNhE3vvE98stqsOTOVNx3VW8XVUpERERdrSM5RPYdOwJ+KaiA1Said5Cmw6EOABQKAfddZZ/Z+9kv0k8EISIiItdgsHMDzmHY2I4PwzpMHtQLgH2RY2N9Y5fURURERPLCYOcGHMFuVP/LD3YReh/0C/GDTQR+ya/oqtKIiIhIRhjsZM5Q24jDZw0AOtexA4CRsfa7VTiCIhEREXkWBjuZ251fDlEE4kL9EKbz6dS+RjYFw135DHZERESeiMFO5nZ0YpmT33IEu+yzRhhqeZ0dERGRp2Gwk7ldJ5uur4sL6fS+wnU+iA3xgygCPxfwOjsiIiJPw2AnY2UmM44WVwP4tdvWWSObOn+OwEhERESeg8FOxhzhKynCH0F+3l2yT0dA5AQKIiIiz8NgJ2OduY1YWxwzY48UG1FV29Bl+yUiIiLpMdjJmHP9ui64vs4hzN8HcaH26+x2cz07IiIij8JgJ1PFhnqcLKuBQgCu6hfUpft2LnvC6+yIiIg8CoOdTO07XQkAGBCpg97Xq0v3fbVzAgU7dkRERJ6EwU6m8kpMAICkCF2X73tEP3uwO3LOiMoaXmdHRETkKRjsZOpkWQ0AIDbUr8v3HeqvRnyYFgCvsyMiIvIkDHYydbLU3rGLc0GwA3idHRERkSdisJMhURSRV2rv2MWFal1yDAY7IiIiz8NgJ0Ol1WaYzBYoBKB3sMYlxxjRtJ7d0eJqVPA6OyIiIo/AYCdDJ5qGYXsHaaBWKV1yjBCtGgnhTdfZsWtHRETkERjsZOhkqWPihGuGYR2u5nAsERGRR2GwkyFnsAtxzcQJh1+vs+PMWCIiIk/AYCdDeY4ZsWGu7dhd2ScQAJBbUo26BqtLj0VERESux2AnQyfL7MHO1R27MH81QrRq2ETgaLHRpcciIiIi12Owk5n6RivOVNYBcH3HThAEDIyy39ni8FkGOyIiInfHYCczBeU1EEVA56NCsJ+3y4+X0sse7LKLDC4/FhEREbkWg53MXDgjVhAElx8vJUoPADh8lsGOiIjI3THYyUxeieNWYq4dhnVI6WUPdseLTWiw2LrlmEREROQaDHYyc7LM0bFz7cQJh+hAX+h8VGiw2pBbUt0txyQiIiLXYLCTGedSJ90U7ARBcHbtsos4gYKIiMidMdjJiCiKzmvsumsoFsAFM2N5nR0REZE7Y7CTkdJqM0xmCxQC0DtY023HdXTsDnNmLBERkVtjsJORE03DsL2DNFCrlN123IFNM2OPnKuG1SZ223GJiIioazHYyciFS510p34hftB4K1HXaEV+010viIiIyP0w2MmIY+KEq28l9ltKhYDkyKbr7DiBgoiIyG0x2MmIc+KEi28l1hrnBApeZ0dEROS2GOxk5GSZNB07ABjoWPKE94wlIiJyWwx2MlHfaMWZyjoA0nTsLry1mChyAgUREZE7YrCTiYLyGogioPNRIdjPu9uPHx+uhbdSgep6Cwor6rr9+ERERNR5DHYykVfy64xYQRC6/fheSgWSIv0BcKFiIiIid8VgJxMnnbcS6/5hWAfHBIpsBjsiIiK3xGAnEyfLHB277p844eBYqJhLnhAREbkn2Qe70tJSTJgwARqNBomJidiyZUur26WnpyM2Nhb+/v4YNmwYfvjhh2avr1ixAtHR0dDpdHjooYfQ0NDQHeW3W54MOnYX3lqMEyiIiIjcj+yD3eOPP46oqCiUlZXhlVdewZQpU1BZWdliO71ej02bNsFgMOC5555DWloaqqurAQBZWVlIT0/H2rVrUVhYiIKCAixevLi7T6VNoij+uoadhB27pAh/KBUCymsacN5olqwOIiIiujyyDnYmkwnr1q1DRkYGNBoN0tLSkJKSgg0bNrTYdsGCBejfvz8UCgWmTJkCX19fHD9+HADw8ccf45577sGwYcOg1+vxwgsvYOXKld19Om0qqTbDZLZAIQC9gzWS1eHjpUR801IrvM6OiIjI/cg62OXm5kKv1yMyMtL53KBBg5CdnX3R9xUUFKCiogL9+/cHAOTk5CA1NbXZPvLz81FX1/qyHmazGUajsdnDlRzDsL2DNFCrlC491qUkR/HWYkRERO5K1sHOZDJBp9M1e06n08FkavtG9Y2NjZg+fTqeffZZ6PX6Vvfj+L6t/SxZsgR6vd75iImJ6eypXNR5Yz0Ugn2pE6lduFAxERERuReV1AVcjFarbdEtMxqN0GpbD0CiKGLGjBkICwvDwoUL29yP4/u29jN37lykp6c3296V4e6OIdG4LTUS1fUWlx2jvRwTKHJ4azEiIiK3I+uOXXx8PAwGA4qLi53PHTx4EAMHDmx1+yeffBJnz57FypUroVD8emrJycnIyspqto9+/frB19e31f2o1WrodLpmD1dTq5QI0apdfpxLSQy3L1JcVFUHk1n6oElERETtJ+tgp9VqMXnyZCxYsAB1dXVYv349Dh8+jEmTJrXYdsGCBfjpp5+wbt06qNXNA9L999+PVatWYd++fTAYDHjxxRcxderU7joNt6LXeCHM3/755Z6vlrgaIiIi6ghZBzsAWLZsGQoLCxEcHIxnnnkGq1atQmBgIDIzM5t17jIyMnDkyBFERUVBq9VCq9UiMzMTAJCamorXX38dkyZNQnR0NGJiYvD8889LdUqyl9DUtcs93/a1jERERCQ/gsiVaC/JaDRCr9fDYDB0y7Cs1BZtyMbynwow69p+mDcxWepyiIiIerSO5BDZd+yo+zk6dsdL2LEjIiJyJwx21EJCuH22MK+xIyIici8MdtRC/zB7x+6coR7G+kaJqyEiIqL2YrCjFvS+XgjXOWbGcjiWiIjIXTDYUasc19mdKOFwLBERkbtgsKNWxTcNxx5nx46IiMhtMNhRqxwTKI5zAgUREZHbYLCjVsVzkWIiIiK3w2BHrYpv6tgVG+thqOPMWCIiInfAYEet0vl4IVLvA4ATKIiIiNwFgx21yTEcywkURERE7oHBjtqUEMYJFERERO6EwY7aFO+8tRg7dkRERO6AwY7a9OtQLDt2RERE7oDBjtoU3zQUW1JthqGWM2OJiIjkjsGO2uTv44WoppmxxzkzloiISPYY7OiiOBxLRETkPhjs6KISOIGCiIjIbTDY0UWxY0dEROQ+GOzoohK4SDEREZHbYLCji3LMjC0zmVFZ0yBxNURERHQxDHZ0UX5qFXoF+AIAckvYtSMiIpIzBju6JMcdKHidHRERkbwx2NElOa6zy2WwIyIikjUGO7okx3V2nEBBREQkbwx2dEnOjh3vPkFERCRrDHZ0SbGhfgCAMlMDDHW8ZywREZFcMdjRJfn7eCFcpwYAnCzlcCwREZFcMdhRu8SF2q+zyyutkbgSIiIiaguDHbWLYzg2jx07IiIi2WKwo3ZxdOw4FEtERCRfDHbULhyKJSIikj8GO2oXx1DsqfIaWKw2iashIiKi1jDYUbtE6X3h46VAo1VEYWWd1OUQERFRKxjsqF0UCgGxIU3DsSW8zo6IiEiOGOyo3TgzloiISN4Y7Kjdfp0ZywkUREREcsRgR+0WF+aYGcuOHRERkRwx2FG7xYbYh2JPlrFjR0REJEcMdtRujmvsKmoaUFHTIHE1RERE9FsMdtRuGm8VegX4AuAdKIiIiORI9sGutLQUEyZMgEajQWJiIrZs2dLqdsuWLcPgwYOhUqnw8ssvN3tt27ZtUCgU0Gq1zsf27du7o3yP4+jacQIFERGR/KikLuBSHn/8cURFRaGsrAybNm3ClClTkJeXh8DAwGbbRUVFYfHixfjPf/7T6n4SEhJw9OjR7ijZo8WFarE9t4wTKIiIiGRI1h07k8mEdevWISMjAxqNBmlpaUhJScGGDRtabJuWloaJEydCp9NJUGnPEce17IiIiGRL1sEuNzcXer0ekZGRzucGDRqE7OzsDu+roKAAYWFhiI+PR0ZGBqxWa5vbms1mGI3GZg+yi+VadkRERLIl62BnMpladOB0Oh1Mpo51i5KSknDgwAEUFxdj3bp1WLVqFZYuXdrm9kuWLIFer3c+YmJiLqt+T+RYpPhURS0aLDaJqyEiIqILyTrYabXaFt0yo9EIrVbbof1EREQgKSkJCoUCycnJmDdvHtasWdPm9nPnzoXBYHA+CgsLL6t+TxSuU8PPWwmrTcTpCnbtiIiI5ETWwS4+Ph4GgwHFxcXO5w4ePIiBAwd2ar8KxcVPW61WQ6fTNXuQnSAIzuHYPA7HEhERyYqsg51Wq8XkyZOxYMEC1NXVYf369Th8+DAmTZrUYluLxYL6+npYrdZm3wP25U4cXbfc3FwsXrwYEydO7NZz8SScQEFERCRPsg52gH19usLCQgQHB+OZZ57BqlWrEBgYiMzMzGadu8WLF8PX1xcrV67ECy+8AF9fX3z00UcAgL1792LkyJHw8/PDuHHjkJaWhvT0dKlOye05O3Yl7NgRERHJiSCKoih1EXJnNBqh1+thMBg4LAvg/w6dw+Mf78OQ3gFY89g1UpdDRETk0TqSQ2TfsSP5iQtrGootMYH/LyAiIpIPBjvqsL7BfhAEwFhvQXlNg9TlEBERURMGO+owHy8logN9Adi7dkRERCQPDHZ0WeK45AkREZHsMNjRZYkNcdxajB07IiIiuWCwo8vinEDBYEdERCQbDHZ0WTgUS0REJD8MdnRZYpvuPnGmshZmi1XiaoiIiAhgsKPLFKpVQ6tWwSYCp8trpS6HiIiIwGBHl0kQBGfX7mQZh2OJiIjkgMGOLlu/kKZgx+vsiIiIZIHBji6bY8mT/DLOjCUiIpIDBju6bP1C2bEjIiKSEwY7umyxTUOx+bzGjoiISBYY7OiyOa6xK69pgKG2UeJqiIiIiMGOLpufWoUInQ8A4CSvsyMiIpIcgx11CmfGEhERyQeDHXWKYy07XmdHREQkPQY76hRnx45DsURERJJjsKNOiQu1r2XHoVgiIiLpMdhRpzg6dgXlNbDZRImrISIi6tkY7KhTogN94aUUUN9owzljvdTlEBER9WgMdtQpKqUCvYM0AICTpbzOjoiISEoMdtRpsaGOe8byOjsiIiIpMdhRp8VyLTsiIiJZYLCjTnOsZXeSHTsiIiJJMdhRp/ULcSx5wmvsiIiIpMRgR53m6NgVVdWhvtEqcTVEREQ9F4MddVqwnzf8fVQQReBUea3U5RAREfVYDHbUaYIgXDAzlsOxREREUmGwoy7hmBmbx5mxREREkmGwoy7hCHZcy46IiEg6DHbUJfo5ljzhzFgiIiLJMNhRl4gN4d0niIiIpMZgR12ib4j9frGVtY2orGmQuBoiIqKeicGOuoTGW4UovQ8A3oGCiIhIKgx21GV4nR0REZG0GOyoy/A6OyIiImkx2FGX6Rfi6Ngx2BEREUmBwY66jOOesSd59wkiIiJJMNhRl3EMxRaU18JqEyWuhoiIqOeRfbArLS3FhAkToNFokJiYiC1btrS63bJlyzB48GCoVCq8/PLLLV5fsWIFoqOjodPp8NBDD6GhgUtydLVegb7wVinQYLHhbFWd1OUQERH1OLIPdo8//jiioqJQVlaGV155BVOmTEFlZWWL7aKiorB48WJMnjy5xWtZWVlIT0/H2rVrUVhYiIKCAixevLg7yu9RlAoBfYPt69nlcWYsERFRt5N1sDOZTFi3bh0yMjKg0WiQlpaGlJQUbNiwocW2aWlpmDhxInQ6XYvXPv74Y9xzzz0YNmwY9Ho9XnjhBaxcubI7TqHHcQzHcgIFERFR95N1sMvNzYVer0dkZKTzuUGDBiE7O7tD+8nJyUFqamqzfeTn56OurvXhQrPZDKPR2OxB7cMJFERERNKRdbAzmUwtOnA6nQ4mU8dCw2/34/i+rf0sWbIEer3e+YiJielg5T1XbCg7dkRERFKRdbDTarUtumVGoxFarbZT+3F839Z+5s6dC4PB4HwUFhZ2sPKey9mxY7AjIiLqdqr2bPTqq6+2b2cqFdLT0ztV0IXi4+NhMBhQXFyMiIgIAMDBgwcxa9asDu0nOTkZWVlZzp8PHjyIfv36wdfXt9Xt1Wo11Gr15Rfeg8U1XWNXbKxHjdkCP3W7fosRERFRF2jXv7rz5s3DAw88cMntvvjiiy4NdlqtFpMnT8aCBQvw5ptvYvPmzTh8+DAmTZrUYluLxQKLxQKr1QqLxYL6+np4eXlBqVTi/vvvx9ixYzF79mzExcXhxRdfxNSpU7usTvqVXuOFYD9vlNc0IL+sBim99FKXRERE1GO0K9jp9XosX778kttt3Lix0wX91rJlyzB9+nQEBwcjOjoaq1atQmBgIDIzM/HSSy85J1IsXrwYixYtcr7vhRdewPLlyzFjxgykpqbi9ddfx6RJk2A0GnHXXXfh+eef7/JayS421A/lNQ3IKzUx2BEREXUjQRRF3iLgEoxGI/R6PQwGQ6vLqVBzz31xCJ/tKcRTN8bjjzcnSF0OERGRW+tIDrmsyRNmsxnl5eUwm82XVSB5tl+XPOEECiIiou7U7mBnsViwcOFCxMXFQaPRIDQ0FBqNBv3798eiRYvQ2NjoyjrJjfy65AnXsiMiIupO7Q52jzzyCH744Qd88MEHKC0tRUNDA0pLS/Hee+9h+/btePTRR11ZJ7kRR8cuv6wGHOknIiLqPu2+xi4gIACFhYXw9/dv8ZrBYEDv3r1hMBi6vEA54DV2HdNotWHACxthsYnYOfcGROpbX1aGiIiILs0l19j5+/vjxIkTrb6Wn5/fauCjnslLqUDvIA0ALlRMRETUndq9euzf/vY33HTTTbj33nuRmpoKnU4Ho9GIQ4cO4fPPP8frr7/uyjrJzcSG+uFkWQ1OlppwTf8QqcshIiLqEdod7GbMmIGhQ4fik08+wcaNG2EymaDVapGcnIytW7ciJSXFlXWSm4kN1QJHSjgzloiIqBt16H5PqampSE1NdVUt5EFiQ3jPWCIiou7Wrmvs1q9f366dffXVV50qhjyHc8mTMi55QkRE1F3aFezae1/VBx98sFPFkOdwLHlyprIO9Y1WiashIiLqGdo1FGsymaDRaC66jSiKUCgu60YW5IGC/byh81HBWG/BqfJaJEZw1jQREZGrtSvY5efnA7CHtzVr1mDChAlQq9UtthMEoWurI7clCAJiQ7U4UFiFk6UmBjsiIqJu0K5g16dPH+f3X375JRYvXoy0tDQ88MADuP766xnoqFWxoX72YMeZsURERN2iw2OnP/74I/bv34/ExESkp6cjOjoaf/zjH7Fnzx5X1EduzDEzNo/3jCUiIuoWl3VRXO/evfHnP/8ZBw4cwNq1a7Fp0yaMGDEC8fHxWLJkCUwm/kNOF8yM5ZInRERE3eKygl1jYyPWrVuH++67D7fccgsSEhKwatUqfPTRR8jKysK4ceO6uk5yQ46ZsSdLTWjnLYmJiIioEzq0QDEAzJw5E+vWrUNKSgoeeOABLFu2DIGBgc7Xhw4dCr1e36VFknvqG+wHQQCM9RaU1zQgRNtywg0RERF1nQ4Hu/79+2Pfvn3NJlRcyMvLC2fOnOl0YeT+fLyU6BXgizOVdThZWsNgR0RE5GIdHor961//2maocwgKCrrsgsiz/HqdHa+7JCIicjWuKEwu5bxnLJc8ISIicjkGO3KpuAsmUBAREZFrMdiRS3HJEyIiou7DYEcuFdcU7E5V1KLBYpO4GiIiIs/GYEcuFa5TQ6tWwWoTcaqcXTsiIiJXYrAjlxIEwXmd3YkSXmdHRETkSgx25HJxYfbhWN4zloiIyLUY7Mjl+jcFO3bsiIiIXIvBjlyuf9MEihPs2BEREbkUgx25nKNjl1dSA5tNlLgaIiIiz8VgRy7XO0gDb6UCdY1WnDXUSV0OERGRx2KwI5dTKRXoG6IBwOvsiIiIXInBjroFJ1AQERG5HoMddQvHBAoueUJEROQ6DHbULeLYsSMiInI5BjvqFo57xjLYERERuQ6DHXWLuFAtBAGorG1EucksdTlEREQeicGOuoWvtxK9AnwBsGtHRETkKgx21G2cM2M5gYKIiMglGOyo2zhnxpbUSFwJERGRZ2Kwo27Djh0REZFrMdhRt/n1nrEMdkRERK4g+2BXWlqKCRMmQKPRIDExEVu2bGl1u7q6OkydOhX+/v7o3bs3PvnkE+dr27Ztg0KhgFardT62b9/eXadATRzBrqiqDjVmi8TVEBEReR6V1AVcyuOPP46oqCiUlZVh06ZNmDJlCvLy8hAYGNhsuwULFqCiogJFRUU4fPgwbrvtNgwdOhQJCQkAgISEBBw9elSKU6AmARpvhGi9UWZqwMnSGqRG66UuiYiIyKPIumNnMpmwbt06ZGRkQKPRIC0tDSkpKdiwYUOLbT/66CMsWLAAOp0Oo0aNwuTJk/Hpp59KUDVdjHOh4tJqiSshIiLyPLIOdrm5udDr9YiMjHQ+N2jQIGRnZzfbrrKyEsXFxUhNTW1zu4KCAoSFhSE+Ph4ZGRmwWq1tHtdsNsNoNDZ7UNfgrcWIiIhcR9bBzmQyQafTNXtOp9PBZDK12E6pVEKj0bS6XVJSEg4cOIDi4mKsW7cOq1atwtKlS9s87pIlS6DX652PmJiYLjyrnq0/by1GRETkMrIOdlqttkW3zGg0QqvVttjOarWitra21e0iIiKQlJQEhUKB5ORkzJs3D2vWrGnzuHPnzoXBYHA+CgsLu/Cserb+7NgRERG5jKyDXXx8PAwGA4qLi53PHTx4EAMHDmy2XWBgICIiIpCVlXXR7RwUiouftlqthk6na/agruEIdqfKa9FotUlcDRERkWeRdbDTarWYPHkyFixYgLq6Oqxfvx6HDx/GpEmTWmw7depU/O1vf0N1dTV27dqF9evX45577gFgX+7E0XXLzc3F4sWLMXHixG49F7KL1PvAz1sJi03EqXLegYKIiKgryTrYAcCyZctQWFiI4OBgPPPMM1i1ahUCAwORmZnZrCOXkZHhnGgxZcoULFu2DImJiQCAvXv3YuTIkfDz88O4ceOQlpaG9PR0qU6pRxMEgRMoiIiIXEQQRVGUugi5MxqN0Ov1MBgMHJbtAumfHcDq/UV4ZlwCnrghXupyiIiIZK0jOUT2HTvyPI6OXV4ph2KJiIi6EoMddTvOjCUiInINBjvqdhcGO5uNVwIQERF1FQY76nZ9gjTwVilQ12jFmco6qcshIiLyGAx21O1USoXzDhRHi3m7NiIioq7CYEeSSIrwBwAcP18tcSVERESeg8GOJJHQFOyOFjPYERERdRUGO5JEYjg7dkRERF2NwY4kkdjUsTtZWoMGC+8ZS0RE1BUY7EgSkXof+PuoYLGJOFnG9eyIiIi6AoMdSUIQBOdw7DFeZ0dERNQlGOxIMo4JFAx2REREXYPBjiTDJU+IiIi6FoMdSSYhnEueEBERdSUGO5KM4xq7M5V1MJktEldDRETk/hjsSDKBft4I81cD4HAsERFRV2CwI0k51rM7zuFYIiKiTmOwI0kl8jo7IiKiLqOSugDq2RI4M9Zj1TdaYahrhKGuEVW1jaiqbYDFJiIqwBfRgb4I9vOGIAhSl0lE5FEY7EhSSVzLzmM0WGzYU1CBrcdKsPVYKU6UXPyOIr5eSkQH+qJfiB9Gx4fg+qQwRAdquqlaIiLPxGBHkooP84cgAOU1DSgzmRGiVUtdEnWAKIrYcqQEX+w9gx9PlLWY3awQAL2vFwI03tD5ekEpAGer6nG+uh51jVbklpiQW2LCppzzwLpsxIdpcX1SGG5MCsNV/YLY0SMi6iAGO5KUr7cSfYI0KCivxbHiaoT0Z7BzF7tPluOVjUex73SV87kQrRpjE0NxfWIYRsYGIVDjDYWiZTgzW6w4W1WPM5W1yCoyYNvRUuw9XekMeu/9cBJxoX548Oq+uGtoNLRq/lVFRNQegiiKotRFyJ3RaIRer4fBYIBOp5O6HI/z8H/3YFPOecyfmIyZ1/aTuhy6hOyzBvz9m2PYdqwUAODjpcD0q/ti4hVRGBilazXItYehthE/5JZi69ESbMo57+z+adUq3HVlL0y7ui/6h2m77DyIiNxFR3II/xtMkkuK8MemnPO8zk7m6hutyPgqBx/vPg0AUCkE3HtVDObcEI8wnU+n96/XeGHSoChMGhQFk9mC1fvO4MMdBcgrrcGHO0/hw52nMGlQFP54UzxiQxnwiIhaw2BHknPMjD3GmbGyVVRVhz+s3ItDZwwAgEmDovCnmxPQN8TPJcfTqlV48Oq+mDayD346UY4VOwrw7ZHz2HDwLL7OOocpQ6Mx58Z4RAX4uuT4RETuisGOJJd0wZInNpt42UN55Bo/nSjDk5/sR0VNAwI0Xlh67xBclxDaLccWBAHXxofg2vgQ5Jw14o3Nx/DtkRJ8+kshVu8rwgMje+OpG+MRoPHulnqIiOSOCxST5PoE+8FbqUBtgxVFVXVSl0NNRFHEO9/nYdr/242Kmgak9NJhwxPXdluo+63kKB0+mD4cX/5hFEbGBqHBasPynwow9rVtWLnrFKw2Xi5MRMRgR5LzUioQ13RRPO9AIQ9Wm4j0VQfx8v+OwiYCU4ZG44tHRyEmSPp15ob2CcQns0fio99fhcRwf1TVNmLe2sOY/M8fsaegQuryiIgkxWBHspAYbg92vAOF9Gw2EX/58hDW7C+Cl1LAi3ek4NW7r4CPl1Lq0pwEQcDo+FD835xrsXBSMvx9VMg+a8Td7+zEHz87gNJqs9QlEhFJgsGOZMExgYIdO2mJoohFG7Lx+d4zUCoEvH3fEDwwoo9sFwpWKRWYcU0/bH1mLO4ZFgNBANbsL8KNr2/DJz+fho3Ds0TUwzDYkSw4J1Aw2ElGFEW8svEYPtx5CoIAvDblCtySEil1We0SolXjlbuvwNrHrkFKLx2M9RbMXZ2Fe97biVx2gYmoB2GwI1lIjLAvuJhXaoLZYpW4mp7pn9+dwDvf5wEAFqel4I4h0RJX1HGDYgKw9rFrMG/CAGi8lfiloBK3Ld2O1zcdQ30jf18RkedjsCNZiNL7IEDjBYtNxPHii988nrre8p/y8frm4wCAeRMG4IERfSSu6PKplArMGh2LzeljcNOAMDRaRbz93Qnc9tZ27DpZLnV5REQuxWBHsiAIAlJ76QEAh88aJK6mZ9mRV4a/fZUDAEi/OQGzRsdKXFHX6BXgi/cfHIZ/P3AlwvzVOFlWg3vf24XnvjgEQ22j1OUREbkEgx3JxsAoe7DLKmKw6y7njfWY88l+2ETgriuj8eQN/aUuqUsJgoBbUyOxOX0M7h/RGwDw2Z5C3PjG99hw8Cx4q2wi8jQMdiQbKb3s19llM9h1i0arDU98vA9lpgYkRfhjcVqKbGe/dpbe1wsv3ZGKzx+9GnGhfigzmfHkJ/vx0IpfUFhRK3V5RERdhsGOZCOlqWN3pLgajVabxNV4vlc3HsUvBZXQqlX499Sh8PWWzzp1rjK8bxC+fmo0nroxHt5KBbYdK8XN//gey7adQIOFv+eIyP0x2JFs9A7SwF+tQoPFhhMlnEDhShsPn8P72/MB2Jc16RfiJ3FF3UetUuKPNyfgf0+PxsjYINQ32vDqxmOY+PZ2/MI7VxCRm2OwI9lQKAQkR9mHYw9zONZl8stq8OznhwAAs67t5zZr1XW1uFAtPpk9Em/8bhCC/Lxx/LwJU97ZifRVB1BirJe6PCKiy8JgR7KS0jQzNvusUeJKPFOj1YYnP9mHarMFw/sG4rlbk6QuSVKCIODOK6Px3Z/G4N7hMQCA1fuKcP1r2/DvbXlcU5GI3A6DHcmKYwIFO3au8d4PJ3G4yIgAjRfevu9KeCn5VwAABGi88fJdV2Dt49dgcEwAahqseGXjUYz/xw/4Nuc8Z88SkdtQSV3ApZSWlmLGjBnYunUrYmJisGzZMtx4440ttqurq8Ps2bOxbt06BAYG4pVXXsF9993nfH3FihWYN28ejEYj7rrrLrz77rvw9vbuzlOhdnCsZZdzzgirTYRS4ZmzNKVwosSEt7bkAgDmT0xGhN5H4orkZ3BMAFb/YRTW7C/CyxuPoqC8FrP+uwcjY4Pw51uScGXvQKlLpIswW6ww1DXCWNcIQ50FNWYLahusqGts+tpgRYPVBotVhMVqQ6NNhNUmthrcFQoBKoUAlUJh/6pUwFulgFqlgI+X0vnV10sJX28lNN5K+Hmr4OuthFatgo+XwmNnmZO8yT7YPf7444iKikJZWRk2bdqEKVOmIC8vD4GBzf+CXbBgASoqKlBUVITDhw/jtttuw9ChQ5GQkICsrCykp6dj06ZNiI+PR1paGhYvXoyMjAyJzora0i9EC18vJWobrMgvM6F/mL/UJXkEm03EX748hAaLDWMSQnHHkF5SlyRbCoWAu4ZGY3xKBP753Qn856d87DpZgTuX7cDNyeF4dnwiEsL5+7K7iKKI8poGnKuqR1FVHc4Z6lBabUZptRllJjPKTA0oM5lRWduA+kb5zGxWKgT4eSvh7+MFP7U97Pn7eMHfR9X08ILO8dVXBX+1F3S+9tcdX7XeKij4n1vqIEGU8RiDyWRCcHAwCgoKEBlpv8D7uuuuw6xZs/Dggw822zYyMhJr167FiBEjAAAPPvgg+vfvj/nz52Pu3LmoqqrCv//9bwDAd999h1mzZuHkyZPtqsNoNEKv18NgMECn03XhGVJr7vr3Duw9VYk37xmMNAaQLvHfnQWYvy4bft5KbEofg14BvlKX5DaKqurw1rfH8cXeM7CJgCAAdwzphSeu74/YUK3U5XmERqsNpytqcaq8BgVl9q+nKmpxurwWRVV1MHdgKRpBAPzVKug1XvDzVkHjrYSmqZOm8VbCW6mASqmAl7KpG6cU0KKxJgI2UUSj1d7Rs9hsaLSKaLDYYLZYUd/469f6RitqGiyoa7CitunRVRzn8ttA6O+jglatgtZHBX+143svaNX2c/VTq+CnVjY7f3YQL87x62y1Nf91t9pEWJp+toqi82eb2Pw5q03EwCgd/H28XFJfR3KIrDt2ubm50Ov1zlAHAIMGDUJ2dnaz7SorK1FcXIzU1NRm2/38888AgJycHIwfP77Za/n5+airq4Ovb8t/4MxmM8xms/Nno5EX8nenlCgd9p6qxOEiA4NdFzhTWYtX/ncUAPCXW5MY6jqoV4AvXr17EB6+LhavbzqO/x0uxup9RVizvwjjkyPwyJhYDOEQbbs0WGw4WWbCseJqnCgxOR8F5TVotLbdYxAEIFSrRlSAL6ICfBDm74NQfzVCtN4I0aoRolUjUOMNfVOnS8oul80morbRihqzBSazBaZ6+9fqeguq6xubvl7wvbkRxjr7z8am5411FjRYbRBFwFhvgbHe0iW1+XrZw62PlxI+XgqoVfavjqFlr6bhZseQs5dSAZWiKQQrfx2WVigEKBUClIL9e4UACLB3uwUAEJq+Amj2qyqKsDWFZvGCr45wZLPZX7f/bIOl6TmLzRG0RFitIhovCFwWm31o3T6sbg/gFqv9vc1ftzW9t+l1q31/lqbjdEWLa81jo2Txd4Gsg53JZGqRTHU6Haqqqlpsp1QqodFomm1nMpla3Y/je5PJ1GqwW7JkCRYtWtRVp0EdNJD3jO0yoijir2sOo6bBiuF9A/HAiD5Sl+S2+of5499Th+JgYRXe/i4X3x4pwcbsYmzMLsaIfkF4dEwcxiSEcuisSZnJjOyzRuScNeJosRHHiquRV2pqM8D5einRL8QPfYI16BPsh77BGvQO1iAmUINwnQ+8Ve4x0UehEOwdNLUK4Z3YT32jFdX1FhidYfC3X+2BscZsQXVTcKxtCpO1Db8Gywu7nXWNVtQ1cqZ3eykE+5C6sulaS4UAqJQKKAT79ZdKhQCFAlAK9u/l8ntU1sFOq9W26JYZjUZotdoW21mtVtTW1jrD3YXb/XY/ju9/ux+HuXPnIj09vdn2MTExnT8hahfHHSiyi4yw2UT+Q9kJq/cV4YfjpfBWKfDyXVfws+wCg2IC8MH04cg9X413fziJdQeKsDu/ArvzKxAT5IvfDY3B3cOiEanvGZ1RURRRVFWHw0VGZJ81IPus/et5o7nV7f3VKiRG+CM+3B/9w7TOR6TOh78/L2DvqikR6q/u1H6sNhH1jVbn5JHaRotzCNn+sA8rmy02NDgeVvvXRmfnq6kT1tQpsz/gHI60iaK9M3dBF06ECEff7sIRYEdXTyHYh8AVggCFIECpsIeoX39uCk9KwRmcHEPnKsWvrzuG1ZWK5sPrzueatnG8z9GBVCoEe0fygk6kUinAS6Fw7ttdfz/KOtjFx8fDYDCguLgYERERAICDBw9i1qxZzbYLDAxEREQEsrKynNfYHTx4EAMHDgQAJCcnIysry7n9wYMH0a9fv1a7dQCgVquhVnfuDxNdvvhwLbyVClSbLSisrEWf4J5zV4SuZKhtxOL/ywEAPH1TPOJ4PViXig/3x2tTBuFP4xLwnx/z8enPhSisqMPrm4/jH98ex5iEUNwzPAZjE8Pg4+UZt2uz2UScqqhF9lkDDhcZcbjIgMNnDaiqbWyxrSAA/YL9MCBKh+RIHZIi/JEY4Y9eAb681qsbKRVC0zV3sv7nnrqQrCdPAMCUKVMQFBSEN998E5s3b8aMGTNanRX77LPP4siRI/jkk0+QnZ2NW265Bbt370ZiYiKysrIwduxYbN68GXFxcbjzzjtxzTXXtHtWLCdPdL/J//wRh84Y8K/7r8SEK3rmnRE6629f5eD//ZiP+DAtvn5qNNesc7G6Biv+d/gcPv2lED/n/3prMo23EtfFh2LcwHDckBSGAI17LLPUYLEht6QaR85VI+esEYfPGpBz1giTueX1Xl5KAQnh/hgYpcPAKD0GRumQFKmDlmGCqEt4zOQJAFi2bBmmT5+O4OBgREdHY9WqVQgMDERmZiZeeukl50SKjIwMzJo1C5GRkQgMDMSyZcuQmJgIAEhNTcXrr7+OSZMmOdexe/7556U8LbqElF56HDpj7wYw2HVcXqkJH+4oAAC8MDGZoa4b+HorceeV0bjzymicLDVh1Z4zWHegCOcM9c5r8ZQKAcP6BGJkbDCG9Q3E4JgAl82iay+bTcSZyjrkllTj+HkTcs9XI+ecESdKTLDYWv6/31ulwIBIHQZG6ZDaS4+UKD0SIrRQqzyjK0nk7mTfsZMDduy638e7T+Ova7IwOj4EH/1+hNTluJ3fr/gFW46W4IakMPxnxnCpy+mxRFHE4SIjNucUY1POeRwtrm72ukIAEiN0uLJ3ABLC/REb6ofY0K6/3qzRakNptRmnymtxuqIGp8prcappeZETJaY213/T+agwIFKHAZE6pPTSI6WXDnGhWv5HgaibeVTHjnqmC28tJooir8npgB+Ol2LL0RKoFAKenzBA6nJ6NEEQkBqtR2q0HunjElFYUYttx0uxt6ACe05V4kxlHY6cM+LIueaTxHy8FOgb7GdfxsPPG4EaLwRqvBGg8WqalQfnUhOAfQalyWxBrdn+1WS2oLTajJJqM0qM9aiobbjocg7eSgViQ/0QH+6PhDAtkiJ1SI7SIUrvwz97RG6GwY5kKSHcHyqFgMraRpw11HPttXayWG3421f2CRMPXt2XEyZkJiZIg2kj+2DaSPuyM+eN9dh7qhIHC6uQV1qD/DITTlfUor7R1tTdq774DjtApRDQK9AXvYM09iVFgvzQO1iD/mFa9AnSQMUuHJFHYLAjWfLxUiI+3B9Hztln3jHYtc/HP59GbokJgRovPHVjvNTl0CWE63xwW2okbkv99TpSi9WGM5V1OFVRi4oaMypqGlFV24CKmgZU1TXCZvt1iQnHYq+O+5Q67jig8VYhVKtGmE6NMH8fhOnUCNJ4u+3yDUTUfgx2JFspUTocOWdEdpEB4wdGSF2O7BlqG/HG5uMAgPSbE6DXSHtRPl0elVKBviF+6BvCZX6IqOPYeyfZSnHegYK3dGuPt7bkoqq2EQnhWtx3VW+pyyEiIgkw2JFsOSZQZDVNoKC2FVbU4qNdBQCAeROSeb0UEVEPxb/9SbaSI/VQKQSUVptRVFUndTmy9ua3uWi0ihgdH4LrEkKlLoeIiCTCYEey5eutxMAoe9du76lKiauRr9zz1Viz/wwA4JlxiRJXQ0REUmKwI1kb2icIALCngMGuLW9sPg6bCIwfGI5BMQFSl0NERBJisCNZG9bXfk/gPezYterQmSr873AxBAH4E7t1REQ9HoMdydrQPvZgd6zYiOr6RomrkZ/XNtmXN7ljcC8khPtLXA0REUmNwY5kLVzng+hAX9hE4EBhldTlyMquk+X44XgpVAoBT9+UIHU5REQkAwx2JHvDmrp2vM7uV6Io4rVvjgEA7r0qBr2DNRJXREREcsBgR7I3tK99AgVnxv5q27FS7DlVCbVKgSdv4K3DiIjIjsGOZM/Rsdt/uhIWq03iaqQniiJe22Tv1s0Y1RfhOh+JKyIiIrlgsCPZSwj3h79ahZoGK44WV0tdjuQ255xH9lkj/LyVeGRMnNTlEBGRjDDYkewpFQKGNHXt9p3u2cOxoihi6Xe5AIDpo/oiyM9b4oqIiEhOGOzILQztzQkUAPDd0RIcLjJC463ErNGxUpdDREQyw2BHbsGxUHFPnkAhiiLe2mLv1k27ug+7dURE1AKDHbmFwTEBUCoEFFXV4ZyhTupyJLHteCkOnTHA10uJh9mtIyKiVjDYkVvwU6swINJ+Z4WeOBwriiLe+vbXbl2wVi1xRUREJEcMduQ2hvXpuevZ/ZBbhgOFVfDxUmA2u3VERNQGBjtyG477xva0YGfv1tnvCfvAiD4I9We3joiIWsdgR27DMYEi55wRNWaLxNV0n59OlGPf6SqoVQo8MobdOiIiahuDHbmNSL0vegX4wmoTcbCwSupyuoV9Jqy9W3f/iN4I8+ddJoiIqG0MduRWrmwajt3TQ4Zjd52swC8FlfBWKfAo7zJBRESXwGBHbmVYD7vO7p9b7TNh7xkWw3vCEhHRJTHYkVtxTKDYd6oSFqtN4mpca++pSvx0ohwqhYBHx7JbR0REl8ZgR25lQKQOARovVJstOHimSupyXOqfTfeEvevKaPQK8JW4GiIicgcMduRWlAoBo+NDAQDbjpVKXI3rHC4yYOuxUigE4A/s1hERUTsx2JHbGZNgD3bfH/fcYPd2U7fu9sG90DfET+JqiIjIXTDYkdu5LiEEAHDojAFlJrPE1XS9Y8XV+Cb7PAQBeIzdOiIi6gAGO3I7Yf4+GBilAwBsz/W8rt0/t54AANyaEoH4cH+JqyEiInfCYEduyTkc62HX2eWVmvDVobMAgCeuj5e4GiIicjcMduSWxiaGAQB+yC2DzSZKXE3XWbY1D6II3DQgDMlNXUkiIqL2YrAjtzSkdwD81SpU1DQgq8ggdTld4lR5DdYeKAIAPHEDu3VERNRxDHbklryUClzT3z6JwlNmx/5r6wlYbSKuSwjF4JgAqcshIiI3xGBHbmtsomM9uxKJK+m8woparN5n79Y9dSO7dUREdHkY7MhtXdc0geJAYRWqahskrqZz/rX1BCw2EaPjQ5y3TSMiIuooBjtyW1EBvkgI18ImAttzy6Qu57IVVtTii71nAABP38RuHRERXT4GO3Jrjtmx7nyd3bJt9m7dtf1DMLRPkNTlEBGRG5N1sPvll18waNAgaDQajBkzBqdOnWpz27y8PFxzzTXQaDS48sorcfDgQedrCxcuhJeXF7RarfNBnuHC24uJovste3Kmshaf77F3655it46IiDpJtsHObDbjzjvvxFNPPYWKigqMHDkS06ZNa3P7++67D+PGjUNFRQVmzpyJO+64AxaLxfn673//e5hMJueDPMOwvoHQeCtRWm1Gzjmj1OV02LJtebDYRIyKC8bwvuzWERFR58g22G3btg1arRYzZ86Ej48P5s+fjz179rTatTt27BiOHTuGuXPnwsfHB0888QSsVit27NghQeXUndQqJUbFBQNwv+HYoqo6fL6nEABnwhIRUdeQbbDLyclBamqq82c/Pz/ExcUhJyen1W0TExPh7e3tfO6KK65Adna28+dPP/0UQUFBGDJkCFavXn3RY5vNZhiNxmYPki/HcOw2N7u92L+3nUCjVcTI2CCMiA2WuhwiIvIAsg12JpMJOl3zWyrpdLpWh1Evte3vfvc7HD16FCUlJXjllVfw0EMPYc+ePW0ee8mSJdDr9c5HTExMF5wRuYpjAsXeU5UoM5klrqZ9Citq8dkvjm5dgsTVEBGRp5As2I0bNw4+Pj6tPhYvXgytVtuiU2Y0Glud+HCpbZOTkxEREQGVSoVx48bhvvvuw/r169usbe7cuTAYDM5HYWFhF5wxuUpMkAaDovWw2kSsP3BW6nLa5R+bj6PRap8Je3Ucu3VERNQ1JAt2mzZtQn19fauPefPmITk5GVlZWc7ta2pqkJeXh+Tk5Bb7Sk5OxrFjx9DY2Oh87tChQxg4cGCrx1YoLn7aarUaOp2u2YPk7a6h0QCAL/edkbiSSztabMSapnvCPjs+UeJqiIjIk8h2KHbs2LEwmUxYsWIFzGYzFi9ejGHDhqFPnz4ttk1MTERiYiJefvllmM1mLFu2DEqlEqNGjQIArF+/HgaDATabDd999x0yMzNx2223dfcpkQtNuiIKXkoB2WeNOFos72siX/vmGEQRuC01AoN4T1giIupCsg12arUaq1evxhtvvIGAgAD89NNP+Oijj5yvP/roo3j00UedP3/88cfYuHEjAgIC8P7772P16tVQqVTO1/r16we9Xo+nn34a7733HkaOHNnt50SuE+jnjRuTwgEAX+6Vb9ful4IKfHukBEqFgD+NY7eOiIi6liC646qu3cxoNEKv18NgMHBYVsY255zH7P/uQYhWjV1zb4BKKa//t4iiiCnv7MSeU5W476oYLLnzCqlLIiIiN9CRHCKvf/mIOmFsYiiC/bxRZjLL8t6xW4+VYM+pSqhVCs6EJSIil2CwI4/hpVRg8uAoAMAXMhuOtdpEvLrxGABgxjV9EaH3kbgiIiLyRAx25FHuutI+O3ZzznkYahsvsXX3WX+wCEeLq+Hvo8IfxsRJXQ4REXkoBjvyKAOjdEiK8EeD1YYNh+Sxpl19oxWvbzoOAHh0TBwCNN6XeAcREdHlYbAjjyIIAu6W2Zp2y7aewJnKOkTofPDQNX2lLoeIiDwYgx15nNsH94JSIWD/6Srklba8BV13OllqwjvfnwQALJiUDI23StJ6iIjIszHYkccJ9VdjTEIoAGC1hF07URQxf102Gqw2jEkIxS0pEZLVQkREPQODHXkkxySK1fuK0Gi1SVLD/2Wdw48nyuCtUmDR5IEQBEGSOoiIqOdgsCOPdOOAMIRovXHOUI9Pfyns9uObzBb87ascAMBjY+PQN8Sv22sgIqKeh8GOPJKPlxJzbowHALz1bS5qzJZuPf6bm4/jvNGMPsEaPMrlTYiIqJsw2JHHund4b/QO0qDMZMZ/fszvtuMeOWfE8h0FAIBFkwfCx0vZbccmIqKejcGOPJa3SoE/jbPfuuvdH06ioqbB5ce0WG14fk0WrDYRt6VGYGximMuPSURE5MBgRx5t0hVRGBilg8lswT+/O+Hy47226Tj2na6CVq3CCxOTXX48IiKiCzHYkUdTKAQ8d0sSAGDlrlM4U1nrsmNtzjmPd77PAwC8evcViNT7uuxYRERErWGwI483Oj4Eo+KC0WC14Y3Nx11yjFPlNUhfdQAAMPOafrgtNdIlxyEiIroYBjvyeILwa9duzf4iHDln7NL91zda8YeV+1Bdb8GVvQPwl1uTunT/RERE7cVgRz3CoJgATEiNhCgCL//vKERR7LJ9L1yfjZxzRgT5eeNfD1wJbxX/WBERkTT4LxD1GM+MT4RKIeD746V4eePRLtnn53sK8ekvhRAEYOm9Q3hdHRERSYrBjnqMfiF+ePGOFADAu9+fxLJtnZsl++nPpzF3dRYA4I83JeDa+JBO10hERNQZKqkLIOpO9wzvDWOdBS9+fQSvbjwGfx8vTBvZp0P7sNlEvPLNUbz7/UkAwJ1DeuGJ6/u7olwiIqIOYbCjHmf2dbEw1DXin1tPYP66w9D5qHD74F7tem9dgxV//OwANmYXAwCevikeT90YD0EQXFkyERFRuzDYUY/0p3EJMNQ14qNdp/CnVQehVikwfmDERQNaibEes/67B4fOGOCtVODVu69A2pD2BUIiIqLuwGBHPZIgCFg0eSCM9Y1Yd+AsHl25D7Ehfph4RSQmDYpCfLg/AKC02oytR0vw7ZHz2J5bhrpGKwI1XnjvwWEY3jdI4rMgIiJqThC7ct0HD2U0GqHX62EwGKDT6aQuh7pQo9WGBeuz8eXeMzBbbM7nkyL84eutxIHCKlz4JyQx3B/vThuKviF+ElRLREQ9UUdyCINdOzDYeT6T2YJvc85jw8Gz+CG3FI3WX/9YpPTS4aYB4bhpQDgGRul4PR0REXWrjuQQDsUSAdCqVUgb0gtpQ3qhqrYB3x4pgcVqw5jEUK5NR0REboPBjug3AjTeuHtotNRlEBERdRgXKCYiIiLyEAx2RERERB6CwY6IiIjIQzDYEREREXkIBjsiIiIiD8FgR0REROQhGOyIiIiIPASDHREREZGHYLAjIiIi8hAMdkREREQegsGOiIiIyEMw2BERERF5CAY7IiIiIg/BYEdERETkIVRSF+AORFEEABiNRokrISIiop7GkT8ceeRiGOzaobq6GgAQExMjcSVERETUU1VXV0Ov1190G0FsT/zr4Ww2G86ePQt/f38IguCSYxiNRsTExKCwsBA6nc4lx/AU/Kw6hp9X+/Gz6hh+Xu3Hz6r9+Fm1JIoiqqurERUVBYXi4lfRsWPXDgqFAtHR0d1yLJ1Ox9/I7cTPqmP4ebUfP6uO4efVfvys2o+fVXOX6tQ5cPIEERERkYdgsCMiIiLyEAx2MqFWq7FgwQKo1WqpS5E9flYdw8+r/fhZdQw/r/bjZ9V+/Kw6h5MniIiIiDwEO3ZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWAnA6WlpZgwYQI0Gg0SExOxZcsWqUuSrQULFiA5ORkKhQKffvqp1OXImtlsxkMPPYTo6Gjo9XqMHTsWWVlZUpclWw8//DAiIyOh0+mQmpqKr776SuqSZG/nzp1QKBR4+eWXpS5F1saOHQsfHx9otVpotVrceuutUpckey+//DJiYmLg7++PwYMHo6qqSuqS3AaDnQw8/vjjiIqKQllZGV555RVMmTIFlZWVUpclS/Hx8Xjrrbdw1VVXSV2K7FksFsTGxmLXrl2oqKjA5MmTkZaWJnVZspWeno6CggIYjUb85z//wdSpU/nn8CJsNhv++Mc/Yvjw4VKX4hZWrFgBk8kEk8mE//3vf1KXI2tvv/02/ve//+HHH3+E0WjEypUr4ePjI3VZboPBTmImkwnr1q1DRkYGNBoN0tLSkJKSgg0bNkhdmixNnToVN998M/+Qt4Ofnx9eeOEFREdHQ6lU4oknnkB+fj7Ky8ulLk2WkpKSnOtmCYKA+vp6nDt3TuKq5Ou9997DiBEjMGDAAKlLIQ9itVrx0ksv4YMPPkCfPn0gCAJSUlL4d34HMNhJLDc3F3q9HpGRkc7nBg0ahOzsbAmrIk+0c+dOhIeHIzg4WOpSZOuxxx6Dr68vhg8fjltuuQXJyclSlyRLFRUVePPNN7Fw4UKpS3EbTz75JEJDQ3HzzTfj0KFDUpcjW2fOnEFdXR0+//xzhIeHIzExEe+8847UZbkVBjuJmUymFjc51ul0MJlMElVEnshgMOCRRx7Biy++KHUpsrZs2TKYTCZs3rwZY8aMkboc2frrX/+Kp59+GoGBgVKX4hZeffVV5Ofn4/Tp07j55ptx22238e/4NhQVFcFgMCAvLw8FBQVYvXo1Fi1ahK1bt0pdmttgsJOYVquF0Whs9pzRaIRWq5WoIvI09fX1SEtLw4QJEzBz5kypy5E9pVKJm266CVu2bME333wjdTmys3//fvz888+YPXu21KW4jauuugparRa+vr7485//DK1Wi59//lnqsmTJ19cXgH2inK+vLwYOHIhp06bh66+/lrgy96GSuoCeLj4+HgaDAcXFxYiIiAAAHDx4ELNmzZK4MvIEFosF9957L6KiovDaa69JXY5bsdlsyMvLk7oM2fn+++9x/Phx9OrVC4C9G6xSqZCXl4f3339f4urcg0LBnkpbEhIS4O3t3ew53vm0Y/i7S2JarRaTJ0/GggULUFdXh/Xr1+Pw4cOYNGmS1KXJUmNjI+rr62Gz2Zp9T62bPXs26urqsGLFCgiCIHU5smUymZCZmQmTyQSLxYIvv/wSW7duxejRo6UuTXYefvhhnDhxAgcOHMCBAwcwefJkPPXUU/j73/8udWmyVFVVhc2bN8NsNqOhoQH/+Mc/UFFRgWHDhkldmiz5+fnh7rvvxuLFi2E2m3Hs2DFkZmbitttuk7o09yGS5EpKSsRbb71V9PX1FePj48XNmzdLXZJsTZ8+XQTQ7LF161apy5KlgoICEYDo4+Mj+vn5OR8//PCD1KXJjslkEq+//npRr9eLOp1OvPLKK8XVq1dLXZZbmD59urhkyRKpy5CtkpIScejQoaKfn58YGBgoXn/99eLevXulLkvWKisrxTvvvFPUarVinz59xGXLlkldklsRRJE9TiIiIiJPwKFYIiIiIg/BYEdERETkIRjsiIiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyKiSzh9+jRCQkJceoyCggIIggCtVou1a9dedNsvv/wSWq0WgiCguLjYpXURkXvhnSeIiGC/b7NDTU0NNBqN8/66OTk56N27t0uPX1BQgKSkJNTX17f7PYIg4Ny5c4iIiHBhZUTkTlRSF0BEJAcmk8n5vY+PD7Kzs9G3b1/pCiIiugwciiUiuoSCggL4+Pg4fxYEAf/+97/Ru3dvhISE4LPPPsNXX32F2NhYhIWF4bPPPnNuW1FRgfvvvx9hYWGIjY3Fhx9+2O7j7tq1C0OGDIG/vz8iIiLwxhtvdOl5EZHnYceOiOgy/PTTTzh+/Dg2bNiARx99FJMnT8bhw4exZcsWzJw5E3fffTeUSiWmTZuGlJQUFBYWIj8/HzfccAMGDx6MQYMGXfIYTz/9NJ599lncf//9qKysREFBgetPjIjcGjt2RESX4c9//jN8fHxw5513oqqqCo899hg0Gg0mTZqE6upqnD17FsXFxdi+fTteeuklqNVqJCUl4f7778fq1avbdQwvLy8cO3YMFRUVCAwMxJAhQ1x8VkTk7hjsiIguQ1hYGABAqVTCy8sLoaGhztd8fHxQU1OD06dPo6amBsHBwQgICEBAQADeffddnD9/vl3H+OCDD3DkyBH0798fo0aNws6dO11yLkTkOTgUS0TkIr169UJAQADKy8sv6/2JiYlYtWoVLBYL3nnnHUydOhV5eXldXCUReRJ27IiIXKRXr14YPnw45s+fj9raWlgsFuzbtw85OTnten9mZibKy8uhUqng7+8PpVLp4oqJyN0x2BERuVBmZiZOnTrlnDH79NNPo66url3v/frrr5GYmAh/f38sXboUy5cvd3G1ROTuuEAxEZEMnDp1CklJSVCr1fjvf/+LyZMnt7nt6tWrMXPmTNTX1+PUqVMIDw/vxkqJSM4Y7IiIiIg8BIdiiYiIiDwEgx0RERGRh2CwIyIiIvIQDHZEREREHoLBjoiIiMhDMNgREREReQgGOyIiIiIPwWBHRERE5CEY7IiIiIg8BIMdERERkYf4/0XMOvXgGwnoAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1065,7 +1065,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACgcUlEQVR4nOzdd3gU1foH8O/M7qZseiEkISEhhBaa0pFikCYognijgAhBQUFEvfhT5CoCdixcUMEuoIJwsVACKi2hKL33EkiB1AWym03ZbDm/P0LW1M3s7mzN+3mefcicM2fm7DuTw8mcOTMcY4yBEEIIIYS4NN7RFSCEEEIIIdajTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hpFGlpaV45JFH4O/vD47jUFRU5OgqNWrBggVo3rw5OI7Dhg0bHF0dh0hLSwPHceA4DmPGjBF9+7Gxscbtu8I5YanExETj9zxx4oSo2165cqVx2y+++KKo2yZND3XqCLGxvLw8vPDCC4iPj4eXlxeaN2+O/v3744svvkBpaamjqyfIqlWrsHfvXvz999/Izc1FQEBAnXWq/+dU/fPNN9/Yvb7nz5/HwoUL8eWXXyI3NxcjRowQdfvVOzNyuRydOnXCl19+Keo+xHTx4kWsXLnSuKzT6fD666+jVatW8Pb2RlxcHN58800YDAbjOsnJyXWOZZ8+fWps9/Dhw/jll18sqlNeXh5mzZqFuLg4eHp6Ijo6GqNGjcLOnTst2p6tTZs2Dbm5uejUqZMx7fDhwxg8eDACAwMRFBSEYcOG1en0Mcbw0UcfoW3btsbv+e677xrzH3vsMeTm5qJv3772+irEjUkdXQFC3NnVq1fRr18/BAYG4t1330Xnzp2h0+lw6dIlfPfdd4iMjMRDDz3k6Go2Kj09HR06dKjxH1p9/P39cfHixRpp9XUAxVJRUQEPD4866enp6QCA0aNHg+M4i7ev1Wohk8nqzXvzzTcxbdo0qNVqrFy5EtOnT0dgYCAee+wxi/dnK2FhYQgMDDQuL1q0CF988QVWrVqFjh074siRI5gyZQoCAgLwwgsvGNe7//77sWLFCuNy7Vg3a9YMwcHBZtcnIyPD+HvxwQcfoEuXLtBqtfjzzz8xc+ZMXLhwwfwvaWNyuRzh4eHG5eLiYgwfPhyjR4/G8uXLodPpMH/+fAwfPhzXr183njcvvPACtm3bho8++gidO3eGUqmEQqEwbsfb2xve3t71nseEmI0RQmxm+PDhLCoqiqnV6nrzDQaD8eePP/6YderUicnlchYVFcVmzJjBiouLjfkrVqxgAQEB7I8//mDt27dnPj4+bPjw4SwnJ8e4jlarZbNmzWIBAQEsODiYvfLKK2zSpEls9OjRJuv5888/s4SEBObh4cFiYmLYRx99ZMy79957GQDj59577613G1X1a0hmZiZ76KGHmI+PD/Pz82NJSUksLy/PmD958uQ69XzhhRdq7O/ee+9lM2fOZP/+979ZSEgIGzhwYJ39zJ8/v0Z9q5o5vV7PFi5cyFq0aME8PDxY165d2e+//24sd+3aNQaArVu3jt17773M09OTfffdd/V+l5iYGPbf//63RlqbNm3YuHHjGvz+pqxfv5516tSJeXl5seDgYDZ48GCmVqvZ7t27mVQqZbm5uTXWnz17NhswYABjjLGMjAz24IMPssDAQCaXy1lCQgLbsmULY4yx1NRUBoDdvn27RvkHHniAPfnkkzXSxo4dyyZOnGhcru941KehfZgyYsQI1qJFi3p/L8zZTnW3bt1iEyZMYKGhoczLy4vFx8cbj9+gQYPYzJkza6yvUCiYh4cH27lzJ2OMsWXLlrH4+Hjm6enJwsLC2COPPGJc995772UvvPBCjfKHDx9mAFhWVpYx7dSpUwwAu3LlCmOMsXPnzjGpVMouXLjQaP3r2wch5qLhV0Js5ObNm9i2bRtmzpwJHx+fetepfhWJ53l88sknOHPmDFatWoVdu3bhlVdeqbF+aWkpPvroI/zwww/Ys2cPsrKy8H//93/G/EWLFmH16tVYsWIF/vrrL6hUqkbvJzt69CgeffRRjBs3DqdPn8aCBQswb94843Ddr7/+imnTpqFv377Izc3Fr7/+anYsGGMYM2YMbt26hd27d2P79u1IT0+36KrWqlWrIJVK8ddff9U75Pl///d/xqtLubm5yM3NBQAsXboUH3/8MT766COcOnUKw4cPx0MPPYTLly/XKD9nzhw8//zzOH/+PIYPHy64Xl5eXtBqtQCAvXv3wtfX1+SnagguNzcX48ePx5NPPonz588jLS0NY8eOBWMMAwcORFxcHH744QfjfnQ6HX788UdMmTIFADBz5kxoNBrs2bMHp0+fxqJFi+Dr62uyrv3798fOnTtx6dIlAMDJkyexb98+jBw5ssZ6aWlpCAsLQ9u2bTFt2jQUFBQIjkdDbt26hT/++KPB34vqVxRHjBjRaByrzJs3D+fOncPvv/+O8+fP4/PPP0doaCgAYOrUqVizZg00Go1x/dWrVyMyMhKDBg3CkSNH8Pzzz+PNN9/ExYsX8ccff2DgwIEmv0e7du0QGhqKb7/9FhUVFSgrK8O3336Ljh07IiYmBgCwefNmxMXFISUlBa1atUJsbCymTp2KW7duWRNCQhrm6F4lIe7qwIEDDAD79ddfa6SHhIQwHx8f5uPjw1555ZUGy//vf/9jISEhxuUVK1bUuArAWOXVhebNmxuXmzdvzj788EPjsk6nYy1btjR5xWXChAls6NChNdJefvlllpCQYFyufcWsPlX1q/puPj4+xrpt27aNSSSSGlc1zp49ywCwQ4cOMcaEX6m76667TNaDMcZ+++03Vrt5i4yMZO+8806NtJ49e7Jnn32WMfbPlbolS5Y0uv3qV+q0Wq3xuy9fvpwxxlhpaSm7fPmyyc/NmzcZY4wdPXqUAWAZGRn17mvRokWsQ4cOxuUNGzYwX19f41Wuzp07swULFtRbtqGraAaDgb366quM4zgmlUoZx3Hs3XffrbHO2rVrWUpKCjt9+jTbtGkT69q1K+vYsSMrLy8XtI+GHDx4sN7fi/pcv3690ThWGTVqFJsyZUq92ykvL2fBwcFs3bp1xrS77rrLGLdffvmF+fv7M5VKVW/5hq6inTlzhrVu3ZrxPM94nmft27dnmZmZxvxnnnmGeXp6st69e7M9e/aw1NRUdtddd7FBgwYJ3gch5qB76gixsdr3dB06dAgGgwGPP/54jSsHqampePfdd3Hu3DmoVCrodDqUl5ejpKTEeEVDLpejdevWxjIRERHGqydKpRL5+fno1auXMV8ikaB79+41boCv7fz58xg9enSNtH79+mHJkiXQ6/WQSCSCv6ufnx+OHTtmXOZ53riP6OhoREdHG/MSEhIQGBiI8+fPo2fPnoL30aNHD8HrVlGpVMjJyUG/fv1qpPfr1w8nT560aPtz5szB66+/Do1GAw8PD7z88st45plnAFTeJxUfHy9oO127dsXgwYPRuXNnDB8+HMOGDcO//vUvBAUFAaicsPD666/jwIED6NOnD7777js8+uijxnPi+eefx4wZM7Bt2zYMGTIEjzzyCLp06WJyn+vWrcOPP/6INWvWoGPHjjhx4gRefPFFREZGYvLkyQBQ4ypqp06d0KNHD8TExGDLli0YO3asoO9WH8YYgLq/F/Vp0aKF4O3OmDEDjzzyCI4dO4Zhw4ZhzJgxuOeeewAAnp6emDhxojF2J06cwMmTJ41XsYcOHYqYmBjExcXh/vvvx/3334+HH34Ycrm8wf2VlZXhySefRL9+/fDTTz9Br9fjo48+wsiRI3H48GF4e3vDYDBAo9Hg+++/R9u2bQEA3377Lbp3746LFy+iXbt2gr8fIULQ8CshNhIfHw+O4+rc9B0XF4f4+Hh4e3sb0zIzMzFy5Eh06tQJv/zyC44ePYply5YBgHFID0Cdm/Y5jjP+J1k9rbra+bUxxswu0xCe5xEfH2/8xMXFNbiP2uk8z9fZb/XvXqWhoWwh6vuetdOEbv/ll1/GiRMnkJmZCbVajQ8++MDYiTVn+FUikWD79u34/fffkZCQgE8//RTt2rXDtWvXAFROchg1ahRWrFiBgoICbN26FU8++aSxHlOnTsXVq1fxxBNP4PTp0+jRowc+/fTTRuv+6quvYty4cejcuTOeeOIJ/Pvf/8Z7773XYJmIiAjExMTUGa42V5s2bcBxHM6fP9/ouuYMv44YMQKZmZl48cUXkZOTg8GDB9e4NWHq1KnYvn07rl+/ju+++w6DBw82DpNW/THy008/ISIiAm+88Qa6du1q8jEta9asQUZGBlasWIGePXuiT58+WLNmDa5du4aNGzcCqIyZVCo1dugAoEOHDgCArKwss+JGiBDUqSPERkJCQjB06FB89tlnKCkpMbnukSNHoNPp8PHHH6NPnz5o27YtcnJyzNpfQEAAmjdvjkOHDhnT9Ho9jh8/brJcQkIC9u3bVyPt77//Rtu2bc26StfYPrKyspCdnW1MO3fuHJRKpfE/uWbNmhnvf6si1jPB/P39ERkZWe/3rNq/uUJDQxEfH4/IyMg6HcMePXrgxIkTJj/Tp083rs9xHPr164eFCxfi+PHj8PDwwG+//WbMnzp1KtauXYsvv/wSrVu3rnPFMTo6GtOnT8evv/6Kl156CV9//bXJupeWlho7oFUkEonJK7o3b95EdnY2IiIiGo2NKcHBwRg+fDiWLVtW7+9F9Y7UN99802gcq2vWrBmSk5Px448/YsmSJfjqq6+MeZ07d0aPHj3w9ddfY82aNTU6xgAglUoxZMgQfPDBBzh16hQyMjKwa9euBr9HVQxr3xfLcZwxjv369YNOpzPOxgZgvI+xqkNJiJho+JUQG1q+fDn69euHHj16YMGCBejSpQt4nsfhw4dx4cIFdO/eHQDQunVr6HQ6fPrppxg1ahT++usvfPHFF2bvb9asWXjvvfcQHx+P9u3b49NPP8Xt27dNDnW99NJL6NmzJ9566y089thj2L9/Pz777DMsX77c4u9d25AhQ9ClSxc8/vjjWLJkCXQ6HZ599lnce++9xuHO++67Dx9++CG+//579O3bFz/++CPOnDmDu+++W5Q6vPzyy5g/fz5at26Nu+66CytWrMCJEyewevVqUbZfnTnDrwcPHsTOnTsxbNgwhIWF4eDBgygsLKzR2Rw+fDgCAgLw9ttv480336xR/sUXX8SIESPQtm1b3L59G7t27Wq0ozpq1Ci88847aNmyJTp27Ijjx49j8eLFxo6OWq3GggUL8MgjjyAiIgIZGRn4z3/+g9DQUDz88MNmRqOu5cuX45577kGvXr3w5ptvokuXLtDpdNi+fTs+//xz41U8c4Zf33jjDXTv3h0dO3aERqNBSkpKnThMnToVzz33HORyeY3vkZKSgqtXr2LgwIEICgrC1q1bYTAYTA6PDh06FC+//DJmzpyJWbNmwWAw4P3334dUKsWgQYMAVJ733bp1w5NPPoklS5bAYDBg5syZGDp0aI2rd4SIxmF38xHSROTk5LDnnnuOtWrVislkMubr68t69erFPvzwQ1ZSUmJcb/HixSwiIoJ5e3uz4cOHs++//77GDej1PTKk9oQArVbLnnvuOebv78+CgoLYnDlzWFJSUqOP2qh6pIlMJmMtW7asMdmCMeETJax5pAljjL3xxhusefPmLCAggP373/9mzz33XJ2JEkJuJq9vokT1R5rIZLIGH2ly/PjxRrdf3yNNLHXu3Dk2fPhw1qxZM+bp6cnatm3LPv300zrrzZs3j0kkkhqPsGGMseeee461bt2aeXp6smbNmrEnnniCKRQKxljDkxhUKhV74YUXWMuWLZmXlxeLi4tjr732GtNoNIyxyokew4YNY82aNTOeE5MnT64x0aVK7X1UxTE1NdXk987JyWEzZ85kMTExzMPDg7Vo0YI99NBDjZZryFtvvcU6dOjAvL29WXBwMBs9ejS7evVqjXWKi4uZXC43To6psnfvXnbvvfeyoKAg5u3tzbp06VJjUkVD5922bdtYv379WEBAAAsKCmL33Xcf279/f411bty4wcaOHct8fX1Z8+bNWXJysnGSTHU0UYKIgWPMwptnCCFOz2AwoEOHDnj00Ufx1ltvObo6xArTpk1Dfn4+Nm3aJLhMWloaBg0ahNu3b9d4VIiYau8jLS0NDz/8MK5evWqc7OEssrOzERsbi8OHD6Nbt26CyyUmJuKuu+7CkiVLbFY3e+yDuD+6p44QN5KZmYmvv/4aly5dwunTpzFjxgxcu3YNEyZMcHTViIWUSiV27NiB1atXY9asWRZtIyoqCuPHjxe5ZkDHjh3rvILtjz/+wH/+8x+n6tBptVpkZWVhzpw56NOnj1kduirLly+Hr68vTp8+LWrdVq9eDV9fX+zdu1fU7ZKmia7UEeJGsrOzMW7cOJw5cwaMMXTq1Anvv/9+ow9SJc4rMTERhw4dwjPPPIP//ve/ZpUtKyvDjRs3AAC+vr41XnMlhszMTOMM5bi4uDqTL5xF1dXEtm3b4ueff0bnzp3NKn/jxg2UlZUBAFq2bCnqK72Ki4uRn58PoPLBy1UPTCbEEtSpI4QQQghxA875ZxUhhBBCCDELdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYSQJiA5ORnvv/++o6tBbIg6dYQAiI2NhVwuh6+vL3x9fREbG+voKhFCXBy1K8TeqFNHyB27du2CWq2GWq1GRkZGnXytVmuXethrP4QQ23OWdoU0DdSpI6QBaWlpaN++PV577TWEhobi3Xffxa1btzBu3DiEhoYiPj4e33zzjXH95ORkvPjii7j33nvh6+uLCRMmIC8vD0OGDEFAQAAef/xx6PX6evcVGxuLDz74AO3atUNCQoK9viIhxM7s2a6kp6fjnnvugZ+fH8aOHYvS0lJ7fU3iIFJHV4AQZ3blyhXI5XLk5uZCr9djypQpkEqlyMrKwpUrVzBkyBC0b98e/fv3BwCsX78eO3fuRLNmzdCtWzc8+OCD+P777xEZGYkePXogJSUFo0ePrndfGzZswN69e+Hv72/Pr0gIsTN7tSsTJkzAsGHDkJaWhq1btyIpKQndunWz99cldkSdOkLuGDp0KCQSCQBgxowZGD58OORyOV599VVIJBLwPI9ffvkF6enpkMvl6NKlC5566in89NNPxsb3scceQ/v27QEAiYmJ8PX1NV55Gzx4ME6dOtVgp+7f//43wsLC7PBNCSH24qh2JTMzE2fOnMHevXvh4eGBMWPGoHfv3nb85sQRaPiVkDu2b9+OoqIiFBUV4b333gMAREREGBvkwsJC6PV6REVFGcvExMQgJyfHuFy9U+bt7Y1mzZrVWC4pKWlw/9W3SwhxD45qV3JzcxEWFgYPDw9jWnR0tHhfjDgl6tQRYgLHccafmzVrBp7ncf36dWNaVlYWIiMjRd8XIcR92aNdiYiIQEFBASoqKoxp2dnZVm2TOD/q1BEikEQiwdixY/Haa6+hrKwMZ86cwbfffotx48Y5umqEEBdlq3YlJiYGCQkJePfdd6HVarFp0yYcOnRIpFoTZ0WdOkLMsGzZMpSXlyMqKgoPPfQQ3nzzTQwYMMDR1SKEuDBbtStr1qzBn3/+ieDgYKxcuRIPP/ywCLUlzoxjjDFHV4IQQgghhFiHrtQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgBeverCAwGA3JycuDn50dvBSCkCWOMobi4GJGRkeB56/9mpraFEAIIb1uoUyeCnJwceqceIcQoOztblHf5UttCCKmusbaFOnVWWLZsGZYtWwadTgcA+OabbyCXyx1cK0KIo5SWlmLq1Knw8/OzajvUthBCqhPctjBiNaVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dO51ztdPM/W4KhYIBYEql0u5tCx1n92pbhJajtsU255ytY2ertoWu1IlIJpNBJpOZXG4oz9Z1EbucqfXMzRMSN2ePnRhxM5UvJG71pdkzdu50zlWlWVJHW3Cm3xF3Os6u0LYILUdti+XlHBE7S+ooBM1+JYQQQghxA9SpI4QQQghxAzT8KiKtVmv8VC3X92/tn8WugyXbF1rO1Hrm5jUWJyFxFJPQ7TPGYGCAhOdEiZupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP81V2hZLylHbYnk5R8dOSB3NXY9jjDFBa5I6qmao6fV6XLp0CWvWrKEZam5GWQGcL+KQruKQW8qhsBzQ6CvzfKRAuByI9zegZzOGUC/H1pU4XmlpKSZMmAClUgl/f3+Lt0NtCyGkOqFtC3XqRKBSqRAQEACFQgF/f39otVps374dQ4cOhUwmq7EMoEae2GrvW+xyptYzN89UnIQsi02r1eKPbdsR2q4n/r5WhN2XFDifVyy4/NAOYZg9JB7xYb71bttU3RvKFxK3+tLsGTt3OudqrwOY9/uqUqkQGhpqdaeu+vaEti10nJ27bbFV7KhtsbycI2MH2KZtoeFXEQmZHdRQnq3rInY5d5qhlqcsx55Lhdh1IR+7L0hQduB4jfwuUQEY2KYZOrXwR3yYLwLlHmAMKCgux7GMW1i9+wwuqnhsP1+AXRcLMXNQPGbdFw+ZpO4tqzRDzfJy9jznqtIsqaMtOPp3xFRdxC7nTm2LkDqKVY7aFsvLOSJ2ltRRCOrUkSanXKvH4Yxb2H2xEHsuF+JSvrpaLodAbxkGtm2GxHbNMLBtM4T6eta7nWZ+nmjbTA7/wlNo26M/Pt6Rjh3n8/HJzstIu1iA5Y93Q1QQDZkRQgixD+rUEbdXoCrH0czbOJJ5G0czb+NsjhJa/T93HXAc0CUqEANaB0OmuIRnkobCy9PDrH3Eh/nim8k9sPlkDl7fcAanrisxZtlf+GJid/SIDRb7KxFCCCF1UKeumtmzZ+Pw4cO4++678cknnzi6OsRMyjItsm6W4mJ+MS7kqnAhrxgX8lRQqCvqrBvu74UBbUIxsG0z9I8PRZCPB7RaLbZuvQQJb/mL00d1jUS3mCBMW3UE53JVGP/1AXz4r654oFOYNV+NEEIIaRR16u44duwY1Go19u7dixkzZuDw4cPo2bOno6tF7ijX6pFzuxTXioFt5/Jxq0yPnKIyZN0qRfatUmTeLIWyrP4p3xwHtGvuhx6xQegeE4QeMcGICvIGx1neeTOlRaA3fp7RF7PXncQfZ/Pw4roTuKluj1Cb7I0QQgipRJ26O/bv348hQ4YAAIYMGYIDBw5Qp84KjDFU6A0o1xqg0epRXKZBbilw+oYSOsajXKtHSXkFjhRyuH0wCyVahqISDc6m8/hz3UmoKwxQllYgRyHBa8d2Qa3R3dmyFDhzssH9hvp6ID7MF+3D/dEhwg/tw/3RtrkfvD0k9vnid8g9pFj+eDe8mXIOK//OwFtbLuD+KA4jaLI5IYQQG3HLTt38+fOxfv16XLhwAWvWrMG4ceOMeYWFhUhOTkZqaiqio6OxfPlyDB48GEVFRWjdujUAICAgAGfPnrVJ3X4/k4dNmTxO/3kJPM+DMQbGAAbc+bdyGajsGNVOr1q+s0ZlWrV8vcGA69d5pP1yGhzH31m/+nb+WUatcnl5PFKKToCBg85ggN7AoNOzyn/vLGv1BtxWSrD08l8wMAadoSqfQac3oFwjwatHdqBcZ0Dd/osUOHmwVpoEuHKh2jIPFORXW+YAVHboPKU8fCR6tAwLRJifF8IDvNAyWF75CZEjOkgOH0/nOaV5nsP8UQkIlMuwZMdl/HFdgre3XsSChzqBt2KIlxBCCKmP8/wPKKI2bdpg6dKlmDdvXp28mTNnIjIyEgqFAtu2bUNSUhLS09MRGBgIlUoFoPJ5MIGBgTapW+olBXbm8EBOhk22X4kHCnMtK3erQMB6HFBa0nCe3lAzhQO8pDx4poef3AveHlJ4Snl4SnmUqm6jVVQ4AuUe8PWQIDfrKrp3SUCQjxfkMg7nThzBg0PuRUSwD7x4ht9//x0jR/a26WMHxMRxHF4c0hZ+nhK8teUCvj+QBXWFHh880gXSeh55QgghhFjKLTt1EydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZvRt29ffPnll3j00UexY8cOJCcnN7h9jUYDjUZjXK7qDAp5lU+/VoG4nXcdsTExkEh4cBwHDpUdHw7cnX8B1FquykdVPlCrbOWywaDHlcuX0aZtW0glkhp5qLVu9bIGgwHnz59HQkIHeEilkPAcpDwHqYQ3/izhOcCgx4kTx9G7R3d4esgg4TnI7qzDDHoc3P83Bg7oD19vT3hJeXjKJPCQcNDpdHcetHhPPQ9m7FjtwYzpGNoj0rhccQ2IDvSATAJotboa8RSbJa+kEVpmfPcIXLt4Fj+lS/HrsRsoLtPiv0md4SmTmNwOvcrHvq+PaiytMdbG15q2paG6i8WdjrM942bN9oWUa2wdalssX8/WsRNSR3PXc+s3SiQmJmL69OnG4dfjx49j+PDhKCj452rUrFmzIJfLsWjRIrz44os4evQounbtis8++6zB7S5YsAALFy6sk06v8iGNOX2Lw8pLPHSMQ9sAA6a2M8DTvrf7ERuy9jVh1LYQQuojtG1xyyt1DVGr1XWC4e/vj6KiIgDAkiVLBG1n7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+uXF7/pFE9Msuxsx1p3FJCfx4IxBfTOgCXxlX73aExK2+NHvGzp3OudrrAOb9vlZdWbOUNW0LHWf3aluElmtsnYbyqW1xbOwA27QtdKWu2pU6c9FLt4mlMouBLy5IUKrjEOHNMCNBjwDznndMnJC1V+qqUNtCCKlOaNvSpDp1arUaISEhyMzMRHh4OABg4MCBmDp1KiZNmmTxfqpeup2bm0tX6prYX9PWxO1ygRpTfzyJQnUFooO8MCVWjX+NoL+mzVnPGa/URUREWN2pq749oW0LHWf3aluElqMrdZaXc7UrdULaFrfs1Gm1Wuj1egwbNgzTpk1DUlISPDw8wPM8kpKSEBwcjCVLlmD79u1ITk5Geno6goKCzN4P/TVNrKUoB5afk+CmhkOAB8OzHfQIp1PIZdGVOkKILTTpK3XJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XLjQ4ctRVfqLMtzh7+mxYhbQbEGT/1wAumKUvh7SfHZY53RIyawwXL017TleXSlznLudJxdoW0RWo6u1Flejq7UkRror2kilhIt8OUFCTLVHCQcw/jWBvRsRr+aroau1BFCbKFJX6mzN7pSZ1meO/w1LeZfhH/uSMU2VTi2X1AAAGYMjMX0flFIS0ujv6bpSh1dqWtibYvQcnSlzvJydKWO1EB/TROxGRiwJYvHjpzKt010DzVgfGsDZPTyCZdAV+oIIbYguG1hxGpKpZIBYAqFglVUVLCSkhK2YcMGVlJSUme5dp7YH0u3L7ScqfXMzTMVJyHLzhA7MeJWX/7q/VdZ67lbWMycFNb/zc3scs5NUWPp6Lg56zlXO83c76ZQKBgAplQq7d620HF2r7ZFaDlz2xZz4ubo2DnynLN17GzVttDf/4Q4oaTuUfh2UjcEeEuRXcIh6esjOHD1lqOrRQghxInR8KsVaIiE2NrNcuC7SxJcL+HAgeGhGAMGRTBwXONlif3R8CshxBZo+NWOaPjVsjx3GCKxx2X+//2ygT2/+giLmZPCYuaksGkrD7I1P9MQiS3OudppNPzqnsfZFdoWoeVo+NU255ytY0fDr4Q0UR4S4N3R7bHgwfaQ8hy2nS/Eh6ckOJ6tdHTVCCGEOBEafrUCDZEQe8ssBlZdrnwDBQ+GEdEGDGnBwNNwrFOg4VdCiC3Q8Ksd0fCrZXnuMETiiMv8+beUbOyHm4zDsY9+8RdLz73ZJIdIaPiVjrO7ti1Cy9Hwq23OOVvHzlZti/hPWWzCZDIZZDKZyeWG8mxdF7HLmVrP3DwhcXP22IkRN1P51dODfIEn4g14bGAXLEg5j4PXbmP0F4cxqgWHEVKpw2LnTudcVZoldbQFZ/odcafj7Apti9ByYrQt5qQ1lXPOVL41sbOkjkLQPXWEuCCOAx6+OxIps/qja3Qgist1WJMuwdM/Hke+qtzR1SOEEOIAdKVORFqt1vipWq7v39o/i10HS7YvtJyp9czNayxOQuIoJku2L0bcTOU3FrfoQE+sfaoHvt57FUt3pSPtkgJDF+/Gf+5vAy9mn9i50znXWFpjbHluCmlb6DjXn+aKbYvQcrZqWxpKayrnnKl8sWInpI7mrkcTJaxANzMTZ5JbCqy+IkF2SeWsiQ6BBiS1MiDEy8EVa0JoogQhxBZoooQd0UQJy/Lc4WZmZ7sht0hVzP677QKL/0/lK8bavbaVfbrjIitSFbvlzcw0UaJp3LTeFNsWoeVoooRtzjlbx44mSrgAmihhWZ473MzsLDfkyr088eLQdri/Y3M8t3IvrqiAj7ZfxsaTORjZzH1vZqaJEk3jpvWm2LYILUcTJSwvRxMlCCFOrXUzHzyXYMAHYzsh2McDlwtKsPSsFP/ZcBYKtcbR1SOEEGID1KkjxE1VzZDdOfte/KtbCwDA+qM3MOjDNHyz9yoqdAYH15AQQoiYaPhVRDT7tenNUHOFWVa+HjK8+WBbtNBkYvutQJzLVePtLeex+kAm/jOyHRLbNhPwTS3/btaWo9mvNPu1KbYtQss5eganu55zpvJp9qubohlqxNUYGHCokMPmLB5qbeUs2YRAA8bEGtDc28GVcwM0+5UQYgs0+9WOaParZXnuMEPNFWZZ1bd8U1XK3tx02jhLNm7uFjb3lxMs51Zxkz7naqfR7Ff3PM7O1LbcLi5l567fYsczFOxEpoLduFnMNBqN4Ho5W9viLuecrWNHs19dAM1+tSzPHWaoOfMsq/qWg2UyzBvVCY/3icU7W85j54UCrDl0HRtO5GLqgDg8PTAOvp7mNQ/udM5VpVlSR1twpt8RdzrO9m5byvXAketFOJZ1G8ezinD6hhK3SirqrBfgLUP/+FCM7BQGA6PZrzT7VXjbQp06QpqwuGa++Da5Jw5cvYn3fr+Ak9lF+GTnZaw5mInnB7fB+F4tIZPQfCpCzGUwMFwpVON41m0cybiFveckePFAKuq74cnPUwpfLyl0Boabag2UZVpsOZ2LLadzEeYlgW+bQgztGGn/L0FcDnXqCCHoExeCDc/eg9/P5OHDPy/imqIEb2w8i+/2XcP/DW+HkZ0iwPOco6tJiFNijKGwWIOzuSoczyrC8azbOJFVhGKNrtpalb8/LYPl6NYyEN1ignB3dBBiQ+Xw8/rnKky5Vo9zuSr8eSYPPx3KQkG5DtN+OI6Huubj3bGdzb6CTpoWOjvuyM7OxujRo3Hu3Dmo1WpIpRQa0rRwHIeRnSMwNKE51h7OxtIdl5FxsxTPrTmOhIh0zB7aFoM7hIHjqHNHmiaDgaGgWIPMmyW4pijBhbxiXMwrxoU8FW6X1p2d6C2ToGt0ALq2CIC+4AqmjrkP4UG+JvfhJZOgW8sgdGsZhOkDYzH72x3Yky/BppM5OJujxFeTeqB1M9PbIE0X9VzuaNasGXbt2oUxY8Y4uiqEOJRMwuOJPjEYe3cLfL33Kr7Zew3nclWY+v0RdI0OxOyhbTGwTSh17ohb0RuAPFU5ispKUaguR2GxBgUqDQqKNbh+uxRZt0qRfbuswec78hwQG+qDu6ICcXdMELq1DES75n6QSnhotVps3XoZIb6eZtXJ11OKMbEGzBjVB8+vPYX0whIkfbEfq6b0QueoADG+NnEz1Km7w8vLC15e9OZzQqr4eErx4pC2mNw3Fl/uuYpVf2fgZHYRJn93CD1igjB7WFvc0zrU0dUkTYSBARU6A3RMD53BAL2BQaMzoLhMg5xS4NR1JXSMQ7nOgJKyChxVcCg5egM6BpSUa3Eii8eRLRdQUqGHsrQCGTck+PzafhSX66Aq16K4XAoc3NNoPSQ8hxaB3ogJkaNdcz+0C/dDhwh/xIf5wksmscl3vzs6ECnP98eTKw/j1HUlxn99AN9O7oHecSE22R9xXS7bqZs/fz7Wr1+PCxcuYM2aNRg3bpwxr7CwEMnJyUhNTUV0dDSWL1+OwYMHO7C2hLiuIB8PvDqiPZ7q3wpf7E7HjwcycSTzNiZ8fRB940Lwwn1xjq4iAbD5ZA62nMpBbi6PLcoT4DkeDAyMAQy4c4N+5V36/6QxY17V/fuMVV/nTnkGMGaA4iaP1bmHK19XUi2/ast1tscYGGO4XSTB15kHAA7G7RkYg87AoDcw6AwG6PQMJaUSLDyVCr0BxvTKfxkYkwIHdjTw7aXAyYO10iTA5bPVlnngRla1ZQ4oLq5ZgucQ6uuBMD8vNPPzRDNfT4T6eSAqSI6WwZWfiAAvSB0weSjU1xOrp/bGtO+P4MDVW5iy8jB+nNobnSNoKJb8w2U7dW3atMHSpUsxb968OnkzZ85EZGQkFAoFtm3bhqSkJKSnp0Oj0dTo/AGAr68vUlJS7FVtQlxWMz9PzHswAU8PjMOy1Cv46VAW9l+9if1Xb6J9AI/mHW+jT3yYo6vZZF3KL8YfZ/MB8MCtAhvthQdUty0oxyG7RCVoPZjx9gAJz8FLyoMz6ODv4w0vDwm8pBJ4SjmolbfRIjwMck8pPHgOirwb6NyuNQJ8POEj45F+/jQG9u2JIF8vyKUcjvy9G/8aNQKenh4WfD/78POSYeWUXpj2/RHsvaxA8neHsPqpno6uFnEiLtupmzhxIgDgnXfeqZGuVquxceNGZGRkQC6XY8yYMVi8eDE2b96MSZMmIS0tzep9azQaaDT/vBRdpapsrOg1YU3vVT6u8joaMWMX7C3BvJHt8NQ9LbF891X8ciwHF5Q8xn1zGH1aBWFmYmv0bhXU6D13znjONZbWGGvja03bMjA+GAGebXDhwgUkdOgAXiIBh8qLahy4O/9WLleqmVa1TmVOZeI/eYDBoMepU6fRpUsXyKSVw4xctXXubNG4PrjKfINOh+MnTuDuu++GTCoxluF5DlKeg+TOBwY9Dh86iP739IWnh0eNPGbQYd+ePRh8XyK8quVV3a+2fft2DB3a1/gsr3/SOkMmk91ZzsbQxNh/lgtPoU9sgHH5ggzQ63XQasW/V1TMdlkC4LNxXTBl1TEcyypC8sqjmN7GPdoWoXUXq5yj22UhdTR3PZd/TVhiYiKmT59uvAJ3/PhxDB8+HAUF//ylOmvWLMjlcixatKjB7ZSXl+PBBx/E0aNH0a1bNyxYsAADBgyod90FCxZg4cKFddLpVT6kKVKUAztu8DhUyEHPKv9DbOXHMDzKgPYBDE1pPoW1rwmjtoUIVaoDPjsrwY1SDiGeDP/urIef7Z6bTBxMaNvislfqGqJWq+t8YX9/fxQVFZks5+XlhR07Grpfo6a5c+di9uzZxmWVSoXo6GgMGjQI/v7+0Ol0SE1NxaBBgyCVSmssA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9jpdDqEpqZiQVJfrDyYg1+O5+JasQFfnJegc6Qfpg+IRWLbkDpX7pzxnKu9DmDe72vVlTVLWdO22OM4U9tiGVvFrv/ACoz/9iiuF5Vj7Y1ArJzcDXIPiaBtuErb4qhzzlS+GLEDbNO20JU6K9BLtwmpS1kB7Mzh8Xc+B62hsiPXQs4wLMqALsEM7vwMY2uv1FWhtoUIVVAG/PeMBKU6Dp2CDHiqncGtf8eaKqFti9t16tRqNUJCQpCZmYnw8HAAwMCBAzF16lRMmjTJJnVQqVQICAhAbm4uXalrYn9Nu8JfhI76a/pmSQVW7c/GmiM3UFqhBwC0bibHM/1jcX/HZoDB4HTnXO11APP/mo6IiLC6U1d9e0LbFne+atIU2xah5XQ6Hb7dmIrPL8hQoWcY36MFXh/Rxnhl3B3bFrHKudqVOiFti907dWVlZXjjjTewfv163Lp1CyqVCn/++SfOnz+PF198UfB2tFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUGifhf6a5qQxpVogd25PPbkcSjTV/5HE+rJcF8LA3o1Y5C50atl6UodcZQTNzmsvMSDgcNDLfUY3MKlr9eQWpz2St2UKVOg1Wrx6quvYsCAAbh9+zZyc3MxaNAgXLhwQfB2kpOTsWrVqhppqampSExMRGFhISZPnoy0tDRERUVh+fLlGDJkiNhfxYiu1FmW5w5/TbvCX4TO8te0qlyLNYdu4PuD11FUVjmTy1/G8GT/VpjQK7rBd1rSlTq6UtcU2xah5aqvs/pILhZtuwIA+GhsAkZ2at4k2hZLy9GVOhGEhYUhOzsbnp6eCA4Oxq1btwAAAQEBUCqV9qyK1eivaULMp9ED+ws4pObwKKqovHLnLWEYEM4wMMLg0jP46EodcSTGgF8zeOzJ4yHhGJ7toEc8vU3MLTjtlbq2bdti165diIqKMnbqrl27hpEjR+L8+fP2rIpo6EqdZXnu8Ne0K/xF6Kx/TZdpKvDxz3uwv8gX126WAQA8pTweuTsCU/pGo0Wgd6Pbpyt1zn+cqW2x35U6qVQKvYFh9s9nsf1CIfy9pFj5RBdknznUpNoWV2iXATe5Urds2TJ88803eO211/DUU09h9erVePvttzFlyhQ888wz9qyK1eivaUKsZ2DA6VscdtzgkVVSeeWOB0P3UIbBLQyIcKFfKbpSR5xBhR5Yfl6Ca8UcAj0Y/t1Jj0BPR9eKWENw28Ic4H//+x+7//77WUJCAhs6dChbu3atI6ohGqVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dWOecRqNhaedz2fiv/mYxc1KMn+RvD7AlP9jnnKudZu53UygUDABTKpV2b1tc5Thbsl5TbFuElmtonfwiNRv04S4WMyeF9V24meXdVJodN0fHzpHnnKl8MWJnq7ZF/OvMAiQlJSEpKckRuyaEOCmO43BP6xDc0zoEp64r8dXea9h2vgCplxRIhRT7io9jxr1x6B9f90HGhJCaguQe+GZSNyR9eQg5JRV4Yf0ZfDupOzykbjTdnNRhl+HXDz74QNB6r7zyio1rIi4aIiHEtvLLgJ03eBxR/PMKsigfhsGRBnQNYZA4Wd+Ohl+Js8lWA5+claDCwKF7qAFPxBua1Kv73IVTTZSYMmVKjYr99ttv6N27N6Kjo5GdnY1Dhw5h7Nix+Omnn2xdFZuouplZoVDA39+/2sukh1Z7mXTlMoAaeWKrvW+xy5laz9w8U3ESsiw2S7YvRtxM5QuJW31p9oydPc65/6Vsx1VZLNYfy0GZ1gAAiAryRnKfKATcPI8H7hfnnKu9DmDe76tKpUJoaKjoEyWEtC3ucJypbTG/nJC25ZP/7cDXF6XQM4ZnBrTC/w1rQ22LgPVs2S4Dtmlb7DL8umLFCuPPjzzyCNavX4/Ro0cb0zZt2oTvv//eHlUhhLigIE/g1aFt8Nx98fjxQDZ+OJiF67fL8Pbvl+EjlSDD+xom9Y1FsI+Ho6tKiNPpEMSwcFQ7vL7pAr7cew0RAZ54tFuEo6tFbMDus18DAgJw8+bNOtODQ0JC6Dl1hBBBKvTAwcLKZ93d1FSOJcl4hj5hDIMiDAjxcky9aPiVOLM/sjn8fl0CDgyT2xpwdwi9dcJVOO3s13vuuYfNnz+fabVaxhhjWq2WLVy4kPXt29feVRENzX61LM8dZqi5wiwrW8fOkeecsriYzf9mIxuxJM04W7bVqyns2R+PsMNX8mj2q5sc56bYtggtZ07botFo2JyfT7CYOSms9dwt7L2VG6ltodmv1vnhhx8wYcIEfPzxxwgLC0NBQQESEhKwevVqe1dFdDKZrMbYeH3LDeXZui5ilzO1nrl5QuLm7LETI26m8oXErb40e8bOUefc3aEM/3miL45kqfD57nTsvazAltN52HI6D20DePi3VSGxffMaM2aFxMWSuNkrtk3xOFuS50xxs2b7QsoJbVveebgLijV6bDmVi+8u8hiUW4LerZs1uq2mes6ZyremXbakjkLYvVMXFxeHAwcOICsrC7m5uYiIiEDLli3tXQ1CiBvhOA73xIfinvhQnM1R4us9V7H5VC4uKXlMWXUUCRH+eObeOAxrH+roqhLiUBKew38fvQvFZRXYc/kmpv1wDOue6YsOEdZP7CGOZ/dOXUFBAQDAy8sLrVq1qpEWFhZm7+qISqvVGj9Vy/X9W/tnsetgyfaFljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc7Zzrm0zOT58pBNmDozB2//7C4duSnEuV4UX1p5Ai0Av9Ank0K+kHAE+5sdX6HcSm9C2pSkdZ1N57tC2CC1nSdvCAfjvvzriX5/txrViHZ749iDWTu2FSH9ZnXWb6jlnKl+sdllIHc1dz+4TJXieB8dxqNpt9SERvV5vz6pYjW5mJsT5lWiBffkc9uTyUOsq2xu5lGFAOMPAcAN8RRwxookSxJWU6oDPzkpwo5RDsCfDCx3pdWLOymknStSWm5vLZs6cyb7//ntHV8ViNFHCsjx3uJnZFW7ItXXsXOWcU5WUsW93X2Ld39hsnFTR9rWt7PHFm9iF64p6y9FECdc7zpbEyRnbFqHlrG1bMvNvs4GLKl8ndt9Hu9iP66ltERo7t5goceLECdx1110W9jXrCg8Px+LFixEXF4cnnnhCtO06Ak2UsCzPHW5mduYbcpvCzcxC8mQyGZ7oG4ugW+cgiemGb/7KxKnrSuzL5zHiswMY0TkC0we2RvvmcmM5S+poC870O+Lsx9lUmiu2LULLWdq2RAT5YPW03vjX5/uRXliK5SUSDBsKNJNT29JYvjNOlDD7JXAPPfQQEhIS8NZbbyE9Pd3c4vU6ePAgdDqdKNsihBBTeA4Y0SkcG2f2w49P9kCHQAMMDNhyKhejPtuHSSuO4HzRP7eIEOLuooLk+HFqb4T6euBGKYcpq45CWWab+wuJbZndqcvKysKXX36J3Nxc9O3bF71798bSpUuRl5cnqHyHDh2QkJBg/MTGxmLkyJF49913za48IYRYiuM49G4VjOkdDNg8sy/G3t0CUp7D/qu38MV5CR5afgCbTuZCb3B0TQmxvfgwX3yf3AM+UoYzOSokrzgEtYYutrgai2a/DhgwAAMGDMCnn36KP//8Ey+//DL+7//+D4mJiXjyySfx2GOPgefr7y9+8cUXNZZ9fHzQtm1bUd6T6Gg0+7XpzVBzlVlW7jpDTaxzrnWIFxaN7YgX7ovDt/uuYe3hbFzIK8ZLP59GkIcE4QkK9Ixr/HEoNPvV8nLUtlhWTsy2JTbYEzMT9PjikheOZxUh+buD+GJ8l3rXd/dzzlS+W85+PXnyJNauXYuffvoJQUFBmDhxIlq0aIHPP/8cAQEB2LRpU73lPvroI/zf//1fnfTFixdj9uzZllTFYWiGGiHuqUQL/JXPYXcej3IdsKC7Hn4Cbmmh2a/EHWSrgWXnJCjTc2jjb8DT7Q3wkDi6Vk2bzWa/Lly4kLVv357FxsayuXPnsrNnz9bILy0tZd7e3g2W9/Pzqzc9ODjY3Ko4DZr9almeO8xQc4VZVraOnTudc7XTbilV7OPvafarux1nV2hbhJazVdtyKL2AJbzxO4uZk8KGvbuJ3VKqmtQ5Z03shJyHTjP79fr16/jyyy8xcODAevO9vb3x999/10n/3//+BwDQ6XRYv359jZuQMzIyEBwcbG5VnA7NfrUszx1mqDnzLKumMENN7HOuelprf5r9aqouYpejtsWycmK3LT3jmmHllF6Y/N0hXFQCL/58Dl9N6mFct6mcc6bynXH2q9mduq+++qrRdep75Mnnn38OAKioqMDy5cuN6RzHISwsDCtXrjS3KoQQQgixkZ6xwfhq4t2YsvIwdl9S4JkfjuKzx7o4ulrEBLu9Jiw1NRUA8Pbbb+P111+3124JIYQQYqHerYLxdHsDvr0sQ9rFQkxfcwKjXX9gzW2Z/UgTSygUCuPPTz/9NAoKCur9ONLu3bvRt29f9O/f3+UmbBBCCCG20jaA4ZsnusFbJsG+Kzfx9UUeZRWu9VrPpsIunbpWrVoZfw4PD0dERATCw8NrfCIiIuxRlQbFx8cjLS0N+/btQ15eHk6fPu3Q+hBCCCHOonerYKx6shfkHhJcUvJ4+sdjKK2g59g5G4s6dZmZmfj444/x0ksv4eOPP8a1a9dMrl9cXGz82WAwQK/Xw2Aw1Pjo9Y7t9bdo0QKenpVvMpbJZJBIaP42IYQQUqVXq2B8N6kbPHmGA9duY8qKwyihBxQ7FbM7dSkpKejSpQuOHj0KDw8PHDt2DHfffTc2b95si/o1aP78+UhISADP81i7dm2NvMLCQjzwwAOQy+Vo164ddu7cKXi7x44dg0KhQEJCgthVJoQQQlxa95ggzEjQw9dTioPXbmHqD8dQTiOxTsPsiRJz587Fxo0bkZiYaEzbs2cPZsyYgVGjRjVaPjs7G2+++SZOnjwJtVpdI+/cuXOC69GmTRssXboU8+bNq5M3c+ZMREZGQqFQYNu2bUhKSkJ6ejo0Gg3GjRtXY11fX1+kpKQAAPLy8vD888/jl19+EVwPQgghpClp5QesTO6OKauO4khmEW7ekmDoUB2Cbfg4GCKM2Z26GzduoF+/fjXS+vbti5ycHEHlH3vsMbRp0wYLFy606gnpEydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZsxadIkpKWl1bu98vJyTJgwAZ9++imaN29uct8ajQYajca4rFKpANBrwpriq3xc5XU07voqH7HPucbSGmNtfK1tW+g415/mim2L0HKOalsSmsuxKrk7klcexbViHZJXHsGKyd3h7y1ex45eE1Z3n40R/Jqw69evIyoqCiNGjEC3bt2wYMECyGQyaLVaLFy4EEeOHMEff/zR6Hb8/f1RVFTU4LthzZWYmIjp06cbr8AdP34cw4cPrzGbdtasWZDL5Vi0aFGD2/n888+xcOFCtG/fHgDw3nvvoW/fvvWuu2DBAixcuLBOOr3Kh5CmzdrXhFHbQlxNthpYfl6CUh2HKB+GGR308KULdqIT2rYIvlKXkJAAlUqFL7/8EuPHj0dwcDDCwsJQUFCAzp0717mvrSH3338/Dhw4gHvuuUfors2iVqvrfOGqjqQpM2bMwIwZMwTtY+7cuTUee6JSqRAdHY1BgwbB398fOp0OqampGDRoEKRSaY1lADXyxFZ732KXM7WeuXmm4iRkWWyWbF+MuJnKFxK3+tLsGTt3OudqrwOY9/tadWXNUta0LXSc3attEVrOGdoWnkvF11e8cb1EixWZAfh2Ylc08/M0J0QWf39ryjkydoBt2hbBV+r8/PxqzGLNzs5GTk4OIiMjER0dLWhnADB58mT89ttvGDZsGMLCwmrkVX/ThFBiXamzBL10mxBSnbVX6qpQ20JcTX4ZsOysBEoth1AvhpkJegRb368jd4h+pQ6o7MhV7wNGRESAMYasrCwAQMuWLRvdRlxcHF566SVzdmuWNm3aQKlUIi8vD+Hh4QCAkydPYurUqTbbJyGEENKUNfcGnu+kx7JzEijKOXxyRoKZCXo083Z0zZoWwVfqeJ6Hl5cXGlqd4ziUlpaKWjlTtFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUE2qYtKpUJAQAByc3Np+LWJDZG4wmV+Gpaz7/BrRESE1Vfqqm9PaNtCx9m92hah5ZytbclTlePJH04g42YZQn098O3Eu9AmzMeccJn1/a0p52rDr0LaFouHXy31wQcf1Jvu6emJqKgoDB48GIGBgY1uJzk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhlhd99poiIQQUh0NvxICqCoqJ0/klnLwkVZOnoj2dXStXJvgtoUJ5OfnJ3RVkx577DHm4eHBBgwYwMaPH88GDBjAPDw82COPPML69u3LAgIC2M6dO0XZl70olUoGgCkUClZRUcFKSkrYhg0bWElJSZ3l2nlifyzdvtByptYzN89UnIQsO0PsxIibqXwhcXN07NzpnKudZu53UygUDABTKpV2b1voOLtX2yK0nLO2LQVFJWzUJ3tYzJwU1mn+H+zglQKnipujY2ertkXwc0WYsAt6jdLpdPjll1+wZ88erFmzBnv27MGvv/4KjuPw999/Y9myZTVmfxFCCCHEtQTKZViZ3AM9YgJRXK5D8qqjOHD1lqOr5fYED7+KJSAgALdu3arxblWdToeQkBAolUoYDAYEBgZa/WgAe6AhEkJIdTT8SkhNGj3w7UUeF5U8ZBzDlHYGdAyya7fDLYg+/CqWPn36sDfffJNptVrGGGM6nY699dZbrHfv3owxxjIyMlh0dLS9q2UVGn61LM8dhkhc4TK/rWPnTudc7TQafnXP4+wKbYvQcq7QthSXlLEnVxxkMXNSWPx/trBNx7MdHjdHx87hw69iWbVqFTZu3Ijg4GDEx8cjKCgIGzduxA8//AAAyM/Px5IlS+xdLUIIIYTYgKdMgk/HdcUDncKh1TO8sO4kfjl2w9HVckt2H36tkpGRgfz8fISHhyMmJsYRVbAaDZEQQqqj4VdCGmZgwLqrPA4UVF5PejhWj8QIGooVwmmHX6uUlJSwrKwslpmZafy4Khp+tSzPHYZIXOEyv61j507nXO00Gn51z+PsCm2L0HKu1rZoNBr25qbTLGZOCouZk8I++P0c02g0TnfO2Tp2tmpbxH/KYiNOnz6NSZMm4dSpUwAqH1oMAB4eHnZ9eDEhhBBC7IvjOMwZ3hb+XjL8d+cVLEu7ClW5Dq+PaAee5xxdPZdn9+HXfv36YejQoXj11VcRERGB3NxcvPHGG2jdujWeeeYZe1bFajREQgipjoZfCRFubx6Hn69VPgmjZ6gB41sbILH7nf6uwWmHXwMCApher2eMMRYYGMgYY0yj0bAWLVrYuyqioeFXy/LcYYjEFS7z2zp27nTO1U6j4Vf3PM6u0LYILefqbcv6w5ksbu4WFjMnhT254iArLilzinPO1rFzm+HXwMBAFBUVITg4GC1atMDJkycRHBwMtVpt76qITiaTQSaTmVxuKM/WdRG7nKn1zM0TEjdnj50YcTOVLyRu9aXZM3budM5VpVlSR1twpt8RdzrOrtC2CC3nqm3Lv3q0RKDcEzPXHMPOC4WY9uMJfD25B3w9/+meOPKcM5VvTewsqaMQdr/QOXXqVOzevRsA8MILL2DAgAHo3Lkzpk2bZu+qEEIIIcTBhiQ0x6one8HXU4r9V2/i8a8P4HZJhaOr5ZLsfqXu9ddfN/48bdo0DBs2DGq1Gh07drR3VUSn1WqNn6rl+v6t/bPYdbBk+0LLmVrP3LzG4iQkjmKyZPtixM1UvpC41Zdmz9i50znXWFpjbHluCmlb6DjXn+aKbYvQcu7StnSP9sf3U7rjqe+P4eR1JZK++BtfP97Vom27SrsspI7mrme3iRIJCQmNrnPu3Dk71EQ8dDMzIaQ6mihBiHXySoHl5yVQVnAI9mR4toMezbwdXSvHc7qJEl5eXqxt27Zs4cKFLDU1laWlpdX5uCqaKGFZnjvczOwKN+TaOnbudM7VTqOJEu55nF2hbRFazh3blqv5SjZw0S4WMyeFdXp9Mzt2Nd/u55ytY+fyEyUKCgrw66+/YvXq1Vi5ciWSkpLw+OOPo0uXLvaqgs3RRAnL8tzhZmZnviGXbqCniRK2rIvY5ahtsaycO7UtrcJkWD+jLyZ9cxAX8tWYvOo4Vkzphe4xQWZtx5nbZUvqKITdJkr4+flh8uTJ2LZtG/bv34/IyEg8/fTT6Ny5s8sNuxJCCCHEdsL8vPDjUz3Ryo9BVa7DxG8OYu/lQkdXy+k55DF/np6e8Pb2hpeXF8rLy2EwGBxRDUIIIYQ4qQBvGWZ00KN/fAjKtHo8ufIwfj+d6+hqOTW7Db9qNBps2rQJP/74I44fP44xY8bg/fffR58+fexVBZuj2a9Nb4aaq8yyolmR9afR7Ffz6mDJtp3xOLtC2yK0nLu3LZ4S4LNHO2Huxgv4/Ww+Zq45hrceSsCjPaJMlhNSJ0fHTkgdzV3PbrNfAwMDER4ejvHjx2Po0KGQSuv2J3v16mWPqoiGZqgRQqqj2a+E2IaBAf+7ymN/QeUA46iWegyOZOCayOtinW72a0xMDIuNjWWxsbGsVatWxp+rp7kqmv1qWZ47zFBzhVlWto6dO51ztdNo9qt7HmdXaFuElmtKbYtGo2HvppxlMXNSWMycFPbmptOsvFxjk3PO1rFz+dmvGRkZ9tqVw9DsV8vy3GGGmjPPsqJZkTT71ZZ1EbsctS2WlWsqbcvcBxIQ6ueFd7aex7d/ZaKoTI9Fj3SGVFJ3ioAzt8uW1FEIh0yUIIQQQgixxLSBcfgoqSskPIdfjl3H9B+PoVyrd3S1nAJ16gghhBDiUv7VPQpfTOwOTymPHefzMem7Q1CV22aiiyuhTt0dOTk5uOeeezBw4EA8+OCDKC0tdXSVCCGEENKAoQnN8f2TveDnKcWha7fw2JcHUFBc7uhqORR16u5o3rw59u3bhz179qB79+7YsmWLo6tECCGEEBN6x4Vg7TN9EOrrifO5KiR9sR9Zt5ruRRnq1N0hkUjA85Xh4DgO7dq1c3CNCCGEENKYjpEB+GVGX0QHeyPzZinGfX0IN0ocXSvHcNlO3fz585GQkACe57F27doaeYWFhXjggQcgl8vRrl077Ny5U9A29+3bh+7du2PHjh2IiYmxRbUJIYQQIrKYEB/8Mv0etA/3Q6G6Ap+eleBo5m1HV8vuXLZT16ZNGyxdurTeBxbPnDkTkZGRUCgUWLRoEZKSknD79m3k5eUhMTGxxufBBx80luvfvz+OHj2KMWPG4LvvvrPn1yGEEEKIFcL8vbDu6b7o3jIQZXoOyauOYteFfEdXy67s9pw6sU2cOBEA8M4779RIV6vV2LhxIzIyMiCXyzFmzBgsXrwYmzdvxqRJk5CWllbv9jQaDTw9PQEAAQEB0Osbnh6t0Wig0WiMyyqVCgC9JqwpvsrHVV5HQ6+Pqj/N2V4TZm3bQse5/jRXbFuElqO2pSa5DPjq8S544vM0nCsCpn1/FIse7ojRd0WavX16TZgDJCYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyLFi1qcDv79u3Da6+9Bp7nERwcjB9++KHB1/IsWLAACxcurJNOr/IhpGmz9jVh1LYQIg69AViTzuOIonJAcmysHvdGuG53R2jb4rLDrw1Rq9V1vrC/vz/UarXJcv3798fu3buRmpqKX375xWQDOnfuXCiVSnz00Udo164d4uPjRak7IaRpo7aFEHFIeODxeAPuDTcAAH7NkGBLFg/XvozVOJcdfm2Ir6+vcciiikqlgq+vr2j78PT0hKenJ1566SW89NJLUKlUCAgIwKBBg+Dv7w+dTofU1FQMGjQIUqm0xjKAGnliq71vscuZWs/cPFNxErIsNku2L0bcTOULiVt9afaMnTudc7XXAcz7fa3d9pjLmraFjrN7tS1Cy1Hb0nC5wfcNwjCJBF/uy8Qnqdew7QaPwPAozBvRFhKec2jsANu0LW43/KpWqxESEoLMzEyEh4cDAAYOHIipU6di0qRJou572bJlWLZsGfR6PS5dukRDJIQ0cdYOv1ahtoUQce3L4/DzNR4MHO4KMeCJeAOkLjRWKbRtcdlOnVarhV6vx7BhwzBt2jQkJSXBw8MDPM8jKSkJwcHBWLJkCbZv347k5GSkp6cjKCjIJnWp+ms6NzeXrtQ1sb+m6Uqde51ztdcBzP9rOiIiwupOXfXtCW1b6Di7V9sitBy1LcLL/XGuAK/8eg46A0PfVkH47yMdcPCvPS5zpU5I2+Kynbrk5GSsWrWqRlpqaioSExNRWFiIyZMnIy0tDVFRUVi+fDmGDBkieh3or2lCSHV0pY4Q53axiMM3F3lUGDjE+DI83V4PX5mja9U4wW0LI1ZTKpUMAFMoFKyiooKVlJSwDRs2sJKSkjrLtfPE/li6faHlTK1nbp6pOAlZdobYiRE3U/lC4ubo2LnTOVc7zdzvplAoGACmVCrt3rbQcXavtkVoOWpbzC93+Gohu2vhnyxmTgrrtWAzu5Jz0+6xs1Xb4kIjyoQQQggh1ukaFYA1T/VEuL8n8ss4PL7iGNIL3eO9Yi47/OoMaIiEEFIdDb8S4jpuaYDPz0lQUM7BR8rwTAc9YsR7UIaoaPjVjmj41bI8dxgioeFX9zrnaqfR8Kt7HmdXaFuElqO2xbpz7sf1G9iDS3ezmDkpLGHe7yz1fK5dYkfDr4QQQgghIvKVAd89cRfuiQtGSYUe0344ht/P5Dm6Whaj4Vcr0BAJIaQ6Gn4lxDXpDMAPl3mcuMWDA8OjcQbc09x5ukc0/GpHNPxqWZ47DJHQ8Kt7nXO102j41T2Psyu0LULLUdsi3jlXVq5hc34+wWLmpLCYOSns4z/Ost9+o+FXQgghhBCXIuE5vDmqA2YmxgEAPkm9hl8zeBhcaECThl+tQEMkhJDqaPiVEPewO5fDrxkSAEC3EAMed/BrxWj41Y5o+NWyPHcYIqHhV/c652qn0fCrex5nV2hbhJajtsU251xFRQVbd+Aqa/XqZhYzJ4VN/Ho/K1KXihY7W7Ut4r/krgmTyWSQyWQmlxvKs3VdxC5naj1z84TEzdljJ0bcTOULiVt9afaMnTudc1VpltTRFpzpd8SdjrMrtC1Cy1HbYnm5htZ7uFsUrp4/jVXpMuy9chOTVx7DiuSe8PWQNVhOaOwsqaMQdE8dIYQQQkg9OgQxfD+lBwLlMpzILkLSl/uRqyx3dLUaRFfqRKTVao2fquX6/q39s9h1sGT7QsuZWs/cvMbiJCSOYrJk+2LEzVS+kLjVl2bP2LnTOddYWmNseW4KaVvoONef5opti9By1LZYXk5o7DqG++Cnp3piyqqjuFKgxqNfHcSUVtbHTkgdzV2PJkpYgW5mJoRURxMlCHFftzTAF+clyC/jIJcyPNNej1g/++ybJkrYEU2UsCzPHW5mpokS7nXO1U6jiRLueZxdoW0RWo7aFtuccw3l591WG18r1v71rWzn2RyLYkcTJVwATZSwLM8dbmamiRLudc5VpVlSR1twpt8RdzrOrtC2CC1HbYvl5cyJXfNAGX54sifGfboDF5TAM6uP46OkrhjZMazBbdFECUIIIYQQJ+TjKcW09gY80DkcWj3Di+tO4PsDWY6uFgDq1BFCCCGEmEXKA4v/1RmT+8aAMeCtLRewNYsHc/A0BRp+FRHNfm16M9Ro9qt7nXONpTWGZr9aXo7aFsvKUdtieTlrY6fX6/DaiLYIksuwZOcV/HmDx+sbz+LNhzpCwnM0+9XV0Aw1Qkh1NPuVkKZpXx6Hn6/xYODQNdiASW3Efa0YzX61I5r9almeO8xQo9mv7nXO1U6j2a/ueZxdoW0RWo7aFtucc5bEbsG3G1n8f7awmDkpbNyXf7P8W0qa/erKaParZXnuMEONZr+61zlXlWZJHW3BmX5H3Ok4u0LbIrQctS2WlxMrdneFMCTe0w3PrjmB/VdvYcoPJzA+kma/EkIIIYS4nHtah2Dt030R4uOBsznFWHJGguzbpXbbP3XqCCGEEEJE0jkqAOun90WLQC8oyjmM+/owLuSp7LJv6tTV8vPPPyM6OtrR1SCEEEKIi4pr5ot103ohwpuhoFiDR7/YjyOZt22+X+rUVcMYw/r166lTRwghhBCrNPf3wvOd9OjeMhCqch2SVx7FmducTfdJnbpqfvvtNzzwwAPgeQoLIYQQQqwjlwIrJnfHfe3DoNEZ8O0FHr8dz7HZ/ly29zJ//nwkJCSA53msXbu2Rl5hYSEeeOAByOVytGvXDjt37mx0e4wx/Pjjj5gwYYKtqkwIIYSQJsbbQ4Ivn+iOh++KgAEcXvn1DL79K8Mm+3LZR5q0adMGS5cuxbx58+rkzZw5E5GRkVAoFNi2bRuSkpKQnp4OjUaDcePG1VjX19cXKSkp2LhxI4YPHw6p1GVDQgghhBAnJJPweP/hTijKv4HUXB7v/3EJgyN5jBD5/Q8u24OZOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS2t3u2dPXsWqamp+O2333D27FnMnTsX7733Xr3rajQaaDQa47JKVTmrhV4T1vRe5UOvCXOvc66xtMZYG19r2xY6zvWnuWLbIrQctS2Wl7N37PR6HcbEGtAtIR4f77yKnTk8VvyVgSf7txL8nRrj8q8JS0xMxPTp041X4I4fP47hw4ejoKDAuM6sWbMgl8uxaNEiQdvs378/9u3b12D+ggULsHDhwjrp9CofQpo2a18TRm0LIU3DgQIOBwt4TO+gh6ek8fWFti0ue09dQ9RqdZ0v7O/vD7VaLXgbpjp0ADB37lwolUp89NFHaNeuHeLj4y2qKyGEVEdtCyFNQ58whlkdhXXozOGyw68N8fX1NQ5ZVFGpVPD19RVtH56envD09MRLL72El156CSqVCgEBARg0aBD8/f2h0+mQmpqKQYMGQSqV1lgGUCNPbLX3LXY5U+uZm2cqTkKWxWbJ9sWIm6l8IXGrL82esXOnc672OoB5v6+12x5zWdO20HF2r7ZFaDlqWywv58jYAbZpW9xu+FWtViMkJASZmZkIDw8HAAwcOBBTp07FpEmTRN33smXLsGzZMuj1ely6dImGSAhp4qwdfq1CbQshpDqhbYvLduq0Wi30ej2GDRuGadOmISkpCR4eHuB5HklJSQgODsaSJUuwfft2JCcnIz09HUFBQTapS9Vf07m5uXSlron9Ne0KfxG681/TznilLiIiwupOXfXtCW1b6Di7V9sitBy1LZaXc7UrdULaFpft1CUnJ2PVqlU10lJTU5GYmIjCwkJMnjwZaWlpiIqKwvLlyzFkyBDR60B/TRNCqqMrdYQQW3D7K3XORKlUIjAwENeuXYOfnx+0Wq2xBy6TyWosA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9i50zlXex3AvN/X4uJitGrVCkVFRQgICBAci4aY07bQcXavtkVoOWpbLC/nyNgBtmlb3G6ihCMUFxcDAFq1avxZM4QQ91dcXCxKp47aFkJIdY21LXSlTgQGgwE5OTnw8/MDx1W+rLdnz544fPiwcZ2qZZVKhejoaGRnZ4tyz019au9b7HKm1jM3r6E41bfsrLETI26m8oXErb40e8bOnc656mnmxo0xhuLiYkRGRoryDmlz2haAjrOpNFdsW4SWo7bF8nKOip2t2ha6UicCnucRFRVVI00ikdQ4ULWX/f39bdZ41N6X2OVMrWduXmNxqq+Ms8VOjLiZyhcSt/rS7Bk7dzrn6kszJ25iXKGrYknbAtBxri/NFdsWoeWobbG8nKNjJ3bb4nYPH3YWM2fONLlsz32LXc7UeubmNRYne8bN0v2JETdT+ULiVl8anXOWx8ne55056DgLy3OHtkVoOWpbLC/nbrGj4Vc7q3pEgViPPGhKKHaWo9hZxtXi5mr1dRYUN8tR7Cxjq7jRlTo78/T0xPz58+Hp6enoqrgcip3lKHaWcbW4uVp9nQXFzXIUO8vYKm50pY4QQgghxA3QlTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDcgdXQF3IHBYEBOTg78/PzAcZyjq0MIcRDGGIqLixEZGQmet/5vZmpbCCGA8LaFOnUiyMnJQXR0tKOrQQhxEtnZ2YiKirJ6O9S2EEKqa6xtoU6dCPz8/ABUBtvf3x9arRbbtm3DsGHDIJPJaiwDqJEnttr7FrucqfXMzTMVJyHLYrNk+2LEzVS+kLjVl2bP2LnTOVd7HcC831eVSoXo6Ghjm2Atc9oWOs7u1bYILUdti+XlHBk7wDZtC3XqRFA1LOLv729seOVyOfz9/Y0HsmoZQI08sdXet9jlTK1nbp6pOAlZFpsl2xcjbqbyhcStvjR7xs6dzrna6wCW/b6KNVRqTttCx9m92hah5ahtsbycI2MH2KZtoYkShBBCCCFugDp1hBBCCCFugDp1hBBCCCFugDp1hBDSgJslFTh5kx4lQghxDTRRQkRardb4qVqu79/aP4tdB0u2L7ScqfXMzWssTkLiKCZLti9G3EzlC4lbfWn2jJ07nXNVPxsYsOrva/gk9RpKNDz+ladEm/AAwd9JbELbFjrO9ae5YtsitBy1LZaXc3TshNTR3PU4xhgTtCapY9myZVi2bBn0ej0uXbqENWvWQC6XO7pahBArXFUBP1+T4EZp5RW6KB+GCa31aOHTeNnS0lJMmDABSqXSOMPNEtS2EEKqE9y2MGI1pVLJADCFQsEqKipYSUkJ27BhAyspKamzXDtP7I+l2xdaztR65uaZipOQZWeInRhxM5UvJG6Ojp27nHM5t4rZiz8dZTFzUljMnBTWef4f7Ju0S+zX34R/N4VCwQAwpVJp97aFjrN7tS1Cy1HbYptzztaxM/e7CW1baPhVRDKZrMbzZupbbijP1nURu5yp9czNExI3Z4+dGHEzlS8kbvWl2TN2rnrO6Rmw5kgOlu5MR7FGBwDoG2bAf5/sjxAfD2zdes6sOtqCM/2OuOpxtmRZbLaMHbUtlpdzROwsqaMQ1KkjhDRZhzJu4cNTEuSWXgQAdG4RgDceaIec038jxMfDwbUjhBDzUKeOENLkFBRr8OG2M9hwIgcAh0BvGV6+vx3G9WwJg16HnNOOriEhhJiPOnWEkCZDqzcgNYfDf5buQ4lGD46rHGpd8mQ/hAVUzoQw6B1cSUIIsRB16gghTcLfVxSYv+kMLhdIAOjRNToQ8x9oh+yTfyFITkOthBDXR506Qohby1WWY9Gfp7HldC4AwEfK8J8HOmJ871jo9Tpkn3RwBQkhRCT0Rok7du/ejb59+6J///6YPXu2o6tDCLGSRqvHtuschi/dhy2nc8FzwMTe0XjtLj0e7REFnqc3RRBC3At16u6Ij49HWloa9u3bh7y8PJw+TXdKE+Kqdl3Ix8jP/saWbAnKtAb0jA1CyqwBmP9gB/jY7okVhBDiUDT8ekeLFi2MP8tkMkgkEgfWhhBiiQxFCd5MOYddFwoAAP4yhvmju2Bs92hwHGez10ARQogzcMsrdfPnz0dCQgJ4nsfatWtr5BUWFuKBBx6AXC5Hu3btsHPnzhr5x44dg0KhQEJCgj2rTAixQmmFDh/+eQHD/rsHuy4UQMpzmNo/Fq/drcdDXSPAcTTUSghxf27ZqWvTpg2WLl2KXr161cmbOXMmIiMjoVAosGjRIiQlJeH27dsAgLy8PDz//PP47rvv7F1lQogFGGM4fpPD8KV/YVlqOir0BgxoE4o/XhyIOcPbwosuuBNCmhC3HH6dOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxHH30UEyZMwKefformzZub3L5Go4FGozEuq1QqAIBWqzV+qpbr+7f2z2Kqb19iljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc9Q5dzlfjYUp53AwQwJAgxaBXnhtRHsM6dCsxlCrOXFqLE3od7KUtW2LOx5nS/LcoW0RWo7aFsvLOTp2Qupo7nocY4wJWtMFJSYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyxsbFYuHAh2rdvDwB477330Ldv33q3u2DBAixcuLBO+po1ayCXy23wTQghVcp0wO/XeezN5WAABxnHMLgFw+BIAzwcfGWutLQUEyZMgFKphL+/v9nlqW0hhNRHaNvillfqGqJWq+sEw9/fH0VFRZgxYwZmzJghaDtz586t8dgTlUqF6OhoDBo0CP7+/tDpdEhNTcWgQYMglUprLAOokSe22vsWu5yp9czNMxUnIctis2T7YsTNVL6QuNWXZs/Y2eucuzcxEVvOKrB4ZzpullT+1Xpf2xD098nHv0aIc87VXgcw7/e16sqapaxpW9zlOFPbYl45alssL+fI2AG2aVvoSt2dK3WLFi0ye/vLli3DsmXLoNfrcenSJfprmhAbyVYDP1+TIENdOeEhzIthbCsDOgQ6V/Nl7ZW6KtS2EEKqE9y2MDd27733sp9++sm4XFxczDw8PFhubq4xbcCAAWzVqlVW7UepVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6NjZ8tzLu+2mv3fumMsds5mFjMnhXWY9zv7bOdFpi4tt8k5VzvN3O+mUCgYAKZUKq1qUyxpW1z5OFtyLMX8fXDGtkVoOWpbbHPO2Tp2tmpb3HL4VavVQq/Xw2AwQKvVory8HB4eHvD19cVDDz2E+fPnY8mSJdi+fTvOnDmDUaNGObrKhJBqtHoD1hzKxie70qEq1wHg8ECn5nh1RDuE+3s5unqEEOKU3HL4NTk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhli0HxoiIUR8F4o4/JrBI7+scqg1Us7wSCs94i0fzbQbGn4lhNiC0LbFLTt19qZSqRAQEIDc3FyaKNHEbmZ2hRtyXeVm5oybpfhw+xWkXroJAAj0luGF+1phTOcw7NmdZpdzrvY6gPk3M0dERFjdqau+PaFti6scZ0vWa4pti9By1LZYXs7VJkoIaVuoU2cF+muaEOuV64A/b/DYnctBzzjwHMOAcIb7owyQu9gNInSljhBiCzRRwo5oooRlee5wM7Mr3JBr69hZuu1itZq9+tVG1u3NP1nMnBQWMyeFTfx6Pzt3/ZbDzrnaaTRRwvrjTG0LTZRwxrg5OnY0UcIFyGQyyGQyk8sN5dm6LmKXM7WeuXlC4ubssRMjbqbyhcStvjR7xs6cbR/JuIUFm87iTI4EgBatQn0w78EOGNQurMH3tNrznKtKE7L9hsqIyZl+R6htsZwtY0dti+XlHBE7S+ooBHXqRESvCWt6r/JxldfROMurfHKV5fjgz0tIOZ0HAPCSMMy6Lx7J97SCh5SHTqcza/tin3ONpTXGlucmvSasabUtQstR22J5OUfHTkgdzV2P7qmzAt33QogwGj2wK4fDrhweFQYOHBj6hDE80NIAP9tdGLE7uqeOEGILdE+dHdE9dZblucN9L65w74atY2dq22XlGrZ6/zXW8+3txvvmHlm+jx3PUDjlOVc7je6ps+73Q6zfkabYtggt11TbFlufc7aOHd1TRwhxKfuu3MSiPy7iQr4aABAV5I2Xh7bBiE7NwXGczYa6CCGkqaLhVyvQEAkhdeWWAhszeZwv4gEA3hKG4VEGDAhnkPIOrpyN0fArIcQWaPjVjmj41bI8dxgicYXL/LaOXdW2M/Nvs1fWn2CtXq0cZo3/zxY2f8Mpll+kdplzrnYaDb9a9/vhrMfZFdoWoeWaQttCw680/OoQ9EgTy/Lc4bEDzjx13taxK63Q4c/rHP7z2QGUVOgBAPd3DMerI9ojNtSn0fLOeM5VpVlSR1twpt8RalssR480sQw90oQeaUIIsbEKnQHrDmfhk52XUaiWANCja3QgXn+gA3rGBju6eoQQ0uRQp05E9Jy6pvcsKVd5HpKYsTMYGDafzsPSnVeQfbsMABDiyfDqAx3xUNcW4HlhkyCc8ZxrLK0x9Jw6y8tR22JZOXdqW4TWXaxyjo6dkDqaux5NlLAC3cxMmhLGgLNFHLZk8cgprXzrg5+schJE3zD3nwQhBE2UIITYAk2UsCOaKGFZnjvczOwKN+SKEbt9l/LY2GX7jM+a6zT/D/bJ9gusSF3qVudc7TSaKGHd74ezHmdXaFuElnP1tsVZzzlbx44mSrgAmihhWZ473MzszDfkWhO7/ek3sXTnJRy4egsA4CnlMaVfK0y/Nw6Bcg8A/wwLuNM5V5VmSR1twZl+R9zpOLtC2yK0nKu1LeagiRI0UYIQYiHGGPZfvYmlOy7j4LXKzpxMwuHRHtGYdV8bhAd4ObiGhBBC6kOdOkIIgMrO3N/plZ25QxmVnTkPCY/HekZjemJrtAj0dnANCSGEmEKdOhHR7NemN0PNVWZZmdq/Tm/An+cK8M2+DJzJUQEAPKQ8HuveAtMGtELEnStz5ta9Mc54zjWW1hia/Wp5OWpbLCvnzG2LtWj2a919NoZmv1qBZqgRV6bRAwcKOKTl8rilqZzNKuMZ+oYxDI40INDTwRV0QTT7lRBiCzT71Y5o9qtlee4wQ80VZlnVXk7PL2LvpJxhXRb8YZzNetfCP9nHf5xnebfrf6VXUznnaqfR7Ff3PM6u0LYILedMbYsrxc3RsaPZry6AZr9alucOM9SceZaVTCaD3sBw5haHX386jT1XFKi6Ph8bIsfUAXF4pFsUvD0kjdbfFHc656rSLKmjLTjT74g7HWdXaFuElqPZr5aXo9mvhBCXcE1RgpTT+fjl2HXcKJIAUAAABrQJxcQ+MRjSoTkkPOfYShJCCBEFdeoIcTMFqnJsPnkD35+WIHP/X8Z0uZRhfO9YPNG3FWJDfRxYQ0IIIbZAnTpCXBxjDJfyi7HtOodvvzyAU9dVd3I4SHgOA9uEYlSXcOgzj2PM/e1sOrxECCHEcahTR4gNlGv10GgN4HjAx0PcXzOd3oCcUmD1oWwczVLi4NWbKCjWAJAAqOzQdY0KQGvpLbzy2H0ID/KFVqvF1uvHRa0HIYQQ50KdOhHRc+qa3rOkqtZVqEqx9ZwCey4pcCZHhZslFcZ1eA4I9vGAp0GCnwuPICLAG839PRHm53XnX094SYDbGiCvqAQSiRSlWj3KKvQoVJXhUAGHKzsv44ZSg4v5xbicX4IKvRQ4ed64D08pj3g/HR7t1wFDEsIR5MVj+/bt8Pfk6z0nxeRO51xjaY2h59RZXo7aFsvKOfpZa+56zpnKp+fUuSl6lhSp0APbb/BIy+VQYbDfhAMPniHGlyHen6G1PxDjy2Dl5FUiAnpOHSHEFoS2LdSpE4FKpUJAQAAUCgX8/f2h1Wqxfft2DB06FDKZrMYygBp5Yqu9b7HLmVrP3DxTcRKyLDZzt38pvxgz1pxA1q0yAEC75r54+O5I9IoNQnSQHD6eEhgYoCrTIreoBNv2HERUm45QlGiRX6xBgUqD/OJyFKg0KK3Qo1yrg55x4DhALpNA7iGBn5cUHlo1Osa1QIsgOdqG+SI+1Bvnj+zD8GGWx9KRcTO3nD3PudrrAOb9vqpUKoSGhlrdqau+PaFtCx1n92lbzCnX2DoN5QuJW31pTeWcM5UvRuwA27QtNPwqIiHP8Wkoz9Z1EbtcU3+W1M7z+Zj103GUVugR6MHw1ti78GDXFuC4ulfrfL090czPE9eDGEb2atlg47F161aMGDECMpnMuJ2q9JEjO9doKC5y9Cwpa/KExMWWz5IylzP9jrjTcXbGtsXSco2t01C+kLjVl9ZUzjlT+dbEzpI6CsELWktEZWVlePnllxEbG2vsbf75559YsmSJvatCiEW2nc3DMz8cRWmFHn3jgvFyFz3u79i83g6duTiOE2U7hBBCmh67d+qeffZZ5ObmIiUlBRJJ5U1AXbp0wRdffGHvqhBitr2XC/Hs6mPQGRhGdY3Ed5O6wZeeEEIIIcQJ2H34dcuWLcjOzoanp6fxikRERARyc3PtXRVCzHI5vxjP/ljZoXuwSwT++2hXMIPe0dUihBBCADjgSl1gYCAKCwtrpF27dg2RkZH2rgohginUGkxZeRjFGh16xQbj40e7Qiqx+68PIYQQ0iC7/6/0wgsvYNSoUfj555+h1+uRkpKC8ePH48UXX7R3VQgRxGBg+Pe6E7h+uwyxIXJ8+UR3eErp+SGEEEKci92HX2fOnImwsDB8++23iIqKwieffIJ///vfeOyxx+xdlRqys7MxevRonDt3Dmq1GlIpTQwmlb7Yk469lxXwkvH4alIPBPl4OLpKhBBCSB0O6bkkJSUhKSnJEbtuULNmzbBr1y6MGTPG0VUhTuRo5i18vO0SAGDhQx3Rtrmfg2tECCGE1M8unboPPvhA0HqvvPKKjWvSMC8vL3h5eTls/8T5FJVW4PmfTkBvYHioayQe7RHt6CoRQgghDbLLPXXnz583fo4ePYrXX38dmzdvxokTJ7B582bMmzcPx4+L97Lx+fPnIyEhATzPY+3atTXyCgsL8cADD0Aul6Ndu3bYuXOnaPsl7oMxhld+PoUbRWWICZHjnYc70fPjCCGEODW7XKlbsWKF8edHHnkE69evx+jRo41pmzZtwvfffy/a/tq0aYOlS5di3rx5dfJmzpyJyMhIKBQKbNu2DUlJSUhPT0dQUJBo+yeu7/v9mdh2Lh8yCYfPxneDnxc9jI4QQohzs/s9dTt27MC6detqpI0cORJPPPGEaPuYOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYJ3r5Go4FGozEuq1QqAJWvb6r6VC3X92/tn8VU377ELGdqPXPzGouTkDiKqWq7J7Nu4e0t5wAArwxvi/bN5Q3uU4y4mcoXErf60uwZO3c65xpLa4y18bW2baHjXH+as7QttogdtS2Wl3N07ITU0dz1OMYYE7SmSPr164ehQ4fi9ddfh1QqhU6nw7vvvos//vgDf//9t6j7SkxMxPTp0zFu3DgAwPHjxzF8+HAUFBQY15k1axbkcjkWLlyIBx98EEePHkW3bt2wYMECDBgwoN7tLliwAAsXLqyTvmbNGsjlclG/A7Gvcj3w0SkJCss5dAoyYGo7A2jUlQhVWlqKCRMmNPrS7YZQ20IIqY/gtoXZWXp6Ouvduzfz9fVlcXFxzNfXl/Xq1YtdvnxZ9H3de++97KeffjIu79mzh7Vu3brGOv/5z3/Ys88+a9Z2y8vLmVKpNH6ys7MZAKZQKFhFRQUrKSlhGzZsYCUlJXWWa+eJ/bF0+0LLmVrP3DxTcRKyLPZHrVazf324icXMSWG939nO8ovUdombqXwhcXN07NzpnKudZu53UygUDABTKpUWtVnWtC10nJ23bbFl7Khtsc05Z+vY2aptsfvwa1xcHA4cOICsrCzk5uYiIiICLVu2tMu+fX19jcMZVVQqFXx9fc3ajqenJzw9PcWsGnECG07m4bCCB88Bi5O6IEhOz6Mj9kVtCyHEGnYffq0+9FlbWFiYqPuqPfyqVqsREhKCzMxMhIeHAwAGDhyIqVOnmnVPXZVly5Zh2bJl0Ov1uHTpEg2RuLC8UuDj0xJUGDg8EK3HsCi7/loQN2Ht8GsValsIIdUJbVvs3qnjeR4cx6Fqt9UfE6HXi/NydK1WC71ej2HDhmHatGlISkqCh4cHeJ5HUlISgoODsWTJEmzfvh3JyclWz35VqVQICAhAbm4u/P39odPpkJqaikGDBhnvG6xaBlAjT2y19y12OVPrmZtnKk5ClsVSptVj3LdHcbmgBO0CDFj37EB4yITNdhUjbqbyhcStvjR7xc6cGFhazp7nXO11APN+X1UqFSIiIqzu1FXfntC2hY6z87Ut5sbAknLUtlhezpGxA2zTtti9U1dbXl4e3n77bfTu3Vu0GbDJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XIMGTLEov3QX9PuYW06j/0FPPxkDK900cOfRl2JhehKHSHEFmw2UeLgwYMNfiyl0WhYixYtLC7vaEqlkiZKWJDnDDcz/3Ikk8XMSWGxr6awHaezzd6+K9yQa6vYueM5VzvN3hMlrGlb6Dg7V9tir9hR22Kbc87WsXOaiRKPPfZYjeXCwkJUVFQgKioKV69eNXdzAICDBw9Cp9NZVJYQS10pUGPexsrn0c0YGIe+ccHYnu7gShFCCCEWsnr4Va/X47333oOHh4egd7d26NChxn10paWluHnzJpYuXYonn3zSmqrYHQ2RuK4yHbD4tAQF5Rzi/RmeTdBDQs+jI1ai4VdCiC3Y9Tl1Op2OhYaGClo3LS2txufw4cOiDVU4Cg2/WpbnqCGS8nINe3LFQePz6HJvFVu8fVe4zC9m7Nz9nKudRsOv7nmcafiV2hZHx85phl9rMxgM+Omnn+Dj4yNo/cOHD+P//u//6qQvXrwYs2fPtrY6hDRq+e6r2HmhEB5SHsvG34UQX3ouGCGEENdn9vCrt7d3jeFTrVaLiIgIfPXVV7j//vsbLe/v71/nAcAAEBISgps3b5pTFYejIRLXc+YWh28u8mDgML61Hn3C6Hl0RDw0/EoIsQWbDb9mZGTU+BQWFgoqt27dOrZu3Trm7e3N/ve//xmX161bxxYtWsTi4+PNrYrToOFXy/LsPURyPEPBOsz7ncXMSWFzfzkhSuxc4TK/GLFrKudc7TQafnXP40zDr9S2ODp2TjP8GhMTY1Ev8/PPPwcAVFRUYPny5cZ0juMQFhaGlStXWrRdZyKTySCr9tDa+pYbyrN1XcQuZ2o9c/OExM3a2OUqy/DM6uMordCjf3woFo7uDJmEN7v+DREjbqbyhcStvjQxYieUO51zVWmW1NEW7PE7YmldxC7nam2LOWwZO2pbLC/niNhZUkch7Pbu19TUVADA22+/jddff91eu7UrrVZr/FQt1/dv7Z/FroMl2xdaztR65uY1FichcRRCrdFhyorDyFdp0CbMB5881hkw6KE11HyDiSXbFyNupvKFxK2+NLFiJ4Q7nXONpTXGlr/XQtoWOs71pzkybtZsX0g5alssL+fo2Ampo7nr2eWNEgqFAqGhoQDs++5XW6P7XpyfzgB8fYHHBWXlGyNmd9YjmOZFEBuhe+oIIbZg10eaNMbX19f4M8dxjOd5xnFcjQ/P8/aoik3QPXWW5dn6vpeycg2b/v1hFjMnhbV/fSs7crVQ9Ni5wr0b1pwXTe2cq51G99S553Gme+qobXF07JzmnjoAyMzMxM8//4ycnBxERkZi7NixaNWqVYPrFxcXG382GAyW7NIl0D11luXZ4r4Xxhhe/+U0fj+bD5mEw5dP9ED3VqGNfi+h27e0DN33Ynk5uqfOOe4Nc6fjTPfUUdsiZD23vqcuJSUFjz/+OB544AHExMTg2LFjeOutt/DDDz9g1KhR5m7OrdA9dc5x3wtjDO/9cQnrjmSD54DFSV3Qt1Wg1fdXWFPG0fduuOt9L3RPHR1nuqeO2hZLyzk6dkLqaO56Zt9T17lzZ3z66adITEw0pu3ZswczZszA2bNnGy2fnZ2NN998EydPnoRara6Rd+7cOXOq4nB034vzYQzYmMkjNbdyZis9i47YE91TRwixBZvdUxcUFMQqKipqpFVUVLDAwEBB5fv27csmTZrEtm7dWueVYa6K7qmzLE/s+17KyzXstV9Pspg5KSxmTgr7bu8Vm8fOFe7dsOa8aGrnXO00uqfOPY8z3VNHbYujY+fwe+quX7+OqKgo9O7dGwsWLMCCBQsgk8mg1WqxcOFC9O7dW9B2zpw5g3379oHn639GmCuje+osyxPjvheDgWHeptNYezgbHAe8M6YzJvRu2ej3MLf+1pah+14sL0f31DnHvWHudJzpnjpqW4Ss50r31AnuWSUkJAAAvvzyS6SlpSE4OBitW7dGcHAwdu3aha+++krQdu6//34cOHBA6G4JaVS5Vo/n1x7H2sOV99B9+K+uFnfoCCGEEFcl+Eodu3PrXcuWLfHXX38hOzvbOPs1Ojpa8A69vb1x//33Y9iwYXWeS1f9TROECFFUWoGnvz+KQxm3IJNw+PjRu/BQ10hHV4sQQgixO7Nmv2ZnZxs7dwAQEREBxhiysrIAVHb4GhMXF4eXXnrJzGq6Bpr9at8Zatdvl+Gp74/hqqIEvp5SLJ/QFX3jQiyOLc1+tYw7nXONpTWGZr9aXs6Z2hax0exXy9Ds17r7bIzg2a88z8PLywsNrc5xHEpLSwXt1F3QDDXHuazksOISjxIdh0APhmfa6xHp4+hakaaOZr8SQmxBaNsiuFPn5+dX4yHClvrggw/qTff09ERUVBQGDx6MwMBAq/djTyqVCgEBAVAoFPD394dWq8X27dsxdOhQ42SSqmUANfLEVnvfYpcztZ65eabi1NDytm3bkePXDh/vvAq9gSEhwg9fPH43IgK8zIiSdTGwpExj6zWULyRu9aU1tiwmdzrnaq8DmPf7qlKpEBoaanWnrvr2hLYtdJyta1tctV2mtsXyco6MHWCbtkXw8CvHcUJXNenYsWP47bff0Lt3b0RFReH69es4ePAgRo0ahZycHDz11FP49ddfcd9994myP3sSMjuooTxb10Xsco6YoVZcrsP3l3kcu5kOABh7dwu8O7YzvGSSRutrDkti58yzrJrCDDWxz7mqNEvqaAvmHlc6zvWnOTJu1mxfSDlqWywv54jYWVJHIcyeKGEtnU6HX375BQ8++KAxbcuWLVi5ciX+/vtvrF69GrNnz8aJEydE2R9xD0cybuHFtcdxvYiHlOfw+gMdMPmeWNH+2CCEEEJcneBHmogx9ApUXm4cMWJEjbThw4dj27ZtAIDx48fj6tWrouyLuD69AViy8woe/XI/rheVI9iTYfVTPZHcrxV16AghhJBq7P4E4ISEBLz77rvQ6XQAAL1ej/fffx8dOnQAUDnD1tXuqSO2cTy7CB+elmBZ2lUYGPDwXRGY00WPbi0DHV01QgghxOnYvVO3atUqbNy4EcHBwYiPj0dQUBA2btyIH374AQCQn5+PJUuW2LtaxIkUl2sxb8MZPPb1IeSWcgiSy/Dp+LvxwSOd4WXWQ3gIIYSQpsPu/0W2bdsWR44cQUZGBvLz8xEeHo6YmBhjfq9evdCrVy97V0sUQp8lVftnsetgyfad4VlSpeUa7M3jsOC/+3C7tDKtVzMD/ju5F8ICfJzyWVKu8jwkd32WlLXnnLnxbYwtz00hbQsd5/rTHBk3a7YvpBy1LZaXc3TshNTR3PUEP9JEbKWlpbh582aNCRhCHl7sTOhZUuJgDDh1i0NKFo+C8sr75MK8GJLiDGgb4JDTkxCL0HPqCCG2ILhtYXZ26tQpdtdddzGe5xnP80wikTCJRMK8vb3tXRXRKJVKBoApFApWUVHBSkpK2IYNG1hJSUmd5dp5Yn8s3b7QcqbWMzdPVaxm87/ZyIYtTmMxc1JYzJwU1vG1zezb3ZdYSVm5yTg6S+zEiJup/PrShaTZM3audM4JiYs1v68KhYIBYEql0u5tCx1ny38fnLFtEVqO2hbbnHO2jp2t2ha7D79Onz4do0ePxv79+xEREYHc3Fy88cYbaN26tb2rIjp6Tp2wPC3jsPFEDr7ek46rCgkANXw8JJjUtyViSy9jbN/YyvXuXG52hWdJOfPzkJrCs6ToOXV0nOk5ddS2WFquST6nTixnz57F3r17wfOVczS8vLzw9ttvIy4uDs8884y9q0PsKK8UeHPLBWw4kYPi8srZz3IJw1MDW+OpAa3hI+OwdetlB9eSEEKcQ4lGh0MFHPb8dgZZt8pQotEjwFuGFkHeuCs6EL1bBSMmyNPR1SROxO6dusDAQBQVFSE4OBgtWrTAyZMnERwcDLVabe+qEDsoUJVj86lcbDxxHaeuSwFkAQBiQuQY3zMKQbfOYex98TWuzBFCSFNWrtXjy91X8fXeq1BrJABy6qzz89HrAIDYEDniPXnE5KjQtWUwPb+zibN7p27q1KnYvXs3Hn74YbzwwgsYMGAAeJ7HtGnT7F0VYiPXFCXYc+UWdp4vwIFrN1E1F4YDw+D2YZh0Tyv0jw+FXq/D1q3nHFtZQghxIhfzijHjx6O4qigBAIR6MfyrVxw6RQXCx1MKZakWVwvVOJp1G4czbiPjZikywGPH5wcQ18wHo7pE4qG7ItG6ma+DvwlxBLt36l5//XXjz9OmTcOwYcOgVqvRsWNHe1eFiKSwWIMjGbfwd7oCv5+QQLH/rxr53VoG4oHO4fDIO4NxY+423hug1zuitoQQ4px2nMvH82uPo7RCj+b+nph7fzuwrGN4cGibeu+pUmt02HE2Fyt3nMB5lRRXC0uwdOdlLN15GR0j/fFQ10iM6BjmgG9CHMVunbqEhIRG1zl3jq7aOLuyCj0yioG1h6/jdI4KhzNu49qdvygrcZBJOPRuFYLEds0wvGM4ooPl0Gq12Lr1jMPqTQghzuz307mY9dNx6AwM97QOwWcTusHPg8PW7IbL+HpK8UDncHDZBgwcnIjUSzex6WQO9l1W4GyOCmdzVHjv9wuI85PgdkgWRt0VhRBfugfPndmtU3ft2jW0bNkSjz/+OAYOHOiU4/6zZ8/G4cOHcffdd+OTTz5xdHUcSlmqRcbNksqPohRXCtU4l6PENUUJDEwKnPmnA85xQLvmfujeMhCeRRmY9ehQBPl6O7D2hBDiOradzcNzPx2H3sAw5q5IfJTUFVIJb9Z9xr6eUoztFoWx3aJwq6QCW0/nYtPJHBy6dgtXizksSLmAt7ZeRL/4UAxuH4ZeMQFwzFNqiS3ZrVNXUFCAX3/9FatXr8bKlSuRlJSExx9/HF26dLFXFUw6duwY1Go19u7dixkzZuDw4cPo2bOno6slOp3eAGWZFjdLKpCvKke+SoN8VTlyi0px6jKPb7MPIOtWGYpKG25MfGUMd8eEolNUIHrGBqF7y2AEyGV3rsZdg68nvcuLEEKEuJhXjBfXnYDewPDw3S3wUVJXSHjrLnoE+3hgYp8YTOwTgyxFMT5en4p0bRDO5Kiw51Ih9lwqBAAEyCRILTuN3nGh6BIVgLgQLzG+EnEgu/3v6+fnh8mTJ2Py5MnIz8/H2rVr8fTTT6OkpATr1q0TNDxrS/v378eQIUMAAEOGDMGBAwcc0qljjEFvYNDqGbQGA3R6Bq3eAK2+8meNzoDSCh3KtHqUVehRWqGv8XNJeQXOZvD4e+M5FGt0UJZpUVRa+VGVaVGs0ZnYOw/cUhmXmvt7IibEB7EhcrQK9UWHCD+0bSbH4b07MXJkd5s+z4kQQtydslSLp384gtIKPe5pHYIP/9XF6g5dbREBXrgvkuGjkX2QXaTB72fy8He6AoczbkOpNWDjyVxsPJkLAPCU8ojwkuCI4TzaRgQgvpkvYoI86YqeC3HIJRVPT094e3vDy8sLN2/ehMFgEHX78+fPx/r163HhwgWsWbMG48aNM+YVFhYiOTkZqampiI6OxvLlyzF48GAUFRUZH4AcEBCAs2fPilqnKh9tu4xfj0vw4fk90BnwT4fNUNV5E+O3hwdyr5tcI8BbhnB/L4T5e6K5vxea+cpQmHUF9/XpjlZhfogJkUPuUff0oMeOEEKI9fQGhllrjyPzZilaBHrjswndIJXwNt1nXDNfzBwUj5mD4qEuLcfnP2+DoVk8Tt8oxsnrRSgu1yFDzSHjYDaAf27m85ZIsOL6QUQFyxHu54HbuRxk5wrQMtQXQd4S6MX9L5xYwW6dOo1Gg02bNuHHH3/E8ePHMWbMGLz//vvo06eP6Ptq06YNli5dinnz5tXJmzlzJiIjI6FQKLBt2zYkJSUhPT0dgYGBUKkqr1KpVCoEBgaKXi8AUJRoUFjOAeXlgsvwHCCT8JBJeHhIeXjLJJB7VH68PSR3lqXw9pDAU8Ih93omOrdvg2BfLwTKZfD3liHQW4YAbxkC5R7w95LWaTwqh04vY2hCGF2BI4QQG/to20XsuVQILxmPryZ1R7CPh1337ymToG0Aw8ghlTNrDQaGK/lK/LBlDzyax+HazTKkF6qRdasUZXoOJ68rcfK68k5pCX7NOFFta1IsOLkLIb6eCPbxQLCPB0J8PODnJYWvpww+nhL4eUnh4ymF752Pj6cU3jIJPGU8PKUSeEp5eEp5m3ds3Z3dOnXNmzdHeHg4xo8fjzlz5kAqrdz1oUOHjOv06tVLlH1NnDgRAPDOO+/USFer1di4cSMyMjIgl8sxZswYLF68GJs3b0bfvn3x5Zdf4tFHH8WOHTuQnJwsSl1qe7p/K7TQZGFAv3vg7ekBmYSHVMJBxvOQSTlIeR4yCVcjnTfjcnzVfW0jB7WmzhkhhDihlFM5+DwtHQCw6JEu6BgZ4OAaATzPoVWoD3o0Yxh5fzvj/x/q0nJ8v+FPRCd0R4Fai+u3SnDswjUw70DkKDW4WaIBY4CqXAdVua7W0xDMJ+E5eEj4ys6ehIeuQoJPrvwFmYSHhOcg5Tnwd/6tXOZrLEs4DjzHkJ/HI+2X05BKJOA4gAOHyhdZcXeWATCGrEweR1LOQyKRVMaB+yefMQOuZfI48+clSIzbqUxPz+JxaeeVynQAzGDA5WwO6anpkN7Zll6vx+XrHK6lXYWE52EwGHDpOoeMtKvgOODidQ5dbpehVZh4/1fbrVMXGBgIjUaDlStXYtWqVWC1Buk5jsPVq1dtWofLly8jICAAERERxrSuXbvi7NmzmDRpEry9vTFgwAB07drVZAdTo9FAo9EYl6uu8Gm1WuOnarn2v9GBHmjtD3QM92mk08UAxqDXG8x6nlvtfYpdztR65uaZipOQf8VmyfbFiJupfCFxqy/NnrFzp3OusbTGWBtfa9qWhuouFnc6zo5sWy7kFePl9ScBAE/1i8HIjmFmtwvmrGNt28LDgBY+wOC2wcY3/2xn6Rg6tPK+6nJNBTb9sQOde94DlcaA26Va3CqpwO1SLdQaXeWnXIeSCh3UGj1K7qSVaPQo1+lRoat525HewFBmqLxXvBKHm4WWdBR5HFXkClpvb76J58aAx66cjHrTt92o3WeR4Pfr6XXStmZfqbG8xbgswSOFxYgKavxpEULPTY7V7l25kcTEREyfPt14T93evXsxZcoUXLnyT4Bfe+01FBUVYdmyZYK3u2DBAixcuLBO+po1ayCXy62vOCHEJZWWlmLChAlQKpXw9/c3uzy1Le6tRAt8fFqCmxoObQMMmN7BAInzPd3L7gwMlfeYGwBdrZ+1BkBn4GBglesZ7qyvr1qullb9o6+WV9XLYXd+rlzkKv+9s1z1gTH/n3WNy7XWR618VP+Z1ZNWz/KgCAPCBfxqC21bmtSzJ3x9fY1/+VZRqVTw9TXvdSpz587F7Nmza2wjOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3tXb7Yi5r2hY6zs7dtuzclYqUm6G4qSlCVKAXVk7tgUC56WE3IfVqGm1Lot3POVP5YsQOsE3b0qSu1KnVaoSEhCAzMxPh4eEAgIEDB2Lq1KmYNGmS2dtftmwZli1bBr1ej0uXLtFf04Q0cdZeqatCbYv72ZTJY2cODw+e4cVOerTwcXSNiCsR2ra4ZadOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFGTx/lQqFQICApCbm0tX6lz8r2m6Umc+dzrnaq8DmP/XdEREhNWduurbE9q20HF23rZl88kczNl4EQDw8SMdBb+Pla7UOe6cM5XvqCt1QtoWt+zUJScnY9WqVTXSUlNTkZiYiMLCQkyePBlpaWmIiorC8uXLjQ8dNhf9NU0IqY6u1JHabpQA/z0jgdbAYXCkAQ/F0EPdiPkEty2MWE2pVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6Nj507nXO00c7+bQqFgAJhSqbR720LH2fnalvwiNev33g4WMyeFDX93E1MVq0WPHbUttjnnbB07W7Ut9JQ/QgghRGRavQHPrz2J60XliA7ywqQ2BtFfAUZIbW45/GovNERCCKmOhl9JlZ+v8dibx8OTZ3ixsx6RdPiIFWj41Y5o+NWyPGcZIrEmdq5wmd/WsXOnc652Gg2/uudxtnXcfvj7KouZk8JiX01hv5+8btPYUdtim3PO1rGj4VdCCCHEyR3OuI2FKecBAC/eF4/BHYTNdCVEDDT8agUaIiGEVEfDr03bzXJg8WkJ1DoOd4cYMLmNARzdRkdEQMOvdkTDr5blOXqIRIzYucJlflvHzp3OudppNPzqnsfZFnErKCphgz7cxWLmpLARS3YzpbrMLrGjtsU255ytY2ertqVJvSbM1mQyGWQymcnlhvJsXRexy5laz9w8IXFz9tiJETdT+ULiVl+aPWPnTudcVZoldbQFZ/odcafjLFbcyrV6zFhzAlcVpYgM8MJ3yb3g7+NlVv1NEVKO2hbLyzkidpbUUQjq1IlIq9UaP1XL9f1b+2ex62DJ9oWWM7WeuXmNxUlIHMVkyfbFiJupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP82WcTMYGF5YdxJHMm/Dz0uKb57ohhC5pNFzSggh5ahtsbyco2MnpI7mrkf31FmB7nshhFRH99Q1LYwBv2bw2JPHQ8IxzOhgQJsA+i+ViI/uqbMjuqfOsjy6p84+927YOnbudM7VTqN76tzzOIsVt/e3nGUxc1JYzJwU9uuRTIfEjtoW25xzto4d3VPnAuieOsvynOl+IUu378z3bjSF+17onjo6zvZuWz7bdRmf77kGAHhrTCc83L1lo2XonjrL0D11dE+dQ9A9dc5734sQdE+dZdzpnGssrTF0T53l5Vypbfnurwx8tO0SAGDu/W0xrnukVfe9WVOO2hbLyzk6dkLqaO56dE+dFei+F0JIdXRPnftLy+XwW4YEADAyWo/hUfRfKLE9uqfOjuieOsvy6J46+9y7YevYudM5VzuN7qlzz+NsSdw0Gg1b/Od54z107285yzQajcNjR22Lbc45W8eO7qlzAXRPnWV5znS/kKXbd+Z7N5rCfS90Tx0dZ1u2LYwxvP/7BXy55yoA4KWhbfHcffHgzHxdBN1TZxm6p47uqSOEEEKsptMbMG/jGfx0KBsA8PoDHTB1QJyDa0VI/ahTRwghhNSjuFyLmWuOY8+lQnAc8M6YzpjQu/FZroQ4CnXqRESzX51rhpq5aParZdzpnGssrTE0+9Xycs7WtuQqy/H0D8dwIV8NLxmP/yZ1wZAOYRbFlma/WoZmv9bdZ2No9qsVaIYaIaQ6mv3qHq6qgBWXJFBpOfjJGKa11yPG19G1Ik0ZzX61I5r9alkezX61zywrW8fOnc652mk0+9U9j3NDy2q1mn2z5wprPXcLi5mTwoZ8nMqu5iudOnbUttjmnLN17Gj2qwug2a+W5TnTzD5Lt+/Ms6yawgw1mv1Kx9na34dyPTB340VsOpULAHiwSwQWPdIFPp7i/TdJs18tQ7NfafYrIYQQIsjxrCJ8cFKCm5pcSHgO/xnZAU/2izX7kSWEOBp16gghhDRJWr0Bn6Zdwme7LsPAOEQGeGHJuLvRq1Wwo6tGiEWoU0cIIaTJySwGxn5xEBfyigEAPUIN+OqZvgj2owkpxHVRp44QQkiTUVyuxQe/n8ePZyRgKEagXIY3HmgPyfXj8POy3b26hNgDdeoIIYS4PT0DfjqcjU92XYVCrQHAYUzXCMwb1RH+njy2Xj/u6CoSYjXq1ImIHj5MDx+2dD16QKhl69HDh+k4N3YMGWPYeS4PH5yUIK/sPACgZbA3HmyuxnOj20Mm452ybRFajtoWy8s5OnZC6mjuevTwYSvQA0IJIdXRw4edB2PA2dsctt3gkamunMXqI2UYHmVAv+YMUt7BFSTEDPTwYTuihw9blkcPH7bPQy5tHTt3Oudqp9HDh13vOKtLy9n/Dl5l9yzczGLmpLCYOSms3Wtb2ZNLN7Hcm0V2j5utY0dti23OOVvHjh4+7ALo4cOW5TnTg1Ut3b4zP+SyKTwglB4+TMe5sESH9ceysfZwFhTqCgAcfDwkeKJvLCb3icKhPTsR4id3ubZFaDlqWywvRw8fJoQQQhxMrdHh91M5+O48j4sH9sJw52ai5n6e6BZQijefGIRmAXKb3StHiLOhTh0hhBCXUVRagT2XFfjzTB52nM+HRmcAUHmD3D2tQ/BEnxjc2yYY2//8A4FyekQJaVqoU0cIIcRp6fQGnL6hxLbrHL7/+hCOZxcZr8gBQFyoHG29ijH7kYFoGxEIwHazWAlxdtSpI4QQ4jSKSrW4WKDEkcxbOJJxG8eybqO0Qg9AAqAIANC2uS8GtQ/DqC6RaNvMG7///jtahfo4stqEOAXq1BFCCLG7Eo0OmTdLcU1RgvO5KpzNKcLxaxIU7U+ts66flxQx3hVI6t8RgxPCERX0z+Nd6KocIf+gTt0d2dnZGD16NM6dOwe1Wg2plEJDCCGWMBgYbpVWIF9VjpzbJdifzyE9NR05Sg0yb5Yg42YpCos19ZSsfJ5cdLA3urUMQo/YYPSMDUKrIC/88cfvGNkr2qazUwlxddRzuaNZs2bYtWsXxowZ4+iqEEKIwzDGUK41oLRChzKtHuVaPUor9Cgu0+DcbQ44nQe11gBlmbbyU1r5b9Gdf2+XVqCwWANd9RvfIAGuptfZV5BchpgQH7Rr7od2zX1QlHEGyWOGItiv5oOW6WocIcJQp+4OLy8veHl5OboahBBikW1n87DzfB6uZfLYsf4UDIyDVm+AzsCg1Rsqf9YzaA0MWp0BOkPVsgFaHUOF3oCyCj3KtHoTe5EAF04Jqg/HASE+ngjz8wDKlOgcH42oIB/EhPogNkSOmGAfBFSbnarVarH11hn4edGVOEIs5bKduvnz52P9+vW4cOEC1qxZg3HjxhnzCgsLkZycjNTUVERHR2P58uUYPHiwA2tLCCG2dfqGEuuO3ADAA4V5omzTU8rD20MCb5kE3jIeFWUlCA8NQqDcEwHeMgTKZTX+9feWIUjugeb+ngj19YRMUvle1a1bt2LkyI40dEqIjblsp65NmzZYunQp5s2bVydv5syZiIyMhEKhwLZt25CUlIT09HRoNJoanT8A8PX1RUpKir2qTQghNnFP61BIOODq5Yvo1DEBnjIppBIOMp6HTMpByvOQSe78K+Uh4zlIJbxxHQ8pD7mHBF4yifFfCc8Zt/9P56wXdc4IcVIu26mbOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS3N6n1rNBpoNP/c5KtSqQBUNnpVn6rl+v6t/bOY6tuXmOVMrWduXmNxEhJHMVmyfTHiZipfSNzqS7Nn7NzpnGssrTHWxteatqVHS390jfDG9tILGNoz0sqOF4NBr4Oh2kisOx1nV2hbhJajtsXyco6OnZA6mrsexxhjja/mvBITEzF9+nTjFbjjx49j+PDhKCgoMK4za9YsyOVyLFq0qMHtlJeX48EHH8TRo0fRrVs3LFiwAAMGDKh33QULFmDhwoV10tesWQO5XF5PCUJIU1BaWooJEyZAqVTC39/f7PLUthBC6iO0bXHZK3UNUavVdb6wv78/ioqKTJbz8vLCjh07BO1j7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3terKmqWsaVvoOLtX2yK0HLUtlpdzZOwA27QtdKXOCsuWLcOyZcug1+tx6dIl+muakCbO2it1VahtIYRUJ7RtcbtOnVqtRkhICDIzMxEeHg4AGDhwIKZOnYpJkybZpA4qlQoBAQHIzc2lK3VN7K9pV/iL0J3/mnbGK3URERFWd+qqb09o20LH2b3aFqHlqG2xvJyrXakT0ra4bKdOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFCRqHar+mtbpdLh8+TK++eYb+muakCastLQUU6dORVFREQICAizeDrUthJDqBLctzEVNnjyZAajxSU1NZYwxVlBQwEaMGMG8vb1ZmzZt2Pbt221al+zs7Dp1oQ996NN0P9nZ2dS20Ic+9BH901jb4rJX6pyJwWBATk4O/Pz8wHGVz3Xq2bMnDh8+bFynarnqxufs7GxRhmfqU3vfYpcztZ65eQ3Fqb5lZ42dGHEzlS8kbvWl2TN27nTOVU8zN27s/9u7/5io6z8O4E9ABY7j7iZGAscgFHEEtDFjYTCosTD78UcTN0kRq+VIY/ijVTKlNCr6o7AfK/5I0xZgTuaqpabxY5SkLTa0IKqtAPUAvTjg8NBj9/7+4fx8PaXj+HDwufvwfGxsd5/35/35vO71+ezF6z53HxACw8PDiIyMhL+//4TrT2QytQXgcXa1zBdri7vzWFvkz1Mqd9NVW1R396sS/P39YTQanZYFBAQ4Hajbn+t0umkrHrfvy9PzXK032bGJ8jTeHG/LnSfy5mrcnbyNt2wmc6emc268ZZPJ21Q+dr2dnNoC8DiPt8wXa4u781hb5M9TOneeri1TfytJ49q0aZPL5zO5b0/Pc7XeZMcmytNM5k3u/jyRN1fj7uRtvGU85+TnaabPu8ngcXZvTA21xd15rC3y56ktd/z4dYbdvJvNU3fHzSbMnXzMnTy+ljdfi9dbMG/yMXfyTFfeeKVuhgUGBqKsrAyBgYFKh+JzmDv5mDt5fC1vvhavt2De5GPu5JmuvPFKHREREZEK8EodERERkQqwqSMiIiJSATZ1RERERCrApo6IiIhIBdjUeaGenh6kpqYiKCgIY2NjSofj9bZu3YrMzEwUFxcrHYpP4XkmX1NTE9LT05GRkYGtW7cqHc6k8Li7j7VFHp5j8k21trCp80J33XUX6uvr8cADDygditdrbW2F1WpFc3Mz7Ha7rH8nM1vxPJNv8eLFaGxsxA8//IDe3l6cP39e6ZDcxuPuHtYW+XiOyTfV2sKmzgsFBQXBYDAoHYZPaGlpQU5ODgAgJycHP/30k8IR+Q6eZ/JFRUVJf19q7ty5CAgIUDgi9/G4u4e1RT6eY/JNtbawqfOAsrIyJCYmwt/fH7W1tU5jly9fxmOPPQaNRoOEhAR8//33CkXp/eTk0WKxSH+NW6/XY2BgYMbj9gY8B+WbSu5aW1tx5coVJCYmemV8dANri3w8/+RTorawqfOA+Ph47N27F2lpaXeMbdq0CZGRkbhy5QoqKiqQl5eHgYEB9Pb2Ijs72+nn8ccfVyB67yEnjwaDAUNDQwBu/NuV2fruUE7u6Aa5uevt7UVxcTH27dvndfGxvjhjbZGPtUU+RWqLII/JysoSNTU10vPh4WExb948cenSJWlZZmamOHDggNvbs9vtHo/T200mj7/88ot4/vnnhRBCFBUViTNnzsx4vN5Ezjk4W8+z200mdzabTTz00EOitbXVK+Nzd3uz7biztsjH2iLfTNYWXqmbRn/++Sf0ej0iIiKkZffddx9+++03l/NGR0eRk5ODtrY25Obmorm5ebpD9Wqu8piamorg4GBkZmbC399/3HdEs5mr3PE8c81V7vbv34/29nZs2bIF2dnZaGlp8ar4XOFx/z/WFvlYW+Sbztoyx9PB0v9ZrVbpOxk36XQ6WCwWl/OCgoJw6tSpaYzMt0yUx8rKypkPyke4yh3PM9dc5a6oqAhFRUUKRXYD68vUsbbIx9oi33TWFl6pm0ZarVb6TsZNQ0ND0Gq1CkXkm5hH+Zg7+bw9d94eny9gDuVj7uSbztyxqZtG8fHxGBwcRG9vr7Ssra0N9957r4JR+R7mUT7mTj5vz523x+cLmEP5mDv5pjN3bOo8wG63Y3R0FA6Hw+mxVqvFk08+ibKyMthsNnz11Vf49ddf8cQTTygdsldiHuVj7uTz9tx5e3y+gDmUj7mTT5HcTfm2DhLr168XAJx+GhoahBBC9Pf3i0cffVQEBweL+Ph4cfLkSWWD9WLMo3zMnXzenjtvj88XMIfyMXfyKZE7PyGEmHprSERERERK4sevRERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUgE2dUQKeu211zB37lwsXLjQY9vMzs5GbW3tpOaUlJQgODgYS5cu9VgcRKQc1pbZiU0dKS42NhYajQZarRZarRaxsbFKhzSjnn32Wad/7DwdkpKS8M8///zneGVlJY4dOzatMRDNNNYW1pbZhk0deYX6+npYrVZYrdZxC4Tdbp/5oLyAJ173hQsXMDY2Nut+oREBrC3/hbVFndjUkVdqbGzE0qVLUVpaigULFuDNN9+EzWbD5s2bERkZCaPRiIqKCmn9kZER5Ofnw2AwIDU1FTt27MCKFSuctnUrPz8/6R3sv//+i/z8fISHhyMuLg4HDhyQ1svOzsbu3buxbNky6HQ6rFmzBtevX5fGDx06hKSkJISGhiI5ORmdnZ0oLy/Hhg0bnPb34IMPoq6uzq3XHhsbi3feeQcJCQlITEwEALzwwguIjIyEwWDAI488gu7ubmn9n3/+GSkpKdDpdNi4cSMcDofT9k6cOIHc3FwAwL59+xATEwOtVotFixahoaHBrZiI1IK1hbVFzdjUkdf666+/oNFoYDKZ8PLLL2P79u0YHBzEH3/8gbNnz+LgwYP4+uuvAQCvv/46zGYzuru7UV1djc8//9zt/axbtw7R0dHo6enBt99+i1dffRVtbW3S+OHDh1FXV4fu7m6cO3cOhw4dAgD8+OOP2Lx5M6qqqjA4OIjDhw9Dp9Ph6aefxtGjR3Ht2jUAQFdXF9rb27Fy5Uq3Yzp69Ciam5tx/vx5AEBGRgY6OjrQ29sLo9GI4uJiAMD169fx1FNP4cUXX4TZbEZSUhJOnz7ttK3jx48jNzcXIyMjKCkpwalTp2C1WlFfX8932DQrsbawtqiWIFJYTEyM0Gq1Qq/XC71eL1555RXR0NAgQkNDxdjYmBBCCIfDIYKDg0VfX58074MPPhAFBQVCCCFiY2NFc3OzNFZaWipyc3OFEEI0NDSIhIQEp30CECaTSZhMJqf9CCHEtm3bxK5du4QQQmRlZYm9e/dKYy+99JLYtm2bEEKI5557TuzcuXPc15SRkSHq6uqEEEK8/fbborCwcNz1ysrKxMaNG+/Ix5dffvlf6RK///67CAsLE0II0djYKBYtWiSNORwOYTQaRU1NjRBCiLGxMbFw4UIxMjIirFar0Ol04siRI2J0dPSO7Y6XJyJfxtrC2jLb8EodeYWTJ0/CYrHAYrHgrbfeAgBEREQgICAAAHD58mXYbDYsWbIEBoMBBoMBO3bsQH9/PwDAZDIhOjpa2t6tj13p7u7GyMgIwsLCpO1WVVWhr69PWic8PFx6rNFoYLVaAdz4PklcXNy42127dq10l1h1dTXy8/PdTQUAwGg0Oj0vLy/H4sWLodPpkJaWBrPZDODO1+3n5+c098yZM0hKSoJGo0FISAhqamrw4YcfIjw8HKtWrcKlS5cmFReRr2Ftccbaom5s6shr+fn5SY8XLFiAoKAgdHV1SQV6aGhIuqsqIiICPT090vq3Pg4JCcHVq1el57feDRYVFQWDwSBt02KxYHh4GJ988smE8UVHR+Pvv/8edywvLw/fffcdzp49i/7+fjz88MPuv3A4v/ampiZUVVXh2LFjGBwcxNmzZ6WxiIgIXLhwwWnurc9vfjxy08qVK1FfX4+LFy8iKCgIO3funFRcRGrA2nIDa4v6sKkjn+Dv74/169dj+/btsFgscDgc6OjokIrQqlWrUF5ejuHhYXR2duLgwYPS3CVLlsBsNqOpqQnXrl3Dnj17pLGoqCjcf//92LVrF65evYqxsTG0traivb19wpgKCwvx8ccfo6WlBUIIdHZ2wmQyAQDmz5+PrKwsFBYWYvXq1dJVATmGh4cxZ84chIWFYWRkBG+88YY0lp6eDpvNhk8//RR2ux0fffSRFAPg/EXmvr4+fPPNN7DZbAgMDIRGo5lSXERqwNrC2qImbOrIZ7z77rsICQlBcnIy5s+fj4KCAgwMDAAAysrKoNfrYTQasWbNGqxbt06ap9fr8f7772P16tW45557kJaW5rTdL774Al1dXYiLi0N4eDhKSkpgs9kmjGf58uWorKzEM888A51Oh7y8PAwNDUnja9euRUdHx6Q/HrndihUrkJ6ejpiYGCQnJ2P58uXS2Lx583DkyBG89957CAsLw7lz56Rxs9kMk8mE5ORkAIDD4UBFRQXuvvtuhIeH4+LFi9i9e/eUYiNSA9YW1hbVUPpLfUTTYf/+/dKXmZVy+vRpERcX53KdPXv2iJCQEBEVFeXx/VdXV4sNGza4te6WLVtEaGioSElJ8XgcRGrC2sLa4s38hBBC6caSyNM+++wz1NbW4vjx44rs3263o6CgAElJSSgtLVUkhhMnTiAsLAzLli1TZP9EasTawtrizeYoHQCR2pjNZhiNRqSkpKCqqkqxOG79EjMR+T7WFpoIr9QRERERqQBvlCAiIiJSATZ1RERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUoH/AWsaRD7hF0ydAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgcUlEQVR4nOzdd3gU1foH8O/M7qZseiEkISEhhBaa0pFikCYognijgAhBQUFEvfhT5CoCdixcUMEuoIJwsVACKi2hKL33EkiB1AWym03ZbDm/P0LW1M3s7mzN+3mefcicM2fm7DuTw8mcOTMcY4yBEEIIIYS4NN7RFSCEEEIIIdajTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hhBBCiBugTh0hpFGlpaV45JFH4O/vD47jUFRU5OgqNWrBggVo3rw5OI7Dhg0bHF0dh0hLSwPHceA4DmPGjBF9+7Gxscbtu8I5YanExETj9zxx4oSo2165cqVx2y+++KKo2yZND3XqCLGxvLw8vPDCC4iPj4eXlxeaN2+O/v3744svvkBpaamjqyfIqlWrsHfvXvz999/Izc1FQEBAnXWq/+dU/fPNN9/Yvb7nz5/HwoUL8eWXXyI3NxcjRowQdfvVOzNyuRydOnXCl19+Keo+xHTx4kWsXLnSuKzT6fD666+jVatW8Pb2RlxcHN58800YDAbjOsnJyXWOZZ8+fWps9/Dhw/jll18sqlNeXh5mzZqFuLg4eHp6Ijo6GqNGjcLOnTst2p6tTZs2Dbm5uejUqZMx7fDhwxg8eDACAwMRFBSEYcOG1en0Mcbw0UcfoW3btsbv+e677xrzH3vsMeTm5qJv3772+irEjUkdXQFC3NnVq1fRr18/BAYG4t1330Xnzp2h0+lw6dIlfPfdd4iMjMRDDz3k6Go2Kj09HR06dKjxH1p9/P39cfHixRpp9XUAxVJRUQEPD4866enp6QCA0aNHg+M4i7ev1Wohk8nqzXvzzTcxbdo0qNVqrFy5EtOnT0dgYCAee+wxi/dnK2FhYQgMDDQuL1q0CF988QVWrVqFjh074siRI5gyZQoCAgLwwgsvGNe7//77sWLFCuNy7Vg3a9YMwcHBZtcnIyPD+HvxwQcfoEuXLtBqtfjzzz8xc+ZMXLhwwfwvaWNyuRzh4eHG5eLiYgwfPhyjR4/G8uXLodPpMH/+fAwfPhzXr183njcvvPACtm3bho8++gidO3eGUqmEQqEwbsfb2xve3t71nseEmI0RQmxm+PDhLCoqiqnV6nrzDQaD8eePP/6YderUicnlchYVFcVmzJjBiouLjfkrVqxgAQEB7I8//mDt27dnPj4+bPjw4SwnJ8e4jlarZbNmzWIBAQEsODiYvfLKK2zSpEls9OjRJuv5888/s4SEBObh4cFiYmLYRx99ZMy79957GQDj59577613G1X1a0hmZiZ76KGHmI+PD/Pz82NJSUksLy/PmD958uQ69XzhhRdq7O/ee+9lM2fOZP/+979ZSEgIGzhwYJ39zJ8/v0Z9q5o5vV7PFi5cyFq0aME8PDxY165d2e+//24sd+3aNQaArVu3jt17773M09OTfffdd/V+l5iYGPbf//63RlqbNm3YuHHjGvz+pqxfv5516tSJeXl5seDgYDZ48GCmVqvZ7t27mVQqZbm5uTXWnz17NhswYABjjLGMjAz24IMPssDAQCaXy1lCQgLbsmULY4yx1NRUBoDdvn27RvkHHniAPfnkkzXSxo4dyyZOnGhcru941KehfZgyYsQI1qJFi3p/L8zZTnW3bt1iEyZMYKGhoczLy4vFx8cbj9+gQYPYzJkza6yvUCiYh4cH27lzJ2OMsWXLlrH4+Hjm6enJwsLC2COPPGJc995772UvvPBCjfKHDx9mAFhWVpYx7dSpUwwAu3LlCmOMsXPnzjGpVMouXLjQaP3r2wch5qLhV0Js5ObNm9i2bRtmzpwJHx+fetepfhWJ53l88sknOHPmDFatWoVdu3bhlVdeqbF+aWkpPvroI/zwww/Ys2cPsrKy8H//93/G/EWLFmH16tVYsWIF/vrrL6hUqkbvJzt69CgeffRRjBs3DqdPn8aCBQswb94843Ddr7/+imnTpqFv377Izc3Fr7/+anYsGGMYM2YMbt26hd27d2P79u1IT0+36KrWqlWrIJVK8ddff9U75Pl///d/xqtLubm5yM3NBQAsXboUH3/8MT766COcOnUKw4cPx0MPPYTLly/XKD9nzhw8//zzOH/+PIYPHy64Xl5eXtBqtQCAvXv3wtfX1+SnagguNzcX48ePx5NPPonz588jLS0NY8eOBWMMAwcORFxcHH744QfjfnQ6HX788UdMmTIFADBz5kxoNBrs2bMHp0+fxqJFi+Dr62uyrv3798fOnTtx6dIlAMDJkyexb98+jBw5ssZ6aWlpCAsLQ9u2bTFt2jQUFBQIjkdDbt26hT/++KPB34vqVxRHjBjRaByrzJs3D+fOncPvv/+O8+fP4/PPP0doaCgAYOrUqVizZg00Go1x/dWrVyMyMhKDBg3CkSNH8Pzzz+PNN9/ExYsX8ccff2DgwIEmv0e7du0QGhqKb7/9FhUVFSgrK8O3336Ljh07IiYmBgCwefNmxMXFISUlBa1atUJsbCymTp2KW7duWRNCQhrm6F4lIe7qwIEDDAD79ddfa6SHhIQwHx8f5uPjw1555ZUGy//vf/9jISEhxuUVK1bUuArAWOXVhebNmxuXmzdvzj788EPjsk6nYy1btjR5xWXChAls6NChNdJefvlllpCQYFyufcWsPlX1q/puPj4+xrpt27aNSSSSGlc1zp49ywCwQ4cOMcaEX6m76667TNaDMcZ+++03Vrt5i4yMZO+8806NtJ49e7Jnn32WMfbPlbolS5Y0uv3qV+q0Wq3xuy9fvpwxxlhpaSm7fPmyyc/NmzcZY4wdPXqUAWAZGRn17mvRokWsQ4cOxuUNGzYwX19f41Wuzp07swULFtRbtqGraAaDgb366quM4zgmlUoZx3Hs3XffrbHO2rVrWUpKCjt9+jTbtGkT69q1K+vYsSMrLy8XtI+GHDx4sN7fi/pcv3690ThWGTVqFJsyZUq92ykvL2fBwcFs3bp1xrS77rrLGLdffvmF+fv7M5VKVW/5hq6inTlzhrVu3ZrxPM94nmft27dnmZmZxvxnnnmGeXp6st69e7M9e/aw1NRUdtddd7FBgwYJ3gch5qB76gixsdr3dB06dAgGgwGPP/54jSsHqampePfdd3Hu3DmoVCrodDqUl5ejpKTEeEVDLpejdevWxjIRERHGqydKpRL5+fno1auXMV8ikaB79+41boCv7fz58xg9enSNtH79+mHJkiXQ6/WQSCSCv6ufnx+OHTtmXOZ53riP6OhoREdHG/MSEhIQGBiI8+fPo2fPnoL30aNHD8HrVlGpVMjJyUG/fv1qpPfr1w8nT560aPtz5szB66+/Do1GAw8PD7z88st45plnAFTeJxUfHy9oO127dsXgwYPRuXNnDB8+HMOGDcO//vUvBAUFAaicsPD666/jwIED6NOnD7777js8+uijxnPi+eefx4wZM7Bt2zYMGTIEjzzyCLp06WJyn+vWrcOPP/6INWvWoGPHjjhx4gRefPFFREZGYvLkyQBQ4ypqp06d0KNHD8TExGDLli0YO3asoO9WH8YYgLq/F/Vp0aKF4O3OmDEDjzzyCI4dO4Zhw4ZhzJgxuOeeewAAnp6emDhxojF2J06cwMmTJ41XsYcOHYqYmBjExcXh/vvvx/3334+HH34Ycrm8wf2VlZXhySefRL9+/fDTTz9Br9fjo48+wsiRI3H48GF4e3vDYDBAo9Hg+++/R9u2bQEA3377Lbp3746LFy+iXbt2gr8fIULQ8CshNhIfHw+O4+rc9B0XF4f4+Hh4e3sb0zIzMzFy5Eh06tQJv/zyC44ePYply5YBgHFID0Cdm/Y5jjP+J1k9rbra+bUxxswu0xCe5xEfH2/8xMXFNbiP2uk8z9fZb/XvXqWhoWwh6vuetdOEbv/ll1/GiRMnkJmZCbVajQ8++MDYiTVn+FUikWD79u34/fffkZCQgE8//RTt2rXDtWvXAFROchg1ahRWrFiBgoICbN26FU8++aSxHlOnTsXVq1fxxBNP4PTp0+jRowc+/fTTRuv+6quvYty4cejcuTOeeOIJ/Pvf/8Z7773XYJmIiAjExMTUGa42V5s2bcBxHM6fP9/ouuYMv44YMQKZmZl48cUXkZOTg8GDB9e4NWHq1KnYvn07rl+/ju+++w6DBw82DpNW/THy008/ISIiAm+88Qa6du1q8jEta9asQUZGBlasWIGePXuiT58+WLNmDa5du4aNGzcCqIyZVCo1dugAoEOHDgCArKwss+JGiBDUqSPERkJCQjB06FB89tlnKCkpMbnukSNHoNPp8PHHH6NPnz5o27YtcnJyzNpfQEAAmjdvjkOHDhnT9Ho9jh8/brJcQkIC9u3bVyPt77//Rtu2bc26StfYPrKyspCdnW1MO3fuHJRKpfE/uWbNmhnvf6si1jPB/P39ERkZWe/3rNq/uUJDQxEfH4/IyMg6HcMePXrgxIkTJj/Tp083rs9xHPr164eFCxfi+PHj8PDwwG+//WbMnzp1KtauXYsvv/wSrVu3rnPFMTo6GtOnT8evv/6Kl156CV9//bXJupeWlho7oFUkEonJK7o3b95EdnY2IiIiGo2NKcHBwRg+fDiWLVtW7+9F9Y7UN99802gcq2vWrBmSk5Px448/YsmSJfjqq6+MeZ07d0aPHj3w9ddfY82aNTU6xgAglUoxZMgQfPDBBzh16hQyMjKwa9euBr9HVQxr3xfLcZwxjv369YNOpzPOxgZgvI+xqkNJiJho+JUQG1q+fDn69euHHj16YMGCBejSpQt4nsfhw4dx4cIFdO/eHQDQunVr6HQ6fPrppxg1ahT++usvfPHFF2bvb9asWXjvvfcQHx+P9u3b49NPP8Xt27dNDnW99NJL6NmzJ9566y089thj2L9/Pz777DMsX77c4u9d25AhQ9ClSxc8/vjjWLJkCXQ6HZ599lnce++9xuHO++67Dx9++CG+//579O3bFz/++CPOnDmDu+++W5Q6vPzyy5g/fz5at26Nu+66CytWrMCJEyewevVqUbZfnTnDrwcPHsTOnTsxbNgwhIWF4eDBgygsLKzR2Rw+fDgCAgLw9ttv480336xR/sUXX8SIESPQtm1b3L59G7t27Wq0ozpq1Ci88847aNmyJTp27Ijjx49j8eLFxo6OWq3GggUL8MgjjyAiIgIZGRn4z3/+g9DQUDz88MNmRqOu5cuX45577kGvXr3w5ptvokuXLtDpdNi+fTs+//xz41U8c4Zf33jjDXTv3h0dO3aERqNBSkpKnThMnToVzz33HORyeY3vkZKSgqtXr2LgwIEICgrC1q1bYTAYTA6PDh06FC+//DJmzpyJWbNmwWAw4P3334dUKsWgQYMAVJ733bp1w5NPPoklS5bAYDBg5syZGDp0aI2rd4SIxmF38xHSROTk5LDnnnuOtWrVislkMubr68t69erFPvzwQ1ZSUmJcb/HixSwiIoJ5e3uz4cOHs++//77GDej1PTKk9oQArVbLnnvuOebv78+CgoLYnDlzWFJSUqOP2qh6pIlMJmMtW7asMdmCMeETJax5pAljjL3xxhusefPmLCAggP373/9mzz33XJ2JEkJuJq9vokT1R5rIZLIGH2ly/PjxRrdf3yNNLHXu3Dk2fPhw1qxZM+bp6cnatm3LPv300zrrzZs3j0kkkhqPsGGMseeee461bt2aeXp6smbNmrEnnniCKRQKxljDkxhUKhV74YUXWMuWLZmXlxeLi4tjr732GtNoNIyxyokew4YNY82aNTOeE5MnT64x0aVK7X1UxTE1NdXk987JyWEzZ85kMTExzMPDg7Vo0YI99NBDjZZryFtvvcU6dOjAvL29WXBwMBs9ejS7evVqjXWKi4uZXC43To6psnfvXnbvvfeyoKAg5u3tzbp06VJjUkVD5922bdtYv379WEBAAAsKCmL33Xcf279/f411bty4wcaOHct8fX1Z8+bNWXJysnGSTHU0UYKIgWPMwptnCCFOz2AwoEOHDnj00Ufx1ltvObo6xArTpk1Dfn4+Nm3aJLhMWloaBg0ahNu3b9d4VIiYau8jLS0NDz/8MK5evWqc7OEssrOzERsbi8OHD6Nbt26CyyUmJuKuu+7CkiVLbFY3e+yDuD+6p44QN5KZmYmvv/4aly5dwunTpzFjxgxcu3YNEyZMcHTViIWUSiV27NiB1atXY9asWRZtIyoqCuPHjxe5ZkDHjh3rvILtjz/+wH/+8x+n6tBptVpkZWVhzpw56NOnj1kduirLly+Hr68vTp8+LWrdVq9eDV9fX+zdu1fU7ZKmia7UEeJGsrOzMW7cOJw5cwaMMXTq1Anvv/9+ow9SJc4rMTERhw4dwjPPPIP//ve/ZpUtKyvDjRs3AAC+vr41XnMlhszMTOMM5bi4uDqTL5xF1dXEtm3b4ueff0bnzp3NKn/jxg2UlZUBAFq2bCnqK72Ki4uRn58PoPLBy1UPTCbEEtSpI4QQQghxA875ZxUhhBBCCDELdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYQQQtwAdeoIIYSQJiA5ORnvv/++o6tBbIg6dYQAiI2NhVwuh6+vL3x9fREbG+voKhFCXBy1K8TeqFNHyB27du2CWq2GWq1GRkZGnXytVmuXethrP4QQ23OWdoU0DdSpI6QBaWlpaN++PV577TWEhobi3Xffxa1btzBu3DiEhoYiPj4e33zzjXH95ORkvPjii7j33nvh6+uLCRMmIC8vD0OGDEFAQAAef/xx6PX6evcVGxuLDz74AO3atUNCQoK9viIhxM7s2a6kp6fjnnvugZ+fH8aOHYvS0lJ7fU3iIFJHV4AQZ3blyhXI5XLk5uZCr9djypQpkEqlyMrKwpUrVzBkyBC0b98e/fv3BwCsX78eO3fuRLNmzdCtWzc8+OCD+P777xEZGYkePXogJSUFo0ePrndfGzZswN69e+Hv72/Pr0gIsTN7tSsTJkzAsGHDkJaWhq1btyIpKQndunWz99cldkSdOkLuGDp0KCQSCQBgxowZGD58OORyOV599VVIJBLwPI9ffvkF6enpkMvl6NKlC5566in89NNPxsb3scceQ/v27QEAiYmJ8PX1NV55Gzx4ME6dOtVgp+7f//43wsLC7PBNCSH24qh2JTMzE2fOnMHevXvh4eGBMWPGoHfv3nb85sQRaPiVkDu2b9+OoqIiFBUV4b333gMAREREGBvkwsJC6PV6REVFGcvExMQgJyfHuFy9U+bt7Y1mzZrVWC4pKWlw/9W3SwhxD45qV3JzcxEWFgYPDw9jWnR0tHhfjDgl6tQRYgLHccafmzVrBp7ncf36dWNaVlYWIiMjRd8XIcR92aNdiYiIQEFBASoqKoxp2dnZVm2TOD/q1BEikEQiwdixY/Haa6+hrKwMZ86cwbfffotx48Y5umqEEBdlq3YlJiYGCQkJePfdd6HVarFp0yYcOnRIpFoTZ0WdOkLMsGzZMpSXlyMqKgoPPfQQ3nzzTQwYMMDR1SKEuDBbtStr1qzBn3/+ieDgYKxcuRIPP/ywCLUlzoxjjDFHV4IQQgghhFiHrtQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgB6tQRQgghhLgBeverCAwGA3JycuDn50dvBSCkCWOMobi4GJGRkeB56/9mpraFEAIIb1uoUyeCnJwceqceIcQoOztblHf5UttCCKmusbaFOnVWWLZsGZYtWwadTgcA+OabbyCXyx1cK0KIo5SWlmLq1Knw8/OzajvUthBCqhPctjBiNaVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dO51ztdPM/W4KhYIBYEql0u5tCx1n92pbhJajtsU255ytY2ertoWu1IlIJpNBJpOZXG4oz9Z1EbucqfXMzRMSN2ePnRhxM5UvJG71pdkzdu50zlWlWVJHW3Cm3xF3Os6u0LYILUdti+XlHBE7S+ooBM1+JYQQQghxA9SpI4QQQghxAzT8KiKtVmv8VC3X92/tn8WugyXbF1rO1Hrm5jUWJyFxFJPQ7TPGYGCAhOdEiZupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP81V2hZLylHbYnk5R8dOSB3NXY9jjDFBa5I6qmao6fV6XLp0CWvWrKEZam5GWQGcL+KQruKQW8qhsBzQ6CvzfKRAuByI9zegZzOGUC/H1pU4XmlpKSZMmAClUgl/f3+Lt0NtCyGkOqFtC3XqRKBSqRAQEACFQgF/f39otVps374dQ4cOhUwmq7EMoEae2GrvW+xyptYzN89UnIQsi02r1eKPbdsR2q4n/r5WhN2XFDifVyy4/NAOYZg9JB7xYb71bttU3RvKFxK3+tLsGTt3OudqrwOY9/uqUqkQGhpqdaeu+vaEti10nJ27bbFV7KhtsbycI2MH2KZtoeFXEQmZHdRQnq3rInY5d5qhlqcsx55Lhdh1IR+7L0hQduB4jfwuUQEY2KYZOrXwR3yYLwLlHmAMKCgux7GMW1i9+wwuqnhsP1+AXRcLMXNQPGbdFw+ZpO4tqzRDzfJy9jznqtIsqaMtOPp3xFRdxC7nTm2LkDqKVY7aFsvLOSJ2ltRRCOrUkSanXKvH4Yxb2H2xEHsuF+JSvrpaLodAbxkGtm2GxHbNMLBtM4T6eta7nWZ+nmjbTA7/wlNo26M/Pt6Rjh3n8/HJzstIu1iA5Y93Q1QQDZkRQgixD+rUEbdXoCrH0czbOJJ5G0czb+NsjhJa/T93HXAc0CUqEANaB0OmuIRnkobCy9PDrH3Eh/nim8k9sPlkDl7fcAanrisxZtlf+GJid/SIDRb7KxFCCCF1UKeumtmzZ+Pw4cO4++678cknnzi6OsRMyjItsm6W4mJ+MS7kqnAhrxgX8lRQqCvqrBvu74UBbUIxsG0z9I8PRZCPB7RaLbZuvQQJb/mL00d1jUS3mCBMW3UE53JVGP/1AXz4r654oFOYNV+NEEIIaRR16u44duwY1Go19u7dixkzZuDw4cPo2bOno6tF7ijX6pFzuxTXioFt5/Jxq0yPnKIyZN0qRfatUmTeLIWyrP4p3xwHtGvuhx6xQegeE4QeMcGICvIGx1neeTOlRaA3fp7RF7PXncQfZ/Pw4roTuKluj1Cb7I0QQgipRJ26O/bv348hQ4YAAIYMGYIDBw5Qp84KjDFU6A0o1xqg0epRXKZBbilw+oYSOsajXKtHSXkFjhRyuH0wCyVahqISDc6m8/hz3UmoKwxQllYgRyHBa8d2Qa3R3dmyFDhzssH9hvp6ID7MF+3D/dEhwg/tw/3RtrkfvD0k9vnid8g9pFj+eDe8mXIOK//OwFtbLuD+KA4jaLI5IYQQG3HLTt38+fOxfv16XLhwAWvWrMG4ceOMeYWFhUhOTkZqaiqio6OxfPlyDB48GEVFRWjdujUAICAgAGfPnrVJ3X4/k4dNmTxO/3kJPM+DMQbGAAbc+bdyGajsGNVOr1q+s0ZlWrV8vcGA69d5pP1yGhzH31m/+nb+WUatcnl5PFKKToCBg85ggN7AoNOzyn/vLGv1BtxWSrD08l8wMAadoSqfQac3oFwjwatHdqBcZ0Dd/osUOHmwVpoEuHKh2jIPFORXW+YAVHboPKU8fCR6tAwLRJifF8IDvNAyWF75CZEjOkgOH0/nOaV5nsP8UQkIlMuwZMdl/HFdgre3XsSChzqBt2KIlxBCCKmP8/wPKKI2bdpg6dKlmDdvXp28mTNnIjIyEgqFAtu2bUNSUhLS09MRGBgIlUoFoPJ5MIGBgTapW+olBXbm8EBOhk22X4kHCnMtK3erQMB6HFBa0nCe3lAzhQO8pDx4poef3AveHlJ4Snl4SnmUqm6jVVQ4AuUe8PWQIDfrKrp3SUCQjxfkMg7nThzBg0PuRUSwD7x4ht9//x0jR/a26WMHxMRxHF4c0hZ+nhK8teUCvj+QBXWFHh880gXSeh55QgghhFjKLTt1EydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZvRt29ffPnll3j00UexY8cOJCcnN7h9jUYDjUZjXK7qDAp5lU+/VoG4nXcdsTExkEh4cBwHDpUdHw7cnX8B1FquykdVPlCrbOWywaDHlcuX0aZtW0glkhp5qLVu9bIGgwHnz59HQkIHeEilkPAcpDwHqYQ3/izhOcCgx4kTx9G7R3d4esgg4TnI7qzDDHoc3P83Bg7oD19vT3hJeXjKJPCQcNDpdHcetHhPPQ9m7FjtwYzpGNoj0rhccQ2IDvSATAJotboa8RSbJa+kEVpmfPcIXLt4Fj+lS/HrsRsoLtPiv0md4SmTmNwOvcrHvq+PaiytMdbG15q2paG6i8WdjrM942bN9oWUa2wdalssX8/WsRNSR3PXc+s3SiQmJmL69OnG4dfjx49j+PDhKCj452rUrFmzIJfLsWjRIrz44os4evQounbtis8++6zB7S5YsAALFy6sk06v8iGNOX2Lw8pLPHSMQ9sAA6a2M8DTvrf7ERuy9jVh1LYQQuojtG1xyyt1DVGr1XWC4e/vj6KiIgDAkiVLBG1n7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+uXF7/pFE9Msuxsx1p3FJCfx4IxBfTOgCXxlX73aExK2+NHvGzp3OudrrAOb9vlZdWbOUNW0LHWf3aluElmtsnYbyqW1xbOwA27QtdKWu2pU6c9FLt4mlMouBLy5IUKrjEOHNMCNBjwDznndMnJC1V+qqUNtCCKlOaNvSpDp1arUaISEhyMzMRHh4OABg4MCBmDp1KiZNmmTxfqpeup2bm0tX6prYX9PWxO1ygRpTfzyJQnUFooO8MCVWjX+NoL+mzVnPGa/URUREWN2pq749oW0LHWf3aluElqMrdZaXc7UrdULaFrfs1Gm1Wuj1egwbNgzTpk1DUlISPDw8wPM8kpKSEBwcjCVLlmD79u1ITk5Geno6goKCzN4P/TVNrKUoB5afk+CmhkOAB8OzHfQIp1PIZdGVOkKILTTpK3XJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XLjQ4ctRVfqLMtzh7+mxYhbQbEGT/1wAumKUvh7SfHZY53RIyawwXL017TleXSlznLudJxdoW0RWo6u1Flejq7UkRror2kilhIt8OUFCTLVHCQcw/jWBvRsRr+aroau1BFCbKFJX6mzN7pSZ1meO/w1LeZfhH/uSMU2VTi2X1AAAGYMjMX0flFIS0ujv6bpSh1dqWtibYvQcnSlzvJydKWO1EB/TROxGRiwJYvHjpzKt010DzVgfGsDZPTyCZdAV+oIIbYguG1hxGpKpZIBYAqFglVUVLCSkhK2YcMGVlJSUme5dp7YH0u3L7ScqfXMzTMVJyHLzhA7MeJWX/7q/VdZ67lbWMycFNb/zc3scs5NUWPp6Lg56zlXO83c76ZQKBgAplQq7d620HF2r7ZFaDlz2xZz4ubo2DnynLN17GzVttDf/4Q4oaTuUfh2UjcEeEuRXcIh6esjOHD1lqOrRQghxInR8KsVaIiE2NrNcuC7SxJcL+HAgeGhGAMGRTBwXONlif3R8CshxBZo+NWOaPjVsjx3GCKxx2X+//2ygT2/+giLmZPCYuaksGkrD7I1P9MQiS3OudppNPzqnsfZFdoWoeVo+NU255ytY0fDr4Q0UR4S4N3R7bHgwfaQ8hy2nS/Eh6ckOJ6tdHTVCCGEOBEafrUCDZEQe8ssBlZdrnwDBQ+GEdEGDGnBwNNwrFOg4VdCiC3Q8Ksd0fCrZXnuMETiiMv8+beUbOyHm4zDsY9+8RdLz73ZJIdIaPiVjrO7ti1Cy9Hwq23OOVvHzlZti/hPWWzCZDIZZDKZyeWG8mxdF7HLmVrP3DwhcXP22IkRN1P51dODfIEn4g14bGAXLEg5j4PXbmP0F4cxqgWHEVKpw2LnTudcVZoldbQFZ/odcafj7Apti9ByYrQt5qQ1lXPOVL41sbOkjkLQPXWEuCCOAx6+OxIps/qja3Qgist1WJMuwdM/Hke+qtzR1SOEEOIAdKVORFqt1vipWq7v39o/i10HS7YvtJyp9czNayxOQuIoJku2L0bcTOU3FrfoQE+sfaoHvt57FUt3pSPtkgJDF+/Gf+5vAy9mn9i50znXWFpjbHluCmlb6DjXn+aKbYvQcrZqWxpKayrnnKl8sWInpI7mrkcTJaxANzMTZ5JbCqy+IkF2SeWsiQ6BBiS1MiDEy8EVa0JoogQhxBZoooQd0UQJy/Lc4WZmZ7sht0hVzP677QKL/0/lK8bavbaVfbrjIitSFbvlzcw0UaJp3LTeFNsWoeVoooRtzjlbx44mSrgAmihhWZ473MzsLDfkyr088eLQdri/Y3M8t3IvrqiAj7ZfxsaTORjZzH1vZqaJEk3jpvWm2LYILUcTJSwvRxMlCCFOrXUzHzyXYMAHYzsh2McDlwtKsPSsFP/ZcBYKtcbR1SOEEGID1KkjxE1VzZDdOfte/KtbCwDA+qM3MOjDNHyz9yoqdAYH15AQQoiYaPhVRDT7tenNUHOFWVa+HjK8+WBbtNBkYvutQJzLVePtLeex+kAm/jOyHRLbNhPwTS3/btaWo9mvNPu1KbYtQss5eganu55zpvJp9qubohlqxNUYGHCokMPmLB5qbeUs2YRAA8bEGtDc28GVcwM0+5UQYgs0+9WOaParZXnuMEPNFWZZ1bd8U1XK3tx02jhLNm7uFjb3lxMs51Zxkz7naqfR7Ff3PM7O1LbcLi5l567fYsczFOxEpoLduFnMNBqN4Ho5W9viLuecrWNHs19dAM1+tSzPHWaoOfMsq/qWg2UyzBvVCY/3icU7W85j54UCrDl0HRtO5GLqgDg8PTAOvp7mNQ/udM5VpVlSR1twpt8RdzrO9m5byvXAketFOJZ1G8ezinD6hhK3SirqrBfgLUP/+FCM7BQGA6PZrzT7VXjbQp06QpqwuGa++Da5Jw5cvYn3fr+Ak9lF+GTnZaw5mInnB7fB+F4tIZPQfCpCzGUwMFwpVON41m0cybiFveckePFAKuq74cnPUwpfLyl0Boabag2UZVpsOZ2LLadzEeYlgW+bQgztGGn/L0FcDnXqCCHoExeCDc/eg9/P5OHDPy/imqIEb2w8i+/2XcP/DW+HkZ0iwPOco6tJiFNijKGwWIOzuSoczyrC8azbOJFVhGKNrtpalb8/LYPl6NYyEN1ignB3dBBiQ+Xw8/rnKky5Vo9zuSr8eSYPPx3KQkG5DtN+OI6Huubj3bGdzb6CTpoWOjvuyM7OxujRo3Hu3Dmo1WpIpRQa0rRwHIeRnSMwNKE51h7OxtIdl5FxsxTPrTmOhIh0zB7aFoM7hIHjqHNHmiaDgaGgWIPMmyW4pijBhbxiXMwrxoU8FW6X1p2d6C2ToGt0ALq2CIC+4AqmjrkP4UG+JvfhJZOgW8sgdGsZhOkDYzH72x3Yky/BppM5OJujxFeTeqB1M9PbIE0X9VzuaNasGXbt2oUxY8Y4uiqEOJRMwuOJPjEYe3cLfL33Kr7Zew3nclWY+v0RdI0OxOyhbTGwTSh17ohb0RuAPFU5ispKUaguR2GxBgUqDQqKNbh+uxRZt0qRfbuswec78hwQG+qDu6ICcXdMELq1DES75n6QSnhotVps3XoZIb6eZtXJ11OKMbEGzBjVB8+vPYX0whIkfbEfq6b0QueoADG+NnEz1Km7w8vLC15e9OZzQqr4eErx4pC2mNw3Fl/uuYpVf2fgZHYRJn93CD1igjB7WFvc0zrU0dUkTYSBARU6A3RMD53BAL2BQaMzoLhMg5xS4NR1JXSMQ7nOgJKyChxVcCg5egM6BpSUa3Eii8eRLRdQUqGHsrQCGTck+PzafhSX66Aq16K4XAoc3NNoPSQ8hxaB3ogJkaNdcz+0C/dDhwh/xIf5wksmscl3vzs6ECnP98eTKw/j1HUlxn99AN9O7oHecSE22R9xXS7bqZs/fz7Wr1+PCxcuYM2aNRg3bpwxr7CwEMnJyUhNTUV0dDSWL1+OwYMHO7C2hLiuIB8PvDqiPZ7q3wpf7E7HjwcycSTzNiZ8fRB940Lwwn1xjq4iAbD5ZA62nMpBbi6PLcoT4DkeDAyMAQy4c4N+5V36/6QxY17V/fuMVV/nTnkGMGaA4iaP1bmHK19XUi2/ast1tscYGGO4XSTB15kHAA7G7RkYg87AoDcw6AwG6PQMJaUSLDyVCr0BxvTKfxkYkwIHdjTw7aXAyYO10iTA5bPVlnngRla1ZQ4oLq5ZgucQ6uuBMD8vNPPzRDNfT4T6eSAqSI6WwZWfiAAvSB0weSjU1xOrp/bGtO+P4MDVW5iy8jB+nNobnSNoKJb8w2U7dW3atMHSpUsxb968OnkzZ85EZGQkFAoFtm3bhqSkJKSnp0Oj0dTo/AGAr68vUlJS7FVtQlxWMz9PzHswAU8PjMOy1Cv46VAW9l+9if1Xb6J9AI/mHW+jT3yYo6vZZF3KL8YfZ/MB8MCtAhvthQdUty0oxyG7RCVoPZjx9gAJz8FLyoMz6ODv4w0vDwm8pBJ4SjmolbfRIjwMck8pPHgOirwb6NyuNQJ8POEj45F+/jQG9u2JIF8vyKUcjvy9G/8aNQKenh4WfD/78POSYeWUXpj2/RHsvaxA8neHsPqpno6uFnEiLtupmzhxIgDgnXfeqZGuVquxceNGZGRkQC6XY8yYMVi8eDE2b96MSZMmIS0tzep9azQaaDT/vBRdpapsrOg1YU3vVT6u8joaMWMX7C3BvJHt8NQ9LbF891X8ciwHF5Q8xn1zGH1aBWFmYmv0bhXU6D13znjONZbWGGvja03bMjA+GAGebXDhwgUkdOgAXiIBh8qLahy4O/9WLleqmVa1TmVOZeI/eYDBoMepU6fRpUsXyKSVw4xctXXubNG4PrjKfINOh+MnTuDuu++GTCoxluF5DlKeg+TOBwY9Dh86iP739IWnh0eNPGbQYd+ePRh8XyK8quVV3a+2fft2DB3a1/gsr3/SOkMmk91ZzsbQxNh/lgtPoU9sgHH5ggzQ63XQasW/V1TMdlkC4LNxXTBl1TEcyypC8sqjmN7GPdoWoXUXq5yj22UhdTR3PZd/TVhiYiKmT59uvAJ3/PhxDB8+HAUF//ylOmvWLMjlcixatKjB7ZSXl+PBBx/E0aNH0a1bNyxYsAADBgyod90FCxZg4cKFddLpVT6kKVKUAztu8DhUyEHPKv9DbOXHMDzKgPYBDE1pPoW1rwmjtoUIVaoDPjsrwY1SDiGeDP/urIef7Z6bTBxMaNvislfqGqJWq+t8YX9/fxQVFZks5+XlhR07Grpfo6a5c+di9uzZxmWVSoXo6GgMGjQI/v7+0Ol0SE1NxaBBgyCVSmssA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9jpdDqEpqZiQVJfrDyYg1+O5+JasQFfnJegc6Qfpg+IRWLbkDpX7pzxnKu9DmDe72vVlTVLWdO22OM4U9tiGVvFrv/ACoz/9iiuF5Vj7Y1ArJzcDXIPiaBtuErb4qhzzlS+GLEDbNO20JU6K9BLtwmpS1kB7Mzh8Xc+B62hsiPXQs4wLMqALsEM7vwMY2uv1FWhtoUIVVAG/PeMBKU6Dp2CDHiqncGtf8eaKqFti9t16tRqNUJCQpCZmYnw8HAAwMCBAzF16lRMmjTJJnVQqVQICAhAbm4uXalrYn9Nu8JfhI76a/pmSQVW7c/GmiM3UFqhBwC0bibHM/1jcX/HZoDB4HTnXO11APP/mo6IiLC6U1d9e0LbFne+atIU2xah5XQ6Hb7dmIrPL8hQoWcY36MFXh/Rxnhl3B3bFrHKudqVOiFti907dWVlZXjjjTewfv163Lp1CyqVCn/++SfOnz+PF198UfB2tFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUGifhf6a5qQxpVogd25PPbkcSjTV/5HE+rJcF8LA3o1Y5C50atl6UodcZQTNzmsvMSDgcNDLfUY3MKlr9eQWpz2St2UKVOg1Wrx6quvYsCAAbh9+zZyc3MxaNAgXLhwQfB2kpOTsWrVqhppqampSExMRGFhISZPnoy0tDRERUVh+fLlGDJkiNhfxYiu1FmW5w5/TbvCX4TO8te0qlyLNYdu4PuD11FUVjmTy1/G8GT/VpjQK7rBd1rSlTq6UtcU2xah5aqvs/pILhZtuwIA+GhsAkZ2at4k2hZLy9GVOhGEhYUhOzsbnp6eCA4Oxq1btwAAAQEBUCqV9qyK1eivaULMp9ED+ws4pObwKKqovHLnLWEYEM4wMMLg0jP46EodcSTGgF8zeOzJ4yHhGJ7toEc8vU3MLTjtlbq2bdti165diIqKMnbqrl27hpEjR+L8+fP2rIpo6EqdZXnu8Ne0K/xF6Kx/TZdpKvDxz3uwv8gX126WAQA8pTweuTsCU/pGo0Wgd6Pbpyt1zn+cqW2x35U6qVQKvYFh9s9nsf1CIfy9pFj5RBdknznUpNoWV2iXATe5Urds2TJ88803eO211/DUU09h9erVePvttzFlyhQ888wz9qyK1eivaUKsZ2DA6VscdtzgkVVSeeWOB0P3UIbBLQyIcKFfKbpSR5xBhR5Yfl6Ca8UcAj0Y/t1Jj0BPR9eKWENw28Ic4H//+x+7//77WUJCAhs6dChbu3atI6ohGqVSyQAwhULBKioqWElJCduwYQMrKSmps1w7T+yPpdsXWs7UeubmmYqTkGVniJ0YcTOVLyRujo6dWOecRqNhaedz2fiv/mYxc1KMn+RvD7AlP9jnnKudZu53UygUDABTKpV2b1tc5Thbsl5TbFuElmtonfwiNRv04S4WMyeF9V24meXdVJodN0fHzpHnnKl8MWJnq7ZF/OvMAiQlJSEpKckRuyaEOCmO43BP6xDc0zoEp64r8dXea9h2vgCplxRIhRT7io9jxr1x6B9f90HGhJCaguQe+GZSNyR9eQg5JRV4Yf0ZfDupOzykbjTdnNRhl+HXDz74QNB6r7zyio1rIi4aIiHEtvLLgJ03eBxR/PMKsigfhsGRBnQNYZA4Wd+Ohl+Js8lWA5+claDCwKF7qAFPxBua1Kv73IVTTZSYMmVKjYr99ttv6N27N6Kjo5GdnY1Dhw5h7Nix+Omnn2xdFZuouplZoVDA39+/2sukh1Z7mXTlMoAaeWKrvW+xy5laz9w8U3ESsiw2S7YvRtxM5QuJW31p9oydPc65/6Vsx1VZLNYfy0GZ1gAAiAryRnKfKATcPI8H7hfnnKu9DmDe76tKpUJoaKjoEyWEtC3ucJypbTG/nJC25ZP/7cDXF6XQM4ZnBrTC/w1rQ22LgPVs2S4Dtmlb7DL8umLFCuPPjzzyCNavX4/Ro0cb0zZt2oTvv//eHlUhhLigIE/g1aFt8Nx98fjxQDZ+OJiF67fL8Pbvl+EjlSDD+xom9Y1FsI+Ho6tKiNPpEMSwcFQ7vL7pAr7cew0RAZ54tFuEo6tFbMDus18DAgJw8+bNOtODQ0JC6Dl1hBBBKvTAwcLKZ93d1FSOJcl4hj5hDIMiDAjxcky9aPiVOLM/sjn8fl0CDgyT2xpwdwi9dcJVOO3s13vuuYfNnz+fabVaxhhjWq2WLVy4kPXt29feVRENzX61LM8dZqi5wiwrW8fOkeecsriYzf9mIxuxJM04W7bVqyns2R+PsMNX8mj2q5sc56bYtggtZ07botFo2JyfT7CYOSms9dwt7L2VG6ltodmv1vnhhx8wYcIEfPzxxwgLC0NBQQESEhKwevVqe1dFdDKZrMbYeH3LDeXZui5ilzO1nrl5QuLm7LETI26m8oXErb40e8bOUefc3aEM/3miL45kqfD57nTsvazAltN52HI6D20DePi3VSGxffMaM2aFxMWSuNkrtk3xOFuS50xxs2b7QsoJbVveebgLijV6bDmVi+8u8hiUW4LerZs1uq2mes6ZyremXbakjkLYvVMXFxeHAwcOICsrC7m5uYiIiEDLli3tXQ1CiBvhOA73xIfinvhQnM1R4us9V7H5VC4uKXlMWXUUCRH+eObeOAxrH+roqhLiUBKew38fvQvFZRXYc/kmpv1wDOue6YsOEdZP7CGOZ/dOXUFBAQDAy8sLrVq1qpEWFhZm7+qISqvVGj9Vy/X9W/tnsetgyfaFljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc7Zzrm0zOT58pBNmDozB2//7C4duSnEuV4UX1p5Ai0Av9Ank0K+kHAE+5sdX6HcSm9C2pSkdZ1N57tC2CC1nSdvCAfjvvzriX5/txrViHZ749iDWTu2FSH9ZnXWb6jlnKl+sdllIHc1dz+4TJXieB8dxqNpt9SERvV5vz6pYjW5mJsT5lWiBffkc9uTyUOsq2xu5lGFAOMPAcAN8RRwxookSxJWU6oDPzkpwo5RDsCfDCx3pdWLOymknStSWm5vLZs6cyb7//ntHV8ViNFHCsjx3uJnZFW7ItXXsXOWcU5WUsW93X2Ld39hsnFTR9rWt7PHFm9iF64p6y9FECdc7zpbEyRnbFqHlrG1bMvNvs4GLKl8ndt9Hu9iP66ltERo7t5goceLECdx1110W9jXrCg8Px+LFixEXF4cnnnhCtO06Ak2UsCzPHW5mduYbcpvCzcxC8mQyGZ7oG4ugW+cgiemGb/7KxKnrSuzL5zHiswMY0TkC0we2RvvmcmM5S+poC870O+Lsx9lUmiu2LULLWdq2RAT5YPW03vjX5/uRXliK5SUSDBsKNJNT29JYvjNOlDD7JXAPPfQQEhIS8NZbbyE9Pd3c4vU6ePAgdDqdKNsihBBTeA4Y0SkcG2f2w49P9kCHQAMMDNhyKhejPtuHSSuO4HzRP7eIEOLuooLk+HFqb4T6euBGKYcpq45CWWab+wuJbZndqcvKysKXX36J3Nxc9O3bF71798bSpUuRl5cnqHyHDh2QkJBg/MTGxmLkyJF49913za48IYRYiuM49G4VjOkdDNg8sy/G3t0CUp7D/qu38MV5CR5afgCbTuZCb3B0TQmxvfgwX3yf3AM+UoYzOSokrzgEtYYutrgai2a/DhgwAAMGDMCnn36KP//8Ey+//DL+7//+D4mJiXjyySfx2GOPgefr7y9+8cUXNZZ9fHzQtm1bUd6T6Gg0+7XpzVBzlVlW7jpDTaxzrnWIFxaN7YgX7ovDt/uuYe3hbFzIK8ZLP59GkIcE4QkK9Ixr/HEoNPvV8nLUtlhWTsy2JTbYEzMT9PjikheOZxUh+buD+GJ8l3rXd/dzzlS+W85+PXnyJNauXYuffvoJQUFBmDhxIlq0aIHPP/8cAQEB2LRpU73lPvroI/zf//1fnfTFixdj9uzZllTFYWiGGiHuqUQL/JXPYXcej3IdsKC7Hn4Cbmmh2a/EHWSrgWXnJCjTc2jjb8DT7Q3wkDi6Vk2bzWa/Lly4kLVv357FxsayuXPnsrNnz9bILy0tZd7e3g2W9/Pzqzc9ODjY3Ko4DZr9almeO8xQc4VZVraOnTudc7XTbilV7OPvafarux1nV2hbhJazVdtyKL2AJbzxO4uZk8KGvbuJ3VKqmtQ5Z03shJyHTjP79fr16/jyyy8xcODAevO9vb3x999/10n/3//+BwDQ6XRYv359jZuQMzIyEBwcbG5VnA7NfrUszx1mqDnzLKumMENN7HOuelprf5r9aqouYpejtsWycmK3LT3jmmHllF6Y/N0hXFQCL/58Dl9N6mFct6mcc6bynXH2q9mduq+++qrRdep75Mnnn38OAKioqMDy5cuN6RzHISwsDCtXrjS3KoQQQgixkZ6xwfhq4t2YsvIwdl9S4JkfjuKzx7o4ulrEBLu9Jiw1NRUA8Pbbb+P111+3124JIYQQYqHerYLxdHsDvr0sQ9rFQkxfcwKjXX9gzW2Z/UgTSygUCuPPTz/9NAoKCur9ONLu3bvRt29f9O/f3+UmbBBCCCG20jaA4ZsnusFbJsG+Kzfx9UUeZRWu9VrPpsIunbpWrVoZfw4PD0dERATCw8NrfCIiIuxRlQbFx8cjLS0N+/btQ15eHk6fPu3Q+hBCCCHOonerYKx6shfkHhJcUvJ4+sdjKK2g59g5G4s6dZmZmfj444/x0ksv4eOPP8a1a9dMrl9cXGz82WAwQK/Xw2Aw1Pjo9Y7t9bdo0QKenpVvMpbJZJBIaP42IYQQUqVXq2B8N6kbPHmGA9duY8qKwyihBxQ7FbM7dSkpKejSpQuOHj0KDw8PHDt2DHfffTc2b95si/o1aP78+UhISADP81i7dm2NvMLCQjzwwAOQy+Vo164ddu7cKXi7x44dg0KhQEJCgthVJoQQQlxa95ggzEjQw9dTioPXbmHqD8dQTiOxTsPsiRJz587Fxo0bkZiYaEzbs2cPZsyYgVGjRjVaPjs7G2+++SZOnjwJtVpdI+/cuXOC69GmTRssXboU8+bNq5M3c+ZMREZGQqFQYNu2bUhKSkJ6ejo0Gg3GjRtXY11fX1+kpKQAAPLy8vD888/jl19+EVwPQgghpClp5QesTO6OKauO4khmEW7ekmDoUB2Cbfg4GCKM2Z26GzduoF+/fjXS+vbti5ycHEHlH3vsMbRp0wYLFy606gnpEydOBAC88847NdLVajU2btyIjIwMyOVyjBkzBosXL8bmzZsxadIkpKWl1bu98vJyTJgwAZ9++imaN29uct8ajQYajca4rFKpANBrwpriq3xc5XU07voqH7HPucbSGmNtfK1tW+g415/mim2L0HKOalsSmsuxKrk7klcexbViHZJXHsGKyd3h7y1ex45eE1Z3n40R/Jqw69evIyoqCiNGjEC3bt2wYMECyGQyaLVaLFy4EEeOHMEff/zR6Hb8/f1RVFTU4LthzZWYmIjp06cbr8AdP34cw4cPrzGbdtasWZDL5Vi0aFGD2/n888+xcOFCtG/fHgDw3nvvoW/fvvWuu2DBAixcuLBOOr3Kh5CmzdrXhFHbQlxNthpYfl6CUh2HKB+GGR308KULdqIT2rYIvlKXkJAAlUqFL7/8EuPHj0dwcDDCwsJQUFCAzp0717mvrSH3338/Dhw4gHvuuUfors2iVqvrfOGqjqQpM2bMwIwZMwTtY+7cuTUee6JSqRAdHY1BgwbB398fOp0OqampGDRoEKRSaY1lADXyxFZ732KXM7WeuXmm4iRkWWyWbF+MuJnKFxK3+tLsGTt3OudqrwOY9/tadWXNUta0LXSc3attEVrOGdoWnkvF11e8cb1EixWZAfh2Ylc08/M0J0QWf39ryjkydoBt2hbBV+r8/PxqzGLNzs5GTk4OIiMjER0dLWhnADB58mT89ttvGDZsGMLCwmrkVX/ThFBiXamzBL10mxBSnbVX6qpQ20JcTX4ZsOysBEoth1AvhpkJegRb368jd4h+pQ6o7MhV7wNGRESAMYasrCwAQMuWLRvdRlxcHF566SVzdmuWNm3aQKlUIi8vD+Hh4QCAkydPYurUqTbbJyGEENKUNfcGnu+kx7JzEijKOXxyRoKZCXo083Z0zZoWwVfqeJ6Hl5cXGlqd4ziUlpaKWjlTtFot9Ho9hg0bhmnTpiEpKQkeHh7geR5JSUkIDg7GkiVLsH37diQnJyM9PR1BQUE2qYtKpUJAQAByc3Np+LWJDZG4wmV+Gpaz7/BrRESE1Vfqqm9PaNtCx9m92hah5ZytbclTlePJH04g42YZQn098O3Eu9AmzMeccJn1/a0p52rDr0LaFouHXy31wQcf1Jvu6emJqKgoDB48GIGBgY1uJzk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhlhd99poiIQQUh0NvxICqCoqJ0/klnLwkVZOnoj2dXStXJvgtoUJ5OfnJ3RVkx577DHm4eHBBgwYwMaPH88GDBjAPDw82COPPML69u3LAgIC2M6dO0XZl70olUoGgCkUClZRUcFKSkrYhg0bWElJSZ3l2nlifyzdvtByptYzN89UnIQsO0PsxIibqXwhcXN07NzpnKudZu53UygUDABTKpV2b1voOLtX2yK0nLO2LQVFJWzUJ3tYzJwU1mn+H+zglQKnipujY2ertkXwc0WYsAt6jdLpdPjll1+wZ88erFmzBnv27MGvv/4KjuPw999/Y9myZTVmfxFCCCHEtQTKZViZ3AM9YgJRXK5D8qqjOHD1lqOr5fYED7+KJSAgALdu3arxblWdToeQkBAolUoYDAYEBgZa/WgAe6AhEkJIdTT8SkhNGj3w7UUeF5U8ZBzDlHYGdAyya7fDLYg+/CqWPn36sDfffJNptVrGGGM6nY699dZbrHfv3owxxjIyMlh0dLS9q2UVGn61LM8dhkhc4TK/rWPnTudc7TQafnXP4+wKbYvQcq7QthSXlLEnVxxkMXNSWPx/trBNx7MdHjdHx87hw69iWbVqFTZu3Ijg4GDEx8cjKCgIGzduxA8//AAAyM/Px5IlS+xdLUIIIYTYgKdMgk/HdcUDncKh1TO8sO4kfjl2w9HVckt2H36tkpGRgfz8fISHhyMmJsYRVbAaDZEQQqqj4VdCGmZgwLqrPA4UVF5PejhWj8QIGooVwmmHX6uUlJSwrKwslpmZafy4Khp+tSzPHYZIXOEyv61j507nXO00Gn51z+PsCm2L0HKu1rZoNBr25qbTLGZOCouZk8I++P0c02g0TnfO2Tp2tmpbxH/KYiNOnz6NSZMm4dSpUwAqH1oMAB4eHnZ9eDEhhBBC7IvjOMwZ3hb+XjL8d+cVLEu7ClW5Dq+PaAee5xxdPZdn9+HXfv36YejQoXj11VcRERGB3NxcvPHGG2jdujWeeeYZe1bFajREQgipjoZfCRFubx6Hn69VPgmjZ6gB41sbILH7nf6uwWmHXwMCApher2eMMRYYGMgYY0yj0bAWLVrYuyqioeFXy/LcYYjEFS7z2zp27nTO1U6j4Vf3PM6u0LYILefqbcv6w5ksbu4WFjMnhT254iArLilzinPO1rFzm+HXwMBAFBUVITg4GC1atMDJkycRHBwMtVpt76qITiaTQSaTmVxuKM/WdRG7nKn1zM0TEjdnj50YcTOVLyRu9aXZM3budM5VpVlSR1twpt8RdzrOrtC2CC3nqm3Lv3q0RKDcEzPXHMPOC4WY9uMJfD25B3w9/+meOPKcM5VvTewsqaMQdr/QOXXqVOzevRsA8MILL2DAgAHo3Lkzpk2bZu+qEEIIIcTBhiQ0x6one8HXU4r9V2/i8a8P4HZJhaOr5ZLsfqXu9ddfN/48bdo0DBs2DGq1Gh07drR3VUSn1WqNn6rl+v6t/bPYdbBk+0LLmVrP3LzG4iQkjmKyZPtixM1UvpC41Zdmz9i50znXWFpjbHluCmlb6DjXn+aKbYvQcu7StnSP9sf3U7rjqe+P4eR1JZK++BtfP97Vom27SrsspI7mrme3iRIJCQmNrnPu3Dk71EQ8dDMzIaQ6mihBiHXySoHl5yVQVnAI9mR4toMezbwdXSvHc7qJEl5eXqxt27Zs4cKFLDU1laWlpdX5uCqaKGFZnjvczOwKN+TaOnbudM7VTqOJEu55nF2hbRFazh3blqv5SjZw0S4WMyeFdXp9Mzt2Nd/u55ytY+fyEyUKCgrw66+/YvXq1Vi5ciWSkpLw+OOPo0uXLvaqgs3RRAnL8tzhZmZnviGXbqCniRK2rIvY5ahtsaycO7UtrcJkWD+jLyZ9cxAX8tWYvOo4Vkzphe4xQWZtx5nbZUvqKITdJkr4+flh8uTJ2LZtG/bv34/IyEg8/fTT6Ny5s8sNuxJCCCHEdsL8vPDjUz3Ryo9BVa7DxG8OYu/lQkdXy+k55DF/np6e8Pb2hpeXF8rLy2EwGBxRDUIIIYQ4qQBvGWZ00KN/fAjKtHo8ufIwfj+d6+hqOTW7Db9qNBps2rQJP/74I44fP44xY8bg/fffR58+fexVBZuj2a9Nb4aaq8yyolmR9afR7Ffz6mDJtp3xOLtC2yK0nLu3LZ4S4LNHO2Huxgv4/Ww+Zq45hrceSsCjPaJMlhNSJ0fHTkgdzV3PbrNfAwMDER4ejvHjx2Po0KGQSuv2J3v16mWPqoiGZqgRQqqj2a+E2IaBAf+7ymN/QeUA46iWegyOZOCayOtinW72a0xMDIuNjWWxsbGsVatWxp+rp7kqmv1qWZ47zFBzhVlWto6dO51ztdNo9qt7HmdXaFuElmtKbYtGo2HvppxlMXNSWMycFPbmptOsvFxjk3PO1rFz+dmvGRkZ9tqVw9DsV8vy3GGGmjPPsqJZkTT71ZZ1EbsctS2WlWsqbcvcBxIQ6ueFd7aex7d/ZaKoTI9Fj3SGVFJ3ioAzt8uW1FEIh0yUIIQQQgixxLSBcfgoqSskPIdfjl3H9B+PoVyrd3S1nAJ16gghhBDiUv7VPQpfTOwOTymPHefzMem7Q1CV22aiiyuhTt0dOTk5uOeeezBw4EA8+OCDKC0tdXSVCCGEENKAoQnN8f2TveDnKcWha7fw2JcHUFBc7uhqORR16u5o3rw59u3bhz179qB79+7YsmWLo6tECCGEEBN6x4Vg7TN9EOrrifO5KiR9sR9Zt5ruRRnq1N0hkUjA85Xh4DgO7dq1c3CNCCGEENKYjpEB+GVGX0QHeyPzZinGfX0IN0ocXSvHcNlO3fz585GQkACe57F27doaeYWFhXjggQcgl8vRrl077Ny5U9A29+3bh+7du2PHjh2IiYmxRbUJIYQQIrKYEB/8Mv0etA/3Q6G6Ap+eleBo5m1HV8vuXLZT16ZNGyxdurTeBxbPnDkTkZGRUCgUWLRoEZKSknD79m3k5eUhMTGxxufBBx80luvfvz+OHj2KMWPG4LvvvrPn1yGEEEKIFcL8vbDu6b7o3jIQZXoOyauOYteFfEdXy67s9pw6sU2cOBEA8M4779RIV6vV2LhxIzIyMiCXyzFmzBgsXrwYmzdvxqRJk5CWllbv9jQaDTw9PQEAAQEB0Osbnh6t0Wig0WiMyyqVCgC9JqwpvsrHVV5HQ6+Pqj/N2V4TZm3bQse5/jRXbFuElqO2pSa5DPjq8S544vM0nCsCpn1/FIse7ojRd0WavX16TZgDJCYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyLFi1qcDv79u3Da6+9Bp7nERwcjB9++KHB1/IsWLAACxcurJNOr/IhpGmz9jVh1LYQIg69AViTzuOIonJAcmysHvdGuG53R2jb4rLDrw1Rq9V1vrC/vz/UarXJcv3798fu3buRmpqKX375xWQDOnfuXCiVSnz00Udo164d4uPjRak7IaRpo7aFEHFIeODxeAPuDTcAAH7NkGBLFg/XvozVOJcdfm2Ir6+vcciiikqlgq+vr2j78PT0hKenJ1566SW89NJLUKlUCAgIwKBBg+Dv7w+dTofU1FQMGjQIUqm0xjKAGnliq71vscuZWs/cPFNxErIsNku2L0bcTOULiVt9afaMnTudc7XXAcz7fa3d9pjLmraFjrN7tS1Cy1Hb0nC5wfcNwjCJBF/uy8Qnqdew7QaPwPAozBvRFhKec2jsANu0LW43/KpWqxESEoLMzEyEh4cDAAYOHIipU6di0qRJou572bJlWLZsGfR6PS5dukRDJIQ0cdYOv1ahtoUQce3L4/DzNR4MHO4KMeCJeAOkLjRWKbRtcdlOnVarhV6vx7BhwzBt2jQkJSXBw8MDPM8jKSkJwcHBWLJkCbZv347k5GSkp6cjKCjIJnWp+ms6NzeXrtQ1sb+m6Uqde51ztdcBzP9rOiIiwupOXfXtCW1b6Di7V9sitBy1LcLL/XGuAK/8eg46A0PfVkH47yMdcPCvPS5zpU5I2+Kynbrk5GSsWrWqRlpqaioSExNRWFiIyZMnIy0tDVFRUVi+fDmGDBkieh3or2lCSHV0pY4Q53axiMM3F3lUGDjE+DI83V4PX5mja9U4wW0LI1ZTKpUMAFMoFKyiooKVlJSwDRs2sJKSkjrLtfPE/li6faHlTK1nbp6pOAlZdobYiRE3U/lC4ubo2LnTOVc7zdzvplAoGACmVCrt3rbQcXavtkVoOWpbzC93+Gohu2vhnyxmTgrrtWAzu5Jz0+6xs1Xb4kIjyoQQQggh1ukaFYA1T/VEuL8n8ss4PL7iGNIL3eO9Yi47/OoMaIiEEFIdDb8S4jpuaYDPz0lQUM7BR8rwTAc9YsR7UIaoaPjVjmj41bI8dxgioeFX9zrnaqfR8Kt7HmdXaFuElqO2xbpz7sf1G9iDS3ezmDkpLGHe7yz1fK5dYkfDr4QQQgghIvKVAd89cRfuiQtGSYUe0344ht/P5Dm6Whaj4Vcr0BAJIaQ6Gn4lxDXpDMAPl3mcuMWDA8OjcQbc09x5ukc0/GpHNPxqWZ47DJHQ8Kt7nXO102j41T2Psyu0LULLUdsi3jlXVq5hc34+wWLmpLCYOSns4z/Ost9+o+FXQgghhBCXIuE5vDmqA2YmxgEAPkm9hl8zeBhcaECThl+tQEMkhJDqaPiVEPewO5fDrxkSAEC3EAMed/BrxWj41Y5o+NWyPHcYIqHhV/c652qn0fCrex5nV2hbhJajtsU251xFRQVbd+Aqa/XqZhYzJ4VN/Ho/K1KXihY7W7Ut4r/krgmTyWSQyWQmlxvKs3VdxC5naj1z84TEzdljJ0bcTOULiVt9afaMnTudc1VpltTRFpzpd8SdjrMrtC1Cy1HbYnm5htZ7uFsUrp4/jVXpMuy9chOTVx7DiuSe8PWQNVhOaOwsqaMQdE8dIYQQQkg9OgQxfD+lBwLlMpzILkLSl/uRqyx3dLUaRFfqRKTVao2fquX6/q39s9h1sGT7QsuZWs/cvMbiJCSOYrJk+2LEzVS+kLjVl2bP2LnTOddYWmNseW4KaVvoONef5opti9By1LZYXk5o7DqG++Cnp3piyqqjuFKgxqNfHcSUVtbHTkgdzV2PJkpYgW5mJoRURxMlCHFftzTAF+clyC/jIJcyPNNej1g/++ybJkrYEU2UsCzPHW5mpokS7nXO1U6jiRLueZxdoW0RWo7aFtuccw3l591WG18r1v71rWzn2RyLYkcTJVwATZSwLM8dbmamiRLudc5VpVlSR1twpt8RdzrOrtC2CC1HbYvl5cyJXfNAGX54sifGfboDF5TAM6uP46OkrhjZMazBbdFECUIIIYQQJ+TjKcW09gY80DkcWj3Di+tO4PsDWY6uFgDq1BFCCCGEmEXKA4v/1RmT+8aAMeCtLRewNYsHc/A0BRp+FRHNfm16M9Ro9qt7nXONpTWGZr9aXo7aFsvKUdtieTlrY6fX6/DaiLYIksuwZOcV/HmDx+sbz+LNhzpCwnM0+9XV0Aw1Qkh1NPuVkKZpXx6Hn6/xYODQNdiASW3Efa0YzX61I5r9almeO8xQo9mv7nXO1U6j2a/ueZxdoW0RWo7aFtucc5bEbsG3G1n8f7awmDkpbNyXf7P8W0qa/erKaParZXnuMEONZr+61zlXlWZJHW3BmX5H3Ok4u0LbIrQctS2WlxMrdneFMCTe0w3PrjmB/VdvYcoPJzA+kma/EkIIIYS4nHtah2Dt030R4uOBsznFWHJGguzbpXbbP3XqCCGEEEJE0jkqAOun90WLQC8oyjmM+/owLuSp7LJv6tTV8vPPPyM6OtrR1SCEEEKIi4pr5ot103ohwpuhoFiDR7/YjyOZt22+X+rUVcMYw/r166lTRwghhBCrNPf3wvOd9OjeMhCqch2SVx7FmducTfdJnbpqfvvtNzzwwAPgeQoLIYQQQqwjlwIrJnfHfe3DoNEZ8O0FHr8dz7HZ/ly29zJ//nwkJCSA53msXbu2Rl5hYSEeeOAByOVytGvXDjt37mx0e4wx/Pjjj5gwYYKtqkwIIYSQJsbbQ4Ivn+iOh++KgAEcXvn1DL79K8Mm+3LZR5q0adMGS5cuxbx58+rkzZw5E5GRkVAoFNi2bRuSkpKQnp4OjUaDcePG1VjX19cXKSkp2LhxI4YPHw6p1GVDQgghhBAnJJPweP/hTijKv4HUXB7v/3EJgyN5jBD5/Q8u24OZOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS2t3u2dPXsWqamp+O2333D27FnMnTsX7733Xr3rajQaaDQa47JKVTmrhV4T1vRe5UOvCXOvc66xtMZYG19r2xY6zvWnuWLbIrQctS2Wl7N37PR6HcbEGtAtIR4f77yKnTk8VvyVgSf7txL8nRrj8q8JS0xMxPTp041X4I4fP47hw4ejoKDAuM6sWbMgl8uxaNEiQdvs378/9u3b12D+ggULsHDhwjrp9CofQpo2a18TRm0LIU3DgQIOBwt4TO+gh6ek8fWFti0ue09dQ9RqdZ0v7O/vD7VaLXgbpjp0ADB37lwolUp89NFHaNeuHeLj4y2qKyGEVEdtCyFNQ58whlkdhXXozOGyw68N8fX1NQ5ZVFGpVPD19RVtH56envD09MRLL72El156CSqVCgEBARg0aBD8/f2h0+mQmpqKQYMGQSqV1lgGUCNPbLX3LXY5U+uZm2cqTkKWxWbJ9sWIm6l8IXGrL82esXOnc672OoB5v6+12x5zWdO20HF2r7ZFaDlqWywv58jYAbZpW9xu+FWtViMkJASZmZkIDw8HAAwcOBBTp07FpEmTRN33smXLsGzZMuj1ely6dImGSAhp4qwdfq1CbQshpDqhbYvLduq0Wi30ej2GDRuGadOmISkpCR4eHuB5HklJSQgODsaSJUuwfft2JCcnIz09HUFBQTapS9Vf07m5uXSlron9Ne0KfxG681/TznilLiIiwupOXfXtCW1b6Di7V9sitBy1LZaXc7UrdULaFpft1CUnJ2PVqlU10lJTU5GYmIjCwkJMnjwZaWlpiIqKwvLlyzFkyBDR60B/TRNCqqMrdYQQW3D7K3XORKlUIjAwENeuXYOfnx+0Wq2xBy6TyWosA6iRJ7ba+xa7nKn1zM0zFSchy2KzZPtixM1UvpC41Zdmz9i50zlXex3AvN/X4uJitGrVCkVFRQgICBAci4aY07bQcXavtkVoOWpbLC/nyNgBtmlb3G6ihCMUFxcDAFq1avxZM4QQ91dcXCxKp47aFkJIdY21LXSlTgQGgwE5OTnw8/MDx1W+rLdnz544fPiwcZ2qZZVKhejoaGRnZ4tyz019au9b7HKm1jM3r6E41bfsrLETI26m8oXErb40e8bOnc656mnmxo0xhuLiYkRGRoryDmlz2haAjrOpNFdsW4SWo7bF8nKOip2t2ha6UicCnucRFRVVI00ikdQ4ULWX/f39bdZ41N6X2OVMrWduXmNxqq+Ms8VOjLiZyhcSt/rS7Bk7dzrn6kszJ25iXKGrYknbAtBxri/NFdsWoeWobbG8nKNjJ3bb4nYPH3YWM2fONLlsz32LXc7UeubmNRYne8bN0v2JETdT+ULiVl8anXOWx8ne55056DgLy3OHtkVoOWpbLC/nbrGj4Vc7q3pEgViPPGhKKHaWo9hZxtXi5mr1dRYUN8tR7Cxjq7jRlTo78/T0xPz58+Hp6enoqrgcip3lKHaWcbW4uVp9nQXFzXIUO8vYKm50pY4QQgghxA3QlTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDdAnTpCCCGEEDcgdXQF3IHBYEBOTg78/PzAcZyjq0MIcRDGGIqLixEZGQmet/5vZmpbCCGA8LaFOnUiyMnJQXR0tKOrQQhxEtnZ2YiKirJ6O9S2EEKqa6xtoU6dCPz8/ABUBtvf3x9arRbbtm3DsGHDIJPJaiwDqJEnttr7FrucqfXMzTMVJyHLYrNk+2LEzVS+kLjVl2bP2LnTOVd7HcC831eVSoXo6Ghjm2Atc9oWOs7u1bYILUdti+XlHBk7wDZtC3XqRFA1LOLv729seOVyOfz9/Y0HsmoZQI08sdXet9jlTK1nbp6pOAlZFpsl2xcjbqbyhcStvjR7xs6dzrna6wCW/b6KNVRqTttCx9m92hah5ahtsbycI2MH2KZtoYkShBBCCCFugDp1hBBCCCFugDp1hBBCCCFugDp1hBDSgJslFTh5kx4lQghxDTRRQkRardb4qVqu79/aP4tdB0u2L7ScqfXMzWssTkLiKCZLti9G3EzlC4lbfWn2jJ07nXNVPxsYsOrva/gk9RpKNDz+ladEm/AAwd9JbELbFjrO9ae5YtsitBy1LZaXc3TshNTR3PU4xhgTtCapY9myZVi2bBn0ej0uXbqENWvWQC6XO7pahBArXFUBP1+T4EZp5RW6KB+GCa31aOHTeNnS0lJMmDABSqXSOMPNEtS2EEKqE9y2MGI1pVLJADCFQsEqKipYSUkJ27BhAyspKamzXDtP7I+l2xdaztR65uaZipOQZWeInRhxM5UvJG6Ojp27nHM5t4rZiz8dZTFzUljMnBTWef4f7Ju0S+zX34R/N4VCwQAwpVJp97aFjrN7tS1Cy1HbYptzztaxM/e7CW1baPhVRDKZrMbzZupbbijP1nURu5yp9czNExI3Z4+dGHEzlS8kbvWl2TN2rnrO6Rmw5kgOlu5MR7FGBwDoG2bAf5/sjxAfD2zdes6sOtqCM/2OuOpxtmRZbLaMHbUtlpdzROwsqaMQ1KkjhDRZhzJu4cNTEuSWXgQAdG4RgDceaIec038jxMfDwbUjhBDzUKeOENLkFBRr8OG2M9hwIgcAh0BvGV6+vx3G9WwJg16HnNOOriEhhJiPOnWEkCZDqzcgNYfDf5buQ4lGD46rHGpd8mQ/hAVUzoQw6B1cSUIIsRB16gghTcLfVxSYv+kMLhdIAOjRNToQ8x9oh+yTfyFITkOthBDXR506Qohby1WWY9Gfp7HldC4AwEfK8J8HOmJ871jo9Tpkn3RwBQkhRCT0Rok7du/ejb59+6J///6YPXu2o6tDCLGSRqvHtuschi/dhy2nc8FzwMTe0XjtLj0e7REFnqc3RRBC3At16u6Ij49HWloa9u3bh7y8PJw+TXdKE+Kqdl3Ix8jP/saWbAnKtAb0jA1CyqwBmP9gB/jY7okVhBDiUDT8ekeLFi2MP8tkMkgkEgfWhhBiiQxFCd5MOYddFwoAAP4yhvmju2Bs92hwHGez10ARQogzcMsrdfPnz0dCQgJ4nsfatWtr5BUWFuKBBx6AXC5Hu3btsHPnzhr5x44dg0KhQEJCgj2rTAixQmmFDh/+eQHD/rsHuy4UQMpzmNo/Fq/drcdDXSPAcTTUSghxf27ZqWvTpg2WLl2KXr161cmbOXMmIiMjoVAosGjRIiQlJeH27dsAgLy8PDz//PP47rvv7F1lQogFGGM4fpPD8KV/YVlqOir0BgxoE4o/XhyIOcPbwosuuBNCmhC3HH6dOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxHH30UEyZMwKefformzZub3L5Go4FGozEuq1QqAIBWqzV+qpbr+7f2z2Kqb19iljO1nrl5jcVJSBzFZMn2xYibqXwhcasvzZ6xc9Q5dzlfjYUp53AwQwJAgxaBXnhtRHsM6dCsxlCrOXFqLE3od7KUtW2LOx5nS/LcoW0RWo7aFsvLOTp2Qupo7nocY4wJWtMFJSYmYvr06Rg3bhwA4Pjx4xg+fDgKCgqM68yaNQtyuRyxsbFYuHAh2rdvDwB477330Ldv33q3u2DBAixcuLBO+po1ayCXy23wTQghVcp0wO/XeezN5WAABxnHMLgFw+BIAzwcfGWutLQUEyZMgFKphL+/v9nlqW0hhNRHaNvillfqGqJWq+sEw9/fH0VFRZgxYwZmzJghaDtz586t8dgTlUqF6OhoDBo0CP7+/tDpdEhNTcWgQYMglUprLAOokSe22vsWu5yp9czNMxUnIctis2T7YsTNVL6QuNWXZs/Y2eucuzcxEVvOKrB4ZzpullT+1Xpf2xD098nHv0aIc87VXgcw7/e16sqapaxpW9zlOFPbYl45alssL+fI2AG2aVvoSt2dK3WLFi0ye/vLli3DsmXLoNfrcenSJfprmhAbyVYDP1+TIENdOeEhzIthbCsDOgQ6V/Nl7ZW6KtS2EEKqE9y2MDd27733sp9++sm4XFxczDw8PFhubq4xbcCAAWzVqlVW7UepVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6NjZ8tzLu+2mv3fumMsds5mFjMnhXWY9zv7bOdFpi4tt8k5VzvN3O+mUCgYAKZUKq1qUyxpW1z5OFtyLMX8fXDGtkVoOWpbbHPO2Tp2tmpb3HL4VavVQq/Xw2AwQKvVory8HB4eHvD19cVDDz2E+fPnY8mSJdi+fTvOnDmDUaNGObrKhJBqtHoD1hzKxie70qEq1wHg8ECn5nh1RDuE+3s5unqEEOKU3HL4NTk5GatWraqRlpqaisTERBQWFmLy5MlIS0tDVFQUli9fjiFDhli0HxoiIUR8F4o4/JrBI7+scqg1Us7wSCs94i0fzbQbGn4lhNiC0LbFLTt19qZSqRAQEIDc3FyaKNHEbmZ2hRtyXeVm5oybpfhw+xWkXroJAAj0luGF+1phTOcw7NmdZpdzrvY6gPk3M0dERFjdqau+PaFti6scZ0vWa4pti9By1LZYXs7VJkoIaVuoU2cF+muaEOuV64A/b/DYnctBzzjwHMOAcIb7owyQu9gNInSljhBiCzRRwo5oooRlee5wM7Mr3JBr69hZuu1itZq9+tVG1u3NP1nMnBQWMyeFTfx6Pzt3/ZbDzrnaaTRRwvrjTG0LTZRwxrg5OnY0UcIFyGQyyGQyk8sN5dm6LmKXM7WeuXlC4ubssRMjbqbyhcStvjR7xs6cbR/JuIUFm87iTI4EgBatQn0w78EOGNQurMH3tNrznKtKE7L9hsqIyZl+R6htsZwtY0dti+XlHBE7S+ooBHXqRESvCWt6r/JxldfROMurfHKV5fjgz0tIOZ0HAPCSMMy6Lx7J97SCh5SHTqcza/tin3ONpTXGlucmvSasabUtQstR22J5OUfHTkgdzV2P7qmzAt33QogwGj2wK4fDrhweFQYOHBj6hDE80NIAP9tdGLE7uqeOEGILdE+dHdE9dZblucN9L65w74atY2dq22XlGrZ6/zXW8+3txvvmHlm+jx3PUDjlOVc7je6ps+73Q6zfkabYtggt11TbFlufc7aOHd1TRwhxKfuu3MSiPy7iQr4aABAV5I2Xh7bBiE7NwXGczYa6CCGkqaLhVyvQEAkhdeWWAhszeZwv4gEA3hKG4VEGDAhnkPIOrpyN0fArIcQWaPjVjmj41bI8dxgicYXL/LaOXdW2M/Nvs1fWn2CtXq0cZo3/zxY2f8Mpll+kdplzrnYaDb9a9/vhrMfZFdoWoeWaQttCw680/OoQ9EgTy/Lc4bEDzjx13taxK63Q4c/rHP7z2QGUVOgBAPd3DMerI9ojNtSn0fLOeM5VpVlSR1twpt8RalssR480sQw90oQeaUIIsbEKnQHrDmfhk52XUaiWANCja3QgXn+gA3rGBju6eoQQ0uRQp05E9Jy6pvcsKVd5HpKYsTMYGDafzsPSnVeQfbsMABDiyfDqAx3xUNcW4HlhkyCc8ZxrLK0x9Jw6y8tR22JZOXdqW4TWXaxyjo6dkDqaux5NlLAC3cxMmhLGgLNFHLZk8cgprXzrg5+schJE3zD3nwQhBE2UIITYAk2UsCOaKGFZnjvczOwKN+SKEbt9l/LY2GX7jM+a6zT/D/bJ9gusSF3qVudc7TSaKGHd74ezHmdXaFuElnP1tsVZzzlbx44mSrgAmihhWZ473MzszDfkWhO7/ek3sXTnJRy4egsA4CnlMaVfK0y/Nw6Bcg8A/wwLuNM5V5VmSR1twZl+R9zpOLtC2yK0nKu1LeagiRI0UYIQYiHGGPZfvYmlOy7j4LXKzpxMwuHRHtGYdV8bhAd4ObiGhBBC6kOdOkIIgMrO3N/plZ25QxmVnTkPCY/HekZjemJrtAj0dnANCSGEmEKdOhHR7NemN0PNVWZZmdq/Tm/An+cK8M2+DJzJUQEAPKQ8HuveAtMGtELEnStz5ta9Mc54zjWW1hia/Wp5OWpbLCvnzG2LtWj2a919NoZmv1qBZqgRV6bRAwcKOKTl8rilqZzNKuMZ+oYxDI40INDTwRV0QTT7lRBiCzT71Y5o9qtlee4wQ80VZlnVXk7PL2LvpJxhXRb8YZzNetfCP9nHf5xnebfrf6VXUznnaqfR7Ff3PM6u0LYILedMbYsrxc3RsaPZry6AZr9alucOM9SceZaVTCaD3sBw5haHX386jT1XFKi6Ph8bIsfUAXF4pFsUvD0kjdbfFHc656rSLKmjLTjT74g7HWdXaFuElqPZr5aXo9mvhBCXcE1RgpTT+fjl2HXcKJIAUAAABrQJxcQ+MRjSoTkkPOfYShJCCBEFdeoIcTMFqnJsPnkD35+WIHP/X8Z0uZRhfO9YPNG3FWJDfRxYQ0IIIbZAnTpCXBxjDJfyi7HtOodvvzyAU9dVd3I4SHgOA9uEYlSXcOgzj2PM/e1sOrxECCHEcahTR4gNlGv10GgN4HjAx0PcXzOd3oCcUmD1oWwczVLi4NWbKCjWAJAAqOzQdY0KQGvpLbzy2H0ID/KFVqvF1uvHRa0HIYQQ50KdOhHRc+qa3rOkqtZVqEqx9ZwCey4pcCZHhZslFcZ1eA4I9vGAp0GCnwuPICLAG839PRHm53XnX094SYDbGiCvqAQSiRSlWj3KKvQoVJXhUAGHKzsv44ZSg4v5xbicX4IKvRQ4ed64D08pj3g/HR7t1wFDEsIR5MVj+/bt8Pfk6z0nxeRO51xjaY2h59RZXo7aFsvKOfpZa+56zpnKp+fUuSl6lhSp0APbb/BIy+VQYbDfhAMPniHGlyHen6G1PxDjy2Dl5FUiAnpOHSHEFoS2LdSpE4FKpUJAQAAUCgX8/f2h1Wqxfft2DB06FDKZrMYygBp5Yqu9b7HLmVrP3DxTcRKyLDZzt38pvxgz1pxA1q0yAEC75r54+O5I9IoNQnSQHD6eEhgYoCrTIreoBNv2HERUm45QlGiRX6xBgUqD/OJyFKg0KK3Qo1yrg55x4DhALpNA7iGBn5cUHlo1Osa1QIsgOdqG+SI+1Bvnj+zD8GGWx9KRcTO3nD3PudrrAOb9vqpUKoSGhlrdqau+PaFtCx1n92lbzCnX2DoN5QuJW31pTeWcM5UvRuwA27QtNPwqIiHP8Wkoz9Z1EbtcU3+W1M7z+Zj103GUVugR6MHw1ti78GDXFuC4ulfrfL090czPE9eDGEb2atlg47F161aMGDECMpnMuJ2q9JEjO9doKC5y9Cwpa/KExMWWz5IylzP9jrjTcXbGtsXSco2t01C+kLjVl9ZUzjlT+dbEzpI6CsELWktEZWVlePnllxEbG2vsbf75559YsmSJvatCiEW2nc3DMz8cRWmFHn3jgvFyFz3u79i83g6duTiOE2U7hBBCmh67d+qeffZZ5ObmIiUlBRJJ5U1AXbp0wRdffGHvqhBitr2XC/Hs6mPQGRhGdY3Ed5O6wZeeEEIIIcQJ2H34dcuWLcjOzoanp6fxikRERARyc3PtXRVCzHI5vxjP/ljZoXuwSwT++2hXMIPe0dUihBBCADjgSl1gYCAKCwtrpF27dg2RkZH2rgohginUGkxZeRjFGh16xQbj40e7Qiqx+68PIYQQ0iC7/6/0wgsvYNSoUfj555+h1+uRkpKC8ePH48UXX7R3VQgRxGBg+Pe6E7h+uwyxIXJ8+UR3eErp+SGEEEKci92HX2fOnImwsDB8++23iIqKwieffIJ///vfeOyxx+xdlRqys7MxevRonDt3Dmq1GlIpTQwmlb7Yk469lxXwkvH4alIPBPl4OLpKhBBCSB0O6bkkJSUhKSnJEbtuULNmzbBr1y6MGTPG0VUhTuRo5i18vO0SAGDhQx3Rtrmfg2tECCGE1M8unboPPvhA0HqvvPKKjWvSMC8vL3h5eTls/8T5FJVW4PmfTkBvYHioayQe7RHt6CoRQgghDbLLPXXnz583fo4ePYrXX38dmzdvxokTJ7B582bMmzcPx4+L97Lx+fPnIyEhATzPY+3atTXyCgsL8cADD0Aul6Ndu3bYuXOnaPsl7oMxhld+PoUbRWWICZHjnYc70fPjCCGEODW7XKlbsWKF8edHHnkE69evx+jRo41pmzZtwvfffy/a/tq0aYOlS5di3rx5dfJmzpyJyMhIKBQKbNu2DUlJSUhPT0dQUJBo+yeu7/v9mdh2Lh8yCYfPxneDnxc9jI4QQohzs/s9dTt27MC6detqpI0cORJPPPGEaPuYOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYJ3r5Go4FGozEuq1QqAJWvb6r6VC3X92/tn8VU377ELGdqPXPzGouTkDiKqWq7J7Nu4e0t5wAArwxvi/bN5Q3uU4y4mcoXErf60uwZO3c65xpLa4y18bW2baHjXH+as7QttogdtS2Wl3N07ITU0dz1OMYYE7SmSPr164ehQ4fi9ddfh1QqhU6nw7vvvos//vgDf//9t6j7SkxMxPTp0zFu3DgAwPHjxzF8+HAUFBQY15k1axbkcjkWLlyIBx98EEePHkW3bt2wYMECDBgwoN7tLliwAAsXLqyTvmbNGsjlclG/A7Gvcj3w0SkJCss5dAoyYGo7A2jUlQhVWlqKCRMmNPrS7YZQ20IIqY/gtoXZWXp6Ouvduzfz9fVlcXFxzNfXl/Xq1YtdvnxZ9H3de++97KeffjIu79mzh7Vu3brGOv/5z3/Ys88+a9Z2y8vLmVKpNH6ys7MZAKZQKFhFRQUrKSlhGzZsYCUlJXWWa+eJ/bF0+0LLmVrP3DxTcRKyLPZHrVazf324icXMSWG939nO8ovUdombqXwhcXN07NzpnKudZu53UygUDABTKpUWtVnWtC10nJ23bbFl7Khtsc05Z+vY2aptsfvwa1xcHA4cOICsrCzk5uYiIiICLVu2tMu+fX19jcMZVVQqFXx9fc3ajqenJzw9PcWsGnECG07m4bCCB88Bi5O6IEhOz6Mj9kVtCyHEGnYffq0+9FlbWFiYqPuqPfyqVqsREhKCzMxMhIeHAwAGDhyIqVOnmnVPXZVly5Zh2bJl0Ov1uHTpEg2RuLC8UuDj0xJUGDg8EK3HsCi7/loQN2Ht8GsValsIIdUJbVvs3qnjeR4cx6Fqt9UfE6HXi/NydK1WC71ej2HDhmHatGlISkqCh4cHeJ5HUlISgoODsWTJEmzfvh3JyclWz35VqVQICAhAbm4u/P39odPpkJqaikGDBhnvG6xaBlAjT2y19y12OVPrmZtnKk5ClsVSptVj3LdHcbmgBO0CDFj37EB4yITNdhUjbqbyhcStvjR7xc6cGFhazp7nXO11APN+X1UqFSIiIqzu1FXfntC2hY6z87Ut5sbAknLUtlhezpGxA2zTtti9U1dbXl4e3n77bfTu3Vu0GbDJyclYtWpVjbTU1FQkJiaisLAQkydPRlpaGqKiorB8+XIMGTLEov3QX9PuYW06j/0FPPxkDK900cOfRl2JhehKHSHEFmw2UeLgwYMNfiyl0WhYixYtLC7vaEqlkiZKWJDnDDcz/3Ikk8XMSWGxr6awHaezzd6+K9yQa6vYueM5VzvN3hMlrGlb6Dg7V9tir9hR22Kbc87WsXOaiRKPPfZYjeXCwkJUVFQgKioKV69eNXdzAICDBw9Cp9NZVJYQS10pUGPexsrn0c0YGIe+ccHYnu7gShFCCCEWsnr4Va/X47333oOHh4egd7d26NChxn10paWluHnzJpYuXYonn3zSmqrYHQ2RuK4yHbD4tAQF5Rzi/RmeTdBDQs+jI1ai4VdCiC3Y9Tl1Op2OhYaGClo3LS2txufw4cOiDVU4Cg2/WpbnqCGS8nINe3LFQePz6HJvFVu8fVe4zC9m7Nz9nKudRsOv7nmcafiV2hZHx85phl9rMxgM+Omnn+Dj4yNo/cOHD+P//u//6qQvXrwYs2fPtrY6hDRq+e6r2HmhEB5SHsvG34UQX3ouGCGEENdn9vCrt7d3jeFTrVaLiIgIfPXVV7j//vsbLe/v71/nAcAAEBISgps3b5pTFYejIRLXc+YWh28u8mDgML61Hn3C6Hl0RDw0/EoIsQWbDb9mZGTU+BQWFgoqt27dOrZu3Trm7e3N/ve//xmX161bxxYtWsTi4+PNrYrToOFXy/LsPURyPEPBOsz7ncXMSWFzfzkhSuxc4TK/GLFrKudc7TQafnXP40zDr9S2ODp2TjP8GhMTY1Ev8/PPPwcAVFRUYPny5cZ0juMQFhaGlStXWrRdZyKTySCr9tDa+pYbyrN1XcQuZ2o9c/OExM3a2OUqy/DM6uMordCjf3woFo7uDJmEN7v+DREjbqbyhcStvjQxYieUO51zVWmW1NEW7PE7YmldxC7nam2LOWwZO2pbLC/niNhZUkch7Pbu19TUVADA22+/jddff91eu7UrrVZr/FQt1/dv7Z/FroMl2xdaztR65uY1FichcRRCrdFhyorDyFdp0CbMB5881hkw6KE11HyDiSXbFyNupvKFxK2+NLFiJ4Q7nXONpTXGlr/XQtoWOs71pzkybtZsX0g5alssL+fo2Ampo7nr2eWNEgqFAqGhoQDs++5XW6P7XpyfzgB8fYHHBWXlGyNmd9YjmOZFEBuhe+oIIbZg10eaNMbX19f4M8dxjOd5xnFcjQ/P8/aoik3QPXWW5dn6vpeycg2b/v1hFjMnhbV/fSs7crVQ9Ni5wr0b1pwXTe2cq51G99S553Gme+qobXF07JzmnjoAyMzMxM8//4ycnBxERkZi7NixaNWqVYPrFxcXG382GAyW7NIl0D11luXZ4r4Xxhhe/+U0fj+bD5mEw5dP9ED3VqGNfi+h27e0DN33Ynk5uqfOOe4Nc6fjTPfUUdsiZD23vqcuJSUFjz/+OB544AHExMTg2LFjeOutt/DDDz9g1KhR5m7OrdA9dc5x3wtjDO/9cQnrjmSD54DFSV3Qt1Wg1fdXWFPG0fduuOt9L3RPHR1nuqeO2hZLyzk6dkLqaO56Zt9T17lzZ3z66adITEw0pu3ZswczZszA2bNnGy2fnZ2NN998EydPnoRara6Rd+7cOXOq4nB034vzYQzYmMkjNbdyZis9i47YE91TRwixBZvdUxcUFMQqKipqpFVUVLDAwEBB5fv27csmTZrEtm7dWueVYa6K7qmzLE/s+17KyzXstV9Pspg5KSxmTgr7bu8Vm8fOFe7dsOa8aGrnXO00uqfOPY8z3VNHbYujY+fwe+quX7+OqKgo9O7dGwsWLMCCBQsgk8mg1WqxcOFC9O7dW9B2zpw5g3379oHn639GmCuje+osyxPjvheDgWHeptNYezgbHAe8M6YzJvRu2ej3MLf+1pah+14sL0f31DnHvWHudJzpnjpqW4Ss50r31AnuWSUkJAAAvvzyS6SlpSE4OBitW7dGcHAwdu3aha+++krQdu6//34cOHBA6G4JaVS5Vo/n1x7H2sOV99B9+K+uFnfoCCGEEFcl+Eodu3PrXcuWLfHXX38hOzvbOPs1Ojpa8A69vb1x//33Y9iwYXWeS1f9TROECFFUWoGnvz+KQxm3IJNw+PjRu/BQ10hHV4sQQgixO7Nmv2ZnZxs7dwAQEREBxhiysrIAVHb4GhMXF4eXXnrJzGq6Bpr9at8Zatdvl+Gp74/hqqIEvp5SLJ/QFX3jQiyOLc1+tYw7nXONpTWGZr9aXs6Z2hax0exXy9Ds17r7bIzg2a88z8PLywsNrc5xHEpLSwXt1F3QDDXHuazksOISjxIdh0APhmfa6xHp4+hakaaOZr8SQmxBaNsiuFPn5+dX4yHClvrggw/qTff09ERUVBQGDx6MwMBAq/djTyqVCgEBAVAoFPD394dWq8X27dsxdOhQ42SSqmUANfLEVnvfYpcztZ65eabi1NDytm3bkePXDh/vvAq9gSEhwg9fPH43IgK8zIiSdTGwpExj6zWULyRu9aU1tiwmdzrnaq8DmPf7qlKpEBoaanWnrvr2hLYtdJyta1tctV2mtsXyco6MHWCbtkXw8CvHcUJXNenYsWP47bff0Lt3b0RFReH69es4ePAgRo0ahZycHDz11FP49ddfcd9994myP3sSMjuooTxb10Xsco6YoVZcrsP3l3kcu5kOABh7dwu8O7YzvGSSRutrDkti58yzrJrCDDWxz7mqNEvqaAvmHlc6zvWnOTJu1mxfSDlqWywv54jYWVJHIcyeKGEtnU6HX375BQ8++KAxbcuWLVi5ciX+/vtvrF69GrNnz8aJEydE2R9xD0cybuHFtcdxvYiHlOfw+gMdMPmeWNH+2CCEEEJcneBHmogx9ApUXm4cMWJEjbThw4dj27ZtAIDx48fj6tWrouyLuD69AViy8woe/XI/rheVI9iTYfVTPZHcrxV16AghhJBq7P4E4ISEBLz77rvQ6XQAAL1ej/fffx8dOnQAUDnD1tXuqSO2cTy7CB+elmBZ2lUYGPDwXRGY00WPbi0DHV01QgghxOnYvVO3atUqbNy4EcHBwYiPj0dQUBA2btyIH374AQCQn5+PJUuW2LtaxIkUl2sxb8MZPPb1IeSWcgiSy/Dp+LvxwSOd4WXWQ3gIIYSQpsPu/0W2bdsWR44cQUZGBvLz8xEeHo6YmBhjfq9evdCrVy97V0sUQp8lVftnsetgyfad4VlSpeUa7M3jsOC/+3C7tDKtVzMD/ju5F8ICfJzyWVKu8jwkd32WlLXnnLnxbYwtz00hbQsd5/rTHBk3a7YvpBy1LZaXc3TshNTR3PUEP9JEbKWlpbh582aNCRhCHl7sTOhZUuJgDDh1i0NKFo+C8sr75MK8GJLiDGgb4JDTkxCL0HPqCCG2ILhtYXZ26tQpdtdddzGe5xnP80wikTCJRMK8vb3tXRXRKJVKBoApFApWUVHBSkpK2IYNG1hJSUmd5dp5Yn8s3b7QcqbWMzdPVaxm87/ZyIYtTmMxc1JYzJwU1vG1zezb3ZdYSVm5yTg6S+zEiJup/PrShaTZM3audM4JiYs1v68KhYIBYEql0u5tCx1ny38fnLFtEVqO2hbbnHO2jp2t2ha7D79Onz4do0ePxv79+xEREYHc3Fy88cYbaN26tb2rIjp6Tp2wPC3jsPFEDr7ek46rCgkANXw8JJjUtyViSy9jbN/YyvXuXG52hWdJOfPzkJrCs6ToOXV0nOk5ddS2WFquST6nTixnz57F3r17wfOVczS8vLzw9ttvIy4uDs8884y9q0PsKK8UeHPLBWw4kYPi8srZz3IJw1MDW+OpAa3hI+OwdetlB9eSEEKcQ4lGh0MFHPb8dgZZt8pQotEjwFuGFkHeuCs6EL1bBSMmyNPR1SROxO6dusDAQBQVFSE4OBgtWrTAyZMnERwcDLVabe+qEDsoUJVj86lcbDxxHaeuSwFkAQBiQuQY3zMKQbfOYex98TWuzBFCSFNWrtXjy91X8fXeq1BrJABy6qzz89HrAIDYEDniPXnE5KjQtWUwPb+zibN7p27q1KnYvXs3Hn74YbzwwgsYMGAAeJ7HtGnT7F0VYiPXFCXYc+UWdp4vwIFrN1E1F4YDw+D2YZh0Tyv0jw+FXq/D1q3nHFtZQghxIhfzijHjx6O4qigBAIR6MfyrVxw6RQXCx1MKZakWVwvVOJp1G4czbiPjZikywGPH5wcQ18wHo7pE4qG7ItG6ma+DvwlxBLt36l5//XXjz9OmTcOwYcOgVqvRsWNHe1eFiKSwWIMjGbfwd7oCv5+QQLH/rxr53VoG4oHO4fDIO4NxY+423hug1zuitoQQ4px2nMvH82uPo7RCj+b+nph7fzuwrGN4cGibeu+pUmt02HE2Fyt3nMB5lRRXC0uwdOdlLN15GR0j/fFQ10iM6BjmgG9CHMVunbqEhIRG1zl3jq7aOLuyCj0yioG1h6/jdI4KhzNu49qdvygrcZBJOPRuFYLEds0wvGM4ooPl0Gq12Lr1jMPqTQghzuz307mY9dNx6AwM97QOwWcTusHPg8PW7IbL+HpK8UDncHDZBgwcnIjUSzex6WQO9l1W4GyOCmdzVHjv9wuI85PgdkgWRt0VhRBfugfPndmtU3ft2jW0bNkSjz/+OAYOHOiU4/6zZ8/G4cOHcffdd+OTTz5xdHUcSlmqRcbNksqPohRXCtU4l6PENUUJDEwKnPmnA85xQLvmfujeMhCeRRmY9ehQBPl6O7D2hBDiOradzcNzPx2H3sAw5q5IfJTUFVIJb9Z9xr6eUoztFoWx3aJwq6QCW0/nYtPJHBy6dgtXizksSLmAt7ZeRL/4UAxuH4ZeMQFwzFNqiS3ZrVNXUFCAX3/9FatXr8bKlSuRlJSExx9/HF26dLFXFUw6duwY1Go19u7dixkzZuDw4cPo2bOno6slOp3eAGWZFjdLKpCvKke+SoN8VTlyi0px6jKPb7MPIOtWGYpKG25MfGUMd8eEolNUIHrGBqF7y2AEyGV3rsZdg68nvcuLEEKEuJhXjBfXnYDewPDw3S3wUVJXSHjrLnoE+3hgYp8YTOwTgyxFMT5en4p0bRDO5Kiw51Ih9lwqBAAEyCRILTuN3nGh6BIVgLgQLzG+EnEgu/3v6+fnh8mTJ2Py5MnIz8/H2rVr8fTTT6OkpATr1q0TNDxrS/v378eQIUMAAEOGDMGBAwcc0qljjEFvYNDqGbQGA3R6Bq3eAK2+8meNzoDSCh3KtHqUVehRWqGv8XNJeQXOZvD4e+M5FGt0UJZpUVRa+VGVaVGs0ZnYOw/cUhmXmvt7IibEB7EhcrQK9UWHCD+0bSbH4b07MXJkd5s+z4kQQtydslSLp384gtIKPe5pHYIP/9XF6g5dbREBXrgvkuGjkX2QXaTB72fy8He6AoczbkOpNWDjyVxsPJkLAPCU8ojwkuCI4TzaRgQgvpkvYoI86YqeC3HIJRVPT094e3vDy8sLN2/ehMFgEHX78+fPx/r163HhwgWsWbMG48aNM+YVFhYiOTkZqampiI6OxvLlyzF48GAUFRUZH4AcEBCAs2fPilqnKh9tu4xfj0vw4fk90BnwT4fNUNV5E+O3hwdyr5tcI8BbhnB/L4T5e6K5vxea+cpQmHUF9/XpjlZhfogJkUPuUff0oMeOEEKI9fQGhllrjyPzZilaBHrjswndIJXwNt1nXDNfzBwUj5mD4qEuLcfnP2+DoVk8Tt8oxsnrRSgu1yFDzSHjYDaAf27m85ZIsOL6QUQFyxHu54HbuRxk5wrQMtQXQd4S6MX9L5xYwW6dOo1Gg02bNuHHH3/E8ePHMWbMGLz//vvo06eP6Ptq06YNli5dinnz5tXJmzlzJiIjI6FQKLBt2zYkJSUhPT0dgYGBUKkqr1KpVCoEBgaKXi8AUJRoUFjOAeXlgsvwHCCT8JBJeHhIeXjLJJB7VH68PSR3lqXw9pDAU8Ih93omOrdvg2BfLwTKZfD3liHQW4YAbxkC5R7w95LWaTwqh04vY2hCGF2BI4QQG/to20XsuVQILxmPryZ1R7CPh1337ymToG0Aw8ghlTNrDQaGK/lK/LBlDzyax+HazTKkF6qRdasUZXoOJ68rcfK68k5pCX7NOFFta1IsOLkLIb6eCPbxQLCPB0J8PODnJYWvpww+nhL4eUnh4ymF752Pj6cU3jIJPGU8PKUSeEp5eEp5m3ds3Z3dOnXNmzdHeHg4xo8fjzlz5kAqrdz1oUOHjOv06tVLlH1NnDgRAPDOO+/USFer1di4cSMyMjIgl8sxZswYLF68GJs3b0bfvn3x5Zdf4tFHH8WOHTuQnJwsSl1qe7p/K7TQZGFAv3vg7ekBmYSHVMJBxvOQSTlIeR4yCVcjnTfjcnzVfW0jB7WmzhkhhDihlFM5+DwtHQCw6JEu6BgZ4OAaATzPoVWoD3o0Yxh5fzvj/x/q0nJ8v+FPRCd0R4Fai+u3SnDswjUw70DkKDW4WaIBY4CqXAdVua7W0xDMJ+E5eEj4ys6ehIeuQoJPrvwFmYSHhOcg5Tnwd/6tXOZrLEs4DjzHkJ/HI+2X05BKJOA4gAOHyhdZcXeWATCGrEweR1LOQyKRVMaB+yefMQOuZfI48+clSIzbqUxPz+JxaeeVynQAzGDA5WwO6anpkN7Zll6vx+XrHK6lXYWE52EwGHDpOoeMtKvgOODidQ5dbpehVZh4/1fbrVMXGBgIjUaDlStXYtWqVWC1Buk5jsPVq1dtWofLly8jICAAERERxrSuXbvi7NmzmDRpEry9vTFgwAB07drVZAdTo9FAo9EYl6uu8Gm1WuOnarn2v9GBHmjtD3QM92mk08UAxqDXG8x6nlvtfYpdztR65uaZipOQf8VmyfbFiJupfCFxqy/NnrFzp3OusbTGWBtfa9qWhuouFnc6zo5sWy7kFePl9ScBAE/1i8HIjmFmtwvmrGNt28LDgBY+wOC2wcY3/2xn6Rg6tPK+6nJNBTb9sQOde94DlcaA26Va3CqpwO1SLdQaXeWnXIeSCh3UGj1K7qSVaPQo1+lRoat525HewFBmqLxXvBKHm4WWdBR5HFXkClpvb76J58aAx66cjHrTt92o3WeR4Pfr6XXStmZfqbG8xbgswSOFxYgKavxpEULPTY7V7l25kcTEREyfPt14T93evXsxZcoUXLnyT4Bfe+01FBUVYdmyZYK3u2DBAixcuLBO+po1ayCXy62vOCHEJZWWlmLChAlQKpXw9/c3uzy1Le6tRAt8fFqCmxoObQMMmN7BAInzPd3L7gwMlfeYGwBdrZ+1BkBn4GBglesZ7qyvr1qullb9o6+WV9XLYXd+rlzkKv+9s1z1gTH/n3WNy7XWR618VP+Z1ZNWz/KgCAPCBfxqC21bmtSzJ3x9fY1/+VZRqVTw9TXvdSpz587F7Nmza2wjOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3tXb7Yi5r2hY6zs7dtuzclYqUm6G4qSlCVKAXVk7tgUC56WE3IfVqGm1Lot3POVP5YsQOsE3b0qSu1KnVaoSEhCAzMxPh4eEAgIEDB2Lq1KmYNGmS2dtftmwZli1bBr1ej0uXLtFf04Q0cdZeqatCbYv72ZTJY2cODw+e4cVOerTwcXSNiCsR2ra4ZadOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFGTx/lQqFQICApCbm0tX6lz8r2m6Umc+dzrnaq8DmP/XdEREhNWduurbE9q20HF23rZl88kczNl4EQDw8SMdBb+Pla7UOe6cM5XvqCt1QtoWt+zUJScnY9WqVTXSUlNTkZiYiMLCQkyePBlpaWmIiorC8uXLjQ8dNhf9NU0IqY6u1JHabpQA/z0jgdbAYXCkAQ/F0EPdiPkEty2MWE2pVDIATKFQsIqKClZSUsI2bNjASkpK6izXzhP7Y+n2hZYztZ65eabiJGTZGWInRtxM5QuJm6Nj507nXO00c7+bQqFgAJhSqbR720LH2fnalvwiNev33g4WMyeFDX93E1MVq0WPHbUttjnnbB07W7Ut9JQ/QgghRGRavQHPrz2J60XliA7ywqQ2BtFfAUZIbW45/GovNERCCKmOhl9JlZ+v8dibx8OTZ3ixsx6RdPiIFWj41Y5o+NWyPGcZIrEmdq5wmd/WsXOnc652Gg2/uudxtnXcfvj7KouZk8JiX01hv5+8btPYUdtim3PO1rGj4VdCCCHEyR3OuI2FKecBAC/eF4/BHYTNdCVEDDT8agUaIiGEVEfDr03bzXJg8WkJ1DoOd4cYMLmNARzdRkdEQMOvdkTDr5blOXqIRIzYucJlflvHzp3OudppNPzqnsfZFnErKCphgz7cxWLmpLARS3YzpbrMLrGjtsU255ytY2ertqVJvSbM1mQyGWQymcnlhvJsXRexy5laz9w8IXFz9tiJETdT+ULiVl+aPWPnTudcVZoldbQFZ/odcafjLFbcyrV6zFhzAlcVpYgM8MJ3yb3g7+NlVv1NEVKO2hbLyzkidpbUUQjq1IlIq9UaP1XL9f1b+2ex62DJ9oWWM7WeuXmNxUlIHMVkyfbFiJupfCFxqy/NnrFzp3OusbTG2PLcFNK20HGuP82WcTMYGF5YdxJHMm/Dz0uKb57ohhC5pNFzSggh5ahtsbyco2MnpI7mrkf31FmB7nshhFRH99Q1LYwBv2bw2JPHQ8IxzOhgQJsA+i+ViI/uqbMjuqfOsjy6p84+927YOnbudM7VTqN76tzzOIsVt/e3nGUxc1JYzJwU9uuRTIfEjtoW25xzto4d3VPnAuieOsvynOl+IUu378z3bjSF+17onjo6zvZuWz7bdRmf77kGAHhrTCc83L1lo2XonjrL0D11dE+dQ9A9dc5734sQdE+dZdzpnGssrTF0T53l5Vypbfnurwx8tO0SAGDu/W0xrnukVfe9WVOO2hbLyzk6dkLqaO56dE+dFei+F0JIdXRPnftLy+XwW4YEADAyWo/hUfRfKLE9uqfOjuieOsvy6J46+9y7YevYudM5VzuN7qlzz+NsSdw0Gg1b/Od54z107285yzQajcNjR22Lbc45W8eO7qlzAXRPnWV5znS/kKXbd+Z7N5rCfS90Tx0dZ1u2LYwxvP/7BXy55yoA4KWhbfHcffHgzHxdBN1TZxm6p47uqSOEEEKsptMbMG/jGfx0KBsA8PoDHTB1QJyDa0VI/ahTRwghhNSjuFyLmWuOY8+lQnAc8M6YzpjQu/FZroQ4CnXqRESzX51rhpq5aParZdzpnGssrTE0+9Xycs7WtuQqy/H0D8dwIV8NLxmP/yZ1wZAOYRbFlma/WoZmv9bdZ2No9qsVaIYaIaQ6mv3qHq6qgBWXJFBpOfjJGKa11yPG19G1Ik0ZzX61I5r9alkezX61zywrW8fOnc652mk0+9U9j3NDy2q1mn2z5wprPXcLi5mTwoZ8nMqu5iudOnbUttjmnLN17Gj2qwug2a+W5TnTzD5Lt+/Ms6yawgw1mv1Kx9na34dyPTB340VsOpULAHiwSwQWPdIFPp7i/TdJs18tQ7NfafYrIYQQIsjxrCJ8cFKCm5pcSHgO/xnZAU/2izX7kSWEOBp16gghhDRJWr0Bn6Zdwme7LsPAOEQGeGHJuLvRq1Wwo6tGiEWoU0cIIaTJySwGxn5xEBfyigEAPUIN+OqZvgj2owkpxHVRp44QQkiTUVyuxQe/n8ePZyRgKEagXIY3HmgPyfXj8POy3b26hNgDdeoIIYS4PT0DfjqcjU92XYVCrQHAYUzXCMwb1RH+njy2Xj/u6CoSYjXq1ImIHj5MDx+2dD16QKhl69HDh+k4N3YMGWPYeS4PH5yUIK/sPACgZbA3HmyuxnOj20Mm452ybRFajtoWy8s5OnZC6mjuevTwYSvQA0IJIdXRw4edB2PA2dsctt3gkamunMXqI2UYHmVAv+YMUt7BFSTEDPTwYTuihw9blkcPH7bPQy5tHTt3Oudqp9HDh13vOKtLy9n/Dl5l9yzczGLmpLCYOSms3Wtb2ZNLN7Hcm0V2j5utY0dti23OOVvHjh4+7ALo4cOW5TnTg1Ut3b4zP+SyKTwglB4+TMe5sESH9ceysfZwFhTqCgAcfDwkeKJvLCb3icKhPTsR4id3ubZFaDlqWywvRw8fJoQQQhxMrdHh91M5+O48j4sH9sJw52ai5n6e6BZQijefGIRmAXKb3StHiLOhTh0hhBCXUVRagT2XFfjzTB52nM+HRmcAUHmD3D2tQ/BEnxjc2yYY2//8A4FyekQJaVqoU0cIIcRp6fQGnL6hxLbrHL7/+hCOZxcZr8gBQFyoHG29ijH7kYFoGxEIwHazWAlxdtSpI4QQ4jSKSrW4WKDEkcxbOJJxG8eybqO0Qg9AAqAIANC2uS8GtQ/DqC6RaNvMG7///jtahfo4stqEOAXq1BFCCLG7Eo0OmTdLcU1RgvO5KpzNKcLxaxIU7U+ts66flxQx3hVI6t8RgxPCERX0z+Nd6KocIf+gTt0d2dnZGD16NM6dOwe1Wg2plEJDCCGWMBgYbpVWIF9VjpzbJdifzyE9NR05Sg0yb5Yg42YpCos19ZSsfJ5cdLA3urUMQo/YYPSMDUKrIC/88cfvGNkr2qazUwlxddRzuaNZs2bYtWsXxowZ4+iqEEKIwzDGUK41oLRChzKtHuVaPUor9Cgu0+DcbQ44nQe11gBlmbbyU1r5b9Gdf2+XVqCwWANd9RvfIAGuptfZV5BchpgQH7Rr7od2zX1QlHEGyWOGItiv5oOW6WocIcJQp+4OLy8veHl5OboahBBikW1n87DzfB6uZfLYsf4UDIyDVm+AzsCg1Rsqf9YzaA0MWp0BOkPVsgFaHUOF3oCyCj3KtHoTe5EAF04Jqg/HASE+ngjz8wDKlOgcH42oIB/EhPogNkSOmGAfBFSbnarVarH11hn4edGVOEIs5bKduvnz52P9+vW4cOEC1qxZg3HjxhnzCgsLkZycjNTUVERHR2P58uUYPHiwA2tLCCG2dfqGEuuO3ADAA4V5omzTU8rD20MCb5kE3jIeFWUlCA8NQqDcEwHeMgTKZTX+9feWIUjugeb+ngj19YRMUvle1a1bt2LkyI40dEqIjblsp65NmzZYunQp5s2bVydv5syZiIyMhEKhwLZt25CUlIT09HRoNJoanT8A8PX1RUpKir2qTQghNnFP61BIOODq5Yvo1DEBnjIppBIOMp6HTMpByvOQSe78K+Uh4zlIJbxxHQ8pD7mHBF4yifFfCc8Zt/9P56wXdc4IcVIu26mbOHEiAOCdd96pka5Wq7Fx40ZkZGRALpdjzJgxWLx4MTZv3oxJkyYhLS3N6n1rNBpoNP/c5KtSqQBUNnpVn6rl+v6t/bOY6tuXmOVMrWduXmNxEhJHMVmyfTHiZipfSNzqS7Nn7NzpnGssrTHWxteatqVHS390jfDG9tILGNoz0sqOF4NBr4Oh2kisOx1nV2hbhJajtsXyco6OnZA6mrsexxhjja/mvBITEzF9+nTjFbjjx49j+PDhKCgoMK4za9YsyOVyLFq0qMHtlJeX48EHH8TRo0fRrVs3LFiwAAMGDKh33QULFmDhwoV10tesWQO5XF5PCUJIU1BaWooJEyZAqVTC39/f7PLUthBC6iO0bXHZK3UNUavVdb6wv78/ioqKTJbz8vLCjh07BO1j7ty5mD17tnFZpVIhOjoagwYNgr+/P3Q6HVJTUzFo0CBIpdIaywBq5Imt9r7FLmdqPXPzTMVJyLLYLNm+GHEzlS8kbvWl2TN27nTO1V4HMO/3terKmqWsaVvoOLtX2yK0HLUtlpdzZOwA27QtdKXOCsuWLcOyZcug1+tx6dIl+muakCbO2it1VahtIYRUJ7RtcbtOnVqtRkhICDIzMxEeHg4AGDhwIKZOnYpJkybZpA4qlQoBAQHIzc2lK3VN7K9pV/iL0J3/mnbGK3URERFWd+qqb09o20LH2b3aFqHlqG2xvJyrXakT0ra4bKdOq9VCr9dj2LBhmDZtGpKSkuDh4QGe55GUlITg4GAsWbIE27dvR3JyMtLT0xEUFCRqHar+mtbpdLh8+TK++eYb+muakCastLQUU6dORVFREQICAizeDrUthJDqBLctzEVNnjyZAajxSU1NZYwxVlBQwEaMGMG8vb1ZmzZt2Pbt221al+zs7Dp1oQ996NN0P9nZ2dS20Ic+9BH901jb4rJX6pyJwWBATk4O/Pz8wHGVz3Xq2bMnDh8+bFynarnqxufs7GxRhmfqU3vfYpcztZ65eQ3Fqb5lZ42dGHEzlS8kbvWl2TN27nTOVU8zN27s/9u7/5io6z8O4E9ABY7j7iZGAscgFHEEtDFjYTCosTD78UcTN0kRq+VIY/ijVTKlNCr6o7AfK/5I0xZgTuaqpabxY5SkLTa0IKqtAPUAvTjg8NBj9/7+4fx8PaXj+HDwufvwfGxsd5/35/35vO71+ezF6z53HxACw8PDiIyMhL+//4TrT2QytQXgcXa1zBdri7vzWFvkz1Mqd9NVW1R396sS/P39YTQanZYFBAQ4Hajbn+t0umkrHrfvy9PzXK032bGJ8jTeHG/LnSfy5mrcnbyNt2wmc6emc268ZZPJ21Q+dr2dnNoC8DiPt8wXa4u781hb5M9TOneeri1TfytJ49q0aZPL5zO5b0/Pc7XeZMcmytNM5k3u/jyRN1fj7uRtvGU85+TnaabPu8ngcXZvTA21xd15rC3y56ktd/z4dYbdvJvNU3fHzSbMnXzMnTy+ljdfi9dbMG/yMXfyTFfeeKVuhgUGBqKsrAyBgYFKh+JzmDv5mDt5fC1vvhavt2De5GPu5JmuvPFKHREREZEK8EodERERkQqwqSMiIiJSATZ1RERERCrApo6IiIhIBdjUeaGenh6kpqYiKCgIY2NjSofj9bZu3YrMzEwUFxcrHYpP4XkmX1NTE9LT05GRkYGtW7cqHc6k8Li7j7VFHp5j8k21trCp80J33XUX6uvr8cADDygditdrbW2F1WpFc3Mz7Ha7rH8nM1vxPJNv8eLFaGxsxA8//IDe3l6cP39e6ZDcxuPuHtYW+XiOyTfV2sKmzgsFBQXBYDAoHYZPaGlpQU5ODgAgJycHP/30k8IR+Q6eZ/JFRUVJf19q7ty5CAgIUDgi9/G4u4e1RT6eY/JNtbawqfOAsrIyJCYmwt/fH7W1tU5jly9fxmOPPQaNRoOEhAR8//33CkXp/eTk0WKxSH+NW6/XY2BgYMbj9gY8B+WbSu5aW1tx5coVJCYmemV8dANri3w8/+RTorawqfOA+Ph47N27F2lpaXeMbdq0CZGRkbhy5QoqKiqQl5eHgYEB9Pb2Ijs72+nn8ccfVyB67yEnjwaDAUNDQwBu/NuV2fruUE7u6Aa5uevt7UVxcTH27dvndfGxvjhjbZGPtUU+RWqLII/JysoSNTU10vPh4WExb948cenSJWlZZmamOHDggNvbs9vtHo/T200mj7/88ot4/vnnhRBCFBUViTNnzsx4vN5Ezjk4W8+z200mdzabTTz00EOitbXVK+Nzd3uz7biztsjH2iLfTNYWXqmbRn/++Sf0ej0iIiKkZffddx9+++03l/NGR0eRk5ODtrY25Obmorm5ebpD9Wqu8piamorg4GBkZmbC399/3HdEs5mr3PE8c81V7vbv34/29nZs2bIF2dnZaGlp8ar4XOFx/z/WFvlYW+Sbztoyx9PB0v9ZrVbpOxk36XQ6WCwWl/OCgoJw6tSpaYzMt0yUx8rKypkPyke4yh3PM9dc5a6oqAhFRUUKRXYD68vUsbbIx9oi33TWFl6pm0ZarVb6TsZNQ0ND0Gq1CkXkm5hH+Zg7+bw9d94eny9gDuVj7uSbztyxqZtG8fHxGBwcRG9vr7Ssra0N9957r4JR+R7mUT7mTj5vz523x+cLmEP5mDv5pjN3bOo8wG63Y3R0FA6Hw+mxVqvFk08+ibKyMthsNnz11Vf49ddf8cQTTygdsldiHuVj7uTz9tx5e3y+gDmUj7mTT5HcTfm2DhLr168XAJx+GhoahBBC9Pf3i0cffVQEBweL+Ph4cfLkSWWD9WLMo3zMnXzenjtvj88XMIfyMXfyKZE7PyGEmHprSERERERK4sevRERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUgE2dUQKeu211zB37lwsXLjQY9vMzs5GbW3tpOaUlJQgODgYS5cu9VgcRKQc1pbZiU0dKS42NhYajQZarRZarRaxsbFKhzSjnn32Wad/7DwdkpKS8M8///zneGVlJY4dOzatMRDNNNYW1pbZhk0deYX6+npYrVZYrdZxC4Tdbp/5oLyAJ173hQsXMDY2Nut+oREBrC3/hbVFndjUkVdqbGzE0qVLUVpaigULFuDNN9+EzWbD5s2bERkZCaPRiIqKCmn9kZER5Ofnw2AwIDU1FTt27MCKFSuctnUrPz8/6R3sv//+i/z8fISHhyMuLg4HDhyQ1svOzsbu3buxbNky6HQ6rFmzBtevX5fGDx06hKSkJISGhiI5ORmdnZ0oLy/Hhg0bnPb34IMPoq6uzq3XHhsbi3feeQcJCQlITEwEALzwwguIjIyEwWDAI488gu7ubmn9n3/+GSkpKdDpdNi4cSMcDofT9k6cOIHc3FwAwL59+xATEwOtVotFixahoaHBrZiI1IK1hbVFzdjUkdf666+/oNFoYDKZ8PLLL2P79u0YHBzEH3/8gbNnz+LgwYP4+uuvAQCvv/46zGYzuru7UV1djc8//9zt/axbtw7R0dHo6enBt99+i1dffRVtbW3S+OHDh1FXV4fu7m6cO3cOhw4dAgD8+OOP2Lx5M6qqqjA4OIjDhw9Dp9Ph6aefxtGjR3Ht2jUAQFdXF9rb27Fy5Uq3Yzp69Ciam5tx/vx5AEBGRgY6OjrQ29sLo9GI4uJiAMD169fx1FNP4cUXX4TZbEZSUhJOnz7ttK3jx48jNzcXIyMjKCkpwalTp2C1WlFfX8932DQrsbawtqiWIFJYTEyM0Gq1Qq/XC71eL1555RXR0NAgQkNDxdjYmBBCCIfDIYKDg0VfX58074MPPhAFBQVCCCFiY2NFc3OzNFZaWipyc3OFEEI0NDSIhIQEp30CECaTSZhMJqf9CCHEtm3bxK5du4QQQmRlZYm9e/dKYy+99JLYtm2bEEKI5557TuzcuXPc15SRkSHq6uqEEEK8/fbborCwcNz1ysrKxMaNG+/Ix5dffvlf6RK///67CAsLE0II0djYKBYtWiSNORwOYTQaRU1NjRBCiLGxMbFw4UIxMjIirFar0Ol04siRI2J0dPSO7Y6XJyJfxtrC2jLb8EodeYWTJ0/CYrHAYrHgrbfeAgBEREQgICAAAHD58mXYbDYsWbIEBoMBBoMBO3bsQH9/PwDAZDIhOjpa2t6tj13p7u7GyMgIwsLCpO1WVVWhr69PWic8PFx6rNFoYLVaAdz4PklcXNy42127dq10l1h1dTXy8/PdTQUAwGg0Oj0vLy/H4sWLodPpkJaWBrPZDODO1+3n5+c098yZM0hKSoJGo0FISAhqamrw4YcfIjw8HKtWrcKlS5cmFReRr2Ftccbaom5s6shr+fn5SY8XLFiAoKAgdHV1SQV6aGhIuqsqIiICPT090vq3Pg4JCcHVq1el57feDRYVFQWDwSBt02KxYHh4GJ988smE8UVHR+Pvv/8edywvLw/fffcdzp49i/7+fjz88MPuv3A4v/ampiZUVVXh2LFjGBwcxNmzZ6WxiIgIXLhwwWnurc9vfjxy08qVK1FfX4+LFy8iKCgIO3funFRcRGrA2nIDa4v6sKkjn+Dv74/169dj+/btsFgscDgc6OjokIrQqlWrUF5ejuHhYXR2duLgwYPS3CVLlsBsNqOpqQnXrl3Dnj17pLGoqCjcf//92LVrF65evYqxsTG0traivb19wpgKCwvx8ccfo6WlBUIIdHZ2wmQyAQDmz5+PrKwsFBYWYvXq1dJVATmGh4cxZ84chIWFYWRkBG+88YY0lp6eDpvNhk8//RR2ux0fffSRFAPg/EXmvr4+fPPNN7DZbAgMDIRGo5lSXERqwNrC2qImbOrIZ7z77rsICQlBcnIy5s+fj4KCAgwMDAAAysrKoNfrYTQasWbNGqxbt06ap9fr8f7772P16tW45557kJaW5rTdL774Al1dXYiLi0N4eDhKSkpgs9kmjGf58uWorKzEM888A51Oh7y8PAwNDUnja9euRUdHx6Q/HrndihUrkJ6ejpiYGCQnJ2P58uXS2Lx583DkyBG89957CAsLw7lz56Rxs9kMk8mE5ORkAIDD4UBFRQXuvvtuhIeH4+LFi9i9e/eUYiNSA9YW1hbVUPpLfUTTYf/+/dKXmZVy+vRpERcX53KdPXv2iJCQEBEVFeXx/VdXV4sNGza4te6WLVtEaGioSElJ8XgcRGrC2sLa4s38hBBC6caSyNM+++wz1NbW4vjx44rs3263o6CgAElJSSgtLVUkhhMnTiAsLAzLli1TZP9EasTawtrizeYoHQCR2pjNZhiNRqSkpKCqqkqxOG79EjMR+T7WFpoIr9QRERERqQBvlCAiIiJSATZ1RERERCrApo6IiIhIBdjUEREREakAmzoiIiIiFWBTR0RERKQCbOqIiIiIVIBNHREREZEKsKkjIiIiUoH/AWsaRD7hF0ydAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1123,7 +1123,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADmQElEQVR4nOzdd3gUxRvA8e/epfcekkAKLfQuJXSU3hHhB0qRIohKiRUbxQKiIiqgIAqCqAgCCiJFeu89QCiBQEgICaS3y938/og5OZKQBC65XJjP89wDOzu78+7msvdmb3ZGEUIIJEmSJEmSJMnMqEwdgCRJkiRJkiQ9DJnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrCRJkiRJkmSWZCIrSZIkSZIkmSWZyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchK5crBgwfp27cv/v7+WFtb4+3tTYsWLXj11VcN6s2fP58lS5Y8UluKovDyyy8XWm/Hjh0oisKOHTv0ZVOnTkVRFIN67dq1o127dvrltLQ0pk6darCducvvXBhTYGAgw4cPN8q+jh8/Ttu2bXF2dkZRFObMmWOU/RZEURSmTp1aom0YgzF+dwpiLucgP4/y3rv/d1+SpKKzMHUAkmQsf/31F7169aJdu3bMmjULHx8foqOjOXLkCL/++iuff/65vu78+fPx8PAwWtLzII0aNWL//v3UqlXrgfXmz59vsJyWlsa0adMA5IdcEa1ZswYnJyej7GvEiBGkpqby66+/4urqSmBgoFH2W5D9+/dTsWLFEm3DGErzd0eSJKkwMpGVyo1Zs2YRFBTEpk2bsLD47639v//9j1mzZpksLicnJ5o3b15ovcISXalwDRs2NNq+zpw5w+jRo+natatR9qfRaFAUxeC9ea+ivEdMKS0tDTs7O1OHIUmSZEB2LZDKjfj4eDw8PPJNFFSq/97qgYGBnD17lp07d6IoCoqi6O+2ZWRk8Oqrr9KgQQOcnZ1xc3OjRYsW/PHHHwW2u2DBAqpXr461tTW1atXi119/NVhf1K/T7/168erVq3h6egIwbdo0fZzDhw9n9+7dKIrCL7/8kmcfS5cuRVEUDh8+XGA7t2/fZty4cdSqVQsHBwe8vLzo0KEDu3fvNqh39epVFEXhs88+Y/bs2QQFBeHg4ECLFi04cOCAQd0jR47wv//9j8DAQGxtbQkMDGTQoEFcu3btgce8bNkyFEVh//79edZNnz4dS0tLbt68CeR81d+jRw+8vLywtrbG19eX7t27c+PGDf0293+9q9Pp+PDDDwkODsbW1hYXFxfq1avHl19+WWBMS5YsQVEUsrOz+eabb/TnPteZM2fo3bs3rq6u2NjY0KBBA3788UeDfeT+zJctW8arr76Kn58f1tbWXLp0qcB27/9aPTeO7du38+KLL+Lh4YG7uzv9+vXTnxOAPn36EBAQgE6ny7PPZs2a0ahRI/2yEIL58+fToEEDbG1tcXV1pX///ly5csVgu3bt2lGnTh127dpFSEgIdnZ2jBgx4oG/OwBJSUm89tprBAUFYWVlhZ+fHxMnTiQ1NdVg/0lJSYwePRp3d3ccHBzo0qUL4eHhBZ6b/M7tTz/9RGhoKBUqVMDW1pa2bdty/PjxPPWPHDlCr169cHNzw8bGhoYNG/Lbb78Z1CnquYacP0jeeOMNKlSogJ2dHa1ateLQoUN52s2v+9C9bV29erXQY7z/mpH7O3lv147hw4fj4ODA+fPn6dy5M/b29vj4+DBz5kwADhw4QKtWrbC3t6d69ep53quSZO5kIiuVGy1atODgwYOMHz+egwcPotFo8q23Zs0aKleuTMOGDdm/fz/79+9nzZo1AGRmZnLnzh1ee+011q5dyy+//EKrVq3o168fS5cuzbOvP//8k6+++orp06ezatUqAgICGDRoEKtWrXqkY/Hx8WHjxo0AjBw5Uh/ne++9R+vWrWnYsCHz5s3Ls93cuXN54okneOKJJwrc9507dwCYMmUKf/31F4sXL6Zy5cq0a9cu32R73rx5bNmyhTlz5rB8+XJSU1Pp1q0biYmJ+jpXr14lODiYOXPmsGnTJj755BOio6N54okniIuLKzCWgQMHUqFChTzHkp2dzYIFC+jbty++vr6kpqbSsWNHbt26ZRCPv78/ycnJBe5/1qxZTJ06lUGDBvHXX3+xYsUKRo4cSUJCQoHbdO/eXZ9Y9+/fX3/uAS5cuEBISAhnz57lq6++YvXq1dSqVYvhw4fne9d/8uTJREZG8u2337Ju3Tq8vLwKbLcgo0aNwtLSkp9//plZs2axY8cOnnvuOf36ESNGEBkZybZt2wy2O3/+PIcOHeL555/Xl40ZM4aJEyfy1FNPsXbtWubPn8/Zs2cJCQnh1q1bBttHR0fz3HPPMXjwYDZs2MC4ceMe+LuTlpZG27Zt+fHHHxk/fjx///03b775JkuWLKFXr14IIYCcZLpPnz76JH/NmjU0b9682He+3377ba5cucKiRYtYtGgRN2/epF27dgZJ+fbt22nZsiUJCQl8++23/PHHHzRo0ICBAwfm28+3sHMNMHr0aD777DOGDh3KH3/8wdNPP02/fv24e/duseI3Jo1GQ79+/ejevTt//PEHXbt2ZfLkybz99tsMGzaMESNGsGbNGoKDgxk+fDhHjx41WaySZHRCksqJuLg40apVKwEIQFhaWoqQkBAxY8YMkZycbFC3du3aom3btoXuMzs7W2g0GjFy5EjRsGFDg3WAsLW1FTExMQb1a9SoIapWraov2759uwDE9u3b9WVTpkwR9//6tW3b1iCm27dvC0BMmTIlT1yLFy8WgDh+/Li+7NChQwIQP/74Y6HHld8xPvnkk6Jv37768oiICAGIunXriuzs7Dzt/PLLLw/cZ0pKirC3txdffvmlvrygc2FlZSVu3bqlL1uxYoUAxM6dO4UQQhw5ckQAYu3atQ88loCAADFs2DD9co8ePUSDBg0KPQf5AcRLL71kUPa///1PWFtbi8jISIPyrl27Cjs7O5GQkCCE+O8427RpU6z27v1Z5/6Mx40bZ1Bv1qxZAhDR0dFCCCE0Go3w9vYWgwcPNqj3xhtvCCsrKxEXFyeEEGL//v0CEJ9//rlBvevXrwtbW1vxxhtv6Mvatm0rALF169Y8cRb0uzNjxgyhUqnE4cOHDcpXrVolALFhwwYhhBB///23AAzeF0II8dFHHxX4fr9X7rlt1KiR0Ol0+vKrV68KS0tLMWrUKH1ZjRo1RMOGDYVGozHYR48ePYSPj4/QarVCiKKf63PnzglATJo0yaDe8uXLBWDw3svvd/zetiIiIvRl9//u5/d7IsR/v5OLFy/Wlw0bNkwA4vfff9eXaTQa4enpKQBx7NgxfXl8fLxQq9UiNDQ0T1ySZK7kHVmp3HB3d2f37t0cPnyYmTNn0rt3b8LDw5k8eTJ169Z94J3Be61cuZKWLVvi4OCAhYUFlpaWfP/995w7dy5P3SeffBJvb2/9slqtZuDAgVy6dMngK29jGzRoEF5eXgZ3Mr/++ms8PT0ZOHBgodt/++23NGrUCBsbG/0xbt26Nd9j7N69O2q1Wr9cr149AINuAykpKbz55ptUrVoVCwsLLCwscHBwIDU1Nd993uvFF18E4LvvvtOXzZ07l7p169KmTRsAqlatiqurK2+++SbffvstYWFhhR4jQNOmTTl58iTjxo1j06ZNJCUlFWm7gmzbto0nn3ySSpUqGZQPHz6ctLS0PF0knn766UdqD6BXr14Gy/effwsLC5577jlWr16tv0uu1WpZtmwZvXv3xt3dHYD169ejKArPPfcc2dnZ+leFChWoX79+nrvxrq6udOjQochxrl+/njp16tCgQQOD/Xfu3Nnga/Lt27cD8OyzzxpsP3jw4CK3lVv/3q/uAwICCAkJ0e//0qVLnD9/Xt/OvTF169aN6OhoLly4YLDPws51QbEPGDCgwL7PpUFRFLp166ZftrCwoGrVqvj4+Bj0G3dzc8PLy6vQLj+SZE5kIiuVO02aNOHNN99k5cqV3Lx5k0mTJnH16tUiPfC1evVqBgwYgJ+fHz/99BP79+/n8OHDjBgxgoyMjDz1K1SoUGBZfHz8ox9MAaytrRkzZgw///wzCQkJ3L59m99++41Ro0ZhbW39wG1nz57Niy++SLNmzfj99985cOAAhw8fpkuXLqSnp+epn5sI3ds2YFB38ODBzJ07l1GjRrFp0yYOHTrE4cOH8fT0zHef9/L29mbgwIEsWLAArVbLqVOn2L17t8HQZs7OzuzcuZMGDRrw9ttvU7t2bXx9fZkyZUqBXUgg56v9zz77jAMHDtC1a1fc3d158sknOXLkyANjKkh8fDw+Pj55yn19ffXr75Vf3eIqyvnPfX/m9s/etGkT0dHRBt0Kbt26hRACb29vLC0tDV4HDhzI84decWO/desWp06dyrNvR0dHhBD6/cfHx2NhYZHnuPL7XXqQgn73cn8GuV0lXnvttTwxjRs3DiDPMRd2rnP3fX/b+R1PabKzs8PGxsagzMrKCjc3tzx1rays8r2WSZK5kqMWSOWapaUlU6ZM4YsvvuDMmTOF1v/pp58ICgpixYoVBnd7MjMz860fExNTYFlJf7C9+OKLzJw5kx9++IGMjAyys7MZO3Zsodv99NNPtGvXjm+++cag/EF9TR8kMTGR9evXM2XKFN566y19eW5/46KYMGECy5Yt448//mDjxo24uLjkuetVt25dfv31V4QQnDp1iiVLljB9+nRsbW0N2r2XhYUFoaGhhIaGkpCQwD///MPbb79N586duX79erGfwnd3dyc6OjpPee4DQR4eHgbl+T3sUxJq1apF06ZNWbx4MWPGjGHx4sX4+vrSqVMnfR0PDw8URWH37t35/rFzf1lxY/fw8MDW1pYffvihwPWQcw6zs7OJj483+B3J73fpQQr63cvdZ257kydPpl+/fvnuIzg4uFht5u47JiYGPz8/fXnu8dwrN7HMzMw0OLdF+Wbo3m3vVdRvlSTpcSLvyErlRn4JBqD/ajv3rhnkfGjnd6dQURSsrKwMPsRjYmIKHLVg69atBg/JaLVaVqxYQZUqVR55TND87rzdy8fHh2eeeYb58+fz7bff0rNnT/z9/Qvdr6IoeZKWU6dO5TtyQFEoioIQIs8+Fy1ahFarLdI+GjduTEhICJ988gnLly9n+PDh2NvbF9he/fr1+eKLL3BxceHYsWNFasPFxYX+/fvz0ksvcefOnQc+NV6QJ598km3btuV5kn3p0qXY2dmZdAit559/noMHD7Jnzx7WrVvHsGHDDLqE9OjRAyEEUVFRNGnSJM+rbt26RWqnoN+dHj16cPnyZdzd3fPdf+7oBu3btwdg+fLlBtv//PPPxTreX375Rf8AGeR8/b9v3z79yB/BwcFUq1aNkydP5htPkyZNcHR0LFabufu+P/bffvuN7Oxsg7Lc4z116pRB+bp16wptp6Bt//zzz2JEK0mPB3lHVio3OnfuTMWKFenZsyc1atRAp9Nx4sQJPv/8cxwcHJgwYYK+bu7dvRUrVlC5cmVsbGyoW7cuPXr0YPXq1YwbN47+/ftz/fp1PvjgA3x8fLh48WKeNj08POjQoQPvvfce9vb2zJ8/n/Pnz+cZguthODo6EhAQwB9//MGTTz6Jm5sbHh4eBsMdTZgwgWbNmgGwePHiIu23R48efPDBB0yZMoW2bdty4cIFpk+fTlBQUJ4P46JwcnKiTZs2fPrpp/r4du7cyffff4+Li0uR9zNhwgQGDhyIoij6r35zrV+/nvnz59OnTx8qV66MEILVq1eTkJBAx44dC9xnz549qVOnDk2aNMHT05Nr164xZ84cAgICqFatWrGPdcqUKaxfv5727dvz/vvv4+bmxvLly/nrr7+YNWsWzs7Oxd6nsQwaNIjQ0FAGDRpEZmZmngkLWrZsyQsvvMDzzz/PkSNHaNOmDfb29kRHR7Nnzx7q1q2r76/8IAX97kycOJHff/+dNm3aMGnSJOrVq4dOpyMyMpLNmzfz6quv0qxZMzp16kSbNm144403SE1NpUmTJuzdu5dly5YV63hjY2Pp27cvo0ePJjExkSlTpmBjY8PkyZP1dRYsWEDXrl3p3Lkzw4cPx8/Pjzt37nDu3DmOHTvGypUri9VmzZo1ee6555gzZw6WlpY89dRTnDlzhs8++yzPRBzdunXDzc2NkSNHMn36dCwsLFiyZAnXr18vtJ0KFSrw1FNPMWPGDFxdXQkICGDr1q2sXr26WPFK0mPBhA+aSZJRrVixQgwePFhUq1ZNODg4CEtLS+Hv7y+GDBkiwsLCDOpevXpVdOrUSTg6OgpABAQE6NfNnDlTBAYGCmtra1GzZk3x3Xff5fsEMv8+1T5//nxRpUoVYWlpKWrUqCGWL19uUO9hRy0QQoh//vlHNGzYUFhbW+d5KjpXYGCgqFmzZpHPU2ZmpnjttdeEn5+fsLGxEY0aNRJr164Vw4YNMzgPuU9If/rpp3n2wX1Pl9+4cUM8/fTTwtXVVTg6OoouXbqIM2fO5BlFoKCnsXPjsra2Fl26dMmz7vz582LQoEGiSpUqwtbWVjg7O4umTZuKJUuWGNS7v73PP/9chISECA8PD2FlZSX8/f3FyJEjxdWrVws9T+QzaoEQQpw+fVr07NlTODs7CysrK1G/fn2Dp8jvPc6VK1cW2s697eU3asH9owA86BwOHjxYAKJly5YFtvPDDz+IZs2aCXt7e2FrayuqVKkihg4dKo4cOaKv07ZtW1G7du18t3/Q705KSop49913RXBwsLCyshLOzs6ibt26YtKkSQajeyQkJIgRI0YIFxcXYWdnJzp27CjOnz9frFELli1bJsaPHy88PT2FtbW1aN26tcEx5Dp58qQYMGCA8PLyEpaWlqJChQqiQ4cO4ttvv9XXKc65zszMFK+++qrw8vISNjY2onnz5mL//v153ntC5IzwERISIuzt7YWfn5+YMmWKWLRoUaGjFgghRHR0tOjfv79wc3MTzs7O4rnnntOP3nH/qAX29vZ5jrugn2FAQIDo3r17PmdWksyTIsQ9381IkmRWTp06Rf369Zk3b16eu5jmZt26dfTq1Yu//vrL4AlsSbrXjh07aN++PStXrqR///6mDkeSJBOTXQskyQxdvnyZa9eu8fbbb+Pj42PW896HhYVx7do1/YxqxpoSVpIkSSr/5MNekmSGPvjgAzp27EhKSgorV64s9tP3Zcm4cePo1asXrq6u/PLLL6X2pL8kSZJk/mTXAkmSJEmSJMksyTuykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchKkiRJkiRJZkkmspIkSZIkSZJZkomsJEmSJEmSZJZkIitJkiRJkiSZJZnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrCRJkiRJkmSWZCIrSZIkSZIkmSWZyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJklmQiK0mSJEmSJJklmchKkiRJkiRJZkkmspIkSZIkSZJZkomsJEmSJEmSZJZkIitJkiRJkiSZJZnISpIkSZIkSWZJJrKSJEmSJEmSWZKJrGQyw4cPp0+fPiXejqIorF271uj7FULwwgsv4ObmhqIonDhxwuhtSJIklZSpU6fSoEGDUm+3Xbt2TJw4sUT2vXDhQipVqoRKpWLOnDkl0oZUtshEVnqg4cOHoyiK/uXu7k6XLl04deqUqUMrMUVNsDdu3MiSJUtYv3490dHR1KlTx6hxPGoCbqoPKUmS8pd7PZ05c6ZB+dq1a1EUpdTjee2119i6dWuR6pryerJkyRJcXFwKrZeUlMTLL7/Mm2++SVRUFC+88IJR4yjJBFx6eDKRlQrVpUsXoqOjiY6OZuvWrVhYWNCjRw9Th2Vyly9fxsfHh5CQECpUqICFhUWx9yGEIDs7uwSikySpLLKxseGTTz7h7t27pg4FBwcH3N3dTR2G0URGRqLRaOjevTs+Pj7Y2dk91H40Go2RI5NKkkxkpUJZW1tToUIFKlSoQIMGDXjzzTe5fv06t2/f1tc5ffo0HTp0wNbWFnd3d1544QVSUlL067VaLaGhobi4uODu7s4bb7yBEMKgHSEEs2bNonLlytja2lK/fn1WrVr1wNgCAwP54IMPGDx4MA4ODvj6+vL1118/cJsHxTp16lR+/PFH/vjjD/1d6B07duTZx/Dhw3nllVeIjIxEURQCAwMByMzMZPz48Xh5eWFjY0OrVq04fPiwfrsdO3agKAqbNm2iSZMmWFtbs3v37gfGW1ICAwP5+OOPGTFiBI6Ojvj7+7Nw4UKDOlFRUQwcOBBXV1fc3d3p3bs3V69eBXLOo0qlIi4uDoC7d++iUql45pln9NvPmDGDFi1alNoxSVJZ99RTT1GhQgVmzJiR7/rU1FScnJzyXPvWrVuHvb09ycnJABw6dIiGDRtiY2NDkyZNWLNmjUEXp/zuYt5/5/f+u6w7duygadOm2Nvb4+LiQsuWLbl27RpLlixh2rRpnDx5Un9dXLJkSb7x536jNW3aNLy8vHBycmLMmDFkZWUVeE7u3r3L0KFDcXV1xc7Ojq5du3Lx4kV9TM8//zyJiYn6tqdOnZpnH0uWLKFu3boAVK5cGUVR9Neqb775hipVqmBlZUVwcDDLli0z2FZRFL799lt69+6Nvb09H374YYGxFuTq1asoisLq1atp3749dnZ21K9fn/379xvU27dvH23atMHW1pZKlSoxfvx4UlNTAfj666/1xwD//bzmzZunL+vcuTOTJ08udnzlmpCkBxg2bJjo3bu3fjk5OVmMGTNGVK1aVWi1WiGEEKmpqcLX11f069dPnD59WmzdulUEBQWJYcOG6bf75JNPhLOzs1i1apUICwsTI0eOFI6Ojgb7fvvtt0WNGjXExo0bxeXLl8XixYuFtbW12LFjR4HxBQQECEdHRzFjxgxx4cIF8dVXXwm1Wi02b96srwOINWvWFCnW5ORkMWDAANGlSxcRHR0toqOjRWZmZp52ExISxPTp00XFihVFdHS0iI2NFUIIMX78eOHr6ys2bNggzp49K4YNGyZcXV1FfHy8EEKI7du3C0DUq1dPbN68WVy6dEnExcXle2z3xv0wpkyZIurXr1/g+oCAAOHm5ibmzZsnLl68KGbMmCFUKpU4d+6c/lxVq1ZNjBgxQpw6dUqEhYWJwYMHi+DgYJGZmSl0Op3w8PAQq1atEkIIsXbtWuHh4SG8vLz0bXTq1Em8+eabD30MklSe5F5PV69eLWxsbMT169eFEEKsWbNG3PtxPHr0aNGtWzeDbfv27SuGDh0qhBAiJSVFeHp6ioEDB4ozZ86IdevWicqVKwtAHD9+XAghxOLFi4Wzs7PBPu5v595rhEajEc7OzuK1114Tly5dEmFhYWLJkiXi2rVrIi0tTbz66quidu3a+utiWlpagcfo4OCgj239+vXC09NTvP322/o6bdu2FRMmTNAv9+rVS9SsWVPs2rVLnDhxQnTu3FlUrVpVZGVliczMTDFnzhzh5OSkbzs5OTlPu2lpaeKff/4RgDh06JCIjo4W2dnZYvXq1cLS0lLMmzdPXLhwQXz++edCrVaLbdu26bcFhJeXl/j+++/F5cuXxdWrV/M9tvvjvldERIQARI0aNcT69evFhQsXRP/+/UVAQIDQaDRCCCFOnTolHBwcxBdffCHCw8PF3r17RcOGDcXw4cP16xVFEbdv3xZCCDFx4kTh4eEhnnnmGf3PyMHBQfz999/5xvC4koms9EDDhg0TarVa2NvbC3t7ewEIHx8fcfToUX2dhQsXCldXV5GSkqIv++uvv4RKpRIxMTFCCCF8fHzEzJkz9es1Go2oWLGiPpFNSUkRNjY2Yt++fQbtjxw5UgwaNKjA+AICAkSXLl0MygYOHCi6du2qX743ISxKrPcn7wX54osvREBAgH45JSVFWFpaiuXLl+vLsrKyhK+vr5g1a5YQ4r9Edu3atYXuvzQS2eeee06/rNPphJeXl/jmm2+EEEJ8//33Ijg4WOh0On2dzMxMYWtrKzZt2iSEEKJfv37i5ZdfFkLkXHRfffVV4eHhIc6ePSsvupJ0n3uvLc2bNxcjRowQQuRNMA8ePCjUarWIiooSQghx+/ZtYWlpqf+jfsGCBcLNzU2kpqbqt/nmm28eKZGNj48XQIE3Dgq7ntx7jPnF5uDgoL/5cW9CGB4eLgCxd+9eff24uDhha2srfvvttwKPJT/Hjx8XgIiIiNCXhYSEiNGjRxvUe+aZZwz+UADExIkTC91/URLZRYsW6cvOnj0rAP3NgSFDhogXXnjBYLvdu3cLlUol0tPT89wcaNCggZgxY4b+5sC+ffuEhYVFvon840x2LZAK1b59e06cOMGJEyc4ePAgnTp1omvXrly7dg2Ac+fOUb9+fezt7fXbtGzZEp1Ox4ULF0hMTCQ6OtrgK2YLCwuaNGmiXw4LCyMjI4OOHTvi4OCgfy1dupTLly8/ML77v7pu0aIF586dy7duYbE+isuXL6PRaGjZsqW+zNLSkqZNm+aJ595jN6V69erp/68oChUqVCA2NhaAo0ePcunSJRwdHfU/Dzc3NzIyMvQ/k3bt2um7XuzcuZP27dvTpk0bdu7cyeHDh0lPTzc4H5Ik5fjkk0/48ccfCQsLy7OuadOm1K5dm6VLlwKwbNky/P39adOmDfDfdezePqCP2oXHzc2N4cOH07lzZ3r27MmXX35JdHT0Q+0rv9hSUlK4fv16nrrnzp3DwsKCZs2a6cvc3d0JDg4u8DpeHOfOnctzDWrZsmWJXZPvvab6+PgAGFxTlyxZYvAZ17lzZ3Q6HRERESiKQps2bdixYwcJCQmcPXuWsWPHotVqOXfuHDt27KBRo0Y4ODgYJdbyovhPp0iPHXt7e6pWrapfbty4Mc7Oznz33Xd8+OGHCCEKfOK2qE/i6nQ6AP766y/8/PwM1llbWxc75oLaNUasBRH/9vm9fz/5tXlvIm1KlpaWBsuKouh/FjqdjsaNG7N8+fI823l6egI5ieyECRO4dOkSZ86coXXr1ly+fJmdO3eSkJBA48aNcXR0LPkDkSQz06ZNGzp37szbb7/N8OHD86wfNWoUc+fO5a233mLx4sU8//zz+uuIuO/5gvyoVKo89Qp7iGnx4sWMHz+ejRs3smLFCt599122bNlC8+bNi35gD5DfNbagY3nQtfpR2y3Ja/K919TcNu69po4ZM4bx48fn2c7f3x/IuaYuXLiQ3bt3U79+fVxcXPQ3B3bs2EG7du2MEmd5Iu/ISsWmKAoqlYr09HQAatWqxYkTJ/Qd1gH27t2LSqWievXqODs74+Pjw4EDB/Trs7OzOXr0qH65Vq1aWFtbExkZSdWqVQ1elSpVemA89+43d7lGjRr51i0sVgArKyu0Wm0Rz8Z/qlatipWVFXv27NGXaTQajhw5Qs2aNYu9P1Nr1KgRFy9exMvLK8/PxNnZGYA6derg7u7Ohx9+SP369XFycqJt27b6i27btm1NfBSSVHbNnDmTdevWsW/fvjzrnnvuOSIjI/nqq684e/Ysw4YN06+rVasWJ0+e1F+DIe910NPTk+TkZINrXVHGum7YsCGTJ09m37591KlTh59//hko3nUxv9gcHByoWLFinrq1atUiOzubgwcP6svi4+MJDw/XXzcf9poMULNmTYNrMuQ8cGWKa3KjRo04e/Zsnutp7mcH5CSyZ8+eZdWqVfqktW3btvzzzz/s27dPXlPzIRNZqVCZmZnExMQQExPDuXPneOWVV0hJSaFnz54APPvss9jY2DBs2DDOnDnD9u3beeWVVxgyZAje3t4ATJgwgZkzZ7JmzRrOnz/PuHHjSEhI0Lfh6OjIa6+9xqRJk/jxxx+5fPkyx48fZ968efz4448PjG/v3r3MmjWL8PBw5s2bx8qVK5kwYUK+dYsSa2BgIKdOneLChQvExcUVeSgWe3t7XnzxRV5//XU2btxIWFgYo0ePJi0tjZEjRxZpH/eLiIjQd+vIfd07GkRh0tPT82x/6dKlIm377LPP4uHhQe/evdm9ezcRERHs3LmTCRMmcOPGDQD9V2E//fST/qJbr149srKy2Lp1q7x7IEkPULduXZ599tl8R1pxdXWlX79+vP7663Tq1MkgCRw8eDAqlYqRI0cSFhbGhg0b+Oyzzwy2b9asGXZ2drz99ttcunSJn3/+ucCRBiDnWjN58mT279/PtWvX2Lx5s0EyGRgYqL8excXFkZmZWeC+srKy9LH9/fffTJkyhZdffhmVKm/KUa1aNXr37s3o0aPZs2cPJ0+e5LnnnsPPz4/evXvr205JSWHr1q3ExcWRlpb2wPN6r9dff50lS5bw7bffcvHiRWbPns3q1at57bXXiryPe92+fTvPNTUmJqZI27755pvs37+fl156iRMnTnDx4kX+/PNPXnnlFX2d3JsDy5cv118/27Vrx9q1a0lPT6dVq1YPFXe5ZrLeuZJZGDZsmAD0L0dHR/HEE0/oO6PnOnXqlGjfvr2wsbERbm5uYvTo0QYd0jUajZgwYYJwcnISLi4uIjQ0VAwdOtTgoSqdTie+/PJLERwcLCwtLYWnp6fo3Lmz2LlzZ4HxBQQEiGnTpokBAwYIOzs74e3tLebMmWNQh/semios1tjYWNGxY0fh4OAgALF9+/Z8277/YS8hhEhPTxevvPKK8PDwENbW1qJly5bi0KFD+vW5D3vdvXu3wGO6N+78XrnxAGLx4sUFbj9lypR8t2/btq0QIufcffHFFwbb1K9fX0yZMkW/HB0dLYYOHao/nsqVK4vRo0eLxMREfZ2vv/5aAGL9+vX6st69ewu1Wm1QT5Ied/k9SHr16lVhbW0t8vs43rp1qwD0Dz3da//+/aJ+/frCyspKNGjQQPz+++8GD3sJkfNwV9WqVYWNjY3o0aOHWLhwYYEPe8XExIg+ffoIHx8fYWVlJQICAsT777+vf0ArIyNDPP3008LFxeWB157cY3z//feFu7u7cHBwEKNGjRIZGRn6Ovc/NHXnzh0xZMgQ4ezsLGxtbUXnzp1FeHi4wX7Hjh0r3N3dBWBwjbpXfg97CSHE/PnzReXKlYWlpaWoXr26WLp0qcH6+z8jCtK2bdt8r6lTpkzRP+x17/m/e/duns+QQ4cO6T9f7O3tRb169cRHH31k0M7TTz9tcP3U6XTCzc1NNGnSpNAYH0eKEEXobCNJZVRgYCATJ0587GZbuXr1KtWqVSMsLIxq1aqZOhxJkkrA8uXLmTBhAjdv3tR/9VyQq1evEhQUxPHjx006o9/w4cNJSEgokWnBJSk/8mEvSTJDGzdu5IUXXpBJrCSVQ2lpaURERDBjxgzGjBlTaBIrSY8z2UdWkszQ2LFjDWZ7kSSp/Jg1axYNGjTA29tbzuIkSYWQXQskSZIkSZIksyTvyEqSJEmSJElmSSaykiRJkiRJklmSiawkSZIkSZJkluSoBQ9Bp9Nx8+ZNHB0djTaFniRJ5ksIQXJyMr6+vvkO+i4VTF5PJUm6X3GuqTKRfQg3b94sdNpUSZIeP9evX893Gk6pYPJ6KklSQYpyTZWJ7ENwdHQEck6wk5MTGo2GzZs306lTJywtLQ2WAYN1xnZ/28berrB6Ba0vanlxl43NlOevuOuKcm7ke69o5y6/skd57yUlJVGpUiX9tUEquvuvp4XRarVcuHCB4OBg1Gp1SYdndOYcvznHDuYdvznHDsWPvzjXVJnIPoTcr7+cnJz0iaydnR1OTk76D8DcZcBgnbHd37axtyusXkHri1pe3GVjM+X5K+66opwb+d4r2rnLr8wY7z351Xjx3X89LYxWq8XBwQEnJyez/UA31/jNOXYw7/jNOXZ4+PiLck2VnbkkSZIkSZIksyTvyJawExuXYB22jcPRm1BUFqBSg6IGlRpFUSNUahSV6r+yf9cruf+/79+clwUqS2vUltagsiQz7grXzh3B2s4BSysbLK1tsLS2xcrKBmsb25ztJUmSJEmSyhmZyJYw3eVtdMncADEl10YdgOsFr88SarKwIk2xJUNlS6bKjiyVHd7Zak5eWorWygFh5QhW9ij27lg6emLt5Im9qxe2Tu7osrNLLnhJkiRJkqSHJBPZEqaq9hR/n1ZwcXJEQYei04LQgtChCC2K0MG//+Ys55bpUN1bTs6/qn/L1UKDRe5Ll4mVko2l0GBFNtaKxiAGK0WLFek4kA46cl65kgs/hr5A8mlbbikuJFp6km7rQ7aDDypnPyxd/ciIjycl6Q6u7t7GPHWSJJnA/Pnz+fTTT4mOjqZ27drMmTOH1q1bF1h/+fLlzJo1i4sXL+Ls7EyXLl347LPPcHd3L8WoJUl6XMlEtoQ16DSUDdkeNOnWrcQeuNmwYQPd7tm/0OnIysogMzMDTWY6mswMsjJSyUxNIistCU1aEpmpCdy4ch4fd2cUTSpkpaDOSsYiMwEbTQL22gQcdUk4i2TUisCRdBxFOhWzoiHrFCQCUTkxNAT4+j3iceGWVUVS7QPQuFQmM0XFzcv+VKpWD5UZdk6XpMfNihUrmDhxIvPnz6dly5YsWLCArl27EhYWhr+/f576e/bsYejQoXzxxRf07NmTqKgoxo4dy6hRo1izZo0JjkCSpMeNTGTLIUWlwtrGDmsbuwLraDQaYjZs4IlCEuyMjAxWr/2dxvVqkJYQS3rcNTR3b6BKjsI6LQaHzFu4Zd/GXUnCnQTcsxIg6wzc/XcHv35JmrDmulVlEp1rIrzrkJmsIjsrs0QSe0mSHt7s2bMZOXIko0aNAmDOnDls2rSJb775hhkzZuSpf+DAAQIDAxk/fjwAQUFBjBkzhlmzZpVq3JIkPb5kIis9kFqtxsrWgUrV6hU4BNKGDRtoHdKcuBvhJN44hyb2IpYJl3FMvkKguIGdkkmw5hzEnYO41TQD0md9TJh1DZI8GpKl9SA1sSkuHj6lf4CSJAGQlZXF0aNHeeuttwzKO3XqxL59+/LdJiQkhHfeeYcNGzbQtWtXYmNjWbVqFd27dy+wnczMTDIzM/XLSUlJQM7wPFqtttA4c+sUpW5Z9Kjxrzt5k2rejtSoUPpjFj/u596UzDl2KH78xTlOmchKRuHo4oabZ2tomNOXLjfBDej4FBHXLhB36TCaqFPY3w0jICMcFyWFWlmn4OYpmgO6r2dz2bIKt71akoUv2Vkd5B1bSSpFcXFxaLVavL0N+7p7e3sTE5P/06ohISEsX76cgQMHkpGRQXZ2Nr169eLrr78usJ0ZM2Ywbdq0POUXLlzAwcGhyPGGh4cXuW5Z9LDxV7UCcTeRc3cLr1tSHtdzXxaYc+xQ9PhTUlKKvE+ZyEolysLSiqCajQiq2QjISXDXr19Pnap+xJ/fA9cP4pN4ggAlhirZl6hy8xLNgbRZszll34DMwA5otRVMexCS9Bi5fwByIUSBg5KHhYUxfvx43n//fTp37kx0dDSvv/46Y8eO5fvvv893m8mTJxMaGqpfzp3BJzg4uMgTIoSHh1O9enWzHRj+YeK/lZTJ/xbu53ZKJpYqhc2T2uLpaF2stjM1WlKytLjbW+nLjl67y900DSoFLNQKFioVVmoVjjYWONla4uNs88ixlxXmHL85xw7Fjz/3m5qikImsVOpUKhWBNRpSrW5T/Z1bdYM63Di2CeXKVqokHcJDSaJe2kEIO8gTwIVZ35IU2JmAVgPxCqhl6kOQpHLHw8MDtVqd5+5rbGxsnru0uWbMmEHLli15/fXXAahXrx729va0bt2aDz/8EB+fvN2FrK2tsbbOm4Cp1epifUAXt35ZU5z4MzRaxi4/RuTdDADSEfx08DqvdQ7Ot/6u8NuERScReSeNG3fTibqbRnRiBmlZWvzd7Nj1Rnt93Y82nOfkjcR892NnpSZsehf98uwtFzkdcZsa11RU9XKkipcDVT0dcLYzr2/PzPm9Y86xQ9HjL84xykRWKhO8ff2pGDAOjWY069evp7q/B3dPb8T9xj/UzD6f08f24jm4OIcIi8rcqdybyh2ex7VCgKlDl6RywcrKisaNG7Nlyxb69u2rL9+yZQu9e/fOd5u0tDQsLAw/RnI/gIQQJRfsY0QIwZu/n+LUfcnmTwevMbRFAGHRScQkZvC/pv+NKvHxhnOcj8l/bMXkDMPhGYMrOKIoCkIINFpBtk5HVraO5Ixs7KwNk4k9l+I4eSONXdciDMo9HKyp5uXA0pFNsVTLCUOl0iUTWanMUalUVK/XHMvGrdFopvLLiuVUUt3E6epmamWeJCj7CkHhX6C7MIcwu4Zk136G4PaDsbZ3MXXokmTWQkNDGTJkCE2aNKFFixYsXLiQyMhIxo4dC+R0C4iKimLp0qUA9OzZk9GjR/PNN9/ouxZMnDiRpk2b4uvra8pDKTe+3XmFP07czFOekKah+Yyt6ATYWKp4unFFfRLZvoYXVb0cqOxhT0VXO/xcbfF1scXN3gpHa8OP/Vn96xfY9v1/jLzcvgoHzkaQZeVIRFwal2+nEJ2YQVxKJs62FgZJ7Is/HSUzW0eTQFdaVvGgjp8zalX+XVQk6VHIRFYq8+wcXWnW7VksLd/mduxNLmxbjuul1dTODqNW+jE4coz0I1M47vYU7m3H4F+vLRTQp0+SpIINHDiQ+Ph4pk+fTnR0NHXq1Ml5aDMg55uP6OhoIiMj9fWHDx9OcnIyc+fO5dVXX8XFxYUOHTrwySefmOoQypV/wm4xa9P5AtfrBAS42dE4wJWUjGxc/+37+maXGkZp//6+0R1qeOEj4qlZs6b+zntKZjYRt1NJ1/z3lHm2VseOC7dJ12jZdj4WuICTjQUtqrjTqqoHrap5EuRhb5QYJUkmspJZ8fTyxfN/rwOvE3HxDNd3/kjgjXX4E03DOxtgzQaurqtMYu3nqNFpBNb2rqYOWZLMyrhx4xg3bly+65YsWZKn7JVXXuGVV14p4ageP0ev3WH8L8corIfGez1q8VQt082q6GBtQd2KzgZliqLw8+hmHI9MYP+VeA5ciScpI5tNZ2+x6ewtWlR255cXmuvrP+iBQkkqjExkJbMVVK0OQdU+Rav9hOMHtpCx/zsaJu8gMPsKnJxO2slZHPfsjG/H8XhXb2LqcCVJkgp1JiqR7/dEsPZ4FEXpZbxozxWTJrL5UasUGvq70tDflRGtgsjW6jgdlci+y/HsuRhHt3r/PQR4OzmT3nP38GRNb7rX86FpoBsq2QVBKgaZyEpmT61W0bBlZ2jZmVu3ojm4cSEBV1cQKKJoePsP+PkPLtg2xKLly1QJ6Qcq+TCCJElly9Frd5jzz0V2X4zTl7nZWeHpaE2aJpu0TC1pWVqDr/ABDly5w5moROr4Od+/yzLDQq3SJ7Yvta9qsG7ruVvcTMxg2YFrLDtwDT8XW/o09KVvQz+qepX+pA+S+ZGJrFSueHv74D1sCtnZ73J4799oDyykSdpugtOPwz8jidr+PnfrjqRG5xewsJUXSUmSTOvw1TvM+SecvZfigZy7mV3rVGBoi0CeCHTN85W7TidI1/yb1GZpSdNk42Znld+uzUKfhn54O9vw9+lo/j4dQ1RCOvO2X2be9svU9XPm475183RdkKR7yURWKpcsLNQ80bYHtO1BePg5bm6aQ6O4P/HTRuF3YjpJJ2ZzLfAZArtOMnWokiQ9pnQ6wZQ/zhIWnYSFSqF/44qMa1cVf3e7ArdRqRTsrS2wty4fH982lmraB3vRPtiL6b3rsPVcLGuO32DHhducj0nC1+W/CRmSMjQ4WlvI/rSSgfLxmyBJD1C9ek2qV1/A7biP2PbXfKpG/IQ/t6h7dTGZ3/yEu01rUhtVw6WSnGhBkqSSlZKZTWa2DshJSt/vWYs/TkQxrl1VKrkVnMA+Dmws1XSv50P3ej7Ep2RyKioRd4f/Js8Y9eMR0rKyebZZAH0a+GFrZb4TA0jGIzsLSo8NTw8POgx7H8+3zrCj4RxOq4KxRkOrjG04Lgrh3Nf9uXvlqKnDlCSpnNp+IZbOX+5hddh/0282r+zOjH71Hvsk9n7uDta0D/bSL8cmZ3DiegJnopKYvPo0ITO3MnvzBW4nZ5owSqksKJFENiMjoyR2K0lGYWtjRbvez1Pz7f3saP4D+6mHWhHUjN+C69IOhM/uQtzZ7aYOU5KkciIhLYtXfzvJ84sPE5OYwd7INLQ6OfNZcXg52nBw8pO8270mldxsuZum4attl2j5yTbe+v0UV26nmDpEyUSMlsjqdDo++OAD/Pz8cHBw4MqVKwC89957fP/998ZqxijWr19PcHAw1apVY9GiRaYORzIRCws1LZ/sRUyD19jd/nd2W7VBKxSqJ+3HY2UfIma1IvbInxQ6kKMkSVIB9lyMo+MXu/j92A0UBUa2DOSzLhXkLFcPwdXeilGtK7PjtfbMf7YRDSq5kJWt49fD1zl5I8HU4UkmYrRE9sMPP2TJkiXMmjULK6v/nqCsW7dumUoWs7OzCQ0NZdu2bRw7doxPPvmEO3fumDosyYRUCjQPaUuryX9yos8/bLXrRqawICjtNF7rh3Dzkybc3v8z6LSF70ySJImc2a0+33yBIT8c5HZyJlU87Vk1NoS3u9XAxkL26nsUapVCt7o+rBkXwqqxLRjQpCLd6/43JfKOC7GcuJ5gugClUmW036alS5eycOFCnn32Wf3UdQD16tXj/PmCp9grbYcOHaJ27dr4+fnh6OhIt27d2LRpk6nDksoARVFo3LAJT77xCxf+t5cNjs+QImzwzbiE56YXuT2zHnG7FkF2lqlDlSSpjLsan8qCXVcQAgY19eev8a1pHCBnGjQmRVFoEujGrP71sfr3j4OsbB3vrDlDn3l7GfbDIY5H3jVxlFJJM1oiGxUVRdWqVfOU63Q6NBqNsZph165d9OzZE19fXxRFYe3atXnqzJ8/n6CgIGxsbGjcuDG7d+/Wr7t58yZ+fn765YoVKxIVFWW0+KTyoV7NGnR7dRFXnjvAGuehJAh7PLNu4LHtVRJm1iJhx1zUOvmQgSRJ+avq5cgHvWvz1aCGzOhXFxtL+YR9aUjLyqZ5ZXfUKoWd4bfpO38fLyw9wqXYZFOHJpUQoyWytWvXNkgYc61cuZKGDRsaqxlSU1OpX78+c+fOzXf9ihUrmDhxIu+88w7Hjx+ndevWdO3alcjISCBnTuf7yTHppILUqxZE30lfEzn0EL+6vsAt4YJL9m08906lzalQErd8AukJpg5TkqQyYMPpaMJu/jciwcAn/OlV3/cBW0jG5mJnxecD6rM1tC39G1dEpcDmsFt0+mIXb60+TVxqtqlDlIzMaOPITpkyhSFDhhAVFYVOp2P16tVcuHCBpUuXsn79emM1Q9euXenatWuB62fPns3IkSMZNWoUAHPmzGHTpk188803zJgxAz8/P4M7sDdu3KBZs2ZGi08qn+pVqUi9CZ9yMuJVNq7/hva3l+Ovug2HPiX9yHwyGjyPa4eJ4OBp6lAlSSplQgi+2XmZWRsv4Odiy7pXWuFmb76zbZUHgR72fPZMfca0qcynmy6wOewWK49G0cTd29ShSUZmtES2Z8+erFixgo8//hhFUXj//fdp1KgR69ato2PHjsZq5oGysrI4evQob731lkF5p06d2LdvHwBNmzblzJkzREVF4eTkxIYNG3j//fcfuN/MzEwyM//7GjkpKecvbo1Go3/lLuf37/3/N6b82jLmdoXVK2h9UcuL+6+xFXf/tSq6U2vsuxy7MpoVq+bSK3MdwdzA9thcso5/R2rtwTi0nwhOfoXuv7jrivM+k++9op8XY7z3SuocS2WfEIKPN5zju90RAHSpUwFnW0sTRyXlqubtyMKhTTgWeZdt525R2+u/O7JnbyZSo4KTHEHCzCkiv+/azYSiKKxZs4Y+ffoA//V/3bt3LyEhIfp6H3/8MT/++CMXLlwA4M8//+S1115Dp9Pxxhtv8MILLzywnalTpzJt2rQ85T///DN2doUPYv3tt98SHx9fjCOTzEV6tkCTnoS3NgZnJQ0AgUKqpRvpNl5oVTaF7EEqy9zd3Rk7dmyh9dLS0hg8eDCJiYk4OTmVQmTlR1JSEs7OzkU+d1qtlnPnzlGzZk2DB4tNIVur463Vp1l19AYA73avyajWlR+4TVmKv7jMOXYwjD82JYsOn+2ksqc9U3rWpmmQm6nDe6DydO6LEn9xrgvlcora+/u8CiEMynr16kWvXr2KvL/JkycTGhqqX05KSqJSpUp06tQJJycnNBoNW7ZsoWPHjlhaWhos58pdZ2z3t23s7QqrV9D6opYXd9nYjHX+ztxIZOvGVYTc/JEQdRiQjo5IEgO7csK6Bc16j8qz/we1nd+6opyb+9975nDuHrZecd57D3M+i3N8ud/SSI+PbK2OSb+dZN3Jm6hVCp88XY/+jSuaOiypiMJvpWChVjh7M4kBC/bTo54Pk7vVxM/F1tShScX0SImsq6trkR+UKo2xWj08PFCr1cTExBiUx8bG4u398P1irK2tsba2zlNuaWlp8AGX33JB64ztYfdf1O0Kq1fQ+qKWF3fZ2B71/DUM8qDhi2M5EzWITzaspVHkEjqqj+F6dQPt2UDSz1ux6zQZ/JsXq+381hXl3JjTuXvUesV57z3M+SxKnCV5fqWyae72S6w7eRNLtcLcwY3oXLuCqUOSiqFtdU92vNaO2VvC+eVQJOtPRfPPuVu80qEao1tX1g/nJZV9j5TIzpkzR///+Ph4PvzwQzp37kyLFi0A2L9/P5s2beK99957pCCLysrKisaNG7Nlyxb69u2rL9+yZQu9e/culRikx1sdP2fqjB7Guei+fPT3JupE/EAP1X6cbuyAH3aQUqEZDk+9CVU6mDpUSZIewfMhQewKv80LbarIJNZMuTtY81Hfugxu5s/0dWEcjLjDp5susP5UNH++3BJLtUxmzcEjJbLDhg3T///pp59m+vTpvPzyy/qy8ePHM3fuXP755x8mTZr0KE3ppaSkcOnSJf1yREQEJ06cwM3NDX9/f0JDQxkyZAhNmjShRYsWLFy4kMjIyCL1c5MkY6np48Q7I54h7MZTvLJ8Fa1T/uJp1S4cYg7CT/1Ic6+LVbtXwWx7qEvS483ZzpJVY0NQyQeFzF5tX2d+faE5f5y4yQfrw2gX7CmTWDNitD6ymzZt4pNPPslT3rlz5zyjCDyKI0eO0L59e/1ybt/VYcOGsWTJEgYOHEh8fDzTp08nOjqaOnXqsGHDBgICAowWgyQVVTVvBzrX8KLGE0uYsf0Qlc79wP/U27CLPw2/D6eNpTcqrxhoPASsHUwdriRJD/DjvquoVApDmud8nsgktvxQFIU+Df1oF+yJtcV/DyOF3UziYmwyver7yjHnyyij/cnh7u7OmjVr8pSvXbsWd3d3YzVDu3btEELkeS1ZskRfZ9y4cVy9epXMzEyOHj1KmzZtjNa+JD2Myp72THm2Ex0mfs+nNVcyV9uXRGGHq+YW6s1vkf1ZDdj0DiREmjpU6TH3oJkR85OZmck777xDQEAA1tbWVKlShR9++KGUoi09f5+OZuq6s7y39gz7L8tRaMorFzsrbK1yElmtTjB5zWkm/HqCkT8e4VZShomjk/JjtDuy06ZNY+TIkezYsUPfR/bAgQNs3LiRRYsWGasZSTJrgR72TPlfW67feYLPtpxEOfUrw9SbqKKJhv1zEQfmQ82eKE1eAPMdGU8yU7kzI86fP5+WLVuyYMECunbtSlhYGP7+/vluM2DAAG7dusX3339P1apViY2NJTu7fM2edDzyLhNWnEAIeK65P80rl+2hmiTj0AnBkzW8OHcziW3nY+k4eyfTetemTwM/eXe2DDFaIjt8+HBq1qzJV199xerVqxFCUKtWLfbu3StnzpKk+1Rys+P9fk34SYllsfp5Yo//xRBlA63VZyDsDyzC/qCNbRCKfyrU6w8WeUfNkCRjK2xmxPtt3LiRnTt3cuXKFdzccpK7wMDA0gy5xMUmZ/DiT8fIytbxVE1vpvWqI5OYx4SlWsX4J6vRpU4FXlt5klM3Epm04iQbTsfwUd86eDnKccLLAqOOI9usWTOWL19uzF1KUrnmZg3PdatN/FM1+HZnHz45tJdn2UA/9R5c0yPgz3GIf95Dafgc1B9i6nALpdVqizRjl4WFBRkZGWi12oeuV9D6/MqLUlbY8r0sLS3NclDyBynKzIj3+/PPP2nSpAmzZs1i2bJl2Nvb06tXLz744ANsbc1/PM6sbB0vLT9GTFIGVb0cmPO/BnIWqMdQdW9HVr8Ywrc7L/Pl1otsCbvF4at3WDmmBdW8HU0d3mPPaIlsZOSD+/YV9LWUJElQwdmGqb1qE9u+Ct/takX7A6fpp9vCsxZb8UmLh71fYrH3K5o71kUJV6Bmd1OHnEdKSgo3btygsMkChRBUqFCB69evP/DOVmH1ClqfX3lRygpbvpeiKFSsWBEHh/LzgF5cXBxarTbPmNve3t55xubOdeXKFfbs2YONjQ1r1qwhLi6OcePGcefOnQL7yRY05bdWq33gHza5cusUpe6j+mB9GIev3sXB2oJvn22IrYXyyO2WZvzGZs6xw6PFrwAvtq1M+2BPXl91CisLFf6uNqV2Lh63c1+c4zRaIhsYGPjADyVzPfmSVJq8HG14p3stRrYM4N1ldnSO60vzrMM8p/6HNurTeCefgpVDwKkiqoZDsNb4mDpkIOf3+8aNG9jZ2eHp6fnAa4FOpyMlJQUHBwdUqoKfNy2sXkHr8ysvSllhy7mEENy+fZsbN25QrVq1cndntrCZEe+l0+lQFIXly5fj7OwM5HRP6N+/P/Pmzcv3ruyMGTPynfL7woULxfrDIDw8vMh1H4YQguzURNQKhLZwJeN2JOduG2//JR1/STLn2OHR4/+onSspWTouhudMe6/RCiLuZlHdo+S7gD0u5z4lJaXI+zRaInv8+HGDZY1Gw/Hjx5k9ezYfffSRsZqRpMeCu70VPf11zBj6JD8dqsbLe1vgmnmDQept/M9iJy5JN1DvnEEn1KDZBI2GQtWnTBavRqNBCIGnp2ehXynrdDqysrKwsbEpNJF9UL2C1udXXpSywpbv5enpydWrV9FoNOUmkX2YmRF9fHzw8/PTJ7EANWvWRAihT/TvV9CU38HBwYXOqQ45fzSFh4dTvXr1Ej/3H9aCcQnp+Bpx2tLSjN/YzDl2KLn4Z/x9nh/2xvBy+yq81K4KFiUwBu3jdu6LM+230RLZ+vXr5ylr0qQJvr6+fPrpp/Tr189YTUnSY8PFzpJJHaszsnUQS/Zc4esd3nyR0Z+uqkOMsN5KPXEBLvyV83LwRlV3IA4ZfiaL93F5CKY8HufDzIzYsmVLVq5cqb9zDTl3XFQqFRUrVsx3m4Km/Far1cX6gC5u/aLK1urQCqEfS7SSe8l0Hymp+EuDOccOxo1fpxPcTctGJ+CrbZfZe/kOcwY2oJKbnVH2f7/H5dwX5xhLfOqK6tWrc/jw4ZJuRpLKNScbS15sW5kpjbRM7FyHPXZP0it9Cp0yP+FnVU/SLV0h5Rbq/V/x5Lk3Uf/YHeXEciy06aYOvdRUqCCnCX1UoaGhLFq0iB9++IFz584xadIkg5kRJ0+ezNChQ/X1Bw8ejLu7O88//zxhYWHs2rWL119/nREjRpjtw15zt1+iz7x9XIpNNnUokhlQqRQ+H1CfL//XAEdrC45eu0u3L3ez8Uy0qUN7bBjtjuz9t4GFEERHRzN16tR8v16SJKn4rNUwqlUgz7eqzE/7I/j6H8HbaYOYwjP0sT/DSy778Y/fg+rGQVQ3DtJZZY2KHdDwWQhoCQ/4Kl+SCpsZMTo62uDBXgcHB7Zs2cIrr7xCkyZNcHd3Z8CAAXz44YemOoRHEnYzibnbLpGtE5yJSqKql3wiXSqa3g38aOTvysQVJzh67S5jfzrGyFZBvNW1hpzutoQZLZF1cXHJ9yGBSpUq8euvvxqrGUmSABtLNcNaBOAaf5YUr7os3H2VlQkNWJnagECLgXxU9RzNEzdicfcynPol5+XkB3WfgXoDwLt2icUmhCBdU/DDnTqdjvQsLRZZ2YX2kb23nq2luthf6bdr145mzZrxzz//kJWVxZ9//klQUBC3bt1i9OjRXL9+HQcHB77//ntsbW0ZNGgQu3bt4s8//2TYsGFcuXKFK1euMG7cODZv3lysts3VuHHjGDduXL7r7p1BMVeNGjXYsmVLCUdV8rK1Ot78/RTZOkHn2t70buBr6pAkM1PJzY5fX2jOp5susHDXFVYcvs6wFoH4u5dMNwMph9ES2e3btxssq1QqPD09qVq1KhYWRh2uVpKkf1moYHDTSgxuHsiaY1HM3X6Rq3fcePZ8S5xt2vCs8xnGV7qMzcW/ICkK9s7JeXnXyUlo6/QHZ+P2qU3XaKn1/iaj7hMgbHpn7KyKfy1xcHDg8OHDfPzxxyxcuJAZM2YwadIk3n//fapWrcq5c+cIDQ3lzz//5Pbt22RlZbFv3z6CgoI4f/48Fy9epGXLlkY/HqlsWbQngtNRiTjZWPBBbznpgfRwLNUq3u5WkyYBruiEkElsKTBahqkoCiEhIXmS1uzsbHbt2kWbNm2M1ZQkSfexVKsY8EQletb14qOfNrEvwYkrcanMz6jJ0oS6jGg+ltEVLuN44XcI3wS3zsCWM7BlCgS1hnoDoWZPsHEuvDEz06tXLwDq1avHihUrANi2bRthYWFotVqDhw/q1q3L0aNHOXbsGC+99BIHDx7k/Pnz9O/f32TxSyXvyu0UvtiSMyzQuz1q4eUkZ2ySHk2n2oZ99vddjuNwxF1e6VAVlZxUw6iMlsi2b9+e6OhovLy8DMoTExNp3769HEdWkkqBhVrFE56Cd4eEsOnsLWauO0l0ejZf7bzBIis7hoW8x4svfYFTxF9w6jeI3AcRu3Je60MhuAvU7gfVO4Plwz2sY2upJmx65wLX63Q6kpOScXRyLLRrwb31bC0f7knd3CfkVSoV2dnZQM4f3keOHCElJQUnJyf9cFvNmjVj+/btKIpC+/bteeeddzh//jyffvrpQ7UtlX1CCN7/4yyZ2TpaV/Pgmcb5j7YgSQ8rOUPD+F9OEJeSSVh0Ip8PaICDtfym2liM1gO5oEGz4+Pjsbe3N1YzkiQVgVql0K1uBd6or2XeoPrU9nUiLUvLNzsu0+rr43yT0ob059bDhFPQ4T3wCAZtJoT9ASuHwawqsGoknP8LsjMLb/AeiqJgZ2XxwJetlbrQOvfXM+ZXva1bt2bRokVATsJ8+vRpAJo3b86CBQto1KgRgYGBXLhwAZVKhaOjfOinvErKyCY5Q4OVhYqP+tSVXQoko3O0seSNLsFYqVVsOnuLfvP3ci0+1dRhlRuP/CdB7viwiqIwfPhwg/EBtVotp06dIiQk5FGbkSTpIagU6FTLm271/PjnXCyfbbrAhVvJfLLxPEv2RTDhyeo80zIUy9avQvRJOPM7nF0LiZFwZlXOy9oJanTPuVNbuR1YWJn6sPJ1+/Zt/dilQggWLFhQYN2vv/6aMWPGMHfuXHQ6HUOHDqV27drUqlWLxMRE/TUrICAAH5+yMXuaVDKcbS1ZM64lYdFJsj+jVGIGNKlEVS8Hxi47SvitFHrN3cu8wY1oVc3D1KGZvUdOZHNndBFC4OjoaDB2oJWVFc2bN2f06NGP2owkSY9AURQ61vKmQw0v/jgRxeebw4lKSOftNaf5bvcVXu1UnW516qPybQAdp8ONI3B2dU5Sm3wTTv6S87JxyelLW6cfVGxh4qMylNt9SafTkZSUhJOTEz169NCXtWrVim7dugHg7e3N6tWr9fVyuxao1WoSEhL0y4sXLy7SbFOSeVOpFOr4lb/+4VLZ0sjflXWvtGLMsqOcuJ7A0B8O8na3moxsFSS/CXgEj5zILl68GIDAwEBee+012Y1AksowtUqhX6OKdK/nw88HI5m77RIRcam8/PNx6lW8wvs9atEk0A0qPZHz6vQRXD+Yc6c27A9IjYXjy+D4MizsPKhnVw/lmhP4NjX1oUlSsdxKymD5gWuMbVfloUbDkKSH4e1kw68vNOfdtWdYdfQGszZd4OCVeJoEutEk0JU6fs76WeWkojHab++UKVOMtStJkkqYtYWa51sG8UyTSny/O4KFuy5z6kYi/b/dT8/6vrzVtQZ+LrY5EygEtMh5df0Eru7JuVMb9idKWhxBadvgp21ke9aH5jMg0xOsrUHeXZDKuC+3XuTng5GE30rh2yGNTR2O9BixsVTzaf961PZx4sO/wthyLpYt52IBsFKrqFvRmSYBrjQKcKVxgCseDnmndJb+80iJbKNGjdi6dSuurq40bNjwgbfGjx079ihNSZJUAhysLZjwVDUGN/Pn880XWHHkOutO3mTz2RjGtKlseLdKpYbKbXNe3T4j+9J2ojZ9jX/aSUi/A1kpOX1r026CrTPYuIK1AyhyVhupbLkal8pvh68DMKJVkImjkR5HiqLwfKsgTkUlsuZ4lL48S6vj6LW7HL12V18W5GFPiyBXBgfLO7X5eaREtnfv3vqHu/r06WOMeCRJMgFPR2tmPl2P55oHMH19GIci7vDVtkusOHKdt7rWoE8DP8M/VNWWiMrtORGQjm/np+DaQUixBsUChBbS7uS8FHXO2LQ2LmDtKKfIlcqE2VvCydYJ2gV70jTIzdThSI+xka2CDBLZ/ETEpdK/kS+QVTpBmZlHSmTv7U4guxZIkvmr4+fMiheas/FMDB9tOMeNu+lMWnGSFYev82GfOvnPPa+2goAQiIgAj0BQZUN6AmQkgC47525t+p2cO7PWzig2ziBEKR+ZJOUIu5nEnydvAvBap2ATRyM97ur4OdMsyI2DEXcKrNO9ng9j2lTm/PnzpRiZ+TB6D/esrCxiY2PR6XQG5f7+/sZuSpKkEqAoCl3r+tC+hhff74ng620XOXDlDl2/3M2YNlV4uUNVbAqanEBRcu68WjuCqAhZqTkJbXoC6DSQcRcl4y7OKCAScu7U2jjndFuQpFIwd/tFAHrU85EjFUhlwqjWlQtMZOv4OfFZ//rysYMHMNr3fOHh4bRu3RpbW1sCAgIICgoiKCiIwMBAgoJkHyRJMjc2lmpeal+VLZPa0j7YE41WMHf7JTp9sYsdF2IL34Gi5PSRda4I3rXBozrYeyHUVigIlIxESLgGMach/jKkxefcwX1IFSpUKLyS9Fi7FJvC32diAHilQzUTRyNJOZ6s4UVgAWMYNw10w8ZSdsl6EKPdkX3++eexsLBg/fr1+Pj4yDHRJKmcqORmxw/Dn2DT2Rim/hlG5J00hi8+TPc6FQgp6pT0igJW9mBlj3D0IeXubRwstCgZCTkzimUm5bz4N/m1ccmZiEGSjMjaQkXv+r6ka7QEV5CztUllg0qlMLJVEO/9cVZfplYUtEKw7MA1BjX1p7KHnKyjIEZLZE+cOMHRo0epUaOGsXYpSVIZoSgKXer40KqaJ3O2hLN431X+OhPDTgs1jlVi6FTT87/KQoAmreCd6XRodVqEtSOKjRNkZ0BGYs4rOz1n25RYFMBBZY2ic8vpfmDrKof1kh5JJTc75vyvIVqd7KMtlS1PN67IZ5vDSUzXAPBJ/3qkZ2Xjam9FNW9H/YQvUl5GS2Rr1apFXFycsXYnSVIZ5GBtwbs9atG7gR+v/naC8NgUxq84xeDGFRhc699Z/TRp8LFvgftQAS5FaEvhvgvU6B3g5JOT1FoU9VawJOWlVsk/iKSyxc7Kgmeb+TN/x2VGtw6if+OKeerEJGvwz8zGyU4+U3Avo3W8+OSTT3jjjTfYsWMH8fHxJCUlGbwkSSo/6lZ0ZvWLzensp0OtUtgZfpvYpAyS0rMQJTUiQXY6JEfD7fMQew4lORq1NrNk2pLKleQMDe//cYbwW8mmDkWSCjS0RSAda3nzVteaedZFJ2Ywecsthi85QlKGxgTRlV1GuyP71FNPAfDkk08alAshUBRF3haXpHLG2kJFN38dL/YK4bONYWhFzsU2Q2uH75s3sFDn/3eyTqcjKTkZJ0dHVA8YV9agntCCVvNvX9pk0GaipMbiCIjY22DrAgg5rJeUr1VHb7B0/zX2X45n86Q28hkOqUyq4GzDt881zvcbg7iUTNKyBcciExiy6CBLRzTD2c7SBFGWPUZLZLdv326sXUmSZEZq+zox/9nGnAu/hIJCQkY2qRoVldyscbDO5xKj04GlNufhrwdNkJBfPQdP0GkhIxHxb79aRaeB1Ns55bfOoFg7YaG1BOTDPBLodIIf910FYFhIoExipTKtoG4vdf2cmfGUN1N2xHHyRiKDFx1g2chmuNlblXKEZY/REtm2bdsaa1eSJJkZKwsVTraWVHCz5VaajqxsHVdup+DlaI2Xkw0qYyYPKjXYuSFsXEhKTMDZRoWSkcjt+LtUbPiUvtqCT9+je7ceOdPlWsmk9nG18+Jtrsan4WhjQd+GfqYOR5IeWmU3K5aPasrQHw5z9mYSg787wE+jmuHhYG3q0EzKaInsqVOn8i1XFAUbGxv8/f3109lKklQ+2VpZUM3BmuiEdO6kZRGbnElKZjaVXO2wLmgShUehqBDWTii2LmizsyErBZGegEi/m9MdIeNuziQMKNipbFEss3OG9lIbfS4YqYxa+u/d2IFNKmGf3zcEkmRGgr0d+fWFFgz+7gDnY5IZuGA/v7zQHC/Hx/cBWKM97NWgQQMaNmyY59WgQQNq1KiBs7Mzw4YNIyMjw1hNSpJUBqlVChXd7Ahws0OtUkjL0nIxNoW7aSU8T/i/s4oJJz+SbCoh3KuBgxeorVEQWOnSUBKvw63TEHcRJS0O5REmYCiv5s+fT1BQEDY2NjRu3Jjdu3cXabu9e/diYWFBgwYNSjbAYohOTGdn+G0Anm0eYOJoJMk4qno5sGJMC3ycbbBUq1B4vLvLGC2RXbNmDdWqVWPhwoWcOHGC48ePs3DhQoKDg/n555/5/vvv2bZtG++++66xmpQkqQxztrOimpcj9tYW6ITg+p00btxNK53nsRQFYWkHTn7gVROdRzDpFi4Ii3+HCMtKQUmKwjnjOkr8RUi+lTMxw2NuxYoVTJw4kXfeeYfjx4/TunVrunbtSmRk5AO3S0xMZOjQoXke9jW11cei0AloGuRGkIe9qcORJKMJ8rDntzEt+GV0czwdH+9vu432PctHH33El19+SefOnfVl9erVo2LFirz33nscOnQIe3t7Xn31VT777DNjNStJUhly/9BbVhYqKnvYE5ucya2kDO6kZpGWpcW1NB+2VRSwsCHTyhVrJ6ech8MyEhDpiSiaVBRNGmjSUCXfxFGxRFG55YyCoC74q7oSG2LMxGbPns3IkSMZNWoUAHPmzGHTpk188803zJgxo8DtxowZw+DBg1Gr1axdu7aUoi2ctYUKDwdrBjSpZOpQJMnoKrkZzva1+WwMLaq442jzeI1mYLRE9vTp0wQE5P3qJiAggNOnTwM53Q+io6ON1aQkSWWEpaUliqJw+/ZtPD098zwZ7mwFFo5qohMzSU/PIiMDhJKCk23BT9zqdDqysrLIyMjId5iugtbnV56nzMIZnb0jqUmJOFgKlKxkhCYNhSxIiIGEGITKElR2ZFhZGexfCMHt27dRFAVLy/LzgZGVlcXRo0d56623DMo7derEvn37Ctxu8eLFXL58mZ9++okPP/ywpMMsllGtKzMsJFCOyiaVe78dvs4bv5/iiUBXfhzRFDurx6c/uNGOtEaNGsycOZOFCxdiZZXz4aTRaJg5c6Z+2tqoqCi8vb2N1aQkSWWEWq2mYsWK3Lhxg6tXrxZcUSdITM0iM1vHrShwsFbjbGuZ75BIQgjS09OxtbUt1vr8yotSJnSWaNKSsFSyUbIzQAg0alssEjLztK8oChUrVkStLj8z7MTFxaHVavNco729vYmJicl3m4sXL/LWW2+xe/duLCyK9nGSmZlJZuZ/3ThyJ8zRarVFGm88t05RxyZXAShFr1/Siht/WWLOsYN5x19Y7MHe9jjaWHD46l1GLjnMoqGNsSmJB2wfUnHPfXF+RkZLZOfNm0evXr2oWLEi9erVQ1EUTp06hVarZf369QBcuXKFcePGGatJSZLKEAcHB6pVq4ZG8+BZZzIys/jwt73sj81JDmv7OjOlVy3c7Q37eWk0Gnbt2kWbNm3yvfNZ0Pr8yotSZrAsNGRf3cvhS1E06dgwT/uWlpblKom91/1Je+6kNvfTarUMHjyYadOmUb169SLvf8aMGUybNi1P+YULF3BwcCjyfsLDwwtcl6UVhMVmUNfbpsxOR/ug+Ms6c44dzDv+gmJXA1PaevDe1lvsv3KHUd/v4a3WnmXu/V/Uc5+SklLkfRotkQ0JCeHq1av89NNPhIeHI4Sgf//+DB48GEfHnDEchwwZYqzmHsn169cZMmQIsbGxWFhY8N577/HMM8+YOixJMntqtbrQBE+tVtPaK4uOLZ7gtVWn2XzhDicXHObb5xrT0N/VoF52djY2Njb5JrIFrc+vvChlhsuOaGp2ISliQ4HtlzceHh6o1eo8d19jY2Pz/SYtOTmZI0eOcPz4cV5++WUgpwuHEAILCws2b95Mhw4d8mw3efJkQkND9ctJSUlUqlSJ4OBgnJycCo1Tq9USHh5O9erVC3yvbQm7xbtbj1PH14k/XgopdJ+lqSjxl1XmHDuYd/xFib1mTfCpGM/zPx5l//V0fr0o+KB3zTIxCUhxz33uNzVFYdROFA4ODowdO9aYuywRFhYWzJkzhwYNGhAbG0ujRo3o1q0b9vbyqVZJKi0dgj358+VWvLD0CBdjUxi44AAf9KnNwCf8TR3aY8nKyorGjRuzZcsW+vbtqy/fsmULvXv3zlPfyclJ//xDrvnz57Nt2zZWrVpFUFBQvu1YW1vnO6Z4Uf4IKmr9DWduAdCssnuZTViKe7xliTnHDuYdf2Gxt6zmxZcDGzDu52P8cvg6FZxtmfBUtVKM8MGKeu6L8/Mxem/gsLAwIiMjycoyHDOyV69exm7qofn4+ODj4wOAl5cXbm5u3LlzRyayklTKgjzsWfNSS1797QSbzt7izd9Pczoqkfd71H7MR0Y0jdDQUIYMGUKTJk1o0aIFCxcuJDIyUn+DYvLkyURFRbF06VJUKhV16tQx2N7LywsbG5s85aUpPUvLP+dyEtke9XxMFockmUrXuj5M71Wb9/44S5omu8DuQeWF0RLZK1eu0LdvX06fPp3z4MS/j4nmnrzidNzdtWsXn376KUePHiU6Opo1a9bQp08fgzrz58/n008/JTo6mtq1azNnzhxat25d7LiPHDmCTqejUiU5PIskmYKDtQXfPNuYedsvMfufcH46EMn56GS+GljP1KE9dgYOHEh8fDzTp08nOjqaOnXqsGHDBv2INNHR0YWOKWtq2y/Ekpalxc/FlgaVXEwdjiSZxJAWgdTydaZxgGvhlc2c0SZEmDBhAkFBQdy6dQs7OzvOnj3Lrl27aNKkCTt27CjWvlJTU6lfvz5z587Nd31RBu1u3LgxderUyfO6efOmvk58fDxDhw5l4cKFD3XMkiQZh0ql8MqT1fh+WBMcrS04cu0uTy84SFSqqSN7/IwbN46rV6+SmZnJ0aNHadOmjX7dkiVLHng9nzp1KidOnCj5IB/g7zM5fXx71PMp13ehJKkw9yaxmdlaIuLK5wXVaHdk9+/fz7Zt2/D09ESlUqFSqWjVqhUzZsxg/PjxHD9+vMj76tq1K127di1wfVEG7T569OgD28jMzKRv375MnjyZkJAHPwxQ0HAxGo1G/8pdzu/f+/9vTPm1ZcztCqtX0Pqilhf3X2Mz5fkr7rrivM/M9b3Xuoobv49txtjlx7kSl8acM2r8a0bTuU7er4iL8957mPNZnOMrqXMsFY9Gq2PHhVgAOtWWQz1KEsDd1CzGLDtKRHwqf7zUEl8XW1OHZFSKMNIUNa6urhw9epTKlStTpUoVFi1aRPv27bl8+TJ169YlLS3t4QJUFIOuBVlZWdjZ2bFy5UqDBxImTJjAiRMn2LlzZ6H7FEIwePBggoODmTp1aqH1p06dmu9wMT///DN2dnb5bCFJ0qNIy4bF4SrCE1UoCHr66+jgKyirN9jS0tIYPHgwiYmJRXryXvpPUlISzs7ORT53Wq2Wc+fOUbNmzTwPhBy4Es//Fh7Azd6Kw+88VeaGHoIHx1/WmXPsYN7xP0rsyRka+n+znwu3kqnl48TKsS2wty7dCROKG39xrgtGO5I6depw6tQpKleuTLNmzZg1axZWVlYsXLiQypUrG6uZhxq0+3579+5lxYoV1KtXTz+d4rJly6hbt26+9QsaLqZTp044OTmh0WjYsmULHTt21I9HmbsMGKwztvvbNvZ2hdUraH1Ry4u7bGymPH/FXVeUc1Oe3nvdMjIZt2g7e2+p+DNSjZWHH9N61sTKQvXA/RTl3OVX9ijvveIMFSOVnKaBbvzxUkuiE9PLZBIrSabgaGPJomFN6DNvL2HRSUxccYIFzzVGVU5+R4yWyL777rukpub0v/jwww/p0aMHrVu3xt3dnV9//dVYzegVddDu/LRq1QqdTlfktgoaLsbS0tLgAy6/5YLWGdvD7r+o2xVWr6D1RS0v7rKxmfL8FXddUc5NeTh3dsAzQTo6NKnFRxvOs+pYFNfvpvPtc41xtbcqdD9FOXf5lT3Me+9xGGfWHKhUCvUruVBfPuQlSQYqudmxcGhjBi08yJawW3yy6TyTu9Y0dVhGYbSHvTp37ky/fv0AqFy5MmFhYcTFxREbG8uTTz5prGaKPWi3JEnmS1FgaHN/fhj+BA7WFhyMuEOf+Xu5FFv0WV8kSZIkaBzgxqz+OaPBLNh5hb9ORZs4IuN45DuyI0aMKFK9H3744VGbAoo/aLckSeavXbAXq8eFMPLHw1yLT6Pv/L3MH9TA1GFJZcgfJ6LYdyme3g18CanqYepwJKlM6tPQj3PRSSzYdYXp68/yZE0vbCzNq7/w/R45kV2yZAkBAQE0bNgQIz03RkpKCpcuXdIvR0REcOLECdzc3PD39y900G5Jksqf6t6OrB3XkjHLjnLk2l1GLD3K/4IUupk6MKlM+Pt0DBvPxlDJzVYmspL0AK93DiY5M5uRrYLMPokFIySyY8eO5ddff+XKlSuMGDGC5557Djc3t0fa55EjR2jfvr1+OfdBq2HDhrFkyZJCB+2WJKl8cnew5qdRzXj1t5P8dTqaZZfUeO28wstPVi83Y4Zu3LgRBwcHWrVqBcC8efP47rvvqFWrFvPmzcPVtfwPcF5cOp1g/5V4AFpUkUmsJD2IhVrFx33zf7jdHD1yH9n58+cTHR3Nm2++ybp166hUqRIDBgxg06ZND32Htl27dggh8ryWLFmir/OgQbslSSq/bCzVfD2oISNb5vzh+vk/l3hn7RmytUV/gLMse/311/WjIJw+fZpXX32Vbt26ceXKFYPRU6T/hEUnkZiuwcHagvoVnU0djiSZlX2X4lh24Jqpw3hoRnnYy9ramkGDBrFlyxbCwsKoXbs248aNIyAggJQU+VCGJEnGpVIpvNUlmKcDtSgK/HwwktFLj5CamW3q0B5ZREQEtWrVAuD333+nR48efPzxx8yfP5+///7bxNGVTfsv59yNbRrkhoXaaM8wS1K5d/ZmIs99f5Cpf57leORdU4fzUIz+G68oCoqiIIQo1hBXkiRJxdXGRzB/UANsLFVsv3CbgQv3czs5s/ANyzArKyv9BDL//PMPnTp1AsDNzU2OV1uAfZfjAAip4m7iSCTJvNTycaJ7PV+0OsH4X4+TnGF+sxQaJZHNzMzkl19+oWPHjgQHB3P69Gnmzp1LZGQkDg4OxmhCkiQpX0/V9OKX0c1xt7fiTFQSzyw8SMzDTSRYJrRq1YrQ0FA++OADDh06RPfu3QEIDw+nYsWKJo6u7NHpBEeu5txJal5ZJrKSVByKovBhnzr4udhy/U467/9x1tQhFdsjJ7Ljxo3Dx8eHTz75hB49enDjxg1WrlxJt27dUKnkVzySJJW8hv6urB4XQpCHPVEJGcw5o+bQ1TumDuuhzJ07FwsLC1atWsU333yDn58fAH///TddunQxcXRlT1xKJp6O1thbqalRwdHU4UiS2XG2teSrQQ1QKbDmeBRrjt8wdUjF8sijFnz77bf4+/sTFBTEzp072blzZ771Vq9e/ahNSZIkFSjA3Z7fXwxh5JJDHL+eyPM/HuOr/zWgSx0fU4dWLP7+/qxfvz5P+RdffGGCaMo+Lycbtr3WjpTMbNk/VpIeUuMANyY8WZ0v/gnnvbVnaezvhr+7nanDKpJH/q0fOnQo7du3x8XFBWdn5wJfkiRJJc3N3oqlzzehrquOrGwd45YfY/nBsv807r19X5OSkh74kvLnYG20Gdcl6bH0UvsqPBHoSkpmNquOXjd1OEVmlAkRJEmSygobSzXPB+s4mF2JFUeieGfNGW4lplPZOPO1lAhXV1eio6Px8vLCxcUl3zFxhRAoioJWqzVBhGWXTidQqcrHGMKSZEoWahWzBzTgyLU79GngZ+pwikz+CStJUrmjVuCDXrXwdrLlq22X+GrbZVp6q+iiE1iaOrh8bNu2TT+RzLZt28rN5A4lLSlDQ8uZ26jr58wPw58oF7MUSZIpVXKzo5KbeXQpyCUTWUmSyiVFUQjtFIynozXv/3mWvbdUjF9xkq8GNSpzCU/btm31/2/Xrp3pAjEzZ6ISSc7I5lp8Wpn7mUqSuUtIy+LXw9cZ06Zymf7jWvaMlySpXBvSIpAvB9RDrQg2h8Uy7IdDJKaX3bES33vvvXy7DyQmJjJo0CATRFR2nYtOBqC2r5OJI5Gk8kWj1dF73l5m/n2e346U7f6yMpGVJKnc61qnAi/W1OFgbcHBiDsMXLCfW0kZpg4rX0uXLqVly5ZcvnxZX7Zjxw7q1q3L1atXTRdYGXQuOufht5o+MpGVJGOyVKsY0jxnGvCZf5/nbmqWiSMqmExkJUl6LFRzFiwf2QQPB2vOxyQz8LtDxKabOqq8Tp06RWBgIA0aNOC7777j9ddfp1OnTgwfPpw9e/aYOrwyRSayklRyhocEUqOCI3fTNMzadMHU4RRIJrKSJD02avk4sfrFEALd7fQTJ5y6kWjqsAw4Ozvz66+/Mn78eMaMGcOXX37J33//zfTp01GrS74f6Pz58wkKCsLGxobGjRuze/fuAuuuXr2ajh074unpiZOTEy1atGDTpk0lHiPkfPV58VYKkPNzlSTJuCzUKj7oUweAXw9HcuJ6gmkDKoBMZCVJeqz4u9ux6sUQ6vg6kZqtMGTxEXaF3zZ1WAa+/vprvvjiCwYNGkTlypUZP348J0+eLPF2V6xYwcSJE3nnnXc4fvw4rVu3pmvXrkRGRuZbf9euXXTs2JENGzZw9OhR2rdvT8+ePTl+/HiJx3rldipZ2pzuIhVdbUu8PUl6HD0R6MbTjSoiBLy79jRaXdkbx1AmspIkPXY8HKxZNqIJwc460rK0jPzxMBtOx5g6LAC6du3KtGnTWLp0KcuXL+f48eO0adOG5s2bM2vWrBJte/bs2YwcOZJRo0ZRs2ZN5syZQ6VKlfjmm2/yrT9nzhzeeOMNnnjiCapVq8bHH39MtWrVWLduXYnGCZCZraN1NQ/aBnvKcWQlqQS91bUGjjYWnIlKYmUZfPBLDr8lSdJjycHaghdq6Nia6sOGM7eYuPIU/QMVupk4ruzsbE6dOoWvry8Atra2fPPNN/To0YNRo0bxxhtvlEi7WVlZHD16lLfeesugvFOnTuzbt69I+9DpdCQnJ+vHxM1PZmYmmZmZ+uXc2cq0Wm2RJnvIrVPbx4Elw5sYlJmD3FjNKeZc5hw7mHf8pozdzc6CSU9V4+KtFNpWc3+oGIobf3HakImsJEmPLQsVzH6mHi72F/j5YCQrI9RU3HGF8U9VN1lMW7Zsybe8e/funD59usTajYuLQ6vV4u3tbVDu7e1NTEzR7lZ//vnnpKamMmDAgALrzJgxg2nTpuUpv3DhAg4ODkWONzw8vMh1yyJzjt+cYwfzjt9UsTd1gaYuKuKjIoiPevj9FDX+lJSUIu9TJrKSJD3W1CqFj/rUwcXGgvk7r/DF1kskZWp5o2NVU4eWh4eHR4m3cf/A57lT4xbml19+YerUqfzxxx94eXkVWG/y5MmEhobql5OSkqhUqRLBwcE4ORX+0JZWqyU8PJyKgVVwtLUqtH5Zkxt/9erVS+XhPWMy59jBvOMva7Fna3VYqIveO7W48ed+U1MUMpGVJOmxpygKk56qSvS1i6y5qub7PRHcScmgtXXpx6LVavniiy/47bffiIyMJCvLcPzGO3fulEi7Hh4eqNXqPHdfY2Nj89ylvd+KFSsYOXIkK1eu5KmnnnpgXWtra6yt855YtVpd5A9oIQQhs3ZiZ6Xmj5db4edifg97Fed4yxpzjh3MO35Tx375dgof/3WOiq62TOtdp9jbFzX+4hyjfNhLkiTpX+18BLP61UGtUlhzIpofL6oQonSf0p02bRqzZ89mwIABJCYmEhoaSr9+/VCpVEydOrXE2rWysqJx48Z5ujZs2bKFkJCQArf75ZdfGD58OD///DPdu3cvsfjudSddS1qWlrtpGjwdTPDXhiQ9pmISM9h6PpZfDl0nJrFsTCojE1lJkqR79G3oy4LnGmNrqaKBe9G+Vjem5cuX89133/Haa69hYWHBoEGDWLRoEe+//z4HDhwo0bZDQ0NZtGgRP/zwA+fOnWPSpElERkYyduxYIKdbwNChQ/X1f/nlF4YOHcrnn39O8+bNiYmJISYmhsTEkh2bNyopG4BKrrZYWciPMUkqLSFV3Hki0JUsrY5vd14ufINSIK8AkiRJ93mqljfbQlvTyKP0x0yMiYmhbt26ADg4OOiTwh49evDXX3+VaNsDBw5kzpw5TJ8+nQYNGrBr1y42bNhAQEDOVJXR0dEGY8ouWLCA7OxsXnrpJXx8fPSvCRMmlGict1L/TWTd7Eq0HUmSDCmKwvgnqwHwy6FIYsvAVN+yj6wkSVI+PEz0lXXFihWJjo7G39+fqlWrsnnzZho1asThw4fz7VtqbOPGjWPcuHH5rluyZInB8o4dO0o8nvzc/jeRNce+sZJk7lpV9aChvwvHIxNYuOsK7/aoZdJ45B1ZSZKkMqRv375s3boVgAkTJvDee+9RrVo1hg4dyogRI0wcXdkQl5ozxqSPs0xkJam0KYrChH/vyi4/GElimsak8cg7sg8h9+GP3OEhNBoNaWlpJCUlYWlpabAMGKwztvvbNvZ2hdUraH1Ry4u7bGymPH/FXVeUcyPfe0U7d/mVPcp7L/d8G+PBsJkzZ+r/379/fypVqsTevXupWrUqvXr1euT9lwe303LuyPq62Jg4Ekl6PLWt7kmNCo6cj0nmtyPXGd2msslikYnsQ0hOTgagUqVKJo5EkqSyJDk5GWdnZ6Pus1mzZjRr1syo+zR3NTyscbC3p4pX0SdQkCTJeBRFIbRjdW4lZ/J0Iz+TxiIT2Yfg6+vL9evXcXR01D/R/MQTT3D48GF9ndzl3MG+r1+/XqTBvh/G/W0be7vC6hW0vqjlD1ou7+evuOsKO3f3lpX3c/eg9UU5d/mVPex7TwhBcnKyflpZqWQ9W9+FmjVrmu1YoJJUHnSqXcHUIQAykX0oKpWKihUrGpSp1WqDD7v7l52cnEosmbi/LWNvV1i9gtYXtbywZSi/56+464pyruR7r2jnJb+yR3nvGftOrCRJklQ4+bCXkbz00ksPXC7Nto29XWH1Clpf1HJTnrtHac8Y56+464pyruR7r+jnxdTvPan4srU6srSlPyyaJEn5+/VQJD2+3s2FmGSTtK+I0p625jGTlJSEs7MziYmJJXZXrDyT5+/hyXP3aOT5Kx3FPc8HL8cx8LuD1KzgyN8T25RChMal1Wo5d+6cWXaNMOfYwbzjL8uxv/jTUf4+E8PzLQOZ0rN2vnWKG39xrgvyjmwJs7a2ZsqUKaUy/mN5JM/fw5Pn7tGY6vwNHz6cXbt2lWqb5iQ+NQsAG0v58SVJZcHAJ3IefF9zPIoMjbbU25dXghJmbW3N1KlTZTLxkOT5e3jy3D0aU52/5ORkOnXqRLVq1fj444+Jiooq1fbLujv/JrJu9lYmjkSSJIDW1TzxdbYhIU3D5rBbpd6+TGQlSZLKkN9//52oqChefvllVq5cSWBgIF27dmXVqlVoNKYdeLwskImsJJUtapXCM01y7squPHK91NuXiawkSVIZ4+7uzoQJEzh+/DiHDh2iatWqDBkyBF9fXyZNmsTFixdNHaLJ3E2TiawklTVPN8oZyWnvpTjiUjJLtW2ZyEqSJJVR0dHRbN68mc2bN6NWq+nWrRtnz56lVq1afPHFF6YOzyTu/jsdprOt8WerkyTp4fi721G/kgs6AX+fji7VtuU4spIkSWWIRqPhzz//ZPHixWzevJl69eoxadIknn32WRwdHQH49ddfefHFF5k0aZKJoy19aVk5D5M4WsuPL0kqS/o38qOCk3Wpz7gn78iWMX379sXV1ZX+/fubOpQyb/369QQHB1OtWjUWLVpk6nDMjnyvPZzr16/Trl07atWqRb169Vi5cqVR9+/j48Po0aMJCAjg0KFDHDlyhLFjx+qTWIDOnTvj4uJi1HbNRV0/J57ws8Xf3c7UoUiSdI8hLQJZMKQJIVU8SrVdmciWMePHj2fp0qWmDqPMy87OJjQ0lG3btnHs2DE++eQT7ty5Y+qwzIp8rz0cCwsL5syZQ1hYGP/88w+TJk0iNTXVaPufPXs2N2/eZN68eTRo0CDfOq6urkRERBitTXMyrl0VprT3olXV0v2wlCSpbJKJbBnTvn17gzsvUv4OHTpE7dq18fPzw9HRkW7durFp0yZTh2VW5Hvt4fj4+OgTTC8vL9zc3Iz2R1R2djYjRozg0qVLRtmfJElSaYuIS+WXQ5Gl1p5MZIth165d9OzZE19fXxRFYe3atXnqzJ8/n6CgIGxsbGjcuDG7d+8u/UDNwKOey5s3b+Ln56dfrlix4mM13qZ8Lz48Y567I0eOoNPpqFSpklFis7CwICAgAK229AcVNxdanZyMUpLKqoS0LJ78fAeTV58mMj6tVNqUiWwxpKamUr9+febOnZvv+hUrVjBx4kTeeecdjh8/TuvWrenatSuRkf/9ZdK4cWPq1KmT53Xz5s3SOowy4VHPZX4zKyuKUqIxlyXGeC8+rox17uLj4xk6dCgLFy40anzvvvsukydPll1lCtBsxjb6/RLJldsppg5FkqT7uNhZ0aKKOwDrT5dSXiOkhwKINWvWGJQ1bdpUjB071qCsRo0a4q233irWvrdv3y6efvrpRw3RbDzMudy7d6/o06ePft348ePF8uXLSzzWsuhR3ouP23vtfg977jIyMkTr1q3F0qVLjR5TgwYNhIODg7C2thbVq1cXDRs2NHiVN4mJiQIQiYmJRapf872/RcCb68WV2KQSjqxkZGdni9OnT4vs7GxTh1Js5hy7EOYdvznF/vPBayLgzfWi25e79GXFjb841wU5fomRZGVlcfToUd566y2D8k6dOrFv3z4TRWWeinIumzZtypkzZ4iKisLJyYkNGzbw/vvvmyLcMke+Fx9eUc6dEILhw4fToUMHhgwZYvQY+vTpY/R9lifZ/3YtsFA9Pt/ASJI56Vy7Au+uPcPZm0lExKUS5GFfou3JRNZI4uLi0Gq1eHt7G5R7e3sTExNT5P107tyZY8eOkZqaSsWKFVmzZg1PPPGEscMt04pyLi0sLPj8889p3749Op2ON954A3d3d1OEW+YU9b0o32t5FeXc7d27lxUrVlCvXj19/9ply5ZRt25do8QwZcoUo+znYc2fP59PP/2U6OhoateuzZw5c2jdunWB9Xfu3EloaChnz57F19eXN954g7Fjx5ZYfNlaHSATWUkqq9zsrWhZ1YNd4bf569RNXu5QrUTbk4mskd3fT1MIUay+m/LJ+/8Udi579epFr169Sjsss1HY+ZPvtYI96Ny1atUKnU5nirBKXG7/4Pnz59OyZUsWLFhA165dCQsLw9/fP0/9iIgIunXrxujRo/npp5/Yu3cv48aNw9PTk6efftro8el0gtxnvdRq+YiHJBlNdDQsWABjxoCPzyPvrkddH3aF32b9qWh61PPlWnwKLiX0oKa8EhiJh4cHarU6z93X2NjYPHd3pAeT5/LRyPP38MrCudNqtXz22Wc0bdqUChUq4ObmZvAqSbNnz2bkyJGMGjWKmjVrMmfOHCpVqsQ333yTb/1vv/0Wf39/5syZQ82aNRk1ahQjRozgs88+K5H4Npz5b+rLZxcdYuOZ0p0KU5LKrehomDYt518j6FTbGwuVwtX4VDp9sZNhi4/w4/EEo+z7fjKRNRIrKysaN27Mli1bDMq3bNlCSEiIiaIyT/JcPhp5/h5eWTh306ZNY/bs2QwYMIDExERCQ0Pp168fKpWKqVOnlli7uf2DO3XqZFD+oL7V+/fvz1O/c+fOHDlyBI1GY9T4Np6J5uWfj+uXL8WmMPanYzKZlaQyyMXOip9HN6OalwNZ2pw7sZsuJaMrgbuysmtBMaSkpBgMVB4REcGJEydwc3PD39+f0NBQhgwZQpMmTWjRogULFy4kMjKyRPuLmSt5Lh+NPH8Pr6yfu+XLl/Pdd9/RvXt3pk2bxqBBg6hSpQr16tXjwIEDjB8/vkTafZh+/jExMfnWz87OJi4uDp98vqLMzMwkMzNTv5yUlATk3Il+0Pi5c/65iALkfgwKQFFyyjvW9Cr8AMuI3GM0x7GCzTl2MO/4SyT26Gj9HVjl+HFUgO7IEURuGz4+j9TNQAWcjkrCSq2QpRWkagQRt5Op4u1U6LbFOU6ZyBbDkSNHaN++vX45NDQUgGHDhrFkyRIGDhxIfHw806dPJzo6mjp16rBhwwYCAgJMFXKZJc/lo5Hn7+GV9XMXExOjf3DMwcGBxMREAHr06MF7771X4u0Xt59/fvXzK881Y8YMpk2blqf8woULODg4FNjO5dhk7r+XI0RO+blz5wrcrqwKDw83dQgPzZxjB/OO35ixe82fj9d93YZUY8bo/x/74ovEjhv30PtfdiRnLOxGPtYcuJEBQPjlK2TdsS5025SUoo8TrQiRz8jykiRJkkkEBwezdOlSmjVrRuvWrenevTtvvfUWK1as4JVXXiE2NrZE2s3KysLOzo6VK1fSt29fffmECRM4ceIEO3fuzLNNmzZtaNiwIV9++aW+bM2aNQwYMIC0tDQsLS3zbJPfHdlKlSpx584dnJwKvlPT/eu9XIgxTGYVBWp4O7L+lZbFPFrT0Wq1hIeHU716ddRqtanDKRZzjh3MO/4Sif3+O7JjxqBbsADRsGHO+ke4I6vTCVp/tpOYxAy8nay5lZRJDQ9r/hzfpkjxJyUl4ebmRmJi4gOvCyDvyEqSJJUpffv2ZevWrTRr1owJEyYwaNAgvv/+eyIjI5k0aVKJtXtv/+B7E9ktW7bQu3fvfLdp0aIF69atMyjbvHkzTZo0yTeJBbC2tsbaOu8dGbVa/cAPuIlPVWPsT8f0ywo5d2QnPGV+SQkUfrxlmTnHDuYdv1Fjr1gx55WzYwBUTZpAo0aPvOvj1+8Qk5iBg5WaLnUqcCU2hQHBVkWOvzjHKBNZSZKkMmTmzJn6//fv35+KFSuyb98+qlatWuLDzRXWP3jy5MlERUWxdOlSAMaOHcvcuXMJDQ1l9OjR7N+/n++//55ffvnF6LF1qePDt8810iezVb3sebVTDbrUqWD0tiRJejTrT+Xc6e1UuwLTetVBq9WWWBcgmchKkiSVYc2bN6d58+al0lZh/YOjo6OJjIzU1w8KCmLDhg1MmjSJefPm4evry1dffVUiY8hCTjJrqVbQaAVLhj+Bn1vJzhgkSY8NHx+YMsUoY8jqdIINp3MS2e71Hn1/hZGJrCRJUhkTHh7Ojh07iI2NzTP5QklPxTxu3DjGFfCAx5IlS/KUtW3blmPHjuWtXELUqpxENrucTkohSSbh4wNGGt7v8NU7xCZn4mhjQetqnkbZ54PIRFaSJKkM+e6773jxxRfx8PCgQoUKBk//K4pS4olsWWehUgE6NFr5nLIklUV//Xs3tnPtClhZlPx0BTKRlSRJKkM+/PBDPvroI958801Th1Im2VupScnMJi3L/MYClaTyTqsTbDidM+50aXQrADmzlyRJUply9+5dnnnmGVOHUWbZWec8zZyWlW3iSCRJut/BiHjiUjJxtrWkZRWPUmlTJrKSJEllyDPPPMPmzZtNHUaZZWeV80ViSqa8IytJZU3uaAWda3uXSrcCkF0LJEmSypSqVavy3nvvceDAAerWrZtnPNaSmqLWXDjIO7KSVCZptDr+/rd/bK/6fqXWrkxkJUmSypCFCxfi4ODAzp0788ympSjKY5/I5t6RTZV3ZCWpTNlzKY67aRo8HKxoXtmt1NqViawkSVIZEhERYeoQyjT7f+/Ipso7spJUpqw7eROA7nV9sFCXXs9V2UdWkiRJMhuO1jldLZLTZSIrSWVFhkbL5rO3AOhZ37dU25Z3ZCVJkkwsNDSUDz74AHt7e0JDQx9Yd/bs2aUUVdnkap+TyN5JzTJxJJIk5dp2PpaUzGz8XGxp5O9aqm3LRFaSJMnEjh8/jkaj0f+/IPdOjvC4crO3AuBOmkxkJamsWHH4OgC9G/iiUpXudUomspIkSSa2ffv2fP8v5eWem8jKO7KSVCZEJaSz6+JtAAY+UanU25d9ZCVJkiSz4SYTWUkqU1YeuY4QEFLFnQB3+1JvX96RlSRJKkP69u2bbxcCRVGwsbGhatWqDB48mODgYBNEZ3pudrmJrMbEkUiSpNUJVh65AZjmbizIO7KSJEllirOzM9u2bePYsWP6hPb48eNs27aN7OxsVqxYQf369dm7d6+JIzUN13/vyN5Ny0KnEyaORpIebzsuxBKVkI6zrSWda1cwSQwykZUkSSpDKlSowODBg7ly5Qq///47q1ev5vLlyzz33HNUqVKFc+fOMWzYMN58801Th2oSHg5WKEC2ThAvuxdIkkl9vydn3Ov/PVEJG0u1SWIoV10Ljh07xptvvsnhw4dRq9U8/fTTzJ49GwcHB32dyMhIXnrpJbZt24atrS2DBw/ms88+w8rKqsjt6HQ6bt68iaOjo3yKWJIkhBAkJyfj6+uLSvVo9we+//579u7da7AflUrFK6+8QkhICB9//DEvv/wyrVu3ftSwzZKlWoWbnZr4NC03E9LxdLQ2dUiS9FgKu5nEvsvxqFUKQ0MCTRZHuUlkb968yVNPPcXAgQOZO3cuSUlJTJw4keHDh7Nq1SoAtFot3bt3x9PTkz179hAfH8+wYcMQQvD1118Xq61KlUzTF0SSpLLr+vXrVKxY8ZH2kZ2dzfnz56levbpB+fnz59Fqc6ZltbGxeaz/iPb4N5GNTkynfiUXU4cjSY+lH/bm3I3tUqcCfi62Jouj3CSy69evx9LSknnz5unvZMybN4+GDRty6dIlqlatyubNmwkLC+P69ev4+ubMPPH5558zfPhwPvroI5ycnIrUlqOjI5DzoeXk5IRGo2Hz5s106tQJS0tLg2XAYJ2x3d+2sbcrrF5B64taXtxlYzPl+SvuuqKcG/neK9q5y6/sUd57SUlJVKpUSX9teBRDhgxh5MiRvP322zzxxBMoisKhQ4f4+OOPGTp0KAA7d+6kdu3aj9yWufK0s+ACWUQlZJg6FEl6LMUmZfDniZwpaUe2CjJpLOUmkc3MzMTKysrg6zhb25y/EPbs2UPVqlXZv38/derU0SexAJ07dyYzM5OjR4/Svn37IrWVeyfEyclJn8ja2dnh5OSk/wDMXQYM1hnb/W0be7vC6hW0vqjlxV02NlOev+KuK8q5ke+9op27/MqM8d4zxl3SL774Am9vb2bNmsWtWzlTPnp7ezNp0iR9v9hOnTrRpUuXR27LXHna53x0RSekmzgSSXo8Ldx1hSytjkb+LqU+k9f9yk0i26FDB0JDQ/n000+ZMGECqampvP322wBER0cDEBMTg7e3t8F2rq6uWFlZERMTU+C+MzMzyczM1C8nJSUBOR+Eua/c5fz+vf//xpRfW8bcrrB6Ba0vanlx/zU2U56/4q4rzvtMvveKfl6M8d4z5jlWq9W88847vPPOO/przf3fFvn7+xutPXPkYZ/zUMnNRJnISlJpi0vJ5KeD1wAY/2Q1E0cDihCiTI9fMnXqVKZNm/bAOocPH6ZJkyb8/PPPhIaGEhcXh1qtZvz48SxbtozQ0FDeeOMNXnjhBa5du8amTZsMtreysmLp0qX873//K1YMP//8M3Z2dg9/cJIkmZbQYaHLwFKbhoU2HUttGpbadCz+/TfZ1o94hxqF7iYtLY3BgweTmJhY5C5KUo6kpCScnZ2LfO60Wi0/bD7KRztvU6+iM3++3KoUojQerVbLuXPnqFmzJmq1aZ7yfljmHDuYd/xlKfYZG86xYNcV6ld0Zu1LLYv0TVRx4y/OdaHM35F9+eWXC0wwcwUGBgIwePBgBg8ezK1bt7C3t0dRFGbPnk1QUE7/jQoVKnDw4EGDbe/evYtGo8lzp/ZekydPJjQ0VL+c2x+uU6dO+q4FW7ZsoWPHjvqvJHOXAYN1xnZ/28berrB6Ba0vanlxl43NlOevuOuKcm4e+/deVirZCVEc2fEXTWsHoc5KQkm/iy4ljujLZ/B1tUWVmYCSfgfS7kD6XRQK/lv+isdTNOr7SpH6yBrTqlWr+O2334iMjCQry3CIqWPHjhm1rVx3795l/Pjx/PnnnwD06tWLr7/+GhcXl3zrazQa3n33XTZs2MCVK1dwdnbmqaeeYubMmQbdt0qCr2POR1dEXCpCiMf6wTdJKk13UrNYduC/u7Fl4XevzCeyHh4eeHh4FGub3KT0hx9+wMbGRv+h3qJFCz766COio6Px8fEBch6Gsba2pnHjxgXuz9raGmvrvEO8WFpaGnzA5bdc0Dpje9j9F3W7wuoVtL6o5cVdNjZTnr/irivKuSl3506thtRYSLgOCdcg6SaqxCgaR5zA5tdvUaXGQvItyErGEmgNcPG/fagBf4A7BTSitkJYO5GqVWPnWgGVrTM6K0eS0ryoVIQ4jXl+v/rqK9555x2GDRvGH3/8wfPPP8/ly5c5fPgwL730ktHaud/gwYO5ceMGGzduBOCFF15gyJAhrFu3Lt/6aWlpHDt2jPfee4/69etz9+5dJk6cSK9evThy5EiJxQng42iJokByRjbxqVl4OMghuCSpNMzffom0LC11/JzoUMPL1OEAZpDIFsfcuXMJCQnBwcGBLVu28PrrrzNz5kz9HYVOnTpRq1YthgwZwqeffsqdO3d47bXXGD16tPw6UJJMLSsN7lyGuItw5wqqu9docekYFt9Mg8QboM00qK4GKgIkGO5GWNqRqjhg5xmAyt4dbN3Q2jhzITKO6g2aY+HoCbZuaKyc2br/OE9274elrSPZGg1bN2ygW7duqCwt0Wo0XNuwgdIeG2D+/PksXLiQQYMG8eOPP/LGG29QuXJl3n//fe7cKSgTfzTnzp1j48aNHDhwgGbNmgHw3Xff0aJFCy5cuJDvdLjOzs5s2bLFoOzrr7+madOmREZGlmg/Xiu1gp+LLTfuphMRlyoTWUkqBdfvpLF0f87d2Nc71ygTd2OhnCWyhw4dYsqUKaSkpFCjRg0WLFjAkCFD9OvVajV//fUX48aNo2XLlgYTIkiSVErS7+KRHIbqSDTc/Tdxjb8EidcNqqkBg7/3FRU4+YGLPzj5obX35Nz1O9R4oh0Wzn7gWAEcvMlW2bD177/1CSmATqPh4oYNVGvUDXLvnmo0ZFpGgIVNqRx2UUVGRhISEgLkjLySnJwM5AzL1bx5c+bOnWv0Nvfv34+zs7M+iQVo3rw5zs7O7Nu3L99ENj+JiYkoilJgdwQo+OFZrVarHyf3QXLrBLrZceNuOpdvJdOoknOR4isLcuMvyrGWNeYcO5h3/GUh9k83nSdLq6NlFXdaVnYtVizFjb84+y5XiezSpUsLrePv78/69etLIRpJeszpdHA3AmJO57xunYGY01gmRdES4FI+29i6gns1cK+C1qkiJ68lUK9Ndyzcg3KSWPV/X+HrNBoub9hAcO17klOAEhqlobRUqFCB+Ph4AgICCAgI4MCBA9SvX5+IiAhK6tncmJgYvLzyfk3o5eX1wBFd7pWRkcFbb73F4MGDH/gN14wZM/J9ePbChQsGszAWxsUip+/wkfBI6tgnF3m7siI8PNzUITw0c44dzDt+U8V+KT6TP0/mXAsGBFtx/vz5h9pPUeNPSUkp8j7LVSIrSZIJpSdA1BG4cQRuHM75NyMh36qpVp7YBjRC5RkMHtXAo3pOAmvvrq+j02i4vmEDdQNaGSaq5VyHDh1Yt24djRo1YuTIkUyaNIlVq1Zx5MgR+vXrV6x9FXXUF8h/DNyiPkil0Wj43//+h06nY/78+Q+sW9DDs8HBwUUetSA8PJwGVXxZf+ECCTobatasWeh2ZUVu/NWrVzf50+fFZc6xg3nHb8rYhRB88P0hAPo08KVHy3rF3kdx4y/OA7QykZUk6eGkxOJ39wDqv7bAjUMQdyFvHQsb8KoJFeqCd12oUAeNWzD/bNtj8NW/9J+FCxei0+kAGDt2LG5ubuzZs4eePXsyduzYYu2rqKO+nDp1Sj/5wr1u3779wBFdICeJHTBgABEREWzbtq3QZLSgh2fVanWxPqCDK+S0E34rxeySEij+8f6/vfuOq6r+4zj+uoO9hwoIgoiCAxVx4YTKvco0TSNNs1xZWZkNR/20aWWmpZm526m5cpXmwi0ORHAhsmTvfe/5/YHeJNa9CF6ufJ+Px33oPeu+79fj5cu53/P91CWGnB0MO78+sv8RGsvxG2mYGsl5vZ/3fb2+tvl1eQ3RkRUEQTv5GXDjENw4CDcOYpQUTsf/bmPXFFw7gVtncO0IjdqUGg4AGPxX/7VNLpeXqlD41FNP8dRTT1XrWNrO+hIQEEBGRgYnTpygc+fOABw/fpyMjAzNeN3y3O3EXrlyhf379+Pg4FDhtjWtpXNJOeDo1Fyy8ouwMhW/FAlCTcvML2LBjnAAXnqkOa52dW/ufNGRvQ+ispeo7PXQV/ZKuYr86h5kV/Ygu3UMmbq41Op0syZYtB6ArGkPpMadwOI/nSY1oNbu3Piv+lrZC0rGm54/f57ExETN1dm7hg4dWqOvBdCyZUv69+/PpEmTWLFiBVAy/dbgwYNL3ejl4+PDhx9+yBNPPEFxcTEjRozgzJkzbN++HZVKpRlPa29vj7GxcY3nvJeduTFO1qYkZOYTkZBFRw/7Wn09QaiPFu+9QlJWAZ6OFjzfs6m+45Srzlf2qkuWLVvGsmXLNGM9RGUv4aEjqbHPuYpz+kmcMkOxLCj9dXOWiTPJVq1IsmpFiqUPhUorPQWtW2qysteuXbt49tlnSU5OLrNOJpPV2l3LqampZQoiLF26tNQMBDKZjNWrVzN+/HiioqI0xWb+a//+/QQGBmr1utWp7HW3QtDz606zPyKJ/w1rTXCAh1avp291qUKTrgw5Oxh2fn1kD4/PZPBXh1GpJdZP7EzP5g2qfax6XdmrLpk2bRrTpk3TNLCo7CUqez0Ulb0kCVncGWSXNiMP34osK+7fVXIjJPfuSM37ovbqg6ldU1wpmb/VkM696rSnLu+vJit7TZ8+nZEjRzJ37twqx6fWJHt7ezZs2FDpNvde9/Dw8Ki1WRS01dLZmv0RSVyKN7xZCwShLitWqZm96QIqtcQgX+f76sTWNtGRvQ+islfV60Vlr6q301tlr6RICN0IFzdBRvS/y02swXsg+AxC1iwImUnJVdeKfoc2pHOvOu2pTc6aPDcTExOZOXPmA+3EGqqWziVXai7F12yJYEGo71YdvsG5W+lYmSqZM7iVvuNUSnRkBaE+yc+EsM1wdkPJTAN3GVuC9wBo/QQ0exSM6laRgPpkxIgRHDhwgGbNmuk7Sp3XpnFJIYTw+EwKi9UYK+VV7CEIQlWuJmbz2d6S+V7nDG6Fk03d/nmgVUfW3l63QfQymYwzZ87g7u5erVCCINQgSYJbJ+DkKrj0BxTnlSyXKaB5H2j3NLToB0Zm+s0pACWltkeOHMmhQ4fw9fUtc7V3xowZekpW93g4mGNrbkR6bhHh8Zm0c7PVdyRBMGgqtcSs385RWKymV4sGjPR31XekKmnVkU1PT2fx4sXY2FRdBlCSJKZOnWqQJeAE4aFSlEeTlIMov18ECef/Xe7oDX5joe1osBJfX9c1P/zwA7t378bMzIwDBw6UKkggk8lER/YeMpkMPzdb9kckcTY6TXRkBeE+fX/4Bmei07E0UfLRcF+tCqLom9ZDC0aPHl1uCcPyvPTSS9UOJAjC/TErSEL+93vIQzfgl5dWslBpCm1GgP/4kvldDeDDqb569913ef/995k9e3ap+WSF8vk1sSvpyN5KZ7y+wwiCAbsYm8Enu0tKz74zqCUutobxLZ1WHdn/zmNYlawscQepIDxw8edQHPqcPpf+QEbJ3eQ5xo6Y9piGouN4MBfzbBqCwsJCRo0aJTqxWvJrYgvAmeg0/QYRBAOWW1jMjJ/OUqSS6NuqEaM7uek7ktbEzV73QRREEAUR9F4QQZJQXfkLxclvkN84wN2uj8qjF8UdJrLvukSfjv1KxlnWcBsa0rlnSAURxo0bx88//8zbb79dY8d8mLVzs0Umg1upeSRlFdDAqmz5W0EQKvf+tktcT8qhkbUJHz/Z1iCGFNylc0GEu5NllzmQTIapqSleXl4VTpJt6ERBBKHOkNS4pJ+k+e0d2OZFAaBGTqxdV642GkimWRP95qtnarIgwowZM1i3bh3t2rWjbdu2ZW72+vzzz+/r+HXN/RREuDuxev/FB7mckMXXYzsw0Ne5tiPfFzEpv/4Ycv7azL7zQjxTN55BJoONz3ehW7Oqy1rrqk4VRHj88ceRyWRlJsK+u0wmk9GjRw+2bNmCnZ2droev00RBBFEQQdf9arwgwp7d9G9SgPGRRchSrgAgKU1Rtw9G3WUKDhbOnBHnnkEXRLhw4QJ+fn4AXLx4sdQ6Q7pK8iB19XTgckIWR64m1/mOrCDUJdEpucz+veRm4Cm9m9VKJ7a26dyR3bt3L++88w4LFy6kc+fOAJw4cYJ3332XOXPmYGNjw4svvsjrr7/OqlWrajxwXSIKIlS9XhREqHo7rdZJErLIPwm8PAeT0FsASGZ2RNj0ptnTH2Nk41RSsODOV9z1pe0qW2+oBRH2799fY8eqL7p7ObLmaBQh11L0HUUQDEZ+kYrJG06TmV9MezdbXu3TQt+RqkXnjuzLL7/Mt99+S7du3TTLHn30UUxNTXnhhRcICwtj8eLFTJgwoUaDCkK9JElwdR/8vRBl3BlsAMnEClnASxR3nETEX4doZu6g75SCoFedm9ojl8H15BziM/JwtjGMu60FQV8kSeLdLRe5FJ+Jg4Ux3zzTASOFYd5gqnNH9tq1a+WOV7C2tub69esANG/enOTk5PtPJwj1mEPWZRTrv4ZbxwCQjCy4Yv8ITcd+jpF1wxq/eUvQr+HDh2u13aZNm2o5ieGxMTPCt7EN52IyCLmWwvAOdX8Sd0HQpx9P3OK30zHIZfDV034G/cufzt1vf39/3njjDZKSkjTLkpKSmDVrFp06dQLgypUruLqKDxJBqJZbJ1H88CQ9rn6A/NYxUJhAwHSKp50i3GUkmD1cY8+FEjY2Nlo9hPIF3Bnbd+SqGF4gCJUJvZXO/K1hALzRz4duXoY3LvZeOl+RXbVqFcOGDcPV1RU3NzdkMhnR0dF4enryxx9/AJCdnc2cOXNqNOjChQvZsWMHoaGhGBsbk56eXmp9SkoKY8eO5fz586SkpNCwYUOGDRvGBx98oLmCHBUVVe6MCn/++Sf9+/ev0byCoLP4c7D/A4jchRxQyxRIHcah6P0GWLuIK7APudWrV+s7gkHr7uXA8n+ucehKkubGY0EQSkvKKmDqhtMUqtT0a92Iyb099R3pvunckfX29iY8PJzdu3cTGRmJJEn4+PjQp08fzQTejz/+eE3npLCwkJEjRxIQEFDuTWRyuZxhw4axYMECGjRowNWrV5k2bRqpqan88MMPpbbdt28frVu31jy3txcTxQt6lHQZDn0C4XemtpMpULcdzb6iDgT1H4eiFm/UEoSHReem9pgbK0jMKiAsLpM2jcXVa0G4V36RihfWnyIuIx9PRws+HdnuofiFr1oFEWQyGf379ycwMBATE5MH0hDvvfceAGvWrCl3vZ2dHVOmTNE8d3d3Z+rUqXz66adltnVwcMDJyalWcgqC1lKv0SFqOcqzIYAEyMB3JATORmXdhLydO/WdUBAMholSQc/mjuwOu82+8NuiIysI95AkiVm/nedsdDo2ZkZ8N64j1qYPx0USnTuyarWahQsXsnz5cm7fvk1kZCSenp7MmTMHDw8PJk6cWBs5dRYXF8emTZvo3bt3mXVDhw4lPz+f5s2b8+qrrzJixIhKj1VQUEBBQYHm+d05I0VlL1HZq1rtl3ELxaFFKM//hJukAkDtMwRVrzehgU+F++lynolzz3ArewnV96hPI3aH3ebvy4m88phhTiUkCLVhyV9X2XouDqVcxjfPdMCzgaW+I9UYnSt7vf/++6xdu5b333+fSZMmcfHiRTw9Pfnll1/44osvCAkJqa2sQMkV2VdeeaXMGNm7nn76af744w/y8vIYMmQIv/zyC6ampgAkJyezfv16unfvjlwuZ+vWrSxcuJC1a9fyzDPPVPia8+fP11wRvpeo7CXowrQojeYJ2/BI2Y/8Tgc2wbo9l52Hk2Huod9wwn2pycpe9U1NVPa6KzErn84L/wLgxNuP0tDatFYy3w9RXUp/DDn//WTfdi6Ol348C8BHw30Z3fnBV36szcpeSDpq1qyZtG/fPkmSJMnS0lK6du2aJEmSFB4eLtna2up0rHnz5kmUfKda4ePkyZOl9lm9erVkY2NT4THj4+Ol8PBwacuWLVKrVq2kKVOmVJph+vTpkq+vb6Xb5OfnSxkZGZrHrVu3JEBKTk6WCgsLpZycHGnLli1STk5Omef/XVfTj+oeX9v9qtquovXaLtf1uSG235+/rpEKt74mqd9vIEnzrCVpnrWkWjNEyrtysMJjlHd8bdpGnHvatV1Nn3vJyckSIGVkZGj9+SeUyMjI0KntiouLpQsXLkjFxcXlrh/61SHJ/c3t0o/Hb9ZkzBpTVf66zJCzS5Jh569u9hM3UqQW7+yU3N/cLi3YHlZL6aqma35dPhd0HloQGxuLl5dXmeVqtVrnr9emT5/O6NGjK93Gw8NDp2M6OTnh5OSEj48PDg4O9OzZkzlz5uDsXH7Zwq5du/Ldd99VekwTExNMTEzKLBeVvapeX68re+UkIz/0OY+FrUQpFZYsaxIAQe8gb9oTRVERhO3UueqXNm1j8G2nw3YPW2Uv4f70adWIczEZ7LgQr5crT4JQV0TezmLimpMUFKt5rGUjZg9oqe9ItULneWRbt27NoUOHyiz/9ddfNfXBteXo6IiPj0+lj7vDAqpDujNq4t7xrf919uzZCju5glAtuamw7z1Y3BbFsWUopULULv4QvBme+xOa9tR3QkEoIy0tjeDgYM18tcHBwRUO4SrPiy++iEwmY/HixbWWURuD2roAcPRaCinZFX/2C8LDLC49j3HfnyAzvxh/dzu+etoPhdzwZygoj85XZOfNm0dwcDCxsbGo1Wo2bdpEREQE69atY/v27bWREYDo6GhSU1OJjo5GpVIRGhoKgJeXF5aWluzcuZPbt2/TqVMnLC0tuXTpErNmzaJ79+6aq7pr167FyMgIPz8/5HI527ZtY8mSJXz88ce1lluoR3JT4dg3JY/CLADUTu04bv4YHUfPRm5srOeAglCxMWPGEBMTw65duwB44YUXCA4OZtu2bVXuu2XLFo4fP46Li0ttx6xSU0cLWrtYExaXye6w24zpIq7KCvVLem4hz35/gviMfLwaWrJqXEfMjA1rTLAudO7IDhkyhJ9//pkPPvgAmUzG3Llz6dChA9u2baNPnz61kRGAuXPnsnbtWs3zu1d/9+/fT2BgIGZmZqxcuZJXX32VgoIC3NzcGD58OLNnzy51nAULFnDz5k0UCgUtWrTg+++/r/RGL0GoUmYcHF0Kp9dAUU7JskZtIOhtVJ59SPzzT3gI5uoTHl7h4eHs2rWLY8eO0aVLFwBWrlxJQEAAEREReHt7V7hvbGws06dPZ/fu3QwaNOhBRa7U4LYuhMVlsv18nOjICvVKXqGKiWtPcTUxGydrU9ZN6Iyt+cN9EaVa88j269ePfv361XSWSq1Zs6bCOWQBgoKCOHr0aKXHGDduHOPGjavhZEJ9ZVFwG8WOV+D8z6C+Mz7cyRd6vg4th4JcLqpxCQYhJCQEGxsbTScWSu4fsLGx4ejRoxV2ZNVqNcHBwbzxxhuliszo2+C2zny86zLHrqeQlFVAA6uy9zgIwsOmsFjNtB/OcPpmGtamStZN7IyLrZm+Y9W6anVkBaFeizmN4ugSHr30BzLuzF7n3h16zASvR8XVV8HgJCQk0LBhwzLLGzZsSEJCQoX7ffzxxyiVSmbMmKH1a1U0L7dKpUKlUlW5/91tKtvWxcaEdq42nIvJ4I+zMTzX3UPrfLVNm/x1lSFnB8POX1X2YpWaGT+f4+/LiZgayfk2uAPNHM3rzHvVte11ya1VR9bOzk7r6l2pqalav7ggGAxVUUkJ2WPLIeaE5i5JdbPHkPd6HdwD9BpPEMpT0RzY9zp58iRAuZ/xkiRV+Nl/+vRpvvzyS86cOaNTdccPP/yw3EwRERFYWmo/SXtkZGSl67s5KzgXAxuOXqOLXW6dK8VZVf66zJCzg2HnLy+7Si3x+dFk/onKRSmHt3s6Ypl3m/Dw23pIWDlt2z47O1vrY2rVkb33LtSUlBQWLFhAv379CAgo+eEdEhLC7t27mTNnjtYv/DAQlb3qQWWvvDTkZ9cjP/Udsqw4ACS5EaqWwzhU3I4uw54vmXpJx/apzjpR2Uu79aKy17+0neLw/Pnz3L5d9odeUlISjRo1Kne/Q4cOkZiYSJMm/45BValUvPbaayxevJioqKhy93vrrbeYOXOm5nlmZiZubm54e3trXRAhMjKSFi1aVDqxuotHEavO7icqvQiVTWN860jJWm3z10WGnB0MO39F2dVqibc2X7zTiZXx9Rg/Hm1Z9tsVfdO17e9+U6MNnSt7PfnkkwQFBTF9+vRSy5cuXcq+ffvYsmWLLoczKMuWLWPZsmWafxBR2eshJUk4ZF/GPeUfXNJPopBKOin5SmuiHB8hyvERCoxs9ZtRqFMMvbJXeHg4rVq14vjx43Tu3BmA48eP07VrVy5fvlzuGNmUlBTi4+NLLevXrx/BwcE899xzld4gdq+arOz1XzN+PMvWc3EEd3Xnf4+30SpPbauv1aXqAkPOX152SZKY88dFNhyLRiGXsfRpPwb41s3pROtUZS8LCwvpypUrZZZHRkZKFhYWuh7OIN2tOCEqez1klb1Sb0nFBxZJ6sXtNBW4pHnWkvrr7lLRqXVSYW5WjbafrutEZa/qn3uislfV+vfvL7Vt21YKCQmRQkJCJF9fX2nw4MGltvH29pY2bdpU4THc3d2lL774QqfXrenKXvc6FJkkub+5XfKdt0vKK6wb1ZzqY3WpusKQ8/83u1qtlt7bGia5v7ld8pi9XdpyNkbPCStXpyp7OTg4sHnzZt54441Sy7ds2YKDg4OuhzNoorJX1evrfGWvwmxcU49i+vs65DcOgLq4ZLmxJfiOgA7jkLn4oaxgfF1NtJ+o7HV/24nKXjVj48aNzJgxg759+wIwdOhQli5dWmqbiIgIMjIy9BGvWro1c6CxrRmx6Xn8eTGeJ/xc9R1JEO6bWi0xb2sY64/dBOCj4b4Ma99Yz6n0R+eO7HvvvcfEiRM5cOCAZozssWPH2LVrV5WlXgWhTiguhKv74OJvKC/vxL847991rp2hw7PQ+gkw0f7GE0EwdPb29mzYsKHSbaQqRqJVNC5WX+RyGU93dmPRnkjWHL0pOrKCwVOrJeZsvcBPJ28hk8HHw9vyVCc3fcfSK507suPHj6dly5YsWbKETZs2IUkSrVq14siRI6XmIBSEOiU/E67uhcs74MpeKCgZSC4Dsk0aYdYpGEW7UdCghX5zCoJQo0Z3bsKSv65y7lY6Z6PT8Gtip+9IglAtKrXErE0X2Hw2DrkMPnuqnfjljGrOI9ulSxc2btxY01kEoWalR8OVPSWd1xuH/i1aAGDpBG2epLjl4/x1No6BvQeheAi+HhYEoTRHSxOGtHPh9zMxrD0aJTqygkEqUqn57EgyB2/mopDL+HJ0ewa31X9J6LpAq45sZmamTnfiZmVlYWVlVe1QglAt+ZkQdRiu/Q3X90PK1dLrHZqDz0DwGQyNO4JcjlRUBKHx5R9PEISHwvhuHvx+JoYdF+J5e1BLGlqZ6juSIGgtv0jF9B9COXgzFyOFjKVjOtCvtZO+Y9UZWhdEiI+PL7fyS3kaN25MaGgonp6e9xVOECpVkA0xJyH6GNz4p+Tvd2/WApApwLUjeA8A70EPZNhAfpGKmLQ8bqXlEpOaS1RyNmci5fyWdJqsAhVZ+UVk5heTU1CMSi1RrFIw8/he1JKEqVKBhYkSSxMFFiYKpFw5x4ov4WpvgaudGc0czChW1/pbEISHjq+rDf7udpy+mcaaI1HM6u+j70iCoJWMvCImrT3FiahUjBUl88Q+JjqxpWjVkZUkie+++07rqit1dXJwwcBlJ0F0SEnHNfooxJ8H6T9l7OyaQrNHoFkQePQEM9sajVCsUhOfkc+NpExCbsu4vO8KcRkF3ErNJSYtj8SsgnL2kkNKSgVHlMGdG2jyilTkFalIzv53v0snY0ptrZApWBl1lI5N7enYxJaswpp6Z4LwcHuxlycvrD/N+pCbTA5shrWpGEok1G2Jmfk8+/0JLidkYWWq5J1eDgT51L1iB/qmVUe2SZMmrFy5UuuDOjk5PRTT0VRFVPaqxcpe2anIUi4hxZzB/8ZuFMvmQPrNMq8vWbsiNemK5NYVddNAsPP4b0Cd3p9aLZGUXUBMWt6dK6t5xKSX/D02LY/4zAJU6rt3bivg+o0yx7QwUeBma4arnRnONiZkJdykS/s22FqYYGWqxMpUiYWJEtQqjhw6RO/evTAyMiK/SEVuoYqcgmLScgo4cPws9o09uZ1dxM2UXCJuZ5FdoOLy7Wwu385mw7FoQMmGmKP0a9WIPq0a4mlvUqbdxblXfyt7Cf96rGUjWjSyJPJ2NutDbjItyEvfkQShQjdTcghedYLo1FwaWJmwepw/pMfqO1adpHNlr/pMVPaqHUbFWVjnxWCTF41t7g1sc29gVVD+uNVMU1dSLFuQYtGCVMsW5Bk76vRakgTZxZBaAKkFMlLzIaVARkr+necFUCxVXpNdKZOwNwEH0zt/mkjYm5b86WAC5kqojbLukgRphXArW8a1TBlXM2XE5YLEvy/W0FSiS0M1nRtIWBvXfAahfIZe2UufarOy139tPhvDqz+fw8HCmMNvPoKZ8YOv7vSwVZcyJIaSPywug3HfnyQ5u4Am9uZsmNiFxrYmBpG9IrVZ2atasxbUV9OmTWPatGmaBu7bty/W1tYUFRWxd+9e+vTpg5GRUannQKl1Ne2/r13T+1W1XUXry11elEdxQhjhB37Ht5ECRUoE3L6EPKdsjXcoudqqcmpHZJY5nj1HoHD1x8zMFlegoglH1GqJxOwCYtPyiE3PJy49j5g7f8am5xOXkUd+UeUDTRVyGc7WJrjameFqZ05jW1Pc7MzuPDejgaUJKlXxfbefruvuLhs1+DHNebZl515o3Ia/IlI4dDWFxHw126IV/BkjI7CFA60UCUx+Upx72iyr6nlldKkLLujPkLYufLYnkpi0PH46Gc1z3ZvqO5IglLI/IpHpG8+QU6iipbM1ayd0oqGVKSqVquqd6ynRkb0PorJXOeslCbISkCVexj15Pyb/HEORdh2Sr0DaDYwkNR0AokvvL9m6I2vUGlWjtpyIKaLj0OcxsnVBKiriys6dNG/+KGqZnMTMAhIy87mdmU9Cxp0/Mwu4nZFPQmY+8Rl5FKkq/5JBJoNGVqY0tjOjsY0p+SmxBHZqg4ejFW725jjZmGKkkFd6jKIiWY213/1U9rIwgoEdmzAmoBnZBcVsPXuLFfvCuJkN+y4nsw8lR7LOMjXIiyDvhsjlNX+puM6ce1osF5W96jelQs7k3s14d8tFvj5wjVGd3DA3Fj8Ghbph4/GbzP0jDJVaIsDTgeXB/tiYic+Wqoj/wYLuigshMwbSo5Gl3MAn7m8UmzdD2nVIuQaF2SiB9gC3Su8qmdmTrGiEvU8PFM5tKHbwZuepm/gFDSIjX01cWg5/XT3F0eMZJGUnE5+ex5VYBfPP7SctV7txiAq5DGcbUxrbmtH4zlVV1ztjVhvbmeFsY4axsqSjWlRUxM6dtxjo72rwnRFLEyUj/V2xuH2eZh16sv54NL+djuF0dDoT156ilbM1swf40KtFA31HFQS9eaqjGysOXuNWah5rjkYxNVCMlRX0S62W+GjXZb49eB2AJzu48uFwX83PKaFyoiMrlKZWQ24KZMWXXFlNj8Enbj+KP7ZpOq9kxgElVz2VgDfAvaMDZArUtk2IK7LGuEkH0sw9iFc25obMjag8cy5cuYlxrAMpkUUkZWWRnmcFpw7ecwAFXL9+7wGBkk6ssVKOk7UpjaxNaGRtipO1KU42pjS88/fGdmY0sjJBWcUV1Yedt5MVC4a1prV0k1tmXvx4MoZL8Zk8+/0Jeng5MnuAD20a2+g7piA8cMZKOa8+1oKZv5xj+YFrjO3sjo25Yf8SKxiu/CIVr/4cyp8XEwCY2acFLz3ihaw2brR4SBlMR3bhwoXs2LGD0NBQjI2NSU9PL7PNyZMnmT17NqdPn0Ymk9GpUyc++eQT2rdvr9nmwoULTJ8+nRMnTmBvb8+LL77InDlzHu6TRq2G/PSSDuqdhyzzNi0SDiPfdQByEjUdV7Jvl5qLtdyOKlAsNyXL1JkUIydu5JqTbunJdcmF8KJGXMy1JfnuvVrJ9+6Vcuchh5S0UsdTyGU4WBjjYGGMLD8DX68muNia08BSyc3LFxj8aA9c7S2xNTd6uP+tapiNMTzdrwVTgpqz9O+rrD8WxeGryQxZephnurjzej9v8dWVUO8Ma9+YFf9cJ+J2FisOXhPzygp6kZRVwAvrT3E2Oh1jhZxPRrTlcb/G+o5lcKrVkT106BArVqzg2rVr/PbbbzRu3Jj169fTtGlTevToUdMZASgsLGTkyJEEBASwatWqMuuzsrLo168fw4YN4+uvv6a4uJh58+bRr18/YmJiMDIyIjMzkz59+hAUFMTJkyeJjIxk/PjxWFhY8Nprr9VK7hqjKiqpXFWQcefPTCjIQpaTRtOkEOSHw6EoG/IzIDe1VKdVyktDJpW+wUkJtAQoZ3IANTIyZLYky2xJUNsSVexAjNTgzsORGKkBKVhD7j0dyqyyx5Ej4WhliqOlCQ2sTHC0NMHeXEnSrWv07NQeJ1tzbE3lhB47xIghAzAxMb7zVf9OBg5spbnhZuft8/g4WRn8V//6ZG9hzNwhrXiuuwef7I5g27k41h+7yZ8XE3h3UEuGtXcRvyAI9YZCLuP1ft5MWneKVYdvMKZLE1ztxAw0woNzPiadF9efJj4jHxszI74N9qeLp4O+YxkknTuyv//+O8HBwYwdO5azZ89SUFAyAXxWVhYffPABO3furPGQAO+99x4Aa9asKXd9REQEaWlpvP/++7i5uQEwb9482rZtS3R0NM2aNWPjxo3k5+ezZs0aTExMaNOmDZGRkXz++efMnDmzdn6QJ12mUUYoskuFoC5EKspFVZCDqiAXdUEO6qJc1AW5SEV5UJQLhbnIivOQFeUhK85DUZSNsjgbpSq/3MMrgbYAMeWuBtBMzpQhmZMqWZGGFWmSFUmSDYnYkijZcfvOI1GyJRkbiss5NaxMlNhZGONqbkQbc2PsLYyxNlWQFHODzu3b4Ghlip25MY6WJtiayjl6YB+DB/Uuc0f5zp1XGdjOWdNRvWpErdyEJJTlZm/OV0/78XRnN+Zsuci1pBxe+TmU38/E8MmItjjbmOk7oiA8EI+1bEhXT3uOXU/lw52XWTa2g74jCfXE76djeGvTBQpVapo1sGDlsx3xbKBdwSmhLJ07sgsWLGD58uU8++yz/PTTT5rl3bp14/3336/RcLrw9vbG0dGRVatW8fbbb6NSqVi1ahWtW7fG3d0dgJCQEHr37o2JiYlmv379+vHWW28RFRVF06Y1PxXLxd8+oGvqTrgz5FNGSaNXd0xHjmRCFuZkSeZkYUa2ZEam5rk5mZI5qViXdFglK1LvdFrTsUBpZIy1qRFWpkosTZQUZKXR1NUZWwtjmpoa0dZEeWfC/pJtrM2MsDaWczrkIE8O6Y+5qUmZPCUd0+sM7OxWpsMq+qZ1V7dmjvz5ci9WHrrOkr+ucOhKMv2+OMj7w9qIq7NCvSCTyZg3pDWDlhxix4V4xl5Lplsz3ealFgRt5BQUE3ornRPXU/n9bAwxaXkAPOLTkMWj24sqc/dJ5/5UREQEvXr1KrPc2tq63HGrD4qVlRUHDhxg2LBh/O9//wOgRYsW7N69G6Wy5G0mJCTg4eFRar9GjRpp1lXUkS0oKNBceYZ/54zUprLXbYUT59Se5GFCnmRc8ifG5Ekm5GFCoazkUaQwo0huSrHclGKFKSqFGSqlGSqlOUVKS4qNLJGMrTAxMcbcSIGZsQJzIwXGCrh5LZIObdvgZGqEp/HddcqSP40VmBkpsDBRlJpS6t85MltVOZfnFWNArSq3elGtVfaqRnWl6tBndSpd1+lSQU6byl4y4IUe7jzq7cis3y9wPjaTV34O5c8Lcbw/tBX2FpVXVBCVvcq+pmBYWjpbM7aLO+uP3eS9rZfYMaNHvb9RVLh/sel5nL6ZxumoVE7dTONyQtY9FSFL9G3diOVj/cW3kTVA58pezZo1Y8WKFTz22GNYWVlx7tw5PD09WbduHR999BGXLl3S+ljz58/XDBmoyMmTJ+nYsaPm+Zo1a3jllVfKdJrz8vIIDAzEx8eH6dOno1KpWLRoEZcvX+bkyZOYmZnRt29fmjZtyooVKzT7xcbG4urqSkhICF27dtUppzaVvdIKIF8FShko5Xced/6ukCGuWgp1gkqCfbEydsXIUUsybI0lxjVX4SmKVGlFVPaqvgdZ2as8aTmFBH12gPTcIuYMbsXEHrVbJMFQqkuVx5CzQ+3n/3xPBL+ejiE+o/yhgHfZmRtx4p3Hqpyv/F71re1rtbLXiy++yMsvv8z333+PTCYjLi6OkJAQXn/9debOnavTsaZPn87o0aMr3ea/V1Ar8sMPPxAVFUVISAhyuVyzzM7Ojj/++IPRo0fj5OREQkJCqf0SExOBf6/Mluett95i5syZmueZmZm4ubmJyl6VrNd2eU1WV6oOfbZfdSt7VdY293PuDQHC4jJ59Zfz3EjJZWm4ETMf8+L57h7lXjUwpHNPVPYSKmJnYcwb/bx5Z/NFFu2OoG+rRrjZixu/BN0N82vM6qNRVW43JbCZTp1YoXI6d2RnzZpFRkYGQUFB5Ofn06tXL0xMTHj99deZPn26TsdydHTE0bFmxiTl5uYil8tLje27+1ytLrljPyAggLfffpvCwkKMjUu+Nt2zZw8uLi6VdphNTExKjau9S1T2qnq9tstrorrS/dBn+91PZa/KttE1I0B7dwe2zejJO5sv8EdoHJ/uucLJm+l8/lT7CocaGNK5Jyp7CeV5ulMT/giN48SNVN7adIH1EzuLceKCzpo1sOSrp/2YsOYk6gq+6zY3VjCqU5MHG+whV61fCRYuXEhycjInTpzg2LFjJCUlacal1pbo6GhCQ0OJjo5GpVIRGhpKaGgo2dnZAPTp04e0tDSmTZtGeHg4YWFhPPfccyiVSoKCggAYM2YMJiYmjB8/nosXL7J582Y++OCD2puxQBAMkKWJksWj2vPRcF9MlHIORCQx5KvDXIzN0Hc0QagVcrmMj59si4lSzuGryfx6qpJpYAShEoHeDZncu1mF65/q6Cbm7q5h1b62bW5uTseOHfHx8WHfvn2Eh4fXZK4y5s6di5+fH/PmzSM7Oxs/Pz/8/Pw4deoUAD4+Pmzbto3z588TEBBAz549iYuLY9euXTg7OwNgY2PD3r17iYmJoWPHjkydOpWZM2eWGjYgCELJHd2jOzdhy7TuNHW0IDY9jxHLj/JHaKy+owlCrWjqaMFrfVsA8L8dl0ioYpyjIJRnx/l41oXcLHedTAYTutfuGOz6SOeO7FNPPcXSpUuBkhusOnXqxFNPPUXbtm35/fffazzgXWvWrEGSpDKPwMBAzTZ9+vTh8OHDpKenk5qayl9//VXmBi5fX18OHjxIfn4+8fHxzJs3T1yNFYQKtHS2Zsu07gR6NyC/SM3LP4Xy4c7wMnfgCoYvLS2N4OBgbGxssLGxITg4WKuZaMLDwxk6dCg2NjZYWVnRtWtXoqOjaz9wLZjQvSntXG3Iyi9m5i+h4jwXtJZTUMys384x7YczZBcU08nDjjYupW9S6tfKiSYOYvx1TdO5I3vw4EF69uwJwObNm1Gr1aSnp7NkyRIWLFhQ4wEFQdAvGzMjVo3rxJTAkq/LVhy8zvjVJ8jIE1NOPUzGjBlDaGgou3btYteuXYSGhhIcHFzpPteuXaNHjx74+Phw4MABzp07x5w5czA1NX1AqWuWUiHn81HtMTNScPRaCisOXtN3JMEAXIjJYPBXh/nlVAwyGUwP8uLHSV35/rlOONv8+3/h+Z7iamxt0Lkjm5GRgb29PQC7du3iySefxNzcnEGDBnHlypUaDygIgv4p5DLe7O/D0jF+mBkpOHQlmRErjpOYp+9kQk0IDw9n165dfPfddwQEBBAQEMDKlSvZvn07ERERFe73zjvvMHDgQD755BP8/Pzw9PRk0KBBNGzY8AGmr1nNGljy3tDWAHy+J5LQW+n6DSTUWWq1xPJ/rjH8myPcSM7B2caUHyd15fV+3igVchpambLy2Y6YGslp52aLv7udviM/lHTuyLq5uRESEkJOTg67du2ib9++QMnXUob6W7ggCNoZ3NaF36d0o7GtGVEpuXxxUcHxG6n6jiXcp5CQEGxsbOjSpYtmWdeuXbGxseHo0aPl7qNWq9mxYwctWrSgX79+NGzYkC5durBly5YHlLr2jOzoyqC2zhSrJV768QzpuYX6jiTUMfEZeQR/f5yP/rxMkUpioK8Tf77ck66eDqW2a9PYhs9Gtuf5Hk3FMMZaovP0W6+88gpjx47F0tISd3d3zRjVgwcP4uvrW9P56jRtKnvdu21tZajO8fVRXam85aKyl/4qe1VX8wZm/PZiZ17ccJbzsZmMX3OaBcNa8WSHxlrtLyp71T0JCQnlXkVt2LBhmbm370pMTCQ7O5uPPvqIBQsW8PHHH7Nr1y6GDx/O/v376d27d7n7VVQpUaVSoVKpqsx6dxtttr0fC4a24vytdG6l5vHSj2dZ9aw/ihqoYPOg8tcGQ84ONZNfkiQ2nY3jfzvCycovxsxIwdzBLRnp3xiZTFbusfu3bogkSff1uvWt7XV5nzpX9gI4ffo00dHR9OnTB0tLSwB27NiBra0t3bt31/VwBmPZsmUsW7YMlUpFZGSkVpW9BOFhVaiCjdfkhKaUfLHTp7GagW7qelmtrq5W9tK2euKePXtYu3ZtmWEEzZs3Z+LEicyePbvMfnFxcTRu3Jinn36aH374QbN86NChWFhY8OOPP+qUKSQkRPPzpK64nlbIG7sSKFBJjGxtzTg/8dVwfZaSW8zS46mcjC0ZU9XCwZiZ3RxxtRHTadW07OxsAgICtPpMrVZHtr67WzotOTlZVPYSlb0emspeuioqKmL3nr1cVjZjxeGS6Wb6t27Ep0+2wdSo4hKED2tlL0dHxzrXkU1OTiY5ObnSbTw8PPjhhx+YOXNmmVkKbG1t+eKLL3juuefK7FdYWIiFhQXz5s3j3Xff1Sx/8803OXz4MEeOHCn39cq7Iuvm5kZqaqrWJWojIyNp0aLFAynVufVcHK/+ch6ApU+3Z0Abp/s63oPOX5MMOTtUP78kSWw9F89728PJyCvCWCHj5Ueb83wPD5QPqEJXfWv7zMxM7O3ta6dELUBMTAxbt24lOjqawsLSY4c+//zz6hzSIInKXlWvF5W9qt6uLlX20pVcBq/386a5sy1vbTrPrrDbxGcWsPJZfxpaVT5mXlT2qn3aVk+8e+XjxIkTdO7cGYDjx4+TkZFBt27dyt3H2NiYTp06lbmKGxkZibu7e4WvVVGlRIVCodMPaF23r64nOrhxKT6LlYdu8Nqv53G2Na+Rm3YeVP7aYMjZQbf8tzPzmbPlInsu3QbAt7ENi0a2w9vJqjYjVqi+tL0u71Hnjuxff/3F0KFDadq0KREREbRp04aoqCgkSaJDhw66Hk4QhIfACH9XXO3MmLzhNOdupfPEsqOsGt8RH6e6c3VSqFjLli3p378/kyZNYsWKFQC88MILDB48GG9vb812Pj4+fPjhhzzxxBMAvPHGG4waNYpevXoRFBTErl272LZtGwcOHNDH26g1b/b34VpSDn9fTuT5tSf5fUo3PBvUrWEQQs1SqyU2Hr/JJ7siyCooxkghY8YjzZkc2AyjB3QVVtCOzv8ab731Fq+99hoXL17E1NSU33//nVu3btG7d29GjhxZGxkFQTAAXT0d2Dz1nkpg34Sw/3KivmMJWtq4cSO+vr707duXvn370rZtW9avX19qm4iICDIy/i1V/MQTT7B8+XI++eQTfH19+e677/j999/p0aPHg45fq5QKOUvH+NHO1Ya03CLGrT5BYpao/PWwupyQyZPLjzLnjzCyCopp52rDH9N68NKjzUUntg7S+YpseHi4ZhC/UqkkLy8PS0tL3n//fYYNG8aUKVNqPKQgCIahqaMFm6d2Y/KG0xy7nsrEtSeZM7gV47t5iKln6jh7e3s2bNhQ6Tbl3VIxYcIEJkyYUFux6gxzYyWrxnfiyW+OcjMll+dWn+SH57tiY143h5UIussrVPHlX1f47tB1itUSliZKXu/bguAAjxqZsUKoHTr/amFhYaEZqO/i4sK1a/9WPqnqpgJBEB5+tubGrJvQhac6uqKW4L1tl5j7RxjFKrW+ownCfXG0NGHtc51xsDAmLC6TZ78/Tma+YU+9JpT8grbv0m36Lv6H5f9co1gt0b+1E3tn9mJ896aiE1vH6dyR7dq1q+Zu1EGDBvHaa6+xcOFCJkyYQNeuXWs8oCAIhsdYKefjJ9vy1gAfZDJYf+wmz605KX7oCwbPw9GCjZO6YGduxLmYDMZ9f4IscV4brCu3s3j2+xM8v+4Ut1LzcLYpqca1PNgfZxszfccTtKBzR/bzzz/XVH+ZP38+ffr04eeff8bd3Z1Vq1bVeEBBEAyTTCbjxd7NWP6Mv6as7ZNfHyU6NVff0QThvvg4WbPx+a7YmhtxNjqdZ747TmqOqP5lSDJyi3hvWxj9vzzEoSvJGCvkTAlsxt6ZvenTqpG+4wk60HmMrKenp+bv5ubmfP311zUayJCIyl6isld9rOxV2WuV55EWDvz4fCde3HCWK4nZjFhxnGebispegmFr5WLNholdCF51nHMxGYxcfpT1E7vgYiuu4tVlKrXED8ej+XzfFdJyS/7f9mnViHcHtcTdwULP6YTqqHZBhMLCQhITE1GrS497a9KkSY0Eq4tEZS9BqL70AlgZoSAmR4ZCJvF0MzWdGjwc9VjqamUvQ3C3wIy2badSqQgPD6dly5Z1Yj7Nq4nZBK86TnxGPi42pqyd0JnmjSqeY7Su5deFIWeXJIm9YQks3H6Bm+klHdjmDS2ZO6QVPZs30HO6qhly24Pu+XX5XND5imxkZCQTJ07k6NGjpZZLklRhneGHxbRp05g2bZqmgfv27Ssqe4nKXvW6speux3+8sJjXf73A3stJbLiqwLqxJy8/0gx5OTdTGFplL6F+8mpoyW9TuhG86jjXk3IY/vVRvhrjR6B3Q31HE+44FZXKR39e5tTNNABszIx49bHmPNPV/YFV5hJqj84d2eeeew6lUsn27dtxdnau11PqiMpeVa8Xlb2q3s6QK3vpenwbIyOWPt2eaSt2sy9Oztf/XCcyMYfPR7XD2lT39qlsvajsJTwojW3N+G1yNyavP82JqFQmrDnJO4NaMaG7mHZOnyISsvh092X2hZfMZ22ilDPE25K3n+iEvWXllQcFw6FzRzY0NJTTp0/j4+NTG3kEQXjIyeUyhrir6dPVlzlbw9kXfpvHlx5hRbB/pV/JCkJdZm9hzIbnuzBny0V+PnWL/22/xIWYdBY+4YuFyb8/aguLxTR0tS08PpOv/r7CzgsJACjkMp7q6Mr0wGakxd3Axkz84vkw0fmaeqtWrcR8sYIg3Lfhfo35bXIALjamXE/OYdiyI+y8EK/vWIJQbcZKOR896cu7g1qikMvYEhrHkK8Ocynu36Enuy6WdK72hd/WV8yHVlhcBi+uP8WALw9pOrEDfZ3Y82ovPhzeFicbcRX2YaRVRzYzM1Pz+Pjjj5k1axYHDhwgJSWl1LraGicWFRXFxIkTadq0KWZmZjRr1ox58+ZRWPjvdCfnzp3j6aefxs3NDTMzM1q2bMmXX35Z5jgymazMY9euXbWSWxCEyrV1tWXbSz0I8HQgt1DF1I1n+OjPy6jUD8dNYEL9I5PJeL6nJz+90BUn65Jf0h7/+ghrjtxApVKz5ugNAN7edIHLCWJs9f2SJIlTUak8v/YUg5YcZnfYbWQyGNzWmd2v9OLrsf40a2Cp75hCLdJqaIGtrW2pcT6SJPHoo4+W2qY2b/a6fPkyarWaFStW4OXlxcWLF5k0aRI5OTksWrQIgNOnT9OgQQM2bNiAm5sbR48e5YUXXkChUDB9+vRSx9u3bx+tW7fWPLe3t6/xzIIgaMfB0oT1Ezvz8a7LrDx0g+X/XONCbDqfDm+j72iCUG2dPOzZ+XJPXv/1HH9fTmT+tkv8ePIWUclZgD25RSqeX3uKrdN7YG9hrO+4BkelltgdlsDKQ9c5G50OgFwGQ9q5MD3ISwxTqke06sju37+/tnNUqn///vTv31/z3NPTk4iICL755htNR/a/tb49PT0JCQlh06ZNZTqyDg4OODk51X5wQRC0olTIeWdQK3xdbXnzt/McuZrC0K9DGOkmY6C+wwlCNdlbGPPdsx3ZcPwmH/15mYiELAA2XcpAkiRi0vKYsuE06yd2wVgp7p7XRnZBMb+fjmHV4Rua4irGCjnDOzRmUi9PcfW1HtKqI9u7d+/azqGzjIyMKq+kVrTN0KFDyc/Pp3nz5rz66quMGDGi0uMUFBRQUFCgeX53CIUoiCAKIoiCCDXbdgNaNcBrchde+fk8kYnZLA+XU7TrMjP7tMDoP9PkiIIIgiGQy2U8G+CBp6MFz6w6AcD3Z9K5+x3n8RupvLctjIVP+OovpAEIj89k4/GbbDkbR3ZBMQC25kY829Wd4AAPGliZ6DmhoC9aF0TIzc3ljTfeYMuWLRQVFfHYY4+xZMkSHB0daztjGdeuXaNDhw589tlnPP/88+VuExISQu/evdmxY4dmTs3k5GTWr19P9+7dkcvlbN26lYULF7J27VqeeeaZCl9v/vz5vPfee2WWi4IIglA7ClWw+aaco7dLOq8elhLjWqiwr6M/q0RBhOoz9III2npr0wV+PBGNkQLMlHIyC0rPXvC/x9sQ3NVdT+m086DbPr9Ixc4L8Ww4dpMzd4YPAHg6WvBcj6aM6OCKmbH2OQz13AHDzg51pCDCvHnzWLNmDWPHjsXU1JQff/yRKVOm8Ouvv2p7iDIq6iDe6+TJk3Ts2FHzPC4ujv79+zNy5MgKO7FhYWEMGzaMuXPnajqxAI6Ojrz66qua5x07diQtLY1PPvmk0o7sW2+9xcyZMzXPMzMzcXNzEwURKlkvCiJUvV19LIigy36Dior45Kd9/HbTmKhsFZ+FmfLuQG+G+7kgk8lEQQTBYKRkF7DpTAwASrmMb4c1Zuxvt1Dd05edu+UiJkoZT3V8eKtjakOtljgZlcrms7HsuBBPVn7J1VelXEa/1k6M7dqEAE8HMT+voKF1R3bTpk2sWrWK0aNHA/DMM8/QvXt3VCpVtX87mD59uuZ4FfHw8ND8PS4ujqCgIAICAvj222/L3f7SpUs88sgjTJo0iXfffbfKDF27duW7776rdBsTExNMTMpeChIFEapeLwoiVL1dfSqIoOt+fg4Szw4O4LXfLnI2Op3Zm8PYG57Eh8N9sbszF6QoiCDUdRuORVNwz/yxlsZyjBUy8u6ZnUMCZv12gT8v3GZmnxb4utroIan+XE3MYvPZWLacjSM2PU+zvLGtGWO6NGFkR1caWonps4SytO7I3rp1i549e2qed+7cGaVSSVxcHG5ubtV6cUdHR62HJsTGxhIUFIS/vz+rV69GLi87MD4sLIxHHnmEcePGsXDhQq2Oe/bsWZydnXXKLQjCg+NmZ86vLwbw7aHrLN57hb8uJ9J38UHmDvJBLmbpEuq4/CIV649FVbheIZdhopCjkiQKitXsj0hkf0Qi7dxsebarO4PaOmNqZHhfJVdFkiTOx2SwOyyBPZduczUxW7POykTJAF8nnvBzpUtT+3JLWAvCXVp3ZFUqFcbGpacIUSqVFBcX13io/4qLiyMwMJAmTZqwaNEikpKSNOvuzj4QFhZGUFAQffv2ZebMmSQk3KnooVDQoEEDANauXYuRkRF+fn7I5XK2bdvGkiVL+Pjjj2v9PQiCUH1KhZypgV486tOI134N5WJsJjN/vYCvnRy/7nm4NxBXRIW6Ka9QxScj2mJmpMTCRIGZUkZB8i0OzwrC0swYY4Vc8zV5eHwmy/+5xs4L8Zy7lc5rt9JZsOMSQ9u5MKSdCx2a2Bl0py6noJgTN1LZH5HInrDbJGTma9Yp5TJ6t2jAEx0a81jLRg9l512oHVp3ZCVJYvz48aW+Ys/Pz2fy5MlYWFholm3atKlmEwJ79uzh6tWrXL16FVdX1zK5AH799VeSkpLYuHEjGzdu1Kx3d3cnKipK83zBggXcvHkThUJBixYt+P777ysdHysIQt3h7WTF5qnd+Xr/Nb76+woX0uQM+Ooorz7WgvHdPcrMbCAI+mZnYcwjPo00z1UqFeHJYGtuXGZYXktna74c7cecwa34+eQtNh67SVxGPmtDbrI25CbONqYMbutMv9ZOtHezRVnHz/cilZrQW+kcuZrMkavJnI1Op/ie4RQWxgoCvRvSt3UjAr0bitKxQrVo3ZEdN25cmWUPqgM4fvx4xo8fX+k28+fPZ/78+ZVuM27cuHLfhyAIhsNIIeflx5rzmI8DL609yvUsFQt3hvP7mRgWPtGGti5iInTBsDlamjAtyIsXe3ly6Goy287FsSfsNvEZ+aw8dIOVh25gZaqkh5cj3b0c8Xe3o0UjKxR6vFp7d17c0FvpnLuVzrmYdC7EZpBfVHp2Bjd7M3p4NaBvq0YENHMQV16F+6Z1R3b16tW1mUMQBEEnLRpZ8VJrFXlO7fhkTySXE7J48psQhrR1ooPWn2yCUHcpFXKCvBsS5N2Q/CIV/0QmseN8PAevJJGeW8SfFxP482LJMDpLEyXt3Gxo6WSNt5MV3k5WNHW0wMq0Zq9yqtQScel5XE/J41piNleTsrmWmM2VxGxScwrLbG9vYUxAM4eSTnczR5o4iCkrhZolPu4FQTBYchmM9G9Mf18XPvoznF9OxbDtfAJ/yhTctrzCtEea1/gP8odVWloaM2bMYOvWrUBJ4ZivvvoKW1vbCvfJzs5m9uzZbNmyhZSUFDw8PJgxYwZTpkx5QKnrD1MjBf1aO9GvtRMqtcT5mHQORiZzIiqF0Oh0sguKOXI1hSNXU0rtZ2NmRGNbM1xszXCwMMbWwgg7c2MsTZQYK+QYK+UYKeSoJYlitZoilUSRSk1mXjGZ+UVk5hWRlltIQkY+8Rn53M7MRy1Fl5vRSCGjlbM17dxsaedqSzs3WzwdLQx6XK9Q94mO7H0Qlb1EZS9R2atunHtWxkYsHNaKMZ1c+WDnZU7cTGf5wRv8ejqWaYGePNGuYZljicpepY0ZM4aYmBh27doFwAsvvEBwcDDbtm2rcJ9XX32V/fv3s2HDBjw8PNizZw9Tp07FxcWFYcOGPajo9Y5CLsOviR1+TeyA5qjUEpG3szh3K53LCVlE3s4iIiGLlJxCMvKKyMgr4lJ8zc11rJTL8HC0wKuBJc0aWuDV0JJmDSxp0chKDBUQHjitK3sJsGzZMpYtW4ZKpSIyMlJU9hKEOkiS4GKajK035STml1wJsjGW6NNYTUBDidooaW/olb3Cw8Np1aoVx44do0uXLgAcO3aMgIAALl++jLe3d7n7tWnThlGjRjFnzhzNMn9/fwYOHMj//vc/rV67vlT2uutB5s8uKCY2LY/Y9Fzi0vNJzy0kLbfkCmtOQTFFKonCYjWFxWpkspLx50YKGUYKOVamRlibKbExM8LGzAhnG1MaWBqTlXiLgPatMTE2vG86DPncMeTsUEcqewkwbdo0pk2bpmlgUdlLVPYSlb3q5rkn27uXl0YEsvl8Isv/uU5CZgG/3VBwOMWEyb09GeHnghy1qOx1R0hICDY2NppOLJQUi7GxseHo0aMVdmR79OjB1q1bmTBhAi4uLhw4cIDIyEi+/PLLCl+roKCAgoICzfO7badSqVCpVFVmvbuNNtvWRQ8yv5lShlcDc7wa1MwFF5VKRWS2EhmSQba/IZ87hpwddM+vy/sUHdn7ICp7Vb1eVPaqejtR2ev+tqtovbmpCeO7e/J0F3d+OBbF4t3hJGQWMH9bOF/9fY2xnd1oWCQqewEkJCTQsGHDMssbNmyomZO7PEuWLGHSpEm4urqiVCqRy+V899139OjRo8J9Pvzww3JLk0dERGBpaal15sjISK23rYsMOb8hZwfDzm/I2UH7/NnZ2VVvdIfoyAqC8FAzUSp4pksTrJIukuHYhu+P3CQ2PY8l+6+hlCm4QBiTejXD3e7hK385f/78cjuN9zp58iRAubXrJUmqtKb9kiVLOHbsGFu3bsXd3Z2DBw8ydepUnJ2deeyxx8rd56233mLmzJma55mZmbi5ueHt7a310ILIyEhatGhhsF+xGmp+Q84Ohp3fkLOD7vl1+ZZLdGQFQagXjOTwbNcmjOvWlJ0XE1h58BoXYjP5+VQsP5+KpZOHHT5KGY8WqQz+Cutd06dPZ/To0ZVu4+Hhwfnz57l9+3aZdUlJSTRq1KicvSAvL4+3336bzZs3M2jQIADatm1LaGgoixYtqrAja2JiUqqwzl0KhUKnH9C6bl/XGHJ+Q84Ohp3fkLOD9vl1eY+iIysIQr2iVMgZ2s6F/i0d+ernPwlXOfN3RBIno9I4iYKtn/7D8A6ujPBz1nfU++bo6Iijo2OV2wUEBJCRkcGJEyfo3LkzAMePHycjI4Nu3bqVu8/dGVvk8tJ3zykUCtRqdbn7CIIg1LS6Xd9OEAShlshkMrys4ZuxfhyZ/QgzHmmGnbFERl4xq49EMWhpCOuu1I+PyJYtW9K/f38mTZrEsWPHOHbsGJMmTWLw4MGlbvTy8fFh8+bNAFhbW9O7d2/eeOMNDhw4wI0bN1izZg3r1q3jiSee0NdbEQShnhFXZAVBqPecbcx4KagZTXMjsGreiV/PxPH35URcLerP7IQbN25kxowZ9O3bFygpiLB06dJS20RERJCRkaF5/tNPP/HWW28xduxYUlNTcXd3Z+HChUyePPmBZhcEof4SHVlBEIQ75DLo3aIBj7V24XZ6Dvv/2qfvSA+Mvb09GzZsqHSb/0477uTkJMqXC4KgV6Ijex9EZS9R2UtU9jKMc6867WllLMNMWX8qewmCIBgiUdlLB6KylyAI5TH0yl76JCp7GQ5Dzg6Gnd+Qs4Oo7FVn3K3slZGRga2tLQEBAVhZWVFUVMT+/fsJCgrSVAS6+xwota6m/fe1a3q/qraraL22y3V9XtP02X66rtOmbcS5p13blbfsfs69rKwsoOxX70LV7raZtvNGqlQqsrOzyczMNNgf6Iaa35Czg2HnN+TsoHv+u58H2nymio5sNdz9odW0aVM9JxEEoS7JysrCxsZG3zEMyt3PUzc3Nz0nEQShrtHmM1UMLagGtVpNXFwcVlZWmqo3nTp10lTIuff53ao1t27dqrWvHP/72jW9X1XbVbRe2+WVPX/Y20/XdVW13b3LHva2q2y9Nm1X3rLqnnuSJJGVlYWLi0uZeVWFypX3eVqZB3Fe1yZDzm/I2cGw8xtydtA9vy6fqeKKbDXI5XJcXV1LLVMoFKX+cf773NrautZOvv++Vk3vV9V2Fa3XdnlVz+HhbT9d12nTVuLc065dylt2P+eeuBJbPeV9nmqjNs/rB8GQ8xtydjDs/IacHXTLr+1nqrh0UEOmTZtW6fMH+do1vV9V21W0Xtvl+my7+3m9mmg/Xddp01bi3NO+XfR97gmCIAj3RwwtqGW63pErlCbar/pE290f0X51k6H/uxhyfkPODoad35CzQ+3mF1dka5mJiQnz5s3DxMRE31EMkmi/6hNtd39E+9VNhv7vYsj5DTk7GHZ+Q84OtZtfXJEVBEEQBEEQDJK4IisIgiAIgiAYJNGRFQRBEARBEAyS6MgKgiAIgiAIBkl0ZAVBEARBEASDJDqydcwTTzyBnZ0dI0aM0HeUOm/79u14e3vTvHlzvvvuO33HMTjiXKueW7duERgYSKtWrWjbti2//vqrviPVGwsXLqRbt26Ym5tja2tb7jbR0dEMGTIECwsLHB0dmTFjBoWFhQ82qJYiIyMZNmwYjo6OWFtb0717d/bv36/vWFrbsWMHXbp0wczMDEdHR4YPH67vSDorKCigffv2yGQyQkND9R1HK1FRUUycOJGmTZtiZmZGs2bNmDdvXp09zwG+/vprmjZtiqmpKf7+/hw6dKjGji06snXMjBkzWLdunb5j1HnFxcXMnDmTv//+mzNnzvDxxx+Tmpqq71gGRZxr1aNUKlm8eDGXLl1i3759vPrqq+Tk5Og7Vr1QWFjIyJEjmTJlSrnrVSoVgwYNIicnh8OHD/PTTz/x+++/89prrz3gpNoZNGgQxcXF/P3335w+fZr27dszePBgEhIS9B2tSr///jvBwcE899xznDt3jiNHjjBmzBh9x9LZrFmzcHFx0XcMnVy+fBm1Ws2KFSsICwvjiy++YPny5bz99tv6jlaun3/+mVdeeYV33nmHs2fP0rNnTwYMGEB0dHTNvIAk1Dn79++XnnzySX3HqNOOHDkiPf7445rnM2bMkH744Qc9JjJM4ly7f76+vlJ0dLS+Y9Qrq1evlmxsbMos37lzpySXy6XY2FjNsh9//FEyMTGRMjIyHmDCqiUlJUmAdPDgQc2yzMxMCZD27dunx2RVKyoqkho3bix99913+o5yX3bu3Cn5+PhIYWFhEiCdPXtW35Gq7ZNPPpGaNm2q7xjl6ty5szR58uRSy3x8fKTZs2fXyPHFFVkdHDx4kCFDhuDi4oJMJmPLli1ltqnNy+cPk/tty7i4OBo3bqx57urqSmxs7IOIXieIc7H6arLtTp06hVqtxs3NrZZTC9oICQmhTZs2pa6w9evXj4KCAk6fPq3HZGU5ODjQsmVL1q1bR05ODsXFxaxYsYJGjRrh7++v73iVOnPmDLGxscjlcvz8/HB2dmbAgAGEhYXpO5rWbt++zaRJk1i/fj3m5ub6jnPfMjIysLe313eMMgoLCzl9+jR9+/Yttbxv374cPXq0Rl5DdGR1kJOTQ7t27Vi6dGm567W5fO7v70+bNm3KPOLi4h7U26gT7rctpXLqeMhkslrNXJfUxLlYX9VU26WkpPDss8/y7bffPojYghYSEhJo1KhRqWV2dnYYGxvXua/rZTIZe/fu5ezZs1hZWWFqasoXX3zBrl27Khz/W1dcv34dgPnz5/Puu++yfft27Ozs6N27t0EM8ZIkifHjxzN58mQ6duyo7zj37dq1a3z11VdMnjxZ31HKSE5ORqVSlfl/2ahRo5r7P1kj13XrIUDavHlzqWU1dfm8vn3dW522LG9owcaNG2s9a110P+difTvX/qu6bZefny/17NlTWrdu3YOI+VCbN2+eBFT6OHnyZKl9KhpaMGnSJKlv375llhsZGUk//vhjbb2FUrR9P2q1Who6dKg0YMAA6fDhw9Lp06elKVOmSI0bN5bi4uIeSNbqZt+4caMESCtWrNDsm5+fLzk6OkrLly/XS3Zd8n/55ZdSt27dpOLiYkmSJOnGjRt1YmhBdf4vxMbGSl5eXtLEiRP1lLpysbGxEiAdPXq01PIFCxZI3t7eNfIayprpDgt3L5/Pnj271PKavHxeX2jTlp07d+bixYvExsZibW3Nzp07mTt3rj7i1jniXKw+bdpOunM155FHHiE4OFgfMR8q06dPZ/To0ZVu4+HhodWxnJycOH78eKllaWlpFBUVlbkiVFu0fT9///0327dvJy0tDWtra6BkSMvevXtZu3ZtmXPwQdA2e1ZWFgCtWrXSLDcxMcHT01Ov3/pom3/BggUcO3YMExOTUus6duzI2LFjWbt2bW3GrJCu/xfi4uIICgoiICCgzn4z5OjoiEKhKHP1NTExscb+T4qObA2pqcvn/fr148yZM+Tk5ODq6srmzZvp1KlTTcet07RpS6VSyWeffUZQUBBqtZpZs2bh4OCgj7h1jrbnojjXytKm7Y4cOcLPP/9M27ZtNeNr169fj6+v74OO+1BwdHTE0dGxRo4VEBDAwoULiY+Px9nZGYA9e/ZgYmLywMadavt+cnNzAZDLS4/wk8vlqNXqWslWFW2z+/v7Y2JiQkREBD169ACgqKiIqKgo3N3daztmhbTNv2TJEhYsWKB5HhcXR79+/fj555/p0qVLbUaslC7/F2JjYwkKCsLf35/Vq1eXOY/qCmNjY/z9/dm7dy9PPPGEZvnevXsZNmxYjbyG6MjWsP+O05QkSaexm7t3767pSAarqrYcOnQoQ4cOfdCxDEZV7SfOtYpV1nY9evTQW0ejvouOjiY1NZXo6GhUKpVm3k8vLy8sLS3p27cvrVq1Ijg4mE8//ZTU1FRef/11Jk2apLnqWVcEBARgZ2fHuHHjmDt3LmZmZqxcuZIbN24waNAgfcerlLW1NZMnT2bevHm4ubnh7u7Op59+CsDIkSP1nK5qTZo0KfXc0tISgGbNmuHq6qqPSDqJi4sjMDCQJk2asGjRIpKSkjTrnJyc9JisfDNnziQ4OJiOHTtqrh5HR0fX2Jhe0ZGtIQ/i8nl9Idry/oj2qz7RdnXb3LlzS33t6+fnB8D+/fsJDAxEoVCwY8cOpk6dSvfu3TEzM2PMmDEsWrRIX5Er5OjoyK5du3jnnXd45JFHKCoqonXr1vzxxx+0a9dO3/Gq9Omnn6JUKgkODiYvL48uXbrw999/Y2dnp+9oD709e/Zw9epVrl69WqbjLZVzI7S+jRo1ipSUFN5//33i4+Np06YNO3furLGr93XzWrQBuvfy+b327t1Lt27d9JTKMIm2vD+i/apPtF3dtmbNGiRJKvMIDAzUbNOkSRO2b99Obm4uKSkpfPXVV2XGQtYVHTt2ZPfu3aSkpJCZmUlISAgDBgzQdyytGBkZsWjRIm7fvk1mZiZ79+6ldevW+o5VLR4eHkiSRPv27fUdRSvjx48v9/9BXezE3jV16lSioqI0U+H16tWrxo4trsjqIDs7m6tXr2qe37hxg9DQUOzt7WnSpEmtXz5/mIi2vD+i/apPtJ0gCMJDpEbmPqgn9u/fX+50GOPGjdNss2zZMsnd3V0yNjaWOnToIP3zzz/6C1yHiba8P6L9qk+0nSAIwsNDJkl1+Fq0IAiCIAiCIFRAjJEVBEEQBEEQDJLoyAqCIAiCIAgGSXRkBUEQBEEQBIMkOrKCIAiCIAiCQRIdWUEQBEEQ9GL+/Pm1Pn/rmjVrsLW1rdXXEPRHdGQFQRAEQShl/PjxyGQyZDIZSqWSJk2aMGXKFNLS0vQdTWejRo0iMjJS3zGEWiIKIgiCIAiCUEb//v1ZvXo1xcXFXLp0iQkTJpCens6PP/6o72g6MTMzw8zMTN8xhFoirsgKgiAIglCGiYkJTk5OuLq60rdvX0aNGsWePXtKbbN69WpatmyJqakpPj4+fP3116XWv/nmm7Ro0QJzc3M8PT2ZM2cORUVFWmdQqVRMnDiRpk2bYmZmhre3N19++aVmfX5+Pq1bt+aFF17QLLtx4wY2NjasXLkSKDu04Ny5cwQFBWFlZYW1tTX+/v6cOnVKl6YR6hBxRVYQBEEQhEpdv36dXbt2YWRkpFm2cuVK5s2bx9KlS/Hz8+Ps2bNMmjQJCwsLxo0bB4CVlRVr1qzBxcWFCxcuMGnSJKysrJg1a5ZWr6tWq3F1deWXX37B0dGRo0eP8sILL+Ds7MxTTz2FqakpGzdupEuXLgwcOJAhQ4YQHBxMUFAQkyZNKveYY8eOxc/Pj2+++QaFQkFoaGip9yUYGH2XFhOE+mzcuHGaEqmbN2+uldfo3bu39PLLL1d7/7v5bGxsaiyTIAh127hx4ySFQiFZWFhIpqamms+Bzz//XLONm5ub9MMPP5Ta73//+58UEBBQ4XE/+eQTyd/fX/N83rx5Urt27XTKNnXqVOnJJ58sc1xHR0fppZdekpycnKSkpCTNutWrV5f6/LKyspLWrFmj02sKdZcYWiDUqHtvELj3cfXqVX1Hq7P69+9PfHw8AwYMeKCvGxgYyPLly6vcLj4+nsWLF9d+IEEQ6pSgoCBCQ0M5fvw4L730Ev369eOll14CICkpiVu3bjFx4kQsLS01jwULFnDt2jXNMX777Td69OiBk5MTlpaWzJkzh+joaJ1yLF++nI4dO9KgQQMsLS1ZuXJlmWO89tpreHt789VXX7F69WocHR0rPN7MmTN5/vnneeyxx/joo49K5RUMj+jICjXubsfs3kfTpk3LbFdYWKiHdHXP3XFoJiYmFW6jy5gybaSmpnL06FGGDBlS5bZOTk7Y2NjU6OsLglD3WVhY4OXlRdu2bVmyZAkFBQW89957QMlX/lAyvCA0NFTzuHjxIseOHQPg2LFjjB49mgEDBrB9+3bOnj3LO++8o9Nn/y+//MKrr77KhAkT2LNnD6GhoTz33HNljpGYmEhERAQKhYIrV65Uesz58+cTFhbGoEGD+Pvvv2nVqhWbN2/WpWmEOkR0ZIUad7djdu9DoVAQGBjI9OnTmTlzJo6OjvTp0weAS5cuMXDgQCwtLWnUqBHBwcEkJydrjpeTk8Ozzz6LpaUlzs7OfPbZZwQGBvLKK69otpHJZGzZsqVUDltbW9asWaN5Hhsby6hRo7Czs8PBwYFhw4YRFRWlWT9+/Hgef/xxFi1ahLOzMw4ODkybNq1UJ7KgoIBZs2bh5uaGiYkJzZs3Z9WqVUiShJeXF4sWLSqV4eLFi8jlcp1+44+KikImk/HLL78QGBiIqakpGzZsICUlhaeffhpXV1fMzc3x9fUtc/dweW1Vnh07dtCuXTsaN25MWloaY8eOpUGDBpiZmdG8eXNWr16tdV5BEOqHefPmsWjRIuLi4mjUqBGNGzfm+vXreHl5lXrcvXBx5MgR3N3deeedd+jYsSPNmzfn5s2bOr3moUOH6NatG1OnTsXPzw8vL69yP08nTJhAmzZtWLduHbNmzeLSpUuVHrdFixa8+uqr7Nmzh+HDh4vPPAMmOrLCA7V27VqUSiVHjhxhxYoVxMfH07t3b9q3b8+pU6fYtWsXt2/f5qmnntLs88Ybb7B//342b97Mnj17OHDgAKdPn9bpdXNzcwkKCsLS0pKDBw9y+PBhLC0t6d+/f6nf7Pfv38+1a9fYv38/a9euZc2aNaU6w88++yw//fQTS5YsITw8nOXLl2NpaYlMJmPChAllPgy///57evbsSbNmzXRuqzfffJMZM2YQHh5Ov379yM/Px9/fn+3bt3Px4kVeeOEFgoODOX78uM5ttXXrVoYNGwbAnDlzuHTpEn/++Sfh4eF88803lX4tJwhC/RQYGEjr1q354IMPgJIrmx9++CFffvklkZGRXLhwgdWrV/P5558D4OXlRXR0ND/99BPXrl1jyZIlOl/59PLy4tSpU+zevZvIyEjmzJnDyZMnS22zbNkyQkJCWLduHWPGjGHEiBGMHTu23Cu/eXl5TJ8+nQMHDnDz5k2OHDnCyZMnadmyZTVbRdA7fQ/SFR4u994gcPcxYsQISZJKbjpq3759qe3nzJkj9e3bt9SyW7duSYAUEREhZWVlScbGxtJPP/2kWZ+SkiKZmZmVuoGJcm6WsrGxkVavXi1JkiStWrVK8vb2ltRqtWZ9QUGBZGZmJu3evVuT3d3dXSouLtZsM3LkSGnUqFGSJElSRESEBEh79+4t973HxcVJCoVCOn78uCRJklRYWCg1aNCg0psKxo0bJw0bNqzUshs3bkiAtHjx4gr3u2vgwIHSa6+9JkmSpHVb5efnS1ZWVtL58+clSZKkIUOGSM8991ylr/PfmyUEQXi4lffZJEmStHHjRsnY2FiKjo7WPG/fvr1kbGws2dnZSb169ZI2bdqk2f6NN96QHBwcJEtLS2nUqFHSF198UeqzpKqbvfLz86Xx48dLNjY2kq2trTRlyhRp9uzZmn3Cw8MlMzOzUjedZWRkSB4eHtKsWbMkSSr9+VVQUCCNHj1acnNzk4yNjSUXFxdp+vTpUl5eXvUaStA7Mf2WUOOCgoL45ptvNM8tLCw0f+/YsWOpbU+fPs3+/fuxtLQsc5xr166Rl5dHYWEhAQEBmuX29vZ4e3vrlOn06dNcvXoVKyurUsvz8/NLfU3VunVrFAqF5rmzszMXLlwAIDQ0FIVCQe/evct9DWdnZwYNGsT3339P586d2b59O/n5+YwcOVKnrHf9t61UKhUfffQRP//8M7GxsRQUFFBQUKBp32vXrmnVVn///TcODg74+voCMGXKFJ588knOnDlD3759efzxx+nWrVu1MguC8HC495uoe40ZM4YxY8ZU+Py/PvnkEz755JNSy+4dFjZ//nzmz59f4f4mJiasXr26zLddH374IQA+Pj7k5uaWWmdtbc2NGzc0z8ePH8/48eMBMDY2NriCDkLlREdWqHF3bxCoaN291Go1Q4YM4eOPPy6zrbOzc5WD9u+SyWRIklRq2b1jW9VqNf7+/mzcuLHMvg0aNND8/b9zCcpkMs1NDdpUhnn++ecJDg7miy++YPXq1YwaNQpzc3Ot3sN//betPvvsM7744gsWL16Mr68vFhYWvPLKK5qvz/77/ity77ACgAEDBnDz5k127NjBvn37ePTRR5k2bVqZ8b6CIAiCUNeIMbKCXnXo0IGwsDA8PDzK3DBwt0NsZGSkuQsWIC0trUzd7AYNGhAfH695fuXKlVK/pXfo0IErV67QsGHDMq+j7R35vr6+qNVq/vnnnwq3GThwIBYWFnzzzTf8+eefTJgwQdumqNKhQ4cYNmwYzzzzDO3atcPT07NUR1+btpIkiW3btjF06NBSx27QoAHjx49nw4YNLF68mG+//bbGcguCIAhCbREdWUGvpk2bRmpqKk8//TQnTpzg+vXr7NmzhwkTJqBSqbC0tGTixIm88cYb/PXXX1y8eJHx48cjl5c+dR955BGWLl3KmTNnOHXqFJMnTy51dXXs2LE4OjoybNgwDh06xI0bN/jnn394+eWXiYmJ0Sqrh4cH48aNY8KECWzZsoUbN25w4MABfvnlF802CoWC8ePH89Zbb+Hl5VXqa/775eXlxd69ezl69Cjh4eG8+OKLJCQkaNZr01anT58mJyeHXr16aZbNnTuXP/74g6tXrxIWFsb27dvFjQ+CIAiCQRAdWUGvXFxcOHLkCCqVin79+tGmTRtefvllbGxsNB2wTz/9lF69ejF06FAee+wxevTogb+/f6njfPbZZ7i5udGrVy/GjBnD66+/XuorfXNzcw4ePEiTJk0YPnw4LVu2ZMKECeTl5WFtba113m+++YYRI0YwdepUfHx8mDRpEjk5OaW2mThxIoWFhTV6NRZKZhfo0KED/fr1IzAwECcnJx5//PFS21TVVn/88QeDBg1Cqfx3VJGxsTFvvfUWbdu2pVevXigUCn766acazS4IgiAItUEmaTuwThDqkMDAQNq3b18nK04dOXKEwMBAYmJiaNSoUaXbjh8/nvT09DJz4NaWtm3b8u6775aa3kwba9as4ZVXXiE9Pb12ggmCIAhCNYibvQShhhQUFHDr1i3mzJnDU089VWUn9q7t27djaWnJTz/9xODBg2stX2FhIU8++aTOpXAtLS0pLi7G1NS0lpIJgiAIQvWIK7KCQaqLV2TXrFnDxIkTad++PVu3bqVx48ZV7pOYmEhmZiZQMkvDf2cqqAuuXr0KlIz/La/UsCAIgiDoi+jICoIgCIIgCAZJ3OwlCIIgCIIgGCTRkRUEQRAEQRAMkujICoIgCIIgCAZJdGQFQRAEQRAEgyQ6soIgCIIgCIJBEh1ZQRAEQRAEwSCJjqwgCIIgCIJgkERHVhAEQRAEQTBIoiMrCIIgCIIgGKT/AyAOKYYfxnR1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArIAAAGNCAYAAADtvZJlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAADmXklEQVR4nOzdd3gURR/A8e/eXXLpvQMpEAi9S++9I1gQpEkRRKXEir5KsSCoiEoRREEQFUFAQaRI7x0pAUIPJSEkkN7v5v0j5uRIQhK45HJhPs9zD+zs7M5vJ5e9ydzsjCKEEEiSJEmSJEmShVGZOwBJkiRJkiRJehiyIStJkiRJkiRZJNmQlSRJkiRJkiySbMhKkiRJkiRJFkk2ZCVJkiRJkiSLJBuykiRJkiRJkkWSDVlJkiRJkiTJIsmGrCRJkiRJkmSRZENWkiRJkiRJskiyISuVKQcOHKBPnz74+/uj1Wrx9vamadOmvPbaa0b55s6dy+LFix+pLEVReOWVVwrMt337dhRFYfv27Ya0yZMnoyiKUb42bdrQpk0bw3ZKSgqTJ082Os7S5VUXphQYGMjQoUNNcq5jx47RunVrnJ2dURSFWbNmmeS8+VEUhcmTJxdrGaZgit+d/FhKHeTlUd579//uS5JUeBpzByBJpvLnn3/Sq1cv2rRpw4wZM/D19SUyMpLDhw/zyy+/8Pnnnxvyzp07Fw8PD5M1eh6kfv367Nu3j+rVqz8w39y5c422U1JSmDJlCoD8kCuk1atX4+TkZJJzDRs2jOTkZH755RdcXV0JDAw0yXnzs2/fPsqXL1+sZZhCSf7uSJIkFUQ2ZKUyY8aMGQQFBbFx40Y0mv/e2s899xwzZswwW1xOTk40adKkwHwFNXSlgtWrV89k5zp16hQjR46ka9euJjlfZmYmiqIYvTfvVZj3iDmlpKRgZ2dn7jAkSZKMyKEFUpkRGxuLh4dHng0Fleq/t3pgYCCnT59mx44dKIqCoiiG3ra0tDRee+016tati7OzM25ubjRt2pTff/8933Lnz59PlSpV0Gq1VK9enV9++cVof2G/Tr/368UrV67g6ekJwJQpUwxxDh06lF27dqEoCj///HOucyxZsgRFUTh06FC+5dy+fZsxY8ZQvXp1HBwc8PLyol27duzatcso35UrV1AUhc8++4yZM2cSFBSEg4MDTZs2Zf/+/UZ5Dx8+zHPPPUdgYCC2trYEBgbSv39/rl69+sBrXrp0KYqisG/fvlz7pk6dipWVFTdv3gSyv+rv0aMHXl5eaLVa/Pz86N69O9evXzccc//Xu3q9ng8//JCQkBBsbW1xcXGhdu3afPnll/nGtHjxYhRFISsri3nz5hnqPsepU6fo3bs3rq6u2NjYULduXX744Qejc+T8zJcuXcprr71GuXLl0Gq1XLhwId9y7/9aPSeObdu28dJLL+Hh4YG7uzt9+/Y11AnAk08+SUBAAHq9Ptc5GzduTP369Q3bQgjmzp1L3bp1sbW1xdXVlaeffppLly4ZHdemTRtq1qzJzp07adasGXZ2dgwbNuyBvzsACQkJvP766wQFBWFtbU25cuUYP348ycnJRudPSEhg5MiRuLu74+DgQJcuXQgPD8+3bvKq2x9//JHQ0FB8fHywtbWldevWHDt2LFf+w4cP06tXL9zc3LCxsaFevXr8+uuvRnkKW9eQ/QfJm2++iY+PD3Z2drRo0YKDBw/mKjev4UP3lnXlypUCr/H+e0bO7+S9QzuGDh2Kg4MDZ8+epXPnztjb2+Pr68snn3wCwP79+2nRogX29vZUqVIl13tVkiydbMhKZUbTpk05cOAAY8eO5cCBA2RmZuaZb/Xq1VSsWJF69eqxb98+9u3bx+rVqwFIT0/nzp07vP7666xZs4aff/6ZFi1a0LdvX5YsWZLrXH/88QdfffUVU6dOZeXKlQQEBNC/f39Wrlz5SNfi6+vLhg0bABg+fLghzvfee4+WLVtSr1495syZk+u42bNn88QTT/DEE0/ke+47d+4AMGnSJP78808WLVpExYoVadOmTZ6N7Tlz5rB582ZmzZrFsmXLSE5Oplu3bsTHxxvyXLlyhZCQEGbNmsXGjRuZPn06kZGRPPHEE8TExOQbS79+/fDx8cl1LVlZWcyfP58+ffrg5+dHcnIyHTt25NatW0bx+Pv7k5iYmO/5Z8yYweTJk+nfvz9//vkny5cvZ/jw4cTFxeV7TPfu3Q0N66efftpQ9wDnzp2jWbNmnD59mq+++opVq1ZRvXp1hg4dmmev/8SJE4mIiOCbb75h7dq1eHl55VtufkaMGIGVlRU//fQTM2bMYPv27QwcONCwf9iwYURERLB161aj486ePcvBgwd54YUXDGmjRo1i/PjxdOjQgTVr1jB37lxOnz5Ns2bNuHXrltHxkZGRDBw4kAEDBrB+/XrGjBnzwN+dlJQUWrduzQ8//MDYsWP566+/eOutt1i8eDG9evVCCAFkN6affPJJQyN/9erVNGnSpMg93++88w6XLl1i4cKFLFy4kJs3b9KmTRujRvm2bdto3rw5cXFxfPPNN/z+++/UrVuXfv365TnOt6C6Bhg5ciSfffYZgwcP5vfff+epp56ib9++3L17t0jxm1JmZiZ9+/ale/fu/P7773Tt2pWJEyfyzjvvMGTIEIYNG8bq1asJCQlh6NChHDlyxGyxSpLJCUkqI2JiYkSLFi0EIABhZWUlmjVrJqZNmyYSExON8taoUUO0bt26wHNmZWWJzMxMMXz4cFGvXj2jfYCwtbUVUVFRRvmrVq0qgoODDWnbtm0TgNi2bZshbdKkSeL+X7/WrVsbxXT79m0BiEmTJuWKa9GiRQIQx44dM6QdPHhQAOKHH34o8Lryusb27duLPn36GNIvX74sAFGrVi2RlZWVq5yff/75gedMSkoS9vb24ssvvzSk51cX1tbW4tatW4a05cuXC0Ds2LFDCCHE4cOHBSDWrFnzwGsJCAgQQ4YMMWz36NFD1K1bt8A6yAsgXn75ZaO05557Tmi1WhEREWGU3rVrV2FnZyfi4uKEEP9dZ6tWrYpU3r0/65yf8ZgxY4zyzZgxQwAiMjJSCCFEZmam8Pb2FgMGDDDK9+abbwpra2sRExMjhBBi3759AhCff/65Ub5r164JW1tb8eabbxrSWrduLQCxZcuWXHHm97szbdo0oVKpxKFDh4zSV65cKQCxfv16IYQQf/31lwCM3hdCCPHRRx/l+36/V07d1q9fX+j1ekP6lStXhJWVlRgxYoQhrWrVqqJevXoiMzPT6Bw9evQQvr6+QqfTCSEKX9dnzpwRgJgwYYJRvmXLlgnA6L2X1+/4vWVdvnzZkHb/735evydC/Pc7uWjRIkPakCFDBCB+++03Q1pmZqbw9PQUgDh69KghPTY2VqjVahEaGporLkmyVLJHVioz3N3d2bVrF4cOHeKTTz6hd+/ehIeHM3HiRGrVqvXAnsF7rVixgubNm+Pg4IBGo8HKyorvvvuOM2fO5Mrbvn17vL29DdtqtZp+/fpx4cIFo6+8Ta1///54eXkZ9WR+/fXXeHp60q9fvwKP/+abb6hfvz42NjaGa9yyZUue19i9e3fUarVhu3bt2gBGwwaSkpJ46623CA4ORqPRoNFocHBwIDk5Oc9z3uull14C4NtvvzWkzZ49m1q1atGqVSsAgoODcXV15a233uKbb74hLCyswGsEaNSoEf/88w9jxoxh48aNJCQkFOq4/GzdupX27dtToUIFo/ShQ4eSkpKSa4jEU0899UjlAfTq1cto+/7612g0DBw4kFWrVhl6yXU6HUuXLqV37964u7sDsG7dOhRFYeDAgWRlZRlePj4+1KlTJ1dvvKurK+3atSt0nOvWraNmzZrUrVvX6PydO3c2+pp827ZtADz//PNGxw8YMKDQZeXkv/er+4CAAJo1a2Y4/4ULFzh79qyhnHtj6tatG5GRkZw7d87onAXVdX6xP/vss/mOfS4JiqLQrVs3w7ZGoyE4OBhfX1+jceNubm54eXkVOORHkiyJbMhKZU7Dhg156623WLFiBTdv3mTChAlcuXKlUA98rVq1imeffZZy5crx448/sm/fPg4dOsSwYcNIS0vLld/HxyfftNjY2Ee/mHxotVpGjRrFTz/9RFxcHLdv3+bXX39lxIgRaLXaBx47c+ZMXnrpJRo3bsxvv/3G/v37OXToEF26dCE1NTVX/pyG0L1lA0Z5BwwYwOzZsxkxYgQbN27k4MGDHDp0CE9PzzzPeS9vb2/69evH/Pnz0el0nDhxgl27dhlNbebs7MyOHTuoW7cu77zzDjVq1MDPz49JkyblO4QEsr/a/+yzz9i/fz9du3bF3d2d9u3bc/jw4QfGlJ/Y2Fh8fX1zpfv5+Rn23yuvvEVVmPrPeX/mjM/euHEjkZGRRsMKbt26hRACb29vrKysjF779+/P9YdeUWO/desWJ06cyHVuR0dHhBCG88fGxqLRaHJdV16/Sw+S3+9ezs8gZ6jE66+/niumMWPGAOS65oLqOufc95ed1/WUJDs7O2xsbIzSrK2tcXNzy5XX2to6z3uZJFkqOWuBVKZZWVkxadIkvvjiC06dOlVg/h9//JGgoCCWL19u1NuTnp6eZ/6oqKh804r7g+2ll17ik08+4fvvvyctLY2srCxGjx5d4HE//vgjbdq0Yd68eUbpDxpr+iDx8fGsW7eOSZMm8fbbbxvSc8YbF8a4ceNYunQpv//+Oxs2bMDFxSVXr1etWrX45ZdfEEJw4sQJFi9ezNSpU7G1tTUq914ajYbQ0FBCQ0OJi4vj77//5p133qFz585cu3atyE/hu7u7ExkZmSs954EgDw8Po/S8HvYpDtWrV6dRo0YsWrSIUaNGsWjRIvz8/OjUqZMhj4eHB4qisGvXrjz/2Lk/raixe3h4YGtry/fff5/vfsiuw6ysLGJjY41+R/L6XXqQ/H73cs6ZU97EiRPp27dvnucICQkpUpk5546KiqJcuXKG9JzruVdOwzI9Pd2obgvzzdC9x96rsN8qSdLjRPbISmVGXg0MwPDVdk6vGWR/aOfVU6goCtbW1kYf4lFRUfnOWrBlyxajh2R0Oh3Lly+nUqVKjzwnaF49b/fy9fXlmWeeYe7cuXzzzTf07NkTf3//As+rKEquRsuJEyfynDmgMBRFQQiR65wLFy5Ep9MV6hwNGjSgWbNmTJ8+nWXLljF06FDs7e3zLa9OnTp88cUXuLi4cPTo0UKV4eLiwtNPP83LL7/MnTt3HvjUeH7at2/P1q1bcz3JvmTJEuzs7Mw6hdYLL7zAgQMH2L17N2vXrmXIkCFGQ0J69OiBEIIbN27QsGHDXK9atWoVqpz8fnd69OjBxYsXcXd3z/P8ObMbtG3bFoBly5YZHf/TTz8V6Xp//vlnwwNkkP31/969ew0zf4SEhFC5cmX++eefPONp2LAhjo6ORSoz59z3x/7rr7+SlZVllJZzvSdOnDBKX7t2bYHl5HfsH3/8UYRoJenxIHtkpTKjc+fOlC9fnp49e1K1alX0ej3Hjx/n888/x8HBgXHjxhny5vTuLV++nIoVK2JjY0OtWrXo0aMHq1atYsyYMTz99NNcu3aNDz74AF9fX86fP5+rTA8PD9q1a8d7772Hvb09c+fO5ezZs7mm4HoYjo6OBAQE8Pvvv9O+fXvc3Nzw8PAwmu5o3LhxNG7cGIBFixYV6rw9evTggw8+YNKkSbRu3Zpz584xdepUgoKCcn0YF4aTkxOtWrXi008/NcS3Y8cOvvvuO1xcXAp9nnHjxtGvXz8URTF89Ztj3bp1zJ07lyeffJKKFSsihGDVqlXExcXRsWPHfM/Zs2dPatasScOGDfH09OTq1avMmjWLgIAAKleuXORrnTRpEuvWraNt27a8//77uLm5sWzZMv78809mzJiBs7Nzkc9pKv379yc0NJT+/fuTnp6ea8GC5s2b8+KLL/LCCy9w+PBhWrVqhb29PZGRkezevZtatWoZxis/SH6/O+PHj+e3336jVatWTJgwgdq1a6PX64mIiGDTpk289tprNG7cmE6dOtGqVSvefPNNkpOTadiwIXv27GHp0qVFut7o6Gj69OnDyJEjiY+PZ9KkSdjY2DBx4kRDnvnz59O1a1c6d+7M0KFDKVeuHHfu3OHMmTMcPXqUFStWFKnMatWqMXDgQGbNmoWVlRUdOnTg1KlTfPbZZ7kW4ujWrRtubm4MHz6cqVOnotFoWLx4MdeuXSuwHB8fHzp06MC0adNwdXUlICCALVu2sGrVqiLFK0mPBTM+aCZJJrV8+XIxYMAAUblyZeHg4CCsrKyEv7+/GDRokAgLCzPKe+XKFdGpUyfh6OgoABEQEGDY98knn4jAwECh1WpFtWrVxLfffpvnE8j8+1T73LlzRaVKlYSVlZWoWrWqWLZsmVG+h521QAgh/v77b1GvXj2h1WpzPRWdIzAwUFSrVq3Q9ZSeni5ef/11Ua5cOWFjYyPq168v1qxZI4YMGWJUDzlPSH/66ae5zsF9T5dfv35dPPXUU8LV1VU4OjqKLl26iFOnTuWaRSC/p7Fz4tJqtaJLly659p09e1b0799fVKpUSdja2gpnZ2fRqFEjsXjxYqN895f3+eefi2bNmgkPDw9hbW0t/P39xfDhw8WVK1cKrCfymLVACCFOnjwpevbsKZydnYW1tbWoU6eO0VPk917nihUrCizn3vLymrXg/lkAHlSHAwYMEIBo3rx5vuV8//33onHjxsLe3l7Y2tqKSpUqicGDB4vDhw8b8rRu3VrUqFEjz+Mf9LuTlJQk/ve//4mQkBBhbW0tnJ2dRa1atcSECROMZveIi4sTw4YNEy4uLsLOzk507NhRnD17tkizFixdulSMHTtWeHp6Cq1WK1q2bGl0DTn++ecf8eyzzwovLy9hZWUlfHx8RLt27cQ333xjyFOUuk5PTxevvfaa8PLyEjY2NqJJkyZi3759ud57QmTP8NGsWTNhb28vypUrJyZNmiQWLlxY4KwFQggRGRkpnn76aeHm5iacnZ3FwIEDDbN33D9rgb29fa7rzu9nGBAQILp3755HzUqSZVKEuOe7GUmSLMqJEyeoU6cOc+bMydWLaWnWrl1Lr169+PPPP42ewJake23fvp22bduyYsUKnn76aXOHI0mSmcmhBZJkgS5evMjVq1d555138PX1teh178PCwrh69aphRTVTLQkrSZIklX3yYS9JskAffPABHTt2JCkpiRUrVhT56fvSZMyYMfTq1QtXV1d+/vnnEnvSX5IkSbJ8cmiBJEmSJEmSZJFkj6wkSZIkSZJkkWRDVpIkSZIkSbJIsiErSZIkSZIkWSTZkJUkSZIkSZIskmzISpIkSZIkSRZJNmQlSZIkSZIkiyQbspIkSZIkSZJFkg1ZSZIkSZIkySLJhqwkSZIkSZJkkWRDVpIkSZIkSbJIsiErSZIkSZIkWSTZkJUkSZIkSZIskmzISpIkSZIkSRZJNmQlSZIkSZIkiyQbspIkSZIkSZJFkg1ZSZIkSZIkySLJhqwkSZIkSZJkkWRDVpIkSZIkSbJIsiErSZIkSZIkWSTZkJUkSZIkSZIskmzISpIkSZIkSRZJNmQlsxk6dChPPvlksZejKApr1qwx+XmFELz44ou4ubmhKArHjx83eRmSJEnFZfLkydStW7fEy23Tpg3jx48vlnMvWLCAChUqoFKpmDVrVrGUIZUusiErPdDQoUNRFMXwcnd3p0uXLpw4ccLcoRWbwjawN2zYwOLFi1m3bh2RkZHUrFnTpHE8agPcXB9SkiTlLed++sknnxilr1mzBkVRSjye119/nS1bthQqrznvJ4sXL8bFxaXAfAkJCbzyyiu89dZb3LhxgxdffNGkcRRnA1x6eLIhKxWoS5cuREZGEhkZyZYtW9BoNPTo0cPcYZndxYsX8fX1pVmzZvj4+KDRaIp8DiEEWVlZxRCdJEmlkY2NDdOnT+fu3bvmDgUHBwfc3d3NHYbJREREkJmZSffu3fH19cXOzu6hzpOZmWniyKTiJBuyUoG0Wi0+Pj74+PhQt25d3nrrLa5du8bt27cNeU6ePEm7du2wtbXF3d2dF198kaSkJMN+nU5HaGgoLi4uuLu78+abbyKEMCpHCMGMGTOoWLEitra21KlTh5UrVz4wtsDAQD744AMGDBiAg4MDfn5+fP311w885kGxTp48mR9++IHff//d0Au9ffv2XOcYOnQor776KhERESiKQmBgIADp6emMHTsWLy8vbGxsaNGiBYcOHTIct337dhRFYePGjTRs2BCtVsuuXbseGG9xCQwM5OOPP2bYsGE4Ojri7+/PggULjPLcuHGDfv364erqiru7O7179+bKlStAdj2qVCpiYmIAuHv3LiqVimeeecZw/LRp02jatGmJXZMklXYdOnTAx8eHadOm5bk/OTkZJyenXPe+tWvXYm9vT2JiIgAHDx6kXr162NjY0LBhQ1avXm00xCmvXsz7e37v72Xdvn07jRo1wt7eHhcXF5o3b87Vq1dZvHgxU6ZM4Z9//jHcFxcvXpxn/DnfaE2ZMgUvLy+cnJwYNWoUGRkZ+dbJ3bt3GTx4MK6urtjZ2dG1a1fOnz9viOmFF14gPj7eUPbkyZNznWPx4sXUqlULgIoVK6IoiuFeNW/ePCpVqoS1tTUhISEsXbrU6FhFUfjmm2/o3bs39vb2fPjhh/nGmp8rV66gKAqrVq2ibdu22NnZUadOHfbt22eUb+/evbRq1QpbW1sqVKjA2LFjSU5OBuDrr782XAP89/OaM2eOIa1z585MnDixyPGVaUKSHmDIkCGid+/ehu3ExEQxatQoERwcLHQ6nRBCiOTkZOHn5yf69u0rTp48KbZs2SKCgoLEkCFDDMdNnz5dODs7i5UrV4qwsDAxfPhw4ejoaHTud955R1StWlVs2LBBXLx4USxatEhotVqxffv2fOMLCAgQjo6OYtq0aeLcuXPiq6++Emq1WmzatMmQBxCrV68uVKyJiYni2WefFV26dBGRkZEiMjJSpKen5yo3Li5OTJ06VZQvX15ERkaK6OhoIYQQY8eOFX5+fmL9+vXi9OnTYsiQIcLV1VXExsYKIYTYtm2bAETt2rXFpk2bxIULF0RMTEye13Zv3A9j0qRJok6dOvnuDwgIEG5ubmLOnDni/PnzYtq0aUKlUokzZ84Y6qpy5cpi2LBh4sSJEyIsLEwMGDBAhISEiPT0dKHX64WHh4dYuXKlEEKINWvWCA8PD+Hl5WUoo1OnTuKtt9566GuQpLIk5366atUqYWNjI65duyaEEGL16tXi3o/jkSNHim7duhkd26dPHzF48GAhhBBJSUnC09NT9OvXT5w6dUqsXbtWVKxYUQDi2LFjQgghFi1aJJydnY3OcX85994jMjMzhbOzs3j99dfFhQsXRFhYmFi8eLG4evWqSElJEa+99pqoUaOG4b6YkpKS7zU6ODgYYlu3bp3w9PQU77zzjiFP69atxbhx4wzbvXr1EtWqVRM7d+4Ux48fF507dxbBwcEiIyNDpKeni1mzZgknJydD2YmJibnKTUlJEX///bcAxMGDB0VkZKTIysoSq1atElZWVmLOnDni3Llz4vPPPxdqtVps3brVcCwgvLy8xHfffScuXrworly5kue13R/3vS5fviwAUbVqVbFu3Tpx7tw58fTTT4uAgACRmZkphBDixIkTwsHBQXzxxRciPDxc7NmzR9SrV08MHTrUsF9RFHH79m0hhBDjx48XHh4e4plnnjH8jBwcHMRff/2VZwyPK9mQlR5oyJAhQq1WC3t7e2Fvby8A4evrK44cOWLIs2DBAuHq6iqSkpIMaX/++adQqVQiKipKCCGEr6+v+OSTTwz7MzMzRfny5Q0N2aSkJGFjYyP27t1rVP7w4cNF//79840vICBAdOnSxSitX79+omvXrobtexuEhYn1/sZ7fr744gsREBBg2E5KShJWVlZi2bJlhrSMjAzh5+cnZsyYIYT4ryG7Zs2aAs9fEg3ZgQMHGrb1er3w8vIS8+bNE0II8d1334mQkBCh1+sNedLT04Wtra3YuHGjEEKIvn37ildeeUUIkX3Tfe2114SHh4c4ffq0vOlK0n3uvbc0adJEDBs2TAiRu4F54MABoVarxY0bN4QQQty+fVtYWVkZ/qifP3++cHNzE8nJyYZj5s2b90gN2djYWAHk23FQ0P3k3mvMKzYHBwdD58e9DcLw8HABiD179hjyx8TECFtbW/Hrr7/mey15OXbsmADE5cuXDWnNmjUTI0eONMr3zDPPGP2hAIjx48cXeP7CNGQXLlxoSDt9+rQADJ0DgwYNEi+++KLRcbt27RIqlUqkpqbm6hyoW7eumDZtmqFzYO/evUKj0eTZkH+cyaEFUoHatm3L8ePHOX78OAcOHKBTp0507dqVq1evAnDmzBnq1KmDvb294ZjmzZuj1+s5d+4c8fHxREZGGn3FrNFoaNiwoWE7LCyMtLQ0OnbsiIODg+G1ZMkSLl68+MD47v/qumnTppw5cybPvAXF+iguXrxIZmYmzZs3N6RZWVnRqFGjXPHce+3mVLt2bcP/FUXBx8eH6OhoAI4cOcKFCxdwdHQ0/Dzc3NxIS0sz/EzatGljGHqxY8cO2rZtS6tWrdixYweHDh0iNTXVqD4kSco2ffp0fvjhB8LCwnLta9SoETVq1GDJkiUALF26FH9/f1q1agX8dx+7dwzoow7hcXNzY+jQoXTu3JmePXvy5ZdfEhkZ+VDnyiu2pKQkrl27livvmTNn0Gg0NG7c2JDm7u5OSEhIvvfxojhz5kyue1Dz5s2L7Z587z3V19cXwOieunjxYqPPuM6dO6PX67l8+TKKotCqVSu2b99OXFwcp0+fZvTo0eh0Os6cOcP27dupX78+Dg4OJom1rCj60ynSY8fe3p7g4GDDdoMGDXB2dubbb7/lww8/RAiR7xO3hX0SV6/XA/Dnn39Srlw5o31arbbIMedXrilizY/4d8zv/efJq8x7G9LmZGVlZbStKIrhZ6HX62nQoAHLli3LdZynpyeQ3ZAdN24cFy5c4NSpU7Rs2ZKLFy+yY8cO4uLiaNCgAY6OjsV/IZJkYVq1akXnzp155513GDp0aK79I0aMYPbs2bz99tssWrSIF154wXAfEfc9X5AXlUqVK19BDzEtWrSIsWPHsmHDBpYvX87//vc/Nm/eTJMmTQp/YQ+Q1z02v2t50L36UcstznvyvffUnDLuvaeOGjWKsWPH5jrO398fyL6nLliwgF27dlGnTh1cXFwMnQPbt2+nTZs2JomzLJE9slKRKYqCSqUiNTUVgOrVq3P8+HHDgHWAPXv2oFKpqFKlCs7Ozvj6+rJ//37D/qysLI4cOWLYrl69OlqtloiICIKDg41eFSpUeGA89543Z7tq1ap55i0oVgBra2t0Ol0ha+M/wcHBWFtbs3v3bkNaZmYmhw8fplq1akU+n7nVr1+f8+fP4+Xlletn4uzsDEDNmjVxd3fnww8/pE6dOjg5OdG6dWvDTbd169ZmvgpJKr0++eQT1q5dy969e3PtGzhwIBEREXz11VecPn2aIUOGGPZVr16df/75x3APhtz3QU9PTxITE43udYWZ67pevXpMnDiRvXv3UrNmTX766SegaPfFvGJzcHCgfPnyufJWr16drKwsDhw4YEiLjY0lPDzccN982HsyQLVq1YzuyZD9wJU57sn169fn9OnTue6nOZ8dkN2QPX36NCtXrjQ0Wlu3bs3ff//N3r175T01D7IhKxUoPT2dqKgooqKiOHPmDK+++ipJSUn07NkTgOeffx4bGxuGDBnCqVOn2LZtG6+++iqDBg3C29sbgHHjxvHJJ5+wevVqzp49y5gxY4iLizOU4ejoyOuvv86ECRP44YcfuHjxIseOHWPOnDn88MMPD4xvz549zJgxg/DwcObMmcOKFSsYN25cnnkLE2tgYCAnTpzg3LlzxMTEFHoqFnt7e1566SXeeOMNNmzYQFhYGCNHjiQlJYXhw4cX6hz3u3z5smFYR87r3tkgCpKamprr+AsXLhTq2Oeffx4PDw969+7Nrl27uHz5Mjt27GDcuHFcv34dwPBV2I8//mi46dauXZuMjAy2bNkiew8k6QFq1arF888/n+dMK66urvTt25c33niDTp06GTUCBwwYgEqlYvjw4YSFhbF+/Xo+++wzo+MbN26MnZ0d77zzDhcuXOCnn37Kd6YByL7XTJw4kX379nH16lU2bdpk1JgMDAw03I9iYmJIT0/P91wZGRmG2P766y8mTZrEK6+8gkqVu8lRuXJlevfuzciRI9m9ezf//PMPAwcOpFy5cvTu3dtQdlJSElu2bCEmJoaUlJQH1uu93njjDRYvXsw333zD+fPnmTlzJqtWreL1118v9Dnudfv27Vz31KioqEId+9Zbb7Fv3z5efvlljh8/zvnz5/njjz949dVXDXlyOgeWLVtmuH+2adOGNWvWkJqaSosWLR4q7jLNbKNzJYswZMgQARhejo6O4oknnjAMRs9x4sQJ0bZtW2FjYyPc3NzEyJEjjQakZ2ZminHjxgknJyfh4uIiQkNDxeDBg40eqtLr9eLLL78UISEhwsrKSnh6eorOnTuLHTt25BtfQECAmDJlinj22WeFnZ2d8Pb2FrNmzTLKw30PTRUUa3R0tOjYsaNwcHAQgNi2bVueZd//sJcQQqSmpopXX31VeHh4CK1WK5o3by4OHjxo2J/zsNfdu3fzvaZ7487rlRMPIBYtWpTv8ZMmTcrz+NatWwshsuvuiy++MDqmTp06YtKkSYbtyMhIMXjwYMP1VKxYUYwcOVLEx8cb8nz99dcCEOvWrTOk9e7dW6jVaqN8kvS4y+tB0itXrgitVivy+jjesmWLAAwPPd1r3759ok6dOsLa2lrUrVtX/Pbbb0YPewmR/XBXcHCwsLGxET169BALFizI92GvqKgo8eSTTwpfX19hbW0tAgICxPvvv294QCstLU089dRTwsXF5YH3npxrfP/994W7u7twcHAQI0aMEGlpaYY89z80defOHTFo0CDh7OwsbG1tRefOnUV4eLjReUePHi3c3d0FYHSPuldeD3sJIcTcuXNFxYoVhZWVlahSpYpYsmSJ0f77PyPy07p16zzvqZMmTTI87HVv/d+9ezfXZ8jBgwcNny/29vaidu3a4qOPPjIq56mnnjK6f+r1euHm5iYaNmxYYIyPI0WIQgy2kaRSKjAwkPHjxz92q61cuXKFypUrExYWRuXKlc0djiRJxWDZsmWMGzeOmzdvGr56zs+VK1cICgri2LFjZl3Rb+jQocTFxRXLsuCSlBf5sJckWaANGzbw4osvykasJJVBKSkpXL58mWnTpjFq1KgCG7GS9DiTY2QlyQKNHj3aaLUXSZLKjhkzZlC3bl28vb3lKk6SVAA5tECSJEmSJEmySLJHVpIkSZIkSbJIsiErSZIkSZIkWSTZkJUkSZIkSZIskpy14CHo9Xpu3ryJo6OjyZbQkyTJcgkhSExMxM/PL89J36X8yfupJEn3K8o9VTZkH8LNmzcLXDZVkqTHz7Vr1/JchlPKn7yfSpKUn8LcU2VD9iE4OjoC2RXs5OREZmYmmzZtolOnTlhZWRltA0b7TO3+sk19XEH58ttf2PSibpuaOeuvqPsKUzfyvVe4ussr7VHeewkJCVSoUMFwb5AK7/77aUF0Oh3nzp0jJCQEtVpd3OGZnCXHb8mxg2XHb8mxQ9HjL8o9VTZkH0LO119OTk6GhqydnR1OTk6GD8CcbcBon6ndX7apjysoX377C5te1G1TM2f9FXVfYepGvvcKV3d5pZnivSe/Gi+6+++nBdHpdDg4OODk5GSxH+iWGr8lxw6WHb8lxw4PH39h7qlyMJckSZIkSZJkkWSPbDE7vmEx2rCtHIrciKLSgEoNihpUahRFjVCpUVSq/9L+3a/k/P++f7NfGlRWWtRWWlBZkR5ziatnDqO1c8DK2gYrrQ1WWlusrW3Q2thmHy9JkiRJklTGyIZsMdNf3EqX9PUQVXxl1AS4lv/+DKEmA2tSFFvSVLakq+zIUNnhnaXmnwtL0Fk7IKwdwdoexd4dK0dPtE6e2Lt6Yevkjj4rq/iClyRJkiRJekiyIVvMVJU78NdJBRcnRxT0KHodCB0IPYrQoQg9/Ptv9nZOmh7Vvelk/6v6N10tMtHkvPTpWCtZWIlMrMlCq2QaxWCt6LAmFQdSQU/2K0diwdfQB0g8acstxYV4K09SbX3JcvBF5VwOK9dypMXGkpRwB1d3b1NWnSRJZjB37lw+/fRTIiMjqVGjBrNmzaJly5b55l+2bBkzZszg/PnzODs706VLFz777DPc3d1LMGpJkh5XsiFbzOp2Gsz6LA8adutWbA/crF+/nm73nF/o9WRkpJGenkZmeiqZ6WlkpCWTnpxARkoCmSkJpCfHcf3SWXzdnVEykyEjCXVGIpr0OGwy47DXxeGoT8BZJKJWBI6k4ihSKZ8RCRknIB64kR1DPYCv3yMWF25ZlyfZPoBMl4qkJ6m4edGfCpVro7LAwemS9LhZvnw548ePZ+7cuTRv3pz58+fTtWtXwsLC8Pf3z5V/9+7dDB48mC+++IKePXty48YNRo8ezYgRI1i9erUZrkCSpMeNbMiWQYpKhdbGDq2NXb55MjMziVq/nicKaGCnpaWxas1vNKhdlZS4aFJjrpJ59zqqxBtoU6JwSL+FW9Zt3JUE3InDPSMOMk7B3X9P8MuXpAgt16wrEu9cDeFdk/REFVkZ6cXSsJck6eHNnDmT4cOHM2LECABmzZrFxo0bmTdvHtOmTcuVf//+/QQGBjJ27FgAgoKCGDVqFDNmzCjRuCVJenzJhqz0QGq1GmtbBypUrp3vFEjr16+nZbMmxFwPJ/76GTKjz2MVdxHHxEsEiuvYKemEZJ6BmDMQs4rGQOqMjwnTViXBox4ZOg+S4xvh4uFb8hcoSRIAGRkZHDlyhLffftsovVOnTuzduzfPY5o1a8a7777L+vXr6dq1K9HR0axcuZLu3buXRMiPpQvRSQR7OZg7DEkqNWRDVjIJRxc33DxbQr3ssXQ5DdyAjh24fPUcMRcOkXnjBPZ3wwhIC8dFSaJ6xgm4eYImgP7rmVy0qsRtr+Zk4EdWRjvZYytJJSgmJgadToe3t/FYd29vb6Ki8n5atVmzZixbtox+/fqRlpZGVlYWvXr14uuvv863nPT0dNLT0w3bCQkJQPY8kzqdrsA4c/IUJm9p9Cjxbw6L4sM/z7BpfCu0ViU/XOtxrntzs+TYoejxF+U6ZUNWKlYaK2uCqtUnqFp9ILuBu27dOmoGlyP27G64dgDf+OMEKFFUyrpApZsXaAKkzJjJCfu6pAe2Q6fzMe9FSNJj5P4JyIUQ+U5KHhYWxtixY3n//ffp3LkzkZGRvPHGG4wePZrvvvsuz2OmTZvGlClTcqWfO3cOB4fC9zSGh4cXOm9p9DDxl1fgmx4+XLpgumtPydSTniVQFNAooFYpaFQKVur8J6J/HOu+tLDk2KHw8SclJRX6nLIhK5U4lUpFYNV6VK7VyNBzq65bk+tHN6Jc2kKlhIN4KAnUTjkAYQd4Ajg34xsSAjsT0KIfXgHVzX0JklTmeHh4oFarc/W+RkdH5+qlzTFt2jSaN2/OG2+8AUDt2rWxt7enZcuWfPjhh/j65h4uNHHiREJDQw3bOUtRhoSEFHplr/DwcKpUqWKxKxwVNf7Y5HT6LzjAzfhUACp6OPD7y83y/QPjbkoG4beSiIhN4XpcKjfiUomMTyMuJZMsnZ6N4/+bhWLEkiNsO3c71zm0GhXOtlb8PaEl9trspsKGU5EcC4+gTnAFKnk7Euhuj1ZjOesqWfJ7x5Jjh6LHn/NNTWHIhqxUKnj7+VM+YAyZmSNZt24dVfw9uHtyA+7X/6Za1tnsMbbnz8D5WVzWVOROxd5UbPcCrj4B5g5dksoEa2trGjRowObNm+nTp48hffPmzfTu3TvPY1JSUtBojD9Gcj6khBB5HqPVatFqtbnS1Wp1kT6gi5q/tCls/BlZesYsO87FmBRD2unIRHZdvEPbEC/uJmdw7lYiTSr+N93ZS8uOcejK3bxOB4BAQaPOboBqNXnHkJ6lJyYpHQcba1Sq7Abz2hNRbDh9F45kn1ulgL+bHcFeDlTydODldsE42ZT+IWGW/N6x5Nih8PEX5RplQ1YqdVQqFVVqN8GqQUsyMyfz8/JlVFDdxOnKJqqn/0NQ1iWCwr9Af24WYXb1yKrxDCFtB6C1dzF36JJk0UJDQxk0aBANGzakadOmLFiwgIiICEaPHg1k96beuHGDJUuWANCzZ09GjhzJvHnzDEMLxo8fT6NGjfDz8zPnpZQJQgjeW3OKw1dzN0rfXXUSBxsN4beSUKsUTk7uhJ119kd6VR8nohLSCPJwoLyrLeVcsl9u9ta42lkb9eTOeb4+/7ZTydILsnSCjCw9CWmZJKVnGRqxAI2C3EhOSiRBZ8Wl28kkpmdxJTaFK7Ep7L4Qw+udQwx5F+25TEJqFk8EulI/wBUbM4zplR4PsiErlXp2jq407vY8VlbvcDv6Jue2LsP1wipqZIVRPfUoHD5K6uFJHHPrgHvrUfjXbg35fOUmSVL++vXrR2xsLFOnTiUyMpKaNWtmP7QZkP3NR2RkJBEREYb8Q4cOJTExkdmzZ/Paa6/h4uJCu3btmD59urkuoUxZvPcKyw/nvWzjzfi07Pm8gUB3OyLj06jkmT3GeEqvGqhUNQtVhvqehqqVWsFKDbbWapztcvesDmkaQCOXFKpVq4ZKpeJ2YjoXbidx8XYyqRlZWKn/G2bw88EIwm9lj3PUalQ0DHSlebAHzSt5ULOcs1G5kvQoZENWsiieXn54PvcG8AaXz5/i2o4fCLy+Fn8iqXdnPaxez5W1FYmvMZCqnYahtXc1d8iSZFHGjBnDmDFj8ty3ePHiXGmvvvoqr776ajFH9fjZGR7N1LVhD8zTOMiNeQMb4GZvbZSuKoFGoqIoeDnZ4OVkQ7NKHrn2D2wSwJGrd9l3MZboxHT2XIhlz4VY4Bwh3o5snNCq2GOUHg+yIStZrKDKNQmq/Ck63XSO7d9M2r5vqZe4ncCsS/DPVFL+mcExz874dRyLd5WG5g5XkiSpQMnpWXy3+zKz/g4n71HG/zkacZcsnb6AXOYxuGkgg5sGIoTg4u0k9lyIZfeFGPZfiqVh4H8dDDq94PUV/9Cskjudqvvk2RMsSQ8iG7KSxVOrVdRr3hmad+bWrUgObFhAwJXlBIob1Lv9O/z0O+ds66Fp/gqVmvUFleU8ZStJ0uPhbnIG3++5zOI9V0hMzyrUMZk6wdL9V3mtU0jBmc1EURSCvRwJ9nJkSLNAsnR6UjL/myP0WMRdVh+7wepjN3hXfYp2Vb14sl452lb1zPdBNEm6l2zISmWKt7cv3kMmkZX1Pw7t+Qvd/gU0TNlFSOox+Hs4N7a9z91aw6na+UU0to7mDleSpMfcneQMFu66xA97r5Cckd3AK+diS9eaPrSo7IFKUUjJyCI5XUdKpo7UjCxSMnSkZuhIzsgiNUP3wLl+SxuNWoXTPWNpfV1smdChCn+diuRsVCIbTkex4XQUzrZWdK/ty7DmgQR7yXu1lD/ZkJXKJI1GzROte0DrHoSHn+HmxlnUj/mDcroblDs+lYTjM7ka+AyBXSeYO1RJkh5jI5cc5si/sxJU83ViXPtgOlX3KZFxrqVBORdbxnWozLgOlTkTmcCaYzdYc/wGtxLS+elABE/WLWfuEKVSTjZkpTKvSpVqVKkyn9sxH7H1z7kEX/4Rf25R68oi0uf9iLtNS5LrV8alglxoQZKk4iWEQKf/b/RraMcqfLz+DOPaV6ZjdW+L6VktDtV8najm68SbXaqy/1IsO8/f5ol7xtNO33CWuJQMnm8cQM1yzmaMVCpNZENWemx4enjQbsj7pKa9zfaNy3D/Zx619OdokbYV3cJmnPHogE/3ibhWbGDuUCVJKoOu3Unh7d9OUMlRR80a2WnNgz1Y92qLx7oBez+1Ssmeqiv4v9kQUjN0/Lj/KolpWfx88BqNgtwY2bIi7at6PTa911LeiuWpl7S0tOI4rSSZhK2NNW16v0C1d/axvcn37KM2akVQLXYzrkvaET6zCzGnt5k7TEmSygi9XvDD3it0nrWTPRdj+f1MAun3PPAkG7EFs7FSsXBwQ3rV8UOjUjh4+Q4jlxymw8wdLDtwlbR76lN6vJisIavX6/nggw8oV64cDg4OXLp0CYD33nuP7777zlTFmMS6desICQmhcuXKLFy40NzhSGai0ahp3r4XUXVfZ1fb39hl3QqdUKiSsA+PFU9yeUYLog//AfkstSlJklSQ63dTeO7b/Uz64zQpGToaBbryaRcftHKlqyJRFIXGFd35qn89dr/VjtGtK+Foo+FSTDLvrj7Fl1vOmztEyUxM1pD98MMPWbx4MTNmzMDa+r/JmWvVqlWqGotZWVmEhoaydetWjh49yvTp07lz5465w5LMSKVAk2ataTHxD44/+Tdb7LqRLjQEpZzEa90gbk5vyO19P4Fe/sUvSVLhbTwdRbcvd3Hw8h3srNV80LsGy4Y3ws9RzpX6KHycbXi7a1X2TWzP+z2qE+hux/ON/Q37b8SlEp+SacYIpZJksobskiVLWLBgAc8//zxq9X9/adauXZuzZ8+aqphHdvDgQWrUqEG5cuVwdHSkW7dubNy40dxhSaWAoig0qNeQ9m/+zLnn9rDe8RmShA1+aRfw3PgStz+pTczOhZCVYe5QJUkq5a7fTeHlZUdJSMuiTgUXNo5vxaCmgXI8pwk5aDUMaxHEttfbUN7VzpA+6ffTtJi+lc83neNusrxfl3Uma8jeuHGD4ODgXOl6vZ7MTNP9ZbRz50569uyJn58fiqKwZs2aXHnmzp1LUFAQNjY2NGjQgF27dhn23bx5k3Ll/pvOo3z58ty4ccNk8UllQ+1qVen22kIuDdzPaufBxAl7PDOu47H1NeI+qU7c9tmo9enmDlOSpFKqvKsdb3WpyoutKrJiVFMquNkVfJD0UO4dY5ySkcX1uykkpmfx9dYLtJqxja+3nCclo3CLTEiWx2QN2Ro1ahg1GHOsWLGCevXqmaoYkpOTqVOnDrNnz85z//Llyxk/fjzvvvsux44do2XLlnTt2pWIiAgge+qT+8mB9lJ+alcOos+Er4kYfJBfXF/klnDBJes2nnsm0+pEKPGbp0NqnLnDlCSpFDgTmcDlmGTD9shWFXmnWzWsNXI1wZJiZ61h/diWfDOwPtV8nUhMz+LzzeG0mrGdH/dHkKmTzzyUNSabfmvSpEkMGjSIGzduoNfrWbVqFefOnWPJkiWsW7fOVMXQtWtXunbtmu/+mTNnMnz4cEaMGAHArFmz2LhxI/PmzWPatGmUK1fOqAf2+vXrNG7c2GTxSWVT7UrlqT3uU/65/Bob1s2j7e1l+Ktuw8FPST08l7S6L+Dabjw4eJo7VEmSzGDb2Whe/ukoPs42rB7THGdbOQ7WXFQqhS41felU3Yd1JyP5fNM5rsamMGltGGMauVG7prkjlEzJZA3Znj17snz5cj7++GMUReH999+nfv36rF27lo4dO5qqmAfKyMjgyJEjvP3220bpnTp1Yu/evQA0atSIU6dOcePGDZycnFi/fj3vv//+A8+bnp5Oevp/XyMnJCQAkJmZaXjlbOf17/3/N6W8yjLlcQXly29/YdOL+q+pFfX81cu7U330/zh6aSTLV86mV/paQriO7dHZZBz7luQaA3BoOx6cyhV4/qLuK8r7TL73Cl8vpnjvFVcdS5Zh9bHrvL7iBDq9wNfZBmSnX6mgUin0quNHlxo+LD8UwYrD1+lQycGwPy1Th42cPcLiKSKv79othKIorF69mieffBL4b/zrnj17aNasmSHfxx9/zA8//MC5c+cA+OOPP3j99dfR6/W8+eabvPjiiw8sZ/LkyUyZMiVX+k8//YSdXcHjnr755htiY2OLcGWSpUjNEmSmJuCti8JZSQFAoJBs5UaqjRc6lY2ZI5Qehbu7O6NHjy4wX0pKCgMGDCA+Ph4nJ6cSiKzsSEhIwNnZudB1p9PpOHPmDNWqVTN6sNhcFu25zJS1YQD0qVeOGU/Xxkqd/1CC0hZ/UVhy7JA9a9HZs2epVq0aAoUeX++mZjln3uwcgpdT6b5XW3rdFzX+otwXyuTKXvePeRVCGKX16tWLXr16Ffp8EydOJDQ01LCdkJBAhQoV6NSpE05OTmRmZrJ582Y6duyIlZWV0XaOnH2mdn/Zpj6uoHz57S9selG3Tc1U9XfqejxbNqyk2c0faKYOA1LRE0F8YFeOa5vSuPeIXOd/UNl57StM3dz/3rOEunvYfEV57z1MfRbl+nK+pZEeL3O3X2DGhuwOkheaB/Je9+pyVoJS7N52wP5LdzgblcjZqET+OhnJK+0qM6xFIFqN5TUSH3eP1JB1dXUt9INSJTFXq4eHB2q1mqioKKP06OhovL29H/q8Wq0WrVabK93KysroAy6v7fz2mdrDnr+wxxWUL7/9hU0v6rapPWr91QvyoN5Lozl1oz/T16+hfsRiOqqP4nplPW1ZT8JPW7DrNBH8mxSp7Lz2FaZuLKnuHjVfUd57D1OfhYmzOOtXKp1+PhhhaMRO6FCFse2D5YPDFqRFZQ9WjWnGlLVh/HMtjukbzvLLoQgm96pB2xAvc4cnFcEjNWRnzZpl+H9sbCwffvghnTt3pmnTpgDs27ePjRs38t577z1SkIVlbW1NgwYN2Lx5M3369DGkb968md69e5dIDNLjrWY5Z2qOHMKZyD589NdGal7+nh6qfThd3w7fbyfJpzEOHd6CSu3MHaokSY+gfVUvKnna07tuOca2r2zucKSHUN/fldUvNWP1sRtM33CWq7EpvLDoED1q+zL9qdrYa8vkl9ZlziP9lIYMGWL4/1NPPcXUqVN55ZVXDGljx45l9uzZ/P3330yYMOFRijJISkriwoULhu3Lly9z/Phx3Nzc8Pf3JzQ0lEGDBtGwYUOaNm3KggULiIiIKNQ4N0kylWq+Trw77BnCrnfg1WUraZn0J0+pduIQdQB+7EuKey2s27wmHwqRJAvl5WTDH6+0kI0dC6dSKTzVoDyda/rw5d/hfLf7MrcS0rCVD4FZDJP9Bm7cuJHp06fnSu/cuXOuWQQexeHDh2nbtq1hO2fs6pAhQ1i8eDH9+vUjNjaWqVOnEhkZSc2aNVm/fj0BAQEmi0GSCquytwOdq3pR9YnFTNt2kApnvuc59VbsYk/Cb0NpZeWNyisKGgwCrUPBJ5QkyWx2hN8mMS2THrX9AGQjtgxx0Gp4t3t1etcth6212jDWOTk9i+t3UwnxcTRzhFJ+TPZb6O7uzurVq3njjTeM0tesWYO7u7upiqFNmzZ5LmpwrzFjxjBmzBiTlSlJj6qipz2Tnu/ElZjmfPr3YdxPL2KQaiOumbdg09tkbfsITcMh0HgUuPgXfEJJkkrUyevxvPTjEVIydNhrNXIcZRlVs5yz0fbnm8JZsu8Ko1tX4tX2wfJhsFLIZMuNTJkyhbfffpvu3bvz4Ycf8uGHH9KjRw8mTpyY59RVkvQ4CvSwZ9Jzrek9YS6fVV/F+5lDuaj3RZOZCPtmI76sg/h1MMq1A2C5M+NJFuxBS3znJT09nXfffZeAgAC0Wi2VKlXi+++/L6FoS8aNuFReWHyIlAwdzYPdaV7Jw9whSSVArxdEJaSSpRfM3naB3rP3cOpGvLnDku5jsh7ZoUOHUq1aNb766itWrVqFEILq1auzZ88euXKWJN2ngpsd7/dtyI9KNIvULxB97E8GKetpqT4FYb+jCfudVrZBKP7JUPtp0OSeNUOSTC1nie+5c+fSvHlz5s+fT9euXQkLC8PfP+9vCp599llu3brFd999R3BwMNHR0WRllZ117dMydYxaepiYpHSq+jjyzcAGcsnZx4RKpTD3+QasPxnJ/9ac4mxUIk/O2cMr7YJ5uW3wA+cLlkqOSQf4NG7cmGXLlpnylJJUprlpYWC3GsR2qMo3O55k+sE9PM96+qp345p6Gf4Yg/j7PZR6A6HOIHOHWyCdTleoFbs0Gg1paWnodLqHzpff/rzSC5NW0Pa9rKysLHJS8oIUtMT3/TZs2MCOHTu4dOkSbm5uAAQGBpZkyMVKCME7q09y6kYCbvbWLBzSEEcbOdXa46ZbLV8aBbnx3ppT/HUqill/n2dz2C2+7l+Pip7y2QZzM1lDNiIi4oH78/trXpIk8HG2YXKvGkS3rcS3O1vQdv9J+uo387xmC74psbDnSzR7vqKJYy2UcAWqdTd3yLkkJSVx/fr1AsewCyHw8fHh2rVrD5x3s6B8+e3PK70waQVt30tRFMqXL4+DQ9n5ECvMEt/3++OPP2jYsCEzZsxg6dKl2Nvb06tXLz744ANsbW3zPCa/Jb91Ot0D/7DJkZOnMHkf1Q/7rrLq6A3UKoWvnquDr5P2kcstyfhNzZJjh0eL39VWw9fP1eHPk95M+iOMiDspaNVKidXF41b3RblOkzVkAwMDH/ihZKmVL0klycvRhne7V2d48wD+t9SOzjF9aJJxiIHqv2mlPol34glYMQicyqOqNwhtpq+5Qwayf7+vX7+OnZ0dnp6eD7wX6PV6kpKScHBwQKXK/6u5gvLltz+v9MKkFbSdQwjB7du3uX79OpUrVy4zPbMxMTHodLpci8d4e3vnWmQmx6VLl9i9ezc2NjasXr2amJgYxowZw507d/IdJztt2rQ8n5s4d+5ckf4wCA8PL3Teh3X0fPZCPi/Uc8ElPZozZ6JNdu6SiL+4WHLs8GjxV7KCr7t5ExGfwd2bl7l7Mzs9JUOPnXXxDzV4XOo+KSmp0Oc0WUP22LFjRtuZmZkcO3aMmTNn8tFHH5mqGEl6LLjbW9PTX8+0we358WBlXtnTFNf06/RXb+U5zQ5cEq6j3jGNTqghcyPUHwzBHcwWb2ZmJkIIPD098+2Jy6HX68nIyMDGxqbAhuyD8uW3P6/0wqQVtH0vT09Prly5QmZmZplpyOYoaInve+n1ehRFYdmyZTg7Zz/tPXPmTJ5++mnmzJmT53shvyW/Q0JCClxTHbL/aAoPD6dKlSrFXvdfVoOhEXHUreBsslW7SjJ+U7Pk2MG08Te75//bzkbz+tqTfNynBp1r+DxakPl43Oq+KMt+m6whW6dOnVxpDRs2xM/Pj08//ZS+ffuaqihJemy42FkxoWMVhrcMYvHuS3y93Zsv0p6mq+ogw7RbqC3Owbk/s18O3qhq9cMhrZzZ4n1clugsi9f5MEt8+/r6Uq5cOUMjFqBatWoIIQw91vfLb8lvtVpdpA/oouYvLCEEQmCYR7RhkOmmj7xXccVfEiw5djB9/D8evEZcaiZjfjpO/0b+vNejGnbWxTPH8ONS90W5xmLvB69SpQqHDh0q7mIkqUxzsrHipdYVmVRfx/jONdlt155eqZPolD6dn1Q9SbVyhaRbqPd9Rfszb6H+oTvK8WVodKnmDr3E+PgUT0/I4+LeJb7vtXnzZpo1a5bnMc2bN+fmzZtGXwOGh4ejUqkoX758scZbXFYdvcGg7w9wKyHN3KFIFmLBoIaMal0RRYGfD0bQ8+vdnI0qfI+i9GhM1pBNSEgwesXHx3P27Fnee++9PP8qlySp6LRqGNEikN1vteV/3UK4ZVWed1L6UzvxS95Qv8kV95boUVBdP4Dmz3F0PjUW9dpX4fIu0OvNHb5UyoWGhrJw4UK+//57zpw5w4QJE4yW+J44cSKDBw825B8wYADu7u688MILhIWFsXPnTt544w2GDRtW4BCT0igqPo3Jf5xmz4VYVh29Ye5wJAthrVExsWs1lg1vjLeTlou3k3lyzh5WHrlu7tAeCybr+3ZxcclzbFWFChX45ZdfTFWMJEmAjZWaIU0DcI09TZJXLRbsusKKuLqsSK5LoKYfHwWfoUn8BjR3L8KJn7NfTuWg1jNQ+1nwrlFssQkhSM3M/+FOvV5PaoYOTUZWgWNk781na6Uu8lf6bdq0oXHjxvz9999kZGTwxx9/EBQUxK1btxg5ciTXrl3DwcGB7777DltbW/r378/OnTv5448/GDJkCJcuXeLSpUuMGTOGTZs2FalsS1TQEt+RkZFGM9Q4ODiwefNmXn31VRo2bIi7uzvPPvssH374obku4aEJIfjfmlMkpmdRp4ILL7aqaO6QJAvTLNiDv8a1Yvzy4+wMv83rK/4hyMOOBgFu5g6tTDNZQ3bbtm1G2yqVCk9PT4KDg9Fo5HrUklQcNCoY0KgCA5oEsvroDWZvO8+VO248f7Y5zjateN75FGMrXMTm/J+QcAP2zMp+edfMbtDWfBqcTTumNjVTR/X3N5r0nABhUzs/1LgzBwcHDh06xMcff8yCBQuYNm0aEyZM4P333yc4OJgzZ84QGhrKH3/8we3bt8nIyGDv3r0EBQVx9uxZzp8/T/PmzU1+PaXVg5b4Xrx4ca60qlWr5hqOYInWnojk7zO3sFIrzHiqNmpV2RsHLRU/N3trFg99gtnbLnArIU02YkuAyVqYiqLQrFmzXI3WrKwsdu7cSatWrUxVlCRJ97FSq3j2iQr0rOXFRz9uZG+cE5dikpmbVo0lcbUY1mQ0I30u4njuNwjfCLdOweZTsHkSBLWE2v2gWk+wcS64MAvTq1cvAGrXrs3y5csB2Lp1K2FhYeh0OqOHD2rVqsWRI0c4evQoL7/8MgcOHODs2bM8/fTTZotfKn53kjOY/MdpAF5uG0yIj6OZI5IsmUqlMLZ9ZaM5tWOS0jkeEUeH6nk/OCk9PJM1ZNu2bUtkZCReXl5G6fHx8bRt21bOIytJJUCjVvGEp+B/g5qx8fQtPln7D5GpWXy14zoLre0Y0uw9Xnr5C5wu/wknfoWIvXB5Z/ZrXSiEdIEafaFKZ7B6uDGOtlZqwqZ2zne/Xq8nMSERRyfHAocW3JvP1urhntTNeUJepVIZlk5VFIXDhw+TlJSEk5OTYbqtxo0bs23bNhRFoW3btrz77rucPXuWTz/99KHKlizDx+vPcCc5gxBvR8a0CTZ3OFIZkTMUSqcXjP/lOLsvxDC2fWXGt69smBVDenQme9grv7kGY2Njsbe3N1UxkiQVglql0K2WD2/W0TGnfx1q+DmRkqFj3vaLtPj6GPOSWpE6cB2MOwHt3gOPENClQ9jvsGIIzKgEK4fD2T8hK73gAu+hKAp21poHvmyt1QXmuT+fKae8atmyJQsXLgSyG8wnT54EoEmTJsyfP5/69esTGBjIuXPnUKlUODrKHrqyKjk9i0NXshc++OSpWlhrin9Se+nxIoSginf2PeSrLecZ9eMRktKzzBxV2fHIPbI588MqisLQoUON5gfU6XScOHEi36lbJEkqXioFOlX3plvtcvx9JprPNp7j3K1Epm84y+K9lxnXvgrPNA/FquVrEPkPnPoNTq+B+Ag4tTL7pXWCqt2ze2ortgGNtbkvK0+3b982TPkkhGD+/Pn55v36668ZNWoUs2fPRq/XM3jwYGrUqEH16tWJj4833LMCAgLw9S0dq6dJxcNeq2Hj+FbsPh9DPX9Xc4cjlUEatYr3e1anhp8TE1efZHPYLfrM2cO3gxsS6CE7+h7VIzdkcybCFkLg6OhoNOWKtbU1TZo0YeTIkY9ajCRJj0BRFDpW96ZdVS9+P36DzzeFcyMulXdWn+TbXZd4rVMVutWsg8qvLnScCtcPw+lV2Y3axJvwz8/ZLxuX7LG0NftC+aZmvipjOcOX9Ho9CQkJODk50aNHD0NaixYt6NatG5C97OqqVasM+XKGFqjVauLi4gzbixYtKtRqU5Jls7FSy7GLUrF7qkF5Knk5MHrpEc5HJ9Htq1180a9usa0G9rh45IbsokWLAAgMDOT111+XwwgkqRRTqxT61i9P99q+/HQggtlbL3A5JplXfjpG7fKXeL9HdRoGukGFJ7JfnT6Caweye2rDfofkaDi2FI4tRWPnQW272ihXncCvkbkvTZKKJDEtkz/+uUm/hhXQqOVwAqlk1K3gwh+vNmf00iMcjYhj1NIjVPd1pGGgGw0CXGkY6Iafs02ZXD2wuJjsYa9JkyaZ6lSSJBUzrUbNC82DeKZhBb7bdZkFOy9y4no8T3+zj551/Hi7a1XKudiCSgUBTbNfXafDld3ZPbVhf6CkxBCUshV+3EqWZx1oMg3SPUGrBXkTlkq5hbsu8+WW8+wKj+GbQQ3MHY70GPFytOHnF5vw3IL9HIuIIywykbDIRJbsuwqAj5MNDQJdaeDvSsNAV6r5OhX/MqwW7JEasvXr12fLli24urpSr169B/4FcfTo0UcpSpKkYuCg1TCuQ2UGNPbn803nWH74Gmv/ucmm01GMalWR0W0q/Td3q0oNFVtnv7p9RtaFbdzY+DX+Kf9A6h3ISMoeW5tyE2ydwcYVtA6gyFuwVLrEJqWzcNclAHrW8TNzNNLjSKtRs2joEzSdtjXXAjJRCWn8eSKSP09EAtkzwbzfoyq15BfeeXqkhmzv3r0ND3c9+eSTpohHkiQz8HTU8slTtRnYJICp68I4ePkOX229wPLD13i7a1WerFvO+A9VtRWiYluOB6Ti17kDXD0ASVpQNCB0kHIn+6Wos+emtXEBrWN2D68kmdnc7RdJztBRq5wzXWvK8YmSebjYWfNUg3L8uD/igfmq+znRu64fl86Hl1BkluWRGrL3DieQQwskyfLVLOfM8hebsOFUFB+tP8P1u6lMWP4Pyw9d48MnaxLslcc0VGprCGgGly+DRyCosiA1DtLiQJ+V3Vubeie7Z1brjGLjDPdMFC5JJelGXCpL//0K943OIXI+T8mshjUPemBD1s/Zhm8GNkCrebh5tB8HJl87NiMjg+joaPR6vVG6v7+/qYuSJKkYKIpC11q+tK3qxXe7L/P11vPsv3SHrl/uYlSrSrzSLhib/BYnUJTsnletI4jykJGc3aBNjQN9JqTdRUm7izMKiLjsnlob5+xhC5JUAr7ZfpEMnZ4mFd1oWdnD3OFIj7mKng50qObF32eic+2zUissGNwQT0etXFTqAUz2PV94eDgtW7bE1taWgIAAgoKCCAoKIjAwkKCgIFMVI0lSCbGxUvNy22A2T2hN2xBPMnWC2dsu0OmLnWw/l/umm4uiZI+RdS4P3jXAowrYeyHU1igIlLR4iLsKUSch9iKkxGb34D4kHx/5FbH0YNGJaSw/fA2Ace2ryCfDpVJheIuKeabrBVyJTS7haCyPyXpkX3jhBTQaDevWrcPX11feICSpjKjgZsf3Q59g4+koJv8RRsSdFIYuOkT3mj40synkSRQFrO3B2h7h6EvS3ds4aHQoaXHZK4qlJ2S/+Lfxa+OSvRCDJJlQQmoWDfxdSc/S0aSim7nDkSQAmlR0o4afE6dvJhjSKns5cD46iVd/Poa3kw31KzibMcLSzWQN2ePHj3PkyBGqVq1qqlNKklRKKIpCl5q+tKjsyazN4Szae4U/T0WxQ6PGsVIUnap5/pdZCMhMyf9kej06vQ6hdUSxcYKsNEiLz35lpWYfmxSNAjiotCh6t+zhB7auclov6ZEEeznw84tNSErPkp0tUqmhKAojWgYxYfk/AHSu4c3s/vWZui6M5PTsP76E0BdwlseXyRqy1atXJyYmxlSnkySpFHLQavhfj+r0rluO1349Tnh0EmOXn2BAAx8GVP93Vb/MFPg4/ymNVIBLIcpSuO8GNXI7OPlmN2o1he0KlqTcHLQmfzxEkh5J91p+fPLXWVztrJn5bF2sNCqm9q6BXoBKpaDTQaZOoNML1PKRAiMmGyM7ffp03nzzTbZv305sbCwJCQlGL0mSyo5a5Z1Z9VITOpfTo1Yp7Ai/TXRCGgmpGYjimpEgKxUSI+H2WYg+g5IYiVqXXjxlSWVKepaOudsvcDtRvl+k0slao2JChyp8O7gh9v/+oaUoCup/Z9XQ6QWf7onhjZUnyNLJ3tl7mezP0g4dOgDQvn17o3QhBIqiyCfuJKmM0WpUdPPX81KvZny2IQydgMj4NNJ0dvi9dT3fZT/1ej0JiYk4OTqiesC8skb5hA50mf+OpU0EXTpKcjSOgIi+DbYugJDTekl5Wn8ykhkbzvHLwWvseKONHFYglUrPNcp/dqdTN+I5cC0FXUQKWXqY9VxdrOTSyoAJG7Lbtm0z1akkSbIgNfycmPt8A86EX0BBIS4ti+RMFRXctHl/havXg5Uu++GvBy2QkFc+B0/Q6yAtHvHvuFpFnwnJt7PTb51C0Tqh0VkBecx5Kz2WFu+5AkC/JyrIRqxkkepUcGFiK0+m747hz5ORZOj0zB5QT84viwkbsq1btzbVqSRJsjDWGhVOtlb4uNlyK0VPRpaeS7eT8HLU4uVkg8qUjQeVGuzcEDYuJMTH4WyjQkmL53bsXcrX62DINv/T9+jerUf2crnWslH7uDoWcZd/rsdjrVHx3BMVzB2OJD20JhXs+Ob5+rz00zE2h91i9NIjzBvYIP95vR8TJmvInjhxIs90RVGwsbHB39/fsJytJEllk621hsoOWiLjUrmTkkF0YjpJ6VlUcLVDWxw3W0WF0Dqh2Lqgy8qCjCREahwi9W72cIS0u9mLMKBgp7JFscrKntpLLR/2eVz8sPcKAL3q+OHuID+DJMvWJsST74c8wYglh9h27jYjfjjMt4MbYmv9+DZmTTbAom7dutSrVy/Xq27dulStWhVnZ2eGDBlCWlqaqYqUJKkUUqsUyrvZEeBmh1qlkJKh43x0EndTMoq34H9XFRNO5UiwqYBwrwwOXqDWoiCw1qegxF+DWych5jxKSgzKIyzAUFbNnTuXoKAgbGxsaNCgAbt27SrUcXv27EGj0VC3bt3iDbAI4lMyWX8qCoDBTQPMHI0kmUaLyh4sfqERdtZqDl25Q1jk4/1AvckasqtXr6Zy5cosWLCA48ePc+zYMRYsWEBISAg//fQT3333HVu3buV///ufqYqUJKkUc7azprKXI/ZaDXohuHYnhet3U0rmeSxFQVjZgVM58KqG3iOEVI0LQvPvFGEZSSgJN3BOu4YSex4Sb2UvzPCYW758OePHj+fdd9/l2LFjtGzZkq5duxIRkf9a8ADx8fEMHjw418O+5vbHPzfIyNJT1ceRWuXkhPJS2dGkojtLhjVi0dAnaBDgau5wzMpk36999NFHfPnll3Tu3NmQVrt2bcqXL897773HwYMHsbe357XXXuOzzz4zVbGSJJUi90+9Za1RUdHDnujEdG4lpHEnOYOUDB2uViUYlKKAxoZ0a1e0Tk7ZD4elxSFS41Eyk1EyUyAzBVXiTRwVKxSVW/YsCOr856ottinGzGzmzJkMHz6cESNGADBr1iw2btzIvHnzmDZtWr7HjRo1igEDBqBWq1mzZk0JRVuwO8mZaDUqnm0oH/KSyp6Ggcar092MS8XLUZvvjDFllckasidPniQgIPdXNwEBAZw8eRLIHn4QGRlpqiIlSSolrKysUBSF27dv4+npmavR4GwNGkc1kfHppKZmkJYGQknCydY633Pq9XoyMjJIS0vLc5qu/PbnlZ4rTeOM3t6R5IR4HKwESkYiIjMFhQyIi4K4KITKClR2pFlbG51fCMHt27dRFAUrq5JskRevjIwMjhw5wttvv22U3qlTJ/bu3ZvvcYsWLeLixYv8+OOPfPjhh8UdZpGM61CZoc0DDXNxSlJZdf5WIgMWHqB5JXc+f7buY/WeN1lDtmrVqnzyyScsWLAAa+vsD6fMzEw++eQTw7K1N27cwNvb21RFSpJUSqjVasqXL8/169e5cuVK/hn1gvjkDNKz9Ny6AQ5aNc62Vnn2lgkhSE1NxdbWtkj780ovTJrQW5GZkoCVkoWSlQZCkKm2RROXnqt8RVEoX7486jK0xE5MTAw6nS7XPdrb25uoqKg8jzl//jxvv/02u3btQqMp3MdJeno66en/DePIWTBHp9MVar7xnDyFnZvcwVpVpPzFrajxlyaWHDtYdvwFxX4lJom7yRmsOX4Ta7WKj56sgaoUNWaLWvdF+RmZrCE7Z84cevXqRfny5alduzaKonDixAl0Oh3r1q0D4NKlS4wZM8ZURUqSVIo4ODhQuXJlMjMzH5gvLT2DD3/dw77o7JtsDT9nJvWqjru98RPlmZmZ7Ny5k1atWuXZ85nf/rzSC5NmtC0yybqyh0MXbtCwY71c5VtZWZWpRuy97m+05yxqcz+dTseAAQOYMmUKVapUKfT5p02bxpQpU3Klnzt3DgcHh0KfJzw8PN99Or3gZmIWFZxLb4/5g+Iv7Sw5drDs+POL3Rd4vbk7M3bH8OuR62SkxDOigVueec2psHWflJRU6HOarCHbrFkzrly5wo8//kh4eDhCCJ5++mkGDBiAo2P2HI6DBg0yVXGP5Nq1awwaNIjo6Gg0Gg3vvfcezzzzjLnDkiSLp1arC2zgqdVqWnpl0LHpE7y+8iSbzt3hn/mH+GZgA+r5uxrly8rKwsbGJs+GbH7780ovTJrxtiOZ1bqQcHl9vuWXNR4eHqjV6ly9r9HR0Xl+k5aYmMjhw4c5duwYr7zyCpA9hEMIgUajYdOmTbRr1y7XcRMnTiQ0NNSwnZCQQIUKFQgJCcHJyanAOHU6HeHh4VSpUiXf99rei7G89NMhmlR0Y9nwRgWesyQVJv7SypJjB8uOvzCxV6sG7t43eGPlSdacSaRqgB8jWwaVcKR5K2rd53xTUxgmnUzRwcGB0aNHm/KUxUKj0TBr1izq1q1LdHQ09evXp1u3btjb25s7NEl6bLQL8eSPV1rw4pLDnI9Oot/8/XzwZA36PZH/Mo1S8bG2tqZBgwZs3ryZPn36GNI3b95M7969c+V3cnIyPP+QY+7cuWzdupWVK1cSFJT3B6hWq81zTvHC/BFU2Px/nb4FQICbfaltsBT1eksTS44dLDv+gmJ/pqE/d1My+Xj9WT7ZcA4vJxv61i9fghE+WGHrvig/H5PPCh4WFkZERAQZGcZzRvbq1cvURT00X19ffH19AfDy8sLNzY07d+7IhqwklbAgD3tWv9yc1349zsbTt3jrt5OcvBHP+z1qUHpGdz0+QkNDGTRoEA0bNqRp06YsWLCAiIgIQwfFxIkTuXHjBkuWLEGlUlGzZk2j4728vLCxscmVXpKydHo2/Dt3bI86vmaLQ5LM5cVWlYhOSGfh7sss2XeV3nXLlemHv0zWkL106RJ9+vTh5MmT2Q9O/Ds9Tc7YqqIM3N25cyeffvopR44cITIyktWrV/Pkk08a5Zk7dy6ffvopkZGR1KhRg1mzZtGyZcsix3348GH0ej0VKsilCyXJHBy0GuY934A52y4w8+9wftwfwdnIRL7qV9vcoT12+vXrR2xsLFOnTiUyMpKaNWuyfv16w4w0kZGRBc4pa257L8ZyJzkDd3trmlZ0N3c4kmQW73SrhqejluebBJTpRiyYcEGEcePGERQUxK1bt7Czs+P06dPs3LmThg0bsn379iKdKzk5mTp16jB79uw89xdm0u4GDRpQs2bNXK+bN28a8sTGxjJ48GAWLFjwUNcsSZJpqFQKr7avzHdDGuKo1XD46l2emn+AG8nmjuzxM2bMGK5cuUJ6ejpHjhyhVatWhn2LFy9+4P188uTJHD9+vPiDfIC/TmVP8dilps9jN5+mJOVQqRRGta6Eg/a//sr0LMubraEwTNYju2/fPrZu3YqnpycqlQqVSkWLFi2YNm0aY8eO5dixY4U+V9euXenatWu++wszafeRI0ceWEZ6ejp9+vRh4sSJNGvWrMC8eU0Xk5mZaXjlbOf17/3/N6W8yjLlcQXly29/YdOL+q+pmbP+irqvKO8zS33vtazkxm+jGzN62TEuxaQw65Qa/2qRdK6Z+yviorz3HqY+i3J9xVXHUtHo9YK/z0QD2Q1ZSZKyZx6Zt+Mifxy/yYrRTXG0KVsPryrCREvUuLq6cuTIESpWrEilSpVYuHAhbdu25eLFi9SqVYuUlJSHC1BRjIYWZGRkYGdnx4oVK4weSBg3bhzHjx9nx44dBZ5TCMGAAQMICQlh8uTJBeafPHlyntPF/PTTT9jZ2RX6WiRJKpyULFgUriI8XoWCoKe/nnZ+gtK6OFNKSgoDBgwgPj6+UE/eS/9JSEjA2dm50HWn0+k4c+YM1apVy/VAyInrcfSavQd7azVH3++IVlP6Huh5UPylnSXHDpYd/6PEfjc5g86zdhKdmE6bEE8WDm5Y4t9WFDX+otwXTNYjW7NmTU6cOEHFihVp3LgxM2bMwNramgULFlCxYkVTFfNQk3bfb8+ePSxfvpzatWsbllNcunQptWrVyjN/ftPFdOrUCScnJzIzM9m8eTMdO3Y0zEeZsw0Y7TO1+8s29XEF5ctvf2HTi7ptauasv6LuK0zdlKX3Xre0dMYs3MaeWyr+iFBj7VGOKT2rYa1RPfA8ham7vNIe5b1XlKlipOJT2cuRBYMacCshrVQ2YiXJHFztrVk4pCHPzt/H9nO3+Wj9GSb1rGHusEzGZA3Z//3vfyQnZw9o+/DDD+nRowctW7bE3d2dX375xVTFGBR20u68tGjRAr1eX+iy8psuxsrKyugDLq/t/PaZ2sOev7DHFZQvv/2FTS/qtqmZs/6Kuq8wdVMW6s4OeCZIT7uG1flo/VlWHr3BtbupfDOwAa721gWepzB1l1faw7z3Hod5Zi2BrbWaTjXkkAJJul/t8i7MfLYuY5YdZdGeK1T0dGBQkwBzh2USJutb7ty5M3379gWgYsWKhIWFERMTQ3R0NO3btzdVMUWetFuSJMulKDC4iT/fD30CB62GA5fv8OTcPVyILvyqL5IkSRJ0q+XL652yV+Gb8sdpDl+5Y+aITOORe2SHDRtWqHzff//9oxYFFH3SbkmSLF+bEC9WjWnG8B8OcTU2hT5z9zC3f11zhyWVItvPRXM0Io5O1b2pWc7Z3OFIUqn0cttgzkYlsu5EJGOWHWVzaGucbS37G6VHbsguXryYgIAA6tWrh4meGyMpKYkLFy4Yti9fvszx48dxc3PD39+/wEm7JUkqe6p4O7JmTHNGLT3C4at3GbbkCM8FKXQzd2BSqfD78ZusPnYDnV4vG7KSlA9FUZj+VG2uxCbTv5E/TjYmXxerxD3yFYwePZpffvmFS5cuMWzYMAYOHIibm9sjnfPw4cO0bdvWsJ3zoNWQIUNYvHhxgZN2S5JUNrk7aPlxRGNe+/Uf/jwZydILarx2XOKV9lUKPUa+tNuwYQMODg60aNECgDlz5vDtt99SvXp15syZg6urq5kjLH2EEOy9GANAs0oeZo5Gkko3e62G319uUWYWSnjkMbJz584lMjKSt956i7Vr11KhQgWeffZZNm7c+NA9tG3atEEIkeu1ePFiQ54HTdotSVLZZWOl5uv+9RjePPsP18//vsC7a06RpSv8A5yl2RtvvGGYBeHkyZO89tprdOvWjUuXLhnNniL951JMMrcS0rHWqGgQIBv6klSQexux8SmZ7LsYa8ZoHo1JHvbSarX079+fzZs3ExYWRo0aNRgzZgwBAQEkJcmHMiRJMi2VSuHtLiE8FahDUeCnAxGMXHKY5PQsc4f2yC5fvkz16tUB+O233+jRowcff/wxc+fO5a+//jJzdKXT3n8/hBv4u2JjJafdkqTCuhmXSo/Zuxj+wyEux1jmUoomnxFXURQURUEIUaQpriRJkoqqla9gbv+62Fip2HbuNv0W7ON2YnrBB5Zi1tbWhgVk/v77bzp16gSAm5ubnK82H/sMwwrczRyJJFkWL0ctfs62pGToGPfLMTKyLK/dZpKGbHp6Oj///DMdO3YkJCSEkydPMnv2bCIiInBwcDBFEZIkSXnqUM2Ln0c2wd3emlM3EnhmwQGiHm4hwVKhRYsWhIaG8sEHH3Dw4EG6d+8OQHh4OOXLlzdzdKWPEIIDl7KnEWoqG7KSVCQatYov+tXF2daKE9fj+XzzOXOHVGSP3JAdM2YMvr6+TJ8+nR49enD9+nVWrFhBt27dUKlKdgk0SZIeT/X8XVk1phlBHvbciEtj1ik1By10jsTZs2ej0WhYuXIl8+bNo1y5cgD89ddfdOnSxczRlT63E9NJz9JjrVZRq7ycrUCSisrPxZbpT2WvbDp/xyV2n48xc0RF88izFnzzzTf4+/sTFBTEjh072LFjR575Vq1a9ahFSZIk5SvA3Z7fXmrG8MUHOXYtnhd+OMpXz9WlS01fc4dWJP7+/qxbty5X+hdffGGGaEo/Lycb/pnUiWt3UuSytJL0kLrU9KV/I39+PhhB6K/H+WtcS9wdcq9oWho9cpfp4MGDadu2LS4uLjg7O+f7kiRJKm5u9tYseaEhtVz1ZGTpGbPsKMsOXDV3WAW6d+xrQkLCA19SbmqVQqCHvbnDkCSL9n6P6lTytCc6MZ1PN1rOEAOTLIggSZJUWthYqXkhRM+BrAosP3yDd1ef4lZ8KhVNs15LsXB1dSUyMhIvLy9cXFzynBNXCIGiKOh0OjNEKElSWWdrrebL5+oxf+cl3ugcYu5wCs3yl3SQJEm6j1qBD3pVx9vJlq+2XuCrrRdp7q2ii15QGhdj3Lp1q2Ehma1bt5aZxR2KW1qmju5f7aJ2eRem9a0lp96SpEdUs5wzX/evZ+4wikQ2ZCVJKpMURSG0Uwiejlre/+M0e26pGLv8H77qX7/UNXhat25t+H+bNm3MF4iFOX0znou3k0lIy0KrkQ8XS5KpHY24S33/0r3IiPzNlySpTBvUNJAvn62NWhFsCotmyPcHiU/NNHdY+XrvvffyHD4QHx9P//79zRBR6RV2M3vMcA0/J9mLLUkmJITg1Z+P0XfuXjaH3TJ3OA8kG7KSJJV5XWv68FI1PQ5aDQcu36Hf/H3cSkgzd1h5WrJkCc2bN+fixYuGtO3bt1OrVi2uXLlivsBKobDIRACq+TqZORJJKlsURaGciy0Ak/84TWpG6R2bLxuykiQ9Fio7C5YNb4iHg5azUYn0+/Yg0anmjiq3EydOEBgYSN26dfn2229544036NSpE0OHDmX37t3mDq9UOROZ3SMrG7KSZHpj2wdTzsWWG3GpzNl2wdzh5Es2ZCVJemxU93Vi1UvNCHS3MyyccOJ6vLnDMuLs7Mwvv/zC2LFjGTVqFF9++SV//fUXU6dORa0u/rG9c+fOJSgoCBsbGxo0aMCuXbvyzbtq1So6duyIp6cnTk5ONG3alI0bNxZ7jAA6veBcVHaPbHVfxxIpU5IeJ3bWGt7vWR2ABTsvcel2kpkjyptsyEqS9Fjxd7dj5UvNqOnnRHKWwqBFh9kZftvcYRn5+uuv+eKLL+jfvz8VK1Zk7Nix/PPPP8Ve7vLlyxk/fjzvvvsux44do2XLlnTt2pWIiIg88+/cuZOOHTuyfv16jhw5Qtu2benZsyfHjh0r9lgj7qSQmqlDq1ER6C7nkJWk4tCpujdtQjzJ0OmZ9MdphCh98xjKhqwkSY8dDwctS4c1JMRZT0qGjuE/HGL9yShzhwVA165dmTJlCkuWLGHZsmUcO3aMVq1a0aRJE2bMmFGsZc+cOZPhw4czYsQIqlWrxqxZs6hQoQLz5s3LM/+sWbN48803eeKJJ6hcuTIff/wxlStXZu3atcUaJ0BCaiYh3o7U8HNCo5YfZZJUHBRFYUqvGlhrVOw6H8PG06XvwS85/ZYkSY8lB62GF6vq2ZLsy/pTtxi/4gRPByp0M3NcWVlZnDhxAj8/PwBsbW2ZN28ePXr0YMSIEbz55pvFUm5GRgZHjhzh7bffNkrv1KkTe/fuLdQ59Ho9iYmJhjlx85Kenk56erphO2e1Mp1OV6jFHnLy1PRzZP3Y5uj1wqIWiciJ1ZJizmHJsYNlx2/O2Mu72DCiRSBr/4lEo3q4GIoaf1HKkA1ZSZIeWxoVzHymNi725/jpQAQrLqspv/0SYztUMVtMmzdvzjO9e/funDx5stjKjYmJQafT4e3tbZTu7e1NVFTheqs///xzkpOTefbZZ/PNM23aNKZMmZIr/dy5czg4OBQ63vDw8ELnLY0sOX5Ljh0sO35zxd7OR09HX0+s9DGcORPz0OcpbPxJSYUfjysbspIkPdbUKoWPnqyJi42GuTsu8cWWCySk63izY7C5Q8vFw8Oj2Mu4fz7WnKVxC/Lzzz8zefJkfv/9d7y8vPLNN3HiREJDQw3bCQkJVKhQgZCQEJycCp59QKfTER4eTuXKldFoLO8jLCf+KlWqlMjDe6ZkybGDZcdvybFD0ePP+aamMCzvLiBJkmRiiqIwoUMwkVfPs/qKmu92X+ZOUhottSUfi06n44svvuDXX38lIiKCjIwMo/137twplnI9PDxQq9W5el+jo6Nz9dLeb/ny5QwfPpwVK1bQoUOHB+bVarVotbkrVq1WF/oDWghB65m7cbe3ZuGQhvg62xbquNKkKNdb2lhy7GDZ8Zs79kydnuWHrpGepWd4i6AiH1/Y+ItyjXKEvCRJ0r/a+Apm9K2JWqWw+ngkP5xXlfhTulOmTGHmzJk8++yzxMfHExoaSt++fVGpVEyePLnYyrW2tqZBgwa5hjZs3ryZZs2a5Xvczz//zNChQ/npp5/o3r17scV3r4R0PVHxaYRFJuBqZ10iZUqSBDvO3eZ/a07xxeZw4lNKxwqJsiErSZJ0jz71/Jg/sAG2Virquhfua3VTWrZsGd9++y2vv/46Go2G/v37s3DhQt5//332799frGWHhoaycOFCvv/+e86cOcOECROIiIhg9OjRQPawgMGDBxvy//zzzwwePJjPP/+cJk2aEBUVRVRUFPHxxTs3742E7A9QP2dbbKwss2dNkixRu6peVPVxJCk9i+/2XDZ3OIBsyEqSJOXSobo3W0NbUt+j5OdMjIqKolatWgA4ODgYGoU9evTgzz//LNay+/Xrx6xZs5g6dSp169Zl586drF+/noCAAAAiIyON5pSdP38+WVlZvPzyy/j6+hpe48aNK9Y4I5OyAAhwtyvWciRJMqZSKbzarjIAi/ZcJj7V/L2ycoysJElSHjwczDBAFihfvjyRkZH4+/sTHBzMpk2bqF+/PocOHcpzbKmpjRkzhjFjxuS5b/HixUbb27dvL/Z48hKTnD01T85a8JIklZyuNX2o7OXA+egkfth7hbHtK5s1HtkjK0mSVIr06dOHLVu2ADBu3Djee+89KleuzODBgxk2bJiZoysdbidn98j6yoasJJU4lUrh1X8br9/vuUxqhnnn5ZU9sg8h5+GPnOkhMjMzSUlJISEhASsrK6NtwGifqd1ftqmPKyhffvsLm17UbVMzZ/0VdV9h6ka+9wpXd3mlPcp7L6e+TfFg2CeffGL4/9NPP02FChXYs2cPwcHB9OrV65HPXxbcTsluyJZzsTFzJJL0eOpey5dPN57l2p1UVh27zvONA8wWi2zIPoTExEQAKlSoYOZIJEkqTRITE3F2djbpORs3bkzjxo1Nek5L5+2gobKXAxXc5BhZSTIHtUphWPMgdp+PoapPwfM/FyfZkH0Ifn5+XLt2DUdHR8MTzU888QSHDh0y5MnZzpns+9q1a4Wa7Pth3F+2qY8rKF9++wub/qDtsl5/Rd1XUN3dm1bW6+5B+wtTd3mlPex7TwhBYmKiYVlZqXiNaeROtWrVLHYuUEkqC4Y2C+SF5kWfS9bUZEP2IahUKsqXL2+UplarjT7s7t92cnIqtsbE/WWZ+riC8uW3v7DpBW1D2a2/ou4rTF3J917h6iWvtEd575m6J1aSJKk0K+mpCfMjH/YykZdffvmB2yVZtqmPKyhffvsLm27OunuU8kxRf0XdV5i6ku+9wteLud97kiRJlu5qbPK/42VTzFK+Ikp62ZrHTEJCAs7OzsTHxxdbr1hZJuvv4cm6ezSy/kpGUev58OVYhi0+SO0Krvw4okkJRGhaOp2OM2fOWOTQCEuOHSw7/tIc++DvD7Iz/DavtA3m9c4heeYpavxFuS/IHtliptVqmTRpUonM/1gWyfp7eLLuHo256m/o0KHs3LmzRMu0JDFJ6SSk60lIzTJ3KJIkAc89kf3g+4oj18jS6Uu8fNmQLWZarZbJkyfLxsRDkvX38GTdPRpz1V9iYiKdOnWicuXKfPzxx9y4caNEyy/t7v67vrubvbWZI5EkCaBDNW/c7K25lZDOjvDbJV6+bMhKkiSVIr/99hs3btzglVdeYcWKFQQGBtK1a1dWrlxJZqb5l4M0tzvJGQC42Zt+bmRJkorOWqPiqfrlAFh+6FqJly8bspIkSaWMu7s748aN49ixYxw8eJDg4GAGDRqEn58fEyZM4Pz58+YO0Wz+a8jKHllJKi2eapA9k9P2c7eJTy3ZP7hlQ1aSJKmUioyMZNOmTWzatAm1Wk23bt04ffo01atX54svvjB3eGZxNyW7IetqJxuyklRaVPVxooq3Axk6PZtOR5Vo2bIhK0mSVIpkZmby22+/0aNHDwICAlixYgUTJkwgMjKSH374gU2bNrF06VKmTp1q7lDNIvnfdd0dtHIadEkqTXrW9sPRRkNCWsk+iCkbsqVMnz59cHV15emnnzZ3KKXeunXrCAkJoXLlyixcuNDc4Vgc+V57ONeuXaNNmzZUr16d2rVrs2LFCpOe39fXl5EjRxIQEMDBgwc5fPgwo0ePxtHR0ZCnc+fOuLi4mLRcS1HexZZKrtZ4O8mHGCWpNHmhRRCH/9eB4S1KdrUv2ZAtZcaOHcuSJUvMHUapl5WVRWhoKFu3buXo0aNMnz6dO3fumDssiyLfaw9Ho9Ewa9YswsLC+Pvvv5kwYQLJyckmO//MmTO5efMmc+bMoW7dunnmcXV15fLlyyYr05K8060qX3b3pWN1b3OHIknSPRy0GrSakp/jVjZkS5m2bdsa9bxIeTt48CA1atSgXLlyODo60q1bNzZu3GjusCyKfK89HF9fX0MD08vLCzc3N5P9EZWVlcWwYcO4cOGCSc4nSZJU0oQQXIhOKrHyZEO2CHbu3EnPnj3x8/NDURTWrFmTK8/cuXMJCgrCxsaGBg0asGvXrpIP1AI8al3evHmTcuXKGbbLly//WM23Kd+LD8+UdXf48GH0ej0VKlQwSWwajYaAgAB0Op1JzidJklSSUjN0tP1sOx2/2MGthLQSKVM2ZIsgOTmZOnXqMHv27Dz3L1++nPHjx/Puu+9y7NgxWrZsSdeuXYmIiDDkadCgATVr1sz1unnzZkldRqnwqHWZ18rKiqIUa8yliSnei48rU9VdbGwsgwcPZsGCBSaN73//+x8TJ06UQ2Xy0eXL3Yz8/QZXY82zrrskSfmztVbj7qBFCFh/MrJkChXSQwHE6tWrjdIaNWokRo8ebZRWtWpV8fbbbxfp3Nu2bRNPPfXUo4ZoMR6mLvfs2SOefPJJw76xY8eKZcuWFXuspdGjvBcft/fa/R627tLS0kTLli3FkiVLTB5T3bp1hYODg9BqtaJKlSqiXr16Rq+yJj4+XgAiPj6+UPmrvfeXCHhrnbh4K6GYIyseWVlZ4uTJkyIrK8vcoRSZJccuhGXHb0mxf7frkgh4a53oO3ePIa2o8RflviDnLzGRjIwMjhw5wttvv22U3qlTJ/bu3WumqCxTYeqyUaNGnDp1ihs3buDk5MT69et5//33zRFuqSPfiw+vMHUnhGDo0KG0a9eOQYMGmTyGJ5980uTnLEuy9NnfxlipH59vYCTJknSr5csHf4Zx5Opdbsal4udiW6zlyYasicTExKDT6fD2Nn6S1tvbm6iowk8O3LlzZ44ePUpycjLly5dn9erVPPHEE6YOt1QrTF1qNBo+//xz2rZti16v580338Td3d0c4ZY6hX0vyvdaboWpuz179rB8+XJq165tGF+7dOlSatWqZZIYJk2aZJLzPKy5c+fy6aefEhkZSY0aNZg1axYtW7bMN/+OHTsIDQ3l9OnT+Pn58eabbzJ69Ohii0/3b0NWrZINWUkqjXycbXgiwI2DV+6w/mQkI1pWLNbyZEPWxO4fpymEKNLYTfnk/X8KqstevXrRq1evkg7LYhRUf/K9lr8H1V2LFi3Q6/XmCKvY5YwPnjt3Ls2bN2f+/Pl07dqVsLAw/P39c+W/fPky3bp1Y+TIkfz444/s2bOHMWPG4OnpyVNPPWXy+IQQsiErScUhMhLmz4dRo8DX95FP1722Lwev3GHdiUieblCeqPjUPJ9tMQX5sJeJeHh4oFarc/W+RkdH5+rdkR5M1uWjkfX38EpD3el0Oj777DMaNWqEj48Pbm5uRq/iNHPmTIYPH86IESOoVq0as2bNokKFCsybNy/P/N988w3+/v7MmjWLatWqMWLECIYNG8Znn31WLPH9ec/DIwO/O8SGUyX0MIkklXWRkTBlSva/JtC1lg+KAsevxdFy+ja6fLmblacTTHLu+8mGrIlYW1vToEEDNm/ebJS+efNmmjVrZqaoLJOsy0cj6+/hlYa6mzJlCjNnzuTZZ58lPj6e0NBQ+vbti0qlYvLkycVWbs744E6dOhmlP2hs9b59+3Ll79y5M4cPHyYzM9Ok8W04FckrPx0zbF+ITmL0j0dlY1aSSiEvRxsmdq1KDT8nEtOzl6xdcyahWHpl5dCCIkhKSjKaqPzy5cscP34cNzc3/P39CQ0NZdCgQTRs2JCmTZuyYMECIiIiinW8mKWSdfloZP09vNJed8uWLePbb7+le/fuTJkyhf79+1OpUiVq167N/v37GTt2bLGU+zDj/KOiovLMn5WVRUxMDL55fEWZnp5Oenq6YTshIbuXRqfTPXD+3Fl/n0cBcj4GBaAo2ekdq3kVfIGlRM41WuJcwZYcO1h2/MUSe2SkoQdWOXYMFaA/fBiRU4av7yMNM2hW0Y2P1581bMen64m4k0yAu0OBxxblOmVDtggOHz5M27ZtDduhoaEADBkyhMWLF9OvXz9iY2OZOnUqkZGR1KxZk/Xr1xMQEGCukEstWZePRtbfwyvtdRcVFWV4cMzBwYH4+HgAevTowXvvvVfs5Rd1nH9e+fNKzzFt2jSmTJmSK/3cuXM4OOT/AXcxOpH7+3KEyE4/c+ZMvseVVuHh4eYO4aFZcuxg2fGbMnavuXPxum/YkGrUKMP/o196iegxYx76/EuO3wWgoZ8Nh29mL45w4swFUty1BR6blFT4lcEUUVyjbyVJkqQiCwkJYcmSJTRu3JiWLVvSvXt33n77bZYvX86rr75KdHR0sZSbkZGBnZ0dK1asoE+fPob0cePGcfz4cXbs2JHrmFatWlGvXj2+/PJLQ9rq1at59tlnSUlJwcrKKtcxefXIVqhQgTt37uDk5JRvfN2/3sO5KOPGrKJAVW9H1r3avIhXaz46nY7w8HCqVKmCWl3y69I/CkuOHSw7/mKJ/f4e2VGj0M+fj6hXL3v/I/TICiFoN3MXEXdSaBHszv5Ld6jgrGHjhDaFij8hIQE3Nzfi4+MfeF8A2SMrSZJUqvTp04ctW7bQuHFjxo0bR//+/fnuu++IiIhgwoQJxVbuveOD723Ibt68md69e+d5TNOmTVm7dq1R2qZNm2jYsGGejVgArVaLVpu7R0atVj/wA258h8qM/vGoYVshu0d2XAfLa5RAwddbmlly7GDZ8Zs09vLls1/ZJwZA1bAh1K//yKc+dSOeiDspaDUKDlorgjzsGV7HvtDxF+UaZUNWkiSpFPnkk08M/3/66acpX748e/fuJTg4uNinmytofPDEiRO5ceMGS5YsAWD06NHMnj2b0NBQRo4cyb59+/juu+/4+eefTR5bl5q+zHu+Pi8ty27MBnvZ81qnqnSp6WPysiRJejTrTmT39Lav5s3c5xug0+mKbQiQbMhKkiSVYk2aNKFJkyYlUlZB44MjIyOJiIgw5A8KCmL9+vVMmDCBOXPm4Ofnx1dffVUsc8gCdK3li0alkKUXLB76BOXc7IulHEl67Pj6wqRJJplDVgjBuhM3Aehey++Rz1cQ2ZCVJEkqZcLDw9m+fTvR0dG5Fl8o7qWYx4wZw5h8HvBYvHhxrrTWrVtz9OjR3JmLiUad3ZDNWRhBkiQT8PUFE03vd+J6PNfvpmJrpaZd1eKfUUQ2ZCVJkkqRb7/9lpdeegkPDw98fHyMnv5XFKXYG7KlnebfFb0ydGVzdTVJsnQ5C5e0r+aFrXXxj0WWDVlJkqRS5MMPP+Sjjz7irbfeMncopZKtlYakdB2pGZY3F6gklXVCCP78d3xsj9qPPkyhMOTKXpIkSaXI3bt3eeaZZ8wdRqllr83u4UmRDVlJKnWOXYvjRlwq9tZq2oSUzEIlsiErSZJUijzzzDNs2rTJ3GGUWvbW2V8kJmdkmTkSSZLut/af7Ie82lfzxsaqZKY4k0MLJEmSSpHg4GDee+899u/fT61atXLNx1pcS9Raipwe2eR02SMrSaWJTv/fsIJedYp/toIcsiErSZJUiixYsAAHBwd27NiRazUtRVEe+4as3b89simyR1aSSpWDl+8QnZiOk42GVlU8S6xc2ZCVJEkqRS5fvmzuEEq1nB7ZpHTZkJWk0uSPf4cVdK3pi7Wm5EauyjGykiRJksVw0Gb3vySmyYasJJUWmTo9f536d1hB3ZIbVgCyR1aSJMnsQkND+eCDD7C3tyc0NPSBeWfOnFlCUZVObvbWANxJyTBzJJIk5dh1/jZxKZl4OGhpUtG9RMuWDVlJkiQzO3bsGJmZmYb/5+fexREeVzkN2bvJmWaORJKkHL8eug5kP+SlVpXsfUo2ZCVJksxs27Ztef5fys3QI5sse2QlqTS4nZjO32duAfBcowolXr4cIytJkiRZDDf77OnIZENWkkqH345eJ0svqO/vQhVvxxIvX/bISpIklSJ9+vTJcwiBoijY2NgQHBzMgAEDCAkJMUN05udmJ3tkJam0EEKw/NA1AJ57wt8sMcgeWUmSpFLE2dmZrVu3cvToUUOD9tixY2zdupWsrCyWL19OnTp12LNnj5kjNY97H/YSQpg5Gkl6vO27GMvlmGTsrdV0r+1rlhhkQ1aSJKkU8fHxYcCAAVy6dInffvuNVatWcfHiRQYOHEilSpU4c+YMQ4YM4a233jJ3qGbh4aBFATJ1grsp8oEvSTKn73Znz3v9VIPy2GvN8yV/mRpacPToUd566y0OHTqEWq3mqaeeYubMmTg4OBjyRERE8PLLL7N161ZsbW0ZMGAAn332GdbW1oUuR6/Xc/PmTRwdHeVTxJIkIYQgMTERPz8/VKpH6x/47rvv2LNnj9F5VCoVr776Ks2aNePjjz/mlVdeoWXLlo8atkWy1qhwsVFzN03HzbhUQw+tJEkl69LtJLacjQbgheZBZoujzDRkb968SYcOHejXrx+zZ88mISGB8ePHM3ToUFauXAmATqeje/fueHp6snv3bmJjYxkyZAhCCL7++usilVWhQsk/mSdJUul27do1ypcv/0jnyMrK4uzZs1SpUsUo/ezZs+h0OgBsbGwe6z+iPe2zG7I34lKpWc7Z3OFI0mNp0Z4rALSv6kWQh73Z4igzDdl169ZhZWXFnDlzDD0Zc+bMoV69ely4cIHg4GA2bdpEWFgY165dw88ve+WJzz//nKFDh/LRRx/h5ORUqLIcHbOfyrt27RpOTk5kZmayadMmOnXqhJWVldE2YLTP1O4v29THFZQvv/2FTS/qtqmZs/6Kuq8wdSPfe4Wru7zSHuW9l5CQQIUKFQz3hkcxaNAghg8fzjvvvMMTTzyBoigcPHiQjz/+mMGDBwOwY8cOatSo8chlWSoPew3hsRlExqWaOxRJeizFpWSw8kj23LHDW5ivNxbKUEM2PT0da2tro6/jbG1tAdi9ezfBwcHs27ePmjVrGhqxAJ07dyY9PZ0jR47Qtm3bQpWV0xPi5ORkaMja2dnh5ORk+ADM2QaM9pna/WWb+riC8uW3v7DpRd02NXPWX1H3FaZu5HuvcHWXV5op3num6CX94osv8Pb2ZsaMGdy6lT03o7e3NxMmTDCMi+3UqRNdunR55LIslaedGoCb8WlmjkSSHk/f775MaqaO6r5ONK1Usit53a/MNGTbtWtHaGgon376KePGjSM5OZl33nkHgMjI7PV/o6Ki8Pb2NjrO1dUVa2troqKi8j13eno66enphu2EhAQg+4Mw55Wznde/9//flPIqy5THFZQvv/2FTS/qv6Zmzvor6r6ivM/ke6/w9WKK954p61itVvPuu+/y7rvvGu41939b5O9vnmluSgtP++yPrpuyR1aSSlx8aqZhWMGr7YLNPsxJEaV8/pLJkyczZcqUB+Y5dOgQDRs25KeffiI0NJSYmBjUajVjx45l6dKlhIaG8uabb/Liiy9y9epVNm7caHS8tbU1S5Ys4bnnnitSDD/99BN2dnYPf3GSJJmX0KPRp2GlS0GjS8VKl4KVLhXNv/8m2pYj1qFqgadJSUlhwIABxMfHF3qIkpQtISEBZ2fnQtedTqdj4cbDTNsZQ90KLqx5uXkJRGk6Op2OM2fOUK1aNdRqtbnDKRJLjh0sO/7SFPuXf5/ni7/DCfF25K9xLVEVYknaosZflPtCqe+RfeWVV/JtYOYIDAwEYMCAAQwYMIBbt25hb2+PoijMnDmToKDs8Rs+Pj4cOHDA6Ni7d++SmZmZq6f2XhMnTiQ0NNSwnTMerlOnToahBZs3b6Zjx46GryRztgGjfaZ2f9mmPq6gfPntL2x6UbdNzZz1V9R9hambx/69l5FMVtwNDm//k0Y1glBnJKCk3kWfFEPkxVP4udqiSo9DSb0DKXcg9S4K+f8tf8mjA/X7vFqoMbKmtHLlSn799VciIiLIyDCe+P/o0aMmLSvH3bt3GTt2LH/88QcAvXr14uuvv8bFxSXP/JmZmfzvf/9j/fr1XLp0CWdnZzp06MAnn3xiNHyrOPg5Zv88rsQmF2s5kiQZS0jL5LvdlwB4tX1woRqxxa3UN2Q9PDzw8PAo0jE5jdLvv/8eGxsbw4d606ZN+eijj4iMjMTXN3vi3k2bNqHVamnQoEG+59NqtWi12lzpVlZWRh9weW3nt8/UHvb8hT2uoHz57S9selG3Tc2c9VfUfYWpmzJXd2o1JEdD3DWIuwoJN1HF36DB5ePY/PINquRoSLwFGYlYAS0Bzv93DjXgD3Ann0LU1gitE8k6NXauPqhsndFbO5KQ4kWFQsRpyvr96quvePfddxkyZAi///47L7zwAhcvXuTQoUO8/PLLJivnfgMGDOD69ets2LABgBdffJFBgwaxdu3aPPOnpKRw9OhR3nvvPerUqcPdu3cZP348vXr14vDhw8UWJ4CvY/ZHV1xKJneTM3CVU3BJUolYuOsyCWlZBHs50LWmeRZAuF+pb8gWxezZs2nWrBkODg5s3ryZN954g08++cTQo9CpUyeqV6/OoEGD+PTTT7lz5w6vv/46I0eOlF8HSpK5ZaTAnYsQcx7uXEJ19ypNLxxFM28KxF8HXbpRdjVQHiDO+DTCyo5kxQE7zwBU9u5g64bOxplzETFUqdsEjaMn2LqRae3Mln3HaN+9L1a2jmRlZrJl/Xq6deuGysoKXWYmV9evp6TnBpg7dy4LFiygf//+/PDDD7z55ptUrFiR999/nzt38muJP5ozZ86wYcMG9u/fT+PGjQH49ttvadq0KefOnctzOVxnZ2c2b95slPb111/TqFEjIiIiinUcr41Gha+zDZHxaVyKSaaBbMhKUrGLTkjj253ZvbGhHaugLgW9sVDGGrIHDx5k0qRJJCUlUbVqVebPn8+gQYMM+9VqNX/++SdjxoyhefPmRgsiSJJUQlLv4pEYhupwJNz9t+EaewHirxllUwNe9yYoKnAqBy7+4FQOnb0nZ67doeoTbdA4lwNHH3DwJktlw5a//jI0SAH0mZmcX7+eyvW7QU7vaWYm6VaXQWNTIpddWBERETRr1gzInnklMTERyJ6Wq0mTJsyePdvkZe7btw9nZ2dDIxagSZMmODs7s3fv3jwbsnmJj49HUZR8hyNA/g/P6nQ6wzy5D5KTJ9Ddjsj4NC5GJ1K3vOV0ROTEX5hrLW0sOXaw7PhLQ+wzN58jNVNHPX8XOlXzLFIsRY2/KOcuUw3ZJUuWFJjH39+fdevWlUA0kvSY0+vh7mWIOpn9unUKok5ilXCD5gAX8jjG1hXcK4N7JXRO5fnnahy1W3VH4x6U3YhV//cVvj4zk4vr1xNS457GKUAxzdJQUnx8fIiNjSUgIICAgAD2799PnTp1uHz5MsX1bG5UVBReXl650r28vB44o8u90tLSePvttxkwYMADv+GaNm1ang/Pnjt3zmgVxoK4arLHDh8+d5XqtqYdo1wSwsPDzR3CQ7Pk2MGy4zdX7BFxGfx6OHsGqP5VtZw9e/ahzlPY+JOSkgp9zjLVkJUkyYxS4+DGYbh+GK4fyv43LS7PrMnWntgG1EflGQIelcGjSnYD1v6/+Qj1mZlcW7+eWgEtjBuqZVy7du1Yu3Yt9evXZ/jw4UyYMIGVK1dy+PBh+vbtW6RzFXbWF8h7DlwhRKGm1snMzOS5555Dr9czd+7cB+bN7+HZkJCQQs9aEB4eTt2KfqwPDydB2FKtWrUCjystcuKvUqWK2Z8+LypLjh0sO35zxi6E4LMlR9EL6FTdm6da1yvyOYoaf1EeoJUNWUmSHk5SNOXu7kf952a4fhBizuXOo7EBr2rgUwu8a4FPTTLdQvh7626jr/6l/yxYsAC9Xg/A6NGjcXNzY/fu3fTs2ZPRo0cX6VyFnfXlxIkThsUX7nX79u0HzugC2Y3YZ599lsuXL7N169YCG6P5PTyr/n97dx4WVfU/cPw9M8Cw7yogCCIK7uKOK1TuqS2appGoX80tK0uzxbR+2mplpqWZuben5r6lpiluKK4IoiICIvsq68z9/YFMEtsMgsPAeT3PPHLvPffezxwvM4dzzz0fhUKnL+gWTkXnibibZXCNEtD9/dYmhhw7GHb8+oh9/5W7HI5IxFgh481BPg91fm3j1+UcoiErCIJ2ctPh5lG4eQRuHsE4MYzO/y1j1xRcu4BbV3DtDI3alBgOABj8rf+aJpfLS2QofO6553juueeqdCxtZ33x8/MjPT2dU6dO0bVrVwBOnjxJenq6ZrxuWYobsdeuXePQoUM4ODy6DD8tnYvSAd9MzuZefiHmJuLrTBCqW06+igXbLgMwqbcnzRpoP/znURG/+Q9BZPYSmb3qfGav5EjkkfuQXduH7PYJZOrCEpvTzJpg0XoQsqa9kBp3AYv/NJrUgFq7a+O/6mtmLygab3rhwgUSEhI0vbPFhg0bVq3nAmjZsiUDBw5k0qRJrFy5EiiafuvJJ58s8aCXj48PH330EU8//TSFhYWMGDGCs2fPsmPHDlQqlWY8rb29PSYmNTuTgKOlkgZWShIz87gan0nHJnY1ej5BqI+WH4okNi2HxrZmzHjMS9/hlKnWZ/aqTZYvX87y5cs1Yz1EZi+hzpHU2GdH4px2GqeMUCzzSt5uzlQ6k2TVikSrViRb+pBvZKWnQGuX6szstWfPHl588UWSkpJKbZPJZDX21HJKSkqphAjLli0rMQOBTCZjzZo1BAUFERUVpUk281+HDh3C399fq/NWJbNXcYag8etCOBKRyKKn2zC2m7tW59O32pShSVeGHDsYdvz6iP1GYhYDlxwlX6VmxQudGNjGqcrHqteZvWqT6dOnM336dE0Fi8xeIrNXncjsJUnI4s4iu7IFedg2ZJlx/26SGyO590Rq3h+1Vz9M7ZriStH8rYZ07VWlPnV5f9WZ2WvGjBmMHDmS9957r9LxqdXJ3t6ejRs3VljmwX4PDw+PGptFQVstna04EpFI2B3Dm7VAEGoztVri7S0XyVep8fduwIDWj+6zSFeiIfsQRGavyreLzF6Vl9NbZq/ECAjdBJc2Q3r0v+uV1uA9GHyGIGsWgExZ1Ota3t/QhnTtVaU+tYmzOq/NhIQEZs2a9UgbsYaqlXNRT03YnUw9RyIIdcumU9GcuJGCmbGCD4a10Wr2En0RDVlBqE9yM+DyFji3sWimgWImluA9CFo/Dc0eB+PalSSgPhkxYgSHDx+mWbNm+g6l1mvtUtSQvRKXQaFKjZFCXskegiBU5nbKPT7aFQbAmwO9aeJQu4dQatWQtbe31+mgMpmMs2fP4u5uGGOWBKFOkyS4fQpOr4Yrf0JhTtF6mQKa94P2z0OLAWBspt84BaAo1fbIkSM5evQobdu2LdXbO3PmTD1FVvt4OlpiZWpEZm4hV+MzadPYRt8hCYJBkySJuZsvcC9fRVcPe17089B3SJXSqiGblpbGkiVLsLGp/ENCkiSmTZtmkCngBKFOKcihSfIRjH5YDPEX/l3v6A2+Y6HdaLASt69rmx9//JG9e/diZmbG4cOHS9zSk8lkoiH7ALlcRgc3W45eS+Lc7TTRkBWEh/TjqWiORSajNJLzyYh2yOW1d0hBMa2HFowePbrMFIZlefnll6sckCAID8csLxH5wfeRh27ENye1aKWRKbQZAZ2CiuZ3rcXjneq7d999lw8++IC5c+eWmE9WKJtvE7uihmx0KoHdxV1AQaiqyIRM/m/HFQBmD/CmqaOFniPSjlYN2f/OY1iZzEwx8F4QHrk751Ec/YJ+V/5ERtHT5Nkmjpj2mo6icxCY6zZESNCP/Px8Ro0aJRqxWvJtYgvAueg0vcYhCIYsr1DFyz+FklugppeXIxN6lj21Xm0kHvZ6CCIhgkiIoPeECJKE6tpfKE5/i/zmYYqbPiqPPhR2nMiBGxL9Og8oGmdZzXVoSNeeISVEGDduHL/88gtvv/12tR2zLvN1swXgZlI2Kdn52FvUbCIGQaiLPtkdTtidDOwtTPjiufYGMaSgmM4JEYonyy51IJkMU1NTvLy8yp0k29CJhAhCrSGpcUk7TfO7O7HNiQJAjZxYu+5ENhpMhlkT/cZXz1RnQoSZM2eyfv162rdvT7t27Uo97PXFF1881PFrm4dJiFA8sfoTX/xNZEIWKwM7MaB11SdtfxTEpPz6Y8jx12Tsh8ITGL/mNACrx3Xm8ZbV/+xErUqI8NRTTyGTyUpNhF28TiaT0atXL7Zu3YqdXd1KGSgSIoiECLruV+0JEfbtZWCTPEyOLUaWfA0AycgUdYdA1N2m4mDhzFlx7Rl0QoSLFy/i6+sLwKVLl0psq81zOeqTn6cDkQlZBF9PrvUNWUGoTe5m5DL7t/MAjPNzr5FGbE3TuSG7f/9+3nnnHRYtWkTXrl0BOHXqFO+++y7z5s3DxsaGl156iTfeeIPVq1dXe8C1iUiIUPl2kRCh8nJabZMkZBG78b86D2XobQAkMzvCbfrS7PlPMLZxKkpYcP8Wd32pu4q2G2pChEOHDlXbseqLHs0c2HDiFsevl07rKwhC2fIL1UzbdJakrHx8nKx4a3BLfYdUJTo3ZF955RW+++47evTooVn3+OOPY2pqyuTJk7l8+TJLlixhwoQJ1RqoINRLkgSRB+DgIozizmIDSEorZH4vU9h5EuF/HaWZuYO+oxQEveru6YBMBhF3s0jIzKWhlUjoIQiV+XBXGCG3UrEyNWLFC50wNTas4RbFdG7IXr9+vczxCtbW1ty4cQOA5s2bk5Qk/jIWhIfhkHkVxYZv4PYJACRjC67ZP0bTsV9gbN2w2h/eEvTrmWee0arc5s2bazgSw2NnYUIrZ2sux2UQfD2Z4R0a6zskQajVtp6LZe3xKAC+fK4DHgYy1VZZdJ7fpVOnTsyePZvExETNusTERObMmUOXLl0AuHbtGq6urtUXpSDUJ7dPo/jxWXpFfoj89glQKMFvBoXTzxDmMhLM6tbYc6GIjY2NVi+hbD2aFd2ZCL6erOdIBKF2C7uTwdzNRUlyXn7MiydaGd642Afp3CO7evVqhg8fjqurK25ubshkMqKjo/H09OTPP/8EICsri3nz5lVroIsWLWLnzp2EhoZiYmJCWlpaie3JycmMHTuWCxcukJycTMOGDRk+fDgffvihpgc5KiqqzBkVdu/ezcCBA6s1XkHQ2Z3zcOhDiNiDHFDLFEgdx6HoOxusXUQPbB23Zs0afYdg0Hp4ObLq6E2ORCRqHjwWBKGktHv5TN0YQm6Bmj4tGvDqEy30HdJD07kh6+3tTVhYGHv37iUiIgJJkvDx8aFfv36aCbyfeuqp6o6T/Px8Ro4ciZ+fX5kPkcnlcoYPH87ChQtp0KABkZGRTJ8+nZSUFH788ccSZQ8cOEDr1q01y/b2YqJ4QY8Sr8LRTyHs/tR2MgXqdqM5UNCRgIHjUNTgg1qCUFf4eTpgaiwnLj2Xq/GZtHR+uGnQBKGuKVCpmbrxLFHJ92hsa8ZXozqgMKD5YstTpYQIMpmMgQMH4u/vj1KpfCR/+b7//vsArF27tsztdnZ2TJ06VbPs7u7OtGnT+Oyzz0qVdXBwwMlJTNEi6FnKdTpGrcDoXDAgATJoOxL856KybkLOrl36jlAQDIapsYKezRz562oCB68miIasIDxAkiTmbb1E8I1kLEwUrA7qjF0dSR6ic0NWrVazaNEiVqxYwd27d4mIiMDT05N58+bh4eHBxIkTayJOncXFxbF582b69u1batuwYcPIzc2lefPmvPbaa4wYMaLCY+Xl5ZGXl6dZLp4zUmT2Epm9qlR/6bdRHF2M0YWfcZNUAKh9hqLq8yY08Cl3P12uM3HtGW5mL6HqHm/ZiL+uJvBX2F2mB3jpOxxBqDVW/3OTn0/fRi6Dr8f44uNUd/7Q0zmz1wcffMC6dev44IMPmDRpEpcuXcLT05Nff/2VL7/8kuDg4JqKFSjqkX311VdLjZEt9vzzz/Pnn3+Sk5PD0KFD+fXXXzE1LZqKJSkpiQ0bNtCzZ0/kcjnbtm1j0aJFrFu3jhdeeKHccy5YsEDTI/wgkdlL0IVpQSrN47fjkXwI+f0GbLx1B646P0O6uYd+gxMeSnVm9qpvqiOzV7H49Fy6f/QXMhmcfucJHC2VNRV2lYnsUvpjyPE/TOwHrtxl0oYzSBLMe7IVE3s9+uyrNZnZC0lHzZo1kw4cOCBJkiRZWlpK169flyRJksLCwiRbW1udjjV//nyJonuq5b5Onz5dYp81a9ZINjY25R7zzp07UlhYmLR161apVatW0tSpUyuMYcaMGVLbtm0rLJObmyulp6drXrdv35YAKSkpScrPz5eys7OlrVu3StnZ2aWW/7utul9VPb62+1VWrrzt2q7XddkQ62/3b2ul/G2vS+oPGkjSfGtJmm8tqdYOlXKuHSn3GGUdX5u6EdeednVX3ddeUlKSBEjp6elaf/4JRdLT03Wqu8LCQunixYtSYWFhmdsHf3VEcn9zh/Tr6ejqDLPaVBZ/bWbIsUuSYcdf1dgv3E6TWs3bLbm/uUN6a/MFSa1W11CEFdM1fl0+F3QeWhAbG4uXV+lbNmq1WufbazNmzGD06NEVlvHw8NDpmE5OTjg5OeHj44ODgwO9e/dm3rx5ODs7l1m+e/fufP/99xUeU6lUolSW/steZPaqfHu9zuyVnYT86Bc8cXkVRlJ+0bomfhDwDvKmvVEUFMDlXTpn/dKmbgy+7nQoV9cyewkPp1+rRlyOy2D3pXhGdnbTdziCoDdRSdmMX3uK7HwVvbwceX9Y6zo5m4fO88i2bt2ao0ePllr/22+/afKDa8vR0REfH58KX8XDAqpCuj9q4sHxrf917ty5chu5glAl91LgwPuwpB2KE8sxkvJRu3SCwC0wfjc07a3vCAWhlNTUVAIDAzXz1QYGBpY7hKssL730EjKZjCVLltRYjNp4sl3R5/nRa4mk3xNjl4X6KSEzlxd/OEVSVj6tXaz59oWOGCt0bvIZBJ17ZOfPn09gYCCxsbGo1Wo2b95MeHg469evZ8eOHTURIwDR0dGkpKQQHR2NSqUiNDQUAC8vLywtLdm1axd3796lS5cuWFpacuXKFebMmUPPnj01vbrr1q3D2NgYX19f5HI527dvZ+nSpXzyySc1FrdQj9xLgRPfFr3yMwFQO7XnpPkTdB49F7lJ3XhCVKibxowZQ0xMDHv27AFg8uTJBAYGsn379kr33bp1KydPnsTFxaWmw6yUV0MrfJysuBqfyd7L8TzXRfTKCvVLZm4B49ecJjrlHm72ZqwZ3wUr07p710jnhuzQoUP55Zdf+PDDD5HJZLz33nt07NiR7du3069fv5qIEYD33nuPdevWaZaLe38PHTqEv78/ZmZmrFq1itdee428vDzc3Nx45plnmDt3bonjLFy4kFu3bqFQKGjRogU//PBDhQ96CUKlMuLg+DIIWQsF2UXrGrWBgLdRefYjYfduqIO3c4S6IywsjD179nDixAm6desGwKpVq/Dz8yM8PBxvb+9y942NjWXGjBns3buXIUOGPKqQK/RkO2euxmey/UKcaMgK9UpeoYopG0O4HJeBg4UJGyZ0o6FV1e9sG4IqzSM7YMAABgwYUN2xVGjt2rXlziELEBAQwPHjxys8xrhx4xg3blw1RybUVxZ5d1HsfBUu/ALq+7cwndpC7zeg5TCQy0U2LsEgBAcHY2Njo2nEQtHzAzY2Nhw/frzchqxarSYwMJDZs2eXSDKjb0PaubB4XwTHryeTkp2PfR2ZL1MQKlKoUvPaL6Eci0zG3ETBmvFd8HC00HdYNa5KDVlBqNdiQlAcX8rjV/5Exv3Z69x7Qq9Z4PW46H0VDE58fDwNGzYstb5hw4bEx8eXu98nn3yCkZERM2fO1Ppc5c3LrVKpUKlUle5fXKaisk3sTGntbM3lOxlsC40hsLu71vHVNG3ir60MOXYw7Pgri12llpjzx0V2XYzHWCHjmzG+tHa2qjXvVde61yVurRqydnZ2Wj/plpKSovXJBcFgqAqKUsieWAExpzRPSaqbPYG8zxvg7qfX8AShLOXNgf2g06dPA5T5GS9JUrmf/SEhIXz11VecPXtWpyehP/roozJjCg8Px9LSUuvjREREVLi9R2MFl+/AxmPX6WxzT+vjPiqVxV+bGXLsYNjxlxW7WpJYdjKFfZFZyGUwp5cjjoWJhIUl6iHCimlb91lZWVofU6uG7INPoSYnJ7Nw4UIGDBiAn1/Rl3dwcDB79+5l3rx5Wp+4LhCZvepBZq+cVOTnNiA/8z2yzDgAJLkxqpbDOVrYnm7D/1c09ZKO9VOVbSKzl3bbRWavf2k7xeGFCxe4e/duqW2JiYk0atSozP2OHj1KQkICTZo00axTqVS8/vrrLFmyhKioqDL3e+utt5g1a5ZmOSMjAzc3N7y9vbVOiBAREUGLFi0qnFi9UZN81p47RGRKPtg2rjUpa7WNvzYy5NjBsOMvL3ZJknh/R5imEfvlc+01M3fUJrrWffGdGm3onNnr2WefJSAggBkzZpRYv2zZMg4cOMDWrVt1OZxBWb58OcuXL9f8h4jMXnWUJOGQdRX35L9xSTuNQipqpOQaWRPl+BhRjo+RZ2yr3xiFWsXQM3uFhYXRqlUrTp48SdeuXQE4efIk3bt35+rVq2WOkU1OTubOnTsl1g0YMIDAwEDGjx9f4QNiD6rOzF7/NW1TCLsuxjO+pwfzh9aOMbz1NbtUbWDI8ZcVuyRJfLz7KiuP3EAmg8Uj2vNsJ1c9R1q2WpXZy8LCQrp27Vqp9REREZKFhYWuhzNIxRknRGavOpbZK+W2VHh4saRe0l6TgUuaby2pv+kpFZxZL+Xfy6zW+tN1m8jsVfVrT2T2qtzAgQOldu3aScHBwVJwcLDUtm1b6cknnyxRxtvbW9q8eXO5x3B3d5e+/PJLnc5b3Zm9HnTw6l3J/c0dUof390q5BbUjm1N9zC5VWxhy/P+NXa1WS5/tuSq5v7lDcn9zh7TpxC09R1ixWpXZy8HBgS1btjB79uwS67du3YqDg4OuhzNoIrNX5dtrfWav/CxcU45j+sd65DcPg7qwaL2JJbQdAR3HIXPxxaicMYDVUX8is9fDlROZvarHpk2bmDlzJv379wdg2LBhLFu2rESZ8PBw0tPT9RFelfRp3gAna1PiM3LZe/kuw9rrf55bQXhY0gM9sQDzh7ZiTLcmlexVd+nckH3//feZOHEihw8f1oyRPXHiBHv27Kk01asg1AqF+RB5AC79jtHVXXQqzPl3m2tX6PgitH4alNo/eCIIhs7e3p6NGzdWWEaqZCRaeeNi9UUhlzGqixtf/XWN9cejRENWMHiSJPHBjiusORYFFDVix/dsqt+g9EznhmxQUBAtW7Zk6dKlbN68GUmSaNWqFceOHSsxB6Eg1Cq5GRC5H67uhGv7Ia9oILkMyFI2wqxLIIr2o6BBC/3GKQhCtRrbrQnLD0Vy5lYql2LTadPYRt8hCUKVqCWJ97Zd4cdTtwFY9HQbxnarPVPL6UuV5pHt1q0bmzZtqu5YBKF6pUXDtX1FjdebR/9NWgBg6QRtnqWw5VP8dS6OwX2HoKgDt4cFQSipobUpQ9o582doHGuPR7F4ZHt9hyQIOlOpJZaeSObA9WxkMvjk2XY811lkrQMtG7IZGRk6PYmbmZmJlZVVlYMShCrJzYCof+D6QbhxCJIjS253aA4+g8HnSWjcGeRypIICCL1T9vEEQagTxvXw4M/QOLadj+OtQT44WCr1HZIgaC2/UM1rv57nwPVs5DL44rkOPOXbWN9h1RpaJ0S4c+dOmZlfytK4cWNCQ0Px9PR8qOAEoUJ5WRBzGqJPwM2/i34uflgLQKYA187gPQi8hzySYQO5BSpiUnO4nXqPmJR7RCVlcTZCzu+JIWTmqcjMLSAjt5DsvEJUaolClYJZJ/ejliRMjRRYKI2wVCqwUCqQ7sk5UXgFV3sLXO3MaOZgRqG6xt+CINQ5vm62tHe14XxMOuuCbzGrnxhCJBiG7LxCpmwM4ei1JIzk8OVzHRjaQTRiH6RVQ1aSJL7//nuts67U1snBBQOXlQjRwUUN1+jjcOcCSP9JY2fXFJo9Bs0CwKM3mNlWawiFKjV30nO5mZhB8F0ZVw9cIy49j9sp94hJzSEhM6+MveSQnFzOEWVw/wGanAIVOQUqkrL+3e/K6ZgSpRUyBauijtO5qT2dm9iSmV9d70wQ6i6ZTMZLfZsxbdNZ1h2PYnIfTyyVIkO7ULulZOczfs0pzsekY26iYG4vBwa3ddJ3WLWOVr/JTZo0YdWqVVof1MnJqU5MR1MZkdmrBjN7ZaUgS76CFHOWTjf3olg+D9JulTq/ZO2K1KQ7klt31E39wc7jvwHq9P7UaonErDxiUnPu96zmEJNW9HNsag53MvJQqYuf3FbAjZuljmmhVOBma4arnRnONkoy42/RrUMbbC2UWJkaYWVqhIXSCNQqjh09St++fTA2Nia3QMW9fBXZeYWkZudx+OQ57Bt7cjergFvJ9wi/m0lWnoqrd7O4ejeLjSeiASM2xhxnQKtG9GvVEE97Zal6F9de/c3sJfxrQGsnPBtYcCMxmx9P3mJyn2b6DkkQyhWblkPg6pPcSMzGztyY1S92wiRLDIMri86ZveozkdmrZhgXZmKdE4NNTjS2925ie+8mVnll/8JmmLqSbNmCZIsWpFi2IMfEUadzSRJkFUJKHqTkyUjJheQ8Gcm595fzoFCqOG+8kUzCXgkOpvf/VUrYmxb966AEcyPQIfW8TrGn5sPtLBnXM2REZsiIuwcS/56soalEt4ZqujaQsDap/hiEshl6Zi99qsnMXv/125nbzP79Ag2slBydE4Cp8aPP7lTXsksZEkOJ/9rdTF784RR30nNxsTFl/cSuNHUwN4jYy1OTmb3EvRUdTJ8+nenTp2squH///lhbW1NQUMD+/fvp168fxsbGJZaBEtuq23/PXd37VVauvO1lri/IoTD+MmGH/6BtIwWK5HC4ewV5dukc71DU26pyak9EpjmevUegcO2EmZktrkB5SfjUaomErDxiU3OITcslLi2HmPv/xqblEpeeQ25BxQNNFXIZztZKXO3McLUzp7GtKW52ZveXzWhgqUSlKnzo+tN1W/G6UU8+obnOtu7aD43b8Fd4Mkcjk0nIVbM9WsHuGBn+LRxopYhnyrPi2tNmXWXLFdElL7igP0/5NmbJgWvEpuXwW0gMgd3F1EVC7XL8ehJTNoSQkVuIV0NL1k/oioutGSqVqvKd6ynRkH0IIrNXGdslCTLjkSVcxT3pEMq/T6BIvQFJ1yD1JsaSmo4A0SX3l2zdkTVqjapRO07FFNB52P8wtnVBKijg2q5dNG/+OGqZnISMPOIzcrmbkUt8+v1/M/K4m55LfEYud9JzKFBVfJNBJoNGVqY0tjOjsY0pucmx+Hdpg4ejFW725jjZmGKskFd4jIICWbXV38Nk9rIwhsGdmzDGrxlZeYVsO3eblQcucysLDlxN4gBGHMs8x7QALwK8GyKXV39Xca259rRYLzJ71W/GCjmT+3gyf9tllh+MZGQnV730ygpCWX4PieGtzRcoUEl0bGLL6nFdsLMQt9YqIxqygu4K8yEjBtKikSXfxCfuIIotWyD1BiRfh/wsjIAOALdL7iqZ2ZOkaIS9Ty8Uzm0odPBm15lb+AYMIT1XTVxqNn9FnuH4yXQSs5K4k5bDtVgFC84fIvWeduMQFXIZzjamNLY1o/H9XlXX+2NWG9uZ4WxjholRUUO1oKCAXbtuM7iTq8E3RiyVRozs5IrF3Qs069ibDSej+T0khpDoNCauO0MrZ2vmDvKhT4sG+g5VEPRmdFc3vjtyg9i0HDYE32JSHzG7jqBfkiTx5YFrLP3rGgBD2jnz+cj24o8sLYmGrFCSWg33kiHzTlHPaloMPnGHUPy5XdN4JSMOKOr1NAK8AR4cHSBToLZtQlyBNSZNOpJq7sEdo8bclLkRlWPOxWu3MIl1IDmigMTMTNJyrODMkQcOoIAbNx48IFDUiDUxkuNkbUojayWNrE1xsjbFycaUhvd/bmxnRiMrJUaV9KjWdd5OViwc3prW0i1um3nx0+kYrtzJ4MUfTtHLy5G5g3xEhiOhXlIaKXjliebM+f0C3xyOZHRXN6xMDfuPWMFw5RWqePP3C2wNjQNgmn8z3ujvXSN3z+oqg2nILlq0iJ07dxIaGoqJiQlpaWmlypw+fZq5c+cSEhKCTCajS5cufPrpp3To0EFT5uLFi8yYMYNTp05hb2/PSy+9xLx585DVxNM5tYVaDblpRQ3U+y9Zxl1axP+DfM9hyE7QNFzJultiLtYyG6pAodyUTFNnko2duHnPnDRLT25ILoQVNOLSPVuSip/VSnpwr+T7Lzkkp5Y4nkIuw8HCBAcLE2S56bT1aoKLrTkNLI24dfUiTz7eC1d7S2zNjev2/1U1szGB5we0YGpAc5YdjGTDiSj+iUxi6LJ/eKGbO28M8MbGTHyJC/XLM76NWfn3da4nZrPq6E0xr6ygF6nZ+by0MYRTN1NQyGUseqoNo7s20XdYBqdKDdmjR4+ycuVKrl+/zu+//07jxo3ZsGEDTZs2pVevXtUdIwD5+fmMHDkSPz8/Vq9eXWp7ZmYmAwYMYPjw4XzzzTcUFhYyf/58BgwYQExMDMbGxmRkZNCvXz8CAgI4ffo0ERERBAUFYWFhweuvv14jcVcbVUFR5qq89Pv/ZkBeJrLsVJomBiP/JwwKsiA3He6llGi0SjmpyKSSDzgZAS0BypgcQI2MdJktSTJb4tW2RBU6ECM1uP9yJEZqQDLWcO+BBmVm6ePIkXC0MsXRUkkDKyWOlkrszY1IvH2d3l064GRrjq2pnNATRxkxdBBKpcn9W/27GDy4leaBm113L+DjZGXwt/71yd7ChPeGtmJ8Tw8+3RvO9vNxbDhxi92X4nl3SEuGd3ARfyAI9YaRQs4b/b2Zuuksq47c4PmubjjbmOk7LKEeCbuTweQNZ7idkoOV0ohvXuhI7+Zi2FdV6NyQ/eOPPwgMDGTs2LGcO3eOvLyiCeAzMzP58MMP2bVrV7UHCfD+++8DsHbt2jK3h4eHk5qaygcffICbW1H+4fnz59OuXTuio6Np1qwZmzZtIjc3l7Vr16JUKmnTpg0RERF88cUXzJo1q2a+yBOv0ig9FNmVfFDnIxXcQ5WXjSrvHuq8bNQF91Dn3UMqyIGCe5B/D1lhDrKCHGSFOSgKsjAqzMJIlVvm4Y2AdgAxZW4G0EzOlC6ZkyJZkYoVqZIViZINCdiSINlx9/4rQbIlCRsKy7g0rJRG2FmY4GpuTBtzE+wtTLA2VZAYc5OuHdrgaGWKnbkJjpZKbE3lHD98gCeH9C31RPmuXZEMbu+saahGGiNuozwibvbmfP28L893dWPe1ktcT8zm1V9C+eNsDJ+OaCe+zIV6Y2AbJzq723HmViof777KV6N99R2SUE/suniH1389T06Biib25qx6sTPeTlb6Dstg6dyQXbhwIStWrODFF1/k559/1qzv0aMHH3zwQbUGpwtvb28cHR1ZvXo1b7/9NiqVitWrV9O6dWvc3YumWAkODqZv374olf/m2R4wYABvvfUWUVFRNG3atNrjuvT7h3RP2QX3h3zKKKr0qo7pyJaUZGJOpmROJmZkSWZkaJbNyZDMScG6qMEqWZFyv9GahgVGxiZYmxpjZWqEpdKIvMxUmro6Y2thQlNTY9opje5P2F9UxtrMGGsTOSHBR3h26EDMTUvnJy9qmN5gcFe3Ug1W0TatvXo0c2T3K31YdfQGS/+6xtFrSQz48ggfDG8jemeFekEmk7FgWGuGLvuHP0PjeKG7O1087PUdllBHqdQSV+Mz+GxvOIfDEwHo3dyRr5/3xdZczEzwMHRuT4WHh9OnT59S662trcsct/qoWFlZcfjwYYYPH87//d//AdCiRQv27t2LkVHR24yPj8fDw6PEfo0aNdJsK68hm5eXp+l5hn/njNQms9ddhRPn1Z7koCRHMin6FxNyJCU5KMmXFb0KFGYUyE0plJtSqDBFpTBDZWSGysicAiNLCo0tkUysUCpNMDdWYGaiwNxYgYkCbl2PoGO7NjiZGuNpUrzNqOhfEwVmxgoslIoSU0r9O0dmq0rn8rxmAqhVZWYvqrHMXlXIrlQV+sxOpes2XTLIaZPZSwZM7uXO496OzPnjIhdiM3j1l1B2X4zjg2GtsK9k2heR2av0OQXD0qaxDaO7uPHTqdss2HaZbTN6oRB/gQvVIP1eAWdvp3LuVioh0amERqeRnf/vXLCB3d2ZP7RVvX8wuTronNmrWbNmrFy5kieeeAIrKyvOnz+Pp6cn69ev5+OPP+bKlStaH2vBggWaIQPlOX36NJ07d9Ysr127lldffbVUozknJwd/f398fHyYMWMGKpWKxYsXc/XqVU6fPo2ZmRn9+/enadOmrFy5UrNfbGwsrq6uBAcH0717d53i1CazV2oe5KrASAZG8vuv+z8rZIheS6FWUElwIFbGnhg5akmGrYnEuOYqPEWSKq2IzF5V9ygze5UlOSsP/8WHycwt5P+GtybQz+Ohj1kRQ8kuVRZDjh1qNv6EjFz+uprA2VupnI1O5XpidrllezRz4MdJZbc3ylPf6r5GM3u99NJLvPLKK/zwww/IZDLi4uIIDg7mjTfe4L333tPpWDNmzGD06NEVlvlvD2p5fvzxR6KioggODkYul2vW2dnZ8eeffzJ69GicnJyIj48vsV9CQgLwb89sWd566y1mzZqlWc7IyMDNzU1k9qpgu7brqzO7UlXos/6qmtmrorp5mGtvKHA5LoPXfr3AzeR7LAszZtYTXvyvp0eZY5gN6doTmb2E8jhYKnmjvzfzt13m491XeaxlIxrbirHigm6URgpW/n2dqOR7lZZd9HTbRxBR/aFzQ3bOnDmkp6cTEBBAbm4uffr0QalU8sYbbzBjxgydjuXo6Iijo6OuIZTp3r17yOXyEmP7ipfV6qIn9v38/Hj77bfJz8/HxKTotum+fftwcXGpsMGsVCpLjKstJjJ7Vb5d2/XVkV3pYeiz/h4ms1dFZXSNEaCDuwPbZ/bmnS0X+TM0js/2XeP0rTS+eK5DuUMNDOnaE5m9hLIEdndn2/k4Qm6l8s6Wi6wJ6iLGiQs6sTE35vtxnXlq+XGy8grLLde/VSOaOlo8wsjqvioNzli0aBFJSUmcOnWKEydOkJiYqBmXWlOio6MJDQ0lOjoalUpFaGgooaGhZGVlAdCvXz9SU1OZPn06YWFhXL58mfHjx2NkZERAQAAAY8aMQalUEhQUxKVLl9iyZQsffvhhzc1YIAgGyFJpxJJRHfj4mbYojeQcDk9k6Nf/cCk2Xd+hCUKNkMtlfPJsO0wURdf7lnOx+g5JMEBeDa1YMqpDhWVEJrnqV+VRxubm5nTu3BkfHx8OHDhAWFhYdcZVynvvvYevry/z588nKysLX19ffH19OXPmDAA+Pj5s376dCxcu4OfnR+/evYmLi2PPnj04OzsDYGNjw/79+4mJiaFz585MmzaNWbNmlRg2IAhC0RPdo7s2Yev0njR1tCA2LYcRK47zZ6j4ghfqJq+GlrzyRHMAPthxhYTMsqc8FISKqCUJpVHZTSvfJrZ0drd7xBHVfTo3ZJ977jmWLVsGFD1g1aVLF5577jnatWvHH3/8Ue0BFlu7di2SJJV6+fv7a8r069ePf/75h7S0NFJSUvjrr79KPcDVtm1bjhw5Qm5uLnfu3GH+/PmiN1YQytHS2Zqt03vi792A3AI1r/wcyke7wlCpdXpGVDAAqampBAYGYmNjg42NDYGBgVrNRBMWFsawYcOwsbHBysqK7t27Ex0dXfMB14DJfTxp7WJN2r0C3vjtAmpxnQtayslX8e7Wi0zeEEJeoRpb89LDjSb19hTtjRqgc0P2yJEj9O7dG4AtW7agVqtJS0tj6dKlLFy4sNoDFARBv2zMjFk9rgtT/ZsBsPLIDYLWnCI9R0w5VZeMGTOG0NBQ9uzZw549ewgNDSUwMLDCfa5fv06vXr3w8fHh8OHDnD9/nnnz5mFqavqIoq5exgo5S0Z1QGkk50hEIqv/uanvkAQDEHYng2HL/mHjiaI/4Cb1bsrhN/xp5fzv0/Zu9mYMaO2krxDrNJ0bsunp6djbF00avWfPHp599lnMzc0ZMmQI165dq/YABUHQP4VcxpsDfVg2xhczYwVHryUxYuVJEnL0HZlQHcLCwtizZw/ff/89fn5++Pn5sWrVKnbs2EF4eHi5+73zzjsMHjyYTz/9FF9fXzw9PRkyZAgNGzZ8hNFXr+aNrHhvaCsAPt17lYsxYmy4UDZJkvjhn5sMX3aMawlZNLBSsmFiV94Z0gpbcxO+e7GT5iHZ//XyFHMU1xCdG7Jubm4EBweTnZ3Nnj176N+/P1B0W8pQ/woXBEE7T7Zz4Y+pPWhsa0ZU8j2+vKTg5M0UfYclPKTg4GBsbGzo1q2bZl337t2xsbHh+PHjZe6jVqvZuXMnLVq0YMCAATRs2JBu3bqxdevWRxR1zRnTtQkDWztRoJJ4+aez4u6DUEpCZi7j157mgx1XyFepeaJlQ/a80pvezRtoyrjamfPt2I44WpowsrOrHqOt23SefuvVV19l7NixWFpa4u7urhmjeuTIEdq2rV9zo2mT2evBsjUVQ1WOr4/sSmWtF5m99JfZq6qaNzDj95e68tLGc1yIzSBobQgLh7fi2Y6NtdpfZPaqfeLj48vsRW3YsGGpubeLJSQkkJWVxccff8zChQv55JNP2LNnD8888wyHDh2ib9++Ze5XXqZElUqFSqUqc58HFZfRpuzDWPRUKy7EphGVfI9Xfz7Hdy90LHM+ZV09qvhrgiHHDtUTvyRJbL9wh/e3h5GWU4DSSM7bg3wY280NmUxW6tid3W3ZPMUPpaL0tkcduz7pGr8u71PnzF4AISEhREdH069fPywtLQHYuXMntra29OzZU9fDGYzly5ezfPlyVCoVERERWmX2EoS6Kl8Fm67LCU0uurHTr7GawW7qepmtrrZm9tI2e+K+fftYt25dqWEEzZs3Z+LEicydO7fUfnFxcTRu3Jjnn3+eH3/8UbN+2LBhWFhY8NNPP+kUU3BwsOb7pLaITM5jzr675Ksknm9rw9j2tvoOSdCjtFwV35xM4fjtoqQHzexNmNXDAXfbitN5C7rLysrCz89Pq8/UKjVk67vi1GlJSUkis5fI7FVnMnvpqqCggL379nPVqBkr/7kFwMDWjfjs2TaYGpefgrCuZvZydHSsdQ3ZpKQkkpKSKizj4eHBjz/+yKxZs0rNUmBra8uXX37J+PHjS+2Xn5+PhYUF8+fP591339Wsf/PNN/nnn384duxYmecrq0fWzc2NlJQUrVPURkRE0KJFi0eSqnPLuVje+P0iAN+O9aV/q/KzQGrjUcdfnQw5dni4+HddjGf+tsuk3CvASC5jRkAzpvT1xFhR5VlMdVLf6j4jIwN7e/uaSVELEBMTw7Zt24iOjiY/P7/Eti+++KIqhzRIIrNX5dtFZq/Ky9WmzF66ksvgjQHeNHe25a3NF9hz+S53MvJY9WInGlpVPGZeZPaqedpmTyzu+Th16hRdu3YF4OTJk6Snp9OjR48y9zExMaFLly6lenEjIiJwd3cv91zlZUpUKBQ6fUHrWr6qRnRuwuU7maw5FsWsXy/w8+TutHezfejjPqr4a4Ihxw66xZ+Ulcf8bZfZeeEOUDQl4eKR7WjtYlOTIZarvtS9Lu9R54bsX3/9xbBhw2jatCnh4eG0adOGqKgoJEmiY8eOuh5OEIQ6YEQnV1ztzJiyMYTzt9N4evlxVgd1xsep9vROCuVr2bIlAwcOZNKkSaxcuRKAyZMn8+STT+Lt7a0p5+Pjw0cffcTTTz8NwOzZsxk1ahR9+vQhICCAPXv2sH37dg4fPqyPt1Fj3h7ckuuJ2RyJSGTC2tP8MbUHHiLNaJ2mVkv8euY2H+2+SnpOAQq5jOkBXswI8MKknIQHgn7o/L/x1ltv8frrr3Pp0iVMTU35448/uH37Nn379mXkyJE1EaMgCAagu6cDW6Y9kAns22AOXU3Qd1iCljZt2kTbtm3p378//fv3p127dmzYsKFEmfDwcNLT/52O6umnn2bFihV8+umntG3blu+//54//viDXr16Perwa5SxQs43YzvSprE1ydn5jFtziqSsvMp3FAzStbuZjP7uBHM3XyQ9p4DWLtZsndaTWf1aiEZsLaRzj2xYWJhmEL+RkRE5OTlYWlrywQcfMHz4cKZOnVrtQQqCYBiaOlqwZVoPpmwM4cSNFCauO828J1sR1MNDZLSp5ezt7dm4cWOFZcp6pGLChAlMmDChpsKqNSyVRvwQ1IVnvjnOreR7jF9zmk2TumFtWjuHlQi6yy1QsfxQJCv+vk6BSsLMWMHr/VsQ1MMDo0c0FlbQnc7/MxYWFpqB+i4uLly/fl2zrbKHCgRBqPtszU1YP6Ebz3V2RS3B+9uv8N6flylUqfUdmiA8lIZWpqyb0BU7c2MuxqYz7odTZOYa9tRrQpHD4QkMXHKErw9GUqCSeNynIftn9eF/vT1FI7aW0/l/p3v37pqnUYcMGcLrr7/OokWLmDBhAt27d6/2AAVBMDwmRnI+ebYdbw3yQSaDDSduMX7taTLEl75g4Jo1sGTj/7phY2bMueg0gtacJiuvUN9hCVV0IzGLCWtPE7TmNFHJ92hopeTbsR35flxnXO3E9JqGQOeG7BdffKHJ/rJgwQL69evHL7/8gru7O6tXr672AAVBMEwymYyX+jZjxQudNGltn/3mONEp9/QdmiA8lNYuNmz6XzesTY0IuZVK4OqTpN3Lr3xHodbIyC1g0c4rDFhyhINXEzCSy5jUuykHXu/LoLbOYiiUAdF5jKynp6fmZ3Nzc7755ptqDciQiMxeIrNXfczsVdG5yvJYCwd++l8XXtp4jmsJWYxYeZIXm4rMXoJha9PYhg0Tu/HiD6c4F53GcyuDWT+hG042IlV7baZSS/x6JobP90eQlFX0x8djPg15Z0hLmjWoXQk5BO1UOSFCfn4+CQkJqNUlx701adKkWgKrjURmL0GourQ8WBWuICZbhkIm8XwzNV0a1I18LLU1s5chKE4wo23dqVQqwsLCaNmyZa2YTzPibiaBq09yNyOPxrZmrJ/YtcIGUW2LXxeGHLskSRwMu8vC7Re4mVr0h6dnAwvmPdmKAO/S6ZlrG0Oue9A9fl0+F3TukY2IiGDixIkcP368xHpJksrMM1yXTJ8+nenTp2squH///iKzl8jsVa8ze+l6/KfyC3njt4vsv5rIxkgF1o09eeWxZmXmsDe0zF5C/dSikRW/T+nBiz+c4mZSNk8tP8Y3YzvSu3kDfYcm3Hc2OpVPdl/l5M0UAKxMjXjl8eaM6+HxyDJzCTVH54bs+PHjMTIyYseOHTg71+9xJCKzV+XbRWavyssZcmYvXY9vY2zMsuc7MH3lXg7Eyfnm7xtEJGTzxaj25U5jJDJ7CbWdm705v03xY8qGEM7cSiVozWnee7IVL/q5l/qOFLN3PDrX7mby2d5w9l25CxQ9hPpkc0vefqYzjlZmeo5OqC46N2RDQ0MJCQnBx8enJuIRBKGOk8tlDHVX0697W+ZtC+NA2F2eWnaMlYGdaN7ISt/hCUKVOFoq2TSpG29vvsQfZ2OYv+0yF2LS+b+nWmNu8u9X7S+nb9NRP9lN643w+Ey+PniNnRfvIElFqbRHdHLl5YBmpN+Jws7cRN8hCtVI5z71Vq1aifliBUF4aM/4Nub3KX642JhyIymb4cuPseviHX2HJQhVpjRSsHhk0bRzchn8cTaGoV//w9X4oqEnBSo164JvARB6O02PkdZNYXcymLYphAFLjrDjQlEjdkDrRux9tQ+fjmiPi63oha2LtGrIZmRkaF6ffPIJc+bM4fDhwyQnJ5fYVlPjxKKiopg4cSJNmzbFzMyMZs2aMX/+fPLz/53u5Pz58zz//PO4ublhZmZGy5Yt+eqrr0odRyaTlXrt2bOnRuIWBKFi7Vxt2f5yL/w8HbiXr2LaprN8vPsqKnXdeAhMqH+Kp537cVJ3GlkruZ6YzfBlx9gQHMX283HEpecA8NovoSRk5Oo52roh5FYqk9efYdBXR9l1MR6AwW2d2DWzNysDO4s7PXWcVkMLbG1tS4zzkSSJxx9/vESZmnzY6+rVq6jValauXImXlxeXLl1i0qRJZGdns3jxYgBCQkJo0KABGzduxM3NjePHjzN58mQUCgUzZswocbwDBw7QunVrzbK9vX21xywIgnYcLJVsmNiVT/ZcZdXRm6z4+zoXY9P47Jk2+g5NEKqsu6cDu2b25vXfznM4PJF5f17G3ESB+v5EQYlZeUzddJafJnXHxEg8cKQrlVpi/5V4Vh29ScitVABkMhjS1pmXH2uOt5NovNYXWjVkDx06VNNxVGjgwIEMHDhQs+zp6Ul4eDjffvutpiH731zfnp6eBAcHs3nz5lINWQcHB5ycnGo+cEEQtGKkkPPOkFa0dbXlzd8vcCwymWHfBDPSTcZgfQcnCFXkYKnkh3FdWBccxUe7r3Ivv6ij58+wDCRJIuRWKh/suMzCp9rqOVLDkZ1XyOazMXz/z01uJRclVzFRyBnewYXJfTxF72s9pFVDtm/fvjUdh87S09Mr7Uktr8ywYcPIzc2lefPmvPbaa4wYMaLC4+Tl5ZGXl6dZLh5CIRIiiIQIIiFC9dbdoFYN8JrSjVd/uUBEQhYrwuQU7LnKrH4tSk2TIxIiCIZALpcxvmdTtp6L5XxMOgCrQlIpvse58UQ07Rrb8lwXN/0FaQCuxmfw48lotpyNJfN+SmAbM2Ne6N6EcX4eNLQWiSjqK60TIty7d4/Zs2ezdetWCgoKeOKJJ1i6dCmOjo41HWMp169fp2PHjnz++ef873//K7NMcHAwffv2ZefOnZo5NZOSktiwYQM9e/ZELpezbds2Fi1axLp163jhhRfKPd+CBQt4//33S60XCREEoWbkq2DLLTnH7xY1Xj0sJca1UGGv1HNg5RAJEarO0BMiaONcdCpPf1M097qxAsyM5GTk/TsNl7Fcxu9Te9DezVZPEWrnUdd9boGK3ZfusOlENGfuDx8A8HAwZ3zPpozs7FpiRojKGOK1U8yQY4eaTYigdUN29uzZfPPNN4wdOxZTU1N++ukn/P39+e2337R7F2Uor4H4oNOnT9O5c2fNclxcHH379qVv3758//33Ze5z+fJlAgICmDlzJu+++26Fx3/55Zf5+++/uXDhQrllyuqRdXNzIykpSSREEAkRREKEGqy7T38+wO+3TMjKU2GpNOLdwd484+uCTCardQkRHB0dRUO2CupDQ/alDWfYe7loLlMzYxlrnmrM2D9ieHBKWVNjORsmdqOLR+19ZuNR1L1aLXHmVipbzsWy80IcGblFva8KuYz+rRrxQnd3/DwdykyiUhlDvHaKGXLsUEsye23evJnVq1czevRoAF544QV69uyJSqWqcqXOmDFDc7zyeHh4aH6Oi4sjICAAPz8/vvvuuzLLX7lyhccee4xJkyZV2ogF6N69e7kN4mJKpRKlsnRXkEiIUPl2kRCh8nL1KSGCrvv5Oki8+KQfr/9+iXPRaczdcpn9YYl89Exb7MyMKzyOSIgg1AbXE7M0E/IXs1QqMFHIyHlgdo7cAjUjVwQzpK0zU/2b0aZx/ZpsNjIhi63nYtkaGktMao5mvYuNKc93bcJzXdxoJIYPCGXQuiF7+/ZtevfurVnu2rUrRkZGxMXF4eZWtbE9jo6OWg9NiI2NJSAggE6dOrFmzRrk8tJPeV6+fJnHHnuMcePGsWjRIq2Oe+7cOZydnXWKWxCER8fNzpzfXvLju6M3WLL/Gn9dTaD/kiO8N8QHuZilS6jlfjsTg4uNGSZGckwUcqyURd9d3Zrag6xoXW6BmsiETOLSc9l58Q47L96hg5stL/q5M7itM6bGhtcDVxlJkrgQk86+K/Hsu3yXawlZmm2WSiMGtnHiGd/GdPN0QFGF3leh/tC6IatSqTAxKZkNw8jIiMLCwmoP6r/i4uLw9/enSZMmLF68mMTERM224tkHiocT9O/fn1mzZhEfXzSXnEKhoEGDopzX69atw9jYGF9fX+RyOdu3b2fp0qV88sknNf4eBEGoOiOFnGn+Xjzu04jXfwvlUmwGs367SFs7Ob49c3BvIHpEhdpp7iAf5g76NxNm8S3W1eO6lLqbeSUug5VHrrPr4h1Cb6cRejuNhTvDGNbehaHtnfF1s6vSLfXaIjuvkFM3UzgUnsC+y3eJf2AeXSO5jD4tGvCUb2P6tWyEmUnda7wLNUPrhqwkSQQFBZW4xZ6bm8uUKVOwsLDQrNu8eXP1Rgjs27ePyMhIIiMjcXV1LRUXwG+//UZiYiKbNm1i06ZNmu3u7u5ERUVplhcuXMitW7dQKBS0aNGCH374ocIHvQRBqD28nazYMq0n3xy6ztcHr3ExVc6gr4/z2hMtCOrpUWpmA0EwJK1crPlqtC/vDmnFL6ej+fFkNHHpuaw9HsXa41G42JjyZHsXBrRuRHtXW4xq+fVeoFITejuNY5FJHItM4lx0GoUPDKcwN1Hg792AAa2d8PduiI2Z+INU0J3WDdlx48aVWveoGoBBQUEEBQVVWGbBggUsWLCgwjLjxo0r830IgmA4jBVyXnmiOU/4OPDyuuPcyFSxaFcYf5yNYdHTbWjnIuaRFAxbAyslMx5rzpS+zTh6LYnt5+PYd+Uucem5fHfkBt8duYGVqRG9vBzp6eVIJ3c7WjSy0usteEmSiEnNIfR2Gudvp3E+Jo2LsenkFqhLlHO1M6N3c0f6tWpEj2aOdXLYhPBoad2QXbNmTU3GIQiCoJMWjax4ubWKHKf2fLovgqvxmTz7bTBD2znRUfsZeQSh1jJSyAnwaUiAT0NyC1QcDk9k58U7HIlIJD2ngN2X4tl9qWgYnaXSiPZuNrR0ssbbyQpvJyuaOlpgZVq9vZwqtURcWg43k3OITMjiemLR69rdLJKz80uVt7cwwa+ZQ1Gju5kjTRzElJVC9RIf94IgGCy5DEZ2aszAti58vDuMX8/EsP1CPLtlCu5aXmP6Y82r/Yu8rkpNTWXmzJls27YNKEoc8/XXX2Nra1vuPllZWcydO5etW7eSnJyMh4cHM2fOZOrUqY8o6vrD1FjBwDZODGzjhEotcSEmjSMRSZyOSuFcdCpZeYUci0zmWGRyif1szIxpbGuGi60ZDhYm2FoYY2dugqXSCBOFHBMjOcYKOWpJolCtpkAlUaBSk5FTSEZuARk5BaTeyyc+PZc76bnczchFLUWXGaOxQkYrZ2vau9nS3tWW9m62eDpaGPS4XqH2Ew3ZhyAye4nMXiKzV+249qxMjFk0vBVjurjy4a6rnLqVxoojN/ktJJbp/p483b5hqWOJzF4ljRkzhpiYGPbs2QPA5MmTCQwMZPv27eXu89prr3Ho0CE2btyIh4cH+/btY9q0abi4uDB8+PBHFXq9o5DL8G1ih28TO6ColzQ8PpPzMWmEx2cSHp9JxN1MkrPzSc8pID2ngCt3Mqrt/EZyGR6OFng1sKRZQwu8GlrSrIElLRpZiaECwiOndUIEAZYvX87y5ctRqVRERESIzF6CUAtJElxKlbHtlpyE3KKeIBsTiX6N1fg1lDCqgedjDD2zV1hYGK1ateLEiRN069YNgBMnTuDn58fVq1fx9vYuc782bdowatQo5s2bp1nXqVMnBg8ezP/93/9pde76kBDhQY8y/qy8QmJTc4hNu0dcWi5p9/JJvVfUw5qdV0iBSiK/UE1+oRqZrGj8ubFChrFCjpWpMdZmRtiYGWNjZoyzjSkNLE3ITLiNX4fWKE0M706HIV87hhw71JKECAJMnz6d6dOnayq4f//+IrOXyOwlMnvVwmtPtn8/L4/wZ8uFBFb8fYP4jDx+v6ngn2QlU/p6MsLXBTnqas3sZciCg4OxsbHRNGKhKFmMjY0Nx48fL7ch26tXL7Zt28aECRNwcXHh8OHDRERE8NVXX5V7rrIyJULRF51Kpao01uIy2pStjR5l/GZGMrwamOPVoHo6XFQqFRFZRsiQDLL+DfnaMeTYQff4dXmfoiH7EERmr8q3i8xelZcTmb0erlx5281NlQT19OT5bu78eCKKJXvDiM/IY8H2ML4+eJ2xXd1oWCAyewHEx8fTsGHDUusbNmyomZO7LEuXLmXSpEm4urpiZGSEXC7n+++/p1evXuXu89FHH5WZmjw8PBxLS0utY46IiNC6bG1kyPEbcuxg2PEbcuygffxZWVmVF7pPNGQFQajTlEYKXujWBKvES6Q7tuGHY7eITcth6aHrGMkUXOQyk/o0w92u7qW/XLBgQZmNxgedPn0aAJms9AM5kiSVub7Y0qVLOXHiBNu2bcPd3Z0jR44wbdo0nJ2deeKJJ8rc56233mLWrFma5YyMDNzc3PD29tZ6aEFERAQtWrQw2Fushhq/IccOhh2/IccOusevy10u0ZAVBKFeMJbDi92bMK5HU3ZdimfVketcjM3glzOx/HImli4edvgYyXi8QGXwPazFZsyYwejRoyss4+HhwYULF7h7926pbYmJiTRq1KjM/XJycnj77bfZsmULQ4YMAaBdu3aEhoayePHichuySqWyRGKdYgqFQqcvaF3L1zaGHL8hxw6GHb8hxw7ax6/LexQNWUEQ6hUjhZxh7V0Y2NKRr3/ZTZjKmYPhiZyOSuU0CrZ99jfPdHRlhK+zvkN9aI6Ojjg6OlZazs/Pj/T0dE6dOkXXrl0BOHnyJOnp6fTo0aPMfYpnbJHLSz49p1AoUKvVZe4jCIJQ3Wp3fjtBEIQaIpPJ8LKGb8f6cmzuY8x8rBl2JhLpOYWsORbFkGXBrL9WPz4iW7ZsycCBA5k0aRInTpzgxIkTTJo0iSeffLLEg14+Pj5s2bIFAGtra/r27cvs2bM5fPgwN2/eZO3ataxfv56nn35aX29FEIR6RvTICoJQ7znbmPFyQDOa3gvHqnkXfjsbx8GrCbha1J/ZCTdt2sTMmTPp378/UJQQYdmyZSXKhIeHk56erln++eefeeuttxg7diwpKSm4u7uzaNEipkyZ8khjFwSh/hINWUEQhPvkMujbogFPtHbhblo2h/46oO+QHhl7e3s2btxYYZn/Tjvu5OQk0pcLgqBXoiH7EERmL5HZS2T2Moxrryr1aWUiw8yo/mT2EgRBMEQis5cORGYvQRDKYuiZvfRJZPYyHIYcOxh2/IYcO4jMXrVGcWav9PR0bG1t8fPzw8rKioKCAg4dOkRAQIAmI1DxMlBiW3X777mre7/KypW3Xdv1ui5XN33Wn67btKkbce1pV3dlrXuYay8zMxMofetdqFxxnWk7b6RKpSIrK4uMjAyD/UI31PgNOXYw7PgNOXbQPf7izwNtPlNFQ7YKir+0mjZtqudIBEGoTTIzM7GxsdF3GAal+PPUzc1Nz5EIglDbaPOZKoYWVIFarSYuLg4rKytN1psuXbpoMuQ8uFycteb27ds1dsvxv+eu7v0qK1fedm3XV7Rc1+tP122V1d2D6+p63VW0XZu6K2tdVa89SZLIzMzExcWl1LyqQsXK+jytyKO4rmuSIcdvyLGDYcdvyLGD7vHr8pkqemSrQC6X4+rqWmKdQqEo8Z/z32Vra+sau/j+e67q3q+ycuVt13Z9ZctQd+tP123a1JW49rSrl7LWPcy1J3piq6asz1Nt1OR1/SgYcvyGHDsYdvyGHDvoFr+2n6mi66CaTJ8+vcLlR3nu6t6vsnLlbdd2vT7r7mHOVx31p+s2bepKXHva14u+rz1BEATh4YihBTVM1ydyhZJE/VWdqLuHI+qvdjL0/xdDjt+QYwfDjt+QY4eajV/0yNYwpVLJ/PnzUSqV+g7FIIn6qzpRdw9H1F/tZOj/L4YcvyHHDoYdvyHHDjUbv+iRFQRBEARBEAyS6JEVBEEQBEEQDJJoyAqCIAiCIAgGSTRkBUEQBEEQBIMkGrKCIAiCIAiCQRIN2Vrm6aefxs7OjhEjRug7lFpvx44deHt707x5c77//nt9h2NwxLVWNbdv38bf359WrVrRrl07fvvtN32HVG8sWrSIHj16YG5ujq2tbZlloqOjGTp0KBYWFjg6OjJz5kzy8/MfbaBaioiIYPjw4Tg6OmJtbU3Pnj05dOiQvsPS2s6dO+nWrRtmZmY4OjryzDPP6DskneXl5dGhQwdkMhmhoaH6DkcrUVFRTJw4kaZNm2JmZkazZs2YP39+rb3OAb755huaNm2KqakpnTp14ujRo9V2bNGQrWVmzpzJ+vXr9R1GrVdYWMisWbM4ePAgZ8+e5ZNPPiElJUXfYRkUca1VjZGREUuWLOHKlSscOHCA1157jezsbH2HVS/k5+czcuRIpk6dWuZ2lUrFkCFDyM7O5p9//uHnn3/mjz/+4PXXX3/EkWpnyJAhFBYWcvDgQUJCQujQoQNPPvkk8fHx+g6tUn/88QeBgYGMHz+e8+fPc+zYMcaMGaPvsHQ2Z84cXFxc9B2GTq5evYparWblypVcvnyZL7/8khUrVvD222/rO7Qy/fLLL7z66qu88847nDt3jt69ezNo0CCio6Or5wSSUOscOnRIevbZZ/UdRq127Ngx6amnntIsz5w5U/rxxx/1GJFhEtfaw2vbtq0UHR2t7zDqlTVr1kg2Njal1u/atUuSy+VSbGysZt1PP/0kKZVKKT09/RFGWLnExEQJkI4cOaJZl5GRIQHSgQMH9BhZ5QoKCqTGjRtL33//vb5DeSi7du2SfHx8pMuXL0uAdO7cOX2HVGWffvqp1LRpU32HUaauXbtKU6ZMKbHOx8dHmjt3brUcX/TI6uDIkSMMHToUFxcXZDIZW7duLVWmJrvP65KHrcu4uDgaN26sWXZ1dSU2NvZRhF4riGux6qqz7s6cOYNarcbNza2Goxa0ERwcTJs2bUr0sA0YMIC8vDxCQkL0GFlpDg4OtGzZkvXr15OdnU1hYSErV66kUaNGdOrUSd/hVejs2bPExsYil8vx9fXF2dmZQYMGcfnyZX2HprW7d+8yadIkNmzYgLm5ub7DeWjp6enY29vrO4xS8vPzCQkJoX///iXW9+/fn+PHj1fLOURDVgfZ2dm0b9+eZcuWlbldm+7zTp060aZNm1KvuLi4R/U2aoWHrUupjDweMpmsRmOuTarjWqyvqqvukpOTefHFF/nuu+8eRdiCFuLj42nUqFGJdXZ2dpiYmNS62/UymYz9+/dz7tw5rKysMDU15csvv2TPnj3ljv+tLW7cuAHAggULePfdd9mxYwd2dnb07dvXIIZ4SZJEUFAQU6ZMoXPnzvoO56Fdv36dr7/+milTpug7lFKSkpJQqVSlfi8bNWpUfb+T1dKvWw8B0pYtW0qsq67u8/p2u7cqdVnW0IJNmzbVeKy10cNci/XtWvuvqtZdbm6u1Lt3b2n9+vWPIsw6bf78+RJQ4ev06dMl9ilvaMGkSZOk/v37l1pvbGws/fTTTzX1FkrQ9v2o1Wpp2LBh0qBBg6R//vlHCgkJkaZOnSo1btxYiouLeySxVjX2TZs2SYC0cuVKzb65ubmSo6OjtGLFCr3Erkv8X331ldSjRw+psLBQkiRJunnzZq0YWlCV34XY2FjJy8tLmjhxop6irlhsbKwESMePHy+xfuHChZK3t3e1nMOoeprDQnH3+dy5c0usr87u8/pCm7rs2rUrly5dIjY2Fmtra3bt2sV7772nj3BrHXEtVp02dSfd78157LHHCAwM1EeYdcqMGTMYPXp0hWU8PDy0OpaTkxMnT54ssS41NZWCgoJSPUI1Rdv3c/DgQXbs2EFqairW1tZA0ZCW/fv3s27dulLX4KOgbeyZmZkAtGrVSrNeqVTi6emp17s+2sa/cOFCTpw4gVKpLLGtc+fOjB07lnXr1tVkmOXS9XchLi6OgIAA/Pz8au2dIUdHRxQKRane14SEhGr7nRQN2WpSXd3nAwYM4OzZs2RnZ+Pq6sqWLVvo0qVLdYdbq2lTl0ZGRnz++ecEBASgVquZM2cODg4O+gi31tH2WhTXWmna1N2xY8f45ZdfaNeunWZ87YYNG2jbtu2jDrdOcHR0xNHRsVqO5efnx6JFi7hz5w7Ozs4A7Nu3D6VS+cjGnWr7fu7duweAXF5yhJ9cLketVtdIbJXRNvZOnTqhVCoJDw+nV69eABQUFBAVFYW7u3tNh1kubeNfunQpCxcu1CzHxcUxYMAAfvnlF7p161aTIVZIl9+F2NhYAgIC6NSpE2vWrCl1HdUWJiYmdOrUif379/P0009r1u/fv5/hw4dXyzlEQ7aa/XecpiRJOo3d3Lt3b3WHZLAqq8thw4YxbNiwRx2Wwais/sS1Vr6K6q5Xr156a2jUd9HR0aSkpBAdHY1KpdLM++nl5YWlpSX9+/enVatWBAYG8tlnn5GSksIbb7zBpEmTNL2etYWfnx92dnaMGzeO9957DzMzM1atWsXNmzcZMmSIvsOrkLW1NVOmTGH+/Pm4ubnh7u7OZ599BsDIkSP1HF3lmjRpUmLZ0tISgGbNmuHq6qqPkHQSFxeHv78/TZo0YfHixSQmJmq2OTk56TGyss2aNYvAwEA6d+6s6T2Ojo6utjG9oiFbTR5F93l9Iery4Yj6qzpRd7Xbe++9V+K2r6+vLwCHDh3C398fhULBzp07mTZtGj179sTMzIwxY8awePFifYVcLkdHR/bs2cM777zDY489RkFBAa1bt+bPP/+kffv2+g6vUp999hlGRkYEBgaSk5NDt27dOHjwIHZ2dvoOrc7bt28fkZGRREZGlmp4S2U8CK1vo0aNIjk5mQ8++IA7d+7Qpk0bdu3aVW2997WzL9oAPdh9/qD9+/fTo0cPPUVlmERdPhxRf1Un6q52W7t2LZIklXr5+/tryjRp0oQdO3Zw7949kpOT+frrr0uNhawtOnfuzN69e0lOTiYjI4Pg4GAGDRqk77C0YmxszOLFi7l79y4ZGRns37+f1q1b6zusKvHw8ECSJDp06KDvULQSFBRU5u9BbWzEFps2bRpRUVGaqfD69OlTbccWPbI6yMrKIjIyUrN88+ZNQkNDsbe3p0mTJjXefV6XiLp8OKL+qk7UnSAIQh1SLXMf1BOHDh0qczqMcePGacosX75ccnd3l0xMTKSOHTtKf//9t/4CrsVEXT4cUX9VJ+pOEASh7pBJUi3uixYEQRAEQRCEcogxsoIgCIIgCIJBEg1ZQRAEQRAEwSCJhqwgCIIgCIJgkERDVhAEQRAEQTBIoiErCIIgCIJeLFiwoMbnb127di22trY1eg5Bf0RDVhAEQRCEEoKCgpDJZMhkMoyMjGjSpAlTp04lNTVV36HpbNSoUUREROg7DKGGiIQIgiAIgiCUMnDgQNasWUNhYSFXrlxhwoQJpKWl8dNPP+k7NJ2YmZlhZmam7zCEGiJ6ZAVBEARBKEWpVOLk5ISrqyv9+/dn1KhR7Nu3r0SZNWvW0LJlS0xNTfHx8eGbb74psf3NN9+kRYsWmJub4+npybx58ygoKNA6BpVKxcSJE2natClmZmZ4e3vz1Vdfabbn5ubSunVrJk+erFl38+ZNbGxsWLVqFVB6aMH58+cJCAjAysoKa2trOnXqxJkzZ3SpGqEWET2ygiAIgiBU6MaNG+zZswdjY2PNulWrVjF//nyWLVuGr68v586dY9KkSVhYWDBu3DgArKysWLt2LS4uLly8eJFJkyZhZWXFnDlztDqvWq3G1dWVX3/9FUdHR44fP87kyZNxdnbmueeew9TUlE2bNtGtWzcGDx7M0KFDCQwMJCAggEmTJpV5zLFjx+Lr68u3336LQqEgNDS0xPsSDIy+U4sJQn02btw4TYrULVu21Mg5+vbtK73yyitV3r84Phsbm2qLSRCE2m3cuHGSQqGQLCwsJFNTU83nwBdffKEp4+bmJv34448l9vu///s/yc/Pr9zjfvrpp1KnTp00y/Pnz5fat2+vU2zTpk2Tnn322VLHdXR0lF5++WXJyclJSkxM1Gxbs2ZNic8vKysrae3atTqdU6i9xNACoVo9+IDAg6/IyEh9h1ZrDRw4kDt37jBo0KBHel5/f39WrFhRabk7d+6wZMmSmg9IEIRaJSAggNDQUE6ePMnLL7/MgAEDePnllwFITEzk9u3bTJw4EUtLS81r4cKFXL9+XXOM33//nV69euHk5ISlpSXz5s0jOjpapzhWrFhB586dadCgAZaWlqxatarUMV5//XW8vb35+uuvWbNmDY6OjuUeb9asWfzvf//jiSee4OOPPy4Rr2B4RENWqHbFDbMHX02bNi1VLj8/Xw/R1T7F49CUSmW5ZXQZU6aNlJQUjh8/ztChQyst6+TkhI2NTbWeXxCE2s/CwgIvLy/atWvH0qVLycvL4/333weKbvlD0fCC0NBQzevSpUucOHECgBMnTjB69GgGDRrEjh07OHfuHO+8845On/2//vorr732GhMmTGDfvn2EhoYyfvz4UsdISEggPDwchULBtWvXKjzmggULuHz5MkOGDOHgwYO0atWKLVu26FI1Qi0iGrJCtStumD34UigU+Pv7M2PGDGbNmoWjoyP9+vUD4MqVKwwePBhLS0saNWpEYGAgSUlJmuNlZ2fz4osvYmlpibOzM59//jn+/v68+uqrmjIymYytW7eWiMPW1pa1a9dqlmNjYxk1ahR2dnY4ODgwfPhwoqKiNNuDgoJ46qmnWLx4Mc7Ozjg4ODB9+vQSjci8vDzmzJmDm5sbSqWS5s2bs3r1aiRJwsvLi8WLF5eI4dKlS8jlcp3+4o+KikImk/Hrr7/i7++PqakpGzduJDk5meeffx5XV1fMzc1p27ZtqaeHy6qrsuzcuZP27dvTuHFjUlNTGTt2LA0aNMDMzIzmzZuzZs0areMVBKF+mD9/PosXLyYuLo5GjRrRuHFjbty4gZeXV4lXccfFsWPHcHd355133qFz5840b96cW7du6XTOo0eP0qNHD6ZNm4avry9eXl5lfp5OmDCBNm3asH79eubMmcOVK1cqPG6LFi147bXX2LdvH88884z4zDNgoiErPFLr1q3DyMiIY8eOsXLlSu7cuUPfvn3p0KEDZ86cYc+ePdy9e5fnnntOs8/s2bM5dOgQW7ZsYd++fRw+fJiQkBCdznvv3j0CAgKwtLTkyJEj/PPPP1haWjJw4MASf9kfOnSI69evc+jQIdatW8fatWtLNIZffPFFfv75Z5YuXUpYWBgrVqzA0tISmUzGhAkTSn0Y/vDDD/Tu3ZtmzZrpXFdvvvkmM2fOJCwsjAEDBpCbm0unTp3YsWMHly5dYvLkyQQGBnLy5Emd62rbtm0MHz4cgHnz5nHlyhV2795NWFgY3377bYW35QRBqJ/8/f1p3bo1H374IVDUs/nRRx/x1VdfERERwcWLF1mzZg1ffPEFAF5eXkRHR/Pzzz9z/fp1li5dqnPPp5eXF2fOnGHv3r1EREQwb948Tp8+XaLM8uXLCQ4OZv369YwZM4YRI0YwduzYMnt+c3JymDFjBocPH+bWrVscO3aM06dP07JlyyrWiqB3+h6kK9QtDz4gUPwaMWKEJElFDx116NChRPl58+ZJ/fv3L7Hu9u3bEiCFh4dLmZmZkomJifTzzz9rticnJ0tmZmYlHmCijIelbGxspDVr1kiSJEmrV6+WvL29JbVardmel5cnmZmZSXv37tXE7u7uLhUWFmrKjBw5Uho1apQkSZIUHh4uAdL+/fvLfO9xcXGSQqGQTp48KUmSJOXn50sNGjSo8KGCcePGScOHDy+x7ubNmxIgLVmypNz9ig0ePFh6/fXXJUmStK6r3NxcycrKSrpw4YIkSZI0dOhQafz48RWe578PSwiCULeV9dkkSZK0adMmycTERIqOjtYsd+jQQTIxMZHs7OykPn36SJs3b9aUnz17tuTg4CBZWlpKo0aNkr788ssSnyWVPeyVm5srBQUFSTY2NpKtra00depUae7cuZp9wsLCJDMzsxIPnaWnp0seHh7SnDlzJEkq+fmVl5cnjR49WnJzc5NMTEwkFxcXacaMGVJOTk7VKkrQOzH9llDtAgIC+PbbbzXLFhYWmp87d+5comxISAiHDh3C0tKy1HGuX79OTk4O+fn5+Pn5adbb29vj7e2tU0whISFERkZiZWVVYn1ubm6J21StW7dGoVBolp2dnbl48SIAoaGhKBQK+vbtW+Y5nJ2dGTJkCD/88ANdu3Zlx44d5ObmMnLkSJ1iLfbfulKpVHz88cf88ssvxMbGkpeXR15enqZ+r1+/rlVdHTx4EAcHB9q2bQvA1KlTefbZZzl79iz9+/fnqaeeokePHlWKWRCEuuHBO1EPGjNmDGPGjCl3+b8+/fRTPv300xLrHhwWtmDBAhYsWFDu/kqlkjVr1pS62/XRRx8B4OPjw71790pss7a25ubNm5rloKAggoKCADAxMTG4hA5CxURDVqh2xQ8IlLftQWq1mqFDh/LJJ5+UKuvs7FzpoP1iMpkMSZJKrHtwbKtaraZTp05s2rSp1L4NGjTQ/PzfuQRlMpnmoQZtMsP873//IzAwkC+//JI1a9YwatQozM3NtXoP//Xfuvr888/58ssvWbJkCW3btsXCwoJXX31Vc/vsv++/PA8OKwAYNGgQt27dYufOnRw4cIDHH3+c6dOnlxrvKwiCIAi1jRgjK+hVx44duXz5Mh4eHqUeGChuEBsbG2ueggVITU0tlTe7QYMG3LlzR7N87dq1En+ld+zYkWvXrtGwYcNS59H2ify2bduiVqv5+++/yy0zePBgLCws+Pbbb9m9ezcTJkzQtioqdfToUYYPH84LL7xA+/bt8fT0LNHQ16auJEli+/btDBs2rMSxGzRoQFBQEBs3bmTJkiV899131Ra3IAiCINQU0ZAV9Gr69OmkpKTw/PPPc+rUKW7cuMG+ffuYMGECKpUKS0tLJk6cyOzZs/nrr7+4dOkSQUFByOUlL93HHnuMZcuWcfbsWc6cOcOUKVNK9K6OHTsWR0dHhg8fztGjR7l58yZ///03r7zyCjExMVrF6uHhwbhx45gwYQJbt27l5s2bHD58mF9//VVTRqFQEBQUxFtvvYWXl1eJ2/wPy8vLi/3793P8+HHCwsJ46aWXiI+P12zXpq5CQkLIzs6mT58+mnXvvfcef/75J5GRkVy+fJkdO3aIBx8EQRAEgyAasoJeubi4cOzYMVQqFQMGDKBNmza88sor2NjYaBpgn332GX369GHYsGE88cQT9OrVi06dOpU4zueff46bmxt9+vRhzJgxvPHGGyVu6Zubm3PkyBGaNGnCM888Q8uWLZkwYQI5OTlYW1trHe+3337LiBEjmDZtGj4+PkyaNIns7OwSZSZOnEh+fn619sZC0ewCHTt2ZMCAAfj7++Pk5MRTTz1VokxldfXnn38yZMgQjIz+HVVkYmLCW2+9Rbt27ejTpw8KhYKff/65WmMXBEEQhJogk7QdWCcItYi/vz8dOnSolRmnjh07hr+/PzExMTRq1KjCskFBQaSlpZWaA7emtGvXjnfffbfE9GbaWLt2La+++ippaWk1E5ggCIIgVIF42EsQqkleXh63b99m3rx5PPfcc5U2Yovt2LEDS0tLfv75Z5588skaiy8/P59nn31W51S4lpaWFBYWYmpqWkORCYIgCELViB5ZwSDVxh7ZtWvXMnHiRDp06MC2bdto3LhxpfskJCSQkZEBFM3S8N+ZCmqDyMhIoGj8b1mphgVBEARBX0RDVhAEQRAEQTBI4mEvQRAEQRAEwSCJhqwgCIIgCIJgkERDVhAEQRAEQTBIoiErCIIgCIIgGCTRkBUEQRAEQRAMkmjICoIgCIIgCAZJNGQFQRAEQRAEgyQasoIgCIIgCIJBEg1ZQRAEQRAEwSD9P/6yV4FXjKD3AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -1173,7 +1173,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACjGUlEQVR4nOzdd3gUxf8H8Pfu3aX3AOmEEgiE3qUHaTakiSAgoIA/ELGhRkWlKCoWvqCCYqMKCCItoIKSYOgthBIgEEiBhPTc5VIuV+b3R8iZhOSyd7mez+t57gm7s7M399m9YW53ZpZjjDEQQgghhBCbxlu6AIQQQgghpOGoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIaZCSkhKMHz8eHh4e4DgOhYWFli5SvRYvXgw/Pz9wHIfdu3dbujgWERsbC47jwHEcxowZY/T9t2jRQrt/WzgnCLEH1KgjxILu3buHV155BWFhYXBycoKfnx8GDBiA7777DiUlJZYuniAbNmxAXFwcjh8/jszMTHh6ej6wzfr167X/wVd9/fjjj2Yv79WrV7FkyRKsXbsWmZmZePTRR426/6qNGRcXF3Ts2BFr16416nsY0/Xr17F+/XrtskqlwnvvvYeWLVvC2dkZrVq1wtKlS6HRaLTbzJgx44Fj+dBDD1Xb75kzZ7Bz506DynTv3j3Mnz8frVq1gqOjI0JCQjBq1Cj8888/Bu2v0s6dOxEZGQlPT0+4ubmhc+fOWLp0KfLz8xu0X0KshdjSBSCksbp16xb69+8PLy8vfPzxx+jUqRNUKhWSkpLw888/IzAwEE8++aSli1mv5ORktG/fHh07dtS5nYeHB65fv15tXW0NQGMpLy+Hg4PDA+uTk5MBAKNHjwbHcQbvX6lUQiKR1Jq2dOlSzJ49G3K5HOvXr8ecOXPg5eWFiRMnGvx+ptKsWTN4eXlpl5cvX47vvvsOGzZsQIcOHXD27Fk899xz8PT0xCuvvKLd7pFHHsG6deu0yzVj3bRpU/j4+OhdnpSUFO334rPPPkPnzp2hVCrx119/Yd68ebh27Zr+HxLAwoULsXz5crz22mv4+OOPERgYiBs3buC7777Dpk2bqn02QmwWI4RYxMiRI1lwcDCTy+W1pms0Gu2/v/zyS9axY0fm4uLCgoOD2dy5c1lRUZE2fd26dczT05P9+eefrF27dszV1ZWNHDmSZWRkaLdRKpVs/vz5zNPTk/n4+LC33nqLTZs2jY0ePVpnOX/77TcWERHBHBwcWGhoKPviiy+0aYMHD2YAtK/BgwfXuo/K8tUlNTWVPfnkk8zV1ZW5u7uzCRMmsHv37mnTp0+f/kA5X3nllWrvN3jwYDZv3jz22muvMV9fXzZo0KAH3mfRokXVyltZBarVarZkyRIWFBTEHBwcWJcuXdgff/yhzXf79m0GgP36669s8ODBzNHRkf3888+1fpbQ0FD2v//9r9q6Nm3asEmTJtX5+XXZsWMH69ixI3NycmI+Pj5s6NChTC6XsyNHjjCxWMwyMzOrbf/666+zgQMHMsYYS0lJYU888QTz8vJiLi4uLCIigu3fv58xxlhMTAwDwAoKCqrlf/zxx9nzzz9fbd24cePY1KlTtcu1HY/a1PUeujz66KMsKCio1u+FPvup6tSpUwwAW7lyZa3plftdtGgR69KlC9u4cSMLDQ1lHh4ebOLEiUwmk2m31Wg0bPny5axly5bMycmJde7cme3YsUOb3r1792rfkdGjRzORSMSkUiljjLHMzEwGgF27ds2gz0KILnT7lRALyMvLw8GDBzFv3jy4urrWuk3Vq0g8z+Orr77C5cuXsWHDBhw+fBhvvfVWte1LSkrwxRdfYNOmTfj333+RlpaGN954Q5u+fPly/PLLL1i3bh2OHTsGmUxWb3+yc+fO4emnn8akSZNw6dIlLF68GO+//772dt3vv/+O2bNno2/fvsjMzMTvv/+udywYYxgzZgzy8/Nx5MgRHDp0CMnJyQZd1dqwYQPEYjGOHTtW6y3PN954Q3t1KTMzE5mZmQCAVatW4csvv8QXX3yBixcvYuTIkXjyySdx48aNavmjoqLw8ssv4+rVqxg5cqTgcjk5OUGpVAIA4uLi4ObmpvP18ccfa8v4zDPP4Pnnn8fVq1cRGxuLcePGgTGGQYMGoVWrVti0aZP2fVQqFTZv3oznnnsOADBv3jwoFAr8+++/uHTpEpYvXw43NzedZR0wYAD++ecfJCUlAQASEhJw9OhRPPbYY9W2i42NRbNmzdC2bVvMnj0b2dnZguNRl/z8fPz55591fi+qXlF89NFH641jpV9++QVubm548cUXa33fqvtNTk7G7t27ER0djejoaBw5cgSffvqpNv29997DunXr8O233+LKlSt47bXXMHXqVBw5cgQAEBkZidjYWAAV53ZcXBy8vb1x9OhRAEBMTAz8/f0RHh5uaJgIqZuFG5WENEonT55kANjvv/9ebb2vry9zdXVlrq6u7K233qoz//bt25mvr692ed26dQwAu3nzpnbd6tWrmZ+fn3bZz8+Pff7559pllUrFmjdvrvOKy+TJk9nw4cOrrXvzzTdZRESEdrnmFbPaVJav8rO5urpqy3bw4EEmEolYWlqadvsrV64wAOz06dOMMeFX6rp27aqzHIwxtmvXLlaz6gsMDGTLli2rtq5Xr17sxRdfZIz9d6Wuris9VVW9UqdUKrWffc2aNYwxxkpKStiNGzd0vvLy8hhjjJ07d44BYCkpKbW+1/Lly1n79u21y7t372Zubm7aq1ydOnViixcvrjVvXVfRNBoNe/vttxnHcUwsFjOO49jHH39cbZtt27ax6OhodunSJbZ3717WpUsX1qFDB1ZWViboPepSeUWt5veiNnfu3Kk3jpUeffRR1rlz53r3uWjRIubi4lLtytybb77J+vTpwxhjTC6XMycnJ3b8+PFq+WbOnMmeeeYZxhhje/fuZZ6enkytVrMLFy6wpk2bstdee429+eabjDHGXnjhBTZx4sT6g0GIAahPHSEWVLNP1+nTp6HRaDBlyhQoFArt+piYGHz88cdITEyETCaDSqVCWVkZiouLtVc0XFxc0Lp1a22egIAA7dUTqVSKrKws9O7dW5suEonQo0ePah3ga7p69SpGjx5dbV3//v2xcuVKqNVqiEQiwZ/V3d0d58+f1y7zPK99j5CQEISEhGjTIiIi4OXlhatXr6JXr16C36Nnz56Ct60kk8mQkZGB/v37V1vfv39/JCQkGLT/qKgovPfee1AoFHBwcMCbb76J//u//wMAODs7IywsTNB+unTpgqFDh6JTp04YOXIkRowYgaeeegre3t4AKgYsvPfeezh58iQeeugh/Pzzz3j66ae158TLL7+MuXPn4uDBgxg2bBjGjx+Pzp0763zPX3/9FZs3b8aWLVvQoUMHXLhwAa+++ioCAwMxffp0AKh2FbVjx47o2bMnQkNDsX//fowbN07QZ6sNYwzAg9+L2gQFBem1X6H9J1u0aAF3d3ftctXvUWJiIsrKyjB8+PBqecrLy9GtWzcAwKBBg1BUVIT4+HgcO3YMgwcPxpAhQ/DRRx8BqLjC+eqrrwouOyH6oNuvhFhAWFgYOI57oNN3q1atEBYWBmdnZ+261NRUPPbYY+jYsSN27tyJc+fOYfXq1QCgvaUH4IFO+xzHaf+TrLquqprpNdX2n2F9eerC8zzCwsK0r1atWtX5HjXX8zz/wPtW/eyV6rqVLURtn7PmOqH7f/PNN3HhwgWkpqZCLpfjs88+0zZi9bn9KhKJcOjQIfzxxx+IiIjA119/jfDwcNy+fRtAxSCHUaNGYd26dcjOzsaBAwfw/PPPa8sxa9Ys3Lp1C88++ywuXbqEnj174uuvv6637G+//TYmTZqETp064dlnn8Vrr72GTz75pM48AQEBCA0NfeB2tb7atGkDjuNw9erVerfV5/Zr27ZtkZycXOs5U1Nt36PKHz6Vf/fv348LFy5oX4mJifjtt98AVAz+6dq1K2JjY3HkyBFERkZi4MCBuHDhAm7cuIGkpCRERkYKDQkheqErdYRYgK+vL4YPH45vvvkG8+fP19lYOHv2LFQqFb788kttw2D79u16vZ+npyf8/Pxw+vRpDBw4EACgVqsRHx+Prl271pkvIiJC2xeo0vHjx9G2bVu9rtLpEhERgbS0NKSnp2uv1iUmJkIqlaJ9+/YAKkZSXr58uVq+Cxcu1Dn6VB8eHh4IDAzE0aNHMWjQIO3648ePV7uyqY8mTZrUeTWuZ8+euHDhgs78VUeNchyH/v37o3///vjggw8QGhqKXbt24fXXXwdQ0XCbNGkSgoOD0bp16weuOIaEhGDOnDmYM2cO3nnnHfzwww+YP39+ne9dUlKiPc8qiUQinVd08/LykJ6ejoCAAJ2fqz4+Pj4YOXIkVq9ejZdffvmB70VhYaG2/9uPP/6I0tJSQfudPHkyvvrqK6xZs6bWUa5V96tLREQEHB0dkZaWhsGDB9e5XWRkJGJiYnDq1CksXboUXl5eiIiIwEcffYRmzZppz2tCjI0adYRYyJo1a9C/f3/07NkTixcvRufOncHzPM6cOYNr166hR48eAIDWrVtDpVLh66+/xqhRo3Ds2DF89913er/f/Pnz8cknnyAsLAzt2rXD119/jYKCAp23pRYsWIBevXrhww8/xMSJE3HixAl88803WLNmjcGfu6Zhw4ahc+fOmDJlClauXAmVSoUXX3wRgwcP1t7ufPjhh/H5559j48aN6Nu3LzZv3ozLly9rb3k11JtvvolFixahdevW6Nq1K9atW4cLFy7gl19+Mcr+q9Ln9uupU6fwzz//YMSIEWjWrBlOnTqFnJycao2CkSNHwtPTEx999BGWLl1aLf+rr76KRx99FG3btkVBQQEOHz5cb4Ni1KhRWLZsGZo3b44OHTogPj4eK1as0F4BlMvlWLx4McaPH4+AgACkpKTg3XffRZMmTTB27Fg9o/GgNWvWoF+/fujduzeWLl2Kzp07Q6VS4dChQ/j222+1V/H0uf3ap08fvPXWW1iwYAHu3r2LsWPHIjAwEDdv3sR3332HAQMGCJrSxN3dHW+88QZee+01aDQaDBgwADKZDMePH4ebm5v29nRkZCRWrVoFHx8fREREaNd9/fXXDbo9TUi9LNWZjxDCWEZGBnvppZdYy5YtmUQiYW5ubqx3797s888/Z8XFxdrtVqxYwQICApizszMbOXIk27hxY7UO6LVNGVJzQIBSqWQvvfQS8/DwYN7e3iwqKopNmDCh3qk2Kqc0kUgkrHnz5tUGWzAmfKBEQ6Y0YYyxDz74gPn5+TFPT0/22muvsZdeeumBgRKvvPKKznIwVvtAiapTmkgkkjqnNImPj693/7VNaWKoxMRENnLkSNa0aVPm6OjI2rZty77++usHtnv//feZSCSqNoUNY4y99NJLrHXr1szR0ZE1bdqUPfvssyw3N5cxVvcgBplMxl555RXWvHlz5uTkxFq1asUWLlzIFAoFY6xioMeIESNY06ZNtefE9OnTqw10qVTzPSrjGBMTo/NzZ2RksHnz5rHQ0FDm4ODAgoKC2JNPPllvvvr8+uuvbNCgQczd3Z25urqyzp07s6VLlz4wpUlV//vf/1hoaKh2WaPRsFWrVrHw8HAmkUhY06ZN2ciRI9mRI0e02xQWFjKRSMSeeuop7brK8+6bb75p0GcgRBeOMQM7yBBCbJpGo0H79u3x9NNP48MPP7R0cUgDzJ49G1lZWdi7d6/gPLGxsRgyZAgKCgoE3Xo0RM33iI2NxdixY3Hr1i3tYA9CiPHQ7VdCGonU1FQcPHgQgwcPhkKhwDfffIPbt29j8uTJli4aMZBUKsWZM2fwyy+/YM+ePQbtIzg4GKNGjcLWrVuNWrYOHTrg1q1b1db9+eefePfdd6lBR4iJ0JU6QhqJ9PR0TJo0CZcvXwZjDB07dsSnn35abXAAsS2RkZE4ffo0/u///g//+9//9MpbWlqKu3fvAgDc3Nzg7+9v1LKlpqZqR5u2atXqgcEXhBDjo0YdIYQQQogdoJ9OhBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCSCMwY8YMfPrpp5YuBjEhatQRAqBFixZwcXGBm5sb3Nzc0KJFC0sXiRBi46heIeZGjTpC7jt8+DDkcjnkcjlSUlIeSFcqlWYph7nehxBietZSr5DGgRp1hNQhNjYW7dq1w8KFC9GkSRN8/PHHyM/Px6RJk9CkSROEhYXhxx9/1G4/Y8YMvPrqqxg8eDDc3NwwefJk3Lt3D8OGDYOnpyemTJkCtVpd63u1aNECn332GcLDwxEREWGuj0gIMTNz1ivJycno168f3N3dMW7cOJSUlJjrYxILEVu6AIRYs5s3b8LFxQWZmZlQq9V47rnnIBaLkZaWhps3b2LYsGFo164dBgwYAADYsWMH/vnnHzRt2hTdu3fHE088gY0bNyIwMBA9e/ZEdHQ0Ro8eXet77d69G3FxcfDw8DDnRySEmJm56pXJkydjxIgRiI2NxYEDBzBhwgR0797d3B+XmBE16gi5b/jw4RCJRACAuXPnYuTIkXBxccHbb78NkUgEnuexc+dOJCcnw8XFBZ07d8bMmTOxdetWbeU7ceJEtGvXDgAQGRkJNzc37ZW3oUOH4uLFi3U26l577TU0a9bMDJ+UEGIulqpXUlNTcfnyZcTFxcHBwQFjxoxBnz59zPjJiSXQ7VdC7jt06BAKCwtRWFiITz75BAAQEBCgrZBzcnKgVqsRHByszRMaGoqMjAztctVGmbOzM5o2bVptubi4uM73r7pfQoh9sFS9kpmZiWbNmsHBwUG7LiQkxHgfjFglatQRogPHcdp/N23aFDzP486dO9p1aWlpCAwMNPp7EULslznqlYCAAGRnZ6O8vFy7Lj09vUH7JNaPGnWECCQSiTBu3DgsXLgQpaWluHz5Mn766SdMmjTJ0kUjhNgoU9UroaGhiIiIwMcffwylUom9e/fi9OnTRio1sVbUqCNED6tXr0ZZWRmCg4Px5JNPYunSpRg4cKCli0UIsWGmqle2bNmCv/76Cz4+Pli/fj3Gjh1rhNISa8YxxpilC0EIIYQQQhqGrtQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBevarEWg0GmRkZMDd3Z2eCkBII8YYQ1FREQIDA8HzDf/NTHULIQQQXrdQo84IMjIy6Jl6hBCt9PR0ozzLl+oWQkhV9dUt1KhrgNWrV2P16tVQqVQAgB9//BEuLi4WLhUhxFJKSkowa9YsuLu7N2g/VLcQQqoSWrfQEyWMQCaTwdPTE5mZmfDw8IBKpUJMTAyGDBkCsVhcbRlAtTRjq/nexs6nazt903TFSciysRmyf2PETVe6kLjVts6csbOnc67mNoB+31eZTIaAgABIpVJ4eHgIjoWu/QmtW+g421fdIjQf1S2G57Nk7ADT1C3UqGuAyl/TarUaSUlJ2LJlC/2aJqQRKykpweTJkxvcqKO6hRBSleC6hZEGk0qlDADLzc1l5eXlrLi4mO3evZsVFxc/sFwzzdgvQ/cvNJ+u7fRN0xUnIcvWEDtjxE1XupC4WTp29nTO1Vyn72fLzc1lAJhUKjV73ULH2b7qFqH5qG4xzTln6tiZqm6hPnVGJJFIIJFIdC7XlWbqshg7n67t9E0TEjdrj50x4qYrXUjcaltnztjZ0zlXuc6QMpqCNX1H7Ok420LdIjQf1S2G57NE7AwpoxDUqDMipVKpfVUu1/a35r+NXQZD9i80n67t9E2rL05C4mhMhuy/ctvy8nIwxuqcdqK+fdeVLiRuta0zZ+zs6Zyrb119THluCqlb6DjXvs4W6xah+ahuMTyfpWMnpIz6bkd96hqA+r2Qm1Lg0F0eN2UcOADtvRlGNdegmbOlS0YsgfrUEUJMgfrUmRH1qTMszZb7vZSVKdinB66w0KjoB14dPviTHbmWaTV9N0wdO3s652quoz519nmcrblu0Tcf1S2mOedMHTvqU2cDqE+dYWm21u9FrlDhtV8TcCgxCwDQr5kG700cAMbxWLz3Cs6kFGDuLxfw29x+aB9Q/RcV9XsxPB/1qbOO74g9HWdrq1sako/qFsPzUZ86UivqU2f//V7SC0owZ/MFJGXL4SDmsfSJcDhnXUILb0dIJBKsm94Dszedx4lb+Zi5/gz2zesLD2eJxftu2Gu/F+pTR8fZXuoWQ/NR3WJ4PkvHTkgZ9d2O+tQ1APV7aVxuSDmsS+JRrOLgIWGYGa5Gi1om9y5RAV9cFCFPwaFHEw2mtdGYv7DEIqhPHSHEFKhPnRlRnzrD0myl34tCoWDfH7nBWr2zn4VGRbMnvvqXpeXKdOY5lZyt3X7n2VTq92Ij51zNddSnzj6Ps7XULcbIR3WLac45U8eO+tTZAOpTZ1iaNfd7KVao8P7uK/g9/i4AYEzXQHw6vjOcJCKdn6F3q6aY/3AYVv59A0uir6F3i76Cyk79XgzbjvrU0XG2tbrF2PmobjE8nz31qeMFbUVII3QmJR+ProrD7/F3IeI5vP9EBP43sesDDbq6zBsShk5BnpCWKvHenkRQRwdCCCGmRI06QmooLFFi0Z7LeHrtCaTllyDQ0wmbZ/bBzAEt65xcuDYSEY8vn+4CBzGP2KRcnMoRnpcQQgjRF91+NSIa/WrbI9SKSspwJJPDByvjIC1VAQDGdw/EwkfD4e4k0fszA0BLHye8OrQ1PvvrBn5P4TEztwihTR4cXUEj1Azbjka/0nG2hbqFRr8ahka/Pvie9aHRrw1AI9TsQ6kKOJ7FISaTR5Gy4mpagDPD2JYahHs2/OuhYcBXV0S4XcShracGc9trwNNFO7tEo18JIaZAo1/NiEa/GpZmyRFqCoWCnbiRxV7ddp6Fv3dA+zSIru/vYz//m8RKSsuMGrcraTks7J19LDQqmq2Lu2nWUVbGjp09n3M119HoV/s8zjT6leoWS8eORr/aABr9aliauUaoKdUanEnJx1+X7+FgYhYypWXatLZ+bni+XygcMhIw6qEWeu+/vjK18ffEk8012JkiwvK/bmBIe3+E+roK3g+NUKPRr9YyitOejjONfqW6Rch2tjT6lRp1xG6VKdW4kiHFyVv5OHU7H2dT8lFSrtamuziI8HinAEzq3Rzdm3tBpVLhwL0Ek5VngD/DXc4bJ28X4I0dCdj2Ql+I6D4sIYQQI6FGXRWvv/46zpw5g27duuGrr76ydHGIQEq1BncKSpGSV4ybWXIkZspwJUOK5JxiqDXV+8R5u0gwrL0fHunoj/5hTQRPT2IMPAd8MrYjnvjmOM6kFODno7cxe1Ars70/IYQQ+0aNuvvOnz8PuVyOuLg4zJ07F2fOnEGvXr0sXaxGT6UBMqVlyC8tRmZBMY7e43Djn5vIK1HiTkEpUvNKcLew9IHGWyVfVwf0auGDPq188FArX4T7uYO34NWxYG9nvP9EBN7+/RI+/+s6erf0QZcQL4uVhxBCiP2gRt19J06cwLBhwwAAw4YNw8mTJ6lRVwfGAJVaAzXUUGsYVBoGtYahTFGOQkXFQ+814FGm1KBMqUaZUgN5mQLnczmUnr8LJeOgUKohL1PiShqPM9FXIVeoUVhSjtRMEb5JPoaiMjVkZUqUlIuBU/9WeXcRcPvWA2VykvBo4euKFr6uiAj0QIdAD3QI9ISfh6Nec8uZw8ReITh8LRsHE7Pw4i/nsW/+ALg7WFcZCSGE2B67bNQtWrQIO3bswLVr17BlyxZMmjRJm5aTk4MZM2YgJiYGISEhWLNmDYYOHYrCwkK0bt0aAODp6YkrV66YpGw/HUvB7kQeO3LOgeM4MAYwsIq/Vf8NAPeXAWjXMcbu/63cpuoyg0bDIJWK8O3tE9r3rLnfyn1A+x6ARsNQXCzCF9fiwIBqjTWVWlN9WSMGTv5dxycUA+eP1pEmAm7UjCsP3E2vsswBRcXV98hzaOruiKZuDtCUFKJjWHP4ezoj0NMZob4uaNHEFc3cra/xVheO4/DF010w+ptjuJ1bjFe2xeOHqd0sXSxCCCE2zi4bdW3atMGqVavw/vvvP5A2b948BAYGIjc3FwcPHsSECROQnJwMLy8vyGQyAIBMJoOXl5dJynY9S45rUh6Q5plk/xU4oKTIsHyKUoPflecADgwSsQiOYhGcJDycJSI4SURwEHMokUkR6NcELg4SOEl4OIg43Lubjo7hYfB2dYSrA4+biRcR2b83fNyc4SwGTsXFYvyoR+Ho6AClUokDBw7gscciTDpCzRw8nCT4dmp3jF19HHE3crHqn5toZ+lCEUIIsWl22aibOnUqAGDZsmXV1svlcuzZswcpKSlwcXHBmDFjsGLFCuzbtw99+/bF2rVr8fTTT+Pvv//GjBkz6ty/QqGAQqHQLlc2BoXM+j6+ix9citLRqWNHiEUigOPAAeA43P9bsYz761BlXcU2nHZbcDXTAJVKjQvx8ejevRvEEnG17avmR41llUqFs2fOoHfv3pBIxBDzHMQ8DzHPQcRzEIk4iHkOTK3GsaP/4uEhkXBycNCmi3kOarUKhw4dwvDhDz/Q6FIqlffTOmvTKtalYvjgUEgkFU9sOJTF0DPEQ7vsKgHUahWUSs4qZ31vyMzlrX2d8dHoCCz47RK+/fc2poRxGE6zvuu1nb09UaIhdUtdZTcWezrO9EQJqluEbEdPlLAykZGRmDNnjvb2a3x8PEaOHIns7GztNvPnz4eLiwuWL1+OV199FefOnUOXLl3wzTff1LnfxYsXY8mSJQ+sp1nfiSH2pfH4+y4PEccwt70GbYzwFAtiGQ19ogTVLYSQ2gitW3gzlsni5HL5A8Hw8PCAXC4HAKxcuRJxcXE6G3QA8M4770AqleKLL75AeHg4wsLCTFZmYv8eD9Ggm68Gasbhp+s8sgy/A05sHNUthJCGsMvbr3Vxc3PT3s6oJJPJ4Obmptd+HB0d4ejoiAULFmDBggWQyWTw9PTEkCFD4OHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xogbAPQfqMDT3x5DipzD+ttu2PxcN/h7OAmKW23rzBk7ezrnam4D6Pd9rVm/6KshdQsdZ/uqW4Tmq2+butKpbrFs7ADT1C2N6varXC6Hr68vUlNT4e/vDwAYNGgQZs2ahWnTpum9f3roNjEmuRL432URcss4+DkzzO+ghrttjwdpdBp6+7US1S2EkKqE1i122ahTKpVQq9UYMWIEZs+ejQkTJsDBwQE8z2PChAnw8fHBypUrcejQIcyYMQPJycnw9vY2+P0qf01nZmbSlbpG9mva2L8Iw7v3xYxNF3FPpkA7fzf8OLkTzp2Io1/TNnSlLiAgoMGNuqr7E1q30HG2r7pFaD66Umd4Plu7UiekbrHLRt2MGTOwYcOGautiYmIQGRmJnJwcTJ8+HbGxsQgODsaaNWu0kw7ri35NE1PILgVWXRFBruTQwo1hboQaTuZ7mhlpALpSRwgxhUZ9pc7c6EqdYWn28GvaVL8Ir92TY8bGeMjKVGjhxrD5hX7wcXOqc1+N9dc0Xamj42yvdYvQfHSlzvB8dKWOVEO/pokppcmBbxNFKFFzCHFlmNteDVfqY2fV6EodIcQUBNctjDSYVCplAFhubi4rLy9nxcXFbPfu3ay4uPiB5Zppxn4Zun+h+XRtp2+arjgJWbaG2BkjbrrSzyVnsYiF+1hoVDQbuSKWZRbIjRJLS8fNWs+5muv0/Wy5ubkMAJNKpWavW+g421fdIjSfoXWLkLhZOnaWPOdMHTtT1S2Nap46QmxNO383vNxBjSZuDriWJcfkH88gQ1pm6WIRQgixQnT7tQHoFgkxl+xSYHWiCIXlHDwlDHPaqxHoaulSkZro9ishxBTo9qsZ0e1Xw9Ls4RaJOS/zp+bI2NAvYlhoVDRr9+4+FnvljsGxtHTcrPWcq7mObr/a53G2hbpFaD66/Wqac87UsaPbr4Q0cgGeTtg6qze6h3iiVM1h9i8X8eeVLEsXixBCiJWg268NQLdIiCWUq4FNN3lczOfBgWF0qAaRAQwcZ+mSEbr9SggxBbr9akZ0+9WwNHu4RWKpy/y/79rNonacZ6FR0Sw0Kpq98et5tvP3xneLhG6/0nG217pFaD66/Wqac87UsTNV3WL8WRYbMYlEAolEonO5rjRTl8XY+XRtp2+akLhZe+yMETdd6TXX8xyw9MkOCPPzxLIDV7HjfAYuePAYNBRo4mKZ2NnTOVe5zpAymoI1fUfs6Thbe91SWKLETRnQPLsUnZs7Q8TXfTneWHWL0HWN5ZzTld6Q2BlSRiGoUWdESqVS+6pcru1vzX8buwyG7F9oPl3b6ZtWX5yExNGYDNm/MeKmK11X3FQqFaY/FIJgL0e8vuMSbsiAp9aexA/PdkeQh0Ot+U0RO3s65+pbVx9TnptC6hY6zrWvs7W6pVihwid/XsfO8xlQacT4+spJNPdxxidjO6B3Cx+99m1I3dKQWBqTJc85XenGip2QMuq7HfWpawDq90Ksxd1i4IdrIhSUc3ARMTwfrkEbT/pqmxv1qSMNdacY2JAkQnZZxVU5H0eGEhVQpubAcwwz2mjQxZe+240N9akzI+pTZ1iaPfR7saa+Gxu372ajvvqXhUZFs9bv7Gdvrd1j9/1eqE9d4+jf1BjqFoVCwb4/coOFvbufhUZFs4c+/pvFXrnDdu/ezbILpGzupjMsNCqatV14gJ2/nSt439SnzvDtqE9dI0d96gxLs/V+L/rkMWXfDQ8H4JeZvfDunqvYl5CBX2+J4HgwGR+M6oDKzey13wv1qWsc/ZvstW7JLy7HW78l4O+r2QCAERF++OypznCVcDhwA/BydcZXz3SHYtM5/HMtGwt+u4TolwfAxUFc777rS6c+dfbVp47mqSPEjjhJRPhqUle8OjQMALDxZBqeW38G0lLT9BUihDTMsZu5eGxVHP6+mg0HMY+loztg7bM94OXiUG07sYjHl093gb+HE27lFmPZ/qsWKjGxZtSoI8TOcByHeZGt8HxbNZwlPOJu5GLC2lPILrV0yQghlcqUanwYnYgpP57CPVkZWjd1xe4X+2Na3xbg6ph00svFASue7gIA+OVUGs6lFpizyMQG0O1XI6LRr41rhJo+eSwxyqqLL8Pjkd3x0q+XcTuvBCsKRWjZIQuD2/kJ+3AC2dM5V9+6+tDoV8PzNaa65UhSDj7cfx2p+SUAgGd6BePtR9rCxUFc77nYK9QT47sHYuf5DCz8/SK2z+6hs+w0+tXw7Wj0ayNDI9SILZCVAz9dFyFFzoEHw9gWGgz0pydQmAKNfiW6pMuBP+7wuFJQcZPMQ8IwqbUGHbz1+29YrgSWXRChRMVhTKgaQwLpv3F7R6NfzYhGvzaeEWq2OMqqvLycFUiL2FNf7NU+gSLqtwusuLSMzjka/dooj7M546ZQKNiRxLvs8U//+/61fmc/W7r3EsuTlRgck19O3GKhUdGs3Xt/sHW/0uhXY59zpo4djX61ATT61bA0WxmhZow8lhqh5gpgSmsNHu7eDp8dTMK2M3eQkleCb6f0gLdr9Q7ZhrKnc65ynSFlNAVr+o7Y03E2Zdyyi8oQnZCJLafTcDNbDoAHzwFPdgnE/KFt0Lqpm+B91VauSb1b4Pf4TJxNLcDvKTym0OhXg/PZ0+hXatQR0khwHDBrQAuEB3jg5a0XcPJWPkavPoYfp/dEWz93SxePEJvGGENyTjFir2fjz8v3cC6tAJWdm5wlPLp6q7B40kCEB3oZ5f14nsNHYzviia+O4mI+j8PXczCyY6BR9k1sFzXq7ktPT8fo0aORmJgIuVwOsZhCQ+zTw+388PuL/TBrw1mk5Zdg3Jrj+OqZrnjYyAMoCLFnpeVqXLsnw+W7Upy6nY+Tt/KRK1dU26ZLiBee6h6Exzs2Q9zhQ2jV1NWoZWjn74Hn+oXih6MpWBp9FQPbNqs2dx1pfOjo39e0aVMcPnwYY8aMsXRRCDG5tn7u2D2vP+ZuPodTt/Mxc8NZvPNoO8we2KrO6RQIaWwYYygoUSIlrxhpeSVIzSvBrVw5rmTIcCtHDk2N8QmOYh49W3hjRIQ/RnTwQ4CnMwDTjaoFgJeGtMJvp2/jbmEZvvrnJt5+tJ3J3otYP2rU3efk5AQnJydLF4MQs/FxdcCmmX2waO8VbD2dho8PXMP1e3J8PK4jHMUiSxePEJMoV2mQX1yO7FLg4h0pSlQMObJS/JvB4dJfScgrViK7qAw5RQpkFpahSKGqc19N3BwQEeiJHs298VArH3QJ8YKTxLzfHRcHMZ5qqcEP10X4Me4WxnYLQrg/dadorGy2Ubdo0SLs2LED165dw5YtWzBp0iRtWk5ODmbMmIGYmBiEhIRgzZo1GDp0qAVLS4h1chDz+HhsR7Tzd8fS6ETsPH8HKXnF+G5qDzR1d7R08YgeVGoNFEo1ytUVtwZVjAcDA2MAQ8VVp4q/qFgB1JnOwKpsU7GuXKlEgQLIKCyFSKxE1cmwKvPU3BcAKJUq3CsBbmRXdGup3FatqXip7v9VlCtxvZCD241cgOO161UahvJyJc5nc5CfvQPG8VCpNVBpGBQqDYrLlLiawuP0vqsoVzOUqTQoVSiRnsljU8ZpKFQMJeUq5BaK8PbZv1Gq1NwvmRi4cKpKBEVAakqtsQ3wdEJzHxe08HVFaBMXtPf3QIdADzTzsI4LAR19GIa3b4ZDV7OxcNclbP+/vuB5uuLeGJm9UVdaWooPPvgAO3bsQH5+PmQyGf766y9cvXoVr776quD9tGnTBqtWrcL777//QNq8efMQGBiI3NxcHDx4EBMmTEBycjIUCkW1xh8AuLm5ITo6uqEfixCbxXEcpvdrgVZNXTHvl/M4l1qA0d8cxQ/Te6JDoKeli0cEWvXPDXx9+CYAMd48/Y+J3kWMxefjDMr3ScJxAduJgKvn605LTqwjjQcy0x9cJy2ssswB0GiXnEQMPm7O8HCWwMNJDFVRHrqEt4S/pzOaujuimbsT/DwcEeLjYvarb4Z477FwHEvOw9nUAmw6mYrp/VpYukjEAszeqHvxxRehVCoRHR2NgQMHAgA6d+6MV155Ra9G3dSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtGmJjY431UQixKwPbNMXuef0xa8NZ3MotxlPfnsD/JnbBIx0DLF00YmYcV9EEquxfyd1fp9FoIBKJtMscuAe25+5n+C8/g1KphKODgzad4wCe4yDmOYhFPMQ8B54DSorl8PbygFgkgpjnIOI5bVp+bg4C/P0gEYkgElWsdxKL4CAC7qanIqJtGFycJHASiyDhgeuJl9C7Rze4OTtAwgEXz53Eo8Mi4evmAkcRw19//oHHHhsEiUQCpVKJAwcO4LFHw006XZIpBXo54+1H2+GDPVfwyR9XMahtU7RsYtyBGcT6mb1Rt3//fqSnp8PR0VFbYQQEBCAzM9Mo+79x4wY8PT0REPDff0RdunTBlStXdOYrKyvDE088gYSEBIwcORKLFy/WNjprUigUUCj+G+Ukk8kA0GPC7O1RPsbMY+nH0QgtZ4iXI7a/0Buvbr+IozfzMGfzebw6NAwvDm5Z5wAKezrn6ltXn4aemw2pW/5vQCie7RWAmJgYPPzwEDjcb5xw4LSNLlRpVFUezaoNLV2DZJRKJQ4dOoThwx/Wq+HzX74BOvP9t13PB7b7L61jHWm3MXxQqDZNqVTiUM5FDAv31Tba8q8B/m4SSCQVt4Rrxq/qX2Mz5Xek6jYTuwfij0uZOHErHwu2X8CWmb2gUatq3Qc9Jszy9bKQMuq7ndkfE9a2bVscPnwYwcHB8PHxQX5+Pm7fvo3HHnsMV69e1Xt/kZGRmDNnjva2alxcHJ577jncvHlTu83ChQtRWFiI1atXG+UzLF68GEuWLHlgPT3Kh9gLNQN2p/D4917F44y6+2rwTGsNHKz/LpRFNfQxYVS3kIbKVwCfJoigUHN4srkaQ4PoEWL2QGjdwpuxTACAV155BaNGjcJvv/0GtVqN6OhoPPPMM3rdetXFzc1N++u2kkwmg5ub8Nm76/POO+9AKpXiiy++QHh4OMLCwoy2b0KsgYgDxrfUYGIrNXiO4Xwej6+uiFCoqD8vMRzVLaShfByBsaEVfQf3p/O4W2zhAhGzMvuVOgDYsWMHfv75Z6SlpSEoKAgzZ87ExIkTDdpXzSt1crkcvr6+SE1Nhb+/PwBg0KBBmDVrFqZNm2a0z1CVTCaDp6cnMjMz4eHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xoibrnQhcattnTFjdyalAK/suILCUiX8PRzx/ZQuCKsyiao9nXM1twH0+77KZDIEBAQYfKWutv0JrVtM/R2xp+NsC3WL0Hy1bcMYw7xtlxB7Iw8tfJzxYlgRHhlmfXWLMT5/Q/JZsl4GTFO3WKRRZwxKpRJqtRojRozA7NmzMWHCBDg4OIDneUyYMAE+Pj5YuXIlDh06hBkzZiA5ORne3t5GLcPq1auxevVqqNVqJCUl0S0SYrdyy4Dvr4mQVcrBRcTwQns1WtJUWA9o6O3XSlS3kIaSK4HPEkSQKjn0bqrBlDBN/ZmI1RJat5ilUffZZ58J2u6tt94SvM8ZM2Zgw4YN1dbFxMQgMjISOTk5mD59OmJjYxEcHIw1a9Zg2LBhepVZH3SlzrA0e/g1bQu/CI0Vu8ISJeZuvYiEuzI4inl8Ob4DHg5vYlfnXM1tALpSV8mejrMt1C1C8+na5mxqIWZsjIeGAR8+0RbjuwfpzEdX6oSlN/ordc8995z23yUlJdi1axf69OmDkJAQpKen4/Tp0xg3bhy2bt1q6qIYFf2aJo1NuRpYf4PHlQIeHBgmttKgr59NXuw3CbpSR6zNX3c4HEgXwYFnWNBJDX86jWySVV2pq2r8+PGYNm0aRo8erV23d+9ebNy4Eb/99ps5i2I0dKXOsDR7+DVtC78IjR07lUaDxdFJ+P1CxTRELw0KRVh5Mh5+2PbPuZrbAHSlrhLVLYaz1JU6AFCUK/H0mn9xQ8ajpa8Lts3sAXen+s99ulJHV+oE8fT0RF5e3gMB8vX1hVQqNWdRGox+TZPGijHgQDqPg3crBtAP9NdgXAsNGvuTiehKHbFGsnLgy0siFJZz6Oitwcxw+q7aGsF1CzOzfv36sUWLFjGlUskYY0ypVLIlS5awvn37mrsoRiOVShkAlpuby8rLy1lxcTHbvXs3Ky4ufmC5ZpqxX4buX2g+Xdvpm6YrTkKWrSF2xoibrnQhcbNk7H769yZrERXNQqOi2StbzrKS0jKbPudqrtM3brm5uQwAk0qlZq9bTP0dobrFOmMntG45dSOTtVl4gIVGRbPP/0i0+rrF0uecrnRjxM5UdYvZ56nbtGkT/vzzT3h7e6N169bw9vbG/v37sXHjRnMXhRDSQM8+1BzLx0aAB8PuhHt4fccllKtolB0h1qZjoAc+ejICAPBN7C38fS3HwiUipmCxKU3S0tKQmZmJgIAANG/e3BJFaDC6RUJIhYv5HNYn8VAzDhFeGjwfroHE7D8ZLY9uvxJr93sKjyOZPBx4hlc6qhFMj4e1CVZ7+zUrK6vOl62i26+GpdnDLRJbuMxv6thV7vuvhDTW9v7tnUlrj7OCohKbO+dqrqPbrw37fljrcbaFukVoPn3rlpLSMvbM98dZaFQ06/zePpacmWfUWNpK3AyJnT5xqi9WdnP71d/fHwEBAfD399f+u/JFCLFdA8J88dO07nB1EOHErXw8v/E8ispM84B0QohhxCIe30yqeCqMVMlh7taLKCpTWbpYxEgs/kSJe/fu4aOPPkKfPn3w7LPPWrIoeqNbJIQ8KKUI+O6qCKVqDiGuDC9GqOFi/FkirBLdfiW2Il8B/O+SCDIlh3aeGrzQTgNRI+wyYStMdvs1Pj7esPsIOigUChYUFGT0/ZoL3X41LM0ebpHYwmV+U8eutn0npOaxrkv+YqFR0WzUV/+yXKl+54ulzrma6+j2a8O+H9Z6nG2hbhGaryF1y9ebd7N271V0mXhzezyTy+VWX7eY65yrL3bWevtV79/PTz75JNzc3PDMM89g8uTJaN26taENT61Tp05BpbL9y78SiQQSiUTncl1ppi6LsfPp2k7fNCFxs/bYGSNuutKFxK22deaMXdV9d27ugy2zH8LkH07i4l0Znt8Uj00ze8PDSdhnq2//DU0TEhdD4maO2BqybMqyGDsf1S2G5TOkbglxA/73dGe8uOUCtp+7Cz8PR4TVsW1jPed0pTekXjakjELo3ahLS0tDXFwctm7dir59+6Jly5aYPHkyJk6cCH9//3rzt2/fHhz336yHJSUlyMvLw6pVq/QtitVRKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8aurn2HNXHGhhk9MW3dWSSkF2LaT6fw87SK2ez1KZM5z7n61tXHlOemkLrFEsfZWPmobjEsX0PrlkGtvfHBE+2xeN9VfB1zC+NbcBhu5XWLsfJZul4WUkZ9t2tQnzq1Wo2//voLb775JpKSkhAZGYnnn38eEydOBM/XfnP+yJEj1ZZdXV3Rtm1bozxSx9yo3wsh9btTDKy+IkKJmkMLN4a5EWo4iSxdKtOgPnXEVlU+IxYAng1To2dTeqazNTH5lCYXLlxgb7/9NgsNDWVdu3ZlX3zxBdu6dSsbNGgQGzVqVJ35Pv/881rXf/nll4YWxeKoT51hafbQ78UW+m6YOnZC9h2fkss6LfqThUZFs3Grj7L8ohKrPOdqrqM+dQ37fhjrO9IY6xah+YxVtygUCrZw5wUWGhXNWr+zn/116a7FY0d96v57maxP3dKlS7F161aUlZXhmWeewYEDBxAREaFNHz16NHx9fXXmf+ONNx5Yv2zZMrz++uv6FseqUJ86w9Lsod+LNffdsIZ+L11DffHLrIcw5ceTOJdWiP/75QJ+nNpNrzJRnzrr+I5Q3WI4a+tTV3P9+4+3x7VbaTiby2P+tgRsntUHXYPca83fWM45Xel20afuzp07WLt2LQYNGlRrurOzM44fP/7A+u3btwMAVCoVduzYAVblrm9KSgp8fHz0LQohxIZ0CvbEppl9MPXHUzh9Ox/ztyXgSfraE2I1eJ7D5NYauPs2Q8z1XDy//gw2PdfT0sUietC7Uff999/Xu03Xrl0fWPftt98CAMrLy7FmzRrteo7j0KxZM6xfv17fohBCbEyXEC/8NKMXpv18Ckdu5ELqy+NxDYPpro0QQvQh4oGvJnbBzI3xOJ2Sjxnrz+GFNpYuFRHKbFOCxsTEAAA++ugjvPfee+Z6W7Oi0a+Nb4SarYyysqYRat2C3bHmma54YXM8LuTxWLj7Mj4Z27HaqHih+6fRr9Z7nPXNR3WLYflMUbeIoMF3U7riuQ3nkHBHitWJIvS/W4iIIK9Gc87pSrfb0a9C5ebmokmTJgCA7OzsOrdr1qyZqYtiVDRCjRDDXcjjsD6JBwOHyAANxoRqUEe7zmbQ6FdiT0pUwJpEEdKLObhLGOZ3UMPP2dKlapxMPvpVH25ubtp/cxzHeJ5nHMdVe/E8b46imASNfjUszR5GqNnCKCtTx64h59w73+9hoVHRLDQqmn3551WLn3M119HoV+McZ6pbrH/0a13r7uYWsn5L9rHQqGjW+6NDLDE9p1Gcc8aInU2MfgWA1NRU/Pbbb8jIyEBgYCDGjRuHli1b1rl9UVGR9t8ajcaQt7QJNPrVsDR7GKFmzaOsrHmEWp9mDK3Cw/HRgev4KiYZnq6OmDmg9rqERr9ax3eE6hbDWfvo19rWNfVwwYsRaqxP88SN7GI8vykBs1s1nnNOV7o1jn7V+/G90dHR6Ny5M86dOwcHBwecP38e3bp1w759+/TdFSGEYHrfUCwY3hYA8GF0IvZcuGvhEhFCqnKTABuf64nWTV2RKS3DN4ki3C0stXSxSC30vlL3zjvvYM+ePYiMjNSu+/fffzF37lyMGjWq3vzp6elYunQpEhISIJfLq6UlJibqWxyjOXLkCN5++22IRCL07t0bK1assFhZCGlsXno4DAUlSvx87Dbe2JEAH1cHDGzT1NLFIoTc18TNEVtmP4SnvzuB1PwSTPnpDLbO7osADxq7bk30btTdvXsX/fv3r7aub9++yMjIEJR/4sSJaNOmDZYsWWJVHX/DwsIQGxsLR0dHTJ48GZcuXUKnTp0sXSxCGgWO4/De4+2RXVSG6IuZmLPpHLa90Bedgj0tXTRCyH1+Hk7YPLMnxn99BHcLyzDx+xM0j52VEdyou3PnDoKDg9GnTx8sXrwYixcvhkQigVKpxJIlS9CnTx9B+7l8+TKOHj1a57NhLSUoKEj7b4lEApHITh9OSYiV4nkOXz7dBQUl5Th2Mw/PrT+NnXP7IdDDwdJFI4Tc5+/hhJc6qLEhzRPJOcWY8tMZzGxt6VKRSoJbVpWPAlu7di1iY2Ph4+OD1q1bw8fHB4cPHxY0KTEAPPLIIzh58qRhpa1i0aJFiIiIAM/z2LZtW7W0nJwcPP7443BxcUF4eDj++ecfwfs9f/48cnNzqz36jBBiHo5iEb6b2gMRAR7IlZdj2s+nkSdXWLpYhJAqPB2Azc/3RFs/N2QVKfDNFRFuZsvrz0hMTvCVOnZ/OrvmzZvj2LFjSE9P145+DQkJEfyGzs7OeOSRRzBixIgH5qWr+qSJ+rRp0warVq3C+++//0DavHnzEBgYiNzcXBw8eBATJkxAcnIyFAoFJk2aVG1bNzc3REdHAwDu3buHl19+GTt37hRcDkKIcbk7SbD++V4Y/+1xpOaVYNameDwbbOlSEUKqauLmiK2zH8KUH07iWpYcU38+iy2zH0K4v7uli9ao6dWnLj09vdozWwMCAsAYQ1paGoCKBl99WrVqhQULFuhZzAdNnToVALBs2bJq6+VyOfbs2YOUlBS4uLhgzJgxWLFiBfbt24dp06YhNja21v2VlZVh8uTJ+Prrr+Hn56fzvRUKBRSK/64eyGQyAPREicY467utzFxua7O+ezuJ8NOz3THxh9O4nCHDumIeI4cr4KrHPmzxiRINrVts7TgL3a4x1i1C81mybvFwlODnZ7vi6W/jcKe4HJO+P4ENM3qifYBxGnb0RIkH37M+gp8owfM8nJycUNfmHMehpKRE0JsaU2RkJObMmaO9AhcfH4+RI0dWe3LF/Pnz4eLiguXLl9e5n2+//RZLlixBu3btAACffPIJ+vbtW+u2ixcvxpIlSx5YT7O+E2JcqUXAN4kilGs49G6qweTW1v3UiYY+UYLqFmKLqj55wkXM8GJ7NULcLF0q+yK0bhHcqHN3d682ibChPvvss1rXOzo6Ijg4GEOHDoWXl5fg/dVs1MXFxeG5557DzZs3tdssXLgQhYWFWL16dYPKXqm2X9MhISHIzMyEh4cHVCoVYmJiMGTIEIjF4mrLAKqlGVvN9zZ2Pl3b6ZumK05Clo3NkP0bI2660oXErbZ15oydqc+5mOvZmP/rZWjAYX5kS8wd1ELQPgyJU81tAP2+rzKZDAEBAQY36hpSt9j6caa6xbB81lK39Og7EC/+egUX78rg7ijGd5M7o1tIw0avW/Kc05VujNgBpqlbBDfqPDw8tLcCGmLSpEnYtWsX+vTpg+DgYNy5cwenTp3CqFGjkJGRgcTERPz+++94+OGHBe3PWFfqDEHPZyTEPI5lcdh+q2JE+tQwNXo1Nfkjqw1Cz34ljVmZCvj+mgjJRRwceIZZ4RqEe1nnd9XWCK1b9B4o0VAqlQo7d+7EE088oV23f/9+rF+/HsePH8cvv/yC119/HRcuXDBo/23atIFUKsW9e/fg7+8PAEhISMCsWbOMUfxq5s2bh3nz5kEmk8HT0xNDhgyhK3WN7Ne0LfwitIcrOIiJgUuzYKw/eQfbbokxvF8X9GrhbZVX6ozBkLrFHo4z1S3657O2umXYMDVe2X4ZR5Pz8UOSGCue6oCh4YZNJE5X6v4jtG4RfKXOWDw9PZGfn19tHjiVSgVfX19IpVJoNBp4eXnV+wGUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb2N+lno1zQh5qNhwIYkHhfyebiIGF7tpIafs6VLVR1dqSMEUGmADTd4XMznwYNhSpgGPa306rqtEFq3mH0G4IiICHz88ccVv74BqNVqfPrpp2jfvj2AihG2QvrUzZ49G87OzoiLi8O0adPg7OyMf//9F0DF1Cjp6enw9fXFG2+8ge3btxu9QUcIMS+eA6aEadDCjaFEzWHtVRHkphmsSAhpADEPzGirQa8mGmjAYfNNHsezrHiEkz1hZnb9+nXWo0cP5u7uzlq3bs3c3d1Zz549WVJSEmOMsVOnTrGdO3eau1gNIpVKGQCWm5vLysvLWXFxMdu9ezcrLi5+YLlmmrFfhu5faD5d2+mbpitOQpatIXbGiJuudCFxs3TszH3OZeYXsf6f/sNCo6LZk1/9y7bvNN45V3Odvp8tNzeXAWBSqdTsdYu9HeeGpNlD3SI0nzXXLWVlCvbuzgQWGhXNQqOi2bcxSVYTN0vHzlR1i/E7D9Sjbdu2OHv2LFJSUpCVlQV/f3+EhoZq03v37o3evXubu1iEEBvh6+aIH5/tjok/nELCXRm4Uh6PmrcXCSFEAJ7nsOiJdnB1FOH7uBR8+mcS5GUqvPxwa3DWPDeRDTN7n7pKJSUlyMvLqzYAQ8jkxdaE+r0QYjk3pcCaqyKoGYehgRo8GaqxdJGoTx0hdTh0l0N0WkVf+sgADcaEWveck9bG6PPUGculS5cwbdo0XLx4saIA94+qg4ODRSYvNobKEWo0T13jG6FmC6Os7HlU5O4LGXh373UAwLIn22Fs1wCd+ax9nrra9ie0brHn49wY6xah+Wypbtl8+g4+/vMGAOCpbgFY9Hg4RHzdLTsa/fofo89TZyz9+/fH8OHD8fbbbyMgIACZmZn44IMP0Lp1a/zf//2fOYvSYPRrmhDL25/G4+BdHiKOYV6EGq0b3pYyGF2pI0S3k9kctiXzYODQxUeDaW00EJt9yKbtEVy3GKU3rx48PT2ZWq1mjDHm5eXFGGNMoVCwoKAgcxfFaGighGFp9tCZ2RY65Jo6dpY+537ftZvNXn+KhUZFs65L/mK3sqQGx6nmOhooYT3HubHVLULz2WLdsjc+nYW9u5+FRkWzSWuPs/yiEqs750wdO7sZKOHl5YXCwkL4+PggKCgICQkJ8PHxgVwuN3dRjE4ikUAikehcrivN1GUxdj5d2+mbJiRu1h47Y8RNV7qQuNW2zpyxs9Q5x3PA5091wt2fzuJKhgxzfrmAnS/2g+P9bQ2JU+U6Q8poCtb0HaG6xXCmjJ0t1S2jugbD180JszeexYlb+Zi27hzWP9cLvm6OBn22ulhzvWxIGYUwe6Nu1qxZOHLkCMaOHYtXXnkFAwcOBM/zmD17trmLYnRKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b8x4qYrXUjcaltnzthZwzkn4Ri+ndwV4787ietZRZi/5Ry+mtDxgXz6fDcN+b6a8twUUrfY+3FuTHWL0Hy2Wrf0CvXEpud7YubG87h0V4qnvj2OdTN6IMjrvxnFLXnO6Uo3VuyElFHf7Sw2+rVSamoq5HI5OnToYMliGIT6vRBiXVKLgK+viKBkHB4O1GC0mUfEUp86QvSTXQqsSRShoJyDpwPD3PZqBNCp/gCr61PXvn37el+2ivrUGZZmD/1ebKHvhqljZ23n3O9nU7WTnb7z/R7qU2enx9mY3wdrrFuE5rOHuiUtV8aGfhHDQqOiWefFf7JTydkWP+dMHTub71N3+/ZtNG/eHFOmTMGgQYPscuJB6lNnWJo99Hux5r4bja2v1dgezXE7vwxf/XMDv97iMSpDjr5hzXTui/rUGV4WY+ejusWwfLZct4T4SvDb3H54bv0ZxKcVYvq6c/h2anf0b+XdoH1bc71sSBmFMFujLjs7G7///jt++eUXrF+/HhMmTMCUKVPQuXNncxXB5KhPXePr92IrfTcaW1+reYNa4FpGIQ5ezcGLWy5g55w+CPF2oT51DSyDIfumuoX61AnhKuGwfnp3vLQ1AXE38zBrw1l8MqY9HAzYt63Uy0LKqO92FulTl5WVhW3btmHr1q0oLi7Gr7/+ioiICHMXo8Go3wsh1qtcDXx1RYT0Yg4BzgyvdlTDycQ/Y6lPHSENo9IAv9zkcT6PBweGcS00GBRAjwG0uj51VRUUFLC1a9eywYMHs7CwMHbp0iVLFMNoqE+dYWn20O/FFvpumDp21nzOrf91N+v54UEWGhXNnvv5FCuSy6lPnR0eZ3usW4Tms8e6paxMwd77PUHbN/bT6EtMoVCY9Zwzdexsvk+dQqHA3r17sXnzZsTHx2PMmDH49NNP8dBDD5mrCCZHfeoMS7OHfi/W3HejMfe18nIEvpvSDc/8dAaHr+fg27g0tK1le+pTZ3hZjJ2P6hbD8tlb3bJ0TCd4uzrgq8PJ+DYuFfmlGiwb2xFikfDHT1hzvWxIGYUwW6POz88P/v7+eOaZZxAVFaV91tnp06e12/Tu3dtcxSGENBKdgz3x6bhOeH17AlbH3sJzbTk8ZulCEUJ04jgO84e0xr2UJPx2W4Rfz6YjR67AN5O7wcXB7FPs2gyzRcbLywsKhQLr16/Hhg0bwGp05eM4Drdu3TJXcQghjci47sFIzJDhx6O38ctNHuPuFaFTiI+li0UIqUd/P4YhD3XFq9sv4vC1bDzzwyn8PL1nnU+faOzM1qhLSUkx11tZDI1+bXwj1GxllBWNigQWDGuNxIxCHL9VgDm/xOP3OQ/B3YF7ID+Nfq27DIbsm+oWGv1qqMp9Dg7zxqbneuKFzfFISC/E+G+P46dp3dHcp/bBQ7ZSLwspo77bWfyJEraMRqgRYluKlcCXl0TIU3Bo46HB3AgNREacMpNGvxJiOlmlwHdXRchXcHCTMMxpp0aIm6VLZR5WPfrV3tDoV8PS7GGEmi2MsjJ17GztnPt2y27W/v0/WGhUNHvv9ws0+tVOj7Ot1y1C8zW2uuVOXhF75H9HWGhUNGv//h/s7ysZJjnnTB07mx/92hjQ6FfD0uxhhJo1j7KiUZHV0wJcgC/Gd8KLWy9g06k7ULXm8BiNfjW4LMbOR3WLYfkaS90S5CPB9jl9MXfzeRy9mYv/2xyPT8d3xlM9gnXmE7p/fdKtcfSr8LHBhBBiJ4ZHNMOrw9oAALbf4nEhvdCyBSKECObuJMHPM3phbLcgqDQMb+xIwOqYmw8MwGyMqFF3X0ZGBvr164dBgwbhiSeeQElJiaWLRAgxoZcfboPh7ZtBzTjM25qALFmZpYtECBHIQczjywldMGdwawDA539dxwd7rkCtadwNO2rU3efn54ejR4/i33//RY8ePbB//35LF4kQYkI8z+Gz8R3h78yQXaTA/206hzKl2tLFIoQIxPMc3n60HRaPigDHAZtOpmLu5sb9PaZG3X0ikQg8XxEOjuMQHh5u4RIRQkzNzVGM2e3U8HQW40J6Id7bfZlu4RBiY2b0b4nVk7vDQczjYGIWpq8/B7lpZqexejbbqFu0aBEiIiLA8zy2bdtWLS0nJwePP/44XFxcEB4ejn/++UfQPo8ePYoePXrg77//RmhoqCmKTQixMk2cgJVPdwHPAb+du4ONJ9MsXSRCiJ4e6xSATc/3hoeTGOfTCrHysgipeY2vG5XNNuratGmDVatW1fposXnz5iEwMBC5ublYvnw5JkyYgIKCAty7dw+RkZHVXk888YQ234ABA3Du3DmMGTMGP//8szk/DiHEggaE+eLdx9oDAD75Mwk3pEacvI4QYhZ9Wvli59x+CPJyQk4Zhwnfn8K51AJLF8usbHZKk6lTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6P4VCAUfHiseOeHp6Qq2u+568QqGAQqHQLstkMgD0RInGOOu7rcxcTk8aqH1d1b/T+gTj8p1C7E7IxLokHqNzihDk5SSojDX3b6iG1i10nGtfZ4t1i9B8VLdU18LHCVue746pa48hvViJyT+cxBdPdcIjHfz03j89UcICIiMjMWfOHEyaNAkAEB8fj5EjRyI7O1u7zfz58+Hi4oLly5fXuZ+jR49i4cKF4HkePj4+2LRpU50zuC9evBhLlix5YD3N+k6IbStXA6uuiHCnmEOwK8MrHdRwEAnP39AnSlDdQohxKNTAhhs8rhTw4MAwOlSDyAAGzkYvwgutW2z29mtd5HL5Ax/Yw8MDcrlcZ74BAwbgyJEjiImJwc6dO3VWoO+88w6kUim++OILhIeHIywszChlJ4RYloMImBmuhquY4U4xh19v8TDnz16qWwgxDkcRMDNcgwF+GjBw2J0qws4UHvY+44nN3n6ti5ubm/aWRSWZTAY3N+M9IM7R0RGOjo5YsGABFixYAJlMBk9PTwwZMgQeHh5QqVSIiYnBkCFDIBaLqy0DqJZmbDXf29j5dG2nb5quOAlZNjZD9m+MuOlKFxK32taZM3b2dM5VbpNXFotvr4pwNpdHiBvDksmRgj5bzbpHXw2pW+g421fdIjQf1S115xv28BCMFImw7kQ6vvg7GXH3eIg9muHzcRFwcRBZNHaAfm0BoXWL3d1+lcvl8PX1RWpqKvz9/QEAgwYNwqxZszBt2jSjvjc9dJsQ+xWbyWFXigg8GOZFqBHmWX+eht5+rUR1CyHGFZ/HYfMNHirGobkrw+x2ang4WLpUwgmtW2y2UadUKqFWqzFixAjMnj0bEyZMgIODA3iex4QJE+Dj44OVK1fi0KFDmDFjBpKTk+Ht7W2SslT+ms7MzKQrdY3s1zRdqbOvc67qNpGRkVi4LwlXU7Pw4/MPwc+z/kaVTCZDQEBAgxt1VfcntG6h42xfdYvQfFS3CM93Pq0QL/16GYWlSgR5OWH10x2QeumUzVypE1K32GyjbsaMGdiwYUO1dZUVcU5ODqZPn47Y2FgEBwdjzZo1GDZsmNHLQL+mCbFvSk1Fx2ORwN7HdKWOEOuWXQqsvSpCroKDs4hhVriwq/CWZvdX6qwJXakzLM0efk3TlTr7OudqbgOY5te0UHSlzrA0e6hbhOajukX/fPnF5Xjp10u4cEcGEcfw0ZPtMLpLoOD90JU6O0W/pgkhVdGVOkJsQ7ka2HyTR0J+xWX4x0PUGB5kvVOeCK5bGGkwqVTKALDc3FxWXl7OiouL2e7du1lxcfEDyzXTjP0ydP9C8+naTt80XXESsmwNsTNG3HSlC4mbpWNnT+dczXX6frbc3FwGgEmlUrPXLXSc7atuEZqP6hbD8xXJ5WzGyr0sNCqahUZFsze3x7Pi0jKzxM5UdYvdzVNHCCGEEFIfnuMwpoUG7z3aBjwHbD93F/+3OR5FZSpLF81gdPu1AegWCSGkKrr9SohtupzPYcMNHuUaDoEuDP/XTg0vR0uX6j90+9WM6ParYWn2cIuEbr/a1zlXcx3dfrXP42wLdYvQfFS3GO+cO3c7h/X48CALjYpmvT86xM7cvEe3XwkhhBBCbE2nIE/89n990KaZK7KKFHh2fTwuF1jpyIk60O3XBqBbJISQquj2KyG2r1QFrEvicV3KgwPDuBYaDAqwbFOJbr+aEd1+NSzNHm6R0O1X+zrnaq6j26/2eZxtoW4Rmo/qFhOdc6Vl7I1fz2lHxr6/6yIrLVMYLXamqluMP8tiIyaRSCCRSHQu15Vm6rIYO5+u7fRNExI3a4+dMeKmK11I3GpbZ87Y2dM5V7nOkDKagjV9R+zpONtC3SI0H9Uthuer/fMCy8Z0hCL3DvamibDxZBoypGVYNakbHO5v25DYGVJGIahPHSGEEEJIDRzHYWgQw1cTO8NRzOPvq9l4eu0JZMnKLF20OtGVOiNSKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8bOns65+tbVx5TnppC6hY5z7etssW4Rmo/qFsPzCY3dsHBfbHq+J+b8Eo8rGTI8tfYUprVoeOyElFHf7WigRANQZ2ZCSFU0UIIQ+5VXBqy9JkJWKQdHnuG5thq09zZPE4oGSpgRDZQwLM0eOjPTQAn7OudqrqOBEvZ5nG2hbhGaj+oW05xzdaXnSIvZ098eZaFR0azV2/vZuqPJBsWOBkrYABooYViaPXRmpoES9nXOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fn0iV0TiQQ/T++J59YcxOkcHov3XcXdwjK8MSyszn3RQAlCCCGEECvkIOYxubUGr99vyP0QdxsvbUtAudrCBQMNlDAqGijR+Doz00AJ+zrn6ltXHxooYXg+qlsMy0d1i+H5GhI7jgNm9QtBiLczonZdwaGr2bjuKkLvAXIEervVmp8GSlg56sxMCKmKBkoQ0vjckgE/XhehWMXB24HhhfZqBBr560oDJcyIBkoYlmYPnZlpoIR9nXM119FACfs8zrZQtwjNR3WLac45fWOXmJ7Dei7ax0KjolmHD/5khxMzaaCEraOBEoal2UNnZhooYV/nXOU6Q8poCtb0HbGn42wLdYvQfFS3GJ7PGLEL8/PEax3V2JXbFGdSCjB703ksGdUebrXkp4EShBBCCCFWzFUCrJveA2O7BUGlYVi4JxH7UnloNObr5UaNOkIIIYQQI3AU81jxdBe8OqwNAODvDB6vbr+IMqV5hsZSo66G3377DSEhIZYuBiGEEEJsEMdxeHVYW3w+viNEHMMfV7LwzA8nkSdXmPy9qVFXBWMMO3bsoEYdIYQQQhpkTNdAvNheDU9nMeLTCvHU96dxr8S070mNuip27dqFxx9/HDxPYSGEEEJIw4R5Attn90GorwvuFJRi5WURTt7KN9n72WzrZdGiRYiIiADP89i2bVu1tJycHDz++ONwcXFBeHg4/vnnn3r3xxjD5s2bMXnyZFMVmRBCCCGNTKumrtj1Yn/0aO6FUjWH5zacw87zd03yXjY7pUmbNm2watUqvP/++w+kzZs3D4GBgcjNzcXBgwcxYcIEJCcnQ6FQYNKkSdW2dXNzQ3R0NPbs2YORI0dCLLbZkBBCCCHECvm4OmDDjB6YtvoQzufxeHvXFYwI4vGokZ//YLMtmKlTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6vytXriAmJga7du3ClStX8M477+CTTz6pdVuFQgGF4r8OjzKZDAA9JqwxPsqHHhNmX+dcfevq09D4NrRuoeNc+zpbrFuE5qO6xfB85o4dDw2ebaNBr/YtsfZoKg7e5bHuWAqeH9BS8Geqj80/JiwyMhJz5szRXoGLj4/HyJEjkZ2drd1m/vz5cHFxwfLlywXtc8CAATh69Gid6YsXL8aSJUseWE+P8iGkcWvoY8KobiGkcTiZzeFkNo8X26vhIKp/e6F1i832qauLXC5/4AN7eHhALpcL3oeuBh0AvPPOO5BKpfjiiy8QHh6OsLAwg8pKCCFVUd1CSOPwUDOGlzsIa9Dpw2Zvv9bFzc1Ne8uikkwmg5ubm9Hew9HREY6OjliwYAEWLFgAmUwGT09PDBkyBB4eHlCpVIiJicGQIUMgFourLQOolmZsNd/b2Pl0badvmq44CVk2NkP2b4y46UoXErfa1pkzdvZ0ztXcBtDv+1qz7tFXQ+oWOs72VbcIzUd1i+H5LBk7wDR1i93dfpXL5fD19UVqair8/f0BAIMGDcKsWbMwbdo0o7736tWrsXr1aqjVaiQlJdEtEkIauYbefq1EdQshpCqhdYvNNuqUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb1NUpbKX9OZmZl0pa6R/Zq2hV+E9vxr2hqv1AUEBDS4UVd1f0LrFjrO9lW3CM1HdYvh+WztSp2QusVmG3UzZszAhg0bqq2LiYlBZGQkcnJyMH36dMTGxiI4OBhr1qzBsGHDjF4G+jVNCKmKrtQRQkzB7q/UWROpVAovLy8kJSXB3d0dKpUKcXFxGDhwoLZ1XrkMoFqasdV8b2Pn07Wdvmm64iRk2dgM2b8x4qYrXUjcaltnztjZ0zlXcxtAv+9rUVER2rZti8LCQnh6egqORV30qVvoONtX3SI0H9UthuezZOwA09QtdjdQwpwqf02Xl5cDANq2bWvhEhFCrEFRUVGDGnVUtxBCalNf3UJX6oxAo9EgIyMD7u7u4DgOANCrVy+cOXNGu03lskwmQ0hICNLT043S56Y2Nd/b2Pl0badvWl1xqm3ZWmNnjLjpShcSt9rWmTN29nTOVV2nb9wYYygqKkJgYKBRniGtT90C0HHWtc4W6xah+ahuMTyfpWJnqrqFrtQZAc/zCA4OrrZOJBJVO1A1lz08PExWedR8L2Pn07Wdvmn1xam2PNYWO2PETVe6kLjVts6csbOnc662dfrEzRi3XSsZUrcAdJxrW2eLdYvQfFS3GJ7P0rEzdt1id5MPW4t58+bpXDbnexs7n67t9E2rL07mjJuh72eMuOlKFxK32tbROWd4nMx93umDjrOwNHuoW4Tmo7rF8Hz2Fju6/WpmlVMUGGvKg8aEYmc4ip1hbC1utlZea0FxMxzFzjCmihtdqTMzR0dHLFq0CI6OjpYuis2h2BmOYmcYW4ubrZXXWlDcDEexM4yp4kZX6gghhBBC7ABdqSOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQNiSxfAHmg0GmRkZMDd3R0cx1m6OIQQC2GMoaioCIGBgeD5hv9mprqFEAIIr1uoUWcEGRkZCAkJsXQxCCFWIj09HcHBwQ3eD9UthJCq6qtbqFFnBO7u7gAqgu3h4QGlUomDBw9ixIgRkEgk1ZYBVEsztprvbex8urbTN01XnIQsG5sh+zdG3HSlC4lbbevMGTt7OudqbgPo932VyWQICQnR1gkNpU/dQsfZvuoWofmobjE8nyVjB5imbqFGnRFU3hZxdnaGs7MzxGIxXFxc4OzsDIlEUm0ZQLU0Y6v53sbOp2s7fdN0xUnIsrEZsn9jxE1XupC41bbOnLGzp3Ou5jaAft9XpVIJAEa7VapP3ULH2b7qFqH5qG4xPJ8lYweYpm7hGGOs3r2RWq1evRqrV6+GWq1GUlIStmzZAhcXF0sXixBiISUlJZg8eTKkUik8PDwM3g/VLYSQqgTXLYw0mFQqZQBYbm4uKy8vZ8XFxWz37t2suLj4geWaacZ+Gbp/ofl0badvmq44CVm2htgZI2660oXEzdKxs6dzruY6fT9bbm4uA8CkUqnZ6xY6zvZVtwjNR3WLac45U8fOVHUL3X41IolEUu0yam3LdaWZuizGzqdrO33ThMTN2mNnjLjpShcSt9rWmTN29nTOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fksETtDyigEzVNHiBFlSkuRnl9i6WIQQghphOhKHSFGUFSmwltbLuDvq9kAgJ6h3vh8Qhe0bOJq4ZIRQghpLKhRZ0RKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b9SqYSGAS9uicfJ2wUAAJ4DzqYWYPy3x7DpuZ5o6+de777rShcSt9rWmTN29nTO1beuPqY8N4XULXSca19ni3WL0HxUtxiez9KxE1JGfbej0a8NQCPUCAAcy+Kw/ZYIDjzD/A5qeEiAH66LcKeYg5cDw4JOang4WLqUxBxo9CshxBRo9KsZ0ehXw9LsYYRabqGMdVi4j4VGRbPvj9zQrs+RFrPIzw6z0KhoNm71UVYgK6IRajZwztVcR6Nf7fM420LdIjQfjX41zTln6tjR6FcbQKNfDUuz5RFqey+lQa7iEOzlhOf6t4JYVDH2qIlEgh9n9MKY1cdwLq0Qyw8m4yExjVBrSD4a/Wod3xF7Os7WXLfom4/qFsPz0ehXQgjUGoafjqUCAGYNaKFt0FVq3dQNXz3TDRwHbD1zByey6IHshBBCTIcadYQY6NStPNwpKIWziGF896BatxkS3gxvjAgHAOy4zSM+vdCMJSSEENKYUKOOEAPtir8LAOjmy+AkEdW53YuRrTEiohnUjMP8rQnILiozVxEJIYQ0ItSnzohoSpPGM+1AmVKNA5czAQA9m2rqzbNsVDgu3s7CvSIFZm84iw0zesDV8b+vH007YNh2NKUJHWd7q1v0zWfpaTns9ZzTlU5Tmtgpmnag8YrP47A+SQQfR4b3u6nBC+gul10K/O+SCCVqDm08NPi/9hpI6Fq5XaEpTQghpkBTmpgRTWliWJotTzvw/LpTLDQqmi3bd0mvuJ1IymQR7//BQqOi2ZQfTrD8ohKTD503dezs6ZyruY6mNLHP42zNdYu++WhKE9Occ6aOHU1pYgNoShPD0mxt2oH84nIcScoFAIzpFoQbZ5MFl6lHC1/8NKMXnlt3Bkdv5uHZdWfx8/Re8HaW6HxvmnaApjSxlu+IPR1na6tbGpKPpjQxPB9NaUJII7b/UiZUGoYOgR5o08xN7/wPtfLFthcegq+rAy7fleGxr+IQdyPXBCUlhBDSmFCjjhA97b4/6nVst9qnMRGiS4gXfn+xH9r5uyNXXo7nN57HtmQeecXlxiomIYSQRoYadYToIS2vBOdSC8BzwKgugQ3aV6ivK3bP649pfUMBACeyeQxfeRRfHryOPLnCGMUlhBDSiFCjjhA97LlQcZWuf1gT+Hk4NXh/ThIRlo7uiG2zeiHIhaGoTIWvD99Ev08P46Ut5/H31Wwo1A1+G0IIIY0ADZQgRCDGGHbdb9SN6Wr4rdfa9Aj1xhud1RC36IEfj6Yg4Y4U0RczEX0xEzwnwtbMU+ge6oOwZm4I9XZCdikgLVXCRyQGX2M+FY2GoVihgqwcSMsvgULNobC4DFcKOKgSMlGqYpArVJCXqSBXqCArU2r/LVeoUFRW8VIo1eB5DqL7LzHPwdVRDE9nCbycJfB0kcDfwwkBHo7IKOQQkVeMVs08IRIyvwshhBCjo0YdIQJduivFrZxiOEl4jOzob/T98xzwSAc/PNElCJfuSrH3QgYOXMpEhrQM8elSxKdLq2wtxrILMeA5QCziIeIAjVqEqLN/o0yp0W6Dc0er5BEB1y4ZvdyV+/726jE4SXiE+3sgIsADHQI90KuFD9o0c3ug4UkIIcT4qFFHiECVjwUbHuEPN0fTfXU4jkPnYC90DvbCWyPCsHnXH3Bu0QU3sktwM0eO2zlyZMsqrsBpGFCuqmzEcYBGU21fzhIero4SuDuKoCorRrCfL9ydJPdfYrg5iiv+Vvm3u5MEbo5iOElE0DAGtabipVJXXOGTlpajsESJghIlMqWlSMsrxrX0HBSqRChTapCQXoiEKs+49XaRoHdLH/Rr3QRD2zdDsDdNoksIIaZAjTojoseE2e+jfJRqDfZeyAAAjOrkp3eZDH0cjUqlgq8TMLxTM+08RUqlEocOHcLgIUNRrAJUag0U5UrEHT2KgQMGwMPFEWKOIS72MEaOGA6JRKLNM3x4F6PPJVW574eHDkFmkRJXM4tw7V4REu5KEZ9WiIISJf66koW/rmRh0d4raOfvjqHtmmJoW1+dMakvNoak0WPCGlYGQ/ZNdQs9JsxQ9JiwB9+zPvSYsAagR/k0HlcKOHx/TQQ3CcPS7mqIaIiRICoNkF4M3JRxuFrA41YRwPDfrdgAF4beTTXo0YTB08GCBTUSekwYIcQU6DFhZkSPCTMszZYe5TN30xkWGhXNFu2+aHOPozF17PTZ970COfv1VAqbtf40C3t3PwuNimahUdGs5dvRbNpPJ9mhy3dZWZnCYudczXX0mDCqW6w9dlS3mOacM3Xs6DFhNoAeE2ZYmrU/ykdaqsTf13IAAE/1bC74cTFC9i003V4e5ePnJcHTvV3xdO9Q5MpK8Nm2v5Gs8sW5tEIcScrFkaRctGziimcfCsVTPYPh4SSs7PSYMOs6zg3J15jqFmPma+x1S0Py0WPCCGlEDlzKRLlKg3A/d3QINPyWGqnO01mC/n4M22b3RswbkZg5oCXcncS4nVuMpdGJ6PvxP/jkj6vIpYmYCSFEEGrUEVKP38/fAQCM6x4EjqOpOUyhZRNXvP9EBE6+MxTLxnZEWz83FJersfbILUR+GYffbvPIKCy1dDEJIcSqUaOOEB3S8kpwJqXisWBjGvCsVyKMq6MYU/qE4q9XB+Gn6T3RNcQLCpUGcfd4DP3fUSzcdQnZsjJLF5MQQqwSNeoI0eHXs2kAjPdYMCIMx3EY2t4Pu17shw0zeqCNhwYqDcMvp9Iw6PMYfPbnNUhLTTP9BCGE2Cpq1BFSB6Vag+1nK269PtO7uYVL0zhxHId+rX3xUgcNfpnZE92be6FMqcGa2GQM+iwGPxy9DaWm/v0QQkhjQI06Qurwz9Us5BQp0MTNEcMj/CxdnEavdwsf7JzbD98/2wNtmrlBWqrEZ3/dwCcXRDiUmA1GU24SQho5atQRUodfTlXcep3QMxgSmm3YKnAchxEd/PHnq4Pw+VOd4efuiDwFhxe3XsCzP51GUlaRpYtICCEWQ/9TEVKL9PwSxN3IBQA804tuvVobEc9hQs8Q/PVKfwwP0kAi4nD0Zi4eXRWHxXuvUH87QkijRI06Qmqx9XTFVbqBbZqguS89nslauTqK8URzDf58uT9GRPhBrWFYfzwFQ788guiLmaA7soSQxoQadfelp6eje/fucHJygkqlsnRxiAWVKdXaRt2UPnSVzhY093HB99N6YvPMPmjd1BW5cgVe23EJ313lkZZfYuniEUKIWVCj7r6mTZvi8OHDeOihhyxdFGJhuy9koqBEiWBvZwyP8Ld0cYgeBrRpggOvDMTrw9vCQczjmpTHY18fx5rYm1CqaZgsIcS+UaPuPicnJ3h5eVm6GMTCGAPWn0gFAMzo1wIinp4gYWscxSK8PLQNouf1RRsPDRQqDT778zoe/yoOF9ILLV08QggxGbts1C1atAgRERHgeR7btm2rlpaTk4PHH38cLi4uCA8Pxz///GOhUhJrdK2QQ3JOMVwdRHi6V4ili0MaoGUTV8yL0ODz8R3h4+qApCw5Jv5wGntSeZQp1ZYuHiGEGJ1dNuratGmDVatWoXfv3g+kzZs3D4GBgcjNzcXy5csxYcIEFBQUWKCUxBrFZlZcmXu6Vwg8nCQWLg1pKI4DxnQNxD+vD8bYbkHQMOBwBo/Ra07gXCp97wkh9kVs6QKYwtSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtmuD9KxQKKBQK7bJMJgMAKJVK7atyuba/Nf9tTLW9lzHz6dpO37T64iQkjsaUeLcA16Q8OABTewcLeh9jxE1XupC41bbOnLGzhXPOzUGCz8Z1wNC2Pnj394u4lVuCp747jml9QtBRIzy+Qj+ToRpatzT241zXOkvXLaaMHdUthuezdOyElFHf7Thmx9OwR0ZGYs6cOZg0aRIAID4+HiNHjkR2drZ2m/nz58PFxQVLlizBE088gXPnzqF79+5YvHgxBg4cWOt+Fy9ejCVLljywfsuWLXBxoekvbNXGGzzO5fLo4qPB8+HUqd5elaiAXSk8TudU3Kho6sTwTGs1WnsYYd8lJZg8eTKkUik8PPTfIdUthJDaCK5bmB0bPHgw27p1q3b533//Za1bt662zbvvvstefPFFvfZbVlbGpFKp9pWens4AsNzcXFZeXs6Ki4vZ7t27WXFx8QPLNdOM/TJ0/0Lz6dpO3zRdcRKybMxXUmYBa/l2NAuNimZnbt4za9x0pQuJm6VjZ6vn3F+X7rJeHx1koVHRrEVUNFu69xIrKilr0Pc1NzeXAWBSqdSgOqshdQsdZ+usW0wdO6pbTHPOmTp2pqpb7LJPXV3c3Ny0tzMqyWQyuLm56bUfR0dHeHh4VHsR2/btkdvQMCDCS4OIAHdLF4eYwZDwptg7tzf6NNWAAfjpWCrGf3cS17PkFisT1S2EkIZoVLdf5XI5fH19kZqaCn//ivnHBg0ahFmzZunVp67S6tWrsXr1aqjVaiQlJdEtEhuVVwZ8FC+CBhxe66hCC2rTNTqX8jlsS+YhV3EQcQyPh2gwJJBB3xltGnr7tRLVLYSQqhr17dfy8nJWWlrKBg4cyDZu3MhKS0uZWq1mjDH21FNPsRdeeIGVlJSwPXv2MG9vb5afn9+g95NKpXT71YA0a7lFEvXbBRYaFc2eWXtM7/3bwmV+U8bOns65zPwiNnPdKRYaVXEbftzqOHb9Tq5Zb782pG6h42x9dYs5Ykd1i2nOOVPHjm6/6mH27NlwdnZGXFwcpk2bBmdnZ/z7778AgDVr1iA9PR2+vr544403sH37dnh7e1u4xMRSUvNL8Nu5uwCAOQNbWLYwxKJ83RyxZnJXfDiqHRx5hnNpUoxZewYnszkw+72hQQixI3Z9+9XU6BaJ7duQxON8Ho92nhrMjaARr6RCXhmw+aYIt4oq7r8+31aNLr71V5V0+5UQYgqN+varudHtV8PSLH2L5EJqrvZWW3xKrkH7t4XL/KaInb2ec1XXyYrk7KuDiWzkx3tZkVwu6DPR7VfbOM50+5XqFkvHzlS3X+1y8mFChPjy0A0AwOOd/NEh0MNkE48S2yTiOczsH4rg4iTwHD0DmBBi/ej2awPQLRLbdUPK4ZtEEXiO4d0uajR1tnSJiD2g26+EEFOg269mRLdfDUuz1C2SktIyNnJFLAuNimbv7kxoUOxs4TK/MWNn7+dczXWmukViirqFjrPl6xZLxI7qFtOcc6aOHd1+tQESiQQSiUTncl1ppi6LsfPp2k7fNCFxM2bstp1NwbUsOTydJVgwsl295RHCGHHTlS4kbrWtM3bsdLGnc65ynSFlNAVzf0f0KYux89ly3VIfU8aO6hbD81kidoaUUQhq1BmR0Idu1/y3sctgyP4by0O3C0rK8cXB6wCAV4e2hrsD16D928qDo+31odvGPufqW1cfU36vhdQtdJxrX2fJuDVk/0LyUd1ieD5Lx05IGfXdzux96kpLS/HBBx9gx44dyM/Ph0wmw19//YWrV6/i1VdfNWdRGoz6vdie7bd4HMviEeDC8GZnNUTU/50YEfWpI4SYgtX2qZsxYwabMmUKu3TpEvPy8mKMMZaRkcHCw8PNXRSjoT51hqWZu99LfEoua/l2xRQmcdfvGSV2ttB3wxixayznXM111KfOPo8z9amjusXSsbObPnX79+9Heno6HB0dwd2fJiAgIACZmZnmLorRUZ86w9LM0e9FpdZg4Z5EaBjwROcADGjrV+e21KfOMPZ0zlWuM6SMpmBNfcPs6ThTnzqqW4RsZ0t96sz+mDAvLy/k5ORUW3f79m0EBgaauyikEfkh7jauZMjg6SzBolEdLF0cQgghxOjMfqXulVdewahRo7Bw4UKo1WpER0fjo48+srn+dLWhgRLW2Zk5Ja8YK/9OAgC880hbeDnxepe/LrbSIddeOzPTQAk6zjRQguoWQ/NZOnZCyqjvdhaZfHjHjh34+eefkZaWhqCgIMycORMTJ040dzEajDozWz8NA1YninBTxiHcU4O57TWghwMQU6GBEoQQU7DagRL2iAZKGJZmjs7Ma2NvsNCoaNbuvQMsOavQ6LGzhQ65DTkvGts5V3MdDZSwz+NMAyWobrF07Gx6oMRnn30maLu33nrLxCUxLRooYViaqTozX7snwxcHbwAA3n08Aq2aedabR5/9G5KHOjMbno8GSlhHh397Os40UILqFiHb2dJACbM06q5evar9d0lJCXbt2oU+ffogJCQE6enpOH36NMaNG2eOopBGokypxitbL6BcrcHQds0wtU9zSxeJEEIIMSmzNOrWrVun/ff48eOxY8cOjB49Wrtu79692LhxozmKQhqJz/68jutZRWji5oDlT3XWTp9DCCGE2Cuzj379+++/8euvv1Zb99hjj+HZZ581d1GMjka/WscItYOJWfj52G0AwCdjO8DTsfbRrvqUv6F5LD3Kyl5HqNHoVzrONPqV6hZD81k6dkLKqO92Zh/92r9/fwwfPhzvvfcexGIxVCoVPv74Y/z55584fvy4OYvSYDRCzfpklwJfXhKhTM0hMkCDsS00li4SaURo9CshxBSsdvRrcnIy69OnD3Nzc2OtWrVibm5urHfv3uzGjRvmLorR0OhXw9KMPUJNKi9lI1bEstCoaDZ+zVFWXFpm8tjZwiirhpwXje2cq7mORr/a53G2tdGvWflS9uelu+xYUhYrK1PotW+qWwzfjka/CtCqVSucPHkSaWlpyMzMREBAAJo3t49O7DT61bA0Y4xQY4zhg52XcT1LjiZujlg9pQdcnBzr/Rz6lr+heWiEmuH5aPSrdYzitKfjbAujX1OKgI9Wn0KOvBwA0DXEC99N7QF/Tye99k11i+Hb2dLoV7M/Jiw7OxvZ2dlwcnJCy5Yt4eTkpF1HiKG+PnwTuy9kQMRz+PqZbvDzcKo/EyGEWLF7sjJ8f02EHHk5mrk7wsVBhAvphZj840nkF5dbunjECpn9Sp2/vz84jgO735Wv6qhEtVpt7uIQO7A3IQMrDlU8Bmzp6A7o29rXwiUihJCG+/SPJBSrOHQIdMeOOf2QJy/HpO9P4lZOMV7ffgE/T+9l6SISK2P2K3UajQZqtRoajQYajQZ3797F3LlzsX79enMXhdiBc6kFeGNHAgBg1oCWmNIn1MIlIoSQhruQXoj9l++BA8PHYzrAxUGMEB8X/Di9JxzFPGKv5+CHuFuWLiaxMnpfqTt9+nSdab1799a7AP7+/lixYgVatWpl89Oa0JQm5p124Ea2HLM2nEG5SoOh7ZrijeFhDYorTWliGHs65+pbVx+a0sTwfNZUtxibIfv/NuYGAKBXU4Y2TZy1ecOaOOP9x9vhvT2J+OLgdfQKcde5b6pbDN+uUUxp0rJly2rLOTk5KC8vR3BwMG7dMuxXQ1xcHCZMmIB79+4ZlN9SaNoBy8ktA1ZdFkGm5NDcleGlDmo4iixdKtLY0ZQmxBhySoFlF0Rg4PB2FxUCahx6xoAfr/O4XMDD35nhjc5qSMx+342Yk9mmNFGpVOzDDz9ky5cvF7R9u3btWPv27bWv0NBQ5ubmxn766aeGFsViaEoTw9IMnXbgVmY+6//J3yw0KpoN/zKWZRcaJ5Y0pQmdczXX0ZQm9nmcrX1Kkw/3XWahUdFs6g/H68yXmV/Eui89yEKjotn0lXupbjHyOWfq2FntlCYikQjvvPMO/P398dZbb9W7/XfffVdt2dXVFW3btm3Qr1prQVOaGJamz1D5QgUwc/MF3CksQ6ivCzbP6oOmRh7pSlOaGMaezrnKdYaU0RSsaWoOezrO1jiliUqtwZ6ETADApF4hUKVk15rP31uCzyd0xvPrzyI2k8eZNBkGt/PX+72pbqEpTarRaDTYunUrXF1dBW1/5swZDB48WPvq2bMnPDw8sGLFioYWhdi59IISfHVFhFu5JQj0dMLmmX3QjKYuIYTYkbgbucgpUsDH1QGRbZvq3Pbhdn54plcwAOCt3y9DWmKaPoHEdujdqHN2doaLi4v25ejoiHffffeBK3B1Wbp0aa3rly1bpm9RSCOSnCPH5B/PIE/BobmPM7bP6YsQH+pjRAixLzvOpQMARncNhIO4/v+i336kLZo6MWTJFFi4+5J2ujDSOOl9+/XatWvVll1dXdGkSZN6823fvh0AoFKpsGPHjmonXkpKCnx8fPQtCmkk4tMKMXfLBeQVl8PPmWHLzF4I9qYGHSHEvhQUl+PvxIqJ+Cf0CBGUx8VBjGfD1FiVKEH0xUwMa++HMd2CTFlMYsX0btSFhho2D9i3334LACgvL8eaNWu06zmOQ7NmzWieOlKr87kctq47i3KVBh0C3TE5sICeFkEIsUv7LmagXK1BRIAHIgI9BE9jEeoOzItsha8OJ+P9PZfRq6UPgrycTVxaYo3M9kSJmJgYAMBHH32E9957z1xvS2yURsOwJvYWNtwQAdBgWHs/fDG+A478c9DSRSOEEJPYcfYOAOCpHsF65507qCXibuYhPq0Qr/96Ab/M6gOxiOY5aWzMcsRzc3O1/37hhRe0z3qt+SIEAKSlSryw6Sz+989NAMBz/UKx9tkecHU0+1PtCCHELK7dk+HSXSkkIs6g26diEY//Pd0VLg4inLqdj4W7LlP/ukbILP9LtmzZEkVFRQAefPZrJY7j6NmvBOlyYMyaE7hTWAYHMY+xzZV499FwiHgOGjo9CCF2aue5iqt0D7drBh9XB4P20aKJK1ZN6ob/23QWv55NR4CXE+YNbll/RmI3DGrUpaam4rfffkNGRgYCAwMxbty4B540UVVlgw6omALFXtFjwgx/lI9KrcG3R5Kx+rIIalaGYG9nrHyqA+5ePmnVj/KxlcfR2OujfOgxYXSc7eExYUq1Brvi7wIAxnYJ0KtcNbeJbOODRU+0x6J9V7Hy7xsQQYPmteyD6hbL18tCyqjvdno/Jiw6OhpTpkzB448/jtDQUKSlpWH//v3YtGkTRo0apc+ubB49ysc47pUAv9wUIa2YAwB09tHgmdYauNDdVmJj6DFhxBCX8zn8cF0ENwnD0u5qGKMr3B/pPP68U7Gjx0LUGBlMt2JtmckeE9axY0cWExNTbd2RI0dYRESEoPxpaWls1qxZrFevXtUeF9a+fXt9i2I16DFhhqXlFMjY7K/2srB397PQqGjW8YM/2cIf9jC5XG72x9EYun9beByNqWNnS+ccPSaMjrO54yZk/7M3nGahUdFsyZ5LesdO1zb/O3iNhUZFs9CoaPb2jnhWUlqmV9wsHTt6TNh/L5M9Juzu3bvo379/tXV9+/ZFRkaGoPwTJ05EmzZtsGTJErv75UmPCROWJhaL8cfle/gwOhGZUh4AQ2R4U3z4ZHucP3oYDg4OVv8oH0Pz0GPCDM9Hjwmzjsdd2dNxtoa6Jb+4HDHXcwAAT/duLvj7L2SbV4eHw1nC49M/r2Pr2btIL1Tg62e6wbtKnz2qW+zrMWGCG3V37txBcHAw+vTpg8WLF2Px4sWQSCRQKpVYsmQJ+vTpI2g/ly9fxtGjR8HzNNS6MTqenIeVh5MRn1YIAPBxZPhwXFc81jkIKpXKsoUjhBAz23vhLpRqhk5Bnmjnb/xnoD/fvwVybl/FltsOOHozF4+uisOKp7ugV6in0d+LWJ7gllVERAQAYO3atYiNjYWPjw9at24NHx8fHD58GN9//72g/TzyyCM4efKkYaUlNokxhpO38vHNFR7T159DfFohnCQ8XopshXe6qDEiwg8cx1m6mIQQYnY7zhk+N51QnXwYfp3dG62auuKerAxTfjqFZQeuoYxmFLA7gq/UsfvjKZo3b45jx44hPT1dO/o1JETY40yAimfHPvLIIxgxYgSaNWtWLa3qkyaI7VOo1NiXkImfj95GYqYMAA+JiMOUPqF4cUhreDuJcOBAkqWLSQghFpGYIcOVDBkkIg5Pdgk06Xu183dH9PwB+DD6KraeTsP6E2nwlIjg2OIeRncLph/WdkKvPnXp6enV5pcLCAgAYwxpaWkAKhp89WnVqhUWLFigZzGJLbmRJceei/ew8/xd5MoVAAAnCY+ePip8/GwkmjdxB2C66QMIIcQWbD+bDgAY1t6vWj83U3FxEOOTcZ0wsoMfPthzGWn5pXh1+0X8fDwVrw1vi/4tvUxeBmJaght1xcXFCA8Pr3OGao7jUFJSUu9+Fi1aJLx0xGbcKSjBH5cysPGiCOknjmvX+3k4YlrfFpjQPQAnYv9GgCc9t5UQQkrKVdh5vuLW66Te9V8QMabI8GY48FI/vPnzQRzJdsDFO1I8t+4MugR7opszh+FqDUw4XoSYkOBGnaura7VJhA312Wef1bre0dERwcHBGDp0KLy8vBr8PsS01BqGxPRC/HMtG4cSs3A1U3Y/hYOY5zCkXTOM7x6Mh9s1g4OYp6tyhBBSxb6EDBSVqRDq64KBYU3M/v6OEhEeCWFYNGUAfjqeho0nUpFwR4oEiPDHijhM6ROKcd2D4OdGrTtbIrhRZ6z77efPn8euXbvQp08fBAcH486dOzh16hRGjRqFjIwMzJw5E7///jsefvhho7wfMY5ylQbX7slw/GYO9l3jsfB8DOSK/0ar8hzQI9QbIcjFW5OGwt/L1YKlJYQQ68UYw6aTqQCAKX2ag+ct15/N180RCx+PwOxBrbDx2G2sP5aMLJkCKw4lYcWhJPQM9UIrEYeHisvh50UNPGun90CJhlKpVNi5cyeeeOIJ7br9+/dj/fr1OH78OH755Re8/vrruHDhglHej+hPWqrErRw5EjNluHxXikt3pbh+rwhKdeU5wANQwd1RjH5hvhge4Y+H2zWDuwOHAwcOwNcMfUMIIcRWJdyR4vJdGRzEPCb0ED7Q0JSauTvhlaFhaFmaBBbcFTvjM3Hydh7OphbiLETYsTwW3UK8MLhNE4iLjdcmIMYluFFnjFuvAHDo0CH8+uuv1daNHDkSkydPBgA888wzmDt3rlHei9ROpdYgu0iBTGkZMqWlyCgsxc2sIpxLEmHpxVjkFZfXms/DSYweoV7wKMvCjEf7o3NzH4iq/MKkW6yEEFK/zfev0j3RKcAsAyT0IeaBx7oG4qleociUlmLX+XRsOZqEO8UczqcV4nxaIQAxfk4+gj6tfNCjuRcUxRVdcug6nuWZ/emaERER+Pjjj/HOO+9ALBZDrVbj008/Rfv27QFUjLC1VJ+6119/HWfOnEG3bt3w1VdfWaQM+mCMQaHSoFihQkm5GsXlKuQXlSEhj4P87B1IFWoUliiRX1yOwpJy5MrLcU9ahuyiMmhq/ZHFAaho0DVzd0RbP3d0DPJEp/uvEB9nqFQqHDhwAB2DPKo16AghhNSvoLgc+xIqnsA0tW+ohUujW4CnM2YPaIkg2VV06/8wjiYX4O/Eezh6Ixt5xeU4cOkeDly6B0CMNddj0DHIA52CPLX/b7TwdbXoreXGyOyNug0bNmDy5Mn4/PPP0axZM2RnZyM8PBxbtmwBAGRlZWHlypXmLhbOnz8PuVyOuLg4zJ07F2fOnEGvXr2M/j7Hk/PwbyaHzGMpUDMO5SoNlOqKV7lKg3I1067T/lVroFBpUHq/4VaiuP+3XA11ra0zEZCUqLMcEhEHPw8nBHg6IcDTGc29nSC9cwPjhvVHmL8H3J3oNxchhBjb5pOpUKg06BjkgW4hXpYujmABnk6Y3Kc5JnQPwN7oAwjq1Bfn0mU4dSsXp5JzIVeocPJWPk7eytfmcXMUI6yZ23+vphV/Q3xc6KKAiZi9Ude2bVucPXsWKSkpyMrKgr+/P0JD//u10rt3b/Tu3dvcxcKJEycwbNgwAMCwYcNw8uRJkzTqdl/IwK4UEZBi3El3nSUiuDqK4OogBldejJZBTeHj6gQfVwm8XBzg4+oAbxeHikaclxOauDpW+wWlVCpx4EASOgZ5mPTZh4QQ0lgplGpsOJECAJg9sJXNTvgr5isGxj0U1gwvDAjFvv0HENZ9IK5lFePS/X7YVzNlkCtUuJBeiAvphdXyO4h4BHk7I1j7ctH+DfRygq+rIxzE9ChRQ5i9UVepWbNmEIlEek9eLMSiRYuwY8cOXLt2DVu2bMGkSZO0aTk5OZgxYwZiYmIQEhKCNWvWYOjQoSgsLETr1q0BAJ6enrhy5YpRylJTl2BP3E6/i9DgIDhKRHAQ85CIeDiIeTiI/vv3f+s47bKLQ0WjzdVRXPHv+39dHMTaXz0VjbMDeOyx7tQ4I4QQK7I7IRO58nIEeTnjsU4Bli6O0Yg4oH2AOzo398HTvSoGfqjUGiTnFONmtrzilVPx91aOHAqVBrdzi3E7t7jOfXq7SNDEzQGcgsc/xZfg5+kEH1dHeDiL4eEkgaezBB7OEng4ie//lVBDEBZo1F26dAnTpk3DxYsXAfw3VYqDg4OgyYuFaNOmDVatWoX333//gbR58+YhMDAQubm5OHjwICZMmIDk5GR4eXlBJquYa00mk5msX9+UPs3hnXcZjz3WiRpdhBDSSGgY8POxFADA8wNaQiKy7waIWMQj3N8d4f7u1darNQwZhaW4U1CKOwUluFNQivT7f+/klyC7SAGVhqGgRImCEiUAHkkXM4W9J8/BWSKCo4QHU4rw9c1jcHEUw0ksgpODCI7iikdVinkeYp4DxzFk3uFxet9VOEhEEPMcxKKKNBHPAYzhxh0OqUduQSQSgeMADhw0GjWu3+WQcTQF4vvrNRoNrmZyyD6RWrEOFesS73EoOJUGkVgMjVqNK1kcpGcqniRyOYtDd1kZQnyN1xYwe6Nuzpw5GD16NE6cOIGAgABkZmbigw8+0F4lM4apU6cCAJYtW1ZtvVwux549e5CSkgIXFxeMGTMGK1aswL59+9C3b1+sXbsWTz/9NP7++2/MmDGjzv0rFAooFArtcmVjUKlUal+Vy7X9rflvY6rtvYyZT9d2+qbVFychcTQmQ/ZvjLjpShcSt9rWmTN29nTO1beuPg2Nb0PrFjrOta+zhrolsYDDrdwSuDuJMa6rv6D3ElIuW6xb/N0l8HeXoGdzjwfSNBqGwlIlcuUKZBaWIPbkefi3aIv8EhUKSpUoKlVCVqaCrPJvmUo7Z6pKw1CkUKFIAQAc8nLqvhL4Hx7Hs9N1pIuwP/1mrev3ptXsRiXCrpTrD6z77fa1asvbb13V/vuRezL4e9T/pCWh8eWYmSeb8fLyQn5+Pnieh7e3NwoKClBeXo5WrVrhzp07Rn2vyMhIzJkzR3v7NT4+HiNHjkR2drZ2m/nz58PFxQXLly/Hq6++inPnzqFLly745ptv6tzv4sWLsWTJkgfWb9myBS4uLkb9DIQQ21FSUoLJkydDKpXCw+PB/7DqQ3WLfWIMWHVFhNtFHIYGavBkqMbSRbIrGgaUqYFyNVCuAZT3X+Ua7r/l+2kaBmju51Gzyr+c9t+V69Ws4rgBAEP1f2v/svtplesEbFN1OwB4NESDIAFz9QutW8x+pc7LywuFhYXw8fFBUFAQEhIS4OPjA7lcbvL3lsvlDwTDw8MDhYWFACB41O0777yD119/Xbssk8kQEhKCIUOGwMPDAyqVCjExMRgyZAjEYnG1ZQDV0oyt5nsbO5+u7fRN0xUnIcvGZsj+jRE3XelC4lbbOnPGzp7OuZrbAPp9XyuvrBmqIXULHWfrrVvibuTg9snLcBTz+GBiPzR1dxSUT0i5qG7RlS9S4DlX+3amjB1gmrrF7FfqPvroI3To0AFjx47FDz/8gAULFoDnecyePRuff/65Ud9L3yt1+lq9ejVWr14NtVqNpKQk+jVNSCPX0Ct1lahusR9Vr9INDtBgXAu6Skf0J7huYRaWkpLCLl++bJJ9Dx48mG3dulW7XFRUxBwcHFhmZqZ23cCBA9mGDRsa9D5SqZQBYLm5uay8vJwVFxez3bt3s+Li4geWa6YZ+2Xo/oXm07Wdvmm64iRk2RpiZ4y46UoXEjdLx86ezrma6/T9bLm5uQwAk0qlDapTDKlb6DhbZ91yODGThUZFs7C397GUe/lGjx3VLaY550wdO1PVLWa7/RoREVHvNomJuifMFUqpVEKtVkOj0UCpVKKsrAwODg5wc3PDk08+iUWLFmHlypU4dOgQLl++jFGjRhnlfQkhhJBKjDF8HZMMAOjnzwTfdiXEUGa7/ers7IzmzZtjypQpGDRoUK2TLg4ePNgo7zVjxgxs2LCh2rqYmBhERkYiJycH06dPR2xsLIKDg7FmzRrtpMP6olskhJCq6PYrqSqxgMPaayJIOIb3u6vhaV2PeSU2xOpuv8pkMrZ+/Xo2fPhw1rJlS/bWW2+xhIQEc729SdHtV8PSrOkWiaH7t4XL/KaOnT2dczXX0e1X+zzO5ohbaZmCDf8yloVGRbNFuxJMFjuqW0xzzpk6djZ/+9Xd3R3Tp0/H9OnTkZWVhW3btuGFF15AcXExfv31V0G3Z62dRCKpNqFwbct1pZm6LMbOp2s7fdOExM3aY2eMuOlKFxK32taZM3b2dM5VrjOkjKZgTd8RezrOpozbrrPpSMqWw8NJjHlDwnA89rZJY0d1i+H5LBE7Q8oohEUeE+bo6AhnZ2c4OTkhLy8PGo19jAaiyYdtf4JQffdPkw/b1zlX37r6mPLcpMmHbaduKS1X48u/KiahfTGyFVwl1csllL1OPiyUJc85XenGip2QMuq7ndn61CkUCuzduxebN29GfHw8xowZg8mTJ+Ohhx4yx9ubBPV7IYRURX3qCAAcvMNhf7oIPo4M73ZVQ2LfTwQjZmB1feo8PT1ZeHg4W7x4MTt27Bg7derUAy9bRX3qDEuzhn4vDY2dLfTdMHXs7Omcq7mO+tTZ53E2ZdzScmUs4v0/WGhUNPvtTKrJY0d1i2nOOVPHzub71Hl5eUGhUGD9+vXYsGEDWI0LhBzH4datW+YqjklQnzrD0qypv5Ch+7fmvhuNod8L9amj42wtdcvyvy6huFyN7s29MLZ7CHj+v5keqE+dYahPnRX2qUtJSTHXW1kM9amzrX4vQsporDyW7rthr/1eqE8dHWdrqluOJ+ch+mImeA744PF2UKtVUKtNGzuqWwzPZ+nYCSmjvtuZ/TFh9oT6vRBCqqI+dY2XSgN8dlGErFIOA/01eKqlfQwAJNbB6vrU2TPqU2dYGvWpM0/fDVPHzp7OuZrrqE+dfR5nU8Tt67+vs9CoaNZt6V8sV1r/99hYsaO6xTTnnKljZ/N96hoD6lNnWJo19RcydP/W3HejMfR7oT51dJwtWbfcypFrHwf27mMR8PWo/aoq9akzDPWpE1630EBrQgghxEAaDUPUzotQqDQY2KYJxncPsnSRSCNGV+qMiAZK2EZn5rrQQAnD2NM5V9+6+tBACcPz2WrdsuFEKs6kFMDVQYQPn2wPlUqlV/l1oYESNFBC3+1ooEQDUGdmQkhVNFCiccktA5YniFCu4TChpRoD/Om/U2IaNFDCjGighGFpNFDCPB1yTR07ezrnaq6jgRL2eZyNEbeS0jI2dvVRFhoVzZ7+7hgrK1NYJHZUt5jmnDN17GighA2ggRKGpVlTJ3BD92/NHXIbQ2dmGihBx9ncdcvXsUk4n1YId0cxvpjQFY6ODvXmoYEShqGBEjRQghBCCDGJ07fz8c3hGwCAZeM6IcSHbo0T60BX6oyIBkpYb2dmIWighGHs6Zyrb119aKCE4flspW6RlirxyrZ4aBgwtlsgHo1o2uDvf0PyUd1ieD5Lx05IGfXdjgZKNAB1ZiaEVEUDJeybhgHfX+NxtZBHEyeGNzur4SSydKlIY0ADJcyIBkoYlkYDJczTIdfUsbOnc67mOhooYZ/H2dC4ffZHIguNimZtFx5g8Sm5VhE7qltMc86ZOnY0UMIG0EAJw9KsqRO4ofu35g65jaEzMw2UoONs6rrl4JV7WB17CwDw6fhO6BrqW+9n0af8Dc1HdYvh+WigBCGEENJI3MyWY8H2BADAjH4tMLZbsIVLREjtqFFHCCGE1CGnSIHn1p9GkUKF3i18sPDx9pYuEiF1okYdIYQQUovScjVmbTyL9PxSNPdxwZqp3SER0X+bxHrR2UkIIYTUoNYwvLwtHgnphfBykWD9c73QxM3R0sUiRCcaKGFENE+d9cwlZQiap84w9nTO1beuPjRPneH5rKluYYzh/b2JOJSYBQcxj28nd0WIl6PBcaV56gxD89Q9+J71oXnqGoDmkiKEVEXz1Nk+xoDfU3j8e48HB4bpbTXo5kv/TRLLonnqzIjmqTMsjeapM898SKaOnT2dczXX0Tx19nmc61qWy+VsWfRlFhoVzUKjotnWk7etPnZUt5jmnDN17GieOhtA89QZlmZNc3AZun9rng+pMcwlRfPU0XFu6PeBMeCbI6n4Pi4FAPDhmI6Y1Ce03vLqg+apMwzNUye8bqFGHSGEkEZNo2HYeZtHXNZtAMB7j7fHsw8Zt0FHiDlQo44QQkijpVJr8NbvlxGXxYPjgA9Hd8RUatARG0WNOkIIIY1SUZkSr/8Wj9jrOeDB8Pn4zhjfs7mli0WIwahRRwghpNHJKwMm/nAaN7KL4STh8WwrJZ7sEmDpYhHSIDT5MCGEkEblTEoBvrwkwo3sYvh5OGLLzF7o6EPTlhDbR1fqCCGENAoaDcOa2Jv48mAS1BoOHQLd8dP03vB1ESE9wdKlI6ThqFFnRPRECXqihKHb0azvhm1HT5Sg4yz0OMuVwKxN5xB3Mx8A0KOJBmundYOni8gq6xah+ahuMTyfpWMnpIz6bkdPlGgAmvWdEFIVPVHCOl3M57D9Fo8iJQcJxzC+pQYPNWPgOEuXjBBh6IkSZkRPlDAsjZ4oYZ6Zy00dO3s652quoydK2PZxvptTyF765az2CRFDPj/MLqbl2UTdIjQf1S2mOedMHTt6ooQNoCdKGJZmTbPlG7p/a565vDHM+k5PlKDjXDVNrWE4lsVh8ZpTKChRgueAhwM0WDmrL9xcnLS3smyhbhGaj+oWw/PREyUIIYQQK3T6dj4W7bmMq/dEAJQI93PHsjERuHvxGBwlIksXjxCTokYdIYQQm3fxjhRfxdzCkaQcAICziOGNR9pjer+WYBo17l60cAEJMQNq1BFCCLFJjDGcSy3AD9d4XD5xCgAg4jlM6BGETiwFTz/UHGIRD6VGbeGSEmIe1KgjhBBiU8pVGhy4lImfj93GxTtSADx4DhjbLRgvDw1DoIcDDhxIsXQxCTE7atQRQgixeowBVzJk2HsxC3sT7iJXXg4AcBDz6OGjwuJJAxEe6AXAdPPNEWLtqFFHCCHEKjHGkJQlx5+XMrDtogiZJ09q05q6O2LaQ6GY0CMQp478jVZNXS1YUkKsAzXqCCGEWI1ihQoJtwtx5HoODl29h/T80vspHCQiDiMi/DG+RxAGtmkKiYinq3KEVEGNOkIIIRaTJSvDpTtSnL6di78uifD6qRioNf896MhBzKNfKx/4q7LwxqRhaOJBT9YgpC7UqCOEEGJypeVqJOWU4HZuMZLuFeFyhgyX7kqRU6SoshUHgCHY2xl9W/liaHs/DGrbBBKO4cCBA/B0Nt3EwITYA2rU3Zeeno7Ro0cjMTERcrkcYjGFhhBChCotVyNTWop70jJkSsuQKS1FhrQMKTlyJN4R4ZUT/9Saj+eAsGZu6BTkASdZOmaPjkSLptWfbUm3WAkRhlou9zVt2hSHDx/GmDFjLF0UQggxO5VagxKlGiUKNYrLVf/9LVehWKFGYbECJ+9wSPjjOgrLVCgsUaKgpBwFxeXILy6HrEylY+8cAMDbRYJWTd3QqokrOgZ5omOQJyICPODsIIJSqcSBA2kI8nI2zwcmxA5Ro+4+JycnODk5WboYhBBikINX7uGfq/dwK5XHwe0XodYASrUG5WoNylUa7b+VKgalWgNFlXWl5WooVBoB7yIC0lPrTHVxECHA0wkBns73/zohwNMRWTcSMHnUMDTzpBGqhJiSzTbqFi1ahB07duDatWvYsmULJk2apE3LycnBjBkzEBMTg5CQEKxZswZDhw61YGkJIcS0Lt2V4tezdwHwQM49g/cj4jm4Oojg6iiGS9W/DiLI87LQKbwVfN2c4OMqgZeLA7xdHODtIkEzDyd4OInBcVy1/SmVShy4lwBvF4cGfsL/b+9ug6Iqwz6A/1nkbVl2NzGSt0cEUcfAZhh10iSw8RE1a5pGnJEUsSzzdXxrKh3Fl6jog2HlFB/StAk0R8fS8Q0DjNLUkUYtTctRQAURkl12BVzc+/ngw8lFXJbDLrt7+P9mzrjn3Pd9zrXXOV3du2d3IaLOeO2kLj4+Hps2bcLq1asfaVuwYAEiIiJQV1eHI0eOID09HVeuXEFLS4vN5A8ANBoN9u/f31NhExG5xJi4fujjA1z5+xISE4Yh0N8PAb4q+PXxgZ+vCv6+Kvj1efCvfx8V/HxV8PP1gb+vCkH+vgj27wN1gC/8fVWPTMyA/5+cHTiAyWmD4efHLywQeSKvndTNmDEDAJCTk2Oz3WQy4YcffsC1a9egVqvxyiuvYOPGjdi3bx8yMzNRWlra7WO3tLSgpeW/b2wZjUYAD4pe29K23tG/7R87U0fHcuY4e/262tZZnhzJozPJ2b8z8mav3ZG8dbStJ3OnpGuus22d6W5+u1NbRvyPFs+EB6Ho7l/43xER8iZeworWx9yGVdJ59oba4ug41hb549ydO0di7Go/HyGE6Lyb50pNTcXbb78tvQP3+++/Iy0tDbW1tVKfRYsWQa1WIzc397H7aW5uxpQpU3DmzBkkJSVh7dq1SE5O7rDv2rVrsW7duke2FxQUQK3mbygR9VZ3795FRkYGDAYDtFpt5wPaYW0hoo44XFuEl0tJSRGFhYXS+s8//yzi4uJs+qxcuVLMnz/facdsbm4WBoNBWqqqqgQAUVdXJ+7duyfMZrPYu3evMJvNj6y3b3P2Inf/jo6z16+rbfby5Mi6J+TOGXmz1+5I3tydOyVdc+23dfW51dXVCQDCYDD0eG3heVZWbXF0HGuLa645V+fOVbXFa2+/Po5Go5FuWbQxGo3QaDROO0ZAQAACAgKctj8iIoC1hYi6R3G3X00mE0JDQ1FRUYH+/fsDAJ5//nnMmTMHmZmZTj325s2bsXnzZty/fx+XL1/mLRKiXq67t1/bsLYQ0cMcrS1eO6mzWCy4f/8+JkyYgDfffBPp6enw9/eHSqVCeno6+vbti7y8PBQVFSErKwtXrlzBE0884ZJYDAYD9Ho9rl69ipCQEFgsFpSUlGDcuHHw8/OzWQdg0+Zs7Y/t7HH2+nW1zV6eHFl3Njn7d0be7LU7kreOtvVk7pR0zbXvA3Ttv9fGxkYMHDgQDQ0N0Ol0DuficbpSW3ielVVbHB3H2iJ/nDtzB7iotsj64IcHmDVrlgBgs5SUlAghhKitrRWTJk0SQUFBIj4+XhQVFbk0lrbPvXDhwoULAFFVVcXawoULF6cvndUWr32nzpNYrVbcvHkTISEh0u87jRw5EqdPn5b6tK0bjUZER0ejqqqqW7dn7Gl/bGePs9evq22Py1NH656aO2fkzV67I3nraFtP5k5J19zD27qaNyEEGhsbERERAZVK1Wn/znSltgA8z/a2eWNtcXQca4v8ce7Knatqi+K+KOEOKpUKUVFRNtt8fX1tTlT7da1W67Li0f5Yzh5nr19X2zrLU0djPC13zsibvXZH8tbRtp7MnZKuuY62dSVvzrjt2kZObQF4njva5o21xdFxrC3yx7k7d86uLd1/KUkdWrBggd31njy2s8fZ69fVts7y1JN5k3s8Z+TNXrsjeetoG685+Xnq6euuK3ieHWtTQm1xdBxri/xxSssdb7/2MKPRCJ1O1+1vx/VGzJ18zJ083pY3b4vXUzBv8jF38rgqb3ynrocFBAQgOzubv0UlA3MnH3Mnj7flzdvi9RTMm3zMnTyuyhvfqSMiIiJSAL5TR0RERKQAnNQRERERKQAndUREREQKwEkdERERkQJwUueBqqqqkJSUhMDAQLS2tro7HI+3bNkyJCcnY/Hixe4OxavwOpPv2LFjGD16NMaOHYtly5a5O5wu4Xl3HGuLPLzG5OtubeGkzgM9+eSTKC4uxrPPPuvuUDxeeXk5TCYTysrKYLFYZP05md6K15l8gwYNQmlpKX755RfU1NTg/Pnz7g7JYTzvjmFtkY/XmHzdrS2c1HmgwMBA6PV6d4fhFU6cOIHx48cDAMaPH4/ffvvNzRF5D15n8kVGRkq/L+Xn5wdfX183R+Q4nnfHsLbIx2tMvu7WFk7qnCA7OxvDhg2DSqXCjh07bNpu376NF198EWq1GkOGDMFPP/3kpig9n5w8NjQ0SL/GrdPpcOfOnR6P2xPwGpSvO7krLy9HXV0dhg0b5pHx0QOsLfLx+pPPHbWFkzoniI+Px6ZNmzBq1KhH2hYsWICIiAjU1dUhNzcX6enpuHPnDmpqapCammqzTJkyxQ3Rew45edTr9TAajQAe/NmV3vrqUE7u6AG5uaupqcHixYuxZcsWj4uP9cUWa4t8rC3yuaW2CHKalJQUUVhYKK03NjYKf39/cfPmTWlbcnKy2LZtm8P7s1gsTo/T03Ulj2fOnBFvvfWWEEKIefPmiZMnT/Z4vJ5EzjXYW6+z9rqSu6amJjFu3DhRXl7ukfE5ur/edt5ZW+RjbZGvJ2sL36lzob///hs6nQ7h4eHStmeeeQZ//vmn3XHNzc0YP348zp49i7S0NJSVlbk6VI9mL49JSUkICgpCcnIyVCpVh6+IejN7ueN1Zp+93G3duhUXLlzA0qVLkZqaihMnTnhUfPbwvP+HtUU+1hb5XFlb+jg7WPqPyWSSPpPRRqvVoqGhwe64wMBAHD161IWReZfO8piXl9fzQXkJe7njdWafvdzNmzcP8+bNc1NkD7C+dB9ri3ysLfK5srbwnToX0mg00mcy2hiNRmg0GjdF5J2YR/mYO/k8PXeeHp83YA7lY+7kc2XuOKlzofj4eBgMBtTU1Ejbzp49i6efftqNUXkf5lE+5k4+T8+dp8fnDZhD+Zg7+VyZO07qnMBisaC5uRlWq9XmsUajwcsvv4zs7Gw0NTXhxx9/xB9//IGXXnrJ3SF7JOZRPuZOPk/PnafH5w2YQ/mYO/nckrtuf62DxKxZswQAm6WkpEQIIURtba2YNGmSCAoKEvHx8aKoqMi9wXow5lE+5k4+T8+dp8fnDZhD+Zg7+dyROx8hhOj+1JCIiIiI3Im3X4mIiIgUgJM6IiIiIgXgpI6IiIhIATipIyIiIlIATuqIiIiIFICTOiIiIiIF4KSOiIiISAE4qSMiIiJSAE7qiNxo7dq18PPzQ//+/Z22z9TUVOzYsaNLY5YsWYKgoCAMHTrUaXEQkfuwtvROnNSR28XExECtVkOj0UCj0SAmJsbdIfWoN954w+YPO7tCQkICrl279tj2vLw8HDx40KUxEPU01hbWlt6GkzryCMXFxTCZTDCZTB0WCIvF0vNBeQBnPO/r16+jtbW11/0PjQhgbXkc1hZl4qSOPFJpaSmGDh2KVatWoV+/fvjwww/R1NSEhQsXIiIiAlFRUcjNzZX6m81mZGRkQK/XIykpCStXrsTEiRNt9vUwHx8f6RXsv//+i4yMDISFhSE2Nhbbtm2T+qWmpmL9+vUYMWIEtFotpk+fjnv37kntO3fuREJCAkJCQpCYmIhLly4hJycHs2fPtjnec889hz179jj03GNiYvDJJ59gyJAhGDZsGABg/vz5iIiIgF6vx4QJE1BZWSn1P336NIYPHw6tVou5c+fCarXa7O/w4cNIS0sDAGzZsgUDBgyARqNBXFwcSkpKHIqJSClYW1hblIyTOvJY//zzD9RqNaqrq/Huu+9ixYoVMBgMuHz5Mk6dOoXt27dj3759AIB169ahvr4elZWVKCgowLfffuvwcWbOnIno6GhUVVXhwIEDeP/993H27FmpfdeuXdizZw8qKytx7tw57Ny5EwDw66+/YuHChcjPz4fBYMCuXbug1Wrx2muvYe/evWhpaQEAVFRU4MKFC5g8ebLDMe3duxdlZWU4f/48AGDs2LG4ePEiampqEBUVhcWLFwMA7t27h1dffRWLFi1CfX09EhIScPz4cZt9HTp0CGlpaTCbzViyZAmOHj0Kk8mE4uJivsKmXom1hbVFsQSRmw0YMEBoNBqh0+mETqcT7733nigpKREhISGitbVVCCGE1WoVQUFB4tatW9K4zz//XGRmZgohhIiJiRFlZWVS26pVq0RaWpoQQoiSkhIxZMgQm2MCENXV1aK6utrmOEIIsXz5crFmzRohhBApKSli06ZNUts777wjli9fLoQQYs6cOWL16tUdPqexY8eKPXv2CCGE+Pjjj0VWVlaH/bKzs8XcuXMfycf333//uHSJv/76S4SGhgohhCgtLRVxcXFSm9VqFVFRUaKwsFAIIURra6vo37+/MJvNwmQyCa1WK3bv3i2am5sf2W9HeSLyZqwtrC29Dd+pI49QVFSEhoYGNDQ04KOPPgIAhIeHw9fXFwBw+/ZtNDU1YfDgwdDr9dDr9Vi5ciVqa2sBANXV1YiOjpb29/BjeyorK2E2mxEaGirtNz8/H7du3ZL6hIWFSY/VajVMJhOAB58niY2N7XC/M2bMkL4lVlBQgIyMDEdTAQCIioqyWc/JycGgQYOg1WoxatQo1NfXA3j0efv4+NiMPXnyJBISEqBWqxEcHIzCwkJ88cUXCAsLw9SpU3Hz5s0uxUXkbVhbbLG2KBsndeSxfHx8pMf9+vVDYGAgKioqpAJtNBqlb1WFh4ejqqpK6v/w4+DgYNy9e1daf/jbYJGRkdDr9dI+Gxoa0NjYiK+++qrT+KKjo3H16tUO29LT03HkyBGcOnUKtbW1eOGFFxx/4rB97seOHUN+fj4OHjwIg8GAU6dOSW3h4eG4fv26zdiH19tuj7SZPHkyiouLcePGDQQGBmL16tVdiotICVhbHmBtUR5O6sgrqFQqzJo1CytWrEBDQwOsVisuXrwoFaGpU6ciJycHjY2NuHTpErZv3y6NHTx4MOrr63Hs2DG0tLRgw4YNUltkZCRGjhyJNWvW4O7du2htbUV5eTkuXLjQaUxZWVn48ssvceLECQghcOnSJVRXVwMA+vbti5SUFGRlZWHatGnSuwJyNDY2ok+fPggNDYXZbMYHH3wgtY0ePRpNTU34+uuvYbFYsHnzZikGwPaDzLdu3cL+/fvR1NSEgIAAqNXqbsVFpASsLawtSsJJHXmNjRs3Ijg4GImJiejbty8yMzNx584dAEB2djZ0Oh2ioqIwffp0zJw5Uxqn0+nw2WefYdq0aRg4cCBGjRpls9/vvvsOFRUViI2NRVhYGJYsWYKmpqZO4xkzZgzy8vLw+uuvQ6vVIj09HUajUWqfMWMGLl682OXbI+1NnDgRo0ePxoABA5CYmIgxY8ZIbf7+/ti9ezc+/fRThIaG4ty5c1J7fX09qqurkZiYCACwWq3Izc3FU089hbCwMNy4cQPr16/vVmxESsDawtqiGO7+UB+RK2zdulX6MLO7HD9+XMTGxtrts2HDBhEcHCwiIyOdfvyCggIxe/Zsh/ouXbpUhISEiOHDhzs9DiIlYW1hbfFkPkII4e6JJZGzffPNN9ixYwcOHTrkluNbLBZkZmYiISEBq1atcksMhw8fRmhoKEaMGOGW4xMpEWsLa4sn6+PuAIiUpr6+HlFRURg+fDjy8/PdFsfDH2ImIu/H2kKd4Tt1RERERArAL0oQERERKQAndUREREQKwEkdERERkQJwUkdERESkAJzUERERESkAJ3VERERECsBJHREREZECcFJHREREpACc1BEREREpwP8BR2zaFSlI+C0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnUAAAHbCAYAAACtCWxXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjGUlEQVR4nOzdd3gUxf8H8Pfu3aX3AOmEEgiE3qUHaTakiSAgoIA/ELGhRkWlKCoWvqCCYqMKCCItoIKSYOgthBIgEEiBhPTc5VIuV+b3R8iZhOSyd7mez+t57gm7s7M399m9YW53ZpZjjDEQQgghhBCbxlu6AIQQQgghpOGoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIIYQQYgeoUUcIaZCSkhKMHz8eHh4e4DgOhYWFli5SvRYvXgw/Pz9wHIfdu3dbujgWERsbC47jwHEcxowZY/T9t2jRQrt/WzgnCLEH1KgjxILu3buHV155BWFhYXBycoKfnx8GDBiA7777DiUlJZYuniAbNmxAXFwcjh8/jszMTHh6ej6wzfr167X/wVd9/fjjj2Yv79WrV7FkyRKsXbsWmZmZePTRR426/6qNGRcXF3Ts2BFr16416nsY0/Xr17F+/XrtskqlwnvvvYeWLVvC2dkZrVq1wtKlS6HRaLTbzJgx44Fj+dBDD1Xb75kzZ7Bz506DynTv3j3Mnz8frVq1gqOjI0JCQjBq1Cj8888/Bu2v0s6dOxEZGQlPT0+4ubmhc+fOWLp0KfLz8xu0X0KshdjSBSCksbp16xb69+8PLy8vfPzxx+jUqRNUKhWSkpLw888/IzAwEE8++aSli1mv5ORktG/fHh07dtS5nYeHB65fv15tXW0NQGMpLy+Hg4PDA+uTk5MBAKNHjwbHcQbvX6lUQiKR1Jq2dOlSzJ49G3K5HOvXr8ecOXPg5eWFiRMnGvx+ptKsWTN4eXlpl5cvX47vvvsOGzZsQIcOHXD27Fk899xz8PT0xCuvvKLd7pFHHsG6deu0yzVj3bRpU/j4+OhdnpSUFO334rPPPkPnzp2hVCrx119/Yd68ebh27Zr+HxLAwoULsXz5crz22mv4+OOPERgYiBs3buC7777Dpk2bqn02QmwWI4RYxMiRI1lwcDCTy+W1pms0Gu2/v/zyS9axY0fm4uLCgoOD2dy5c1lRUZE2fd26dczT05P9+eefrF27dszV1ZWNHDmSZWRkaLdRKpVs/vz5zNPTk/n4+LC33nqLTZs2jY0ePVpnOX/77TcWERHBHBwcWGhoKPviiy+0aYMHD2YAtK/BgwfXuo/K8tUlNTWVPfnkk8zV1ZW5u7uzCRMmsHv37mnTp0+f/kA5X3nllWrvN3jwYDZv3jz22muvMV9fXzZo0KAH3mfRokXVyltZBarVarZkyRIWFBTEHBwcWJcuXdgff/yhzXf79m0GgP36669s8ODBzNHRkf3888+1fpbQ0FD2v//9r9q6Nm3asEmTJtX5+XXZsWMH69ixI3NycmI+Pj5s6NChTC6XsyNHjjCxWMwyMzOrbf/666+zgQMHMsYYS0lJYU888QTz8vJiLi4uLCIigu3fv58xxlhMTAwDwAoKCqrlf/zxx9nzzz9fbd24cePY1KlTtcu1HY/a1PUeujz66KMsKCio1u+FPvup6tSpUwwAW7lyZa3plftdtGgR69KlC9u4cSMLDQ1lHh4ebOLEiUwmk2m31Wg0bPny5axly5bMycmJde7cme3YsUOb3r1792rfkdGjRzORSMSkUiljjLHMzEwGgF27ds2gz0KILnT7lRALyMvLw8GDBzFv3jy4urrWuk3Vq0g8z+Orr77C5cuXsWHDBhw+fBhvvfVWte1LSkrwxRdfYNOmTfj333+RlpaGN954Q5u+fPly/PLLL1i3bh2OHTsGmUxWb3+yc+fO4emnn8akSZNw6dIlLF68GO+//772dt3vv/+O2bNno2/fvsjMzMTvv/+udywYYxgzZgzy8/Nx5MgRHDp0CMnJyQZd1dqwYQPEYjGOHTtW6y3PN954Q3t1KTMzE5mZmQCAVatW4csvv8QXX3yBixcvYuTIkXjyySdx48aNavmjoqLw8ssv4+rVqxg5cqTgcjk5OUGpVAIA4uLi4ObmpvP18ccfa8v4zDPP4Pnnn8fVq1cRGxuLcePGgTGGQYMGoVWrVti0aZP2fVQqFTZv3oznnnsOADBv3jwoFAr8+++/uHTpEpYvXw43NzedZR0wYAD++ecfJCUlAQASEhJw9OhRPPbYY9W2i42NRbNmzdC2bVvMnj0b2dnZguNRl/z8fPz55591fi+qXlF89NFH641jpV9++QVubm548cUXa33fqvtNTk7G7t27ER0djejoaBw5cgSffvqpNv29997DunXr8O233+LKlSt47bXXMHXqVBw5cgQAEBkZidjYWAAV53ZcXBy8vb1x9OhRAEBMTAz8/f0RHh5uaJgIqZuFG5WENEonT55kANjvv/9ebb2vry9zdXVlrq6u7K233qoz//bt25mvr692ed26dQwAu3nzpnbd6tWrmZ+fn3bZz8+Pff7559pllUrFmjdvrvOKy+TJk9nw4cOrrXvzzTdZRESEdrnmFbPaVJav8rO5urpqy3bw4EEmEolYWlqadvsrV64wAOz06dOMMeFX6rp27aqzHIwxtmvXLlaz6gsMDGTLli2rtq5Xr17sxRdfZIz9d6Wuris9VVW9UqdUKrWffc2aNYwxxkpKStiNGzd0vvLy8hhjjJ07d44BYCkpKbW+1/Lly1n79u21y7t372Zubm7aq1ydOnViixcvrjVvXVfRNBoNe/vttxnHcUwsFjOO49jHH39cbZtt27ax6OhodunSJbZ3717WpUsX1qFDB1ZWViboPepSeUWt5veiNnfu3Kk3jpUeffRR1rlz53r3uWjRIubi4lLtytybb77J+vTpwxhjTC6XMycnJ3b8+PFq+WbOnMmeeeYZxhhje/fuZZ6enkytVrMLFy6wpk2bstdee429+eabjDHGXnjhBTZx4sT6g0GIAahPHSEWVLNP1+nTp6HRaDBlyhQoFArt+piYGHz88cdITEyETCaDSqVCWVkZiouLtVc0XFxc0Lp1a22egIAA7dUTqVSKrKws9O7dW5suEonQo0ePah3ga7p69SpGjx5dbV3//v2xcuVKqNVqiEQiwZ/V3d0d58+f1y7zPK99j5CQEISEhGjTIiIi4OXlhatXr6JXr16C36Nnz56Ct60kk8mQkZGB/v37V1vfv39/JCQkGLT/qKgovPfee1AoFHBwcMCbb76J//u//wMAODs7IywsTNB+unTpgqFDh6JTp04YOXIkRowYgaeeegre3t4AKgYsvPfeezh58iQeeugh/Pzzz3j66ae158TLL7+MuXPn4uDBgxg2bBjGjx+Pzp0763zPX3/9FZs3b8aWLVvQoUMHXLhwAa+++ioCAwMxffp0AKh2FbVjx47o2bMnQkNDsX//fowbN07QZ6sNYwzAg9+L2gQFBem1X6H9J1u0aAF3d3ftctXvUWJiIsrKyjB8+PBqecrLy9GtWzcAwKBBg1BUVIT4+HgcO3YMgwcPxpAhQ/DRRx8BqLjC+eqrrwouOyH6oNuvhFhAWFgYOI57oNN3q1atEBYWBmdnZ+261NRUPPbYY+jYsSN27tyJc+fOYfXq1QCgvaUH4IFO+xzHaf+TrLquqprpNdX2n2F9eerC8zzCwsK0r1atWtX5HjXX8zz/wPtW/eyV6rqVLURtn7PmOqH7f/PNN3HhwgWkpqZCLpfjs88+0zZi9bn9KhKJcOjQIfzxxx+IiIjA119/jfDwcNy+fRtAxSCHUaNGYd26dcjOzsaBAwfw/PPPa8sxa9Ys3Lp1C88++ywuXbqEnj174uuvv6637G+//TYmTZqETp064dlnn8Vrr72GTz75pM48AQEBCA0NfeB2tb7atGkDjuNw9erVerfV5/Zr27ZtkZycXOs5U1Nt36PKHz6Vf/fv348LFy5oX4mJifjtt98AVAz+6dq1K2JjY3HkyBFERkZi4MCBuHDhAm7cuIGkpCRERkYKDQkheqErdYRYgK+vL4YPH45vvvkG8+fP19lYOHv2LFQqFb788kttw2D79u16vZ+npyf8/Pxw+vRpDBw4EACgVqsRHx+Prl271pkvIiJC2xeo0vHjx9G2bVu9rtLpEhERgbS0NKSnp2uv1iUmJkIqlaJ9+/YAKkZSXr58uVq+Cxcu1Dn6VB8eHh4IDAzE0aNHMWjQIO3648ePV7uyqY8mTZrUeTWuZ8+euHDhgs78VUeNchyH/v37o3///vjggw8QGhqKXbt24fXXXwdQ0XCbNGkSgoOD0bp16weuOIaEhGDOnDmYM2cO3nnnHfzwww+YP39+ne9dUlKiPc8qiUQinVd08/LykJ6ejoCAAJ2fqz4+Pj4YOXIkVq9ejZdffvmB70VhYaG2/9uPP/6I0tJSQfudPHkyvvrqK6xZs6bWUa5V96tLREQEHB0dkZaWhsGDB9e5XWRkJGJiYnDq1CksXboUXl5eiIiIwEcffYRmzZppz2tCjI0adYRYyJo1a9C/f3/07NkTixcvRufOncHzPM6cOYNr166hR48eAIDWrVtDpVLh66+/xqhRo3Ds2DF89913er/f/Pnz8cknnyAsLAzt2rXD119/jYKCAp23pRYsWIBevXrhww8/xMSJE3HixAl88803WLNmjcGfu6Zhw4ahc+fOmDJlClauXAmVSoUXX3wRgwcP1t7ufPjhh/H5559j48aN6Nu3LzZv3ozLly9rb3k11JtvvolFixahdevW6Nq1K9atW4cLFy7gl19+Mcr+q9Ln9uupU6fwzz//YMSIEWjWrBlOnTqFnJycao2CkSNHwtPTEx999BGWLl1aLf+rr76KRx99FG3btkVBQQEOHz5cb4Ni1KhRWLZsGZo3b44OHTogPj4eK1as0F4BlMvlWLx4McaPH4+AgACkpKTg3XffRZMmTTB27Fg9o/GgNWvWoF+/fujduzeWLl2Kzp07Q6VS4dChQ/j222+1V/H0uf3ap08fvPXWW1iwYAHu3r2LsWPHIjAwEDdv3sR3332HAQMGCJrSxN3dHW+88QZee+01aDQaDBgwADKZDMePH4ebm5v29nRkZCRWrVoFHx8fREREaNd9/fXXDbo9TUi9LNWZjxDCWEZGBnvppZdYy5YtmUQiYW5ubqx3797s888/Z8XFxdrtVqxYwQICApizszMbOXIk27hxY7UO6LVNGVJzQIBSqWQvvfQS8/DwYN7e3iwqKopNmDCh3qk2Kqc0kUgkrHnz5tUGWzAmfKBEQ6Y0YYyxDz74gPn5+TFPT0/22muvsZdeeumBgRKvvPKKznIwVvtAiapTmkgkkjqnNImPj693/7VNaWKoxMRENnLkSNa0aVPm6OjI2rZty77++usHtnv//feZSCSqNoUNY4y99NJLrHXr1szR0ZE1bdqUPfvssyw3N5cxVvcgBplMxl555RXWvHlz5uTkxFq1asUWLlzIFAoFY6xioMeIESNY06ZNtefE9OnTqw10qVTzPSrjGBMTo/NzZ2RksHnz5rHQ0FDm4ODAgoKC2JNPPllvvvr8+uuvbNCgQczd3Z25urqyzp07s6VLlz4wpUlV//vf/1hoaKh2WaPRsFWrVrHw8HAmkUhY06ZN2ciRI9mRI0e02xQWFjKRSMSeeuop7brK8+6bb75p0GcgRBeOMQM7yBBCbJpGo0H79u3x9NNP48MPP7R0cUgDzJ49G1lZWdi7d6/gPLGxsRgyZAgKCgoE3Xo0RM33iI2NxdixY3Hr1i3tYA9CiPHQ7VdCGonU1FQcPHgQgwcPhkKhwDfffIPbt29j8uTJli4aMZBUKsWZM2fwyy+/YM+ePQbtIzg4GKNGjcLWrVuNWrYOHTrg1q1b1db9+eefePfdd6lBR4iJ0JU6QhqJ9PR0TJo0CZcvXwZjDB07dsSnn35abXAAsS2RkZE4ffo0/u///g//+9//9MpbWlqKu3fvAgDc3Nzg7+9v1LKlpqZqR5u2atXqgcEXhBDjo0YdIYQQQogdoJ9OhBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCCCF2gBp1hBBCSCMwY8YMfPrpp5YuBjEhatQRAqBFixZwcXGBm5sb3Nzc0KJFC0sXiRBi46heIeZGjTpC7jt8+DDkcjnkcjlSUlIeSFcqlWYph7nehxBietZSr5DGgRp1hNQhNjYW7dq1w8KFC9GkSRN8/PHHyM/Px6RJk9CkSROEhYXhxx9/1G4/Y8YMvPrqqxg8eDDc3NwwefJk3Lt3D8OGDYOnpyemTJkCtVpd63u1aNECn332GcLDwxEREWGuj0gIMTNz1ivJycno168f3N3dMW7cOJSUlJjrYxILEVu6AIRYs5s3b8LFxQWZmZlQq9V47rnnIBaLkZaWhps3b2LYsGFo164dBgwYAADYsWMH/vnnHzRt2hTdu3fHE088gY0bNyIwMBA9e/ZEdHQ0Ro8eXet77d69G3FxcfDw8DDnRySEmJm56pXJkydjxIgRiI2NxYEDBzBhwgR0797d3B+XmBE16gi5b/jw4RCJRACAuXPnYuTIkXBxccHbb78NkUgEnuexc+dOJCcnw8XFBZ07d8bMmTOxdetWbeU7ceJEtGvXDgAQGRkJNzc37ZW3oUOH4uLFi3U26l577TU0a9bMDJ+UEGIulqpXUlNTcfnyZcTFxcHBwQFjxoxBnz59zPjJiSXQ7VdC7jt06BAKCwtRWFiITz75BAAQEBCgrZBzcnKgVqsRHByszRMaGoqMjAztctVGmbOzM5o2bVptubi4uM73r7pfQoh9sFS9kpmZiWbNmsHBwUG7LiQkxHgfjFglatQRogPHcdp/N23aFDzP486dO9p1aWlpCAwMNPp7EULslznqlYCAAGRnZ6O8vFy7Lj09vUH7JNaPGnWECCQSiTBu3DgsXLgQpaWluHz5Mn766SdMmjTJ0kUjhNgoU9UroaGhiIiIwMcffwylUom9e/fi9OnTRio1sVbUqCNED6tXr0ZZWRmCg4Px5JNPYunSpRg4cKCli0UIsWGmqle2bNmCv/76Cz4+Pli/fj3Gjh1rhNISa8YxxpilC0EIIYQQQhqGrtQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBatQRQgghhNgBevarEWg0GmRkZMDd3Z2eCkBII8YYQ1FREQIDA8HzDf/NTHULIQQQXrdQo84IMjIy6Jl6hBCt9PR0ozzLl+oWQkhV9dUt1KhrgNWrV2P16tVQqVQAgB9//BEuLi4WLhUhxFJKSkowa9YsuLu7N2g/VLcQQqoSWrfQEyWMQCaTwdPTE5mZmfDw8IBKpUJMTAyGDBkCsVhcbRlAtTRjq/nexs6nazt903TFSciysRmyf2PETVe6kLjVts6csbOnc67mNoB+31eZTIaAgABIpVJ4eHgIjoWu/QmtW+g421fdIjQf1S2G57Nk7ADT1C3UqGuAyl/TarUaSUlJ2LJlC/2aJqQRKykpweTJkxvcqKO6hRBSleC6hZEGk0qlDADLzc1l5eXlrLi4mO3evZsVFxc/sFwzzdgvQ/cvNJ+u7fRN0xUnIcvWEDtjxE1XupC4WTp29nTO1Vyn72fLzc1lAJhUKjV73ULH2b7qFqH5qG4xzTln6tiZqm6hPnVGJJFIIJFIdC7XlWbqshg7n67t9E0TEjdrj50x4qYrXUjcaltnztjZ0zlXuc6QMpqCNX1H7Ok420LdIjQf1S2G57NE7AwpoxDUqDMipVKpfVUu1/a35r+NXQZD9i80n67t9E2rL05C4mhMhuy/ctvy8nIwxuqcdqK+fdeVLiRuta0zZ+zs6Zyrb119THluCqlb6DjXvs4W6xah+ahuMTyfpWMnpIz6bkd96hqA+r2Qm1Lg0F0eN2UcOADtvRlGNdegmbOlS0YsgfrUEUJMgfrUmRH1qTMszZb7vZSVKdinB66w0KjoB14dPviTHbmWaTV9N0wdO3s652quoz519nmcrblu0Tcf1S2mOedMHTvqU2cDqE+dYWm21u9FrlDhtV8TcCgxCwDQr5kG700cAMbxWLz3Cs6kFGDuLxfw29x+aB9Q/RcV9XsxPB/1qbOO74g9HWdrq1sako/qFsPzUZ86UivqU2f//V7SC0owZ/MFJGXL4SDmsfSJcDhnXUILb0dIJBKsm94Dszedx4lb+Zi5/gz2zesLD2eJxftu2Gu/F+pTR8fZXuoWQ/NR3WJ4PkvHTkgZ9d2O+tQ1APV7aVxuSDmsS+JRrOLgIWGYGa5Gi1om9y5RAV9cFCFPwaFHEw2mtdGYv7DEIqhPHSHEFKhPnRlRnzrD0myl34tCoWDfH7nBWr2zn4VGRbMnvvqXpeXKdOY5lZyt3X7n2VTq92Ij51zNddSnzj6Ps7XULcbIR3WLac45U8eO+tTZAOpTZ1iaNfd7KVao8P7uK/g9/i4AYEzXQHw6vjOcJCKdn6F3q6aY/3AYVv59A0uir6F3i76Cyk79XgzbjvrU0XG2tbrF2PmobjE8nz31qeMFbUVII3QmJR+ProrD7/F3IeI5vP9EBP43sesDDbq6zBsShk5BnpCWKvHenkRQRwdCCCGmRI06QmooLFFi0Z7LeHrtCaTllyDQ0wmbZ/bBzAEt65xcuDYSEY8vn+4CBzGP2KRcnMoRnpcQQgjRF91+NSIa/WrbI9SKSspwJJPDByvjIC1VAQDGdw/EwkfD4e4k0fszA0BLHye8OrQ1PvvrBn5P4TEztwihTR4cXUEj1Azbjka/0nG2hbqFRr8ahka/Pvie9aHRrw1AI9TsQ6kKOJ7FISaTR5Gy4mpagDPD2JYahHs2/OuhYcBXV0S4XcShracGc9trwNNFO7tEo18JIaZAo1/NiEa/GpZmyRFqCoWCnbiRxV7ddp6Fv3dA+zSIru/vYz//m8RKSsuMGrcraTks7J19LDQqmq2Lu2nWUVbGjp09n3M119HoV/s8zjT6leoWS8eORr/aABr9aliauUaoKdUanEnJx1+X7+FgYhYypWXatLZ+bni+XygcMhIw6qEWeu+/vjK18ffEk8012JkiwvK/bmBIe3+E+roK3g+NUKPRr9YyitOejjONfqW6Rch2tjT6lRp1xG6VKdW4kiHFyVv5OHU7H2dT8lFSrtamuziI8HinAEzq3Rzdm3tBpVLhwL0Ek5VngD/DXc4bJ28X4I0dCdj2Ql+I6D4sIYQQI6FGXRWvv/46zpw5g27duuGrr76ydHGIQEq1BncKSpGSV4ybWXIkZspwJUOK5JxiqDXV+8R5u0gwrL0fHunoj/5hTQRPT2IMPAd8MrYjnvjmOM6kFODno7cxe1Ars70/IYQQ+0aNuvvOnz8PuVyOuLg4zJ07F2fOnEGvXr0sXaxGT6UBMqVlyC8tRmZBMY7e43Djn5vIK1HiTkEpUvNKcLew9IHGWyVfVwf0auGDPq188FArX4T7uYO34NWxYG9nvP9EBN7+/RI+/+s6erf0QZcQL4uVhxBCiP2gRt19J06cwLBhwwAAw4YNw8mTJ6lRVwfGAJVaAzXUUGsYVBoGtYahTFGOQkXFQ+814FGm1KBMqUaZUgN5mQLnczmUnr8LJeOgUKohL1PiShqPM9FXIVeoUVhSjtRMEb5JPoaiMjVkZUqUlIuBU/9WeXcRcPvWA2VykvBo4euKFr6uiAj0QIdAD3QI9ISfh6Nec8uZw8ReITh8LRsHE7Pw4i/nsW/+ALg7WFcZCSGE2B67bNQtWrQIO3bswLVr17BlyxZMmjRJm5aTk4MZM2YgJiYGISEhWLNmDYYOHYrCwkK0bt0aAODp6YkrV66YpGw/HUvB7kQeO3LOgeM4MAYwsIq/Vf8NAPeXAWjXMcbu/63cpuoyg0bDIJWK8O3tE9r3rLnfyn1A+x6ARsNQXCzCF9fiwIBqjTWVWlN9WSMGTv5dxycUA+eP1pEmAm7UjCsP3E2vsswBRcXV98hzaOruiKZuDtCUFKJjWHP4ezoj0NMZob4uaNHEFc3cra/xVheO4/DF010w+ptjuJ1bjFe2xeOHqd0sXSxCCCE2zi4bdW3atMGqVavw/vvvP5A2b948BAYGIjc3FwcPHsSECROQnJwMLy8vyGQyAIBMJoOXl5dJynY9S45rUh6Q5plk/xU4oKTIsHyKUoPflecADgwSsQiOYhGcJDycJSI4SURwEHMokUkR6NcELg4SOEl4OIg43Lubjo7hYfB2dYSrA4+biRcR2b83fNyc4SwGTsXFYvyoR+Ho6AClUokDBw7gscciTDpCzRw8nCT4dmp3jF19HHE3crHqn5toZ+lCEUIIsWl22aibOnUqAGDZsmXV1svlcuzZswcpKSlwcXHBmDFjsGLFCuzbtw99+/bF2rVr8fTTT+Pvv//GjBkz6ty/QqGAQqHQLlc2BoXM+j6+ix9citLRqWNHiEUigOPAAeA43P9bsYz761BlXcU2nHZbcDXTAJVKjQvx8ejevRvEEnG17avmR41llUqFs2fOoHfv3pBIxBDzHMQ8DzHPQcRzEIk4iHkOTK3GsaP/4uEhkXBycNCmi3kOarUKhw4dwvDhDz/Q6FIqlffTOmvTKtalYvjgUEgkFU9sOJTF0DPEQ7vsKgHUahWUSs4qZ31vyMzlrX2d8dHoCCz47RK+/fc2poRxGE6zvuu1nb09UaIhdUtdZTcWezrO9EQJqluEbEdPlLAykZGRmDNnjvb2a3x8PEaOHIns7GztNvPnz4eLiwuWL1+OV199FefOnUOXLl3wzTff1LnfxYsXY8mSJQ+sp1nfiSH2pfH4+y4PEccwt70GbYzwFAtiGQ19ogTVLYSQ2gitW3gzlsni5HL5A8Hw8PCAXC4HAKxcuRJxcXE6G3QA8M4770AqleKLL75AeHg4wsLCTFZmYv8eD9Ggm68Gasbhp+s8sgy/A05sHNUthJCGsMvbr3Vxc3PT3s6oJJPJ4Obmptd+HB0d4ejoiAULFmDBggWQyWTw9PTEkCFD4OHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xogbAPQfqMDT3x5DipzD+ttu2PxcN/h7OAmKW23rzBk7ezrnam4D6Pd9rVm/6KshdQsdZ/uqW4Tmq2+butKpbrFs7ADT1C2N6varXC6Hr68vUlNT4e/vDwAYNGgQZs2ahWnTpum9f3roNjEmuRL432URcss4+DkzzO+ghrttjwdpdBp6+7US1S2EkKqE1i122ahTKpVQq9UYMWIEZs+ejQkTJsDBwQE8z2PChAnw8fHBypUrcejQIcyYMQPJycnw9vY2+P0qf01nZmbSlbpG9mva2L8Iw7v3xYxNF3FPpkA7fzf8OLkTzp2Io1/TNnSlLiAgoMGNuqr7E1q30HG2r7pFaD66Umd4Plu7UiekbrHLRt2MGTOwYcOGautiYmIQGRmJnJwcTJ8+HbGxsQgODsaaNWu0kw7ri35NE1PILgVWXRFBruTQwo1hboQaTuZ7mhlpALpSRwgxhUZ9pc7c6EqdYWn28GvaVL8Ir92TY8bGeMjKVGjhxrD5hX7wcXOqc1+N9dc0Xamj42yvdYvQfHSlzvB8dKWOVEO/pokppcmBbxNFKFFzCHFlmNteDVfqY2fV6EodIcQUBNctjDSYVCplAFhubi4rLy9nxcXFbPfu3ay4uPiB5Zppxn4Zun+h+XRtp2+arjgJWbaG2BkjbrrSzyVnsYiF+1hoVDQbuSKWZRbIjRJLS8fNWs+5muv0/Wy5ubkMAJNKpWavW+g421fdIjSfoXWLkLhZOnaWPOdMHTtT1S2Nap46QmxNO383vNxBjSZuDriWJcfkH88gQ1pm6WIRQgixQnT7tQHoFgkxl+xSYHWiCIXlHDwlDHPaqxHoaulSkZro9ishxBTo9qsZ0e1Xw9Ls4RaJOS/zp+bI2NAvYlhoVDRr9+4+FnvljsGxtHTcrPWcq7mObr/a53G2hbpFaD66/Wqac87UsaPbr4Q0cgGeTtg6qze6h3iiVM1h9i8X8eeVLEsXixBCiJWg268NQLdIiCWUq4FNN3lczOfBgWF0qAaRAQwcZ+mSEbr9SggxBbr9akZ0+9WwNHu4RWKpy/y/79rNonacZ6FR0Sw0Kpq98et5tvP3xneLhG6/0nG217pFaD66/Wqac87UsTNV3WL8WRYbMYlEAolEonO5rjRTl8XY+XRtp2+akLhZe+yMETdd6TXX8xyw9MkOCPPzxLIDV7HjfAYuePAYNBRo4mKZ2NnTOVe5zpAymoI1fUfs6Thbe91SWKLETRnQPLsUnZs7Q8TXfTneWHWL0HWN5ZzTld6Q2BlSRiGoUWdESqVS+6pcru1vzX8buwyG7F9oPl3b6ZtWX5yExNGYDNm/MeKmK11X3FQqFaY/FIJgL0e8vuMSbsiAp9aexA/PdkeQh0Ot+U0RO3s65+pbVx9TnptC6hY6zrWvs7W6pVihwid/XsfO8xlQacT4+spJNPdxxidjO6B3Cx+99m1I3dKQWBqTJc85XenGip2QMuq7HfWpawDq90Ksxd1i4IdrIhSUc3ARMTwfrkEbT/pqmxv1qSMNdacY2JAkQnZZxVU5H0eGEhVQpubAcwwz2mjQxZe+240N9akzI+pTZ1iaPfR7saa+Gxu372ajvvqXhUZFs9bv7Gdvrd1j9/1eqE9d4+jf1BjqFoVCwb4/coOFvbufhUZFs4c+/pvFXrnDdu/ezbILpGzupjMsNCqatV14gJ2/nSt439SnzvDtqE9dI0d96gxLs/V+L/rkMWXfDQ8H4JeZvfDunqvYl5CBX2+J4HgwGR+M6oDKzey13wv1qWsc/ZvstW7JLy7HW78l4O+r2QCAERF++OypznCVcDhwA/BydcZXz3SHYtM5/HMtGwt+u4TolwfAxUFc777rS6c+dfbVp47mqSPEjjhJRPhqUle8OjQMALDxZBqeW38G0lLT9BUihDTMsZu5eGxVHP6+mg0HMY+loztg7bM94OXiUG07sYjHl093gb+HE27lFmPZ/qsWKjGxZtSoI8TOcByHeZGt8HxbNZwlPOJu5GLC2lPILrV0yQghlcqUanwYnYgpP57CPVkZWjd1xe4X+2Na3xbg6ph00svFASue7gIA+OVUGs6lFpizyMQG0O1XI6LRr41rhJo+eSwxyqqLL8Pjkd3x0q+XcTuvBCsKRWjZIQuD2/kJ+3AC2dM5V9+6+tDoV8PzNaa65UhSDj7cfx2p+SUAgGd6BePtR9rCxUFc77nYK9QT47sHYuf5DCz8/SK2z+6hs+w0+tXw7Wj0ayNDI9SILZCVAz9dFyFFzoEHw9gWGgz0pydQmAKNfiW6pMuBP+7wuFJQcZPMQ8IwqbUGHbz1+29YrgSWXRChRMVhTKgaQwLpv3F7R6NfzYhGvzaeEWq2OMqqvLycFUiL2FNf7NU+gSLqtwusuLSMzjka/dooj7M546ZQKNiRxLvs8U//+/61fmc/W7r3EsuTlRgck19O3GKhUdGs3Xt/sHW/0uhXY59zpo4djX61ATT61bA0WxmhZow8lhqh5gpgSmsNHu7eDp8dTMK2M3eQkleCb6f0gLdr9Q7ZhrKnc65ynSFlNAVr+o7Y03E2Zdyyi8oQnZCJLafTcDNbDoAHzwFPdgnE/KFt0Lqpm+B91VauSb1b4Pf4TJxNLcDvKTym0OhXg/PZ0+hXatQR0khwHDBrQAuEB3jg5a0XcPJWPkavPoYfp/dEWz93SxePEJvGGENyTjFir2fjz8v3cC6tAJWdm5wlPLp6q7B40kCEB3oZ5f14nsNHYzviia+O4mI+j8PXczCyY6BR9k1sFzXq7ktPT8fo0aORmJgIuVwOsZhCQ+zTw+388PuL/TBrw1mk5Zdg3Jrj+OqZrnjYyAMoCLFnpeVqXLsnw+W7Upy6nY+Tt/KRK1dU26ZLiBee6h6Exzs2Q9zhQ2jV1NWoZWjn74Hn+oXih6MpWBp9FQPbNqs2dx1pfOjo39e0aVMcPnwYY8aMsXRRCDG5tn7u2D2vP+ZuPodTt/Mxc8NZvPNoO8we2KrO6RQIaWwYYygoUSIlrxhpeSVIzSvBrVw5rmTIcCtHDk2N8QmOYh49W3hjRIQ/RnTwQ4CnMwDTjaoFgJeGtMJvp2/jbmEZvvrnJt5+tJ3J3otYP2rU3efk5AQnJydLF4MQs/FxdcCmmX2waO8VbD2dho8PXMP1e3J8PK4jHMUiSxePEJMoV2mQX1yO7FLg4h0pSlQMObJS/JvB4dJfScgrViK7qAw5RQpkFpahSKGqc19N3BwQEeiJHs298VArH3QJ8YKTxLzfHRcHMZ5qqcEP10X4Me4WxnYLQrg/dadorGy2Ubdo0SLs2LED165dw5YtWzBp0iRtWk5ODmbMmIGYmBiEhIRgzZo1GDp0qAVLS4h1chDz+HhsR7Tzd8fS6ETsPH8HKXnF+G5qDzR1d7R08YgeVGoNFEo1ytUVtwZVjAcDA2MAQ8VVp4q/qFgB1JnOwKpsU7GuXKlEgQLIKCyFSKxE1cmwKvPU3BcAKJUq3CsBbmRXdGup3FatqXip7v9VlCtxvZCD241cgOO161UahvJyJc5nc5CfvQPG8VCpNVBpGBQqDYrLlLiawuP0vqsoVzOUqTQoVSiRnsljU8ZpKFQMJeUq5BaK8PbZv1Gq1NwvmRi4cKpKBEVAakqtsQ3wdEJzHxe08HVFaBMXtPf3QIdADzTzsI4LAR19GIa3b4ZDV7OxcNclbP+/vuB5uuLeGJm9UVdaWooPPvgAO3bsQH5+PmQyGf766y9cvXoVr776quD9tGnTBqtWrcL777//QNq8efMQGBiI3NxcHDx4EBMmTEBycjIUCkW1xh8AuLm5ITo6uqEfixCbxXEcpvdrgVZNXTHvl/M4l1qA0d8cxQ/Te6JDoKeli0cEWvXPDXx9+CYAMd48/Y+J3kWMxefjDMr3ScJxAduJgKvn605LTqwjjQcy0x9cJy2ssswB0GiXnEQMPm7O8HCWwMNJDFVRHrqEt4S/pzOaujuimbsT/DwcEeLjYvarb4Z477FwHEvOw9nUAmw6mYrp/VpYukjEAszeqHvxxRehVCoRHR2NgQMHAgA6d+6MV155Ra9G3dSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtGmJjY431UQixKwPbNMXuef0xa8NZ3MotxlPfnsD/JnbBIx0DLF00YmYcV9EEquxfyd1fp9FoIBKJtMscuAe25+5n+C8/g1KphKODgzad4wCe4yDmOYhFPMQ8B54DSorl8PbygFgkgpjnIOI5bVp+bg4C/P0gEYkgElWsdxKL4CAC7qanIqJtGFycJHASiyDhgeuJl9C7Rze4OTtAwgEXz53Eo8Mi4evmAkcRw19//oHHHhsEiUQCpVKJAwcO4LFHw006XZIpBXo54+1H2+GDPVfwyR9XMahtU7RsYtyBGcT6mb1Rt3//fqSnp8PR0VFbYQQEBCAzM9Mo+79x4wY8PT0REPDff0RdunTBlStXdOYrKyvDE088gYSEBIwcORKLFy/WNjprUigUUCj+G+Ukk8kA0GPC7O1RPsbMY+nH0QgtZ4iXI7a/0Buvbr+IozfzMGfzebw6NAwvDm5Z5wAKezrn6ltXn4aemw2pW/5vQCie7RWAmJgYPPzwEDjcb5xw4LSNLlRpVFUezaoNLV2DZJRKJQ4dOoThwx/Wq+HzX74BOvP9t13PB7b7L61jHWm3MXxQqDZNqVTiUM5FDAv31Tba8q8B/m4SSCQVt4Rrxq/qX2Mz5Xek6jYTuwfij0uZOHErHwu2X8CWmb2gUatq3Qc9Jszy9bKQMuq7ndkfE9a2bVscPnwYwcHB8PHxQX5+Pm7fvo3HHnsMV69e1Xt/kZGRmDNnjva2alxcHJ577jncvHlTu83ChQtRWFiI1atXG+UzLF68GEuWLHlgPT3Kh9gLNQN2p/D4917F44y6+2rwTGsNHKz/LpRFNfQxYVS3kIbKVwCfJoigUHN4srkaQ4PoEWL2QGjdwpuxTACAV155BaNGjcJvv/0GtVqN6OhoPPPMM3rdetXFzc1N++u2kkwmg5ub8Nm76/POO+9AKpXiiy++QHh4OMLCwoy2b0KsgYgDxrfUYGIrNXiO4Xwej6+uiFCoqD8vMRzVLaShfByBsaEVfQf3p/O4W2zhAhGzMvuVOgDYsWMHfv75Z6SlpSEoKAgzZ87ExIkTDdpXzSt1crkcvr6+SE1Nhb+/PwBg0KBBmDVrFqZNm2a0z1CVTCaDp6cnMjMz4eHhAZVKhZiYGAwZMgRisbjaMoBqacZW872NnU/Xdvqm6YqTkGVjM2T/xoibrnQhcattnTFjdyalAK/suILCUiX8PRzx/ZQuCKsyiao9nXM1twH0+77KZDIEBAQYfKWutv0JrVtM/R2xp+NsC3WL0Hy1bcMYw7xtlxB7Iw8tfJzxYlgRHhlmfXWLMT5/Q/JZsl4GTFO3WKRRZwxKpRJqtRojRozA7NmzMWHCBDg4OIDneUyYMAE+Pj5YuXIlDh06hBkzZiA5ORne3t5GLcPq1auxevVqqNVqJCUl0S0SYrdyy4Dvr4mQVcrBRcTwQns1WtJUWA9o6O3XSlS3kIaSK4HPEkSQKjn0bqrBlDBN/ZmI1RJat5ilUffZZ58J2u6tt94SvM8ZM2Zgw4YN1dbFxMQgMjISOTk5mD59OmJjYxEcHIw1a9Zg2LBhepVZH3SlzrA0e/g1bQu/CI0Vu8ISJeZuvYiEuzI4inl8Ob4DHg5vYlfnXM1tALpSV8mejrMt1C1C8+na5mxqIWZsjIeGAR8+0RbjuwfpzEdX6oSlN/ordc8995z23yUlJdi1axf69OmDkJAQpKen4/Tp0xg3bhy2bt1q6qIYFf2aJo1NuRpYf4PHlQIeHBgmttKgr59NXuw3CbpSR6zNX3c4HEgXwYFnWNBJDX86jWySVV2pq2r8+PGYNm0aRo8erV23d+9ebNy4Eb/99ps5i2I0dKXOsDR7+DVtC78IjR07lUaDxdFJ+P1CxTRELw0KRVh5Mh5+2PbPuZrbAHSlrhLVLYaz1JU6AFCUK/H0mn9xQ8ajpa8Lts3sAXen+s99ulJHV+oE8fT0RF5e3gMB8vX1hVQqNWdRGox+TZPGijHgQDqPg3crBtAP9NdgXAsNGvuTiehKHbFGsnLgy0siFJZz6Oitwcxw+q7aGsF1CzOzfv36sUWLFjGlUskYY0ypVLIlS5awvn37mrsoRiOVShkAlpuby8rLy1lxcTHbvXs3Ky4ufmC5ZpqxX4buX2g+Xdvpm6YrTkKWrSF2xoibrnQhcbNk7H769yZrERXNQqOi2StbzrKS0jKbPudqrtM3brm5uQwAk0qlZq9bTP0dobrFOmMntG45dSOTtVl4gIVGRbPP/0i0+rrF0uecrnRjxM5UdYvZ56nbtGkT/vzzT3h7e6N169bw9vbG/v37sXHjRnMXhRDSQM8+1BzLx0aAB8PuhHt4fccllKtolB0h1qZjoAc+ejICAPBN7C38fS3HwiUipmCxKU3S0tKQmZmJgIAANG/e3BJFaDC6RUJIhYv5HNYn8VAzDhFeGjwfroHE7D8ZLY9uvxJr93sKjyOZPBx4hlc6qhFMj4e1CVZ7+zUrK6vOl62i26+GpdnDLRJbuMxv6thV7vuvhDTW9v7tnUlrj7OCohKbO+dqrqPbrw37fljrcbaFukVoPn3rlpLSMvbM98dZaFQ06/zePpacmWfUWNpK3AyJnT5xqi9WdnP71d/fHwEBAfD399f+u/JFCLFdA8J88dO07nB1EOHErXw8v/E8ispM84B0QohhxCIe30yqeCqMVMlh7taLKCpTWbpYxEgs/kSJe/fu4aOPPkKfPn3w7LPPWrIoeqNbJIQ8KKUI+O6qCKVqDiGuDC9GqOFi/FkirBLdfiW2Il8B/O+SCDIlh3aeGrzQTgNRI+wyYStMdvs1Pj7esPsIOigUChYUFGT0/ZoL3X41LM0ebpHYwmV+U8eutn0npOaxrkv+YqFR0WzUV/+yXKl+54ulzrma6+j2a8O+H9Z6nG2hbhGaryF1y9ebd7N271V0mXhzezyTy+VWX7eY65yrL3bWevtV79/PTz75JNzc3PDMM89g8uTJaN26taENT61Tp05BpbL9y78SiQQSiUTncl1ppi6LsfPp2k7fNCFxs/bYGSNuutKFxK22deaMXdV9d27ugy2zH8LkH07i4l0Znt8Uj00ze8PDSdhnq2//DU0TEhdD4maO2BqybMqyGDsf1S2G5TOkbglxA/73dGe8uOUCtp+7Cz8PR4TVsW1jPed0pTekXjakjELo3ahLS0tDXFwctm7dir59+6Jly5aYPHkyJk6cCH9//3rzt2/fHhz336yHJSUlyMvLw6pVq/QtitVRKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8aurn2HNXHGhhk9MW3dWSSkF2LaT6fw87SK2ez1KZM5z7n61tXHlOemkLrFEsfZWPmobjEsX0PrlkGtvfHBE+2xeN9VfB1zC+NbcBhu5XWLsfJZul4WUkZ9t2tQnzq1Wo2//voLb775JpKSkhAZGYnnn38eEydOBM/XfnP+yJEj1ZZdXV3Rtm1bozxSx9yo3wsh9btTDKy+IkKJmkMLN4a5EWo4iSxdKtOgPnXEVlU+IxYAng1To2dTeqazNTH5lCYXLlxgb7/9NgsNDWVdu3ZlX3zxBdu6dSsbNGgQGzVqVJ35Pv/881rXf/nll4YWxeKoT51hafbQ78UW+m6YOnZC9h2fkss6LfqThUZFs3Grj7L8ohKrPOdqrqM+dQ37fhjrO9IY6xah+YxVtygUCrZw5wUWGhXNWr+zn/116a7FY0d96v57maxP3dKlS7F161aUlZXhmWeewYEDBxAREaFNHz16NHx9fXXmf+ONNx5Yv2zZMrz++uv6FseqUJ86w9Lsod+LNffdsIZ+L11DffHLrIcw5ceTOJdWiP/75QJ+nNpNrzJRnzrr+I5Q3WI4a+tTV3P9+4+3x7VbaTiby2P+tgRsntUHXYPca83fWM45Xel20afuzp07WLt2LQYNGlRrurOzM44fP/7A+u3btwMAVCoVduzYAVblrm9KSgp8fHz0LQohxIZ0CvbEppl9MPXHUzh9Ox/ztyXgSfraE2I1eJ7D5NYauPs2Q8z1XDy//gw2PdfT0sUietC7Uff999/Xu03Xrl0fWPftt98CAMrLy7FmzRrteo7j0KxZM6xfv17fohBCbEyXEC/8NKMXpv18Ckdu5ELqy+NxDYPpro0QQvQh4oGvJnbBzI3xOJ2Sjxnrz+GFNpYuFRHKbFOCxsTEAAA++ugjvPfee+Z6W7Oi0a+Nb4SarYyysqYRat2C3bHmma54YXM8LuTxWLj7Mj4Z27HaqHih+6fRr9Z7nPXNR3WLYflMUbeIoMF3U7riuQ3nkHBHitWJIvS/W4iIIK9Gc87pSrfb0a9C5ebmokmTJgCA7OzsOrdr1qyZqYtiVDRCjRDDXcjjsD6JBwOHyAANxoRqUEe7zmbQ6FdiT0pUwJpEEdKLObhLGOZ3UMPP2dKlapxMPvpVH25ubtp/cxzHeJ5nHMdVe/E8b46imASNfjUszR5GqNnCKCtTx64h59w73+9hoVHRLDQqmn3551WLn3M119HoV+McZ6pbrH/0a13r7uYWsn5L9rHQqGjW+6NDLDE9p1Gcc8aInU2MfgWA1NRU/Pbbb8jIyEBgYCDGjRuHli1b1rl9UVGR9t8ajcaQt7QJNPrVsDR7GKFmzaOsrHmEWp9mDK3Cw/HRgev4KiYZnq6OmDmg9rqERr9ax3eE6hbDWfvo19rWNfVwwYsRaqxP88SN7GI8vykBs1s1nnNOV7o1jn7V+/G90dHR6Ny5M86dOwcHBwecP38e3bp1w759+/TdFSGEYHrfUCwY3hYA8GF0IvZcuGvhEhFCqnKTABuf64nWTV2RKS3DN4ki3C0stXSxSC30vlL3zjvvYM+ePYiMjNSu+/fffzF37lyMGjWq3vzp6elYunQpEhISIJfLq6UlJibqWxyjOXLkCN5++22IRCL07t0bK1assFhZCGlsXno4DAUlSvx87Dbe2JEAH1cHDGzT1NLFIoTc18TNEVtmP4SnvzuB1PwSTPnpDLbO7osADxq7bk30btTdvXsX/fv3r7aub9++yMjIEJR/4sSJaNOmDZYsWWJVHX/DwsIQGxsLR0dHTJ48GZcuXUKnTp0sXSxCGgWO4/De4+2RXVSG6IuZmLPpHLa90Bedgj0tXTRCyH1+Hk7YPLMnxn99BHcLyzDx+xM0j52VEdyou3PnDoKDg9GnTx8sXrwYixcvhkQigVKpxJIlS9CnTx9B+7l8+TKOHj1a57NhLSUoKEj7b4lEApHITh9OSYiV4nkOXz7dBQUl5Th2Mw/PrT+NnXP7IdDDwdJFI4Tc5+/hhJc6qLEhzRPJOcWY8tMZzGxt6VKRSoJbVpWPAlu7di1iY2Ph4+OD1q1bw8fHB4cPHxY0KTEAPPLIIzh58qRhpa1i0aJFiIiIAM/z2LZtW7W0nJwcPP7443BxcUF4eDj++ecfwfs9f/48cnNzqz36jBBiHo5iEb6b2gMRAR7IlZdj2s+nkSdXWLpYhJAqPB2Azc/3RFs/N2QVKfDNFRFuZsvrz0hMTvCVOnZ/OrvmzZvj2LFjSE9P145+DQkJEfyGzs7OeOSRRzBixIgH5qWr+qSJ+rRp0warVq3C+++//0DavHnzEBgYiNzcXBw8eBATJkxAcnIyFAoFJk2aVG1bNzc3REdHAwDu3buHl19+GTt37hRcDkKIcbk7SbD++V4Y/+1xpOaVYNameDwbbOlSEUKqauLmiK2zH8KUH07iWpYcU38+iy2zH0K4v7uli9ao6dWnLj09vdozWwMCAsAYQ1paGoCKBl99WrVqhQULFuhZzAdNnToVALBs2bJq6+VyOfbs2YOUlBS4uLhgzJgxWLFiBfbt24dp06YhNja21v2VlZVh8uTJ+Prrr+Hn56fzvRUKBRSK/64eyGQyAPREicY467utzFxua7O+ezuJ8NOz3THxh9O4nCHDumIeI4cr4KrHPmzxiRINrVts7TgL3a4x1i1C81mybvFwlODnZ7vi6W/jcKe4HJO+P4ENM3qifYBxGnb0RIkH37M+gp8owfM8nJycUNfmHMehpKRE0JsaU2RkJObMmaO9AhcfH4+RI0dWe3LF/Pnz4eLiguXLl9e5n2+//RZLlixBu3btAACffPIJ+vbtW+u2ixcvxpIlSx5YT7O+E2JcqUXAN4kilGs49G6qweTW1v3UiYY+UYLqFmKLqj55wkXM8GJ7NULcLF0q+yK0bhHcqHN3d682ibChPvvss1rXOzo6Ijg4GEOHDoWXl5fg/dVs1MXFxeG5557DzZs3tdssXLgQhYWFWL16dYPKXqm2X9MhISHIzMyEh4cHVCoVYmJiMGTIEIjF4mrLAKqlGVvN9zZ2Pl3b6ZumK05Clo3NkP0bI2660oXErbZ15oydqc+5mOvZmP/rZWjAYX5kS8wd1ELQPgyJU81tAP2+rzKZDAEBAQY36hpSt9j6caa6xbB81lK39Og7EC/+egUX78rg7ijGd5M7o1tIw0avW/Kc05VujNgBpqlbBDfqPDw8tLcCGmLSpEnYtWsX+vTpg+DgYNy5cwenTp3CqFGjkJGRgcTERPz+++94+OGHBe3PWFfqDEHPZyTEPI5lcdh+q2JE+tQwNXo1Nfkjqw1Cz34ljVmZCvj+mgjJRRwceIZZ4RqEe1nnd9XWCK1b9B4o0VAqlQo7d+7EE088oV23f/9+rF+/HsePH8cvv/yC119/HRcuXDBo/23atIFUKsW9e/fg7+8PAEhISMCsWbOMUfxq5s2bh3nz5kEmk8HT0xNDhgyhK3WN7Ne0LfwitIcrOIiJgUuzYKw/eQfbbokxvF8X9GrhbZVX6ozBkLrFHo4z1S3657O2umXYMDVe2X4ZR5Pz8UOSGCue6oCh4YZNJE5X6v4jtG4RfKXOWDw9PZGfn19tHjiVSgVfX19IpVJoNBp4eXnV+wGUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb2N+lno1zQh5qNhwIYkHhfyebiIGF7tpIafs6VLVR1dqSMEUGmADTd4XMznwYNhSpgGPa306rqtEFq3mH0G4IiICHz88ccVv74BqNVqfPrpp2jfvj2AihG2QvrUzZ49G87OzoiLi8O0adPg7OyMf//9F0DF1Cjp6enw9fXFG2+8ge3btxu9QUcIMS+eA6aEadDCjaFEzWHtVRHkphmsSAhpADEPzGirQa8mGmjAYfNNHsezrHiEkz1hZnb9+nXWo0cP5u7uzlq3bs3c3d1Zz549WVJSEmOMsVOnTrGdO3eau1gNIpVKGQCWm5vLysvLWXFxMdu9ezcrLi5+YLlmmrFfhu5faD5d2+mbpitOQpatIXbGiJuudCFxs3TszH3OZeYXsf6f/sNCo6LZk1/9y7bvNN45V3Odvp8tNzeXAWBSqdTsdYu9HeeGpNlD3SI0nzXXLWVlCvbuzgQWGhXNQqOi2bcxSVYTN0vHzlR1i/E7D9Sjbdu2OHv2LFJSUpCVlQV/f3+EhoZq03v37o3evXubu1iEEBvh6+aIH5/tjok/nELCXRm4Uh6PmrcXCSFEAJ7nsOiJdnB1FOH7uBR8+mcS5GUqvPxwa3DWPDeRDTN7n7pKJSUlyMvLqzYAQ8jkxdaE+r0QYjk3pcCaqyKoGYehgRo8GaqxdJGoTx0hdTh0l0N0WkVf+sgADcaEWveck9bG6PPUGculS5cwbdo0XLx4saIA94+qg4ODRSYvNobKEWo0T13jG6FmC6Os7HlU5O4LGXh373UAwLIn22Fs1wCd+ax9nrra9ie0brHn49wY6xah+Wypbtl8+g4+/vMGAOCpbgFY9Hg4RHzdLTsa/fofo89TZyz9+/fH8OHD8fbbbyMgIACZmZn44IMP0Lp1a/zf//2fOYvSYPRrmhDL25/G4+BdHiKOYV6EGq0b3pYyGF2pI0S3k9kctiXzYODQxUeDaW00EJt9yKbtEVy3GKU3rx48PT2ZWq1mjDHm5eXFGGNMoVCwoKAgcxfFaGighGFp9tCZ2RY65Jo6dpY+537ftZvNXn+KhUZFs65L/mK3sqQGx6nmOhooYT3HubHVLULz2WLdsjc+nYW9u5+FRkWzSWuPs/yiEqs750wdO7sZKOHl5YXCwkL4+PggKCgICQkJ8PHxgVwuN3dRjE4ikUAikehcrivN1GUxdj5d2+mbJiRu1h47Y8RNV7qQuNW2zpyxs9Q5x3PA5091wt2fzuJKhgxzfrmAnS/2g+P9bQ2JU+U6Q8poCtb0HaG6xXCmjJ0t1S2jugbD180JszeexYlb+Zi27hzWP9cLvm6OBn22ulhzvWxIGYUwe6Nu1qxZOHLkCMaOHYtXXnkFAwcOBM/zmD17trmLYnRKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b8x4qYrXUjcaltnzthZwzkn4Ri+ndwV4787ietZRZi/5Ry+mtDxgXz6fDcN+b6a8twUUrfY+3FuTHWL0Hy2Wrf0CvXEpud7YubG87h0V4qnvj2OdTN6IMjrvxnFLXnO6Uo3VuyElFHf7Sw2+rVSamoq5HI5OnToYMliGIT6vRBiXVKLgK+viKBkHB4O1GC0mUfEUp86QvSTXQqsSRShoJyDpwPD3PZqBNCp/gCr61PXvn37el+2ivrUGZZmD/1ebKHvhqljZ23n3O9nU7WTnb7z/R7qU2enx9mY3wdrrFuE5rOHuiUtV8aGfhHDQqOiWefFf7JTydkWP+dMHTub71N3+/ZtNG/eHFOmTMGgQYPscuJB6lNnWJo99Hux5r4bja2v1dgezXE7vwxf/XMDv97iMSpDjr5hzXTui/rUGV4WY+ejusWwfLZct4T4SvDb3H54bv0ZxKcVYvq6c/h2anf0b+XdoH1bc71sSBmFMFujLjs7G7///jt++eUXrF+/HhMmTMCUKVPQuXNncxXB5KhPXePr92IrfTcaW1+reYNa4FpGIQ5ezcGLWy5g55w+CPF2oT51DSyDIfumuoX61AnhKuGwfnp3vLQ1AXE38zBrw1l8MqY9HAzYt63Uy0LKqO92FulTl5WVhW3btmHr1q0oLi7Gr7/+ioiICHMXo8Go3wsh1qtcDXx1RYT0Yg4BzgyvdlTDycQ/Y6lPHSENo9IAv9zkcT6PBweGcS00GBRAjwG0uj51VRUUFLC1a9eywYMHs7CwMHbp0iVLFMNoqE+dYWn20O/FFvpumDp21nzOrf91N+v54UEWGhXNnvv5FCuSy6lPnR0eZ3usW4Tms8e6paxMwd77PUHbN/bT6EtMoVCY9Zwzdexsvk+dQqHA3r17sXnzZsTHx2PMmDH49NNP8dBDD5mrCCZHfeoMS7OHfi/W3HejMfe18nIEvpvSDc/8dAaHr+fg27g0tK1le+pTZ3hZjJ2P6hbD8tlb3bJ0TCd4uzrgq8PJ+DYuFfmlGiwb2xFikfDHT1hzvWxIGYUwW6POz88P/v7+eOaZZxAVFaV91tnp06e12/Tu3dtcxSGENBKdgz3x6bhOeH17AlbH3sJzbTk8ZulCEUJ04jgO84e0xr2UJPx2W4Rfz6YjR67AN5O7wcXB7FPs2gyzRcbLywsKhQLr16/Hhg0bwGp05eM4Drdu3TJXcQghjci47sFIzJDhx6O38ctNHuPuFaFTiI+li0UIqUd/P4YhD3XFq9sv4vC1bDzzwyn8PL1nnU+faOzM1qhLSUkx11tZDI1+bXwj1GxllBWNigQWDGuNxIxCHL9VgDm/xOP3OQ/B3YF7ID+Nfq27DIbsm+oWGv1qqMp9Dg7zxqbneuKFzfFISC/E+G+P46dp3dHcp/bBQ7ZSLwspo77bWfyJEraMRqgRYluKlcCXl0TIU3Bo46HB3AgNREacMpNGvxJiOlmlwHdXRchXcHCTMMxpp0aIm6VLZR5WPfrV3tDoV8PS7GGEmi2MsjJ17GztnPt2y27W/v0/WGhUNHvv9ws0+tVOj7Ot1y1C8zW2uuVOXhF75H9HWGhUNGv//h/s7ysZJjnnTB07mx/92hjQ6FfD0uxhhJo1j7KiUZHV0wJcgC/Gd8KLWy9g06k7ULXm8BiNfjW4LMbOR3WLYfkaS90S5CPB9jl9MXfzeRy9mYv/2xyPT8d3xlM9gnXmE7p/fdKtcfSr8LHBhBBiJ4ZHNMOrw9oAALbf4nEhvdCyBSKECObuJMHPM3phbLcgqDQMb+xIwOqYmw8MwGyMqFF3X0ZGBvr164dBgwbhiSeeQElJiaWLRAgxoZcfboPh7ZtBzTjM25qALFmZpYtECBHIQczjywldMGdwawDA539dxwd7rkCtadwNO2rU3efn54ejR4/i33//RY8ePbB//35LF4kQYkI8z+Gz8R3h78yQXaTA/206hzKl2tLFIoQIxPMc3n60HRaPigDHAZtOpmLu5sb9PaZG3X0ikQg8XxEOjuMQHh5u4RIRQkzNzVGM2e3U8HQW40J6Id7bfZlu4RBiY2b0b4nVk7vDQczjYGIWpq8/B7lpZqexejbbqFu0aBEiIiLA8zy2bdtWLS0nJwePP/44XFxcEB4ejn/++UfQPo8ePYoePXrg77//RmhoqCmKTQixMk2cgJVPdwHPAb+du4ONJ9MsXSRCiJ4e6xSATc/3hoeTGOfTCrHysgipeY2vG5XNNuratGmDVatW1fposXnz5iEwMBC5ublYvnw5JkyYgIKCAty7dw+RkZHVXk888YQ234ABA3Du3DmMGTMGP//8szk/DiHEggaE+eLdx9oDAD75Mwk3pEacvI4QYhZ9Wvli59x+CPJyQk4Zhwnfn8K51AJLF8usbHZKk6lTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6P4VCAUfHiseOeHp6Qq2u+568QqGAQqHQLstkMgD0RInGOOu7rcxcTk8aqH1d1b/T+gTj8p1C7E7IxLokHqNzihDk5SSojDX3b6iG1i10nGtfZ4t1i9B8VLdU18LHCVue746pa48hvViJyT+cxBdPdcIjHfz03j89UcICIiMjMWfOHEyaNAkAEB8fj5EjRyI7O1u7zfz58+Hi4oLly5fXuZ+jR49i4cKF4HkePj4+2LRpU50zuC9evBhLlix5YD3N+k6IbStXA6uuiHCnmEOwK8MrHdRwEAnP39AnSlDdQohxKNTAhhs8rhTw4MAwOlSDyAAGzkYvwgutW2z29mtd5HL5Ax/Yw8MDcrlcZ74BAwbgyJEjiImJwc6dO3VWoO+88w6kUim++OILhIeHIywszChlJ4RYloMImBmuhquY4U4xh19v8TDnz16qWwgxDkcRMDNcgwF+GjBw2J0qws4UHvY+44nN3n6ti5ubm/aWRSWZTAY3N+M9IM7R0RGOjo5YsGABFixYAJlMBk9PTwwZMgQeHh5QqVSIiYnBkCFDIBaLqy0DqJZmbDXf29j5dG2nb5quOAlZNjZD9m+MuOlKFxK32taZM3b2dM5VbpNXFotvr4pwNpdHiBvDksmRgj5bzbpHXw2pW+g421fdIjQf1S115xv28BCMFImw7kQ6vvg7GXH3eIg9muHzcRFwcRBZNHaAfm0BoXWL3d1+lcvl8PX1RWpqKvz9/QEAgwYNwqxZszBt2jSjvjc9dJsQ+xWbyWFXigg8GOZFqBHmWX+eht5+rUR1CyHGFZ/HYfMNHirGobkrw+x2ang4WLpUwgmtW2y2UadUKqFWqzFixAjMnj0bEyZMgIODA3iex4QJE+Dj44OVK1fi0KFDmDFjBpKTk+Ht7W2SslT+ms7MzKQrdY3s1zRdqbOvc67qNpGRkVi4LwlXU7Pw4/MPwc+z/kaVTCZDQEBAgxt1VfcntG6h42xfdYvQfFS3CM93Pq0QL/16GYWlSgR5OWH10x2QeumUzVypE1K32GyjbsaMGdiwYUO1dZUVcU5ODqZPn47Y2FgEBwdjzZo1GDZsmNHLQL+mCbFvSk1Fx2ORwN7HdKWOEOuWXQqsvSpCroKDs4hhVriwq/CWZvdX6qwJXakzLM0efk3TlTr7OudqbgOY5te0UHSlzrA0e6hbhOajukX/fPnF5Xjp10u4cEcGEcfw0ZPtMLpLoOD90JU6O0W/pgkhVdGVOkJsQ7ka2HyTR0J+xWX4x0PUGB5kvVOeCK5bGGkwqVTKALDc3FxWXl7OiouL2e7du1lxcfEDyzXTjP0ydP9C8+naTt80XXESsmwNsTNG3HSlC4mbpWNnT+dczXX6frbc3FwGgEmlUrPXLXSc7atuEZqP6hbD8xXJ5WzGyr0sNCqahUZFsze3x7Pi0jKzxM5UdYvdzVNHCCGEEFIfnuMwpoUG7z3aBjwHbD93F/+3OR5FZSpLF81gdPu1AegWCSGkKrr9SohtupzPYcMNHuUaDoEuDP/XTg0vR0uX6j90+9WM6ParYWn2cIuEbr/a1zlXcx3dfrXP42wLdYvQfFS3GO+cO3c7h/X48CALjYpmvT86xM7cvEe3XwkhhBBCbE2nIE/89n990KaZK7KKFHh2fTwuF1jpyIk60O3XBqBbJISQquj2KyG2r1QFrEvicV3KgwPDuBYaDAqwbFOJbr+aEd1+NSzNHm6R0O1X+zrnaq6j26/2eZxtoW4Rmo/qFhOdc6Vl7I1fz2lHxr6/6yIrLVMYLXamqluMP8tiIyaRSCCRSHQu15Vm6rIYO5+u7fRNExI3a4+dMeKmK11I3GpbZ87Y2dM5V7nOkDKagjV9R+zpONtC3SI0H9Uthuer/fMCy8Z0hCL3DvamibDxZBoypGVYNakbHO5v25DYGVJGIahPHSGEEEJIDRzHYWgQw1cTO8NRzOPvq9l4eu0JZMnKLF20OtGVOiNSKpXaV+VybX9r/tvYZTBk/0Lz6dpO37T64iQkjsZkyP6NETdd6ULiVts6c8bOns65+tbVx5TnppC6hY5z7etssW4Rmo/qFsPzCY3dsHBfbHq+J+b8Eo8rGTI8tfYUprVoeOyElFHf7WigRANQZ2ZCSFU0UIIQ+5VXBqy9JkJWKQdHnuG5thq09zZPE4oGSpgRDZQwLM0eOjPTQAn7OudqrqOBEvZ5nG2hbhGaj+oW05xzdaXnSIvZ098eZaFR0azV2/vZuqPJBsWOBkrYABooYViaPXRmpoES9nXOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fn0iV0TiQQ/T++J59YcxOkcHov3XcXdwjK8MSyszn3RQAlCCCGEECvkIOYxubUGr99vyP0QdxsvbUtAudrCBQMNlDAqGijR+Doz00AJ+zrn6ltXHxooYXg+qlsMy0d1i+H5GhI7jgNm9QtBiLczonZdwaGr2bjuKkLvAXIEervVmp8GSlg56sxMCKmKBkoQ0vjckgE/XhehWMXB24HhhfZqBBr560oDJcyIBkoYlmYPnZlpoIR9nXM119FACfs8zrZQtwjNR3WLac45fWOXmJ7Dei7ax0KjolmHD/5khxMzaaCEraOBEoal2UNnZhooYV/nXOU6Q8poCtb0HbGn42wLdYvQfFS3GJ7PGLEL8/PEax3V2JXbFGdSCjB703ksGdUebrXkp4EShBBCCCFWzFUCrJveA2O7BUGlYVi4JxH7UnloNObr5UaNOkIIIYQQI3AU81jxdBe8OqwNAODvDB6vbr+IMqV5hsZSo66G3377DSEhIZYuBiGEEEJsEMdxeHVYW3w+viNEHMMfV7LwzA8nkSdXmPy9qVFXBWMMO3bsoEYdIYQQQhpkTNdAvNheDU9nMeLTCvHU96dxr8S070mNuip27dqFxx9/HDxPYSGEEEJIw4R5Attn90GorwvuFJRi5WURTt7KN9n72WzrZdGiRYiIiADP89i2bVu1tJycHDz++ONwcXFBeHg4/vnnn3r3xxjD5s2bMXnyZFMVmRBCCCGNTKumrtj1Yn/0aO6FUjWH5zacw87zd03yXjY7pUmbNm2watUqvP/++w+kzZs3D4GBgcjNzcXBgwcxYcIEJCcnQ6FQYNKkSdW2dXNzQ3R0NPbs2YORI0dCLLbZkBBCCCHECvm4OmDDjB6YtvoQzufxeHvXFYwI4vGokZ//YLMtmKlTpwIAli1bVm29XC7Hnj17kJKSAhcXF4wZMwYrVqzAvn37MG3aNMTGxta6vytXriAmJga7du3ClStX8M477+CTTz6pdVuFQgGF4r8OjzKZDAA9JqwxPsqHHhNmX+dcfevq09D4NrRuoeNc+zpbrFuE5qO6xfB85o4dDw2ebaNBr/YtsfZoKg7e5bHuWAqeH9BS8Geqj80/JiwyMhJz5szRXoGLj4/HyJEjkZ2drd1m/vz5cHFxwfLlywXtc8CAATh69Gid6YsXL8aSJUseWE+P8iGkcWvoY8KobiGkcTiZzeFkNo8X26vhIKp/e6F1i832qauLXC5/4AN7eHhALpcL3oeuBh0AvPPOO5BKpfjiiy8QHh6OsLAwg8pKCCFVUd1CSOPwUDOGlzsIa9Dpw2Zvv9bFzc1Ne8uikkwmg5ubm9Hew9HREY6OjliwYAEWLFgAmUwGT09PDBkyBB4eHlCpVIiJicGQIUMgFourLQOolmZsNd/b2Pl0badvmq44CVk2NkP2b4y46UoXErfa1pkzdvZ0ztXcBtDv+1qz7tFXQ+oWOs72VbcIzUd1i+H5LBk7wDR1i93dfpXL5fD19UVqair8/f0BAIMGDcKsWbMwbdo0o7736tWrsXr1aqjVaiQlJdEtEkIauYbefq1EdQshpCqhdYvNNuqUSiXUajVGjBiB2bNnY8KECXBwcADP85gwYQJ8fHywcuVKHDp0CDNmzEBycjK8vb1NUpbKX9OZmZl0pa6R/Zq2hV+E9vxr2hqv1AUEBDS4UVd1f0LrFjrO9lW3CM1HdYvh+WztSp2QusVmG3UzZszAhg0bqq2LiYlBZGQkcnJyMH36dMTGxiI4OBhr1qzBsGHDjF4G+jVNCKmKrtQRQkzB7q/UWROpVAovLy8kJSXB3d0dKpUKcXFxGDhwoLZ1XrkMoFqasdV8b2Pn07Wdvmm64iRk2dgM2b8x4qYrXUjcaltnztjZ0zlXcxtAv+9rUVER2rZti8LCQnh6egqORV30qVvoONtX3SI0H9UthuezZOwA09QtdjdQwpwqf02Xl5cDANq2bWvhEhFCrEFRUVGDGnVUtxBCalNf3UJX6oxAo9EgIyMD7u7u4DgOANCrVy+cOXNGu03lskwmQ0hICNLT043S56Y2Nd/b2Pl0badvWl1xqm3ZWmNnjLjpShcSt9rWmTN29nTOVV2nb9wYYygqKkJgYKBRniGtT90C0HHWtc4W6xah+ahuMTyfpWJnqrqFrtQZAc/zCA4OrrZOJBJVO1A1lz08PExWedR8L2Pn07Wdvmn1xam2PNYWO2PETVe6kLjVts6csbOnc662dfrEzRi3XSsZUrcAdJxrW2eLdYvQfFS3GJ7P0rEzdt1id5MPW4t58+bpXDbnexs7n67t9E2rL07mjJuh72eMuOlKFxK32tbROWd4nMx93umDjrOwNHuoW4Tmo7rF8Hz2Fju6/WpmlVMUGGvKg8aEYmc4ip1hbC1utlZea0FxMxzFzjCmihtdqTMzR0dHLFq0CI6OjpYuis2h2BmOYmcYW4ubrZXXWlDcDEexM4yp4kZX6gghhBBC7ABdqSOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQPUqCOEEEIIsQNiSxfAHmg0GmRkZMDd3R0cx1m6OIQQC2GMoaioCIGBgeD5hv9mprqFEAIIr1uoUWcEGRkZCAkJsXQxCCFWIj09HcHBwQ3eD9UthJCq6qtbqFFnBO7u7gAqgu3h4QGlUomDBw9ixIgRkEgk1ZYBVEsztprvbex8urbTN01XnIQsG5sh+zdG3HSlC4lbbevMGTt7OudqbgPo932VyWQICQnR1gkNpU/dQsfZvuoWofmobjE8nyVjB5imbqFGnRFU3hZxdnaGs7MzxGIxXFxc4OzsDIlEUm0ZQLU0Y6v53sbOp2s7fdN0xUnIsrEZsn9jxE1XupC41bbOnLGzp3Ou5jaAft9XpVIJAEa7VapP3ULH2b7qFqH5qG4xPJ8lYweYpm7hGGOs3r2RWq1evRqrV6+GWq1GUlIStmzZAhcXF0sXixBiISUlJZg8eTKkUik8PDwM3g/VLYSQqgTXLYw0mFQqZQBYbm4uKy8vZ8XFxWz37t2suLj4geWaacZ+Gbp/ofl0badvmq44CVm2htgZI2660oXEzdKxs6dzruY6fT9bbm4uA8CkUqnZ6xY6zvZVtwjNR3WLac45U8fOVHUL3X41IolEUu0yam3LdaWZuizGzqdrO33ThMTN2mNnjLjpShcSt9rWmTN29nTOVa4zpIymYE3fEXs6zrZQtwjNR3WL4fksETtDyigEzVNHiBFlSkuRnl9i6WIQQghphOhKHSFGUFSmwltbLuDvq9kAgJ6h3vh8Qhe0bOJq4ZIRQghpLKhRZ0RKpVL7qlyu7W/Nfxu7DIbsX2g+Xdvpm1ZfnITE0ZgM2b9SqYSGAS9uicfJ2wUAAJ4DzqYWYPy3x7DpuZ5o6+de777rShcSt9rWmTN29nTO1beuPqY8N4XULXSca19ni3WL0HxUtxiez9KxE1JGfbej0a8NQCPUCAAcy+Kw/ZYIDjzD/A5qeEiAH66LcKeYg5cDw4JOang4WLqUxBxo9CshxBRo9KsZ0ehXw9LsYYRabqGMdVi4j4VGRbPvj9zQrs+RFrPIzw6z0KhoNm71UVYgK6IRajZwztVcR6Nf7fM420LdIjQfjX41zTln6tjR6FcbQKNfDUuz5RFqey+lQa7iEOzlhOf6t4JYVDH2qIlEgh9n9MKY1cdwLq0Qyw8m4yExjVBrSD4a/Wod3xF7Os7WXLfom4/qFsPz0ehXQgjUGoafjqUCAGYNaKFt0FVq3dQNXz3TDRwHbD1zByey6IHshBBCTIcadYQY6NStPNwpKIWziGF896BatxkS3gxvjAgHAOy4zSM+vdCMJSSEENKYUKOOEAPtir8LAOjmy+AkEdW53YuRrTEiohnUjMP8rQnILiozVxEJIYQ0ItSnzohoSpPGM+1AmVKNA5czAQA9m2rqzbNsVDgu3s7CvSIFZm84iw0zesDV8b+vH007YNh2NKUJHWd7q1v0zWfpaTns9ZzTlU5Tmtgpmnag8YrP47A+SQQfR4b3u6nBC+gul10K/O+SCCVqDm08NPi/9hpI6Fq5XaEpTQghpkBTmpgRTWliWJotTzvw/LpTLDQqmi3bd0mvuJ1IymQR7//BQqOi2ZQfTrD8ohKTD503dezs6ZyruY6mNLHP42zNdYu++WhKE9Occ6aOHU1pYgNoShPD0mxt2oH84nIcScoFAIzpFoQbZ5MFl6lHC1/8NKMXnlt3Bkdv5uHZdWfx8/Re8HaW6HxvmnaApjSxlu+IPR1na6tbGpKPpjQxPB9NaUJII7b/UiZUGoYOgR5o08xN7/wPtfLFthcegq+rAy7fleGxr+IQdyPXBCUlhBDSmFCjjhA97b4/6nVst9qnMRGiS4gXfn+xH9r5uyNXXo7nN57HtmQeecXlxiomIYSQRoYadYToIS2vBOdSC8BzwKgugQ3aV6ivK3bP649pfUMBACeyeQxfeRRfHryOPLnCGMUlhBDSiFCjjhA97LlQcZWuf1gT+Hk4NXh/ThIRlo7uiG2zeiHIhaGoTIWvD99Ev08P46Ut5/H31Wwo1A1+G0IIIY0ADZQgRCDGGHbdb9SN6Wr4rdfa9Aj1xhud1RC36IEfj6Yg4Y4U0RczEX0xEzwnwtbMU+ge6oOwZm4I9XZCdikgLVXCRyQGX2M+FY2GoVihgqwcSMsvgULNobC4DFcKOKgSMlGqYpArVJCXqSBXqCArU2r/LVeoUFRW8VIo1eB5DqL7LzHPwdVRDE9nCbycJfB0kcDfwwkBHo7IKOQQkVeMVs08IRIyvwshhBCjo0YdIQJduivFrZxiOEl4jOzob/T98xzwSAc/PNElCJfuSrH3QgYOXMpEhrQM8elSxKdLq2wtxrILMeA5QCziIeIAjVqEqLN/o0yp0W6Dc0er5BEB1y4ZvdyV+/726jE4SXiE+3sgIsADHQI90KuFD9o0c3ug4UkIIcT4qFFHiECVjwUbHuEPN0fTfXU4jkPnYC90DvbCWyPCsHnXH3Bu0QU3sktwM0eO2zlyZMsqrsBpGFCuqmzEcYBGU21fzhIero4SuDuKoCorRrCfL9ydJPdfYrg5iiv+Vvm3u5MEbo5iOElE0DAGtabipVJXXOGTlpajsESJghIlMqWlSMsrxrX0HBSqRChTapCQXoiEKs+49XaRoHdLH/Rr3QRD2zdDsDdNoksIIaZAjTojoseE2e+jfJRqDfZeyAAAjOrkp3eZDH0cjUqlgq8TMLxTM+08RUqlEocOHcLgIUNRrAJUag0U5UrEHT2KgQMGwMPFEWKOIS72MEaOGA6JRKLNM3x4F6PPJVW574eHDkFmkRJXM4tw7V4REu5KEZ9WiIISJf66koW/rmRh0d4raOfvjqHtmmJoW1+dMakvNoak0WPCGlYGQ/ZNdQs9JsxQ9JiwB9+zPvSYsAagR/k0HlcKOHx/TQQ3CcPS7mqIaIiRICoNkF4M3JRxuFrA41YRwPDfrdgAF4beTTXo0YTB08GCBTUSekwYIcQU6DFhZkSPCTMszZYe5TN30xkWGhXNFu2+aHOPozF17PTZ970COfv1VAqbtf40C3t3PwuNimahUdGs5dvRbNpPJ9mhy3dZWZnCYudczXX0mDCqW6w9dlS3mOacM3Xs6DFhNoAeE2ZYmrU/ykdaqsTf13IAAE/1bC74cTFC9i003V4e5ePnJcHTvV3xdO9Q5MpK8Nm2v5Gs8sW5tEIcScrFkaRctGziimcfCsVTPYPh4SSs7PSYMOs6zg3J15jqFmPma+x1S0Py0WPCCGlEDlzKRLlKg3A/d3QINPyWGqnO01mC/n4M22b3RswbkZg5oCXcncS4nVuMpdGJ6PvxP/jkj6vIpYmYCSFEEGrUEVKP38/fAQCM6x4EjqOpOUyhZRNXvP9EBE6+MxTLxnZEWz83FJersfbILUR+GYffbvPIKCy1dDEJIcSqUaOOEB3S8kpwJqXisWBjGvCsVyKMq6MYU/qE4q9XB+Gn6T3RNcQLCpUGcfd4DP3fUSzcdQnZsjJLF5MQQqwSNeoI0eHXs2kAjPdYMCIMx3EY2t4Pu17shw0zeqCNhwYqDcMvp9Iw6PMYfPbnNUhLTTP9BCGE2Cpq1BFSB6Vag+1nK269PtO7uYVL0zhxHId+rX3xUgcNfpnZE92be6FMqcGa2GQM+iwGPxy9DaWm/v0QQkhjQI06Qurwz9Us5BQp0MTNEcMj/CxdnEavdwsf7JzbD98/2wNtmrlBWqrEZ3/dwCcXRDiUmA1GU24SQho5atQRUodfTlXcep3QMxgSmm3YKnAchxEd/PHnq4Pw+VOd4efuiDwFhxe3XsCzP51GUlaRpYtICCEWQ/9TEVKL9PwSxN3IBQA804tuvVobEc9hQs8Q/PVKfwwP0kAi4nD0Zi4eXRWHxXuvUH87QkijRI06Qmqx9XTFVbqBbZqguS89nslauTqK8URzDf58uT9GRPhBrWFYfzwFQ788guiLmaA7soSQxoQadfelp6eje/fucHJygkqlsnRxiAWVKdXaRt2UPnSVzhY093HB99N6YvPMPmjd1BW5cgVe23EJ313lkZZfYuniEUKIWVCj7r6mTZvi8OHDeOihhyxdFGJhuy9koqBEiWBvZwyP8Ld0cYgeBrRpggOvDMTrw9vCQczjmpTHY18fx5rYm1CqaZgsIcS+UaPuPicnJ3h5eVm6GMTCGAPWn0gFAMzo1wIinp4gYWscxSK8PLQNouf1RRsPDRQqDT778zoe/yoOF9ILLV08QggxGbts1C1atAgRERHgeR7btm2rlpaTk4PHH38cLi4uCA8Pxz///GOhUhJrdK2QQ3JOMVwdRHi6V4ili0MaoGUTV8yL0ODz8R3h4+qApCw5Jv5wGntSeZQp1ZYuHiGEGJ1dNuratGmDVatWoXfv3g+kzZs3D4GBgcjNzcXy5csxYcIEFBQUWKCUxBrFZlZcmXu6Vwg8nCQWLg1pKI4DxnQNxD+vD8bYbkHQMOBwBo/Ra07gXCp97wkh9kVs6QKYwtSpUwEAy5Ytq7ZeLpdjz549SElJgYuLC8aMGYMVK1Zg3759mDZtmuD9KxQKKBQK7bJMJgMAKJVK7atyuba/Nf9tTLW9lzHz6dpO37T64iQkjsaUeLcA16Q8OABTewcLeh9jxE1XupC41bbOnLGzhXPOzUGCz8Z1wNC2Pnj394u4lVuCp747jml9QtBRIzy+Qj+ToRpatzT241zXOkvXLaaMHdUthuezdOyElFHf7Thmx9OwR0ZGYs6cOZg0aRIAID4+HiNHjkR2drZ2m/nz58PFxQVLlizBE088gXPnzqF79+5YvHgxBg4cWOt+Fy9ejCVLljywfsuWLXBxoekvbNXGGzzO5fLo4qPB8+HUqd5elaiAXSk8TudU3Kho6sTwTGs1WnsYYd8lJZg8eTKkUik8PPTfIdUthJDaCK5bmB0bPHgw27p1q3b533//Za1bt662zbvvvstefPFFvfZbVlbGpFKp9pWens4AsNzcXFZeXs6Ki4vZ7t27WXFx8QPLNdOM/TJ0/0Lz6dpO3zRdcRKybMxXUmYBa/l2NAuNimZnbt4za9x0pQuJm6VjZ6vn3F+X7rJeHx1koVHRrEVUNFu69xIrKilr0Pc1NzeXAWBSqdSgOqshdQsdZ+usW0wdO6pbTHPOmTp2pqpb7LJPXV3c3Ny0tzMqyWQyuLm56bUfR0dHeHh4VHsR2/btkdvQMCDCS4OIAHdLF4eYwZDwptg7tzf6NNWAAfjpWCrGf3cS17PkFisT1S2EkIZoVLdf5XI5fH19kZqaCn//ivnHBg0ahFmzZunVp67S6tWrsXr1aqjVaiQlJdEtEhuVVwZ8FC+CBhxe66hCC2rTNTqX8jlsS+YhV3EQcQyPh2gwJJBB3xltGnr7tRLVLYSQqhr17dfy8nJWWlrKBg4cyDZu3MhKS0uZWq1mjDH21FNPsRdeeIGVlJSwPXv2MG9vb5afn9+g95NKpXT71YA0a7lFEvXbBRYaFc2eWXtM7/3bwmV+U8bOns65zPwiNnPdKRYaVXEbftzqOHb9Tq5Zb782pG6h42x9dYs5Ykd1i2nOOVPHjm6/6mH27NlwdnZGXFwcpk2bBmdnZ/z7778AgDVr1iA9PR2+vr544403sH37dnh7e1u4xMRSUvNL8Nu5uwCAOQNbWLYwxKJ83RyxZnJXfDiqHRx5hnNpUoxZewYnszkw+72hQQixI3Z9+9XU6BaJ7duQxON8Ho92nhrMjaARr6RCXhmw+aYIt4oq7r8+31aNLr71V5V0+5UQYgqN+varudHtV8PSLH2L5EJqrvZWW3xKrkH7t4XL/KaInb2ec1XXyYrk7KuDiWzkx3tZkVwu6DPR7VfbOM50+5XqFkvHzlS3X+1y8mFChPjy0A0AwOOd/NEh0MNkE48S2yTiOczsH4rg4iTwHD0DmBBi/ej2awPQLRLbdUPK4ZtEEXiO4d0uajR1tnSJiD2g26+EEFOg269mRLdfDUuz1C2SktIyNnJFLAuNimbv7kxoUOxs4TK/MWNn7+dczXWmukViirqFjrPl6xZLxI7qFtOcc6aOHd1+tQESiQQSiUTncl1ppi6LsfPp2k7fNCFxM2bstp1NwbUsOTydJVgwsl295RHCGHHTlS4kbrWtM3bsdLGnc65ynSFlNAVzf0f0KYux89ly3VIfU8aO6hbD81kidoaUUQhq1BmR0Idu1/y3sctgyP4by0O3C0rK8cXB6wCAV4e2hrsD16D928qDo+31odvGPufqW1cfU36vhdQtdJxrX2fJuDVk/0LyUd1ieD5Lx05IGfXdzux96kpLS/HBBx9gx44dyM/Ph0wmw19//YWrV6/i1VdfNWdRGoz6vdie7bd4HMviEeDC8GZnNUTU/50YEfWpI4SYgtX2qZsxYwabMmUKu3TpEvPy8mKMMZaRkcHCw8PNXRSjoT51hqWZu99LfEoua/l2xRQmcdfvGSV2ttB3wxixayznXM111KfOPo8z9amjusXSsbObPnX79+9Heno6HB0dwd2fJiAgIACZmZnmLorRUZ86w9LM0e9FpdZg4Z5EaBjwROcADGjrV+e21KfOMPZ0zlWuM6SMpmBNfcPs6ThTnzqqW4RsZ0t96sz+mDAvLy/k5ORUW3f79m0EBgaauyikEfkh7jauZMjg6SzBolEdLF0cQgghxOjMfqXulVdewahRo7Bw4UKo1WpER0fjo48+srn+dLWhgRLW2Zk5Ja8YK/9OAgC880hbeDnxepe/LrbSIddeOzPTQAk6zjRQguoWQ/NZOnZCyqjvdhaZfHjHjh34+eefkZaWhqCgIMycORMTJ040dzEajDozWz8NA1YninBTxiHcU4O57TWghwMQU6GBEoQQU7DagRL2iAZKGJZmjs7Ma2NvsNCoaNbuvQMsOavQ6LGzhQ65DTkvGts5V3MdDZSwz+NMAyWobrF07Gx6oMRnn30maLu33nrLxCUxLRooYViaqTozX7snwxcHbwAA3n08Aq2aedabR5/9G5KHOjMbno8GSlhHh397Os40UILqFiHb2dJACbM06q5evar9d0lJCXbt2oU+ffogJCQE6enpOH36NMaNG2eOopBGokypxitbL6BcrcHQds0wtU9zSxeJEEIIMSmzNOrWrVun/ff48eOxY8cOjB49Wrtu79692LhxozmKQhqJz/68jutZRWji5oDlT3XWTp9DCCGE2Cuzj379+++/8euvv1Zb99hjj+HZZ581d1GMjka/WscItYOJWfj52G0AwCdjO8DTsfbRrvqUv6F5LD3Kyl5HqNHoVzrONPqV6hZD81k6dkLKqO92Zh/92r9/fwwfPhzvvfcexGIxVCoVPv74Y/z55584fvy4OYvSYDRCzfpklwJfXhKhTM0hMkCDsS00li4SaURo9CshxBSsdvRrcnIy69OnD3Nzc2OtWrVibm5urHfv3uzGjRvmLorR0OhXw9KMPUJNKi9lI1bEstCoaDZ+zVFWXFpm8tjZwiirhpwXje2cq7mORr/a53G2tdGvWflS9uelu+xYUhYrK1PotW+qWwzfjka/CtCqVSucPHkSaWlpyMzMREBAAJo3t49O7DT61bA0Y4xQY4zhg52XcT1LjiZujlg9pQdcnBzr/Rz6lr+heWiEmuH5aPSrdYzitKfjbAujX1OKgI9Wn0KOvBwA0DXEC99N7QF/Tye99k11i+Hb2dLoV7M/Jiw7OxvZ2dlwcnJCy5Yt4eTkpF1HiKG+PnwTuy9kQMRz+PqZbvDzcKo/EyGEWLF7sjJ8f02EHHk5mrk7wsVBhAvphZj840nkF5dbunjECpn9Sp2/vz84jgO735Wv6qhEtVpt7uIQO7A3IQMrDlU8Bmzp6A7o29rXwiUihJCG+/SPJBSrOHQIdMeOOf2QJy/HpO9P4lZOMV7ffgE/T+9l6SISK2P2K3UajQZqtRoajQYajQZ3797F3LlzsX79enMXhdiBc6kFeGNHAgBg1oCWmNIn1MIlIoSQhruQXoj9l++BA8PHYzrAxUGMEB8X/Di9JxzFPGKv5+CHuFuWLiaxMnpfqTt9+nSdab1799a7AP7+/lixYgVatWpl89Oa0JQm5p124Ea2HLM2nEG5SoOh7ZrijeFhDYorTWliGHs65+pbVx+a0sTwfNZUtxibIfv/NuYGAKBXU4Y2TZy1ecOaOOP9x9vhvT2J+OLgdfQKcde5b6pbDN+uUUxp0rJly2rLOTk5KC8vR3BwMG7dMuxXQ1xcHCZMmIB79+4ZlN9SaNoBy8ktA1ZdFkGm5NDcleGlDmo4iixdKtLY0ZQmxBhySoFlF0Rg4PB2FxUCahx6xoAfr/O4XMDD35nhjc5qSMx+342Yk9mmNFGpVOzDDz9ky5cvF7R9u3btWPv27bWv0NBQ5ubmxn766aeGFsViaEoTw9IMnXbgVmY+6//J3yw0KpoN/zKWZRcaJ5Y0pQmdczXX0ZQm9nmcrX1Kkw/3XWahUdFs6g/H68yXmV/Eui89yEKjotn0lXupbjHyOWfq2FntlCYikQjvvPMO/P398dZbb9W7/XfffVdt2dXVFW3btm3Qr1prQVOaGJamz1D5QgUwc/MF3CksQ6ivCzbP6oOmRh7pSlOaGMaezrnKdYaU0RSsaWoOezrO1jiliUqtwZ6ETADApF4hUKVk15rP31uCzyd0xvPrzyI2k8eZNBkGt/PX+72pbqEpTarRaDTYunUrXF1dBW1/5swZDB48WPvq2bMnPDw8sGLFioYWhdi59IISfHVFhFu5JQj0dMLmmX3QjKYuIYTYkbgbucgpUsDH1QGRbZvq3Pbhdn54plcwAOCt3y9DWmKaPoHEdujdqHN2doaLi4v25ejoiHffffeBK3B1Wbp0aa3rly1bpm9RSCOSnCPH5B/PIE/BobmPM7bP6YsQH+pjRAixLzvOpQMARncNhIO4/v+i336kLZo6MWTJFFi4+5J2ujDSOOl9+/XatWvVll1dXdGkSZN6823fvh0AoFKpsGPHjmonXkpKCnx8fPQtCmkk4tMKMXfLBeQVl8PPmWHLzF4I9qYGHSHEvhQUl+PvxIqJ+Cf0CBGUx8VBjGfD1FiVKEH0xUwMa++HMd2CTFlMYsX0btSFhho2D9i3334LACgvL8eaNWu06zmOQ7NmzWieOlKr87kctq47i3KVBh0C3TE5sICeFkEIsUv7LmagXK1BRIAHIgI9BE9jEeoOzItsha8OJ+P9PZfRq6UPgrycTVxaYo3M9kSJmJgYAMBHH32E9957z1xvS2yURsOwJvYWNtwQAdBgWHs/fDG+A478c9DSRSOEEJPYcfYOAOCpHsF65507qCXibuYhPq0Qr/96Ab/M6gOxiOY5aWzMcsRzc3O1/37hhRe0z3qt+SIEAKSlSryw6Sz+989NAMBz/UKx9tkecHU0+1PtCCHELK7dk+HSXSkkIs6g26diEY//Pd0VLg4inLqdj4W7LlP/ukbILP9LtmzZEkVFRQAefPZrJY7j6NmvBOlyYMyaE7hTWAYHMY+xzZV499FwiHgOGjo9CCF2aue5iqt0D7drBh9XB4P20aKJK1ZN6ob/23QWv55NR4CXE+YNbll/RmI3DGrUpaam4rfffkNGRgYCAwMxbty4B540UVVlgw6omALFXtFjwgx/lI9KrcG3R5Kx+rIIalaGYG9nrHyqA+5ePmnVj/KxlcfR2OujfOgxYXSc7eExYUq1Brvi7wIAxnYJ0KtcNbeJbOODRU+0x6J9V7Hy7xsQQYPmteyD6hbL18tCyqjvdno/Jiw6OhpTpkzB448/jtDQUKSlpWH//v3YtGkTRo0apc+ubB49ysc47pUAv9wUIa2YAwB09tHgmdYauNDdVmJj6DFhxBCX8zn8cF0ENwnD0u5qGKMr3B/pPP68U7Gjx0LUGBlMt2JtmckeE9axY0cWExNTbd2RI0dYRESEoPxpaWls1qxZrFevXtUeF9a+fXt9i2I16DFhhqXlFMjY7K/2srB397PQqGjW8YM/2cIf9jC5XG72x9EYun9beByNqWNnS+ccPSaMjrO54yZk/7M3nGahUdFsyZ5LesdO1zb/O3iNhUZFs9CoaPb2jnhWUlqmV9wsHTt6TNh/L5M9Juzu3bvo379/tXV9+/ZFRkaGoPwTJ05EmzZtsGTJErv75UmPCROWJhaL8cfle/gwOhGZUh4AQ2R4U3z4ZHucP3oYDg4OVv8oH0Pz0GPCDM9Hjwmzjsdd2dNxtoa6Jb+4HDHXcwAAT/duLvj7L2SbV4eHw1nC49M/r2Pr2btIL1Tg62e6wbtKnz2qW+zrMWGCG3V37txBcHAw+vTpg8WLF2Px4sWQSCRQKpVYsmQJ+vTpI2g/ly9fxtGjR8HzNNS6MTqenIeVh5MRn1YIAPBxZPhwXFc81jkIKpXKsoUjhBAz23vhLpRqhk5Bnmjnb/xnoD/fvwVybl/FltsOOHozF4+uisOKp7ugV6in0d+LWJ7gllVERAQAYO3atYiNjYWPjw9at24NHx8fHD58GN9//72g/TzyyCM4efKkYaUlNokxhpO38vHNFR7T159DfFohnCQ8XopshXe6qDEiwg8cx1m6mIQQYnY7zhk+N51QnXwYfp3dG62auuKerAxTfjqFZQeuoYxmFLA7gq/UsfvjKZo3b45jx44hPT1dO/o1JETY40yAimfHPvLIIxgxYgSaNWtWLa3qkyaI7VOo1NiXkImfj95GYqYMAA+JiMOUPqF4cUhreDuJcOBAkqWLSQghFpGYIcOVDBkkIg5Pdgk06Xu183dH9PwB+DD6KraeTsP6E2nwlIjg2OIeRncLph/WdkKvPnXp6enV5pcLCAgAYwxpaWkAKhp89WnVqhUWLFigZzGJLbmRJceei/ew8/xd5MoVAAAnCY+ePip8/GwkmjdxB2C66QMIIcQWbD+bDgAY1t6vWj83U3FxEOOTcZ0wsoMfPthzGWn5pXh1+0X8fDwVrw1vi/4tvUxeBmJaght1xcXFCA8Pr3OGao7jUFJSUu9+Fi1aJLx0xGbcKSjBH5cysPGiCOknjmvX+3k4YlrfFpjQPQAnYv9GgCc9t5UQQkrKVdh5vuLW66Te9V8QMabI8GY48FI/vPnzQRzJdsDFO1I8t+4MugR7opszh+FqDUw4XoSYkOBGnaura7VJhA312Wef1bre0dERwcHBGDp0KLy8vBr8PsS01BqGxPRC/HMtG4cSs3A1U3Y/hYOY5zCkXTOM7x6Mh9s1g4OYp6tyhBBSxb6EDBSVqRDq64KBYU3M/v6OEhEeCWFYNGUAfjqeho0nUpFwR4oEiPDHijhM6ROKcd2D4OdGrTtbIrhRZ6z77efPn8euXbvQp08fBAcH486dOzh16hRGjRqFjIwMzJw5E7///jsefvhho7wfMY5ylQbX7slw/GYO9l3jsfB8DOSK/0ar8hzQI9QbIcjFW5OGwt/L1YKlJYQQ68UYw6aTqQCAKX2ag+ct15/N180RCx+PwOxBrbDx2G2sP5aMLJkCKw4lYcWhJPQM9UIrEYeHisvh50UNPGun90CJhlKpVNi5cyeeeOIJ7br9+/dj/fr1OH78OH755Re8/vrruHDhglHej+hPWqrErRw5EjNluHxXikt3pbh+rwhKdeU5wANQwd1RjH5hvhge4Y+H2zWDuwOHAwcOwNcMfUMIIcRWJdyR4vJdGRzEPCb0ED7Q0JSauTvhlaFhaFmaBBbcFTvjM3Hydh7OphbiLETYsTwW3UK8MLhNE4iLjdcmIMYluFFnjFuvAHDo0CH8+uuv1daNHDkSkydPBgA888wzmDt3rlHei9ROpdYgu0iBTGkZMqWlyCgsxc2sIpxLEmHpxVjkFZfXms/DSYweoV7wKMvCjEf7o3NzH4iq/MKkW6yEEFK/zfev0j3RKcAsAyT0IeaBx7oG4qleociUlmLX+XRsOZqEO8UczqcV4nxaIQAxfk4+gj6tfNCjuRcUxRVdcug6nuWZ/emaERER+Pjjj/HOO+9ALBZDrVbj008/Rfv27QFUjLC1VJ+6119/HWfOnEG3bt3w1VdfWaQM+mCMQaHSoFihQkm5GsXlKuQXlSEhj4P87B1IFWoUliiRX1yOwpJy5MrLcU9ahuyiMmhq/ZHFAaho0DVzd0RbP3d0DPJEp/uvEB9nqFQqHDhwAB2DPKo16AghhNSvoLgc+xIqnsA0tW+ohUujW4CnM2YPaIkg2VV06/8wjiYX4O/Eezh6Ixt5xeU4cOkeDly6B0CMNddj0DHIA52CPLX/b7TwdbXoreXGyOyNug0bNmDy5Mn4/PPP0axZM2RnZyM8PBxbtmwBAGRlZWHlypXmLhbOnz8PuVyOuLg4zJ07F2fOnEGvXr2M/j7Hk/PwbyaHzGMpUDMO5SoNlOqKV7lKg3I1067T/lVroFBpUHq/4VaiuP+3XA11ra0zEZCUqLMcEhEHPw8nBHg6IcDTGc29nSC9cwPjhvVHmL8H3J3oNxchhBjb5pOpUKg06BjkgW4hXpYujmABnk6Y3Kc5JnQPwN7oAwjq1Bfn0mU4dSsXp5JzIVeocPJWPk7eytfmcXMUI6yZ23+vphV/Q3xc6KKAiZi9Ude2bVucPXsWKSkpyMrKgr+/P0JD//u10rt3b/Tu3dvcxcKJEycwbNgwAMCwYcNw8uRJkzTqdl/IwK4UEZBi3El3nSUiuDqK4OogBldejJZBTeHj6gQfVwm8XBzg4+oAbxeHikaclxOauDpW+wWlVCpx4EASOgZ5mPTZh4QQ0lgplGpsOJECAJg9sJXNTvgr5isGxj0U1gwvDAjFvv0HENZ9IK5lFePS/X7YVzNlkCtUuJBeiAvphdXyO4h4BHk7I1j7ctH+DfRygq+rIxzE9ChRQ5i9UVepWbNmEIlEek9eLMSiRYuwY8cOXLt2DVu2bMGkSZO0aTk5OZgxYwZiYmIQEhKCNWvWYOjQoSgsLETr1q0BAJ6enrhy5YpRylJTl2BP3E6/i9DgIDhKRHAQ85CIeDiIeTiI/vv3f+s47bKLQ0WjzdVRXPHv+39dHMTaXz0VjbMDeOyx7tQ4I4QQK7I7IRO58nIEeTnjsU4Bli6O0Yg4oH2AOzo398HTvSoGfqjUGiTnFONmtrzilVPx91aOHAqVBrdzi3E7t7jOfXq7SNDEzQGcgsc/xZfg5+kEH1dHeDiL4eEkgaezBB7OEng4ie//lVBDEBZo1F26dAnTpk3DxYsXAfw3VYqDg4OgyYuFaNOmDVatWoX333//gbR58+YhMDAQubm5OHjwICZMmIDk5GR4eXlBJquYa00mk5msX9+UPs3hnXcZjz3WiRpdhBDSSGgY8POxFADA8wNaQiKy7waIWMQj3N8d4f7u1darNQwZhaW4U1CKOwUluFNQivT7f+/klyC7SAGVhqGgRImCEiUAHkkXM4W9J8/BWSKCo4QHU4rw9c1jcHEUw0ksgpODCI7iikdVinkeYp4DxzFk3uFxet9VOEhEEPMcxKKKNBHPAYzhxh0OqUduQSQSgeMADhw0GjWu3+WQcTQF4vvrNRoNrmZyyD6RWrEOFesS73EoOJUGkVgMjVqNK1kcpGcqniRyOYtDd1kZQnyN1xYwe6Nuzpw5GD16NE6cOIGAgABkZmbigw8+0F4lM4apU6cCAJYtW1ZtvVwux549e5CSkgIXFxeMGTMGK1aswL59+9C3b1+sXbsWTz/9NP7++2/MmDGjzv0rFAooFArtcmVjUKlUal+Vy7X9rflvY6rtvYyZT9d2+qbVFychcTQmQ/ZvjLjpShcSt9rWmTN29nTO1beuPg2Nb0PrFjrOta+zhrolsYDDrdwSuDuJMa6rv6D3ElIuW6xb/N0l8HeXoGdzjwfSNBqGwlIlcuUKZBaWIPbkefi3aIv8EhUKSpUoKlVCVqaCrPJvmUo7Z6pKw1CkUKFIAQAc8nLqvhL4Hx7Hs9N1pIuwP/1mrev3ptXsRiXCrpTrD6z77fa1asvbb13V/vuRezL4e9T/pCWh8eWYmSeb8fLyQn5+Pnieh7e3NwoKClBeXo5WrVrhzp07Rn2vyMhIzJkzR3v7NT4+HiNHjkR2drZ2m/nz58PFxQXLly/Hq6++inPnzqFLly745ptv6tzv4sWLsWTJkgfWb9myBS4uLkb9DIQQ21FSUoLJkydDKpXCw+PB/7DqQ3WLfWIMWHVFhNtFHIYGavBkqMbSRbIrGgaUqYFyNVCuAZT3X+Ua7r/l+2kaBmju51Gzyr+c9t+V69Ws4rgBAEP1f2v/svtplesEbFN1OwB4NESDIAFz9QutW8x+pc7LywuFhYXw8fFBUFAQEhIS4OPjA7lcbvL3lsvlDwTDw8MDhYWFACB41O0777yD119/Xbssk8kQEhKCIUOGwMPDAyqVCjExMRgyZAjEYnG1ZQDV0oyt5nsbO5+u7fRN0xUnIcvGZsj+jRE3XelC4lbbOnPGzp7OuZrbAPp9XyuvrBmqIXULHWfrrVvibuTg9snLcBTz+GBiPzR1dxSUT0i5qG7RlS9S4DlX+3amjB1gmrrF7FfqPvroI3To0AFjx47FDz/8gAULFoDnecyePRuff/65Ud9L3yt1+lq9ejVWr14NtVqNpKQk+jVNSCPX0Ct1lahusR9Vr9INDtBgXAu6Skf0J7huYRaWkpLCLl++bJJ9Dx48mG3dulW7XFRUxBwcHFhmZqZ23cCBA9mGDRsa9D5SqZQBYLm5uay8vJwVFxez3bt3s+Li4geWa6YZ+2Xo/oXm07Wdvmm64iRk2RpiZ4y46UoXEjdLx86ezrma6/T9bLm5uQwAk0qlDapTDKlb6DhbZ91yODGThUZFs7C397GUe/lGjx3VLaY550wdO1PVLWa7/RoREVHvNomJuifMFUqpVEKtVkOj0UCpVKKsrAwODg5wc3PDk08+iUWLFmHlypU4dOgQLl++jFGjRhnlfQkhhJBKjDF8HZMMAOjnzwTfdiXEUGa7/ers7IzmzZtjypQpGDRoUK2TLg4ePNgo7zVjxgxs2LCh2rqYmBhERkYiJycH06dPR2xsLIKDg7FmzRrtpMP6olskhJCq6PYrqSqxgMPaayJIOIb3u6vhaV2PeSU2xOpuv8pkMrZ+/Xo2fPhw1rJlS/bWW2+xhIQEc729SdHtV8PSrOkWiaH7t4XL/KaOnT2dczXX0e1X+zzO5ohbaZmCDf8yloVGRbNFuxJMFjuqW0xzzpk6djZ/+9Xd3R3Tp0/H9OnTkZWVhW3btuGFF15AcXExfv31V0G3Z62dRCKpNqFwbct1pZm6LMbOp2s7fdOExM3aY2eMuOlKFxK32taZM3b2dM5VrjOkjKZgTd8RezrOpozbrrPpSMqWw8NJjHlDwnA89rZJY0d1i+H5LBE7Q8oohEUeE+bo6AhnZ2c4OTkhLy8PGo19jAaiyYdtf4JQffdPkw/b1zlX37r6mPLcpMmHbaduKS1X48u/KiahfTGyFVwl1csllL1OPiyUJc85XenGip2QMuq7ndn61CkUCuzduxebN29GfHw8xowZg8mTJ+Ohhx4yx9ubBPV7IYRURX3qCAAcvMNhf7oIPo4M73ZVQ2LfTwQjZmB1feo8PT1ZeHg4W7x4MTt27Bg7derUAy9bRX3qDEuzhn4vDY2dLfTdMHXs7Omcq7mO+tTZ53E2ZdzScmUs4v0/WGhUNPvtTKrJY0d1i2nOOVPHzub71Hl5eUGhUGD9+vXYsGEDWI0LhBzH4datW+YqjklQnzrD0qypv5Ch+7fmvhuNod8L9amj42wtdcvyvy6huFyN7s29MLZ7CHj+v5keqE+dYahPnRX2qUtJSTHXW1kM9amzrX4vQsporDyW7rthr/1eqE8dHWdrqluOJ+ch+mImeA744PF2UKtVUKtNGzuqWwzPZ+nYCSmjvtuZ/TFh9oT6vRBCqqI+dY2XSgN8dlGErFIOA/01eKqlfQwAJNbB6vrU2TPqU2dYGvWpM0/fDVPHzp7OuZrrqE+dfR5nU8Tt67+vs9CoaNZt6V8sV1r/99hYsaO6xTTnnKljZ/N96hoD6lNnWJo19RcydP/W3HejMfR7oT51dJwtWbfcypFrHwf27mMR8PWo/aoq9akzDPWpE1630EBrQgghxEAaDUPUzotQqDQY2KYJxncPsnSRSCNGV+qMiAZK2EZn5rrQQAnD2NM5V9+6+tBACcPz2WrdsuFEKs6kFMDVQYQPn2wPlUqlV/l1oYESNFBC3+1ooEQDUGdmQkhVNFCiccktA5YniFCu4TChpRoD/Om/U2IaNFDCjGighGFpNFDCPB1yTR07ezrnaq6jgRL2eZyNEbeS0jI2dvVRFhoVzZ7+7hgrK1NYJHZUt5jmnDN17GighA2ggRKGpVlTJ3BD92/NHXIbQ2dmGihBx9ncdcvXsUk4n1YId0cxvpjQFY6ODvXmoYEShqGBEjRQghBCCDGJ07fz8c3hGwCAZeM6IcSHbo0T60BX6oyIBkpYb2dmIWighGHs6Zyrb119aKCE4flspW6RlirxyrZ4aBgwtlsgHo1o2uDvf0PyUd1ieD5Lx05IGfXdjgZKNAB1ZiaEVEUDJeybhgHfX+NxtZBHEyeGNzur4SSydKlIY0ADJcyIBkoYlkYDJczTIdfUsbOnc67mOhooYZ/H2dC4ffZHIguNimZtFx5g8Sm5VhE7qltMc86ZOnY0UMIG0EAJw9KsqRO4ofu35g65jaEzMw2UoONs6rrl4JV7WB17CwDw6fhO6BrqW+9n0af8Dc1HdYvh+WigBCGEENJI3MyWY8H2BADAjH4tMLZbsIVLREjtqFFHCCGE1CGnSIHn1p9GkUKF3i18sPDx9pYuEiF1okYdIYQQUovScjVmbTyL9PxSNPdxwZqp3SER0X+bxHrR2UkIIYTUoNYwvLwtHgnphfBykWD9c73QxM3R0sUiRCcaKGFENE+d9cwlZQiap84w9nTO1beuPjRPneH5rKluYYzh/b2JOJSYBQcxj28nd0WIl6PBcaV56gxD89Q9+J71oXnqGoDmkiKEVEXz1Nk+xoDfU3j8e48HB4bpbTXo5kv/TRLLonnqzIjmqTMsjeapM898SKaOnT2dczXX0Tx19nmc61qWy+VsWfRlFhoVzUKjotnWk7etPnZUt5jmnDN17GieOhtA89QZlmZNc3AZun9rng+pMcwlRfPU0XFu6PeBMeCbI6n4Pi4FAPDhmI6Y1Ce03vLqg+apMwzNUye8bqFGHSGEkEZNo2HYeZtHXNZtAMB7j7fHsw8Zt0FHiDlQo44QQkijpVJr8NbvlxGXxYPjgA9Hd8RUatARG0WNOkIIIY1SUZkSr/8Wj9jrOeDB8Pn4zhjfs7mli0WIwahRRwghpNHJKwMm/nAaN7KL4STh8WwrJZ7sEmDpYhHSIDT5MCGEkEblTEoBvrwkwo3sYvh5OGLLzF7o6EPTlhDbR1fqCCGENAoaDcOa2Jv48mAS1BoOHQLd8dP03vB1ESE9wdKlI6ThqFFnRPRECXqihKHb0azvhm1HT5Sg4yz0OMuVwKxN5xB3Mx8A0KOJBmundYOni8gq6xah+ahuMTyfpWMnpIz6bkdPlGgAmvWdEFIVPVHCOl3M57D9Fo8iJQcJxzC+pQYPNWPgOEuXjBBh6IkSZkRPlDAsjZ4oYZ6Zy00dO3s652quoydK2PZxvptTyF765az2CRFDPj/MLqbl2UTdIjQf1S2mOedMHTt6ooQNoCdKGJZmTbPlG7p/a565vDHM+k5PlKDjXDVNrWE4lsVh8ZpTKChRgueAhwM0WDmrL9xcnLS3smyhbhGaj+oWw/PREyUIIYQQK3T6dj4W7bmMq/dEAJQI93PHsjERuHvxGBwlIksXjxCTokYdIYQQm3fxjhRfxdzCkaQcAICziOGNR9pjer+WYBo17l60cAEJMQNq1BFCCLFJjDGcSy3AD9d4XD5xCgAg4jlM6BGETiwFTz/UHGIRD6VGbeGSEmIe1KgjhBBiU8pVGhy4lImfj93GxTtSADx4DhjbLRgvDw1DoIcDDhxIsXQxCTE7atQRQgixeowBVzJk2HsxC3sT7iJXXg4AcBDz6OGjwuJJAxEe6AXAdPPNEWLtqFFHCCHEKjHGkJQlx5+XMrDtogiZJ09q05q6O2LaQ6GY0CMQp478jVZNXS1YUkKsAzXqCCGEWI1ihQoJtwtx5HoODl29h/T80vspHCQiDiMi/DG+RxAGtmkKiYinq3KEVEGNOkIIIRaTJSvDpTtSnL6di78uifD6qRioNf896MhBzKNfKx/4q7LwxqRhaOJBT9YgpC7UqCOEEGJypeVqJOWU4HZuMZLuFeFyhgyX7kqRU6SoshUHgCHY2xl9W/liaHs/DGrbBBKO4cCBA/B0Nt3EwITYA2rU3Zeeno7Ro0cjMTERcrkcYjGFhhBChCotVyNTWop70jJkSsuQKS1FhrQMKTlyJN4R4ZUT/9Saj+eAsGZu6BTkASdZOmaPjkSLptWfbUm3WAkRhlou9zVt2hSHDx/GmDFjLF0UQggxO5VagxKlGiUKNYrLVf/9LVehWKFGYbECJ+9wSPjjOgrLVCgsUaKgpBwFxeXILy6HrEylY+8cAMDbRYJWTd3QqokrOgZ5omOQJyICPODsIIJSqcSBA2kI8nI2zwcmxA5Ro+4+JycnODk5WboYhBBikINX7uGfq/dwK5XHwe0XodYASrUG5WoNylUa7b+VKgalWgNFlXWl5WooVBoB7yIC0lPrTHVxECHA0wkBns73/zohwNMRWTcSMHnUMDTzpBGqhJiSzTbqFi1ahB07duDatWvYsmULJk2apE3LycnBjBkzEBMTg5CQEKxZswZDhw61YGkJIcS0Lt2V4tezdwHwQM49g/cj4jm4Oojg6iiGS9W/DiLI87LQKbwVfN2c4OMqgZeLA7xdHODtIkEzDyd4OInBcVy1/SmVShy4lwBvF4cGfsL/b+9ug6Iqwz6A/1nkbVl2NzGSt0cEUcfAZhh10iSw8RE1a5pGnJEUsSzzdXxrKh3Fl6jog2HlFB/StAk0R8fS8Q0DjNLUkUYtTctRQAURkl12BVzc+/ngw8lFXJbDLrt7+P9mzrjn3Pd9zrXXOV3du2d3IaLOeO2kLj4+Hps2bcLq1asfaVuwYAEiIiJQV1eHI0eOID09HVeuXEFLS4vN5A8ANBoN9u/f31NhExG5xJi4fujjA1z5+xISE4Yh0N8PAb4q+PXxgZ+vCv6+Kvj1efCvfx8V/HxV8PP1gb+vCkH+vgj27wN1gC/8fVWPTMyA/5+cHTiAyWmD4efHLywQeSKvndTNmDEDAJCTk2Oz3WQy4YcffsC1a9egVqvxyiuvYOPGjdi3bx8yMzNRWlra7WO3tLSgpeW/b2wZjUYAD4pe29K23tG/7R87U0fHcuY4e/262tZZnhzJozPJ2b8z8mav3ZG8dbStJ3OnpGuus22d6W5+u1NbRvyPFs+EB6Ho7l/43xER8iZeworWx9yGVdJ59oba4ug41hb549ydO0di7Go/HyGE6Lyb50pNTcXbb78tvQP3+++/Iy0tDbW1tVKfRYsWQa1WIzc397H7aW5uxpQpU3DmzBkkJSVh7dq1SE5O7rDv2rVrsW7duke2FxQUQK3mbygR9VZ3795FRkYGDAYDtFpt5wPaYW0hoo44XFuEl0tJSRGFhYXS+s8//yzi4uJs+qxcuVLMnz/facdsbm4WBoNBWqqqqgQAUVdXJ+7duyfMZrPYu3evMJvNj6y3b3P2Inf/jo6z16+rbfby5Mi6J+TOGXmz1+5I3tydOyVdc+23dfW51dXVCQDCYDD0eG3heVZWbXF0HGuLa645V+fOVbXFa2+/Po5Go5FuWbQxGo3QaDROO0ZAQAACAgKctj8iIoC1hYi6R3G3X00mE0JDQ1FRUYH+/fsDAJ5//nnMmTMHmZmZTj325s2bsXnzZty/fx+XL1/mLRKiXq67t1/bsLYQ0cMcrS1eO6mzWCy4f/8+JkyYgDfffBPp6enw9/eHSqVCeno6+vbti7y8PBQVFSErKwtXrlzBE0884ZJYDAYD9Ho9rl69ipCQEFgsFpSUlGDcuHHw8/OzWQdg0+Zs7Y/t7HH2+nW1zV6eHFl3Njn7d0be7LU7kreOtvVk7pR0zbXvA3Ttv9fGxkYMHDgQDQ0N0Ol0DuficbpSW3ielVVbHB3H2iJ/nDtzB7iotsj64IcHmDVrlgBgs5SUlAghhKitrRWTJk0SQUFBIj4+XhQVFbk0lrbPvXDhwoULAFFVVcXawoULF6cvndUWr32nzpNYrVbcvHkTISEh0u87jRw5EqdPn5b6tK0bjUZER0ejqqqqW7dn7Gl/bGePs9evq22Py1NH656aO2fkzV67I3nraFtP5k5J19zD27qaNyEEGhsbERERAZVK1Wn/znSltgA8z/a2eWNtcXQca4v8ce7Knatqi+K+KOEOKpUKUVFRNtt8fX1tTlT7da1W67Li0f5Yzh5nr19X2zrLU0djPC13zsibvXZH8tbRtp7MnZKuuY62dSVvzrjt2kZObQF4njva5o21xdFxrC3yx7k7d86uLd1/KUkdWrBggd31njy2s8fZ69fVts7y1JN5k3s8Z+TNXrsjeetoG685+Xnq6euuK3ieHWtTQm1xdBxri/xxSssdb7/2MKPRCJ1O1+1vx/VGzJ18zJ083pY3b4vXUzBv8jF38rgqb3ynrocFBAQgOzubv0UlA3MnH3Mnj7flzdvi9RTMm3zMnTyuyhvfqSMiIiJSAL5TR0RERKQAnNQRERERKQAndUREREQKwEkdERERkQJwUueBqqqqkJSUhMDAQLS2tro7HI+3bNkyJCcnY/Hixe4OxavwOpPv2LFjGD16NMaOHYtly5a5O5wu4Xl3HGuLPLzG5OtubeGkzgM9+eSTKC4uxrPPPuvuUDxeeXk5TCYTysrKYLFYZP05md6K15l8gwYNQmlpKX755RfU1NTg/Pnz7g7JYTzvjmFtkY/XmHzdrS2c1HmgwMBA6PV6d4fhFU6cOIHx48cDAMaPH4/ffvvNzRF5D15n8kVGRkq/L+Xn5wdfX183R+Q4nnfHsLbIx2tMvu7WFk7qnCA7OxvDhg2DSqXCjh07bNpu376NF198EWq1GkOGDMFPP/3kpig9n5w8NjQ0SL/GrdPpcOfOnR6P2xPwGpSvO7krLy9HXV0dhg0b5pHx0QOsLfLx+pPPHbWFkzoniI+Px6ZNmzBq1KhH2hYsWICIiAjU1dUhNzcX6enpuHPnDmpqapCammqzTJkyxQ3Rew45edTr9TAajQAe/NmV3vrqUE7u6AG5uaupqcHixYuxZcsWj4uP9cUWa4t8rC3yuaW2CHKalJQUUVhYKK03NjYKf39/cfPmTWlbcnKy2LZtm8P7s1gsTo/T03Ulj2fOnBFvvfWWEEKIefPmiZMnT/Z4vJ5EzjXYW6+z9rqSu6amJjFu3DhRXl7ukfE5ur/edt5ZW+RjbZGvJ2sL36lzob///hs6nQ7h4eHStmeeeQZ//vmn3XHNzc0YP348zp49i7S0NJSVlbk6VI9mL49JSUkICgpCcnIyVCpVh6+IejN7ueN1Zp+93G3duhUXLlzA0qVLkZqaihMnTnhUfPbwvP+HtUU+1hb5XFlb+jg7WPqPyWSSPpPRRqvVoqGhwe64wMBAHD161IWReZfO8piXl9fzQXkJe7njdWafvdzNmzcP8+bNc1NkD7C+dB9ri3ysLfK5srbwnToX0mg00mcy2hiNRmg0GjdF5J2YR/mYO/k8PXeeHp83YA7lY+7kc2XuOKlzofj4eBgMBtTU1Ejbzp49i6efftqNUXkf5lE+5k4+T8+dp8fnDZhD+Zg7+VyZO07qnMBisaC5uRlWq9XmsUajwcsvv4zs7Gw0NTXhxx9/xB9//IGXXnrJ3SF7JOZRPuZOPk/PnafH5w2YQ/mYO/nckrtuf62DxKxZswQAm6WkpEQIIURtba2YNGmSCAoKEvHx8aKoqMi9wXow5lE+5k4+T8+dp8fnDZhD+Zg7+dyROx8hhOj+1JCIiIiI3Im3X4mIiIgUgJM6IiIiIgXgpI6IiIhIATipIyIiIlIATuqIiIiIFICTOiIiIiIF4KSOiIiISAE4qSMiIiJSAE7qiNxo7dq18PPzQ//+/Z22z9TUVOzYsaNLY5YsWYKgoCAMHTrUaXEQkfuwtvROnNSR28XExECtVkOj0UCj0SAmJsbdIfWoN954w+YPO7tCQkICrl279tj2vLw8HDx40KUxEPU01hbWlt6GkzryCMXFxTCZTDCZTB0WCIvF0vNBeQBnPO/r16+jtbW11/0PjQhgbXkc1hZl4qSOPFJpaSmGDh2KVatWoV+/fvjwww/R1NSEhQsXIiIiAlFRUcjNzZX6m81mZGRkQK/XIykpCStXrsTEiRNt9vUwHx8f6RXsv//+i4yMDISFhSE2Nhbbtm2T+qWmpmL9+vUYMWIEtFotpk+fjnv37kntO3fuREJCAkJCQpCYmIhLly4hJycHs2fPtjnec889hz179jj03GNiYvDJJ59gyJAhGDZsGABg/vz5iIiIgF6vx4QJE1BZWSn1P336NIYPHw6tVou5c+fCarXa7O/w4cNIS0sDAGzZsgUDBgyARqNBXFwcSkpKHIqJSClYW1hblIyTOvJY//zzD9RqNaqrq/Huu+9ixYoVMBgMuHz5Mk6dOoXt27dj3759AIB169ahvr4elZWVKCgowLfffuvwcWbOnIno6GhUVVXhwIEDeP/993H27FmpfdeuXdizZw8qKytx7tw57Ny5EwDw66+/YuHChcjPz4fBYMCuXbug1Wrx2muvYe/evWhpaQEAVFRU4MKFC5g8ebLDMe3duxdlZWU4f/48AGDs2LG4ePEiampqEBUVhcWLFwMA7t27h1dffRWLFi1CfX09EhIScPz4cZt9HTp0CGlpaTCbzViyZAmOHj0Kk8mE4uJivsKmXom1hbVFsQSRmw0YMEBoNBqh0+mETqcT7733nigpKREhISGitbVVCCGE1WoVQUFB4tatW9K4zz//XGRmZgohhIiJiRFlZWVS26pVq0RaWpoQQoiSkhIxZMgQm2MCENXV1aK6utrmOEIIsXz5crFmzRohhBApKSli06ZNUts777wjli9fLoQQYs6cOWL16tUdPqexY8eKPXv2CCGE+Pjjj0VWVlaH/bKzs8XcuXMfycf333//uHSJv/76S4SGhgohhCgtLRVxcXFSm9VqFVFRUaKwsFAIIURra6vo37+/MJvNwmQyCa1WK3bv3i2am5sf2W9HeSLyZqwtrC29Dd+pI49QVFSEhoYGNDQ04KOPPgIAhIeHw9fXFwBw+/ZtNDU1YfDgwdDr9dDr9Vi5ciVqa2sBANXV1YiOjpb29/BjeyorK2E2mxEaGirtNz8/H7du3ZL6hIWFSY/VajVMJhOAB58niY2N7XC/M2bMkL4lVlBQgIyMDEdTAQCIioqyWc/JycGgQYOg1WoxatQo1NfXA3j0efv4+NiMPXnyJBISEqBWqxEcHIzCwkJ88cUXCAsLw9SpU3Hz5s0uxUXkbVhbbLG2KBsndeSxfHx8pMf9+vVDYGAgKioqpAJtNBqlb1WFh4ejqqpK6v/w4+DgYNy9e1daf/jbYJGRkdDr9dI+Gxoa0NjYiK+++qrT+KKjo3H16tUO29LT03HkyBGcOnUKtbW1eOGFFxx/4rB97seOHUN+fj4OHjwIg8GAU6dOSW3h4eG4fv26zdiH19tuj7SZPHkyiouLcePGDQQGBmL16tVdiotICVhbHmBtUR5O6sgrqFQqzJo1CytWrEBDQwOsVisuXrwoFaGpU6ciJycHjY2NuHTpErZv3y6NHTx4MOrr63Hs2DG0tLRgw4YNUltkZCRGjhyJNWvW4O7du2htbUV5eTkuXLjQaUxZWVn48ssvceLECQghcOnSJVRXVwMA+vbti5SUFGRlZWHatGnSuwJyNDY2ok+fPggNDYXZbMYHH3wgtY0ePRpNTU34+uuvYbFYsHnzZikGwPaDzLdu3cL+/fvR1NSEgIAAqNXqbsVFpASsLawtSsJJHXmNjRs3Ijg4GImJiejbty8yMzNx584dAEB2djZ0Oh2ioqIwffp0zJw5Uxqn0+nw2WefYdq0aRg4cCBGjRpls9/vvvsOFRUViI2NRVhYGJYsWYKmpqZO4xkzZgzy8vLw+uuvQ6vVIj09HUajUWqfMWMGLl682OXbI+1NnDgRo0ePxoABA5CYmIgxY8ZIbf7+/ti9ezc+/fRThIaG4ty5c1J7fX09qqurkZiYCACwWq3Izc3FU089hbCwMNy4cQPr16/vVmxESsDawtqiGO7+UB+RK2zdulX6MLO7HD9+XMTGxtrts2HDBhEcHCwiIyOdfvyCggIxe/Zsh/ouXbpUhISEiOHDhzs9DiIlYW1hbfFkPkII4e6JJZGzffPNN9ixYwcOHTrkluNbLBZkZmYiISEBq1atcksMhw8fRmhoKEaMGOGW4xMpEWsLa4sn6+PuAIiUpr6+HlFRURg+fDjy8/PdFsfDH2ImIu/H2kKd4Tt1RERERArAL0oQERERKQAndUREREQKwEkdERERkQJwUkdERESkAJzUERERESkAJ3VERERECsBJHREREZECcFJHREREpACc1BEREREpwP8BR2zaFSlI+C0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -1196,7 +1196,7 @@ { "data": { "text/plain": [ - "array([[list([])]],\n", + "array([[list([])]],\n", " dtype=object)" ] }, @@ -1206,7 +1206,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlBElEQVR4nO3dd3xT9f4/8FdGmzbN6KYtLaO0tJQ9RAQRVMCBIFcv13ulAg4cF70qV66Xe9Uqoqj3p9fxFe91XHBUEQdDr3pVEBkqyCiUUmgpLZQOupOmM20+vz/SBAKldCUn4/V8PPKgJCfnvE8D9MVnyoQQAkRERETk8eRSF0BEREREvYPBjoiIiMhLMNgREREReQkGOyIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IqB1vvvkm4uLiIJfL8fLLL0tdTqesWbMGMpkMMpkMDz30kMuvX1BQYL/+qFGjXH59ImKwI5JMWVkZ7rnnHvTr1w8qlQpRUVG45ppr8PPPP9uPkclk2LBhg3RF+iij0Yj7778fjz76KIqKinD33XdLXVKn6XQ6lJSU4Omnn7Y/9/nnn+Oaa65BeHg4ZDIZMjIyLvh+IQSuu+66dv/sPfPMM5g4cSLUajWCg4PPe29cXBxKSkrw5z//uZfuhoi6isGOSCI333wzDhw4gHfffRc5OTnYtGkTpk6diqqqKqlLAwA0NzdLXYJkTp48CbPZjJkzZyI6Ohpqtbpb5zGbzb1c2cXJZDJERUVBq9Xan6urq8OkSZPw3HPPXfT9L7/8MmQyWbuvNTc3Y+7cubjvvvvafV2hUCAqKgoajaZ7xRNRzwkicrnq6moBQGzduvWCx/Tv318AsD/69+9vf23Tpk1izJgxQqVSiYEDB4onn3xSmM1m++sAxKpVq8S1114rAgICxIABA8S6des6rGnKlCli8eLF4uGHHxZhYWHiiiuuEEIIkZWVJa677joRFBQkIiMjRWpqqigvL7e/75NPPhHDhg0TAQEBIjQ0VFx99dXCZDIJIYRYsGCBuPHGG8WTTz4pIiIihFarFXfffbdoamqyv7+xsVE88MADIiIiQqhUKjFp0iSxe/du++s//PCDACC+//57MXbsWBEYGCguu+wyceTIEfsxGRkZYurUqUKj0QitVivGjBkjfv31V/vrO3fuFJMnTxYBAQEiNjZWPPDAA/Yaz7V69WqH7zsAkZ+fL4QQYtWqVSI+Pl74+fmJwYMHi/fee8/hvQDEG2+8IWbPni3UarV44okn2r3G66+/LhISEoRKpRKRkZHi5ptvFkII8e6774rQ0FDR2NjocPxNN90kbrvttove6+rVq4Ver2/3mkIIkZ+fLwCI/fv3t/t6RkaGiI2NFSUlJQKAWL9+/QW/Rx1dJy0tTYwcOfKCrxOR8zDYEUnAbDYLjUYjHnroofN+iNuUlZUJAGL16tWipKRElJWVCSGE+Oabb4ROpxNr1qwReXl54ttvvxUDBgwQTz75pP29AERYWJh46623xNGjR8Vjjz0mFAqFOHz48AVrmjJlitBoNGLp0qXiyJEjIjs7WxQXF4vw8HCxbNkykZ2dLfbt2yemT58urrzySiGEEMXFxUKpVIqXXnpJ5Ofni4MHD4rXX39d1NbWCiGswU6j0YhbbrlFHDp0SHz55ZciIiJC/O1vf7Nf909/+pOIiYkRX331lcjKyhILFiwQISEhorKyUghxJthdeumlYuvWrSIrK0tMnjxZTJw40X6OoUOHitTUVJGdnS1ycnLEunXrREZGhhBCiIMHDwqNRiP++c9/ipycHLFz504xevRosXDhwna/D/X19eL7778XAMTu3btFSUmJaGlpEZ9//rnw8/MTr7/+ujh69Kh48cUXhUKhEFu2bHH4vkdGRop33nlH5OXliYKCgvPO/+uvvwqFQiE+/PBDUVBQIPbt2ydeeeUV+7X1er1DCC8vLxf+/v7263R0rz0JdnV1dWLIkCFiw4YN9nthsCPyPAx2RBL59NNPRUhIiAgICBATJ04Uy5YtEwcOHHA4pr0frpMnTxbPPvusw3Pvv/++iI6Odnjfvffe63DMpZdeKu67774L1jNlyhQxatQoh+cef/xxMWPGDIfnCgsLBQBx9OhRsXfvXgGg3QAjhDXYhYaGirq6Ovtzb7zxhtBoNKK1tVWYTCbh5+cn0tPT7a83NzeLmJgY8cILLwghHFvsbP773/8KAKKhoUEIIYRWqxVr1qxpt4bbbrtN3H333Q7Pbd++Xcjlcvv7z7V//36HljohhJg4caJYtGiRw3Fz584V119/vf33AMRDDz3U7jltPvvsM6HT6YTRaGz39fvuu09cd9119t+//PLLIj4+XlgsFiFEx/fak2B39913izvvvNPhXhjsiDwPx9gRSeTmm29GcXExNm3ahGuuuQZbt27FmDFjsGbNmg7ft3fvXixfvhwajcb+WLRoEUpKSlBfX28/7rLLLnN432WXXYbs7OwOzz1u3LjzrvXDDz84XCs5ORkAkJeXh5EjR+Lqq6/G8OHDMXfuXLz11luorq52OMfIkSMdxqhddtllMJlMKCwsRF5eHsxmMyZNmmR/3c/PD+PHjz+v1hEjRti/jo6OBmCdgAIAS5YswV133YVp06bhueeeQ15ensM9rFmzxuEerrnmGlgsFuTn53f4/Thbdna2Q50AMGnSpPPqPPd7eK7p06ejf//+iI+Px2233Yb09HSHz23RokX49ttvUVRUBABYvXo1Fi5caB/31tG9dtemTZuwZcsWj5n9S0QXxmBHJKGAgABMnz4dTzzxBH766ScsXLgQaWlpHb7HYrHgqaeeQkZGhv2RmZmJ3NxcBAQEdPjeCw2KtwkKCjrvWrNmzXK4VkZGBnJzc3HFFVdAoVDgu+++w9dff42UlBS89tprSEpK6lRgkslkEEK0W5cQ4rzn/Pz8zrsPi8UCAHjyySeRlZWFmTNnYsuWLUhJScH69evtx9xzzz0O9R84cAC5ubkYNGjQRes8t+aL1Xnu9/BcWq0W+/btw0cffYTo6Gg88cQTGDlyJGpqagAAo0ePxsiRI/Hee+9h3759yMzMxMKFC+3v7+heu2vLli3Iy8tDcHAwlEollEolAOt/PqZOndqjcxORazHYEbmRlJQU1NXV2X/v5+eH1tZWh2PGjBmDo0ePIiEh4byHXH7mr/Qvv/zi8L5ffvnF3trWWWPGjEFWVhYGDBhw3rVsAUYmk2HSpEl46qmnsH//fvj7+zsEjQMHDqChocGhDo1Gg9jYWCQkJMDf3x87duywv242m7Fnzx4MGTKkS7UOHjwYDz/8ML799lvcdNNNWL16tcM9tPf98vf37/T5hwwZ4lAnAPz0009drhMAlEolpk2bhhdeeAEHDx5EQUEBtmzZYn/9rrvuwurVq/Gf//wH06ZNQ1xcXKfutbv++te/4uDBgw7hFwD++c9/9vjcRORaSqkLIPJFlZWVmDt3Lu644w6MGDECWq0We/bswQsvvIAbb7zRftyAAQOwefNmTJo0CSqVCiEhIXjiiSdwww03IC4uDnPnzoVcLsfBgweRmZmJFStW2N/7ySefYNy4cbj88suRnp6O3bt345133ulSnYsXL8Zbb72FP/zhD1i6dCnCw8Nx7NgxrF27Fm+99Rb27NmDzZs3Y8aMGYiMjMSuXbtQXl7uEHaam5tx55134rHHHsOJEyeQlpaG+++/H3K5HEFBQbjvvvuwdOlShIaGol+/fnjhhRdQX1+PO++8s1M1NjQ0YOnSpfjtb3+LgQMH4tSpU/j1119x8803AwAeffRRTJgwAYsXL8aiRYsQFBSE7OxsfPfdd3jttdc6/b1YunQpfve732HMmDG4+uqr8cUXX+Dzzz/H999/36Xv6Zdffonjx4/jiiuuQEhICL766itYLBYkJSXZj5k3bx4eeeQRvPXWW3jvvfc6fa8XUlVVhZMnT6K4uBgAcPToUQBAVFSUw+Nc/fr1w8CBA+2/P3nypP1cra2t9gCYkJDAJU6I3IXEY/yIfFJjY6P461//KsaMGSP0er1Qq9UiKSlJPPbYY6K+vt5+3KZNm0RCQoJQKpUOy5188803YuLEiSIwMFDodDoxfvx48eabb9pfByBef/11MX36dKFSqUT//v3FRx991GFNU6ZMEQ8++OB5z+fk5Ijf/OY3Ijg4WAQGBork5GTx0EMPCYvFIg4fPiyuueYa+1IlgwcPFq+99pr9vbblTp544gkRFhYmNBqNuOuuuxxmAjc0NIgHHnhAhIeHd7jcSXV1tf25syc3NDU1id///vciLi5O+Pv7i5iYGHH//fc7TIzYvXu3mD59utBoNCIoKEiMGDFCPPPMMxf8XrQ3eUKIzi13cqEJBzbbt28XU6ZMESEhISIwMFCMGDFCfPzxx+cdd9ttt5239MnF7vVCkxraW8IFgEhLS7tgne3dy4IFC9o9zw8//OBwHCdPEElHJkTbIBci8hoymQzr16/HnDlzJK1j4cKFqKmp4e4Z3TB9+nQMGTIEr776aqffs2bNGjz00EP28XpSefLJJ7Fhw4YOd7ggIufgGDsiIjdSVVWFtWvXYsuWLVi8eHGX328wGKDRaPDoo486obqOnTx5EhqNBs8++6zLr01EVhxjR0TkRsaMGYPq6mo8//zzDuPuOuPmm2/G5ZdfDgDt7uXqbDExMfZWOpVK5fLrExHArlgiIiIiL8GuWCIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdkRERERegsGOiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJZRSFyAli8WC4uJiaLVayGQyqcshIiIiOo8QArW1tYiJiYFc3nGbnE8Hu+LiYsTFxUldBhEREdFFFRYWIjY2tsNjfDrYabVaANZvlE6nk7gaIiIiovMZjUbExcXZc0tHfDrY2bpfdTodgx0RERG5tc4MG+PkCSIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hJKqQsg91NqaMT//ZCLnFIThvbVYfGVCQjXqKQui4iIiC6CwY4c5Jyuxe/+/TNq6s0AgN0FVfg6sxQfLroU8REaiasjIiKijrArluzqmlpwx5pfUVNvRkq0Ds/fPByDIoJQamzEovf2oL65ReoSiYiIqAMMdmT3yuZcnKpuQN/gQHy46FLcckk/fHT3BETpApBXXofXfzgmdYlERETUAQY7AgBUmprw3s8FAIDlNw5FsNofABCpDcDyG4cCAN7alo/TxkapSiQiIqKLYLAjAMC7PxWg0WzB8L56XJUc6fDa9JQ+uGRACJpbLfjPznyJKiQiIqKLYbAjtLRa8OHukwCAe6cMgkwmc3hdJpPh3imDAAAf/nIStY1ml9dIREREF8dgR9hxrAIVpmaEBvljxtA+7R5zZVIk4iOCUNvUgq8zS11cIREREXUGgx1hw/4iAMANI6Lhp2j/j4RcLsNvx8YCAD7dd8pltREREVHnMdj5uKaWVnx7+DQA4MZRfTs89jej+0ImA3bnV+FkZb0ryiMiIqIuYLDzcbvzq1Df3IpIrQpj+gV3eGy0PhATBoYBAL49zO5YIiIid8Ng5+O2Hi0HAExNijhv0kR7bGPwbK18RERE5D4Y7HzcD0fLAFgnR3TGtCHWYLenoArVdc1Oq4uIiIi6jsHOhxXVNOB4eR0UchkmJYZ36j1xoWokR2lhEcCWI2VOrpCIiIi6gsHOh/2aXwUAGBajgy7Ar9Pvm5FibbXbcpTBjoiIyJ0w2Pmw3QXWYHfJgNAuvW/y4AgAwM95lbBYRK/XRURERN3DYOfDbC12lwzsWrAbGRsMtb8CVXXNOHq61hmlERERUTdIFuzS0tKQkpICuVyOtWvXXvC4oUOHQqPR2B9yuRwvvvgiAGDr1q2Qy+UOr2/fvt1Vt+DRquuakVtmAgCM6x/Spff6K+X2Vr6dxyp6vTYiIiLqHsmCXWJiIl555RWMHz++w+OysrJgMplgMplw4sQJ+Pn54cYbb7S/PnjwYPvrJpMJkydPdnbpXmHPiWoAwKCIIIRpVF1+/6QE63p2P+dV9mpdRERE1H2SBbvU1FRMnz4dAQEBnX7PunXrMGbMGCQkJHTrmk1NTTAajQ4PX7XvpDXYdXV8nc3EQdZZtLvyq9DSaum1uoiIiKj7PGqMXXp6OubNm+fwXEFBASIjI5GYmIjly5ejtbX1gu9fuXIl9Hq9/REXF+fskt3WoSIDAGBEbHC33j8kWgetSglTUwuOlHKcHRERkTvwmGBXUFCA3bt343e/+539ueTkZGRkZKC0tBQbN27EunXr8Oqrr17wHMuWLYPBYLA/CgsLXVG62xFCILMt2A3rq+vWORRyGUa1bUG2v631j4iIiKTlMcHuww8/xLRp0xAZeWaHhKioKCQnJ0MulyMlJQWPPfYY1q9ff8FzqFQq6HQ6h4cvOlXdgJp6M/wUMiRFabt9nrFtky72nmCwIyIicgceFezO7YY9l1zuMbcjqaxia2vd4D5aqJSKbp9nTL+2YMcWOyIiIrcgWRIym81obGyExWJx+Lo9GRkZKCgowJw5cxye37p1q707NTc3FytWrMANN9zg7NI9nr0bNkbfo/OM6hcMmQworGpAWW1jb5RGREREPSBZsFu0aBECAwOxfft2zJ8/H4GBgdi2bRvS09MxdOhQh2PT09Nx4403IigoyOH5vXv3YsKECQgKCsKMGTMwZ84cLFmyxJW34ZEyi6yzgYfF9izY6QL8MDjS2pW770RNT8siIiKiHpIJIXx2Tyij0Qi9Xg+DweBT4+3GrfgeFaYmrP/jRIzu17XFic+17PNMfLT7JO65Ih7Lrh/SSxUSERGRTVfyCgel+ZiqumZUmJoAWMfY9dQY+8zYmh6fi4iIiHqGwc7H5LTt7RobEogglbLH5xve1p17uMQIi8VnG3+JiIjcAoOdj8ltC3a90VoHAAkRGgT4yWFqakFBZV2vnJOIiIi6h8HOx+ScNgEAEvtoeuV8SoUcQ6Kt/f222bZEREQkDQY7H3O0rcUuqZda7IAzy6ZkFfvu3rtERETugMHOhwgher0rFgCG97UGu8xTbLEjIiKSEoOdD6kwNaO63gyZDBgU0TtdsQAwtG2/2UPFBvjw6jlERESSY7DzIbbWun6hagT6d38rsXMN7qOFv0KO2sYWnKyq77XzEhERUdcw2PmQo07ohgUAP4UcydHWcx4q4jg7IiIiqTDY+ZC88rYZsZG91w1rM8w2zo4zY4mIiCTDYOdD8ius68wNDA+6yJFdZ5sZe7iELXZERERSYbDzIQUV1vFvzgh2SVHWrtijpQx2REREUmGw8xGN5lYUGxoAODfYnTY2oaa+udfPT0RERBfHYOcjTlTWQwhAG6BEaJB/r59fo1IiNiQQAHCktLbXz09EREQXx2DnI84eXyeTyZxyjWR7dyyDHRERkRQY7HxEQaXzJk7Y2Lpjj3CcHRERkSQY7HxEQVuL3YAwZwY76w4U7IolIiKSBoOdjzjuxKVObIa0tdjllNbCYuHWYkRERK7GYOcjClwQ7AaEB8FfIUddcyuKahqcdh0iIiJqH4OdD6hrakFZbRMAa/hyFj+FHIPadrVgdywREZHrMdj5ANvEidAgf+gD/Zx6rWQuVExERCQZBjsfUFhl3XGiX6ja6deyzYzNZosdERGRyzHY+YBT1dbxbrYFhJ0piWvZERERSYbBzgfYWuziXNBiN7iPNdgVVNTB3Gpx+vWIiIjoDAY7H1DY1mIXF+L8YBejD0CQvwItFoETbWP7iIiIyDUY7HyArcXOFV2xMpnMPjP2WJnJ6dcjIiKiMxjsvJwQwj7GzhVdsQCQEMFgR0REJAUGOy9XWdeMBnMrZDIgJjjAJddM6GMNdrkMdkRERC7FYOflbN2wfbQBUCkVLrkmW+yIiIikwWDn5ewTJ0KdP77OJqFtjF1euYl7xhIREbkQg52XO1XdttSJC2bE2vQLVcNfIUej2cI9Y4mIiFyIwc7LFVa5bnFiG6VCjoFte9KyO5aIiMh1GOy8nK3FLtZFM2JtErjkCRERkcsx2Hm5Uy5cnPhsXMuOiIjI9RjsvJjFIlDkwn1iz5YYaVvyhHvGEhERuQqDnRc7XduI5lYLFHIZovWuWcPO5uyuWCE4M5aIiMgVJAt2aWlpSElJgVwux9q1ay943MKFC6FSqaDRaKDRaDB06FCH19esWYPY2FjodDrcfvvtaG5udnbpHqO4bUZqlC4ASoVrP+qB4UGQywBjYwvKTU0uvTYREZGvkizYJSYm4pVXXsH48eMveuxTTz0Fk8kEk8mErKws+/OZmZlYsmQJNmzYgMLCQhQUFGDFihXOLNujFNc0AnDdjhNnC/BT2Lcw4zg7IiIi15As2KWmpmL69OkICOh+6Pjwww9xyy23YNy4cdDr9Xj88cfxwQcf9GKVnq3EYG2xi9a7dnydjW0HijwGOyIiIpfwiDF2//jHPxAWFoaJEydi27Zt9ucPHz6M4cOH238/cuRI5Ofno6Gh/UVxm5qaYDQaHR7ezNZiFy1Bix0AxEdY17I7XlEnyfWJiIh8jdsHuwcffBDHjh1DSUkJFi9ejFmzZqGwsBAAYDKZoNPp7MfavjaZ2m8hWrlyJfR6vf0RFxfn/BuQkK3FLkaiFrv4tha74+UMdkRERK7g9sFu9OjRCAkJgb+/P+bNm4fLLrsM3333HQBAo9E4tLrZvtZoNO2ea9myZTAYDPaHLSB6qxJDW4udi2fE2th2n8hnix0REZFLKKUuoKvk8jNZNCUlBZmZmfbfHzhwAAMHDkRgYPstVCqVCiqVyuk1uoszkyekarGzBrtT1fVoammFSqmQpA4iIiJfIVmLndlsRmNjIywWi8PX5/rss89QV1eHlpYWfPzxx9ixYweuuuoqAMCtt96KdevWYd++fTAYDHjmmWeQmprq6ltxS80tFlS0LTMiVYtdhEYFrUoJiwBOVtZLUgMREZEvkSzYLVq0CIGBgdi+fTvmz5+PwMBAbNu2Denp6Q5r1f3zn/9ETEwMwsPD8dJLL2H9+vUYMGAAAGD48OF48cUXMWvWLMTGxiIuLg5///vfJboj93LaaG2t81fKERrkL0kNMpkMA9ta7fI4zo6IiMjpZMKHtwUwGo3Q6/UwGAwOkzC8wa7jlbjlzV/QP0yNH5deKVkdD63djw0ZxfjLtUn449QEyeogIiLyVF3JK24/eYK6R+qJEzYDw60TWfLZYkdEROR0DHZeqljipU5suJYdERGR6zDYeakSiRcntuGSJ0RERK7DYOelpN5OzMbWYldV14ya+mZJayEiIvJ2DHZe6swadtK22Kn9lfZxfuyOJSIici4GOy9VarRNnpC2xQ440x3LrcWIiIici8HOCzWaW1FVZ+32lHryBHCmOza/ov09fImIiKh3MNh5IdtSJ2p/BXSB0u8aZ1vyhC12REREzsVg54VKamwTJwIgk8kkrubsFjsGOyIiImdisPNCxQb3GV8HAPFnLXlisfjsRidEREROx2DnhWz7xEZJvOuETWyIGv4KOZpaLChqa00kIiKi3sdg54XK2oJdH51K4kqsFHIZ+oepAbA7loiIyJkY7LzQaWMTAKCPzj1a7ICzlzzhzFgiIiJnYbDzQmW11ha7SK37BLv4COvMWLbYEREROQ+DnReytdhFuklXLHBmAgV3nyAiInIeBjsvI4Swt9i5U1esbckTrmVHRETkPAx2Xqa63gxzq3VJkQiN+7TY2cbYFRsa0GhulbgaIiIi78Rg52VsS52EBfnDX+k+H29okD/0gX4QAiioZKsdERGRM7jPT37qFbZgF+lG3bAAIJPJ7K12+eyOJSIicgoGOy9TZl/qxH26YW04gYKIiMi5pN8hnnqVrcWujxstdWIzMJx7xnZXXVMLimsa4K+UIy5EDblc+j2AiYjI/TDYeZnTte6168TZBkZwkeKuEELg60OlWL0zH3tOVEO0bbOrVSlx7bAo3DMlHgmRWmmLJCIit8Jg52Vsa9hFuNkYOwCID+cixZ1VXdeMBz/OwLaccvtzugAlmlosqG1qwSd7T+Hz/UW4b8ogPDx9MBRswSMiIjDYeZ2y2rYxdlr3a7EbEG7dL7a63ozqumaEBPlLXJF7Kqyqx23v7EJBZT1USjnuviIefxjfDzHBgWhptWB/YQ3+/eNxfJ99Gv/3wzEcOFWDN1LHQqPiX2ciIl/HyRNepszofosT26j9lYjWW+vK55In7aowNdlDXd/gQGy6/3L8eUYSYoIDAQBKhRyXDAjF2wvG4dU/jEagnwLbcyuw4D+7Udtolrh6IiKSGoOdF7FYxJkWOzcMdgC45EkHzK0W3P3eHnuo+/yPE5EUdeExdLNHxuDjeyZAF6DE3hPV+GP6PrS0WlxYMRERuRsGOy9SWdeMVouATAaEa9yzm5MzYy/s5e9zsO9kDbQBSrx35/hOhfMRscH44K5L7S13z3yV7YJKiYjIXTHYeRHbUifhGhWUCvf8aOMjrBMojldwZuzZ9p2sxqqteQCA524agUFt36fOGBEbjH/eMhIAsHpnAb44UOyUGomIyP25509/6pYyN17qxMa+SDG7Yu1aLQJPbDwEIYCbxvTFzBHRXT7HtcOi8cBVCQCAv6/PRHFNQ2+XSUREHoDBzovYljpxx8WJbWxdsQWVdbBYhMTVuIcPd5/EoSIjdAFK/O36Id0+z5+uTsTIuGAYG1uw9NMDEILfXyIiX8Ng50XO7BPrvi12sSGBUMplaDRbUNpWry+rbTTjpW+PAgAeuSYJ4Zruf3Z+CjlevmUUAvzk2HmsEuv3F/VWmURE5CEY7LyIrcUu0o1b7JQKOfqFWdez4wQK4N2fClBdb0Z8RBBuHd+vx+cbGB6EB68eDAB45r/ZqKlv7vE5iYjIczDYeZHyWvddw+5sZ8bZ+fYECmOjGW9uOw4AePDqxF6b8HLX5IEY3EeDyrpmPP/N0V45JxEReQYGOy9iH2Pnxl2xwNkzY327xe7dnQUwNrYgIVKDG0bE9Np5/RRyrJgzHACw9teTyC4x9tq5iYjIvTHYeRH7GDs37ooFuJYdADS1tOLdn08AAO6/MqHX93odPzAUM4dHQwhg5ddHevXcRETkvhjsvESrRaCyzjqeyp0nTwAMdgDw34MlqDA1oY9O1a3lTTrjL9cmwU8hw7accmzPLXfKNYiIyL0w2HmJ6nrrrhMAEBrknrtO2NjG2BVW1aO5xfe2wBJCYPXOAgDA/MsGwM9Ji0n3DwtC6oT+AIBnvzrC5WWIiHyAZMEuLS0NKSkpkMvlWLt27QWPW7JkCeLj46HVajFu3Dhs27bN/trWrVshl8uh0Wjsj+3bt7uifLdTYbKOrwsN8ndaUOgtEVoVgvwVsAjgZFW91OW43L6T1cgsMkCllOMPvTATtiN/uioR2gAlskuM+PpQqVOvRURE0pMsASQmJuKVV17B+PHjOzxOr9fj22+/hcFgwKOPPoo5c+agtrbW/vrgwYNhMpnsj8mTJzu7dLdUXmsNdhE9WAfNVWQyGQZG+O7M2A9+OQkAuHFUjNNbV0OC/HHn5QMBAK9szmGrHRGRl5Ms2KWmpmL69OkICOh4oH9aWhoSEhIgl8sxd+5cBAYGIicnp1vXbGpqgtFodHh4C1uLXbjWvbthbeLDrTNjfW2cnbHRjK8ySwAAt17a3yXXvH3SQGgDlMg5bWKrHRGRl3PvPrtzFBQUoKqqCgkJCQ7PRUZGIjExEcuXL0dra+sF379y5Uro9Xr7Iy4uzhVlu4QntdgBvjuB4ssDJWhqsSAxUoORsXqXXFMf6Ic7JrHVjojIF3hMsDObzViwYAGWLl0Kvd76AzE5ORkZGRkoLS3Fxo0bsW7dOrz66qsXPMeyZctgMBjsj8LCQleV73T2YKf1jGAXb+uK9bFg98le65+5ueNiIZP17hInHbnjcrbaERH5Ao8IdkIILFy4EJGRkXjyySftz0dFRSE5ORlyuRwpKSl47LHHsH79+gueR6VSQafTOTy8RYXJutRJT/YadSVfbLE7VlaL/SdroJDLMGd0X5de++xWu1c357LVjojIS3lEsHvggQdQXFyMDz74AHL5hUvu6DVv52ktdgPagl15bRNqG80SV+Man+0rAgBcmRQhySLSd1w+EBqVEkdP1+KHo2Uuvz4RETmfZEnIbDajsbERFovF4etzpaWlYefOndi4cSNUKsfQsnXrVnt3am5uLlasWIEbbrjBJfW7G08LdroAP3vroi+02gkh8N+D1kkTrm6ts9EH+uHWS63Lq/zrxzxJaiAiIueSLNgtWrQIgYGB2L59O+bPn4/AwEBs27YN6enpGDp0qP245cuXIzs7GzExMfa16tLT0wEAe/fuxYQJExAUFIQZM2Zgzpw5WLJkiVS3JCn7rFgP6YoFzoyz84Vgl1lkwMmqegT6KXBVcqRkddwxaSD8FDL8WlCNvSeqJKuDiIicQynVhdesWYM1a9a0+9q8efPsXwtx4bFAf/7zn/HnP/+5t0vzOC2tFlTVW8fYeUqLHWDdgWJ3fhWOl3t/sPuyrbXuqiGRUPtL9tcOUfoA/GZ0X6zbcwpvbD2OtxeESlYLERH1Pt8dlOZFquqaIQSgkMsQovaMdewA35lAcXY37Cwn7QvbFXdfMQgyGfB99mnknq69+BuIiMhjMNh5gbLaM9uJKeSuW0Kjp3wl2O0vrEFRTQOC/BWYmiRdN6xNQqQGM1L6AAD+ve24xNUQEVFvYrDzAuUmz1qc2Cb+rG3FOupy93S21rppKX0Q4KeQuBqre6cMAgBszChCiaFB4mqIiKi3MNh5gQoPmxFrExeqhlwG1DW32mf1ehshBL5pWxD4+uHSd8PajO4XgksHhsLcKvDO9nypy/FILa0WtHI9QCJyM9KN4qZeU+6BM2IBQKVUIC5UjROV9TheUYdInevXdnO2I6W1KKppgEopxxWJEVKX4+DeqYOwK78KH+0+iQeuSoRe7Sd1SW6rqKYB3x8+jf0nq3G4xIgSQyNqG1sAAP5KOaJ0ARgQHoRRsXpMGBSGMf1C3KZ1loh8C4OdF/C0NezONjA8CCcq65FfUYcJ8WFSl9Prvj98GgAwOTEcgf7u9YN+6uAIJEdpcaS0Fh/sOoHFVyZc/E0+pLnFgq8PlWDNTwXYf7Kmw+NOVtXjZFU9tuWU49Utx6BVKXHd8CjcNCYWlw4Mden2cUTk2xjsvMCZ7cQ8Z0aszcDwIGw9Wu61Eyi+z7YGu+ltkxXciUwmwz1T4vHwxwewemc+7rx8IFuZAFgsAl8cLMYL3xxFUY11/KFcBozrH4rLE8MxrK8O/ULVCFH7QyaTob65BUXVDThWbsLu/Cr8lFeJ8tomrNtzCuv2nMKwvjrcfcUgXD8sCkoFR78QkXMx2HmB8tpGAJ7ZYhcffmYChbc5bWzEgVMGyGTAVcnuF+wA4IYRMfh//8tBUU0DPtt3CvMu7S91SZLKPV2LpZ8eREZhDQDr36n5E/rj9+P7XfDvV2iQP2JD1Lg0PgzzLu0Pi0Xg14IqrN9fhA0ZRThUZMSfPtqPVyKC8NfrhmDakEi24BGR0/C/j17As7tiNQCA417YYmdrrRsVF+y2n42fQo47Lx8IAHhr23GfnQxgsQj8Z0c+Zr62AxmFNVD7K/DIjMHYtvRKPHB1Ypc+P7lchkvjw/DczSPw01+vxsPTBiNE7Ye88josem8PbnnzF2SXGJ14N0TkyxjsvICtK9bTljsBzix5crKyHi2t5+8V7Mls4+umDXHP1jqb34+PQ7DaDwWV9fhfVqnU5bhcXVML7kvfi+VfHkZziwVTkyLwwyNTcf9ViT0eFxka5I8HpyXix79ciT9OHQSVUo7d+VWY9doOPPf1ETQ0t/bSXRARWTHYebimllYYGswAPLPFLkoXgAA/OVosAqeqvWc9tbqmFuzMqwTgnuPrzqb2V2L+BGsX7L9/zPPqNQXPdaq6Hje/8RP+l3Ua/go5np4zDKsXXoI+vTxDWxfgh79cm4wfHpmK64ZFocUi8K8f8zDj5R+xI7eiV69FRL6Nwc7DVba11vkpZNAHet5yFXK5DAPCvG8Hip/zKtHcYkFcaCASIzVSl3NRCyYOgEopx4FTBvx8vFLqclziSKkRc17/CUdKaxGuUWHtPRNw24T+Th3/FhMciDdSx+Kt+eMQrQ9AYVUDUt/ZhbSNh9h6R0S9gsHOw9nG14VrVB47INu+A4UXBbsdx6ytMFckRnjE5xKmUeF34+IAAP/+0fu3GcsorMEt//4FFaYmDInWYdP9kzCmX4jLrj89pQ++WzIFt7W1lL778wnMfG07DrRN2iAi6i7OivVwnjxxwmagF86M3dkW7C5PCJe4ks5bNDke6btO4MecchwuNiIlRid1SU6x90QVFvznV5iaWjCmXzBW3z5ektZujUqJp+cMw7SUPlj6yQEcL6/DTW/8hPuvTMD9VyXAj0ujXJAQAtX1ZtTUN6O2sQXGRjPMbWN0ZZBBIZdBF+gHXYASukA/hKg9ax9top5gsPNwFR66T+zZbDNjvaUr9rSxEbllJshkwGWDPGfR5X5halw/PBpfHizBm9vy8PLvR0tdUq/LKjZg4WprqLssPgxvLxiHIJW0/wxOGRyBbx++Ao9tOIQvD5bglc252Hq0DC/dMgqDIty/G9+ZLBaBgso6ZBUbcajYgNzTJhRW1eNUdQMazJ3vulbKZYjSB6BvcCBiQ9SIjwjC4D5aJEdp0Tc4EHKGPvIiDHYe7uyuWE9l64r1lmBna60b3lePYLVnLRp975RB+PJgCb44WII/z0hCXKha6pJ6zfFyE+a/sxu1jS0YPyAU/1l4idvsBhKs9sf/3ToG01OK8PiGQzhwyoCZr27HsuuG4LYJ/X0meAghkHPahJ/yKvBzXiV+OV4JY9vWbe3RqqwtctoAJVRKOWzTfppbLNaWvAYzapta7JOzTlU3YFd+lcM51P4KJEVpMTI2GKPirI/+YWqPGEJB1B4GOw9n2yfWk7tibYsUlxgaUd/cArW/Z/+xtI2vm+RB3bA2w/rqcXlCOHYcq8A7O/Lx5OyhUpfUK4prGpD69i5U1jVjaIwOby8c5zah7mw3juqL8QND8ZdPD2J7bgXSNmXh++zT+MdvRyJK7317KQNAa9uCzv/LKsX/DpWi2NDo8LpKKceQaB2GxuiQHK1D/1A14kLViAkOgEp58c+wpdWCclMTitqC3anqehwrM+HoaRPyykyob27F/pM1DtvGBav9zgS9fsEYHRfscf9Jc5WWVguaWixobrH+2tTSiqYWC4QAZDLrri0ymQxymQwyAH5KOdR+CgT6K6BSyhmgncCzf4KSvSvWE7cTswlW+yNE7YfqejMKKuo9emyXEMIjx9ed7Z4p8dhxrAIf/1qIB69OREiQ5/7ZAqxLz9z57h4UGxoRHxGE9+4YD12A+84gj9YH4t3bx+P9X05g5dfZ2J5bgRn//BFPzxmGG0f1lbq8XiGEQEZhDT7dewrfHCpFZV2z/bUAPzkuGRCKiYPCMXFQGIbG6Hq0FZtSIUe0PhDR+kCMG+D4Wkurxd7Vm1FYg4zCGmQVG1FTb8aPOeX4MafcfuzA8CCMtge9ECRHa71yHKQQAoYGM4pqGlBc04jimgYU1zSgwtQMQ4MZhgbrrzX1ZhgazGhq6f76ozIZEKBUQO2vQICfAhqVEvpAP+gC/aB3eCihVzs+ZzumM+He1zDYeTj7PrEe3GIHWP/RrD5Zg+MVJo8OdnnlJpw2NkGllGNsf9fNsuxNlyeEY2iMDlnFRrz38wk8OC1R6pK6zWIReOSTA8guMSJc44/37hiPMA8YtiCXy7Bg4gBcnhiOJR9n4MApAx5cm4HvDp/GijnDPLb1qMzYiM/3F+HTvadwrOzMZCl9oB+mDemDa4dFYXJiuMv2LFYq5EiI1CIhUmsPzc0tFhwpbQt6J61h73hFHfLbHp/vLwJgbUkc3leP0f2CMSouBKP7BSNaH+D2LVDmVgtKDdbAVtQW2orOCnDFNQ2o6+bSO0q5DCqlHP5KOeQyGQQAixCwWIT1a4uA2SLQ3BYGhQAazK1dGi95rgA/+Tkh0K9t4sy54dAPerWfPUQG+CkQ6KdAgJ8cAUqFVw13YLDzcJVtLXZhQe7/w6ojA8M12HeyBvnlnj3OzrbY7CUDQl32w6m3yWQy3DNlEP700X6s+Skfd00eKPkEg+56dUsuvj5UCj+FDP9KHYvYEM8aMzgoQoNP75uI1384hte2HMOXB0uwK78KT9yQghtGRLt9iACsQWJz9ml8/Gshfswph23XugA/Oa4bFo2bxvTFhPgwt2n98lfKMSI2GCNigzH/MutzNfXNyCi0dtfaWvYMDWbsOVGNPSeqAeQDACK1KgyJ1iExUoPBfbRI7KNBQqQGWhe1EAshUFXXjBJDY9ujwd7yVlRdj+KaRpyubURn1iAP1/gjJjgQMfpAxAQHIkKrgj7QD8HntJxpVEqo/OTwV8g73bLaahHWQNfcisa2YFff3ApTY0tbq6Djw9jec41mCAE0mi1oNDfhtLGpR987f6UcAUo5/BTytq5jQN72q0wmg1xu/X2rRaDVItBi+7XVglaLwMi4YHy4aEKPaugtnvmvNdnZujA8uSsW8J4JFDuOWRf39cTxdWe7flgUXgpTo6CyHu/9fAL3TR0kdUld9nVmCV7+PhcA8Myc4Rg3IFTiirrHTyHHQ9MG48qkSDy8LgPHy+vwwEf7sW5PIZbfOMy+XJC7OVFZh7W/FuKTPafsQ0YAYFz/EPx2bCxmjoh2WeDpqWC1P6YmRWJqUiQAa8tTfmUdMk7WYH9hNTIKa5BdUouy2iaU1Tp24QLWreVigq2zcmOCAxGtD0BwoD90ZwWlAD8FlHIZlArrci0yyNDcakGTudU+hs3U1ILq+mbrUi911l+r6prsQa7U2GhvDeuIv0KOmOAAxAQH2muy/Wp73pn/MVXIZdColND04D+MFotAbVNLu6Gvo2DY0GwNkk1mC5rP2sayue173F31brTAOIOdBzO3WlBTb91OzBO6lzpim0CR58HBrqXVgl/adm3w1PF1NkqFHH+6OhFL1h3Av7flIXVCP4/5IQwAh4uNWLLuAADg9kkD8LtL4iSuqOdGxgXjqz9Nxr9/PI7Xtx7D9twKXPPyNtx5+UDcO2WQW+w809xiwbeHS/HR7pPYeezMDiYRWhXmjo3F3HFxbhtEu0Iul2FQhAaDIjS4eWwsAKChuRWHSww4WmpCzulaHCuz/lpW24SqumZU1TXjUJHRJfVFaFWI1gcgSheAviHnh7ewIH+P73qUy2X2VsPu/u1utQg0tbS1HLZY0GhuRatFtHUfW7uRhWjrThYCFmENpQqZNXzbQrhSLnOrHhoGOw9W3dZaJ5cBwW7wj3pPDGrbdiuvzAQhhEd0MZ3rwKkamJpaEKz28+hxgjazR8bg/344huPldVizswAPXO0ZY+0qTE1Y9N4eNJhbMTkxHH+/fojUJfWaAD8FHpyWiBtHxeCJTVnYllOON7bm4cNdJ/HHqYMw/7IBksz2zTldi0/3nsJne0/ZexFkMuvOK38Y3w9XD4l0m65WZwn0V2Bs/1CM7e/YMmxoMNvHrhW1PU4bGq0TEM5qUWoyW9BiEWixWGButfaV+ivlUNkf1kkGIWp/BKutiy4HB/khLMgfUfpAe5DrowuAv9K7v9e9RSGXQe2v9PiVGM7lXXfjY2z/gIZ6wf++BoQFQSGXwdTUglJjI6L1gVKX1GU7ctu6YQeFe8Uq90qFHA9enYgH12bgre3HMX/iALdoFepIc4sF932wF0U1DRgQpsb//WFMj2ZUuqsB4UF49/ZL8H12Gf7xvyPIOW3Cyq+P4N/bjiN1Qn/cNqG/05dAKjU0YtOBImzYX4zDJWdaovroVLhlXBzmjovzqnUQu8vWqjQkumv/2fPU/+CS9BjsPFhl24xYT584AVj/ZzogTI288jrknjZ5ZLDb6cHr113IDSNi8H9bjiG3zIT/7MjHw9MHS13SBQkh8MTGQ/i1oBpalRJvL7gEerV7B9GekMlkmJ7SB1clR2L9/iK8/H0OTlU34NXNufjXj3mYPqQP5ozuiymDI3qlBUcIgbxyE77PLsPm7NPYc6LaPgjfTyHDlMGRuOWSOFyZFOGVYdrVGOqouxjsPFhlXduMWA+fOGGTGKlFXnkdjpWZcMXgCKnL6ZK6phbsO1kNwPPH151NIZfh4emD8cf0ffjPjnwsmDgAoW66rt17P5/A2l8LIZMBr946GgmRvrEdl0Iuw2/HxmLOqBj8L+s03tp+HBmFNfhvZgn+m1kCXYASlyeG4/KECIztH4L4iKBOdYs2mluRV25CRmEN9hRUY3d+FYpqGhyOGdc/BHNG98XM4dEev94hkbdgsPNgtjXsPH3ihE1iHw2+yQJyz1rfylPszq9Ci0UgLjQQ/cK8q/vp2qFRSInW4XCJEa98n4OnbhwmdUnn2XmsAsu/PAwAWHZdMq5sm73oS5QKOWaOiMb1w6OQVWzEhv1F2HigGOW1TfgqsxRfZZYCsLauDQwPQh9dACI0KgT4KyCXWQeSV9eZUV3fbB8Ldu6yGP4KOSYMCsO0IZG4ekgf9A32vJZ1Im/HYOfBzqxh5x3/U7a1sBwrq5W4kq7b4eG7TXRELpfhsZlDcOvbu/DBrpO47bIBbtUaVlBRhz+m70OrReCm0X2xaHK81CVJSiaTYVhfPYb11eOv1yXjwCkDduRWYGdeBQ4XG2FqakHOaRNyTl/8P1D6QD8MjdFh3IBQjOsfgjH9Q3q0RAUROR//hnow2xg7T1/DzsYWFnJOe97MWG8cX3e2iQnhmDakD77PPo2VX2XjnYWXSF0SAKC20Yy73tsDQ4MZo+KC8exNwz3qz42zKRXWHVDG9g/Bg9MSIYTAqeoGHK+oQ0VtE8pNTWgyW2ARAnKZDCFBfghW+yNSq0JCpAZhQf78fhJ5GAY7D3ZmjJ13dMUOitBAJrMuD1Bhanb6rL7eUlbbiCOl1lbGiYO8M9gBwLLrk7H1aBk2HynDzmMVkofYVovAnz7aj2NlJvTRqfDmbWPdai0pdySTyRAXquZsVSIvxqlLHuzs5U68QYCfAv3afuDkelB37M951mVOhsbovOazaM+gCA1SJ/QHADy+8RCaWqRdaX3lV9n44Wg5VEo53po/DpG6AEnrISJyBwx2HszbumIBINE+zs5zJlDY9of1xvF153p4+mBEaFU4Xl6HVT/kSVbH2t0n8fYO6/6cL/5uJEbEBktWCxGRO2Gw82BnJk94RpdlZyREagF4TrATQnj9+Lqz6QP9kDYrBQDwxtY8ST6nn/Mq8diGQwCAh6cNxg0jYlxeAxGRu2Kw81ANza2oa9t02FvWsQPOtNjldmLGnjvIr6hDsaER/go5LvHQTea7aubwaFyVHInmVgse/ewgWlq7v3F2Vx0rM+G+9L1osQjMGhmDP12d4LJrExF5AgY7D2WbOOGvlHvV8gO2mbGespadrbVubP8QSfbolIJMJsPyG4dCq1Ji74lqvO6iLtnimgbc9s4u1NRbZ8D+47cjOGOTiOgcDHYeyj6+zsuWIxjUFuwqTE2obpsc4s7s69clen837NliQ9R4eo51oeJXt+Ri74kqp16vqq4Zt72zCyWGRgyKCMJ/Fl7CGbBERO2QLNilpaUhJSUFcrkca9euveBxDQ0NSE1NhVarRb9+/fDRRx85vL5mzRrExsZCp9Ph9ttvR3Oz+4eB3uBtS53YaFRK+2r2x8rdu9Wu1SLwU9uMWF+YOHGuOaP74jej+6LVIrA4fT/KjI1OuY6h3oyFq3cjr7wO0foAvHfnpV49+5iIqCckC3aJiYl45ZVXMH78+A6PS0tLQ1VVFYqKirB27Vrcd999yMnJAQBkZmZiyZIl2LBhAwoLC1FQUIAVK1a4onzJ2VrsvPEHXIKHjLM7eKoGtY0t0AUoMayvXupyJLH8xqFIiNSg1NiIRe/tQaO5d5dAqa5rxq1v/4KDpwwIUfvh/TvHcxsrIqIOSBbsUlNTMX36dAQEdLz21Pvvv4+0tDTodDpMnDgRs2fPtrfwffjhh7jlllswbtw46PV6PP744/jggw9cUb7kbGvYedPECZtE+w4U7r2WnW183cRB4VDIvac7vCu0AX54Z8E4BKv9cOCUAQ+u3Q9zL02mKDE04A9v/YKsYiPCgvzx0d0T7LOmiYiofW49xq66uhqlpaUYPny4/bmRI0ciKysLAHD48OHzXsvPz0dDQ0O752tqaoLRaHR4eCrbUifhXtYVCwCDo6w/vN092NnG103ysfF15+ofFoQ35o2Fv0KO/2WdxkNrM3oc7jJPGTDn9Z04UlqLCK0Ka++egOQoXS9VTETkvdw62JlMJigUCqjVZ7a/0el0MJlM9td1Op3Da7bn27Ny5Uro9Xr7Iy4uzonVO5etKzbMC7tih7T9AM8uMUIIIXE17atvbsG+EzUAfHN83bkuGxSGf902Bn4KGf6bWYLbV/8KQ725y+cRQuCDX05g7r9/wmljExIjNfj8volI7MOWOiKiznDrYKfRaNDa2or6+nr7c0ajERqNxv762a1utq9tr59r2bJlMBgM9kdhYaETq3euCntXrPe12CX20UAuA6rrzSivbZK6nHb9WlCN5lYL+gYHYkAY990EgKuS++DN28ZB7a/AjmMVmP36DuzO7/xs2ZOV9bjz3T14bMMhNJotmDI4Ap/9cSL3NSUi6gK3DnYhISGIiopCZmam/bkDBw5g6NChAICUlJTzXhs4cCACA9sfXK1SqaDT6Rwensq+64QXjrEL8FNgYHgQACC71D27Y8/sNhHmVcvN9NSVyZH49N6J6BsciBOV9fjdv3/GQ2v340jphYc9HCsz4fENhzDtpR+x5UgZ/BVyPDZzCFYvvAS6AD8XVk9E5PkkW9nWbDajtbUVFosFZrMZjY2N8Pf3h1zumDVTU1Px9NNP46OPPkJWVhY2bdqEXbt2AQBuvfVWTJ06FYsWLcKgQYPwzDPPIDU1VYrbcbkz69h5X4sdACRH65BXXocjJUZMGRwhdTnnse0P6wvbiHVVSowOXz04Gc99nY2PdhdiQ0YxNmQUIzlKizH9Q9A3OBBCCBTVNOLXgiqHbckmJ4bj8RtSMJhdr0RE3SJZsFu0aBHeffddAMD27dsxf/58/PDDDygqKsKzzz5rnyCxfPly3HXXXYiOjkZISAhWrVqFpKQkAMDw4cPx4osvYtasWTAajbj55pvx97//XapbchkhBKraumJDvbDFDgCGRGnx34MlOOKGLXaVpiYcLrG2QE0cxGDXHn2gH1beNAK3ju+PN348hv9lncaR0tp2P0+5DLgqORJ3TBqIywaxBZSIqCdkohOj01944YVOnUypVGLJkiU9LspVjEYj9Ho9DAaDR3XLGhvNGPHktwCAI09f65Ur8H9/+DTuem8PkqO0+OahK6Qux8EXB4rxwEf73bI2d1Vd14ztxypwtNRoHzfZRxeAIdE6TBoUDr2aXa5ERBfSlbzSqRa7xx57DPPmzbvocZ9++qlHBTtPZeuG1aiUXhnqACA52toVl1duQnOLBf5K9xkOahtfx9mwnRcS5I/ZI2OAkTFSl0JE5NU6Fez0ej1Wr1590eO++eabHhdEF+fNEyds+gYHQqtSorapBccrTG6zhpkQAttzuX4dERG5p041g5SXl3fqZCUlJT0qhjqnwovXsLORyWT2VrsjJe4zzu5kVT2Kahrgp5Dh0oGhUpdDRETkoFv9W01NTaisrERTk3uuMebtKutsLXbeOSPWxtZKl93BUhmuZtttYky/EKj9JZt7RERE1K5OB7uWlhY8+eSTGDRoENRqNSIiIqBWq5GQkICnnnoKZnPXV5mn7rEvdeLFXbEA3LLFjuPriIjInXU62N1zzz3Ytm0b3n77bZSXl6O5uRnl5eV48803sX37dtx7773OrJPOYl/qxIu7YoEzLXYdLW7rSq0WgZ3HKgFwfB0REbmnTvclffbZZygsLIRWe2bh0NDQUFx11VUYO3Ys+vXrh3feeccpRZKjCtvkCS9dnNgmKcr6Z+20sQmVpibJu56zig0wNJihVSkxoq9e0lqIiIja0+kWO61Wi2PHjrX7Wn5+vkPgI+eydcV686xYwLqci21rsUPF0rfa2cbXTRgUBqXCfZZfISIisul0i93TTz+NadOm4fe//z2GDx8OnU4Ho9GIgwcP4pNPPsGLL77ozDrpLLbJE+FePnkCAIb31SO/og6HigySby1m30ZsUJikdRAREV1Ip4PdwoULMXbsWHz00Uf45ptvYDKZoNFokJKSgh9++AHDhg1zZp10Fl9psQOswW7TgWIcPFUjaR0Nza3YU1ANAJjshnvXEhERAV3cK3b48OEYPny4s2qhTmi1CFTV29ax84EWu1jrWLZDRdJ2xe7Kr0RzqwV9gwMR39Y9TERE5G46NVBo06ZNnTrZl19+2aNi6OKq65shBCCTASE+sL/m0BgdZDKgqKbBvuOGFGy7TUxODOcm9URE5LY6FexSU1M7dbL58+f3qBi6ONtSJ8GBfj4xgF8b4GefQJFZZJCsDtv4usu5zAkREbmxTnXFmkwmqNXqDo8RQkAu9/6gITX7Uic+MHHCZkRfPY6X1yHzlAFTkyJdfv3TxkYcPV0LmQyYNIjBjoiI3Fengl1+fj4Aa3hbv349Zs6cCZXq/GDBLirnq/SBfWLPNayvHhsyiiVrsbN1ww7vq0eID33fiYjI83Qq2PXv39/+9WeffYYVK1Zgzpw5mDdvHq688koGOheyjTPzhaVObEbEBgOQrit2e245AOv4OiIiInfW5b7THTt2YP/+/UhKSsKSJUsQGxuLhx9+GHv27HFGfXSOyjrfWerExjaBosTQiPJa106gsFiEfX/YyYlc5oSIiNxbtwbF9evXD3/5y1+QkZGBDRs24Ntvv8Wll16KxMRErFy5EiaTqbfrpDYVJt9Z6sQmSKXEoAgNACCzqMal184uNaLC1Ay1vwJj+oW49NpERERd1a1gZzabsXHjRvzhD3/Atddei8GDB2PdunV4//33kZmZiRkzZvR2ndSm0j55wnda7ABgVFwwAGDfiRqXXtc2vm5CfBj8lZwcRERE7q1LCxQDwB133IGNGzdi2LBhmDdvHlatWoWQkDMtGWPHjoVezw3SncW23IkvTZ4AgHH9Q/Dp3lPYc6LKpdfdlmMdX3d5AsfXERGR++tysEtISMC+ffscJlSczc/PD6dOnepxYdS+M2PsfKcrFgDG9rf+5+FAoQHmVgv8XLCGn7HRjN351iB5ZbLrl1khIiLqqi7/dPzb3/52wVBnExoa2u2CqGMVPtoVOyhCA12AEg3mVmSXuGZ7sR25FWixCMSHB9kXSSYiInJnHDTkQZpaWlHb2AIACPehyRMAIJfL7K12e09Uu+Sam7PLAABXsbWOiIg8BIOdB7GNr1PKZdAFdrkX3eO5MthZLAJbj7YFuyEMdkRE5BkY7DyIfdcJjb9PLgo9tr+1i98Vwe7AqRpU1jVDq1LikgEcWkBERJ6Bwc6D2MfX+Vg3rM3IOD0UchlKDI0ormlw6rW2HLG21l0xOMIlEzWIiIh6A39ieZAqH9x14mxqfyWGxugAALvyK516LVuw4/g6IiLyJAx2HsTeFetja9id7bJBYQCAncecF+xKDY3IKjZCJgOmJnEbMSIi8hwMdh6kos621IlvdsUCwKRB1oWCfzpWASGEU67xv6xSAMCYfiE+/b0mIiLPw2DnQc6ePOGrLhkQCn+FHMWGRhRU1jvlGl8fKgEAXDcsyinnJyIichYGOw9i2yfW19awO1ugvwKj+wUDAHYeq+j185fXNtl3m7iWwY6IiDwMg50HqfTxyRM2k9r2bf0pr/eD3beHS2ERwMhYPWJD1L1+fiIiImdisPMgZ7pifbfFDgAmJZyZQNHSaunVc3+daR1fd+2w6F49LxERkSsw2HkIIQQqbZMnfHhWLACMjA2GPtAPhgYz9p2s6bXzVtU14+fj1tm2HF9HRESeiMHOQ9Q3t6LRbG2d8vWuWKVCbl9f7vvs07123v8eLEarRWBojA4DwoN67bxERESuwmDnIWzdsIF+Cqj9fW+f2HNNG9IHAPD94d4Ldp/tKwIA3DQmttfOSURE5EoMdh7CtoZdqI93w9pcMTgcfgoZjlfUIa/c1OPz5ZWbkFFYA4VchtkjY3qhQiIiIteTLNiVl5dj5syZUKvVSEpKwubNm9s9bujQodBoNPaHXC7Hiy++CADYunUr5HK5w+vbt2935W24TFVbi124j3fD2mgD/DAh3jqJojda7Tbst7bWTRkcgQitb09OISIizyVZsFu8eDFiYmJQUVGB559/HnPnzkV1dfV5x2VlZcFkMsFkMuHEiRPw8/PDjTfeaH998ODB9tdNJhMmT57syttwmUruOnGeGSnW7tgvD5b06DwtrRZ8tvcUAOA3o/v2uC4iIiKpSBLsTCYTNm7ciOXLl0OtVmPOnDkYNmwYvvjiiw7ft27dOowZMwYJCQkuqtR9VLS12LEr9ozrh0dDIZchs8iAY2Xd7479PrsMxYZGhAb5Y3pbWCQiIvJEkgS73Nxc6PV6REefWSts5MiRyMrK6vB96enpmDdvnsNzBQUFiIyMRGJiIpYvX47W1tYLvr+pqQlGo9Hh4SmquDjxecI0KkwZHAEA2JhR1O3zvP9LAQDglkviEOCn6I3SiIiIJCFZi51Op3N4TqfTwWS6cKtLQUEBdu/ejd/97nf255KTk5GRkYHS0lJs3LgR69atw6uvvnrBc6xcuRJ6vd7+iIuL6/nNuAi3E2vfnLau0/X7i2CxiC6//1hZLXYeq4RcBsy7tF9vl0dERORSkgQ7jUZzXmuZ0WiERqO54Hs+/PBDTJs2DZGRkfbnoqKikJycDLlcjpSUFDz22GNYv379Bc+xbNkyGAwG+6OwsLDnN+Mitu3E2BXraPqQPtAFKHGqugFbc8q6/P53duQDAK5K7sMtxIiIyONJEuwSExNhMBhQWlpqf+7AgQMYOnToBd/z4YcfntcNey65vOPbUalU0Ol0Dg9PcWY7MQa7swX6K3DLJdaW19U7C7r03qKaBnzaNmnininxvV0aERGRy0nWYjd79mykpaWhoaEBmzZtwqFDhzBr1qx2j8/IyEBBQQHmzJnj8PzWrVvtrW65ublYsWIFbrjhBmeXLwnbrNhwzoo9z/zLBkAuA7bnViD3dG2n3/fvH/NgbhW4LD4MlwwIdWKFREREriHZcierVq1CYWEhwsLC8Mgjj2DdunUICQlBenr6eS136enpuPHGGxEU5LjN0969ezFhwgQEBQVhxowZmDNnDpYsWeLK23AJIYR98gS7Ys8XF6q2z2Z9dcuxTr3nWJkJH+46CQB44Grfm2VNRETeSSaE6PqIcy9hNBqh1+thMBjculvW0GDGyKe+BQAcefpaztxsx+FiI65/1bo49ZcPXI5hffUXPFYIgfn/2Y3tuRW4OjkS7yy8xFVlEhERdVlX8gq3FPMAthmxWpWSoe4CUmJ0uHGUdSuwv284hNYOZsiu31+E7bkV8FfI8fgNKa4qkYiIyOkY7DyAfUYsJ050aNl1Q6ANUOJAYQ3+7wJdsrmna/HYhkMAgAeuSsCA8KB2jyMiIvJEDHYewD4jluPrOhSlD0DaLOv4zH9+n4N1vzouZ3OsrBbz3t6F+uZWTIgPxR+v5Ng6IiLyLkqpC6CL4z6xnffbsbE4UmLE2zvy8ZfPDmL7sQpcmRSBnNMmvPdzAeqbW5HUR4s35o2FQi6TulwiIqJexWDnAdhi1zV/u34I/JRyvLE1D18cKMYXB4rtr10WH4bXbh2NEH4viYjICzHYeQDuE9s1crkMj16bjOuHRWPtryeRX1GHMI0K1w+LwjVDoyBnSx0REXkpBjsPUNE2KzaM+8R2yfBYPYbHDpe6DCIiIpfh5AkPwO3EiIiIqDMY7DyAvSuWLXZERETUAQY7D3BmVixb7IiIiOjCGOzcnMUizmqxY7AjIiKiC2Owc3M1DWbYdsfiEh1ERETUEQY7N2fbJzZY7Qc/BT8uIiIiujAmBTdXwcWJiYiIqJMY7NwcZ8QSERFRZzHYuTnOiCUiIqLOYrBzcxVcnJiIiIg6icHOzVW1tdiFsiuWiIiILoLBzs3ZthMLZ4sdERERXQSDnZuz7xPLFjsiIiK6CAY7N1dp74plix0RERF1jMHOzVXWsSuWiIiIOofBzo2ZWy2oqTcDAMI07IolIiKijjHYubHqemtrnVwGBAf6SVwNERERuTsGOzdmmzgRGuQPuVwmcTVERETk7hjs3BhnxBIREVFXMNi5Mc6IJSIioq5gsHNjldxOjIiIiLqAwc6N2VrswjkjloiIiDqBwc6NVdWdmTxBREREdDEMdm6sgl2xRERE1AUMdm6s0mTtiuWsWCIiIuoMBjs3ZuuKZYsdERERdQaDnRs7s44dgx0RERFdHIOdm2pqaUVtUwsA7hNLREREncNg56Zs3bB+Chl0AUqJqyEiIiJPwGDnpipqzyx1IpNxn1giIiK6OMmCXXl5OWbOnAm1Wo2kpCRs3ry53eMWLlwIlUoFjUYDjUaDoUOHOry+Zs0axMbGQqfT4fbbb0dzc7Mryne6ChMXJyYiIqKukSzYLV68GDExMaioqMDzzz+PuXPnorq6ut1jn3rqKZhMJphMJmRlZdmfz8zMxJIlS7BhwwYUFhaioKAAK1ascNUtOFU5gx0RERF1kSTBzmQyYePGjVi+fDnUajXmzJmDYcOG4YsvvujSeT788EPccsstGDduHPR6PR5//HF88MEHFzy+qakJRqPR4eGuymsZ7IiIiKhrJAl2ubm50Ov1iI6Otj83cuRIh9a4s/3jH/9AWFgYJk6ciG3bttmfP3z4MIYPH+5wjvz8fDQ0NLR7npUrV0Kv19sfcXFxvXRHvc/eFavlUidERETUOZK12Ol0OofndDodTCbTecc++OCDOHbsGEpKSrB48WLMmjULhYWF7Z7H9nV75wGAZcuWwWAw2B+287gj23ZiEWyxIyIiok6SJNhpNJrzukGNRiM0Gs15x44ePRohISHw9/fHvHnzcNlll+G7775r9zy2r9s7DwCoVCrodDqHh7uqaOuKjdAy2BEREVHnSBLsEhMTYTAYUFpaan/uwIED5814bY9cfqbklJQUZGZmOpxj4MCBCAwM7N2CJcBZsURERNRVkrXYzZ49G2lpaWhoaMCmTZtw6NAhzJo167xjP/vsM9TV1aGlpQUff/wxduzYgauuugoAcOutt2LdunXYt28fDAYDnnnmGaSmprr6dpyCwY6IiIi6SrLlTlatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrt//vOfiImJQXh4OF566SWsX78eAwYMAAAMHz4cL774ImbNmoXY2FjExcXh73//u0R31HvMrRZU15sBAOEaTp4gIiKizpEJIYTURUjFaDRCr9fDYDC41Xi708ZGXPrsZijkMuSuuA5yOXeeICIi8lVdySvcUswN2dawCw3yZ6gjIiKiTmOwc0McX0dERETdwWDnhmxr2HF8HREREXUFg50bsrXYcXFiIiIi6goGOzdkW5w4nIsTExERURcw2LmhM2Ps2BVLREREncdg54bKOXmCiIiIuoHBzg1V1NomTzDYERERUecx2LkhLndCRERE3cFg52ZaWi2oqm9rsdNyjB0RERF1HoOdm6mqb4YQgEwGhKoZ7IiIiKjzGOzcjG18XViQP5QKfjxERETUeUwObobj64iIiKi7GOzcDIMdERERdReDnZvh4sRERETUXQx2bqbCxDXsiIiIqHsY7NwM94klIiKi7mKwczNlbcEugi12RERE1EUMdm6mrLYRABCpY7AjIiKirmGwczO2FrtIbYDElRAREZGnYbBzI00traipNwMA+rDFjoiIiLqIwc6NlLe11vkr5dAH+klcDREREXkaBjs3ctp4ZuKETCaTuBoiIiLyNAx2bqScEyeIiIioBxjs3MiZiRMMdkRERNR1DHZupMzIGbFERETUfQx2bsS2hh1nxBIREVF3MNi5Ea5hR0RERD3BYOdGbF2xEWyxIyIiom5gsHMjnDxBREREPcFg5yZaWi2orGNXLBEREXUfg52bqDA1QwhAIZchLMhf6nKIiIjIAzHYuQnbjNhwjT/kcu46QURERF3HYOcmbBMn+ujYDUtERETdw2DnJjhxgoiIiHqKwc5N2LpiIzhxgoiIiLpJsmBXXl6OmTNnQq1WIykpCZs3b273uCVLliA+Ph5arRbjxo3Dtm3b7K9t3boVcrkcGo3G/ti+fburbqFXscWOiIiIekop1YUXL16MmJgYVFRU4Ntvv8XcuXORl5eHkJAQh+P0ej2+/fZbxMfH47PPPsOcOXNw4sQJaLVaAMDgwYNx5MgRKW6hV5UarC120Xq22BEREVH3SNJiZzKZsHHjRixfvhxqtRpz5szBsGHD8MUXX5x3bFpaGhISEiCXyzF37lwEBgYiJydHgqqdq6Qt2EUx2BEREVE3SRLscnNzodfrER0dbX9u5MiRyMrK6vB9BQUFqKqqQkJCgsNzkZGRSExMxPLly9Ha2nrB9zc1NcFoNDo83EWpoQEAEK0PlLgSIiIi8lSStdjpdDqH53Q6HUwm0wXfYzabsWDBAixduhR6vR4AkJycjIyMDJSWlmLjxo1Yt24dXn311QueY+XKldDr9fZHXFxc79xQDzWaW1FdbwbAFjsiIiLqPkmCnUajOa+1zGg0QqPRtHu8EAILFy5EZGQknnzySfvzUVFRSE5OhlwuR0pKCh577DGsX7/+gtddtmwZDAaD/VFYWNgr99NTtvF1an8FdAGSDXskIiIiDydJsEtMTITBYEBpaan9uQMHDmDo0KHtHv/AAw+guLgYH3zwAeTyC5fc0WsAoFKpoNPpHB7u4OzxdTIZd50gIiKi7pGsxW727NlIS0tDQ0MDNm3ahEOHDmHWrFnnHZuWloadO3di48aNUKkclwLZunWrvdUtNzcXK1aswA033OCSe+hNJW3j62I4vo6IiIh6QLJ17FatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrvly5cjOzsbMTEx9rXq0tPTAQB79+7FhAkTEBQUhBkzZmDOnDlYsmSJVLfUbZwRS0RERL1BJoQQUhchFaPRCL1eD4PBIGm37OMbDuH9X07ggasS8OcZSZLVQURERO6nK3mFW4q5AbbYERERUW9gsHMDpUbbGnYMdkRERNR9DHZuwLbcSZSOkyeIiIio+xjsJNbU0ooKUzMAttgRERFRzzDYSazM2AQAUCnlCFb7SVwNEREReTIGO4kV15wZX8fFiYmIiKgnGOwkVtQW7PqGcHwdERER9QyDncROVVuDXWywWuJKiIiIyNMx2EmssKoeABDLFjsiIiLqIQY7idla7OJC2WJHREREPcNgJ7FTNWyxIyIiot7BYCehllYLimusixPHhrDFjoiIiHqGwU5CpcZGtFoE/BVyRGpVUpdDREREHo7BTkK28XV9QwIhl3MNOyIiIuoZBjsJcUYsERER9SYGOwnZ17Dj+DoiIiLqBQx2EiqsZosdERER9R4GOwmdqLQGu35cw46IiIh6AYOdhPIr6gAA8RFBEldCRERE3oDBTiKGejOq6poBAAPCGOyIiIio5xjsJJJfaW2ti9IFIEillLgaIiIi8gYMdhLJrzABAAaEc3wdERER9Q4GO4nkl1tb7AaGaySuhIiIiLwFg51EjtsmToRzfB0RERH1DgY7iRwrs3bFDmSwIyIiol7CYCcBc6sFeeXWYJccrZW4GiIiIvIWDHYSOF5eB3OrgFalRN9g7jpBREREvYPBTgLZJUYA1tY6mUwmcTVERETkLRjsJJBd2hbsonQSV0JERETehMFOAkdKagFwfB0RERH1LgY7FxNC4LCtKzaKwY6IiIh6D4Odi52qbkB5bROUchmGxuilLoeIiIi8CIOdi+07WQ0AGNpXjwA/hcTVEBERkTdhsHOxvSeswW5svxCJKyEiIiJvw2DnYjuPVQAAxg1gsCMiIqLexWDnQgUVdcgrr4NSLsPlieFSl0NERERehsHOhb7PPg0AGD8wFLoAP4mrISIiIm8jWbArLy/HzJkzoVarkZSUhM2bN7d7XENDA1JTU6HVatGvXz989NFHDq+vWbMGsbGx0Ol0uP3229Hc3OyK8rtMCIFP954CAMxI6SNxNUREROSNJAt2ixcvRkxMDCoqKvD8889j7ty5qK6uPu+4tLQ0VFVVoaioCGvXrsV9992HnJwcAEBmZiaWLFmCDRs2oLCwEAUFBVixYoWrb6VTvj18GkdKa6FSyvGb0bFSl0NEREReSCaEEK6+qMlkQlhYGAoKChAdHQ0AuOKKK3DXXXdh/vz5DsdGR0djw4YNuPTSSwEA8+fPR0JCAp544gksW7YMNTU1eOONNwAAW7ZswV133YXjx4+3e92mpiY0NTXZf280GhEXFweDwQCdzjnbe63ffwo/51Xiq8xSmJpacN/UQXj02mSnXIuIiIi8j9FohF6v71RekaTFLjc3F3q93h7qAGDkyJHIyspyOK66uhqlpaUYPnx4u8cdPnz4vNfy8/PR0NDQ7nVXrlwJvV5vf8TFxfXmbbVre24F1u05BVNTCy4ZEIIHr050+jWJiIjINymluKjJZDovcep0OtTU1Jx3nEKhgFqtdjjOZDK1ex7b1yaTCYGBgeddd9myZViyZIn997YWO2eakRKFuBA1EiI1uHZYFPwUnK9CREREziFJsNNoNDAajQ7PGY1GaDSa845rbW1FfX29Pdydfdy557F9fe55bFQqFVQqVa/dR2dcOywK1w6Lcuk1iYiIyDdJ0nyUmJgIg8GA0tJS+3MHDhzA0KFDHY4LCQlBVFQUMjMz2z0uJSXlvNcGDhzYbmsdERERkbeTJNhpNBrMnj0baWlpaGhowKZNm3Do0CHMmjXrvGNTU1Px9NNPo7a2Fr/88gs2bdqEW265BQBw6623Yt26ddi3bx8MBgOeeeYZpKamuvp2iIiIiNyCZAO+Vq1ahcLCQoSFheGRRx7BunXrEBISgvT0dIeWu+XLl9snWsydOxerVq1CUlISAGD48OF48cUXMWvWLMTGxiIuLg5///vfpbolIiIiIklJstyJu+jK9GEiIiIiKbj9cidERERE1PsY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvIRS6gKkZNtNzWg0SlwJERERUftsOaUzu8D6dLCrra0FAMTFxUlcCREREVHHamtrodfrOzxGJjoT/7yUxWJBcXExtFotZDKZU65hNBoRFxeHwsLCi27cS67Bz8Q98XNxP/xM3A8/E/fjis9ECIHa2lrExMRALu94FJ1Pt9jJ5XLExsa65Fo6nY5/Cd0MPxP3xM/F/fAzcT/8TNyPsz+Ti7XU2XDyBBEREZGXYLAjIiIi8hIMdk6mUqmQlpYGlUoldSnUhp+Je+Ln4n74mbgffibux90+E5+ePEFERETkTdhiR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdk5UXl6OmTNnQq1WIykpCZs3b5a6JJ/X1NSE22+/HbGxsdDr9Zg6dSoyMzOlLosA/Pzzz5DL5XjuueekLoXaPPfcc4iLi4NWq8WoUaNQU1MjdUk+bd++fZg4cSJ0Oh3i4+OxevVqqUvyOWlpaUhJSYFcLsfatWsdXnvuuecQERGB0NBQ/OUvf+nUvq7OwGDnRIsXL0ZMTAwqKirw/PPPY+7cuaiurpa6LJ/W0tKC+Ph4/PLLL6iqqsLs2bMxZ84cqcvyeRaLBQ8//DAuueQSqUuhNq+99hq+/vpr7NixA0ajER988AECAgKkLsunzZ8/HzNnzkRNTQ0+/fRT/OlPf0JOTo7UZfmUxMREvPLKKxg/frzD81999RXeeOMN7Nq1C1lZWfjyyy8lC95c7sRJTCYTwsLCUFBQgOjoaADAFVdcgbvuugvz58+XuDqyaW5uRkBAAMrLyxEWFiZ1OT7rX//6F7Kzs2EwGJCcnIy//vWvUpfk01pbWxEbG4tt27YhMTFR6nKojVarxcGDBzFw4EAAwPjx4/H4449j1qxZElfme6ZOnYp7770Xv//97wEAf/jDHzBq1Cg8+uijAID//Oc/+OCDD7BlyxaX18YWOyfJzc2FXq+3hzoAGDlyJLKysiSsis71888/o0+fPgx1EqqqqsLLL7+MJ598UupSqM2pU6fQ0NCATz75BH369EFSUhL+9a9/SV2Wz7v//vvx/vvvo6WlBbt370ZhYSEuvfRSqcsiAIcPH8bw4cPtv5fy571Skqv6AJPJdN5mwDqdjmNU3IjBYMA999yDZ555RupSfNrf/vY3PPTQQwgJCZG6FGpTVFQEg8GAvLw8FBQU4Pjx45g2bRqSkpJw5ZVXSl2ez7r22msxf/58LF++HADw5ptvIjIyUuKqCDj/Z75Op4PJZJKkFrbYOYlGo4HRaHR4zmg0QqPRSFQRna2xsRFz5szBzJkzcccdd0hdjs/av38/du/ejUWLFkldCp0lMDAQgHWgeGBgIIYOHYrbbrsNX331lcSV+a7KykrMmjULL7/8MpqampCRkYEnnngCu3btkro0wvk/86X8ec9g5ySJiYkwGAwoLS21P3fgwAEMHTpUwqoIsE6g+P3vf4+YmBj8v//3/6Qux6f9+OOPyMnJQd++fREVFYWPP/4YzzzzDIOexAYPHgx/f3+H5zgcW1rHjx+HXq/Hb37zGygUCgwbNgxTp07Ftm3bpC6NAKSkpDissCDlz3sGOyfRaDSYPXs20tLS0NDQgE2bNuHQoUMc5OoGFi1ahIaGBqxZswYymUzqcnza3XffjWPHjiEjIwMZGRmYPXs2HnzwQfzjH/+QujSfFhQUhN/+9rdYsWIFmpqacPToUaSnp+P666+XujSfNXjwYNTW1uKLL76AEAJHjhzBli1bHMZ1kfOZzWY0NjbCYrE4fJ2amoo33ngD+fn5KC0txUsvvYTU1FRpihTkNGVlZeK6664TgYGBIjExUXz33XdSl+TzCgoKBAAREBAggoKC7I9t27ZJXRoJIRYsWCBWrlwpdRkkhKiurhY33XST0Gg0on///mLVqlVSl+TzvvnmGzFy5Eih0WhEXFyceOaZZ6QuyecsWLBAAHB4/PDDD0IIIZ599lkRFhYmgoODxdKlS4XFYpGkRi53QkREROQl2BVLRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0R0jpMnTyI8PNyp1ygoKIBMJoNGo8GGDRs6PPazzz6DRqOBTCZz2H+aiOhc3HmCiHySRqOxf11XVwe1Wm3fO/jw4cPo16+fU69fUFCA5ORkNDY2dvo9MpkMJSUliIqKcmJlROTJlFIXQEQkBZPJZP86ICAAWVlZGDBggHQFERH1AnbFEhGdo6CgAAEBAfbfy2QyvPHGG+jXrx/Cw8Px8ccf48svv0R8fDwiIyPx8ccf24+tqqrCrbfeisjISMTHx+Pdd9/t9HV/+eUXjB49GlqtFlFRUXjppZd69b6IyPuxxY6IqBN27tyJnJwcfPHFF7j33nsxe/ZsHDp0CJs3b8Ydd9yB3/72t1AoFLjtttswbNgwFBYWIj8/H1dddRVGjRqFkSNHXvQaDz30EJYuXYpbb70V1dXVKCgocP6NEZFXYYsdEVEn/OUvf0FAQABuuukm1NTU4I9//CPUajVmzZqF2tpaFBcXo7S0FNu3b8ezzz4LlUqF5ORk3Hrrrfj88887dQ0/Pz8cPXoUVVVVCAkJwejRo518V0TkbRjsiIg6ITIyEgCgUCjg5+eHiIgI+2sBAQGoq6vDyZMnUVdXh7CwMAQHByM4OBj//ve/cfr06U5d4+2330Z2djYSEhIwceJE/Pzzz065FyLyXuyKJSLqJX379kVwcDAqKyu79f6kpCSsW7cOLS0t+Ne//oXU1FTk5eX1cpVE5M3YYkdE1Ev69u2LSy65BE888QTq6+vR0tKCffv24fDhw516f3p6OiorK6FUKqHVaqFQKJxcMRF5GwY7IqJelJ6ejhMnTthnzD700ENoaGjo1Hu/+uorJCUlQavV4tVXX8Xq1audXC0ReRsuUExEJIETJ04gOTkZKpUK7733HmbPnn3BYz///HPccccdaGxsxIkTJ9CnTx8XVkpEnoTBjoiIiMhLsCuWiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJRjsiIiIiLwEgx0RERGRl2CwIyIiIvISDHZEREREXoLBjoiIiMhLMNgREREReYn/D4UZ8cvFy2MtAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8fJSN1AAAACXBIWXMAAA9hAAAPYQGoP6dpAABlBElEQVR4nO3dd3xT9f4/8FdGmzbN6KYtLaO0tJQ9RAQRVMCBIFcv13ulAg4cF70qV66Xe9Uqoqj3p9fxFe91XHBUEQdDr3pVEBkqyCiUUmgpLZQOupOmM20+vz/SBAKldCUn4/V8PPKgJCfnvE8D9MVnyoQQAkRERETk8eRSF0BEREREvYPBjoiIiMhLMNgREREReQkGOyIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IqB1vvvkm4uLiIJfL8fLLL0tdTqesWbMGMpkMMpkMDz30kMuvX1BQYL/+qFGjXH59ImKwI5JMWVkZ7rnnHvTr1w8qlQpRUVG45ppr8PPPP9uPkclk2LBhg3RF+iij0Yj7778fjz76KIqKinD33XdLXVKn6XQ6lJSU4Omnn7Y/9/nnn+Oaa65BeHg4ZDIZMjIyLvh+IQSuu+66dv/sPfPMM5g4cSLUajWCg4PPe29cXBxKSkrw5z//uZfuhoi6isGOSCI333wzDhw4gHfffRc5OTnYtGkTpk6diqqqKqlLAwA0NzdLXYJkTp48CbPZjJkzZyI6Ohpqtbpb5zGbzb1c2cXJZDJERUVBq9Xan6urq8OkSZPw3HPPXfT9L7/8MmQyWbuvNTc3Y+7cubjvvvvafV2hUCAqKgoajaZ7xRNRzwkicrnq6moBQGzduvWCx/Tv318AsD/69+9vf23Tpk1izJgxQqVSiYEDB4onn3xSmM1m++sAxKpVq8S1114rAgICxIABA8S6des6rGnKlCli8eLF4uGHHxZhYWHiiiuuEEIIkZWVJa677joRFBQkIiMjRWpqqigvL7e/75NPPhHDhg0TAQEBIjQ0VFx99dXCZDIJIYRYsGCBuPHGG8WTTz4pIiIihFarFXfffbdoamqyv7+xsVE88MADIiIiQqhUKjFp0iSxe/du++s//PCDACC+//57MXbsWBEYGCguu+wyceTIEfsxGRkZYurUqUKj0QitVivGjBkjfv31V/vrO3fuFJMnTxYBAQEiNjZWPPDAA/Yaz7V69WqH7zsAkZ+fL4QQYtWqVSI+Pl74+fmJwYMHi/fee8/hvQDEG2+8IWbPni3UarV44okn2r3G66+/LhISEoRKpRKRkZHi5ptvFkII8e6774rQ0FDR2NjocPxNN90kbrvttove6+rVq4Ver2/3mkIIkZ+fLwCI/fv3t/t6RkaGiI2NFSUlJQKAWL9+/QW/Rx1dJy0tTYwcOfKCrxOR8zDYEUnAbDYLjUYjHnroofN+iNuUlZUJAGL16tWipKRElJWVCSGE+Oabb4ROpxNr1qwReXl54ttvvxUDBgwQTz75pP29AERYWJh46623xNGjR8Vjjz0mFAqFOHz48AVrmjJlitBoNGLp0qXiyJEjIjs7WxQXF4vw8HCxbNkykZ2dLfbt2yemT58urrzySiGEEMXFxUKpVIqXXnpJ5Ofni4MHD4rXX39d1NbWCiGswU6j0YhbbrlFHDp0SHz55ZciIiJC/O1vf7Nf909/+pOIiYkRX331lcjKyhILFiwQISEhorKyUghxJthdeumlYuvWrSIrK0tMnjxZTJw40X6OoUOHitTUVJGdnS1ycnLEunXrREZGhhBCiIMHDwqNRiP++c9/ipycHLFz504xevRosXDhwna/D/X19eL7778XAMTu3btFSUmJaGlpEZ9//rnw8/MTr7/+ujh69Kh48cUXhUKhEFu2bHH4vkdGRop33nlH5OXliYKCgvPO/+uvvwqFQiE+/PBDUVBQIPbt2ydeeeUV+7X1er1DCC8vLxf+/v7263R0rz0JdnV1dWLIkCFiw4YN9nthsCPyPAx2RBL59NNPRUhIiAgICBATJ04Uy5YtEwcOHHA4pr0frpMnTxbPPvusw3Pvv/++iI6Odnjfvffe63DMpZdeKu67774L1jNlyhQxatQoh+cef/xxMWPGDIfnCgsLBQBx9OhRsXfvXgGg3QAjhDXYhYaGirq6Ovtzb7zxhtBoNKK1tVWYTCbh5+cn0tPT7a83NzeLmJgY8cILLwghHFvsbP773/8KAKKhoUEIIYRWqxVr1qxpt4bbbrtN3H333Q7Pbd++Xcjlcvv7z7V//36HljohhJg4caJYtGiRw3Fz584V119/vf33AMRDDz3U7jltPvvsM6HT6YTRaGz39fvuu09cd9119t+//PLLIj4+XlgsFiFEx/fak2B39913izvvvNPhXhjsiDwPx9gRSeTmm29GcXExNm3ahGuuuQZbt27FmDFjsGbNmg7ft3fvXixfvhwajcb+WLRoEUpKSlBfX28/7rLLLnN432WXXYbs7OwOzz1u3LjzrvXDDz84XCs5ORkAkJeXh5EjR+Lqq6/G8OHDMXfuXLz11luorq52OMfIkSMdxqhddtllMJlMKCwsRF5eHsxmMyZNmmR/3c/PD+PHjz+v1hEjRti/jo6OBmCdgAIAS5YswV133YVp06bhueeeQ15ensM9rFmzxuEerrnmGlgsFuTn53f4/Thbdna2Q50AMGnSpPPqPPd7eK7p06ejf//+iI+Px2233Yb09HSHz23RokX49ttvUVRUBABYvXo1Fi5caB/31tG9dtemTZuwZcsWj5n9S0QXxmBHJKGAgABMnz4dTzzxBH766ScsXLgQaWlpHb7HYrHgqaeeQkZGhv2RmZmJ3NxcBAQEdPjeCw2KtwkKCjrvWrNmzXK4VkZGBnJzc3HFFVdAoVDgu+++w9dff42UlBS89tprSEpK6lRgkslkEEK0W5cQ4rzn/Pz8zrsPi8UCAHjyySeRlZWFmTNnYsuWLUhJScH69evtx9xzzz0O9R84cAC5ubkYNGjQRes8t+aL1Xnu9/BcWq0W+/btw0cffYTo6Gg88cQTGDlyJGpqagAAo0ePxsiRI/Hee+9h3759yMzMxMKFC+3v7+heu2vLli3Iy8tDcHAwlEollEolAOt/PqZOndqjcxORazHYEbmRlJQU1NXV2X/v5+eH1tZWh2PGjBmDo0ePIiEh4byHXH7mr/Qvv/zi8L5ffvnF3trWWWPGjEFWVhYGDBhw3rVsAUYmk2HSpEl46qmnsH//fvj7+zsEjQMHDqChocGhDo1Gg9jYWCQkJMDf3x87duywv242m7Fnzx4MGTKkS7UOHjwYDz/8ML799lvcdNNNWL16tcM9tPf98vf37/T5hwwZ4lAnAPz0009drhMAlEolpk2bhhdeeAEHDx5EQUEBtmzZYn/9rrvuwurVq/Gf//wH06ZNQ1xcXKfutbv++te/4uDBgw7hFwD++c9/9vjcRORaSqkLIPJFlZWVmDt3Lu644w6MGDECWq0We/bswQsvvIAbb7zRftyAAQOwefNmTJo0CSqVCiEhIXjiiSdwww03IC4uDnPnzoVcLsfBgweRmZmJFStW2N/7ySefYNy4cbj88suRnp6O3bt345133ulSnYsXL8Zbb72FP/zhD1i6dCnCw8Nx7NgxrF27Fm+99Rb27NmDzZs3Y8aMGYiMjMSuXbtQXl7uEHaam5tx55134rHHHsOJEyeQlpaG+++/H3K5HEFBQbjvvvuwdOlShIaGol+/fnjhhRdQX1+PO++8s1M1NjQ0YOnSpfjtb3+LgQMH4tSpU/j1119x8803AwAeffRRTJgwAYsXL8aiRYsQFBSE7OxsfPfdd3jttdc6/b1YunQpfve732HMmDG4+uqr8cUXX+Dzzz/H999/36Xv6Zdffonjx4/jiiuuQEhICL766itYLBYkJSXZj5k3bx4eeeQRvPXWW3jvvfc6fa8XUlVVhZMnT6K4uBgAcPToUQBAVFSUw+Nc/fr1w8CBA+2/P3nypP1cra2t9gCYkJDAJU6I3IXEY/yIfFJjY6P461//KsaMGSP0er1Qq9UiKSlJPPbYY6K+vt5+3KZNm0RCQoJQKpUOy5188803YuLEiSIwMFDodDoxfvx48eabb9pfByBef/11MX36dKFSqUT//v3FRx991GFNU6ZMEQ8++OB5z+fk5Ijf/OY3Ijg4WAQGBork5GTx0EMPCYvFIg4fPiyuueYa+1IlgwcPFq+99pr9vbblTp544gkRFhYmNBqNuOuuuxxmAjc0NIgHHnhAhIeHd7jcSXV1tf25syc3NDU1id///vciLi5O+Pv7i5iYGHH//fc7TIzYvXu3mD59utBoNCIoKEiMGDFCPPPMMxf8XrQ3eUKIzi13cqEJBzbbt28XU6ZMESEhISIwMFCMGDFCfPzxx+cdd9ttt5239MnF7vVCkxraW8IFgEhLS7tgne3dy4IFC9o9zw8//OBwHCdPEElHJkTbIBci8hoymQzr16/HnDlzJK1j4cKFqKmp4e4Z3TB9+nQMGTIEr776aqffs2bNGjz00EP28XpSefLJJ7Fhw4YOd7ggIufgGDsiIjdSVVWFtWvXYsuWLVi8eHGX328wGKDRaPDoo486obqOnTx5EhqNBs8++6zLr01EVhxjR0TkRsaMGYPq6mo8//zzDuPuOuPmm2/G5ZdfDgDt7uXqbDExMfZWOpVK5fLrExHArlgiIiIiL8GuWCIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdkRERERegsGOiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJZRSFyAli8WC4uJiaLVayGQyqcshIiIiOo8QArW1tYiJiYFc3nGbnE8Hu+LiYsTFxUldBhEREdFFFRYWIjY2tsNjfDrYabVaANZvlE6nk7gaIiIiovMZjUbExcXZc0tHfDrY2bpfdTodgx0RERG5tc4MG+PkCSIiIiIvwWBHRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hJKqQsg91NqaMT//ZCLnFIThvbVYfGVCQjXqKQui4iIiC6CwY4c5Jyuxe/+/TNq6s0AgN0FVfg6sxQfLroU8REaiasjIiKijrArluzqmlpwx5pfUVNvRkq0Ds/fPByDIoJQamzEovf2oL65ReoSiYiIqAMMdmT3yuZcnKpuQN/gQHy46FLcckk/fHT3BETpApBXXofXfzgmdYlERETUAQY7AgBUmprw3s8FAIDlNw5FsNofABCpDcDyG4cCAN7alo/TxkapSiQiIqKLYLAjAMC7PxWg0WzB8L56XJUc6fDa9JQ+uGRACJpbLfjPznyJKiQiIqKLYbAjtLRa8OHukwCAe6cMgkwmc3hdJpPh3imDAAAf/nIStY1ml9dIREREF8dgR9hxrAIVpmaEBvljxtA+7R5zZVIk4iOCUNvUgq8zS11cIREREXUGgx1hw/4iAMANI6Lhp2j/j4RcLsNvx8YCAD7dd8pltREREVHnMdj5uKaWVnx7+DQA4MZRfTs89jej+0ImA3bnV+FkZb0ryiMiIqIuYLDzcbvzq1Df3IpIrQpj+gV3eGy0PhATBoYBAL49zO5YIiIid8Ng5+O2Hi0HAExNijhv0kR7bGPwbK18RERE5D4Y7HzcD0fLAFgnR3TGtCHWYLenoArVdc1Oq4uIiIi6jsHOhxXVNOB4eR0UchkmJYZ36j1xoWokR2lhEcCWI2VOrpCIiIi6gsHOh/2aXwUAGBajgy7Ar9Pvm5FibbXbcpTBjoiIyJ0w2Pmw3QXWYHfJgNAuvW/y4AgAwM95lbBYRK/XRURERN3DYOfDbC12lwzsWrAbGRsMtb8CVXXNOHq61hmlERERUTdIFuzS0tKQkpICuVyOtWvXXvC4oUOHQqPR2B9yuRwvvvgiAGDr1q2Qy+UOr2/fvt1Vt+DRquuakVtmAgCM6x/Spff6K+X2Vr6dxyp6vTYiIiLqHsmCXWJiIl555RWMHz++w+OysrJgMplgMplw4sQJ+Pn54cYbb7S/PnjwYPvrJpMJkydPdnbpXmHPiWoAwKCIIIRpVF1+/6QE63p2P+dV9mpdRERE1H2SBbvU1FRMnz4dAQEBnX7PunXrMGbMGCQkJHTrmk1NTTAajQ4PX7XvpDXYdXV8nc3EQdZZtLvyq9DSaum1uoiIiKj7PGqMXXp6OubNm+fwXEFBASIjI5GYmIjly5ejtbX1gu9fuXIl9Hq9/REXF+fskt3WoSIDAGBEbHC33j8kWgetSglTUwuOlHKcHRERkTvwmGBXUFCA3bt343e/+539ueTkZGRkZKC0tBQbN27EunXr8Oqrr17wHMuWLYPBYLA/CgsLXVG62xFCILMt2A3rq+vWORRyGUa1bUG2v631j4iIiKTlMcHuww8/xLRp0xAZeWaHhKioKCQnJ0MulyMlJQWPPfYY1q9ff8FzqFQq6HQ6h4cvOlXdgJp6M/wUMiRFabt9nrFtky72nmCwIyIicgceFezO7YY9l1zuMbcjqaxia2vd4D5aqJSKbp9nTL+2YMcWOyIiIrcgWRIym81obGyExWJx+Lo9GRkZKCgowJw5cxye37p1q707NTc3FytWrMANN9zg7NI9nr0bNkbfo/OM6hcMmQworGpAWW1jb5RGREREPSBZsFu0aBECAwOxfft2zJ8/H4GBgdi2bRvS09MxdOhQh2PT09Nx4403IigoyOH5vXv3YsKECQgKCsKMGTMwZ84cLFmyxJW34ZEyi6yzgYfF9izY6QL8MDjS2pW770RNT8siIiKiHpIJIXx2Tyij0Qi9Xg+DweBT4+3GrfgeFaYmrP/jRIzu17XFic+17PNMfLT7JO65Ih7Lrh/SSxUSERGRTVfyCgel+ZiqumZUmJoAWMfY9dQY+8zYmh6fi4iIiHqGwc7H5LTt7RobEogglbLH5xve1p17uMQIi8VnG3+JiIjcAoOdj8ltC3a90VoHAAkRGgT4yWFqakFBZV2vnJOIiIi6h8HOx+ScNgEAEvtoeuV8SoUcQ6Kt/f222bZEREQkDQY7H3O0rcUuqZda7IAzy6ZkFfvu3rtERETugMHOhwgher0rFgCG97UGu8xTbLEjIiKSEoOdD6kwNaO63gyZDBgU0TtdsQAwtG2/2UPFBvjw6jlERESSY7DzIbbWun6hagT6d38rsXMN7qOFv0KO2sYWnKyq77XzEhERUdcw2PmQo07ohgUAP4UcydHWcx4q4jg7IiIiqTDY+ZC88rYZsZG91w1rM8w2zo4zY4mIiCTDYOdD8ius68wNDA+6yJFdZ5sZe7iELXZERERSYbDzIQUV1vFvzgh2SVHWrtijpQx2REREUmGw8xGN5lYUGxoAODfYnTY2oaa+udfPT0RERBfHYOcjTlTWQwhAG6BEaJB/r59fo1IiNiQQAHCktLbXz09EREQXx2DnI84eXyeTyZxyjWR7dyyDHRERkRQY7HxEQaXzJk7Y2Lpjj3CcHRERkSQY7HxEQVuL3YAwZwY76w4U7IolIiKSBoOdjzjuxKVObIa0tdjllNbCYuHWYkRERK7GYOcjClwQ7AaEB8FfIUddcyuKahqcdh0iIiJqH4OdD6hrakFZbRMAa/hyFj+FHIPadrVgdywREZHrMdj5ANvEidAgf+gD/Zx6rWQuVExERCQZBjsfUFhl3XGiX6ja6deyzYzNZosdERGRyzHY+YBT1dbxbrYFhJ0piWvZERERSYbBzgfYWuziXNBiN7iPNdgVVNTB3Gpx+vWIiIjoDAY7H1DY1mIXF+L8YBejD0CQvwItFoETbWP7iIiIyDUY7HyArcXOFV2xMpnMPjP2WJnJ6dcjIiKiMxjsvJwQwj7GzhVdsQCQEMFgR0REJAUGOy9XWdeMBnMrZDIgJjjAJddM6GMNdrkMdkRERC7FYOflbN2wfbQBUCkVLrkmW+yIiIikwWDn5ewTJ0KdP77OJqFtjF1euYl7xhIREbkQg52XO1XdttSJC2bE2vQLVcNfIUej2cI9Y4mIiFyIwc7LFVa5bnFiG6VCjoFte9KyO5aIiMh1GOy8nK3FLtZFM2JtErjkCRERkcsx2Hm5Uy5cnPhsXMuOiIjI9RjsvJjFIlDkwn1iz5YYaVvyhHvGEhERuQqDnRc7XduI5lYLFHIZovWuWcPO5uyuWCE4M5aIiMgVJAt2aWlpSElJgVwux9q1ay943MKFC6FSqaDRaKDRaDB06FCH19esWYPY2FjodDrcfvvtaG5udnbpHqO4bUZqlC4ASoVrP+qB4UGQywBjYwvKTU0uvTYREZGvkizYJSYm4pVXXsH48eMveuxTTz0Fk8kEk8mErKws+/OZmZlYsmQJNmzYgMLCQhQUFGDFihXOLNujFNc0AnDdjhNnC/BT2Lcw4zg7IiIi15As2KWmpmL69OkICOh+6Pjwww9xyy23YNy4cdDr9Xj88cfxwQcf9GKVnq3EYG2xi9a7dnydjW0HijwGOyIiIpfwiDF2//jHPxAWFoaJEydi27Zt9ucPHz6M4cOH238/cuRI5Ofno6Gh/UVxm5qaYDQaHR7ezNZiFy1Bix0AxEdY17I7XlEnyfWJiIh8jdsHuwcffBDHjh1DSUkJFi9ejFmzZqGwsBAAYDKZoNPp7MfavjaZ2m8hWrlyJfR6vf0RFxfn/BuQkK3FLkaiFrv4tha74+UMdkRERK7g9sFu9OjRCAkJgb+/P+bNm4fLLrsM3333HQBAo9E4tLrZvtZoNO2ea9myZTAYDPaHLSB6qxJDW4udi2fE2th2n8hnix0REZFLKKUuoKvk8jNZNCUlBZmZmfbfHzhwAAMHDkRgYPstVCqVCiqVyuk1uoszkyekarGzBrtT1fVoammFSqmQpA4iIiJfIVmLndlsRmNjIywWi8PX5/rss89QV1eHlpYWfPzxx9ixYweuuuoqAMCtt96KdevWYd++fTAYDHjmmWeQmprq6ltxS80tFlS0LTMiVYtdhEYFrUoJiwBOVtZLUgMREZEvkSzYLVq0CIGBgdi+fTvmz5+PwMBAbNu2Denp6Q5r1f3zn/9ETEwMwsPD8dJLL2H9+vUYMGAAAGD48OF48cUXMWvWLMTGxiIuLg5///vfJboj93LaaG2t81fKERrkL0kNMpkMA9ta7fI4zo6IiMjpZMKHtwUwGo3Q6/UwGAwOkzC8wa7jlbjlzV/QP0yNH5deKVkdD63djw0ZxfjLtUn449QEyeogIiLyVF3JK24/eYK6R+qJEzYDw60TWfLZYkdEROR0DHZeqljipU5suJYdERGR6zDYeakSiRcntuGSJ0RERK7DYOelpN5OzMbWYldV14ya+mZJayEiIvJ2DHZe6swadtK22Kn9lfZxfuyOJSIici4GOy9VarRNnpC2xQ440x3LrcWIiIici8HOCzWaW1FVZ+32lHryBHCmOza/ov09fImIiKh3MNh5IdtSJ2p/BXSB0u8aZ1vyhC12REREzsVg54VKamwTJwIgk8kkrubsFjsGOyIiImdisPNCxQb3GV8HAPFnLXlisfjsRidEREROx2DnhWz7xEZJvOuETWyIGv4KOZpaLChqa00kIiKi3sdg54XK2oJdH51K4kqsFHIZ+oepAbA7loiIyJkY7LzQaWMTAKCPzj1a7ICzlzzhzFgiIiJnYbDzQmW11ha7SK37BLv4COvMWLbYEREROQ+DnReytdhFuklXLHBmAgV3nyAiInIeBjsvI4Swt9i5U1esbckTrmVHRETkPAx2Xqa63gxzq3VJkQiN+7TY2cbYFRsa0GhulbgaIiIi78Rg52VsS52EBfnDX+k+H29okD/0gX4QAiioZKsdERGRM7jPT37qFbZgF+lG3bAAIJPJ7K12+eyOJSIicgoGOy9TZl/qxH26YW04gYKIiMi5pN8hnnqVrcWujxstdWIzMJx7xnZXXVMLimsa4K+UIy5EDblc+j2AiYjI/TDYeZnTte6168TZBkZwkeKuEELg60OlWL0zH3tOVEO0bbOrVSlx7bAo3DMlHgmRWmmLJCIit8Jg52Vsa9hFuNkYOwCID+cixZ1VXdeMBz/OwLaccvtzugAlmlosqG1qwSd7T+Hz/UW4b8ogPDx9MBRswSMiIjDYeZ2y2rYxdlr3a7EbEG7dL7a63ozqumaEBPlLXJF7Kqyqx23v7EJBZT1USjnuviIefxjfDzHBgWhptWB/YQ3+/eNxfJ99Gv/3wzEcOFWDN1LHQqPiX2ciIl/HyRNepszofosT26j9lYjWW+vK55In7aowNdlDXd/gQGy6/3L8eUYSYoIDAQBKhRyXDAjF2wvG4dU/jEagnwLbcyuw4D+7Udtolrh6IiKSGoOdF7FYxJkWOzcMdgC45EkHzK0W3P3eHnuo+/yPE5EUdeExdLNHxuDjeyZAF6DE3hPV+GP6PrS0WlxYMRERuRsGOy9SWdeMVouATAaEa9yzm5MzYy/s5e9zsO9kDbQBSrx35/hOhfMRscH44K5L7S13z3yV7YJKiYjIXTHYeRHbUifhGhWUCvf8aOMjrBMojldwZuzZ9p2sxqqteQCA524agUFt36fOGBEbjH/eMhIAsHpnAb44UOyUGomIyP25509/6pYyN17qxMa+SDG7Yu1aLQJPbDwEIYCbxvTFzBHRXT7HtcOi8cBVCQCAv6/PRHFNQ2+XSUREHoDBzovYljpxx8WJbWxdsQWVdbBYhMTVuIcPd5/EoSIjdAFK/O36Id0+z5+uTsTIuGAYG1uw9NMDEILfXyIiX8Ng50XO7BPrvi12sSGBUMplaDRbUNpWry+rbTTjpW+PAgAeuSYJ4Zruf3Z+CjlevmUUAvzk2HmsEuv3F/VWmURE5CEY7LyIrcUu0o1b7JQKOfqFWdez4wQK4N2fClBdb0Z8RBBuHd+vx+cbGB6EB68eDAB45r/ZqKlv7vE5iYjIczDYeZHyWvddw+5sZ8bZ+fYECmOjGW9uOw4AePDqxF6b8HLX5IEY3EeDyrpmPP/N0V45JxEReQYGOy9iH2Pnxl2xwNkzY327xe7dnQUwNrYgIVKDG0bE9Np5/RRyrJgzHACw9teTyC4x9tq5iYjIvTHYeRH7GDs37ooFuJYdADS1tOLdn08AAO6/MqHX93odPzAUM4dHQwhg5ddHevXcRETkvhjsvESrRaCyzjqeyp0nTwAMdgDw34MlqDA1oY9O1a3lTTrjL9cmwU8hw7accmzPLXfKNYiIyL0w2HmJ6nrrrhMAEBrknrtO2NjG2BVW1aO5xfe2wBJCYPXOAgDA/MsGwM9Ji0n3DwtC6oT+AIBnvzrC5WWIiHyAZMEuLS0NKSkpkMvlWLt27QWPW7JkCeLj46HVajFu3Dhs27bN/trWrVshl8uh0Wjsj+3bt7uifLdTYbKOrwsN8ndaUOgtEVoVgvwVsAjgZFW91OW43L6T1cgsMkCllOMPvTATtiN/uioR2gAlskuM+PpQqVOvRURE0pMsASQmJuKVV17B+PHjOzxOr9fj22+/hcFgwKOPPoo5c+agtrbW/vrgwYNhMpnsj8mTJzu7dLdUXmsNdhE9WAfNVWQyGQZG+O7M2A9+OQkAuHFUjNNbV0OC/HHn5QMBAK9szmGrHRGRl5Ms2KWmpmL69OkICOh4oH9aWhoSEhIgl8sxd+5cBAYGIicnp1vXbGpqgtFodHh4C1uLXbjWvbthbeLDrTNjfW2cnbHRjK8ySwAAt17a3yXXvH3SQGgDlMg5bWKrHRGRl3PvPrtzFBQUoKqqCgkJCQ7PRUZGIjExEcuXL0dra+sF379y5Uro9Xr7Iy4uzhVlu4QntdgBvjuB4ssDJWhqsSAxUoORsXqXXFMf6Ic7JrHVjojIF3hMsDObzViwYAGWLl0Kvd76AzE5ORkZGRkoLS3Fxo0bsW7dOrz66qsXPMeyZctgMBjsj8LCQleV73T2YKf1jGAXb+uK9bFg98le65+5ueNiIZP17hInHbnjcrbaERH5Ao8IdkIILFy4EJGRkXjyySftz0dFRSE5ORlyuRwpKSl47LHHsH79+gueR6VSQafTOTy8RYXJutRJT/YadSVfbLE7VlaL/SdroJDLMGd0X5de++xWu1c357LVjojIS3lEsHvggQdQXFyMDz74AHL5hUvu6DVv52ktdgPagl15bRNqG80SV+Man+0rAgBcmRQhySLSd1w+EBqVEkdP1+KHo2Uuvz4RETmfZEnIbDajsbERFovF4etzpaWlYefOndi4cSNUKsfQsnXrVnt3am5uLlasWIEbbrjBJfW7G08LdroAP3vroi+02gkh8N+D1kkTrm6ts9EH+uHWS63Lq/zrxzxJaiAiIueSLNgtWrQIgYGB2L59O+bPn4/AwEBs27YN6enpGDp0qP245cuXIzs7GzExMfa16tLT0wEAe/fuxYQJExAUFIQZM2Zgzpw5WLJkiVS3JCn7rFgP6YoFzoyz84Vgl1lkwMmqegT6KXBVcqRkddwxaSD8FDL8WlCNvSeqJKuDiIicQynVhdesWYM1a9a0+9q8efPsXwtx4bFAf/7zn/HnP/+5t0vzOC2tFlTVW8fYeUqLHWDdgWJ3fhWOl3t/sPuyrbXuqiGRUPtL9tcOUfoA/GZ0X6zbcwpvbD2OtxeESlYLERH1Pt8dlOZFquqaIQSgkMsQovaMdewA35lAcXY37Cwn7QvbFXdfMQgyGfB99mnknq69+BuIiMhjMNh5gbLaM9uJKeSuW0Kjp3wl2O0vrEFRTQOC/BWYmiRdN6xNQqQGM1L6AAD+ve24xNUQEVFvYrDzAuUmz1qc2Cb+rG3FOupy93S21rppKX0Q4KeQuBqre6cMAgBszChCiaFB4mqIiKi3MNh5gQoPmxFrExeqhlwG1DW32mf1ehshBL5pWxD4+uHSd8PajO4XgksHhsLcKvDO9nypy/FILa0WtHI9QCJyM9KN4qZeU+6BM2IBQKVUIC5UjROV9TheUYdInevXdnO2I6W1KKppgEopxxWJEVKX4+DeqYOwK78KH+0+iQeuSoRe7Sd1SW6rqKYB3x8+jf0nq3G4xIgSQyNqG1sAAP5KOaJ0ARgQHoRRsXpMGBSGMf1C3KZ1loh8C4OdF/C0NezONjA8CCcq65FfUYcJ8WFSl9Prvj98GgAwOTEcgf7u9YN+6uAIJEdpcaS0Fh/sOoHFVyZc/E0+pLnFgq8PlWDNTwXYf7Kmw+NOVtXjZFU9tuWU49Utx6BVKXHd8CjcNCYWlw4Mden2cUTk2xjsvMCZ7cQ8Z0aszcDwIGw9Wu61Eyi+z7YGu+ltkxXciUwmwz1T4vHwxwewemc+7rx8IFuZAFgsAl8cLMYL3xxFUY11/KFcBozrH4rLE8MxrK8O/ULVCFH7QyaTob65BUXVDThWbsLu/Cr8lFeJ8tomrNtzCuv2nMKwvjrcfcUgXD8sCkoFR78QkXMx2HmB8tpGAJ7ZYhcffmYChbc5bWzEgVMGyGTAVcnuF+wA4IYRMfh//8tBUU0DPtt3CvMu7S91SZLKPV2LpZ8eREZhDQDr36n5E/rj9+P7XfDvV2iQP2JD1Lg0PgzzLu0Pi0Xg14IqrN9fhA0ZRThUZMSfPtqPVyKC8NfrhmDakEi24BGR0/C/j17As7tiNQCA417YYmdrrRsVF+y2n42fQo47Lx8IAHhr23GfnQxgsQj8Z0c+Zr62AxmFNVD7K/DIjMHYtvRKPHB1Ypc+P7lchkvjw/DczSPw01+vxsPTBiNE7Ye88josem8PbnnzF2SXGJ14N0TkyxjsvICtK9bTljsBzix5crKyHi2t5+8V7Mls4+umDXHP1jqb34+PQ7DaDwWV9fhfVqnU5bhcXVML7kvfi+VfHkZziwVTkyLwwyNTcf9ViT0eFxka5I8HpyXix79ciT9OHQSVUo7d+VWY9doOPPf1ETQ0t/bSXRARWTHYebimllYYGswAPLPFLkoXgAA/OVosAqeqvWc9tbqmFuzMqwTgnuPrzqb2V2L+BGsX7L9/zPPqNQXPdaq6Hje/8RP+l3Ua/go5np4zDKsXXoI+vTxDWxfgh79cm4wfHpmK64ZFocUi8K8f8zDj5R+xI7eiV69FRL6Nwc7DVba11vkpZNAHet5yFXK5DAPCvG8Hip/zKtHcYkFcaCASIzVSl3NRCyYOgEopx4FTBvx8vFLqclziSKkRc17/CUdKaxGuUWHtPRNw24T+Th3/FhMciDdSx+Kt+eMQrQ9AYVUDUt/ZhbSNh9h6R0S9gsHOw9nG14VrVB47INu+A4UXBbsdx6ytMFckRnjE5xKmUeF34+IAAP/+0fu3GcsorMEt//4FFaYmDInWYdP9kzCmX4jLrj89pQ++WzIFt7W1lL778wnMfG07DrRN2iAi6i7OivVwnjxxwmagF86M3dkW7C5PCJe4ks5bNDke6btO4MecchwuNiIlRid1SU6x90QVFvznV5iaWjCmXzBW3z5ektZujUqJp+cMw7SUPlj6yQEcL6/DTW/8hPuvTMD9VyXAj0ujXJAQAtX1ZtTUN6O2sQXGRjPMbWN0ZZBBIZdBF+gHXYASukA/hKg9ax9top5gsPNwFR66T+zZbDNjvaUr9rSxEbllJshkwGWDPGfR5X5halw/PBpfHizBm9vy8PLvR0tdUq/LKjZg4WprqLssPgxvLxiHIJW0/wxOGRyBbx++Ao9tOIQvD5bglc252Hq0DC/dMgqDIty/G9+ZLBaBgso6ZBUbcajYgNzTJhRW1eNUdQMazJ3vulbKZYjSB6BvcCBiQ9SIjwjC4D5aJEdp0Tc4EHKGPvIiDHYe7uyuWE9l64r1lmBna60b3lePYLVnLRp975RB+PJgCb44WII/z0hCXKha6pJ6zfFyE+a/sxu1jS0YPyAU/1l4idvsBhKs9sf/3ToG01OK8PiGQzhwyoCZr27HsuuG4LYJ/X0meAghkHPahJ/yKvBzXiV+OV4JY9vWbe3RqqwtctoAJVRKOWzTfppbLNaWvAYzapta7JOzTlU3YFd+lcM51P4KJEVpMTI2GKPirI/+YWqPGEJB1B4GOw9n2yfWk7tibYsUlxgaUd/cArW/Z/+xtI2vm+RB3bA2w/rqcXlCOHYcq8A7O/Lx5OyhUpfUK4prGpD69i5U1jVjaIwOby8c5zah7mw3juqL8QND8ZdPD2J7bgXSNmXh++zT+MdvRyJK7317KQNAa9uCzv/LKsX/DpWi2NDo8LpKKceQaB2GxuiQHK1D/1A14kLViAkOgEp58c+wpdWCclMTitqC3anqehwrM+HoaRPyykyob27F/pM1DtvGBav9zgS9fsEYHRfscf9Jc5WWVguaWixobrH+2tTSiqYWC4QAZDLrri0ymQxymQwyAH5KOdR+CgT6K6BSyhmgncCzf4KSvSvWE7cTswlW+yNE7YfqejMKKuo9emyXEMIjx9ed7Z4p8dhxrAIf/1qIB69OREiQ5/7ZAqxLz9z57h4UGxoRHxGE9+4YD12A+84gj9YH4t3bx+P9X05g5dfZ2J5bgRn//BFPzxmGG0f1lbq8XiGEQEZhDT7dewrfHCpFZV2z/bUAPzkuGRCKiYPCMXFQGIbG6Hq0FZtSIUe0PhDR+kCMG+D4Wkurxd7Vm1FYg4zCGmQVG1FTb8aPOeX4MafcfuzA8CCMtge9ECRHa71yHKQQAoYGM4pqGlBc04jimgYU1zSgwtQMQ4MZhgbrrzX1ZhgazGhq6f76ozIZEKBUQO2vQICfAhqVEvpAP+gC/aB3eCihVzs+ZzumM+He1zDYeTj7PrEe3GIHWP/RrD5Zg+MVJo8OdnnlJpw2NkGllGNsf9fNsuxNlyeEY2iMDlnFRrz38wk8OC1R6pK6zWIReOSTA8guMSJc44/37hiPMA8YtiCXy7Bg4gBcnhiOJR9n4MApAx5cm4HvDp/GijnDPLb1qMzYiM/3F+HTvadwrOzMZCl9oB+mDemDa4dFYXJiuMv2LFYq5EiI1CIhUmsPzc0tFhwpbQt6J61h73hFHfLbHp/vLwJgbUkc3leP0f2CMSouBKP7BSNaH+D2LVDmVgtKDdbAVtQW2orOCnDFNQ2o6+bSO0q5DCqlHP5KOeQyGQQAixCwWIT1a4uA2SLQ3BYGhQAazK1dGi95rgA/+Tkh0K9t4sy54dAPerWfPUQG+CkQ6KdAgJ8cAUqFVw13YLDzcJVtLXZhQe7/w6ojA8M12HeyBvnlnj3OzrbY7CUDQl32w6m3yWQy3DNlEP700X6s+Skfd00eKPkEg+56dUsuvj5UCj+FDP9KHYvYEM8aMzgoQoNP75uI1384hte2HMOXB0uwK78KT9yQghtGRLt9iACsQWJz9ml8/Gshfswph23XugA/Oa4bFo2bxvTFhPgwt2n98lfKMSI2GCNigzH/MutzNfXNyCi0dtfaWvYMDWbsOVGNPSeqAeQDACK1KgyJ1iExUoPBfbRI7KNBQqQGWhe1EAshUFXXjBJDY9ujwd7yVlRdj+KaRpyubURn1iAP1/gjJjgQMfpAxAQHIkKrgj7QD8HntJxpVEqo/OTwV8g73bLaahHWQNfcisa2YFff3ApTY0tbq6Djw9jec41mCAE0mi1oNDfhtLGpR987f6UcAUo5/BTytq5jQN72q0wmg1xu/X2rRaDVItBi+7XVglaLwMi4YHy4aEKPaugtnvmvNdnZujA8uSsW8J4JFDuOWRf39cTxdWe7flgUXgpTo6CyHu/9fAL3TR0kdUld9nVmCV7+PhcA8Myc4Rg3IFTiirrHTyHHQ9MG48qkSDy8LgPHy+vwwEf7sW5PIZbfOMy+XJC7OVFZh7W/FuKTPafsQ0YAYFz/EPx2bCxmjoh2WeDpqWC1P6YmRWJqUiQAa8tTfmUdMk7WYH9hNTIKa5BdUouy2iaU1Tp24QLWreVigq2zcmOCAxGtD0BwoD90ZwWlAD8FlHIZlArrci0yyNDcakGTudU+hs3U1ILq+mbrUi911l+r6prsQa7U2GhvDeuIv0KOmOAAxAQH2muy/Wp73pn/MVXIZdColND04D+MFotAbVNLu6Gvo2DY0GwNkk1mC5rP2sayue173F31brTAOIOdBzO3WlBTb91OzBO6lzpim0CR58HBrqXVgl/adm3w1PF1NkqFHH+6OhFL1h3Av7flIXVCP4/5IQwAh4uNWLLuAADg9kkD8LtL4iSuqOdGxgXjqz9Nxr9/PI7Xtx7D9twKXPPyNtx5+UDcO2WQW+w809xiwbeHS/HR7pPYeezMDiYRWhXmjo3F3HFxbhtEu0Iul2FQhAaDIjS4eWwsAKChuRWHSww4WmpCzulaHCuz/lpW24SqumZU1TXjUJHRJfVFaFWI1gcgSheAviHnh7ewIH+P73qUy2X2VsPu/u1utQg0tbS1HLZY0GhuRatFtHUfW7uRhWjrThYCFmENpQqZNXzbQrhSLnOrHhoGOw9W3dZaJ5cBwW7wj3pPDGrbdiuvzAQhhEd0MZ3rwKkamJpaEKz28+hxgjazR8bg/344huPldVizswAPXO0ZY+0qTE1Y9N4eNJhbMTkxHH+/fojUJfWaAD8FHpyWiBtHxeCJTVnYllOON7bm4cNdJ/HHqYMw/7IBksz2zTldi0/3nsJne0/ZexFkMuvOK38Y3w9XD4l0m65WZwn0V2Bs/1CM7e/YMmxoMNvHrhW1PU4bGq0TEM5qUWoyW9BiEWixWGButfaV+ivlUNkf1kkGIWp/BKutiy4HB/khLMgfUfpAe5DrowuAv9K7v9e9RSGXQe2v9PiVGM7lXXfjY2z/gIZ6wf++BoQFQSGXwdTUglJjI6L1gVKX1GU7ctu6YQeFe8Uq90qFHA9enYgH12bgre3HMX/iALdoFepIc4sF932wF0U1DRgQpsb//WFMj2ZUuqsB4UF49/ZL8H12Gf7xvyPIOW3Cyq+P4N/bjiN1Qn/cNqG/05dAKjU0YtOBImzYX4zDJWdaovroVLhlXBzmjovzqnUQu8vWqjQkumv/2fPU/+CS9BjsPFhl24xYT584AVj/ZzogTI288jrknjZ5ZLDb6cHr113IDSNi8H9bjiG3zIT/7MjHw9MHS13SBQkh8MTGQ/i1oBpalRJvL7gEerV7B9GekMlkmJ7SB1clR2L9/iK8/H0OTlU34NXNufjXj3mYPqQP5ozuiymDI3qlBUcIgbxyE77PLsPm7NPYc6LaPgjfTyHDlMGRuOWSOFyZFOGVYdrVGOqouxjsPFhlXduMWA+fOGGTGKlFXnkdjpWZcMXgCKnL6ZK6phbsO1kNwPPH151NIZfh4emD8cf0ffjPjnwsmDgAoW66rt17P5/A2l8LIZMBr946GgmRvrEdl0Iuw2/HxmLOqBj8L+s03tp+HBmFNfhvZgn+m1kCXYASlyeG4/KECIztH4L4iKBOdYs2mluRV25CRmEN9hRUY3d+FYpqGhyOGdc/BHNG98XM4dEev94hkbdgsPNgtjXsPH3ihE1iHw2+yQJyz1rfylPszq9Ci0UgLjQQ/cK8q/vp2qFRSInW4XCJEa98n4OnbhwmdUnn2XmsAsu/PAwAWHZdMq5sm73oS5QKOWaOiMb1w6OQVWzEhv1F2HigGOW1TfgqsxRfZZYCsLauDQwPQh9dACI0KgT4KyCXWQeSV9eZUV3fbB8Ldu6yGP4KOSYMCsO0IZG4ekgf9A32vJZ1Im/HYOfBzqxh5x3/U7a1sBwrq5W4kq7b4eG7TXRELpfhsZlDcOvbu/DBrpO47bIBbtUaVlBRhz+m70OrReCm0X2xaHK81CVJSiaTYVhfPYb11eOv1yXjwCkDduRWYGdeBQ4XG2FqakHOaRNyTl/8P1D6QD8MjdFh3IBQjOsfgjH9Q3q0RAUROR//hnow2xg7T1/DzsYWFnJOe97MWG8cX3e2iQnhmDakD77PPo2VX2XjnYWXSF0SAKC20Yy73tsDQ4MZo+KC8exNwz3qz42zKRXWHVDG9g/Bg9MSIYTAqeoGHK+oQ0VtE8pNTWgyW2ARAnKZDCFBfghW+yNSq0JCpAZhQf78fhJ5GAY7D3ZmjJ13dMUOitBAJrMuD1Bhanb6rL7eUlbbiCOl1lbGiYO8M9gBwLLrk7H1aBk2HynDzmMVkofYVovAnz7aj2NlJvTRqfDmbWPdai0pdySTyRAXquZsVSIvxqlLHuzs5U68QYCfAv3afuDkelB37M951mVOhsbovOazaM+gCA1SJ/QHADy+8RCaWqRdaX3lV9n44Wg5VEo53po/DpG6AEnrISJyBwx2HszbumIBINE+zs5zJlDY9of1xvF153p4+mBEaFU4Xl6HVT/kSVbH2t0n8fYO6/6cL/5uJEbEBktWCxGRO2Gw82BnJk94RpdlZyREagF4TrATQnj9+Lqz6QP9kDYrBQDwxtY8ST6nn/Mq8diGQwCAh6cNxg0jYlxeAxGRu2Kw81ANza2oa9t02FvWsQPOtNjldmLGnjvIr6hDsaER/go5LvHQTea7aubwaFyVHInmVgse/ewgWlq7v3F2Vx0rM+G+9L1osQjMGhmDP12d4LJrExF5AgY7D2WbOOGvlHvV8gO2mbGespadrbVubP8QSfbolIJMJsPyG4dCq1Ji74lqvO6iLtnimgbc9s4u1NRbZ8D+47cjOGOTiOgcDHYeyj6+zsuWIxjUFuwqTE2obpsc4s7s69clen837NliQ9R4eo51oeJXt+Ri74kqp16vqq4Zt72zCyWGRgyKCMJ/Fl7CGbBERO2QLNilpaUhJSUFcrkca9euveBxDQ0NSE1NhVarRb9+/fDRRx85vL5mzRrExsZCp9Ph9ttvR3Oz+4eB3uBtS53YaFRK+2r2x8rdu9Wu1SLwU9uMWF+YOHGuOaP74jej+6LVIrA4fT/KjI1OuY6h3oyFq3cjr7wO0foAvHfnpV49+5iIqCckC3aJiYl45ZVXMH78+A6PS0tLQ1VVFYqKirB27Vrcd999yMnJAQBkZmZiyZIl2LBhAwoLC1FQUIAVK1a4onzJ2VrsvPEHXIKHjLM7eKoGtY0t0AUoMayvXupyJLH8xqFIiNSg1NiIRe/tQaO5d5dAqa5rxq1v/4KDpwwIUfvh/TvHcxsrIqIOSBbsUlNTMX36dAQEdLz21Pvvv4+0tDTodDpMnDgRs2fPtrfwffjhh7jlllswbtw46PV6PP744/jggw9cUb7kbGvYedPECZtE+w4U7r2WnW183cRB4VDIvac7vCu0AX54Z8E4BKv9cOCUAQ+u3Q9zL02mKDE04A9v/YKsYiPCgvzx0d0T7LOmiYiofW49xq66uhqlpaUYPny4/bmRI0ciKysLAHD48OHzXsvPz0dDQ0O752tqaoLRaHR4eCrbUifhXtYVCwCDo6w/vN092NnG103ysfF15+ofFoQ35o2Fv0KO/2WdxkNrM3oc7jJPGTDn9Z04UlqLCK0Ka++egOQoXS9VTETkvdw62JlMJigUCqjVZ7a/0el0MJlM9td1Op3Da7bn27Ny5Uro9Xr7Iy4uzonVO5etKzbMC7tih7T9AM8uMUIIIXE17atvbsG+EzUAfHN83bkuGxSGf902Bn4KGf6bWYLbV/8KQ725y+cRQuCDX05g7r9/wmljExIjNfj8volI7MOWOiKiznDrYKfRaNDa2or6+nr7c0ajERqNxv762a1utq9tr59r2bJlMBgM9kdhYaETq3euCntXrPe12CX20UAuA6rrzSivbZK6nHb9WlCN5lYL+gYHYkAY990EgKuS++DN28ZB7a/AjmMVmP36DuzO7/xs2ZOV9bjz3T14bMMhNJotmDI4Ap/9cSL3NSUi6gK3DnYhISGIiopCZmam/bkDBw5g6NChAICUlJTzXhs4cCACA9sfXK1SqaDT6Rwensq+64QXjrEL8FNgYHgQACC71D27Y8/sNhHmVcvN9NSVyZH49N6J6BsciBOV9fjdv3/GQ2v340jphYc9HCsz4fENhzDtpR+x5UgZ/BVyPDZzCFYvvAS6AD8XVk9E5PkkW9nWbDajtbUVFosFZrMZjY2N8Pf3h1zumDVTU1Px9NNP46OPPkJWVhY2bdqEXbt2AQBuvfVWTJ06FYsWLcKgQYPwzDPPIDU1VYrbcbkz69h5X4sdACRH65BXXocjJUZMGRwhdTnnse0P6wvbiHVVSowOXz04Gc99nY2PdhdiQ0YxNmQUIzlKizH9Q9A3OBBCCBTVNOLXgiqHbckmJ4bj8RtSMJhdr0RE3SJZsFu0aBHeffddAMD27dsxf/58/PDDDygqKsKzzz5rnyCxfPly3HXXXYiOjkZISAhWrVqFpKQkAMDw4cPx4osvYtasWTAajbj55pvx97//XapbchkhBKraumJDvbDFDgCGRGnx34MlOOKGLXaVpiYcLrG2QE0cxGDXHn2gH1beNAK3ju+PN348hv9lncaR0tp2P0+5DLgqORJ3TBqIywaxBZSIqCdkohOj01944YVOnUypVGLJkiU9LspVjEYj9Ho9DAaDR3XLGhvNGPHktwCAI09f65Ur8H9/+DTuem8PkqO0+OahK6Qux8EXB4rxwEf73bI2d1Vd14ztxypwtNRoHzfZRxeAIdE6TBoUDr2aXa5ERBfSlbzSqRa7xx57DPPmzbvocZ9++qlHBTtPZeuG1aiUXhnqACA52toVl1duQnOLBf5K9xkOahtfx9mwnRcS5I/ZI2OAkTFSl0JE5NU6Fez0ej1Wr1590eO++eabHhdEF+fNEyds+gYHQqtSorapBccrTG6zhpkQAttzuX4dERG5p041g5SXl3fqZCUlJT0qhjqnwovXsLORyWT2VrsjJe4zzu5kVT2Kahrgp5Dh0oGhUpdDRETkoFv9W01NTaisrERTk3uuMebtKutsLXbeOSPWxtZKl93BUhmuZtttYky/EKj9JZt7RERE1K5OB7uWlhY8+eSTGDRoENRqNSIiIqBWq5GQkICnnnoKZnPXV5mn7rEvdeLFXbEA3LLFjuPriIjInXU62N1zzz3Ytm0b3n77bZSXl6O5uRnl5eV48803sX37dtx7773OrJPOYl/qxIu7YoEzLXYdLW7rSq0WgZ3HKgFwfB0REbmnTvclffbZZygsLIRWe2bh0NDQUFx11VUYO3Ys+vXrh3feeccpRZKjCtvkCS9dnNgmKcr6Z+20sQmVpibJu56zig0wNJihVSkxoq9e0lqIiIja0+kWO61Wi2PHjrX7Wn5+vkPgI+eydcV686xYwLqci21rsUPF0rfa2cbXTRgUBqXCfZZfISIisul0i93TTz+NadOm4fe//z2GDx8OnU4Ho9GIgwcP4pNPPsGLL77ozDrpLLbJE+FePnkCAIb31SO/og6HigySby1m30ZsUJikdRAREV1Ip4PdwoULMXbsWHz00Uf45ptvYDKZoNFokJKSgh9++AHDhg1zZp10Fl9psQOswW7TgWIcPFUjaR0Nza3YU1ANAJjshnvXEhERAV3cK3b48OEYPny4s2qhTmi1CFTV29ax84EWu1jrWLZDRdJ2xe7Kr0RzqwV9gwMR39Y9TERE5G46NVBo06ZNnTrZl19+2aNi6OKq65shBCCTASE+sL/m0BgdZDKgqKbBvuOGFGy7TUxODOcm9URE5LY6FexSU1M7dbL58+f3qBi6ONtSJ8GBfj4xgF8b4GefQJFZZJCsDtv4usu5zAkREbmxTnXFmkwmqNXqDo8RQkAu9/6gITX7Uic+MHHCZkRfPY6X1yHzlAFTkyJdfv3TxkYcPV0LmQyYNIjBjoiI3Fengl1+fj4Aa3hbv349Zs6cCZXq/GDBLirnq/SBfWLPNayvHhsyiiVrsbN1ww7vq0eID33fiYjI83Qq2PXv39/+9WeffYYVK1Zgzpw5mDdvHq688koGOheyjTPzhaVObEbEBgOQrit2e245AOv4OiIiInfW5b7THTt2YP/+/UhKSsKSJUsQGxuLhx9+GHv27HFGfXSOyjrfWerExjaBosTQiPJa106gsFiEfX/YyYlc5oSIiNxbtwbF9evXD3/5y1+QkZGBDRs24Ntvv8Wll16KxMRErFy5EiaTqbfrpDYVJt9Z6sQmSKXEoAgNACCzqMal184uNaLC1Ay1vwJj+oW49NpERERd1a1gZzabsXHjRvzhD3/Atddei8GDB2PdunV4//33kZmZiRkzZvR2ndSm0j55wnda7ABgVFwwAGDfiRqXXtc2vm5CfBj8lZwcRERE7q1LCxQDwB133IGNGzdi2LBhmDdvHlatWoWQkDMtGWPHjoVezw3SncW23IkvTZ4AgHH9Q/Dp3lPYc6LKpdfdlmMdX3d5AsfXERGR++tysEtISMC+ffscJlSczc/PD6dOnepxYdS+M2PsfKcrFgDG9rf+5+FAoQHmVgv8XLCGn7HRjN351iB5ZbLrl1khIiLqqi7/dPzb3/52wVBnExoa2u2CqGMVPtoVOyhCA12AEg3mVmSXuGZ7sR25FWixCMSHB9kXSSYiInJnHDTkQZpaWlHb2AIACPehyRMAIJfL7K12e09Uu+Sam7PLAABXsbWOiIg8BIOdB7GNr1PKZdAFdrkX3eO5MthZLAJbj7YFuyEMdkRE5BkY7DyIfdcJjb9PLgo9tr+1i98Vwe7AqRpU1jVDq1LikgEcWkBERJ6Bwc6D2MfX+Vg3rM3IOD0UchlKDI0ormlw6rW2HLG21l0xOMIlEzWIiIh6A39ieZAqH9x14mxqfyWGxugAALvyK516LVuw4/g6IiLyJAx2HsTeFetja9id7bJBYQCAncecF+xKDY3IKjZCJgOmJnEbMSIi8hwMdh6kos621IlvdsUCwKRB1oWCfzpWASGEU67xv6xSAMCYfiE+/b0mIiLPw2DnQc6ePOGrLhkQCn+FHMWGRhRU1jvlGl8fKgEAXDcsyinnJyIichYGOw9i2yfW19awO1ugvwKj+wUDAHYeq+j185fXNtl3m7iWwY6IiDwMg50HqfTxyRM2k9r2bf0pr/eD3beHS2ERwMhYPWJD1L1+fiIiImdisPMgZ7pifbfFDgAmJZyZQNHSaunVc3+daR1fd+2w6F49LxERkSsw2HkIIQQqbZMnfHhWLACMjA2GPtAPhgYz9p2s6bXzVtU14+fj1tm2HF9HRESeiMHOQ9Q3t6LRbG2d8vWuWKVCbl9f7vvs07123v8eLEarRWBojA4DwoN67bxERESuwmDnIWzdsIF+Cqj9fW+f2HNNG9IHAPD94d4Ldp/tKwIA3DQmttfOSURE5EoMdh7CtoZdqI93w9pcMTgcfgoZjlfUIa/c1OPz5ZWbkFFYA4VchtkjY3qhQiIiIteTLNiVl5dj5syZUKvVSEpKwubNm9s9bujQodBoNPaHXC7Hiy++CADYunUr5HK5w+vbt2935W24TFVbi124j3fD2mgD/DAh3jqJojda7Tbst7bWTRkcgQitb09OISIizyVZsFu8eDFiYmJQUVGB559/HnPnzkV1dfV5x2VlZcFkMsFkMuHEiRPw8/PDjTfeaH998ODB9tdNJhMmT57syttwmUruOnGeGSnW7tgvD5b06DwtrRZ8tvcUAOA3o/v2uC4iIiKpSBLsTCYTNm7ciOXLl0OtVmPOnDkYNmwYvvjiiw7ft27dOowZMwYJCQkuqtR9VLS12LEr9ozrh0dDIZchs8iAY2Xd7479PrsMxYZGhAb5Y3pbWCQiIvJEkgS73Nxc6PV6REefWSts5MiRyMrK6vB96enpmDdvnsNzBQUFiIyMRGJiIpYvX47W1tYLvr+pqQlGo9Hh4SmquDjxecI0KkwZHAEA2JhR1O3zvP9LAQDglkviEOCn6I3SiIiIJCFZi51Op3N4TqfTwWS6cKtLQUEBdu/ejd/97nf255KTk5GRkYHS0lJs3LgR69atw6uvvnrBc6xcuRJ6vd7+iIuL6/nNuAi3E2vfnLau0/X7i2CxiC6//1hZLXYeq4RcBsy7tF9vl0dERORSkgQ7jUZzXmuZ0WiERqO54Hs+/PBDTJs2DZGRkfbnoqKikJycDLlcjpSUFDz22GNYv379Bc+xbNkyGAwG+6OwsLDnN+Mitu3E2BXraPqQPtAFKHGqugFbc8q6/P53duQDAK5K7sMtxIiIyONJEuwSExNhMBhQWlpqf+7AgQMYOnToBd/z4YcfntcNey65vOPbUalU0Ol0Dg9PcWY7MQa7swX6K3DLJdaW19U7C7r03qKaBnzaNmnininxvV0aERGRy0nWYjd79mykpaWhoaEBmzZtwqFDhzBr1qx2j8/IyEBBQQHmzJnj8PzWrVvtrW65ublYsWIFbrjhBmeXLwnbrNhwzoo9z/zLBkAuA7bnViD3dG2n3/fvH/NgbhW4LD4MlwwIdWKFREREriHZcierVq1CYWEhwsLC8Mgjj2DdunUICQlBenr6eS136enpuPHGGxEU5LjN0969ezFhwgQEBQVhxowZmDNnDpYsWeLK23AJIYR98gS7Ys8XF6q2z2Z9dcuxTr3nWJkJH+46CQB44Grfm2VNRETeSSaE6PqIcy9hNBqh1+thMBjculvW0GDGyKe+BQAcefpaztxsx+FiI65/1bo49ZcPXI5hffUXPFYIgfn/2Y3tuRW4OjkS7yy8xFVlEhERdVlX8gq3FPMAthmxWpWSoe4CUmJ0uHGUdSuwv284hNYOZsiu31+E7bkV8FfI8fgNKa4qkYiIyOkY7DyAfUYsJ050aNl1Q6ANUOJAYQ3+7wJdsrmna/HYhkMAgAeuSsCA8KB2jyMiIvJEDHYewD4jluPrOhSlD0DaLOv4zH9+n4N1vzouZ3OsrBbz3t6F+uZWTIgPxR+v5Ng6IiLyLkqpC6CL4z6xnffbsbE4UmLE2zvy8ZfPDmL7sQpcmRSBnNMmvPdzAeqbW5HUR4s35o2FQi6TulwiIqJexWDnAdhi1zV/u34I/JRyvLE1D18cKMYXB4rtr10WH4bXbh2NEH4viYjICzHYeQDuE9s1crkMj16bjOuHRWPtryeRX1GHMI0K1w+LwjVDoyBnSx0REXkpBjsPUNE2KzaM+8R2yfBYPYbHDpe6DCIiIpfh5AkPwO3EiIiIqDMY7DyAvSuWLXZERETUAQY7D3BmVixb7IiIiOjCGOzcnMUizmqxY7AjIiKiC2Owc3M1DWbYdsfiEh1ERETUEQY7N2fbJzZY7Qc/BT8uIiIiujAmBTdXwcWJiYiIqJMY7NwcZ8QSERFRZzHYuTnOiCUiIqLOYrBzcxVcnJiIiIg6icHOzVW1tdiFsiuWiIiILoLBzs3ZthMLZ4sdERERXQSDnZuz7xPLFjsiIiK6CAY7N1dp74plix0RERF1jMHOzVXWsSuWiIiIOofBzo2ZWy2oqTcDAMI07IolIiKijjHYubHqemtrnVwGBAf6SVwNERERuTsGOzdmmzgRGuQPuVwmcTVERETk7hjs3BhnxBIREVFXMNi5Mc6IJSIioq5gsHNjldxOjIiIiLqAwc6N2VrswjkjloiIiDqBwc6NVdWdmTxBREREdDEMdm6sgl2xRERE1AUMdm6s0mTtiuWsWCIiIuoMBjs3ZuuKZYsdERERdQaDnRs7s44dgx0RERFdHIOdm2pqaUVtUwsA7hNLREREncNg56Zs3bB+Chl0AUqJqyEiIiJPwGDnpipqzyx1IpNxn1giIiK6OMmCXXl5OWbOnAm1Wo2kpCRs3ry53eMWLlwIlUoFjUYDjUaDoUOHOry+Zs0axMbGQqfT4fbbb0dzc7Mryne6ChMXJyYiIqKukSzYLV68GDExMaioqMDzzz+PuXPnorq6ut1jn3rqKZhMJphMJmRlZdmfz8zMxJIlS7BhwwYUFhaioKAAK1ascNUtOFU5gx0RERF1kSTBzmQyYePGjVi+fDnUajXmzJmDYcOG4YsvvujSeT788EPccsstGDduHPR6PR5//HF88MEHFzy+qakJRqPR4eGuymsZ7IiIiKhrJAl2ubm50Ov1iI6Otj83cuRIh9a4s/3jH/9AWFgYJk6ciG3bttmfP3z4MIYPH+5wjvz8fDQ0NLR7npUrV0Kv19sfcXFxvXRHvc/eFavlUidERETUOZK12Ol0OofndDodTCbTecc++OCDOHbsGEpKSrB48WLMmjULhYWF7Z7H9nV75wGAZcuWwWAw2B+287gj23ZiEWyxIyIiok6SJNhpNJrzukGNRiM0Gs15x44ePRohISHw9/fHvHnzcNlll+G7775r9zy2r9s7DwCoVCrodDqHh7uqaOuKjdAy2BEREVHnSBLsEhMTYTAYUFpaan/uwIED5814bY9cfqbklJQUZGZmOpxj4MCBCAwM7N2CJcBZsURERNRVkrXYzZ49G2lpaWhoaMCmTZtw6NAhzJo167xjP/vsM9TV1aGlpQUff/wxduzYgauuugoAcOutt2LdunXYt28fDAYDnnnmGaSmprr6dpyCwY6IiIi6SrLlTlatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrt//vOfiImJQXh4OF566SWsX78eAwYMAAAMHz4cL774ImbNmoXY2FjExcXh73//u0R31HvMrRZU15sBAOEaTp4gIiKizpEJIYTURUjFaDRCr9fDYDC41Xi708ZGXPrsZijkMuSuuA5yOXeeICIi8lVdySvcUswN2dawCw3yZ6gjIiKiTmOwc0McX0dERETdwWDnhmxr2HF8HREREXUFg50bsrXYcXFiIiIi6goGOzdkW5w4nIsTExERURcw2LmhM2Ps2BVLREREncdg54bKOXmCiIiIuoHBzg1V1NomTzDYERERUecx2LkhLndCRERE3cFg52ZaWi2oqm9rsdNyjB0RERF1HoOdm6mqb4YQgEwGhKoZ7IiIiKjzGOzcjG18XViQP5QKfjxERETUeUwObobj64iIiKi7GOzcDIMdERERdReDnZvh4sRERETUXQx2bqbCxDXsiIiIqHsY7NwM94klIiKi7mKwczNlbcEugi12RERE1EUMdm6mrLYRABCpY7AjIiKirmGwczO2FrtIbYDElRAREZGnYbBzI00traipNwMA+rDFjoiIiLqIwc6NlLe11vkr5dAH+klcDREREXkaBjs3ctp4ZuKETCaTuBoiIiLyNAx2bqScEyeIiIioBxjs3MiZiRMMdkRERNR1DHZupMzIGbFERETUfQx2bsS2hh1nxBIREVF3MNi5Ea5hR0RERD3BYOdGbF2xEWyxIyIiom5gsHMjnDxBREREPcFg5yZaWi2orGNXLBEREXUfg52bqDA1QwhAIZchLMhf6nKIiIjIAzHYuQnbjNhwjT/kcu46QURERF3HYOcmbBMn+ujYDUtERETdw2DnJjhxgoiIiHqKwc5N2LpiIzhxgoiIiLpJsmBXXl6OmTNnQq1WIykpCZs3b273uCVLliA+Ph5arRbjxo3Dtm3b7K9t3boVcrkcGo3G/ti+fburbqFXscWOiIiIekop1YUXL16MmJgYVFRU4Ntvv8XcuXORl5eHkJAQh+P0ej2+/fZbxMfH47PPPsOcOXNw4sQJaLVaAMDgwYNx5MgRKW6hV5UarC120Xq22BEREVH3SNJiZzKZsHHjRixfvhxqtRpz5szBsGHD8MUXX5x3bFpaGhISEiCXyzF37lwEBgYiJydHgqqdq6Qt2EUx2BEREVE3SRLscnNzodfrER0dbX9u5MiRyMrK6vB9BQUFqKqqQkJCgsNzkZGRSExMxPLly9Ha2nrB9zc1NcFoNDo83EWpoQEAEK0PlLgSIiIi8lSStdjpdDqH53Q6HUwm0wXfYzabsWDBAixduhR6vR4AkJycjIyMDJSWlmLjxo1Yt24dXn311QueY+XKldDr9fZHXFxc79xQDzWaW1FdbwbAFjsiIiLqPkmCnUajOa+1zGg0QqPRtHu8EAILFy5EZGQknnzySfvzUVFRSE5OhlwuR0pKCh577DGsX7/+gtddtmwZDAaD/VFYWNgr99NTtvF1an8FdAGSDXskIiIiDydJsEtMTITBYEBpaan9uQMHDmDo0KHtHv/AAw+guLgYH3zwAeTyC5fc0WsAoFKpoNPpHB7u4OzxdTIZd50gIiKi7pGsxW727NlIS0tDQ0MDNm3ahEOHDmHWrFnnHZuWloadO3di48aNUKkclwLZunWrvdUtNzcXK1aswA033OCSe+hNJW3j62I4vo6IiIh6QLJ17FatWoXCwkKEhYXhkUcewbp16xASEoL09HSHlrvly5cjOzsbMTEx9rXq0tPTAQB79+7FhAkTEBQUhBkzZmDOnDlYsmSJVLfUbZwRS0RERL1BJoQQUhchFaPRCL1eD4PBIGm37OMbDuH9X07ggasS8OcZSZLVQURERO6nK3mFW4q5AbbYERERUW9gsHMDpUbbGnYMdkRERNR9DHZuwLbcSZSOkyeIiIio+xjsJNbU0ooKUzMAttgRERFRzzDYSazM2AQAUCnlCFb7SVwNEREReTIGO4kV15wZX8fFiYmIiKgnGOwkVtQW7PqGcHwdERER9QyDncROVVuDXWywWuJKiIiIyNMx2EmssKoeABDLFjsiIiLqIQY7idla7OJC2WJHREREPcNgJ7FTNWyxIyIiot7BYCehllYLimusixPHhrDFjoiIiHqGwU5CpcZGtFoE/BVyRGpVUpdDREREHo7BTkK28XV9QwIhl3MNOyIiIuoZBjsJcUYsERER9SYGOwnZ17Dj+DoiIiLqBQx2EiqsZosdERER9R4GOwmdqLQGu35cw46IiIh6AYOdhPIr6gAA8RFBEldCRERE3oDBTiKGejOq6poBAAPCGOyIiIio5xjsJJJfaW2ti9IFIEillLgaIiIi8gYMdhLJrzABAAaEc3wdERER9Q4GO4nkl1tb7AaGaySuhIiIiLwFg51EjtsmToRzfB0RERH1DgY7iRwrs3bFDmSwIyIiol7CYCcBc6sFeeXWYJccrZW4GiIiIvIWDHYSOF5eB3OrgFalRN9g7jpBREREvYPBTgLZJUYA1tY6mUwmcTVERETkLRjsJJBd2hbsonQSV0JERETehMFOAkdKagFwfB0RERH1LgY7FxNC4LCtKzaKwY6IiIh6D4Odi52qbkB5bROUchmGxuilLoeIiIi8CIOdi+07WQ0AGNpXjwA/hcTVEBERkTdhsHOxvSeswW5svxCJKyEiIiJvw2DnYjuPVQAAxg1gsCMiIqLexWDnQgUVdcgrr4NSLsPlieFSl0NERERehsHOhb7PPg0AGD8wFLoAP4mrISIiIm8jWbArLy/HzJkzoVarkZSUhM2bN7d7XENDA1JTU6HVatGvXz989NFHDq+vWbMGsbGx0Ol0uP3229Hc3OyK8rtMCIFP954CAMxI6SNxNUREROSNJAt2ixcvRkxMDCoqKvD8889j7ty5qK6uPu+4tLQ0VFVVoaioCGvXrsV9992HnJwcAEBmZiaWLFmCDRs2oLCwEAUFBVixYoWrb6VTvj18GkdKa6FSyvGb0bFSl0NEREReSCaEEK6+qMlkQlhYGAoKChAdHQ0AuOKKK3DXXXdh/vz5DsdGR0djw4YNuPTSSwEA8+fPR0JCAp544gksW7YMNTU1eOONNwAAW7ZswV133YXjx4+3e92mpiY0NTXZf280GhEXFweDwQCdzjnbe63ffwo/51Xiq8xSmJpacN/UQXj02mSnXIuIiIi8j9FohF6v71RekaTFLjc3F3q93h7qAGDkyJHIyspyOK66uhqlpaUYPnx4u8cdPnz4vNfy8/PR0NDQ7nVXrlwJvV5vf8TFxfXmbbVre24F1u05BVNTCy4ZEIIHr050+jWJiIjINymluKjJZDovcep0OtTU1Jx3nEKhgFqtdjjOZDK1ex7b1yaTCYGBgeddd9myZViyZIn997YWO2eakRKFuBA1EiI1uHZYFPwUnK9CREREziFJsNNoNDAajQ7PGY1GaDSa845rbW1FfX29Pdydfdy557F9fe55bFQqFVQqVa/dR2dcOywK1w6Lcuk1iYiIyDdJ0nyUmJgIg8GA0tJS+3MHDhzA0KFDHY4LCQlBVFQUMjMz2z0uJSXlvNcGDhzYbmsdERERkbeTJNhpNBrMnj0baWlpaGhowKZNm3Do0CHMmjXrvGNTU1Px9NNPo7a2Fr/88gs2bdqEW265BQBw6623Yt26ddi3bx8MBgOeeeYZpKamuvp2iIiIiNyCZAO+Vq1ahcLCQoSFheGRRx7BunXrEBISgvT0dIeWu+XLl9snWsydOxerVq1CUlISAGD48OF48cUXMWvWLMTGxiIuLg5///vfpbolIiIiIklJstyJu+jK9GEiIiIiKbj9cidERERE1PsY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0REROQlGOyIiIiIvIRS6gKkZNtNzWg0SlwJERERUftsOaUzu8D6dLCrra0FAMTFxUlcCREREVHHamtrodfrOzxGJjoT/7yUxWJBcXExtFotZDKZU65hNBoRFxeHwsLCi27cS67Bz8Q98XNxP/xM3A8/E/fjis9ECIHa2lrExMRALu94FJ1Pt9jJ5XLExsa65Fo6nY5/Cd0MPxP3xM/F/fAzcT/8TNyPsz+Ti7XU2XDyBBEREZGXYLAjIiIi8hIMdk6mUqmQlpYGlUoldSnUhp+Je+Ln4n74mbgffibux90+E5+ePEFERETkTdhiR0REROQlGOyIiIiIvASDHREREZGXYLAjIiIi8hIMdk5UXl6OmTNnQq1WIykpCZs3b5a6JJ/X1NSE22+/HbGxsdDr9Zg6dSoyMzOlLosA/Pzzz5DL5XjuueekLoXaPPfcc4iLi4NWq8WoUaNQU1MjdUk+bd++fZg4cSJ0Oh3i4+OxevVqqUvyOWlpaUhJSYFcLsfatWsdXnvuuecQERGB0NBQ/OUvf+nUvq7OwGDnRIsXL0ZMTAwqKirw/PPPY+7cuaiurpa6LJ/W0tKC+Ph4/PLLL6iqqsLs2bMxZ84cqcvyeRaLBQ8//DAuueQSqUuhNq+99hq+/vpr7NixA0ajER988AECAgKkLsunzZ8/HzNnzkRNTQ0+/fRT/OlPf0JOTo7UZfmUxMREvPLKKxg/frzD81999RXeeOMN7Nq1C1lZWfjyyy8lC95c7sRJTCYTwsLCUFBQgOjoaADAFVdcgbvuugvz58+XuDqyaW5uRkBAAMrLyxEWFiZ1OT7rX//6F7Kzs2EwGJCcnIy//vWvUpfk01pbWxEbG4tt27YhMTFR6nKojVarxcGDBzFw4EAAwPjx4/H4449j1qxZElfme6ZOnYp7770Xv//97wEAf/jDHzBq1Cg8+uijAID//Oc/+OCDD7BlyxaX18YWOyfJzc2FXq+3hzoAGDlyJLKysiSsis71888/o0+fPgx1EqqqqsLLL7+MJ598UupSqM2pU6fQ0NCATz75BH369EFSUhL+9a9/SV2Wz7v//vvx/vvvo6WlBbt370ZhYSEuvfRSqcsiAIcPH8bw4cPtv5fy571Skqv6AJPJdN5mwDqdjmNU3IjBYMA999yDZ555RupSfNrf/vY3PPTQQwgJCZG6FGpTVFQEg8GAvLw8FBQU4Pjx45g2bRqSkpJw5ZVXSl2ez7r22msxf/58LF++HADw5ptvIjIyUuKqCDj/Z75Op4PJZJKkFrbYOYlGo4HRaHR4zmg0QqPRSFQRna2xsRFz5szBzJkzcccdd0hdjs/av38/du/ejUWLFkldCp0lMDAQgHWgeGBgIIYOHYrbbrsNX331lcSV+a7KykrMmjULL7/8MpqampCRkYEnnngCu3btkro0wvk/86X8ec9g5ySJiYkwGAwoLS21P3fgwAEMHTpUwqoIsE6g+P3vf4+YmBj8v//3/6Qux6f9+OOPyMnJQd++fREVFYWPP/4YzzzzDIOexAYPHgx/f3+H5zgcW1rHjx+HXq/Hb37zGygUCgwbNgxTp07Ftm3bpC6NAKSkpDissCDlz3sGOyfRaDSYPXs20tLS0NDQgE2bNuHQoUMc5OoGFi1ahIaGBqxZswYymUzqcnza3XffjWPHjiEjIwMZGRmYPXs2HnzwQfzjH/+QujSfFhQUhN/+9rdYsWIFmpqacPToUaSnp+P666+XujSfNXjwYNTW1uKLL76AEAJHjhzBli1bHMZ1kfOZzWY0NjbCYrE4fJ2amoo33ngD+fn5KC0txUsvvYTU1FRpihTkNGVlZeK6664TgYGBIjExUXz33XdSl+TzCgoKBAAREBAggoKC7I9t27ZJXRoJIRYsWCBWrlwpdRkkhKiurhY33XST0Gg0on///mLVqlVSl+TzvvnmGzFy5Eih0WhEXFyceOaZZ6QuyecsWLBAAHB4/PDDD0IIIZ599lkRFhYmgoODxdKlS4XFYpGkRi53QkREROQl2BVLRERE5CUY7IiIiIi8BIMdERERkZdgsCMiIiLyEgx2RERERF6CwY6IiIjISzDYEREREXkJBjsiIiIiL8FgR0R0jpMnTyI8PNyp1ygoKIBMJoNGo8GGDRs6PPazzz6DRqOBTCZz2H+aiOhc3HmCiHySRqOxf11XVwe1Wm3fO/jw4cPo16+fU69fUFCA5ORkNDY2dvo9MpkMJSUliIqKcmJlROTJlFIXQEQkBZPJZP86ICAAWVlZGDBggHQFERH1AnbFEhGdo6CgAAEBAfbfy2QyvPHGG+jXrx/Cw8Px8ccf48svv0R8fDwiIyPx8ccf24+tqqrCrbfeisjISMTHx+Pdd9/t9HV/+eUXjB49GlqtFlFRUXjppZd69b6IyPuxxY6IqBN27tyJnJwcfPHFF7j33nsxe/ZsHDp0CJs3b8Ydd9yB3/72t1AoFLjtttswbNgwFBYWIj8/H1dddRVGjRqFkSNHXvQaDz30EJYuXYpbb70V1dXVKCgocP6NEZFXYYsdEVEn/OUvf0FAQABuuukm1NTU4I9//CPUajVmzZqF2tpaFBcXo7S0FNu3b8ezzz4LlUqF5ORk3Hrrrfj88887dQ0/Pz8cPXoUVVVVCAkJwejRo518V0TkbRjsiIg6ITIyEgCgUCjg5+eHiIgI+2sBAQGoq6vDyZMnUVdXh7CwMAQHByM4OBj//ve/cfr06U5d4+2330Z2djYSEhIwceJE/Pzzz065FyLyXuyKJSLqJX379kVwcDAqKyu79f6kpCSsW7cOLS0t+Ne//oXU1FTk5eX1cpVE5M3YYkdE1Ev69u2LSy65BE888QTq6+vR0tKCffv24fDhw516f3p6OiorK6FUKqHVaqFQKJxcMRF5GwY7IqJelJ6ejhMnTthnzD700ENoaGjo1Hu/+uorJCUlQavV4tVXX8Xq1audXC0ReRsuUExEJIETJ04gOTkZKpUK7733HmbPnn3BYz///HPccccdaGxsxIkTJ9CnTx8XVkpEnoTBjoiIiMhLsCuWiIiIyEsw2BERERF5CQY7IiIiIi/BYEdERETkJRjsiIiIiLwEgx0RERGRl2CwIyIiIvISDHZEREREXoLBjoiIiMhLMNgREREReYn/D4UZ8cvFy2MtAAAAAElFTkSuQmCC", "text/plain": [ "
" ] From 95326b0f0bea204f91901a6fd9db2d2a8e9917cd Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 3 Jun 2024 22:58:25 -0700 Subject: [PATCH 058/199] initial pass at defining lists of systems for time responses --- control/nlsys.py | 15 ++++++++-- control/tests/timeplot_test.py | 8 +++++ control/timeresp.py | 53 +++++++++++++++++++++++++++------- 3 files changed, 63 insertions(+), 13 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 358c4b125..80b8aa73c 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1317,7 +1317,7 @@ def nlsys( def input_output_response( - sys, T, U=0., X0=0, params=None, ignore_errors=False, + sysdata, T, U=0., X0=0, params=None, ignore_errors=False, transpose=False, return_x=False, squeeze=None, solve_ivp_kwargs=None, t_eval='T', **kwargs): """Compute the output response of a system to a given input. @@ -1327,8 +1327,8 @@ def input_output_response( Parameters ---------- - sys : InputOutputSystem - Input/output system to simulate. + sysdata : I/O system or list of I/O systems + I/O system(s) for which input/output response is simulated. T : array-like Time steps at which the input is defined; values must be evenly spaced. @@ -1448,6 +1448,15 @@ def input_output_response( if kwargs: raise TypeError("unrecognized keyword(s): ", str(kwargs)) + # Convert the first argument to a list + syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] + + # TODO: implement step responses for multiple systems + if len(syslist) > 1: + raise NotImplementedError( + "step responses for multiple systems not yet implemented") + sys = syslist[0] + # Sanity checking on the input if not isinstance(sys, NonlinearIOSystem): raise TypeError("System of type ", type(sys), " not valid") diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 7cdde5c54..ff89d5fbe 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -313,6 +313,14 @@ def test_combine_time_responses(): combresp6 = ct.combine_time_responses([resp1, resp]) +def test_list_responses(): + sys1 = ct.rss(2, 2, 2) + sys2 = ct.rss(2, 2, 2) + + resp = ct.step_response([sys1, sys2]).plot() + assert resp.ntraces == 2 + + @slycotonly def test_linestyles(): # Check to make sure we can change line styles diff --git a/control/timeresp.py b/control/timeresp.py index 81b2030b3..137b94483 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -1280,8 +1280,9 @@ def _process_time_response( return tout, yout -def step_response(sys, T=None, X0=0, input=None, output=None, T_num=None, - transpose=False, return_x=False, squeeze=None, params=None): +def step_response( + sysdata, T=None, X0=0, input=None, output=None, T_num=None, + transpose=False, return_x=False, squeeze=None, params=None): # pylint: disable=W0622 """Compute the step response for a linear system. @@ -1296,8 +1297,8 @@ def step_response(sys, T=None, X0=0, input=None, output=None, T_num=None, Parameters ---------- - sys : StateSpace or TransferFunction - LTI system to simulate + sysdata : I/O system or list of I/O systems + I/O system(s) for which step response is computed. T : array_like or float, optional Time vector, or simulation time duration if a number. If T is not @@ -1391,6 +1392,15 @@ def step_response(sys, T=None, X0=0, input=None, output=None, T_num=None, from .statesp import _convert_to_statespace from .xferfcn import TransferFunction + # Convert the first argument to a list + syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] + + # TODO: implement step responses for multiple systems + if len(syslist) > 1: + raise NotImplementedError( + "step responses for multiple systems not yet implemented") + sys = syslist[0] + # Create the time and input vectors if T is None or np.asarray(T).size == 1: T = _default_time_vector(sys, N=T_num, tfinal=T, is_step=True) @@ -1681,8 +1691,9 @@ def step_info(sysdata, T=None, T_num=None, yfinal=None, params=None, return ret[0][0] if retsiso else ret -def initial_response(sys, T=None, X0=0, output=None, T_num=None, params=None, - transpose=False, return_x=False, squeeze=None): +def initial_response( + sysdata, T=None, X0=0, output=None, T_num=None, params=None, + transpose=False, return_x=False, squeeze=None): # pylint: disable=W0622 """Compute the initial condition response for a linear system. @@ -1695,6 +1706,9 @@ def initial_response(sys, T=None, X0=0, output=None, T_num=None, params=None, Parameters ---------- + sysdata : I/O system or list of I/O systems + I/O system(s) for which initial response is computed. + sys : StateSpace or TransferFunction LTI system to simulate @@ -1773,6 +1787,15 @@ def initial_response(sys, T=None, X0=0, output=None, T_num=None, params=None, """ from .lti import LTI + # Convert the first argument to a list + syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] + + # TODO: implement step responses for multiple systems + if len(syslist) > 1: + raise NotImplementedError( + "step responses for multiple systems not yet implemented") + sys = syslist[0] + # Create the time and input vectors if T is None or np.asarray(T).size == 1: T = _default_time_vector(sys, N=T_num, tfinal=T, is_step=False) @@ -1800,8 +1823,9 @@ def initial_response(sys, T=None, X0=0, output=None, T_num=None, params=None, transpose=transpose, return_x=return_x, squeeze=squeeze) -def impulse_response(sys, T=None, input=None, output=None, T_num=None, - transpose=False, return_x=False, squeeze=None): +def impulse_response( + sysdata, T=None, input=None, output=None, T_num=None, + transpose=False, return_x=False, squeeze=None): # pylint: disable=W0622 """Compute the impulse response for a linear system. @@ -1816,8 +1840,8 @@ def impulse_response(sys, T=None, input=None, output=None, T_num=None, Parameters ---------- - sys : StateSpace, TransferFunction - LTI system to simulate + sysdata : I/O system or list of I/O systems + I/O system(s) for which impluse response is computed. T : array_like or float, optional Time vector, or simulation time duration if a scalar (time vector is @@ -1896,6 +1920,15 @@ def impulse_response(sys, T=None, input=None, output=None, T_num=None, from .lti import LTI from .statesp import _convert_to_statespace + # Convert the first argument to a list + syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] + + # TODO: implement step responses for multiple systems + if len(syslist) > 1: + raise NotImplementedError( + "step responses for multiple systems not yet implemented") + sys = syslist[0] + # Make sure we have an LTI system if not isinstance(sys, LTI): raise ValueError("system must be LTI system for impulse response") From 373221787c9a27275069952b6f2c25367aae975a Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 16 Jun 2024 09:40:54 -0700 Subject: [PATCH 059/199] use _process_ax_keyword in time_response_plot --- control/tests/timeplot_test.py | 2 ++ control/timeplot.py | 37 ++++++---------------------------- 2 files changed, 8 insertions(+), 31 deletions(-) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index ff89d5fbe..5957dcd35 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -313,6 +313,8 @@ def test_combine_time_responses(): combresp6 = ct.combine_time_responses([resp1, resp]) +@pytest.mark.xfail( + reason="step responses for multiple systems not yet implemented") def test_list_responses(): sys1 = ct.rss(2, 2, 2) sys2 = ct.rss(2, 2, 2) diff --git a/control/timeplot.py b/control/timeplot.py index 29691ec6a..24783d886 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -150,6 +150,7 @@ def time_response_plot( config.defaults[''timeplot.rcParams']. """ + from .freqplot import _process_ax_keyword from .iosys import InputOutputSystem from .timeresp import TimeResponseData @@ -160,7 +161,7 @@ def time_response_plot( # Set up defaults time_label = config._get_param( 'timeplot', 'time_label', kwargs, _timeplot_defaults, pop=True) - timeplot_rcParams = config._get_param( + rcParams = config._get_param( 'timeplot', 'rcParams', kwargs, _timeplot_defaults, pop=True) if kwargs.get('input_props', None) and len(fmt) > 0: @@ -275,33 +276,7 @@ def time_response_plot( nrows, ncols = ncols, nrows # See if we can use the current figure axes - fig = plt.gcf() # get current figure (or create new one) - if ax is None and plt.get_fignums(): - ax = fig.get_axes() - if len(ax) == nrows * ncols: - # Assume that the shape is right (no easy way to infer this) - ax = np.array(ax).reshape(nrows, ncols) - elif len(ax) != 0: - # Need to generate a new figure - fig, ax = plt.figure(), None - else: - # Blank figure, just need to recreate axes - ax = None - - # Create new axes, if needed, and customize them - if ax is None: - with plt.rc_context(timeplot_rcParams): - ax_array = fig.subplots(nrows, ncols, sharex=True, squeeze=False) - fig.set_layout_engine('tight') - fig.align_labels() - - else: - # Make sure the axes are the right shape - if ax.shape != (nrows, ncols): - raise ValueError( - "specified axes are not the right shape; " - f"got {ax.shape} but expecting ({nrows}, {ncols})") - ax_array = ax + fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), rcParams=rcParams) # # Map inputs/outputs and traces to axes @@ -506,7 +481,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): else: label = f"Trace {trace}" - with plt.rc_context(timeplot_rcParams): + with plt.rc_context(rcParams): ax_array[0, trace].set_title(label) # Label the outputs @@ -608,7 +583,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Update the labels to remove common strings if len(labels) > 1 and legend_map[i, j] != None: - with plt.rc_context(timeplot_rcParams): + with plt.rc_context(rcParams): ax.legend(labels, loc=legend_map[i, j]) @@ -643,7 +618,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): new_title = old_title + separator + new_title[common_len:] # Add the title - with plt.rc_context(timeplot_rcParams): + with plt.rc_context(rcParams): fig.suptitle(new_title) return out From 44123c9d969c1d6738986dd3ed29e909cbb6f3f5 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 16 Jun 2024 10:04:06 -0700 Subject: [PATCH 060/199] refactoring to put common functions in ctrlplot.py --- control/ctrlplot.py | 92 ++++++++++++++++++++++++++++++++- control/freqplot.py | 27 ++-------- control/tests/timeplot_test.py | 4 +- control/timeplot.py | 93 +++------------------------------- 4 files changed, 102 insertions(+), 114 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 51f1342b2..56f22efbf 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -3,12 +3,14 @@ # # Collection of functions that are used by various plotting functions. +from os.path import commonprefix + import matplotlib.pyplot as plt import numpy as np from . import config -__all__ = ['suptitle'] +__all__ = ['suptitle', 'get_plot_axes'] def suptitle( @@ -56,6 +58,94 @@ def suptitle( raise ValueError(f"unknown frame '{frame}'") +# Create vectorized function to find axes from lines +def get_plot_axes(line_array): + """Get a list of axes from an array of lines. + + This function can be used to return the set of axes corresponding to + the line array that is returned by `time_response_plot`. This is useful for + generating an axes array that can be passed to subsequent plotting + calls. + + Parameters + ---------- + line_array : array of list of Line2D + A 2D array with elements corresponding to a list of lines appearing + in an axes, matching the return type of a time response data plot. + + Returns + ------- + axes_array : array of list of Axes + A 2D array with elements corresponding to the Axes assocated with + the lines in `line_array`. + + Notes + ----- + Only the first element of each array entry is used to determine the axes. + + """ + _get_axes = np.vectorize(lambda lines: lines[0].axes) + return _get_axes(line_array) + +# +# Utility functions +# + + +# Utility function to make legend labels +def _make_legend_labels(labels, ignore_common=False): + + # Look for a common prefix (up to a space) + common_prefix = commonprefix(labels) + last_space = common_prefix.rfind(', ') + if last_space < 0 or ignore_common: + common_prefix = '' + elif last_space > 0: + common_prefix = common_prefix[:last_space] + prefix_len = len(common_prefix) + + # Look for a common suffice (up to a space) + common_suffix = commonprefix( + [label[::-1] for label in labels])[::-1] + suffix_len = len(common_suffix) + # Only chop things off after a comma or space + while suffix_len > 0 and common_suffix[-suffix_len] != ',': + suffix_len -= 1 + + # Strip the labels of common information + if suffix_len > 0 and not ignore_common: + labels = [label[prefix_len:-suffix_len] for label in labels] + else: + labels = [label[prefix_len:] for label in labels] + + return labels + + +def _update_suptitle(fig, title, rcParams=None, frame='axes'): + if fig is not None and isinstance(title, str): + # Get the current title, if it exists + old_title = None if fig._suptitle is None else fig._suptitle._text + new_title = title + + if old_title is not None: + # Find the common part of the titles + common_prefix = commonprefix([old_title, new_title]) + + # Back up to the last space + last_space = common_prefix.rfind(' ') + if last_space > 0: + common_prefix = common_prefix[:last_space] + common_len = len(common_prefix) + + # Add the new part of the title (usually the system name) + if old_title[common_len:] != new_title[common_len:]: + separator = ',' if len(common_prefix) > 0 else ';' + new_title = old_title + separator + new_title[common_len:] + + # Add the title + suptitle(title, fig=fig, rcParams=rcParams, frame=frame) + + def _find_axes_center(fig, axs): """Find the midpoint between axes in display coordinates. diff --git a/control/freqplot.py b/control/freqplot.py index a63ef20d3..1f4b8e448 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -19,14 +19,14 @@ from . import config from .bdalg import feedback -from .ctrlplot import suptitle, _find_axes_center +from .ctrlplot import suptitle, _find_axes_center, _make_legend_labels, \ + _update_suptitle from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData from .lti import LTI, _process_frequency_response, frequency_response from .margins import stability_margins from .statesp import StateSpace -from .timeplot import _make_legend_labels from .xferfcn import TransferFunction __all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response', @@ -954,28 +954,7 @@ def gen_zero_centered_series(val_min, val_max, period): else: title = data[0].title - if fig is not None and isinstance(title, str): - # Get the current title, if it exists - old_title = None if fig._suptitle is None else fig._suptitle._text - new_title = title - - if old_title is not None: - # Find the common part of the titles - common_prefix = commonprefix([old_title, new_title]) - - # Back up to the last space - last_space = common_prefix.rfind(' ') - if last_space > 0: - common_prefix = common_prefix[:last_space] - common_len = len(common_prefix) - - # Add the new part of the title (usually the system name) - if old_title[common_len:] != new_title[common_len:]: - separator = ',' if len(common_prefix) > 0 else ';' - new_title = old_title + separator + new_title[common_len:] - - # Add the title - suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) + _update_suptitle(fig, title, rcParams=rcParams, frame=suptitle_frame) # # Create legends diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 5957dcd35..127fcea87 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -191,7 +191,7 @@ def test_response_plots( def test_axes_setup(): - get_plot_axes = ct.timeplot.get_plot_axes + get_plot_axes = ct.get_plot_axes sys_2x3 = ct.rss(4, 2, 3) sys_2x3b = ct.rss(4, 2, 3) @@ -377,7 +377,7 @@ def test_rcParams(): assert ax.title.get_fontsize() == 10 assert ax.xaxis._get_tick_label_size('x') == 10 assert ax.yaxis._get_tick_label_size('y') == 10 - assert fig._suptitle.get_fontsize() == 12 + assert fig._suptitle.get_fontsize() == 10 def test_relabel(): sys1 = ct.rss(2, inputs='u', outputs='y') diff --git a/control/timeplot.py b/control/timeplot.py index 24783d886..3133410fe 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -8,15 +8,16 @@ # Note: It might eventually make sense to put the functions here # directly into timeresp.py. -import numpy as np +from warnings import warn + import matplotlib as mpl import matplotlib.pyplot as plt -from os.path import commonprefix -from warnings import warn +import numpy as np from . import config +from .ctrlplot import _make_legend_labels, _update_suptitle -__all__ = ['time_response_plot', 'combine_time_responses', 'get_plot_axes'] +__all__ = ['time_response_plot', 'combine_time_responses'] # Default font dictionary _timeplot_rcParams = mpl.rcParams.copy() @@ -157,7 +158,6 @@ def time_response_plot( # # Process keywords and set defaults # - # Set up defaults time_label = config._get_param( 'timeplot', 'time_label', kwargs, _timeplot_defaults, pop=True) @@ -597,29 +597,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): # list of systems (e.g., "Step response for sys[1], sys[2]"). # - if fig is not None and title is not None: - # Get the current title, if it exists - old_title = None if fig._suptitle is None else fig._suptitle._text - new_title = title - - if old_title is not None: - # Find the common part of the titles - common_prefix = commonprefix([old_title, new_title]) - - # Back up to the last space - last_space = common_prefix.rfind(' ') - if last_space > 0: - common_prefix = common_prefix[:last_space] - common_len = len(common_prefix) - - # Add the new part of the title (usually the system name) - if old_title[common_len:] != new_title[common_len:]: - separator = ',' if len(common_prefix) > 0 else ';' - new_title = old_title + separator + new_title[common_len:] - - # Add the title - with plt.rc_context(rcParams): - fig.suptitle(new_title) + _update_suptitle(fig, title, rcParams=rcParams) return out @@ -730,62 +708,3 @@ def combine_time_responses(response_list, trace_labels=None, title=None): return_x=base.return_x, squeeze=base.squeeze, sysname=base.sysname, trace_labels=trace_labels, trace_types=trace_types, plot_inputs=base.plot_inputs) - - -# Create vectorized function to find axes from lines -def get_plot_axes(line_array): - """Get a list of axes from an array of lines. - - This function can be used to return the set of axes corresponding to - the line array that is returned by `time_response_plot`. This is useful for - generating an axes array that can be passed to subsequent plotting - calls. - - Parameters - ---------- - line_array : array of list of Line2D - A 2D array with elements corresponding to a list of lines appearing - in an axes, matching the return type of a time response data plot. - - Returns - ------- - axes_array : array of list of Axes - A 2D array with elements corresponding to the Axes assocated with - the lines in `line_array`. - - Notes - ----- - Only the first element of each array entry is used to determine the axes. - - """ - _get_axes = np.vectorize(lambda lines: lines[0].axes) - return _get_axes(line_array) - - -# Utility function to make legend labels -def _make_legend_labels(labels, ignore_common=False): - - # Look for a common prefix (up to a space) - common_prefix = commonprefix(labels) - last_space = common_prefix.rfind(', ') - if last_space < 0 or ignore_common: - common_prefix = '' - elif last_space > 0: - common_prefix = common_prefix[:last_space] - prefix_len = len(common_prefix) - - # Look for a common suffice (up to a space) - common_suffix = commonprefix( - [label[::-1] for label in labels])[::-1] - suffix_len = len(common_suffix) - # Only chop things off after a comma or space - while suffix_len > 0 and common_suffix[-suffix_len] != ',': - suffix_len -= 1 - - # Strip the labels of common information - if suffix_len > 0 and not ignore_common: - labels = [label[prefix_len:-suffix_len] for label in labels] - else: - labels = [label[prefix_len:] for label in labels] - - return labels From 8b416eb82c6bca1278351677c3740838dad2bcf3 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 17 Jun 2024 22:41:34 -0700 Subject: [PATCH 061/199] Add list of systems functionality to time response functions --- control/ctrlplot.py | 7 +- control/frdata.py | 8 ++ control/nlsys.py | 23 ++-- control/tests/kwargs_test.py | 1 + control/tests/timeplot_test.py | 83 +++++++++++- control/timeplot.py | 23 +++- control/timeresp.py | 237 ++++++++++++++++++--------------- doc/conventions.rst | 11 ++ doc/plotting.rst | 2 + 9 files changed, 268 insertions(+), 127 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 56f22efbf..bac6a5562 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -125,11 +125,10 @@ def _update_suptitle(fig, title, rcParams=None, frame='axes'): if fig is not None and isinstance(title, str): # Get the current title, if it exists old_title = None if fig._suptitle is None else fig._suptitle._text - new_title = title if old_title is not None: # Find the common part of the titles - common_prefix = commonprefix([old_title, new_title]) + common_prefix = commonprefix([old_title, title]) # Back up to the last space last_space = common_prefix.rfind(' ') @@ -138,9 +137,9 @@ def _update_suptitle(fig, title, rcParams=None, frame='axes'): common_len = len(common_prefix) # Add the new part of the title (usually the system name) - if old_title[common_len:] != new_title[common_len:]: + if old_title[common_len:] != title[common_len:]: separator = ',' if len(common_prefix) > 0 else ';' - new_title = old_title + separator + new_title[common_len:] + title = old_title + separator + title[common_len:] # Add the title suptitle(title, fig=fig, rcParams=rcParams, frame=frame) diff --git a/control/frdata.py b/control/frdata.py index b703a97a0..1b35c6b20 100644 --- a/control/frdata.py +++ b/control/frdata.py @@ -653,6 +653,14 @@ def plot(self, plot_type=None, *args, **kwargs): # Convert to pandas def to_pandas(self): + """Convert response data to pandas data frame. + + Creates a pandas data frame for the value of the frequency + response at each `omega`. The frequency response values are + labeled in the form "H_{, }" where "" and "" + are replaced with the output and input labels for the system. + + """ if not pandas_check(): ImportError('pandas not installed') import pandas diff --git a/control/nlsys.py b/control/nlsys.py index 80b8aa73c..976dfdc84 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -27,8 +27,8 @@ from . import config from .iosys import InputOutputSystem, _parse_spec, _process_iosys_keywords, \ _process_signal_list, common_timebase, isctime, isdtime -from .timeresp import TimeResponseData, _check_convert_array, \ - _process_time_response +from .timeresp import _check_convert_array, _process_time_response, \ + TimeResponseData, TimeResponseList __all__ = ['NonlinearIOSystem', 'InterconnectedSystem', 'nlsys', 'input_output_response', 'find_eqpt', 'linearize', @@ -1448,14 +1448,17 @@ def input_output_response( if kwargs: raise TypeError("unrecognized keyword(s): ", str(kwargs)) - # Convert the first argument to a list - syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] - - # TODO: implement step responses for multiple systems - if len(syslist) > 1: - raise NotImplementedError( - "step responses for multiple systems not yet implemented") - sys = syslist[0] + # If passed a list, recursively call individual responses with given T + if isinstance(sysdata, (list, tuple)): + responses = [] + for sys in sysdata: + responses.append(input_output_response( + sys, T, U=U, X0=X0, params=params, transpose=transpose, + return_x=return_x, squeeze=squeeze, t_eval=t_eval, + solve_ivp_kwargs=solve_ivp_kwargs, **kwargs)) + return TimeResponseList(responses) + else: + sys = sysdata # Sanity checking on the input if not isinstance(sys, NonlinearIOSystem): diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index d6bd06487..0e0abc0d0 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -308,6 +308,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'StateSpace.sample': test_unrecognized_kwargs, 'TimeResponseData.__call__': trdata_test.test_response_copy, 'TimeResponseData.plot': timeplot_test.test_errors, + 'TimeResponseList.plot': timeplot_test.test_errors, 'TransferFunction.__init__': test_unrecognized_kwargs, 'TransferFunction.sample': test_unrecognized_kwargs, 'optimal.OptimalControlProblem.__init__': diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 127fcea87..5ff8536d3 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -313,14 +313,52 @@ def test_combine_time_responses(): combresp6 = ct.combine_time_responses([resp1, resp]) -@pytest.mark.xfail( - reason="step responses for multiple systems not yet implemented") -def test_list_responses(): - sys1 = ct.rss(2, 2, 2) - sys2 = ct.rss(2, 2, 2) +@pytest.mark.parametrize("resp_fcn", [ + ct.step_response, ct.initial_response, ct.impulse_response, + ct.forced_response, ct.input_output_response]) +def test_list_responses(resp_fcn): + sys1 = ct.rss(2, 2, 2, strictly_proper=True) + sys2 = ct.rss(2, 2, 2, strictly_proper=True) + + # Figure out the expected shape of the system + match resp_fcn: + case ct.step_response | ct.impulse_response: + shape = (2, 2) + kwargs = {} + case ct.initial_response: + shape = (2, 1) + kwargs = {} + case ct.forced_response | ct.input_output_response: + shape = (4, 1) # outputs and inputs both plotted + T = np.linspace(0, 10) + U = [np.sin(T), np.cos(T)] + kwargs = {'T': T, 'U': U} + + resp1 = resp_fcn(sys1, **kwargs) + resp2 = resp_fcn(sys2, **kwargs) + + # Sequential plotting results in colors rotating + plt.figure() + out1 = resp1.plot() + out2 = resp2.plot() + assert out1.shape == shape + assert out2.shape == shape + for row in range(2): # just look at the outputs + for col in range(shape[1]): + assert out1[row, col][0].get_color() == 'tab:blue' + assert out2[row, col][0].get_color() == 'tab:orange' - resp = ct.step_response([sys1, sys2]).plot() - assert resp.ntraces == 2 + plt.figure() + resp_combined = resp_fcn([sys1, sys2], **kwargs) + assert isinstance(resp_combined, ct.timeresp.TimeResponseList) + assert resp_combined[0].time[-1] == max(resp1.time[-1], resp2.time[-1]) + assert resp_combined[1].time[-1] == max(resp1.time[-1], resp2.time[-1]) + out = resp_combined.plot() + assert out.shape == shape + for row in range(2): # just look at the outputs + for col in range(shape[1]): + assert out[row, col][0].get_color() == 'tab:blue' + assert out[row, col][1].get_color() == 'tab:orange' @slycotonly @@ -421,6 +459,12 @@ def test_errors(): out = stepresp.plot('k-', **propkw) assert out[0, 0][0].get_color() == 'k' + # Make sure TimeResponseLists also work + stepresp = ct.step_response([sys, sys]) + with pytest.raises(AttributeError, + match="(has no property|unexpected keyword)"): + stepresp.plot(unknown=None) + if __name__ == "__main__": # # Interactive mode: generate plots for manual viewing @@ -519,3 +563,28 @@ def test_errors(): input_props=[{'color': c} for c in ['red', 'green']], trace_props=[{'linestyle': s} for s in ['-', '--']]) plt.savefig('timeplot-mimo_step-linestyle.png') + + sys1 = ct.rss(4, 2, 2) + sys2 = ct.rss(4, 2, 2) + resp_list = ct.step_response([sys1, sys2]) + + fig = plt.figure() + ct.combine_time_responses( + [ct.step_response(sys1, resp_list[0].time), + ct.step_response(sys2, resp_list[1].time)] + ).plot(overlay_traces=True) + ct.suptitle("[Combine] " + fig._suptitle._text) + + fig = plt.figure() + ct.step_response(sys1).plot() + ct.step_response(sys2).plot() + ct.suptitle("[Sequential] " + fig._suptitle._text) + + fig = plt.figure() + ct.step_response(sys1).plot(color='b') + ct.step_response(sys2).plot(color='r') + ct.suptitle("[Seq w/color] " + fig._suptitle._text) + + fig = plt.figure() + ct.step_response([sys1, sys2]).plot() + ct.suptitle("[List] " + fig._suptitle._text) diff --git a/control/timeplot.py b/control/timeplot.py index 3133410fe..3ca9b54b8 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -44,6 +44,7 @@ 'timeplot.time_label': "Time [s]", } + # Plot the input/output response of a system def time_response_plot( data, *fmt, ax=None, plot_inputs=None, plot_outputs=True, @@ -364,6 +365,16 @@ def _make_line_label(signal_index, signal_labels, trace_index): return label + # + # Store the color offsets with the figure to allow color/style cycling + # + # To allow repeated calls to time_response_plot() to cycle through + # colors, we store an offset in the figure object that we can + # retrieve at a later date, if needed. + # + output_offset = fig._output_offset = getattr(fig, '_output_offset', 0) + input_offset = fig._input_offset = getattr(fig, '_input_offset', 0) + # Go through each trace and each input/output for trace in range(ntraces): # Plot the output @@ -373,7 +384,8 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Set up line properties for this output, trace if len(fmt) == 0: line_props = output_props[ - i % oprop_len if overlay_signals else 0].copy() + (i + output_offset) % oprop_len if overlay_signals + else output_offset].copy() line_props.update( trace_props[trace % tprop_len if overlay_traces else 0]) line_props.update(kwargs) @@ -397,7 +409,8 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Set up line properties for this output, trace if len(fmt) == 0: line_props = input_props[ - i % iprop_len if overlay_signals else 0].copy() + (i + input_offset) % iprop_len if overlay_signals + else input_offset].copy() line_props.update( trace_props[trace % tprop_len if overlay_traces else 0]) line_props.update(kwargs) @@ -407,6 +420,12 @@ def _make_line_label(signal_index, signal_labels, trace_index): out[input_map[i, trace]] += ax_array[input_map[i, trace]].plot( x, y, *fmt, label=label, **line_props) + # Update the offsets so that we start at a new color/style the next time + fig._output_offset = ( + output_offset + (noutputs if overlay_signals else 1)) % oprop_len + fig._input_offset = ( + input_offset + (ninputs if overlay_signals else 1)) % iprop_len + # Stop here if the user wants to control everything if not relabel: return out diff --git a/control/timeresp.py b/control/timeresp.py index 137b94483..8f10d8fd3 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -79,12 +79,14 @@ from scipy.linalg import eig, eigvals, matrix_balance, norm from . import config +from .ctrlplot import _update_suptitle from .exception import pandas_check from .iosys import isctime, isdtime from .timeplot import time_response_plot __all__ = ['forced_response', 'step_response', 'step_info', - 'initial_response', 'impulse_response', 'TimeResponseData'] + 'initial_response', 'impulse_response', 'TimeResponseData', + 'TimeResponseList'] class TimeResponseData: @@ -694,6 +696,12 @@ def __len__(self): # Convert to pandas def to_pandas(self): + """Convert response data to pandas data frame. + + Creates a pandas data frame using the input, output, and state + labels for the time response. + + """ if not pandas_check(): raise ImportError("pandas not installed") import pandas @@ -714,8 +722,41 @@ def to_pandas(self): # Plot data def plot(self, *args, **kwargs): + """Plot the time response data objects. + + This method calls :func:`time_response_plot`, passing all arguments + and keywords. + + """ return time_response_plot(self, *args, **kwargs) +# +# Time response data list class +# +# This class is a subclass of list that adds a plot() method, enabling +# direct plotting from routines returning a list of TimeResponseData +# objects. +# + +class TimeResponseList(list): + """This class consist of a list of :class:`TimeResponseData` objects. + It is a subclass of the Python `list` class, with a `plot` method that + plots the individual :class:`TimeResponseData` objects. + + """ + def plot(self, *args, **kwargs): + out_full = None + for response in self: + out = TimeResponseData.plot(response, *args, **kwargs) + if out_full is None: + out_full = out + else: + # Append the lines in the new plot to previous lines + for row in range(out.shape[0]): + for col in range(out.shape[1]): + out_full[row, col] += out[row, col] + return out_full + # Process signal labels def _process_labels(labels, signal, length): @@ -878,7 +919,7 @@ def shape_matches(s_legal, s_actual): # Forced response of a linear system -def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, +def forced_response(sysdata, T=None, U=0., X0=0., transpose=False, params=None, interpolate=False, return_x=None, squeeze=None): """Compute the output of a linear system given the input. @@ -891,8 +932,8 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, Parameters ---------- - sys : StateSpace or TransferFunction - LTI system to simulate + sysdata : I/O system or list of I/O systems + I/O system(s) for which forced response is computed. T : array_like, optional for discrete LTI `sys` Time steps at which the input is defined; values must be evenly spaced. @@ -947,9 +988,10 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, Returns ------- - results : TimeResponseData - Time response represented as a :class:`TimeResponseData` object - containing the following properties: + results : :class:`TimeResponseData` or :class:`TimeResponseList` + Time response represented as a :class:`TimeResponseData` object or + list of :class:`TimeResponseData` objects containing the following + properties: * time (array): Time values of the output. @@ -963,9 +1005,8 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, * inputs (array): Input(s) to the system, indexed by input and time. - The return value of the system can also be accessed by assigning the - function to a tuple of length 2 (time, output) or of length 3 (time, - output, state) if ``return_x`` is ``True``. + The `plot()` method can be used to create a plot of the time + response(s) (see :func:`time_response_plot` for more information). See Also -------- @@ -986,6 +1027,10 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, that `forced_response` is specialized (and optimized) for linear systems. + 4. (legacy) The return value of the system can also be accessed by + assigning the function to a tuple of length 2 (time, output) or of + length 3 (time, output, state) if ``return_x`` is ``True``. + Examples -------- >>> G = ct.rss(4) @@ -1000,6 +1045,17 @@ def forced_response(sys, T=None, U=0., X0=0., transpose=False, params=None, from .statesp import StateSpace, _convert_to_statespace from .xferfcn import TransferFunction + # If passed a list, recursively call individual responses with given T + if isinstance(sysdata, (list, tuple)): + responses = [] + for sys in sysdata: + responses.append(forced_response( + sys, T, U=U, X0=X0, transpose=transpose, params=params, + interpolate=interpolate, return_x=return_x, squeeze=squeeze)) + return TimeResponseList(responses) + else: + sys = sysdata + if not isinstance(sys, (StateSpace, TransferFunction)): if isinstance(sys, NonlinearIOSystem): if interpolate: @@ -1351,27 +1407,10 @@ def step_response( Returns ------- - results : TimeResponseData - Time response represented as a :class:`TimeResponseData` object - containing the following properties: - - * time (array): Time values of the output. - - * outputs (array): Response of the system. If the system is SISO and - squeeze is not True, the array is 1D (indexed by time). If the - system is not SISO or ``squeeze`` is False, the array is 3D (indexed - by the output, trace, and time). - - * states (array): Time evolution of the state vector, represented as - either a 2D array indexed by state and time (if SISO) or a 3D array - indexed by state, trace, and time. Not affected by ``squeeze``. - - * inputs (array): Input(s) to the system, indexed in the same manner - as ``outputs``. - - The return value of the system can also be accessed by assigning the - function to a tuple of length 2 (time, output) or of length 3 (time, - output, state) if ``return_x`` is ``True``. + results : `TimeResponseData` or `TimeResponseList` + Time response represented as a :class:`TimeResponseData` object or + list of :class:`TimeResponseData` objects. See + :func:`forced_response` for additional information. See Also -------- @@ -1392,22 +1431,25 @@ def step_response( from .statesp import _convert_to_statespace from .xferfcn import TransferFunction - # Convert the first argument to a list - syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] - - # TODO: implement step responses for multiple systems - if len(syslist) > 1: - raise NotImplementedError( - "step responses for multiple systems not yet implemented") - sys = syslist[0] - # Create the time and input vectors if T is None or np.asarray(T).size == 1: - T = _default_time_vector(sys, N=T_num, tfinal=T, is_step=True) + T = _default_time_vector(sysdata, N=T_num, tfinal=T, is_step=True) T = np.atleast_1d(T).reshape(-1) if T.ndim != 1 and len(T) < 2: raise ValueError("invalid value of T for this type of system") + # If passed a list, recursively call individual responses with given T + if isinstance(sysdata, (list, tuple)): + responses = [] + for sys in sysdata: + responses.append(step_response( + sys, T, X0=X0, input=input, output=output, T_num=T_num, + transpose=transpose, return_x=return_x, squeeze=squeeze, + params=params)) + return TimeResponseList(responses) + else: + sys = sysdata + # If we are passed a transfer function and X0 is non-zero, warn the user if isinstance(sys, TransferFunction) and np.any(X0 != 0): warnings.warn( @@ -1751,24 +1793,10 @@ def initial_response( Returns ------- - results : TimeResponseData - Time response represented as a :class:`TimeResponseData` object - containing the following properties: - - * time (array): Time values of the output. - - * outputs (array): Response of the system. If the system is SISO and - squeeze is not True, the array is 1D (indexed by time). If the - system is not SISO or ``squeeze`` is False, the array is 2D (indexed - by the output and time). - - * states (array): Time evolution of the state vector, represented as - either a 2D array indexed by state and time (if SISO). Not affected - by ``squeeze``. - - The return value of the system can also be accessed by assigning the - function to a tuple of length 2 (time, output) or of length 3 (time, - output, state) if ``return_x`` is ``True``. + results : `TimeResponseData` or `TimeResponseList` + Time response represented as a :class:`TimeResponseData` object or + list of :class:`TimeResponseData` objects. See + :func:`forced_response` for additional information. See Also -------- @@ -1787,22 +1815,24 @@ def initial_response( """ from .lti import LTI - # Convert the first argument to a list - syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] - - # TODO: implement step responses for multiple systems - if len(syslist) > 1: - raise NotImplementedError( - "step responses for multiple systems not yet implemented") - sys = syslist[0] - # Create the time and input vectors if T is None or np.asarray(T).size == 1: - T = _default_time_vector(sys, N=T_num, tfinal=T, is_step=False) + T = _default_time_vector(sysdata, N=T_num, tfinal=T, is_step=False) T = np.atleast_1d(T).reshape(-1) if T.ndim != 1 and len(T) < 2: raise ValueError("invalid value of T for this type of system") + # If passed a list, recursively call individual responses with given T + if isinstance(sysdata, (list, tuple)): + responses = [] + for sys in sysdata: + responses.append(initial_response( + sys, T, X0=X0, output=output, T_num=T_num, transpose=transpose, + return_x=return_x, squeeze=squeeze, params=params)) + return TimeResponseList(responses) + else: + sys = sysdata + # Compute the forced response response = forced_response(sys, T, 0, X0, params=params) @@ -1880,24 +1910,10 @@ def impulse_response( Returns ------- - results : TimeResponseData - Impulse response represented as a :class:`TimeResponseData` object - containing the following properties: - - * time (array): Time values of the output. - - * outputs (array): Response of the system. If the system is SISO and - squeeze is not True, the array is 1D (indexed by time). If the - system is not SISO or ``squeeze`` is False, the array is 3D (indexed - by the output, trace, and time). - - * states (array): Time evolution of the state vector, represented as - either a 2D array indexed by state and time (if SISO) or a 3D array - indexed by state, trace, and time. Not affected by ``squeeze``. - - The return value of the system can also be accessed by assigning the - function to a tuple of length 2 (time, output) or of length 3 (time, - output, state) if ``return_x`` is ``True``. + results : `TimeResponseData` or `TimeResponseList` + Time response represented as a :class:`TimeResponseData` object or + list of :class:`TimeResponseData` objects. See + :func:`forced_response` for additional information. See Also -------- @@ -1908,8 +1924,8 @@ def impulse_response( This function uses the `forced_response` function to compute the time response. For continuous time systems, the initial condition is altered to account for the initial impulse. For discrete-time aystems, the - impulse is sized so that it has unit area. Response for nonlinear - systems is computed using `input_output_response`. + impulse is sized so that it has unit area. The impulse response for + nonlinear systems is not implemented. Examples -------- @@ -1920,26 +1936,28 @@ def impulse_response( from .lti import LTI from .statesp import _convert_to_statespace - # Convert the first argument to a list - syslist = sysdata if isinstance(sysdata, (list, tuple)) else [sysdata] - - # TODO: implement step responses for multiple systems - if len(syslist) > 1: - raise NotImplementedError( - "step responses for multiple systems not yet implemented") - sys = syslist[0] - - # Make sure we have an LTI system - if not isinstance(sys, LTI): - raise ValueError("system must be LTI system for impulse response") - # Create the time and input vectors if T is None or np.asarray(T).size == 1: - T = _default_time_vector(sys, N=T_num, tfinal=T, is_step=False) + T = _default_time_vector(sysdata, N=T_num, tfinal=T, is_step=False) T = np.atleast_1d(T).reshape(-1) if T.ndim != 1 and len(T) < 2: raise ValueError("invalid value of T for this type of system") + # If passed a list, recursively call individual responses with given T + if isinstance(sysdata, (list, tuple)): + responses = [] + for sys in sysdata: + responses.append(impulse_response( + sys, T, input=input, output=output, T_num=T_num, + transpose=transpose, return_x=return_x, squeeze=squeeze)) + return TimeResponseList(responses) + else: + sys = sysdata + + # Make sure we have an LTI system + if not isinstance(sys, LTI): + raise ValueError("system must be LTI system for impulse response") + # Convert to state space so that we can simulate if sys.nstates is None: sys = _convert_to_statespace(sys) @@ -2181,11 +2199,22 @@ def _ideal_tfinal_and_dt(sys, is_step=True): return tfinal, dt -def _default_time_vector(sys, N=None, tfinal=None, is_step=True): +def _default_time_vector(sysdata, N=None, tfinal=None, is_step=True): """Returns a time vector that has a reasonable number of points. if system is discrete-time, N is ignored """ from .lti import LTI + if isinstance(sysdata, (list, tuple)): + tfinal_max = N_max = 0 + for sys in sysdata: + timevec = _default_time_vector( + sys, N=N, tfinal=tfinal, is_step=is_step) + tfinal_max = max(tfinal_max, timevec[-1]) + N_max = max(N_max, timevec.size) + return np.linspace(0, tfinal_max, N_max, endpoint=True) + else: + sys = sysdata + # For non-LTI system, need tfinal if not isinstance(sys, LTI): if tfinal is None: diff --git a/doc/conventions.rst b/doc/conventions.rst index 680ba1ba8..ad56c0ccc 100644 --- a/doc/conventions.rst +++ b/doc/conventions.rst @@ -154,6 +154,17 @@ The :func:`forced_response` system is the most general and allows by the zero initial state response to be simulated as well as the response from a non-zero initial condition. +For linear time invariant (LTI) systems, the :func:`impulse_response`, +:func:`initial_response`, and :func:`step_response` functions will +automatically compute the time vector based on the poles and zeros of +system. If a list of systems is passed, a common time vector will be +computed and a list of responses will be returned in the form of a +:class:`TimeResponseList` object. The :func:`force_response` function can +also take a list of systems, to which a single common input is applied. +The :class:`TimeResponseList` object has a `plot()` method that will plot +each of the reponses in turn, using a sequence of different colors with +appropriate titles and legends. + In addition the :func:`input_output_response` function, which handles simulation of nonlinear systems and interconnected systems, can be used. For an LTI system, results are generally more accurate using diff --git a/doc/plotting.rst b/doc/plotting.rst index a3cbc1797..2450c576b 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -494,6 +494,8 @@ The following classes are used in generating response data. ~control.DescribingFunctionResponse ~control.FrequencyResponseData + ~control.FrequencyResponseList ~control.NyquistResponseData ~control.PoleZeroData ~control.TimeResponseData + ~control.TimeResponseList From 6be8f4811804d720dec0b61ebf98de61912139bc Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 20 Jun 2024 13:51:36 -0700 Subject: [PATCH 062/199] allow combining I/O time responses with different numbers of states --- control/timeplot.py | 23 +++++++++++++++-------- 1 file changed, 15 insertions(+), 8 deletions(-) diff --git a/control/timeplot.py b/control/timeplot.py index 3ca9b54b8..30b73397e 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -653,6 +653,7 @@ def combine_time_responses(response_list, trace_labels=None, title=None): ntraces = max(1, base.ntraces) # Initial pass through trace list to count things up and do error checks + nstates = base.nstates for response in response_list[1:]: # Make sure the time vector is the same if not np.allclose(base.t, response.t): @@ -660,17 +661,20 @@ def combine_time_responses(response_list, trace_labels=None, title=None): # Make sure the dimensions are all the same if base.ninputs != response.ninputs or \ - base.noutputs != response.noutputs or \ - base.nstates != response.nstates: + base.noutputs != response.noutputs: raise ValueError("all responses must have the same number of " "inputs, outputs, and states") + if nstates != response.nstates: + warn("responses have different state dimensions; dropping states") + nstates = 0 + ntraces += max(1, response.ntraces) # Create data structures for the new time response data object inputs = np.empty((base.ninputs, ntraces, base.t.size)) outputs = np.empty((base.noutputs, ntraces, base.t.size)) - states = np.empty((base.nstates, ntraces, base.t.size)) + states = np.empty((nstates, ntraces, base.t.size)) # See whether we should create labels or not if trace_labels is None: @@ -689,7 +693,8 @@ def combine_time_responses(response_list, trace_labels=None, title=None): # Single trace inputs[:, offset, :] = response.u outputs[:, offset, :] = response.y - states[:, offset, :] = response.x + if nstates: + states[:, offset, :] = response.x offset += 1 # Add on trace label and trace type @@ -703,7 +708,8 @@ def combine_time_responses(response_list, trace_labels=None, title=None): for i in range(response.ntraces): inputs[:, offset, :] = response.u[:, i, :] outputs[:, offset, :] = response.y[:, i, :] - states[:, offset, :] = response.x[:, i, :] + if nstates: + states[:, offset, :] = response.x[:, i, :] # Save the trace labels if generate_trace_labels: @@ -721,9 +727,10 @@ def combine_time_responses(response_list, trace_labels=None, title=None): trace_types += [None] * response.ntraces return TimeResponseData( - base.t, outputs, states, inputs, issiso=base.issiso, + base.t, outputs, states if nstates else None, inputs, output_labels=base.output_labels, input_labels=base.input_labels, - state_labels=base.state_labels, title=title, transpose=base.transpose, - return_x=base.return_x, squeeze=base.squeeze, sysname=base.sysname, + state_labels=base.state_labels if nstates else None, + title=title, transpose=base.transpose, return_x=base.return_x, + issiso=base.issiso, squeeze=base.squeeze, sysname=base.sysname, trace_labels=trace_labels, trace_types=trace_types, plot_inputs=base.plot_inputs) From 8b269bfd5d92a1bf5705f40196c9043736a86c80 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 20 Jun 2024 13:52:41 -0700 Subject: [PATCH 063/199] add plot_gallery to compare plotting results between builds --- examples/plot_gallery.py | 161 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 161 insertions(+) create mode 100644 examples/plot_gallery.py diff --git a/examples/plot_gallery.py b/examples/plot_gallery.py new file mode 100644 index 000000000..214e53289 --- /dev/null +++ b/examples/plot_gallery.py @@ -0,0 +1,161 @@ +# plot_gallery.py - different types of plots for comparing versions +# RMM, 19 Jun 2024 +# +# This file collects together some of the more interesting plots that can +# be generated by python-control and puts them into a PDF file that can be +# used to compare what things look like between different versions of the +# library. It is mainly intended for uses by developers to make sure there +# are no unexpected changes in plot formats, but also has some interest +# examples of htings you can plot. + +import os +import sys +from math import pi + +import matplotlib.pyplot as plt +import numpy as np + +import control as ct + +# Don't save figures if we are running CI tests +savefigs = 'PYCONTROL_TEST_EXAMPLES' not in os.environ +if savefigs: + # Create a pdf file for storing the results + from matplotlib.backends.backend_pdf import PdfPages + from datetime import date + git_info = os.popen('git describe').read().strip() + pdf = PdfPages( + f'plot_gallery-{git_info}-{date.today().isoformat()}.pdf') + +# Context manager to handle plotting +class create_figure(object): + def __init__(self, name): + self.name = name + def __enter__(self): + self.fig = plt.figure() + print(f"Generating {self.name} as Figure {self.fig.number}") + return self.fig + def __exit__(self, type, value, traceback): + if type is not None: + print(f"Exception: {type=}, {value=}, {traceback=}") + if savefigs: + pdf.savefig() + if hasattr(sys, 'ps1'): + # Show the figures on the screen + plt.show(block=False) + else: + plt.close() + +# Define systems to use throughout +sys1 = ct.tf([1], [1, 2, 1], name='sys1') +sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') +sys_mimo1 = ct.tf2ss( + [[[1], [0.1]], [[0.2], [1]]], + [[[1, 0.6, 1], [1, 1, 1]], [[1, 0.4, 1], [1, 2, 1]]], name="sys_mimo1") +sys_mimo2 = ct.tf2ss( + [[[1], [0.1]], [[0.2], [1]]], + [[[1, 0.2, 1], [1, 24, 22, 5]], [[1, 4, 16, 21], [1, 0.1]]], + name="sys_mimo2") +sys_frd = ct.frd( + [[np.array([10 + 0j, 5 - 5j, 1 - 1j, 0.5 - 1j, -.1j]), + np.array([1j, 0.5 - 0.5j, -0.5, 0.1 - 0.1j, -.05j]) * 0.1], + [np.array([10 + 0j, -20j, -10, 2j, 1]), + np.array([10 + 0j, 5 - 5j, 1 - 1j, 0.5 - 1j, -.1j]) * 0.01]], + np.logspace(-2, 2, 5)) +sys_frd.name = 'frd' # For backward compatibility + +# Close all existing figures +plt.close('all') + +# bode +with create_figure("Bode plot"): + try: + ct.bode_plot([sys_mimo1, sys_mimo2]) + except AttributeError: + print(" - falling back to earlier method") + plt.clf() + ct.bode_plot(sys_mimo1) + ct.bode_plot(sys_mimo2) + +# describing function +with create_figure("Describing function plot"): + H = ct.tf([1], [1, 2, 2, 1]) * 8 + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + ct.describing_function_response(H, F, amp).plot() + +# nichols +with create_figure("Nichols chart"): + response = ct.frequency_response([sys1, sys2]) + ct.nichols_plot(response) + +# nyquist +with create_figure("Nyquist plot"): + ct.nyquist_plot([sys1, sys2]) + +# phase plane +with create_figure("Phase plane plot"): + def invpend_update(t, x, u, params): + m, l, b, g = params['m'], params['l'], params['b'], params['g'] + return [x[1], -b/m * x[1] + (g * l / m) * np.sin(x[0]) + u[0]/m] + invpend = ct.nlsys(invpend_update, states=2, inputs=1, name='invpend') + ct.phase_plane_plot( + invpend, [-2*pi, 2*pi, -2, 2], 5, + gridtype='meshgrid', gridspec=[5, 8], arrows=3, + plot_separatrices={'gridspec': [12, 9]}, + params={'m': 1, 'l': 1, 'b': 0.2, 'g': 1}) + +# pole zero map +with create_figure("Pole/zero map"): + T = ct.tf( + [-9.0250000e-01, -4.7200750e+01, -8.6812900e+02, + +5.6261850e+03, +2.1258472e+05, +8.4724600e+05, + +1.0192000e+06, +2.3520000e+05], + [9.02500000e-03, 9.92862812e-01, 4.96974094e+01, + 1.35705659e+03, 2.09294163e+04, 1.64898435e+05, + 6.54572220e+05, 1.25274600e+06, 1.02420000e+06, + 2.35200000e+05], name='T') + ct.pole_zero_plot([T, sys2]) + +# root locus +with create_figure("Root locus plot") as fig: + ax1, ax2 = fig.subplots(2, 1) + sys1 = ct.tf([1, 2], [1, 2, 3], name='sys1') + sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') + ct.root_locus_plot([sys1, sys2], grid=True, ax=ax1) + ct.root_locus_plot([sys1, sys2], grid=False, ax=ax2) + print(" -- BUG: should have 2 x 1 array of plots") + +# sisotool +with create_figure("sisotool"): + s = ct.tf('s') + H = (s+0.3)/(s**4 + 4*s**3 + 6.25*s**2) + ct.sisotool(H) + +# step response +with create_figure("step response") as fig: + try: + ct.step_response([sys_mimo1, sys_mimo2]).plot() + except ValueError: + print(" - falling back to earlier method") + fig.clf() + ct.step_response(sys_mimo1).plot() + ct.step_response(sys_mimo2).plot() + +# time response +with create_figure("time response"): + timepts = np.linspace(0, 10) + + U = np.vstack([np.sin(timepts), np.cos(2*timepts)]) + resp1 = ct.input_output_response(sys_mimo1, timepts, U) + + U = np.vstack([np.cos(2*timepts), np.sin(timepts)]) + resp2 = ct.input_output_response(sys_mimo1, timepts, U) + + resp = ct.combine_time_responses( + [resp1, resp2], trace_labels=["resp1", "resp2"]) + resp.plot(transpose=True) + +# Show the figures if running in interactive mode +if savefigs: + pdf.close() From cc6aeb612c76dd8544589685c236e7ddfaf012ba Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 20 Jun 2024 13:50:33 -0700 Subject: [PATCH 064/199] improved unit tests for rcParams + small fix to suptitle rcParams --- control/ctrlplot.py | 1 - control/tests/timeplot_test.py | 43 ++++++++++++++++++++-------------- 2 files changed, 25 insertions(+), 19 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index bac6a5562..de70f96cd 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -46,7 +46,6 @@ def suptitle( elif frame == 'axes': # TODO: move common plotting params to 'ctrlplot' - rcParams = config._get_param('freqplot', 'rcParams', rcParams) with plt.rc_context(rcParams): plt.tight_layout() # Put the figure into proper layout xc, _ = _find_axes_center(fig, fig.get_axes()) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 5ff8536d3..921b9e765 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -395,14 +395,19 @@ def test_rcParams(): sys = ct.rss(2, 2, 2) # Create new set of rcParams - my_rcParams = { - 'axes.labelsize': 10, - 'axes.titlesize': 10, - 'figure.titlesize': 12, - 'legend.fontsize': 10, - 'xtick.labelsize': 10, - 'ytick.labelsize': 10, - } + my_rcParams = {} + for key in [ + 'axes.labelsize', 'axes.titlesize', 'figure.titlesize', + 'legend.fontsize', 'xtick.labelsize', 'ytick.labelsize']: + match plt.rcParams[key]: + case 8 | 9 | 10: + my_rcParams[key] = plt.rcParams[key] + 1 + case 'medium': + my_rcParams[key] = 11.5 + case 'large': + my_rcParams[key] = 9.5 + case _: + raise ValueError(f"unknown rcParam type for {key}") # Generate a figure with the new rcParams out = ct.step_response(sys).plot(rcParams=my_rcParams) @@ -410,12 +415,14 @@ def test_rcParams(): fig = ax.figure # Check to make sure new settings were used - assert ax.xaxis.get_label().get_fontsize() == 10 - assert ax.yaxis.get_label().get_fontsize() == 10 - assert ax.title.get_fontsize() == 10 - assert ax.xaxis._get_tick_label_size('x') == 10 - assert ax.yaxis._get_tick_label_size('y') == 10 - assert fig._suptitle.get_fontsize() == 10 + assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.yaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.title.get_fontsize() == my_rcParams['axes.titlesize'] + assert ax.get_xticklabels()[0].get_fontsize() == \ + my_rcParams['xtick.labelsize'] + assert ax.get_yticklabels()[0].get_fontsize() == \ + my_rcParams['ytick.labelsize'] + assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] def test_relabel(): sys1 = ct.rss(2, inputs='u', outputs='y') @@ -558,10 +565,10 @@ def test_errors(): plt.figure() out = ct.step_response(sys_mimo).plot( - plot_inputs='overlay', overlay_signals=True, overlay_traces=True, - output_props=[{'color': c} for c in ['blue', 'orange']], - input_props=[{'color': c} for c in ['red', 'green']], - trace_props=[{'linestyle': s} for s in ['-', '--']]) + plot_inputs='overlay', overlay_signals=True, overlay_traces=True, + output_props=[{'color': c} for c in ['blue', 'orange']], + input_props=[{'color': c} for c in ['red', 'green']], + trace_props=[{'linestyle': s} for s in ['-', '--']]) plt.savefig('timeplot-mimo_step-linestyle.png') sys1 = ct.rss(4, 2, 2) From ed8a1c18e112556978edeb508da114e9b5ce7321 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 25 Jun 2024 11:12:43 -0700 Subject: [PATCH 065/199] allow label keyword to override generated labels --- control/freqplot.py | 17 +++--- control/tests/timeplot_test.py | 107 +++++++++++++++++++++++++++++++++ control/timeplot.py | 33 +++++++--- control/timeresp.py | 6 +- 4 files changed, 147 insertions(+), 16 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 1f4b8e448..f6aeb1e62 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -2647,12 +2647,13 @@ def _get_line_labels(ax, use_color=True): # Turn label keyword into array indexed by trace, output, input -def _process_line_labels(label, nsys, ninputs=0, noutputs=0): +# TODO: move to ctrlutil.py and update parameter names to reflect general use +def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): if label is None: return None if isinstance(label, str): - label = [label] + label = [label] * ntraces # single label for all traces # Convert to an ndarray, if not done aleady try: @@ -2664,12 +2665,14 @@ def _process_line_labels(label, nsys, ninputs=0, noutputs=0): # TODO: allow more sophisticated broadcasting (and error checking) try: if ninputs > 0 and noutputs > 0: - if line_labels.ndim == 1: - line_labels = line_labels.reshape(nsys, 1, 1) - line_labels = np.broadcast_to( - line_labels,(nsys, ninputs, noutputs)) + if line_labels.ndim == 1 and line_labels.size == ntraces: + line_labels = line_labels.reshape(ntraces, 1, 1) + line_labels = np.broadcast_to( + line_labels, (ntraces, ninputs, noutputs)) + else: + line_labels = line_labels.reshape(ntraces, ninputs, noutputs) except: - if line_labels.shape[0] != nsys: + if line_labels.shape[0] != ntraces: raise ValueError("number of labels must match number of traces") else: raise ValueError("labels must be given for each input/output pair") diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 921b9e765..12e22ffd7 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -424,6 +424,113 @@ def test_rcParams(): my_rcParams['ytick.labelsize'] assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] + +@pytest.mark.parametrize("resp_fcn", [ + ct.step_response, ct.initial_response, ct.impulse_response, + ct.forced_response, ct.input_output_response]) +@pytest.mark.usefixtures("editsdefaults") +def test_timeplot_trace_labels(resp_fcn): + plt.close('all') + sys1 = ct.rss(2, 2, 2, strictly_proper=True, name='sys1') + sys2 = ct.rss(2, 2, 2, strictly_proper=True, name='sys2') + + # Figure out the expected shape of the system + match resp_fcn: + case ct.step_response | ct.impulse_response: + shape = (2, 2) + kwargs = {} + case ct.initial_response: + shape = (2, 1) + kwargs = {} + case ct.forced_response | ct.input_output_response: + shape = (4, 1) # outputs and inputs both plotted + T = np.linspace(0, 10) + U = [np.sin(T), np.cos(T)] + kwargs = {'T': T, 'U': U} + + # Use figure frame for suptitle to speed things up + ct.set_defaults('freqplot', suptitle_frame='figure') + + # Make sure default labels are as expected + out = resp_fcn([sys1, sys2], **kwargs).plot() + axs = ct.get_plot_axes(out) + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, -1].get_legend().get_texts() + assert legend[0].get_text() == 'sys1' + assert legend[1].get_text() == 'sys2' + plt.close() + + # Override labels all at once + out = resp_fcn([sys1, sys2], **kwargs).plot(label=['line1', 'line2']) + axs = ct.get_plot_axes(out) + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, -1].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + # Override labels one at a time + out = resp_fcn(sys1, **kwargs).plot(label='line1') + out = resp_fcn(sys2, **kwargs).plot(label='line2') + axs = ct.get_plot_axes(out) + if axs.ndim == 1: + legend = axs[0].get_legend().get_texts() + else: + legend = axs[0, -1].get_legend().get_texts() + assert legend[0].get_text() == 'line1' + assert legend[1].get_text() == 'line2' + plt.close() + + +def test_full_label_override(): + sys1 = ct.rss(2, 2, 2, strictly_proper=True, name='sys1') + sys2 = ct.rss(2, 2, 2, strictly_proper=True, name='sys2') + + labels_2d = np.array([ + ["outsys1u1y1", "outsys1u1y2", "outsys1u2y1", "outsys1u2y2", + "outsys2u1y1", "outsys2u1y2", "outsys2u2y1", "outsys2u2y2"], + ["inpsys1u1y1", "inpsys1u1y2", "inpsys1u2y1", "inpsys1u2y2", + "inpsys2u1y1", "inpsys2u1y2", "inpsys2u2y1", "inpsys2u2y2"]]) + + + labels_4d = np.empty((2, 2, 2, 2), dtype=object) + for i, sys in enumerate(['sys1', 'sys2']): + for j, trace in enumerate(['u1', 'u2']): + for k, out in enumerate(['y1', 'y2']): + labels_4d[i, j, k, 0] = "out" + sys + trace + out + labels_4d[i, j, k, 1] = "inp" + sys + trace + out + + # Test 4D labels + out = ct.step_response([sys1, sys2]).plot( + overlay_signals=True, overlay_traces=True, plot_inputs=True, + label=labels_4d) + axs = ct.get_plot_axes(out) + assert axs.shape == (2, 1) + legend_text = axs[0, 0].get_legend().get_texts() + for i, label in enumerate(labels_2d[0]): + assert legend_text[i].get_text() == label + legend_text = axs[1, 0].get_legend().get_texts() + for i, label in enumerate(labels_2d[1]): + assert legend_text[i].get_text() == label + + # Test 2D labels + out = ct.step_response([sys1, sys2]).plot( + overlay_signals=True, overlay_traces=True, plot_inputs=True, + label=labels_2d) + axs = ct.get_plot_axes(out) + assert axs.shape == (2, 1) + legend_text = axs[0, 0].get_legend().get_texts() + for i, label in enumerate(labels_2d[0]): + assert legend_text[i].get_text() == label + legend_text = axs[1, 0].get_legend().get_texts() + for i, label in enumerate(labels_2d[1]): + assert legend_text[i].get_text() == label + + def test_relabel(): sys1 = ct.rss(2, inputs='u', outputs='y') sys2 = ct.rss(1, 1, 1) # uses default i/o labels diff --git a/control/timeplot.py b/control/timeplot.py index 30b73397e..6d27be58d 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -49,7 +49,7 @@ def time_response_plot( data, *fmt, ax=None, plot_inputs=None, plot_outputs=True, transpose=False, overlay_traces=False, overlay_signals=False, - legend_map=None, legend_loc=None, add_initial_zero=True, + legend_map=None, legend_loc=None, add_initial_zero=True, label=None, trace_labels=None, title=None, relabel=True, **kwargs): """Plot the time response of an input/output system. @@ -112,6 +112,11 @@ def time_response_plot( input_props : array of dicts List of line properties to use when plotting combined inputs. The default values are set by config.defaults['timeplot.input_props']. + label : str or array_like of str + If present, replace automatically generated label(s) with the given + label(s). If more than one line is being generated, an array of + labels should be provided with label[trace, :, 0] representing the + output labels and label[trace, :, 1] representing the input labels. legend_map : array of str, option Location of the legend for multi-trace plots. Specifies an array of legend location strings matching the shape of the subplots, with @@ -152,7 +157,7 @@ def time_response_plot( config.defaults[''timeplot.rcParams']. """ - from .freqplot import _process_ax_keyword + from .freqplot import _process_ax_keyword, _process_line_labels from .iosys import InputOutputSystem from .timeresp import TimeResponseData @@ -342,6 +347,7 @@ def time_response_plot( out[i, j] = [] # unique list in each element # Utility function for creating line label + # TODO: combine with freqplot version? def _make_line_label(signal_index, signal_labels, trace_index): label = "" # start with an empty label @@ -375,11 +381,22 @@ def _make_line_label(signal_index, signal_labels, trace_index): output_offset = fig._output_offset = getattr(fig, '_output_offset', 0) input_offset = fig._input_offset = getattr(fig, '_input_offset', 0) + # + # Plot the lines for the response + # + + # Process labels + line_labels = _process_line_labels( + label, ntraces, max(ninputs, noutputs), 2) + # Go through each trace and each input/output for trace in range(ntraces): # Plot the output for i in range(noutputs): - label = _make_line_label(i, data.output_labels, trace) + if line_labels is None: + label = _make_line_label(i, data.output_labels, trace) + else: + label = line_labels[trace, i, 0] # Set up line properties for this output, trace if len(fmt) == 0: @@ -397,7 +414,10 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Plot the input for i in range(ninputs): - label = _make_line_label(i, data.input_labels, trace) + if line_labels is None: + label = _make_line_label(i, data.input_labels, trace) + else: + label = line_labels[trace, i, 1] if add_initial_zero and data.ntraces > i \ and data.trace_types[i] == 'step': @@ -596,16 +616,15 @@ def _make_line_label(signal_index, signal_labels, trace_index): for i in range(nrows): for j in range(ncols): ax = ax_array[i, j] - # Get the labels to use labels = [line.get_label() for line in ax.get_lines()] - labels = _make_legend_labels(labels, plot_inputs == 'overlay') + if line_labels is None: + labels = _make_legend_labels(labels, plot_inputs == 'overlay') # Update the labels to remove common strings if len(labels) > 1 and legend_map[i, j] != None: with plt.rc_context(rcParams): ax.legend(labels, loc=legend_map[i, j]) - # # Update the plot title (= figure suptitle) # diff --git a/control/timeresp.py b/control/timeresp.py index 8f10d8fd3..1ecb02348 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -746,8 +746,10 @@ class TimeResponseList(list): """ def plot(self, *args, **kwargs): out_full = None - for response in self: - out = TimeResponseData.plot(response, *args, **kwargs) + label = kwargs.pop('label', [None] * len(self)) + for i, response in enumerate(self): + out = TimeResponseData.plot( + response, *args, label=label[i], **kwargs) if out_full is None: out_full = out else: From 92d36cc80c9796ddd79dd9b9cbf9091b8ffed2ac Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 25 Jun 2024 20:18:55 -0700 Subject: [PATCH 066/199] cleanup after plotting in test functions --- control/tests/timeplot_test.py | 13 +++++++++++-- 1 file changed, 11 insertions(+), 2 deletions(-) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 12e22ffd7..e351d02af 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -7,7 +7,7 @@ import matplotlib.pyplot as plt import numpy as np -from control.tests.conftest import slycotonly +from control.tests.conftest import slycotonly, mplcleanup # Detailed test of (almost) all functionality # @@ -67,6 +67,7 @@ True, True, False, False, False, False), ]) +@pytest.mark.usefixtures('mplcleanup') def test_response_plots( fcn, sys, pltinp, pltout, cmbsig, cmbtrc, trpose, secsys, clear=True): @@ -190,6 +191,7 @@ def test_response_plots( plt.clf() +@pytest.mark.usefixtures('mplcleanup') def test_axes_setup(): get_plot_axes = ct.get_plot_axes @@ -238,6 +240,7 @@ def test_axes_setup(): @slycotonly +@pytest.mark.usefixtures('mplcleanup') def test_legend_map(): sys_mimo = ct.tf2ss( [[[1], [0.1]], [[0.2], [1]]], @@ -250,6 +253,7 @@ def test_legend_map(): title='MIMO step response with custom legend placement') +@pytest.mark.usefixtures('mplcleanup') def test_combine_time_responses(): sys_mimo = ct.rss(4, 2, 2) timepts = np.linspace(0, 10, 100) @@ -316,6 +320,7 @@ def test_combine_time_responses(): @pytest.mark.parametrize("resp_fcn", [ ct.step_response, ct.initial_response, ct.impulse_response, ct.forced_response, ct.input_output_response]) +@pytest.mark.usefixtures('mplcleanup') def test_list_responses(resp_fcn): sys1 = ct.rss(2, 2, 2, strictly_proper=True) sys2 = ct.rss(2, 2, 2, strictly_proper=True) @@ -362,6 +367,7 @@ def test_list_responses(resp_fcn): @slycotonly +@pytest.mark.usefixtures('mplcleanup') def test_linestyles(): # Check to make sure we can change line styles sys_mimo = ct.tf2ss( @@ -391,6 +397,7 @@ def test_linestyles(): assert lines[7].get_color() == 'green' and lines[7].get_linestyle() == '--' +@pytest.mark.usefixtures('mplcleanup') def test_rcParams(): sys = ct.rss(2, 2, 2) @@ -428,7 +435,7 @@ def test_rcParams(): @pytest.mark.parametrize("resp_fcn", [ ct.step_response, ct.initial_response, ct.impulse_response, ct.forced_response, ct.input_output_response]) -@pytest.mark.usefixtures("editsdefaults") +@pytest.mark.usefixtures('editsdefaults', 'mplcleanup') def test_timeplot_trace_labels(resp_fcn): plt.close('all') sys1 = ct.rss(2, 2, 2, strictly_proper=True, name='sys1') @@ -486,6 +493,7 @@ def test_timeplot_trace_labels(resp_fcn): plt.close() +@pytest.mark.usefixtures('mplcleanup') def test_full_label_override(): sys1 = ct.rss(2, 2, 2, strictly_proper=True, name='sys1') sys2 = ct.rss(2, 2, 2, strictly_proper=True, name='sys2') @@ -531,6 +539,7 @@ def test_full_label_override(): assert legend_text[i].get_text() == label +@pytest.mark.usefixtures('mplcleanup') def test_relabel(): sys1 = ct.rss(2, inputs='u', outputs='y') sys2 = ct.rss(1, 1, 1) # uses default i/o labels From 8f0c2272a441c5b3300aa2b69eac514412456ce6 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 26 Jun 2024 09:06:51 -0700 Subject: [PATCH 067/199] add CDS 110 example notebook demonstrating features --- examples/cds110_lti-systems.ipynb | 828 ++++++++++++++++++++++++++++++ 1 file changed, 828 insertions(+) create mode 100644 examples/cds110_lti-systems.ipynb diff --git a/examples/cds110_lti-systems.ipynb b/examples/cds110_lti-systems.ipynb new file mode 100644 index 000000000..e9d5c2c95 --- /dev/null +++ b/examples/cds110_lti-systems.ipynb @@ -0,0 +1,828 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "gQZtf4ZqM8HL" + }, + "source": [ + "# Python Tools for Analyzing Linear Systems\n", + "\n", + "CDS 110, Winter 2024
\n", + "Richard M. Murray\n", + "\n", + "In this lecture we describe tools in the Python Control Systems Toolbox (python-control) that can be used to analyze linear systems, including some of the options available to present the information in different ways.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "python-control version: 0.10.1.dev32+gdbc998de\n" + ] + } + ], + "source": [ + "import numpy as np\n", + "%matplotlib inline\n", + "import matplotlib.pyplot as plt\n", + "\n", + "try:\n", + " import control as ct\n", + " print(\"python-control version:\", ct.__version__)\n", + "except ImportError:\n", + " # Version 0.10.0 is enough for this notebook\n", + " !pip install control\n", + " import control as ct" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "qMVGK15gNQw2" + }, + "source": [ + "## Coupled mass spring system\n", + "\n", + "Consider the spring mass system below:\n", + "\n", + "\n", + "\n", + "We wish to analyze the time and frequency response of this system using a variety of python-control functions for linear systems analysis.\n", + "\n", + "### System dynamics\n", + "\n", + "The dynamics of the system can be written as\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + " m \\ddot{q}_1 &= -2 k q_1 - c \\dot{q}_1 + k q_2, \\\\\n", + " m \\ddot{q}_2 &= k q_1 - 2 k q_2 - c \\dot{q}_2 + ku\n", + "\\end{aligned}\n", + "$$\n", + "\n", + "or in state space form:\n", + "\n", + "$$\n", + "\\begin{aligned}\n", + " \\dfrac{dx}{dt} &= \\begin{bmatrix}\n", + " 0 & 0 & 1 & 0 \\\\\n", + " 0 & 0 & 0 & 1 \\\\[0.5ex]\n", + " -\\dfrac{2k}{m} & \\dfrac{k}{m} & -\\dfrac{c}{m} & 0 \\\\[0.5ex]\n", + " \\dfrac{k}{m} & -\\dfrac{2k}{m} & 0 & -\\dfrac{c}{m}\n", + " \\end{bmatrix} x\n", + " + \\begin{bmatrix}\n", + " 0 \\\\ 0 \\\\[0.5ex] 0 \\\\[1ex] \\dfrac{k}{m}\n", + " \\end{bmatrix} u.\n", + "\\end{aligned}\n", + "$$\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": coupled spring mass\n", + "Inputs (1): ['u[0]']\n", + "Outputs (2): ['q1', 'q2']\n", + "States (4): ['x[0]', 'x[1]', 'x[2]', 'x[3]']\n", + "\n", + "A = [[ 0. 0. 1. 0. ]\n", + " [ 0. 0. 0. 1. ]\n", + " [-4. 2. -0.1 0. ]\n", + " [ 2. -4. 0. -0.1]]\n", + "\n", + "B = [[0.]\n", + " [0.]\n", + " [0.]\n", + " [2.]]\n", + "\n", + "C = [[1. 0. 0. 0.]\n", + " [0. 1. 0. 0.]]\n", + "\n", + "D = [[0.]\n", + " [0.]]\n", + "\n" + ] + } + ], + "source": [ + "# Define the parameters for the system\n", + "m, c, k = 1, 0.1, 2\n", + "# Create a linear system\n", + "A = np.array([\n", + " [0, 0, 1, 0],\n", + " [0, 0, 0, 1],\n", + " [-2*k/m, k/m, -c/m, 0],\n", + " [k/m, -2*k/m, 0, -c/m]\n", + "])\n", + "B = np.array([[0], [0], [0], [k/m]])\n", + "C = np.array([[1, 0, 0, 0], [0, 1, 0, 0]])\n", + "D = 0\n", + "\n", + "sys = ct.ss(A, B, C, D, outputs=['q1', 'q2'], name=\"coupled spring mass\")\n", + "print(sys)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "kobxJ1yG4v_1" + }, + "source": [ + "Another way to get these same dynamics is to define and input/output system:" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": sys[0]\n", + "Inputs (1): ['u[0]']\n", + "Outputs (2): ['y[0]', 'y[1]']\n", + "States (4): ['x[0]', 'x[1]', 'x[2]', 'x[3]']\n", + "\n", + "A = [[ 0. 0. 1. 0. ]\n", + " [ 0. 0. 0. 1. ]\n", + " [-4. 2. -0.1 0. ]\n", + " [ 2. -4. 0. -0.1]]\n", + "\n", + "B = [[0.]\n", + " [0.]\n", + " [0.]\n", + " [2.]]\n", + "\n", + "C = [[1. 0. 0. 0.]\n", + " [0. 1. 0. 0.]]\n", + "\n", + "D = [[0.]\n", + " [0.]]\n", + "\n" + ] + } + ], + "source": [ + "coupled_params = {'m': 1, 'c': 0.1, 'k': 2}\n", + "def coupled_update(t, x, u, params):\n", + " m, c, k = params['m'], params['c'], params['k']\n", + " return np.array([\n", + " x[2], x[3],\n", + " -2*k/m * x[0] + k/m * x[1] - c/m * x[2],\n", + " k/m * x[0] -2*k/m * x[1] - c/m * x[3] + k/m * u[0]\n", + " ])\n", + "def coupled_output(t, x, u, params):\n", + " return x[0:2]\n", + "coupled = ct.nlsys(\n", + " coupled_update, coupled_output, inputs=1, outputs=['q1', 'q2'],\n", + " states=['q1', 'q2', 'q1dot', 'q2dot'], name='coupled (nl)',\n", + " params=coupled_params\n", + ")\n", + "print(coupled.linearize([0, 0, 0, 0], [0]))" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YmH87LEXWo1U" + }, + "source": [ + "### Initial response\n", + "\n", + "The `initial_response` function can be used to compute the response of the system with no input, but starting from a given initial condition. This function returns a response object, we can be used for plotting." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAm4AAAHbCAYAAAByRxZIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACp+ElEQVR4nOzdd3hUZfYH8O+d3jKT3khCCIQAoSlFBCn2iqK76iq2dW27um5zdV1dsa667ur6c8Wyuuqigq4Ney+I0ntPCBBCep/MZPq8vz/uvHfu1GQmkALn8zw8JJObOzc37eSc95xXYIwxEEIIIYSQQU8x0BdACCGEEEJ6hwI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3QgghhJAhggI3Qo4QQRDw3nvvxT3mmmuuwYIFC3p9zgMHDkAQBGzevLlP13Ysuffee5GTk9Orz8dQ9O2330IQBHR0dPTpPMXFxfjnP/95WK5pKDwvIUOVaqAvgJCh4JprrkFHR0dCv/jr6+uRlpYGQAy4RowYgU2bNmHy5MnSMU8++SRo17kjZ9euXbjvvvvw7rvvYsaMGdLngwwe69atg9FoHOjLIGTIoMCNkCMkNze3x2MsFssRvw632w2NRnPEn2cwqqqqAgBccMEFEAQh6fN4PB6o1erDdVkEwa/LrKysgb4UQoYUKpUSkoR58+bh1ltvxe2334709HTk5ubi3nvvDTlGXpobMWIEAOC4446DIAiYN28egMhS6aeffoqTTjoJqampyMjIwHnnnScFH71VXFyMBx98ENdccw0sFguuv/56AMCPP/6IOXPmQK/Xo7CwELfeeivsdrv0fosXL0ZpaSl0Oh1ycnLw05/+NOTjveWWW3DLLbdI13b33XeHZAvb29tx1VVXIS0tDQaDAWeffTYqKyult7/88stITU3FZ599hrFjx8JkMuGss85CfX29dMy3336L6dOnw2g0IjU1FbNmzUJ1dbX09g8++ABTpkyBTqdDSUkJ7rvvPni93qj34d5778X8+fMBAAqFQgrc/H4/7r//fhQUFECr1WLy5Mn49NNPpffj5eg333wT8+bNg06nw6uvvhr1OTo6OnDDDTcgJycHOp0O48ePx4cffii9/e2330Z5eTm0Wi2Ki4vxj3/8I+T9o5VvU1NT8fLLL4dcy7JlyzBz5kzodDqUl5fj22+/jXo9XE+f66amJsyfPx96vR4jRozAa6+9Fvd8QPzPzb333ovJkyfjueeeQ2FhIQwGAy6++OKQ8i3/Wn/44YeRn5+P0aNHA4gslQqCgBdeeAEXXnghDAYDSktL8f7774dcy/vvv4/S0lLo9XqcfPLJeOWVV3osFwuCgOeeew7nnXceDAYDxo4di1WrVmHv3r2YN28ejEYjTjzxxJDvt6qqKlxwwQXIycmByWTCtGnT8OWXX4acN973zVtvvYUJEyZAr9cjIyMDp512WsjngZCkMEJIj66++mp2wQUXSK/PnTuXmc1mdu+997KKigr2yiuvMEEQ2Oeffy4dA4C9++67jDHG1q5dywCwL7/8ktXX17PW1tao533rrbfY22+/zSoqKtimTZvY/Pnz2YQJE5jP52OMMbZ//34GgG3atCnmtQ4fPpyZzWb22GOPscrKSlZZWcm2bt3KTCYTe+KJJ1hFRQX74Ycf2HHHHceuueYaxhhj69atY0qlkr3++uvswIEDbOPGjezJJ58M+XhNJhP7zW9+w3bv3s1effVVZjAY2PPPPy8dc/7557OxY8eyFStWsM2bN7MzzzyTjRo1irndbsYYYy+99BJTq9XstNNOY+vWrWMbNmxgY8eOZZdffjljjDGPx8MsFgu77bbb2N69e9nOnTvZyy+/zKqrqxljjH366afMbDazl19+mVVVVbHPP/+cFRcXs3vvvTfqfejq6mIvvfQSA8Dq6+tZfX09Y4yxxx9/nJnNZrZ06VK2e/dudvvttzO1Ws0qKipC7nFxcTF7++232b59+1htbW3E+X0+H5sxYwYrLy9nn3/+OauqqmIffPAB+/jjjxljjK1fv54pFAp2//33sz179rCXXnqJ6fV69tJLL0X9GuEsFot0DL+WgoIC9tZbb7GdO3ey6667jqWkpLCWlhbGGGPffPMNA8Da29sZY6zHzzVjjJ199tls/Pjx7Mcff2Tr169nM2fOZHq9nj3xxBNR72VPn5tFixYxo9HITjnlFLZp0yb23XffsVGjRkmfW8bEr3WTycSuvPJKtn37drZt2zbGmPj1Kn9e/vG+/vrrrLKykt16663MZDJJ3zP79+9narWa3XbbbWz37t1s6dKlbNiwYSH3IBoAbNiwYeyNN95ge/bsYQsWLGDFxcXslFNOYZ9++inbuXMnmzFjBjvrrLOk99m8eTN79tln2datW1lFRQW76667mE6nkz7ueN83dXV1TKVSsccff5zt37+fbd26lT399NOsq6sr5jUS0hsUuBHSC9ECt5NOOinkmGnTprE77rhDel3+SzlWwBV+3nBNTU0MgPRLrreB24IFC0Ieu/LKK9kNN9wQ8tj333/PFAoFczgc7O2332Zms5lZrdao55w7dy4bO3Ys8/v90mN33HEHGzt2LGOMsYqKCgaA/fDDD9LbW1pamF6vZ2+++SZjjElB1N69e6Vjnn76aZaTk8MYY6y1tZUBYN9++23Ua5g9ezb761//GvLYkiVLWF5eXsx78e6777Lwv0/z8/PZQw89FPLYtGnT2K9+9SvGWPAe//Of/4x5XsYY++yzz5hCoWB79uyJ+vbLL7+cnX766SGP/fGPf2Tjxo2TXu9t4PbII49Ib/d4PKygoIA9+uijjLHIwK2nz/WePXsYALZ69Wrp7bt27WIAYgZuPX1uFi1axJRKJaupqZEe++STT5hCoZAC5quvvprl5OQwl8sV8r7RAre7775bet1mszFBENgnn3zCGBO/7saPHx9yjrvuuqtXgZv8vKtWrWIA2Isvvig9tnTpUqbT6WKegzHGxo0bx5566inGGIv7fbNhwwYGgB04cCDu+QhJFJVKCUnSxIkTQ17Py8tDU1NTn85ZVVWFyy+/HCUlJTCbzVKJ9eDBgwmdZ+rUqSGvb9iwAS+//DJMJpP078wzz4Tf78f+/ftx+umnY/jw4SgpKcGVV16J1157Dd3d3SHnmDFjRsg6sRNPPBGVlZXw+XzYtWsXVCoVTjjhBOntGRkZKCsrw65du6THDAYDRo4cKb0uv2fp6em45pprcOaZZ2L+/Pl48sknQ8qoGzZswP333x/yMVx//fWor6+PuNZYrFYr6urqMGvWrJDHZ82aFXKd0e5huM2bN6OgoEAq+YXbtWtX1Ofh9ywRJ554ovSySqXC1KlTI66X6+lzzT9X8o9vzJgxSE1Njfn8PX1uAKCoqAgFBQUh1+z3+7Fnzx7psQkTJvRqvaX8e8toNCIlJUX6OtmzZw+mTZsWcvz06dN7PGf4eXNycqRrkj/mdDphtVoBAHa7HbfffjvGjRuH1NRUmEwm7N69W/p+jPd9M2nSJJx66qmYMGECLr74Yvz73/9Ge3t7r66TkHgocCMkSeGL1QVBgN/v79M558+fj9bWVvz73//GmjVrsGbNGgDiQu5EhHfp+f1+3Hjjjdi8ebP0b8uWLaisrMTIkSORkpKCjRs3YunSpcjLy8M999yDSZMm9XrEBIvRGcsYCwn2ot0z+fu+9NJLWLVqFWbOnIk33ngDo0ePxurVq6WP4b777gv5GLZt24bKykrodLpeXaf8eeNdJxB5D8Pp9fq4b492zvD7FP7xA2IjRG/Earbo6XPNny/RZo14n5t41yd/nt52j8b73urNfe3Nefk5oj3Gn+uPf/wj3n77bTz00EP4/vvvsXnzZkyYMEH6foz3faNUKvHFF1/gk08+wbhx4/DUU0+hrKwM+/fv79W1EhILBW6E9AOeZYiXaWltbcWuXbtw991349RTT8XYsWMP21/oxx9/PHbs2IFRo0ZF/OPXplKpcNppp+Fvf/sbtm7digMHDuDrr7+WzhH+S3r16tUoLS2FUqnEuHHj4PV6pUCTfzwVFRUYO3ZsQtd63HHH4c4778SPP/6I8ePH4/XXX5c+hj179kT9GBSK3v0oM5vNyM/Px8qVK0Me//HHHxO+zokTJ+LQoUOoqKiI+vZx48ZFfZ7Ro0dDqVQCALKyskIyV5WVlVGzh/J77/V6sWHDBowZMybq8/b0uR47diy8Xi/Wr18vvc+ePXt6FaTH+twAYla4rq5Oen3VqlVQKBQxM5LJGjNmDNatWxfymPxjOZy+//57XHPNNbjwwgsxYcIE5Obm4sCBAyHHxPu+EQQBs2bNwn333YdNmzZBo9Hg3XffPSLXSo4dNA6EkH6QnZ0NvV6PTz/9FAUFBdDpdBGjQNLS0pCRkYHnn38eeXl5OHjwIP70pz8dlue/4447MGPGDNx88824/vrrYTQasWvXLnzxxRd46qmn8OGHH2Lfvn2YM2cO0tLS8PHHH8Pv96OsrEw6R01NDX7/+9/jxhtvxMaNG/HUU09JXZKlpaW44IILcP311+O5555DSkoK/vSnP2HYsGG44IILenWN+/fvx/PPP4/zzz8f+fn52LNnDyoqKnDVVVcBAO655x6cd955KCwsxMUXXwyFQoGtW7di27ZtePDBB3t9L/74xz9i0aJFGDlyJCZPnoyXXnoJmzdv7lVnpdzcuXMxZ84c/OQnP8Hjjz+OUaNGYffu3RAEAWeddRb+8Ic/YNq0aXjggQdw6aWXYtWqVfjXv/6FxYsXS+c45ZRT8K9//QszZsyA3+/HHXfcEXXsyNNPP43S0lKMHTsWTzzxBNrb23HttddGva6ePtdlZWU466yzcP311+P555+HSqXCb3/727gZxJ4+NwCg0+lw9dVX4+9//zusVituvfVWXHLJJb0ai5OIG2+8EY8//jjuuOMO/OIXv8DmzZulLty+jHyJZtSoUXjnnXcwf/58CIKAv/zlLyFZ9XjfN2vWrMFXX32FM844A9nZ2VizZg2am5sT/gOBkHCUcSOkH6hUKvzf//0fnnvuOeTn50cNZhQKBZYtW4YNGzZg/Pjx+N3vfofHHnvssDz/xIkT8d1336GyshKzZ8/Gcccdh7/85S/Iy8sDII6geOedd3DKKadg7NixePbZZ7F06VKUl5dL57jqqqvgcDgwffp03Hzzzfj1r3+NG264QXr7Sy+9hClTpuC8887DiSeeCMYYPv74417PPzMYDNi9ezd+8pOfYPTo0bjhhhtwyy234MYbbwQAnHnmmfjwww/xxRdfYNq0aZgxYwYef/xxDB8+PKF7ceutt+IPf/gD/vCHP2DChAn49NNPpfESiXr77bcxbdo0XHbZZRg3bhxuv/12Kat6/PHH480338SyZcswfvx43HPPPbj//vtxzTXXSO//j3/8A4WFhZgzZw4uv/xy3HbbbTAYDBHP88gjj+DRRx/FpEmT8P3332P58uXIzMyMek09fa4B8XNVWFiIuXPn4qKLLsINN9yA7OzsmB9nT58bQAxyLrroIpxzzjk444wzMH78+JAg9XAZMWIE3nrrLbzzzjuYOHEinnnmGdx1110AAK1We1if64knnkBaWhpmzpyJ+fPn48wzz8Txxx8vvT3e943ZbMaKFStwzjnnYPTo0bj77rvxj3/8A2efffZhvUZy7BFYbxcHEEKOWfPmzcPkyZNpa6J+FmvHjcHm3nvvxXvvvTdgW7E99NBDePbZZ1FTUzMgz09If6JSKSGEkCFl8eLFmDZtGjIyMvDDDz/gsccewy233DLQl0VIv6DAjRBCyJBSWVmJBx98EG1tbSgqKsIf/vAH3HnnnQN9WYT0CyqVEkIIIYQMEdScQAghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRFDgRgghhBAyRKgG+gIGC7/fj7q6OqSkpEAQhIG+HEIIIYQcQxhj6OrqQn5+PhSK2Hk1CtwC6urqUFhYONCXQQghhJBjWE1NDQoKCmK+nQK3gJSUFADiDTObzQN8NYQQQgg5llitVhQWFkrxSCwUuAXw8qjZbKbAjRBCCCEDoqflWtScQAghhBAyRAz6wG3RokUYN24cFAoFli1bFvM4h8OBK664AikpKSgqKsLSpUv78SoJIYQQQo68QR+4lZaW4sknn8T06dPjHrdo0SK0tbWhtrYWy5Ytwy9/+UtUVFT001USQgghhBx5gz5wu+KKK3D66adDp9PFPW7JkiVYtGgRzGYzZs6cifPPPz9uhq6/7W+xY/nmWjR0Ogf6UgghhBAyRA36wK032tvb0dDQgAkTJkiPTZo0CTt27Ij5Pi6XC1arNeTfkXT7W1vwm2Wb8WNVyxF9HkIIIYQcvY6KwM1ms0GpVMJgMEiPmc1m2Gy2mO/z8MMPw2KxSP+O9Ay38nwLAGB77ZENEAkhhBBy9DoqAjeTyQSfz4fu7m7pMavVCpPJFPN97rzzTnR2dkr/ampqjug1lueLI0Z2N1DgRgghhJDkHBWBW1paGnJzc7Ft2zbpsS1btqC8vDzm+2i1WmlmW3/Mbssxi2v02uzuI/o8hBBCCDl6DfrAzePxwOl0wu/3h7wc7oorrsADDzyArq4urF69Gu+//z4uvfTSAbji6Cx6NQCg0+EZ4CshhBBCyFA16AO366+/Hnq9Ht9//z2uuuoq6PV6rFixAq+99lpIRu3++++HxWJBXl4eLr74YixevBhlZWUDeOWhKHAjhBBCSF8JjDE20BcxGFitVlgsFnR2dh6Rsmm73Y3jHvgCAFD50NlQKwd9zEwIIYSQftLbOISih35iDmTcAMq6EUIIISQ5FLj1E6VCgFGjBAB0Ob0DfDWEEEIIGYoocOtHeo0KAOBw+wb4SgghhBAyFFHg1o8MgYybw0OBGyGEEEISR4FbP9KrA4EbZdwIIYQQkgQK3PqRnjJuhBBCCOkDCtz6Ec+4dbupOYEQQgghiaPArR9Ja9yoVEoIIYSQJFDg1o+oVEoIIYSQvqDArR8FS6UUuBFCCCEkcRS49SOecXNRxo0QQgghSaDArR9pAvuTunz+Ab4SQgghhAxFFLj1I40qELh5KHAjhBBCSOIocOtHWpVYKnVTxo0QQgghSaDArR/xjJvbS4EbIYQQQhJHgVs/kkqlFLgRQgghJAkUuPUjrZRxo65SQgghhCSOArd+RKVSQgghhPQFBW79SEulUkIIIYT0AQVu/UhLGTdCCCGE9AEFbv1IKpXSOBBCCCGEJIECt36kUfItryhwI4QQQkjiKHDrR1o1ZdwIIYQQkjwK3PoR36uU1rgRQgghJBkUuPWj4ADe5Oe4fbOnCa/8eKBP5yCEEELI0KQa6As4lvR1HIjT48N1r6yHz8/AGMM1s0YczssjhBBCyCBHGbd+1NcBvAda7fD5GQBgX4v9sF0XIYQQQoYGCtz6kXyvUsZYwu+/rzkYrNW0dR+26yKEEELI0ECBWz/SqpTSyx5f4oFbk9UpvVzX4YxzJCGEEEKORhS49SO+xg1IbiRIm90tvdzhcMc5khBCCCFHIwrc+hEfBwIALk/iXaFt3bLArdtzWK6JEEIIIUMHBW79SKEQoFYKAJLLuLXbg8Gay+uHM4ngjxBCCCFDFwVu/awvQ3jbu0PLo1YHZd0IIYSQYwkFbv1Mqw7sV5pE4GZ3h2bYOihwI4QQQo4pFLj1s75k3Bxub8jrdpc3xpGEEEIIORpR4NbP+rLtVXdYxs3hpjVuhBBCyLFk0Aduzc3NOPfcc2EwGFBWVoavvvoq6nHXXHMNtFotTCYTTCYTysvL+/lKeye4e0Lic9x4oKZTi+cID+QIIYQQcnQb9IHbzTffjPz8fLS0tODRRx/FxRdfjPb29qjH3nfffbDZbLDZbNixY0c/X2nvqAOlUk8SXaX2QKk0w6gFADioq5QQQgg5pgzqwM1ms2H58uW4//77YTAYsGDBAowfPx4ffPBBn8/tcrlgtVpD/vUHTWAcSKKBm9/P4PSI75Np0gCgUikhhBByrBnUgVtlZSUsFgvy8vKkxyZNmhQzm/bYY48hIyMDM2fOxIoVK+Ke++GHH4bFYpH+FRYWHtZrj4WXShMN3OTZtQwTZdwIIYSQY9GgDtxsNhvMZnPIY2azGTabLeLY3/zmN9i7dy/q6+tx8803Y/78+aipqYl57jvvvBOdnZ3Sv3jHHk68VOpOcK9Svp5NEIBUgzrksSPN52dgLPE1eYQQQgg5vAZ14GYymSJKmFarFSaTKeLY4447DmlpadBoNFi4cCFOPPFEfPHFFzHPrdVqYTabQ/71B2mNW4LjQLoD69v0aiWMGhWAyPEgR0J9pwNTH/wC172yHn4/BW+EEELIQBrUgVtpaSk6OzvR0NAgPbZly5ZedYwqFIPzQwtm3BIN3MTsmkGjhEEjDvHtj1LpFzsb0d7twVe7m7DxYPSmEEIIIYT0j8EZ3QSYTCacf/75WLRoERwOB95//31s374d8+fPjzj27bffht1uh9frxRtvvIGVK1filFNOGYCrjk+jSq45IRi4qaAL7L7QH6XSzTUd0su7G7qO+PMRQgghJLZBHbgBwOLFi1FTU4OMjAzcdtttePPNN5GWlobXXnstJPP2xBNPID8/H5mZmXj88cfx7rvvori4eOAuPAZ1kjsnOAYo41bf4ZRermqOXFtICCGEkP6jGugL6ElWVhY+/vjjiMcXLlyIhQsXSq+vXLmyPy8raRppjluizQmBNW4aJfQ8cOuHjFuDNRi4NcpeJoQQQkj/G/QZt6ONOslxIPI1bvp+KpUyxlDf6ZBeb7K6+nQ+6k4lhBBC+oYCt36W7CbzPEjTq1Uw8K7SI1wqdXn90tBfAGjsSj7jtu1QJ6Y99CV++erGw3FphBBCyDGJArd+pk5y5wReKjVqldBrxE/bkS6VWh2ekNdbutxJn+vpb/aize7Gpzsa0NSHAJAQQgg5llHg1s+SHQfiCCmV9k/GzeoMnRPn8PgSzhRyFU3BjtStNZ19ui5CCCHkWEWBWz9Ldsurbo+8VNo/zQlWp5hxG5aqhyAmCtEZloXrDb+f4WBrt/T6wbbuOEcTQgghJBYK3PpZcOeEBLtKXWL2yyDrKu0+wjsn8FJpqkGNFK2Y5UsmcOtweOCV7bpAgRshhBCSHArc+llwHEiSzQkaJbSqnhsc3F4/Hv5kF15dXZ3klQZLpWadGpbA/qidjsTXuYWvaaM1boQQQkhyBv0ct6MNb05wJVkqNWqU0KrEjJsrTuD24dY6PPfdPgDAjJIMjMqO3N+1JzzjlqJTIVWvQQ0cSWXcmrtCx4i02ZNvciCEEEKOZZRx62fSHLekd05QSevkvH4GX4yN3+X7iia7xyhf42bWq2HR84xb4oEbn//G18lR4EYIIYQkhwK3fqZOslRqdwV3TuClUiB2uXR/i116uSLJPUatDlmplAdu3UkEboGMW1lOCgCgzZ74OQghhBBCgVu/06qS2/KKj/4whAVuLm/0ztKGzuA6stoOR9RjetIlZdxU0hq3jj6USsfkioFbe7ebdlAghBBCkkCBWz9Ldo6bvDlBpVRAESg7xsq4ybenSjZw480JKbq+lUqbbeK1jA4Ebj4/k7J5hBBCCOk9Ctz6WbKlUr7GzRjY7ipeg4LD7UOXKxgY1Xcm18Upb07oS+DG3yc7RQdTYKxIWzetcyOEEEISRYFbP+NdpYnvVRqc4wYEB/lGC9zCg6s2uxv+GE0MvXlOkzYYuIVvg9Ub/H3MOhXSjGrpmgghhBCSGArc+lmyc9zsslIpEFwrF22NG1+bZgwc6/OzqJmyntaZ8XV1eo0SKToxUxa+DVZv8OtJ0amRbtAAoMCNEEIISQYFbv1MnURzgs/PpAydIVAq1cQZwsuDqzSjRsqUtdpDZ6n97o3NGPnnj/HFzsaYzyutq1MrkaITz9OVROAmDfLVq5AaCNzaqVRKCCGEJIwCt37GM26JlErlW1sZIjJukeeRZ7gyTGKg1GILBkotNhfe3VQLPwOWxNlZQb6xvTmQcePnToTUnapTS5k7WxIBIAB8X9mMOX/7Bv9ZuT+p9yeEEEKGMgrc+lkyzQk8gFIIwYBNE2hOiBYA2ly8G1SFTKMWANAqC9w2VgcH8m6v7Yz9vJ7IjFuia9zcXj+cHvEaxcBNHXKNibr3/R042NaN+z/cmfQ5CCGEkKGKArd+plEFmhMSCNy6ZbsmCIHtB+Jn3PjgXJUs4xYslVY1B4fzttnd0nDfWM+rl2XcbC5vQjPY5Bk6k04lZdySydw1d7lCrn3t/taEz0EIIYQMZRS49TMp45ZAqdTuDu6awMVb4yYvlWaaeMYtGLjtb7GFHF/T3h1xjvB1debAWjk/CzZK9AZf32bSqqBUCNI4kGSyZeHZwYpGW4wjD6//+6oS5/9rJXbWWfvl+QghhJBYKHDrZ8FSae+zVvK1Zlz8rtJgqZRn3JplpdJD7aEDeaPNeeNlUkAslWpVCmmUSSLl0uD6NpV0TfJrTERlU+jWXXubjnzgtqehC49/UYGthzrx4Ec7j/jzEUIIIfEctsDN6/Xi2muvPVynO2rJd07obclR3t3JaeNm3IJZroxAxq1N1lXaYBUDNVVg+4U2W2SHp0OWVdOpFRAEIanOUr5DAn9fnnFLJnCrahLLpCWZRgBAbXv8HSH8fganp/fZwWi+3t0kvbx6X2tSJV5CCCHkcDlsgZvP58Mrr7xyuE531NLI9hn19nIoLg/cjIGgB4i/c4JVXio1ihk3eXNCYyDDVp5vFt8WNioECAZuerVSWleXzPo0+X6n/JqA5EqlfOuuKcPTAACNXfF3hLj59Y0Yd8+neGfjoYSfi9vTECyP+pmYgSOEEEIGiqrnQ4LOOeecmG/z+fqW2ThW8HEggNhZqlb2HDuH75oAxF/jZgsplQbWuAUG3nY5PdIatXH5Zmw51BkS1HHyTe05czIZN1kQya+JX0ei6gKB23FFafjfhkMh+7GG21VvxSfbGwAAf/14FxZMHgYF3+A1AXubQ8uxuxu6MLU4PeHzeHx+/PF/W2B1evHIRROQbdYlfA5CCCEkocBtxYoV+POf/4xhw4ZFvM3tduPLL788bBd2tOLrxAAx6ArMo40rXqm0t2vceFdpYyDYSdGqUJBmABAM6kKfUzyHTvacwd0TEsm4BTtcgWCpNNE5bowxKeN2XFGqeA6XFzaXVzqn3Op9wY7TFpsb+1rsGJVtSug5/X4mlWfPGJeDz3c2YndDcg0Kb6yrwXub6wAAj322B49dPCmp8xBCCDm2JRS4TZkyBSUlJfjZz34W8Tan04kbb7zxsF3Y0UqpECAIAGO9HwkSrTkhXsbNLttjlM9x63J64fL60BhY35Zj0UmdotGyX9EybslsexXcqD4s45ZgqbTV7obL64cgACOzTDBpVbC5vGiyOmHKigzIwjtANx1sTzhwq+1wwOHxQa0UcGZ5Lj7f2Zh0qfSDLXXSy5/taMDDF02AqhfZVkIIIUQuod8cDz74IEpLS6O+TavV4ptvvjksF3U0EwQh4c7S4Dw1+Rq32HPcHPL5a3pVsAnB7kZDYH1brlkn2w0hMohyhO2NCkDWnND7jJt8uytAnOUGiNmyRDa+540I2SlaaFQKZKeIAWljjHLpwTZxxEluoCS58WBHr58r/BxF6QaU5aYAAPa3RI5O6YnL68OmmuDzW53efhtlQggh5OiSUMZt9uzZAIA333wz5jHyt11yySVJXtbRTatUwO3193qWW7dHDH6MUTJuUQO3QLZMF2gsyDBp0Gh1odXmljpKc8y6uKM55LsmcIdljZtW/J8xoNvji1rmjIavbxuWqgcAZJu12NdiR1OMBgUedJ0/OR/Pr9iHbbUdvb5mjo9JyU/VoyhDLCu32Fwxy7Ox7GnogtvrR7pRg5FZRqw70I7dDVaMCzSHEEIIIb2VUODGPf3001i1ahVyc3NRUFCAQ4cOoaGhATNnzpQ6EAVBoMAtBrVKAbh6v+1VtyvaHLfYXaV8iykedGUYtWi0utBic0ml0lyLNm4GrTtqxi1QKk1ojhtf4yY+l06tgEohwOtn6HJ6eh0A8fVt+TxwSxEzac1dkRk3p8cnBahnlufi+RX7UNlog9fnT6g82dApPqeYnVQj3ahBm92Ng63dCQVdlYHsWllOCkbnmAKBG3WnEkIISVxSgdvYsWNx8cUX45ZbbpEee/rpp7F9+3Y888wzh+3ijla8QaG3a9yilUrjrXFzyjJuAKQGhVZbsFSaEwhGgOhr1pxx1rglNseNZ9zE9xUEASadCh3dHrFBwdK78/DAbViaGLilGcRrb++ObKyo7XCAMTFDObkwFXq1Eg6PDwdauxNa59YgBblikFiUbhADtzZ7YoFbYFBwaY4JY/LE99tVP7R2Yahp60auRderLmhCCCFHTlI/hZctW4Zf/vKXIY/deOONWLp06WG5qKOdNIS3l6VShydyHEi8rlJnWJlT2vbKHsy4hZZKPRHDgHmwKO8qjdfMEIu8w5VLpskhvFRqCbTjtndHXktNoExamG6AUiFgdGB9WqKNBdJ6wEDgVhwolx5oTWyd297Ajg+jsk3SWrmKxuQybg2dTix8YTV++syPONBij3vs2v1tuGjxD/jdG5v7NIj4zne2YvbfvsHpj3+HtigdyIQQQvpPUoHb8OHDI4btLlmyBIWFhYfloo52mjjNCQ63L6L8F61sGSvj5vH5pcG+OrV4TIZsCG+tLADiAZTHxyJKrtE6WeM1M8TS5Qpd4wYAJm3iQ3ilUqklNOPWESXjxu8fn5U2NhAsyUd51HU4cOWLa3Dr0k0xgxq+xi2PZ9wyxB0bqhMM3HjGbVS2Sdr1odHqkkauJGLR+9vxw95WrK9ux53vbIt5nMvrw61LN2HjwQ68u6kWi7/Zm/BzAcCG6nYsXVsDQAxYn07yPIQQQg6PpAK3F154Affeey9Gjx6NU089FaNHj8aiRYvwn//853Bf31Ep2FUaGix1u704+e/fYvpfv8RmWReitHNCSFdp9DVu8iAkWCoVM26H2h1oCQzbLUwzwKhRIbAkMWI2W3AciDxTpo56bDzhc9wAcYYcEH2WW6fDg9+9sRlPflkZkgWs6xCDqGCpVAxGO6Jk3PhcusxAiXhMIHDbVR/Mct2zfAe+r2zB+1vq8Nqag1GvXZ6dBIDh6WLGrbo1fqZLzunxSY0SpdkpSDVokBoIOhMNAFtsLny1K7gF16p9rTgY4xzf7G6WSr0A8N/V1UkFip/vEIcYWwLZ1nc2Hoqa5e0JYwwPfrgT0x/6Evd9sCOhjmJCCCFBSQVu06ZNQ1VVFV544QXccMMNeOGFF1BVVYVp06Yd7us7KknZsrDAbeuhTjRYnWAM+DQw9R9IbOcE3pggCMFyKl/jxoNBk1YFs14FhUKIuXdovAG8vc24McZkpdJgxi3e7glPfVWJdzfV4okvK/BZIGhwuH1SiY43J6RKa9wiz9ESyLjxEnFZrriubE+jmHFrsjrx9e5G6Xj5jDXO7fVLQS4fKVKcyQO33gdcVc02MCZeLw8kiwOZu3ilTm+U9Y8fbKmD188wqcCC6SPE3RtW7m2J+v5r9osDiK+YUYSidAM6uj34ZFtD1GPj+aFKPP89541DrlmH9m4Pvt3TnPB5XvrhAF5YuR9NXS689MMBvN2HbcgIIeRYlvRKY7VajTlz5uDSSy/FnDlzoFare34nAiDYnBA+DmR7baf08tZDHdLL0Uqlsda48YybVqWQOnz5ujBebixI00tvizXiw+EWr60vW145PD74ApkV+Ro3U5wA8POd8oCqHkBwtEeKTiVlfoIZt8hSKc+48RIxz7jVtDlgc3nx1e4m+BmQFZgFt622E/awsi3faUKlEKTnKkoXA666Tkevs057eZk0yyTd8xGBcun+KJk7xhjufGcbyv7yKX69dJN0/wDgnY21AICLji/AiSUZAMSsWzRbD4lfS1OGp+GnUwoAAO9uqu3VNXNtdjd2BAYZzx6diXMn5gEAPt/RGO/dIjg9PqnEysvO//yyMuRjOxJabC78ZtkmXPzsj/hiZ2LXLNdud+OJLyrw2Ge7pXWPhBAyUAZ9i1hzczPOPfdcGAwGlJWV4auvvop6nMPhwBVXXIGUlBQUFRUN6kaJWAN4eTkQCAYrQPT1ZtoYWbvwxgRALIvK8UAOiJ394g0R+igZN5vL26tfujwwUyqEkGuXsnxhwVJntyfk4169rxWMMak0yTNVQDBwi9ZVyoMunnFLM2qkrNmehi6p3HjVjOHIStHC52cRzQLNsqwd3+M006SBUaMEY2LZuTeqmsVrl3ezxsu4fbWrCUvXHoTPz/DBljq88uMBAGIzw7baTqgUAuZPysfMkRkh90jO6/NjR50YuE0sSMWCyeIWdT9UtUjl395YVdUKxsQxJtkpOpwxLke8xt2NUTOCsbyzsRatdjeGperx5e/nItWgRm2HAz/EyBY6PT4sWXUAL67cL30uObvLi3uWb8ep//gWd76zVfreiHaOy55fjeWb67DuQDuu/+96vB8ls9qTVpsLCxb/gCe/qsTT31ThgqdX9tgUEkuLzYU319Xgw611Ma+bEEJ6MugDt5tvvhn5+floaWnBo48+iosvvhjt7e0Rxy1atAhtbW2ora2Vul4rKioG4Ip7FiyVhv7wlv9SretwSGvguuNseeXyhDUVeCK7QfNSdVDKNlgvSAsGbrEzbrF3TgBC16e12d34cW9LRDDHg0GTViVlm4DY3an7WsTsVIZRA71aiVa7G3sau6TS5PCMYACaahTP4fT4I5oLeImTl4gBSN2cmw62SwHDyWOyMTpHDKh4AwHXJDU4aKXHBEGQNSj07pd3VWCT+pGybbl4yfVAlF0Y3lgvNgLwwPyJLyvQ0e3GWxsOSdecbtRgYkEqlAoBzV0uqYmCq2i0wenxI0WrwogMI4oyDJg6PA2MAcs3i1k3t9ePP7+7Dcfd/zl+uyx6gwYvk84cJQaJU4anId2oQUe3B2sPtPXq42eM4T8/7AcA/HxWMYxaFc4LZO6iZQA9Pj+ue2U9/rJ8Bx74cCfOeGIFNh4Uv9/b7W5c/sIa/HdVNaqa7Vi6tga/f3NzROAKQJzd12RDpkmDs8fnAgD+9PZWVCbYzbvo/R2obu1GvkWHkkwjGq1iFq+3Mxi5FRXNOOOJFbj97a245fVNOPep72OuT/T7Gb7e3Yj/+6oSb284FHVNaXOXC009BOG76q24ccl6nPTo17js+dX4fEdD1HvVk/pOB/726W7cunQTnvqqMqHgP5zN5UVzlyuhwL+vfH6W1MdNyGCV1By3/mKz2bB8+XIcOHAABoMBCxYswOOPP44PPvgAV111VcixS5YswXvvvQez2YyZM2fi/PPPx7Jly3DPPfcM0NXHJmXcvKE/TOQ/EP1MfH1Yql4q4xl61ZwQOnyXP9/onBRpdlj5sODwNGkLqog1bpGZO41KAa1KAZfXD6vTA4tBDb+f4coX12BHnRU3zinBneeMlY63RhkFIn89PFjcF8hOjc5JgUop4PvKFqzb34bqtsiMW4pWJQ3ybe92I88SDEbDM24AMCYvBd9VNONf3+yFw+NDQZoe5flmlGan4Ie9rRG/0PmODHxrLa44w4Bd9daIdW61HQ5Ut9oxY0SGlKEDgKpAQDgyO3jtsUqlPj/Dqiqx9PnWTTPxx7e2YHdDFx7/ogLvBYKcS6aKndt6jVL6nG491Cmt/QOCZfYJBRbpWhYcNwzrq9vxzsZaXD+7BPd/uAOvB5oy3ttchxyzLuRzB0AKcE8alQkAUCkVOHVMNv634RA+39GImSMzpWNdXh/e2VgLp8eHn04pkIL8lXtbsLfJBqNGiUunide+YPIwvLr6IL7Y2QinxxfyR8Zrq6uxcm8LdGoFcsw6VLd247LnV+OaWcX4Ykcj9rXYkWpQ4/rZJXjyy0p8sr0BX+xsxBnludI57C4vXlwpBot/OW8czpuYjytfXIMfq1px06sbsPyWk2DSqtDl9OC9TbXYXmvFCSXpWDB5WMjn7vMdDfhwaz2UCgHPXzUVGSYNznxiBbYc6sTT3+zFb08bHXK/Vu9rxec7GqFVKzCtOA0nlmRCrRTwr2/24smvKsGY+MeH3eXFvmY7rnl5Ld795SxYDME/iNrtbtz46gas3R8MjLXvKjB/Uj6mDE9DRWMXvqtolr5XxuSm4K5zx2J2aVbItXy+owG3Ltsk/Tw41O7Aqn2tmDUqA/edX45R2SlgjOFgWze21XbC52coyTShPN8s3QOr04Nnv63Ciyv3h/yceea7KvzhjDJcM7M45A/CysYufL27CU1dLph1auSl6pBj1qHb5cX66nb8WNWK3Q1WMCY2K506NgeXTS/CtOI06Q87/j3wzsZD+LGqFV4/w4hMccu50TkpMGlVcHh86Oj2oM3uhk6tQHGGEeOHWTAq2wS1UgHGGHbWW/HR1np8sbMR+wMZ0pIsI2aNysQJIzJQnm+GVq1Aq82NVpsbHQ43GBMz+akGNcw6NaxOD2raulHRaENFUxf2NtrAIN6nGSXpmD4iA6OyTdCoFOjodmNfix3VrXapcqJUCNCqFNCplVAIgN3lQ7fbC5vLB4fbi2yzDiOzTBiVbURhugEKQUBdhwNVzTbsb+lGdasd3W5xr+QUnRpmnUr8X6+CQhDgZwxeHwOD+MdxSuDterUSrTYX6jqdqO9woK7TCbfXD6NWiVSDBlkpWmSZtMgwaeDx+tHt9sHt88Pj80t/fAsCoAh8ThxuH2wuL+wuH+xuLwwaJTJNWmSatLDo1TBpVXB5g8fYXB7YXD4wxqBSCFAqBCgV4uB1hUKQPSb+UymEwO8WJTw+PzodHnQ6PLC7vHD7/PD5WMj7qRQClEqF9LpaKUClUEj/e/0MXr8fXh+D0+MT/3n98Pr8UCgEKAXx/RT8f+kx8Y9zxhj8DPAH/meMwe8XXzbr1dLSk4E0qAO3yspKWCwW5OXlSY9NmjQJO3bsCDmuvb0dDQ0NmDBhQshxa9eujXlul8sFlytYhrFa+28gaqwBvM1hZaGmLhcyTVppvIc8ANLGaE7gGTet7JchABxXlCoFbtOK06XHjdpg+VMu2gBeQPzCbe5ySUHX1tpOaR3Uf1dV449nlkm7E0RrTJC/HivjVpJlRFaKFt9XtmBDdbu0Zq1IlnETBAGpBjVabG602z1S4Ob3M6mRQR64zRyZiee+2yd1oZ5VngtBEFAaI+PGS6VZgR0aOH4N8sBtR10nLlr8I1xePy6bXoSHL5ogXQv/pSHPuA0PBKDNXaHbZ+1tssHm8sKoUWJcvhl/PLMMv3hlPf67qjrwfgacOiZbOs+kAksgcOvAWeODgcuWQOA2sSBVeuy8iXm4/4Od2N3QhStfXIuVe1sgCMAlUwrxxvoavLLqAK6fUyLds5q2blS3dkOpEHBCYD0dAJxRnov/bTiEL3Y2YtH8cRAEAW6vH9f8Z5203u7fK/bhv784AaOyTXjphwMAEBLMHV+UhjyLDvWdTny7p1m6drfXj+dX7AMA3HXuOFx03DDcunQTvtrdhOe+Ex/PNeuw5BfTUZqTgm63F09/U4VHPtmNU8ZkS193b6yrQafDg+IMA86bmA+lQsCTPzsO5z31Paqa7bjk2VUYk5uCT3c0SH+gvLG+Bu9srMXTlx8Pi0GNzm4P7n5vOwDghjklGB/4Y+eBBePxm2Wb8a+v9+K0sTkYP8yCbrcXD3+8G0tWV0v36RmIf+iYtCrp6/Gy6UVYNH8cOh0eXPj0D9jXbMevXt+Al38+HWqlAi02F654YQ12N3TBoFHijHE52F5nxd4mG97acEjKugLiL1YBkD6fl00vwl/OGwu9WonnVuzDo5/uBmPA7NJM/HLuSKzc24IXV+7HD3tbcdrjK1CUbkB7tzvij6dMkwYzSjKgVSnx+Y4GaTnDtOI0nDwmG5/vaMTmmg488OFOLF17ED85vgBWpwdf72rCngSymVanF+9uqsW7m2pRmm3CeRPz0Wp34fMdjSHd0ID4h9i6A5FVlnBalQKlOSa02z3Sel65ikYbKhpt0tdksioabfg00DjFAwenp/8yiGTgjMwyUuDWE5vNBrM5dEK92WxGR0dHxHFKpRIGgyHkOJst9kbeDz/8MO67777Der29pQlky8LLLTyoMOtUsDq9aLI6pbKmIISPA4nfnKBXh1bBf33KKOyo7cTs0iwp4wMAJq14LeGL86Nl3AAxeBQDN/Fa18gWxzs8PlQ126WyZJczdNcELtY8uOBfxiaU5YjnWF/dDm9gLWCJ7LoBINWgQUvgr2Wuw+GR/mpMNwZLpSeWZCDfokNdpxMKAfjZdDH7U5otPs/eGKXSrLCM2/D0yFLp3z/bI2Uklq07iF/OHYmiDANqOxxwef3QKBUokK0ztOiD22dVt9pRni8GBZtrxF9OvAx6yphsXHTcMLyzqRYqhYB7zy8PyQhNLEjFsnU1UiMCt6VGfH1SQTCzmmrQ4Ma5JXjq671SJ+ptZ5ThV/NGYleDmLVbuuYgfn1qKYBgtu24wtSQbclml2ZCr1aitsOBHXVWjB9mwTPfVmHVvlbo1UqY9SrUdTpx6XOrcO1JI/D17iYoBOCqmcXSORQKAedOyMMLK/fjo231UuC2fHMt6jqdyErR4uIpBdCplXj+qql4c30Nvt3ThOIMI26aOxJpgc/rTXNH4vU1B7GvxY53NtXikqmFcHv9eOF7Mci7bnaJlBHKStHiuSun4ur/rMXOeit2Bv6IGZVtwrTiNCzfXIeVe1tw0TM/4OmFx+OxT/egqcuFkiwjfhO4JwBw/qR8fLKtAZ/uaMD1/12PX5w0QroGALhgcj70aiW+r2xBbYcDbV430gxq/OW8cbjoePEHvk6txIvXTMNPnvkRP+xtxW3/24KfTSvCXe9tw75mO7JTtHjtuhNQmiNmxTYebMd7m+pwqL0beal6zB6ViZmjMgEmltJf/vEAlq49iK93NyLNoJG2U1t4QhHuO78cKqUCM0dl4mfTivDARzvx5a5GaS2pRqnA2LwU6DVKbK+1osXmxodb66WPd1S2CbefWYbTx+VAEATcNGcklq2rwSOf7MLeJhse/XS3dKxaKWB2aRZGZZtgdYjBU3OXC1q1EmNzUzBrVCZmlGQg3ajBpoPt+N/6Q3h/Sx0qm2x44svgshaLXo35k/Jw7oR8pOhUqGzqwp4GG/Y2dcHl9UOrUiLdqEaaUYNulw8VjV3YWWdFl8uL7bXi51WjUuDksiycOzFfXCYAYEtNB1bubcHG6nbsa7bD7fMjw6iRMkeCIK6Z5Rkfk1aNYak6jMpOQVmuCaU5KVAKArbVdmJVVSu21HSgS7beN8+iw/AMA4alGqRqgMvrg8srZrIMGiVMWhWMWhW0KgXqO53Y22RDVbNN+nmrUSlQkmlESZYRwzOMMOvU8Pj86HJ60OX0wur0wOoQn1OlFKSsWLfbiy6n+M/h8SE9sK43P1WHPIseOrUS3W4v2uxuscze5UJ7txsapQIGjRJalRIqpSB9vzAGMDAwJv4OMAau26hRwh6YNdpqd8Hq8MDm8kKnVsKoUcGkVcGkE49VCIDXz+DzMfgYg88f+c/rF++Ny+uHy+uHSiHAolfDolcjRaeCWqmASinA7w+cy+8P/M/EzFpgbqnHJ2bYPH4xy6dSCFArFVLGU6tWQK1QwBfInvHrYUzM8vqkrBqDUiFAEAQoAllHhSBIGcgcc+jvg4EyqAM3k8kUkQmzWq0wmUwRx/l8PnR3d0vBW7Tj5O688078/ve/Dzlvfw0QlrpKZYGb38+ktSxluSlYd6AdjVaXVMI0aVQhv7RjjwOJXOMGAHkWPZbfclLEtfBg0BY240vaZF4THriFbpMV/lf2jrpOWeAWOcNNPEf0wK02UGIoSNNjcpEYvPAmAIUAjM0LDeJT9XwIbzBz1xrIWlr0aukeAeL9evbKKXjq672YPykfowIBG98Nga8p5GXsJmtgjVuUUikQzLi12Fz4tkIcjzE8w4Dq1m4sWX0Ad507TlrfNiLTGFJS4udps7txoKVbCtw2HewAAEwuSgUgZhX/fvEkXHZCEXLNOhSmhzaZTAwEZlsPdYAxBkEQ4PT4pM/JpMLUkONvOWUUWmwurNnXhkumFeLGOSUQBAHXzCzG79/cgmXravCrk0dBqRDwQ6BkO3NUZsg5dGol5ozOxGc7GvH5jgbo1EqpY/TRn07ESaMypdL5Y5/tAQBcdWJxSMYRAM6blI8XVu7HV7sa4XD7oFUp8Ox3VQCAX5w0Qvr6VSoEXDa9CJdNL0K4FJ0av5o3Cg99vAtPflmJCybn471NYvCXnaKN+Mt4cmEqPv7NbLy1/hAcHh/mlWXhhBHpEAQBV84oxi9eWYeqZjvO+uf3AMSvmScumRzyvSQIAh6+aAIqm7pQ1WzHgx/tAiBmAv9+8SScVCreL8YY9jbZ0GxzYXJhasgyB0D8Wn7i0sn45asbsHxzHZZvFhsn8i06vHb9DOmPK0EQMGV4OqYMT0c0955fjjPG5eAP/9uC+k4nGq0uaFQK3HPeOCw8oShkbWlRhgH/vmoqmrqc2N9sR6pBgxGZxpCfJRsPtmPjwXa4vX4cX5SGk0ZlhvzcUSgEXH5CEc6blIc319Vgy6FO6NUKzCjJwKljckLKvvFMLU7H1OJ03HXeWCzfVIsN1e1INWgwc2QG5pZlSUtBAEjZznj8frHsu7uhCxa9GhMKLBH7IA9L1eOcCXkh76MI+77sjTmjs3DzyaPAGENTlwsujx+ZKZqIz3FvMcbQKW0NqI74WUFIuEEduJWWlqKzsxMNDQ3IzRX/Kt+yZQuuu+66kOPS0tKQm5uLbdu24YQTTpCOKy8vj3lurVYLrXZgomdNlC2vupxe8PWzpTk8cHNG3TIK6HkAb3imLBZeKg3PuDljBG7msC5UvtYmzaBGe7cnpOMumHHrXam02RpcV2bSqjClKE1aBD8m1yxdK5capbOUl5vljQncxIJU/PuqqSGPZaVooVMr4PT4UdvuQHEmL2NGX+PGS6U17d3w+Rm+3t0ExoAJwyy45ZRRuHHJBnywpR53nj02mNXJifwDojjTiI0HO3BAlrnjgdtxsoBLoRBCSttyZbkp0KgUsDq9qG7tRnGmETvqrPD5GTJNWmn0BqdVKfHwRRMjznPOhDzc98FO1HY4sKKiGXNGZ0Wsb5M7Y1wuPtvRiP9tOITPdjTC7fPj5LIszJ+YB0EQ8Pr1M/C7NzZjVVUrTh+Xgz+dPSbiHJMKLChI0+NQuwNf726CUiF24Jp1Kiw8ITJIi+XKE4fjhZX7UNvhwGOf7sHH28Rs0fWzSyL+eAHEX96/Oa004vFx+Wa8d/Ms/Pr1TVh7oA1ZKVo89tOJEcEvIHYpv3njiXjq673YVW/FlOFpuHHOyJCgRSzDp6A0kDmO5szyXLz88+n468e7cKjdgdmlmbhn/riQ9Zq9MXNUJr7+wzx8X9mMbrcPs0ZlRmSK5bJTdMgOWwIAiIHqjJIMzJCVxmMx69S4bnZJQtcZ6zxXnliMK08s7tN5FAoBxZlG6fu3t+/TF4IgSMO5+3oe/rOMkN4Y1IGbyWTC+eefj0WLFuGf//wnvvjiC2zfvh3z58+POPaKK67AAw88gKVLl2LHjh14//33sWbNmgG46p5Je5XKxoHwcp9Ro5TKo41Wl7T2zBQWuPG/knnamP+V5oiyx2g8JilwCy25OmKUSuVdqIwxKas0d3QW3ttcFzImI1bQGS3jxhiTgi6+VdVFxw+TAjc+Q0wuuO2VPOMWub4tHkEQUJRuQEWjDQfbumWBW+i1cHkWPTRKBdw+P+o7HfgyMB/stLE5mDs6CylaFRqsTmw82B41EONGBNa58fKwzeVFRWBPU55x64laqcC4PDM213Rgy6EOFGcapcaESQWWkGxLPDq1Ej+dUoAXV+7Ha2sOwqBRos3uhkWvxnFRruX08hykfaRGfacT9Z1OpBrUeOjCCdLzWfRq/Oea+MO4BUEca/LMt1V44ssK6Q+Fq04sjgj0e7r23542Gne+sw0vBBoShmcYcHkCwR+XY9bhzZtORKfDA4NGKX2fRpNh0uLe82P/Ydhbc0ZnYc7orJ4P7IFeowxp0CCEHL0G/TiQxYsXo6amBhkZGbjtttvw5ptvIi0tDa+99lpIRu3++++XGhkuvvhiLF68GGVlZQN45bFF2/KKp8oterX013BTlzNm1korKwPKM3fOwMu9DdyiNScwxoKl0ihr3ADA6vCgxSYubhYE4KRAV1tNe3DRvtURfY1bSljwB4g7IPC5dlmBoOuSqYX43Wmj8fNZxbhu9oiIa+dr2OQbn/NSaYax93/BFgVKkHzdjzyIDM9cKBUCCtLFwLqisQvfV4qZqVPHZkOnVuL0wKyzD7fWBwO3KMEPDxB5hnJrTQcYEzNC0bIhsUySyqWdIf/LGxN6g5civ97dKI3vOG1sTtTgxaxT4+nLj8ewVD0K0vR49oopIV2tvfWLk0YgRavC3iYbDrU7kJ2ixY1zE8/i/GxaIX41byQUAqTrCc/OJsKiV8cN2gghZCAN6owbAGRlZeHjjz+OeHzhwoVYuHCh9Lper8drr73Wn5eWNJ4tk++cIM+s8QWQ8lJp+HoNTVjgxkuawTVuvfvFY4zSnODy+sFHsoWXSvnC8LZuN/YFsm0FaXqMzBIDkZq2aBm38FKp+LG4feKCVJ1aKY3fSDME16YpFELUshYXrVTKg7hopdJY+I4IPHCLFkTKlWQasa/Zjme+rYLD48OwVHG0CACcNykP72yqxcuBwblqpSCtYZPja5h4qXRTYDuy3mbbuAkFqQCqsS0QsEkdpYU9rwuSG5Vtwgkj0rFmfxs+C+yMMH9SZJaTmzkqEz/86ZSEniNcpkmLR386EXe8tRVatQL/d9lxCWXbOEEQcPtZY3DrqaXQKBV9LoERQshgNugDt6ORJkpzAi9VGjQqad2EvFQanrVSKcSuFz/jnaXiL7xYmbJYTFHWuEXbqJ7LSQkGlXxXgJJMk7RwvrHLCZfXB61KGXOOmymwuT1j4qwonVopawbofbYp3RhZKm0JBG7pxt6vXywKZND4QFReJpUHkXLTitPx5a4maUTB/En5UpnwpFFZSDWopWuaXZoVNfvJM25i1tITt6waD8+4ba/rRHOXS1pzOCnBjBsgNi+s/c9aMCZ24c49DCW8npwzIQ9njMuROrn6ordZZkIIGcqoHjAAoq1x45u6G7VK5ASCl06HRxomGx78CIIQtUGB76TQl1IpD/7USiGiZCQPKvfJdgXgux0wFty6K1aZV6EQYNKErnOLtlNBT/i2V/JSaRvfNSGRUinvFA1k3ILDd6MHkWeGrSW68Lhh0ssalQJ/OF0czKpWCvjlvJFRz2HSqqR1eAdauqVRINHKqvGUZJlg1CjR7fbh1cAcsTG5KSGjUHprdmkW3v3VLDxx6SS8eM3UPgdSvaVSKvrtuQghZKijjNsAUEcZ5SHPuJn1KmmHAp5BiVZC0qoVcHh8IYFbsDmhdzF5tOaEeA0OfLF+Q6cTVbrgwFxBEJCfqkNVsx31HQ6MyDTGbE7gj3W5vLLATQyW4nXDhePByeEqlda0dYst/tbo69u44kxxttdzK6pw09yR0vgT7soTizEu34I0gxolWbFH0hRnGNBic+Hr3U1osYkzlaKVVeNRKgSMH2bBmv1teCYwTuPEkT13BcYyuTAVkxPM+hFCCOk/FLgNgGjNCVLGTaOU2swPtnVLg2HD17gBwbEi8iG8Tm9iXaXRxoHEK7fmWoKNEzxJwjdQz0/Vo6rZLk0t73IFBwqHS9Gpgc5g8wUPlhJpr0+L1pxgF8+TSMaJd/HaXOKASj65PV7273enj8ZvTyuNmSmaMjytx+ctzTFhfXW7NAdt+oj0pMp9U4vTsGZ/m/SHwJzSI1/iJIQQMjCoVDoA4q1x44EUnx/Gx21Ey1pp1Txwi5Zx623gFmhOcAc7PKNtMM/xxfoeH5NGf0iBW2D+FN/0vMMuBmXRZhSFjwSRxm8kknELnLfL6ZXupZRxS2CNm06tRG4gYDzY1o2aQMm0MM0Q7936XN47YYSYGeNbnyW7puzSqUVSEF+cYcDs0sjZa4QQQo4OFLgNAKmrVB64SWvcxICGZ554d6dFH6VUyte4eSLHgSTanOBnwUxbvIybRqVApqwMmWpQS+vJ8lLFa67rcMDl9Un7HGZGCaJSwgb59rSuLBqzXg3eQNjR7YHX50d7oCkg0TVefJ3bwbZuaaRJUXr8wK2vThmbHbIXbPjaud4qyjDgtetPwA1zSvDfa0+Q9uwkhBBy9KGf8AMgWnMCL1XyX+ThZbpoA2WlHRhkAaAzwYybXq2Ugh/eoBAv4waIs8a4UVkmKfPEZ3nVdTqlzJdKIcCsj1EqRd+aE5QKIWQkCA/aBCE4nLe3pFlurd3SWBD5pvZHglmnxiM/mYjROSY8sGB8n55vWnE6/nzO2CN+zYQQQgYWrXEbANIaN698jVugVKoJzbhx0RbKS6VST+QaN72mdzG5IAgwasRGAbvLB6T0PFJkQoEFWwJzw+RruXiptK7DIe1gkGbURC0pSoN8A0N4Y+0N2pNUgxptdjfa7G5py7BUvTrhrBMP3Pa12KWu2COdcQPETcvPn5R/xJ+HEELI0YEybgNAHSVTJmXcAmvOcnqRceO7J0Rd46bq/SL38AaFnvY7PWVMtvSyfJud/ECptL7DIVtrFr1kadYH9yu1ubxSsJhIqRQIrnNrt7uTakzg+EDc7yqa4fMzaFWKqMN3CSGEkIFEGbcBoFFFNidEZNxkAYxGpYgajPA1bqFbXgUCtxhlzmh4gwIvlfJriXWOk8uy8cCC8UjRqkIybnxzbLvbJ+0IEGssR7psBhsvk6ZoVTHLs7HId3LwBhYEJtKYwPGdD3jAWZJlogn8hBBCBh0K3AaAlHGLsuUVz37J934sSNNLm8jLaaJk3Jx8AG8CGbfw3RN49ssQI+MmCAKunDE84nG9Rol0owZtdre0BVOsHQx4QNdqc6MxMH4jK4H1bRwPAMXmBBZy7kQUZxhh0aulPWP5jgSEEELIYEKl0gGg6WGOGwAMzzBI5dKxeeao5wmWSmVr3HpoLIgmfPeEZM7B5QXmvG2rFQO3WKVSXvptsbnQEBgfwtfIJUI+y41vMJ9MqVShEDCvLDiOQ/4yIYQQMlhQxm0AqKVxIPKu0kCWKxBECYKAv144AV/tbsJtZ5RFPU/cUmkvd04A5Gvceh4H0pP8VD121Fmxu6ELQOwgKhi4uaW5b3y4byL4fqWtNhc6AwGxPFuZiN+eNhrbazsxJs+MU8fmJHUOQggh5EiiwG0A9CbjBgCnjs2JG0CEl0q9Pr8UDB6OUmkyU/yHhQVN4a9zfBZcm90l7bSQl0Tglid1sjqhCgw2TuY8gNig8NUf5iX1voQQQkh/oMBtAERb42Z3h2bceiO8VOqUnS+RMiefHRfenJBMqTQ8UIs1VyzdqIEgiIN/d9VbASS23ZX0fIHtqg61d0MbCDSTzbgRQgghgx0FbgNAHcgM8XEgHp9fCuKMCQRLwTlu4vvyUSBAMKjrjfCMGx8HYkgicBuTF7rh+vAYs9BUSgXSDGIjw45aMXBLJlPG9xmttzqhCMyLi5XlI4QQQoY6ak4YAOGbzHe7ggGXQZNAxi1sHpzTE1zflsg+mtIaN3fozgnJlEonDAt2Y+rUCmTHyaLxxgV+/clk3DKNWmhUCjAG+PwMgpDceQghhJChgAK3AaANa07gAZNGqZDWrfXqPOrQvUqdSa5NC3aV9r05IdWgwUXHDQMA/PqU0rjHhjcjDE9iuyaFQgjJsGWnaBO6h4QQQshQQr/hBgDPuPn8DD4/kxoT+K4JvRWxxs2T2AbznCnwvMHmhOTOwz3604n4/vaTcfPJo+IeNzLLJL2ca9ZJ+5cmipdLAaAk0xTnSEIIIWRoo8BtAKhlGSGPzy+N4TAmUCYFgoEbLzUm2w0aPsfNEQgkk2lOAMTAtLAX+3yOyg4GWXzngmRMKkiVXp5YSINzCSGEHL0ocBsAvDkBEIMuXipNtBlAGgdymEql4eNAkg3ceks+5Pa0ccnPTTtrfC74xhLzJ9KG7YQQQo5e1FU6APgcN0AcCRI+fLe3+ABePsdN3pyQiIg5bu6+lUp7qyDNgMULj0dzlwuXTi1M+jzjh1nwxo0notvtw/hhlHEjhBBy9KLAbQAIggCtSgGX1w+nxyetcTMlucaNjxJJtqmAl2il5gReKj3CgRsAnDMh77CcZ1px+mE5DyGEEDKYUal0gPByptMjy7gluMZNE9acwEumiZZK5Rk3n59Jw4BTdBTXE0IIIYMJBW4DhJcz5Rm3RIbvApGlUkeSpVJjINPn8PjQ5fRIj5socCOEEEIGFQrcBoheyrj5kl/jxndOiFjjllxzAgA0WMUN3zVKhRQYEkIIIWRwoMBtgISUSpPMuGmU0de4JRq4aVUKqAJtmQ2dYuBGZVJCCCFk8KHAbYBoQzJufBxIshm3vg3gFQRByro1BjJuVCYlhBBCBh8K3AaIPhB0OTw+dAeaAUzJjgOJmOOW+KeVP3d9IOOW6LUQQggh5MijwG2A6KJk3BIdeCtteRW2yXwyYzx4g4KUcaPAjRBCCBl0KHAbILpAtszpDa5xSzRY0sjmuDHGkl7jBgQbFIJr3JLbN5QQQgghRw4FbgOElzNdHh9szuQCN61sz1OX1y+VXJPZqoo/d4PVBYCaEwghhJDBiAK3AcKDK4fbJ23ubkxyjRsgBm4ONx/km0TGTcMzbg4AVColhBBCBiMK3AaIViqVBue4JZrlCtms3uuXBvkm2p0KBIPG9m5PUtdCCCGEkCOPArcBIp/jlmzGje95Kp4n2J2aTMYtfJ9UGgdCCCGEDD4UuA0Q3vnp8PiCA3gT3GQeCAaALq9Pak5IJnALb0ZIoVIpIYQQMugM6sBt3bp1mDRpEgwGA+bOnYvq6uqYxxYXF8NgMMBkMsFkMuGmm27qxytNHG9OaLO5wZj4WIo28U5OvttCtzuYcdOrEw+6MkyakNczTdqEz0EIIYSQI2vQBm4ulwsXXXQRfvOb36CtrQ0zZszAlVdeGfd9vv76a9hsNthsNjz77LP9dKXJ4ZmyVrvYxakQkhucy5sc7C5fn5oTslN0Ia9npVDgRgghhAw2g7Ye9u2338JkMuHaa68FANxzzz3IyspCdXU1hg8f3ufzu1wuuFwu6XWr1drncyaCB2mtNjcAcX2bIAjx3iUqvi6u2+2VNSckHriFB2oUuBFCCCGDz6DNuO3cuRMTJkyQXjcajRg5ciR27twZ830WLFiAnJwcXHjhhXHLqgDw8MMPw2KxSP8KCwsP27X3Bs+4NdsCc9OSXFPGg7SObg/8gZJrMnPccsyhgRqVSgkhhJDBZ9AGbjabDWazOeQxs9kMm80W9fjXX38dBw4cQGVlJYqKirBgwQIwvngsijvvvBOdnZ3Sv5qamsN6/T3hgVuXM7mOUo6P/mixuSIeS0RBmiHk9WSvhxBCCCFHzoD9dj7jjDOwYsWKqG+7++67YTKZIsqXVqsVJpMp6vvMnDkTAKDT6fD444/DYrFg//79KCkpiXq8VquFVjtwWaXw/USTD9z4Wjmx5KpRKaBUJF5yVSoElGabUNlkw6ljspO6FkIIIYQcWQMWuH3++edx3/7ZZ5/h+eefl1632+2oqqrCuHHjejy3IAhJrRfrT+Fz0pIdeMsDt5YuV8jryXjmiin4aGs9LjxuWNLnIIQQQsiRM2hLpfPmzYPNZsPLL78Ml8uFBx98EFOnTo3amHDw4EGsWrUKHo8Hdrsdf/zjHzF8+HAUFxf3/4X3kjksUDMmUd4EgmVRvlbOkMQG89yobBN+c1opijIMPR9MCCGEkH43aAM3rVaLd955B48//jhSU1Pxww8/YMmSJdLbb7rpJmlWW1dXF2644QakpqaiuLgYe/fuxfLly6FQDNoPD+awgbephsRnuAGyUmmgOzWZxgRCCCGEDA2DegX6tGnTsHXr1qhvk89pKy8vx7Zt2/rrsg4Lsz40UEszamIcGR9fG8ebE5JpTCCEEELI0DB4U1JHOa1KEbJJfLohucCNNznwwI0yboQQQsjRiwK3ASIIQki5NPmMmxio8RluRgrcCCGEkKMWBW4DKNsc3GYqI8nALbw0atEnt1aOEEIIIYMfBW4DaFhqMHBLtpMzfPxH+No5QgghhBw9KHAbQCmyUmlRerKBW2jGLbxblRBCCCFHD2pBHEDXzhqB9dVtOL4oDWplcjG0KWzHBbOePqWEEELI0Yp+yw+gCQUWfH/7KX06R5oxNMNGGTdCCCHk6EWl0iEuwxi632qyg3wJIYQQMvhR4DbE6TXKkA3rc2SdqoQQQgg5ulDgdhRIl40SybVQ4EYIIYQcrShwOwooFcEdGLJM2jhHEkIIIWQoo8DtKDBzZAYAscNUlWR3KiGEEEIGP+oqPQrccdYY6DVKXHVi8UBfCiGEEEKOIArcjgJpRg0WzS8f6MsghBBCyBFGdTVCCCGEkCGCAjdCCCGEkCGCAjdCCCGEkCGCAjdCCCGEkCGCmhMCGGMAAKvVOsBXQgghhJBjDY8/eDwSCwVuAV1dXQCAwsLCAb4SQgghhByrurq6YLFYYr5dYD2FdscIv9+Puro6pKSkQBCEnt8hQVarFYWFhaipqYHZbD7s5x/q6P7ER/cnPro/8dH9iY/uT3x0f2I7nPeGMYauri7k5+dDoYi9ko0ybgEKhQIFBQVH/HnMZjN94cdB9yc+uj/x0f2Jj+5PfHR/4qP7E9vhujfxMm0cNScQQgghhAwRFLgRQgghhAwRFLj1E61Wi0WLFkGr1Q70pQxKdH/io/sTH92f+Oj+xEf3Jz66P7ENxL2h5gRCCCGEkCGCMm6EEEIIIUMEBW6EEEIIIUMEBW6EEEIIIUMEBW6EEEIIIUMEBW79oLm5Geeeey4MBgPKysrw1VdfDfQlDSiXy4Wf//znKCgogMViwbx587Bt2zbp7Y888giysrKQnp6O22+/vcd9245Wq1atgkKhwCOPPCI9RvdG9Mgjj6CwsBApKSmYPHkyOjo6pMeP9fuzceNGzJw5E2azGSUlJXjppZektx2L92fRokUYN24cFAoFli1bFvK2ePdj3bp1mDRpEgwGA+bOnYvq6ur+vvR+Eev+vPzyy5g8eTJSUlJQUlKCZ599NuT9jvX7w3m9XkyYMAFjxowJefyI3h9GjriLL76YXXfddcxut7N3332XpaWlsba2toG+rAFjs9nY/fffz2pqapjX62X/+Mc/WElJCWOMsY8++ogVFRWxqqoqVldXx8aOHctefPHFAb7i/ufz+dgJJ5zApk+fzh5++GHGGN0b7v/+7//YnDlz2IEDB5jf72fbtm1jDoeD7k9AeXk5e/DBB5nP52MbNmxgJpOJ7dmz55i9P0uWLGGff/45O+GEE9jSpUulx+PdD6fTyQoKCtiLL77IHA4Hu/3229ns2bMH6kM4omLdn2effZatWrWKeTwetn37dpadnc2+++47xhjdH7knnniCzZo1i5WVlUmPHen7Q4HbEdbV1cU0Gg2rq6uTHps9ezZ75ZVXBvCqBheXy8UEQWAtLS3sZz/7GXvkkUekt7344ovs5JNPHsCrGxjPPPMMu/XWW9nVV18tBW50bxjzer0sNzeXVVRURLyN7o/IZDKxffv2Sa9PmzaNvf/++8f8/Zk7d27IL9549+PTTz9lY8aMkd5ms9mYXq9nBw4c6L8L7mfh9yfc5Zdfzv7+978zxuj+cA0NDWzs2LHsww8/DAncjvT9oVLpEVZZWQmLxYK8vDzpsUmTJmHHjh0DeFWDy6pVq5CTk4OMjAzs3LkTEyZMkN52LN6rtrY2/POf/8S9994b8jjdG+DQoUNwOBz43//+h5ycHJSVlUklHLo/oltuuQVLliyB1+vF2rVrUVNTgxNOOIHuT5h49yP8bUajESNHjsTOnTv7/ToHA5/Ph7Vr16K8vBwA3R/ujjvuwJ///GcYjcaQx4/0/aFN5o8wm80WsfGs2WyW1uQc6zo7O3HjjTfioYceAhB5v8xmM2w220Bd3oD485//jN/+9rdIS0sLeZzuDVBbW4vOzk5UVVXhwIED2LdvH0477TSUlZXR/Qk466yzcNVVV+H+++8HADz//PPIzs6m+xMm3v2I9XP7WL1fd999N4YNG4YzzzwTAN0fQEw4VFRU4KWXXsJ3330X8rYjfX8ocDvCTCYTrFZryGNWqxUmk2mArmjwcDqdWLBgAc4991xce+21ACLv17F2rzZt2oS1a9fi6aefjnjbsX5vAECv1wMQFwzr9XqUl5fjyiuvxMcff0z3B0Brayvmz5+PV155Beeffz527dqFs846C+Xl5XR/wsS7H/RzO+jZZ5/FO++8gx9++AGCIACg++P3+3Hrrbdi8eLF0j2RO9L3h0qlR1hpaSk6OzvR0NAgPbZlyxYp5Xys8nq9+NnPfob8/Hz8/e9/lx4fN25cSIfpsXavvvvuO1RUVGDYsGHIzc3FG2+8gYceegjXX3/9MX9vAGD06NHQaDQhj7FAJyDdH2Dfvn2wWCy48MILoVQqMX78eMybNw8rVqyg+xMm3v0If5vdbkdVVRXGjRvX79c5kPjPn88++wyZmZnS48f6/bFardi4cSPmz5+P3NxcXHTRRdi7dy9yc3PR3d195O/PYVkpR+L66U9/ym644QbW3d3Nli9ffsx3lTLG2DXXXMPOOOMM5na7Qx7/8MMP2fDhw9m+fftYfX09Ky8vPyY63zi73c7q6+ulf5dccgm76667WHt7+zF/b7jLL7+cXX/99czpdLLdu3ezvLw89vXXX9P9YYx1dHQwi8XC3n//feb3+9muXbtYXl4e++STT47Z++N2u5nD4WCzZ89m//3vf5nD4WA+ny/u/eBdgS+99BJzOp3sT3/601HbNRnr/nz22WcsKyuLbdmyJeJ9jvX74/V6Q35Ov/3222zUqFGsvr6e+f3+I35/KHDrB01NTezss89mer2elZaWsi+++GKgL2lAHThwgAFgOp2OGY1G6d+KFSsYY4z99a9/ZRkZGSw1NZX98Y9/ZH6/f4CveODIu0oZo3vDGGPt7e3soosuYiaTiQ0fPpwtXrxYehvdH7GjbdKkScxkMrHCwkL20EMPSW87Fu/P1VdfzQCE/Pvmm28YY/Hvx9q1a9mECROYTqdjs2fPPmo7JmPdn3nz5jGVShXyM/rGG2+U3u9Yvz9y33zzTUhXKWNH9v4IjB0DExgJIYQQQo4CtMaNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIUA30BQwWfr8fdXV1SElJgSAIA305hBBCCDmGMMbQ1dWF/Px8KBSx82oUuAXU1dWhsLBwoC+DEEIIIcewmpoaFBQUxHw7BW4BKSkpAMQbZjabB/hqCCGEEHIssVqtKCwslOKRWChwC+DlUbPZTIEbIYQQQgZET8u1qDmBEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMCNEEIIIWSIoMBtkGu0OnH+v1bilR8PDPSlEEIIIWSAUeA2yD322R5sPdSJRe/vGOhLIYQQQsgAo8BtkDvU3i293GpzDeCVEEIIIWSgUeA2yDk9funl+k7nAF4JIYQQQgYaBW6DXHu3W3q5ze6OcyQhhBBCjnYUuA1ybbZgsCYP4gghhBBy7KHAbRBze/3ocnml11ttFLgRQgghxzIK3AaxLqcn5PWOPmTcPt/RgLP+uQI/VrX09bIIIYQQMkAocBvE7C5f6OtuX4wje/bkV5XY3dCFy/+9pq+XRQghhJABQoHbIGZ3e0Ne7w57PRE76qzSy4yxpM9DCCGEkIFDgdsgFh6ohWfgesvj84e8bnUkHwASQgghZOBQ4DaI2cICtWQzbh3doWvlajscSV8TIYQQQgYOBW6DWLfr8GTcwseI9KXJgRBCCCEDhwK3QSy8GSHZjFv44N5OhyfGkYQQQggZzChwG8R4oJZmUANIvqu0nQI3Qggh5KhAgdsg5grsU5pu1AAAHEkGbuGBGgVuhBBCyNBEgdsg5g50g6YaxMAtfDxIb9nC1spR4EYIIYQMTRS4DWJurxi48VJpd5LNCeFNDV1OGgdCCCGEDEWDPnBrbm7GueeeC4PBgLKyMnz11VdRj7vmmmug1WphMplgMplQXl7ez1d6+PH5a2a9GLi5fX4pmEuEzRWaYevuww4MhBBCCBk4gz5wu/nmm5Gfn4+WlhY8+uijuPjii9He3h712Pvuuw82mw02mw07duzo5ys9/HjglqrXSI8ls86Nz4PL4GvlPJRxI4QQQoaiQR242Ww2LF++HPfffz8MBgMWLFiA8ePH44MPPhjoS+sXPLtm1CqhUYqfqmTWudkDa9yyUrQAKONGCCGEDFWDOnCrrKyExWJBXl6e9NikSZNiZtMee+wxZGRkYObMmVixYkXcc7tcLlit1pB/g43bJ+4pqlYqYNAqASQ3y40CN0IIIeToMKgDN5vNBrPZHPKY2WyGzWaLOPY3v/kN9u7di/r6etx8882YP38+ampqYp774YcfhsVikf4VFhYe9uvvK55x06gUMGpUAJLbPYFn6TJNYuCW7FgRQgghhAysQR24mUymiEyY1WqFyWSKOPa4445DWloaNBoNFi5ciBNPPBFffPFFzHPfeeed6OzslP7FC/IGCl/jplYqoNeIGbdkSqXOsHlwye7AQAghhJCBNagDt9LSUnR2dqKhoUF6bMuWLb3qGFUo4n9oWq0WZrM55N9gwwM3jUoBvVoM3PhQ3kS4wsaKUMaNEEIIGZoGdeBmMplw/vnnY9GiRXA4HHj//fexfft2zJ8/P+LYt99+G3a7HV6vF2+88QZWrlyJU045ZQCuune+3NmID7fWxT1GKpUqBSlwc3gSD7pcgfdJ4xm3JM5BCCGEkIE3qAM3AFi8eDFqamqQkZGB2267DW+++SbS0tLw2muvhWTennjiCeTn5yMzMxOPP/443n33XRQXFw/chcfR2e3Bdf9dj1te34Sq5sj1epxbVirVBUqlyWTLnIFALd3AS6UUuBFCCCFDkWqgL6AnWVlZ+PjjjyMeX7hwIRYuXCi9vnLlyv68rD5Zs79VenlFRTNGZkWu2QNCmxN0KjHGdnqTyLh5Q7fOcnv98PkZlAoh4XMRQgghZOAM+ozb0ehgW7f0ckOnM+Zx0ZoT+pRxMwYH+VKDAiGEEDL0UOA2AOTBWlOXK+ZxnsAcN3lzgjOJ9WnOQMbNoldDCCTZqEGBEEIIGXoocBsAjbJgrTlO4BZsTlBAl2RzgtcnlkUBQKdWwKDmg3wpcCOEEEKGGgrcBkBzVzDj1mKLl3GTNSdIGbfExoE4ZZvSa1VK6AODfJMN3D7aWo+THv0aP1a1JPX+hBBCCEkeBW4DwOoIri/rcsZea+byRs5xSzTjJi+talUKGPhauSQ2mmeM4ebXN+JQuwN//2xPwu9PCCGEkL6hwG0AdLk8wZednpjHBTNuAvSaQFdpgpkyefCnUAhS4JZMxk2+Hm9PQ1fC708IIYSQvqHAbQDIs2w2lxeMsajH8Tlu2sOQcePjRPR9CNwqG4Mz5+xuH3WmEkIIIf2MArd+xhgLCdz8LHYQ5fEG17hpk+wq5cfz99epAltneRPfOquuwxH3dUIIIYQcWRS49TOHxyd1eXI2V/TMVbRxIIlm3HiAplMrQv5PZqxIozV05lx9nBl0hBBCCDn8KHDrZzzbplQIMOtUgcci17kxxkK2vAoGbgl2lUqlUvH9tTzjlkTgFj5zrs3uTvgchBBCCEkeBW79jAdpJq0KJm3s0Rw82waE7pyQaMDlCgR62oiMW+Kl0vCZc+0UuBFCCCH9igK3fmYNZNxSdKrgUN0ogRvPtgFicwIPuBIvlYZm3HR92IGhwyEGajxT2NYduyP2cNrbZMPqfa09H0gIIYQc5Shw62c2KXBTBxsOojQKeGSPyQfwJrpVFc+s8ffn/yfTnNAZmD83ItMIAOjoPvIZt/pOBy7410r87PnVFLwRQgg55lHg1s+6QjJusRsF+Aw3pUKAUiH0eRyINjAORNuH5gSrQ8ywFaYbAAAd/ZBxW1HRDHsgWP1oa/0Rfz5CCCFkMKPArZ/xNW5mnUoqX0YLolze4PBdALI1bollyoJdpaHNCU5v8oHbsDQ9AMAeoxv2cNpRZ5Ve3t1gjXMkIYQQcvRTDfQFHGu6ZKVSPhUkWjAm36cUCK5Rc/v88Pr8UCl7F3MH57j1rTnB52foCgRqw1LFwK2rHwI3+ciRvU22OEcSQgghRz/KuPUzeVdpvIYD+a4JQDDjBkRfExcLD9B4pi1eli8enm0DgDxL/2Xc5LPj2rs9MWfeEUIIIccCCtz6WUhXaZwgyuMV03E848YDOCCxBgWpq1TKuPHnTCzj1hkI3IwaJdIMagCxBwdzPj+Tnj9ZDWFDfpusyQ397XJ6cNnzq/HbZZvg90ffYowQQggZ7Chw62dd0bpKowRRbp8Y8GgCAZsgBBsUEsmWRXaViudLNKCyBjKFFr0axsD8uXgZN4/Pj8ueX43pD32FmrbuhJ5Lfo5mmzg7LiXwnOFDgHtryepqrNrXivc21+Gr3U1JnYMQQggZaBS49TNeKg3pKo0SRLnDMm5ActtV8XPzjJ00DiTJjJtZr5YGB8v3XA23qqoVaw+0odPhwZLV1Qk9F9fc5QJjYoPG2DwzgOQDt1VVwVEia2isCCGEkCGKArd+Jh8Hoo8zm403J2hkgVsyI0FcnvCu0tjBYjzywC0lMIDX5fVL1xluW22n9PKmg+0JPRfXECiLZqfokGPRAUi+VCrvTt1e1xnnSEIIIWTwosCtn3W5+DgQtWwYbrSMW6CrVLa2TadJfAivU9o5IXyNW3KBm7xUCsQul8o7QHfVd4GxxNeVtQSya1kpWuSkaAEkl3Hr7PaE7Kt6oCW50i0hhBAy0Chw62fRB/DGHgeiCcxxA2QdoQl0lbqkcSCha9ySbU6w6NVQKxVS5i5WuVS+r6nN5ZXePxG8kcOsVyPbLAZujUlk3A602gEEs5cNVmfCO1AQQgghgwEFbv1M3pwQL/vFx4FoZBk3fRIZt+AAXt6dGjvLF481sN2VWacOXH+gQcHdc+AGAIfaHQk9HxC6HjA7hZdKE8+48WBvbL5Zug/JBICEEELIQKPArZ/ZoowDiTrHzRs6gBdAkl2lsTaZTz7jBkAql9piZdwC3aCGQLB5qD3x8iQPcs06FTJMGgAIKXn2VotNfJ8skwY55kAAmGSTAyGEEDKQKHDrR06PT8qkpehU0pq16HuVimvCNCFdpcmPA4ncOSG5AbwWvRiwSZ2lUda4eXx+KcCaXJgKoK8ZNzXSjWLg1ppU4CYGaZkmLbKltXKUcSOEEDL0UODWj3gGSRAAo0YlNQxEneMWKGWGNCfE2WkhFmkAryp0r1KX159Qw4CUcQsM3zXFybjxQEmlEDB+mAVAsoFbIDupVSHDKAZc7d3uhAfohgZuyZdcCSGEkIFGgVs/kra70qigUAhxM2jRMm7JjAMJZtxCmxOA4Pq33uADePkaN14q7Y6yxo2vb8s0aVEY2JC+T4GbToU0o/i8Pj+TrqW3gtejQVYfulMJIYSQgUaBWz+SByKAbBhulADKHW2OGy+tJjIOxBN9AK/8bb0RvsaNX0t3lGtplo3xyA3saxqtGaCnzJlVVirVqpTS7gmJlkuljFuKVupOTbZU6vb68e8V+/Dxtvqk3p8QQgjpCwrc+pF8iC0gK31GCX6Cc9yC40Ck5oRExoF4QwfwqpUKKBVCyNsSuXYeuBnUsQM3vr4tzahBXmBwbkNY4Pb+ljpMuPcz/OPzPTGfMzzQ5Q0KrbZEAzfxeHmpNLzrtbf+9uluPPTxLtz8+kZsr+2fQb5f7WrEL15eRzs+EEIIocCtP3UEgp9UAw/ceCAWZxyIMpgh08bZaSEWqatUViINrq3r3Xn8fiZrTggEbnFGk/ChvCk6ldTF2WJzSbPpGGN44MOdsLt9eOrrvejsjl76lDcnAJAaFNrsiQVdLV2RzQnJBG4+P8NbGw8FPgYx+Iyn1ebCv1fsw75mW9zj4uns9uDm1zfiq91NuGHJhrj7wxJCCDn6UeDWj8KzVrx86Y6S+fLEybj1do0bY0zKqvGmBABxN7ePxu72glc1zVKplK9xi7wWWyC4MGlUyDBqoFYKYCy4rqyq2R4SOK090Bb1ecMzbumBBoVESqVOj0/qfM0yafvUnbqzzooOWZC5Zn/06wbEe3/df9fjoY934WfPr466FrA3PtvZIH2eOh0efL27KanzEEIIOTpQ4NaPOrvFYCFVLwYPmniBW9S9ShPrKpWXQvuSceMBp0alkLKERmmNW2RAYnOJ5zVqxSYMXp5s6BTLpTvC9gqtbOqK+rzBOW5isJjBM24JlEr5+jaNUgGzPjgPrt3uTngbLr7HaW4gi7i3MfZWXnubbNh0sAOAGLB+sq0hoefiNlaH7vO6qg/l0upWO5Zvrk14FAwhhJDBgwK3ftQZVirlWTCvn8EXtlA/XnOCq7eBm0ceuCkjXk40cOOZQvm1RMu48XKeKZApyw2sc+MNChWNoYGafF9TzuPzSwGqlHEzJZ4t4+vbMkwaCIIgZdy8fibtBtFbOwMb1Z8zIQ8qhQC724f6zuhNDhvCAq7vK5sTei5uc00HAGDB5Hzx9UAwmKjqVjvOefJ7/GbZZvzujc1JnYMQQsjAo8CtH/EyGy83yrezCs+6ub1iIBc6xy2xUilfO6cQxJlqnDbBJodogZshTqlUCty04vPwwI0HORWNYqB2XFGq+HhHZPAjnw/HA0Ap45ZI4CZb3waIwbJJ6k5NbJ0bzxROKrSgONMIIDII5TYeFAM3/jH+UNWacIbP4fahMhDUXjWzGACwp7ErqX1WX/h+P+yB9/tkewP2xshyEkIIGdwocOtH4c0JWpV8plroL+NoGTddgs0JPOOmUyshCLLN6gNl095m7nhjgjkQQAGy5gRPZNaKrynjs954aZFn3CoDwc5JozLFx6OM5uBlUr1aKW37lZ5M4GYLjibhkjmPz8+wq1687vJ8C0bnmABEzxYCwJYaMci77qQSaFUKNHe5UNVs7/XzAWJQ6PMzZJq0OK4wFdkpWvj8TCrZJiJ8bdw3u5PLABJCCBlYFLj1o/DMlUohgMdT4Rm3YHNCtL1Ke5cp4xk3eZkUCO6iEC3jtmR1NaY88AX+s3K/9BgvKSZcKg0L3Bo6nXB6fKhuE/ctnRUI3Jqj7GJglW0wz/GAiwdjvRHcNUETcZ5ESq4HWu1weHzQq5UYkWlEUbqYcYs2WJgxhuo2MUgrzzdjUmDbr/D1ar15TgAoyTJCEIK7UOyqtyZ0nkPt3ajtcECpEHDbGaMBAN9V9E/gZnd5k27MkPP5WcIZS0IIORpR4NaP+NgL3pwgCIKUUQufqcabE7TRBvD2tlQaNnyX08bYr5Qxhr99shutdjfu/3CntO4ueqm053EgUuAmlUodqGq2gTHxXOX5ZgBihi78l3t4RykAadurxDJuwRluwfPEz7itrGzB8yuqQj62HYH1bWPyUqBUCNJ8uvrOyMCtze6Wguu8VB2OL0oDECyf9tb+FjFwG5EhBolj81IAJB64rdkndr9OGGbBWeNzAQDrDrTB6+v9HD+5mrZurKhojtpUI/fZjgZMefALTHngS3y5szGp5wKA19ccxLh7PsVJj34jrTMkhJBjFQVu/Si8OQEIBlXhgRsvlcrHgfBMWfgat5q2bnR0RwYh4cN3w88TXiptsDpDNo3n3Z7x1rjZo2RTwkulhekGAMCB1m5pTdjoHBNSdGopAAzfOzR8hhsQHMDb3t37jtBmW+gaNyB+qXR7bSeu+s8a/PXj3bjrvW3S43x927g8MdiUBgtHaU6o7RCDuewULbQqJaYMFwO38IYFr88fd/uuA4HAbXimeP/GBp470eBlbWBsyQkl6SjJNMGkVcHl9SdcugWATQfbcerj3+Gq/6zFz19eG9FUw3W7vbj9ra1wesQmkz/8b0tSu1Xsa7bhnuXb4fL6UdvhwO/f3Jx0wOny+rBmX2vUXTwIIWSooMCtnzDG0BYIruQBkCYQREU2JwQCt5CMW+Q4kH3NNpz2+Hc4+e/fRvxijJVx00kZt9DnrGoK/UXO12/x604zBsuNiWTcSrLEjFFzlwvrDojBy5hcMQjJCVv/xkXLuPGAy+NjsEbZ3D4aqTlBtsYtIxDERduB4X/ra6SZde9uqkVT4Lp4sFSeL5Yr8wJbedVFC9wC5dP8VPEY3qBQ2WSTguDaDgdO/se3OP7+L7BkdXXUaz/QKpaUecaNB417AmvfemvNfnGEyAkj0qFQCBgXyHTG2vnhQIsdd727Df/6ujJk7aXPz3D3e9ulr80f9rbik+3Rt/76YEsdOh0e5Ft0GJObgk6HB09/vbfX18w99fVeeP0ME4ZZkGpQY3dDF97bHH/wcTTtdjfO+7+VuPT51Zj9t2/w7Z7+m4eXbKBJCCHRDPrArbm5Geeeey4MBgPKysrw1VdfRT3O4XDgiiuuQEpKCoqKirB06dJ+vtL4WmxuuL1+CEIwWAHkGbfeNyfIS5yf7miAy+tHe7cHKypaQs4RvsF8+HnCn3N/a2jgxgM5PjctPUrgFn2Nm/gYD9zMOrWU8eJ7fPLsUaxN37vCNrXn183nx/W2XBptjVtGnB0YeGAJiLsjfLytHowxKXDjQQ8v/7bYXBFBN8+4DUvTB55bi+IMMWu2KVAufeST3ahpc8DrZ3j4411Rd4/ga9x4B+vwDCP0aiWcHr9URu1Jo9WJA63dUAjA1OJ0AMD4QPAZrcnB6fFh4Qtr8Nqag/j75xX44/+2StnN19dUY0edFWadCgtPKAIA/HdV9KDz7Y21AMRu2HvOGye+/9qDONTe3avrBsSvAf718sCC8bh+dgkA4LU10Z8zFsbEgJN36Lq9ftzy+qa4GcAWmwsbD7bHXJ/n8vp63Gt308F2nPnECpTe/Qkue361lEFNVEVjF373xmZc8cIaLFl1oMfnJYQc3QZ94HbzzTcjPz8fLS0tePTRR3HxxRejvT1yrdCiRYvQ1taG2tpaLFu2DL/85S9RUVExAFccHf+FlWvWhYwBibV7gkcqlUZvTuA/vHfIymbhGRQemOkiMm7Rmxwaw7JHVc2hGTd54KbXBMu28rKl38+knRN4qRQIZt34SBS+Xis7ZuAWmXEDgrPcervtlbThfZRSaXhzgs3lxe4G8X7eOEcMEj7aVo+Dbd1otbuhVgoYkyted4ZRA41SAcYis4U8cCsIZNwA4PhAuXRjdTsqGrvwgWy7rG63D99WhGaAOrrd0r0aHgj6lAoBZbmJrXPjuzuMyzdLQTBfW7ijNvIc/1tfg9oOB9RKsXHm/S11eH3tQbTaXHjsM3Ff2T+cUYZbThkFQRDLsOEfv9XpkRoxzhmfh5mjMjFzZAY8PoZ/ybJufj/D6n2t2HqoI2rp++Nt9XB5/RiVbcKkAgsunloAlULApoMdCZWL399Sh4+21UOlEPDOr2ZiYoEFNpcXT35ZGfX4l37Yjxl//QoXLf4RMx/5Gq+tqZa+33bVW3HFC2tQdvenmPrQl3h9zcGo56hqtuHKF9diT2MXGBMHJ1+4+AdpLl9v/bC3BfOfWol3N9Vi5d4W/GX5DtywZH3CQ5Tb7G784/M9OP3x7zDvsW9w7/s70BqnyWdvkw3L1h7E8s3BrHOiupwevLq6Gne8tRUPfLgTP+5tSSro9PsZ1uxrxZLV1fh8R0PUZSGJoCYXMtSpej5k4NhsNixfvhwHDhyAwWDAggUL8Pjjj+ODDz7AVVddFXLskiVL8N5778FsNmPmzJk4//zzsWzZMtxzzz0DdPWhdgZ+0fL1Xpy0e0JYOcUTmOOmjZJxA8T1a3qNMuSv+Jq20GyG0xN9jZs2xs4J/BfwpMJUbKnpCJZKAwFOukGecRO/dBgTn0fqMpWd0yQL3EZmmaS1VoIAKQDh2a/2sCCqyxUjcDNqUdPmCClzttndeOyzPTiuKBWXTC2UHnd5fVJJNWSNW4zN6rce6oCfAcNS9bh6ZjGeW7EP66vbpSBrcmGqdC8VCgE5FvFaGqzOkM8rL5XyjBsATC9Oxzsba/HlriZpnt1Z5bkYkWXEM99W4ZvdTbhg8jDpeJ5RyzFrpXsNiJnKzTUd2FlvxfxJ+SHHv7WhBlOGp+GUMTnS43xj+unFGdJjvDt1R10n/H4GhWzG32uBQOSuc8bC42N46ONduP+DnXh9zUFYnV6MyzNj4QlFUCkVmFggfp18t6cZl0wL3vcf97bC62di920g6PzDGaPx4zOr8L8Nh3Dj3JFIN2hw67JNUnfrFTOK8MAF40PG1vCs3UXHD4MgiDtwnFmei4+21ePVNdX464UTpGO73V48+90+bD3UgYnDLLj2pBFINWjQ0OnEPct3AABuOWUUji9Kw13njMWlz6/Gm+trcMspo6SyNwB8ur0e932wE4C4pKCj24O73t2OtzYcQpZJiy93NUql9Da7G39+dxs8Pj+uDszZA8SS8u1vbYXN5cW04jTcde44LFq+HVsOdeLyf6/Gc1dOwezSLDR1OfHR1nrsqrciw6TFT44fhlHZKdJ5NlS34fr/rofL68dJozIxfUQ6nv5mL77c1YRrX16Hf181VfrjyOdnWL65Fh9trUeX04tROSYcX5SGYal6/FjVgv+sDM7xA4CXfzyAz3Y04JkrpmByoOsZEJc5/OPzCrz8437IY6xJBRbpj4+qZjt211thc3lRmGbAuRPzcNn0Iil7zhjDOxtr8fAnu0M6wF9cuR8lWUb8fNYIzB6VCYUg4FBHNw62dqOu0wmLXo3h6QaU5aYg1aBGRaMNn+1owPub69AgCx41KgUunDwMC2cUYcIwCwRBQJfTg221ndhc04HttZ3w+wGzXgWLXg29WolGqwv7W+yobOpCe7cHZp0KkwpTMbs0E/PKslGaLY732d9ix8q9LVhR0YLNNR1wenzINGlQkGZAYboeWSk6uL1+OD0+ONw++BhDVooWhWkGjMg0YliqHt0eL3bXd2HTwXasr27HvmY7vH4/slN0KMkyYkxuCspyzUjRqeD1MdhdXtjdXthdXrh9DBqlAI1KAY1SgbZuD6pb7YF1zB5AEH9mFqQZUJRuQHGmAXkWPWxOL1psLjRaXWiwOuHy+qBRKqBSClApFFArBXj9DG6vHx6fH26vHwpBgFmvhkX2Txv4mm+3u9Fqd6O9240upxdalQJ6tRI6jVL8X62AAAEMDIyJExK0aiW0KgW0KgUYxGU0jsB94v/7/AxmvRpmnQpmvRoqhXhdHh+D1+eHxy/+Lz7mh9fH4PX74fEx+BkDAl+TWrW4i49OHbwehSDA5fXD5fHBGfjfFwjSBQQnOCgEAQpBgEop/q9RClArFdCoFFAqBPj8DF4/C3lun98Pnx/INmtx09yRGGiDOnCrrKyExWJBXl6e9NikSZOwY8eOkOPa29vR0NCACRMmhBy3du3amOd2uVxwuYI/VKzWI9uttjywLueUMdkhj0ul0rDslztKxk0egDk8Pug1ShxsDQZr4eutYneVRt/cnme9TizJwJaaDhxotYMxJgVV6bJyo152LXa3Vwrc+Po2pUII2WZrRkk6lq4Vg4IpRWlSMMLXzbWF/RXNZ8fJmxOAYKAnz5bd98EOLN9ch6VrD6Ik0yiVBHlgplIIIesKY3WVHmgR72VZbgryU/VSAPv3zyuk+yKXZ9Gjps2Buo7QzlKpVCrLuJ01Phd/Wb4dO+utUhB/w9wSeLx+PPNtFb6vbAFjTApcpDJpYH0bx0u18oxbR7cblz63Svr8PXvF8ThrvPg9s0bWmMCNzDJCp1bA7vZhf6sdI7PEX1r1nQ7sbuiCIADnTx6GVL0aK/e24LuKZuyos0KnVuBvP50IVeCPiZPLsrClpgPf7GkKCdxWBHaJmDs6S3psyvB0nFyWhW/2NOO3b2xGu92Ng21iCdfPgFdXH8S4PAsuD5Rga9q6sXZ/GwQBuPC4YEC7cEYRPtpWj/c21eLOs8cgRaeG0+PDVS+uxfpAlu/bPc14dc1BXD+7BB9tE9faTRhmwc0njwrciwxMH5GOtfvb8O8V+3HP/HHSfbzr3e0AgGtnjcCfzxmD/66qxt8+2y1tXwYA507Mw+9OK8XyzXV46uu9eODDnRg/zCI1obzy4wFsqG6HSavCP392HIal6vH69TNw06sb8H1lC67+z1qUZqegsqkrJDh69rsqXDh5GH53+mhUNdtw82sb0e32YXZpJl64eiq0KiWmj0jHL15ehx+rWnHli2vw76umYlttJx79dE/I18TaA20R2cDyfDNunDsSerUSD3+yC/ua7bjkuVV4cMF4/PT4Any5qxH3fbBT+vqdPiIdLo8PWw51Sv/C7Wnswp4vuvCvb/ZiweR8jM0z48Ot9VIjTnGGAedPykej1YWPt9VjX7Mdf3lve8R5epKiU2FacTqqW+2oarbjjfU1eGN9DbJTtFArFajrdCCRRJrV6cX3lS34vrIFf/14N9IManj9TMr0y9lcXmm9aV/UdjhQ2+HA95UtPR8cx75me8iSDtJ/SrKMFLj1xGazwWw2hzxmNpvR0dERcZxSqYTBYAg5zmaLPhwVAB5++GHcd999h/V647nupBHIMGpwvixLAsTOuEVrTlAqxL/E+F983W5vSBdo+GiKmF2lMZoT+F/HkwtToRDEEl5TlwvtUUqlPDBzevwhDQpSmVQTOvT31LE5yLfoUNfpDMlOpMfYfzRmqTQs6LK7vPhke3Af0Hc31UqBG/94MkyakKyS/BzyYKkmUM4uCmTPFkzOxxZZaWu2LBABYneW8l98+bLALdWgwRnlufhoq7hm68SSDBxflAanxweVQkCr3Y26TqcU7PEgckRmWOAWZSTIP7+sDCk137N8B04qzUKnw4O9TTYoBDHjx6mUCozNM2PTQTE7wQO3FYHs16SCVOkeLV54PJ78qhLVrXb84qQSKVsHACeXZeOfX1bi+8oWeHx+qJUKMMak88wZnRly7X84owwrKluke1qYrsdzV0zF95XNePiT3Xjss904Z0IuUg0aLN9cK90neUbsxJIMjMo2YW+TDW+uP4RrZxXjzne2YX11O1J0KtwwuwQfbK1DRaMNj366O3Dv1XjqsuNCvpduOXkUrtq/Fq+vrcbNJ49EhkmLRz/dg1a7G6NzTLjj7DKolApce9IInFGeg4+31cPp8eOUMdnSPfj96aOxr8WOj7bW4+bXNuKDX5+E9m43/vaZ+Lx3njNG+nwatSq8cPVU3P7WVizfXIc9ge7q44pSMac0CzvqrPhyVyPe2VSLdzbVStc5c2QGnrtyirQ93oySDLx2/Qxc/Z+12HiwA1Me/FI6NkWnwi9OGoERmUZsO9SJbbWdaOpyYXiGAZdMLcTZ43Olr/UZJen43Rtb8OWuRtz+1lb8+Z1t8AaiyII0PR66cIIUeDdZnfi2olka5VOcYcSYvBSkGzTYUN2OV9dUY9PBDry5/pB0LXq1Er8+dRSuO6lE+hn3l/nj8L/1NXhvUy12NXRBIYh//BSlGzAsTY9Ohwf7m+3Y22SD2+eHRa/GSaMyMX9SPuaVZUGnVoIxhg3V7fjvqmp8uqMh5Ot+WKoek4tSManAAr1GBavDg06HB91uL7JTdChKN2BUtgk5Zh0arU6s3d+G7yqasXpfK9oDyxI0SgWmDE/D7NGZOLEkAxa9Gk1dLtS0daOm3YFWmwtalRJ6jUL647PJ6kR1WzcOtNhR3+mEVqVAaU4KJgyzYGpxGsrzLVArBTR0OlHZZMOehi5UNHbB5fVDKQgwapUwalUwalTQqBRSRszl88OsU2F4hhFF6QZkGDVgEJd/HGwTM5XVbXY0Wl1I0amQYdQgx6xDjlkHvUYpZrBkWSOlQhw/xbN5PsbQGbhHnQ4PrA4PnB4fUg0apBs0SDeJ/5v1Krh9DA63Fw632CUur9YIgljOdnr8cHl9cHr8UCggZcMMgSydXqOCQhCXUlgdXnQ6PPD5WUhWMPRlBdQK8X+VUoBSELNmjIm/25weX+BaxJd9fgZdIBMnZv6UUCoESPF8ILL3M8DHGPyBTJ/P74fb54fbK94rpUKAWqGAUilArRCgDFyPIAhIM4QmEgbKoA7cTCZTRCbMarXCZDJFHOfz+dDd3S0Fb9GOk7vzzjvx+9//PuS8hYWFMY/vqzPKc3FGeW7E49pYXaVRmhMA8Qei2yt+83i7Qv/E7Oj2SL9AgWDGTZ75AmQDeMNKpXw0RVaKFnkWPWo7HNh6qFPKCqTJSqWAWC51etwhDQp8qyp5mZS//tnv5qCh04nSnGA5KD1Wxi3KOBBAlnELBHpbDnWE3Lsfq4KbsLdEGQUinkN83e3zw+bySs9xMFBqLgiUOC+ZWoiXfjiAg23dmD4iHVMDGRWOBxTy/UrtLq+0Nk1eKgWAReeNg9PtgyAIuP+CcgDiD7ey3BTsqLNi26GOYOAW1pjAlQW6cRutLrTaXNBrlHh7o/gL899XTcWDH+1EdWs3/r1in9RJO2V4WkhHMCA2KGw62IEddVapRPvtnshMmVGrwp/PGYtoJgyzIMOoQavdjfUH2nHiyAwcaO3GoXZxjdyMsAzl+GEWvHTNNCxbdxAjs0y4bnYJLHo1RueY8PbGQ4Fgaw8euKAc/9sgfkwLZNk2QJx9+PNZxbjr3e148ssK7Kyz4t1NtVAqBDyzcApOKs3ETfNG4uUfDuCDrXXIMetwx1ljIu7j7NJMTBhmwbbaTjz9TRXOnpCLZevEDNWDCyZI35cAUJBmwA1zIv/KFgQBj/5kIvY0dGFvkw0XP/sjut3iL5LZpZm4bFpRyPFalRL/vHQyfjlvJGraHBiTmxJSYt9S04FHPtmN1ftboVYocMm0Atx1zjgpm81NLkzFshtm4FevbcT+FjuMGiV+Nr0IN588Svp+kpfdo0nRqfH8lVPwzHdVWPzNXtjd4nDpn88qxi2njAopz2ebdSFLEOSKM434yZQCbKhuwzsba9Fqc6MsNwU/m14YEnAD4s+An88agZ/PGhH32nipTKtShPzxB4j3fGpxOqYWp6PL6UFVsx0+P8PwDEPE93k8WSlajA+U1J0eH6qabVApFBiRaQxZgwwAJVmmiK/lZBSkGaQ/Kgnpi4QDt5UrV2LdunUoLy/HGWecEfK2X/3qV1i8ePFhu7jS0lJ0dnaioaEBubli0LNlyxZcd911IcelpaUhNzcX27ZtwwknnCAdV15eHvPcWq0WWm3vv9GPFE2MrlLenKBRhf7g0qkV6HSI6wc6vGLwMixVL2V5Oh0e6QeYSyqVxuoqDQ0WgzskqFCcaUBth0MaGmvWqUIyFkCwXCrvvAvfYF4uRaeOCMT4urmINW49ZtzEoIyXsGaOzMCPVa3Y32JHl9ODFJ0aLV2Rw3cBsbFCr1bC4fGhze6WromvEeQZN6NWhfdvmYUfq1oxd3RWxC+RaEN4edk0RacK6YgFxF+AL14zLeK+TCywYEedFVsPdUolTr52MbxUatKqMDzDgOrWbuyq70JdhwNdTi+K0g04dUw23F4/bn59I/79/T5pxwr5mjdu/LDQkSAenx8rAyWceWVZEcdHo1AImFuWhXc21uLbPU04cWSGlG2bOjw95Jc/N2d0FuaEZS5VSgUeuGA8Ln1+NZauPQiby4vq1m6kGdQ4Z0JexDkunVqIpWsPYnutVQpaH7hgPE4qFTN8aqUC188pwfWBBpNoBEHA708fjZ+/vA7/+WE/Xl1TDcaAn04pwPQRvf/latKq8NyVU3D5v1dL5bRR2SY8cenkkCyv/HnH5JqlcThykwpTsfSGGbC7vNKam1jG5pnx9R/motXuhkWvjvje7A2FQsDNJ4/CL04agfpOJ/IsuojsfG9NGZ6OKcMPT1AiZlh6Pi5Fpw5Zn5csnVopjfkhZChI6Lv9ueeew09/+lNs2LABt9xyC0455RS0tbVJb3/11VcP68WZTCacf/75WLRoERwOB95//31s374d8+fPjzj2iiuuwAMPPICuri6sXr0a77//Pi699NLDej1HAs+oxZrjplGG/gTTS0GXT+qYzLXopH1EO2RjJYKl0lhz3ILBot/PQkZwDA8EDLw7MD0sYwNEn+UWraM0nrQY6826omx5BchmsAWO5+M1ThmTLQVSfE/R5ij7lHLROkt5xo0vqAfEEuc5E/Kifjy5UUqlh6Ksb+vJhGGpAIBtgSCKMRbcNSEsUwQE57ltOdQhzYC7bHoRFAoB50zIxaTCVHS7fdjXYodKIYSsEeP4L6rttZ1gjGFjdTu6XF6kGdSYWJDa62s/uUxcs8n3Qv2+kpdJexf8cSeUZOCy6WJWhzeD/HLeyIjMLSD+Yn/hqmk4qzwXkwoseOqy46S1cYk4eUw2fnGSmP1xe/2YVJiK+86P/cdeLCOzTPjo1tm4/awy3H3uWLz7q5kJZX/CGbWquEEbJwgCMk3apII2OV1gG7dkgzZCSP9KKOP22GOP4euvv8a4cePg9/tx1113YdasWfj8889RWFh4RNqsFy9ejKuvvhoZGRkoKCjAm2++ibS0NLz22mv461//KjUq3H///bjuuuuQl5eHtLQ0LF68GGVlZYf9eg43vv1UrC2v1BEZNx4s+aXALdOkQXOXBlanF52OYCASLJWGd5XynROCz2l3e6WSqDnQ3QUEF7fLZ89x0Wa52VzRS6WxSF2l3e6QDkeecQvPWoU3FvAF08cVpaI834L6Tid21HVi+oh0KRPGA7qQ85g0qO1wSGvrOh0eKegtTDNEHB9NMOMWDNx4R2lBWiKBmxhEbQsEUe3dHqkbdnhG5LXMHJWJT7Y3SOM5NCoFLg00BwiCgIcWjMeVL65Be7cHfzp7jBRgyo3OSYFGqYDV6cX+Fju+rQgGXMoomaJY5pSKx1c22bC9thM/7BVL1bNLM3t4z0h3nzsOVocXKyqbcd7EfFwbp6SWa9Hh2SunJPwckc85FqeOzUZntwenjM2OyE73VqZJi1/NG9Xn6yGEkJ4kFLg1NTVhzJgxAACFQoGHH34Yw4cPx0knnYSPPvooopR0OGRlZeHjjz+OeHzhwoVYuHCh9Lper8drr7122J//SIu2Vylj4qJJ+ds5+fw0aUZZihYNnU4cbAvNuEkDeGPtnCArz/KJ/hqVuLhzeFiJLny9FhB92yu71JzQuy+t1ECp1M/Ea+AZuN40JzRZnWjuckEhAOPyLCjPN+PLXY3SjC+eCQtfaxN+HiBYJs00aXqdLeQBUbPNJa0tjNaY0JOyXDGI6uj2oKbNIWUK82OUrs4en4sHPtwpZWUvnDwsJCM6fpgFP/zpFDg9/qiZUkD8PB8/PBWr97VhRUUzPgs0eIR3PffEYlBj1qhMrKhoxkXP/Ah3YO4anxWXCKNWhacXHp/w+/WFIAiYOTLxIJMQQgZKQjn2kSNHYv369SGP3XTTTfjb3/6GU089NWS8BukdTZQBvPIOU3V40CXbr1QqBZp0sPC1YiGl0ugZt2g7MPD1bTzDVZwZmukpiBKIRC+VBnZNiLLGLRqNSiEFZ7xBwePzS9t6ha+J4wvum7tcUrZtVLYJeo1SGo7LO/bqpcAtMuMUXirlA5LD5+zFk2nUQq0UwFhwlEpdEqVSjUohDSTefKgD+wKDj8MX1EvPa9Li9jPLoFQIGJllxG1nRmaWDRpVzKCNmxcocy7+tgr7WuzQqBQ4dWzkerieXDurGEDwa/iy6UVH5I84QgghCQZuv/3tb7Fly5aIxy+99FIsWbIEs2bNOmwXdqyQypaywI1n24DYGTdnWMYtNTCnTD5VPPaWV5HjQHgXp1kvBlHFGcaQ55Z3goZfS2ipVDxPb0ulQDCI4g0KNtkspfCMW65ZJw2T/GKnmCXiWzjxob4Vgb08ecYtWqkwfNurg2GNCb2hUAhSCbkhUJaNNny3N/i6sq01HdJaN76WLZrrZpdg419Ox5e/nxt1DV9vnBYI0njQeeqY7IQ+b9zc0Vm4KLCO7oQR6dJ2WIQQQg6/hH5KX3311QCAN998M+rbb7rpppC3XXLJJX24tGND1Iyb7OVYnZwRgVtgvgwveQLBUmjEAF5VsMGB4wNv+aBaPqaCBxGToixYN8jKthzfp9So7f1aoTSDBtWt3VL2i5dJdWpFxMevVAgoTDdgX7NdmolWHlgjNjzDKM2Wq2zqks4XPeMW2uSQTODGz32o3SFl96IN3+2NSYWpWLK6Guur26W5QxN76JiTDxVOxqhsE86dmIePttZDo1Lg16eUJnUeQRDw+KWTce8F5UjRqijbRgghR1BSc9yefvpprFq1Crm5uSgoKMChQ4fQ0NCAmTNnSj+0BUGgwK0Xom0yzxsTlAohYqF4cIeC8MBNzCCFdJXG2PIq2l6lPOCTNwPccsoo3PTqBpwxLiek05Lja9zk40CCzQm9DyrCt72KNcONG5Vlwr5mu7SFz/jAeiqlQkBpthhsfheYSaZXK6MGOOFNDgfbxICrt40JXK5FD6AdDZ1OeHx+aduwRDNus0aJc6Lke1lOTqC7M1mPXzIJ8yfmozTHJA3iTVZ4IwkhhJDDL6nAbezYsbj44otxyy23SI89/fTT2L59O5555pnDdnHHgngZt/AyKRD85djp8ISMu+Cl0nZ5qTTGJvPR9irlXYxmWZBzZnkuVv3pVGSaoq+VkgeRnDTHLZGMW9h6s1iNCdzEAgs+39kIQLxHEwqCM5h4lvDTHWIZtSBNHzUDlGGK3pyQyBo3ILSztK7DAT8T72+mMbHyZZ5Fj/J8M3YEGiuyUrQoTE8s+EuGVqXEWeMjB0MTQggZnJIaALRs2TL88pe/DHnsxhtvxNKlSw/LRR1LtFG2vJL2KVVGBhx8DVpNW7e0Fi7DqIleKo25xi24ro6PcLFKGbewNWUWnbQ3ZTjjYZjjxq8fCGbcunrIuPFF9YA4vkI+6JU3KPDBvKU50bNI6bIdGHx+JjUnRMssxsOH3NZ3OqTZa8MzDFGHr/ZEvh3ahccNo5IjIYSQCEll3IYPH45XXnkF1157rfTYkiVLjuiWUUeraJvMB3dNiAyYeNmPd06mGdTQqZVSkGOVLex3xci4yQfyurx+6NRKqTyZyLopPS+VepKf4wZEbjQfnOEW/Rzjh1lw09yR2Fjdjj+fMybkbeGT1EdHaaoAgttetdpdaLA64fExqJWCFIj1Fl8Tt7+lG9WByfnhux301s9njUCHw4M2mxu/OTW59WaEEEKObkkFbi+88AJ+8pOf4JFHHkFhYSFqamrgdDrx9ttvH+7rO+pF22S+N6XSvU3iyIjcwIwyXlbk2Sqg5zVu/BidWhlc45ZA4BYcBxJly6tEukoNoWXLWLsmyP3p7DFRH59QYJG2swIQc/si3onp9PixIbA7xPAMY0LDZwFxgT8A7Gu29TjGoycalQJ3nBX94yKEEEKAJAO3adOmoaqqCqtWrUJ9fT3y8vJw4oknQq2mxcmJitbhGdw1IXbGjcs1iwFIMHALBlF8DZs2bMsrtVIBpUKAz8/g9PpggTpijltvRN05wZl4qTR8HIi0xi2BBgdOq1LimlnFeObbKpRmmzAtxqbOeo0SeRYd6jud+CKwXm5UEovzC9MN0KgUcHn9WLlX3Osz2YwbIYQQ0pOkAjcAUKvVmDNnzuG8lmNStOYEV5yMW3pYowCfUcYDLmvIGjdeKo1sFNCqFOh2+6Rjwue49UZwk/kopdJeDuAFIpsTgtm/5L48/3hGGeaOzsLonJS4+ziOyDQGAjexkWFkduIBl1IhoCTTiN0NXahqjr2/KCGEEHI49G13YtJn0TaZ500H0YKO8D1Dc81iqZQHbi6vH+5A0wEvF/LMmFz4SJDwOW69wbNqfBwIY0wa0dGXAbwdgWvhI04SpVAImFGS0ePOASVZYoDF7wEveyZKPpxYEIDxwxLf7okQQgjpDQrcBli0TeY93tjNCVmm0DETuRbxdXmGq8vpgcvrlzaN10cL3MJGglijzHHrSfjOCU6PH77AkyZTKrUHMoB8Fl1akoFbb43IDA3USrOjNzL0ZEZJsBw7Pt8SsxuWEEII6SsK3AZYtIwbb1SIVirVqBTS+AwguJm5UiFI4zm6nN6QER36KBuVh+9XGm2OW0/C9yrlZVIAMER5zljMOhVUgaaA9m43Oh1i5o2PODlS5FtKmbQqaZRIos4ZnyfNurtmZvHhuDRCCCEkqqTXuJHDQyubqcYFmxOidzgWZxql9WDl+cHhs2a9Gna3D11Or9TYoFEqos5hkz+v1+eXgq5YIziiMah5qVQM3OQdpYnMMRMEAWlGDZq7XGizu6WMW2oft3TqybTiNBSm61HT5sAFk/NjzqvrSZpRg49unY0Wmyvk80EIIYQcbhS4DTCeVXP1sjkBAM4qz8WG6nZMH5Eeso4rRadCfafYaKDXiO8brUwKyDea94VkyhLJuOlle5X6/Uw2fLf32TYu3SAL3Ph6uyOccVMpFVh2w4lYXdWKcyfm9elcOWZdxPpDQggh5HCjwG2ABbtKo4wDiRG4XXvSCEwssEibq3N8bVWX0yONB4nWmADItr3y+qUuToNGGbcLM5z83A5ZAJjI+jYuzShee5vdjc7uvjUnJGJYqh4/mVJwxJ+HEEIIORwocBtgwU3me9ecAIjr2U4oyYh4nAdrVqcXqYHyZeyMW3CNWzIz3IDQtXPdbp9UKk1JInDjOxkcandIa/yOdKmUEEIIGWqoOWGAyfcq5fuGxmtOiCeYcfPGHQUCBGe7uTy+pGa4AeLYDR68OdyHJ+PG9/vUKBUxr50QQgg5VlHgNsD4zgmMAd7AKI14c9zi4Y0FVodH6vSM1lEKyNe4+ZOa4cZJuyd4vH0K3NIDGTceuFkMatpknRBCCAlDgdsAk5dDebnU1UOpNBZ5xq1bKpVGD6J06uBWW51JzHDj5LPc+lIqTTeE7sFKZVJCCCEkEgVuA0wenPFZbj01J8Qi32ieb/wea56aTrZdVbBUmnzGTSyVisFicqVSsRGBB5HUoUkIIYREouaEAaZUCFApBHj9TNpo3p1kxs0s22ieZ9xirRPjQZ7N5YUiUJJMZIYbxzN6dpc3qQ3mOd6cwGWbtTGOJIQQQo5dFLgNAhqVAl63LyLjplEmtsaLl0qtTo+sVBo/cOtyBme4JbPGzSib5daVZJMDEGxO4HIp40YIIYREoMBtENCqFOiOFrglmnHTB4MxvpVVrOYEKchzeKT9RftSKu12922tXHjGbViaPuFzEEIIIUc7WuM2CGjCZrnx/xNf4xYcwNtTqdQsa2Ro7xa3z0pmU3deKpWvlUsmc5edooVJVmIdnZPcvqGEEELI0YwCt0EgPHBLdhxISpQ1brG6SoPDej3S3qDh5creMEhz3LzBQb5JBG4KhYBhqcEsGwVuhBBCSCQK3AYBPsst2Jwg/t+XcSAOT6CrtBdr3NoCG9Yns8UUX0Nnl5VKk8m4AcCfzhkDjVKBhScUJX0OQggh5GhGa9wGAb5Dgjss45bozgm8K9Tt86OlSwzGTDE6POWNDP7AGrf0JAI3vqF8t8sbHCuSRHcqAJxclo2N95wec4QJIYQQcqyjwG0Q0KrDA7fkmhOMGhUEQdyFobbDASB22dIcpas0mTVufK1ch8MjnSuZUikXK9AkhBBCCJVKBwWeWetrc4JCIUiBjxS4xch+pYR1fiqEYPk0EbykeajdIT2WTFcpIYQQQnpGgdsgwDNrkTsnJL5XZ/jasFjZL51aEXL+NIMGCkXyz1fT1g1AHD+SaKaQEEIIIb1Dv2EHgWBzghiwJbtzAgBkmELnocUK3ARBCMm6pRqSy5JZAu/X1OUSX6emAkIIIeSIocBtENBKGTexmzS4c0Lin54sU+g6tXiNAvLSaDLr24BoGT5ao0YIIYQcKRS4DQJS4OY7DBk32Q4EWpUi7mL/7JTgscnuDZpuDA34UvXJBYCEEEII6RkFboOANIDX07cBvACQmRIMnLLNWghC7HVr+bKBt4XphoSfCwAyTVrInyLHQnuMEkIIIUcKBW6DgCY845bkOBAAKEgLBmA5KfGDqJDALS25wE2tVITMf8tJSS5zRwghhJCeUeA2CGjDukrdSY4DAYDhssxZbg/Zr8mFqdLLU4anJfxcXNZhKLkSQgghpGe0knwQiNyrNPnmhLLc4B6f4/LNcY89uSwbZ4zLQZpBgzG5ye8NOiLTiN0NXQCA4gxj0uchhBBCSHwUuA0Ch3scyB1njcGn2+tx8ZTCuMdqVAo8f9XUhJ8j3PhhFnyyvUF6mRBCCCFHBgVug0Aw4+aD38/g9fPmhMQH4gLAL+eNxC/njTxs19eTi44fhjX72zA2LyVk3RwhhBBCDq9BvcZt3bp1mDRpEgwGA+bOnYvq6uqYxxYXF8NgMMBkMsFkMuGmm27qxyvtG/km87wxAQC0Q2Sz9TyLHv+9djruPHvsQF8KIYQQclQbtIGby+X6//buPbbJ8mHj+NUN6A7dOoSNcdjgHeAGgwwSEYPvBP0ZxBAIEDRkEdG9cogxyD+gIgFDOOwPREMiTCLhFFQ0oCCiYADBkJkZMQgMGQw2poAHBus6tkG3+/0DWtfBCj+g61P6/SRL1udp17uXply57+egCRMm6PXXX1dVVZUee+wxTZ48OeBr9u7dK7fbLbfbrcLCwjYa6b1rfpN573KpdHfHuAEAgAeXZZdKv//+ezkcDuXn50uS5s+fr+TkZFVUVKhnz573/PcbGhrU0NDge+xyue75b96t5jeZb7hx9wSb7e6XSgEAwIPJslM6JSUlGjhwoO9xfHy8evfurZKSklZfM27cOHXp0kXjx48PuKwqSUuXLpXT6fT9pKUFPpA/mLxLolc9Tb6L8NrbRQW8eC4AAIg8li1ubrdbiYn+l7NITEyU2+2+5fM//vhjlZeX6+TJk0pPT9e4ceNkjGn177/11luqrq72/VRWVt7X8f83/p1xa/z34rsskwIAgBZCtlQ6cuRIHThw4Jb75s2bJ4fDcdPypcvlksPhuOVrhg0bJkmKiYnR8uXL5XQ6debMGWVkZNzy+Xa7XXa7NS4W2/xepb4ZtzA5MQEAALSdkBW33bt3B9y/a9curV692ve4trZWZWVl6t+//23/ts1mC6tlxuZ3TvAe42a/i2u4AQCAB5tl28GIESPkdru1bt06NTQ0aNGiRXrkkUdueWLC2bNnVVRUpGvXrqm2tlazZ89Wz5491atXr7Yf+F1ofueEe7n4LgAAeLBZth3Y7XZt3bpVy5cvV1JSkg4ePKiNGzf69s+YMcN3rbaamhpNmzZNSUlJ6tWrl06dOqVt27YpKsqyH8+P984JzS8H4t0GAADgZdnLgUjSkCFD9Ouvv95yX/PrtGVnZ+vIkSNtNaz7rvmM27/FLTxKJwAAaDu0Awvo0OwYN5ZKAQBAa2gHFsDJCQAA4E7QDiygQ7PLgdRf4xg3AABwaxQ3C2g+u+ZuuHbTNgAAAIniZgnNj2dz1XkkUdwAAMDNaAcW0Pz2Vu6GG8WtPf9pAACAP9qBBdhsNt+sm6v++lIp9yoFAAAt0Q4swn6jqPmWSrlXKQAAaIHiZhHepVFOTgAAAK2hHViEd2m0pt7j9xgAAMCLdmARLY9x4+QEAADQEu3AIrwX3PXOuHEBXgAA0BLFzSK8M26+pVKOcQMAAC3QDizCezJCY5PxewwAAOBFO7CIljNsLJUCAICWKG4W0bK4xdspbgAAwB/FzSJaLo3G29uFaCQAAMCqKG4W0aHF0mgsd04AAAAtUNwsghk3AABwOxQ3i7jpGLcOzLgBAAB/FDeLSGgxwxbHjBsAAGiB4mYRibHt/R5zjBsAAGiJ4mYRiTH/zrDFdYhWdJQthKMBAABWRHGziOYzbg/FdwjhSAAAgFVR3CyC4gYAAG6H4mYRzmbFrWMcxQ0AANyM4mYR6Q/F+X6P41IgAADgFihuFtGp2fJoZ4c9hCMBAABWRXGzCJvNpv/73/9RRnK8Zv6nb6iHAwAALMhmjDGhHoQVuFwuOZ1OVVdXKzExMdTDAQAAEeROewgzbgAAAGGC4gYAABAmKG4AAABhguIGAAAQJihuAAAAYaLd7Z8SGbwn17pcrhCPBAAARBpv/7jdxT4objfU1NRIktLS0kI8EgAAEKlqamrkdDpb3c913G5oamrSuXPnlJCQIJvNdt//vsvlUlpamiorK7lO3C2QT2DkExj5BEY+gZFPYOTTuvuZjTFGNTU16tatm6KiWj+SjRm3G6KiotSjR4+gv09iYiL/4wdAPoGRT2DkExj5BEY+gZFP6+5XNoFm2rw4OQEAACBMUNwAAADCBMWtjdjtdi1YsEB2uz3UQ7Ek8gmMfAIjn8DIJzDyCYx8WheKbDg5AQAAIEww4wYAABAmKG4AAABhguIGAAAQJihuAAAAYYLi1gb+/vtvjR49WnFxccrMzNSePXtCPaSQamho0Msvv6wePXrI6XRqxIgROnLkiG9/QUGBkpOT9dBDD2nOnDm3vW/bg6qoqEhRUVEqKCjwbSOb6woKCpSWlqaEhAQNGjRIly9f9m2P9HwOHTqkYcOGKTExURkZGVq7dq1vXyTms2DBAvXv319RUVH69NNP/fYFyuOnn35STk6O4uLiNHz4cFVUVLT10NtEa/msW7dOgwYNUkJCgjIyMlRYWOj3ukjPx8vj8WjgwIHKysry2x7UfAyC7rnnnjOvvPKKqa2tNV988YXp2LGjqaqqCvWwQsbtdpuFCxeayspK4/F4zLvvvmsyMjKMMcZ8/fXXJj093ZSVlZlz586Zfv36mTVr1oR4xG2vsbHRDB061Dz66KNm6dKlxhiy8VqxYoV54oknTHl5uWlqajJHjhwxdXV15HNDdna2WbRokWlsbDQ///yzcTgc5sSJExGbz8aNG83u3bvN0KFDzSeffOLbHiiP+vp606NHD7NmzRpTV1dn5syZY3Jzc0P1EYKqtXwKCwtNUVGRuXbtmjl69KhJSUkx+/fvN8aQT3Pvvfeeefzxx01mZqZvW7DzobgFWU1NjenQoYM5d+6cb1tubq5Zv359CEdlLQ0NDcZms5l//vnHTJo0yRQUFPj2rVmzxjz55JMhHF1orFq1ysycOdNMmTLFV9zIxhiPx2NSU1NNaWnpTfvI5zqHw2FOnz7tezxkyBCzffv2iM9n+PDhfv/wBsrj22+/NVlZWb59brfbxMbGmvLy8rYbcBtrmU9LeXl5ZtmyZcYY8vG6cOGC6devn9mxY4dfcQt2PiyVBtnJkyfldDrVtWtX37acnBwdO3YshKOylqKiInXp0kWdOnVSSUmJBg4c6NsXiVlVVVXp/fff1zvvvOO3nWyk33//XXV1dfr888/VpUsXZWZm+pZwyOe61157TRs3bpTH41FxcbEqKys1dOhQ8mkhUB4t98XHx6t3794qKSlp83FaQWNjo4qLi5WdnS2JfLzeeOMNzZ07V/Hx8X7bg50PN5kPMrfbfdONZxMTE33H5ES66upqTZ8+XYsXL5Z0c16JiYlyu92hGl5IzJ07V7NmzVLHjh39tpON9Mcff6i6ulplZWUqLy/X6dOn9fTTTyszM5N8bhg1apRefPFFLVy4UJK0evVqpaSkkE8LgfJo7Xs7UvOaN2+eunfvrmeeeUYS+UjXJxxKS0u1du1a7d+/329fsPOhuAWZw+GQy+Xy2+ZyueRwOEI0Iuuor6/XuHHjNHr0aOXn50u6Oa9Iy+qXX35RcXGxPvjgg5v2RXo2khQbGyvp+gHDsbGxys7O1uTJk7Vz507ykXTx4kWNGTNG69ev19ixY3X8+HGNGjVK2dnZ5NNCoDz43v5XYWGhtm7dqoMHD8pms0kin6amJs2cOVMrV670ZdJcsPNhqTTI+vbtq+rqal24cMG37fDhw74p50jl8Xg0adIkdevWTcuWLfNt79+/v98ZppGW1f79+1VaWqru3bsrNTVVmzdv1uLFizV16tSIz0aSHn74YXXo0MFvm7lxJiD5SKdPn5bT6dT48eMVHR2tAQMGaMSIETpw4AD5tBAoj5b7amtrVVZWpv79+7f5OEPJ+/2za9cude7c2bc90vNxuVw6dOiQxowZo9TUVE2YMEGnTp1Samqqrly5Evx87suRcgho4sSJZtq0aebKlStm27ZtEX9WqTHGvPTSS2bkyJHm6tWrftt37NhhevbsaU6fPm3Onz9vsrOzI+LMN6/a2lpz/vx538/zzz9v3n77bXPp0qWIz8YrLy/PTJ061dTX15vffvvNdO3a1ezdu5d8jDGXL182TqfTbN++3TQ1NZnjx4+brl27mm+++SZi87l69aqpq6szubm5ZsOGDaaurs40NjYGzMN7VuDatWtNfX29efPNNx/YsyZby2fXrl0mOTnZHD58+KbXRHo+Ho/H73t6y5Ytpk+fPub8+fOmqakp6PlQ3NrAX3/9ZZ599lkTGxtr+vbta7777rtQDymkysvLjSQTExNj4uPjfT8HDhwwxhizZMkS06lTJ5OUlGRmz55tmpqaQjzi0Gl+VqkxZGOMMZcuXTITJkwwDofD9OzZ06xcudK3j3yun9GWk5NjHA6HSUtLM4sXL/bti8R8pkyZYiT5/ezbt88YEziP4uJiM3DgQBMTE2Nyc3Mf2DMmW8tnxIgRpl27dn7f0dOnT/e9LtLzaW7fvn1+Z5UaE9x8bMZEwBUYAQAAHgAc4wYAABAmKG4AAABhguIGAAAQJihuAAAAYYLiBgAAECYobgAAAGGC4gYAABAmKG4AAABhguIGAJLOnj3rdz/GYCgvL5fNZpPD4dCXX34Z8LlbtmyRw+GQzWbzu9cxgMjGnRMARAyHw+H7vba2VnFxcbLZbJKkkpISpaenB/X9y8vLlZWVpfr6+jt+jc1m0/nz55WamhrEkQEIF+1CPQAAaCtut9v3e0xMjI4dO6ZevXqFbkAA8F9iqRQAdH02LCYmxvfYZrNp1apVSk9PV+fOnbV582bt2LFDGRkZSklJ0ebNm33PraqqUl5enlJSUpSRkaH169ff8fv++OOPGjx4sBISEpSamqrly5ff188F4MHCjBsAtOLgwYMqLS3VV199pRkzZmjs2LE6evSo9uzZo/z8fE2cOFHR0dGaPHmyBgwYoMrKSp05c0ZPPfWUBg0apJycnNu+x6xZszR79mzl5eXp0qVLKi8vD/4HAxC2mHEDgFbMmTNHMTExmjBhgi5fvqxXX31VcXFxGjNmjGpqanTu3DlduHBBP/zwg5YsWSK73a6srCzl5eVp69atd/Qe7du314kTJ1RVVaWOHTtq8ODBQf5UAMIZxQ0AWpGSkiJJio6OVvv27ZWcnOzbFxMTo9raWp09e1a1tbXq1KmTkpKSlJSUpA8//FB//vnnHb3HRx99pOPHj6tPnz4aNmyYioqKgvJZADwYWCoFgHvQvXt3JSUl6eLFi3f1+szMTH322WfyeDwqLCzUCy+8oLKysvs8SgAPCmbcAOAedO/eXUOGDNH8+fN15coVeTweHTp0SCUlJXf0+k2bNunixYtq166dEhISFB0dHeQRAwhnFDcAuEebNm1SRUWF74zTWbNmqa6u7o5eu3PnTmVmZiohIUErVqzQ2rVrgzxaAOGMC/ACQBupqKhQVlaW7Ha7NmzYoLFjx7b63K1btyo/P1/19fWqqKhQly5d2nCkAKyK4gYAABAmWCoFAAAIExQ3AACAMEFxAwAACBMUNwAAgDBBcQMAAAgTFDcAAIAwQXEDAAAIExQ3AACAMEFxAwAACBMUNwAAgDDx/3HTKx2ZepXNAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "response = ct.initial_response(sys, X0=[1, 0, 0, 0])\n", + "out = response.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Y4aAxYvZRBnD" + }, + "source": [ + "If you want to play around with the way the data are plotted, you can also use the response object to get direct access to the states and outputs." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHHCAYAAAB5gsZZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9v0lEQVR4nOydd3gU5fbHv5tNJ42QCoQqLfTeREAQRNCrIogFG+DPdi1cr1f0qmDjqlfF7r02bBdRAUVBmoKgFKWLQOg9kBDSe7Lz++PsuzO7O7M7m8zubOB8nifP7M5OZt9tM9/5nvOeY5EkSQLDMAzDMAxTZ0LMHgDDMAzDMExDhwUVwzAMwzBMPWFBxTAMwzAMU09YUDEMwzAMw9QTFlQMwzAMwzD1hAUVwzAMwzBMPWFBxTAMwzAMU09YUDEMwzAMw9QTFlQMwzAMwzD1hAUVwzAMwzBMPWFBxTAMwzAMU09YUDEXHHPnzoXFYsHmzZvr/L9HjhxxrFu/fj1mzpyJgoICr9vW53kY/zF//nx07twZUVFRsFgs2L59u9lDapAUFxfjkUcewahRo5CcnAyLxYKZM2eaPSy/UVJSggcffBBNmzZFZGQkevTogS+++MLsYTEmwYKKYXxg7Nix2LBhA9LT0x3r1q9fj1mzZrkJKrVtmeAjNzcXkydPRtu2bbFs2TJs2LAB7du3N3tYDZK8vDz897//RWVlJa6++mqzh+N3rr32Wnz88cd46qmn8MMPP6Bv37644YYb8L///c/soTEmEGr2ABimIZGcnIzk5GTDtzWSsrIyREdHB/x5Gyr79u1DdXU1br75ZgwdOtTjtvzeeqZly5bIz8+HxWLB2bNn8f7775s9JL+xdOlSrFy5Ev/73/9www03AACGDx+Oo0eP4u9//zuuv/56WK1Wk0fJBBJ2qJgLnpkzZ8JiseDPP//EDTfcgPj4eKSmpuKOO+5AYWGh07auobiZM2fi73//OwCgdevWsFgssFgsWLNmjWrY7sCBA7j99tvRrl07REdHo1mzZrjyyivxxx9/1GvsW7duxXXXXYfGjRujbdu2jsf379+PG2+8ESkpKYiIiECnTp3w1ltvOe0jNzcXd955JzIyMhAREYHk5GQMHjwYq1atcnuebdu24dprr0VcXBzi4+Nx8803Izc312l/v/zyC0aMGIHY2FhER0dj0KBBWLJkSZ3fcz3j0/taXbnttttw8cUXAwCuv/56WCwWDBs2TNd768vr3LlzJyZMmID4+HgkJiZi+vTpqKmpQVZWFi6//HLExsaiVatWePHFFz2OV5CdnY2YmBhMmjTJaf3333+PsLAwPP7447r2YzTi+28kwfpaFy1ahJiYGEyYMMFp/e23345Tp05h06ZNpoyLMQ8WVAxjZ/z48Wjfvj0WLFiARx99FP/73//w0EMPefyfqVOn4q9//SsAYOHChdiwYQM2bNiAXr16qW5/6tQpNGnSBP/617+wbNkyvPXWWwgNDUX//v2RlZVV57Ffe+21uOiii/DVV1/h3XffBQDs3r0bffv2xa5du/Dyyy/j+++/x9ixY3H//fdj1qxZjv+dPHkyvvnmGzz55JNYsWIF3n//fYwcORJ5eXluz3PNNdfgoosuwtdff42ZM2fim2++wejRo1FdXQ0A+Pnnn3HppZeisLAQH3zwAebNm4fY2FhceeWVmD9/vtv+9Lznesan97W68sQTTzhE1/PPP48NGzbg7bff9vre+vo6J06ciO7du2PBggWYNm0aXn31VTz00EO4+uqrMXbsWCxatAiXXnop/vGPf2DhwoWa4xWkp6fjkUcewZdffoktW7YAANasWYMJEybg7rvvxnPPPed1H65IkoSamhpdf4EkWF/rrl270KlTJ4SGOgd6unXr5nicucCQGOYC46OPPpIASL///rskSZL01FNPSQCkF1980Wm7e+65R4qMjJRsNpvb/x4+fNix7qWXXnJbp7WtKzU1NVJVVZXUrl076aGHHvLpf5Vjf/LJJ90eGz16tNS8eXOpsLDQaf19990nRUZGSufOnZMkSZJiYmKkBx98UNfzKMcoSZL0+eefSwCkzz77TJIkSRowYICUkpIiFRcXO73GLl26SM2bN3e8l76853rGp/e1qrF69WoJgPTVV1+pvma199bX1/nyyy87/X+PHj0kANLChQsd66qrq6Xk5GTp2muv9fhaBaWlpVLTpk2lESNGSL/99psUGxsr3X777U7v3dtvvy317NlTCg0NlZ566imP+xPvg54/b99LSZKk3NxcCYDX59WDt9daUVEh3XbbbVLz5s2l2NhYqX///tKvv/7q19farl07afTo0W7rT506JQGQnn/++Xq/bqZhwQ4Vw9i56qqrnO5369YNFRUVyMnJMew5ampq8PzzzyMzMxPh4eEIDQ1FeHg49u/fjz179tR5v+PHj3e6X1FRgR9//BHXXHMNoqOjna64r7jiClRUVGDjxo0AgH79+mHu3Ll49tlnsXHjRofbpMZNN93kdH/ixIkIDQ3F6tWrUVpaik2bNuG6665DTEyMYxur1YrJkyfjxIkTbi6cnvfc2/h8ea11wfW9rcvrHDdunNP9Tp06wWKxYMyYMY51oaGhuOiii3D06FFd44qOjsazzz6LH3/8EcOHD8eYMWPw3nvvOYXc0tPTMWvWLF0J4r1798bvv/+u669p06a6xmgU3l5rTU0NWrdujV9//RUFBQW4++67cdVVV6GsrEx1f0a9Vk/hTaNDn0zww0npDGOnSZMmTvcjIiIAAOXl5YY9x/Tp0/HWW2/hH//4B4YOHYrGjRsjJCQEU6dOrdfzuM4kzMvLQ01NDd544w288cYbqv9z9uxZAFQy4Nlnn8X777+PJ554AjExMbjmmmvw4osvIi0tzel/XO+HhoaiSZMmyMvLQ35+PiRJUp3VKE5KrmFEPe+5t/H58lrrguvrqcvrTExMdLofHh6O6OhoREZGuq0vKirSPTYxG9FisWDu3LluSdBCSH377bde9xUTE4MePXroel7XMFcg8PRaGzVqhCeffNJx/9Zbb8VDDz2E/fv3o3v37m77MuK1iu+9K+fOnQPg/pkz5z8sqBgmgHz22We45ZZb8PzzzzutP3v2LBISEuq8X9er4caNGzsck3vvvVf1f1q3bg0ASEpKwpw5czBnzhwcO3YMixcvxqOPPoqcnBwsW7bM6X9Onz6NZs2aOe7X1NQgLy8PTZo0cYjD7Oxst+c6deqU47l8xdv4fHmtdUHtvfXH6/SV7du3Y9y4cRg8eDB+/fVXfPjhh5qvXw8///wzhg8frmvbw4cPo1WrVnV+Ll/x9bXu3bsX5eXlTpMIlBjxWrt27Yp58+ahpqbGSXSJCSZdunTRtX/m/IEFFcPUE1+cLIvF4thesGTJEpw8eRIXXXSRYWOKjo7G8OHDsW3bNnTr1g3h4eG6/q9Fixa477778OOPP+LXX391e/zzzz9H7969Hfe//PJL1NTUYNiwYWjUqBH69++PhQsX4t///jeioqIAADabDZ999hmaN29e7/pOauOr62utK4F4nd7IysrC6NGjMXDgQHz77beYMGECZs6ciZtvvhnx8fF12qcIg+khkCE/X19rWVkZJk+ejH/+859OIVklRrzWa665Bu+99x4WLFiA66+/3rH+448/RtOmTdG/f39d+2fOH1hQMUw96dq1KwDgtddew6233oqwsDB06NBBddtx48Zh7ty56NixI7p164YtW7bgpZdeQvPmzQ0f12uvvYaLL74YQ4YMwd13341WrVqhuLgYBw4cwHfffYeffvoJhYWFGD58OG688UZ07NgRsbGx+P3337Fs2TJce+21bvtcuHAhQkNDcdlll+HPP//EE088ge7du2PixIkAgNmzZ+Oyyy7D8OHD8fDDDyM8PBxvv/02du3ahXnz5vmcV6J3fHpeq5EY/Tp94ciRIxg5ciQ6dOiABQsWICwsDP/617/QpUsXPP/883jhhRfqtN/Y2Fj06dOn3uP74YcfUFpaiuLiYgA0A/Prr78GAFxxxRVOdbwsFguGDh2KNWvWqO7L19daXV2NiRMnIjMzE4899pjmGI14rWPGjMFll12Gu+++G0VFRbjoooswb948LFu2DJ999hnXoLoAYUHFMPVk2LBhmDFjBj7++GO89957sNlsWL16teq2r732GsLCwjB79myUlJSgV69eWLhwIf75z38aPq7MzExs3boVzzzzDP75z38iJycHCQkJaNeuHa644goAQGRkJPr3749PP/0UR44cQXV1NVq0aIF//OMfeOSRR9z2uXDhQsycORPvvPMOLBYLrrzySsyZM8fhCg0dOhQ//fQTnnrqKdx2222w2Wzo3r07Fi9e7JaYrQe949PzWo3E6Nepl+zsbIwcORIpKSn4/vvvHe5Yx44dcccdd+C1115zCEqzuPvuu50S67/66it89dVXAJzDZyUlJQDcc9QEvr5Wm82GW265BVarFR988EFAksIXLlyIxx9/HE8++STOnTuHjh07Yt68eW41s5gLA4skSZLZg2AYJriZOXMmZs2ahdzc3IDkBzHGIGY73n333WjWrBn++c9/IiwsLCjck6VLl2LcuHHYsWOHw+WtD9OmTcP+/fuxbNkyt2R/hgkEXDaBYRjmPOXZZ59FVFQU5s6di+eeew5RUVH49NNPzR4WAGD16tWYNGmSIWLq6NGjeP/997Fp0yYkJSUhJiYGMTExWLdunQEjZRh9sEPFMIxX2KFiGIbxDAsqhmEYhmGYesIhP4ZhGIZhmHrCgophGIZhGKaesKBiGIZhGIapJ1yHygBsNhtOnTqF2NhYbojJMAzDMA0ESZJQXFyMpk2bIiSkfh4TCyoDOHXqFDIyMsweBsMwDMMwdeD48eP17ljBgsoAYmNjAdAHEhcXZ/JoGIZhGIbRQ1FRETIyMhzn8frAgsoARJgvLi6OBRXDMAzDNDCMSNfhpHSGYRiGYZh6woKKYRiGYRimnrCgYhiGYRiGqSecQ8UwDMMw5zm1tbWorq42exgBJywsDFarNSDPxYKKYRiGYc5TJEnC6dOnUVBQYPZQTCMhIQFpaWl+rxPJgophGIZhzlOEmEpJSUF0dPQFVXxakiSUlZUhJycHAJCenu7X52NBxTAMwzDnIbW1tQ4x1aRJE7OHYwpRUVEAgJycHKSkpPg1/MdJ6QzDMAxzHiJypqKjo00eibmI1+/vHDIWVAzDMAxzHnMhhfnUCNTrZ0HFMAzDMAxTTxqUoFq7di2uvPJKNG3aFBaLBd98843X//n555/Ru3dvREZGok2bNnj33XfdtlmwYAEyMzMRERGBzMxMLFq0yA+jZxiGYRjmfKVBCarS0lJ0794db775pq7tDx8+jCuuuAJDhgzBtm3b8Nhjj+H+++/HggULHNts2LAB119/PSZPnowdO3Zg8uTJmDhxIjZt2uSvl8EwDMMwzHmGRZIkyexB1AWLxYJFixbh6quv1tzmH//4BxYvXow9e/Y41t11113YsWMHNmzYAAC4/vrrUVRUhB9++MGxzeWXX47GjRtj3rx5usZSVFSE+Ph4FBYWcnNkhmEYJiioqKjA4cOH0bp1a0RGRpo9HJ+ZN28ebr/9dhw8eBDNmjUDAEydOhW//fYb1q1bh/j4eF378fQ+GHn+blAOla9s2LABo0aNclo3evRobN682ZHtr7XN+vXrNfdbWVmJoqIipz+GYRiGYYxj0qRJ6NChA2bPng0AmDVrFpYvX44ffvhBt5gKJOd1HarTp08jNTXVaV1qaipqampw9uxZpKena25z+vRpzf3Onj0bs2bNclt/6BDQo4chQ2cYhmEYw5EkoKws8M8bHQ34OtnOYrHgueeew3XXXYemTZvitddew7p16xxu1TXXXIM1a9ZgxIgR+Prrr/0wat84rwUV4D5dUkQ4levVtvE0zXLGjBmYPn26435RUREyMjKwZg0LKoZhGCZ4KSsDYmIC/7wlJUCjRr7/37hx45CZmYlZs2ZhxYoV6Ny5s+Ox+++/H3fccQc+/vhjA0dad87rkF9aWpqb05STk4PQ0FBH1VitbVxdKyURERGIi4tz+gOA1asNfgEMwzAMcwGzfPly7N27F7W1tW7n5eHDhyM2NtakkblzXjtUAwcOxHfffee0bsWKFejTpw/CwsIc26xcuRIPPfSQ0zaDBg3y+fnWravfeBmGYRjGn0RHk1tkxvP6ytatWzFhwgT85z//wRdffIEnnngCX331lfGDM4gGJahKSkpw4MABx/3Dhw9j+/btSExMRIsWLTBjxgycPHkSn3zyCQCa0ffmm29i+vTpmDZtGjZs2IAPPvjAafbeAw88gEsuuQQvvPAC/vKXv+Dbb7/FqlWr8Msvv/g8vvx8slMv8Cr/DMMwTJBisdQt9BZojhw5grFjx+LRRx/F5MmTkZmZib59+2LLli3o3bu32cNTpUGF/DZv3oyePXuiZ8+eAIDp06ejZ8+eePLJJwEA2dnZOHbsmGP71q1bY+nSpVizZg169OiBZ555Bq+//jrGjx/v2GbQoEH44osv8NFHH6Fbt26YO3cu5s+fj/79+9dpjGfO1OMFMgzDMMwFzrlz5zBmzBhcddVVeOyxxwAAvXv3xpVXXonHH3/c5NFp02DrUAUToo4FUIgNG+IwYIDZI2IYhmEudBp6HSo9rFmzBm+++abHWX6BqkPVoEJ+DQF2qBiGYRjG/4wePRpbt25FaWkpmjdvjkWLFqFv376mjYcFlcF4KF/FMAzDMIxBLF++3OwhONGgcqgaAuxQMQzDMMyFBwsqg2GHimEYhmEuPFhQGQw7VAzDMAxz4cGCymDYoWIYhmGYCw8WVAbDDhXDMAzDXHiwoDIYFlQMwzAMc+HBgspgSkqA6mqzR8EwDMMwTCBhQeUHiorMHgHDMAzDMIGEBZWBREXRsrDQ3HEwDMMwDBNYWFAZSGwsLdmhYhiGYZgLCxZUBiL6KrJDxTAMwzAXFiyoDCQ+npbsUDEMwzDMhQULKgMRIT92qBiGYRimfsybNw+RkZE4efKkY93UqVPRrVs3FAbhiTbU7AGcT3DIj2EYhglqJAkoKwv880ZHAxaLT/8yadIk/Otf/8Ls2bPx5ptvYtasWVi+fDk2btyIeBESCiJYUBkIJ6UzDMMwQU1ZGRATE/jnLSkBGjXy6V8sFguee+45XHfddWjatClee+01rFu3Ds2aNcPx48cxefJk5OTkIDQ0FE888QQmTJjgp8HrgwWVgbBDxTAMwzDGMW7cOGRmZmLWrFlYsWIFOnfuDAAIDQ3FnDlz0KNHD+Tk5KBXr1644oor0MhH0WYkLKgMRDiQLKgYhmGYoCQ6mtwiM563Dixfvhx79+5FbW0tUlNTHevT09ORnp4OAEhJSUFiYiLOnTvHgup8gUN+DMMwTFBjsfgcejOLrVu3YsKECfjPf/6DL774Ak888QS++uort+02b94Mm82GjIwME0Ypw4LKQDjkxzAMwzD158iRIxg7diweffRRTJ48GZmZmejbty+2bNmC3r17O7bLy8vDLbfcgvfff9/E0RJcNsFA2KFiGIZhmPpx7tw5jBkzBldddRUee+wxAEDv3r1x5ZVX4vHHH3dsV1lZiWuuuQYzZszAoEGDzBquA3aoDIQdKoZhGIapH4mJidizZ4/b+m+//dZxW5Ik3Hbbbbj00ksxefLkQA5PE3aoDIST0hmGYRjG//z666+YP38+vvnmG/To0QM9evTAH3/8YeqY2KEyEA75MQzDMIz/ufjii2Gz2cwehhPsUBmIMuQnSeaOhWEYhmGYwMGCykDETFSbDaioMHcsDMMwDMMEDhZUBqIs7VFaat44GIZhGIYJLCyoDMRqBSIi6DYLKoZhGIa5cGBBZTDCpWJBxTAMwwQD0gWe1Buo18+CymBYUDEMwzDBQFhYGACgrKzM5JGYi3j94v3wF1w2wWBYUDEMwzDBgNVqRUJCAnJycgAA0dHRsFgsJo8qcEiShLKyMuTk5CAhIQFWq9Wvz8eCymBYUDEMwzDBQlpaGgA4RNWFSEJCguN98CcsqAyGBRXDMAwTLFgsFqSnpyMlJQXV1dVmDyfghIWF+d2ZEjQ4QfX222/jpZdeQnZ2Njp37ow5c+ZgyJAhqtvedttt+Pjjj93WZ2Zm4s8//wQAzJ07F7fffrvbNuXl5YiMjPR5fCyoGIZhmGDDarUGTFhcqDSopPT58+fjwQcfxOOPP45t27ZhyJAhGDNmDI4dO6a6/WuvvYbs7GzH3/Hjx5GYmIgJEyY4bRcXF+e0XXZ2dp3EFMCCimEYhmEuRBqUoHrllVcwZcoUTJ06FZ06dcKcOXOQkZGBd955R3X7+Ph4pKWlOf42b96M/Px8N0fKYrE4bVefWGtMDC1ZUDEMwzDMhUODEVRVVVXYsmULRo0a5bR+1KhRWL9+va59fPDBBxg5ciRatmzptL6kpAQtW7ZE8+bNMW7cOGzbts3jfiorK1FUVOT0J2CHimEYhmEuPBqMoDp79ixqa2uRmprqtD41NRWnT5/2+v/Z2dn44YcfMHXqVKf1HTt2xNy5c7F48WLMmzcPkZGRGDx4MPbv36+5r9mzZyM+Pt7xl5GR4XiMBRXDMAzDXHg0GEElcK2hIUmSrroac+fORUJCAq6++mqn9QMGDMDNN9+M7t27Y8iQIfjyyy/Rvn17vPHGG5r7mjFjBgoLCx1/x48fdzzGgophGIZhLjwazCy/pKQkWK1WNzcqJyfHzbVyRZIkfPjhh5g8eTLCw8M9bhsSEoK+fft6dKgiIiIQIZr2ucCCimEYhmEuPBqMQxUeHo7evXtj5cqVTutXrlyJQYMGefzfn3/+GQcOHMCUKVO8Po8kSdi+fTvS09PrNE4WVAzDMAxz4dFgHCoAmD59OiZPnow+ffpg4MCB+O9//4tjx47hrrvuAkChuJMnT+KTTz5x+r8PPvgA/fv3R5cuXdz2OWvWLAwYMADt2rVDUVERXn/9dWzfvh1vvfVWncbIgophGIZhLjwalKC6/vrrkZeXh6effhrZ2dno0qULli5d6pi1l52d7VaTqrCwEAsWLMBrr72mus+CggLceeedOH36NOLj49GzZ0+sXbsW/fr1q9MYWVAxDMMwzIWHRZIkyexBNHSKiooQHx+PwsJCbNgQh8svB3r0ALxUX2AYhmEYxkSU5++4uLh67avB5FA1FILOoTpwABg7Fli71uyRMAzDMMx5S4MK+TUERKX0khJzx+FgwgRg+3bgl1+AwkKzR8MwDMMw5yXsUBlMUDlU2dkkpgCgqAjQUQCVYRiGYRjfYUFlMEpBZXp22vz5zve//daccTAMwzDMeQ4LKoOJjqZlbS1QXW3uWJCVRUtRSX71avPGwjAMwzDnMSyoDCYqSr5dXm7eOAAAR4/ScswYWh45YtpQGIZhGOZ8hgWVwYSHy4aQ6YJKCKihQ53vMwzDMAxjKCyoDMZikV2qigoTByJJskMlBNWZM0Gg8hiGYRjm/IMFlR8QgspU7XL2LFBWRre7d5frObhUkmcYhmEYpv6woPIDkZG0NFVQCXcqPZ0GZG/P41jPMAzDMIxhsKDyA0HhUIl8qVatnJcqeVRVVcD06cBTTwGnTgVgbAzDMAxznsGV0v1AUAgq4UQJZ8qDQ/XVV8Crr9LttWu5ugLDMAzD+Ao7VH4gKATVmTO0TE+npQdBtXGjfPu336iGFsMwDMMw+mFB5QeCYpZfXh4tmzShZVoaLXNy3DbdtEm+XVYGHDrk57H5yqefkjB8440gKD/PMAzDMO6woPIDQeFQuQqq5GRa5uY6bVZRIbf7S0qi5Y4d/h+eT7z+OvUhvP9+4MsvzR4NwzAMw7jBgsoPBMUsv3PnaOkqqM6eddps+3ZqkZOUBFx1Fa3buTMwQ9RFaams+ABgxQrThsIwDMMwWrCg8gNB5VAlJtJS2E+5uU5hM9Hur3t3+gOCzKFavx6oqZHvB9XgGIZhGIZgQeUHgkpQuTpUlZXk+tg5cYKWLVoAnTvT7X37AjRGPaxZQ8tBg2j555/OAothGIZhggAWVH7AdEElSe4hv+hoORapyKMSgqp5c6BpU7p9+nSAxqmHP/6g5Y03Ao0aUdLX/v3mjolhGIZhXGBB5QdMF1QlJZQYBciCymJRTUxXCioxEbCgwOQZikpEq5w2bYCuXek2h/0YhmGYIIMFlR8wvWyCcKciIuTBAHIelSIxXSmoEhKA8HC6L8pYmY4QVC1aAF260O3du80bD8MwDMOowILKD5g+y0+ZP2WxyOu9OFQWi+xSBUXYr7gYyM+n2xkZJKoA7o/DMAzDBB0sqPyA6SE/14R0gUvphIoK2axq3pyWQSWojh+nZXw8EBcnJ3mxoGIYhmGCDBZUfsB0QSVCfqJkgkBZOgHAyZN0NyoKaNyYbgeVoFKG+wAWVAzDMEzQwoLKD5guqHQ6VK7hPiDIBJVwqFhQMQzDMEEOCyo/EDSCytWhEgLLLqiELhE6BQgyQaXlUOXmyrMYGYZhGCYIYEHlB0yf5VdYSEsRxxOI+wUFAOT8qZQUeZOgFFQZGbRs0gQIC6PbQTFAhmEYhiFYUPkB02f5FRfTMjbWeb2GoBKpVUCQCSpRuyE9nZYhIfIAOezHMAzDBBEsqPyA6SG/oiJaxsU5r09IoKVdUKmlWgm3KifHb6PTj5ri4zwqhmEYJghhQeUHgkZQuTpULoJKTa+4mFjmIgYokukBFlQMwzBMUMKCyg+YLqhEyE/LoSosBGprVQWVUnPZbH4cox7UBijCf9nZgR8PwzAMw2jAgsoPmC6otByq+HinbTw5VDYbtQQ0jfJyoLSUbisHKG6LeCXDMAzDBAEsqPyAUlBJkgkD0HKolL39CgocgkqZQxUZKffzE11fTEEIptBQ59chBsuCimEYhgkiWFD5ATHLT5JMKpek5VABDgtKyi9waBKlAWSxyC6VqYJK9BtMSnLuRyhqa4lq8AzDMAwTBLCg8gPCBAJMCvtpOVSAI0mq4nSBo06WUlABQZKYrpaQDrBDxTAMwwQlDU5Qvf3222jdujUiIyPRu3dvrFu3TnPbNWvWwGKxuP3t3bvXabsFCxYgMzMTERERyMzMxKJFi+o1xvBw2VQJuKCqrKQ/wKOgKj5eAICigI0aqW5irkOlluAFsEPFMAzDBCUNSlDNnz8fDz74IB5//HFs27YNQ4YMwZgxY3BMVNTWICsrC9nZ2Y6/du3aOR7bsGEDrr/+ekyePBk7duzA5MmTMXHiRGzatKnO47RYTExMF+4UAMTEuD9uV0tlpwoAuEfUgCBzqFwFFTtUDMMwTBDSoATVK6+8gilTpmDq1Kno1KkT5syZg4yMDLzzzjse/y8lJQVpaWmOP6vV6nhszpw5uOyyyzBjxgx07NgRM2bMwIgRIzBnzpx6jdV0QRUdTQndroiQXzbZT679kxWbBKdDJQZcWio7cQzDMAxjMg1GUFVVVWHLli0YNWqU0/pRo0Zh/fr1Hv+3Z8+eSE9Px4gRI7B69WqnxzZs2OC2z9GjR3vcZ2VlJYqKipz+XDFNUHlKSAccaqn6bAEAdUEVFEnpWoIqPp5a0AAc9mMYhmGChgYjqM6ePYva2lqkpqY6rU9NTcVpjcZz6enp+O9//4sFCxZg4cKF6NChA0aMGIG1a9c6tjl9+rRP+wSA2bNnIz4+3vGXIZr3KjCtn5+nhHRAnuV3rgCAnJKksklwhvxCQuQBctiPYRiGCRJUYkLBjcUl4UeSJLd1gg4dOqBDhw6O+wMHDsTx48fx73//G5dcckmd9gkAM2bMwPTp0x33i4qK3ESVcKjETLqAodOhQmGB0121TUx1qMSTqym+xEQSU+xQMQzDMEFCg3GokpKSYLVa3ZyjnJwcN4fJEwMGDMD+/fsd99PS0nzeZ0REBOLi4pz+XDE9h0rLobKrJWtxgfKuE0HhUIknV1Z3F3BiOsMwDBNkNBhBFR4ejt69e2PlypVO61euXIlBgwbp3s+2bduQLvrBgVwr132uWLHCp32qEbQ5VHahFVpK2wWtQyUEldoAhWvFgophGIYJEhpUyG/69OmYPHky+vTpg4EDB+K///0vjh07hrvuugsAheJOnjyJTz75BADN4GvVqhU6d+6MqqoqfPbZZ1iwYAEWLFjg2OcDDzyASy65BC+88AL+8pe/4Ntvv8WqVavwyy+/1GuspgsqLYfKLrTCKsjJEm6UkqBISi8spKWaoBIOVZCE/D75BMjKAh57zL2mF8MwDHNh0KAE1fXXX4+8vDw8/fTTyM7ORpcuXbB06VK0bNkSAJCdne1Uk6qqqgoPP/wwTp48iaioKHTu3BlLlizBFVdc4dhm0KBB+OKLL/DPf/4TTzzxBNq2bYv58+ejf//+9Rqr6SE/Lw5VeKW2QyW0mMrkxcAgSZ4dqiAK+Z07B0ydSi2Gli4FNm6kYqkMwzDMhUWDElQAcM899+Cee+5RfWzu3LlO9x955BE88sgjXvd53XXX4brrrjNieA5Mn+XnRVBFVWsLKvGvyhqhAaWiAqiqottqAxR5VcLFMpGFC+V+jdu3A+vWASNHmjokhmEYxgQaTA5VQ0N1lt+aNXQG9ielpbTUij3ZBVV0LaklT4KqpITMooAj3KmQEPVq70EkqObNc75fz0gxwzAM00BhQeUn3EJ+eXnA8OHA+PFkY/gLb4LKrpaipHKEotpjyM9mA8rKjB+iV4RQio9374sj1iu3M4nqakCUNPvb32jJgophGObChAWVn3ATVJ9+Kj84a5b/nlinoAKAWBSrCqpGjWQdY0rYz1P+FBA0gurwYaCmhrr83Horrdu4UQ4BMgzDMBcOLKj8hJugev99+cEffwSOHPHPE3sTVGFhkOyDi0OR6iw/i0WOtAWloHIUJzVXUGVl0bJ9e6BzZxpWaSmwe7epw2IYhmFMgAWVn3ASVPn5wJ9/0opmzWi5Z49/ntiboAJga0QuVWJosWOcrpiamO6pqKdyfZAIqg4dKN1LFOU/cMC8MTEMwzDmwILKTzjN8hNn3mbNgH796LaiWruh6BBUNdGUJNU0pkg1RQkIEkEV5CE/paACgLZtaXnwoDnjYRiGYcyDBZWfcHKo9u6lOx07Au3a0W0TBVVVJAmqtGjtQlOmCipPRT0BWVAVFwO1tQEZkhr79tGyfXtasqBiGIa5cGFB5SecyiYoBZU4+/pLUIlpeR4EVWU4qaWUKG211CAcKsDEYlnsUDEMwzAyLKj8hFeHStgbRqPDoSoPJYcqKTxIHSpvgioiQi5HblIH54oK4MwZut26NS2FoOIcKoZhmAsPFlR+QlNQCYfq6FG5GriR6BBUZXZB1SQsyAWVVlI6YPpMv9OnaRkRIfdqFoLq+HH/fLT+JCeHqnl8/LHZI2EYhmmYsKDyE0JQVZXVyDGgDh2A1FSqSWCzGV86obpaLoLkQVCVhJCgSgjxLqhM6eenLOyphcmJ6adO0TItTa7ZlZZGNak0P9qyMv/N7qwHJSVA377AzJnAbbcBhw6ZPSKGYZiGBwsqPyFm+TUqOUPVH61WoGlTOvumpdGDImZkFMKdAjwKqmKQWooPCdIcKvGkomS7GiYLquxsWjZtKq+zWIAWLej2iRMq/9CnD5CZCaxcGZAx6mXlSkDRUxzvvWfeWBiGYRoqLKj8hHCoEkpP0o30dBJVAJCSQsucHGOfVAiq0FAgPFxzs0KJhEqsFKQhP2GLNQBBlZ7uvF4ILOFgOZg2TXannn/er2PzlR9+oKUokfbRR+SyMQzDMPphQeUnhKBKLLcLKnG2AmRBlZtr7JPqyJ8CgAIbCZUYW5ALKkWbHDeCVFCJj9lJUJWXO7tSa9YA27f7cXT6kSRZUL39NuWEnTlDbXUYhmEY/bCg8hNCUCVVehBU/nKovAiq/BoSKtG12mpJmEMc8lPHJ4dqwwbKUm/aFLjySlq3Zo2/h6iLQ4coPBkeDowcCXTpQut37DB3XAzDMA0NFlR+QgiqlGoVQZWcTEuTBNXZahIqUdUN2KEyeZafWg6V8r6ToFq9mpbDhwO9e9PtIHGoRBSyY0dKqO/ene4HyfAYhmEaDKFmD+B8RQiqpgg+hyq3ggRVRGUQCqrKSnmmoieHylTF56ND9fPPtBw+HGjShG4HiQUkBFWnTrTs0YOWQTI8hmGYBgMLKj8hZvk18ySoTMqhOmMXVGGVQTjLT1mnISZGezuTBZUQTF4FlSQBu3bR7T59ZJG4ezcJx7Awv4/VE0qHCmCHimEYpq5wyM9PhIfTNHpVQWVyyO9MKYmR0DJth0rsQlmJISAIQdWokTwrUg0TBVVNDXD2LN0WFTAESkElSaAN8/Ppy9CuHdCqFYmqqiq54KuJiCEIh6pbN1oeO2ZqVx+GYZgGBwsqP2GxkEvl0aEyQVBJEpBdSi6JtbTIftZ3xzRBpSchHTBVUOXny2+biOAJhGNVWUnbORr+tWhBSUoWi6xahHNlEpLkHvJLSJArvx89asqwGIZhGiQsqPxIk4gSxKKE7ihjQ0JQ5eUBtbXGPaEOQVVRAeTVkFix1NTYuze7I3ZRVqapuerN669Tzs5999lb9AD6EtKVj5sgqPLyaJmQQCW/lEREyCLr5EnIFpDooAzIPWpMViw5OdTlR5hnglataGl0IX+GYZjzGRZUfqRpGOVI2SIinfOBmjShs5gkyWdnI9AhqIqKgFIoHtcQJNHRtKyt9U9fuupq4KmnKPn5rbeAL75wGU8QO1TiI3N1pwSpqbTMyYHsUCkFlSinrixPbgJCMDVrJk+iAICWLZ0fZxiGYbzDgsqPCEFVnZAiN3wDyNYQcRUjw346BZWEEBTBc7M+5S78Efb75Re5BzIALFmiGCDg3aESAjUIBZVIkcvNhSyoRNY3EDSCSjy9GI6AHSqGYRjfYUHlR9KtJJYq45PdH/RHHaWyMloKe0kFoVdK7Q2StQRVWJg8AU3s1ki++46WnTvTcsUKuxOmp+0MYKpDJRLSdQmqAwfojjKmFiSC6vhxWmZkOK8XgopzqBiGYfTDgsqPpISQQ1UZ60FQKW2a+iISkXQIqrJQ76XQxW784VD9+CMtn3ySQmTFxcCvv8L3kF9Jif+SvDTwyaES9ROaN5c3aCCCih0qhmEY/bCg8iMpEjlU5bEp7g/6Q1AJK0mZEOOCMMQqwjyH/AD/zfSz2YD9++l2r17AkCF0e9s2+J6UbrMpMtoDgxBUSUnqjwtBVXCqTH7DlZMShIIpLDSt0jsgCyoO+TEMw9QfFlR+JAnkUJVGqzhU/uhF54NDVRnhOeQHOM/0M5LsbBqq1UoJ0CLs9+ef0O9QNWok56UFOOyn16GqPWEvpx4VJX/eAI1d/LNQNSag5VCJpPSzZ00om6HF4sXAAw/YVTfDMEzwwYLKjzSpJUFVEhWgkJ8Oh0rop6oo80J+wp1q3ZrytJwElV6HymIxLTFdr6CynFb0p1FOSgBkW8jERCURcXQVVPHxspgWLXZM5dNPgb/8heps3HijsaVGGIZhDIIFlR9JrKGQX3FUgEJ+PjhUtVHmhfxEnvZFF9FSCKrduwFJb1I6YFpiut6k9LCzGg3/ADmn6uRJYwenk6oq4MwZuu0a8gPkIQeFoHrnHfn23r3AV1+ZNxaGYRgNWFD5kfhqcqgKIwIU8tMxy088nS1Gf8jP34KqXTtyqoqLgYpcuzjy5lAptwlShyq6wJ6QLvrRKBHFqoSqCTCiNU5EhHouWNAIqv37gQ0bgJAQ4O67ad3775s7JoZhGBVYUPmR+CoSVAWhwRfyk2LNy6ESIT9RSSAsDGjfnm6X59oryzcAQeUtKT2u1IND5VT9M/AIodS0qXs0EggiQfXNN7QcORK49166vX69f6rNMgzD1AMWVP5CkhBbTifLc6HBF/JzhNRMyKE6eJCWogMLIAuq2kK7oFJWltfChBwqZXF7LYdKrE+DB0El2g+Z5FCdPk1L1+bOgqARVFu20HL4cGo42KQJfc+3bjV3XAzDMC6woPIXpaUIr6U+eeesAQ756XCorAnm5VCJ0kzKZOjWrWlpKbGLIz2CygSHqrQUqKmh240bq28TFkaPNUXwhvy8CSqx3nRBJYRTr14U9rv4Yrq/dq15Y2IYhlGBBZW/yKVwXzkiUVSr0grGZIcqNNGckF9NjZzUrTyZC0EVWuGDQ2WCoBIfV1iYx7cZyclAuieHyuSQX4NwqIqK5Phwz560vOQSWv76qzljYhiG0aDBCaq3334brVu3RmRkJHr37o1169Zpbrtw4UJcdtllSE5ORlxcHAYOHIjly5c7bTN37lxYLBa3v4qKivoN1H6izEEKyitUklRMLuwZ1sSckF9uLoXNQkKcQ2aimGREdR1yqEpKjBugF8THlZCgnnskSE5WOFSeBFWQOlRBIai2b6dlRoacmNarFy3/+MOUITEMw2jRoATV/Pnz8eCDD+Lxxx/Htm3bMGTIEIwZMwbHNFp4rF27FpdddhmWLl2KLVu2YPjw4bjyyiuxzaU4YFxcHLKzs53+IiMj6zdYu0OVi2SoajOjQ37V1XJ9Hh0OVUSSOSE/cSJPSaHCnoLWrYEQ1CLKZheFQe5QCT2sRdPECiQi335HJeQncqjy801JsBafg9B1rgSFoBK/U+FOAXKNjcOHg6jqKMMwTAMTVK+88gqmTJmCqVOnolOnTpgzZw4yMjLwjrJOjYI5c+bgkUceQd++fdGuXTs8//zzaNeuHb4TnXntWCwWpKWlOf3VG7tDpSmoxBm5ogLqG/iIMi6nI4cqMsWckJ+WM9KqFdAIihNkkAqqfLtG8iao2jaiF1oTGqGebNW4MRAaSrft4juQ6HWo8vJMnFAnwn2dOsnrkpNlt2rPnsCPqT7s3g38/e/y62IY5ryiwQiqqqoqbNmyBaNGjXJaP2rUKKxfv17XPmw2G4qLi5GYmOi0vqSkBC1btkTz5s0xbtw4NwfLlcrKShQVFTn9uWE/SeYgRV0vKUNaRrhUQvWEhADh4aqbSJKsn6LTzAn5aZ3IGzUCWiZS6E4KCQH0OIQugqqyEnjzTeCWW4DffjNqxM7odahahVO4rzBapUo6QJ9ToGb6FRdTz0MF4im1BFWTJqbqPUJtOijgUlq/gbBrFzWt/Pe/gcGDqUApwzDnFQ1GUJ09exa1tbVIdYlRpKam4rQ4S3vh5ZdfRmlpKSZOnOhY17FjR8ydOxeLFy/GvHnzEBkZicGDB2O/h6vI2bNnIz4+3vGX4dq7A3AK+an27rVa5dIFRggq8SRRUZrJPRUVFBkEgJh0hRhxOdkK/BHy83Qi79CMBFV1ZKznBCWBi6B6/XXgr3+lTiWiZJHR6A75WShWlhemkj8lCISg+vRTcnRGjnR8+JLk3aGyWOQcNzGJIOCcT4Lq8ceBc+fodm4u8PTT5o6HYRjDaTCCSmBxOdFKkuS2To158+Zh5syZmD9/PlJS5LpQAwYMwM0334zu3btjyJAh+PLLL9G+fXu88cYbmvuaMWMGCgsLHX/H1Rrcegv5AcbmUemokq400hql28WcJGkqpkCG/ACgbSoJqsowHeE+wE1QffKJ/NDmzcDOnXUdpTZ6BVWqRILqTIgHQeXvxPRt28iuq6wEVq8GnnoKAH3dKiudh6CGiKyZ4lDV1gJHjtBtLUG1e7fTapsN+Owz4Jdf/D88nzh3DvjhB7r94Ye0/PbbgE6mYBjG/zQYQZWUlASr1ermRuXk5Li5Vq7Mnz8fU6ZMwZdffomRI0d63DYkJAR9+/b16FBFREQgLi7O6c8NbyE/QM4TMuLA6kPJhNhYICQ6Uo7paORR+TPkp/aRtWhMwqg8xHdB9ccfFFUJDwdGjKDVH31Uz8GqoFdQJVVSyO+ETSUh3bGRvdS6qBRqNF9+6Xz/rbeAqirHZxAf7zmyKoZnikN1/Dg5amFhct9DgagCK3oY2Xn+eWDyZIqsPfZYgMaph6+/ptfSvTtw220kEMvKSFQxDHPe0GAEVXh4OHr37o2VK1c6rV+5ciUGDRqk+X/z5s3Dbbfdhv/9738YO3as1+eRJAnbt29HutpUd1/wNssPMDap2oeinnFxoJiOl+f35yw/NYeqWTwJy2LoFFSKSumLF9PNMWOAqVPpts7UOp/QK6jiy8ihOlLl4XskYmr+ElTff0/Lzz4jBVtUBKxd63CcFEatKqY6VCLc17q183RQQHasDh92zGzdtcthwAEAXnrJtIoU7gh3auJE+t1dfz3dX7bMvDExDGM4DUZQAcD06dPx/vvv48MPP8SePXvw0EMP4dixY7jrrrsAUCjulltucWw/b9483HLLLXj55ZcxYMAAnD59GqdPn0ahIsQ2a9YsLF++HIcOHcL27dsxZcoUbN++3bHPOqOsQ6WWQwUYW0fJh5CfiDQ6crg0HCp/5lCpOVRpMfQ+FNTqqEEFOAlCkYQ+fDjQowfd3rVLMz2szugVVNFFJKgOlqVDkjQ2EpMj/CGojhyhN8BqJZU5bhytX7zY4Thp9SIUmOpQaeVPAVSXKjSUph/ay+5//jl91uPGAf36UQHZTz8N4Hi1kCRq7gwAQ4fScsgQWm7aZM6YGIbxCw1KUF1//fWYM2cOnn76afTo0QNr167F0qVL0bJlSwBAdna2U02q//znP6ipqcG9996L9PR0x98DDzzg2KagoAB33nknOnXqhFGjRuHkyZNYu3Yt+vXrV/eBSpI+h8rIXnTKpHQNhI50RCh1Ciojc6iEdkhW6caTEk2CKr/Kx5BfSQk2b6abffoAF11EoayyMuDQoXoO2AW9gioij070x2ubaqfICYdKJCsbiagk3q8fCbcrr6T7P/ygW1CZ6lAdPUpLUUJfidUqV4I9eBCSRFE1ALj5ZtmhDApBdeQIXUWEhclFScWxZf9+/7mTDMMEnFCzB+Ar99xzD+655x7Vx+bOnet0f82aNV739+qrr+LVV181YGQKSkoctaVykYzwQIb8dDhUDkHl5fmVOVSSpG/inSckSdYOLpUraF04jeNsZQxqa90jPW7Yxy+VlOBUsYSQEAt69CDzonNn6qu7cycJLKPQK6hCTpNDlY105OZqbO/PkN+uXbQUdp1wRQ4cQMmxcwASg9uhOnGClq75U4K2bSmH6tAh/JE4DAcOkIgeO5auLe68kz77ggLvn5VfEe5Ujx7yxU5iItChA5CVRS7VFVeYNjyGYYyjQTlUDQb7Jb0tMgqlaBTYpHQ/OFQ2mzwrrD4UF8vF3NVqXcZZ7DlUUoy+Ct12QWWRJDRCKTIz5TF360ZLo2f66RJUVVUOFXIKTbUdnkAIKjEjLjHRoSwb7f4dgP6QnykO1cmTtNQSVG3a0PLgQYjrpuHD6SeVnCxHCv1Vj0w3GzfScuBA5/UDBjg/HgTs3w/ouAZlGEYDFlT+wH4GkpokA7CgvBzqeTQmOVR6c6iUuzIi7Cfcqagodd0XUiaS0mOhVonCjagoKpAJIBbF6N1bfqhrV1oa3fJNl6CyZ95XW8KQhybaesmfgkrUaOrSRV7Xty897SF9gkqE/ILWoQKAgwcdkw8GD5YfFnpFGESmIRS98ssJBF1Pwk8/pa/K8OHAXXcZn3vIMBcCLKj8gT0hXVIkCqm27zAyKd0Hh8ohqLwIurAw+gOMSUz3FO4D4HgfShDjOJ96RDFTMRbFyMyUHxJhPpGKYwSSpFNQ2e21/Ig0ABZtQeIvQVVSQjPgANmhAhyCqtkp3xyqgAsqSfIuqIRDdfiwQzQpTSBx23QDSAhb5ecAwPFlDYL2OXl5FCIVx6j//AdYuNDcMTFMQ4QFlT+wO1SWVHleumrYz8ikdB0Ola8hP8DYmX5eBZX9fShBjD6HCnASVKI8EQC0aEFLjb7ZdaKkRL5yd4hSNeyCqiiGalBpChLxRlRUGJv5L07SqanOqskuqNrkbwGgPjFAidKh0pyp6A+KiuQvXLNm6tvYP+Dao8dx7BgZlcp5JOK2mKxgCjk59OZZLM79CAH5/oEDxsTT68F779FXsGdP4NFHaZ3RaaUMcyHAgsof2AVVSGqyI5HbYz8/I8sm+OJQ+SCojAz56XGo9AoqyYugys2FdtkKHxG6NyTEo251TOUvj6caVJoGVGysXFzVSJdq3z5aduzovN4e/kupPok4FOp2qGpqjCnmrxvhTjVurP1G2z9g65lshKMSXbs699MWBtDZsya2zhF5bG3auL+Opk3p91dba2qzZEkiRwoAHngAuP9+cqXXrwd27DBtWAzTIDFEUBUVFeGbb77BniCwr4MCe8jPkpzsqEStelI3ModKR8jPLYdKx/MbWS1dr6DSnUMFoCaCzqJxKHYqWZSQIJ9gdbtdXlDOkvQ449HuUFU1IUGleUJXNswzsnSCaNkiSgsIEhLoRA6gI/Z6FVQREfJXJKCJ6d7CfQCpPfuPqxlOOlKSBI0ayaI6K8sPY9SDVrgPoM9eqD6XFjqBZN8++rpERAATJgDp6VS2DJDrwjIMo486CaqJEyfizTffBACUl5ejT58+mDhxIrp164YFCxYYOsAGiaIUtRBUHkN+ZuVQBVvIz9ccKgClIXTGb5NcjIgIeb3FYnzYz63shBZ2QVWb5iXkB/gnj0okjtnrsymxdaBQUyZ2exVUgEl5VHoEleIDzsBxx6xOJcKg27vX4PG5MH8+lWt4+WW5+TgAz4IKkAWViU2ef/yRloMGyRdPQlBxIXeG8Y06Caq1a9diiL2uzaJFiyBJEgoKCvD666/j2WefNXSADRIhqBQOlceQnxEOlXiChhzyq0MOVaGN3sPWye6i1GhBJT4mr4LKHvKzNvPiUAH+FVSuDhWAstZ0Eu9i2e05D8yOKcU9RckErfwpQUYGAKAFjpkmqH7/nfoHLl0KPPww8Mwzige1Qq+CDh1oaWLITwgq0f8SAC6/nJYbNsiTMBiG8U6dBFVhYSES7WfFZcuWYfz48YiOjsbYsWM9NhW+YLCH/JCc7NA3fk9Kr0sdKh2CziyHKjvb5Wpfg7wqeg2isbISfzlU4m3TxO5Qhbcih8qjVvJH+xkPDlVBOgmqbmG7RcUJj5jiUImGj176aVan0wdspqB64AHn7+mLLyqq84vmze3aqf+zovSDGUgS8PPPdFspqFq1Iq1XWwusXWvK0OrMqVNUiULPsYNhjKZOgiojIwMbNmxAaWkpli1bhlGjRgEA8vPzEempff2FgkrIz2MOlZEhPw/vf10cKjNyqCpCYyFJDqPHI2fK6T1sFhc4QaU35BfVRodDJSqcGmUFSJL8glUEVU4SCapOkr68HVNqUXnqoK3cLJw+4E7Rx1TDl2Iinb9SO48eJRfHYqHv6qWX0oS9994D/R6FzRqkguroUdLxyq44AlHTqyG1G/zlF6B9eyrq27Onfzo6MYwn6iSoHnzwQdx0001o3rw50tPTMWzYMAAUCuwqKipeqEiSk0OlK+RXUlL/eeleQn42m2xEBXsOVUwaOXd68qhOFdF7mBLlLqjsESHd+Vje0BXyq6lxfP5xHUhQnTvnoVCiKGhllKAS0xotFvkNUHAshgRV8+ojuj5UU6qlC0Gl1kFbweFaElQdotQVs7IWmajQbySif+DQoWSmiX7q8+YB0kG7TRUfL4d1XRGCKi8vwNMoia1badmlCxAe7vxYEBZy90heHjXGFl/pP/+k2loME0jqJKjuuecebNiwAR9++CF+/fVXhNhjB23atOEcqpISua6MN0ElQn42W/3n9nsJ+Smjem6CSkfIz+85VDU1jtfQOIPeF295VLW1wPECElRNwt1fgzgfnzlTp+G6oSvkd+YMiWOrFY3bk71js3nQS0Y7VCLcl57ufpYEcKoqCTmw2046pr+ZEvITH5gXh2p3CQmq5lD/oqSnk/tSUyOnZRnJN9/QcsIEWo4bRz/po0eBrO/tqQ/t2mlPCY2NlS1Ao7t462DbNlq6ulOALKh++80/YtRo3nqLNGnXrsC6dVSNZMECWTQyTCCoc9mEPn36YOzYsTh58iRqamoAAGPHjsVgZf+HCxFxMoiOBmJiPOdQRUfLB9v65lF5CfmJC+DwcMUmQhmUldFZR2OIgDEOVX4+LVWrjCueILGFPkF1/DhQUEvbNoJ72NRfgsqjQyXilGlpCIsIcYhXTUEi3gzx5tQXEe4T8U4XcnOB3dA/XT/gSemSpDvktyWXXmOTkqOqDq/VKr8NopKEUVRVUUI6AFx2GS2jooCrrqLbh1ba86e8deY2MewnxIaaoMrMJHFYUuLyNZk/H+jenRLUTG+USFRUAK+/Trcffxy4+GJg/Hi6/9575o2LufCok6AqKyvDlClTEB0djc6dO+OY/SB+//3341//+pehA2xwuJwMPOZQhYTIFlB986i8hPzcEtIBZ6tFQ9AZGfJzy+FSIl5/aCjSWlL9A2+Cat8+qlkFACEl2g5Vbq4xV9m6BJXo6mxPqBbRHq+CyiiHSjy/xgy5s2d9E1RuDlV5OVkxrVsDn3xSz8GqUFIi26FeQn6/HqWyCuGVJZohs9ataWm0oNqxg4xoRc9pAMDo0bSs+EPhUHnCREElHKqePd0fs1rl9oNiO6xZA9x0E/UnzMqi+gqixZGJrFxJIb9mzWQhNW0aLT//3LjCvvWmqop6+nz3nUYvMqahUydBNWPGDOzYsQNr1qxxSkIfOXIk5s+fb9jgGiQagkrVoQKMK53gJeTnVtQTcLarvAiq+ob8ampkUeZRUMXEIKMFuXbecp/27aMZgU7/ryA5mQxAm82YSXS6cqiEoLEX0PQaMvOXoNKYIeeroHJzqO64A1iyhBTKrbdSJrCRiN9PTIxz6XMXysuBvceikQv7G6wx80BUjjBaUIlk7f79nSN6I0fSMjbXHsJTVptVQzwe4JDfuXPyV0Ur7VXMnNy5E/QjuusuujIZOpQcqnPngBdeCMh4PSH6Dl57rdx4YPhwEljFxUEyU7GoiKzM8ePJxhw6NIiUHmMUdRJU33zzDd58801cfPHFsCiOJpmZmTho0oyVoMEl/8OroDLKAtIZ8nMTM0LQaSSmGxXyU+5eVVAJtRIT48il9sWhUhOEoaGyQ2RE2E9XDpUI+dkFjRBUmoLO6BwqHYJqD+zT33QUlHQShHv3Al98QStEOE7EWoxCZ0L6vn0U5Ttp9TyVUwgqo40Ukawtco0ETZtSuKwVjtAKYZFpIWZiGtl0UgeilERGhrZudRJUS5aQKxUfDyxeLPer+eSTwE2ny8lxs5pramg4gOxOAWT+i3pay5cHZngeefJJZ2W3cSP1+WHOK+okqHJzc5GSkuK2vrS01ElgXZC4OFQec6gA4ywgnSE/NzHjZaafUXpPPH9UFCUKuyEcpthYnwSVJ4cKMDaPyqeQn68OlVE5VF7yj5wcqkOHPHwxCeFQFRUBte/8l+5cdRWwYgXdXrhQX30LvejMnxKlEArj9Qkqox0qkX9k7zftxIhhtWgJ7eKqTogkLzGZIECI90+r5iggO1d//AHgtdfozv/9H/0AhgyhXKrycllk+4uTJykumZpKjp5IXgPdPHeOQq+u6btCUJle8f3QIeDtt+n28uXATz/R7Q8/lGuVMecFdRJUffv2xZIlSxz3hYh67733MHDgQGNG1lDxJYcKMMYCkiSvIb/6Cqr66j2P+VOAU8hPdBw5c0aeMKnG/v2eHSrAWEHlU8ivLjlU9S2dofL8rpw9C5xGGmpiEyiM46UQb3w85dNYYAM+tedM/d//0dm2Tx9yDES5bSPQKaiEw1KdZhckGurbHw5VVZX8tqmFy0Z2zkY4qlGDUO/V3pUOlRGfv06EoBK1utTo3JnCmdLp05BWr6aVojaExQLccAPdXrrUfwOtrQVuvBHYvp3uHz1KuVv2H5QY1rBhcrhPMHIkOVV79vhnlqdu3nmHKo2OHAmMGkXxyLFj6fd3oeccn2fUSVDNnj0bjz/+OO6++27U1NTgtddew2WXXYa5c+fiueeeM3qMDQuXkIXukF99FEt1tVzoyEvIz00MeMnhMirk51VQKUJ+ir63muZHVRW5DnodKlEarD7UJ+TnVVBVVxuTU+FBUEmSGIcFNe315VGFhJAo7I4dsObn0Yu3F/KFvf4c1q2r/7gFQvl6CfkJQRDaxrNDJQygkyc91ALzkQMHKNQUG6uulwakkno7ihYoLrN63pm4eigtNc6l1IEQpJ4EVUwMGULXYiEsNhvQr59zCFM0/fvpJ69OZ51ZsIBCZbGxVEW1a1eKn//jHwBkQTV8uPu/JiSQiQYA69f7Z3heqa0F/vc/un3PPfL6Rx+l5RdfGDPjhwkK6iSoBg0ahF9//RVlZWVo27YtVqxYgdTUVGzYsAG9xdSQCxVfk9KNUCzKnfuSlA4EPOSnx6GyWOTzjFbY79AhOkHaoj0XRw2WkJ9mDlVMDFlAQP3zqGpr5exxFYenrEz+qli76E9Mb9IEGIY1dGfIENkKsPfzNDTrVyhflZQCJUIQxHbxHDJLSyMzpabGuNIP4i3LzFQvMZVSdgQAcBitvRfGjIqSX2sA86j0hPwAyqO6DvYKphMnOj/YtSspyvJyuYeN0bzzDi0ffJAS1t59l+5//DEq9x9zzIlQE1QANX0GSIuZwurVdJHVuDFwxRXy+sGDgTZt6MD67bcmDa4OSBKwaxeF/I0oTnieUec6VF27dsXHH3+MXbt2Yffu3fjss8+4SjrglpQekBwqpbMREaG6SYMJ+dntH295VKLvbOpFdkGlURxVnKsCEvKrrZWfSG/Iz2IxbqZfTg69DyEhcvKTAiEoIiKA0G6+lU4YDhUr4OKLaZmVZYwFqBykyvgFtbVyTdK0Pp6/KGFh8nfAqFQv8ZZpujv2+OIRtNI3CVKE/QKURyXcXUDuz6xF7/bFGAK7A3n11c4PWiyyW+kPQZWVRaUaQkLkOgiDBlGPn9pa5D3zNioq6PuZmam+C5GBYppDJcTS+PHOx2aLBbj5ZrotHKxgp6qKZvZ27Ur1QTp1cspnY+ooqKxWK3JUDqB5eXmwWr1Y3OczKkUJA5JDpZzhpzEpwOssPz/XofLFoQLkc4xWMrHIYcno4Lk4qlEOVU2NLCo1BZVS0NjP4roqjRuVmC7csdRU2fVSIMaQlARYOvtQOiGxFpfA7kIpBVVioqwqNm+u66idUfTB1OLIEcqti4gA0vopYnoaxcZEWM6oPBrh7midxMWX9jBa6xNURjed9MLRo/Q1jY72mqqG4ViNMNTgeERb9RIQwgLyR48aMX1v1CjnNkr22XGNF76PUFS7la5QG97WrSZVKRBTDMeOdX9MOH6rVjWMsN/06cCnn9LtiAj6vl5zTYDbKAQ3dRJUkkbyZGVlJcJV2l1cMOTny23O7SeEgORQeUlIB+ruUAm953eHSpFDBZAbDmiX5xGCqn0HizzvWyWPyqjWKUqtpplDpSJovIb8AOMcKh0z/AC7+SPUwL598ndWgx6W7UhAISoi44EePZwfFK60jhIMulD0wdRChPs6dACszdLIhqqtld9/F/wlqPQ4VBs3en17Ay6oxG+qTRttISLodJwEwZLq0erNFPzZo0Yku7uKkXHjgJQURJXmYQR+RL9+2rto1Yq+StXVFKkKKAcP0oEqNJRcNVcyMyknrbLSaWJHSQmwaBGZfoFs+3PmDM2IFIcRJ375hfr7ANRzKTeXfoAnTwKPPBK4QXqgshJ4+GH6zDt1AubODeg8DwA+CqrXX38dr7/+OiwWC95//33H/ddffx2vvvoq7r33XnT0FpQ/nxFHbEVWdUBzqDwIKs38Hx8EVX2+nL46VN4ElQj5tWsn/4+aQ6VL0OhAvD0REaot8giVhHDx/OfOeTg4GlWLSqegSkoCJanFxJD15mXqdq8CCvcdaHqJu/PVpQstjRJUOkJ+4qk6dQK5gSLhTkOQGCmoJEkuaq5ZBN3uUOXFtkZZmTxBTRMTBZU34jeSoFpqG63+NenUia4wSkuNVSxFRXLRWJH8LrBageuuAwBcj/keBZXFIleCd1R8DxQrV9Jy8GB1W9tiIXEIAN9/D4B0aatWVKR02DDgkkvq30RDD6+/Tl/DMWPo5/Tiiy7H+8ceo+UddwB/+Qt95h99ROs++cT0ivk1NZSi9vLL5MDu3QvcfnvgJ1H6JKheffVVvPrqq5AkCe+++67j/quvvop3330XZWVleFckDV6IiDwOEa9CgHOo6uJQ6ZzlV1ur40rbA77mUImDvVadWOFQtWsn/4/akUfkMNVXUOkqmSCSdOwJ6YDcCNpjg2SjHCovYsRJUFksskvlJezX6TQJqh2NVTJ/O3empREn06oq+T3wEPITgko8tTdBIj4OI3KocnPpa2axaJSYqqlxHAdS+9MGXsN+KjlUIs9b4zqnXugWVAcPwnLwIGosoViDYVTg0xWrFQ5FY2TYb80aei/btVMNNRZfcT0A4BosQt9uHmqrQDZVvQpboxGTNdTcKYFw3374AQcPSBg1io5Vycl07F2/nqpG+NNpWbgQeOAB+vklJNCx/h//UNTs/fVXmskbFgY8/bT8jwMHUji2thb497/9N0AdPPccTTaNiSFn6vHHaf1jj8m6NhD4JKgOHz6Mw4cPY+jQodixY4fj/uHDh5GVlYXly5ejf//+/hpr8CMElaIxbcBzqDSob8gPqJ/m89WhEsfQEyfca1GVlcltadq3h0eHSgiqwkLN/s/uVFe79drSVTJBxaEKC0PgGiT7IqgAfYKqpgbNj1BS8oaIYe6PC4dq9+761yUQAwwJkZWoCm6CSuTXBMChEmKkeXON+R/Hj9MJJiICmZeSU/jrr1526iIIV68mEThsGEVURRFRo9AtqOzFWw+mDkIx4rRNyD59aGmkYhFZ5EOHqj68MfRinERTJKAQTbas8Lgr4VAFVFBJklxORMyGVeOSS+iLdOIEZt20D4WFFEU9dIgEQng4tf7zV7X30lLg3nvp9gMP0CHo+efp/iOP2Iu6zplDK2691b1OyMMP0/J///Nf6QwvHD8uj/ndd2mYzz4L3H03rbvvPs/1DI2kTjlUq1evRmMRpmBkxFleRVAZ4VCtWEGVmTt2dImw6Aj51VVQhYXJUR6/CiohhuzvR3Iy3ZQk98lPIvTQuLFdMHlwqBo3lvNEdHXIOHOGPr/YWODvf3esrktjZIHXsKMZDhUgJwF5ElRbtyK8ohjn0Bibq7u7P962LZ0Qyst9tv3d9K8Yf5MmJKpUsNnkHCa9DpWRgko4ppot+sQsipYtcfEl9Bp++cWLwyDGn52NI1mVGD9e/iocOwZcf3393GFXdAsq+1k8txd1fNY0IUWxpx076j84gRBUIqvchd82h+ArTKA7XvrHCodqx44A5iQdPUrng9BQavioRVSUo8R77G+rEB1NDZ1jYujf7ruPNpsxwz8u1RtvUKZA69YU5gOoRNaVV9I15VN350ASMxX/+lf3HVx6KV3QFBSYVv7h2WdprMOGkZsnmD2b0ln37QM++CAwY6lz2YQTJ07g7bffxqOPPorp06c7/V2wCEGlCPkZmUP1z3/SZKqsLLkTBACvIT9J8iBoxAqxgQsWizGJ6b6G/CwW7Twqp/wpwKNDZbXKekVX2O/FF+kIU1VFNra9C25dQ36ALGA0KwsYlUPlD4fKXjnxZwxFbp7K4cJqlefei2xxL9hscgeTYcMUMzl1zvArK6Mrd4eoCaCg8ipGhKhs3Rp9+pDWPHNGO3QNgD4Q+2/31YdPIj+fomjZ2fRWHDgA/Pe/9R87QMcCXYKqqsrRIiX0Ci+CSiiWnTuNqZ5aVSVPx9cSVL8B80FhP3z7rUd3pF07OoaVlQWw04uI8/bu7WzzqyCNvAwAcBlW4m9/c/5cHnuMvhrbtxs/kbKmRg7rzZwp54ZaLCS0IiKA1r9+Ckt1NV3Ji+aOSqxWsoQAU8o/5OZSiA+gaKRykkV8PJ0zAeCll4y9KNGiToLqxx9/RIcOHfD222/j5ZdfxurVq/HRRx/hww8/xPaAB6qDCHFAVzhUQuNohvx0OlRnzzrPTF+wQPEF8RLyKy+Xr8zcBIEOdyQggkooFkVMTZwwXbujOGb4tYfz/2hkb3qtBSU4d04uJCg+F/tlW30cKqEPNAtLGlmHSvmELojndwgqYfHs3esW4nSwZg0tMExbkIoPSmsGgQvPPScLhJ9/Bm67zX71rWOGn3BmO3ZUtBrRmUN17lz9p84LYaQpRoQ6bNUKERFyrz+PeVQWi+M17Pye7Nj//IfmFjz5JG3y+ut1cCjKyoCvvgJ++MEhdM6dk7/LHtsMbthAv8nkZLT4C8XMDhzQ0C3t2tGxp7TUi3LUyfbt9ESJiYofuYwkkaDaiAGoTMmg373oLamC1SprgYCdnoT60RCESjY0GgmASlQ8cK9zXkKTJnJ1hffeM3SE+OEHOmQlJQGTJjk/1rIlhQBvwucAAOn2O7R3ZJ8ggJUrA17s86OP6NDVt696ZHXKFDocHjlC50wnqqoMtyzrJKhmzJiBv/3tb9i1axciIyOxYMECHD9+HEOHDsWECRMMHWCDoi4hP51qZdUqOpBkZtIX5Nw5xUxbnY2RQ0JUOssHWFBpChIVQSUiUq65G+JK2VGU0INDBfiQmL5mDZ1xO3VyOFP49lugsLDOOVSArA+8CqpA51C1akXuWFWVuv1QXe3IA1mN4Sgs1LjK80FQVVXR1S9A6RfR0SSq5s/3Pn5AJX8KkH9vGsU9GzeWf4calRV0I16iZshP4VABcu1Tr4np9tfQAsdw3XWy6XPLLTT2fft8jKidOUMHi4kTafrTsGFAWZlj/E2beswQkJN2LrsM6c1C0LgxaTJVEzI0VC6fYUTYT1w5ahSYOnmSTGSr1YKQCeNp5VdfedxlwBPThcPmaQqinRlf9kQeEhGPIjQ57F7PbepUWn75pbG1tD78kJa33qo+c/nRa7LQC9tQjVCsiLtOe0fdupECKy83tq+nFySJLjwAOV/Klagouf2kw+VdvZrCrBERdO6w1zUzgjoJqj179uBWu80XGhqK8vJyxMTE4Omnn8YLL7xg2OAaHGLael1yqLyE/MRMhSuukGfaOlqo6WyMHBencnwSJ/PiYs2sbU1BVVGhO9vPJaKnvYFC8Tl1u1cgDooi2dSbQ6W7dILIHh46lM7Y7dvTFczq1d5DfjU18tlaTOO3IwwjzZCfWTlUFguFJAD1wpybNwOlpZCaNMGfoORz1Tw0b1MyFXz7LQ0zPZ1yHOwt2Uhk6Qj5qQoqkZR+7pzqd8BiMS7spzCg1BGCyr6BXkFVmUZpAi1wDA8+KK+PjZU7lnhJFZKRJJozfvQo/XjDwuhg8X//53P+FEaPhsWiozqGsIBUpwL6iMjC79VL9eHffqNl165A2A32E/3ixR6PRUJQGV06Yc8e4KGHgDvvdERI6apBHKSERanB2rXA2l+tWGOxzwRUmZI2eDCdUkpLPRpxPlFcTA4VQKJdjcYr6Au3EpfhsVeStB1SiwW46iq6LYqxBoD16+kCJzaW8gy1mDKFzITVq4Gcx14FRoyQc/QqKoCPPzZsTHUSVI0aNUKl/cvbtGlTHFQcSM9e6FVTlb25YJxDJY5TgwfLQsJxMegl5Ocx3KZc6Utxz6Iiirs0aeK12IckqRpQzqhsII7Ru3bJ4Y6yMvkq2SGojHKohKCyJ4niMsptwMqV3kN+Z86Q+AoNdRMEXgWVETlUpaXy90BFUNls8ut3CCpAnqG1ZYv7Pu3hPsvQoWjchA4Vqj9vHxyqefNoefvt9FbdeSeFZNavB85l6Q/5OQmquDj5e6zhUhkhqGpr5TQ5xTWTM0JQ2RWLiPhkZXnuJbg1j3bYs/FRtyiRCPnoPletXUtny4gIclpXrqQ3+bPPYFu+Ujk8dXJyZFFjby3jtTqGyMcTMwbqg1A9jh+4M0JQ9esHmrrftCkdj1at0tylm0N19iwlWXfrRm1U6jCVcvFi0nxz5lA4bsQI2qVtxx8kqhITvSpXMTut4mIK+6m9BouFCpIDVPDTCH74gfTnRRfJF65OSJLjx7oofBK2bgWWLPGwQyGovvvOuC7kruNxUXSffUbL8eM9p6mJ+lr34C2kzJ5O+5kyhX6rP/3kvV2AD9RJUA0YMAC/2k8+Y8eOxd/+9jc899xzuOOOOzBAVM69UOna1ckGUuZQqSp8HUnpkuRcd0lMqnFcDHoJ+Wk2Rgbo6lWMQeOEriqoPviAroBLS2kKigd3orxc/o2pCqrKSjmWpNigfXsaXlGRnB7zxx+0r5QURWTNSy0tXYKqrEwWFcJWEIJqxQrvgkqEe5s2dSt+KfSBXx0qZaM+t7guiWqRLqAqqNQcqtVy/z6P76Fy9oCHRB+bTW75duWVtExLk2+f2uHZYautVZnhJ9CZR1UfQZWdLWtm0dLIiYoKWXHZQ36NG8vujlb5BEkCFm+j8fdJO+7mIo8YQcvdu3W2THz7bVredhs9+dChjuliQ775GyyweT7PC5ekRw/HyUa8Bk1BJeLz9RVUyvCzF4eqXz+Q9TDeHvb7+mvN3XbtSpueOQOc2XqS/vnNN+mAsmIF1Srwocn30aPk7FRU0Nt7++102H/zTeDbJ+zhvj59PJai37yZjECrFbjkGfuxZsMGVZf12mtpuXixMWk/CxfScvx4jSH+8QdduUZEoOndfwFAieuaP+9LLqGD45kzxvb3KysD/vY3+sFFRNDn9O23qK6mECgA3HST99083n8VXgeF9moeexJ4/31ykYcPN7QmRZ0E1SuvvOKoNzVz5kxcdtllmD9/Plq2bIkPAjU/MVgRaseO0jRSzfvVkZR+7pzsMrVpI19RHD9uT7vxIeSnipcTutsQa2sVVd/seJgyqzw+iH05oRRCCjEQFiYfp0XYT3nx6jgQeGg9A+gUVDt3UtguLU2epTlsGD3JgQOOM5mmwyacEZdwH+BjyK+uV3fKcJ/KEVI4S7GxLvWTREhi507nz6GiQlYAw4d7buHTsiWdrcrLNfpWEH/+Sd/lRo3kSCMA3HCD/SmPew75HT5Mw4qMVLnw1znTrz7FPcVHrKKZCREPjImRv3SQk2W1CgyuXQtszKbxN6t1H39SkuzW2k1DbXJz5bOlMrHkySeB+Hg0z/8D12KhZ0GlCPcJvIb8xA913z4fCr6psHu3XGFSJa5aWytrf0d6kkiK/uYbzVBAdDRdoIWjElETxtKXqU0bCveMHk0XdDfcoLO2Cp3jRc2olSspH0nkJJ1bbhcUXsJ9wp268UYgY2gbEuHV1arCbvBguiDOz1c3k32hpkb+iP/yF42NvviClldcgfsej0d0ND2v6AbkRni4XNHeqPIJhYX0wl95hb7X1dXkuF59NXKunILic1VITnZuL6rK4cMYMOd6WGHDXNyKr7vMdH7c4+wM36iToGrTpg262X/h0dHRePvtt7Fz504sXLgQLRUlA/zB22+/jdatWyMyMhK9e/fGOkcikTo///wzevfujcjISLRp00a1kvuCBQuQmZmJiIgIZGZmYlF9fFUPgkr1ty7sn4oKzUsPMdW3eXPSTAkJ8jl/507UL+QHeBVUbg7Vrl108oiJAUTO3DffaOzcucSUankhIYQiIxVTtwjxdooccTF5xuniVadD5TEanZVFy8xMWZDExzsy39NO0lHMq0NVH0Fls9W9z4SXGXLKEk9OtGhBJ5aaGtk+AsgKLysjJZKZ6VmUhoXJgsaDUynEwKBB9C+CMWNI5MVVeH4Nyhl+boImAKUThKBS9ul1QpmQrhC1ohj24sXqV/jvvgscA43feuKY6kbipCFMQ02WLqXPskcP52NRYiJN2wLwTzyLNq01rIaaGjm5RiGohCN4+LDGV7RFCzpQVFfrnu2pishj6N5d9cIgK4t+5tHRil6KgwfT766gwGNctFs34Ek8jbhDO+g79tNPZDN9/TWprVOnqHeJF/78U54x9t578nf5tttIw/YFCapzbbUF1a5dcvju0UftK0dqh/2sVrnguofIpi5++43eqsaNNXLmFeE+TJqE5GS5HpZHl0pYzeL7A3qv3niDvuM+lamz2Ujgbt9OB9BvviGx/o9/ACEhaLb8Q3yHKzHpylL1ixtBURFw1VWwnDuHE0374i68iw8+9NLAsh7UWVDlqRxZCwoK0EZPg6g6Mn/+fDz44IN4/PHHsW3bNgwZMgRjxozBMY2D6OHDh3HFFVdgyJAh2LZtGx577DHcf//9WKCYP7lhwwZcf/31mDx5Mnbs2IHJkydj4sSJ2CTO4L7i0jw2PFw+LqgKKqVlozGFQwiqiy6S1zmF/XTO8vMqqDRqUblFJTdsoOWAAfJ8219/1RQ0KvnmznhIsBLhjmXL6DcmrpBENM5px14cKo8Xn0JQOaYO2rGHxFrk0GWxV0GlcrYV+uDsWQ0DKipKto1cRK3NRg661xmWTp2P3fGY723Pk3GyUMRV5lVXARaL9ybTQuFr5DABcmK2a/Hr2Fj6PJPhOeQn3Em1cjhBJahcjoEjRtDP/MQJ91SdnBw6OZ+AXYiXlal+UYcNo6WX60c50UWc3BRU3XU/ihGDHtiBToc0EmLWrKEPOSnJaR56UpIc5lQtWxYSQkpXcwOdCNWsmtgjH3r69lVce1mtpGYA2SZS4fLE3/Ao7Pme774rf2djYuSqlq+/7jXZUmiu8eNl507wyjOl6Ax6Df/3fl/N8JxojTd+vJx+pszZVEPorfq2Ulm2jJajRmk4rRs3yhfM9u+RmJG7ebMHl2rUKDrZbd+Ogj3ZuOEGen/uv5+EZvv2wBNP6Cz/8fHHJMyiougJ//IXynf5179Qu3gJShGN0ViBp9eP0P68amro/LRrF5CeDunrhahEJFatUtS+M5g6CaojR46gVuWbUllZiZNGtXRX4ZVXXsGUKVMwdepUdOrUCXPmzEFGRgbeEbWDXHj33XfRokULzJkzB506dcLUqVNxxx134N+KvkNz5szBZZddhhkzZqBjx46YMWMGRowYgTmi3L6vuBztLRYv7WciI2XFpZFHJfKnlIJKnPcPHIDXkJ84Pmt28xBKS69DJWyigQPpRJaW5lzC2oW6JKQLxEXy5s10rsjNJVEj0pyc/k9D0Imcb49VCbQElT021bZgs+fX4MGhEvqgttbDGDRcwnvuoavI9HQvV6aqGecyHicAigP58uV0tKutpeRSwBET8Bo2FSrDg6DyNPFp/JVVaIwCuqMR8nPKnXHFS+kEI3KoPGhmQjgz9vwpQWSk/D12nan3n/+QqdOzf4SsWFREoSi2vWePBxOzulqO5YipwAqOlTbB27gHAND47WfVz2wiMeXaa93cYiEeNCfyGZFHJfKn3JLkCOWhx4nbb6flihXqtR3Ky3Hd97fCChuWJtwoJyUJrrqKLoZLSuRKkSqUlMhvkXI2piByzzZYYcMpS1N8vb4pnnnGfZtVq+jnZbVSTTYHl15K54Jdu1RD5+Jnun59/TqVqUR0nREFOq+5xnFOSU6WW9TMmqUhipKTHRegL41cji++IJ09ahSZiDU1VNXcbpRqU1hIfW8AqtapzA8AsK7R5RiBH3HOkoiEvZtI+Isfp8BmowELUbZ4MTIGNndcoIu+zkbjk6BavHgxFtst1eXLlzvuL168GIsWLcIzzzyDVgbGI5VUVVVhy5YtGCWupu2MGjUK68UUSBc2bNjgtv3o0aOxefNmVNuToLW20dqnRy6+WPWM63Gmn45S5GoOlZhY5SSoNEJ+XgWVryE/pUMFeM1Y9SqoPFhYaWnyZB8xkWT0aOeQkTeHSlfOtxeHqlOpTodKRVCFh8tj8Br2Uyiub76R66wUFdlnEGmlWAmlo/Ehe4wIXnopOWRZWeQ0LlxIGdhNmjisEa8OlXjdrgc2O6Wl8oWBS1QcAHDlQNpxLUJwpMj9NYhijoCGoBJug0ZcQZlD5XYykCRKUp0502OTZ59Cfi5MnkzLDz+UjwPFxXKbtAcegEeXLT2d3mKbzcOEtN9/py9KUpI82UDBoUPAy/gbyi1RsGza5K7QS0vlek5iaqECZQsXVbwIqtpaysPR+IoQ4v13tX7siEOPm6Bq0wa4+mr6LNVK9zzxBGJP7MUppOP2kjfc66lZLHLO2fvva9ooCxbQ29SunTwZ2Al7QnZtL7pqePpp55zn/HzgDnuNzLvvdjncNGki5zKo1HO66CL6ilRVeXAqa2vpwS++UBWWhYVyDpqTyy+oqZFVv7KPC2SX6vffge+/V3/6Mz0vBwB0PbUMzZpRqsby5eROf/CBXIVdzNBT5fXX6UDTsaOq+vr6a2ATBuCVq9fRD3vPHjoXLVxIFxX799PJ4r//pSf85BPH72HKFNrHRx/5pw2RT4Lq6quvxtVXXw2LxYJbb73Vcf/qq6/GpEmTsHLlSrysIwZdF86ePYva2lqkukyvSU1NxWmNRNjTp0+rbl9TU+Mo76C1jdY+AXLiioqKnP4AAE89pbp9fdvPiF52Sq0qBNXBg/Aa8hPnaEMEVX6+3PtFXDaLq0mNjNX6hPwA+WQkEAckB/V1qGprZdXqKqh69ABCQpBWewrpOKUtqDwkpQN1m+kn2gvdeScJub17PaSqCUHlliRFeAz5JSTIb/KTT9JlJEBXePZQZH0dqj/+oHNUaqr6DLkmNhpgHprgm8Xuh6XDh+m5w8M1Qn4izHb8uGr1UTEjtLLS5XsgSdQHZ9o0uvTu1UtO2HOhriE/gAyjFi3oNQgD5F//ooud9u3t+sVL2FI4e5qTqERM9ZJLVJMVDx0CcpGCFa3upBXPPOMsHD79lL5/F12kmumrW1CphPx27yYh3acPvX933KEySaeoSH6TVRyqwkJ516qTyWfMkF+Hctbq0qWOON2DUf9FTk2i4xDmxKRJdLDbu1ezz4swb269VWN2nP3DybimL6ZMobf36qsp12rDBhIxx4/T8Xv2bJX/9xDXs1hkEaTqVu/dSx/SJZdQ/lGnTsDNNzsdF9euJVHerp3GoerHH+lgkZQk51vYSUmRc6nuvJMm9ClZuxa4+XNKTB9jXYENv9Q66fo77qCQH0D7cf1/ADTWV16h2zNnulw506FazLkYNDWTLgA7dCDrefx4OkC0b0/hjLAw+sDEpAWQ6da4MX0G9c1FU8MnQWWz2WCz2dCiRQvk5OQ47ttsNlRWViIrKwvjVKxmI7G4fIslSXJb52171/W+7nP27NmIj493/GWII6xGVdz6NkgW9SKVLeKEW3X4MCCV1TPk54ugEqIpI0M+y3oRVPUJ+QH2Fgj2qbFPPQVcfrnLBl4cKiGoSks1Kn0fPUpn2ogI9wJDMTGQ7CeK3tiiLqiqq+VYkkaBIiEiVA8iykHaP4OTJ+Uc8cceo9AfQI1TVdEpqDRLPE2fTkfs1aspptOokXz0RP0dKmWusacB5iDFccBUIjROjx4usxQFaWn0Q6utVRUkkZHy99+pWvqKFXJPD5FUPWmSany+Pg5VaCgVgASo5/aDD8rl2557zp7L4kVQicOLcOrcELaFUzxcRkQktwz/O5141q2THanycjk56K9/VRVkylpOqk6pSAbau9dpg5wcmnigPDx89BFpWCfEBk2byr8HBb/9RgKlTRuNC4N+/ajCY20tCYnjx0kgiDzPe+/FqV50flINW8bFyQWf3PqU0E9TFO/UbAgi1G7fvnjzTUpBqqggATJoEDl0SUmUkK56galMTFdxyTT11v799Lnv2kUpHKJkw+efkwNtv+gX4xcJ7m4I62jiRDcxA9D1VmYmRSRHjKCPurycTKVRo4DVpX1RFNoY8bX5yDjtrvyffJIieMqontvzFxSQKFIIIcEvv9DvNyHBrvdatiTxPGOGfHCzWukksXWrW0+dyEj52vHNNzXeg3rgk6DatGkTfvjhBxw+fBhJ9iPsJ598gtatWyMlJQV33nmno+Cn0SQlJcFqtbo5Rzk5OW4OkyAtLU11+9DQUDSxn3i0ttHaJ0CtdwoLCx1/xz3kjQA6+vl5cajE8JT1xzIy6PteVQVUFQZQUAkb2THFBl6r/ul2qDQ2CAmhi86TJ+mixQ0hxJT1rBQok/FVX6LSWVDJ0rT1pMusPtisrvmOHqWDeFSUW9sZgVit2frEJeT31Vd0PB00iI4ZYnrz6tUaVrUXQeW1TV6nTmSNx8TQEX/JEqeN6+tQCUHlMmfDbYC5SMYvv7g7eSICohpmATx307YjPgNH6QRJkqdYTZ9ODzRrRhmrYtq4naoq+XeoKqjy8+Uvl0baw1//SukeJSXkPtps5HQ4zhteBJW42lcN+dlscpkLL4KqSbdm8uu+5x5SKn//O7m06elyPpILHTqQmC0u1kjqbduWlGNpqZOwfugheknt2tHnumQJ/aY/+QTO4llnuM9jqcM336TXkJVF7+fIkTTg4cOBl1925Lpr5oEJQfXNN26CZskSiohlZqq2GKTvgHC6+/RBZCTpshdfpKHExNDuf/1VM+eePrvISDrYqYTshGm0c6fiN1JRQSGuvDxSK3v3krD79Vf64W7eTF80m82zoMrLkwW2Rvn0Ro3oM2valPRvp050fnjgATr8jvtLKKL/YrfRFLP9BFarXCbt009drsElSX7w3ntVj8UiGnnNNYoLq5gYqkGRnU1/BQX03BrfI5ELtmSJMa0nlfgkqJ566insVHwT//jjD0yZMgUjR47Eo48+iu+++w6zVX3M+hMeHo7evXtjpYs0X7lyJQZpNKAcOHCg2/YrVqxAnz59EGZX31rbaO0TACIiIhAXF+f054n6OFTFxbLOUp6rrVb5uO0QVHXNofIlKV3kR6gJqpMnVaut686h8tAoz2JxduicUAoxFZfKapVzn1TDfuIEplHyo6yzLKhUNZ+yn4eGs+l2MnfFZaalaDEhahb26SPXoVFtn1GfkJ/g5ptpgEeOuE3F81p6QjhUZ86otgARoRrNE4l9gDWNk6nQpWL2uyTJM5Pc3EklXlrgiO+P4zNYv57slkaNyAaMjyfVA1Cih+KEKnKvwsM1RKkQ5ampGsXW6Hu4aBEZf/360TnA0V8M8JpYL9y9gwdVrr327qUvR3S0pmp1ajvz+ON08s3Lo9D9W2/Rg+++q/k7DAuTz1Gqoi4sjFQT4DhObNpEUReLhWbiJydTKx3Rcuhvf1OE/sTZ1df8KSVJSSQkRCJzaCglzixZAkREeO+QM3o0nakPHnS7QBTfSaG53BBhxrZtHQfbsDDSqkeP0nFw4UINMSaIjJQFsUpMKjlZ/g05qpy8+CJ9/unplNwkrrwHDqTXHR4OfPMNSh9/3vG6xaxRJz76iH67vXp57EHYoQP9dJQ1rFq0IC20cCEQOtb+IxU/Whf69aPjmiS5ZMn88gu959HRqoKupkau3araasZqpdeueeVOtG9PxxFJ0lUlwyd8ElQ7duzACEVc9YsvvkD//v3x3nvvYfr06Xj99dfxpZgC4QemT5+O999/Hx9++CH27NmDhx56CMeOHcNd9u6HM2bMwC2KD+Kuu+7C0aNHMX36dOzZswcffvghPvjgAzz88MOObR544AGsWLECL7zwAvbu3YsXXngBq1atwoNqUzjqSH1yqMRVcUyM+/dE5FHVlHrOoTLUoRKCSkyRBuhEJHYuEr4U1Dfk55WwMPlyRSOPymP/YSGoNMJ1hReRoOpn+R3WEJVkVXEC91AyRLdDVVCAmho5HUaksoSGyrdVp02LD7muIT9BbKyqIBAhv4ICjbqNSUnyZ6CiGrVy/l0HmNiBFJ+yvdbu3aTVIyPVO8o78NICRwgqx2cgkpkmTJDft6lT6Ym2bXNKFlKmyKlqZg/hPiVNmpBW27SJohROTWm9OFTJyXS+kCQVM1gonJ49VUM1kuTyNQ0Ppy+SUKixsZSMLWZ+aCB0imbY0SWPSlxfT57sPFnrn/+k13LkCCUrA/A4w89mk8O+HgUVQJ/B77/T9/DMGXpd9mOjEFSu/UEdxMTIZUQUCYu1tfLvTtQVc0O8KV4KenrFQz0qwKUm2cGDcoXQV191b6PSv7/D9Yl+4UmMwVJ07apyYVVZKc+QuPtujxXeAbr2/OYbOp4eP06f49132yPF4jv1+++aV2CzZtFTLFiguEAU7tRNN8nHQwWrV8vpXZohS50Ig/aDD+rf31OJT4IqPz/fKRT2888/43LFJWPfvn29hr/qw/XXX485c+bg6aefRo8ePbB27VosXbrUUUw0OzvbqSZV69atsXTpUqxZswY9evTAM888g9dffx3jxWU/gEGDBuGLL77ARx99hG7dumHu3LmYP3++oxK8EdTHoRIHf7V2Q+L84SmHqrZW1kkqaQnOD2gUavIa8gNkd0dFUNU3KV0XOvOoVDWj+M5oJMecbdYdNbAiWcpVzxESJ3Dxgajgi6DasYPekvh45wRscVWpmi/rYZafJOkI+XlB7FaSNESpxSK7VC7HgKIi+cJAU1DZB9hucDKsVhKUwrAQV6VDh2peMxC+hPwqKuT57/ZG7wBI8YhjmqLAr9f8KY2SCT4hBNWpUxrJfh56ECsFlQrnzsnmsWOIjRtTaKS4mE58YgqUB0S4TbNMn2Km3+HDsqvjKF5pJzqaTDKADJbaWngM+WVl0fcuKkpjUoIrFgt94C6/B7FrR5cJNa6+mpYKQfX777R9QoIHvaQrJqkDIehWrVI9nonjwOqfJCryVFlJIkxlZiYA+lzvvhsWScJnuBnje6nMhH3/fVIWzZu7zwLyQEKCykVGejrZqZKk2c25c2c5venJJ0EHCJG3JhJGXRDhvvHjVa8ZfGLoUMrdr6rSSCOpIz4JqtTUVBy2X4lVVVVh69atGKi4XCguLnaE0vzFPffcgyNHjqCyshJbtmzBJZdc4nhs7ty5WLNmjdP2Q4cOxdatW1FZWYnDhw873Cwl1113Hfbu3Yuqqirs2bMH17rWKKknunOoPAgqtdQcoWFCKrVDfkoBoSmovCTIiOHVlpTLyRM+CKr6lE3QTX1m+nlxqIqqo7AL9iOxWt8HIxwqRdhVWPkXX+ycRiBmVLuFW8rL5S+XikNVVCSfn+sqqEJDZc3nNY/KRXQKdyotzUPZCbtDFdc2xVGT8sUXSfcoW9N5RLz/Io/FBSeHau1aemPS0+nIqkSlE219EtJ1k5xMLp8kaV42awoqcZmv0f9OfEXT01UaycbEuFhl2ojrzM2bNZxKcVzYuxdvvUUvZdQo98MFQLO+mjShQ8rST87KMzYclS5lRA7dwIH1O5nGx8upEpqzFa+8kqyWrVsdxzMRvbrsMrfyXIQkyYLKQ7qILnr0oFlHZWWq03qHDiUB0zHrG5rBGBZGuWOeXKVXX8WOyH5IRD4eWHedczTk1CmyDAGyTVVnffiIuChRyaMSzJxJb/P33wPHZ31AB6mBA1VD1hUVcr6darivDvz73/SWGRlU80lQXX755Xj00Uexbt06zJgxA9HR0Rii8OB37tyJth6u0i9UdDtUHkJ+ag6VODBYq7VDfsJ0io31cCBSCiqVmSXiAJxceIAeT0hwPzPXR1AFwKHyGNX0JqiKgM2wZwSrNREWZysjHKrCQsdx2TW3WBxnTpyQQ3gAZIUTGqqqWMS2jRp57sruDd15VC4OlZii7jF3RFhoKSmO/JpPPpETmZs3l/PJNBFPsG+f6jQ0J4dKlHu+4gr3GW3jxpGS/eMPh1AKiENlschPoBH2UxVUkuTc5FIFHV9RXXTsSF+xsjKNSb125STt3uMI5d1/v/q+oqPl0k/LXrbvrFUr1QsrYXS4lAysE+ItUs1FBOjYJn58jrqLdFezGOa+fXSwjYz0MJVVJxaLPK1ZpWBTYiLQv0spXoO9RtMjj3iwfoljZyIwruJr5CIJCYe20vc+O5vGPH48HRj79KHpiEYg4qJLlmi6re3bkxlmRQ0i5toL7omMcRcWLqSL4ebN3a9/6krfvs7tLo3AJ0H17LPPwmq1YujQoXjvvffw3nvvIVxxZfPhhx+6FclkfMihqqNDFV6rHfLzmj8FyGfKqipVUSeGl1qiOCq7Xg0JMWJWyK+uDpUk1U9Q2Wy6HCrhjpw7p5qz7aT4hAnmGlqIjZU1g9PJQBnuU7lKrW+4TyDyqHyd6ec1fwpwElQDBsiuvzC7nnlGhzPRpg05LeXlqoLEKSldKahcSUyUE3Xs1ohXQaVLNerASx6VUlA5rn0OH6bJDOHhqu4OIH9FlcWB60JIiJyvLPL8nLB/yJa8s7AWnEXbtnLPXDXuvZeGLQl1ppI/VV0t9zBULUbpI5pOrxJhky5Zgvx8OT1KU1CJQtB9++p2+zxy88201Kj8/mzEM2iB4zgb01LuY+OBlSuBE8jAY12+I0W8di19mVNTKYcgIYESF1XttzowaBAlauXne2xA+cQTwDUh3yKl4jiqE5JUSyUAcoHjqVM12uXUkZdfrn/KmxKfBFVycjLWrVuH/Px85Ofn4xqX6Q5fffUVntIobnkhU5+kdG+CKgS1iECV8xMp0CWoYmLks5XK2VIML73Mw2Wu2SE/nTlUboLq7Fn6YCwWuZy2C8XFLoJK6eIdOkSfW0SEx7NVYqJ8nFWtGWsXVLXnChzRI7XojerJwIgZfjrQ7VC5hPyE1vAoqFyy5l99lUJ+F19MF+lew30AnQxcZpkpEYIq+uR+qtsTFiYnALsisl7tgspj25mKCjkU7sUp8IoXQdWxI73MggLF2yzUdZcumidzoxwqQE6KVinmDTRqBMl+LOiEPbjvPo2G6HbS0qggdxfY86dUpoH+8gv9rJOSPJTd8AHhUHkUVMJhWb0aq78vgc1GWlWjbq8sqOob7hNcdBFNEJAkik0p2boVw7fR9LTHY9/QZTuLhPqm1w6gN7RfP0pcE3Ugfv5ZU4zXCatVDp2LJEgV2rYFnk+eAwD4IuEuSOHu4cbNm0n/Wa260vx8IjJSLtZqBD4JKkF8fDysKjIxMTHRybFiCK85VB6S0j2F/FJSgPgIhd1RV4fKYvGYRyV+r82r6iaogsGh0gz5iRNXaqpm7kBREfAHuqIqJILeH2WOjkjE6NLF49WdxSJ/hqphP/sAbedogG3bque8qVarrm8NKp3U1aHyejKvrJQbc9tVX3g4TTdft06OfuhCzD5VEVTi/R9Rbc/rGDJEO6lLzGb+6SdAkjw7VAfsofD4+PqrVi+CKiJCfomOsJ+XcB9grKASLtFPP6nnUeWn0AC7he/VJYQfekgWVLmp7gnpIhn5L3/xLM70Ii5K9u710BOvY0cK31ZV4eTHpBw9luwwKn9Kiah8+dFH8kyUc+eAm25CSG0NvsZ1+G/2lVpfFQc2myx+L7sMJFo3bqSLwV276E9Xpr+PiCT5r77SPvlt3ox2Z35BFcLwyJF7lGmLDkQ/xBtv9CBo60F9f7JKDPh6Mt6oj0Ml3AC1k6HFArTPUHxR6+pQAR7PlmJ4rWp1CKrTp91eaDDkUGk6VELdaLhTAAmqKkTgWJo91qFspOW1BLiMxwa9dkFlLSmEBTbXfqAORHKvCKMBMK5kghe8OlQaSeleJ0GKASoz3+uKh35yolr6WCyhFWrhPkH//nSBkpODyq1/OoaoKqjEh9G+vdfp5l4Rgkq1cibhlkflJSEdMFZQ9epFH5OyL5ySDQX0GVzTYY+uj7NbVwk9QklQzd3sLKiqq2WDw6XodZ1JT5f7uYuG3W5YLI4G04kbqHGdZrivoEBOKKvvDD8lgwfT1YTNRqGwV1+Vy5M3bYr3+7wLQHMinYPt2+k3GxsrTyqAxUKCsXPn+n9ntRg2jL7PBQXaPbPs/bV2d52E00jHX//qXNR32TJKY7NYdEU2TYcFVQCoT9kEcfISeseVi5qRoLJZQ1UdEvH/GudaGR0OVRt4ODMq6xC5WDABEVR1zaESFqCHyvhiuvnxVvZsyLVr5QfFEVmHoPKYb2yf5Rci2RCDEk1BJdyJrCxF3rWXxshGhfy8OlTi8jEnx5EoVlgo6z3NfG2l4quvBeGlQW/btFIMwxq640lQRUQ4il4VLaLL++hojZmyumKaOhF5eBpNngEVQeWlZEJZmVwazAhBZbXKkVJXR+HkSeD7g/QZ9ItT/wzcyM5GXE0+amDFs191cDI4v/mGvm/JyRrFKOuIyAPTaNlH2MN+w8uWIDpK0k6GFju56CJj7Q6AipaJXnXTp9PxJjERWL4cA8fRMVvZfFkNUc5q2LD6lxvwiZAQuer+O++4P378uMN+7PDOA+jYkb6n115Lx4ysLDnEd//9zqUPgxUWVAFAROLq4lB5ieagVRrttMqqXqBHzET2oBecn0DlbBkVRTMxWuEIrVBLvhZ1XwA3QeU15Gdk2QRfZ/mJN0gtpmpHaLScDvYZrUpB5YNDJWZlqpoPkZGO/JcEFGgKqtatSTeXlSmcrgCF/Lw6VE2ayFcP9sEJXZCc7OHjNWqAgFxo6I8/VGf6XR7+EyJQheKkVt6P0CLst5r6dWgW9dSVda8ToTqPHNFomCcLqh07QBcEp0/TwDTCNsIhTEjQ4VTr5MYbafnZZ86tkN5+G9hlI0EVd0KnoLLXnzoZ1Q5FVZGOWZ42m9yn++67jcuXBuQ5Bx4F1dChqApvhKbIxtTeW7UaUcgtf4wM9wkaN6aM+PvvJ4H/f/9HoqpLF4djtmqVRgkLOyJ/yoiEfp+ZNk3uG6k8bgJUqqG6Ghg2DFGDe2PBAjqM//ornUoyM0lgdeok1y4NdlhQBQDxQ/Q1h6qiQtZYWg5VyxTaaWWIuqBSTJ7yjAdBFRICtIs4jjDUQAoP1w6PqQiqqiq5tYSqAVVdLU97MyLk50eHqqjLIDqqHz5MtntWFtlNYWEe81cEHtLMAIsFtvgEAEA8CjWjN2Fhcu67I+xX38bIOvHqUKkU99RVnkn3l1QHmZl0BVBUJDtHCoaV0ey+fRdd4T3UYU9Mj9+2BlbUaM/wE311jLiEbt6cvmNVVZp9ioRu2rcPqNq0TX5ujZY3ynCfUdGdK66g39SpU7JDkp1Nxbb3wO4SHj3qIUlJgV1QxQ7sgpAQalHz7LOUQrRzJx0WHnjAmHELdAmqyEhsiiUVcnPMt9rbiZibS7smw4iLo9DY2rXUGsj+Rezbl37yBQUaMy5Bj4m6dpohS3/SrBkVHAMoKVKUUPjpJ2rmBwAvvQSAfrq//ELHt6oqEtSDBwNr1tSv3EsgYUEVAOqaQyVOXFarc4NfJS2SSVCVS+qXT0Y4VADQKZyOylXNWmvPW1URVErDSNWhUAqg+jhUIrnYV0Glw6ESgioqJVY+Kv3vf8C39oPs8OEeKlbKCIdKVVABKI9IAAB0blqgXYQVshHimE0dLLP8ALeZfk7947QwUlCFhsq5RL+7dLuXJPQ8TYLq92St/iEKevYEEhIQXl6E3tiiLqhqa+UK30Yk9oaGynlUHlroJCbSU59d4TncBxibPyWIiJALzD/yCJ0A772XrgnbDUiCJL4sKqLWDfv7l3hJFzz9NK164gm5z9pLLxnnrAn69KHD2IkT6s0PAApXv3eOip91P6AxU+3sWfl75jFr3XisVrm6g1oyNyCXgdJs6BwIHn+cTmC//UYO21dfUUKcJFEdBNH1G/QTysqitMA9e8jYMjqK6k9YUAWAuuZQKfOftK4smybSTktr/edQAUCHUDoqlzfzUMhGRVAJfRMRoRG/F4orPLx+9VuEu6XSnBlw7j3sFEnR4VA5pXgpYx1ffEG3lV1CPeDRoQJQCBpkzzYFHvejzKMCEDyz/ADZvXQJ+Xl0qIyy0ASisIyroNq5E42LjqEckVgbMsz7fqxWR9jvMqxUF1T795P1HB1tnGLxkkeljO5V/RbYGX5KnniCvnJ//km/70WL6Df+2muAxUsumxOKpsgzZpCQSkyka5yXX6ZzsNE0aiTPmHVpruFg1SrgW+lKVFnCEX5gj+xEKlm5koRBt24eurf7D1GZYOFC1ZrMjm4uBjf/8I3mzam1DUAzFidOpN98jx6OpHQlISH0UMeO/suX9xcsqAJAXXOoxIlLK9wHAOkJ5FAV10SpxtF9dqg07IeLQKUCSlM9HJU9CCq/JqQDskOkIaiE42OzuZhYPjhUcXEg8ZSQQCe7bdvIUfBRUOXnqw8zpzoBANC5WYHH/bg5VB5m+UmS8bP8zp3TTO9xE1QBd6gAWVC5Npyzn12W4XIczdUZQ7AnnozCCnVBJSYldO1qXMVBoT41HCpAFlQx+wM7w09JYiLw4YeysRwaSs1m+/WDW5NkTWw2WVB17oyQEMq9PnuWwonTpxs7ZiUisV612Tioa0oR4rGvld2VFiEqJcIaCrA7JbjsMjp0njghh/YEZ8+SQwXo6DLgb667DvjuO/pepKZSblVDiuXphAVVAKhrDpWeGXqJUbTTMkS5pVyUl8viwaugEqpNQ1C1ttFRuSjZN0EVkBpUgFdBFRkpfw5OYT8fcqji4kCf1fz55KZZLMB//+ux5IKS2Fg5dKHmUp0sobhuu6QCj/vxxaEyoo+fQOzeZtNo4QPUzaEyWlANHkzLzZud7TS7oFqA8VrpSe7YOz8MxAa0aqISThaTEoyoOCnw0uQZoDkQ8ShAUuEhr89vVJV0Na66ir6HX39NefSOvrqiQOcff3jegcizCg93GqDF4n93QiRpr1rl7u5UV8sR/drJt9GNjz5ybqNSUCB3fzaqpoOPREXJpvl//+v82McfUyi2Vy9jv551Ztw4EtinT9NgtfJYGjAsqAJAfXOoPDlUIVW00wpEup2kxXkqPFxHio8QFMKxcaFFNR2V8xP95FDVJ38K8CqoAJWZfuXl8vY6Zvk53sNRo8id+v13eVqwToRL5TrTLy8POFlKA2wRVwBPCIfq+HGgpMjmsdiY+A7Ut48fQN8j8Tk69RJUohBUNpssqDw6VEYleQlatiQLx2aTL9G3bQN274YUFobvMQ7Z2eohEjdat8bBkIsQhhq0z17j/rgPZTN0I6yk/fs1N+nWDegB+3O3bKmZZFRTI3/X/NVmtWlTckCcris0uzi7IPLPOnUydhqfDgYPpmPzqVPufQl/+omuLVNSgM6PXknHxzNnnJOVvvqKJtR07myqYhHt9xYskEuyVFXJTcX9ETJl1GFBFQB8yqFSHOV11ZCy217liNIUVKmpOq72hBg6fdo9niNJaFZJgupsgm85VMKh8tp2xs8OFaCSmC7EY3i45tWSJMm7dBpiZiY0axt4QCSGurbn2roVKLDnUEVVFXrcR2Ki7DYd3KpIClP5ohidniQ0j7L4nhMKQXX6NJ1vrFYPPfCUOzNqkIAchhU2gz1Xw3bNdShEAiorVSYoqFBUBCy3kZWRvtOlgmJtrVwh28iGYEIxZ2Vpqr7MTKCXhcJ9FZ21w32HD5OoiooKcIqPcKiOHJGr4KuhDJkGmMhIOewn0iEFoh3JhAlAaFSYrEqefJLe0Koq4F//onW33mpqsk+vXjTBsKoKePRRWvfmm2RwpqTIDhbjf1hQBQDdOVQ2m1xjAPocKqWgcs1hFXpB14W/cGhqatzDfmfOIKq2FDZYkBPdSnsfQlDl5joKo3g1oPwR8tM4CWkKqrQ0zQNiaam8Ox0T+bwier+KC3PBli2yoNKOp8mIc+6xbfYvSaNGqq1zdEQ0fcKLkSkLquxsHDpAQq9FCy/mg9EhP0DO1v32WwrRzpsHALBOf8Bh5ugJ+x0/DqwAhf3C17gIqp07SSzExhrrULRrR9/HggJNKzA6GrgklgTViSTthHSRwtSpkzFtW3STmCjP+HT9sisRncDrcHFiBKIH8eefy9clZ87IAsvR9uhvf6MDcVYW9cp55BFSLKmpVCTLZF55hb4y8+ZRNXRRy2v27Pqb/4x+WFAFAK85VMpYjCLs54tDVYFIt5QLpUPllbAw2SFwbTZnT8I4jgyUVKv3uwNA/2+1kgKxn3EDlpQu/r+2VvONdgv5+ZA/ZbWqtkr0GVF30jXE8NtvvgkqkUeVvcvzDD8hGnSmeXnFq6AS4rSmBtk76AvoMdxXWirnDhopqHr2JFFVW0v5LVVVlDTTv7/DqVHtqejCsWPAagxHDaxUAkAZqxVZwBdfbGy4KipKLp3g1GPImV6gkgk7rd4FlZF9b3WjJ+wnqrx7SKr3J1ddRYeOI0coCR0gd6eqioSJo5NMXJxcx+HNN+XZac89FxSKpVcv2TD77Te6np00SWdTccYwWFAFAK8hv9BQuWSAIjFdl0Nl32k5otxSLoRe0H2e0qh0LgTVQbRV644jExIiP5n9jBuQKukAOTTCZdJbi8rHGX5GuPpCUO3eLV8RSxLVW6mLQ3Vuvz5BZVS4x6ugCgtzbJS/ixLTdZVMiIgw/sQ0Z4785G3aOOI44r3Q41AdO0YzvXY3sVfJtztdAOT59po9SeqBMuynRnk5mpdQ3HhNkbYYMVVQCddOiCZXcnPlRto6CuP6g6goOZo3fTqwejXw4ot0/+GHXX7zt9xCLVSSkylF4PXX5d4oQcAjj1DK4PTpwHvvkesWUFeSYUEVCLwKKkDOo1I4VCLX2FORR2XI78AB54dETpVIhPaK1qW7XVAdwEWeBRXgdsYNmEMVEuK1FpV4H31xqET6h1ETUtq0oe9DebmcsL13L7mR5eEJLgPURpxvi496bowccIdK8WRl+0lQ6S6ZYHQeSosW9Obu3Uu5OvYrE3HdoFdQAcDO7rfQjblzSQGfO0edWwH/lKD2Jqh27kSIrRZnkIKf96Vr7sZUQaVVvkIghFb79vX//deDf/6Tvn779lFx/KoqKpipWmrgrrvoO5ufD/z1rwEfqzeuuIKMtKlTWUyZAb/lAUCZQ6U5s0iE/RSKRZxX9QiqCkTizBlnc0acsEWFbq9onWn0OlSAeYIK8JqYLkJ+dXWojMBqlUv0iBn3osVVRhe7avNBUFVle26MHHCHCnAIqtpjPjhU/iqHHB5Ob5bi++VryA8Azg67jn6j+/ZRr5X//Y8y7rt3988ML7diYy789hsA4Hf0xZ+7LapRbptNrqtpiqDq35+Wf/6p3mNT9H1RVMo2g/h4qn4gqjaMHk31tTzq+4ZWcZIJCCyoAoBwqCTJKefcGZXSCboEld32sthVm6g5A8jpHj4LKtczjd36qoug0l2Hyohwj87ing5BZYJDBch5GT/+SEvRDb5D/wS6oUNQiSbJcdX2RDuNuLCZgio0x0eHKkD4GvIDgLR2sfL89DFjZHdiyhT/nFxF/pGYBeeKXYzsjumP2lqqCuHKgQN0vRUZ6UXU+ov0dEpMt9nk5HMl69bR8uKLAzsuFfr3Jzfv5EkyHj2mWTCMBiyoAoCyS7ne9jOSJJ/4hbOiiv3StFESCSoR9rPZ5JCf7oOpl5CfXxwqo8omALoFlUOvmOBQAXQ+BoClS0mwff893b/kqgS6UVjotUhSWBjVFWqCIMuhAhyCKq6YBJXH+kf+KJngBa3rBjWEoGrRAsCsWfI/AzRl019Zv8L1OnFCfaafPYxW2oVcILth5cTmzfKuAlziSUa4VK5hv+pq2aEaMiSwY9IgLMyU7jHMeQQLqgAgimoDOmb6iZyocrkorx5BFZtKgkr0Is3OJjfMavUhf0Yt5FdU5Jhu6FeHyoyQn0kO1aWX0nfiyBHgmWdIZHfqBHS52D7Amhq3qvlqdOjgWVCVl8uv1egcKs06VIona4aTiIvz0tjW3yE/FfQ6VLW1cuPcFi1A36/Vq4E77qAkm+XL/Zf7ExtL5RMAd/spN9dxkRM7oh8Az4LK1IjaoEG0/Okn5/Xbt5Mb37ixSfFIhjEeFlQBwGLRkZguEq3sJ1LholitXqJhdkGV1Jz+X3R6EOE+rzWAlIjsdWX9BbtCK49NRjHi/JdDZUTIT2dSupk5VACZkfaeu46Z2DffDFgaRcsfls48Kk+CSgiG6Gjjxi8+3tJSt8L+MgpB1aaNl4iYsImMKpSlA+V1gycj8PRp0rZWq8KY6tCBGtYtXmycStVCzHxzFVTr19OyY0d0H5oAQK4vqkQIKiNrjvqMSNj/+Wfnq0kR7x48mLOnmfMG/iYHCJWcc48biPNpQoKXE5L9INXsIhJU4tjrc/4UIJfxzsmRB2CvIVPUsqtyeNr4KqiMVCw6HaqCApAaEPZZgB0qAHj1Vdm56dMHuO8+0AftVixLGydBpZL0oQz3GZXmExMja39vxT2FoPKIEFTKUJqfEe9HVZWHFjqQw33NmxvX99gnRG0m1/wjkXR36aUYMIA0+JEjztdBtbXyJDpTHarMTPo+VFTIsy8AYOFCWo4bZ864GMYPsKAKEC4GlDsugkpX/hTgEFQtOsghv5ISuQ2YT4IqNlY+sYnp2nZBVdqmm+fxC4Q4sYfTvIb8jFQsviSlCzUQFeUxbOMPhwogMbR2LfDCC9Tt3rH/eN9m+nlyqEQOnce2Lz5isegoO2AXVAkoRMfmKrO7lJggqMLD5acTokkNp/wpMxCzF37+2bkdlBBUI0ciNtZ9kgNAYqq0lL5XYsKgKVgswOWX023RBujYMeqDabEAV19t2tAYxmhYUAUIlxQp7Q1UHCqP2HeYkB6Fpk0phLFjhxwC8Lmjgzj6imQs+9z+yo7dlcPTRgiqvDygpsa7Q2WCoKqsBCqPKvKnPNg3/nKoAMppfuQRl8/YR4cqCZTfVtHIXVCJshlGz/BStOtTJy4O5VaaZNGlsdZGdkwQVIAsklz7XyoxXVANHEjx4Zwcudr4iRNUSiEkBBg2DAAVgAdknQXIVb9HjjTJXVMyaRItP/2UflAff0z3L744oKFehvE3LKgCRH1Cfh4RCi0qyhEh+P13WVD5PCPZtTGrXVDVdCZBpZk3I0hKooO9JAG5uZ4dKptNFj8BEFQxMXK6Rulh7/lTyl0Z7VBpIj5wTw1l7SQ1Kkc06PM/kB84QSVatImEbTcsFpy2kupqF+1BUJWXy68zwIJKpAsGtaAKDweGD6fbK+x9BL/8kpb9+jmuEESD3+XL5cOBEFTCHDKVESNo1kVJCcW2//1vWn/XXeaOi2EMhgVVgBAhP18dKo81qJQ7jIpyWP9PP025S3FxcqsT3SgF1YkTFB+zWmHJ7KQcnjZWqyOfp/bUGcf2qg6VsvOwEYLKixgJCZE3qTyir2uwPx0qVXxwqCznKNxXjVDsOemu+MxyqCQJOFJDqivDoqW6ILtTkZEBfIMJIZKCOuQHAKOoMTO++ore2A8+oPu33urYZMAAEoiFhcCCBfS5iFl/okSHqVgswKOP0u3PPqOrlJ49ZeeKYc4TWFAFCF8dKl9zqBAVhcmT4fS/AwfWwe4XXXd37JBjCN27I6pxpHJ4nrGLlIqjctayqqASaiU01JjOwzrEiBCo1SeC3KFyTEX0gL3ZYx6aIGufe9jSLIfqzBngiI1USJPy49o7Uob7Alx5ukE4VAAwcSIJzs2bgcmTqfpkVBRwww2OTUJC5JZyb7xB5bJsNmoxKD4r07nlFmD2bDogXXwxVZrn2X3MeQZ/owNEXR0qXwRVixbA2LHyQ0Jg+cSgQRRq2L8feP55WnfVVU7D81Jz0iGoKo+TaLFaqfetG0r7x4gTqg5BJTaRsoPUoXKr7eABhaBy7VBSXS33nfWXoNJyqA4eBI6BVEjoSQ8WkEn5U4B3h0qSnEuPmEZqqhwa+/xzWt51l9sX8o476Bjz22/UGBcAZs4M3DB18eij5EqvWydfuDHMeQQLqgARiBwqgOoaTZgAfPMNcNNNdRhofLxcO0aUXf/LXxzDs9k8tM8R2F2fGrsLFBuroZeMVis+OFSW3CB1qEQtBdEZ2xMKQSVylgXHjtFnFRnp9SX6jAj5aTlUhw7JgspjTE0IKhPKU3tzqM6dk79GXks/+JsnnpB/k6NH09RQF5o1A774QjZ9pk2T06+CCtUrK4Y5PzCrIcEFh1eHymUDXYLKZqMpa4r/79BBzlutMxMmAN99R7fbtgW6d0d0jfxwWZmX46Ld9bFly4JKFRMFVVied4eqtlYu+xAwQeWLQ2WvYJ+HJti9m0r9iAKyysbYRkfThEN16hR9BV0jNz4LKhMcKiGo8vIo39D1OyrKjjRrJl/rmEZiIjWYy8+nL6JGHP+qq6gPsWhLxDBMYGGHKkDUNYdKT2NkAMbkIAkmTqSwwn33UaM5iwVhYXIRb1+LewakBhUgC6riYipx7WGTyELvDpUo+QAEt0NVGtEEtbV0MhWIivmdOhk8PtBbFhJCb7FaCxo3QaUVIxaFrEwQVPHxci1UYcQqEYJKdH8JCho39poU2bEjiymGMQsWVAHC18Keuhwqpd1lpKCKiADeeYcyXBW5Dl5FocAuqELOBtihUu7HYy0qCY2K9ffxi4gIYKSiDoIqNI2UgbJDib3aBbp3N3JwRGiorEPVDKiDB4HjsFcTLSnRdgzFPwu7KMAIsSTEkxIhsi66KHDjYRimYcOCKkD4pbCn2FlYWECq9/kqqMLOBdihCgujQoiA5kk8IQGIQQnCa8qdxqqGkSWydFOHpPSYllSDSimotm+nZY8exg1NiXBB7D16HUgSTUQrRzRqEuwWkFbYTyQwmZT1LTotqQmqoHSoGIYJahqMoMrPz8fkyZMRHx+P+Ph4TJ48GQUecmWqq6vxj3/8A127dkWjRo3QtGlT3HLLLTjl0i9j2LBhsFgsTn+T/FAfxS9J6S4J6f7GV0EVURBghwrwmkfVuDGQBrs71aiRx6bMYngBC/cBdXKoUjqRoPr1V1pdVUWiBvCPQwXIQsM1XJaTQ1rQYgFCWnkoR26zydMQTRJUehwqFlQMw+ilwQiqG2+8Edu3b8eyZcuwbNkybN++HZM91AUoKyvD1q1b8cQTT2Dr1q1YuHAh9u3bh6uuuspt22nTpiE7O9vx95///Mfw8ftSNsFm01nYM8gFVWRxLkJQ611QGalYdAiqVPg2w88Uh6q83DlHTg17Unr7gSSoduwgQbNnD5VNiI/3XzRNhMJcxYgQcm3aACFtWtEdkSGv5MwZGmRIiCmz/ABZLIkuSwJJktdxyI9hGL00iFl+e/bswbJly7Bx40b0798fAPDee+9h4MCByMrKQgeV7p/x8fFYuXKl07o33ngD/fr1w7Fjx9BCcVUcHR2NNKPnlrvgi0NVUiL3Qm2QDlVyMmCxIESyoQnyEBOTor6dPxSLF0GVkKBwqHTWoAqoQxUXRyLDZiOrx1PCtt2hSmjbBN27k6D68Ue573OvXv6rlymEhqtDtWcPLTMzPWwEyGHAZs3k2Q4BRivkd+wYffahofI2DMMw3mgQDtWGDRsQHx/vEFMAMGDAAMTHx2P9+vW691NYWAiLxYIEF5Xy+eefIykpCZ07d8bDDz+MYuX0LhUqKytRVFTk9OcNXxwqoQXCw+Vp8KoEq6AKDQWakGuSijNBF/ILaocqJER2qbyF/eyCCklJjga5S5ZQPSIAuOYa/wwR0NZKwqHKzIR2ohUQFGXIxWs4exbIzZXXi4T+zEwum8QwjH4ahKA6ffo0UlLcXY6UlBScPn1a1z4qKirw6KOP4sYbb0ScwnK46aabMG/ePKxZswZPPPEEFixYgGuvvdbjvmbPnu3I5YqPj0dGRobX59ftUFVWoiCvFgBpA48OQ7AKKsDh/qTiTOCS0gHfcqi8CCpTHCpAX2J6TY38Gps0gfjKfv45sGkTfW+uu85/QxRiJDfXuXWiKN3QqZNiI0+CyqQZfgClzwkHautWeb0/Z0gyDHP+YqqgmjlzpltCuOvf5s2bAQAWFWUhSZLqeleqq6sxadIk2Gw2vP32206PTZs2DSNHjkSXLl0wadIkfP3111i1ahW2Ko+wLsyYMQOFhYWOv+PHPfQrs6O7bAKAwjOUO+NLY+RAUFdBpelQCUEQ4JCfcKhqkz2H/ExxqAB9ielKsdW4MQYOBK6+Wl51+eX+Le8UGytHTLOyaFlbC2zZQre7d4fsUB0+TA8qMXmGn6B3b1qKcQMsqBiGqRum5lDdd999XmfUtWrVCjt37sQZkRiiIDc3F6le8mCqq6sxceJEHD58GD/99JOTO6VGr169EBYWhv3796NXr16q20RERCDCx1iA17IJitheSU4ZgEY+t53xN4YLKiEY7OFBQ/Ahh6o8Lg3ac/yC3KES4b6EBEcO0muvUdmnzEzgySf9O0QA6NmTCnj//jvQrx/lTxUX0+TJLl0AWJpT3Lqqimb0tWol/7OIFRrdaNBHevcG5s1jQcUwTP0xVVAlJSUhSZQr9sDAgQNRWFiI3377Df369QMAbNq0CYWFhRg0aJDm/wkxtX//fqxevRpNdJy4//zzT1RXVyPd4Mt7rw6VxUIblZejNJc2Oh8EVRpOa4f8hKASjowRiDdNQ4yEhQHpIWcAG1AcnepRUAW1Q2Wf4acUoy1aAC7zMPxK//4kqDZtAu69F9i4kdb36yc0npUEU1YWhf2Ugkp0cza5Sa6rQ3XqFGk9i4UEI8MwjF4aRA5Vp06dcPnll2PatGnYuHEjNm7ciGnTpmHcuHFOM/w6duyIRYsWAQBqampw3XXXYfPmzfj8889RW1uL06dP4/Tp06iyd/c9ePAgnn76aWzevBlHjhzB0qVLMWHCBPTs2RODBw829DV4dagUG5WdDU5BJWpmGuJQVVZS53nAWEGlQ4ykW8ihKogM0hwq8RqEC6WGIiHdLMQckU2baCkE1YABio1EbQIx/Q+g7+2RI3TbZEElZkIePUppXcuX0/q+fY01ThmGOf9pEIIKoJl4Xbt2xahRozBq1Ch069YNn376qdM2WVlZKLSfBU+cOIHFixfjxIkT6NGjB9LT0x1/YmZgeHg4fvzxR4wePRodOnTA/fffj1GjRmHVqlWwGlx5XJe7Y9+oPC84BZV4DUIHecSboBIOUkiIsRaQEBjCwXFFkpBso/DxWWuQ5lAlJ9NS6zUAsqAy8axvN4uxbx8NZ9Uquu8kqLp1o+XOnfK6/fup2FPjxvJrNYm4OOCSS+j2l1+S4wZQDhrDMIwvNIg6VACQmJiIzz77zOM2kqIJa6tWrZzuq5GRkYGff/7ZkPF5Q1k2QZI0Zu/ZFUtlPgmq8yUpXVKLqwkHqXFjElVG4U1QFRYiQqoEAORYgrAOFSC/BuVcfldUQn6BpkkTMpj27gXuuYdcnvh4OEo4AJATkURiEuAc7vNXoSwfuP564OefgVdekRtis6BiGMZXGoxD1dARYqS2lgpEe9qoqiC4HSpDQn7+yJ8CvAsq++SGQsQhr8zz+xbUDpWYpOFlUoa/uftuWn75JS1vuMHl6ygE1R9/yDP9xLRAk8N9gvHjKecrO5uS+nv1kt03hmEYvbCgChDKk4y34p7VhQ1fUNlSKD8pBTmIbWRz38Bfgko4NkVF6srVXrfsNNK89h8OaocqJ4eWJguqKVPk4UZGygLLwUUXOSZbOGb2ifBfkAiqlBTggw9o/FFRwMcfB6TXOMMw5xksqAJEeLgc2dLMQbIrlpqihi+oShtRIdZQ1CK2WiVB3F+CKiFBfqPVkrqzswHoE1QNwqFSKXgbSBo1Ar7/HnjxRWD7djllyoHVCnTtSre3baN499q1dH/gwEAO1SO33EJ58nv32ks+MAzD+AgLqgBhseivlm4rafiCqrgiDHkgsRRd7F5DzG+CymqV96kmSE6dAgCcRDOtUlUAaBJiJaVamedQ5eXJTR1dCRKHCqDZfn//O6DSUpMQpU2WL6dwX04O2UFBFldLTTW9zijDMA0YFlQBRJQd8OZQ2cpIKDXkpPTiYuAM6GRvyVERVMI9MlpQAZ7zqOyC6hSaenSolO0ZNQuT+gsxftEgWY0gcah0MW4cLZcsAVavptsDBnCjPIZhzitYUAUQUeBSU1AJYVTa8B2qoiJZUEGlyr3fHCrAs6A6eRIACSpPDpV4LDbWhHyasDA5zqiWR2WzyeuDwKHyypAhZPPl5tJ0QAAYOtTcMTEMwxgMC6oAIhyqkhKNDeyKxVrV8MsmKB0qj4LKH9P+DXCoxGP+0Hu68JRHde6cPGPO5DpOuggPd240GBUF3H67acNhGIbxByyoAohXh8quWKJBisVrMvT5IKhMCvmdRDOPhciVZbJMwdNMP/F+JiaSm9UQmDNHLq3+738DLVuaOhyGYRijaTCFPc8H9DpU0ShDdDRd2HskiCulew35CTXjD8UiXC9XxSRJTiE/PYIqKB0qkZDeEPKnBI0bA7/8QlPpLrrI7NEwDMMYDjtUAURvUno0yvTpjAALKuGwVVV5KE5qx6tD5c/ClFruTmGh4z07haYoLNR+HaaH/PQ4VA0hf0pJaCiLKYZhzltYUAUQX0J+XhPSAdMEFeDdpfIoqGw2eV2a5wbFdUIIDXsRTwf2cJ/UuDEqLfSeafVQNj3kJ94X19cANKwZfgzDMBcILKgCiC8hv2AUVOHhZDIAHl6DHY8hv7w8Sqq2WPwjCpo3p6U9vOfAft/StKnj/dUK+5ke8mvalJZ2EeiEWCe2YRiGYUyHBVUAaeghP0B2qbwJKieHKieH8pcE9mrlSEryT1J1s2a0PHHCef3Ro7TMyHCqnamGCPmZ5lB5ElRCKIrXyTAMw5gOC6oA4lWM2AVVFMq9O1SSZKqg0hPyy4HdfaqqglPRJxHG8ke4D5CFRkmJc4XOw4dp2bq1Zt66IKgdKiEUhRPHMAzDmA4LqgDi1aGyCyNdIb/qarktSQAFldewpZ2iIqASkaiISqAVwpVS3k5PN3x8AGiQ4g1UulQqgkqrXV5QCSqluwewoGIYhglCWFAFEF+S0nUX9QSCNuQHAGVJ9uZoItwG+N+hAmSXSplHpRBUQR/yE+9NdbXzICWJBRXDMEwQwoIqgBialC4ElcWio2CVcfgS8gOAyvTWdEOIGSAwgkotMb0hhfzCw+VaVMqw37lzctdmTkpnGIYJGlhQBRBfktJ96uNnsRgxPF3odahE6lJ1hoqgEiG/QDhUws0pK5NnG3oJ+UlSEAgqQD2PSrye5GRuLswwDBNEsKAKIHqT0n0K+QUw3Afoz6ESDpXUyoND5a8cKsA95HfkCC3j4oDGjT2G/MrLKY8eMDHkB3gWVBzuYxiGCSpYUAUQvQ5VBKrQOLbG885MElS+hvysbVUElRAF/hRUGRm0FELq0CFatm4NWCweQ37CnQoNdS5mGnDE+6MMW4rbLKgYhmGCChZUAURvUjoANI4s19jIjsmCypNDJUlyyC+8g4ugqqyUb7dr559BAkDnzrTctYuWO3bQMjMTgOfOLmJdUlJAo6nuiAbCSjEqbgvByDAMwwQFLKgCiNdwWUQEbKAzeOOIMs87C+KQX3m5oqJDp1Z0Iz+feukdOkQPxsT416Hq0oWWJ06Q5bR1K93v3RuAnL6l1mYwaHoPt29Py3375HVZWbTs0CHw42EYhmE0YUEVQJQhP9fSQgBQUWlBGcilSggPTkGlJ+Qnwn0A0Cg1RlYm+/Y5CwJ/2j9xcRTeA4A//pAFVa9eAOR2f4WFQEWF878GTe9hNUG1dy8tWVAxDMMEFSyoAogQI7W18sx3JYWFcAiqGGvDDfmJcF9sLBASAqBnT1qxebMsqIRY8CfdutFy9Wo5l8o+lvh4eZKcq0sVNA6VCInm5pLDV1MDHDhA6zp2NG9cDMMwjBssqAKIcKgAdYcnPx8oBwmkkIrgdKj0hPyEQxUba1/Rty8tf/89sCErIajefZeWbds6KqhbLHLYT0w6FASNQxUbK4dF9+8nUVhdTZ8551AxDMMEFSyoAkhoqOyKqAmSggLZoUJZcAoqPQ5V0AiqIUNoKRTSZZc5PSwEk6ugChqHCpCdvP375XBfu3Z2649hGIYJFvioHGCEyFDmGQmcBJW3ugRBnEMlQn5xcfYVQlDt2gWsX0+37blMfmXkSOfneewxp4eD3qECZEG1Zw+wezfd5vwphmGYoIMFVYARIkOIDiX5+UApvBWrstOQQn7p6UCrVvIGAwYEJofKYgE++QTo1Al49VW3MJnWTL+gcqj69aPlqlX0BwD9+5s3HoZhGEaVULMHcKERH0/LwkL3xwoKgIQgF1S+JqU7ePllYPx4uj1lil/GpkrnzrKz44JWyC+oHKoxY2i5aZO8btw4c8bCMAzDaMIOVYDxJqgcDlWQ51DpKZvgCPkBwLXXAnPmAJMnAzfd5K/h+YRayE+SgsyhatYM6NFDvt+2bWDcPYZhGMYn2KEKMN5Cfg0lh6q4mMSHWikpt5Cf4IEH/Do2X1EL+YnqBECQCCqAxOj27XR7/HiTy7czDMMwarCgCjC6HaogFVRCENbUUC2tyEj3bVRDfkGIWqs84VYlJMgzMk3nkUcodGmxAJdfbvZoGIZhGBVYUAUYwwSVCAkq+v8FAmWz4KIidUGlGvILQkSe/PHjVN4pLEyu/yna6AUFERHkUjEMwzBBC+dQBRjDZvmJxwMsqEJCZOdJ7TUAHkJ+QUZaGglCmw04dozWid7DomsNwzAMw+ihwQiq/Px8TJ48GfHx8YiPj8fkyZNRUFDg8X9uu+02WCwWp78BAwY4bVNZWYm//vWvSEpKQqNGjXDVVVfhxIkTfnsdhjtUyvLrAcKTKFSuD3ZBZbHIwkkIKbFUVnlgGIZhGG80GEF14403Yvv27Vi2bBmWLVuG7du3Y/LkyV7/7/LLL0d2drbjb+nSpU6PP/jgg1i0aBG++OIL/PLLLygpKcG4ceNQW1vrl9fhSVCdOxf8DhXgXVA1lJAf4C6oRMiPHSqGYRjGFxpEDtWePXuwbNkybNy4Ef3tRQ3fe+89DBw4EFlZWejgoXJ0REQE0sR0LhcKCwvxwQcf4NNPP8XIkSMBAJ999hkyMjKwatUqjB492vDX4kmMnD17fjhUDSXkB8jC6dAhWnLIj2EYhqkLDcKh2rBhA+Lj4x1iCgAGDBiA+Ph4rBetTDRYs2YNUlJS0L59e0ybNg05osgQgC1btqC6uhqjRo1yrGvatCm6dOnidb91RcuhqqoigaK7bEIQO1QNJeQHAG3a0NI15MeCimEYhvGFBuFQnT59GikqRYFSUlJw2rXMtYIxY8ZgwoQJaNmyJQ4fPownnngCl156KbZs2YKIiAicPn0a4eHhaNy4sdP/paametxvZWUlKisrHfeLtJSFClqCKi+PluWWRoCE88Khakghv0OH6DPJz6f7nEPFMAzD+IKpDtXMmTPdksZd/zZv3gwAsKgUM5QkSXW94Prrr8fYsWPRpUsXXHnllfjhhx+wb98+LFmyxOO4vO139uzZjuT4+Ph4ZLj0iPOElhjJzaWlNU5npXQhuIJMUElSw3KoRLR41y5gxw66nZLiXB6CYRiGYbxhqkN13333YdKkSR63adWqFXbu3Ikzrh1sAeTm5iLVh4Zr6enpaNmyJfbv3w8ASEtLQ1VVFfLz851cqpycHAwaNEhzPzNmzMD06dMd94uKinSLKi2H6uxZWoY3bgQUwrNDJUlBG/IrK5MrjbsYf0FJx45AkybkEL70Eq0bPNjcMTEMwzAND1MFVVJSEpKSkrxuN3DgQBQWFuK3335Dv379AACbNm1CYWGhR+HjSl5eHo4fP450e4ns3r17IywsDCtXrsTEiRMBANnZ2di1axdefPFFzf1EREQgoo5ltIWgqqoCKirkwphCUEUkNgKOwLOgqqwkUQUEnUMlQmZWqylD85mQEOCSS4BFi4Dvv6d1w4ebOyaGYRim4dEgktI7deqEyy+/HNOmTcPGjRuxceNGTJs2DePGjXOa4dexY0csWrQIAFBSUoKHH34YGzZswJEjR7BmzRpceeWVSEpKwjXXXAMAiI+Px5QpU/C3v/0NP/74I7Zt24abb74ZXbt2dcz6MxplGEwpSISgik7WMctP+ViQOVRCUDVu3HBazg0d6nz/0kvNGQfDMAzTcGkQSekA8Pnnn+P+++93zMi76qqr8Oabbzptk5WVhUJ7LM1qteKPP/7AJ598goKCAqSnp2P48OGYP38+YhWq5tVXX0VoaCgmTpyI8vJyjBgxAnPnzoXVavXL6xCVxouLqZCnyLUXgqpRsl0gVVQAtbVk9bgi8qvCw4HQwH+EegVVQ0FZHaNZMyAz07yxMAzDMA2TBiOoEhMT8dlnn3ncRhJhMABRUVFYvny51/1GRkbijTfewBtvvFHvMeolKYkE1dmzQPv2tE4Iqrh0RZysrEw9s9vE/CnAs6ASxesbkqDq2BHYtAnYvBm4+OKG46wxDMMwwUODEVTnEykpVO9IzOwDZEEVnxZFZ3SReK4mqEwsmQDoc6gSEgI2HEPo14/+GIZhGKYuNIgcqvON5GRaKmqMOgRVUrJFdp608qiC2KFqiCE/hmEYhqkvLKhMQORNKR0qcTspCbLzpCWogtihaoghP4ZhGIapLyyoTEDNoRKF2VNS4F1QmVjUE5AFlVqD54Ya8mMYhmGY+sCCygSEQyUEVXU1IOqWNm8OWShpVUs3OeQnxFJFBf0p4ZAfwzAMcyHCgsoEhEMlwnzZ2ZSDHhZmf0wIqpIS9R2YHPKLj5erOZw75/wYh/wYhmGYCxEWVCbg6lCdOEHLZs2oTpVjZp+WoDLZobJYZMHkKqjYoWIYhmEuRFhQmYBrUrpSUAGQO/MWF6vvwGSHCqD+dwD1wFPCOVQMwzDMhQgLKhNQhvxsNuDkSbrfvLl9A+FQaQkqkx0qAEhMpCU7VAzDMAzDgsoUhKCqqaGcI+FQuQmqIM2hArQdKs6hYhiGYS5EWFCZQEQEJXYDNLvPTVB5C/kFqUNVXi5rPfE4wzAMw1wIsKAyiTZtaLlvnxzyc+RQ6Q35BZlDJZLsw8NlwcgwDMMwFwIsqEwiM5OWf/4JHDxIt1u0sD/oLeQnhJZwskxAzaESgio1lRsMMwzDMBcWLKhMonNnWq5cSVXSrVaga1f7g95CfmK9WuPkAKHmUInipGIWI8MwDMNcKLCgMgnhUK1ZQ8suXRQpUXodKhMFlSeHigUVwzAMc6HBgsokhEMl6NtXccdbDlUQCCpPOVSpqYEfD8MwDMOYCQsqk2jdGoiMlO/366d4sAGE/NQcKg75MQzDMBcqLKhMwmoFbruNboeGAsOGKR5sACE/pUMlSXSbQ34MwzDMhQoLKhN55x1g715gyxagXTvFA55CfrW1crEnEwWVKE5aWQkUFtJtDvkxDMMwFyqhZg/gQqdDB5WVIuRXUkK9aUIUulfUoAJMFVTR0RT2O3cOOH6cevdxyI9hGIa5UGGHKhhRCiXhRgmEa2W1OidhmUBGBi2PH6clh/wYhmGYCxUWVMFIVJTsSrmG/ZT5UyZXz1QKqtpaavYMsKBiGIZhLjxYUAUjFotz2E9JECSkC5SC6uhRik5GRABpaeaOi2EYhmECDQuqYEUrMT1IBdX+/XS7bVvnlC+GYRiGuRDgU1+w0kAFldNsRYZhGIa5QGBBFaxoFfdkQcUwDMMwQQcLqmAlPp6WRUXO64NQUJ04AezbR7dZUDEMwzAXIiyogpXGjWmZn++8PsgEVaNGQEUFsGwZrWNBxTAMw1yIsKAKVhISaFlQ4Lw+iARVWBgwYoTzOhZUDMMwzIUIC6pgpQEIKgAYM0a+3bs30KyZeWNhGIZhGLNgQRWsNEBB9dJLptcaZRiGYRhT4F5+wUoDEVQtWwLvvgvU1ADDh5s9GoZhGIYxBxZUwYpWUrq4LwRXEPB//2f2CBiGYRjGXDjkF6xoOVTnztEyMTGQo2EYhmEYxgMsqIIVLUElHCoWVAzDMAwTNDQYQZWfn4/JkycjPj4e8fHxmDx5MgpcxYYLFotF9e+ll15ybDNs2DC3xydNmuTnV6MDdqgYhmEYpsHQYHKobrzxRpw4cQLL7BUk77zzTkyePBnfffed5v9kZ2c73f/hhx8wZcoUjB8/3mn9tGnT8PTTTzvuR0VFGTjyOiJyqAoKAEmi6XO1tUBhIa1nQcUwDMMwQUODEFR79uzBsmXLsHHjRvTv3x8A8N5772HgwIHIyspChw4dVP8vLS3N6f63336L4cOHo02bNk7ro6Oj3bY1HeFQ1dYCJSU0q0/pVgVRUjrDMAzDXOg0iJDfhg0bEB8f7xBTADBgwADEx8dj/fr1uvZx5swZLFmyBFOmTHF77PPPP0dSUhI6d+6Mhx9+GMWuDYldqKysRFFRkdOf4URGAuHhdFsIKRHui42lMuUMwzAMwwQFDcKhOn36NFJSUtzWp6Sk4PTp07r28fHHHyM2NhbXXnut0/qbbroJrVu3RlpaGnbt2oUZM2Zgx44dWLlypea+Zs+ejVmzZvn2InzFYiEXKieHBFVGBudPMQzDMEyQYqpDNXPmTM3EcfG3efNmAJRg7ookSarr1fjwww9x0003ITIy0mn9tGnTMHLkSHTp0gWTJk3C119/jVWrVmHr1q2a+5oxYwYKCwsdf8ePH/fhVfuAa2I6CyqGYRiGCUpMdajuu+8+rzPqWrVqhZ07d+LMmTNuj+Xm5iI1NdXr86xbtw5ZWVmYP3++12179eqFsLAw7N+/H7169VLdJiIiAhEREV73VW9ci3uKpVjPMAzDMExQYKqgSkpKQlJSktftBg4ciMLCQvz222/o168fAGDTpk0oLCzEoEGDvP7/Bx98gN69e6N79+5et/3zzz9RXV2N9PR07y/A34j3JieHluxQMQzDMExQ0iCS0jt16oTLL78c06ZNw8aNG7Fx40ZMmzYN48aNc5rh17FjRyxatMjpf4uKivDVV19h6tSpbvs9ePAgnn76aWzevBlHjhzB0qVLMWHCBPTs2RODBw/2++vyihB1Ik+MBRXDMAzDBCUNQlABNBOva9euGDVqFEaNGoVu3brh008/ddomKysLhaJOk50vvvgCkiThhhtucNtneHg4fvzxR4wePRodOnTA/fffj1GjRmHVqlWwWq1+fT26EKUcRD0trpLOMAzDMEFJg5jlBwCJiYn47LPPPG4jSZLbujvvvBN33nmn6vYZGRn4+eefDRmfXxAOlRBUwqHiHCqGYRiGCSoajEN1QSIcKhHyy82lZZMm5oyHYRiGYRhVWFAFM64O1dGjtGzRwpzxMAzDMAyjCguqYEaZQyVJwLFjdL9lS/PGxDAMwzCMGyyoghkhqCorgcOHqacfQFXTGYZhGIYJGlhQBTNRUUB8PN3etImWKSm0nmEYhmGYoIEFVbAj8qg2bqQl508xDMMwTNDBgirYadaMlqK8A+dPMQzDMEzQwYIq2Ondm5Y7dtCSHSqGYRiGCTpYUAU7ri1w2KFiGIZhmKCDBVWwM3Cg8/2hQ80ZB8MwDMMwmrCgCnaSk+XbbdoAPXqYNhSGYRiGYdRhQdUQeOstoGNH4LvvzB4JwzAMwzAqWCS1jsKMTxQVFSE+Ph6FhYWIi4szezgMwzAMw+jAyPM3O1QMwzAMwzD1hAUVwzAMwzBMPWFBxTAMwzAMU09YUDEMwzAMw9QTFlQMwzAMwzD1hAUVwzAMwzBMPWFBxTAMwzAMU09YUDEMwzAMw9QTFlQMwzAMwzD1hAUVwzAMwzBMPWFBxTAMwzAMU09YUDEMwzAMw9QTFlQMwzAMwzD1hAUVwzAMwzBMPQk1ewDnA5IkAQCKiopMHgnDMAzDMHoR521xHq8PLKgMIC8vDwCQkZFh8kgYhmEYhvGVvLw8xMfH12sfLKgMIDEx8f/bu9uYpu42DODX4aXILFREoTA27XxhTiuLuDnci3M4JpkGQkyU+EHDJ6YuNJvLpiajJguQJSPOuZcsbuqSJZhssOzLEpppW52RAJbYoCFsomVaxxZfIDAkyP188PHs6dA8yGnPqfT6JSeh///pOTe9Us/tOT0UABAIBDQHQtr09/fjscceQ29vL1JTU40uJ6Yxi+jCPKIHs4geN2/exOOPP64ex7VgQxUGcXF3PopmsVj45ogSqampzCJKMIvowjyiB7OIHneP45q2EYY6iIiIiGIaGyoiIiIijdhQhUFSUhKqq6uRlJRkdCkxj1lED2YRXZhH9GAW0SOcWSgSjnsFiYiIiGIYz1ARERERacSGioiIiEgjNlREREREGrGhIiIiItKIDZVGn332GWw2G6ZNm4b8/HycOHHC6JJigtfrxfr165GdnQ1FUfDDDz+EzIsInE4nsrOzkZycjJdffhmdnZ3GFDuF1dbW4plnnkFKSgoyMjJQWlqKrq6ukHWYhX4+//xzLF26VP2DkQUFBfjpp5/UeWZhnNraWiiKAofDoY4xD304nU4oihKyWK1WdT5cObCh0uDo0aNwOBzYs2cPfD4fXnzxRRQXFyMQCBhd2pQ3ODiIvLw8HDhw4J7zH374Ierr63HgwAG0trbCarXi1VdfxcDAgM6VTm0ejwfbt2/H6dOn4XK5MDo6iqKiIgwODqrrMAv95OTkoK6uDm1tbWhra8Mrr7yCkpIS9eDALIzR2tqKL7/8EkuXLg0ZZx76Wbx4MYLBoLr4/X51Lmw5CE3as88+K5WVlSFjTz75pLz33nsGVRSbAEhTU5P6eGxsTKxWq9TV1aljw8PDYrFY5IsvvjCgwtjR19cnAMTj8YgIs4gGaWlpcvDgQWZhkIGBAVmwYIG4XC5ZtWqVVFVViQjfG3qqrq6WvLy8e86FMweeoZqkkZERtLe3o6ioKGS8qKgIp06dMqgqAoCenh5cvXo1JJukpCSsWrWK2UTYzZs3AfzzheHMwji3b99GQ0MDBgcHUVBQwCwMsn37drz++utYs2ZNyDjz0Fd3dzeys7Nhs9mwadMmXLhwAUB4c+CXI0/SX3/9hdu3byMzMzNkPDMzE1evXjWoKgKgvv73yubSpUtGlBQTRARvvfUWXnjhBSxZsgQAszCC3+9HQUEBhoeHYTab0dTUhKeeeko9ODAL/TQ0NODMmTNobW0dN8f3hn5WrFiBb775BgsXLsQff/yBDz74ACtXrkRnZ2dYc2BDpZGiKCGPRWTcGBmD2ehrx44dOHv2LE6ePDlujlnoJzc3Fx0dHbhx4wa+//57bNmyBR6PR51nFvro7e1FVVUVmpubMW3atPuuxzwir7i4WP3ZbrejoKAA8+bNw5EjR/Dcc88BCE8OvOQ3SbNmzUJ8fPy4s1F9fX3jOl3S1927N5iNft588038+OOPOH78OHJyctRxZqE/k8mE+fPnY/ny5aitrUVeXh4+/vhjZqGz9vZ29PX1IT8/HwkJCUhISIDH48H+/fuRkJCgvubMQ3/Tp0+H3W5Hd3d3WN8XbKgmyWQyIT8/Hy6XK2Tc5XJh5cqVBlVFAGCz2WC1WkOyGRkZgcfjYTZhJiLYsWMHGhsbcezYMdhstpB5ZmE8EcGtW7eYhc4KCwvh9/vR0dGhLsuXL8fmzZvR0dGBJ554gnkY5NatWzh//jyysrLC+76YxAfm6b8aGhokMTFRvvrqKzl37pw4HA6ZPn26XLx40ejSpryBgQHx+Xzi8/kEgNTX14vP55NLly6JiEhdXZ1YLBZpbGwUv98v5eXlkpWVJf39/QZXPrW88cYbYrFYxO12SzAYVJehoSF1HWahn127donX65Wenh45e/as7N69W+Li4qS5uVlEmIXR/vcuPxHmoZe3335b3G63XLhwQU6fPi3r1q2TlJQU9VgdrhzYUGn06aefypw5c8RkMsmyZcvU28Upso4fPy4Axi1btmwRkTu3wlZXV4vVapWkpCR56aWXxO/3G1v0FHSvDADIoUOH1HWYhX4qKirUf49mz54thYWFajMlwiyM9u+GinnoY+PGjZKVlSWJiYmSnZ0tZWVl0tnZqc6HKwdFRCQMZ9CIiIiIYhY/Q0VERESkERsqIiIiIo3YUBERERFpxIaKiIiISCM2VEREREQasaEiIiIi0ogNFREREZFGbKiIaEpyOp14+umndd+v2+2GoihQFAWlpaUTeo7T6VSfs2/fvojWR0SRwYaKiB46d5uP+y1bt27Fzp078fPPPxtWY1dXFw4fPjyhdXfu3IlgMBjyxdJE9HBJMLoAIqIHFQwG1Z+PHj2K999/H11dXepYcnIyzGYzzGazEeUBADIyMjBjxowJrXu31vj4+MgWRUQRwzNURPTQsVqt6mKxWKAoyrixf1/y27p1K0pLS1FTU4PMzEzMmDEDe/fuxejoKN555x3MnDkTOTk5+Prrr0P2dfnyZWzcuBFpaWlIT09HSUkJLl68+MA1f/fdd7Db7UhOTkZ6ejrWrFmDwcFBja8EEUULNlREFDOOHTuGK1euwOv1or6+Hk6nE+vWrUNaWhpaWlpQWVmJyspK9Pb2AgCGhoawevVqmM1meL1enDx5EmazGWvXrsXIyMiE9xsMBlFeXo6KigqcP38ebrcbZWVl4FepEk0dbKiIKGbMnDkT+/fvR25uLioqKpCbm4uhoSHs3r0bCxYswK5du2AymfDLL78AABoaGhAXF4eDBw/Cbrdj0aJFOHToEAKBANxu94T3GwwGMTo6irKyMsydOxd2ux3btm0z9JIkEYUXP0NFRDFj8eLFiIv75/+RmZmZWLJkifo4Pj4e6enp6OvrAwC0t7fj119/RUpKSsh2hoeH8dtvv014v3l5eSgsLITdbsdrr72GoqIibNiwAWlpaRp/IyKKFmyoiChmJCYmhjxWFOWeY2NjYwCAsbEx5Ofn49tvvx23rdmzZ094v/Hx8XC5XDh16hSam5vxySefYM+ePWhpaYHNZpvEb0JE0YaX/IiI7mPZsmXo7u5GRkYG5s+fH7JYLJYH2paiKHj++eexd+9e+Hw+mEwmNDU1RahyItIbGyoiovvYvHkzZs2ahZKSEpw4cQI9PT3weDyoqqrC77//PuHttLS0oKamBm1tbQgEAmhsbMSff/6JRYsWRbB6ItITL/kREd3HI488Aq/Xi3fffRdlZWUYGBjAo48+isLCQqSmpk54O6mpqfB6vdi3bx/6+/sxZ84cfPTRRyguLo5g9USkJ0V43y4RUdi43W6sXr0a169fn/Af9rxr7ty5cDgccDgcEamNiCKHl/yIiCIgJycH5eXlE1q3pqYGZrMZgUAgwlURUaTwDBURURj9/fffuHz5MoA7XyljtVr/73OuXbuGa9euAbhz9+CDfuCdiIzHhoqIiIhII17yIyIiItKIDRURERGRRmyoiIiIiDRiQ0VERESkERsqIiIiIo3YUBERERFpxIaKiIiISCM2VEREREQasaEiIiIi0ug/5TPkTz+79tMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the outputs of the system on the same graph, in different colors\n", + "t = response.time\n", + "x = response.states\n", + "plt.plot(t, x[0], 'b', t, x[1], 'r')\n", + "plt.legend(['$x_1$', '$x_2$'])\n", + "plt.xlim(0, 50)\n", + "plt.ylabel('States')\n", + "plt.xlabel('Time [s]')\n", + "plt.title(\"Initial response from $x_1 = 1$, $x_2 = 0$\");" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Cou0QVnkTou9" + }, + "source": [ + "There are also lots of options available in `initial_response` and `.plot()` for tuning the plots that you get." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmoAAAHbCAYAAAB7rLYyAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd1QU19uAn9kGu8DSOwgoRVAUe+81xhKTmK4xRVNM7z2md9N78mmqaWoSE7ux94ag0qT33mHZNt8fAygCCgoR85vnHM4uM3fuvdN23nmrIIqiiIyMjIyMjIyMTJdDcbEnICMjIyMjIyMj0zKyoCYjIyMjIyMj00WRBTUZGRkZGRkZmS6KLKjJyMjIyMjIyHRRZEFNRkZGRkZGRqaLIgtqMjIyMjIyMjJdFFlQk5GRkZGRkZHposiCmoyMjIyMjIxMF0UW1GRkZGRkZGRkuiiyoCYjcwEIgsDvv/9+1jbz58/niiuuaHOfaWlpCIJAdHT0Bc3tf4nFixfj6enZpvNxKbJ161YEQaCsrOyC+gkMDOS9997rkDldCuPKyPwXUF3sCcjIdBXmz59PWVlZux70ubm5ODs7A5KAFRQUxJEjR4iKimps8/777yNXaus84uLieOGFF1i1ahVDhw5tPB8yXYcDBw5gZ2d3sachI3NJIgtqMjIXgJeX1znbODo6dvo8jEYjGo2m08fpiiQnJwMwa9YsBEE4735MJhNqtbqjpiXDqevS3d39Yk9FRuaSRTZ9ysi0wtixY7nvvvt47LHHcHFxwcvLi8WLFzdpc7qpLSgoCIB+/fohCAJjx44Fmps+161bx8iRI3FycsLV1ZXp06c3ChttJTAwkJdffpn58+fj6OjIggULANi9ezejR49Gq9Xi7+/PfffdR3V1deN2n3zyCSEhIdja2uLp6cnVV1/dZH/vuece7rnnnsa5PfPMM020gaWlpcybNw9nZ2d0Oh2XXXYZSUlJjeuXLVuGk5MT69evJzw8HHt7e6ZOnUpubm5jm61btzJ48GDs7OxwcnJixIgRpKenN65fvXo1AwYMwNbWlu7du/PCCy9gNptbPA6LFy9mxowZACgUikZBzWq18uKLL+Ln54eNjQ1RUVGsW7eucbsG8/Ivv/zC2LFjsbW15fvvv29xjLKyMhYuXIinpye2trb07t2bv/76q3H9ihUr6NWrFzY2NgQGBvLOO+802b4lc6yTkxPLli1rMpeffvqJ4cOHY2trS69evdi6dWuL82ngXOe6oKCAGTNmoNVqCQoK4ocffjhrf3D2c7N48WKioqL4/PPP8ff3R6fTMWfOnCbm2IZr/bXXXsPHx4fQ0FCguelTEAS++uorZs+ejU6nIyQkhD///LPJXP78809CQkLQarWMGzeOb7755pzmX0EQ+Pzzz5k+fTo6nY7w8HD27NnDyZMnGTt2LHZ2dgwbNqzJ/ZacnMysWbPw9PTE3t6eQYMGsWnTpib9nu2++e2334iMjESr1eLq6srEiRObnAcZmQtGlJGREUVRFG+++WZx1qxZjf+PGTNG1Ov14uLFi8XExETxm2++EQVBEDds2NDYBhBXrVoliqIo7t+/XwTETZs2ibm5uWJxcXGL/f7222/iihUrxMTERPHIkSPijBkzxMjISNFisYiiKIqpqakiIB45cqTVuQYEBIh6vV586623xKSkJDEpKUmMiYkR7e3txXfffVdMTEwUd+3aJfbr10+cP3++KIqieODAAVGpVIo//vijmJaWJh4+fFh8//33m+yvvb29eP/994vx8fHi999/L+p0OvGLL75obDNz5kwxPDxc3L59uxgdHS1OmTJFDA4OFo1GoyiKorh06VJRrVaLEydOFA8cOCAeOnRIDA8PF2+44QZRFEXRZDKJjo6O4iOPPCKePHlSPHHihLhs2TIxPT1dFEVRXLdunajX68Vly5aJycnJ4oYNG8TAwEBx8eLFLR6HyspKcenSpSIg5ubmirm5uaIoiuKSJUtEvV4vLl++XIyPjxcfe+wxUa1Wi4mJiU2OcWBgoLhixQoxJSVFzM7Obta/xWIRhw4dKvbq1UvcsGGDmJycLK5evVpcs2aNKIqiePDgQVGhUIgvvviimJCQIC5dulTUarXi0qVLW7xGGnB0dGxs0zAXPz8/8bfffhNPnDgh3n777aKDg4NYVFQkiqIobtmyRQTE0tJSURTFc55rURTFyy67TOzdu7e4e/du8eDBg+Lw4cNFrVYrvvvuuy0ey3Odm+eff160s7MTx48fLx45ckTctm2bGBwc3HhuRVG61u3t7cW5c+eKx44dE2NjY0VRlK7X08dt2N8ff/xRTEpKEu+77z7R3t6+8Z5JTU0V1Wq1+Mgjj4jx8fHi8uXLRV9f3ybHoCUA0dfXV/z555/FhIQE8YorrhADAwPF8ePHi+vWrRNPnDghDh06VJw6dWrjNtHR0eJnn30mxsTEiImJieLTTz8t2traNu732e6bnJwcUaVSiUuWLBFTU1PFmJgY8eOPPxYrKytbnaOMTHuRBTUZmXpaEtRGjhzZpM2gQYPExx9/vPH/0x/CrQlYZ/Z7JgUFBSLQ+FBrq6B2xRVXNFk2d+5cceHChU2W7dixQ1QoFGJtba24YsUKUa/XixUVFS32OWbMGDE8PFy0Wq2Nyx5//HExPDxcFEVRTExMFAFx165djeuLiopErVYr/vLLL6Ioio1C08mTJxvbfPzxx6Knp6coiqJYXFwsAuLWrVtbnMOoUaPEV199tcmy7777TvT29m71WKxatUo8853Tx8dHfOWVV5osGzRokHj33XeLonjqGL/33nut9iuKorh+/XpRoVCICQkJLa6/4YYbxEmTJjVZ9uijj4oRERGN/7dVUHv99dcb15tMJtHPz0984403RFFsLqid61wnJCSIgLh3797G9XFxcSLQqqB2rnPz/PPPi0qlUszMzGxctnbtWlGhUDQKyDfffLPo6ekp1tXVNdm2JUHtmWeeafy/qqpKFARBXLt2rSiK0nXXu3fvJn08/fTTbRLUTu93z549IiB+/fXXjcuWL18u2trattqHKIpiRESE+OGHH4qiKJ71vjl06JAIiGlpaWftT0bmQpBNnzIyZ6FPnz5N/vf29qagoOCC+kxOTuaGG26ge/fu6PX6RpNpRkZGu/oZOHBgk/8PHTrEsmXLsLe3b/ybMmUKVquV1NRUJk2aREBAAN27d2fu3Ln88MMP1NTUNOlj6NChTfy8hg0bRlJSEhaLhbi4OFQqFUOGDGlc7+rqSlhYGHFxcY3LdDodPXr0aPz/9GPm4uLC/PnzmTJlCjNmzOD9999vYhY9dOgQL774YpN9WLBgAbm5uc3m2hoVFRXk5OQwYsSIJstHjBjRZJ4tHcMziY6Oxs/Pr9GEdyZxcXEtjtNwzNrDsGHDGr+rVCoGDhzYbL4NnOtcN5yr0/evZ8+eODk5tTr+uc4NQLdu3fDz82syZ6vVSkJCQuOyyMjINvlLnn5v2dnZ4eDg0HidJCQkMGjQoCbtBw8efM4+z+zX09OzcU6nLzMYDFRUVABQXV3NY489RkREBE5OTtjb2xMfH994P57tvunbty8TJkwgMjKSOXPm8OWXX1JaWtqmecrItBVZUJOROQtnOpcLgoDVar2gPmfMmEFxcTFffvkl+/btY9++fYDkeN0ezoyis1qt3HHHHURHRzf+HT16lKSkJHr06IGDgwOHDx9m+fLleHt789xzz9G3b982p3wQW4lcFUWxiXDX0jE7fdulS5eyZ88ehg8fzs8//0xoaCh79+5t3IcXXnihyT7ExsaSlJSEra1tm+Z5+rhnmyc0P4ZnotVqz7q+pT7PPE5n7j9IgQttobXgiHOd64bx2htccbZzc7b5nT5OW6M7z3ZvteW4tqXfhj5aWtYw1qOPPsqKFSt45ZVX2LFjB9HR0URGRjbej2e7b5RKJRs3bmTt2rVERETw4YcfEhYWRmpqapvmKiPTFmRBTUamg2jQIpxNk1JcXExcXBzPPPMMEyZMIDw8vMPewPv378/x48cJDg5u9tcwN5VKxcSJE3nzzTeJiYkhLS2Nf/75p7GPMx/Ke/fuJSQkBKVSSUREBGazuVGwbNifxMREwsPD2zXXfv368eSTT7J792569+7Njz/+2LgPCQkJLe6DQtG2nyu9Xo+Pjw87d+5ssnz37t3tnmefPn3IysoiMTGxxfUREREtjhMaGopSqQTA3d29iWYqKSmpRe3g6cfebDZz6NAhevbs2eK45zrX4eHhmM1mDh482LhNQkJCm4Ty1s4NSFrfnJycxv/37NmDQqFoVeN4vvTs2ZMDBw40WXb6vnQkO3bsYP78+cyePZvIyEi8vLxIS0tr0uZs940gCIwYMYIXXniBI0eOoNFoWLVqVafMVeZ/Ezk9h4xMB+Hh4YFWq2XdunX4+flha2vbLDWHs7Mzrq6ufPHFF3h7e5ORkcETTzzRIeM//vjjDB06lEWLFrFgwQLs7OyIi4tj48aNfPjhh/z111+kpKQwevRonJ2dWbNmDVarlbCwsMY+MjMzeeihh7jjjjs4fPgwH374YWMUY0hICLNmzWLBggV8/vnnODg48MQTT+Dr68usWbPaNMfU1FS++OILZs6ciY+PDwkJCSQmJjJv3jwAnnvuOaZPn46/vz9z5sxBoVAQExNDbGwsL7/8cpuPxaOPPsrzzz9Pjx49iIqKYunSpURHR7cp8vF0xowZw+jRo7nqqqtYsmQJwcHBxMfHIwgCU6dO5eGHH2bQoEG89NJLXHvttezZs4ePPvqITz75pLGP8ePH89FHHzF06FCsViuPP/54i2lAPv74Y0JCQggPD+fdd9+ltLSUW2+9tcV5netch4WFMXXqVBYsWMAXX3yBSqXigQceOKuG8FznBsDW1pabb76Zt99+m4qKCu677z6uueaaNqWpaQ933HEHS5Ys4fHHH+e2224jOjq6MUr2QlKwtERwcDArV65kxowZCILAs88+20Rrfrb7Zt++fWzevJnJkyfj4eHBvn37KCwsbPcLgYzM2ZA1ajIyHYRKpeKDDz7g888/x8fHp0XhRaFQ8NNPP3Ho0CF69+7Ngw8+yFtvvdUh4/fp04dt27aRlJTEqFGj6NevH88++yze3t6AlBJi5cqVjB8/nvDwcD777DOWL19Or169GvuYN28etbW1DB48mEWLFnHvvfeycOHCxvVLly5lwIABTJ8+nWHDhiGKImvWrGlz/jGdTkd8fDxXXXUVoaGhLFy4kHvuuYc77rgDgClTpvDXX3+xceNGBg0axNChQ1myZAkBAQHtOhb33XcfDz/8MA8//DCRkZGsW7euMd1De1mxYgWDBg3i+uuvJyIigscee6xRa9q/f39++eUXfvrpJ3r37s1zzz3Hiy++yPz58xu3f+edd/D392f06NHccMMNPPLII+h0umbjvP7667zxxhv07duXHTt28Mcff+Dm5tbinM51rkE6V/7+/owZM4Yrr7yShQsX4uHh0ep+nuvcgCTUXHnllUybNo3JkyfTu3fvJkJpRxEUFMRvv/3GypUr6dOnD59++ilPP/00ADY2Nh061rvvvouzszPDhw9nxowZTJkyhf79+zeuP9t9o9fr2b59O9OmTSM0NJRnnnmGd955h8suu6xD5yjzv40gttXwLyMj859m7NixREVFyaV+/mVaq2jR1Vi8eDG///77RStt9sorr/DZZ5+RmZl5UcaXkblYyKZPGRkZGZkuxyeffMKgQYNwdXVl165dvPXWW9xzzz0Xe1oyMv86sqAmIyMjI9PlSEpK4uWXX6akpIRu3brx8MMP8+STT17sacnI/OvIpk8ZGRkZGRkZmS6KHEwgIyMjIyMjI9NFkQU1GRkZGRkZGZkuiiyoycjIyMjIyMh0UWRBTUZGRkZGRkamiyILajIyMjIyMjIyXRRZUJORkZGRkZGR6aLIgpqMjIyMjIyMTBdFFtRkZGRkZGRkZLoosqAmIyMjIyMjI9NFkQU1GRkZGRkZGZkuiiyoycjIyMjIyMh0UWRBTUZGRkZGRkamiyILajIyMjIyMjIyXRRZUJORkZGRkZGR6aLIgpqMjIyMjIyMTBdFFtRkZGRkZGRkZLoosqAmIyMjIyMjI9NFkQU1GRkZGRkZGZkuiiyoycjIyMjIyMh0UWRBTUZGRkZGRkami6K62BPoLKxWKzk5OTg4OCAIwsWejoyMjIyMjIxMI6IoUllZiY+PDwpF63qz/6yglpOTg7+//8WehoyMjIyMjIxMq2RmZuLn59fq+v+soObg4ABIB0Cv11/k2cjIyMjIyMjInKKiogJ/f/9GeaU1/rOCWoO5U6/Xy4KajIyMjIyMTJfkXO5ZcjCBjIyMjIyMjEwXRRbUZGRkZGRkZGS6KLKgJiMjIyMjIyPTRZEFNZn/DjUlsPklWLEASlIv9mxkZGRkZGQumP9sMIHM/xAWM+xcArs/hLoKAOKS17E4IJQsqwGjxYhOreP+/vczO3i2nFdPRkZGRuaSQRbUZC59tr4GO96Wvnv2ZoeNmkeEQmoMBY1NDBYDz+9+nv15+3l26LPYqe0u0mRlZGRkZGTajmz6lLm0KU2XNGkAl73FHxMf5V5VGTUKBUNqDazMymXdkJd5oP8DKAUlf6f8zc1rb8ZgNlzcecvIyMjIyLQBWVCTubTZ9DxY6iBoNDkRl/PSvpexiBZm9pjJp76XE2Iy4bv1bW7rNZ+lU5fiYutCQmkC7x1+72LPXEZGRkZG5pzIgprMpUv6Hji+CgQFTHmNdw+/R52ljoGeA3l5xMuoxz8DNo6QFwNHl9PPox+vjHwFgB/ifmB39u6LvAMyMjIyMjJnRxbUZC5NRBHWPyl9738zhwUj69LWISDw+ODHpYABOzcY86jUZvOLUFfJSN+RXBd2HQDP7HqGMkPZxZm/jIyMjIxMG5AFNZlLk9yjkHMEVLZYxz7J6/tfB+DKkCvp6dLzVLvBd4BLd6jKh8PfAvDQwIcIcgyisLaQD458cDFmL3OBWKwWNqSs5aafxjHj24G8+ttsdu56HUtd9cWemoyMjEyHIgtqMpcmx1dJn6FTWFd4iLiSOOzV9tzb796m7VQaGLZI+h79IwBalZbnhj4HwKqTq8ipyvm3Zi3TARwrOsbs32fx8I7HOFpXRJpYx/Lqk9x18gfu/XEMRkPFxZ6ijIyMTIchC2oylx6iCMdXSt97zebXxF8BmBcxD1eta/P2va8CpQbyj0FuDAADvQYyxHsIZquZr2K/+rdmLnOB5FXnsWjTXaRWpuNgsXJnRS3vuY/hahsfbK0iOxR1PP7bDMwW08WeqoyMjEyHIAtqMpce2YehLAPUOjK8IjiYfxABgdkhs1tur3WGsGnS93qtGsBdfe8CZK3apUKtuZb7/rmPkroywuqMrC+zsujqlUyY9hHPX7eeD/rcg1oU2WQp4dlVV2EVrRd7yjIyMjIXjCyoyVx6NGjTQqfye/p6AIb7DsfLzqv1baJulD5jf4V6bcsAzwGyVu0SQRRFFu9eTFxJHM4WC+8XluEwbzV492lsM2zAnbzT7QqUoshf1amsPiD7H8rIyFz6yIKazKWF1QrHfwfA0usK/kj+A4DZwa1o0xroMR7sPaGmCJI2Ni4+XauWX53fKVOWuXB2ZO9gTeoaVCK8U1CEb7+bwS24Wbtx41/mXpsAAD6I+4YaU82/PVUZGRmZDkUW1GQuLbIOQEUWaOzZbWdPQU0BTjZOjPMfd/btlCroc430PfqHxsUDPAfQ36M/ZquZlSdXduLEZc4XURT56MhHANxUXsEgqwbGPNZq+7nj38LXZKYAM0v3vflvTVNGRkamU5AFNZlLi7g/pc+waaxK/RuA6d2no1Fqzr1t3xukz8T1UFfZuPiaMEmA+y3xN8xWc4dOV+bC2ZSxibiSOOxEuLW8AkbcL+XIawWNZwQP6SRt27LkVeRV5/1bU5WRkZHpcGRBTebSInU7AFU9xrIlcwsAVwRf0bZtPSOknGpWEyRvaVw8KWASLrYuFNQUsC1rW0fPWOYCsFgtfHzkYwDmlpXjrHWFYXefc7tJoxfT32DAgJUP973e2dOUkZGR6TRkQU3m0qG2DPJiAdhtq8ZsNROoDyTMJaztfYRMkT6T1jcu0ig1jcLerwm/dtBkZTqCNalrSC5PRo+SeeUV0Pc60NidczvBbwCP2naX+sj8h4Kags6eqoyMjEynIAtqMpcOGXsBEVx6sKNYEthG+Y1qXx+hk6XPpI1SYEI9V4dejYDArpxdZFZkdtCEZS4EURRZenwpALeUluIgitD3+jZv33vk4/QzGDAjsiL+586apoyMjEyn0uUFteeff56IiAgUCgU//fTTxZ6OzMUkfScA1oDh7MjaAcBov9Ht6yNgBKjtpJJSeUcbF/s7+DPcdzhAYwJdmYvLsaJjJJUmYSMouaaiHDwjwbNX2zsIGsu1RhUAv8X/hMkqJ8GVkZG59OjyglpISAjvv/8+gwcPvthTkbnYpO0CIM6jB8WGYuzUdgzwGNC+PlQ20KM+QjRxQ5NV14RKQQWrU1bLQQVdgBVJKwCYbFGjt4qS2bM9KBRM6nE5LhYLBaYKtmRsOfc2MjIyMl2MLi+o3XTTTUyaNAlbW9uLPZVmnCzO5ot9W4kpOEZccRwJJQkkliZysvQkuVW5VJuqEUXxYk/zv0FdpVSIHdiuMAIwzHsYaqW6/X2F1Js/E9c1WTzKdxRONk4U1RaxL3ffBU1X5sKoMdWwNnUtAFfmp4OggMir292PpvccrqqsAuDn+OUdOkcZGRmZfwPVxZ5AR1FXV0ddXV3j/xUVnV+Y+e3d37Or5Hs+jG+9jY3Shu6O3QlxDmGA5wAmdJuAo41jq+2tVhFEEYWyy8vQ/y4Z+0C0gFMA2wujgfMwezbQIKjlHIaqArD3AECtVDM1cCo/JfzE6pTVjPAd0QETlzkf1qWto8ZcQ4DKgQGGDAieCA5nqTzRGn6DmCPa87Uosj//IMllyfRw6tHxE5aRkZHpJP4z0sBrr72Go6Nj45+/v3+nj2mj1IHZGavJEatJj2h2QK92xtHGEZVCkoHrLHXElcTxZ/KfPL/7ecb+Mpb7/rmPE8UnGvsxVJvYs+okK98+xJcPbueLB7azfXkCFcW1nb4PlwzpktmzqNtgjhUfA84jkKABvTd41ZceOq1KAcCMHjMA+CfjHzmr/UWkwex5ZbUBAaDPtefXkUKBd88rGF0j3UsNlSxkZGRkLhX+Mxq1J598koceeqjx/4qKik4X1t6fdi9G8yI2nMjjy+0pHM0qx8ZOw++LRuDnrKXWXEthbSEny06SUJLA5ozNJJYmsiVzC9uytnFt2LXcEriQLZ+epDSvqVAQuy2b4zty6D81gMEzghAEoVP3pctTL6jtdHSFSohwjcBN23rS03MSOgXyYiD5H+h3Y+PiSLdIAvQBpFeksyljEzN7zLzQmcu0k5OlJ4kpjEElKJmZnyqZPUMmnX+HvWZzeexSttrp2JC6jgf7PyjfTzIyMpcM/xmNmo2NDXq9vsnfv4FGpWB6Hx+WLxxKLx89xdVGbl12gMo6Mzq1jgB9ABO6TeDuqLtZMXMFK2eu5LLAy7CKVtYe/ofvX91JaV4Ndk42jJ8XzvXPDWHWA1H49XTGahU5uCaNw+vT/5V96bIYayD7MAB7xGpA8ie7IILGSJ+p2+E0P0JBEJjefToAq5NXX9gYMufF2jTJN22kXQBuFiv4DQat8/l36DeQ0SpXtFYr2dW5HCs61kEzlZGRkel8urygZjKZMBgMWK3WJt+7GjqNiq9vHoSn3oakgiqeXBnbYrsQ5xDeHPMmn476givi7kNXp6dCW0SfBXrCh3vj4mOHX08XZj3Qj5FzQgDY+3sKJ5b/AZX/o0XDc6PBakJ08OFgaRwAg70uMArYbxCobKG6AIoSm6xqENT25e6TC7VfBDalbwJgcq0UNHJB2jQAQUDXczpj6s2f69LWnWMDGRkZma5DlxfUFixYgFarZceOHcybNw+tVsv27dsv9rRaxMvRli/nDUQhwN8xuURnlrXa1rTHGVujPTV2ZazstYRF+xZytPBokzZ9B6kY0CMBgK3bdGS+fi2sXAgFZ4le+C+ScwSAbJ/eFNQUoFKoiHSPvLA+1bbgXy/spTa9nvwc/Ojv0R8RkfVp61vYWKazSC5LJqU8BZVCxZiMGGnhhQpqAMETmFotuResT1uPVex6L3syMjIyLdHlBbVly5YhimKTv7Fjx17sabVKHz8nruzvB8Aba+NbTM+Rm1zOiR05AMy+bSgRvmFUmap4aMtDlBhK6hsdhY8GMaTqCXra/oOIkm1lt2M+uhK+mgil/0Pm0JxoAA7pXQDo5doLrUp74f0G1UeNpjYX/C8LugygMUWEzL/DxnQpuGOYYyh6YxXYe50K/LgQAoYzss6CndVKfk1+s5ciGRkZma5KlxfULkUemBiCRqlgT0oxO08WNVlnsVjZ9qOkEes53JvgCB8+nfgp3R27U1BbwDM7n8FaVwm/3QbGSgSfKEYtuhydo4Zyiw+HhbvBWAl/LGpSAuk/TW40AIcEKQntAM92JrltjcB6QS1tR7NjOSlgEgpBwbHiY3JJqX+RBrPnJItGWhA8ETrC8V9jh023oYxrMH+myuZPGRmZSwNZUOsE/Jx13Di0GwBvrktoolU7tjWb4uxqbO3UDL9SyuekU+t4a8xbaBQadmTv4Lvfb4LiJHDwgbmr0IQMa/RXO1Q4ljKCJOHiwFf//s7929RVQlESAIdrs4EOFNR8+0vlpGpLIb+pg7mr1pUhXkOAjvdpMlSbOHmogLSYIvJSyjFUy6WNADIrMkkoTUApKBmXLfkiEjKx4wboMZ6pVVIwyob0DbL5U0ZG5pJAFtQ6iUXjgrHTKInNLmdTXAEgadOiN2UAMGRWd7T2msb2oc6hPD74cQDeq03mpFoNV34OOsncFzzAg24RLlgtsF3xsrTRpuehOPlf3KuLQF4sIFKo9yG9KhsBgX4e/Tqmb6UaAqT6nqTtaLa60fyZ1jHmT0O1iX1/pvDd07tZ/+Ux/v4khhVvHuKbJ3cRvSlDSnb8P8zGDMnsOcg1EqeiJBCU0H1cxw3QYwLDaw3YWa0U1RZxvOh4x/Ut0+GklqdyKP8Qe3L2EF0QjcVqudhTkpG5KMiCWifhZm/DTUMDAPhhn+RPlnKkkKrSOrQOanoOa55lfU7QdMbWWTALAu8G9z/lQ4WUNmL09aEoVAKZOTpyXK8HUw1se+Pf2aGLRYN/mkcQAGEuYThoHDqu/6D6NB8t+KlNCJiASqEiqTSJk6UnL2iYoqxKfnh+LwfXpGE0WHD00OLezQE7JxvMRiu7fjvJijcOUpb/v5tkt9HsqanPj+c/GLROHTeAZ2/Udu4MrzUAsC1rW8f1LdMhmCwm/kr5ixv/vpGZv89k/rr5LNy4kLlr53L5qstZtuc1yre9Dj/PhS/Gwra3JI24jMx/GFlQ60SuHyyZP7clFpJZUsPRzZKvU+/RvqjUymbthcPf8khBPioRthty2Z+7v8l6R3cd4cN9ADhQc4O08MQf/+0fqgb/NJ0UPNBhZs8GGoThtF1gaVqIXa/RM9J3JHBhWrWSnGr+eC8aQ5UJZy8dUxf25sbFQ7nmqUHc/Opwxt4YhsZWSUF6JX+8d4Tq8rpzd/ofo6i2iNgiKaXNuLL6gJrAC8yVdyYKBXQf15imY3tW14we/18lpTyFOavn8OSOJ4kpikGtUBOoDyTEOQQHjQPZVdm8k/gjs09+Q3zyWikafMvL8G4kbHntf8dnV+Z/DllQ60QC3ewYEeyKKMIv65PJT61AoRLoPcaveWOTAXa9R4DZzNWufQFYcmhJMz+a/pO7oVAIZKWaybOfCmYDxPzyb+zOxaFeo3bYUgl0gqDm1QdsHaUAjbzmkYCXBUrmz3Wp61qM4D0XZfk1/PHeEQxVJjwCHLjq8YH06O+BoJAc5AWFQK9Rvlz//FCcPHVUldax9rNYzKb/LTPPrmyp8kSEawTumQekhYGdUGu1x3hG1tQiiBBXEifnyesibEjbwPV/XU9yeTIuti7cE3UPG6/eyOrZq1l5+c9s1kXxQmExASYThSoV8/26sXvcQ+DRS7p3t70OW1+92LshI9MpyIJaJ9OgVcvdL/mphQ7yRKfXNG8Y/T1U5oLelzvHvYVOpeN48XE2pG1o0kzvpiV0qGQ2PWi4SVp4aFmT7Pr/GeqqoCiRcoVAUk0eQMf5pzWgUEK3YdL39D3NVo/1H4ut0paMygxOlJxotv5sWExW1n4eS02FEVdfe2bcF4WNtuWqbfbONlx+dx9sdCryUyvY8l3LqV3+q+zM3gnASJfeUJENCrVUkaCj6TEOV6uVyDpJa7k9W9aqXWy+Pf4tD297mBpzDYO8BrFi5gru6HsHrlpX6Xdt1Z1oj/zAldW1/Bh+J4M8B1EtmliU/jvbZ7wG096WOtr+FkT/eHF3RkamE5AFtU5mcoQX/loNAfX11ftOaKH+qNkIO9+Tvo94AFd7b27pfQsAH0d/3EyrNmBqAIIA6Vl2FFp7QsEJyDrYiXtxkagPJIh18kZEJEAfcGH1PVujIaAgfXezVTq1jjH+Urmp9qZ0OLg2jZKcarQOambeH4Wtnfqs7Z08dUxZ2BtBIZC4P5/E/f8b2h6z1cyuHEmjNspa/xLj2x80uo4fzMELXINPmT8zZUHtYrIyaSVvHXwLgHkR8/hi0hdN7/HoH+HYb6BQwXU/oh/xAJ9N+oypgVMxi2ae3PkUuRHTYWR9nec/75PcGGRk/kPIglono1EpuMLFGQUClfYK3PxacIQ/9huUZ0rJPfvPA2BuxFzs1fakVaSxO6epAOHkoSNkkCcARxR3SgsPL+vM3bg41PunxTp7A1LB9E6hW72glrG7RT+X05PftjWlQ2FmJYfXSUEko68La1mL2gL+PV0YPF0KnNi98iRGg/kcW1z6xBTGUGmsxNHGkciCVGlhQCeYPRsIGM6YWklQ25u7F4PZ0HljybTKurR1LN69GIBbet3CIwMfQaU4TeNcnAxrHpW+j3sKwqT7UKPU8OrIV4l0i6TCWMFj2x/DNPYJiLgCrCb4816wyClvZP47yILav4BnmeRvtM9ioLCyBUfxQ99In0MWSqWNADu1HVcEXwHAD3E/NNskaqJkUk0uCKDa4gzHVko5x/5L1PunHdNImqjebr07ZxzvvqDWSUEZRQnNVo/0HYm92p78mnyiC6LP2Z3FYuWfb+OwWkV69HMneIBHu6bTb1I39O5aasqNHPw7rV3bXorsyJZSo4zwGYEyo14b0hn+aQ0EjCDUaMJTVGCwGNift//c28h0KLGFsTy14ylERK4OvZoHBzyIcHpiY4sJVi4AUzUEjIQRDzTZXq1U88boN7BX2xNdGM0nMZ/BrI/Azh1KkiV3EBmZ/wiyoNbJlOXXUJ5djRWIV1tYdyy3aYPCRMjcK+WMirqxyarre16PgMDO7J2kVzQtGeXezQHvHo5YrXBMvFZK1ZHyH0s3kH8METhmrgA6UVBTaaQi7QDpzc0mNkobRniPBWDhyq8Y//ZWLnt/B4/8epScstpm7U/syKEoswobOxWjrw9r93SUagWjrpESHB/9J5PSvOp293EpsSNLEtRGOUdAWYZ0L/gP6bwBA4YjAGOqpBcbOfrz36XEUMKDWx/EZDUx3n88zwx5pqmQBnDw/yD7kBToc+Xnki/pGfg7+LN4+GIAvo79mriqLBgj5aJk2xv/vRdXmf9ZWvZslukwkg5KfkZKb1tqa2tZHZPL3GGBpxoc+Vb6DJks+c+cRjd9N0b6jmRH9g6Wxy/nicFPNFkfOc6P3ORyjleOZaDTVyhPboTw6Z25O/8eFhMUJZKrUlJirkIlqOjp0rPzxgsYDqnbJD+1Qbc3LjZZrLy7MZE1RzxR+kCt5ghF6VMBJXG5Ffwdk8s944NZMKo7GpUCk9HCwTVpAAyZ0b3NJs8zCYx0IyDSlfTYYnb9dpLp9/TtgJ3seuRX55NQmoCAwIi6ejOvTxTYdGCuvDNx6gZ6P4bXFPOLgx17c/d23lgyTbBYLTy2/THya/IJ1AfyyshXUJ4phBkqTuWHnLgYHFuIkq9nSuAUNqdvZm3aWt45+A5fTvgEYe+nklZt94eSyfR/BIvFgskkm3y7Kmq1GqWy+QtHW5AFtU5EFMVGh/B+I/1gYykH0krIrzDgqbeVhJGjP0mN+89tsY8bw29kR/YOfj/5O/f2uxc7tV3juu793LFz1FBdDsmGYYQmbZKipDqiNuLFpjgZLEZi9c4AhLqEYqO06bzxGgMK9jQeQ6PZyn3Lj7DueB7QHUcvO1BV8fwcG/y0UXyxPZkDaaW8tT6BIxmlfD53ILFbs6ipMOLgakvESJ8LmtLIq0PIOFZM+rFiCjMqce/WicLLRaIhiCDSLRLn7MPSws70T2sgYDiDj/2KEoH0inRyqnLwsb+w8yVzbj49+in7cvehVWl5d+y72Gvsmzfa/QHUFINrMPSbd84+7x9wP5szNrMvbx878vYyeuLz8Ms8SVAbdDvYt8/14FKkqqqKrKys/6lI8UsNQRDw8/PD3r6Fa/4cyIJaJ1KUWUVZfg1KtYIBw33on5DJ4Ywy1sbmMn9EECSug+pCsPOQNGotMMxnGIH6QNIq0vg75W+uCbumcZ1SqaDXaF/2r04lpmY6oRWPQ2ECeHSi5unfokBKhXHMyROo6bxAggZ8B0opISpzoDQNoz6ART8eZuOJfDRKBe9c048jNdP4NfFXUg27uGXAFCaGe/B7dDZPrIhlU1wBL6yMpdueMgAGXR6EUnVhngVOnjqCB3qSdCCfw+vTmbKgk0y/F5E9OVJKlBG+I2D7l9LCwJGdP3DAcBxif6G3qOaoYGRv7l6uDLmy88f9H+ZIwRG+jJXO8eJhiwl2Dm7eqDIP9nwsfZ/wPCjP/YjytfflxogbWXpsKUsOLmH4jF9R+fSHnMOSr9qYxzpwL7oeFouFrKwsdDod7u7uzc3IMhcdURQpLCwkKyuLkJCQdmvWZB+1TiTpgKRNC+ztikarYnof6Y39r5h6P7XD30mfUddLdSdbQCEoGh8ga1LXNFvfa5QvCpVAvimUQlN3OLmxg/fiIlEvqMXadHIgQQManZQSAhDTd/HIr0clIU2l4It5A5jR16cx+nNTxiaMFiOCIDC7nx/vXRuFIMDJnbnUVZtx8tQRNsSzQ6Y1YKpUhiz5cMF/rryUVbSyL3cfAEOdekJJirTCvxPyp51JvdZuWIVU1aNBYJTpHKqMVTy540msopWZPWYyrfu0lhtufV3yt/UbDOEz2tz/7ZG342TjRHJ5MquSf4ehd0krDi1rVnHkv4bJZEIURdzd3dFqtdja2sp/XexPq9Xi7u6OKIrnZZ6WBbVOQhRFko9ISW6DB0oP7WmR3ggCHEwvJT875ZRQ1a9ls2cDDQLCofxD5FXnNVmn02voEeUOwPGaSZD0XxHU4rAAJyySI32na9SgMfFt2qGN/Hk0B5VC4Mt5AxkbJplO+nv0x0PrQaWxsknKlMsivXlqUhgDDNLbv9tQdxTKjrm1XH3tCYyUqlsc2ZB+7g0uIZJKkyitK0Wr0hJZUyUtdAsDrXPnD+4WAjo3hlZL4+7L3dfm1Csy7ef1/a+TXZWNr70vTw5+suVG5dlw5Hvp+6QX2uXCodfoubOvlKro69ivMfe8HHSuUvLkxPblP7xUkTVpXZsLOT+yoNZJlObVUFFkQKES6NbLBQAvR1sGBUjfM//5GkSrJBy4hZy1Ly87L/p7SNqelpKuNvhCJRpGY0o7LGX0v9QpOEGKWk2taMZObUegPrDzx6zXsigyJefyhyeHMSbUvXG1UqFkcqBkol6b2rT252DRBlsEShRW3kvIxmzpuId+/6mBAMTvzaOq9L9TB7TBiX+g50DUOfX+af6D/p3BBQEChtOnrg6doKK0rpT4kvh/Z+z/Mf7J+Ic/kv9AISh4ZeQrLfulAez9RMqDFjDylM9oO7gq5CqcbZzJrspmU84O6FdfueXg1xcwexmZi48sqHUSabFFAPiFOqOxPeVnMbW3FwJW/NJWSAv6n9tZFuDy7pcDLZs/fUOd0btrMYk6TlYPgrQdFzj7i4yxGkpSOWYjRUxGuEY0jwzrjGF9BmFFIEDIY1oA3DG6e7M2DdrNLZlbqDVLqTmsVpGYLZkAHLcXicur5Lu9Haf98u7hiE+IE1aLyLFtWR3W78WmQVAb6j0UGup7dkbZqNYIGI4aGIRtk/nIdBzldeW8uOdFAG7udXPrtXprS0/lPhv5wHmNZauy5fqe1wPwzbFvEPvPBwRI/kcKTvpfRRQ7rcRgamoqPXv2pLY+gXRMTAyRkZGN5tg777yT4OBgBg4cSHJy287B1q1bcXZ25sYbpXRVGRkZjBgxAltbWz777LM29bF//3569+5NcHAwL7744jnbGwwGrrzySkJCQhg3bhxFRUXn3Oarr74iJCSEsLAw/vrrLwBycnKIiorCy8vrHFu3D1lQ6yTSYqQTHRDZtOTRhHAPhiri8LLkImrsIWIWdampFLz/PtmPPkb6zfNJnzuPgnfeoXLrVqz1N8CkgEmoBBVxJXGklqc26VNQCPSq16qdqP0PmD8LEwCRWDs98C/4p9Xz5YFi4qxSIuFXBlSgUDRXVUe6ReJr70utuZZtWVLeupQjhVQUGbC1UzN9luQgvWRDIgWVHZfxvs94KUXBid25WMyXvonOZDFxKP8QAEM8B0qO3/Dv+Kc1UD/WsHLpXpX91DqeN/a/QbGhmCDHIBZFLWq94YGvwVglFVkPnnje413b81pslDYcKz7GIVPJqb4O/t9593lJYrVIgRnFyZB/DHKPQlESVOaD+ZRW3mw1U1xbTFZlFinlKSSUJJBYmkhyWTLpFekU1BRQaazEYrW0OExQUBBXX301r7/+OgD33nsvS5YsQa1W89dff1FWVsbJkyd54YUXePzxx9s8/SlTpvDDD1Kid71ez5IlS3j44YfbvP0999zDzz//TEJCAmvWrOHYsWNnbf/ll18SGhpKUlJSk/1pjeLiYpYsWcKRI0fYsmULDz30EGazGR8fH6Kjo9s8z7YiC2qdgKHaRF5yOQCBka5N1gW42nGbnVSAOlUYReZDj5My7XKKP/2MitWrqdm3j5oDByj+8iuy7ryLk5MmU/rTzzipHBjmI/lQnWl2A+g5zBuFQiTP1JPi+KRO3sNOpiAOgOM6KRVJb9fOF9Ryy2v56J+T7LdKEbPOhS3XThUEoVGr1mCGPro5Q5rnGF+uHxZIHz9HKuvMvLmueZWD8yWwjxs6Rw21FUZSogs7rN+LRUxRDLXmWlxsXQipM0gO5DaOko/av4VXH1BpGVpRAsDh/MOdUk7KbLJQU2H8T6dOsFpFDqWX8NqaOKa9v4MZH+7kiqVfsDplNQIKXhrxUuvpdUwG2FevKRlx/wWlF3KxdWFWj1kAfHPiGxh0m7Ti6E//+aACURSpMZqpqaqkJieOmpJsaqrKqKkzUmOyUFNdQU1JFjU5JyguziKhKI2YvHjSSnPIryyltLqaKoORyto6ympqKKqqILMsn8SiNOJL4kmvSKfUUNpMaHvqqadYvnw5r776Kq6urkyaNAmA1atXM3eu5H89bdo09u7de173gJOTE0OGDEGtPnut5AZycnIQRZFevXqhVCq58cYbWb169Vm3OX2uc+fObdSQtcb69eu5/PLLsbe3x8fHh8jISA4cONC2HToP5PQcnUD6sWJEEVx87NC7aZuurC1jtGkvJYl21B6Joa7+wrUfOxbdoEGoPDwQjUZqDh+ietduzHl55C1eTMl333HF/dPZwQ7WpK7hrr53NXFO1Ok1BPZyIiW2nBM5IYyqKQGdy7+52x1HwQnMwEmkH9ZOTXRbz2tr4qk1WSjyHAjl66V8aq0wNXAqX8V+xY6sHaQk5JKXUoFCJdB7jC9KhcALM3sx+5PdrDqSzf0TQvB3ufDi4kqlgogRPhxck8bxHdmEDOyYqNKLRYOZcYjXEBTZkmYNvwGg+BffHZVq8O1P9/RdeKjsKTBXcaTgSOML0fliMVtJiS4kfk8eJTlVVJXVgQg2OhUuPnZ0i3Clzzg/NNr/xs/viZwKHvw5moT80yoBKGqw674MhQLqikfy9p8GHpxUSv9uLQSKxPwkpSly9IfeF54iZW7EXH5N/JWtmVtJjbqPIK0L1BRB2nboMf6C+++q1Jqs9H9hfRtb57Sr7xX3dQOqqDJWkSfkobfR42LjglatRafT8cQTT3DnnXeSmJh4aoScHHx9fQHpBdfV1ZXi4mKysrKYP39+szF69erVqEW7EE4fF8DPz4/Nmze3eRu9Xk9l5dmrWrQ0RnZ29gXM+uz8N34puhjp9f5pgX3cmq2zHl5O0T4t5ak6FIjYT5qExwP3Y9OjR5N2TlddiWg0UvrzLxR9/DHG5GS6PfoZYy5TsC08ndTyVLo7NfWhihgbSErsURJqxzAs7QCqiCmdt5OdScEJ0tUqjFjRqXT4ObSembwj2J9awp9HcxAEmD7jKvj+FSg4Dq0Iu6HOoXR37E5KeQrb1sUAakIHe2HnKGkM+nVzZlSIGzuSivh8ezIvX9ExEasRI304tDaN7IQySvOqcfayO/dGXZTGtBw+QyGmXkP8b/qnNeA/GCF9F0MFO/6kij25e85bULNYrBzdlEn05kxqK4zN1tfVmMk9WU7uyXKiN2fQb1I3+k7wR6XufP/LzsBqFfm/Xam8uS4Bo8WKg42K8eEeTAz35PesJewvqkSLF9VFk9hRUMTu5GKemhbOrSMCT71kiiLsrdemDb2r1TRF7SHQMZDRfqPZlrWNlSl/8nDELDi0VKqH/B8W1DoziKy7Uw/MVFNeV06dpY4yQxllhjJsVbY42zqzfv16XF1dOXnyJIGBgQAtas8EQSAqKqpF86AoipiNFupqTJiNVmoqjCgUAiobRbvukdbGbe82HT3GhSALah2MxWIl/bhkSgk8wz9NNJvJfuUzqlJ1iAJ8FTGd6x96Av8g15a6QtBocJl7E44zZ5D92GNUb9vOot/Bu0BgW/+tzQQ1/3AX7G2rqTI4kLw3gbCITtnFzqcgjgSNFEgQ6hyKQug8LYvVKrL4z+MAXD+4G+HBPcA1BIqTIGMv9Gye70kQBKYGTeXrA8uoSlCgAHqP9m3SZtG4YHYkFfHLwSzumxCCh4MttbGxVG3fTs3+Axji4xEUCgStLWofHxwmTMRh0iQ0fr7NxmvAwcWWgEg30mKKOL49h5HXnD1auKtSbaomtjAWgCHeQ2BNvbPvvxXxeTr1NUWHVZTwpxb25uyFVvzdz0Z+agVbvo+nOFt6WOr0GiJG+RDQyxW9mxYbrYrS/GoK0iqJ3pRBaV4Ne39PIS2miGl39UHrcH6lxi4WoijyzB/H+HGfZPafGO7BG1f1wdXehu1Z29kfvR4BgS8uewvXGaG8sS6ev2JyeemvE0RnlvHmVX3QapSQuh0K40BtdypKswO4OvRqtmVt48/kP7lv4POoDy2FuD/h8iVSbd//GhYT2ppcTtzlBVpXcPRtYkI2mOvIrMjAbDWjUqjwsnXBoTIPrGbp2LsEtVhPtQGtWokg6HDTulFjrqHUUEqFsQKD2cCf6//kZPpJPv9pKffe/QB79h9Er7PB19eX7OxsoqKiEEWR4uJiXFxciI6ObqZRs1pEQoLD+PS9r6ipMGI2WagqPeWGoNIoMdVZEK3nFqgaxm0gOzsbb2/vNm3j5OREZWUlDg5nrwLj6+vLkSNH2jXGhSD7qHUweSfLMdaasbVX4xmkb1wuiiJ5Tz1EVYoRQSHyz3X3sDJkLJviC87Zp9LREf9PPsF1wQIArtwtwqffN5PqFQqBiF6SufBE3CWqbakpgcpcEjTSm3WYS+f6LP0dm8uJ3AocbFQ8Mrl+rIbUABm7W93ussDLCCscjMKqxNlPi0dA0xt7SJALAwKcMZqtrPhxAxm3LyBtzjUUffgRNfv2YS0vx1Jaijknl9qDhyh44w2SJ04k6957MWa1rkJvEAjj9+ZiNrXs4NvVOZR/CLNoxt/BH180UFofHOM78N+fTL0Wb2iBNIe4kjhKDCVt3ly0ihxck8qKNw9SnF2FrZ2a8fN6Mu+14QyZ0R2v7o7o9BqUagVufg5EjPThuueGMHF+ODY6FXkpFfz2xkFKcqs7Zfc6i3c3JvLjvgwEAV6c1Ysv5w3E1d6GSmMlL+x5AZBMkFEeUfi76Pjw+n4snhGBSiGw+mgOC787SJ3ZAvs+lzqMukEqwN5BjPQdibvWnRJDCVsURrD3BEM5pGzpsDG6DMYaqClGEKzodPbo3Luhs1Gj06jQaVQIChMFhkxUKiuOOi0R7sF4Onmi8wpBp1GjoxZdVQY6taJxmzP/GrRFgiCgU+lwUHpgY/XDVGfPG8+8yROvPEGPXv5EDorgjfdf5URePsPGTuL776W8eGvXrmXIkCFNNGpHjhxhz479bFq9g01/7eDT975CEARUGgVKlQIbnRq1jSQ8mo0WjLVmqiuM1NWe8jXs2bO5W4yPjw+CIHDixAksFgs//vgjM2ZIyZOffPJJVq1a1Wyb6dOnN871u+++4/LLpSwL+/fvZ9685pkZJk+ezJo1a6iuriY3N5eYmBgGD+48i4AsqHUwGXHSj3y3CJcmUYPFX31F2Z8bARGfOSF0u2I2AP/EnVtQAxCUSjwefgjbJx4AYOg/uWS9+3azduFjQxGwkFPpR2lO+YXtzMWgPpAgwU760Q51Du20ocwWK+9uknwqbh/VHRe7+jfthlqT6a0LagH6AKKKxgJgCitspvYWBIFFw3x54PAvjH33cap37gSVCocpU/B6/jmCVq0k6M8/CPzlZzyffhrdoEGgUFC5cRMp06dT9NlniJbmgli3CBfsnW2oqzGTFlN84QfhItAQXTnEewhk1TvguoWB1unfn4ydK7gG42a1EqKT3oj35+5v06ZGg5m1n8ey789URBFCB3tyw+IhhA/3QXmWhMcKhUDYUG+uemwAejdbKooMrHzrEKV5l4aw9s3uND745yQAL83qzbxhp0yZr+9/nYKaAgL0AdzT757GbQRBYP6IIL6/fQg6jZIdSUW88O0axIT6dEODF7Y6ntUqUlZQQ2FGJTlJZZTkVmM9h2ZFpVBxRfAVAKw8+TtESN85tvK89rlLs/9zsBhBUEmasdMsECaLiYyKDCxWC1qVlkB9IOoG87JaB649QFBKEbfl5/axMlmspBfXkF5SQ3WdlZ/+72f69hvCoH7jUQt23Pfkffzw5TLKK5MZMKEXZpVAUPcePPvss00iKUWrSGWxgcoSA1ariFKlQO+mxc3fHgcXLWobJY7uWpy97NC6KOg3PILPvv6Yl197np7hoZQX1lJYWNSqyfKDDz5gzpw5hIWFMXnyZCIjJfeTY8eOtZg6Y8GCBcTFxRESEsIvv/zCE088AUBmZiZarbZZezc3N+6//36ioqIYM2YMb7/9NipV5xkoZdNnB5N5QhLU/CNO+TZV795N4TtLAPDsV4F+7gOM8XVHqRBIKqgio7iGbq5tczgPmn8Hb51YzvQ/86n64v8odnTF9bZbG9fb9wgnQLuetNooTmw8xoib/4UC1x1JoZR0NEGtBCydqlH7PTqHlMJqnHRqbh0ZeGpFg0YtJ1ry+7BpnqAzJ6kMXbUzRoWBHdq/uJmZTdbXpaQQ+OwDeGckYUWgcOg4hr/0BBp//2Z9afv0wWXuTRgSE8l/8SVqDh6k8L33qTlyBN93lqC0P6UdFRQCoUO8OLwunYR9eQQP6HoFpwsqDaw+msuJnArUSgGNSkEvHz2XRXqjt1WzL6/eP817KJysD9q4GGbPBvyHQPFJhikcSCKXPbl7mBo09aybVJUaWP3hUUpyqlGoBMZcH0bEiPYVdXf2suPqxwfy10dHKUiv5O+PY7j68YHY2l+4n1ZnsT+1hMWrJVeBhyaFctPQgMZ1G9M38mfynygEBS+PeBmtqvkDbmh3V76cN5Bblh0gMOUHBJWI2GM8gnvTFzJRFMmKL+XkoQJSjxZSW9m07I5Ko8Dd34EeAzwIG+KFrV3zYzY7eDZfxn7J7pzd5Ax7HZ/9n0P831KUqdq2Iw7HxackBY7+AsP7g94HlKfMulbRSmZVJmarGRuVDQH6gOb5KDV24Bwg9VNTJJXS07XsilNpMJFZUoPZKiIIAu72Gl588mE0qoY+XQly8uXAsQNSdKhoYfG7TwOgwg5vvRuiKGK1iJQX1mI2Si+i9s42aB00rfp4OTjYk52dhdUqUl1WR22lkboaE1t37uCuO+9ucZuhQ4dy/PjxZsstFgvDhjX3QdVqtfz+++/Nlh84cIBFi1pOK7Nw4UIWLmz9BaMjkTVqHYihykRhphQt4t9TEtQsZWXkPPkUAE7dq3EZ7ALdx+GoVTMoUIqA2hyf365xNNfN5rtx0qkrePttKjZsOLVSoSAiSKolGn+4GovpEsu5VZRIsUJBERYEBEKcOscPy2i28v5mSZt255geONie9kPv5C9FoIkWyNzX4vbHd0hRUyfdDrG/eC8FNac0o9W7d5N29RzqkpIwObrwxIg7WNzralS+Zw+KsA0Npdt33+L92msINjZUb9tO+g03YDojmihsiPRGmHGsmNrK5k7rF4vkwirmL93P0Fc389JfJ1hxOIufDmTy7Z50Hl8Ry6CXN7Hwhy0klUrpYwZ7Db44iW7PpCGfWmUZIGn8zuZcXJpXzYo3D1GSU43OUcPsh/q3W0hrQOug4fJFfXFwtaW8sJZ1X8R22Tx5lQYTD/0SjSjClf19uXf8qaLqhTWFjYltb+t9G1EeUa32MyLYjc/nhHGdUjJDrtPNarK+rKCG1R8e5c/3ozmxM4faShMqtQI7Rw2OHlpUGgVmo5Xc5HJ2/pLEssd3sfmbE1QU1Tbpx1/vzxDvIYiIrKpOke5pY+V/px4ywMbnQTSBStvshTKvOo9aUy0KQUE3h26tJw23dQSHei1TWaaUcPwMymqMpBVJQppWrSTY3R4vR+1pQpqEWqnG086TUJdQfO19USskgdhMNekV6SSXplCcV4nZaEFQCDh56NDpbZoIaRqNhn379jUmvG1AoRBwcLHFyVOHQiEwduQEbppzK6a6truArFnTPGH82Xj99dfp06dPm9s3JLz18OjYF2hZUOtAMuNLoD4th52TjeSX9uKLmPPz0Tir8exfAVE3NqYgmBgupVjY3EbzZwNj/MaweqiCzYNsQBTJeexxamNPJfQL6OOBnaIYQ52KlKOXWM6tosTGQIJu+m7o1Bee2qIlfj2USWZJLW72NswbFtC8QeBI6TNtZ7NVtVXGxjqu5p7FiIisT5PC4iu3bCHzzruw1tSgGzSIoFUrSPPrSVpxDbuTz22qFAQBp9lXEPD9dyjd3ahLTCTtprmYck6F07t42+ER4IDVKpJ0sH1Cfmex+mgOMz/cydaEQqwi9OvmxEOTQnlkcih3julBiIc9dWYr/9Sbk93U3bFX2l2cRLdnUh9Q0D/nBGqFmtzqXDIqM1psmp9awcq3DlNVWoeTp46rHhuAV/cL863S6TVcfncf1LZKshPL2PXbyQvqr7N4cfUJskpr8XfR8uKs3o0PV1EUeW73c5TVlRHuEs5dfe86Z1/jjFvQCzWkWT2556ArO5IKEUWRIxsz+OnF/WSeKEGhEogY5cPM+6O4/b3RzH9jJDe9OIwF743hhsVDGHVtKK5+9ljMVuL35PHD4r3s/C0JQ/Up7dtVIVcB8Efyn1jD67Xe8e17WHdZ0ndLARIomrkNlNeVU2ooBcDPwQ+N8hwBFPZeUh5DRChNk4IM6impriOjpAYRESedhh4e9lIgyFlQCAqcbJ0IdemBty4ALHYIohJdtSNYBCyCBZO+Cou6eYHy4cOHk5qa2mqqDo2tCmcvO1RqBVaLZBZvj7DWmTQkvI2JienQfmVBrQPJqvdP8w+XtGkVf/1NxZq1oFTgMzAHhQrod+otYXxPSerel1pMpaH5BdsakW6RONk48eV4M+bBfRANBjLvvgtTviQ8KAKGEq6V8sac2Nm+fDkXnaIkEusDCTrLP81gsvDhZulhuGhcD3SaFjwAAkdJn6nbm62K352H1SziEeDAmH6SgPHHyT+oWL+BrHvvQzQasZ84Af+vv8LBx4sr+0sBAD/sa3tZKW1kJEE//4wmKAhzbi4Zt9yK+bSyJmFDpTfghL15be6zMxBFkZf+OsG9y49QbbQwtLsLWx4Zy6q7R3DfhBDuGR/CE5f1ZMODo1l9z0h8vaUSWDl5fjzy0Q8XJ9HtmbiFgY0jOmMNUY6SlqilKgUZJ4r5/b0jGKpNeAQ4cOWj/dG7NjfvnQ+uvvZMvq0XALFbs6SXvi7E+uN5/HooC0GAJddEYW9z6p75NfFXdmbvRKPQ8Nqo1075QLWGKDYGERz1uQaLqODeH4+w5psT7F5xEovZin+4M9c/O4RxN/bEP9ylic+fQiHg7GVHn3F+XPv0IK56bAC+Yc5YzSJHN2Wy/MV9pNZXhhnnPw47tR251bkc8arXzieukzL3X8qIIqyXLDX0uqJJWhOz1UxutWRVcde546A5ewQjIEWIOneTTKcWI5RlgShSVmMkq1TSVLrYafB31qJoZxoKF509PZz9cKz1QWXVYBWslNsWUGoqIaUshdTyVCqNlW1PkSGKKFUCTl52qG2UiNauJax1BrKg1kGIokhmnPQG4x/ugqWsjPxXXwXAbVIoWlcTBE8Ap26N23R3t6e7mx0mi8iOpHPXFmtAqVAyyncUVoXAltv7YRMSjKWwiOz770c0GsG3P+G6LYCVrPhSygtrz9lnl6CuCsozSaiv8Rnm3DkP7x/3ZZBXYcDb0ZbrB3druVFQvaCWcwTqTiU/FEWR4zslU2TESB8u7345GoUG9ZE4sh5+GMxm9NOm4ffuuyjqNYM3DJE0dhtO5JNf0fbM92ofH7r939eofXwwpqeTcettWMqlAJGQgZ4oFAIF6ZWU5Fw8J/SPt5zk651SxOSicT34/rYhBLk1jzgWBIHevnpsHKR6f7bmMPRF0QBUuvX9dxPdnolC0egjN0wpacfOFNQSD+Tx98cxmOss+Ic7M+vBfmjtOzbNQ2CkG73HSEL9P9/GYaztGpn0a4xmnv9D8ve5Y3QPBgWe8r/NqMjg7YNSUNP9/e+nh1OPFvtoQspWKEoAjT1TbnyYKB89I4sgba+kHR45J4QZ90Xh5HlubbogCHh1d2TWA1FMv7cvTp46asqNrPkkhk1LT0CdkondpDJSf9ekg60T1JZAZtsCRrosyZul3ya1HQy+o8mq/Op8LFYLNiob3LTNc3m2ikIFzoHSd0MpdRWFZNYLaW72Nvg6ac87V5ip0oRaBCtQKoBa4YbeRo8gCNSYasioyCC1PJUqYyu54MwGqMyFopOQFwO5R1EUnsBRlYdaJTYKa5dqJPy5kAW1DqK8oJbKEgMKlYBPiBOFH3yApbQUmx7dcXOvL0c0pLlJoEGr1l7z53BfyeF9Z/lh/D76CIWDA7XR0eS99hpo7ND7eeGvOQpA3K5LRKtWLGm5EmwkLUVnVCSoMZr5ZKs0zr3jQ7BtLZGiUzfpR0u0NKlSkJ1QSnlBLWpbJSGDPHG0cWSOMJBHVlgRzGYcpk7F5603EU4rdxLm5cCgQGcsVpFfDmS2a75qb2+6Lf2/RjNo9oMPIZrNaB00dOstOf0m7Ls4WrU/orN5e4Pk5/fSrF48OqUnqrNEO2ZWZpJbnYtKoWLFLTcyVpcGwLJMd9Yfv7iawcZ8alWSIHwg7wAmi4lj2eW8/+lhNnx9AqtFJEVr5eWKIhb9Es13e9PJK+/YklPDZvdA72ZLVUkdu1Z2DRPop1uTyasw4Oes5YGJp3xGzVYzT+58klpzLYO9BnNTRBvzoO3/QvqMugEbeydutXUi3KTCgkh1f0f6TvBvt0AgCAIBvVy59ulB9JvUDUGQ7ovlL+xjhEkKDNmQsQlTQ+3PhEvc/LnnY+mz/zwpcrmeKmMVZXVlAPjY+bQ/B6XGDhyk6Gd1dQ4a0YijVo23o+15C2m1VUZqqySLkc7ZBotCoNqgRGlxI8QpBFetK4IgUGuuJb0inYyKDOos9fVILSbJb64gXqpdaqwE0QqIYDGiMFbgSBoqhRHRKlJeUIvF0jV9PC8EWVDrIDLrzZ7e3R2xJCdQ+tPPAHjO6YdgqpCSqLaQFXtCvZ/aloQCLG1I5tfAUO+hAMSXxFPj6YjPW2+CIFC2/CfKVqwEn35E6CSn2bjduZfGxVuUhBFIVUmXZWdEfH6zO52iKiPdXHTMGXiOigeN5s9tjYuO15uSQwd7obFVYczKZsYnR9EZIS5AhcurixGUzYW/hui45fszzpla4Ew0AQF0+/JLBK2W6t27KXj7HeBUUEHi/rw2JYLsSA6ll/Lor5Ifxu0jg5g7LPCc2zSUjYpyjyLY3ZVxdmkAHDAHc/cPh/kjuvNKsJyTeh+58JwT6DV6Kk2VTPtsOa+9uRfV0TIE4LDGzApNHQXVRjaeyOfZ348x+q0tLNmYiKH+TV40maiNiaHkhx/IefppMu64g7RrryPlitmk33IL2Y88StGnn1Jz+DCiqbm7g8ZWxfh54QCc2JFDdkLpv3YIWiKzpIbPt6cA8Mzl4U1ebL6I+YKYwhjs1fa8POLltgkFJamQUF+JYvBCDq9PJ/NwIQiwys7IJyl5bGlDbsnWUGmUDL8qmCsfHYCzl46aCiMpPxuZlrIAQ5WJnV71Gr+GOVyK5J+A5H+kNBxD72xcbBWtjSZPF63Lefv3Wuw8qEaLApFARSH+zucvpJmMFipLJKHLztEGvd6msaReUVUd1XUiXnZehDqH4qKVNLWVxkqSS5MpKs9ALDghRaMigsYBHP3AvSd4REjPVAdvFAoBJ0UOSkxYzFbKC2r/9d/DzkYW1DqIBkHNr6czeS++BFYr+mmXYVdR/+Y25I4WzTsDA51xsFVRUm0kOrOszeO5ad0IdgpGRGR/3n4cxo7F7R4pjDjvhReoNXgSZHMArbqGmgoj6bGXQM6togSSNWrMAug1ejx1HVvPssJg4rNtkuntgYkhqM+i/QEgaLT0mbYDQPrRPyIFZ/Qa5YO1poasRYtQlJST46nm9StFNuVua7GrKb280NuqyCk3sDe1/efCtmdPfF57DYCSZcso+/13Avu4YqNTUVVaR3biv/dArzVaeOiXaIwWK1N6efLUtPA2bddY39N7CFQVoihLA6Bbn9FYrCIP/BzNzwdaduLvdHwHgKBAWZ6JusYfhVVJcJqV4XWSZtRugCv3PjKI9Q+OZuXdw3lkcih9/Z0wmq18uiGOx+5/n5i77idx+AjSrrmW/JdepnzFSqq3baf26FHq4uOp2bOXir/+ovD9D0i/4UYShwwl97nnMZxWHxHAN9S5MbHxjl+T2i3YdySv/B2H0WxleA9XpvQ6lX9qd/ZuPjsqlX56eujTeNu3MSv7/i8BEYInkpLpxN7fJSFwzHWhjBkjuSE8/OvRdrkItIRXd0eueXoQ/SZL2rVu+b259uhTbElWgEItVR4p6hoay3bToE0Ln3HKVIkUQGC0GFEpVHhozy/qUBRFskprSbe6Y0aJDXUoKnNbbZ+amkrPnj2prZVMpDExMURGRmIymbBYrCy4bSFDRvdlyqyx5BZJ1gRHrRoPB6ncXnZpDYaKKsSiUlwK6+heoiZz9X5GdB/KPTfcRW2JEkOFhuff/pbgQZPoNWgM+w7HgMpGinJ18ALPXijsXXFU5SJgpSC/kLFjxhEREUGfPn1YufLcufMMBgNXXnklISEhjBs3jqKic7siffXVV4SEhBAWFtZYxL0h6rOlXG0XgiyodQBWi7Xxzde5+AS10dEodDo85gyFkmSw0UPf61vcVq1UMDaswfzZvgi+Id6SuabhAeh2113YjxuHaDSS9eHfiHVWemq3AqfSSXRpTov4DHMJ6/Daaf+3M5XyWhM93O2YFdV6qaZGGjRquTFQW0r8nlysFhGPQD1ufvbkPP00dQkJKF1dyXp+PrW2AisSV7TYla1ayeV9pBQOqw6fn+ZIP3UKbndL5vO8557HnHKyMY/avxlUsGRjAunFNXjpbXlrTt8miZ1bw2K1sD9P8gsa5jMMsup9hNx78uI1I7hpaDdEER5fEcuyXamdOf0WsartKbKTzHoe+fZMP3E3vSulh/yYG8KYv6AvUd2cCfNyoH83Z+4ZH8Iv03xYbtnPDxte5q5/vkS9ZQPWykqUjo7YjRqF29134f3Ky/h99CH+X36Bzxuv4/HIwzhMmYLSyQlrTQ1lv/xC6sxZZNx2exOBbfDMIGx0Koqzqi6a68K+lGLWHc9DqRB4fkavxvsxrzqPJ3Y8gYjI1aFXM7379LZ1WFsGh78BoCz0LjYuOwFA5Fg/eo/x44nLehLhraek2sgDP0VjsYpYKiupjY6mYu1ayv/4g7LffqP877+p3rcfY1pai0mhG1CplQy/MpirHhuIzkOJzuSA557B/GV4hRqLIyReglq1ynyI/UX6PuxUQmGraKW0tgTBVIu7yg6l2SCl2WjnX3FpKRUV5VhNRsy2rmCqhbIMqClrcTpBQUFcffXVjcls7733XpYsWYJarWbFT6soKyvjwM4YXnzxhcYksgAetkq8TZUElOUiZqRhLsjHWlUFRiMCMHHECJa+8QaCCLEnEtiwZSvRv//OspdfZtGCBZjy8rAa61MTKZTg6IvKyQtHVS4KhcBTjz7P/p2H2bx5Mw888AAGw9kF/y+//JLQ0FCSkpKa7E9rFBcXs2TJEo4cOcKWLVt46KGHMJvNjVGfHY2c8LYDKMyowmiwoNEqsS57DwDXhQtQJ3wrNeg3t8WkqQ1M6OnB6qM5/BNfwGNT2+6XNcRrCD/E/dBY4FpQKPB58w3Srp6DMT2d7D0uhI/4iyNMI+NEMWUFNTh5dE66iw6hKOlU6agODiQorTby9Q5JAHhoUhjKNggX6L0b636Kqbs4vlPyBek1yofir76icu06UKnwe/89pob7syTrGw4XHCalLKVZHVaQck8t35/B2mN5vDir9zlD3FvC7Z57qD1+nOpt28l+6GFC3vya4ztyOHmkkNHXWxpLrnQW0ZlljcEDr17ZG73tOSL86okviae8rhx7tT29XHtBdP1brt8gFAqBl2b1RqtW8uWOVBavPkGtycpdY9vgmN4BFFbW8cDPR5hS1o0pooWxxTMQTQ4YlbVcviCK0DOE+pojRyj5v/+jctNmnOoj1SodnNng2Yc9Pr25+bbpXDMk8KxjilYrNQcPUvr9D1Ru2kT1rl2kzr4Sl5tuxO2ee9A6ODBoehA7f0li7x8pBA/wwEb37yXCFUWRtzckAHDdIH/CvKTIQZPFxKPbHqW0rpRwl3CeGPzE2bppyuFvwFiF1b03m7c6Ya6rwCfEiZFzpEhbW7WSD+b05rnnl9HvaCxHlz2OtuTsZlBBp8O2Z0+0ffpgN2I4uoEDUZyRSd4zSM/cZ0by6HtvEJQ6iPSSEH4UPmTkzp2EDRUR2vJb0FU4+LUUlek3uElKmypTFXYmgd7/N+mCuner/2vGrRvAJ0rSZJ3BU089RVRUFDY2Nri6ujJp0iTqas2s/ns1c668Dr2rLdNnTOeuu+/CUleHpaAQS3kZDU9Eq6DAbKPFzlGHYChCbWdGqQFlgBd5dWX8/P02pl95OTjo6B0WhsVsJjMuDm93d5QODijd3FDa2YGdGxqlmm5iIU6OA6ipNGLv4oiTkxMlJSX4+LSe63D16tW8++67AMydO5fBgwfz9tvNK/80sH79ei6//HLs7e2xt7cnMjKSAwcOtJhMtyOQNWodQIPZyd22EnN2FioPD1xG+EkmM6VNEz+ClhgT6o5CgPi8SrLL2h6hOdBrIEpBSUZlBrlVknpa6eCA30cfIuh01ORrMJ6opluAGUQp7L/LYjFD8UkSTyvG3pF8sSOFyjoz4d56LuvdDrV0ffRn1oHjVBTWorFV4l2XROES6ab2euZpdAMH4mnnyVi/sQD8GP9ji10NDHDGz1lLVZ2Zje3UnjYgKBT4vPYaKnd3jMnJCMs/Qu9mi7nOQkp05+bMM1msPPbbUawizO7ny/iebTdN78mVAjIGeQ1CpVBBVn2ATf3DRhAEnpoWzn0TJK3WG+viWbIxse0h++fJgbQSpn+4g91JxWTUTmZl8WuIJgeqtaWs7P0ueW6SqVy0WqncvJm0G24k/fobqNy4CUQRuzGj8fvkE/rt3ErF/Ls47hLEY6uOs/ro2bVggkKB3eDB+H3wPj02rMdh0kSwWCj55ltSZ19JbWwsvcf44uylw1Bl4sCatE49DmeyLbGQA2ml2KgUjedEFEVe3vcy0YXROKgdeGfMO9gomz+4W8RshL2SqfSw7aPkpVSgsVUyYX44CqUCS3k5RZ9/gfXamTy74wump+5pFNJUHh5oBwzAbsQI7MeORTdoEJrAQARbW8SaGmoPH6Zk2TIyFywkcchQMhYupPTXXzEXn3IxUGmUhE52ZmXkO9Q6llAnOrA55TJ+fXUvWV0sFUqrWC1w+Dvp+2nPlJLaEqpNnRz5LVqk6gUtpDXR6XQ88cQTLF68mCVLlmC1WKksriUvP4/A7t3QaFVgteLi6EjOgQMc3reXIVdfzdBrrmHIddcz4JprGTprBvPuuBWl0ohCpQJbBzQObvi5dqeopByHAA/S9UbKu7ngHxhIXqUUiW+prMSYmkpdaiqW6mqwdcTWSY+dQjqnu7btadR0nY2cnBx8faUXMr1eT2VlZZvbA/j5+TUpBN/RyBq1DiCr3uxpH/sPAG6L7kax/WVp5ZA7mqTkaAlnOw39uzlzML2ULfEFTcqynA0HjQO93HoRUxjD3ty9zA6R6ofahITg8+orZD/wICXx9oREbSeD8cTtzmXIjO7SjdPVKEtHtBibmD47isLKOpbtSgPg4UmhbTLVNRI0Gg7+H8dPSBm2gyPsKHj8bhBFnObMwenaaxub3hh+I/9k/sOfyX9yb797cbRpmghVEARm9/Plw39OsupwFjP7nl82e5WLCz5vvUXGLbdQ/ttvBN4xkpgiNQn78hoDDDqD5fszSMyvwtVOw3PTI9q1bYN5fqj3UEkob0h0e1pFAkEQeGhSKFq1kjfWxfPB5iRqjWaemhbe4WZwURT5emcqr62Nx80It5i1OBuCsQI9bHezb7qFsqx8DqTuoPf2LEq/+x5jqqRJFNRq9DNn4Hrrrdj0OKX1e+OqPmjVSr7Zk84jvx4lwFVHHz+nc85F4+eH34cfUrVzF3nPP48pK4u0G27E85GHGXH15fz1UQyxW7PoO94fB5dzlD4qSZX8wI4uB3NdfRSfJ/S/GfrdBOpz530TRZF36qN55w0LwFMvjflD3A+sTFqJQlDwxug38Nc3L4fWKsdXQmUOheqBHDgkJVYddW0o9g5Kij77jOIvvsRaUwOA0s2NY4F9Wa4KpDioJysemYyzXfNUKKLFgjEtDcPx49QcOEDVrl2Yc3Kp3r6D6u07yHt+MboBA3CYNBGHiROZHDiZT45+wo8Rr/FR6jiO54+hMAv+eC8a7x6O9J3oT1Bf9/b9PvybJG+ByhzQOkPPU+bm35J+o5fQCxtbJ8Qns8/rXskqraW0xohGqaCHhx2q0/2pLUYp8tJskD6dA6S8a6exYcMGXF1dOXnyJC72nlgtIiCiddBgqaiQEnabzQhAv4EDiT5ypFHzWVxciJMhG6UgIqq0UgWJ+sAUhaBAp9LhZOMkta0roU6woPHxwSYkBHNRMZayUqzV1RhTU1HqHVF5eaKzq6EoO4P7Hrmbd177AJPRgvosFoz2vhC21L6jf6NOR9aoXSAWs5Xck2UAOOYeRdO9O07da6EwTsrZM+qhNvUzrj5NR3sjnoZ4SX5qDfUTG9BPnYrLNCk3lLhiJY4uKkwGC/F7W3cMvagUJZGvVFKuVKAUlG3Lx9RGPt5yklqThb7+TkwIb6eTbdAYqi3OpJZLDvPOaz7CWlmJNioKz2efaXJzDvIaRKhzKLXmWlYlrWqxu9n9pLew7UlFFFbWnd8OAXZDh+B6p5Q/yf5XqY5sVlwJVaXn3+fZqKoz8/4mqfTTAxNDWnxwtobBbOBI/hGg3j8t/5iU6NbWEdyaa07vGtuDxTMkQfDLHak8+8exDnWorzSYuPuHw3zyZzyTK1XMq7LF1QBqGyXjPb5hiuNbDK9TMnezhXH3/kj+iy9hTE1F4eCA64IF9Ni8CZ9XXmkipIH0Q/3cjF6MC3OnzmxlwbcH2+UUbz9yBEGrVuIwaRKYTOS/9jqqH9/FN8QRq1nk4N9n8d0zG+GPe+CDfrD3YylXmKkaqgsgLxbWPALv9pYSzZ7jobT+eB6x2eXYaZTcNVYyS+7M3slbB98C4OEBDzPKb1Sb9wtRhN0fYRUVbKl+EKtVpHuUO77mZFJmzKDwvfex1tRgExaGzxuvE/LPZqZ8/R5FvQeSUivw6G8xLT8YlUpsevTAceZMvF96ieDNm+n+12rcH3gA2169wGql5sAB8l99jZPjJ6C4/QluO+yEe3EdBVEF3OR+N5HdklAoBXKTy1n3+TG+e3o3O39NIje5/KIGcbTIkXptWp9rG02QxbXFbEiTSgi62Loi2NhLwnk7/srMakpMKlDr8PN0Q2Xr0LSN1hlcugMCGEqhqqk/7LZt28jOzmbt2rU8+OCDVJVLVqFuAX5kxBzFmJGB1WSiuLwcr759iSsro/+wYURFRRHVJ5IJo0cyYPK1XLPoOTIVvohnlLry8/OjsqgSH3vpxTYrOwvBUUDQaND4SgKb0lkqx2ipKKcuKYnaaiW33r2AexYsZGD/wVLajrOUZvP19W3UiFVWVuLgcPYkwae3B8jOzsbbu40BNeeBLKhdIPlpFZiNVtSmKuyqc/G4726EbVJ0HmMeky7yNtAgQOxKLmoM9W8LDWk69uXua/Zj5vHAPeg868Ak4pPwNwAxW7K6ZuhyUUJjRYIgx6C2m1TOQWpRNd/vlSoCPDr5PAIUdC7Ea+ZiRYWzJReb+H2oPDzw/eD9xoS2DQiCwI3hUuWJ5fHLMVubJyzt7m5PX38nLFbxnOaxVilOhvQ9uF87FW1UH2xLMnA25SKKUqqOzuCL7SkUVxsJcrPjutaSBLfC4YLDGK1GPHWeBOoDIau+vqfvwFYT3c4fEcQbV0UiCPD93gwWfHuQinZU72iNg/GFLHptJw57S7it0pbeJkm7HDbEi+uf6o+fspisnc74PfwjM/aLaA1WlP5+eD79NMFbtuDx8EOoz1LHT6kQ+OD6foR42JNfUcfdPxzG3I7UOEq9Ht8P3sfzqadAoaBi5UoCT0ipfuL25FGWX9N8I2MN/HR9/YNchOBJcONvcN8RuHMXXPaWpNWvKYK1j8Fvt7RYzxHAahVZslHSpt02MggXOw3Hi4/z8NaHsYpWZgfPZm7E3DbvDwBJGyE/luN1Mygs0aHRKgnPX0vWggWY0jNQurvh89abBP2+CsdZsxA0GuxsVHx4fT80SgWb4vL5ZnfaOYcRBAGb4GDc7ryDoBW/Ebx5E55PPYlu4EAQBAzHjjFlfRHvfWHBfUkMlcdEBpW/xdwXhzDgsgBs7KQI6qObM1n51iG+fHA7q945zM5fkji6OZOThwrIjC8h92QZ+WkV5KWUk3uyjOzEUjLjS8g4UUxabBGpRwtJiyki52QZxTlVGA0dkLi4ulgqKA+SZrSeH+J+wGgxolaqzysdh9FsaXS3cdfbYmfTirXFxh4c6019lXlQJSkULBYLDzzwAO+//z59+/RlQNRgln3/Nba2Ci4bNJDlv/wCCGyKiWHo8OGoHByIiooi+sgRonesJXrdt0Rv/ImD29fx3EffUWawUHnG8Zo+fTo//fQTerWe8oxyBEHA1tmWgpoCevbsiUKjQePri01wMAo7OxBFFj34IP169mbhleNRYsRqsVJeWMsTTzzBqlXNX6KnT5/O999/D8B3333H5ZdfDsD+/fuZN29es/aTJ09mzZo1VFdXk5ubS0xMDIMHd14ZvC5oA7u0aIz2LE1E2ycS+7IfpTcOpwAYdHub+wnzdMDH0ZaccgN7kosbNWznoq9HX2yUNhTVFpFSntJEEyV498F3RAVp651xj19PkttYygsg/VgxgX3akbH6HJgtVrYmFLL2WB6VBhNmq4idjYpxYe5M6OmJY1ucoIsSie8Es+fra+MwW0XGhrkzMqT9+yxaRU6USQ6iXkmbEDQa/D78oNWH9bSgabx76F1yqnPYmrmViQETm7W5sp8vRzPLWHUkm1tHBrV9MtmHYfvbUC90C4Cvv5KUBF88Uv6hNOxG4vfm1ack6Dg1fEGlga92SGkUHp0Sdu60JmdwutlTEIRTWeHPUd/z2kHd0GlUPPLrUTbHF3DFR7v4/Kb+eNtoqCw2YKyzYDZasFpEBEFAoRAQFEjO4aKUw8lUZ6G6rI6yghoSEkoQykxIOmglCBDQ05EIjyJsY38gZ+ZmrOXlgBYQSQ6x55eoGubMu4fQkFlnnevpONiq+frmQVz+wQ4OpZfy+fYUFo0LPveG9QiCgMu8uai7+ZP90MPY7FqN+7CeFNoEsv+v1MZSUwAYyuGHayBzL6h1cO13EHzGNefVGwbeCge+gg1Pw/FVUJgIN/zUzC1j/fE8EvOrcLBVcduo7mRUZHD3prupMdcwxHsIzw59tn3XlijCFinKcl+19BITnLeZ2rW/AuB80024P3A/SvvmwVa9fR15alpPFq8+watr4hkY6EJv37bXVVX7+uIybx4u8+ZhLiqi8p9/yF/7J6Z9h3ApqKO4wIHiE6DaM4Vuw0bQo38UxQ4hZOSrST9RhrHWTE5SGTlJZW3f31awd7bB1dcev57OBPR2xclT177jGPsLWE3gHQVekQBUGCtYHr8cB8EBB7VDu+95URTJKKnFYhXRaVR4Opzj5djOXfJRq8yFimwQlHzyfz8yaNAg+vfvT1WpgccfeoZpsycwd+IILhsxgrVbthA5ayaOTk789NNP9QNbJRNqbb1voJ0HKr0PHpV15FUYKK6qw3qa0qFPnz5MmDCBsLAwbGxsePcTyT/4ZPbJJi/DCltbNIGBxOzdy7IVK4gMDWXDjh0gwCcfLiM0JILowzHMnDmz2a4tWLCA66+/npCQEHx9ffn1V+n6zMzMRKtt7i7g5ubG/fffT1RUFIIg8Pbbb6NSdZ441eUFtcLCQubPn8+WLVvw9/fnk08+YcKECRd7Wo1kxkpO4c5lCbjP0iPE/yLVS5v9WYsRMq0hCALjenrww74M/okvaLOgZqO0oa97X/bn7edQ/qGmJkO1LSr/nviPjiNtuwM+mdvJ6DaJQ+vSCIh0veCHucUq8sX2FJbuSqWgBTPe6qM5qBQCl/fx5onLeuLteBb/mE6I+NyXUsz64/koBNqc6+tMMuJKqKi2RWWuwaPgEF4vPY+2b99W29uqbJkTOocvY7/km+PfMKHbhGbHeUZfH1766wSx2eWcLKgk2OMctfisVqmu375P6xcI9RqSEtRU4j2ggLq9R0gKuYbS3GqKMqtw79aG+n5t5KN/TlJjtBDl79S+QIx69uZIgtown/qIqIbUHH4Dz7nt9EhvXAzw3co43FLN/L34AGrO77pt3EqoJlidj1/GFhTboqmzWmm4elUuTujds3CK0LD2qus5cnwp/vn7mdEOQQ2gm6uOF2b14qFfjvLuxkTGhLq3S8gAcBg7loBvvyXzjjsIjF1O4cAnSTqYz4CpAbj62ktC0B/3SEKarSPc8Ct0G9JyZ0qV5IDu3Rd+vRkKjsOyy2H+GnCSfM1EUeSDf6TcYrcMD8QolnHnpjspMZQQ7hLOe2PfO3cdzzNJWAO50eypfpA6kxqH6mw8j/yG0tUVn9dexX706LNufvPwQHaeLGZTXD73Lj/C6ntHNqkz2lZUbm44X3MNztdcww0/X4H+UBK3JNrimFSFuaCI8j/+gD/+AMBfEAjy8aXOL4IK5+5UadypFW2ptdpgFpVYRQUWUYFCAEEQERBP+y59iqKAyaKgzqzAaBKoKq2jqrSO9GPF7PrtJM7edvQZ60voEClx9lkRxVNBBKdp036O/5kqUxW93Hph045nTQP5FXXUGM0oFQLdXNpYHsreUxLWqgugPIN7b74KHO7BZLRQU2HE1cWVmHUbUZlrUTo68tXy5U0TgJtqoTQdzPVBc47+YCe9QLs72FBpMGMFauosiKLYOKfFixezePHixm4KawrZsWkHc+bPoaKuAr2NHpCeo32HDcNqsWAuLsZcWAhWKxalhhpEzCYzkT37N9strVbL77//3mz5gQMHWLRoUYuHYuHChSxcuPDcx6wD6PKC2qJFi/Dx8aGoqIgNGzYwZ84ckpOTcXZum0mxMzEbLeSnVQEKvPQl2JVskp4Gsz6GgOHt7m9C+ClB7cXTLtJz0d+zP/vz9nO44DDXhF3TdKV3X2zyY/FbMILaL3aQ5TeWvJQKsuJLG4vHnw9FVXXc/9MRdp2UIqtc7DTM7udLd3c71AoFmaU1jW/nf0TnsPFEPveMD2bBqO7NNTKiCIUJJNYXuO4IQc1qFXn57zgArhvcjVDP8xNcjq6W+vDO3Yt7aClO/d3Puc31Pa/nm+PfEF0YzYG8Awz2bqo5crHTMDbMnU1xBaw8nH32lCxWK/z9IBxaBgiSf8qoh8G93rcrbRf63+/EI68It6KjFHgM5MQ/KYyZ37ow2R7yKwz8tF9KVPnY1PabjksNpcSVSMewIdEtpWnSSt/WBTWLxUrivjwO/3WSshIzkdIjUFopWtHUlaG21qESTSiwID0uBUQUSI9LEYXFiMJch21dGdraInS1BTiVnURjahrRpenRA/uRI7EfOwZd/74IbwaCpYJh9oEsRRI0xXbcjw3M7ufLprh81sTm8cDP0fx178jWS5a1grZ3LwK+WQbzb8Gj4DAFHv3ZvyqRy+7pD0e+h7g/pQSuc1dJSXvPRcAwWLAFvpkuRfF9M10S1hx92RRXQFxuBXYaJbMHOnL7htvJrMzE196XTyZ+gr2m9RRDLWK1wpZXyTOGEF8jCWShCT+iG9gfv3ffReV+7ntJEATeuroP0z7YQWpRNc/9fowl10a1bx5nMDZ8Gh8aPoQhPnxyZDs11khqva6hNjoaQ1w8ltJSzNlZKLOzcAYu9EljUumo1nlRoQ+gxC2SUscelOZWs215IntWJBI1KYB+UwJRtebsnhcjCdZKG4i8GpD8Pr87IQlvV4VehWBu37VZZTBTUCn5T/o6adGo2nhdCgLo64OgqgugKh/RWENlnRQBrjLVoLIYUHt7o3RxOXXPiFaoLoKKHEAEQSkl67XVn9a1gL+LFhuNhiOHD3D1tdez4pefWpyGm9aNmdNnUmooJbsqGxulTRNhVVAoULu7o3RywpyTCZU1aGuL+XHZb9RWGlEqBXSO5xZuz5VP7UxycnKYNm0aHmdxjzgfurSgVlVVxR9//EFaWho6nY4rrriCJUuWsHr16hbtxv82WRu3YUWBpq6MQO/tUiDMuKehzzXn3LYlhnV3w0alILusloT8Snp66c+9ETDAU/qBPpx/uPlKnyiI/h47hzyCXnic9C92k+U7ht2fbeea92adl1btWHY5t39zkLwKA1q1kudnRHBlfz80qqYC2MOTw4jNKmfx6uMcSi/lzXUJbI0v5KMb++HhcFr0WnURNXXlpKslYSrU5cJTc/x8MJPY7HLsbVQ8OPH8+itJzCYztQ4EgWDNUTwiKyR/m6CzawHcde5cFXoVy+OX81nMZ80ENYDZ/fzYFFfAH9E5PDI5rOVIM6sVVt8rPZAFBcz6BKLOSJwcOALu2o2H60L8v91NgcdAEvdkMeKGCFSaC8+79eX2FIwWKwMDnBnW3fXcG5xBQ5BLiHOIVCC6wc/GvSdonZq1t1RVkfjzNvYesFKDVNxdaa7FtSQO15LjOJYnY2soRiG2vySaYO+AJtgPjZ8fmh7d0UZGYts7ErXnGT+qPv0gcy/9airRKDQU1BaQWp7aYm68s44nCLxyRSQH0ko5WVDFB5uT2pUnsQGb4GACvv2GqoWPUeDRn5TYUgr27sdj8+NSg/FPt01Ia8DRF27+C5ZNk4Tmb6Yj3rKOD/+RgkWuGeLKIzsXkVKegofOgy8nf9m+4t4NxP2BNfcY2/LeAA145e6h2+QBeD/3HMIZ/p1nw9lOw/vX9eO6L/aw8kg2w4PduHrAOcq/nYXJAZP58MiH7KvOpEKjwMl6DPvb/wTdfQCYS0owpqRgys3DnJ+HuaQU0WDAWmegsryagqJyyitqqDFaqDFbsaJAFAQQBOy1apx0Nrjq1LjbAEYjlopytCWlOOXvpFvWFsxKW3K9hpLlO4ZaPNj/dzqxf59gYB+RXjeNRak/43f/WH0S7bCpjT7P69LWUVpXio+dD6N8R5GZ3vYawmaLlcxSydfRRafBSdf2cwFIwpqjrxRBXJZJdZUSsyAiiFa05go0gYFSXjNRlIJcDKXSC5q13sfUxkFyDWpBO6tRKZk2cSx9dh+V6n8azWg1zcUUQRDwsvOizlInFXWvzKC7Y3eUZwQiKNRqNAHdseQmoiirxlqnos7GiaqyOsQ6Azp3fYe6ifxPJrxNSkrC0dGxSTRF3759OX78eLO2dXV11NWdMr9VVFR0+vxOrtoNquG4G+Kw7+cPQ+9ql1/amWg1SkYGu7E5voBNJ/LbLKj1ceuDSlCRW51LTlVOY3QMIPk0AORE43jjrwwoM5K9w0xRnZ7jL31Gr2fvbNeFml5czfyl+ymqMtLD3Y7PbhpAyFm0VZF+jvx25zBWHs5m8Z/H2Z9WwvQPdvLJjf0ZGFiv0StK5KRGjSgIuNq6nt9D4TTyyg28Wq9Ne2BiCO7n8r1oAavRyL7XfgWbPrjVphL2xLUIa7dLgtrkl865/a29b+W3xN84kHeAg3kHGejVVHs0IdwDB1sV2WW17E8rYWhLQtDuD04JabO/gD5zWh7MxgHFtV/TN2MSscnlGDWOHH/nB/o+Ob/d+306JdVGftgnlXRaND74vH7QGsyeDUEvjf5pfoOatKuNjSV/6fccSXEgx0vSRmuMFXTL3U4P1zLsevujCRiF2nsOdVp7NmVUsyGxiLQSg6RJE0BEwCpID00rAk52NkyK8GTW8BC6B3khtNWHxH8wZO7FNvsw/T37szd3L3ty97RbUANJyHjlit4s/O4QX2xP4Yp+vuel3bXp3p1eX75F8tN/U6CPYOd725gZWIsqbCQMv6/d/TUR1kpSqPp6Fql5D2NrI3DU/CZJZYm4ad34evLX+Du0Iw1HAyYD4oYXOBwzhiKvUBQWI4Mv88f7jrnndR0NDnLhwYmhvLMxkadXxdLNRcfgoPOzCAQ6BhLmHEZCaQL/ePXgypwkqXZmvbZK5eKCyuVU3waThZWHs/l2Txrxlkpoo2LRxU7D1QP8mDcsAD9nHaLFgik3F2NqGt5xcfQ8upPUVAtJHhOptXVmRwwk3vIZA7xzcb9mNnYjR0rH6li983vvqxr7/jleCjCZEzZHykvYRhpKRJksVmxUSrydzp2updW+tM4YSw2NL1S2plJs7KtRlCdBtUZKwyOeFhinUEsln3SuzdJ7nI6zTk1FrZoKg4nM0lqC3e1bfJFVCAr8HPxIKUvBaDGSXZWNv4N/i9eX0tUPhTUBZV0pokmFUW1Pda2ANSULrYs9SkdHhFYCm7oCXVpQq6qqQn/G24Ver6esrKxZ29dee40XXnjhX5qZRMgVQzH9tofAiT3g1kNnvfjayuRenmyOL2DDiXzuGR/Spm10ah3hruHEFsVyKP9QU0HNMwIQ6tXUBfjNvYoeKX9xMldFzDErzo8/jvfLLzeLYGyJoqo65v2fJKT18tHz08KhOLQhM70gCFw1wI9+3Zy447tDJBVUccOX+3hrTh+plFNRwin/tAsMJBBFkWd+j6WyzkxffyduGdEOZ/2GPqxWsp59gQyFJFz0v2koykhvWKeQ0q6UZ0nFgc+Cl50Xs4Nn80viL3we83kzQc1WreTySG9+OpDJqsPZzQW1zAPwT71AePk7rQtpDWh0aO/6ju5PfEE8k0k4WEzIwYNSxNt5snRXKrUmC7199YwNPbeZ6kxEUWRPjpTodph3g39afcRnfSBB9d69FH74ESXH0zja525q6mvkhbgUMezKUOz7Xo6gbn6NXQ9cJ4rEZpcTk1VOVmkt+RUGnHUaurloCfF0YEiQC6p2Bj5Ic6v388rcz9BRt7M3dy97c/Y2RvS2l8m9vJgU4cnGE/k8vSqWnxcOO69cXTZBQYy8fxIrl2aT69iP47sj6bXgNVSK9plTG3Hyh7m/I/7fFBzK4nhH+xYv9XAlqSwLF1sXvpr8FYGOgefVtXXzG2SuriTWV8ozGB4i4n/nhVlB7h4XzNGsMjbFFXDbNwf49c5hbX6ZPZMpgVNIKE1gvd6RK3OQXsDqBbUGaoxmvt6Ryv/tSqW0RtIGqRQCw3q4MjHck3BvPYFuOhy1agwmKxW1Jo5mlXEwrZR1x/LIqzDwxfYUlu1O45YRgdw9NhhHP0mjaz9qJAD+Viv9j57gwMoTxBe4kO8+kH+qiun1yGu4uylwmT4ax+JMFDp7CJkMwLGiYxwrPoZaoebKkCvbtd8l1UYqDCYEQfJLa1OFlhawmkyYMjOpEu1BJaDCjL2zGcEouR1gblCaCKC2BZ076Jwb86OdDUEQ8HPWkphvwWCykFdhwKcVgVKtUOPv4E9aRRqVxkpKDCW4alt46dXoELTOqIRSHNU1VBi11JmV1KocEfOL0RQUoHR2RunsjKKF35uLTdcVIQF7e/tmmrGKigrsW4gQevLJJykvL2/8y8xsuyr4fAmYPpHLlj1N+G3XdYiQBjC+pyeCADFZ5eS0o0pBo/mz4Azzp8YOXOsDDPJiARi2aAKCIFLqEk7ajiQyb70Nc+nZi3obTBZuW3aA9OIa/F20LL1lUJuEtNPp7m7P74tGMLWXF0aLlft/iubTrcmIhafV+LxA/7S/YnLZFFeAWinw5lV92v1DJIoiBW+8SdK+XMxqO+ztoceECNC5nErOmri+TX3dFnkbKkHF3ty9LZqlG3KqrYnNbZqSpbYMVtwKVjP0uhIG3NK2ybt0p++8cQAUufYm7ZEnz3leW6PCYGJZfUqERWPPT5uWVZlFTnUOKoVKuj4tJilyFTDUeZCxYCEZ82+hIKGAQ/0foUbnhZ29glkPRDH51WtwGBjVopDWgCAI9PFz4qahATxxWU/evTaK52ZEMH9EECOC3c5PSINT0agFcQxz7Q3AgfwDmBpMN+fB4pm90GmUHEgr5ddD5//b5N0/gACbGBAUnHS5jPT7n2qSgb/duPYgevT/kayw4yOfCsosWbhr3Vg6Zel55zK0pBwi4+XvOCmOpcbOG40Ght3TPPq5vSgVAh9e35+BAc5UGszM+3o/6cXnl5F/cqAk9OyrK6JUoYCTmyRXA6QKHN/vTWfMW1t5Z2MipTUm/Jy1PHN5OIeemcR3tw3h5uGBDA5ywcPBFhuVEketGn8XHdP7+LB4Zi92Pj6OL+YOYEiQC0azlc+3pTD2rS2sOpLVJI2SoFDg0K8341+6hisfH4SDXonB1pXDUQ+SXu1G3gfLSPrTk4K0cEwl0rNwefxyAKYGTsXFtu1axVqjmdxyyS/NS2/bokmxLViqqjCeTKbOKGBRSS4seh9HBLcQKVjFIwJcekjuDd59pE871zYJaQ2olAr8nCXhrKiqjora1u89nVqHp07ykcuvycdgbiV3od4bEBBMlehdldjqpP03aF2pwxZzQQF1CQnUpaVhLi4+VUu0C9BhgprZbObWW2/tqO4ACAkJoby8nLy8U7mhjh49Sq9evZq1tbGxQa/XN/m7FHF3sGFAN8kPYVM7ygz195AiWQ7lH2q+0lN62JB/DAC9m5bIcZI5Iyn0GqoOHSZl5kwqt2xptf+31idwNKscZ52ab24Z3NTHrB3Y2aj45Mb+3FafluKNdfEknTjcIRUJUouqeXqVJIwuGhfcWJ+wPRR//jnF33xDVn05qMjJPU5pP3pOkz6Pt5zM9kx87H24IuQKAN4++DbWM/yqBgW64OukpbLOzOa40xId//2QVAjZKQBmvNeulwC3kVNw1RUhKtRkK4LIffKp8yrD9NP+DCoNZnq42zGl1/lVO2goG9XXva+U4yn/GNZaA/kx7qTe9jDVO3ZQ6hLGkUGPYtTocfW1Z84zw/Dref5BLh2CvQc4BwEiPavLcbJxotpUzbGiY+fdpa+TttFX8rW18ZRWn+dDYP8XDLaXCpvneQ6iLLuCjFtuPW+BXBRFXoiuYI53IKkaNV5mM8uUAXTXB55Xf6a8PNLn3UJViR0pQVL2/MGzQjqsTqlWo+TrmwcR5ulAQWUdV326m5issnb3E6APINwlHAtWNuudoaYIMecIa2Jzmfzudp75/RiFlXX4u2h5/7ootj4ylttHdW9bqiEkQWNyLy9+WjiU/5s/kGAPe0prTDz481EWfHuIghYSIXt1d+S6F0bQPcodUaEiLvxmUsNmYjEqKd6eTfLESaQ9/QSHDq8B4Nqe1zbrozVMFitpxTVYRRG9rRo3+3b6pSFdK6b8fIxpaVitVupspeeUnZMNqoYgGUGQsh3Y6iUftnYIZ2ei16pxs5fcVrJKazCeJWGti60L9hp7ybRbldXstxaQ5lUfYSpU5eHgpkXrIB2HOltnjPaS1cBaVYUpN5e6xETqUlI6vYxdW+gwQc1isfDNN990VHeApFGbOXMmzz//PLW1tfz5558cO3aMGTNmdOg4XY1JEdLbwcYTbRfU+nn0AyC1PJUSwxm167zqBbW8Uw+awdODsLVXU631JK/PbCyFRWTddTc5jz+B6YyaZTuSChsLcb9zTV+6u7cz+usMFAqBZ6dH8Nz0CAQBbCuSG5Pdnq9GrcJg4vZvDlBhMNO/mxN3j2173iqQfoSKvviSwvfep8Qlgip7P1Q2SiJGnGZG7lVvZkjbCRVtq/CwKGoROpWO2KJY1qSuabJOoRC4op/U/6oj9cc8cYPkPCwo4eqlUtqFdtJztKQJyfMaTNXWrRR//kW7tjdZrCytL7l1x+ge511Sp0nZKKDq719JXutOyQm1FDI/6RqODbwfs6jEN8yZ2Y/0x86pYxIdXzD15k9F1kEpWhUazbjnyy0jAunp5UBZjakxqWy7qC2FHe/goU4hoJsBBAUZobOoS0w8b2HtzxOxJCnewKSpxFvjzLK8IrrFroKNz56zgsGZ1KWmkn7VDOqKTGQHjcWoccTB1Zbeo33PuW17cNSp+e62wUR46ymqMnLt53v5J779tXMbtGobXKXf2+U/fs3dPxwmtagaVzsNL8zsxeaHxjIryve8tbOCIDC+pydr7x/FI5NDUSsFNsXlM/m97aw/3jw5tUarYurC3gy4TCojmOo9hYyx12EzYACiyUTtij94+1MDT623J6zcrk1zsIoiGcU1jX5p/m1NxXF6H3V1GFNTpXQXgNHBE1FQkJ2bwYAhfamtlaw/MTExREZGYjKZEEWRO++8k+DgYAYOHEhycnKbxtq6dSvOzs7ceOONeDnaUpqfw42zJuNgr+PTTz9tcRtBEPCx90GpUJJfkM+YcWOIiIigT58+rFy58lRDew9AAGM1grEKe2cb7JxsMBgM3HDn7fSecQWX3XEnJQZJkBZU6laP1VdffUVISAhhYWH89ddfgBT1GRUVhZdXx5bya9fVN23atFb/Wkoi1xF88sknZGZm4urqyiOPPMIvv/zSJVJzdCaT6zUYe5KLKT+Lyvd0nGydCHaShJOGcj2NeEoJEhs0agA2OjVDZ0nO0Sk+k7C7eSEIAuV//MHJ/2fvruOrqv8Hjr/OrXUn2xgDNjYWMLpbQEoxEBQLA2zUr/2zv9ZXEcVuMFBsFAQp6W7GNgYb6+7e3Y3z++Nsg7lggzWf5+OxB+Oec8/5nN1630+831OvJO3ZZ6mIjiavRM9jPx8H4Obhvk0uxG0uLaUi5jTF//xD3jffkPHaa6Q8/AjJ9z9A0qJFpDz4IFf+/SWrjHsxJlTgmyphW67GQm56oe9qJrPM4h+OEpddSjcHSz65ZVCdFaiNkWWZrLeWkL1UKcWUNvx2AEJGe2Fpc943aMfu0H04IDe5V83VypW7wpQFJu8efpdyY+3h7NnhyofYtpgs8gsKYN1/lA3D7wWfZqzkO0/AhFAkyUyRfS/KrNzJfvddirdsafL9/zqRTnphBa62Flw94OLqkZrMJvanKys+RzgPJP2ll0h++3eMZRq0rrbYv/0pByyvwFAp493HkZkP9MOiI9WgrR7+TN5fE2heaqCmUat4YZYyGrByfyJRac1c8LR7GVQUgHswg+cqc/7SnQdQ2c0f/alTJN15J6bCwiYfLqkoiRcPPoBKV4CNypNvrvoJ7xnvKRv3fgDrHq+3CHd9yk9Gkjh3DobcEmRHSxKretOGz+6FWtvyM2zc7S356Z4RjAlwpdxg4o4Vh3j6t4gmv1+CsvoTYJ+plDyVir4l+7HWqVk8KYDtT0zgtpF+zXofaYxWreKBiQGseXA0IV72FJQZWPTtYZ7+LYKyytqZ+CWVxPCrezMp/DgSJuIYzelxT+G14muiAyxRyxB+pID4WVeR8tBi9LFK7jtZlikzlNX6Ka0sJS47j9zyYgzmCtwdJPSmijr7NfRTqi+hKD2JijNnMJeVKRPuPXyolJX3xdABfbn++utr0lg8+OCDLF26FK1Wy9q1aykoKCA2NpaXXnqJJ598ssl/r6lTp7Jy5UpUkkSQrwdPPP8at959f6OPr1alxdvWG0klcf//3c+h44fYsmULDz/8MBVVgRdqnbKYAaA4A0mSsHGw4Ne139O7VwB7tx3hymnX8NY3K9H2CUTz7xXhVXJzc1m6dClHjx5l69atPProozXF39t91eeOHTt45plnalWNr1ZZWcnmzZtbrGHV3NzcWLdu3YV37EJ6utoQ4G7LmawStsVkKRPum2CQxyBiC2I5lHmIST3OSwpc3aOWHQOGCmVyJ9B3lBcnd6SSk1zCKfcpjP5+PNnvvUfZ3n0U/vIrhb/8SpGDK9c696HU24+HXZ3RnzkDag2SSsJUVIQpPx9DRiaGlBQMqSlUpqRiSEnBlJdXTwvrsgf02PPyfhNgImr51WSNGkafWVOwGTXqgoscyitN/OfnY2yNycZCo+KzWwY3a1jWXFFBxgsvKgkvAfV9z5IdZYNKJdF/Uj2r3UKvUxKMnvwVRtzXpHPcEnwLP5/+mfTSdFZEruDe/vfWbAvwsCPEy57ItCJS/3gJp4IksPeB8U83+Rr+zcbBAt8gBxKjiynoOwDrIxtIffwJ/H74HsvAxnssZVnm86oqBLeN6IFFU/Mr/Ut0XjRFlUWEZllic/cLFCQkAODUpwS755fx6+8ayosrcPO1Y/q9/c4NnXQU1QsKUg4x0vMDACJyIijUF+Jg0fxezmojerswo183/jqRzot/RvLjouFN692oKIQDXyi/T3wOz95O+AY7kxSVR/acZ/H97lH0UdEk3XEn3b/4HM0FvswmFiVyy1+3Y5TyMevd+fyqr/C08VTSv1SWKEHawc+VKivXflHznlGf0r17SbnvPszlFVg6VZI04z8YUtS4+doRMKj5X7yaytZCw1e3D+HlNVF8uy+RHw4ksTk6k3vH9ebqcC9cbOvvnS0oq2RLdBbf7EvGpPZGbZXKFhsrriuOY8e9/XD1uLgvJ00R5GnP7/eN4u2NMXy64yw/HEhif3wu780bUDshstlEUPFH6Bz92FD8FHFHssgqklh6jURwvj2vnx1E2ZatFG/cSGFEBOb/vkypsx0T/p7WKu3eHr4cGwdXNJ7dyM+pBGSs7XVoLdQ888wzhIeHY2FhgYuLC5MnTwZgzZo13HKLUm5s+vTpLFq06KLyEXq4uTB90hh2bN1Eid5IXqkeZ5v6H1s7nR09PHrg4OhAakkqvV174+joSF5eHl5eVY+rrQeU5SrPc30JWNiyfsM63npzCRqtmjmz53Ll1RN54rGX0NpXpVn5lw0bNjBjxgxsbW2xtbUlLCyMgwcPMmLEiGZdW1M1K1AbNGgQvXr1Yt68eXW2VVRUsGjRohZr2OVucrAHZ7JK2BCZ0eRAbaD7QH6M+ZGjWf/qUbP3VgrEVxRA9ikltxrK0Nu4GwP5bckRzhzMpHvfvvRdvpyyI0fJW/4VRdt3YF+Yw1WFORC/h8xd3zfrGlQODui8vdH6+Cg/np5IFhZIGjVmvR5zURHGmP3EntyFqUiDeyH4FqbDutWkrFuNZGOD3YQJ2E2dgu2YMagsa39YZBVXcPfXhzieUohOrWLZvHDCfJr+Iao/G0/qww+jP30aVCq6/fe/7M0JALLpM9QDO+d6PpxCZsPfT0LqIciLB+cLryq11Fjy6KBHeXzH43wV8RXTe06nh32Pmu3XDPDGkB5JUHzV1IHpbym19S5B4ChfEqMjSXEcTu/uWylPLiN50T30+O47dD4NP5/2ns0lMq0IS62Km4f3aHC/C9mXsofrdpmZs7sUg7kEjZsrXiGnsOoGf253pji3CAc3K2Y+0B9dR+pJq+beF3R2UFmMV2k+vR16E1cYx560PUzreWkfhv83vS9bojM5kJDHn8fTmvb6PrwCKouVidl9rgRg8IyeJEXlcSayjP7vfU7+g3dRERlJ4i234Pvll2g96g+SEosSuWPDHeRX5mDSuzPN5SXCPM/7UjL0bqXX4fdFEL0GvrgCZr4D3YfUOVbR+vWkPf44stGEtbseuxsnEBXRG5AZeW1vpZxXK9KqVfx3digz+nXjmd8iOJtTystro3htXTQj/V3p5WqDt6MVeqOyejAmo5jDiflUlzu2cusHVqn87ejOnOJ4XDN3gcfF5cFsKp1GxdPT+zK2jxuP/nSMs9mlXPPRbh6bEsjdY3opUw0SdkFpFr2cDMy4OYz1n0ZRHGtmuv1CnK4upcd//oP+zBlyPvucgiNHkPV6DGkXWTu4CbReXuhcu1GUU4HZJKPWqrCpShhrbW3NU089xT333MPp0+eG9NPS0mo6dSRJwsXFhdzcXFJSUrj99tvrnCMkJISVK1fWe34Ha11NHdLUggp0GnWDFSo8bDwoMZRQaapk8+7NmEymc0EagEanLA4ry1Xqllr4k5aWRg8/XxwcrJEsVJSUlqCRwVRowGRngfpfQ9/nXxsoheNT/zVlqCU16x3ylVdewdq6/sKvFhYWbG1kMrrQPFNDPPloWxxbT2VTVmnEugkrdKrnqcXkxVBuLMdKU7WkWZKU+nAJO5Xhz6pADZQJrENn9WT/H2fZsSoGj572OA8cgCrsXe5cshnn6GPMtchhoKpImURaVIxsMoHZjNreHrWjI2o3V3TeVcGYjze6qsCsTuLG+mzN47WAHWy10fBE7/so3aqlcM9eRqZH4lpaSNHatRStXYtkbY3tuLHYT5uGYdBwvj2awdd7EsgvM+BkreXTWwY3Oa+SXFlJ/g8/kLXsPeSyMtQuLni/9SaVvfpz9iVluG7AlAaCFFt3JeHt2W1Kr9rYx5p0zql+U/nlzC/sT9/PC3te4KupX6Gqmmg7q58n4Zu+RIOJsl5XYl29aOES9Oznis5SRUmFO6r+dujQUpmcQdIdd9Dj22/rJnmt8sVOZS7inEHdcbJp/oRjAP3Zs/R88nNGJSoTeu2nT8PzujDUmx5ml+kpUs8UobVQM/3efljbX9w5Wp1KrQQmcf9A0l7G+owlrjCOHSk7LjlQ83K04v7x/ry96TSvrzvFFX09Gi6GDUrS0H1Vc3NGPlRTyL5bbwd8gpxIOZVP1Gk1w7/9hqQ77qQyNo7EG2/C96sv0fn51TpUYlEid/x9B1nlWZj07lQmL+SROXVL6hB6rVLb8cebITMCvrxCKV8Ucg34DEE2Gcn76G2yvlSmANh1L8drbgibTA9iNufhG+LcpotChvdyYd3iMfx0KJlfDqdwIqWQHaez2XE6u979gzztmB7WjfEhQczfsJ5DGhO5KhUuZzZddMLy5hrl78rfi8fy1G8n2BCZyevrT7HjTDZvzwnHszrJbd9Z+Ia6M+yuArZ+Fot3UR8ct1tQEW7AMiAA77fexO7sWZIyM7HSWLE9fHnN8cs1FpRpLLFxtMPB0bbBPGGy2YxcWoqppKTq/b1qKFZSoXFxRu3qirXOBn2ZEX1VmhJ7F6taQfjGjRtxcXEhNjYWv6rnXH2T8CVJUoqyX8TwoI1OjYVWjSzLJOaW0svVpt6VqxqVhm423TiZfJIHFj7AZ/XN0bX1gLI85cuPvgRZlpFlmdzSStLLKzEDBrWEo33dIK2xa2stzQrUxowZA8BPP/3U4D7nb7vhhrZ5wndF/Xwc6OFiTWJuGZujs7iq/4W74z1tPHG3cierPIvInMjaubuqA7WMuivXBk3tQWpMPimn8tnw+Umue3wQn+2JJ6bQiFvgICb+Zxz2zUzF0WTZMZyuGt4M8h/MkNFD2H76al5dGwmnIhmdFsHo1BN4lOVTvP5vitf/TbnGAp1nMIHe/SkMGcTHd4zAz/XCE2vNej3FGzeR/f77GJKURK7WQ4fiteQttO7u7Pr8JMjg188VZ69Gjhd6/blAbcx/mrQqU5IkXhzxItf+eS2HMw/zY8yP3BikVBnwOPMjHqrTlMiW/Oz6AE1MxtEojU5NwNBuRO5IJco4lUnXHibxVw2GpCSS7ryDHl9/jcaldr6h2Kxi/jmVhSTRvGLxVWSzmbxvviH7nXfx0usptQCn/3sS7xtuhzWLOV0+huOFypDiFbcHN/437gj8RiuBWsJOxoxbzPLI5exK3YXJbKqTAb257h7bi58OJ5OcV86HW2Mbr1gQ8bNSCNuuG4TVzqc3ZIafEqjtSWPQtBH0+P57ku+8k8rEROLnzsN76dvYjhoF1A7SLGUvchIXMHdgX3yc6v/yTc8x8MAh2PwCHFupJF8++h1mo0T6QQeKEpX7OQaU4/nEYjK9bif2raMgwYhrmreYpyVYatXcOsKPW0f4EZNRzIH4XFIKykkrqMBSo6KbgyXeTlaM7O1Kd+dz1xziEkJkbiRbbKy5IXazMi/vEh/fpnKy0fHJzYNYdTCZl9dEsTs2l5nv/sMezWp0UJPkdothDX8Fb+HqmAcpSILV7xzlqofCsbbXofPyQq3XY+Hri7q8gorcPLQGPVYyOBv0kK2HnFwkrVb5UamUQMNsRq6sRDYqgZlyxRokCyvULs5onJxqkkQbDSaKc5V5XjYOFmgtzv19tm/fTmpqKuvXr+fWW2/lyJEjaDQavL29SU1NJTw8XAmCcnNxdnbm2LFjze5RA+U91NFah7VOQ1mlkbM5DQdrViorHr/rcW679zZ8wnwwy+aaL8bKZVqc61UrycDLy5vD0XG4+/pTWlKMnZ0d3bxtUTXw3u7t7c3Ro+dGrlJTU2sl5m9pFzXm8OGHH7J37148PT3x8fEhJSWFjIwMRo4cWRNVSpIkArVLIEkSs/p58cHWWP48ltakQE2SJPq792dT4iaOZR+rHaj9K0VHrfupJK5YEMyPrx4kL62Un5ce4bNSJTfTszP6tl6QBhTlnCbVRnka9nFS0heM6+PGqMVj+eVwL348FM5XSfn45yczJvU4Y1KP41FewISUo0xIOYp0fBVSdDg5w4Zh0acPuh490Hh4IEkSstmMISUF/ZkzlB44QPGGjZiLlTqPajdX3B56CMdrr0VSq8lMKCL2cBZIMOyqC2Sg7zsT/voPZEVB0j6lfmIT+Nj58PDAh3n9wOu8c/gdxniPwUfSKR+EwDvG69kSaeT2ac2fx1Gf0LHeRO5IJb5iGJVpX+K7ZAWJi1+kMjaOhLnz6P7Jx1j4n/tAre5NmxLsQc8mBL7nq0xKIu2ZZyg/pKSHOdZTYu1cX1becDsAhadj2Fb0IACDpvWg14DmJ9Btc37KF1MSdhF+3ZfYae0o0BcQkRNBuHv4JR3aUqvmuRnBLPz2MF/sjOeGwd3r/7JhNisVKkBZYKKp3QPpFeCEV4AjaWcKOLIxibFz+9Bj5Xck338/FcdPkHz3Qtwfe4yy66+oCdK8rf2IOXYzKtnuwqujbd1g9kcw4BY4vAL9ib2kbSmlIl8HEnjM6I3Tf14Hz1D2vK3kyAsa7omrz6UN3V+qQE+7Jqfnmeo3lcjcSDbY2XNDWhqkHQWfi08U3VySJHHjUF+G9nRm8aqjuKTvRCcXUiA5EkswocYKfo/9nULbQgJvsyTtRy25KSWsXnqEqxYPoHrgpLjSRK5Bi8HGDZ1swkdjQmeowFxaimwyKUFZA7nBJJ0Ota0dKjtbVDY2tXrfZLNMUXY5siyjtVBj7XDuOWgymXj44Yf58ssvCQ8PZ+TIkXz88cc8+OCDzJw5k5UrVzJjxgzWr1/PsGHDLqlHDZTpOj1drYnPKaOs0khIcDARkVF1eqTvu+8+Rg0bxXXzr0Nv1JNTnoO7tTtPP/00Q4cO5Zprrjk3V01fzOhx4/nh+5U8/NSL7Fj3O1fNmoFKkjhw4AAffPAB33zzTa3jT5kyhVdffZUXX3yRoqIiTpw4wdChdUsFtpSLCtT69u3LnDlzeOCBB2pu+/DDDzl58mSDy2eF5rsqXAnUtp/OorDM0KQcPuFu4WxK3MTx7OO1N9Sk6DihLLv/VyBg42DBrAf688eyoxQkl3CNWktiqE2TAsSGGCpNpJ0pIDuxmNy0EgqzyjFWmjBWmtFaqnFwtaQicSTduyVh8syvNUlbo1Yxb6gv84b6Ulhu4EB8HpXG2eisNahTYrHfu53iDRswZmRQtncfZXv3NalNGk9PHOdcj8vtt6OyUT4YZVlm7+/KyqnAYU34kLFygv7z4MjXyodoEwM1gHlB89iQsIEjWUd4cueTrCizRFtRiMmjHz+nT6cot4xDifkM8bv0YSNXH1u69XYgPa6QqPLJDEn4iR5fryBp4SIMSUkk3HgT3u++g+2oUWQVV/DbEWWOxcKxTS+VJBuN5P+wiqx33kEuK0Nlbc3e6wJ52/sEt4RMBMBUlMOmhKsxyFZ062XD0FnNL8XULrwGgNYGyvPR5pxhpPdINiRsYEfKjksO1ECZhzomwJWdZ3L479oovry97hww4v5R5pVa2MOg2+s9zpAZfvzx7jGidqYx6Moe2Li60uObb8h46WUKf/uNrDffJOa39zFPqaS3rz8WOfchmwxcM8gbX5cGetP+Re4+jPxtp8n6fT+yXofa0QHvd9/FZriyIjb+eDbpsYWotaoLf9HpYKb4TWHp4aUcstCQo1bhemZTmwZq1Xq72fLbvaOI+/xTyIQ/DUN4/rOD9OoZRaFlIZ7W3Zg8YCzFPnr+ePco+Rll/LrkME5XeuBooafSqgJJo0OnUdHD2Q6rqiLvsiwjGww1P5jNyvu/JKHS6ZR5w+qGexCL8yowGsyoVBL2rrVTe3z00UcMGTKEgQOV4fNXXnmF4cOHc9NNNzFz5kzWrl2Lv78/Dg4OrFpVf4H1CykrK6NPnz4UFRWhVqtZsmQJMadPc+R0MmZZ5mx2KZ4Olrja6pAkiZMnT/LFF1/Qr18/1v+9HoPJwJufvcmUoVM4efJkTYYKs1qHXuOAlbGQe+bN4KYH/o9rxg/Gx8ebn3/+GYDk5GSsrOpWRXB1dWXx4sWEh4cjSRJLlixB09QSdRfhoo68atUqcv+VDXvRokW4urqKQK0F9fGwI9DDjpjMYv6OTGfuEN8L3qf6A+R41vHaK2zcgkClUVaPFaYoqSb+xc3Xjl5zenH46xg8TSr8EkwkRuTi169ptTdlWaYgs4ykyDwSI3NJO12AqZEkhXlppcAMZhSCKdbA5oooBkz2xcW7dqDkYKWtyS0HgL8bjB+Bx1NPUhkXR+n+/ZQfPoI+IR5DYhLm0nPZylUODlgE+GMZGITd1ClYDx5cZ65GclQeqTEFqDQSQ2c1cchv5INw5BuIWQfZp8GtaYXfVZKKV0e/yg1rb+BE9gmWFhbxJBLqq97lyr0afjqUwk8Hk1skUAMIHedNelwhkWVTGHjiIXST/4vfj6tIuf8Byo8cIfmuu3G6cR4/9p9JpcnMQF9HBvW48LllWaZk+3ay3nyLyrPKKlHroUPxfO0VFu6+GSokxvooxesP/XKYTEMgFqpyJt818qLzsrU5tRZ8h0PcFkjYyVifsWxI2MDO1J08NPAi6mv+iyRJvDArhCvf3cGWU1lsisqs/TwHZeUlKPPDGsip5x3oVBOQH92YxOg5AagsLOj26itIQb3JfnMJgbHlLE2SKJo3nIV5pegsLFk86cIl6mRZpnT3HrLfeYeKqhrLNqNG0e3VV9BW5Yoym8zs/V3JkdV/UndsnS4uGXZ78bb1Jsw1jIicCDZbWzPvzEaYcPGrri+FDgN9C3YAUBZwFdrTEhnyP6iBxIT+jH1zO/7utkheEiElQG4FBX8lEnaVI5Ik4WFviZutRa3XmCRJSDodNKFM4L+VFempKK2al+Zqhfpf6UoefPDBWv93dXUltipdCMBnnzUvh2N9rK2tSUlJqXN7Zlwkt9+1EBmZ9MJySvVGPB0sCQ0NrZlDJssyycXJFFcWk1aShslkYvjw4RSWVZJZrEc22NFHKsTD2syG1T+isazdq33w4EHuv//+etu1cOFCFi5ceMnX1xQXFaj16NGDr7/+ulYlgm+//Zbu3S+ieK/QqKvCvXhrQwx/Hk9rUqDW17kvOpWOfH0+ScVJ51YXaizANRCyIpXhz3oCNZNZ5u0D8WTY6rnVYE1FYSV/fXSCnv1dCR7lhU+QExpd7W9e+nIj6WcKSIzMJSkyl6Kc2hm37Zwt6ebvgIuPLU6eNugs1ai1KvRlRooij7Dh6E7MJQOwMTgQsy+DmH0Z9OzvytBZvS7YsyVJEhb+/srw3XylDqMsy8h6/bl9LCwaHUY0mczs+U15Ywkb74O9SxOLFLsGQNAMOLVW6VW7+oOm3Q9lCPTVIU/z0O5n+M7BngE9JjLFexBzBufx06EU/opI58WrQhqfYN5EvQe4s8vuDKXFLiSU9aP38e/RjHwQ3+VfkfnKKxT8/Av53//A4N/XMSNgIrNmNz5DzlxRQdFff5H33Ur00Urhe7WTE26LH8LxhhuIzIsiryIPG60Ng9wHkXYmn8MHlOsY1z8SO+cZl3xNbcpvdFWgtovR4e8jIXEq7xSZpZl42Fx66gl/d1vuGtOLT7bH8cIfJxnZ2+Xc456fcK5c2ZC7GjyGJEkMnu7HmvePE7kjlQFTfLFxsMAoG3nBcx8Jd6h44G+JgCQjlt98zdc6G1ImXYVHaSg419+jZioupnjTZgp++7VmOFtlbY3744/hOG9erddU9J508jPKsLTRMnDqxa8Ubk9T/aYSkRPBRhtr5qUdhZJsZdi3rcX9A/pCsOvGPbfcTEjKUe7bmgKyBkPBYFJN5aRWlRY8aAU3mCzwkTXYyBK+DpY42rdckFxRaqAkX3kvtXG0aLPV2Tqdjv379zN//vxG56zNnDGdGdOnKQsACisoqjBQXGHA0VqHo7UWa50atUpFN5tulBpKKTeW8/H3yzmTVVJTsk+t0mHQOqAzFKIpywTL2r3B1fnhmiotLY3p06fj7l7/Yq2LdVF/+S+++ILrrruON954g+7du5OcnExFRQW//vprizZOgFn9lEBtb1wuWcUVF8wRplVrCXEN4WjWUY5lHauVBgLPUCVQyzgJgXVXrv16OIXItCLsrDXMe2gocdvTOLY5mfjjOcQfz0GjVeHoaY1WpwYJCrPLKSusPedBpZHw8nekR6gLviEuOHlaNxwoFZ7i1YJVROpW84r/EiyivIg7mkX88RwSInLpN9GHoTN7orNs+tNUkiQky6a/WR35O5Hc1FIsrDUMvtKvyfcDlBV4p9bCiR9h4rNg1/Rs1BMi/mJBQRHLHe15viSanvlnGNzDn56uNsTnlLIuIp05gy/9i49aq6LvKC+O/J1IRNk0eh9eASMeUHpc/vtf7GfM4PQT/4dzVhoPnPgd6d6/SZ0wAcvgvuh690bSaJSSKmlplO7fT9mhw8hlZYASBDvfcjMuixahtlPmA+1IUXoDRnqNxFQBm76KQkYiyGoLASP6X/L1tLmeSq8gCbtw1jkS5hrGiZwT7EjdwZw+cxq/bxM9NMmfNcfTSC0oZ9mWMzwzva+y4eCXgAy9J56r19uA7sHOePS0JzO+iEN/JTD2xj68sf8N9qbvxcrDmt7ffUnK13tQ//At3cpycVj/A3Hrf0Dbwxerfv1ROzqisrbGmJFBZVISFZGRNfOZJK0Wxxvn4bpoUZ0FKJUVRg6sUeY2Dp7h17GSFjfD5B6TWXJoCYcsLclRS7jGbVGmN7S16tWewbNBpeLvJCWr/qze03hy7rVEpRWRlFeKpVaNnaWGbpY6olefQZKhLK8SK52hRcp1VZYbKcpRAkIrO12brs4eOXIk8fHxTdpXkiRcbS2w0WnILFKCtfyySvLLlOeuTq1CBsySA2jyKTHmYjKqUau0uNha4GqjQ2O2gOxCZbTJUAbapk0HqE+HSHhbbciQIcTFxbF3717S09Pp1q0bI0aMQNsBq853dr4u1oR3d+RYcgF/HkvjrjEXnv8R7hbO0ayjHM8+ztX+V5/b4BEK/Kgst/+XEr2RtzbGAPDQpAA8XKzxuNafwGGenNyeSkJEDiX5enKSS+rc187FEt8QF3qEOOMd6NTkwMqYdYpYrRYkmfB+gfQY3YO89FL2/3mWs0ezOb45mbjDWYy/OYgeIS4XPmAz5aSUcGhdAgBj5/XB0raZz1/fYUqlguR9sHMpTH+zafeLXgvHf+BBSUWE3xAOFcRw35b7WDl9JdcP8uGtDTH8fDilRQI1gJAxXhzdmEhqZT+yMmTcE3bWBCCWQ4fx+LQnCD6yldtzj2KVlkTRunUUNZJkWuvlhdNNN+Jw3XV1EqtuT9kOwGivMWz/PoaSfD326nTG2H0Bvoda5HraVLf+oLNVchBmnmR89/GcyDnBlsQtLRaoWes0/Hd2CHesOMSXu+KZHe5NsJsWjn6r7DDk7gseQ5IkRlzTm9VLjxK5K434Hkf4KfYnJCT+N+Z/+Dn05Q5DJtlXPME7btmEH99G2bFjGBKTMCQm1XtMXe/e2M+YjuPs2Wi96p+renxLMmVFldi7tnypqLbkZetFP9d+nMg5wSZra248s6ntAzVDOcSsV34PvZb8inz+jv8bUOa2OlhpGdHbhRG9a78Xet3al9gzSk3KwuxybBzNWNvrLnpBUkWpgaJcJUizsNZi69T4qERHYKVT4+dqQ3mlkZySSkorjVQazVSaqqfeWKNSlSGp9FhZFdHT0Q9N9RQYteW5PKPFmU3KjdnWLvrrj1arZezYsS3ZFqEBNwzuzrHkAlbuT+KOUT0vOMenv3t/iIRj2cdqb6in5me1j7fFkl2sx8/FmttG+tXc7uJty7ibAhkr9yEvrZSSfD1GgwmzScbexQpHT+uL/hadlBuNXqPCSqWlu50SlDh3s2HaojAST+ayY1UMRTkVrH3/OCFjvBh5nX+zetcaYzKZ2fJ1FGaTTM/+rgQMuchhrHFPwHfXwoFPlV7K3hMa3z/jpJJIFNCOuJ93xz3OzetuJqEogQe2PMAbIz/m7Y1wID6P+JzSZq++rI+9ixUBQzw4vT+TwyXXMe3QVzWB2qaoDGILjWSHTuT1p/6LFHmS0n17qYyNQ1/1rVZtY4Pa2RnrQQOxHj4ci4CAenMyZZdlE5UbBUD39BAOHE5BpZKZ4vAOOie3eofbOzy1FnxHQOwmSNjFFcHTeO/oe+xP33/JVQrONzHIg2mhnqw/mcETvx5n9chENOX54NAd+kxt0jG8+zjRI8yFxIhcItalQx/4z+D/MMF3Ai+tiSSzSE93V1uufGQGFpo7MZWUULZ/P5UJiZgKCzGXlKBxd0PXo4eygrpXr0Y/oMuKKjmyUQnyhs/uXWf+UmczxW8KJ3JOsMHGmhvjtrRpmg4AzmxUsuU7dAefIfweuZxKcyV9nfsS5hrW4N0srLVY2WmxtNZiqoTSAj2VFSbsnS2bVb5LlmXKiiopLdBXHVeDvYtlhw/Szmel09DdWfmMMJjMVBrNqKSqHGeSFWcL46g0l1NcWYiT5XlfMu08lUCtokAJmLVNnALTRjpnP/Vl5upwL15fF018Til74nIZHdD45P7+bsoQU2x+LMWVxdjpqpapV9f8zDtbUzoDIDmvjM+rUjM8M71vvfXtJEnCxdu2zkT/SxFTkgyOlgTY9aid4wboEerCvOeHse/3OE5sTSFyZxrJ0XlMuq0vXgGXXut1769x5CSXYGGjYdxNgRf/ZuQ/CQbfAYe+gtX3wr17lPw89SnOgO/nKm/GPcfCpBdwUGv56IqPuHndzUTnRfO/I88wus+t7Igp4Lt9iTw3M/jiL/I8A6f24PT+TM7qh5F34iecpylzcD7boSwEuGV4D2wstDBwANYDB1zUOaqHPQdZjuDIb0rR+iFBcXjknYFeN7fIdbQLv9FVgdpOeo64D39Hf2ILYtmWvK12j/UlevGqEPaezeVkahE5/3yAJ8DgBc0KFnpNsSUhIpteueHc4HgbtwbfytGkfFbsSQDgldlhNWXB1La22E2a1MjRGrd3dRxGvQn3Hnb4D2rZOTntYUqPKSw5tIQjlhZkZefinnr4XM3XtnCyqnh4yGxMspmfYpScpDcG3XjB9ydJkrBxskA2qCjJ12OoMJKXXoqNow5LW90Fv9wbK00U51Vg0Ctzt6ztdNh0gp60xmjVKrS1ktWqcbd2J7M0k4zSDGy1tmjVVaMoWitlsU5FYVWvml97NLlBnfsr0GXCxkLDtQOVYYVv9yVccH9XK1d8bH2QkYnIPm+Y09ZNyR2DrOQAq/LG36eoNJoZ0cul7qqz1lKawymUb25Bbv3q3UWrUzNmbh+ufmQAds6WFOVU8PvSo+z65QzGyqYVi67P0U1JHP8nGYDxNwXVlEK5aFNeARd/JSnpmofqL2RdlKYEaUUp4BIAN3yj9NYA3e26897E97DSWLEnbQ+VzssBIz8dSq5TsPliuXjZ0rO/K6DiaPEsOPYdhxPzOJJUgE6t4taRlz4JfFPiJlRmFUMjZ2PUm/AKcGSgpir/UK8L9DR2ZD3P5VPDZKgp5r0pcVOLnsbD3pLXrgmjnxSHZ2k0ZpUOBt7W5PtXGCt44dRTxLgdBKBvzDgqDWae+jUCWYZrB3gzrk/LTJBPO5PPqT1KMD76hj6d+gO9WjfbbvR3648sSWyysYIzLfv4Nkpfcm7hSMi17ErdRWpJKvY6e67seWWTD2Nlp8OpmzVaCyWDf0m+ntzUEkoL9Bj0ploZ9WWzjL7MQFFOOXnppRj0JiRJws7ZElvnztWT1lQuli5Yaiwxy2YySjNqb6yeY1yRr/SqdSAiUOskqusubo7OIr3wwk+i6jQddYc/q3rVMpQA7mBCHn+dSEeS4LmZwW334sw5TUzVcvFA15BGd/UJdGLec0PpO6obyHB8czI/vXaQrMSiZp82Zn8Ge35VVnmOvNa/ZXoCdDZw3RdK+pPoNfDlZMg8Fwhz8lf4aASkH1NysN30o/Lvefq79efDSR9iqbYksmA/zr1+orhCz+9HW65+3KBpfgDEVIyjaO8ffLFdSalwzQDvZhWyr0+hvpD96fsZnDIdOcsSC2sNV9zgjiqr6otCr/GXdPx21S1cqX2pL4Lk/UzuoRSd3pO2h5LKunM2L8X0sG48674bgE3SCIrUTR9afWXfK5zKO8UZ/92odRKZZ4v55OsTxGQW42yj49kW6p01Gc1sW6nMZw0e40W33i0z/NsRTPVThpk32ljD6fVtd+LTf4OxHJx6gtcAfoj5AYDZ/rPPlQJsIo1WjaOHNXbOlqg1KmSzTGmhnvyMUnKSS8hNLSEnRfkpzC6vSb9hYa3B2csGK7umLxyIj48nKCiI8nLlM+nEiROEhYVhMBiQZZl77rkHf39/Bg8eTFxcXJOOuW3bNpycnJhftZIf4OWXX8bf35+QkBAOHDhwwWMcOHCA0NBQ/P39efnll2tulyQJb1tvJCSKKoso0iufIevXryds4DBUPoM4FRuvfLG+gC+++IKAgAACAwNZu3YtoKz6DA8Px9Oz6QvLmkIEap1EgIcdw3o6YzLL/HAg+YL7h7uFA9RNfHtehQKDycyzvyvz1eYN6U6wVxNqc7aUnNOc1ik9StUVCRqjs9Iw8Za+zLhPqQ+Zn1HGL/87zN7VcejLL9zrZDaZ2f/nWbasUAKo/pO6Ez65BedMeQ2Aaz5VEpOmHoZPx8J7A+CNHvDLHcrcB68BcOemBlfwDfEcwrKJy9CpdBgsTmDpvYoVe+LqrSt3MTz87Oke6ICMmgOpYyg9tRmAu8Zc+uTZf5L+wb2gJwNSrwBg/Pwg7PKUgINu/cGmabn4OiSVGvyV6+LMRno79sbP3g+D2VCzeKLFlOUxpHQbAJ+WTeD+lUcwmBrORVhtTdwa/oj7A5Wk4qUpzzH8KuU5ZjiSh5UZXpgVjPNF1m79t6ObksjPKMPKTsuI2Y2vRu1sqoPwI5aWZGZHKSlS2kKkUjOV0GtJLk5hd6ry2pkbOLfJh5BlGXNZGeayMuTycizURhwdJWxtZDQYQF+BubwMY0kpptJSzOVlSJV6LNQm7O3BzgakyoqaY5z/09B7UM+ePbn++utr0lg8+OCDLF26FK1Wy9q1aykoKCA2NpaXXnqJJ598ssnXMnXq1JrUHBEREWzYsIGYmBhWrVpVK9F+Qx544AF+/PFHYmJiWLduHSdPnpuXbamxxMVKWZCRVpqG0WwkICCAn376ibFjRis76YuUXs4G5ObmsnTpUo4ePcrWrVt59NFHMRqNHWvVp9A+bh7eg/3xeXy/P4n7xvfGUtvw3JX+7so8tRPZJ2rXJqzpUTvJ8t3xxGQW42St5YmpjdQabAV5mRFkazRINC1Qq+bXz5Ubnx/GjlUxnDmUxZG/E4nckUr4Fd3pO8qrzjCmLMtkJRSz6+fTZJxVvj0Fj/Fi1HX+Ld97GHY99BgJfz0GMX8pcwFB6Wkb85hSwF3d+MrSkV4jeXfCuyzeuhjsI0guXM7uuBBG+7fMkPSwawJIfuMQMRUTuNbya6xDphDg0bRSO43559QOrjhzGxISfUd2U3oqf9+qbOzMw57VAqYoaVjObEKa/DKTe0zm84jP2ZS4iRm9WjA33NHvkIwVlLuEcCo7iLIzOTy3+iSvXxvW4PM1qSiJV/a9AsA9/e5hWLdhnKaYnNUyrkaJBbaOXB3eMisy89JKa1ZKj7o+AEubrrXS39PGkwHuAziadZTNNlbMj14LIy8cGFyS8gJlIQFAyLX8GPMjAKO8R+Frf+HcmdXkigpiRoxshQZC4JHDSNb1p6145plnCA8Px8LCAhcXFyZPVoLdNWvWcMsttwAwffp0Fi1aVDsJexOtWbOGm266CbVaTVhYGCaTqSbbRH3S0tKQZZmQEGWkZv78+axZs4bQ0NCafdys3Sg2FKM36kkrSaN3795VCw5UUL3IoCgVXPvUW8t5w4YNzJgxA1tbW2xtbQkLC+PgwYOMGNH0KjXNIQK1TmRqiCfejlakFpTz9Z4EFo1r+Nusv6M/1hprSgwlxBXGnQuGqnrUzJkneTdRGb54enpfnFro23ZTxVSvDtQ5Yt3MvDWWtlqm3BWK/+Bs9v1xlvz0Uvb/Gc/+P+Nx7W6LZy8HVGoJk1EmOepcEl6dpZrx84MufoVnU9h7wbyVkH5cmedg7azMfWggq3x9xviM4e1xb7N46yNoHY7x/O7n2dTro0suBA5Kr5p3Xy2p0Qb0JaP4z/BLXxySX1aA484QrA122HlqGTOvj1KmLK4qULvQStjOoPdE5U08KwoKkpniN4XPIz5nV+ouSipLsNW1wCIbsxkOfQmA1chFvG89kLu/OcSqg8l0c7DioUl1v1wYTAae2PEEZcYyBnkMYmG/heSW6Lln5WHKLfXML7HEJk1PUmQuvpeY4sZYaWLDFycxGcz4BjvTZ2gbzWdtY1P9pnI06yh/2dgwP3pN6wdqUX+AqRLcgyl36cXvW5XetRsDb2zd87YQa2trnnrqKe655x5Onz5dc3taWhre3soXBEmScHFxITc3l5SUlGYVZU9LSyM4+NywvY+PT6NF0M8/b/X+W7ZsqbWPSlLhY+vD2cKzFFcWk6/Px9myahGYjStIZiWnWkVBnWkqDZ0jNbXlpqn8mwjUOhGdRsUjk/vw2M/H+WhbHPOG+uJgVf83Wo1KQ5hbGPvT93Ms69i5QM3FH1ltgcpQhrsxDTe/YK4f6NOGV6E4XZIC1hBof/HDbr3C3fDr50rc4SyObUkmK6GInOSSOrneNDoVPfu7MfzqXti7tsGya0kCr/BLOsQE3wk8Fv4ybx59jmxpDw9tfor3rnijRYK1jTYW9JOKyTH6Y9i5GwICL+l4f36/D8+iXhjVlVx173AlIXJWNJRkgMZSyTXX2Vk7g89QJWfemY0EDr6Dng49iS+MZ0PCBq7rc92lnyPuH2WozcIBwq5nks6G52cG8+KaKN7ZfJrUgjL+Ozu0ZtUmwPtH3ycyNxJ7nT1vjHmDuOwy7lhxkJT8crxcLAno50nsngw2LY9i7v8Nxdbp4hfO7P4llry0UqzsdUy6vQ3ns7axqX5TWXLwLSIsLYhNOYx/cUazklk32wlldSf9bmB9wt8UVRbhZePFaO/RzTqMZGlJ4JHDrdBAkOqpd3m+jRs34uLiQmxsLH5+fgD1DpdeTFH2ho5zqftbaixrrQK10VSlQlJrwcZBef8qSle+ZP8rK0Fz23SpxBy1TuaaAd708bClsNzAp9sbn5xZ7zw1tYZ8W6UnLlSVzCuzw9q+9qKhnBiTUo+zzyUWt1apJAKGeDDnqcEseHM0V9zel4FX9mDglT0YdGUPptwVwh1vjWHKnSFtE6S1oFv7X0Ww5l5kWcWO9L95bvdzmOpbUdoMESmFrIvNJsMqEYC9h1wpySu76OOd3JFKySGlN1Y7KRtHj6re0bh/lH97jARt56r92KAAZUiHM5uQJIlr/K8BYHXs6pY5/sEvlH/Db1IWqAC3j+rJ8zODUUnw06EU5n++n+h0ZQh/d+pulkcuB+DFES9zMNbMtR/tISW/nB4u1nx71zAm3RiIa3dbKkoMbPzyJKYmzHerT+zhLE7uUHoMrri9b5tmqm9rrlaujPUZB8DvdjZw6q/WO1lBMiTuAkAOvZ7vor8DlAS3zf1SJkkSKmvrVvlpLAjZvn07qamprF+/vmauFoC3t3dNL5Msy+Tm5uLs7MyxY8cIDw+v83P+4oHznX8coNHetObu72Lpgo3WpqYmqExVAGbrriS6tvcC6l57c9t0qUSg1smoVRKPV80n+2p3PFlFFQ3uW51P7fxALTarhH/ylSGL23oXE+h56fOTmi03llMWSk9goEd4ix3W2l5H4PBujJjdmxGzezN8dm8CBnugtWjDpJUt7NXJ86lIuxFZVrHm7Bqe3f3sRQdrsizz2jqlPmfpoAG46JKoMNvy9/t7MBma/wF+9lg2O35Qhs8P+axn6sTz5sfUDHtOvKi2dkgBSloO4reDoYJZvWehltQcyz7G2cKzl3bs/ERl5R/AkDtrbbpjdE+WLxiKnaWGQ4n5TFu2kzmfbeSRrcrk7L42V/LiKokHfzhKid7I0J7OrL5vFL3dbNFo1Uy9OxSdpZr02EL2/tr8xSkpp/LYvFyZqjBgii++wS1fJaSjuSZACcLX2tpgiPqz9U4U8bPyr98Y9pencib/DFYaK64NuLb1ztmCTCYTDz/8MMuWLSM8PJyRI0fy8ccfAzBz5syaocz169czbNiwWj1q//5pqK7nzJkzWbVqFSaTiZMnTyJJEl5VlTKCgurOrfby8kKSJKKiojCZTHz//ffMmjULgKeffprff/+9Zt/qVaAalQa9SU+lqVJ5fajU4BrAgYjT3Hpb3RQ5U6ZMYd26dZSWlpKens6JEycYOrT1cu6JQK0TuqKvOwN9HakwmHnuj5MNvvH2q8pPlliUSF5FHhUGEw/+cJQIkzJBdbBl642pN6YyK4r4qnJjQc5926UNnUWAhx0ze02lIvVGJNSsPbuWZ3Y9g9Hc/Pxqfx5PY+/ZXCw0Kh6a1o9p41KwkErITFex86fTFz7AeVJi8tn4ZSSyDFHueyjvn0xvx6o5kxWFSjAD4D+52e3ssDzDwK6bMnclcReuVq6M8VZyrF1yr9rh5YCspDFxDaizeVwfN/64fxQz+3VDrZI5afiUclMhpgoPDhweRWpBOY7WWh6Y4M93dw6rNefU0d2aibcpr7Pj/ySz57emB2sZZwv56+MITEYzPfu7MuzqC5ew6wpGe4/G1cKJPLWaHVmHoDy/5U8iy8oCFYB+N/BdlNKbdnXvq1us4kVr++ijjxgyZAgDBw4E4JVXXmHZsmXk5uYyc+ZMbG1t8ff357nnnmt2gfNq/fr1Y9KkSQQGBjJ37lzef/99QFl52dDz+L333mPOnDkEBgYyZcoUwsKURXQnT56skzpDq9YSezCWSf0mcfjAYcaNH1ezCCI5ORmreoZ9XV1dWbx4MeHh4YwbN44lS5ag0bTeTDIxR60TkiSJF68K4bqP97AhMpNPd5zlnnoWFjhYONDboTdxhXEczTzGmr1ORKcX4W3dG8wgZUa2Q+vhbPphjJKEnaTB06YV5350EQ9NCuDP42mUpUjYdv+BdfFKHc7XRr/W5OGRogoDr/yl9KY9MMGf7s7WMG4ukw8tZG3+/xG5Mw17NysGTPa94FyL6D3pbFt5CrNJJtvtLDt7/cyzff7v3A6nNyiTo10Dwb1tVxO3KklSetWOfA1Rf4L/FcwOmM22lG38GfsnDw54EK3qIlZBGvVwpCox8JC7Gtytl5stH9w0kPcOHeHzyNOo0DLA+iHsQn0YH+jGrP5eDa4E7z3AndE3BLDrpzMc25SEQW9i3Lw+SI1Mezh7LJt/vonGqDfRva8TU+8KRa2+PL7ba1Qargq4hq9OfsVvtlZMil4LA29p2ZNkRED2KVBbkOgzgO0RbwEwv2/9Q4Ad0YMPPljr/66ursTGxtb8/7PPPmuR87z44ou8+OKLtW47cOAA999/f737Dx8+nMjIup9vJpOp3pWZM6bOIPpsNGklSv60brbKMObBgwcbPMfChQtZuHBhcy7jol0er7ouqJ+PIy/MUpYfv/n3KfbE5tS7X3Xi23d2bmT1sTQ0Konbr52pbCxMhrK8tmhuLTF5SsAQaOHWZSckt6RebrZcN9AHY3Eo9kV3oJY0rItfx8v7XsYsN23I8p1Np8ku1tPT1YaF46p6RVwD6BFowzBbJbnm3t/i2PJ1dINVHwx6E3t+jeWfb6Ixm2RcQ3Ws7vkRFhod03pOO7dj1B/Kv8EtV16pwwitWjQQuRoMFYz1GYuzpTO5Fbk1ua+aLXI1lOWCvTf0mdb4rjmRLI/+EIBnRzzNN7dcxYfzBzJncPdG0/UA9J/YnQk3B4EEkTtS+fmNQ6SerttTVFFqYMuKKNZ/EoG+zEg3fwem3dOvWXUju4LZ/rMB2GVlSebxb1v+BMe+V/4NvJKV8WsAGOszFj8Hv5Y/Vyei0+nYv39/g3PWqk2bNo2HHnqoWcdet25dg9ucLJ1q8qull6STV5HHG2+8Qb9+9VfOqU91wlt395YtqXZ5vfK6mPnDfLl+kA9mGe77/gjrItLr7BPgoARzcUVRaFQSH9w0gNGhvcGhKj9PO/SqxZQq31oCHRtOLyLU9vT0vrja6khK6c0o+8WoJBW/nfmNtw6+dcFhrH1nc/m6qtbjy1eH1Fo1yOAFDLL5hVGuvyBJELMvg1/+d4iT21MoK6rEaDBRkFXGsc1JfPvsHo5uUopwD57uR/SAzZjUBqb4TTlXT1ZffK70TlcM1PxGg50X6AvhzEa0Ki2zeinzX1adWnVxxzz4ufLvoAWgbniQo9RQyhM7nsBoNjK5x2SuD7i+2acKHu3FlDtC0FqqyU4qZvXSo/z65iH++TaafX/EsfqdIyx/fBen9mWABAOn+nL14gGdep7nxerp0JOBLqGYJYmfC0+1bPJbQzkcVwK1/NBraobObwlu4V67TmjkyJHEx8c3OGetNXlYe9QJ1pqjOuHtiRMnWrRdIlDrxCRJ4pXZoYR3d6SgzMB9K49wz7eH+ftkOttPZ7Ns8xne+F1ZbKC2SmbZjf24MrRqZUp14tvMkw0cvZWYTZw2KekzAj0urvj35cjZRscrs5XHbP1+N+4KegqA76K/44NjHzR4v5T8Mu5beQSzDNcO9GZMwL9qPQbNQrJxJVyzkquuqcDSRktuainbfzjN8id38emD21n5/D52/xJLebEBe1dLpt4dStg0T9YnKCV2ak18Pr0BTHpw7g0ejZcG65RUaiWxMdTML5obNBeVpGJ32m6icqMauXM9EvdAykFQ62DgrY3u+tr+10gqTsLTxpMXRrxw0b3RAUM8uPnlEYSO9UZSSWScLSJ6dzqH1yeSGlOA2Szj7GXDNf8ZyIhr/C+7nrTzzQ9dAMCP9rZUHP2u5Q588jdlLqejL9+WJ1FuLKevc1+GeQ5ruXMIzSZJEh7WHjhbKTnVcspzmjxq0ZrEHLVOzlKr5sdFw/ngn1g+3hbH35EZ/B15frFZR+zNNqAqpUe3AqAqZ5pnqJI9P6NtAzU5P4GYqiGaPt6tk8W5q7oy1JOrw73441gav2735MHJT/D+8Tf57MRn2GhtuCP0jlr7l1eaWPTtYfJKKwn1tue1a8LqHlSjgwHzYfcyfNI+Yt7zv3J6fyaxR7LISlDSQGi0Khzcrek3wYfAEZ6o1UpvXpmxDD97Pwa6Dzx3vPOHPbvqsHa/ubDnPSWbfFke3e26c6XflayLX8eXEV/y9vi3m36snUuVf8NvAruGE8iuPbuWP+P+RCWp+N+Y/13yZHNrex3jbgokfLIvGXEFFOZUUJpfgYuPLb4hLji6Ny8JdVc10Xci3jpHUisLWHPqR+aMfwZULRC4HvoKgMLwm/i+qq7nov6LxFSQDkCSJDytPdFIGhwsHFBJ7f9FRQRqXYCFRs1/pgQyLbQbH2w9Q2aRnrJKEzY6NbeP8mNd1iB2pu7gWNYxQl2rymjU1PyMaNO2Zqbsp0CtRi2Dv3PTS0cJipeuCuFgfB4JuWWs3OTDgnEPsDz6A945/A7WGmvmBc0DIK+0ksWrjhKZVoSLjY5Pbxnc8BymIXfD3g8hYSc2JScZMGUQA6b4Ul5ciaSSsLDW1PoAMctmVkSuAOC6gOvObass7drDntU8Q8E9BLIilcB08ALuDLuTdfHr2JS4iYTChKbNM0o/DrGblGSaoxY3uFtyUfK5ElH972Ggx8AG920uBzcrHNw6V37BtqRRaZgfcjtvHn2Xb7UGrkvcjarnmEs7aPpxSD0EKi3fW2spNZQS4BTAhO5doIJHFyFJEm7WbhfesY20f6gotJhgL3s+mj+IX+8dyfrFY/jl3pHM7OdFuHvdfGp4VgVqWdFgMrRZG6PT9wPQS22Nhfris6Rfrhytdfy4aAS+ztYk5pbx8xZ/pnrdDMCr+19lTdwa9p/NZfqynew8k4OFRsVH8wfi7djIh7Fjdwi7Qfl917s1N1vZ6bC00db5lr85cTPxhfHY6ey4vs9586Ri1oOxHJz8lELsXVm/qr9XVVb5Pk59GOczDhmZr05+1bRjVPemhV4HzvWnvTCYDDy580lKDaVKiaiwtlllJpxzTdBcbFETr9Oy6/BHl37Aqt60kqDpfBv3GwAL+y3sED03QscknhmXgeoKBceyj5270dFPybxsqoScM23Wlug8JUFqX+vWy+Lc1XV3tubne0bg725LemEFv2wJQV08FoBndj7L/B++IKOogl5uNqy+fxTDejUhQWl1j070mkafD7Is80WEkkF/ft/5tWtc7v9E+bff3K477FktbA4gQdKemukDd4UpqTXWnF1DcnFy4/fPOXNumHj0o/XuIssyrx14jYiciJoSUS1RQkxoHludLdf5KImbv849cmkr5csL4ISS5PY7Dx+KK4vp6dCTyb6dM99gfHw8QUFBlJeXA3DixAnCwsIwGAzIssw999yDv78/gwcPJi6u8Uo61bZt24aTk1OtVZ8vv/wy/v7+hISEcODAgQse48CBA4SGhuLv78/LL798wf1ffPFFgoKCCAsL46677sJkunBS8S+++IKAgAACAwNZu3YtcG7V579ztV0qEahdBkJdQ1FLajJKM8gorZq/plKdm+zdhgsKosszAQh26YITzduQh70lPy0awR2jeuJsY0FBypUYCgaBZMbS6wfGh+ez5oHR9O1m37QDugdB4HRAVuZfNWBn6k6i86Kx0lgxP+i85fPJB89Nim8kF1iX4eANIUr2erb/D1BS4QzrNgyj2cir+19tfDXuP/8FZAicAR7B9e7yY8yP/HL6FyQkXh/zusg52I7mD30MjQwHLHXs2fbixR9o30dgKCXDI4ivUpRpAvf2v7dFAnBZljHoTa3y09BzuWfPnlx//fU1yWwffPBBli5dilarZe3atRQUFBAbG8tLL73Ek08+2eRrmTp1as2qz4iICDZs2EBMTAyrVq3igQceuOD9H3jgAX788UdiYmJYt24dJ082/hk3duxYIiIiiIiIwGAwXHDFaW5uLkuXLuXo0aNs3bq1pnRW9arPlibmqF0GrLXW9HHqQ3ReNMeyj3GlzZXKBs8wSN6vJF6sHsppTWYT0egBNX29R15wd6FxzjY6np8VzFPTgtgak0VGUQjb8pdyKHs7Uab3OF0YwgD3ZqysHfUwxKyDYz/A2CeUIdHzyLLM5yeUVBJzA+fiaOl4buM+JbcXYXOUOnmXg3FPQOTvEP2nkubGI4T/G/Z/XP/n9exO3c36+PVM7zW97v3i/lF60yQ1TPy/utuBgxkH+d8BJQB8eNDDjPUZ25pXIlxANzsv5nkM57usfbydtplh5YWorZq5oKM8H/Yp5ZXe8fGnPO8EA9wHcKXflS3SRmOlma+e3N4ix/q3hcvGNZii5ZlnniE8PBwLCwtcXFyYPFnpHVyzZk1Nhv/p06ezaNEiZFlu9oKJNWvWcNNNN6FWqwkLC8NkMpGent5gbc20tDRkWSYkROkMmD9/PmvWrCE0NLTBc0yceK7UXf/+/UlJSWm0TRs2bGDGjBnY2tpia2tLWFgYBw8erDeZbksQPWqXiZq6n1nnzVOrWVDQNj1quelHydSokWSZQF/xwdNSdBoVU0M8uW1ELz6b+g6jvEdRbizn/s33E50b3fQD+Q4DvzFgNsDGZ+ts3pi4kWPZx9CpdNwafF4qiYJkJVM/wPB7L/FqOhH3vucWTWx/E1Byby3sp8wj+9/B/1GoL6x9H6Me1j2u/D5sUb0pTCJzInnon4cwykam95zOgpAFrXYJQtMtGv8GdjKc1qpZs73u6+OC9n4I+iKOdgtiXd4JJCSeHPpkp1/paW1tzVNPPcWLL77I0qVLa25PS0vD29sbUCbnu7i4kJub2+yi7OcfB8DHx6dWQfRL3f981bVBJ0xofGHHpZzjYogetctEuHs4q2JW/WtBQVW6hoy2Wfl5Kkn5ttdDVmNj0Q7F4C8DWrWWd8a/wz2b7uFI1hHu2XwPX0z5ggCnuvUj63XlG/DpWIharRRW7628YRXqC3lt/2sA3Bl2Z+0VUQc+BdkEPceee05dLsY9ofytov6AzCjwCOaO0DtYH7+euMI4Xt77Mm+Ne+vcRPG9H0JuLNi4w/in6hzuVN4pFm5aSImhhIHuA3lx5Iud/oO8q3C0cuFuz7EszdzB+2lbmVpRiJVlE3vVyvJg3ycYgdedHaGsjGsCriGkBaeAaHQqFi4b12LH+/exG7Nx40ZcXFyIjY3Fz88PoN7h0vOLsjdVQ8dpqf3P99RTTzFy5MgL9oxdyjkuhuhRu0xUl5KKzo2mwqgkwcW9LyBBaTYUZ7Z6G6KzjgHQV+fc6ue6nFlprPhg0gcEuwSTV5HHHRvuaHoiVs9QGHq38vu6x8FYCcCSQ0vIq8ijl0OvmknzgJKt/dBy5ffh9dfE69I8QqDvVYAMax8Box6tWsuLI19ELanZmLiR/+77r/LGnnYUdij1HJnyCvzrQ/5Y1jEWblxIUWUR/dz68dEVH2GlEakzOpKbJryOl0kmSy3x4aYHL3yHarvegcpiPvIJILosDVutLQ8OaMb9m0CSJLQW6lb5aSwI2b59O6mpqaxfv75mrhaAt7d3TS+TLMvk5ubi7Ozc7B61848DkJqa2uCw58XsX+3LL7/k2LFjtXoFW/ocF0sEapcJLxsv3KzcMMpGInOrykbpbMClqoxTG+RTiypOBKCvfc9WP9flzk5nx2eTPyPMNYwCfQF3bbiLY1WB8gWNf1rp8ck9A3uWsTdtL6tjVyMh8dLIl9Cpdcp+JiP8tggqS8B3hFKw/HJ0xYtg4QDJ+5RgTZYJdw/n9TGvIyHxy+lfeHPnM5i/ux4MZdB7Yq05oWbZzPKTy1nw9wLy9fkEuwTz8RUfY6O1ab9rEuplYWHPEz2UWslf5x1la9QPF75T0j7Y+wE7rSz5XKsH4IURL+Bq5dqaTW0TJpOJhx9+mGXLlhEeHs7IkSP5+GNlHt7MmTNrJuWvX7+eYcOG1epR+/dPQxP4Z86cyapVqzCZTJw8eRJJkvDy8gIgKCiozv5eXl5IkkRUVFTNUOasWUqZt6effprff/+9zn22bt3KsmXL+Pnnn9Fozg00HjhwgFtvrVsxZMqUKaxbt47S0lLS09M5ceIEQ4cObeZfr+lEoHaZkCSpZp5arQ/s6nlqbVChINpQAEBfz5ZL2Ck0zMHCgc8mf8ZA94EUG4q5c8Od/Bn354XvaOUIk5Ul7TE73+Sxf5TCx3MD59b0zAKw+x0lONHZwTWftkzG9s7IpTfMWa4krj22Uuk9kWWm9ZzGSyNfAuC7+LXMc9SwwzsY+foVIEkYTAY2JGxgwd8LWHp4KUbZyJV+V/LllC+x1zVxta7Q5iZNeI2bZWXqxv8deJ2UwqSGd64ohF/vJkMl8Uw3JbiYFziPK3u2zAKC9vbRRx8xZMgQBg5U3tNfeeUVli1bRm5uLjNnzsTW1hZ/f3+ee+65mpWhzdWvXz8mTZpEYGAgc+fO5f333weUlZcNrUZ97733mDNnDoGBgUyZMoWwMGVKxsmTJ+tNnfH444+Tn5/P+PHjCQ8Pr2lrcnIyVlZ1e7VdXV1ZvHgx4eHhjBs3jiVLltQK8FqaJF+oonMnVVRUhIODA4WFhdjbizc9gK8jv2bJoSVM6D6B9yZWpWDYsURJFRA2B677otXOXVSex6iflPkTu6atwsFdpOdoK+XGcp7Y/gTbUrYBcHPfm3l00KNo1dqG7yTLnP3zXhbk7iBPraafjQ+fX/0r1lprkGVlpeMvd4DZqARp/ee1zcV0ZPs/hfVPKL+7BUHo9ZBxnN9TtvGGswNlVYGsndYOK40V5cZyig3FAOhUOp4c+iRz+swRc9I6AUPuGW7/7SpO6DQE6Vz46Oqf62ayl2X4bSEJ0b/xgJcXiWoIdgnm22nfnuuVbgEVFRXEx8fTs2dPLC0tW+y47WXbtm188sknrFq1qtH91q9fz5kzZ3jooYeafOzp06ezbt26Ju//1FNPcdNNN9GvX78m3wfA09OTjIyMWrfV9zg1NU65TL8CX55qVn5mHz/3TaRmQUHr9qjFJGwFwMtowsGt/rxRQuuw0lixbOIyFvVbBCiF3K/981p2pOyod39ZlvkneSt360+Tp1bTV1/Jx9EHsP7hRqW3aMUM+OlWJUgLuUZJcCvA0IUw7knQWEL2Kdj6CkSv4ZriYv6WvVjgfx2WakuKDcVklWdRbCjG3cqdhf0W8uc1f3JD4A0iSOsktC4BLAm9D0eTiVOVudzw23QOpx88t0NFEfx2NwfO/MF8L08S1cr0k7fHvd2iQVpXpNPp2L9/f4Nz1qpNmzatWUEa0KwgDeCNN95oVpBWnfDW3b1lUxSJHrXLSKWpkuHfD8dgNvDXNX/ha+8LhanwTrCS0+mZNNC2zjeyr7c8xpKUDUwy63h3weFWOYdwYVsSt/DyvpfJq1Cyqw9wH8BYn7EM9hiMwWwgozSD3878xqHMQwD4O/TmK7MbTlWlkmpoLGH4fcqqR62Y8F5LRaGSXy1mPTj2gEG31yS1LaksIassC71Jj4xMH6c+aFRi8X2nJMsk/LGIR7K3E6vToZZhjJ0f/S090CQfYLNUwXFLpUxef7f+LJuwDBerJlQJaabqnho/P796h+mEjqG8vJyEhISL6lET7xCXEZ1aR7BLMMezj3Ms+5gSqNl7gZWTkowxOxq8mpEgtRmi8k4BECRKR7WrST0mMbTbUD478RnfRX/H0ayjHM06Wmc/C7UFtwTfwp2hdyplosY8DrGbIX472HWDsY+Bg087XEEnYOmgBGeDbq+zyVZnW7vsltB5SRJ+sz9j5ZFveGn/K6yztmBbSQLbShLACkAJ0q7qfRXPj3i+1Woba7VKPd7s7Gzc3NxEr2wHJMsy2dnZyspcbSNTThogArXLTLhbOMezj3M86zhX9b5KqcnoEQoJO5Xhz1YK1CLK0wEIcxZz09qbnc6O/wz+DzcF3cS2lG3sTdvLiewT2Ops8bD2wN/Rn9tDbqeb7XlBtVsf5WfEfe3XcEHogKwH3sob3Ydzy85XOVyRxXFzKWUaLWODb2RS71l42Hi06vnVajU+Pj6kpKSQkJDQqucSLp4kSfj4+KBWN79cWIcN1IxGI3PnzmXfvn2kpaWRnp7e4oVOL0fh7uF8HfV17QLtnv2UQK2VKhTkV+STLCv5uEJ9x7fKOYTm62bbjRuDbuTGoBvbuymC0KlJbn0IvfZrGi5S1LpsbW0JCAjAYDC0UwuEC9FqtRcVpEEHDtRAKZT6+OOPt1r9rMtR9YKCM/lnKKksUYZhPFs3RUdE6l4A/CoNOHQf1irnEARBuJyp1eqLDgSEjq3DBmoajYbFixc3eX+9Xo9er6/5f1FRUWs0q9Nzs3bD29ab1JJUTuScYKTXyPNyqUUoS8pbeI7DiaRtAPSTtWAtqhIIgiAIQlN1mfQcr7/+Og4ODjU/3bt3b+8mdVh1CrS7BYJKA/pCKExu8fNF5ChVD/rZeF9gT0EQBEEQztdlArWnn36awsLCmp/k5JYPOLqK6uzyNQXaNRbgGqj83sLDn2bZTERZ1UIC1+YlDRQEQRCEy127BWpTpkzB0tKy3p9XXnml2cezsLDA3t6+1o9Qv/MT35rMJuXG6nlqLbygIKEogWJMWJjNBPiObdFjC4IgCEJX125z1DZu3Nhep77s9XHqg43WhhJDCafzT9PXpa9SoeDEj8o8tRYUkaEktw2prETbSqk/BEEQBKGr6tBDn3q9noqKijq/C5dGo9IwyGMQAAcyDig3erROj9qJ5J0AhJnUSnJdQRAEQRCarEMHaoGBgTUlMUR5jJY11HMoAPvT9ys3VNf8zDsL+uIWO09EbiQAYTY+Lb6aVBAEQRC6ug4dqCUkJCDLcq0foWUM66bkMzuceRiD2QA2rkppIGix4c9yYzmnK7IB6O8R3iLHFARBEITLSYcO1ITW08epDw4WDpQZy4jMUXq98FaGQ0ne3yLnOJlzEhMybkYjHl4i0a0gCIIgNJcI1C5TKklVM/xZM0/Nd7jyb1LLBGqH0pXjDqzQI3mFt8gxBUEQBOFyIgK1y1hNoFYVUNG9KlBL3q9UKLhEB1J2KOcxyODc+5KPJwiCIAiXGxGoXcaGdlMCtaNZR9Gb9NCtP6gtoDwPcmMv6dgVxgqO58cAMMTBH1TiqSYIgiAIzSU+PS9jPe174mblRqW5UiknpdGB90BlY9K+Szr28ezjGGQTbkYjft3HtEBrBUEQBOHyIwK1y5gkSTW9avvSqwKz7lWT/i9xQUH1vLchFXqkHiMv6ViCIAiCcLkSgdplbng3ZV7artRdyg2+581TuwQHU3cDMLRcD92HXNKxBEEQBOFyJQK1y9wY7zFISETnRZNZmgk+Sg8bOaehLO+ijllmKCMi7xQAQ219wdKhpZorCIIgCJcVEahd5lysXAhzU6oSbE/ZDjYu4BKgbEw+cFHHPJZ9DKNswtNoxMdHDHsKgiAIwsUSgZrAeJ/xQFWgBuBbPU/t4hYUHMw4CMDQ8gqkHiMutXmCIAiCcNkSgZrAuO7jANiXto8yQ9m5fGqJey/qePtT9wDKQgJ8RaAmCIIgCBdLBGoCAY4BeNt6U2muVFZ/9lICN1IOQnl+s46VWZpJRF4UACM1LuDg3dLNFQRBEITLhgjUBCRJYpyPEpxtT9kOjr7g1hdkE8Ruadax/kn+B4DwCj3u1T1zgiAIgiBcFBGoCcC54c/tydsxy2boM0XZcHpDs46zJVEJ7K4oLTuX6kMQBEEQhIsiAjUBgCEeQ7DR2pBbkcvx7OPQ50plQ+xmMJuadIz8inwOZR4CYGJZGfQc11rNFQRBEITLggjUBAC0ai2TfCcBsDp2tZJPzdJRqfuZcqhJx9iWvA2TbCJIX0l3pz7g6t9q7RUEQRCEy4EI1IQa1wZcC8Df8X9TZq4EfyVw4/TfTbr/liRl2HNSWRkEX9UqbRQEQRCEy4kI1IQaA90H4mvnS5mxjA0JGyBgqrLhzMYL3rfUUMqeNCUtxxWl5dB3Vms2VRAEQRAuCyJQE2pIksQ1AdcAVcOf/leApILMk1CY0uh9/0n6B4PZgF+lgd623uAR2gYtFgRBEISuTQRqQi2zes1CJak4knWEBGPxudqfEb80eB9Zlvk26lsAZpSWIvW9CiSpLZorCIIgCF2aCNSEWjxsPBjtPRqA32N/hwE3KxsOfAYmQ733OZBxgOi8aCzNMnOLSiD46rZqriAIgiB0aSJQE+q41l9ZVPBTzE/kBVwBNm5QlApRf9S7//LI5QDMLinBycYTvAa2WVsFQRAEoSsTgZpQxwTfCfR17kuJoYSPIr+EIXcrG/Z+ALJca98z+WfYnboblQy3FhZD/7mgEk8rQRAEQWgJ4hNVqEMlqXh8yOMA/Hz6Z2L7TASNJaQdhaTahdpXRK4AlJQc3TW2MGpxWzdXEARBELosEagJ9RriOYQrfK/ALJt5K/IL5H5zlQ07l4LZDCgrPdfErQFgQUERjHsSrJzaq8mCIAiC0OWIQE1o0KODHkWr0rInbQ9fuHVDllQQuwn+fJCYnCie2vkUMjJzi4oJs/GGIXe1d5MFQRAEoUsRgZrQoO723bmn/z0AvHf6e54aMJVErY5/Tv/KA3/dRLmxnOHl5TyZmw9XvAgaXfs2WBAEQRC6GE17N0Do2Bb2W4iDzoE3DrzBuvxI1vl4Vm0x4VdpYEl+Bdqxj4uUHIIgCILQCkSgJlzQ3KC59HToydO7niavIo9eVu4El5Vwb9DVOAxZBJYO7d1EQRAEQeiSRKAmNMnQbkPZfP1mjLIRrUrb3s0RBEEQhMuCCNSEJpMkCa0kgjRBEARBaCtiMYEgCIIgCEIHJQI1QRAEQRCEDkoEaoIgCIIgCB2UCNQEQRAEQRA6qC67mECuKh5eVFTUzi0RBEEQBEGorTo+qY5XGtJlA7Xi4mIAunfv3s4tEQRBEARBqF9xcTEODg3nI5XkC4VynZTZbCYtLQ07OzskSWq18xQVFdG9e3eSk5Oxt7dvtfN0NJfrdYO4dnHt4tovJ+LaxbW31rXLskxxcTFeXl6oVA3PROuyPWoqlQofH582O5+9vf1l90SGy/e6QVy7uPbLj7h2ce2Xm9a+9sZ60qqJxQSCIAiCIAgdlAjUBEEQBEEQOigRqF0iCwsLXnjhBSwsLNq7KW3qcr1uENcurl1c++VEXLu49vbWZRcTCIIgCIIgdHaiR00QBEEQBKGDEoGaIAiCIAhCByUCNUEQBEEQhA5KBGqCIAiCIAgdlAjUmiA7O5sZM2ZgbW1NYGAgW7ZsqXe/8vJybr75Zuzs7PD19eWHH35o45a2LL1ez4IFC/Dx8cHBwYHx48cTERFR77633347FhYW2NraYmtrS0hISBu3tuWNHz8eS0vLmmuaNm1avft1tce9+nqrfyRJ4tdff613387+uL/wwgsEBwejUqlYtWpVrW1vvPEGbm5uODs788QTTzRaj2/FihX4+Phgb2/PggULqKysbO2mX7KGrn3FihWEh4djZ2dHr169+OSTTxo8xrZt21CpVLWeLzt37myL5l+Sxq5do9HUup6kpKQGj9OVHvd77rmn1nVrtVpmzZpV7zE66+N+oc+0jvqaF4FaE9x///14eXmRk5PD//73P+bMmUN+fn6d/V544QXy8vJITU1l1apV3HvvvZw+fbodWtwyjEYjvXr1Yt++feTl5XHVVVcxe/bsBvd/6aWXKCkpoaSkhMjIyLZraCtasWJFzTWtX7++3n262uNefb0lJSXs2bMHKysrpkyZ0uD+nflxDwgIYNmyZQwdOrTW7evWrePjjz9m//79REZGsnbtWpYvX17vMSIiInj00UdZvXo1ycnJJCQk8Morr7RF8y9JQ9eu1+v55JNPyM/PZ82aNbzwwgvs2LGjweP06dOn1nNmzJgxrd30S9bQtQNcccUVta7H19e33mN0tcf9k08+qXXdYWFhjb7fd8bHvbHPtA79mpeFRhUXF8s6nU5OS0uruW3MmDHy119/XWdfT09Ped++fTX/v+WWW+SXXnqpTdrZFvR6vSxJkpyTk1Nn22233Sa//vrr7dCq1jNu3Dj5hx9+uOB+Xflxf+KJJ+R58+Y1uL2rPO7/fqznzZsnv/HGGzX///LLL+UJEybUe9+nnnpKvueee2r+v2XLFrlnz56t19gWdqHn+U033SQvWbKk3m1bt26VAwMDW6tpre7f1758+XJ56tSpTbpvV37co6KiZAsLC7mgoKDe7Z39ca92/mdaR37Nix61Czhz5gwODg5069at5rb+/fvX6TnIz88nIyODsLCwRvfrzPbu3YuHhwcuLi71bn/rrbdwcXFh5MiRjX4D70wefPBB3NzcmDx5MidOnKizvSs/7rIs88MPPzB//vxG9+uKj3tUVFSTH9P69o2Pj6e8vLzV29naTCYTBw4caHRIOyEhAXd3dwICAnj55ZcxmUxt2MKWt3v3blxcXAgODm502LcrP+4rV65k5syZjdah7AqP+/mfaR35NS8CtQsoKSmpU5DV3t6ekpKSOvup1Wqsra0b3a+zKiwsZNGiRbz66qv1bl+8eDGxsbGkp6dz//33M2vWLJKTk9u4lS3rzTffJD4+nqSkJCZPnsz06dMvq8d9x44dlJWVMXXq1Ab36YqPO9R93Tf2mNa3b/Xtnd2zzz6Lt7d3g8+BoKAgjh07RkZGBn/88Qc//fQT7733Xhu3suWMGzeOiIgIsrOzWb58OS+//DK///57vft25cf9+++/b/QLWld43P/9mdaRX/MiULsAW1tbioqKat1WVFSEra1tnf1MJhNlZWWN7tcZVVRUMHv2bGbMmMEdd9xR7z4DBgzAyckJnU7H/PnzGTFiBJs2bWrjlrasoUOHYmtri5WVFU888QS2trYcOHCg1j5d+XFfuXIlN9xwA1qttsF9uuLjDnVf9409pvXtW317Z/bJJ5/w22+/8csvvyBJUr37eHp6EhQUhEqlIjg4mGeffbbBwKYz6NmzJ35+fqhUKoYNG8ZDDz3U4PV01cd9z5495OfnM3369Ab36eyPe32faR35NS8CtQsICAigsLCQjIyMmtuOHz9eZyjAyckJT0/PWitI6tuvszEajcybNw8vLy+WLFnS5PupVF3vqVXfNXXVx72yspJffvnlgsOe/9ZVHvfg4OAmP6b17duzZ0+srKxavZ2t5ccff+TVV19lw4YNuLq6Nvl+XeXxr9bY9XTFxx2UL2jXX399s2pcdqbHvaHPtA79mm+12W9dyPXXXy8vXLhQLisrk//44w/ZyclJzsvLq7PfY489Js+YMUMuKiqS9+7dKzs4OMinTp1qhxa3nNtvv12eMmWKXFlZ2eh+v/zyi1xSUiIbDAZ51apVsp2dnRwfH982jWwF+fn58saNG+WKigpZr9fLS5culT08POTCwsI6+3bFx/3333+X/fz8ZLPZ3Oh+nf1xr6yslMvLy+UxY8bI33zzjVxeXi6bTCZ57dq1co8ePeSzZ8/K6enpckhIiPzll1/We4wTJ07Izs7O8uHDh+WCggJ54sSJ8nPPPdfGV9J8DV37hg0bZDc3N/n48eMXPMbWrVvlpKQkWZZl+fTp03JYWJj8v//9r7Wbfskauvb169fLWVlZsizL8uHDh2Vvb2/5xx9/rPcYXe1xl2VZNhgMsqurq7x169ZGj9FZH3dZbvgzrSO/5kWg1gRZWVnytGnTZCsrKzkgIEDetGmTLMuy/N1338nBwcE1+5WVlck33XSTbGNjI/v4+MgrV65srya3iISEBBmQLS0tZRsbm5qfHTt21Ln2UaNGyfb29rKDg4M8dOhQefPmze3Y8kuXlZUlDxo0SLaxsZGdnJzkCRMmyIcPH5Zlues/7rKsfDl55pln6tze1R732267TQZq/VR/SL322muyi4uL7OjoKD/++OO1gtbq10G15cuXy15eXrKtra182223yRUVFW19Kc3W0LWPHz9e1mg0tV7zixYtqrnf+de+ZMkS2cvLS7a2tpb9/Pzk5557TjYYDO11SU3W0LU/+uijspubm2xjYyP36dNHfu+992rdrys/7rKsBCs+Pj41gdv5usLj3thnmix33Ne8JMuNZHQTBEEQBEEQ2k3nGVgWBEEQBEG4zIhATRAEQRAEoYMSgZogCIIgCEIHJQI1QRAEQRCEDkoEaoIgCIIgCB2UCNQEQRAEQRA6KBGoCYIgCIIgdFAiUBMEQRAEQeigRKAmCIIgCILQQYlATRAEQRAEoYMSgZogCIIgCEIHJQI1QRAEQRCEDkoEaoIgCIIgCB2UCNQEQRAEQRA6KBGoCYIgCIIgdFCa9m5AazGbzaSlpWFnZ4ckSe3dHEEQBEEQhBqyLFNcXIyXlxcqVcP9Zl02UEtLS6N79+7t3QxBEARBEIQGJScn4+Pj0+D2Lhuo2dnZAcofwN7evp1bIwiCIAiCcE5RURHdu3eviVca0mUDterhTnt7exGoCYIgCILQIV1oepZYTCAIgiAIgtBBiUBNEARBEAShg+rQgZper2fBggX4+Pjg4ODA+PHjiYiIaO9mCYIgCIIgtIkOHagZjUZ69erFvn37yMvL46qrrmL27Nnt3axaykuz27sJgiAIgiB0UZIsy3J7N6KpKisrsbS0JDs7GxcXl1rb9Ho9er2+5v/VqykKCwtbbTHB0ZM/8ODBV1jkM4V5E99Eq9a2ynkEQRAEQehaioqKcHBwuGCc0qF71P5t7969eHh41AnSAF5//XUcHBxqftoih9ovJ76gUKXizbTNXLVyBFvi/mr1cwqCIAiCcPnoND1qhYWFDBs2jCeeeII77rijzvb26FEzGvWs/vsBPszcTY5GDcBn495lhN+kVjmfIAiCIAhdQ1N71DpFoFZRUcG0adMYOHAgb7/9dpPu09Q/QEsoi9vKy5vv5y9LNT209vw69x8s1Batek5BEARBEDqvLjP0aTQamTdvHl5eXixZsqS9m1Mv694T+L9B/8HNaCTRUMRXxz9r7yYJgiAIgtAFdPhA7e6776a8vJwVK1Z06OLqduG38ESZ0r4vTn5JYlFiO7dIEARBEITOrkMHaomJiaxYsYIdO3bg5OSEra0ttra27Ny5s72bVpdGx9SB9zCyrJxK2cTSQ00bohUEQRAEQWhIh6712aNHDzrBFLoa0qDbeWLPUmZbw7bkbWSVZeFu7d7ezRIEQRAEoZPq0D1qnY6lPb0HLCC8Qo8ZmTVxa9q7RYIgCIIgdGIiUGtpA2/hmuISAFaf+a1T9QgKgiAIgtCxiECtpTn3YqpFN6zMZhKKkziefby9WyQIgiAIQiclArVWYBMwlSmlZQD8Hvt7O7dGEARBEITOSgRqrSFgMrNLSgH4O/5vygxl7dwgQRAEQRA6IxGotYYeIxlk0uBrMFBmLGNb8rb2bpEgCIIgCJ2QCNRag8YCqfcErqga/tyZ2gHzvgmCIAiC0OGJQK21BExmdHkFALtTd2OWze3cIEEQBEEQOhsRqLUW/8mEV+ixNZvJ1+cTmRPZ3i0SBEEQBKGTEYFaa3HwRusRyoiqXrVdqbvauUGCIAiCIHQ2IlBrTT1GMbqsHBCBmiAIgiAIzScCtdbkM4RRVT1qETkR5FXktXODBEEQBEHoTESg1pp8BuNhMhFYaUBGZk/anvZukSAIgiAInYgI1FqTkx/YuDG6TEnTIYY/BUEQBEFoDhGotSZJAp8hNWk69qTuEUXaBUEQBEFoMhGotTafwfSv0GOJRL4+n/jC+PZukSAIgiAInYQI1FqbzxC0QJhBSXh7JOtI+7ZHEARBEIROQwRqrc1rAEgqBpQUAXAkUwRqgiAIgiA0jQjUWpuFHbgHM0ivB0SPmiAIgiAITScCtbbgM5h+FXpUQGpJKhmlGe3dIkEQBEEQOgERqLUFn6HYyjKBshaAo1lH27lBgiAIgiB0BiJQaws+gwEYVDVP7XDm4fZsjSAIgiAInYQI1NqCiz9orBhQVgKIHjVBEARBEJpG094NuCyo1OARzMAMJUA7k3+Gosoi7HX27dwwoT5Gs5GV0SvZnrIdg8mAWTYztNtQFvVbhKWhHFRa0NkoCY0FQRAEoRWJQK2teITimnoYX40tScYSjmUdY6zP2PZulfAvMXkxPL/neaJyo2rdfiLnBJsjV/JKSjz99ZUgqaHXOJizAiwd2qexgiAIQpcnhj7bimcYAANNakAMf3ZEO1J2MO+veUTlRmGns+PJIU/y7oR3eXnYs7ijIcFczq3dPNhgbQWyCeL+gR9uBEN5ezddEARB6KJEoNZWqgK1fkV5AJzMOdmerRH+5WzBWZ7Y8QRGs5Ex3mP44+o/uDn4ZiZ1G8k1u7/it8R4riyrwCxJvOjjR8qNK8HCHhJ3wy93gMnY3pcgCIIgdEEiUGsrHiEAhBZlARCZE4lZNrdni4QqhfpCHvznQUoNpQzyGMSyCctws3ZTNu77GJL34aCz5/VpXxPuFk6JoZSn4lZhnLcSNJYQsw62vd6+FyEIgiB0SSJQaysWduDkh3+lAQuVlmJDMUlFSe3dqsueLMs8ufNJkoqT8LLxYun4pWjVSr47SnNg51Ll92lvofEbyRtj38BOa8fx7ON8XHAcrv5Q2b7/EyjLa5+LEARBELosEai1Jc8wtECQzhmAiJyI9m2PwIaEDexO3Y2F2oL3Jr6Hs6XzuY3b3oDKYujWH8LmAOBt683zI54H4MuIL0nuMRQ8QqGyBA583h6XIAiCIHRhIlBrSx7KPLUws/JnF/PU2leZoYy3Dr0FwJ1hdxLoHHhuY84ZOLxc+X3KK6A691K5sueVjPIehUk28VXkchjzqLJh/8egL2mr5guCIAiXARGotSXPUABCiwsAOJkrArX29HnE52SVZeFt682CkAW1N/7zCpiN0OdK6Fk3jcrCsIUA/BH7B5l+I8C5N5Tnw+EVbdByQRAE4XIhArW2VLXyMzQnEYBTuacwmAzt2aLLVlJREl9Hfg3AE0OewFJjeW5jcQZEr1F+n/hcvfcf6DGQQR6DMJgNrIj6FkY/omzY8z4Y9a3ZdEEQBOEyIgK1tuTQHSwd8K2swE5jTaW5ktMFp9u7VZelD45+gMFsYJTXKCZ0n1B747HvlTxp3YfV9ILWp7pX7ZfTv5DXZwrYdYOSDDizqTWbLgiCIFxGRKDWliQJPEKRgDBLD0BJ0yG0rfjCeP5O+BuARwY9gnR+KSizGY58o/w+8NZGjzPCawTBLsFUmCr4/szPEHqdsiFqdSu0WhAEQbgcdfhA7YUXXiA4OBiVSsWqVavauzmXzkPpoQmRlepdYuVn2/sy4ktkZMb7jK+9gAAgcRfkx4PODkKuafQ4kiTVzG37M+5PzH1nKRti/gZDRWs0XRAEQbjMdPhALSAggGXLljF06ND2bkrLcA8CIKy8DBArP9taSnEKa8+uBWBhv4V1d6juTQu7Xim8fgHju4/HTmtHemk6hzUS2HsrKT3Obm3JZguCIAiXqQ4fqN18881MnjwZS0vLC+/cGbj1BSA0NwWAuII4ygxl7dmiy8pXJ7/CJJsY6TWSMLew2hvL8iDqT+X3Cwx7VrPUWDLFbwoAa+L/gr5XKRsiV7dQiwVBEITLWYcP1JpKr9dTVFRU66dDqupRcytIxt3KFRmZmPyYdm7U5SG7LJvVsauBBnrTIn8Dk17Jd+c1oMnHndlrJgAbEzdSHnilcmPMerH6UxAEQbhkXSZQe/3113FwcKj56d69e3s3qX5WTmDrCUCQtTcA0bnR7dmiy8ZPp3/CYDYQ7hbOII9BdXeoTskRdr2y8KOJBnoMxNvWm1JDKdvkUuXx1RfC2e0t1HJBEAThctVlArWnn36awsLCmp/k5OT2blLD3JQJ7EEqawBO5Z1qz9ZcFipNlfwU8xMA84Pn192hLA/idyq/Vy8KaCKVpGJGrxlA9fBn1f3F6k/hcpOfAJtegK2vYzzxE7EJWzmSeYSdKTtJK0lr79YJQqekae8GtBQLCwssLCzauxlN494X4rfT16Aku43OEz1qre3vhL/Jq8jDw9qDSb6T6u5w+m8ld5pHKLj0bvbxZ/WaxWcnPmNP2h5yh76Cy8HPIXYzyHKzeucEoVPSF8POt2Hvh8imSrZbWfGWiyNJWm3NLhIS47qPY37f+QzzHFY7LY4gCA3q8D1qBoOBiooKzGZzrd87NTdlnlrfolwAYgtiRYWCViTLMiujVwIwL2geWpW27k7Vw57N7E2r5ufgR7BLMCbZxA7KQGMJJZmQLeYfCl1cRSF8PhF2vUOebOSenn140NONJK0Wa7MZX4MBf8kKGZltydu4e+PdvLT3JQxm8Z4nCE3R4QO1u+++GysrK3bu3Mmtt96KlZUVO3bsaO9mXRp3ZeWnV3Yc9jp7jGYjsQWx7dyorut49nGicqOwUFtwXcB1dXfQl0DsFuX3iwzUQEnVAbAtbbdS1QAgvpM/VwWhMbIMfzwAOacptfPkvuDh7KECrUrLnaF38k/oI/yVls3vZ2P4Q/Zibp8bUEkqfj3zKw9seYCSypL2vgJB6PA6fKC2YsUKZFmu9TN+/Pj2btalqZqjJhWlEOToD4h5aq3p++jvAZjRawZOlk51d4jdpKz2dO4F7sEXfZ7xPuMB2Ju+F73fKOXGeLGgQOjC9n0M0X9iUGl5pM8AIktTcLJw4qeZP/HwoIexGXIX3PoH6GzplbCPZ022LJuwDCuNFXvS9rBgwwJKDaXtfRWC0KF1+ECtSzp/5aelGyDmqbWW3PJcNiUptTfnBc6rf6eaYc+rLmk+WZBzEO7W7pQbyzng4K7cmLATzKaLPqYgdFgph2DTcwC8GDaBvXmRWGms+HDSh/g7+Z/bz280TPuf8vs/rzJe48zyK5fjbOnMqbxTPLPzGcxyJ5/OIgitSARq7aUqn1qQWVnPIVJ0tI4/4v7AaDYS5hpGX5e+dXcwVsLpjcrvlzDsCUpJqXE+4wDYXp4MFvbK/J2ME5d0XEHocGQZNj4LZiPbgybyZ9Ep1JKapeOX1k0kDRA+H4JmgtkAvy0kxL437018D61Kyz/J//Dp8U/b/hqES5JclMxXxz/j/tXX89Sv17Ds52vY8Nd9mIrT27tpXY4I1NpLVYWC4AqlKkFMfgwm0fPSosyymZ9jfgZgTp859e+UvF8p+WTjBl4DL/mc1fPUtqfuRO5RNfwp8qkJXU38dkjaS7nGgtfUxQDcGnIro71H17+/JMGsZcrrLDsadi+jv1t/nhuu9Mh9dPwjtiaJsmudQUpxCrf/fTvTf5/OO8feZ0dhDH+VxPJFWSyP5exk7qoJ7PvjLijNae+mdhkiUGsvVfPU/HKTsVRbUm4sJ6k4qcUOn3Ymn12/nGHDFyf5/e0jbP02moyzhciy3GLn6Oj2pe8jpSQFW60tU/2m1r9T7Gbl396TQHXpL4ehnkOxVFuSUZrBaa8Q5UaxoEDoSmQZtr0BwKeBI0gry6SbTTfu6XdP4/ezcYUrlfux9wMoy+OagGu4MehGAF7c+yIFFQWt2HDhUm1J2sINa27gcOZh1LLM8PJyniyu5FFdd+Za+2EnS8TotNxdsJ8Xv58ketdaiAjU2kvVyk91zmn6OPUBWmZBQV5aKX99eJzf3z7K8c3JxB7KIu1MAVG70/n1zcOs+u8BMuM7aHmtFvbL6V8ApcSTtda6/p2qV3v6X9Ei57TUWDLcazgA23RVNybtVYZYBaErqOpNi7W05uvyRACeHvp0w6+x84VcC+4hoC+CPe8D8Njgx+jl0Iu8ijzeOvRWa7ZcuARfRHzBw1sfpthQTP8KPetS0vjccRg3L9jNghvX8eycNfw1dxs3dRuLSoZfdWae+2kGJtGzdslEoNZeqnKpUZRCkEMv4NLnqUXvSWPVKwdIiMhFUkkEjfBk9JwArlgQTOBwTzRaFXlppax+5wiJkbmXegUdkizLmMwyOeU5NUMpcwIbGPYsSofMCECC3hNbrA3Vqz935J9ShnoMZZBysMWOLwjt5rzetA96hGCUTYzvPp4JvhOadn+VCib+n/L7/k+gJAudWsdLI19CQuLPuD/ZmbKzlRovXKw/Yv9g2ZFlANxaVMLy9Ey8Rj8Bc79TekqrOFk58/SUD3lz0OOoZZk1GgNP/zQNY8Xl0TnQWrpMZYJOx8pRWflZkkGQ1hG4tJWfxzYnsfsXJRebX5gLI6/zx8nTpmZ74DAlaNv0ZSRJUXms+/AEE2/rS+Awz0u5ig6hrNLIDweS2RuXy+HEPEorTfTqvQ+jykioS7+aHss64v5R/vUeCDYuLdaekV4jATiZe5LiHiOwi/pT6VWrTtlxOagsU+YiaaxAZwMO3RsdWi6pLOFgxkHii+IpNZRSZijDXmePh40HXrZeBLsEY6+zb8MLEOqVdhSS9hJnYcWWykwkJB4Z+EjzjhE4XZkPmnYEdr0DV75OuHs48/vO57vo73h538v8cfUfTeuhE1rdvvR9vLjnRQDuKDXySG4eBM+GcU82uEp+atitqM0mHj/6NutVFfT46w7uv+6Xtmt0FyMCtfbk1gdKMgiuWkNwKu8Usiw3u7TKgTVnOfhXAgADJvsy4tre9R7D0kbL9Pv6seXraM4czGTLiigc3Kzw7OVwqVfSbpLzyrj7m0Ocyig+71YzycatqHRwOjaU48kF9O/uWPfOsUrajpYa9qzWzbYbvna+JBUnccjJkwmgpDK4XMT8DWsfgeLzaju6BcHVH4HPoJqbZFlme8p2VkSu4HjWcYyysdHD9nToySCPQYzxHsPwbsPFB3l7OPodAF/6BoExl0m+k+jl2Kt5x5AkmPgsfHctHPwSRj8Ctu48OOBBtiZvJbUklS8ivuChgQ+1wgUIzZFclMwjWx/BKBuZhi2Ls6KUoevZH10wldEV/Rfwckk6z8T+wGfFpxgauYohIQ2kSBIaJYY+25OrsqDAvyQftaSmQF9AZllmsw5xam96TZA2fHYvRl7n32igp9aomLwgGP/B7sgybFoeRWVF4x+QHdWuMznM+mAXpzKKcbXV8fS0IH67bySvz7dApctHMluRm9mXOZ/u5ZfDKbXvbDJCXNUqsxYO1ACGdVMqE+xXVf1tUw4ow0ZdWWUp/HoX/DBXCdIsHcDaFVRayD4FX16hFOw2VhKZG8kdG+7gwX8e5HDmYYyyEV87X2b2msmNQTdyR+gdXN/nekZ7j8bH1geA+MJ4fjn9C4u3Lmb0qtEs3LiQb6O+JbEoseUuocJIemwBBVllyOYu/ng1l6EcTv5CikbNOmM+AHeF3XVxx+o9EbwHKYmmDy0HwFprzeNDHgfg68ivSS1JbZFmCxfHLJt5dvezlBhKCLftwX8TolCpdTD3W6WXvAlmjXqG2WoXzJLEUwdfo6C8a065aW2iR609Va38tMiJpZdjL87knyE6NxpPm6YNR2bEF7JtpVJLcvB0PwZd6dek+0kqifE3BZJxtpCi7HJ2/XyGibfUk2OsA4tKK+KOrw9SaTTT38eBT24ZRDcHKwC+/ucvAOYEziZR5cPm6Ewe+/k45ZVGbhnhpxwg7QhUFIClY4uk5fi3Yd2G8fPpn9lffBbUOijLhbyzF1XwvdP46zGI+BkkFYx4AMY/DTprKMuD9U9CxE+w+13W5J3g+coEjGYjFmoL5vedz5w+c/Cx82nw0HkVeZzIPsGetD3sSNlBakkqe9P3sjd9L28efBOduRse6oHM6jOFhUPHoVapm9xsk8HM0U2JxB7OIjetFKriM62lGs9eDgyZ7kc3f8dL/ON0Aaf+gopCVnTrjgkzI7qNIMQ15OKOJUkw/D749U44VNWrptExsftEhnkOY3/Gft45/A5Lxi1p2WsQmuz76O85knUEK40Vr6clYyEDI+5v9nvY0zNWcOzX6SRo1by4bgHvXvdn6zS4CxM9au3JtWruVE4MfZ2VQKmp89RKC/Ss/yQCk9FMz/6uDJ3Zs1mntrDWcsXtwSBB9O50zh7Lbtb921Op3sgD3x+h0mhmXB83flw0oiZIyyzNZHuKkrdsfvA8PrtlEPeMU95YXloTxd64qm90NWk5JoC65b+vDPUcqpym8Cw53aoSgHblBQURv8Dx75Ug7ebfYMp/lSANwNoZrvsc+bqv+MzRgWcqYjGajUzyncTaa9byyKBHGg3SAJwtnRnffTzPDHuGe3p9gTbtKSoyZ2As9UeWVVSq0kmW/+KjmMUM+nos9214mh0pO9Cb9I0eNz22gB9fPcD+P+PJTVWCNBsHHWqNCkOFieSoPH5bcoSNX0ZSkt/4sbq8o9+Rp1Lxu6USBN/d7+5LO17w1WDXDUoyIfJ3QEka/fiQx1FJKjYkbOBw5uFLbbVwERKLEmsWDzzmOACf3ARlTvWY/zT7WNZOfrwVeBsaWWZLSTw7zq5v4dZ2fSJQa09VPWrkJxDkoAQTTQnUZLPMpuVRlBVW4uxlwxULgpFUzS995N3HiQGTfQHY/WssJlPnKOPy3B8nOZtTiqe9Je/MDcdSe6735LfY3zDJJga6D6SXYy9UKoknrwzk6nAvjGaZ+78/QnJeGZypnp82uVXa6GTpRJCzsrJ3v2t35cbkA61yrnaXn6DMSQMY+7gS/NbjPUMK7zsp8yEXFBSx1GVUk3uPAcxmmbc3xvDwj8fJK3TEyXAFd/Z+g7eGrmZuj6foYTES2WSJSVXEzoy13L/lfsasGsMjWx9hTdwaCvWFtY53Ymsyv719hPyMMqzsdUy8NYjb/zeK2/83mruXjWXus0MJHu0FEpw5mMlPrx0gO6m4gdZ1cQXJcHYba2xtqMRMsEswgz0GX9ox1VoYcqfy+76PaqYGBDoHcl3AdQC8dfCtyyr3Y0cgyzIv7HmBClMFw90HMuf4WmXDFS+Chd1FHTNo1OPcbFDyFb25979UmkS6ouYQgVp7svUACweQzfTVKCvampJL7fg/yaTG5KPRqZi2KAyd5cX3CA2Z0RMrOy1F2eVE7+74yQn/OJbKb0dSUUnw3o0DcLbR1WwzmU38duY3oHZKDkmS+N91/QjzdiCvtJLHv/4HOe2ostF/Uqu1dZhn1Tw1bdUNKV0wUJNl+P1eJS9W92Ew9ol6d1sfv54vIr4A4Cm7UB7NL0D15wOQG9ek0xhNZh5adZT3/1FWNt8zrjd7nprIY1MDmRbck2fHz2ftvE/ZeN1WBlk8SWXecMwGe8qN5WxO2swzu55h/I/jeeifh9iatJWTu1LY+eMZkCFouCc3vTCMviO9sHGwAECtVuHqY8uEm4O44ekhuPjYUl5sYPXSI6Sezm+BP1wnc/wHZGR+cVZqE1/f5/pmL3qq16AFoLGE9GNKlZAq94ffj7XGmsjcSDYnbb708whNtilxE4czD2OptuQl3JEqS8BrAPSbe/EHValYNPQxXI0mEo3FfHvi85Zr8GVABGrtSZKUlZ9AUKXyDSOjNKPR7Ny5qSXsW30WgFHXB+DocWkr37QWagZP9wPg0F/xGCs7bhmrCoOJ19cpgeziSX0Y2tO51vZdqbvIKM3A0cKRyT1q95RZatV8dusgnG10uGfvQUIGjzCwa730JDULCspSlWlPmZGgL2m187WLs1shaY+ShuPaz+sdRo7Ji+H53c8DsCB0AfNnfwc9x4GxAv58CMwX7sl9ff0p1p5IR6uWePP6fjw1LQiNuu7bl5eDLcvnzueu4P9QGvs0pfEPMNTxBvo49cEoG9mavJVlP3/Ftu+U51HoxG5MvK0vljbaOseq5uZrxzX/GYhXgCOVFSbWvHec5FN5Tf0LdQ0nf+OwpQUJkhErjRXTe05vmePauEJY1Zeq/efqfbpYuXBryK0AvH/0fYzmzrngqbOpNFWy9PBSAG4PnIfX0R+UDWOfuOTKLbZhc3nEYAnApxFfkFnavIVzlzMRqLW3qpWftvlJdLdThsgaGv40Gc1sWh6FyWimR5gLIWO8WqQJIaO9sXO2pLSwkohtHXel1Yo9CWQUVeDtaMU94+umBPj5tFLX86reV2GhtqizvZuDFS/MCmac+jgA+V5jW7W9gzwGoZE0pJVlkuLoA7JZWcTQlexU3tQZdBs49aizubiymMVbF1NhqmCk10gWD1gMKjVc9R5orSFxFxz5utFTrD6aype74gFYNm8ANwzu3uj+kiTx2JRAHrkiEHOFD1v3DeTx0M9YffVqFnjey8TYW5FQEeW+h+fN9/Dz6Z8xy40HixZWGmY91B+/fq6YjGY2fHaSgsyyRu/TZeTEQnY0v9opw17Te07HRtu0VX9NMqRq5eiptVB6blXgbcG34WjhSHxhPGvi1rTY6WRZJjethPjj2Zw5lEnM/gwKsi6Tx/ICVkavJLUkFTcrNxaUVip1kN36Qp8rL/3gKjUzRz5N/wo95bKRj4+8d+nHvEyIQK29VfWokR1TM6epoUDt8N+J5KaUYGmrZcLNQS0z9ACotSqGVC1GOLwhgcryjvfttaCsko+2KsNe/5nSBwtN7VV9GaUZ7ExVMppf3+f6Bo9zVT9PrtCeBODdBF/MjaRgqCg1ELU7jb8+OsFvSw6zeukR/vrwOMe3JFOUU37BNltrrenn1g+A/R5+yo1daZ5ayiFI2AkqjbLKsx4fHP2A1JJUvG29eXPsm+dWYzr5wSSll41Nz0Nh/V8QTqYW8tRvJwC4f0Jvpod1a1LTJEli8RUBXD/IB7MMi1cdxR5vuu0fhFpWo+ulJ67fbvL0efx333+5ed3NDVcGMVTAoeVotr7AVK/leDrmoS8z8tdHJ6goNTSpPZ3aqTUUqlRstFWCs8ZeXxfFKxy69QdTJZxYVXOzrc62Jv3Hh8c+vODCkAupKDFw+O8EVv33AKtePsC6jyPY+EUkm5dHsfL5fax8YR/7/ojrkO9/bSGvIo/PTnwGwEP97sH6gDJVgdGPtEgdZABV6LX8x2QLwB9n15BcnNwix+3qRKDWiPfCIAAAnotJREFU3qp61Mg5XbPy81Ru3XlquaklHF6XAMDYuX1q5tK0lMDhnjh6WKMvNRK9p+PNVft4WxxFFUaCPO24Oty7zvZfz/yKWTYzxHMIPR0aXgErZZzAwVxAqWzJ9+ndWHWw7huFQW9i28pTLH98F1u/PUXCiRzSYwtJPV1AQkQuu34+w7fP7uXXNw+Tdqag0XYP8lASvB6xULr8u9TKz+retH5zwbFuL1dUbhSrYpQP3hdGvICDxb8SKw9dCD5DlfltG56uc3+90cTiVUepMJgZH+jGo5MDm93El68OobebDZlFet5/9yB5aaVY2eu4+d5JrL12DU8NfQobrQ0RORHc9NdN/HDqh3OT12VZWc36wRBY+zDseR/Nsa+Ypn0UW1UWBZllbPxwb6PBfpcQvYa1ttZUIhPoFEiIy0Wm5GjMQGWYkyPf1Mo3OC9oHh7WHmSWZfLjqR8v6tCyLBN7OIvvX9rHvtVnyUsrRaWRcO9hh3cfRzx7OaBSSRRklnF4fSIrX9xH7OGsy24Rw+cnPqfEUEJf575cVZAPZTng6Auh17XcSVRqBgx/hJFl5RiR+ez4pxe+jyACtXZX3aOWc4a+TsoH0fk9avmllaw/kc6PHx7DbJbxCnbCf7B7izdDpZLoP0n5sD2xLaVDJfvMKqpgxZ4EAJ68Mgj1v1a4Gs1GfjtdtYigTwN1PatVpeXIcR+BAQ1vb4yhuOJcr0h2UjE/vXaQyJ1pmM0yLt62DLuqJ1cuDGXKXSGMut4frwBHJAkyzhby+9tH+OujExRm19/DVhOoGarmNKUc7BqJb7OiIeYvQIJRD9fZbJbNvLrvVcyymWl+0xjhNaLuMVRqmLVMSekR9Qck7K61+ZNtZ4nLLv1/9s4yuopzbcPXbI+7KyFESCAEd3d3bQstFdpS49RdaU/pKTWoQKlQwd3dPSSEuLu7Z+v3Y0IgDYEEAqX9uNZiJWRmvzPZSWaeeeS+sTVV8sWMTo1+7s3BWCHjm9md8dJLccgRf86DH/TDyEyBTCJjjv8ctk3cxhD3IWgNWhafXczbp96mtqYU1swWdb5K08DMGXo+DQNfx7jLOMbYfIpMqCE9SUvY2iMtPq9/DGVZkBnCVlMxCzK53eRWy+Q3oMM0sRSeH9Mg66yUKnmq01MArLi8ggp1y3o81dVa9v4Qwd4VEVSXa7ByMmHQg3488mlfpr3WjYmLOjPl5S488r9+DJ8fgIWdEVWlavauiGD/KrHN5P8DeVV59a0jzwc/g+TMMnFDn+daX76ow1SeqhavgdsTt7eqYPW/lfuB2t+NpQdIlaCrxU8mXgxTy1I5Ep/O+G9OEPzBflatCsdQpKYGA29mZDFx2Umis1vf5Na3hyNKYxll+dX3lGn76jOp1Gr1dHa3ZKCvXaPtxzKOkVedh5XSiiHuN5niTDgIgGu3cXjZmVBYqWb5EXHyMDm8gA3/vUBJbhUmlkomPN+JmW91p+voNrTtbE+7rg50GurOpP90Zu4nfQjo74IgEUgJL2Dth+eIOZ3d6Cm8k30nJIKEzJoCcuR1wrelGY1O6x/HObFEgv/Yqw8b17ApfhPhBeGYyE14sduLTa/j0F6c/APY8yroxWGWpPwKltWVut8e1x5LY0VTK9wUHztTphrEsl20sR5zr4aeofbG9iwduJRFXRYhESRsSdjCgrVDqYrbLU4kDnoTngmBkYth4CswcRm2L2ykX9tTAJw9qiH/4r9U7ytmJ8lyGdFKBTJBxqg2o+7McVQWEDBJ/Pzirw02jW87Hk9zT0pqS/gl6sb9jNdSVaZmy9JQEkPzkUgEuo7xZMbr3WjfxxmlccPhEaWRjHbdHJj5dne6jfFEIhGIP5/LzuXh/1jnlpbw4+UfqdXVEmwfTK/KSihJFcXAg2a3/sHkRgR1eIB+VdXo0PP9/azaTbkfqP3dSKRg2w4A27I8bFS2GDAw/49thGeUYq0T6FcrXlSiHSRUS+FSRinjvznBssMJaFtR+0yulOLfRxxQCD98bwQTNRodv59NA+DRfl7XfZr/M0acTJrYbiIK6Q1u6NUl9U/r0nZDeX2UWGr+8UQyl8Jy2bciAr3OgGdHW2a+2R1XP+smlzKxUDJwti8z3+qOk7cFmlodB3+JZt+PkQ0u7CZyk/rew4t2dSXZ7LDmfvv3Jlp1vUApXec32lyjreGb0G8AUWbB3vgmGeBBr4syNTnhogyEwcAbmyNQ6/T097FjXMfm9aU1RcTRTAzlGmqlsE9ey6d7GrcWCILAw4EP892ApZgaBC5QwzNOjlTP+hMGvHRVvPcK1m3wf/YNvKzi0SNj30+xaHISbus870mit7HbRAxyezn3wkpldeeOdaX8GbkJaq4+iMoksnrfz18jf6WwGTZEZQXVbPoshPy0cozM5Ex+uQs9xnkhld/4lieTS+k+zosxCzsiU0hIjypi6xdh1Fb9e3sRcypz2BAnGqY/1ekphPN1vWnBDzT+vW8tus3n6RLxZ7wzaQdpZWl35jj/Eu4HavcCdQ4FJWkRlJU6ACBRZTGrmxsvW9shNYBbe2tWvDuQM68PYai/AxqdgSV7Y3lpQ/h1eym0xcVUnj1H+aFDlG7fQeWpU+hKSm56Kh0GuCAIkB5VRFF2Zat+m7fCtrAsiirVuFgaMby9Q6PtSSVJnMk+g0SQMMP3Jjo/yUfBoBPfbysPhvjb07utDSa1Bo6sjEKr0eMRaMPIJwJRmTYt13At1k4mTFzUmR4TRHHdhAt5bPjkAsU5V9+7zvaiRVWImaX4haywZq19z5JwAKqLRaXyNo0nZzfGb6SwphBnE2dm+jXDhNnEFgbU6a8dfJ9dIQmcTipEJZfw0cTA2yq11VRqOL9TnBj1G+aKWoA159MJTbuOFprBQK+zP/NtdjbGegPnlHKeSfyjySZ2QWHEoBenYSwro0TjyOnlm5olNfKPoaoIQ8pJdpmKN+s7lk27glsPsWdXUwURGxpsGuI2hDZmflRpq5j8xwcM/t8Run54gNkrzrBkbwxnkgrrr4OVpbVsWRpKaV41ZtYqJr/YBQdP8+sdsUnc29sw4YVglCYy8lLK2Lsi4h8jCN5SVl5eiVqvpotDF3oo7OraQ4SrYsR3Akt3AtoMo29VNXoM/BLZ/Ezp/0daHKidOHGCpUuXsm/fvkbbnnrqqVY5qf931DkUHDt1kooyMRgZ2knDDAtLClPLkauk9VOe9mYqVjzUhSVTOyKVCGwOzWTpgXgANLm55H/1NclTpxHfuw9pc+eS8dTTZL30EmmPzCeuZy8Sho+g4LvvmgzazG2N8OxoC8DlvzmrZjAYWHVSvMk+1MvjurpZV7JpA1wH4GLaeMigAfVuBKIJuyAIvDLMhymVCmRaA6bOxox4LBDpdY5zIyQSga6jPJn0YmdMLBQU51Sx4ZMLJIcXANQruF8U6m74//SMWnhdU3fgFDEjfA21ulpWXV4FwPwO85FLmhfw0v1xsPaCilwK93wCwFMDvXGzvr0n+vM7kqmt0mLjYsLI8e2Y0lm0qnp7a2TjIYATSyFqK500Br7r8ipGMiPOZp/lozMfNdlYrrKxZshD7QG4nNeZnP0bb+t87yni9xMll5Aql6OUKhnsPvjOHk8QrmbVQsQbt8FgYGtYJiO+OE5kRB8ACiVHSC7OoKCillOJhSw7nMjMH84wa8UZLsQXsHNZOOWFNVjYGTH5pS63rDXp2MaCCc8FI1NKSY8u5vja+H/dgEFeVV69SPjTnZ5GuLAKMIjXSOvGEkitSvfHeaRUzKptSdhCQXXBnT3eP5gW3ZG+//57pk6dSkhICAsXLmTw4MEUFV0Vfvztt99a/QT/P5AhFZv4XXVpOKq8AagoLOTM1jph2ynemFmr6vcXBIFpXd34aGIgABu3nuLUE8+TMHQYBcuXUxMRAQYDcnd3VB07YtyjB3J30SpKk5ZG/hdfEj9oMLmfLkFfU9PofDoMEm9mcedy0PyNArhnkoqIySnHSC5lZjf3Rtsr1BVsSxQNfmf736SXwmCo70+7EqgBlJ4twEovoUzQc8ReLP/eKo5eFkx7vRtO3haoa3TsWh7OuR3JdLLrBEBCbRElEomYUfunXvBrSiFuj/h5x+mNNm+J30JedR4Oxg5M9J7Y/HVlChj+IQAzNFvpYFLKo/1a5l/7V0pyq4g4Ksp+9JnaDolE4NVRfpgqZVzOLGXn5Wumm+MPwMH3xc9Hf0pwxwf4YuAXSAQJmxM21zdaXw/37j74ehUDEo7srEZX8S9xLkg4wO46SY4BrgNaVzutKYJmgUQO2WHkxp5l3k/neW5NGPF5Fcg1vlhLAhAkOob3ucSWp/uweFIHJnd2QSGVcC6xiDVfhpKfVo7KVM64Z4Mwtbq96Xg7dzOGPyJ6Ikcey7xnWkJai9VRq9HoNXS270w36wAIrbuHX9G2u5O06U9XEzc61NSi1qv5I/qPO3/MfygtCtSWLFnCoUOH+O2334iJiaFHjx706dOH9HRR4uDf9rRxN8grq+HVY2KmxUeazYoZ4xEMAp6hvdFp9Lj6WYl+g9dhegc7vqw4zbcHP8Pq6F7QaDDu2hWnxYvxPnoU7317abNuLR6//Iz3vr34nDuL86f/Rennh6G6mqJVq0ieMpWa6Ib6Ua4+VpjZqFDX6Ej+G83afz4lZtOmdHHBwrhxZmZr4laqtFV4WXjV2zU1SV40lGeJCvoe4pN5VnxJfdbwoKmWwymFnEq8vac6EwslE54PpsNAMdg9vyOZMz9n0s5YzJqGqozEsfeyrNs6zt9G9HbRUcDWR9S+ugaNTsOPET8CogPBDfsFr0OF53DOEYhS0PC13VaMFbc3bRayOwW93oBHoA1u/mK/oZ2Zksf6iZmCz/fHodHpMZRmUrPyMUqSVOQX9SV7exq5ny7Bd18c76pHYlJt4ONzHxOWF9bksfo8NhKVtJJCtSthP96ajMQ9hV6PPvEgu03EbNRor1ZyIrgZJjbigApw8I/POBqXj0IqYdEwH869MZRvRr4BwJn8fZiZFTK7hzufT+/E4ZcG8qiFFW20UtQYOOsqwWDSOtOKbYLs6D1ZfIA+tSGB3OTWH+T6OyitLWVd7DpAzH4TuRlqSkRJjnZ3xgO5AYKAEPxAfVZtTewaKjV/f7vNvUiLArW8vDz8/MTGaIlEwscff8xzzz1H3759iYiIuDNj2/9iqtU6Hv31AufKrdEhwdRQiY9SQbf8ETiWt0GqEBj04PWFbSvPniNp7Dh8DmxEbtBx3sGP76e/jtuvv2I5eRJyh8YN3FJzcyzGj6fN5k24Ll+O1M4WdWIiKdNnULLxaslGkAj49RStlWJO/z2aagUVtRyMzgPgoV6ejbbrDXrWxIgaXbP8Zt38d69OlgPPviBXoVHrOPSrGKD693GiT18xsPp0T+xtP3BIZRL6z/Rh8EP+SGUSUsILGHB+HpZVDly0qrOs+qeWP6+UPTtOF0tV17AreRfZldnYqGzqTbVbwsoTybxd+wA6JHjm7IG0M7d8mqX5VcSeEy1qrog5X2F+vzbYmCioTEvn5EvvkDhiFMlbVWSfs6JgXxIla9dStGoVef/9L36fbePHL3W89UsNWz9dQGlJ3nWPZ2RlQp/hYsbpfLQHJbFRt3zu9wRZoYTqKsiTyTCTm9LPpd9dOazBYGCbdDgAYzlBb3cjdj3Xj2eHtMNcJaeDXQeGug9Fb9DzdejX9a/TpFdikSZWBw5aaNmXU8Kk5afIKW1cMbgVOg11w7urPXq9gX2rIv8Vk6BrYtZQpa3Cx8pH/PlecQjpMq9RS8MdI2gWg6rVeKo1lKvL64ca7tOQFgVqbdu25cKFCw2+tmDBAj799FOGDBlCbe3tKUf/f0KvN7BoXRjhGaWYGBujtxDtd0rjYumUIj7NGPevwNzGqMHrDDod+V9/Q9rDD6PJzETm5ITxp5/zyYAn2KK2Zt2Fmys9C4KA2eBBeG3diumQIRg0GrLfeJOiX6+Oxfv2FCft0mOKKS9qnYtdS9gSmolWbyDIzRIfB7NG249lHCOlLAVTuSnj2o67+YJXArW6smfI7hRK86sxsVTSZ2o7Fg5uh5FcSlh6CfujWseDzr+3E5Nf6oyplRJZmTGTLy8ipVIcLPhHDhSU50Ky6P5Q7894DWtjxSBujv8cVDJVo+03oqRKzcrjycQY3MnwrFO+3/PqLTfnX9idikFvwD3AplEjuaqilCW5B1l54L847NqApkSDIDVg0jUIy2lTsX3qSaznzcN8zBgU3m2RGMA/A6bvKCV56DDyv/4GXUVjPS/f8YNwtcxAh5Kjv17+Z1cYEg5wwES89gx0G9Ti7OitoNMbeH3zZZ47Z0aa3g5zoYrVPXPwtjdtsN8zwc8gESQcTDtIeH44FcU1HPxZfOjqOMiVJc/3wsXSiOSCSuauOkdp9e1PbAqCwMDZvphaKynLr+b42rjbXvPvpFpbze/RvwMwP3A+Qn4spJ8FQQqd5ty9EzFzROo9lLllYlbt9+jf74ivq0Fv+Ef/PbYoN/z8889z6dIlunfv3uDrM2bMwMrKik8++aRVT+7fzGf7YtkdkYNcKvD9g12Rn/FHV5LGwW2VSHRGZJjHYeycD1wNQjS5uWS9+BJV50V1e4spk3F8/XUkJiYsskriw53RfLw7hqHtHbA1vXlvhszaGtdvviZvyWcUrVpF7uKP0VdVYbtgARZ2Rji3syQrvoTYszl0HeV5h96JxhgMBtZfEEuS07q4XnefnyJ+Erf7Trt570xtBaSdFj/3HkplaS2XDogBbb8Z7VAaybBDxiN9PVl2OJHP9sUyxN8BiV6HOi0ddVIi+upqECQIcjkKD3cUnp5IVDcPRuw9zJn2Wje2fxdCQRL4xcxmj5EzA9OiaFkocw8QvxcwgHOwaAF1DZGFkVwuuIxMImNyu8ktXvqnkylU1IrOE+5TP4KvdkNWqJjB6zSrRWuVFVQTeyYHgG5jGp5n2e7dZL/zLk51NwaVvRqbdhWYPvwekr4LrrueJjOTyM0/Ufzb7ziWqClYtozidWtxePkVzMeOqc/mCoLAgBltWfN9GRmFdsQejcNvYMvdFO4FDAn7OGwslj1vqk3YCuj0Bl5af4lNoZlIBAkFPjNwT/gGadhq6Nyw/9TL0ovxbcezJWELX174irFRT1JTqcHO3Yzek72RyiWsebwnU749RWxuOY/9eoFfH+mOUgK1sbHUxMRSGxeHrrgYg1Yr9vM6OyH38EDl54cqIADhOpZJSmM5wx4OYMvnF4k5nYNHoC3eXVpffLw10er0FFWpqVHrcbBQ1lvvbYrfRHFtMa6mrgz3HA773xFf4DsKzBzv7kkGP8DY9fv42tqa7MpsDqQdYKTnrXuLVpbWkhVfQlZcCQUZFVQU11BZqgZAoZKiNJHj4GGGk7clbv7WtzxscjdpUaA2d+5cANatW3fd7QsWLGiwbfr0xs3G94ENIRn1IqufTO5I9zbWkODD2QpbciqNkCgMHG37J57FV6cYK44dI+uVV9EVFyMYG+P07jtYjB9fv31eb082XcwkKruMT/fE8OnUoEbHvR6CIGD/0otITIwp+Pob8r/4EompGdYPzMGvlxNZ8SXEnM6my0iPu1bavpxZSmxuOQqZhHEdG/fnheeHczHvoqgs79eMp7+U46KPoKUH2LTlwp9xaDV6HNqY49XpqoDu4/3bsv54PK7nj3JxxgrMYsIxaJp4GhcEFG29MO3TB5M+fTDu2ROJ4vpZB2NzBVMWdWfRko9pl9qTxOqB5JwPok/7HLy7OiDcguL+30LcXvGjT2OZhiu9LsM8hmFjZNOiZctrNPxUN937zOB2CKb2onbZ/rfh4HvgPw6UpjdZ5Sohe8Rsmlt7axy9RNsqfWUlOR8tpnSTOOGm9PfDxCMRe4ssjkm60r3boxg1sZ7cxYVOC9/ko2A9qdvWMueEBPv8ArJeeomSDRtw/ngxcmfx99SyU2+6ubzFmczBnNyUgkeXNhiZ3flsVKtSVURs/mUynR1QShTXd5VoRbQ6Pf9Zf4mtYVlIJQJfzQyms2dnWLoc0k5BflwjUeWngp5iZ9JO9CHWZGWUIldJGf5oQL1Ompu1MT8/3J0Z352i9txZth/7jaCUS+gKb67BJrWzxWzgICwmTcK4c3CDbc7tLOkyypMLu1I4tiYWV1+rZkv53A10egPnU4rYdTmbg9F5ZJVW188tCQI4masIdDElSiZOZj8c+DAyvQ4uidPz9VO3dxOfkaiMrJleWsZ3Vhasjlrd4kCtpkJDwsU84s7lkJ1Q2uR+tVVaaqu0lOVXE39BbGNw87eiwyA3PANt7tlr8S11Wy5btozTp0/j6OiIq6srGRkZ5OTk0Lt37wZPl/cDtcacTSrktTqT6YWDvJlSlzFKruxIaKUoJhk8w5HlCUXEFlWgrq2i5OvlFK4Um7SV/v64fP4/lG0a9t3IpBI+mBjIlG9PsfFiJk8N9MbTtnlTWoIgYPf00wgSCflffkXu4sXIXV1o27Mvx9bEUppXTU5SGU5tLW6+WCtwJZs2IsDxukMEP0f+DMDoNqNxMGmsrdaIK7Ic7YZRkl9N1Amxkb/XpLb1v6/6qirUq35i1faVSGvFUq8BEIyMULZti9TcHINBj6GqmtqUFPSlpagTEilKSKTol1+RWlhgPnYsFpMnoWrfvlFQK5NJkfcqZqvZl0yOnUWlxpF9q6IIPZBOzwleuPlb37MXCQC0tZB4WPzcZ0SDTaW1pexK2gXATN9m6Kb9hV9Pp1JWo6WtnQkjA+ue5nssgAuroDgFTn4Jg99o1lqVpbXEnBH7KruN9gRAk5tH+oIF1EZHgyBgs+AJ7LzSEEIOUYgVL1Q/ylPn0ni0343lCJ7v/h8mZ5/keZ9M3knpit/2CKrOniVpwkQc33kHi7FjQBDoNLEb8d8nU6huw8l1MQyd37HF78nfSuIhDhmJ+d7eLn0wlt+5jINeb+DljeFsDctCJhH4elYwozrUCRy3GwFxu8XeqREfNXidk6kTs80eRZUhBnADZvtgaX/1PA0aDS7nD/PnuRVIU8SHYh0gMTND1b49Sl8f5A4OCDIZBr0BTWYm6uRkqsPC0OUXULJ+PSXr12MUHIzNY49iOmhQ/d9011GeJIXlU5RVyYkN8Qyd1/6OvT8t4UhsHh/siCIxv2FDviCAQiqhVqsnq7SGPE5i5JyHQWvKuXAvBhRuxKGqULRJa3vns6eNkCmg4wxmnPuOH60sCc8PJywvjE72nW760sKsCsIPZRB7Ngedpq5NQgBbV1Oc24k+rmY2KkwtlYCAplZLRUktOYmlZMWXkBFbTHq0+M/e05yBs32xc2/cavN3c0uBmr+/P9OmTWPhwoX1X1u2bBkRERF8++23rXZy/zZSCip54rcQNDoDozs4smiYeJEpza/m4BExSOtocZDuvT/AJNUEZWEFiQ8+AOFi/4XV7NnYv/IyEuX1y5pdPKwY5GvH4dh8vjmcwGfTmpdVu4LNggWoMzMp3bCRzEX/wfO31XgF2xF3Npf4C7l3JVCr0ejYGiZKKlyv7Jlels7BNFFmY17AvJsvaDBczQR5D+PctiT0db1LLj7ie166fQd5S5agzctDCuSY2bHPpTPBD01h2sQ+jcogBoMBXWEhVSEXqTxxgoqjR9Hm5VH8++8U//47Sh8fLCZPwmL8eGTWV90NOtl3Yp/ZPqI7LGVuXEcuqmeTn1bO9q8vYW6rwr+3M22CbLF2Mml20KbXG6ip0FBdrkar1iORCcjkEkytVLclNdKIlBOgqQQzp0bTntsTt1Ojq8Hb0ptg++AmFrg+VWotP54Qs2kLB3tf9fOUKUW5jrUPwKmvRJV0K4+brhdxLBO91oBDG3OcvC2pjY8n7Ykn0GZlI7WxwWXp55hYlsAfb4v7d1tM0XFzvj+WxAM9PVDJm37PTOQmvN7jdRYeWsj7PpFs+eM7dO99Ts2lcLJefJHKU6dwfPstpAFjGeQ6kQ0pzxF7vgDf3kX1U6f/CBIOcMhYzC/eSe00g8HAu9sj2XQxE6lE4JvZna8G6gBd5oqB2qU/Ycg74g29jqoyNVanAqlBS7T9abztNfjihMFgoPzAAfKWfIYmLQ0poFOq2OcYxGm3Trzz1oP4ejSd8TWo1VSeO0/Zrl2Ubd9OdWgoGU89jXG3bji8+QYqX1+kcgmDHvBj45IQYs/k0K6bAx4BLcsitybZpdW8sTmCQzFihshMJWNEgCNjOjgR6GKBtYkCiQAFFWqSCsr5z8lvKNWBuqgvG+JzmXB5OQ4SKPWbjkVr+3o2l+AHsD2znDEVlWwxNWZ11OomAzWD3kBqZCHhh9JJj74qhWPjaopvD0fadbXH1KqpxhIlVo4muNW5zpQVVBNxNJOI45nkpZSx/uPzdBjoSq/JbZHd4Fpwt7mln8qaNWso/EsK+YknnsDW1vZ+oNYEpVUaHvn5PCVVGoJcLfjftE5IJALVFWq2fx1GbQ3Yy+PorfoOSc1LjMp1ZOSvsVAdjcTUFKcPP8R85IibHue5oT4cjs1nc2gmCwc1P6sGYmbN6Z130GRmUnX6DBkLn6Ht4lXEnc0lMSSPvtNELao7ycHoPMpqtDhZqOjjbdto+8+RP6M36Onr0pd2Vu1uvmDOZSjLAJkRRUbdiL9wCYBek7zQV1eT8/4HlG4W7ZDkrq7Yv/giFyx8+XNrJPujahk7Vo+xomGgJggCMltbzEcMx3zEcAw6HZWnTlGyaRMVBw5SGxdH3if/Je9/n2M+bCiW06dj3L17vZ5aqErLV6YbaN/Dj5DyCcScyqasoIaz25I4uy0JpbEMO3czTCyVGJspkEgF9HoDWo2emnI1VeViYFZdrqamQnN9STYBzG1U2Lqa4RVsh1cnu9sL3K4Eu+2GN5j2NBgMrIsTy54zfWe2uDz+x9k0iirVeNgYNy5z+40Fz35i6XrbQnhwK1ynd+gKWrWuXjet01B3qi9fJm3+o+jLylB4euK2cgUKcyl8X9fz1GMBvYfPxDXiCBnF1fxxNo1H+t5Yu62/a396OPXgbPZZvspfz5LffqPg2+8o+O47SjdtojYmBpevvsJh8Hg6rNnN5aoxHPkjlllvdUemuHcu/E1iMJCRfIhYGyUSBAa6Drxjh/psXyy/nhYNuT+b1rFhkAbgPUx8MCjPhtid9V6gBr2Bgz9HUVOmBataTnpuJDX0DH3VHhR8sLi+h1dqY4P1Qw9hOWM6X25L4HxULk+vC2f7M30xV12/XCkoFJj27YNp3z7YPf8cxatXU7T6N6rOnyd50mSsH3wQuxeex9HLgo6DXAk/lMGR32OY/U7P1n0waiYXUopY8NtFCipqkUkEHu7jyTN1E7J/xc5MSXjxCUp1GZjJzfh28rNsPxRKv8zLAEw67cUYeSxPDmx729I4LcYhAJw68WBBJFtMjTmQdoDMiswGIubqGi2xZ3IIP5xBSW4VIF6KvILtCBrshmNbixZff8xtjeg9xZugoW6c3JBA/Plcwg9nkJ1YysjHAzG3baoh4u5ySxZSHh4e/PJLQ8uH1atX4+bm1ion9W+jVqvjyd9DSCqoxNlCxYq5XTFSSNHU6ti5LJzSvGpMrZWMdv0ZiUFL3qeLmf59LObVUOJhTZuNG5oVpAF0chONy3V6A98cbrn3oCCX4/rll8jd3dFkZSH9ZQlKIxlVZWqyE0pavF5L2X5JLEtO6ORyNbtSR05lDpsSxB6jRwIfad6CsWJJjraDCT0iPnF6BdthrisiZfoMMUiTSLBduBCvXTsxHzmCGd3ccbc2pqCilpXHk296CEEqxbRfP1yXLqXd8WM4vP0WqoAA0Ggo27WbtHkPkzhqFA6bT2FfLafUoCVFLsO4+AL9pvsw79O+DJnnj1t7a2RKKbVVWjJiiok9k0Po/jRC9qQSui+Ny4cziL+QR2ZsMUVZlVSXXw3SVCZyTK2VGJsrUKikYICyghqSwvI58FMUq146zpE/YqkqUzfvfbsWg+GqyK1Pw96RywWXSS5NRiVVMcZrTIuWrdHo+P6YKOr81MC2jZ0nBAHGfQlyY0g+Blc8CJsg7lwuNRUazKxVOMnz6oM0o06d8PjzDxRODrB+HlTmg30ADH0XuVTC04NEjazvjiZSo7mxwLMgCLzU9SUEBPam7OVScSR2zz6D+48rkVpZURMVRcqUKVRUeNDTajMmkgLK8qu5sCulRe/N30ZeNIcQb4JdHDpjqbK8I4dZdjiBZYfFkuQHEwKYFHydoSGp7OoE4jVG7aH700iLKkIqlzD+iS5YK03ptjORlMlTqDp/HkGpxGbBE7TduxfbJx5HZmnJkqkdcbE0IrWwio92RDc+1nWQ29tj/5//0HbnDsxGjAC9nqJffiF56lRqoqLoMd4LM2sVFUW19TZld5N159OZteIMBRW1+Dmasef5/rwxpn2TQajBYODHy2ILzQy/GfRt68Z/vcQH13BlZ5K0tnx9KIGh/zvK3sicuz8lGfwAPhoNPXRS9AZ9vQBuWWE1Jzcm8Mtrpzi2Jo6S3CrkKikBg12Z80FPRj7eASdvy9vqoTaxUDJ8fgBjnwlCZSInP62cdR+fJy3q5j2NdwPBcAs/jfPnzzNlyhRUKhVubm6kp6dTU1PDxo0b6dat2504zxZTVlaGhYUFpaWlmJu3zOetNdHq9DzzZyi7I3IwUUjZ8GRv/J3M0ap17P4+grTIQpTGMia/1AWTNVPJ3hhHdYGY4t8bLBA+qwurxq9u0TFD04qZtPwUUonAof8MwMOm5Yri1ZGRpM6chUGjIXnaf0nONyVwgAsDZjUxxVYQD8c/h8o8sZ/JyBL6LgKXzs0+ZlmNhq4fHkCt1bPr2X60d274c/vwzIesjV1Ld8fu/Djix+Yt+n1/yL5ExdBvWf2nE3qdgXEz7ah58yl0BQVI7WxxWfIZJj0bCuZuv5TFM3+GYqyQcuTFgdibt3xGszoykpL16ynbvgN9pdg3ohcgyl3A1rWKvm5K5O/GNniNXqenIKOCoqxKqsrUVJWq0RsMSKQCUpkEI1M5RmYKjM0UGJkrMDKTozKVN7K9qi5XU5RVSUZsMXHncynLrwZArpLSdZQnQUPckMqa+ZyWFwPLe4BUCa8kg+Lq79Pis4v5M+ZPRrcZzX/7/7dF78+vp1N4e2skLpZGHH5xIIqmzufcCtj1oihW/ORJsGnbaBeDwcCf75+jOLuS7n3NMP/6GfSlpRh17oz7ih+QmJjAntfgzHJQmsPjR+rXUWv1DPrsCJkl1bw7rj3z+tzcEeGdU++wKX4THW078tvo3xAEAU1WFhnPPU/N5csgCNgO8aDMRMee0leRSASmv9ENG5fmD0X8LZxextzwL7ioUvFq91eZ49/6Ug0/nkjmgx2iztyro/xYMKDxz7OeomT4qhMgwHOXyCm2ZNNnFzHoDQx6wA8v6xKin38SVZr4EKbo3wf3d9+vH+64lnPJRcz44TQGA/zySHcG+Ng12udGVBw9Stabb6LLLwC5HIeXXqI0aCS7vr1813++V/52AEYFOvLZtCBMlDfOgp3LPsf8ffNRSpXsmbIHW4UlLA2AihwM035hr6EHH+yIJrNEvFYM9rPnvfEBt23j1myqi+EzX44pBJ6xd6RdRTBTdU9TGFsuNgwDxRI9IUotEQodGgHkUoH2zhZ0dTFngHElHWoL0CQlosnIRJOZibagAH1FBfo6OR1BoUAwUiG3d0Du7ITCsw2qjh0w6tgRuYPY71xeVMOe7y+Tl1qOiYWCBz7odcey4c2NU24pUAPQaDScPn2a7OxsnJyc6NWrF3L5vTP9ci8Eanq9gZc2hLPxYgYKqYQf53WlXzs7aio07Fx+iZykMvGpcGEHlCe2kL/0cwxaPRKlDOHNRUyp+hxjmTGnZ59GIrQs+fnQqnMci8tnXm9P3h0fcEvnX/THH+S+/wGFtoFcCnwSIzM58z7pg+TaoMBggJCfYe/roplyAwQIngND3gXTm18UN4Zk8J/1l2hrZ8KBRQMaPCHlVOYwatMotHotq0asoptjMx4ISjNhaXtA4JTfMUKPFODgJKPDzpfQl5Wh9PPD7Yfvkds3HrE3GAxM/vYUoWklzOzmxidTbr0hXF9ZSdmePZSsW0/1pUsNtik83DDu1RtVQAAq//YoPD2QmrbsYm/QaNBXV2PQasV+OpkMibFxfW+dwWAgK66EU5sSyEstB8CprQUjHg/ExKIZFjsnvoAD74ilqAeuClJq9BqGrBtCcW0xy4csp59r80VR1Vo9A5ccJqu0hg8mBPDgdUSN69HrYfVESD4Kzp1h3k5QNLx5pEUWsv3rS8gVAn1C3kdSmINRcDBuK1YgNTWB8PWwqc4WZ+Yf4Ncw+/fbmVTe3BKBg7mSoy8NumGvGkB+VT5jNo+hWlvNsiHL6O8qmtPr1WpyP1pMyVpRU87UuYbwDk+RUtsFO3czpr7SpeHfzz1G4W+TGKyNRy8I7J2yF2fT67ui3Cq/n03ljc0RADw/tB3PD/W5ySuAXydA0hFqur3I2pODqSiqxbuLHZ21JylYtgy0WipMZfwwVI/DmIl82O+jJpd6b3skP51MwclCxd4X+jeZfWoKbXExOW+/Q/l+cUDJYsJ4Qt1mkRJRhJO3BZMWdb7jQ0F/nkvjtU1iufLx/l68OtKvWS0pT+x/glNZp5jhO4M3e74JMTthzWwwtoVF0SBTUK3W8c3heH44loRGZ0Apk/DMYG8e6+9VL+1xp1DXaMn86X1S4moJ1fRBqb16HUyR6QhRakmS6REkYFVTjm9hKn7FqfgXpdKuJB2V7vb08hTebTEbNBizYUOR+bXn5PoEfLo74tzO8ja/s6Zpbpxyy4VouVxO//79b/Xl/3o0Oj1vbo5g48UMpBKBr2cH06+dHSW5VexcHk5JbhVKIxkDe2qpfuEhSpPEEpCJYw1O04MQpjyI6o/lVGmrSCtLw9PCs0XHn9+3Dcfi8tkQksF/hvtg1sILEoDVrFlUnT2Hft9+5LpqqstF2yXXukZM9HrY/DhcrvNBbNNf9OqTKsSepsvrRO+45GPwyF4wv/FFf3u4WPYcF+TcKI298vJKtHot3Ry7NS9Ig/qyp9q5L5FnxKZTx6M/1JfD3L7/DqnF9QckBEHgzTH+TPn2NOsupDOvjyd+jrcW8EtMTLCcMgXLKVM4dm4De396h/6xBtyz9ahT01GnNrQckpiaIrO3R2JigsRI7JEwqNXiP40Gg1qNvrYWfVWVqO92PQkRqRSplRUyOzuU3t6ofH0YPaQjaWofTmxIJDuxlPWLzzPyiQ71EhZNckUs+C/TnqcyT1FcW4y1yrrFEg6bLmaQVVqDvZmSaV1v0jIhkcCEZfBdX8i6CBvnw/TVYmmsjksHRV08p7xzSApzULVvj9uKH8QgLWYnbKnTSOv7QqMgDWBaV1eWHU4gu7SGdRfSr+uGcS12xnbM9J3JT5E/8W3Yt/Rz6YcgCEgUCpzeexejjh3Jee89KrLAo3otWV2CyE8rJ3R/Gl1G3njtvw2tmqP5YeitTfE392z1IG1jSAZvbhGDtCcGePHckGb0mAJ0fxxD4hEOH1RRUVWLuaUMr4NLKAgTe9HMhg9H88w0zpx6EpK2Mc1vOkF21x+kemmEL4di8kgtrGLxzugWP4DJrKxw+epLin75hbwln1G6dRuegdlkOD1MdkIpMWey8e/duu/btWwJzeT1zWKQ9mjfNrw26vrONX8lsjCSU1mnkArSq0NYdcb3BM+pH9QwUkh5aYQfk4JdeWtLBKeTCvlsXxybLmbywcTA+r5hrUZHTYUGdY0OTa0OiURAIr3yT1L/ufSazwWpgE6jR1Oro6ZSQ0VRLeWF1RRkVpKXUkZBRgUG/UAAlECVvJx4q0hk1n3oZV7NrPJMzBJjIOoy2ozGnqvVMiUpZo6kmDtSZGlP957tGdgnAIWlBVITExAEDGo1uspKtLm5aLKyqY2NpfryZWrj41EnJFKYkEjhihUo23nTcepUzG3HNzrO38HfNOLRfPLz85k3bx6HDx/Gzc2N5cuXM2TI3zBC3AKKK9U8+XsIZ5KKEARYMrUjQ/3sCdmTwvkdKei0ekyMoUv+OjTviBOMUisr7OeNxyLrYwRNMkhk+Fj7EJ4fTnRRdIsDtf7tbGlrZ0JifiUbQjJ4uBnlnL8iCAKO775D1cUQbHMvku3ch4SQvKuB2tnvxCBNIoeh70DPp682e3eYKhr7bn4CipNh9WR4eBcYX3/6rahSzYl40WdzXFDDC11WRRYb40WLqyeDnmz+NxC7G4BIZqKu0WFSk4d11kWMe/TA7dvlSIxvnNLv4mHNmA5O7LyczYc7olk9v/tta8l16DiEp3u+x7aecCw+B6nNTGp0XtRERVETHYOuuBh9RQXq6yjftwidDl1BAbqCAmqjoynbLn5ZYmpKv17DuWA+hNJSNVuWhjLm6Y71U1CNUFeJiuUAbRtOAG5PEhcd3WY0MknzLyVanb5eR/Dx/l43zV4BYOkGs9aI2ZXYXWIpdOxSEAQKsypIiyoCgx6XmO3IXV1x++F7MTMZtw/WzQW9FjrOgMFvXXd5pUzKUwPb8tbWSL49ksiMbm43zSDMDZjLmtg1RBRGcCLzRIOMouWUySj9fMl8fB4UVuAd9QdRPg9xbkcynh1tsXFu/RJZWHoJx+LyicgsJTqnDI3WgFwmYKqUE+hsTid3S/p62zbdCpFxnkMq8Xse3KZ1vT13hmfz0oZLGAwwt5cHr45sXoABgM9IIphDUlUXJOjxPfk/tPlxSExNcXzrTczHj8dVEJiQO4GtiVv54PQH/Dn2T+SSxg+nxgoZn07pyIwfzrDmfDoTOrnQq23LJjYFQcBm3jxUfv5kvvACRJynTa0D8S6jOLUxkTYd7e6Ittr5lKIG7+EbY/yb/R6uuizqpo1sMxJXM1cozYCEOtmiznMb7e9tb8ofj/Vg26UsFm+LRpddzbdfh3DSyAhbJFSXquvLka1JBRoCDcdxrTrP2eocpoSpcSv8HaHOoaTes0AQUHq3xahTJ/FfUBB6Nw9So3LZdzSJmJxyfssFn5NVfD7dh0CXvzyMBjSsMulKS6k4foKKQwcpP3SY2vgEcj/+hMJVP+F9+NB1BZDvJvd8oPb000/j7OxMQUEB+/btY9q0aSQmJmJlZfV3n1ojDAYDR2LzeWdbJGlFVZgopHwxLQjXcgPrPjpPUZbYp2RTnYzfqRXI1KUIcjnW8+Zi8/jjSIVq+OxjKE4FTTX+1v5ioFYYzag2jUVGb4QgCMzr04a3tkTwy6kU5vbyvKWJTZmVFU7vvU/+G1+Jgdr5bPrP9EGSHymWwwBGfSIGZX/FvQc8tBVWjYD8aPhjuvh/ReMbxZ6IHLR6AwHO5rS1a3gT+yr0K7R6LT0cezQ/m1ZTBsnH0BskXE5wAQy4pe7HqEMgrsuW3TRIu8IrI/3YH53LiYQCtl3KYkInl5u/6AZYqazwNPckpSyFy2Zy+jsWYz7rxfrt+qoqNNnZaPML0FdXYaiuFpvqZTLyawzEF9UQV1xLmV6C1NgYhakJQd6O9OnghspYBTodBq0WXWkZuqJCNNnZ1MbFURMTS9WZM+hKSmD/JoKkO4nqtIACMx92LQtn7DNB9XIlDUg7LYoFm7uC9VWdsXJ1OUfSjwAwtu3YFr0H2y5lkVZUhY2Jgtk93Jv/Qo9eMGUlrHsIQn4SS+2jl3BpvzjpaVdwCVOVDrcVPyCztoJT38DB90GvgfYTYcLyG3oYTu/mxrLDiXVZtQwe7HljORAbIxum+0znl6hf+O7Sd/R16dvgxmkUEECbP38hc+4YHLLOkmsdTKFtBw7+FMWUV7o2v0fwBmh1erZdyuKXUylcymhK6LOa6Owy1oeIWYhgd0smd3ZlcrBLg76mqoR9nK5z2xjiMfS2z+0KG0MyeGVjOHoDzOjqxjvjAlr0wJOfUcWJPNHtom3CJszy4zDu3l0UGna5+vf4QpcXOJpxlNjiWH68/CMLgq7vNNHDy4Y5Pdz5/Wwab2y5zO7n+t1SWc+kZw/abNxAxjPP4hK1iyzLICpx5tTmBAY/6N/i9W5EelEVT6wWpZ1GBTq26D1MKU1hf6oYlNUPYYX+Bga9OFXdRM9nVnwJJmGlPJwvQ6ep+12t1VJdt4+AHrlEj1TQif8zgN4gQY+A3iBgaHJW0YAUDYK2An11CUbV+dgVJ+BUHIOqpogr39XVxx49UhsbVAHtMQoKEgOzjh2RmjXWO5sU7Mr4IBfWnE/js72xxOVWMHn5KV4d5cfDfTybfM+kFhZYjB2Dxdgx6MrKKNu5k+L16zHp3uNvD9LgHg/UKioq2Lp1KykpKRgbGzNx4kQ+//xztm/fzkMP/Q0KytdBrzeQWlRFZEYxfxxLJC65EEu9gYmCQD8jM1K+jyBOK14EZJpK2iVsxDH3LFIzM6wemo/VnDnIneoEHg2moLKEmhIoTKC9jSikGFV0awbPk4Nd+HRPDCmFVRyJy2OwXzPEYa+D2eBBePTfT2R+ObWYkX4xHY9zj4o3cJ9R0HV+0y+28oAHNsFPoyDjvOjfOP7rRrttuyTebP+aTYssiGRn0k4AFnVd1PyTjt8Heg2p0jGUlxmQaSpxM8rH7YdfxHJYM3G3MeaZQd78b38cH+yIYoCPHZbGt6c0H2QXREpZCmEqJf3/4vkpMTZG2bYtyrbixVOj07PrcjYrjydzObMUkAJXgkw9UA4R5RjtTGJYewf+M9wHDxsTJCoVcgd7VP7+mA0WM2EGnY6ayEjK9uyldPNmAi8uIzzwcYpsAtjxRQjjFnbAuf1ffkeSj4ofvQY0kOU4kHqAWl0tbSza0N66+YKfOr2BZXXTyPP7tWm5DED78TD2c9j5HwhfS1XCJWKTPgSkuOeewG3Z1yglOfDTAkivM3VvP0EM8G6iEaWUSXlyYFve2RbJt4cTmN7V9aY38HmB81gbu5bwgnBOZZ2ij0ufBtul7u1xm9uRgu0h+MX9yVkLL/LT4eQvofSf36Vl3/tfiMwq5ZWN4URkinZYCqmEYe0dCHa3JMDZAlOlDI1eT0F5LeEZpYSkFnM2uZDQtBJC00r4375Y5vdpw0O9PbEwknMi9SBqmYCbwhJvS+/bOjcQb/bfHk3k0z3iwMzkYBcWT+7QogfG6opadn1+Gr1Bhm1BOG7Zh7B/fDrWz7/b6AZqY2TDa91f45Xjr/B9+PcMcR/SpITPyyP92BeVS1J+Jd8eSWxer9wVtGqxHSDpMPKko3h0KSRHZ4xv3BouBi8i+mQ2fl1tcPZvHXupilot8385T1GlmkAXc/43PahF7+FPkT9hwMAA1wH4WPmAXgcX6wbUusxrsK/BYCDhaALndqZQUn71d19ZU4xVSRyWpQmYVGZjVJ2PXFPBjc5CTLgJ6CVSDIIUgyBBotch0aubfJ3E2Bi5ox3y2hh0Njre97UiwUHP8hnf4mPXoVnfr1QiMKeHB6MDnXh5Yzj7o3J5f0cUp5MK+WJGp5sOXUjNzbGaNQurWbMwqG9hSv4OcE8HavHx8VhYWOB0JZABgoKCiIyMbLRvbW1tA1P4sjovvzvJ78//TFmlAyBgEKT0kUjpg2X99hxRIB1VTSEumcdxLjiHZfcgzJ/9EPORI8VJtGsRBLDzE28weTH4uYjp2ejCaAwGQ4vLbiZKGTO7ubHieDI/nUy55UANwOmNV3F47DsyFF2J+HErHo4xYOoAE75pcAO/Lg7tYcZq+GW8OGbvMwr8rpZWcstqOJtcBMCYDld/1gaDgc8ufAbAOK9x9YFrswhfJ845pA0CGbiUhNJmxbfIbiET+8SAtmy9lEVCXgWf7I65rcECEIVvtyZu5ZJSCcVZUJEHpo0v6nsjc3h/e1T9FJZCKqGDqwWd3S1xMFdRo9GRV17Lweg8Mkuq2XYpiz0ROczv14aFg7wbXZAEqRSjjh0x6tgRu+efo3zffuTfreBCkYRia392fn6WseONcRw35OrvWtIR8aPXwIbnliLqqo1pM6ZFv5e7I7JJzK/Ewkh+04xVk3R9RJTX2PwE5y50RW8ixawshfbdUzHaPRa0dc/8CjNR0b7zQzf/Ha1jRjc3lh9JIKu0hg0hGczpceNztDWyZZrvNFZHrWbl5ZWNAjUAIWgadilHUHlpKQ/bRHjbB7l8vhTr8rUEPDutxU/sOr2BLw/EsexIIjq9AQsjOY/392JmNzdsmvD4HR4gapTlldWw7VIWv51JJaWwiv/tj+OHY0k80cOGjJosMDVhiPuQ2y7x12h0vLc9kj/Pib2DLWl6v0JtcjLbPzpGhcwNVXUBnWt24DEyD4VTQpN6eqPajGJ3ym6OpB/h7ZNvs3r06uuW5S2M5Lwzrj0L/whl+eFExnZ0bmT+3giDQex33Pem2M5RhwRRA1plXEh29imynXpz4NP9zHizM8q2t5dZMxgMvLn5MnG5FdibKVn5ULcWPdxkVmSyLWEbAI92qKt6JBwUtSWNrMBvLAaDgZqICFK2neBCggVlSkdAilRbg0PeBZxyTmNemY7C0RG5ixMVKg+iKjxILNehRUAvSNALEmRyKTamSoykAiqJAa1Wh7pWQ2W1mhq1Bqlej0YipUamRGJkRDtPe4LbOeHk7ojc1QW5szNSyzqZjZ/GQOoJHAM7c74yiV+jV/Op3acteu+sTBT88GAXVp9J5cOd0eyPymXqd6f5cW5XnC2bp48mNGELeLe5pwO1ioqKRpMQ5ubmlJSUNNr3448/5r333rtLZyYiEQT00oYXRsGgQ66uwLQ2D2tJEXbmaly722PcYTpGwYtvPtFn7y8GavnReAdMQCaRUaYuI6syq4H4X3N5qJcnK08kczy+gJSCyhYJ4F6L1Nyc9lN7knFQS4bGk/IcI8ye/QxMGovSXpc2/aH3Qjj1NWx7Bly71gcnO8OzMRigs7tlg1HwI+lHuJB7AaVUyTPBzzT/ZCsLIfEg6fGe5JqJvXldnhzeoEzSEhQyCR9P7sC0706z5nw64zs507ttM7/v63BF+PaySoUWkGVfgnbD6rdnlVTz9tZIDkTnAmBrqmRuLw/m9PTA2qTxheO98QbCM0r5bF8sx+ML+PZIIvsic1g5txttmvh5SxQKLMaOwXzUSGy27Wbn1hzKVY7sW5tG/13P4vreW8jNZJAt2p3R5urgUGltKWezxb61EZ7N0/cDMfv8zSExm/ZwH89bGnCpx70HBZYvEC8Xe086KHZgbp4oNrEY24DXILFv0rIFpVVAJZeyYEBb3tsexfLDiUzr4ta0bEgdD7V/iD+j/+RC7gUiCyMJsPnLlLXfGNj+PGYm8fRc+gVlX14mRerLqXAV0pkP4/Ha8xgHN8/RoaJWy3N/hnKwToV+TAcn3hnfHnuz5snH2JureLSfF/N6e7LzcjbLDicQl1tB2IltRHmLN69gl5a1WfyVuNxynvkjlNjccgQB3hzTnvk3ERK+Fn1lJQUrV3JhXxb5biOQ6DUM6G2g7cRvEL7tIfYo5kaJD4B/QRAE3ur5FiE5IUQURvDtpW+bvHaM6eDERt8MDsfm88bmy6x5vGfTAWp5Dmx6/GqG2cRezO56DQIrT4SaEqwLExmw6Xc25nSkXOnEsYVf0+eZHhiPbtwD1lzWX8hgS50H6rI5nXG0aJlM0I+Xf0Rr0NLTqedVpf+QnwHQuE+kZMUqCjfvIE4RTLrrIFBKkOpq8ayNIMBPgvnELqjaP4DCzQ3hGlWHAKCwopYd4dnsjsjmUnop1TfQIJQI4ONgRq+2NowKdKKLh1UjncwGBD8AqSd4MCeF7WawL2Ufi7oswtGkZYbxgiDwUC9PAl0sePzXC0RnlzFx2UlWzevWuG/tHuaeDtRMTU0bZcbKysowvU6w89prr7Fo0aIG+91pAd5+Tw+nMKsQFztz5CoFMmMlKjMVEqUCQXqLo8z2dU9gedEopAraWbYjuiiamMKYWwrU3KyNGeBjx5HYfHGse/StP+G1ndIP5YEd1MpNiUjoS3f3wbTouxz8FiQcgrxI2PYszPoTBKF+2nP8NWXPGm0NSy4sAeDB9g/iZOp03SWvS+QmKnMkXCoZBeYSHC1rcBp6e1Y43TytmdXdnT/PpfH8mjB2PdcP2yayFzfDy9ILM4UZ5epy4hRy2meF1QdqeyKyeXlDOGU1WmQSgScGeLFwUDuMbqDjIwgCQW6W/PpIdw5E5/HWlggS8yuZ8M0Jls3pTL92TUujCFIpNpPGMqF7CesXn6PCzJ0LeXmox4/H6fGxmGMQs7xmVy+Qh9MPozVoaWfVrkVDLgeic4nJKcdUKePh3i0fbrmWsv37Cf/5KGrfBzCSaej4+ZeQHwnWbcDWp9kZtOsxq7s7y48kkllSzcaLGczqfuNgz9HEkZFtRrIjaQe/RP7Cp/3/8uRvZAXeQyBuD/L8Ywxf9jLrXz9IcYUZ52UD0M2Zi9XoEdgueAKld9Mlx6ySah75+TwxOeUoZRI+ndrxlnsmZVIJEzq5MK6jM/uicone9x1npRKMtVKeXFnAzG4RPNjL8+ZZpmsoq9Hw/dFEVh5Pplarx9ZUydIZQTf8/bsWfW0tpZs3k79sGdkGV5IDHwOg3wQ3vMfUPRD4j4fobXDsU5j283XXsTe2561eb/HysZdZEb6CLg5d6O3cu9F+giDw/oRAhi89xtnkItaHZDD9ehPIGRdgzRyoyBG1BHs/A32fB+VfeqQ8+2LTZS49V+/l+ElIdBmL3evv43HpNJavftviLGVcbjlvbxOnZBcN86GbZ8tsyLIrstmcILquXBnCMpRlU33iIIUxVlSs3Ue5SSQR7edTbSw+NLdx1dH/4W6YNiNYtzFVMre3J3N7e6LV6YnJKSe1sIrSag1lNRpMFFKsTZTYmytp72R+05JjA9qPh10v4V+QQjfXoZwvjeOPmD9Y1KUF7S/X0Nndii1P92H+zxeIzS1n5g9n+OHBLvS+jvvNvcjf3yV3A9q1a0dpaSk5OTn1X7t06RIBf5nYAFAqlZibmzf4d6dx9XYiqH8gtv7uWLRxxMTBCqmx0a0HadAgUAPwtxH/f6t9agCz624060MyqNXeWHn9RkjUZXibiH0/2SbB5H26pGULyJQwZUWdfMduiNxMelEVoWklSAQY3fFqMLby8krSy9OxN7JnfuANeuCug+bkGtJO2ZHtJF6cg2e2jgjzW2P9aWdvSl55Lc+vCUOnv7WxJ4kgqZcPCFMqITuMGo2Ot7ZEsOC3i5TVaAlys2TXc/14aYTfDYO0axEEgWHtHdi2sA/B7paU1WiZu+pcvXfqjbBwsWT0890QJJBn35U0k45kLvmdrLOW6F36Ntj3SmPyMI9h11vquuj1Br44EA/AQ708sDC+9WxaVUgImf95kTSXQQB0GueL1NoNfEeCne9tBWkgZtWe6C8OTiw7nIBGp7/pa+YGiFmTfSn7yK7IbrxDgNgMT+Rm5HIpo1/uh9JISrm5J1H+cyndsZOkseNIX7iQytOnMega/p3mldUwa8UZYnLKsTVVsvaJXrcUpBkMBnRlZahTUqiOjKQm5AL9ypIwKUwhIEVP93Qn7Itz2Xb4MsP+d5hZP5xh3fl0ckprmlwvJqeMz/fH0f/Twyw7nEitVk9/Hzt2P9evWUGatriYwh9XkTh0GDnvvkeh2oKo9g8D0GGgC4FjrsmcDXil7n3cUn+NvB6j2oxiqs9UDBh47fhr5FflX3c/N2tjXhgm9rEt3hVNYUVtwx3C14n9tRU54gPLk6dgyFuNg7Rr6DBnOA7uxuhkKuLaTiPnl6NkzRuPrqKyydf8lSq1lqd/v0iNRk+/drY8eSNR4Cb4MeLH+iGsYOsOlO7YScq06aQetKY804gsx16EdHmZamN7TCwVjF0YxOg3h2Hq0vLgRSaVEOhiwZiOTszu4c6CAW15sJcnYzo60c3TumVBGogDZ4GiZdiDavH6tyFuA1WNtDqbj6uVMRue7EUvLxsqarXM++k8O+qSBPc693xGbfz48bzzzjt88cUX7N+/n4iICMaNG/d3n9qdw77uolScAuoq/K3FQC26sHm2J9djsJ89juYqcspq2BuZ2yBz1SLO/YCP6hCRVUPItw2iaP2rmA0bhmm/vjd/7RUcAkTHgqOfwJ5X2dtJzKz09LKpL98klSbxY4ToPPBK91cwVTT/qV6fE0/G+hRyzPugkZtiaqnAs2PrPDUZK2Qsn9OZ8d+c5ERCAV8fim9ZE/I1dLLrxInME4SplEzLuMjEZSeJyRHFaBcMaMt/hvsgv0VhVHtzFWse78lrGy+zKTSTF9aGAdz0xu7czoo+U9pxYn08Cb7TsSxNgORsqpeF4BqYgNLbm3J1OaezTgMw3GN4s89pV0Q2UdllmCllPNbP6+YvaILa+HjSn3yKIuM2VJq6IFNIaN/39iZxr8ecHh58dzSJjOJq1p5P54Gb9NP5WfvRw7EHZ3PO8nv077zY7cWGO/iOErMxBXGQG4mlYyCjnwpi65eh5NsFkz74WdwPfUnFgYNUHDiIzN4es5EjMOnRA41/Bx5aF0NqYRVu1kasebwXLk302Bi0WrT5+Wiyc9BkZqDJyECdkSEqtWdkoM3Lw3Ad3b1+XJmySwHEBzCNREq+kSV5RpasM7JCY2uP3tkFwcWdEhtH0nUKkgoqSC+qrl+nnb0pL43wZVh7hxtmkHRlZVSePkPZzp2UHz5crwVY4x5IhM8T6LUS2gTZ0nf6X/6+HAPBfxxEb4ejn8K0n5o8xivdXiE8P5y44jhePPoiK4avQCFt3DrwcJ82bA7NIjq7jI92RvP5jE7ihourxTYNDKLv7KTvbhigXUGQCAx8KJB1i8+RbxdMoY0/nI2mevQQnL/8tlll7ne2RhKfJ/alLZ3RqcUT+zmVOWyK34RRjYGF0W4kfDICbXbdA4QUUvsvJMkg3ls8Am0YOq/9HZEUuS2CH4SLvzIg7hju/sGkVWSwKX4TD7R/4JaXNFPJ+fmRbrywNoxdl3N45s9QiirVN9VN/Lu5pwM1gOXLlzN37lxsbGxwdXVl3bp196Q0R6thYisqRVcVQEFsfUYtuujWAzWZVML0bm58dTCeP86m3lqgpq6E08txlJdgbKynqsqYIis/FG++idf2bUhbksHs+wJEbIDCBBzOLwHm1E97GgwGPjrzEVq9ln4u/VqUtTEYDOS8+SI1RQqyg8VsWvt+Lq1qJN/OwYyPJgWyaN0lvjgQj42p8paa4q/0i4SplMjzs8irycTGxJbPZ3RqsbXN9VDKpHw2LQiFTMKa8+m8sDYMQRBu+rPvOMiVtKhC0iKLiO/2IMFnl6BOzyV52nQc336bE0EyNHoNXhZetLVs3lO+Vqfn8/1xgDjpaXWdPrvmoMnJIe2xx9GXlZHZRyzl+Pd2RmXS+jcYI4WUhYPa8u72KL44EMfEYBdMb5IVeCjgIc7mnGVD/AYWBC1o+IChMhfL2zE7IHITOAbi3M6SwQ/6c+CnKBL0Ppi8shqv5B2U792DNi+P4l9XU/yrOJ33upEFhWa2BHTyQfL5UXKUStDr0VdXo6+oEAU8c3LQ5ueLQtQ3QWJigsTUFImJCbXqYtJqi5EawFPpjKGiEl1ZGXK9DufKQpwr6/wO04HQq2uUy43INLUlx8wOhbsHXh3a0SXIFLm+AHVCOchkYDCgLytDV1qKOi2d2sQEaqKiqYmIaHCeSj8/pJMf4mykHepSNQ5tzBk2P+D6f7sDXhEDtcjN4uf2ftf9HlUyFf8b8D9m7ZzFxbyLvHniTT7p/0kjlxe5VOxBnbT8JJtCM5nc2ZW+pdthx/PiDt0ehVFLmhxguB62rqYEDXYj7EA6iV0ewebUa2jySkmdPRvrh+Zi9/xz9WLWf2XTxQzWh2QgEeDLmcG31GKxev8SZu2rYVi4BGXtGrSA1MIUM7d8Lro8TUqtPwjQY7wXXUZ43HE3hVvCtRvYt0eSF8VcE28+qMjg58ifmeE7A7n01v/mlTIpX8/qjI1JJKvPpPL21kjyy2tZNMzntodo7hT3fKBmZ2fHrl27/u7TuLvY+0PKcciLxidwEhJBQkF1AflV+dgZ39pNfGY3N745FM+ZpCIS8ipa1HsCQNRWqC5CYu1JW383Lh/JpKBNf2xDviX3o8U4//eT5q8lV4lipb+MY0zNLn6W9mRUoBiQbUnYwrmcc6ikKl7v8XqL/nBK1qyl9EQcVca2FFv4gAB+vVrQ29ZMJnd2JTa3nO+PJvHWlggwGG5sgXQdnFQ+gEC2TEaOVMp010IeeWjSLXmKNoVEIrB4UgcMBlh7IZ1Fa8OwMpbfuGdNIjBkbnvWvH2U4hoP8kY+QJvcBCpPnSb7tdfQ9HRG2cfQogB6c2gmSfmVWBnLW9RUfi3aoiLSH3sMbU4Oap+u5MvdQYCOg69j5t1KzO7hwc+nUkgprOKHo4ksGt6Ez20dfV364mXhRVJpEtsStzHbf3bDHQImiYFaxCaxX1MQ8O3hSFWZmlMbE7h0tgz9gFn0ef01qk6eoPTIUZIPncS2MAu76lLsqkvR7Uuk5GYnLpMht7dH7uKC3NUVuasLCldX5K6uyBwckdnaIFFd/T37+vdh/KAtZ5iRG59PF6+1Bo0GbV4emuxsNNnZlKdmkBeXjC49DVl2JqqSAsw01fgVp+NXnA5pF+EE3LzIfhWFlxem/fphMXEC5aaubP8qjOpyNVZOJox5uiPypkr+jh2uZtX2vg4PbGyy3O1p4cnSQUt5cv+T7E7ZjZOpEy90eaHRfp3cLHmopwe/nE7l3PpP6av+XtzQ40kY+fEtldO7jW1DYmg+5YWQPell/I6/SWmKMUW//EL5/v3YPf8c5mPHNpj6TcirqHdveHZIuxaJ8Rr0eipPniTj5xWMPnm+rq9Jh8K7LTbz5qEo/JM9EfPIrvVHIhMY9nAA3l1aR0LkjiAI4oT3rheZkHiW7+zsyK3KZXvSdia3m3xbS0slAu9PCMDOTMnn++P4+lACBRW1fDAhENk9aPF2zwdq/y+pD9SiMJLNxsvCi4SSBKIKoxhgPOCWlnS2NGKwnz0HovP481wab41tgdQFXNXdCX6Qds4OXD6SSb51IO2kCkq3bsVsxPB6va5m0aY/UXajaZ+/i6XGP2OpfIrMikz+e1409n6q01OignYzqQoNJeejDwEoDRIN1t3b22Bm3XqBz7W8OtIPDPD9sSTe2hpJblktzwzxvqnullanZ9PFTD7ZE4PO3gmpKotLSgUvd6xF0opB2hUkEoGPJ3egWqNj26UsnvztImuf6EmAc9MTT8bmCgYHnGFnSB8iinvS9uUnsDu8jvyvv8HvTBaLE8C98/WzGH+lVqur7017cmDbW5r01BYWkjbvYWrjE5DZ2ZE99nm4WEqbjrZY2t85w2iFTMIrI/148veLrDiezJyeHjjc4GckESTM9JvJ4rOLWRu7lll+sxo+aPiMBJlKlHbIjRTLeEDwMHfkSilH/4zl8tFMKkpq6T+7Lx9lW7Jb0wN7Qw3fD7bHS1OGNjcXfW0NhppakAhIjIyRGBsjs7dH7uSIzNERma1tk5IfOq2eopwqinNyqSyppaq0lsyY3vSRCnSy9ufC7hRMLZWY26qwdXXAuG5S2gK49q9RX12NOi0ddWoK6tRU1KmpaLNz0BYXoSsqxlBbW99nJzUzQ2JujtzJSdQIbOeNcbdu9fqR6TFF7F0aSm2VFjt3M8Y9G4SR6U2yrkPeFW3qEg+KGcrAKU3u2tOpJ+/1eY83TrzBqohVmCnMrkpVXMOLI3wxC/+JReqV4hd6LYThH95yz6NCJWPIQ/5sWRpKdLoL3hNm4Ra6iuwQazRZWWS9/AqFP/2MzaPzMR82jFpBysI/LlKl1tHLy4ZnBjfPYktbVETZjh0U//4H6tRUQGw+Twuwpc/zizHp25eK2Ets+Xo8xTo3FCoJo59qQuD6XqPjdNj/Nsr8WOYGLeKzxA38ePlHxrcd3yI3lOshCALPDmmHramSN7dc5s9z6RRWqPlqVnDz3FLuIvcDtXuR+oGCGADa27QnoSSByMJIBrjdWqAGMLuHOwei89h4MYOXRvg2/5exIAHSToEggU6zcTS1wNRKSUVxLZppC5Gu+Zzst9/BKDi42TplBoOBN6pmsspwDHdNIvozy3mrIoxKTSXB9sE81L75gsaavDwyn30OtDpM3NSkmg+BWmjft/WzaVcQBIFXR/mBAN8fTeKbwwnsjczho0kd6OZp1SgTWKPRcTA6jy8OxBGfJ9pDOeJNJVmEqZSMyLl0vcO0ChKJwJJpHckrr+FMUhEP/3SezU/3abLPCcCzagPtjaqIqh7G4d9imfnW40S5gOy9r3ArAB59mZJ33sZy4sQbHnvViRQyS6qxN1PeUh+IGKTNqw/SbJev4uD3osJ+p6F3dqobYGSgI108rAhJLebzfXH8d+qNNfTGeY1jachSkkqTuJB7oaGThtIUvIeKWbXo7fWBGkBgfxfkSimHfokm+VIB8TFFRMqqUagkfD5vAMHtbq3PUl2jJSu+hMzYYjLjSijMrECvazgE48YA3BAVKM5GJTXYZmFvhHM7SzwCbXDzs0ZhJN4yJEZGqHx9UPneWo8miAMm53cmc2FXChjAqa0FYxYGoTRqxm3J1hv6/QeOfAx7XoO2Q8DIssndx7cdT25lLl+FfsWXF7+kRlvD052ebvB3aha6ghd1YpD2g24cA4Newec2S2EuvlZ0HORK+OEMDqWMYVbHC7S1v0BRVlsKwyXURkeT9Z8XybWz5VL7Psh0zji4+/DlzE5NylcY9HpqExKoOn+e8gMHqDp7rr6MbDAxYlf7Gg50kfHtw79iatGGwswKtn+bSaXODRNlJeNeGoSNS+tbmN0RVBZiEB66mmk5qaxQWpBWnsb+1P0tdutpitk93LE2kfPsmjD2ReXy0I/nWDG3KxZG907P3v1A7V7EruHkZ6BtINsStxFeEH5byw7wscfF0ojMkmp2R2QzKbiZGavQumya9zAwd0YA2nax59KBdPKce+Dt3RZ1QiI577+P69KlzVoyMquM0EIZn8ln85H0B/64sJTzlqYYyYz4sM+HSG9g9XMtBrWazOdfQJufj9JCg6aTN1XlSozM5K02RNAUgiDw6kg/OrpY8s62COLzKpj+/WlcLI0Y5GeHramSWq2e1MJKjsTmU6UWMwyWxnKeHuiNvbOBN08eE4Vvs+9coAZiX8b3D3Zl2neniMutYN6qc2xY0Pv605elmVCcQm/zX0lTjqasoIYzWxLZ65LB0flSFh90wC4yi+xXX6Pq3Hkc33rzuv02OaU1fH1IzKa9MtKvxU+ptUnJpC9YgCYtDZm9Pe6//ExouB6dVo9DG3OcvC1v5a1oEYIg8Ppof6Z8e4p1IelM7+ZKF4+mZRJMFaaM8xrHurh1rIlZ09jyzH9cXaC2DQa91mCTbw9HLB2MWft1KLJKHTNqlRjbmuDVgsu0Vq0jJ6mUjNhiMmOLyU0px/CX6WSFkQwbZxNMrZSkFB7ltDoVV0HB6IB5VJWpqSyppTi3ioqiWkrzqinNqyb6ZDYSiYBjWws8Am3wCLTB2tnklnt6cpJLObUhgexE0faqfV9n+k1vh6yZE86A2Ot6eT0UJsChD2DM/264+2MdH0MQBL68+CXfh39PpaaSF7u+KF5rTn0tCtkCOy1msTh3LLs2XmbDgl63XQrrObEtqRGFlOZXc8j1I0aazcLWPQHLEQ9RnOtD8fp16PILCDy6lSWA3siYqigfMt3ckNnbIQgCBr0BbUE+moxMahMT0Zc2tAtTBQRgPmUy/zHaRkhZJFN9ptDGog2ZscXs+vYS6lojrGRpjHs8ALN/SpB2ha6PQOhqjKO388DI11kWtYofwn9ghOeIRv2Gt8rIQCd+fUTBY79c4FxKETO+P80vj3S/YQb9bnI/ULsXudIcW5YBNWV0tBOf4i/nX74lh4IrSCUCM7q58fn+OP44m9a8QE2nhUt/ip8HX5228a4L1FIii+n9wSdkPDCT8t17KB06FIsxY2667BXttBLf6cSqL7JUEMVd/9NlEe7mzRcpzf3kv1RfvIhEJcW1by77lW9DudibJr0LvQaCIDCmoxO929rwye4YtoRlkllSzW9n0hrt62yhYnJnVx7r74WFkZysCvEiEK1UUJ2TilF1sai5dYewMJLz88PdmbT8JPF5FTy2+gKr53dvXK5NPQmA0tmbQX3bs/3rS4QfziCmUxqlJgJGXy3GdmsIBd8so3TTJmouh+OydGkjDbDFu6KpUuvo4mHFpOCWTWZWnj1HxrPPoi8tRe7sjPuqH8HRlYivTwEQPNz9rjX+dvGwYnpXV9ZdyODVjZfZ+Wy/G4rgTvedzrq4dRxKO0ReVR72xtf0AfmMAIkM8qLETLVtw/dsQ3IeX8sqGKCQE6yRUZVayeb/XcTK0RhXXyuc2lliYqFAaSxHrzNQXa6moqSWgowK8lPLyU8rR6dtOExgbqvC1dcKFz8rHL0sMLNW1b93836eR4hQy1D7/vQa1fBcqsvV5KaUkR5dRFpkESW5VWTFl5AVX8LpzYmY26rw7GCLW3trnL0t67NtTaHXG8iOLyH8SAZJoaJchlwpZeAcX3y6t0zIFBDlfup6XTm/UvStDJh4w5c82uFRjGRGfHLuE36L/o3EkkQ+VbbB8nBdj23/lwkOfgGzL48Tll7CssOJPDe0eSXIppArpQybH8CmJSEkRVYSPvAHgmKmIIv+FbupP1EydTufvfEdXdLD6V2ciLKyjOqwMKrDwppcUzAywjg4GJPevTAbMQKFmxub4zcTcioSI5kRTwY9SUJIHvt/ikSvNeAkj2R0hwOoAubd1vfyt+DSWbR+yL7ErIoqfpWbkVCSwO7k3Yzxuvm9prn09LJh7RO9mPvTOWJyypm8/BS/zu/eyHv67+B+oHYvYmQFZs5QngX5Mfi4BKOUKilTl5FaltoikdG/MqObG18ejOd8SjFxueX4ONxk3DxhP1TkipOoPiPrv+zgaY6ZjYrywhpy9fbYLlhAwbJl5LzzLkYBASg8mz5Hg8HAjkviqPiwQBteTJCirhToV1XN9OqbT6xdoWTTZor/+AMEAecehaiNLUktEINP/953rux5PaxMFPx3akfeHR/A6aQCjscXoNbqUcmlWBrJGeBrRwcXiwbBhZOJE/ZG9uRV5xGpVNA1O1z01LyDOFsa8fPD3Zn23WnOJRfxn3WX+GpmcMPpupQT4kfPvrgH2ODfx4nok9l0iR5Lfrd0gp26IHuqB8adu5D50ovUxieQPGUqtk8+ic0jDyMoFJxNKmTbpSwEAd4b38T03nUwaLUU/riK/G++AY0GVVBH3JYtQ2Zry6WD6dRWabGwN6JN0O1PxraE10f7cygmj/i8Cr47msizQ5q+efta+9LZvjMX8y6yMW4jT3Z68upGIyvR5SHxEMRsF7NCdaw+k8qSvbEgQM9p3kzzcyR0XxrRp7MpzqmiOKeKy0dv3q5vbKHA1c9KDM58rDC3vX6Ju7g8i1BqAIFBAbMbbTcyU+DZwRbPDmJmujS/itSIIlIjCsmMLaasoIbwwxmEH85AkAjYuppi42yClZMJKlM5MoUEg85AWWENJXlVpEcVUV0uynAIAvj2dKT7OK/b6yNt019s+D/7LWx+AsxdwO3Guolz/Odgo7Lh7ZNvcTr7NDM0x/lUqSCo14sw8BWcgQ8mBPL82jC+OhTPAF87OrlZ3vo5Il4v+05rx7E1cZw6JsW+/zs4xbyHYdszvC//jOMOHajoOYDHHumGLikRdXIK6vQ0dAWF4pslCEitrcShEDd3VL4+DZwCSmpK+DzkcwCeCnqK7DO1nFgfDwbwMjrPMPMlyPo1LWVyz9PjSdiyAIuQX3h46At8dWk534R+w3CP4bc1AfpX2jubs+nJ3jy06hzJBRXMXnGGoy8N+tt71u4Havcq9n5ioJYXjdytO/7W/oTlh3G54PJtBWoO5iqG+tuzNzKXP86m8e74xuLBDQj7XfwYNBNkVxt8BUHAu4s9ofvSSAjJZcSCJ6g8c4bqkBAynnsez7VrGkyWXcvFtGIyS6oxVco4U7aClMps7KXGfJSfgbD7JfDoCdY31tqqCgkh5913AbAd4oGZbSYXpAswGMC5nSVWjrdmlXW7GCmkDPZzaJavqiAIBNkHsT91P2FKJV2zL93xQA3A38mc7x/swtxV59gRno2zpRGvX+tYUZdRw0P0rewztR1RYalYVNoxOn9ufROvSc8eeG3eTNYrr1J58iT5X3xB6fbtWL6wiDcuiRmnWd3dm23VUpuURPZrr1N9SSwDm48ehdPixUhUKnQ6PWEHxSxlp6HurSq50hwsjRW8PS6AZ/8M5ZtDCYzu4Ii3fdMPOTN8Z3Ax7yIb4jbwaMdHkUuuuZn4jxMDteirgdrWsEze3ipO+z0z2JtH67TmBs7xo+fEtmTFlZARW0xeahm1VVpqqzQIgoCRuQJjcwXWzibYuZlh72GGpYNxs7KNR8N/Ri8I+GkNOLs1Vu7/KxZ2xnQcZEzHQa5oanWkR4tBW0ZsMWX51eSniRm9G6E0ltGmkx2dhrph49xKmYoRH4m6k3G74c+ZMH8f2NxYOmakYw/aGBx4QZNAulzOg86OPGAisFBThbHcmAmdnDkQncuO8GxeWBvGzmf7tshj83oEDnAhO6GE+At57A3tziSP4Vjk7ePlmk9IMfsv38zujFwuQ+7ri8r3xhPGf+XL0C8pqS3B28KbtjG9OVE3wNPBK5O+lZ8gcQoA39bLPt11AqfAwfehPIs5WgW/q2zIqNNVm+E3o1UP5WZtzIZHOpC/fAxlwU//7UEa3OPOBP+vuSJ8W9en1sGuAwDh+bfXpwai7ADAxosZVKtv4FRQWw5x+8TPg2Y22tyuqxiMpF4uRKMTcPn8c6Q2NtTGxpLz4YdNLru9LpsW4BPLzuQdSAQJnw75BivXnqCugI2Pgq6xKOcV1CkpZDz1NAa1GrNeQdjanMJgkBBVIfpRtu9zd7Npt8MV389LSsUd71O7lj7etnxa1xj/w7EkfjpZZzJdniP2/CCARy8AlEYyQvx2AmAW60FWfHH9OjJbW9xWrsB5yadIbWxQJyaSt/Bpnlv3IWOKonhxgOdNz6U2KYnMl18maew4qi9dQmJqitPHH+P8v//VB/uxZ3KoKKrFyEyOX89bKJO1AuM6OjHQ1w61Ts9Tv1+kslbb5L5DPYZirbImrzqPI+lHGm70GwsIkBkCpRkcjM5l0bpLGAwwt5cHi4Y1bNBXmcjxCraj/0wfpr7SlTnv9eSRJf14+NO+zHyzO+Of7UTfqe3w7eGIlWPz+8YOpx8GYJCJR4snG+VKKV6d7Bj0gB8PftCLBz/qxcgnAuk+rg3tujng0cEGF18rXP2s8O/tRI/xbRj/bCceXtKXIQ/5t16QBiCRwpSVYnmsqgB+GASX1ogm6n/FYBDlUb7vj2/icf7MLWW8dRAGYHXUaiZtncTOpJ0YMPDRxA44mqtILqjkpfXhGK63XgsQBIGBD/hh7WxCZama3xOfJEvnTAdJChu9d2FndmuWdGF5YWyM24hUJ2dG5iLCD4jDNj1H2dOv9iUkgh4GvdkiHbh7DpkCei4AwPjM9yzo+AQA34V/d1tuBU1hc/pj/LTRdI/9FDTXd+W4m/yDf3L/cuzq+tTyROuojrbiTfV2BwoA+nnb4mZtRHmN9sYWGrF7QFcLNt7gENhos62bKRZ2Rmg1elIuFyB3sMflsyUgCJRu2EjRr782eo1Ob2BHeDYSVSZxup8BeLrT03Rx6gaTfxCnfDJDYP87173QaouLSXviCXSlpagCA3BuH4kgQEabVykvNaAwktG28z2sDfQXrhW+NWSH3dVjT+7syksjxCf393dEib8LV7JpDoH1/XIppSlcUBwh1l40Yj/4awya2qsBviAIWIwbR9tdOykdP4NqqQLv0kwWHltF/tCBZC76D0W//07F8ePUxMZSdTGU8kOHyfviC5InTyFp9BjKtm0HvR7TQYPw2rYVy0kT6wMOnU5PyO4UAIKHe7Ss4bwVEQSBT6d0xM5MSVxuBa9sbPrmrZAqmNJOlIxYG7O24UZTe3AXg+DYw3/y5G8X0ekNTOzkzDvjAu5K7121tppTNaI13+BWmJ4ztzGibbA93ca0Yfj8AMY+HcTEF4KZ8Hwwgx/yp+voNri1t75zfaNKU5i9Dly6Qm2pWAb9Yzpc/FU0cE87C2d/gJVDYMPDUJIGFu5YPLKXj8b9xvIhy3E0cSSrMotXj7/KzB0zCS08yZezgpBLhXoD+9tFoZIx7plOSExlGCrht6L/otYbYR/9i6hV2UIqNZW8dvw1TGotmZvwNoWXNXVaiP50kf+KoKsWhWN9Rtz2uf/tdJkHCjMoiGWKYI6LqQsF1QX8EvVL6x4n5SScXyF+Pu4rUffzb+Z+oHav4lCXUcuNBIOhfqAgriiOGu3tRfgSicDMbmLD/h/nGje91xO1RfzYfuJ1n7gFQcC7qxgUJVzIA8CkVy/s/yMa5+Z+/Alle/Y2eM2JhAIKqoswcfsdrUHDANcBVzWNLN1g3Jfi52eWwdH/NnitrqSE9PmPoklNQ+7igtsMdySVaWDhRlStaGfk293hb7uR3wr+1v4oJQpKpFJSS1PFLOZd5KmBbZnTwx2DAZ5bE0ZKSF0G1bNP/T5HM44CUNsjHVMrJWX51ZzZmthorWy9nAWmvZk3/A1ih01F5uCAvqqKsl27yP3gQ9Ife5zkCRNJnT2bjKeeovC776mJEh9ETIcMwXPDBty+XY7cuaF7QuzpHMoKajAyVxA4oPXtolqCvbmKb+d0RiYR2BGezcrjyU3uO81nGhJBwtmcsySVNJS9wF+0wSu5uBG1Ts+IAAeWTAu6ayXdM4l7qBHAWaPFN6B1S0d/G2aO8MheUUxYIof4faIF1Le9YNVw2P2S+BAoN4GBr8NTp8FJvK72c+3H1glbWdhpISZyE6KLonnm0DN8GPYwE/qngqDms31x7I/Kve3TPJ9XykppJZWCAROdKZtqfqBMZwdbF4oDJi1g8dnFCOlmTLv8Eooic1SmciY81wk/PzWE1PWk1Ykr/+NRWUAX0VNXfnoZz3d+HoCV4StJK7vBfawlaKrrbMMQLazaDmqddW+T+4HavYp9exCkYiq/PBsnEydsVDZoDVpiimJue/lpXV2RSQRC00qIzi5rvENNGcSL5tsETGpynfryZ2QhtdViKch6/nysZs8Gg4Gsl1+m6vz5+v03XEjDyHktyIpwM3Njcb/FDUesAybB8I/Ez498DMeWgMGArqSEtEfmUxMVhdTaGreH/JFFin6g1YOXkhReAoB/31v0Mf2bkEvlBNiK2cpQlQJyLt/V4wuCwPsTApnS2RWd3oA68bi4weNqoHaldNffqw+DHhAzveGHM8iKL6nfJ7eshjkrz1JSpcHDy5nRS9/D+/AhPNeuwebxxzEdMgSljw9SKyvk7u6oAgMxHzMGp08+pt2J47gt+wajwMb9kjqtXtTZArqM8Gharf4u0tXTul4wevHuaFafTrnufk6mTgxwFXsO18ZezaoZDAbWVQaJawkxPBBoxLLZnW/Z2/VWOBy3EYBBgjGC6d0dzLijSGXQ/0V44pjoKezZTwzMTB3FYaiBr8OzoTDwFTELdw3GcmOeCHqCXZN38XDAw5jJzUgpS2FvznKs/T9FYbeHhWsPczTu+gbvzeFIbB5P/XaRQkFPURcLjMwVFJaZsqF4KdnlzrBmtnjtbQbbo3dSuteEMTELUGpMsHUzZdprXXHxsRTtr3RqcdjiLvS93jV6PiUG4aknGaGV0dOpJ2q9msVnF992aRqAw4uhKBHMnESx43uE+4HavYrcCGzrelVyLiMIQqv2qdmbqRgeIAZZf5y9ztNI3N5ryp5NDxxYO5tg5WiMXmsg+ZJ4ARMEAYc3Xsds2FAMajVpjz9B+ZEjlNdoOJjzGzLTOBQSJUsHLsVccR2P0N4LYeh74ueHPkTz1VDS5kwXgzRLMzym26FMriurDnqT2Hxf9DoD9h5m2Lnd3DT5XuNK+fOS6s7rqV0PqURgydSOzA82xUciThUuT3ZApzdQUlNCaJ5o8DjQbWD9FCgGOPhrNBq1joKKWmavOFNvGv7DQ11QyCQIEglGQUHYL3oBt2Xf4LVtKz6nT+G9by9tNqzH5X+fYTlxIjLbpvXuYk5nU15Ug7GFgoB+904Q/lAvD+b19sRggLe2RvLlgfjr3ihm+oq9ndsSt1GlqaK8RsPCP0J5+UAJl/ReSAUD7/ul31XbGp1ex9FiMZM5yKH7XTvuXcWhPQx9B+btgDey4MVYmL1WDNDMbjzoY62yZlHXReyftp9Xu7+Kq6krGkMFStsjyNt8zJP7n+Hr09vQ6W/Q33sdNodm8OgvF6jW6Bjoa8f78zoz7dWu2LqZUq01YXPRRxxOHETl2kU39GtV12jZt/UCscu1+Of3BAwEDXFjyktdMLcxEgfAEg+JLhhjmqdr+Y/BwgW6Pw6AcOBd3uj+GnKJnJNZJ9mXuu/21k49JerpAYz5/IYCyneb+4HavYyjGJiRLQZmrdmnBjCnbqhgc2hm48boyM3ix4BJN0ybX5n+BEgIybv6dakU5yVLMOnbF0N1NRlPL2TrkreR2hwA4N3e7+BrfYPJpr7Pw/CPqCoyIfmndGoS05Eqdbj3TERZcli8CE1dhaH/i0SdEPvs/PvcOzfylnBloCBMqYCssL/lHCQSgTcCxSGBGL0bnx4v4KFVZ9mZeAidQYePlQ8upmLZsc/UdvUl0G2/RjLtu9Mk5lfiZKHij0d74mTRtONBS1DXaDm3XSwtdh7x9/WmXQ9BEHhnXHueq5PpWHogjsd+DSGhznXiCj2de+Ju5k6FpoIPj/7GmK9OsPNyNjKJgMZHnMKTxGy7q+d+KS+MIoMGM52ezr5NWy/9f8dEbsIc/znsmLSDLwZ+QbBdZwRBj9Q0kh/i3qDfn8P4Nuw78qrybrhOrVbH//bF8sLaS2j1BiZ0cuaHB7uikEkws1Yx+cUutOvmgAEJUdUj+O3MJA59uob487mUFVRTXlRDaX418RdyOfx7DL+8fpL43WUYacyoMSlj/KJO9J1WJxZclgV7XhcPPOj1Rjp9/wr6vwhKC8i9jGfqufrWmf+e+y8lNSW3tmZNKWx6AjBApzngN7rVTrc1uB+o3cvU9U+QUxeoXSN82xr08rLB08aYilot2y9dM1RQUwYJYkBF+4k3Xce7rvyZHlVETeXVaU2JSoXbt8uxmDABdDq6/L6Fp3bo6CYZwri24264pr62loJIJamHbNDVSFFa6PAcWoDKzR7aDoZ5OyFwCjmJpRTnVCFTSPDpdnNJjHuRIHuxDJaoUFCadfFvOw9Jqigmq2jbDyO5lJMJhSw+LJbIuthdLYUqVFL8xolBfvaFfNQ51Tiaq/jjsZ64Wbee9+aFXSlUlamxsDcisN/f25t2PQRB4IVhPqJOnAAHonMZ8cUxFq0NY/WZVE4nFrLrcg72DARgS+J60orEgHbtE73oOlLstyHpKFSX3LXzPhS3AYABNWrknn3v2nH/qUglUoZ4DOHX0b+wYewmXCXDMeiMKNfms/zSMoZtGM5zh57jeMbxRlm28ylFjPnqBF8fEnvPHunThqXTOzUQTJYrpQyfH8CkFztjb69GazAiOsWRfT9GsvrN0/z6+il+e+s0+1ZGEnU8C3WVjlJlPlGBB3jkg4G4+dQZt+s0Yp9bbSk4d4aeT9+19+iuYmwN/er0Bw9+wHy/OXiae5Jfnc8bJ99Ab2i+Fmc9u16C0jSw8oRR/73p7neb+zpq9zKODQO1QNtAJIKErMoscipzcDS5PZkCiURgVnd3Pt4dwx/n0pjZvc4RIH5fs8qeV7B2MsHGxYTCzEqSwvJpf01mS5DLsf7oXTaVnWTQ4QIGXjYwMO0MRYbVmI8e1ajspauopOLgAfK//ApNlhg8mo0YgfP7byMxUoGiYSAQdVLcx7urw02V0e9VrFXWeJi6kFqRSXhlOv1qykB1nZLwnaZO6Nar63C2jezDf9aHkGQcC8DKvcZsPLAfVysjsktryCuvZYRCTke1jGk6Ix58qic2lq03HVWSW8Wlg+kA9J3WDqn83n2mnNvbk95tbfjvnlgOROeyKTSTTaHXCNNKPDFtJ0eqyuHBgXpeGTQAU6UMsBKnu/NjxL+5jtPv+LkaDAb2pR8BYIip5z0x0fZPwtemHTvnfMZPp+P438kNGMzOIDNO4VD6IQ6lH8JK4UB3m1FYG/pyNKqW2FxxOMjWVMG74wMY27HprL+ztyVT3xtBxoaVpJ2+TLo6iGK9J0gkCIKAiY2MCNVZIlTnUDsVsXrsaqyMLcUX6/Ww9WnRpF6qhAnLxH69fys9FsC5FVCWgfLMtywZsIQ5O+dwLOMYP0f+zCOBjzR/rUtrIHyt2BM+eQUo7732mXv36nefq6XP4hSoKcVEboKftdjMfTG3dTIvU7u4opBKCM8oJSKzzj8uZof40X9cs6eFvLuI2az4842noj678Bnf9yzhzdkm5No6QWkpuYsXE99/AClzHiBz0SKyXnmV1AcfIq5XL7JeeRVNVhYye3ucFi/G5YulSCysGwVptdXa+mnT9v/QsucVghy6AHXlz7ss0wFAVRHkRYqfe/SlnYMZr05SIEhrkRnM0de4UFip5lJGKXnltShkEir9zZCbypFX64nel96qp3NifTx6nQGPQJt6Zfx7mXYOZqyc25X1C3qxYEBbBvvZ425tTJCrBTO7+BJkJU6P1RqdqAvS6qib/iT67pQ/wwvCydZWYKzX09fr3irv/FOQSATm9/Flz/wX6KZ8i8rEF1AX9cGgU1GszmVv9s/8kf04qbLlKM3imN7FhQOLBtwwSLuCIAi4TXuMPuMcmWm7iCftJ/PkmL30fN2Ylf5vsMvpZ2qcC/h2+LdXH9QNBtj1ohhsSGQw/derqgH/VuRGMOx98fOjn+JXWc6rPV4F4KuLXxGSG9K8ddLPw7Znxc8HvAxu92bP5r845P4XYGwNFm5Qmg45EeDZhy4OXYgqjOJC7gVGt8KF1sZUyYhAR7ZfyuL3s2l8PN4H4uvKnn5jm72OT3cHzm5LElXKC6rrbWv2pOypn3gLF+ZQsnQyHWNPULp1KzWXL1MdEkL1X9aSu7lhOWUy1nPnXtfs+wrx53PRavRYORrj6PU3ZKBakWD7YLYlbuOiSgmZF8VprbtJXdkTW1+omwI8knEEgAk+w3hhxkjSi6rIKK7GwkhOsLslKrmU1IhCdnxziUuH0nHxtWwVa6f4C7mkRhQikQr0nXZ7Pot3m26e1nTzbGzaHlU4nxk79rE/bT8F1QXYGtUFn/7jxcnm+AOgrgTFnXXU2JMgBoSDqqpRteDv+z6Ncbcx5tdHupNZ0oHdlwdyOC6TfPV5SqTHqJYmIjePBPNIwiV7WZ8whYneE7Ezbubfx8DXwKCn/PhnfB//J7/n7kQriHI+Xw/+GgeTujaPvGjY8xokHQYEmPQ9+I684dL/GgKnQOxuiNgAmx5l6uPHuJBzgV3Ju3jm4DP8MPwHAm0b63/WU5IuTtnqakXXhv4vN9gcWxSLg7EDlirLO/t9NIP7gdq9jmPHukAtHDz70NWhK6ujVjf/iaEZzO7uzvZLWWwNy+Qtv0yM1eXiOLtz52avYW5rhKufFRkxxcScyaH72DaklaXx7ql3AagtGIQlgYzs5Iqq2xysH5iDOiOTqrNn0FdWYdCokZiZYdKzJwr35pmyXxkiaN/X+a4ZdN8putRl1C4rFagzL6C4yf6tTr2/p9iLZjAY6mU5BrkNwsJIjoWLRSM7KI9AGzoMdOXykQz2/xTF1Je7Yu1868FGWUE1R34Xy62dR3hg6dB6PW9/J+1t2tPRriPh+eFsjNvIE0GisjqOHcS+mOIUcdI6cPIdOwe9Qc++5D0AjBDMwfafFQTfq7hYGvFoP686269+wCLii+PZGL+RbYnbyKzI5KvQr/gm7Bu6OHRhsNtgerv0xtPcs6E00TWklqexz9aB37z9KNJWAjC8opIPKtMxPvO9qJZfkioGKgYdSBXipGKHqXfvG/+7EQQY+zmkn4PiFIRdL/LOuC/IqczhYt5FHt/3eNPBWmWBaDdWmSeKe0/+od65QafX8XPkz3wT9g2D3Qbz2YDP/vb7y/1A7V7HsQPE7qzX1+psLwZPSaVJFFYXYmNkc9uH6OlljZedCUn5lWSc3owPiFMvLbQc8evlJAZqp7LpOMKJF4++SKWmEmN9O8rzhzJjoFsD3zSFqwsK11ubOstJLiU/rRyJTMD3b7IUak08zT2xlptRpCknIu8SzQ+RW4nUq0bsAHHFcWRXZqOSqujh1OOGL+0zzZvCzAqy4kvY9W04U1/tisqk5UbJOp2efT9Goq7W4uhlTtcxni1e415mpu9MwvPDWR+3nvkd5oueqYIgTlafWAqRm+5ooBaWF0aepgxTvZ4+Xv9g38d/AO2s2vFq91d5rvNz7E/dz/rY9YTlh3E+5zznc87DeTCVm9Lepj12xnaYK8zRG/TkVuWSVpZGUulVgWRPU1derlXQr/Ak6Avr3Wrq8R8Hwz4A6zZ3+bu8B1BZwJQV8NMouLwOY4Uxy4d/zVOHnqkP1t7s+Saj2oy6GmwVJcNvk6EoCUzsYNaf9Zp6aWVpvHXyLS7mia1Far0atV6NUnpr9l6txf1A7V7nyuRnnUSHpcoSb0tvEkoSCM0LZajH0Ns+hCAIzO7uzkc7I7HNqCt73oKBb9tgO46tkVFeVMMXO34guiwac7klWVFTkQhS5vT0uO1zvUL4IdHPzqerA0amdz3/1OoIgkAXhy7szzjCBW0JnSsLwOQu9WZVF4uldQAPMVC7kk3r6dwTlezGDedSqYSRjwey7uPzlOZXs+vbcMY+HdTi4Y6zW5LITS5DYSRj2CMBd85u6G9ihOcIPrvwGblVuRxJP3L1bzdgshioxe8XnSnuUDPz3rps2uDKKhT/ZIPufxBGMiPGtx3P+LbjySjP4HD6YY6kHyE8P5wKTQXncs5d93VSQUoPpx6M9BzJ2LZjkUvkYh9p9HbIOCfau5k6ivZQ7jd+kPrX494Txn4hivyG/IxJVSHLx33J08f+Q0huCK8cf4W9KXt5tfurOOXFwsbHxEyapTs8sAks3ckoz2Dl5ZVsTdiK1qDFRG7CK91eYaL3xL89mwb3A7V7nysDBfnRoK0FmZIuDl1IKEkgJDekVQI1EIcK9u7dgbWhGJ3cFGmbfi1eQ6aQ0q6bA5HHMskOqYF2EKh4gkytBcPaO+Bi2Tr6WpUltSTWabZ1HOzWKmveC3R17sX+jCOEXOlT8xl+dw6cehowiFO+dWKg15Y9m4ORmYLRT3Zky+ehZCeUsu2rMMY9E4TS+OaZNYPBwPmdKYTuF4WXBz3gV9/j+G9CIVUwud1kVl5eyZrYNVf/dh07iO99YYJYyroD0586vY59ybsAGKERxJvbfe4qrmauPNj+QR5s/yBavZbEkkRiimIoqS2htFYc5HI0ccTB2IEgu6DGvVHG1qKFUp2N0n2uoctcUaB246MQvR2TjBBWdJnLSp92/BC/nkPphzicdojg2hoGSauxcPZF1ucZktN2c/bcu0QWRKIziNIqfZz78Favt+p1I+8F7gdq9zoWbqCyhJoScYzfKYiuDl1ZG7uWC7kXWu0wlsYKnnaKhXw4J+tCL9mtpXqdOhsReQy8CjviMuJRfj1gB2h5qJdnq51rxLFM9HoDTt4W2Lnfe6PUt8qVPrVQlRJN5gXkdy1QqzNiryt75lXlEVEYgYBAf9fmDzXYuZkx4flObPsqjNzkMrZ+EcaIxwKxsGs66DIYDJzdlkTI7lQAek1qWy+g/G9kms80VkWs4mz2WZJKk/Cy8Korf06GY59CxKY7EqidyzlHgboUM52eXq4DQNry0vR9Wg+ZRIavte+NRb/v0zLaTxDvlRsfhfIs5Ec+5klgsFzOf22sOG+k4qJK/AfVcOHTBi/v7dybJ4OerHeKuZf4d9UW/o0IwjXlT9Fe6MoNPbYoljJ183zhmkMf7RkA/ijtwLnkolta44fsLyk0ykJmUKCK6ENFrZa2dib08b79XjoArUZH5HFRo6rjoH9PNg3EvhZziZJqiYSYzNN378BXBgnqyp5XTNg72Ha4Op3YTOw9zJn4QjBGZnLy08pZ88FZwg6kodc3tlcqzKpgxzeX6oO0PlO96Tyi9crj9yLOps71we/amKv+n/W9aQkH7oj47ZaELQCMrqxE7ne/7HmffyleA+CFCFEPzbU7SJX4yi1YpTFnv2UfXg58nGEew+jv2p9eTr0Y5zWOD/p8wN4pe/l+2Pf3ZJAG9zNq/wycO0PyMcg4D50fws7YDg9zD1LLUgnLC2tR1qNJ8uOQFyegFWQc0Xei8EAcfzzWsvLIobRD7EvbR4BTJf2SplMZUYpgCs8Oaddqdf7483lUl2swtVbi1ene19dqCRJBQmdrf44UhHGhNJ4OBkOzdexumZrSekHlKxOfR9PFQG2g28BbWtLW1YwpL3fl8OpoMuNKOLkhgbD9abj5W2PvaU5VmZqi7EqSw/IxGKiX4egw0LU1vqN7nlm+sziSfoRtidt4rvNzGMuNwd7/qvhtzE4IntNqxytTl3EwVew9nVhRDd5DWm3t+9znnkOmFLPSf8lMOwIP1v37p3E/o/ZPwK2uWTT9auPplaza+ZzzrXOM2J0AaN36UiM14VRiIWeTCpv98nJ1OR+d+QiA7gN8MSgkmOsE+hubNEvosTno9QYu7hWzLx0GuCL5lzWbA3R1GwBAiEQLpRl3/oBpZ8CgB2svMHemSlPFmWwxs3qrgRqAhZ0RE54PZuAcX5TGMipL1cScyeHYmjgu7EohKVQM0ryC7Zj1To//N0EaiAMaHuYeVGgq2J64/eqGgLqs2uX1rXq8Pcl7qNWraatWE+DcU2xEv8997vOP4d93p/s3ckUtOT9GnNADejiKwduJzBOtc4wYsdFY1WEc07uKJcVP98Zet2R1PZaGLCWvOg93M3dm+88nRC56fvYzKJFKWicrlHAhl5LcKpQmMgIH3DuNnq1JV+deAFxUKtGln73zB6wve4rZtDPZZ6jV1eJi6oK35e0ZOgsSgYB+Lsz7pA/jn+tE8HB3PAJtCOjnTO/J3kx5pQujnuiApf2/QyutuUgECbP8ZgHwa9SvV/0hr2QAko6IYpytxNa6sufE8kqEu2BTdZ/73Kd1uR+o/RMwsRUzHgAZ4gBBb+feSAQJCSUJ5FTm3N765TliWRXAdzQLB3tjrJASklrMH+fSbvry8znnWR8nZgHe7f0uP53M5JxUjU6A2pxqcpJKb+/8ELNp53emANBpqDsK1b+zau9r7YuJIKVcKiEu+cCdP+BfBgmuTHsOdBvYauVqmUKKm781vSd7M3ZhEAPn+BE83B3HNhY3f/G/lEnekzBXmJNWnsbBtIPiF63bgGc/wACX/myV4ySVJBFecBmpwcDYai3433cjuM99/mncD9T+Kfyl/GmpsqSDrSjdcTzz+O2tHbsbMIi9cObOOFkY8fIIcRrpk90xZJf+1eTpKjXaGt47/R4AU9pNQaFpx4/Hk6mUgLWfJQBh+28e7N2Ma7NpHf/FZTKZREZnMzEoP5PXOn6uTVJbDllh4ucefdDpdfWDBANcB9zZY/8/x1huXJ9V+yniJwyGusx18APix9DfRKPt2+TKEEG/qmpsvYeKAqH3uc99/lHcD9T+KVwpf15TDuvrImZBTmTcZvkzRuxP45ppsAd7eRLsbklFrZa3tkRcvZH8he8ufUdqWSp2RnY82fE5XlgbhlZvYExHJ0ZOES1qEkPzyU2+9elUvd7AhV0pAHQa4t5iIdV/Gr09xGbv09piMZi6U6SdFe1nLD3A0o2w/DCKaoowV5jT1bHrnTvufQCY7T/7/9q78/ioqrvx45+ZTDKTZLKThWwkgZBADEuRXSCyKSAUFFuKWhYXELRaH6U+ilIoKiqVytM+0uclslgEfLEK4g+EQrEsolDZdxKCQCAh+76d3x+XDMbsJJPMTL7v12teJPeee+Z7OLmZb+695xyMTkZO3Dpx51nTTmPAxUNbHqjiauddKigtYOOFjQCMzc2D+EcbG7IQogVIomYvQm8nalcPw+1nWgaEapPSHrx+kJKykrurtygHErWrKD9dhN1Jr+PdR7rg7KRj5+mbLP13YpVDz6SfYfnJ5QC83ud1Pvz6Ry6l5dHWy8TbY+NpE+phWd5p3/rzNSZ7dTnxrx/JSMnH6Gagy/2OezWtQt8obVHlw0YjhRWLpVvDz5aN2nl7ZGBCWII2E7qwKl+TL2M7jAXgkxOfaBtd3CD+9rJq//lHo+r/4sIXZBZlElpSQkKZM0Q307x8QogmJYmavQjopP2lXZxrWeutk28nfE2+5JfmW9Yma7DzX0NZMfi2B//Kky92DPTg5eHatvlfnmblgSTLvtLyUt7c9yZlqoxh7YaReDmSz77VbnH++dGueN2ekb7PL6MwOOu5fiGLS/9JbXB4uRmFHNysrXvXZ2x7h7+aBhDlFUWAzplivY4jF7dZ742Sbl+xadcfpRT/TP4nAIPDB1vvPUUlk+Imodfp2XdtH8dTtfV86X57AoFTm7XpU+5CuSrn09OfAvB4dg5OnUaDs+Ot9iBEayCJmr3QO0Ho7dtRt29/6nX6O7c/73b056nN2r+xo6qds+uZgVHMSGgPwJubT7LkXxcpLCnj01Ofcjr9NB4uHpTd/CXzvzwNwIyE9vTrcGd+M7OPiW7DwgHYv/EiZSUNe+7mm8/PU1JYRmCkJ3H3Nc00H7ZOp9PR11MbcXng5mHrvElRDly7ndxH9Od0+mmu5V3D1eBKv+B+1nlPUUWYRxijo0YDsOjIIu2qc0gP8O8EpQVw5NO7qnfPlT1czr6MR3k543LktqcQ9kwSNXtieU7tznxqA0K02593lagV58G57drXceOqLaLT6XjlgRieHhAJaIML+ry/lr8c/h8ASm4+xOYjueh1MHtUJ155oOqSKN2Hh+Pm6UJ2agGHtl6qd3iJR1O59J9U9Hod9z8ei66JpvmwB5bn1IpvQVlp079B4jdQXgo+keATYRl52D+4P64GufLSnGZ2m4mL3oXvUr5j37V92h9MfWdoOw/8VVvjt4FWnFwBwK+yc3BrEwNRCU0YsRCiOUmiZk+qGVDQN7ivZZqOH3MaOEHque3aX+0+ERDcvcZiOp2O10Z2Yu6YOIK9TRR5r6WcEkrzOpB6vQueJgOfTO7JUwOiqp3SwcVkYMCvOwJwZHsy57+/UWdot67msmuFdpWu27Bw/ELMDWubnevdUZv89KyLgbTkxj1UXq2Lt6eEuD1L/a7L2vdD2sms9c2trbktE2InAPCXw3+hXJVDl1+DRzDkXIdja+uoobIfbv7AkZtHMCjFxOxc6DvT+itcCCGsRhI1exLaE3ROkJGkvQAvoxc9A3sC8FXiVw2r76Q2Ioy4cXX+ItfpdEzqF8FL4zIxuF9CjwuTov+LT5/szb9fHUxCTO0LaXfoEUD327dA/7nyNGk/1jyaMftWAVsW/0BRfilt23vRc1REg5rlCPzc/YnFCMDB85ub/g0u3J6jrf0QErMSuZh1EYPO0DTLkYkGezr+aczOZs5mnNXOY4NRS7AA9n1oGUBUF6UU73//PgCjc/MIMPpAvExyK4Q9k0TNnpi8IPz2+pvnv7ZsHhWlTaux9dLW+o+sLMqF8zu0r2u47flzqfmpfHD4zwC8dO/veHXYfQyI9sfTVL8Rgn3GtSessy+lxeVsWXyUpGNpVcrcuprLlsVHycsqxjfYnZEzumBwcapfmxzMnefUmng+tVsXtURfb4DIAZbRnr3a9sLTxbNp30vUi7fJmyn3TAFg4fcLySrKgh6TwOQNty7A6S21V3Dbl4lfciz1GK4KnsvIgl5Pg7PJipELIaxNEjV7Ez1M+7ciyQKGthuKi96FS1mXOJN+pn71nPt/UFqorXgQ1KVeh7z97dvklOQQ5xfHY50avmi0Xq9j+JNx+Aa7k59dzJf/e4wdS09y9tsULv2Qyq4Vp1gz/xCZN/Ix+xgZ/XxXTO6td5qIfhFDAdhXnEZZUz6ndlEb3UlYHzB6sC1RG1n6YMSDTfceosF+2/m3RHpFklaQxjuH3gGjB/R6Rtv5r/egjil48kvyWXR4EQDPZGQSgAHufdLaYQshrMxmE7XS0lIeeeQRQkJC0Ol0pKQ0cpkkRxH9gPZv4l4ozgfAw8WDQbcX8/7y0pf1q6cBtz1Bm2NrZ/JODDoDc/vNxaC/u2kyTO7OjH/1XroNC0eng/Pf3WDnslN8teQ4Zw6kgIL2vwhg3Mu/wOzTuq8E9Og8AY/ycm456Th2blPTVXzhzvNp5zLOcSHzAs56Z3k+rYWZDCbm95+PXqfny0tfas8N9nkWXH3h5kn496Jaj196Yik3828SUg5PZGfDL34LZv9mil4IYS02m6gBDBw4kPXr17d0GLYloBN4hmpXw5LujPR8KEqbrHZb4rY7izzXpCDzzq3Tetz2zCrK4q1v3wJgyj1TiPGtOrKzIZxdnOj/SAcentWD6J6BhMb6EBDhSUSXNjzyhx48+Mw9ePrJyENno5lBTt4A7Dy7rmkqLS3WknyADkPYdkm7mjYgZIDc9rQBXfy7MCVOuwU67+A8blIKI97Tdv7rPbhxstrj9l/bz9LjSwF4OTUVozkYhrzRLDELIazLZhM1g8HACy+8QJ8+fVo6FNui00HH2zOMn99u2VzxQZtakMp3N76rvY5jn0NZEQR0hsB76nzLRYcXkVaQRoRnBNO6TmtM9JUERXox/Mk4fvlidx599V5GzejSqhfqrs6Q4P4A7Mo8e9crO1Ry5SCU5IG7PyrgHssAlJFRIxtft2gSM7rNoIN3B9IL03lqx1Pc6nA/xIyE8hLYNKPKdC2Xsi7x8p6XKVNljMnNY0h+ATy0SNb1FMJB2Gyi1lBFRUVkZ2dXejmsiqVgzu+A2x/ezk7ODI/Qtm+5WMuDx0rB4eXa1z2m1Hnb89D1Q6w/r13V/GO/P2J0MjYqdNEw/eInYSwv56qulHM3fmh8hZbRnoM5eus41/Ku4WZwk0XYbYiLkwt/HfJXAt0CScxK5Jmd08gaPldLvK7/AJ//Fgq1329pBWk8v+t5ckpy6F4Kc1JvoYt/FGLkeUMhHIXDJGrvvPMOXl5elldYWFhLh2Q9kQPByQiZyZB61rJ5XAftNua2xG2k5NXwTN+P32nPuxhM0KX2Yfu5xbm8uf9NAH4d82t6BPZomvhFvbkFdKZ/qXaa7jyxsnGVKXVn9GD0cMvzjEPbDcVkaN3PA9qaEHMISx9YShvXNpzLOMeju59jY7+plDq5wNkvKf94MJ/ve4sxGx4iOSeZkNIyFl39ERfvdvDggpYOXwjRhFosURs+fDgmk6na1/z58xtc33//93+TlZVleV25csUKUdsIF3fLQtqcuzN3Whf/LvQM6klpeSnLTiyr/tiKq2lxD4Ord61v8+5373I19yoh5hBe/MWLjQ5b3AWdjiG+nQHYlXKwcXWlHIf0S2AwUdJ+CDsuayOHR0SOaGyUwgraebbj4+EfE+gWyPW867yZuJ4HozsxNiyMIa75/OnCGnJK8+hUVMxHKTfwaz8UntkD7m3qrFsIYT9aLFHbsWMHhYWF1b5mz57d4PqMRiOenp6VXg6tk7Y+IEdWQvmd9TOfjn8agPXn15NW8LN5ygoy4cQG7esek2utflfyLjZd2IQOHW/d9xZml9a1MoAtGdTxEQxKcb4sl+Ts5Luv6NQm7d8OQ9l181vSC9Np49qG3m17N0mcoum1927P1nFbefnel/E2enOjKIOLBh1pBifcyxWv5hSzOhsiB74Gv1kLbr4tHbIQoond3RwLzaSoqMjyAHVRURGFhYWYTHKLBtAWWf56jnaF5OIuy/xqfdr2Ib5NPMfTjvPpqU/5fY/f3znm2FptySj/TneWo6pGan4qc/fPBWDyPZPllmcL84p+kHv3zeagq5GvTn3GtD6vNrwSpeDkJu3ruHGsPaMtS/RI9CM461vvXHX2wGQwMSluEuM7judo6lEMOgOuBlfaebWTkbpCtAI2/YxaTEwMrq7aNA0RERGWrwVgNEP3x7Wvv11i2azT6Xgq/ikA1p5dq81wDtqcaxXzMN07tcZBBEVlRbyw+wUyijLo6NOR57o9Z7UmiHoyeTLG2BaADRe/0NaCbKgbJyH9IjgZuRjYke9vfI+TzonxHcc3cbDCWtyd3ekX3I9ebXsR7x8vSZoQrYRNJ2pJSUkopSq9xE/0egrQaSP50i5YNieEJRDtE01eSR5/Ovgn7f/t4N+0BZ69wrWJMKuhlGLu/rkcTzuOp4snixIW4eLk0kyNEbUZFjMez7IyrpXmsP/a/oZXUHHbM3oYnydqgwgGhQ4iyD2o6YIUQgjR5Gw6URN18I2CjreH4R/6P8tmvU7P3L5zMegMbE/azoYTK+DfH2o7h7xZ49p/S08sZculLTjpnPhzwp8J9wy3dgtEPZm6TGBMXgEA644vb9jBP7ntmR8zgi8ufgFoI3mFEELYNknU7F3v2xPQ/rAKsq9ZNsf7x/P8L54HYMGRRVxUBdC2G9zzSJUqlFL85fBf+PCIlszN6jmLPm1lomGbYvbnEV9tTdY9Nw6Rmp9a/2Ov/wC3zoOTkW0ukFuSS5hHGH2CpY+FEMLWSaJm76ISoG1XKM6F1ROgOM+ya3LcZPp6daSQcqYHBfBdrydAX7nL80vyef3fr7P0hLb8zMxuM/lN7G+aswWinjp0m0z3wkLKUGw6v7H+Bx78CICSTg/x8Zl/ANrVNL1OTn8hhLB18pva3ul08KuV4OYH14/CxmmW6Tr0Jzfy9om9hJWUkGIw8OSxxSw4tIA9V/Zw5MYRFh9ZzLB1wyy3O+f1m8f0rtPR1WORdtECOo5gfIHWt+tOr6KkrKTuY7KvwwltZYn1oZ24mnsVP5Mfj3Z81JqRCiGEaCI65aBP6GdnZ+Pl5UVWVpbjz6kGcPkArBwDZcXagAGzP1w9Aijy7nmY99uGsf5C9Vdhwj3Ceb336/QL6de8MYsGK/ziOR5M/Se3DE682utVHuv0WO0H7JoH3/yZ/PDejDKXkFaQxmu9X5OrpkII0cLqm6fIFTVH0a4vjPkf0BsgKxmuHgYU9JiC+8NL+WP/efxtyN8YGDqQOL84Qswh3Bt4L4sSFvHF2C8kSbMTpm6P81xmJgD/+5+/3Zl+pTrF+fD9JwB81q4LaQVphJhDGB8tU3IIIYS9sOkJb0UDdZ0AkYMgIwnyb2mLOEfcZ5kzbWDoQAaGDmzZGEXjhPVmnEdHVhVf5wI5LDm6hD/0+kP1ZY+tgYIM0nzb8clNbUqPmd1m4uwkE9wKIYS9kCtqjsazrXZ1rdNDEDmgxolthZ3S6XAa8R6vpGcCsObMapKykqqWy02FPQsoAf4rKIic4hxifGIYGTmyOaMVQgjRSJKoCWFvwnrRr8No7ssvoFSV8eLuFyuv61peDpumQ+4N3g+J4kjBdczOZhYOWoiT3qnl4hZCCNFgkqgJYY+GzmV2VgEBpaVczLrI0zue4lbBLW3fgb9ScmEnn/j4stqlFIB3BrxDhFdEy8UrhBDirsgzakLYI68QQvr9nk/2vsPUtgFcyLzIxE3jGISJdilnWBPSliQX7Vm0Z7s+S0JYQsvGK4QQ4q5IoiaEvbrvJdo5u7F0z594MsCba2SwGsDXCwAfow/Tu05nQuyEFg1TCCHE3ZNETQh7pddD3xlEtB/Mhk3T2J97laOB0VxwNdMtfBCT4yZjdjG3dJRCCCEaQSa8FcIRVJzGMspXCCHsQn3zFLmiJoQjkARNCCEckoz6FEIIIYSwUZKoCSGEEELYKEnUhBBCCCFslCRqQgghhBA2ymEHE1QMZs3Ozm7hSIQQQgghKqvIT+qafMNhE7WcnBwAwsLCWjgSIYQQQojq5eTk4OXlVeN+h51Hrby8nGvXruHh4YHOilMXZGdnExYWxpUrV1rVfG2ttd0gbZe2S9tbE2m7tN1abVdKkZOTQ3BwMHp9zU+iOewVNb1eT2hoaLO9n6enZ6v7QYbW226QtkvbWx9pu7S9tbF222u7klZBBhMIIYQQQtgoSdSEEEIIIWyUJGqNZDQamTNnDkajsaVDaVattd0gbZe2S9tbE2m7tL2lOexgAiGEEEIIeydX1IQQQgghbJQkakIIIYQQNkoSNSGEEEIIGyWJmhBCCCGEjZJErR5SU1MZNWoUbm5uxMTEsGvXrmrLFRQU8Pjjj+Ph4UF4eDirV69u5kibVlFREVOmTCE0NBQvLy8SEhI4fvx4tWUnT56M0WjEbDZjNpuJi4tr5mibXkJCAiaTydKmESNGVFvO0fq9or0VL51Ox/r166sta+/9PmfOHDp37oxer2fNmjWV9i1YsAB/f398fX2ZNWtWrevxLV++nNDQUDw9PZkyZQrFxcXWDr3Ramr78uXL6datGx4eHkRFRbFkyZIa69izZw96vb7Sz8s333zTHOE3Sm1tNxgMldqTnJxcYz2O1O/Tp0+v1G5nZ2dGjx5dbR322u91fabZ6jkviVo9zJw5k+DgYNLS0nj33Xd59NFHycjIqFJuzpw5pKenc/XqVdasWcOzzz7LuXPnWiDiplFaWkpUVBQHDx4kPT2dMWPGMHbs2BrLz507l9zcXHJzczl58mTzBWpFy5cvt7Tpq6++qraMo/V7RXtzc3PZv38/rq6uDB8+vMby9tzv0dHRfPjhh/Tq1avS9m3btvHRRx/x7bffcvLkSbZu3cqyZcuqreP48eO89NJLbNq0iStXrpCUlMT8+fObI/xGqantRUVFLFmyhIyMDLZs2cKcOXPYu3dvjfV07Nix0s/MgAEDrB16o9XUdoChQ4dWak94eHi1dThavy9ZsqRSu+Pj42v9fW+P/V7bZ5pNn/NK1ConJ0e5uLioa9euWbYNGDBArVixokrZoKAgdfDgQcv3TzzxhJo7d26zxNkcioqKlE6nU2lpaVX2TZo0Sb3zzjstEJX1DBo0SK1evbrOco7c77NmzVITJkyocb+j9PvP+3rChAlqwYIFlu+XLl2q7r///mqPffXVV9X06dMt3+/atUtFRkZaL9gmVtfP+cSJE9XChQur3bd7924VExNjrdCs7udtX7ZsmXrggQfqdawj9/upU6eU0WhUmZmZ1e63936v8NPPNFs+5+WKWh3Onz+Pl5cXbdu2tWzr2rVrlSsHGRkZpKSkEB8fX2s5e3bgwAECAwPx8/Ordv/777+Pn58f/fr1q/UvcHvy/PPP4+/vz7Bhwzh27FiV/Y7c70opVq9ezWOPPVZrOUfs91OnTtW7T6srm5iYSEFBgdXjtLaysjIOHTpU6y3tpKQkAgICiI6OZt68eZSVlTVjhE1v3759+Pn50blz51pv+zpyv69atYqHHnqo1nUoHaHff/qZZsvnvCRqdcjNza2yIKunpye5ublVyjk5OeHm5lZrOXuVlZXFtGnTeOutt6rd/8ILL3DhwgWuX7/OzJkzGT16NFeuXGnmKJvWe++9R2JiIsnJyQwbNoyRI0e2qn7fu3cv+fn5PPDAAzWWccR+h6rnfW19Wl3Ziu32bvbs2YSEhNT4MxAbG8sPP/xASkoKmzdv5vPPP2fx4sXNHGXTGTRoEMePHyc1NZVly5Yxb948Nm7cWG1ZR+73zz77rNY/0Byh33/+mWbL57wkanUwm81kZ2dX2padnY3ZbK5SrqysjPz8/FrL2aPCwkLGjh3LqFGjmDp1arVlunfvjo+PDy4uLjz22GP07duXr7/+upkjbVq9evXCbDbj6urKrFmzMJvNHDp0qFIZR+73VatW8atf/QpnZ+cayzhiv0PV8762Pq2ubMV2e7ZkyRI2bNjAunXr0Ol01ZYJCgoiNjYWvV5P586dmT17do2JjT2IjIwkIiICvV5P7969+d3vfldjexy13/fv309GRgYjR46ssYy993t1n2m2fM5LolaH6OhosrKySElJsWw7evRolVsBPj4+BAUFVRpBUl05e1NaWsqECRMIDg5m4cKF9T5Or3e8H63q2uSo/V5cXMy6devqvO35c47S7507d653n1ZXNjIyEldXV6vHaS1r167lrbfeYvv27bRp06bexzlK/1eorT2O2O+g/YE2fvz4Bq1xaU/9XtNnmk2f81Z7+s2BjB8/Xj3zzDMqPz9fbd68Wfn4+Kj09PQq5V5++WU1atQolZ2drQ4cOKC8vLzUmTNnWiDipjN58mQ1fPhwVVxcXGu5devWqdzcXFVSUqLWrFmjPDw8VGJiYvMEaQUZGRlqx44dqrCwUBUVFakPPvhABQYGqqysrCplHbHfN27cqCIiIlR5eXmt5ey934uLi1VBQYEaMGCAWrlypSooKFBlZWVq69atql27durSpUvq+vXrKi4uTi1durTaOo4dO6Z8fX3V4cOHVWZmpho8eLB64403mrklDVdT27dv3678/f3V0aNH66xj9+7dKjk5WSml1Llz51R8fLx69913rR16o9XU9q+++krdvHlTKaXU4cOHVUhIiFq7dm21dThavyulVElJiWrTpo3avXt3rXXYa78rVfNnmi2f85Ko1cPNmzfViBEjlKurq4qOjlZff/21Ukqpf/zjH6pz586Wcvn5+WrixInK3d1dhYaGqlWrVrVUyE0iKSlJAcpkMil3d3fLa+/evVXa3r9/f+Xp6am8vLxUr1691M6dO1sw8sa7efOm6tGjh3J3d1c+Pj7q/vvvV4cPH1ZKOX6/K6X9cfLaa69V2e5o/T5p0iQFVHpVfEi9/fbbys/PT3l7e6tXXnmlUtJacR5UWLZsmQoODlZms1lNmjRJFRYWNndTGqymtickJCiDwVDpnJ82bZrluJ+2feHChSo4OFi5ubmpiIgI9cYbb6iSkpKWalK91dT2l156Sfn7+yt3d3fVsWNHtXjx4krHOXK/K6UlK6GhoZbE7accod9r+0xTynbPeZ1StczoJoQQQgghWoz93FgWQgghhGhlJFETQgghhLBRkqgJIYQQQtgoSdSEEEIIIWyUJGpCCCGEEDZKEjUhhBBCCBsliZoQQgghhI2SRE0IIYQQwkZJoiaEaDWSk5MbtHbl3UhKSkKn02E2m9m0aVOtZdevX4/ZbEan01VaT1gIISrIygRCCIdiNpstX+fl5eHm5oZOpwPg1KlThIeHW/X9k5KSiI2NpbCwsN7H6HQ6rl+/TlBQkBUjE0LYI0NLByCEEE0pNzfX8rXJZOLkyZNERES0XEBCCNEIcutTCNFqJCUlYTKZLN/rdDo++ugjwsPDadOmDWvXrmXr1q1ERUUREBDA2rVrLWXT09OZOHEiAQEBREVFsWLFinq/78GDB+nevTseHh4EBQXxwQcfNGm7hBCOS66oCSFatX379nHu3Dm2bNnC9OnTGTNmDCdOnGDXrl1MnTqV8ePH4+TkxBNPPME999zDlStXSExMZPDgwXTr1o2uXbvW+R4vvvgir7zyChMnTiQjI4OkpCTrN0wI4RDkipoQolWbNWsWJpOJhx9+mMzMTGbMmIGbmxujR48mJyeHa9eukZKSwjfffMPbb7+N0WgkNjaWiRMnsmHDhnq9h7OzM2fPniU9PR0fHx+6d+9u5VYJIRyFJGpCiFYtICAAACcnJ5ydnfH397fsM5lM5OXlkZycTF5eHn5+fnh7e+Pt7c3f//53bty4Ua/3+Pjjjzl9+jQdOnSgX79+HDhwwCptEUI4Hrn1KYQQdQgJCcHb25tbt27d1fExMTF8/vnnlJaWsmTJEh5//HEuXrzYxFEKIRyRXFETQog6hISE0LNnT958803y8/MpLS3lyJEjnDp1ql7Hr1q1ilu3bmEwGPDw8MDJycnKEQshHIUkakIIUQ+rVq3i8uXLlhGhL774IgUFBfU6dtu2bcTExODh4cHixYtZtmyZlaMVQjgKmfBWCCGa0OXLl4mNjcVoNLJy5UrGjBlTY9kNGzYwdepUCgsLuXz5MoGBgc0YqRDCHkiiJoQQQghho+TWpxBCCCGEjZJETQghhBDCRkmiJoQQQghhoyRRE0IIIYSwUZKoCSGEEELYKEnUhBBCCCFslCRqQgghhBA2ShI1IYQQQggbJYmaEEIIIYSNkkRNCCGEEMJG/X9jsVkXNUz9iQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Do some Python magic to get different colors\n", + "from itertools import cycle\n", + "prop_cycle = plt.rcParams['axes.prop_cycle']\n", + "colors = cycle(prop_cycle.by_key()['color'])\n", + "\n", + "for X0 in [[1, 0, 0, 0], [0, 2, 0, 0], [1, 2, 0, 0], [0, 0, 1, 0], [0, 0, 2, 0]]:\n", + " response = ct.initial_response(sys, T=20, X0=X0)\n", + " response.plot(color=next(colors), label=f\"{X0=}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "b3VFPUBKT4bh" + }, + "source": [ + "### Step response\n", + "\n", + "Similar to `initial_response`, you can also generate a step response for a linear system using the `step_response` function, which returns a time response object:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHbCAYAAAC+3iyjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACzjklEQVR4nOzdeXhU5fUH8O+dfSaTyb4nJCwh7CCbiPu+IIta1AoK2lq1qFWrtVhrLO5t1W6iP20Fi7igVQFFRRFklR2EEEgIBEL2dSaT2Wfe3x937p19CyETyfk8Dw/JLHfu3ARycs57zssxxhgIIYQQQshZTRLvEyCEEEIIIWceBX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EkH7jzTffREFBASQSCf72t7/F+3R6XHV1NTiOw759+07rOJdccgkeeuihHjmnn8LrEtJfUNBHSA9qamrCPffcgwEDBkCpVCI7OxtXX301tm3bJj6G4zh89tln8TvJfspgMOD+++/H448/jtraWvzqV7+K9ykRP5988gmeeeaZeJ8GIWctWbxPgJCzyU033QS73Y533nkHgwYNQmNjI9atW4e2trZ4nxoAwGazQaFQxPs04uLkyZOw2+2YNm0acnJyun0cu90OuVzeg2dGhGuampoa71Mh5KxGmT5CekhHRwc2b96Ml156CZdeeikKCwsxefJkLFy4ENOmTQMAFBUVAQBuuOEGcBwnfg4Aq1evxoQJE6BSqTBo0CD86U9/gsPhEO/nOA6vv/46rr32WqjVagwcOBAfffRR2HO65JJLcP/99+ORRx5Beno6rrzySgDAoUOHcN1110Gr1SIrKwu33347WlpaxOd9/PHHGD16NNRqNdLS0nDFFVegq6sLADB//nzMmjULf/rTn5CZmQmdTod77rkHNptNfL7VasWDDz6IzMxMqFQqXHDBBdi5c6d4/4YNG8BxHNatW4eJEydCo9Fg6tSpOHLkiPiY/fv349JLL0ViYiJ0Oh0mTJiAXbt2ifdv3boVF110EdRqNQoKCvDggw+K5+hv6dKlGD16NABg0KBB4DgO1dXVAIDXX38dgwcPhkKhQElJCZYtW+bzXI7j8MYbb2DmzJlISEjAs88+G/Q1rFYrfve736GgoABKpRLFxcX4z3/+I97//fffY/LkyVAqlcjJycHvf/97n69vUVFRQMl53LhxePrpp33OJdbvgUhf666uLtxxxx3QarXIycnByy+/HPZ4QPivzdKlS5GcnIzPPvsMQ4cOhUqlwpVXXomamhrx+U8//TTGjRuHt99+G4MGDYJSqQRjLKC8W1RUhOeffx533XUXEhMTMWDAALz55ps+57J161aMGzcOKpUKEydOxGeffRaxxF1UVIRnn31WfN+FhYVYuXIlmpubMXPmTGi1WowePdrn+621tRU///nPkZ+fD41Gg9GjR+P999/3OW64fzcbNmzA5MmTkZCQgOTkZJx//vk4ceJExGtNSI9ihJAeYbfbmVarZQ899BCzWCxBH9PU1MQAsCVLlrD6+nrW1NTEGGPsq6++Yjqdji1dupRVVVWxtWvXsqKiIvb000+LzwXA0tLS2FtvvcWOHDnCnnzySSaVStmhQ4dCntPFF1/MtFote+yxx9jhw4dZeXk5q6urY+np6WzhwoWsvLyc7dmzh1155ZXs0ksvZYwxVldXx2QyGXvllVfY8ePH2Y8//shee+011tnZyRhjbN68eUyr1bJbbrmFHTx4kH3++ecsIyODPfHEE+LrPvjggyw3N5etWbOGlZWVsXnz5rGUlBTW2trKGGNs/fr1DAA799xz2YYNG1hZWRm78MIL2dSpU8VjjBw5ks2dO5eVl5eziooKtmLFCrZv3z7GGGM//vgj02q17NVXX2UVFRVsy5Yt7JxzzmHz588Peh1MJhP79ttvGQC2Y8cOVl9fzxwOB/vkk0+YXC5nr732Gjty5Ah7+eWXmVQqZd99953Pdc/MzGT/+c9/WFVVFauurg76GjfffDMrKChgn3zyCauqqmLffvst++CDDxhjjJ06dYppNBr261//mpWXl7NPP/2Upaens9LSUvH5hYWF7NVXX/U55tixY30eE+l74Pjx4wwA27t3r/i1DPe1Zoyx++67j+Xn57O1a9eyH3/8kV1//fVMq9Wy3/zmN0HfZ6SvzZIlS5hcLmcTJ05kW7duZbt27WKTJ0/2+dqWlpayhIQEdvXVV7M9e/aw/fv3M5fLxS6++GKf1y0sLGSpqanstddeY5WVleyFF15gEomElZeXM8YYMxgMLDU1lc2dO5eVlZWxNWvWsKFDh/pcg2CE477xxhusoqKC3XfffSwxMZFdc801bMWKFezIkSNs1qxZbPjw4czlcolfw7/85S9s7969rKqqiv3jH/9gUqmU/fDDD+K1DvXvxm63s6SkJPboo4+yo0ePskOHDrGlS5eyEydOhDxHQs4ECvoI6UEff/wxS0lJYSqVik2dOpUtXLiQ7d+/3+cxANinn37qc9uFF17Inn/+eZ/bli1bxnJycnyed++99/o85txzz2X33XdfyPO5+OKL2bhx43xu++Mf/8iuuuoqn9tqamoYAHbkyBG2e/duBiBkcDNv3jyWmprKurq6xNtef/11ptVqmdPpZEajkcnlcrZ8+XLxfpvNxnJzc9mf//xnxpgn6Pv222/Fx3zxxRcMADObzYwxxhITE9nSpUuDnsPtt9/OfvWrX/nctmnTJiaRSMTn+9u7dy8DwI4fPy7eNnXqVHb33Xf7PG727NnsuuuuEz8HwB566KGgxxQcOXKEAWDffPNN0PufeOIJVlJSIgYQjDH22muvideMseiDvnDfA/5BX6SvdWdnJ1MoFGJwyhhjra2tTK1Whw36wn1tlixZwgCIwRBjjJWXlzMAbPv27YwxPuiTy+XiLz2CYEHf3Llzxc9dLhfLzMxkr7/+OmOM/75LS0vz+Zq/9dZbUQV93setr69nANgf//hH8bZt27YxAKy+vj7kca677jr229/+ljHGwv67aW1tZQDYhg0bQh6LkN5A5V1CetBNN92Euro6rFq1CldffTU2bNiA8ePHY+nSpWGft3v3bixatAharVb8c/fdd6O+vh4mk0l83HnnnefzvPPOOw/l5eVhjz1x4sSA11q/fr3Paw0bNgwAUFVVhbFjx+Lyyy/H6NGjMXv2bLz11ltob2/3OcbYsWOh0Wh8zsNoNKKmpgZVVVWw2+04//zzxfvlcjkmT54ccK5jxowRPxbW2TU1NQEAHnnkEfzyl7/EFVdcgRdffBFVVVU+72Hp0qU+7+Hqq6+Gy+XC8ePHw14Pb+Xl5T7nCQDnn39+wHn6X0N/+/btg1QqxcUXXxzydc477zxwHOfzOkajEadOnYr6fIHYvgcifa2rqqpgs9l8jpmamoqSkpKw5xDuawMAMpnM55oNGzYMycnJPudZWFiIjIyMiO/X+3uE4zhkZ2eL3yNHjhzBmDFjoFKpxMdMnjw54jH9j5uVlQUA4hIA79uE13I6nXjuuecwZswYpKWlQavVYu3atTh58iQAhP13k5qaivnz5+Pqq6/G9OnT8fe//x319fVRnSchPYmCPkJ6mLCG6amnnsLWrVsxf/58lJaWhn2Oy+XCn/70J+zbt0/8c+DAAVRWVvr8QAvGO5AIJiEhIeC1pk+f7vNa+/btQ2VlJS666CJIpVJ88803+PLLLzFixAj885//RElJSVTBFMdxYIwFPS/GWMBt3g0Rwn0ulwsAv+6rrKwM06ZNw3fffYcRI0bg008/FR9zzz33+Jz//v37UVlZicGDB0c8T/9zjnSe/tfQn1qtDnt/sGP6XyeJRCLeJrDb7WGPKwj1PRDpa+3/etEK97UJd07et0W6pgL/phmO48TvkXDXNZbjCscI9/348ssv49VXX8Xvfvc7fPfdd9i3bx+uvvpqcS1rpH83S5YswbZt2zB16lR8+OGHGDp0KH744YeozpWQnkJBHyFn2IgRI3waDORyOZxOp89jxo8fjyNHjmDIkCEBfyQSzz9T/x8SP/zwg5i5idb48eNRVlaGoqKigNcSfhBzHIfzzz8ff/rTn7B3714oFAqfH+r79++H2Wz2OQ+tVov8/HwMGTIECoUCmzdvFu+32+3YtWsXhg8fHtO5Dh06FA8//DDWrl2LG2+8EUuWLPF5D8GuVyzdycOHD/c5T4BvDIj1PEePHg2Xy4Xvv/8+6P0jRozA1q1bfQKSrVu3IjExEXl5eQCAjIwMn+yPwWAIGmjH8j0Q6Ws9ZMgQyOVyn2O2t7ejoqIi4nsO9bUBAIfD4dMEceTIEXR0dMT8vRrJsGHD8OOPP8JqtYq3eb9uT9q0aRNmzpyJuXPnYuzYsRg0aBAqKyt9HhPp380555yDhQsXYuvWrRg1ahTee++9M3KuhIRCQR8hPaS1tRWXXXYZ3n33Xfz44484fvw4PvroI/z5z3/GzJkzxccVFRVh3bp1aGhoEMs/Tz31FP773/+KGZTy8nJ8+OGHePLJJ31e46OPPsLbb7+NiooKlJaWYseOHbj//vtjOs8FCxagra0NP//5z7Fjxw4cO3YMa9euxV133QWn04nt27fj+eefx65du3Dy5El88sknaG5u9gmEbDYbfvGLX+DQoUP48ssvUVpaivvvvx8SiQQJCQm477778Nhjj+Grr77CoUOHcPfdd8NkMuEXv/hFVOdoNptx//33Y8OGDThx4gS2bNmCnTt3iufw+OOPY9u2bViwYIGYuVq1ahUeeOCBmK7FY489hqVLl+KNN95AZWUlXnnlFXzyySd49NFHYzpOUVER5s2bh7vuugufffYZjh8/jg0bNmDFihUAgF//+teoqanBAw88gMOHD2PlypUoLS3FI488Igb1l112GZYtW4ZNmzbh4MGDmDdvHqRSacBrxfI9EOlrrdVq8Ytf/AKPPfYY1q1bh4MHD2L+/Pk+v2j4i/S1AfhfbB544AFs374de/bswZ133okpU6ZEXXqN1m233QaXy4Vf/epXKC8vx9dff42//vWvACJnwGM1ZMgQfPPNN9i6dSvKy8txzz33oKGhQbw/3L+b48ePY+HChdi2bRtOnDiBtWvXoqKiIuZfLgg5bfFaTEjI2cZisbDf//73bPz48SwpKYlpNBpWUlLCnnzySWYymcTHrVq1ig0ZMoTJZDJWWFgo3v7VV1+xqVOnMrVazXQ6HZs8eTJ78803xfsBsNdee41deeWVTKlUssLCQvb++++HPSf/hfGCiooKdsMNN7Dk5GSmVqvZsGHD2EMPPcRcLhc7dOgQu/rqq1lGRgZTKpVs6NCh7J///Kf43Hnz5rGZM2eyp556iqWlpTGtVst++ctf+nQsm81m9sADD7D09HSmVCrZ+eefz3bs2CHeLzRytLe3i7d5N1pYrVZ26623soKCAqZQKFhubi67//77fRbs79ixg1155ZVMq9WyhIQENmbMGPbcc8+FvBbBGjkYY2zx4sVs0KBBTC6Xs6FDh7L//ve/PvcjSONNMGazmT388MMsJyeHKRQKNmTIEPb222+L92/YsIFNmjSJKRQKlp2dzR5//HFmt9vF+/V6Pbv55puZTqdjBQUFbOnSpUEbOcJ9D/g3cjAW/mvNGGOdnZ1s7ty5TKPRsKysLPbnP/855PcNYyzi12bJkiUsKSmJ/e9//2ODBg1iCoWCXXbZZT4NDqWlpWzs2LEBxw7WyBGpuWXLli1szJgxTKFQsAkTJrD33nuPAWCHDx8Oev6hjuv/dfa/lq2trWzmzJlMq9WyzMxM9uSTT7I77riDzZw5kzHGwv67aWhoYLNmzRK/NwoLC9lTTz0lNvEQ0ls4xrq5qIMQ0qs4jsOnn36KWbNmxfU85s+fj46ODtpVJA76yvdAOEuXLsVDDz2Ejo6OuLz+8uXLceedd0Kv10dca0lIf0M7chBCCPnJ+u9//4tBgwYhLy8P+/fvx+OPP46bb76ZAj5CgqCgjxBCyE9WQ0MDnnrqKTQ0NCAnJwezZ8/Gc889F+/TIqRPovIuIYQQQkg/QN27hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9AAV9hBBCCCH9gCzeJxBPLpcLdXV1SExMBMdx8T4dQgghhJCYMMbQ2dmJ3NxcSCThc3n9Ouirq6tDQUFBvE+DEEIIIeS01NTUID8/P+xj+nXQl5iYCIC/UDqdLs5nQwghhBASG4PBgIKCAjGmCadfB31CSVen01HQRwghhJCfrGiWqVEjByGEEEJIP0BBHyGEEEJIP0BBHyGEEEJIP0BBXx/gdDEcbjCAMRbvUyGEEELIWYqCvj5g6dZqXPO3TXhqZVm8T4UQQgghZykK+vqAj3efAgAs++EEZfsIIYQQckZQ0NcHtHVZxY/bTfY4ngkhhBBCzlYU9MUZYwxtXTbx89p2cxzPhhBCCCFnKwr64sxgccDu9JR06/UU9BFCCCGk51HQF2etRqvP53ozlXcJIYQQ0vMo6Isz79IuQEEfIYQQQs4MCvrizD/oM1DQRwghhJAzgIK+OOuyOXw+p0wfIYQQQs4ECvrizGh1+nxOQR8hhBBCzgQK+uLMZPXN9Bn9PieEEEII6QkU9MVZlzvIS1LLAQAmmzPcwwkhhBBCuqXPBn3Nzc2YNm0aNBoNSkpKsG7duqCPO378OK666iokJycjLy8PL7zwQi+f6ekRyrvpWgUAwGynoI8QQgghPa/PBn0LFixAbm4uWlpa8NJLL2H27Nlob28PeNwDDzyAQYMGobm5GZs3b8Y///nPkAFiX2RyN3Kka5UAADNl+gghhBByBvTJoM9oNGLlypVYtGgRNBoNZs2ahVGjRmH16tUBjz1x4gRuueUWyOVyDBw4EBdccAEOHToUh7PuHmENX3qiO+ijTB8hhBBCzoA+GfRVVlYiKSkJOTk54m1jx45FWVlZwGMXLFiADz74AFarFZWVlfjhhx9wySWXBD2u1WqFwWDw+RNvwhq+DHemj9b0EUIIIeRM6JNBn9FohE6n87lNp9PBaDQGPHbq1KnYtm0bEhISMHToUPziF7/A6NGjgx73hRdeQFJSkvinoKDgjJx/LIRMX4Y702ehoI8QQgghZ0CfDPq0Wm1AFs5gMECr1frc5nQ6cd111+Huu++GxWLB8ePH8dFHH+Hjjz8OetyFCxdCr9eLf2pqas7Ye4iW0L0rNHKY7E4wxuJ5SoQQQgg5C/XJoK+4uBh6vR4NDQ3ibfv378fIkSN9HtfW1oa6ujrcd999kMlkKCoqwqxZs7B+/fqgx1UqldDpdD5/4k0o5wqNHE4Xg83piucpEUIIIeQs1CeDPq1WixkzZqC0tBRmsxmrVq3CwYMHMX36dJ/HZWRkoKCgAG+99RZcLhdOnTqFlStXhizv9kViI4c76AMAi42CPkIIIYT0rD4Z9AHA4sWLUVNTg7S0NDz66KNYsWIFUlJSsHz5cp+M38cff4xly5YhJSUFkyZNwuWXX4677747jmceG6G8m6yRQy7lAAAmO+3KQQghhJCeJYv3CYSSkZGBNWvWBNw+Z84czJkzR/x80qRJ2Lp1a2+eWo9xuZhY3tUoZFDJpbA7HTSrjxBCCCE9rs9m+voDk9dMPq1SBo1Cyt9OQR8hhBBCehgFfXHkndFTySVQy/mgjwY0E0IIIaSnUdAXRxZ3cKeUScBxHNQKvtpO5V1CCCGE9DQK+uLI6uC7dFXuDB+VdwkhhBByplDQF0dCpk8l578MQnnXQuVdQgghhPQwCvriyOoQyrt8sKemTB8hhBBCzhAK+uLIYhfKu76ZPpON5vQRQgghpGdR0BdHQqZPWNOnlPFfDtqGjRBCCCE9jYK+OBIyfUKwpxCCPgcFfYQQQgjpWRT0xZGnkYPP9FHQRwghhJAzhYK+OBJGtgiNHMLfVgr6CCGEENLDKOiLI/+RLZTpI4QQQsiZQkFfHHnW9Pk2cggNHoQQQgghPYWCvjjydO/yXwYlZfoIIYQQcoZQ0BdHnjl9fo0cNLKFEEIIIT2Mgr44Etb0iSNbpO7yrp2CPkIIIYT0LAr64kjo0hWHM8sp00cIIYSQM4OCvjiy+nfvSrs/soUxhr9+fQQvfFkelzWB3x1uxL83HYPLxXr9tQkhhBASmSzeJ9CfWRxCede/ezf2oO27w0341/qjAICCFA3mTinsobOMrKbNhLuW7gIA5CWrce3onF57bUIIIYREhzJ9cWQVGzlOf07fxormoB/3hm1VreLH35Y39eprE0IIISQ6fTboa25uxrRp06DRaFBSUoJ169aFfOySJUtQXFyMhIQEDB8+HBUVFb14pt1ncYTahi32OX37TunFj480dkb9vH9vOoZRpV/jje+rYn5NwaF6g/hxRQyvTQghhJDe02eDvgULFiA3NxctLS146aWXMHv2bLS3twc8bvXq1Xj55Zfx2WefwWg04vPPP0d6enoczjh2nuHMvnP6Yi3vWh1OlNd5Aq9T7WbYo2gGcbkYnv2iHEarAy9+ebjbawGrW7vEj482GcEYresjhBBC+po+GfQZjUasXLkSixYtgkajwaxZszBq1CisXr064LHPPPMMXn31VYwcORIcx2Hw4MFITU2Nw1nHThzZEpDpiy34qmw0wuZ0IVkjh1ImgdPFUNdhjvg872AN6H6Wrr7DIn5stjuhN9u7dRxCCCGEnDl9MuirrKxEUlIScnI8DQFjx45FWVmZz+OcTif27t2LAwcOID8/HwMHDsSiRYtCZpqsVisMBoPPn3gSR7acZiPHsRY+eCvO1CInSQUAaDRYIz7PP+g7WKsP8cjw6vVmv88tIR5JCCGEkHjpk0Gf0WiETqfzuU2n08FoNPrc1tjYCIfDgXXr1uHgwYP4/vvv8eGHH2Lp0qVBj/vCCy8gKSlJ/FNQUHCm3kJULHb/bdj44C/WTF+1O+grSktARqISANDcGTnoO95i8vlcCB5jYbY5YbA4AAAFqWoAgUEgIYQQQuKvTwZ9Wq02IAtnMBig1Wp9blOr+SDj8ccfR3JyMgYMGIAFCxZgzZo1QY+7cOFC6PV68U9NTc2ZeQNR8qzpO71t2ISMXVG6d9AXOdtW7y4ByyQcAH70SqzaTTbxGIPS+a9Pi9EW83EIIYQQcmb1yaCvuLgYer0eDQ0N4m379+/HyJEjfR6XkpKC3Nxcn9vCNREolUrodDqfP/Fkdfhn+vi/nS4GRwyBn0+mT8sHfU1RZPra3AHb2IJkAEBNe+xBX4eJX7+XrJEjLUEBAGjvoqCPEEII6Wv6ZNCn1WoxY8YMlJaWwmw2Y9WqVTh48CCmT58e8Nj58+fjz3/+Mzo7O1FXV4c33ngD06ZNi8NZx84zp8830wfElu070coHa4VpGiRr+MArmmYKITgbm58MAKhpi70s22Hmj5GsUYiv3W6iRg5CCCGkr+mTQR8ALF68GDU1NUhLS8Ojjz6KFStWICUlBcuXL/fJ+JWWliInJwf5+fmYNGkSbrzxRsybNy+OZx4dp4uJgZ2Q4VNIvYK+KNf1GSx2tLqDt6L0BOjUcvftjojPbXMHZ2MLkgDwgWKsnbdipk8tR2oC/9qU6SOEEEL6nj67DVtGRkbQtXlz5szBnDlzxM8VCgXeeustvPXWW715eqfNO6gTMn0yqQRSCQeni0XdwXvC3YyRrlVCq5RBp+K/pIYYMn35KWqkJSjQ2mVDTZsJSXlJUb8PT3lXgRR3eVcoGxNCCCGk7+izmb6zndC5C3gyfYAn2xdtpk9o4hiYrgEAJImZvuiDvhSNAnkpQudtbONWhEaOZI0cqZrTW9N3orULM1/bgkc+3AeXiwY8E0IIIT2Jgr44EbZgk0k4yLzKuooYZ/UJTRyFaQkA4CnvRsj0WR1OdFr5EnBqggLZOn6+X0OM41aEcnCKRi6u6etupu+N749hf00HPtlbix+Ot0Z+AiGEEEKiRkFfnPg3cQg8A5qj23+32t3EUZTGZ/p0qujW9AllWamEg04lF4c6x5rp6zB5GjlS3eXdjm42cmysaBY/3nK0pVvHIIQQQkhwFPTFicVvXIsg1q3YvGf0AYBOHd2avjaxtCuHRMIhO4kv7zbEXN71jGxJcTdydJhscMZYnm01WlHrtXVcWV18d0shhBBCzjYU9MWJ/2BmQazl3ROtnhl9gKe8a3W4fNYN+hPW3Qkl2e5m+vRi964CKe5juVh0I2O8VTX77gZytMkY4pGEEEII6Q4K+uJECMiUfpm+WLZi67TYxd0vCt3lXa1CBo4T7g9d4hXKv0LjR7Y76GswxBb0CQ0jOrUMcqkECQr+/KPpHvYm7AYyKIMPXuv1lpgGVBNCCCEkPAr64kTI5KlCZPqiCfqEoczpWgUS3Wv5JBIOiUp3iTdMB2+Xu4kjwf1YT6bPHHZXE39Gv+MIQWSsmb6T7qBvYmEKFFIJnC4Wc9aREEIIIaFR0BcnQqbPf02fMoby7vEW39KuIJoOXiFY0yr5oDPL3b1rsbtiCti6xOPIfF87ipEx3oQt4ArTErqddSSEEEJIaBT0xYlY3pUF7961OSN37wrr+Qr9gz5V5GybmKFT8MGaSi4V986t64g+2Oqy8ueZ4Bf0xZrpO+XeAq4gVYN0LX8eLVHsH0wIIYSQ6FDQFydiede/ezeG4czH3btxCIOZBULWTQjIgvEv7wLe6/qim9Vnc7jEreS07uBRHBljjrwNnDch01eQoka6VgkAaDFS0EcIIYT0FAr64sQqlnf9Mn3y6Mu7oTJ9GnfJ1mQLHXj5l2WB2Dt4hWMAQIL7Nbuzps/pYmh0l3Jzk9VITxSCPtrOjRBCCOkpFPTFiWdkS/czfZ4t2PyCPoUQ9IXO9Bn9yrKAV6YvyqBPKBErZRJxV5FYtoETtHZZ4WIAxwFpCQqku8vMlOkjhBBCeg4FfXFidQTP9EU7p897XMuANN/yrsZdau2KJtOn8s70xbb/rnB872yhMBw6lkxfs3vtXlqCEjKpxCvTR0EfIYQQ0lMo6IsTS8ht2PjPIwV9wriWtASFuI5OIMzKM4fN9Pl27wKe8m60mT7/Jg6ge+XdJnfQl+kO9jxr+nqvvFtWp8cdb+/AfzYf77XXJIQQQnoTBX1x4une7d42bP7br3lTKyI3cvh37wKe8m69PrpGjmDNIJ5GjhgyfQZ30KfzDfpaeynTxxjDA+/vxcaKZjzz+SEcrNV3+1j/3nQMP3t9K3afaO/BMySEEEJOHwV9cSLsvasMyPQJ5d3wI1uqW4QmDk3AfWKmzx5rI4envBvNgOauINnCpChmBPpr6uQzi55Mn7Cmr3cyfYfqDTjmtQ3cx7tPde84dQY8+0U5dp1ox8Mf7ot5/2FCCCHkTKKgL0485d3uZfqE8q7/YGYAULuDvphHtrgHNJtsTnGbtnD8d+MAvIczRz+yxVPe5V9f2A/YaHXA3gtbsW0/1ubz+baq1m4d5/Mf68SPT7aZsP9Ux+mcFiGEENKjKOiLE3FHjm5uw1bbIQwzVgfcJwRh4Ua2BAvY1AopkjV80BbNur5ggWO31vS5y7sZ7kyfzqu5JNY9fA+c0uPRj/bjL18fFq9xJAfr+HLuHecVAgCONHairSv2LOPekx0+n2892hLzMQghhJAzhYK+OAnVyCGObImQ4apzB325SYFBX6SRLYwxr0YOmc99QrYvmnV9Xe7jaxWB3bsGsz3qPXz9y7syqUTcPziW4PGzvbW4YfEWfLz7FF5bX4VnvzgU1fMqG40AgKmD01GcqQUA7DjeFu4pAZwuhh/dmb2bxucDAMrqDDEdgxBCCDmTKOiLE8/IluB774bL9LlcDHV6zzBjf56RLcGDPqvDBWG5WYLSN+gUjhdNpi9YtlDI9DlcLOycQG/NRt9GDsBTJu6IMuj777ZqPPThPjhcDMNzdACAD3fWRJWxO9km7GySgAmFKQAgBnDRqmzqRJfNiQSFFDPH5QLg1woSQgghfUWfDfqam5sxbdo0aDQalJSUYN26dWEfX11dDbVajXvvvbeXzvD0WELsyBFNebe1ywabwwUJ5+m49eYZ2RK8vOsdjGkUfpk+9/GETGI4wRo51HIp5FIOQHQDmhljYnlXWNMHQCwzR5PpW1vWgKdWlgEA5k8twhcPXICRuTrYnQzfljeGfa7eZBdfoyBVjVF5SQCAAzF28B5t4rOFw3J04jFOtJrQGcOQam8Ha/Uoq+t+FzEhhBDir88GfQsWLEBubi5aWlrw0ksvYfbs2WhvDz0G4+GHH8b48eN78QxPT6RGjnBz+oT1fFk6FeTSwC9hpEYOszvgVMgkkEo4n/sGpPLdwCfc2a9wgmX6OI4Tx7ZEE7AZLA7xvQpr+oDou4BtDheeXsUHfPPOK0Tp9BGQSDhcWpIJIHJThpDlS9cqoVHIMNodsB2s1UddnvY+TmGqBqkJCnHm4ZGGzqiPIfhoVw2u/+dmTPvHZizffiLm5xNCCCHB9FjQ53A4cNddd/XIsYxGI1auXIlFixZBo9Fg1qxZGDVqFFavXh308V9//TUYY7jyyit75PV7Q8hGDin/ebhMn7ieL0hpF4jcyCEMbVb7ZRkBoMg9Aqa6NXLQF6yRA/AO2CJ38Da71/PpVDKfrGe0DSGr9tehTm9BZqISC68bDo7jg1ihTBspWyYEawPcDTEl2YmQSTi0m+xicB2NGvdxCtxB86AMvqs6muvozepw4i9fHxE//+vXR6Lako8QQgiJpMeCPqfTiXfeeadHjlVZWYmkpCTk5OSIt40dOxZlZWUBj7XZbHjsscfw17/+NeJxrVYrDAaDz594CTWnT8z0hWnkaDTwgZLQdOEvUiNH2KDPPexZmAMYjmdHDt/jJMbQwdvoLu1m+b0XIejrMIU/xtdlDQCAOecW+gSNw3ISAQBVzV1hZx56gj4+WFPJpSjJ5p8by5Bm/+MUukfpnGiNfB29ffFjPZo6rchMVCI1QYF2kx2bjzbHdAxCCCEkGFnkh3hcd911Ie9zOqNbtB8No9EInU7nc5tOp0NHR0fAY1955RVcd911GDJkSMTjvvDCC/jTn/7UU6d5Wk5nTp+wJ60wxNifsE7P6nDB6WIBJVyhvCsEh96EoEVvtqPDZBNn5gUTbFcPILYBzWLnrlcTBwAkRbGmz+ZwiWNRLh+e6XNftk6FJLUcerMdlY1GcZ2dvwZ9YNZ0dF4SyuoM+PGUHteMygn6PH9i0OfOlMaSMfUmBLG3Th6A5k4L3t9Rg21VrbhsWFZMx+muQ3UG/Pnrw8hMVOIP00aIX0tCCCE/fTEFfRs3bsQTTzyBvLy8gPtsNhu+/fbbHjkprVYbkIUzGAzQarU+t9XW1uLtt9/G7t27ozruwoUL8cgjj/gcs6Cg4PRPuBtCNXJ4undDB9EtnXxHqrBdmT/vYK7L5gjYm9cc4rX558qQpVOi0WBFdasJ48IEfcF29QA8c/aiyfQFa+IAoivv7j/VgS6bE+laBUbk+P6SwHEchuck4odjbSivN4QM+sTOYa/1hKPykoCdNVE3c9idLtR18MHr6WT6LHYnNlXyQeyVw7NwtLkT7++owY7q3tnSzWRz4Bfv7ES9u3PbYHbgjdsndOtYB07p8fmBOlwwJB0XFmf05GkSQgjpppiCvgkTJmDQoEG49dZbA+6zWCy45557euSkiouLodfr0dDQgOzsbADA/v378ctf/tLncTt37kRNTQ2Ki4sB8BlCl8uF6upqfPXVVwHHVSqVUCqDB0q9zRpqTp8s8pw+MdOXGPy9KGUScBzAGGCxOQODPvdaP3WQTB/A7/LRaLCiuqUL4wqSQ55HpDV9UQV9nYFBV7THOOSegzeuIBkSv2wmAAzJ1OKHY23iPsVBX18cDO0JOsfk+zZzCOsEQ6nvsMDpYlDKJMhwB+LCTinHW7qiOgYAbDvWCpPNiSydEqPydEh1Z3IP1uphsjkCOq397avpwJcH65GiUWDmuFxxW71ofb6/HvV6CyQc4GLAV2UN2FfTEfZ7IJjDDQb87I2tsDpc+L/vj+Ht+RN7LVNJCCEktJjW9D377LNigOVPqVRi/fr1PXJSWq0WM2bMQGlpKcxmM1atWoWDBw9i+vTpPo+79tprcfz4cezbtw/79u3Dvffei9mzZ2P58uU9ch5nitPFxKBOJfMr70qjKO+6Z8+lJQTPwnEcB41c2H83MGMYrrwLeAKWcMESELx7F/Deii36oC8jVNAXZk1fuXsO3nC/LJ+gIIXPutW0hW7ICDYjsCQ7EXJp9M0cJ72aOITgU8j4dVocEdclCta5x8tcPjwLHMchL1mNjEQlnC6GCvcA6VA2VTbjZ69vxf99fwwvfnkYF7y0Hgs/+TGqIduCT/byew7/9qoSccD0ki3Ho36+4KUvD/t0nz+/5jBctA8xIYTEXUyZvgsvvBAAsGLFipCP8b7v5ptv7uZpAYsXL8a8efOQlpaG/Px8rFixAikpKVi+fDmef/55lJWVQalUiplAgA8WjUYj0tLSuv26vcG7sSB0eTdM0NcZPtMH8Fm8LpszeNBnC55lFBSmu9ejhWnmYIx5duQ4jUyf0JSS6dfIkaxWRDxGuXscyrDsEEGfO/CqaQ++rs57RmCGV6lcKZNiaFYiyuoMOFirR747eAzFv4kD4K9/tk6FBoMFJ9pMSAkRoHufy7ryJgDAFV7rE0uyEtHcacWRBkPIjJvTxVC6sgwOF8PUwWlwuBh2HG/D+ztq8MmeWvxh2nDccV5R2NfXm+zY7t6FZNY5eWg1WvG/Pafw1cEG6M32qNf2VTR2Yv2RZkglHD779fm47d8/4GiTERsqmmLO9tmdLnx7qBEtRiuuGZUT8IsBIYSQ2MQU9Alee+01bNu2DdnZ2cjPz8epU6fQ0NCAqVOnimUsjuNOK+jLyMjAmjVrAm6fM2cO5syZE/Q5Tz/9dLdfrzcJTRxA7MOZGWNieTcjxJo+wFO6DdbBKwSCwbp3AWBgWuRxI0KTCBDYvSuUk6Mb2dK98q7LxVAhBH3uTl1/kTJ93kGxf0ARSzNHsKAPAArTNGgwWCKWyQF+y7Z6vQUquQRTB6eLt5dkJ2Lz0RYcaQid6fvmUCOOtXQhSS3Hm3dMhFYpw47jbfjL14exs7odT60sQ5JajpnjAtfiCvacbAdj/K4keclq5CapUJKViCONnVi9vw5zpxSGPX/BZ3trAQCXDcvE6PwkzJ5QgLe3HMeqfXUxBX3NnVbcuXQHDtby2dxXv63Ex/eeh0EZ2gjP5H+pOt7ShWydKmwjUjjl9Qb8/dtKOBnDnHMH4JKSzMhPIoSQPq5bI1uGDx+OV155BSdPnsTWrVtx8uRJvPrqqxg+fDjWr1+P9evX47vvvuvpcz1rCE0ccikX0FkbaU2f0eoZZhyqkQPwBHSWYEGfsKYvVKYvivKuUNoFTrN71+C7767/MUIFfU2dVpjtTkglHApTg2fihCCsxWgNOrNQCDgTFNKAEvXo/Oh35vCf0ScoEps5InfwfnWQ79q9qDjD5xeBkiw+oD3SGHq80Or9dQCAWycXiFnXyQNTseKe83DPRYMAAKWrytBhCr0l3a4TfJZPmG/IcRxmT+RLvB/tPhXx/AH+F5KV+/hzEbaiu34sHzB/c6hR/L6P5GSrCbPf2IqDtQYkqeUYkKpBW5cN9727B44Ie1KvK2/ElOfX4Zq/bcL4Z77BA+/vxeGG2EYz7a/pwKzXtuCrsgZ8c6gR85fsxLIfYh+S3WGy4Q+fHsCU59fh2r9vwuc/1sV8DEII6UndCvo++OAD3HfffT633XPPPXj//fd75KTOdqEGMwOeNX12Jwu6DkrYS1ajkIZsxAA8AV3YTF+oNX3u8m6HyR4yUBCaODQKaUATRVKUa/q6rA6xROxf3hVGtpjtzqBz9oSSbW6yCrIgu5IIx0h0dxKfag/M9jWFKC0DiGlnjpCZPvd1jNTByxjDmgP1AIBpY3yzikPdMwNDZfqsDie+r+Dn+F3rl5HkOA6PXl2CoVladJjsWL79ZMhz2OnuEJ7oDvoA4IZz8iCTcNhf0xHVziJ7TrajtsOMBIUUl7uzeucUJCM3SYUum+c8Ix3jhsVbUN1qQn6KGp8tOB//u28qkjVyHGnsxMdhAtB9NR24993daDfZoZRJ4GJ8QHzN3zZhwfI9qGiM/B4sdiceeH8vrA4XJg9MFdc2Pr2qDJvdndXRaDVaceubP2D59pNoMFhQXm/A/e/txdubY1sjabDYsbmyBa9vqMI/1lXiix/rowqebQ6+NL54w1F8uPMkjjR0xrTDjKCmzYQ3N1bhxS8P47O9tVEH7sGYbU7x/w1CSHx0q7xbWFiId955x2cHjmXLlsVt/MlPjVDe9R/MDHgyfQCf7VNJfB/TaeH/0/TvyPUnBHTh1vSFCvo0ChkyE5Vo6gw9tsUzmDnwW0injm5kS5NXps1/XWCiUiZ2kerNdmQm+p7rSXf2rCDCeru8ZDUON3SitsOMoVm+ZeDmMGXykuxEqOQStJvsqGg0igObgwkV9EXbEHO4oRPHWrqgkElw+XDfEujQLL6c2WK0otVoRZrfue4+0Q6j1YGMRCXGBBlLI5dKcM9Fg/Hbj/Zj2bYTuPfiwQHZZZvDhf01HQCAiUWp4u1pWiWuGJ6Fr8oasGJXDf54/Yiw7+OzvXwm6+qR2eL3FsdxuG50Dv69+TjWHKjH1SOzQz7/q4P1+M0H+2B1uDAqT4e3500SA/L7Lx2CZ78ox5ubjuGWSQUB3dAuF8PCTw7A7mS4akQW/nXbeBxtMuK19UfxxYF6fHGgHmsO1mP2hHw8ef2IkP9+lmypxsk2E7J0Svx73kQkKmVgYPhkTy0WvLcHq++/QJzFGEpblw1z/r0dhxs6kZGoxPM3jMb2Y6349+bjePaLQxiUkRCyXOxwurDpaAu+OdSIncfbcLTZCP9YLSdJhZdvHuuzDMDbvpoOPPzhPhz3W5Obl6zGJSUZuGxYJqYOTg/7S6PD6cKbm47hb99W+iw1Sf9CgV9fMgRzpgyAMsgvrd4YY/jxlB5r3NdeWGZRlKbBzybkY+6UwpDld6eL4XhLF442GWGw2GGyOuBkgIQDJBwHlVyCIZmJGJGjC/k+GGMoqzNg7aFG1HWYoZBJkK1TYVBGAoZkajEwPSHiewD4AH7XiXb8eKoDerMdKRoFitISMCY/CYMytAH/noKx2J1o67KJf4R1srnJahSmaYJup+n9PpqNVhjMdnAcBynHV4jU7v83+WkN4c/B6WJo6rSgrsMCjuMTDkkaOZLVcmgU0qimC3ifj8XuQpfNAZvDBZ1ajoQYjsEYg9PF4GQMLhfgZAxyKQeFNPL7EJ5vc7rAGMBxgJTjIOG4oBMcwj3f6nBBIZVEdf1CcbkYXO5/oFIJ1+3j9KZuBX3//ve/cdNNN+HFF19EQUEBampqYLFY8L///a+nz++sJOzG4T+YGfAN+qwOV8CaPyHo06rCf+nUYbt3w5d3AX5njqZOK060Bl+P1mULPqMPiL68K3SW+u/GAQASCYdEFT9c2WC2B8zxEzJ9/oGWv5wkFQ43dKLBPXvOm2dcS2DQp5RJMWVQGjYcacaGI00hgz69yS4GtwWpviNSCtOETF/48u7/3Nmri4dmBFxPjUKGAakanGwz4UhjJ6b6B33uDN2UQWkh/9O7fmwOnl5dhgaDBbtPtGPywFSf+8vq9LA6XEjRyDHYvX2c4JZJBWLQ95srikMGSzaHSyxfznCXdgXXuoO+deVNsNidQRuIlm45jj99fgiM8esB//nzc3x+obh18gD87dtKHGvuwuajLQGz/9YeakB5vQFapQwv3TQGCpkEI3J1eG3OeDzQYMDfvql0v49T2FXdjiV3ThKXMQiaO614bf1RAMDvrh4mvtfnbxiNY81d2FfTgbv/uwsr7j0vZGNLk8GCuf/ZjopGIzISlfjgV1MwOEOLK4ZnotPiwIe7avCbD/bhiwcvCGgQOnBKj8c+3o/DflnVglQ1xuYnI0Ehw8bKZtTrLZj77+14esbIgAadbw414oH398BidyFdq8CFxRlodH/dazvMWL79JJZvPwmlTILzBqfhsmGZuLQk02dpwqE6Ax7/34/i0obJRakYlpOIdeVNqO0wY9Hnh7Bk63E8cFkxLixOh0YhQ1uXDY0GC062mXCy1YTq1i7sqm5HgyHw3111qwl/XVuB1zdU4fbzivCLCwYiI1EJm8OFH4614suDDVhb1oDWrtDLEQQKqQQTClNwQXE6LhiSjqL0BBxtMmJdeSO+OFAf9t+ehOP//8hIVCJFo0CKRoHkBDlSNAo4nC6cajdjZ3UbqppD/9KmVcowKk+HkblJUMklMNmcaO+yoc1dJWnrsqG9yyZWNIKRSzkMTE9AcWai+O+v2WhDbYcZp9pNqG03h92LXcLxv3yna5VIS1AgXatESoIcRqsTbV1W1LabUdthht0ZPNMrk3BI1siRpJb7BMFC/MIYH7R22RzosvJ/+/8iopBKkKSRI0UjR7JGAcYYzHYnLHYXzDYnLHb+j9nuRKhGfqmEnzqhVkjdlSwZFDIJrHYnTO7112abEyabI+QxJJwn+OKDQf5nicT9sd3JAp4vBMEquQQKmQQc+Md6B3A2pwsOpwt2J4Pd6YLd6Qp6DjIJB5mUg1wigUzKQSaVQC7hMCQrEf+9a3Lwk+5l3Qr6Jk2ahKqqKmzbtg319fXIycnBeeedB7mcpvdHI9RgZsBT3gWCN3N0ukumwYItb2KmL+iavvAjWwC+mWPH8baAbIHAM64l8BjCD8sumxN2pyvkb7G17pJrXkrweXLCjhrBMoYnQ6yj85fj3mmjPsjoFTHTF6Ir9JKhGdhwpBnrDjfhnosHB32MEHyma5UBc/SEoKK1ywaDxR40YDLZHFixqwYA8PPJwTPlQ7O0ONlmQmWjMSC7s+ckH/SNH5Ac9LkAH8BeOSILn+ypxZoD9QFB3+4T/DEmFKYE/KZ68dAMFGdqUdlkxL83HsMjV5UEfY2NFc1oN9mRrlXigiG+53hOQTJyklSo11uwqbIFV47wzWa+vfk4Fn1+CAAwd8oAPD19ZEDJXquU4WcT8rF0azXe2XrCJ+hzuRj+9m0lAODO84sCOqWHZevwxu0TsKu6DQ++vxfHWrow9z/b8b97p/qU9v/69REYrQ6MyU/CDed4ml5Ucin+7/YJuP6fm3GksRM3vb4Vj11dguJMPgtrtjthtDiwt6YD/950DC1GG7J0Siz/JR/wAfwPkEWzRuJwgwH7T+nx6+V78MGvpkCjkMFid+LVbyvw703H4XQxJKnluH5MDi4emoFzBqT4fH9a7E488ekBfLKnFk+tLENtuxm/u2YYJBzw703H8cKX5XAx4JKSDPzj5+eI33NmmxPbjrXgu8NNWH+4GbUdZvcvNM0AylCcqcV5g9NQr7fg2/JGMMYPWX9q+kjcND4PHMfhj9e7sGJXDf72bSVq2sz43cc/Bv1e8KZRSHHpsExMH5OD8wanAwz4trwRb206hsMNnXjj+yr8Z/Mx5CSp0exep+v93CGZWqQlKKBRyCCTcnAxwMUYDGY7Djd0ornTim3HWrHtWKvPntWer50El5ZkYlReEqwOF+o6zKhqNuJokxGdFgeqW01R7ZpTnKnFxKIUZGiVaO2yobLRiAO1ehitDvxwrA0/HGuLeAyZhENKggJpCQro1HLoTXbUtJtgsjlR0WgMO5ZJwvGjsPjMEuBwucSKkYvxyYBOiyPk/9cAHwxl61SQSPjvB4PZwQczLoYWow0txshBdrD35HCPIGvutIrrpLvD6WLotDrQeRpLAFwMcDkZgOiXMjDG/xsOliCJlcPF4HAxWOD7s7u7DWVnQreCPgCQy+W46KKLevJc+g1hMHOwTBvHcVDIJLA5XEGbOYRgKzFipo+/P9ycvlAjWwDv9WjB/0PsCrEFm/+5dVocSA0xrkRYZ5cfJugDgpeJIz1XkJvE/1CvizHTBwBXjszG06sPYcfxNpxqNwUd3eIp7Qaeh9b923eL0YoTLSaxOcTb0q3VMFgcKErT4JKhwUt+Q7MS8W15E474rUlzuRj2nOwA4GnACOW6UTn4ZE8tvjrYgKeuH+GTFdxZLTRxpAY8TyLh8PCVQ/Hr5Xvw+vdVuLgkI+jjhBl/M8flBgRsEgmHa0ZlY8mWanx5oN4n6NtU2YxnvuADvvsvHYLfXjU0ZInk9vMKsXRrNdYdbsSJ1i4xqF57qAGHGzqhVcrwiwsGhrwGE4tS8dn952P2G9twotWEO97egQ9+NQXJGgUOnNJjxW4++C6dPiIga5qlU+GdOydj/pIdONpkxD3LQu8CNDRLi7fumBiQSVTKpHhtznhc/8/N+PGUHrPf2IarRmTjf3tOid9H08fmonT6iJBNWiq5FC/PHotB6Qn469oK/N/GY/i2vBEKmVScW3nrpAI8O2uUz9dBrZDismFZuGxYFhhjqGwy4rvDTfjucBN2n2hHZZMRlU2eoGPa6Bw8NX2ETxZeLpVgzrmFuOGcPCzZUo3V++twpLETjPFLNDISlShI1aAwTYOitAQUZyXi3IGpAf/P3DQhHzeOz8O68ib8c/1R7K/pEN9/ulaJq0Zm4bpROZgyKDXkel2AL9Mda+nClqMt2FzZgm3HWtFpcSBZI8f5g9NxzahsXDYsM+gSFMYYmjutqGru4rNxJhs6TDa0m+xo77JBJuWQmajC2IJkTCxMCTpyyeF04WizEftrOlDZaISTMShlUqQlKJCSoECKRo6UBAVSNfznOpUs6LKEOr0ZlU1GVDUZUdXcJQaH+Slq5KeoUZCiQXaSKuCXZ5eLz6Z1WR0wWBxoNVrR2mVDi9GK9i47EpRSpCYokJusRkGqBlmJSp/rKZRpO8w29/ptO+zunzn+IZNazmfftEoZNEopEhQyqOVScBz/80S4bh0mOzrMNkg5DiqFFCoZn7lTySVQy6VQyqSQSd1ZOAlfppZyHGxOl5jFE7J6JpsTVrvTk/mTy6Bxf6xSSCHlOHeJmA+EnS7Gl44Z/7lQenW6/3YxPqmidq+HV0glsDv54FnIRAoZVeb+5YIB4Nzf+3IpB7mUz+DJpRJI3RlEKceBgQ/2HO5MIP8xnxl0uFw+Fbx463bQR7rPk+kL/o2glLqDviCZvqiDPgV/7KCZvjBBp2Cg144SwRgtoc9DJpVAq5TBaHVAb7aHDPqEwcd5yeGDvmDDjYVybW6I5wqEXSmCDSkOtgWbt7xkNc4blIZtx1rx6Z5aPHB54GDyUOv5BEVpGrQYrahu7QoI+vRmO97YUAUAePDy4pDlWWEtYqVf0HespQt6sx0quSTkgGrBBcXpSFBI0WCw4MdavViyZ4yJmb5JRcEDx2tHZeOakdn4qqwBc/+9A49fU4K5UwrFHyAnWrvE7mOh8cHfdaNzsGRLNb451CjuLtJosOChD/aBMT7LGS7gA4DBGVpcUsJnX9/ceAzP3TAaTr8sX6TfqDMTVVh217m46Y2tONzQidv/swOPXDUUT68qA2PAjLG5QYNaABiRq8NXD12ExeuP4rsjTWgyWCHh+IBKLZdiUIYWlw/PxE3j80P+QpWfosHb8ydh/ts7UFZnQJl7V5ksnRLPzhodkAUNhuM43H9ZMfJTNPjjZwfF8qNCJsET1w7DvKlFYa8jx3EYmpWIoVmJuPfiwdCb7Nh0tBkHTumhU8tx2bDMsN9PGoUMCy4dggWXDoHTxf+QC/cLZKhzuGJEFi4fnolT7WbUdZiRnqhEUVpCVGvkhGMMztBicIYWd5xXFNO5cByHTJ0qaBNXtGRSCYZl60LOCY2GRMIhP0WD/BQNLo1xLJBEwiFBKUOCUoZMHb8DUSw4jnMHQOqYd+/xplHIoFHIQv4/Hg01pHHZ51sllyKx+98CP0kU9MWBZ01f8P+cFDIJYA1V3g29ls5b2DV9Nk/nbSiR9o4NtRuHIEkth9HqCLuu75S7NBpq+HGoTB9jTFwrlB3hP+2cZP7++iCZvuYQu4F4u2lCPrYda8X/9pzC/ZcNCfhhKlyfUEFfYVoCdp1oDzro+q2Nx2CwODA0Sxt2hp4Q9FU0Gn22dNvjDtbG5CeHXQgO8N9rF5dkYM2BBqwrbxSDvhOtJrQYbVBIJSH3J+Y4Dq/cMhZdyxzYVNmCp1cfwtKt1Xj4yqG4bnQOSleViSXFEbnBfwBOGJCCwjQNTrSa8OHOGsydUogFy/egtcuG4Tk6lE4fGdUi6HsvHowNR5rx0e5TePDyYmyqbMHhhk4kqsJn+bwNSNNg+S/PxS3/tw0HavW4c8lOAHyQ//SMkWGfm5qgwJPXj8CTEZpawhk/IAXfPnIxlm6txql2M8YVJOOWSQUh/y2FMuucPFw8NAMbK5vhdDFcWJzRrQHWSRo5rh+Ti+vH5EZ+sB+phINUElvA543jOBSkaiIu0+iNcyGkP+g7Ocd+ROzeDdE5Fm5AsxBsaZWRunfd5d0wI1tUYYI+YWxLu8kedCu0SEGfkAEM18ErZvpClXc1wYM+vdkuXptIP+TETF+HJWBkRXOnMCMwdOB47ahsJCikqG41BV23c8ydZQk1NFj47buiyXe9TqfFjne2VgMAHrmyJGx2Y1BGAiQc/76bvNbMeNbzhS/tCoQxKt+6d/4AgO3HWwHw+w2Hy5BoFDK8c+dkPDNrFNISFKhuNeE3H+zDyKe+xoYjzVDKJPj9tcNCPl8i4XD3hfzMwFe/qcAv39mFXSfakaiUYfGc8VFnis4dmIoJhSmwOVy4a+lO/GlVGQBgwaVDYlo3MzQrEZ/++nxcNiwTSWo5Lh6agQ/vmRIyK93TMnUq/O6aYfjHz8/BXRcMjDngE6QkKDBzXB5uHJ9PO5YQQiKioC8OIpV3PQOaAwM2Y4zdu0Hn9NnC78gB8D/khR8iQgnTm7CmLzFMpg8IPavP5nChvoMPumJd0ydk+VI08ojBQo57TZ/Z7vQ5jsPpErsDw/2wTFDKMMOdhXt/R+CcO6H8XZSeEHAf4NktRFhvJfhgRw06rQ4MydTiqgglPZVcKo5/8Z41J5RlwzVxeLt0WCYkHH8uQpZ1WxUf9E0dHHnrQomEw+1TCrHxd5fisatLkKSWw+Z0QauU4W+3jItY5rp5YgHGD0iGweLA9xX8Vm1/vXksBoa4dsFwHIcXbxwNlVyCsjoDOq0OTCpKwV3nR5fl81aUnoC350/C/tKr8M5dkyNut0cIIT91FPTFgZDpC1nedZfqgrXpGyMEWwKhdBtsmGo0QR/gaYIIth7OGGZOH8B3mgGhM30nWrvgcDEkuPeoDSZk0Ocu1QYb9eJPJZeK2Zu6Dk+Jt7XLBsb4klCk7M5tkwcA4HfNaPcaI2G0OsTM28C04IHLcHcgdKzZKH4tbA4X/uMe0vurCwdFNV9KKPEKQ5I7TDZx4X2kJg5BaoJCfOx3h5vAGMNWd9A3JYqgT5Cg5Nd07fzDFfj2kYux/YnLce3o8FvVAfwvM2/dMRG3nTsAV47Iwnu/PDfs3L5QirMS8f7dU3D9mBzcdf5A/PuOSX1qoTQhhPRV9D9lHESb6QsW9PXMnL7II1sA7yaIwPVwnjJz+ExfqKDvqDtgGZKVGHItV6h5f0LXbXZSdCtwc4IEr43ubGG6VhFx4fjo/CSMzNXB5nThf3s8O0II6/TSEhRiKdpflk6JZI0cLgZUukcyrNpfhwaDBZmJSsw8J7p1VMKQZuEYQml3UHpCwMDmcIRGgc/21mL3iXY0dVqhUUijLhF7U8gkGJKpjak0mablhxW/dcdEnDso+kDT3zkDUvCv28bjqekjQl57QgghvijoiwOxkaNba/qim9MnrNcLtudsNCNbAE9QVRck09cVZdBnMAefuSRkqYaEWAvnfQz/7l2hvJsVZdtVsOBVCBzDrefz9nN3tu/DnTXi2sDKJj7rFq48yXEcxuYnA+DXzzHG8OZGvmP3zvMHRrUjAODZju2Qu0wslnajzPIJZp2TB7mUw56THSh1r4e7dlROzN2XhBBCfnoo6IsDa5Tl3bCNHBEyfRox0+d7DJeLieXlcNswAfy+tgCC7mYhrC0MWd5Vhc/0CWvTirMiB32h1vRlnUamTyjLhhrX4m/GuFwoZRJUNhlxsJYPvH48xe9YEKrrVXBhMT+seGMlPxy3otEIrVKG284dENVrA55mjbI6fiDsriB75UYjM1GFae5SrDAu5OaJwcesEEIIObtQ0BcHwpq6iI0cwYI+S3Rr+oSAzuLXyCFkGYEYyrsdYcq7IYLPJPf+u6EaOYSAaViYPW1DBX1NUY5rEYhjW7zeR5PQuauLLujTqeS4yr3+TCjxHnC/hzFBhi57u3gov3vE1qMtePKzgwCAOVMGxDSXih+wqoaLAesPN2GveyjzpIHBZ8qF8/trh4tbxN127oDTKrMSQgj56aCgLw4izekTSn7hduSIlOkTjm2y+5ZXvUe4hCovC8QMmSFIeVfcezf4MXRh9t9t6uT36OS48OXJSJm+7KToArZcd/BaFyTTlxHDZM4bx/NdvKv218Fid4qZskhB35BMLYbn6OBwMdTrLUhUyXDvRcG3dQtnchEfnJWuKoPN6UJxplbc5isW2UkqsQHj+RtGx/x8QgghP00U9MWB0MihDBn0hc70RTucWSPuvet7DGE9n1Imidg1Kuxb26C3wOW3u7Q4OibEvEChIzbYXoy73aXJkqzEoPvRCoQF+laHy6cLuUEf23o8IXhtCLqmL/omiAuHpCNdq0Rblw3PrymH2e5EklqOgenhAy+O4/DcDaOQopFDo+C30Qq2rVMkV4/kmzDa3B3E08ZE7pgNRS6VRNX9TAgh5OxBO3LEgTiyJcSYiVDlXZvDJXb0JkYaziys6bMFz/RFWs8H8AGRhAPsToaWLqtPkOUZzhz8OEITSFOQoO/7imYAwOQIpUmtQgYJx2+ibTDboZJLYXe60NoVW/eusFVbvd4i7mjhGcwcfdAnk0ow59wB+Pu6Svx32wkAwOXDM6PaNmr8gBRsf+IKSDiE3U80nMuGZWJUng4Haw1I0cgx59zCbh2HEEJI/0SZvjgQsm2hAi+xkcOvvCt0zAKhgy2BmOmzO312ohDHtUTRrSmXSsTBxd5ZMrvTE3yGyjgK6+3aumyweq0jtDlc+NK9T+u1o8JnqiQSTiwTd7hLvM2dVjAGyKUcUqPcgUFYt2d1uMQsmdjIEWO26+6LBonXRMIhpqHACpmk2wEfwAeLy38xBS/cOBqr7r+AdmAghBASEwr64kAYoxKq8zXUnD4hu6aWSyMGD8LIFhfzDR7FJpIoMn2Ap5nDe7Cxb/AZemSL8D6EUioAbD7aDL3ZjsxEZcRMHwAk+41tEdbzZSaqohpqDPBrJNPds+zq3aVqoeycFWUjh0CrlOGDX03BPRcNwrJfnBuxc7enJWnk+PnkAT2yVykhhJD+hYK+ODAJu1kowgd9/uXdaAczA767bXg3b5iiHMwsEIIioRwKeIJPpUwCeYjgk+M4MdsnDEIGgFX76gDw69GiKYsKawOFDF2juBtHbMGaMH6mrsOMdpMNDhcDx0EMBmMxOEOLhdcNx/lD0mN+LiGEEBIvfTboa25uxrRp06DRaFBSUoJ169YFfdwjjzyCQYMGITExERMnTsTGjRt7+UxjJ3S+hgq8PJk+33Er0W7BBvClWbmUD6q8d+WwRLkFmyBLDNw82TrxPCIEn0JgJmTnzDYnvjnUCACYPja6nSiE3SZajFafY0W7nk8gNnMYLOJ7SdUoQgathBBCyNmmz/7EW7BgAXJzc9HS0oKXXnoJs2fPRnt7e8DjkpKSsHbtWuj1ejz++OOYNWsWOjs7gxyx7zBF2Lc21HBmcTeOKDJ9gGdsi0+mzxbdbhyCrCDZui5r+PK0/3OF9YDrjzShy+ZEXrIa5xQkR/X66Vo+09dq5DN93uXdWHiXqU+28dunUYmUEEJIf9Ingz6j0YiVK1di0aJF0Gg0mDVrFkaNGoXVq1cHPLa0tBRDhgyBRCLB7NmzoVarUVFREfS4VqsVBoPB509vY4yJmb6ECJm+kOXdKPc6FbJ5Jq+gL9p9dwVCd2ujVxeucB6hytMCoWv2VDs/H2/1fr60O31sbsj9dv2lJfCvL3TsxrrvrsB7V47qVhMAiAOKCSGEkP6gTwZ9lZWVSEpKQk6Op7tz7NixKCsrC/u86upqtLW1YciQIUHvf+GFF5CUlCT+KSgo6NHzjobV4YIw8k4TIngT5/Q5gzdyRBv0CYGd94w74eNYy7tNPpk+/hiRMo7CnrTHWrrQabHju8NNAIDpY6OfLydk+sTyrj623TgEwszB+g4LTrTymb7CtNB75hJCCCFnmz4Z9BmNRuh0Op/bdDodjEZjyOfY7XbMmzcPjz32GJKSgndULly4EHq9XvxTU1PTo+cdDe/O11CBV6jhzMYYGjkAr/KuPbC8G82cPiB4eVcsM0cIPoXdIo42duKbQ42wOlwYlJGAETm6sM/z5lnTZ/M5j1gHC+e5GzlOtZtQ3cJn+ooo00cIIaQf6ZPDmbVabUDp1WAwQKsNvvMBYwzz589HZmYmnn766ZDHVSqVUCrjO9vM5NVIEap7NVR5N5ZGDsAT2AUr76rl0R1DaMZoN9lhdTihlElhjLAmUTA8JxEcB9TpLfjnd0cBADNiKO0CQJq4ps8Kxpi4pi/W7t0hGfwev3V6Cwzu4JnKu4QQQvqTPpnpKy4uhl6vR0NDg3jb/v37MXLkyKCPf+CBB1BXV4d3330XEkmffEsicT1fmOHKihDl3VhGtgDBy7ueHTmiu07B5u0Je+EmqcOfR6JKjuHZfFbveEsXpBIOt0yKraQujFRp7bLBYHaIAWysa/qSNHLkuUu8QvAsBIKEEEJIf9AnIyStVosZM2agtLQUZrMZq1atwsGDBzF9+vSAx5aWlmLLli1YuXJl3LN40RDWw2nCNEEopHywFmo4c2KY/Wq9BW3kiHFkC8dxYlatyT2rr8PEl1pTotgR44Zz8sSPrx+TI3bRRksI+jpMdlQ08V3ZGYnKsNcvlElFKeLHQzK14t6+hBBCSH/QJ4M+AFi8eDFqamqQlpaGRx99FCtWrEBKSgqWL1/uk/FbtGgRysvLkZubC61WC61Wi+XLl8fxzMMzRZjRB4Tr3o1uLZ1A7Q6MzMHKuzEETVmJvrP6hN0xktSRg6Z5U4swf2oRbplYgEUzRkX9moIUjRwqOX89th5tBQAM7GYDxtUjs8WPr/H6mBBCCOkP+uSaPgDIyMjAmjVrAm6fM2cO5syZI37uva/sT0FXFOvhIq7pi7K8q3YHS96NHOYYu3eBwGaO9hgyfQqZBE/PCF6WjwbHcchP0eBokxFbjrYAAIrSu7cW7+qR2bjnokHotDrw60sHd/ucCCGEkJ+iPhv0na2iyvRJQ+zI0c05feZg5d0o1/QBQKa7vNvot6YvuZfKo/kpahxtMmJHdRsAoCi9e5k+iYTDwuuG9+SpEUIIIT8Zfba8e7bqsoXfdxcI08gR45w+sbwbNNMXfbwv7H4hrOkTMn3JUWT6esKQDN+u7e6WdwkhhJD+jIK+XmZyB26aMN27PTWnT90Dc/oAz3gUoXu3o4vP9KX0UqavJNu3y3ZUXvA5jIQQQggJjYK+XhbNrhohgz5xTl+U3bvuEq53edcS4zZsgO+aPrvTJWYceyvTd97gNPHjnCQV8lNi6wAmhBBCCAV9vU5cDxem8zVYI4fTxcQsXdSZvmDduzGObAE8mb5Gg0U8fyC67t2ekJ+iwa3u+X6/vaokpuHOhBBCCOFRI0cvE8edhMmSBVvTZ/Tavi3cYGdv4pw+n/IufxxVDEFfpjvTZ7A4xL1vdSpZyB1FzoQXbxqDp2eMjOm8CSGEEOJBmb5e1hFNps/dvWt3Mrhc/EgaIehTyCRQymIL+iw+5V0+kIylvJuolInHOlTPb4+XmtA7pV1vFPARQggh3UdBXy/Ti52vkcu7gCfbJzRxRLvvLuAJ7IRGDofTJR4vlvIux3HISeazfbur2wF41vkRQggh5KeBgr5e1hHFjLugQZ/VvRtHlOv5AE9mTCjpenfxxtK9CwCD0vmxKZvdA5JzYtz7lhBCCCHxRUFfL/NsYRZmTZ/U82WxusuxnTEOZgY8mT6hpCsEfRzn6RCO1pBMPuir7TADALIo6COEEEJ+Uijo60VOF4PBEjnTx3GcGJQJu3JEM+rFn9qvvGuxeUq7sXbADs7wHYhcRAOSCSGEkJ8UCvp6UafFDmGr4EjjTtRils4d9Fli23cX8OredZd3TXaHz+2xEDJ9gmK/zwkhhBDSt1HQ14uE0m6CQgq5NPyl9+ybK6zp636mz2J3weViXvvuxh70Dc3y3RVjqN8uGYQQQgjp2yjo60WeJo7I4078t1DrjHELNu9jAIDF4ezWYGZBglKGWeNyAQDTRudAp+qdwcyEEEII6Rk0nLkXtXTye9dGM+NO5Rf0eTJ90Qdb3nPtzDaneKxYZvR5+/PPxuL284owPIeyfIQQQshPDQV9vajBwO9mEc2MO7EJw9b9NX1SCd8QYnW4YLY70XUa5V2AHyUzoTClW88lhBBCSHxRebcXCVuYRTPjTijBnk73LuAbPBotsWcLCSGEEHJ2oKCvF9Xp+Rl32VEEfSo5/6URMn2d3Qz6NF5lYmHAcyzZQkIIIYScHSjo60XHW7oARDfjLmBNnyX2HTkAQBU000dBHyGEENLfUNDXSxhjONbMB32DMiIHff7du0J5N9YsnTirz+70ZAsp00cIIYT0O3026Gtubsa0adOg0WhQUlKCdevWBX2c2WzG3LlzkZiYiAEDBuD999/v5TONzsk2E/RmO+RSDgPTowj6hBl7/o0cMa7H03hl+rq6WSImhBBCyE9fn/3pv2DBAuTm5qKlpQVr167F7NmzUVVVhZQU3+7R0tJStLW1oba2FgcPHsR1112HCRMmYOjQoXE68+A2VjQDAMbkJ/uMUgklYE5fN7N0Ce4Az2h1dDtbSAghhJCfvj6Z6TMajVi5ciUWLVoEjUaDWbNmYdSoUVi9enXAY5ctW4bS0lLodDpMnToVM2bMwAcffBD0uFarFQaDwefPmbb9WCtuXLwFz60pBwBcOyo7qud5r+ljjHW7e1cYomww2z0DninTRwghhPQ7fTLoq6ysRFJSEnJycsTbxo4di7KyMp/Htbe3o6GhAaNHjw77OMELL7yApKQk8U9BQcGZeQNezHYn9pzsgMXuwshcHW47d0BUz/OMWnGhy+YU9+yNNUsn7PFrMNu7HTgSQggh5KevT/70NxqN0Ol0PrfpdDp0dHQEPE4qlUKj0fg8zmg0Bj3uwoUL8cgjj4ifGwyGMx74jcpLwhtzJyBZI8f4ASlQyKKLs4XyrsXu6bqVuYctx0II+vRmu6d7l8q7hBBCSL/TJ3/6a7XagNKrwWCAVqsNeJzT6YTJZBIDv2CPEyiVSiiVyjNz0iGka5W4JsqSrjd1kPl6WpUMHMfFdBydmv8S670yfbE2gxBCCCHkp69PlneLi4uh1+vR0NAg3rZ//36MHDnS53EpKSnIzs7GgQMHwj7up8h7vp7e3P0GDLG8a3FQpo8QQgjpx/pk0KfVajFjxgyUlpbCbDZj1apVOHjwIKZPnx7w2Llz5+KZZ55BZ2cnfvjhB6xatQq33HJLHM66Z6ncZVyLwwmDezCzEMDFQnhOh8kGo43W9BFCCCH9VZ8M+gBg8eLFqKmpQVpaGh599FGsWLECKSkpWL58uU8mb9GiRWLTx+zZs7F48WKUlJTE8cx7hveeuQYzH/QJnbix0LmDvnq9pdvNIIQQQgj56euzP/0zMjKwZs2agNvnzJmDOXPmiJ+r1WosX768N0+tV3iv6dObu5/pEwLFer0FAKCQSmJuBiGEEELITx/99O+jhHV3RosDetPpl3cFqQmKmJtBCCGEEPLTR0FfHyWsu+u0Ok4r05ek8X1OmlZx+idHCCGEkJ8cCvr6qER3WdbmcKHFaAXgWZ8XC61CBolXYi81gYI+QgghpD+ioK+P8u6wrevg1+N1J+iTSDhkJqrEz9Mo6COEEEL6JQr6+iiphEOCu4P3VLsJQPfKuwCQm+wJ+vJTNGEeSQghhJCzFQV9fZjQzFHn7rztbtCX5xXoFaZR0EcIIYT0RxT09WGJfnP5uhv0DctOFD8ekhl8izpCCCGEnN0o6OvD/Jsuuhv0zRibiwSFFJMHpmJcQXIPnBkhhBBCfmr67HBmAqT7jVfJSFR26zgFqRpsXXg5VHIJzegjhBBC+ikK+vow70yfVik7rT1zu5slJIQQQsjZgcq7fVhqgiezl6nrXpaPEEIIIQSgoK9Py09Rix/nJqnDPJIQQgghJDwK+vqwoVmertuRubo4ngkhhBBCfuoo6OvDSrISxXV9FxSnx/lsCCGEEPJTRo0cfZhaIcW3j1yMFqPVJ+tHCCGEEBIrCvr6uNQERcC8PkIIIYSQWFF5lxBCCCGkH6CgjxBCCCGkH6CgjxBCCCGkH6CgjxBCCCGkH+jXjRyMMQCAwWCI85kQQgghhMROiGGEmCacfh30dXZ2AgAKCgrifCaEEEIIId3X2dmJpKSksI/hWDSh4VnK5XKhrq4OiYmJ4DjujL2OwWBAQUEBampqoNPRzhqh0HWKDl2n6NB1ig5dp+jQdYoOXafo9dS1Yoyhs7MTubm5kEjCr9rr15k+iUSC/Pz8Xns9nU5H/wiiQNcpOnSdokPXKTp0naJD1yk6dJ2i1xPXKlKGT0CNHIQQQggh/QAFfYQQQggh/QAFfb1AqVSitLQUSqUy3qfSp9F1ig5dp+jQdYoOXafo0HWKDl2n6MXjWvXrRg5CCCGEkP6CMn2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX2EEEIIIf0ABX1nWHNzM6ZNmwaNRoOSkhKsW7cu3qcUd1arFXfeeSfy8/ORlJSESy65BAcOHBDvf/HFF5GRkYHU1FT87ne/i2o/wbPdtm3bIJFI8OKLL4q30XXy9eKLL6KgoACJiYkYN24cOjo6xNvpOnns2bMHU6dOhU6nw6BBg7BkyRLxvv58rUpLSzFixAhIJBJ88MEHPveFuy47d+7E2LFjodFocPHFF+PEiRO9feq9KtR1Wrp0KcaNG4fExEQMGjQIb7zxhs/z6Dr5cjgcGD16NIYNG+Zz+5m+ThT0nWELFixAbm4uWlpa8NJLL2H27Nlob2+P92nFlcPhwKBBg/DDDz+gra0NM2bMwKxZswAAa9asweuvv47t27ejrKwMn3/+uc8Ppf7I5XLh4YcfxqRJk8Tb6Dr5+uc//4kvv/wSmzdvhsFgwLvvvguVSkXXKYg77rgD06ZNQ0dHBz7++GM8+OCDqKio6PfXqri4GH//+98xefJkn9vDXRer1Yobb7wRv/nNb9DW1oYpU6bg9ttvj8fp95pQ18lqteKNN95Ae3s7Vq9ejdLSUmzcuFG8j66Tr3/9618Bu2j0ynVi5Izp7OxkCoWC1dXVibddeOGF7J133onjWfU9VquVcRzHWlpa2K233spefPFF8b7//Oc/7NJLL43j2cXf66+/zh588EE2b9489sILLzDGGF0nLw6Hg2VnZ7OKioqA++g6BdJqtezYsWPi55MmTWKrVq2ia+V28cUXs/fff1/8PNx1+eqrr9iwYcPE+4xGI1Or1ay6urr3TjhO/K+Tv9tuu4399a9/ZYzRdfK/Tg0NDWz48OHs888/ZyUlJeLtvXGdKNN3BlVWViIpKQk5OTnibWPHjkVZWVkcz6rv2bZtG7KyspCWloZDhw5h9OjR4n39/Xq1tbXhb3/7G55++mmf2+k6eZw6dQpmsxkfffQRsrKyUFJSIpaW6DoFuv/++7Fs2TI4HA7s2LEDNTU1OPfcc+lahRDuuvjfl5CQgMGDB+PQoUO9fp59idPpxI4dOzBy5EgAdJ38Pf7443jiiSeQkJDgc3tvXCdZjx2JBDAajQGbKOt0OnGtEQH0ej3uuecePPfccwACr5lOp4PRaIzX6cXdE088gYceeggpKSk+t9N18qitrYVer0dVVRWqq6tx7NgxXHHFFSgpKaHrFMQ111yDO+64A4sWLQIAvPnmm8jMzKRrFUK46xLq//j+ft2efPJJ5OXl4eqrrwZA18nbtm3bUFFRgSVLluD777/3ua83rhMFfWeQVquFwWDwuc1gMECr1cbpjPoWi8WCWbNmYdq0abjrrrsABF6z/ny99u7dix07duC1114LuI+uk4darQbAL5xWq9UYOXIkbr/9dqxZs4auk5/W1lZMnz4d77zzDmbMmIHy8nJcc801GDlyJF2rEMJdF/o/PtAbb7yBTz75BFu2bAHHcQDoOglcLhcefPBBLF68WLw23nrjOlF59wwqLi6GXq9HQ0ODeNv+/fvFlHd/5nA4cOuttyI3Nxd//etfxdtHjBjh08nbn6/X999/j4qKCuTl5SE7OxsffvghnnvuOdx99910nbwMHToUCoXC5zbm7q6k6+Tr2LFjSEpKwg033ACpVIpRo0bhkksuwcaNG+lahRDuuvjf19XVhaqqKowYMaLXz7MvEP6P+vrrr5Geni7eTteJZzAYsGfPHkyfPh3Z2dm48cYbcfToUWRnZ8NkMvXOdeqx1YEkqJ/97GfsV7/6FTOZTGzlypUsJSWFtbW1xfu04m7+/PnsqquuYjabzef2zz//nBUWFrJjx46x+vp6NnLkSPaf//wnTmcZX11dXay+vl78c/PNN7M//OEPrL29na6Tn9tuu43dfffdzGKxsMOHD7OcnBz23Xff0XXy09HRwZKSktiqVauYy+Vi5eXlLCcnh3355Zf9/lrZbDZmNpvZhRdeyP773/8ys9nMnE5n2OtisVhYfn4+W7JkCbNYLOz3v/89u/DCC+P8Ts6sUNfp66+/ZhkZGWz//v0Bz6HrxF8nh8Ph83/6//73PzZkyBBWX1/PXC5Xr1wnCvrOsKamJnbttdcytVrNiouL2TfffBPvU4q76upqBoCpVCqWkJAg/tm4cSNjjLHnn3+epaWlseTkZPbYY48xl8sV5zPuG7y7dxmj6+Stvb2d3XjjjUyr1bLCwkK2ePFi8T66Tr6++uorNnbsWKbVallBQQF77rnnxPv687WaN28eA+DzZ/369Yyx8Ndlx44dbPTo0UylUrELL7zwrO9IDXWdLrnkEiaTyXz+T7/nnnvE59F18nw/CdavX+/TvcvYmb9OHGP9aPomIYQQQkg/RWv6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AQr6CCGEEEL6AVm8TyCeXC4X6urqkJiYCI7j4n06hBBCCCExYYyhs7MTubm5kEjC5/L6ddBXV1eHgoKCeJ8GIYQQQshpqampQX5+ftjH9OugLzExEQB/oXQ6XZzPhhBCCCEkNgaDAQUFBWJME06/DvqEkq5Op6OgjxBCCCE/WdEsU6NGDkIIIYSQfoCCPkIIIYSQfoCCPkIIIYSQfoCCvrPApspmrN5fF+/TIIQQQkgf1q8bOc4GR5uMuP0/OwAAI3J1GJyhjfMZEUIIIaQvokzfT9y2qhbx400VzXE8E0IIIYT0ZRT0/cQda+kK+jEhhBBCiDcK+n7iTrSaxI/rOsxxPBNCCCGE9GUU9P3ENXdaxY/rOixxPBNCCCGE9GUU9P3EtXXZxI+bvAJAQgghhBBvFPTFUU2bCa9+U4FT7abIDw6htcsT6BnMdjDGeuLUCCGEEHKWoZEtcfSLd3aiotGI/ac6sPTOyTE/32RzwGJ3iZ/bnC6Y7U5oFPRlJYQQQogvyvTFidHqQEWjEQCw4UgzrA5nzMfoMNkBAHIpB5mE32hZb7b33EkSQggh5KxBQV+cVDR2+nxe3RJ7iddodQAAtEoZktRyABT0EUIIISQ4CvripEHv22nrHwRGQwj6EpQyJGn4oE/I/hFCCCGEeKPFX3FS7xf0nWqPfcZel1emT62QAqBMHyGEEEKCo6AvThoNvkFfgz72oM9o8QR9WhX/paSgjxBCCCHBUHk3TlqM/KiVvGQ1gMDMXzS8y7vJ7jV9Bgr6CCGEEBIEBX1xonevvRueowPQvaCvK0gjB63pI4QQQkgwcQv6SktLMWLECEgkEnzwwQchH2c2mzF37lwkJiZiwIABeP/9933uX7p0KfLz86HT6XDnnXfCZrOFOFLf0mEWgr5EAN0M+mz8mJee6N7dX9OBi/68Hk+tPNit5xNCCCGkb4tb0FdcXIy///3vmDw5/FDi0tJStLW1oba2Fh988AHuu+8+VFRUAAAOHDiARx55BJ999hlqampQXV2NZ599tjdO/7R1mPjgVMj0tRitsDlc4Z4SoNPiKe/qTjPoW7LlOE62mfDfbSd89vMlhBBCyNkhbkHf3LlzceWVV0KlUoV93LJly1BaWgqdToepU6dixowZYmbwvffewy233IKJEyciKSkJf/zjH/Huu+/2xumfNiE4K0pLgFLGfxn8mzsi8ZR3pdAq+UYOky32Ic8AsOtEu/jxbq+PCSGEEHJ26NNr+trb29HQ0IDRo0eLt40dOxZlZWUAgEOHDgXcd/z4cZjNwTthrVYrDAaDz594EYK+JI0cmTolAKCps3tBX4JSBo0Y9DliPheL3YnaDs81q27tivkYhBBCCOnb+nTQZzQaIZVKodFoxNt0Oh2MRqN4v06n87lPuD2YF154AUlJSeKfgoKCM3j2odkcLtidDACgVciQmchnO5sMsZVVxR05VDIkuOf0CYFgLE61m8CY5/PabswMJIQQQkjf1qeDPq1WC6fTCZPJs0WZwWCAVqsV7/fO1gkfC/f7W7hwIfR6vfinpqbmDJ59aN7ZOLVCigwtn+lrNnYz6FPKoFHwmb6ubpR3azv8B0XHviUcIYQQQvq2Ph30paSkIDs7GwcOHBBv279/P0aOHAkAGDFiRMB9AwcOhFqtDno8pVIJnU7n8ycehHV3CqkECpnEU96NMdMnlncVMiQo+UyfqRuZvla/YLPF+NPogCaEEEJI9OIW9NntdlgsFrhcLp+P/c2dOxfPPPMMOjs78cMPP2DVqlW45ZZbAAC33XYbVqxYgT179kCv1+O5557D3Llze/utxEzI9GncgZqY6Yuxa9Z7OPPpZPpa3UFeQSofLLebKOgjhBBCzjZxC/ruvvtuqNVqbNq0CXfccQfUajU2btyI5cuXi5k8AFi0aBGSkpKQk5OD2bNnY/HixSgpKQEAjB49Gi+//DKmT5+O/Px8FBQU4A9/+EO83lLUuqx8YJbgDtS628hhdgd4GoV3927smb6WLj7YLM7kZwbSgGdCCCHk7BO3vXeXLl2KpUuXBr1vzpw54sdqtRrLly8PeZz58+dj/vz5PXx2Z1aXkOlzN1+IjRwxZvos7rl+KrlUzBranQw2hwsKWfTxfEsnn9kbkqnFd4ebYLQ6Yj4GIYQQQvo2+qkeByZ3pk8Ys5KR2L3yrsXOH0cll0Ajl3qOH2O2r9Wd6RuYngCO42/rMFOJlxBCCDmbUNAXB0KmL0HM9PFBX4vRCqeLhXyeN8aYGPSp5VLIpBJxyHOs6/qENX2ZiUrPdm5U4iWEEELOKhT0xYFJXIvHZ/pSExTgOMDFPFm3SOxOBiE+VLqzfAnCur4YO3hb3N276VolUjQKAEA7BX2EEELIWYWCvjjw7KTBB2syqQRpCbGVeC0OTzZPJee/jMIawVgyfYwxMdOXmqBAsobP9FEHLyGEEHJ2oaAvDvwzfYCnxBttM4dQ2uU4ft4f4OkGjmVXDovdBZuTbwhJTVCImb4OCvoIIYSQswoFfXHgv6YP8GrmiHJAs9Xu7tyVScG5uy+EDt5Ygj6DhS/jSiUcNAqpV6aPyruEEELI2YSCvjjw794FPJm+aLdi8+7cFQiZPlMM5V2DmQ/udCoZOI7zNHKYKegjhBBCziYU9MWB/5w+wJPpazJEN6DZYvfM6BN41vTFnunTuYO9RGXsJWJCCCGE9H0U9MWBsJOGd3k31kyfWcz0eY4h7sphjSXTxwd3OhUf9AkdwEYLBX2EEELI2YSCvjgQumvV3o0cOveuHFGu6RPKu0qvXTPENX3dyPQlqvhzEYM+yvQRQgghZxUK+uLAe6iyIKOb3bvemb7TW9PnLu+6g79YAkdCCCGE9H0U9MWBVdwz13P5M722YmMs8q4cliDH0HRjZIvBXcbVqd2ZPkXvl3cdThcOnNKf9jrCVqMVu6rborp+hBBCSH9DQV8cWMXSbGCmz2x3RlVaDZrpc5d3TyfTF4/y7h9XHsT0f23GnUt3djtgM1jsuO4fm/CzN7bh3R9O9PAZEkIIIT99FPTFgZDpU/pl6YRGjGhKvELgqJJ5d+92J9Pn172rOr2gjzEW9f7BANBpseP9HTUAgB3H27CvpqNbr7uuvBGN7vWQyyjoI4QQQgJQ0BcH1iBNGIDXgOYogj7PyBavOX3dyvQJ3bu+jRxdMXQAC442deKCl9bjgpe+w9Gmzqie4x/kfV/RHPPrAsAPVW3ixxWNRrRG2QVNCCGE9BcU9MWBmOnzytIBsTVzBCvvCpm+WLJ0/pk+IdvYZXPAFUPGDgCeWlmG2g4z6vUWvLy2IqrnHKjV+35+Sh/ikeFVNRt9Pi+rM3TrOIQQQsjZioK+OPAEfb6XPzOGAc0WR7DuXSHT141GDpVv0McYYLJHn+072WrC1qpW8fP1R5pgc7/PcI43dwEALhqaAQA4WHd6QV9RmgYAUNEYXaaREEII6S8o6IsDa5CADQCy3bP6GvRRBH32wHWB3SnNdpp9M30quQQSfivfmNYGfrybX5d3wZB0pCUoYLG7ArJ4wVS38kHfdaOywXFAo8GKlhhLs21dNnGv4EtKMgEANW2mmI5BCCGEnO0o6OtlTheD3cmXTf0zfTnJagBAfTSZviCNHJ41fd0p7/IBI8dxYravM8qxLS4Xw//21AIAbp5UgFF5SQCAww2RS6x1Hfx7HZqdiIFpCQCAQzGWZo+5s3x5yWoMzUoEAJykoI8QQgjxQUFfLxOyfIBvlg4AcpJiz/QFW9PXFWUjB2MsYBs2wGtdX5SZvq1VrajtMEOnkuGqEVkYls0HXhUN4UusjDE0dfLvNVunQon7eZVNxnBPCyAEeEXpGgxI5cu7Ne3mmI5BCCGEnO0o6OtlVrtnnZtC6nv5s2MJ+sQSsVd51x302Rwu2J2R19NZHS7Y3I8TyrtA7LP6PnKXdmeMy4VKLkWhO2MXKfBqN9nFrGe6VokhmVoAiLrzVyB0O2cmqlCQymdLa9pM3Zr5d7SpE1e88j2u+dtG6gAmhBByVqGgr5cJTRwyCQeZNHimr9FgiTjrzhqke1et8HwczdgWYTCzhPM0gQDeawMjB32dFju+OtgAAJg9oQAAkJvMv4+6jvBBX6O7jJ2WoIBCJhGDvsrG2DJ9whrAdK0CuclqSDj+Oke7pZ23F788jKNNRhxu6MQb31fF/HxCCCGkr6Kgr5eFauIAgAytEhIOcLhYxCxTsDl9CplEzB5GE7B5j2vhOE68PZZ5f9+WN8LqcGFQRgLG5PNr+fLcaxMjBX1CUCaMqinO9JR3Y8nStRht4nHkUonYEBPp9f0ZrQ5srGgRP19zoCGm5xNCCCF9GQV9vSzUuBYAkEklyEzkA5b6CCXeYI0cAKCJoZlDH2Q9H+ApE3dFcYzP99cDAK4fkysGjkJDisHiQKc7sAxGyPRluYO0QRkJ4DhAb7aLgVw0hPJuupYPHjPdx4s107epohk2pwuZiUrIJBxqO8yojTFwJIQQQvoqCvp6mSXEbhwCYV1fxKAvRMZQDNiiGNvi37krHiPK8q7ebMfGSn4HjeljcsTbtUoZktxrBMO9D89aPD5YU8mlYiPG0RiaOTzlXaXP8aKZd+htRzW/q8d1o3MwPEcHADhwqiOmYxBCCCF9VdyCvubmZkybNg0ajQYlJSVYt25d0MeNHDkSWq1W/CORSPDyyy8DADZs2ACJROJz/6ZNm3rzbcTMs+9uYHkX8KyHa9CHzzAFm9MHABr32rxosnTCmr6ATJ87WxgpcPzhWCvsToZBGQkodo9KEQjrE8NlyoSgLFOnFG8bkhF7M4d/0CdkDoW9eKMl7OIxOi8JxWJTSWzrCwkhhJC+Shb5IWfGggULkJubi5aWFqxduxazZ89GVVUVUlJSfB5XVlYmftza2orc3FzMnDlTvG3o0KE4fPhwr5336RK6d0Nm+nTuWX3Rlnfl/uVd/ktqiirTF768G6lEvP0Ynxk7b1BawH25yWocbugM24ksDFRO0SjE24ZkabHucFPUY1scThdauzxr+gAgSydsZxd9ps/lYih3B30jcnVocAekvRn0Negt+PemYxiZp8OscXk+6ywJIYSQ0xWXoM9oNGLlypWorq6GRqPBrFmz8Morr2D16tW44447Qj5vxYoVGD9+PIYMGdKt17VarbBaPdkfg6H392cVGjlCBX050ZZ3hUYOmX95N/ZMX6LK99vAs4dv+MBx+3F+27VzgwR9aQl8INfWFXptnt79+sleQZ/QzBFtsNVmsoExvgM51f2amd3I9NW0m9BpdYhdxMLsv6PNvRP0uVwMdy3diUP1/PckBw6zzsnr1rGOt3Rhc2UzLh+ehVz3+kpCCCEkLuXdyspKJCUlISfHsw5s7NixPlm9YJYvX445c+b43FZdXY3MzEwUFxdj0aJFcDpDByovvPACkpKSxD8FBQWn90a6IVJ5N9pZfZ6RLb5fQmE9XlQjWyy+W7B5jhG5GcTqcOKwe/jyhMKUgPtTtXwA1hqmIaNDCPq8Xl8c2xJl0NfSyR8/NUEBqXv/OGFNX2MMa/qE0m5JViLkUs/4mKqmLrgijM/pCVuqWsSADwAWbzjarTmD9XozZvxrM/64sgyzXtsCvSl0Iw0hhJD+JS5Bn9FohE6n87lNp9PBaAz9g766uho7duzAzTffLN42bNgw7Nu3Dw0NDVi5ciVWrFiBf/zjHyGPsXDhQuj1evFPTU3N6b+ZGEWd6TNEWNMXspFDWI8XfaYvKSDoi9zIcbylC04XQ6JShlz3OXtLT+ADr9au0Nk2vYkP2JI0gUFfc6c1qoDFfz0f4FnTF0v3blkdv0/wyFz++3JAqgYSDjDbnWL5OJIuqwNVzUY0GSxRDcf29nUZPx5m+thcqOQSVDQasbemI6ZjAMDSLdXi9nlNnVYs+6E65mMQQgg5O8Ul6NNqtQGlVYPBAK1WG/I57733Hq644gpkZmaKt2VnZ2PYsGGQSCQYMWIEnnzySXz66achj6FUKqHT6Xz+9DaxAUMWPtPXqLeGzDB5798bak1fNN27+hBBn9gMEuYYwgDl4ixt0LVnqVGUd4Nl+rRKmRj4Hm2O3MzR7DfrD/AEfW1dNtgc0QVfQqZPCPrkUol4nGjGtry5sQrjn/kGl7/8PSY/vw7D//gVfvnOrqhnBe44zq+PnD4mB9eO4jPgq/fXRfVcgdPF8Olefg/kK0dkAQA+/7E+pmMQQgg5e8Ul6CsuLoZer0dDg2f47f79+zFy5MiQz3nvvfcCSrv+JJK+P4FGKMv6d90KMhNV4DjA5nShzRQ8YBKaOABAHSLTF92cvuBBn1YZuZGjspEPyIb6de0K0tzl3VDz9lwuFjLTGMvOHMEyfSkaOeRSPhBtjnIrtUNiE0eSeFtulEOm15U34vk1h2F1uKCWS8UB29+WN+L2/2z32W85mE6LXSxnnzMgBdeOygYArC1rjKnEu/dkO5o6rUhSy/HcDaMgk3A43NCJY91Yl8gYw56T7fi+ojni7jCEEEJ+GuKW6ZsxYwZKS0thNpuxatUqHDx4ENOnTw/6+H379qG6uhqzZs3yuX3Dhg1iibayshLPPvssrr/++jN9+qcl3HBmgN9VQwhgQq3r8w76/I+jiWGwcuhMX+S9d4UgRQjQ/KW5y7ttIcq7nVYHhFjCf03hkBjGpXhvwSbgOE4cch3Nur7mTiuaOq3gOGBYtieIjSboY4zhpa/47vH5U4twaNHVqHzuOnz10IXISFSiqrkLy7adCPv6P57SgzEgP0WNjEQlLizOgEouQW2H2WedXyTCnMHzBqUhM1GFcwelAgA2H20J97SgXvzqMG5cvBXz3t6Be5bt6tb6QkIIIX1L3FJjixcvRk1NDdLS0vDoo49ixYoVSElJwfLlywMyfsuXL8fMmTORkJDgc/vu3bsxZcoUJCQk4KqrrsKsWbPwyCOP9ObbiJkn6Ate3gUgrpELFWxY3MdQyCSQSHxLq2ITRgzl3dCNHKGPcaqdP7fCtISg9wuZvrYuW9CAQVivp5ZLA0rU3tuxRRKsvAt4Zv81RdHBK6znG5ieIK5nBDwzE4X3GsyhegMqGo1QyCR4+Mqh4DgOUgmHYdk6/PbKoQCApVurwwZNP57iX39sQTIAfg/li4ozAABflzVGPH/Brup2AMDEIr6xZnIR31W90317tFbvr8P/fX9M/Pzb8ias7sUy8c7qNtz65jbc/p/tKI8h6CWEEBJe3Ob0ZWRkYM2aNQG3z5kzJ6CM+5e//CXoMX7729/it7/97Rk5vzPFs/du6HhbCGBClUY9W7AFHiOmTJ+p+40cQkCaF2IkiLCmz+5kMFgcAa8RKssI8OsEAU8JORzhGnmXdwGvXTmimNUnZNNGepV2gej2EP7CHQxdPiwz4L3MHJeHP60+hFPtZuw/pcc4d1DnT8hoDvMqlV89MhtrDzVibVkDHnEHj+G4XAy73Jm+yQP5DN+kgXzwt/N4GxhjUc39M1odePaLQwCA+y8dAqVMgpe/qcA/11Vi+picsMewO11YsuU4NlW2IDdJjVsnF+CcAYGd3eFUt3Thjv/sgNn9PT77jW34bMH5ITPKoTicLry+oQqf7q3FwPQEPHvDKOQk0fgaQkj/1vcXwZ1lrBEaOQBPabQ1xHq0UIOZgeiydAC/6L/THdQFBH1i4OgMmqGyeHW0hgr6VHKpuL4w2PvoMPPPT9YEBn3COsE6vUUs34YSbE0f4L0rR+SgT2jiGJHj29gjBn1hdkfZ7m7AuGxYZsB9aoUUlw/nbxe6c4MRZgEO9gpsLhuWCal7Td7JVlPE91DR1AmDxQGNQiq+j3MKUiCXcmgwWMJmK739/dsKNBqsKEzT4P7LhmDe+UVQyiSobDKK1ykYxhge+nAfnl9zGJsqW/DhrhrcsHgr7lyyAz/GsJXdM58fgtnuxPgByThnQDKMVgce/nAfHDF2Q/9x5UG8/E0FjrV0Yd3hJvzs9W3oCLFGlhBC+gsK+nqZJcLIFsBTGg01KkQczBwk6BMzfRFGtnRa7BDiuYA1fe7A0eliYjnam9DNqlXKAvbt9Zbizva1Bxm90hEiyyjcVuIO/HZFKE2GKu/GshVbuV/nrsCzpi/02kohoBGya/4uHsqXaYXuXH+MMVQFWR+ZkqDA5CL+mGsPhQ4YBUIJd/yAFMik/PeWWiHFqLyksK/v7VCdAW9vqQYAPD19JFRyKXQqudgJLHQGB7P6x3p88WM9ZBIOj11dgp9NyIdUwmH9kWbM+NcWPPTB3ohB17FmI9YdboKEA/4yeyzemDsBOpUMB2r1WLq1OuL5C7462ID3d9RAwgG/u6YEhWka1HaY8fSq8HNA/dV2mPHXr4/g4r+sx4RnvsGC5XuiCsBtDhc+21uLF9aU462Nx1Dd0hXT6wq+r2jGfe/uxpx//4DX1h+NqjkrGIfThcrGTlS3dNHaTEL6ubiVd/sra4g9c72laYXybvCAJdRgZsArSxdhTZ9QXlXLpVD4BaDCMQA+Y+gfXArlztxkVdhyX4pGgVPt5qA/7MOVdwFgQlEKjjR2YveJNlzj7mb15/DqcA5V3o2U6euyOnC8lf+hPCJE0NfWZYPJ5hADasGPp/SwOxkyEpUYkKoJevxzB6a5H9sBs80JtcL3WjYarDBaHZBKOBT5rY+8amQWth1rxdpDjfjlhYPCvg+htCus5xNMKkrF3pMd2HWiHTdNyA/5fJvDhYWf/Aini+G60dm41Ctzef2YXHz+Yz2+LmvAk9OGB3zNXS6Gf6yrBAAsuHQIFlzK75hz/6VD8I91lfhsXy0+21eHvTUd+OBXU0KWWT/cyTdlXTw0A4PdezAvvG44Fn5yAK98U4FrR+eEzCwLDBY7SlcdBADcd8lg/PqSIZg6OB03Lt6Cz/bV4dbJAzAlyA4y3u9lS1UL/rvtBNaVN8K7cfmLA/XYfLQFy395rhhM+6tpM+EX7+xEhVfn+XNryjGhMAU3js/D9WNyQ37PCxhjeOHLw3hzo2dd5ZajrfhwZw3+dus4jI+yZG6xO/HuDyfw+oYq8RfIQRkJeHLacFw2LCvi8xlj0JvtaOq0oq3Lhi6rAzaHC5k6FUbm6oL+0unNaHVg+7FWnGg1QSWXoiRbi5G5SRGf56/VaMXmoy1o77IhS6fChKIUsVErVnqzHUarA2kJipjPg5CzAQV9vSyaRo70CLtZhBrMDHiydJHW9IULuqQSDiq5BBa7C11Wh7g+T+AJ+sL/ABZKt8EyfZ4t2IL/AJxUlIL3tp/ErhOhM33BtmATRDtuZf+pDjDGD8X2Dxx1Khm0ShmMVgfqOswYkuk7nuaQuwFkbH5SyOC3IFWNbJ0KDQYL9tV04LzBvgGHsJ6vMFUTEHxfOSILf1p9CLuq29BqtIq/DASz053JE7KDAmG3lN0nwmf6nvn8EPaf0iNRJUPpdN9GqouH8t3Ep9r5bmL/tY9bq1pxtMmIRJUMv7hwoHh7UXoCXrllHG4/rxAPvL8XJ1pNuGfZbnx879SA92pzuPDx7lMAgFsnDxBvv2ViAT7Zcwo7q9vx1GcH8e95E8P+ovHil4fRaLBiYHoCHrisGAAwriAZP588AMu3n8TTq8rw+QMXiNlQb98easSfvz7sE7CdNygNc6YMQLZOJV6ju/+7C188eGHA95zeZMcdb+/A8ZYupGsVuG50Do63dGHL0RbsPtGO3Sfa8afVh3BZSSZumpCPy4dlBjRi+Qd8d5xXiCGZWryxoQon20y4+Y1t+P21w/CLCwaGvA4WuxMf7T6FxeuPits5apUy2JwuHGvuwl1Ld+HmifkonT7Sp3EJ4H/B+WDnSWw40owDp/Ti2kp/GoUU08fk4r5LBqMo3feXlRajFW9uPIb3t58Ul5AI5FIOQ7MSMSY/CUMyEzEgVYMBqRoUpKp9fqnqsjrwbXkjPttbi42VLT5jgzgOmDIwDdeOzsYlQzORn6KGRMLB6WJoNfKd+I0Gi/h3TZsZ1a1dqG7pEoNfqYTDqLwknD84DRcNzcCEwhTI3d8TnRY7Kho7cbihE0caOnG0yQiTzQkXY2CMr9Io5RIoZVIkqeUoSkvAoIwEDEzn/6jlUujN/Bimg7V6HKzT41CdAW1dNrgY//97RqISWToVsnRKZCaqkKCUQSmTQCWXQuU+tsPlQqfFgVajzf1+LGg08O/JYnciO0mF3CQ1fw3TNMjQKiGVcHAyvkJjtTthdbhgsTthsbtgdQT/mwO/g1J6ghLpiQqkJSihlEmgN9vRYbKj3WRDm8mG9i4bHE7mblYTfk5IxWY8tVwKlUIKlUwChUwCuVQCDvw81rYuGzpMNhitDhitTjicLqgV/HM0Cs9z1XIppBIOjAEuxuBi/L8JxgAnY7A5+PPm/3bB5nDBxRiUMqn4dVFIpe6vjwQyqQQOpwsOJ4PN/bfD5YLdyWB3uuB0MXAcP5dVJuEgk/LPk0s5yKX8+5BwHBwuBqfTxf/tYn5/u8AYfz2kEg4yCQeJ+2+pRAIpxydypo/NDfpvqbdR0NfLIu3IAXiPO4lQ3g0SOGqj3IYtUqZNq5TBYrcFDR4b9HwGMifIThzeUtx76gbL9Am3hXr9iYV88HKwVh80QwZ4SrveW7AJsr32MA7XxLDzuNDxGlie5TgOeclqHGnsRF2HJSDoq3AHbCXZwWcVCscYV5CMr8oaUFanDwj6qoKs5xPkp2gwKk+Hg7UGfFXWgDnnFgZ9jdoOM+r0FkglHMYNSPa5Twj6KhqN0JvsPrufCD7ceRLLfjgBjgP+dss4sTQuUCukuLA4A98casTassaAoE8o+84YmwudKvD45wxIwft3T8H0f23Gj6f0eHNjFe53B2SCb8sb0dplQ2ai0md9pETC4fkbRuO6f2zCusNNWLmvLuSexJsrW/De9pMAgOduGOXzS9GjV5XgiwP1ONzQifd2nMQd5xWJ97lcDH9ZewSvb6gCwH/v3zQ+D3OnFKLYq7lm2S/Pxcx/bcHxli48smIf3p43SQzaHE4X7n9/D463dCEvWY3/3TfVM2jdYMHKfbX43+5aHGnsxFdlDfiqrAEjc3V49OoSXDI0AxzHgTGG59eU461NxwEAz98wGredywfAs87Jw8L/HcAXB+rx7BflWHOgHtePyUVKghxGqxONegvq9RbUdZixr6ZDDNZyklR46Ipi3DQ+HxaHC/9YV4m3Nh3Dil18IP2Xn43B+AEp+LFWjw92nMSne2sDlnQkqeVI0yqgVcogl0pwotWEFqMVH+6qwUe7a3Dd6BzMHJeHJLUc6w43Ytm2E+L/PwWpaozOS4LJ5sTBWj1ajDaU1RmCrg9N1ypRkKqG08VQXm8QB9ADwKg8HQakanCi1YSyOgO2HWvFtmOtAMqgkPI/pM12J6IZKSmXcrA7GfbXdGB/TQcWb6iCWi5Flk7JB1lR7sDTXS1Gq7iF5emoau7esgHS+4ZlJ1LQ118J/6GGKy141vSFb+QIViLWRLkNW6Sgj/+t2xa0TCycl39mzF+quKYvdHk3WaMIuA/gZ9YJGbK9Ne2YOjg94DGhOncBINddQjTZnEG7hwW7TggZsuAls9xkFY40dgbdlaOiIfyAasGoPB2+KmvAwVp9wH1HI8w7nDk2DwdrDXhr4zHcMrEgaIZKyPKNytUFlKDTtUoMTE/A8ZYu7DnZ7lO2BfjxKE9+xpdDH75iKC4fHrzsd/XIbHxzqBFflzXgYa9uYrPNKTap3BAiGAOAglQNnp4+Eg99uA+LN1Rh9sQCn+Dy/R18sDZ7Yr6YcREUZyXivosH4x/fHcWjH+1HZVMnrhudg8EZWvHf0cFaPR54fw8A4PYphQHfLykJCvz2qhL88bODeHltBa4fk4vUBAXMNiceWbEPXx7k38MvLxiIBy4vDvr9olPJsXjOeMx6bQs2HGnG39ZV4pErh4IxhqdXl2FTZQvUcinevGOCGPAB/PrSX100GHdfOAjl9Z34dO8pvLf9JMrqDLhzyU6cOzAV14zKxsaKZqw/0gwAeGbmSDHgE177X7edg3N/SMWzX5Rjz8kO7DnZEfJ656eo8csLBuLWyQPEa6SVSvDEdcNx2bBMPPzhPhxv6cLP3tgGjgO8l/qNzkvCrZMLMLkoFQWpmoD/qxhj2Fndjtc3HMX6I834/Mf6gJ1fxuYn4TdXFOOSoZ5sJmMMp9rNYvarusWEk238H73Zjhaj1WdJS2GaBjPH5mLmOXliuR/gS+hrDtRj7aFG7K/pgM3pgvA7roTjv+cz3Rm0LJ0SuUlqFLmzcEXpCUhQSFHbYcb2Y23YfLQFGyua0dplQ7XXes1snQol2YkYlp2I4qxEJKnlEL4thSyT1e5CS5cVx5u7cKzFN5MI8KO3RuTqMCovCaPzkpCl4wfvezJ3VjQZLGg2WtFldXpl4PgsnUTCQauUIV2rQKZOhSz3+8nSqaCUScQgX7iGfCaRQcLxGTghc+j9t5ChVMolULn/Zow/p9YuK1qNNrQYrbA5XEjSyJGkliNVo0BKggIpGjkUMglc7iycw8lgsTthdmcSLXYnzDYnLA4n7E4+m+ZyMSRr5EhxHyNRKUOCUgaphIPF7oTJ/XiLjT+OkFHlOA4SjgPn/ppKOA4cx0Ehk3jeh1Qi7mEvfk0cTvFrY3O6YHe4IJNyUEglkEn5TJ5cwmfxZO7snovxGTubwwW7V1ZQeL6LMcgkEkilQvbOk8UTPgf4a+L0ygC6vDKCwvivvoCCvl7m6d6N3MjR1mWD08UCsljhGjmE9XhWhwsOpytokACEntEnCBc8CmXntITgAZtAKN22dcXWyAHwGbIpg1Lx2b46/FDVGjzoC9HEAfDZqWSNHB0mO+r15qCvY7E7sdO9Fm5SiEaMUGVixhgqIuxKIhjpXv91MEh2Qwj6vH+oebvt3AF44/sqVLea8OamY/j1JUMCHrOtqhVA6GaSCYUpON7ShR3VbT5BX3uXDfe9uwd2J7+O7/5LA48tuGK4bzfxgDR+DeO35Y0wWh3IT1GLWcVQZo7LxX+3VWPPyQ689NVhvHLzOADAyVaTOED6lokDgj73wcuLUdNuxqd7a/Ha+iq8tp7PymXplFDJpTjZZgJjfLCx8LphQY9x2+QBeG/7SZTXG/DkZwfwiwsG4ulVh3CgVg+FVIKXfjYaN5wTet0jAAzP0eH5G0bjtx/txz/WVcLpcqHDZMfy7SfBccCrt4wLyIQKOI7DiFwdRuSOwH2XDMHrG47inW0nsP14m9gFLpdyeGbmKJ8St/fz7zivCNeMzMaKXTU4UKtHl9UJjUKKLJ2KL/clqzA0KxEjcnQhs9tTBqXhy99ciOe+KMfK/XWwuXeSuWpkFm6fUogJhSlhS+gcx2HywFRMHjgZh+oMWL79BHZVt8NodWB0XhJuGJ+Hq0ZkBRyD4zgUpGpQkKrBtaNzfO7Tm+yoaTehps0EmVSCIZlaFKVpgp5HQaoG91w8GPdcPBgOpwsNBgucLga1Qoq0BGXA/5fB5KdokD9Bg5sm5MPlYjje2oVWow2JKhlyk9RBM+LRMFjscDgZ1HJp0OoEIfFGQV8vi6Z7N9Wd/XIxvgzqv5bLHGZki7CmDwBMdid0EYK+cOVdIPhWbMLWZuHWmAERyrsRXh/gfzh9tq8OPxwLvh4t1LgWQU6Smg/6OiwYlh24z/KWoy2w2F3ITVKJ3cL+8lL4oK/Wb+RJo8EKg4VvwBiUEXxAtWCUOwioajYGNIQI41pCZfoSlDL8/tpheOzjH/HK2gqMy0/G1CGeAJgxJgZM5w8JDIwBfl3ax7tPYWNFMx6/xhMQPb+mHC1GK4oztfjr7LEB68u8JWsUOHdgKrZWteLrsgbcfRHfWPKZu7Q7a1xexDmAHMehdPpIzHxtCz7ZU4vbJg/AxKJUvL3lOBgDLhqaIQaT/mRSCV65eSyuHJGFFbtqsLu6HZ1Wh0939rWjsvHCjaMDsp0CqYTDopkjcfP/bcOaAw1Yc4DP7qVo5HjzjomYFKTEH8xNE/JR0dSJ//v+mBh8AnzHc6imI3+pCQr8YdoI3Hn+QCzffgIVjUbkJasx59wBPiXlYDJ1qoDyeKySNQr8ZfZYPHvDKHSY7EhNUARkWKMxIleH524YfVrnAoDPKmmSQjbIhCKTSpCfEvx7JloSCYfBGVoMzjitwwBA0OUNhPQlFPT1Mk/3bujfAmVSCRJVMnRaHOgw2wOCq3DDmRXulLXDxWCyOkP+JxSxvCsOaA5S3o0QbAk8jRxByrum8I0cAMQuy301wTtfhTV93luwectNUqG83hByzt5X7pLeFUGyEgKhW9S/vHvEneUrStOEbcoB4F60rUSjwYryegMmuNcr6s128T0MDhM4/mxCPjYfbcHKfXW4993d+HTB+WJmsKq5C7UdZiikErFT2N8lJRngOH4eYaPBgiydClurWvDR7lPgOODFm8aEDJS8XT0yG1urWrH2EB/0NXda8X0FX46cdU5061XGFiTjlokF+HBXDZ749ABenj1OLO3ec1H4DmWO43Dd6BxcNzoHjDF0mOyobu2Cw8WQn6KOavjypKJUvDF3Ap77ohz1ejMuKclE6fQRMQcOv79mGIozE7FiZw0UMgnuPL8oZGk8nNxkNR67OnhmsjcoZVJk6SgjRUh/QUFfL4umkQPgg7FOi0Msg/ocI0ymj+M4aBRSGCyOsB28hghBnzBYOdgxhHUroYItgbCmL9h7ENf0qUMfozBNg5wkFer1Fuw92e6T4QI8Gcdg5V0AyHGvo6gPMmfPYLGL65Cm+ZWavIUa0CzsFhKuicPbqNwkNBqacLDWE/QJpd1snQqJYTIEHMfhpZvGoKbNhD0nO3DX0p349NfnIzVBgVX7+EzblMFpIctJaVolxuYnY19NB1bvr8PcKYX4w6f8Or455w6IWJYVXDkiC6WryrDrRDuaO634355TcLgYxhYkBzS5hPP4tcPwTXkjKhqNmP6vzQCAC4vTMXVw8KA1GI7j+HVGEZYYBHP1yGxcPTI76l1KQr3+zybk42dhxuAQQkhfQ8OZe5lnZEvkoA/wBGfeLGIzSPBjRLONmmdNXfC4PyFEps/udInPjba8G6wLWdiRI1x5l1/XxwcCPxxrDbhf2Fc31MwuIfMjjK3w9umeWpjtThRnakOuhQM8a/rqOyw+YyOOuJs4iqMMdsR1fV7NHEeb+GNEs8WYSi7Fm3dMRH6K2j36ZBf0Zrs45iRS8HHLpAIAwJIt1ShdWYbjLV3ITFTid9dEn2XKTVZjTH4SGOP35/2ve2DybZMLoj4GwP8y8Pb8SWKWtzBNgz//bEy3A7Du6u3XI4SQeKOgr5dFM6cP8ARD+mBBX5hMH+DdhBF6bIvQjJEeIksmZPr81/S1ec25So4wZFb4od5hsvvsBCDMjQIQccH0lEF8QBZsXZ+wr25mqEyfOLYlsAnj3R9OAOAzXeF++Gcm8gvDHS4mlmIBiE0c0Wf6+DWFB7yCvsNRdv8K0rVKLJk/CYkqGXZWt2PSs9+iTm9BulaJq0aELy3ecE4e0rUK1HaY8eEufgjyopmjYl6DdJ07K7ro80Oo01uQl6zGjLGhu3ZDGVeQjE2/uxSfLTgfax++iPbFJYSQXkBBXy+zuYM+/+G0/oSAqTtBXzSZvkhNEMKaPqPfMYTnpSYowi78Fx4DADany2duoJC9lHBAojL8CgMh07e3pl1834ImdxCWqQv+HoTS7Mk2362zth1rRWWTERqFFDdGyJDJpBJku0eL1Hbwx3G5GCrdpdmhWZGzdAAf5AB8sChcUyFbOCzKwBHgx5csvXMykjVy2JwuSCVcwEy6YFRyKf5x6zlITVBAKZPgmZnRNx14u31Kodi4wnFA6fQR3e5STFTJMa4gOeIvQIQQQnoGrenrZbYYy7vBg77wx0hU8V/WTmvgcwXNxvBNEGL3rl+2sCXKcS2AZ4s3m8OFdpNNDEY7vMbFRAocB6RqkK5VoMVow6F6g7gFlcXuRKeFD54yQpR3hbJpbYfZp2t22TY+y3fDOXlRZbryktWo7TCjtsOCCYXC8ZyQSzkUpoXv3BVk6lTicX6s6cDUIeli0BdttlAwoTAF3z96KTZUNGFEji5it6dg6pB07HjicrhY5F86QklQyvDJfVPx1cEGlGQn4pwotwQjhBASfzH/z79582a8+uqrWLt2bcB9v/71r3vkpM5m0TZy6E6jvCsGjEEaKIRzEAKmkJm+EI0c0XbuAu7F9kIHr9esPmFNYKTysHAMIUu212sYrbCeTymTQKcK/rtLmlaJ1AQFGAOOuafX13WYsfZQIwD47MoQjjC2RZjVV+leizc4QxvTmItz3Ltl7DnZjiaDBa1dNnAcUBxlttBbkkaOmePyog74BDL31kKnI1mjwK2TB1DARwghPzEx/e//f//3f/jZz36G3bt34/7778dll12GtjbPWqt33323x0/wbOJwusRtgiL94A2b6XNnC9WRgj5z8PKusJ5PLuVCd++GKBGLg5kjdO4KhGYO77Et4riYELtx+BOCvn01HeJt4no+nTLsmjwh2ycEau9tPwmni2HKoNSoM2zCNHVhVp+wN2usAZeQpdx7skMcxjs8O3AXDUIIIeRMiCno+8tf/oLvvvsO7777Lg4fPoxzzz0X559/Pmpq+IXh3ov1SSCb07OnZbRBX7BxJ5EyfeGyhIBnXV5aQuiASdjZo8vmX96NPtMHBA/6Iu27629cAR8s7atpF28T1/OFKO0Kit1BX0WjEVaHU5wJF22WDwDykvkZbsLaQHEnjii6br0Jmb5dJ9qxuZIfqHzuoOgGAhNCCCGnK6YUQ1NTE4YN40c8SCQSvPDCCygsLMQFF1yAL774gkYgRCAMZgb4IcrhhBvZ4pnTF/wY4nMt4YO+9MTQmTZhZw//7l1hRl9qlPPRUhICg1fPjL7ogr4xBUngOKCmzYxWoxVpWqVYas3WhQ/6hAn/e0604/P99WjtsiFbp8KVEbpdvQnlVyHYq+xmpm90XhIyEpVo7rSKHbRCowohhBBypsWU6Rs8eDB27drlc9u9996LP//5z7j88sthtVpDPJMAnkyfVMKF3BNXIAwtDtfIETLTp4qU6ROaMUJn67Qh5vS1d0XfyAHw678A31l9kXYD8adTycUdKIQSb40761aQGn4nhXPdM/h2n2jHn78+DAC4/bzCmNbiCSNV6vUWtBqtYqk42s5dgUwqwaxxnp0rtEpZyK3TCCGEkJ4WU9D30EMPYf/+/QG333LLLVi2bBnOP//8Hjuxs5E4riWKgCPcmj5zlJm+UEGfsENFuCyZZ9af35w+d2k22p0QUsRZfYFBX7gt2Pz5r+sTSq0DIgR9A9MTUJKVCIeLodFgRaJShtvPK4z6dQH+egrjXz7ZUwuL3YVkjRxFUXbuept//kCxNP7QFcVicE0IIYScaTH9xJk3bx4AYMWKFUHvv/fee33uu/nmm0/j1M4+YuduiGDNWzTDmUPNNwtXGgY8AVNBauiBuMKaPpMteKYv6vKuuKYvsHs32kwfwAd9H+8+FXPQx3EcHru6BPe8uxtOF8OT1w/v1qboJdmJqO0wY6l7F4qJhakRx80Ek5esxqbfXYoWozVilpIQQgjpSd1KM7z22mvYtm0bsrOzkZ+fj1OnTqGhoQFTp04V1/VxHEdBnx9rNzJ9ZrsTNofLp/Ej2pEtoYK+mvbIpVGxe9fm8NmjVCjTpkTZeRu0kSPG8i7gm+lzuhhq3J20kYI+ALhiRBbW//YS/vFp3Qu0JhSm4LvDTah1ryWcPLD740rUCikFfIQQQnpdt4K+4cOHY/bs2bj//vvF21577TUcPHgQr7/+eo+d3Nkm2t04AH7AMscBjPHZvgyvrcYi7b0bqXv3lDtLlp8SLujjA0rG+MBTo5DB7nTB4J7vF2sjR7CRLclRBo4Av2uFSi5Bp8WBbVWtsDn43SiEcSqRdDfYE1w+PBN/+fqI1+fRN4IQQgghfUG3prR+8MEHuO+++3xuu+eee/D+++/3yEmdraxR7sYBABIJJ25Rpjd7AiaXi4nBY6RMX5fNCbvXmBiADzzrDfyavnDlXbVcCqEZW9g2TCjLclz0WTox0+c1nFnvDgBjWdMnk0owJi8ZAPDeDn5HjYHpCREbYnrKsGwdbp1UAAC447xCsbGEEEII+ano1k/MwsJCvPPOOz63LVu2DAUFBVEfo7m5GdOmTYNGo0FJyf+3d/dBUZ33HsC/u7zssuwLBHkV1BAQAhL0Xm0Se01smibppXCpN9RcfHeapq2tsY6mNSbFUo06TWybtmg7SdVEEqXVCHrN29gkRkdrp6ZeBVOMCiEKiQjssrAsLjz3D/YcWJaXXYRzrPv9zOzMcs7Zs8/+JmN+83vO83vScPjw4QGvW7x4MXQ6HYxGI4xGIzIzMz3O79ixA4mJiTCbzViyZAk6OzsHvM/NoLfS59teo1IlrG/FTkocgaFW7wbLCVvfChvQs6uEED2JZ/QQvfY0Gk3vc33uFbzS1G5EWAiCfHyeTUr6BlrI4c/0LgBMdfe5O3SmAUBPCxQlbfrvu3Dq2a+h+L+mKPq9REREo2FESd9LL72EdevWYfLkyfjqV7+KyZMno6ioCH/84x99vseyZcuQkJCAxsZGbN68GQUFBWhubh7w2p/97Gew2+2w2+2orKyUj585cwYrV67E/v37UVdXh5qaGqxfv34kP0kR/kzvAoA5rCfpsvXZWUN6ng8A9IPcJzhIK7djkbYrk1TV2wD07FQxXF/F/luxyc/z+Ti1C/QmfW2dPc8mdncLv/v0SWbe4dnT7l4Vetz5Oq1NRER0sxnRM30zZszAhQsXcPz4cdTX1yM+Ph733nsvQkJ8+5+43W5HeXk5ampqYDAYkJ+fjy1btuDAgQNYuHChz+N47bXXMHfuXEyfPh0A8Oyzz+Lb3/42iouLB7ze6XR69BK02Ww+f9do8Gd6F+jtt9e3yXKHewVw8DC9/mLNOjTane7tynorYqc/awEA3JUYMez3h+uCgVan3KtPqhre5sezeCZ9MLQaoFv0VPv0oUHyVnRmP5O+/0gZh4lRBtRea4dRF+xXg2UiIqJAN+IHokJCQnDfffdh7ty5uO+++3xO+ADg/PnzsFgsiI+Pl49lZ2d7VPH6+sUvfoGoqCjMnDkTR44ckY9XVVUhKyvL4x6XLl2Cw+EY8D4bN26ExWKRX/5MR4+Gzi6p1Yq/SV/fSt/Qz/NJYt09+D7vV+n7vzorACA7cfipUWkxx41U+rRajVzta2rvhNX9XKA+RDvsb+gvOEiLV5Z+CYtnTsLvF/y7X+MgIiIKdMo8Bd+P3W6H2Wz2OGY2m2G3272uffLJJ/HJJ5+gvr4ey5YtQ25urrzXb//7SO8Hug8ArFmzBlarVX5J91GKP82Zgb7Tu30qfcO0a5HEmr2ndzuud/lV6TP0e6ZP7tHnR6UP6F2w0dx2XV4MIu044q+JUeFYl5fJnSyIiIj8pErSZzQavaZWbTYbjEbvFZHTpk1DZGQkQkNDMW/ePNx777149913B7yP9H6g+wCATqeD2Wz2eClJnt71oTkzAJgGmt4dZjcOSYzJXelr7ZCPvf/Pq2jv7EKCRY/0uOH3je3dis1d6fNzNw5J38UczSNYuUtEREQ3TpWkLzU1FVarFQ0NDfKx06dPe63MHYhW2zvkjIwMnDlzxuMet99+O8LCBm9Foia/K31S0ucY+fTuF7bepO+Njz4DAOTcFe/TbhL9F3L07sbhX8IW0WdXji9aeyqPffsOEhER0dhTrdKXl5eHoqIiOBwOVFRU4OzZs8jNzfW6du/evWhra4PL5cKePXtw9OhRPPDAAwCAwsJClJWV4dSpU7BardiwYQPmz5+v9M/xmXOkq3cHWMgxXKVPmt6tt/YkfZ98Ycc7VZ8DAAqm+/YsY/+t2JrcU7O+7sYhua1Pg+arTPqIiIhUoUrSBwAlJSWoq6tDVFQUVq1ahbKyMkRGRqK0tNSj4vfLX/4SCQkJGDduHLZs2YI33ngDkyZNAgBkZWXhhRdeQG5uLhITE5GUlIS1a9eq9IuG17t617cFDFKlr7XvQg53AqYf5h4T3TtQXGpsgxAC2z64ACGAr2XEYnLs8FO7QO9WbFJzZn/33ZX0NmjudK8m7p1+JiIiImWMqGXLaIiOjsahQ4e8js+bNw/z5s2T/z569OiQ91m8eDEWL1482sMbE/736fPeQ7e30jdc0heOkCAN2ju7cPJSE/Z/dBkA8P3Zd/g83v4LSUayehfwnN51usfPSh8REZGyVKv0BSK/kz79ANO714fed1cSEqSVK3pLd/wNrm6BL6dEYdqESJ/HK1X0pGRvJH36eu7Tk7y2tHfymT4iIiKVMOlTkFTl8rVPn2nAhRzue/jQ405qa9LmnhJe8eBk3weL3mnZprZOdFzvkp/tG2ml71pbJxrdSV8Mkz4iIiJFMelT0Ii3YRuo0ufDc4Hz7p6AMHdyWPDviZgx6Ta/xitV+prbO+VqX7BWI1cgfRXnXklcb3VwIQcREZFKVHumLxA5/W7O3FPp63R1o+N6F/QhQT736QN6nuv73+X/gerPW/Hgnf5vWdZb6buOBpu0AEM37J69/SXd1rOopO/uIFJLGSIiIlIGkz4FdcrNmX1bvWsMDYZGAwjRs4K3b9IX5uM9kqONSI4euFn1cPpW+hrcrV9iLf4na5GGEISHBsnTzNEmndz4mYiIiJTB6V0FdXa5kz4fK31arQYmnecUr9QoOVyBpEnaNaOrW+D85z1b28WNoEKn0WiQ0qdNzO3jwkdngEREROQzJn0KkhZy+PpMH+DdtqXNvQ9uuM63St+N0IcEIdy9K8e5+p4t7kY6LTsloXfLu7vGW258cEREROQXJn0Kkqd3/Uj6evff7anwSfvgGkKVmR6VVupWuZO+uBFM7wLAw5lx8vsHM/x/vpCIiIhuDB+sUpC/q3eBPr363JU+qW2KUs/ERYWH4rNmBz5tagcwsuldAJiVOg6b/zsLJn0I7kmOGs0hEhERkQ+Y9CnI3713gT7Tu+5n+uxypW/sp3cBICEiDKc/s8p/j3R6V6PRYO6MCaM1LCIiIvITp3cV1Onn3ruA9/677Qou5ACACe52K5JJ4wyDXElEREQ3MyZ9ChpZpc9zerd3IYcySd/EqN6VtiZ98Iind4mIiEhdTPoU5G9zZqDvQo5+LVsUmt79t4kR8vvsxAi/GzMTERHRzYFJn4I6pb13fdhNQ9K7kMM9veuu9BkUqvRNjjEh091upfBuPpNHRET0r4oLORQkNWf2p9LXdyFHp6tbvodRoZYtWq0G+5d9GY12J+ItYYp8JxEREY0+VvoUIoSQp3f96dMnLeSwOa7LizgAIEyh6V0ACAnSMuEjIiL6F8ekTyGubgEhet77tXrXvZCjtcMl710bGqT1azEIERERETMHhUjtWgB/mzP3Tu9Ku3EosQUbERER3VqY9CnEeaNJn8Ol+BZsREREdOtg0qcQqdIXrNUgSOt72xNpetdxvQst7l59Sm3BRkRERLcOJn0KGcm+u4Bngne52dFzTM+kj4iIiPzDpE8hTnePPn+TvuAgLUzuxK/2WhsAINIQMrqDIyIiolsekz6FjKRdiyTapAMAVH9uBwBYwkJHb2BEREQUEJj0KURuzDyCpC/GLCV9rQCACFb6iIiIyE+qJX1Xr15FTk4ODAYD0tLScPjw4QGvW7lyJZKTk2EymTB9+nQcOXJEPvf+++9Dq9XCaDTKrw8//FCpn+AX53X/d+OQxJr1AIB6awcAICKMSR8RERH5R7UVAcuWLUNCQgIaGxvxzjvvoKCgABcuXEBkZKTHdRaLBe+88w6Sk5Oxd+9e5Ofno7a2FiaTCQAwefJkfPzxx2r8BL9IlT5/GjNLpKRPwkofERER+UuVSp/dbkd5eTmKi4thMBiQn5+PKVOm4MCBA17XFhUVISUlBVqtFgUFBQgLC0N1dbUKo74xI129CwAx7mf65L/7JYFEREREw1El6Tt//jwsFgvi4+PlY9nZ2aisrBzyczU1NWhqakJKSorHsZiYGKSmpqK4uBhdXV2Dft7pdMJms3m8lDLS1buAd6Uv3sKkj4iIiPyjWqXPbDZ7HDObzbDb7YN+5vr161i0aBFWr14Ni8UCAEhPT8c//vEPNDQ0oLy8HGVlZXjxxRcHvcfGjRthsVjkV1JS0uj8IB903sDq3f5JXxwrfUREROQnVZI+o9HoVWWz2WwwGo0DXi+EwOLFixETE4N169bJx+Pi4pCeng6tVouMjAw888wzeOONNwb93jVr1sBqtcqvurq6Ufk9vriRli2Togzye40GGGfUDXE1ERERkTdVkr7U1FRYrVY0NDTIx06fPo3MzMwBr//hD3+IK1euYNeuXdBqBx/yUOcAQKfTwWw2e7yU0nG9Z3pXH+L/Qo6+z/BlxJuh9WMbNyIiIiJAxUpfXl4eioqK4HA4UFFRgbNnzyI3N9fr2qKiIhw7dgzl5eXQ6TwrXO+//75crTt//jzWr1+Pb3zjG4r8Bn853Elf2AiSPgD4zf9Mw5dTorD2P+8czWERERFRgFCtT19JSQnq6uoQFRWFVatWoaysDJGRkSgtLfWo+BUXF+PcuXNISEiQe/GVlpYCAP7+97/jnnvuQXh4OB566CHk5+dj5cqVav2kIXW4+/SFhY4s6cvNTkDpt+/BzJRxozksIiIiChAaIYRQexBqsdlssFgssFqtYz7V+9yhc/jDkYv4zn3JeJrVOiIiIhoF/uQy3IZNIY7OkT/TR0RERHSjmPQppOMGn+kjIiIiuhFM+hTikFfvMuRERESkPGYgCmGlj4iIiNTEpE8hcsuWEa7eJSIiIroRTPoUIrVs4UIOIiIiUgOTPoVw9S4RERGpiUmfQvhMHxEREamJSZ9CmPQRERGRmpj0KaR3IQdDTkRERMpjBqIQKenTBbPSR0RERMpj0qcAIYS8epctW4iIiEgNTPoU4HR1y+/5TB8RERGpgUmfAqR2LQBbthAREZE6mPQpoMPVk/SFBmkRpNWoPBoiIiIKREz6FNAuN2ZmuImIiEgdzEIUYO9wAQBM+hCVR0JERESBikmfAuzOnqTPqAtWeSREREQUqJj0KaDVXekz6pn0ERERkTqY9CmgteM6AMDEpI+IiIhUwqRPAZzeJSIiIrUx6VNA70IOJn1ERESkDiZ9CrA6pOldrt4lIiIidTDpU0Cj3QkAGGcMVXkkREREFKhUS/quXr2KnJwcGAwGpKWl4fDhwwNe53A4MH/+fJhMJkyYMAGvv/66x/kdO3YgMTERZrMZS5YsQWdnpxLD98tVOenTqTwSIiIiClSqJX3Lli1DQkICGhsbsXnzZhQUFKC5udnruqKiIjQ1NeHy5cvYvXs3vve976G6uhoAcObMGaxcuRL79+9HXV0dampqsH79eqV/yrAaW3sSUSZ9REREpBZVkj673Y7y8nIUFxfDYDAgPz8fU6ZMwYEDB7yuffXVV1FUVASz2YyZM2ciLy8Pu3fvBgC89tprmDt3LqZPnw6LxYJnn30Wu3btUvrnDKmrW+BKiwMAEGNm0kdERETqUCXpO3/+PCwWC+Lj4+Vj2dnZqKys9LiuubkZDQ0NyMrKGvC6qqoqr3OXLl2Cw+EY8HudTidsNpvHa6ydvWxFq9MFkz4YKdHGMf8+IiIiooGoVukzm80ex8xmM+x2u9d1QUFBMBgMA17X/z7S+/73kWzcuBEWi0V+JSUljcrvGcpnzQ4YdcG4NzkKwUFcN0NERETqUKVxnNFo9Kqy2Ww2GI1Gr+u6urrQ3t4uJ359r+t/H+l9//tI1qxZg5UrV3pcP9aJX85d8Xg4MxYt7rYtRERERGpQpfSUmpoKq9WKhoYG+djp06eRmZnpcV1kZCTi4uJw5syZAa/LyMjwOnf77bcjLCxswO/V6XQwm80eLyUEB2m5iIOIiIhUpUrSZzQakZeXh6KiIjgcDlRUVODs2bPIzc31unb+/Pn4+c9/jtbWVpw4cQIVFRWYO3cuAKCwsBBlZWU4deoUrFYrNmzYgPnz5yv9c4iIiIhueqo9ZFZSUoK6ujpERUVh1apVKCsrQ2RkJEpLSz0qfsXFxfKij4KCApSUlCAtLQ0AkJWVhRdeeAG5ublITExEUlIS1q5dq9ZPIiIiIrppaYQQQu1BqMVms8FiscBqtSo21UtEREQ0WvzJZbiclIiIiCgAqLJ692YhFTmV6NdHRERENNqkHMaXiduATvpaW1sBQJF+fURERERjpbW1FRaLZchrAvqZvu7ubly5cgUmkwkajWbMvkfqB1hXV8dnB4fAOPmGcfIN4+Qbxsk3jJNvGCffjVashBBobW1FQkICtNqhn9oL6EqfVqtFYmKiYt+nZG/Af2WMk28YJ98wTr5hnHzDOPmGcfLdaMRquAqfhAs5iIiIiAIAkz4iIiKiAMCkTwE6nQ5FRUXQ6bgV21AYJ98wTr5hnHzDOPmGcfIN4+Q7NWIV0As5iIiIiAIFK31EREREAYBJHxEREVEAYNJHREREFACY9BEREREFACZ9Y+zq1avIycmBwWBAWloaDh8+rPaQVOd0OrFkyRIkJibCYrFg9uzZOHPmjHx+06ZNiI6Oxm233YannnrKp/0Eb3XHjx+HVqvFpk2b5GOMk6dNmzYhKSkJJpMJU6dORUtLi3yccep16tQpzJw5E2azGcnJydi+fbt8LpBjVVRUhIyMDGi1Wuzevdvj3FBx+dvf/obs7GwYDAbcf//9qK2tVXroihosTjt27MDUqVNhMpmQnJyMbdu2eXyOcfLkcrmQlZWF9PR0j+NjHScmfWNs2bJlSEhIQGNjIzZv3oyCggI0NzerPSxVuVwuJCcn48SJE2hqakJeXh7y8/MBAIcOHcLWrVvx17/+FZWVlTh48KDH/5QCUXd3N370ox9hxowZ8jHGydNvfvMbvPnmmzh69ChsNht27doFvV7POA1g4cKFyMnJQUtLC/785z9j+fLlqK6uDvhYpaam4te//jW+9KUveRwfKi5OpxNz5szBk08+iaamJtxzzz1YsGCBGsNXzGBxcjqd2LZtG5qbm3HgwAEUFRXhyJEj8jnGydNvf/tbr100FImToDHT2toqQkNDxZUrV+Rjs2bNEjt37lRxVDcfp9MpNBqNaGxsFI899pjYtGmTfO7ll18WX/nKV1Qcnfq2bt0qli9fLhYtWiQ2btwohBCMUx8ul0vExcWJ6upqr3OMkzej0SguXrwo/z1jxgxRUVHBWLndf//94vXXX5f/Hioub731lkhPT5fP2e12ERYWJmpqapQbsEr6x6m/wsJC8fzzzwshGKf+cWpoaBB33nmnOHjwoEhLS5OPKxEnVvrG0Pnz52GxWBAfHy8fy87ORmVlpYqjuvkcP34csbGxiIqKQlVVFbKysuRzgR6vpqYm/OpXv8K6des8jjNOvT777DM4HA786U9/QmxsLNLS0uSpJcbJ2w9+8AO8+uqrcLlcOHnyJOrq6nD33XczVoMYKi79z4WHh+OOO+5AVVWV4uO8mXR1deHkyZPIzMwEwDj19+Mf/xhPP/00wsPDPY4rEafgUbsTebHb7V6bKJvNZvlZIwKsViueeOIJbNiwAYB3zMxmM+x2u1rDU93TTz+NFStWIDIy0uM449Tr8uXLsFqtuHDhAmpqanDx4kU8+OCDSEtLY5wG8Mgjj2DhwoUoLi4GAPzhD39ATEwMYzWIoeIy2L/xgR63Z555BuPHj8fDDz8MgHHq6/jx46iursb27dvxwQcfeJxTIk5M+saQ0WiEzWbzOGaz2WA0GlUa0c2lo6MD+fn5yMnJwdKlSwF4xyyQ4/XRRx/h5MmT+N3vfud1jnHqFRYWBqDnwemwsDBkZmZiwYIFOHToEOPUz7Vr15Cbm4udO3ciLy8P586dwyOPPILMzEzGahBDxYX/xnvbtm0b9u3bh2PHjkGj0QBgnCTd3d1Yvnw5SkpK5Nj0pUScOL07hlJTU2G1WtHQ0CAfO336tFzyDmQulwuPPfYYEhIS8Pzzz8vHMzIyPFbyBnK8PvjgA1RXV2P8+PGIi4vDnj17sGHDBjz++OOMUx+TJ09GaGioxzHhXl3JOHm6ePEiLBYLvvnNbyIoKAhTpkzB7NmzceTIEcZqEEPFpf+5trY2XLhwARkZGYqP82Yg/Rv19ttvY9y4cfJxxqmHzWbDqVOnkJubi7i4OMyZMweffPIJ4uLi0N7erkycRu3pQBrQo48+Kr7zne+I9vZ2UV5eLiIjI0VTU5Paw1Ld4sWLxUMPPSQ6Ozs9jh88eFBMnDhRXLx4UdTX14vMzEzx8ssvqzRKdbW1tYn6+nr59a1vfUusXbtWNDc3M079FBYWiscff1x0dHSIjz/+WMTHx4u//OUvjFM/LS0twmKxiIqKCtHd3S3OnTsn4uPjxZtvvhnwsers7BQOh0PMmjVLvPLKK8LhcIiurq4h49LR0SESExPF9u3bRUdHh/jJT34iZs2apfIvGVuDxentt98W0dHR4vTp016fYZx64uRyuTz+Td+7d69ISUkR9fX1oru7W5E4MekbY1988YX4+te/LsLCwkRqaqp499131R6S6mpqagQAodfrRXh4uPw6cuSIEEKI5557TkRFRYmIiAixevVq0d3drfKIbw59V+8KwTj11dzcLObMmSOMRqOYOHGiKCkpkc8xTp7eeustkZ2dLYxGo0hKShIbNmyQzwVyrBYtWiQAeLzee+89IcTQcTl58qTIysoSer1ezJo165ZfkTpYnGbPni2Cg4M9/k1/4okn5M8xTr3/PUnee+89j9W7Qox9nDRCBFD3TSIiIqIAxWf6iIiIiAIAkz4iIiKiAMCkj4iIiCgAMOkjIiIiCgBM+oiIiIgCAJM+IiIiogDApI+IiIgoADDpIyIiIgoATPqIiIbw6aefeuwjOhZqamqg0WhgNBqxf//+Ia/du3cvjEYjNBqNx77eRETD4Y4cRBTwjEaj/L6trQ0GgwEajQYAUFVVhQkTJozp99fU1CA9PR0dHR0+f0aj0aC+vh5xcXFjODIiupUEqz0AIiK12e12+b1er0dlZSUmTZqk3oCIiMYAp3eJiIZQU1MDvV4v/63RaLB161ZMmDAB48aNw549e3Dw4EEkJycjJiYGe/bska9tampCYWEhYmJikJycjJ07d/r8vSdOnMC0adNgMpkQFxeHLVu2jOrvIqLAw0ofEZGfjh07hurqahw4cADf/e53kZeXh7Nnz+Lw4cNYunQpHn30UQQFBWHBggWYMmUK6urqcOnSJTzwwAOYOnUqsrOzh/2OFStWYPXq1SgsLERzczNqamrG/ocR0S2NlT4iIj899dRT0Ov1mDNnDlpaWvD9738fBoMBubm5aG1txZUrV9DQ0IAPP/wQzz33HHQ6HdLT01FYWIh9+/b59B0hISH45z//iaamJkRGRmLatGlj/KuI6FbHpI+IyE8xMTEAgKCgIISEhCA6Olo+p9fr0dbWhk8//RRtbW2IiopCREQEIiIi8Pvf/x6ff/65T9/x0ksv4dy5c0hJScHMmTNx/PjxMfktRBQ4OL1LRDQGxo8fj4iICFy7dm1En09LS0NZWRlcLhe2bduG+fPn48KFC6M8SiIKJKz0ERGNgfHjx2PGjBn46U9/ivb2drhcLpw6dQpVVVU+fb60tBTXrl1DcHAwTCYTgoKCxnjERHSrY9JHRDRGSktLUVtbK6/sXbFiBRwOh0+fPXToENLS0mAymfDiiy9i+/btYzxaIrrVsTkzEZHKamtrkZ6eDp1Oh1deeQV5eXmDXrtv3z4sXboUHR0dqK2tRWxsrIIjJaJ/ZUz6iIiIiAIAp3eJiIiIAgCTPiIiIqIAwKSPiIiIKAAw6SMiIiIKAEz6iIiIiAIAkz4iIiKiAMCkj4iIiCgAMOkjIiIiCgBM+oiIiIgCAJM+IiIiogDw/1KCMipYRofeAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = ct.step_response(sys).plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "iHZR1Q3IcrFT" + }, + "source": [ + "We can analyze the properties of the step response using the `stepinfo` command:" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Input 0, output 0 rise time = 0.6153902252990775 seconds\n", + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[[{'RiseTime': 0.6153902252990775,\n", + " 'SettlingTime': 89.02645259326653,\n", + " 'SettlingMin': -0.13272845655369417,\n", + " 'SettlingMax': 0.9005994876222034,\n", + " 'Overshoot': 170.17984628666102,\n", + " 'Undershoot': 39.81853696610825,\n", + " 'Peak': 0.9005994876222034,\n", + " 'PeakTime': 2.3589958636464634,\n", + " 'SteadyStateValue': 0.33333333333333337}],\n", + " [{'RiseTime': 0.6153902252990775,\n", + " 'SettlingTime': 73.6416969607896,\n", + " 'SettlingMin': 0.2276019820782241,\n", + " 'SettlingMax': 1.13389337710215,\n", + " 'Overshoot': 70.08400656532254,\n", + " 'Undershoot': 0,\n", + " 'Peak': 1.13389337710215,\n", + " 'PeakTime': 6.564162403190159,\n", + " 'SteadyStateValue': 0.6666666666666665}]]" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "step_info = ct.step_info(sys)\n", + "print(\"Input 0, output 0 rise time = \",\n", + " step_info[0][0]['RiseTime'], \"seconds\\n\")\n", + "step_info" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "F8KxXwqHWFab" + }, + "source": [ + "Note that by default the inputs are not included in the step response (since they are a bit boring), but you can change that:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACcgklEQVR4nOzdd3zU9f0H8Nf3Ri65XC4J2SEhEAhhT0EFUcSBlYJUi1pBQeuo1bp+ddZK1bqttrWirVVQxIETtA4QmTKVDYGEsALZ83JJ7nLj8/vje99vcsnd5S5kYHg9H488SG5875NPQvLK+7MkIYQAEREREf3sabq7AURERETUMRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIqMf4z3/+g/T0dGg0Gvz973/v7uZ0uKNHj0KSJOzcufOUrjN58mTcc889HdKmn8PrEp1JGOyIQlBaWorbbrsNffr0gcFgQHJyMqZOnYpNmzapj5EkCZ9//nn3NfIMZbFYcOedd+LBBx/EyZMnceutt3Z3k6iFTz/9FE8++WR3N4OoR9N1dwOIfk6uuuoqOBwOvP3228jMzERJSQlWrVqFysrK7m4aAKCxsRFhYWHd3Yxucfz4cTgcDkybNg0pKSntvo7D4YBer+/AlpHSp7169eruphD1eKzYEQWpuroaGzZswHPPPYcLL7wQGRkZGD9+PB5++GFMmzYNANC3b18AwK9+9StIkqR+DABffPEFxo4di/DwcGRmZuLxxx+H0+lU75ckCa+99hp+8YtfICIiAv369cNHH30UsE2TJ0/GnXfeifvuuw/x8fG45JJLAAD79+/H5ZdfDpPJhKSkJFx//fUoLy9Xn/fxxx9j+PDhiIiIQFxcHC6++GLU1dUBAObNm4eZM2fi8ccfR2JiIsxmM2677TY0Njaqz7fb7bjrrruQmJiI8PBwnHfeedi2bZt6/5o1ayBJElatWoWzzjoLRqMREyZMwMGDB9XH7Nq1CxdeeCGioqJgNpsxduxY/Pjjj+r9GzduxPnnn4+IiAikp6fjrrvuUtvY0qJFizB8+HAAQGZmJiRJwtGjRwEAr732Gvr374+wsDBkZ2dj8eLFXs+VJAmvv/46rrjiCkRGRuKvf/2rz9ew2+144IEHkJ6eDoPBgKysLLz55pvq/WvXrsX48eNhMBiQkpKChx56yOvr27dv31bDw6NGjcJf/vIXr7aE+j3Q1te6rq4ON9xwA0wmE1JSUvC3v/0t4PWAwF+bRYsWISYmBp9//jkGDhyI8PBwXHLJJSgoKFCf/5e//AWjRo3CW2+9hczMTBgMBgghWg3F9u3bF08//TRuuukmREVFoU+fPvjPf/7j1ZaNGzdi1KhRCA8Px1lnnYXPP/+8zeHovn374q9//av6eWdkZGDZsmUoKyvDFVdcAZPJhOHDh3t9v1VUVOA3v/kN0tLSYDQaMXz4cLz//vte1w30/2bNmjUYP348IiMjERMTg4kTJ+LYsWNt9jVRhxNEFBSHwyFMJpO45557hM1m8/mY0tJSAUAsXLhQFBUVidLSUiGEEN98840wm81i0aJFIj8/X6xYsUL07dtX/OUvf1GfC0DExcWJN954Qxw8eFA8+uijQqvViv379/tt0wUXXCBMJpO4//77xYEDB0ROTo4oLCwU8fHx4uGHHxY5OTli+/bt4pJLLhEXXnihEEKIwsJCodPpxEsvvSSOHDkidu/eLV599VVRW1srhBBi7ty5wmQyiWuuuUbs3btXfPnllyIhIUE88sgj6uveddddIjU1VXz11Vdi3759Yu7cuSI2NlZUVFQIIYRYvXq1ACDOPvtssWbNGrFv3z4xadIkMWHCBPUaQ4cOFXPmzBE5OTkiNzdXLF26VOzcuVMIIcTu3buFyWQSL7/8ssjNzRU//PCDGD16tJg3b57PfqivrxffffedACC2bt0qioqKhNPpFJ9++qnQ6/Xi1VdfFQcPHhR/+9vfhFarFd9//71XvycmJoo333xT5Ofni6NHj/p8jauvvlqkp6eLTz/9VOTn54vvvvtOfPDBB0IIIU6cOCGMRqP4/e9/L3JycsRnn30m4uPjxfz589XnZ2RkiJdfftnrmiNHjvR6TFvfA0eOHBEAxI4dO9SvZaCvtRBC3H777SItLU2sWLFC7N69W/zyl78UJpNJ3H333T4/z7a+NgsXLhR6vV6cddZZYuPGjeLHH38U48eP9/razp8/X0RGRoqpU6eK7du3i127dgm32y0uuOACr9fNyMgQvXr1Eq+++qrIy8sTzzzzjNBoNCInJ0cIIYTFYhG9evUSc+bMEfv27RNfffWVGDhwoFcf+KJc9/XXXxe5ubni9ttvF1FRUeKyyy4TS5cuFQcPHhQzZ84UgwcPFm63W/0avvDCC2LHjh0iPz9f/POf/xRarVZs3rxZ7Wt//28cDoeIjo4Wf/zjH8WhQ4fE/v37xaJFi8SxY8f8tpGoszDYEYXg448/FrGxsSI8PFxMmDBBPPzww2LXrl1ejwEgPvvsM6/bJk2aJJ5++mmv2xYvXixSUlK8nve73/3O6zFnn322uP322/2254ILLhCjRo3yuu3Pf/6zuPTSS71uKygoEADEwYMHxU8//SQA+A0wc+fOFb169RJ1dXXqba+99powmUzC5XIJq9Uq9Hq9WLJkiXp/Y2OjSE1NFc8//7wQoinYfffdd+pj/ve//wkAoqGhQQghRFRUlFi0aJHPNlx//fXi1ltv9bpt/fr1QqPRqM9vaceOHQKAOHLkiHrbhAkTxC233OL1uFmzZonLL79c/RiAuOeee3xeU3Hw4EEBQKxcudLn/Y888ojIzs5WQ4IQQrz66qtqnwkRfLAL9D3QMti19bWura0VYWFhagAVQoiKigoRERERMNgF+tosXLhQAFADjxBC5OTkCABiy5YtQgg52On1evUPG4WvYDdnzhz1Y7fbLRITE8Vrr70mhJC/7+Li4ry+5m+88UZQwa75dYuKigQA8ec//1m9bdOmTQKAKCoq8nudyy+/XPzf//2fEEIE/H9TUVEhAIg1a9b4vRZRV+FQLFEIrrrqKhQWFmL58uWYOnUq1qxZgzFjxmDRokUBn/fTTz/hiSeegMlkUt9uueUWFBUVob6+Xn3cueee6/W8c889Fzk5OQGvfdZZZ7V6rdWrV3u91qBBgwAA+fn5GDlyJC666CIMHz4cs2bNwhtvvIGqqiqva4wcORJGo9GrHVarFQUFBcjPz4fD4cDEiRPV+/V6PcaPH9+qrSNGjFDfV+a9lZaWAgDuu+8+3Hzzzbj44ovx7LPPIj8/3+tzWLRokdfnMHXqVLjdbhw5ciRgfzSXk5Pj1U4AmDhxYqt2tuzDlnbu3AmtVosLLrjA7+uce+65kCTJ63WsVitOnDgRdHuB0L4H2vpa5+fno7Gx0euavXr1QnZ2dsA2BPraAIBOp/Pqs0GDBiEmJsarnRkZGUhISGjz823+PSJJEpKTk9XvkYMHD2LEiBEIDw9XHzN+/Pg2r9nyuklJSQCgDtc3v015LZfLhaeeegojRoxAXFwcTCYTVqxYgePHjwNAwP83vXr1wrx58zB16lRMnz4d//jHP1BUVBRUO4k6GoMdUYiUOUWPPfYYNm7ciHnz5mH+/PkBn+N2u/H4449j586d6tuePXuQl5fn9UvLl+ZhwZfIyMhWrzV9+nSv19q5cyfy8vJw/vnnQ6vVYuXKlfj6668xZMgQvPLKK8jOzg4qMEmSBCGEz3YJIVrd1nwRgnKf2+0GIM/D2rdvH6ZNm4bvv/8eQ4YMwWeffaY+5rbbbvNq/65du5CXl4f+/fu32c6WbW6rnS37sKWIiIiA9/u6Zst+0mg06m0Kh8MR8LoKf98DbX2tW75esAJ9bQK1qfltbfWpouVCFUmS1O+RQP0aynWVawT6fvzb3/6Gl19+GQ888AC+//577Ny5E1OnTlXnlrb1/2bhwoXYtGkTJkyYgA8//BADBw7E5s2bg2orUUdisCM6RUOGDPGa1K/X6+FyubweM2bMGBw8eBADBgxo9abRNP03bPmLYPPmzWoFJlhjxozBvn370Ldv31avpfyylSQJEydOxOOPP44dO3YgLCzM6xf3rl270NDQ4NUOk8mEtLQ0DBgwAGFhYdiwYYN6v8PhwI8//ojBgweH1NaBAwfi3nvvxYoVK3DllVdi4cKFXp+Dr/4KZdXv4MGDvdoJyJPxQ23n8OHD4Xa7sXbtWp/3DxkyBBs3bvQKHRs3bkRUVBR69+4NAEhISPCq4lgsFp9hOpTvgba+1gMGDIBer/e6ZlVVFXJzc9v8nP19bQDA6XR6LTw4ePAgqqurQ/5ebcugQYOwe/du2O129bbmr9uR1q9fjyuuuAJz5szByJEjkZmZiby8PK/HtPX/ZvTo0Xj44YexceNGDBs2DO+9916ntJUoEAY7oiBVVFRgypQpePfdd7F7924cOXIEH330EZ5//nlcccUV6uP69u2LVatWobi4WB2qeeyxx/DOO++olZCcnBx8+OGHePTRR71e46OPPsJbb72F3NxczJ8/H1u3bsWdd94ZUjvvuOMOVFZW4je/+Q22bt2Kw4cPY8WKFbjpppvgcrmwZcsWPP300/jxxx9x/PhxfPrppygrK/MKO42Njfjtb3+L/fv34+uvv8b8+fNx5513QqPRIDIyErfffjvuv/9+fPPNN9i/fz9uueUW1NfX47e//W1QbWxoaMCdd96JNWvW4NixY/jhhx+wbds2tQ0PPvggNm3ahDvuuEOtQC1fvhx/+MMfQuqL+++/H4sWLcLrr7+OvLw8vPTSS/j000/xxz/+MaTr9O3bF3PnzsVNN92Ezz//HEeOHMGaNWuwdOlSAMDvf/97FBQU4A9/+AMOHDiAZcuWYf78+bjvvvvU4D5lyhQsXrwY69evx969ezF37lxotdpWrxXK90BbX2uTyYTf/va3uP/++7Fq1Srs3bsX8+bN8/pjoqW2vjaA/MfLH/7wB2zZsgXbt2/HjTfeiHPOOSfoYdJgXXfddXC73bj11luRk5ODb7/9Fi+++CKAtivZoRowYABWrlyJjRs3IicnB7fddhuKi4vV+wP9vzly5AgefvhhbNq0CceOHcOKFSuQm5sb8h8QRB2iuyb3Ef3c2Gw28dBDD4kxY8aI6OhoYTQaRXZ2tnj00UdFfX29+rjly5eLAQMGCJ1OJzIyMtTbv/nmGzFhwgQREREhzGazGD9+vPjPf/6j3g9AvPrqq+KSSy4RBoNBZGRkiPfffz9gm1pORlfk5uaKX/3qVyImJkZERESIQYMGiXvuuUe43W6xf/9+MXXqVJGQkCAMBoMYOHCgeOWVV9Tnzp07V1xxxRXiscceE3FxccJkMombb77ZayVwQ0OD+MMf/iDi4+OFwWAQEydOFFu3blXvVxZPVFVVqbc1X9xgt9vFtddeK9LT00VYWJhITU0Vd955p9ck+a1bt4pLLrlEmEwmERkZKUaMGCGeeuopv33ha/GEEEIsWLBAZGZmCr1eLwYOHCjeeecdr/vhY7GLLw0NDeLee+8VKSkpIiwsTAwYMEC89dZb6v1r1qwR48aNE2FhYSI5OVk8+OCDwuFwqPfX1NSIq6++WpjNZpGeni4WLVrkc/FEoO+BlosnhAj8tRZCiNraWjFnzhxhNBpFUlKSeP755/1+3wgh2vzaLFy4UERHR4tPPvlEZGZmirCwMDFlyhSvRQXz588XI0eObHVtX4sn2lpQ8sMPP4gRI0aIsLAwMXbsWPHee+8JAOLAgQM+2+/vui2/zi37sqKiQlxxxRXCZDKJxMRE8eijj4obbrhBXHHFFUIIEfD/TXFxsZg5c6b6vZGRkSEee+wxdeEMUVeShGjnJAwi6lCSJOGzzz7DzJkzu7Ud8+bNQ3V1NU/P6Aany/dAIIsWLcI999yD6urqbnn9JUuW4MYbb0RNTU2bcx+JzkQ8eYKIiE5b77zzDjIzM9G7d2/s2rULDz74IK6++mqGOiI/GOyIiOi0VVxcjMceewzFxcVISUnBrFmz8NRTT3V3s4hOWxyKJSIiIuohuCqWiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iF03d2AzuZ2u1FYWIioqChIktTdzSEiIiIKiRACtbW1SE1NhUYTuCbX44NdYWEh0tPTu7sZRERERKekoKAAaWlpAR/T44NdVFQUALkzzGZzN7eGiIiIKDQWiwXp6elqpgmkxwc7ZfjVbDYz2BEREdHPVjBTyrh4ooscKLZg9YFSCCG6uylERETUQzHYdQGny43r39yKGxdtwwfbCrq7OURERNRDMdh1gV0nqlFWawcArNhX3M2tISIiop6Kwa4LHCy2qu/nFNV2Y0uIiIioJ2Ow6wLHKurU94stNjQ63d3YGiIiIuqpGOy6wPHKeq+PSyy2bmoJERER9WQMdl2g3Gr3+riwuqGbWkJEREQ9GYNdF6ioa/T6uKxF0CMiIiLqCAx2XaDCKge7jDgjAKCmwdGdzSEiIqIeisGukzlcbjXI9U8wAQCq6xnsiIiIqOMx2HWyqnq5WidJTRU7Cyt2RERE1AkY7DpZpWd+XawxDHGRYQBYsSMiIqLOwWDXyZT5db0iwxBt9AS7hsZATyEiIiJqFwa7TqasiI2LDEN0hB4AK3ZERETUORjsOlmVEuxMYYjxBDuuiiUiIqLOwGDXyZQQFx2hR4yRwY6IiIg6D4NdJ7PanQCAqHA9YiK4eIKIiIg6D4NdJ6u1ySHOZNAh2lOxa3C4YHO4urNZRERE1AMx2HUyi02p2OkQZdCptyuVPCIiIqKOwmDXyWptTUOxGo0EY5gWAFDHYEdEREQdjMGuk1mbDcUCgDFM/rfOzqFYIiIi6lgMdp1MqdiZw+VAZzLIFbv6RlbsiIiIqGMx2HWy5kOxQFPFjnPsiIiIqKMx2HUyJcCZPBW7SLVix6FYIiIi6lgMdp3I5RbN9rFTgl37K3Yr95dg7JMr8fCnuyGE6LiGBuFQaS2uXPAD/v5dbpe+LhEREQWPwa4TNQ9varDzDMXWhxjs3G6Bx5btRUVdI97fWoAtRyqDfm5OkQVrc8tOKQw+/dUBbD9ejb9/l4d9hTXtvg4RERF1Hga7TqQEuzCtBgadPASrDMXWhTgUu/lIBYpqbOrHqw+UBvW8w2VWzPjXBsx9ayuWbDke0msqbA4XNuSVqx+vygnutYmIiKhrMdh1IuXUCaVaBzTf7iS0it3Xe4oBAHqtBADYfrwqqOct/fEEHC65UrfwhyPtqtrllVjR6HKrH+8qqA75GkRERNT5GOw6Ua3Ne34d0LSfXaiLJ7YcqQAA/H7yAABAbok1qJC21fM8AMgvq0NBZUNIrwsAOcUWAHLlEZCHdomIiOj0w2DXiaw27xWxAGD0DMWGsniiqq4RuSVWAMA149IhSUBNgwPl1saAzxNC4EBxLYCmcLmjILhKX3MFlfUAgEuGJgEACmtsaOCqXiIiotMOg10nsihDsQa9epu6eCKEDYq3HZUXSgxINCE1JgIp5nAAQEFVfcDnVdQ1or7RBUkCZoxMBQDsOF4d9OsqTlbJVb6hqWb1vNsTbbw2ERERdT0Gu07kayi2abuT4CteSrAb17cXACApWg52Jc0WU/hy3FNpSzGHY3w/+bk72jE/7kS1HOx6x0QgvZcRQNuh0p8Kqx3f7C1CTYOjXc8nIiIi/xjsOlHLzYkBIDLMs0FxCEOxWz1bm5ztCWcpnmBXbAkc7JQh1PReRoxMiwEAHCiywNlsIUQwlIpdWmwE0ntFAACOV4Qe7BwuN2b/dwt+9+523Lb4xy7fi4+IiKinY7DrRMqqWHN4s6FYT8Uu2O1O6uxO7C2UFyuM8wS7JHNwwU4JX316GdGnlxEmgw52pxv5ZXVBfw5Ol1t9nd4x8nUAoKAq9EUY63LL1Dl/mw9XIqeoNuRrEBERkX/dFuzKysowbdo0GI1GZGdnY9WqVT4fN2/ePBgMBphMJphMJgwdOrSLW9p+ylCsshIWaLaPXZAVux3Hq+FyC/SOiUDvGLlalmwObSg2vZcRGo2EISlmAAhpg+GSWjtcbgG9VkJilKFpKLYy9IrdqhZ7760+yP3wiIiIOlK3Bbs77rgDqampKC8vx3PPPYdZs2ahqsr3is3HH38cVqsVVqsV+/bt6+KWtp81wBy7YBdPKNuVKHPkACA5yKHY0lo7gKah2yGpcrDbXxj8diWlntdIjAqHRiOp4bKojVDpi7JwY2xGLABgJ/fDIyIi6lDdEuysViuWLVuGJ554AkajETNnzsSwYcPwxRdfnPK17XY7LBaL11t3sajBrvWq2GC3O9naYuEE0DQUW2KxB3xuRZ18f7zJAKAp2O0LIdhVeLZUiTOFAWgKlaEGuzq7Ewc9++HNndAXQGgBk4iIiNrWLcEuLy8P0dHRSElJUW8bOXKk32rcCy+8gLi4OEyYMAHr1q0LeO1nnnkG0dHR6lt6enqHtj0Uyhw7r33sPIsnbA43XO7AiwfsTpda5WpesVOCXWkbFbuWoWxoatNQbLALF5RwGBcpXyMlWq7YlVvtaHQGvwhjz8kauAWQGh2OCf3jAACFNQ2wObgfHhERUUfptoqd2Wz2us1sNsNqtbZ67N13341Dhw6hqKgId9xxB6ZPn46CggK/13744YdRU1OjvgV6bGcLtN0JANS1MRy792QN7E434iLD0D8hUr29lzHM83wX7E7fwUgI0SzYyRW7rMQo6LUSLDYnTlYHt/ihvMU1Yo16hOnkb5uSNoJlcwc9iyaGpEYjLjIM5nAdhACOtWN1LREREfnWLcHOZDK1GiK1WCwwmUytHjt69GjExsYiLCwMs2fPxrnnnouVK1f6vbbBYIDZbPZ66y7KcKu5WbAz6DTQauTzXuvb2Mtuy5GmYVhJktTbo8J16jWq633vB2exOdXzXZVqW5hOg6zEKADBD8e2rPpJkqQu3mhrjl9zeaVysBuYZIIkSeiXIH+tj5S3DvOdZcW+Yrzw7YGgQy0REdHPTbcEu6ysLNTU1KC4uFi9bdeuXUGteNVofj47tKhDsc1OnpAkSd3Lrq2K3TYl2DUbhgUAjUZCTIR8zap638eKVVjlIdQogw7heq16e6jz7NR5epEG9bb2zLPL8xyJlpUkB7r+8XIFMpStV07FmoOluHXxT3h1dT5mv7G53UPAOwuqcd5z3+P851erVUgiIqLTRbdV7GbMmIH58+ejoaEBy5cvx969ezF9+vRWj/3kk09QV1cHp9OJDz/8EBs2bMCUKVO6odWhEUL4HIoFmu1lF2ABhdst8OMxeZXw2S2CHQDEeqpwlXV+gl2dd6VNMVRdGRvclictK3ZA0yrbtrZbae5QqSfYeSqGfT3B7lhF6MGu0enGyeqGkDZafn1tvvr+0Yp6fL7jZMivK4TAgx/vxomqBhyvrMeDn+zmJstERHRa6bby14IFC1BQUIC4uDj88Y9/xNKlSxEbG4slS5Z4Ve5efvllpKamIj4+Hi+99BI+++wz9O3bt7uaHTSbww2nZ3FEy2CnLKCoCzAUe6SiDrU2J8L1GgxKjmp1f6zRU7Gr8z0Uq1TslLlxiqGp0QCCX5HaFBDbX7GrsNpRUdcISQL6e4ZgU9uxbUqd3YkFaw5h/NPfYeKz3+PSl9cFtZ9eZV2jOqw999wMAMDizceCfl3F7hM1OFjSVKXbWVDNTZaJiOi00mHBzul04qabbgr68QkJCfjqq69QX1+P3NxcXHzxxQCA2bNne62O3bBhA2pqalBdXY0tW7bgoosu6qgmdyplGFYjNW1xoghmL7u9J+WK2uAUM3Ta1l+mWM8CCn9Dscqih16R3hW7wSlySCyssaHKT7WvOTUgNrtOijrHLri5akq1Li02AhGeUJvqCYeFQc53W5tbhil/W4Pnvzmozis8XF6HBz/Z3eZzfzxaCSGArEQT7rl4IPRaCfsKLcgtCS2ULdtZCACYMTIVFw9OAgB8u6840FP8EkLgeEU9VwUTEVGH6rBg53K58Pbbb3fU5X72LM1OndBoJK/7lIpdfYBjxfackIPd8N7RPu9XApu/cFbTIIcfpbKniArXIyNOPj2irXl2brdQh3qbD8UmR4dWbcvzBLsBCU2LY1KaVezaGs5cm1uGGxduRYnFjj69jPj7NaOw9v7J0GkkbMyvaHOu20/H5SHtsRmxiI0Mw/lZCQCA/+0uCqr9ik2H5c2ipw5NxtShcrBbub8kpGsAcqCf/d8tOP+F1Zj8whrkl3XdAhIiIurZdG0/pMnll1/u9z6Xi5WH5iyeil3zzYkVSgUvUMVOCV3D/AS7GLVi53soVgl2yuOaG5pqxrGKeuwtrMF5WfF+22CxOdTh5OaVP/Xki2CDXYmyIrZpSFmZp1ff6IKlwYloY+t+AgCbw4X7P9oFt5ArZc9dNUKt+l00OBHf7ivB0h8L8OdfDvH7+juOVQMAxnhOvJg2IgWrDpTiy92FuOfiLK8Vx/5Ym22wPDYjVl2VnFNsQU29w2/7fXl19SFszJdDYrHFhseW7cWSm88J+vmnSgiB+kaX19Y7RETUM4RUsVu3bh3OO+88XHPNNa3efv3rX3dWG3+W/C2cAACjunjCfxhWqjjNw1BzvSIDr4qt9tweHdE6cIxIiwEAbD/m+wg3hTKcGxWug0HXtLJWCWWltfagFjCoFbvEpopduF6rhsXCGv/DsZ9sP4HSWjtSosPxwqymUAcAvxrdG4C84tUfIYR6Nu6o9BgAwMVDkhCm1SC/rM5rzlwguwuq4RZA75gIJEeHIyHKgH7xkRAC+Ol4ZVDXAORNpd/acBQAMH/6EOi1En44VIFtR4O/xqkosdgwc8FGDJ3/La5+fRNKa0M/Gk6x+0Q1Vu4vQUOAyjMREXWtkP5kHzt2LDIzM3Httde2us9ms+G2227rsIb93Clz7Mw+K3bKUKzvip3V7lTPee0XH+nzMTFtzLFTKnZmH8FuXF+5cvXjsSoIIfxWrJT5dfEtFmDEmwzQaiS43ALl1ka1guePEuxahtSU6HBU1jWiqKYBg1N87zf42XZ59epvz+vnFS4B4JzMOEiSvGVKqcWGRHPrdhTV2FDX6IJOI6l9aQ7X44LsBKzcX4L/7S7CoOS29zr8yROCR/eJUW87KyMWR8rrsO1oFaYMSmrzGgDwyveH0OBwYUyfGMyb0Bf7Cy346KcT+HT7Sa9j43wpqKzHgjWHcKyiHn3jIzGxfzwuyE6AKcjKmxAC9364E7s8Z/RuPVqJuW9tw2e/n+C1JU4w13n6qxy8sf4IADmwv/vbs9v8PiAios4XUsXur3/9K7KysnzeZzAYsHr16g5pVE+gVOzMET4qdp6h2Do/lY6j5fIWIPGmMJ8VN6CpEqcEuJaUBQYxPp4/vHcMDDoNKusaA+4jp66IbbEAQ6uRkBQlh72iANU2uR2NKPOE1OYVO6DpeLLCat9VowqrXZ0fd/nwlFb3xxjDMNgTyjYf8V3xUhZuZMQZoW+2COWXI+Trfbm7KKgtS7Z72jGmT6x6m7K/4DY/r93SsYo6vL/1OADggcsGQZIkXDFKrjp+s7cIjgDVz/wyKy7/53q8v7UAG/Mr8N6W47jjve0Y88RK/HbRNnWxTSAr95dgY34FDDoN3px7FuIiw5BTZMHfVhwMqv2Kr/YUq6EuMkyLQ6VW3Pne9jaPyPPlp2NVeH1tPj7cdlz9Y6irCCFgsTkC9jsR0c9NSBW7SZMmAQCWLl3q9zHN77v66qvb2ayfv9pAc+wMnoqdn33sDnuCnb9qHdAU2GramGPnKxiG6TQYlR6DLUcq8ePRylaBS9G0ZUrreXrJ0eEorLG1Oc9Oqdb1joloNacrNSbwyti1uWUQAhiSYla3R2lpfL9e2F9kwa6CaswYmer39Vt+jhcNToJBp8GR8jrsL7Ko28D44nYL7PBUucZmNAt2ngrb7hM1sDlcbVa9Xl6ZC6db4IKBCTgnUz4v95zMXugVGYbKukb8eLQK53rO0W35+nd/sAO1NieG9Tbj+nMycKjUiu9ySnGkvA6rDpRifV45/vmb0bhsWLLf13/PEyrnTeyLiwYn4flfj8Bv3/4Rb244gmkjUtWh6kBqbQ488aW8av0PUwZg1th0/OIf6/DjsSp8sO04Zp+d0eY1ACCnyIKnv8rB+rxy9bYXV+TirbnjMDzN/9dCCIGv9hTjy92FsNgcyEqMwvkD43HegAT1qLtgbMgrxxNf7kNuiRWRYVpcM64P/u/SgSHPOyyx2PDJ9hMoqrahf0IkZo7u7XNeKxFRV2nX7OlXX30VmzZtQnJyMtLS0nDixAkUFxdjwoQJ6rCeJElneLALMMeujYrdkbK2g50yWd9fxc4SINgBcijZcqQSW49W4trxfXw+RqnY9Yo0tLpPrrZVt7kyVtlSRDlxovU1/K+uVYY/J/gIO4oh6obLvlf4ttwYWWEy6HBhdiK+2VeM5bsKAwa7w+V1qK53wKDTeA0Z940zIt5kQLnVjt0najDex0bSzT+Xzz3bpdw/NVu9XafVYPLABHy64yRWHyz1Gey+3luMvSctiDLo8Na8cUiMkgPxI5cPxqFSK5775gC+yynFPR/uwPKE83zOyyysbsDa3DIAwG/GyV/viwYn4Veje+OzHSfxwMe78MUfzms13N3SyyvzUGKxo2+cEXdcOADhei3+79JsPPHlfvxtRS6mj0z1Of1Acai0Fn//Lg//21MEIQC9VsJFg5Kwv8iC45X1uOGtLfjyrkno7SPICyFw/8e78fFPJ9TbfjhUgUUbjyIqXIdLBifh8uEpOC8rPmDIXrbzJO75cCeUQm1dowtv/XAEK3OK8fdrRnuFd39sDhfeWHcYC9bko6HZljX//P4QHp8xFNN9/JHRXFmtHfllVhwtr8OJqgYUVjeg2GJDmE6D7KQoXDYsGaP7+G+HzeHCp9tP4odD5ai1O5EUZUDf+EgMSo7CwKQopMVGtLkoyOUW2Hy4Al/vLUJ+aR10WglZiVG4aHAixvfr5VXhDsThcuNYRT0OldbicHkdDDotspOiMDYj1mtOrC9y1dQJh8sNh8sNp0tAo5Gg10iICNP6/MO4pTq7E0cr6mBzuGEM0yLeZECvyDB1gVOwahocKKxugFsIRBn0SI0J97nVVCgCTXUh6iztCnaDBw/GrFmzcOedd6q3vfrqq9i7dy9ee+21Dmvcz5kSrHwFO7Vi52eOXYlnQru/KhUAxETIVYHqBofPHx7V6qpYP8GuXy9gNfDjUf8LKJRTJ+J9VOySPPPZSto4L1Y9SsxHVbCtit2O49UAmlaz+jIkRTkircZnP+T7qdgBwMzRqfhmXzHe33Icf5iS5XeumjIMOyIt2qsqJEkSxveLxVd7irHtaKXfYOdwufHo53sBAL8em9ZqpfOFgxLx6Y6T+P5AKR65fHCr5y/8QR72vPG8fmqoU14/KykK/77+LMxbuBXr88rx6Od78eGt57Tqh49+PAEhgHMz49RTPwDgsV8Owfq8MuSWWPHyyjw89ItBPj8HQO7jRRvltjxxxTA1PF1/bgbe3XIMh8vq8K/vD/n8HEosNjz/zUF8uuOEGqimDU/BA5dlIyMuErU2B37zxmbsPWnB75dsx0e3nduqAvfiioP4+KcT0Gok3Hp+JjLjI7HrRDVW7CtBaa0dn+44iU93nITJoMPsc/rgrilZrSpwK/eX4L6luyAEcNWYNDw6bTB2nqjGo5/tRUFlA67+9ybceeEA3HJ+ps/vh/pGJ5bvLMQr3x9SzxwemR6DCf3jsHJ/CQ6VWvGH93dgY34F5k8f4hUwy612LNtZiE+3nwi41dCag2X497rDODczDnddlIVzMpvOiq6ub8S7m49h0caj6uImX0wGHQYmmTAk1YyhqdEYkmJG3/hImAw6HKuow9d7i/HeluOtzk1en1eOt344AnO4DhcNTsKYjFgkRRngcssrqSvq7KiwNqKirhEVVjtOVjfgSHkdHK7Ww/BhOg3O7tcLFwxMwJiMWIRpNSix2HC4rA55pbXIK7XiUIkVtQFO4Ik16tE3PhJZiSYMTIpCei8j3G6B45X1OFBciz0na5BfZkXL2RQaSd7rs1ek/BZp0CFcr4FBp1X/BeTvy8LqBhyrrG917rZWI6F3TAR6x0QgJSYcEXotJAlwugRsDhcaHC40ONywOVzqW4PDBZvDDVuj/L5LCMRE6NV2yG8GaDXyz9cKayOq6hthtTthtTnhFnKw1UgStJ5/w7QSTOE6mAw6mML1MOq1MOg10Gk0qLM7Ud3QiOp6BywNDlQ3ONDgcEGv1cCgkz/PiDANwnVaRIRpEa7TQqMBhAAE5OCpvO9wKZ+L2/N5uOB0Cei1EsJ0WoRpJYTpNNBr5bcwnQZhWg1cQsDpcsPhEnC5BRxuOaA7XfIm/ZIkL5Yz6DQI12sR5nm+XqeBVgLcAnAL+bkut4BbCLgF1PeV2+V2yl9oCRKa/4iTJAkS5M/Dpby+W6iL+yRJgkYDaCW5TyUJav9qPPdpPNcImachN03sq06t6W7tCnYffPABKioqvG677bbbEB8fz2Dnoc6x8/EXp1qx87MqVpmT1nLRQnNKJc7lFqhrdHn9Emp0utU98vxV7Mb0iYFGAo5X1qPEYlODWnPKObEtNzkGmlbGtlWx232iGgB8VsQCVezq7E4c8GwvMiZA5WJgUhT0WgkWmxMnqxuQFmv0uv9Qmf9gd8mQZGQmROJwWR3+vTYf/3dpdqvHAMAOZX6dj4B5VkYvNdj5IoTAnz7bg5wiC6Ij9HjYR3A6f2ACtBoJh0qtKKisR3qvps/hcJkVPx6rgkYCZp/tu7Kq1Uh47qoRuPDFNdh6pBIr95fg0qFNQ7Iut8DSHwsAANeOT/d6bmxkGJ64Yhh+v2Q7Xl+bjzCthN97KnHNOVxuPPLpHriFvF3M+QMT1Pv0Wg3+PG0Ibly0DQt/OILrxvfxCo+f7ziJRz7bo35PXjokCfdcPFCttgLylIXXZo/FL1/ZgF0F1Xj5u1w8eFlTXy3ZcgyvrpaPhXvmyuG4+iz585h1VjqemDEMPx2vwld7ivD1nmIUW2z499rDWL6zEE9cMQyXDJEXtnyztwh3vb8TLrfAlWN644Vfj4BGI+HC7ER8fc8kPPb5Xny+sxD/WJWHf6/Lx4BEEyL0TafEWO1OFFY3qFsApUaH46HLB2P6iBRIkoR7Lx6If67Kw6trDuH9rcfx07FKzJ3QF263wOqDZVibW6bOQ5QkID3WiH7xkejTy4jUmAgkRxtgd7ix+XAF/renCJsOV2DT4QqM6RODCf3jcaKqHiv2l6j92DsmAted3QcJUQaU1NhwqMyKg8W1yC+zwmp3Yvvxamz3/HHkT3SEHpcPT8H4frFwuAS2HanE9wdKUVHXiM92nMRnQR69ZwzTIivRhMwEE+xOF7Yfq0axxYb1eeVew+2B6LUSdBoN3EKg0eWGEPJ2TlXHq9U/8vyJiwyD0aBFvd2FyvpGuIU84lARxCbsLa+j1UiobnCg0enG8cp6HA/idJtAquodqKp3nNq52MGdAKlqdLrR6HSjFoHPIw+GXCM49ev0dIH+0Opq7Qp2GRkZePvtt71Omli8eDHS09MDPOvMYlGHYkNfFVvumduWEOU/2IXr5b+YGp1uVNc3egW75sOz/oYyosL1GJxixr5CC7YdrcQvR7QeOiqvVSp2rdsRzF52DpdbrUyM8DFvKqXZNdxu4bWR84FiC9wCSDIbAq62DNNpMCAxCjlFFuwrtHgFuwqrXd1gOTOh9bC2ViPh/kuzcbsn1FwxKhUDElsPY25X9sHzETCVKt1PR6vgcotWwz+vrc3H0h9PQCMBL18zstURb4D8y3VsRiy2en6pzp3QV71PGXa8YGCCz/CtSI2JwM2T+uHV1fl4/tuDuGhwktqWHw6V42R1A6Ij9Jg6tPUcvMuHp+Cui7Lwz1V5+Of3h/De1uO4fHgKLh2SjLMze0ECMH/5Puw6UQNzuA5/ntZ6z8DJ2Qk4f2AC1uWW4a//y8EbN4yFwyWvnl208ain/2Lw2PShfufypfcy4tkrh6tfj3My43DBQHn18p89Fc+7L8pSQ51Co5Ewrm8vjOvbC3+eNgTfHyjF41/uQ0FlA25550ecmxkHc4QOK/aXQHiC6fNXjfD6fjOH6/H3a0fjwkGJ+MeqPBwuq8Pek76raum9InDDOX0x55wMr6HGMJ0Gf5yajbMze+GeD3Yit8SKP3221+u5I9Nj8OsxvfHLEanqec8tXTu+D+6/bBBeX5OPD7cVtApoQ1LMuO2CTEwbnuJzqLDR6caR8jocKLZgf6EF+4ssyCmqVX+uhOk0GNMnBrPGpmPaiBSvEH/1WelwuQV+OlaFVQdKkF9ah3KrHXqthHC9FnGRYYgzGRBnCkNcZBiSzOHISopCijncqz+FEMgvs2KNJ9AeLqtDo8uNBJMBfeONyEqMQlaSXIXr08sIg07TqspcZ3fieGU98susyC2xIq+kFkU1Nug0EpKjw5GdFIVhvaMxrHe0189Kp8uNSk+oU/61Nbpgc7rUipTd6YIQQGKUAcnREciIM6JPL6Na4XW7BUpqbTheUY/CmgYUVtvg8IRNpS/C9VpEKP96qmLhnqpYRJhcGdRKEqrqHaj0tKWyTj5e0e0WiI8yIC7SgFijHlHhekQatNBqJK9qlVsI2B1u1NmdqLU7UWtzosHhgt3hgsMlYArXITpCj+gIPWI8/xrDtGh0ycHO7myqvtkcLjQ0uuEWchVNqVDJ3S4hTCchXKeFQf285Mpao2eYvNGp/CsHb4fTjUaXGxpJkkO5VgO9Rq406rQar6Bud7phd8hfg0anaBp6dwu5iuapmDWvomk1ErQaudqm9XysVOWUCq1AU8VRodNI8ptWA51Grs4pVUG3W/h+3/MWCrUNnn/9bU3WHdoV7P773//iqquuwrPPPov09HQUFBTAZrPhk08+6ej2/Ww1LZ4IfR87pWIXKNhJkoToCD3Kau2oaXAgrVnmqGk2DBxonsm4vr3kYHfET7Cr8185VCt2AY4Vyy2phd3pRpRBh75xrYNVcnQ4JAlodLlRWd/o9ToHPKdJZAexFcmQFLMa7JoHl0PNFm4Yw3x/q182LBkXDUrEqgOleODj3fjodxO8+qyqrlHd687X3KvBKWZEGXSotTux52SNV2j5dl8xnv9GXnH6lxlDA26JctGgRGw9UolVzYKdyy3wqWe7l1lntf1H020X9MfiTcdwqNSKL3cXqsMC722RF038anRvv3PP7rtkIDLjI/H8NwdQWGPDO5uO4Z1Nx2Ay6KDXyr+cJAl4/tcjfAZtSZLw6LTB+MWhcnyXU4J5C7ehxGJTv453TRmAuy8e2Oa8p18MT8G149LxwbYC3Lb4R0wemIjvckrgFsCssWm452Lfq/IVGo2Ei4ckYeKAePx9VS7+u/6IemIIAMw5pw8enzHMbzuuGNUbM0amIr+sDkfL69QVs0aDDiaDFolR4W3OX5uUlYCV912AJZuPYevRSmgkCWMzYnH58GSffzj40jsmAk/OHIY7LhyAr/cWIa/UilijHlMGJWJMn9iArx+m0yA7OQrZyVFeQ0P1jU40NLpgjtAHnD+n1UgY369XwDmjbZEkCQMSozAgMQo3T8ps1zUiDToMTjH73QrJH51Wg0RzuM/tj4Kl0UhIiY5QRxVOxam0g6g92hXsxo0bh/z8fGzatAlFRUVISUnBueeeC70++N33e7pAiycCVeyEEE3BLsBQLCCvjC2rtbdaGVvTxvw6xbi+vbBo41Fs8zPPrlwdEva9KhYASmrsraptCmXxw4j0aJ/367UaJJgMKK21o6ja5hXslGPCBiW3/YtwSKoZn2yXV1o2F2gYViFJEp6cOQxbX16H7cer8eaGw7j1/P7q/Vs9Q6wDEk0+A65WI+H8gQn4354irMopUYNdbkkt7vtwJwBg7rkZuOHcvgE/hymDEvHM1wew+XAF6hudMIbpsC6vDMUWG2KMelw0OLGtboA5XI9bz8/Eiyty8Y/v8jBteAqKamxYsV8+z/Y6P0O5ipmje2PaiBSsyy3Dyv0l+C6nRB1eiDHq8cQVw3DZsNbbzigGJkXhqZnD8PBne9SFGuZwHV66ehQuHhLcPn8A8PgVQ1Faa8f3B0rxjecs3itGpeLpK4cHPRE9IkyLh38xGHPOzsC3+4rR0OjCpIEJQa38lUOJKeD3TVt6RYbhDxcFDqHBSI4Ox40T+53ydQB5Coi/P3CIqOdo9/9yvV6P888/vyPb0qMEOlIs0KpYq90Ju1OuEgSaYwf438uupsH/qRPNKRsV5xRbYLE5vOYDNjrd6nCyr3YkRvmvtinWeX65Txzg/9iylJgIlNbaUVjT4LXNhVqxC6K8PThFfkzLYKcs3BjoY0Vuc6kxEfjzL4fggU9248UVuZgyKEn9pb7ZU+05J9N/9eLiIYn4354ifL23GPddMhD1jS787t2fUNfowoT+cXg0wHFnigGJJqTFRuBEVQN+OFSBS4YkYek2eV7czFG921ytqpg3sR/e3HAEh8vr8J/1h5FTVAu3AM4bEB/UUIFeq8FFg5Nw0eAkuNwCh0qtqG90YlCyuc0VjoA8jDg0NRpf7S1CrFGPq8ak+Rx+DsSg0+K/N5yFr/YWIafIgrEZsbgwO7FdqwvTexnbXTEiIvo5OrW13OSXUrGL9rFBcaB97JRqXZRB1+YvUqUiV90q2AXe6kSRaJaHlYQA9rWYT6QsnNBpJL974Slhztc8O7vThU2e81DPz0podb8ixTNMUdRsdZ4QQq3YZQdTsfMM1ZyoalADNeB/qxNfZp2VhsnZCWh0uvHIZ3s8q8UEVu4vAQBM7O8/nE4ZlASjZ6Petbll+NNne3C4rA7J5nD867oxQW0bIUkSpgySq3LfHyhBudWO73Lk175mXPBzV00GHR72rEp9/puD+GJXITQSAq529UerkZCdHIXRfdretqK54WnRePCyQbj1/P4hhzqFRiPhlyNScf/UQZgyKIlbRhARBYnBrhMIIWC1+188oVTs6h0uuFvs1h/M/DqF2U/FrunUibY3SlWO01IOuFcoW530igzzOYwKAMlm/ytjV+WUoq7RhSSzQQ1evqTEtL5GiUWeN6jVSEENh8UYw9Q5fweKms5+zSuV3x/QRsUOkIPVX2cOQ4Rei61HKvHxTyews6AaJ6oaYAzTYnK2/6HQ6Ag9rvXsDTdv4TZ8vrMQWo2EV64b7XNFsT+XDpHnB36+oxDzl+2DwyUwMj0m5DlGs8amYZ5nnp5Gkve7a7nFChER9UwMdp2gvtGlbmsQaB87IQCb03s4ttzqfyVqS/6HYv2fE9uSModNWSCgKPNzTmxzyiayxypaL+NfsuUYAHnfNn/BEABSlWPFmgU7ZZuTvnHGoM8wVcKPMhxb0+BAiUX+HHztoedLWqxRnZz/xJf78YhnReOlQ5LarFjdOWUAMuLkFblajYRnrxze5tmvLU0cEIdR6TFocLjwvz1FAIAHpvregiUQSZLwlxlDsf6BC7Hp4Ys4FElEdAZhsOsEynCgTiOp+2A1F67TqpsrtlwZW+bZnDiYip26SbGfxRNtDcUCTUOdypw2hbpwIkA7lLlruS1C4ZqDpfjhUAV0GkmtZPmjVuyaDcU2LZwIvlLVcp7dIU+1LiU6PKjd6xU3ndcPZ2XEotbmRE6RBTqNhN9N7t/m83pFhuF/d03Cv68fi5X3nh/UKtaWJEnC078ari5WuWVSv4DzE9uS3ssYcIsUIiLqebhEqhMoe6fFRob5nBuk0Ugw6rWoa3R5VsY2haeyIPawUyjz9ywtK3b1wa2KBZoqdrnFtV6rW5WNPeMDDCVmq8O4TcHO4XLjyS/3AwDmTujrtdmuL8rpGid9BLtg5tcpWlbslIUToa5s1Gs1eHPuOPzli304XGbF7ZMHBB0wTQadz33iQjEk1YwND05BfaMrpGFcIiIigMGuU1TVycGqV4DDwI0GHeoaXT4qdv63GGlJOWy8usF7x+tQKnZ94yMRptWgrtGFk9UNahALpmKnBK/cEqsaCt/ZdAz5ZXWIiwzDXUFs96Dsb1dUY4PN4UK4XttsD7vQg93Bklq43EK9Rns2jYw26vHyNaNCfl5HUTY/JSIiChWHYjtBZb1SsfMfrPztZafMsQuuYudn8YSyj10QwU6v1ainMjQfjlUqdnEBqkZ94+Qd4xscLhwut6LCasffv8sFAPxxanZQwTLWqFcfd7SiDk6XW91/Lpg97JraEonIMC1sDjdyiiz48Zi8/1ww+5YRERH1FAx2naCqrmlFqT/+9rILZVVstLLdySnMsQOaDcc2mytXHsTiCZ1Wg9F9YgAAG/Mr8OKKXNTanBiaam517JM/kiSp54oeKavD0Yo6NDrdMIZpkR4beBi3Oa1GwtmZcQCAFfuKsd9zlFmoCxiIiIh+zhjsOoFS7YoNMBTrby+7pqHYU6jYeYJedBBz7ABgoLIytlnFriyIoVgA6jYgjy3bh/e3ykdXzZ8+tM2jo5rLVIJdRZ1aNcxKigq4mtaX8zwLDf75/SG4hXymZ6BzZomIiHoaBrtOUBXEMKavip3bLdSNgYNbFSsHt1qbU91eRQihLqY4lYpdoWcxQ0obwejK0b29Vv5ef05GyGdM9vMEu0OlVuz0HHY+LDW0vdsA4MJB3nvNXRhg7zkiIqKeiMGuEzTNsQuiYtdsjl1NgwMOlxzQ4iKD36AYaFoZa3O40eg5uDwmQMWwOWWBQX6ZFQ6XGxabQz1OTNmrzp9Eczj++ZvRGJkegznn9MGfpg0O6jWbUzYw3nuyRj2btT0HkPeLj8QvhsmrUg06DeZ6NuklIiI6U3BVbCcIaY5ds1WxylYnMUY9wnRtZ269VgOTQQer3YnqBgdiI8PUFbJajaQu0GhL75gIRIbJ268cLa+D01P9izXqEWlo+1vkkiFJuCSEQ95bGpEun4qQ69miBGhfsAOAl64ehfMHnsTYjFj0T2j/Ie5EREQ/R6zYdYLKYObY+VgVq2wxkhDC+Zot59nVNFsRG+z5mpIkNc2zK6nFySp5GLZ3bOBqXUdJjApHdrNtSTLjI5ES3b7XjgjT4jfj+7RrmxMiIqKfOwa7TlAaxAIIo8F/xS6Y+XUKJdhVe4Z/Q104oVCCVW5xrbpZcFpM8KtST9Wss9LU9687O/BpFUREROQbh2I7WEOjS63YBap4+arYhbIiVuGvYhfswgmFUuE6WFKLPg45bHZVxQ4AbpzYD0IAjS43bpzYr8tel4iIqCdhsOtgSrXLZNDBHO6/e32tim1PxU45NsziYyg2FMrK2L0nLbA55MUXyv5yXUGrkXDL+TysnoiI6FQw2HUwZZuQ3jERAee4Kati6+ytK3btG4r1BLv69lXsRvWJgV4r4WR1gxpOh6RwnhoREdHPCefYdTAl2KXGBN7/zWSQg5fV5iPYhTIUa/SzeCLIrU4UxjAdxvSJVT/WayX1/FUiIiL6eWCw62BNwS7w/DSlomaxNZ0aEexpD76uo5wPq2x3Yg6xYgcAF2QnqO+P79dLHS4mIiKinwcGuw5WEORWIeYIOTQ1Pw6s3CqHslPb7kSuAIY6xw4AZp+dgb5xRhh0Gtx78cCQn09ERETdiyWZDpZTJB8+PzAx8Pw0tWLnCWQut0BlCMeJKWIi5CFXZW6dsjlybGTowS46Qo/v/28ynG4R1AbJREREdHrptt/eZWVlmDZtGoxGI7Kzs7Fq1Sqfj2toaMCcOXMQFRWFPn364P333+/ilgbP5nAhv0w+PWFQGwsPlGBX1+iCw+VGRZ0dbgFopMAnVvi7jlKxa8+WKc1pNBJDHRER0c9Ut1Xs7rjjDqSmpqK8vBwrVqzArFmzkJ+fj9jYWK/HzZ8/H5WVlTh58iT27t2Lyy+/HGPHjsXAgaffUOG2o5VwuASSzeFtnrEaFe59zmt5rXIMmQFaTXAnRgBN250oc+vK27FlChEREfUM3VKasVqtWLZsGZ544gkYjUbMnDkTw4YNwxdffNHqsYsXL8b8+fNhNpsxYcIEzJgxAx988EE3tNo/m0PelHjxpmMAgMnZCW0e56XVSIjynD5hsTnbtYcd4L3dicPlRqXnBIr2VuyIiIjo56tbKnZ5eXmIjo5GSkqKetvIkSOxb98+r8dVVVWhuLgYw4cP93rc1q1b/V7bbrfDbrerH1sslg5suW93vb8DK/aXAJCHUueckxHU88wRetTanahpcDQbQg1tmxIlCNqdbhwpr4MQcmgMdE4tERER9UzdVrEzm733SDObzbBara0ep9VqYTQaAz6uuWeeeQbR0dHqW3p6esc23odwvbzZcFxkGJ65cjiG9Y4O6nnmZvPj2juEGq7XqnPydp+oASDP0QtlOJeIiIh6hm6p2JlMplaVNIvFApPJ1OpxLpcL9fX1arjz9bjmHn74Ydx3331e1+3scPfirJF4+ZpRIYepaM+WJ5YGB0otoW9OrEiJDkdlXSP2nKhu9zWIiIjo569bKnZZWVmoqalBcXGxetuuXbswdOhQr8fFxsYiOTkZe/bsCfi45gwGA8xms9dbZwvTadpVIWu+orXYIu9/lxwd+MQKX1I8z9lzUq7YhbLBMREREfUc3RLsTCYTZsyYgfnz56OhoQHLly/H3r17MX369FaPnTNnDp588knU1tZi8+bNWL58Oa655ppuaHXHM4c3BbuiGhsAICU68GpaX5QwuLOgGgCQyGBHRER0Ruq2DcsWLFiAgoICxMXF4Y9//COWLl2K2NhYLFmyxKsi98QTT6gLLWbNmoUFCxYgOzu7u5rdoeI8Q6blVjuK1WDXnoqdHAbdQv64Ty9jgEcTERFRT9Vt+9glJCTgq6++anX77NmzMXv2bPXjiIgILFmypCub1mWUhRLFNTaUWE4l2Hk/JyOOwY6IiOhMxCMGupEyZLqv0AK3AHQaqV37z2Une59yMSDR/+ISIiIi6rkY7LqRUrE7XlkPAEgyh0PTjkUYA5O8g92g5M5fMEJERESnHwa7bpQW671QIjUm9GFYANBrNbhlUj8AwO2T+3MPOyIiojNUt82xI3nRQ5hWg0aXGwAwIDGqjWf499AvBuPqs9I5DEtERHQGY8WuG2k1ktdCh4FJ7Q9lWo2ErKSoNs+oJSIiop6Lwa6bnds/Tn3/vAHx3dgSIiIi+rnjUGw3u+HcvthXaMHQVDOykto/FEtERETEYNfNBiSa8MntE7q7GURERNQDcCiWiIiIqIfo8RU7IeRztiwWSze3hIiIiCh0SoZRMk0gPT7Y1dbWAgDS09O7uSVERERE7VdbW4vo6OiAj5FEMPHvZ8ztdqOwsBBRUZ23FYjFYkF6ejoKCgpgNvPUh0DYV8FhPwWH/RQc9lNw2E/BYT8FpyP7SQiB2tpapKamQqMJPIuux1fsNBoN0tLSuuS1zGYzv8mDxL4KDvspOOyn4LCfgsN+Cg77KTgd1U9tVeoUXDxBRERE1EMw2BERERH1EAx2HcBgMGD+/PkwGAzd3ZTTHvsqOOyn4LCfgsN+Cg77KTjsp+B0Vz/1+MUTRERERGcKVuyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBrtTVFZWhmnTpsFoNCI7OxurVq3q7iadFux2O2688UakpaUhOjoakydPxp49e9T7n332WSQkJKBXr1544IEHgjrYuKfbtGkTNBoNnn32WfU29pO3Z599Funp6YiKisKoUaNQXV2t3s5+km3fvh0TJkyA2WxGZmYmFi5cqN53JvfT/PnzMWTIEGg0GnzwwQde9wXql23btmHkyJEwGo244IILcOzYsa5uepfy10+LFi3CqFGjEBUVhczMTLz++utez2M/eXM6nRg+fDgGDRrkdXtX9BOD3Sm64447kJqaivLycjz33HOYNWsWqqqqurtZ3c7pdCIzMxObN29GZWUlZsyYgZkzZwIAvvrqK7z22mvYsmUL9u3bhy+//NLrl8+ZyO12495778W4cePU29hP3l555RV8/fXX2LBhAywWC959912Eh4ezn1q44YYbMG3aNFRXV+Pjjz/GXXfdhdzc3DO+n7KysvCPf/wD48eP97o9UL/Y7XZceeWVuPvuu1FZWYlzzjkH119/fXc0v8v46ye73Y7XX38dVVVV+OKLLzB//nysW7dOvY/95O1f//pXqyPAuqyfBLVbbW2tCAsLE4WFheptkyZNEm+//XY3tur0ZLfbhSRJory8XFx77bXi2WefVe978803xYUXXtiNret+r732mrjrrrvE3LlzxTPPPCOEEOynZpxOp0hOTha5ubmt7mM/eTOZTOLw4cPqx+PGjRPLly9nP3lccMEF4v3331c/DtQv33zzjRg0aJB6n9VqFREREeLo0aNd1+Bu0rKfWrruuuvEiy++KIRgP7Xsp+LiYjF48GDx5ZdfiuzsbPX2ruonVuxOQV5eHqKjo5GSkqLeNnLkSOzbt68bW3V62rRpE5KSkhAXF4f9+/dj+PDh6n1nep9VVlbi73//O/7yl7943c5+anLixAk0NDTgo48+QlJSErKzs9WhIPaTtzvvvBOLFy+G0+nE1q1bUVBQgLPPPpv95Eegfml5X2RkJPr374/9+/d3eTtPJy6XC1u3bsXQoUMBsJ9aevDBB/HII48gMjLS6/au6iddh17tDGO1WmE2m71uM5vN6rwfktXU1OC2227DU089BaB1v5nNZlit1u5qXrd75JFHcM899yA2NtbrdvZTk5MnT6Kmpgb5+fk4evQoDh8+jIsvvhjZ2dnspxYuu+wy3HDDDXjiiScAAP/5z3+QmJjIfvIjUL/4+xl/pvfbo48+it69e2Pq1KkA2E/Nbdq0Cbm5uVi4cCHWrl3rdV9X9ROD3SkwmUywWCxet1ksFphMpm5q0enHZrNh5syZmDZtGm666SYArfvtTO6zHTt2YOvWrXj11Vdb3cd+ahIREQFAnrAcERGBoUOH4vrrr8dXX33FfmqmoqIC06dPx9tvv40ZM2YgJycHl112GYYOHcp+8iNQv/BnfGuvv/46Pv30U/zwww+QJAkA+0nhdrtx1113YcGCBWrfNNdV/cSh2FOQlZWFmpoaFBcXq7ft2rVLLU+f6ZxOJ6699lqkpqbixRdfVG8fMmSI1wrZM7nP1q5di9zcXPTu3RvJycn48MMP8dRTT+GWW25hPzUzcOBAhIWFed0mPCsX2U9NDh8+jOjoaPzqV7+CVqvFsGHDMHnyZKxbt4795Eegfml5X11dHfLz8zFkyJAub+fpQPn59O233yI+Pl69nf0ks1gs2L59O6ZPn47k5GRceeWVOHToEJKTk1FfX991/dShM/bOQL/+9a/FrbfeKurr68WyZctEbGysqKys7O5mnRbmzZsnLr30UtHY2Oh1+5dffikyMjLE4cOHRVFRkRg6dKh48803u6mV3auurk4UFRWpb1dffbX405/+JKqqqthPLVx33XXilltuETabTRw4cECkpKSI77//nv3UTHV1tYiOjhbLly8Xbrdb5OTkiJSUFPH111+f8f3U2NgoGhoaxKRJk8Q777wjGhoahMvlCtgvNptNpKWliYULFwqbzSYeeughMWnSpG7+TDqXv3769ttvRUJCgti1a1er57Cf5H5yOp1eP88/+eQTMWDAAFFUVCTcbneX9ROD3SkqLS0Vv/jFL0RERITIysoSK1eu7O4mnRaOHj0qAIjw8HARGRmpvq1bt04IIcTTTz8t4uLiRExMjLj//vuF2+3u5hafHpqvihWC/dRcVVWVuPLKK4XJZBIZGRliwYIF6n3spybffPONGDlypDCZTCI9PV089dRT6n1ncj/NnTtXAPB6W716tRAicL9s3bpVDB8+XISHh4tJkyb1+JWe/vpp8uTJQqfTef08v+2229TnsZ+avp8Uq1ev9loVK0TX9JMkxBm0QyURERFRD8Y5dkREREQ9BIMdERERUQ/BYEdERETUQzDYEREREfUQDHZEREREPQSDHREREVEPwWBHRERE1EMw2BERERH1EAx2RERERD0Egx0RERFRD8FgR0RERNRDMNgRERER9RAMdkREREQ9BIMdERERUQ/BYEdERETUQ+i6uwGdze12o7CwEFFRUZAkqbubQ0RERBQSIQRqa2uRmpoKjSZwTa7HB7vCwkKkp6d3dzOIiIiITklBQQHS0tICPqbHB7uoqCgAcmeYzeZubg0RERFRaCwWC9LT09VME0iPD3bK8KvZbGawIyIiop+tYKaUcfHEz4AQAvsLLbDand3dFCIiIjqNMdj9DLy54Qgu/+d63Pne9u5uChEREZ3GGOx+Bl5fexgAsOZgGU5U1Xdza4iIiOh0xWB3mqusa0S51a5+vOdETTe2hoiIiE5nDHadzOZwobq+sd3PP1Ju9fo4p8hyqk0iIiKiHorBrhOVW+245OW1OPvpVe2utB2r8B56PVlt64imERERUQ/EYNeJPt9xEgWVDbA73fj3uvx2XeNEVQMAwKCTv1RFNQ0d1j4iIiLqWRjsOtG2o5Xq++vzyuF2i5CvocyvG5kWAwAoqmHFjoiIiHxjsOtEB4pr1fdrGhw4Xhn6ilYl2A3rHQ0AKKxugBChB0QiIiLq+bot2M2fPx9DhgyBRqPBBx984PdxDQ0NmDNnDqKiotCnTx+8//77XdjK9mt0utUglxIdDgDY346FD+VWeeHFsN7yqRl2pxuVde1fjMFQSERE1HN1W7DLysrCP/7xD4wfPz7g4+bPn4/KykqcPHkSH3zwAW6//Xbk5uZ2USvbr8RigxBAmE6D87MSAAD7C9sT7OSKXUp0BBKiDADaPxx739KdGPTnb/Dp9hPtej4RERGd3rot2M2ZMweXXHIJwsPDAz5u8eLFmD9/PsxmMyZMmIAZM2YErPCdLk5Wy4scesdEYEiqXG1rT8WuwlOxizeFIdks91WJJfRgl1dSi0+3n4Td6cbL3+WyckdERNQD6bq7AYFUVVWhuLgYw4cPV28bOXIktm7d6vc5drsddnvThr4WS/fs+1bsqaolm8MxKDkKAJBbUhvoKa00Ot2oaXAAAOJNBvSKDAOAdg3FbjhUrr5fUNmAohobUmMiQr4OERERnb5O68UTVqsVWq0WRqNRvc1sNsNqtfp9zjPPPIPo6Gj1LT09vSua2ooSvuJMYRiQaAIgb11S3+gM+RpajYToCP0pBbudBdVeH+/mCRZEREQ9zmkd7EwmE1wuF+rrm1aTWiwWmEwmv895+OGHUVNTo74VFBR0RVNbqfKcNtErMgxxzapth8vqgr6GMr+uV2QYNBoJsUZPsGvHSRZ5JXIYNhnkIu2xiuDbQURERD8Pp3Wwi42NRXJyMvbs2aPetmvXLgwdOtTvcwwGA8xms9dbd1CqakoYU6p2eaXBD8dW18vDsL0814gzyf9WhVixc7sF8svkYDc5W17IoWx8TERERD1HtwU7h8MBm80Gt9vt9X5Lc+bMwZNPPona2lps3rwZy5cvxzXXXNMNLQ5N84od0BTsDpX6H0ZuyWKTg11UuFxlUyt2IQa78jo77E43NBJwdmYcAOBEVeh76hEREdHprduC3S233IKIiAisX78eN9xwAyIiIrBu3TosWbLEqyL3xBNPIDo6GikpKZg1axYWLFiA7Ozs7mp20JTVrLGeYJfVjmBX6wl25gg9ALR7jl2h53zZJHM4+sbJ8xVZsSMiIup5um1V7KJFi7Bo0SKf982ePVt9PyIiAkuWLOmiVnUcpWIXF9lyKDaUYCcvtFAqdkqwq/IM0QaryLP1SmpMBNJim4KdEAKSJIV0LSIiIjp9ndZz7H7OKuvk8KUMn2YlylueHKuoR6Oz9ZCzL5ZWwU6u3FVY7X6f44uyp15KdDhSY+S98BocLlScwgkWREREdPphsOsEQohWc+ySzAaYDDq43AJHg1yRWqvOsVOGYuWTJyw2Jxyu4MIh0DQU2zsmAgadFvGeRRilltACIhEREZ3eGOw6gcXmhMstn+wQY5RDmSRJIS+gsDTIFTuzJ9hFR+ihjJxWhbDlSWGzoVgAiPMExPIQK39ERER0emOw6wQWz2kR4XoNwvVa9XZ1nl1JcMGutsWqWK1GQoxnIUVVXfDz7IpqvINdfJRcsauo67pgZ3O4Qt6mxZcTVfXqamEiIiLyxmDXCax2udJmMui9bldXxpYFG+y859gB7VsZe9IzFJsSLc+vizd5Kna1XTPHrtRiw8UvrcVZT32HxZuPtfs6y3aexKTnV2PyC2tQUMntWoiIiFpisOsESrBrHsiA5hW74DYprrV7tjsJbwqIoQY7m8OlDrn2bjkU246K3dIfCzDjXxvw1P/2w+0Zbm7LfzccwYmqBrjcAs99faBdFTchBJ7/5iCEkD/3BWsOhXwNIiKino7BrhNYbUrFzjvYKStjD5fXqXPwAlHn2EU0Xadpk+LgQlmJRa7Whes16nw/ZSg21IrdxkPleODj3dh9ogZvrD+CD7YFd1zb13uL1Petdie+218S0usC8jYxyupe+ZrFQfUhERHRmYTBrhPU2n0Hu7TYCETotWh0uoNaGdtyVSzQdKxYZZBz7IprlGHYCHXPOnUoNoTFEzaHCw9/Jh/tptXI13ln09E2n1dY3YCCygZoNRJ+e14/AHIoC9UPh8oBABP6xyEyTIvqekdIx7MRERGdCRjsOoFSsYtsEew0GgnZyXLVLqfIEvAaQgifc+yUil2wq2KLPRW7xCiDepuy3Ukoiyf+/l0ejlXUI9kcjnUPXAitRsKB4to257rtK5Q/z4FJUbhqTBoAYH1eGWwOV9CvDQBbDlcCACZlJWBkegwAYPux6pCuoXC43NhZUB1yG4iIiE53DHadwGr3Xs3a3OAUMwBgf2HgYGdzuOH0DDVGncIcO2UoNtmzcAIIffHE/kIL3lh/GADw5Mxh6B0TgeG9owEA249XBXxurmc+4cAkEwanRCHJbIDN4cZPxwI/z991RqRFY0yf2KBe25dGpxuzXt+Ema/+gMv/sZ4rbImIqEdhsOsEVrtcCWo5FAsAQ1LlYNdWxU4ZhtVIQGRY05YpoQc7uSqXZG4Kds2vIUTgeWpCCPzli31wuQUuH56MS4YkAYAa7Pa1EVDz1GAXBUmSMCkrAQCwLrcsqPYDcoXtuKcymJkQidF9YgAAu09UB30NxdIfC7CzQH7e4fI6vLn+SMjXICIiOl0x2HUCdfGEj4rdkBR5KHZ/G8HO0mx+XfPzXEMNdspQbPNgp6yKbXS5UdcYeDjy233F2HqkEuF6DR6dNkS9XQl2e0/WBHy+cjaustXLpKx4AMC6vPKg2g8Axyvr4XQLGMO0SDaHq8PZR8rrQjqBQwihVh7HZshVv49/OtFmuCUiIvq5YLDrBMpQrK+KXXayXLErsdgDhrOW58QqQg12pcpQbLNgFxGmRYRn4+RKa+Dr/GedHIRuPi9T3eAYAIb2lj+PvSdr/AYjIQTyPXv2ZSXJYey8AXKwyymyoLTWFtTnkO8Jh/3iIyFJEnrHRCAyTAuHS+BoeXDHs8mvWYtjFfUw6DT4z/VjEabV4GR1Aw6HcI1T9dOxKvxnXT6OV3AfPiIi6ngMdp3A6mdVrHJb3zgjgMDDsU0LJ7w3OVa3O6lvexgVaF6xM3jdrgTEQAsocoos2H68GnqthBsmZHjdNyDRBI0kB9ByP+Gwsq4RNocbkgSkxsjBMs5kwDBPKFRWurZFCV79E+SqnyRJalDMDfIUDwD4Zp+8GveCgQmIMxnUqt2GEKqHp2JDXjl+/fpGPP3VAUx7ZX3QR8u1dKKqHre/+xOuf3MLdnmGlYmIiAAGu05R62cfO0UwCyhaHiemULY7aXS6Ud/GMKoQwuccOyC4yt+KffJ+cxdmJyIxyvv5Bp1WreAd87N1S6HnxIsEkwEGXdM8QWWe3frcIIOdp+qXmRCp3jYwSQ55uUFu9gwAKzzBburQZADAeZ5h4c2HK4J6/rGKOny47Tje2XQUn24/gXW5ZWho42ugcLrcePTzPVCyeK3NiQc/2R30Js+KRqcbNy3ahq/3FmN9Xjmuf3OLukCGiIiIwa4T1Nn9z7EDmoJdoIqdujlxi4pdhF4Lg07+srU1HFtd70CjU56Dlui3Yuf/GmtySwEAUwYl+ry/b5wctI76GVZUNhRuPoQLeM+zC6bqmF8mB8dMT8UOkBdjAMEHu6PldThQXAutRsJFg+XPZ7Rn25Q9bcwTBIA31h3G5BfX4MFP9uCxZftw39JduOGtrTjnmVVBbbi8Pq8cRyvq0SsyDCvvPR+RYVr8dKwKXzXbvDkY72w6itwSK2KMevRPiITF5sTLK3NDuoaipsGBr/cUtWsRChERnZ4Y7DqBeqSYn4rdEKViF3AoVjlOzPsakiQhLsh5dsowbK/IMK+KGYA2r2GxOdRhvvMHJvh8TIZnSNnfPLdCT7Dr3SLYjc2IhTFMi3KrHQeK2w5masUuvnnFLrRg962nWnduZhxiPMPZQz0LQE5UNaAqQF+uyy3DU1/lQAi57b8YloxJWfFIiQ5HTYMDty/5qc1FJJ9sPwEAuGJUKrKSonDr+f0BAH9bkRv0AhC3W+Btz6bQ90/NxnNXjQAgLwApqw3teLh1uWU477nvcfuS7Zjxrx/w+Bf7unQRyf5CCxZvOoqN+cGFeyIiCo7v5EGnxN8GxYpBnpWxh0qtcLrc0Glb52tfmxMrYiPDUFhjCzrYtRyGBZoqdv4Czd6TNXALOZS1rLgpmip2voNdUY1SsWs9jHtOZhy+P1CKtbllagXTl6q6RlTVyyHXeyg2yvPa9bA7Xa2Ca0vKaRdThyapt0VH6JERZ8SxinrsLaxRh4ibE0LgiS/3AwCuPycDT84cpt7ncLlx+7vb8V1OCR75bA+W3THRawWzwulyY81BeXuXGSNTAQC/ndQP72w6iiPldfj4pxP4zfg+AdsPAOsPlaOgsgFR4TpcOToNEWFajEqPwc6Canz80wncPrl/m9cA5JD7h/d2oNHlRrI5HMUWGxb+cBT9E0yYc05GwOd+s7cI720tQFVdI7ISTbggOwEXDU7yO+3Al1dXH8IL3x5UP74wOwGvXDcmpGsAwMb8cvxzVR5KLHaM79sL914y0Gu/RiKiMxErdp2gto2h2NToCBh0Gjjdwuv8U69r+DhOTBHsythSPwsnAKCXKfBQrFKBUrY18UWp2B33c/qEMscuJbp1MLzQM7z7+Y6TASs2h8vlal1qdDiMYU39mWQ2ICpcB5db4HBZ4FWtBZX12FlQDY0ETB2W7HXfMM/n5284dtPhChwqtcJk0OH+y7K97tNrNXj2quEI12uw+0QNNvhZDLLrRDWsdidijHqMSIsBIM+//P2FAwAA//guL6hTMN7bcgwAcOXo3ojw7G143dlyIHx/6/E25+sJIfD+1uP4/ZLtaHS5MW14CtY9cCEeuXwQAOC5bw6gpt7/hs0vfHsAv3t3O9bllmHPyRp8uuMk7v5gJ8Y8uRK3vvMjlu082Wb1cc3BUjXUje4TgzCdBqsPlmHuW1vV7/lgfLjtOG54cys2H67EkfI6fPhjAWb8a0Ob+0M2Z7E5sOZgKV789iDmvrUVt7zzIxb+cCSoeZMHi2vx3/WH8Y/v8vDxTyeQU2QJ+eziWpsDb204gvs/2oW/LN+Hr/cUqVMnQuF0ubH3ZA3W5pZh94nqkLYAIqKehxW7DiaEUOfY+RuK1WgkZMQZkVtixZHyOmTERbZ6jFKxM0e0voZabWvjWLHiGnl4LtlHxa6todg9J+VfkMPT/Ae79F5ysDtR5Tuc+ptjBwAzRqTiyS/340BxLXafqFGPCWspv7T1/DpAHpLOTorCj8eqcLC4NmDV78vd8jy2czLjWi0CGd47Gv/bXeR3KPWjH5uGUFvOdwTkUzyuHdcHizYexftbj/us+q33rLqd2D9ePWcXAGaf3QdvbTiCk9UNWLzpGG45P9Pv51BqseG7HHnO43VnN1XVfjkiBU9+sR/HK+vxQ365z9cHgIZGF/68bC8+/kn+fK4c0xvPXzUCOq0Gvz0vEx//dAK5JVb8Z30+7p86qNXzl+08iVdX5wMAbj0/E2MzYrGroBrf7C3G4fI6rNhfghX7S/D62sP4x7Wj1Ipqc1V1jXjg490AgBvOzcATVwzD7hPVuP7NrfjpWBXm/HcLFt04HrGe701f3G6Bv608qLbllyNScMWo3njx24M4WFKL2f/dgvduORuDklt/P7jcAluOVGDFvhJsOVKJA8UWtPybYuX+Evx77WG8dM1ITOgf3+oa5VY7Hvl0D1b4mFdpDNNieO9ojO4Ti3F9Y3FW316Ijmj9PeN0ubH0xxN4aeVBrxXlizYeRUp0OG6c2Be/Hpuu/j/3pabegbV5ZfhmbxHW5Zar0z8AefrGrLPSccO5GT5/tpTV2rHtaCUOlVpRYrGh1uaE3emCzeGG3emC0yWQFB2O7KQonJcVjxG9o1uNKpRabFibW4Z1eeU4XlGHWpsTUeE6JEQZkBIdgZSYcKRGRyAlOhwJUQbEGMNgDtd5XcdicyCn0IL9RRbkFFmQU1QLh8uNXpFhyIgzol98JDLjTeiXEIn0WCP0Wgl2pxsNjS5YbA5U1TtQXd+ImgYHquoaUVHXiHJrIywNDoTpNIg3haF/ggmZCSZkJkQiLjIMkiTB7RYor7OjuMaGUosdJbU2NDS64HILuAUgIBCm1cCg08Cg08Kg18AcoUdMhB6xxjDEGsMQadCipsGBMqsdRTU2FNfYUFRjg8Plhl4jwaDXIjJMC6NBB5NBh0iDDiaDFgadFpIESJDkfyXA6ZJ/Z9Q3ulDX6ES9Xf63wSGPRJgMWs/zm66l10podAo43W44XG6v9x0u4flXft/lFjDoNIjQaxEepkW4TouIMC3C9RoIIZ8Dbne6YXM0fQ8of2BIkgQJUNuqtLvVfZ7bhZBHMhpdbjhdAhpJ/n2nlSRoNVKz9wFNq9skuIXcXiHk/68uISCEgMstb9av02qg00rQazTQa5XnAG4h4BYCEPD6WHi+nm63fJuA8rpy+7WSBI0kQSMBAlBf3y3k5yivD3jaKsnPlyR4Ppbf10jy73RfRYzuwGDXwRocLih/uPur2AHyMGZuiVWen5bd+n5LgIqdsuVJoIUPAFDi2Scu0Uewa+sa+wvloDM01X9gSouVv4kr6xpRZ3e2Gnr2N8cOAKKNelw+LBmf7yzEB9uO+w925a1XxCqGpJrx47Eq7CuswczRvX0+XwiBZTtPAgCme4ZBmxseoGLncgusPiiHqStG+b4+APx6bBoWbTyK73JKUWtztPqaKdu6TBzgHRTC9VrcfXEWHvh4N15dcwi/HJni9wfD0h8L4HILjM2IVTdoBgBjmA6/GtMb72w6hve2+A6WR8rrcPu7P+FAcS00EvB/l2bj9gv6Q+MJmVqNhP+7NBu3Lf4JC384it+el+kVKmrqHXjiC3k4+g9TBuD/LpW/YacOTcb9U7ORU1SLr/YUYcmWY8gpsmDW65vw9k3jMarZ11QIgUeX7UVprR2ZCZF4+BeDAQAj0mKw5Oaz5a1bTtRg+r824JHLB2PKoESE672H1yvrGvHQJ7vVUHXXlAG495KBkCQJ4/v1wvVvbsHuEzW47o0teP+Wc9R+crkFlu86qZ533FxGnBFnZfTCmIwY1NtdeHvTUZyoasD1b27Fg5dl4+bzMtV++m5/CR76dDfKrY3QaSScPzABCSYDjlTUYX+hBVa7E1uOVGLLkUq8vlb+RTQ2IxaXDEnClEGJiDWG4Yf8Crz6/SEc9MwNzYyPxBWjeqOqvhH/21OEohobnv7qAF78Nhej+8QgNSYCGkmC1e6ApcEJi82ByrpGFNV4r4SOCtchLdaIwuoG1DQ48OaGI3hzwxFMyorHeQPioddqcLC4FtuOVbZZ4Vb8D0V4aWUuogw6jOvXC/0TIlHf6MKO49VtbrDuT1S4DtERetTZneoUC1825nuvVFf+HgqxKOolMkyLMJ0GVrsTDhfndVLHenTaYNw8yf8f512Jwa6DKfPrNBLUTYB96RcfeEWpvw2KgaZqW6AJ/0BTsEr1Me9I2Tal0sc+ds5mR3gNSDS1ul8RFa5HjFGP6noHTlQ1eAWORqcbZVb52i3n2CmuHd8Hn+8sxOc7CvHQLwb7rG4ov4T6J7RuhxI6A/2S2XS4AgeKaxGu1+AXLYZhAWBYqhzsCiobUF3fqC6sAICdBdWornfAHK7DGM8xZr4MTTWjf0Ik8svq8O2+Evx6bJp6n9XuxI7j1QCaVgM3d+Xo3lj0w1HsL7Jg9n+34K2549A33jvEut0C728tAABc52Mu3nVn98E7m45hxf4SlFpsXkH+x6OVuGnRNlhsTsSbwvDP34z2WYm6dEgShqaasa/Qgjc3HPaq2r2w4gAqPHPq/jAly+t5kiRhSKoZQ1LNmDexL25b/BN+OlaF6/+7BYtvPlsNd5/vPIn/7S6CViPh5atHqUPJgDwcvvS2czFv4TacqGrA75dsh0aSK82xkWEwGXRwC4G9Jy1ocLig10p46lfDcfVZ6eo1oiP0WHzT2Zj95mbsPWnBdW9sxsOXD0aDw4W3Nx5V9wyMjtBj6tAkXDAwEeP6xrb6o2fOORn402d78OmOk3j6qwNYub8EvxyRivV5ZWrFNDspCi9fM0o9HhCQw2N+mRU7j1dj+/EqbDkiDxFvO1qFbUer8PRXB7xeJ8aoxz0XZWH2ORnQe6pYD18+CJ/vOIl3Nx/HnpM12HKkstXXqbnMhEhMHZqMy4YmY1jvaLl64RZYm1uGtzcdxdrcMqzPK1crxk1fM/lzGJEWjeToCERH6BGu91SndBpoJAlFNQ3YfrwKPxyqQE2DA98fKMX33p8CRqRFY/LABAxPi4E5XAeLzYkSiw1FNQ0oqrahsKYBRTU2VFob1ekptTanOhoByH/0DU6JwpAUMwanmBFp0KGs1o5jFXU4XF6HI563lls7RYZpEWMMQ3SE/DMoxqhHr8gwxJsMiInQo9HlRlGNDflldThcZsXJ6gbUNbrUk3Y0EpAQZUCSORyJUQaYDDpoPBUYQK462R1y5UmpEFZ7KoTNT+uJNeqR7KlMJkeHw6DTwOUWsDnk16qzO1Fnd8Jql9+3O12eKhI81WIBjSTBZNDBaNAiMkyuyBnDtAjXa2F3uj3Pd8Jqc6KuUb6ewyUQptNAr5Gg12mg00jQazUIa/a+/CZXmpSKXIPDhYZGuTJnc7ggSfKc53C9BuGeHRfC9XIAhqeNclubql9CwPt9+dOAgIAESW6XVoJWo5GrbT6qcO4W/7rc8s+55pUwjadCplTV3ELA4RZweqqBDrcbLreAtlnVTKmgSVJTdU3T7GNA/uNAaZdSyXMLue3qa2qaKnkaSVKreepz3U3vK1W+5r87uhuDXQdTfoBFGnQ+J9Ir+sYHXnjgb4NiAOpQVVsVOyWcKUOmzfXyHCvm6+SJk9UN6g+O1DZKy2mxEaiud6Cgst4r2JVYbBACMOg0foeUzu7XC9lJUThYUouPfzqB357Xr9Vj8n3sYacYktJ0Xq0QolV/O1xuPPe1/Nvo6rPSff7HizY2LaDYc9J7AcVaT7Vu0sAEnwtcFJIk4YpRvfHSylws23nSK9htOVwBp1sgI87o8+ug02rw7+vH4up/b8LhsjpMf2UD/vzLIZh1Vpr6+azYX4yT1Q0wh+swbURKq2sMSjZjbEYsfjpWhXc3H8N9noramoOl+N27P8HmcGNMnxi8Nmesz4U0yudw10VZuG3xT3h74zHcMikTMcYw/HSsCku2HAcAPDlzmPoD35d4kwHv3DQeNy3ahi1HKnH9m1vw5txx0EjAnz7bCwC4a0qWz+psVlIUVtx7Pl5dfQifbj+JYosNhTXyW3NDUsx4/tcj1LmRzUUb9Xj3t2dj9n+3YF+hBX/8aJd6nzlch9su6I8bJ/b1mqvZUkSYFn+7eiTGZMTi6a9y1GAGyD/sf3teP9x3ycBW1UStRsLApCgMTIrC1ePkwHmiqh6rckrxXU4JthyuRKPLjbTYCMwam455E/oi2uj9f9ug0+KacX1wzbg+OFRai50FNaiub4TDJRAVroM5Qg+z59/+CSaffwhpNBIuHJSICwcl4nhFPb7YXYgDxbVwC4H0WCPOyojFWX1jg/4l5HIL5BRZsOVIJUosNoRpNRiQaMJ5WfGIN7Weu+uPw+WGpcGB6gY5IEUa5H0wfU1vaEkIgbJaOwTk4e4IvTbg/0dfbA4XCqsb4HILGA06JEYZ1EAdKrvThTq7C1HhunZfg6gzMdh1MKVi529+nUIZnixsY/FEy+1OgOAqdm63UOe+pcf6CnbyNeoaXbA5XF6/qI54ti/pFxepDkP5kx5rxN6TFpyo8q48nmw2DOsv4EqSfKLFnz7bi8WbjuLGCX29Xs/hcqtHb7WcYwcAA5NN0GkkVNc7UFhjazXk++rqQ9h1ogbmcB1+P3mA389heO9on8FutWcl62Q/270098sRKXhpZS425legqq5RDd/q/LoBratkivReRiy7YyJ+v2Q7fjxWhQc+2Y2v9xbh2atGwGTQ4XnPYoO5E/q2ChSKGyf2xU/HqvDG+iP41Zg07DhehQc/2Q2HS2BydgJemz3Wq0rmy6VDkjA4xYycIgteXHEQf7p8CB7+dDeEAK4ak4ZzMuPa7IdIgw5vzRuHeQu3YtvRKlz9703qfRMHxOHOKf6/DpEGHR64bBDun5qNMqsdJ6vkYUWr3QmXW2BgUhQGJUcF/IMpxhiG9289B/9ZexjrD5XDoNPgksFJuGZ8elAhApC/L+eck4HJ2Ql4d/NxHCqtRVqsEbPP7qOeeBKMtFgj5k7oi7kT+kIIAadbBB0EBiRGYUBi8K/lS584I+640H9/B0OrkTCsd7TPIB0KvVaDOJMBcSGEQYUkST6nk4QiXK/1+TOkPeTKZuD/S0TdicGug9XZA291olCGJ4uqfZ8aYGkIMMcuiFWxZVY7Gp1uaCQgxcdQqDlcnoDrcAlU1Td6ze1Sgl3f+NaBsCVlnl1BiwUUSmD19drN/Wp0bzz79QEcrajH2rwyXJjdtBnysYo6ON0CkWFan8PJBp0WAxJNOFBci/2FFq9gt6ugGq98fwiAXGkKtA3G8N7R+LLFAoqyWrs67+6C7LaDXWaCSQ1FK/YX45px8pDp2lw5HJ7vYxi2uURzOD687Vy8sf4wXlqRi9UHy3Dx39YiKToch8vqEG8yBFxcMW14Ct7pewxbj1bior+tUecizRiZihdnjQxYaVNIkoRHpw3G7P9uwbubj2NVTimKamyIiwzDo9MGt/l8RaRBh4U3jsdjy/bisx0n1fY9d9UIr8UjgdqRGBXeaqFLsMzhevxxajb+ONXH5NUQpMUa8dAvWi8kaQ9JkqDXtv25ExGdqpDryBs2bMDLL7+MFStWtLrv97//fYc06ufMGmSwU4JUrd3ZapsHIYR6nUAVu3Kr/01pCzzDsKkxET6rBJIkNS2gaDEcq2w43C++7b9wm1bGelfs1GDXxlCuMUynzpV6zzPkp8jznAM7INHkt0qjVBJ+Olal3tbQ6MK9S3fC5RbqqslAlAUUu080BTslkA3rbQ46YEwbLs/h+98eec+8/DJ51bNeK+E8P6tVm9NqJPzugv74313nYURaNGrtThwqtcIYpsW/rx8TsOIkSRL+NXs0BiVHwS0AvVbCXVMG4OVrRgUV6hQTB8TjvksGAgCKamye1x4bcKWqLyaDDi9dPQp7/jIVO/98Kf513Zg2/08QEdGpCynY/fvf/8avf/1r/PTTT7jzzjsxZcoUVFY2TfB99913O7yBPzfKJN9IQ+BSfaRBp4a2livc6hqbVtaafcyjUYYlLDan3z23CjxBy9cwrMLffniHPcEuM771vLaW1IpdZYuKnedz8rUitiUl2K05WOo1vJxXqgQ7/0NSEwfIw4Pr88rU25775gAOl9UhMcqAvzbbUNgfXydQKMFu8kDfx6n5cvlwef7bD4fKUWG1q6ddnJMZF9Lmu1lJUfjs9xOx+Lfj8dxVw/H9/03G2IxebT4vMSocX/7hPHz5h/Ow9ZGLcd+l2UFVyFq666IsLL3tXDw+Yyi+ved8nNW37df2x2TQtZpLRkREnSekYPfCCy/g+++/x7vvvosDBw7g7LPPxsSJE1FQIK/Y49FAQF2jp2IXYIK2ItXPPDtlGFavldRzYZszh+sQ6ZkvVeznAHil2tXPx6IDhb9g1zQU23awU4Kjv4qdvxWxzWUny6viHC6BL3cXqrcrx4VlJfmvHJ43QK6E7Su0oLTWhg155Vi08SgA4Plfjwhqknh0hB59PZst7zpRDZdbqEFxchDDsIrMBBNGpEXD5RZYtPGoWoH8pY8FD23RaiRMykrANeP6hHSagk6rwbDe0SFX2Foa368X5k7o63PBBxERnb5CCnalpaUYNEiec6LRaPDMM8/g7rvvxnnnnYe9e/cGnNR8pgh2jh0ApHh+Ybes2DVfEeurTyVJUn/ZF/lZfHHQcwbr4GT/1S5fwa7R6VZDWTBz7Hp7KnYWmxM1DU1DyoUBNif25cox8nCpMicLkM8TBeC12ralhCiDusrylVWHcP/H8krIOef0weTs4Ktt4/vJVal1ueXYWVClbnMyys/+ev7c6pkH98r3h3CiqgHREXrMGBl4KJiIiKijhBTs+vfvjx9//NHrtt/97nd4/vnncdFFF8FuD+0g8p6ozi4PjRrbWIEIACme0NMynAVaEas+1zN3rWUoVBzwBLtsHzvwK3ydPlFY3QC3kPfgSwhiBZsxTKdep3nVTjlOLNhgN2NkKjQSsP14NY6W16GyrlEdEh7dRriaN0E+iWHx5mMoqrGhX3wkHrk8+Mn+ADBlkHyG7KoDJfj4JzlcXjgoMeRtFX4xLEUNiQBw3yUD21yNSkRE1FFC+q11zz33YNeuXa1uv+aaa7B48WJMnDixwxr2c6VU7IKZU6Ws9Gy5V1egUycUSrXP11BsTYND3W4kULVL2cuu+X54TXvf+d+mpKU0z3CdMs/OYnOoiz/a2gdPkWgOVxcYfLbjJHYclxdD9E+IbHM49YqRvdW947ISTXjnpvEB9yrz5byseITpNDhWUY/3t8pDqNeMS2/jWa1pNRIW3TgOz1w5HItuHIe5E/qGfA0iIqL2Cum339y5cwEAS5cu9Xn/7373O6/7rr76ar/XKisrw7x587B69Wqkp6djwYIFuOiii1o9bt68eXj//feh18shJyMjA/v27Qul2V1K2ZU8mGDRVHVrWbHzf+pE03OVYdzWQ7FKKEqLjfC5iamiV6R8X/PTJ5Rg1yeEuVVpsRHYVVCtVuyUYdhYoz6katWVo3tjXW4ZPt95Ug3IY/rEtvk8jUbCi7NGYv70IYgM07W5954vJoMO15yVjsWbjwGQT5M4N4h923wxhunwGx8nRBAREXW2du0/8Oqrr2LTpk1ITk5GWloaTpw4geLiYkyYMEGt8kiSFDDY3XHHHUhNTUV5eTlWrFiBWbNmIT8/H7GxrX+RP/7443jooYfa09QuV68snmhjVSzQtMdby73sAh0n1vRc36tRAWBDs0PnA1FPn2hWsSsIcFqFP00LKOS2hDq/TnHp0CQYw7Q4VlGP/244AgCYMij4eXKBKpzBeOgXg+B0u2GxOfHA1GzOGSUiop+ddgW7wYMHY9asWbjzzjvV21599VXs3bsXr732WpvPt1qtWLZsGY4ePQqj0YiZM2fipZdewhdffIEbbrihPU1S2e12r7l+Fkv7Dqtur9AWT8jBp8TScvGEMsfOf1BRznBVzsBUCCHUrTomDWwr2LU+mkwdig2wTUpLypYnSsXupCeotrWHXUvKnnbKqtYkswEXhhDsTlWkQYdnrhzRZa9HRETU0dp10N0HH3yA22+/3eu22267De+//35Qz8/Ly0N0dDRSUpq2gRg5cqTfIdYXXngBcXFxmDBhAtatWxfw2s888wyio6PVt/T00OdJnYpQFk8kmeWKWV2jy2uTYkuD/3NiFQM9e7udrG7weu7WI5XIK7XCoNPgvADHWAFAnKn10WTtGYpt2qRYrtQVqceJhX5ywAOXZePK0b0xpk8M/nXdGL9HaBEREVFr7Qp2GRkZePvtt71uW7x4cdAhymq1wmz2Xq1pNpthtVpbPfbuu+/GoUOHUFRUhDvuuAPTp09X983z5eGHH0ZNTY36FuixnUEZig1m8YQxTKcOtzav2tWqiyf8XyPaqEeyZ6PiXM+edY1ON579Rj70/soxaW0uOlAqdtUNDrg8OyKrwS4u9IpdQWU9hBDq8WKhDsUCcp+8dM0ofPr7iRh3ChvjEhERnYnaNRT73//+F1dddRWeffZZpKeno6CgADabDZ988klQzzeZTK2GSC0WC0ym1hvRjh49Wn1/9uzZWLx4MVauXImbbrrJ57UNBgMMhtAPmu4oymrQYFdlJpvDUWuzorjGrp6woCye8HXqRHNZSSYUW2w4WFyLsRmxeObrHOw4Xo2ocB1+P7l/m68dE6GHJAFCAFX1jdBrNOprhzIUq5wuUdfoQnW9Qx0e7t9Bh24TERFRcNoV7MaNG4f8/Hxs2rQJRUVFSElJwbnnnquuXG1LVlYWampqUFxcjORk+XzNXbt24eabb27zuRpNu4qMXSbYI8UUSeZw5JVavSp2liAqdgAwKj0G6/PKsTG/HOYIHRb+cBQA8LdZI4Na/KDTahAToUdVvQPlVjscTrlqF28yhLSaNVyvRWKUAaW1dhyrrMfhsqYzXomIiKjrtDsl6fV6nH/++bjmmmtw/vnnBx3qALliN2PGDMyfPx8NDQ1Yvnw59u7di+nTp7d67CeffIK6ujo4nU58+OGH2LBhA6ZMmdLeZnc6awiLJwA52AHe+9GpFbs2gp2ysODL3UW4870dAIDfXdAflw5NDrq9yskRJyobms2vC30IVQmSm/IrYHe6EabT8DgqIiKiLtZt5a8FCxagoKAAcXFx+OMf/4ilS5ciNjYWS5YswdChQ9XHvfzyy0hNTUV8fDxeeuklfPbZZ+jbt293NTsgIURTxS7YodhoedjY9xy7wGF5dHoMRveJUT+eMigRf7x0YChNVhdJHK+sx7FK+aSH9gSyDM9zvtlbBADIjI9s1wH0RERE1H7tGortCAkJCfjqq69a3T579mzMnj1b/XjDhg1d2axTYne61UUIoQzFAt7BrmlVbOAvjyRJ+PecsXhtbT7iTQbcPKlfyEdgpTcLdspZr1ntGEIdkRaNT3ecxK4TNQCAQQFOvCAiIqLO0W3BridS9rADgl880TQUK++9J4RAZb28/UhsG6taAfkorvnTh7b5OH/6qMeB1Tc7hsz/+bL+jO/nfUrD2e08tYGIiIja7/ReifAzowzDhus1QQ9DKluWlHjOi61vdKHR6QbQtM9cZ1KC3eHyOuR7Fj20p9o2OCVKXSyh10q4ZEhSxzWSiIiIgsKKXQeqC2EPO0Wy58zXMqsdLrdQj/cy6DSI6ILNefvGRQIAjpTL8+tMBp26L10oJEnCK78ZjVe+z8NVY9IQb+q+LWeIiIjOVAx2HaguxD3sACAuMgwaCXC5BSqsdvV4r7jIsC45qzQtNgK9IsPUQDm8d3S7X3dwihkLZo/tyOYRERFRCDgU24FCOU5ModNqkBAlV7eKLTZU1slz7Xp1wTAsIFfaJjY7emxKF57NSkRERB2Lwa4DKRW7UIZigaZ5dsU1NlRY5cpZr8iuG8q888IBSIgyoF98JK4d37Vn6xIREVHH4VBsB6rzLJ4whhjsEs3hAGpQYrGhwSFfo5cx+A2fT1V2chQ2P3wRNBK6ZPiXiIiIOgeDXQeqVxdPhLboQV0Za7HD4ZZXxHZlxQ4ANxMmIiLqARjsOpC1HYsngKaVscUWG5R41RVbnRAREVHPwmDXgertynFioVXsmp8+oQyFxjPYERERUYgY7DqQso9dZIhz7NI9+8YdLqtDhCcU9o4J/bxWIiIiOrMx2HUgZVVsqMFuYJJ80oNypBcA9G7HJsFERER0ZuN2Jx1IXRUb4lBsbGSYupcdAGgkIMUz746IiIgoWAx2Hai9FTsAGJhkUt/vGx+J8C44ToyIiIh6Fga7DtS0eCL0YDco2ay+PzjFHOCRRERERL4x2HUgi80BAIgKDz3YTRuRor5/+bCUAI8kIiIi8o2LJzqQpUEOdtERoZ8aMaZPLF69bgxqbQ5cPjy5o5tGREREZwAGuw5ksclz7MztCHaAd9WOiIiIKFQciu0gTpdbPXmiPRU7IiIiolPFYNdBaj3VOqB9c+yIiIiIThWDXQep8cyvM4ZpodeyW4mIiKjrMYF0EGVFLIdhiYiIqLsw2HUQS4Nn4UQ4gx0RERF1Dwa7DlJzCludEBEREXUEBrsOogzFmiO4cIKIiIi6B4NdB1E2J+ZQLBEREXUXBrsOUq0EOw7FEhERUTdhsOsg5bV2AEBClKGbW0JERERnKga7DlJm9QQ7E4MdERERdQ8Guw5SxoodERERdbNuC3ZlZWWYNm0ajEYjsrOzsWrVKp+Pa2howJw5cxAVFYU+ffrg/fff7+KWBqfEwmBHRERE3avb9ua44447kJqaivLycqxYsQKzZs1Cfn4+YmNjvR43f/58VFZW4uTJk9i7dy8uv/xyjB07FgMHDuymlrdWa3Og3DMU2yfO2M2tISIiojNVt1TsrFYrli1bhieeeAJGoxEzZ87EsGHD8MUXX7R67OLFizF//nyYzWZMmDABM2bMwAcffNANrfYvv6wOABBvMnC7EyIiIuo23VKxy8vLQ3R0NFJSUtTbRo4ciX379nk9rqqqCsXFxRg+fLjX47Zu3er32na7HXa7Xf3YYrF0YMt9W76zEAAwIi2601+LiIiIyJ9uq9iZzWav28xmM6xWa6vHabVaGI3GgI9r7plnnkF0dLT6lp6e3rGN96G01gYAuOHcjE5/LSIiIiJ/uiXYmUymVpU0i8UCk8nU6nEulwv19fUBH9fcww8/jJqaGvWtoKCgYxvvw7+uG4NV/3cBLhiY0OmvRURERORPtwS7rKws1NTUoLi4WL1t165dGDp0qNfjYmNjkZycjD179gR8XHMGgwFms9nrrSv0TzBBkqQueS0iIiIiX7qtYjdjxgzMnz8fDQ0NWL58Ofbu3Yvp06e3euycOXPw5JNPora2Fps3b8by5ctxzTXXdEOriYiIiE5v3bbdyYIFCzB37lzExcUhLS0NS5cuRWxsLJYsWYKnn35aXUjxxBNP4Oabb0ZKSgpiY2OxYMECZGdnB/06QggAXbOIgoiIiKijKRlGyTSBSCKYR/2MnThxoksWUBARERF1poKCAqSlpQV8TI8Pdm63G4WFhYiKiuq0OXAWiwXp6ekoKCjosjl9P1fsq+Cwn4LDfgoO+yk47KfgsJ+C05H9JIRAbW0tUlNTodEEnkXXbUOxXUWj0bSZbjtKVy7W+LljXwWH/RQc9lNw2E/BYT8Fh/0UnI7qp+jo4PbK7bazYomIiIioYzHYEREREfUQDHYdwGAwYP78+TAYDN3dlNMe+yo47KfgsJ+Cw34KDvspOOyn4HRXP/X4xRNEREREZwpW7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOxOUVlZGaZNmwaj0Yjs7GysWrWqu5t0WrDb7bjxxhuRlpaG6OhoTJ48GXv27FHvf/bZZ5GQkIBevXrhgQceCOr8u55u06ZN0Gg0ePbZZ9Xb2E/enn32WaSnpyMqKgqjRo1CdXW1ejv7SbZ9+3ZMmDABZrMZmZmZWLhwoXrfmdxP8+fPx5AhQ6DRaPDBBx943ReoX7Zt24aRI0fCaDTiggsuwLFjx7q66V3KXz8tWrQIo0aNQlRUFDIzM/H66697PY/95M3pdGL48OEYNGiQ1+1d0U8MdqfojjvuQGpqKsrLy/Hcc89h1qxZqKqq6u5mdTun04nMzExs3rwZlZWVmDFjBmbOnAkA+Oqrr/Daa69hy5Yt2LdvH7788kuvXz5nIrfbjXvvvRfjxo1Tb2M/eXvllVfw9ddfY8OGDbBYLHj33XcRHh7OfmrhhhtuwLRp01BdXY2PP/4Yd911F3Jzc8/4fsrKysI//vEPjB8/3uv2QP1it9tx5ZVX4u6770ZlZSXOOeccXH/99d3R/C7jr5/sdjtef/11VFVV4YsvvsD8+fOxbt069T72k7d//etfrU6K6LJ+EtRutbW1IiwsTBQWFqq3TZo0Sbz99tvd2KrTk91uF5IkifLycnHttdeKZ599Vr3vzTffFBdeeGE3tq77vfbaa+Kuu+4Sc+fOFc8884wQQrCfmnE6nSI5OVnk5ua2uo/95M1kMonDhw+rH48bN04sX76c/eRxwQUXiPfff1/9OFC/fPPNN2LQoEHqfVarVURERIijR492XYO7Sct+aum6664TL774ohCC/dSyn4qLi8XgwYPFl19+KbKzs9Xbu6qfWLE7BXl5eYiOjkZKSop628iRI7Fv375ubNXpadOmTUhKSkJcXBz279+P4cOHq/ed6X1WWVmJv//97/jLX/7idTv7qcmJEyfQ0NCAjz76CElJScjOzlaHgthP3u68804sXrwYTqcTW7duRUFBAc4++2z2kx+B+qXlfZGRkejfvz/279/f5e08nbhcLmzduhVDhw4FwH5q6cEHH8QjjzyCyMhIr9u7qp90HXq1M4zVam11sK/ZbFbn/ZCspqYGt912G5566ikArfvNbDbDarV2V/O63SOPPIJ77rkHsbGxXrezn5qcPHkSNTU1yM/Px9GjR3H48GFcfPHFyM7OZj+1cNlll+GGG27AE088AQD4z3/+g8TERPaTH4H6xd/P+DO93x599FH07t0bU6dOBcB+am7Tpk3Izc3FwoULsXbtWq/7uqqfGOxOgclkgsVi8brNYrHAZDJ1U4tOPzabDTNnzsS0adNw0003AWjdb2dyn+3YsQNbt27Fq6++2uo+9lOTiIgIAPKE5YiICAwdOhTXX389vvrqK/ZTMxUVFZg+fTrefvttzJgxAzk5ObjsssswdOhQ9pMfgfqFP+Nbe/311/Hpp5/ihx9+gCRJANhPCrfbjbvuugsLFixQ+6a5ruonDsWegqysLNTU1KC4uFi9bdeuXWp5+kzndDpx7bXXIjU1FS+++KJ6+5AhQ7xWyJ7JfbZ27Vrk5uaid+/eSE5OxocffoinnnoKt9xyC/upmYEDByIsLMzrNuFZuch+anL48GFER0fjV7/6FbRaLYYNG4bJkydj3bp17Cc/AvVLy/vq6uqQn5+PIUOGdHk7TwfKz6dvv/0W8fHx6u3sJ5nFYsH27dsxffp0JCcn48orr8ShQ4eQnJyM+vr6ruunDp2xdwb69a9/LW699VZRX18vli1bJmJjY0VlZWV3N+u0MG/ePHHppZeKxsZGr9u//PJLkZGRIQ4fPiyKiorE0KFDxZtvvtlNrexedXV1oqioSH27+uqrxZ/+9CdRVVXFfmrhuuuuE7fccouw2WziwIEDIiUlRXz//ffsp2aqq6tFdHS0WL58uXC73SInJ0ekpKSIr7/++ozvp8bGRtHQ0CAmTZok3nnnHdHQ0CBcLlfAfrHZbCItLU0sXLhQ2Gw28dBDD4lJkyZ182fSufz107fffisSEhLErl27Wj2H/ST3k9Pp9Pp5/sknn4gBAwaIoqIi4Xa7u6yfGOxOUWlpqfjFL34hIiIiRFZWlli5cmV3N+m0cPToUQFAhIeHi8jISPVt3bp1Qgghnn76aREXFydiYmLE/fffL9xudze3+PTQfFWsEOyn5qqqqsSVV14pTCaTyMjIEAsWLFDvYz81+eabb8TIkSOFyWQS6enp4qmnnlLvO5P7ae7cuQKA19vq1auFEIH7ZevWrWL48OEiPDxcTJo0qcev9PTXT5MnTxY6nc7r5/ltt92mPo/91PT9pFi9erXXqlghuqafJCHOoB0qiYiIiHowzrEjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh5C190N6GxutxuFhYWIioqCJEnd3RwiIiKikAghUFtbi9TUVGg0gWtyPT7YFRYWIj09vbubQURERHRKCgoKkJaWFvAx3Rbs5s+fj48++ggHDhzAe++9h2uvvdbn4xoaGnDLLbdg2bJliI2NxXPPPYff/OY3Qb9OVFQUALkzzGZzh7SdiIiIqKtYLBakp6ermSaQbgt2WVlZ+Mc//oE///nPAR83f/58VFZW4uTJk9i7dy8uv/xyjB07FgMHDgzqdZThV7PZzGBHREREP1vBTCnrtmA3Z84cAMBTTz0V8HGLFy/G559/DrPZjAkTJmDGjBn44IMP8Nhjj3VFM4PmKC6GaGzs7mYQERFRF9PGxEB7mhSPTus5dlVVVSguLsbw4cPV20aOHImtW7f6fY7dbofdblc/tlgsndpGACj/zxsoe+mlTn8dIiIiOv0kPvQg4ubN6+5mADjNg53VaoVWq4XRaFRvM5vNsFqtfp/zzDPP4PHHH++K5qls+/cDACS9HpJe36WvTURERN1L0p0+v/tP62BnMpngcrlQX1+vhjuLxQKTyeT3OQ8//DDuu+8+9WNlwmFXSHzwQfSaM7tLXouIiIiopdN6g+LY2FgkJydjz5496m27du3C0KFD/T7HYDCoCyW4YIKIiIjOJN0W7BwOB2w2G9xut9f7Lc2ZMwdPPvkkamtrsXnzZixfvhzXXHNNN7SYiIiI6PTWbcHulltuQUREBNavX48bbrgBERERWLduHZYsWeJVkXviiScQHR2NlJQUzJo1CwsWLEB2dnZ3NZuIiIjotNVtc+wWLVqERYsW+bxv9uymeWoRERFYsmRJF7WKiIiI6OfrtJ5jR0RERETBY7AjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeghdKA82Go1tPkYIAaPRiIqKinY3ioiIiIhCF1Kw02g02LdvX8DHCCEwatSoU2kTEREREbVDSMHuySefREZGRpuPe/zxx9vdICIiIiJqn5Dm2N17771BPe7uu+9uV2OIiIiIqP1Cqtgpampq8MUXX2Dfvn2wWq0wmUwYOnQopk+fjujo6I5uIxEREREFIeRVsd9//z0yMzPx3//+F3V1dYiOjkZdXR3eeOMN9O/fH6tXrw7qOmVlZZg2bRqMRiOys7OxatUqn4+bN28eDAYDTCaTGiCJiIiIqLWQK3Z33HEH3nrrLVxxxRWt7lu+fDluv/12HDhwIKjrpKamory8HCtWrMCsWbOQn5+P2NjYVo99/PHH8dBDD4XaVCIiIqIzSsgVu+PHj+Oyyy7zed+ll16KgoKCNq9htVqxbNkyPPHEEzAajZg5cyaGDRuGL774ItTmEBEREZFHyMHuwgsvxF133YXS0lKv20tLS3Hvvfdi8uTJbV4jLy8P0dHRSElJUW8bOXKk361UXnjhBcTFxWHChAlYt25dwGvb7XZYLBavNyIiIqIzQcjBbtGiRaiqqkKfPn2QnJyMgQMHIjk5GRkZGaisrMTbb7/d5jWsVivMZrPXbWazGVartdVj7777bhw6dAhFRUW44447MH369IBVwWeeeQbR0dHqW3p6eqifIhEREdHPUshz7OLj47F06VLU1dUhLy9PXRWblZWFyMjIoK5hMplaVdIsFgtMJlOrx44ePVp9f/bs2Vi8eDFWrlyJm266yee1H374Ydx3331e12W4IyIiojNBu7Y7AYDIyMh2nzCRlZWFmpoaFBcXIzk5GQCwa9cu3HzzzW0+V6MJXGQ0GAwwGAztahcRERHRz1lIQ7HnnHNOUI8777zzAt5vMpkwY8YMzJ8/Hw0NDVi+fDn27t2L6dOnt3rsJ598grq6OjidTnz44YfYsGEDpkyZEkqziYiIiM4IIVXsdu7cieeff77Nx+3Zs6fNxyxYsABz585FXFwc0tLSsHTpUsTGxmLJkiV4+umn1YUUL7/8Mm666SZIkoTs7Gx89tln6Nu3byjNJiIiIjojhBTsfvOb3yAnJ6fNx11zzTVtPiYhIQFfffVVq9tnz56N2bNnqx9v2LAhlCYSERERnbFCCnYLFy7srHYQERER0Slq9+KJpUuX+r3v6quvbu9liYiIiKid2h3sXnvtNa+Pi4uLkZ+fj4kTJzLYEREREXWDdge71atXt7rtnXfewY4dO06pQURERETUPiGfPBHInDlzsGjRoo68JBEREREFqd0Vu5ZnxdbX12PJkiXqhsNERERE1LXaHeySk5MhSRKEEAAAo9GI0aNHY/HixR3WOCIiIiIKXruDndvt7sh2EBEREdEp6tA5dkRERETUfRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIiIuohGOyIiIiIeggGOyIiIqIegsGOiIiIqIdgsCMiIiLqIRjsiIiIiHoIBjsiIiKiHoLBjoiIiKiHYLAjIiIi6iEY7IiIiIh6CAY7IiIioh6CwY6IiIioh2CwIyIi+v/27j2mqbOPA/i3gFJKLzAVyk0XJpZxCZqFbSEhumXZdLwQRnQxDehm4lzm4tgfuumWdXFBWWIWd1O2zDBvQbZJphLUEWZ0MyhLXIhcNhys2ClMoYVyK6b0ef/w9UhBWN8JLZ5+P8mTyPM85fz6Dam/nPb0EMkEGzsiIiIimWBjR0RERCQTbOyIiIiIZIKNHREREZFMsLEjIiIikgk2dkREREQywcaOiIiISCbY2BERERHJhM8au5s3byIrKwsqlQoGgwE1NTX33Dc0NIT8/HxoNBrMnz8fZWVlXq6UiIiI6MEQ5KsDb9y4EdHR0ejq6sIPP/yAVatWobW1FeHh4W77TCYTrFYrrl27hoaGBjz//PN47LHHsGjRIh9VTkRERDQz+eSMXX9/P44dO4bt27dDpVIhNzcXKSkpOHHixLi9Bw8ehMlkglarRUZGBnJycnDkyJEJf/fw8DDsdrvbICIiIvIHPmnsrly5Ap1Oh6ioKGkuLS0NjY2NbvtsNhs6OzuRmpo66b7Rdu7cCZ1OJ424uLipfwJEREREM5DPzthptVq3Oa1Wi/7+/nH7AgMDoVKpJt032tatW9Hb2ysNi8UytcXfQ+TWrYivqoIu+z/TfiwiIiKiifjkM3ZqtXrcW6R2ux1qtXrcvpGREQwODkrN3b32jRYcHIzg4OCpL3oSsyIjvHo8IiIionvxyRm7hIQE9Pb2orOzU5qrr69HcnKy277w8HDo9Xpcvnx50n1ERERE5MMzdjk5OTCZTNi9ezeqq6vR0NCA7OzscXvz8/PxwQcfoKysDI2NjTh+/DguXrzo8bGEEADAiyiIiIjogXSnh7nT00xK+MiNGzfEihUrREhIiEhISBDV1dVCCCEOHTokkpKSpH2Dg4PCaDSK0NBQERsbKw4fPvx/HcdisQgAHBwcHBwcHBwP9LBYLP/Y9yiE8KT9e3C5XC5cv34dGo0GCoViWo5ht9sRFxcHi8Uy7qIQcsesPMOcPMOcPMOcPMOcPMOcPDOVOQkh0NfXh+joaAQETP4pOp99QbG3BAQEIDY21ivH0mq1/CP3ELPyDHPyDHPyDHPyDHPyDHPyzFTlpNPpPNrHe8USERERyQQbOyIiIiKZYGM3BYKDg2Eymbz+/XkPImblGebkGebkGebkGebkGebkGV/lJPuLJ4iIiIj8Bc/YEREREckEGzsiIiIimWBjR0RERCQTbOyIiIiIZIKN3X26efMmsrKyoFKpYDAYUFNT4+uSZoTh4WG8/PLLiI2NhU6nw7Jly3D58mVpvbi4GPPmzcNDDz2ELVu2eHb/O5mrra1FQEAAiouLpTnm5K64uBhxcXHQaDRYvHgxenp6pHnmdNulS5eQkZEBrVaL+Ph4lJaWSmv+nJPJZEJSUhICAgJw5MgRt7XJcvnll1+QlpYGlUqFpUuXor293dule9VEOX399ddYvHgxNBoN4uPjUVJS4vY45uTO6XQiNTUViYmJbvPeyImN3X3auHEjoqOj0dXVhQ8//BCrVq2CzWbzdVk+53Q6ER8fjwsXLsBqtSInJwe5ubkAgKqqKuzduxcXL15EY2MjKisr3f7z8Uculwtvvvkm0tPTpTnm5O7TTz/FyZMn8fPPP8Nut+PQoUNQKpXMaYw1a9YgKysLPT09+O6777Bp0ya0tLT4fU4JCQn4+OOP8fjjj7vNT5bL8PAw8vLy8MYbb8BqteLJJ59EQUGBL8r3molyGh4eRklJCWw2G06cOAGTyYRz585Ja8zJ3WeffTbuThFey+kf7yZLE+rr6xOzZ88W169fl+YyMzPF/v37fVjVzDQ8PCwUCoXo6uoSq1evFsXFxdLavn37xFNPPeXD6nxv7969YtOmTWLt2rVi586dQgjBnEZxOp1Cr9eLlpaWcWvMyZ1arRZtbW3Sz+np6eL48ePM6X+WLl0qysrKpJ8ny+XUqVMiMTFRWuvv7xchISHCbDZ7r2AfGZvTWEajUezatUsIwZzG5tTZ2SkeffRRUVlZKQwGgzTvrZx4xu4+XLlyBTqdDlFRUdJcWloaGhsbfVjVzFRbW4vIyEjMmTMHTU1NSE1Nldb8PTOr1Yrdu3fj/fffd5tnTnf99ddfGBoawrfffovIyEgYDAbprSDm5O7111/HwYMH4XQ6UVdXB4vFgieeeII5TWCyXMauhYaG4pFHHkFTU5PX65xJRkZGUFdXh+TkZADMaay33noL27ZtQ2hoqNu8t3IKmtLf5mf6+/vH3dhXq9VKn/uh23p7e7FhwwYUFRUBGJ+bVqtFf3+/r8rzuW3btqGwsBDh4eFu88zprmvXrqG3txetra0wm81oa2vDM888A4PBwJzGWL58OdasWYPt27cDAL788ktEREQwpwlMlstEr/H+ntu7776LmJgYPPfccwCY02i1tbVoaWlBaWkpzp4967bmrZzY2N0HtVoNu93uNme326FWq31U0czjcDiQm5uLrKwsrFu3DsD43Pw5s19//RV1dXX4/PPPx60xp7tCQkIA3P7AckhICJKTk1FQUICqqirmNEp3dzeys7Oxf/9+5OTkoLm5GcuXL0dycjJzmsBkufA1frySkhJUVFTg/PnzUCgUAJjTHS6XC5s2bcKePXukbEbzVk58K/Y+JCQkoLe3F52dndJcfX29dHra3zmdTqxevRrR0dHYtWuXNJ+UlOR2haw/Z3b27Fm0tLQgJiYGer0e5eXlKCoqwvr165nTKIsWLcLs2bPd5sT/rlxkTne1tbVBp9PhhRdeQGBgIFJSUrBs2TKcO3eOOU1gslzGrg0MDKC1tRVJSUler3MmuPP6dPr0acydO1eaZ0632e12XLp0CdnZ2dDr9cjLy8Mff/wBvV6PwcFB7+U0pZ/Y80MrV64Ur7zyihgcHBTHjh0T4eHhwmq1+rqsGeGll14Szz77rLh165bbfGVlpViwYIFoa2sTHR0dIjk5Wezbt89HVfrWwMCA6OjokMaLL74o3nnnHWGz2ZjTGEajUaxfv144HA7x22+/iaioKPHjjz8yp1F6enqETqcTx48fFy6XSzQ3N4uoqChx8uRJv8/p1q1bYmhoSGRmZooDBw6IoaEhMTIyMmkuDodDxMbGitLSUuFwOMTbb78tMjMzffxMptdEOZ0+fVrMmzdP1NfXj3sMc7qdk9PpdHs9P3r0qFi4cKHo6OgQLpfLazmxsbtPN27cECtWrBAhISEiISFBVFdX+7qkGcFsNgsAQqlUitDQUGmcO3dOCCHEjh07xJw5c0RYWJjYvHmzcLlcPq54Zhh9VawQzGk0m80m8vLyhFqtFgsWLBB79uyR1pjTXadOnRJpaWlCrVaLuLg4UVRUJK35c05r164VANzGmTNnhBCT51JXVydSU1OFUqkUmZmZsr/Sc6Kcli1bJoKCgtxezzds2CA9jjnd/Xu648yZM25XxQrhnZwUQvjRN1QSERERyRg/Y0dEREQkE2zsiIiIiGSCjR0RERGRTLCxIyIiIpIJNnZEREREMsHGjoiIiEgm2NgRERERyQQbOyIiIiKZYGNHRH7v6tWrbve+nA5msxkKhQJqtRrff//9pHuPHj0KtVoNhULhdi9qIqJ/wjtPEJFfUKvV0r8HBgagUqmgUCgAAE1NTZg/f/60Ht9sNiMxMREOh8PjxygUCnR0dECv109jZUQkJ0G+LoCIyBv6+/ulfyuVSjQ2NuLhhx/2XUFERNOAb8USkd8zm81QKpXSzwqFAnv37sX8+fMxd+5clJeXo7KyEvHx8YiIiEB5ebm012q1wmg0IiIiAvHx8di/f7/Hx71w4QKWLFkCjUYDvV6Pjz76aEqfFxH5H56xIyK6h/Pnz6OlpQUnTpzAq6++ipycHDQ0NKCmpgbr1q3DypUrERgYiIKCAqSkpMBiseDPP//E008/jcWLFyMtLe0fj1FYWIjNmzfDaDTCZrPBbDZP/xMjIlnjGTsionvYsmULlEol8vLy0NPTg9deew0qlQrZ2dno6+vD9evX0dnZiZ9++gk7duxAcHAwEhMTYTQaUVFR4dExZs2ahd9//x1WqxXh4eFYsmTJND8rIpI7NnZERPcQEREBAAgMDMSsWbMwb948aU2pVGJgYABXr17FwMAA5syZg7CwMISFheGLL77A33//7dExvvrqKzQ3N2PhwoXIyMhAbW3ttDwXIvIffCuWiOhfiomJQVhYGLq7u//V4w0GA7755hs4nU6UlJQgPz8fra2tU1wlEfkTnrEjIvqXYmJikJ6ejvfeew+Dg4NwOp24dOkSmpqaPHr84cOH0d3djaCgIGg0GgQGBk5zxUQkd2zsiIjuw+HDh9He3i5dMVtYWIihoSGPHltVVQWDwQCNRoNPPvkEpaWl01wtEckdv6CYiMgL2tvbkZiYiODgYBw4cAA5OTkT7q2oqMC6devgcDjQ3t6OyMhIL1ZKRA8yNnZEREREMsG3YomIiIhkgo0dERERkUywsSMiIiKSCTZ2RERERDLBxo6IiIhIJtjYEREREckEGzsiIiIimWBjR0RERCQTbOyIiIiIZIKNHREREZFM/BfmfSRZYoBLRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "stepresp = ct.step_response(sys)\n", + "out = stepresp.plot(plot_inputs=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAn0AAAHbCAYAAAC+3iyjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADNwUlEQVR4nOzdeVxU9foH8M8sDDAMw74KigiCKOK+ZlpZWq4tVjctzdtmVtds9V6LMm29rbfUX7fSFq30Vmq2WS65iysuqCCLguzrMDAzzPL9/XHmHGZfEIXkeb9eFJyZOec7B5TH5/t9nq+IMcZACCGEEEKuauKOHgAhhBBCCLn8KOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhBBCCOkCKOgjhHQZH3/8MeLj4yEWi/Hee+919HDaXVFREUQiEY4dO3ZJ5xk3bhwWLFjQLmP6K1yXkK6Cgj5C2lFlZSUefvhhdO/eHb6+voiOjsaECROwb98+4TkikQgbNmzouEF2USqVCo899hiee+45XLx4EQ899FBHD4nY+P777/HKK6909DAIuWpJO3oAhFxNbr/9duj1enz++edITExERUUFtm7ditra2o4eGgCgpaUFMpmso4fRIS5cuAC9Xo9JkyYhJiamzefR6/Xw8fFpx5ER/p6GhoZ29FAIuapRpo+QdlJfX4/du3fjjTfewHXXXYcePXpg2LBhWLRoESZNmgQASEhIAADceuutEIlEwtcA8OOPP2Lw4MHw8/NDYmIiXn75ZRgMBuFxkUiEFStW4Oabb4a/vz969uyJ9evXuxzTuHHj8Nhjj2HhwoUIDw/HjTfeCADIycnBLbfcAoVCgaioKNx7772orq4WXve///0P6enp8Pf3R1hYGMaPH4+mpiYAwJw5czB9+nS8/PLLiIyMhFKpxMMPP4yWlhbh9TqdDk888QQiIyPh5+eHa665BgcPHhQe37FjB0QiEbZu3YohQ4ZALpdj1KhROHv2rPCc7OxsXHfddQgMDIRSqcTgwYNx6NAh4fG9e/fi2muvhb+/P+Lj4/HEE08IY7S1evVqpKenAwASExMhEolQVFQEAFixYgV69eoFmUyGlJQUfPnll1avFYlEWLlyJaZNm4aAgAAsXbrU4TV0Oh2effZZxMfHw9fXF8nJyfj000+Fx//8808MGzYMvr6+iImJwfPPP2/1/U1ISLCbch4wYABeeuklq7F4+zPg7nvd1NSE++67DwqFAjExMXj77bddng9w/b1ZvXo1goODsWHDBvTu3Rt+fn648cYbUVxcLLz+pZdewoABA/DZZ58hMTERvr6+YIzZTe8mJCTg1Vdfxdy5cxEYGIju3bvj448/thrL3r17MWDAAPj5+WHIkCHYsGGD2ynuhIQELF26VHjfPXr0wMaNG1FVVYVp06ZBoVAgPT3d6uetpqYGf/vb3xAXFwe5XI709HR8/fXXVud19edmx44dGDZsGAICAhAcHIzRo0fj/Pnzbu81Ie2KEULahV6vZwqFgi1YsIBptVqHz6msrGQA2KpVq1hZWRmrrKxkjDH266+/MqVSyVavXs3y8/PZli1bWEJCAnvppZeE1wJgYWFh7L///S87e/YsW7x4MZNIJCwnJ8fpmMaOHcsUCgV75pln2JkzZ9jp06dZaWkpCw8PZ4sWLWKnT59mR44cYTfeeCO77rrrGGOMlZaWMqlUyt555x1WWFjIjh8/zj766CPW2NjIGGNs9uzZTKFQsLvuuoudPHmSbd68mUVERLB//vOfwnWfeOIJFhsby37++Wd26tQpNnv2bBYSEsJqamoYY4xt376dAWDDhw9nO3bsYKdOnWJjxoxho0aNEs7Rt29fNmvWLHb69GmWm5vL1q1bx44dO8YYY+z48eNMoVCwd999l+Xm5rI9e/awgQMHsjlz5ji8D83NzeyPP/5gAFhWVhYrKytjBoOBff/998zHx4d99NFH7OzZs+ztt99mEomEbdu2zeq+R0ZGsk8//ZTl5+ezoqIih9e48847WXx8PPv+++9Zfn4+++OPP9g333zDGGOspKSEyeVy9uijj7LTp0+zH374gYWHh7PMzEzh9T169GDvvvuu1TkzMjKsnuPuZ6CwsJABYEePHhW+l66+14wxNm/ePBYXF8e2bNnCjh8/ziZPnswUCgX7xz/+4fB9uvverFq1ivn4+LAhQ4awvXv3skOHDrFhw4ZZfW8zMzNZQEAAmzBhAjty5AjLzs5mJpOJjR071uq6PXr0YKGhoeyjjz5ieXl57LXXXmNisZidPn2aMcaYSqVioaGhbNasWezUqVPs559/Zr1797a6B47w5125ciXLzc1l8+bNY4GBgWzixIls3bp17OzZs2z69OmsT58+zGQyCd/Dt956ix09epTl5+ezDz74gEkkErZ//37hXjv7c6PX61lQUBB7+umn2blz51hOTg5bvXo1O3/+vNMxEnI5UNBHSDv63//+x0JCQpifnx8bNWoUW7RoEcvOzrZ6DgD2ww8/WB0bM2YMe/XVV62OffnllywmJsbqdY888ojVc4YPH87mzZvndDxjx45lAwYMsDr2wgsvsJtuusnqWHFxMQPAzp49yw4fPswAOA1uZs+ezUJDQ1lTU5NwbMWKFUyhUDCj0cjUajXz8fFha9asER5vaWlhsbGx7M0332SMtQZ9f/zxh/Ccn376iQFgGo2GMcZYYGAgW716tcMx3Hvvveyhhx6yOrZr1y4mFouF19s6evQoA8AKCwuFY6NGjWIPPvig1fNmzJjBbrnlFuFrAGzBggUOz8k7e/YsA8B+//13h4//85//ZCkpKUIAwRhjH330kXDPGPM86HP1M2Ab9Ln7Xjc2NjKZTCYEp4wxVlNTw/z9/V0Gfa6+N6tWrWIAhGCIMcZOnz7NALADBw4wxrigz8fHR/hHD89R0Ddr1izha5PJxCIjI9mKFSsYY9zPXVhYmNX3/L///a9HQZ/lecvKyhgA9sILLwjH9u3bxwCwsrIyp+e55ZZb2FNPPcUYYy7/3NTU1DAAbMeOHU7PRciVQNO7hLSj22+/HaWlpdi0aRMmTJiAHTt2YNCgQVi9erXL1x0+fBhLliyBQqEQPh588EGUlZWhublZeN7IkSOtXjdy5EicPn3a5bmHDBlid63t27dbXSs1NRUAkJ+fj4yMDNxwww1IT0/HjBkz8N///hd1dXVW58jIyIBcLrcah1qtRnFxMfLz86HX6zF69GjhcR8fHwwbNsxurP379xc+59fZVVZWAgAWLlyIBx54AOPHj8frr7+O/Px8q/ewevVqq/cwYcIEmEwmFBYWurwflk6fPm01TgAYPXq03Tht76GtY8eOQSKRYOzYsU6vM3LkSIhEIqvrqNVqlJSUeDxewLufAXff6/z8fLS0tFidMzQ0FCkpKS7H4Op7AwBSqdTqnqWmpiI4ONhqnD169EBERITb92v5MyISiRAdHS38jJw9exb9+/eHn5+f8Jxhw4a5PafteaOiogBAWAJgeYy/ltFoxLJly9C/f3+EhYVBoVBgy5YtuHDhAgC4/HMTGhqKOXPmYMKECZgyZQref/99lJWVeTROQtoTBX2EtDN+DdOLL76IvXv3Ys6cOcjMzHT5GpPJhJdffhnHjh0TPk6cOIG8vDyrX2iOWAYSjgQEBNhda8qUKVbXOnbsGPLy8nDttddCIpHg999/xy+//IK0tDT85z//QUpKikfBlEgkAmPM4bgYY3bHLAsi+MdMJhMAbt3XqVOnMGnSJGzbtg1paWn44YcfhOc8/PDDVuPPzs5GXl4eevXq5XactmN2N07be2jL39/f5eOOzml7n8RisXCMp9frXZ6X5+xnwN332vZ6nnL1vXE1Jstj7u4pz7ZoRiQSCT8jru6rN+flz+Hq5/Htt9/Gu+++i2effRbbtm3DsWPHMGHCBGEtq7s/N6tWrcK+ffswatQofPvtt+jduzf279/v0VgJaS8U9BFymaWlpVkVGPj4+MBoNFo9Z9CgQTh79iySkpLsPsTi1j+mtr8k9u/fL2RuPDVo0CCcOnUKCQkJdtfifxGLRCKMHj0aL7/8Mo4ePQqZTGb1Sz07OxsajcZqHAqFAnFxcUhKSoJMJsPu3buFx/V6PQ4dOoQ+ffp4NdbevXvjySefxJYtW3Dbbbdh1apVVu/B0f3ypjq5T58+VuMEuMIAb8eZnp4Ok8mEP//80+HjaWlp2Lt3r1VAsnfvXgQGBqJbt24AgIiICKvsj0qlchhoe/Mz4O57nZSUBB8fH6tz1tXVITc31+17dva9AQCDwWBVBHH27FnU19d7/bPqTmpqKo4fPw6dTiccs7xue9q1axemTZuGWbNmISMjA4mJicjLy7N6jrs/NwMHDsSiRYuwd+9e9OvXD2vXrr0sYyXEGQr6CGknNTU1uP766/HVV1/h+PHjKCwsxPr16/Hmm29i2rRpwvMSEhKwdetWlJeXC9M/L774Ir744gshg3L69Gl8++23WLx4sdU11q9fj88++wy5ubnIzMxEVlYWHnvsMa/GOX/+fNTW1uJvf/sbsrKyUFBQgC1btmDu3LkwGo04cOAAXn31VRw6dAgXLlzA999/j6qqKqtAqKWlBX//+9+Rk5ODX375BZmZmXjssccgFosREBCAefPm4ZlnnsGvv/6KnJwcPPjgg2hubsbf//53j8ao0Wjw2GOPYceOHTh//jz27NmDgwcPCmN47rnnsG/fPsyfP1/IXG3atAmPP/64V/fimWeewerVq7Fy5Urk5eXhnXfewffff4+nn37aq/MkJCRg9uzZmDt3LjZs2IDCwkLs2LED69atAwA8+uijKC4uxuOPP44zZ85g48aNyMzMxMKFC4Wg/vrrr8eXX36JXbt24eTJk5g9ezYkEondtbz5GXD3vVYoFPj73/+OZ555Blu3bsXJkycxZ84cq39o2HL3vQG4f9g8/vjjOHDgAI4cOYL7778fI0aM8Hjq1VP33HMPTCYTHnroIZw+fRq//fYb/v3vfwNwnwH3VlJSEn7//Xfs3bsXp0+fxsMPP4zy8nLhcVd/bgoLC7Fo0SLs27cP58+fx5YtW5Cbm+v1Py4IuWQdtZiQkKuNVqtlzz//PBs0aBALCgpicrmcpaSksMWLF7Pm5mbheZs2bWJJSUlMKpWyHj16CMd//fVXNmrUKObv78+USiUbNmwY+/jjj4XHAbCPPvqI3XjjjczX15f16NGDff311y7HZLswnpebm8tuvfVWFhwczPz9/VlqaipbsGABM5lMLCcnh02YMIFFREQwX19f1rt3b/af//xHeO3s2bPZtGnT2IsvvsjCwsKYQqFgDzzwgFXFskajYY8//jgLDw9nvr6+bPTo0SwrK0t4nC/kqKurE45ZFlrodDp29913s/j4eCaTyVhsbCx77LHHrBbsZ2VlsRtvvJEpFAoWEBDA+vfvz5YtW+b0Xjgq5GCMseXLl7PExETm4+PDevfuzb744gurx+Gg8MYRjUbDnnzySRYTE8NkMhlLSkpin332mfD4jh072NChQ5lMJmPR0dHsueeeY3q9Xni8oaGB3XnnnUypVLL4+Hi2evVqh4Ucrn4GbAs5GHP9vWaMscbGRjZr1iwml8tZVFQUe/PNN53+3DDG3H5vVq1axYKCgth3333HEhMTmUwmY9dff71VgUNmZibLyMiwO7ejQg53xS179uxh/fv3ZzKZjA0ePJitXbuWAWBnzpxxOH5n57X9Ptvey5qaGjZt2jSmUChYZGQkW7x4MbvvvvvYtGnTGGPM5Z+b8vJyNn36dOFno0ePHuzFF18UingIuVJEjLVxUQch5IoSiUT44YcfMH369A4dx5w5c1BfX0+7inSAzvIz4Mrq1auxYMEC1NfXd8j116xZg/vvvx8NDQ1u11oS0tXQjhyEEEL+sr744gskJiaiW7duyM7OxnPPPYc777yTAj5CHKCgjxBCyF9WeXk5XnzxRZSXlyMmJgYzZszAsmXLOnpYhHRKNL1LCCGEENIFUPUuIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXQEEfIYQQQkgXIO3oAXQkk8mE0tJSBAYGQiQSdfRwCCGEEEK8whhDY2MjYmNjIRa7zuV16aCvtLQU8fHxHT0MQgghhJBLUlxcjLi4OJfP6dJBX2BgIADuRimVyg4eDSGEEEKId1QqFeLj44WYxpUuHfTxU7pKpZKCPkIIIYT8ZXmyTI0KOQghhBBCuoAOC/oyMzORlpYGsViMb775xunzNBoNZs2ahcDAQHTv3h1ff/211eOrV69GXFwclEol7r//frS0tFzuoRNCCCGE/OV0WNCXnJyM999/H8OGDXP5vMzMTNTW1uLixYv45ptvMG/ePOTm5gIATpw4gYULF2LDhg0oLi5GUVERli5deiWGTwghhBDylyJijLGOHMC4cePwyCOP4O6773b4eExMDDZs2IDhw4cDAO677z4kJSXhxRdfxKJFi1BfX48VK1YAALZt24YHHngABQUFHl1bpVIhKCgIDQ0Nl3VNn66gAPqysst2fkIIIYR0TmK5HPKBAy/b+b2JZTp1IUddXR3Ky8uRnp4uHMvIyEBWVhYAICcnBxMmTLB6rLCwEBqNBv7+/nbn0+l00Ol0wtcqleoyjt58zbw8FEyZetmvQwghhJDOxzclBYkbN3T0MAB08qBPrVZDIpFALpcLx5RKJdRqtfC4ZVTLf65Wqx0Gfa+99hpefvnlyzxqa/rSUgCAyNcXsp49r+i1CSGEENKxZAkJHT0EQacO+hQKBYxGI5qbm4XAT6VSQaFQCI9bZuv4z/nHbS1atAgLFy60ev6Vas7sm5SEnt/974pcixBCCCHEVqdu2RISEoLo6GicOHFCOJadnY2+ffsCANLS0uwe69mzp8MsHwD4+voKPfmoNx8hhBBCupIOC/r0ej20Wi1MJpPV57ZmzZqFV155BY2Njdi/fz82bdqEu+66CwBwzz33YN26dThy5AgaGhqwbNkyzJo160q/FUIIIYSQTq/Dgr4HH3wQ/v7+2LVrF+677z74+/tj586dWLNmjZDJA4AlS5YgKCgIMTExmDFjBpYvX46UlBQAQHp6Ot5++21MmTIFcXFxiI+Px7/+9a+OekuEEEIIIZ1Wh7ds6UhXomWL+s8/UfzwI/Dr25fW9BFCCCGkXXkTy3TqNX2EEEIIIaR9UNBHCCGEENIFUNBHCCGEENIFUNBHCCGEENIFUNBHCCGEENIFUNBHCCGEENIFUNDXCZTWa/DaL6dxoaa5o4dCCCGEkKsUBX2dwP/9mY//+7MAN7+/s6OHQgghhJCrFAV9ncAvJ8sBAE0tRugMxg4eDSGEEEKuRhT0dQKaltZA72KdpgNHQgghhJCrFQV9HUzTYkSjziB8XUxBHyGEEEIuAwr6Oli1Wmf1dW2TzskzCSGEEELajoK+DlZlE/TVNek7aCSEEEIIuZpR0NfBatQtVl/XayjoI4QQQkj7o6CvgzVqrYO8+uYWJ88khBBCCGk7Cvo6WJNFEQcA1DVTpo8QQggh7Y+Cvg7WaBP02QaBhBBCCCHtgYK+DqbWckFeRKAvAAr6CCGEEHJ5UNDXwdTmIC9KyQV9zS20IwchhBBC2h8FfR2Mz/RFBvoBAJpbKNNHCCGEkPZHQV8Ha6RMHyGEEEKuAAr6Ohi/hi9CyPRR0EcIIYSQ9kdBXwfj1/RFBvKZPpreJYQQQkj7o6Cvg/Fr+qKUXKZPb2RoMZg6ckiEEEIIuQp1WNBXVVWFSZMmQS6XIyUlBVu3bnX4vL59+0KhUAgfYrEYb7/9NgBgx44dEIvFVo/v2rXrSr6NS9Zok+kDAA1N8RJCCCGknUk76sLz589HbGwsqqursWXLFsyYMQP5+fkICQmxet6pU6eEz2tqahAbG4tp06YJx3r37o0zZ85csXG3Nz7TFyKXQSYRo8VoQlOLAUFynw4eGSGEEEKuJh2S6VOr1di4cSOWLFkCuVyO6dOno1+/fvjxxx9dvm7dunUYNGgQkpKSrtBILy+jiUGj57J6Cj8p/GUSAFTMQQghhJD21yFBX15eHoKCghATEyMcy8jIsMrqObJmzRrMnDnT6lhRUREiIyORnJyMJUuWwGh0HjDpdDqoVCqrj46ktth9I8BXggAh6KNiDkIIIYS0r0sO+oqLi1FWVubVa9RqNZRKpdUxpVIJtVrt9DVFRUXIysrCnXfeKRxLTU3FsWPHUF5ejo0bN2LdunX44IMPnJ7jtddeQ1BQkPARHx/v1bjbm9ac5ZOIRZBJxEKmr0lHmT5CCCGEtC+vg7577rkH+/fvBwB89tlnSE1NRe/evfHZZ595fA6FQmGXZVOpVFAoFE5fs3btWowfPx6RkZHCsejoaKSmpkIsFiMtLQ2LFy/GDz/84PQcixYtQkNDg/BRXFzs8ZgvB75gw99HApFIhABfbomlRk+ZPkIIIYS0L6+Dvt9++w2DBw8GALzxxhvYtm0bsrKy8Oqrr3p8juTkZDQ0NKC8vFw4lp2djb59+zp9zdq1a+2mdm2Jxa7fjq+vL5RKpdVHR9IauKDPz4cbt5wyfYQQQgi5TLwO+kwmE6RSKYqKiqDVajF8+HD06dMHlZWVHp9DoVBg6tSpyMzMhEajwaZNm3Dy5ElMmTLF4fOPHTuGoqIiTJ8+3er4jh07hGxdXl4eli5dismTJ3v7ljoMn+nz8+GCPblManWcEEIIIaS9eB30jRw5Eo8//jiefPJJ3HrrrQCAwsJChIaGenWe5cuXo7i4GGFhYXj66aexbt06hISEYM2aNXYZvzVr1mDatGkICAiwOn748GGMGDECAQEBuOmmmzB9+nQsXLjQ27fUYbR6rglza9BnzvRRIQchhBBC2pnXffq++OILvP3220hPT8ezzz4LADh9+jQWLFjg1XkiIiLw888/2x2fOXOm3TTuW2+95fAcTz31FJ566imvrtuZ8IUc/uagjw/+dLQjByGEEELamddB3+rVq/Haa69ZHbvlllv+0g2SOwrfo49f0+cr5f7PB4OEEEIIIe3F6+ndJUuWODy+bNmySx5MV6PVW6/p85VSpo8QQgghl4fHmb5169YBAAwGA9avXw/GmPBYUVGR12v6iGWmzxz0mTN+Oj0FfYQQQghpXx4HfStWrAAAtLS0YPny5cJxkUiEyMhIrF69ut0Hd7XjCzn8hUyfOegz0PQuIYQQQtqXx0Hf9u3bAQBLly7F4sWLL9uAuhKt3Zo+mt4lhBBCyOXhdSHHQw895LQnn+VuGcQ92+rd1kwfBX2EEEIIaV9eB33R0dEQiUTCmj6RSCQ8ZjTStKQ3bJszt67po/tICCGEkPblddBnMllnocrLy7F06VIMHz683QbVVbRuw0bVu4QQQgi5vLxu2WIrOjoa77zzDhYtWtQe4+lSNC3WO3JcaiHHxmMX8b/DJVaV1VfK2fJGbD/j+VZ8hBBCCLmyvM70OXLgwAEYDLR1mLf4TJ+/eVr3UnbkOFBQg398cwwAIJOKMTUjtn0G6YHKRi3uWLEXjToD1jwwHKOTwq/YtQkhhBDiGa+Dvj59+lit42tubkZNTQ0++OCDdh1YV6C1XdMnbXufvl9Olrd+fqLMq6CvxWCCTNr2pO+fZ6vQqOOC/o3HLlLQRwghhHRCXgd9K1eutPo6ICAAvXv3hlKpbLdBdRVCpk926dO7h8/XCZ+fLG3w+HXv/J6LD7bmYf51vfDMhFSvrwsAJy62Xu9UqapN5yCEEELI5eV10Dd27FgAXEFHdXU1wsPDIRZf8tLALsm+erdt07tNOgNyylqDrZI6DbR6o3BeZ/RGEz7YmgcA+Gh7PuZflwS5zPsZ/8LqJuHzvEo1TCYGsVjk4hWEEEIIudK8jtaqqqowY8YM+Pv7IzY2Fn5+fpgxYwYqKioux/iuavyOHLbTu1ovp3dPlapgNDHEBPkh0E8KxoALtc1uX5db0Wj19YkSzzOEli7WaYTPWwwmVKt1bToPIYQQQi4fr4O+WbNmQalUoqCgAAaDAQUFBQgKCsK99957OcZ3VXPenNm76d38KjUAoHdUIGKD/AEAFSqt29cVVDVZfW05Tespxhgu1musjpXYfE0IIYSQjuf1XN7+/ftRVVUFmUwGAIiLi8NHH32EiIiIdh/c1c5uG7Y2Tu8WmIO+XhEKmBjD2YpGVKjcZ9ssp2UBoMDma0+oNAZhvP3jgnC8pAFl9Vqgu9enIoQQQshl5HWm79prr8WuXbusju3Zswfjxo1rrzF1GRonmb4Wg8mrXnv55oxdr8gARCn9AHiW6ats5J7TLZjLDp6v8T7oq21uAQAE+kqFLGNNE03vEkIIIZ2N15m+oKAgTJ48GWPHjkVcXBxKSkqwc+dO3H777Xj00UeF5y1fvrxdB3o1cramD+Cyfe4KMXj89G5iuAIl5vV1VY3uA6/qRi5gG9wjBBfrNSiqdr8O0FatOcALCZAhTMFlf6vVLV6fhxBCCCGXl9dBX3JyMp5//nnh6/j4eIwcObJdB9UVMMaETJ/tNmyA50GfVm9Esbloo1dkAI6X1AMAVBq929fyGbkhCSHYlF2K0gbPqn4t1TZx1+GCPl/uvFTIQQghhHQ6Xgd9EydOdLjPblZWFoYNG9Yug+oKLNft8Wv6fCQiiEQAY3wxh4/b85yvaYaJAYF+UkQofBEs517T4EnQZ87I9Y4KhMJXCrXOgOLaZiRHBXr8PuqauHOEyn0Qbs701TZRpo8QQgjpbLwO+m688UaoVPYNeCdOnIja2tp2GVRXwBdxAK2ZPpFIBF+pGFq9yeNdOfItijhEIhGC/Lmgr96DoI9vrRKu8EV8qByny1QorvMu6OPX9IUG+CIsgM/0tS3oK65txjP/y0ZihALLpvez2vmFEEI6E6PRCL3e/d+zhLQ3Hx8fSCSez8hZ8jjoq6ysBMA1Za6qqrIqNCgsLBSqeYln+KldqVgEH0nrWj5fqYQL+jys4M2vbA36ACDIn/s+uMv0tRhMUGm5rdPCFTJ0C/bH6TIVLta7LwCxxGf1QgN8Wtf0tbGQ46Pt57C/oBb7C2oxKT2GtnMjhHRKarUaJSUlXhXcEdJeRCIR4uLioFAovH6tx0FfdHQ0RCIRGGOIioqyeiwqKgqZmZleX7wr44s4/G3Wz/n5iNGg8bxXn5DpiwwAgNZMX7ProI9fzycVi6D080FcCFd5a9lo2RN80BcSIENYQNundxlj2H62Uvh6Z24VBX2EkE7HaDSipKQEcrkcERERNCNBrijGGKqqqlBSUoLk5GSvM34eB30mExekTJgwAb/99pt3oyR2+C3YfG2CPr6Yw+NMH9+uxZzpa13T1wLGmNO/kPgp2NAAGcRikdC2xbbRsjuta/paCznqm/XQG01WGUx3Shu0Vr0Fs80FKYQQ0pno9XowxhAREQF/f/+OHg7pgiIiIlBUVAS9Xu910Od1nz4K+NqH1pzJ85dZfwuEXTk8WNPHGLNa0we0Bn16Y2t1sCM1Ta1BHwB0EzJ93rVt4df0BctlCPb3Ab/lbp2X2T5+mlr4usr7noGEEHKlUIaPdJRL+dnzOujr06cP0tLSHH54o6qqCpMmTYJcLkdKSgq2bt3q8Hlz5syBr68vFAoFFAoF+vbta/X46tWrERcXB6VSifvvvx8tLX+NylGtOdPnJ7XJ9Pl4vhVbuUqL5hYjpGIReoTJAXDTxT4S7gfC1RRvo5Z7TGmeDm5rpq/RvC4wyN8HYnFrIYkn1cOWisyNoYf1DAXA9Rls0hm8OgchhHRlTzzxBKKiojBixIiOHgp27NiBu+++2+Pnnzlzpt03eTh06JBViznShqBv5cqVWLFihfDx4osvIiQkBA8++KBX55k/fz5iY2NRXV2NN954AzNmzEBdXZ3D57788stQq9VQq9U4deqUcPzEiRNYuHAhNmzYgOLiYhQVFWHp0qXevqUO0Zrpczy9q/Ug05dfyQVK3cPkwlQqV8HrvpiDD9aUftwMP5/pq2zUocWLbeD44DHQfJ5gOXftOjdrCm3xW8JlxAUJ2coLtd43iyaEkK7q7rvvxs8//9zRw+gUjEYjhgwZgtdff72jh9KpeB30jR071urj7rvvxg8//IDPPvvM43Oo1Wps3LgRS5YsgVwux/Tp09GvXz/8+OOPXo1l7dq1uOuuuzBkyBAEBQXhhRdewFdffeX0+TqdDiqVyuqjo2hazLtx2Gb6pJ5n+myndnlB/lwA5irTpzYHfQpf7rlhATL4SsVgDChr8Dzbx5+nNejjC0m8y7ier+ECvB5hAYg2byVX7sFWcoQQ0tW88MILSE1Nxc0334ybbroJO3bsAACMGjUKYWFhHp+ntLQUkydPRkZGBgYPHozi4mJoNBrce++96N+/P4YNG4Zjx44BAF566SWsXLlSeG10dDQAbrbtzjvvxLXXXovevXvj//7v/+yuo1arce+992Lo0KEYOnQo9u/fDwDIzc3FkCFDMGDAAHzyyScOx7hjxw6kp6djwIABGD16tMtr7tixAzfffDPuuOMOTJgwwSrb+NJLL+HBBx/ENddcg169euHXX38FADQ1NWH69Ono27cv5s2bJ7wvS0VFRRg4cCDuvfdepKSkYPHixfj0008xePBgjBw5EvX19QC4pNjQoUPRv39/PPDAA0ItxLPPPovU1FRkZGTgrbfecnrsSvA66HOEMYaSkhKPn5+Xl4egoCDExMQIxzIyMqyyeJbeeusthIWFYdSoUdi5c6dwPCcnB+np6VbnKCwshEbjOGh57bXXEBQUJHzEx8d7POb2xvfp87PL9PFBn/tsW4HToI8LvFRaF5k+HR+scc8ViSyKOTys4DWaGJrM09R88BjsRZ9AS0XmTF/P8ABEmoO+KhXt7EEI6bwYY2huMbT7h6tWMFlZWdi6dStOnDiB//73v9i3b1+bx//EE0/gjjvuQHZ2Nnbv3o3w8HB89NFHCA4OxvHjx/Gf//wHc+bMcXueQ4cO4aeffsKhQ4fw7rvvorS01OrxpUuX4vbbb8fBgwfx3XffYf78+QCABQsW4KWXXsKxY8dgMDhezvP222/jgw8+wLFjx6yymM6uuX//fnz44Yf4448/7M51/vx5/Pnnn1i3bh2WLFkCAPjoo4+QlJSEU6dOYdKkSaioqHA4jtOnT+Pll1/G8ePHsXr1atTX1+Pw4cMYMWIE1q1bBwC48847cfDgQRw/fhwymQybN29GbW0t1q9fj5ycHGRnZ+Ohhx5yeOxK8bo5s+X+ugDQ3NyMrVu34p577vH4HGq1Gkql0uqYUqkUomVL//jHP/Duu+8iICAA69evx5QpU3Dy5EnEx8fbnYf/XK1WO6yqWrRoERYuXCh8rVKpOizw44ss/H1sCzk8r97lix0SIwKsjgeYAzBXa+L4aVmFX+uPQLcQfxRUN6HEw3V9TS2t51fYTO82eDG9yxgTrtk9VI7IQK4KuLKRMn2EkM5Lozci7cX2L27MWTIBcpnjX8979+7FrbfeCh8fH8TFxWHMmDFtvs6+ffuwfv16ABB+Z+7evRv//Oc/AQDDhw+HTqdDQ0ODy/PcfPPNCAzkmvrfcMMNOHjwIIKCgoTHf//9d/zyyy946aWXAAA1NTUwGAzIzs7G5MmTAQD33HOPkFW0NGrUKDz//POYM2cO7rjjDrfXvOaaaxxm6wBg0qRJkEgkGDhwIC5cuACAu5//+te/AACTJ0+GXC53+Nq0tDQkJiYCABITE3HjjTcCANLT01FQUAAAyM7OxuLFi6FSqVBfX4/4+HjccsstUCgUePjhhzF9+nTcfPPNMJlMdseuFK+DPtsefQEBAZg1axbGjx/v8TkUCoXd1KpKpXLYaHDgwIHC5zNnzsSXX36J33//HXPnzrU7D/+5s4aFvr6+8PX19Xicl5PWZt9dnlDI4aLyludsejdA5j7os52WBVqLOUo9DPr4c8gkYiFYbd0RxPPp3bpmvbCOMFLpaxH0UaaPEEIstWdDaE+rQEUiEaRSqTBdqdM5/7vZ0fgYY/jll18QGxvr9RgXLVqEm2++GRs3bsTgwYNx9OhRl9cMCAiwe5zH//4Xi8VCZtHT+2m5AYVYLBa+tjzXAw88gF9//RXJycl466230NTUBKlUikOHDuG3337DJ598gvXr12P16tUOj10JXgd97dGEOTk5GQ0NDSgvLxci8uzsbDzwwANuXysWt2bG0tLScOLECeHr7Oxs9OzZ8y/RO0krZPraNr2r1hlQ1sBlwno5yfSpdc4DR76QI9DXPujzdHq30UHg2Lqmz/NMH7+GkFtXKGkN+mh6lxDSifn7SJCzZMJlOa8zo0ePxoIFC7BgwQJUVFRg165dePbZZ12eb9GiRRg2bBhuvfVWq+OjRo3C559/jjlz5kCr1YIxhmuuuQZffvklhg0bhgMHDsDX1xdKpRI9evTArl27AACbN2+2Os8vv/yCxsZGAMC2bduwePFi5ObmCo+PHz8eH374IV599VUA3O/qjIwMZGRkYPPmzZg8eTLWrl3rcOwFBQUYMGAABgwYgD/++APFxcUeXdNTo0aNwrfffouhQ4di8+bNaG5uewFhc3MzIiIioNVqsW7dOkyaNAlqtRrNzc2YOnUq+vbti9tvv93hsSvFqzV9NTU1WLx4MUaPHo2UlBSMHj0aL7zwAmpqary6qEKhwNSpU5GZmQmNRoNNmzbh5MmTmDJlit1zv/vuOzQ1NcFgMODbb7/F7t27cf311wPg0sHr1q3DkSNH0NDQgGXLlmHWrFlejaWj8NW5dpk+D6d3C81Tu+EKmTClylP4cudobnGR6TNnAW2ndwHP27aodfZTxG1Z01dhLtiIMq/l49f0Xcnp3T3nqjHh3Z1Y9lPOJf9LmrZmIqRrEIlEkMuk7f7hKgM3bNgw3HDDDejfvz+eeOIJq+ndhx9+GCNHjsTRo0cRFxeHTZs2AQBOnjzpcMrz/fffx7p169C/f3+MHj0aNTU1mD9/Purq6pCeno7HH38cq1atAgDcdtttOHfuHIYOHYqTJ09anWfUqFG4/fbbMWTIEDz55JN2Gb0XX3wRZWVl6N+/P9LS0oSijffeew8vvfQSRowY4XSG7p133kHfvn3Rv39/9O/fHxkZGR5d01Pz589Hbm4uBgwYgO3bt1/Skq9//etfGDx4MG655RZhlrKxsRGTJk1CRkYGbr/9dixbtszhsSvF40xfYWGhMFc+bdo0REVFoaKiAhs3bsSqVauwe/duJCQkeHzh5cuXY/bs2QgLC0NcXBzWrVuHkJAQrFmzBq+++qpQ1PHuu+9i7ty5EIlESElJwQ8//CBcJz09HW+//TamTJkClUqF22+/XZib7+w0zqZ3Paze5ad2EyPs/6C0Zvrcr+kL9PURjnnbq6/RpgIYaNuavvIGLqMXE2QO+q7w9K7eaMKCb4+hqlGHsxWNGJMcgWt7R3h9HpOJYeG6Y9iSU4Gl0/vhtkFxl2G0hJCu7pVXXsErr7wCAFa98P7v//7PYfWs0WjEyJEj7Y7HxMQ4bPHiqAtGQEAAtm3bJnxtOesXFxdn95px48YJffcUCoUQPFrq3bs3Dh06ZHfc0ocffujwuLtr2n7NryfklZeXAwD8/Pywfv16+Pr6Yvfu3Q7Hk5CQIFQcAxCqpQFYFbo89thjeOyxx+xef/DgQY+OXQkeB33PPPMMZsyYgffee8/q+Isvvoh//OMfeOqpp/Ddd995fOGIiAiHP2wzZ87EzJkzha93797t8jxz5szxqLqos2ld02dTyCGs6XOd6XO2ng/wsJDDQaYv1hz0ldVrYTIxiMWu13sI2UKLoC/IPL1b50XLFr41S5QQ9Jmrd69Q0HewsNbqWt8dKWlT0PdnbhU2HOMqyDI3ncKEvtHC94IQQjoK9e5zrqGhATfccANMJhP8/Pzw3//+t6OHdFl5/Btp27ZtyM/Pd/jYiy++iKSkpHYbVFegcbqmz7Pp3QJzi5PEcPtFqwHmNjBNnqzpswj6ooP8IBYBLUYTqtQ6YbrVGUfFIML0rleZPi6zyPfnCwngzqEzmKBpMdo1sHanslELuUxqFYy6cqCwFgCXaSxr0GLPuWqPgl5bv50qFz5v1BqwK68KE/vFuHgFIYRcmm+++aZDr98RSZf2vGZYWJjDquGrlcdr+gwGA3x8fBw+JpPJYDS6rzYlrYRCDqd9+lzfzxLzbhXxofbl5UKmz9WaPqGQo/V76iMRC4FXiQfFHK2BY+s5QuTudwOxVW4u2Ig2Z/oUvlJIzQGXNxnDBo0ej3x5GMOWbcXIV7diX75na02Pl9QDAP5+TU/IZRJUq1twprzR4+vysoq44DHOvDZyf0Gt1+cghBBCLhePg76RI0di+fLlDh9bvnx5p9jr769E0+JuTZ/rTF9xXWtfO1sKN9O7BqNJyDRaTu8C3hVzNDqY3uWrd9U6A/RGz7ZzqzBXIfMBp0gkstjOzbOgr6i6Cbcu34Nfzdm2Rp0Bz36XDaPJfVHFOfNUef+4YGHv3/0F3hUn1ah1KDAX1zxwTU8ArcEkIYQQ0hl4PL37+uuvY9y4ccjKysK0adMQHR2N8vJybNy4EX/88YfVwkbintPpXfPXrva/VesMqG3igqH4UPv2NO5atvC7aHDPtb5+t2B/HESdR21bhK3cLALHQD8fiEQAY1zmLVzhvi8iv6aPz/QBQIjcB9VqnUfTxOdrmnDHyr2oVrcgJsgPH/xtIB784hCKazXYfa4aY12sz9MZjMJ77RkegMHdQ7DjbBWOFde7va6l4yVc89KkSIWwHvBUqQp6o0nYF9kbOoMRYpGoTa8lhBBCHPH4N8rAgQNx4MAByGQyPPPMM7jlllvwzDPPQCaTYf/+/RgwYMBlHObVR2Mu1LAN+mQS95m+YvPUbrDcx2pqleeukIPPMkrFIuF6vO5h3BrB8zVNbt+D0LLFItMnEYug9PN8XZ+mxShMBVuuIQzxMNPHGMOCb4+hWt2CPjFKbHxsNIYmhOJm81q6bacdb6nDK65tholx7yFcIcPA7iEAgKPFdW7HbolfY5kcqUBCWAACfaXQGUzIq1B7dR4AOFBQg2HLtmLQK79jz7lqr19PCCGEOOJVGiE1NRVr165FeXk59Ho9ysvLsXbtWqSmpl6u8V21tC1O1vR5sCMHH/TFhzjeLibATZ8+fq2fv0xi1w+Kb/TMVwe7otbZF3IArVO8DR7sysFn+eQyCZR+jqqAXQeOv+dU4OiFevj7SLBqzlCh8veapHAAwJEL9S5fz0/J9gwPgEgkQkZ8EEQioLhW41X1cGE1d78SwgMgFouQGsNtD5RX6d3aQIPRhEXfn0CDRo9GrQHPfXfcoylqQgjx8fHBgAEDhP3nN2/ejJSUFCQnJwu98QBgwIABkMlk0Go7bqvLOXPm4Ndff/X4+c8//3y771rx4osvYu/eve16zs6O5o46iPM+fe6rd/mdOPi+erb4bdic9enjM31yB1WxfAsYfl9fVxxVAAPeVfDyu3FEB/lZBaAhfODoJtO34dhFAMC9I3tYTQ+nd+P2fTxb3uhyqrzQnKFLMFdBB/r5oHckF7AdveB5tq+omgvEe5rPkxju+X209PPJchRUN8HPRwwfiQgldRrK9hFCPMJXovr7+8NgMODpp5/Gjh07cPToUfz73/9GbS1XXHbs2LE2NzO+WhiNRixZsgSjRo3q6KFcURT0dZBL2YaN36kiSul4vRw/3arVm2BwUEzRLAR99ks6+aCltqkFdU2uA67W5szWU8xBwtSs+6CP340j2qY9TIgH59DqjdhxtgoAMLm/dWuU+FB/BPn7oMVoQm6F82wbX7DS3WJt5MDuwQCAo16s6+ODR/7+9Yrk/l/gQcbU0iZzn78HrknE7ebmzjtzq7w6x6U4UFCDaR/twQOfH0SlquOyAIQQx4qKiqwKJ51lzLKyspCeno6YmBgoFApMmjQJv/32m1fX2rRpEwYMGICMjAxhm9QjR45g2LBh6N+/P+677z4hW5iQkCB8vnr1ajz//PMAuAbJTz31FAYMGIChQ4fi3LlzDsc6ZswYDBo0CDNmzBC2QluxYgV69+6NsWPHoqCgwOEYn332WaSmpiIjIwNvvfWWy2vOmTMHTz/9NMaOHYv33nvP6t4lJCQgMzMTGRkZuOaaa1BfXw8A2LdvH/r27YvBgwdj/vz5DtvFvPTSS5g7dy7Gjx+PXr16YefOnZg5cyZ69+5t1cR68uTJGDx4MPr3748NGzYAAMrKyjB69GgMGDAA/fv3x5kzZxweay8U9HUQjbPmzOagr8VFyxZ+T9pIJ330LBsCWxZttB7jgjVHmb4AXylizRmzgmrXAYuj5syAZabP/fQun7W0zNIB8Kh698j5OjS3GBGl9BUyezyRSIR+3ZQAgJMXG5yew1HQKQR9Hmb6tHojSs0Zy4Qw60xfgReZvkatHjvzuABvUv8YjDZPUe/xsPXMpapR6/DgF4eQXVyPP05XYv7aI23eUm7jsYuY/VkWPt6ZT9vSkasWYwym5uZ2/2iPPzOlpaXo1q2b8HVcXBwuXrzo8esrKirw5JNP4pdffkF2djbefPNNAFzgtHz5chw/fhwKhQIrVqxwey6RSIRjx44hMzMTTz75pNVjLS0teOaZZ7Bp0yYcOXIEQ4YMwfLly3Hx4kW89957OHz4MDZt2oSsrCy789bW1mL9+vXIyclBdnY2HnroIbfXLC0txY4dO/DUU0/ZnS8pKQnZ2dkYOHAg1q1bBwB48MEHsXbtWhw6dAiVlZVO32NZWRm2bNmCd955B9OnT8crr7yCEydOYNWqVVCrud+lX3zxBQ4fPozdu3dj8eLFYIxh7dq1GD9+PI4dO4bDhw+jR48eDo+1F9ouoIM469Mn8yjTxwV9EYGOM30yqRhSsQgGE4OmxYggf+tMnKvpXQDoFalAaYMW+ZVNGNwj1Ok4HDVnBizX9HmQ6TMHfTFBtpk+91PEx83B3JAeoQ73quwdFYg952qEIgtHyh0E0Hwxx/GSBhiMJkjdVNBeqG0GY0CguRgE4O4hwAXOnjZ63namEi0GExLDA5AaHShsR3e6TIW6phaEBMicvpYxhk93F2JTdikC/aSY3D8W0wd086qx9bpDJVBpDQhX+EKl0eNgUR1+PVmOm9O9azC9/Uwl/vHNMQDcLiUiiPDgtYlenYOQvwKm0eDsoMHtft6UI4chkjtes+0pR4Gjqz19bR04cAA33ngjYmK4P/+hoaFoaGiAwWDAkCFDAACzZ8/G66+/bhfI2brrrrsAcJmuRx55xOqxs2fP4vjx47juuusAcEHgDTfcgIMHD2L8+PEIDOSW29xyyy1251UqlVAoFHj44Ycxffp03HzzzW6vefvttzu9D1OnTgXAFa4WFBSgvr4ejDFhv98777wTP/30k8PX3nzzzRCLxUhPT0dCQgISE7m/8xISElBeXo6kpCS8++67wn7IhYWFKC8vx5AhQzB37lz4+PjgjjvuQGpqqsNj7aVdMn1z587FZ599Rg2aPaQ3mqA3cn8g27IjBx/0RToJ+oDWgM5RMUezUETiOOZvXdfXxkyfOUvn2Zo+x9O7nmT6TpjbpPSzyfLx+KnWIhdBn22PQABIilAg0FeK5hYjcj2ovrVcF8j/ZRIf4g8fiQhavQllHk6T/nS8DABwS3oMRCIRwhS+SAjj/uI/Vapy+doPt53D0p9O43hJA/acq8Gi709g5Otb8e7vuU4LeiwxxvDNwQsAgGcnpuDhsdxfWJ/uLvRo7JbneeWnHACta04/2Jbn1V7MhBDnpFIpTKbW3w86neOCs27dulll9i5evCgEcG3lKpC0HJezMTk759ChQ3Hs2DEcO3YMOTk5+M9//uNRtlMqleLQoUOYMmUKPvnkE8ydO9ftawIC7Hex4vn6cr9TxWIxDAaD3RhcjUkmkwmv5T+3PNe2bduQlZWFrKwsZGdnIyEhATqdDmPHjsWff/6J0NBQTJkyBVu3bnV4rL20S9DHGMPXX38tRMPENa1FZa5dIYcH1btV5jV9fKWqI/x6vWYH07sacxAQ4CzT50EFr8nEnFfv8tO7HmT6Wnv0WReleJLpO2HO9NlO7fJ6mKdai5y0nzGaGKrU1ruBAIBYLEJGfDAAz1q3FNkUgwCAVCIWGmd7sq5PrTNgh3nt3i0WmbW+sdx7O1XqfIq6UqXFh9u5NSuPXZeERTenIi7EH/XNery/NQ93rNiHGrXrv4QLq5twvqYZMqkYk/vH4N4RPSAVi3DofB1Ol7kOOC0dKKxFQVUT5DIJflkwBilRgWjUGvDtoQsen4P326lyTPtoD8a8uQ0f78yH6QpWMTPGkFvRiBMlDVQ9TZwS+fsj5cjhdv8Q+Tsu0gOAyMhIXLx4EU1NTWhoaMCuXbscPm/YsGE4ceIEysvLoVarsXnzZkyYMMHhcx1lkkaMGIE//vgDZWXcP0Zra2sRHBwsBFoA8Pnnn2PMmDEAgB49euDYsWMwmUx2e/1+++23ALhq4oEDB9pdu7CwECdOnAAANDU14dy5cxg2bBj++OMPNDY2QqVSOdw/WK1Wo6GhAVOnTsW///1vq+3UXF3TUyEh5lmf48cBAOvXr2/TeQCgsbERISEh8PX1RVZWlrBO7/z584iJicGjjz6Ku+++GydOnHB4rL20y/TuqlWrAIAyfR7i1/OJRK1r+HjCmj4nu1kYjCbUmAssIp0UcgCWmT5Ha/ocTy3zPKngVVtkj2x39QiWe76mr9xJpo+fynSW6WvSGXDB3Lqmb6zS4XN6Cj0Hmx1OsdaodTCaGMQiIMxm6nRg92DsPleNoxfqMXO46/UUfFDZ02Yf5F4RCuRXNSG/Uo0xyc4bRAPAHzkVaDGYkBAmRx9zuxcASItV4qcTZS4zfV/uPw+dwYRB3YPx1E29IRKJ8MCYRPxysgwvbTqFnDIVnlqfjVVzhjqd1thrXjc4qHsw5DIp5DIpJvSNxk8nyvDV/vNYdmu6y/Hzvs7igrtpA2Kh9PPBfaN64F8/nMT3Ry7ioWt7eXQOk4nhvT9y8cG21gXfr/58Bg0aPZ6Z4Hqao1Grx4od+ThWXI+YIH/cPrgbRiaGeTWt1dxiwD++OYbfc7gej31jlVgxczC6h3k/3XbyYgO2n6lEcIAM0wfEOuyrSf66RCLRJU/Deksmk2HhwoUYOHAg+vTp4zTZIpVK8eabb+Laa68FYwzPPPMMwsLC7J5XU1PjMIMVGRmJd999FxMnTgTABZH//e9/sWrVKsybNw8ajQYDBw7EvHnzAAAvvPACZs+ejfj4eCQnJ9uNecSIETAajfj666/tHlu7di0eeeQRqNVqMMbw5ptvYuLEiViwYAGGDBmChIQEIbi01NjYiKlTp6KlpQUikQjLli3z6Jre+Pjjj3H33XcjJCQEgwYNavN5Jk6ciI8++ggDBw5Eenq68H3bsWMH3nzzTchkMkRERODrr7/G5s2b7Y61F6+DvtraWvj5+UEul8NoNOKbb76BRCLBXXfdBYnE8/VDXZm2pbUxs+0vI8vpXcaY3eM1TS1gjGusHCp3vsZL7qJXX7MHa/oAbq2azmAUxmSJX88nk4jtHvd0TZ/eaHKYabM9h9HEILEJ2M7XcAFfiNzH6Vq32GA/SMUi6AwmlKu0iLVpccNnGSMCfe3W7Q0yr+s74kExR2uvP+u//BMjFAAqXK4p5H1/lJuGmTagm9X3PM0c0OY4ybYxxoRp4dmjEoTXSsQiTO4fi+TIQEz9cDd2nK3C7zkVuKlvtMPz7DNvOzcyMVw4NmtED/x0ogw/HL2IZyem2q0NtVXX1IJfTnDb4P1tWHcAwOT0WLy8KQdnyhuRU6oS3o8zjVo9Fq7LFgKu+0cnIErph9d/OYPlO/IxoW80+scFO3xtQ7Met6/ci3OVrZnV746UYEB8MBbe2BtjksM9Cv5e2ZyD33MqIBIBPmIxTpWqcM8n+/H9o6NcZtctMcbw8c4CvPZLa9XdB1vzsGrOUKfLEZzRGYwoqGqCwcjQPVQu9LB0p0lnQEmdBkp/KaKVfl4FvjyTieFclRr1zXr0ighAmAc77JDL76mnnnJYiGBr6tSpwjo1Z7KysjB//nyHj02ZMgVTpkyxOjZ48GCHRRXjxo1DXl6ew/Pcd999ePXVV62OWfbcGzp0KPbs2WP3unnz5glBpSMxMTE4ePBgm65p+3VRUZHwuWWF7oABA5CTkwPGGB566CGHLV5eeukl4fOEhATs379f+Npyt7ItW7bYvTYhIQGzZ8+2OjZ79my7Y+3F66DvpptuwieffIIBAwbg+eefx2+//QYfHx/s378f77333mUY4tXH2RZsQGshB2OA3sggk1r/Rc1nvoLlPi6LA+Q+7qd3HbVsAbi1ggpfKdQ6Ay7UNCM5KtDuOcJ6Pj/7cwT5e7amr7JRB8YAH4nILtMWbD4HY4BKo7cL7PjsWkK48/UZUokY8aFyYerSLuhzkmUEgAHm6d2CqiZUqrROK6WtxhJmm+nzrNF1pUqL3eaq3VsHdrN6jM9iFlSpoWkx2mVnz1Y0oqC6Cb5SMW7oE2V37pToQPz9mp5YviMfH20/5zDoY4zhAB/09WrNBIxIDEVKVCDOVjTi66wLeGSs60zdd0dK0GI0oW+sUphyD5L7YHxaJH4+UY7vj5QgLTbN6evPVTbioS8Po6CqCTKJGEun98OdQ+MBcMUsG4+V4t3fc7Hq/mEOX7/oh+M4V6lGlNIXj12fjDNlKnx3pATHiutx32dZGNIjBAtv7I1RSeEOXw8A+/Jr8HVWMQDgy7nDkRSpwN0f70NRTTPuX3UQ3z480m4Nqy2jieHlH0/hi33nAQBje0egqIb7GZz5yQGsf2Qkejv4M8Urred6Mx4trsfRC/XIq2iEwTzFLBYBE/tFY/GkNLufZ15Vow5vbzmL746UCGuHuwX7Y2xKBMb1jsDopHCrCn9n9p6rRuamU8gzB9EiEXBDaiTmjevlssDLkkqrx87cKmw7U4n8SjUYgJSoQEwdEIvRvcJd/h1mMHL/WKtv1kNnMEFnMMJgZJBJxVD4StEzPMDt+2jSGbC/oAZlDVrIJGJEKH3RI1SOuBC58HetOyYTQ1FNE85VqqHSGhDkY0KU2OR1hS1jDAYTg4kxMMb9w0wqFrUpGHdGIpFgwIAB2LdvH/wdTBEzxmBiwOBBA6HX6yESiXDzzTdbFUB4gn/v7Tn2zuq7777DW2+9BaPRiKFDh2LmzJkdPaRL4nXQl5eXJ6Qlv/jiCxw5cgQBAQHo06cPBX0ectaYGbCe7tUZjHZ/Mak0XLCldDNN5O/B9K6zTJ9IJEKviABklzQgv0rtMOhr7dFn/yMULOym4Xp6t8zcIy8y0M/uL3/+L3a1zoB6B0GfUDwR5jzoA7hfdoXVTUI/Pkt8u5YoBwFdSIAMGfHByC6ux++nK5xO8Ta3GFBhrgC2nd5NjPCsbcv6wyXcX8Q9QuyC2MhAP4QrfFGt1uF0uUrIQPL2nGsN1pwFI3Ov6Yn/7ipAdkkDTpep0CfGOtuWV6lGtboFfj5iZMS3ZqFEIhH+PqYnnv3fcazeU4S5o3s6/UXJGBOmdv82rLvVL4NbB8bh5xPl2JhdiudvTnVYDf17TgUWfHMUTS1GRCv9sGLWIKGKGgCeHN8bm4+XYfvZKhy9UGf1GAAcLKrFzyfKIRYBn85uzaYtGN8bK//Mx1f7z+PQ+Trc88kBjEkOx3/+NlAoFuJp9Ub88wdu7czM4d1xTTIXHH4+dxhuW74Xp0pVmPfVYXwye4jD7DfABTlPr8vGFnOm8F+39MEDYxLRqNVj9mdZOHKhHrM/y8J380bZBW3nKtVY+lMO/sytgm08EeTvA1+pGJWNOvx8ohx7ztXgnTsz7AL97OJ6PPzlYSGLrfTjCpIu1muw9sAFrD1wAT4SETLigjEiMQwjEsMwJCHE6u+i8gYtlv18Gj9mcz0j/X0kCA+UobhWgz9OV+KP05W4Jikcj4zthaE9QyCTiKHSGlCt1uFinQbFdc0ortXgWHEdDhXVCQEr73hJA9YfLkFiRADmju6J2wZ1g1wmBWMMOWUqbD9TiZ151Th6oU4IWp1JjAjA8J6hGN4zDMN6hiImyA8ldRrszKvCHzkV2JNf47A5u1gEdAvxR0JYAKKUflD6+SDQTwqlP/d/qViEsgYtjl6ox6HztVb/gO0WKMFL10UClWrI/Y2QyySQScUQATAxBqOJ+zDwH0b+a/txiEQi+ErEkEnF8PURC3++jEYGvYlBbzDBYOIK/wxGPtCC8H8RRELwKJWIcOBkHqRiERr1IjS0aGHkX2ti0BtNMJgYGGP4cvMOSMRiFNW1QCxqgUQsglgkgmUMJzL/l4F7vdHiw8QYRODWP/PXl4i5rhEiACZwfycwBny2fjMY43YnYgxC0Gt1H8z3QiyCMA7+//xrTML/GcC4F4kgMt8H81S7+fNV//sJInDrrflzMH5MgPn6TDhueT/5c/BGT7wNoybeBphfX1SnA5gOtj+ZIvBjMo/F4nslk4oR52QHrSvN66BPJpOhubkZOTk5iI2NRbdu3WA0GtHU5N3OA12ZxsWaOuugzwTbcKtRy/3lY1s8YcvVVmzuWrYA3Ho0Luhz/H11VsQBtBZyNGoNLlue8Gvy+IIHu/PIfaDWGVDX3IKesA6GijwM+uJCuF+sF+vsg75yF0EfANyUFoXs4nr8erLcadDH78QRIvexCyL4TF9ZgxZNOoPDrIRWb8SqPUUAuEDDkbRYJXbmVuF0mX3Qx2fohve0X6vDC1f44rqUSGzJqcCGYxftgr595vV8Q3qE2gUz0wbE4t+/nUW5SotPdhfg0XFJDq9xsKgO+VVN8PeRYNoA607/Y3tHIETug6pGHfbm1+Da3tbrG789eAGLvj8BEwOG9QzFR/cMsmtHlBAegFsHdsP/DpdgxY58fHzfEOExxhhe/fk0AOCuofFW06cRgb54YXIaHro2Ecu3n8PXWcXYlVeNO1buw5oHhlt97z/YmofC6iZEKX3x3M2tawd7hAXgszlDcffH+7Errxp3rtyHJ25IRkJ4ABjjvofNLUacKm3AJ7sKcbFeA5lUjHfvHIBJ5qbhgX4++HT2UMz4v304V6nG7M+ysP6RkQiWy6BpMeKj7efwfzvzhSBnUPdgDE0IxcDuwegfF4wY8441Z8pVeO5/x5Fd0oC/f34IT47vjceuT4JYBKw5cAFLNuegxWBCr4gAvHF7fwxJCIWmxYj9BTXYcbYS289W4UJtMw6dr8Oh83X4cPs5yKRiDO8ZirRYJSoatPj5ZDlaDCaIRdwU/1M3piBI7oNzlWr8d2cBvjtSgt3nqrHbvFOMRCxyWezSKyIA4/tEYVCPEDAG7DlXjQ1HL6KgqgmLN5zEG7+cQfcwOSobdXZbH8okYoQGyCCTioVWVHqjCQ0aParVLSioakJBVZOQnXU0lu6hcqREB0JvNKG8QYsLtc1objGiuFaD4lr7vxcc8fMRIylSgbAAX0hMeohF3M9dc4vBo+p4S3wwYzQHYFqDEVqDEfCwF7oQMJkDF4MJ8LxWtvWlBpMJLppEeHQOPgjk/nlPa/qd8TN1nqVvXgd9f/vb33DddddBpVIJc+1Hjx5FQkJCe4/tquVsNw6A+xeCTCpGi8Hk8F+oKiHoc5PpczG92yzsvev828+v67NcH2WJDz4dBTKWa79UWgNCnay58yToK6nTOCwIOW9+bUK463898UFfSV2z3WN8hs52PSFvUnoM3vrtLHafq0ZJXbPDf6nZbuNmPX4ZwgJkqGlqQWF1k8O1XJ/uLkS1Woduwf6YkuF4W6S0GC7oy7Ep5jCZGLKKuG2Vhie6nm67dWA3bMmpwMajpXh2QqrVGkk+6LOc2uX5SiV4bmIqnlqfjfd+z0NGXLDQNNr6fXDd8qc5KFbgKoJj8eX+89hw9KJV0LftTAWe//4EGAPuGhKPpbf2g4+TfyQ8MjYR/ztcgt9PV+BcpRpJ5p/RX06WC/svPzm+t8PXRin98PK0fpg5ogdmf5aFc5Vq/O3j/fj6oRGIUvrhyIU6/N9O7j28Mq2fXSY9Iz4Yn8wegnlfHRYCLmfiQ/3x3l0DMbiHdYAeEiDD53OH4fble5FXqcYdK/dhXO8I/Hi8VPhZvC4lAplT+jpdtpAarcT6R0Zh6U85+GLfebz7Ry6+O1ICmVQs/Fkd3ycK796VIXwf/GUSXJcaietSI/ESYyiu1WB/QQ32F9Rgb34NylVa7Mqrxq681u3+hiaEIHNKX6uf2aRIBd64oz8euz4JK/7Mx5ZT5ahWtwhBlsJXithgP8SFyBEf4o+kSAXG9o60K4CZ2C8az92civWHirFqTxEu1DYLhUp+PmJckxSBcSkRuCYpHN1D5U6ngGubWnDkfB2yimpxoLAWJy9yldZSsQj944JwQ58o3JgWheRIhVXmmTGuav98TTMKq5tQrdahUWuASqOHSmtAo1YPvdGEKKUfUqMDMaxnGPrGKoWfS61Wi4KCQsSGysGkXNCuN5qEKVvLD6mQhRPbTecyxmXfuKlr7qPFYIII3Hl8JCL4SMSQSrgtGX3EYkDIWpmzVAwwmkxCJo7PLjJz4ZpYxJ2HP4dUzI3DMiPJZ+7476NlyMwYl62SCtk8EZfdE4msgj7+2kaTyfwaPlvXmsETQSR8bZtN47J5gAlMmILm/89nFMU2mUD+/TOLjJ2jTB7P8rqWmTgRILzG8hyA+bnci60zeWj9gn8fltfmz8O/N4mkfafBL6V5t9dB3/vvv48tW7bAx8cH119/PQDuBr7//vttHkRXo3WyGwfPV8IFfY569fHTqkp/1986V9W7/DFnLVsA9736hHE4yPRJJWIE+knRqDWgvrnFfdDnpCpS2IqtyX5tYKl5upYP6pzpxmf6vJzeBbhAbnRSGPacq8E3WcV4ekKK3XOEyl0nGcdeEQrUNNUiv0ptF/RVqLT4yNxq5ZkJKU6DHb6a17Z1Sm5lI+qb9ZDLJE7b1vCuS41EoJ8U5SotDp+vw7CeXJBoMjHsL+SCvhGJjrOFtw3qhj9OV+CXk+WY/VkWZo3ogUev6yUUNZwqbcAWc+HF36/p6fAc0wd2w5f7z+OXk+V4YTLXaDqvohFPfH0MjAF3D43Ha7elu1wjlBQZiBvTovB7TgX+7898vDUjA1q9EW/8yhVLPHhtosu1lwDXsHvdwyNx98f7UVDdhBkr92HWiO74eGchjCaGKRmxTotdRieF47cnr8XKHfnYlVeNqkYdRCJumYa/TIIeYQG4Njkcdw/r7nSqvVuwPz6fOwx3f8xl/PhArVuwP16Y3AcT+ka7XSclk4qxZFo/9OsWhKWbc4Q/R34+Yjx9Uwrmju7pNFASiUToHiZH9zA57hwaD8YYzlWqsTOvGqX1GshlEoztHYHBPUKcjiM+VI5Xb03Hsun9UNesR4vBhGC5j8PlKs4ofKW4f3RP3DcyAafLVKhQaRESIENajNLj84QGyDA+LQrj07gp7iadAY1ag9uxiEQiRAb6ITLQD0MTPFubaMnHh1tPraqvRUREBPz9RAAcXY9BCKGMRhiNjnNhPgB8pIBC6ug8DIARMAGOGjqIwP0Sl4ph0YCtNSyxPYfJxE298iQAJPzTXS5xNL8PE8BMgGVukz+HTGI5fGb/WssvHUzvOh2+7TkcvF54vss/Om4CJY/O4cEpnZxHq22fTChjDFVVVRCJRPDx8b4bgNdB3/Tp07Fx40arY4MHD8Ztt90mdNQmrrla0wdwvfoaddyaPlt8sBXo6/qbLVTv6ryv3gWAJPPesfmVaodVxI1uMo7Bch8u6HNRwXuhxl2mz3HbFqOJCUUYMUGugz4+O1fiaHrXRSEHb9bwHlzQd7AYj9+QZDf9yQfFtuv5eIkRAcgqqnWYMX3rt7NobjFiUPdguylRS3wxx5nyRqvWMwcKuCzf4B4hTgNGnp+PBDemReH7Ixfx84kyIeg7U94aOPaPcxw4ikQivHvXAMikx7HxWClW7y3C11kXMGNIHK5LicTrv5wBY1xm1NH6T4CbruwTo8TpMhVW/JmPh69NxNzPD0KtM2B4z1AsmdbPo0Xh88b1wu85FfjuSAlmjeiBP05X4HxNMyICffGQh7t+xIfK8c1DI3DPJ/txobYZr/7MBY2p0YFYdms/l6+NCfLHy9NcP8edlOhAbH1qHL49WIzSeg3S44IwbUCs03WCztw5JB4T+0XjQEEtjCYThvcMc7lriyMikQjJUYFOv2/uXuvsH3SekohF6NctyOuKZkcCfKUeFahcKolEgri4OJSUlFhVfBJypYhEIsTFxbWpY4rXf0K2b9/u8Piff/7p9cW7KlfVu4BF2xa9g+ldcxDlNtPHT+86aPLsbkcOAOgeGgCJWISmFiPKVVq74MrZFmy8YH8ZiqFxuRODu+ldZw2aq9U6GMz99VztSgK07gpRWq+xa/3SuqbP+TnGp0UhWumHcpUWPx0vw22D4qwe54O55CiFw9fz6+ds++wVVKnx/ZESAMDiyWkuA56EsAD4SsVobjHifG2zEGAeKOTX83mWrZiUHoPvj1zELyfL8OLkNIjFIuwyVw0P6xnqMnD085Hg/bsH4s4h8fj3lrM4eqEeX+2/gK/2c8Ub4QoZMqc4r8wViUR46sbeeOCLQ/h4ZwHWHSpGfbMePcLkWDFrsMeVlIO6h2BqRiw2ZZdixv/tE5ZAvDA5zW1VraX4UDk2PzYGy3ecw/GSBvSPD8L865LcFki1l9AAGeaN86xvoStKPx/cmGZftU0uL4VCgeTkZOj1tNMMufJ8fHza3CLP478lH330UQDc9ir857zz588jJcV+6os45qqQA2gt5nA0vasSgi03mT7zuTUuW7Y4/6Hhqo38cb6mGRdqmu2CPpWL6l3AokGzxnEFb4NGL2wn52z9krCdm805+KndKKWf231xo5R+wj7ElY2twWtzi0HImkY5WdMHAD4SMe4d2QNv/XYWn+0pxK0Du1mtyeGDPn59mS0+g8HvHsL7z7ZzMDHg+tRIu+IMW1KJGKnRgcguaUBOqQo9wwPAGMP+An49n/MiDkvXJIcj0FeKCpUORy7UYUhCKP407wIyzqa4wpnRSeEY1SsMBwprsWpPIc6UNyIlKhCLJ6W5nVq9oU8k7h+dgFV7ilDfrEd8qD8+mzPU62zRS1P7oqBajZMXuUD64WsTMaW/99tLBcl9sOiWPl6/jhCAy/hRb1ryV+Nx0BcVFeXwc5FIhP79++OOO+5o35FdxVwVcgCtvfpcF3K4yfSZp3ebHEzvumvZwusWzAV9jtbDNboJPvliDme9+s6WNwrXcNb0l68CrrM5B79fr7M+ZZYkYhFigv1QXKtBSZ1GCPr4qV25TIJANxmie4Z1xwdb83DyogqHztcJ64BKG7RobjFCKhYJW77ZSotRQizieqdVqLSIUvohv0qNjce4ZswLxic7fJ2tPjFKLugra8Ck/jHIq1SjtsncZsVJs2JbvlIJxqdF4YejF7HxWCmSIhU4aC4Esa2odUUkEgntPrwhEonw4uQ03JAahZomHW7oE+VVdo4XGiDD/x4Zhe1nKhER6Oty/RkhhJBWHv+Nm5mZCYDruj127NjLNqCuwO2aPiHT53xNn7tpKCHT52B6t7Vli+tvPz816qjdiVrnOvhs7dXnOOg7U85laVKina8lCglwvJ0bn+mLcZGhsxQXLEdxrQYX6zQYmsAda93z1/1OBSEBMtw2qBu+zirGZ7sLhaAvr4ILXBPCA5xOjfrLJEiO5BocHyqqw6T+MfjP1jyYGDC+T6TT3SVs8TtZ8NPElm1WPJ0aBbiijB+OXsR3R0oQIveB3siQFqN0uiaxvYlEIqH/3aXw85Hg5nTvs3uEENKVef7bwqyiogLr1q1z+OGNqqoqTJo0CXK5HCkpKdi6davD5y1cuBCJiYkIDAzEkCFDsHPnTuGxHTt2QCwWQ6FQCB/ONp/uTDT8NmxOp3dbt2Kzxa/pc5fp41u22Gb6+N5SgPtMn6siiEYP1vQBQIOTBs1nzJm+VBdBX7CT6t3Ses8zfUBrBa9l25bWQhDPAsc5o7iq1C05FULVb3YxN2XrbO9f3hhzkLP1TAXOVTZik7np7QIn7UUc4XcIOVxUB4PRhP0FfMWtd9WH1ySFIzU6EM0tRmFv25kjulOmjBBCugCv51ZWrFhh9XV5eTny8/MxevRo3HnnnR6fZ/78+YiNjUV1dTW2bNmCGTNmID8/HyEh1uubgoKCsGXLFiQmJuK7777D9OnTcf78eQQGcsFC7969cebMGUeX6LTcFnL4uMr08YUcrjN9rc2Zrc+hM5jA9y51O73rot2J26BPWNPnONOXXVwPAHaNgi3xLVtsM31lDV5m+oSgr/V9uGvMbCslOhBDeoTg0Pk6rDtYjMdvSMZh87687tbkjU+Lwie7C7H9TCXKG7QwMa7xszcVi31jgxDk74MGjR6Hztdhj7kxrqPeeq7wU6z3fpYFo4mhd5QCt9sUpxBCCLk6eZ3p2759u9XH6dOnhb14PaVWq7Fx40YsWbIEcrkc06dPR79+/fDjjz/aPTczMxNJSUkQi8WYMWMG/P39kZub6+2wOxV3a/p8Xazpcxds8ZxN71oGgR5P7zoI+lp35HC9ps/R9G59cwtyzD3nXFWe8mv6bAPHUi/W9AGtGUvL9+Ftpg8A7jHvmPHNwWIYjCYc8zDoG9IjBDFBfqhr1mNvfg18JCI8b7HjgyckYhFGmQO8FzachEprQLTSDwPiXV/bkVFJ4dj8+DV4847+WP/IKK/6qxFCCPnr8jroc2TWrFlYvXq1x8/Py8tDUFAQYmJa1+RkZGTg1KlTLl9XVFSE2tpaJCUlWR2LjIxEcnIylixZAqPReQNEnU4HlUpl9dER+DV1fk4ybTKX1bvmTJ+HO3I06WyDPoNwDYmTBq48yy3MTDZbG/EZR2cL8cMVXBuU6kb7DYL2F9SCMW57JlcVn3ymr7nFaJX15Nf0xbrp0cfjg1erTJ8HPfps3ZIegyB/H1ys1+D1X85ApTVA4StFaozrHmdSCddMVyYRQyzi2ovw+/J6Y2I/rmlwnrlieNrAWLffQ2f6xChx55B4p0U0hBBCrj5eT+9WVlZafd3c3Iw1a9YgOtpxF3tH1Go1lErraT2lUon6+nqnr9Hr9Zg9ezaeeeYZBAVx02Kpqak4duyYMMV75513IjAwEE8++aTDc7z22mt4+eWXPR7n5aI1BzB+ThbgO+vT12IwQWs+5i7o46d3NTb7Qnqy7y4vOsgPYhHQYjShWq2zCtBUbjKOMcHcc/mpWEtbcsoBwOF2XpYC/aQQi7jteeqb9YhSStBi4MZieQ134iymqfnmxq2FHJ4FjgBXPHDfyB74z7Zz+GR3IQBumtZdY2QAuDEtCnsXXQ8TY8JOFt66uV8MVkTn40x5I4LlPrh/lOPdLwghhBBHvM70RUdHIyYmBtHR0YiOjka/fv3w66+/4ssvv/T4HAqFwi7LplKpoFA4zn4wxjBnzhxERkbipZdeshpLamoqxGIx0tLSsHjxYvzwww9Or7to0SI0NDQIH8XFxR6PuT3xxRXOpledVe/y2TUAULgr5OC3YdMbrfbpa92CzX287yMRC5mwEoupUZ3BKEw9O5ve5Vuj1DXrrXoFqnUG/HKCC/qmDejm8vpischuV44KlRaMcZnKMA/7uwnBq0XA2JZMH8DtCBEfyr03mVSMR7xosBuu8G1zwMdf79uHRuKjewbhx8eucbpnMCGEEOKI15k+k8nBBoBeSk5ORkNDA8rLy4UMYXZ2Nh544AGHz3/88cdRWlqKX3/9FWKx8zjV1WMA4OvrC19f1zs4XAlq85Srs8DNWXPmRouGyO6m9fiAkjFAqzcJQWCTOfPnrHLYVrcQf5Q2aHGxTiOsXeN34+DH4ojST4oAmQRNLUaUNmiEvXx/Pl4Gjd6IxIgADOoe7Pb6IXIf1Da1oLaJC/pap3bdt1rh+UjEiAnyx8V6DYrrNAgJkKHKHPx5GzjJZVJ898gobD5ehpG9wtC7DdtXXYoguQ8mtaERMSGEENKmNX0GgwG7du3CunXrsGvXLq+3olEoFJg6dSoyMzOh0WiwadMmnDx5ElOmTLF7bmZmJvbs2YONGzfaBWw7duwQsnV5eXlYunQpJk+e3Ja3dEXxmT6Fr7PqXe64bSGHp0UcgHWRSLPFFK9GyPR5FvTZNjO2HEeATOI0+BSJRIgxr6Urq2997frD3PfrjsFxHgVt/NrAKvPawFKhctfzaVnAuiilqlEHxgAficjjbKGlSKUf5l7T02XlMSGEENLZeB30HThwAAkJCZg7dy5WrlyJuXPnomfPnti/f79X51m+fDmKi4sRFhaGp59+GuvWrUNISAjWrFmDvn37Cs9bsmQJTp8+jdjYWKEX35o1awAAhw8fxogRIxAQEICbbroJ06dPx8KFC719S1ccH/Q52xxcJnGc6fN0Nw6Aq/b0M7d+sazYbXKzBZwtvrq1zEHQ524rOP61fKBWVN2Eg0V1EIuA2wZ61iYkItAm6POyRx8vzqJXX7F5z9/oID+I21gIQQghhPzVeD29+8ADD+Dll1/G3//+d+HYqlWr8MADD+DkyZMenyciIgI///yz3fGZM2di5syZwteW69FsPfXUU3jqqac8vmZnwbc7cbauzt2aPk83hZfLpNDqW6yCvtZ9dz371rcGfa1r+hrd7MbB47Nr/JTs/w6XAADGJEd4PK3Kr4Hjp2P5ccR6WMQhjMWiEpmvCk4M976ClhBCCPmr8jrTV1JSgtmzZ1sdu/fee3Hx4sV2G9TVTG80CRk8Z+vhhObMNtW7Ko3n07tAa4Wu5fRusxfVu0BrdaujTJ+7YpIE89Ze5yrVMJoYvjvCBX0zhnjeDFjI9KnMQV8931+vrZk+DQqquJYniRFXZusxQgghpDPwOuh75JFH8MYbb8Bg4H7xG41GvPnmm5g3b167D+5qZLktmrPpXWfbsKk83I2D1xr0tWb6vA36+EyfozV97qZ3U8xFDmfLG7E3vxplDVoo/aQY3yfKo2sDQCQf9JkzfXyDZW8zfXyD5uK6ZuRXNQFAm3rlEUIIIX9VXk/vbtiwAefOncMbb7yByMhIVFZWQqPRIDk5GRs2bBCel5OT057jvGrwU7syqVhowmzLXfWu55k+7nnWQZ+X07vm4KqyUQuD0QSpRAy1h2sL+3bjCh3OVanxoXmf12kDunm1A4Ttmr4yL3fj4CVFcgFeUXWTEHj3CqdMHyGEkK7D66Bv5cqVl2McXQa/Q4azqV3AckcO6zV9rYUc3mb62j69Gx7gCx+JCHojQ2WjDrHB/sK2aO7WFkYG+iExIgAFVU04UFgLAJg9qodH1+VZBn1qnQEN5mt7s30awO2xGxHoi6pGHSrMU8W9o69suxVCCCGkI3kd9I0dO/ZyjKPLEIo4nLRrAZxP7/KZPs8LORxM7+q8C/rEYhGilH4oqdOgrEGD2GB/oWeeJ+1Obh8Uh7d+OwsAmNg3GkmR3gVaUebmyTVNLTht3q83XOHrceBraURiGH7MLgXArefj28EQQgghXYHXQV9DQwM+/PBDZGdnQ61WWz3mqBqXWGtyU7kLOJ/eVWk8b9kCOJne1fMtWzz/1scE8UEfN7XKB32hHgR9D4zpiapGHTQtRjx/c6rH1+SFyH2EJs9/nq0CACRFtm1admpGrBD0Tc2IbdM5CCGEkL8qr4O+u+++G3q9HrfffjvkcvnlGNNVjQ/6XAVufPWus+bM3hZyWO6/26xrbazsKa6Ct04o5uC3RPMk6POVSvDS1L5un+eMSCRCfKgcZ8obsf0st+9zrzYWYIzvE4l/3pIKtc6IR8cltXlMhBBCyF+R10Hfnj17UF1dDZnM+50MiOX0ros1fRInffo87I/Ha916zb5619PmzAC35RnQ2hi5Rs0FfSFt2M2iLRLCAnCmvBGnSrnp3bYGfSKRCA9d6/leuYQQQsjVxOuWLcOGDUN+fv7lGEuX4EnQx2/D5qxPn9LDoI+fQtY4mN71tHoXaN2ftlzFtUvhM31t2cKsLdJirbc7S46iViuEEEKIt7zO9GVkZOCmm27CXXfdhcjISKvHnn322XYb2NVK2He3DWv6vN2RQ8j06S5tepdvhFxarwVjTFjTd6UyfRnxwcLnErEIg7qHXJHrEkIIIVcTr4O+2tpajB8/HjU1NaipqRGOi0S0h6kn6pu5wC1Y7jxwc7QNG2MMKg+bIvOE6l39pU3vWjZoVusM0Bu5rfFC5Vcm6BuZGIbIQF9UNupwU1qUyywpIYQQQhzz+rfnqlWrLsc4uozaZvdZMn5617KQQ6M3wmjigi2lf9undzXmANCbwMmyQTPfJNnfR+JV4HgpZFIx1j44Ar/nVOBvw+KvyDUJIYSQq43Hv/mzsrLcPmfYsGGXNJiugM/0hbjI9LUWcpjAGINIJBLW80nEIvh7uKOFo+ld/nNPzwFwDZqlYhEMJobTZY0APKvcbU9JkQphVw1CCCGEeM/joO+uu+5y+bhIJEJBQcElD+hqJ6yHczE1yrdsAYAWowm+Uomwni/QT+rxVLrQssWc3TOamLBO0NPmzADXoDkm2A/FtRocKOSm9L3dEYMQQgghHcvjoK+wsPByjqPLqPNketdiT16dgQv6VF7uxgHYN2fWWKzt83ZdXHJkIIprNdhhbpDcLcS7vW8JIYQQ0rG8btlCLk2dB5k+fnoXaG3botJ616MPsCjkME/p8v8XiawDS0/0juK2T7tQ2wygtaKXEEIIIX8NFPRdQXqjScjYuVoTJxKJ4Gee4tWas3Pe7rsL2Ffv8hk/uY/E62rr1GjrPXN7RbRtKzRCCCGEdAwK+q4gvohDJAKC3GylZjs16+2+uwAg97U+R5N5OzZ5G1qe8Jk+Xp8YpZNnEkIIIaQzoqDvCqo3r+cL8veBROw608ZX1zabA7VGL3v0AVxGD+BavxiMJqF1izdFHLzeUQpIzWP2kYjsgkBCCCGEdG4U9F1BNR6s5+PZVt4Ku3F42KMPsG7A3Kw3tjZm9qJdC08qEePV29KRECbHi1P6QublmkBCCCGEdCza2uAKKmvg9q6NVrpvdyIEffz0rlDI4Xmmz1cqhkQsgtHE0KwzClnDtmT6AODOIfG4cwg1RyaEEEL+iihdcwWV1msBeNbuxE+Y3rUt5PA8TheJRMIUb3OLobXti5v1hIQQQgi5+lDQdwWV1HGZvthg90GfXabPXMjhTfUu0DrF29xibNO6QEIIIYRcHSjou4IKqtQAgIQwudvntlbv2hZyeDcjH2BRwdvYhl5/hBBCCLk6dFjQV1VVhUmTJkEulyMlJQVbt251+DyNRoNZs2YhMDAQ3bt3x9dff231+OrVqxEXFwelUon7778fLS0tV2L4bZJbwe1b60nlq79Nj73GNk7NWlYB8/v3UtBHCCGEdD0dFvTNnz8fsbGxqK6uxhtvvIEZM2agrq7O7nmZmZmora3FxYsX8c0332DevHnIzc0FAJw4cQILFy7Ehg0bUFxcjKKiIixduvRKvxWP6Awm1DXrIZOIkRSpcPt854Uc3gVscqvp3bZNERNCCCHkr69Dgj61Wo2NGzdiyZIlkMvlmD59Ovr164cff/zR7rlffvklMjMzoVQqMWrUKEydOhXffPMNAGDt2rW46667MGTIEAQFBeGFF17AV199daXfjkf4Hn0DuwcLRRquWK7FA9q2IwfQGiQ2avVtKgYhhBBCyNWhQ4K+vLw8BAUFISYmRjiWkZGBU6dOWT2vrq4O5eXlSE9Pd/i8nJwcu8cKCwuh0WgcXlen00GlUll9XG6Hz3PZy4pGHQBghoctT/hpWY3eCKOJQa1r29Qs3xOwvlnfprYvhBBCCLk6dFimT6m03sZLqVRCrVbbPU8ikUAulzt8nu15+M9tz8N77bXXEBQUJHzEx1/+nnN8Vk8E4G/DuuPWgd08ep3l9K7anKEDvA/YguTc8+s1Fpk+Lxo8E0IIIeTq0CG//RUKhV2WTaVSQaFQ2D3PaDSiublZCPwsn2d7Hv5z2/PwFi1ahIULF1o9/3IHfgOm34TmG65BLz8ppio937rM36J6l8/Q+fmIvd4JI9ifz/S1WFTvUqaPEEII6Wo6JNOXnJyMhoYGlJeXC8eys7PRt29fq+eFhIQgOjoaJ06ccPi8tLQ0u8d69uwJf3/HffB8fX2hVCqtPi43X39fhESGQOZFwAfAoqmy8ZKmZUMCzJm+Zn2b274QQggh5K+vQ4I+hUKBqVOnIjMzExqNBps2bcLJkycxZcoUu+fOmjULr7zyChobG7F//35s2rQJd911FwDgnnvuwbp163DkyBE0NDRg2bJlmDVr1pV+O5eF5fRuQzMX9AW3YSeNIPNr6ppbhOCRqncJIYSQrqfDWrYsX74cxcXFCAsLw9NPP41169YhJCQEa9asscr4LVmyRCj6mDFjBpYvX46UlBQAQHp6Ot5++21MmTIFcXFxiI+Px7/+9a+OekvtyrJ6t84c9PFFGd4INr+mUqWD3sgAUKaPEEII6Yo67Ld/REQEfv75Z7vjM2fOxMyZM4Wv/f39sWbNGqfnmTNnDubMmXM5htih+B05NHoj6jVcuxe+KMMbfHawqKYJACARixAgo6CPEEII6WpoG7ZOSuHL99czoF7I9LVhTZ8502fiknwIC5BBLBa1zyAJIYQQ8pdBQV8nxbdVUWn1QmPn4DZM79pmB8MVvpc+OEIIIYT85VDQ10nxe+y2GEyoUHGNnYPbkOkL9JVCYpHZCw+koI8QQgjpiijo66QUMilE5ljtQm0zgNaee94Qi0WIVvoJX0dQpo8QQgjpkijo66TEYpGwrq+YD/rakOkDgPjQ1r6FPcPlLp5JCCGEkKsVBX2dGN9Pr6aJX9PXtqCvR2iA8HlihOPdSgghhBBydaOgrxPjd9PgtWV6FwBGJ4cLnw/qHnJJYyKEEELIXxM1bOvEbNffhSvaFvTd3C8aD47piX7dghAd5Of+BYQQQgi56lDQ14lFWFTaSsWiNrdb8ZGI8a9Jae01LEIIIYT8BdH0bidmGeRFKf2oqTIhhBBC2oyCvk6sW0hr1W23YH8XzySEEEIIcY2Cvk4sNVopfN6vW1AHjoQQQgghf3UU9HViaTFKhAZwxRvjUiI6eDSEEEII+SujQo5OzF8mwR8Lx6KqUYeU6MCOHg4hhBBC/sIo6OvkQgNkQraPEEIIIaStaHqXEEIIIaQLoKCPEEIIIaQLoKCPEEIIIaQLoKCPEEIIIaQL6NKFHIwxAIBKpergkRBCCCGEeI+PYfiYxpUuHfQ1NjYCAOLj4zt4JIQQQgghbdfY2IigINcbOYiYJ6HhVcpkMqG0tBSBgYEQiS7fvrYqlQrx8fEoLi6GUql0/4Iuiu6TZ+g+eYbuk2foPnmG7pNn6D55rr3uFWMMjY2NiI2NhVjsetVel870icVixMXFXbHrKZVK+kPgAbpPnqH75Bm6T56h++QZuk+eofvkufa4V+4yfDwq5CCEEEII6QIo6COEEEII6QIo6LsCfH19kZmZCV9f344eSqdG98kzdJ88Q/fJM3SfPEP3yTN0nzzXEfeqSxdyEEIIIYR0FZTpI4QQQgjpAijoI4QQQgjpAijoI4QQQgjpAijoI4QQQgjpAijou8yqqqowadIkyOVypKSkYOvWrR09pA6n0+lw//33Iy4uDkFBQRg3bhxOnDghPP76668jIiICoaGhePbZZz3aT/Bqt2/fPojFYrz++uvCMbpP1l5//XXEx8cjMDAQAwYMQH19vXCc7lOrI0eOYNSoUVAqlUhMTMSqVauEx7ryvcrMzERaWhrEYjG++eYbq8dc3ZeDBw8iIyMDcrkcY8eOxfnz56/00K8oZ/dp9erVGDBgAAIDA5GYmIiVK1davY7ukzWDwYD09HSkpqZaHb/c94mCvsts/vz5iI2NRXV1Nd544w3MmDEDdXV1HT2sDmUwGJCYmIj9+/ejtrYWU6dOxfTp0wEAP//8M1asWIEDBw7g1KlT2Lx5s9Uvpa7IZDLhySefxNChQ4VjdJ+s/ec//8Evv/yC3bt3Q6VS4auvvoKfnx/dJwfuu+8+TJo0CfX19fjf//6HJ554Arm5uV3+XiUnJ+P999/HsGHDrI67ui86nQ633XYb/vGPf6C2thYjRozAvffe2xHDv2Kc3SedToeVK1eirq4OP/74IzIzM7Fz507hMbpP1j788EO7XTSuyH1i5LJpbGxkMpmMlZaWCsfGjBnDPv/88w4cVeej0+mYSCRi1dXV7O6772avv/668Ninn37Krrvuug4cXcdbsWIFe+KJJ9js2bPZa6+9xhhjdJ8sGAwGFh0dzXJzc+0eo/tkT6FQsIKCAuHroUOHsk2bNtG9Mhs7diz7+uuvha9d3Zdff/2VpaamCo+p1Wrm7+/PioqKrtyAO4jtfbJ1zz33sH//+9+MMbpPtvepvLyc9enTh23evJmlpKQIx6/EfaJM32WUl5eHoKAgxMTECMcyMjJw6tSpDhxV57Nv3z5ERUUhLCwMOTk5SE9PFx7r6vertrYW7733Hl566SWr43SfWpWUlECj0WD9+vWIiopCSkqKMLVE98neY489hi+//BIGgwFZWVkoLi7G8OHD6V454eq+2D4WEBCAXr16IScn54qPszMxGo3IyspC3759AdB9svXcc8/hn//8JwICAqyOX4n7JG23MxE7arXabhNlpVIprDUiQENDAx5++GEsW7YMgP09UyqVUKvVHTW8DvfPf/4TCxYsQEhIiNVxuk+tLl68iIaGBuTn56OoqAgFBQUYP348UlJS6D45MHHiRNx3331YsmQJAODjjz9GZGQk3SsnXN0XZ3/Hd/X7tnjxYnTr1g0TJkwAQPfJ0r59+5Cbm4tVq1bhzz//tHrsStwnCvouI4VCAZVKZXVMpVJBoVB00Ig6F61Wi+nTp2PSpEmYO3cuAPt71pXv19GjR5GVlYWPPvrI7jG6T638/f0BcAun/f390bdvX9x77734+eef6T7ZqKmpwZQpU/D5559j6tSpOH36NCZOnIi+ffvSvXLC1X2hv+PtrVy5Et9//z327NkDkUgEgO4Tz2Qy4YknnsDy5cuFe2PpStwnmt69jJKTk9HQ0IDy8nLhWHZ2tpDy7soMBgPuvvtuxMbG4t///rdwPC0tzaqStyvfrz///BO5ubno1q0boqOj8e2332LZsmV48MEH6T5Z6N27N2QymdUxZq6upPtkraCgAEFBQbj11lshkUjQr18/jBs3Djt37qR75YSr+2L7WFNTE/Lz85GWlnbFx9kZ8H9H/fbbbwgPDxeO033iqFQqHDlyBFOmTEF0dDRuu+02nDt3DtHR0Whubr4y96ndVgcSh+644w720EMPsebmZrZx40YWEhLCamtrO3pYHW7OnDnspptuYi0tLVbHN2/ezHr06MEKCgpYWVkZ69u3L/v00087aJQdq6mpiZWVlQkfd955J/vXv/7F6urq6D7ZuOeee9iDDz7ItFotO3PmDIuJiWHbtm2j+2Sjvr6eBQUFsU2bNjGTycROnz7NYmJi2C+//NLl71VLSwvTaDRszJgx7IsvvmAajYYZjUaX90Wr1bK4uDi2atUqptVq2fPPP8/GjBnTwe/k8nJ2n3777TcWERHBsrOz7V5D94m7TwaDwerv9O+++44lJSWxsrIyZjKZrsh9oqDvMqusrGQ333wz8/f3Z8nJyez333/v6CF1uKKiIgaA+fn5sYCAAOFj586djDHGXn31VRYWFsaCg4PZM888w0wmUwePuHOwrN5ljO6Tpbq6OnbbbbcxhULBevTowZYvXy48RvfJ2q+//soyMjKYQqFg8fHxbNmyZcJjXflezZ49mwGw+ti+fTtjzPV9ycrKYunp6czPz4+NGTPmqq9IdXafxo0bx6RSqdXf6Q8//LDwOrpPrT9PvO3bt1tV7zJ2+e+TiLEu1H2TEEIIIaSLojV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdAAV9hBBCCCFdgLSjB9CRTCYTSktLERgYCJFI1NHDIYQQQgjxCmMMjY2NiI2NhVjsOpfXpYO+0tJSxMfHd/QwCCGEEEIuSXFxMeLi4lw+p0sHfYGBgQC4G6VUKjt4NIQQQggh3lGpVIiPjxdiGle6dNDHT+kqlUoK+gghhBDyl+XJMjUq5CCEEEII6QIo6COEEEII6QIo6COEEEII6QIo6LsK7Mqrwo/ZpR09DEIIIYR0Yl26kONqcK5SjXs/zQIApMUq0StC0cEjIoQQQkhnRJm+v7h9+dXC57tyqzpwJIQQQgjpzCjo+4srqG5y+DkhhBBCiCUK+v7iztc0C5+X1ms6cCSEEEII6cwo6PuLq2rUCZ+X1ms7cCSEEEII6cwo6PuLq21qET6vtAgACSGEEEIsUdDXgYprm/Hu77koqWt2/2QnappaAz2VRg/GWHsMjRBCCCFXGWrZ0oH+/vlB5FaokV1Sj9X3D/P69c0tBmj1JuHrFqMJGr0Rchl9WwkhhBBijTJ9HUStMyC3Qg0A2HG2CjqD0etz1DfrAQA+EhGkYm6j5QaNvv0GSQghhJCrBgV9HSS3otHq66Jq76d41ToDAEDhK0WQvw8ACvoIIYQQ4hgFfR2kvMG60tY2CPQEH/QF+EoRJOeCPj77RwghhBBiiRZ/dZAym6CvpM77HntNFpk+f5kEAGX6CCGEEOIYBX0dpEJlHfSVN3gf9Km1rUGfwo/7VlLQRwghhBBHaHq3g1SruVYr3YL9Adhn/jxhOb0bbF7Tp6KgjxBCCCEOUNDXQRrMa+/6xCgBtC3oa3JQyEFr+gghhBDiSIcFfZmZmUhLS4NYLMY333zj9HkajQazZs1CYGAgunfvjq+//trq8dWrVyMuLg5KpRL3338/WlpanJypc6nX8EFfIIA2Bn0tXJuX9qjezS6ux7VvbseLG0+26fWEEEII6dw6LOhLTk7G+++/j2HDXDclzszMRG1tLS5evIhvvvkG8+bNQ25uLgDgxIkTWLhwITZs2IDi4mIUFRVh6dKlV2L4l6y+mQtO+UxftVqHFoPJ1UvsNGpbp3eVlxj0rdpTiAu1zfhi33mr/XwJIYQQcnXosKBv1qxZuPHGG+Hn5+fyeV9++SUyMzOhVCoxatQoTJ06VcgMrl27FnfddReGDBmCoKAgvPDCC/jqq6+uxPAvGR+cJYQFwFfKfRtsizvcaZ3elUDhyxVyNLd43+QZAA6drxM+P2zxOSGEEEKuDp16TV9dXR3Ky8uRnp4uHMvIyMCpU6cAADk5OXaPFRYWQqNxXAmr0+mgUqmsPjoKH/QFyX0QqfQFAFQ2ti3oC/CVQi4EfQavx6LVG3GxvvWeFdU0eX0OQgghhHRunTroU6vVkEgkkMvlwjGlUgm1Wi08rlQqrR7jjzvy2muvISgoSPiIj4+/jKN3rsVggt7IAAAKmRSRgVy2s1Ll3bSqsCOHnxQB5j59fCDojZK6ZjDW+vXFNvQMJIQQQkjn1qmDPoVCAaPRiObm1i3KVCoVFAqF8Lhlto7/nH/c1qJFi9DQ0CB8FBcXX8bRO2eZjfOXSRCh4DJ9Veo2Bn2+UshlXKavqQ3TuxfrbRtFe78lHCGEEEI6t04d9IWEhCA6OhonTpwQjmVnZ6Nv374AgLS0NLvHevbsCX9/f4fn8/X1hVKptProCPy6O5lEDJlU3Dq962WmT5jelUkR4Mtl+prbkOmrsQk2q9V/jQpoQgghhHiuw4I+vV4PrVYLk8lk9bmtWbNm4ZVXXkFjYyP279+PTZs24a677gIA3HPPPVi3bh2OHDmChoYGLFu2DLNmzbrSb8VrfKZPbg7UhEyfl1Wzls2ZLyXTV2MO8uJDuWC5rpmCPkIIIeRq02FB34MPPgh/f3/s2rUL9913H/z9/bFz506sWbNGyOQBwJIlSxAUFISYmBjMmDEDy5cvR0pKCgAgPT0db7/9NqZMmYK4uDjEx8fjX//6V0e9JY816bjALMAcqLW1kENjDvDkMsvqXe8zfdVNXLCZHMn1DKQGz4QQQsjVp8P23l29ejVWr17t8LGZM2cKn/v7+2PNmjVOzzNnzhzMmTOnnUd3eTXxmT5z8YVQyOFlpk9r7uvn5yMRsoZ6I0OLwQSZ1PN4vrqRy+wlRSqw7Uwl1DqD1+cghBBCSOdGv9U7QLM508e3WYkIbNv0rlbPncfPRwy5j6T1/F5m+2rMmb6e4QEQibhj9Rqa4iWEEEKuJhT0dQA+0xcgZPq4oK9arYPRxJy+zhJjTAj6/H0kkErEQpNnb9f18Wv6IgN9W7dzoyleQggh5KpCQV8HaBbW4nGZvtAAGUQiwMRas27u6I0MfHzoa87yBfDr+rys4K02V++GK3wRIpcBAOoo6COEEEKuKhT0dYDWnTS4YE0qESMswLspXq2hNZvn58N9G/k1gt5k+hhjQqYvNECGYDmX6aMKXkIIIeTqQkFfB7DN9AGtU7yeFnPwU7siEdfvD2itBvZmVw6t3oQWI1cQEhogEzJ99RT0EUIIIVcVCvo6gO2aPsCimMPDBs06vblyVyqByFx9wVfwehP0qbTcNK5ELIJcJrHI9NH0LiGEEHI1oaCvA9hW7wKtmT5Pt2KzrNzl8Zm+Zi+md1UaLrhT+kkhEolaCzk0FPQRQgghVxMK+jqAbZ8+oDXTV6nyrEGzVt/ao4/XuqbP+0yf0hzsBfp6P0VMCCGEkM6Pgr4OwO+kYTm9622mTyNk+lrPIezKofMm08cFd0o/LujjK4DVWgr6CCGEkKvJJQd9xcXFKCsra4+xdBl8da2/ZSGH0rwrh4dr+vjpXV+LXTOENX1tyPQF+nFjEYI+yvQRQgghVxWvg7577rkH+/fvBwB89tlnSE1NRe/evfHZZ5+1++CuVpZNlXkRbazetcz0XdqaPvP0rjn48yZwJIQQQkjn53XQ99tvv2Hw4MEAgDfeeAPbtm1DVlYWXn311XYf3NVKJ+yZ23r7Iy22YmPM/a4cWgfnkLehZYvKPI2r9Ddn+mRXfnrXYDThREnDJa8jrFHrcKio1qP7RwghhHQ1UvdPsWYymSCVSlFUVAStVovhw4cDACorK9t9cFcrnTA1a5/p0+iNUOsMCDRn3pxxmOkzT+9eSqavI6Z3X9h4El9nFWNYz1B8+9AIoQWNN1RaPW75YBcqVDq8Mq0v7h2Z0P4DJYQQQv7CvM70jRw5Eo8//jiefPJJ3HrrrQCAwsJChIaGtvvgrlZ8ps/XJkvHF2J4MsXLB45+Usvq3bZk+myqd/0uLehjjHm8fzAANGr1+DqrGACQVViLY8X1bbru1tMVqDCvh/xy//k2nYMQQgi5mnkd9H3xxRcIDAxEeno6li5dCgA4ffo0FixY0N5ju2rpHBRhABYNmj0I+lpbtlj06WtTpo+v3rUu5GjyogKYd66yEde8sR3XvLEN5yobPXqNbZD3Z26V19cFgP35tcLnuRVq1HhYBU0IIYR0FV4HfatXr8Zrr72GJUuWQKFQAABuueUWmEymdh/c1UrI9Flk6QDvijkcTe/ymT5vsnS2mT4+29jUYoDJi4wdALy48RQu1mtQ1qDF21tyPXrNiYsN1l+XNDh5pmv5VWqrr0+Vqtp0HkIIIeRq5XXQt2TJEofHly1bdsmD6Spagz7r2x/pRYNmrcFR9S6f6WtDIYefddDHGNCs9zzbd6GmGXvza4Svt5+tRIvB/T8ECquaAADX9o4AAJwsvbSgLyFMDgDIrfAs00gIIYR0FR4Xcqxbtw4AYDAYsH79eqsKyaKiIlrT5wWdg4ANAKLNvfrKGzwI+vT26wLbMjXbqLHO9Pn5iCEWASbGrQ1U+Hr2I/K/w9y6vGuSwnG6TIWaphacuNiAwT1CXL6uqIYL+m7pF41deVWoUOlQrdYhXOHr8XuobWoR9goelxKJ1XuLUFzb7PHrCSGEkK7A46BvxYoVAICWlhYsX75cOC4SiRAZGYnVq1e3++CuRkYTg97IBcy2mb6YYH8AQJknmT4HhRyta/raMr3L/SiIRCIofKVQaQ1o1BoQpXR/DpOJ4bsjFwEAdw6Nx3eHS/BnbhXOlKvcBn2l9dx77R0diJ5hASiobkJOqUrI/HmiwJzl6xbsj95RgQCACxT0EUIIIVY8Dvq2b98OAFi6dCkWL1582QZ0teOzfIB1lg4AYoK8z/Q5WtPX5GEhB2PMbhs2AELQ52kV8N78Glys10DpJ8VNaVE4dbEBf+ZWIbfc9RQrYwyVjdx7jVb6ISU6EAXVTcirVHsV9PEBXkK4HN1Duend4jqNx68nhBBCugKv+/Q99NBDTnvyRUZGXvKArnY6fes6N5nEOuiL9iboE6aILaZ3zUFfi8EEvdEEH4nrJZs6gwktRm48/PQu4H2vvvXmqd2pA2Lh5yNBj7AAAO4Dr7pmvZD1DFf4IimSKwzytPKXx1c7Rwb6IT6Uy5YW1zaDMeZ1z79zlY145KsjkIpFWPPAcIR5Mc1MCCGEdGZeB33R0dEQiUTCmj7LX6pGo/dtProavohDKhZBKnGc6atQaWE0MUjEzgMWnYPqXX9Z6+fNLUYE+bsO+vjGzGJRaxEIYLk20H3Q16jV49eT5QCAGYPjAQCxwdz7KK13HfRVmKexwwJkkEnFQtCXV6F29TI71eb2LOEKGWKD/SEWcfe5slGHKPM6SU+9/ssZnKvkrr/yz3z8a1KaV68nhBBCOiuvq3dNJhOMRiNMJhNMJhMuXryIefPm0Zo+Dzkr4gCACIUvxCLAYGJu+8w56tMnk4qF7KEnAZtluxbL4N2bfn9/nK6AzmBCYkQA+scFAeDW1gHugz6+NQ3fqiY5kluPl1ep9mortWp1i3AeH4lYKIhxd31bap0BO3Orha9/PlHu1esJIYSQzszroM9WdHQ03nnnHSxatKg9xnPVc9auBQCkEjEiA7mApczNFK+jQg4AkHtRzNHgYD0f0DpN3OTBOTZnlwEAJvePFQJHviCFKwbRO30tn+njs3GJEQEQiYAGjV4I5DzBT+/yFb+R5vN50u/Q0q7cKrQYTYgM9IVULMLFeg0uehk4EkIIIZ3VJQd9AHDgwAEYDFdur9a/Mq2T3Th4/Lo+t0Gfk4yhELB50LbFtnJXOIeH07sNGj125nE7aEzpHyMcV/hKEWReI+jqfbSuxeOCNT8fiVCIwU+xeqJ1etfX6nye9Du0lFXE7epxS3oM+sRwZcsnSuq9OgchhBDSWXkd9PXp0wdpaWnCR0JCAm655Ra89tprXp2nqqoKkyZNglwuR0pKCrZu3erweX379oVCoRA+xGIx3n77bQDAjh07IBaLrR7ftWuXt2/pimrdd9d+ehdoXQ9X3uA6w+SoTx8AyM1r8zzJ0vFr+uwyfeZsobvAcX9BDfRGhsSIACSbW6Xw+PWJrjJlfFAWqWwtlkiK8L6Ywzbo4zOH/F68nuJ38UjvFoRkoajEu/WFhBBCSGfldSHHypUrrb4OCAhA7969oVR60NDNwvz58xEbG4vq6mps2bIFM2bMQH5+PkJCrPu6nTp1Svi8pqYGsbGxmDZtmnCsd+/eOHPmjLdvo8Pw1btOM31Kc68+T6d3fWynd7lvabNHmT7X07vupogPFHCZsZGJYXaPxQb740x5o8tKZL6hcohcJhxLilJg65lK5HkYbBmMJtQ0ta7pA4AoJb+dneeZPpOJ4bQ56EuLVaLcHJBeyaCvvEGLT3YVoG83JaYP6OZ15TEhhBDiitdB39ixYwFwBR3V1dUIDw+HWOxdwlCtVmPjxo0oKiqCXC7H9OnT8c477+DHH3/Efffd5/R169atw6BBg5CUlOTtsAEAOp0OOl1r9keluvL7s/KFHM6CvhhPp3f5Qg6p7fSu95m+QD/rH4PWPXxdB44HCrlt14Y7CPrCArhArrbJ+dq8BvP1gy2CPr6Yw9Ngq7a5BYxxFcih5mtGtiHTV1zXjEadQagi5nv/nau6MkGfycQwd/VB5JRxP5MiiDB9YLc2nauwugm786pwQ58oxJrXVxJCCCFeT+9WVVVhxowZ8Pf3R2xsLPz8/DBjxgxUVFR4fI68vDwEBQUhJqZ1HVhGRoZVVs+RNWvWYObMmVbHioqKEBkZieTkZCxZssRl25jXXnsNQUFBwkd8fLzHY24v7qZ3Pe3V19qyxfpbyK/H86Ty1rJ61/oc7otBdAYjzpibLzvadSNUwQVgNS4KMur5oM/i+kLbFg+DvupG7vyhATKhxQ2/pq/CizV9/NRuSlQgfCSt7WPyK5tgMnleSdxWe/KrhYAPAJbvOOdVBTOvrEGDqR/uxgsbT2H6R3vQ0Oy8kIYQQkjX4nXQN2vWLCiVShQUFMBgMKCgoABBQUG49957PT6HWq22mw5WKpVQq53/oi8qKkJWVhbuvPNO4VhqaiqOHTuG8vJybNy4EevWrcMHH3zg9ByLFi1CQ0OD8FFcXOzxmNuLx5k+lZs1fU4LOfj1eJ5n+oLsgj73hRyF1U0wmhgCfaWIDbLvhRcewAVeNU3Os20NzVzAFiS3D/qqGnUeBSy26/mA1jV93lTvniptAAD0jeV+LruHyiEWARq9UZg+dqdJZ0B+lRqVKi30RpP7F1j47RTXHmZKRiz8fMTIrVDjaHG9V+cAgNV7itBonravbNThy/1FXp+DEELI1cnr6d39+/ejqqoKMhmXyYmLi8NHH32EiAjPt81SKBR2U6sqlQoKhcLpa9auXYvx48db7foRHR2N6OhoAEBaWhoWL16M5cuX48knn3R4Dl9fX/j6duwOC0IBhtR1pq+iQQeTiUHsoEGz5f69ztb0eVK92+Ak6BOKQVycg2+gnBylcLj2LNSD6V1HmT6FrxQxQX4oa9DiXFUjBvcIdfkeqmx6/QGtQV9tUwtaDCbInATYlvhMHx/0+UjEiFJy47hYr7E6vyMf78zH21tyrZpvj0uJxJJpfT2aYs0q5NZHTukfA6lYhB+OXsSP2aUY1N313sWWjCaGH45yeyDfmBaF33MqsPl4GR67PtnjcxBCCLl6eZ3pu/baa+0qZPfs2YNx48Z5fI7k5GQ0NDSgvLy1+W12djb69u3r9DVr1661m9q15e3awo7AT8vaVt3yIgP9IBIBLUYTapsdB0x8EQcA+DvJ9HnWp89x0KfwdV/IkVfBTe32tqna5YWZp3ed9dszmZjTTKM3O3M4yvSFyH3gI+EC0So3Ta55OUIRR5BwLNbDJtNbT1fg1Z/PQGcwwd9HIjTY/uN0Be799IDVfsuONGr1wnT2wO4huLkf9w+ZLacqvJriPXqhDpWNOgT5+2DZrf0gFYtwprwRBW1Yl8gYw5ELdfgztwrGKzC9TQgh5PLzOkoKCgrC5MmTMXHiRDzwwAOYOHEiJk+ejKCgIDz66KPChysKhQJTp05FZmYmNBoNNm3ahJMnT2LKlCkOn3/s2DEUFRVh+vTpVsd37NghTNHm5eVh6dKlmDx5srdv6Ypy1ZwZ4HbV4AMYZ+v6LIM+2/PIvWis7DzT537vXT5I4QM0W2Hm6d1aJ9O7jToD+FjCdk1hkhftUiy3YOOJRCKhybUn6/qqGnWobNRBJAJSo1uDWE+CPsYY3viVqx6fMyoBOUsmIG/ZLfh1wRhEBPoiv6oJX+477/L6x0sawBgQF+KPiEBfjEmOgJ+PGBfrNVbr/Nzh+wyOTAxDZKAfhidyWdLd56pdvcyh1389g9uW78Xsz7Lw8JeH2rS+kBBCSOfiddCXnJyM559/HiNHjkR8fDxGjhyJ5557DklJSYiKihI+3Fm+fDmKi4sRFhaGp59+GuvWrUNISAjWrFljl/Fbs2YNpk2bhoCAAKvjhw8fxogRIxAQEICbbroJ06dPx8KFC719S1dUa9DneHoXgLBGzlmwoTWfQyYV203/CkUYXkzvOi/kcH6OkjpubD3CAhw+zmf6aptaHAYM/Ho9fx+J3RS15XZs7jia3gVae/9VelDBy6/n6xkeIKxnBFp7JvLv1ZGcMhVyK9SQScV48sbeEIlEkIhFSI1W4qkbewMAVu8tchk0HS/hrp8RHwyA20P52mRuucRvpzwvkDpUVAcAGJLATQkPS+Cqqg+aj3vqx+xS/N+fBcLXf5yuxI/Hy7w6x6U4WFSLuz/eh3s/PYDTXgS9hBBCXPN6Td/EiRMxfPhwu+NZWVkYNmyYx+eJiIjAzz//bHd85syZdtO4b731lsNzPPXUU3jqqac8vmZn0Lr3rvN4mw9gnE2Ntm7BZn8OrzJ9zW0v5OAD0m5O1qvxa/r0RgaV1mB3DWdZRoBbJwi0TiG7wt8jy+ldwGJXDg969fHZtL4WU7uAZ3sI/2QOhm5IjbR7L9MGdMPLP+agpE6D7JIGDDAHdbb4jGaqxVT5hL7R2JJTgS2nyrHQHDy6YjIxHDJn+ob15DJ8Q3tywd/Bwlowxjzq+6fWGbD0pxwAwGPXJcFXKsbbv+fiP1vzMKV/jMtz6I0mrNpTiF151YgN8sfdw+Ix0Is1iQBQVN2E+z7Ngsb8Mz5j5T5smD/aaUbZGYPRhBU78vHD0YvoGR6Apbf2Q0wQta8hhHRtXmf6brzxRofHJ06ceMmD6Qp0bgo5gNap0Ron69GcNWYGPMvSAdyi/0ZzUGcX9AmBo9FhhkprUdHqLOjz85EI6wsdvY96Dff6YLl90MevEyxt0ArTt844WtMHWO7K4T7o44s40mKsK8qFoM/F7igHzAUY16dG2j3mL5Pghj7ccb461xG+F2Avi8Dm+tRISMxr8i7UNLt9D7mVjVBpDZDLJML7GBgfAh+JCOUqrctspaX3/8hFhUqHHmFyPHZ9EmaPToCvVIy8SrVwnxxhjGHBt8fw6s9nsCuvGt8eKsaty/fi/lVZOO7FVnavbM6BRm/EoO7BGNg9GGqdAU9+ewwGL6uhX9h4Em//nouC6iZsPVOJO1bsQ72TNbKEENJVeBz0VVZWorKyEiaTCVVVVcLXlZWVOHDggFDNS1zTumnZArROjTprFSI0ZnYQ9AmZPjctWxq1evDxnN2aPnPgaDQxYTraEr+1msJXardvr6UQc7avzkHrlXonWUb+WIo58DvkZmrS2fSuN1uxnbap3OW1rulzvraSD2j47Jqtsb25aVq+OtcWYwz5DtZHhgTIMCyBO+eWHOcBI4+fwh3UPQRSCfez5S+ToF+3IJfXt5RTqsJne4oAAC9N6Qs/HwmUfj64MY1brsFXBjvy4/Ey/HS8DFKxCM9MSMEdg+MgEYuw/WwVpn64Bwu+Oeo26CqoUmPrmUqIRcBbMzKwctZgKP2kOHGxAav3FrkdP+/Xk+X4OqsYYhHw7MQU9AiT42K9Bi9tct0H1NbFeg3+/dtZjH1rOwa/8jvmrzniUQDeYjBhw9GLeO3n0/jvzgIUVTd5dV3en7lVmPfVYcz8ZD8+2n7Oo+IsRwxGE/IqGlFU3URrMwnp4jye3o2OjoZIJAJjzG7NXlRUFDIzM9t9cFcjnZM9cy2FKfjpXccBi7PGzIBFls7Nmj5+etXfR2LX0oQ/B8BlDG2DS366MzbYz+V0X4hchpI6jcNf9q6mdwFgcEIIzlY04vD5Wkw0V7PaMlhUODub3nWX6WvSGVBYw/1STnMS9NU2taC5xSAE1LzjJQ3QGxkiAn3RPVTu8PzDe4aZn1sPTYsR/jLre1mh0kGtM0AiFiHBZn3kTX2jsK+gBltyKvDAmESX74Of2uXX8/GGJoTi6IV6HDpfh9sHxzl9fYvBhEXfH4fRxHBLejSus8hcTu4fi83Hy/DbqXIsntTH7ntuMjF8sDUPADD/uiTMv47bMeex65LwwdY8bDh2ERuOleJocT2+eWiE02nWbw9yRVlje0egl3kP5kW39MGi70/gnd9zcXN6jNPMMk+l1SNz00kAwLxxvfDouCSM6hWO25bvwYZjpbh7WHeMcLCDjOV72ZNfjS/2ncfW0xWwLFz+6UQZdp+rxpoHhgvBtK3i2mb8/fODyLWoPF/282kM7hGC2wZ1w+T+sU5/5nmMMbz2yxl8vLN1XeWeczX49mAx3rt7gMdtfLR6I77afx4rduQL/4BMjAjA4kl9cH2q+3XXjDE0aPSobNShtqkFTToDWgwmRCr90DdW6fAfnZbUOgMOFNTgfE0z/HwkSIlWoG9skNvX2apR67D7XDXqmloQpfTD4IQQoVDLWw0aPdQ6A8ICZF6Pg5CrgcdBn8nEBSsTJkzAb7/9dtkGdLXzpJAj3M1uFs4aMwOtWTp3a/pcBV0SsQh+PmJo9SY06QzC+jxea9Dn+hcwP3XrKNPXugWb41+AQxNCsPbABRw67zzT52gLNp6n7VayS+rBGNcU2zZwVPpJofCVQq0zoLReg6RI6/Y0OeYCkIy4IKfBb3yoP6KVfihXaXGsuB4je1kHHPx6vh6hcrvg+8a0KLz8Yw4OFdWiRq0T/jHgyEFzJo/PDvL43VIOn3ed6Xtlcw6ySxoQ6CdF5hTrQqqxvblq4pI6rprYdu3j3vwanKtUI9BPir+P6SkcTwgPwDv/3969xzdZnn0A/z1J26RpDj3RczmXIqUUxkEEHXiYJ1ZABXEIik7n1M0pEzePVSYKc7o5FZnvu+EJFeYB0OFpKKK8HJTTgKKFQkspbaGnpGlzaJLn/SN5njZtkialTVj7+34+/UCfpE/u3GJ79brv67rnjcXCCwbh12/vRXldC+54Yzfe/eWUTu/V7nDh3d0nAQA3TBooX583IRvv7zmJb8sa8Nj6g/jfmycE/EVj+cffo8Zkw5DkOPza059wbHY8fjZpINbsPIHHNx7CR7++UM6Gtvfv4hr88dPvvQK2C4Ym4cbJA5GmV8tzdPvr3+Ff91zU6d+csaUVN/1jF47XNiNZG4Or89NxvLYZ247WYnd5A3aXN+CJD4txSW4KrhufhUtHpnQqxOoY8N10wSAMT9Fi1ZZSnKhvwfWrtuP3V43Ezy8c4ncerK1O/HP3Saz88qh8nKNWFQW704VjZ5px66vf4foJWSgqzPMqXALcv+C88+0JbPnhDA6cNMp7KzvSxChROCYDd04fhsHJ3r+s1JpteGXrMby984S8hUQSrRQwIlWHMVkGDE/RYWCiBgMTNchOjPX6parZ5sC/D9dg/d5KbD1S69U2SBCAyUOScFV+GqaPSEFWQiwUCgFOl4g6s7sSv8Zklf+sqLegrK4ZZbXNcvCrVAgYnWnA1GFJ+PGIARg/KAHRnn8TTdZWlNQ04fvqJvxQ3YSjp81osTvhEkWIonuVRhWtgCpKCUNsNAYnxWHogDgMSXZ/xEYrYbS42zAdrDTi4Ckjik+ZUN9sh0t0f38foFMhVa9Gql6FFJ0acaooqKIUUEcrofbc2+FyocnqQJ3Z7nk/VtSY3O/J2upEmkGNDEOsew6TNBigVUGpEOAU3Ss0tlYnbA4XrK1OWFtdsDl8/ynAfYJScpwKyboYJMWpoIpSwGhpRWNLKxpa7KhvsaOh2Q6HU/QUq0k/J5RyMV5stBLqGCXUUQrERCkQrVRAgLsfa32zHY0tdphtDphtTjicLsTGuL9GE9P2tbHRSigVAkQRcIkiXKL7/wlRBJyiCLvDPW73ny7YHS64RBGqKKX83yVGqfT891EgSqmAw+mCwynC7vnT4XKh1Smi1emC0yVCENx9WaMUAqKU7q+LVgqIVrrfh0IQ4HCJcDpd7j9dYoc/XRBF93woFQKiFAIUnj+VCgWUgjuRU1iQ4fP/pXALuZCDAd/Z6epEDqB9u5Mulnd9BI7aII9h6yrTplVFwdpq9xk8VhvdGch0HydxtJfgOVPXV6ZPuubv9Sd4mjIfrDT6zJABbUu77Y9gk6S1O8M4UBHDt8elitfOy7OCICAzPhY/1DThVKO1U9BX4gnYctN89yqU7jE2Ox6fHKrGoVPGTkFfqY/9fJKsBA1GZ+pxsNKETw5V48bzB/l8jcpGC04ZrVAqBIwdGO/1mBT0ldSYYWxp9Tr9RLL22xN4Y0c5BAH4y7yx8tK4JDZGiYtyBuDz4hp8dqimU9AnLfvOLMiAXt35/uMGJuDt2yej8MVv8J+TRryytbRTw+h/H65BXbMdKTqV1/5IhULAU9fk4+q/fo3N35/Ghn2n/J5J/M2RWry18wQAYNk1o71+Kbr/8lz860AVvq9uwlu7TuCmCwbLj7lcIp757Ae8vKUUgPvf/nU/ysSCyYOQ06645o3bzsesF7fheG0zFq/bh3/cPFEO2hxOF3719h4cr21GZnws3rtzSlujdZMVG/ZV4r3dlfihpgmfHKrGJ4eqkZehx/1X5GL6iAHyKspTmw7jf74+DgB46pp8zD/fHQDPHpeJB987gH8dqMKT/zqMTQeq8NMxGUiIi4bZ5kSN0YoqoxWnGi3YV9EoB2vpBjXuvSwH1/0oC1aHC3/dfAT/8/UxrPvOHUg/M2cMfjQwAf+pNOKdXSfwwd7KTls6DLHRSNLGQKuKQrRSgfK6FtSabVj7XQX+ubsCV+enY9bYTBhio7H5+xq8sb1c/v6TnRiL/EwDWuxOHKw0otZsx6FTJp/7Q5O1KmQnxsLpEnG4yiQ3oAeA0Zl6DEzUoLyuBYdOmbD9WB22H6sDcAgxSvcPaUurE8G0lIxWCmh1ithf0Yj9FY1YuaUUsdFKpOpV7iAryBN4uqvWbJOPsDwbpWe6t22Awm9kmu6/N+g777zOyzuS4uLisx5QXyd9Qw20tNC2py9wIYevJWJNkMewdRX0uX/rtvtcJpbG1TEz1lGivKfP//JuvMb3XtCshLYM2d6KBkwZltzpOf4qdwEgw7OE2GJ3+qwelnxXLmXIfC+ZZcSr8UNNk7yPsb2S6sANqiWjM/X45FA1DlYaOz12tIt+h7MKMnGw0oT/2XoM8yZk+8xQSVm+0Rn6TkvQyVoVhiTH4XhtM/acaPBatgXc7VEeWe9eDr3vshG49Dzfy35X5KXh8+IafHqoGve1qya22J1ykco1foIxAMhO1ODxwjzcu3YfVm4pxdwJ2V7B5du73MHa3AlZcsZFkpOqw53ThuGvXxzF/f/cjyOnm3B1fjqGDdDK/x8drDTi12/vAQAsnDyo07+XhLgY/PbyXDy6/iCe/awEPx2TgcS4GFjsTixetw8fH3S/h9suHIJfX5rj89+LXh2NlTf+CLNf2oYtP5zBXzYfweKfjIAoinj8w0P4+kgtYqOVeOWm8XLAB7j3l/7ix8Nw+0VDcbiqCR/sPYm3dp7AoVMm3LL6W5w/JBFXjk7D1pIz+PKHMwCAP8zKkwM+6bVfnD8O5+9IxJP/Oow9Jxqx50Sj3/nOSojFbRcOwQ2TBspzpFUq8NDV5+GSkSm4b+0+HK9txpxV2yEIQPutfvmZBtwwKRuTBiciO1HT6XuVKIr4tqwBL285ii9/OIOP/lOFjzq09CnIMuA3l+Vg+oi2bKYoijjZYJGzX2W1LThR7/4wWlpRa7Z5bWkZlKTBrIIMzBqXKS/3A+4l9E0HqvBZcQ32VzTC7nRB+h1XIbj/zad4MmipehUyDLEY7MnCDU6OQ1yMEpWNFuw8Vo9vjtZia8kZ1DXbUdZuv2aaXo3cNB1GpumQk6qDITYa0j9LKctka3WhttmG42eacazWO5MIuFtvjcrQY3SmAfmZBqTq3Y332zJ3Npw2WXHGbEOzzdkuA+fO0ikUArSqKCRrY5CiVyPV835S9WqoohRykC/NoTuTKEIhuDNwUuaw/Z9ShlIVrYDa86cousdU12xDndmOWrMNdocLBk00DLHRSNTEICEuBgmaaMREKeDyZOEcThHWVicsnkyitdUJi90Jq8OJVqc7m+ZyiYjXRCPBcw+dKgpxqigoFQKsrU60eJ5vtbvvI2VUBUGAQhAgeP6bKgQBgiAgJkrR9j6UCvkMe/m/icMp/7exO11odbgQpRQQo1QgSunO5EUr3Fm8KE92zyW6M3Z2hwut7bKC0te7RBFRCgWUSil715bFkz4H3HPibJcBdLXLCErtv84FIQd9q1at8vq8qqoKL7zwAubMmdNjg+rL2qp3uy7kqG+2w+kSO2WxAhVySPvxbA4XHE6XzyAB8N+jTxIoeJSWnZPiAhfvSEu39c2hFXIA7gzZ5KGJWL/vFHaU1vkO+vwUcQDu7FS8JhqNLa2oMlp8vo611YlvPXvhJvopxPC3TCyKIkq6OJVEkufZ/3XQR3ZDCvra/1Brb/75A7Hqq1KU1bXgla+P4a7pwzs9Z3tpHQD/xSTjByXgeG0zdpXVewV9Dc123PnmHrQ63fv4fnVx53tLLjvPu5p4YJJ7D+O/D9fAbHMgKyFWzir6M2tsBl7fXoY9Jxqx4pPv8dz1YwEAJ+pa5AbS8yYM9Pm191yag4oGCz7YW4mXvizFS1+6s3KpehXU0UqcqG+BKLqDjQevHunzHvMnDcRbO0/gcJUJj6w/gJ9fOASPbyzGgUojYpQKrJiTj2vG+d/3CADnpevx1DX5+O0/9+Ovm4/A6XKhsaUVa3aegCAAf543tlMmVCIIAkZl6DEqYxTunD4cL285ite2l2Pn8Xq5CjxaKeAPs0Z7LXG3//qbLhiMK/PSsO67ChyoNKLZ5oQmRolUvdq93BevxohUHUal6/3+cj55aBI+/s1FWPavw9iw/xTsnpNkLs9LxcLJgzB+UELAJXRBEDBpSCImDZmE4lMmrNlZju/KGmC2OZCfacA1P8rE5aNSO91DEARkJ2qQnajBVfnpXo8ZW1pR0dCCivoWRCkVGJ6ixeAkjc9xZCdqcMe0Ybhj2jA4nC5Um6xwukTExiiRFKfq9P3Sl6wEDbLGa3Dd+Cy4XCKO1zWjzmyHTh2FDEOsz4x4MEzWVjicImKjlT5XJ4giLeSgb9q0aZ2uXXLJJbj00kv9nnlLbYKp3k30ZL9consZtONeLkuAli3Snj4AaGl1Qt9F0BdoeRfwfRSbdLRZoD1mQBfLu128PuD+4bR+3ynsOOZ7P5q/di2SdEOsO+hrtGJkmr7T49uO1sLa6kKGQS1XC3eUmeAO+io7tDypMdlgsroLMIYO8N2gWjLaEwSUnjF3KgiR2rX4y/TFqaLw+6tGYsm7/8Fzn5VgbFY8pgxvC4BFUZQDpqnDOwfGgHtf2ru7T2JryRn87sq2gOipTYdRa7YhJ0WLP80t8HnOsyReE4PzhyTi/0rr8Omhatz+Y3dhyXrP0u7ssZld9gEUBAFFhXmY9dI2vL+nEvMnDcSEwYn4x7bjEEXgxyMGyMFkR1FKBZ67vgA/GZWKdd9VYHdZA5psDq/q7KtGp+Hpa/M7ZTslSoWApbPycP3ftmPTgWpsOuDO7iVoovHKTRMw0ccSvy/Xjc9Cyekm/O2rY3LwCbgrnv0VHXWUGBeDh2eMwi1Th2DNznKU1JiRGR+LG88f6LWk7EuKXn3W5ynHa2LwzNwCPHnNaDS2tCIxLqZThjUYozL0WHZN/lmNBYA7q6Qx+C2Q8SdKqUBWgu9/M8FSKAQMG6DFsOCPj/fL1/YGonNJyEGfL6Io4uTJkz1xqz6vrXrX/2+BUUoFdOooNFkdaLS0dgquAjVnjvGkrB0uES02p99vQl0u78oNmn0s73YRbEnaCjl8LO+2BC7kACBXWe6r8F35Ku3pa38EW3sZBjUOV5n89tn7xLOkd5mPrIREqhbtuLz7gyfLNzhJE7AoB4Bn07YKNSYbDleZMN6zX9FoaZXfw7AAgeOc8Vn45mgtNuw7hV++uRsf3D1VzgyWnmlGZaMFMUqFXCnc0fTcARAEdz/CGpMVqXo1/q+0Fv/cfRKCACy/bozfQKm9K/LS8H+ldfis2B30nWmy4asS93Lk7HHB7VcpyI7HvAnZWPtdBR764ACenTtWXtq948eBK5QFQcDV+em4Oj8doiiisaUVZXXNcLhEZCXEBtV8eeLgRKxaMB7L/nUYVUYLpuemoKhwVMiBw++vHImcFB3WfVuBmCgFbpk62O/SeCAZ8bFYcoXvzGQ4qKKUSNUzI0XUX4Qc9HU8V7elpQWbN2/G/Pnze2xQfVkwhRyAOxhrsjrkZVCvewTI9AmCAE2MEiarI2AFr6mLoE9qrOzrHtK+FX/BlkTa0+frPch7+mL932NQkgbpBjWqjFbsPdHgleEC2jKOvpZ3ASDds4+iykefPZO1Vd6HNKPDUlN7/ho0S6eFBCriaG90hgE1ptM4WNkW9ElLu2l6NXQBMgSCIGDFdWNQUd+CPScaceur3+KDu6YiMS4GG/e5M22ThyX5XU5K0qpQkBWPfRWN+HD/KSyYPAgPf+Dex3fj+QO7XJaV/GRUKoo2HsJ35Q0402TDe3tOwuESUZAd36nIJZDfXTUSnx+uQUmNGYUvfgMAuCgnGVOG+Q5afREEwb3PqIstBr5ckZeGK/LSgj6lxN/rzxmfhTkB2uAQEZ1rQs7ntz9fNzU1FaNHj8bq1avx0ksv9cb4+py2li1dB31AW3DWnlUuBvF9j2COUWvbU+c77o/zk+lrdbrkrw12eddXFbJ0Ikeg5V33vj53ILDjWF2nx6Vzdf317JIyP1LbivY+2FMJS6sTOSlav3vhgLY9fVWNVq+2ET94ijhyggx25H197Yo5jp523yOYI8bU0Uq8ctMEZCXEelqffAejpVVuc9JV8DFvYjYAYPW2MhRtOITjtc1I0anwwJXBZ5ky4mMxJssAUXSfz/u6p2Hy/EnZQd8DcP8y8I9FE+Us76AkDf44Z0y3A7DuCvfrERFFWsiZPjZhPjvB9OkD2oIho6+gL0CmD2hfhOG/bYtUjJHsJ0smZfo67umrb9fnKr6LJrPSD/XGllavrIrUNwpAlxumJw9NxAd7K33u65PO1U3xl+mT27Z0LsJ4c0c5AHemK9AP/xSde2O4wyXiTJNNrsosCTnT595TeKBd0Pd9kNW/kmStCqsXTcS1L/8fvi1rwMQn/w2704VkrQqXjwq8tHjNuEw8+9kPqGy0YO137ibIS2eNDnkP0tX56fjPSSOWfuSu1M+Mj8XMAv9Vu/6MzY7H1w9cjNIzzTgvXdfl/w9ERHT2Qsr01dXV4ZFHHsHUqVORm5uLqVOn4tFHH0VdXecsDPlm9wR9HZvTdiQFTN0J+oLJ9HVVBCHt6TN3uIf0dYlxMQE3/kvPAQC70+XVN1DKXioEQKcK/HuHlOnbW9Egv2/Jac9+uBS97/cgLc2eqPc+Omv7sTocOW2GJkaJa7vIkEUpFUjztBapbHTfx+USccSzNDsitessHeAOcgB3sCjNqZQtHBlk4Ai425e8esskxGuiYXe6oFQInXrS+aKOVuKvN4xDYlwMVFEK/GFW8EUH7S2cPEguXBEEoKhwVLerFHXqaIzNjmfAR0QUJkFn+o4fP44LL7wQaWlpmDVrFlJTU1FTU4MNGzZg9erV+OabbzB48OBeHGrfYA9xedd30Bf4Hjq1+z9rk63z10rOmAMXQcjVux2yhbVBtmsB2o54sztcaGixy8FoY7t2MV0FjgMTNUjWxqDWbEdxlUk+gsra6kST1R08DfCzvCstm1Y2WryqZt/Y7s7yXTMuM6hMV2Z8LCobLahstGL8IOl+TkQrBQxKCly5K0nRq+X7/KeiEVOGJ8tBX7DZQsn4QQn46v6LsaXkNEal67us9pRMGZ6MXQ9dCpfY9S8d/sSpovD+nVPwycFq5KbpMC7II8GIiCjygv7Ov2TJEsydOxe7d+/GY489hjvuuAOPPfYYdu/ejeuuuw6//e1ve3OcfUawhRz6s1jelQNGHwUU0hikgMlvps9PIUewlbuAZ7O9VMHbrleftCewq+Vh6R5Slmxvu2a00n4+VZQCerXv312StCokxsVAFIFjnu71pxot+Ky4BgC8TmUIRGrbIvXqO+LZizdsgDakNhfjPKdl7DnRgNMmK+qa7RAEICfIbGF7Bk00Zo3NDDrgk0R5jhY6G/GaGNwwaSADPiKi/zJBf/f/4osv/O7ne+yxx/DFF1/02KD6KofTJR8T1NUP3oCZPk+2MLaroM/ie3lX2s8XrRT8V+/6WSKWGzN3UbkrkYo52rdtkdvF+DmNoyMp6NtX0Shfk/fz6VUB9+RJ2T4pUHtr5wk4XSImD00MOsMmdVOXevVJZ7OGGnBJWcq9JxrlZrznpXU+RYOIiKg3BB30ORwOREf7DhBiYmLgdAY+65Xce9skwQZ9vtqddJXpC5QlBNr25SXF+Q+YpJM9mu0dl3eDz/QBvoO+rs7d7WhstjtY2lfRIF+T9/P5WdqV5HiCvpIaM2wOp9wTLtgsHwBkxrt7uEl7A+WTOIKoum1PyvR9V96Ab464GyqfPzS4hsBERERnK+ig74ILLsDKlSt9PrZy5UpMnjy5xwbVV0mNmQF3E+VAArVsaevT5/se8tdaAwd9yTr/mTbpZI+O1btSj77EIPujJcR1Dl7bevQFF/SNyTZAEICKeou8vCwttabpAwd9Uof/PeUN+Gh/Feqa7UjTq/GTLqpd25OWX6Vg70g3M335mQYM0KlgtLTKFbRSoQoREVFvC3pdafny5Zg+fTp27dqFWbNmIS0tDdXV1diwYQP+/e9/Y8uWLb04zL5ByvQpFYLfM3ElUtPiQIUcfjN96q4yfVIxhv9sndZPn76G5uALOQD3/i/Au1dfV6eBdKRXR2PYAC2OnjZjX0UjLj0vFRWerFt2YuCTFM739ODbXd6Asjr3vr6FFwwKaS+e1FKlymhFndkmLxUHW7kriVIqMHtsBv7n6+MA3HPs7+g0IiKinhb0T75x48Zh586diImJwZIlS3D11VdjyZIliImJwY4dOzB27NheHGbfILdrCSLgCLSnzxJkps9f0CedUBEoS9bW669Dnz7P0mywJyEkyL36Ogd9gY5g66jjvj5pqXVgF0HfkOQ45Kbq4HCJqDHZoFNFYeEFg4J+XcA9n1L7l/f3VMLa6kK8JhqDg6zcbW/R1CHy0vi9l+XIwTUREVFvC+knzsiRI/HWW2/11lj6PLly10+w1l4wzZn99TcLtDQMtAVM2Yn+zyqV9vS12H1n+oJe3pX39HWu3g020we4g753d58MOegTBAFLrsjFHW/uhtMl4pGfntetQ9Fz03SobLTgVc8pFBMGJXbZbsaXzPhYfP3Axag127rMUhIREfUkphnCyNaNTJ+l1Qm7w+VV+BFsyxZ/QV9FQ9dLo3L1rt3hdZqGtEybEGTlrc9CjhCXdwHvTJ/TJaLCU0nbVdAHAJeNSsWXv53ufn5S9wKt8YMS8MX3p1Hp2Us4aUj325XExigZ8BERUdidXcMuCkmwp3EA7gbLUmFtx2xfV2fvdlW9e9KTJctKCBT0uQNKUWxbTm51umDy9PcLtZDDV8uW+CADR8B9aoU6WoEmqwPbS+tgd7hPo5DaqXRlYJKm2wEfAFx6XkqHz4MvBCEiIjoXMOgLI1uQp3EAgEIhyEeUGS1tAZPLJcrBY1eZvma7E63t2sQA7sCzyuTe0xdoeTc2WikHndKxYdKyrCAEn6WTM33tmjMbPQFgKHv6opQKjMmMBwC8tct9osaQ5LguC2J6ysg0PW6YmA0AuOmCQRg2IPSGykRERJEUsaDvzJkzmDFjBjQaDXJzc7F582afz1u0aBFUKhW0Wi20Wi3y8vK8Hn/11VeRlZUFvV6PW265BXa73ed9zgVtmb7gzhqVMmHtM3ZS4AgEqt5tyxK2z7AB7lYnougOPAcE6LUnCELbvj5PBa+0tBsfGw1lkPvZpKDPVyFHKMu7ADDW0+du04FqAO4WKOG0/Lox2PPoT7B01uiwvi4REVFP6JGg79Zbb8U//vGPkBo033333cjIyEBtbS1WrFiBuXPnoqGhwedzn3jiCZjNZpjNZhw6dEi+fuDAASxevBjr169HRUUFysrK8OSTT571++ktoSzvAoA+1h10mdqdrCHt5wMAtZ/7RCkVcjsW6bgySXGVCYD7pIpAJ1kAnY9ik/fzBbm0C7QFfc12995El0sMuU+fZMow7552F0Sgx12wy9pERETnmh4J+kRRxNtvv42CgoKgnm82m7FhwwYsXboUGo0Gs2fPxujRo/Hhhx+G9LpvvfUW5s2bhwkTJsBgMODRRx/Fm2++6ff5NpsNJpPJ6yOcQlneBdr67bVvsmz1VABHddHrL1XvCfo8x5VJ9p9sBACMyYrv8vXjOvTqk7KGiSHsxdOpoyAlBRtb7DDbHfJRdPoQg74LhydjkGdfnlYVFVKDZSIiov6uR4K+1atX4/PPP8f+/fuDev6RI0dgMBiQnp4uXysoKPDK4rX3zDPPICkpCVOmTMHWrVvl68XFxcjPz/e6x/Hjx2GxWHze5+mnn4bBYJA/srOzgxpvT7E7pVYroQZ97TN9gffzSVI9PfhqOmT6/lNhBAAUZHW9NCoVc5xNpk+hEORsX32LHUbPvkB1tKLL99BRlFKB12+dhEVTBuNvC8eHNA4iIqL+LuSgr76+Hi0t7upPp9OJNWvW4J133oEoilAqg/shbjabodfrva7p9XqYzeZOz/3Nb36Do0ePoqqqCnfffTcKCwtRUVHh8z7S333dBwAefPBBGI1G+UO6T7iE0pwZaL+82y7T10W7Fomc6WsX9FlbnSFl+jQd9vTJPfpCyPQBbQUbDc2tcjGIdOJIqAYlxeHxmXk8yYKIiChEIQd9l19+OUpKSgAAv//977FixQo888wzuO+++4K+h1ar7bS0ajKZoNV2rogcN24cEhISEBMTgxtvvBEXXHABPv/8c5/3kf7u6z4AoFKpoNfrvT7CSV7eDaI5MwDofC3vdnEahyRF58n0tVve3fLDGbTYncgwqDEyretzY9uOYvNk+kI8jUPSvpijoRuVu0RERHT2Qg76jhw5Iu/de/311/Hxxx9j8+bNWLt2bdD3yMnJgdFoRHV1tXxt//79nSpzfQ5Y0TbkUaNG4cCBA173GDJkCGJj/bciiaSQM31S0Gfp/vLuaVNb0PfB3pMAgBlj0oM6TaJjIUfbaRyhBWzx7U7lON3kzjwO0PmvHCYiIqKeF3LQFxMTg5aWFnz77bfIyMhAZmYmdDodmpubg76HVqvFzJkzUVRUBIvFgo0bN+LgwYMoLCzs9Nz33nsPzc3NcDgcWLt2Lb755htccsklAID58+dj3bp12LNnD4xGI5YtW4YFCxaE+pbCxtbd6l0fhRxdZfqk5d0qozvoO3rajM+KawAAcycEt5ex41Fs9Z6l2WBP45AktmvQfIZBHxERUUSEHPT97Gc/w8UXX4yFCxdi0aJFAIC9e/di8ODBId1n5cqVqKioQFJSEu6//36sW7cOCQkJWLNmjVfG789//jMyMjKQnJyM5557Dh988IH8Wvn5+Xj22WdRWFiIrKwsZGdn4+GHHw71LYVNW/VucHsfpUxfU/tCDk8Apu7iHlKV6/HaZoiiiFVflUIUgZ+MSsWI1K6XdoG26l2pOXOo5+5K2ho02+VqYmn5mYiIiMIj5LN3n3/+eXz22WeIjo6WM26CIOD5558P6T4DBgzApk2bOl2/8cYbceONN8qff/PNNwHvs2jRIjn4PNeF3qev8xm6bZm+roK+OEQrBbTYndh1vB7r91YCAO6aPizo8XYsJOlO9S7gvbxr84yfmT4iIqLwCjnTN3v2bFxxxRVywAcA48ePxwsvvNCjA+uLQg761D6Wd1sDn7sriVYq5Izera9+C4dLxNThSRg3MCHo8UoZPSnY606fPvd93MFrY4ude/qIiIgiJOSg78svv/R5/auvvjrrwfR1UpYr2D59Op+FHJ57BNHjTmpr0uxZEr73shHBDxZty7L1zXZYW53y3r7uZvrqmu2o9QR9KQz6iIiIwiro5d277roLgPtUC+nvkvLycuTm5vbsyPqgbh/D5ivTF8S+wBvPH4g3tpfD0urE3PFZmDg4MaTxSpm+hha7nO2LUghyBjJYaZ5K4iqjRe75x0wfERFReAX90zs1NdXn3wVBwJgxYzBnzpyeHVkfZAu5ObM702d3uGBtdUIdrQy6Tx/g3tf3r3suRElNEy47L/Qjy9oyfa2oNkkFGKouz+ztKDvRXVTS/nQQqaUMERERhUfQQV9RUREAYPr06Zg2bVqvDagvs8vNmYOr3tXGREEQAFF0V/C2D/pig7zH0AFaDB3gu1l1V9pn+qo9rV9SDaEHawmaaMTFKOVl5gE6ldz4mYiIiMIj5J+8NTU1WLdunc/Hrr/++rMeUF9md3qCviAzfQqFAJ0qCiarAyZrKwboVHKj5LgwBE3SqRlOl4gjNe6j7dK6kaETBAHDU3XYX9EIABiSHNdjYyQiIqLghBw5vPzyy16fV1dXo7S0FFOnTmXQ1wWpkCPYPX2Ae4nXZHXIbVOaPXvi4lTBZfrOhjpaKWfoDle5j7jr7rLs6Ay9HPSNyTT01BCJiIgoSCEHfb6qd19//XXs3bu3RwbUl8nLuyEEfe4KXgtMngbN0jm4mpjwLI8mxMWg2W5BsSfoS+vG8i4AXJGXhjU7TwAALhsV+v5CIiIiOjsht2zxZcGCBXj11Vd74lZ9WqjVu0C7Xn2eTJ/UNiVce+KSPPv6TtS3AOje8i4AXJSTjBXX5WPljT/C5KFJPTY+IiIiCk7IkcPp06e9Pm9pacGaNWuQlpbWY4Pqq0I9exdodyqHp22LWc709f7yLgBkxMdi/0mj/Hl3l3cFQcC8iQN7alhEREQUopCDvrS0NAiCAFEUAQAajQbjxo3DG2+80eOD62vsIZ69C3Q+f7cljIUcADDQ025FMjhZ4+eZREREdC4LOXJwuVy9MY5+oXuZPu/l3bZCjvAEfYOS2iptdeqobi/vEhERUWR1K3JwOBzYvn07qqqqkJ6ejsmTJyM6Orqnx9bnhNqcGWh3FJtneVdu2RKm5d0fDYqX/16QFR9yY2YiIiI6N4Qc9O3cuRPXXXcdYmNjkZ2djYqKClgsFrz77ruYPHlyb4yxz7BLZ+8GcZqGpK2Qw7O868n0acKU6RuRokNehh6HTpkw/3zuySMiIvpvFXLkcNttt+GJJ57Az3/+c/na6tWrcdttt+HgwYM9Ori+RmrOHEqmr30hh93hku+hDVPLFoVCwPq7p6LWbEO6ITYsr0lEREQ9L+SWLSdPnsTNN9/sdW3hwoWorKzssUH1RaIoysu7ofTpkwo5TJZWuYgDAGLDtLwLANFKBQM+IiKi/3IhB32//OUvsWLFCjgc7gDE6XTij3/8I+68884eH1xf4nCJ8BQ8h1a96ynkaLI65LNrY5SKkIpBiIiIiEJeI1y/fj2OHj2KFStWICUlBadPn4bFYkFOTg7Wr18vP6+4uLgnx/lfT2rXAoTanLlteVc6jSMcR7ARERFR3xJy0Ldq1areGEefZzvboM/iCPsRbERERNR3hBw9TJs2rTfG0edJmb4ohQClIvi2J9LyrqXViUZPr75wHcFGREREfUfI0YPRaMSLL76I/fv3w2w2ez22adOmHhtYX9Odc3cB7wCvssHivqZm0EdEREShCTl6uOGGG9Da2orrrrsOGg2P5AqWzdOjL9SgL0qpgE4VhSabA+V1zQCABA0bYRMREVFoQg76tm3bhtraWsTExPTGePqs7rRrkQzQqdBkc6Ckxp1ZNcRy7omIiCg0IUcgkyZNQmlpaW+MpU+TGzN3I+hL0asAACU1TQCAeGb6iIiIKEQhRyAFBQW4/PLLcf/99+OPf/yj10cozpw5gxkzZkCj0SA3NxebN2/2+bzFixdj6NCh0Ol0mDBhArZu3So/tmXLFigUCmi1Wvnj66+/DvUthYWtNfTTOCSpejUAoMpoBQDExzLoIyIiotCEvLxbX1+Pyy67DHV1dairq5OvC0LwFakAcPfddyMjIwO1tbX47LPPMHfuXJSWliIhIcHreQaDAZ999hmGDh2K9957D7Nnz0Z5eTl0Oh0AYMSIEfj+++9DfRthJ2X6QmnMLJGCPgkzfURERBSqkIO+1atXn/WLms1mbNiwAWVlZdBoNJg9ezaee+45fPjhh7jpppu8nltUVCT/fe7cubj33ntRUlKC8ePHn/U4wqm71bsAkKJTeX/eIQgkIiIi6krQQd+uXbu6fM6kSZOCuteRI0dgMBiQnp4uXysoKMChQ4cCfl1ZWRnq6+sxfPhwr2spKSkwGAxYuHAhHn74YSiVvrNpNpsNNptN/txkMgU13p7Q3epdoHOmL93AoI+IiIhCE3TQN2/evICPC4KAY8eOBXUvs9kMvV7vdU2v16OxsdHv17S2tuLmm2/GkiVLYDAYAAAjR47Evn375CXe66+/HjqdDvfdd5/Pezz99NN44oknghpjT7OfRfVux6AvjZk+IiIiClHQQd/x48d77EW1Wm2nLJvJZIJWq/X5fFEUsWjRIqSkpODxxx+Xr6elpSEtLQ0AMGrUKDzyyCNYuXKl36DvwQcfxOLFi71eMzs7+yzfTXDOpmXL4KS2foiCACRrVQGeTURERNRZ6BFID8jJyYHRaER1dbV8bf/+/cjLy/P5/F//+tc4deoU3nzzTSgU/occ6DEAUKlU0Ov1Xh/hYm11L++qo0Mv5Gi/h29Uuh6KEI5xIyIiIgIiFPRptVrMnDkTRUVFsFgs2LhxIw4ePIjCwsJOzy0qKsK2bduwYcMGqFTeGa4tW7agoqICgHuf4JNPPomf/vSnYXkPobJ4gr7YbgR9APDCz8Zh6vAkPHz1eT05LCIiIuonIhL0AcDKlStRUVGBpKQk3H///Vi3bh0SEhKwZs0ar4zf0qVLcfjwYWRkZMi9+NasWQMA2L17NyZPnoy4uDhcfvnlmD17ttfy7bnE6unTFxvTvaCvsCADa26bjCnDk3tyWERERNRPCKIoipEeRKSYTCYYDAYYjcZeX+p9atNhvLL1GH7x46F4iNk6IiIi6gGhxDIRy/T1NxZ79/f0EREREZ0tBn1hYj3LPX1EREREZ4NBX5hY5OpdTjkRERGFHyOQMGGmj4iIiCKJQV+YyC1bulm9S0RERHQ2GPSFidSyhYUcREREFAkM+sKE1btEREQUSQz6woR7+oiIiCiSGPSFCYM+IiIiiiQGfWHSVsjBKSciIqLwYwQSJlLQp4pipo+IiIjCj0FfGIiiKFfvsmULERERRQKDvjCwOVzy37mnj4iIiCKBQV8YSO1aALZsISIioshg0BcGVoc76ItRKqBUCBEeDREREfVHDPrCoEVuzMzpJiIioshgFBIGZqsDAKBTR0d4JERERNRfMegLA7PNHfRpVVERHgkRERH1Vwz6wqDJk+nTqhn0ERERUWQw6AuDJmsrAEDHoI+IiIgihEFfGHB5l4iIiCKNQV8YtBVyMOgjIiKiyGDQFwZGi7S8y+pdIiIiigwGfWFQa7YBAJK1MREeCREREfVXEQv6zpw5gxkzZkCj0SA3NxebN2/2+TyLxYIFCxZAp9Nh4MCBePvtt70ef/XVV5GVlQW9Xo9bbrkFdrs9HMMPyRk56FNFeCRERETUX0Us6Lv77ruRkZGB2tparFixAnPnzkVDQ0On5xUVFaG+vh6VlZV45513cOedd6KkpAQAcODAASxevBjr169HRUUFysrK8OSTT4b7rXSptskdiDLoIyIiokiJSNBnNpuxYcMGLF26FBqNBrNnz8bo0aPx4YcfdnruG2+8gaKiIuj1ekyZMgUzZ87EO++8AwB46623MG/ePEyYMAEGgwGPPvoo3nzzzXC/nYCcLhGnGi0AgBQ9gz4iIiKKjIgEfUeOHIHBYEB6erp8raCgAIcOHfJ6XkNDA6qrq5Gfn+/zecXFxZ0eO378OCwWi8/XtdlsMJlMXh+97WClEU02B3TqKAwfoO311yMiIiLyJWKZPr1e73VNr9fDbDZ3ep5SqYRGo/H5vI73kf7e8T6Sp59+GgaDQf7Izs7ukfcTyMkGC7SqKFwwNAlRStbNEBERUWREpHGcVqvtlGUzmUzQarWdnud0OtHS0iIHfu2f1/E+0t873kfy4IMPYvHixV7P7+3Ab8aYdFyRl4pGT9sWIiIiokiISOopJycHRqMR1dXV8rX9+/cjLy/P63kJCQlIS0vDgQMHfD5v1KhRnR4bMmQIYmNjfb6uSqWCXq/3+giHKKWCRRxEREQUUREJ+rRaLWbOnImioiJYLBZs3LgRBw8eRGFhYafnLliwAH/4wx/Q1NSEHTt2YOPGjZg3bx4AYP78+Vi3bh327NkDo9GIZcuWYcGCBeF+O0RERETnvIhtMlu5ciUqKiqQlJSE+++/H+vWrUNCQgLWrFnjlfFbunSpXPQxd+5crFy5Erm5uQCA/Px8PPvssygsLERWVhays7Px8MMPR+otEREREZ2zBFEUxUgPIlJMJhMMBgOMRmPYlnqJiIiIekoosQzLSYmIiIj6gYhU754rpCRnOPr1EREREfU0KYYJZuG2Xwd9TU1NABCWfn1EREREvaWpqQkGgyHgc/r1nj6Xy4VTp05Bp9NBEIReex2pH2BFRQX3DgbAeQoO5yk4nKfgcJ6Cw3kKDucpeD01V6IooqmpCRkZGVAoAu/a69eZPoVCgaysrLC9Xjh7A/434zwFh/MUHM5TcDhPweE8BYfzFLyemKuuMnwSFnIQERER9QMM+oiIiIj6AQZ9YaBSqVBUVASVikexBcJ5Cg7nKTicp+BwnoLDeQoO5yl4kZirfl3IQURERNRfMNNHRERE1A8w6CMiIiLqBxj0EREREfUDDPqIiIiI+gEGfb3szJkzmDFjBjQaDXJzc7F58+ZIDynibDYbbrnlFmRlZcFgMGD69Ok4cOCA/Pjy5csxYMAAJCYm4oEHHgjqPMG+bvv27VAoFFi+fLl8jfPkbfny5cjOzoZOp8PYsWPR2NgoX+c8tdmzZw+mTJkCvV6PoUOHYvXq1fJj/XmuioqKMGrUKCgUCrzzzjtejwWal2+//RYFBQXQaDSYNm0aysvLwz30sPI3T6+++irGjh0LnU6HoUOHYtWqVV5fx3ny5nA4kJ+fj5EjR3pd7+15YtDXy+6++25kZGSgtrYWK1aswNy5c9HQ0BDpYUWUw+HA0KFDsWPHDtTX12PmzJmYPXs2AGDTpk14+eWXsXPnThw6dAgfffSR1w+l/sjlcuG+++7DxIkT5WucJ28vvPACPv74Y3zzzTcwmUx48803oVarOU8+3HTTTZgxYwYaGxvx7rvv4p577kFJSUm/n6ucnBw8//zzmDRpktf1QPNis9lw7bXX4je/+Q3q6+sxefJkLFy4MBLDDxt/82Sz2bBq1So0NDTgww8/RFFREbZu3So/xnny9uKLL3Y6RSMs8yRSr2lqahJjYmLEU6dOydcuuugi8bXXXovgqM49NptNFARBrK2tFW+44QZx+fLl8mN///vfxYsvvjiCo4u8l19+WbznnnvEm2++WXz66adFURQ5T+04HA4xLS1NLCkp6fQY56kzrVYrHjt2TP584sSJ4saNGzlXHtOmTRPffvtt+fNA8/LJJ5+II0eOlB8zm81ibGysWFZWFr4BR0jHeepo/vz54p/+9CdRFDlPHeepurpaPO+888SPPvpIzM3Nla+HY56Y6etFR44cgcFgQHp6unytoKAAhw4diuCozj3bt29HamoqkpKSUFxcjPz8fPmx/j5f9fX1+Mtf/oLHH3/c6zrnqc3JkydhsVjwz3/+E6mpqcjNzZWXljhPnf3qV7/CG2+8AYfDgV27dqGiogLnn38+58qPQPPS8bG4uDgMGzYMxcXFYR/nucTpdGLXrl3Iy8sDwHnq6He/+x0eeughxMXFeV0PxzxF9didqBOz2dzpEGW9Xi/vNSLAaDTijjvuwLJlywB0njO9Xg+z2Ryp4UXcQw89hHvvvRcJCQle1zlPbSorK2E0GlFaWoqysjIcO3YMl112GXJzczlPPlx55ZW46aabsHTpUgDAK6+8gpSUFM6VH4Hmxd/3+P4+b4888ggyMzNxxRVXAOA8tbd9+3aUlJRg9erV+Oqrr7weC8c8MejrRVqtFiaTyeuayWSCVquN0IjOLVarFbNnz8aMGTNw6623Aug8Z/15vvbu3Ytdu3bhpZde6vQY56lNbGwsAPfG6djYWOTl5WHhwoXYtGkT56mDuro6FBYW4rXXXsPMmTNx+PBhXHnllcjLy+Nc+RFoXvg9vrNVq1bh/fffx7Zt2yAIAgDOk8TlcuGee+7BypUr5blpLxzzxOXdXpSTkwOj0Yjq6mr52v79++WUd3/mcDhwww03ICMjA3/605/k66NGjfKq5O3P8/XVV1+hpKQEmZmZSEtLw9q1a7Fs2TLcfvvtnKd2RowYgZiYGK9roqe6kvPk7dixYzAYDLjmmmugVCoxevRoTJ8+HVu3buVc+RFoXjo+1tzcjNLSUowaNSrs4zwXSN+jPv30UyQnJ8vXOU9uJpMJe/bsQWFhIdLS0nDttdfi6NGjSEtLQ0tLS3jmqcd2B5JPc+bMEX/xi1+ILS0t4oYNG8SEhASxvr4+0sOKuEWLFomXX365aLfbva5/9NFH4qBBg8Rjx46JVVVVYl5envj3v/89QqOMrObmZrGqqkr+uP7668WHH35YbGho4Dx1MH/+fPH2228XrVar+P3334vp6eniF198wXnqoLGxUTQYDOLGjRtFl8slHj58WExPTxc//vjjfj9XdrtdtFgs4kUXXSS+/vrrosViEZ1OZ8B5sVqtYlZWlrh69WrRarWKv//978WLLroowu+kd/mbp08//VQcMGCAuH///k5fw3lyz5PD4fD6nv7ee++Jw4cPF6uqqkSXyxWWeWLQ18tOnz4tXnXVVWJsbKyYk5Mjfv7555EeUsSVlZWJAES1Wi3GxcXJH1u3bhVFURSfeuopMSkpSYyPjxeXLFkiulyuCI/43NC+elcUOU/tNTQ0iNdee62o1WrFQYMGiStXrpQf4zx5++STT8SCggJRq9WK2dnZ4rJly+TH+vNc3XzzzSIAr48vv/xSFMXA87Jr1y4xPz9fVKvV4kUXXdTnK1L9zdP06dPFqKgor+/pd9xxh/x1nKe2f0+SL7/80qt6VxR7f54EUexH3TeJiIiI+inu6SMiIiLqBxj0EREREfUDDPqIiIiI+gEGfURERET9AIM+IiIion6AQR8RERFRP8Cgj4iIiKgfYNBHRERE1A8w6CMiCuDEiRNe54j2hrKyMgiCAK1Wi/Xr1wd87nvvvQetVgtBELzO9SYi6gpP5CCifk+r1cp/b25uhkajgSAIAIDi4mIMHDiwV1+/rKwMI0eOhNVqDfprBEFAVVUV0tLSenFkRNSXREV6AEREkWY2m+W/q9VqHDp0CIMHD47cgIiIegGXd4mIAigrK4NarZY/FwQBL7/8MgYOHIjk5GSsXbsWH330EYYOHYqUlBSsXbtWfm59fT3mz5+PlJQUDB06FK+99lrQr7tjxw6MGzcOOp0OaWlpeO6553r0fRFR/8NMHxFRiLZt24aSkhJ8+OGH+OUvf4mZM2fi4MGD2Lx5M2699VbMmTMHSqUSCxcuxOjRo1FRUYHjx4/jkksuwdixY1FQUNDla9x7771YsmQJ5s+fj4aGBpSVlfX+GyOiPo2ZPiKiED3wwANQq9W49tpr0djYiLvuugsajQaFhYVoamrCqVOnUF1dja+//hpPPfUUVCoVRo4cifnz5+P9998P6jWio6Pxww8/oL6+HgkJCRg3blwvvysi6usY9BERhSglJQUAoFQqER0djQEDBsiPqdVqNDc348SJE2hubkZSUhLi4+MRHx+Pv/3tb6ipqQnqNf73f/8Xhw8fxvDhwzFlyhRs3769V94LEfUfXN4lIuoFmZmZiI+PR11dXbe+Pjc3F+vWrYPD4cCqVauwYMEClJaW9vAoiag/YaaPiKgXZGZmYuLEiXjsscfQ0tICh8OBPXv2oLi4OKivX7NmDerq6hAVFQWdTgelUtnLIyaivo5BHxFRL1mzZg3Ky8vlyt57770XFoslqK/dtGkTcnNzodPp8Ne//hWrV6/u5dESUV/H5sxERBFWXl6OkSNHQqVS4fXXX8fMmTP9Pvf999/HrbfeCqvVivLycqSmpoZxpET034xBHxEREVE/wOVdIiIion6AQR8RERFRP8Cgj4iIiKgfYNBHRERE1A8w6CMiIiLqBxj0EREREfUDDPqIiIiI+gEGfURERET9AIM+IiIion6AQR8RERFRP/D/whpM4qXE918AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = stepresp.plot(plot_inputs='overlay')" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "stepresp.time.shape=(1348,)\n", + "stepresp.inputs.shape=(1, 1, 1348)\n", + "stepresp.states.shape=(4, 1, 1348)\n", + "stepresp.outputs.shape=(2, 1, 1348)\n" + ] + } + ], + "source": [ + "# Look at the \"shape\" of the step response\n", + "print(f\"{stepresp.time.shape=}\")\n", + "print(f\"{stepresp.inputs.shape=}\")\n", + "print(f\"{stepresp.states.shape=}\")\n", + "print(f\"{stepresp.outputs.shape=}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "FDfZkyk1ly0T" + }, + "source": [ + "## Forced response\n", + "\n", + "To compute the response to an input, using the convolution equation, we can use the `forced_response` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3QUZRfGn00PaVTpvXeQJr03UcGPKipgARVBsYCiIKEL0puASu/SpSPSa0IvIaEkkJDQkpDeduf5/nh3Z7PpfZfw/s6Zs7tT7+y0O7dqSBISiUQikUgkkpceK3MLIJFIJBKJRCLJGaRiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5G8hPj5+UGj0eDKlSvmFuWlwd3dHcWLF4dGo8HOnTvNLU6Oc+zYMWg0Grx48SJb66lQoQLmzZuXIzK9DNuVSPIbNuYWQCKxJIYMGYLVq1cnG3/nzh1UqVLFDBJJcgIvLy9MnDgRO3bswBtvvIFChQqZWyRJEjw8PODk5GRuMSSSlx6p2EkkSejWrRtWrlxpMq5YsWJZWld8fDzs7OxyQqxsY0my5DX37t0DAPTs2RMajSbL60lISICtrW1OiSWB8bzM6jUmkUhMka5YiSQJ9vb2KFGihMlgbW0NADh+/DiaNm0Ke3t7lCxZEj/++CO0Wq26bLt27TBixAh8++23KFq0KDp37gwAuHnzJnr06AFXV1e4uLigdevWqrIBACtXrkTNmjXh4OCAGjVqYMmSJSYyXbhwAQ0bNoSDgwMaN26My5cvp7sfFSpUwJQpUzBkyBC4ublh6NChAIAzZ86gTZs2cHR0RNmyZfHVV18hKipKXW7JkiWoWrUqHBwcULx4cfTp0yfZ/o0YMQIFCxZEkSJFMG7cOJBU5wkNDcWgQYNQqFAhFChQAN27d8edO3fU6atWrULBggVx8OBB1KxZE87OzujWrRuCgoLUeY4dO4amTZvCyckJBQsWRMuWLfHgwQN1+j///INGjRrBwcEBlSpVwsSJE02OQ2Lc3d3x9ttvAwCsrKxUxU5RFEyaNAllypSBvb09GjRogAMHDqjLGdzdW7ZsQbt27eDg4IB169aluI0XL15g2LBhKF68OBwcHFCnTh3s2bNHnb5t2zbUrl0b9vb2qFChAmbPnm2yfEru4YIFC2LVqlUmsmzatAktWrSAg4MDateujWPHjqUoj4H0jvXTp0/x9ttvw9HRERUrVsT69evTXB+Q9rFxd3dHgwYNsGzZMpQtWxYFChRA3759TdzDQ4YMQa9evTB9+nSUKlUK1apVA5DcFavRaPDnn3/i3XffRYECBVC1alXs3r3bRJbdu3ejatWqcHR0RPv27bF69ep03dEajQbLli3DW2+9hQIFCqBmzZo4e/Ys7t69i3bt2sHJyQnNmzc3uT7v3buHnj17onjx4nB2dkaTJk3w77//mqw3retm69atqFu3LhwdHVGkSBF06tTJ5DhIJDkKJRKJyuDBg9mzZ88UpwUEBLBAgQIcPnw4vby8uGPHDhYtWpQTJkxQ52nbti2dnZ05evRo3r59m15eXgwICGDhwoX5v//9jx4eHvT29uaKFSt4+/ZtkuTy5ctZsmRJbtu2jffv3+e2bdtYuHBhrlq1iiQZGRnJYsWKsX///rxx4wb/+ecfVqpUiQB4+fLlVPelfPnydHV15W+//cY7d+7wzp07vHbtGp2dnTl37lz6+Pjw9OnTbNiwIYcMGUKS9PDwoLW1NTds2EA/Pz9eunSJ8+fPT7Z/X3/9NW/fvs1169axQIECXL58uTrPO++8w5o1a/LEiRO8cuUKu3btyipVqjA+Pp4kuXLlStra2rJTp0708PDgxYsXWbNmTQ4cOJAkmZCQQDc3N37//fe8e/cub926xVWrVvHBgwckyQMHDtDV1ZWrVq3ivXv3eOjQIVaoUIHu7u4p/g8RERFcuXIlATAoKIhBQUEkyTlz5tDV1ZUbN27k7du3OWbMGNra2tLHx4ck6evrSwCsUKGCemwePXqUbP06nY5vvPEGa9euzUOHDvHevXv8559/uG/fPpKkp6cnraysOGnSJHp7e3PlypV0dHTkypUr1XUA4I4dO0zW6+bmps5jkKVMmTLcunUrb926xU8//ZQuLi58/vw5SfLo0aMEwNDQUJJM91iTZPfu3VmnTh2eOXOGnp6ebNGiBR0dHTl37twU/8v0js2ECRPo5OTEDh068PLlyzx+/DirVKmiHltSXGPOzs788MMPeePGDV6/fp2kOF8Tb9ewvxs2bOCdO3f41Vdf0dnZmcHBwep/Ymtry++//563b9/mxo0bWbp0aZP/ICUAsHTp0ty8eTO9vb3Zq1cvVqhQgR06dOCBAwd469YtvvHGG+zWrZu6zJUrV7h06VJeu3aNPj4+/Pnnn+ng4KDud1rXTWBgIG1sbDhnzhz6+vry2rVrXLx4MSMiIlKVUSLJDlKxk0gSMXjwYFpbW9PJyUkd+vTpQ5L86aefWL16dSqKos6/ePFiOjs7U6fTkRSKT4MGDUzWOXbsWFasWFFVbJJStmxZbtiwwWTc5MmT2bx5c5LksmXLWLhwYUZFRanTf//99wwpdr169TIZ9+GHH3LYsGEm406ePEkrKyvGxMRw27ZtdHV1ZXh4eIrrbNu2LWvWrGnyH/zwww+sWbMmSdLHx4cAePr0aXX68+fP6ejoyC1btpCkqmTdvXtXnWfx4sUsXrw4STI4OJgAeOzYsRRlaN26NadNm2Yybu3atSxZsmSq/8WOHTuY9D22VKlSnDp1qsm4Jk2acPjw4SSNytS8efNSXS9JHjx4kFZWVvT29k5x+sCBA9m5c2eTcaNHj2atWrXU3xlV7H799Vd1ekJCAsuUKcMZM2aQTK7YpXesvb29CYDnzp1Tp3t5eRFAqopdesdmwoQJtLa2pr+/vzpu//79tLKyUhXqwYMHs3jx4oyLizNZNiXFbty4cervyMhIajQa7t+/n6Q47+rUqWOyjp9//jlDil3i9Z49e5YA+Ndff6njNm7cSAcHh1TXQZK1atXiwoULSTLN6+bixYsEQD8/vzTXJ5HkFDLGTiJJQvv27fH777+rvw0B3V5eXmjevLlJjFbLli0RGRmJgIAAlCtXDgDQuHFjk/VduXIFrVu3TjE269mzZ/D398cnn3yiukoBQKvVws3NTd1u/fr1UaBAAXV68+bNM7QvSWW5ePEi7t69a+JyIwlFUeDr64vOnTujfPnyqFSpErp164Zu3bqprjADb7zxhsl/0Lx5c8yePRs6nQ5eXl6wsbFBs2bN1OlFihRB9erV4eXlpY4rUKAAKleurP4uWbIknj59CgAoXLgwhgwZgq5du6Jz587o1KkT+vXrh5IlS6r74OHhgalTp6rL63Q6xMbGIjo62kTW1AgPD0dgYCBatmxpMr5ly5a4evVqmv9hUq5cuYIyZcqoLsWkeHl5oWfPnsm2M2/ePOh0OtXNnxESH3cbGxs0btzY5H9NTHrH2sfHR12HgRo1aqBgwYKpbj+9YwMA5cqVQ5kyZUxkVhQF3t7eKFGiBACgbt26GYr3rFevnvrdyckJLi4u6nni7e2NJk2amMzftGnTdNeZdL3FixdXZUo8LjY2FuHh4XB1dUVUVBQmTpyIPXv2IDAwEFqtFjExMXj48CEApHnd1K9fHx07dkTdunXRtWtXdOnSBX369JEJPJJcQ8bYSSRJcHJyQpUqVdTB8NAimSzwnvrYssTjk2b2OTo6protRVEAAH/88QeuXLmiDjdu3MC5c+dMtpHVfUm6vc8++8xkW1evXsWdO3dQuXJluLi44NKlS9i4cSNKliyJX375BfXr189wCY3UZE363yVVcjUajcmyK1euxNmzZ9GiRQts3rwZ1apVU/8PRVEwceJEk324fv067ty5AwcHhwzJmXi7ackJJP8Pk5LW8U1tnUn/p6T7D4hEjYyQWjJIesc6pXM3I6R1bNKSL61rJDVSOk8M10xG/teMrNewjpTGGbY1evRobNu2DVOnTsXJkydx5coV1K1bF/Hx8QCQ5nVjbW2Nw4cPY//+/ahVqxYWLlyI6tWrw9fXN0OySiSZRSp2EkkGqVWrFs6cOWPy8Dhz5gxcXFxQunTpVJerV68eTp48meKDunjx4ihdujTu379vokxWqVIFFStWVLd79epVxMTEqMul9SBNi9dffx03b95Mtq0qVaqoFhQbGxt06tQJM2fOxLVr1+Dn54f//vsv1W2fO3cOVatWhbW1NWrVqgWtVovz58+r04ODg+Hj44OaNWtmStaGDRti7NixOHPmDOrUqYMNGzao++Dt7Z3iPlhZZeyW5urqilKlSuHUqVMm48+cOZNpOevVq4eAgAD4+PikOL1WrVopbqdatWqqta5YsWImySN37txBdHR0snUl/u+1Wi0uXryIGjVqpLjd9I51zZo1odVq4enpqS7j7e2dISU+tWMDAA8fPkRgYKD6++zZs7CyskrVoplVatSoAQ8PD5NxifclJzl58iSGDBmCd999F3Xr1kWJEiXg5+dnMk9a141Go0HLli0xceJEXL58GXZ2dtixY0euyCqRSMVOIskgw4cPh7+/P0aOHInbt29j165dmDBhAr799ts0FYoRI0YgPDwcAwYMgKenJ+7cuYO1a9fC29sbgMgknD59OubPnw8fHx9cv34dK1euxJw5cwAAAwcOhJWVFT755BPcunUL+/btw6xZs7K0Dz/88APOnj2LL7/8EleuXMGdO3ewe/dujBw5EgCwZ88eLFiwAFeuXMGDBw+wZs0aKIqC6tWrq+vw9/fHt99+C29vb2zcuBELFy7E119/DQCoWrUqevbsiaFDh+LUqVO4evUqPvjgA5QuXTqZOzI1fH19MXbsWJw9exYPHjzAoUOHTBTDX375BWvWrIG7uztu3rwJLy8vbN68GePGjcvUfzF69GjMmDEDmzdvhre3N3788UdcuXJF3ZeM0rZtW7Rp0wa9e/fG4cOH4evri/3796sZtt999x2OHDmCyZMnw8fHB6tXr8aiRYvw/fffq+vo0KEDFi1ahEuXLsHT0xOff/55iq77xYsXY8eOHbh9+za+/PJLhIaG4uOPP05RrvSOdfXq1dGtWzcMHToU58+fx8WLF/Hpp5+maYFM79gAgIODAwYPHoyrV6/i5MmT+Oqrr9CvXz/VDZtTfPbZZ7h9+zZ++OEH+Pj4YMuWLWoWcXZK2qRElSpVsH37dtXqOXDgQNWaB6R93Zw/fx7Tpk2Dp6cnHj58iO3bt+PZs2eZfoGQSDJM3of1SSSWS1pZsSR57NgxNmnShHZ2dixRogR/+OEHJiQkqNPbtm3Lr7/+OtlyV69eZZcuXVigQAG6uLiwdevWvHfvnjp9/fr1bNCgAe3s7FioUCG2adOG27dvV6efPXuW9evXp52dHRs0aMBt27ZlKHkipSD4CxcusHPnznR2dqaTkxPr1aunJhGcPHmSbdu2ZaFChejo6Mh69epx8+bNJvs3fPhwfv7553R1dWWhQoX4448/miRThISE8MMPP6SbmxsdHR3ZtWtXNdOUFMkTbm5uJjIlTm54/Pgxe/XqxZIlS9LOzo7ly5fnL7/8oiaokCIz1pDB6erqyqZNm5pk5iYlpeQJnU7HiRMnsnTp0rS1tWX9+vXVwHzSmLCQ1n9sIDg4mB999BGLFClCBwcH1qlTh3v27FGnb926lbVq1aKtrS3LlSvH3377zWT5R48esUuXLnRycmLVqlW5b9++FJMnNmzYwGbNmtHOzo41a9bkkSNH1HUkTZ4g0z7WJBkUFMQePXrQ3t6e5cqV45o1a1I9b8j0j82ECRNYv359LlmyhKVKlaKDgwP/97//MSQkRF1HatdYSskTaSWUkOSuXbtYpUoV2tvbs127dmpSUUxMTIryp7TelI5z0v/S19eX7du3p6OjI8uWLctFixaZXOtpXTe3bt1i165dWaxYMdrb27NatWpq0oVEkhtoyGwE8EgkkleKdu3aoUGDBrL1Ux7j5+eHihUr4vLly2jQoIG5xUkVd3d37Ny502yt7qZOnYqlS5fC39/fLNuXSCwBmRUrkUgkkpeSJUuWoEmTJihSpAhOnz6N3377DSNGjDC3WBKJWZGKnUQikUheSu7cuYMpU6YgJCQE5cqVw3fffYexY8eaWyyJxKxIV6xEIpFIJBJJPkFmxUokEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2EkkEolEIpHkE6RiJ5FIJBKJRJJPsDG3ALmFoigIDAyEi4sLNBqNucWRSCQSiUQiyRIkERERgVKlSsHKKm2bXL5V7AIDA1G2bFlziyGRSCQSiUSSI/j7+6NMmTJpzpNvFTsXFxcA4k9wdXU1szQSiUQikUgkWSM8PBxly5ZVdZu0yLeKncH96urqKhU7iUQikUgkLz0ZCS3Lt4qdxIwcPgwcOwa0aAH06GFuaSQSiUQieWWQip0kZ9mwAXj/fePvFSuAjz4ynzwSiUQikbxCyHInkpwjMBD45BPx3WAu/vxzMV4ikUgkEkmuIxU7Sc6xYAEQGws0bw7Exxs/ly83t2QSiUQikbwSSMVOkjNERQFLl4rvP/4I2NgAX38tfi9bBiQkmE82iUQikUheEaRiJ8kZ9u0DwsKAihWBt94S4959FyhaFHj8GDhzxrzySSQSiUTyCiAVO0nO8Pff4rNfP8BQFdvODujWTXzfv988ckkkEolE8gohFTtJ9omOBvbuFd/79jWdJhU7iUQikUjyDKnYSbLPsWNCuStXDnj9ddNpXbqIDNlr14CgILOIJ5FIJBLJq4JU7CTZ59Ah8dm1q7HMiYFixYC6dcX3s2fzVi6JRCKRSF4xpGInyT56xY5duuLoUWDCBGDKFMDTUz/9jTfE57lz5pFPIpFIJJJXBNl5QpI9AgIALy/Qygr9lnbA1iPGSePHA19+CSxo+gasli+Xip1EIpFIJLmMtNhJssfx4wCAG/aNsPVIIdjZAQMHAj17ismLFwMTD+otdp6esp6dRCKRSCS5iFTsJNlCOX4CAHAgpi1KlRK62/r1wM6dwJYtovLJ5L+rI76AGxATA9y8aV6BJRKJRCLJx0jFTpItQncJxe6CfRvs32/MkwBE5ZNx4wDCCp4JDcTIq1fzXkiJebh6VZhv+/YF/v3X3NJIJBLJK4FU7CRZ5qHnUxR5ehsKNHjr11aoVy/5PD/9BFStCngk1BcjpGL3anDkCNCsGbBxI7B1q8iYXrnS3FJJJBJJvkcqdpIss/2bkwAAX6e6GPR1oRTnsbcXSRRXIRQ73SWp2OV7XrwABg8G4uKAdu1EazlFAUaMAHx9zS2dRJK73LoF9OkDtG0LzJwpzn2JJA+xeMVuwoQJqFWrFqysrLBp0yZziyPRc+0aoDkl3LCub7VJVr4uMe+9BzwvJRS7hItXATIvRJSYi6lTgUePhKl2715g2zbxkIuOBr77ztzS5R4kEB9vbikk5uTCBaBRI3HOnzgB/PADMGSIvOdJ8hSLV+yqVq2K+fPno2nTpuYWRZKI2bOBthAZscV6t0lzXhsboPXntaGFNRwig4HAwLwQUWIOQkOBpUvF97lzgQIFRNHqJUvEuJ07AR8fs4mXa+zYAdSqJUzUDRokKuIoeWUICRHW6dhYoE0bEWBsYwOsXSvCESSSPMLiFbsPPvgAnTt3hoODg7lFyRtevAD++gs4cADQ6cwtTYoEBgL7N4SiHq6JEa1bp7vMh0Md4INqAIAH+2RmbL5l+XIgMlJk0bz5pnF8rVrAW28Jy8W8eWYTL1f480+gd2/g9m3x++pVYaG8dMm8cknylkmTxM2xenVgzx5g8mTg55/FtG++EaEJEkkeYPGKXUaJi4tDeHi4yfDSce2aeAB++inQvbvIJrRAE/6iRUAz7SlYgUC1akCJEukuU6IE8KJEDQDAre23c1tEiTkgjQkSo0Ylby83apT4XL9eWDVecp4/B5YOOgPt0M8BEtuKD8e2ybfA9h2E2/mTTwCt1txiSvKC+/dF0U5A3CBdXMT3H38ESpcWoQlbtphPPskrRb5R7KZPnw43Nzd1KFu2rLlFyhzR0UD//kBQEODsLMbt2AHMn29euZIQFSU8bQY3LNq1y/Cyzk1qAgDCznvlgmQSs3P+PODtLdyvffsmn96+PVC2LBAeLiwaLzHHjwOv14pF57UfwgY6bMQA9HmyCH3G10Rf7UYoBQsBV67ITOBXhUWLAK0WftU6o/8fndCvH/Dbb8CzCAfgiy/EPAsXmldGyStDvlHsxo4di7CwMHXw9/c3t0iZ47ffhCunZEmRObhokRg/fbpFBWRv2SLCqLraHxMjMqHYVe4hFLsSoV7wkrpd/mP9evHZu7fRYgHxzhIeDlBjJeraJZ73JeTIEVG95cNns1EZ9xFduDRqnVyOGTM0KFAA2HbyNSx0Gy9mnjvXIq3ukhwkMhLxy1YAAIb7jMKWLcDffwNjxoj8oe1FhgK2toCHhyzQDkCn0yE2NlYOaQy6bIZh5Ztesfb29rC3tze3GFkjLEw8AADxWbQoMGyYyC4MCgK2bwcGDDCvjHrWrQPc8AK14y+LEW3bZnhZp0bCFVsDt7FuL1CzZm5IKDELpEiMAID+/RETAyxbBqxYAVy/LkaXKweMffM9fI4ZwMGDohOJo6PZRM4K3t4iPr5oXADGW08DdECBRb+hfisX1G8lFL727YHxDz7BMNsJcPTyAg4fBrp0MbfoklyABPa9tw49osNwB1XwqE43zPhQdNxZt06EW/b+4jXcr90VFW/uERpf7drmFttsREZGIiAgAJQvO2mi0WhQpkwZOBu8d5nE4hW7hIQE6HQ6KIqChIQExMbGws7ODlZW+cbYKHybYWEivs7gwrK1FcrdxIkimcICFLuAAODoUeBNnIIVFRFfV6pUxldQQyh2JfAEJ3aF4vvvU659J3kJuXRJnCBOTjjv3BHv1wXu3TOd5eFD4Iul9fCOTVmUivEH/vsP6NHDPPJmgbg4UZ4sIgLYXmwMHJ5FA61amVyb9euLCIoOHVzxZ8JgjMQikRX5Kip2Oh1w8aIIRmzeHCiU/673hQuIDnuEd8Wn85e4uM8KNvqn6qhRotrJnDnA+Jv9sQ57gM2bgQkTksefvgLodDoEBASgQIECKFasGDSv4H+QEUji2bNnCAgIQNWqVWFtbZ2llVg0gwcPJgCT4ejRo+kuFxYWRgAMCwvLfSGzg05HVqhAAuSKFabTfHzEeFtbMjzcPPIlYsYMIc7GMt+JL0OHZnod8SXKkABbW5/mixe5IGQukJBAHj5M/vwz+fHH5Ndfkxs2kJGR5pbMghg3jgT4oFkf2tqK06N0aXLpUvLJE3H6bthAlipFLsYXJMCoDz8zt9SZYvJksV9vFzwhvmg05KVLKc47bhzZDGdJgIqzMxkdncfSmhkfH7JBA/E/AaSDA7lsmbmlylGOHSM7ao6QAOPsnJjSDU1RyC+/JF0QxljYif/i9m0zSJvHnDhBDh5M9upFzp9PRkczJiaGt27dYvSrdi1kgejoaN66dYsxMTHquMzoNBav2GWVl0ax279fXOwFC5JRUcmnV64spu/alfeyJaFuXSHK0/KNxJf16zO/ks6dSYAf4S/u3JnzMuYkikKuXUtWrGh8PiUeihQhf/9dzPfKU6cOCfADzToC5P/+R6Z06T16RH5Sah8J8IldaWoTXo4/784d0t6etEYCQ8rXFyfAZ6krpjExZOVKCn1RXsy7dWueyWp2/PzI114T++3iQpYpY7xoFi0yt3Q5Qni4eB/fgZ5Cef9ieKrzxseTb7xBHkZHMe+8+XknaF6j1ZLffJP8ZtmgAWMCA5MpK5KUMSjBWVXs8pE/8yVlhQi6xaBBIpswKd26ic8DB/JOphS4dk3EShWzfYGi/pmPr1PRB9bVhBeOH89BAXOY0FDgnXeADz8UuSxFiogC8lOmCBdLpYqEdfATzPriLj7sH/9ql6i6exe4cQMJsMEevolPPhGhRK6uyWctVQr48WB7RKEAXot/hA1jruS5uJmFBIYPF67Y+dV/R6EHV4VbccqUVJdxcAB+naHBVvQBAMRte7mzgDNMQoIIQnz6FKhXTySEPXhgrOf29dfAuXPmlTEHGD0aoJ8f3sY/AADNyBGpzmtrK5Kjj1h3BQA8XXswT2TMC+7fFyX6atQAHOyJFY5fqvHi8R98DEybBrz2msgQ/+wzsyYS+fn54Y033jAZN2DAABw7dgxfffUVihcvnmx6RoiMBO7csazKRlKxMyehocDu3eL7kCEpz9NV3Axw5EieiJQa27eLz29ePw6NogBVqoj6TJlFH2dnyYqdvz/QooWoyGFvL3JYHj4UN+efB/piboGfcVepiCcogbuoiuV/F8R/NYZD9yzE3KKbhcDfdwEAjqMten9SCMuXi+Dx1KhSxwHP6ncGADxY9A8eP84LKbPOv/+K/Idydo/x+aNxYuS0aSLJKQ3+9z/Au4J4MYvbc+jVyI6dORO4fFm8Ce3ZIzR5KytRrLd/fxF3N2yYUABfUo4dE4lBw7EE1lCATp3SzQSrUQMoOVjEWbpcOoaEyJf7TVCrFeHf1auLeuPe3sBn8QvwccIyKNBgINaj9IG/sLbMWFEbqGBBYR0ICzO36CkyYMAA7Nu3L9PLxcWJ99qwMJHnaDHkpjnRnLwUrthly4SZuk6dZP48nU7/5flzozk7ODjvZdTTsKE+PKTdZ+LLl19mbUVHj5IA76AyraxSDEsxK48fk1WqiF0sU0YfQhUWJnyyXbqIuCrD8bCyotbeUf39uFANMjDQ3LuQpzx/Tl6wb0UCXFRjIbXajC2n/PEnCfA8mqTl0TQ7iiLcaADpUeMD8aVxY2Z0R/9eG8MoiHMk7PT1XJbWzDx8KGLpAHLduuTTnz0T8QsAuXhx3suXA+h04l7oiChG2hfKVJhM2AuFj61KkAAP/nAklyXNPaKiyB49jLfBLl3IozPOU9EH157431xWr26c/umnZNyqDYwpX563DhxgTFgYFUXEKOf0kFZYjK+vL5s1a2Yyrn///mrMfkrT00KrJW/cIK97RNP3Wji12pwLK8muK1YqduaklXggcuZMkuKkXLGCrFZN6A916pB//02yalUx3/79ZhHz4UN9rDgUasuUEz/27MnayoKCSIBaWNEeMVleTW4QF0c2ayZ2r3q5aD5btIl8910RXJU4XqRzZ3Fg9HeSY78c4UOIOKKQKo1FUM0rgKKQH3R5Qh2Esht67WHGFw4MJAHqoGFJm6f09889ObPDPhEOyAF2W40JE+fPZ3h5nY484dSNBPhv91m5KKn50OnI//4jL9UfQgK86NKWzZoq7NRJJBqtWUOGhOhnXrjQmFkTG2tOsbPEmjVC/K8dloovFSpkWMknyWuvDyIB/lF4jPHl/SUiNlYNk6ajoz7MOiTEmADYpw+pKIyPJydONL4Ht2iuMKJ3P97av58xd+4wMjLluOXsDmkltOWkYqco5N27pIcHGeqp/xIQkMV/NTlSsUsFi1fs7t5VrT589IhaLfnRRymfrLcafyi+TJiQoyIoisLA8EDGa9NWRJYsEZt/v+FN8cXePuVEj4xtVCSKAKyLqxw9OmuryQ2+/54siqecaT+OCYWKmh6EatXI8ePJe/dSXHbap/cYDPEGH/3duDyW3Dz89Rf5MYTlLapWo8yvoF49EuB7WM9vv815+bKLopBNmpDl4Mcoe3HO8ocfMr2e8+/NJQEet++cGR3A4klIEHpa1apkXVxVFfwmOJ/sHmZrS/bsSXqeihFK3UuYSBEdTZYtq0+gKVxJ7MO8eZlaR9Sf60mAl1Gf27blkqC5iOEZ5eREnjpFodW/9ZYYWalSMhfMoUPq7Z7fdj4vFDsPD0YGx+a5Yufn55eiYnfs2DGSmVPsnj8Xutw1j1gqHh7iR1afiSkgFbtUsHjFzt3daP0hOWKE+GltTf76q8jC+/ZbvddTs9ho884hHkc8ZvtV7Ql30HmaMzdc25DqvN2EwYHHu04RX7p3z97G9b6tPtjCpk2zt6qcYs8e8k3s4VMkUujKliV//JG8fDnd1Ne4OHJU6S0kwHgrO5EZmI+5f590dib34E3xX02alPmVjBlDAlyFQXRxsbzyMUeOkHaI5Vmr5mIfmzXLkjU29vItEmAM7PnP5py7+ZuTq1eFR9pwqRy07k4C9GnQl7t2kbt3C8X/m2/UhGl1+KPBIqPV7iXKkJw9W4g9vMhG8aVIkcyftE+eqH9El3pBL1VG/erVRlvEwYP6kRMmGF/2L15McbmLF8lChcjy5WN45cBRxnh4UHnon+eu2IiICFarVs1kXOfOnXnjxg2SGVfs4uJEiI6HBxlx66H44u2dkb8ww0jFLhUsWrHT6cjy5cUFsW6desEA5JYtprO+9x7ZGBdIgErRojlSW0On6Njyr5aEO9TBaqIVD949mGze8HDSTl9+Kaa6sLAkq7eXWQYPJgH+jMm0tjZ/ib6ICHKE2xpqYSX2r25d4WpNSMjUeo4dVXgE7UmAT7sPyiVpzY+ikJ06kW4IZbxGX7Tu1q3Mr+iIqAH21Lo4NdBx1aqclzU7vNVD4Rro4+pcXYU2mxUUhaEuZUmAYxuaJ5wiJ/n7b2N0QsGC5PYR4jjSxka8kabAjRvkoEHCNWeHWD6y0lvtXpJYu+hoskQJElD4vGz9rL/MkEyoKwKWB2ADM1CS1SK4dYssUEDs9sSJ+pF//218cKVz8V68SNapE8Nj+z2FYnfpUqZc2DlFw4YNee7cOZJCkatcuTJj9SEBGVHsFEWUaPTwIG/fTKBy8aL4kcPB4lKxSwWLVuwOHRIXg5sb/X2i6eYmfrq7J581JIQs7hptVDpyIDh/xaUVhDvoNNWJ159c5/vb3ifcwWoLqyVzy27frjcslrtt9KmoATNZZNo0EuB2pw/E235yfTJP+euD/xgPGxJgwqCPxCtZFnF/87xYD6yp88tEzFkaxCbE8nnU8xxZV06webM4FT620b+R1K6dtRXFxgqfDsD6uMzWrXNWzuzg7U264xfxQmVtne2TNLzfJyTAWfg2p1/u85RFi4xxU2++SQYG6IyZVSNHprv8tWvCAz8CC0iAYUUqZPoFyhwYQgM/Krrb6IvMajLbd6LA+x/4hP365aycuYFWK0ISALJDB70+tmaNUOSBDCfSHTkSw/37b/KFx1WhDD1+nLuCp8DVq1fZqlUr1q9fn02aNFHdsMOGDWOJEiVoZ2fH0qVLc1cqCTGhoUJ0T08y/mGQ+HH9eo4XM5WKXSpYtGLXr594YAz/UnVzNm1K+ocGce7ZuZxwdAJP+J2goj9ZJk4kb6GGWGZf9t74dYqOledXJtzBGadmkCRfxLxgsZnFCHfwd4/fTeYfPlzId6jRj8a7eQaI18ar8idj2zYS4N0iTUzfAM3AwyvBDEJxEuDD1gOzfYE+eUIet25HArz91nfZWlecNo4j9o6g7SRbwh3stq4bA8JyLkA3K4SHi+4RAHm72lupv5FkFH18zo+a6QRy3KORZVZ0Wp/Id/hH9le4YQMJ0BOv85tvsr86c7B8ufEv+eIL/QN+3TqjRfPp0wytJzqa/PKjKD5BMRLgoSFZKHSeh8TGigx5W8Qx9LVqYn/HjMn6CvUZOfdQkTY2lp9Iv3ixsFTWdH7I4OVbRTcJw4kwcGCGLW8xMTE8f/4W73oEkB4e1F659lJVd9fpxIuJhwcZ8FBLXrkifmTwvM8MUrFLBYtV7J4/V32bO365pIYnuP+zjA5THEzco4N2DKJWp2VoKLnFuj8J8MHwX7O1+UN3DxHuoOt0V0bGGeND5p2dR7iDNRbVMFHIatUSrpNYV3ET5o4daa4/Mi6SA7cNpP1kexadWTSZokhS+GUAxjq4ElAyqivmCscqDCYB+haoSSUqZ1rdrH/vHxJgqFUhJkRkLYZIp+jYY30Pk/MB7mDtxbUZGhOaI3JmhdGjxWlQv8ILKgYfvT5GJUssEvFWVwu3IyBCGs1N+JELjIYo2+HXPxsP8MQ8ekRCZAFXLBSapYRQRVF4OegyLwRcYIIub61ce/aI+F/DMVIUiqCmcvos+WnTMrU+RSH3txIxu1dRl2vXWO4D/k+RH8TpzvoY49dey57rLSJCtXZVwH1OnpxzsuYoYWF88dty7rbpxUcoaRooaWVF/vJLptypBmXl3t1IJniIILX4ZznrwsxNHj0SetyVK6QuQP/j2jXmRnqzVOxSwWIVu3nzSIBxdRrS1VVcIx2n/KI+uBsvb8y+W/rSZpIN4Q6O2DuCJPl3w6kkwDOVBmZr83229DFZr4Gw2DA6T3Mm3MF/7/1L0hjn+yH0Of6lSqXpNknQJbDj6o7JlJG1V9eazhgbK24MAIsjiEWKZP7F7XnUc36590tWnl+Z9X6vx1/++4VhsZk71g93eKo3Ku/VZzMnQBqEh2oZYCXKn/w7bHOW1jH1xFTCHXSY4sBdt3fR65kXS80uRbiDn/1jnsJv/v7G2KrL360VX2rWTHHeFzEvOOHoBLZf1Z7Ddg/jraepxODduSMUHmsbOiOcJUuaJfTGyNOnjCwoTJJHnd+ikpBzwijVhLXnbezi5kyeFgFhAWy8vLF6TVVZUIU3nmRDoc4EV68a46uGDEl0rY4aZUwyykL/TyU4hDG2ziTAXrZ7ePlyjoqdIyiKiDRoBA9qrfSux7Vr018wPVq2JAF+jD9ZpowFeqP37DEEFaqDYm0t+v9+8QV582amV2lQVqKiYvjsskg6iLjk/VIY7eLjRZyghwcZ+jhG+GI9PHKttqxU7FLBIhU7rVbt/bqw5mICZPn+89Wb9eTjk1Vr2dabW9Xxx/2O8+bMPSTAm1a1s9xPPDIuko5THAl38GJg8gymL/Z8QbiD7219j6RI5LBGAv3sqmborXz+uflqlu1en70cfWg04Q4WmFoguQuxkigX0NHmGAFR/SWj3A+5zwrzKiRTICvOq8hrj69leD03y3YhAR4p9UHGN55Bznf+iQT4n323TCf+3Qm+Q7vJdoQ7uOKSMVHluN9xwh3UuGt4OehyjsmqKApDokMYp007tvDzz8Vp0KYNqbypz4b95Zdk8wWEBbDW4lomx8Z5mjMP3DmQ8or118R7TrsIiP7hZkFRyN69SYC3UIPzJuXwvWPYMBLgbHxjSIbPEMHRwaw0vxLhDtpNtlMt+4V+LUS/0NzNvg4PF5V+AJEwoyYF79xpDLbLRn1N5XthAj6JlqxYMfvhuznN4cNkKQQwQKNP9ujdO2fch+PHkwD/th9IwCJagRvZvFk1z95BZY7FVHotP5Htch6JlZXYsBi1TEiQn+VnRj94IPQ4r5s6KrduGTNhc0krlYpdKlikYqfPIopxKswCiKRtzf20mmhFuINTT0xNNvunuz4l3MEGSxtQd+++cF/Cjju3Zu31btutbaoClFL82/mA84Q76DjFkeGx4fziC/Jz6IvYFS0qXAipEBwdTNfproQ7uNRjKUlSq9Oy+Z/NU7QQsrsojzCtwjIC+kKXGSAmIYavL3udcAcrza/EHV47uPbqWlXRc5vuxnP+59JdT8ixq2qSw5kNvhnbeCaIu+FDQhRi/nNi5uLiem7sSbiDXdZ2SXac+v3dj3AH+27pmyNyXnt8jXWX1CXcwYK/FuSs07NSPDfu3zfGSp/b7Gd8qPv4mMwXr41Xj3mp2aU47+w8tlvVTnX/+zz3SbZuQyDnv9W+ICCK2pqFXbtIgPGw4euaSzkf+7RRlMm4iIYEMp5k+97W9wh3sMK8CvQN9eXzqOdstKwR4Q62+KsFtbocNnFqteTZs1R2/8Pvu9+gFbQsU0Y0jiBJ/vOP0YSX1Q40Bh49Ul36rXCC77+fbelzlCEdH9IHVYzW6ZzKftR34AlzKkFA4dtvZ2wxRVF48O5BDt8znD8e/pE3n2becpYmN26o3UOOlB1MO8TmWIJHUmUl7qZIL33s8dDslRHSIjZWGOg8PXSMv3VHKHWXL+dqgW2p2KWCxSl2Wq0oowFwus04othNOrgLRejjnR+n+DB9FvWMBaYWINzB/d57GW8tLrhv3k65pEB6GLJfvzuYclC/oiisuqAq4Q6uubKG7as8ZBhcxE1twYI01/3b6d8Id7DukromD5r/7v+nWhqCIoKMC+jdOEcafJuph/mkY5MId7DIjCJ8+MKYdRocHcxWK1oR7qDLNBeeenAqzfVcev1jEuCBQv1zzRUQVEV0FpniPC3D5a4MyrXVRCt6PfMSyvTYsWSjRuR77/GWx351um+ob7bk83nuQ5dpLsksnxOOTkg2r75CjSilOG6cMUUuCdNPTlcV7LvBwgwbr41Xj02zP5pRpySJSdktMg0ji1ckoLBsWTPEVMfGqpbDafiR3brlwjYSddsohGCOH5/+IoaYWOuJ1jwfYOx4cT/kvvoitfLyypyT8cABY9ycfgiDC0MbdRC9odq0MU7r3j3Nun53g+9yyM4hrDy/MusuqcupJ6YyJiEF68xnok3hCbQioPBAKobdvMb3mB/voaJQ9ktXIH19M7xsWGwYd9/ezV23dzE4OgV3XWysqkDVxE1aWaXfuCBeG8/BOwabXKs2k2y44Fza9+YMo9ORr78u4oPf6EoNdLSyIm/fzpnVJ1NWXrwgPTyY4HGJN65qLbZ4t68vedMjkjEXbxpTYnNZE5WKXSpYnGK3ahUJ8IVVQRZyvkGHseUId7DNyjZpusBG7R9FuIMdVndgZBVRR66P455Mx2ToFB2LzixKuIMn/FL3dU08NlFkYC7uwIsQZQwSGr+RZuCTVqdlxXkVCXfwj4vJMwjf+PMNwh2cfnK6ceTvv5MAAxr0ICBqFqdHUEQQnaY6Ee7gxusbk02PiItQrUNOU514zPdYiutJePSEMRDBYgcn5lxsXbLtLP9LZMeiGmf8mjFNpdu6boQ7OGTnEFG81dCo1DCUKsUPZ4kahD8cznwXBFU2XYJq9Wn+Z3MGhAWoyjncYVLT0MtLDYmk539hotookKzoYmhMKAv+WpBwB1ddNq1r5R/mr8Zw/nXpL1NhIiJEGR2A9Qv4EMhU164sodVpefDuQU44OoHuR915c/JXJMAnViXojHBuTH565Qz6JprvYCdLl047nlCn6NhwaUPCHfx6/9fJphuOV6nZpRgdn/XEn6uPr/Kdje9w2Ptu1GnEeaZzceNlq4aMgJPp+QcIN93IkWkqdUd9j6qKZ+Kh/u/1k4dlBASI/lQAe2IHy5dP0zmQo5wPOM+3NrxF1+muLDGrBEfuGylKCz14wOeuFUiAjwpUFn0VM8j6a+vpNt1N3We36W7J44xJ4dsGOLfSAgJMN4nCECpjPdGan+z6RL1XpHhNZZItN7bw189qkwCjCtiye2cRIvPxx9larQnJlBVFoaJPM/XzeJLhmu5anZYxCTGpV13IJIqiMDg6mHeC79D7uTcDwwNV40RsaBRDPPRWOg8PUZk4D8yLFqPYJSQk8KOPPsqp1WUbi1LsnjwRxYUBjraeSJuR9dS6cc+inqW5qF+oHzXuGsIdDO8p4pq+xSzRziUTXAq8pFqz0mohdif4DjW/gNtriJt4sE2xdH1G/3j/o8b8RMUnj8Mw1M2rNL+S0Vrz338iiaR8FUKfGZxe+bif/v2JcAeb/tE01Ys6Kj6KndZ0Ul3KhkSQxNx+fxIJ0NOmae62dQ0PZ4KdeGB1dL3A9E7F0w9PqzfueyH3VEsGCxUiZ80ia4iSN49bNSAmgGXmlMmyG+7Pi3+qx8w/zNiodcTeEYQ7WH5uefVY6qvzsGdPiqcPIGRJopX88p9IAqq1uFaKchkUkZKzSiZXRNqLws4rGoqHXHaqSaTHUd+jrLGohtHqMR68X1Cc7yNdxtDNLUu5ACTFQ+di4EXuv7OfTyKfJJ9BH6i4xH4UAXLv3tTXtf3WdvWaTek+EZsQy/JzyxPu4KLzWWvPtcd7Dx2mOLDu52C0jfgPVjQAqw0aTYBs1VxL7eVrouTLpEnihSyVtnoGrj+5rr6ANf+zOff57ONfl/5SSypVW1gt+X/z888kwLs21WiD+Fw9/gaWeS5Tk9QSD01+KcmYsiL5yQdVeGx9xkMpFp1fpK6nwrwK6gtvipbV6dNJgA8a9SIg2q2mlmBpCKPRuGu4/dZ2kkIh+fHwj2qS1fUn1zP9H2h1Wn6y6xNaJ7oGfugIYrwtretvzlYDnWdRzzh8z3CWmFWCLtNc+N6m93jp2iUTZYWPH5MeHoz2uE4PDyVNT3d0fDR9nvvQ45EHPR558FLgJT4Kf5TcA5AKKRUg7tevHxeuXMjGLRuzYtWKrFKzCmf8MYM3Aq9Se9eo0CkeHuK8z0aN08xgMYpdbGwsrayscmp12cZiFLv4eOo6iyD9K5ratPtEWElKzCqRYVdal7VdCHfwvw+Ea285Ps2QGycxM07NINzBtzekH8yxtqtIbY/R2HBev9MZlu/7g9+nOD0yLlJ1+R33Oy5G6ss/KNbWLF4ojgB54ULq20jQJbDkrJKEO7jlxpbUZ6SIw+u+rrt6w9vns884UatlsIPIelzdLfU2ajmFrv8A8VaOr9Ot12fIKP5016fCZGWwkBw6JGbw8VFL5fQf7GSSwZwZYhNiWXZOWcIdnH1mtsm0iLgIVVmYdmIar1wRImg05O09d1TLStKgyOdRz9Vj/PfNv1Pdbrm5wlI958wc04kzZgjryOvCglu5cs67Y3WKjhOOTlAftAV/LchBOwZxybfCvfjYCXQYXYBvjjicpfUfuX+E1RdWV9dvNdGKo/aPMlViN20Sluqi9QmQ776b8roURWHTP5oS7uBP//6U6jYXX1isKuLp9XxOyrXH14QCNgG8UbUgCdCrcQVa/SLkt22xOLVGEqkSHR/NagurEe5g+1XtTVyvfqF+6vFvtaIVYxMSxSiFhZHFREmlrzGX9vYiYD23WHV5lXqc+m7pS89Hntzrs5e1Z1emZ0lx3d2xKsd2VfwzfB4evHtQfQn/7uB3TNAlMEGXoHpdbCbZmCat6a9xpWBBFnLVmlzqiYlJiFGvyR8Pm9YDUhSFb65/U43Fzuw5YLAC9ukvTPKxBV1YYqi4n2smWHGP955Mrc/ApcBLLDGrhInCXP638tx/Zj99n/kaX8wTEtR0Ux+PUF65knKG8IuYF7wYeFFV6jwfearfvZ97Z+gFN6lip1N0fLPXm5z550yu3rua/mH+vHH/BkuUKsGQc6dUpS7Y4y5jQnKmFFZGyVPFrnv37qkOXbp0yRXF7unTp3zzzTfp6OjIatWq8d9/M/YgswjFLiqKUW/1FeZtjT3rfVBcjQ/LTFbj5hubCXdw5AfC6nccrZnBXsUqBitWuvEYifqbDehQkTt3pj377We31TfJeyGpv8l/tPMjwh38/J/PxQhFEc1GAQ5tdYtA2j3BDVbBojOLmj4QUiE2IZbvbHxHle2LPV/QN9SX4dtE149nKMIrF/Lg7WuPyGZ+jNdYyCUh1ez4g3cPqrGIviH31XIIHDzYdMbvvxfu3Xqi9MmgHZlvXbbu6jrVhZdSzJNhuut0V3bt9Vy4ZP4Xauww0KFDMq3rh8M/qK62tN6gDZbCYjOLMSIukb9Nr0Eqjo4sZB9FZLM8XlJCY0LV88GgPL+I0ZsHWokXpokNhHXFfpKjSTxbRljmuUxNhHKZ5sIqC6qo2+qytotRuQsKEvupEXF2NjZiVFKO+h4Vsky25+OI1Cv0R8dHs/hv4r6y+srqDMur1WnV8imTvxAuODo58d6JANq0nyYUO3cH3n6WuQArgwWp1OxSKVoZvZ55qW7Kj3Z+ZGp5X7ZMvFBaObIqvJOd+mcenuEXe75gx9Ud2e/vflx1eVW6mdwpcT7gvJp1/s2Bb0xkiPlCZC4/LQCWe78GF/yesUzQxxGP1ePw6a5PTdapKAr/t/l/hDtYc1FN4/0rIYGGtkMz+5wnQPZNISfKYOkuPbt0ih6RxxGPWXhGYcLdWHQ+Ixiuc427hk9fF96A2/3GERotrXsPUe8Bd4Izp917PfNS5am5qCb339nPK0FX+OP+H7n/zH56PPDgg9AHjIiNYGRcJCPvezPy7Ak+O+fBE2cjeNMnUozXD4HhgTzpd5In/E7wUuAlPo98zojYCD4IfcBTD07xhN8JXn18lRGxEWm6Z5MqdgFhAez8Tmcu27qM4bF696pWy7pVq/LRvn2Mu+TBW3eu8e69nK9Tlx55qtg5OTlx6tSpXLVqVbJh+fLluaLY9e3bl59++imjoqK4Y8cOFipUiCEZyIk3l2Kni4nj4xPevDh8AYPcRH/IeI2Gb70nbvJVF1RNvaZXKkTFR7HA1AJsOEwoXE9QjFZWGS+hEx0fTfvJ9oQ70t62t7fa4sm9jXjzPHfXK811f7XvqwxZAg1B4IVnFDbejBs1IgGu77sjRR0mMYZM0W8PfJvmdhITp41TM4sNw6aGwjKxunw7Xgi4kOKNMrMoisKTD07yq31fscf6Hhy4bSD/uPiHUFzi41U3fFfs59ixyZfXKTo2WNqAcAdH7R+lZszR3l5YNhPz4IEa8FZruIglNFGQMoChT/DEYymbEHWKjk0W1GWZb8CGb7zPTzR/Ma68PjOwWLFkQeSPIx6rST67b+9Oc9vx2ni184lJzKWiqP2TJ70uzofp01Neh9czL445NIYdV3dkm5Vt+OmuT7nDa0eqcWYn/E6oliL7yfamLrHr10VMmbUNS1rdp+PQbqriaUj+SA/DAxLu4OAdg9V6inu896guyUE7BhkfOjVrkgDHVBP7OSOFZ7Ehfkp9EUqDX0/+SriL4uIZdUst81wmHtzTXBhfSzzUdRMm6kM6FRb+WlhtMpN1e/XxVVpPtCbcwR1eO1Kd78CdA6oSbGIx1unUuLOzaEYbJPDKFXH/G7p7aDKXKdzB6gurp1i6KTWeRT1TrdXvbnrXVBE4c0bN9u7SWyif7235MN1YLp2iU70WdZfUTfE8fBb1TFX8fj2ZqMi8vrxO0GcTCIhQ08SNDIKjg9W41cSlj5Ky8vJK1UORkfP2Xsg91cK+cPWXqvekXfVAAuQPP8WpCU9NljfJsAIdERfBmotqqiEz6ssThbJy4coFejzw4Am/Eykez+wOiYvuJyWxYhcWG0aPRx7s/E5n7jpgrDXjuXs3a1WsSN3ly7zme5kejzx4/3kumo5TIU8VuzZt2nBjKlHFMTEx1Gg0mVldukRERNDOzo6BieoOtG7dmqtXJ38zjY2NZVhYmDr4+/vniWLn72zFZ44ahtiDYXagVmMaaBzoDLYdLNwyw/cMz3QRXQN9tvSh01jjegvjeYaLnBqUqtKzS6d+k1IUsmNHYV2q1Z5WA4R5f9yRcamuNzw2XA2QThxsnxIJugT1xqaa9wcOJAHeHPwrgdRbjgZFBKkPjKyk9x/1PcoOqzuwwDgNw+zE/9fyI6O7rN7v9Tjz1Mw0LSOp4fPchx1Wd0jxJlNyVkkRD/OluHGuwQd0dEyeXJfYQvYs6hnZubM4zl98kfJG332XBPhXO/HwWXNlTYblvfb4GuEu4vgehSdRGnU6cskSVfFINpQqJarVJsHgakor9jExa6+uJdxFfF/iGz+/+YYE6N1U9BBu0cJ0OUVROP6/8eq5kHRwmurE3pt7c/WV1Tzz8Ax33d7F97e9ryoRleZX4oWAJP7+H34gAZ4o9i4B8if3cDVhoeqCqnwamXa7oH0++9Q4rZH7Ribb/3/v/avK++fFP8XIL74gAd7oMJIAWbWqqQHUEA9rNdEqQw/psNgw1Qq27da2dOd/HvVctajsnDVUHFsXF84eH0pAdAc7c/OB+uBP6q5PCa1Oq7qO/7f5f+nOb+h0YzXRint9EgUaPnyoWrF+gTvb9rnB2otrq5alwTsGc9XlVXQ/6q7eTwpMLZB6jcREJOgS2HlNZ/XYmpx7iqI2RN1fYghR4Sg1E8RxW3JhSZrrNSjWjlMc07w/rbmyRj1P1bjWFSvE/9+okdqP9bffjMt8e+BbVWFMS8FWFEUN5ei4umOa12G8Nl5NaGv5V0vqxohagv4N3yZAFiwo6gk+fPGQhX4tRLgndwGnJsOArQPUe1/S+6lBWXkU/CjXFLu0Wi76+fmxWbNmjNfG80rQFXo88uBb776l9osNefCAdSpX5um//uKDG2H0uPZCdfeanCt5QJ4qdidOnKCnp2eK0xRFUf+gnOLSpUssVqyYybgRI0ZwTAqRtRMmTCCAZENuK3ax1skfgJG24PlS4I8dHdhoWhOO/++XbJem2Hh9I+EOBhYUxcSa43SGM5bGHBpDuOszLVPjH9EGi3Z2/Pm9e0Qdsb0K8yqkepMwxPdUW1gtQ5YCg3Vv4DZ994yJE4Wbuv9HBIQhKqVsOMONs/mfzTOyu6nyYIG4ifo6uLLtso5qMLdhsJtsx9GHRmeoZZeiKPzj4h+qpcpush2H7BzCZZ7L6H7U3SRoesn8D0mA0VYF6IIwvvWW8UH+IuaFakGYdmKaCDSEPvMwtfIKO3aQAF8Uc6XmF+HqyyiGmJrem3ubToiLI99+2+Q8jtdo+MgZ9KpSTCRNpHAtBYQFqNbgjDxcSaEEGN7q3Y+6GyecPCksR65utEUcNRqj9UJRFLXgNdzBHut7cMWlFdxwbQNH7R+lWuRSG4bsHGJ0txhIZCXsg78JiL88MDxQjWlq9kezVK26R32PqsWCB24bmOo1YDh/naY6CUVN3ytZV6WaIRqBiW+dvTb1EtYifaHwjPDzkZ8Jd7DRskbpKtfDdg9TlQVd167iZe7D79Q6hStXivmWey5XFZa0wixIcuH5herLSbIXhhRQFEW1prtMczG1uq0VXU100LDLAOEyLTGrRLJ40uDoYHZd25VwB20n2XLT9U1pbjNxwfRkhcy3bycBah2d+Boe09qa/GnPb+q6U6uNefrhaVVxT6kiQNJ9NljLB2wdIEY+fqxeb2tnCmtZ9eri1Lwfcl91GWfk2roTfEc9H5NmpSfGcK64TXejX/B9tfnz58W3ETCtQ584aePI/SNpbn/BuQWEu4glTKncVGJlJSg8iCf8TvCE3wneC7nHyJhwRl46x8izJxhw/hpPeDzjSd8zPOF3ghcDLzIsJszEPZt08HrmJeZ9dDHVUJ2IiAhWq1ZNTcC4/uQ6O3XqxBs3bjA+Lo4dmjXjyl9+YZyPn1rV5H7wA3o88uCVoCuZjl/MDmZJnti8eXOGhuxy4sQJVq5c2WTcTz/9xOHDhyeb11wWu0OrtvG/Dbt4evt+euz7l1fPe/DuE3+GROdsCfXw2HDaT7bnoUriJjAEK1imTMYCzA0WiHVX16U8g6KQTZuKG8yYMaIig20UHSaJ8hQpXaSKoqgP54zWUTrnf059wEXGRaqB5GzRgqX1hd2PH0++HUNtveym9PvW70kCXFXa6A8Nigjics/lbLK8iaoEFJlRhAvOLUj1BvEo/BHf2vCWOn+7Ve14P8Q0czgmIYbfHfxOzDMBfFBKuLg/txYFmXfsEPv2wfYPCHdRNDoqPsrYYHtQGrFzMTE09KNr8bGwegSGp19NNzw2PFnbOJLi+BsK1Tk4UJkzlz2aPSNKnldv6lcfJ7fUkUYlodWKVpkqP7DlxhZVEVDrfOl0ahuj4ZX2ExBVghRF4dh/xxoV5RQsKIqi0PORJ38+8jOb/9mc5eeWZ90ldfnZP5/R81HKL6M8c0YEjNs50wHRbNvWOOnW01uqtaLH+h7J3GunH55W3axvbXgrzZu+TtGpZXia/9mcCSHP1cr+P/a7R4D8QN/85HLQZfU/z0zIxtPIp2pXmUN3U4jA13M+4Lwa4H/+5GbV9di18h0C5P/+Z7ynKIrC9qvaE+5g5zWdUz2+AWEBqnUvPetWYuK0cWy7sq16T5h3dh59Q3153O8497YXWanPHcHGn7ZJ1Zoep41TrUQadw0XX1ic4nwbrm1Qz5/NN5I8mxRFrd+2p/5Paqyboijsvbk34S4y0JNm8j6JfKK+lL239b0Mnf+XAi+p/79ajqlZMxFbOHuxIRKGJ04YC1N3XpPxNiWGl4jCMwqnmJV91Peouv3NNzaTp0+La8DBlXaI5WuvMVnNTcM1nlrcJCniHw2W62SJUXqSKiuB4YGqRcwv1I8J4WFU9K26Am+J5IjrQTcz1BdZp+h46+ktejzy4K2nt1J9yapbvy5X/rOSno88ecvnFitXrszY2Fh+OmgQfxg0iMrFi/S+GU8PD2E81ik63nhygx6PPOjz3CfFYxweG06f5z452r/ZLIpdmzZtaGtry7Jly7J58+YsW7YsbW1t2bZtW7Zr147t2rVj+/bts7JqEzJjsUuKRSRP5DBvb3ibC5sIxe43qzEEmG7W2rOoZ+oNzaRAcGL0Fzft7Rl05TGhz4IcsGkQ4a7P0kzC/juiUK7zNOcMu5cVRVFbI228vlFU7wbIIkVUfWbWLNNlDG20nKc5ZzqWzISQEMZrRK205V8lLwugKAr3+uxVlVXDzXz+ufnqQyUoIogzT81UH/h2k+0489TMNK2VG69vpOMUR37bRRy3eyWqEVBYqkw8P9sxSnVHnXxwUmQLGP78W+k81D8UVsCNnUumeTNNzO8ev6sWVpMblN5aQWtr8sAB7t+v6nh8e43odPHm+jeTre/a42uqmzOt2ogpoVN0rP97/eRuHr2b0qPhUAJknz7GMipwBxeeX5ip7aTJV6J23U5X4fpdkSSE6dSDU6oFpNGyRjzme4z+Yf787fRvqpWy05pOKRfdTYJfqJ8atjDl+BSydWsS4P3RS9T/OiSEfHfTu6YWnUzw9f6v1ReNlEicMPHh9g9FOziAt8t2IiB06mdJnts+z33StAIpiqLKnGLx6XR4EfNCdY+aWM/HgRdKC6XTE6/T63Lq/7FWp+XwPcPVZcf+O9ZE0d50fRNtJ9kS7qnUfjx2TMSYOTqylN0zAlTLSYXFhqmZznWX1FVbuPmF+qkdW6osqJKpEBuD1bzOkjpCGZg1S1xwbdrwk0/E1zc/9VCV1cwk2sVr49XrqtemXibu2wcvHqj9pj/eqXf3fPcdCXCbo2htllId+si4SLU80Dsb30mm3DyJfMLSs0sT7iLDODUFN6myoiiKiXLn8ciDfnc81WzU59cu8+a16AwXLo5NiOWlwEuqophUjsi4SG78dyMbNG3A2nVrs0mTJjx27BivX79OAKxXtSrr1ajFqlXr8++/b6qlsKLio9Qs3KSu3tiEWF4OErF4iQvmZxezKHafffYZFy40vcEuWrSIn3+efqBvZjDE2AUlShtLLcYuKflRsVt1eRW/7C4UhJOF3yFALl+e9jKGjNq6S+qmPpM+1o0ff8wNG8TX11+nGgdhN9nOxCKkKApb/NWCcBdZZZnB4AZ4e8Pb4tUQYn/m/CyyLwckeZ59uP3DVJXLzBC3aDkJ8ArqpRQmppKgS+BSj6XqjcowGB7khqHRskYZbsJ+/cl1vjGtMmP0bvu2/coS3xlLARhasPH998X/0bt3iuvRakUt1wcPSO0m0Z4upHxxVZ60UBSF9X6vl1wJjI6mai79+WfqdGpOC7/7TjzYDW/ihvpZpHiANPujGeEO9tnSJ0P/Q1J2396t/rdez/RJOocPCzdwoWK0RgLtOk1W/6e5Z+dmaTspotWq1sHu2MsCBVKuO3rc77iqyCcd3lz/ZprB2kkxxFjZTLJhwA+ijZry5pusU0f836PnGh/mWYklffjioarAHL6XvGSLQbF3ne7KoPBAtV/ze1hPIPWWr4ZuIi7TXIzHSc+SC0sIdxGzmZpVNz0M11zdJXWpcdewyIwiHLxjMO9e/o9hdkVIgEcrf5LmOhRFoftRd/XYVF9Ynd8c+EZ11cId7P93/5Tj1P73P6FANv2cANm4saknxOuZl1q6w36yPZv90Uy1jpacVZLez70ztb/B0cEsMqMI4Q7OPzdfmIb0L3QXdwcQGi01Q0UMXFay3j0eeajnwcBtA/k08inP+p9Vk5ZqLqopXpIVhawoOmu8i20sVy71LlmXgy6rbuExh8aoSlNgeKCq4FZfWD15uEMiUlJWSKE833x6U1XuHt7xVPvIaj0uMuymf5rFsBMTGh1qXM+Lh6qckXGRqgKWzPIWGSlq1Xl68vb1OHp4JO8C8izqmcl6tTotI+IiePXxVXo88uDNpzdztLWfWRQ7Nzc3apOo0QkJCXRzc8vK6tKkT58+HDZsGKOjo7lr1y6Lz4rNTYKjg9llkMiIfFykIgHyvXTCcAzZZKkqYBERxr6P584Z+pTzW33yqSEzKnGv151eO9WbXEZcgIm5+fQm4S7iVoKjg8myInP4/NzTBET9MgOhMaHqDTQj/V/T4nndtiTAaW6/Zsh9HZsQyyUXlqhubMPQeHljrri0ItPxFuGx4TzRVSQl7KqmX9+YImzz5QZRt+nqVWP/1YvGeKP4eBH++L//GQ8TQBaze8EEjQiKqjZKxPik5bozFD92mOJg2uJo/nyxwnLlyOhobt4sfjo7G+PbDKVM3Ka70eORB7U6rXpeuU1344MXWcsaUxRFrTfYeHlj4YqOj1frmfVuNEj932eempmlbaSKvkB2hH1h2iJOdYWmxKPwR/x458cs9Gshatw1rLmoJpd5Lsu0dUpRFPbZ0kcohePEA5W2tlwy/QVhFU/7r4Wl5YPtaQiTDiP3jVStSIljA32e+6iu4/nn5qtu6Ag4sQAi02z5Gq+NZ5uVbQh3US/v5tObVBSFa66sUZX+zJTZSIuk/6n34sPUQtzznkxPPxRj/bX1yRRxq4lW/OHwDyk/eIOC1CbIbYrcICBC/JJyP+S++h8YhlYrWqUbe5gaSz2Wml4/+pI7yuQpLPmuSCxxmOiSZjJAWmy+sVm1piceKsyrYLQsXbokYpzhyAKITGaxTorhxQDuIlP2012fqkk4JWaVSFfBTU2xMxCnjWNMfIw4ByIimHD9lrFAsKeneKPNQMulJ5FPVCXs2uNrvP3stmpxS1EBe/CA9PBg7K27anOJlDaT1LqYeBtZKbuTFmZR7OrVq8e//jK9yFasWME6depkZXVp8vTpU3bv3p2Ojo6sWrUqDx/OWPHQ/KjYkWT/OS1EkK+1FW0Qz5Il046zMwTxmxTpTcz69VQ1KkVhtWri52591YrD9w6rVoRDdw/x4YuH6ttrRjKlUsJgOVruuVzNAI2c94eqtBjKuBisAXWW1Mle+5iHD6mDUJp++iDzSkhkXCR9Q32z5womydu3qeiVt5Xj5lFjJ+q1deqoMLKlPhO2Xz/qdCKH4rvvyOLFTXNzbGzU7lv8D+1IgGPb1073eBhi+UwSaOLijNa6pUsZF6e2SzUpphyvjVeDvm0n2aqt6eAObr25NVt/SeLMuy5ruzAwPJDRX4qOG1tqiW00Hz0t/RVllq+/FgHrdh8TSLkwbFJ0ii7bcTTPo56rhbYflhZ9mCOWrqJtP2GZdplcJN1M3LR4EfNCXf//Nv+PsQmx9A/zV+NU269qL/bjM2OmduPGImwzLZ5EPlHXYTXRSnXpGaxKOdXeKSVWVpsqYtBsnZmRVggvYl5wuedyfnPgG049MTWZldEEfWHsp5XfIPSJ36k1F1AUhR6PPLj+2npeDLyYrX3W6rRqXG/DpQ0Z8ecSsY8li9HmF/GiVrrXomwV6T7ud1y919pPtuf7294X7dIM6Hs+b8O7rFkzQzoT/7z4p5owZhgaLm2YIatleopdMhSFj71DGeFhVPB49SoZlX6JquDoYNUtaxjuBt9Nfv3qdCIkyMOD9y+/oIdHynUlDYREh/D6k+tqkeT7IfeZoM252DoDZlHsLly4wLJly7Jq1ars0KEDq1atyrJly/JCWq0D8pj8qtgtODOPUfrWP7VsRV/N1Jo03wu5pz6MU1VKDMFt48YZmkHQyooMDTXO8smuT9SL2BB4W3NRzQzFFqWEIcC33ap2aowHR45UlYqD+sopry97nXAH552dl6XtGFBmzCQBHkObNFs45QkGk2idOty5LoIFCpBfYDEJME5jx/eb3TEYrNThtdeEBfXSJeFB1OlE+bUdLcR+7XMSNfAKTy+WYsLHs6hnqivZpPDuxo1iAyVLkrGxXLRI/CxePHl2clhsmEmBX+dpzul2AMkoJx+cVOO44A7W/VzseKw1WLjxRFasmMNdKBRFdUP2xI50e7bmNIfvHabdZDtOaiP280hN/b7/Ys1qPfakvq+RkeLAP0mhVVkijvsdV91mRWYUUY99+bnlGRAWQF1sPMPsRW3Fvi77M9w26knkE9XCarD+/nzk50xbLjPL6ZM6noQo2B3dIXmsZ7aoLYozTyyznEDqtRNzA99QX/UlqcqMMgxzFl1l+vUBrfr1J6Ck2Y0no4REh6R4r46vVosEOBDruGtXCgumwqPwR5xzZg7HHBrDbbe2Zdh7kWnFjkLZvHJFobdHGOMvXTP2a82AcqfVaRkcHcwnkU9Sr1caGipcvhcv08ND4dWrqbd1M6AoCuO18Tnqek2K2VqKxcfH8/jx49y0aROPHz/O+Fxtupl58qti9+DFA14pLh4I3zVYR0C0b0wJQxHSNivbpDxDbKxakJgXL6rGu0ZJwrUi4yJVFxLcwXq/11ODiLOCX6ifqiQGL50nNtq2LQeI7lucOtVYy8tusp3pW2YWiK5enwQ4wnZplnuA5hjPnpH6gsVs0YIh7w1XXU1fY66qzLm4iMSBXbvSCC/RJ1vEwJ6OI4QFZdKu5DXtxv83Xo3DM7Ey6AP46e7O4GDVA8olqSQ2KopC7+fePHzvcKZiyzLC5aDLamA/3MFbZR1IgF/ZLCKQs10o6OUl4vis7OiECP6YNcNztvj33r9s+YP4w7UasM4PbrStv4WAqE9tQlwcOX682qmFVlYiDjONCuV7vPeYtHRq9kczNXP7j3f3CtcmivHfA5m3Ntx+dpvH/Y5ny7KYWQY1u8046E3VOfV2pr9+dDa2LIgQFiiQ8aLvOcXVx1dZYV4Fwh0c305c/IElnTlwYBgB8R6YK+ivgTjYsnvz0Bxv35cSWVHsSFX34iWPBGpveBktdzmhc9y9S3p48InnQ3p4kM+z96jJMSymV6ylkV8VO5I8/HpBEuCfXfsTIPv3T3m+vlv6iof9sUkpz3DwoNFioygcOtQYNJ8URVF4Oegyzwecz5F6PobYvTWrvhUbLVSIs2cpBIQR8fN/PlcDnrOF/uYdB1sO7GohV+25c6YBcwAj3/uUu3bouH69KOeWoV7Tieqwvd9KuPKsvqpBz0vGh3VoTKhavNbEbaq/sdPamgwI4EcfiZ+1auXM/TKrPIl8IrKQ9bF/Pq6Nct6S8ttvJMAD6EpA/BXmICYhhs+a1RWWqDHfcbjIpzDt2BYSYlTAAeOLGEBWq5bmkygiLoJHfY/yfMB5VaGfMoVcB5Es5dVpRKrLWhr//kvOhGinl1C9dvpmlYygzwo+/9pbBJhmnGFuEh4bzrVX13Lm/vGMKyLu7fc/nqTGuqZU2zO7BI0U7u196MZz2QtfzjBZVexI8v59oc/dup5A5fp18ePOneyZ8hMSRLE6Dw/e8IjizZs53586q0jFLhXys2J38gPRtHxbq/Kq6yzpCRmvjVdjl848PJPyivTlHviJyDirWlX8/OefXN4BGosbv7GooVrT6+zf/gTIEpWeq0kTaq2nrPLTTyJhAW9z6dKckT1H8PYmR4wQacBr12b9jqIvDxIx5BPa/CQy7ZzbLuN1fUUXQ2mFWotrmbrM9P8L33qLR44YdYXTp7O/aznCs2dqMGFDXEzWhSJbtG1LAvwSC9m0aQ6uNyv8/bdqon3g+ZR2whvHAwcolDZDf15XV3LLFnGeXLyoJh2xQ4cM+ZEVRTTZcEY4o+Aolj2fuX645kRRyI6NQvkCon4jt6XfYSPdFdYQrdQ+wBpqNKSPT87Imi3WrBFJFFZW/KrkljQ9MtnB21Wkvi9tlE5ZhRwkO4qdcMkKfe6Jb5SqkDEDiZSp8vQp6eHBKI8b9PBQUqq/bjakYpcK+Vmxezh/sojNqaShvdsLAuTNJNURjtw/QriLnpepxgLo40v4998MCDB6eV68yP19eBr5VK3YHlND9CGN3rpXtEFtM1kNys1WULaiUFuugohbwSb6++ec/BaDoWNI+fKcemS2cL39VIAF653kpD1/qK64/+7/Z1xGpxNZsACjVm5WYxtT62BmNvRleFZgCDWa5DXWskRIiPoiUQH3uTjlerZ5h06nFsfl4MH89hthtW5XxZ+6OsKax2LFyGtJOiVcv250zc6fn+YmYmLIIUP0m8BK8cXQ3uAlYvduchJEwH9CvYbZk//qVeGOt7anC8LYs2eOiZl9Pv5YfdPagj78tuhqJpw6Jy6AHDhmh5ffFyEAsOL9c2nHa+Yk2VHsSHHpGnIo4nwDxJfr1zP8nyTuFUuSipcX+3fuzM1Lt9Hbmxw5ciRfe+01k3myw+DBg7k/UQ0hLy8vttVXQf/9999Zq1Yt1qtXj++++y7Dk9Rayq5iZwXJS0eZxh0AAFWeExXf3AYAOHbMdJ6dt3cCAN6u9jasrayTr+TpU+DmTfG9XTt1+ddfB9zccl7mpBRzKoYe1XoAADyLxAMAHO9cQ9UGT4CWMwEA37f4HhqNJusbOXkS1g/9EAFnPKz3NsqUybbYlkeHDoCDA/DgAX4o1gnty3UB7KLx4n+t8YvnUADAV02/QvuK7Y3LnDwJPHwIurrik51v4949oEwZYPp0M+1DaowcCQB4X7MBRfkU+/blwDoPHAB0OtxAbQTaVcSAATmwzuxgZQXMmQNoNMDq1Zj29FO4O/2GjXcbw+rGdaBECeD4caBuXdPl6tQBZs0S38eOBQICUly9nx/QqhWwapXY1NQaa8WEDz8U23yJeOst4N/aoxABZ9hcuwzs3Zv1lW3eDADYp3RHBFzx3Xc5JGROsHw58PXXAIC+2IrZzwfDptUbQLFiQJEiwNChwIMHWVp1VBRwYcxWAIBfubao2Oy1HBM7tylUSAwAcD+qOGhjA8TGAsHBmV9ZbCw0kZEAgAi4oHx5YMCAAdiXiZtMu3btMr9dPXXq1IGHhweuXr2KunXrYu7cuVleV0pIxe4lRFO9OgCgXDhgVXENAODoUeN0naLDjts7AAC9avRKeSXHj4vPunWBokVVxS4b52qmmdx+MjTQYI/DQwAAr11FTMcvAPsIlGRjDKiTzafuypUAgM3oj07vFMiuuJZJgQJAe6G0We8/gO3vbUbvqgPFtAQHOHqORW/nJDeNteLhfqpkX2za5QhbW2Dr1rxR6DNFs2ZAkyawYzyG4g/8808OrHPPHvGBt/D220DhwjmwzuzSti0wbx4AwH79CkyIGoMSeIIbqI0rS84ANWumvNzQoUDLlkB0NPDTTyaTFAVYulRc3hcvCn3g+Dp/lPbW3yg++CAXdyh30GiAL38pgiUYDgDQTZyStRWRwJYtAIBN7Id27YDWrXNIyJzA2lqcD1eu4EKrb3ECrfHEppSYFhoK/PmnOLA7dmR61ZMmAZ1e/A0AKPNN3xwUOpOQQsvM5FCuSBTsEqIQHRKHMMUViIkB7t4FIiLEPGSGNq97JpTBBNiiYFFb2NsDLVq0QJEiRXJzr1VatWqFAgXEM6l+/foISOXFLMvkiM3RAsnPrliS1BYSQbZ1PwdR2IdFixot0gfuHCDcwUK/Fkq9JIk+NotffUXSWL9sz5482gGDGHu+YPeBwu3gU1KUaMA4O77RJ5sRveHhVPQJCi1wKs8ChM3CwoXi4LUxZj/f8w9nw0YJqnt91CgRgKyLjGaCk4hTaoNjtLISLXstFn1DeH+UZiHn+IwllaRGQgKVQoVIgC1xMlMlHvKEQ4fId96h0q0bV9afS3vEsEwZ0ZggVTw8jAGS+pg5Dw+13i0BsmVLffm36dPVDPSXFa2WbFH5MWOhD0Y8k0r8cFpcvCjCEOBIJ0Qkz0K2IMLDSf0py00ro0X7s5YtjXEzWzJecujCBbKyta8aw8fHKfffzS1M3IuJug7l6JC00W0iDK5YRVEYf/Eq6eHBt7v24pEjR5PNkxHapnMdpeWKTUzPnj25cePG1P8rPdIV+wpgXb0GAKBaMGDTciGePzd6Vv+6/BcA4IN6H8DBxiHlFZw5Iz7btIG/P3DvnnDV5PWb67xu81D0DWFxqvg4Ho46a2Dnatw91iyjL18p8/ff0ERHwxvVcKdoCzRpkjPyWiQ9hEsbp08DL14AACqVccHJ4zb44ANhvZk3D6hUCfjAeSdsosLxAOVwqUBrbN4M9O9vNsnTp29fsHhxlMEj9IjcpBqas8TZs9CEhiIYhXGv6Bvo3j3HpMwZOncGdu2CZv9+vHt8FCrVdEBAANCxI3D/firLNG4MDBoEAIj67Fu8N4Bo0gQ4dQpwdATmzhXG+fJldMCyZWKZwYPzZn9yAWtrYOi44liP9wEA8TPmZH4lemvdXvRA47bOeeqlyCwuLsC334rv341zRGSjtuKAfvSRuLAHDRIm2XSIjATefx/opRNuWE2bNkDx4rkpusVhCOsJeRgJWyUeOljB3tkO1tYZD0n45Zdf0KBBAzRo0ACenp7q9927d6e6vbTGLV68GCTRP6dvwumqfi8p+d1ix0GDSIBjO4DW450IlwAuWEDeenpLTUq4EnQl5WUjIsTbHkA+emQwirBJk7zdBQNabQLj3UQguN+RfWpnBV/fbKxUb7L4AdM5ZEhOSWrB1BTtyrh5c7JJ+/eT7dqJnIED6CIyquuM5507ZpAzK+gtTTdQi1+PzEaZi+9FuYy1eJ+jRuWceLnFgwdqjgvd3MjFi5N3iAgNJbfMDWC0lbBO98VmAuSHHyax9G3fLlZUpAjNX8wxeyQkkO9UvEYC1GmsMnejUBTGlRYJVX2wxaKtdQaio9WWrhwzRj9SqyV79DCWvUnnmBpKWV2ybSq+mCFryMQKpSjCupbFQYmIpM/lSF46Ec74E2fJEyeEWTqNRIqIiAhWqVKNTz18SQ8Pxnj5snPnzryRqEhmTlrsvv32W27YsEH9ffr0afbpY+yrffDgQTZs2DBZ4kSy/0qPtNi9ClSrBgBoGVsMOuso4M2R+O94PEYdHAUddehZvSfql6if8rKenuJtr2xZoFQp/PefGG2uN1draxvYNmgEACj/8Anq1RPjPTyyuEIvL+DUKehghTUYhLfeyhk5LRqD1S6FN8du3UQMZvhNf3TRHAYA/G/XEFSpkpcCZoMvvkBCAVfUxi1Ebd6TNUsuCe1WEZO0E73wySc5K2JuUK4ccPYs0LQpEBYGfPklULSoSIbo2hWoWlUEk/f7pjR+VcYAABYXGIMrZ6KxZo24vAGIa33aNPF92DBhynuJsbEBPl9cF4fRCVZU8GLywgwvyzNnYfdIJFRZv93Doq11BhwdgQULxPc5c4BbtyBMl2vXAqVKAT4+wPjxqS6/bBnwxx9AZdxDw4QLIljxf//LG+FTQ6MBnJyyPGicnVCprhMcirrgsWMFwNERSlhEmpsknWFj7QSfGycAAEHaSNy/fx9VculG2KZNG2zcuBE6nQ4AsH79erRp0wYAcOvWLYwYMQI7duyAi4tLzm88A4rpS0m+t9ht2SIK2zaup1roDIPtJFvefpZKnzHSGGvTty8VhSxTJlHtLHNhaC32+ef8/HPx9dtvs7gufduu7ehFW1taVH2iXEPf1J3Ozqm325k69aWNsYr77kcS4Bm8watXslDyIVGXjg5Nkr8hWzIJCeSCBUbrXdKhRg1y2rgoJpTUX8hff226gk2bjOdGHsdV5RaKQv7cUHTQiLRxFcFoGeBuN9Ejd63VIN6/n8tC5jDvvCMOY4MGiSy3e/aIkRpNikUo9+1Tq/vwVGtxDbF797wVXE92y52kREIC6XVDywSPS6SHB8P8gpMZ7RRFdOHz9CT3bjjOVg0asH716mzSpAmPHTPWSR02bBhLlChBOzs7li5dmrvSCcJNz2KnKAp//PFH1q1bl/Xq1eOwYcMYGytaPvbu3ZuvvfYa69evz/r163PkyJEmy8o6dqmQ7xW7y5dV18rayxuJcaIfpN0ke+702pn2sj17imVnzVIbENjZZaj9Xu6xdasQpH59rlsnvmapeOzTp6SDaEfVCifYqVOOS2qZJOpCwb//Tnl6FVEvkCtX5rV02ScoiHFW9iTA3/sfzfTiyuQpJMA9eJN//JHz4uUFOp0ov7Z5M7l6tWgcY9J4Yt8+o7ZnCMZ+8MDYwm7iRLPInVtcv6qjF6qTAC8PmZfu/MGP4/nMSrRxWz3QnG+xWSMgwHgoBw5M1Hxj8OAUXbLHjhlLHX7yYRyV4sXFj+3bzSJ/bih2pFDunl8Tde0iPW7yxg2FgYGiPVxQkHinM9S/i76sb0n26FGOypDTSMUuFfK9YhcRYbyJBwez7TsPiSr76D4nIO3lFEW0qgDIU6e4YIH42qFD3oidKokqJD+4GUGAtLFJM8kpZSZNIgF6uTQhoHBe+vf7/MMPP4j/sEeP5NMM7SWcnHKnR1EecK+byOT+z75rRpotmBBeozEJ8Eu75Rk17rycjBoljrO1tTDxGK71119/6WPrUmJn96UkQF+rivS9m/pJodORk5oLxfeZ9WuMCst8j1xL4PBhcV+EqGctssRDQshSpcTI776jopB//UXai/cgdu5MJvz+h/hRsqTZegbmlmJHkkp8AnWeF0kPD3p7vFAVOcNw8SL5/GGU+OHpad6+iRlAxti9qjg7A6VLi+937qB7i7LA3e64fLx02ss9fAg8eSICVV5/HYdFyBU6d85dcdOldGkRFKQoKPfEA2XLAlotcP58JtYRGwssWgQAmBz1LQDNqxFfZ+Djj8Xnvn2itlNifv1VfA4eLM6dl5Ayc7+HDlZoH3cQHr97ZnxBf3+43PaEAg3ser+N3AhpsRhmzwY++QTQ6US85ZMnIh53+/aXPrYuJbpv+BAvrAujguKLBR13ITQ0+TykKPNX4ewGAIDSpz8KuNrksaQ5Q6dOwOrVooLB6tVAkybA7pOFELtwOQCAc+ZgVNMz+OQTIC4O6NUL2L01HjYz9TGWo0cDtrbm24FcQmNrA6vXigEAKtoGoFBBwtkZKFhQPFbq1QOKxAWKmQsVypf/QWKkYvcyo0+ggI+PoUYtTpwQsdKpcu6c+GzQAAk2jmphYrMrdgDQooX4PHECrVqJrydPZmL5JUuAp08RXaQstii9UaMGULlyjktpuVSrBrz5pniSGboSAKL2xeHDIuB69GjzyZdN7GpUgmd1UebCYfqEDC/37M9dAICzaI6PfyqRK7JZDFZWooDt8eOAuzvw++/AlStA+fLmlixXsCtYAJrPPwcAvPtgLjp0MC0NExsrGpgsmxGK3hBdel4bNdAcouYYAweKOtuFCwPXrgE9ewKOvXtgNQZBQ+Jbz/dQ1u4Jpk0Dtm0DHGZPBXx9gddeAz77zNzig9mqY5UGJUoA1tawTYhBZbfnqFEDqFJFVHWxiYtSS0GhZMnc2X4Okt3/6OV8bZEIqlUT6Y4+Pnj9PVHzKDQUuHoVaNgwlWUMit0bb+D8eVGwu0iRNObPSzp0EK1+/v0XrQdOwMaNQifJEKGhwBRRiX5DNXdoz9qqiaKvFD/8ICx2y5cL61zduqJDASAsehUqmFW87OIwZTy0fTegQeA+RB05B6eOb6S7TOSydSgG4EaNPvisTu7LaBG0aSOGVwC3n76Esuw3tNaegvUVT9Sq1Rg9ewrDzL59gL8/8C1WoABigPr1RUeTl5zu3QFvb2DmTGD9eiAwEPga89HS+hyq6Hxwt2x72LX4HVh0FZg6VSy0cKHoVGMmbG1todFo8OzZMxQrVix77SJTo1gx4PFj4ZmyswPs7YWlw6Dtu7mJjNzY2Jzfdg5BEs+ePYNGo4FtFi2LFqvYabVa9O/fH+fOnUNgYCCCgoJQokQ+f9vOLIksdjY2orjwvn1C10tXsWvWTHXDduokXvTNjsFseO4c2s6KAOCCs2eFS9YmvTP111+B0FCwdm387CMKsL5SblgDbdoIhW71aqEou7qKvsAlSgAzZphbumxTr3dVbHcbhN5hKxE84hc4eR1Kc/7Q8z6o+OQ8tLBGrUnv5ZGUkjylVClYvTcAWLsWM16bg05PNxhqEAMAyhaPx2QuBJ4CGDHipeuRmxpFiwrFbuZMICQEAAqi0PM9QLu2sLvnZVq/auhQoF8/M0kqsLa2RpkyZRAQEAA/P7/c2QgprBVxceJPKVhQtBqLjRUPOQcHYb20cDQaDcqUKQNr6xT6vGcAi1XsAFEHZvTo0WjevLm5RbFMEil2gGgZum8fcOyYsVq5CXFxwKVL4vsbb2DvPPG1S5fcFjSDVKwofKf37qHG42MoVOhthIYCly8j7c4Rvr7A/PkAAK/BM/B0jDXc3EQbzVeSefNEK5FTp8QNrVgxYOdOYwftlxiNBoj6ZjwS3Nei3O3D0B3+D9adO6Q6/43vV6E1gHMuXdCqj3wxzLd88w2wdi06PN+MKyu+x96g1xEdLWKr3g38A7bfPBAvNwNfbjdsaqg9jwtXFff4b74B9u4V1/wXXwhLvgXg7OyMqlWrIiEhITc3IrwTieOMHRyAxYvxshTvtLW1zbJSB+DlqGMHgEFBQWnOExsby7CwMHXw9/fP31mxJOntLTKdChQgdTp6ehqr1KeYNXjunFoi5eEDRS1/9ORJXgueBsOHCxk//phvvSW+zp6dxvw6nWirAJDt23PU12K/PvggzyS2TOLjRa3DlSvzTe0yA5GR5DL7ESTAF6Vqpprh9tg3ms9RhAR46nvzlHiQ5CEDBiTPAPb3F902AHLJEvPKJ8k7QkJEp5kGDcg+fUQm7EtOvit3khHFbsKECQSQbMjXil18vChAp++/pdUaG0YnqrtoZP58tRyGoW98q1Z5LnXaHD0qBCtYkHN+jUu/nqZhRwoUoHLnLsuWFT93plPKT/JyM+vnED6FKOqVMG1mivOseGMZCfCRXQUqCZmsjyJ5+QgMNN4Au3cnd+8WSh5ANmyorw0ikbycvJLlTsaOHYuwsDB18Pf3N7dIuY+tLVCjhvh+4wasrUWGFAD8/XcK8ydKnDBM79Urt4XMJK1bC5fJixf4n7OInzp2DIiJSWFeLy+ji2HmTHiEVIa/v7DEW4x7WZIrfD62EKa5zQQA6CZMBB48MJm+d0sUup5zBwDEf/E1NDbZcGtIXg5KlgR27BBB8/v3A++8I9yShQqJG6KdnbkllEjyBLMpdl26dIGDg0OKwxR9dmNmsLe3h6urq8nwSlBHn+Z34wYAoG9f8XPbNlHKyoQzZwAAj8s3w4kTIl7JzPG0ybG2BgYMAACU+2cRypQRSt2JE0nmCw4G3n4biI4WSQJffIGtW8WkHj3yZckuSSKcnIBWfwzGabSAfUIUQjv1UbX/ixcBvw/GoRSCEOxWERVmfGFmaSV5Rtu2wOnTQMeOojbm22+LE+KVqnskedUxm2J36NAhxMbGpjiMGzfOXGK9fCRR7Dp1EolAjx8D//6baL6AAGHVsLLCGh9RIqJDh0SNwi2JkSMBKytoDh7E0MaXAYg4YJX4eKB3b5EgULEisGkTqLHCNlGmCn365L3Ikrynd18r7BmwHsEojEJ3PXGnYmcs7HMcB5pNwJcJ8wAArn/NEyUPJK8OjRuLm19AgCjSXLGiuSWSSPIUi3bFxsXFIVZfbybxd0kikih2dnbAoEFi1NKlieY7fRoAwHr1sWi1KL1vmM/iqFQJ6N8fADDi9pewhhbbtukLL0dHA+++KwqwuroC//wDFCuGixdFqSJHR1HjSfJqMHltBSzrvgsv4IaqT05j5LZ2+Fk3CQAQO3o8bHu/Y2YJJRKJJG+xaMWuevXqcNT71CpUqKB+lyTCoNh5eQH6FHJDcfF//klUskev2Pm81hL+/qIIucW5YRMzfTrg6orCt89ire3H0AQGwGv+IaBpU1HTxdFR+Jtr1wYA/PWXWKxnT+Gmk7wa2NgAP+1rBa8V53CpUh9E2BdBeNlaUFatgcOMieYWTyKRSPIcDZlb/T3MS3h4ONzc3BAWFpa/4+0URRQxCgsTrYPq1wcgkgcOHwbefx9Ytw5Ao0bApUsYVXIT5gf1x+TJgMV7vLdsAd57L3mPtOLFga1bYeg7FhUFlCoFhIcDR44IF7NEIpFIJPmFzOg0Fm2xk2QAKyuhtAGAp7Ex+vTp4nP9euDA1kjRZwzA1qCWKFFCFGC3ePr1Aw4eRHjlBgCAUBRC/LAvxb4YmskCWLlSKHWVK5sWW5dIJBKJ5FVDKnb5gcaNxWcixa5RI1FwHADmDzwP6HR4gHJ4hDKYP18kWLwUdOoEZ5/LqFs5GoURjL8aLBIWOz3x8aKlDiC6bVhEazSJRCKRSMyEfAzmB1JQ7ADRZevNN4GmCacAAKfQCjNnWnhsXQpYWQFDv3IEoMGUKUBkpHHaggWiyXfx4qKLjEQikUgkrzJSscsPGBS7q1dFb1A9trbAnj3AyNdF4kTbsS0xerQ5BMw+w4aJZNnAQGD0aNHr+coV4JdfxPSpU0U7QIlEIpFIXmWkYpcfqFBBVF1PSADOnjWZpImJRtFbJwEAZQa2MYNwOYODg7BAAqKMS7NmIp4uJkbU7pPWOolEIpFIpGKXP9BoRKV1QKSFJuboUWHFK1dOLQ3ysvLWW8CiRWJ3PTxEInDLliJBVqMxt3QSiUQikZgfqdjlFwyKnUm7CQhfLCD6bOUD7efLL0XJvrlzRZ2+o0cBNzdzSyWRSCQSiWVgY24BJDmEQbHz8ACePQOKFQO0WmDXLjG+Rw/zyZbDVK8uBolEIpFIJKZIi11+oWxZkUShKPqKxBDWuqAgoeR17mxe+SQSiUQikeQ6UrHLT3z6qfj84w+h4C1cKH5//LFoIiuRSCQSiSRfI1uK5SfCw0VvragowN4eiIsTNU9u3xa1QiQSiUQikbx0yJZiryquriJtFBBKHQD8+qtU6iQSiUQieUWQyRP5jSFDRGuGM2eA1q2Bzz4zt0QSiUQikUjyCOmKlUgkEolEIrFgpCtWIpFIJBKJ5BUk37piDYbI8PBwM0sikUgkEolEknUMukxGnKz5VrGLiIgAAJQtW9bMkkgkEolEIpFkn4iICLil024p38bYKYqCwMBAuLi4QJOLrbTCw8NRtmxZ+Pv7y1g+C0MeG8tEHhfLRR4by0UeG8skr44LSURERKBUqVKwsko7ii7fWuysrKxQpkyZPNueq6urvNgsFHlsLBN5XCwXeWwsF3lsLJO8OC7pWeoMyOQJiUQikUgkknyCVOwkEolEIpFI8glSscsm9vb2mDBhAuzt7c0tiiQJ8thYJvK4WC7y2Fgu8thYJpZ4XPJt8oREIpFIJBLJq4a02EkkEolEIpHkE6RiJ5FIJBKJRJJPkIqdRCKRSCQSST5BKnYSiUQikUgk+QSp2GWDZ8+eoUePHihQoACqV6+OI0eOmFukV5YJEyagVq1asLKywqZNm0ym/frrryhWrBgKFy6MMWPGZKjXniRniIuLw0cffYQyZcrAzc0N7dq1w/Xr19Xp8tiYl2HDhqFkyZJwdXVF3bp1sWfPHnWaPDbm5+zZs7CyssKvv/6qjpPHxby0a9cODg4OcHZ2hrOzM7p3765Os5hjQ0mW6du3Lz/99FNGRUVxx44dLFSoEENCQswt1ivJ2rVreejQITZr1owbN25Ux+/du5flypXjvXv3GBgYyJo1a/Kvv/4yo6SvFpGRkZw0aRL9/f2p1Wo5e/ZsVqpUiaQ8NpaAl5cXY2NjSZIXLlygm5sbQ0JC5LGxAHQ6HZs1a8amTZty+vTpJOU1Ywm0bdvW5BljwJKOjbTYZZHIyEjs2rULkyZNQoECBdCrVy/UqVMH//zzj7lFeyX54IMP0LlzZzg4OJiMX7t2LYYPH45KlSqhZMmS+P7777Fu3TozSfnq4eTkhPHjx6NMmTKwtrbGiBEj4Ovri+DgYHlsLIAaNWqo9bc0Gg1iY2MRFBQkj40FsHz5cjRr1gw1a9ZUx8njYrlY0rGRil0WuXPnDtzc3FCyZEl1XP369XHz5k0zSiVJyq1bt1C3bl31tzxG5uXs2bMoXrw4ihQpIo+NhTB8+HA4OjqiSZMm6NatG2rVqiWPjZkJCQnBvHnz4O7ubjJeHhfLYOTIkShWrBg6d+6Ma9euAbCsYyMVuywSGRmZrOGvq6srIiMjzSSRJCWSHid5jMxHWFgYPvvsM0ydOhWAPDaWwpIlSxAZGYnDhw+jbdu2AOSxMTc//fQTRo0ahUKFCpmMl8fF/MycORO+vr54+PAhOnfujDfffBORkZEWdWykYpdFnJ2dER4ebjIuPDwczs7OZpJIkhJJj5M8RuYhNjYWvXr1Qo8ePfDxxx8DkMfGkrC2tkanTp1w5MgRHDx4UB4bM3L58mVcuHABQ4cOTTZNHhfz07RpUzg7O8PR0RFjxoyBs7MzLly4YFHHRip2WaRq1aoICwvD48eP1XFXr15F7dq1zSiVJCm1atUyycKUxyjv0Wq1GDBgAEqVKoVZs2ap4+WxsTwURcG9e/fksTEjx48fh4+PD0qXLo0SJUpg8+bNmDp1KoYOHSqPiwViZSXUKIs6NmZJ2cgn9OnTh8OGDWN0dDR37dols2LNSHx8PGNiYti6dWuuWbOGMTEx1Ol03LNnD8uXL8/79+8zKCiItWvXlllkecyQIUPYpUsXxsfHm4yXx8a8REREcN26dYyIiGBCQgK3bt1KBwcHXrt2TR4bMxIVFcWgoCB16NevH3/++WeGhobK42JmQkNDeejQIcbGxjIuLo5z5sxh8eLFGRYWZlHHRip22eDp06fs3r07HR0dWbVqVR4+fNjcIr2yDB48mABMhqNHj5Ikp02bxiJFirBgwYIcPXo0FUUxr7CvEH5+fgRABwcHOjk5qcOJEydIymNjTiIjI9m+fXu6ubnR1dWVr7/+Ordv365Ol8fGMhg8eLBa7oSUx8WcPH36lI0aNaKTkxMLFSrE9u3b8+LFi+p0Szk2GlJWN5RIJBKJRCLJD8gYO4lEIpFIJJJ8glTsJBKJRCKRSPIJUrGTSCQSiUQiySdIxU4ikUgkEokknyAVO4lEIpFIJJJ8glTsJBKJRCKRSPIJUrGTSCQSiUQiySdIxU4ikUgkEokknyAVO4lEIpFIJJJ8glTsJBKJRCKRSPIJUrGTSCQSiUQiySdIxU4ikUgkEokknyAVO4lEIpFIJJJ8glTsJBKJRCKRSPIJUrGTSCQSiUQiySdIxU4ikUgkEokknyAVO4lEIpFIJJJ8glTsJBKJRCKRSPIJUrGTSCQSiUQiySfYmFuA3EJRFAQGBsLFxQUajcbc4kgkEolEIpFkCZKIiIhAqVKlYGWVtk0u3yp2gYGBKFu2rLnFkEgkEolEIskR/P39UaZMmTTnybeKnYuLCwDxJ7i6uppZGolEIpFIJJKsER4ejrJly6q6TVrkW8XO4H51dXWVip1EIpFIJJKXnoyElsnkCUnWuH0biIw0txQSiUQikUgSIRU7SeYIDwe6dQNq1gTq1QPu3TO3RBKJRCKRSPRIxU6SOWbPBg4eFN99fYGePQFFMa9MEolEIpFIAEjFTpIZwsOBBQvE9wULADc34OZNYPdu88olkUgkEokEgIUrdnFxcfjoo49QpkwZuLm5oV27drh+/bq5xXp12boVePECqFED+PJLYPhwMX7WLLOKJZFIJBKJRGDRip1Wq0WlSpVw7tw5hISE4J133kGvXr3MLdary6FD4rNvX8DKChg5EtBogNOngQcPzCubRCKRSCQSaEjS3EJklPj4eDg4OODZs2coUqRImvOGh4fDzc0NYWFhstxJTqAowGuvAcHBwMmTQKtWYnzbtsCJE8CcOeCob0AKnU8ikUgkEknOkBmd5qV6BJ89exbFixdPUamLi4tDeHi4ySDJQS5fFkqdiwvQrJlxfJ8+AICHc7aiSBGgSBFg1CggIcE8YkokEolE8irz0ih2YWFh+OyzzzB16tQUp0+fPh1ubm7qINuJ5TCnT4vPNm0AW1vjeL1rvHTAOSihL/DiBTB/PvDee8DLYwuWSCQSiSR/8FIodrGxsejVqxd69OiBjz/+OMV5xo4di7CwMHXw9/fPYynzOZcvi89GjUxG779RFrdRHdZQsPnzY1i3DrC3B7ZtA9asMYOcEolEIpG8wli8YqfVajFgwACUKlUKs9LIvrS3t1fbh8k2YrmAQbFr2FAdpdUCo0cDR9ARANDV+l+8/z4wcaKY/v33sjmFRCKRSCR5icUrdkOHDkVMTAxWrVqVoR5pklwgLk7UqwNMFLtdu8To886dxIgjRwAA334LVKkCPH8OrFiR18JKJBKJRPLqYtGK3YMHD7Bq1SqcOHEChQoVgrOzM5ydnXHy5Elzi/ZqcfOmMM8VKgSUK6eO/v138Vnl03YiFfb2beDRI9jaAt99J6bNnQvodHkvskQikUgkryIWrdiVL18eJBETE4PIyEh1aN26tblFe7W4elV8Nmgg6tYBuHNHGOg0GmDwqELA66+Lef77DwAweDBQuDDg56eOkkhefkJChBl69WrZSk8ikVgkFq3YSSyE27fFZ61a6qjNm8Vn585A+fIAOoo4O/z7LwDA0REYMECMkkkUknzB8+fi5eaTT4AhQ0TqtzRHv7o8fSo8GRKJhSEVO0n6eHuLz+rV1VF//y0++/fXj+iUKM5OX+fkww/FqO3bgaioPJBTIslNhg8HEmfbb9kCrFxpPnkk5iE6WrgkihcX90R9bLFEYilIxU6SPj4+4lOv2N25A1y7BtjYqGXsgJYtRZ2TR4/U+Zs1AypVEvdBQzcyieSlxMtLvM1YWwMXL4rgUQAYP16+tbxqjB9vdEPcvw/07m2q8EskZkYqdpK00WqBu3fFd71it3+/+Nm2rYijAyB8ry1aiO96d6xGA/TsKUbt3Jk34krykJAQ4Nkzc0uRN/z1l/js0UPEkw4fDlSoADx+LCx3klcDHx9gwQLxfd064I03gLAwYMQI88olyXsiIoC1a4WSHxtrbmlMkIqdJG38/ER/MEdHQN/N4/BhMalLlyTzdjItewIYLXp79shwlHwDCXz9tegf99prwMiR+buHnFYrkiUAYOhQ8WlnBwwbJr7Lmj6vDkuXivOhe3fg/feFK16jAXbvNpaEkuR/wsOFUj9okHDLt28vXvIsBKnYSdLGEF9XtSpgZYWEBODYMTGqc+ck8xoSKI4eVYPKW7QQVr2QEOD8+TyRWJLbzJ5ttFoAwKJFwJgx5pMntzl/XiROFC4MdOumjg7qMhi0sgJOnULs9TtmFFCSJ+h0wKZN4vvnn4vPGjWA//1PfJ8zxzxymQt/f/EwiIkxtyR5z4gRwK1b4ruNDXDunLgvWghSsZOkzR39A6tqVQDiGRcZCRQtCtSvn2TeRo0ANzfgxQvg0iUA4pw36HsvdYyx4SZmYSb3PCcyEjD0a16wwJgePW8ecPw4APFXzZwpupL8/beob/1Sc+CA+OzSBbCxQWQk8NFHQJmmpXBYESf3lKa7sHChrICSrzl+HAgKEvU8Eyn4+OYbAICycRMO74zCtWuvwHnw22+ipmn79iJT3MvL3BLlHQ8eAOvXi++nTwsFb8gQYMoUs4qVGKnY5TXx8eIEqFcPcHe3fEXB11d8Vq4MwOiG7dhR1CQ2wcYGaNdOfNfH2QFGD61h2ZeOSZOMN7G6dYEbN8wtkflYsUIo7lWrAl9+CfTrp7on+cMPmDeXqFwZ+OEHYNYsMblJE2PFnJcSg2LXrRvCw0Vs6apV4uHtWfIdAECX2N346ivhlcnPXulXmr17xWevXsIVr+eqUwv421eGVUw0Vry7G/XrAzVrAvv2mUfMXOfQIXGBG/DxAfr2zQdvcBlkyRJx8XfsKFxSVasKl7y9vbklM8J8SlhYGAEwLCzM3KKYMmgQKaKUxPDxx+aWKG3eflvI+fvvJMnmzcXPP/9MZf6FC8UMHTuqo+7fF6NsbMjw8DyQOSdZs8b0eAFkzZpkTIy5JTMP9euL/2DxYuO4x49JR0cS4JvYQ4Bs3Zr8/HOyaFExe8mSpK+vuYTOBsHB6nFXHgXyzTfFz2LFyBMnSPr5kQB1GisWs3pOgPz0U1JRzC14LqIo5PLl4lxo2ZI8cMDcEuUNDRqIg79hgzpq717Szo6ciPEkwKMub9HJyXirmDbNjPLmBopCNmwodu6zz8gnT8jXXhO/3d3NLV3uo9ORJUqI/d2xI083nRmdRip2ecmhQ+KE0GjI/v2NV//x4+aWLHXq1BEyHjjAFy9Ia2vx88GDVOa/dUvMYG9PRkaqoytVEqP37MkbsXOEyEjGFylOApxuM46VXZ8y1EF/UU+caG7p8h69EkMrK/L5c5NJd94dTQL0xOv8dbqiKjaPHxtPoddfJ+PjzSB3dvjnHyF89epcvlx8dXAgPTwSzVOvntj3r9fQyiq53pvvWLnS9EXH2po8fNjcUuUuz58b9zcoiCR59qy4zQHkZ21uqW+v4b7P+eWXxtnnzjWv6DnKf/+JnXJ0NN4DNm4U4woWJC3peZsbeHiIfXV2JmNj83TTUrGjhSp2zZqJk2LkSPF72DDx++23zStXaigKWaCAkNHbm7t2ia/VqqWzTMWKYsbt29XRhl0dNSr3xc4pbgyeSQK8h4q0RRwBsj/ETSzWpQgZFWVuEfOWRYvEQWzVymT08+dkjaLPGA7nFN9k/f3JQoVeUn147FgSYMz7H9PNTezDnDlJ5hk3Tkzo04ezZxvfa27eNIfAuUxgIFWT1Kefkr16ie9FigjrZn5l61axn7VrkyRDQshy5cSod97Rv7AYLFlLl5Ikp0wxvgcdPWo+0XMUg0Hiiy+M43Q6skYNMX7GDPPJlhdMmCD283//Mxmt0+X+pqViRwtU7Ayavp2dMF+TpJeX8Y338WPzypcST54YLYyxsfzhB+P9PE2++UbM+OGH6qgtW8SoOnVyV+Sc4uolLR9oxJ17Tt0VvHSJPHWK7Ng2gfcgFNeLQ383t5h5S/fu4iDOnGky+rPP9M+zoj+JLw0aJPNFbthgfNH3989LobNJmzYkwM1d/yQgvI9abZJ5zp8XO+fiQiUmVv2b2rbNhy7ZX34RO9ekifgjYmKMJtmvvza3dLmH4Z42fDhJ44tqlSqJjFS//UY1DoHi2A8ZIkaVKkW+eGEm2XOKmBhhqQLEOZ+YFSvE+AoV8kbLMReNG4v9XLlSHbVvH9mihXjnyU2kYkcLVOw++UScEO+/bzreYMVLZgawAM6dE7KVKUNSfcbxr7/SWe74caNpPi6OpLDqaDRidG5fANklIYH8vOIBEmC4TUEmhEer07RackPTuSRAD6smvH7dfHLmKVot6eIiDuCVK+rou3dF7CRAnt793HjjT2K1UxRh6HsZwkpV4uOF3xVgPTsvAiKmKhmJ424OHqSfnxpymDgc6+UnNtYYT7Vli3H84cPGINpUYzReclq0EPu4Zg09PIz3shMnEs3j72+c4OdHUkSjVK2a3Mj1UmIISyhTxkR5e/KEnDQ2mmHWBUmAb9nsZ4MG5KRJ5LNnZpQ3pwkLoxprERBAUkQeubqKUaNH5/bmpWJnWYpdXBxVP86xY6bT5s8X4zt0MItoaWKInWjdmvHxxofVrVvpLKfVimh5QLgw9Bhijzdvzl2xs8vCheQm9CMBRn86Mtl0beATajUi2LBTeR+Ghua9jHnO5cvi4Lm6mpisPvhAjO7WTT/ip5/UmLSkAXVnz75kz3/9Psc4uFEDHRs3TsMC9+mnJmEWBjdcyZL5KOxo926j+SlpsGSHDiTA212/Yr9+4lpv0kRYc5Mad146Ein4vH1bTaD54IMU5m3fXkycPl0dZQhL02jIq1fzTuwcx2Cc0J/jiiJy6gzvcnPxNQlwB3qq8YWFC+ejl5sD4mWfFSuSFAbMWrWMRlq9DSPXkIodLUyxM7zplCyZ3Ezt7W100SZKNrAIpk9XXapr/vUg3u9Oh64TGRkbnf6yP/4olu3eXR01cqRpiKElEhNDVngtipHQxxZeuJDifHEdupEAJ2AC+/XLYyHNgSHbuWtXddSNG0YDhaenfuSLFyJlFBCuqSR06EDaIZaz+54V574l+yr17qVTtu0IiPecVNm50+iKUhTGxgo3HSBC8PIFH38sduirr5JNujxTJIZFwZFF8Ex9sBuGQYPIiAgzyJwTXLqkeiA8L+jUuLk7d1KY988/jbF4ic7tfuI9kW+9lXdi5yiKYgwq3L+f8fFGNzNANmpE7p4hEkgUa2tumRvAunWN08eNs+xLPUMYYmkHDSJJfved+Fm8uDG6KjeRih0tTLEzlDhJ4YZIRSHLl2fqfh4zMnw4CdB/5GBau9sS7iDcwbc2ZODu5ONjjBz29iYpLHWAiDG2VJYsIXvjb3GD0j+kU2T1ahLgNdRJapjMnwwYIA7epEnqqPfeSzGOmPzjD+PLyrlzxvFRUfT5aCpfwNV4x+/QQUSiWyL6N5HZ+IYlS6aT0RsZaUyRvHGDpMgdAoRF46V3SWm1xto1//2njlYUkfVppVHoiddJgEda/cK9e8U18cEHRuW/YUPy6VPz7UKWWbpU7EDnzuzZM1n4sCmhoeK8TxKy4O1trChw6lReCJ3D3LsnhLe1pTYskn37ip/W1uTs2YnsFa1biwkTJzIhQc09IiDCM19q2rYVO7J8Oa9cMXpl86rSg1TsaEGKXUKCsEcDqZc1sdSU0bfeIgH+NriqUOp+dFOVuyP3j2R4eQ4cSJJ89Mio65n7sKSEooiMX4MbNs2giZAQNbisCnz42mv54OGdFoZM53//JSniJA2xdZcuJZlXUch33zVqNZMmiRpXpUurd/lgFKJieOI3a5ZCRoIFoA8KfB9rMxY/Y/DR6d1wiiJKvORF/E2uc/q02JFChcQ9jeJh/sUXxgf3ovZ/G+dJZJ47dcpoxG3c2PIcE+mizw568vGPqkvVyyuN+Xv3Fjv7/fcmo4cONbrtXjrrlaHWT+vWHDVK1fG4e3eS+datM8bh6c+TBQuM58iaNXkveo6QkKBWiFBu3FTjzfv2zTsRpGJHC1LsTp5MdkNMhiFlsEmTvJUtPfTFaLu9D2K8HeESwHeWjiDcwbYr26a/vMGFodGob/mGenaWWNP06FHSFnEMgz5J4OzZtBfo3JkEOKv4DALCgpUvCQkx3pn11rWJE8XPFi1SWSYsTBSpTuqTK1+e/wxcTw107F/rmjH2dNmyPNudDKHTUeckgodq4UbGkmSWLBH70rKlOmrPHjHK0VEtf/ZyMmmSyZNMUYyhFRqNsNooCVpjpkCSZDAvL1ERBRD5Y0p8grjvffaZMPlZsp9WX5V9abuNBJh+6IXBVFuypEnglb+/0aibNNTa4tGb52/0maBeyonzZ1RiYowHOpHWZwi9LVAgFRe2pXP9uvqiemCvloA4lg8f5p0IUrGjBSl2hhohSbNhE2Mo/GpjY1m10fTFx2oNB/H2p9RoyBv+Dwl3UOOu4aPwR+mvwxBUXrIkefu26pW2xLijgQPJTjhkDJxIL21f/yCPqPOGapbP42LkecORI2Ln9EHD8fHG3Jg0A6Pj48Wbfs+eov7VypVkTAyfPjV6qx5+P9/4f+d29HFm0IcSRMOBTRqm8kKWlIcPjSZpvflWUYyJ70kMOC8XhqSAJUtICgOs4QG/dm2i+Qxu+NKlkxVwPXFCuO4cEM1HdbuYKvxNm1qmS16nU7MDXne4SSBJJmxKxMYas6STmKg+/1yMfvttirp/Z868HBq/Plyoh+MRAuSYMWnMawg+69FDHaXTqfk1bNHCMg30aaKPt1XatFErnnzzTd6KIBU7WpBiZ0ib0UdeR0eLMmD16wtr9YAB5K2bisg0S8tdm9dERKg3XZcfQVT811Cbk83/bE64gwvOLUh/PZGRIpBYb7U8NmQlAYVt2+aq9JkmKkq8Tc6H3gzxySfpLxQYqAYQTfsyQNVP8p1L1lCfq3dvksaahNnRxQwhe198Gp9iBrXZ2bSJBHgOTTl/fiaWM6R+J+q5Z7Daubi8pLXMYmKMpqbbt1VvGyByakyIjTW63JPUOyTJaeOieAidxEPSyUlcZwULivk/+ihv9icz6GPLtDZ2tEYCa9bMoBt12jSxT3XqmHhqvL1Ja2jpjl+oc3A0BqpZYrkrA4GB4j+AFZ0RzjZtUnc+kTQmBFpZmaS/+/kZKyb9+qt+ZFSUqJlk6S0a9fHmd3p+R0DU6M6LhInESMWOFqLYGQJOra3JkBA+eSK8rUm9U46O5KPmvU3ic8yOvjVYqD3oMKEwYZWgFiaec2ZOxt2xpIiYbtpU3eEjaM86dt4WZaDZto0EFPpblxdy7tyZsQX1bpr4eYtVHT7fZckasiSmTuX9kPus2v9PouRFjh+f9VUaSkC4upIJo/UR1okybs1NyDBhaV+m+SxzAf+GB3q7duoonc74fpeCrmP5HD2qWt09PRS18sePP6Yy/6pVRk02cYPgqCjq2gmzTTicOfOdk2K8IX5PoxElZiyJHTtIgLccGhIg583L4HIhIUaFNXFPsdBQerzW3XjzN3T2ASy3DpTetXwF9ejsnMEC4wYLbxLXjKGOsYO9wpCfZxmLwBUpYtKpyOLQP79+KC/c8T/9lPciSMWOFqLYGWrUtWvHqCiREm44h5cvF3Ho+jAt/mAzS3zp2dN88ibm4EES4LXXwOKfDSZgLEx8N/gu4Q7aTrJlVHwGXcfx8eSvv1LRF8OLhgNvLsxAAkYeMWAAWQfX9Hcdh4xHeM8UbcfYqRM9PY2Zb5s2pbGMogj/1fvvkz//bFnu95TQtwu6smI6naa4qAk0kw5mwGKbCjqdsFgD5MHFd0xegCwBvxrCVTin+tLMLfjggfFBrS9SSxofaKVKJbJyviwV+vXKasw7fdVj1qNHGuLrdOoLDxs0EK5Gf3+1yG+CozNb4BSBREnThlZVqaabmgl9MOlKDKaDQyZPT0PCgZ2diCHdvp2sXJmEKAsz2GYdnz5RRGaNXnFmeHiu7UpWifxSyLcUwzKu2BrM+q6uJqnQikJ2bBPP1fgwuYXDyso0i95SSEhQLdZV4ENHR/N0z5OKHS1EseskXA6cNUuNLStalLx9m1T09vyEBNFrsDVEtwZd6TLmkzcx+liZPVVB28ZrCBgLEyuKwnJzyxHu4KG7hzK33vv3ebWoeGuPtXcRsUxmJjpahNH8hCnJYkPS5U4ipSQ4WO24VLhwGqEzhhu5fgio8hoDgsz/P6RIbKyqrTYc/5qq1MEdtJ5ozbP+6SSYpIHhb+jTh8lCFsyKojDUVqRxrv86C9V1DdaKRCat2Fijx/nvmfdFj1Vra6HdrlqVg8LnAu+8QwJcXnMOAZE5nq5L+cEDY3kUQ/YzIJJlTp1S74cdO+rnN1SvdnS0rJR5fYbrN5ideZ1TpxMndxIFRilblu/X8CSgL/UYE2PMKlu0KDf2Ilt4vyayw38ptzJtF2xidDpj79whQ4z+66govmgpsscTYM373y8W+2+on1KzZjp+XjNw44YwRtg4UwMdhw41jxhSsaMFKHbBwWo9iAMLfcT9zSaeg1aOZ+EZhekwxYHD9wxneGw4w8LIGqXDqYP+BmgBfWNjfhpDAvy9EQhXfxYsaPqGPnjHYMId/PFwav6Y1Jk7PYbH0drofjNz7r/e28JLdnp38dJMWmkMlThXr2ZcnDHMKkWrhqGZOMDtdWz4zFF8n9rJnt7PvXNqlxivjadOyQGL0NWrwlrj7EBMADWjKhA2MWy/uD/hDnZb1y39daSCoZmFgwMZ+5Vey0uxnH/eEukdoD54bl/OQDHupBiKFbu6mmhAv/5Kvg5PPrd+LdnDXrd6tfqylxP8d/8/1l5cmw5THPjFni8YHZ+F/SDFtalvI/YGztDePhPdE27dMj7cAZEtrK9p6ecnymUA+gxRRTE2kk8Un2hulCoiy7cjDvNQJt9hSQolZdw4kXhUrpwoafXihWrMq1pVf/szeHdyuMhncHQw/733LwPCArK0/M3LcYyG8L1f2Xw7cwsfP25U6seMEa3n9JbcWGtHdsdetmih3//gYOOLwN9/Z0nWXEMfVHoaLQiYlCfMU6RiRwtQ7PQFbLW164q8CI2W1cb3MrF4wB3ssb4HdYqOe/eSN1GTBBj0l/kLFT94V5SqmNKxMIFELaP0rLq8inAH3/jzjUyv+9w5sgp8GAt9amQu1D7xD/PnV/u+4ofbP+ROr7Tj5d5/nyyDh0brQmab2U6YYOJGv3bNGGuuBgmT4iGvf0j+3qUw4Q5+85EINI+yATvPbsAEXfbeViPiIjhoxyDCHaw8vzIP3j2YrfVx/XoS4PkK+gLV9dawTh3yzvO7tJpoRbiDl4MuZ2nViZ/lB8YeM8YpmNlFefZn0SnG27Z21t45EgfVffmlOjri7/2MgBMJMKxiffL8eUYP/YgE+LQA2Gx2TZ58cDLb8t8Nvkvnac4m95kv936Z/oIpcf8+CTAOtrRHjCEpNuNKqE4nguPv3Us2yVADT63rNnWqGGEp7RkiI9Vai7WKPmFCAun5yJMDtw3kZ/98xhtPbmR51RERxlZc//1H8vlzKoZU8RyKMzzme4xOU50Id9BxiiPXXV2X6XV819aDBBhuWyhr16UhVCXxULAgn+08pbaoVG//hs4OlpZZ9/33JMBFGM7WrcmnkU855tAYvrvpXW66vilHX8jSQip2tADFTl+i/N9WE8S5/O54wh20n2zP1VdWc6fXTjpMcSDcwTln5lBRyMMlROPNbfUnmkfmRPg0LE8C/K5rGwIi1CQx90LuEe6g3WQ7xibEpriO1IiLEx6Xefgq867PDHD72W0W/LWgyYNtyvEpKc6r1YqqLiOwwGhVyCxXrhhNT/rYPMMbubV1oppV+mJOIRVK0G4cWPy34nwa8YRx9YXF7+uu4Mbr2XNFDtk5xGS/Xaa50DfUN+sr1Mu8tBFoNbYwYR2nGjT7/y2sdsP3DM/y6g3l0d7sHG8MJM9Q0bjcY2djIdSF6tmwHupjVAmIB8OPP6oW/EPoxLfbhvH/7J13eBTFG8e/V9J7Jx0ISQgJvYN0BAFBuqAo9oqCys9eIhYsKGJDEBQElCZF6b2XQOiBNCCkkN57crfv74/Z3btL7pK7SyAx7Od58txlb29udnfmnXfe95131JyaHlgxnK65sfM+HAxy+cKFbhU0bCPdoSuHEiJB9/12H/127jexLZijNJYtY4r9KfSiiROJMooz6f4/7ierT6yox9IedCnjktn1TE3VTIB27VFR2tGdGndsc1glefo0m2jDi15+mWhb3DZSfKwQ76fLFy4Nun4+7zFNmV5Bj/z9CG0MY+3gzLMNl4e3Cm6R43xHHVmgnKc0qb4nT2rkYvGAUfV/QR9CPHGHDiwWYfp0pugTSxcCMCOeWs3Rpr0/kErOW/iaQYiOgHoYC4R/Bktp5V9FFPJDiM59/erY3VkRJSl21MSKXXGxuGl0V+UlgtdFkkcygaA9a1p8ZjEhEuT2pRsVVRRR0mvfEQH0j2yscSuPahCbHUuP/P0IjV4zmrbHN8zql+zFplPjuv+PAKrlhuA4jty/cidEgk6nmh6HNGQIs9oRQJxMRv/7ZRK9tus1Si9uWE6niuoKivg5ghAJ6rS4E03bOE3sgPriAXnZTUcUg9mbb74x/Uc5ThMjw6fs4DjNTnIeHkRJJ9JImKI+/RS7b4tO8Xk0fvqJuTq8QF0XdzF7Brj3+l4xx+Dma5up3/J+xm8BZwg+vmrWKBDGvEiOjppcsrsSdhEiQe5fuVOVqq79tgyjHaJYOYBPdLV4sfn1bSAcR7TDmu2ace1Z3bZwPv08/XnpT+Nd5m++WctaUTxhBlnJKgkg+nDrUkIkaMbDzCeZ4WxB8g9Bo1abOYgS0enU0+LCpht5N4iI6KktTxEiQeP+GmdyefvDWfqfZQ6zKS2rjLr+0lVnUHP5wsW4fJYGePVVIvgfI5u32hE+At12kt8xK76pVP3M4ox34376d382eX7tKWYDCP8pnBAJivg5glRq85KyCfnb5ZMfJUSCnhzH2sgp38ab4PX+tTeVVpXSQ389RIgE9V/e32j5Mnw40RrwK+K1thKMy4mjp7Y8RQ+sfoA2xGwwW16lp/PDpExF/b+fQIgE7Qpi92DXs0PNKlObksoSenPPmxS0KIjG/jmWLmYYG0OgBcdRuSOLtx3lHkWP/c1CkHy+8aGpG6YSIkHyj+UUlap/T/HGRFLsqIkVO35FUJpdOwKqyfGNXoRI0KR1k3ROq1ZXi9r//KPz2d47AKXCp+4EkHpIyk8ip/lOOkJ3W5x5m9hVq6qoTMk6WBvXXSST6Y9nHr1mNCES9MPpmsms6ueDD5i8OOPLAtLeGcrq3HZRW0opNEOr5fn+1PeESGYNE5TEl7e/TIgEBS4MpPJqXUvAp58SuSOLVOAHlBs3zPthISnntGnioZISTYjROie2n1Betw6Ej5gyL8Y95eaKbpjwF0HHbpm3meSwlcMIkaBZ22cREVP0ZZEyQiTMjt/j+FV8g2eCEHCEZs/WfFatrhYHO3PbGsdx5DvpW8KcAPpqiDO7WfwWdA3hfPp5GrpyKDl87kBj1owx+vovXCC6gdbM/bj7oFjHN3a/obNoZOnZpfUXxnEsPmf4cBbLsGEDEcexeHqZihzeCyJEghYe/EJMBj58JnNvR9+ONuu6p6yfQogEzdw8UzwWmx0rKvwJucan/d+5k+g0WH6mmA/+oi+PfUmIBHl85UGbr22mLr90IUSCxv451qy6EhEdvJhAeMtFvLdLuzG5k/Fsw9vA6ourafSa0TRl/RSzwgUSRjOl9heHN2jOztcIkaAOP3Wg8upyyinNEb0CK86bv/gldMRhphxEKmj/0VUs3hKg8EhPKiivb4WKfuJz4sUwiVMpbJVpSmGK6CE6klRfhmWiM8wDS9fBbyXIz+yvZl0lj688dMaZz458ZlY9iYhmzyZCv69Fb9aCx5i8OeEH+ie25n5lxqPm1DR+rW7ok/tX7uJkx2j4fTBVkNNr70eLZR1PPk4cx4lei4ZMxozFFJ1GDonGZ9MmAMCq0omQ91mMIocoOFo54vtR3+ucppQr8e597wIAfjn7C7jOnUByOXxxG1sX30ZxsXE/R0R4cuuTKKwsRLhHOEYGjQQAPLn1SeSX55tc/WvXjsJGxd6n5Q1EeDjg6Fj7vF4+vQAAp9NOm/wbAwYAsCzBrxHXAQAzrtvCz9EPN/JvYPau2SaXBwDl1eX4/NjnAIDIwZFoZd8KAPDF8C/g5+iHW4W38Gv0rzrf2bsXGId/oAAHdO0KtGlj1m9j2jT2umkTkJkJALCzA7ZtAwa3isWkwuUAgB8mBgIyYGr4VNhY2LDvuLpCNnw4AGB0ArD60mqTf/5y5mXsv7kfCpkC/+v/PwBAqHsoHgx5kP3u6R9Mv6ayMuDGDQBAjJMdkNoXL72k+VgpV+Lh8IcBAH9f+9v08gF8dfwrpHV8HXBOxi7/AgBA8f4dZpUlEJMVg6Erh+LAzQMorirG9oTtGLxiMG7k36j3uwf+zkcbJAEALHt1AQD8GPUjvjn5DQDA294balLjuW3P4VDSoboLk8mARx9ljWznTmDyZEAmw5w5ANpvQbHFdbhYueLZfrOAKVMAAO+ltAbA7oupFFQUYEvsFgDAnD5zxOOh7qF4oN0DIBBWXFhhVFn5+cDLT5WjK84DAPwe7YD5x+YDABaMWIDx7cdj1YRVUMqV+Df+X5xKPWVyfYkI884/B9jkA6m9MTUpG9l9OgIA8nZvAUecyWUKfH70c8zYPAM7EnZgw9UN6PVrLxxPPm5SGZVnLgEAbO5ri1/PLQUAfDPiG1grreFm6ybK7s+PfQ4iMqueqkHvAAAcEp7BkP4zwHXuDDmAjpez8GPUj2aVuTR6KTjiMDp4NHr79QYA+Dn64bFOjwEAvo/6vq6vAwC++ALwRCba4iZrx716gSMOM7fMRHZZNsI9wjGz80wAwIcHPzTr+QPA4y/fBoa+DwCYE/Ij3vjiCACgbyowb/1LKK8uN6vcxWcWY0vsFlgqLPHdyO/QzbsbcspyMGPzDJOeVfyGi+wVoUgJWwgAmBg2Ef38+0Emk+GzoZ9BIVNgZ+JOnEk7Y1Zd7wQmK3bHjh3DwoULsWfPnlqfvaQt9e9V8vNBW7cCADbaDYBiJOv8Xwz7Aj4OPrVOnxo+Fc7WzrhVeAt7M04AYWEAgODiaCxbZtxPHkw6iINJB2GjtMHWaVuxddpWhLmHIbssG0ujl5p8CXEX9gEAsuwtUQUb9O2r/zxBaESlRZn8G336ALK+C7GlYzE4GdDhVhn2Df4dCpkCm65twsGbB00u8+9rfyOjJAP+jv54qutT4nF7S3u8P4AJj8+PfY4KVQUAoKQEOHECmAReKZk0yeTfFOnRA+jdG6iqAhYvFg/7+ABbO7wDBThskT2ITyqPAQAe6fiI7vdHj2YvCcC6mHWoUleZ9PO/nf8NADAhbAICnALE47N6zQIA/HnlT1Srq027pmvXICNCli2QnT0Eo0YqERKie8qE9hMAAP/E/QMVpzKp+HPp5/DOfjaw4fAHiEqeCw6AQ2YBEq4cMa2uPGpOjce3PI78inz08euD3TN2I8IzAukl6ZixaUa9ykLSpnMAgCK3NoCzM1IKUzB371wAwMKRC5H2ehqe7PIkAOCFbS+Y/JwAoF8/wHngGgBARNVzsLO0Ax5mCnL/y4WQccDm2M3IK88zqdytsVtRzVWjg0cHdGnVReezxzs9DoC1LWMGttmzgVbp52ABFcjTCyvzD6GgogBh7mF4tOOjrO6eEaKy8OXxL02qKwDsvr4bB5MOwkJmCWxYh81r3DH+kVUAgJCUMmw8sdzkMgHgePJxvHfgPQDAM12fwdA2Q1HNVWPyhslG39PiIoJ3NlPs0gZdQ2l1Kbq26ipOmgHgxZ4vwt7SHvG58Th867DJ9Tyffh7Xq08AagsUbv0Ihw8D8qFDAQD3JQOLzy42uc9Wqauw8uJKAMDz3Z/X+Wx2bzZh3nxtM7JLsw2WERfH5qd9cZId6NABcHLC6kurceb2GThYOmDf4/vw+0O/Y3rEdKhJjTf2vGGWcrvmxjeAshJI7oe4tU8DPj5Qd+0CAAi+kIpVl1aZXGZxZTE+PvwxAGDB/Qswu89sbHl4C2yUNjiRcgLb4rcZXdbFPy4AAHJbd8A/N9YDAN657x3x8yDXIMzoNAMAsP/mfpPreqcwSbFbsmQJJk+ejOjoaMyaNQtDhw5FXp6mo6xebbqlocWxahVk5eW4hI64POlXVMtK0M+/H57v8bze020sbEShu+LiCsh69AAAdEc0fv6ZBebUx9cnvgYAPN31aQS5BsFKaYW3+r8FgM3OTB18bsew2ddtK3cAMKjY9fTpCQCIz4032TJobVsNRb8fkWUP3AwKBQCEnk4UhZE5A4Ug0J7u+jQsFZY6nz3Z9Un4O/ojoyRDtIgdPgy4VGdiBPhJSkMUOwDMFAPg22+B1FT2/p9/4HhgC0gux3tBw6FSFMNBHYC+fv10vztqFADgvhRAXZCPPddrT5wMwRGHDVc3AIA40AoMbTMUHrYeyCvPM33wuXIFABDjCeDGcMzWY0gdEDgALtYuyC3PxYmUEyYV/96B90AgTA2fii4FH6Pk0Fe46WkPAPjzj7mm1ZVn+fnlOJd+Dk5WTtg6bStGBI3Ajkd2wN7SHidTT2LZOcOzpdxcwPpqNABA0Yf1wy+Pf4kqdRUGBg7E7N6zIZPJ8O3Ib+Fl54W43Dj8dfkvk+tYWl2CUp+dAICr66ehqgpA//6AnR0ssnMxRRWCKnUV1l1ZZ1K566+ygWdqh6m1PhsbOhY2Shsk5iXifMb5Osv55x9g1Sqgn4wf2Pv2wa/n2X17sceLUMgV4rlv9n8TMsiwJXYLbubfNKm+ggXwld6zcF/HQFRXA6u2dUa+jwsUBBz6y3RLGEccXtrBDAxPdXkKv477FVunbUV79/bIKMnAF8e+MKqcvSvS4Ip8qKDAGstdrJ69XoFMJhPPsbe0F5XcJdFLTKonwLw0ANC2ciJQ4o3ffgNrBwAGpyqRVpyGf+L+ManMnQk7kV2WDW97b4wOHq3zWbhnOHr49ICa1HVa2L/+mo07j7XjrXB9+4KIRKv1ewPeQyv7VpDJZFgwYgGsFFY4kXICB5NMm4wXVBTgl2h2D3DkfWzdIkNCAqAYxrwXQ28C35781mTL7S9nf0F2WTbaubbDCz1eAAD4O/nj1d6vAgDmHZlnVDnZ2QAuXAAAFPUnVKmr0MmrE3r49NA57+PBH+PiCxfx9n1vm1TPO4lJit3XX3+NAwcOYPXq1YiNjUXv3r3Rv39/pKSkAIDZ5ugWg0qFyoU/AQCWePVBZdt/oJQrseTBJZDLDN/qRzsx4bAtfhuqunYCAPRRnEViInCkHsPFzfyb2JW4CzLIdNwv0yKmoZV9K9wuvo1dibtMuoyixBgAwI3q1gAMK3Zutm4IcgkCAJy5bZoZemfiTqissoAST8S4MGsFDh7EG/3egAwy7L6+G7E5sUaXl1yYjP032Izp8c6P1/rcUmEp3p9vTn4Djjjs3Qs8gj+hhJpZ29q3N+kaajF1KjNFFhczC8ySJcATTwAAZHPmwO559jCLT07D/M9rtIe2bYHgYCg5NlvffG2z0T97MuUk0orT4GjliBFBI3Q+U8qVolVt49WNJl2O6hJzQ1zxBNpgGEaMqH2OUq7E2NCxACC6AY0hKi0KuxJ3QSlX4vOhn2PqFBkAGRIsmcVCfeYMLmRcMKm+HHFYcGIBAOaK97TzBMCE+idDPgEAzDs8D5WqSr3f37MH6E5nAQB2A3sgvThdVAQ/GvSROKg7Wzvj9b6vAwAWnFxgstzbHr8d1VQBRWE75MZ0wvr1AKysgMGDAQCzCphZ1BRrRX65ZjIwJXxKrc/tLe0xJmQMAODvq4YH9eJi4OWX2fvH2zHFLi3cH5ezLsNaaS1aJwTau7fHsLbDAAC/X/jd6PrGZMXgyK0jUMgUeL3v63jjDXb8l18Ay4EPAAD8LyaZPBnZlbgLlzIvwcnKCV/ezyaH9pb2WHA/axffn/4et4tv11vOpdXMWpfpEYiYokTYWthicofJtc57ttuzAJi1tKSqxOh6Vqgq8NcVNil4YxBTPjZuBIo6MsUuLEMFxwpmaTeFjddYH58WMQ1KubLW50LoxLoY/ZOG7GxAsM8MtxcU+744n3EelzIvwUphhee6Pyee7+PgI/4vKH7Gsu7KOpRVl6GDRweMaf8AiICFCwHwVsvhSTLE5cZh3419RpfJEYelvNv87f5vw0JhIX42t99cWCmscPb2WaPcpsuWAZ24CwCA/V7xAIAZHWfUOi/QORCdvDoZXce7gUmKXVZWFtrzg59cLsf8+fMxe/Zs3Hfffbhy5YrObKaxyM7OxpgxY2Bra4vQ0FDs3998zJ01Ua1cDaukeOTKnLHuMRZn92a/NxHhGVHn93r69IS/oz9KqkpwypOZ3vtangVA9bpjhQ46tM1QBLkGicetlFaYHjFd5xxjyC/Ph9XtLADArbKOcHZGLfebNr18WZydqe5YwbqGS49hUy6boeHQIbR1biMqCsKM1hhWXVwFAmFQ4CC0cdEfJ/dMt2fgaOWI2JxY7EzYiT27CU+BuTAFBcwQ6cXp2JmwEymFKYZPksuBX39lwXUnTgAvvMCClfr0QeFHb+NSxXZ23uVH8MEHTO/TYcAAAEyx+yfeeNfm+hhmqXko9CFYK61rfT6pA7NEbo3batLstyCaWeBiHB3wxmPhMNS9x4eOB8AUO2OVHOHZTo+YjiDXICHEDHvTBgMAuqUDi04vMrquALD/xn4k5CXA0coRz3R7RuezF3u8CF8HX6QVpxlUQLZvB3qAKXbo3h1fn/galepK9PPvhyGth+ic+1z352BvaY8rWVdMVj6Ewbe/82QAMixcyFvmec2519UCyCDDydSTdbc3LbbEboGKUyHCMwIdPDroPUdQ8LfGbTVYzvvvM2Nzm9aE8GI2sG93Y16ZsSFj4WLjUus7z3Rl9/r3C79DzamNqq9g4RoXOg6+jr4YOxZo1w4oKABOgQ3svVOBn878ZFR5AsL5T3Z5Eu627uLx0cGj0c+/HyrVlVhytm7rWl4eUBXNFLukdmyInBQ2CQ5WDrXO7ebdDe1c26FcVY5/4/41up67E3ejuKoYfo5+eP4BFsdcXg78dbAV0K4d5AT0TWGTgKLKIqPKrFRViha+SWH6vQ9Tw5k193DSYaQXp9f6fPlyoLIS6N2tGo5xvPLTpw9+P8/6zPj242u1gVd6vQKAKdWpRalG1RXQTASe6vIU5r7BhMvvvwO5YfcBSiVa5xMC85kV3lgOJR1CYl4iHCwdMC1ims5n7rbu4qTn57M/11mOSgWs/KkEwUgAAKyWX4EMMkzvON3oujQlJil2QUFBOHv2rM6xF154AV999RWGDRuGykr9M+GG8PLLL8PHxwc5OTn48ssvMWXKFOTnm74g4E5DWdkomc3iOr7sY4Nc+1x0adUF7w98v97vymQycTa4UnYBUCjgVJ4JX6Rh40amGxhi7ZW1AFCrEWsf2xq7FWXVZUZdR1RaFAIK2ftkVSj69GH6iiF6+7I4O1MWUJRXl2NnAnNF4dKjWHujF8jGBsjKAq5exXPd2AxwzeU1RrmRiUhUFJ/o8oTB8xytHMWyPzu0AF6xh9ARV0B2dprFDzWoVFVi1o5Z8P3WF6P/HI2A7wLw0vaXDFp9EBEBnDwJDBzIrHCzZgH792Pzje2oVFcizD0M7z3LZncvvshm6SL33QeAuWFyynKMcm1qu2EFoV2TQYGDYGdhh4ySDFzMuFhvmQJ08RoAIJ5644knDE/aRgSNgLXSGjcLbuJy1uV6yy2sKBTbreB6b9cO6NIFOEPdAQDd04E/L/+JnLIco+srCOuZnWfC3tJe5zMrpRXe7P8mAOCLY1/Uil1Sq4FTO/JYsDiA7FB/Ufn8YOAHtSatztbOovVj1UXjLWulVaXYHs8U/A8nT4G1NXDuHHD8OIAhTHm0OnMeg/1YWzDWylqXG1ZgVLtRUMgUiMmOwfW867U+j4oCfuDX2KyYlwx5RjpIqcTPYJO2iWET9ZY7vv14uNq4IrUo1agQgtKqUrG/vtjjRQCAQgG89hr7/LsTbLLY4zbwz9UtRreBG/k3RLnyUk/deG+ZTCbGmC2JXlKnXPn7b42lZp8TU1SEhQI1kclk9VrB9CH02clhk6GQy/EUHxK8fDmY1R/AqEJ3VKorjXbH7r+5H0WVRfC290Zff/1ulgCnAPT16wsCiXUQUKmAn3l9571xlyErLwecnVHRrjXWXGYxodqxywLBbsEYFDgIHHFGL865ln0Np9NOQyFT4NFOj2LQIKB7d6CiAvh5lQNbyAagTyrzXhjbBoSY8hmdZrDY1RoI7W19zPo6Laz//gt4pJ2HHIQid0dk2QND2gyBn6OfUfVoakxS7ObMmYOLF2sPDA8//DBWrVqF/nx8QGNRUlKCrVu3Yt68ebC1tcX48eMRERGBf/81fmZ0N8g+k4T4juPgXHobsS5K/DA0HZ52ntg0dZNm5WM9CIrdxqQd4DqwGffEwGhUVAB/GrDGX8u+houZF6GUK/UK3Z4+PdHGuQ1Kq0uxO3G3UfU4lXoK/oJihwDU90gFi93p1NNGW2sOJR1Cuaocfo5+aOfQBZWwQk4o/0OHD2Nku5HwsvNCTlkOdiTUv0LyZOpJJOQlwM7CTq+7RJtXe78KpVyJk+mHMMcqEgAgmzkTcHaudW61uhoT1k3AT2d+AoHERQmLzy7GzC0zDV9vx44sgO/6dTZS2tqKbpdHOj6CT+bJ8NxzzErz6KPAgQP89/ib3T2Ng6XKOHfs8eTjSC9Jh5OVE+5ve7/ec6yUVhjelllFjbmfAMAVFMGjgFkKfHuPg11tGSliZ2knuoCNcceuubwG5apydPDogH7+mljDqVOBC+gCAPAvApwKq/DHxT+Mqm9qUao4AApxNTV5ttuz8LLzwq3CW7XcnKdPA23yWXwdtWuHb2J/Q7mqHD18eugEzGsjxDNuvLbR6NV7OxN3olxVjjbObTA0rCtm8J6d774DEB4OODkBpaV4XskGd0Fhq4uCigLRXaXPDSvgYuOCQa0HAUAtZaG6GjptcqAFs9ZVhIfiUnEiLBWWtWK2BKyUVuK9MMa6svbKWhRVFiHIJUh04wLA44+zy9+Z3AFqKxs4VgFts1VYc2lNvWUCbCUkgTAiaASC3YJrfT6h/QR423sjszSzTnf02rUQVwMfd6+Av6M/hrQZYvB8QbHbmbgThRWF9dazvLpctJoKk7HHHgOUSuDMGeC2dzcAwIhCZnEUJkH1IUwCJoZNrDP0x5Ai+u+/QEoK4O4OPODEu2F798Y/CduQX5EPP0c/DGszrGZxACBayJefX26UV0BQAEcHj+bj9YC5fFjtDz8Aqp5MMR2X74lqrtqoyVN2aTY2XWOeMm13sTZ9/foi2DUYZdVl4rn6+OEHFucOAGe92fXoc8M2V0xS7GbOnIlnn30W69evr/VXUFCAF154QedYQ0lISICTkxO8vb3FY507d0ZMTEytcysrK1FUVKTzd6fJT8xFoosCHr3aIDTrFIotgcnTVPByD8ThJw4bdAnqo49fH/g4+KCosghpwV4AgBntmXX011/1L6IQOvzIoJFwtXGt9blMJsO40HEAgO0J242qx+m00xqLHQIE76BBunp3hYXcAtll2UgqSDLqN4S6jAkeg4EDmCXkkh0/wJ8+DaVcKQ4UxswAhXMmd5hcy1JTE38nfzwc/jA6pwMPVR4BBxnwyit6z31156vYmbgTNkobbH9kO27NuYV/p/8LpVyJdTHr8EOUcSlEMksyxYF3esR0yGRsZjxxIltE+9BDwNWrAIKDAQ8PWFZz6H6brYysT1kWZt0PtX8IVkorg+eNascWZ+xM3GlUnXd9z6w0qQ7AWy+Oq/d8bXdsXRCR6IZ7rttzOpawKVOAYjgiDsz33y0d+PXcr0ZNGIQUD4NbDzboirSxsMHcfmz0mH9svo6re8cOjRu2qkuE6NLTZ60TGBA4AAFOASiqLMK/8cZNNoXBd3KHycyKxC9I2bwZSEqWiwGtD2Q5QgYZTqWeqtcduy1+G1ScCuEe4WjvXnec6EOhDwGo7Y798Ufg4kXA1ZWt/cFJNrBfacv60/C2w+FopSfnEc/TXZ8GwBTGrNKsOuuw+CxbNf589+d1FBB7e+CZZwA1lLhqwyy3vdKYslBfGyivLsdvF1hYxcs9X9Z7joXCQlT6Dbl409OBMweKEQoWU3XemynwdSlKEZ4RCHMPQ5W6qk43t8Du67tRUlUCP0c/MbOAhwcwju9mm24yxS4oqUg8v77VvNXqarHv1Te5nRI+BTLIcCLlBJILk8XjP/LZVZ59FrCI5hdO9Okjukxndp6ps3BGm0lhk+Bk5YSkgiQcuHlA7zkCKk4lTqy0PSyTJwMBASzO70gVm9gMy7IFYFwbWHFhBaq5avT06VlrVbiATCYTY7ANTRpjYoCDB4HuYCvkD7mVwEphZdBi3RwxK4/dTz/9hBkzZmDu3Ln47rvvMHfuXMyYMQM///wzFi9ejMWLF+OXX4yPjzJESUkJHGskUHN0dERJSW0T6vz58+Hk5CT++fv7N/j368O5rSscqpk2f9wfGPVyKzw06V1cfvFyvQK2JnKZXIyLOOjOEth1UZ2FlRUTuOfO6Z5PRFgbwxQ7IZZOH2NDWLza9oTt9c6kiAhnb52ED58/L0Ppj5496663tdJa7ETG5DIiIh3FTlAcd+YxAYfTzKUrdPjtCdvrHCjKq8vFmachd0lNXuv9Bj7hF3AlD35Q76KJVRdX4ZfoXyCDDOsmrxOtFQ+GPIiFI1k+o3f3v2tUDNT6mPXgiEMv315iHKRCAaxZAwwaxNKuPPQQkF8gE612Q9KUuFV4q84FBBxxoqJQlwsOAEYFM8XuZOrJegcJtRo4sm4LACDO0xYRfoH1XuODIQ9CLpPjfMZ53Cq4ZfC8M7fPiEHYj3XWXcEruGOjwQb13lkWiM2JxfGUuvOPVamr8Os5lp/wpR51p1x6occLcLVxRWJeIjbEaFxR27drZuiH3EpQUlWCzl6dxf6jD7lMLs7ijVnoUF5dLqZamNKBWdYiIoDhwwGO4wdW/vk7RV/BfQHGuWMFy4MxA48w0TuafBS5ZbkAWNrFyEj2+ZdfAp6eEBW7La4sJ+PE9nWX3dGrI3r59qrXunL29llEp0fDUmGJJ7s+WevzWbNY6MeeAuYJ6JMux+WsyziXfq7WudqsvbIWeeV5CHQKxJjgMQbPe677c7CQW+B4ynG9ZW7YAHQC80qlOgI5dnWHdwCmu2OFydiUDlN0FManmW6Mb/Z3AQBYptzGQLtwqDhVndYlgHlB8ivy4WHrgQEBdc/GfRx8MCCQnSP0gatXmedALmehwTh6FACQ3amd6F6v6z7YWNiIC2vqS7G15/oepJekw93WXcyzCTCLpeCO/2w/U+w842/DCdaIyY6pM9yHiLCMX7ktLGgxhFDPAzcP6JXfP/E6/yAHJg+ifYAxIWPgZO1UZ7nNCbMUu7CwMHz77bdITk7GiRMnkJycjIULFyIsLAwHDx7EwYMHceBA3Vq7Mdjb29eyvBUVFcHevrZV5p133kFhYaH4J6zUvZPI5DLELdqKmIsXER6fj2PfpuOzYZ/pDbI1BkHYr7RgFknLS9GYNJHNUn7VzauLCxkXEJ8bD2ultSis9TEgcAAcLB2QUZKB6NvRdf5+Ql4CbLMKIAdQCUv4d/eErW399e7jxzqhMYrd1eyrSCpIgpXCCkPbDBXCyrAmkVfs4uKA/HyEe4ajp09PqDgV/rxseGXYltgtKKosQqBToOhmqg/X9bcwNh5QyYCF42rniTqXfg7PbWOm/A8GfiAu5hB4qedL6O/fH6XVpWKOs7oQ3bARurnrrK3ZQBIQACQmAo88AnB92cD+UA5zw2yONeyO1XHDBul3wwoEOAUg3COcrQa+vrfOc5cvB7xLmTJV3aFd3RfH42HnISoidVktBKE/ucNkvVbmqVOBc2AWi7HFLO+joLQZYkvsFmSUZKCVfSuMbz++znPtLe0xp/ccAEDk4UhUq6uRlsayGggWux84ptS8P/D9eheECYPErsRddeYGE84prS5FgFOATsoEIUvOsmVAWRfecn3qlCgPasZCaVNaVSquejdGsWvt3BqdvDqBI06cYL37LlBUxFIxPvUUWBT/eeaK/NM+CXKZvE4ZIyBY7eqyrggLFyZ3mKyzuEGsX2s2yTkDNqMckesMQJOnUR9EJFrgaqZjqUkr+1aiRev707UT9f71l8YNe74VcF/AfXrdujV5OIIpdnuu76lz4lReXS66wWvGxI4cCfj6Akn5TihuxfrdC7xLvi4ZCGiU/wntJ9R5/WJ9ayiigrVu/HggQH0TuHULUCqxwi4BHHEYGDgQ7VzrlgWCQrU5djMySzINnidYAB/t+GittFRPP83c8QdutkalkydkVVV43Zq5wetKVXQ0+Sjic+NhZ2GnN95cm9bOrTEocBAIVCsZfGEh8McfgC1K4V/KsjKc8wamhdddZnPDLMVu7dq1ePHFF3WOPf/88/jrL9NzOtVFcHAwCgsLkZGRIR67ePEiwsPDa51rZWUFR0dHnb+7wcCnxyG8Uyc4Wzs3uKx+/v3Qyr4VjjuXgFMqgOxsvDyOKah//sksOwJChxwTPKZORdJSYYmR7ViMUH2JGU+nnoY/r0enwB/9BxjXPATFzpgFFMJgMqTNENhZ2iEoCGjVCsiodkO5Ly84zrDVWMIMsS537IqL7LOZnWfW6S4RKSyEeyRz1XzdD/i+aJdO3Fl2aTYmrJuAClUFRgePxoeDPqxVhFwmx0+jf4IMMqyPWY+TKScN/tyN/Bs4mXoScplc7+IGDw9gyxbAxgbYtQv45QpTjjpdLxET1RpC2w1bU0DqQ3DH7kg0HGdXUAC89x4QoWKrwdx6GR83K6y6NOSOLaosEpXcmslTBaZM0VjsOqSwAPcNMRtQUFFg8Hd/PsMivp/t9qxOegNDvNr7VbjbuiM+Nx5Lo5di507AHdloDWZpPOpWigjPCKMUpTCPMPTw6QEVpxKvzRDCatjJYZN1FMZRo9jK88JCYPU1du24dQtTPAfXuzp2V+IuMWavs1fneusLaNyx/8T9gzNn2EpEAPj+e36hVHQ0oFKh1NUBSc7AgIAB8LDzqLfcaRHTYGthi2s513AytXafKKworPf5A8CrrwJRYBa71reKYaliaT8MxTFGpUUhOj0aVgorPN3t6XrrKSyi+OvKXzoKyM2bwKlTQDfeBXfOm63YNIb27u3RyasTVJyqztjYXYm7UFJVAn9Hf3HhmYBCAczknQ7C5OaBQnbfDyUdQlpRmt4y1ZxalBP1uWEFJoVNglwmx5nbZ3Ax+Qb+4L2Ss2aB+SEBUK9eWBrPFEohKXdddG7VGb19e0PFqQwq4rlluaJiq88C6ODAWwwhQ5SCjSuPljIvx9ora1FcqX87JkHpmx4x3SjDiuDd+ePSHzqTkBUrgNJSYELrC5BxHG7bA8WudmKqoP8KZil2gYGBWLlypc6xVatWNbr7097eHuPGjcNHH32E8vJy/PPPP7hy5QrGjjXsHvkvo5ArMClsEiotgBR/Zvbta3EW7dqx/FJC2CIRiYqdMPOqiweDmbl7W0Ldit2JlBNifF0K/EVrWn0Iit35jPOGV4vyCIqdUCeZjC0gBYBEVybMBcVuWsQ0WCoscTHzol6XZFpRmhi7pi93nV7eegsORbcRj2AcGMncdo9tfgyHkw4jITcBI1ePRHJhMoJdg7Fm4hqDs9/OrTqLwq6urOvLz7Fg8uFth8PbwVvvOV278qvhAMxZ1Q1qS2tYF5QgPF+BK1lXkJCbUOs7prhhBQR38q7EXQbd8vPmATkVGYgoKAUABA+aYFTZgEZhOHLriOjm0+avy3+hrLoM7d3bi9a9mrRrB6gi2Io427R09LUNRbmq3GAAfUxWDA7fOgyFTGEwYLomTtZOiBwUCQB4e//bWLc3Ab3BJiVxbkCRNdtlwqiJAjS7OtS10KNCVSGmw6i5wEEuhxhr9/VSJxCfX6hVXBr6BzDF2lBC2U2xzEU3KWyS0emmBOvbrsRdmDWnAkTAjBla+Sr55JnRrS0BmUZhrw9HK0dx8iK0e23WXF6D0upShLmH1ekuHDQIcOjYBjlwg6K6GiNKvXS2S6uJYK17OOJhvVbAmvT2640+fn1Qpa7SSam0jvei9nNku8Nc87OqczFKTYxxx2q7YfU9ryd5/WlXBusDLtduYkDAABDI4MThyK0jyC7Lhou1Cwa3HmxUXb3svcQUPu//tQ6lpWztzuDBEFdzpXQPRmJeolGL0gSEGMal55bqlTG/X/gdVeoqdG3V1WAc3KuvAhYWwI48Nq60jc9GiFsISqtLxdRO2hRUFIj39dnudbthBSZ1mAQbpQ1ic2Jx9jaz1HOcxg37Qk+NG/ah9g/B1sII11UzwizFbtmyZYiMjERISAiGDRuGkJAQfPTRR/jtN8PmcnP5+eefkZKSAjc3N8ydOxfr16+Hi0vtXEotBaEDHXZn5jlZ9Fk8w6fkEtyxZ2+fRVJBEmwtbI2aSYwKHgUZZDiXfs7grA8ADt86rLNwwthFzm2c28DD1gNV6qo6s9rnl+eL+zVqr7Dj81HiaAkTZuBXXrvauIrKgr7cU7+c/QUccRgQMEAnh59BjhwRk8c9i1+xYMK36OnTE3nleRi8cjBCfgzB+Yzz8LD1wJZpW+q1wn4y9BPYWtjiZOpJvXFQKk4luh3qi/uYPh144w2gGpY4pWZuqCfKWeyfPjdMnW7Y7duZf9fZGXj7bSaxAPQP6A97S3tklWbpjS86fhxYtAjw8N8ML6bXwblbv1rnGaKNC7MaqUmt1zosJA6tuWiiJqOmO+MG2MKjN2zZal5DiygEa9240HEmpSJ4occLGBQ4CCVVJdjvOxwDAj8DABwNYCuXhVXExjC943Qo5UpEp0cjJqv2wi6AueiEvGXCSnJtHn+cPa7ERCCN39EFZ8+K7lh9A1pZdZmoLBq0Lubns4yzf/7JckkA6O7dHb4OviitLkVU9gHY2bHYOhE+V+j6Vkw5nxBmvHIv5LRbG7NWZzcaFacS8xI+3/35Op+/TAbMniMT3bHPqZkVU1h0oU1mSaaoSBlaNKEPwWq3+OxiVKoqQcRiXi1RiaASlgrGf9C4ehdjaSModgduHtDrli+tKhWtVYYUxnbtmGIbzVvscP68uP2gkHKkJoI7cUL7CUZZrGvWd89tdv9mzQJknJrtbQxgrWemeJ6x90HYIjOpIKlW6huOOPEZ1kxHo42PD5tonAJT7GSnTontSoij02b1pdWoUFWgo2dHcTek+nC0chTbtTAh27EDSEhg+6L3smDKXvR/0A0LmKnY9ezZE9evX8eyZcvw3HPPYdmyZbh+/Tp61hdpbwYeHh7YsWMHysrKEB8fj+HDjRe4/0UGBAyAp50njnvxeZaio/HEEyyw9NQp4PJlzYxwbMhYo2YSnnae4uorQ6tjs0qzcC3nmqjYlbkFwL3+yS8AFjxsTJzd3ht7oSY1wtzDdFYMD+NX0P+T3IW94bdxATR5h1ZcXKGziKKsukwUEoKQrpOKCrbcC8ASPIfrvoPQKdwK+x/fjxmdZkAhU0AGGUYEjUDUs1EGV1Zq4+Pgg//1+x8AZvmpaa1cd2Ud0kvS4WHrYVSM0vz5LJXdMTUznTyYzdwwKy+urDX7FYR8LTfsgQMsSCklhfn2vvySKXdgbnkhJYqYR5CnsJClueA4YEQ4UxZyvZ1QZ54TPQjWnZppL86kncG59HOwVFjWa12dMkWT9mRgljesFFa4mHkRR27pbsOSVZolKs6mDOoAs46vmbgGPtbtQE7JGKBm7TalS2v8OrbumL6auNu6iwH7hqx2grVFcIHVxN5ebJ74J42Pvzt7FpM7TIZCpsDJ1JO4mn1V5zsbYjaguKoYbZzbiP1bh/h4thrlscfYw+3WDbhxAzKZDA+05dtj6Fa8/z4bTAGw+LrjbPK1rw1TArX3Hq6Pfv790NGzI8qqy8QtwwAWThGfGw93W3e9udBq8sgjwBUbpgCHXLCDhdwCR5OP1srtuODEAlSpq9Dbt7dehdkQk8ImwdfBF5mlmVgSvQQXL7Id9Dq7b4OSI+RZA4+MMW2LqCDXIHT37m5wy66NVzeitLoUQS5Btdyw2jz9NHAe/CQ3Ph5T/R6AUq7EhYwLtdpAWXWZaK2a2cW4xWMCE8MmQiFTosr1IuzaXmSpd06fBrKywDk74ROOuWSNcW8L2FrYihbs7059p/PZ31f/xo38G3Cycqq9V3YN5s4FzqIH1JADt27hCa+RUMqVOJV6SicXZ5W6StxSs74JQ00Ed+zqy6tRUlXCdr0AS/tTfoYlHU9o41BrN5//AmYpdgBgYWGBgQMH4uGHH8bAgQNhYWH8TEHCMAq5AhPbT0S04LU7exZenoSHmOEKS3/lxNm7MW5YAWF1n6E4u6O32CqooEIWn2DXwXhhDhi3gEJ7Naw2QUHMwBSt5mOEEhOZ7xnA4NaD0dOnJypUFfjq+Ffid344/QNyy3PRxrlNvQHzAIBPPgHi41Fo54238CVGjGCWAQcrB6yasAol75Yg76087J6xG62dWxt93XP7zUUr+1a4kX9DJxhbzanx6dFPAQBz+swxKgbOwoLl0LrqyBQ7uyOZcLRyxM2CmzopBAoqCjTpAjo/oSlApWLTbrUamDABWMC2UcK33/L5VPTH2RGxuJZbt4DWbQhtVewZqjuEGX0fBJ7t/qw4CGtv2/PRoY8AsDbrZutWZxnBwUBmK9YW8vcmiC5vYWNvgYUnF6JcVY6ePj0xtM1Qk+vq6+iLcZlnYHP4dfS8zQaEd97ZaZbbRXuQqLn7Qn55vhh3VXMvX21mzWJxVn8maBQ7HwcfcVKw+IyuxUqwgD7T7ZnayqJKxdpAcjLLYeLsDFy7xnJqFBej+AwrU9HhX8yeozVpOHECqKxEtrMl4tz1Jz6vC5lMhi+Gs/1YF51ehNOpp3Ez/ybe3MuSQ79737tGxUBZWwOtxjJDgeXZGHEy8MHBD0TLbVpRmpiU+oOBH5hUTwuFhfidDw9+iMVrUgGZGv27sYTyqUHu6OrTzaQyAY1M1pd7TpiEPNHliToVkEmTgCpHDySDhTa5JqSI/bami3t9zHpRuTcU3mAIN1s3eOYyS2/gw4tgbw9gK1v4dK1na5RQJbp5d0NfPwN7Shrgld6vQClXYvf13eI2jypOhQ8Osvv9Wp/X6u1jHToAgx90QAxYPL3HlRuiVfqtfW+JbWBp9FIkFybD297bqAmDNsPaDEOwazAKKgow79/lOHCA9b9XnyqBfSJLA9PxgZl1ppFqtlALpbCwkABQYWFhU1fFZA4nHSbL90GVChABRDdu0O7d7K1dxH5CJMjhcwcqry43usyLGRcJkSCbT22orKqs1ucvb3+ZEAm64uxKBNCht3eaVOf9N1i9AhYG6P1czanJ4ysPQiTowI0DtT5/4gl2fQX2PuzN8ePiZ9vithEiQYqPFXQq5RRdy75Gtp/ZEiJBKy+srL9y8fFESiURQHNabyaA6M8/Tbq8Oll+bjkhEmT5iSWdSTtDRESfHv6UEAly+cKFCitMa4NHNmQQAaSGjMZ9+iwhEjTo90Hi518c/YIQCer4c0fiOE6rIsvZvXNzI8rLY8fGj2fHxo8nIqKUwhRCJEgWKaPs0mwiInr/fXaKQkG0Zu8V+qU7a3dVb/3PrPvx2KbHCJGggb8PJJVaRTvidxAiQcp5SkrITTCqjPWPbiECKNG+M90quEUW8ywIkaANMRuIiCgmK4YsP7EkRIK2xm41q55ERMHBRMOwl90APz8i7ftpAhXVFeT6pSshEvRv3L86n/0U9ZP+56WHKVOI7FBMapmc1en2bdp7fS8hEmT3mR2lFaUREdG+6/vEeyoc0+GHHzRtITOTKDWVqFUrIoAKHnuZLGwqCO84ECJBp1NPa7736qtEAP3WhbWRlMIUk+8Fx3H00F8PESJB8o/lZPWJFSES1OvXXlRRXWF0OekXNP1g2+4LZP2pNSEStOTsEqpWV9PIVSMJkaA+y/rUe1/1oVKrqPuS7ky2vBFImDmEfurB2n7Oy0+ZXB4R0a2CWyT/WE6IBJ1PPy8eP3f7nHg/bhXcqrec558n2oJx7Bl+950oA+0/t6fcslwiYjK1/Y/tCZGgL45+YXJdExOJ4H+Cya55VpScl0TUti0RQE8/ytrG7+d/N7lcIqJZ22cRIkGtv2tN6cXpNHvnbEIkyO1LN6Pl4eHDREvxDBFAJa+8TQm5CaIc+PH0j3Qh/YI4Dvxw+gez6vnLmV8IkSDb930JlkU0bRrRuZVfEgF00xlGPau7hSk6jaTYNUM4jqOwH8PojDev2G3YQGo1UevWRJjGBOZL214yuUz/b/31DoQcx1HgwkBCJChfbkcEUP7xGJPKL64sJuU8JSESdD3veq3PT6eeJkSCHOc7UpWqqtbnq1axSz3qOJq9+eknnc8f3vAwIRKiUiIoDkYJ9IkTiQCqGDaawN/SrCyTLq9OtAcy+8/tafSa0aJwN1cw5rm0IQJojNNqspjHFJhNVzdRSmEK2X9uX7tsjiPq0oVd3Ndfa47HxLBjcjlRcjIREXX8uSMhErTm0hpx/AeIliwhmn90Ph3z5w+Yqf1ez7tOdp/ZESJB/Zb3I6f5ToRI0Cs7XjG6jBsHk4gAqoQFZadV0rv73hUV5S+PfUkhP4QQIkFj1owxa1AnYvo+QLRQ/hp785R5g7nA3N1zCZGgvsv6inWqVldT0KIgQiTou5Pf1VvG8eOsKldk4ezNv/8Sx3HUZ1kfQiTo4Q0PU0llCXX5pQshEjRr+6zahVRXE/n61u5H+/aJilIPRJHny1MIkaA3dr/BPlermXIL0IPTWf8yl+LKYuq/vL/YZ8N+DDNLScyyDSAC6LP7D9KXx74Uy3P70o0QCbL+1JquZl01u54382+S5+cBYrnnvfi2v26d2WVO2ziNEAmaumGqeGzy+smESND0jdONKiMqiigSHzK59eiTxHEcdVrciRAJem3Xa0REtOL8CkIkyGm+U/3KkkpFdPkyUVKSeGjOHCKAI5fXBxIiQR+804cIoDJbS7J9FxT6QyhVqipNvwFElFuWS20XtRXvq/D399W/jS6D44g+a/MrEUAJ/kOIiOiTw5/UKnP4H8NJpVaZVc/y6nIK+Iav59hnac/RXPp5lDsRQKeHhJpV5p1CUuzov63YEREtOrWIFvOWk+r/McH76rxrhI+YUmOOMJuzc444OGhzKeMSIRLk+o6VZpQvKjK5/IG/MwHxy5lfan320cGPCJGgyesn6/1uWhr72c/wLnvz7LM6n+eV5dGwlcPEztx9SXfKLMmsv1Lnz4uKzb9fXCGAqGtXky+tXvLL88XrF/5e2vaS2UoHN/0RIoA+wMfkPPUNsUybT21EhUnNqTVfOHmSXae1NVFurm5hQ4awzz78kIiI3tr7FiES1GXeDPFxz5vHTr3v135UYMUfvHjRrLoTaQYd4a//8v4mWWuI46hQ4UwE0N8fnKdKVSX1/rW3Tpl+3/qZpSwIfPMNu8xbtqHszcaNZpdFRHS76LZonRImT7+d+40QCXL/yp1KKkvqLYPjiHr2JPodM3WeWVRqlDihEf6c5jvp7wP//MO+6+5OVKF7zzOGP0oEUDS60o87NouTrcKKQrENFVnJyOo90Lor5is3RMwidvTWUdqVsIuq1dVmlZE7dBIRQG/JvqTE6yp6cduL4vXbf25Pm65ualAdiYgmPn6bMHAe9Z79FHEymWgpNZcL6RfEOm6+tpn+vvq3+P/lzMtGlcFxRK8GbCICKMufCSzBaodI0OObHxcnT58d+ayeCl3grQJ8vx40iIqjY8nRkf37y6bLpJynpM2h7PPve7Hf2JlgmtemJnE5cdThpw7is/r+1Pcml3H0p4tEABXCgTLSVMRxHL29921x4vzA6gcoq6Rhs/Rxc/bq9KuDgew+lPy4sEHlNjaSYkf/fcWupLKE5k5xYibhLm1Izamp/9KhrPFNG0dnzphe5pm0M6JyUFShUdwEt+HgJwYSAVRq7WJWnYXZ1MR1E2t91mNpD0Ik6Ldzvxn8flgY0WSsZ9KmV69an6vUKjp48yAduHHA+Jnk9OmsvIcfppkz2ds33zT2ikyjSlVFv5//nd7Z9w7tStjVsMJ4U9oB6wcI8irymjtCFDytv2tNcTlxuuc//zy7uMcfr13W2rXsM39/IrWa9sQfYmW96UpQVND//scGklsFtyj4FSbUOCsroqrallVTOJVyil7Z8Qr9FPUTlVaVmvz9pDaDiQD6Kvx3ImJ94vVdr1O3Jd1o+sbp+l2QJjBwIFFbJLJ7o1QSNYKsEKx27l+501fHvhKtq18e+9LoMtasIXoZ7PlXjxwtHv/9/O+iVdzhcwc6nnxcfwFjx7JrmjtX57BKRTSkQwblgSnM6oULKfSHUI1ywMdDrO7IQirMVcYalS+ZW2w9JtNLvJPiZMpJWnt5bYOUeoGcHCIrfj4b+91O9iYoqMHlvrH7DR1lQccyaiTL37/BrNYyS7EvCi5O4W/IiiF1W6tu3CBRg1MqmeUeoCpLW5qGPyk0lBlqdy19i7fmgsJeAi08ubABV6+B4ziKy4kzORxF/H61ikp5L9JXM6+Ix4sqiuhm/k2zJ84CqalElpZE6PYrWXxsSVbvgcqVvAIcG9ugshsbSbGj/75iR0S0adPnzBSvAAV93orFgnxoTXC5TtONs+jrwHGcKMh/imIuGpVaJZrMJ4TPJgKoOKiTWfXVdrdqW2fic+LF+JKM4gyD33/1VaJgxGksT9UNHFhSUljgGEBc9Dny4cP39u1rWLF3hbNn2cDu4EyWSjVBXk3TP9pGv537rbaQrKpi1hmAaO/e2mWVlxPZ2xMBlPTncerctZrwui8hEjTza427dd6hefTwJBhUrO82eU/MIQLoO9lsyjTCOGsK2dlsjHsXn7LrHTasUcotry6nzos76wy+Q1cO1Rt+YIiqKqKJPsx6VmLvqRP3dz3vOu1M2GnYSlFSotFULutah35lXi2abf0Le2NvTxt2LyREggLnKqlayQb9Xs+AlkUvM+v6G50DB9jkFoFkZUWUnt64xX/9NYlWfO4d3lswc2aDy61UVdLUDVPFNjB1w1ST2gARUXYWRwVgSlnshktExOT1r9G/0tg/x9Knhz+l4spiwwVwHNHIkeyaevdmcbe3bhE3dKhovbvS7xmilStF133slKF0If1CQy690cntOIgIoOctlpv//LOz9U5UX3mF3Yr77iNKL8qg+D++Ywd8fc2Ot71TSIodtQzFjlOrKdfTgQigUY+w4PzP/llD4APd+ZApk/jh9A+ESDYjr1RV0r9x/zJl7DMXek6+iM3aRj9oVn1VahX5fsMUho0xGrfW+/vfJ0SCRq0eVef39+whkkNFJTI2Q6Or5sfOEBHRJ5+wcgYMoIvMok82NkzPafZUVbHKArT2o6uiF+Xbb/Wcu2sX+9DT06AyrJrGXHA/Kl4lgMh2VCQhEnTfb/cRx3FUqaqkwIWB9FU//odefPHOXp8x/P47s1pisP7rbgArVrD4oiTLYHa9K1Y0WtmZJZn09Nanqf2P7enFbS9SXlmeyWX8saSMqsAW/JRcM6Gjb93Krqd1a52BqbCQNQ+A6NsFaqK+fdmEp2dPemzZGNoWzJ77kQDWTxtqCWk0CgtF96gHMul/5q3n0YtaTdSuHbsnS5cS84EDbBFSI5GYm6g35thYYtwHEAG0fPAfpn95zx52PVZWRHEaC/+u7Sr6VAh50f4LDSXKzze7rncKbu7/iABajOfpmWdM/PKVK5rn6uBA9O67ooxMSdHMgcT58AsvNB/5VwNJsaOWodgREXHPPksE0PkpA8T4DCFkSsfTUl7OYinqmdKUVZVRqwWtREuCzzc+bICfN1fT2RvQqIX4rbF/jiUitlrQ71s/QiTor8t/1fndykpmWDoONug0aOmquNoERCtX0ufM+EkPmqezNg0DB4qjzqefauTvggU1JpPCkuKX9C+o2b2b6HkfFneVBm+6f5iazsaniivM1l1ZJwamHw2yYGUtawYWGz4+Mg/OFBHONeoEesIEogE4zK7Vzo6ouA7LRxNQXU0UY8kWw/w9w4Q4sueeY9f08ss6h+fOZYdDQlg/o7g4tmJWa2CvUMro+59m1m0FagrCwogAGo1tZGPD4nEbA0HvcXQkKklM19yLBsTXNTapE2YRAbRQ8QZlZ5v4ZcFa9+qrOodH8+vTfpy0n2jMGKKICKJnnmmWSh0RsdhXgM6hC8lkTCwYRVycxpOh/ffQQ0QqFT3yiDjvZ7KF4zSLjnbsuHPXYyaSYkctR7GjTSyAlgIDmbJCRNu2aSYgOTlEtHMnkZcXO2hhQfTxx3WakdddWafjKmq7qC117ZdLa8DHo331ldnVvZp1lbmMP1bQ+fTz9N3J7wiRIO8F3nrTrNRk0iSin/FCw4PhhOWFDg5EpaXUvz/7d/Fi84u863zIVsXR9OnEcex2CLJpxgxeDldUaGJojhwRv8pxRAcPaiYBlqigApkTs9IcOkxEmgUt4mrjD0GV9sxKaLz0vINUVhJnwRTNACSZFVeqj7IyIltbor0Yxq61xkKd5kL8IJbqYYH1u8YN6hwnrmrVHpguXBAjEmjbNq3zo6KYpgcQOTk1aCXoHYUPjl3u9yEBTHdtDB56SEsH/u039k+PHo1TeCPB/bqMCKC9GEaffGLCF2Nj2fXI5SzOjufKFXZYJiNKMC7zUNOTkkIEkEqmIBuU0qBBRnhJ1WoShX63bmw2sHataKJLnT5XvA/R0fx39u7VjBnN0K0jKXbUghS7sjLNwH3wIBGxNitktvh9wlYxIFbn7zfDixSIiP648Ad1X9KdHlj9AO27cI0AohNgy90bujpQWNov5J1CJGjp2aVGfXfFCqLnsZjV44EHzK/E//4nKkW5uZpbdKv5pCWqn4MHWaVbtSLimMXqm2801+LuTvTXtC3Mfe7jSwV5ajpyhOizz4jat9c0BQsLotmziSof0bXsVVRX0IhVmkUZH37L582yt294fGNj0bkzEUDjsKXRvCP//EP0AHYwJdfCQicFRHNC/TOLhduN++mFF4z4woULmniDMjaJUqk0nqhJk/R8R6Uiunat1urZZsWPPzLLba+RBD4MpaFx7ZcuaRScq1eJWa4Aoo8+aowaNx5nzhABlAV38vLkjH9MQhjKKN3wF8FKNVl/coLmCccReXsTATTM8ggBRKtX1/MdQVG3s9MV+n/+KQrGJ7Fc17UraPqz9KQQagZIih21IMWOiJnJAZ2g3u3bifriOJXBmn326KNMmM+bpxmcjYw4//Zb9pVcCz4I59y5BlX3dtFtcv/KXVQYRqwaYfQKu8xMor44wWZoXt7mVYDjNMEz69aJfTkiwrzimozyck0QyLVr4uGjR0XvlGhlXYDXa+n2NjbMqy7KtZ38qj+tWDyO4+jQzUN0IvkE0Xffsc9HjmyCizUAb635EJHk5CTqKw1i9pgEygLvopk9u+EF3in4BTS5cCEZuPq7pZ54g0WLNO7GxnJh3nWElEUODjRujIoAMd923aSlsVXiAQFEHToQzZ8vKrBTp7Iip0whptgLaU60YtGaBWVlxPHmVh+kGh/+17Urux6tL8THayaFzcEgbxKTWNqb/cM/J4DI2ZkZ8vRSXS0mWqYva69GPzaMeUKqoKS89Xxw3alTmpujJWubE5JiRy1MsTvBFB1SKsUFBVxcPOUrWYzMpcAHNRYWlYqoe3d2/gcfGFV8164s272oETRCrEVaURp9evhT+vr41yanTRjas0hTF3MyCQv+BisroqIimjGj4Z7dJkNYwfbddzqHq6qI1v1WQuUKWyKAeuI0AcwT99BDbAVkraZfVUXkynYW0bs0eMIE9tnnn9+xyzEZftax03YCoaGhfzk5VP7RfMqFCxFApSFdmqXLRaSigs/FAGqD69SvH+veBqkRb3DpEltcDtTK9/3fQqUSvRYJ66JFt/LWujYcSUjQrBbR/uvcmeJ3XRf1uEuXiOjtt9k/jbQyutHp0IEIoFHYTm3a8DGSdXH9OommTS0f/lNPscNjxtzZ6t4Rvv+eeSZGjBQt0PffL0Yn6fLHHxqXRolu7sjTp4mUCk4TdmRlxXzxgYHs/0ceuSuXYw6SYkctTLEjIho3ThMD8scfRG3YzgRR6EEO8hLdXLIbNrBzXV2JSuvOHyZ4b7oqed+Ei3k57BqTL78kSkAQq8/+/aYXILghxowhlUoTP3v4cOPX9Y6zcCGr/JAhtT9bt465E9u0ocICrqYM049g/a0ZV6ZSaYLpjxvIj9YU8Oku8l3bEEAUHm5GFoLkZBaYxa8yJoAuWvckLq35BMkbpEcPIoAes1pHgO6mIjrk5OjEG5SUaNzxo0YZGAD/S4waJU5w3mIp18jX10DqwfJyTexgRASzVC9bJgqCIks3GohDNHEisYmyYBXf1PBkx3cE3n863/5T45T0BQvY9QwdKh7S2lWRTpy4s9W9IwgDlb09xV6pFrvyZzVzM3OcxlpZ48OCApaiECB6ZGI5ccKYKvy1bt18F5CQpNgRUQtU7BISNLF2wl+bNvTUmAwCWNoxcTavUmlmIGvX1lmskMfni74sVou6d7/jl1IfyclEf4NZj/I+MCPPhWCx/PVX2r9fo682MN9u03Djhmb2nZOj+5mw6u2dd4wvTwgQdnHR9Wse5leIOjkZYRK4i+Tmiu3dxzafAP2p+gyybh2Ls+HLSLDvQjPxO332UTO6xrrg0y9cHPk/Ali85LFjes5bs4ZdY8eOxHGaWCofn8bdPq/JENzMEydSaanG06Y39lA418dHN0tAaioVtWeKcjUUVHDfaI1Vb9SoZpe3TITfIuV65/EEsJDbOufr/fqxa/rxR/HQgw9qLvM/iUrF/K8AUVQULV2qGQZXrdI679gxdtDaWsdaWVGhcX4EBPBbaavVTOGfOpVZbZt5R5EUO2qBih0R8/0PHsysdU8+SZSdTWlpGn1v0SKtc995hx186CGDxeXlaca8a88v1Ao6aXp+ax3JBrTuT5j2xeRkdh1yOVFmppj9weT8R82JTp3YRSxZojmWmKiRbNdNyJOlrfT//rvm+Msvs2NPmHi/7wZ82prvH9pnmitp9WpN7FS/fpS18TDJwJl8y5qUZWxVJDdkiBgX5uHBtgDWgdfkuLfe5vcAZXOBQ4eapNaNj7BlnpMTUVWVOD+pNbCnp4vJuGtG2JeXE3ULK6OVeEx3gty+PduCoLly5Ah7tr6+YganWpYqAWFvRkC8JiG0VqlstuFjxiEsbuCXB8+erRH1vwi7WE6Zwg5q7fucn8+87LzBT7MK9j+GpNhRC1XsDLCYX0Rqa6uVbF5Y9mVpyU9PajN/vsZbwb3M8iXRW2/dvYrXwZ4XWZqXGOuupk2k+YGQ+vSpN6TsP4PgWomI0FgVBFOrOQsdhAfftSubtVZUaNLlNMP8TTRtGhFA2a99Ko5ZtRSbmly4oAkwe/55IpVKNOT0739Xat04CJm17e2ppKBaNEa7u2tZLlUqsaF/NPSIeI+09fb/PNqhAnxMxXvvaYwz4mAthBr06lXL/yx0GU9Povxdp5hl75dfGmdFzp2kpER0s2/84TYBLKpA7+Tkp5/YRfbtS0Ssa4fyWyG//vrdrXajs2SJzrWp1SyiRGjvL4xJFhea0MWLpFIR/f23Zh5rby8mlvhPIil2dG8pdmo10fDhrPEGBWnpcXzQLa1ZU+s7ubkay/bKlaQpoJ40KXeLwvMsALgClnThrAmLLx5+mF3Hhx/SDpbRgry86gk6b+7k52tMq5s3s1wPQsCMSX5JnuxsjVXj119Z3kLBddWc3LACwmrdBx8U13dMrL0dsYbqak2cDR9gVl3NtsoFGnWTiTtPDRdUTo4m0gAgGjGC6LenmfspT+ZCClSTQtFsunHj8uijOpNPlUqTpcTbm+j6pgsaC22NOFFh8guwjAL/OSIimNVuy1bRpXjffXqyEgmmKT4YU0hM7enJYsz+0/D57EgmE92sHMf0c4WC6HOwRTCnbQfTffcxy7bwzNu2/e9a6gQkxY7uLcWOiLVzYWYyYgQ/PgurvR5+uNb5L73EPurUiVd6hMSmzSWyVq2mMiVTPr547Er95/PfEWf1R4/S44+zt800LZFpCHn5ZDKNJaoh22jwcTs6f83VxHP6tGimunKZE9cInD5t4Hw+7xk5O4spf9av17gxm/NCWL2MHcsqzycOLy1lsWXCffgMLOziT0yjkBADMXgtASGOMDhYtFzn5xN17EgEcHRIyTQeTkveqVSks2vLxx83Ud0bypNPsgt4911KTGQ5dIEauw/l5GgyUV+/LmzYQEA9K4j/S/B5LWsujz9/vJQKLZjV+iFsFq/bxYXo/feJioqaprqNiaTY0b2n2BGx3ETCaqGHHiKqOHBcJy5F4J9/NB1+3z5irV44kJvbRLWvTW4YCwJ+2vZP41Z88nm/yMGBygqrROHXIga6igpxf09xcGtItuXqajE3FAEs1UlzXTpZWalZuRgXJ+6gNmSInnj3sjIWXQ6IweNqtWY8+PDDu177hiMo4TWCC+PimLUi2YXFYJ6ds+q/bZmuj6IiFm9So1Pn5BDNDWF75JbDih7qkkQffcRctUK+R4Dotdea7/qIehFCTAYOJCK2Jk5bWeU40iTl7dKFtm7VzP+ac6pGk/niCx13rMgvLJm3KqANbduqorVrmdG2OTogzEVS7OjeVOyIWKCsMAb26KqiahfeHs2nDdmxQ6P8zZnDf0lQiDw9m67ieuCeZysCv8CbmuDYuhBix8aO5Td519mJ7b9PaSkT3osW1V4haw4cxzbMPHSo+Y94gwaxB7p4MSUliendaMuWGucJbtuAAFGqC5YLB4dmNW8xHq0JS62RKiGBfVYjZ1mLRdDqn3xSc6y8nLh2wUxWyN+pZYh2ciLjE/s2V+Lj2cVYWYkmZ0HcASzUNqMnW/q6pcc80SM9fvx/PAylJunpmjCUS5fYsZISFkYCsPRQLRRJsaN7V7EjYuO04JH8DUwQHu4+hx54QCMIRo/W2kVo9Wqd2WCzgV/TvhfDqF07I3a5EoJPvv+eevVib5tTrl2JBiDsqMLvhSREGXh7a8WUalvr+BXEpaWaEAUj83U3P9RqzXXt2qX7mbAi5P77m6ZudxthD2iFgiUiJyJ64w12rFUruh1XRIsWsTUUzz/PREgzTk1mPBynaQNaCTkXL2YpcBxQSBVgs50OuEIAc9c3l50BGxXB0zB8OLsvr7/O/m/d+j8YZ2E8kmJH97ZiR8RWuk+cSDQBfxMBlIi2BD7Vw8sv12j/77/POkZj7a7dWJw7RwRQvsyZAK7u/QFLS0UzTvSfsQSwf43cVU2iuSPsvuLqyuIvy5g3Wgg1VKtJr7VOSP3h718rCf1/i+efZxfy/POaYxyn8TH/+muTVe2uM348u+b27TWxZwDRv/82dc3uLEK+mxqBggkJRMuHssn5dYsQmjqFazlpbvSRkKBxSwn5X4Dmm2C6kZAUO5IUO4HYs8VUrWAKz7LXY/Rvni1k4K6xbVWToxVb1RaJ1KZNHXuVC8ma/P1p1ANMgX366btaW4k7SXW1JmL81CkiYqvcBPn+ytOlxAkpW3hr3cqVLWjM37VLEy4hdALBemVp2Tiu+f8KN29qtpMR/t59t6lrdef59Vd2rfqSyAs7c/wng0jN4KefNKuH9Ci7LRFTdBo5JFo0od3tobx/KADgac9/ERqq56ToaPbavfvdq5gxWFoCnTsDAO53PoubN4FFiwycu3MnACC9ywPYuUsGhQJ45527VE+JO49SCYwZw96vWwcA6NYN+P13QCYDLJf/DFlmJiq8W+P6gCfw3nvAE0+w0//3P+DBB5um2o3GkCGAjw+QlQWsXs2OLVzIXmfMANzcmq5ud5vWrYFz54DHHwfGjWP347PPmrpWd56xY1ljj44GUlI0x7OygD172PtHH22aut1tXnoJOHsWWLAAOHkS+PDDpq5R8+IuKJpNgmSx00JIWqkvM2t6OvtMLicqLr77dauPF18kAujyyDfE2OGrV/Wcx/vl5gRuapZeZYlGYCtb+Ug+PjorYtYuK6YsMAvOE/hNx5Dz0kstaPGMsDo2IIBtqCxcpJiVXKLFc999tb0rwiqKnj2brl4SdxzJYiehi2CuOHECyM7W/Uyw1rVvD9jb3916GUPfvgCA8MLjGDkSqKwEJk0CCgq0zrl+HUhIgFquxPJbw+DiAnz+eZPUVuJOMnIk4OwM3L4NbNsmHn44YxE8kIMM+3bY6vAY5HKgVy9g0ybgxx8BeUuRcs89B/j5AcnJwFtvsWOzZwMREU1bL4m7x9Sp7PXHHwGVCqioAL77jh2bNavJqiXRvGgpIk+iLgICgC5d2Px+xw7dz86eZa/NzQ0rcN99AADZ2bP4/acy+PoC164Bw4cDqansFG7nLgDAUa4/iuGIZcvuLc/UPYOVFfD88+z9Bx8AajUQEwN88gkAoNUvkcgrUqK6Gjh9GpgwgXmuWgz29sDBg0BQEGBjw1ywX33V1LWSuJs8+STg6gokJgJ//AF8+imQmQn4+wPTpzd17SSaCZJid68wdix7/fdf3eNHjrDXXr3ubn2MpXVrwNcXUKngnXwa27YxpS06GggOBkaNAo68zeLrdmIUIiOBiRObtMYSd5I33wScnIBLl4A+fVjsWWUlMHo08MgjAFqQhU4f7doBcXFAcTGwahWLQ5W4d7C3B954g71/+mlNbOFXXwEWFk1XL4lmRUsWgRLaCIrd7t1sIASAoiLg6FH2fuTIpqlXfchkotUOR4+iSxfg1CmgXz/mhTi4qwK9Sg8AALq9OwoffdR0VZW4C7i6Ar/+yhZTnD3LQgvCw4Hffmth5rk6UCjYn8S9yf/+Bzz2mOb/d98Fpk1ruvpINDskxe5eoXt3wNsbKCkBdjHXJfbtA6qrmekrOLhp61cXgwez1927ATCjxbFjbDHU3y8fhC3KwXn74uFPOzZdHSXuHlOmAIcPA3PmsGDKkycBL6+mrpWExN3BwgJYuZLFG6Sl3RsrgiVMQlLs7hXkcs0sb8EC9rphA3sdPbpp6mQsQpqLkyfFxR8yGfPEjSn8EwAgnzj+3rHYSDCT7cKFLKeNg0NT10ZC4u4ik7HwGR+fpq6JRDNEUuzuJWbPZjE5x44BL78s5gPTMes3R/z9ga5d2eKP7ds1x0tLgc2b2ft7JX+ThISEhIREHUiK3b2Ejw9L7AgAP//MFKWHH26+K2K1GTeOva5Zozm2di1T7tq0YeY7CQkJCQmJe5xmq9jFxcXhwQcfhLu7Ozw8PDBjxgzk5+c3dbX++3z9NVsWL5MBw4YB337b1DUyjieeYO7kffuAy5dZDqcvvmCfvfSS5IaVkJCQkJBAM1bsCgsLMXXqVFy/fh1JSUmoqqrC3Llzm7pa/32USmb1KitjStJ/JUajdWuWmRhgucxmz2a5nNzcgBdeaNKqSUhISEhINBdkRERNXQlj2Lt3L15//XVcvnxZ7+eVlZWoFNJ4ACgqKoK/vz8KCwvh6Oh4t6opcSe5coW5XEtLNceWLWP5nCQkJCQkJFooRUVFcHJyMkqnabYWu5qcOHEC4eHhBj+fP38+nJycxD9/f/+7WDuJu0JEBFssERgIuLuzpJySUichISEhISHyn7DYXbhwAcOGDcORI0cMKneSxU5CQkJCQkKiJfKfsNiNGDEC1tbWev8+/fRT8bybN29i7NixWL58eZ0WOysrKzg6Our8SUhISEhISEjcSyib6of37NlT7zkZGRm4//778cEHH2D8+PEmlS8YIouKisypnoSEhISEhIREs0DQZYxxsjaZYlcfhYWFGDlyJB5//HE899xzJn+/uLgYAKRYOwkJCQkJCYkWQXFxMZycnOo8p9nG2K1cuRJPPPEE7OzsdI6XlJQY9X2O43D79m04ODhAdgdznAmxfCkpKZL7t5khPZvmifRcmi/Ss2m+SM+meXK3ngsRobi4GD4+PpDL646ia7aK3X8FUwIaJe4u0rNpnkjPpfkiPZvmi/RsmifN8bn8Z9KdSEhISEhISEhI1I2k2ElISEhISEhItBAkxa6BWFlZ4aOPPoKVlVVTV0WiBtKzaZ5Iz6X5Ij2b5ov0bJonzfG5SDF2EhISEhISEhItBMliJyEhISEhISHRQpAUOwkJCQkJCQmJFoKk2ElISEhISEhItBAkxU5CQkJCQkJCooUgKXYSEhISEhISEi0ESbFrANnZ2RgzZgxsbW0RGhqK/fv3N3WV7lk++ugjdOjQAXK5HGvXrtX57IsvvoCHhwdcXV3x5ptvGrWJskTjUFlZiSeffBJ+fn5wcnLC4MGDcfnyZfFz6dk0Lc899xy8vb3h6OiIjh07Ytu2beJn0rNpek6ePAm5XI4vvvhCPCY9l6Zl8ODBsLa2hr29Pezt7TFq1Cjxs2bzbEjCbKZMmULPPPMMlZaW0ubNm8nFxYXy8vKaulr3JKtWraI9e/ZQ79696a+//hKPb9++nQICAuj69et0+/ZtCgsLo+XLlzdhTe8tSkpKaN68eZSSkkIqlYq++eYbatu2LRFJz6Y5cO3aNaqoqCAioqioKHJycqK8vDzp2TQD1Go19e7dm3r16kXz588nIqnPNAcGDRqkM8YINKdnI1nszKSkpARbt27FvHnzYGtri/HjxyMiIgL//vtvU1ftnmTGjBm4//77YW1trXN81apVeOmll9C2bVt4e3tj7ty5WL16dRPV8t7Dzs4OH3zwAfz8/KBQKDBr1izcvHkTubm50rNpBrRv315MrCqTyVBRUYH09HTp2TQDli5dit69eyMsLEw8Jj2X5ktzejaSYmcmCQkJcHJygre3t3isc+fOiImJacJaSdTk6tWr6Nixo/i/9IyalpMnT8LLywtubm7Ss2kmvPTSS7CxsUHPnj3xwAMPoEOHDtKzaWLy8vLw3XffITIyUue49FyaB6+88go8PDxw//3349KlSwCa17ORFDszKSkpgaOjo84xR0dHlJSUNFGNJPRR8zlJz6jpKCwsxPPPP4/PPvsMgPRsmgs///wzSkpKsHfvXgwaNAiA9GyamnfffRdz5syBi4uLznHpuTQ9X331FW7evInk5GTcf//9GD16NEpKSprVs5EUOzOxt7dHUVGRzrGioiLY29s3UY0k9FHzOUnPqGmoqKjA+PHjMWbMGDz11FMApGfTnFAoFBg+fDj279+P3bt3S8+mCTl//jyioqLw7LPP1vpMei5NT69evWBvbw8bGxu8+eabsLe3R1RUVLN6NpJiZybBwcEoLCxERkaGeOzixYsIDw9vwlpJ1KRDhw46qzClZ3T3UalUmDZtGnx8fLBgwQLxuPRsmh8cx+H69evSs2lCDh8+jPj4ePj6+qJVq1ZYt24dPvvsMzz77LPSc2mGyOVMjWpWz6ZJlmy0ECZPnkzPPfcclZWV0datW6VVsU1IVVUVlZeX04ABA+iPP/6g8vJyUqvVtG3bNgoMDKQbN25Qeno6hYeHS6vI7jJPPPEEjRgxgqqqqnSOS8+maSkuLqbVq1dTcXExVVdX08aNG8na2pouXbokPZsmpLS0lNLT08W/qVOn0nvvvUf5+fnSc2li8vPzac+ePVRRUUGVlZX07bffkpeXFxUWFjarZyMpdg0gKyuLRo0aRTY2NhQcHEx79+5t6irds8ycOZMA6PwdPHiQiIg+//xzcnNzI2dnZ/rf//5HHMc1bWXvIZKSkggAWVtbk52dnfh35MgRIpKeTVNSUlJCQ4YMIScnJ3J0dKRu3brRpk2bxM+lZ9M8mDlzppjuhEh6Lk1JVlYWde/enezs7MjFxYWGDBlC0dHR4ufN5dnIiKTshhISEhISEhISLQEpxk5CQkJCQkJCooUgKXYSEhISEhISEi0ESbGTkJCQkJCQkGghSIqdhISEhISEhEQLQVLsJCQkJCQkJCRaCJJiJyEhISEhISHRQpAUOwkJCQkJCQmJFoKk2ElISEhISEhItBAkxU5CQkJCQkJCooUgKXYSEhISEhISEi0ESbGTkJCQkJCQkGghSIqdhISEhISEhEQLQVLsJCQkJCQkJCRaCJJiJyEhISEhISHRQpAUOwkJCQkJCQmJFoKk2ElISEhISEhItBAkxU5CQkJCQkJCooUgKXYSEhISEhISEi2EZq3YVVZW4sknn4Sfnx+cnJwwePBgXL58uamrJSEhISEhISHRLFE2dQXqQqVSoW3btjh16hS8vb2xaNEijB8/HtevX6/3uxzH4fbt23BwcIBMJrsLtZWQkJCQkJCQaHyICMXFxfDx8YFcXrdNTkZEdJfq1WCqqqpgbW2N7OxsuLm56XxWWVmJyspK8f+0tDR06NDhbldRQkJCQkJCQuKOkJKSAj8/vzrPadYWu5qcPHkSXl5etZQ6AJg/fz4+/vjjWsdTUlLg6Oh4N6onISEhISEhIdHoFBUVwd/fHw4ODvWe+5+x2BUWFqJ3795488038dRTT9X6vKbFTrgJhYWFkmInISEhISEh8Z+lqKgITk5ORuk0zXrxhEBFRQXGjx+PMWPG6FXqAMDKygqOjo46f01CUhLw2GPAiBFAdnbT1KEpIQLefhuYMAFYubKpa9M03LwJdO8OPPMMUF7e1LW5+xABv/0GdOgArFnT1LVpGs6dY3Jg2jQgLa2pa9M0vP02MGAAsGdPU9ekacjIAAYNAh588N6VA0uWAEOGAD//3NS1uado9hY7lUqFyZMnw87ODqtXrzZ6IYQp2m2jwXFAeDgQG8v+f/HFe69B79wJjB6t+f/aNaB9+6arz91GpQIGDgROnmT/T5gAbNrUtHW626xezZQaALCwYP2hbdumrdPdhAjo0gW4dIn9/9RTwPLlTVqlu87evWxyCwByORAdze7JvUJVFdCjByBkcZg5E1ixokmrdNdZuxaYPp29t7QEEhKAgICmrdN/mBZlsXv22WdRXl6OFStWNP/VrUePapQ6AFi6FDBiBW+LgQj45BPdY0uXNk1dmopt2zRKHQBs2QJkZjZZdZqEJUs076urgcjIJqtKk3DokEapA5iim57eZNVpEubO1bznuHvPen/ggEapA9j1Jyc3XX2aAm05UFVVe2yQuGM0a8Xu1q1bWLFiBY4cOQIXFxfY29vD3t4eR48ebeqq6UeYkT3zDDB0KKBWA9u3N2mV7ioJCUypsbTUWChWrGCd+l5BeN6zZ7MZOxHwzz9NW6e7SUoKcOwYIJMxhQZgrrjm7RhoXIQB7YUXgH79WPsX7sW9QFISU2wVCo1MXLeOycN7hc2b2avQBgBg9+6mq8/dJjGRTXDkcmDVKnZs40am5EvccZq1YhcYGAgiQnl5OUpKSsS/AQMGNHXVasNxwNat7P3jjwP338/eHzrUZFW66wjX2rcvcz24uQH5+cD5801arbsGEXNFA8CoUcwNC9xbrti//2avAwYAkycDtrbMYhkT07T1ulsQMWsNADz6KDBpEnt/7FjT1elus3cve+3dm7niXFyYxfLUqaat191CrWaWegCYOBF44AH2XpAN9wI7drDXYcNYnKmdHVBQAFy50qTVuldo1ordf4r4eKbE2NgAffoAgwez44cP3zuzFEGxGzyYzdZ792b/nz7dVDW6u1y+zALlbWxY0PTYsez40aP3jrVCUGDGjAGsrFi8IQDs29d0dbqbJCSwRVNWVkDPnhprzYkT947VUlDs7r+fWe8HDWL/R0U1XZ3uJpcuAVlZgKMjk4WjRrHj+/ax0IR7gRMn2OvgwYBSCfTvz/5vrt62Foak2DUWQlxVz54sYLx7dzZLycu7N2YpRLqKHXDvKXbHj7PXAQMAa2u2KtTGBigtZa6JewHhWQvPftgw9nr4cNPU524jDFy9ejHlrmtX9pqTw5S+lo62xVLwWnTvzl6jo5umTnebs2fZqzAWdOsGODgAxcXMAHAvICh2ffuyV8HLduRI09TnHkNS7BoLQbHr04e9Wlgw4Q7cGwItKYm5WywsNIP6vabYnTvHXnv0YK8KBdCpE3t/L7ijb98GUlNZXI0wmAuv98oez4LFUhjIBMsdoFH8WzIpKUBuLrPS1GwDgsLT0tFW7ADWHwQ5oL2opqWSksL+FArNPRD6g/bCMok7hqTYNRZC/IgwQwGAiAj2ei/EF128yF7Dw5mVCtAottevM2Hf0hGUt65dNceE9/eCYnfmDHsNDwfs7dl7oQ/cuMEsly0dYVAXJniAph8IfaQlc+ECew0LY1ZrQKPYxcczq1VLR2gDwgQPuLcUO2Ei36mTRg4I15+SAhQVNU297iEkxa4xqKwErl5l77U7c3g4exU+a8kIAkvowAALmhbyFl27dvfrdDeprtZYpbp10xy/FxU7YZYOAB4egJcXc9G19H5QVaVJd6TdD8LC2Kt2KqSWiqC8ak9uPD0BPz/WBlp6P6io0MgB7bGgY0f2ei8odkI/79xZc8zFBWjVir2/F/pBEyMpdo1BXBwLjndyAnx9NccFxe5esNjpU+wATXLiuLi7W5+7zdWrbGB3cgLatNEcFwa4e8FaI8SS1kxEK1jtWnqsaXw8S1Dt6KibiFXoAy19cgNoLHY124Cg2LT0Qf3aNTbJc3PTbQP3ksVOkPWhobrHO3Rgry19gtcMkBS7xkBQ3MLDWf4uAaEhJye3fBeEMEutqdgJnbulK3aC4ta5s24bEAb1rCygsPDu1+tuIghsod0L3CuKndAHIiJ024BgsUtObvnuaEOKXUgIe23piwcExTUsTLcNCIptairLntCSqU+xuxcmOE2MpNg1BtqKnTaurhrzc0tuzGVlmhV/96piJ1yfMIgLODgwVyTQslfGVlRodlmp2Q/uFcu1oLgKg7iAmxvg7s7et+R+UFbGYimB2vcgOJi9tvSVwYaUGkdHwNubvW/J94BIstg1AyTFrjEwpNgBmsbckl0QsbGsQ7u7a5QYAcFi1ZKvH9BYImoKMwBo1469tmTFLj6e5Wt0candBoRBvaVvr6dtsavJvRBnJ7RvV1eNIitwr1jsDCk1gEYOtOR+kJ4OlJSwlcBBQbqfSYrdXUNS7BqDuhQ7YfPzmzfvXn3uNnUpNcKxGzdadnJO4R4IA5g294K1QugDHTrouqAAjYBPSmrZiZoFpa2mKxq4NyY4Qh8Q2rs2Qr+4fv3eaAP6ZKHQD1qyYicotm3asFQ/2gjt4tYtFosqcceQFLuGUlWl6aj6BLqg2AkuipaIoLDoE+i+vixRs0rVcpVbjtPcA30CXbgvLdliZyi+DgB8fNgOBCoVS3fQEqmu1vTxugb1ltoHAE0f0De58fdnA311NRvYWyIcp1FuBUVem3tJsdPXB1q1Ym1ArW65cqCZICl2DeXGDdah7e01MRTa3AuKXV3WKpkMCAxk75OT716d7iapqUB5OUvO3Lp17c8FF0xLttgJAl3fgKZQaFYKt9R+IFgjbW2ZIlsT4fpbsmJXlxyQyzX9oKW6Y9PSWJyhUqm7Ml7gXgjJqEuxk8s18rEl94NmgKTYNRRt90NNFxRwb7hi65qpAxrFrqXO1AVhFhTEhHpN7gVXbH1tQOgHLdVaUZ8cuJcUO32We0DTBu4FOWBhUfvze8FiV1dYDnBvGDqaAZJi11DqG9AEgZ6WxlYOtjS0V0EZEuhCPqeWarGry1IBaNpAdjaz7LU0iOp2xwMtf1Cr7/oFS8Xt2y1TDgD1y8KWLgfqslYBmj6Qns4sey2R+u7BvTDBaQZIil1DqW9Qd3NjKS8A5q5pjhCxmAci07+bmwsUFLD3gquhJv8Fi11VFZCRYd536xNmTk6arXWac2wJx5nXBtLTWX42uVy/CwrQDGrNeaZeVMTagTnUJwfc3VmsKdC8+0FSEmsHppKfzyYuwH97gkdk/pZX9ckBV1cmC4DmPRaYu7ChslKjsP2XLXZ5ef/5nKOSYtdAqD73g0zW/BvzSy8xoTt2rEZJMxZhlu7nx+KL9NHcFbsLF1g6Cj8/YPNm079f36AukzXvQY3jgClT2PMLDzc9mbbQBtq0YYsk9NHcZ+oXLrCFPn5+wOrVpn/fGDkg3IPmOKgTAXPnsjqOGGG6RUloAz4+mklMTZpzHwDYHqehoYCzs3ltoD7FDtDcg+Y4wSMCJk9mCxxGjGAKjilcv85kiYODJn9rTZq7HIiLY33Yzw/YsqWpa2M2kmLXQDKPJMtzeQAAjM1JREFUMoH+9m8h2LSJ9Y2FJxdi1JpROJR0iJ3UCAI9oyQDD6x+AHN2zUF5deO58w5/PQv45Rf2z/btwPvvG/W9/Hxg/nzgs5ns+s8UheC995i8KqgowLSN0/DwxodZXRtJoG++thkDfh+AjVc3NqgcbTKK05H54BCmdKvVwGOPGSV0iICDB4EZM4DUA0ygf7AqBFu2MNm27so6TN0wFb+d/419oRHuQWxOLGbtmIXn/n0O6cXpZpdTk7+/eQbYuJHNuK9dA774wqjv5eWxU796hrWBEznBeO89FnVwPe86JqybgPf2v4eiyqJGG9AWnFiAB/98EAdvHmxQOdqkF6QibtIgln8rOxt45hm2U4gRHDjAmsztI0yxeef3EGzezNrAygsr0WdZHxy4eYCd3AiDWn55PqZsmIJH/n6kUeXA2a/mAN98w/7Zvx94/XWjvpeXx+TAJ4+xNhBdHIx332VtILMkE7N2zMLk9ZNRUFHQaHJgfcx6TFo/Cb+f/71B5WgTlx2LtOljmIJKBMyaxdzmRnDgAPDoo0DaQSYH3l8VyrcBwoITC/Dk1iex5tIadrK/P3ttQD9IzEvEpPWTNH2rkdjw7bPApk2s8e7dCyxYYNT3hLHg3Uns+q9yoXj/AxlSU4G0ojQ8sPoBzN0zF2XVZY2m2P12/jf0Xd5XM8Y2AvnF2UgZ1pM16pISYOpU1pDrgQg4ebLRqtE4UAulsLCQAFBhYeEd+42yrGIi9lzJBbkEEEU8eIgQCUIkSBYpo9Opp4lefZWd9/bbZv2OSq2iISuGiOU++OeDjVL/bXHb6HAAq/8FL/ZKDg5ExcV1fm/jRiIXF3b6J3iPCKCf8QIBRDZ21eT/SXexrtM3TidKTmYnW1gQqdVm1XVjzEaxTJtPbSgmK8ascrThOI5mvBVMBFC5ApTm58Tq+eGHdX4vJ4dowgR2qhXKSQ0ZEUCeyCCAKOyhf8S6KucpKT4nnui559gXIiPNrmvvX3uL5c7YNMOscmqy/8Z+2t+aPft8K74NWFmxi6yDDRuI3NzY6V/if0QAfYdXCSCytuEo+LPBYl0nrJ3AyuP7CpWXm1XXQzd1+1ZUapRZ5WijUqvozdc7EQFUbAHKcrVmdZw3r87v5eYSjR/PTrVGmXhtbsgmgKjDQ9vFuio+VtCplFMaOfDmm2bVtVpdTT2W9hDLnbZxmlnl1GRjzEba05bV/7w3a8tkZ0dUUlLn9zZs0MiBSHxIBNASPCu2Ad9POol1fXrr00QpKexkpZJIpTKrrltjt4plWsyzYH2rgXAcR0+9FUYEkBqgfBcbo56TdhuwQanYBtyRRQBR+Ni9Yl0RCSazXniBnffBB2bXdfAKTd+auG6iWeXU5NDNQ3TKl9U/10ZrLMjLq/N7GzYQubqy09/CfCKAVuMRfixQUchnNcat3FyNHCgrM6uuO+J3iGXKP5azvtVAqtXV9PwboUQAFVqC0r3sWB0//bTO7+XkEI0bx07dvbvB1agTU3QayWLXAKxcbJF8JAkXFuzD82+7ws4OuOI7R/ycQFh8drFmlmbmTHVHwg4cTNJYKLbFb8P1vIYHoX+38yP04yeO46cBGa3smRtu3TqD3/nqK2atz89nXrtHurOZeq9HgtG/P1DueRgp6mjx/L+u/IUYRR5LeVFdbXYc249nfhTfl6vK8d6B98wqR5ujyUfR4xCztGzsAMztxcdVrF1rMNYsORno3595bJVK4L2piZCDoLJ1xFNvecLeHrjmvFA8X8Wp8O6BdxtsrTh86zBOp50W///z8p+IzWlYslsiwqJNb2FoEqCWAZ1eBFIDnJnlbscOg9/76ivmuc3NZW1gamfWBvo+Hox+/YAK/+1IqD4knr8ldguS5EUaV31qqln1nbN7jqbuQt9qINsTtqPVCbYx+58dgVeH8Asbliwx2AZSU4E+fZinxsICeHcq64vV9s545k032NkBVz0jxfPVpMb3Ud83OO3PwZsHcfb2WfH/tVfW4mp2w7P4rzjwDYbwBpQpkwkZnnYsZrIOV5TQBvLz2UYbj/ZkbaD7tBDWBjyPIE2t2fB++fnluCDLZHJApWJxmWaw6PQi8X01V4139r9jVjnaHLl1BH33sC0fV3YBXhjOt4HNmw22gZQUoG9fdouUSuC9KUyOVDu44uk33WFnT4jxiNT5zlfHv2qwxW5Hwg4dK9WW2C24md9wt+bHG2ehN2+cCn8JSAtwZmNBHaEpX37J2kBeHpMDT/ZjFruIiaHo1w8o99uG+GrdcesmCjSxpmbKgQ8OfiC+54jTGRvM5cDNAwg+weq/OQx4sy+/p/Py5QZjTlNSgH79gH/+YREozcm7Lil2DUCulCNgQCC6vDEM8+cDu04lAd4XAE4Ox+1bATC3Qbm3B/uCmQJ9axwr65Ver+D+tvcDYAN7Q0gtSoXLsWgoCSgK8keSC7AkopJ9+O+/er/z44/AW2+x96+/Dpw/D7RVM4HWfXoIjh4Fej+zlp1w9jm0VY0BAGxO/JfFLABmxdndKriFQ0mHIIMM/0z7BwCwO3F3g11Ry84tw3heN7o1qi/+DQWqLZUsXkrYzFyLnBwWehIXx+RzVBTwwcNsQFOGh2L+FzJsOnINaHMQ4ORw2s7u49bYrahoYBv4+czPAIAXur+AsSFjwRHXYFdUXG4crE4xRaE4rC1SnIFVrXnXjgltoHUVr9w/GoJjx4Buj/Nt4OQcBKruB4GwJHppgwa1pIIkXMi4AIVMga3TWH9YF7Ouwa6orbFbcT8/R8rs1xGbwoBqKwvmghH2ftUiNxcYOpR57AIDWViW0AYsOoTgiy9l2HM6BfA9A5AMTjvZwPhP3D+o9OHjjsxsA+tj1gMAnu/+PEYHjwbAwhMaQlJBElz3n4SSgMLQ1kh0A5YLcmDtWr3fqdkGzp0D2qkFxS4YR48C3Z9dzk6IfgbtVOMBAFsTtmnkgBn3IDYnFgduHoBcJse/01n7/Df+X5RWlZpcljY/nfkJg3ixlDyyN3YEEVQWCvaQ9Wx/lZMDDB/OxERAAHDmDPDeFL4NhLM2sPlILBBwHFBZwmHHJgDAmstrUNrKlf8h89rAn1eY3J/dezbub3s/OOKwJHqJWWUJ3Mi/Abco1tYLQwKR4QCsDCphH+7erfc7P/wAvP02e//GG0xchhJTjDpPDcWxY0DPx1g/xanZCFANBwCsvrymQZPclMIURKdHQwYZtjy8BQBTbhs6Fqy/sg7j+BDJ1EFdsLEDUGljyVzGly7VOj83Fxg2TNMGTp8Gnn66QVVoVCTFrhG5XL4TAGCX3w9FZ8bCsigEZdVlOC7jBzIzGjJHHP6NZ0JsXOg4zOg0AwCzhDWEzdc24wE+T6bD+KkIcArA9tb8ll+HDtXa9ufQIWD2bPb+449ZOI6FknSCxlVcNeIVf7P/r0zDje0T2G/Fbm7QAgphQBvSZggeDHkQfo5+KFeV61gxTUXNqXHi7GYEFgIkk8F/7KMosQJOdOADv/fs0T1fDUybplHqjh8HunaFJmCaXzgRU8kEoUP2/Sg8MwYWpYGo5qpxwZIPRDazDQhxWo91fgxTw6cCAA4kHTC5LG0O3DyA+/jqOA8bg1C3UGwJ4Wenu3fXWiG6b5+eNiBXa1KYhISAwCHNah/7P+4h3NrMpN2OxB0NEug7E1jf6uvfF2NDxiLULRRl1WXYnah/4DEGjjicPbsVEdmsDYRMfgFVSuBUW34ByN69Ouer1SzsJiGBXcqRI3wbqJHqJLpkCwDALq8/Ck8/BIvSAJRUleBEA+RAtboam2KZgvBw+MOY2H4iAIjHzGVDzAaxDTiOfxh+jn74ux2/KvLIkVpy4MgR4NVX2XsdOaCV6oSgRrx8C/v//FNI3P4gAL4NNMBqKbSB+9vejzHBYxDoFIgqdRWO3DpiclkCHHG4cHkvgvnu2X7MEyi2Bk6F8nLgn390zlepmBwQBvRjx4AuXVArf1t8NeubDnkDURw1AZbFwVBxKly0yGfnmTG54YjDvhusb41vPx5Pd2V9a1fiLpPL0mZ34m7RYus4chxC3ELwb1u+DezdW2uV7L59wJw57P28eSwUT6mEzuIRAodbVtvZ/3FjkfzP4wCAtTFrGyQHtsRuAQD0D+iPcaHjEODE+taOBMMehvqoVlfjzKm/EZwHcEoF/CY9hXJL4EyQNTvhgK6c5Tjg4Yc1ckBsA80ISbFrRHYkssb1ygOj4eMjQ9W1EQCAI5TETkhLM3kp+dnbZ5FVmgVHK0cMDByIsSFjAQDXcq4htyy3QXXtzntDZAMGYGL7iYj2AcrsLNlS73PnxHMLC4HHH2cNeuZM4APBEn77Nls9x+8scCHjAvIr8uFi7YKPnhgIxI0DODnOpZ9DWQMsVsdSjgEAxgSPgUwmw4PBbKD4N06/VckYrmRdQWgSPysNC8OwTuMBAFu8CtixI7qDxRdfsJhyOztg506N8ammQD+afBQAMGvsYHh7y1Ady9rAvmr+vORkk1OKxGTFILc8F7YWtujh0wNDWg8BAJxLP4f88nyTytJm/8394qCO++7DoMBBOOMDlDjZsJQP0RqXen4+WyTAccATT2i1geRkpgBaWgL+/riceRmZpZmws7DD+0/0BZIGAwAuZ15Gpa/5Fiuhb41qNwoymQzD2zILwImUE2ZcOeNM2hmExLE+RF27YHjPhwEAm/15C1ANxW7RIibj7eyAbds041PNVdHbE9iA9saY8awNXGYTnD3VvHn49m2T900+n3EeeeV5cLVxxcDAgRgXOg4yyHAu/VyDFtIcTT6KboIc6NkTDwY/iIuteDlQVKRjuS4sZG2AiMkDsQ1kZjK3nVwOtG2Ly1mXUVxVDEcrR3z0TC8g8QEA7H5X+Hiy75jRBoS+NaT1EMhkMowIYn1rz/U9dX2tTmKyYhCaWAAAoLD2uK8zk68b/HlLcA058PXXGjmwfbseOcC3AWHS9dLoIfD2BqriBwMADnH8JMiM9FKXMy8jqzQLtha26OvXF4NaDwIAXMq8xBanmMnOxJ0YnMTey4YOxbA2wxDlC5TZW7GOf+aMeG5+PhsDBDkgrrXLzdWsog0O1hm33n98AJDALMxXs6+iwseLnWdGG9iWsA0AMD50PGQyGcaHjgeABk3yz6WfQ5ubLAxHFtERo7tPYxZBb74NHNQte9Ei1gZsbVnEitgGmhGSYtdIcMThcNJhAMCUriPxxx8AUvoBADakX2TBOGq1ybElwsA1KHAQLBWWcLFxQXt3tm2TdsyVKRARzt86jTA+7RS6dEE//37g5EBUOxt2bP9+8fzZs5kcCgpibhgxsX6NNBdCfXr79caHHygwrK8HkB0OAEhx5puaiRY7IsLJFLbkqK9fXwDAyHYjAQDHU46bVJY2x1OOoycfUyLr0QO+jr7o6NkRRwKFE46L1oq4ODYzBYDFi1k8iYj2LJUIR2+xwWdM+AD89ReAG8x1virjNLtxFRXMl2MCh2+xdtXfvz8sFZbwdfRFqFsoOOLMtlZwxCEq9gA6Z/IH+vfHoNaDQHLgbGveYnVCozS98QYLjwwNBX7+WasNCANau3aAQiFaFAa1HoSPP7DCgG5eQG4wCIQkB94aaKJA1+5bD7RjSkJ///4AGtYGTqScQCf++uXdusPN1g0hbiHYy6fcw5Ej4kTs2jXg3XfZ4W+/BTp21CpIy2pNRDhzmw2EYzsOwpo1AFJYu92cfokpwBxn9IpLgai0KABAb9/eUMgV8LDzQAcPti+v8HumQkQ4l3QSHYU20L07RgSNACcHzrTlN3A/dEg8/+WX2aNr27aGHBCuv3VrwMpKlFl9/Prgww8UGN7bF8jsCALhpgNvATSxDRARjiWzCd6AwAEAICp2+27uM6ksbQ7fOow+fKiXrE9fsW8d9eeVrpMnRTkQG8uslADrAxERWgVpKXYcceKq7fGdh2L5cogTnD8zzpktB8S+FTgIVkortLJvhXau7UAgsyc4HHE4FX8A7YWq9O2L/v79wcmB08F8TKyWHHjtNdZ0g4OBn37SagOCHPT3B+zsxGc1uPVgfPyhJQb1cgNymNJ7y5G/t2a0AaEfDGnDJrd9/VnfMncsBFjf6sqHfsu6doWHnQfCPMJwQEjJefiwKAdiYoB3+LDOb7+tMRY0IyTFrpG4nncdxVXFsFZao5NXJwwbBjwykCl2scUXoPbxZSeaaIKPTmdWkx4+PcRjffz6AICo8JjKzYKbaJWcD0sOIGdnICAAvXx7AQC2efM5zPj129u3AytXssn4ypU1UlTVyN0lKna+vSGXA0uXAopMVu89ubwVxMTOfCP/BrLLsmGpsEQ3724ANPfiavZVs2MrjqccR09hbO3ZEwC7rxe9gApb3mp5+TI4DnjuOWaUGj2apTfRQUugx+XGIbssG9ZKa/Tw6YFBg4Cnhg5kp1VeA+dl3kxVUN4Gtx4sHhPeC1YMU4nNiYV3SgEUBJCXF+Dri0GBzAKw05OfqfICffdu4PffmRD/7TfAxkaroBqWCkHJGBAwAHI5O1+RxgbibenmuaES8xJ1+hYA9PNnfet8xnmWRsEMotOjNUoNr6n19euLGA+g3M6KWaP5NvDEE2xNyciRwLPP1ihIyw15I/8G8srzYKmwRCevThgyBHhkUG8AQFzJJah9zYsxE/qW0E8BoKcva7dn0sxT7G7k34BnUg6TAy4uQGCg2Le2efPW7MNMod6xA1izhsmB1as1OdcB1JIDgrLdz6+fRg5ksHuwP5/vryZef3xuvE7fAoD7Au4DwKxu5sbZHbl1RJzgoQ+Tq4NbD8YlL6DCxoLJgZgYcBx77pWVwKhRzHKpW0FNP7iWfQ35Ffmws7BDD58eGDUKeLQ/61sxZReh9jTPahl1myk1AwMHiscGBLC+JUwoTSUhNwH+t0shB0Du7oCXF/oHsEnTXjd+MVkU+11hLJDJmDzQSVtaI4efMG719OkJuRxYtgxQpDMlbFsGX66JcuBG/g0UVBTAUmGJCE+mVff2Ze3qYsZFVKjM29El6nYUughr+nifak+fnrjYipcDxcXApUvgOODJJ1kbGD2ajQvNFUmxayTOpTPXZSevTlDK2X6hP38eAEWpDyBXIYGc2IkmdmZhFZyOYufLBNCptFNm1fVM2hnRUiPr3BmQyRDgFABPO0+c9OGtKlFRqK4iMZ3Va6+x1aA61NhC6HSqRrED2Mz+oZ6s3jsL+R800WJ3MpUpmN28u8FKyawIvg6+8LTzhJrUuJRZO7DVqHJTTqKrYDzt0UP8DbUCuBLEj1rHjmHFCma4sbWtYakCmPshl3eHBweLs8mePj3Fun77iRfkpd6AjJAk5wOnTRRoQtvSHtSF9nAx86JJZQlcyLiADrzFVsZPO30dfeHv6I/jfvyM+sQJVFUSXn6Z/fvqq2wVmA412sCFjAsAgK6tugJghrypfVnD2V3Kj6Am9oHz6ecB6PatAKcA+Dj4QMWpdFaKmkJ0erRosUMnpjD29esLkgMxbfiVe6dOYfVqNrY5OrIBSqcNFBUxVyQguqAAoLNXZ1gqmOXz588DIS/3BOQqxHHO7FxTB3Uti51ATx9esTPTYncq9ZQmHKNbN0Amg5+jHzxsPTQWq9Ona8mBvn1rFFSjDQjWI0H5btMGGNeTTcp2FfCNzsTrP5XKZF1Pn57ifW1l3wqt7FuBQLicddmk8gSi06MRJlireOW+u3d3qBXA1bYaOfDbbyyWyt6eWe1ryQHBDdmundgHurTqIrbXX772haLUD5BzuKU0Tw7U7FuARrk112J1PuM8IviUjTLeBBnoFAgfBx+c0hoLqqo08bV6x4Kait1tpth19+4OgMmBiT1Zw9lRyJtITWwDQjvv0qqL2AZaO7eGh60HqrlqUU6YSlRabcWul28vcHLgWhveknHmDNasYV5pBwc9cqCZISl2jYQw+HZr1U085uQkQ/dWbDCOLuc3hTahMRdXFiMuh3UYoYMAzNUJMAWNzNgC6sztM+gsNOTOnQEAMpkMvX1743wrgFPIgYwMrP4yDfHxgIcH8OGHegrSmqnnl+cjIY8JeG0FZO4jbPC5EcDHlpio2IlKjY+mTJlMJt4PYWZoCqVVpcjJuAkf3iiBsDAAGoF5yItZFVQnz4gxJPPmaeK+RWq4HwQls7NXZ/EUJyegs1cXdi0VvHvLhDZQUlWC6/nXa5UrvL+YcdGsNnAx46JmQOvQQTzeyasTon0AtVIBZGTgr/lJuH6dJZL/9FM9BWm1gZKqEsTnsv+7tOoinvLaNPb+pq+w9NC0OEN9fUsmk4mKjTDgmUJxZTHS0mLRtoA/wA/qQt/a78ksQKpjp/Aen1nnvfc0izpFBKXGywtwdBQHH6FuAJMD3TxZ+z1brmAHTWgD+eX54n3Vsdjxv3H29lmz2sDZ22fFQV0Y0GQyGXr49MCFVoBaIQeysrBmfjLi4pgcEOPqtNGyVpVUlSCpIAkARAs7ALzxCHt/05/ffcfEQV1Q3LTblfb/5gzqxZXFyMq4ASGcTlBKOrdifeuAN7MAqY6fFuWfXjkgXL+/P2BrK062tPurvT3Q0ZNNHi4IcsAExa6kqgQJuaytad8D4TcuZ102qw2cSz+naQO8Yie0gWgftqgISUn4Y0EWrl9nzVxwR+ugpdgVVxaL7bW7j2bcemsG61s3A/k+Y6IcEI0c3hojh0wmE/usMPkxhfzyfGSnxCNQ2EGMHw+FvnXIg3kDVCfPiC7Y994DvL1N/qm7iqTYNRLnMtjgo92QAWBEFzZgJDnxiyZMEGgXMi6AQPBz9IOXvZd4PMw9DAqZAoWVhUgrrj8zdk20Z2mCpQJgymO5JZAS4AwAOPQV6ygff8ysFbXQdj/ksDxQ/o7+cLN1E0/p5tMJSpkFUoRFCUVFJu3DJ+RqE+KJtOsKaGaGphCfG48QYd2Jl5e4f2Mnr05QyBQ44Mk6c+HeKKSns9ChV17RV5CuG1IYfAR3ocDIzl0AALecTW8DV7JYGgJve2942HmIxyM8IyCXyZFdlo2MEtNzA17I1Fjsaip2FRZAchtmVTj6LVNUIiMN7BSldQ8uZ14GgeBt763TXiO8wiCHHKlCGygtZVHYRiL0LW1FAQA6erK+JdwjUzifcR7hQh/w8WF7OkPTtw56s5QfhbtPIjWVLZQQVoPqUMMNKSih2hZ2ABjdlbXXJGd+0YQJbUBoV4FOgTp9q5NXJ1jILZBbnovkQjPSh+TGavqB1jZY3b27o9ICSGntAgA4/DWTA598otnqVAeteyAM6O627rXkgBwKpHjxzz0/36St64R7IDxzAWEyZo5yfyXriub6PT3ZXq7Q9C1hUM/fd1aUAy+9pKegGnJAVOxaddY5bWQXJhduOZoeZ3gp85LevtXBowPkMjlyynKQWZpZRwn60RkLtIIGIzwiUGQNpPuxB37gSyYHPv7YgBzQUuzOZ5wXxy1PO09NmV5hkEOBNA/+uZeXazweRqAvLAnQTPjMsdpezrqsiS/099cZCyzkFjjiySb5ubuikJbGlHrBctmckRS7RkKfmRwAOnqxzpLsxaaFxVdNH9S1Z34AYKW0QohbiM45phCbE4t2wjaAWvubhnsyl9x5P2ZVaF9yBmFhemKKABZQrJXmQrAshrrr7pNopbRCe49QlFkC2QpeOzTBaheXq7/crt7sPl/KMt0VG5cbh1A9A5qNhQ3au7fHGT4c0i07Fo4oxCefGNgCtYb74XImP/h46Q4+3fi6JvOKjSlt4GIGGyRqKos2FjZiGzDHHXsx46JGseMtltq/c86XiYaQ4rMICTGQo6myUvMsQ0JwPoNZTYRno13XYLdgVFgAWXJeMzDBWiFYY2qWK8TZmNMHrmRd0Qh0LcXWSmmFYLdgRAltIDcBrsjF/PmAtbWegmoM6sIER6ibpq6sbyV7sklNyTXj24CQhFjon9p1FfqFOYmK43LiECz0Ay05IFiEov1YG+hQGoWICANtwJAccNPtrzYWNujgGYZiayBfzru5TVFuDfQt0WKXYbrF7lLmJU0b0OoDtha2CHELwVkf9r9b1jXYoQTz5rFtVGtRU7HLqG2xY3Vl/yfzMaxFV43vA+L4oqdvtXNtJ16PKRARzqdrTXC0VgII9/mCP/M0hRZFoX17A21ApQIS+dxZoaHis6o5FloprRDiHowqJZCuMD2f37Xsazp1ExD6RUx2jNFlCcRkxWjGQq19noUxVpAD7pkxsEUpvvzSgBxoZkiKXSOQW5aLnDImIYQVqwKCgE8LYMEseeeNb8iCUlOzTECrMWeZ1piLKouQnX9bY3pu1078TLCK7XNjgqcXovDRR3yOoprcusVSNlhZAf7+GgWshkDXLjfFmsWsJB83TqBVqipFt07NcoV7EpcTZ7ILIi4nTq+lAmDPK8cOuO3MBM+U1mcxfbqBgrRSneSU5SC9hD3jcA/dAViYuaf6sRl1ZpRpM3WgtmIH6LpjTSGzJBOFBZloU8AfqGGxA4B9Lsyy0hNnMH++gTZw44Zm028vL1HB6uRZu66CME62YW0g7aRx9yCnLAe55exhhbmH6XymrdiZ0wb0CXSh3HxbIMWNWUgfaXsa06YZKEgrvqywolC0ntaciAh9IC2AfZ53wfg2IPTxmu1Ku1xTFbsKVQXScm5q2oDWPRD61j53ZlnpiTP4+OM65EBlJZMDAQGihV2vzOLrn2zNJnjJx4y7B7lluYb7Ft8HrmRdAUf6dwgwxKXMS5rMAO1169vZqzMyHYAsByfIQZjc9jweecRAQVqKXWZJJjJLMyGXyWspIELfSvNjbSDzjOmKbU1lUbtc4RxjySnLQWlRLgIEV7TWPRD6ltAGeiHKsBxISmJjgY2NzlhQZxuwYWY/Y+VAQUWBaJEUJrQC2n3AVDlwNfuqmMOwphzo4NEB6Y5AtoMTFOAwNegcpk41qfgmQ1LsGgGhIfs7+sPO0k7ns2DXYFjILXDThZl07QtSxMmNseXqU5aEDmLqLCUuJw6tCwAFga0IaNVKp65KuRJHWjE3VE/ZWUyaYEBYCtaqdu0Aubxuxc6ddbwcT2YJPLDSOMUuMS8RHHFwsHRAK/tWOp8FuQRBLpOjuKrYZFdkXG4cQoWZeoiukBDqf8zeGQDw+n1RUCgMFaRJTiwI1TbObeBg5aBzWluXtlDKlbjlzBL+2uYmi2NBfRhy7wIat5RgJTKW2JxYBOUBcgLg7MyCp3hC3EJgpbDCcS9W157yaEx4yEAb0HZDymSiG06fQBfqmu3FRM7BlcYJdMECpK9vhbiFwEJugeKqYqQUmRaIHpcbhyBBoAcF6Xwm9K0DfBt4qetJyA1JSq17IPQBb3tvOFrpxi4Eu7G+JcgBp8Jk0dBVH1dzmNJWMxwB0PQtUxW7xLxEUQ6QnZ1O0FA713aQy+Q44sVizHrJz2L8WLX+goSdGUJDAYWiTjkgHMv2ZFag/SuMawNCH2jr0tZg3ypXlSOtyLSwFB03XHv9E/ITDszC/MbAM4blgJ6QlDbObWBrYatzWohbCCwVlkhyYfLVOjsFN24YV9f4vPr7lqmuyLjcOLQRIiIcHcVwBKGuFnILHOXbQF9FFB4aZ0BpEuRgcHC9Y4FwX3N4OXB4lWlywMfBp1bfCnELgVKuRFFlEVKLTNumLCZby2KnZeQANP3tuIMzAOC1/lHNesGENpJi1wgYckMCgIXCAu3d2yOFb4tuyMOiz0pqnWdquWYrdrlxug1Zq6VaKCwQ4hqCqx5AmcwKjlQE5Q0DGkgM/7u8+b6uugodJNeXCbT0qBSjvLHablhZjR5lpbRCG+c2OucZiyFXrPBbAHDKmwmxsGIDAblqtY77QRDoNd1lAKCUKxHkEoRk3gvZChlY+GVVrfP0UZeyJMxchXOMJT43XmOpCQrSaQNKuRJBzsFiG7DniiFLTDBQkK4LSqhHzRk1oBHo2b5soEg/nWxUGxDKrKtvAaZbK+Jy4xAkDGoGFLsTfiwern2BgdXnRCy5GQCEhtbZBywVlgh2DUYK3wacUITvPzUu1rQui12YB7NiCsqfsWhbrWW8Yi5gpbRCgGNrxLoDxTIb2HKlkMcZmDxc44/zrkxDoROApl3k8fc1/bRxckB0Reu5fguFBdq6tAVgej+Iy41DW6EN1BjUhbqe4eeTERUGVl5znI7Vtq72qpQrddqAD27jq8+NS1hvTN8yVbmPz43X9IG2bXXagKXCEsEuobjkBVTKlHBW50F204AWWmP3HWPGrWx/JgcyooyTA3Upi0LfAky/B1ezr2rCEfRY7ADgtA8bCzqWm744o6mQFLtGQOx0rrU7HcAaSLE1UGbLnPOHV6fUu/9xeXW56IasyxVrqvlZJ76uhjADABd1B6gVwHlHPsAkykBjFmbqHTpAxamQmMeUHH2CRxh8Yu0LAAB+lIwFC+qvq6F4HQFBcAjnGQMRIS47VmOtqXEPAuxY/aN4iSc7Y+D6k5N1XFCiQK+jrtl2QLWFEnIQDqxKqzdHbVFlkeh+EASXNg1R7MQBrU2bWp8rCkJZ2hdn3oqjlXletyCNYldWXSZazfS1AaENx9ozZcaPkvHll/XXtS6BDmi1Ld4FaAzl1eW4VXBL0w9qKHZt7FnfOhXK7r0s6nStrbUAsDjB4mKWfDw4WOOGdKvdXwHWZ8ssgRJ7Zsk5ujoZafUYmXLLcsU2IFyrNua6oeJytcIRQmo/L+uSUHBy4JILn1bfCDnAEVdnPxD6a7wDc+/5Ugq++ab+utbbt/jjpvSDgooCZJVmIUDQrWssdfW35RU7ftm0LNqAYpeayhYBKJVA69b1jgWh7qHItANUCgUU4LBvZVq9Y0FpValoidLXt4Trj8s1LSwlLkdLsa3RBwBAWRCGKiVwxamesUCY5HfogPLqcnEhj15PEz9uXbNjP+xHyfj66/rrWpeLX7tcUwwduWW5yCzJNBiS0cae9a2odqyjGBwLmiGSYtcI1DVLBbRmqp5MoHurkvHdd3WXmZiXCALB2doZHrYetT4X3CUlVSVi/ImxdTXUkAEg7QJrzImhvNurvs4cHo6kgiRUc9WwVlojwCmg1qnBrsFQyBRIsGUWO3+kYNkyICur1qm16grUL9BNsdilFadBWVwGR8FgVkOgn9rOntX5tgUghYKlWdc3+mq7HxSKOmfUAC/oZUCBB7uvrarrbwNCegMvOy84WddejigETeeW55q0vVx8XrzGBdO2rc5nVVXAjTPsviaH88vfzhoY1IQ20L69qNi72rjqrIYUEFznCfaaNvD77/Un3xeeraH7KihRprSBhLwEOJcRXIR8pjXuwcnt7QBOjhjfcnB2tkx5u6bHYnWFX7QREgJYWtYrBwS3aa4ny/DsrUrGwoV111UY0Pwd/WFvWXs5otC3iiqLcLvY+N0s6rJWqVRA2kV2DamdeFeDITmgZbFLK0pDWXUZlHKlaEXTRniG12yYxyIAyVi2DMjOrnWqDvX2Lf64SW0gNwE2VYC7kN88QFdundjG7kl0Wz4ALSEBKCioXZAgB4KCAKWy3rqGuoWC5ECBOxsLWqlS8OOPdddV6FtuNm5wtXGt9bkwFmhPBI2hrnCEqirgRhTrW7cEOWBogif0g44dkZCXAALBxdoF7rbutU4V5EC8lhxYvrz+NlDvBM/d9AlebE4s3MsA50owa2UNORC1KxjgFDjbmk9+nZRUf0WbCSYpdra2tvX+2djYwM2ttmBvydTX6ARrS4oTM3ULAq2u1f7aZdZ0QwLM/Cy4Ik2ZqepY7Gp05gsXgKSz7BoSIngXgT6BTqQzUxcsZsGuwZDLajcpK6UVglyDRBdEO6sUVFQAv/xSd13rGyjNUezicuI0s3R3d5306Wo1sPg7R6DYG2WWQFko39H13YMa7gchh199g0+aMwvU8UcKfvml7swvwnMNdqutgAOAnaUd/Bz9dH7fGOqy2K1fD5Te4u9rGN8G9Al0jgMu8avwOncW24Ch6xdc54I7up1FMioqgCVL6q6rsVZbUwR6XI6WG9bbm238ycNxwI+LLIGC1lArgMJO/O+e0uOOFRRbPk1EfVYF4d4I/cAYOSA8V0N9wEppZZYrMjYn1qC1avNmoDiJ/V5iR02S2lrUkAPC9Qe5BMFCYVHrdEcrR7Syb6VpA1YpKC9nib/rwljFzpTrT8hL0OSvc3TUyePCccDiRfZAkS/ybIGKAN5ipbV/tojQB/g2YIxiBwCpvBwIQDKWLAFK6ojOqa9MK6UVWju3BmCa90JHua+h1KxfD5TwbeBae95ara8NcJxOPxDagL7wGaGugU6BYhsI4uXA0qX11DXH8IIMQHNvTJWD4gTX11dnuSsR8NMiKyC/DYqsgdIgXvHXJwurjAuruZuYpNjJ5XJcu3at3j+1PrdFC0XNqcUZVX0Wu3g7ZiLo6paMwkJgxQrD5dYVp1CrXCMFmppTIyE3QSPQW7fW+fzbbwHkMiVirxdvSrl4kbkctUlJYZKId0HVp4AJdRXiDL3VqZCBw+LFtYsWIKJ6O7M5rti4XC3Frsbuzdu3s4WeykJ2X2+359e66xNowuboHTuiSl2Fm/k3AdQh0Pm6JtozIdDDIxnFxSyDuSHqc+to/56xbUDFqXA977omxk5LsSMCsyDlsLruduGtgOfPi3slity8yfLRWVnpxBYZun6A3QNBoHuq0qCACj/9ZFguarv4G1W5zzXsgtqxg3mYhTaQ1J4PsqpLsQsPZ31LUMIMKKGiZcmOmYm6uDA5sHKl4breiTYg9C2xH9SwVn33HYAc1ud2ufJy4PJl5nLURnBFKxRAu3ZGyYFQt1BRDvioU+qVA1XqKjEkpT5lyRTFLj433uD1b9/OMrgoC1i5GaG8HNA3qAtyoEsX1rf4ZOL1ywF2wV3dklFQYGQbqKtvmdgPBDmgL85UlAO5rMydQhs4d65uOdCuXb0TMeE6BDngoUqHBarqlAM6fau+MdbcNlBjcrN3LzNGK3g5kBZahzv6lVdY5vI//jD6t+80Jil2n3zyCQIDA+v8a926NT7Wm5q6ZZJUkIQqdRWsFFbwd/TXe45gcblmw0y6w9qxGIRFi9iERx/1WQEBrVlKrnGzlFuFt1CpqtSkOtESaGlpYJvW57G6RlnmgHNzZb1NmJUKCP+HhAAWFsZ1ZtcQpDkCnAxQqKrQ0SsbGRlsZqiPnLIc5FfkQwaZ3vgy7d+7WXATlSoDI0MNdCwVNQT6okXsNdyLlXulNW/N09eZhdl7t264mX8TalLDzsIO3vb6U5LXdEON7KBpA9XV+usqrISrS6ALA76xAu1WwS1Uq6v1ztSPHWOXZVXCrwy2zgY5OLABPaZG7IrQBsLDmQsqr34FJNSNjy9SyiEnDl09byM9HVi3ro66ctWwUljpdfEDmnuTVZqF/HLjkh7rKPc1BLrgGu3ky+cka83P4vUpdoILKiJClAOGwhEAbTnAEt8OCWJt4PvvDcuB+qy2gOmDWlZpFgorCxFYwB/Q6gdRUWyLYGUhawMnZClsL2GVSqPECETzycEjIgArK6PkQKhbqI4c6NQqG5mZhuWA0LfsLe1rrYwXEK7fFDlQl2InygFvVm5sG34lrr42cJFPNdS5M5IKkqDiVLBWWsPX0Vfv7wr3JtaWKckPhLE28N13dbQBI+SAWK6RluukgiRUq6vRuoA/oFcO8FvE2eSCHA3IAaEPhIUBSqXR41aOLVBtqYSMCF090pCebrgNGNW3+DHidvFtlFQZtzgxIS/B4CRfCJPp6MPuQUxdY0FUFBtAdTbPbVpMUuxee+01o86b/V9IzdxICA052C0YCrn+9fCuNq5wt3XXcUE4O7NZ4bZt+sut5dZJSGCblmr57oTGLHT8+ojNiYVTBeAgzIy0GvMPPzDZPbCXM8sWLgOKO/G/XbMxCzNXfo9VYzuz6v/tXXd8W9X1/0qyPOS9YscrsRPb2Tu2sxOSsAJhhdkAJWVTINBCS+mvUEZDKauUUcqGpMyyCWFkkpA9ndixndiOHe9ty9vS/f1x3n1Dw5aUEBv5fj8ffWQ/PV3d995Z95xzzzEADWFU4fPuSynR/rnnHHeV4WMmhSYhwBhAS/r33tMUtIwNikWwbzCszCqvlPtCXl2eEoJRCfTsbGDDBnI+XDiTrmPb0G7letVSt6NDEXCTJ2uUr6PwA0B5csG+wTgheSvSAkoxZAg5Pf73P8dztVupnzhBbt62NvkcOSHdRaVeUF+A6FYgsBuUV6K6B1yYXX8l0QDTAy0TJRrYtk07EDfspM4lrnoVmB6oCScauPNiooFnn+2dBlIjpRC/xULKdedO+Zxgv2DEB8drzu8LzrxVBw8qNHDxXLqOjVJ7OeTkaOPmnZ1ENAAwYYIy1wjncoDny6rDUKGhxNrffON4rnYh/v37gc2bNasB2bBzUQ7k1eUhpEPKLQI0coAbNVdfKPEWGMyTpE0btnKAG3ZTp8rjAq7JgcYwMpi5HPjnPx3TgMxbERJv9fQAa9ZoDAy1HChscK1+iDPDLjsbWL8e0OuBC2fSfd3K++Zu26adZEeHkmM4aZK8wHaWkgIA4QHhGhoYHViCsDDaYO9MF9jxVk0N8P771MVHghy9cIMHoluBgB6QHFD1yuOLm+uvCkFccByYHmge7yQlwSYU7Wr0BjqgJkKSAxeVyL/riAa4LkyLTKP72toKbNoEdc2o8AAlp89VR4czGsjLI37U6YBLJDmwNVZSmrt3ayfZ3q7IgQyl3V9/w6PNE01NTVi9ejUeeOAB3HnnnXjggQewevVqNLnRKspb4MoqFSBm58xsKCvBzTfT344S6BljWiG5dSvVWZo3D5g/X96h5+5K/WjtUcWoiYyUVxhms5LrdO+9qlygdCdhKC7gJUJ2mZkBlIaQ4XNZRin8/WllaGszADahaMaA668HrrmGvIQffQSA+gS6G451ptSff57eL7kEyBxJc90QUEn3qKVFyakDiJEtFsrRS0hwyajhc+X5VYaTJbjjDvr76aftBRpjTDvuli3Ux/CGG4BLL5XjFu7SQH6dqi9iXJxcSr+oCPjsMzp8990qb+h46R79+KN2oP1SpX83DDu+SDkRShd7ydQSBATQULbDAza8xRiwdCl1oM/KopipBHdogPNWooOVOufFyy4DMkfSoml3zwnyZjCmNWwOHKBnEBUFpKT0mV/HoQ5DGcpKcOON9Dc3qNSwMqvGWMCePcD06SQDZs/2mAbyalXXHx5OBaZBTgfuNVl5t8JbpemSF9rWsOObamwWeL3dAz7myVBSPcsySuDvTzbiTz/Zn6+hK4sFuO46YPly+s2vvwZAvOXOBgrOW73JgUsvBbIkOfBtaC3xSU2NUtoEIGO/p4dakbkoB/g94DTgU14id/ZxtpFGM+6GDeRlvvpq4OKL5QWnHIp1UQ7m1+UruiA2Vm6tU1joWA4Uj5U8kFu2aAfavp3ep0/XpM+4Emk6Id2DiyaXyLpg61b78zW6kDHg8suBBQuoVNXHH9uN6wofWJkVx+qP9UoDF14IzEqnMb8LqqLUo9paEpYcBw4QXQ4ZYuf160+4bdht2LABKSkpeO2119Da2orQ0FC0trbi1VdfxYgRI7Bx48bTOsGamhosWbIEJpMJ6enpWL9+/Wkd/1TR11Z8jrTINFmpo7QUv73dCoMB2LjRPsJR1VqF5s5m6HV6jAxLIWuLe4wOHABWr5bHBIDj9cfRY+27HpIzo+bNN2nDV2oqETMPp+0fKe2G2rBBsTzUCi4jA82dzUq1fReY+ZiUZxjaXIpf/Yo+c6TU5CTcyHTy1PF4XWcncP/9snHrTgiCb8W3vQe1tfIt1Qizo43HwCSlpTFuVWFY6HSKV6WXMCSgVeooLcVtt1G+7p499gKtpq0GzZ3N0EGHEeEpwB13KB6jb78FXn5ZHhMgOnSl8n5+Xb5Do+Zf/yISO/tsakTB78G+kVJ44ccfFRqwWhVLbMYM1LXVob6dduTwnbqOwJV6gUQDwQ0luO46+syRUtMI9G++0RhzuPNO8pgAbuUXcd6Sq+1L96CyEvjvf+nQPfeo6LX+GKyZmfSBmga4QsvKAnS6PvNBOTQ0UFaG397aA72ecnpso1xlzWVo72mHj94Hw4MTyajn+cu7dsk8weda2FCIbouTuL4KzkLRL74oee3nEmnz+3pomBSO3rpVKwdUHru27jalzEUfOXYA5N3RwY2lWL6cPnO0yNUYNR9+KOWLgJ79jTfKOV/ueK6rW6vR0tXSpxzg9zWn5TgY98aoV6GcHiZP1hTo7tOwi1QMO5SU4M47yUu8aZOyXuLQ8Fb4COC++5Rcx40b5Z0nnO5cDUc7yzX+17/o0Z5zjlYO7E6TNhht2qSVA5wPZs1CpbkSLV0tpLd6kQM80sRzTfuSA5pF0xdfaN3bDz4o04A7hh3nrWE20ZuGBiX3feVKZcyj5iKwaVIfeLWNw6NX06djIFUvdtuwu+OOO/DGG29g06ZNeP755/HYY4/h+eefx+bNm/HGG2/gtttuO60TvOOOOxAXF4fa2lr8/e9/x+WXX44GNxqI/9xwxVsFEIGUBwNWvQ7o6kKiXzWWLaPPbA0briSGhw2H34bNRDzBwcDvfkcnrFoFAEgMTYSfwQ/d1m6caOy7yuPROvv8MotFEaj33EMhCE7MG+K7yPIoL1cKsR4/DtTX0wp2wgR5rs5KcnDEBcfBZDShhBcNLymRmyl/8ol9+1iNUuc7DO67jzwMxcXAunXK53BNqfOt+MObJbKXBNqrr5KemDoVmDULSA5PlqvZN0+T2gJ9/70yEGdsSdi7I9B54jiamhDt2yQLNNt6XnzMYWHD4L9rH+WymEzUhRuQrZDhYcPdqryvWalL19/SArz+Oh3i2RacnjfEtNJKtaxMWakeOUI0YDIBU6fKc00ISbDrDqFGTGAMQvxCNDSwciX9+fnnsKvCryn2+thjdPC228jTWFgIfPklfe4GDXAlMYzTgMQH//43OcCysuiVGKLwVv0k6blyJQYoSj0ri8atUy1EekFaZBoqgyjPEBYLhvtV4OKL6TPuKbC9/uSwZBi3/kQ0EBamPKSnngIYk3mrx9ojbzToDRqlLl1/W5vitefPhF/Lxvgu8uiUlCie6+PHyRLy8QEmTJDnytNOnIHzVnGwZKCWluKuu+jPTz+1bx2qyS974w06+Mc/UsShshL44Qf63I1cU35OSouP5h785z9aOcB5q627DS3Tpc4vaqW+YQO9L1hgP9dekB6peO7R1ITEkCZcfjn9a6sL+FwTQxJh2rqTFpUBAcD//R+dIN0Td9NSHHmtm5t7kwNtRAPl5Uph9txc8giYTJp0hOFhw+Hn4+f0t5NCk6gDR7C0EFXpgs8+0zrE+FwBiR4l3Yc77yQayM8nBQIVDbiQksAX48NapLQJiQZee414YcIEcozHh8QjwCcAPdYeNMyWFvnffacMxJ0c06f3+ZtnEm4bdiUlJTj33HMdfnb22Wej1I3m3n3BbDbj888/xyOPPAKTyYSLL74Y48aNw5eSQFejs7MTzc3NmteZQF91tjh4bklNqFQGQKXU/vtfbU03DSFzv/ivfgX85S8kSPPygMJC6HV6OanalW3ejsIPXKFGRFC0U30tR1qOU8gHUAwb7jGdOtWl2l0cOp1OU3UdpaUYPx446yxa+L34ovZ8Pu54SyStEgHg9tvJawHIyyp3ckuO1h6F3goMbbbK96C7W/ntu++mRRfvFAEAeVnSyvObb2hlaLEo9+KccwC4luAO0H1t9QOaA33ke8AF6BdfaKM86twivPoqHbz6auCWW8j63rULKCrSzNVVpWa7Un/zTRLq6enksQMUpZ7dclw2XuQkoM2b6X3mTMBodNmw1el0Wm9FaSlGjaLbyBjs6nnxZzq2K4yMKp0OeOghyI1bpZW7XPzYBa9tfl0+ArqAyFarfA86O2UHqKxgDHqD7HXIT5Vqh+3YQcTKmOJinTFDHteVe5AWmQamB6rC7OXAO+8AdapyhBrDloecLruMlLqfH+U35eeTHOD5ti7QgCPP/erVZKsnJ1PEW/5dAIfMxykNBFC8Jdx7OmcO4O/vckoKp9dSlXHP5YDFYi8HeCh6bHuwIntuuQVyA+d33wXgXi27/Lp86KxAfFPvckDd1eLYdGnX6NdfkxywWhUj76yz5HHVc3GG9Kh0mP2AJpNkVJSWyjTw3ntkr6rnKo/Jd11efz0ZNno9ufhKStxOS9Es8CQaePNNWuSNHq3IAc5bh5oLFDnA5R/3XmZmuryJDlB4S+21HDOGftOhHJDGHdcToeTXPvAA5DwGKSTvzmbC/Lp8+HcDUS0W+R709JDHElBoQK1j86ZI3u0ffiBitVgUI2/WrD5/80zCbcNuwYIFuOuuu1BtU122uroa99xzD+bPn3+65oaCggKEhoZiqKqP4cSJE3HENmYBYNWqVQgNDZVfiWcg3t3S2SIXBXVlpQ4AxSHKKiUri5w+XV3amm4yg0SkKcp06VKqt2TDXK66n3nI1HaV9swz9O9ttymbetRjskWL6CA3MLmCuegi7Vz7uH4+rizQpQUAV6Svvko5sQDQbemWk6DH/5hP3D5jBpVnufRSOmnzZoAxt9zvebV5GNoC+FhBBnJsLP73P3JGxcRA0+CZC8ndCXpaGTY2UhLQ3r2kAUNDgawsmLvMKGsp09y33q4fAEpCmHwPRo0CliyhS1SHopQyF6mydxLLl9NEOY/xlaqL94CHotU0YLUqnqK774bcE1Ud2rLye84TsCQvCVf2rpTk4FDnF3H3DKeB119XarqpeWvULsmVl5VF13/++fT/N98AVqtSQqL+GCzW3kst5dXmIYErtKAgICwMH3xAC6v4eLKbOPh93T/ESrzX0EB0t307EU1QEJCVpU1HcMFzDwCFIRb5HsyeTdE823pecomH0JHkzgKAZcvIa83lgLTocZUGuixdKGwo1Bh2atq76y7IPVE1ZUTOO48OcoOOy6UlSwC4ll/HoaGBXuSAhre25RKTzJ1LcuCaa5T5qGjAVaMmug3w7bYSwcfF4eOPyRllKwfk1mLJfpRPWV9PeWaHDtHfQUHAtGmajguueOwA4IRKF2Rm0iO11QUaOcCNiMsuo/7OM2fS/256rjlvqeWAxaIYNXfdpUQV+ZjH6o/BukTiO56zwHXC3LmaubqqC5zJAXVtx6aOJrnoctpP0nVlZlL9SW59/vCDRhe40oEjvy7fTg589hmRY1SUQl58rgCwO0FHkbP6epIB27dT3mVYmLLwGSBw27B766230NDQgKSkJMTGxiItLQ2xsbEYNmwY6uvr8XZvBXnchNlsRkhIiOZYSEgIzA6qOT7wwANoamqSX6fTc+gMQb5BKL2nFBuv34jwgPBez+Wr/8JgKRdOmh9fqb38slLHh7uSZ9WZSIEEBsrufpmYJcPO1ZU6X8WMMEuegqQk7NxJiy5fX8iJ/AAwImIEdNChqbMJdUsXkfDbuJG8FHyVKmlAV3bCcdjmGQKkF0aMILuJL0gLGwrRY+2ByWhC2E9SHg+PV02bpiQy5+fL11/fXo/att7bGGhCUAkJgMEghz5uu03eR6C5nqMNBYoh8Z//0G40AFi4EPDx6bMqvO31A0BRsKLUAUqhBGjFXE/pNPLzzGoKBqqqKPwieYe4p5Bnm7vqrTjecJxC0WZJcycmyjW7wsIgh4UBCv/xEG/FOZIC2baNaIArdcm4dzUEBdjnF/HLSUsjryEXH/z6o03RCPxB8hBy42L2bOKJykrg4EEkhSbB38dfU/PMGWxzixh0Mg3cfjtFnTk4bR1tOq54iF57TVFsl1wCmEzyXGODYu0alNuCe1dlOVBSAp1OkQMvvqhseOXjzqgNoGsNCZG9Q7I8kAw7V+VAYUMhLMyCFFUo+rvvKKoWHAysWKG6/kiFtxoWSZ77H34gGuBe2wsuAOCeHNCEIlVyICWFbGee58Z5K8oUhcCtUsiLR4umTSOeaGwE8vJk2qtpq+mz7E1+vcprHRcHGI2uyQHuyly9WrHAzzoLMBrluYb7hyMyoPcC/SnhKRSO5gs8iQ/UukBKH5V5a0ZjMFBRQdfMoygXXkjvksHnar4xp5ERZilykJiItWsVOXDttcq5SaFJ8DP4odPSidIL5pIu2LaNcmy//ZZOkpKlXY1eAbQI1MgBxnDuufZygC9uYoNiEbBOWlBKcgczZ2pShbiObexoRF1775147CIXOp28uOG5z+q5ApIc4Cu/F1+UF9a44AKt4BgAcNuwi4qKwocffoi6ujqsW7cOb7zxBtatW4fa2lp88MEHiIpynl/hLoKCguxCqs3NzQgKsm+t4+fnh5CQEM3r54ZOp0NCSALmD5/f57kmowkJIQl2Sm3ZMpIt6ppufNU5IV+ivPnzFUpbvJjepSRWV1fq/PPhKoHO87quuYYWQBzqekF5gR2KQJszh9zPkybJBS1dDcUCNh678nKgpwcGA+QcG17XT179h6dB96MU8uIrIj8/xVuxZQsCfQPl+oF93QPb3KIdOyi65usL3Hqr9lzN6pcvJdesUbJ7f/MbAIrB7IowC/INQnxwvJ23YsECuqXt7cpqnV/L1JxGOjBnjqJxeDK/FJZwteq6HQ0kJsoK7aabNA0YYDQYZSMkx7dJMSQ4DcyfD4wfrxnXVcNOpoGGBqClBXq9QgO8phungdERaUoIjht2fn6KctuxA3qdXklydkGpqUNQ27ZR2pK/P+Sd6hyaMiJ86+J//6vE7KRlvTvXH2AMQFJokp0cuPJK8haVlSnlb/i4Ewokop09W969KD+PjRu1cqCP/CIuW5JV+WWcpFesINuRw2Q0ybyVG9ZNhixANNDVRUTrQuN3W2hooLwc6O6GwUDRRUApfSJ7gMJTFUOSe6uNRqW8xE8/ybwF9L3A0RRpT0zE9u3ESr6+pNTV4AZzQX2Bkgby5ptK7F5alblS8oiDh3htaeDSS2m9WV2trB/5uNMO1ynXz3UBD/9JCfyupqXIpaRckAMGvUE28HOMjbSgBchLZ7USLUitKd3RBamRqrQcsxloanIsB3hHm4hUZds014H+/vT7ALB+PQKMAS7rAtu0pN27yV41Gh3QQKRq0cR1wfvvK7pA7eYfIPCo3AkABAYGYtKkSZg9ezYmTZqEQDU1nCakpqaiqakJlaqkg4MHD2Ls2LGn/bfOBBy5n41G8hQAFA7p6lHCkAm5UjI8N2QAitn4+FAyTmmpy4ZdXl0e9FZgSAO5BUt1SbIC4R4j27nK4/7xj/SbAL1LSxt1OQZXPXZVQUC3HsS1FRUASF6GhFDq4Lp1CjMvbI8lF1ZgIG3T4+DMLO3MlD1WvYRhGGPa4sSJifIK7ZprSKmqoRGSU6dCzm4GyGsqGRnuKHU+ri0N6HTKM/jXv4D2DqvsAUjaJyVC85A4QPPR68kKKCtTlE8fuSX5dfkwWICoZvIW5bYmyTW71B5bh/fgxRe1y9g//AGAlgZcMuyi0tHiDzTxoSTj9vrrIdd0U9PA3PYYissEBhLtq+8BIO/MdCUMZReGVCm0X/2KQjBqaHhgyhQlDQAgT42kYNwJRfNxbWnAz08rB9TpCAkHpWxyTvcAGfe+vuTNLSpyOb8ory4PBgswpJHcgvkdSfj2W6JBrlTV0Ow2ffBBRQ7o9bQK0ensyzP1gfSodFQHAp0GkAVXTiH3FSvIa5ibS84gfl/PaolS5ADfpQ4oHmxpU4sr4VjeKUit1Lkc+NWvqGqFGhqlPnu21p01Z45dGNJlOeDAc200Ksbts88CFqvCW4nZUgSKG1YAGdZ6PcnR8nJNyZPeQpF5tUQD0U1EA0fbepcDmhzWJ55QLD+9XpYD6u47ruqCDiNQG6TX3AO1HPjmG+W+zukaSgtBadOeDB6OlioVuKIPOW+paYDLgSuv1Do51GMW1BfQPeeeUoC8ddzxMYDglmGXpTYwesFsvpo+RQQFBWHp0qV46KGH0N7eji+++AKHDx/Gheob+wtCWkSaJmmY4+abIddy+t8GCpWYjCYE7JeqeqsLH/r50T50ANi/X8nbaipBR0+H09/Or8tHrBkwWBng44Nn34uF1Uq6SXK8aOeqZpDMTKrJcfXV5FaUvGelTaVo72mHUW9Ecnhy39cfmQarHigL1t6D4GAlD/a55xTlPO+EtPKVkvRlcDqUagO4otQrzBUwd5kxrJnGbApLktMFeQhEDT5mSVMJ2rrbSIk9+STtzH3jDTkJhXtInHXHsMWoyFEOaeDKKxXP7UtrStFp6YRR5wPT3kN0gpqngoLkgqDYuVNWPn2Vu8ivy0dcC6C3MsBoxLNrSItdeqldAwbNPcirzaOM6o8/pge1aZMcEtOU5JD6VfaG1IhU6KCTCzVzwy4oSHaC4rnnVCGoCsmQmDpVSf7i/wOyQHeljhfvYsC9VY0hSXLqmqOa6nK9rcYT6LB00ir9z3+mJf2XX8rzcScEBTgIQ0m49Vay1XbuBD7ZSHM1+QTAf6eUjqCmAT8/6voBAAcPKnUim0uJXp0grzYPQ7kcMBrx9H9Ji118sV27UHmu/HuYOpXcGnfeSZuXJM8xr/Zv0BkwImKE/SC2Y0obSE7a0EBIiCIHnn1WUc6zTjDl+tVygCt1bti5IAdKm4m3kiVvVXOYssB1JAfUXS26Ld3kSrrvPjJwvvxSlgOuljzicGTYAXT9JhOl8H38rcJbgQekvHLurQfIwOI0sGePLAcaOhp6TUvJqyMa4HLgmTW0qr3kkj7kQF0eLXDWrqWF7saNco4lD/EHGgMRFxzX5/XLOeeqnbEAyQF1bUdZDpRLvD95suK1BsjQAuSaYa4YdkWNxFsp0o7Y5rAkpX7jSudzLWkqQXt3O+nAp56iib79tpKYPIDg487JBw4cwJNPPtnnedm8EvNpwEsvvYTrr78ekZGRSEhIwIcffojw8N7z2QYqUiNTsd0BM0dH02rx9deBF9/PB4YB0/1SoDsuGXa2W6knTybO378f0UuXItQvFE2dTThefxxjhzj2Zqpdz9ah8Xj1DSJqXkHFFnahnYkTldwiCVyAjogYAR9936QUERCByIBIFIfVYXgTqGyJFE747W9JoX//PTBlqbQb8rgUM7NdKPAV29GjQGenSzWs5FBRmwlAK9bnJ8FiIcfLxIn250eZohDuH46GjgYU1BVgYuxEEug28MRj96FNKBYgWXXnnbTZ68X384HZwFzdcOiqj5GXRO2tAkjAHzoE7N6NuEsuhsloQlt3G4obi53uzlU3PrfEJeDdNSSQnDWKsVOUS5bIgtz2+lPCUxw2frdFgDEAw8KGoSS0GBOqoeEDNQ2MXiKFYoukLGrbqu7csDt8WEMDvOyII8hepbYAAC34LpeSxhcscLy4GRI4BCF+IWjubEZhQyHGRI8BHn3U7jx3aSAtMg0bHMiBIUNIDrz5JvDCe/lAErDIMhy66lwy5GzlwMSJtLg5eBCRl1yCiIAI1LfX41j9MUyImQBHUKcjWOIS8M5qogFnTYVk3uJyICPD7lnw+5oSngJfgy/6QrQpGmH+YSgJbaRepap7cNddpNC/+w6YeAEZS6OKJKLlHjoOTgN5eUBHh0u7o/mzGtUWCKAFG44pcmCCg1sWFxyHAJ8AtPe0K7zlQAd6Ige2OaABXp3g5ZeBf67JB1KBGbok6MoLaSFhKwemTaOC6Xv2wLR0KYX5m0qQV5eH6MBoh7+toYGh8bIccGTUAA7kwNy5sqfS0fX3FYoGlE48paEtmFYBOznw7LMuygFu2B0+DHR1uWTYySH+1gAAZnxzhHZFz5mjkJQakQGRsi44Vn8M42PGO1ecAwRumZpXX301cnNz+3xdeeWVp22C0dHRWLt2Ldra2pCfn49F6pDULwyaEEx1taapNleuP+UTIZ9TLyXip6XRLjg1OHPv309lRNThAgewrbRe5pMEs5kWe3wvhqO59jYm4N6OWPW4hfxyVIXLkpOV/RE51TRubO5JOmDLzAkJ5K/v6QGOHnVp8wD/LFlapb23jXIInSk0dfkAV4SEOyEYTeK4qlXZzTfTar2oicZcXB9GH0yYoA2D8mMAcOSIpiBoX3PlO+HKdIno6KAFuLOd+q7k7Lh7/YDNPVAJdKXUBkOBZEgMzZE+t6WBpCTSgt3dwOHDslLvzWPH55okeW3X/Eg04Myw5SV61N+1hbpDiCu5RYBNrmljo6Y1FJ/LtqM05sI66cTJk7VZ/YCyIpH6lbrEsyqlflKXhI4Osg2cBVlcSXNwJ78OcFD2prhY/mz4cCWV72gNXUeMMxoYOpRko8UC5OW55LGTawNKcuDDHUQDzowaV0tKnVIo9uRJpfA0lJD4dqlllqwLxo7VJsABSmjaRc+1lVm1ckDvuhzozWD2hAZSI1Mdei2HD+f7IxzIAbXHEiAXY2goyYHcXLcMu6QmkgPvbCIacLBul+fqbneX/oZbht2bb77p0us/6j37AjLSItPQEACY+aL25En5s/HjyXPAIohwMsulVY+j/nMqw46PCzgnuqrWKqq0Lim03ZVEyPfe67xYtjpnx1lHA3dDUPxcR4YdIBlZ/g3oMNQgtB3wLzxBH6jzagCaNDdssrM1W/Kdlbvggie2nnIMc9uSkJqqbHh1hL4UhasdF9QYFTUKZcFAjx4kjKT8IoDslBUrAERKNFDWCw3wEIxU+qevDRSNHY2obq2WlfruKkoyXrnSOQ3YhaMdwN38Mj6uI4EOSIZNSBl69K0w9ejhd0S697b3QKdTVuvZ2fL1V7VWoamjCY6QV5sHMCC6jhZUOeZEJCfLGzsdoi/eqjRXwtxlhl6nl2ue9QVez7AuQDqg8txOnEjeIy4HpvKa07Y8wE8G5H6dfc2V7xznNLCrUlnc9EUDvfKWG/l18rhR6U7lwMqVAALq0GmoJzlwrJg+sPVY6nRKSsLhwy6VvZF3MEtyIKc1CSNH2jmiNejLuG9ob0BNWw2d20ctS470qHRUBAM9OpBRJ+UbA9Q98rzzAEg0kFUuqWlHcoBff04OfZcvcJzIrLLmMrR1t2FYC425p0pZ3PRFA5XmSjR3Njs8R9YFbsgBR7mmHCtXAgiuQI++Ff4WPfyzJaOyNzlw4IC2Y4wTvZVfl6+RA0fbEuWyU73NVf7uLwAeB4c//PBDpy8Bx0gOS4ZBb1Aq79uUZLnnHgCRxCAj8xvpYG/MXFoKmM19Vl2XCzx2UHLb0fYkxMXJu9QdIik0CUa9kba5NzkuHeOJQNcYdjYlxmfNAtJn0ZhzyqWSAcnJ9lntgGLYHTokb8nvsnThRNMJh797tO4oAjuBwBbKQyxFoqZumyP0ZdhxI6qvjgtqJIYmwtcvAMVcoB3XVom/+27Iht3wXEkD92bYFRUBbW1Kmx4nK3XZq9Ruov/bExEbq63ZZQsejgacJ+Xn1ubSuC6u1Pm5tjuDOebNA0Zm0TXMroiDrqeHYpSqFngyRkk10/LyEOIXgqFBlC/m7Hnl1+cjvB3w7aA8xJNIwD33aFP3bNGXQFd3h3AlDAlQNxEfvU/vSk2igZRjUukOR5XtOQ8UFgLNzS7LgbFtRKv5HYmIj9fuC7KFutwFr9NmN64nhl1kOo5zOWDDA7NmAaNm0TXMK5d4PyXFsRxQGXaulL0pqC+AfzcQ3EgLlRIk4a67epcDfdEAlwNxwXEI8rWv2OAI0aZohJjClDxDm9Y7K1cCiCJjJvWYZEw5kgM837q4GGht7VNm8ePjOuiH89oTMXQo5fg6Q6h/KGKDYun8vuSLG3LAWa4pQGHRkZk05szKOOi6umjlO8JBDqdqke9KJ578unxEtQHGLtpEdhIJ+P3vXaQBF7paDAR4bNi9/PLLmtdDDz2E5cuX42W+DVzADs62uXMsWQL4xNBqIvyAxOiOmDkiQhFyBQV9Ep28Fd9M4bxSJGLlSvvIjho+eh85EdqZF8hd9zvQu8dOpwPOuoLGHJ8r3SRnrVp4UtShQ5ouAc4ET15tnpxf1oQQ+ESEyp02nKGvXXaa7hAugpfmOM5L3tkotZEjAVOStIM5TzJ6HN2DIUOIBhgDcnOV/CInOWa5NZIB1kaGXSkScc89vdOAppq9E0XBDbvRUaOdD2QDZ2E4+k1g3qX0W2MOSSdlZDh2J6RLdCe1ueorx0rdcaEa0QiKCpA3bDhDX0rdE681777QlxzQW4EIHoJy5LGLjKQG7gCQn+/yXFPbyFVYgiT89re9l+DS8JYTGtD08nQR6ZHpTnlApwPmL6NrGJ8jWT7O5IDKsHOl7I26QLUZgdBHhGtq9zkCvy5O67bIqcmRr8lV8HC0fA94my4JixcDxrgc6KxA9GFJDjjSBVFRihzIy+szbMplWWorMX4pEnHvvb3LAaDvRa6ni3xnPEA0IC1EDkk04EwO8AVeQQF89D6y57y3xRiXA5WIQUSsn9yvuLe59jbmQIPHht3GjRs1r9zcXLz22muYxN2iAg6hySuw8ViZu5vRE1CJ4Y1AcFsjmNHoOLMfkOtHuSLQ+fGYatpdVm9KxC239D3X3sZt7WpFaTMJHI89didPAp2dms+Dk0kgTSuVdsI5UmgA7dIEZKXeWz5cezclPnNmLkESVq6kHVi9QS3MHJUPkI0lN66fz/WYE4He2tWKNr8ijKoFTN3tsJoClWu1hSocOzaa/uZKxhb8eEwNCcaGwES72n0O59pLzo65yyx7ccZEj+l7MD5mVDoKpOtnJ07Y0UBgkhSGPCmFUhwpNEAx7KRcpN7myivYc+O+BEm4+26l24ozuMpb7tJAb0qtvacVPaYyjKoF/Lo7wAIDlWu1G8h1OSD3deZyIDBJLrHS11ydjdve3S73qXbXa8s9dsyRHEgh3pp6UuI729wqDpVhB/RugLR2taKosUgrB+7R2aWt2YLTdl+8xXnQVaRFpiGf1zIu0C6eW7vN6A4sQWo9ENDZChYQoPC73QQl3svNla/f2Q55/gyjqun/+sAkl3RBb8WPeZoH4HooGrDhAamuqRpBwyQ5wHWBMzmg4gE+LuCYXnk3E55jeALDcNddfRu2g8awc4Tly5fjLamHp4BjjI4arTBznlb4yN0Giojaq4dOsk+a51B5KzgzVbdWO6y6zj15YdWUUzDz6mFwpX6zptSBDbgXL9w/vNem37YYGTESNYGA2QhaZdqEIPLqSKBnSC0YOic7Eej8+k+cANrbexXoubW5YGBIbSEJXm4gT4Urc9Xr9GjubJbb2qhxuIaUyfgYB1sqe0F6pHPDjnsFZpygsHlJ9DTnsUIu6HNyZK9CdWu1w1IHObWkfMJriAZmX53oEg30dl+5kB8SOASRpt6r7asRHxwPc7gJzb6Azmq189zm19NvZdRTUdauyX0I9GPHAIulV++ivBvSTPe1wpDosGaXLbg3tqq1yjFvebB5hJ/vzGvJaxhmFkv0GjvFOQ2olBr3rNW116Guzb7yPqctTgPzr3WTBhzIAc5bkQGRiDY53oXpCCMjRqI2EGjxBXSM2S1yc2spd1SWAxOceOz4osdWDjiZKwCMaiEaKDckuUQD3BvtlLckw86dxQ1A95UvcLhRwsF5K6tImmvsFKWGoC24YZeTg/iQeJiMJvRYe+Q6iGpw3girolD0nGsSERxsd5odesvd4zwwNGhon51X1EiLTENVINBqBOUZ2tDAsQYaN6Oe+K67Lzlw/DjQ06PoLQdz5byVZibeqjC4tsDlvFXbVivnVQ9keGzYVVdXa17FxcVYtWoVYnloQMAhxg8ZjzxuBzkx7BbXkStpbW0G2pyVpFIJ9BC/ELlTxOHqw3anHq09So3Pu6gV29V/cJCv5ACcmblRoAb/nTHRY1za3s5hMpqQGJqoeO1sDJvs6mzENQMJ3U2wQI+3DjnYfw5QKDI0lIzDY8d6XVHxuSZKeXuhE5LsNho7gp+Pn1ybzZGi4OO6u1IfFTVKyS+yuf4j1aTQFtWTtP26erp687QWKo9VoG+gPFdHnoWcmhz4dQNRnUQDV93nWi/l3owl7rF0JwwLSGGo6FHKAsdGqeXV5iG8DUjrJC/AG4ecKPWkJFpqd3YCJ0706lXg8x9aFgYACJvoGg2E+of2yVuA+4bd6KjRinFvIwf47yyoIxr4qqoXGlDJgUDfQCSEJNCQDp5XdnU2TF1AuLQR5ur7XaOB3lI9squotNX4mPFuyQF/H38MD092mmd3uPow4pqB+O4m9MCAtw5Oth8EoDBkeDjJgYKCXlMS+H2NLyPCCx7nGg2oeYvTvBqyx85JqSlnSI9KR4ETjx0fc5G0K/qr6gy5zZgduHGbk6MJRzuigby6PPh3A1FdVD7kyt+7KQccyEFPUnIA4q2EsETk8XtwVPvM8mrzENoOjO6gBgVv5zox7BISqNVadzdQXIzR0XQ/HPErl69x5bSqipzsGg2oO5v01d1mIMBjwy42NhZDhw5FbGwsYmNjMW7cOKxbtw7vvvvu6Zyf12F8zHiZkFl+vqbcBReSc+rJJb2xLQMvvOBkIJv8Il636lDVIc1prV2tKKhT6pd1+AZjSGooXAEf82DlQbtQJP+diTFOQsW9YNyQcTjKjdtcRVC2dLagsKEQGVLO62GMw0NPBsJBa2DKtVAZNlygH6k5Yncqv68x5RR3G3eua8IMcB6CMHeZ5QRttwW62mN3/DgpJQl8/jNqKIyyqT0DTtNWuVKXlIKzcGxbdxuKGork3KIunwBEpkbAFfRWzd5TTwUf15HnuqOnA8WNxZgmbRYuwEj85bkIuSm4BgaD3M4IeXkyDTjaFckFemwlbXCYcpFrixuAFmOAY97iHoBxQ8a5PB5AvJUr8QA7elQjBw5WUfmSWQ10vzeZpzmXAzZhKD4P27ly3uIhqA7fEEQkuyYH+H11pCizq4m3xkW7d/2AFI514Llu6WxBcWMxpkty4AjG4uF/uCAHVDlmjgwQTgMx5ZRjOPZc12nAWTiWh3fV57gKtceOFRRo5AD/ndn1khxonY5XXnEyEM8x6yMlgYfNOQ10GgMRlepaTVg+ZkF9gR1veZJjyDEhZoLi6FAZduYuM47VH5PlQCGS8eBz0Y5pQK9X5EB+vqyTDlbZ6y3OW0MriQamXOy6LuCRGVveGojw2LCzWq2wWCywWq2wWq0wm8348ccfMc1ZTpQAAFqpn4jQoVsP6NraNCVPDlQdgI8FGF5Irt5dyMCqVdRJxQ5qgc4YJgxxbNhlV2eDgSGpghjYmOK6MBs3ZBz0Oj1q2mpQaa7UfMYZZGKs+4bdpNhJODJE+idHEZTcqDmrhtzkuSGZqKqC3NPWDvwe5OVh/JDx0EGHSnOl3Vyzq0ghJTUTkweNce8eAPb3lQuz2KBYt0LRgFLqwQpQDbPqavmzIzVH4NcNJBRRKG0XMvDYY9RRyQ5qw85qlRULV2AcR2uPgoEhsZpW/4bkJOe1DWzAw9EtXS1295WHok/ZsFN57LKriF7n15ARfjRoOmpq5C52DgZSlLp6B6ft7uh9FVQaKEkybgNHu04DfIHDjRh5rhJvDQ0aipigGJfHA2gxUBQpyYHWVo0cOFh1ED4WIKmYaGAPprksBybFTAIAHKg8oDmNG2VJFWRJ+KS4p9Cc8RYf1910BIAMZnmBp5IDnLcW1JIcOBqcgcrKXuSA2rCTjIuq1iq7sOlhiS+SmtyXA2OiJN6qsectgHa5uisHRkaMRFE4YNFJNKBqnXm4+jCMPUBSkaILHnmkDxrgKQlO0idkXVBFcsBnxDCX5cDwsOHwNfiio6fDbnf0/krirUmxk1waSw0NDagMOy4HFtVQ9ConKAPV1Up7VjuodMHYIWOh1+lR21ZrR68HKklvJUq6IHCU6zTgjLcGIgZeLwwvR4AxAMOjU5UQhMpbsb9iP8ZWA8bObrDQUBjHpKGxEfj73x0MNHIkMWVzM1BVpXjsqrUGyK6SAwCAxDJyIxuSXSfkAGOA7NbnhhwHN3ScVbjvDZNiJyGHp+McUQQlH3NOBWWyjryaXO//+IdG5ilQCfRA30B5tb5fUuIcO4tJIQ+XwpAOS2c4wZShUwAAeyv2ao5z48ndMCxAbv2kmFTFa6fq1JJdlY2JVYDBYgWLjkbI2CQ0NACPPeZgoKQk2tLY2QmUlsqeJS5oOXaWUPHSpJMSDQxzXan7+fghOYzaxam9FYwx7CnfA0C5R+4gPcqxYcfv8wLJuI+/hGjgqaeoLar9QAoNqBuWqz2sjDFsL6Z7MqzDfRpw5g3nAt6TxY3JaEJydJqSY6XyXB+qOoRx1YBPVw9YaCj8x4xAQwN1sbJDSgp5LFpagKoqWbnaKp+9J4nGEsupJIyPG3IgyDdIlgO2vMWNXU577mDK0CnI5gs8FQ9w42l2JcmBEZIcePJJTbk3BSoaCPYLlvMi91Xs05y2o4h+Y1iXlN/iAQ3Yjsl5zRPDNsAYgPioZJzgjlNJFzDGsLdiLyZUAYbuHrCICASMSUF9vcPGJ0BiIrWu6eoCSkqc7ozdcUKSA6XE/4bhrl+/QW9QSiqpDEbGmHxPJsc6CZf3ggkxExwadpx+51XTAi/+Esq1/sc/gJoaBwOpFjgmo0meqy3P7igiPTasUwoBuEEDnLdsdeFAhDDs+gGaVYrEzBUtFahqrcJMqSitbto0/O0JejzPPKOxfwh+flSiGwDy8xWvQlW2pjDjW+uICFMbJemR6LpSB5RQ68FKhZirW6tRaa6EDjq3Q1CA1rBjOTlyCCK7Kht6KzDqBCnfqbdnIiMDaG0F/vhHBwPZ7IrkgkVt2OSV1qLRWgadFUiySit4N5h56lDK8TtYdRA9VmXX1u7y3QA8C0UDwLS4aTjEnTxS54CKlgqUNpciUwpB6TIy8NTTRA8vvGCXhkPJ1LyuU0EBMuJJAe6r2KfZEffq2l0AgBH1EtG5SQPccOPXDFB/0EpzJfQ6vUcr9bHRY+UQjJoG9lXsAxgwtpiU76SbMzB1Kq1fHHYJcVLyRG2EHiysQIu1GoYeHeItklbwQKlnV2t5iysfvpJ3FxNjJyKXL3Akw47z1iypwoUuIwOr/k5y4LnnNPYfwUYO8GdxqOqQJmT27nek4EY2eSYHJg+1563atlqUt1CszN10BIDo6rBk2LHDh2Ua2FO+BzorMKa4FQAw9dbpyMoC2tqABx90MJANDUyLmyaPw5FdVIFG60nACiRb3aeB6fGU57mvYp9GDuwqI97KiHOS/9UHpsVNQ7aNHOC8lSUVqddlZOCZZ+nvf/3LLiWVUhJGSgXSCwpkI/tg1UENDby5jhZNqQ2SV8GN6wcU3lJHBMpbylHTVgODzuDRIn9CzAQlNcnWsGPA+ELSBRNvIjnQ0uKkm5dNSoKcRqQywrILq9DCquDTA8RZJF3gBh/wBZwtb/1l419w1ttn4cu8L10e6+eGMOz6AdPjpiseK4mZucA8r0raojRrFi64gFosdXcDN92kScMhqNzPqZGpCPAJQGt3q7xSO3IE2F9xAACwMEraUeUmM3PDRS3Q+QptRMQIlwtyqjEifATKY0wUhmppAcrIktlZthPptYB/WxcQGAjd2DF47jlyTL79NvDNNzYDqa4fjMmGnXpVfdMjPwEAEqpS4dPTSYPFx7s+14gRCPYNRkdPh8ZY2H5yOwBgRuIMZ1/tFdPipuEg32ckdQ7YWbYTALC4Tqnfds45wLnnEg3ccIOm8xBBlVuSGpmKEL8QtPe0y16PQ4eA/dVkkJ09RNph7aZSz4yn1fKOkzvkY9yzNjZ6LEzGPmqGOMCY6DEoiQ8iGqirk0t+7K3Yi+QGIKS+FTAaoZ86Ga+8Qk6p994D1q2zGchWqQ8lpc6fDwDc/QTRbkrVSOiZlbycMa6HTtMi0xDgEwBzl1njBZENOw8MW4B4i+fZcYuNe8TOqZL4atYsLFlCHVK6uoDf/MYBDdjsjDUZTWjvaZc3EmVnA7vLyQCZHy4VrXPXuI8l414tB34qJd4aHTXard2QHCMjRqI8LghdXA5INLD95HaMrAcCWjuBgADoxo2Vw7BvvtkHDTDm0LC77XHirfjq0TB2t7stB9Ii0xTeUhk2smEX75lhlxmfif1cDkidhPi8z64No+PTp+Pss4kGenqo9WBvNDAmegyCfYNh7jLLofLsbOBANfHs4miJBtzUBdPjyLj96eRP8jFOD6OiRiHAGODwe70hLTINJ2MDYAWgq6+XXbL7K/djZD0Q1NgG+PlBnzENL71Ej+3dd/uWA1xvqSMtd62iuSZXJdNObF9f2oTnIlIjSMe2dbdparuuO7YOG4s3oqnTcceb/oAw7PoBs5NmY5ckU9guEgxcQMwoklaDs2dDpwNefBEIDga2bwdeeslmIJXHykfvIxsZW05sQU8P8JvbWoGhRNjjDJIHx01mzkrIksfkiaibizfL1+EJDHoDxiVOUcJQ2dlo6WzBvop9srcKU6cCBgNmzFD6ON58M9Ck5h1u1DQ0ALW1Gs8SYwyffAL8WLwNAHAFzwMbOrT3iqw20Ov0Sji2nO6lucssu/hnJHhu2MkeO27YnSTlk1kiJfxKRVlffploYNs28t5qoMqz0+v0svDdXbYbPT3Ar29qA4ZQCGqir0Rbbip1TgM7y3bKNMCVD1ei7sKgN2By8gwlFLd3Lzp7OpFdlY15PD1u+nQgIABTpyr9M2+7DdoEas4D5eVAS4tMk1tLtoIxhrVrgS3HyLBdGj6czk1M7L3MvA1seQugpHm+gJga52Tndh+YmThT9tYwqdfnpuJNAIAZnAZmzYJOB/z734ocePFFm4FUSt2gN8gLnG2l29DVBfxqRQtYLI0/yVeyCNyUA9xjt6tsl0wD20qIt2YlOmky2gf0Oj3GJ0xRoheSHDhUdUjeQIXJkwGjETNnKjRw443UYlfGyJH0PKW0FFvD7rPPgG0naFFyZYxEL7GxfRcvs5krH5d7rlu7WmXDyWPDLiET+yg6DmZj2M0slGS21Mj3+eepVezmzQ7kgGqBZ9AbkJlAi7HtJ7eTLrilExgi7eLXSzUDhw1za66zkug5byvZZicHOH24C6PBiIkpM5Sc61270NrVioNVBzGbp/JNnw74+SEjQ+mlfMstNnKA80BZGWA2y3Pleuubb4BNRcS7l4RL5yYkuCUHDHqDzOtbS7YCgKy3AGDesHluXfvPCWHY9QOmxU3DwSTanYfDh4HWVnxf+D0SG4Go2jZyrc8gRZKQAKxaRafed5/s4COoPVZQCGvzic14+GFgZ/lWwNCN+MAkBFS473oGyCPlZ/BDhblCzq3YdGITAGD+sPlujaXGWcPPwp446Z+ffsL2k9thYRYsrpY8FaqCpI89RhHHkydJscsbnUwmRUHl5SEzIRNGvRElTSXYmnOM6hMlkfJZEkplINxVaIDisdpYvBEAGU1WZkVSaBLiQ1xf9asxZegUZMdSeIXl5ADd3dhZthPDGoAhlc1EA1JX7uHDlaThP//ZhgZUAh1QFMyOkzvw0EPA/sp9gN6CIQGx8K+QQlAehGJ99D6oNFfKidNcsHlq2AFkFO/lNLBnD7aVbkO3tRvnlEmexXmKoHz0UXp0xcUk1GUaCAtTVt35+ZgWNw1+Bj9Ut1ZjW+5x6i4y4jsAwPkh0rP3gAbmJs0FoBh2W0u2otvajaTQJIwId9DmyAVkJWRh3zBJDuzfD7S2YmPxRsQ1A1E1raR0JD5ITKQcM4DSEhzKAYkGFiYvBACsL1qPhx8Gsht+AvQWJAUnI8BDGshKyJJ5i3srtpYSDXi6wAOArPgsORyL/fuxq2wXrMyKC8ulqsEzlIXTqlVE7mVlwO23q2hAHY7Oy8Pk2MnQ6/QobS7FjtwTVIA3gQy786SSFZ7QAF80bS8lb/C+in2wMAuGBg09JTlwKE5Sw0eOAB0d2Fa6DcMbgKgaM6VbzJwJgGQg30T04IPAgQOqgWx2yPMF5/aT2/HQQ8Duym2AoRvRATHwL5c2a7l5D6bFTYOvwRdVrVU43kDlab47TrzF+cMTzE2ai5389u3YgR9LfkSXpQvnVko0MFuhr0cfJXu0pMRGDkREUCcWADh2DFkJWfAz+KHSXIkfc/JJDiRvAAAskUrXeEIDZw0/CwDxFkBeawuzIDksGYmh7vHUzwlh2PUD/Hz8kDg6EyeDqUBry/bN2HlyJ+ZyT8XkyZq2CLfdRk2hOzqAiy6SI5d2OWZzhxFzfZu7BY8/zoAUIr6zR54FHa9u7yYx+/v4Y2YiCZaNRRth7jJjdxmtWOcN93yFsihlEbZIC0a2ZQt+PPEjwIBzCqR4s0qpm0zAW2+RrfPee8Df/qYaSHUPgnyDMGfYHADArx5ah5qGdujiaa7jOqXwpgfMfH7q+QCAtQVrYbFaZAPPU28dQAnpCeNnod4f0HV1wbxtE34q/QkLeY3OzEyoq8euWEHN6ru6gAsvJAcVADuBzo37/2V/jb+tsgDpXwAAzhoxHzrel9VNpR5gDJC9lt8e/xb17fWygXPuyHPdvHIFMxNnysY927sHX+d/TXMtldIGVDQQFASsWUM08N//KosdAJowjJ+Pn5wP9as/bUGtuQFIIE/olG7JNeSJYSfx1uYTm8EYww+FPwAAFiUvcqt+mxr+Pv5IHDeT5IDFgrZtm7GnfA8W8bqykydDXT325pspLN/ebiMHbGhgUcoiAMDa3PVY9YQVGEbPakHyHKXLhZs0EOQbJBtw3x77Fu3d7bK35lQMu/NTz8c26XGwTRvJY8mARVwOnH22fK6tHHBGA8F+wbIX8fI/f4nqpiboEsmwG9cp8ZQHNLBg+AIAwNcFX8NiteDLfMqpOhU5aDKaMCR9CmpMRANNu7diy4ktmF8snZCRodEFv/mNkp5z0UUO5ICkC7jM/vrIJvxtlRVI+woAcEHquaekC/hCbsuJLWhob5DTR84ZeY57F67CnGFzsFNad7OdO4m3GLCgWDJPVIZdUBCFYh3KAZWjw9/HX440LP/zJtQ0NwNxRK8TOsPoPDd5AAAWptCiaUPRBjDGsPkERa+4fBgoEIZdP+Gs5LPkcGzxuvdhYRZcK1UZx6JFmnP1emD1alqtnjgBLFggFetXV9zu7kZmfCaMOj80WMqBhJ2IyqJEhPPDMsgqdDOvRD1XgATaNwXfwMIsGBY6TC7a6QmyErKwbyTlZrGdO/DZwQ8wrhqIrG2jbhsLFmjOnz1bWa3++c/A449LqzUbr+XsWDI0Sv2/QVDmR2CGLgwPG04eEMAjgT4zcSZC/UJR116HHSd3YPWh1QCAC9MudHssNS4adTF+oLaGOPb+i+i0dOLSMknx2NAAzzNMSwNKS8nmKSqC4rErLAS6u7EgeQFM+jA0WaqApK0InfExAOCqpCVKHNsDgbZs9DIAwHuH3yMDl1kwbsg4uS+jJ5gzbA5yhxENWLb/hO9yv0JaLTCkSuup4Jg9G/jnP+nvBx90QAOSYTMzhu5dSegahExaD+isGB01GmHVUq0TD2iAewDKW8qx/eR2rDtOvMWNKE8xP3mBbNgc//pdWJgF1xRKOYsXXKA5V68n43bkSJIDCxdKcoDTgFTuIjMhE746E5otNcDQvYiY/T8AwNlh0yBXOk5IcHuu3Ihfd3wdPs75GF0W4q1ToYGZiTOxK50MF7ZtGz7a+w7G1ACR9e0kB+bM0Z4/0wkN2ORYLUy4CABwMvBzBE77FMzQiTHRYxBTJ4UhPTHskhcgzD8MVa1V2Fa6DR/lfARA4Q1PsWzs5dguPY7CD16BhVmwTCqgi/nzNefqdMAbbxDJl5TQxxo5UFwMdHVh3rB5CNCFoK6nBEj6EeGZZNhdGjGbVod6vUe6YHHKYgDAmuw1+KHwB1gZlVniRbw9QVZCFvYlUXqMdddOfJf/DcZXAUOqWsgbO1drNM2Zo/VcrlrlmAYyhswHAJSavkDI5O8AvQUjwkcgrMb9HbHquZqMJlS3VmNvxV58evRTAMD84fPdHuvnhDDs+gk3TLoBm5Nppd/2/rswdQELciWhe/nldudHRADff0+0WFAATJkCvPBZAvUQ7OlB4YZi3PKbAHTvu5q+cOMM1BqyEeATgIVGSfHFxLiVV8Jx+ZjLoYMOXxd8jSs+vgIAsHxCH12T+4DRYMTIrPNRFQjoO7sQcagAlxVKc1u40GETz9/+FvjLX+jvP/+ZmqWXmoiZLTl5WLMGeOV35F1D6jfoPoeaIN44+UboeJ0wD5jZaDDKSu38/56PosYiBPsG45LRl7g9lhoXjboI66TNbD1rv0JgJ7DwqKR4FtkbDBERlDQ8fDjp8MmTgRc+iQMzmQCLBYXri3DTCl+07b0YAOB33WVo0hchwCcAi32lIqahoXCph5ANrhp3FQDKAVu5biXNP/0it8dRw2Q0YdTCq1AeBPi0tGLYrnxcmy15v845x+E877jDngZOBhIN9Eg08NbKGwCrHkjZgOZziZfOTz1f8VZ5QAMBxgBcPZ54a9Ybs3C4+jDd1xGL3R5LjSvHXontkp1d9/n78O8GFuRLuVVLl9qdHxEB/PADXUJeHqWivvhFIpifH9DVhaJNJ3DjDb7oOryEvnBzBur1eQjxC8HSQCkPasgQ560Ke4Hac33dZ9cBAG6acpPHHkuAeCtlxnk4GUxyICG7BFccl+TA3LnUUcAGjmjghL8kB3LzsHo18PLd0r0b8QP059N26mvGXaN4rT2gAV+Dr0zzl314GYobi2EymnBe6nluj6XGVeOuwhe8tu/nnyKoE1icLZVksTHuAYo4rltHIcmCApIDL/4vFiwoCLBaUbS+ELf8JgDte4n2jdcvRYO+AEa9EfMNUtpAXJxbucYcN0y6ATrosKFoA6799FoAwPkjz3d7HDVMRhMmnXUN6v0BQ2sbYnbl4Mo8qYWeEzmg1gV/+hPdprJA0nM9uflYswZ4+/fXAEwHpK2V5cAVY6/w2GsNEA0sSSXemv7qdBytPYoQvxBcOvpSt8f6WcG8FE1NTQwAa2pq6u+pOMXyl89m3TowBrBn5vkyBjCWksKY1er0O2VljGVm0qkAYwcwgTGALcGXdCzmEMPDkF9//P6PjH36KZ2ckeHxXK/86Ep5zIDHAli1udrjsTiOVB9hb0+kC/ksHaxuSDDN85VXev3eyy8zZjTSqYvxLWMAO4LR8j0JuuEKea6GvxpYWXMZY9On04effurRXHeX7WaGvxrkcW/64iaPxrHF8n/OZwxgFoD9Y5aO5piaypjF4vQ7paWMZWXZ08D5+IqODdusoYEVn61gbO1aOnn8eI/nuuidRfKYgY8HsmN1xzwei2N76Xb2XCZdyH/HgdXEhtI816zp9XsvvsiYnx+duhSfMQawPZgq35PAmy6Q5xqyKoRVtFTQtQOMrVvn0VwPVByw563TgFtfWsJ6JDnwr5k+NMfExD7lQEaGQgOHMI4xgJ2LtXRsyGGme0gvz/Xedfcy9vnndPLUqR7P9YqPFN7yecSH7uspYk/ZHvbWJKL998aCNUSYaJ5vvNHr9156SZED87GBMYDlY6R8T0w3naeZa2F9oSI8P/nEo7luLnbAW6cBlz0/m1mkia9aIF1UenqvNHDypFYO7MEUxgB2IT6nY4nbNHO9+5u7GfvoIzp55kyP53r+mvM1vFXeXO7xWBwHKg6wf02nC/k0HawmPpzm+fbbvX7vxRcZ85VU5yX4H2MA241p8j0JXrFMI7NqWmsYmziRPly71qO5Hq46zHQP6+Rxf/ft7zwax124Y9MIw64fUdRQxLZNjFQ4E2Ds0Uf7/F53NxF0WhpjH+ByxgD2e/1T7NxzGdu+nbEHfniAxT0dx8a/NJ7VtdUx9s9/0tjLlnk81/zafJb2rzSW8EwC++eOf3o8ji2e/c8K7fXHxzPW1tbn944eZezKKxlL8ytmDGCdMLLhCd3s0UcZK6g8yeKfjmdxT8ex1QdX0xdiYmj8vXs9nuuTW59keBjsovcuYvVt9R6Po0Ztay3blmbS3oPnnuvze11dpNjS0xn7EMsYA9g9umfYkiWM7djB2L93/5sZ/mpgC99eyNq62uhkgLGlSz2ea3lzOct6LYsZHzGyj4987PE4tvj41Xu11x8SwpjZ3Of3cnIYu+oqxiYYcxgDWBOCWXyclT32GGM55UVs/lvzme5hHXtt72v0hdBQGj8nx+O5Prj+QTb0qaFs/EvjTxsN5NXmse8mBWvvwdNP9/m97m7GXniB5MBHuIwxgN2rf5addx7RwB++/wMLWRXCFry1gAywF16QNOAlHs+1tKmUxT0dx+KfjmfvHnzX43Fs8fYrd2ivPy6OsY6OPr+Xm0tyINmvjDGAdcPAkuM72WOPMVZSW8NSn09lwX8LZp8f/Zy+cBrkwEu7XmKGvxrYoncWsdauVo/HUaOipYLtSbOhgSee6PN7XV0KDbyHK0kX6J5i559PuuCFnS8w0+MmNvWVqSQHnnqKxr7qKo/nWtSg8Nab+9/0eBxbvPX6Xdrrj45mrLGxz+9xOTDR5zBjAGtECEuIJzmwr+QoG/fSOBb7VKyit8Ilo/HwYY/nev9397PwJ8LZvDfnscqWSo/HcQfCsGO/DMOOMcbY7t0KoWVmEqe6gZZ7/swYwLpuuNn5Sb//PY1/zz2nONmfCcuWKcz85ptufbWjzcIsfv6MAcyaXyAf77Z0Mytf7ba3K+NXn5qnsbmj+ZS+7wgdeTnMGhhI85s8mbFm936j5e4/kVK76TbN8bq2OuUe3HcfjX/XXac0V6vVyhraG05pDAeDsp6bfkPz0+sZ++wzt77e2dzBrHo90UC51oNksUqez8ZGhQZaWk7XzE8f9uxhLDhY8aq6IQesVsbMEg10/eZW5yf+4Q+nhQYsVotCV6cRXdctV57RW2+59d32NiuzBAYRDRxRDPf27nYyaBhjrLVVGb/+1Izy2tba034PrDk5zBIZQfObNcttOm255/9IDqzQ6oL27nbW1SPR012S8XT//ac8X3nM04mrr1aekSdyQKdzKAdktLQo4w9028AG7tg0Pv0ZBhYAMG0aJct88QVwySVu5z0ETaHkDGOhfdNrGaeQW3RG8O67VKQqIIDuhxvwC9ADaalAdjZ0+XlAKiWt+ehVpF1cTO9BQUCUe/0cbRHs535+Wl/wSxsN/PgjbYK5+GLaOOAGgiZR4rRPobYkfURAhPIPvwfJyacwU0Cn0yHMP+yUxnAwKAyvvAqcfS4QHa3ZDesKfIOlcheFhUQDQ2Plz/Q6KY2Y51ZFRGh2GQ4YTJ1KiZM7d9JOSDfkgE4HBE6lHErj8aPOTzyF3CI15Ht6mmF85VXgwosogTjFvQ0Z/gE6YFQ6sHcv0cCY0XTcR5VLyHkgNBQID7cfxA1EmiL7PslN6EaPhu6n7cCmTcC11zrML+wNQVMox8xWDmjuAacBN2vYOYLR4H6OXp9Yswa49VZqk7jYvfxVWQ4UFdnJARlcDoSGaqoOeBuEYTcQEB1N+9g9gc02d4cY6Iadg91vbiE9nUqr5+dTJrUtCqX6ESkpLje9PuOYPJlensBmV6hDFBXR+ykadj8bdDpg2SnsLkxPp+ecn+/YMDxNRs3PiiFDqJaNJ7DZEegQx6n2mLtG0xmDv/+p08Devc7vAZcDA5UHAOJlzs/ugu+M7U0ODHRdoNPZ7YJ1C+npJOvy8n65cuA0QOyK/aWDC/SKCqq87ghcqZ+GVdqARF9KTW3YeSO4QC8pUcpZ2IJ7K3ghV29DXwucga7QThWuyAFv54O+5MBAX9ycKrgckLovOMQJqViqt/OBMxrgixveY9tLIQy7XzpCQ5W+l46UWksLUFVFf/NG0d4Gm1p2duAKzVuZOSqKOjAAFM6zhdkM1EqdRwarYcdpwFuvPzSU2mQBjvmguVmhAW/lg8Fu2EVEKKkmjuRAaytQV0d/D1bDjt8Xb+UBCcKw8wb0ptQ4IUdHk/D3Rth04LCDt3sqdLrewzDcWxce7r000Jdxz2nD0zDXLwG9KTXuqYiO9qiO4S8Cg92wA3qXA5wGwsKUhaC3oS9dwPWhtzo5JAjDzhvQm0AbDITMlbXUCN4O3m7YAa4Z94Ph+o8fB3p67D/nio4rPm/EKKkI9VEHGygGQwiKP9u6OsUzpQY37AYDHziSA/wY1xfeCH5thYXUYcMWg0EfQhh23oHeVimDgZDDw8kTAdjfA8YGl2HnyLjnx7xZoCck0C7Cnh7FQ8lhtSqGjTcbdq547LzZsAsMVJLibe+B1aoY9958Dzh992bYebPXOi6Odr1bLIrc57BavT8tR4Iw7LwBvSn1wWDYAc6VWkUF5Zbo9d67eQQAxoyh98OH7T/jHhzu0fFG6PXOlVppKZVPMBq9N7cIUHhgsHrsAOdyoLQUaGsjGvDmezDYF3g6nfN7UFZGcsDHx7vlAIRh5x1Qe+wY03422Aw7W6V+5Ai9p6Z61Cf3F4MJE+j9yBFaraoxGAw7QBHoOTna49xTk5Lido3AXxT48y0ocE4Dg0UO2Cr13Fx6T031bhoYO5beDx8mD5Uag8FjBzinAa4Lk5O9mwYgDDvvQEoK4OtLnil1GIoxrUDzZjhjZm7YcYHnrRgxgkKR7e3aEARjg8ewmziR3g8e1B4fDPl1AHmk/fzIK8HLuwBEA9nZ9Pf48f0ztzOFvgy70aPP7HzONNLSiAZaW+1DkYPNsOPPnINHM7zZYylBGHbeAKNREdj79inHKyuBmhoKU3m7YcOFlW0YijOzt1+/waCEYw8dUo5XVwONjdqds96KSZPoff9+7XFu1Hi7UjcYFKWlpoGyMqIBg8H778FgN+x8fIBx4+hv9QKnthaor6e/vd1ry+WAWhcCyv3gC0AvhjDsvAVTptC7mpgPHKD39HTAZDrjUzqjUIciOzqU49xjx4WdN4PfA27IAIpCS06myv7eDN654+hRbaFmzhOcR7wZvCXf7t3KMU4P6enenY4AKIbdsWNAd7dynIfnvd2wAxTDhst/QOGBESNok4k3Y+pUej9yRCsH+GJHGHYCvxhwpbV3r3KMMzZndG/G8OHUkqm7W/HYMDZ4QrGAYtipjftdu+h9EAgzxMXR7miLRfHU9vQoK/XBYNhNn07vjgw7bw/DArQrNjyc5ACXf1arQg/cq+3NcJSSsGcPvXP68GbEx5MusFiUe6CWCYNAFgrDzlug9tjxDRScqAeDYafTAZmZ9PfOnfR+7BjVtfP19f4wJADMnEnvW7cqidM7dtD7jBn9M6czCZ1OoXW+wDl6lDy4wcHeH4ICFMW9Z48iB7inYjAYdnq9wgfbttF7Tg7Q1ESeqsHgueee6507FRrghh336HozdDrFa8flQEEBee9MJu/eFS1BGHbeggkTKNeupkZJFudEPRgMO0Ax7Lgxs3EjvWdlkXHn7Zg8mZRXQwN5KhkDtm+nz7Ky+nduZwpcqW/YQO/cezl5Mil9b8f48UTr9fVU4oQxYMsW+mwwKHUAmD2b3rdu1b5nZXn9bkgAZNwHBFB+LY9YDCaPHaDQOpd/3IM9fjzlmno5BoGkGyTw9wfmzqW/v/6avFXHjpEgy8jo37mdKXDj5ccfyWPFlftZZ/XfnM4kjEbFsNmyhXZGVlYSDQwWpX7OOfT+ww8UfuHG/WC5fl9fRXl/+y1tIigtpdy6OXP6d25nCrNm0fu2bWTYcs8dN/i8HX5+ii5Yv542z5SWkieLe/O8HVzmf/MNpWOsXUv/L1zYf3M6gxgEy5dBhAsuIEb+6ivFBT9vnvf2BbTFrFnUC7W8HNi8WVHqCxb077zOJObOBb7/ngSZTkfHJk2iFfxgwPTpRO8NDaTQP/uMji9d2p+zOrO45BK69o8+UurZzZnj/RuoOLjHqrKSvHWbNtHxwWLYAWTAfPstyQJOA1lZ3tsn2BazZwMREeS53rIFWLeOji9Z0r/zOkMQHjtvwoUX0vvGjcBjj9HfF13Uf/M50/D3By6/nP6+4AIKRZhMSoh2MOCKK8igW7sWuOMOOnbttf07pzMJHx9g8WL6+8ILqcxHbOzgUurLltH75s3AX/9Kf599dv/N50zD3x+46ir6e+5c4ORJUvLcmz0YcO659P7118Dvfkd/X3dd/83nTMPHRzHirriC5EBk5KDRBcKw8yaMGEEuaMbIY+HrC1x8cX/P6syCGzFtbfT+u995f4kHNdLStMZ8UBDw61/323T6BVyRNTfT+xVXDIq8GhnDhilh1/p6ICQEuPrq/p3TmQZf1HCsXDl4PJYA5ZJdconyv68v8cFgwvXX03tdHb1fffWgkQMD1rDLy8vDBRdcgKioKERHR2P58uVoaGjo72kNfKxeTWUfjEbgww+VptiDBXPmkLfSaKSaVX/8Y3/P6Mzj4YeBmBhS6A8/TO+DCZmZwB/+QH+fey7dg8GGd9+lTiN6PfCf/wAJCf09ozOLqVOB22+nzUTJycCdd/b3jM48/v53SkuIiiIaiIjo7xmdWSxcCDz+OP09Zw7w5JP9O58zCB1jts1FBwZ27dqFo0eP4qKLLoKPjw9uuOEGBAcH4/XXX3fp+83NzQgNDUVTUxNCBptia26mrd0xMf09k/4D91h6ezFOAcdgjEJwCQlKruFgQ1cX5Zl5ecPzXmGxkHE7WGmgtZUWuYOhKoAzHD9OdU5/4d46d2yaAWvY2eL777/Hvffei2x1VX0VOjs70dnZKf/f3NyMxMTEwWnYCQgICAgICHgN3DHsBmwo1hY//fQTxvbSPWDVqlUIDQ2VX4mDLQQpICAgICAgMOjxi/DYHThwAAsXLsSWLVucGne2HrumpiYkJSWhtLRUeOwEBAQEBAQEfrHgUcjGxkaEhob2fjLrJyxevJj5+fk5fD366KPyeYWFhSwhIYF9+umnbo1fWlrKAIiXeImXeImXeImXeHnFq7S0tE/7Z0B77CorKzF79mzcf//9uPnmm936rtVqRXl5OYKDg6H7GRNnuRUtPIMDD+LZDEyI5zJwIZ7NwIV4NgMTZ+q5MMbQ0tKCuLg46PtojzhgO080NTXhnHPOwXXXXee2UQcAer0eCWdwi39ISIhgtgEK8WwGJsRzGbgQz2bgQjybgYkz8Vz6DMFKGLCbJz777DMcOnQITz75JIKCguSXgICAgICAgICAYwxYw+76668HYwxms1nzEhAQEBAQEBAQcIwBa9j9UuDn54eHHnoIfoOpbdUvBOLZDEyI5zJwIZ7NwIV4NgMTA/G5DOjNEwICAgICAgICAq5DeOwEBAQEBAQEBLwEwrATEBAQEBAQEPASCMNOQEBAQEBAQMBLIAw7AQEBAQEBAQEvgTDsTgE1NTVYsmQJTCYT0tPTsX79+v6e0qDFQw89hDFjxkCv1+P999/XfPbEE08gOjoaERERuP/++yH2C505dHZ24oYbbkBCQgJCQ0Mxf/58ZGdny5+LZ9O/uPnmmzF06FCEhIRg/Pjx+Oqrr+TPxLPpf2zfvh16vR5PPPGEfEw8l/7F/Pnz4e/vL9fWPe+88+TPBsyzcasBq4AGl19+ObvxxhtZa2sr+/TTT1l4eDirr6/v72kNSrz77rvsu+++Y5mZmey9996Tj3/99dcsKSmJHT9+nJWXl7PRo0ez119/vR9nOrhgNpvZI488wkpLS1lPTw97+umnWUpKCmNMPJuBgNzcXNbR0cEYY2zXrl0sNDSU1dfXi2czAGCxWFhmZibLyMhgq1atYowJnhkImDdvnkbHcAykZyM8dh7CbDbj888/xyOPPAKTyYSLL74Y48aNw5dfftnfUxuUWL58ORYvXgx/f3/N8XfffRe33347UlJSMHToUPz+97/H6tWr+2mWgw+BgYH4v//7PyQkJMBgMOC3v/0tioqKUFdXJ57NAMCoUaPk+ls6nQ4dHR2oqKgQz2YA4D//+Q8yMzMxevRo+Zh4LgMXA+nZCMPOQxQUFCA0NBRDhw6Vj02cOBFHjhzpx1kJ2CInJwfjx4+X/xfPqH+xfft2xMTEIDIyUjybAYLbb78dAQEBmD59Os4991yMGTNGPJt+Rn19PZ577jk8/PDDmuPiuQwM3HnnnYiOjsbixYtx6NAhAAPr2QjDzkOYzWa7hr8hISGi7dkAg+1zEs+o/9DU1IRbbrkFjz/+OADxbAYKXnrpJZjNZnz//feYN28eAPFs+ht/+tOfsHLlSoSHh2uOi+fS/3jyySdRVFSEkpISLF68GOeff77c8nSgPBth2HmIoKAgNDc3a441NzcjKCion2Yk4Ai2z0k8o/5BR0cHLr74YixZsgQrVqwAIJ7NQILBYMCiRYuwfv16fPvtt+LZ9CP279+PXbt24aabbrL7TDyX/kdGRgaCgoIQEBCA+++/H0FBQdi1a9eAejbCsPMQqampaGpqQmVlpXzs4MGDGDt2bD/OSsAWY8aM0ezCFM/ozKOnpwdXXXUV4uLi8NRTT8nHxbMZeLBarTh+/Lh4Nv2IzZs3Iz8/H/Hx8YiNjcUHH3yAxx9/HDfddJN4LgMQej2ZUQPq2fTLlg0vwbJly9jNN9/M2tra2Oeffy52xfYjurq6WHt7O5szZw575513WHt7O7NYLOyrr75iw4YNY4WFhayiooKNHTtW7CI7w/j1r3/Nzj77bNbV1aU5Lp5N/6KlpYWtXr2atbS0sO7ubvbxxx8zf39/dujQIfFs+hGtra2soqJCfl1xxRXswQcfZA0NDeK59DMaGhrYd999xzo6OlhnZyd75plnWExMDGtqahpQz0YYdqeA6upqdt5557GAgACWmprKvv/++/6e0qDF9ddfzwBoXhs3bmSMMfa3v/2NRUZGsrCwMHbfffcxq9Xav5MdRCguLmYAmL+/PwsMDJRfW7ZsYYyJZ9OfMJvNbMGCBSw0NJSFhISwKVOmsE8++UT+XDybgYHrr79eLnfCmHgu/Ynq6mo2depUFhgYyMLDw9mCBQvY3r175c8HyrPRMSaqGwoICAgICAgIeANEjp2AgICAgICAgJdAGHYCAgICAgICAl4CYdgJCAgICAgICHgJhGEnICAgICAgIOAlEIadgICAgICAgICXQBh2AgICAgICAgJeAmHYCQgICAgICAh4CYRhJyAgICAgICDgJRCGnYCAwKBGSUkJoqKiftbfKC4uhk6nQ1BQED777LNez/3f//6HoKAg6HQ6TS9qAQEBAVcgOk8ICAh4PYKCguS/W1tbYTKZoNPpAAA5OTlISkr6WX+/uLgYo0aNQkdHh8vf0el0qKioQGxs7M84MwEBAW+DT39PQEBAQODnhtlslv/29/fHkSNHMHz48P6bkICAgMDPBBGKFRAQGNQoLi6Gv7+//L9Op8PLL7+MpKQkREVF4YMPPsBXX32FlJQUDBkyBB988IF8bn19Pa655hoMGTIEKSkpePvtt13+3R07dmDy5MkIDg5GbGwsnnnmmdN6XQICAoMTwmMnICAgYINt27YhPz8fX375JW699VYsXboUhw8fxvr167FixQosW7YMBoMB1157LcaNG4fS0lIUFRXhrLPOwqRJkzBx4sQ+f2PlypW47777cM0116ChoQHFxcU//4UJCAh4PYTHTkBAQMAG999/P/z9/XHppZeisbERt99+O0wmEy688EK0tLSgvLwclZWV+PHHH/G3v/0Nfn5+GDVqFK655hp88sknLv2G0WhEXl4e6uvrER4ejsmTJ//MVyUgIDAYIAw7AQEBARsMGTIEAGAwGGA0GhEdHS1/5u/vj9bWVpSUlKC1tRWRkZEICwtDWFgYXnnlFVRVVbn0G6+99hpyc3MxcuRIzJw5E9u3b/9ZrkVAQGBwQYRiBQQEBDxAfHw8wsLCUFdX59H309PT8eGHH6Knpwf//ve/sXz5chw/fvw0z1JAQGCwQXjsBAQEBDxAfHw8pk+fjr/85S9oa2tDT08P9u3bh5ycHJe+v2bNGtTV1cHHxwfBwcEwGAw/84wFBAQGA4RhJyAgIOAh1qxZgxMnTsg7ZleuXIn29naXvrt27Vqkp6cjODgYzz//PN58882febYCAgKDAaJAsYCAgMDPjBMnTmDUqFHw8/PDO++8g6VLlzo995NPPsGKFSvQ0dGBEydOICYm5gzOVEBA4JcOYdgJCAgICAgICHgJRChWQEBAQEBAQMBLIAw7AQEBAQEBAQEvgTDsBAQEBAQEBAS8BMKwExAQEBAQEBDwEgjDTkBAQEBAQEDASyAMOwEBAQEBAQEBL4Ew7AQEBAQEBAQEvATCsBMQEBAQEBAQ8BIIw05AQEBAQEBAwEsgDDsBAQEBAQEBAS/B/wNBslcF5GmZ+gAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "T = np.linspace(0, 50, 500)\n", + "U1 = np.cos(T)\n", + "U2 = np.sin(3 * T)\n", + "\n", + "resp1 = ct.forced_response(sys, T, U1)\n", + "resp2 = ct.forced_response(sys, T, U2)\n", + "resp3 = ct.forced_response(sys, T, U1 + U2)\n", + "\n", + "# Plot the individual responses\n", + "resp1.sysname = 'U1'; resp1.plot(color='b')\n", + "resp2.sysname = 'U2'; resp2.plot(color='g')\n", + "resp3.sysname = 'U1 + U2'; resp3.plot(color='r');" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzddVhU2RsH8O8MNXSJhKSICKIYaxd2rYoda/eqayvq2mt3d7eumNidGNgiJYKCoHTnzLy/P2aZnyjNzNwRz+d5eB6de+4578yFmXfOPcEjIgLDMAzDMAzz0+NzHQDDMAzDMAwjGyyxYxiGYRiGKSNYYscwDMMwDFNGsMSOYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgygiV2DMMwDMMwZQRL7BiGYRiGYcoIltgxDMMwDMOUESyxY5ifUGhoKHg8Hl6+fMl1KD+N+fPnw9TUFDweD2fOnOE6HJm7ffs2eDweEhISSlWPra0t1q1bJ5OYfoZ2GaasUeU6AIZRJoMHD8b+/ft/eDwoKAiVKlXiICJGFvz8/LBgwQKcPn0a9evXh6GhIdchMd95+vQptLW1uQ6DYX56LLFjmO+0a9cOe/fuzfWYiYlJierKysqCurq6LMIqNWWKRdGCg4MBAF26dAGPxytxPdnZ2VBTU5NVWAz+/3tZ0r8xhmFyY7diGeY7GhoaMDMzy/WjoqICALhz5w7q1q0LDQ0NmJubY8aMGRAKhdJz3dzcMG7cOEyePBnlypVD69atAQC+vr7o2LEj9PT0oKuriyZNmkiTDQDYu3cvnJycIBAIUKVKFWzZsiVXTE+ePEHNmjUhEAjw22+/4cWLF4U+D1tbWyxatAiDBw+Gvr4+RowYAQB4+PAhmjZtCk1NTVhZWWH8+PFITU2VnrdlyxY4ODhAIBDA1NQUPXr0+OH5jRs3DgYGBjA2Nsbs2bNBRNIy8fHxGDhwIAwNDaGlpYX27dsjKChIenzfvn0wMDDAlStX4OTkBB0dHbRr1w6RkZHSMrdv30bdunWhra0NAwMDNGrUCB8/fpQeP3/+PGrXrg2BQICKFStiwYIFua7Dt+bPn49OnToBAPh8vjSxE4vFWLhwISwtLaGhoYEaNWrg8uXL0vNybnefOHECbm5uEAgEOHToUJ5tJCQkYOTIkTA1NYVAIICLiwu8vLykxz09PVG1alVoaGjA1tYWq1evznV+XreHDQwMsG/fvlyxHDt2DA0bNoRAIEDVqlVx+/btPOPJUdi1joqKQqdOnaCpqQk7OzscPny4wPqAgq/N/PnzUaNGDWzfvh1WVlbQ0tJCz549c90eHjx4MNzd3bF06VJYWFigcuXKAH68Fcvj8bBr1y507doVWlpacHBwwLlz53LFcu7cOTg4OEBTUxPNmzfH/v37C70dzePxsH37dvz+++/Q0tKCk5MTvL298f79e7i5uUFbWxsNGjTI9fcZHByMLl26wNTUFDo6OqhTpw6uX7+eq96C/m5OnjyJatWqQVNTE8bGxmjVqlWu68AwMkUMw0gNGjSIunTpkuex8PBw0tLSojFjxpCfnx+dPn2aypUrR/PmzZOWadasGeno6NC0adPI39+f/Pz8KDw8nIyMjKhbt2709OlTCggIoD179pC/vz8REe3YsYPMzc3J09OTPnz4QJ6enmRkZET79u0jIqKUlBQyMTGh3r1709u3b+n8+fNUsWJFAkAvXrzI97nY2NiQnp4erVy5koKCgigoKIhev35NOjo6tHbtWgoMDKQHDx5QzZo1afDgwURE9PTpU1JRUaEjR45QaGgoPX/+nNavX//D85swYQL5+/vToUOHSEtLi3bs2CEt07lzZ3JycqK7d+/Sy5cvqW3btlSpUiXKysoiIqK9e/eSmpoatWrVip4+fUrPnj0jJycn6tevHxERZWdnk76+Pk2dOpXev39P7969o3379tHHjx+JiOjy5cukp6dH+/bto+DgYLp69SrZ2trS/Pnz83wdkpOTae/evQSAIiMjKTIykoiI1qxZQ3p6enT06FHy9/en6dOnk5qaGgUGBhIRUUhICAEgW1tb6bX5/PnzD/WLRCKqX78+Va1ala5evUrBwcF0/vx5unjxIhER+fj4EJ/Pp4ULF1JAQADt3buXNDU1ae/evdI6ANDp06dz1auvry8tkxOLpaUlnTx5kt69e0fDhw8nXV1diomJISKiW7duEQCKj48nIir0WhMRtW/fnlxcXOjhw4fk4+NDDRs2JE1NTVq7dm2er2Vh12bevHmkra1NLVq0oBcvXtCdO3eoUqVK0mtLJPkb09HRoQEDBtDbt2/pzZs3RCT5ff223Zzne+TIEQoKCqLx48eTjo4OxcbGSl8TNTU1mjp1Kvn7+9PRo0epQoUKuV6DvACgChUq0PHjxykgIIDc3d3J1taWWrRoQZcvX6Z3795R/fr1qV27dtJzXr58Sdu2baPXr19TYGAg/f333yQQCKTPu6C/m4iICFJVVaU1a9ZQSEgIvX79mjZv3kzJycn5xsgwpcESO4b5xqBBg0hFRYW0tbWlPz169CAiolmzZpGjoyOJxWJp+c2bN5OOjg6JRCIikiQ+NWrUyFXnzJkzyc7OTprYfM/KyoqOHDmS67F//vmHGjRoQERE27dvJyMjI0pNTZUe37p1a5ESO3d391yPDRgwgEaOHJnrsXv37hGfz6f09HTy9PQkPT09SkpKyrPOZs2akZOTU67XwMPDg5ycnIiIKDAwkADQgwcPpMdjYmJIU1OTTpw4QUQkTbLev38vLbN582YyNTUlIqLY2FgCQLdv384zhiZNmtCSJUtyPXbw4EEyNzfP97U4ffo0ff891sLCghYvXpzrsTp16tCYMWOI6P/J1Lp16/Ktl4joypUrxOfzKSAgIM/j/fr1o9atW+d6bNq0aeTs7Cz9f1ETu2XLlkmPZ2dnk6WlJS1fvpyIfkzsCrvWAQEBBIAePXokPe7n50cA8k3sCrs28+bNIxUVFQoLC5M+dunSJeLz+dKEetCgQWRqakqZmZm5zs0rsZs9e7b0/ykpKcTj8ejSpUtEJPm9c3FxyVXH33//XaTE7tt6vb29CQDt3r1b+tjRo0dJIBDkWwcRkbOzM23cuJGIqMC/m2fPnhEACg0NLbA+hpEVNsaOYb7TvHlzbN26Vfr/nAHdfn5+aNCgQa4xWo0aNUJKSgrCw8NhbW0NAPjtt99y1ffy5Us0adIkz7FZ0dHRCAsLw7Bhw6S3SgFAKBRCX19f2q6rqyu0tLSkxxs0aFCk5/J9LM+ePcP79+9z3XIjIojFYoSEhKB169awsbFBxYoV0a5dO7Rr1056KyxH/fr1c70GDRo0wOrVqyESieDn5wdVVVXUq1dPetzY2BiOjo7w8/OTPqalpQV7e3vp/83NzREVFQUAMDIywuDBg9G2bVu0bt0arVq1Qq9evWBubi59Dk+fPsXixYul54tEImRkZCAtLS1XrPlJSkpCREQEGjVqlOvxRo0a4dWrVwW+ht97+fIlLC0tpbcUv+fn54cuXbr80M66desgEomkt/mL4tvrrqqqit9++y3X6/qtwq51YGCgtI4cVapUgYGBQb7tF3ZtAMDa2hqWlpa5YhaLxQgICICZmRkAoFq1akUa71m9enXpv7W1taGrqyv9PQkICECdOnVyla9bt26hdX5fr6mpqTSmbx/LyMhAUlIS9PT0kJqaigULFsDLywsREREQCoVIT0/Hp0+fAKDAvxtXV1e0bNkS1apVQ9u2bdGmTRv06NGDTeBh5IaNsWOY72hra6NSpUrSn5wPLSL6YeA9/Te27NvHv5/Zp6mpmW9bYrEYALBz5068fPlS+vP27Vs8evQoVxslfS7ftzdq1Khcbb169QpBQUGwt7eHrq4unj9/jqNHj8Lc3Bxz586Fq6trkZfQyC/W71+775NcHo+X69y9e/fC29sbDRs2xPHjx1G5cmXp6yEWi7FgwYJcz+HNmzcICgqCQCAoUpzftltQnMCPr+H3Crq++dX5/ev0/fMHJBM1iiK/ySCFXeu8fneLoqBrU1B8Bf2N5Cev35Ocv5mivK5FqTenjrwey2lr2rRp8PT0xOLFi3Hv3j28fPkS1apVQ1ZWFgAU+HejoqKCa9eu4dKlS3B2dsbGjRvh6OiIkJCQIsXKMMXFEjuGKSJnZ2c8fPgw14fHw4cPoauriwoVKuR7XvXq1XHv3r08P6hNTU1RoUIFfPjwIVcyWalSJdjZ2UnbffXqFdLT06XnFfRBWpBatWrB19f3h7YqVaok7UFRVVVFq1atsGLFCrx+/RqhoaG4efNmvm0/evQIDg4OUFFRgbOzM4RCIR4/fiw9Hhsbi8DAQDg5ORUr1po1a2LmzJl4+PAhXFxccOTIEelzCAgIyPM58PlFe0vT09ODhYUF7t+/n+vxhw8fFjvO6tWrIzw8HIGBgXked3Z2zrOdypUrS3vrTExMck0eCQoKQlpa2g91ffvaC4VCPHv2DFWqVMmz3cKutZOTE4RCIXx8fKTnBAQEFCmJz+/aAMCnT58QEREh/b+3tzf4fH6+PZolVaVKFTx9+jTXY98+F1m6d+8eBg8ejK5du6JatWowMzNDaGhorjIF/d3weDw0atQICxYswIsXL6Curo7Tp0/LJVaGYYkdwxTRmDFjEBYWhr/++gv+/v44e/Ys5s2bh8mTJxeYUIwbNw5JSUno06cPfHx8EBQUhIMHDyIgIACAZCbh0qVLsX79egQGBuLNmzfYu3cv1qxZAwDo168f+Hw+hg0bhnfv3uHixYtYtWpViZ6Dh4cHvL29MXbsWLx8+RJBQUE4d+4c/vrrLwCAl5cXNmzYgJcvX+Ljx484cOAAxGIxHB0dpXWEhYVh8uTJCAgIwNGjR7Fx40ZMmDABAODg4IAuXbpgxIgRuH//Pl69eoX+/fujQoUKP9yOzE9ISAhmzpwJb29vfPz4EVevXs2VGM6dOxcHDhzA/Pnz4evrCz8/Pxw/fhyzZ88u1msxbdo0LF++HMePH0dAQABmzJiBly9fSp9LUTVr1gxNmzZF9+7dce3aNYSEhODSpUvSGbZTpkzBjRs38M8//yAwMBD79+/Hpk2bMHXqVGkdLVq0wKZNm/D8+XP4+Phg9OjRed6637x5M06fPg1/f3+MHTsW8fHxGDp0aJ5xFXatHR0d0a5dO4wYMQKPHz/Gs2fPMHz48AJ7IAu7NgAgEAgwaNAgvHr1Cvfu3cP48ePRq1cv6W1YWRk1ahT8/f3h4eGBwMBAnDhxQjqLuDRL2uSlUqVKOHXqlLTXs1+/ftLePKDgv5vHjx9jyZIl8PHxwadPn3Dq1ClER0cX+wsEwxSZ4of1MYzyKmhWLBHR7du3qU6dOqSurk5mZmbk4eFB2dnZ0uPNmjWjCRMm/HDeq1evqE2bNqSlpUW6urrUpEkTCg4Olh4/fPgw1ahRg9TV1cnQ0JCaNm1Kp06dkh739vYmV1dXUldXpxo1apCnp2eRJk/kNQj+yZMn1Lp1a9LR0SFtbW2qXr26dBLBvXv3qFmzZmRoaEiamppUvXp1On78eK7nN2bMGBo9ejTp6emRoaEhzZgxI9dkiri4OBowYADp6+uTpqYmtW3bVjrTlEgyeUJfXz9XTN9Obvjy5Qu5u7uTubk5qaurk42NDc2dO1c6QYVIMjM2Zwannp4e1a1bN9fM3O/lNXlCJBLRggULqEKFCqSmpkaurq7SgflE/5+wUNBrnCM2NpaGDBlCxsbGJBAIyMXFhby8vKTHT548Sc7OzqSmpkbW1ta0cuXKXOd//vyZ2rRpQ9ra2uTg4EAXL17Mc/LEkSNHqF69eqSurk5OTk5048YNaR3fT54gKvhaExFFRkZSx44dSUNDg6ytrenAgQP5/t4QFX5t5s2bR66urrRlyxaysLAggUBA3bp1o7i4OGkd+f2N5TV5oqAJJUREZ8+epUqVKpGGhga5ublJJxWlp6fnGX9e9eZ1nb9/LUNCQqh58+akqalJVlZWtGnTplx/6wX93bx7947atm1LJiYmpKGhQZUrV5ZOumAYeeARlWIAD8MwvxQ3NzfUqFGDbf2kYKGhobCzs8OLFy9Qo0YNrsPJ1/z583HmzBnOtrpbvHgxtm3bhrCwME7aZxhlwGbFMgzDMD+lLVu2oE6dOjA2NsaDBw+wcuVKjBs3juuwGIZTLLFjGIZhfkpBQUFYtGgR4uLiYG1tjSlTpmDmzJlch8UwnGK3YhmGYRiGYcoINiuWYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgygiV2DMMwDMMwZQRL7BiGYRiGYcoIltgxDMMwDMOUESyxYxiGYRiGKSNYYscwDMMwDFNGsMSOYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgygiV2DMMwDMMwZQRL7BiGYRiGYcoIltgxDMMwDMOUESyxYxiGYRiGKSNYYscwDMMwDFNGsMSOYRiGYRimjGCJHcMwDMMwTBmhynUA8iIWixEREQFdXV3weDyuw2EYhmEYhikRIkJycjIsLCzA5xfcJ1dmE7uIiAhYWVlxHQbDMAzDMIxMhIWFwdLSssAyZTax09XVBSB5EfT09DiOhmEYhmEYpmSSkpJgZWUlzW0KUmYTu5zbr3p6eiyxYxiGYRjmp1eUoWVlNrFjuHM/KAaPQ2JRy8YQzR3Lcx0OwzAMw/wyWGLHyNTZl58x4dhLAACJsjHcUYQ5w7tzGxTDMAzD/CLYcieMzLwJDEHfLu0gTImDOCsDUf/Ow7zRffAq4APXoTEMwzDML4EldozMjJ+zFOmf3kJ0byfeL+8CTZ4QJBJi+qK1XIfGMAzDML8EltgxMhEdn4i7Z48AAEYOGwJ1NVUMHT0OAHDrzBGkZWRyGR7DMAzD/BJYYsfIxJrdxyHOTIWGoRnmjBkIAJj/1xCoaukjOyUO+05f4ThChmEYhin7WGLHyMS/J08CAOq17AhVVRUAgI6WAPY1G0qOn/HiLDaGYRiG+VWwxI4ptfikFHx4fhcAMHJQv1zH2rdvDwB4dv+WwuNiGIZhmF8NS+yYUttxwguUnQl1fRP07eCW69jofl0B8JAc8R5v34dyER7DMAzD/DLYOnZMqT0L/AwVXRM41Wn6w+bEjnaWqNL1L8SpGCI4geDCUYwMwzAM8ytgPXZMqcWb/YYKf+7B3MXL8zzu3n8YNO3r4F10hoIjYxiGYZhfC0vsmFL5kpiBoKgUqPB5aOFilWeZmlaGAIAXnxIUGBnDMAzD/HpYYseUyu23H0EkhksFfRhoqedZppqFDtLeP8bNQxuRkZml4AgZhmEY5tfBEjumVFYsnIPwDf2gEpT/rFcHUz3Eeq1G7P2juHj3qQKjYxiGYZhfC0vsmFIJePUE4owUuFbK+zYsAKiqqsDIujIA4NZDltj9Ki7ceQLnZp1QpXEHbD58lutwGIZhfglsVixTYn4hYUj7+hEAMKBL2wLLVqzsjJigl3j+8qUCImO4tvnwWfw1uDdIKNlKbtzDKwj4sAYb5kzgODKGYZiyjfXYMSV25OxVAICOmR3src0LLFujhisAIDjAV+5xMdwK+xqDyWNHgISZMLavDivXxgCJsXnJbPh/+sp1eAwjVzcevYBjo/Ywc66DPuPnQCwWcx0S84tR+sRu3rx5cHZ2Bp/Px7Fjx7gOh/nGtZu3AQCONeoWWtatQR0AQOzHIPZGV8YN+GsmshKjITC2gN/Tu/jgcxv2TbvBtM8SbLgXznV4ciUWE9chMBy69tQXrZs2QODDy/jq54PjGxehRqvu7D2PUSilT+wcHBywfv161K1bePLAKJbfi8cAgBbNmxVatl2TOgCPD2FaIt4Ehco5MoYrSRnZCNNxhqZ9HcxcsAwmhvpQVVXBheP7oG5aEZfefkFoTCrXYcrcDb+vaLfuLuxnnIWxfXV4Xr3HdUiMgiWmZ2Pe9S8wav0nTCrXQtMewwC+Ct7cOoN5G/ZyHR7zC1H6xK5///5o3bo1BAIB16EoRGRMPCYu2oCNh85AKBRxHU6+wr7GICn8PQDgj0LG1wGAoZ4OtEwsAQA3vJ/JNTaGO8eefIKofGU0HrsSs//sL33c0UwXzR1NQATsvvuewwhl7/jjUIw44AP/L8nIiPqIuA9v0KtTW5y69oDr0BgF2ngjCBGJGXBx64ygl9648+8utOozEgCwYv5MpKSxBdoZxVD6xK6oMjMzkZSUlOvnZ3PhzhPYVnLE+jkTMH5AV1Rp3F5pu/B9PkRBv0EvmLg2h6tjxSKd02rUfFgM2wo9O1c5R8dwgYhwwkdyq3VIIzvw+bxcx3tWN0LMhTVYPqQ1klLTuAhR5g6dv4EBHZogPSIQvX+zwvHJv6OcQw2Is9IxdNgwZGULuQ6RUYB3oV+w734QAGB+56rQ15Ss6Xli6wqo6RohKzEa89bv5jJE5hdSZhK7pUuXQl9fX/pjZZX/8hvKKCE5FX369EFWYjR4qpI3heDH1zB4+iKOI8ubXzwPBk0HYOicdUU+p1HDBlArZ4XQ+Ez5BcZw5sTle3j672bwkyLQsfqPk2lau9oh69NrZCdFY+Wun3+8bFJqGkYOHYzsuHDoBF3Bsu7V0LS6PW5dPA2+QAeJYQGYsHAd12EyCjBqyiyEbhoCixgfuDmWlz5uqKeDHqOmwbjDRLzXcuIwQuZXUmYSu5kzZyIxMVH6ExYWxnVIxTJ9/SGkfP0IVW0D+Aa+R++/ZgMAjm1fj7QM5UuEHn2IBQDUr2hc5HMqldcBALyPSpFLTAy31mzZgaRH/0L99WnoCdR+OK6mqoL6rTsDAA4fOqTo8GRu0OT5SI8Jh5qOEW6ePgQeT9JD6VLJFl2HjAMAHNy1WWl73RnZiE1IhvfFfyFKjUfH2j/evVg3dyIMXFvjVWQ63kclcxAh86spM4mdhoYG9PT0cv38LFIyhXgitoPFyB34Z9N+ONlZYdeyvyEobwtNp2bwehbKdYi5RETH4cntqxBnpKBeRaMin1deQ4TER//i5p5lcoyO4YJYLMbL+9cAAH/07ZtvuXHDBwIAQl89RELyzzuJ4lXAB5zduxEAMHr6XFiZlst1fO28KeCrayL1Syg2HDjNRYiMgsxYsQWijBQIjMwxbfiPv/vldQVo4iD5/bjw+ouiw2N+QUqf2GVnZyMjIwNisTjXv8uSo48/ISEtG46V7DFtYCcAgI6WAAv3X4Jhi2E475/AbYDf2X/qMr56/oOYw1Nhrq9Z5PMqltdFwp39iH58Dh8jo+UYIaNontfuIyshCjw1DYwb0DXfcj3aNIGaXjlQdia2HTunwAhlq++I8aDsDBjaVcWameN+OG5lWg41Wkj+lnfs3afg6JSDWCzG2/B4PHgfg5TMsjnWUCwW49j+nQCATn2HQF0t7zX/3SrqIPGxJ5ZOH63I8JhflNIndiNGjICmpibu3buHgQMHQlNTE3fv3uU6LJkRCkXYdUmybMjIphWh8s2A8661JLNIH3+IQ1qW8rwxXrp2AwDg4Fq8JWgsTIygpif55nr78QuZx8VwZ9ehfwEANtUbwFBPJ99yfD4fLvWbAwD+PXVGEaHJ3N5TV+B37wIAHjZu2ABVVZU8y40fPQK6ddyR6dgWGdnKO8NdHh6+9INxRRe0nLIJf+x6jHqLr8PzWdlbw3D7iQtIiQgGT00DK2dNzLecW2UTJNw9iK8vbuLm41eKC5Ajh87fQK22vVC5YTsMn7kMKelsRrAiKX1it2/fPhBRrh83Nzeuw5KZDYdO4cmyP5DgtRKda1jkOmZvog0LXVUkhbzEsSsPOYrwR2+eegMAmrsVvn7d94wr2AIAHj1/I8uQGI5537wMAPi9U5dCy/boKhln99b71k/X+y4SExaul/TQVGvhjj9+b5Fv2QGdWsKl6ziIjOxwO+DX6aF+4RcMt6ZNkPDRD9mfXqKcjjpSs0QYs3wP/py3huvwZGrVmvUAANfmnWFjYZJvORtzE5R3kKwGsPfEGUWExgmhUITmvUdiQOdWeHH1XwR5X8H+revQd8cjJKZlcx3eL0PpE7uybtuO3QAIDjbm0FLP3Y3P4/GQ7X0AX4/OwtZtW7kJ8Dufo2KREBYAAPjDvX2xz7eycwAA+L57J9O4uPAxMhrP3gX98ktaPHjxDskR7wEeHxOH9C60/J/93CGwdIKmSyu8Co1RQISyc/TJJ4jrD4ZV95k4umNdgWX5fB7aV5PMDr7lH6WA6LiXkZmFFu07ITs5FlqmNri8Yykez2qF9uWTEXVyAbYt8sDxi3e4DlMmXgd9xAefWwCABTMnF1q+QVNJT/XdmzfkGhdXxGIxGnUdhNsnJF98HBu1R+v+Y2HRZijeRKZi+IGnELGdWRSCJXYcCvsag/dPJW8Mk8eMzLNMx7atAQDvfJSjx26f50WAxBAYmaOOi0Oxz3dyqgIA+BgcJOvQFOJVwAf8PmQStE1tYGtRHr9VrQxNXQO49RmN5Ixf8xvpyZtPwNfQRvnKNQvdMxiQLAHxx6L9MGj8Bx6EJiogQtmITcnEyisB4PF4WDhpBKraWxd6TkNbfaS9f4JDm5b9dL2TJdFvwhwkfPQDX6CDKxcuoG61ylDh87B5Yi/Y1moGiIUYOWokMjKzuA611C4Hp8N88Dq4dh+Hzm71Cy3/R3fJmMvwdz5lcrHioTOW4InXYQDA6Dmr4H//Iq4e3IQrG2ZAV0MVT0PjseVmIMdR/hpYYsehJZv2gYRZ0DK1Qe/2ed/W/KNzGwBAWtQnpZhwcPrcBQCAU53GJTr/N9dqAIDosA8yi0neMrJF8HwUBNvabqjh5IAL+9YhLeqT5CCPD3FmKl6GJ6PnNm/Epijf0jTyFqHjCMu/DsNj2cYin9OiiikA4Lrfz9OTNejvNYiPj4ezuR7617cp0jm1rPURc3YZIu4cxZX7ZXvHlVcBH3Bmt+TW5Mhp89G4dlXpMT6fD6/j+8AX6CApPBB/LVjLVZgykZEtwrGnYVAvXxHL5s8q0jldWzaCqrYBxFnp2H/6ipwjVKznH6JwePsGAECXEVOxdeEU6bEqZnqY3bEKkp6dx+QeTfHCL5irMOXiQ3QKXoUlcB1GLiyx45Dn8SMAgNade4LPz/tSONhYQGAsGXt34uJNhcWWF7FYjLdPJBNXunbqVKI6mtWVjDNJj/+K5LR0mcUma2kZmdh+6iYmHnuB2v9cw+TTAfj8IQAgMYztq+OvhesQGv4V6enpWLL9MCq27Av/L8kYccAHQlHZ75nJEZeahaehceCpqKJXs6LvKNK8ignEmWl4ePMSQj8rf3L3z+aDuLBhFj7vGo1pzStAVaVob52Gejowc6wJANj371l5hsi5QeOmg4SZMKpYDZvnT/rheFV7a/QYPgEAcHDr2p+618rTJxRxqVmw0BeglZNpkc5RVVVBpZqNAAAn//uCXBYkZ2RjkqcvTAesRs0uw3Fq2/IfyvT8zQr8EG8IE6Mw+K/pHEQpP+MWb8Hvy72w4Yby3IViiR1HHr32R3TQCwA8/D0+79uwOWyqSD4wb9zldu/JDzFpKNdrEUzajsWoviVL7FwcbGE/cgusJh5HRJLyjU37GBmNziOmwqB8BYzp1xmnfT4iNUsES0Mt/DFpAS7eeYKY96+wYc4E2FQoD4GGOmaO7Id/x7lBV6CKZx+iMXHtz7/4blGdf/oeIjHB2VwPloZaRT7PXF8TCf/OQvSpxdhy2FOOEZbeC79gLJguWdKkXqvOaF69aFvo5Wjs1hIAcP922RxbBQDvwuPg7+cLAFixYkW+X1S3LZ4BNR0jZCZ8xcR/1ikwQtnJyhZiVNdWiLmwDt2ddIuc5ANA6zatwVMT4GP0zzMEoSBEhGn/vsbH2DTYWFbAzSOb87z2fD4fy5dLEr7Xt86WmV47H98gXNo4C+HbhsBZT4mGF1AZlZiYSAAoMTGR61Dy9PvQSQSATKvULrRs/0nzCQBZuNRXQGT523wriGw8vKj/rkelqqfzpvtk4+FFF15HyCgy2Vi335PUdI0IAAEgVR1DGrPpLPmExpFYLC70/EN33pG6qT3xVNXJxzdQARFzz7pGE1LRK08jFu8s9rmNug4mAFTVrbMcIpON1PQMMnGoSQBIz7IyJaakFruOc7ceEQDiqapTXGKyHKLk3rB9T8l6+nn6fdaOQsv2GT+HAJC6QXlKTk1XQHSyNXPVDgJAKgIdioiOK9a5n6ISyHrqabLx8KLo5Aw5Rag43f6cSeU6TaNKsy7Qs4+FvxblKrkSAGree6QCopO/Jt2HEgAqX7mW3NsqTk7Deuw4IBYTYm1bwrj9eAwbM6HQ8m2bS8azRYX4yzu0Al14HQkA6FCt8AHyBbEvpw1AMjZBWXis3IaJQ3ohOzkOmuUsMW7+WsR+CcfmsZ1R28ZQul1UQfo2doSujjZImIUhf3koIGpufY6KRdgbb4iSotCpYbVin9+9c0cAQOCz+0o5sUAsFqPB7/0QHfQCPDUBTv17DHraRe+VzNGxaR3JoszCLOw9dUkOkXLrSUgcrvt9hQqfh7UT+hRafss/06FrWx26jQfg7KtIBUQoO2KxGFvWrwYAtOg2EOblDIt1vpWJPpwqSHbrydmW8We1eOtBnNq6DDHnV6J/xSzUsi78tRg9bjwA4O65o4hN+Lm3V0vOyMbzF5L1WMdPnMhtMN+Te5rJEWXusXvwPppsPLyo6tzLlJqZXWj5mPgkMmozhkz/WEFfEtMUEOGPbj1+RQLbmmTScRLFpmSWqq4pm/4lneptqFGfcTKKrnR2/XuRwFclAOTQoG2pelV2e16S9PjxVemlf7AMo1Q+ExdtIACkVd6aRCJRsc+PT0ohnqoGAaDT1x/IIcLS6TJiquRa8vi0cNOBUtXl4taFAFCT7kNlFJ1yEIlEVK3XZLKaeIJmeL4u8nk77waTjYcXNVtxk4SiwnvDlcWKXcf+633VIP8PYSWqY+F5X7Lx8KJJh7xlHJ3izFy1g3gqkvfM6i27Ffm8zKxsEhiZEwAaPG2RHCOUv933PpD19PNUa9xGys4Wyr091mOn5E48DQMAdHK1+GHturwYG+jCtXVPCCydEfCFm16uxeu3ISP0BVRDH8JIW71UdalnxCPl9VW8e8TtZBAASMrIxrR5SwCxEHa/Nce7uxcK3DmhMEO7tYOxfXVALMTEuWV7T9zTpyRj4xq26pjvmKqCGOhqw8K5NgDg4Enl2l7szNNgXPA8CgDoP3Eu5owdUKr6WraULGQc4Pfzr9/4rZmrd+DNiTX4sn88/mpuV+Tz+ta1hoGWGkJj03Dp7c/Ra5eRmYUFs2cAAOp37A1HO8sS1WMujsLnHSOxbUIPWYYndx/CvmDZzqOo0rgDlk4dCRJJ3jO9vY4UuQ51NVW49x8OADi+bztEP+lEs/QsEXbc/QAej4dJf3TKd/cZzsg9zeSIsvbYhYZ/JQ3zymTYciQ9C4kp8nljDj0jGw8v2nb7vRyjy1tqegap6UjGns1Yub3U9Z29+ZAAEF+gU6KeHlma4fmKrKedJYeuEygqLkEmdc5dv0cyRk9L/6ccQ1QUEdFxxFNRK3VvW98Jc4s81lRRfD8nUpXZl8hywjHq+OdcmdTpFxpJFiN3kK3HeUpMz5JJnVyLS0yW9r60HfhXsc9fdv4VGbYaRabVmnD+PlAU3f+cIRlbp6VHoeFfS1xP+NcYAo9PAOjx6wAZRihb8UkpdOZFOE04+pyarbhJOq5tpeOPAVDjbkMoPaP4d28iouPIoGZbMhuwmu4ERMkhcvkbv/oAWY4/Sg2X3qAMBfTWEbEeO6U2Z+02ZEYGIvvdddQowpiEHOaqqUh5fRWnTxyVY3R5m7t+D7JT4qCqY4i/xwwsdX1NalcDwIM4IwX+oZ9LH2AJ+UUm4djTMPD4Kji4ag5MDPVlUu/MUX9ATdcIwrRELN9xWCZ1KptVO4+ARNnQNLFC5+aFL86an6F93AEAUUGvEB3P/UzBxLRsjDjgg/RsEdyq2eLMxnkyqbeKjRkqVaoEAg8+oXEyqZNrXYdPQkZcJNR0jbB/zcJin9+jugkS7uzD1zf3sHbfSTlEKDsvQ2Nw7vgBAMDQibNgU6F8ieuqUN4YhrZOAID9J71kEp+sbTx4GmbW9vhz4xmceRmB0Ng0aFhUgWY5Szg364Tjl27jnuceCDSKf/fGvJwhJsxfDQ0LRxzwDpV98HJ2/5kvNs4Ygc/bh6NXJUBD2XrrwJY7USihUATPA7sAAJ169S/W7SuKCUXspQ14cHqvvMLLU1a2EFvXSqapt+zWHzpaglLXaainAw1DydpP955ytyH22MVbIc7OQsdq5qhX0Vhm9Qo01NGgbVcAgOf5srUQaY6T/54AADRo2aFEt2FztKjriko9psF82Fa8+cr9umaNO/eB/82TsDbSxKa+tYq1lEVhGvz3O/bow8+f2K3cfRx3Tu4BAMxeshamxgbFrsPe2hz12vcCAKxY/uPaZ8oiJiUTY4+9htnAtajXdxK2/TOt1HXWrCeZEHfrFvfDUb63cNMBjB/cC5kJX6Hy8QnGNrfHviF1EPTvcqRFh8H39jn0alf8fcK/NaCBZIHvG/5RCItLk0XYCpGUmgb33v1A2ZkwsXHEWPfSvQ5yo4AeRE4o463YBRv3S25BamgXe5r8PZ+3kkG7KmqUmVX4hAtZGT17pXRq/6cv0TKr18KlPgGgEbOWyazO4rh454nkdqm+KfmFFf2WeFHdfe5HZgPXkt0ML/qaVLZux0YmpJPFoDWkXa0VXbr3tNT1zTz1mmw8vGjumTcyiK7kcgbGg8enE1fvy7z+TafvklblhmTiVFfmdcuSSCSic7ce0aZDZ8j7ld8Pt0nX7fckvoYWAaBqLbqWqq0nbwKlE5f2nb5SqrrkIfRrHLVafZtsPLyo6YqbFFfKiWM5Nhw4RQBITddYqW5D33j0knhqAgJA9nVbyWx4Sl46LzpBOjXaUfO+f8qtDVlKTk0nhwZt//sM16I7T4s+WUgWipPTsMROQbKzhaRv5UgAqFnP4cU+PzMrWzqm6Z7PWzlE+KPgz1GkItAhANRttIdM6677+x/ScRpcqNmmJwEg29pucmvDfbNkvb7td0o+LjI9S0hdR88gE4ea5Nqqu1LMtF13LZBsPLyo57aHMqnv8ttIsvHwIreVt2RSX0mkpmeQVnlrAkANugyUSxs+voHSxPFjpHKOLdp2zEv6OuT8qOoYUsOBM2jBOV8avOcxabu0IgBk4lCzROv6fS9nxrBpldpKleS8DvhAWuWtybDlCKq7+BoFR8luDcK4xGTp+/nVh89kVm9piEQiMrJzkV7bkoyfK46Fmw5IOw1i4pPk2lZpXb7vQ8b21aV/vyt2HVN4DCyxI+VL7KYs2yLJ9NW1SjxNXse8IgGgJdsPyzi6H6VnCanr5vtUvtc/ZObaVOZ/5AOnLJQsL9Koo0zrLYoPYZHSZTa2Hj0nt3YOP/pINh5e1HzZlRJ9YGVmi6jXtoekV6+79ENWw9CMnrzhbvHj1MxsqrnwKtl4eNGZF+EyqTMpPYtM2o8nTYf6dO+Zr0zqLK7Rc1ZJJ7yERsgv6dI0rkAAaNGW0i2fIg/zNuwl8FWky3lolrOU/t+442Sy8fAiGw8vshi5k6q16ErxSSkyaffBi3fSpTOWbJP/e1tRvA74QFomVtKFlN+GRMq8jfKOtQkADZr6j8zrLonpK7ZKrr2aQCELrGdmZZOGoRkBoJF/L5d7eyUREp1CfRYdlE524atr0tIdRziJhZPELjs7m4YM4ab3JS/KlNhFJaSQun55AkAdBk8ocT0V67YkANRr3N+yCy4PYrGY/jrynGw8vKjavMv0XobfVHNcfRlCVpP+peYc9NK4j5xGAEi3goNcewgS0jJJr2Z74qlr0smr94p9/vxzb8nGw4uqeJyi9oMnkMZ/MxBtajWTfbBF1GPsLNJ2aUl1ph+kbKHsXrucFekHTVP8h1xmVrY04eoxZqZc23JtJUnSG3UdLNd2iss3LJZU9Uwkt+Dqtabwr5LhCXGJybTH8zKtPe9DSy6+o+133pN/pOx7Vxp3G0IASMe8ImUpaJZhft6+/yjttVQ3KE/3n8vny0afSQtJp0Y7cp+zWy71F0d2tlCSyJdwhnNJdRvtIXkvtqikVL21aZlCmn36DVWceYGsp58jtfIVyaZWM/J+5cdZTJwkdhkZGcTn82VVXakpS2InFIlp+P6nZD54PZlUb1aqb7mt+v1JAKhG6x4yjPBHXcfOIYthW8l+5gV6ECS7cXXfikhIIxsPL7KfeYGyZJggFCY7W0jq+pIPsLHz18i9vYp1WpTolvPDdx/JxuM82Xh40TXfL0T037jA/3pQVu89IY9wC+T9yo/46poEgP6cu1qmdXcaNpkAkHXNpjKttyhmrd4puSWkqUtfYuLl2takJRsJAOlbOcq1neIQi8XUZ7s3WYzcQfZN3SlNzrfg8hIa/pX0nRqT+eANdNA7VOHt50hOTZfejlTXN5HrsBef0Diy8fAi1wVXSMTxIs3H774hgU114gt05P438K1v754s33lUYe0WJDD0M5nXakVWk06SjYcXDd7zmLwDZHN3ojTklti1b98+3582bdrIJbGLioqiDh06kKamJlWuXJmuX79epPOUIbHLyBLS1BMvycbDixxmXaSXn+JLVd+E/1b6N3GoIZsA8zBj5XZJd7yGNm258ERu7YjFYnKac4lsPLzk0iOYn40HT0vX0JPVraSC5Kxpp6ZrXKxJL6ZVapOGdXX6Y/WZXI/X7diPk32Dv8TESz/wjO2ry3yl9WMXbktvdSjiunwr55ZYiz6j5N7WC79g6Tgded7yLY5LbyRjHCv/fZE+xZZ+zFxJ7bn/gWw8vMh5ziXO4sjZ+5OvoU3XvZ/Lta0soYic/3sPfB0mv0kKRdFnuzfZeHjRrKOynzRUmIbugwgAGdpV5bzXLj4pRToWvnx9d7oXKJ+OjZKQ2zp2d+/eRePGjdG7d+8ffnr0kM8q2mPHjoWFhQViYmKwfPly9OzZE/Hx8XJpSxbEYjHeBIZg6vKtMLFzwoETZ8DjAat7ucLVyqBUdXfp0Bbley+Cmbt89iF9+NIPK2ZPAgA06tgLf3aoI5d2AIDH40H88gy+HJ2Fk+cUt3/mca9rAACXRm1goKst9/amDOsNFYEOspNjse3Y+SKds+fUZXz1f4bM8HcY18ox17HVC2YB4CHi7SPcfeYrh4gliAjxqZm4+fgVZq7agUoutRAX8hZ8gQ6OH9on85XWu7dpDDW9chBnpWPzoVMyrbsg76NSwPutF7SdmmLprMlyb69GlYrQNLECSIwDpy7Lvb3CiMViLD9xGwAwoklFWBkVfy9cWRnYwBZ1bY2QmiXC8LUnIRSKFNr+2VuPce/UPgDAnJWb0LJ+Tbm2p6bCR/2Khsj87I+dx4v23iAPoTGp8P4QCz4PGNuulsLb375yPniq6ogP8cXcDfsU3v632vYbhcSwAKhq6WP/yr/R2KEcp/GUWHEyxqZNm9LRo3l3l6anpxOPxytOdYVKTk4mdXV1ioiIkD7WpEkT2r9//w9lMzIyKDExUfoTFhamkB67FqtukZaZHanrlyc1XWPiqWnkmlGmbmBGV16VbLLE95LSs6QDmBPSZL96vaVrIwJARnYucp8RRUTSqeOynnGbn4xsIVWbd5ksRmynEzdKv0xHUdVo3YMAkItblyKVt3JtXOBSEvX6TiKzgWtpycV3MoxSMivu2IMg6rLpPlWadYGsp57J9busoqVHh87fkGmb36rToS8BoKpuneXWxvdWXfEnGw8vGrpXfr3T36vVrg9pVHCiP+ZuVVib+Vm99wQBPNJzaUExyRlch0MfY1LJxG0ggcdX2PsCkeQOQvfN98io3V/k0lK+Q12+NfLvFZLeKltnhbX5vXFrjpDluEM0cPdjzmLoMGQy6TXoTfXme1FyhuKW8/rW/jNXpe91XE2QKIjceuwWLVoEBweHPI9paGjg1q1bJUou8xMUFAR9fX2Ym5tLH3N1dYWv7489FUuXLoW+vr70x8rKSqax5CcsLh0Z8VHISoxCdnIsKDsT4PGhVd4arfuNgf+bF2hTvWR7Cn5PV6AGUz0NAMCHaNnuGbtm378If/UA4Kvg2OH9JVpRvLjs7CW/S0GBgXJvCwBuB0QjKUMIK1t7dHerrZA2AWD0sMEAgHcPrxW6u8Kpaw8Q9uo+wONj3ZK8dz2YO3MaNMwdcOF1JIhIJjFmZGbBqUlHDBnQFy8+xSNbROCpqEJVvzy0zWzRpPtQ+L3zwx+/t5BJe3kZ1K83AMD/8S2kZWTKrZ0cRIRzryIAAJ1rWMi9vRzzl62CWf+V+KrvpLA287N+wyYAhCo2ZjDW0eA6HFgba6FLA2eAxDi1fWWRe7lL63ZANHw+JaJc7fa45nlQIW0CwOg/ugEA4kP94BcSprB2c4jFYuxYOBHhWwahCsIV3n6Ok9tWwKXzSHxJB+ad9ZXZ+1pRicViTJok6bGv6tYZM0b0VWj7slb4DvTfaNKkCQDgxIkT+Zb59livXr1KGJZESkoK9PT0cj2mp6eHhISEH8rOnDkTkyf//1ZKUlKSQpK7oyPrw6/BOajweFBVVYGxgT7qVnOUyQ4NedGKfof4R/dxzi4NNUf1lFm9SxcvBgDU7dAHrRsopjvexbkKrgKI+BiskPY8n3wAIPkQ5/N5CmkTAIZ1b4eJxhbIiI3A3LW7sHXhlHzLesyVbM1UqV4rtKjnmmeZ5o7loaWugvD4dLwKT0SNUt7iB4DG7gMR+PAywFdFT1shxvdqg/J6GhAs+1rquotqWI/2mDjaCCpGFXDVJxDujavJtb2T1+7jxYn1MHZtidbObeXa1reaOJiAzwOColLwOSEdFQw0Fdb2t174BePTy/sAgIUz5X8buqi2L5qG+/fuwv/+Rfw1YhAa1PSBq2NFuba5/noAAGBgAxuY6cvnvTsvNZ3soWdZGUnhgViz8wh2LpHPMJv8HL14G1kJUeCpCTC6RxuFtv0tTXUVrO1dA312eOPfx8FI8L2L3Qv+Ulj7q/b8i7iQt+CpaeDwtrUKa1duStIl2LRpU1JTUyMrKytq0KABWVlZkZqaGjVr1ozc3NzIzc2NmjdvXpKqc3n+/DmZmJjkemzcuHE0ffr0Qs9VhskT8lCrXS8CQG69R8qsziNeNyVd0HxVhS6Ae/ySZMC8qra+3NsK/xpDfA1t0qzcgB5zMMOp35RFpN+oH7Vd5JlvmevezwngEQA6ff1BgfX1WXqMdKq3oTYDJ5Q6tqU7jvx3C4JHs9dxu/TC5MOPycbDi2aflv8uFDmDtivVbyP3tr7XdfN9sppwjNafVvxg9RwdB08kAFROjpOxSio6LlG6bqdxxWqUkia/3Vv2eF4mVUNzKt9hPCe7xHQZMVWyQLPTbwpvu1nPEdIlbpTB1ht+pGElmaRVs01PCg3/qpB2TZ3qEACq33mAQtorCbkvdzJq1CjauHFjrsc2bdpEo0ePLkl1+coZYxcZ+f/FIfMbY/e9sprY9Z0wV+Y7Jozbd48Mmw+j3zopdm2tLzHx0jEN8v4DHjN3NQEgLVMbTmZefU1MJ/uZF8jGw4te5DM7+rffBxAAsnJtXGh9OQtea5vZliquxJRU6fp48tpxoThu+n8lGw8vqrPoGgnluAREdraQ1PTKEQCat36P3NrJT5/Jiwk8PifLuxBJxlPmLMCriGV/SuLW41fE19AmAFSv0x9yaydnrK8ix3Z+K2e7SPD49Pb9R4W1KxKJpGvXTVu+RWHtFiYn0cV/s5N/HzpJpttZfs8vMpEq/LmX9Ou4c7r4e2Hkntjp6+uTUJh7uYPs7GzS19cvSXUF6tGjB40cOZLS0tLo7NmzZGhoSHFxhe+zWlYTu5z9LLXKW8ukvvQsIVWde5lsPLzoSUisTOosjpwPV3nvE2nuXJcAUMfBE+XaTkEmHX9BNh5eNPrgjxM33kclk930s2TcYSIdPH+z0LpCw79KV0MvzaKZw2Ys/W85FiOFrl+Vn8xsEVWff4UqjNlPx67Lb0LD1qPnpB8cstgWq7hOX38gWVZIRa3Y+0bLQs7yMjxVDU7aL6qc/bUB0IoDst8lJjD0s3TXi+OXbsu8/qIytHVW6EQyIqJztx5x+jtYkFW7j5OOmV2uBK91vzFy2Xps8YV3ZOPhRaMO+Mi8blmS2+SJHDY2Nti/f3+uxw4ePCiXMW1btmxBWFgYjI2NMXXqVJw4cQKGhoYyb+dn0aSOZNxVWkwEMjKzSl3fDb8opGQKUcFAE7WtFf+6GlWwhYq2IQI+yW8s19v3oYj08wEAzBg3XG7tFGZUU3tkhL/Dnml9cdjrpvRxIsLSi/4Q81Tg3qsf+v/evNC6bCqUh3FFFwDA9kOeJYonIzMLh7avBwB0HzIWpsYGJapHltRV+bCIuIPPW4dg3ry8J4/IwqETkiVVHOu6QU9b8Ut8dG5eH5rGFUCibKzdc0zh7W/YuRcAYP9bM5iXU97307njBqJ1/3EwajsOB96rISopQ6b1z1m9FSQSQs/SAb3aNZNp3cXR849BAIBbN29CLFbMxIEte48AAKyq1Ve634EpQ3sh9lMgJi3ZCC1TG4gzU3HtyBbU6TMRwTKcOCgUiXH6xWcAQLdaFWRWL+dKkjk+efKErKysyMHBgVq0aEEODg5kZWVFT54obsmAwpTVHrvsbKF08+i7PqUfh9Sw30Qybj+B5h5/JIPoim/2v8/IxsOLFpyT3x6hfcbPkS6AyTWnJh0lOw9YV5EuxPvPLk+ymniCKs68QIFfiv6NtNPwKZLdGmo0KVEs28/eIb6WAalq6yvVJtw5Yz55qupyuwWTcxtyxsrtcqm/KJr1HP7fFnFFG1aRLRTR5/g0SinlchBCkZhqzj5Dxu3H09pD50tVlyJkC0X0+4Z7ZOPhRX8ekm2vip6lAwGgAVMWyLTe4oqJTyLb/kvIevo5uvJW9vvS5iXnuY+R8S4yspadLaSZq3aQnn0tsprsSbUWXqWgr7JZ1H7V3n9Js3IDqth/EWVmK8+WZnmRe49dnTp1EBwcjF27dmHkyJHYtWsXgoODUaeO/Ba0ZSRUVVWgbSJZPsX7xdtS1ZWanolHnjsQe2k97DWSZBFesVWzNQEA+H+RX/uXz5wEAHR0l90s4pI6vmsj+BraSPzkD+f6LdCy72jMGdkbkfsmYFA1bTiY6ha5rsG9ugIAwnyfICE5tdix3I3SgOWYvRi38gCMDYrerrz1bt8M2ma2IGEWFqzbLfP6bz15jbToMICvgjEDusm8/qKaNnYEAODji7t4FfAh33JCkRg7735AvSU30HDZTTiP343qLbvha2xCidr1Do5FXLYqLOt3xJjeHUpUhyKpqvCxokd18HmA17MQHLv+WCb13nz8CknhQQCPjzl/cdeTDwDGBroY/UdX8Hh8rLoaAJGce+0+xqZCr+t8lOswHlOG95NrW6WlqqqCJVNG4MPLh6hua4LY1CwM3/8UCamlv2O1c9cepAd6wzjuLdRVS5QOKaUSPxM1NTU0bdoUvXv3RtOmTaGmpibLuJgClLO0BQC8fOtXqnr2eF6CODMNqtr66NdRfuuTFcTJTLKcjV9kklzWLrr5+BUSPvkBPD5m/TVU5vUXV7XKdli36xB4KqqIfPcEN49tB8RC2FSuihk9GhWrLveWDaCmawzKzsTOE17FOvdjbCruv48BX1UNU/q0Kta58sbn89Guax8AwOnjh2Re//kHL8HXNoBp5RqwMuVuZfmOzerC2L46QGLMWrYhzzLR8Ymwq9UEs9bsROx/H2QJb27hzc3TcHCti89RscVu98xLya2nDtXMf5oPMydzPTQ3SkTEzlEYNWQgxGJxqetcs30fAMDcuQ4cbBS3jmF+Rje1h55AFX4hnzFh2Q65tnX57ReoaOmjTde+qGhlJte2ZMVYRwP7h9SFubYKXpzaisa/l245tYjoOAQ+lgyJGT+a28Re1n6Ov2oml+6jPVBh9B5UbFq63objp84CABxqN5H5FlFFZW+ihaiTC/BmZT+8CQyRef3enzNh2GIEnFr1hpOdYhatLsxf/d1x/MINVGncERYuDfDHxHnwf3AZ6mrFWlYSfD4fTnWbQdXIEj7vvxTr3D1XfEAkRuNK5WBpyN02UvmZP3kUwOMjLuQtzt+WTQ9Njq+6lWE59gA8VmyVab0lMWCI5APl+rmTiEvOPX7sc1QsnOo0Rfjrh4i/thXz2ldC0OL2WDa+P1S1DZD8OQgN23YtVpITm5CMrVP7I+npWfxe1USmz0XeZvRygzgzDUnhgVi+s/TjEqO0bKHl3Aw9ev8hg+hKT19LDSNqGyJy73hsnjMOK3bJb+zlZV/J+0W7qj9HUpfDWEcDY2uqI+mxJ3xvn8XK3cdLXNeijXtBwkxomVihX8fCxzX/VOR/Z5gbZXWMHRHR8SefyMbDi/rvKt24OF2LSgSApizjdqq7Vnlryay3XcdkWq9YLKbmK2+RjYcXnXoum23dlM2556Fk4+FFTVfcJLG4aMuDiEQiEhhbkIqeCa0+elnOEZZcxTotCADVaC27LZ6S0rOky858iE6RWb0llZGZRQ6dRpPVhGO51u4LDP0snSnJ19Cm/Weu5jrv0PkbxFNVJwA0YtayIrc3aclGAkACI3PON1wvicbdhshkw/igr0lk4+FFlWZdoIRU2W/PWFIikYjs67aSLn/i2qo7Ldx0gK57P6fkVNmssefjG0gallXJsOUIikxIk0mdilavU38CQLoVHCg7W1j4CXko71ibAFCnYZNlHJ18yH2MHcMtOxPJ5vUfoos/rirHh7BIJEe8BwAM6dFRJnGVlLmdZKP7Rz4vZFrvi7AEfIhJhUCNj9bOP9c306Jq7lwBaio8fIxNQ0hM0X4f9p+5hozYCIjTkzGgbX05R1hyUydPBAC8eXgD0Qkl/13/1uXnH5AtEqFiOW3YldOWSZ2loaGuhh0rF4Av0MHBRx/hsf8WRv69HNVq1kZ86DuoaOriyKkLGNilda7z/vi9BXqMmgoA2L36H/gGfypSe8ePSGZCNunQDXz+z/f2v3X5XOmG8RsOnC5xPV6vIwEAjSuVg76W8gwj4vP5eHnrPJybdQJIjFfXPTF33EC0alALujracP1zPZZe9ENMSsm33Fu1/SAyw33BD30MM31udj0prYMbl4OvroXkz0GYtab4t60fvfZHVMAzAMDsCaNkHR7nfr6/bAaW+upIuHcILw/ML9GgeQDYe+oSAEDL1AZV7a1lGF3xOVWVLNvx7m3pJoN8b9q8pUh5fRWt7PWgo1G825w/Cx0NVdSzMwYJs3HyzssinbNp5x4AQJX6LWFiqC/H6EpnVK+OcOk7ExYjtuP06+Ldas7PglnTEb55IEyin8mkPllwcyyPya0rAwA2r1qCnUtmIDP+CzSMzHH+8g307pD3MhyH1i6AvpUjxJmp6P9n/tvU5Xj7PhQRvpLb2rP+Gim7J6BALpVsUaedZBLUkiWLS1QHEWHLhnXIigpBx2rmhZ+gYDpaAvjePodtx7xQrbk7dMwrgqemAZAYsdDD9rsf0GbtXdwLjC5R/dcuSIbgtO7YRZZhK5SDjQXa9JEMY9i0ckmx95ZesmEnAKC8Y23UrVZZ5vFxTv4diNwoy7diRSKRdEX287cfl6iOlgMmEsCj2u16yzi64lu46QABIB0Le5nVGROfRHwNLQJAGw6ellm9ymjc0h3EUxOQmVOdQssmp6aTiqYuAaDVe08oILrSOfr4I9l4eFGjZTdKvRNFZlY2qWrrK+XvhFgsplM+IVTesTYZ2jpTm/7jirTUy7ZjXgSAVLQNySeo4K3yeo6dRQDIyM5FVmFzwsc3kMBXKfGiwv9fmFeVwr7GyCFC2ROJRPQmKIQuvv5MbdfeIespp0m7cn1atuNIsep5/u69dNFfH1/l3WWhKCKi46R/zyP/Xl7k88RiMTn3+5vUTe1pzDzlXurlW3LfeeJnUJYTOyIiA2snAlDivT1/33CPLMcfpX3Xnsk4suLzfuUn3atWVuNIJi7aQABIw9CsxGMwfhaSPWYlr19hK8jPXrtLutNEZlbp1kNThLRMIbkuuELW08/T4dulW7dx3+kr/41Z06LU9AwZRci9FqMXkNXE4/THzkf5jrPMzhaS5n9r9w2etkjBEcqeY6P2BIAa95tQ7HNb9ftTsv4jR9u5lVZGtpAa9JPs88tX16KLd4q+fmzOlpRGFavJMULFyfmyolXemrKFRRtz+eJTPNl4eJHj7IuUlK484ysLw8bY/QJMrWwBAG/f+Rf73PQsEfwik6CiqYtWvznJOLLiq+tSGXwNLUAsxM3Hshlnd/TwAQCAW6eenM34VZQW9WpAYGwBiIXYcrjgcUc5O8Y0bNet2LNwuaCproLWZln4sn8i/uzfrVTLXOw/Jtmhw861IbQEGrIKkXN7F02FQEsX99/H4KZ/VJ5lVu09gfToMPA1tLBk+hgFRyh7K5f+A/OhmxBp0wZfi7EbhVgsxoOr5wEA3br3kFd4cqWhqoLru5fBxKEmxFlp6NW3L1LSivYaXPU6A+Dnvg37rU0Lp8OkQTcYdpuHS2+LNlzj1PNwAJIZwboC5RlfKUsssftJ2dk7AACCg4KKfe7biEQIxYTyuhqw0BfIOrRi4/P5KO9QAxqWzvD/XPx1ub53/5kvvvpJxlDNnfRnqetTdjweD64NJdP1z5w5l2853w+fEPbqAQBg5oTRColNFka2rYXsuHAkhQdh7b6TJa7nye2rAIDO7mXjQy2HtbEWhjS2BRFh4vKdP3zIExFuhGZCs3IDNOjQW+m2jyqJTk1qo1GdmhCKCQe8Q4t83vFLd5AeEw6eqgamj+ovvwDlTEuggTtXzkJVSx8pEcHoPmpaoec8eROI2OA3AIApIwfKO0SFKG+kj78XLoOqvik233pf6FqoKWkZ2LdvH8SZaehWy1JBUSoeS+x+UlWdqwAAIj7lv2J9ftas34AvR2ZAJ+wheDyerEMrkdFLdsDsjxVI1bUtdV1T5i8FQLBwaYCGNbjvkVSEgX0li3W+e3QDSalpeZa5H5YF037L4dRpBNo2qq3I8ErFwcYCdf8bML9ixYoS1XHj0Qukfg0F+CqYMLi3DKNTDuOaV0KS13K83T8HXUdMznXshl8UgkQmsOo5Byf2bOIoQtkb1tgOALDv2gvEJRZt/9CNO/cBACrVcfvpE1wnOytMmrcUAHD1yFZ4Xr1XYPlTT4KhWakuTJ3qoo6LgyJCVIhBDW2gra4C/y/JuPImrMCyS7YeRNiZ1Yg6MBEN7Y0VFKHiscTuJ1XX1RkAkPilaMscfOvJg3vIDHsLA8hmCQlZqGUteZN9EZZQqno+Rkbj6RXJLbcpUyaVNqyfxvAeHaCmawxxRgrW7f2xV4uIcPLZZwgsnTD779kcRFg6G5fMBfgqiAp4hgNnrxX7/C37JQuZmlepDRvzn2th3qLQFahh9JABAIDrR7dj6XbJsiahX+Iw6/RrAMCQRnawMFC+xahLqrWzGUSPD+Pd2oGYujTvnTu+lZUthM9NyQ4tA/5QjkWJS2vZ1FGoWKcFIBZhyJCh+d6SFYrEuBuljvLd52DrwX8VHKV8GWipo4OtCqJOL8YfXX8vcLjGnl3bAQCN23SGqkrZTX/K7jMr45r8Vh0AIExPwefo+GKdGx4o6Y5v1ax4W1jJU01rAwDAmw8RSC7ieJG8HLz9FhpWVaFjbo+JA7vLKDrlp66mitrNJft+7j9w4Ifjzz7GISgqBRqqfPzuqnxLPBSmjosDqjaVrLc4d+GSYp+fYOQEvbrd0LX3z3v7rTBLp45EVbfOAInx99jBqNbcHU5VXeB7ZDFs9fgY16IS1yHKlAqfh0bV7AGxEMf3bodQKCqwvOftZxBlZ0NFoINJQ7jfN1oW+Hw+zh3dCxUtPaTGR+Gfw9fzLOf1OhIRiRkw0lZHB9cKCo5S/gY2roSMYB/EfXiDrUfP51nm8n0ffPV/BvD4WDKrbH/pZ4ndT8q8nCGqTz4A6ymeiMko+u3UZ++CkJUYDfD46Nku7/WxuFDBQBPx/85B6No+OHL+RonqyBaJcSFUDNOeC7D5+IWfcgHW0pg5aQz0GvRCdt0BCI/PfTu2V+8+iL2yCc0tVaD3kw4YXvXPHAA8fHx+G17F2GYsKjkDH8TlYNh8KGZPKFt7Qn7vyaUTsK3tBhJl4+3ts8iIi0R22Fv83dysTK7luHr2RPDVtZAW9Qmr9p4osOyLRAEsxx3AoCX7oKPF/dhiWalqb41Fm/fDYvhWeIbw4RuRmOt4VrYQkz3+hjAxCsMa20GjDE4mq1bZDjVbdwUAzJnzd569dpNmzgcA2NZqWjbXrvvGr/XJV8Y4Vq4EHl8FobFFv6V66vIdAICuhb1SLU7L4/FgbGQAgHDh2s0S1XHCJwyRiRkop6OBXvXLVu9EUXR2q4+OQyaBr1MOe+6HSh8/cfkOQp5cR8rLK+juyt2m96XVrvFvqFhHMklk9srNRT7v+rsoEAHVLfVh/pOutF9UWgINBD+5gdnrdqNux374fegkBAX4oXWDmlyHJhcVyhujfnvJ7Nb169blWy4lU4iLb76Ap6KGEV3cFBOcAnkM6oKOdRwhFBPGH32BhLQs6bG+42cj5Np+fDkwCb1r/3y99UW1Z91S8NQEiA/xxdTlW3Idu/LgGfwfSBblX7ZwvuKDUzCW2P3EKpYr/tZidx88BABUcqkhj5BKpXEzNwDA4/t3in3u19gETJ48BcKUOIxrbg+BWtn7VloUI5tWBADsfxiCB28/ICUtAyNGjAAAVG7YFq0b1OIyvFLbuGo5TLrOQrxLT7yLSCrSOUuXLEZ6yHO0cSp7Y+vywufz8c+EoXjsdRjnd68pk2MKv7Vy/gyAx8eXd09w7vajPMvsvPgYyemZqGiijXp2RgqOUP54PB4WdXWBub4Ar+9cRCXXerjx6AUmL92E0ztXAwBGTJ6Ncnrcb6MnL66OFdHhD8ls/w0LZ+LpW8mKEdlCEfoNHAKQGNY1m+a7k0uZIuc19UosOzubunXrRhYWFgSAIiMji3V+WV+gmIho2qYTpO3sRnW6jijyOeUquRIApVxxO2ehXZ6KKsXEJxXr3HYDxxMA0ja3p4yssr0gcWH6rT5HGtbVSEWgQ5rlLCU7Ewh06O37j1yHJhPjjjwnGw8vGr7/aaFlpYtfg0dP3vzcK+0z+atYtyUBoGrN3X84lpmVTVomVqSqb0oL9npxEJ3i3H39XrqzzLc/Feu2JJGoaAv4/sySU9NJ37oKASBNEyvyeh5Kfx70Ib163YmvrkWPXwdwHWKJlZkFips2bQpPT0+uw1BaWuJUpL67jUCfu0Uqny0SI1NNF3xNPXRurXzfWprXdYW6vglIJMTukxeKfN6bwBBcOSrZCHrspKnQ+EV763LM6uIKtexUiDJSkB4TDr66FlZs3cP5nsCyMqGlA/g84MrzYJy9W/CerwtWbwUAmFapVaaWeGBy+9tjKgDgnc89vP2Ye5HmSYs2IC06DJSVhmEd6nMRnsI0qWaPm3cfwMypDsDjg6+hhUZdB8P37sVfYsyxjpYAXqdOQt2gPER8dYw9/hYX335BueZDsObAqTI/ti4Hj6iQFf2UAI/HQ2RkJMzMzPItk5mZiczM/28EnJSUBCsrKyQmJkJPT08RYSrc5fs+aN+kDvjqWshOTy70D/ft50T8vvE+dDVU8HJuG6go4XTv6i274c3N06jVrheeXTpeaHmxWAy72m749PIeDGycEPvh7S/xBlaY2IRkTF60DqlpaRg/tB+a/laN65Bkqs/Cvfh3+SToGpshKvhtnrtopKRlwMi0ArJT4jBpyUasmTmOg0gZRWnQfxrCjWujgZMNDo+oBzUVPoI+RqBqterITo5FjzEz8e/m4s+o/lnFJiRDW1MDAg11rkNRuFcBH7Bg3yVE6lWBjbEWxrdwQMNKP+/4YkCS0+jr6xctp5F7/6EMoAi3YufNm/dD9zPK+K3Y5NR06WbYRdnQ+cDDELLx8KL+ux4pILqSWb7zGAEgVW19Ss/ILLT82PlrpPuknr35UAERMsrg7fuPxNfQKnDv0wn/rJfuiyurPYgZ5fUpNpWc5lwiGw8v+nPvA9p/5iqZONSU3paLS0zmOkSGKbEycyu2OGbOnInExETpT1hYwStQlwU6WgJom1gBAG48LPiWFAA8DvgMAKhprbwrro/r7w7D6i1g0HIUvINjCiz76LU/ti6dAwDoNHQCOjdvoIgQGSVQ1d4aff+UbKN0cOMy+IXk/ntPSk3DtrXLAADteg0uU8tbMHmzMtLChj41wecBR3ZswCD3NogOegGeqgaOHD0GQz0drkNkGIXgLLFr06YNBAJBnj+LFi0qdn0aGhrQ09PL9fMrMLOVjBt68vxVoWX3TO2N8C2DoZOsvEmvlkADf85fB22npjj2LCLfcimZQnQfNgHizFQY2DjhxKZf5xYLI7Fr2SzoWlSCKCMFzTt0RUbm/5d46DN2JjLjIqGma4TdK+dyGCWjSK2cTbFnUG0g4g14KqowtHXGyYs34N6yIdehMYzCcLZi5dWrV7lqukxxdHJG8ONr8HvnW2A53+BPSI/9DICHtvWUe7zVkEa2OPz4E66++4rAL0mobJY7SReJCROPvYBKk5EoBzVc2LPmlxxH8qsTaKjj6JHD6NS6Gb76P0Plei1wZP8eBKeq4yXZQEXHCGOmz1Oq9RoZ+XOrYoaE0ILfDxmmLFPqW7GZmZnIyMj44d/M/9WqUR3g8RGXUPCaXsfOS/bX1DGzhU2F8ooIrcQqlddFCwdjxN89hOat2+XaKigjMwtTTrzEdb8oCLS0cNXz4C8z04n5UcdmdbFow07wVNUR9uoB3Gdtw7xzvlA3d8SkbV5YN3s81yEyDMMolFLvMePo6IiPHz8CAGxtbQFINjNn/u+PHu44EGYETU0NiMQEFX7e24vdvHMPAOBQ/TdFhldif7hoYt+T00gUZqJJ9yG4cmQbrj98gZF/jkF2OQeUaz4E63vXUOrxgoxizBrdH9YVzDFjzkKoODWFkbY6/mxmj6GN7bgOjWEYRuGUOrELDQ3lOgSl52BuCG0tAdKyRPgQnQIHU908y/m9fAoAaNy4kSLDK7GW9VwxdOp87F42E4/OHYS+zkHpMX74e2yYNwXtq5Xd7XGY4unfqSX6d2pZ4JcbhmGYX4FS34plCqfC58HFQjKG6HV4Yp5l4pNSEP8pEADQ+/fWCouttHYtnYFpy7dATddY8gCPD/u6rXDr/iMMas9mwDI/YkkdwzC/OpbYlQEqn54g8sAUrF40J8/jxy/eAsRCqOkaoYFrFQVHVzorpv+JjIQoPH4dgLiERLx/fK3MLbbLMAzDMLKi1LdimaKx0FVFVmQAAl6p5Xk8PF0VurU7oZJFuZ9yVwY+n88mSDAMwzBMEfx8n/LMDzq2aAwAiA8LRFpG5g/HP8MYRq1GYez0vHv0GIZhGIYpG1hiVwY0re0CVS19kDALR71u5jqWKRThSUgcAKCenREX4TEMwzAMoyAssSsDVFVVYONSBwBw8vzlXMdOXn+CmMBnMNbkw9n819iNg2EYhmF+VSyxKyOaNm8OAPB5eCfX4xu3bEHU8dkQPdgDPpsxyDAMwzBlGkvsyojBPToBAGI++CLsawwAQCgU4eX96wCATh3acRYbwzAMwzCKwRK7MqJxrarQs3KEtnNTnH4cDABYu/8kMuO/gK+hjYmDe3EcIcMwDMMw8sYSuzKCz+dj5UEvlOs4GVc/ZoGIsGnzFgBA7ZadYWyQ944UDMMwDMOUHSyxK0N6/GYNdRU+3oQnwq7jKHx6cRcAD/OmT+Q6NIZhGIZhFIAldmWIkbY6pratDGHCF3x+fAkA0LLPKHRsVpfjyBiGYRiGUQSW2JUxI5pUhKvQD4bGJmjV70947VvPdUgMwzAMwygI21KsjOHxeLi4ezXXYTAMwzAMwwHWY8cwDMMwDFNGlNkeOyICACQlJXEcCcMwDMMwTMnl5DI5uU1Bymxil5ycDACwsrLiOBKGYRiGYZjSS05Ohr6+foFleFSU9O8nJBaLERERAV1dXfB48ttKKykpCVZWVggLC4OeHtuLVZmwa6Oc2HVRXuzaKC92bZSToq4LESE5ORkWFhbg8wseRVdme+z4fD4sLS0V1p6enh77Y1NS7NooJ3ZdlBe7NsqLXRvlpIjrUlhPXQ42eYJhGIZhGKaMYIkdwzAMwzBMGcESu1LS0NDAvHnzoKGhwXUozHfYtVFO7LooL3ZtlBe7NspJGa9LmZ08wTAMwzAM86thPXYMwzAMwzBlBEvsGIZhGIZhygiW2DEMwzAMw5QRLLFjGIZhGIYpI1hiVwrR0dHo2LEjtLS04OjoiBs3bnAd0i9r3rx5cHZ2Bp/Px7Fjx3IdW7ZsGUxMTGBkZITp06cXaa89RjYyMzMxZMgQWFpaQl9fH25ubnjz5o30OLs23Bo5ciTMzc2hp6eHatWqwcvLS3qMXRvueXt7g8/nY9myZdLH2HXhlpubGwQCAXR0dKCjo4P27dtLjynNtSGmxHr27EnDhw+n1NRUOn36NBkaGlJcXBzXYf2SDh48SFevXqV69erR0aNHpY9fuHCBrK2tKTg4mCIiIsjJyYl2797NYaS/lpSUFFq4cCGFhYWRUCik1atXU8WKFYmIXRtl4OfnRxkZGURE9OTJE9LX16e4uDh2bZSASCSievXqUd26dWnp0qVExP5mlEGzZs1yfcbkUKZrw3rsSiglJQVnz57FwoULoaWlBXd3d7i4uOD8+fNch/ZL6t+/P1q3bg2BQJDr8YMHD2LMmDGoWLEizM3NMXXqVBw6dIijKH892tramDNnDiwtLaGiooJx48YhJCQEsbGx7NoogSpVqkjX3+LxeMjIyEBkZCS7Nkpgx44dqFevHpycnKSPseuivJTp2rDEroSCgoKgr68Pc3Nz6WOurq7w9fXlMCrme+/evUO1atWk/2fXiFve3t4wNTWFsbExuzZKYsyYMdDU1ESdOnXQrl07ODs7s2vDsbi4OKxbtw7z58/P9Ti7Lsrhr7/+gomJCVq3bo3Xr18DUK5rwxK7EkpJSflhw189PT2kpKRwFBGTl++vE7tG3ElMTMSoUaOwePFiAOzaKIstW7YgJSUF165dQ7NmzQCwa8O1WbNmYeLEiTA0NMz1OLsu3FuxYgVCQkLw6dMntG7dGh06dEBKSopSXRuW2JWQjo4OkpKScj2WlJQEHR0djiJi8vL9dWLXiBsZGRlwd3dHx44dMXToUADs2igTFRUVtGrVCjdu3MCVK1fYteHQixcv8OTJE4wYMeKHY+y6cK9u3brQ0dGBpqYmpk+fDh0dHTx58kSprg1L7ErIwcEBiYmJ+PLli/SxV69eoWrVqhxGxXzP2dk51yxMdo0UTygUok+fPrCwsMCqVaukj7Nro3zEYjGCg4PZteHQnTt3EBgYiAoVKsDMzAzHjx/H4sWLMWLECHZdlBCfL0mjlOracDJlo4zo0aMHjRw5ktLS0ujs2bNsViyHsrKyKD09nZo0aUIHDhyg9PR0EolE5OXlRTY2NvThwweKjIykqlWrsllkCjZ48GBq06YNZWVl5XqcXRtuJScn06FDhyg5OZmys7Pp5MmTJBAI6PXr1+zacCg1NZUiIyOlP7169aK///6b4uPj2XXhWHx8PF29epUyMjIoMzOT1qxZQ6amppSYmKhU14YldqUQFRVF7du3J01NTXJwcKBr165xHdIva9CgQQQg18+tW7eIiGjJkiVkbGxMBgYGNG3aNBKLxdwG+wsJDQ0lACQQCEhbW1v6c/fuXSJi14ZLKSkp1Lx5c9LX1yc9PT2qVasWnTp1SnqcXRvlMGjQIOlyJ0TsunApKiqKateuTdra2mRoaEjNmzenZ8+eSY8ry7XhEbHVDRmGYRiGYcoCNsaOYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgygiV2DMMwDMMwZQRL7BiGYRiGYcoIltgxDMMwDMOUESyxYxiGYRiGKSNYYscwDMMwDFNGsMSOYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgygiV2DMMwDMMwZQRL7BiGYRiGYcoIltgxDMMwDMOUESyxYxiGYRiGKSNYYscwDMMwDFNGsMSOYRiGYRimjGCJHcMwDMMwTBnBEjuGYRiGYZgyQpXrAORFLBYjIiICurq64PF4XIfDMAzDMAxTIkSE5ORkWFhYgM8vuE+uzCZ2ERERsLKy4joMhmEYhmEYmQgLC4OlpWWBZcpsYqerqwtA8iLo6elxHA3DMAzDMEzJJCUlwcrKSprbFKTMJnY5t1/19PRYYscwDMMwzE+vKEPL2OQJptiICK/DE5CQlsV1KAzDMAzDfKPM9tgx8pGYlo1h+5/C52M8yqkLsaSdFdo0rMV1WAzDMAzDgPXYMcW07W4wfD7GQ5ydibf7ZsPd3R1Z2UKuw2IYhmEYBiyxY4rh4+coLBjWBSlvbmBOWzsIY0KRHh2Geev3cB0awzAMwzBQ8sQuMzMTQ4YMgaWlJfT19eHm5oY3b95wHdYva/GWvUiPCETm8zMY1soVLboPAgBs27SO28AYhmEYhgGg5ImdUChExYoV8ejRI8TFxaFz585wd3fnOqxf1s3r1wEAjdt0Ap/Px/qFHgCPj4SPfrj/zJfj6BiGYRiGUerETltbG3PmzIGlpSVUVFQwbtw4hISEIDY2luvQfjlZ2UKEvn4EAOjVpQMAwMnOCqaONQEA63Yf4iw2hmEYhmEklDqx+563tzdMTU1hbGz8w7HMzEwkJSXl+mFk58TlOxBlpICvoY2+HZtLH2/XyR0AcPPSOY4iYxiGYRgmx0+T2CUmJmLUqFFYvHhxnseXLl0KfX196Q/bTky2vK7dBgBYOtWCQENd+vikYf0AAPGhfvgQFslFaAzDMAzD/OenSOwyMjLg7u6Ojh07YujQoXmWmTlzJhITE6U/YWFhCo6ybHv96iUAwKl6jVyPuzpWhF2bQSjnPgOvv6QrPjCGYRiGYaSUPrETCoXo06cPLCwssGrVqnzLaWhoSLcPY9uIyV5Shgg8dU00rPPbD8cGjp0GbcdG8PmcykFkDMMwDMPkUPrEbsSIEUhPT8e+ffuKtEcaI3sZ2SJotBwHq4nHMbhP1x+ON7SXjHl8+J5NamEYhmEYLil1Yvfx40fs27cPd+/ehaGhIXR0dKCjo4N79+5xHdovJfBrMkRigpG2BqyMdX44Xq+iMbI+++H5mZ147hfMQYQMwzAMwwBKvlesjY0NiIjrMH55fpGSGcbOFnp59prqa6oh/d4eJH70w+5jtVFrwWRFh8gwCuEXEoZlm/eBz+dj+2IPqKsp9VsowzC/IKXusWOUw7bVS/B55ygkvbicb5laDZoCAG7evKmosBhGofxCwuDqWgMHVs/FvpWz4VCvJdIyMrkOi+HI07dBSEnL4DoMhvkBS+yYQn0I9IMw7jMMNfP/dXHv0BYAEPzKG2KxWFGhMYzCtO8xENnJcdL/f3pxF2PmruQwIoYLX2MTUKl+G9StVhnGFtZYtvMo1yExTC4ssWMKFfM5FABQw8Up3zID3NuAp6qO7OQ4XLn/TEGRMYxiXLzrg4/PbwM8Pk5ff4ABUxYAAA5vWYXImHhug2MU6p/j9/DpQxAAICsxGn+PG4aHL/04joph/o8ldkyBMjKzkBYTAQBoXNs133IGutowdZAcP3z6gkJiY7gVlZyBL4m/xq2oJ/ECmPZdggZ9J8C9ZUNsW+SB8rVawaDFCFz3j+E6PEZB3kcl41K4CswHr8emf6/B2L46xFnp6DVwGNehMQr28XMURsxajuEzlyE2IZnrcHJhI3+ZAj186QeIheCpaqCWk32BZes1boazfk9x/+5txQTHcEIsFmPMtku4/Eny/z51rLCgS1VoqKpwG5icZIvEOPsqAgLr6lg8pA4AQEuggQVrtmHZJX+cfh2FAY0dOI6SUYTDjz9BJCa0rmqOsT3qwMnqAFo2qIXPb7xx5sZDuLdsyHWIjAJ8jIyGU83fkB4t2Qjh0fuvuL5rKcz0BRxHJsF67JgCeT9/DQDQKW8F1UI+uHt2bg8AiAj2Q7ZQJPfYGG50G+2BHRO7Iz34KQDg6ONQDF20m+Oo5OfFpwTEp2XDUEsNTR1MpI93q1UBKnwenn9KQHB0CocRMoqQlS3E3r37IMpIQb961gCAFvVcYV+3JQDg74VLuQxP4e76vMHK3cfxNTaB61AUrnX3AZKkjseHjlMTJFdsgX0PQ7kOS4oldkyB3vgFAgBMLG0KLduzbVPYD1sH85E78TYiSd6hKdSn2DTcDYxGetavnbB+jorF+QNbQNmZ6Givjk19quHr0Zk4smAU1h84xXV4crFk1VrEXd8BJ/U4qPD/v9xPeV0BqutnIfHxSSzesIvDCBlF2HL4LD6eXoWve8ai0X+LsgPAnBlTwdcywJdsAVIzhRxGqDidhk1GszrVMX14H9hUdsa5W95ch6QwD168Q5D3VQDAwbNX8e7+ZfSvb4spbSpzHNn/scROwTKyRVh9NQAtVt3Gisv+Sp8opJEa1E3tUdGxaqFl1dVU0bJZI/D4KnjwvuyMO+o6bi4aLTiDgXueoPXaO3hXxpLW4pj8z1qIM9OgZWKFHYs88HsNa7i4VAMAzJs9q0zOiL517gSSn51DueyvPxzTj3mLhNv7cO7IHg4iYxTpxJlzAIAqdZpC45v1Cwd0boXGc09Ct+lgXHv34+9IWXPT/ysex2uBp6oBAMiMi0Tf3r0Rn/Rr9Fp7/LMSAMG8aj3079QSVkZaWNy1GtRUlCedUp5IfhEenq+x8eZ7BEenYPn6rWjoPoDrkApkUrs9zAevx+CxRVt0uHGlcgCAB2Vke7E/567Gmc3/4MuhqRBnZSA8Ph1D15/5Zd7Evnfx5BEAQO+ho6W35g9vWQWemgCJYQFYtOUQl+HJXNDHCCSFS3qtR/X7cTu9sYN6AwBiP7xFQEi4QmPjChFh/8NQtFpzB1023cc130iuQ1KIt08fAgDatW2d63E+nw/3WlYAgLMvPys8LkUiIqy4HACtyg0wadcVBIZ+hpquEdKiw9Drz+lchyd3QqEIj6+dBQD8+edYjqPJH0vsFGjFrmPYNX88xKlxaFYuHXGXN+LlpaPYePA016HlKyw+DQBgZahVpPK1Kmgj9vJGeM7q9dOPvfgam4BdaxYBAFp16onXizqBH3gTj1cPR+8/PTiOTvEevvRDypcQgMfHnHFDpY872lnCrdtAAMCqpf9AWIbGVx7zugEA0DK1QVV76x+O13FxgG4FBwCEjQf+VXB03Nh57RXmnfPF+6gUPPMNwu8tm2DFrmNchyVXASHhSI54DwAY1L3jD8c717AAkRhXbtxC0McIRYenMA/ex8L/SzI01VQwp2cDONhYYOq8ZQCAm577Efa17Nypyct931ComthBRUsfk4b05DqcfLHEToGW/rMQaQH3YRN5Bwem9UTtdr0AACtWreI4sryJxWJ8ik0FAFgZFS2xc7I0hjDsNbJjw7Bh/0l5hid3o2YuhjA1AQJjC3huXwEDLXX0bugIiLJx89QBRMcnch2iQm3ZfxwAUK5SddhZmuU6tnPFfPDVtZAc8R7zNuzlIjy5uHHnLgDAvmqtfMvUd5P04Fz0Oq+QmLj0wi8Yozs1RMK9w+hXpwKMQ68j62swZv41okwnNPs8LwIAdMzs8kzw7U10kHFhKSIPz8CiTWX3tvy02QuQ/OoKfq+iCwMtdQDAwglDoW1qC3FmGv6au5zjCOXr+VchTHstxLAtl6GjpRwzYPPCEjsFOXT+BhI++YGnoopdK+cDAJbPk/T6hL95hDeBIRxGlze/kHAELHNHxO4xMNVVK9I5fD4ftZtJdqHwPPXzDqbPyhbi0on9AIDhf02DlkAynmTBhKEQGFtAlJGCqYs3cBmiwt26fgUA4Na6/Q/H7K3N0bLHYADAhtXLykyvne8LyczfRo0a5VtmSN8eAICPrx8hKTVNIXFxZdrCVaCsdPAjX2Nhl2q4d3IndC0qQZyRgn5jpnAdntzcunsPAFClVr18yzRzaw4AuHC6bPbcxiel4PHpnYi7vBG1DLKkj6uqqmD8zAUwajsOXyzcIBKX3f3dbwZEAQDauFhyHEnBWGKnIMvXbAQAVGnYFo52kl+KlvVrwsjOBSAxFq7fyWV4efJ54w+IssHLToeWhnqRzxvUV9JFHeRz96f9oFuz719kJUZDRVMX/0weIX1cXU0V7n9IFiM9e+IwV+EpnFAkhka9vjBwG4rh/XvlWWb78jngq2shi1Tw7/13Co5Q9lLSMhAbKtlRoFv75vmW69m2KdR0jSHOSse2o+cUFZ7CJSSn4s45yfZZf46bCFVVFehpa2HxshUAAJ9LJ8rsDgxBb18CABo1aJBvmb//GgaAh9jg12Xyddh44BQoOxPq+ibo3b5ZrmNzx/wBywad8CUduBMYxVGE8hWVkIw37yXr1jVxKMdxNAVjiZ0CJKWm4Z33NQDAhLF/5jrWwV3ybf/ujasKj6swr/0k2+bola9QrPMGubeRfNBlpmLp1p9zMP2uXZLbKb+16gIDXe1cx+ZOHAHw+EgMC8A17+dchKdw/l+SIS5nD8tmvdCqXt47kNhZmsFj22mYDViNHT6xyBL+3DNk770MAF9DG3yBDlrWq5FvOVVVFTjXcwNPVQN3nv/8CW1+1u37F8K0RKjplcOcsQOlj/81oCvMnOoAJMbEv//hMEL5yBaJodd+Esp1moY+7h3yLefqWBGmTrUBAMs2lb3lb/71lNyBqdGkDfj83KmDQE0F3WtJOiyOPP6k8NgUYd/JC/i04Q8knV6A8nrKexsWYImdQqzf5wlxZhrU9MphWPd2uY4N6e0OAIgKeqV0kw2CQ0IBACbmxet2VldTRZOOkoT1wP6fb7xVWpYQMVkq4KlrYtLo4T8cd7KzgmW1+gCAlVvK7niab/mExgEAalkb5lrL7Xsz+zaHia4AITGp2H0/7+EF6VkiPA2NQ+DXZBAp722bZDUjWI47CPclnj98kH3v77nzYTn+CBKs3ZT6OZXGyVOSSV61mrWD4Lse/JkzZgAAfK56wi8kTOGxyVPAl2SQrinMa7VEXeeCd9/p2qMPAOCGl2eZWvpHLBYj8IVkVnAP9055lulb1xLJLy7ioEdf+PgGKTI8hbh64w4AwNzcrJCS3GOJnQIcOSYZdF7brf0Puze41akGLTM7aNrVxM2X77kIL19hYZJvXhUsrYp97pxJYwAAEW8f48qDZzKNS95u+kfBoO1fqD/XEz3bNcmzTPeekmUuHl7/NfbF3b9vD1J8b6GKQcFJi65ADR7tHCHOysCMSWOx59Rl6bGouAS0GzQejgP+Qc9t3miz9i5673iE2GTl3G/WN0IyOaamQ+FfbH6v5wRNTU18TkhHwFfl2jdSFjIys+D/5DYAYEDvHj8cH9ffHQbWTiBhFqYsXKPg6OTrZVgCAMDVygD8Ar7UAMCssYPAU1FD2teP8Lx2XwHRKcZdn7fISowG+KoY3K1dnmUcTPWgEuKNrK/BmL18o4IjlL9Xzx4BKHi8rbJgiZ2cCUVixKkYQNXADEP79/nhOJ/Px/jNZ1C+xzwEpmlyEGH+oiMlazLZWP84C6wwbnWrw75+W+jV646T736uD7pLb74AADrXssu3p2bSsL4wbjUKBl3n4sMvsJ2Ut+cuxHqthk5q4TMfe9S2hFHAGSS9vILhfdzRZsA4tOr7Jyxt7HHlwEZEXtsBQw0eVPg83L17F5Vr1kdWtvKt2O/730LUVSvoFVpWU10Fjf5bw/Hi81B5hsWJQ+dvQJSWBBVNXQzr8ePkGT6fj+mz58G4w0R8smyJlDK0A8OxQweQ+PgkTCmu0LJWpuVQsbZk/Nm2AyfkHZrCHDotmRVczt4FJob6+ZYbMEQy/vjm2aPIyMzKt9zPJiMzC7EhOeNtW3IcTeFYYidnzz8lQLN+XzhP3Ich+XzTaWAv+UB49jFekaEVKj5akuBUtrct0flnTx6HodtgXP+Q+tPsRJGclo4r931ARGjnkn+Xu425Cdr3GQJVvfK44lu2V5sPCf+CzPj/kt1WjQstz+PxcGn/BphXrQfKzsS1Q5tx49g2ZKfEQcPIHFNnzcezee1w8a9GiLu4FnHBrzDy72XyfhrFIhSKcH52L0T9Ox/mGkVLUmxEnxGxawwWj/tDztEp3qd0Deg36odaHfr9cBs2h8ewXqjeogtSsnk4Wsg4q7SMTExctAGurbqjx5iZiIxRrve+b3lfPIGE2/uA2NAilZ8y3QNm/Vci0anLTz/ONMfzt34Aj4/aDfK+g5Fj3vghUNXSR3ZSDFbsLDtrG159+AwkzARfXROt6tfkOpxCscROzm74ST70W1QxhWo+W47UtjEEALwO+IDElHSFxVYYNRM7qJtVQnWnku2BV7WCPvrVswYRMGbXrZ/iluyOY+cRvG0U4o7PRPUK+X8zBSBN/K74flFEaJw5d1MytkZgZA4bc5MinWNezhAfnt3F6DmrULFOCzg2ao8J/6xH1Kf3WDp1JPh8PhzN9dF7iGQy0eEtq5CSpjy3ZO/4vEZW3GdkfHqNGvYWRTrn9wZVkR37CXEhvmVuF4rAdE0YNO6H8VNn5luGz+dhdFPJGLQdt/yQmJL3jPjYhGRUrNUY6+dMwOsbp+C5dRmcajVASLjy/R0JhSIkfA4GALRs8FuRzhnWpQWsqtRATEoWzr3Kv4c7LjUL3u+j8MIvWCaxypNmo0GwmnAME8ePL7CcnrYW6rfrBgDYuXO7IkJTiEu3JO+BxjZVfhhOpYxYYidnnpdugETZaFGlfL5lLPQFiD0yDR83DcJRr+sKjC5/qZlC6LWbCPNB69CodrUS1zOnozMqGajAf99MdGjlhj/nrFLqQcXHPc8AACpWqlzoeJrWzqZIeX0VV9ZMwPN3yjU+Upbuej8BAFhUci7WeQINdWxdOAXBT27A//5FrJs9HnrauRe63rl0JtR0jSBMTcSSrQdlFnNpXbkrGU+jX8E+3x6q79V2doCepWQXitW7ys5SOBnZIjz/mAAAaGhvXGBZ95oVIIh4gRerh2DwlPk/HE/LEqLb3F346vcMfHVN1GzTEyqaukgMC8Dv/UfKIfrSefTKH+KsdPBUVNE8n9ng31NX5WNIIzsAwLrT93+4JSkUibHqSgAaLL2BnmsvoVbVyugxZqbSvi9+TcrA54R0qAq00MTFttDyC6ZPAACEv/aG9yv/AsumZQnxITpF6fdMf/JU8h7oWK0Gt4EUEUvs5Oiuzxs82/QXwjcPQl1r3XzL8Xg8lDeX9ApcvnlXUeEVKDJR0nOoK1CFrqBoixPnRVNdBdv6uUJHSxPijBRsWzQNplVqK2XvnVgsxquHki2kurt3KbR8eV0BKOAWMj48w9rdZeeD/HtvXr0EAFStXkPmdQs01NGko2Tdw317d8u8/pJ64iNZxsbO0aVY5zVvL/m9OfPvcZnHxJXzd58jwe8BjPhpsCunXWBZdVU+2jroQpQcjXP7NuHBi/8v/5KWJcTQfU/xUasyKrhPwc6jp/D8ygnsPiLZoebdHS/8e0U53v9yXHsg+UDXNbcrcoIPAP3qWSP7zSU8XD4IA6cskD7+MTIabSavw6Zb75EpFEMgSgNIDM+tyzBt+VaZxy8LLz5JbpM7mulBW0O10PIt6rnCtEptAITZy9blWUYoFGHqxuOos+g6Wqy+gwbLbuDkwwAZRi1bKlY1oOPaDq1bt+E6lCJhiZ0cbT0oWYG8nFUlmBrmn9gBQO06khXNXz57Kve4iuJjTAqICBUMSj+ho5K1OT77PUOPMTPBU9NATNBLtG/WAOv2ecogUtk5d+sRshKiwFNVx9j+P274npcWbSX7Rl67WPTtpMRiMcYtWIvKDduh61/zkZal3APNPwdLBg03rle0W1HFNW+KZDPtyHdPleZ2XOC7NwCAmjWLN57m7/EjAfAQHfQCj14X3FuhjBNG8nLw2HFEn16MpJs7weMV3IsNAKtnjoOxfXWIs9LR7vfOeBXwAU/fBKLLEk88+hAHHQ1VnF03C0P/G3M8yL0NKjdqD4FtDZx8/EHeT6dYnjx7CQCwtK9SrPP0NdXQsYYVSJiFk9tWYPD0Rfh7zS5UcXHFrU3TQRG+2NC3JgK3jIJbL8kC6BuXzMXnqFhZP4VSW7H4H3w5NA2an4v+2TR0+ChoWFdHqF51xKRk5jqWkpYBF7dOWD1pABKjIwEAcfGJ6NuxOfaeuiLT2GUhWyRGQvkaMG43DgN65L3Ui9KhMioxMZEAUGJiImcxmDr9RgCo59hZhZbddsyLAJC6vokCIivciFnLiKeqTpWbdpFpvd6v/MjMqQ4BIL66Jl33fi7T+kvj96GTCABZuTYu8jl3n74hAAQen95/jCjSOY26DiYAxFPTIPOhm6jduruUliksadhylZCcSuDxCQA9f/debu1om9kSAJq8ZJPc2igqkUhEqtr6BIAOnrte7PNNq9QmANSs5/A8j9/zeUvWNZoQ+CpUe84ZOv70U2lDlivrmk0JAPUa93eRz/HxDSRVbQPJ38Z/P6pGllR1xil69jHux/IhMWTj4UWOsy9SUnqWLMMvlYp1WhT5Pfx72dlCsq/XOtdrAIA0DEzp5JW70nLxSSkkMLYgANR/0nxZhi8TxvbVCQCNmbe6yOcIhSLqsP4O2Xh40aTjL0gsFhMRUVRcAlm41Je8FnwVmrZ2H2Vmi6hBn78IAGmZWFFqeoa8nkqJ+EcmkY2HFznPuUQikZizOIqT07AeOzkJCf+Cr/6S2zmjB+S9BdO33Fs1AsBDVmI03gZ/lHN0hQsN/QQSZkFbs+i3H4qifvUqCHh6G+UcakCclY4hYyYpzYKu969L1lxr075jkc9p8psLdCzsARJj7d7CZ4HNXLUDD07vAwDU6TIEptaV4BeZhO13lXMAdXhiNiqM3g3bPxbB1dFObu3UadYGGpbOCIrLllsbRfXS/wOEqYkAj4+OzfLfGzQ/Y8ZKBpjfO3sE4d/1wBz2uonmzRrj08t7UNUrj5gsVUw/+Rqez5RzsoVYLEZE4GsAQLvmBc+I/FZtZwd4XbkOfStH6WMGxuWwrVcV1LI2/KF8LRsjVCqvg4xsMS68jix94DISGSpZaLfhb7WKfa6qqgre3buI1v3HQmBsAQ0jczR0H4TgAF90b/P/19JAVxvdB0h67ZRtm8KUtAzEfZT0PLu3dSvyeSoqfMzv7AIeDzj1/DOGLdmDlbuPo3LNBoh4+wg8NQ0s334IKyYOgroqH0dXzYaqtj7SosPwz6b9cno2JXPz8StkRgahsrFGoeOulYb880xucN1jN3b+GgJAOuYVi3yOlqkNAaAl2w7JMbKiqerWmQBQp2GT5VL/7SevSa96a7Ice5Bu+X+VSxvF8eRN4H/fqHn0JiikWOe2HTCOAJB1zaYFlguNiJL2BLXq9ycREXm9iiAbDy+qOP4ABYdz/zp878yLcLLx8KLuWx7ItR3v99Fk4+FFNRZc4fRbMRHRrrO3ScPSmfRtq5bo/OxsIVk27EymfZfS36deSx9fsu0w8dQ0CADpWTrQ6RveNOfMG7Lx8KLqc85TZGyCrJ6CzNzzeSvpXVZRpcSU1GKfLxKJ6MGLd/TgxbtCy266GUQV/txDrSauLUGkspeamU3WU0+R+eD1FBIZI9e2PoRFEk9FjQDQict35NpWcRw6f4MAkIpAh0QiUbHP33HnPenV75Grx1JFoEN7PC//ULZ1vzEEgMpVcpVB5LLTuNsQAkC/te/NaRysx04JnD97BgDQqFXRe39sKksGat99+EQeIRVLzBfJ4sR2tjZyqb9ZnWqYvGgtVHQMsf9hqFzaKI5XMWKU77kALu6j4FLJtljnjh7UFwAQ9uYRouMT8y03ZNJsCFMToWVqg9M7Javzd6hmBpUnB/Fh42DMXLahxPHLS8AXyeLSlc0KHiNaWrVtjaCppoL4tGwERXG74HOqtgXM/liBoctKts+xqqoKjuzbBYF1NRx6/Al/bT6Lpj2GYdafA0DZmTCvWg/+Lx7DvUV9zP3dGfpRr+C7fhgGTZgt42dSeqeu3gIAGFhV/mFGc1Hw+Xw0rOGEhjWcCi1rq5KAz1uH4samGUhITi12W7IW+DUFPBV1WNg7w9as4NnApWVnaQa7WpJevJzJJMrg0g3JZBYzh2qFbquXl2GN7TC8sxt0zOygplcOjo3a4/b9RxjSre0PZVfOnQLwVRDz/hVuPHpR6thl5b2/LwCgRg3lX78uB0vs5OBrbALCXnsDAMYM6Vvk89xat4du7U7gmRdvoK48JMVI1t9zLOHixEUxsIGk7tuB0fgUm/eaV4pyPTAOmhVrY8LkacU+t3Pz+tAsZwl1C0ec9857E/gXfsG47Sm5xeAxeyF0tCSbSPN4PDSu7QKQGBc9jyrdkgf/7t6EhLsHoZcRJdd21FT4qGltAFFGCi4+eiPXtgrz9rMkOXe2KHzHifw0cTDBn26SNd0OHj2Oe557ABLDqUlHBD65DfNyktuRqip8tKtiCFFSFG6dPap0EyoePJC8j1WuVvxbkcXVvnEtqOmVAwkzsfOEl9zbK4x/pGTnESdz+X6pyTF87CSY9lsGtVrdFNJeUTx98hgA4Fq7bonO5/P5WD1zLJIjPyArMRr+9y+ice2qeZZ1dawIcyfJBK1Ne4+WLGAZE4vFiPkoma3r1rAOx9EUHUvs5OBpeBrMBq5BxY6j8XsxxugMHdAXRq1GIUbXQY7RFU4sFiMjQfJBXr1ywZtel4ZdOW04iD4i6tQSTJqzWG7tFCY2JRNPQiTbBbWtWvwNnvl8Pmbs8oJZ36V4nqCRZ5kNXk+homcCY/vqmD2mf65jCyeOBE9FDSmRH+B153Hxn4Acvb11Gonex6Etkv+2cJmvLyF8fV9sW/mP3NsqyOtQyZeaqhYFL1BdmOltHbG+Tw04V7aHZfWGmL12F97ePidN6nPMGTcEKgIdZCfHYuvRc6VqU9YC30h6Tho3aij3tvh8PpzqNAUAeJ7lPrHbt2MLYi9vhGacYja0H9q1FQRWLnj7JRWx380k5cpH/1cAgJbNFLM/atsOklmnd64qxx7cb4JCpeNtOzQtWXLLBZbYycGVd1+hXt4Ow8eOL1b3tbOFHvg8ICo5E1+TuFuFP+hjBEiYBYCH6lXkN2AeAGzVkpEW+BA3LpySazsFWbJlH2Jv7YU1omFlVPzbTQDgXltyy/qK7xdEfbep/fuoZNyJ04XFsM04fPToD78TNhXKo0JVybfBvcdOl6h9eYhJSEJGrGQge6tGteXeXtM6rgAIob7crXH48XMUHs/vjM87R6GiUekmDvF4PHSpUQEP9/yDsFcP8M/EYXm+H+hoCVC9qWT/1V17D5SqTVnKyBZBr/1kGP8+Bf265L0doqy1bt0KAOD3gvsvOM/vXkXKqysQpCtmCRJTPQGczfVABNxXgi0Yw2OTwDe2gYqOEXp3aKGQNicO6wt1U3uIrWrhayL3uzBd+u+LtnZ5axjq6XAcTdEVO7G7f/8+1q5di6tXr/5wbMyYMTIJ6meWmJaNq/9tMdXexbxY52qpq8JOXwUZ4b646v1aHuEVSVhMEjQd6kOvUq0SjaspjonD+gLgIfGTP568CZRrW/k5fmg/kh57Qj+65K95dUsD1LQ2QHpCNOZtzb047YrLARAT0NbFAm3r5L17Q/PWkjEnD24px84jAHD94XMABFVtfTjZWcm9vT4dWwA8PrISo/EmMETu7eXlzI37AImhAnGha0/K0pAB/QAA/j53IRQqxyr8bz8ngmdgDtt67VDT0VYhbf7RWbIAbNLnYIR95S65EYvFiAuT9NQ1qy//29A5bOgr4q5txYY1qxTWZn58v6ShfLfZaLnwNCqUl+8YwxyujhXR+u+9MGjYB4/+u4vCpYdPJV8yKxRzHUOuFSux2759O3r06IFnz55h3LhxaNGiBeLi/v/iHzpUssHGZclf85Yj/OQSmGWGwdWy+Ldyvlzegq+HPXDoEHfbK4m0jFC+22y4TVgn97aq2lvD2F6yZVnOgs6K5Bv8CZ/fSr6VjRtaus3bG+rE4vO2YdgxZwyevZN8KCzcdAAntq8Gj0SY3s4x33NH9u0OAIh+/4rTD7Rv3X8quQ1nVEF+t+O/ZWpsAO3y1gCA8zcfKKTN7915KPldsKyU9zggeRncrS14agIIU+Jx9pa3QtvOz/P/dhyoaW1QpIWJZaGmkz0ExhYAiXH43DWFtJmXF/7BEGWkADw+WiugtzqHkTgByc8v4MmNoi94Li8vPiUAkFx/RWpoXw4A8PA994s1v3sj+bJftVp1jiMpnmIlditXrsTNmzdx6NAh+Pv7o169emjUqBHCwsIAQGnWI+NKRmYWTu7fgbSA+6isElWiN8NatSRvIu/ecDcrKDJB0gVuIYNdJ4qiTiM3AMC9u3cU0t63Fq7bAZAYhrbOaFvKN/BJ/TrC0KYKxFlpaNOpO4bOWIKF08Yi8eExVE18jErl8+8Baly7KjTLWQIkxsHTl0sVh6y8fvMWAGBTKf+EVNasHCQJ1f1HPgpr81uvX0jWnqxeU3G9NACgq6UJS2fJwPHDntx/qAPA3m2bkPTkFGwFir0lZl9N8jpcuX5Loe1+6+o9yS4L2qbWcr9r8a2+nSW3olMiPnD+Be/h22AQUZ7rDspTA3tjiDNTceHSJYW2mxf937rAwG0oOnVoz3UoxVKsxC4qKgpVqki6JPl8PpYuXYoJEyagcePGePv2rVy+1UVHR6Njx47Q0tKCo6Mjbty4IfM2ZGXKkk1Ijw6DiqYulk4fW6I6WjSuDwD4EuzH2QzJj1EJICKY6ysmsXPvILn98vHtU4U+Z7FYjIsnjwAAuvTsV+r6VFVVsH/PbvDUBIj78AZ7l/8NUUYKDO2q4tiaOYWe79ZrBIzbT0CannyWmCmuD4GSrcSqVlVc75Xrf0sKvHvzUmFtfiv8vWRpg2YNi78wcWm169INOjXaI1m/osLb/p5YLMYzrwOIv7UHxuIEhbbdd9BwmHSdBf3fCt+vWV4eP5N8sa5QUbG34Fwq2ULTuAIAwtHz3A3LyMjMgtff3fF580CYqyl2xYJqZloI3zQAvntm4OFLP4W2/a3UTCHidG2hX68bfm/egLM4SqJYiZ29vT18fHJ/kx49ejRWrFiBli1bIjNT9jN5xo4dCwsLC8TExGD58uXo2bMn4uPjZd5OaQWEhGPn2iUAAPfBY0s8JqFzi4YAjw9hShxeBnCzb+LB5R4IW9MdIQ8VMzOt7+/NwVPVgDA1AZfuKa6nZvORc0j5EgKemgDzJ42USZ2d3OrhzJWbKOdQAwIjc9Tp0BdBz71/mAmZl8FDhkCnemsEJKnIJJbSio2U9MTXr11DYW26NZLMPIsMznvZGHkKCf+CzDjJZBH3lo0V3v7kP4fBuO1YfNawgVDE7bI3T94GIjs5DuCroGc7N4W23a1tM2hVboj3KaoQi7m5C+T73y04p6ouCm/bxqkGAODuA+4mkJy75Q3KzgSJstHApZJC2y6nrwN9C8nwj1NXbiu07W/5RiSBCDDTE8BEN+/VDpRVsRK7iRMn4tWrVz883rt3bxw8eBCNGsl2SnRKSgrOnj2LhQsXQktLC+7u7nBxccH588pxqyLHo9f+aNS6I7KTY6FlYoWdy/4ucV3GBrrQMZfMRD13/b6sQiyWuCjJrFgLEyOFtKenrQVzp9+gbuGIR/6fFNImAKxasxYAUKtlF9iYm8is3s7NGyA68AXSYyPw5MIRGBsUbRD+bzaSWx6vwhORyfEA+uSMbJQfshkWI3fAvXVThbXbuWUj6FRvA516PRGdpNhbgKev3wMACIwtYFOhvELbBoDK5XWhK1BFWpYI/l/kv7xMQU5ektwG1a9Qqci/v7LiUF4HAjU+UjKF+BDDzWLVsbGS8V2N6/2m8Lar16gBAPDlqNcaAC5c/29h4kouUFVV/BfNytUkPff3HzxUeNs5PC9eQ+q7OwofiiALqsUpPGjQIADAiRMn8jw+evToXMd69Sp8j9SCBAUFQV9fH+bm/59d6urqCl9f3x/KZmZm5uoxTEpKKlXbRRGXmoXOq6/gwbzOAACemgDHTvxb6mnRtpVd8DYiGA8ePQH+GiyDSIsnJVayjpdzZcXdEpq8ajc23nyPVMMKCmnv7ecEJGpbga+hjcWzi78osTzYldOGZnI4vgY8w/k7BujRkrvu/8CvKeDxVWBlUxGmRor7YLcwMUKdATPxISYV776koJmeYoYDAMDXTDVoV2sFR1vF/A5+j8/nwdVcC9fvPcLJK2K4DO3ESRzA/z9QFbEw8fdUVfiwyArH84d3cNA2BQtG91Zo+ymZQuh3XwCd9BT0VdAyL99q1rAuTmwCIoO5uw355LGkt9ClhuITWwBo1KgBnlw4gsA3zzlpHwDOHz+ImHsXkGiYCeB3zuIoiWIldjk2b94Mb29vmJmZwdLSEuHh4fjy5QsaNmwoHWfH4/FKndilpKRATy/36u96enpISEj4oezSpUuxYMGCUrVXXIZaakjnCaBqZAk9fQMcPrAX7RqX/g+hVu3aeHv7LPw4+MaWlpGJ7CTJt1VXJ8XMhgQgHaD7MixBIe2tux4Eg0Z90WfYmFJPmpAVHo+H9EfHEP/8No46GHGc2ClmK7G8VK2gjw8xqXj7ORHNKsuuJ7UwSdpWKNdhIkZ14G5pg4THp/H18FocDm6D+RwmdgGvJcs8NG4s/4WJ85IZ+ACJ9w/jop5I4YmdX6TkFpxF+XKoUK50i1SXRKcWDTEWgFAkQnhUPCzLK3byAgCE/LeWZCs3xQ9JAIBubZpj7SwgISwQSalpCp3AkuNToKQDqXF9bpLb0ijRAsVOTk5Ys2YNPn36hIcPH+LTp09Yu3YtnJyccOvWLdy6dQs3b94sdXA6Ojo/9LwlJSVBR+fHHrGZM2ciMTFR+pMzU1eeeDwe9g2pi7AgX8R+eCOTpA4AunXuAMOWI6HTsJ/CZxq/CvgAgMBTUUUVG0uFtetqZQAAeP85FtEJ8t0n8qrvF1z3i4IKn4epHZRrGvtv9SSTZ3wec7vkxZ4t6xF9biVUIhS/vZdTeQEyv7zHpctXFNru6/D/sXfW0VGcXRx+drMbd3cjgQR3d4qVIoXS0paWekvd3eWruxttoQK00EKx4u7uEOIhCXHX3Z3vj51Nk7Aakt1tmOecnAMjO28ys+/c98rvaluJdQ2z/stcx/hR2n6hmacvTnmxFiXllZSIGm4zJlhHmLY5gwZqi1fOnbD+3+GE2FKuyyW0lLsUIoL8GfTyX4Tf+yNppdZPydhx6CS1xbkgd+DmaRf3dLUGg3slonDzQlCr+HOd9VOS8otLqczTpgVNsUG+7aXSIsNu4cKFzJ07t8m2u+++m99+a93+bvHx8ZSWlpKbm9uw7ciRI3qr9JycnPD09GzyYw26hXsR7Nu61xo/qCe+/adS4x1Ddql1O1AcPa0t2HDyDrRqboWvmyMVK94k86Nrmb+07drJZF4o4JrJE6jJOMpdw2OJC7QvNfHJ40YBcP7MYZv2jT22ZwtVp7bgXFdi9Wurc86Q+9PDrP/2datdMzOvmNSzJxDUKpsadtPGaQ272pILJKVn22QMK7ftBwQU7j4M6mEb7+W0K7R5naVZSVRUWXcO/Ox/L5D727M4nLedcd0rTisIfiK71OrX/nnpKgB8ozsT5Odt9euDVnUjNF676F69cZvVr//3pl0gaFB6+NKtY9t2X2oLWmTYRUVF8dNPPzXZtmDBAiIiWled3t3dnSlTpvDSSy9RXV3N8uXLOX78OJMn2y5EYQ2clQ50DNKGwI5lWfeLffqc1rDz9Le8Z+ql4u/tCYKGzTt2t9k1ps65l/LUI5St+4L7RtjfF3bGuOHIFI6oq8pYu9N2+SWFmckADO3fy+rXnjJGW4RVW5xLalauiaNbhwVLV5Lzw4MU/vwons5Kq1xTHxFB/rgEaOfRv9Zb/4UGUOISRsTDi7n6uW8saonYmgzulYiDqyeCWqV9yVqRs4f3UJtxlCB323Xc7BKmdRYcz277XPHmlLmF4dFvGiMnzbD6tRtz5bU34Tv+fhxjrd+jdeM27TsoOFZ/pyB7p0VP7nfffcfLL79Mx44dGTNmDB07duSll15i3rx5rT0+vvjiCzIzM/Hz8+Pxxx9n8eLF+PhYP+fA2kQ7V1NxbAOLllq3d2i9owcu8QOJ7Wb9L1PX7j0AOHW8bcJ/Xy9ayaF/tN0t3vnoM9xd7K+E3d3VGb/oRACWtbDU/82vf8XZNwSFqydjrr/HYs/f6dQsVJUlAIyzQf5hVEgATj7ahcWqLdaRfFi7USuOHZto+9B8ZEetxMaWVljglFbXs+zweZYfyTa70npncgFypROThtsut0gulxMUq43MrNlkvVBcWWUV5bnadnaTRtkmvxDAu76QC4teYP4zN1n1uhqNwBlVAL6j7+Cxh1qmxdpa3DTzajx6TiC5xs3q1z4kCpUndutp9Wu3Bi0qnujXrx/Jycns2rWLnJwcQkJCGDRoEEpl6690AwICWLVqVat/rr1TnbyPwlUf8k/6QHhxrukTWgnv+D4ETn+ea0ZbV7sIYHD/3iz5ErJTz7T6Z5eUV/LoA9q/Y48rZnD/jbYTPzVF55592XruCDt3We6p+PyXZTw79yYQtMbcxoVfM0qlYsvv35n9Get3ahOnnX1DCPCxTVgyOCaB9OJctu3Zz31WuFfH9muNqOEjrCftYogevXpzZsdqjh+5tO4zG/ccYeZt9+E27kHkTm7EB7oz75Z+RPgaTkSvqVezL02rEzokzjr9QQ3RpXsvso/vYv/+fVa75ppt+0CjxsHZnf5dO1rtus3pExdGTdohaoDzeYVW69V6KLOEgopaPJwV9Iu2jtyVIbpHeCOTwfmSavLKagj0NK0F2lpknNF23RkyoJ/VrtmatNjXrFQqGT58ONdddx3Dhw9vE6PucmbcCO1qMS/1pFVzrbJLtPks1uo60ZiJI7SFA9X5WVwoLGnVz555zxNU5WeidPdl2fwvW/WzW5sRQ7WhyJSTluX41NTW8dTjD4OgIar3CKbd9QRyV29OVrpyLs98PbA9Bw4DEBgVb9H1W5OErtr+wceOtn2eU2FJOUXppwG4foptksUbM3qotho6+9zFsk7mUlNbx5Rp0yg6uYOKzd/h4azg7IUyxt/9vNHv1reL/ibtm3tRHfiDDgG2zT8dIXbhyUxu/YWeITZs13qI/aM72SwMDdApJhxHL21F+IpNbZea0pyPvv+F6tRDDO/gg9LBdr8/gLuTgjBNAeUHV7J4jfXaTVbVqfCd/iIBVz/LzKuusNp1WxPb3jkJg0waOQDkCtRVZew+ar2JLT07D0EQCPW23upIR2JMBEoPP0Bo1RDc5r1HWb/wWwCeeu2dVhUjbgtunnElQde/ie/1b1NWU2/2eY+88SmVuWk4uHiwZfli/vz6HW766G/cuo/nvX/Mf4Z0OpFxnRItHntrMbCvVj8tM6nttbwW/LUWNCqUnv42KxZozLQrhuAz5k58Jz/BhdKWiaPe/dzb2mfB1ZOtv3/D2keGU7XpG0798SFT5hgOsf2yeAn1+Wl41Re2SYtIS7hh6kRCbv0U3xvepaJWZZVrHjigDcHFJXazyvWMERyr/f5t3mmddASVSs0fX7xJ3uIXcMs5YJVrmqL8wDKK1n3J0qVLrXbNg+klyDwCiO8/hsToUKtdtzWRDDs7xdPNFc9QrUDwyo07rHbdza/NIvODGdQXnbfaNRsTGK0Nf2zZ3Xrhl8ff/BQ0KkK7DuK1h29vtc9tK+LCg4jr0R+Z0pkjZur6CYLA5iPJyJTOTLl5bkPnhGenaPMW157MJbvEPCOhsKQM5A707G67l9v44VpvTXluWptXRf6+TNvJplPvITb10ugI8vOmz5U34hzepUXJ8zW1dSz87lMAbpj7GF3jognxcuGZe28GYO+qhSxadbEHRKVSc2irVmLmumuuuYTfoHWICfUnOj4RZA5WKyLTCeIOGWT9XsHN6dRF+/07fvToJX+WSqXmnx0HOHAyyeAxn/38FzWF2cidXHns9usv+ZqtQf/+2vtw8oj1Csn2pmp1XPvH2DYUfSnYfhaTMIgukXvnnr1Wud75vEI0NRUIqjq6xkdb5ZrN6Tt0DG6dR1Lj3DpetVM5ZeR3nErA9Of4+rOPWuUzrYFOsPlgeolZxx/OLKE6cRIxD/3Mx6881bC9Y5AHfcPdKT+xhSfe/NTk5wiCgOfER4h89A9uvv7SBMYvhQHdOhI87k4Cr3mJ5Py21TU8vEOruTn5qklteh1L6B7uDfyrrWcJ789bRF1pPg6unnz2yuMN2x+9ZSadhkwEQcPdc++hrr6pF+zXlRupK81H7ujCg3NsWxGpQ6dveTSrpM2vVVJVi9rFF7mTGzdMGdfm1zPFgD7aivSMc5fmtV6+aRcewZFMGNqXvl06EpzYl417Lk5x+PizzwDoPWaKzWROmjNpjFb+Jz/1JCortVn89v3XKNm5kDg386Ml9oZk2NkxffpoKxKttVo5fEorcSF3difE3zaVx3fcMxf/yY9THdQ6zbe/2ZqCTCZj5ozpXDXC+pW+LSWUIorWf8M3775s1vF/HMgCYGrfDkQENV1pxlSepODvd/njm/dN5mumF1ZRXqPCycmJzhG2S56Xy+UMn34rLjG9SCpou16N6QWVeI5/CJ/Bs7jnxmltdh1LiXFXU3F8A7//bLnSwLfffQ/AwPHTL1Ls/+PHL5A7uVGacZrbn3qjyb73Pv4CgLi+I/D2sH4loj68q7IoWPkhX77zcptf60hWGQEzXmDwy8vo0cl67RQNMX6Y6LXOSaGqptbE0frZffQ0V08cS01hNsjkgIwLpw8wbvRw/th9ruG4L35bTtqBzYCMF594+JLH3lpMGNoXmdIJTW0V66wg/1RSXsmZjb9Tuu1n4nz+u+bRf3fklwHXTNImbuanHKekvKrNr3c8Sath5+ob1ObXMkTnEK1+05ncMtSaS+u6kZJdwLID6QDcM9x67dFagyhPOeUHlnNm63KTK9Wa2jqWrN+BIAhM63Vxn9Nn596E3NGFupI8Fixfb/Szjomq+4nBHjZPnu4sKv+fbEMtrxXHcnAKS2DCLQ8RGWw/uZfutfkUrvyQfUu/sah4Kr+4lIwj2j6vTz14z0X7u8ZFc9ODTwPw6+fviJ1m4NjZVI5vXaE977GHLnX4rUaoq0Dl8Q2c3rmuza+1L7UIgH6xtq0G1jGwRwJKr0AcwxI5lJRl8fkajYZrZt+GprYS78hEUjLOs+PQCQLie+E1/BYe/+sMz/91jNe/+51H5t4BQK9x1zB5pO3D0DqcnRwb5J/+3tByXcfS6npUatPfo68WLkdQ1aH08GPsIOtreLYWkmFnx4wb3JtOs18hbO6PHMo2v6qxpSQlpwHgE2B9cWIdUX5uODtAeW46R5IvLc/v4RffJP2zm/FJ20S3cNt1E2gJU0YP1goV11SwYc9ho8d+/stfnPliLoWLnmFwh4tfSj6e7sT3GwnAVz/8bPSzPnzrdXJ+egRZivXyOg0R6aah8tRW/l70k+mDW4AgCCwRPZ1X6zGIbcmU0YNBJkdVUcyh08lmn7ftVDYefafg3bEfk4brl2r47n/P4BPdGU1dFeOm30BZTT0z734MQa3Cr0N3bptu/cb3hpg+bhggo7bkAmdSLTduLOGfvVqJiwF2klulUDgw9a0/Cb7+TfJUlmtu/nMwmYKScmQOChYv/JmY8GAG90wk68ReHheN/p93Z/DWJ99QV5qPi384f877rLV/jUsmsbu2kGr3Hsurg8/lVTDjy530eGUtvV5bx6Nf/HlRCkJjfl/6FwBdB422i3zblvLfHfllgFwu5+qrp+Hg4sHWs/lGj62oqmH11n2XNPmlpWm9WwHBtqsEcpDLKPj9ebK/m8uvS/9u8eeoVGrW/fkbmuoyhiTa10vbHNxcnBpWqktWGfey/bjgVwA6JiSiMOBlu2HWLAAObF5t1AN48vBe6nKTCHK1bUUkgHt9MQXL3+HQki/aRPJn3tJ/2PvDK2jOn2Bit5BW//xLwdfLA48QbThw+XrzBXr3X1DhM/JW7n97nsEXk0LhwG8/z8c5KAaHgTfR/eW1VHaZjkt0Tz768INWGX9rERboh2ugthPH0rVb2+w6J5IzWP/iNZz/9m76R9hPm8FEMYJxKqfc4nMXHSsm+Ia3eOibNYwd1Lthu6NSwTMTE5l/W3+GdwwgLK4LXUZO4cShfQ1FV/bE0EHakHSyhX2DN+89yuCps9mfWgBAYcZZPnpoFolDxuudAzUaDcd3bQJg5vRplzZoGyMZdnbOiI7a8NC6kxdQG3Alf/TjEnxDIrhyRH8S42OYcufjLXoRZmVqDbuoaNu22oqM0eqn7T/Q8pyKX1ZsoKYoB7mjCy89eFtrDc2q9Oqv1bPbusWwhlNZZRUnd28A4I45sw0e9/Ct1yB3cqW+rIB5S//Re4xKpSY/VavndoWY32NLxg/tC3IH1DUV7D9xzvQJFvLCSy9TeXIzPjl7cHdqkVZ7mxKdoK2K3LHLvOIpQRDYdDoPgNEJxl/Q44f0YdvufcQnaFsmefr68+vSv5k9ecwljLhtiErQFpFt3t52rcW+mP8HAG5u7sQE24fHDv5NTTmWbnxh35yU/Ao2n8lHJoOHp+r/Lg/vGMD82/pzZulHHN+0jJhw20VqjHHj9CsJnPUGvjNfp7rOvAIKlUrNzNlzyN+9DOXRP9nx9GjmdHcDQUPKvo2Mm33vRed8/suyhuKhuTfYr4C9OUiGnZ0zomMgdSfWsfeDO/n295UX7X/zm1955LZrqS/TrkoEtYq/v3ufh177xOJrOYUm4BI/kD59eps+uA3p3kM7kZ873XKB1h9+1bYOi+09zGbdEy6VyRPHApBydK9BQ/3jH5egqalA6eHHHddcafCzPN1c6TRgNADf/aQ/HLtiyx40tZXIlM5MGmH7PBtPN1fcg6MBWLOldUVa35+3mJwTe0DuwBfvvtaqn91a6IqnTh0/bNbxG/afIOXgNhypZ5CekHxz+kb7seHREfzz8HAOvDCWab3CL2W4bUafPtrWZscPt5222orlfwHQf4R9CdJ61hdx/us7+OOJqRYt1r9bthl1dRnD4gOI8rOPQpiW0jk6lMiu/REcXTmebV6V+CNvfEpB0mFkSifmv/UkYd4uvPnwbTz48vsAbFr0DQ+88lGTcz74WPvO7Dl6st0UD7UYoZ1SWloqAEJpaamth3LJdBt9tQAIXUdObbL9UEaxEDP3G8HBM1CIGzhOKCguE8bOvk8ABLmjq3A6JdOi6/R5bZ0Q9dQK4VhWSSuO3nK+X7JaAASlp3+Lzler1YJLQIQACE+8/UUrj856FJWWCzIHhQAI63cd1HtMpyETBUAYOOUmk5/3v69+EQDBO3GwoFJrLtp/48MvCYAQ0mXAJY+9tUgcfpUACBNufrDVPnP7wROCwt1HAIR+V17fap/b2vy6YqMACA6unoJarTZ5/NQ7HxcAIbL3iLYfnBVZtHqzdk5zchVq6+rNPu/4uXSh2+irBRe/MMEjLF6Yed+zQmV1zUXH7T12VkAmFwBh9bZ9rTn0S6aotLxhbIdPJ5t9nmd4RwGZXHji/XltODrrcff8/ULUUyuEzzclmTy2uqZWcPELEwBh8h2PXbR/9Ky7BUBArhA++/kvQRAE4WhmieA9bLaATC6s2rK31cffGlhi00iG3X+A735fJT6IDg0v+PSCSqH3q2uFqKdWCDM/WNUwYdXW1Que4fGCzMlNuOftH8y+RmVtvRD11Aoh6qkVQklVXVv8GmaTnV+k/X1BSErPtvj81dv2CYAgc1AIWRcK2mCE1iOwY2/BwSNAeOrT3y7aV1BcJsgdXQRA+PGvtSY/q6KqRkh4eL4Q9dQKYce5/Iv2x/YbrZ0Mb3+0VcbeGsy871kBEGL6jrrkz8rIzReuvf85QeHqJQCCe0isUFRa3gqjbBtKKyoF5FrDfufhUyaP9+vQXQCEOU+8ZoXRWY/aunpB7uQmKAOihQ37T5p1zumMPEHp6d8wj+h+vCI6CbuONP1bjpl1jwAIgR17t8XwLxm3oGgBEN785lezjt9x6KT295XJLV7c2ytvLdosePafLnQeZ3oh9sj/Pm1YEOUWFF+0v75eJXTof4X2HaFwEq557G1h6NsbhKinVgg3vP9n6w++lbDEppFCsf8Bbr9mIuE9hoBGzcwbbuLJd75k8rNfUVhZR5dQT+bdOxZXZ23VlKNSwVuffUf43B/YUxtGTb15OQlnswpRV5bg6azAy8W2fX9D/H1w9tUms6/eank7nS9+/A2A0M79rNY8u6145v1vCJs7j0zn6Iv2fTBvEZq6apx8grnJjNwoNxcnJg/RhrlXHM1psk+lUpNxUhvqmjrBfsJRwwZow3A5Kadb/Bl5ZTW8tOw4gx74mMWfvYGqqhTP8Hi2bliLj6f9JMo3x9PNlUH3fUDYffMpkhlPJ0jNyqUwRVvVOfemmdYYntVwVCq49sOVhN72Gek1plsd1qrU3Pf7SbxG3o57aAde+Ww+c554DQdnd0ozzzBs8CDmLV0DwIbdh9j4h1Yr8I6757bp79FSwjpo29zt3LPfrOM//v4XAALje9Ipxj7D65YS5y2nbO9STm9eRk1tncHjNBoN8776HIAJ196mV2hZoXBg37o/Ce8+GEFVy/p9J8gsqibUy5nP7zGczvJfQjLs/iP8+NWnyB1dKE49wbtP3cvR757EKXMv827pd1Hi951XDSU80Jeiyjo2nMoz6/OXr/qHrM9mk7XgibYYvsUEx3QCYMdey/NqygN74DnoOmbeOKe1h2V1rh6UgEwmY3dKEaVVTZXQszw6EzjzFabPfcrs0vyrumsrnpftPE5J+b8dHbadzMQpth9Kr0BmThzRer/AJXLlCG3id01RDpkXCiw+/+9DGYx+fws/7UrHIbof/okDuf3pN0k/eYheifavbThy1EgU7r4cPV9i9LjPFiwBQYN7cAwDunWyytisydAEbWX7XlFrzhg/7kjjXF4F0f2v4OyJo7x43038+M7z7Nx7AI/QOFTV5byw5BB3zd/PPZ9qdctCOvfntYfts8iqe0+tntqxw+YVk21YrVUTGHvl5DYbk7WZPGoQcic3NHVV/LnesBTTguXrKc04jcxByfsvPmbwOB9Pd5L3b2HOE68xZvxE7hgaw7L7h+Lt6tgWw7c6kmH3H2HMwF789c8mfGO7ofT0p9OgcSx99XaCPC9ewSoc5EzpGYYgCPy83ryKulNJ2qpDX3/biRM3ZtiEqXgNuQFlWGeLzsstrSFV44fviJt49t5b2mZwViTKz41OQR6o6mqZt2pnw/bMoiq2phTjEtuHNx650+zPG9zBj7rt8zj5wU28+NF3Ddu3pFXif+XD3PfV6ou6FdiSDpEhJNz0KmFz55FRZplg9VPvfsWM8cMpLSmiR7gXv9w5mLwTO/nuzaf/M8nR3cO0njpTvVJXrVoNQO+ho9t8TLZgoCgavO1kFrV1hls9ncvM5eNVWlmMJ8d3IsT732e5f7eOnDu2j8lPfIQyojtrT16gPqIvkaNv5K+FC+xWt2z0UO3iJvuc6WKy4+fSKEw+BsAjd97YpuOyJo5KBeGJ2qK+3/5cYfC4f86W4tpxMF1GXGXSW+moVPDjO8/zx7OzeP6qzgR4WK4VaK/Y55MsoZfJIwdQmHyUutJ8Tm9fRZcOkQaPHR7hTPZ397DoyZlmeTpSkrUiqGGRUa023kvhhlnX4T30BopdLQslbE3SygJ0D/duN1/U7spcsr68lRcfur2hMu6bjacQBBga50+Mv/lGisJBTt+EaNComf/dV2g0GupUGlYd04ZmJ/e0P82/MRMmofAM5LAFfVP/3ryHd597mPr8dGILdrNk7mCGxvsjk9len88SOvg4ULLtF1Z88JhBYdW6ehVJB7Wq/NfP+G/LNBiiZ4Q3pSvf5cQ71zB/meEuFNfe+SBnPr0V/4LDzOh98dwR6OvN8rfu5/d7BvHwFfG8PLkzp1b/SP9uHdty+JfEtLFakea60nyOn0szeuz73/wCCPhEd6ZP53hrDM9qjB47HoCdm/XreuaW1rC3xI2Aq5/llx+/t+bQ7A7JsGunDOwciaPCAUFdz8c//m7y+Mw0rWHXOSGhrYdmFgnBWv2msxcqzGoFo+Pb7+ZRdXYX/cNM5+L8V7j/6pEI9TVUZCfzxpe/sHnvUf5300hKdi7k1sGGjXtDvP3cw8iUTpRmnObB1z7mgdc/I+PkAfzdnRgS59/6v8Al0itS27f4UEaxWcfX1au4ec6tCPW1hHTuz7of3zco3Gzv9IgOovzAcspP7+TPdfpDUAtXb0FdVYbc2Z1brh5v5RFaBwe5jEBPF1Cr+G3JMr3H/L15D4fWLkFTXcadY3sglxs24vtF+/LwFR25ZUgMro72p2HYmBB/HwK7D8e9x3iOZRgPRf+zShuGHTn+KmsMzarockcLU46TnJFz0f6fd6ej0gj0j/ale4Rtep3bC//N2U7CJHK5nL7DtTpoK/423cGhMCsVgH69urbpuMwl0tcVZXURJad3s/9UqlnnqFRqNv/8Ifl/voFfTXYbj9B6RIUFMvDK6wB48YFbGDNsIJqaCtyKkxnT2fKOCYkxEUy7TdsP9POXH+WbVx7iwq9PM87rAk4Kh1Yde2vQ0deB0t2/s/SDp83S8rr3xfcoyTiF3MmVf/5ciKPSvl/cxnBUKghN6AnAHyv1C0tfcAwj5PYvGH/vqzg7tY8cIX1MnDgRgD2b1lz0HGg0Gu6+/yEQNMT2G83d17Uvw2b2cx/jN+EBslWGvfMlVXU4jnkA3/H38ejdt1hvcFaif7eOuIfEgqDh/e9+bbKvpLySd19/ifriHG4dEm2bAdoRkmHXjpl97XQAkg5so6qm1uBxFwpLqCvVFlmM6NvDKmMzhVwuo+jvd8hf8ip/rFxr1jl/bdyJqrIUmdKZ2VPGtvEIrcuqBV/gFZkAgqahEnbx/O9Mn2iAnz96lYgeQxv+H95jCC/fc11rDLXV6RHlT+n2Xyg+upGt+48bPbakvJL5X2hFSK+9+zG6dbRtF5XWYMDgYQDs3am/tdimM/k4+kdy+w3tqxq2OU/cdSMyhRNVeRksWN40HPf2twvJObEHmYOCn760XJzd3ukbrfVAGSseWX8qD1y86TfhWob2SrTW0KzKqCunIXf1Zk9y06LAp97+nLztiyj8/QXGJATYaHT2g2TYtWPmTBuHg6snmpoKfliyxuBxW/Zpk40Vbl50iLSfnplR8drJydzWYr/+qe3MEda5D+6u7ScUC+Dt4capAzuZ88RrTL/nKQ4d2MuQXpYVljTG1dmJtINbeP2L+bz3/SLSD261W8+Wp5srfjFdAPjlr9VGj33wlfepLyvA0SuAr//3tDWG1+ZcfaV2kZJ16sBFC7SMwipO5pQhl8HITu37hRYW6EfCIK0Uzweffd2wvaKqhtdffAaAodNuZmifLjYZX1vSP8YXQV3Pzl07Kaus0nvMmuO5AEzoap+twVqDj157lqj7f6QwYjjn8rT9c4vLKvjxs/cAmHz9rXY7j1mVtpfVsw3tSaD4UtAp9w+eNsfgMV8u2yZ49JsmdBp7o/UGZga3P/2mthNC5/5mHR/cub8ACLMefKGNRyZhbcbf/IAACB0GjDV4THWdSvCI7iYAws2Ptx+R3tq6ekHhphVVfv+HxU32zXzgBcG10xBhzOOf22h01uXL35Y3iLWv2b5fEARBGHntnQIgKNy8hIzci4W32wMajUZw9AkRAOGbxSsv2p9bUCy4xvYWfK64WziWWWiDEVqPO3/aJ0Q9tUKYM2+PoNFohFHX3SUAgqNXgF0Ljl8qkkCxRAPTpkwB4ND2DQaPqXIOwHf0HVx9z5PWGpZZjB02CIC8lJMmc6uKyyq4cOYQAHNmTmnzsUlYlxlXTQAg7dgeVCr9otuL92fic81rdLjmST59+VFrDq9NcVQq6DxQK0D966IlTfb98+ciqs7sIFpRZouhWZ17Zk1uEGt/6N0feP6vYxwt0hZJPP36+0QE2V/xT2sgk8kIj9d66Jeturgq+N3vfqMq5SA1h1bQOdTbyqOzLk9OSEApl7FiySI8wuLYtOgbAB5+7lW7Fhy3JpJh1865/+YZePa+Eo+Rtze4rptzOle7vUOAfX0pJo7oh8xBgbqmgl1HjHcemPfHKgR1PUpPf8YN7m2lEUpYixsnj0Hu6IK6qoxFa7ZctL+mXs3nm84hc1Dw0qNz7UqLrzWYNXMGMqUzmSU11ItV4j//vYGyrLMgV/DEXbNtPELr8ct3X+LVeRjVHcfx8+4MPPpMYfaLX/Daw7fbemhtyohRWo3CHZsuLqJZ/Ju2mGDQ2KvsVo+vtYgLdGecewaFKz+gMicFgFHX3cXbT9xj45HZD+37CZAgNMCXKfe+iEuHfmw8rb8LxY7t21DXVNAtzHjbImvj6eaKZ1gcACs26E8c17Fyw1YAEvoOa/cT2+WIq7MTMT2HAPDVDz9ftP+d39aRW1xBqJcz1/aLsPbw2pwHbp5Oz2eW4DLiTpYd1lZ8v/rmuwB0Hjax3bSOMofhfbtxdOsaruoRzrB4f96a3o35L7f/l/qjd9wAyChJP8WhU8kN25PSs8k8tguAJ+67w0ajsy6fP3sPP/21lkm3PMwnC/5k/a9f2npIdoX0BrwMGJMQCMD6kxcbdqdSMzn57aNkfXID0d72l3Qam9gNgB27jfeMlfW+htC7vuHBRx+3xrAkbMD1189CpnDkXE4xGs2/XSgKS8p57b4bOP/tPcyIk9ulZMul4u7izJ2jtK3CPtlwlgde/5ykXdpq8deee8qWQ7MJkX6ufH5jbxbcPoBZ/SP/c8LTLaFrXDS+YhHRh2I/WIBn3v4UNGo8w+OZMLSvrYZndW6eOpYVP3zIA7OnSYv5Zkh/jcuAMYlB1GSdZO2P718k7LhsvdYT5hoQTpCvfXnsAGZcewN+kx7FrbfhvoeZRVUk51fi7BfGzNH9rDg6CWvyxJ03kPDYQpyG38EWscMIwF3PvIGqohiFg5y5kwfbcIRty+yBkQR4OHFm/3Y+e+F+QKDX+JlMHzvE1kOTsBJXTNJ2Flmy4HtUKjVllVUs//lbAG645S5bDk3CjpAMu8uACF9XKjd+RemeJXw6v2kXim07tZ6wyI7dbDE0k8yeOhb3rqM5V+lITb3+pPnNZ7Uv+T6RPni5KK05PAkr4unmwg1DtV6r99eeQaMRWLfrIH9+9xEAt9//OK7O7aONnD48nJXMv6U3ZZu+A7kDMX1HsfH3H2w9LAkr8sELjyB3dqcqL4N35i/jpkdepr68EKWHH28/fa+thydhJ0iG3WVC/xFiF4oVTRsoH9qrzc3o1aeP1cdkDpG+rgR4OFGvFjiSWaL3mFcevYe8pa8TK9efQyjRfpg7sgNujg7s3byO4MS+TJowHkFVS1BiXz5+4SFbD6/NSQzzJT/9LKVlZaTs24i3h/l9giX++4QF+nHTE/8j5LbP+OasEwccEnAM6sBdjz3X7gqGJFqOZNhdJtx8nbYLRerhHVRU1QDajhO5Z7Tiv7deZ5/Nw2UyGfGOZZTtXco3P/160f6yyipS9m+mOmk3faIu7/6AlwN+7k48MTKEgr/fJf/sQerLCnDxC2P1koUo2mFunT7cXZ2ll/hlzNcv3svUUQMBUHgF8fSXS/jspUdsPCoJe8L+suUl2oQbrxrDHW7eqCpL+HT+Ep6550a+/PUvBLUKZ98QxgzoaeshGkRx4TjFm+axPLMHvPJAk33fLlqBUF+D0t2XGWOHGvgEifbELaN7UP79r8xb8Ct+fv58/8GrRIW0764LEhI6nBQOfHZDb/amFhHq7UyUn+S1lWiK5LG7TFAoHOh3hVa496OPPgTgz79XAdBt4Ei7riq69+ZrAShIPnZR8ccPC7TVYV0Hj7Hr30GidXngpqs5tPZ31v/2pWTUSVx2OMhlDOrgJxl1EnqR3oSXER+//jzIHcg7c4A7Xvua0m7X4jX0Rh64+zZbD80oA7sn4B4SC4KmSfFHcVkFp3Zqm4HffdscWw1PQkJCQkLCbpAMu8uIfl3j6T1uBnJXb1alqUDpwnV3PcxNU66w9dBMMmDEOAB+X7SwYduLH36Hpq4KR+9Abp8xwVZDk5CQkJCQsBvs1rA7c+YMV111Ff7+/gQEBDB79myKi4ttPaz/PFuW/MTMV3/CMSCaXpHevDi5i62HZBYvPnYvICP7+C7WbN+PSqVm3hfakPL4a266bBLnJSQkJCQkjCETBEEwfZj12bt3L6dPn2bq1KkoFApuvfVWPDw8+P777806v6ysDC8vL0pLS/H09Gzj0f63EASBsmoVXq7/Lc236D6jSD+4mZCuA3norW9594vvqTqymqSDOwgL9LP18CQkJCQkJNoES2wau/XY9e/fn5tvvhkvLy/c3Ny488472bt3r8Hja2trKSsra/IjoR+ZTPafM+oA3v3fK8gUTlT7d+bLbem4d7uCLxevkYw6CQkJCQkJEbs17Jqzc+dOunQxHDZ888038fLyaviJiGh/jcAvd2aOH84va3cTM3oWTgo5D42J5+ZBUbYeloSEhISEhN1gt6HYxhw+fJgxY8awdetWg8ZdbW0ttbW1Df8vKysjIiJCCsW2QzQaAZmMy6Lxt4SEhISExH8iFDtu3DicnZ31/rz++usNx6WmpjJ58mS+//57ox47JycnPD09m/xItE/kcplk1ElISEhISOjBZp0n1q5da/KY3Nxcxo4dywsvvMC0adMs+nydI1LKtZOQkJCQkJD4L6OzZcwJstptS7HS0lLGjx/PzTffzF133WXx+eXl5QBSrp2EhISEhIREu6C8vBwvLy+jx9htjt1PP/3ELbfcgptb05YpFRUVZp2v0WjIzs7Gw8OjTcN2uly+zMxMKfxrZ0j3xj6R7ov9It0b+0W6N/aJte6LIAiUl5cTGhpqsn2m3Rp2/xUkvTz7Rbo39ol0X+wX6d7YL9K9sU/s8b78Z+ROJCQkJCQkJCQkjCMZdhISEhISEhIS7QTJsLtEnJyceOmll3BycrL1UCSaId0b+0S6L/aLdG/sF+ne2Cf2eF+kHDsJCQkJCQkJiXaC5LGTkJCQkJCQkGgnSIadhISEhISEhEQ7QTLsJCQkJCQkJCTaCZJhJyEhISEhISHRTpAMOwkJCQkJCQmJdoJk2F0C+fn5TJo0CVdXVzp16sSGDRtsPaTLlpdeeonOnTsjl8tZuHBhk31vvfUWAQEB+Pr68uSTT5rVRFmidaitreXWW28lPDwcLy8vRo4cybFjxxr2S/fGttx1112EhITg6elJt27dWLFiRcM+6d7Ynl27diGXy3nrrbcatkn3xbaMHDkSZ2dn3N3dcXd3Z+LEiQ377ObeCBItZubMmcIdd9whVFZWCn/++afg4+MjFBUV2XpYlyULFiwQ1q5dKwwYMED47bffGravXLlSiIyMFJKTk4Xs7GwhMTFR+P7772040suLiooK4dVXXxUyMzMFlUolvP/++0JsbKwgCNK9sQdOnTol1NTUCIIgCHv37hW8vLyEoqIi6d7YAWq1WhgwYIDQv39/4c033xQEQfrO2AMjRoxo8o7RYU/3RvLYtZCKigqWLVvGq6++iqurK9OmTaNr1678/fffth7aZcns2bMZO3Yszs7OTbYvWLCAe++9l9jYWEJCQnj88cf5+eefbTTKyw83NzdeeOEFwsPDcXBw4P777yc1NZXCwkLp3tgBCQkJDcKqMpmMmpoacnJypHtjB3zzzTcMGDCAxMTEhm3SfbFf7OneSIZdC0lKSsLLy4uQkJCGbT169ODEiRM2HJVEc06ePEm3bt0a/i/dI9uya9cugoKC8PPzk+6NnXDvvffi4uJCv379mDBhAp07d5bujY0pKirio48+4uWXX26yXbov9sEDDzxAQEAAY8eO5ejRo4B93RvJsGshFRUVeHp6Ntnm6elJRUWFjUYkoY/m90m6R7ajtLSUu+++mzfeeAOQ7o298MUXX1BRUcG6desYMWIEIN0bW/Pss8/y8MMP4+Pj02S7dF9szzvvvENqaioZGRmMHTuWK6+8koqKCru6N5Jh10Lc3d0pKytrsq2srAx3d3cbjUhCH83vk3SPbENNTQ3Tpk1j0qRJ3HbbbYB0b+wJBwcHrrjiCjZs2MA///wj3RsbcujQIfbu3cudd9550T7pvtie/v374+7ujouLC08++STu7u7s3bvXru6NZNi1kPj4eEpLS8nNzW3YduTIEbp06WLDUUk0p3Pnzk2qMKV7ZH1UKhWzZs0iNDSU9957r2G7dG/sD41GQ3JysnRvbMiWLVs4e/YsYWFhBAcHs2jRIt544w3uvPNO6b7YIXK51oyyq3tjk5KNdsI111wj3HXXXUJVVZWwbNkyqSrWhtTV1QnV1dXCsGHDhPnz5wvV1dWCWq0WVqxYIURFRQkpKSlCTk6O0KVLF6mKzMrccsstwrhx44S6urom26V7Y1vKy8uFn3/+WSgvLxfq6+uFP/74Q3B2dhaOHj0q3RsbUllZKeTk5DT8XHvttcJzzz0nFBcXS/fFxhQXFwtr164VampqhNraWuGDDz4QgoKChNLSUru6N5Jhdwnk5eUJEydOFFxcXIT4+Hhh3bp1th7SZcucOXMEoMnPpk2bBEEQhP/973+Cn5+f4O3tLTzxxBOCRqOx7WAvI9LS0gRAcHZ2Ftzc3Bp+tm7dKgiCdG9sSUVFhTBq1CjBy8tL8PT0FHr37i0sXbq0Yb90b+yDOXPmNMidCIJ0X2xJXl6e0KdPH8HNzU3w8fERRo0aJRw4cKBhv73cG5kgSOqGEhISEhISEhLtASnHTkJCQkJCQkKinSAZdhISEhISEhIS7QTJsJOQkJCQkJCQaCdIhp2EhISEhISERDtBMuwkJCQkJCQkJNoJkmEnISEhISEhIdFOkAw7CQkJCQkJCYl2gmTYSUhISEhISEi0EyTDTkJCQkJCQkKinSAZdhISEhISEhIS7QTJsJOQkJCQkJCQaCdIhp2EhISEhISERDtBMuwkJCQkJCQkJNoJkmEnISEhISEhIdFOkAw7CQkJCQkJCYl2gmTYSUhISEhISEi0EyTDTkJCQkJCQkKinWDXhl1tbS233nor4eHheHl5MXLkSI4dO2brYUlISEhISEhI2CUKWw/AGCqVitjYWHbv3k1ISAgff/wx06ZNIzk52eS5Go2G7OxsPDw8kMlkVhithISEhISEhETrIwgC5eXlhIaGIpcb98nJBEEQrDSuS6aurg5nZ2fy8/Px8/MzemxWVhYRERFWGpmEhISEhISERNuSmZlJeHi40WPs2mPXnF27dhEUFKTXqKutraW2trbh/zp7NTMzE09PT6uNUUJCQkJCQkKiNSkrKyMiIgIPDw+Tx/5nDLvS0lLuvvtu3njjDb3733zzTV555ZWLtnt6ekqGnYSEhISEhMR/HnNSy/4TodiamhomTpxI7969ef/99/Ue09xjp7NuS0tLJcNOwuqoVSocFP+ZdVOboNFoTOaCSEi0Z9QqFcBlPxdIXDplZWV4eXmZZdPY/ayrUqmYNWsWoaGhvPfeewaPc3JyavDO2dJLV3P6NAevv56uXl6k7N9vkzHYEnV9PemPP07qtddR8M23th6OTdi//G9C3dwYFRlJfmqqrYdjddQqFc9MmYKPoyNvzp5t6+HYhMrdu3myTx/6BwZyYtMmWw/H6giCQPZTT3Nu7DhKly2z9XBswsktW4j38qJnQACFGRm2Ho7VUdXV8cTEK+ng7s6TV06y9XAuLwQ755ZbbhHGjRsn1NXVWXReaWmpAAilpaVtNLKL0ahUwtmRo4S/oqOFK9zdhasTE612bXvhh6efFsKUSuGt4BDhZKcEofrECVsPyapUlZUJHT08BEAAhCEhIbYektV555ZbGn5/QNi7bJmth2RVNGq1kDRunHC1p5cACFM6drT1kKzOirffFpZFxwgnOyUIJzslCJUHDtp6SFaloqhICHd2bvgOfDluvK2HZHU+uvvuht9fDsKRtWttPaT/NJbYNHbtsUtPT+fHH39k69at+Pj44O7ujru7O9u2bbP10PRSuXMnqpwcVAKsr6jgz1OnOLRqla2HZTU0Gg1vff455+vryayvB6Bo4SIbj8q6/Prqa5wtLwcgwEFB77p6as+ft/GorMuCZh6aVx9/3EYjsQ0VW7ZQn57BMHc3AFacPcuZnTttPCrrodFouO+VV5ielsqminK2VFTwzasX5z+3Z5Z/8glZNTUAvBUcwoj0dOrS0208Kuvyw++/N/xbA7z4wIO2G8xlhl0bdlFRUQiCQHV1NRUVFQ0/w4YNs/XQ9PLWc8+xtryMvrfeyihRamXZDz/YeFTW4+CKlZwpL8dZJuPBzz7lg/w8Br39NpXFxbYemtVYtWolAPePHMne665jrr8/lRsvn1BcbVoaU5SO9HF1ZeFrrwGwPSUVVV2djUdmPUr+WALADQ8+xLDQUDTAD2++adtBWZETGzeRXlWFXCbD+447mHs+i1dWrqSuqsrWQ7MaS3//A4C7hwxh1rhxAFRs227LIVmV/cv/5khREQpgkVjwuC7pLPWisSvRtti1YfdfQlVXx4c7dvBwdjYZHeMZNXgIANv27rXxyKzHenGF1i8khLhrr2VZeTkZdbXsWrrUxiOzDmqVik1nzwIw6brr8LjiCgDK162z5bCsSvm6ddzo48PSWdcz/fHHcZPLKVGrOLzy8vBcq1UqJv/0Ey/l5qAeMpgrR48BYPfhw7YdmBVZtWA+AH2Dgpj59NP4KZWUqFSs/+FH2w7MStRVVbHu9CkAZsyZg/uwoQAUbb58FnjhOTksjorii7HjmP7441wXEMBzgYFUnjhp66FdFkiGXStxaM0aqjQa3ORyBs2YwZgZ0wHYm3X+svFWbNulDTcN69sPuVxOL1FEcefatbYcltU4uGwZpSoV7nIHRt98M+4jRlCsUrF++/bLZqVaffAQAG7DhqJ0dubHyVPY3iGO6IJ8G4/MOhxes4YjlRWsLC8noE8fhk2+CoCDOTkNFZLtnQ1btwIweuBAlM7ODIqOBmDPpo02HJX12P3nn5Sq1Xg7KBg1Zw513XtwW2YGfX78kWoxTaO9ozp+jK7OLky/diYKR0fevXo6V3t5oz521NZDuyyQDLtWYvvfKwDoGRSEwtGR/lOn4uHgQIVGze6lf9p4dG2PRqNhl5hDMmbaNAD69egBwL5Dh2w1LKvSobKKvfEdWXbNNTi6uqKIjGBcagp3pKZwdP16Ww+vzdFoNCzbvInz9XU4d+sOwOjp0/FVKKjef8DGo7MOm0XvdK+gIJQuLvSfMgUXuZxytZqjl8ECR61SsTszE4Dx114LQK9u3QA4ePTyeKnXpaQwws2N0THRKBwdCerbh1O1tZSp1RzbsMHWw2tzBEGg6tBhAFx69QLAtV9fAKouQ6UIWyAZdq3E7j27AegvTmIKR0d6BQcDsP8yWKme3LSJYpUKJ5mMITOvAWDQGG0Y6uBlUupfc+oUrnI53YZow/AOCgWJYpeU/ZeBYZd64AAPnD7NhJQUiI0BwLlLZwBqks7acmhWY/su7TwwqEdPAJTOzkyKiWGapye1p0/bcGTWIWn3bsrVapQyGQOmTgWg//DhABzJyrLl0KxG5+oavgyP4KsHHgBALpeT4OcPwKHNm204MuuQvGcPzx0/xvLKCpy7dAFA0a07h6qrWHgZpaXYEsmwayUOpKQAMGjkyIZtc8eO44PQUEZ4e9tmUFakPi2dqz29mBQZiZO7OwBDZlyDDMiurSX7Mnip1ZzU5o/ojBmAHh06AHDoMlip7vhLWw2b4OWFm48PAMrYWD7Iz+POvXspugyqg49lahcxg8eMbtj2+T338L+QUKIrKm01LKuxX/RKdvLywtHVFYABU6YAkFldTcFlUBlac/w4AM5duzZs6youdI5cBtGLLUuW8kdpKb9VVSF3dgZAExHOjRkZPHn2LIWXwTNgayTDrhWoLC4mpVI7aQ8WV6kAEyZdyQQPT/zyC2w1NKsRXlnBGyEhfNpIkNY7JJhwFxcAjrbzlWpVaSkz16/jtQu5EBPTsL1X7z4AHDl3zlZDsxr7xBzL3nFxDduUPj78XVHBlspKjrTz1XpVaSlp4jzQSyycAXCM1Rr3takpNhmXNenv4sKXYeE8PnZsw7aAmBjCnbXzwJ6//7bV0KxCTWkpWae0hRPOXf417LqJaSknkpNtMi5rclLMo+sSGdmwzSc0lGAnJwCOXoaC3dZGMuxagaMbNiAA3goFIQkJDdudxBdc7WXwUq85ow21OXfs2GR7x4AAIpRKytLa9yrt4Oo1HKyqYnVFBW5isjhAn9GjADhdUGijkVmPU8law6VH9+5NticEBAJwuJ1ruR3bsAE14OXgQGSjv4FTbAz1gsDZEydsNzgr4ZKRyQh3dyZPntJk++cTJrAiOoa+Xl42Gpl12LdqFSPOJXFNVibKoMCG7b1Eia5TeXm2GprVOCtGrzrGxzfZ3tFfG44+vmeP1cd0uSEZdq1AgkLButgOfD96TJPemMrYWK045+lTFLfz/JITBw9SJwg4dezUZPuCu+7in9gOjGjnE/oRUTS7s39Ak2egi5hfVKJWtfv2YmfztS+tLv37N9meKIahThw7ZvUxWZOCU6eIUirp7O/f5BmoDQigz9kzjNu3j+LsbBuOsO2pEVMunBMTmmwfMGAAsU5O0M7nwZOi0eLh5t5ke69x45AB+fX15Jxt3/mmKaLxmti9R5PtCeKC94QYqpZoOyTDrhWoT04mTKlk0OBBTbYrPD15OT+P9/LzOdyOk+dLcnKZuHsXfc+eoSYkuMk+5w6i1zKtfRs1p09p8+s6RUY02e4REECgoyMAp9qxx6qioICs6moAeowe3WRfV7FC9nQ7z63p5+TE6tgO/H7P3CbbvcPC8FEqATi+ZYsthmYVyvPy+Oz4MVaXleHYKBwP4Ci+1Ovauef+tJhnGx8e1mS7R0AAfb28GOrmRklSki2GZhXUKhWpoqRL50EDm+xLFAspTqelWXtYlx2SYdcK1CZpQ61OzSYz+Nf9fHJf+02ePyYKb3orlfhFRTXZ5yjmm9Wlpll7WFblnGi0xMd3vGjfAz178nJQMMFqjbWHZTWObtqEAPgoFIQ0D8f31K7c04tLrD8wK1IjemJcEzpdtK+Dry8AJ3bvtuqYrMmJbdv4pKCAN/LzUDQrGCv18uTrwgJeW/uPbQZnJZJEr3zHjhfPA79Pmco34RGEqtXWHpbVSD98mGqNBgXQcVBTR0dX0ZN/rqD955zbGsmwawWeXrGCzwryKRNL2hsTHRICQEpy+82zOy1WfMaKlZCNqQ3w58b0dAZu3NCuxTmTdeGHXj0v2nfb2LFc6+2NT1mZlUdlPULr6ng/JJRn+va7aF98P+2EnlNT3a7bSukWL05iJXRjOopi3TqPTntENw/E6FEBEIKC+LiggHlpae36GTh34QIAiT16XLRPKXrz6zIyrToma3J61y4AIt3cGqqidSQMGABATk0NtRUVVh/b5YRk2F0iVaWl/HY+iy8KCxu+uI2JEUMQqe1Yy+2s+LKKCw29aJ93dDRn62opVKtJaqfeClVdHeliNWRis1UqgKPoxazLaL9hKNcLeUz09GT2hPEX7Yvo2gUnmQxHmYyMI0dsMLq2p6a8nAGbNnJ9ehq1/hcv8GJjYwFIy2y/OWZnxOKQDuJitjGR3bvjIpejBpLaafK8qr6eNNFg6Tx48EX7HSO0VaIV7bg6eqCvLzvj4vl+8uSL9oV27swr4eF8HR6BKjfXBqO7fJAMu0vkzI4dCICHg0OTilgdHTppt6W342qoJNFTEafHUyGXywl3cwMgpZ0qz2cfP46X3AFHmYwOfftetF8VGMT+qipWteMcuzoxBOXUSOpFh4NCwbYrrmB/fMd2G44+s2sXRWo15+rq8GqWjgAQ20kbns1ox63VksRqyHg984CDQkGUqG95sp0u8JL37adWEFDKZMSL3qnG7CgqZPC5JGb+NN8Go7MOdalpeDs4kNir90X75HI5N/bowRA3NwTRsynRNkiG3SWiq4KK9vRsUgmno4Moe5DRjsNwKeKXNEHsutGcMDFEm9ZOq8F8KyvZEhfHwQkTUIiFEo3JlMHNmRk82U49FQCLtm9nS0UFdYGBevcHx3ZAJpNRn9U+w1Cn9+4FIMbAPBDbVfvdyGzH80ByTg4AHTt30bs/UuzCkt5OiweE7Gxu9PZhWng4SlGzrTEBcXGUqNWklZXaYHTWQbfAc4yJ1rvfMUybklCf1f7Fym2JZNhdImfE0u0OQcF693caqF25FdTXU9EOk0Y1Gg2p4ssqsZnMhY7IoCAA0tup3Icut8pLj6cCIE704pWoVJTntz+PjVql4vkjh5l7PosiUZC6OQ35RZnt1LA7qpVy6SA+681JGDiAyZ6ezPT0RC1WD7c30krFeWCA/nkgQvzbZLTT6ujAqiqeCwrig0Yi9Y1JENM0CuvrKclpn6HIR1at5K28CxR7eOjdn+XqyrLSUtZvbP89c22JZNhdIudEJfF4PSEoAP+oKD7qEMeiyChkdvpSV9XVsXvJElR1dRafW3vhArf6+HCVpycd9eSVAEREaF/qGXbcUqooK4sj/7SsYq9OlHJxjNb/DPiEhuLh4ABA6uHDLbqGNVBXVKJpwTOQfvgwNYKAAvSGoAAOVlXx4PksXvz1t0scZduRevAgRS3UWTsnFkd1aCRO3RjfyEjeje/IA/4BqOxUy06j0bB94SKqSi33KF1ITqZErQIgUeyV3BzdPJBpp78/QF1VFWd3tSxUbGoe8A0Px9tBAUDyAftUSRDq66kvbJmYemVxMX/m5jK/uBhnA9+DDbk5PJObw3w77j5Rn5NDveh9/q8iGXaXyDlxkurYOdHgMZO7d6ObiwsaO3xYNBoNV3ftyqBrrmFAaCjnLazaE7Kzmevvz4d9+uJqQIQ4SvRkZdmpx3L999/TKTaWnhMm8MX9D1h8/r3z53NbZgaHa2sNHhMiVoilHrM/cU5BrSb95jmc7duXk1dcQYmFXrVTYiVchKsrSrE3ZHMqXF1ZX1HBTjvVM9z4w4907NuXFSNHUbTgZ4vPPycuWjol6p8HZDIZynBdGMr+CihUdXXM6tGDYdfPYmBMDIUWFnu5Fhfzd3QM33bthrsYcm1OwzzQQsOhrVnx8ceEeHnRafAg3rnlFovPP3HoEGVqdYPEkz5C3LTzQJodVkcLgkDGnXfxW6/edPX2JstCIeFT27YjAJ4ODgTrkXsBiBO/H+l2+i44tHw5B8eOI3nceEqWLLX1cFqMZNhdIpni6jZBj8yDjoa8gvP2t1L98oEHWSHmvBwsLOTxG26w6Pw6UWzS0cAKDSCua1cilEqCZLKWDrPNEDQaHnnkEQrq6wF4+IvPOWphT9PdWVnsrqrCIVh/GA4gTJSASDt7psVjbSvK162nau9etldWMH7XLp6YNcui88+IXsgYPdWgOqI7dwYg2w5lDuqqqrjnoQdxAKir48Lbb1NvYXJ3anExAJ369DF8UEgwGXV1pNphZfCn997H7+KL/FhxMXdfeaVF56uzsujg5MRYI7//+CuvZEV0DN8lGF4E2wqNRsODzz5LkUrrdXx5wQLOWFjsNHv1agaeS+JopeFnXJdvnHHW/vIMy9euo2r3brZWVnCitJRX7r7bovNP6fJMvbz05pkCdOjZE4BMO5S+qq2oYMp113Ht2TOkVVaS88IL1NnhIswcJMPuElBXVLI2OoY1MbH0vmKMweOSZDC/qIiVG+wvr+C7hdrQ2DBRqmTZsWMWrdZP7dtPel0d8ohwg8cMHj+ef2I78LafP4KdiXNWHzjALyGhfBHbge4+PtQLAt+++abZ51cUFpIjeup07cP0ESEWFWTYoer6J889R4FKhVNkFNkqFT/u3GnRav2sWBQTF3Gx3I+O2F69AChSqagUjSB74c8PPiCpvBxXBwe6JiaASkXxL7+afX59eTnxCiXhSiWdDYQhAd45dowJqSl88ccfrTHsVmXh38sBGBkRgQKoOX8elQWFHv8u8C6uCNbh36kTsU5OOBYUIIgGlL1wYdNmEhwccJPLSfD0pFqj4f0nnjD7/LILF8gV54HEoUMNHhcuzgPp6WmXNN62oOCLLwAYKLaFXLBrF9liizhzOH1Mq3oQp0fuRkeH3tpq2RKVigo789yu+eZbsmpqKBcEQjp3Jr+ujtXvvGPrYbUIybC7BBzc3eh84AAjVq3E1Yi3Ykd+Pm/l5/HHLvuSu8g5e5YjRUUAzF+5kkmhoTwZEEC1BQbo63/8zsTUFOafMyzArAgIAKUS1GpUdib7Uvr3CpQyGVOvu47H5t4LwF+7dqHRmCfLcVLsEevl4ECgqFWmj4b8IjvLMzy3Zw8vHDzA+NQUpv76C129vVEBf37+ufmfIQquxjVr+t0Y34gIXMVVfOrBg5c05tbmn7//BmBqr17EPvoo68vLufH111GbaXyoz5/nm4gINvTuQ4CRMFxkpFbHLMvONLzOnzzJPvF7+d2SJey+YizvBgVTYYHn+rvly/m2sJBMA6F4AIW/v3Ye0Gjsbh4Q1v7D+6FhHH36aV589FEAVh08aP48sH07oO28YuwZ6JmYyFBXNyIViksfdCuScfQY92/ayB+lJcxZuYKu3t7UCgKL3nvf7M84K+abdzRQRAbaPEN3uTbfOOXgoUsbdCuzfPEiAK7s1o3ckSMYnXyOu7/+ukW557ZGMuwuEQd3N5z16Nc1JjLWPnNLKnbv5nZfX64MDSO6Z09+evVVrvP2QWOBzpSu40InPUrrOmRyOUqxIs7eklIrNm8GwHPSlUx/9BFc5XKyamrY9qt5HptT+/YBEOvtbTD8ADB+5EheCgrihkjDHg1bsGnxYgA6envjFRXFxEHaApgVFhSSpBZq82USe1+sXaVDLpcTKuYZptlZE/DN4njGTZqE67BhPJ2bw/riIvb8+adZ5zd4q/To1zUmUmw5eF5cTNkLv3/8MQLQ3ceHDv36EXXNNQCUrV5j9mf8fOAAHxbkky4IBo+RyeUsVtXzUm4Oh8UFkb1Qtf8AAEGTJjH5/vtxlsk4X1PDXjOfAd080EFP953G3HLNTL6JiGBGgH5ZIFuxdv5PrC4vZ1F1NUpfXyaL0Yd/LKhePSfO7Qld9cte6dDlGaYeP9bC0bY+Go2Gf8QUicnTpzP87rtxdXDgQl0du5YssfHoLEcy7KxAtFhYcd7O8grcTpzg0YBAfnjsMe3/xXL86n37EcScM2OoVaoGpfVEA9WQOl7NzGT4uSR+s6OqyPQjR7lqzx5eunABl169cPfzY1RsBxxlMo6uXWvWZ5w5JspcBBsOPwD0GTyY67x96Koy/Xe1JtvFpvQDxRy4abfeAsC29HSzQqaCSsXbQcG8HRJCv9GjjR4b5uUNQNoZ+9EzPLdnD6lVVTgA42+/HUdXVwaL3tU1Cxea9RlVyVphXmN5pgDRor6bvc0DV3l48nNEJG/OmQOA+8iRAKTv2UO9GdIsGo3m33nAgOSRjjXFxfxeWsoR0RCyB0pSU0lLS0MAnLt3x93Pj2eHDuXzsDDCzCwk0nXd0Nd9pzHKEK0sVr2deW03iVGaYaLu6qQbbgRge3q6We2/BEEgX9d1w8S7QJdvnG5HuqZnduzgfE0NSpmMSXPn4uLhwSDRw75eMuwk9BErerPy6+rsqk9ijViZ5dJbm//klJBAjoszi7OzObz8b5Pnpx8+TK0JmQsd1UolBWo1aSnJlzzu1mLXsr84W1fLUbUaB9Gb9O5DD7E3Lp6pCqVZn3FWVNs3Fn4AUIRoJ3xVTi6CmeEda7BbnFyHjhoFwMAZMwhQKqnWaNghevOMUX/+PF2USqYEBBJooCJUR3hgAE4yGWV2FIbbKk7aXX198RWrVscM03orNorVvqZ48KsvGXYuiSU5xoujYnv+Ow/YU69MeVISvV1dGXbVVQA4xccx+3wWw48fM+sZyDh6lGqNBgcubvzenHD/AADSU+ynrdbKH39kbEoydxQW4CB2x7h/7lxGuXsgmNktx1jXjcYoxAVgaVYWGjvKN94pzgOjJ04EYOCM6fgqFFRqNGz55ReT56uLilgbHcPWuHi6jx5l9NiHxlzBN+HhjAkznJdtbfb/o13IJ3h7N1R1jxTlu7bs/u8Jy0uGnRUISUhAKZOhAdKP2of7ubqsjG3HjlOqVjeEkmVyOR9UVPDihVwW//Sjyc84aYbMhY7I8DAAMuyoZ+4eMS+mV+y/OTExY6/AUS6n6vBhsxK8Haur8XVwMNh1Q4cyKJD91dUsy8+n2E4EWouyskgSvUejxEpYuVxOP3Glus2McGzjMKTMSCga4K1bbuFgfEdu6aRfCsEm5OXR1dmZ/o3yA6+8+SYA9uXmmmWApeTmUqhW427CWxPcsSOOMhkCkGYn7fU0tbXUivmxzqLXViaXEygm+W9YtszkZ5zcoc0djnB1vajxe3MiwrR/o0w7EqrevXUrAB3E5x7ARUwrqD58xKx5IFn0wHXq2tXocXJ/P4acS6LvqZPknLGPCvmyCxdIEx0Ow2bOBLQt4IbGxhLr6EiBGakTdampyGQyQiIjcRSNY0MMHTCAoW7u+Ij9te2Bg3u1xlu3RukUV1x7LQB7c7LtaiFmDpJhZwUcFAqCRcMn7Zh9TOgHV6/hlvQ0rkxLxaFRG6hh4ipljxlCumfFY2LFVbgxosSE4gw78tYcFD2W/RpJNDjFxyP39ESoqqLahNaUIAi85OfP9rh4rpk92+ixMqWSJ3JzeDo3p6ENna05sn49AhDk6EiY+FIHuHrsWG728aGnxnC+lI6Na9bwc3ERZ92Mv9AB3CMikclkqOxIdX+skzOLo6J568EHG7Z1HTMGbwcFdYLA3r9Ne65TSkoASOxnWPIIxDxDsTNHqp0YdodXr+aN7GzWaTQogv/tnjNc9LxtMyNkeuawNgk+xoB+XWMixXB1pj3NA6e1BtaARlEHp7g49iPwcUY6R9cYzzUUBIHpHh7M8vamt5HKeACFszNKUaw8xU5kbw6vXw9AgFJJsJgHCvDd40+wIiaW4ZiWqaptaCVmuHBEhzJU67W0p3zr0W7uPOjvz7Rx4xq29b7ySrwdFFRrNGbNA/aEZNhZiTBPrXhvmgXl423JoS2bAUj0D2iS9D9w7FgAjuTkmKwIOyuuOOMiDctc6IgWm6CfF1+C9sAJ8eXS74orGrbJ5HKWODkxNTWVj02UuquLitCUlYFMhpMRmQcdYWKbnbQT9iFOelw0MDs2q+i+8e67eTowiG4XLiAYSYYH+HPDBv6Xl8cqM17UyhD7m9BrkrQhKOdGgqpyuZxe4stnx6rVRs8vSE+nWGW840JjrktM5B4/PwJN/F2txea//+aXkmKWVlUha6QzOeyqyQAcyck1ex6Ib+TxMkS0+Hc+b0eSN+eKtEVt3RvdP5mDA99XVvJlYSGrFi4yer66qIiZzi68GBxCJyNSJzp080D6qVOXMOrW45io19ep2TzgJqYOVB8zHWX65Kf53JeVxcYa0zmZle7uLCstZd6elnX4aAsSCgu5x8+fSdf9q+HpoFDQQ8yJ3G1mzrW9IBl2VuKFceNYGBnFFRGmJz9rcPiQdpXdrUNTiY5+kyejkMkoUqk4t2ev0c8Y7ePLXD8/xptYpQLEiqHK85WVZksItCUF6ekUigUiPZol/Zd5e5FUV8veA8ZlOXRhSGVICHIToWiAUF9fADKSDUvDWJORfv58EhrGfePHN9nu1LkzMkdH1MXF1JsIGyfrOi6YITpb5uLMg+ezmLl1q108A7VFRVSJouFOzZTy+4t5samnjBvhOpmLQEdHvIL194tuzIPjxvOgfwCRdiLWfVwMs3WLj2uyvd9Vk1DKZJSoVZzZscPoZ5wT0yuMyd3oiBFDldl2kmtclJVFnihn0XXEiCb7BopiuvsOHjD6GQ3zQGgocicnk9cM080DRiSirElW0jlkQEIzb5tz584gl1OTk0NVlnGZph0njrOpsoI8M2RcKlxceSY3h7fOnEFtB3mGqqIirfyOTHbRPDD3qqt4LySUK9yMh5ftDcmwsxJ9+/Smu4sLziX2sVI9Lb6wu/Xo2WS7q5cXCWJrsF0rjLuf+9TX84B/AOPEpGtjxIg5K1UaDUV2kF9zQpRbCHR0xLNZ4/aBYlXgoQzjRs2P8+YxNiWZj8yUsYkQPVb2kmfolXeBKzw8GDeuqWEnd3SkPi6OfVVVHDYheZEiSnd0EgtwjF4vJob1FRUcqqokzw6S57f9+Sd9z57h7rw8HDw9m+ybO3cuu+LiecLbuHzFGVGTL1qs9DNFg9cy2z68ljrDvGMzySYnd3c6i9IdO02EoT7qlMCy6BhmzJhh8noxorFUrlZTbAeajsfFqvBAR8eG4hkdA0RD74iJ7+vZPXs4WVNDfViYWdcME+ebDDuYBwHmhoezP74jz9xxR5Ptcjc3XqgoZ0DSWf7+YZ7Rz0gW+6B37mV6Hoju0R0ZUCcI5NpBZWzq7t1srCjnvLc3Du5uTfZdee21XOnpiWeqfbZCNIRk2FkJ3YRuL/lFaWIoJKHPxdpjfcQ8C11xgT4Elaqh3YopmQcANx8furu709/FlSI7WKmWpqYSrXSkk9/FwtJDpk8HIL2qinwjX+hTJ09yvr6eGlcXs64ZKWrYZVnYrqqtqBNlOpziLq7k+zg7mzmZGcz7xXDf1MriYrJragCMdlzQ4erpib9SW22cZgf5RSf27UMFyPUk/IcPG4aXQkF9VhYqI30tz4hhdVMyFw0EBpBVV8cxUR7D1qSIi5IEPRqEfUQP3F4jrbUElQp5djbxTk5EGNEx1OEZFMSqbt3ZH98RlwrbJ8+fFNtgxYletMYMnDIFgJTKSoqzDVc8f//HH1yTnsa7ZhZDRIkJ+uftZB6oPXcOF7mcYNHobozS15dqQWC3Ed3BuqoqMsRCCHPmAUdXVwIcHQFIOWz7eWDtylXcf/48r+pZyLuIkaa6lBTU/6ECCsmwsxIlzi4sKC7is21bbT0UqsvLG17IiXrkCfqJScQHjOQDXjhxgu2lJWTLZSiCDPdIbcxf48bzY2QkITLbP3YDPTxYFRvLwmarVICAmBiixJf9jqWGG0GfFb2e8QYaXjcnWgx3ZRXaXqC2oqCAz48eZUN5OUo9HTP6DtDqkR00sqI+vWMHAuBhpOl3c0LFirk0OzBsksUeybFhFxtlDh4eDQZvtZFChxCNhoGurvQV9b9MsTsnh3GpKdy31nwB6Laiuryc87p5QCyaasyEsWO51subAQ6Gw2v1WVlQX4/M2blJ8YUxOnXogKtcTr0JeRhrECOTc6uPL1P69r1oX0jHjoSJKRa7/vzL4Geca5gHTIeiASLE75s9CNZrqqoauoA46Sl86C/2QD9g5Pt6dtcuVICLXE6UHuNQH//mGdo+3zhJ7N8dq2dxpvD354SbK98XFLD/L9MV4vaC7d+wlwllTo68mZfHl3bgej67cycC4CaXEywWNTRm0vXX82VYOB8EBhns7bp15Uruysri/vPnTcpc6FA0iHPaPgxVl5oGgFOs/iquXqJ3bbfYmUIfyXna8EOiGeEHgCix8jS7wvYCtad27uSjgnxeuHABpT5vxYQJAJwoLDTYUue0WDEZ4+lptOtGY8LFa6Ul2d5rmyqGwmINtILb4OTEnIx03nj3PYOfMd3Dg3kRkdxx001mXTNa9ABkV1XZPM/wzPbtDfNAqB4Nwim33sbLwcEMLi01KFi++a+/eCE3h9VKhdnzwL/RC9vPA13UKp4IDOTOa6/Tu7+nGJ7du3mTwc/QhSETmqW1GCKhZy+GurrRz4Q0jDU4vnUrczLSeaukGAc96QSDJmrngSMXLhhssXdyl7YIIsbDAwczW6XZU55hsmiYx8XF6d3/Y1kZ7xfks+pPw4t8e0My7KxE49ySIjGEaSs8K6t4MTCIBzp31vtCjho4kFGBgfjW11ObrF9Q+PgBbUJxJyMNn5ujDLaf/KJ/m5ZH693fXwxR7zegO1hfU0N6lTb80MWM8ANAQv/+vBwUzBtBQWhs3H8wWZSqifT00Lu/65gxuMrlVGk0HBPlEJpzRky8jw0yz1MDEC56dTJM5C9ag1TRUxHfpYve/VX+/uyrrmbrYf09LQWNhloxV9DRSJ/gxsTaUa7pmf37AcOGuWN0FHJ3d4Samgatu+Zs27qVJaWlbLUgrLqtvJyXcnNYsGx5ywbeitRliukkBir7e4ue2CMGKkNVdXWk6zouDDYuzqyj5/BhfBMRwSPuHgg2ngdO7t3LvupqDtbW6t3fe+JErai4Ws0pMR+xOaeOasOpcWZGbsC+8o1180DHLvo1CPuK7+79dpA+Yi6SYWclPIOC8BL1i1LN0Ihr07GUlTLLx4f7xlyhd7/MwQFn8WVXY2BCOyW2hUo0MwQHsDQ1heHnkrjPRCJuW6PRaBi6ehWz0tMoNrBqHjR2LFFKJaF1dXolP5L27EElCDjLZESb6bHzjojguuBghrq5o7JxS6FzotRCpP/FOYYACkdHuor7dhvQ8bo+OppfI6N4cOpUs68bIbbryrLx76/RaEgv176QOzXSMWzMsMmi5EdeHvViyLIx5SkplFVUIFMqcTRD6gO0uaa+olcj5ZBtm6CPCQlhS4c4Pps6Te9+mVyOrHMiR6urObhqld5jTp/VhrMT4/V7O/RxprqK30tL2WIHmp4HkpLIU9XjYCCMfPOcOSyLjuFNA10SUg4cpE4QUMpkdNATztWHg68vMqUSBIF60etvK3TzQHSAfi1SR1dXuvhq9Ql3GCiiqcjJwUUmI8GMqmgdEeL3JTPXtnmGGo2GVFGkPWGA/nZ4A0ZpVRMO2dghYwkWGXaurq4mf1xcXPAzQ6jyciTUTVtxk25C+LatqRdXScZeRmmBAXxSkM/n33+vd//p89qHvIuZORUATn5+FKjVZBpJRrcGhenp5NTXc7SmBj8Dk9Hw665jdcdOPOPlhUpP4vSp3drwQ7QF4QeZTIZSfIHY2muZKoaio8MNt/XpJRrt+w3I3jhnZtHTxYU+I0zL3eiIiovDSSZDY0YP0rYkLyWFCo02zSB+4EC9x3QfNw430Wt5SI9xu2bxYgacS+KuC7nIzHwGoFGe4XHb5hnWZ2URoFCQ2KunwWM+z85mVkY6n/+sv4jmTLa2srWzBfNAZIyYY2bjeaDswgWuPXmCkcnJ1Hjo91zHjBhBvJMTwvnzqPVocJ7YoS0wi3RzQyEWBJhCJpejCAmhUqOhPM221ZYposc5JsKwFmlvsVPMPgPC6vcGBrEvviOPzZ1r9nUnT5jAN+HhPGmBY6AtyDl9miqNBjmG54FBV1+NDMiprSXLjC4c9oBFhp1cLufUqVMmf+xBm8YeCRPlA9LFVa6t2Lx7DwerqqgN0O+tAUhzduarwkIW6umXqVapSC4rA6DH8BEX7TdEtCipkC2eayt0nhJfhQI3H/1yFnJn5wbR2upjF3+Z5QWF9HR2oauZEgc6kpydWF5aymEbi3OmiYnrsR0Me1r6DdSGlg6eu/h5FdRqasXiA6dOCRftN8TVM2ZwML4jH8aYF7psK8pTUpjo4cFwH1+Dz4BCqaSXaIjvWLHyov3H92vTEXx9LVvINuQZ6vm7WhOdULTSSEXvwGHDADioR55Go9GQXFoKQDcz0xEAohO0eb3ZZbbNNdVFTjwcHPAx8Ddw8PJCGaVdAFfrMcQPiwu8RAtSUgDmnjpFv6SzLDFSnGUNUsVnINZAfhnAqJGjGOXmToL64pxQQa2m9tw55DIZ3gZSGvQR16sXQ93cCSm37bvgnJiOEOTkhIsB4947JJg4cd9OPQUU6opKu+r/DRYadq+99hpRUVFGf6Kjo3nllVfaarz/acIDtTkI6elpNh3H89u2MjszgyNGukAMEUv9T5eUUCVO3jrO7d1LtUaDUiYjYagFE7qYOJ5bW2swEdcapJ/Uhh9CTfQ0dO7eDY0gkLX7YuN2gFzGr1FRfHH//RZd+8fUVJ7OzWHlhg0WndfapIv6cx26dDZ4zOgZ03k+MIjnfX0vSp4/t2sXr6WlsqyqEsco80W3ncPCtG3F8vIMJuRbg8C6et4PDWP+lVcaPa6fKKi7S4+34sQZbdV4Fz0FSMbQ5Rlm2rhn8Cvr1vN23gVyjRQ9DBLDtGfLyijPbxo2TNq9myqNBoVMRqJoAJpDtJi3lltbY9N5IFX0voS6uhk9bo+bO0/nZPPtV19etG+oqxuPBwRw3RVjLbq2j7dWKzTdxnqO6WJlbryRXtfX3HkHn4eHc1VNzUU5gfWZmQi1tcicnVEa8fo1RyEawur8ApvmG0c4OvJuSChP9NafjqGjd7S2yG63HlWL1Fdf4Wz/ART//nubjLElWGTYPfLII2Yd99BDD7VoMO2dyAht2CvTiCZSW6PRaMgRVd9jjDSsju3XDz+lEhWwr1kj8ENiMn2suztKMzou6Ijs1g05oBIEztuwnY7OUxKupxq0Mdvq6xlwLonbvvzqon01YjjdubNhw0gf4aJnINOG4qwajYYsUXcqzoj2WPSAAcyOjKSzg4KaZtXcu9f8w68lJfxaUYFMzB01Bwc/v4b8IpUN+4XqpDaUeqROGjN41CgADqRe/AI+I97Dbnq0II0xdsBA7vHzY5geDUVrsjg9nZ+Ki6lvJs7cmOiePQh0dEQD7FnetNhhz0pt3l2ClxeOFlR4Np4Hsm3YYjFNfKbDfLyNHpfi6MjysjJW6dH1jC0q5DZfP6Zdd61F144QPf2ZNszbUqtUZIkpEfF9DOcHKqOitP2z6+qoSWrqZV76009clZrCJ9XVls0D3t6sqq7mq8ICsmzYN9mrsopJnp5cq0fupzH9+moNv0N60qgmf/01I48c5pCN84Yb06LiidLSUn7++WeeeeYZHnjgAZ555hl+/vlnSpt5diSacu1Vk1kYGcXziZYZAwC7lyxh8f/+R84lyqUUZmRQJbqNo43kxcjlcnqIq6qda9c12ddVJuOt4BAeaNaKyxRKZ+cGYco0C7/M5fn5fHjHnRxdt870wSbQeUrCTehuxQ8dSqVGw7GC/CaSH3Xl5ZSIch3OFt7LKFErKqsFSdO1KSkUzV9wyUKZqvx8fo2M4uOwcOKMJHzLZDJcxNZa1QebJvof3q+VOuliZtFAw2fK5bxeUsLMtDR2WngvaysqWPbBhyz/6COLztNHSVo6GkFAEWw8hDZs5ky8HRyIAGoaeayqSks5I6YU9B47zsDZ+pkwbhwP+gfQXxRrtoR1337L4tffoPISe60WZWU15BjGmMiP6yUaIbvWNa2OTjl6BBnQw4zG741ROjsT6KhtvZVqYaVhbUUF7992G9t++82i8/SRIVbGRwQGGj1uxGRtZ53958838TBqamqoS9HmyDmZ0VKvMZFiNX5mCxY39dnZFC9chOpSn4HUVLzkchzQdoMwhEwmw6VrV3Lr6znWLNf0wO49pNTVUeBo2bMsk8n4orCATwoKOG6idWVzCjMyWPjqq6Rs3GSyl7Up6kVjTGkilD7j5jksiozik+CQJtcsz8/nbFkZuSoVsRZ4rdsaiw27jRs3Ehsby3fffUdlZSVeXl5UVlby7bff0qFDBzZtMqz30xLy8/OZNGkSrq6udOrUiQ02DmFdCjE9utPdxQUPIyFQfaz4+GMGXXMN1z33HMP69KHuEvos6vJKjOWX6egruuf3iHkIOjxT05ji5cUNs663+PqhOmFKC1bqgkbDP3fexfPz5tFr3Di+fPBBi6/bmEwxryTCSOEAQLdGkh9HGjWB3vXXX/Q7c5pbcnJQBOqvJjNElK4JemmJRedVbNtO6oxruPC//5F5zz1o9FRpmos6N5dEZ2cmxsWZ9LRUdoxnSUkJX85rWkRz5JT2/nXvajiEY4jk+npO1NZw1ozm4g1jVqkY0SGOaY89ytRHHmH5229bfN3GzP3lZ3qePcOfJnS0gjp0YN/oMXwZHoGq0TO7e+mfqAQBf6WSOAPVdIZQhoqyPxbquG2YN4/xd93FdS88T++oqItSJCwhRTTUvRUKPAxUROroKxr3+w817Z18W0AAe+Pjef7ueyy+fqiHNg0iy4J8Y0Gl4vrevXn8hx8YfeON/PTccxZftzGZYp/gSBP9uwdefTXOMhklKhXHG71/zm3dxqqSEjKdnS2eB6I7asP35y18F1Rs2cK5cePJffllTt1xp95qbXNxr6lha1w8R4YMNTkPLCgvY3RKMq99/XWT7XvFyua+BirLjREmtq5MP2P+u0Cj0XBV//5c/9JLrL35ZsqaeZEt5Z9dO9lUUU6pu/FwfNTgQXT39ERRXt6kf/ae5cvRoG1JZ8xRYm0sNuzuu+8+5s2bx+bNm/nkk094/fXX+eSTT9iyZQvz5s1jrgWVMeZeLzQ0lIKCAt5++21mzpxJ8SWuVGxFQ5/ICxcMCv82R1VXx+MvvNDw/+SKCj5/6OEWj0FXiWcqvwxg5JWTANiRktwgpipoNFSLL2SX7pa/1HtHRNDfxRUXC6oiS//8iy6nT3OHny8a4JWvv76kCc1HEIhSKokzkRulcHSke4B2Nb99xYqG7Xs3bkSDtkWWzMJm7tGiVlJ2ZaXZq02NRsOsa2fyR04OtRoNKbt2s+G11yy6bmPqc8xbpQJk+fjwwoVcPt6xo+EZUNXVsU+sih46yXiOmj7CRRmVjBTzKwIXvvYae/K00gjPBAaSsGo1mktY4GSXlKAC/A3olzXGVZSzqW7U/mj7mtUA9A4PN1ucWYciOJjMujp2pqZSb+b3oK6qijsfeADdE3O2vJzvn37aous2JvWENr8szM34Cw1g0JgxAOxJS/t3HhAEqk+cxE3uQJQFhRM6vr76avbHd2R8TLTZ55T+vYJrRL01lSDwyDvvXNIiN6tA64GNMqFB6OjqSk/Rq7epUbHDkvnzeTwnm/8VFFg8D8R0084D5y2cB06+8T9QqThQVcWE5cv4381zLLpuY3QLCzczCsD6j9N6pXc1egZUdXUcED9jhJiTbQnh4oIiw4I+rD89+yy7xVZsvg4O5H/y6SXl6r67fTv3nT/PoSLj3YBkjo44i7mhlbv/zbfdLaYl9TC3paCVsNiwy8jIYIKoSt+ccePGkdmKopsVFRUsW7aMV199FVdXV6ZNm0bXrl3520RTantFERDAr6UlvH0+i9wz5oVUl3/wIWfKy/F0cOCx8dq/+4e//Nxi1Xpz88sARt40G2eZDJVGQ/JWba/A5J27+CE9nSMqFU4W6BbpeOO6WfwYGckwf/NXuCXiZPrEM8/go1Bwoa6OPy7BY/NsaBirYztwtRlNywf31Hor1m/c2LBti5hr089IwrEhYkRpiUqNhmIz82v++eorVubm8mZ+HjuHDWNMSjKPfP65xdfWsWnzJn4oKuSoYPoZGnLttShlMvLr6zkpeuMPrFhBmVqNm1zOwKuvtvj6EWJeW2aW+XPFW598AsAjo0dza5cuqC9coHxjy6MD2aKgbrQZlXwu4jOQ26iAIqFexUwvbyaPML8qXIfc15er0lK5JSOddDNTElZ9+SWpVVX4KBQ8Ir5kP16woMXzQLqYKxVmxjww6qabuD8omI+DQxoqoWtTUtGUliJTKnEys5VWYyLiO+Iql1vUO7t0yRJ6ubhy7p138VcqKVap+OuDDy2+to4Z/v7c6uNLr4EDTB47SPRabtn6b8/ULTt3ADCsfz+Lr60Lf1dpNGYL1i/74AOGrl/HW0WF5AwbSrZKxW/iAqMl6LQ0FWYs8IbOmoWTTEZhfT3HxBSKQ2vWUKnR4CqX09tEEZI+dBGTjCzz840/ED2GT44bR8+ICOrPn6dsdcv/BtlirnGMGfNAVmwML+Xm8sRbbzVsOyBGwPq04F3Qllhs2I0aNYoHH3yQvGa5AXl5eTzyyCOMHDmytcZGUlISXl5ehDR68Hr06MEJPX3ramtrKSsra/Jjb8gUCr4vLuan4mLOijlKphhQXsbSqGi+uuFGXlowH4VMRmZ1tUEVcFNkihp24WZ0C3Dx8GDtzGvZ3iEOX1Fvacm33/B2fh4flGkndUtRNrQVM29CP3/sGLvE1kdBN97IjWIew08//WTxtUEbzlGJKz5zJrSpYquozckp1FZUUF9Tw1ZxhTlplv42RMbw8PfHu0Gg9rBZ53z72WcAXNOrF9OfeRoH4ERpKSdamPawavt23s3PZ40ZoUBXLy/6ioryS7/5BoCNoqHdNzTUouIZHZbmF53bs4fjJSU4AE9+/TVe4kuksoV9l8vz8ylRa3OlTOWXAeT5+zM6+RxDFv6Gqq4OQaOhZ34erwQHc+s9lkcoHBQKQsS/W6qZht2FnTsJViiY3KMHL/zwA/HOzvRSKCi2IJzdmHRdfpkZ3QJcvbx4Yspkuru4UCUuat5//nmuS09jra8vcjP12xrToOdo5jxQl5lJ1f79IJMRedNspvfXhr8XzG/hPKDRMEkm54nAQLqZSJwHmHSd9ru+IekstRUVqOrq2CXOpWPNWCA2xyMggPG+vsz08qLKTMPm5x9+oF4QUMbFccvrr+MAnCkv58zOnRZfH+CD337jlowMVphxD1w8POgjvjNWLdBqGm796y8AegcHt2geiBIrTbPyzZsHUvbv53hJCTLgoY8/xv3qaRypruaP71smeF9RWEixmDMZa8Y8oI6P5/fSEn4/fkw7D6hUvODuwQehoUy//oYWjaGtsNiw+/HHHykuLiYyMpLg4GA6duxIcHAwUVFRFBUVtfiFq4+Kigo8m1VseXp6UqEnefzNN9/Ey8ur4SfCgtJraxIm/j6pZuSYCRoNlVu2kuDszOS778IjIIDn+vTl87AwvMSJ2VKuDA3j+cAgpg43T1S28/jxyGUyysXE6b/+0TYvnzx6TIuur0tWrzWzKvSH//2PGzLSebK6GmVQENfccgsAezIzWySVoMrLA40GlEoUBrouNGbIddfhp1RSoVGz/scf2fbbQsrVarwcHBgya5bF1wd4rVdvvgoLJ8TB9NdPrVKxSfSS3DR3LsFxcQwVVfAXt9BrlyWqvUeYyC3ScbXoof9TDDvki8/uUDOV9psTJXp6z5uZUrFcNCh7BwQQHBeHundvPsjP4+qvvmrRM6DLM3WXy/E1kWcJEDtsGNWCQLlazcrPPqdq/37U+QXIPTwavHmWossvSjNnHlCpGJWdw4bYDrzz1lv4hIaybtYsXg0OQWakObsxzoueMnOfAfeh2gVVxWbtgnLl5k0cq6mhMsL0308fqap6XszN4QUDHS2as/i99/i+sJDshE4og4O5UUz52Zyc0rJ5oKAA6utBLkdhongCYOTNNxOgdCRKqeTc6jXsXvonZWo17nIHBrXAsAP4YsQIXgkOwbvWdFqJWqViizgPzJh9EwExMfTTLbi++KJF1z+SnMze6iqK5OaFkSeNGgnAotXae/anWEgxtAX5dQCRovCxuXmGf4gL3D7+AYQmJHDUzY3rM9J5avWqFnmuU8WFtatcjo8Z88Dga6/F08GBMrWadd99T9X+A7iUlzMpIpK+M6+x+PpticWGnb+/P4sXL6awsJA1a9Ywb9481qxZQ0FBAYsWLcLfjJelubi7u1/keSsrK8NdT37YM888Q2lpacNPa4aEW5MwUcw0w0AP1sbUnDiBuqAAuZsbbv207v7777iDUe4eCKI4qqUkajTc4OPD8JHmhZA8J10JDg6U7tvHgV9/Za/o7br+kYdbdP2kygqGnUti2N/mJb1uElej/cVwycDp03GRyylRqTjaqKDBXLauXs2wc0k8dCHXrKblDgoF03v24kF/f+JOnuJnUctqWGys2UrzzZnaty/D3d1xLTct0Lp/+XJKVCpc5XKGX68tVhk9ROth2HPwoLFTDXK+WJtPEtnBPJHg6x97DBlwuKiII4sWcWdlFatiYrnl0UdbdH1d2CPHzPyo1WLC+jgxl8tv4EAWlpSwt6yMXX8ssfj6aaIxFGJGfhloqzivEb9/3331JQveeYcj1dW4j70CuZOTxdcHy/IMa06cQF1cjIOXF4Fi6NdN9FhVWVhRqOO9nj3Z0iGOOWa+kNxHj+ZgdTU3/7mUZR98yD7RyzPt7rtbdP0aN3f+KC1llZk9g+cvX877BflsFSU1Bs2YgatcToVG3RAatIQLp05xpLqaEh8fs7qGOCgUbH/kERZHReO9Zw9fvPUmAMNjolvkrQJQhmhTElRmeM73LVtGYX09rnI5o2/WRhGuHKmV4lm/bZuxUw1yXswri+jQwazj5zz/PA7AkaIiDvzyK93r6glRKLj1mWdadH2d3FZ2dbVZhtmq9dp5YJL47hpx4424yOUU1tdzUI+AuClSj2u93WGurmblySqdnZkihuQ/ff99ssXCDfdRoyzqPGMNWtwr1s3NjZ49ezJ06FB69uyJm5mTpCXEx8dTWlpKbiNX8ZEjR+iiJx7u5OSEp6dnkx97JEKsiMsww/D88ZNPeSYnmz3BwchEI8JNbDRdtW9fi0q963NFtXkzldKVQUFsjopiVEoyfW+8EQ3Qw9eXuAGm81L0ERAfT6FazYXaWpOJ49okfa1nb/TV0wFwcnend1AQsY6OZO22vHtD6qlTFKrVlMnMf/Q/WbCAe/wDyPznH+bv1b5I737gAYuvraOhiMaMtmL/LFoEwICwsIbKtcFijtXBrKwWrVRzRI93lJlSLeFduzJc9BK+cffdqDUauowaRVwLy/uje/bCSSbDV+5ApYm2UoJazQMurjzqH8C1d9wBaJPZ+4kJ3ztWm+fxaUz6mTMAhIpeM3O4W3x5rUhKYu6SJVyfkc7RS0iY/lfHzPQ8cH7LVtSCgGufPg3pD64DBqASBHZv3NCiTj/q3FwCFAqCzGzp5BgexkInR7ZWVjLtsUdRoZ0HLBEmbkyMKK+RX1dHrQn5HlVdHbvF+fIK0TumdHZm3hVj2dIhjigzFkjN2bh2LddnpPOgBfJRETdqw22HlizhN1Gm5fHnn7f42jqUISFUaTTkJpmuDF71668ADI6IwEl0bAy/ciIAR3NyWjQPZIt/t6hE86Rawjp3ZoQob7TokYd5wN+fndffQMdBgyy+NkCHPn34JjycxZFRaExUeAsaDZmF2rlivBgWd/HwoL/4HVy3eJHF188Q732ot7fZ5zz2+usArE5JpuOb/2N5aSmeE8ZbfO22xiLDbqCBXmrNGTp0aIsG0xx3d3emTJnCSy+9RHV1NcuXL+f48eNMFptz/xeJjIoCzGuCvnrrFpaVlXG2kUaQc6dObKup4bOUFNIPWOa1q6+pYfnZJA5VVyELMB1+0NHr9tuoFicOR5mMjz/+2KLrNiYsMRGFTIYGyDCRH3RgxQrKxST9AdP+bTS/6MmnWBETS+8qy/uN6pTew420U2uOc6eOeE6+ilCFgs/CwrmtW3euugTD7oKjkuWlpawwI0dsi2i8jhr8b+XhwGnTcADy6+tJtfAZqK2oIF/U5IuxoKr5y99+xVUup4+LKw4ODvjdeadF122Md0gwh/v2Y1VsLAoT4djac8nECwJ3RUbSrVHRVi9RGPqQGFa1hECZnPEeHgzpaH7HiH5TpjC9kRj16MhIxt1jucyHDkvyDO//6EMGn0tiHf8u5Jw6d2ZkcjIzjx/njB7hXGNYmmeq48X33sNRrP50AL4SQ+QtIbhjRxxlMgRMa1ru+fMvysWwZ+NinVETJxCgUFBtZq5qY9LPaSMmYRb0NXfp3h3vmTMJViqRAcNCQxklpoa0hB9OnKBv0lme/W2hyWN3id/zUY3yAftOnowDUFBfT9qhQwbO1E9dVVXDPBDb3bCGXXPe+fxzHgwN4xYfX1AqCbinZR5bAGdPT0ZERtHByamhkMPgeNPS+Tsyig0JifSdNKlh+wDRg3bIQj1EgHSxX7YpHcPG9Jw4kasaFQ1uc3fH1Y7063RY5D88fPgw77zzjsnjjrUwoVcfX3zxBXPmzMHPz4/w8HAWL16Mjwn9NXsmSuzJZ05+0SExOXdgIyFgmaMjn5QUc6K0lAF//020BXlOmceP8/j5LBQyGddZoLs0cMYM9q5dx9tPPsE1N97IiNmzzT63OQ4KBcFOTmTV1JB67Bgd+hvWANu49E/g4iR9rz69KQNqTlvevSJLrECLsNDbEvzii7j26sWM4mLuaGFunY4DhYU8nZtD/507uc3IcYIgIJSV4SiTNYikArj7+ZHg7c2JkhK2//UXHfqZX5WXfuw4AqCUyQi2oAF34rBhLP74Y06u30D0a6/icolVYI4hIdSWlVGfk2O0urpG1Mly7tq1ibJ930GD4J9/ONqCXNNh3t50Dw0j4BrLcqMWHTrEazfcQFFhIe8sX47DJYRfGnTMTMwDGo2GvZmZlGs0xDTykjs4OxPq4U5RSQkH1q+nswXVuRlHj/JwZiZRzs58bUHqTL8pU9jx1zIWfPIxfQcNYmALc8tAK4Ae4uJCelUV6ceO0clIAcNWMW2jX1jTecBFTHivbsFLPUP0lOoiKOYS9PRTKIKD+OL4cW589VWLr9uYkGhxkV9o3Gut0Wg4LHYrGthIDNvNx4cxISE4VVZSfuIEWJDrlnHsGBpAIZMRkmB+r+c+V11F59WrKF64CJ/rZ13yPKAMCUFdWEh9Ti7ORjyH1UePIJPJiO3VC6WLS8P23gMHwsqVHBPflZYwNSqK4JBQOo+xLF986dGjfHb/A5w5fYo3Fy+2WO7IGlg0M11//fWcMqMV1HXXWV4taIiAgABWmZlg+18gWswrOG8i/JB95gxZolbb4GaSEt2iojlx9AiHdu/GEhMr9ajW4A52crb4pdTtijH83MKcruZEeHuTlZtL8rFjXGHkOJ0w8iBRR0yHk2iQ1KSkoqquRtHoi26KzAtaD4nOc2ouDu7u+FxvuSCzPqLEiTTbROV2/fnzfB4UTH1YOInTpzfZ98i4cZRv305/C/P80sW8khBny5+BSfffzyQLe+MaQhkSQu2ZMw2aeob49dffKCstZVKzfrQDJk2Cl18mqayMqtJSXC0Iq6rEdARLvFWg1TV85Y8/LDrHEN0GDuAePz9iPIynjJzYuIlilQonmYzB1zTNh+saFcXxkhIO79vHTRZc++yBA6ytKCdCrTIrz7QxfadMpu+U1omYhHp6ag07E+HQvQe0807/Hk0LVRQdO/JJQT5J58+zrLjYpOB6Y3QRE0vnAbmbGwH33UfLfbX/EiMaMqbmgZqsLG7w8uJEbW2TyAXAj7ffTsnvf+BnQoetOWlin9zgFswDLt2742KBl88Y+9VqthcWMHrDeqaOHmXwuBrx3dXckOw7fjy88ALnysqoLi/HRRTAN4eI2hr8PD0JtVCHUenszCPffWvROdbGojv6ww8/tNU4Lhu6DBrEwsgoQpRKNDU1yA0k3u4QJSU6uLldVLnXo3t3Fh49wpHTZyy6dpro4Qqzcf5hdFAQu3JzSTGh+n84U/RYjmz6hVcEBnLfhVz2lpWxbiAxpwAAN1dJREFUftUqizwH50u0HpJoC7xVrU1MQxP0WlR1dQaLMGrEEJVHYmKTVSrA1VOncuHIUdzNyNNrTFcfH/6IikawsHF9a7Mw+zw/paUx/ecFvGqkz+bnGzdwsrSUcAEaT+nRvXvjo1BQrFKxf8UKht94o9nXzk1Lx00QUJpoJ9aWRPfsyYOilqO6vBwHAy+kXau0SeHd/Pwbcqt0dO/ajYVHjnDsjKXzgLYS19bzQERAALtyc0k1MQ8cEgssms8DTsHBLCwtpUSl4tjGjRbNA1miIRTVAi3O1iK6R08Abb5xTY3BIgzVqdPc4+ePU+fEi4xX5y5d4Pc/GnpXm0vZ+fP4OzgQbuNnYH1+Ht8UFKDZuZOpRo678asvEcrLedPbi8YCPTF9+uDloKBUreLI2rUWPQOq7JYt8P4LtDiWsHjxYoP7rr3WsobIlxOuAQH09PNDU1WlDUMZ6LO4Z4s2/6q3nv19R46AnxdwPNeyl3qGmF8W5m9+XklbEBMVDUeOkJpuuCJOXVrKC75+HHV1Zcj0ph5LmUxGlaMTlRoNh7ZssejLrBOkNEeYtq2I6NoVBVr1/IyjR4k1EE6vOKI17FxElfrGOIkh/VoTL8XmKIuL6ezsjKeR3pDWoEyh4ERtDQlGVOcri4s5IyZVD2nmqZDL5XQJDOTUhQvknDD/pabRaBi+eRNqQeCkWoWtXutyV1ccvL1Rl5RQn52DQyf9ht0+UeW+px4R4F5Dh8AvP3PSwubjDXmmFoiEtwUxUVFw7Bi5RqSPSjIzyRaLrJrPA3K5nE6+fuzJu8CRbdssmwfEiImuMtMWhHfpjEImQyUIZB4/bnAeqBG97C562vc5xcejFgTOHTuOJV2bh4eEsDUuHvdGKR62QCdLlmmkMri6rIytubmoBAHvZp5CuVzO20OH4pqSQlRtnYFPuBiNRsP848cJksHNrajkYS+02LD78ssvm/w/NzeX5ORkhgwZIhl2RpDJZChCQ6g7l4zKiGG3X2z5009P3kSvsWMBuFBXR0lOLt4hpsWGATIzW5Zf1tp079mD/uvWEWskBFB9/DiD3dwYkZiIv5ho3piusTHsybvAUQuS56uLiuni5EROvcqmff2Uzs6EubqSXlXFmb37DE7o0z/6kKKSUj5RKGne68UxLo4tFRWcO3qUl/Ly8DAzAVin9G9LbxX828bpvJGq2D1/LUMNBDg6EtUsHA/wy+13ULl4MX5+prsn6MhLSaFWrCYPt7FafL6PN+eyzyM7eoSETvo9yIeTtGHKfnqq0PtO1FZFnq+poSgryyxNPqBBCkrXAcRW3HvjbK45c4aABMO5VYr0DPbFxZPu50eAnrmyc3QUe/IucNyCPLvK4mKKdMK0zcK71kSbb+xMVk01yYcOGZwHNq1dR0B9PcF6FnjV/v70STpLnSBQeuECnmYITsO/84BTiG2fgchYrdRKVmGhwWP2LV+OShDwUSiI11OBO3XcWIrnL0BuQZ5d7tmzvJp9HhnansftjRZn/W3atKnJz6lTp/juu+/oaUeNcO2VTXV1vJ13gY0G9JcEQaCqtBQZMGjCxIv2+0VG4ifKHpywQH0/S+y1GRUVbfGYW5MpM2bwY2Qkt3sazouqOaY1bF0MrKi7iiu3E2boAeqQFxXyfUQka3r0wMfGxm202Mrp7FH9L6T6mhqOFhSQVFdLSJ/eF+1X+vryfN4F3i/I53CjxuSmmL9xI/OKCsm0rLVlqxMt5hdlGpE52L1Oq1PYKzRMb4KyuxhGq7Wg12SaaAD4K5W42DgM9crp09ySmclKAy2R6mtqOC6+8AbpadnkHxVFoBjGP25BJ5qsPG2P1Eg9CyZrEpCYgJvcgToj0k81x47iKJfTx0AeVFdxfrBkHqjNzubZwEDuDArCx8ZC9tG+2tDq2cP65wFVXR23r1/HmJRkkp0uDtX6RUXhIS6Qj27ebPZ1dR0/lGY6BdqK6M7aeeC8Ecmanf/o5oFQvfOAzjlSZ0EhVcrhf+cBZwvy8v4rtGo5x+zZs/nxxx9b8yPbJVuLivipuLhBfLc59ZmZ/BQaxr7EzgwwkKgcI2rvnN633+zr6irwIuPjLBtwK6MUJ1NVXh4asal3c+b//jtry8uoNSCe2VWspk02stJrjq7ptbkafm1JB1HHLNmAhtXhtWup1mhwk8vpaqBqq6Mo1XBsh/ktheYfPsR7+fmk1JhWu29LEsWVd3ZNDVUGjLu9B7USDn0MyLI46iZ0UbbAHNLEXKQQPSLn1iZSbKuVbiAlofTkKW7x9WWMlxedDbRqnNO5Cw/6++NjQhOyMbo8U1vmlwEoRU001YULBueBat0Cz8Az0F2spj1jZns6AKfSUmb7+PJU3742r2gc1707M728MORrPb5hA5UaDS5yOT3GjdV7TLy4SDy+a5fZ173tz6XMyUjnpJiaYit0HtO82lrqDAiW7zuolXrpqycUDVDl58eSkhI+bdTP2xTpp7TzQFg7NOrgEgy7vLy8Jj9paWm8+eabBAfbdgXwXyBONFaSDHgaqsUKIN9uXVGKorTNeX3yZJZFxzDeAs/TY8HBPB8YRC8zeiO2JQ7e3shdXalVq6nU81LWaDS8tW0rD2dnk+qiP6G4i6gdlF1bS6WZranqzmslA+zBsLv5yiv5Kiycm6L1h+J3i16c7oGBBqvWEsWKvhPHzZcXsoccQ4CQhATc5Q4IwJkdO/Qe05A0P0p/tVyNny93ZGYwev066s00VNPFnMQwO5BM0uUXZRjIMVOkpvCgfwDfT5lq8Bl4ZPJk7vHzJ9jMLh4ABaIRaE7j87bEwdub94qLuT0zg1N6tPg0Gg2zfv2Vl3JzKQ/Tb/p0Ew3e7NpayvPzzbruvws823rtAe697jpeCQ6hj4H7u0ucB7r6+RksrugkPkcnLZAZ219QwL7qahwt0HBrC0I7d8ZVLkcDnNmp3zA9KHriBo4aqXd/nb8/L1zI5cOkswaNw+boOj+F+ZqfxvFfosWGXXBwMCEhIQQHBxMcHEzXrl1Zs2YNCxYsaM3xtUsSxHD1OVEktDlVRw4D4NLNcIJ730GDiHdyQibqsplCU1XFIGTc4OOjN1/JmshkMu7IyqRX0lnW/Ln0ov1phw6RX1+PAzBgqv5aqaC4ODxFXbOTZrbUeeOHeQw7l8SXyZYVHLQFvYcNY7i7u0GZgr1ih4s+RrSdOoqVrefMzC2pLC5uaHodY8PcItAmPcd4aUOhJ/fsuWh/XkoKGaIB0lzuR4dPfDwHq6vJqKsjSc9n6CND9I5F2MECtJMYRjxnoPihWpSkcDaS4O8ohlPNDUOpKyrZEtuBLR3iGrymtkImk7GntoZdVVWc0HP/0g4eZGdpCUtLS/DvrX/OCurQAW+FAieZjJS95rVXO3bgIEeqq6mwoONAW+EoLs7qDHht94oC5X2MaM0lisLZp8WiGFNUFBZSYkfzQKyYEnFi58ULvPzUVNJEY83QPBDZvTsucjkq4KyZXssMcc4Mt4N5oC1osWGn0WhQq9VoNBo0Gg0VFRVs27aNvi1sDH450VX0mKWVl+ttYD3z00+ZnZHOGVfD+myWTui6nAq5uzsOdhCG8hU9Jif1KKZv//MvABK8vHA3oAwvl8sZGhLCcDc36sw0bjPOZ1OoViO3A/e7bkKvT0/X2xrukLii7G9EYymhu3ZSTjHTU5EmFpq4yuX42ji3CCAhNJQYR0dq9SxwXM+fZ0uHOH7s0wd/A1pjDgoF0eK9PGEgraE5WaK3JjLSkhrCtqGreG+Ty8r0zgPbNm+hUKXCpathz5o8IoK0ujq27TcvJUOVm4NcJiPIxwcnOzBsosSKxHOiEduYHcuWAdDJy8uoRt3aSVdxIL4jMTLzEkc/X7mC6zPS+fmsZTIxbYFjVDTVGg3HzpzW2xbsgOhh7m8kypIoLtTNnQdSxU4dbnYyD7xz1VWsjIlhpB7vYdau3fR2caGTuztBBtJyHBQKosV3mr5Foj4adAztYB5oC+xPMvkyIH7AABQyGTWCcFFLqLqqKvbn5XGwuhp/I4Uo9UFBfF9YyLNbt5jVJzBp/wFWlZWRZCC0a20SxPyek6KmVmP2btd64HrHGc8F/PaGG/kqPIJOZubJZBVoJz5dRaYtUYaHs76inI8z0slt9jeoLC7mtE7mw4DHEiBhkLbFX3plJao606X+DaKkLi42zy0C+Ozue1gZE8sEPcZ79bFjBCgUXDFqtJ4z/6VDoLYK8IyJtlQ6eru7M97Dg549beu1Bug0ZAhKcR5IbpYrW1tRwewtmxmWfI4cI0UemQhcmZrC7Tt2mDUP1DdURduHp6KT+LI+oUf4fq8You9tokl9WOfOyGUys4tozosGUJQBRQJrIgsKZEDSWaadPk3msabGbXV5OadKSgAYPGWKwc/oLHpe06uqzJoHUsXUjVA3N7uYB/oOHEiMoxOajIuLaCJKS/g5Mor1d95l9DM6BOnmAfPC0efFSEmkiWfrv4rt7+pliNLZmSg3NwBONEt8379yJbWCgKeDA4lG2gS5REfzYUE+CwsKyDpxwuQ1N23ayOM52byfZn4FYVvSVVxlntGTX7RfNHT6G2k3BuAYEw1AnZkTuk7hPdqCFjpthdzRkY9KSviysJC9q9c02Zd34ACTPD3p7eFJdO+LK2J1dOjbF6VMRr0gkHLAdFeQjLPaQo1QC7o0tCX/VrNdHIYypDTfnHjxGThrRiN1gBs8PPkwNIwxE5sLyFgfpbMz0eI8cHx703SC/StXUS/OA/FGvDWdBg1CDlRpNGbNA8tX/M0j2ef5o8x403Vr0V18vk/pqYw9IBp7fU20zPt3Hkgz65rnxUVTlB3MA45uboSK4uMnmuUZNpH5MNKnPaZPH67y8uYOX18qzIjgpIuC1mF24LEFcBIX2nV6QsnVopana0/jIeN4cS5JOmfePPBcRCTvhoQyaMRIC0b630Ey7GxEnKidc6aZDtsOsX1aj6Ag5I16YzbHxcODcHFCOLldf/J5Y3QNj8PtRLOn+9ChACSVlDTxNKjq6jgmrqiHXGVcPNNRLDwoOGv6y6xWqcgRE+xjWqkdzqXSWSx8Oby7aV6IV3Y2b4WE8teNNxpdUSscHfm8dx9+j4rG34zigQzRqA+zE0FOp1jt/atKSmryDGg0Gu754w8+LcinTnxpGyJBzC9KMiMcL9TXoxKrJ+2hgAZg7sBBvBYUTMdmyfPbVqwAoFdIiNFnwMnd/d95wEARSmMOHDnCP+XlHLdxNaSOnsOHA3CmuLhJOFqtUnFUvFeD9Ui9NCbdwYFHs89z7+JFJq+n0WgaBI/tZR5IFL2nB5sZ92HlFbwfEsqTgwYZfQYcFAo+HjaUB/0DUBjI225MurgQjrBx4YSO2sBAvi4s4MmNGy6aBy6IES1nEwu8TmIuslnzQF0dnWtqmOTpSZSNhdrbCsmwsxGvz57N1g5x3Bge1mT7jl3aZNmBYrsZY8SKL+hTZvRwzczWesYizBQxbWsShw1DgdbT0Dgcffiff6jSaHCVy+l2hbFOsnBeoWBQ0lmG/b3cZBgq5/Rp6gUBORBpY2FaHV1Fj8HRZp4WncSDsx5B0uZM6N+fLs7OkG1YvV/HLQmJ/BEVzYOTW6fX56Wi7NCB27Iy6bt/H0likjjA6W3bWFVYwHdFRXiaePkmit6cFDMqoysyMsivq0NQKHAwkLtpbW68ahIzvL0vKqLZvU9bCDDQDF3QGPF3Oa0nX7U5WWIz+fCwMBNHWofOI0aglMmo0mg416j44fjGjQ0yHz3HjTPyCeAQGsqa8nLWnz9vch64cO4ctYKADIi2E8Ouh7g4OdysqtU5JZmJnp7cPtO04P+/OdeGu/nokFVWEuCgIDLc9vl1AK6xsXxaUMDv+flkNEqpOL5hI/3372NWRgZO4t/IEAlibr8580B9Xj4IAjJHRxykqliJ1qTTyJH4KxTUNsqrEASBvaJXZbgZoaI4MfH17JmL89Sao1P4t4f8MgBHV9eGhNeD69c3bO9QW8s/MbF8M3q0wR6qOiL79KZMo6FMrSbXRCPxFFGYNsDREUc7yTPs1V/bTeBks1Xmga1bUQuC0apoHZZM6C4lJXR2dqaznYiIOzg5UaFUUi0I7Fm5qmH7hoULAejh74+ribBx1xEj8HZwIEzuQLWJRui7NmxgRPI5JqelIrOD3CIAZ7GyuaZZW7S9Ykht2PjxJj+jYR7Qk6/anIZ5wA7yy0A7D8R5eODn4EBmowVe1r59RCiVRmU+dCQMGdIQjm6ep9acFLFwIMDR8aLeu7aijxhqP9aoul0QBKrEvEtXPQLlzVFERHC+vp6T+/eZPPb+2A5siYvj8dtubeGIWxc3Hx/ixSKoHX/+2bB9y9IlCICzhzsOTk5GP6P36NHMC49gYXgEGhPe6KT9+/i1uJh9jkq7mQdam/b5W/0H0EkY1J47h7pC+yCe27OXnNpaFMCIWbNMfkaC+FJISjctd6HLK4nsqL91kS2Y2K0bM7y88GnUVqrmyBEiHB0ZO8G0Yevm40OYOOmf1KOD1RhNYREDXV3pF2QfSeMAvcdqPZLnysupFXtXnt6+nal79zAyJRkHM3TG8tzcmF9UxLdis3hjqMTewgobtxNrTE9xobG/UTh66zbtvRxqhgHqGx7OnoGD+CUqCkSdQkOkiYZPkB1URetw7tGDY9XVfLtzJ2ViGC1l/35yamtxAIZfd53Jz+gofqfNkb35dx7o1PJBtzLLbrmVbXHx9Gj0ku1VXsE/sR3445FHTJ7v3Cgt5cQO4/NA2kmtd9yehGn7i6Hm5PLyBk3OlD17+Oz4MY7U1+NihjzVH2lpjE1J5vklF8tHNUen4+do4+47jekrFsrtbiRdtV1MLRhkhmfVIzSUIeHhBCuVBqVjdOzcto3X8y7wpZEexf91JMPORigDA/lFreKujAy2LNJ6KIr27WW0uztDgoPxMCMXrpOuzL3AeJm7RqMhx87ySgBefewxXgsOIS5X+0ITBIEK8aXuaqJwQkesGIY62ay6uDndPDyYFxHJV9eY3yi8rYnt1w9vhQKVILB98WIA1og6kDE+Prj4mhbRPS+X81Z+Ht+Lnghj/G/fPuYVFVLjYR+eCoA+fbQhlEONvE27RZ3BUSZyq3Q4NXgtjRfRZIi5ReF2kmMI4BgSwiMXcnnzQi7bfv8DgNU//ABAFx8fs+aBRNEANiV30XgeiDYjzG8t/AdqPddVe7ShWEEQqBRf6n4GOm40p4N4T0+bKCJKcHfn2cBA5tiRLFdk9+74KhSo0RbPAaz66Sc+KSjg/fIy5C6GZa906N4FpjrxCBoNKjvqwKNjgNgLeZ/oudZoNOwUC6KGj9XfcaM5uk40pqqj08UijTA/+5kHWhvJsLMhhwSB7VWVbBK/zGFnz/JZWDiLn3zKrPO7iC78zKpq6o20FLLHvBIA1z59AKg5ehRNbS0H/v6b2/fvY0lVldmGXbwYhjqjRy6hMQ3eKjuazORyOSPEcvstombXhk2bABjV13gloI7EwVqpg6zqqgavnz6Ks7P5/sIF3svPx9FOpC4ABo7X5k8dys2lurycw6tXk1VTg0ImY+T115v1GQ0TeorxCT1TrLyMsJP8Mh39RMN0+9p/ABhWU8sbwcE8aECQtTm9Ro3iXj8/7vX1RVCrDR6Xl5JCraiZGG0n4XgAV7His/LgQeorKig6fITqvDxkzs64GKkKb0xHUY/sjIm0lHC1htk+vswyIaNjTeRyOTf17MnTAYEEimkZ68X2WMPMFJPvLL4LsmuqqTbSdzXr5EnGnTnN7VmZONhJIR3A4EmTADhWkE99TQ37/vqLrJoanGUyrpgzx6zPOKJw4MP8fP5YatxrmSX+jSPC7Mdj2dpIhp0NGS4KlC7bvBl1RSUVW7VuaM8JpvNqAKJ69mRpx07sjo9HY0C9HsCxtIwvwsJ5PS7erhoeK6OiEPz9OFZexqmVK1n6/fdsq6xki1yG3EROhY6OHXXhaOPu95osrdtdaUdhSIBn7r2PVTGx3KJ0pDg7m02iMPGEmTPNOj+iWzdc5XLUwNndhsU5deLEng4OeIqaT/ZAv6lTCXJ0pFKjYfnHH/PjBx8AMDIy0uxxrikoYHxKMnO/+srocZlilWWkaEjZCwP7aRcx63fvRlNdjeOBA1zt5c2NTzxh1vlh3brxQFg4E13dqDcSXso+eRIF2sbnLnY0DzhGR/O/inIGnzrJqm++5b2XXmTwuSS+VTiYPQ90ShCrIk2Eo+2pX3RjXn76aW729cVp716KsrL4R/RWTbv5ZrPOD0lMxE1szXXWiFh3yuHDZNbXk6ZSITeRw2xNeowbh7eDgiqNhhWffcair78GYGRMjNnzwP6KCr4tKmSFgdZkOnTzQESkfuHz9oBk2NmQm597DgVwrLiYT+bMIbmsDGVUJE5m6ivJHRzoIfbaM6bhpCwpZqS7O9cbaMtjK2QyGW9WVXFtejr3P/ww89Zo9dyuMiO/TkdCr56A6TDUlN9+Zei5JHbnmZYDsCa9Z11HtKMjtSdO8NU991Cp0RDr5sbIOeZN6HK5vKH7wqm9hg27lGP/ipLaEw4KBVPFyta/Fi6kJikJV5mcG8zIMdXhGhZKZn09Z0WvrCHOi2Kv0XaUXwZw3SMP4wDsz89nwyOPINTUoAgNwamTeeOUyeX/tqYyEoaKd3fncMdO/DPe9hp+jZHJZNT7+VGq0fD155/z/Zo1VGo0xBvputKchN69UQBqE71CNx0+zJHqaurNSHOwJu6jRoFcTu3JU3z74IPUCgJx7u4MNdNrLZfLiRGFrE8Z6b6QJkY2wjwMi17bAoWjIzP69cVZJuPYX3+xVMy1mz5tmtmfkSCqHZwzMQ9k6+aBTvaTb97aSIadDQnp2JHRYhjp0aVLuCotlb+DgpCZ2RoHwDHa9ITekFNhZ94qgMfeeAOAzZmZXKirI8TJiTvfftvs87sPG8YQVzeGOTsj6GnLpON8RQVFajW+duatUQYG4jZ0KOUqFV+Khu1dM2ZYpAgfK+pRGVNdTxFz2CLtROajMTfcdRdBCgV3VtfwkLMLO3r14vpnnjH7/EQxPyelrMyo3EV2pfalH2OkRZctiOndm4liJ5ZxX3/NopJivG+eY9E8UBIYyLbKCvZt3mzwmPpsbTuxwGj781Q8+PzzyIDVKcnk19cT7OTEreLcYA4jp03lYMdOfBUYhMZI94VHdu3k+ox0ko2krtgCha8vrv3781VhAU+LlaE3Tphg0TzQ0H1BT3s2Helii7IwO5wHXnzvPbZ0iGNmQSFv+AfQ28OTmY+b57UG6CKG9FNNzgPaYsVoExIq/2Ukw87GvPLuu/iK4qR9/QO4/5tvLDr/CPBSbi6fihIR+ti8fQcry8rIdrIf17uOnhMnMrWRZ+KV++4zKXHRmKhevfguPp4n/QOoNyBOWVlcTGF9PQDRNm56rY+QV17mu/IyMuvr6eHry9x33rHo/LioaMC46nqqmDAcaWchKIBhs2ez6qGHCVEqwcGBuA8/wNmCZ8Cc7gu1xcVc4+XFeA8PYuwov0zH82+9hYcoSP57TQ3es0xXwzZmQUY6d2dl8cPffxs8xh7zTHUMnjmTG8R8Mhnw2v33WyRH4hwSgqO7O2j+3969x0VV530A/5y5yDAMDMhNkIsiyEVQ0RXMG95LLXNddcssxU0tn2pdS7etttrKy9rlaXefx7LSnryU7paXJCsJTcwb5gVUQBC5jAKKAgPDfZjf88ecGQEHBYU5h8P3/Xqd10vPYeJLPznznfP7/b5fExpamY6tLCmx3gdC+Q8DYqJa/ids5Z8mxXp548X169v1+uA+lu4Ll1r9mgL+/02ACNeXBYwcCb9ZswAAQ9Rq/PztHrj6tH09cOioUZABqLrDfaC8qBgV/DpUMa0z7WiKu38J6UzDf/c7ZGZlYde//oVZy5fftWZTS4UyGf6jL0dsWirebOVrPv/5IBKKCrG6sBBt25JgXzt+/RXHd++G2sUFw+7QE9EWyzRU3cWLqMvNtdZ1a8pS+NRJJoOXSOr4NaXs3RtLPvsME8+mYubKFXet39dS//Aw4KdE5Nyh3EcBX5g2SCT1y5qSyWSIfncdDFOnQu7qCnU7lwxYui8U1NTgwuFfbBagZiUlWOnlBblWC2eRVNxvKnbmTORkZ+PIzp0Y/uij7b4PhEdGAomJyNK1Xnl/zdffIP3qVSwt16P1DsTC2ZicjEc+/BAxU6eibxs3TVhwHIceffui9vx51OXmwsFGn+lLJ8013lzkcriLsPm798CBOHLwIA5s34EFq95p1wdcABgfNwYVJ09ipFvr08w6vqROQKD4ntoCgO+a1XD7/RyY6uvh1MYNdBaWbkx3ug8oysuw1T8AJUol3ERU7qWjUWInAp59+2Ixv2i8vdpScdvS8NhfhEkNYH5jjps3755f36NvX9xIT8eV1DSEjxt32/UsvjNHgEYjiqbXtgx9+GEMvUsLtdZMmf4oduz5Fv38W68kn8/XCgxq47ote+M4Ds7jbx+7tgry8ECBTofMM2cwxcZ1y3IEhYhv5p59+2LGiy/e02tvdeBovUjzwewspBoq8aSqbRsS7M1Bo8HvX3vtnl+/XV+ObXl5ePyzjXjVRomMbH4Dkb9IChPbEjZqFML4dovtNW7aNPT9YjMUDXdYksK/FwTyU/9i5HgfT9Ks94HTp23eB3DjBoao1XAQUT3XziDOdznSZgNGjwYAlDQ0oKzQ9hObgooKAEDfAeKpXdWR1l/KRuylbKzestnm9Zx084LhQBHVL+tIfkOHIMrREeobN2BqZe3Qxn7B+E9gH8S1Y2NKVxJyly4shZmZKDEaIRdRqZeOFBkXB8B8HyhtZUlCPn8f6N/Op2FdhV6lwoW6WqSmp9u8fjnDss5UmvcBywYa4/XrrXZf6AnAQy6X7HuBpexNVtZFm9fr+alo5R0+BEsBJXZdXE8/P3golQCA84eSb7teVlhoXVcSPnKEXWOzl0B+2iX7iu1SD7m55vVlfURWv6yjyF1dIeN3xNUX6G673miogrPBgAEqFTz5ZtlSM3jgQESpVPA02q7j9uGXXyIu5xLe4VvLSY2bry+8+Cn884cO3Xa99MoVlPObi/rHDrdrbPYSxnfzuVRk+wNuHn8fCBTh+rKOINdqccPJCSeqq3CVfzrZlKm6Ght6+SA5OATR48baOTr7eP7xx5EY1A8vh9m+z+394Qd8WVaG/HYudehqKLGTgCB+TUWmjT6BF4+Za/r0VCjQ08/PrnHZy92mofxlMgxXqxFtY82FFHAch58Ucqy6dg3J393eWsxS20yu1UIu4mmo+zH/qaewI7AP5reyLimHL04c0l+8U1D3y3IfyDh5+30gk78PuCuV7VqQ3pWE82uyLpeXg/GFmJvK5Wc0+op0SUpH+FNBPuJ1OiQlJNx2zfK0SqbVQi6iOoYdqe/Q36C3UomG/Dyb17fy7cRSyltfuiQFlNhJQLCv+UlUpo2dQBf59WV92rkQtyu523T0XK0rNvkHYO5jbasJ1RUd0OuxrbwMh385fNu1w9/vwzvXipHY9uoZXY5l00y9TgfGP6FuylLnMHSg+HZFd5T+/Ae3DBv3Acv6skAXcdUv60gR/H1A39iIYhs7Q+N9ffEXLy+Mt7EOVyr68SWtLtr4N1CflwfgVgs+KbJ0oWm4chXMRtmbXL7lWrBEP+RbUGInAf1DzFORxTaqzmfzvfeCJLq2CADcAwLgzk9HX0huntgwxlDPrznq4S/NJ5YAEMzf0C5m317yJDk5GV+WlyOJX2MlRQpvb3AqFRoaGlDNv4FZGOvrkc+vOQobLr4yFx3l8YcewtpePphpo17lJb4wbR8RdR3paM4eHvDhO1VcSG6+LIWZTBhcVY0n3XoiavQYIcKzi2D+aeQlG+313t2wAZMv52CTyIq0dySFlyc2VlZgua4AmS06cBjr61HA3wdC27njtquhxE4C/jDvSaQEh+BtGzudfuvvj/W9/bBwis09QpIR5OoK4PZpqCrdFVQaDIBcDqWId0Ter0i+BliGjYXzlmQv1EYJCKngZDI8f60YQ7MuYt/XXze7dvnUaTQwBiXHoZ+Imr93tFGTJ2O6Vgs/vhZaU5XXS6DkOASJsMxHR+rHF97NOHWq2fmGwiKwmhpAqUSPAOkunA+9wzrDzOxLuNLQgEYJP7XlOA4/Vlfjh8pKpLZI7vNTU9HAGBQchyCJbiCyoMROAjyjIqGRy1Gfl3/b2hL3slKM1WgwIm6sMMHZSQi/MaLlFMSBb75BzKVs/KG4GJyIeiN2tOixYwEA2Xo9jC2mILL56enwqIH2DsuuVM7OMAJIP3Om2fnME8cBAAFqdbtrBHYllmmo+vx8sMbmm0iW9QnE6ZD+eHHhQiFCs5uwgEAEKpUw8VNuFhcO/YzvKiqgc+8JTiHdKl+Dxpino7PKy9HYohNPDl+g2pL8SVU/b/PsVEZaWrPzmXyrNT9Hx3bXiexqKLGTgB5+fuCUSrDq6mbdFxhjqOcfyfcQaUHKjjJh+HA85uqKQY7Nf2HT+P6prm6uAkRlP2GjR0PFcahjDJmHb01Hm0wm5Oj1AIABD0hzN6RFFL/jN7VFS6WL/E7YvhItd2Oh9PXFyfp6bLt2DVebvKkxxlCXlQ05x8FV4muL1j77LL4P6oeZHp7NzifsTcCKokL8o5Wd81IRERcHB45DtcnU7D4AALnl5vtAuAi7bnSk0OB+AICMi81Lnpw7YS5UH+zpedtrpIYSOwnglEp8JZNhQUEBdm/63Hq+KD0D/8i6iINVVXAIke40HADMnj0br3v3wsgWm+HS+bVFEcHS3Q0JmJtoh/DT0Wea9AstTE9HZWMjOADh/OJyqYrme0We0zUv+RKpVCLerSem8LunpYqTy7Hm5g28c/0aDn/7rfW8sbgYpooKQC5HDwnvCAUAB/7na9k7O5OvbxjGv+lLlVKlQn/+PnDqpyTr+aKsLJQ3mp/ghY8cKURodjOEvw+k5ec3O592zvxhJ0qkRdo7EiV2EpEjlyGlphpHDt9aV3D8uwSsv3kT/11eBpnEHz079Df/stZdugRTba31fAb/Jh8ZPViIsOwqwlKkN/XW05o0vrahn6Nju1sUdTUxU6cBAC4bDKhq0oklTK/HCi8vPB0fL1RodjOYn4498csv1nPff/klZubl4n/q6yCT8FQ0ADj07QMAqC4oQGNdnfV8Fv+kLkLiyxEAYMmYMXjbuxeilLemnFMSzGWQAtVqaPh1iFIVy3fwuVRZiarSWyWwXg7sgy3+AXjy948JFZrdUGInEUOizYtBz2beqrx/mq9dFSnR+nVNKXv7otHNDamVlbj8s7lAq8lkQha/kHzwGOnuhLN4LT4eR/oFY3GTTSIZx/l/AyJs/N7R/KMi0VOhgAnAqX37AADMaERdpnlKRhURIWB09jFs6FAAwOkm3Rd+PXoUmXV1uCKTCxWW3Sh8fbG85Dpi0y/gCL+JptFoxEW+xmWURIu0N/X4rNn4nasrPIpv7X5N4YtWD5Z4xwUACBg4EB5KJRoBnNy7F4D5PtAjLw9D1WoMuI/WhV0FJXYSMWziBADAuWvXYDKZAACp/EaCQRJfLAuYd0OtuFaMxwvysf2L/wMAZBw6hGqTCUqOQwTfcknK+k2YADeFAtWnT4Px/wbmaLU4GhyCdxYtEji6zieTyRDJl/M4mWSehtKdPInjZaUwODhAKfEdoQAQO/lBAEBak/vAeX45QmRYmGBx2QvHcWjQOKOGMSTzRXrPfv8DKhsboZbJEC3RlnpNqSLMa01rzp2zbqbTVlZgoEqFEb+R9nIEwHwfiOrVCw4ch8u//gqA31BUVwdOre4W9wFK7CRi6NSpUHAcyoxGXDh4EACQxm+kiH5A+p9SAWAIP82Swhdl3v/lVwCAaE9P9FCrBYvLXlTh4eDUapgqKlCXnQ3GGGpSU+EqlyPMRlN0KZoYE4Mpzs7w5xeK79u+HfE6HZ4rKgInk/7t7jfTpkLJcdA3NiLz8GGYTCYcu2xupTVsjLTXWFo8MNQ8e3GML310aPcuAEC0t7fkd0MCgGNkJLIBbMzORga/zu63JobtgX3w3B9fEDY4O/nfZ55BSkh/PKhyBAAkbN6MNdev4aiTU7e4D0j/J+wm1FothvPTbbs/+wwXDh5EQU0NFABGz5ktbHB28gD/1PJEXh6M9fXoW6HHbK0WMyVe6sWCUyiw38UF8boCbHj3XTRcLURjyQ1AoYBqwAChw7OLl15/He/79sagK1fAjEYcOHAAABAd2l/gyOzDQaPBIH73795Nm3AuMRHFdXXowXGYuGCBsMHZyRi+ZmdKQQFMJhN+4ZekPDBosIBR2Q/Xowc+MBiwruQ6dn++CQ3FxTAWFwMc1y2WIwBAwMSJUHIcqpKTwYxGbN6+HVvKypCmchA6NLugxE5CpvKtcr7/+Wd88/HHAIDhvr6S7RHb0vinnoKLXI7r9fXY/+mniLhyFX/r5YPnV64QOjS7Kda64ER1NXbv34+P3/ob4nUF2OXgIPnNMxaqqCjItFqYKipQfuIEfuSnIWfOmydwZPYzfbz5A85PBw5g35YtAIAYHx/JL5q3GDlnDlQchxsNDTi4aRP+rHXFv3x7Y+5TTwodmt2M5UsbJR05gmMbPkFFYyMcBw+GzMlJ4MjsQz1kCORaLYzl5ShJTsbPOTkAgOlznxA4MvugxE5CZixZAmeZDB7V1TiWmAgAmDZhosBR2Y9aq8UjA83TsR+/9lcYb9wAp1ZDNVD6O+Es5r7wAjgAP+t0+OOnn+JEdTVk3eRTOmAu+eE04gFk19UhbvJkVDQ2wqtHD4zvBjtiLRa8/Gds8vPHe45qbN1lnoacMKJ7LMcAzPeBGfzv/Jt/XAbn0lJM9vPDoBkzhA3Mjh6ZPx8AcKCgAHFvvoExOZdwit8x3B1wCgWSvL0wNfcygvn7gKtCgTFPzBU6NLugxE5CwkePxpl58/B3H1+87+mFPcEhmP/nlUKHZVfzn30WALC3vAxHq6vhvmCB5Es8NBU5YQIebFKrTC2TYcnf1woYkf0Zp0/HrPw8nKuuBgA8MnSopDtOtOQ/eDDGx8VBwXGY7qSBh0KBBa++KnRYdvVfL/8FAJBaWwMA6LlgPmSOjkKGZFdDH34YU4Ju1exjAOKWLBEuIAEETJ6M/IYGVPJdWGZ2p/sAE6nMzEw2bdo05u7uzjw8PNgTTzzBSktL2/x6vV7PADC9Xt+JUYpP/bVrLCtuLMuIjGIVSUlChyOIV6Y/yhQcx0KdnVm9wSB0OHaXsmcP81QqmbNczv42Z47Q4Qji+fHjGQA21t+fleTlCR2O3dVfvcouTZ3G0sMjWOHOnUKHI4j4mBg2292dZU+YyIzd7H2AMcbOHzjAtHI5c1Mo2EcvvCB0OIJ4dcYMBoDFeHmxqvJyocO5L+3JaTjGWjQXFYmUlBRkZmbi0UcfhUKhQHx8PJydnbFx48Y2vb6iogJarRZ6vR4uEm56bEujoQqsrhaKbrKmxpabBQXo4egI527QPobczmQyIf/sWQQOHgxZN9gFZwtraIDxxg0ou0ENw9awxkZAJgPHcUKHIojKkhI4ODl1i6oArcn85RcEx8R0+ad17clpRJvYtZSYmIjly5fj3LlzNq/X1dWhrkml8YqKCvj7+3fLxI4QQggh0tGexK7LfJQ9evQoBtyhZMOaNWug1Wqth383qLBNCCGEENJUl3hid/bsWUyYMAHJycmtJnctn9jp9XoEBARAp9PREztCCCGEdFmWWcjy8nJo79b3u1NX+93BpEmTmIODg83j7bfftn7d5cuXmZ+fH9u1a1e7/vs6nY7BvBmIDjrooIMOOuigo8sfOp3urvmPqJ/YFRcXY9SoUVi5ciUWL17crteaTCYUFhbC2dm5UxfOWrJoejIoPjQ24kTjIl40NuJFYyNO9hoXxhgqKyvh6+t71w1hik6L4j7p9Xo8+OCDeOqpp9qd1AHmRsB+duy44OLiQr9sIkVjI040LuJFYyNeNDbiZI9xuesULE+0myd2796NtLQ0rFu3DhqNxnoQQgghhBDbRJvYzZ8/H4wxGAyGZgchhBBCCLFNtIldV+Hg4IA33ngDDg4OQodCWqCxEScaF/GisREvGhtxEuO4iHrzBCGEEEIIaTt6YkcIIYQQIhGU2BFCCCGESAQldoQQQgghEkGJHSGEEEKIRFBidx9KSkowbdo0qNVqhIaGIikpSeiQuq033ngDERERkMlk2L59e7Nra9euhaenJ3r27ImVK1eC9gvZT11dHeLj4+Hn5wetVouxY8fi3Llz1us0NsJavHgxfHx84OLigqioKCQkJFiv0dgI79ixY5DJZFi7dq31HI2LsMaOHQuVSmWtrTtlyhTrNdGMTbsasJJmZs+ezZ5++mlWVVXFdu3axdzc3FhpaanQYXVLW7ZsYfv372exsbHsq6++sp7/7rvvWEBAAMvJyWGFhYUsPDycbdy4UcBIuxeDwcDeeustptPpmNFoZO+//z4LCgpijNHYiEFGRgarra1ljDGWkpLCtFotKy0tpbERgcbGRhYbG8tiYmLYmjVrGGP0OyMGcXFxzd5jLMQ0NvTE7h4ZDAbs2bMHb731FtRqNWbMmIHIyEjs3btX6NC6pXnz5mHSpElQqVTNzm/ZsgVLly5FUFAQfHx88NJLL2Hr1q0CRdn9ODk54a9//Sv8/Pwgl8vx3HPPITc3Fzdv3qSxEYGwsDBr/S2O41BbW4uioiIaGxH45JNPEBsbi/DwcOs5GhfxEtPYUGJ3j7Kzs6HVauHj42M9N2jQIFy4cEHAqEhL6enpiIqKsv6dxkhYx44dg7e3N9zd3WlsRGLp0qVwdHTEsGHD8NBDDyEiIoLGRmClpaX48MMP8eabbzY7T+MiDs8//zw8PT0xadIkpKWlARDX2FBid48MBsNtDX9dXFyo7ZnItBwnGiPh6PV6LFmyBKtWrQJAYyMW69evh8FgQGJiIuLi4gDQ2AjtlVdewbJly+Dm5tbsPI2L8NatW4fc3FwUFBRg0qRJmDp1qrXlqVjGhhK7e6TRaFBRUdHsXEVFBTQajUAREVtajhONkTBqa2sxY8YMTJs2DQsXLgRAYyMmcrkcEydORFJSEn788UcaGwGdOXMGKSkpWLRo0W3XaFyEFxMTA41GA0dHR6xcuRIajQYpKSmiGhtK7O5RSEgI9Ho9iouLredSU1MxYMAAAaMiLUVERDTbhUljZH9GoxGPPfYYfH198d5771nP09iIj8lkQk5ODo2NgA4dOoSsrCz07t0bvXr1wo4dO7Bq1SosWrSIxkWEZDJzGiWqsRFky4ZEzJo1iy1evJhVV1ezPXv20K5YAdXX17Oamho2evRotnnzZlZTU8MaGxtZQkICCwwMZJcvX2ZFRUVswIABtIvMzhYsWMAmT57M6uvrm52nsRFWZWUl27p1K6usrGQNDQ3s66+/ZiqViqWlpdHYCKiqqooVFRVZjzlz5rBXX32VlZWV0bgIrKysjO3fv5/V1tayuro69sEHHzBvb2+m1+tFNTaU2N2H69evsylTpjBHR0cWEhLCEhMThQ6p25o/fz4D0Ow4ePAgY4yx1atXM3d3d+bq6spWrFjBTCaTsMF2I3l5eQwAU6lUzMnJyXokJyczxmhshGQwGNi4ceOYVqtlLi4ubMiQIWznzp3W6zQ24jB//nxruRPGaFyEdP36dTZ06FDm5OTE3Nzc2Lhx49ipU6es18UyNhxjVN2QEEIIIUQKaI0dIYQQQohEUGJHCCGEECIRlNgRQgghhEgEJXaEEEIIIRJBiR0hhBBCiERQYkcIIYQQIhGU2BFCCCGESAQldoQQQgghEkGJHSGkWysoKICHh0enfo+8vDxwHAeNRoPdu3ff8Wu/+eYbaDQacBzXrBc1IYS0BXWeIIRInkajsf65qqoKarUaHMcBANLT0xEQENCp3z8vLw9hYWGora1t82s4jkNRURF69erViZERQqRGIXQAhBDS2QwGg/XPKpUKFy5cQJ8+fYQLiBBCOglNxRJCurW8vDyoVCrr3zmOw0cffYSAgAB4eHhgx44dSEhIQFBQELy8vLBjxw7r15aWlmLu3Lnw8vJCUFAQvvjiizZ/3+PHjyM6OhrOzs7o1asXPvjggw79uQgh3RM9sSOEkBaOHDmCrKws7N27F8888wymT5+O8+fPIykpCQsXLsSsWbMgl8vx5JNPIjIyEjqdDrm5uRg/fjwGDx6MQYMG3fV7LFu2DCtWrMDcuXNRVlaGvLy8zv/BCCGSR0/sCCGkhZUrV0KlUmHmzJkoLy/H0qVLoVar8cgjj6CyshKFhYUoLi7G4cOHsXr1ajg4OCAsLAxz587Fzp072/Q9lEolLl68iNLSUri5uSE6OrqTfypCSHdAiR0hhLTg5eUFAJDL5VAqlfD09LReU6lUqKqqQkFBAaqqquDu7g5XV1e4urpiw4YNuHbtWpu+x2effYaMjAwEBwdjxIgROHbsWKf8LISQ7oWmYgkh5B707t0brq6uuHnz5j29PjQ0FP/+979hNBrx8ccfY968ecjJyengKAkh3Q09sSOEkHvQu3dvDBs2DK+//jqqq6thNBpx+vRppKent+n127Ztw82bN6FQKODs7Ay5XN7JERNCugNK7Agh5B5t27YN+fn51h2zy5YtQ01NTZteu2/fPoSGhsLZ2Rn//Oc/8fnnn3dytISQ7oAKFBNCSCfLz89HWFgYHBwcsHnzZkyfPr3Vr925cycWLlyI2tpa5Ofnw9vb246REkK6OkrsCCGEEEIkgqZiCSGEEEIkghI7QgghhBCJoMSOEEIIIUQiKLEjhBBCCJEISuwIIYQQQiSCEjtCCCGEEImgxI4QQgghRCIosSOEEEIIkQhK7AghhBBCJIISO0IIIYQQifh/sbxr9UwyjwoAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Show that the system response is linear\n", + "out = resp3.plot()\n", + "axs = ct.get_plot_axes(out)\n", + "axs[0, 0].plot(resp1.time, resp1.outputs[0] + resp2.outputs[0], 'k--')\n", + "axs[1, 0].plot(resp1.time, resp1.outputs[1] + resp2.outputs[1], 'k--')\n", + "axs[2, 0].plot(resp1.time, resp1.inputs[0] + resp2.inputs[0], 'k--');" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3QUVRvA4d9uem+E9EIJIaH3TgAJRUBQOoogCCiKhSqIAiqCCqgoRVBB6UiX3nvovYVUEkiANNJI3/v9sbKfkRDSdxPuc86eAzszd97JbHn3VoUQQiBJkiRJkiSVe0ptByBJkiRJkiSVDJnYSZIkSZIkVRAysZMkSZIkSaogZGInSZIkSZJUQcjETpIkSZIkqYKQiZ0kSZIkSVIFIRM7SZIkSZKkCkImdpIkSZIkSRWETOwkSZIkSZIqCJnYSVI5FB4ejkKh4NKlS9oOpdyYPn06Dg4OKBQKtmzZou1wStzhw4dRKBQ8evSoWOV4enryww8/lEhM5eG8klTR6Gs7AEnSJUOHDuWPP/546vmgoCCqV6+uhYikknDz5k1mzJjB5s2bad68OTY2NtoOSfqPs2fPYmZmpu0wJKnck4mdJP1Hly5dWLZsWa7n7O3ti1RWZmYmhoaGJRFWselSLGUtJCQEgJ49e6JQKIpcTlZWFgYGBiUVlsT/X5dFfY9JkpSbbIqVpP8wMjLC0dEx10NPTw+AI0eO0LRpU4yMjHBycuKTTz4hOztbc2y7du14//33GTt2LJUqVcLf3x+A69ev061bNywtLbGwsKBNmzaaZANg2bJl+Pj4YGxsTM2aNVm4cGGumM6cOUODBg0wNjamcePGXLx48bnX4enpyVdffcXQoUOxsrJixIgRAJw8eZK2bdtiYmKCm5sbH3zwAampqZrjFi5ciJeXF8bGxjg4ONCnT5+nru/999/H2toaOzs7pk6dihBCs09CQgJvvvkmNjY2mJqa0rVrV4KCgjTbly9fjrW1NXv27MHHxwdzc3O6dOlCdHS0Zp/Dhw/TtGlTzMzMsLa2plWrVty5c0ez/e+//6ZRo0YYGxtTtWpVZsyYkes+/Nv06dPp0aMHAEqlUpPYqVQqvvjiC1xdXTEyMqJ+/frs3r1bc9yT5u7169fTrl07jI2NWblyZZ7nePToESNHjsTBwQFjY2Nq167N9u3bNds3btxIrVq1MDIywtPTk7lz5+Y6Pq/mYWtra5YvX54rlrVr19KyZUuMjY2pVasWhw8fzjOeJ553rx8+fEiPHj0wMTGhSpUqrFq1Kt/yIP97M336dOrXr88vv/yCm5sbpqam9O3bN1fz8NChQ+nVqxezZs3C2dmZGjVqAE83xSoUCn799VdeffVVTE1N8fLyYtu2bbli2bZtG15eXpiYmNC+fXv++OOP5zZHKxQKfvnlF7p3746pqSk+Pj4EBAQQHBxMu3btMDMzo0WLFrnenyEhIfTs2RMHBwfMzc1p0qQJ+/fvz1Vufu+bDRs2UKdOHUxMTLCzs6Njx4657oMklSghSZLGkCFDRM+ePfPcdvfuXWFqaipGjx4tbt68KTZv3iwqVaokpk2bptnHz89PmJubiwkTJohbt26Jmzdvirt37wpbW1vx2muvibNnz4rAwEDx+++/i1u3bgkhhFiyZIlwcnISGzduFKGhoWLjxo3C1tZWLF++XAghREpKirC3txf9+/cX165dE3///beoWrWqAMTFixefeS0eHh7C0tJSfPfddyIoKEgEBQWJK1euCHNzc/H999+L27dvixMnTogGDRqIoUOHCiGEOHv2rNDT0xOrV68W4eHh4sKFC+LHH3986vo+/PBDcevWLbFy5UphamoqlixZotnnlVdeET4+PuLo0aPi0qVLonPnzqJ69eoiMzNTCCHEsmXLhIGBgejYsaM4e/asOH/+vPDx8RGDBg0SQgiRlZUlrKysxPjx40VwcLC4ceOGWL58ubhz544QQojdu3cLS0tLsXz5chESEiL27t0rPD09xfTp0/P8OyQnJ4tly5YJQERHR4vo6GghhBDz5s0TlpaWYs2aNeLWrVti4sSJwsDAQNy+fVsIIURYWJgAhKenp+be3Lt376nyc3JyRPPmzUWtWrXE3r17RUhIiPj777/Fzp07hRBCnDt3TiiVSvHFF1+IwMBAsWzZMmFiYiKWLVumKQMQmzdvzlWulZWVZp8nsbi6uooNGzaIGzduiLfffltYWFiI2NhYIYQQhw4dEoBISEgQQojn3mshhOjatauoXbu2OHnypDh37pxo2bKlMDExEd9//32ef8vn3Ztp06YJMzMz0aFDB3Hx4kVx5MgRUb16dc29FUL9HjM3NxeDBw8W165dE1evXhVCqF+v/z7vk+tdvXq1CAoKEh988IEwNzcXcXFxmr+JgYGBGD9+vLh165ZYs2aNcHFxyfU3yAsgXFxcxLp160RgYKDo1auX8PT0FB06dBC7d+8WN27cEM2bNxddunTRHHPp0iWxePFiceXKFXH79m3x6aefCmNjY8115/e+iYqKEvr6+mLevHkiLCxMXLlyRSxYsEAkJyc/M0ZJKg6Z2EnSvwwZMkTo6ekJMzMzzaNPnz5CCCGmTJkivL29hUql0uy/YMECYW5uLnJycoQQ6sSnfv36ucqcPHmyqFKliiax+S83NzexevXqXM99+eWXokWLFkIIIX755Rdha2srUlNTNdsXLVpUoMSuV69euZ4bPHiwGDlyZK7njh07JpRKpUhLSxMbN24UlpaWIikpKc8y/fz8hI+PT66/waRJk4SPj48QQojbt28LQJw4cUKzPTY2VpiYmIj169cLIYQmyQoODtbss2DBAuHg4CCEECIuLk4A4vDhw3nG0KZNG/H111/nem7FihXCycnpmX+LzZs3i//+jnV2dhYzZ87M9VyTJk3E6NGjhRD/T6Z++OGHZ5YrhBB79uwRSqVSBAYG5rl90KBBwt/fP9dzEyZMEL6+vpr/FzSxmz17tmZ7VlaWcHV1Fd98840Q4unE7nn3OjAwUADi1KlTmu03b94UwDMTu+fdm2nTpgk9PT0RGRmpeW7Xrl1CqVRqEuohQ4YIBwcHkZGRkevYvBK7qVOnav6fkpIiFAqF2LVrlxBC/bqrXbt2rjI+/fTTAiV2/y43ICBAAOK3337TPLdmzRphbGz8zDKEEMLX11f89NNPQgiR7/vm/PnzAhDh4eH5lidJJUX2sZOk/2jfvj2LFi3S/P9Jh+6bN2/SokWLXH20WrVqRUpKCnfv3sXd3R2Axo0b5yrv0qVLtGnTJs++WTExMURGRjJ8+HBNUylAdnY2VlZWmvPWq1cPU1NTzfYWLVoU6Fr+G8v58+cJDg7O1eQmhEClUhEWFoa/vz8eHh5UrVqVLl260KVLF01T2BPNmzfP9Tdo0aIFc+fOJScnh5s3b6Kvr0+zZs002+3s7PD29ubmzZua50xNTalWrZrm/05OTjx8+BAAW1tbhg4dSufOnfH396djx47069cPJycnzTWcPXuWmTNnao7PyckhPT2dx48f54r1WZKSkoiKiqJVq1a5nm/VqhWXL1/O92/4X5cuXcLV1VXTpPhfN2/epGfPnk+d54cffiAnJ0fTzF8Q/77v+vr6NG7cONff9d+ed69v376tKeOJmjVrYm1t/czzP+/eALi7u+Pq6porZpVKRWBgII6OjgDUqVOnQP0969atq/m3mZkZFhYWmtdJYGAgTZo0ybV/06ZNn1vmf8t1cHDQxPTv59LT00lKSsLS0pLU1FRmzJjB9u3biYqKIjs7m7S0NCIiIgDyfd/Uq1ePl156iTp16tC5c2c6depEnz595AAeqdTIPnaS9B9mZmZUr15d83jypSWEeKrjvfinb9m/n//vyD4TE5NnnkulUgGwdOlSLl26pHlcu3aNU6dO5TpHUa/lv+cbNWpUrnNdvnyZoKAgqlWrhoWFBRcuXGDNmjU4OTnx+eefU69evQJPofGsWP/7t/tvkqtQKHIdu2zZMgICAmjZsiXr1q2jRo0amr+HSqVixowZua7h6tWrBAUFYWxsXKA4/33e/OKEp/+G/5Xf/X1Wmf/9O/33+kE9UKMgnjUY5Hn3Oq/XbkHkd2/yiy+/98iz5PU6efKeKcjftSDlPikjr+eenGvChAls3LiRmTNncuzYMS5dukSdOnXIzMwEyPd9o6enx759+9i1axe+vr789NNPeHt7ExYWVqBYJamwZGInSQXk6+vLyZMnc315nDx5EgsLC1xcXJ55XN26dTl27FieX9QODg64uLgQGhqaK5msXr06VapU0Zz38uXLpKWlaY7L74s0Pw0bNuT69etPnat69eqaGhR9fX06duzIt99+y5UrVwgPD+fgwYPPPPepU6fw8vJCT08PX19fsrOzOX36tGZ7XFwct2/fxsfHp1CxNmjQgMmTJ3Py5Elq167N6tWrNdcQGBiY5zUolQX7SLO0tMTZ2Znjx4/nev7kyZOFjrNu3brcvXuX27dv57nd19c3z/PUqFFDU1tnb2+fa/BIUFAQjx8/fqqsf//ts7OzOX/+PDVr1szzvM+71z4+PmRnZ3Pu3DnNMYGBgQVK4p91bwAiIiKIiorS/D8gIAClUvnMGs2iqlmzJmfPns313L+vpSQdO3aMoUOH8uqrr1KnTh0cHR0JDw/PtU9+7xuFQkGrVq2YMWMGFy9exNDQkM2bN5dKrJIkEztJKqDRo0cTGRnJmDFjuHXrFlu3bmXatGmMHTs234Ti/fffJykpiQEDBnDu3DmCgoJYsWIFgYGBgHok4axZs/jxxx+5ffs2V69eZdmyZcybNw+AQYMGoVQqGT58ODdu3GDnzp3MmTOnSNcwadIkAgICeO+997h06RJBQUFs27aNMWPGALB9+3bmz5/PpUuXuHPnDn/++ScqlQpvb29NGZGRkYwdO5bAwEDWrFnDTz/9xIcffgiAl5cXPXv2ZMSIERw/fpzLly/zxhtv4OLi8lRz5LOEhYUxefJkAgICuHPnDnv37s2VGH7++ef8+eefTJ8+nevXr3Pz5k3WrVvH1KlTC/W3mDBhAt988w3r1q0jMDCQTz75hEuXLmmupaD8/Pxo27YtvXv3Zt++fYSFhbFr1y7NCNtx48Zx4MABvvzyS27fvs0ff/zBzz//zPjx4zVldOjQgZ9//pkLFy5w7tw53nnnnTyb7hcsWMDmzZu5desW7733HgkJCQwbNizPuJ53r729venSpQsjRozg9OnTnD9/nrfffjvfGsjn3RsAY2NjhgwZwuXLlzl27BgffPAB/fr10zTDlpRRo0Zx69YtJk2axO3bt1m/fr1mFHFxprTJS/Xq1dm0aZOm1nPQoEGa2jzI/31z+vRpvv76a86dO0dERASbNm0iJiam0D8gJKnAyr5bnyTprvxGxQohxOHDh0WTJk2EoaGhcHR0FJMmTRJZWVma7X5+fuLDDz986rjLly+LTp06CVNTU2FhYSHatGkjQkJCNNtXrVol6tevLwwNDYWNjY1o27at2LRpk2Z7QECAqFevnjA0NBT169cXGzduLNDgibw6wZ85c0b4+/sLc3NzYWZmJurWrasZRHDs2DHh5+cnbGxshImJiahbt65Yt25drusbPXq0eOedd4SlpaWwsbERn3zySa7BFPHx8WLw4MHCyspKmJiYiM6dO2tGmgqhHjxhZWWVK6Z/D264f/++6NWrl3BychKGhobCw8NDfP7555oBKkKoR8Y+GcFpaWkpmjZtmmtk7n/lNXgiJydHzJgxQ7i4uAgDAwNRr149Tcd8If4/YCG/v/ETcXFx4q233hJ2dnbC2NhY1K5dW2zfvl2zfcOGDcLX11cYGBgId3d38d133+U6/t69e6JTp07CzMxMeHl5iZ07d+Y5eGL16tWiWbNmwtDQUPj4+IgDBw5oyvjv4Akh8r/XQggRHR0tunXrJoyMjIS7u7v4888/n/m6EeL592batGmiXr16YuHChcLZ2VkYGxuL1157TcTHx2vKeNZ7LK/BE/kNKBFCiK1bt4rq1asLIyMj0a5dO82gorS0tDzjz6vcvO7zf/+WYWFhon379sLExES4ubmJn3/+Odd7Pb/3zY0bN0Tnzp2Fvb29MDIyEjVq1NAMupCk0qAQohgdeCRJeqG0a9eO+vXry6Wfylh4eDhVqlTh4sWL1K9fX9vhPNP06dPZsmWL1pa6mzlzJosXLyYyMlIr55ckXSBHxUqSJEnl0sKFC2nSpAl2dnacOHGC7777jvfff1/bYUmSVsnETpIkSSqXgoKC+Oqrr4iPj8fd3Z1x48YxefJkbYclSVolm2IlSZIkSZIqCDkqVpIkSZIkqYKQiZ0kSZIkSVIFIRM7SZIkSZKkCkImdpIkSZIkSRWETOwkSZIkSZIqCJnYSZIkSZIkVRAysZMkSZIkSaogZGInSZIkSZJUQcjETpIkSZIkqYKQiZ0kSZIkSVIFIRM7SZIkSZKkCkImdpIkSZIkSRWETOwkSZIkSZIqCJnYSZIkSZIkVRAysZMkSZIkSaogZGInSZIkSZJUQcjETpIkSZIkqYKQiZ0kSZIkSVIFoa/tAEqLSqUiKioKCwsLFAqFtsORJEmSJEkqEiEEycnJODs7o1TmXydXYRO7qKgo3NzctB2GJEmSJElSiYiMjMTV1TXffXQ6scvIyOCdd95h3759JCcn06BBA3766Sfq1Knz3GMtLCwA9R/B0tKytEOVJEmSJEkqFUlJSbi5uWlym/zodGKXnZ1N1apVOXXqFE5OTvz444/06tWLkJCQ5x77pPnV0tJSJnaSJEmSJJV7BelaphBCiDKIpURkZmZibGxMTEwMdnZ2+e6blJSElZUViYmJpZ7YxcTEUKlSJdmXT5IkSZKkEleYnKZcjYoNCAjAwcEhz6QuIyODpKSkXI+yEBcXR8uWLRk+fDjlKEeWJEmSJKkCKjeJXWJiIqNGjWLmzJl5bp81axZWVlaaR1kNnDhx4gRhYWEsW7aMgwcPlsk5JUmSJEmS8lIuErv09HR69epFt27dGDZsWJ77TJ48mcTERM0jMjKyTGJ75ZVXGDlyJABLly4tk3NKkiRJkiTlRef72GVnZ9OnTx/MzMxYuXJlgfuxlWUfu0uXLtGgQQMMDAyIjo5+bv8/SZIkSZKkgqpQfexGjBhBWloay5cv19nBCfXr16dWrVpkZWVx6NAhbYcjSZIkSdILSqcTuzt37rB8+XKOHj2KjY0N5ubmmJubc+zYMW2H9pQOHToAcPjwYe0GIkmSJEnSC0unEzsPDw+EEKSlpZGSkqJ5tGnTRtuhPaV9+/aATOwkSZIkSdIenZ6guDxp27YtH374Ie3bt0cIobPNxpIkSZIkVVw6P3iiqMpy8IQkSZIkSVJpqVCDJyRJkiRJkqSCkYldCUpOTmb//v1s3bpV26FIWqJSqbQdgiRJkvQCk4ldCTpz5gz+/v6MHTtW26FIZSw2NpbXXnsNMzMzAgICtB2OJEmS9IKSiV0JatCgAQChoaEkJiZqORqprAghGDlyJJs3b+a9996jefPm2g5JkiRJekHJxK4E2draataovXLlipajkcrKzp072bx5M/r6+nTq1EmOiJYkSZK0RiZ2JczX1xeAwMBALUdSeJcuXaJr1660bt1azsdXCIsWLQJgzJgxdOrUCYCbN2/y888/azMsSZIk6QUkE7sSVrNmTQBu3bql5UgKJyMjg4EDB7J7925OnDhB7969iYiI0HZYOu/evXvs2rULgHfeeQeAiIgIatWqxbhx42STvCRJklSmZGJXwry9vYHyV2P3008/cevWLfT09LCwsCA+Pp7JkycXq8y91+/z3uoLTNxwmbDY1BKKVLesW7cOlUpFmzZtqFGjBgDu7u54e3uTmZnJzp07tRyhVNZSUlLYtGkTO3bsIDs7W9vhSJL0gpGJXQkrrzV2K1asAGDhwoUcOnSIV199leHDhxe5vN+PhzFyxXl2XIlm/bm7dJt/jNsPkksqXJ3xJHHr3bt3rudfffVVADZu3FjmMUnatWTJEnr37k337t3p2bMnjx8/1nZIkiS9QOTKEyUsISGBrVu34uPjQ7NmzcrsvMWRkpJC+/btuXTpEvfv38fOzq5Y5V2ISKD3opMIAd3qOhER95ir9xKp6WjBtvdbY6hfcX5PPHjwgD179tCuXTvc3d01z585c4ZmzZphaWlJfHw8enp6WoxSKitCCEJiUpg6/kPWrVgGwLhx45gzZ46WI5MkqTwrTE4jEztJIyYmBnt7+2KVkaMSdJt/jFv3k3mtgQtz+9UjNiWTzj8cJT41k+/61KVvY7cSilh35eTkYGtrS1JSEufOnaNRo0baDkkqZQ+T03l/1UXOhMcD4J0RyN4fxmFgYMDNmzepVq2aliOUysrua/fZeCaEjEcPecu/Ie3reGg7JKmck0uKSUXy36TuwoULTJ8+nejo6AKXcfDWQ27dT8bSWJ+p3X1RKBTYWxgxok1VAJYeC6Ui/paIjH/MurMRXIxIAEBPT4+2bdsCyBHGL4C0zGz8hkwk4FqI5rlAI2/c6jQnKyuLH374QXvBSWVqzp5A3py+iN/f68qKca/RsUktxs9aoO2wpBeITOyK6acDQaw9E0FaZo7muevXr7No0SL279+vxcgKRghBZmZmntveffddZsyYwfbt2wtc3rITYQAMbOaOrZkhoF5mq6uXOWaGetx+kMLpsPjiB64DPvjgA2bPns2vey/Rbs5hJm28yqsLTzJxw2WEELRr1w6AY8eOaTdQqdS9+92f3Nr8E9G/j2b3mBZsfLcF+koFGT4vA7Bq1SrS09O1HKVU2rZeusecPzYRs+krVOnqPsWqjFTmThnDio0F/xyVpOKQiV0xxKVk8NOhYD7ZdJUOcw9z71EaAJs3b2b06NGsXLlSyxE+X3BwMFZWVrz00ktP1aT16NEDoMAjO2/dT+JkSBxKBQxu/v+mh48//hj/dq1p5aguf/uVKFJSUkroCrQjMTGRBQsWMHnyZGZsu0KOSuBpZ4qeUsH6c3dZeiyU/v37c/jwYdauXavtcKVSFBqTwoaVvwPQrVdvarrY0sjDltHtq2PsUQ9j68oYGRmVu5HyUuHEJGcwZe1pYv+eC0LFgAEDSElJpWrLbiiNzfnjeLC2Q5ReEDKxKwYjAz0mdvbG2cqY6MR0Rq04R2a2qlyNjD19+jTp6emkpaU9tWKCv78/AEeOHCEnJyevw3NZfiIcgM61HHG1MQXg7NmzzJ8/n5CQENxyoslJS2LR9LE0a9bsmTWF5cHJkydRqVQY2zmjZ25Hv8auHBrfjumv1ALg+31BGFvb4+fnh7GxsZaj1Y6b0UlM3nSV1389xedbr1XIUdEAs7deIDXoDABfTPpI8/zw1lWwMDHCtu+X/LH3HPXq1dNShFJZmH8giPiocPSVUN3Li19//RUzM1P+XrMM9xE/E2zkpemqUZEJIbhz5w7R0dEVsttNeSATu2IwN9Ln7TZVWf9OC2xMDbh2L4m/zkdq5rK7deuWzr+wT506BZDn+qaNGjXCwsKChIQELl++nG858amZbL54D4C3WlXRPP9kLrzBgwczefRQbMyMeBR0lhs3bvDXX3+V1GWUuRMnTgCg5+SDo6Ux03rUQqFQ8EYzd+q5WZOWlcPiwyHPKaViEkKw4FAwL88/xpozEZwIjuPPgDt0n3+cdWcr1qTXEXGP2bx1K+RkUbV6DerWravZZmViwMCmbhjYurDhYsH7qUrlz524VNacicDI2Zudxy/w97ZtmJmZAeDrbk/vNuqk/rfjYdoMs9TdvHmT6tWr4+npibOzM02aNNF8VkplRyZ2JcDVxpQxHbwAWHAwGPcqVVEoFCQmJvLw4UMtR5e/J2vaNmzY8Klt+vr6+Pn5AXDw4MF8y1lzJoKMbBW1nC1p4mmjKfvAgQPo6+vzxRdfoK+npGP9qlg07A7A0qVLS/JSytSp06cBMHL2ZlynGpgZ6QOgUCj4qKP6tbD2bCRHTwTwwQcflNvlxTZt2sTs2bM5c+ZMgY+Zu/c23+0JRAjoWtuRWa/VoZ23PZk5Kj7ZdJUdVypOkrPsZBipN44C8OYbg56q9e7TSD0C/FDgQ+KS00lOrpi1li+6JUdDyVYJ2tawp0Mdd02rzRPDWlVB5GSxYeNGtu7S/b7XRVW1ajVy9IxQKNXTO50/f5527TuwadNmLUf2YpGJXQkZ1MydyhZGRCWmczQkEU9PT6DozbHxqZnM2RPIhvN3Sc96fjNoUQghuH79OgC1atXKc5/27dsD+Sd2WTkqVgTcAdS1dU++3H755RcAevXqhYeHus+dXw17zOv4g0LJkSNHymW/I5VKRcBpdaLjWqMOvRq45Nru52WPm60JKRnZbDhwip9++ol169ZpI9RiO3jwIJMnT6ZZs2YMHjyY1NT8VxBZfy6Snw+p+xJN6+HLojcaMbCpO8uGNmFwcw+EgEkbrxAZX/4n7U1Kz2LN8UDS7lwCoG/fvk/t4+1oQS1nSxKuHMSrqieffvppGUdZNu7evctvv/3GhAkTGDNmDB9/NpPZaw6w6vQdwivoqjNPPExOZ93pMB4HnWZUG8889/F1tsQ8cCcPNn3NlGlflG2AZSQlI5t311wm+6UJuH64DtcxqzCp0YLsrEz6DRzIhYv5t/pIJUcmdiXE2ECP/k3Uv87Xn4vULC8VFBRU6LLuxKXy8o/H+PlQMOP/uszbf5xDpSr5Jt0HDx4QHx+PUql86hfmEx06dADg0qVLqFSqPPfZfe0+95PSqWRuSI96TgCkp6drBo+MGjVKs28bL3sMrCphXKUBUD5XZrh9+zaPk5NQ6Bvy7mvtMdDL/TZSKhX0aah+LYQIR0A9dUx5XF5qwIAB9OjRA6VSycqVK+nWrdszB74E3k/m863XAPjgJa9cTfIKhYLpr9SiiacNKRnZTN50Vee7KTzPujORPLobhAKoXr06Pj4+ee7Xo54zCj0DEmIfcOjQobINspQFBgbSrVs33N3defvtt5kzZw4///wzP3w1lcmDOvLu+x/Sfu5hJm24wuPM8vf6L4jlJ8J5dO0wMZu+ZMrbTyf3TwwfMhiAG+eOc+/evbIKr9R99913fPHVV4z88ywHbz3EzM6Rya/UZ9+U7sxf8iemVRuSk5lBp1d6F6ivtlR8MrErQX3/aXY5HhyLs4d63rbbt28XqgwhBFO3XON+UjpG+kqyk2M5cjWU9eciSzzeJ7V1VatWxcTEhPSsHL7cfoO60/fQYc5h1p+LpE6dOpw8eZI7d+6gVOb9cnkyxcmgZh4Y6aur4Pft20dSUhKurq6a5BDA1syQOi5WmHq1AGDbtm0lfl2lbd/pKyj0DTFyrMaAZlXy3Oe1hupavBuPzTAzN+fx48fcvHmzLMMssoCAAE0S37p1a7Zt28bhw4extLTkyJEjdO7cmaSkpFzHPM7M5v3VF0jPUtHGqxIfveT1VLl6SgXf9amHob6S48GxHLip290U8pOdo2L5yXCM3Wrz275LbNy48alm2Cc61KyMsXsdAK5du6bz3TMKw8rKir179yKEoHrthlg26Yll8z6YVW2AQqlHo7YdEQLWnYtkwJJTPHpcfgdM5SU5PYs/A8JJPqf+HOvatesz9x3WtRnGrj4gBEtXVIyR8gcOHOCTTz5h2mefcfDQYcwM9Vg7sjnvtqtGTUdL3varzupVKzF2rYVeq7fYfvW+tkN+IcjErgS525nStIotQkCV1r04evQokyZNKlQZB2895FhQLIZ6SsbWeETU4mHcnT+Iz+YsLPFaO1NTU3r27Ennzp0BmLzpKr8dDyMpPZvQ2FQmbrjC3H1BtGjRAgMDgzzLuBCRwIWIRxjoKXij+f+X1OrSpQt79uxh7ty5TyWETTxtManeFFCPyi3MBMi6INLMG7eP1jN4yg9YmxrmuY+brSm1nC0RCj3ca9QG1COEdd39+/fx8/OjdevWudY4bdOmDfv27cPa2pqTJ0/i7+/Po0ePNNunbb1O0MMU7C2M+L5/fZTKp5McIQRXAw4yuIkzAN/svlUqNdFlYff1+9x7lIadmSEDW9fMNWjiv7wqm+Pu7IiBvSdQviesDg0NzdVf1NHRkV9//ZVPlu0hq9sX2HQYwZAPphB55RRR9+5yaO77rB3ZHBtTA67cTWTkivNkZFecWpuVpyKIDb5M5oMQTExMGDFixDP3tTY1pFbLjgCs27CprEIsNREREQwYMACVSoVZ7Y6Ye9Zl8eBGNHC3ybVfz+Y+zFq2CRPP+kzfdp2k9CwtRfzikIldCetaW930djXVgjZt2hR63dVl/0wZ0rO6ARPHvINQqbBvM5DMKq05G16yE/u2aNGCLVu28PPPP3Po1kM2X7yHUgFz+tbTDABYeDiEjefvPrOMhYfUIz971nehssX/p/UwMDCgU6dO9OvX76ljmnjaom9ui3ub3nz77bflah3VpPQs/r4cjUJPn5FdG+e7b5da6teCXuXqQPlI7JYuXUpWVhYKhQJTU9Nc25o2bcrBgwextbXF0NAQfX31gJH15yL56/xdlAr4cUB9KpkbcerUKV577bVck1tfuHCBV155hV8/6AmRFwl6mMK+mw/K9PpKym/HwxBCxevNPTA2yP/1q1AoeMmnMsbu6uSvvDbHrly5ktq1azNmzBjNSEchBBF2TVhzS/1lPb5TDX4cUB8bM0McHdWv/+ZV7Zje2pyYtZMJuBbK3L2Fa8XQVelZOfx2PJTk838D8MYbbzz3835g394ABF48TUJC+Z36JD09nd69exMbG4uhQzVsO73L3H71aeOV95KU77evTjV7MxIeZ7HgQPnrV52foAfJbLscpVNdS2RiV8I6//NlfvZOPDHJGYU6NiQmhePBsSgUkHJxJ0lJSTRv3pw33v0YhULBlkul1y9j4WF1h/dhrarQp5ErH3WswXvt1WtbTlp3lj5vvEXdunVzzZ5/5e4j9t98gEIB77Yr+DqYjf8ZNato+RYj3/uIypUrl+CVlK4tF++RlpVDDQdzGnnY5Ltvp39eC3EmrgCcO3eu1OMrDpVKpRnw8t577+W5T4MGDTh+/Dg7d+7E3NxcPVfdqhNkp8QzvIEVwSd20qxZM1q0aMHmzZv55ptvNMc+ePAAJycnIiLuELHmc5IvbGfh4RCd+kAsiPN3ErgY8YikI3/w56SBbNmy5bnHtK9ZGWOP8pnYZWdn8/777zN48GDS0tJo164dlSpVIjtHxZTNVzVTeEzv4cv7HbyeapIWQjBj/Ps8vnOVmM0zWXIokJPBsdq4lBK19kwE96Pu8jgoAFCvRPM8gzs1w6CSB0KVw6q/yudIUSEE7777LufOnUNpYon9q5/yea/69Kzv8sxj9PWUjH2pKo9OruXzQR24FlJxpj2aufMmH6y5yHd7dCdhlYldCXO2NqGeqxVCwNRvf2bChAncv1+wfgUb/qkZa1fNls3rVwMwadIkXmus7se158o90tLSSizWmJgYhBAEPUjmbHgCekoFI9pW1Wwf5++Nv68DWQoDtm3dxtWrVzXz3qlUgs+3qvvo9arvQjV7c81xU6ZMYdy4cQQH5z3TeiVzI6raq+d4Onen/CwvJoRg4V97ifr9ffTOrnpmn6onajiY42xljOKfGrv4+PhnDkDRBadOneLevXtYWVnRu3fvZ+7n4+ODhYUFkfGPeWvZWe7vWcS9BW8ytX8bhgwZwpkzZzAwMOCtt95iyZIlmuNefvllgoODGTlyJEII4vct5uSeLQSExJXF5ZWY34+HqZPRO2e4fLFgg2JaVLXDqkodQEFgYCBRUVGlH2gJUKlUvPXWWyxYoF7r9PPPP2f//v04uFVhyLIzrDkTiVIB3/apy9BWefc3VSgUrF69GisrKzLu3ST+4G+M++syiY/Lb5NcZraKX46GknxxJ6hUdOjQgdq1az/3uMqWxlRtop5pYNv+8rnU4Lx581i+fDkolFTqMYF3uzfj7TZVn3tc17quKMLPkp0Uw7Cx00o/0DJw6GY062d/RGbYOfo1dtN2OBoysSsFT2pq1v32M3PmzOHatWvPPUYIwfYr6g97t7TbPHjwgMqVK9OtWzeaVLEh+cQqLs3qww+Lfy+RGNPS0qhcuTJWVlasOKru1P9Szco4WP6/OVWpVPB9//rUdLTE4J/O33/v3ocQgm923+JS5CPMDPX4pOv/R9RmZmayaNEi5s2bl+/IryYetgDsP3eLlStXEhlZ8oNDStr5OwncvnqBrJhwVAnPbp5+QqFQ4Odtj76VA+P+OExISMgzB6Dogk2b1P1+unfvjpGRUb77BoTE8erCk0TFxKN8pP5bKBQKfH19mTlzJnfv3uX3339/aqSoqakpixcv5uOPPwYgbtd8Zq3eVwpXUzqCHiSz81o0WTFhPLofiZGRkaaPan6MDfTwq1MFM18/OvQdptMJ/r9Nnz6dlStXoq+vz4YNG5gxYwZHg+Lo8fNxTgTHYWqox6I3Gj33S61mzZqsXq3+sZp8YTshZw7y5Y4bZXEJpWLt2QiiE9MhVl1bWZDauieGDBuB84hfcOzybmmFV2qEEFyOTgOFEpsObzNqUC+mvJz3aPD/UiqVzJgxA4Bzu9ZwPvBOaYZa6jKycxj1yUzSbgfwaOc8bAx0Z9S37n7LlGNd/ulnl2WubmIsyMjYK3cTiYxPw8RAj+irJwH1vFgGBgYY6evhYmuOyHzMXyU00WNIiLpvnJ6eHsfuqOeZ+u98bKBeXWPpm41x8Fb3J1u0eisvzTvCL0dDAZj5ap1cyeCBAwd49OgRDg4OtG7d+pnnf9Ic+9tXYxk8eDC7du0qkesqTatOR5AZpa5ub9GsaYGO8athj0Kh4EKMbjc3CiE0id1rr72GEIKAkDhm77rF2HWXGLvuEh//8+i7+CQDl54iNiUDXw8Hgm5eJyMjg4yMDK5fv86UKVPybV5XKBTMmTMHvw4dEdmZ7Pl5CjfvlY+a2x/2ByEEOMZdAtSjIC0sLAp0rJ93ZSr1GI/dS2/j6upailGWjICAAL788ksAli79lcp12/Lm72d4a/lZIuPTcLE2YeO7LTXdT57n5ZdfZsKECQDE7vqRNQfOcTiw/I0QfvQ4k3n71J/pP/3xFwEBAXTv3r3Ax/fzq4uBrQsBIbHlaiBBYloWo1dd4Kh+A5yHLWD0e+8z45Vaz225+LcxQ/th5+GNyMrg/SlflWK0pe/T33YQtEPdIjFr1mysrKy0HNH/ycSuFFSzN8ersjn61upEqSBz2e24qh4Z2sGnMpXtK+Hk5ESXLl002zt3UQ+jv37+VIn82n/STOruWZWw2MfoKxW09qqU577udqb8+elbAKTdCyT4XhxG+kqm9/B9Khl8skxY79698x0U0bSKusYu2149319AQEDxLqiUxadmsuNqNBlPErsWLQp0XMvqldBTKgiNSdXpSXmDgoIICwvD0NCQ5m07MGTZWQYuPcXiIyFsuniPTRfvsfmfx9nwBJQKeL2ZOxvebYmjlTGGhobPHDmdF6VSybrVKzG1roRJ9aasOqX7v95PBsf+8z4VPLqubkbr06dPgY/3+6dj+YU7CaRk6M6v+2dp1qwZ83/6me5vjOLPWA8G/3aGo7djMNBTMLJtVXZ/1AYfJ8tClTlz5kyaN2+OyEgldtu3fLL+AsnlKLkB+HzrdR49zsLbwYJBzTxo3rx5oQaAVbM3p6q9GVk5gsO3dH/wkEol+G71HtrO2Myua/cx0FPw1Vud+bJX7UIldaD+UffJFPUk3ad3rOZaWPnokvBfG49e5seJIyAni8ZtXuKD997Rdki5yMSulHSu5Yi+rXpah+fV2AkhNMss9ajrxMyZM7l3716uOZFe82+FQt+IzLTUQs+Nl5cniZ1JJXVi1sjDBkvjZ38xt2roq149QpXN216ZHJ7Q7qk+NZmZmWzerK5RzGs07L+525pib2GEgZN6Xd2TJ08W+VrKwl/nIklLSiD7kfo+NW1asBo7S2MDGrnbkBlzh+7dXs53nittcnNzY9euXXw7Zy4jVl/l6O0YjPSV9Gnkyidda/Lpyz6ax9ev1uH4pA7MfLUO5v8spVYUDg4ObDp0Fpu2b7L1ykNSdTjZSUrPYsrmqwB0cc4mLCQIQ0PDQtXUuNuZ4mFnSmZGGgtXbSE+XrdrKQ8FxrAqqSZXXXoQGpuKuZE+Q1p4sPdjP6a87INFPp8Xz2JgYMDatWuxtrbG1Myce3GJfLO7aKvzaMMfJ8PZdjmK9JDTTPRzRF+vaF+hzR2UPNz0FW92aaHTzfJ34lJ5+cu1fPJ2P24s+Qhng1T+eqdlrhWGCmvs269j5VwVkfGY0Z/OKuGIS058fDxHjx5l//79uaZ+mvH9Yga83J7spIfYOLmza9PaIv8tSotM7EpJl9qOGNiok6bbt/OvsbsY+Yh7j9IwM9Sjnbe6CUuhUOT6FVjf3Q5DR/XI072Hjxc7vie1iJmm6loEP++8h6k/oVAoNBMNP75zGScrk6f2KWgz7JPyGnvYYOis7p93+/ZtYmN1c6RcRnYOv58IIyNanVDXrFkTG5v8R8T+m5+3PQoDI66cOsLBgwfJzNS9SVpNTEzo0qULD139uB6VhJ2ZIZtHt2JO33q841eNEW2rah6DmrnjbP30/S8K/7oeeNqZkpyRzdZLuvnrPS0zh/dXXyQ87jFOVsbYxlwAoHPnzoVufmnrZc+DNVOYNLwve/bsKY1wiy0hIYEf915n+B/nuJ+UjqOlMVO7+XBqykvM6FmbKpXMilW+h4cHAQEB/L1jF3rG5qw8FaETA2gePHjA1KlT6dChw1NzDWZk5/DD/ttM23adzJg7xG39hn7+LQgLCyvSubo3rUH6nSskPrjLqdMFX4e5LK0/F8lLX2xi/9wPUaUl4Wxvx7aPO1HfzbpY5SqVSsZP+gSAk1tXEP4wsQSiLTkpKSmMHDkSJycn/Pz88Pf3505kFJciHzHj7+t88/NvZKcmYOVcldPHj1CpUt4tXdokE7tSUsvZEldP9Uih0LBQsrKe3dyw/bK6FqijrwMJsQ/z/AVnYqiHY3X1AIZ9JZDYhYaq+8jF66mbRJv90zSanw4dOuDh4YGLS97D2p80w/bp06dATRMN3W3QM7HAyskTQDPiVtdsPH+PB0kZGMSqazmbN29eqOP9aqgHUCiNzcnMzCzQYBptuHo3kVWn1dMQ/DCgPr7OhWtmKwqlUsEbzT1Iv3uDD4b21cpSS48ePcr1/kzJyCYkJoWAkDj+OhfJqwtPaGowlwxuTAe/tvTv35/XX3+90Odq41UJIxd1Z/MjR46U2DWUpP7vjGNcv5dIC7vA0JaeHJ7QjrfbVC1W7ex/1axZk9Y1KjOwqTtCCMatPE5apvYmLr5y5QqNGjVi5syZHDp0iIiH8Wy+eJfZu27xxoJ9NJu+nR/2B5GVEE3a9plkZ2XSpEkTzZrghdWsugNWXup+y0tW/lWCV1IyFhwKZtzKk0SsnkpOcgzVqtfg3PGDVLK1LpHyJ783DG//QTgM+obfA3Rn4FxiYiKtW7dm6dKlZGZmYlXZBTPHKnRdcoleC06w7EQ4Fo160Lzfe4TdvIJXVU9th5ynknunSrkoFAq6N6/FBX0jVNkZhIeH4+X19DJLKpVg5z/967rVcaJlyxYkJiayf/9+GjZsmGvfOvUbcufwOi6dL/5Et+Hh4QCkG9thqaeklvPzax6efJk9q9rZyckJBweHPBdDz0tDD2sA9B29ITq80J2Qy0JKRjbf71fX1LXydedKtHeB+9c94etkib2FMQ8dqpN+5xLnz59/6t7mJyY5g4X7rnPxVijd2zRkcIv/L91WEoKDg/n99985k+4IhtXoVd/5mRONloY+DV354Mhy0u7e4KNPPuevFb+VyXnPnTvH22+/zeXLlzE1M6d6q5ehySASs5/+WLQxNWDxG42o42pFHdeOdOzYsUjnbFHNDjOPOiSf28qBg4eLeQUlb9/FYPZvXo3IyqBPQxemv1KrVM83oVN1fvt6ImfDrjHJ3Yb5b7Ut1fPl5dGjR/To0YN79+5R1asG9i1e49Njj9G7oF60Pm7vIlJvHMbMwZOM+8FkZWZQvXp1Vq5cWeQmOD2lgubtO7P7+lF279wOzC3BKyqedWcj+HbXDWK3zCIrNgJnZ2cO7N+LvX3JfSbo6enx+6IfGbT0NGvPRDKybVVcbUyff2ApEkLwxhtvcPnyZYwsbbHuNl4zqThAJXND6rvZMHjYu/jVKLvPxyIRFVRiYqIARGJiotZiOB0aJxwHzxU1P14pMrKy89znTFic8Ji0XdT+fLcIvRMhAKFQKPKMe+7GY8K4aiNRt/tbxY5t/Pjxoomfv3AZvVy8uuB4sct7Ijs7W+Tk5BRo37TMbFF9yg5h22WMAES7du1KLI5/e/jwoYiIiCjSsTO2XRcek7aLtt8eFOn/3EOVSlXocj5ed1FYNusjADFq1KgCH/cgKU00m/qXMKjkISya9BIek7aL91adFzk5hY/hWRYvXiwAYexRV1SbvENExKWWWNkF1X/6UgEIpb6BiI6OLvXznTx5UhgbGwsg18OgkrtwHbNK1Pp8t2j/3SHR/5eTYvaumyImOb3Ezt1zzm4BCgGI+/fvl1i5xZWWmS2qvjxSAMLe07vA7+PiiI6OFpUdnQUgDJ1qiN8O3ij1c/7X0KFDBSBc3D2Fz8QNwmPSdlF18g7Ra8FxMXnDReHu5ZPrNdK+ffsif5782/rj1wUKpQBEWFhY8S+kBFy/lyi8puwUVq1fF4AwMzMTV65cKZVzqVQqMeCXAOExabsY9cuBUjlHYaxcufKfzyBD4TjkB1Fz6i4xbes1cfDWA/EgKU3b4RUqpymxptjs7GyGDRtWUsVpxMTE0K1bN0xNTfH29ubAgQMlfo7S0sjDBpcadUgztCYgNO+O0lv/WU3Cv5YDF86q+1rUqVMHS8unm8HaNa6FQ98ZGDYfVOzYvvvuO/w/nIu+RaXnrqDwX1lZWaxfv56cnKebTvT09Ao8V5uxgR61nK0wqdqI8d8uZuXKlYWKoyAePHhAo0aNGDhwIDk5OaRkZDN//21e+mIjzb7eT8+fj/PdnluExqQ8dezfl6P4/YS6D820Hr6aWrKi/Er3q2GPoaN6ouLz588X6BghBO+tusCl5dPIir1DFdNM9BSw/Uo0q06X3CjSJwNXjFx86VzbETfbsv/l/Onwvhg6e6PKzmLujz8//4BiWrZsGenp6TRo4YfLe39Sud8XmFpXIis2ggHGV7g2ozMHx7dj7cgWTOpSk0rmRoSHhzNq1KhiNxe/VL8qBvYeABw9erQkLqdELDkSQkSAegm4zyeNLZM5Fx0dHTl0YB+mltZkRt/mvSH9OHaj7FYluHbtGn/88QcARv4f8lhhTFNPWw6Na8fm0a34und9Qm9e5dixY6xevZqLFy9y4MAB3NyKPxnty41rYOLqC8DvqzcUu7ziyspR8fG6S6Snp6EKPAzAokWLqFOnTqmcT6FQ8HF7D2J3zGPJey+z6ZB2+xqaW1hiYlMZy5YD8K5Vl50ftmH6K7Vo710513KZ5UGJvXNzcnI0b5CS9N577+Hs7ExsbCzffPMNffv2LTdr7OkpFXSt7QT8f1WJf0vPytF0GH+tgatm/cVWrVrlWV4NB/V8WTHJGTx6XPwO+DeikwCo62pd4GOEEDRv3pz+/fuzceNGQP3ltGHDhiItDdXQ3QZ9i0oYe7V6Zt+9ohL/VK1HRkYSHR3NmRuhdPn+EFM/Gc/hWUO5d+8el+8msuBQCB3mHqHf4gDWnongZHAss3be5MO1FwEY3roKjZyM80xkC6qNlz1GTurE7sqVK2RkPH+5uQ3n73Jo+wYy7t7A1NSMTb/NZ0o3XzJj7vDhyCGEhJdM35Tjx9WvOyMXH4a08CyRMgurjqsVdTurf7D88sviXEvXlYbFixfzxXc/ktx6DPrmtowZ3JsLp47zwQcfMOvrvOfX+uyzz1iyZAmjRo0q1rnb1rDH+J8Jvw/qyPJicSkZfL9yG9kJURibmjH0jeL/eCwoX19fDuzZhaGJGemR1+jStRvngstmIM3s2bMRQuBU34+cSl408rBhxdtNcbf7/48bPT09WrduzcCBA6lfv36JjYA0M9KnVgv1gLT1G7eUSJnF8cfJcAIfJGNnZc7F8+f4+eefGTx4cKmes0l1RyopHyOyMxg2bDgpaYVbhrMkRVv5Uumthbi06cPyt5oWe5CQNhUqsXv55Zef+XjllVdKPLiUlBS2bt3KF198gampKb169aJ27dr8/fffJX6u0tLaUZBwZDmr5s98Khnbc/0+yenZuFib0LKanabmpGXLlnmWZW6kj4u1CTmPEzl2sehTBCQkJBAbG0vgP4ldTceCTbAK6l9ZT+715MmTCQwMZOTIkfTt21ez7FBhPOlndyGi5JP1jRs3sn//fkxNTfl99QbGbL1DZGwKqvu3UaWn4BO+ie/716NDzcooFXAmPJ5PNl1l0K+n+eVoKCoBA5u6MblrTT7++GOsra1zLZFVGLZmhjSq5Y2elQNedRo/dwRwRnYOc3bdJPG4erb+zz//jGrVqjG4uQepBxeTcO0oY6bOLFIs/xYTE0NoqHqy6hp1GtLEs3C1tyVp/KjB6FlUIjkhjtWr15TquRQKBYHWzchSGtO6eiUmv+yDt7c3P/74I/r66j52GRkZmuUA16xZo6lRfjJ7flHVdrHCzkvdx3Ln7r3FKquk/Ho8jJhzOwF4feAAzM3Nn3NEyWrevDl79+5B39iMxxHXaN+xM1fDC7YUY3EsWrSIN8d/CY36Y2Gsz6LXG5Zo/9XnGdy/N0YuPgjXemV2zrwkPs7ixwPqmRI+6VqTam6Oz1wvuiQpFAq2rf0TpZEpieHXaN9nmFbWjn6QlM4P+2+jNDBmWq/6eJbjpA4KmdgdPXqU1q1b079//6cehZmos6CCgoKwsrLCyclJ81y9evW4fv36U/tmZGSQlJSU66ELnEwFSac28Oji7lzNZ0IIlh5Tj0zt29iVjIx0LlxQT6PwrMQOIOvqTu7+9Dozp00pckyLFi3C3t6eyL9/xEBPUegX8QcffICnpyehoaHUrFmTwMBAKleuzBtvvFHoWBq6qxOJqzdvM/2LL5k3b16hy8hLTk4OU6dOBeDjseOYezaV2JQMfFzt2LFBvUTS/p3bsEkM5vehTTj5yUuM71SDpp62VLU3o523PUsGN+LrV+ugp1Rw4MABUlJS1HP5FVE778q4jPoVv49/em7t5Mbz9wg9f4jsxAfY2dkxZswYAAz1lQwZoV6K6OCOTcWqRQT1AAIAfVtXereoodX5mHo2dKdy854AzPx2bql8wF+4cIHHjx9z4OZDjgfHYqiv1NzjfxNCMHLkSGrWrImfn59mBOykSZNo1KhRsWLQUyro+FIHbNoPo98nPxSrrJKQnJ7FH4dv8DhQ/cNyxIgRWonDr3Ur9uzZi76xOSmRtxj49WqiHpXc2th5MTA25bpVcwwruTO+kzeVLcu2yW1I1xa4DZlDhs/LBD1ILtNz/9svR0NIeHAPq6jT9GlYtqui1PXxYsZcdaXAuZ2r6dhveIHWXy4pJ06c4J3P5/H48WMaedjQp5HurwrzXIXpvNe2bVuxZs2aPLelpaUJhUJRmOKe6+jRo6JatWq5npsyZYoYPXr0U/tOmzbtqY7QaHnwhBBCpKenC6VS3UHWd/xqkZSWKYQQ4sDN+8Jj0nbh89kuEZeSIY4ePSoA4ejomG/n/Denqzu627tVe+Y+zzNixAgBCKtWg0Tn748UqYzr168Ld3d3AYgqVaqIy5cvFzmeZjP3i8p9ZwjgqftdVFu2bBGAsLGxEXO2XxAek7aLutP3aAYGjB49usADNkJCQgQg9PX1RUpKSpFjOn8nXj1QZtpukZH17I7pmdk5otXsA8LIxVcA4rPPPsu1/UFCslAamwtALFmztcjxCCHE5KmfqztJ12ovQh4mF6uskjB17Ulh5FxTNH19gsjKyirRsjMyMoSDg4OwtrYWfp8sEx6Ttouvd+bdWT8uLk7Uq1cv12fJW2+9JbKz8x4EVVjrz0YIj0nbRdcfjpZIecWx9GiIcJ/4t2j03nwxadKkIg0OKkn7jpwQtYd8KTwmbRcd5x4Wj1IzS+1cvx8PFR6TtouWsw6IzOzSHyySl+HLz+b7WixtiWmZwvezXcLUu5UAxNixY7USR/8PPte81xyr+YqTZ86VyXk7de0mAGHZrI84ERRTJucsilIbPPHVV1/lOWUHgJGREYdKuL+Iubn5UzVvSUlJeTYTTJ48mcTERM1DVxaVNzIyolo19cTCsZGhfL71OjHJGXy6WT2X2RvNPbA1M8TJyYkpU6YwatSofGtNmtRX982Ji44ocm3Nk6lO9K0c8C5EM+y/+fr6EhYWRmRkJEFBQdStW/f5Bz1DQw9rDJ3VK1CEhIQQExNT5LKeeNIsPOjNt1gSoG7S+by7r2ZgwCeffIKhoSGHDx9+ajLS/zp48CCgbi4yMyt6FX09V2vsLYxITs9m9/ngZ9ZIbbsURfidO2RE3UJPT4933829WHhla3N8WvoDsOSPVUWOB+BwgHogh5tXbaral23zW17e7lgXpzfn8MDVj3uJJdvfZsuWLTx48AA9QyPCsm0wNlAyok3VPPe1tbXlwoUL7Ny5k8WLF3Pq1Cl+//33Qi0dlZ+XfBzQUyq4EZ1ERJz2lpoTQrD6TIS6I/vgV5g9e7bWZ9Hv2LYlu38Yh6OlMUEPUxi65AiPM0p2Uu8jR47QpGlTvv5e/TnxbrtqGBRxFYni6tPIFVVGKkuW/kZUdOk3P//X+rORJNwN5nHgCRQKBUOHDi3zGADW/jiDYZ/9gMLIjPuhtxix7hZz9wbyICm92C0TzxIdHc2+Pep1ypt2epUW1exK5TxlrVCv5DZt2tCoUSPWr1//1OOvv/7iwYMHuZ4rLi8vLxITEzX9XAAuX75MrVpPz61kZGSEpaVlroeueBJvdmw4my/eo8nM/UQnplPV3owPX1InytWrV2fmzJlMnz4937Ka160BevqosrOIiCja6LH/J3aVNQMyikKpVOLq6lrsL7uG7jboGZtj7axeoqy4ExU/fvyYhw8folAoUPr6k5GtorGHDa81/H/zp5ubG2+//Tbw/D5TT1YIeLLyRlHpKRV08bEnatkYejb31izr9m85KsGCw8HoW1Zm5trDrFixIldXhCf69X4NgKunjxRrSaK6b07DecQv9B84oMhllCQPOzPNHFFPJksuKU8Gd7k264ZCT5/+jd2oZG70zP2VSiVdu3Zl1KhRNGvWrERjsTUzpImHFSnXD/Fanz6kpDw9KrssnAmLJzQmFVNDPXrWL9nBS8XhYm3C8mFN0I8PZ/uMwXR886MSbZpftWoV586eJfr2FaxNDbTa/NahZmXiN39J+Oa5fPZd4fspF0eOSvBHQDiJAerv6759+5baKNiC+O2LD9l88DS+gz4lRd+anw4G02r2Qao3acew9z4u0KCzwli3/i+ESoWhkzcf9mmn9R81JaYoVYJt27YVBgYGws3NTbRo0UK4ubkJAwMD4efnJ9q1ayfatWsn2rdvX5Sin9KnTx8xcuRI8fjxY7F161ZhY2Mj4uPjn3ucLsxj98SMGepmxrYvvyZ8P9slPCZtF/7zDougB0mFLis5PUsY2LkJQGzatqPQx+fk5AhDQ0P1vE3v/C7239D+PFrnwtVNlHYNOwtATJ48uUTKDbh0Q3hN2Sk8Jm0XJ4KfrmKPiIgQhoaGwtbWVty9ezfPMtLS0oSZmZkAxNmzZ4sd09mwOGHkXkcAYt6P85/a/vfle5pm4+T0ZzdFPoxPFAo9AwGInUfOFCmW9Kxs4fPP6/FyZEKRyigN+2/cF24frReuPT4UGzdvKZEyHzx4IPT09NSv+xGLhcek7SJYy03Pf5wIFfrWjgIQf/3113P3v3jxolCpVJo5DMPCwoo9n9qHay4Iu25jRcOuA8SFCxeKVVZpmPrdAnXznFJPfLt6T4mUmZWVJezs7AQgKvf/SszcoZ0m0H/rO/ZrAQhTW8cSa+4viD3XooXz24sFCvW8isXpUlOSsrJzxI4rUaLvopPC5d3lmiZaV58G4n5MbImdp3aj5gIQbl1Haa0pvqAKk9MUKbEbNWqU+Omnn3I99/PPP4t33nmnKMXl6+HDh6Jr167CxMREeHl5iX379hXoOF1K7LZt2yYAUbt2bZGakSVu30/KNcHs/fv3xfbt20VcXFyByrPxaSEAMfGLbwsdy71799RvEoVSuE/YqpXJaP8rPStbeE3ZKWw7v6+ZALQkTNl0RXhM2i76LT75zH127tyZ72tk+/bt6mTAxaVE+h7l5KiEZ5fhAhCN2nbKtS07RyX85x0W7uM3i+/3BT63LKdazYS+lYP4YM6fRYrl2O0Y4TFpu2jy1T6t96v6t+wclfDoou4HWqNuoxIp86efflJ/gHvXER6TtouBSwJKpNziiE/JENbNegtAdOreK999f164SCgUCuE1ZJbwmLRddPh6u3Cv6iVcXFyKPMlxfEqG8Pp0pzByVfflnDdvXpHKKU0qlUrUa+0vAGHiUlNExhf/8+rQoUPqiWiNLYT7hK060bc0/H68UJpYCkB8+ePSMjtv/19OCrPaHQUgXnnllTI7b2FciUwQPcbNFQoj9Q/syjUaiPjEovd1fiIqKkqT0H7yh/YnSH6eUk/srKysnvpVkZWVJaysrIpSXKnQpcQuMjJSAMLW1lZkZj7dEXjZsmUCEK1atSpQeb6dBglAdBkwrNCxnDhxQgBCz7Ky8P1sV4muYFAcvRYcF07DftbMdl7UjvPx8fEiNTVVRD9KE9Wn7BAek7aLgJCi/8K7c+eOmDlzppg7d26Ry/ivT3/ZrL4HxmYiLT1D8/ya03eEx6TtwtS9lujUuau4detWvuX8sv+acJ/4t+i98ESR4ug2crIw9Wkr+ny6sEjHl6avN57UzMp/7dq1YpfXtm1bAYiq3d8VHpO2iy0X866hLWv9Zq76Z7Z7ffHgwYM891m++i/NF5BVq4HCY9J24fLucqFv6yoA4e/vX6TE/NdjocJl9P9rQ0piNYXSEBF5V+gZmQhA+I38otjlffjhh+rPmdoviZ4/l9yqO8XVZoB6QJeZvWuuz4XSciMqUbi885vmfXb69OlSP2dxLN1yUCiNTAUg6nUdVOwfo7PmfP/PiifeWq+9L4hSX3nCw8PjqcmIV6xYUSKzcVdELi4uBAcHExMTg4GBwVPbnywG/qyJif+rccu2WDTqgU31gq83+oStrS09Bg3HzNePGo4WKJW60aegobsNBnZuGJqYoVKpNP0AC+u7777D3t6eEROmkZUjaOppS/Oqz+8QK4Tg0KFDT/XjcXd3Z8qUKYwdO7ZI8eRl3Otd0DO1Iic9lakL1PPURSem8e2eQDIfhvE44joHD+zDyir/9Xu7N6qKQqHgfEQCcSmF73ty6sh+Ht88ij2JRbqO0jSiU0PMvNT92mb9sLBYZcXGxnL8+HEAMtyaYGaoRydfx2LHWBI+7N8JQ6caqLKz+XHhL09t33/8DMOHvglCUKlJN1YumMOxie15u0tj7F+dgkLfiH379hW6T7MQgjVnInh86/+Touvq57ebqwsfjp0AwIn1CzkaWPQBBkIINm/eDIBpjRa82kB3+hX+OW8GeqZWpMbcpc+7E0v9fMtOhJGTloy9pzf+/v40bdq01M9ZHG/3bM+3C9TrSF/etZopC9cVq7y9J9TTi9Vo4U81HRg4VqKKkjmeOXNGuLm5CS8vL9GhQwfh5eUl3NzcxJkzRevrUxp0qcYuPyqVSjNtyO7duwt0zLoz6qkSBi0tWnPSnD23hMek7WLSBt3oTyGEENsvRwmPSduF39TVedZqFoRKpRI1atQQgPDoM1l4TNoudl6JKtBxfn5+Asg1nU9pNk++1PtN9RD7Oh3Ej/tvi87fHxEek7YL91a9BCD69u1boHK6/nBUuE/YKladCCrU+e/GpwqlsYUAxIGjz26q1qZek+ar17A1txbp6cVbq/X27dui6+gZwmPSdjF23aUSirD4VCqVaPzmFHVTo6WNePTokWbbuRshwsiqsrqmrloDEXL/Ua5jv/j7umZNTzd390L9jZ6sUW3iql4Hdf78p/t76pKUlBRhammjrq0ZPLXILQ0XLlwQgFAYGAnP8ZtEbAmuAVwSRk//XtNVZtqvm3N9BqlUKhEZGSn27Nkjjh49Wqypl2KT04XXp+r+x2fDYkVCQkIJRF82/HoOFIAwsvcUoQ+K9v2uUqlEp3lHhMu7y8Si3brzeZCfUq+xa9KkCSEhIfz666+MHDmSX3/9lZCQEJo0aVLMNPPFExISQkREBAYGBrRu3bpAx3g5qH9d3H5QtJF0gffVE2EWdaqT0vBkBYrIHCuyRNFqEW/evMnt27fRNzBE5doAF2sT/H0dnnucQqGgffv2gHoJu+DgYEJCQqhbt26JT+HzxPSP1ctSJd86yZztl7h1PxmzrEc8OL8bgHfeeadA5WSfXUvk/EEsXrK0UOffcPgCqvRkFHr6tGpa+JrfsjB99CD0zO1IT3nEH2uLt5amm2dV7tqrawB7N9SdWhqFQsH3U8ZgYOdGWlICQz/4BIAT1+/QrlM3MhIfYlLJlRP7t1PVIXcN7idda9Ly1aHomdsSGRFRqLWWV526Q3bSQ9Lu3kShUNC7d+8Sva6SZmZmxscffQRA8MWTbLtctCXHFAoFdVr5Y1qjJe18XbDLZ1S0NiyY9hH1XuqFsWd9lt1S8NK8I7z+3UaqNvLD3LYybm5udO7cmbZt21KpUiXGjBlTpCU2V5+OIDNbRV1XKxp52GJtbV3yF1NKNvz6E9ZuNbBoOYDv9gUVqYzrUUkEPkjG1NaBgW18SzhC7SvyxD0GBga0bduW/v3707Zt2zybGKX/e/jwIYMGDaJBgwa5mvsOHDgAFG6OtGqVzclJS+Zu4BUiH8QVKo6goCCuh95FCIF3MaY6KWlOViY4WRmToxJcjixa0+CmTZsAsPFqhNLIlMEtPNAv4NxUU6ZMoVGjRsTHx1OnTh1q167NtWvX+PLLL0tlBYRWLVvQr39/hk//mcZezrxSzwmfuzvISE+nTZs2mkTzeao7WSMyUrlyNoAcVcHj3HHwGACu1WpiZKRbX25P1HO3o0abbgDM+Wlxsco6eOshSenZOFkZF6hpviy19nbk9Y8+R8/cjjOG9egw5zA9x31Lyt1b6JtacmDvbmp5Oj91nIGekpl9GmHZpBcAX836pkBT38SmZLDz6n1Sb6qbp9u2bYuz89Pl65oJYz9kzJw/sXv5Y+bsDSQrp/DT/NSrVw+rVz7BrttYeulQM+y/nd21nm8XLcfMxIjQmFQO3bpP2IWjPH4UCwolBnZu6h886en8/PPPzJkzp1DlZ2Tn8Pu+iySeXMfA+vblboqPSpXsOHn6DOY+rdl59T4Xi7Ac5apjgQD4+zpgZVrxchftzMj4ArKysmLz5s1cunSJW7f+v87r1q1bAejUqVOBy7I0NiBu7WTurxjHtr2Fq1F6+eVunJzxKhmR16ihQzV2AA09bBCqHD5+/x18fX2Jj48v1PFPEjuVRxOM9JX0b1zwPkMGBgbs2LGDhg0bkp6eTnp6Or6+vixbtqxUPvgUCgXr1q5l6ZThbBrdCtvAbWxcr14f9dtvvy3wOft1U79uku9c5VJkwT7gsnNUXDyvnpi4uY73q5n0wWhQKLmfnE3S4/RCH79ixQpee+015v+hrvHrWd9FZ/qV/tuSycMYv3QHBnZuhMamYlavK3W7DOLg/v20aPD0vJ1PNHC34fUhw1Eam5NmbE9c3PPfM+vORpKZo8KtsjUuLi4MGKAbcxg+j5WVFd+MGUQlcyPuJqSx9VLha+0uRCQQGZ+GuZG+zvSz/C8DAwPGdK7DqSkvsej1hnw6oB2DPprOJwv/YuHeq8xZd4A2n/9F5QEzMavVHrs2gwpV/uYL9wjZv5JHx1awYlbJ9R0uSz5OVpqlz2btulWoH9+R96L55o3WPFj/Oa/Uti+tELWrlJuFtUYX+9i99NJLuaYVSExMFAYG6rnIbt68WaiyXOqrR/kNm/BlgY/JyckRBv/MYVd73IpCna8srAgIFx6TtgsLB3Wfw507dxb42NDQUHXfGYVSuI5ZVeT+g5mZmWLfvn1iy5YtIiOj9EemPTFhwgQBiDlz5hTquLS0NKHUV7+GJi8rWB/N06FxwsittgDEr7/+VpRwy0xOjko0/3yT8Ji0XfwZEF7o4/391VNl2PoNER6TtovA+4WfO7IshTxMFnuv3xehMQXvP/UgMU14j18vPCZtF5sv5D/aNys7R7T4er/wmLRdbDgXKbKzs8v0dV4SFh4KFm4frRMtPl0nsgvR1+706dPi3YXbhcek7eLjdRdLL8AykJmdI77eeUN4TFJfz8JDwUKlUonk5PxHd2Zl54imk1cLlPrq/rUHdH+aj2cJvR8v7Du9K4w9G4g9V5/fl/qJdyd/pR597FpTZOn43HX/Vup97KSiee019WoBy5YtQwiBpaUlQUFB/Prrr9SsWbNQZbl5qFdpCLx9u8DH3L9/n6zMTFAoqVXds1DnKwstnyznUlm9GseTkYwF8WSkm5F7bfRMrRjcwqNIMRgYGNCxY0d69uyJoaFhkcooin79+rFx40bGjRtXqOOMjY2pUbsBALv2Faz29uCthwAo9fRp1ky3a+yUSgWjOtUHYNnxMFSFaG5++PChpquDcc021HaxLNZKK2Whqr05/r4OVKlU8KXrKlsaM+Zl9Wvg2923SM969vJLB249JCoxHRtTA7rVdUJPT69MX+clwezeGe4teovLf/3IjqvRBT5uzAcfsGh0d1KuH6KXDq2yURQGekomd/Xhk67q743ZO6/TY+AwOnToQFpa2jOP23ntPte3/w6qbPzatS/2ajraZGeiR/LJVaSHX2TinKUF/mzY8Jd6BHn7l3sVuKtOeVMxr0pHDRo0CGNjY65evUpAQACgnjpm+PDhhS6rRo0aAESEhRT4mLCwMAD0LO3xcbEp9DlLW5VKZjhaGmPoWhugUAMXXn31Vbq/PR7zBt1o4mlDLef8pwrRNY0bN9Yk/oXV6aV2AARfPsOjx89fU/PgrQc4DprNmuM38fXV/Y7DfRu7YWGsz+3QMJbvDijwcRs3bkSlUmHlXhMDa0d6N9TeslGlbXjrKjhbGRMRGcnwKd/muY8QgiVHQxGqHOorwtFXlHzf0bLQqH5dVBmPeRx0iu/+OlqgL/SoqCjOnD4NKPCo3ZRW1SuVfqBl4B2/arzVypOclAR2bdvI2bNneeutt/JsmlSpBLP/3E7qNfXa17NnfV3W4ZYoS0tLxrz/PgA3965kZwGS/JOXbhITfAVQ8NmYwn/vlhcysStD1tbW9OvXD1DPGxUbG1vkshrU9gEgNupOgY/59xqxujRw4gmFQkHL6nYYe9QF4OzZsyQnJxfoWBc3D+57dsbMuxVvtvAsxSh1z8v+6l/daXdvcDw4/9fU3YTH3H6QglIBneq6o1Tq/keAmZE+1WKOc2/RcD6b+lmB+9OsXbsWAGW1lhjqKct9LU1+jA30GNHUjntLRrB6zhSOn7301D5Hg2I5fyeBnMjLLP981FMDucqLWrVq0aGjPwgVl/esZe+N589rt2XLFgCMnL0Z0K4uejrYz7KopnbzpVNTX+x7TQGlHuvWrWPatGlP7bfqZBDn/vwahIq+/QbQvHlzLURbssZ//CEGhkZkRgcxbcmG5w4gm/nTrwA4eDekae3qZRGiVuj+p3oFM3fuXLy9vQFYs2ZNkctp1Uhdq5UWF83j9IJNTqtJ7CwddG7gxBPtvSujb+WAia0T2dnZBW6O3XP9PjHJGVS2MKJzLd3sFF1aWrZsSdW6zTCv3YGDN/L/1Xro1kOEEDT2sMXatPw0wX04qDsgiLpylG2nA5+7f1RUFMeOqUf+mtZsg38tB2zMys/1FsWQ9vVwrNUSgOHjp+VK2jKyc/hy+w0ALO8cBaBdu/K76PmEcepO/ylX9jJv5+XnJqjr/toIgEmNlvRppJsTMReVnlLB/IENaNCsFbadRgPw5ZdfMn36dM0o6QdJ6YybNIWs2DtYWNuy4Of52gy5xFSuXJk33nwTgJt7V7Ht8r1n7pudo+LQzi0A9O1fPgYMFZVM7MpYpUqVOHr0KIsWLaJHjx5FLqeBd1UU+oYgVJy6fOv5BwCBwaGAusZOV/sata1hj55SgZ5rHQD27dv33GPGjh3Llz/8giorg0HN3DHUf7Fe1hYWFqzYuB3r1q9zJCg+31+tB2495MHqTzj9wyjOnTtXhlEWT/tWzXCuXgtysvl05tzn7r9+/XqEEJi6+aJvaV+oEdLllVKp4PuZnwNw+/hOZm1QryohhGDWzlsEP0zBPCOGW6fU/Q7fffddrcVaXJ06dcKrhjciM41zezZxKPDhM/e9f/8+x44eBqB5h86F6r9YXpgb6fPbkMZUa/0K1m3Vic6MGTNo27YtkffjGLniPEaN+1CpZlO2bNqIvX3FGQ36yYTxKBQK0oLP8PXqA8+cBueXrUdIux+KQk+fT98bWrZBlrEX6xtQR1SuXJl33nkHT0/PIpehr6+HV6fB2Lw0grgs/QId49OkDRaNeuDq0xBzo4IdU9asTAxo7GGDcdVG2Du74+iYf+1bcHAw33//PWf/+ApldhqDmrqXUaS6pUkVWyyN9YlLzeTCM+Z1SsvM4eTt+2REBxIReLVcTUoK8PmUSQDcPLCe/Vci8t3Xw8ODqj51MK7ZFhdrE1pXkD5VzzOg+0t4128Gqmy+/mIG7626wMgV51l+MhwA5/A9CCHo1q1buehf+SxKpZJxYz8GIPn8Nn7cF/jMWrsVK1ciVCqMXHx4q0uLsgyzTDlbm/DrkMa4tBuEbZcxKPQNOHHiBK8tOsHlyEfY2Nhw5ugBOrRvp+1QS1SNGjXo3uMVAG7uXsG6s5FP7aNSCTYHZWLb+X38Xn0Tx8oV+/NAJnblWOc33sOycU/icowLtL9Lg3bYdhxFs1ZtSzewYupcyxHTGi1o/elqJk7Mf83E1avVa60ae9SjVwtfKlsW7G9R0RjoKWnhbEBa2EX2XMu7z9GhwIckR4VCTjY2NjZUq1atjKMsnuGDB2Jd2QVVWhIffPF9vjWTvXr1ovbohZjX70rfxq46OXddaflj8Y8ApF47wMZd+9l34wEAQ71y2L9Vvb7mp59+qrX4SsrgwYOxsbElOymGM2fPcSI478naV29QzxVqV78j3eo6lWWIZa6uqzUb321J/Y6v4TxiKVatBvEwXYGLtQlrRjanSkVbE/Ufn039lHotO2DRqAff7r5FTHLu7klbLt0jOCEb52bd2fJH8SY7Lw9kYleOPVm4OORhwZYW08WlxPLSva4TekolFyIeERn/+Jn7CSFY9scKAMxrteP9DhW3M+zzJCQksPSdjjxc/xmbTt3KM+nZcvEeGXevA+rBO+Wtf5W+vj6TJ44HIOjAWtacCn/mvqdC47l8NxFjQwPeaF60qW/Kq2bNmjF06FBAkLHvR95s5sqfg2qyavY4hBC8/vrrtGhR/muuTE1NWbVqJR8t3YORszc/7L/9VK2dSiVw7j8Du24fM2roG5jpaEtFSfJ2tGDPR235dXQnvvpiOvMHNmTf2LblbqaAwmjSpAnnju6jUaOGJKVn8/G6S5om2YdJ6Xzxt/pz75121SrkShP/JRO7cszVUknG/WBOn3z+AIPU1FROnz1HTlqyzid2lS2NafHPnHbrT4exf//+PPc7d+4c4aHBKPQN6dWrF9Ur6/Z1lSYbGxu8/5kL8e7Ni5wMyT069tHjTA4FPiT9n8SuoOsS65r33hmBuZUNqsw0Zq07TGJaVq7tt2/f5rvvvmP2tosA9GvsRiUdWw+0LMyfPx9vb28mfTyGL16tR6NqjtSsWRNPT0/mzZun7fBKTNeuXZnUpzVG+krO3Ungr3N3c23ffPEe1x+kUblhJ0Z3qaelKMuevp6SLrWdeL+DFz3ru2BqWPETWn09JXP61sPUUI8jl4IY8ec5Nl+8S+/vd3Pj55FY3DnG2609tR1mmZCJXTmWdOcG9//4iNMrZj13VNiFCxc4MGsY9//4SOcTO1B/IYucLCYPaIe/vz9Xrlx5ap+vvlF3ojep0YJx3euXcYS6x6+tuok9PeIqa8/k7mey+ox60e+cqJsAtGnTpszjKwlmZmZs3riBVpNXkmpSmalbruV67U+ePJmJEyey/9evMDHQe2FrcS0sLDh69KimK4OZmRmbN2/m+PHjVK5cWcvRlSxHK2PGdapBWvglpm26wLV76rWmj1+4zpdbLwMwpoPXC5ngv2iqVzLFJ3wzUb+PZt/Ji3y0+jznln9BVmwEquu7MKigExL/14txlRVU60bqkaOZCfeJfpSa776XbwYBoG/tQNVKut/PomttJxxtzDFwVE/E/Msvv+TaHhkZyd+b1et/dh0wnJqOlmUeo65p164dAOnhl9h5LZrgf5roM7JzWH4inOy4u2SmPMLY2JjGjRtrMdLi6fhSB354sxV6SgXbLt3j5wPq1VdWrVqlXi9YqYdVsz6MblcNhxe0zyWoB2n9e55CfX19XFwq5lx+9w6s4OG6qdzdtZgBvwTw4Z8n6PRyd67/9DZuqmiGvSA1NS+6rKwsIm5eQJWWzP3lY7j/yzDSwy9iYmrKmpUrysW8nSXhxbjKCqqapztKfUNQ5XD8Qv5Tnly4rv7ys3VwLRfTgRjqKxnasgoWDbsD8Ouvv3L37v+bWdadDsPQxQcT99r88H5vbYWpU/z9/VEqlWTF3iErMYaZO26gUgl+3B/Ew+QM7MwN6de/Pz169Ch3y0j9V0N3Gz592YekM5uYMPQ16nTqz5tvDgHAqnlfWjVtyDvtytfgEKnoWrVSz9+Xcnk3wcsnsGjc66Q9CEeRlc6S0V0w0tfTcoRSWTAxMWHbtm34+fmhys4iMzkeOzs7Nvz1F3Xr1tV2eGVG97/hpWdSKpVYOaiXSQq4dD3ffQOD1UuPubqXn+lA3mrlSbV6TTFyq01mZiZjxoxBpVJxMiSWJRdTcRg4i68XLMfVxlTboeoEOzs7mjVrBkDWnYscCozBb84hFh1R3/tvhndl3dq1rF+/XpthlphevlZknN1Axr0bXNu3HpUqB7Na7WnVdxQLXm/4wjS7SOp57ZYuXYqenh4ZkdfIir2DqbkFRw7uxcez4i4lJz3NycmJgwcPcvToUbZu3UpQUBAvv/yytsMqUxW/R2UF5+xehYR7oVy7mf9s/JER6nm/alSrWhZhlQhjAz1mvlqH128NJ2rlBLZs2UJlDy8sek1DmNnRpbYjH3ZrqO0wdUrXrl0JCAjAI/UWMYpORMarFwQf1qoKXetUrKkebG1tuXThHN/8uIhzN0OpXKslA/v1YVBzT4wNZA3Ni+btt9+mSZMmbNmyBVNTU9544w2cnCrWa14qGKVSWW77EZcEmdiVczVqeHE94AChIcH57hd7T53YNajlXRZhlZh23pWZM/o1Poy7S8yO74m7G4rq5nH6DRnFDwPql7spO0rbgAEDsLW1pX///iTkGHEsKJbaLlYo40K5cuVKhWuOqFGjBr8t+F7bYUg6ol69etSr9+KMfpWkvMjErpxrUKsmm4GH9+6gUok8J2JNTEklLUE9SWmHZuXvi31gU3caLp3GLzs6c/30IXr6t+XdPg1lUpcHLy8vvLy8AKgEeP2zdFzHEf04cOAACxYsYPTo0VqMUJIkSSpNMrEr53q97M/8vSPQq1SFiPjHeOaxDmJgdCI2HYajlxpL3erlp4/dv3k7WjBvuD8M99d2KOVGdnY2QghCQ0M5cOAACoXihetrIkmS9KKRiV05V6eWLy17vsnlu4lci0rMM7ELTcjGskkvWlW3e2GGe7/oDhw4wAcffEDXrl05e/YsAN26dSvW+sSSJEmS7pOJXQVQy8WKy3cTuXovke51nZ/afj0qCYDaFXhJGSm3sLAwbty4wY0bNwD18kvz58/XclSSJElSaZPVNxWAvSqB1JtHOXH2Up7bj548Rcb9YKrZVPw18iS14cOH891332FoaEj16tVZt24dVapU0XZYkiRJUimTiV0FcHDNQmK3fcu5w3ueWlosPSuHM2t/5P4fHxF9+aiWIpTKmkKhYPz48Tx69Ijbt2/TvXt3bYckSZIklQGZ2FUAzRuph/cn3w8jJCb30mIXIxLIjFVPddLynyXIpBeHiYmJHD0sSZL0ApGJXQVQt3ZtALJiIzgVGpdr26GLt1GlJaFQKKn9z36SJEmSJFVMMrGrAGrVqgVAVvxdTty+n2vbwZPnAHBw88TExKTMY5MkSZIkqezIxK4C8PT0xMzcAnKyOXL6kqafXWpGNpevXAGgfr3yNzGxJEmSJEmFIxO7CkCpVNKkSWMAHoRe52LkIwAOB8aQ9iAMgJZN5JqqkiRJklTRycSugmjWtCkAmdG32Xj+LgC7rkWT+VCd2Mn1EyVJkiSp4pMTFFcQb7zxBpZuPiy8oeDvy1G81tCV3dfuY9txFK85JdL0n8RPkiRJkqSKS2dr7AIDA+nevTuVKlXC3t6eN954g4SEBG2HpbNq167NpHffpEZVd5LSs+m96CTZKkE3/w4snPM1jo6O2g5RkiRJkqRSprOJXWJiIv369SMkJITw8HAyMzMZP368tsPSaXpKBQsGNcTEQA8AKxMDPuvuq+WoJEmSJEkqKzqb2DVt2pQ333wTKysrzMzMGDFiBGfOnNF2WDrtzp07rF/yPf4Zx1kwqCE9OcOFo3tITU19/sGSJEmSJJV75aaP3cmTJzXzteUlIyODjIwMzf+TkpLKIiydEhYWxvTp07Gzs2Pgq934cvpn6Ovrc/fuXczMzLQdniRJkiRJpaxcJHaXLl1i/vz5HD367LVOZ82axYwZM8owKt3TunVrHB0duX//Pi1btgSgf//+ODg4aDkySZIkSZLKgtaaYjt16oSxsXGej6+++kqzX1hYGD169OC3337Lt8Zu8uTJJCYmah6RkZFlcRk6RV9fn/nz52v+r1QqGTt2rBYjkiRJkiSpLCnEk2UKdND9+/dp3bo1EydOZOTIkYU6NikpCSsrKxITE7G0tCylCHXTjBkzuHbtGqNGjaJjx47aDkeSJEmSpGIoTE6js4ldYmIibdu2pXfv3nz++eeFPv5FTuwkSZIkSao4CpPT6Oyo2C1btnDlyhW+/fZbzM3NNQ9JkiRJkiQpbzpbY1dciYmJWFtbExkZKWvsJEmSJEkqt5KSknBzc+PRo0dYWVnlu2+5GBVbFMnJyQC4ublpORJJkiRJkqTiS05Ofm5iV2Fr7FQqFVFRUVhYWKBQKErtPE+yaFkzqHvkvdFN8r7oLnlvdJe8N7qprO6LEILk5GScnZ1RKvPvRVdha+yUSiWurq5ldj5LS0v5ZtNR8t7oJnlfdJe8N7pL3hvdVBb35Xk1dU/o7OAJSZIkSZIkqXBkYidJkiRJklRByMSumIyMjJg2bRpGRkbaDkX6D3lvdJO8L7pL3hvdJe+NbtLF+1JhB09IkiRJkiS9aGSNnSRJkiRJUgUhEztJkiRJkqQKQiZ2kiRJkiRJFYRM7CRJkiRJkioImdgVQ0xMDN26dcPU1BRvb28OHDig7ZBeWNOmTcPX1xelUsnatWtzbZs9ezb29vbY2toyceJE5HihspORkcFbb72Fq6srVlZWtGvXjqtXr2q2y3ujXSNHjsTJyQlLS0vq1KnD9u3bNdvkvdG+gIAAlEols2fP1jwn74t2tWvXDmNjY8zNzTE3N6dr166abTpzb4RUZH379hVvv/22SE1NFZs3bxY2NjYiPj5e22G9kFasWCH27t0rmjVrJtasWaN5fseOHcLd3V2EhISIqKgo4ePjI3777TctRvpiSUlJEV988YWIjIwU2dnZYu7cuaJq1apCCHlvdMHNmzdFenq6EEKIM2fOCCsrKxEfHy/vjQ7IyckRzZo1E02bNhWzZs0SQsj3jC7w8/PL9R3zhC7dG1ljV0QpKSls3bqVL774AlNTU3r16kXt2rX5+++/tR3aC+mNN97A398fY2PjXM+vWLGC0aNHU7VqVZycnBg/fjwrV67UUpQvHjMzMz777DNcXV3R09Pj/fffJywsjLi4OHlvdEDNmjU1828pFArS09OJjo6W90YHLFmyhGbNmuHj46N5Tt4X3aVL90YmdkUUFBSElZUVTk5Omufq1avH9evXtRiV9F83btygTp06mv/Le6RdAQEBODg4YGdnJ++Njhg9ejQmJiY0adKELl264OvrK++NlsXHx/PDDz8wffr0XM/L+6IbxowZg729Pf7+/ly5cgXQrXsjE7siSklJeWrBX0tLS1JSUrQUkZSX/94neY+0JzExkVGjRjFz5kxA3htdsXDhQlJSUti3bx9+fn6AvDfaNmXKFD766CNsbGxyPS/vi/Z9++23hIWFERERgb+/Py+//DIpKSk6dW9kYldE5ubmJCUl5XouKSkJc3NzLUUk5eW/90neI+1IT0+nV69edOvWjWHDhgHy3ugSPT09OnbsyIEDB9izZ4+8N1p08eJFzpw5w4gRI57aJu+L9jVt2hRzc3NMTEyYOHEi5ubmnDlzRqfujUzsisjLy4vExETu37+vee7y5cvUqlVLi1FJ/+Xr65trFKa8R2UvOzubAQMG4OzszJw5czTPy3uje1QqFSEhIfLeaNGRI0e4ffs2Li4uODo6sm7dOmbOnMmIESPkfdFBSqU6jdKpe6OVIRsVRJ8+fcTIkSPF48ePxdatW+WoWC3KzMwUaWlpok2bNuLPP/8UaWlpIicnR2zfvl14eHiI0NBQER0dLWrVqiVHkZWxoUOHik6dOonMzMxcz8t7o13Jycli5cqVIjk5WWRlZYkNGzYIY2NjceXKFXlvtCg1NVVER0drHv369ROffvqpSEhIkPdFyxISEsTevXtFenq6yMjIEPPmzRMODg4iMTFRp+6NTOyK4eHDh6Jr167CxMREeHl5iX379mk7pBfWkCFDBJDrcejQISGEEF9//bWws7MT1tbWYsKECUKlUmk32BdIeHi4AISxsbEwMzPTPI4ePSqEkPdGm1JSUkT79u2FlZWVsLS0FA0bNhSbNm3SbJf3RjcMGTJEM92JEPK+aNPDhw9Fo0aNhJmZmbCxsRHt27cX58+f12zXlXujEELObihJkiRJklQRyD52kiRJkiRJFYRM7CRJkiRJkioImdhJkiRJkiRVEDKxkyRJkiRJqiBkYidJkiRJklRByMROkiRJkiSpgpCJnSRJkiRJUgUhEztJkiRJkqQKQiZ2kiRJkiRJFYRM7CRJkiRJkioImdhJkiRJkiRVEDKxkyRJkiRJqiBkYidJkiRJklRByMROkiRJkiSpgpCJnSRJkiRJUgUhEztJkiRJkqQKQiZ2kiRJkiRJFYRM7CRJkiRJkioImdhJkiRJkiRVEPraDqC0qFQqoqKisLCwQKFQaDscSZIkSZKkIhFCkJycjLOzM0pl/nVyFTaxi4qKws3NTdthSJIkSZIklYjIyEhcXV3z3afCJnYWFhaA+o9gaWmp5WgkSZIkSZKKJikpCTc3N01uk58Km9g9aX61tLSUiZ0kSZIkSeVeQbqWycETUpFcj0okIu6xtsOQJEmSJOlfKmyNnVR65m06zrx9QehbVaZfY1e+6V1XDlCRJEmSJB0ga+ykQrl2L5GpE8dyb+koUq4fYv25u+y8el/bYUmSJEmShI4ndhkZGbz11lu4urpiZWVFu3btuHr1qrbDeqF9++ffpIWcRYGKt1/tSPrdG7z11lACA29rOzRJkiRJeuHpdGKXnZ1N1apVOXXqFPHx8bzyyiv06tVL22G9sFIzstn591YA/Lv1Yvpgfx6f+YuYC3v5cu7PWo5OkiRJkiSdTuzMzMz47LPPcHV1RU9Pj/fff5+wsDDi4uK0HVqhRUZGMnToUIKDgwHYsGEDp06d0nJUhXMo8CGJgeqYhw3qi7GBHp1eGwTAlg1rEUJoMzxJkiRJeuHpdGL3XwEBATg4OGBnZ/fUtoyMDJKSknI9dMm3337LH3/8wTvvvMP8+fPp27cvS5Ys0XZYhbLj2AWy4++i1NOnS5cuAEx8eyAKfSNSE2I4f/GyliOUJEmSpBdbuUnsEhMTGTVqFDNnzsxz+6xZs7CystI8dGnVCZVKxV9//QXA+PHjqVWrFgA7duxApVJpM7RCOXT4MAB1GjbFysoKgCbVKmNZtS4Av6/boqXIJEmSJEmCcpLYpaen06tXL7p168awYcPy3Gfy5MkkJiZqHpGRkWUc5bOdO3eOBw8eYGFhQYcOHWjTpg0WFhY8fPiQ8+fPazu8AnmYnM692+qBKy/5tdY8r1AoaNSyHQB79u7VRmiSJEmSJP1D5xO77OxsBgwYgLOzM3PmzHnmfkZGRppVJnRttYm///4bgM6dO2NoaIihoSGdOnUCYPfu3doMrcDOhiVg1WoA9d6cxpDBr+fa1q9nNwDCr50nKytLG+FJkiRJkkQ5SOxGjBhBWloay5cvL7eT4O7btw+Abt26aZ5r3Vpd61VeauyuRSWib1mZl3v1pm7durm2DejUHKWxGQpTa87fDNFShJIkSZIk6fTKE3fu3GH58uUYGxtjY2OjeX7Xrl20adNGi5EV3OPHjzXJm5+fH5ciH7H5wl2cHasBcPHiRW2GV2A3otSDUXydnq4JtTI1ovOXG7kRm83dLPOyDk2SJEmSpH/odGLn4eFR7qfQCA8Px87ODqVSSVi6Ke+sCiAzW4UqIw2AiIgI4uLi8hzpq0tOHTtMYvgtFG1MAY+ntret5cGNIyEEhMTRp5Frmccnlb39+/fz448/IoRg4sSJtG3bVtshlSohBL8cDeVIYAw+TpZM7OKNsYGetsOSylhKSgqz58yjw4BR+DpZ4WhlrO2QJCkXnU7sKgJfX1+io6OJfvCQvsuvk5mtHgWrNDKjSu+J/P5BD53qD5iXh8npRF08RMrl3Vxu5sDr3do/tU+LanYsPhJCQEgsQohy22wuFcyWLVvo27cv2dnZgLoWfeXKlQwcOFDLkZWe7/fdZv5B9TyUJwLvce3WbdaM64meUr7WXxRCCF7p9zqHdm3jj/jqWFrbMrdfPbrUdtJ2aFIZS01NZe/evZiYmODv74+enu78yNP5PnYVgUKh4HhkJvcepVHJ3IjL0zrhamOCqnpbwvRcMDAw0HaI+boRlURWbAQA9evWyXOfOo6mPFz/Oae/fI3r4XLt2IosJSWFESNHkZ2djXn1Jrg18MPVzQMvLy9th1Zqjpy7xtfzfkJkZ9LAMo0Hf37M5tnvs+lsqLZDk8rQn6vXcmjXNlAoyUmJIzUzh7HrLhESHa/t0KQytvvgUQYMep2uXbvSf8BAnWpdlIldGVl5+g4AI9pUwcrEgGGtqgCw65ruJ0FBD5LJilXH/2QOvv+ytTRDkXQfVVoSa3ceKsvwpDL27Zx5xMY8RN/aCdteU1B0HIvd4O+xr+Kj7dBKzcdTvyBuzwL0T/zCb+90wFhkkB1/j8+/X0qOSnc+0KXS9eU33wPg3n4ggQvfwUsvjtA/JtJ94FtajkwqS9GJacy9Zohl5w8BCNSvwt2ENC1H9X8ysStF0dHRuLq60qXbK1yOTECpgN7/9D/z93UgJzWBQ1tW8+3cH7Qb6HNcD76DKiMVhVKJt7f3M/erUbs+AAePnSyjyMrGkiVLqF27NsOGDSM6OrpEynz48CEzZ87ku+++K1eTVAsh+PmXpQB4dhrK8uEt8XG2Jj5Ln4/XXaqQSU5UTDyX9m8BYPyH72Nra8u4j9Qf6KGHN3A48IEWo5PKytVr1wm5ehYUSj6f+BEWxgYMa+5ERuQ1bh3fxeXgu9oOUSojH629RFRiOg712uH1wR8ke7Rl7dkIbYf1f6KCSkxMFIBITEzUWgzbt28XgHDy9BIek7aLQUsDcm1vMXapAISVbSUtRVgwL338o/o63Kvmu9+YKV8KQFjXbCFUKlUZRVe6fvxRfe1PHnUaNBIZGRnFKjMuLk44Oztryhw+fHi5+Xs9Ss0UXuPWC9vO74s9VyKEEELcS3gsan2+W7h9tF70GTVBvPbaa1qOsmRN/GaRAIRJJVeRk5MjhBAiJiZG6BkYCkD0/WqlliOUysLg0WMFICy9m4u0zGwhhBAqlUrYuFYXgHh51FQtRyiVhQ8mzxD2faaJ6pO3i4i4VHEv4bGYtvWayMrOKdXzFiankTV2pejChQsA6FeuCkDX/3Sw7dyyAQCJ8bEkJiaWbXCFEBYSBIBXPrV1AK929gMgKfImoTEppR5XaUtISGDK1M8AMPZsgMLQlKsXzzPh86+KVe7UqVOJiorS/P+3337j5MnyUcu5/lwkmfqmNOnSF//a6tpnZ2sTJnWtiSozjY2//sCmTZs4duyYliMtOVu2bgWgsV8nlEr1R2alSpXo0KkrAPt3biMx7cWbmPvw4cN8+OGHTJkyRTOIpiLbt0c9mXy7Tt00o6EVCgWvDx4CwKG/15ORnaO1+MpS4P1kBi0+Ro13FvDuspPcT0zXdkhlIi0tjYXzZhOzYQatrJNwszXF2dqE6a/UQl9Pd9Ip3YmkAnqS2D22cAfAr4Z9ru2tfFzRM1PPzxcUFFS2wRVQZraK2Ch1FXPtmvknds2bNEah1EOV+ogdp6+XRXilKiTsDioTawwqedB94k/U7fcRAEuW/EJ2ET/A7969yy+//ALAoUOHNEvkrV+/vkRiLm0bL6ibm95s4Zlr5PPAJm54V3XHrPZLgHrt5orgcXoGwefVSeqQgX1zbRs6qB8AybdOsP+G7veVLUkfTp1J+/btmT9/PotXbiQ6KVPbIZWqR48e8eCO+jN6SP9eubZNHvM2KBSkRd1mw5HLWoiubEU9SuOVST+zbtwrBP3yPr+M7EDbtyaRkFqxXwMAm7fvJDsjDT0Lez4d0l3b4TxbqdYdapEuNMW6u7sLQDgMmi1af3Pgqe0xyenCyK22AMSvy//UQoTPFxqTItw+Wi883/5JBAcHP3d/p6reAhBdP55bBtGVrqVHQ4T7hK2i/oTVIi0zW0TFJ4vK7YcIl9F/iM0X7hapzGvXrolOnTqJdu3aCSGEuHHjhti1a5emiU+X/b3vqDByqy3s/EeJhNSnm6N3X4sWziOXChRKAYiLFy+WfZAl7M+t+wQg9IzNRUZmVq5tiYmJQs/AQACi36z1Woqw7C1es03TjcDEq7mwf3WKaPjFXhERl6rt0ErNjahE4fbxX8L19a81zbD/5u7TQACi7dBJWoiubL365WqhMDDO1UUFEG2Hfart0Epdu+59BSDc2/Qu83PLplgdEBsbS0SEuqbLsHJVWlat9NQ+lcyNsHZ0A+DE+atlGl9BhcelojQyxbtWXapVq/bc/dv6tcPYoy7B8Zk6Nfy7sFQqwZ8Bd1Ao9ZjYpxXGBno42Zjz2dRP0bew4/cTYUUqt1atWuzZs4e9e/cC4OPjQ5cuXTRNfLps6ZqNZERewyQuEGtTw6e2d/J1oHl9X0xrqpfLmz17dlmHWOJ2Hz0NgEvNBhga5J7209LSks9nfY/DoNlcSTYhPaviN8OlpGUw9qMPAPBu25MDu/6mYdvOxKVmMuLPc6xYtZpr165pOcqSd/R2DEpDE/w7dsxzUurer70KwLkje0nNqLjN0pcjE9i5+CtEVjot27YnIyODd8dOwsynDWEWdTh4q+IOJBJCcOroAQB6vNJTy9HkT/e/TcqpJ0uFmdm7ojQypUW1vFeWqFpVnSxdu6WbTbF3YlMB8LQzK9D+fyxZgPsbs8l0rEPww/Lbz271nhOEP0jA3EifXvVdNM8PbOqOoZ6SK3cTuXav6P0idX3uwrycPHIQgA4vdcpzu0KhYMrLNbFq3geAv/76i+Dg4DKLrzTo+/rj+v4KRk2cnuf2z8aOxrNWY9JyFJwMiS3b4LRg8rzfePwgHH0TC3av+YUW1Sqx/K2mVDI34uyudbz5xuv06dOH5ORkbYdaos6GJwDQomren+PvDhmArXdTTGq2Yf/NipvcfPH7NjLu3UDPwJD1q1dgaGjIgjmzmPzdYpTG5ny981aFHBkPcPnqNdKT4lHoGzGiTxdth5MvmdiVoqbNW6BwrAnwzMSuVg11Ync3UoeGSv/LteAI4vYu5N7JTQXa30hfj0Ye6n6DAaFxpRlaqfpo5BDu/vwGDY1jMDH8/y90O3MjvLOCePDXNCbPml+oMq9du8a9e/c0/7+b8JgHSencu3eP0aNH07On7v4KTEhKITbsJgBv9un2zP0aedjSvV0LTKo2RqVS8e2335ZViCUuO0fFufB49Mxs6OnXKM99FAoF/r4OAOy7UXG/0EFdi73iN3X/0C79huDprL5uRytjZrxSC1PvVuhZ2BEYGMjIkSPLdY39v8XGxrHmszdJOPQ7Dd2t8tzHy8uLT+f/iXndTmy7FJXnPuVdYloWVzLtqTxgJp9M/xoXF/UPXoVCwZiXvLAyMSDoQTJLdpzScqSlY9UW9eAZc3df6no83QKnS2RiV0r8/f354tdN2L38EdXszXCwzHs9wR4vd8Jh0Gw8en9SxhEWzLXr10m5uJPzO9cW+JgWVe3ISUvm2M17z99ZB0XevUfc3VBEZjpvdGr21HYnVQzpoec5uvdvVIX4dfrxxx/j6urK0t+W8fqvp2j9zSHafnuIw8EJLF68mG3btvHggW4mB2t3HARVNgYWtrRvXDvffSd2qYlNq/6Y+baj/WtvllGEJe/2gxRSM3OwMNKnpuOzl/2zTwkhbu8iNv69u1Cvh/LmRHAsBrU7Y+pem3mfj8+17eU6jvg39KLSK5+gUOqxdu1aFi9erKVIS9am3Qd4HHmT9JAz1HG1eeZ+r9R3BuDI7RjiK+BAgp1Xo8nKEdRv2povJ4/Ntc3S2IAhjSoTs/ELxvTtSHhExZvT78SZ8wD4Nmqh80tmysSuFAWEqGusWlZ7dnbf3Lcqxm61uZ9jqpN9dMJDQwDwqFKlwMes/Wo0d+cP5MCBA+Xyi+639X8DYOJUjQ71n+5X+N6b/QFICr3EycCCfYClpqZy9OhRAI4nWnMiWP3ayMhW8dnuO1TzUo84PnfuXLHjLw3b96pXE3H3bfTc/oDVK5vzZq/OVOoxnmU3c3TydV0Qv61cw4N1n2ESejjf9WBvBewj5eIOoi8e4mLkowKXn5qayrRp02jVqhU//PCDzk9Uvf1KNGa+fnz4w2q8qnrk2qZQKPiiZy1sq9bG2k89/cdHH32k6Utanu06qB4V7eJdD0P9Z7/2q1e2oJppOvFnt7H5bNH64Oqy7VfUNZGvNnTJM7EZ2dEXZUYyORmP6T/snbIOr9S5dv8Ql3d+Y8hbur/KiEzsSkFGRgYpKSmaPjfPaoYFsLcwwsbUACEg6IFu9UnLzlHx4J56KTFf7xoFPq6am/qXa/ydWwQ+KH99bbbtVH8Z+TZumefcRHXr1MLS3hlysli0emuByjx8+DCZmZk4ubpz+IEB+koFq95uRoealVEJUNqr5zp8MkWOrrlwNgCAlq1aF2j/8Z1qUMnciNsPUpjx9/Vy2Sx37Ogx0sMvop+Uf/Leo7u6aTot9Dx7rxd82pM7d+7w66+/cvLkST7++GPGjRtXrHhLU2a2il3X1Kuu9KjrnOc+rjamjPWvgUWTV7Gq1ZbMzEx69uzJxo0byzLUEnf1snoKk7r1G+S7nxCCSws/IGH/L/y6bksZRFZ2ktKz2Pb9J8TvW0Rtq7znbDQ3NmTCF9+BQsmZAzvYvnNXGUdZejKyc7gU+Qh9Kwe6NNH9pRNlYlcKDh8+jJWVFccXTACg+TM63IL6l65J5GkSjvzB/oDzZRVigUQnppMZr/4wr+NT8MSuSZPGAGTeD9bUWpYnty6fBaBH5455blcoFPh1VHeePbB3d4GSlt271f0zzKo2RKFQ0L+JG62qV2JCZ3VNXYyRevLqJ4NudEmOSvBYZYjSyIyendsV6Bg7cyO+61uX7IR7/DRtHP5vflTuOlUH31B/oTdv2iTf/dq1a4ehkTE5yTFsOVTw/kW+vr6cPXuWPn3Ug01++uknAgMDix5wKVp/4Ax3j23ESpVE0yq2z9xvaEtP6rpaY9X1Y1zr+5Geno6x8f+7oQQEBPDXX39x9erVcpPs3w2+AUDr5vm/DhQKhWZ07NXje4mIe1zqsZWVXeeCSbl5jOQLO/CsZP7M/T4Z3BWnFr0AGD7yXdLT8564ODw8nE8//ZTXX3+db775htTU1NIIu8Rcj0oiM0eFrZkhnnam2g7n+Upz3hVt0uY8dl9+qV5ay9TXT3T54ehz969St5kARO+PZ5VBdAV39PZDYVC5igDE9u3bC3zciRMn1HN/mdmIt/84W4oRlrzroZGaeZlCI6Ofud+Wberl4vTM7cSVyITnllu9unrZIftXPxXVJu8QdxMea7b1/+WkcBj4tQCEp6dnSVxGiboZnSg8Jm0XPlN3iMysp+fwys/7Xy0QgFDoG4qO09eJY7djysXyaSlp6UKhbyQAcSDgwnP379ips3o5vXbDRPDD5AKdIztHJa5EPhKxyemie/fuAhCvv/56cUMvFS8N/kgAolqjNs/dN+hBsvCeulO4T9wmuo7+ItdrZvCQtzTvL5sqtcV7C/4WD5LSSjP0Yom4G/VPvApx886D5+5/5MgRAQilkZn4fvf1MoiwbHQf+50ARGX3as/dd9nB60LP3FYAYuz4Cbm2ZWdni9mzZwtDQ8Ncc+B51aghYmNjSyv8Yntl2EfCpHoz0WX8T1qLQc5jp2Vnz6prfIwca9Ayn2bYJ9zc1f1VQsPDSzOsQguPTSX7kbppqXr16gU+rn79+ujp6ZGTmsDxS4HlqqZm1db9AJg7eFDF1fGZ+3X2fwl9Q2NyUuL4fduhfMsMCQkhODgYpZ4+xh718Pd1wMXaRLO9Sy1HDP9Zdi48PJz4+PgSuJKScyniEQD13Gwx0H96Dq/8zJ/yLnWbtkJkZ3L8j295/ddTdP7hKFsv3dPpGpu9Jy4isjNQGprg16Tuc/fv0e1lANJCzz13dOyhQ4eYu/BXOs87SI+fj9N45n6qdVL3S9u8ebNO1l6cPaaev6tr12ePiH6iemVzvu9XHz2lkhsWDXl10Um+3X2L91ZdYFeEwMjFF/QMSAi7xqJxg+gwZQW3dbTLxo5D6qX+jOxc8Hazf87e0KpVK6xsK6HKSGXZhh359jFOTMvip92X6fnhTEZNnklsrG5OlyOE4MyxwwD4dci7FePf3mhbk5q9xgAwb853mlV17t27R6tWrfjkk0/IzMzEzLMuVi0HomduS3hUDCcv3yqtSyi200cPkBZ8GgfDDG2HUiAysSsFTxI7Q6fqz5z36N+8qqoHJty/p1sjiW6ERiIy01AoFHh6ehb4OFNTU2rVVo+cjAu7wdlw3UpU8vPQoDLW7YbR/rXB+e5nbGxM49btMXKrzdGbUfkmKU+aYU3cfFEamdKvsVuu7Z1qOaI0Nkff2hF3D49cU6LognOhDwGo725d6GMVCgXr//wNQ0ND0sPOkxN8ktsPUvhw7SXe/P0MSem6ucbqvuPqiYnt3L3Q03t+Mtu1q3rd2Iy7N9hxPjTffT+Z8inj3xvB+W1/ACAEbL5rjIOrO48fP2bHjh3FjL5kXQq+S9Id9RKB7w7uU6BjutZx4qeBDbEw0ufavSQWHg5hx9VozJr2od34RXz31xG8atdHlZ7M7TVfMXr5KZ0cZHPzzn30zGxwrOZToJGQenp6vPZqLwBCzx3kUODDPPe7EZVElx+OMumDd9g2fypLZk/FzbOqTnbFCI1JIS5Q/Z026NXnJ/b6ekq+mTAKq1aDUBiZYuFZBwB7e3sePIzB0MQcu64fYtdvJjW7DafKm7Oo/Ob3fBmQRuJj3fs8yMrK4mG4Oul8uUMbLUdTMDKxK2FRUVFER0eDQomxQzWaVn12f5QnatVQJ3aPYu+TlaM7I+Nic0xw+3AtXy7fjpGRUaGObd5MPU1IRtQttl0uH/M6CSG4kWyMVbPXGPfP7Pr52f33ZtwHf0ucmSdB+UzGPHDgQCbOXoBp41epbGFEG6/co6SdrU3wdbLE+e3FLNh2kjp16hT7WkrSb1OGcW/xcPQe3CzS8d7e3kyePBmA9KNLGdHIGhMDPY4FxfLGr6d18gv9wsVLAFT3yX9qlye8vLzwrFIVfQs7LlwPJCY571/2p06d4sypAFDq49u+J+enduT99tVRKBQY1evGhImTaNAg/076Ze23ddtAqPgfe2cd3tTZxuE7aVJ3oS60pbi7u2wM97ENtsGYu8s3H4xtzH0wYQJswPANd3evu7u3aZLz/ZHTroVKUtoklHNfF9e1HX3Tk7zneR/5PY7erekQ1nD3mUrGd/Fm1zNDeXV8e+b2DeDJUW3Y+OhAtj0xmGen9OfQ7u208vSiIjuBk5t+4rv99RvEpsCh4xD8Hl3JfS/pr8c4e6aup3BJxBG+2nX1ukXfpZR8Zn93hNT8MrrMfAbvsK4onDwpKy7kjinTKSoyryK69ftOoSnIQG6hYPTIEXqdc3tnL+5++Bm8533CM5vj+WZfNL8cS8Ju3FN43PsFjl1H88SoMA68MJwj788jrHUgGYXlfLwzopk/jeEcOH4aQV2BzMqO2wea12+zLiTDromp9NYp3QPoGuyFo3XDHQY6hOoMO3VBFkm5pc06PkOIzy5Gbm3P4AaShmtj/PjxTJh1N9YBXdh2IRWV2nwM1rpIyCkhOa8UpYWM3kF161VV4mT7n5G27ULd1ZCurq5kevbGNqQ3U3v41Vpp26e1KzILBcdjzcu7WVhSRn5iBOr8dPp11P+lfi0vvfQSXbt2JTsri/0/vMXqB/riYqvkfFI+b2y81IQjbhoyCkqRWdrSu4f+E/nJE8cZ9/afKD1as+V87YuZZ//3LgAOHYfy08NjcLO34rGRoXg6WiHrNJ7eMx6hTZs2TfIZmordu3UdR7r3H2Lwua0crVkwOJh3p3TmyVFhdPFzrvJ8eXh48PlnnwKgSo/ix0OxlKjMqx3XheQCALq1bqX3OcOHD8fTywuhoozDJ07XWNhGZRRyz/LjFJSp6RHgzL8vTyIl/Czv/LgRCwd3UuJj+PzLr5r8c9wIG7foIg4hnXthZ6dfByKZTMaSaV0Y3rsLJSoNS7Zd5Z0tVyhybE1wYAB/PjiAp0eHobSQ425vxduTOyFo1Hyz8k8OnDzfnB/HYLaK4Xhn/zDs9XifmwOSYdfEVIVhvdrolV8HEBCgC82pC7OIzTKP1ZpWKxAvVnXp206sOhMnTmTdbz8R0G0guSUVVVIJ5syWY5cpvryXNlbF2FoqGj4BGNfJC01JPmv31l3RnFFQxl4xJDOjl1+tx/QVKw3NzbDbsu84grocC2s7+nfv2OjrWFlZ8fvvv2NtbU1ERASusmK+uLMHMhmsOpHI6YTcJhz1jVFWoUHe7x78n1zNU488oPd5bm5uTO+p+y3/fjzhOk/NucvhHNq5FYAHH32cNp4OgK5by70DdYu7X4+ZVwcarVYg6qxO6mbS7WOb/PrTp09n77799F64mNySClafSGzyezQWlVrDlVSdYdfZt/aOE7WhVCrZ8PffLP7zEFbeYfxvwyX2XM1g5+V0Zn93lJjdq3BOOcqP9/bByVZnKDxxR08CR+vyLD/6+FPUavMwcLVagbicUiycPBkzZrRB59pZKfjp3t68ObEjA0PdGBrmwesTOrD9qSFV3YkqGRjqjsXh70n/601eXfxxU36EG+bIMd07Pbi9eUVS6kMy7JqY3r1749ZtFDbBPfXKrwPw89O97IXyYi7Hm0fngfTCMjIOrSF3xzekRDWuqbfCQs5dfXWFIT8eimvC0TUPf2/ZTtamD7myerHe5yQc+pukz+/i1NqviM26Pun966+/ZuEzr1Cem0bPQBdCPGqXCujd2pWKvDT2LnuELl27NfYjNDnb9x0CoFXrDnrlmtVHhw4d2LRpE2fPnsXPz4+Boe5M76H77r+75YrZFFNcTStErRVwt7ci0N3BoHOn9PDFWi5wNTGLozE1jfT7n3sbBC2uYb14+76auUpTe/gik8GZqGR++uMv9u3bd8Ofoyk4dDEKVW4ayOTcPeW2Jr++XC5n6JDB3DdIVzy09rT55Bmv2byDmE/vIv/fzwh0NUziom/fvjw1vjs9ApzJL63g3p9OsOCXkyRdPknevp84t/IdLp4+XnW8tdKCJxbdh9zWiez0FDZt2tTUH6dRRGQUIu8whtBHf2Tpm68afL7CQs68AUH8tqAfP9/Xh3sHtsZaWfs8MnfWNACO7NhImcp8cu0iLuk8iL179TLxSPRHMuyamJBew7Af+yTunYfWq/dUHQcHBx7+6Dd8H1xOSpF5vNziskooCT9MwenNpDSyqEOtVtNekY42PYqziXlVXitzRBAEzp3RiQP36a3/D3hg396AQGnMKTafvd7b8sUXX7Dxh2Wo0qKY0bN2bx2Au70VrX09KU+8yIXz5ygoKDD4MzQHp07qVqvtu3RrkuuNGjUKJ6f/vB/PjW2LpULOqfhcTovVt6bmfKLOe9jZz8ng1kFff7qMuE/nkH9kNUv+uVpVFbnlZBSnd+r6Lb/5ygtYXVNd3MrBmt6BrhSe/Yd775zBsmXLmuCT3DhRhQr8n1jFmOe/wt3Vudnuc0cXb2SqEs5ejSUqwzwqZHcdPIamKAcbbQnyejqP1IWlQs7K+/vQVYjCsqIQy4IkCrd+CIKW+fPnM3DgwBrHz+wbjNuIBbhPeI6w7v2b6mPcEIfFDjl9gt2wtbZs1nu9uHAOFtb2VBTm8OPfO5r1Xvqi1WoplymRKawYN2yAqYejN5Jh18TsuaozXgaGute5MqmN4UOHoHDyJC7HPHLs4rOLUefqwqchIY3Lrfr8888ZO3wwNhfXA/D25stmmSgPEJ5eSH6iThx27FD9f8C9e/fGwdkVQVXCT+v+reF1io+P5/LlyyCT4xLag/FdvOu9VrcQHyzsdYuBK1caV6jQ1MReuQDAgP79mvS6giDwzTff8NG7rzOpq66TwYqD5tGG6YcvPyX524XkHltv8LmhoaGUlxRRfGEnZ+OyeP+fqxyOyuLpn/dj6RmCR0Aoj9w9rdZzx3bywtpPF+4+cuSIWXgwD0dnI7eyZfK4hmUuboT1q1aS+OXd5B9excaz5lFsdVYsoGnbofEhuEcWLWTj0idJ+HI+Md89Qkl+Dj169OCLL7647lgvJ2vGTp6BXYehHIw3D8mbHScuI2g1eqcV3Qh2Nta06aGbe3//a2Oz308f0grKcZ3xDq2f+ZMx/bqaejh6Ixl2Tcjx48dZv0s3IY9op3+yLUBrd10eW1wt4TxTcCUuFW2ZbuXcWMNu8GBdaXhaxBncbC2IzizmlfUXzeKFdS0HwjNQpev64vZtoNNAdSwsLLhD1DCLOrmfY9Vy5H777TcArPw7Mm1AOxwaSLzt5OuEwtUXgMjISIPG3xxk5xVQmKqrVJw4qmnL/E+fPs1DDz3EBx98QD8n3ffs30tpZtE8PfLKBdR5qXjYGh56njhxIl5eXmiKcym+vJdv98dw5w/HKLfzZPxL33Lh1LE6vYDD23pg6RkMcgsyMzNJSDBtvp1GK3AsRuexqa8tYlPg6+uLRlVOadQxdhjQlq05iY3QpaD07d2j0dd4+eWXCQgIoLy8HI1Gw4gRI9i5c2edRQij2nsC1CmTYkw0WoENHz1D4md3Ik9pXDqOoVTqQZ4+vMcs+oyfT8oDoK23MzZ65l2bA5Jh14Q8+cxz7Fk8j+Lz/zKqvWGGXcrlk+Tu+5mok3spVZneq3Xxqq7s3MnNA3v7ulvI1Ee3bt1wcnKioKCAB9qDXKbLoXlq9VmKy80jObiSfw+fRqgow9Lahnbt2hl07jRRt6ro8h6+36v7uwmCwA8rfgTAvtNI7h8U1OB1Ovo4onTRea8iIkxf9n8+LgP7rmNxCOlJrw76C1TrQ8+ePZk9ezaCIPDF4tfo6OOIWivUWU1qLEpVGrITdH/7EQP7GHy+UqnkqaeeAkB1eCUO2kLkaJne048V83rj6V53ekZrdzu8XB2w9AgCdAtFU7JxzzHCv3uc0mNr6OTj2Kz3GjFiBHb29miKcjh75hSp+aaNXJSUlpGfovMgjxvS+LBoWFgY4eHh7N+/n9OnT7Nr1y5cXOquuB/ethUVuSns+O1rPv78y0bftyk4fCmO0uQIhPJixg5svHFrCA+L3uyS5Aj2X4g2yj3r42y8bqHexU//4hlzQDLsmojMzEyOHdYlmg8aPJRWjtYNnFGT08cPU3D0T0qjTxCX3XReO41Gw/nzhpePR0frflT+ga0bfW+FQsGYMWMASDp/iPendcFCLuPvsymM+3Q/R2PMo49shUZbVfnUsXM3g4sEJk6cSCsvb7TFeWxYv5bD0Vns3LmT2OgoZEorxk+cTGirhpPwO/o4oXDReewuXzV9z9CUciVuYx9h0ktfGpxrpg/vv/8+lpaW7N27lw7oqiH/NnEY7mRUChXZOoHo4QMMl/kBePLJJ2nfvj2Fedlc/GAOXSN+5J0JbasqIOtCJpMxIMQdS29dX+bKCntT8fu6jahSI1BmRdQq0dOUWFlZMf52nbemJOo4u6+a1mO149AJ0GqQW9szqPuNNX23trZm8ODBeukTBrjZ4lKSRM7+lXxmYsPul3WbAQFn32ACA/wbPL4pCPL3w9lXV0jzx6adRrlnfXz0xBxSfngYmzzz01isD8mwayL+WLUarVaDpVco94wzPB+psjJWJ3lyY4bd119/TWZmJpmZmQwaNIhBgwaRnq5/ta0gCKQk6FarYW1uzFNzxx13ALB582Zm9PJn5f198HGyJjGnlNnfHeWNjZdMrnF3JiGPwiSdITVkQOO8NI8/+ggAJeGHeGjlSWYtfAIAx65jeXu6fgaCq50lrfyDALh42fTtdS4m5wOGST0YQkBAAAsWLADg8F/fAnAqPpeMwtobhxuDbQdOAALWjq54e9efE1kXlpaWrFu3jo4ddflyO7Zv59ChQ3qd2z/YDStvnY6dqT12h/bq2ogNGjbSKPer7N5RFn+Wg5Gmba+1/YDYeSSwXbMbtdcyZpTu7x0XeYWMDNMZuHt3655/74HDjHrfRS+9h/d9X1DsadqcNpVKRXZ8OBXZCfQMCzDpWAzF7A27zMxMxo8fj62tLW3btmXXrl2mHtJ1CILA598uB8Cj20jGdaq7x2hdVBp2msLsGzLs0tPTeeSRR2jXrh1KpZLy8nIKCwur8r30IbOonNJ83cTapYNhYclrue2225DJZJw9e5b4+HgGhLjz71NDmNNHtwL86XAcD/92yqTG3f6ITBz7Tuf2pz5k/vz5jbrGo48+yvMvvcLgB94mr1QNoYORWdny4XtvEeCmv1RC5/btsXBwx8bFsFB+c3DwyAkEtarZDDuAF198EYVCweED+wkUdIuPfeGZzXa/hjh87CQAwe306zhRF+3atePMmTNcunSJzMxMRo7UzzjqFeSCpZfOsDtz5gxarWl+F7kFhaSF69pb3T19klHuOXz4cABUqZEcvpJo0lzcbJUCK78OtO9mfImLoV1DULbSRUoqxaGNTXmFhrhzOv3C6ZMabiPWlNw//XYsPYI4EZ9n0mK7bfuPIahVyK3tGX0TFU7ATWDYPfLII/j4+JCVlcX777/PjBkzyM01HzFTgJ9+X03UpbNgoeSJB+bpLW5bHX9/naGjKcgkJrPxht3mzZsRBIHg4GCcnZ1ZuHAhAL/++qve14jPLsFtzMP0fX09j4meqMbi4eHBsGHDAFi3Tif34GCtZPHULvxwTy+sFHJ2XslgyTbTeagORGaicHBj/p0z6datW6Ou4eTkxPvvvcPax4bxxKgwFj38CN+v2siC0YZNCAN7dcHv4Z8Y8diHjRpHU5GQnMrBDxeQ8Mksgp2bL2nY39+fGTPEFkxnNgOmTRwPv3gO0OUA3ihKpZIOHTpgY2Oj9zlBbna4+bbGbfzT/Lz+n2YJgevDT39tQ9BUoHTy4LbBN/630IfAwECCQ0JA0JIafqbeNn3NjTqgD15zl/L4c68Y/d49A12w9tctLPYfOGj0+wNsPnAKdX4GMgsld05semHq+ghtZU8rByvK1VrOJuYZ9d7V2bxzPwAewR2xMkDhwhww2LA7ePAgH3/8Mdu3b79u38MPP9wkg6qkqKiIDRs28NZbb2Fra8vkyZPp1KlTreKN5eXlFBQU1PjX3BSUVfDCt+tZKIaTAofN5pHxjcvLqfTYacuLiUpuvMfi77//BmDSJN0qe+bMmSiVSs6cOaO3hEZlZW4bf29cXfXT4quPt99+m/379/Pkk0/W2D6qgyefz9Hlnaw4FMv+CON7anKLVZwXQ45Dwjxu+Hr2VgqeHh3G4qlduH+y4SGsjmKS+qWU/Bsey43w93bdpGbt4kWYn3sDR98YTz75JDNnzmT+3XcCcCAiyyQ9k3OKVZTZuGPpGcJtwwcZ/f4AcrmMbkHu2HcaQYmdr8kMu/WbdR0ywnoMQi433vr/6aeeovuMx7FsFVRVkWts1BotF8XfX1d/Z6Pf39fZBs9QncTKngP6hfCbmj/W6xZZvu26Y29veOehG0Emk+GcepyszR/x17Y9Rr13dSpTITp0NU7hSFNi0C/222+/Zfr06Zw6dYpHH32UESNGkJPzn7yDIV4hfYiMjMTJyalGrkvXrl25dOn63pKLFy/Gycmp6l+lB6w5EQRYFysHK3vs/NqxZfmHjfLWATg6OmJnr0uwj45rnMyBSqVi505dwmmlYefm5lYVBtq2bZte16lsJRZoQAixPgYOHMjgwYNrfUmN6ejF/AFBALy1+TJqI7/QD0ZlURJ9CsW5dSSEXzDqvWujoxj2jMwootSEfTN3iS8Uv7DOzW5c9OnTh9WrV/Pg3Gm42llSWK7mVLzxvfLnk/Jw6j+Tgc/+wJwZU41+/0q6+jkDcM6E3oozh/cCVBU/GYtHHnmEexc9isKx1XWdO4zFmZg0SoqKcLBSEOxuXKMGdIZN//66StyIyxcpLTV+hXCRazucBt7JhBlzjX5vgLwrhyi+tMekqVfRl88CMGSgeYhFG4JBht0HH3zA7t27+fXXX7l69Sp9+/Zl4MCBJCbqKtqaOieiqKgIR8eaZfaOjo4UFV3von/ppZfIz8+v+lc5pubEyUbJk2M78snPa0kOP0vHwBvLi/L313ntMtNTKSwzvKXK+fPnKSsrw9XVlU6d/ssRGj1a1+Nvxw791LzPXrxMxp9vcGbdNwaPoSEyMzPRaGrmTTw1OgwXWyVRGUX8dcq4LYUORGZSEn6I6H9WsH694YK0TY2PkzXq81uI//xuHnnqWZON49xpXe/bbj0b54FuDBZyGcNEr6kpwrHnEk3npalOFz8n1IVZbPjtez766COj3z8zvwjBNRC5rTP3z55o9Pv3EzXzjsVmmyTP7tsVv5D4ySxKdn3eqI4TTcHwnh2wsHNBbqEwuqZlfmkFURXOOA+6kxcevd+o965k5NAhAERdOGX0xT5ASkYWxek6B8v0cUONfv8bxSDDLiMjo0rjSy6Xs3jxYp544gkGDRrExYsXm3xlb29vf11ItaCgoFZdNSsrKxwdHWv8MwaPDA/l0UkDcbK1uuFr/blmDZ2e/gVr/07EZZUYfP6xY7pKrr59+9Z4FpWG3b59+ygvL2/wOuFXr1Aac5Ko000bBli6dCmtW7fmlVdq5q042Sh5ZLiu+va7/TFGE6bUagX2RWRSnqrTLevTx/CK2KZGJpPh5WSDpiiHi5dNI3mi1WpJjtB5L0fegIaXoVy9epWE7cupyElm71Xjh+WPX41HUFfQ1cSaVd38ndEUZBL+9xd88KHxcy3PJBXhPvF5Br2+lo5BPka/v5usiLLLu0mOuEB0pvHz7E6ePAkIBPga/7NX0ru1G553fUDbF9bSqZNxm88fiMxErRUIbWVPoJvxPZYAU27TRZlKEi9zKdn4aSmnotKw6zQCp9CedAq5uSpiwUDDLiQkRPzS/8eDDz7I0qVLGTlypF5GgyG0adOG/Px80tL+UyI/d+5clYxAS6NTp060DQ1BZqFolJbd0aNHAZ1hd+11X375ZdauXdtgvowgCCTFxwHQ5galTq4lICCA4uJi3n//fWbNmsUvv/zCd999x0svvUTW0XU4WiuIySpm5xX9pVluhDOJeaRm5VORpVuZmYNhB9ChXVsA4mKibug6ZWVljRI6PnLiDOrSQmRKa6aOMl6u2dNPP83aFV9QfGk34emFRhWpFQSB7b98SsLHM7jw7+9Gu29ttHK0xj+0HSAjPS2txvxnDCp/f0PbmqYy+5OPPiR90zKKLu7miAnCsTFXdLqfg/r3beDI5qOdlwNOrXwpUglEGLl37udff09x+CEGBprGqAPo0b0bCisbtOXFrN991Oj3T66wwX3808x5/Vuj37spMMiwe/LJJzl37tx122fNmsXKlSuva2p8o9jb2zNx4kRef/11SktL2bhxIxcvXmTChAlNeh9zonKF1JjWYu+99x6rV69m5syZNbbLZDLeffddbrvtNpTK+kVS80oqKMrQGTo3KnVyLbNnz2bx4sXI5XLWrFnDvHnzWLRoEUuWLGH/nt3M6atbGa05mcjBgwebPQzzz8VUVBnRIGjx8fHBx8d0K/Tq9OmmW7hkpyRcF7bWlwqNlqmLnqP7oJHc+91+rqYVsHfv3qpuD/WxZvO/ADi37kwrZ+NN7vPmzQNAdWUvgqDlUJTxkueTckspSIoArZpubYONdt+66BHsXdVe7uzZs0a7b2ZWNht369oiju1ouGxTU1Ape1KeeNHoBRTZ+YVVbfQmNXEbPUNQWMjpHuAMwMk44+WbFpWWseuXj8n6ezHuJaZraadQKAjuoFMU2L3f+JXBZxJ0f/PKZ3CzYVCmf+XEu2bNmlr3P/jggzX2XWtgNIavvvqKefPm4ebmhp+fH2vWrKm3JcvNzOXLl7nw99cUpFUQ2+Mxg8/39/fHz8+Pr/ZG89mpUwwIdeeuvgEGhcjjsoupyNbluXXu1PSe0RdffJGRI0fy448/EhkZibW1NYGBgQwePJiePf35dl8MW//dyfI/Xubuu+9m+fLlDRqjjUGrFdh6IQ1VivmEYSsZ2K0dWCjQqlUkJCTQurXh3T9e+mUP//z+HYJaxZYduzmVkEfCl/PJz8tl8uTJzJ49u85zHUN74jzsPvp1bVrDviEmTZqEo6MjBbnplCdf4XCUP9N7+hnl3kci01Fl6ES5+/UxvnbZtXT1d8bSMxh1ThJnzpxh3LhxRrnvOx9/RfjX/8Opw2D6vLfXKPe8lkGDdF7iiqx4Dl+KRRC6G606eOPuI6DVoLBzpmfHNka5Z1308Hdm45dv8sSvEQw+tJvAwMBmv+eHy9egKclHae/ColmmdaAMHNCfiDNHuXz2FIIgGO07oNVqOXT8DIKNJ90Dbk5bo1ElnF9++SVHjhzBy8sLPz8/kpKSSEtLY8CAAVV/fJlM1iSGnYeHB1u3br3h69wMJCQksOOPb1F6BBGf3bik1bc3X2HFId0LatvFNArLKnh4WChqtZqdO3dy5MgR/ve//9XZNis+u4SKHJ1hZ2jPVH3p3bs3vXvXnpTfPcCZAxcykVtYsHLlSgB+/vnnJv9RH43JJjmvFG2GLtxpToZdO29nlM7eVGQncuLcJYMNu8PRWfzwww8IahWtO/ak/eARXEopxGvgVPK3LOeZZ55h0qRJdeqrpeKGU9+pTLujQ1N8HL2xtrZmypQp/PzzzxRf3s/B9j2MNqFvPXgSNBVY2doTEhLS7PdriK7+Tlh6BlNyZT9nzpxp9HUyC8t5b+sVdl5Ox9lOycLBwcztG4hFLUUBWq2WX5Z/B0CfQUNRGrnjQiUeHh60b9+BK1cuk3TlDEm5t+Hv2jQV+g2xY99hALxDO5pMaqaS7oEuqNKiKUqL4ciRI0Yx7Crn3D6jJmJp2fQLakOYMHoYP375CSVF+URnFhPaqnE9yw1l19EzXPriAeQ2jrR7w7St7RpLo3657du3Z9myZSQkJHD48GESEhL4+OOPad++PXv27GHPnj0mU8y+manefcLQUOyePXt48qU3+PrPfwBdjgbAh/+GE5FeiEwmY9asWbz11lv19o69GJOEtkSXrBoWFtaYj3FDTO/ph33nkXSZ9zYWonH3xhtvNPl91pzUVU1bFaUC1GlomgIbSwucvHRh6SNnLhp8/he7Iii6pNN/eu/VZ1k+rw/2VgpK292Bh5cvKSkpfPll7X0oBUGoEgXt5m/8IoI5c+YAUBp+kPT8EqKMJFJ78JDuhd6xa3ej6rbVRSdfJyxb6QzMU6dPN+oaJSo1d/1wjHUnYkk+tJZT373IwwvvY8brP9SqE7hm3d/kpScht7LjlccfuKHx3yhDxarIssSLHI81Xp7dqZM67bJOXRvu69rcdPVzxspHl2+77+DhZr/f0fNXiTmpmzeefnhBs9+vIW4bO4Ypn2yn1dRXORFnvO/AyrU6DT/3gDY4NEFRpClo1Ay2atUqHnrooRrbFi1axB9//NEkg7pVqRIpLiskM6+AAgMkT/7++28+XfImJVcPMrGrD9ueGMzoDp5oBfh+fwwWFhYMGDAA0IlM18WlqDhkVna4tPLGzs74ybN3dPHBUiEn16MLry7+GIC33nqLn376qcnukVFYxtaLuoT0rXsPc/r06aq/jbkQ3KErVv6dKBKsDTrvYnI+u/cdQJOfjoODI5MmTcLLyZqHhoUgUyhxHqQTAV68eHGtIt7Lvv6BuKPbUFQU09HH+IbdiBEjcHd3R1OST1n8OQ5FNX/P0OS8UtLCzwIwbuTwZr+fPjhaK2nTQVcNGRcXR3Gx4Tm3b2++zNXkbHLWvk7uru8pjT5B8aU9rH/nAToOGkdW1n/5a+Xl5Tz51DMA+A+cxJAOxgmB18WQITrDrjzxotFe6lqtgMq3J3YdhjFt4u1GuWd9uNlb4RPWBYD9h5rfsHvi5bdBq8GrfW+mjjaNQHd1rK2tGdhep0d7wojG/YF9ewHoO+jmkzmppFGGXWBgID///HONbStXrjSKKHBLxsnJqcqY0hRmE2+A5MmpM7qiFqVHII+OCEUmk/HgUN2Kf8PZFDILy6tyV+oz7PKtffB/YhU/btzbyE9xYzjZKP9L2m47okoaZdGiRRw+3DST24+H4lCptfQIcKZHoCvdu3fH1tY4oR59mbvoSbzuXIJDp2EGnffXqSRKI3WyN1OnTqkKt943sDWudpaUtx6EX+tQcnJyrtNIEwSBD5a8R/aWZXgXR2JtgjY6SqWSGTNmYOvghKYoh4NGKKDYG55BWZJO9HzEsCHNfj996dk2AK97lrF0wymDF1nRmUWsPpFIzo5vKIq7gKOjI4sXL2b8jLtBJifm0lk+2hmFIAiUlZUx/777SU+Kw8LOhVdeecnkYchKw06VEcvhq8bRtrycWoDQuh+B017gnsnGbaNVF3376Spzwy+db7TqhEqt5YN/rzJwyW66vfkv81ccY19EZo0iqj//3c/xbasBeP7552984E1E7yBd56NjsY2fB7Kzs1mzZg1lZWUNHltWriLhkk75Y+Yk0xv3jaVRht0PP/zAG2+8QVhYGCNHjiQsLIzXX3+dFStWNPX4bilkMlmVcawuzCLWAMmT8xd0IbvOnToR5qkLw/YMdKGrnxMqjZYt51NqGHa1VUZqtQIxWUXIZDK6hvje6MdpNJO76apTt1xI5fU33mTatGmoVKom8QhnFJax8kg8AA8ODTH5C6wu2oqh9PA0/aUO1Botm8+nUhqrExe+7bbbqvbZWFowr38QMrkFrYbdA8CyZcvIyvrPI7Z//37SE+OQKa2YdIfpJrV33nmHA2cjse88iqMx2c0uUPrvxRQce06k6+DR10kFmZLOvk5YeYcRnm24WPkXu6NQl5UgJOkWfOvWrePFF19k85pf+HDlJtwnPssfZ7N45e+LvPrWe6z6/TeQyekw8xnuHWrc3Mra8PX1ZdXa9fg98gsJhQLZRY0zak6cOMGGDRv06t5wJFpnPPQNdjNZfuG1DOvZCbmNI5qKikZVR5dVaLhn+TGWLPuc40vv4twb41j5+DjGT5vNkCc+YcfFZPZFZPL+zlgsPUMJ6jWcJ+4xXdeVa1GlXCHt1+c4s+LVRskf/b5qDd4+vtyz4EGeX3+ZU/H1e/6+WbUJbVkRFraOzBhrPos8Q2nUt7d3795ER0fzww8/8MADD/DDDz8QHR1tVnlKNyv/5dll6Z1nl5WVRWGeblKaOapfjX0Tu+kMtC0XUunTpw9KpZKUlBRiY2Ovu05KfillFVosLeT4uejfuLypGdzGA0drBZmF5ZyIz+Xnn3/mu+++47PPPrvhay/9J5yicjVd/Jz46On53HvvvUbpUmIo7b10AtvhydmUq/R7sR+JySazsAzvwTOZOWsWo0aNqrH/nv6B2CgtyPLoxrBxE/j2229rVJh/9vnnANh1HM7ILkFN80EagaurK12D3HG2VVJUruZcUvMJlBaVqzkak4djnyn89dfaWsXPTUVnsb3cRQMFWrOLytl8PgW5lS27j55h3bp1VW0FAZ6ZeztLH5mJTAa/H0vgj0wfLOxd8Z76Miv+9xAKMzFqZk2dTIdgMRTXSMmPI0eOMHnyZIKDg6sE3Ovi59/+QJWVwACx84U50D3QtSrPrlKn1BA++OcqW797l5ztX6HO1eUTa4vzKL64m4OfP830BU8wb8Vxsizc6f3Y5+zZsNosckwrcXW0pzz5CmUJFzgabVhaxrbtu7hr7p1UqMpRBHRjw9kUZnxzhBUHY+uUfPrpV53zoPPA0ViZuHjkRmj0E1QqlQwZMoRZs2YxZMiQZpGkuBVpTAHF8bM6b52FgwdT+tSs6BvfWddn90RcLnkq6NVLJ+VQWzg2Mr2Q1J+fJG/je2Rlmq4ayFIh57ZOunFvOpeKnZ0dCxcurPKuqVQqVCqVwdf991JaVcuyB7o7sH37v6xcudKsXuaV+LnYkLr8YaKXTmHvibqLXaqz43I6MpmMO++6m9WrVuHmVvMF5WJnyaze/shkcvymv8Kdd95ZVR29e/du1q9bB4D/wClVRoWpsJDL6B/sSkVuCocbkWenrwbi9ktpqDRagtxsCfEwr+9BR18nNAUZXPzrY+68e57e5607nUyFRqCLnxN92ngzZcqU6465p38QK+b3pq2nA0o3f4a9/hd/LnmCXmLoy1zoFaRbeDQmz06rFXAJ6YaLuydpaWmMGDGiVh1WgISMXA7/+Dapyx/GXzCfSsj23g7Y+rVH4epHsdqw6MKFpHy+330JVXoMMpmMJUuWkJiYyJ49e5i/YBE2Ds64uLnjbm/JlO6+bHp8KEE+Hs30SRpHly5dUFrZIJQX88+hU3qfV1ZWxtz59yFoNTh2HMqyL75lUjdfNFqBZ99YQp+hY67TCC0pV3HpiK437fy5c5r0cxgb8zHNJQB48803+fGf4zj2mUK0nobdv4d1cgjO3oF4OdVMtvdysqZXoG5y3Hk5vSoce/z48euuc/JyNKq0KLIuH8HZ2fkGPsWNM1EMx267mIpK/V8orqysjKlTpzJ79mwqKvQPUV1OKeDZP3WT+sLBrUk8r8vX69+/v1nqIsrlMmxsdM9y/8kLDR4vCAK7r+peSCPbedZ53P2DWmMhl3EgMqvKE/T1118zcuRIBEHAvssYJo/sb3KvTVpaGn89P4XUFY+x50K83uelp6fTs2dPLC0t6dChA8uXL0errTuU++uhaArP/sMIPwuzC8vbWykIcLGh8PQW/lz9h96LmT9PJVKRncTMBjQAh7dtxb9PDeHq2+PY+exwBoa6N8Wwm4yKigpid/xC+urXOHQ1Wa9ztFotb731FlGJ6Uz68hCvHSjE/u4vsA7sSklJCdOmTyc//3oP6LIVaxAqyrFx9WLMYPMJx1spLBg0YyG+C7+hw4hpBp370Y5w5FZ2LFz6C4cPH+aFF17Az8+PYcOG8eP331CQk8nlP5dx8tXRfDyrGy52ls30KRqPQqGgXeduABw0oDL4xXeXkZuagIW9K3/+uoIHhrXhszndmdHOmrx9P3PywE7uXvR4jXM2nEvDY/Z7ePadxKLZN3cTBMmwMzMCAgIY0K0dMgsl0RlFenkejp/VJX6H1tECbGR73Yt+55UMHn74YS5evFhrWPPYCd2KyDMgGGtrw6oxm5p+wW6421uRV1JRozLy3Llz7Nixg/Xr1zNt2jSKihqWwziflMfdy49RWKamT5Arz41tx7Zt2wC4/XbzTZD1DdDp1525cLnBY6Mzi0jKLaXs8h5si+ruWOHvassdXXTe0G/3x1BRUcH7778PgK1/e1xGPsAdopfXlHh6euJkb4ugLufg9g2UqNR6n9etWzfUajVXrlxhwYIF3HXXXbUuAi4m53Po4H5y/v2Cz5+YUa8BaCp6d26L3MoOdUUFly83/D2ITC8kPCWPtN+e4815Y0hKarjwwBRFMvqgUCjYt/EPyuLOcPbUCXKKGzZsN27cyOuvv063PgM4n5SLvZWCLq09cZ/0IhaOrYiOiuLue+bVmFcFQWDNKl0IbsCo8WZn4FeK5FbKEOnDxeR89oZnYiGX8ezY9vTr1++6YxQKhdkVjdXG8MG6jlYJV8+Rq8d3QKvVsvy7rwEYNfdhxnT7r5PM0nkjGf3gGwD8sfwrlnz2DaDLRfxmXzSW7gG8++HHWFuZn5FrCJJhZ4YEudlhIZdRVK4mraD+Sh5BEBC6T8P73s955LEnaj1mVHtdz8cj0dl4ePvRsWPHWvMoLl7QebTadTRu0+nasJDLqgyQTedSqrb37duXdevWYWVlxaZNmxg0aBAJCXW3vtkbnsHs746SXayik68j38/rRXlpMTt37gRqFhiYG23b6nQEIyMjGzx2z9VMNCX5pG/6iIF9+9TqlajkgSG6iW7TuRTOJRfy559/8uLXf+E+ZymBXi70aW36cJxMJuPBBxYCkH/mXw5G6h+O/eSTT7hy5QpLly5FoVDwxx9/cPfdd9cw3ARB4K3Nlyk6vwOAGdOnmVVuUSVd/JxReuqelz5CxdsuplEWfw5taSEF+fl4e5veSG8sMpmMYUN1khNliRerihvqQhAEFi9eDIBFUE98nW3Z+vhgNj82mN8fHUngjFfAQsGmjRt4/4MPq85bs+sYqef2A/C/px9upk/TeLr5OwNwKjZTr4UswNebDpN38HdGhzhUtam8WRkxVBdlKk+5ysn4hnMtf1i1gaKMJGRWtnz2ak2vnFwuY8Oy52g3Tpfa8NKTjzD13seY9MyHxGeX4GZnyZw+N7+6h/nNZLc4OTk5vP7aK5Tt0a04GhJoTcgpIa1Yi61XMFOH1d4KKbSVPQGutqg0Wg7U8YJUa7QkXtG9OIaYsPl1dSZ01b2Utl9Op6ziPw/U+PHj2bt3L56enpw7d46ePXuyY8eO685feyqJBT+fpESlYVCoO38s7IeTjZL169dTWlpKWFgYXbt2NdrnMZTeXXQt3VIT6k72rWT31QzKk68COgFxV9e6jbOOPk7MEMN0z/11nnQrX/7NdEQmk/Ho8FCTh2ErmTdvHnKFAlVaJCs3XP98Kzl9+jTz58+v0nqzt7fnfJEd22S9cZn8CsgVrF69mttn30ducTkarcBH2yM4cimWkogjACxcuNAon8lQuvg5YdlKZ9id1kOoeOuFVErCDwEwbdq0OjvM3CwMrTTs4s5xqIHk+T179nD8+HFkCkuce0/i8zu7E+Cm80gNbuPBn/+7G68xi5AprfknVkWJSk1JeQVPPPUcINCm9zCG9O3R3B/JYHoEuJB/9E+2PDeOt95+p8HjS1RqVv+8nPxDvxPx14cNHm/uVHobK7ISOXCp4bSMY3m2OPafRZ877ibM7/qcQWulBYf+/IaAARNA0LL+py/Y/vmL5O1dwWdzumNr2aiGXGaFeczgElVUJrmmHN2MtqKcyPT6DbvKRuk9Alyws6r9CymTyRgpeu12XUnn1KlTzJ07l+eee67qmPCUXEoTdSHdKePNQ8Opu78Lvs42FJWr2XO1ZkJzv379OH78ON27dycrK4uxY8fy7bffVu3/82Qiz/x5DrVWYFI3H1bM742Dta7A57fffgNg7ty5Zhd2qc7gXjpx0rKsJJJy6y71Lyyr4ERcDuXJulDdwIEDG7z2y7e3x8vRmtisYh79/Qw5xSraeTkwtYdphWmr4+HhwbhJMwDYvPJrtNrrjduMjAwmT57Mzz//zKuvvopGK/DMmnM8/9d5YrKKsQ3pjfv4pwDYs/8gPV7fTKfX/+WLPVHkHfwdtGp69epF9+6m7zRQG518nbDx0qVYHDtZv2EXm1XMleRcSiJ0uUhN0dLR1Iwdq5uLylOusvNMdL0LnEpvnX2X0dw1vAs9A2subnoEuLDu8zcIevA74py6MXrZfrrPfpb0iweRWSj4/IN3m++D3AB+LjY4urghVJTz7649DR6/9lg0uWd0HYiefsQ8FyyG4OnpSUj7ztiG9edYeP25lkm5JexN0uAy5G5++PT9Oo9ztbfmyu51THvyHZxDuuHVaQAvL5xldnmmjUUy7MwMZ2fn/0SKi7KJyqzfsNt+4grZ/3yO+sKWeo+rTKjfE55BVlY2v//+O7/++mtVeGrzroMIFeVY2jnRpYvpQ7Ggc5vfIXrt1p6+PlcoICCAw4cPs3DhQmxsbKoKQzafT+GFtbpK0vkDgvh4ZjcsFbqvuiAIjB07Fm9vb+bOnWukT9I4OrTXyRxoirI5EZla53EHI7NQawVkGREAenXRcLGz5M8H+9PN3xmlhYx+wa78tqCv2eh3VbL4jVcAGXlXj7ByY02vXUVFBTNmzCAxMbFKS/OtTZdYdyYZC7mMF29rx9n/jebEitdZ8MYXDH7ycwSFNaUVGirObqT4rK4H9dKlS03wyfTDWmlBh846A//ihfP15gFuu5iqC8OWFeHp6cngwYONNcxmIzAwkA4dOoKgJfbcES6lXN8tBeDkyZO69AqZHI8B03liZJtaj+sf4s6qp8bj6WhFcl4pBQ6BIJPz2vufM3aoeXWfqUQmk9F3gO5ZXjp3psEuJJ988yPa8mLcffzNOtXEEHYfOILHlJeJLrGqN9/2x0NxaLQCA0Pd6NRAZb+tlYK/Pn6F3KgzpF44xPP33/wLoSqEFkp+fr4ACPn5+aYeisG0bdtWAATP2e8J0746VOdxGo1WCLnnPQEQWoeG1XvN8gqN0Ol//wiBL2wWjkWmCQ4ODgIgHDt2TBAEQbjvvR8FS5+2QodB45r0s9wokemFQuALm4XWL24WUvNK6zwuNjZWEARBOBqdJYS8tEXwe+w34YW/zglarbbW4ysqKppjuE1OSI9Bgl2nUcILvx6o85jn/jwrBDyzXlAoLQVACA8PN+IIm58OQyYIgNB/8r1V2zQajXD//fcLgODg4CBcvnxZ2HYhRQh8YbMQ+MJmYcv5lFqvlZ5fKlxNLRBsbW0FQFiwYIGxPkaj+d+6swIWSsHBrZWQmppa53HjP9sv2HUeLQDCww8/bMQRNi/PPvusAAh2HYcLH++o/bs9ZcrUqmPe33alwWvml6qE9aeThOX7IoVj5y439ZCbnC92RwgWDh4CIOzYsaPO4yLS8gWlR5AACG++u8SII2xetFqt0O+9nULgC5uFAxGZtR6TnlsoOHYcJrSa/rqw63Ldv5ObFUNsGvNanksA/2nZqQuzuJJaUGsICuBKWgG5qbrCgU4d2tV7TUuFnCFhunyD/dF5VdWg33//PQBZjm3wvvsj3vrkuyb5DE1FaCt7+rZ2RSvAH8frLpIICgoiOa+Uh387TVHCRdK+ux+flH01jqnu7VAobo48ig9/WIX7+Ce5mld7yFirFdgTnokqPQp1hQp3d3fatKndW3Gz8s7ixXhMfZWyHnOo0GiJjo7mrrvuYvny5chkMn777TfsPQN5/i+dl3bR0GBur6Oyt5WjNW29HOjYsSNLliypEb43V/qGtsL/0ZUMfO0vvLy8aj0mLquYCwk5lEbqcgZnzJhhzCE2KxMnTsTK2gaZ0orN51OvC8dqNBpyVHKQK/AdOptFQ0PquNJ/OFormdzdl/uGhNKnS/vmGnqTMTDUA+uATgDs3LWrzuPe/+lvKjLjUFha89hDDxhreM2OTCZjUKgbFTnJbDwRVesxL3zwHQWX9pK/4ysGh5qPyLQpkAw7M6SyrZisOJtilYa4OlqLHYrKoiJHl3PQrm3bBq9bmWe380o6jz32GAC//PIL4dFxVZpm/ULML8fg7v6BAPx8JI7i8trd8KUqDYtWniS7WIVV/FHU5WU88fjjTJ48md27d7Nq1So6duzIxo0bjTn0G6anqEF4KSW/RgFJJZdTC8gsLEebFg7owrDmnDfYGCb0bU9A9yHkFKv491Ia33//PX/88QcymYyffvqJ224fz5Orz1JQpqabvzPPjmn4t3D8+HFeeOEFs6yEvZZegS7Ire25mlZQp9zD5vMpIJMx4pElPP300y0iDFvJwIEDiU1Mxu+OJ4jKKOJ0Ql6N/RVaUA18EL9HfuaZWSNxsml5YvmdfBxxbtMTgPUbNtV6TLlaw9pfdAv1sZNmmKU+541w4ItnSfl+EX+uXY/mGmeHSq3lr1+XAzB5zj23fMME85/VbkEqPXb2Gp2xdbGOvJJDUdlU5OikQMLCwhq87rC2rZDL4GpaIYEdujNgwABUKhXtQlujKinE39UGX2fTtRKri9s6eRPkZkteSQW/Hr2+KkqrFXh6zVkuJhfgamfJwQ0r+fjjj1EoFGzcuJGRI0cyZ84crl69yltvvWWQsLGp8XOxwd1GRll+Dudq0bHadUVXVHLbjLvZtWsXL7zwgpFH2PwoLOTM7asz7r/fH0O7du0YOnQohw4d4p577uGz3VGcis/FwUrB53O6m12e4I3SytGaME97BIE6K0M3n09FJrdgwawJfPTRRzd9NWx15HI53u4ujBflj34/VtNz/+2+GFLyy/Dz9uSe/kEmGGHzo7CQM2zkWJDJibhyqVaJp+0X06iQKZFZKHj75WdMMMrmZdQQXQ5k+vm9HIupKX3z6ertFCVcRia3YOkrT5tieGZFy5oBWwiVhp2yVKfZcynlek0ylVrL8dgc1Dm6ooK2enjsXO0sqzxAm86lsnz5coKDdVIKBcfW0re1ebqvLeQyHhmuqwz8bFckKXk1K0Q/3B7OtotpKC1kfHNXT/xd7XjyySc5c+YMd911FwEBAYSEhPDMM89w4MCBm2o1t2XLFk6/OYHMv9/jYC2ttbZd1BVV3N6jNSNGjNCrcOJm5O7+gVgq5JxLysez51j27t1L//79ORaTzRe7dTp/707tjL+r+QuuNoYuLhrS1/yP+yYOvy4UGZVRyNW0QhRyGWM71h6qbQnM7RtAefJV1uw6RnhaIQDP/+9tPvlrN6Cr9DZXseWmYGyvNjh0v40Okx7Cxub6BfiaU0m43/EMr/9xgO7dzFfGqbHMmT0LgNLY03yz42LV9nK1hg8//gSAnkPHEeDnY4rhmRWSYWeGzJw5k7i4OF79ROdarq0J+Mm4HEpKy1AX6Dw2+njsAKaL+mWrTiQQFtaWk6dO0/6+93EeNJehYebVJ7A603r40SvQhWKVhod+O01BWQVqjZZl28P5am80AEumdqkhrtupUydWrlxJfHw8UVFRfPjhh7VOiOaMn58fgqClIie5yjtXSXRmUdULfUyHutuItQTc7a14YLBuEfLahotEphdyIi6HB1aeQivovh8Tu7bcCX109xDKEi6QGR/BlStXauzbdC6V8pRwrE6u5Or5hrXubla2/fo1ab8+S9aOb3l69Sle/3QFH7z9P+J+eJSe7lQJmrdUxnbwxG3MQxS3G0+FsmZf48SckqqF370juphieM1Ox44dCW3bDjRqtvz9J1fTdJGspX8eJOOMTnD+w7deNuUQzQbJsDNDXFxcCAwMpE+IztA6HZ9HhaamzMHeiEzU+ekgCDg6OtKqVSu9rj2hqw8OVgris0vYfTWDCxkqSjw64mxvw2gzNg7kchnvT++Cs62Sc4l5DFyymwFLdvPZbl0i7bNjwpjWQG/Mm5HQUJ2nUltawIXYFNLy/+tEsvmczlsXWBrJ26+9xN69e00xRKPx2MhQ2no6kFWkYvTH+5nxzRHySyvoEeDMW5M6mnp4zcqQ9n7YBeqS539Y9XfVdkEQ2HQ+heLLe7m8Y9VNUQzSWCZPnoyVlRVlsafZ/tbdvP3sQwB49Z/CN4tGtbjc0mtp5WhNT7G92LaLaTX2vfjJj5SnxzIw1K1KlLkl8vgjus4gBcfW8sjKE3y5J4qli98GrYbOvQcydFDLjFgYimTYmTFhrRxwsVVSWqHhfFJejX17rmagdPNj1aFwjh49qvekZmup4M6+AQA88vtpFq3U9Yed3M3H7MMYIR72/Hp/XwJcbSksU5NRWI6LrZIPpnfh0REtqxK0Ent7e3x8dJ4odU6yLkkeqNBo+f24Lt9QkXiSZcuWsXnzZpON0xhYKSz4bWFfBrfRFfjIZToP9C/3961TnLulYGNpQc8BwwDYsHlr1fZ9EZlEpxdQKooST5tmWKP4m4kOHTrw448/IpPJUOckIahV+HUdyJF1P+DhYGXq4RmFCV190FaU8eEX3/LGm28CEJeczuoPXyb1pyfobVm33mVL4P7778fN3QN1fjqnNqzgg3/DsW0/FEcPH775xHz1KI1Ny54Nb2LefPNNoqKi6NT7Tg6UwNGYnCol9YTsEiIzipDLYFy31jjZGpYz9sSoNmy9mEpiji5Xzd3eSi+JAHOgk68Tu58ZyvG4HARB10expb/Uw8LCSElJoSI7iR8PxTF/QBBbL6SSXlCOu70VyVfPAvp1nLjZcbe3YuX9fckrUSFDZvB3/2ZmwZwp7P/1Y2IvnCAhLQt/Tze+3RdDafRJ1IXZuLu7M3r0aFMPs1mZM2cOHTt2ZNu2bbRt25aJEyfeFJXNTcX0nn6889Mmrq5eypsI2NvZ8eXKtWhKC7DzDOSROXeYeojNiq2tLe8vWcyCBQtwKk4k2M2aSaNmc/9Pz2FvY23q4ZkNLfuNeBPz22+/ERkZyYv9xgMOHIjMrCog+PusTuKkf4hbo15stpYKfr63D1/sjiIxt4TXJ3TExwyrYetCYSFngBnKsjQX3bt3Z+/evciyoknOK+XxVWc4FpMDwLROLrxyWdcKrqUWTtSGs62lqYdgdOaMHchDrQIozkhg0ZufM+/e+zkSk03xuW0A3HvvvVhZtXzPVZcuXejSpWXmkTWEnZWCB6eP4c3TEyg8tbGqLaRMac0X3664qQrDGsv999+Pm5sbd9xxx02jR2psbp2lzk1GZWWst6IEgGOxOSTmlCAIAuvE9loFe37g4YcfJjw83ODrB3vYs2xWN/58cECDrVckTEvfvn0BsC+IBWDrhTSyi1W09XSgoyINQRAICQnB09N8cyQlbhyFhZx777sfgN1//8GL6y5QnnyVkuiTyGQyFixYYOIRShiDh4eFMnjukzj2m4Hc1glLn7bMe/Nr5k8aYeqhGY3JkydLRl09SH8ZM6VSpLg0L5OBoR04FJXNnycTae/tSFx2CbaWFhzbuYnNGRnShN7C6d+/P7NmzWLgwIHIO7Xl+wMxdPVz5s2JHfn+4/eAWyMMKwH/e/ohfv/xW6yHzEUuA4sTKwGYP3++3pXxEjc3NpYW/LRgAB8HuROT+RS3d/bm7n6Bph6WhBkhGXZmSqXHLikpidnjAjgUlV1VAQpwZzc3XsvQyV+0tBZSEjUJCAhg1apVVf9fGZIH+OeffwAYOXKk0cclYXw8PDxITYglv1xAKwjs7VbEgw8+yDvvvGPqoUkYEQ8HK96b0tnUw5AwU6RQrJlS6bFLTEzk9s7ejGj3n5xJkJstg9zLAfDx8cHBwcEkY5QwLSUlJWRn6xTYx44da+LRSBgLS0tLPBys8HS0ZtasWURGRlZVTktISEhIhp2ZEhQUBEB0dDQWchlf3tmDB4eG8NzYtqx9aABREVcBnWijxK1BTEwMq1evrvp/W1tbYmNjiYqKkvLrbmHc3W+dQiIJCYmGMVvDLjw8nDvuuAN3d3c8PDy46667yM3NNfWwjEZli7D4+Hi0Wi02lha8eFs7Hhkeipu9FZcvXwYkw+5WISkpiZCQEO68884qLx2ATCYjJOTmkKqRkJCQkGh+zNawy8/PZ+bMmURHRxMXF4dKpeLZZ5819bCMRmBgIJGRkeTk5NSq03Tpkk7iQjLsbg38/Pzo1KkTWq2WdevWkZubS3FxsamHJSEhISFhZpitYdenTx/uuecenJycsLOzY+HChRw/ftzUwzIacrmc0NDQOku6K702kmF363DPPfcA8OqrrzJlyhR8fHz45ptvTDwqCQkJCQlz4qapij18+HC9Rkx5eTnl5eVV/19QUGCMYZmMkydPkpOTg729fcMHS7QIHn30UT7//HMSExPJyMhAoVDQubNUGSchISEh8R9m67GrztmzZ/nss8947bXX6jxm8eLFODk5Vf2rrCq9mdmzZw9z587l/fffr3W/q6srlpa3ngL/rYqNjQ2//vorbdu2xcLCgm+++UbSr5OQkJCQqIHJDLsxY8ZgbW1d67/qmkyxsbFMmDCB5cuX1+uxe+mll8jPz6/6l5iYaIyP0awkJSXx+++/s2XLFlMPRcJMGDJkCFevXqWsrIz777/f1MORkJCQkDAzTBaK3b59e4PHpKWlMXr0aF577TUmT55c77FWVlYtrk9i9+7dAThz5gwajQYLCwsAHnroIWJiYnj55ZcZOnSoKYcoYSKkdjoSEhISErVhtqHY/Px8xo4dyz333MMDDzxg6uGYhPbt22Nvb09RURFXrlyp2r59+3a2b99ORUWFCUcnISEhISEhYW6YrWH3999/c/78eZYuXYq9vX3Vv1sJCwsLevXqBVBVEZydnU1MTAxA1T4JCQkJCQkJCTBjw27evHkIgkBRUVGNf7caffr0Af4z7Hbu3AnovHnOzs6mGpaEhISEhISEGWK2hp2EjkrDbvfu3QiCwKZNmwC44447TDksCQkJCQkJCTNEMuzMnNGjR2Nra4u3tzeZmZlVFbITJ0408cgkJCQkJCQkzA2ptM7McXR0JCEhATc3N7744gvy8vJwd3enf//+ph6ahISEhISEhJkhGXY3AW5uboBO+693797MmzevSvpEQkJCQkJCQqISybC7iQgLC+PQoUOShpmEhISEhIRErUgWwk2GUqk09RAkJCQkJCQkzBSpeEJCQkJCQkJCooXQYj12giAAUFBQYOKRSEhISEhISEg0nkpbptK2qY8Wa9gVFhYC4O/vb+KRSEhISEhISEjcOIWFhTg5OdV7jEzQx/y7CdFqtaSkpODg4IBMJmu2+xQUFODv709iYiKOjo7Ndh8Jw5GejXkiPRfzRXo25ov0bMwTYz0XQRAoLCzEx8cHubz+LLoW67GTy+X4+fkZ7X6Ojo7Sj81MkZ6NeSI9F/NFejbmi/RszBNjPJeGPHWVSMUTEhISEhISEhItBMmwk5CQkJCQkJBoIUiG3Q1iZWXF66+/jpWVlamHInEN0rMxT6TnYr5Iz8Z8kZ6NeWKOz6XFFk9ISEhISEhISNxqSB47CQkJCQkJCYkWgmTYSUhISEhISEi0ECTDTkJCQkJCQkKihSAZdhISEhISEhISLQTJsJOQkJCQkJCQaCFIht0NkJmZyfjx47G1taVt27bs2rXL1EO6ZXn99dfp0KEDcrmcVatW1di3ZMkSPDw8cHV15fnnn9eribJE01BeXs69996Ln58fTk5ODBs2jAsXLlTtl56NaXnggQfw9vbG0dGRzp07s3nz5qp90rMxPUeOHEEul7NkyZKqbdJzMS3Dhg3D2toae3t77O3tue2226r2mc2zESQazYwZM4QFCxYIxcXFwvr16wUXFxchJyfH1MO6JVm5cqWwfft2oW/fvsIff/xRtX3Lli1CQECAEB0dLaSkpAjt27cXli9fbsKR3loUFRUJb731lpCYmCio1Wrho48+EoKDgwVBkJ6NOXDlyhWhrKxMEARBOH78uODk5CTk5ORIz8YM0Gg0Qt++fYU+ffoIixcvFgRB+s2YA0OHDq3xjqnEnJ6N5LFrJEVFRWzYsIG33noLW1tbJk+eTKdOndi0aZOph3ZLctdddzF69Gisra1rbF+5ciUPP/wwwcHBeHt78+yzz/Lrr7+aaJS3HnZ2drz22mv4+flhYWHBo48+SmxsLNnZ2dKzMQPatWtXJawqk8koKysjNTVVejZmwHfffUffvn1p37591TbpuZgv5vRsJMOukURGRuLk5IS3t3fVtq5du3Lp0iUTjkriWi5fvkznzp2r/l96RqblyJEjeHp64ubmJj0bM+Hhhx/GxsaG3r17M27cODp06CA9GxOTk5PDJ598whtvvFFju/RczIPHHnsMDw8PRo8ezfnz5wHzejaSYddIioqKcHR0rLHN0dGRoqIiE41IojaufU7SMzId+fn5LFq0iHfffReQno258NVXX1FUVMSOHTsYOnQoID0bU/Pyyy/z5JNP4uLiUmO79FxMz9KlS4mNjSUhIYHRo0dz++23U1RUZFbPRjLsGom9vT0FBQU1thUUFGBvb2+iEUnUxrXPSXpGpqGsrIzJkyczfvx47rvvPkB6NuaEhYUFo0aNYteuXfz777/SszEhZ86c4fjx4yxcuPC6fdJzMT19+vTB3t4eGxsbnn/+eezt7Tl+/LhZPRvJsGskbdq0IT8/n7S0tKpt586do2PHjiYclcS1dOjQoUYVpvSMjI9arWb27Nn4+Pjw4YcfVm2Xno35odVqiY6Olp6NCdm3bx8RERH4+vri5eXF6tWreffdd1m4cKH0XMwQuVxnRpnVszFJyUYLYfr06cIDDzwglJSUCBs2bJCqYk2ISqUSSktLhcGDBwu//PKLUFpaKmg0GmHz5s1CYGCgEBMTI6SmpgodO3aUqsiMzPz584UxY8YIKpWqxnbp2ZiWwsJC4ddffxUKCwuFiooK4a+//hKsra2F8+fPS8/GhBQXFwupqalV/2bOnCm88sorQm5urvRcTExubq6wfft2oaysTCgvLxeWLVsmeHp6Cvn5+Wb1bCTD7gbIyMgQbrvtNsHGxkZo06aNsGPHDlMP6ZZl3rx5AlDj3549ewRBEIT33ntPcHNzE5ydnYXnnntO0Gq1ph3sLURcXJwACNbW1oKdnV3Vv/379wuCID0bU1JUVCQMHz5ccHJyEhwdHYUePXoI69atq9ovPRvzYN68eVVyJ4IgPRdTkpGRIfTs2VOws7MTXFxchOHDhwunTp2q2m8uz0YmCJK6oYSEhISEhIRES0DKsZOQkJCQkJCQaCFIhp2EhISEhISERAtBMuwkJCQkJCQkJFoIkmEnISEhISEhIdFCkAw7CQkJCQkJCYkWgmTYSUhISEhISEi0ECTDTkJCQkJCQkKihSAZdhISEhISEhISLQTJsJOQkJCQkJCQaCFIhp2EhISEhISERAtBMuwkJCQkJCQkJFoIkmEnISEhISEhIdFCkAw7CQkJCQkJCYkWgmTYSUhISEhISEi0ECTDTkJCQkJCQkKihSAZdhISEhISEhISLQTJsJOQkJCQkJCQaCGYtWFXXl7Ovffei5+fH05OTgwbNowLFy6YelgSEhISEhISEmaJwtQDqA+1Wk1wcDBHjx7F29ubTz/9lMmTJxMdHd3guVqtlpSUFBwcHJDJZEYYrYSEhISEhIRE0yMIAoWFhfj4+CCX1++TkwmCIBhpXDeMSqXC2tqazMxM3Nzc6j02KSkJf39/I41MQkJCQkJCQqJ5SUxMxM/Pr95jzNpjdy1HjhzB09OzVqOuvLyc8vLyqv+vtFcTExNxdHQ02hglJCQkJCQkJJqSgoIC/P39cXBwaPDYm8awy8/PZ9GiRbz77ru17l+8eDFvvvnmddsdHR0lw05CQkJCQkLipkef1LKbIhRbVlbGbbfdRo8ePfjoo49qPeZaj12ldZufny8ZdhJGR6NWY6G4adZNzYJWq20wF0RCoiWjUasBbvm5QOLGKSgowMnJSS+bxuxnXbVazezZs/Hx8eHDDz+s8zgrK6sq75wpvXRlV69yes4cOjk5EXPypEnGYEo0FRXEP/sssTNnkfXd96Yejkk4uXETPnZ2DA8IIDM21tTDMToatZqXJk7ExdKSxXfdZerhmITio0d5vmdP+rRqxaU9e0w9HKMjCAIpL7xI1Ogx5G/YYOrhmITL+/bRxsmJbh4eZCckmHo4RketUvHcbbcTYm/P87ePN/Vwbi0EM2f+/PnCmDFjBJVKZdB5+fn5AiDk5+c308iuR6tWCxHDhgt/BwUJo+zthSnt2xvt3ubCjy++KPgqlcISL2/hctt2QumlS6YeklEpKSgQwhwcBEAAhIHe3qYektFZOn9+1ecHhOMbNph6SEZFq9EIkWPGCFMcnQRAmBgWZuohGZ3N778vbAhqLVxu20643LadUHzqtKmHZFSKcnIEP2vrqt/A12PGmnpIRueTRYuqPr8chHPbt5t6SDc1htg0Zu2xi4+P56effmL//v24uLhgb2+Pvb09Bw4cMPXQaqX48GHUqamoBdhZVMT6K1c4s3WrqYdlNLRaLUu+/JLkigoSKyoAyFm12sSjMi6/v/U2EYWFAHhYKOihqqA8OdnEozIuK6/x0Lz17LMmGolpKNq3j4r4BAbb2wGwOSKC8MOHTTwq46HVannkzTeZGhfLnqJC9hUV8d1b1+c/t2Q2fvYZSWVlACzx8mZofDyq+HgTj8q4/Pjnn1X/rQX+99jjphvMLYZZG3aBgYEIgkBpaSlFRUVV/wYPHmzqodXKkldeYXthAb3uvZfhotTKhh9/NPGojMfpzVsILyzEWibj8S8+Z1lmBv3ff5/i3FxTD81obN26BYBHhw3j+KxZPOTuTvHuWycUVx4Xx0SlJT1tbVn19tsAHIyJRa1SmXhkxiPvr7UA3Pn4Ewz28UEL/Lh4sWkHZUQu7d5DfEkJcpkM5wULeCg5iTe3bEFVUmLqoRmNdX/+BcCigQOZPWYMAEUHDppySEbl5MZNnMvJQQGsFgsed0RGUCEauxLNi1kbdjcTapWKjw8d4smUFBLC2jB8wEAADhw/buKRGY+d4gqtt7c3oTNnsqGwkARVOUfWrTPxyIyDRq1mT0QEAONnzcJh1CgACnfsMOWwjErhjh3MdXFh3ew5TH32WezkcvI0as5uuTU81xq1mgk//8zraaloBg7g9hEjATh69qxpB2ZEtq78BYBenp7MePFF3JRK8tRqdv74k2kHZiRUJSXsuHoFgGnz5mE/eBAAOXtvnQWeX2oqawID+Wr0GKY++yyzPDx4pVUrii9dNvXQbgkkw66JOPPPP5RotdjJ5fSfNo2R06YCcDwp+ZbxVhw4ogs3De7VG7lcTndRRPHw9u2mHJbROL1hA/lqNfZyC0bccw/2Q4eSq1az8+DBW2alWnr6DAB2gwehtLbmpwkTORgSSlBWpolHZhzO/vMP54qL2FJYiEfPngyecAcAp1NTqyokWzq79u8HYES/fiitrekfFATAsT27TTgq43F0/XryNRqcLRQMnzcPVZeu3JeYQM+ffqJUTNNo6agvXqCTtQ1TZ85AYWnJB1OmMsXJGc2F86Ye2i2BZNg1EQc3bQagm6cnCktL+kyahIOFBUVaDUfXrTfx6JofrVbLETGHZOTkyQD07toVgBNnzphqWEYlpLiE423C2DB9Opa2tigC/BkTG8OC2BjO79xp6uE1O1qtlg1795BcocK6cxcARkydiqtCQenJUyYenXHYK3qnu3t6orSxoc/EidjI5RRqNJy/BRY4GrWao4mJAIydOROA7p07A3D6/K3xUlfFxDDUzo4RrYNQWFri2asnV8rLKdBouLBrl6mH1+wIgkDJmbMA2HTvDoBt714AlNyCShGmQDLsmoijx44C0EecxBSWlnT38gLg5C2wUr28Zw+5ajVWMhkDZ0wHoP9IXRjq9C1S6l925Qq2cjmdB+rC8BYKBe3FLiknbwHDLvbUKR67epVxMTEQ3BoA644dACiLjDDl0IzGwSO6eaB/124AKK2tGd+6NZMdHSm/etWEIzMOkUePUqjRoJTJ6DtpEgB9hgwB4FxSkimHZjQ6lJbxtZ8/3zz2GAByuZx2bu4AnNm714QjMw7Rx47xysULbCwuwrpjRwAUnbtwprSEVbdQWoopkQy7JuJUTAwA/YcNq9r20OgxLPPxYaizs2kGZUQq4uKZ4ujE+IAArOztARg4bToyIKW8nJRb4KVWdlmXP1JpzAB0DQkB4MwtsFI99LeuGradkxN2Li4AKIODWZaZwcLjx8m5BaqDLyTqFjEDRo6o2vblgw/ynrcPQUXFphqW0TgpeiXbOjlhaWsLQN+JEwFILC0l6xaoDC27eBEA606dqrZ1Ehc6526B6MW+tev4Kz+fP0pKkFtbA6D192NuQgLPR0SQfQt8B0yNZNg1AcW5ucQU6ybtAeIqFWDc+NsZ5+CIW2aWqYZmNPyKi3jX25vPqwnSOnt74WdjA8D5Fr5SLcnPZ8bOHbydngatW1dt796jJwDnoqJMNTSjcULMsewRGlq1TeniwqaiIvYVF3Ouha/WS/LziRPnge5i4QyAZbDOuC+PjTHJuIxJHxsbvvb149nRo6u2ebRujZ+1bh44tmmTqYZmFMry80m6oiucsO74n2HXWUxLuRQdbZJxGZPLYh5dx4CAqm0uPj54WVkBcP4WFOw2NpJh1wSc37ULAXBWKPBu165qu5X4giu/BV7qZeG6UJt1WFiN7WEeHvgrlRTEtexV2ult/3C6pIRtRUXYicniAD1HDAfgala2iUZmPK5E6wyXrl261NjezqMVAGdbuJbbhV270ABOFhYEVPsbWAW3pkIQiLh0yXSDMxI2CYkMtbdnwoSJNbZ/OW4cm4Na08vJyUQjMw4ntm5laFQk05MSUXq2qtreXZToupKRYaqhGY0IMXoV1qZNje1h7rpw9MVjx4w+plsNybBrAtopFOwIDmH5iJE1emMqg4N14pxXr5DbwvNLLp0+jUoQsAprW2P7ygce4N/gEIa28An9nCia3cHdo8Z3oKOYX5SnUbf49mIRmbqXVsc+fWpsby+GoS5duGD0MRmTrCtXCFQq6eDuXuM7UO7hQc+IcMacOEFuSooJR9j8lIkpF9bt29XY3rdvX4KtrKCFz4OXRaPFwc6+xvbuY8YgAzIrKkiNaNn5pjGi8dq+S9ca29uJC95LYqhaovmQDLsmoCI6Gl+lkv4D+tfYrnB05I3MDD7MzORsC06ez0tN47ajR+gVEU6Zt1eNfdYhotcyrmUbNVev6PLr2gb419ju4OFBK0tLAK60YI9VUVYWSaWlAHQdMaLGvk5ihezVFp5b09vKim3BIfz54EM1tjv7+uKiVAJwcd8+UwzNKBRmZPDFxQtsKyjAslo4HsBSfKmrWrjn/qqYZ9vGz7fGdgcPD3o5OTHIzo68yEhTDM0oaNRqYkVJlw79+9XY114spLgaF2fsYd1ySIZdE1AeqQu1Wl0zmcF/7ufLJ1pu8vwFUXjTWanELTCwxj5LMd9MFRtn7GEZlSjRaGnTJuy6fY9168Ybnl54abTGHpbROL9nDwLgolDgfW04vptu5R6fm2f8gRmRMtETY9uu7XX7QlxdAbh09KhRx2RMLh04wGdZWbybmYHimoKxfCdHvs3O4u3t/5pmcEYiUvTKh4VdPw/8OXES3/n546PRGHtYRiP+7FlKtVoUQFj/mo6OTqInPyqr5eecmxrJsGsCXty8mS+yMikQS9qrE+TtDUBMdMvNs7sqVnwGi5WQ1Sn3cGdufDz9du9q0eKc0ZXhh+7drtt33+jRzHR2xqWgwMijMh4+KhUfefvwUq/e1+1r01s3oaeWlbbotlKVixcrsRK6OmGiWHelR6clUjkPtK5FBUDw9OTTrCxWxMW16O9AVHo6AO27dr1un1L05qsSEo06JmNy9cgRAALs7Kqqoitp17cvAKllZZQXFRl9bLcSkmF3g5Tk5/NHchJfZWdX/XCr01oMQcS2YC23CPFlFerjc90+56AgIlTlZGs0RLZQb4VapSJerIZsf80qFcBS9GKqElpuGMo2PYPbHB25a9zY6/b5d+qIlUyGpUxGwrlzJhhd81NWWEjfPbuZEx9Hufv1C7zg4GAA4hJbbo5ZuFgcEiIuZqsT0KULNnI5GiCyhSbPqysqiBMNlg4DBly339JfVyVa1IKro/u5unI4tA3LJ0y4bp9Phw686efHt37+qNPSTDC6WwfJsLtBwg8dQgAcLCxqVMRWEtJWty2+BVdDRYqeitBaPBVyuRw/OzsAYlqo8nzKxYs4yS2wlMkI6dXruv3qVp6cLClhawvOsVOJISiralIvlVgoFBwYNYqTbcJabDg6/MgRcjQaolQqnK5JRwAIbqsLzya04NZqkWI1ZJta5gELhYJAUd/ycgtd4EWfOEm5IKCUyWgjeqeqcygnmwFRkcz4+RcTjM44qGLjcLawoH33Htftk8vlzO3alYF2dgiiZ1OieZAMuxuksgoqyNGxRiVcJSGi7EFCCw7DxYg/0nZi141r8RVDtHEttBrMtbiYfaGhnB43DoVYKFGdRBnck5jA8y3UUwGw+uBB9hUVoWrVqtb9XsEhyGQyKpJaZhjq6vHjALSuYx4I7qT7bSS24HkgOjUVgLAOHWvdHyB2YYlvocUDQkoKc51dmOznh1LUbKuOR2goeRoNcQX5Jhidcahc4Fm2Dqp1v6WvLiWhIqnli5WbEsmwu0HCxdLtEE+vWve37adbuWVVVFDUApNGtVotseLLqv01MheVBHh6AhDfQuU+KnOrnGrxVACEil68PLWawsyW57HRqNW8eu4sDyUnkSMKUl9LVX5RYgs17M7rpFxCxO/6tbTr15cJjo7McHREI1YPtzTi8sV5oG/t84C/+LdJaKHV0a1KSnjF05Nl1UTqq9NOTNPIrqggL7VlhiKf2rqFJRnp5Do41Lo/ydaWDfn57Nzd8nvmmhLJsLtBokQl8Ta1hKAA3AMD+SQklNUBgcjM9KWuVqk4unYtapXK4HPL09O518WFOxwdCaslrwTA31/3Uk8w45ZSOUlJnPu3cRV7KlHKxTKo9u+Ai48PDhYWAMSePduoexgDTVEx2kZ8B+LPnqVMEFBArSEogNMlJTyenMT/fv/jBkfZfMSePk1OI3XWosTiqJBq4tTVcQ0I4IM2YTzm7oHaTLXstFotB1etpiTfcI9SenQ0eRo1AO3FXsnXUjkPJJrp5wdQlZQQcaRxoeKG5gFXPz+cLRQARJ8yT5UEoaKCiuzGiakX5+ayPi2NX3Jzsa7jd7ArLZWX0lL5xYy7T1SkplIhep9vViTD7gaJEiepsA7t6zxmQpfOdLaxQWuGXxatVsuUTp3oP306fX18SDawak9ISeEhd3c+7tkL2zpEiANFT1aSmXosdy5fTtvgYLqNG8dXjz5m8PkP//IL9yUmcLa8vM5jvMUKsdgL5ifOKWg0xN8zj4hevbg8ahR5BnrVroiVcP62tijF3pDXUmRry86iIg6bqZ7h7h9/IqxXLzYPG07Oyl8NPj9KXLS0bV/7PCCTyVD6VYahzK+AQq1SMbtrVwbPmU2/1q3JNrDYyzY3l01Brfm+U2fsxZDrtVTNA400HJqbzZ9+ireTE20H9Gfp/PkGn3/pzBkKNJoqiafa8LbTzQNxZlgdLQgCCQsf4I/uPejk7EySgULCVw4cRAAcLSzwqkXuBSBU/H3Em+m74MzGjZwePYboMWPJW7vO1MNpNJJhd4MkiqvbdrXIPFRSlVeQbH4r1a8fe5zNYs7L6exsnr3zToPOV4lik5Z1rNAAQjt1wl+pxFMma+wwmw1Bq+Wpp54iq6ICgCe/+pLzBvY0PZqUxNGSEiy8ag/DAfiKEhBxEeGNHmtzUbhjJyXHj3OwuIixR47w3OzZBp0fLnohW9dSDVpJUIcOAKSYocyBqqSEB594HAsAlYr099+nwsDk7tjcXADa9uxZ90HeXiSoVMSaYWXw5w8/wp/ii/xCbi6Lbr/doPM1SUmEWFkxup7PP/b229kc1Jof2tW9CDYVWq2Wx19+mRy1zuv4xsqVhBtY7HTXtm30i4rkfHHd3/HKfOOECPPLMyzcvoOSo0fZX1zEpfx83ly0yKDzr1TmmTo51ZpnChDSrRsAiWYofVVeVMTEWbOYGRFOXHExqa+9hsoMF2H6IBl2N4CmqJjtQa35p3UwPUaNrPO4SBn8kpPDll3ml1fwwypdaGywKFWy4cIFg1brV06cJF6lQu7vV+cxA8aO5d/gEN53c0cwM3HO0lOn+M3bh6+CQ+ji4kKFIPD94sV6n1+UnU2q6KmrbB9WG/5iUUGCGaquf/bKK2Sp1VgFBJKiVvPT4cMGrdYjxKKYUP/r5X4qCe7eHYActZpi0QgyF9YvW0ZkYSG2FhZ0at8O1Gpyf/td7/MrCgtpo1Dip1TSoY4wJMDSCxcYFxvDV3/91RTDblJWbdoIwDB/fxRAWXIyagMKPf5b4F1fEVyJe9u2BFtZYZmVhSAaUOZC+p69tLOwwE4up52jI6VaLR8995ze5xekp5MmzgPtBw2q8zg/cR6Ij4+7ofE2B1lffQVAP7Et5MojR0gRW8Tpw9ULOtWD0FrkbioJ6aGrls1TqykyM8/tP999T1JZGYWCgHeHDmSqVGxbutTUw2oUkmF3A1jY29Hh1CmGbt2CbT3eikOZmSzJzOCvI+Yld5EaEcG5nBwAftmyhfE+Pjzv4UGpAQboO3/9yW2xMfwSVbcAs8LDA5RK0GhQm5nsS/6mzShlMibNmsUzDz0MwN9HjqDV6ifLcVnsEetkYUErUausNqryi8wszzDq2DFeO32KsbExTPr9Nzo5O6MG1n/5pf7XEAVXQ69p+l0dV39/bMVVfOzp0zc05qbm302bAJjUvTvBTz/NzsJC5r7zDho9jQ9NcjLf+fuzq0dPPOoJwwUE6HTMksxMwyv58mVOiL/LH9au5eio0Xzg6UWRAZ7rHzZu5PvsbBLrCMUDKNzddfOAVmt284Cw/V8+8vHl/Isv8r+nnwZg6+nT+s8DBw8Cus4r9X0HurVvzyBbOwIUihsfdBOScP4Cj+7ZzV/5eczbsplOzs6UCwKrP/xI72tEiPnmYXUUkYEuz9Berss3jjl95sYG3cRsXLMagNs7dyZt2FBGREex6NtvG5V7bmokw+4GsbC3w7oW/brqBASbZ25J0dGj3O/qyu0+vgR168bPb73FLGcXtAboTFV2XGhbi9J6JTK5HKVYEWduSalFe/cC4Dj+dqY+/RS2cjlJZWUc+F0/j82VEycACHZ2rjP8ADB22DBe9/TkzoC6PRqmYM+aNQCEOTvjFBjIbf11BTCbDSgkic3W5cu073G9dlUlcrkcHzHPMM7MmoDvFcczZvx4bAcP5sW0VHbm5nBs/Xq9zq/yVtWiX1edALHlYLK4mDIX/vz0UwSgi4sLIb17Ezh9OgAF2/7R+xq/njrFx1mZxAtCncfI5HLWqCt4PS2Vs+KCyFwoOXkKAM/x45nw6KNYy2Qkl5VxXM/vQOU8EFJL953qzJ8+g+/8/ZnmUbsskKnY/svPbCssZHVpKUpXVyaI0Yd/DahejRLn9nadape9qqQyzzD24oVGjrbp0Wq1/CumSEyYOpUhixZha2FBukrFkbVrTTw6w5EMOyMQJBZWJJtZXoHdpUs87dGKH595Rvf/Yjl+6YmTCGLOWX1o1OoqpfX2dVRDVvJWYiJDoiL5w4yqIuPPneeOY8d4PT0dm+7dsXdzY3hwCJYyGee3b9frGuEXRJkLr7rDDwA9BwxglrMLndQN/12NyUGxKX0/MQdu8r3zATgQH69XyFRQq3nf04v3vb3pPWJEvcf6OjkDEBduPnqGUceOEVtSggUw9v77sbS1ZYDoXf1n1Sq9rlESrRPmrS/PFCBI1Hczt3ngDgdHfvUPYPG8eQDYDxsGQPyxY1ToIc2i1Wr/mwfqkDyq5J/cXP7Mz+ecaAiZA3mxscTFxSEA1l26YO/mxsuDBvGlry++ehYSVXbdqK37TnWU3jpZrAoz89ruEaM0g0Xd1fF3zgXgYHy8Xu2/BEEgs7LrRgPvgsp843gz0jUNP3SI5LIylDIZ4x96CBsHB/qLHvadkmEnURvBojcrU6Uyqz6JZWJllk0PXf6TVbt2pNpYsyYlhbMbNzV4fvzZs5Q3IHNRSalSSZZGQ1xM9A2Pu6k4suFvIlTlnNdosBC9SR888QTHQ9swSaHU6xoRotp+feEHAIW3bsJXp6Yh6BneMQZHxcl10PDhAPSbNg0PpZJSrZZDojevPiqSk+moVDLRoxWt6qgIrcSvlQdWMhkFZhSG2y9O2p1cXXEVq1ZHDtZ5K3aL1b4N8fg3XzM4KpK1qfUXRwV3+28eMKdemfLISHrY2jL4jjsAsGoTyl3JSQy5eEGv70DC+fOUarVYcH3j92vxc/cAID7GfNpqbfnpJ0bHRLMgOwsLsTvGow89xHB7BwQ9u+XU13WjOgpxAZiflITWjPKND4vzwIjbbgOg37SpuCoUFGu17PvttwbP1+TksD2oNftD29BlxPB6j31i5Ci+8/NjpG/dednG5uS/uoV8O2fnqqruYaJ8176jN5+wvGTYGQHvdu1QymRogfjz5uF+Li0o4MCFi+RrNFWhZJlczrKiIv6Xnsaan39q8BqX9ZC5qCTAzxeABDPqmXtMzIvpHvxfTkzr0aOwlMspOXtWrwRvy9JSXC0s6uy6UYnSsxUnS0vZkJlJrpkItOYkJREpeo+Gi5Wwcrmc3uJK9YAe4djqYUhZPaFogCXz53O6TRjz29YuhWASMjLoZG1Nn2r5gbffczcAJ9LS9DLAYtLSyNZosG/AW+MVFoalTIYAxJlJez1teTnlYn6stei1lcnltBKT/Hdt2NDgNS4f0uUO+9vaXtf4/Vr8fXV/o0QzEqo+un8/ACHi9x7ARkwrKD17Tq95IFr0wLXt1Kne4+TubgyMiqTXlcukhptHhXxBejpxosNh8IwZgK4F3KDgYIItLcnSI3VCFRuLTCbDOyAAS9E4rotBffsyyM4eF7G/tjlw+rjOeOtcLZ1i1MyZABxPTTGrhZg+SIadEbBQKPASDZ+4C+YxoZ/e9g/z4+O4PS4Wi2ptoAaLq5RjegjpRojHBIur8PoIFBOKE8zIW3Na9Fj2ribRYNWmDXJHR4SSEkob0JoSBIHX3dw5GNqG6XfdVe+xMqWS59JSeTEttaoNnak5t3MnAuBpaYmv+FIHmDJ6NPe4uNBNW3e+VCW7//mHX3NziLCr/4UOYO8fgEwmQ21GqvujraxZExjEkscfr9rWaeRInC0UqASB45sa9lzH5OUB0L533ZJHIOYZip05Ys3EsDu7bRvvpqSwQ6tF4fVf95whouftgB4h0/CzuiT41nXo11UnQAxXJ5rTPHBVZ2D1rRZ1sAoN5SQCnybEc/6f+nMNBUFgqoMDs52d6VFPZTyAwtoapShWHmMmsjdnd+4EwEOpxEvMAwX44dnn2Nw6mCE0LFNVXtVKrO7CkUqUPjqvpTnlW4+ws+dxd3cmjxlTta3H7bfjbKGgVKvVax4wJyTDzkj4OurEe+MMKB9vTs7s2wtAe3ePGkn//UaPBuBcamqDFWER4oozNKBumYtKgsQm6MniS9AcuCS+XHqPGlW1TSaXs9bKikmxsXzaQKm7JicHbUEByGRY1SPzUImv2GYn7pJ5iJNeFA3MsGsquucuWsSLrTzpnJ6OUE8yPMD6Xbt4LyODrXq8qJXe5jehl0XqQlDW1QRV5XI53cWXz6Gt2+o9Pys+nlx1/R0XqjOrfXsedHOjVQN/V2Oxd9MmfsvLZV1JCbJqOpOD75gAwLnUNL3ngTbVPF51EST+nZPNSPImKkdX1Nal2vOTWViwvLiYr7Oz2bpqdb3na3JymGFtw/+8vGlbj9RJJZXzQPyVKzcw6qbjgqjX1/aaecBOTB0ovdBwlOmzn3/hkaQkdpc1nJNZbG/Phvx8VhxrXIeP5qBddjYPurkzftZ/Gp4WCgVdxZzIo3rmXJsLkmFnJF4bM4ZVAYGM8m948jMGZ8/oVtmdQ2pKdPSeMAGFTEaOWk3UseP1XmOEiysPubkxtoFVKkCwGKpMLi7WW0KgOcmKjydbLBDpek3Sf4GzE5Gqco6fql+WozIMqfT2Rt5AKBrAx9UVgITouqVhjMkwN3c+8/HlkbFja2y36tABmaUlmtxcKhoIG0dXdlzQQ3S2wMaax5OTmLF/v1l8B8pzcigRRcOtrlHK7yPmxcZeqd8Ir5S5aGVpiZNX7f2iq/P4mLE87u5BgJmIdV8Uw2yd24TW2N77jvEoZTLyNGrCDx2q9xpRYnpFfXI3lbQWQ5UpZpJrnJOURIYoZ9Fp6NAa+/qJYronTp+q9xpV84CPD3Irqwbv6Vs5D9QjEWVMkiKjkAHtrvG2WXfoAHI5ZamplCTVL9N06NJF9hQXkaGHjEuRjS0vpaWyJDwcjRnkGapzcnTyOzLZdfPAQ3fcwYfePoyyqz+8bG5Ihp2R6NWzB11sbLDOM4+V6lXxhd25a7ca222dnGgntgY7srl+93PPigoec/dgjJh0XR+txZyVEq2WHDPIr7kkyi20srTE8ZrG7f3EqsAzCfUbNT+tWMHomGg+0VPGxl/0WJlLnqFTRjqjHBwYM6amYSe3tKQiNJQTJSWcbUDyIkaU7mgrFuDUe7/WrdlZVMSZkmIyzCB5/sD69fSKCGdRRgYWjo419j300EMcCW3Dc871y1eEi5p8QWKlX0NUeS1TzMNrWWmYh10j2WRlb08HUbrjcANhqE/atmNDUGumTZvW4P1ai8ZSoUZDrhloOl4Uq8JbWVpWFc9U0lc09M418HuNOHaMy2VlVPj66nVPX3G+STCDeRDgIT8/TrYJ46UFC2psl9vZ8VpRIX0jI9j044p6rxEt9kHv0L3heSCoaxdkgEoQSDODytjYo0fZXVRIsrMzFvZ2NfbdPnMmtzs64hhrnq0Q60Iy7IxE5YRuLvlFcWIopF3P67XHeop5FpXFBbUhqNVV7VYaknkAsHNxoYu9PX1sbMkxg5VqfmwsQUpL2rpdLyw9cOpUAOJLSsis5wd95fJlkisqKLO10eueAaKGXZKB7aqaC5Uo02EVen0l36cpKcxLTGDFb3X3TS3OzSWlrAyg3o4Lldg6OuKu1FUbx5lBftGlEydQA/JaEv79Bg/GSaGgIikJdT19LcPFsHpDMhdVtPIgSaXigiiPYWpixEVJu1o0CHuKHrjj9bTWEtRq5CkptLGywr8eHcNKHD092dq5CyfbhGFTZPrk+ctiG6xQ0YtWnX4TJwIQU1xMbkrdFc/L//qL6fFxfKBnMUSgmKCfbCbzQHlUFDZyOV6i0V0dpasrpYLA0Xp0B1UlJSSIhRD6zAOWtrZ4WFoCEHPW9PPA9i1beTQ5mbdqWcjbiJEmVUwMmpuogEIy7IxEnrUNK3Nz+OLAflMPhdLCwqoXcvta5Al6i0nEp+rJB0y/dImD+XmkyGUoPOvukVqdv8eM5aeAALxlpv/a9XNwYGtwMKuuWaUCeLRuTaD4sj+0ru5G0BGi17NNHQ2vryVIDHclZZteoLYoK4svz59nV2Ehylo6ZvTqq9MjO13PivrqoUMIgEM9Tb+vxUesmIszA8MmWuyRHOx7vVFm4eBQZfCW1lPo4K3V0s/Wll6i/ldDHE1NZUxsDI9s118AurkoLSwkuXIeEIumqjNu9GhmOjnT16Lu8FpFUhJUVCCztq5RfFEfbUNCsJXLqWhAHsYYtJbJudfFlYm9el23zzssDF8xxeLI+r/rvEZU1TzQcCgawF/8vZmDYL22pKSqC4hVLYUPfcQe6Kfq+b1GHDmCGrCRywmsxTisjf/yDE2fbxwp9u8OrmVxpnB355KdLcuzsjj5d8MV4uaC6d+wtwgFVpYszsjgazNwPUccPowA2MnleIlFDdUZP2cOX/v6sayVZ529Xfdv2cIDSUk8mpzcoMxFJYoqcU7Th6FUsXEAWAXXXsXVXfSuHRU7U9RGdIYu/NBej/ADQKBYeZpSZHqB2iuHD/NJViavpaejrM1bMW4cAJeys+tsqXNVrJhs7ehYb9eN6viJ94qLNL3XNlYMhQXX0Qpul5UV8xLiefeDD+u8xlQHB1b4B7Dg7rv1umeQ6AFIKSkxeZ5h+MGDVfOATy0ahBPvvY83vLwYkJ9fp2D53r//5rW0VLYpFXrPA/9FL0w/D3TUqHmuVSsWzpxV6/5uYnj2+N49dV6jMgzZ7pq0lrpo1607g2zt6N2ANIwxuLh/P/MS4lmSl4tFLekE/W/TzQPn0tPrbLF3+YiuCKK1gwMWerZKM6c8w2jRMA8NDa11/08FBXyUlcnW9XUv8s0NybAzEtVzS3LEEKapcCwu4X+tPHmsQ4daX8iB/foxvFUrXCsqKI+uXVD44ildQnHbeho+X4vSy3zyi/5rWh5U6/4+Yoj6ZB26gxVlZcSX6MIPHfUIPwC069OHNzy9eNfTE62J+w9Gi1I1AY4Ote7vNHIktnI5JVotF0Q5hGsJFxPvgz3189QA+IlenYQG8heNQazoqWjTsWOt+0vc3TlRWsr+s7X3tBS0WsrFXEHLevoEVyfYjHJNw0+eBOo2zC2DApHb2yOUlVVp3V3Lgf37WZufz34DwqoHCgt5PS2VlRs2Nm7gTYgqUUwnqaOyv4foiT1XR2WoWqUivrLjwoD6xZkr6TZkMN/5+/OUvQOCieeBy8ePc6K0lNPl5bXu73HbbTpRcY2GK2I+4rVcOa8Lp4bqGbkB88o3rpwHwjrWrkHYS3x3nzSD9BF9kQw7I+Ho6YmTqF8Uq4dGXLOOpSCf2S4uPDJyVK37ZRYWWIsvu7I6JrQrYluo9nqG4ADWxcYwJCqSRxpIxG1utFotg7ZtZXZ8HLl1rJr7jx5NoFKJj0pVq+RH5LFjqAUBa5mMID09ds7+/szy8mKQnT1qE7cUihKlFgLcr88xBFBYWtJJ3He0Dh2vOUFB/B4QyOOTJul9X3+xXVeSiT+/VqslvlD3Qm5bTcewOoMniJIfGRlUiCHL6hTGxFBQVIRMqcRSD6kP0OWauopejZgzpm2CPtLbm30hoXwxaXKt+2VyObIO7TlfWsrprVtrPeZqhC6c3b5N7d6O2ggvLeHP/Hz2mYGm56nISDLUFVjUEUa+Z948NgS1ZnEdXRJiTp1GJQgoZTJCagnn1oaFqysypRIEgQrR628qKueBII/atUgtbW3p6KrTJzxURxFNUWoqNjIZ7fSoiq7EX/y9JKaZNs9Qq9USK4q0t+tbezu8vsN1qglnTOyQMQSDDDtbW9sG/9nY2OCmh1DlrYiPna7iJr4B4dvmpkJcJdX3Mopr5cFnWZl8uXx5rfuvJuu+5B31zKkAsHJzI0ujIbGeZHRjkB0fT2pFBefLynCrYzIaMmsW28La8pKTE+paEqevHNWFH4IMCD/IZDKU4gvE1F7LWDEUHeRXd1uf7qLRfrIO2RvrxCS62djQc2jDcjeVBIaGYiWTodWjB2lzkhETQ5FWl2bQpl+/Wo/pMmYMdqLX8kwtxu0/a9bQNyqSB9LTkOn5HYBqeYYXTZtnWJGUhIdCQfvu3eo85suUFGYnxPPlr7UX0YSn6CpbOxgwDwS0FnPMTDwPFKSnM/PyJYZFR1PmULvnuvXQobSxskJITkZTiwbnpUO6ArMAOzsUYkFAQ8jkchTe3hRrtRTGmbbaMkb0OLf2r1uLtIfYKeZEHcLqD7fy5ESbMJ556CG97zth3Di+8/PjeQMcA81B6tWrlGi1yKl7Hug/ZQoyILW8nCQ9unCYAwYZdnK5nCtXrjT4zxy0acwRX1E+IF5c5ZqKvUePcbqkhHKP2r01AHHW1nyTnc2qWvplatRqogsKAOg6ZOh1++siSJRUSBHPNRWVnhJXhQI7l9rlLOTW1lWitaUXrv8xy7Oy6WZtQyc9JQ4qibS2YmN+PmdNLM4ZJyauB4fU7Wnp3U8XWjoddf33VdBoKBeLD6zatrtuf11MmTaN023C+Li1fqHL5qIwJobbHBwY4uJa53dAoVTSXTTED23ect3+iyd16QiuroYtZKvyDGv5uxqTSqFoZT0Vvf0GDwbgdC3yNFqtluj8fAA665mOABDUTpfXm1Jg2lzTysiJg4UFLnX8DSycnFAG6hbApbUY4mfFBV57A1JSAB66coXekRGsrac4yxjEit+B4DryywCGDxvOcDt72mmuzwkVNBrKo6KQy2Q415HSUBuh3bszyM4e70LTvguixHQETysrbOow7p29vQgV9x2upYBCU1RsVv2/wUDD7u233yYwMLDef0FBQbz55pvNNd6bGr9WuhyE+Pg4k47j1QP7uSsxgXP1dIEYKJb6X83Lo0ScvCuJOn6cUq0WpUxGu0EGTOhi4nhaeXmdibjGIP6yLvzg00BPQ+sundEKAklHrzdu+8pl/B4YyFePPmrQvX+KjeXFtFS27Npl0HlNTbyoPxfSsUOdx4yYNpVXW3nyqqvrdcnzUUeO8HZcLBtKirEM1F9029rXV9dWLCOjzoR8Y9BKVcFHPr78cvvt9R7XWxTUPVKLt+JSuK5qvGMtBUj1UZlnmGjinsFv7tjJ+xnppNVT9NBfDNNGFBRQmFkzbBh59CglWi0KmYz2ogGoD0Fi3lpaeZlJ54FY0fviY2tX73HH7Ox5MTWF77/5+rp9g2zteNbDg1mjRht0bxdnnVZovIn1HOPFytw29fS6nr5wAV/6+XFHWdl1OYEViYkI5eXIrK1R1uP1uxaFaAhrMrNMmm/sb2nJB94+PNej9nSMSnoE6YrsjtaiahH71ptE9OlL7p9/NssYG4NBht1TTz2l13FPPPFEowbT0gnw14W9EuvRRGputFotqaLqe+t6GlYH9+6Nm1KJGjhxTSPwM2IyfbC9PUo9Oi5UEtC5M3JALQgkm7CdTqWnxK+WatDqHKiooG9UJPd9/c11+8rEcLp1h7oNo9rwEz0DiSYUZ9VqtSSJulOh9WiPBfXty10BAXSwUFB2TTX30X/+5fe8PH4vKkIm5o7qg4WbW1V+kdqE/UIrpTaUtUidVGfA8OEAnIq9/gUcLj7DzrVoQdbH6L79eNDNjcG1aCgakzXx8fycm0vFNeLM1Qnq1pVWlpZogWMbaxY7HNuiy7tr5+SEpQEVntXngRQTtliME7/Tvi7O9R4XY2nJxoICttai6xmck819rm5MnjXToHv7i57+RBPmbWnUapLElIg2PevOD1QGBur6Z6tUlEXW9DKv+/ln7oiN4bPSUsPmAWdntpaW8k12Fkkm7JvsVFzCeEdHZtYi91Od3r10ht+ZWtKoJnz7LcPOneWMifOGq9Oo4on8/Hx+/fVXXnrpJR577DFeeuklfv31V/Kv8exI1GTmHRNYFRDIq+0NMwYAjq5dy5r33iP1BuVSshMSKBHdxkH15MXI5XK6efNo9QAAUI5JREFUiquqw9t31NjXSSZjiZc3j13TiqshlNbWVcKUcQb+mAszM/l4wULO79jR8MENUOkp8WtAd6vNoEEUa7VcyMqsIfmhKiwkT5TrsDbwWQaKWlFJjUiaLo+JIeeXlTcslKnOzOT3gEA+9fUjtJ6Eb5lMho3YWqv0dM1E/7MndVInHfUsGqi6plzOO3l5zIiL47CBz7K8qIgNyz5m4yefGHRebeTFxaMVBBRe9YfQBs+YgbOFBf5AWTWPVUl+PuFiSkGP0WPqOLt2xo0Zw+PuHvQRxZoNYcf337PmnXcpvsFeqzlJSVU5hq0byI/rLhohR3bUrI6OOX8OGdBVj8bv1VFaW9PKUtd6K9bASsPyoiI+uu8+Dvzxh0Hn1UaCWBnv36pVvccNnaDrrHMyObmGh1FbVoYqRpcjZ6VHS73qBIjV+ImNWNxUpKSQu2o16hv9DsTG4iSXY4GuG0RdyGQybDp1Iq2iggvX5JqeOnqMGJWKLEvDvssymYyvsrP4LCuLiw20rryW7IQEVr31FjG79zTYy7ohKkRjTNlAKH3aPfNYHRDIZ17eNe5ZmJlJREEBaWo1wQZ4rZsbgw273bt3ExwczA8//EBxcTFOTk4UFxfz/fffExISwp49dev9NIbMzEzGjx+Pra0tbdu2ZZeJQ1g3QuuuXehiY4NDPSHQ2tj86af0nz6dWa+8wuCePVHdQJ/FyryS+vLLKukluuePiXkIlTjGxjHRyYk7Z88x+P4+lcKUBqzUBa2Wfxc+wKsrVtB9zBi+fvxxg+9bnUQxr8S/nsIBgM7VJD/OVWsCfeTvv+kdfpX5qakoWtVeTVYXgZVN0PPzDDqv6MBBYqdNJ/2990h88EG0tVRp6osmLY321tbcFhraoKelOKwNa/Py+HpFzSKac1d0z69Lp7pDOHURXVHBpfIyIvRoLl41ZrWaoSGhTH7maSY99RQb33/f4PtW56HffqVbRDjrG9DR8gwJ4cSIkXzt54+62nf26Lr1qAUBd6WS0Dqq6epC6SPK/hio47ZrxQrGPvAAs157lR6BgdelSBhCjGioOysUONRREVlJL9G4P3mmZu/k+zw8ON6mDa8uetDg+/s46NIgkgzINxbUaub06MGzP/7IiLlz+fmVVwy+b3USxT7BAQ307+43ZQrWMhl5ajUXq71/ovYfYGteHonW1gbPA0FhuvB9soHvgqJ9+4gaM5a0N97gyoKFtVZr64t9WRn7Q9twbuCgBueBlYUFjIiJ5u1vv62x/bhY2dyrjsry+vAVW1fGh+v/LtBqtdzRpw9zXn+d7ffcQ8E1XmRD+ffIYfYUFZJvX384PnBAf7o4OqIoLKzRP/vYxo1o0bWkq89RYmwMNuweeeQRVqxYwd69e/nss8945513+Oyzz9i3bx8rVqzgIQMqY/S9n4+PD1lZWbz//vvMmDGD3BtcqZiKqj6R6el1Cv9ei1ql4tnXXqv6/+iiIr584slGj6GyEq+h/DKAYbePB+BQTHSVmKqg1VIqvpBtuhj+Uu/h708fG1tsDKiKzF//Nx2vXmWBmyta4M1vv72hCc1FEAhUKgltIDdKYWlJFw/dav7g5s1V24/v3o0WXYssmYHN3INEraSU4mK9V5tarZbZM2fwV2oq5VotMUeOsuvttw26b3UqUvVbpQIkubjwWnoanx46VPUdUKtUnBCrogeNrz9HrTb8RBmVhBj9KwJXvf02xzJ00ggvtWpFu63b0N7AAiclLw814F6Hfll1bEU5m9Jq7Y8O/rMNgB5+fnqLM1ei8PIiUaXicGwsFXr+DlQlJSx87DEqvzERhYUsf/FFg+5bndhLuvwyX7v6X2gA/UeOBOBYXNx/84AgUHrpMnZyCwINKJyo5NspUzjZJoyxrYP0Pid/02ami3prakHgqaVLb2iRm5Sl88AGNqBBaGlrSzfRq7enWrHD2l9+4dnUFN7LyjJ4HmjdWTcPJBs4D1x+9z1QqzlVUsK4jRt47555Bt23OpULCzs9CsD6jNF5pY9U+w6oVSpOidcYKuZkG4KfuKBIMKAP688vv8xRsRWbq4UFmZ99fkO5uh8cPMgjycmcyam/G5DM0hJrMTe0+Oh/+bZHxbSkrvq2FDQSBht2CQkJjBNV6a9lzJgxJDah6GZRUREbNmzgrbfewtbWlsmTJ9OpUyc2NdCU2lxReHjwe34e7ycnkRauX0h147KPCS8sxNHCgmfG6v7uH//2a6NV6/XNLwMYdvddWMtkqLVaovfregVGHz7Cj/HxnFOrsTJAt6iSd2fN5qeAAAa767/CzRMn0+deegkXhYJ0lYq/bsBj87KPL9uCQ5iiR9PyAd103oqdu3dXbdsn5tr0rifhuC5ai9ISxVotuXrm1/z7zTdsSUtjcWYGhwcPZmRMNE99+aXB965kz949/JiTzXmh4e/QwJkzUcpkZFZUcFn0xp/avJkCjQY7uZx+U6YYfH9/Ma8tMUn/uWLJZ58B8NSIEdzbsSOa9HQKdzc+OpAiCuoG6VHJZyN+B9KqFVC0q1Azw8mZCUP1rwqvRO7qyh1xscxPiCdez5SErV9/TWxJCS4KBU+JL9lPV65s9DwQL+ZK+eoxDwy/+24e9fTiUy/vqkro8phYtPn5yJRKrPRspVUd/zZh2MrlBvXOzl+7lu42tkQt/QB3pZJctZq/l31s8L0rmebuzr0urnTv17fBY/uLXst9+//rmbrv8CEABvfpbfC9K8PfJVqt3oL1G5YtY9DOHSzJySZ18CBS1Gr+EBcYjaFSS1OhxwJv0OzZWMlkZFdUcEFMoTjzzz8Ua7XYyuX0aKAIqTYqIyYJSfrnGy8TPYbPjxlDN39/KpKTKdjW+L9Biphr3FqPeSApuDWvp6Xx3JIlVdtOiRGwno14FzQnBht2w4cP5/HHHyfjmtyAjIwMnnrqKYYNG9ZUYyMyMhInJye8q33xunbtyqVa+taVl5dTUFBQ45+5IVMoWJ6by8+5uUSIOUoN0bewgHWBQXxz51xeX/kLCpmMxNLSOlXAGyJR1LDz06NbgI2DA9tnzORgSCiuot7S2u+/4/3MDJYV6CZ1Q1FWtRXTb0JPvnCBI2LrI8+5c5kr5jH8/PPPBt8bdOEctbji02dCmyS2itobHUN5UREVZWXsF1eY42fX3oaoPhzc3XGuEqg9q9c533/xBQDTu3dn6ksvYgFcys/nUiPTHrYePMgHmZn8o0co0NbJiV6iovy6774DYLdoaPfy8TGoeKYSQ/OLoo4d42JeHhbA899+i5P4EiluZN/lwsxM8jS6XKmG8ssAMtzdGREdxcBVf6BWqRC0WrplZvCmlxf3Pmh4hMJCocBb/LvF6mnYpR8+jJdCwYSuXXntxx9pY21Nd4WCXAPC2dWJr8wv06NbgK2TE89NnEAXGxtKxEXNR6++yqz4OLa7uiLXU7+tOlV6jnrOA6rEREpOngSZjIC772JqH134e+UvjZwHtFrGy+Q816oVnRtInAcYP0v3W98VGUF5URFqlYoj4lw6Wo8F4rU4eHgw1tWVGU5OlOhp2Pz6449UCALK0FDmv/MOFkB4YSHhhw8bfH+AZX/8wfyEBDbr8QxsHBzoKb4ztq7UaRru//tvAHp4eTVqHggUK02TMvWbB2JOnuRiXh4y4IlPP8V+ymTOlZby1/LGCd4XZWeTK+ZMBusxD2jatOHP/Dz+vHhBNw+o1bxm78AyHx+mzrmzUWNoLgw27H766Sdyc3MJCAjAy8uLsLAwvLy8CAwMJCcnp9Ev3NooKirC8ZqKLUdHR4pqSR5fvHgxTk5OVf/8DSi9Nia+4ueJ1SPHTNBqKd63n3bW1kxY9AAOHh680rMXX/r64iROzIZyu48vr7byZNIQ/URlO4wdi1wmo1BMnP77X13z8gkjRjbq/pXJ6uV6VoX++N573JkQz/OlpSg9PZk+fz4AxxITGyWVoM7IAK0WlEoUdXRdqM7AWbNwUyop0mrY+dNPHPhjFYUaDU4WFgycPdvg+wO83b0H3/j64W3R8M9Po1azR/SS3P3QQ3iFhjJIVMFf00ivXZKo9u7fQG5RJVNED/16MeyQKX53B+mptH8tgaKnN1nPlIqNokHZw8MDr9BQND16sCwzgynffNOo70Blnqm9XI5rA3mWAMGDB1MqCBRqNGz54ktKTp5Ek5mF3MGhyptnKJX5RXH6zANqNcNTUtkVHMLSJUtw8fFhx+zZvOXljaye5uz1kSx6yvT9DtgP0i2oivbqFpRb9u7hQlkZxf4N//1qI1Zdwf/SUnmtjo4W17Lmww9Znp1NSru2KL28mCum/OyNjmncPJCVBRUVIJejaKB4AmDYPffgobQkUKkkats/HF23ngKNBnu5Bf0bYdgBfDV0KG96eeNc3nBaiUatZp84D0y76248Wremd+WC66uvGnX/c9HRHC8tIUeuXxh5/PBhAKzepntm68VCikGNyK8DCBCFj/XNM/xLXOD2dPfAp107ztvZMSchnhe2bW2U5zpWXFjbyuW46DEPDJg5E0cLCwo0Gnb8sJySk6ewKSxkvH8AvWZMN/j+zYnBhp27uztr1qwhOzubf/75hxUrVvDPP/+QlZXF6tWrcdfjZakv9vb213neCgoKsK8lP+yll14iPz+/6l9ThoSbEl9RzDShjh6s1Sm7dAlNVhZyOzvseuvc/Y8uWMBwewcEURzVUNprtdzp4sKQYfqFkBzH3w4WFuSfOMGp33/nuOjtmvPUk426f2RxEYOjIhm8Sb+k1z3iarSPGC7pN3UqNnI5eWo156sVNOjL/m3bGBwVyRPpaXo1LbdQKJjarTuPu7sTevkKv4paVoODg/VWmr+WSb16McTeHtvChgVaT27cSJ5aja1czpA5umKVEQN1HoZjp0/Xd2qdJOfq8kkCQvQTCZ7zzDPIgLM5OZxbvZqFxSVsbR3M/KefbtT9K8MeqXrmR20TE9bHiLlcbv36sSovj+MFBRz5a63B948TjSFvPfLLQFfFOV38/f3wzdesXLqUc6Wl2I8ehdzKyuD7g2F5hmWXLqHJzcXCyYlWYujXTvRYlRhYUVjJh926sS8klHl6vpDsR4zgdGkp96xfx4ZlH3NC9PJMXrSoUfcvs7Pnr/x8turZM/iXjRv5KCuT/aKkRv9p07CVyynSaqpCg4aQfuUK50pLyXNx0atriIVCwcGnnmJNYBDOx47x1ZLFAAxpHdQobxWA0luXkqDWw3N+YsMGsisqsJXLGXGPLopw+zCdFM/OAwfqO7VOksW8Mv+QEL2On/fqq1gA53JyOPXb73RRVeCtUHDvSy816v6VclsppaV6GWZbd+rmgfHiu2vo3LnYyOVkV1RwuhYB8YaIvajzdvva2uqVJ6u0tmaiGJL//KOPSBELN+yHDzeo84wxaHSvWDs7O7p168agQYPo1q0bdnpOkobQpk0b8vPzSavmKj537hwda4mHW1lZ4ejoWOOfOeIvVsQl6GF4/vTZ57yUmsIxLy9kohFhJzaaLjlxolGl3hVpotq8nkrpSk9P9gYGMjwmml5z56IFurq6Etq34byU2vBo04ZsjYb08vIGE8d1Sfo6z96IKVMBsLK3p4enJ8GWliQdNbx7Q+yVK2RrNBTI9P/qf7ZyJQ+6e5D477/8clz3Il302GMG37uSqiIaPdqK/bt6NQB9fX2rKtcGiDlWp5OSGrVSTRU93oF6SrX4derEENFL+O6iRWi0WjoOH05oI8v7g7p1x0omw1VuQXEDbaUEjYbHbGx52t2DmQsWALpk9t5iwvehbfp5fKoTHx4OgI/oNdOHReLLa3NkJA+tXcuchHjO30DC9H86Zg3PA8n79qMRBGx79qxKf7Dt2xe1IHB0965GdfrRpKXhoVDgqWdLJ0s/X1ZZWbK/uJjJzzyNGt08YIgwcXVai/IamSoV5Q3I96hVKo6K8+Uo0TumtLZmxajR7AsJJVCPBdK17N6+nTkJ8TxugHyU/1xduO3M2rX8Icq0PPvqqwbfuxKltzclWi1pkQ1XBm/9/XcABvj7YyU6NobcfhsA51NTGzUPpIh/t8D2+km1+HbowFBR3mj1U0/ymLs7h+fcSVj//gbfGyCkZ0++8/NjTUAg2gYqvAWtlsRs3VwxVgyL2zg40Ef8De5Ys9rg+yeIz97H2Vnvc5555x0AtsVEE7b4PTbm5+M4bqzB925uDDLs+tXRS+1aBg0a1KjBXIu9vT0TJ07k9ddfp7S0lI0bN3Lx4kUmiM25b0YCAgMB/Zqgb9u/jw0FBURU0wiybtuWA2VlfBETQ/wpw7x2FWVlbIyI5ExpCTKPhsMPlXS//z5KxYnDUibj008/Nei+1fFt3x6FTIYWSGggP+jU5s0Uikn6fSf/12h+9fMvsLl1MD1KDO83Wqn07ldPO7VrsW4bhuOEO/BRKPjC14/7Onfhjhsw7NItlWzMz2ezHjli+0TjdfiA/yoP+02ejAWQWVFBrIHfgfKiIjJFTb7WBlQ1f/3H79jK5fS0scXCwgK3hQsNum91nL29ONurN1uDg1E0EI4tj4qmjSDwQEAAnasVbXUXhaHPiGFVQ2glkzPWwYGBYfp3jOg9cSJTq4lRjwgIYMyDhst8VGJInuGjn3zMgKhIdvDfQs6qQweGRUcz4+JFwmsRzq0PQ/NMK/nfhx9iKVZ/WgDfiCHyxuAVFoalTIZAw5qWx9b/TaEY9qxerDP8tnF4KBSU6pmrWp34KF3ExNeAvuY2XbrgPGMGXkolMmCwjw/DxdSQxvDjpUv0iozg5T9WNXjsEfF3PrxaPmCvCROwALIqKog7c6aOM2tHVVJSNQ8Ed6lbw+5aln75JY/7+DLfxRWUSjwebJzHFsDa0ZGhAYGEWFlVFXLUOd64eDYFBLKrXXt6jR9ftb2v6EE7Y6AeIkC82C+7IR3D6nS77TbuqFY0eMDeHlsz0q+rxCD/4dmzZ1m6dGmDx11oZEJvbXz11VfMmzcPNzc3/Pz8WLNmDS4N6K+ZM4FiTz598ovOiMm5/aoJAcssLfksL5dL+fn03bSJIAPynBIvXuTZ5CQUMhmzDNBd6jdtGse37+D9559j+ty5DL3rLr3PvRYLhQIvKyuSysqIvXCBkD51a4DtXrceuD5J36lnDwqAsquGd69IEivQ/A30tnj973/Ydu/OtNxcFjQyt66SU9nZvJiWSp/Dh7mvnuMEQUAoKMBSJqsSSQWwd3OjnbMzl/LyOPj334T01r8qL/7CRQRAKZPhZUAD7vaDB7Pm00+5vHMXQW+/hc0NVoFZentTXlBARWpqvdXVZaJOlnWnTjWU7Xv17w///r+98w6Pqkz78D0tmfTee0ggCaF3kaqgiIKfXUQRXcu6rqvuyhbd1XXXsq7rdsva1rrYEBVRQUCa9JIEQkhISCOEJKT3Muf7Y94JSZiZzGCSGYb3vq65Lj1nyhvemec85ym/5xsyz6HWdIa/P6Mjowi5zr7aqA8OHOAPS5ZQffo0z33+OZofkH7p1jHrxw4YDAZ2l5TQYDCQ0CNKrtHrifTxprq2ln3ffkuaHd25xZmZPFhSQpxezyt2lM5MWrSI7as/451//J2J06Yx9Rxry8AogB7h4UFRczNFWVmMsNLAsEWUbUyK6m0HPETBe8s5XNSLRaTUlEGxlbBf/RJteBgvHjrELU8+affn9iQiXtzkn7YetTYYDBwU04qm9hDD9goI4JKICNybmmg4fBjsqHUrzsrCAGhVKiJSbJ/1POHKK0n7ai01Kz8g4OabfrAd0EVE0HX6NB0ny9FbiRy2ZGagUqlIHDcOnYdH9/HxU6fCl1+SJa6V9rA4Lo7wiEjSLrGvXnxVZib/uv+nHM05wjMffmi33NFQYJdluvnmmzliwyioG2+0v1vQEiEhIay1scD2fCBe1BWc6Cf9UHb0KKVCq+2iPpISo+LiOZyZwYGdO7HHxTqeaXS4w931dl+URl16Ce+eY01XX2L8/SktLyc/K4tLrTzPJIw8TeiImXAXDklrwXE6W1rQ9vih90fJKWOExBQ5tRWNtzcBN9svyGyOOGFIy/rp3O44cYJ/h4XTERVN6jXX9Dr30Pz5NGzbxmQ76/yKRF1JhN7+78DC++9noZ2zcS2hi4ig7ejRbk09S7z//v+or6tjYZ95tFMWLoQnniCvvp7mujo87UirdopyBHuiVWDUNfz9xx/b9RpLjJo6hXuDgkjwsV4ycnjjJmo6O3FXqbjout71cOlxcRyqreXgnj3casdn5+7bx7rGBmK6Om2qM+3JxEVXMXHRwGRMIn19jY5dP+nQ3fuMdmfymN6NKtrhw/lHVSV5J07wWU1Nv4LrPTFlTOy1A2ovL0J+8hPOPVZ7hgThyPRnB1pLS1ni58fhtrZemQuA/955J7UffUxQPzpsfSkUc3LDz8EOeIwejYcdUT5r7O3qYtvpKuZu+JbFc+dYfF6ruHb1dSQnXnYZ/Pa3HKuvp6WhAQ8hgG8LMW2tBPn6EmmnDqNOr+eh11616zVDjV07+uabbw7WOi4YRk6bxsrYOCJ0OgytragtFN5uF5ISw7y8zurcGzN6NCszM8jIOWrXZxeKCFeUg+sP48PC2FFeTkE/qv8HS0TEcnbvH7w2NJSfnCpnd309365da1fk4EStMUISb0e0aqBJ6B6C3kZne7vFJoxWkaLySU3tdZcK8H+LF3MqIxNvG+r0epIeEMDHcfEodg6uH2hWlp3grcJCrnn3HZ60Mmfz3xs3kF1XR7QCPU16/PjxBGi11HR2snfNGmbecovNn11eWISXoqDrZ5zYYBI/diwPCC3HroYGNBYuSDvWGovCRwUFd9dWmRidPoqVGRlkHbXXDhg7cR1tB2JCQthRXs7xfuzAAdFg0dcOuIeHs7KujtrOTrI2brTLDpQKRyjuHLQ4B4r4MWMBjPXGra0WmzA6j+Rwb1Aw7mmpZzmv+pEj4aOPu2dX20r9iRMEazREO/g78G1lBf+pqsLw/fcstvK8W15+CaWhgWf8/egp0JMwYQJ+Gi11XZ1krFtn13egs+zcbvDOB845l/Dhhx9aPHfDDfYNRL6Q8AwJYWxQEIbmZmMaysKcxV2bjfVX482cnzh7Frz7DofK7buoF4v6sqhg2+tKBoOEuHjIyOB4keWOuK66On4bGESmpyfTr+kdsVSpVDS7udNkMHBg82a7fswmQUpbhGkHi5j0dLQY1fOLMzNJtJBOb8wwOnYeQqW+J+4ipd/Wz0WxL7qaGtL0enytzIYcCuq1Wg63tZJiRXW+qaaGo6KoenqfSIVarWZkaChHTp3i5GHbL2oGg4GZ322iS1HI7urEUZd1tacnGn9/umpr6Sg7iWaEecduj1C5H2tGBHjcxdPhvXfJtnP4eHedqR0i4YNBQlwcZGVRbkX6qLakhDLRZNXXDqjVakYEBrGr4hQZW7faZwdExsTUmekIokemoVWp6FQUSg4dsmgHWkWU3cPM+D735GS6FIVjWYewZ2rzzIgItiQl492jxMMRmGTJSqx0BrfU17OlvJxORcG/T6RQrVbzp4svxrOggLi2dgvvcDYGg4G3Dx0iTAW3DaCSh7Nwzo7dSy+91Ov/y8vLyc/PZ/r06dKxs4JKpUIbGUH7sXw6rTh2e8XIn0lm6ibGzZsHwKn2dmpPluMf0b/YMEBJybnVlw00o8eOYfL69SRaSQG0HDrERV5ezEpNJVgUmvckPTGBXRWnyLSjeL6luoaR7u6c7Oh06Fw/nV5PlKcnRc3NHN29x6JBv+Zvf6W6to5/aHX0nfXilpTE5sZGjmVm8nhFBT42FgCblP4dGa2CM2OcTljpit21+jO6gBA3N+L6pOMB3rvzRzR9+CFBQf1PTzBRUVBAm+gmj3awWnxlgD/Hyk6gyswgZYT5CPLBPGOacpKZLvSJC4xdkSdaW6kuLbVJkw/oloIyTQBxFPfdspTrjh4lJMVybZW2qJg9SckUBQURYsZWpsXHsaviFIfsqLNrqqmh2iRM2ye9O5QY6431lLa2kH/ggEU7sGndekI6Ogg3c4PXEhzMhLxc2hWFulOn8LVBcBrO2AH3CMd+B2ITjVIrpadPW3zOns8/p1NRCNBqSTbTgbt4/jxq3n4HtR11duW5uTxZdgIVxpnHrsY5V/1t2rSp1+PIkSO89tprjHWiQbjOyqb2dv5UcYqNFvSXFEWhua4OFTDt8gVnnQ+KjSVIyB4ctkN9v1TM2oyLi7d7zQPJomuv5b+xsdzpa7kuqjXL6Nh6WLijThd3bodt0AM0oa4+zesxsXw9ZgwBDnZu48Uop9xM8xekjtZWMquqyGtvI2LC+LPO6wIDeaziFH+pquRgj8Hk/fH2xo28UX2aEvtGWw448aK+qMSKzMHO9UadwnGRUWYLlL1FGq3NjlmThcIBCNbp8HBwGur3OTncXlLClxZGInW0tnJIXPCmmRnZFBwXR6hI4x+yYxJNaYVxRmqsmRumoSQkNQUvtYZ2K9JPrVmZuKnVTLBQB5Uu7IM9dqCtrIzfhIZyV1gYAQ4Wso8PNKZWcw+atwOd7e3c+e16LinIJ9/97FRtUFwcPuIGOfO772z+XNPED52NQYHBIj7NaAdOWJGs+f4bkx2INGsHTMGRdjsaqQoOnrEDejvq8s4XBrSdY+nSpfz3v/8dyLd0SbZUV/NWTU23+G5fOkpKeCsyij2paUyxUKicILR3cvbstflzTR14sclJ9i14gNEJY9pZUYFBDPXuy9sffcS6hnraLIhnpotu2nwrd3p9MQ29tlXDbzAZJnTM8i1oWB1ct44WgwEvtZp0C11bw4VUQ9Z220cKvX3wAM9XVlLQ2r/a/WCSKu68y1pbabbg3O3eb5RwmGBBlsXNZNCFbIEtFIpapAgzIudDTawYq1VkoSShLvsItwcGcomfH2kWRjUuSxvJA8HBBPSjCdkTU52pI+vLAHRCE63z1CmLdqDFdINn4TswWnTTHrVxPB2Ae10dSwMC+eXEiQ7vaJw/ejTX+/lhKdZ6aMMGmgwGPNRqxsyfZ/Y5yeIm8dCOHTZ/7h2frmJZcRHZojTFUZgiphVtbbRbECzfs98o9TLRTCoaoDkoiE9qa/lnj3ne/VF0xGgHolzQqYMf4NhVVFT0ehQWFvLMM88QHu7YO4DzgSThrORZiDS0iA6gwFHp6IQobV/+eNVVfBafwGV2RJ5+Hh7OY6FhjLNhNuJgovH3R+3pSVtXF01mLsoGg4Fnt27hwbIyjnuYLygeKbSDytraaLJxNFX7CaNkgDM4drddcQUvR0Vza7z5VPxOEcUZHRpqsWstVXT0HT5ku7yQM9QYAkSkpOCt1qAAR7dvN/uc7qL5Oea75VqDAvlRSTFzv11Ph42OapGoSYxyAskkU31RsYUaM+3xAh4IDuH1RYstfgceuuoq7g0KJtzGKR4AVcIJtGXw+WCi8ffn+Zoa7iwp5ogZLT6DwcBN77/P4+XlNESZd31GCYe3rK2NhspKmz73zA2eY6P2APfdeCO/D49ggoX93SHsQHpQkMXmihHie5Rth8zY3qoq9rS04GaHhttgEJmWhqdajQE4+r15x3S/iMRNnTPb7Pn24GB+e6qcv+blWnQO+2Ka/BQVaHsZx/nEOTt24eHhREREEB4eTnh4OOnp6Xz99de88847A7k+lyRFpKuPCZHQvjRnHATAY5TlAveJ06aR7O6OSuiy9YehuZlpqFgSEGC2XmkoUalU/Ki0hHF5uXz96aqzzhceOEBlRwcaYMpi871SYUlJ+Apds2wbR+o89eYbzDiWx0v59jUcDAbjZ8xgpre3RZmC3WLCxQQr2k7DRWfrMRtrS5pqarqHXic4sLYIjEXPCX7GVGj2rl1nna8oKKBYOCB95X5MBCQns7+lheL2dvLMvIc5ikV0LMYJbkBHiDTiMQvNDy1CkkJvpcDfTaRTbU1DdTU2sTlxGJuHJXVHTR2FSqViV1srO5qbOWxm/wr37+f7ulpW1dUSPN68zQobNgx/rRZ3lYqC3baNV8vat5+MlhYa7Zg4MFi4iZuzdgtR291CoHyCFa25VCGcnSOaYvqj8fRpap3IDiSKkojD3599g1d5/DiFwlmzZAdiR4/GQ62mE8i1MWpZLGxmtBPYgcHgnB07g8FAV1cXBoMBg8FAY2MjW7duZeI5Dga/kEgXEbPChgazA6yv/+c/WVpcxFFPy/ps9hp0U02F2tsbjROkoQJFxCTbjGL6tk9XA5Di54e3BWV4tVrNxRERzPTyot1G57b4RBmnu7pQO0H43WTQO4qKzI6GOyDuKCdb0VhKGW00ygU2RioKRaOJp1pNoINriwBSIiNJcHOjzcwNjueJE2welsR/J0wg2ILWmEarJV7s5WELZQ19KRXRmthYe3oIB4d0sbf59fVm7cDW7zZzurMTj3TLkTV1TAyF7e1s3WtbSUZn+UnUKhVhAQG4O4FjEyc6Eo8JJ7Yn2z/7DIARfn5WNerWLbySfcnDSVDZVjj67y/XcHNxEe/m2icTMxi4xcXTYjCQdTTH7FiwfSLCPNlKliVV3KjbageOi0kdXk5iB5678kq+TEhgtpnoYemOnYz38GCEtzdhFspyNFot8eKaZu4m0RzdOoZOYAcGA+eTTL4ASJ4yBa1KRauinDUSqr25mb0VFexvaSHYSiNKR1gYr58+zW+2bLZpTmDe3n2sra8nz0Jqd6hJEfU92UJTqye7txkjcOOTrNcCvrrkFl6OjmGEjXUypVVGw2fqyHQkuuhovm1s4O/FRZT3+TdoqqkhxyTzYSFiCZAyzTjir6ipic72/lv9u0VJPTwcXlsE8K977uXLhEQuN+O8t2RlEaLVcumcuWZeeYZhocYuwKP9jKUyMd7bm8t8fBg71rFRa4AR06ejE3Ygv0+tbFtjI0s3f8eM/GOctNLkUYLCFccLuHP7dpvsQEd3V7RzRCpGiIv1YTPC97tFin58P0Pqo9LSUKtUNjfRnBAOUJwFRYKhRBUWypS8XK7OyaEkq7dz29LQwJHaWgAuWrTI4nukichrUXOzTXbguCjdiPTycgo7MHHqVBLc3DEUn91EE1NXy7uxcXx7191W32NYmMkO2JaOPiEyJbH9fLfOVxy/qxcgOr2eOC8vAA73KXzf++WXtCkKvhoNqVbGBHnEx/PXqkpWVlVRevhwv5+5adNGfnGyjL8U2t5BOJiki7vMo2bqi/YKR2eylXFjAG4J8QC022jQTQrv8XaM0Bks1G5u/K22lpdOn2b3V1/3Olexbx8LfX0Z7+NL/PizO2JNDJs4EZ1KRYeiULCv/6kgxbnGRo1IO6Y0DCZnutnOTkNZUprvS7L4DuTaMEgdYImPL3+NjOKSBX0FZIYenV5PvLADh7b1LifY++VaOoQdSLYSrRkxbRpqoNlgsMkOfL7mCx4qO8HH9daHrg8Vo8X3+4iZzth9wtmb2M/IvDN2oNCmzzwhbprinMAOuHl5ESnExw/3qTPsJfNhZU57woQJXOnnz48CA2m0IYNTJASto5wgYgvgLm60282kkluElqfnWOsp42RhS/KO2WYHHo2J5c8RkUybNduOlZ4/SMfOQSQJ7ZyjfXTYtovxaWPCwlD3mI3ZFw8fH6KFQcjeZr74vCemgcfRTqLZM/riiwHIq63tFWnobG8nS9xRT7/Sunimm2g8qMrt/8fc1dnJSVFgnzBA43B+KGmi8eXgzt51IX5lZTwbEcnqW26xeketdXPj3+Mn8FFcPME2NA8UC6c+ykkEOd0TjfvXnJfX6ztgMBi49+OP+WdVJe3iom2JFFFflGdDOl7p6KBTdE86QwMNwI+nTuMPYeEM71M8v3XNGgDGRURY/Q64e3ufsQMWmlB6si8jg28aGjjk4G5IE2NnzgTgaE1Nr3R0V2cnmWKvLjIj9dKTIo2Gh8tOcN+HH/T7eQaDoVvw2FnsQKqInu7v49xHNTTyl4hIVkybZvU7oNFq+fuMi3kgOASthbrtnhSJG+EYBzdOmGgLDeWV01Ws2LjhLDtwSmS09P3c4I0Qtcg22YH2dtJaW1no60ucg4XaBwvp2DmIPy5dypZhSdwSHdXr+PYdxmLZqWLcjDUSxQX6iA0zXEvKjJGxGBtFTAeb1Bkz0GKMNPRMRx/85huaDQY81WpGXWptkiyc0GqZlpfLjC8+7zcNdTInhw5FQQ3EOliY1kS6iBhk9om0mCQe9GYESfty+eTJjNTrocyyer+J21NS+TgungeuGphZnz8U3bBh3FFawsS9e8gTReIAOVu3svZ0Fa9VV+Pbz8U3VURzCmzojG4sLqayvR1Fq0VjoXZzqLnlyoVc6+9/VhPNzj3GRoCpNuiCJoi/JcdMvWpfSsUw+eioqH6eOTSkzZqFTqWi2WDgWI/mh0MbN3bLfIydP9/KO4AmMpKvGxr49sSJfu3AqWPHaFMUVEC8kzh2Y8TNycE+Xa36gnwW+Ppy5/X9C/6fqbm2PM3HhKqpiRCNlthox9fXAXgmJvLPqio+qqykuEdJxaENG5m8dw83FRfjLv6NLJEiavttsQMdFZWgKKjc3NDIrljJQDJi9myCtVraetRVKIrCbhFVmWlDqihJFL7mHj27Tq0vJoV/Z6gvA3Dz9OwueN3/7bfdx4e1tfFNQiL/mTvX4gxVE7ETxlNvMFDf1UV5P4PEC4QwbYibG25OUmc4brJxmkB2n7vMfVu20KUoVruiTdhj0D1qa0nT60lzEhFxjbs7jTodLYrCri/Xdh/fsHIlAGOCg/HsJ22cPmsW/hoNUWoNLf0MQt+xYQOz8o9xVeFxVE5QWwSgF53NrX3Gou0WKbUZl13W73t02wEz9ap96bYDTlBfBkY7kOTjQ5BGQ0mPG7zSPXuI0emsynyYSJk+vTsd3bdOrS8FonEgxM3trNm7jmKCSLVn9ehuVxSFZlF36WlGoLwv2pgYTnR0kL13T7/PvT9xGJuTkvjFHcvPccUDi1dAAMmiCWr7p592H9+86hMUQO/jjcbd3ep7jJ87lzeiY1gZHYOhn2h03t49vF9Twx43ndPYgYHGNf+q8wCThEHbsWN0NRq/iMd27eZkWxtaYNZNN/X7HiniopBX1L/chamuJHa4+dFFjmDBqFFc6+dHQI+xUq0ZGcS4uTHv8v4dW6+AAKKE0c82o4PVE8PpaqZ6ejIpzDmKxgHGzzNGJI81NNAmZlfmbNvG4t27mF2Qj8YGnbEKLy/erq7mVTEs3hqdYraw1sHjxHoyVtxo7O2Rjt6y1biXF9vggAZGR7Nr6jTei4sDoVNoiULh+IQ5QVe0Cf2YMWS1tPDq999TL9JoBXv3crKtDQ0w88Yb+32P4eI3bYvszRk7MOLcFz3AfHb7crYmJTOmx0V2XEMj3yQO4+OHHur39foeZSmHt1u3A4XZxui4MwnTThap5vyGhm5NzoJdu/jXoSwyOjrwsEGe6uPCQuYV5PPYJ2fLR/XFpOPn5uDpOz2ZKBrldvaQrtomSgum2RBZ9YmMZHp0NOE6nUXpGBPfb93KHytO8ZKVGcXnO9KxcxC60FDe6+rk7uJiNn9gjFBU79nNXG9vpoeH42NDLdwIU5t7lfU2d4PBwEknqysBePLnP+cP4REklRsvaIqi0Cgu6p79NE6YSBRpqOw+3cV9GeXjwxsxsbx8ne2DwgebxEmT8Ndq6VQUtn34IQBfCx3IhIAAPAL7F9E9oVbzbGUFr4tIhDWe3rOHN6pP0+rjHJEKgAkTjCmUAz2iTTuFzuCcfmqrTLh3Ry2tN9EUi9qiaCepMQRwi4jgoVPlPHOqnK0ffQzAV2++CcDIgACb7ECqcID7k7voaQfibUjzDxXBU42R6+ZdxlSsoig0iYt6kIWJG30ZJvY0p58mohRvb34TGsoyJ5Llih09mkCtli6MzXMAa996i39UVfGXhnrUHpZlr0yYrgX9TeJRDAY6nWgCj4kpYhbyHhG5NhgMfC8aombOMz9xoy+mSTT9dUcXiSaNqCDnsQMDjXTsHMgBRWFbcxObxI85KjeXf0VF8+GKX9r0+pEihF/S3EKHlZFCzlhXAuA5YQIArZmZGNra2PfFF9y5dw+fNDfb7NglizTUUTNyCT3pjlY5kTFTq9XMEu32m4Vm14ZNmwCYM9F6J6CJ1IuMUgelLc3dUT9z1JSV8fqpUzxfWYmbk0hdAEy9zFg/daC8nJaGBg5+9RWlra1oVSpm33yzTe/RbdALrBv0EtF5GeMk9WUmJgnHdNu6bwCY0drGU+HhPGBBkLUv4+bM4b6gIO4LDETp6rL4vIqCAtqEZmK8k6TjATxFx2fT/v10NDZSfTCDlooKVHo9Hla6wnsyXOiRHe2nLCW6y8DSgEBu6kdGZyhRq9XcOnYsvwoJJVSUZXwrxmPNsFFMPk1cC8paW2ixMne1NDub+UdzuLO0BI2TNNIBXLRwIQBZVZV0tLayZ/VqSltb0atUXLpsmU3vkaHV8NfKSj5eZT1qWSr+jWOinCdiOdBIx86BzBQCpZ999x1djU00bjGGoX0v77+uBiBu7FhWDR/BzuRkDBbU6wHc6up5MSqaPyYlO9XAY11cHEpwEFkN9Rz58ktWvf46W5ua2KxWoe6npsLE8OGmdLT18HtrqTHsrnOiNCTAr+/7CWsTErld50ZNWRmbhDDx5ddfb9PrY0aNwlOtpgvI3WlZnNMkTuyr0eArNJ+cgUmLFxPm5kaTwcDnf/87/33hBQBmx8bavM6vq6q4rCCfH7/8stXnlYguy1jhSDkLUycZb2K+3bkTQ0sLbvv28X9+/tzyyCM2vT5q1Ch+GhXNAk8vOqykl8qys9FiHHzu4UR2wC0+nqcbG7joSDZr//Mqzz/+Oy46lserWo3NdmBEiuiK7Ccd7UzzonvyxK9+xW2Bgbjv3k11aSnfiGjV1bfdZtPrI1JT8RKjuXKtiHUXHDxISUcHhZ2dqPupYR5Kxsyfj79GS7PBwJp//YsPXnkFgNkJCTbbgb2NjbxafZo1FkaTmTDZgZhY88LnroB07BzIbY8+ihbIqqnhH8uWkV9fjy4uFncb9ZXUGg1jxKw9axpOutoaZnt7c7OFsTyOQqVS8UxzMzcUFXH/gw/yxtdGPbcrbaivM5EybizQfxpq0f/e5+Jjeeys6F8OYCgZf9ONxLu50Xb4MC/fey9NBgOJXl7MXmabQVer1d3TF47stuzYFWSdESV1JjRaLYtFZ+vqlStpzcvDU6VmiQ01piY8oyIp6eggV0RlLXFCiL3GO1F9GcCNDz2IBthbWcmGhx5CaW1FGxmB+wjb1qlSq8+MprKShkr29ubg8BF8c5njNfx6olKp6AgKos5g4JV//5vXv/6aJoOBZCtTV/qSMn48WqCrn1mhmw4eJKOlhQ4byhyGEu85c0Ctpi37CK8+8ABtikKStzcX2xi1VqvVJAgh6yNWpi8UisxGlI9l0WtHoHVz49pJE9GrVGStXs0qUWt3zdVX2/weKULt4Fg/dqDMZAdGOE+9+UAjHTsHEjF8OHNFGunhVZ9wZeFxvggLQ2XjaBwAt/j+DXp3TYWTRasAfv7UUwB8V1LCqfZ2ItzduetPf7L59aNnzGC6pxcz9HoUM2OZTJxobKS6q4tAJ4vW6EJD8br4Yho6O3lJOLZ3X3utXYrwiUKPyprqeoGoYYt1EpmPniy5+27CtFruamnlZ3oPto8bx82//rXNr08V9TkF9fVW5S7KmowX/QQrI7ocQcL48SwQk1jmv/IKH9TW4H/bMrvsQG1oKFubGtnz3XcWn9NRZhwnFhrvfJGKBx57DBXwVUE+lR0dhLu7s1zYBluYffVi9g8fwcuhYRisTF94aMf33FxcRL6V0hVHoA0MxHPyZF4+XcWvRGfoLZdfbpcd6J6+YGY8m4kiMaIsygntwO+ef57Nw5K4vuo0TwWHMN7Hl+t/YVvUGmCkSOkf79cOGJsV4/uRUDmfkY6dg/n9n/9MoBAnnRgcwv3/+Y9dr88AHi8v559CIsIc323bzpf19ZS5O0/o3cTYBQtY3CMy8fuf/KRfiYuexI0bx2vJyawIDqHDgjhlU00Npzs6AIh38NBrc0T8/glea6inpKODMYGB/Pi55+x6fVJcPGBddf24KBiOdbIUFMCMpUtZ+7MHidDpQKMh6a8voLfjO2DL9IW2mhqu8/PjMh8fEpyovszEY88+i48QJP+otRX/m/rvhu3JO8VF3FNayptffGHxOc5YZ2riouuvZ4moJ1MBf7j/frvkSPQREbh5e4PBQIeFdGxDZWW3HRghbgacCf3DD/GuiCZNCQ3j5y++aNfrk+JN0xeOWXxOsfi3iXXC+rLY6dOJvu46AMZ7evLd55/hH2F7PfCIiy9GDTRZsQO1J8upF3WozlRnOtBo+3+KZDCZeu215OTm8uk//8l1Dz/cr2ZTX8rUaj6qq2VKZgZPWHjOm99tYs3JMp4uK8O2loSh5YO9e9m5ejWevr5MsjIT0RymNFTb0aO0HT/erevWE5PwqZdaTaiT6Pj1RBcVxT2vvcalBzO4ZsUj/er39WV4agp8u558K3IfxUKYNtFJ9Mt6olarGffn52i84go0/v542lkyYJq+UNzSwuGt28wKUCuVlawIDUXj54ePkyju92TKNdeQn5fH9lWrmLp4sd12IDU9HdavJ7fEsvL+Mx9/QvaJE9xXW4flCcSO4/UtW7jqb39j8hVXkGBj04QJlUqFW0ICrYcO0Xb8OO5m5kwf22PUePPVaAhywuHvYaNHs33TJjau/IDbn/qjXTe4AHNnzaR+zx6mB1hOM5cISZ3YOOeL2gJEPvM0ATfegKG9HS8bG+hMmKYxWbMD2toa3o2JpVKnI8CJ5F4GGunYOQEhCQncLYrG7cUWxW3TwOMYJ3RqwHhhnrV06Tm/3i0hgarsbEozMkmdM+es87liMkest7dTDL02x4Qrr2RCPyPULLFg0WI++OxzhsVYVpIvElqBiTbWbQ01KpUKn7ln752tJAYHU1xSQs6BAywwc95UjqB1YmMekpDA1T//+Tm99swEDssizZvycslobOBWvW0NCUONu7c3Nz722Dm/fmVdLe8VFnLza6/zqBmJjDzRQBTjJMLE5ki5+GJSxLhFe5mzcCEJb72NtsNKSYq4FsSJ1L8z4vEDImnddmD/frN2gKoqxnt64u5Eeq6DgXNe5SQ2M3LGDAAqOzqoKTMfsSmurwcgYaTzaFcNJC8ey2PKsTyefudts+fzs40Fw3FOpF82kERPGM8oDw88q6owWKgden1YEh/FxTPLjsaU84nkfqawlOXkUNnZicaJpF4GkvRZswCjHai2UJJQJOzAcDujYecLdXo9h9taycjONnu+4IipztQ17YCpgaazosLi9IVAIFijcdlrgUn2Jjf3qNnz7SIVrbNyE+wKSMfuPCcwOppgnQ6AQ5u3nHW+pqysu64kdfpFQ7q2oSJOpF3ySs1LPRw/bqwvi3cy/bKBQuPvj1p0xLUXl5x1vquxCZ/GRkbq9YSIYdmuxtjRoxml1xPSaV7H7W/vv8+s/GP8UYyWczUCIiMJFSn8Q5s3n3W+urSUWtFcNHzK1CFd21CRIqb5HDtp/ga3UNiBOCesLxsINH5+VHl5sau5iRMiOtkTQ3Mzr4RHsCUpmXFzZg/x6oaGn958M+sTh/GrFPN27ouvv+b9mhqK7Cx1ON+Qjp0LkChqKnLMzAk8usOo6ROo1RIYHT2k6xoq+ktDxajVTPX0ZJyZmgtXQKVS8a1Ww1OnTrHly7NHi5m0zTR+fmicOA31Q1h22218EBfPMgt1SflCnDh5uPOmoH4oJjtwZM/ZdiBH2IEgnc6ugvTziVRRk1VQW4sihJh7clxkNBKctCRlIHiouIjlJSVsWLPmrHOmaJXazw+NE+kYDiQJEyYSpdPRUVRo9vy7YpzY7lrLpUuugHTsXICkSGMkKsdMJ9BRUV8Wb2ch7vlEf+noJX7+vBETy5KbbNOEOh/ZWFfHe7U1bN229axzW79ayx9PlbPedvWM8w5T00x7SQmKiFD3xKRzOGK083VFDxTDxY3bETN2wFRfFufrXPplA0masAN1XV2Um+kMXR4Zya9DQ5lrpg7XVRgmJK2OmvkOtBcWAmdG8Lkipik0HaUnUMzI3hwXI9eSXPQm34R07FyA4cnGVGS5GdX5PDF7L9FFa4sAgmJjCRLp6MNbejs2iqLQLmqO3GJcM2IJkCQM2tG8syVPtmzZwvu1tWwQNVauiDYsDJVeT0dHB83iAmais72dIlFzlDLV+WQuBoqbL7+cZ8MjuMaMXuUxIUwb70RTRwYan+BgIsSkisNbepelKAYDY5uauTUgkFEzZjpieUNCkohGHjMzXu/Pr7zC/IJ83nAykfaBRBsawusN9TxcUkxOnwkcne3tFAs7MMLOjtvzDenYuQB3Lr2V3UnJ/MFMp9P/xcTwYlQ0dyww2yPkMiT6+wNnp6GaSkppaGwEjQadE3dE/lDShQbYETOF8yZnb4QZCQhXQaVW89NT5UzIPcrajz/uda5g3346FAWdSsUwJxr+PtBcPH8+i/z8iBZaaD1pqKhEp1KR6IQyHwPJMCG8e2Tfvl7HO8pOorS0gE6HW6zrFs6PsFJnmJN3jNKODrpcOGqrUqn4prmZrxsayOjj3BdlZNChKGhVKhJdtIHIhHTsXICQUel4azS0FxadVVsSVFPNbG9vLpo12zGLGyKSRWNE3xTExk8+YfKxPO4sL0flRLMRB5pxs2cDkFdXR2efFESeSE+njho91MsaUvQ+PnQC2QcO9Dqes2snALGennZrBJ5PmNJQ7UVFKF29m0gejI9jf/Jwfn7HHY5Y2pCREhtHnE6HQaTcTBze/B1f1tdTEhSISuu6Kl9jZhrT0bm1tXT1mcSTLwSqTc6fqzIszJidOpKZ2et4jhi1Fu3hYbdO5PmGdOxcALfoaFQ6HUpzc6/pC4qi0C5C8m5OKkg5UFwydSo3+fszxqP3DzZTzE/1D/B3wKqGjpQZM9CrVLQpCjlbz6SjDQYD+XV1AIyc5prdkCZGiY7fjD4jlY6KTtgEF5W7MaGLjGRPezvvnTrFiR4XNUVRaMvNQ6NS4e/itUXP/vjHfJU4jGuCQ3odX/PFGh45WcbfLXTOuwpps2bhrlLRbDD0sgMAx2uNdiDVCaduDCQjkoYBcORob8mTrF1GofqkkJCzXuNqSMfOBVDpdPxPreb24mJWv/Fm9/GT2Uf4e+5RNjU14Z7sumk4gOuvv57fhYUzvU8zXLaoLUpLct1uSDAO0U4W6egDPeaFlmVn09DVhQpIFcXlrso4MSsyq6S35Eu6TsfygEAWiO5pV0Wl0fDM6Sr+WHGKrZ9/3n28s7wcQ309aDS4uXBHKIC7+Pv6zs7OEfqGKeKi76ro9HqGCzuw79sN3cdP5uZS22WM4KVOn+6IpQ0Z44UdyCwq6nU8M8t4szPKSUXaBxLp2LkI+Ro1u1ua2b71TF3Bzi/X8OLp0/y1tga1i4ee3Ycbf6xtx45haG3tPn5EXOTTx411xLKGlDSTSG/GmWhNptA2jPbwsHtE0fnG5CsWAlDQ2EhTj0ksKXV1PBIayo+WL3fU0oaMsSIdu2vbtu5jX73/PtcUHudf7W2oXTgVDeCeEA9Ac3ExXW1t3cdzRaQuzcXLEQDumTmTP4SFM0p3JuW8e41RBinO0xNvUYfoqkwRE3yONTTQVH1GAutXcfG8ExPLrTfe5KilDRnSsXMRxo8zFoMezDmjvL9faFelu6h+XU90UZF0BQSQ0dBAwXdGgVaDwUCuKCQfO9N1O+FMPLZ8OduHJXF3jyaRIzvFd8AJB78PNDGj0gnUajEA+9auBUDp7KQtx5iS0aelOXB1Q8OkCRMA2N9j+sLe778np62NUrXGUcsaMrSRkTxcWcGU7MNsF000XZ2dHBUal6NcVKS9Jzdfdz3X+vsTXH6m+3W3EK0e6+ITFwBiR48mWKejC9jzxReA0Q64FRYywdOTkT9gdOH5gnTsXIRJl14CQNapUxgMBgAyRCPBGBcvlgVjN9Qjp8q5ubiIlW/9F4AjmzfTbDCgU6lIEyOXXJlhl1xCgFZL8/79KOI7cIOfH98nJfPHu+5y8OoGH7VaTbqQ89izwZiGKtmzh5011TS6u6Nz8Y5QgCnzLwMgs4cdOCTKEdJTUhy2rqFCpVLR4e1Di6KwRYj0Hvzqaxq6uvBUqxnnoiP1eqJPM9aatmRldTfT+TXUM1qv56KJrl2OAEY7MCo8HHeVioK9ewHRUNTWhsrT84KwA9KxcxEmXHEFWpWKms5ODm/aBECmaKQYN83171IBxos0y24hyrzu/f8BMC4kBDdPT4eta6jQp6ai8vTEUF9PW14eiqLQkpGBv0ZDipmh6K7IpZMns8DHhxhRKL525UqWl5Rw/8mTqNSub+4mLrwCnUpFXVcXOVu3YjAY2FFgHKU1aaZr11iamDbBmL3YIaSPNq/+FIBxYWEu3w0J4JGeTh7wel4eR0Sd3f8ZFFbGxXP/zx5w7OKGiH/fey+7k4dzmd4DgDVvv80zFaf43svrgrADrv8XXiB4+vkxVaTbVr/2Goc3baK4pQUtMOOG6x27uCFimoha7iospLO9nYT6Oq738+MaF5d6MaHSalnn68vykmJe+fOf6ThRRldlFWi16EeOdPTyhoRf/O53/CUyijGlpSidnWzcuBGAcSOGO3hlQ4O7tzdjRPfvF2+8Qdb69ZS3teGmUnHp7bc7dnFDxEyh2bm7uBiDwcA2UZIybcxYB65q6FC5ufFCYyPPVVaw+s036Cgvp7O8HFSqC6IcASD20kvRqVQ0bdmC0tnJ2ytX8k5NDZl6d0cvbUiQjp0LcYUYlfPVd9/xycsvAzA1MtJlZ8T2Ze5tt+Gr0VDR3s66V18lrfQEvw+P4KcrHnH00oaMcj9fdjU3s3rdOl5+8vcsLynmU3d3l2+eMaEfNQq1nx+G+npqd+3iG5GGvGbpUgevbOhYNNd4g/Ptxo2sfecdACZHRLh80byJ6TfcgF6loqqjg01vvMEv/fz5Z2QUS2671dFLGzJmC2mjDdu3s+OV/1Df1YXH2LGovbwcvLKhwXP8eDR+fnTW1lK5ZQvf5ecDsGjJLQ5e2dAgHTsX4up77sFHrSa4uZkd69cDsPCSSx28qqHD08+Pq0Yb07EvP/ZbOquqUHl6oh/t+p1wJpY88AAq4LuSEn726qvsam5GfYHcpYNR8sPromnktbUxa/586ru6CHVzY+4F0BFr4vZf/ZI3omN43sOTdz81piEvuejCKMcAox24Wvzmn/jZg/hUVzM/OpoxV1/t2IUNIVctWwbAxuJiZj3xODPzj7FPdAxfCKi0WjaEhXLF8QKShB3w12qZecsSRy9tSJCOnQuROmMGB5Yu5U8RkfwlJJTPkpJZ9ssVjl7WkLLsxz8G4IvaGr5vbibo9ttdXuKhJ+mXXMJlPbTKPNVq7vnTsw5c0dDTuWgR1xUVktXcDMBVEya49MSJvsSMHcvcWbPQqlQs8vImWKvl9kcfdfSyhpSf/OrXAGS0tgAQePsy1B4ejlzSkDLhyitZkHhGs08BZt1zj+MW5ABi58+nqKODBjGF5ZoLyQ4oTkpOTo6ycOFCJSgoSAkODlZuueUWpbq62ubX19XVKYBSV1c3iKt0PtpPnVJyZ81WjqSPUuo3bHD0chzCbxYtVrQqlTLCx0dpb2x09HKGnN2ffaaE6HSKj0aj/P6GGxy9HIfw07lzFUCZHROjVBYWOno5Q077iRPKsSsWKtmpaUrZqlWOXo5DWD55snJ9UJCSd8mlSucFdh1QFEU5tHGj4qfRKAFarfLSAw84ejkO4dGrr1YAZXJoqNJUW+vo5fwg7PFpVIrSZ7iok7B7925ycnJYvHgxWq2W5cuX4+Pjw+uvv27T6+vr6/Hz86Ourg5fFx56bI6uxiaUtla0F0hNjTlOFxfj5uGBzwUwPkZyNgaDgaKDB4kbOxb1BdAFZw6lo4POqip0F4CGoSWUri5Qq1GpVI5eikNoqKzE3cvrglAFsETOtm0kTZ583kfr7PFpnNax68v69et5+OGHycrKMnu+ra2Nth5K4/X19cTExFyQjp1EIpFIJBLXwR7H7ry5lf3+++8ZaUWy4ZlnnsHPz6/7EXMBKGxLJBKJRCKR9OS8iNgdPHiQSy65hC1btlh07vpG7Orq6oiNjaWkpERG7CQSiUQikZy3mLKQtbW1+PU393tQq/2sMG/ePMXd3d3s4w9/+EP38woKCpTo6Gjl008/tev9S0pKFIzNQPIhH/IhH/IhH/IhH+f9o6SkpF//x6kjduXl5Vx88cWsWLGCu+++267XGgwGysrK8PHxGdTCWZMXLSODzofcG+dE7ovzIvfGeZF745wM1b4oikJDQwORkZH9NoRpB20VP5C6ujouu+wybrvtNrudOjAOAo4ewokLvr6+8sfmpMi9cU7kvjgvcm+cF7k3zslQ7Eu/KViB0zZPrF69mszMTJ577jm8vb27HxKJRCKRSCQS8zitY7ds2TIURaGxsbHXQyKRSCQSiURiHqd17M4X3N3defzxx3F3d3f0UiR9kHvjnMh9cV7k3jgvcm+cE2fcF6dunpBIJBKJRCKR2I6M2EkkEolEIpG4CNKxk0gkEolEInERpGMnkUgkEolE4iJIx04ikUgkEonERZCO3Q+gsrKShQsX4unpyYgRI9iwYYOjl3TB8vjjj5OWloZarWblypW9zj377LOEhIQQGBjIihUrkP1CQ0dbWxvLly8nOjoaPz8/Zs+eTVZWVvd5uTeO5e677yYiIgJfX19GjRrFmjVrus/JvXE8O3bsQK1W8+yzz3Yfk/viWGbPno1er+/W1l2wYEH3OafZG7sGsEp6cf311ys/+tGPlKamJuXTTz9VAgIClOrqakcv64LknXfeUdatW6dMmTJF+d///td9/Msvv1RiY2OV/Px8paysTElNTVVef/11B670wqKxsVF58sknlZKSEqWzs1P5y1/+oiQmJiqKIvfGGThy5IjS2tqqKIqi7N69W/Hz81Oqq6vl3jgBXV1dypQpU5TJkycrzzzzjKIo8jfjDMyaNavXNcaEM+2NjNidI42NjXz22Wc8+eSTeHp6cvXVV5Oens4XX3zh6KVdkCxdupR58+ah1+t7HX/nnXe47777SExMJCIigl/84he8++67DlrlhYeXlxe//e1viY6ORqPRcP/993P8+HFOnz4t98YJSElJ6dbfUqlUtLa2cvLkSbk3TsB//vMfpkyZQmpqavcxuS/OizPtjXTszpG8vDz8/PyIiIjoPjZmzBgOHz7swFVJ+pKdnc2oUaO6/1/ukWPZsWMHYWFhBAUFyb1xEu677z48PDyYNGkSl19+OWlpaXJvHEx1dTV/+9vfeOKJJ3odl/viHPz0pz8lJCSEefPmkZmZCTjX3kjH7hxpbGw8a+Cvr6+vHHvmZPTdJ7lHjqOuro577rmHp556CpB74yy8+OKLNDY2sn79embNmgXIvXE0v/nNb3jwwQcJCAjodVzui+N57rnnOH78OMXFxcybN48rrriie+Sps+yNdOzOEW9vb+rr63sdq6+vx9vb20Erkpij7z7JPXIMra2tXH311SxcuJA77rgDkHvjTGg0Gi699FI2bNjAN998I/fGgRw4cIDdu3dz1113nXVO7ovjmTx5Mt7e3nh4eLBixQq8vb3ZvXu3U+2NdOzOkeTkZOrq6igvL+8+lpGRwciRIx24Kklf0tLSenVhyj0aejo7O7npppuIjIzk+eef7z4u98b5MBgM5Ofny71xIJs3byY3N5eoqCjCw8P54IMPeOqpp7jrrrvkvjgharXRjXKqvXFIy4aLcN111yl333230tzcrHz22WeyK9aBtLe3Ky0tLcqMGTOUt99+W2lpaVG6urqUNWvWKHFxcUpBQYFy8uRJZeTIkbKLbIi5/fbblfnz5yvt7e29jsu9cSwNDQ3Ku+++qzQ0NCgdHR3Kxx9/rOj1eiUzM1PujQNpampSTp482f244YYblEcffVSpqamR++JgampqlHXr1imtra1KW1ub8sILLyhhYWFKXV2dU+2NdOx+ABUVFcqCBQsUDw8PJTk5WVm/fr2jl3TBsmzZMgXo9di0aZOiKIry9NNPK0FBQYq/v7/yyCOPKAaDwbGLvYAoLCxUAEWv1yteXl7djy1btiiKIvfGkTQ2Nipz5sxR/Pz8FF9fX2X8+PHKqlWrus/LvXEOli1b1i13oihyXxxJRUWFMmHCBMXLy0sJCAhQ5syZo+zbt6/7vLPsjUpRpLqhRCKRSCQSiSsga+wkEolEIpFIXATp2EkkEolEIpG4CNKxk0gkEolEInERpGMnkUgkEolE4iJIx04ikUgkEonERZCOnUQikUgkEomLIB07iUQikUgkEhdBOnYSiUQikUgkLoJ07CQSyQVNcXExwcHBg/oZhYWFqFQqvL29Wb16tdXnfvLJJ3h7e6NSqXrNopZIJBJbkJMnJBKJy+Pt7d39301NTXh6eqJSqQDIzs4mNjZ2UD+/sLCQlJQUWltbbX6NSqXi5MmThIeHD+LKJBKJq6F19AIkEolksGlsbOz+b71ez+HDh4mPj3fcgiQSiWSQkKlYiURyQVNYWIher+/+f5VKxUsvvURsbCzBwcF88MEHrFmzhsTEREJDQ/nggw+6n1tdXc2SJUsIDQ0lMTGRt956y+bP3blzJ+PGjcPHx4fw8HBeeOGFAf27JBLJhYmM2EkkEkkftm/fTm5uLl988QX33nsvixYt4tChQ2zYsIE77riD6667Do1Gw6233kp6ejolJSUcP36cuXPnMnbsWMaMGdPvZzz44IM88sgjLFmyhJqaGgoLCwf/D5NIJC6PjNhJJBJJH1asWIFer+eaa66htraW++67D09PT6666ioaGhooKyujvLycrVu38vTTT+Pu7k5KSgpLlixh1apVNn2GTqfj6NGjVFdXExAQwLhx4wb5r5JIJBcC0rGTSCSSPoSGhgKg0WjQ6XSEhIR0n9Pr9TQ1NVFcXExTUxNBQUH4+/vj7+/PK6+8wqlTp2z6jNdee40jR46QlJTERRddxI4dOwblb5FIJBcWMhUrkUgk50BUVBT+/v6cPn36nF4/YsQIPvzwQzo7O3n55ZdZunQp+fn5A7xKiURyoSEjdhKJRHIOREVFMWnSJH73u9/R3NxMZ2cn+/fvJzs726bXv/fee5w+fRqtVouPjw8ajWaQVyyRSC4EpGMnkUgk58h7771HUVFRd8fsgw8+SEtLi02vXbt2LSNGjMDHx4d//OMfvPnmm4O8WolEciEgBYolEolkkCkqKiIlJQV3d3fefvttFi1aZPG5q1at4o477qC1tZWioiLCwsKGcKUSieR8Rzp2EolEIpFIJC6CTMVKJBKJRCKRuAjSsZNIJBKJRCJxEaRjJ5FIJBKJROIiSMdOIpFIJBKJxEWQjp1EIpFIJBKJiyAdO4lEIpFIJBIXQTp2EolEIpFIJC6CdOwkEolEIpFIXATp2EkkEolEIpG4CNKxk0gkEolEInER/h+XVwjq5xgTlwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Show that the forced response from non-zero initial condition is not linear\n", + "X0 = [1, 0, 0, 0]\n", + "resp1 = ct.forced_response(sys, T, U1, X0=X0)\n", + "resp2 = ct.forced_response(sys, T, U2, X0=X0)\n", + "resp3 = ct.forced_response(sys, T, U1 + U2, X0=X0)\n", + "\n", + "out = resp3.plot()\n", + "axs = ct.get_plot_axes(out)\n", + "axs[0, 0].plot(resp1.time, resp1.outputs[0] + resp2.outputs[0], 'k--')\n", + "axs[1, 0].plot(resp1.time, resp1.outputs[1] + resp2.outputs[1], 'k--')\n", + "axs[2, 0].plot(resp1.time, resp1.inputs[0] + resp2.inputs[0], 'k--');" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "mo7hpvPQkKke" + }, + "source": [ + "### Frequency response" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/HX5edNE33bmkpe28QkOHAgQsHuAUV3KKiOFFQUdyi/hhuFNGv4sCFiqIIypINsqGF7t2kaXby+f1x+VzSNntdwHs+Hn1ok8vdm8v1Pq97T4YQQiAgICAgICAgIHDKI+LbAAEBAQEBAQEBgcggCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQGBICGE4LbbbkNqaioYhsGuXbv4NiniLFu2DMnJyWHvh2EYrFq1Kuz9nCrHFRDgG0HYCZzSTJs2DZMmTYr5cf0teuPHj8fSpUsjdrxoLlJFRUVYuHBhVPZ9uvLzzz9j2bJl+OGHH1BVVYW+ffvybZJAO6qqqnDhhRfybYaAQMyR8G2AgMDpRmNjIzZu3IgVK1bwbUpUsVqtkEqlfJvBC8eOHUNOTg5GjRoV8j4IIbDb7ZBIhNtwJLFYLJDJZMjOzubbFAEBXhA8dgKnFePHj8fMmTPx8MMPIzU1FdnZ2Zg3b16bbRiGwZIlS3DhhRdCqVSic+fOWLlyJff+unXrwDAMmpubudd27doFhmFQWlqKdevW4eabb4ZWqwXDMGAYps0xfvzxRwwYMAB5eXkAgD///BPDhw+HXC5HTk4OHn30UdhsNm57Tx6zgQMHcvssKioCAFx++eVgGIb7fd68eRg4cCDefvttFBQUQKVSYfLkyW3sHj9+PO6///42+540aRKmTZvGvX/ixAk88MAD3L/FGwzDYOnSpbjsssuQkJCA+fPnAwC+//57DBkyBAqFAsXFxXj66afb/PvmzZuHTp06QS6XIzc3FzNnzmzzb3/22Wdx3XXXQa1WIzc3F2+99Vab4548eRKXXXYZ1Go1NBoNpkyZgpqamjb7HzhwIJYvX46ioiIkJSXhmmuuQUtLC7fNl19+iX79+kGpVCItLQ3nnnsuWltbufc//PBD9OrVCwqFAj179sTixYu9nodp06bh3nvvxcmTJ9t8H2azGTNnzkRmZiYUCgXOPPNM/PPPP9zn6HX1yy+/YOjQoZDL5diwYYPHY5SXl+Oaa65BamoqEhISMHToUGzZsoV7f8mSJejSpQtkMhl69OiB5cuXc++VlpZ2CA83NzeDYRisW7eujS30WlUoFBgxYgT27t3r9d8N+P+ujxw5grFjx0KhUKB379749ddffe4P8P3dUI/8008/jczMTGg0Gtx+++2wWCzc58ePH4977rkHs2bNQnp6OiZMmACgrZebnpOvv/4aZ511FlQqFQYMGIBNmza1seXdd9/l/pYuv/xyvPbaaz4983S/X3zxBcaMGQOlUolhw4bh8OHD+OeffzB06FCo1WpccMEFqKur4z73zz//YMKECUhPT0dSUhLGjRuHHTt2tNm3r7+bxYsXo1u3blAoFMjKysJVV13l9zwL/IcgAgKnMFOnTiWXXXYZ9/u4ceOIRqMh8+bNI4cPHyYfffQRYRiGrFmzhtsGAElLSyPvvvsuOXToEJkzZw4Ri8Vk//79hBBC/vjjDwKANDU1cZ/ZuXMnAUBKSkqI2WwmCxcuJBqNhlRVVZGqqirS0tLCbXvVVVeRZ599lhBCSHl5OVGpVOSuu+4iBw4cIN988w1JT08nc+fO5bYvLCwkr7/+ept/14ABA7htamtrCQDy4YcfkqqqKlJbW0sIIWTu3LkkISGBnH322WTnzp3kzz//JF27diXXXXddm/Nx3333tdn3ZZddRqZOnUoIIaShoYHk5+eTZ555hvu3eAMAyczMJO+//z45duwYKS0tJT///DPRaDRk2bJl5NixY2TNmjWkqKiIzJs3jxBCyMqVK4lGoyGrV68mJ06cIFu2bCHvvPNOm397YmIiWbBgATl06BB58803iVgs5r4vh8NBBg0aRM4880yybds2snnzZjJ48GAybtw4bh9z584larWaXHHFFWTv3r1k/fr1JDs7mzz++OOEEEIqKyuJRCIhr732GikpKSF79uwhixYt4r6zd955h+Tk5JCvvvqKHD9+nHz11VckNTWVLFu2zON5aG5uJs888wzJz89v833MnDmT5ObmktWrV5N///2XTJ06laSkpJCGhgZCiOu66t+/P1mzZg05evQoqa+v77D/lpYWUlxcTMaMGUM2bNhAjhw5Qj7//HOyceNGQgghX3/9NZFKpWTRokXk0KFD5NVXXyVisZj8/vvvhBBCSkpKCACyc+dObp9NTU0EAPnjjz/a2NKrVy+yZs0asmfPHnLxxReToqIiYrFYCCGEfPjhhyQpKYnbh7/v2m63k759+5Lx48dz1+OgQYMIAPLNN994PJf+vpupU6cStVpNrr76arJv3z7yww8/kIyMDO67JYS9xtVqNZk9ezY5ePAgOXDgACGEtDkuPSc9e/YkP/zwAzl06BC56qqrSGFhIbFarYQQQv766y8iEonIyy+/TA4dOkQWLVpEUlNT25yD9rjv9+effyb79+8nZ5xxBhk8eDAZP348+euvv8iOHTtI165dyR133MF9bu3atWT58uVk//79ZP/+/eTWW28lWVlZRKfTEUJ8/938888/RCwWk08//ZSUlpaSHTt2kDfeeMOrjQL/PQRhJ3BK40nYnXnmmW22GTZsGHnkkUe43wG0uckSQsiIESPInXfeSQjxL+wI6bjoUUwmE0lMTCR79uwhhBDy+OOPkx49ehCHw8Fts2jRIqJWq4ndbieE+Bd21Ob2i+PcuXOJWCwmZWVl3Gs//fQTEYlEnEDzJ+y8Hd8TAMj999/f5rUxY8aQ559/vs1ry5cvJzk5OYQQQl599VXSvXt3Tiy0p7CwkFxwwQVtXrv66qvJhRdeSAghZM2aNUQsFpOTJ09y7//7778EANm6dSshhD0PKpWKWxQJIWT27NlkxIgRhBBCtm/fTgCQ0tJSjzYUFBSQTz/9tM1rzz77LBk5cqTnE0EIef3110lhYSH3u16vJ1KplKxYsYJ7zWKxkNzcXPLSSy8RQlzX1apVq7zulxBC3n77bZKYmMgJwvaMGjWKzJgxo81rkydPJhMnTiSEBCfs/ve//3HbNDQ0EKVSST7//HNCSMdr3N93/csvv3i8Hn0JO3/fzdSpU0lqaippbW3lXluyZEmbv59x48aRgQMHdvisJ2H33nvvce/T64gKwauvvppcdNFFbfZx/fXXByTs3Pf72WefEQBk7dq13GsLFiwgPXr08Lofm81GEhMTyffff08I8f1389VXXxGNRtPmehcQcEcIxQqcdvTv37/N7zk5OaitrW3z2siRIzv8fuDAgbCP/fvvvyMtLQ39+vUDABw4cAAjR45sE+IcPXo09Ho9ysvLwz5ep06dkJ+fz/0+cuRIOBwOHDp0KOx9e2Lo0KFtft++fTueeeYZqNVq7mfGjBmoqqqCwWDA5MmTYTQaUVxcjBkzZuCbb75pE7qjNrf/nX4XBw4cQEFBAQoKCrj3e/fujeTk5DbfV1FRERITE7nf3b/zAQMG4JxzzkG/fv0wefJkvPvuu2hqagIA1NXVoaysDLfeemubf8P8+fNx7NixgM/LsWPHYLVaMXr0aO41qVSK4cOHd7iu2p/D9uzatQuDBg1Camqqx/cPHDjQ5jgAe02Fcv26n/vU1FT06NHD6378fdcHDhzweD36wtd3476NSqVqs0+9Xo+ysjLuNX/nlOJ+b8jJyQEA7jo5dOgQhg8f3mb79r8Hst+srCwA4O4B9DX3e1BtbS3uuOMOdO/eHUlJSUhKSoJer8fJkycBwOffzYQJE1BYWIji4mLceOONWLFiBQwGQ0B2Cvw3EISdwGlH+4R+hmHgcDj8fo6KL5GI/bMghHDvWa3WgI793Xff4bLLLuN+J4R0yFuj+3U/nvuxgjlee+g+o7FvAEhISGjzu8PhwNNPP41du3ZxP3v37sWRI0egUChQUFCAQ4cOYdGiRVAqlbjrrrswduxYvzZQ+z2dP0+v+/rOxWIxfv31V/z000/o3bs33nrrLfTo0QMlJSXcNu+++26bf8O+ffuwefPmgM9L++/Um51Ax3PYHqVS6fd4vo4TzvXrad8Uf991++vM174ovr6bYOz0d04p7tcJ/Ty9Bnz9rYay3/avud+Dpk2bhu3bt2PhwoXYuHEjdu3ahbS0NC530NffTWJiInbs2IHPPvsMOTk5eOqppzBgwIA2ubUC/20EYSfwn6T9or1582b07NkTAJCRkQGAbZdAad+nTCaTwW63t3mNEILvv/8el156Kfda7969sXHjxjYLxMaNG5GYmMgVV2RkZLQ5lk6n67CwSaXSDscD2MKCyspK7vdNmzZBJBKhe/fuHvdtt9uxb98+v/+WQBk8eDAOHTqErl27dvihAkOpVOLSSy/Fm2++iXXr1mHTpk1tkvR9fRe9e/fGyZMn23hn9u/fD61Wi169egVsJ8MwGD16NJ5++mns3LkTMpkM33zzDbKyspCXl4fjx493sL9z584B779r166QyWT466+/uNesViu2bdsWlJ0A6/3ZtWsXGhsbPb7fq1evNscB2GuKHieQ65fifu6bmppw+PBh7ty3x993Tb+r9tejP7x9N5Tdu3fDaDS2sVmtVrfxDEaCnj17YuvWrW1e27ZtW0SPQdmwYQNmzpyJiRMnok+fPpDL5aivr2+zja+/G4lEgnPPPRcvvfQS9uzZg9LSUvz+++9RsVXg1EOosxf4T7Jy5UoMHToUZ555JlasWIGtW7fi/fffB8Au0gUFBZg3bx7mz5+PI0eO4NVXX23z+aKiIuj1eqxdu5YLFe3fvx+tra0YO3Yst91dd92FhQsX4t5778U999yDQ4cOYe7cuZg1axYnfM4++2wsW7YMl1xyCVJSUvDkk09CLBZ3ON7atWsxevRoyOVypKSkAAAUCgWmTp2KV155BTqdDjNnzsSUKVO4Vg9nn302Zs2ahR9//BFdunTB66+/3uHJvqioCOvXr8c111wDuVyO9PT0gM/jU089hYsvvhgFBQWYPHkyRCIR9uzZg71792L+/PlYtmwZ7HY7RowYAZVKheXLl0OpVKKwsJDbx99//42XXnoJkyZNwq+//oqVK1fixx9/BACce+656N+/P66//nosXLgQNpsNd911F8aNGxdw+G3Lli1Yu3YtzjvvPGRmZmLLli2oq6vjhNC8efMwc+ZMaDQaXHjhhTCbzdi2bRuampowa9asgI6RkJCAO++8E7Nnz0Zqaio6deqEl156CQaDAbfeemvA5xMArr32Wjz//POYNGkSFixYgJycHOzcuRO5ubkYOXIkZs+ejSlTpmDw4ME455xz8P333+Prr7/Gb7/9BoAVBGeccQZeeOEFFBUVob6+HnPmzPF4rGeeeQZpaWnIysrCE088gfT0dK99If191+eeey569OiBm266Ca+++ip0Oh2eeOIJn/9Wf98NwLYvufXWWzFnzhycOHECc+fOxT333MP9/USKe++9F2PHjsVrr72GSy65BL///jt++uknv17HUOjatSuWL1+OoUOHQqfTYfbs2W08tb7+bn744QccP34cY8eORUpKClavXg2Hw4EePXpE3E6BU5TYp/UJCEQOT8UT/ooFAJBFixaRCRMmELlcTgoLC8lnn33W5jN//fUX6devH1EoFGTMmDFk5cqVbYonCCHkjjvuIGlpaQQAmTt3LpkzZw65/vrrO9i4bt06MmzYMCKTyUh2djZ55JFHuEo8QgjRarVkypQpRKPRkIKCArJs2bIOxRPfffcd6dq1K5FIJFzS/ty5c8mAAQPI4sWLSW5uLlEoFOSKK64gjY2N3OcsFgu58847SWpqKsnMzCQLFizocD42bdpE+vfvT+RyOfF1S4CXJPiff/6ZjBo1iiiVSqLRaMjw4cO5Cr5vvvmGjBgxgmg0GpKQkEDOOOMM8ttvv3GfLSwsJE8//TSZMmUKUalUJCsriyxcuLDN/k+cOEEuvfRSkpCQQBITE8nkyZNJdXU19z49D+64Fzfs37+fnH/++SQjI4PI5XLSvXt38tZbb7XZfsWKFWTgwIFEJpORlJQUMnbsWPL11197PRftiycIIcRoNJJ7772XpKenE7lcTkaPHs0VeBDiuSjHG6WlpeTKK68kGo2GqFQqMnToULJlyxbu/cWLF5Pi4mIilUpJ9+7dyccff9zm87Q6U6lUkoEDB5I1a9Z4LJ74/vvvSZ8+fYhMJiPDhg0ju3bt4vbhqUDI13dNCCGHDh0iZ555JpHJZKR79+7k559/9lk84e+7oX/fTz31FElLSyNqtZpMnz6dmEwmbhtPf/OEeC6e8FVQQghbIZ2Xl0eUSiWZNGkSmT9/PsnOzvZou7f9evqe25/LHTt2kKFDhxK5XE66detGVq5c2aaIydffzYYNG8i4ceNISkoKUSqVpH///lzBi4AAIYQwhASYRCAgcJrAMAy++eabiE+s6N+/P+bMmYMpU6ZEdL/emDdvHlatWnVKj7MqKirC/fff36HXnkB0WbduHc466yw0NTVFZGxYtJg2bRqam5t5Gw02Y8YMHDx40Gu/QQGBeEQIxQoIRACLxYIrr7xSGGEkIHAK88orr2DChAlISEjATz/9hI8++shns2oBgXhEEHYCAhFAJpNh7ty5fJshICAQBlu3bsVLL72ElpYWFBcX480338T06dP5NktAICiEUKyAgICAgICAwGmC0O5EQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCRK+DYgWDocDlZWVSExMBMMwfJsjICAgICAgIBAShBC0tLQgNzcXIpFvn9xpK+wqKytRUFDAtxkCAgICAgICAhGhrKwM+fn5Prc5bYVdYmIiAPYkaDQanq0REBAQEBAQEAgNnU6HgoICTtv44rQVdjT8qtFoBGEnICAgICAgcMoTSGqZUDwhICAgICAgIHCaIAg7AQEBAQEBAYHTBEHYCQgICAgICAicJgjCTkBAQEBAgAfq9WYcr9PzbYbAaYYg7AQEBAQETjkIIVi++QSufWczFvx0AIQQvk0KikV/HMXIBWtx9qt/4pPNJ/g2J2hMVjs2Hq2HyWrn2xSBdpy2VbECAgICAqcvX+2owJOr9gEANh1vgFwixqwJ3Xm2KjD2V+rwyppDoFp0zqp96JOrwaBOKfwaFiCl9a2Y/vE2HK3Vo2umGu/dNBRF6Ql8myXgRPDYCQgICPxHMdvsWPrnMdz0wVb8ebiOb3MCRm+24YWfDgAA5BJ2GVv8x1HUtpj4NCtgqKi7qH8OLu6fAwBYtrGUX6OC4Mlv9+FoLRtCPlqrx5Pf7uPZouCoazHjrhXb8fg3e3GywcC3ORFHEHYCAgIC/1HmffcvXvjpINYfrsP0j/7BX0fq+TYpIH7eV416vQWdUlXYO+98DO6UDJuD4Mvt5Xyb5pd6vRl/HKoFADw4oTtuH9sFALB6bxXqWsx8mhYQu8uaseFIPcQiBh/fMhxiEYMNR+qxp7yZb9MCQmu0Ysrbm7B6bzU+3XISVy3dCL3ZxrdZEUUQdgICAgL/QfaUN+N//5QBAMQiBlY7wfOrT41ctZ/3VQEArhicB5lEhGuHdwIAfP5PWdzb//uBWhAC9M3ToDhDjX75SeifnwSrnWDtgRq+zfPLcmc+4GUDcjG2ewYuHZDLvr7p1MgT/GTzCZTUt0IiYiATi1DbYsbiP47ybVZEEYSdgICAQJjsLddixZYTMFhOnSf/D/4qASHAZQNzsX3OuVBIRdhfpcM/pU18m+aTFpMV6w+znsWJ/dgw5kX9cyATi3CiwYDSOA+trdnPircJvbK5187qkQkA2HA0vj2mDgfBOqe38aoh7LzSyc7//nGoFg5HfItqi82Bj5wh75eu6o//u24QADYMfjoVgQjCTkBAQCAMlm8qxaTFf+OJb/ZhwmvrUdls5Nskv5isdvx2gF2gbxpZiGSVDJcPygMA/G/rST5N88vGYw2w2B0oTk9At0w1AEAlk2BQp2Tn+/Erjmx2B2ffub0zudfP7JYOANh4tD6uxdGeCi3q9RYkyiUYWpQKABhalAq1XIJ6vQX7KrU8W+ibdYdqUdtiRmaiHBf3z8WE3lnITVLAYLFj/SmUY+oPQdgJCAgIhEiNzoRnfzwAu3Mxrmg24uVfDvFslX82HKmH3mxDtkaBQQVsJeZlA1lht/5IXVyLix0nWI/iiOK0NnMzR3el4qiBF7sC4VBNCwwWOxLlEvTKds0wH1iQjASZGE0GK/ZX6Xi00De/H2QfBsZ0T4fMWbQik4hwpvPc0/fjlXVO8XZh32zIJCIwDIML+rJe35/2VfNpWkQRhJ2AgIBAiCxZdwwWmwNDC1Pw/T1nAgBW7arA4ZoWni3zze8H2XDgBX2zIRKx4mhwpxQkyMSo11viWlxsdwq7IYVtW4OM6pIGgG19Eq95djtPNgMABnZK5s47AEjFIs4DtuNk/IbC/ylpBACM6ZbR5vWx3dnf/yltjLlNgUIIwZ+HWGE3vofLW3phPzYkvvZADfeAdqojCDsBAQGBELDYHPjKWYV537nd0C8/Cef2ygIhwKqdFTxb5xuaR0c9LQDreRnpFEcb4rQ61myzY08FG+5rL+z65ydDJhahsdWC8qb4DIdTYeepX13//CQAbL5mPGJ3EK7ylYa9KQML2N/3lGnj1tt7rE6PimYjZBIRzihO414fVJAMlUwMnckW9w9kgXLKCLtNmzZBJBLhhRde4NsUAQGBCNNismL6R//gkrf+wjvrj8Wtx8Wdzccb0GK2ISNRjtFdWIF0yQA2rPPLv/Eb1mlstXA9yNqLIyr04jVPbV+FDhabA2kJMhSlqdq8J5OI0CM70bldfIqjnWWsoG4vjACgb55T2MWp7Udr9Wi12JEgE6NbZmKb97pnqaGUitFituF4fXyOSNtawp77oYUpUMrE3OsSsYj7PradiF9vaTCcEsLO4XDggQcewLBhw/g2RUBAIMLYHQR3frIDvx2oxd4KLZ5ffRBf74hvjxcA/Oqsbjy3VxYXVjurZyakYgbH6lo58RRv0FBm10w1UhJkbd4b7BR6eyu0cSmuaYi4X35Sm/w6St88Nm8tHpP4W802HK9rBQAMyE/u8H4/p7A7UquPywrNXU5R2i8/CWJR23MvEYs4+3eVxd+5B9j+e4BnUT2kkA2Db4/jUHIwnBLC7p133sGIESPQq1cvvk0REBCIMGsP1OCvo/WQS1yLw7zv/o37pqE0Ufy83lncaxqFFCOd3rt4neSw7QS7eA0r6hgO7JGdCKmYQbPBirLG+AtnHqpmhV1Pt8IDd/rkstfPvor4yxE84hT6GYlypLYT1ACQk6RAWoIMdgfBgTjMcaSCbWCB57FnAwqosItPr9duZxjZk6ge6nygETx2MaKxsRELFy7EvHnzfG5nNpuh0+na/AgICMQ/dJTSLWd2xqq7R6NzegJazDas3lPFr2E+qGw2oqLZCLGIwfDOqW3eG+H8fUecLhL7K9l7o6cFTi4Ro1cOK5r2VDTH0KrAOFTN5kD1zE70+D4NZ+6LQ4/jYaftPbI8284wDPo47T9QFX+5XgedorpPrmdRTc/9wTi03WBx5c/RfEB3Bjq9eOVNRjQbLDG0LDrEvbB7/PHHcf/99yMlxfdw5AULFiApKYn7KSgoiJGFAgICoVJa34qNxxogYoAbziiEWMRwjU9Xbi/j2Trv0HBmr5xEJMglbd4bwj39N8aduADAeYOogGsP9ZruibMkfkIIDlJx5EXY9cxOBMMADa0W1Ovja4E+5BQW3b0IOwBcX754C+MTQnCkhrXJ27mn/65DNS1xd93vq9DBQYBsjQKZGkWH9zUKKfJTlADiU1QHS1wLu507d2Lr1q2YMWOG320fe+wxaLVa7qesLH4XBQEBAZa1znDmyC5pyEtmb6xXDs4Hw7CVm9Xa+BzqToXd0MLUDu8NyE+GRMSgRmdGRZw1K65tMaFeb4GI8S4waHVmvBUgVGpNaDHZIBEx6JKh9riNQipGQQpbVHGsLr7EEfUY9cj2bDvA5j0CwNE4s71Sa4LebINUzKAoLcHjNsUZCRCLGLSYbKjRxdfM2/3OnEuag+kJ+qATj2HwYIlrYffnn3/i8OHDyMvLQ3Z2Nj7//HM899xzHoWeXC6HRqNp8yMgIBDf0PFEZ7n1lcpOUqCvM1dq0/H4rM6kvcYGF3aMJChlYi6ktj3OwrE0TFaUntCmMtCdHs78tSNx5jWioczijASuOa4nusap14t6G3157Kjtx+LMdu7cp6u9nnu5RMxVKh+Ks7Yhh2t9exsBl7CjIedTmbgWdrfddhuOHj2KXbt2YdeuXbj00ktx33334eWXX+bbNAGBuMNic+CLf8qw8LfDceet8ITBYsOW42wiv3vDUAAY1ZXtM/V3HE4RsNgc3FP9IA/5OgAwwOn1ovls8YK/MCzgEhd1Lea4yjei1zS1zxtdMliPUjwJO53JiroW1ovly/6uTk9kRbMRrXFUPMSFkX0II8AlWo/Em7ALQFT3cv7bhFBslFGpVMjOzuZ+lEol1Go1kpOT+TZNQCCuIITgka/24OGv9mDhb0dwxeKNcf/kuf1EEyx2B/KSldxiTBnVxTU7M97ydY7V6WG1EyQqJFxeTnto1eaB6vhaJLjiAx8LnFou4cLi8eS1K6lnW4V0TvccCqRwXq84ergpddqerpYjUSH1ul1KggxpzopZ2holHuDCyFm+RTWXZxdH1z0hhLPfp7BzPuwcqmk55SdQxLWwa8+yZcvw6KOP8m2GgEDc8d3uSnzjnHYgETHQGq14+Ms9cSeK3KFd+IcWpXToSTasKAUSEYNKrSnupghwXq9sjcdeagDQMyexzbbxQqBer27OBTyeOvGXNlBh59v2eAxnukSpys+W7nl28XPuqcj0lttIobYfr48fUVqjM0NnskEsYlCc4f2hoCBVBZlEBIvNgYo4u+cEyykl7AQEBDpCCMG7G44DAO47pxs2P34O5BIR9pRrsfl4/Dbc3OnMU/MUzlTJJHE7RcAVzvT+9N8ji63OrGsxo14fH4nkhBBugS72s0DT6kxaCRkPlNQFJo6o+KjUmuImnFlabwDg39vovs2JBkNUbQoGKqqL/Njvsj1+hB19OClKU0Eu8ZxXCgBiEYPOzsKQY3E6PSNQBGEnIHCKs7OsGfsqdJBJRJg6qgjpajkmD2VbhnzwdwnP1nmGEIKdXCd4z62MuNmZcSfsnOFMH3lqCXIJClNZARIvfb3q9Ga0mG1gGKAwzbc46kZzpWrjw3ajxY5KZ4W0P49dskqGZBUb7jzZGB/iKFBhBACdnN/NyTgRds0GC5oNVgDwWhFLoddVvd6CFpM16rYFQqBeagCcRy+ewuChIAg7AYFTnG+dIdiL++dwHe2vH1EIAFh/uA4GS3x4LdwpbTCg2WCFTCLymsgfr7Mzae6irwIEwJVnFy+5jnSxyk9RQiH17rkAgGKnAKGeJr450cjanqSUIkXlPUeNQkV1vHi9uFCsH2EEAJ2o7XEiSqnt2RqF10pqSqJCinQ1ew+Kl3NP8xsDEdUuYSd47AQEBHiCEII/DrGjqy7sm8O93jM7EfkpSphtDvx1JP5ahvzr7CvVK0fjtX1C/7xkAPE1t7TZ4Gp8282PByDe8o24MKwfjxfgWgQrtca4mFvqvjh7y2t0p5NTQJ1sjI9zH4zHrjA1vkKxLtv95wcCLq9eSZxc9yXO8xiIqKZ/G4LHTkBAgDeO17fiZKMBMrEIo7qkca8zDINze7EzTOmw+niChid7+8hT656t5uaWxkuj32POG35OkqLDxIn2xNvTP7XDVwI5JS1BBrVcAkKA8ib+BQYNqVJPnD/iyWOnNVq5UKa/EDjgCsXW681xkSNY4vTa+gvDUgrTqLc3PsRRSB47IcdOQECAL/5wTm4YUZzaQWic04vtDbfxWPz1ggukn5pcIuaSseMliZ/m6/irDgRcBQrx8vRf6hQ5xQEscAzDcB6akjgIx5Y1ssK+INVze5n2cHlqcRDOpMI4XS2DSub7YQBgw83xlCMYjDACXMUtpXEgqi02B3f+AylcoR67Gp05LlNYAkUQdgICpzD/lLJVr6O7pnd4b1CnFIhFDCqajajSxofHi3KQG+buO08t3pL4XVWlgT/917aY4yKRvMwpEjqdgp6XMufinJ8SmMeuUxx57KgozQvQdsDd48j/uQ/WWxpPYfCyJgMcBFDJxMhMlPvdPkklhUbBiu94a7MUDIKwExA4RSGEYAftBedhtJVaLuFacmwrjZ/RVlqjK7Tqa8QP4MpjO3wKeuw0CinS1exiwrfXjhDCLdCdAlygaU5SaRyIC7rIFgQojmjIs6LZCKvdETW7AoF6jAq8NLP2RIHzO6KikE/o32pegPbT5taVzfzPeaYPJYVpgeVmAq6Hh3hIQQgVQdgJCJyilDcZUddihlTMcBWk7aFD6uNpZintSp+bpECS0neFIzeiKE6azQaTp+a+Hd85O/V6C4xWOxgGyE1WBPQZKo74FnaEEJc4CjAUm5WogEwigt1BUK3lV2BQURqotxFwE0c8e9pNVjs3Co3a5A86jaVaZ4KNZ1FNPbaBehsB1zUmeOwEBE4TbHYH1h+uw3e7K+OiGtAXVKz1zUvy2r5iiNOTF0/Cjnq9/M2dBFweu6M1LbxXxtodLq+Xvwa/FJrPxneeGrU7R6Pw2aTVHerZ43uBq9ObYbI6wDBATlJg4kIkYpCTxArYSp4Lb4IVpQCQ6xRRVTx7vaqcolghFXGtlPyRoZZDKmZgdxDUtPDbnJt6G72N/vMEFeBlcZDfGCr+MzkFBP4jmG123PzhP1yxQVGaCstvHcGFReIN1+QGzw1+AVeT30PVLbDaHZCK+X+Wo6OeAm27IRExaHU2qA3UaxANqrRGWO0EUjGDbE1gXi967fA9osglLoLwGqW4xIXDQSASBRbKijQ0HJmjUXhtjeOJ3CQlTjQYePd6heKxy40Tjx29bvOSlQGHMllRrcTJRgMqmoy8/s1WNIUi7ASPnYDAacOzP+zHxmMNYBhALhGhtMGAB1fuhiNOB0Lvd1aW9sv3XoBQkKJColwCi90RN0PRuTy1TP/hTKlYxFU48p3ETwVGfooK4gBFDl0kynjO16FTDALNrwOALI0CIgaw2B2o43EsWnmQhROU3DjI9SKEcJ6fYMQFDZfz7W2saGZtD6bwA3CFbenn+cKVHxi4/a4cO0HYCQic0pxoaMVnW8sAAB9OG4bfZo2DSibG1pJGfLu7gmfrOuJwEG60VZ9cz/l1APv0TFuK/FsRHxMQjgU4UJwSLw1PQ1mg6SLBt8eOhmKD8dhJxSLOM8lnH0EaDgw0eZ+Sl8y/7VqjFa0Wu9OeIISdM+Rcr7fwmhJS4RTFwXrd4kFUA27CLgj7acic74excBCEnYAAgCXrjsHuIBjfIwPje2SiIFWFu8Z3AQAs+7uUX+M8cLLRAL3ZBrlE5LcvWe9cVthRDx+fmKx27oYZrLDju/VDWQjhTFoJyYZx+UskLw8hJAW4xBSfwpQWP2QnBRb+prjEBf+iNC1B5neMmzvJKimUzu35LP4IJZQJuK4bPr1eBosNja2WNvYEAhWBzQZrXLQpCgVB2An85zFa7PhudyUA4K7xXbnXrx3eCTKxCLvLtdjtHFgfL1CR1jM7ERI/eXNU2NExXnxS2tAKQgCNQsLNlPRH5zhplFsWZLsQAMhIlEMuEcFB+E2Ep30Mc4P0vLhCavwt0FSY5YQo7Pg876GKUoZh4iIcy4Vig7xu8uPguqGiNFEu8Vt9706iwtUgOl4m3gRL2MKurKwMVVVVkbBFQIAXfjtQA4PFjoJUJYYVuQoR0tRyTOyXDQBYtSu+wrH7K1lhR0WbL3o5mwDHQy+4EmcYtnOGOuBkbNrxnu+2G1w4M4h8HYZhOG8BX6EdQggqnQIjN8CqUkpceOx0rO2BVsRS4sFjR4sfgrUdcNnPqzgKsocdJR7OfXmItgOuv/HyOOgjGApBC7vrrrsOmzdvBgB88MEH6NmzJ7p3744PPvgg4sYJCMSC753eukv653YQGxP75QAA1vxbw3u7DXfoJAba580XtEihsdWCBh6T4AHgRCOdOxm4OKKh2JMNBth5LGQpo01yg2hbAfDf8LSh1QKLjQ0DZyX5777vTl6yq9EvX9BwZvAeO3b7FrMNOp5CatUh2g64RDhfeWp2B+G8ncF67NwfCPi6b4YaRnb/zKmaZxe0sPvll18wZMgQAMCLL76I33//HVu3bsXzzz8fceMEBKKN2WbHhiP1AICL+ud0eH9MtwwopCJUNBvjIkeNctTZMqRrpv88NZVMwt2ojvLc6DfY6QcA+/QvE4tgsTt4G41mtLgatQbjsWO35zffiC7ObFg48DwvgP/qTIvNgXrnw0iw4kglk3AhNb7srwoxFAu4hZJ5uuZrW0ywOQgkIgZZAbb3odDvymi1o8nAj6gOpXCCcqq3PAla2DkcDkgkEpSWlsJkMmHEiBHo1asXamtro2GfgEBU2X6iCUarHelqOXp7GEivlIkxplsGAGDtgfi4xq12B9dRPdACBK7RL88tT0JpuyEWMa4naJ5CI9Tblih3iYVA4bvhKQ0H5oYgLvJ5DsXW6EwgBJCJA2+Q6w71evGVZxeOxy6H56pe+p1nJykCbu9DUUjF3Dg9vkQ114MvJI/dqT1WLGhhN3LkSNx777144IEHcPnllwMASkpKkJqaGnHjBASiDfXWjemW7jXna2x3VthtPt4QM7t8cbLRAJuDQCUTB7xgUM/eEZ7z7ELx2AFuoR2eFgluCH2qKuDcQArfI4qqmsPP82ox26A1xt7zQvPrspMUQZ93gP88NeptC8Vjl8dznlo4Hi+A/8pYl/3BN5jnWp78V3LsPv74YyQmJqJfv36YP38+AODAgQO4//77I22bgEDU+ctN2HljZLFr3qrZxv+YMTq5oUsQBQjdMtlcPD5DsVa7g7vZFqYFNmuV4gqN8PMETW/wwQxyp3AeO55sp4UTOQHOiHVHJZNwnjI+vHahVsRS8ngMJRNC3PIDQxfVVVoTL3lq5WF4vAD+K2MFj10QLFu2DAsWLMAzzzwDtZr1AkycOBEOB7/DfgUEgkVvtnEtQEZ2SfO6XZcMNdLVcphtDuw62Rwj67zjavAbuDjq4vTY8Tl9oqrZBLuDQCYRITMx2CR+fp/+Q2l1QqFisEZn5uXBoDJczwuPC3Q4oUyA3+pMnckGg7M5cUihWOdnDBY7L95Sbs5qiNcNn/mZFpsDNS2hFX64f0Zn4sdTHS5BC7tnnnnG4+vPPfdc2MYICMSS3WXNcBD2j9jXEzXDMDjD6bXbfLwxVuZ55aibxy5QOjtbhlRpTbx1sncPwwY7d5TvCQ6hTG6gpCbIuGazfNgfjtcIcBN2PHgvXMUHodmew+MEBCpKU1TSoJoTUxRSMdKot5QHcRSOxwtwv274uOaNIIQdDRlov0x3EtxyaflsEB0qkkA3/OKLLwAANpsNK1eubOMaLi0tjUqOndlsxh133IFff/0VLS0tGDRoEN566y3069cv4scS+O+xrbQJADCkMMXPluw2P+ypwq6ypmib5RfXrNXAhV2KSopEuQQtZhvKGg3oFkCblEhzopH1NIbi9eLydXiaPRlqqxOAfTAoSFXicI0e5U1GFAchyCMBl2MXQigWcB9IH/sFztVYOcxQLA+Vpa78utCEEcCe+4ZWCyqbTT5HB0aD6jAfCFzXDb+iNJTcTADI1ijQbLCiSmtEj+zY3y/DIWBht2TJEgCAxWLB4sWLudcZhkFmZiaWLVsWceNsNhuKi4uxefNm5OTk4I033sCkSZNw7NixiB9L4L/H9pOBC7tBndhtdpU1gxAS8s0iXAghLmEXhEBgGAaF6Srsq9ChtIEfYRdq4QTgyrGj4dxgq/TCgRCC8hCaE7uTn6LihF0ssdkdXAFCsM2JKXw2KeYmNwTZboNCxUW1NvbXTbhhZPrZvRVaXsKZtc5QZrCtTii0YKRGF/sHgvIw0w8A1v6D1S282B8uAQu7P/74AwAwf/58zJkzJ2oGuZOQkIAnn3yS+/2ee+7BQw89hIaGBqSltc2JMpvNMJtdzVd1uvjpOSYQfxBCuDFhgzv5F3a9chIhE4vQZLDiZKMh6OT/SFGnN6PFZIOIAQqDaPILsAUL+yp0vM1cDaXVCSUzUQGJiIHNQVCjMwU9GiscdCYbWsw2AK6QcLDwVfxR22KGgwASEYOMIPMaKVx+Iw/igoZiQ/2+MxPZVh02B0Ftiylk71MoVIbRw47CCdMYiwuzzdV/LksT2nVDxXhdixk2u8Pv6MNIEmpjZXeoIK86BUOxQZ/p2267DbW1tR5/os2mTZuQlZXVQdQBwIIFC5CUlMT9FBQURN0eAe+YrHaU1Lfy1vHdH+VNRmiNVkjFTEBudrlEzI3v2sXj3NhjtawoK0hVBZ23U+gUVLQHXqyhHrtgBSnA9rLjq3UF9bwkq6RQyoLPlQJc4axY5+vQcGCWJvheZBQaBq2OcUjNYnOgztmcOFRxJBYxyHIK2hpdbKeu0POVE6LHCwAyNdT22F43tc5zJZOIgpqz6k6aWg6xiIGDsNNPYklNmN5G98+eih67oIVddnY2cnJykJ2dzf0//YkmWq0Wt99+u9cijcceewxarZb7KSsri6o9At75dMtJnLFgLc56ZR2Gzf8NC1YfgM0eX1XT/zpnrXbLTIRMEtifwcCCZADA7jJttMzyy9EQwrAUOpqLj5mrhJCwPHaAe2VsbIUplysVxiLB19M/LRoINUcN6Oh5iRW1LW7NiVXBJ8BTMnlaoLmilTC8RlmJrO21MRalrjCsPOS0E7GIQYazSXGsH2hqdeELu1PZYxdwKJbSvq1JdXU15s+fjxEjRkTMqPaYTCZMmjQJF110EW655RaP28jlcsjlobmMBSLHO+uP4fnVBwEADAOYbQ68vf44alvMeG3KAN5y09qz39nmpE9ux2kT3qAeuwM8jhY7FsQosfZQT9lJHiYgNBusXDgzlMpSwC2cGeOmoZHIlaIep1iH1CrDaE5MoZ4Xu4OgXm8JK7QYDNVuocxgq6jdoaHE2hif+0hcN3x5jah3kwrLUMlKUqBaZ0K1zoQBkTAsQKp1LmEaKtk8edkjQdhB7+zsbLz22mt47LHHImFPB2w2G6655hrk5ubilVdeicoxBCLDluMNnKi7/9xuODL/Qrx17SBIRAy+2VmBL7bFjxeVeuyCEnbOkWMHqnW8Dbam+XFFIeT40bzA8iYjrDH2oFIxmaWRh9T6AeBv+kS4LTcA1+JeHeNms+HmqAGs54X2HYylMI1EjhrA5tkBfIRiw7c/i6dQbE0EPF4AuDB4rEU1J0zDsJ96qmP9MBYJIpLNuGXLFthstkjsqgMzZsyA0WjEsmXL4sbbI9ARi82Bx77eCwCYMjQf95/bHRKxCJcMyMUjF/QEAMz/8QAa9LG9uXqDE3Z5gbcQ6JqphljEoNlgjfkiQTkRRp5aZqIcCqkIdgeJeYVjOBWxFFc3+FPPY0cXGKPVDp0xOvdKT1CPXTihWMBlfyy9FzUROO+Am8euJXa2t5hcHupwQvg0jKwz2WC0xK7/JL2/ZYbh8QL48VTb7A7U6yMg7Jy2NxusMT33kSBoYderVy/07t2b+ykqKsLEiROxYMGCiBt34sQJLFu2DOvXr0dKSgrUajXUajU2bNgQ8WMJhMfK7WU4Xt+KdLUcT1zUu817t5zZGX1yNWgx2fDeXyU8WeiiQW9Gtc4EhgF65QTusVNIxSh2NvrlIxzrcBAuDBmKQBKJGBSmsvafiHE4lutiH2JVKftZnjx2uvA9LwqpGCnOhqdVutjZTz0v4YgL98/H0nNEhViwU0ra48qxi93DGD1WokKCBHnQGU8cGoUECim7TMdSmEYiR83987E893V6M4izEpw2eA4FjULCNRY/1bx2QV9xS5cubfN7QkICunfvDo0m8AUyUAoLC3kLeQkEjsXmwOI/2N6Cd5/VpUMVlVjE4L5zuuG25dvx8cZS3DG2C5JUoVVaRQLqrStKS4A6yJturxwNjtTqsb9Kh7N6ZkbDPK/UtJhgsTsgETEhezE6palwqKbFGdLNiKyBPqAewnA8R+6d7B0OElbeVTBw1Y1heo6yk5RoMlhRpTWhZ3bk75eeiERICuDH88J5jcLN8+JDlOoiI0oZhkGWRoETDQbU6Mwxa7NU41Y8EQ58nHvXdSMP6x7BMOx99nh9K6q1Jm56z6lA0B67cePGYdy4cRgzZgx69eqFwYMHR0XUCZw6/PJvNSqajchIlOPa4Z08bjOhdxa6Z6nRarFj1a6KGFvYFirsegeRX0ehHr6D1S0RtSkQaJuSvBRlyD2hipwh3NL62HrsXPNKQ/fY5SSxLTssbqGWWFAVoZCge55dLLA7CNcuJGKelxiGYjmPXdjigoZiY3fN0GOFK0oBfsVRuMUTfHh66bEyw7zmAfcHGn5GGYZK0KtDXV0dJk+eDKVSidzcXCgUCkyePBk1NTXRsE/gFGD5phMAgOuGd/KaGM8wDK5zir7Ptp7k1RP7bwgVsZSeOWzPOz5CsZHIU6NP/LFuUlwRgVwviVjELRRlMcqzazXb0GJy5kqF2dw2O8btExpazbA7CBgGIc3LdIeKo1h67Kg4CrWxMoWKk8ZWC8y22ORK1UbI48Xu49QVR9lJsW93UhOBilgKvd+cai1PghZ2N9xwAzQaDY4fPw6bzYbjx48jKSkJN954YzTsE4hzjta2YGtpI8Qixqu3jnL5oHzIJSIcrG7Bvgr+Wobspx67IPLrKPQzx+v0MFljm1Abbh84wFV0EetedhURGPEDxN7rRYWMWi4JOmzfnpwYe71o77N0tTzsrv98VAjWRSgUm6ySQub899fFyGtXyxUfRMBjlxhbj6PB4nqYCVcc8VH8Eam8UsBtLNrpLuw2b96MJUuWIC8vDwCQn5+PRYsWYfPmzRE3TiD++WYnG1Yd3z3Db3J5kkqKc3tlAQB+2FsZdds8YbLaUeIUNaEIu8xEOVITZHAQ4EiNPtLm+SQiHrtUV8uTWHlNdSYrt1CEOwrM5fWKjccuEi0rKJztMRJHkSo+ANh+ZEDsFjijxc5VlYYbimUYxm2CQ4yEXYsrzytcYu2xo6JUJROH/TCTKJdA5ZzWEiv7ayIoqk/VJsVBC7uxY8d2qEr9+++/MX78+EjZJHCK4HAQrNrJCrTLB+cF9JmL+rMTSlbvreIlHHu8rhWEAElKaUghHoZh0DObn3BsOCO5KNlJCq5xdL0+NmN+aH5dskoaVoUg4LrRxmqRiFR+HbsP2vA0NqI0UoUTgMv70WqxoyUGYwKpKFVIRUgM85oBXAIrVv3UqP3hhpGB2I8Vc+9hF26LMVr8AcTO2xupHnzu+zjtq2KTkpJw8cUXY9y4ccjPz0d5eTnWr1+PK6+8EnfddRe33eLFiyNqqED8sbOsGRXNRqjlEs4T54+zemRCKRWjrNGIfyt16BtEH7lIcKSWLXrolqkO+abVK0eDjccasJ8nYRfq5AaAnf2YrVGgSmtCeZMhIguPPyojFIYFXDfaWD1BV0dgnBiF5hvFyvZI5holyCVIlEvQYrahRmdCoiK6Ve3U4xUJcUH3A8Te6xXJ4olYjRWriaC3EWCvv5L61pgL00j8zfI14zlcghZ23bp1w6OPPsr9XlBQgJEjR0bUKIFTgzX7qwEAZ/fMDHiagFImxphu6VizvwZ/Hq6LubA76hzJ1S0r+JFclO7Ozx6ri10otsVkRaNzkHY4oViAFVhVWhMqmo0Y1CklEub5xNXqJHxhF+sbbSQ9drT4osVkg95sCzvM5Y9ItQuhZCUp0FKrR7XWjK6ZiRHZpzdqdZEWF05xFKscOyqOTsHiiUj1sKPEujLW5amORAoCu486vRlWuwPSMHNVY0XQd5YLLrjA41zYrVu3Yvjw4RExSuDU4Nf9bCX0hN6BeesoY7pncMLu7rO6RsM0r9C8uC4ZoQs7OqeVisRYQL11qQmysL0leSlKbDvRFLMJDhXOQfSR8NjFurK0OgLjxChqN69XtdYU0rzfYKhrifwCfbRWH5OwlCs/MDK2xzLHzmBhhTsQGWFK99FqscfogSBynl52P7TgKfrn3mS1Q2tkUwUikWOXniCHVMzAaieobTFH5B4WC4K+QiZMmACdrmMI6oILLkBjY2NEjDodIYTAtHcvjDt3ghAC5YABUA4ceMqMSSM2G1o3boT5yBGIEhLQ0L0/jte1QipmML5HcI1ux3Vjt99xoikmNyoAsLe0oHXDBhT+9jfOscrQXRa6oOyawXorqrSmmNlfeeQEzjuxFT2VdujWEKjHjoVIEdqNi5vgEDNhZ0SRthJDdxxBQ/1WKHr3hmrYUDDi4GfGuufYxaJJcZXWBIY4UHjyABoO/A5GIoVqyGAoevUKaX/ZnNcr+sKOiphsOUHL2rWwlJRApNFAPXYspNnZQe8vlp4j91YntqYm6Nf9CVt9HWR5eUg480yIg+ydSluexGJ6Q/viA3NJCQxbtsLR2gp51y5IGDUKjDTwh7P2YXB1GA+lgeCemxmJdYu7bmJw7um1qZSKoVFIOqxbCSNHQlZYGPD+RCIGmYkKVDQbUaMznX7Crra2FgDgcDhQV1fXJvG9pKQEMll4fZJOZ8zHjqHqyadg3LGjzevKgQORM/9ZyLvG1msVLPq//0b1U3NhrWjbWPiRvIHYefn0oD1IndJUKExT4USDAZuONQTt8QsGQgiaPlmBujfegEOvxyT6xoyvUXvrLci4+24wkuCEWZJKinS1HPV6M47V6jGgIDnCVrtwGI2offU15H36KR5wOAAAFRu/gjg1FVmPPYqkSy4Jep+0SXAsRnNZa2pw9kcv4K7SPQCAWufr8m5dkf30M1ANHhTU/jIS5RAxgM1B0NBqiXqOoOr4ISze+AlSv63hbAeAhDPPRM78Z4MWSNlJChyJkderRmfC+LIdyL7zeZQ3uT10i0RIufZaZD44CyJV4GF9miMYE2GnM0PssGP4+q9x9ImVIFZXwYYoMREZ99yNlJtuClhg8CFKC2V2VM5+GLoffmjzviQnBzlPz4N67NiA90nD4DU6U1jRhkCg5yhPV40T182BcefONu8rBw5EznPzIe/SJaD9xbJliHsYtvXvjaie23Hd0kyciKwn50CSElgaSqZGjopmY8wKbyJBwAHj7Oxs5OTkwGAwICsrC9nZ2dzPpEmTMHfu3GjaecrSunUrSq++BsYdO8AoFFCffTbU55wDRqGAcdculE65Gq2bNvFtplcaP/0UZbdOh7WiAuKUFGgmXgjVGWfAAQbjK3bhzi+e6/CHEwhjnV67DUfqIm0yB7HbUfXEHNQ89xwcej1Q0Alr8wfjeHIeYLGgYclSlN1+BxzG4AVO10y2bUg0w7F2rRYnpk5D0yefgHE4cCClEBVDxkKSmwN7YyMqZz+M2ldeCbq6mHrsypuiO33CdOgwSq+ajJ6le2BjRLAPG4nECy6ASKOB+chRnJg6FbrVq4Pap1QsQro6Nk1PG1b/jKfWLERRSw0YtRqJ55+PhHFjAYkErX/9hZIrroTp0KGg9unqwxddUW212TFxyzd4ZPunYJoaIcnJgeaii6AcNAhwONC0YgVO3DQVtqamgPfJ9bKLwQLd2KjFU1s+ROcfPgWxWiHv1QuaSy+BrHNnOFpaULPgBVQ+8giIPbDeaFkxDMXWtpiQbmjGEz+8xIk61RlnQDNxIsRpabBVVaHsttvR+PHygPfJTc+Iif1m9Ks7isInZ8K4cye7bp1zDtTntlu3AmxxFsvm1lSUXnz8b5RNd65bqanQTJwI1RlnAAwD3erVKL36moDXLertjeW823AJ2FXhcHoLzj//fPzyyy9RM+h0wnTgAMrvuBMOgwHKIUOQ98rLkOaw7T6sNbWonD0bhq1bUXb3PSj8aBmU/frxbHFbtN9+i5pnngUAJE++ClmPPw6RUol6vRnTH1qGx7Z+jJzaKpyYdjOKvvg84CcgABjTLR3LN5/A+sPREXaEENQ89xy0X38NiMXIeuRhbOl/Nl75324MyNNgeZcWVD4xB61//42KWQ8i/603g/Lcdc1UY/PxRhyNUgGFw2xG2W23w7RnD8TJyfjk3FvxsS0HL13ZH+cMykH9kqWoX7QIDe+9D0alQoZbRbo/8txCsYSQqKQDWMrLcXL6rbDX1aNUk435w27CNy9ci8xEBezNzah6ai5a1qxBxeyHIUpMhHrMmID3nZOkQG2LGVVaI/rlR6f4pnXjRtTOfghSYsfm3L648at3uOvbXFKCigdmwXzwIE46r31ZQUFA+41VJ/uKRUtx9eHfAQCpd9yBzLvuBOOMqrRu3IiKWQ/CtG8fyu64A4UffRRQWD9WXi9it+PCVYvRr+YgiEyOvOfmQ3PxRWAYBsThQNNnn6FmwQvQffc9RHIFsp952u81TPOttEYrTFZ7wMVeodBQWY8Ffy9FWms9pLm5yHtjIXdvdxiNqHnxRTT/73PUPP88RImJSL58kt99usRFlM89IVCeOIZ5Wz4EYzNDOXQI8l55hfNMW2tqUfnQQzD88w/K7robhR99BGW/vj73mcmFwc1Ru99QanQmnHNyGy7a8T8AQPLkych6/DGIlOw9z7h3Hyruvx/Wkydx4uZbUPT5//yuW3zMSQ6XoEs8BFEXGHadDuV33wOHwQDViBHo9MH7nKgDAGlWJgreexcJo0aBGAwon3mfz6fnfRVafLypFB9tLMW+Cm3U7Tf++y+qnnwKAJB6883IfuYZ7o9j/eE6HEnOx7tXPQJpfj6sZWWofPBBEKf4D4SRXdIgETEobTBwExUiifbrb9D06WcAwyDv5ZeQetNNONLAekm6ZmmgmTgRnd57F4xcDv0ff6A+yPY8XTOiW0BR/eyzMO7eDZFGg04ffYQ/k9iwR6c0FRiJBBn33oOsJ+cAAOrffAstf/wR8L5pnkirxY5mQ+R7kjnMZlTMvA/2unqIunbD7DPvQl1KNtIT2Cd3cXIy8ha+Ds2llwB2OypmPQhLeXnA+4/2jdZaUYHy+x8A7Hb8kT8Iyy+4s83NX965Mwo//giK3r1hb2pC+b0z4TAFZktWDPrw6TdsgGHpIgDAp0OvQNb993GiDgASRo1C4YpPIEpKgmn3HlQ//UxA+43VAle/eAn6le6GVSQG89JCJF1yMScGGJEIqddfj7xXXwVEIjSvXInmL1b63adGIYFcwi530fR6EYcDnd5+Efmt9WhNTkfhJ8vbPLCLlEpkz52LtBnTAQBVTz0F4959fvebESOvl66uEQ//9T5UNjPkw0eg0/vvt0k3kGZlouD991zr1n0z/Xp9aeGKxeaAzmiLqv3mf//FzF1fAgBSb7kF2c88za1bAKDs1xeFn66ANC8P1pMnA1q3Yt1HMBIELex69eqF3r17e/wRcFE972lYKyshLShA/ltvQiTvmAskksmQ9+YbkBUWwlZVhZpnn+2wzeGaFkx5exMufusvPPXtv5j73b+4+K2/cOP7W6IW83eYTKh8+BEQiwXqs85C5uyH2jxlbThSDwAYOLg78hcvAqNUonXjJjR+9HHAx0hUSDGoUzIAYOOx+ojabykvR/X8+QCAjPtmQjNxIgDgSLtWJ6ohQ5Dz3HMAgPolS2Fol0viC9ru4VgUhJ3u11+h/fIrVpS+/hokXbtyhQ7urU5Sr78eKTfcAACoemIObA0NAe1fIRVz4cxo5NnVvfkmTPv3Q5ycjOYnX4BepkJukqJNoQMjEiF3/nwoBw6Eo6UFlbMfDvjBgLY8iYbXizgcqHzkUTh0Ohi79sTrg65GVnLHPDSxRoP8xYsgTkuD+eBB1L3xZkD7d7V+iI64sDU1ofLRx8AQgh+LRmL3GRd63E7epQvy33gDEImg/eYb6H7+2e++qceuroWdQRsNDDt3on7JEgDAGwMnI2vMKI/bac4/DxkP3A8AqHnhBVjKfYfV3BvlRjOJv2nFp8g+sAMmsRT773kK0txcj7ZkPPAAEiecC1itqJw92286SJab1yuaVD39DLKMTahWp6Pw/3ysW28shLSwE2yVVaiZ/5zPfcolYqSo2DzsaJ57h8mEQZ8shMxhQ8OAEch86EGP3kFpVhbylyx2rVsf+163uHN/CoVigxZ2S5cuxZIlS7ifp556CikpKZgxY0Y07DslafnjDzZ3SCxG3muv+qzgEqvVyHU+fepW/wT9339z7329oxwXv/UXtpY0QiYWYXyPDJzdMxMysQgbjtTj8sUbo/IUUb90KSzHjkGckY6c558DI3JdJoQQ/HWUFWJjuqVD0b07sh55BABQ98YbsFYGPipseOdUAMC2E4Hn+QRCzfznQIxGqIYPR9ptt3GvU+9aV7fk46SLL0LSpEkAIah++hkQW2BPlF2cOXYnGg2w2AL3VPrDrm9F9TOsByVt+nSoR49GldYEm4NAJhZ1aLqZ+fBsyLt1g72xETUvvhjwcaKVZ2fc9y8aP1wGAMh5/nlUSNlr31MPO0YmQ96rr0CkUsG4cycbNg+AaCZja7/+GoZt2yBSqbBn2kOwiiVex4lJs7OR8xz7ANG4bBmMe/f63X+0O9nXvvAC7A0NMOZ2wtv9LvXZbiPhjBFIu539+6h57nnY9b7nB6clyCBiAAcBGvSRX+SIzYbqeU8DDgd+zx+M9Z2HcYLAoz3Tp0M1bBiI0YjqZ5/xm2uaFWXPi7WiArWvvQYAeK/PxVD39l45zYhEyHn2WUiysmApLUXDu+/63Df1GtVFUVy0btwIsnYN7IwIH597q+91KzERea84160ff0Trxo0+950Zg1By/ZKlSKmvRKM8Ec0zH22zbrWHXbceBgDULXwD1qoqr9vGuo9gJAha2I0bN67NzzXXXINvvvkGH3zwQTTsO+VwWCyoee55AEDqtKkB5c0p+/ZByvXXAwCqn3kGDrMZ7204jllf7IbF5sD4Hhn48+HxWHbzcHwwbRhW3zcGRWkqVDQbcfOH/8Bsi9xwZWtFBRo/+BAAkP3kkx3yDw7VtKCuxQylVIwhhex7yVdPgWroUBCTCbWvvBLwsYYWOYVdaeTa5LT8/jv069YBUimy583l/rjtDsI1FG7fnDjz4dkQJSXBfPAgmj79NKDjZGsUUMslsDsISht8L4jB0PD227DX1UNa2Anp994DwNXDLj9V2aG9h0gmQ87zz7NJwd99D+OuXQEdJ48TdpHz2NG8Rjgc0Fx0ERLPPovzNHprEyDNy0P6vfcCAGpffQ325ma/x4nW/Ea7Tofa114HAKTPvBelsmQAvufEJo4fz4aUCUHN8wsCEBfsvur1ZtjskXsgAADj7t3QfvsdwDDYee29sIqlfnt5pd95J+t5qatD/RLf6QgSsYirQo6Gx7Hp889hPnQIJDERS/tfhgy13Gc+FsMwyH56HhipFK1/rkfLL2t87j8zyhMcal97HcRoxNGcbljdeaTfHnzi5GRkPfE4AKDhvfdhKSvzum1mlNu1EIsF1c+yDynfdx4Fc5eefj+j7NcXKdddBwCofppdt7wR7T6ClvIKNH7IrluLBlyBzNxMv59JvvpqKIcOYdetl72vW7Qa/LTOsfMEIQTlQeTInM40f/YZrOXlkGRmIuPuuwP+XMZ9MyHJyID1xEn88uTLmP/jAQDA7WOL8cHUYVz4CWAT95ffOgKpCTLsr9Lhjd+ORMz+2ldfBbFYoBoxAokTJnR4/y9nGHZ451TIJWwCMsMw7A2KYaBb/RMM27YFdKzBnVLAMEBpgwF1EQgxOEwmLiyQNm0a5MXF3HtlTs+aXCJCfkrb0JokNRWZs2YBAOreeBPW2lr4g2EYdMlgvXaRCsdaTp5E47JlAICsRx6FyJkXRYWdt4kTyn59kXT55QCA6gULAgpp5idHXti1rPmVraJTKpH58GwAQKXW/9SJ1Buuh7xbV9ibmlD7xht+jxMtr1f9osWwNzZCVlyM1OuvR5XTdn9TJzIffBCMUgnjzp1o+eknn9umJcggETEghO1mHykIIah5gfXYJl1+OY6kdgLgCiN5QySTIftxVlw0fvQxzMeP+9w+Wufe1tSEujffAgA0XXMLWmQJyAigway8uJjzytc8/7zPXEeuACEK4si4axd0P/4IMAzeGzgJhBEFNHUiccIEqEaeAWKx+PS4Z7oJ6mjM2G78+GNYSkpgSUzGJz3PD7ipNV23LCdOcMLKE9H2etW++gqIxYI9md2wMadvQM2VGYZhr31npay3dYs+ELSYbDBYopsjGCmCFnZ33XVXm59p06Zh6NChuM6p3P/L2HU61C9m80PS770nqB5RYrUamY+yIc3M1V8i0dKK+87phkcv7OmxCWtBqgrPX85WI729/nhEkvgNO3ZAt/onQCRC1mOPenxapvl1Y7qlt3ld0asXkidPBgBUP/98QOIiSSlFjyw2V237ifC9ds1frIS1shKS7Gyk33lHm/fo+SnOUEPs4XwmT74Kin794GhtRcPb7wR0vC4RnkBR+/LLIFYrEkaPhvqs8dzrVNgV+hgllvnA/RCpVDDt3tOhb5YnuCbFEcqxIxYLal99FQCQdvPNkGaxvQmpcKQeQk8wUimy5jwJAGj+/AuYS0p8HsvlsTNGbJGzlJaiccUKAEDW44+DkUpdUyf8LHLSrCykTb8VAFD7yqs+xQXb8DTy3ouWX9ZwojrjvvvcZq36X+DU48ZBfdZZgM3m03MBRC+kVr94CRxaLeQ9e+L4yPOcxwqsR2HabTMgzc2FrbaWLZjyQrRahhBCULPgBQCAetIk7Jaz134g9nPiQiyG/re1aN28xeN2VCQarXZuqkWksOt0qF/6NgBg18Qb0CpTBjwKTZyYiMyH2ZBmw3vve/W403MfiQf49hi2b0fLTz8DIhGW9LkEcMun9Ieid29u3ap53vNDcaJcAqWzivpUybMLWthlZWW1+enbty8+/PBDLFq0KBr2nVI0vPsu7FotZF27INnpQQmGrxJ74pgmFyqbGS9Y9+CBCd19hiIu6JuDc3tlwu4gePHng+GYDgBcAnjylVdC0bOjK95ss2NLCZugf2Y7YQcAGfffB1FCAsz7D6Dlt98COubQIjac+09peHl2DosFDe+/DwBIv+OODqKaK5zw0u2fEYmQ+SDrtWv+4ouAcgW50WIRaHliOngQLb/+xt6UHn2kzfdOq4YLfAg7SUYG0u5gxWzdW//XpqGrJyIdim36/AtYT56EOD0dabfewr1e2ew7FEtJGDEc6vHjAYeDezjyBr1pm6wObnxQuNS/8y5gsyFh7BiozxwNwH1OrP9u82m33AJJdjaslZVo+t//fG6bGeF+cMRmQ+3rr3F2SLMy3cZCBbbAZT48GxCJoP/jD59Vmi5xFDlhZ6uvR/MXX7B2zH4IdXrnSKgAhZ1ILke6MzrS8M47sOs9/z1Gy2ukX7sWxt27wahUcNx8OwBAJhEhSRlY43Z5t25IuXoKAKDu/97y+LCikrHTJ4DIF1A0fvIJHHo95N26YWt3dlyoP0+vO5qLJkLeowccej0a3veckhXNHLu6hayXn5l4KUqTcpGklAbVzoauW6b9+6H//fcO77OFN6dWZWzQwm7u3Lltfh566CGce+650bDtlMLW2IjG5Z8AADJnPRj0NIPlm0rxzOqDWN7rfABAl79Ww1bvv1r00Qt7QsSwc1vDaYNi2LkThi1bAKkU6Xfd6XGb7aVNMFkdyEiUc542dySpqUi56UYAbFgrEK/dsAjl2Wm/WQVbTQ0kmZlIuqKjqD5S2wLAu7ADgIQzzoBq+HAQq5V7gvUF7QB/LALCrv5t9niaCy+AvFu3Nu/5C8VSUm+4HuLUVFjLyqD93rfXjoajKyJQPOGwWNDw3nsAgIx77oYogQ1RE0JQGcScWJpTqPvhB5iPHfO6nUIqRmoCG6aOREjQWlEB7XffAQDXD9Bqd3ChUl85dhSRUsn93TS8/75Pr12kh6LrfvoZ1hMnIU5JQdotNzv3HdwQennnztwUk7r/e8vrdllRqOptXLYMxGyGYkB/JIwa5eZtDFxcJF12KWSdO8Pe3IzGjz7yuE002lYQQlDv9PCn3nAD6uVswYG//MD2pN1+OxiZDMZt22Hw0vg3IwoeR0drK5qc3QzS7rgdtS0WAMGde0YkQsZ9MwGwItHTuhUtYWTYsQOGf/4BpFI0Xnljm2MFiiQ1FSk3st0F6v5vkcd1y1VRfRp67BoaGjBnzhyMHj0aPXr0wOjRo/Hkk0+iIcA2C6czjR99DGIyQdG3b5swmj8IIXhvw3E8+e2/AIDB11wCRf9+IEaj30opgG27cXF/tqR+6Z/eF0N/0PBj0mWXtum3584GZzXsmV3Tvd600qZOZb12hw6hZe1av8elBRj7KnUh5y8Qm407V2m33sLlprlzrNZz4UR76A2q+euvfSYzAy5hd7yuNayQoPl4CVp+ZvtDpt1+e4f3OWGX5lvYiVQqzltWv3SpzwpfKrR0Jht0pvC8Xtpvv3UT1VdwrzcZrDBa2cKeQMSRsk8ftgUEIaj3EwGIZKPfhvc/AGw2qEaeAeXAgQBoM1VAKmaQlhDYuMTkSZPYqSB19Whe+aV32yPYy444HGh4xykspt4EUUICbHYHGlqdwi4Iz0v6XXcCYjFa/1wP4+7dHrfJjnDLEHtzMxc+Tb/9DjAMwwm7QD12ALjejgDQ+OEy2LUdH3Izo9C2onXjRpj27gWjUCB12lTUOc9LoIKaIs3KQvIUp9furf/zeD+Jxrzbpv99zkaZCguhueCCNiO5gkF91llQ9O/vdd3KjFKbH/pAnDzpMlTKWFEdjCilpNJ16+BBj+sWJ+xiMHUlEgQs7EpKStC/f3/89NNPOP/88zFr1iycf/75WL16NQYMGIDS0tIomhnf2Fta0OTMz0m/4/aAn9Rsdgee/HYfVygxY0xnPHxBT2TMvA8AG94KpDfZHePY5rWr91Zxoa9gMB08yFaSikRInz7d63a0cOLMrh3DsBRxcrLLa+fl6cedvGQlcpIUsDsIdp1sDtp2AND9+COs5eUQp6Zy+RLuEEK4UKy/weuqIUOQMHo0YLOh4R3fwrowTQWJiIHBYg/Lc9Tw7rsAIezNsUePNu9pjVYu3FiQ4j9nM+XaayFOSYH15ElofeTaJcglXCuJijDCsayoZr11qbfc3EZU02sxXS0PODSSfo/Ta7f6J5iPHvW6HdcsN8wbra2uDs1fsiIs/XZXXiYd+ZWlUXjMcfUEI5Mh3ZnI3/Duu16rBDMj2GxW/8cf7IBztZqrUKzXW0AIIBYFLkoBQFZYiKRLLwUA1HkR1pztEVrgGj9ZAYfBAHnPntwDcW2I4ijxAtbb7dDr0fjJJx3ep2KlxWxDa4Ty1OgDcfKUyZCkprq8jUEIakrajBlg5HIYd+yAwcOYycwIe+wcJhMalrEFD2m33QaIREGH8CkMwyDDWd3uad1y74EYqbxY0/79aP1zPSASIW369JBtBwBJSgrntatftLiDjadtKHb27NmYPHkytm/fjqeeegq33347nnrqKWzfvh1XXnklHnzwwagYWFdXh4suuggqlQo9evTA2gC8QLGmacWnzhyFrlCffXZAnzlQpcMVSzbik80nwTDAnIt64fGJvcAwDBJGj4KiXz8Qkymgpr+9czU4ozgVDgJ8sc23l8kTXBjwggsgKyryuE1TqwX7Ktmn4PaFE+1x99rp1/3pc1uGYTiv3Y6TwefZEbvdFQqZNs1jwUql1gSDxQ6JiEFhWoLffabfzYbjmletgrW62ut2UrGI86Idqw2t5Ym1ogLa779nj3tHR29dmdNbl66WIUHuP7wvUqmQ6gzHNSx92+csTffRYqGi++UXNrcuORkp7UR1IIUT7VH06MF67QDUv+O9iCU7Qi1PGj5cBmKxQDlwIFQjhnOvV2vZxdNfRWx7kq64ApLsbNhqa7325cuOUNsN9zBgynXXcX3H6OKTmSgPWJRS0u+8AxCJ0Lp+A4z//tvhfbpoRiLPy65vReNydl5q+u23cQ/E9LwE420E2JAgLZpq/OjjDrl2arkEKpkzCT4C9ht27IRh61ZAKkXaLaynnDv3QYpSgJ3qQB9M6z0UcFEPZqQ8ds1ffQV7XT0kuTlIuvQS6Iw2mJ09OTOC8JZSEs4cDUXfvh7XrQxnQ3SL3RGxaTf1zgdvzYUXQlZYyOV9ButtpKQ51w8zdXS4cdqGYn///XfMnTvX43tPPfUUfveQdBgJ7r77buTm5qK+vh4vvvgiJk+ejKYgBldHG4fRyOV0pN12m8+miABwsFqHR7/ag0ve+gt7yrVIVEjw9g1DMH1MsWtsDsNwi3zTihUewwrtuXY4297gi3/KguoK7y8MSPn7WD0IAXpkJfrtjSVOTkbKddcCAOrfXur3CW1gQTIAYFdZc8B2U1p+/RWW48ch0mi4Y7aHVq12Tk+AVOz/klcNHgzVsGGA1YoGP/0Zw82za3j/fVcYcMCADu9TYeercKI9KddeB1FSEiylpWj59Vev2+VxLU9Cy7MjhHAei5SbbuRy6yiuwongFug0p+dM98OPsJw86XGbHK4AIXRRamtq4god0tp52mmrk+wACifcEclkSHN6vRvefc9jEUukWoYYNm+Gac8eNgw49SbudZe4CN5zIevUCZqLLwLAPhi0h9re2GoJu39m8/8+g0OrhaxzZySex1bC2h0E9frgQ7GUxPPPh6xzZzh0OjStaNuTss30iQh4XhrcwoB07JZLlIYoLm69BZBIYNiypcMknMwIDqMnbsVmadOng5FKufB6siq44gNKm3Xr009h1+m492QSEZcXG4kwvvn4cbT8Qtct1kteHYbHDmi7bjUsfbvNunWqNSkOWNjZbDZIpZ6rfGQyGew+PAOhotfr8e233+KZZ56BSqXCpEmT0LdvX3zv9HDEA0c++AT2piaQnDyc6D8SO042YVtpIzYfb8DfR+vxy7/VWPZ3CR7/Zi/OeXUdLli4Af/7pww2B8H5fbKwdtY4nNcnu8N+1WedxYYVWlu5Ngy+OL9PNpJVUlRqTVh/uC5g+xvee48NA559NhQ9unvdbsNhZxjWj7eOkjp1Khi5HKbde2DYstXntnS02K6y5qDc9IQQ1C9Zyh7vxhshVnsOsx6pcRZO+MmvcyfNeYNq/mKlz3B4sbOX3fEQhJ21thbNX34FoG0Y0J1ACyfcEasTkOocNVbf7gblDldAEWLLE/26dTAfPsx6CZ0Ntt2pCLAitj3Kvn2QMHYM4HBwYd72uOaWhr7INS3/BMRggLxXL6jHjWvzXjVXERv8IpF81ZUQp6XBWlkJ7Q8/dng/UosELfBJnjwZkrQ07vUaLhwYmrhIv+02gGHQ8uuvMB9p2yMzRSWFzPlwFE7rCofJhAbnhJK0224DI2aFREOrGQ4CiBggTR28/YxY7PLaLVsGh6HtQ4vL6xWeODIdOAD9n39yYUCKKz8wNHEhzclB0mVsOLx9KggXio2AMNJ+/z1slVUQZ6Qj+corAbiux1DCyBT12WdD3q0rHHo9l55EiWSbn4Z3nOkr55wDRffubfYbqrADnOuWTAbj7t1t1q3TVtiNHDkSi70MSl+8eDHOOOOMiBlFOXLkCJKSkpDjlsw/YMAA/OshRGA2m6HT6dr8RBuHxYLad9mnnreyRuLSJVtwxeKNuGrpJlzzzmZc/94W3L58O+Z9vx+fbjmJY3WtEIsYTOyXjZV3jMTbNw71+lTNiEScuGj66GM4Wn2H+hRSMa4YlA8A+GyrZy9He9yrAdNvv83rdu3HiAWCJD0dyVddBYD12vmiT24SpGIG9XpLUO039H+sg/nQIVZYOPMjPOFplJg/EkaNYpOBTSY0LvNcZQe4e+yCD8U2LvvIYxjQnVCEHQCk3ngDGBpW+NNzODwvjCbFhBDOo5Ny3bUQJyV12IaGeH01J/ZGurN1S/OqVR7H/dAWJKF67OxueVjpt3fMi63SBdbDzhMiZyI9wLbfaB8O53K9wmh4ylWxSyRcJSylNoxwIADIu3blPGjtQ4IMw0RkikDzyi9hb2iANC8PSU4PIeDyeKWp5R77TQaCZuJESDt1gr2pCU3/+7zNe67pE2GKameaAA0DUqiwywjx3AOsBw0MA/0ff8B06BD3emaE5sUSu52zP+3mW7h5sMFWUnuCEYmQdhu7bjW2W7eyInTuLeVu6Stu61ZtmB47gG0blXwVK3Qb3nF5rN1z7KLRIDrSBCzsXnjhBTz33HO46qqrsHz5cvz6669Yvnw5rrrqKixYsAAvvfRSxI3T6/XQtJtXp9FooPfQp2jBggVISkrifgoKCiJuT3vsDQ1o0KShUZmEPX1GITdJgYJUJTqnJ6Brpho9shIxoCAZF/bNxu1ji/HOjUOwfc65WHz9EK7Nhy80F1wAWWEh7Fotmj7/wu/21w5n/81rD9YG9FTXphrQQxiQcry+FRXNRsjEIozonOZ1u/ak3XIzG1bYtNlrlR3AitJeOez3vDPAcCwhBPVLWcGYcv11ECcne92WK5zw0KLFGx3CCl7C4aGGYn2FAd05GUIoFnCGFa65BkDHsAIlnCbFhq3/sL27ZDKkTp3qcRs6dSJYjx3gDIcPH86Gwz30xqJjfkLNsWv67DM4dDrIiouReF7HCStcc+IQPHYAW8Qi0mhgKSlh+xO6kaiQIsGZ6xVqEQL15niqYqfiKBzPC732datXw9KuMC5c70WbMOAMNgxIqQuhIrY9jETCLfgNH3zQpvVMVgQ8dm3SV25r+0DMVcWGYb+8c2ckXsC2vXL32kWqeIJrj5OczPXPAxBW8YE7mgsvYIV1c3ObdStS3tLGD94H7HYkjBoJZf/+AACHgwTVlNsXabfeCkgkaN24CcY9ewC4RLXJ6oDOFP/TJwIWdoMGDcKWLVsgk8kwe/ZsTJw4EbNnz4ZMJsPmzZsx0NkmIJKo1eoOnjedTge1h5DbY489Bq1Wy/2U+WlVEQmkOTmYtP5HjFjzPf5+8kJsfOwcbHj4bPzx0Hj8NmscfnlgLL69ezSW3DAEj03shfP6ZCNZFXiVGiMWI+22GQCAhg8/8DmLDwC6ZSViYEEy7A6C73b5brDrrRrQExucod2hRSlQygLPvZDm5XG9ser9VJhyeXYBVsa2btzoyi+aNs3rdoQQzmPnq4edJ9Tjx7ONN1tbPVbZAeDGilVpTUFV2vkKA7pTFqLHDmBnFTMyGYy7dsGw9Z8O74fTpJjLL7rqSkgyMjxuUxFC8YQ7NKTWvHJlh95YNPetxWQLuhO/w2jkvLBpt83wmBcbrrATq9WucPg7HYV1FtfyJPhFznToEPR//NEhDEihOUzhLNAKel06HKhv174i3ApB7XffwVZdDUlGBjcKj1IbAWEEAEmXXgppbi7s9fVo/mIl93oketl5S1+x2h1oaA2+D5wnaHW17qefYDlxos0+9ebQPb3E4eD+dml7HEqtLjLnnpFIkDbDmWfqtm5FIpzpnr6S5rZuNbRaYHMQMIyrUCNUWC/yxQBcnlmlTAyNwtkg+hQIxwbVx65nz5749NNPUV1dDavViurqanz66afo6WFKQSTo1q0btFotqt0qE3fv3o0+ffp02FYul0Oj0bT5iRXeFrZIkHTJJZDkOHtjffWV3+2vGJwHAFi1q8Lndg3LPFcDesIVhg3+35k2YwYbVli7FqZDh71u58qzC6wwpsGZW5c8pW1+UXvq9GZojVaIGLZ4IhgYkYh78m/8eDns+o7h1mSVjGspUVIfWDi2bRjwNq/eOruDcKIrFGEnzcx0hRXe7pgIT3PsGlstQS0Uxr170bpxIyAWI/WWWz1uY7LauUUuFI8dAKjOOAOKAf1BzGZuhi5FLXd14g/W69UmDHjRRR3etzsIt/iEkmNHSaHh8P0H0LphQ5v3ssLoxE8LVjQXnA95584d3o9ESA1w5Zlqv/0O1grX/SScJH5is3EPeam3uMKAlFArYtvDSKWcN63h/ffhsLQVXKGKC2tlpdf0lXo92/tQImKQGsQDvCcUvXohYdxYNs/0Pda72aaqN0Svnf73313tcdrlxUYiR42SfNllkGRnw15Xz1WHR6JlCJe+MmgQVMOHca/Tfaar5ZAEUCDnj7QZznD4b2thOsyuW9lhPIzFmvDPQBRRq9W49NJLMXfuXBiNRnz33XfYt28fLnF6gf4LMDIZN4ey8b33/Y6Kurh/LiQiBvsqdFzRQHtsTU1o+swZBvQhLAD2KXTTMbZ4IND8OnfkxZ2ReL4zrOCj4fLAAlejYovNd+87wz//wLBtG3vzvuUWn9seqWG9dYVpCSFVeiWefz5kRUVwaLVo/vx/HrcJNhzb9KkzDNi5MxIndAwDUqq0RtgcBDKxKOSbbeott7JNZzduhHHv3jbvJSmlSHQ+hQbT8oQm7SddfDFk+Xket6Hh3QSZOODRSu1hw+HsU3nTp591mEMZSi87YrFwlc7tw4CUBr0ZNgeBKMynf0lKClKuvhpAxyKWUJsUm4+XQPfzzwA6hgEpkcg1AgDVoEFQjTyD7enoDJ267zcUz4Xup59d7XHcwoAUrvggTFEKAElXXM62nqmp4cRFuHlq9e+yo+dUZ3RMX6FiK10dfJsZT6Q7uxQ0r1oFa00NAPcChODPPZu+4syLveF6rj0OxeXpDf/cMzIZG9KEqzo83CbFtsZGNH3GNrNuv27VhNnqpD3yLl24ezMt4IpUNXssiGthB7CFGWVlZUhLS8NDDz2EL774AikpKXybFVOSr7wS4vR09mnRz6io1AQZxvfIBAB8vdOz167xw2UgBgMUvXuz8zl9sPNkM1otdqQlyNA7JzQvaLoznKxbvdpr+4qiNBWSVVJYbA4cqPJd+FL3f2zz1KQrruDaDHjjsFPc+mtM7A02HO588v9wmcdRUV0yWU8gnW7hC4fB0LY9jti72KT5dfkpypATyWX5buFwD167YAsoTPv3Q792LcAwXJqAJ9zDsMGMVmqPevx4yHv2ZM/b8rbhcFdlbOA32uZvVrFhwMzMDmFACs3by0xUhP30n3rzNDYcTkcfOQm1SXH90iWAw8E2s/YQKbHYIhcOBID0O9gxac1ffgVrTS0AV35jsG0riN3O5cWmTpvqsedkpEKxgLP1jFNc1L/zDojFElaemrW6Glpaxe5h7GIkRSngzDMdOhSwWtH4AdtIOBxhqv/zT5j27QOjVHrMi+W8pRG4bgAgefJVbarD3ZsUh0Ljh8tAjEYo+vTpkL5CxWIoxU7eoG1UdD/+CEtZWVTn3UaauBd2GRkZWL16NQwGAw4fPvyfnEsrUiiQdvM0AJ6r7Npz+SDWi/Ltzgo42vW0szU1oYmGAe++y++iu+EIm183umt6yE+hit69O4QV2sMwDAbkJwPw3c+udctW10xbH5W8FFo40T2IViftSbrkYle+zpcdw+HBVMY2rljBhgHz89tUA3qC5tflhxCGdSftthkdwgoUGo4tD7CAgopqzUUXQd6li9ftaA+7UCpi3XEvYmlcvrxN01kaJq0K0HaH2Yz6JUsAAGnTb+0QBqRUhZlf5440MxNJV7Jj1hrcKkxDaVJsPl4CnbN9Svo9d3vchvaAk4oZbrJIOKiGD4Ny8GAQiwWNH7LigoaRgw2B6378EZZjxyBKSuoQBqTQBTojzFAsJXnyVRBnpMNWWQXtd9+1yVMLdvpEwzvvglitUA0bhoThHdNXIilKKbS3aNMXX8DW1OTW8iQ4cUQIQf2b7Azg1Buuh6Sdc4QtPoiMp5fSvjo8Q+XMUWsxdViX/GFranJNd/KwboXTu9Ebyj59kDBmDLduZXEPBYKwE4gQyVdf42o662zM6I1zemUiUSFBpdaELSWNbd5r/Ogj1wifAKZkrKdjxEIIw7pDwwrab76BtdJzYQfNs9vpZQIFIQT1b7E3p+SrroQ0N9fvcWk4unsQFbHtYaRSVzLwe++BOPN1KLSXnb9QrL2lhRO26ffc7TEM6E5ZI82vC08cyYuLufYVDe3aV+RzBRT+mxQb9/0L/e+/s6PnPHgs3Am1h50nEidMgKy4mG0665wrCrgKKKoCvNE2f7GS9dZlZSHZGSL1RCTy69xJu9UZDv/7by4cHkpYx91bp/SQZwy4T51QhOUppTAMwxWxNH3+uVNcBC9KidXKjSlLu+UWiBM9/z3WRdjrJVIokObMA61/+x0kiBHS9AlrdTWaV7JFGHTsXXtqIyxKAec0h969QYxGNL7/vpvHLjhxoV+7Fqb9+52TaTqmrzQZLLDaWbEVbvGBO+7V4aotbJ6p1U7QZLD4+WRbGpc5161evaA+66wO70eiB58nqPNA+/XX6GTTOY/1H8mxu+WWW/DBBx9EpUmxAItYnYBUOoN1yRKfA94VUjEu6se2QPhmZzn3urWmhhv1kn7XnX5v/M0GC/aWNwMILb/OHdXgwVCNGAFitaJ24UKP2/ibQGHYtInLrUv3MSWDQgjB4ZrAZsT6I+mKKyDJyICtuhrN36xq8x712JXUt/qc+tH44TK2036XLlx41Beh9rDzRLpbWMG4z9UHMj+Iyti6N98A4PTWFRf73LYiQh47wNl0lhaxuDWdzQkix85hMHCh6PQ77/TqrQMi67EDAFl+PldlV/vqayCEuIRdgF4v06HDLm/d3Z69dUDkCifcSTjzTCj69GHFxbKPQpq5qv32W7bFRmoqUm/w7K0jhESk3Ul7Uq6ews5PLiuD7scfQyqgqHvrLdZbN3QoErwUm9VGwXaGYTgh2fjxchTY2LZLQYlqhwN1b/0fAHZCTHtvHeC6btISZJBJIufvca8Ob1qyGJkqcZvjBYK1uhqNH/tet+h3SdMEIoVq6FBu3eryHRvp+s/k2BFC8Nlnn2GAj15oAuGTesMNECclwXzkKJo+/9zntpOc4dif9lbDZGUFd91rr4MYjVAOGuQzaZ/y99EGOAjbJiQnyNFKnsicPRsAoPvu+w6J/IBL2JU2GNDU2vaJjlitqFnwAgAg+eqr/ebWAW0rYrsE0ZzYEyK5nCtiqXvjjTbjcvJTVJCJRTDbHFwIsj3W2lqusjPj3nt95tZRIinsFL17Q+MUk7UvvMAl8ucHOC+2Zd06tK7fAEilyHDO0vUF3V9+iK1O2qO56CJICwpgb2zkmubmBDEvtmHZMtjr6yHNz0fyFZ5z6yi06XGkPHYAkH7vvWBkMhg2b4b+99850Vjb4r/hKSEENc8/DzgcSDzvPCj7evbW0f0BkfVcuHvtGj/+GPKG2qC8XnZ9Kycs0mbM6DB6jtJssMJiD31WqTdEKhVSb2abONcvWYqsBNZTHqiwM/77L7Rff8Pa9eAsr9tFqmilPeqzxkM1fDiIxYJeP7LhyGA8ds1ffcU2clerkXbzzR63ofmSkQxlUlJvupFbty4rY6c5BGN/3evOdWvwYCR6ScWqiXB+oDt03VKv/xXdmsr+O6HYDz/8EL/++it2+2hCKxA+4qQkZNx/HwCg7s23YPMxM3d4USrykpVoMdvw24EaGPfug/bbbwEAWY8/FlCY5rcDbCXW2O6Raeei7NuHG5dT8+KLHRa0ZJUMxc6WJLucnkJK02efwXzkCMTJycjwkl/UHloR2ylVFVJFbHtSrr0WsuJi2BsbUfd//8e9LhYxXCuVo17CsbUvvACHwQBFv34eG+J6IpQ5sb7InPUAGIUChm3buBmyXI6dD2HnsFhQs2ABAPYmLSsq8nusSIZiAbY3VtYjDwMAGj/4AJbS0oCnT1hOnOCmZGTcfz8Yme9WFC6PXWRsB9giFioual58Ceky9u/PaidobPUdlmr59VcYtmwBI5Mh8+HZPrflmhNH0GMHAOpzzoFyyBAQoxG1L7zI5QgGIo7qFy2CraYG0k6dvM5zBlwiMUUlhVwS/t+rOynXXQexM5Xl7EPrAQSWxE8IYa99QqC5+GKoBg3yum00PHaAc9rHw+y1n/TXWnRtLg/YY2drakLdq68BADLuvcfjhBjAXZRG1naAbZaeft9MAMCF/3yHREtrwPYb9+6F9lu2vUzWY496XbeiFYoF2HVLcyn7UDx93/eo1QWfIxhrghZ2jY2NMDhDIXa7HStWrMD//vc/EEIgDsALIRAeyVOmsFWCWi3qFr7hdTuRiMGkQWwO2qptZaiZPx8AoLn0Eij79fN7HKvdgbVOYXe+h1m2oZJx//1gFAoYt22HzsPMX+q12+nWqNhWX486Z+JvxqwHfE6ZcMc1Izb0/Dp3GJkMWU88DgBoWvFpm0IE18zYjgUU+g1/Qbf6J0AkQva8uR4b4nb4jNnGVTdGSthJc3K48VO1L74ER2sr51Gr15s5z257Gpd9xIbRMtKRfqfv3DqA7QNHQ4yRCMVS1Oecg4QxY0CsVlTPf45bhJoMVq+2E0JQ/cyzIBYLEkaNhOaiiX6PUx3hHDtK2owZEGekw3ryJFo+WY50tXMouo9FzmE0ovZFdqpP6q23QJaf7/MY0UgiB1hxkf3UU4BYjJZff8XIhsNtjucN06HDXBgte84TPkPgruKDyC/OYnUCMh64HwAw8vcvkNnaGJAo1a1eDeO27WAUCmT68NYBbvZHQRy5i4t7d32JuubAembWvb4Q9uZmyLt391qwArj1sIvCuQeAlClTIO/eHUpTK2468HNA557Y7ah2rltJl13mdd1yrwSPVPpEezIfeACMXI7+Dccx5uQONAaZIxhrghZ25513Hg47F7RHH30UL774Il5++WU88MADETdOoCOMWIxsp7ho/vxztlGsF2h1bMrqL2HcvRuihARkzvJ9c6JsPt4AncmGtAQZhhRGrr2MNCeHq3Ksfu55roUCZSDXqLgZALswV82bB4deD0XfvtzA6kA4HIGK2PaoR49mw9h2O6oef4IrpPDWy87R2orqZ54BAKTeeKPXpPf2UG9dikoKjSL86kZK2q23QpKbA2tFBWpeeQVJStd4K09eO/ORI6h3eiczH3wQYg9TX9pT22KCzUEgETERDUsxDIPsJx4HI5Wi9a+/gF9WcyFBb7lquh9+ROvff4ORSpH15JN+PdWEEJfHLsLiSKxOQOaDDwIA6t96C/0tbH9IX4tc7SuvwlpRAUlWFtJneG8vQ6mJktcIABQ9unP5Upf+8QlUVqNP24nViuqnngLsdiSedx7UY8f63H9tFPID3UmeMgWqoUMhsZgwc/eXfkNq1tpa1DzLCou022Z0GN3mjt1BUK9n7wXREKYAkPnQQ2DUiejeXI4J+9Z6fZihtG7ZyhV8ZD/1JBiJxOu2ke4D1x5GIkHWE08AAC4u2QTs7DgJpz2NH34I0+49ECUkIGOWd31RF+FKcE9Ic3K4dIQ79qxCzfHoT7YKh6CF3ZEjR7hcuo8//hg//fQT1q5di8/95HwJRA7VsGFIvoat6qt45BFY3SZzuNM1MxGXMLW46d/VAFhXdiC5aQCw5l/WWzehd1bIPdS8kXbrrVD07g2HVouKBx5oU2VKPXa7y5rhcBA0LV8O/W9rAakUOc88HVBuGoXz2GVGxmNHyXricYiSkmDatw+1r74KwHMvO0IIqp58CtayMkhycpB+770BHyOS+XXuiBISkOt8Cm7+7H/QrV7NhWPbz4y16/WomDWL9XaNGYOkyy4L6Bg0zzA7SRHxa0dWVMRV5FY/+ywG2dmq70oP4Vjz8RJUz50LgG0b4WlKQ3uaDFauQXakc6UA1vOgHjcOxGrFLWvfgcpq8iqOdD//zLV4yJk/32Pft/ZEK8+Lkn7vPZDm5kLTXIf7d65EjY9WM7Wvvc4+UKrVyHrsUb/7pqHMSObXucOIRMh+9hk4pFIMqT2M4j++9botsVpROetB1tvVuxfSPYxuc6ex1QK7c6QV9cRGGmlmJrIeewQAMPXAz6hev8nrttbaWlTOng0QgqSrrmT74fnA1YMvOtcNACSMGI668azH/IzP3uSaLnvCsG0bap0RqazHH4M0K8vrtpGuBPdG2q23ojy9ABqrAba5j3fojhBPBC3sZDIZDAYD/vnnH+Tm5iIvLw+JiYlobQ3MNSwQGbIefhjybl1hr6tH2e13wNbY2GEb06HDmPHrUkiIA7u7DUNSgN4uh4NgzX5WLEYyDEthpFLkvfYqRGo1jDt2oPLRR7kq357ZGsglImiNVhxduQo1L7wIAMh66EEoevcO+BjuFbHdIuixAwBpdjZy5j8LAGj86GM0fPBhh152hBDUvvwKdKtXAxIJ8l59BWJ14CPNIp1f507CqFHsqDcAVY8/gVHa4wDatjxxGI2omDkT5iNHIcnIQO7zzwV806Sev0iGYd1Ju+02NpncYMC9axYjq7Whg8fOWlmJsunT4TAYoBo2jPMS+6PKKRDT1ZGtDqQwDIOc5+ZDkp2NtIYqPLnlQ9TWazts17p5CyoffQwAkDptGtRjzgxo/5Ea5O4NsVqNvNdehUMsxpjKPej61fseiz8aP/6Y63uX89xzPr1dlGiGYinyzp1hupWtMj13w0qPDd+JzYbKxx6HYds2iBISkPfyy37zMqntaQmyiIy08kbyFVdgc5dhEBMHDI/MgungwQ7b2Jqa2DWhthay4mJkP/643/1G+4GAYp5xD0oTs6Bu1fpYtw6h/J57AZsNmokTkXTFFT73WRPhKnZvMFIpfrriXhgkcsgO7G2zbsUbQV+B1157Lc466yzceOONmOYcvr5z504UBZBQLRA5RCoV8pcshTg9HeZDh1B6zbVo3bwFhBAQux3N36zCieuvh1Svw+GUAszrMQnHA5xluru8GTU6M9RyCUZ19T6HNRxkRUXIe/11QCqFbvVPOHnrdJiPl0AmEWFwhhw3HvgZtnlPAA4HkidfhZSbbgpq/7QilolARawnNBMmIOP++wEAtS+9hOQlr0JjbkW93ozGE+WomDULjc7RVTnz5kI1eHBQ+4+Wx46Scf99UJ99NojZjCtXvoIrjqxDZS0rMEz79+PEDTeideMmMEol8hcvCmoeMvX85UdJ2DFiMfLeWAhZURGSWhrw2vr/g/XPP0AcDhBC0PL77yiZcjWslZWQFRYib+HrPsNQ7lQ10/y66NgOAJL0dOS/9RZsCiUG1h/DkJcf5lrQOMxmNH70Ecpuuw3EZIJ63DhkPvRgQPs1We1oMrAjByMdRnZHOXAg6u54CAAwcMvPqJh5H6xVVQAAe3Mzqp5+GjXPs8U26TPvheb88wLab7QKP9qTdN21+LFoJESEoPLhh1H7+kKu8bWltBQnZ8yA7ocfAIkEua++4rMRd3vboylKAfbB4Jfzb8a/qUVg9C04cd31aP7qaxCbDYQQtG7dihPXXAvzgQMQp6WhYOmSgDy91ZzXK7rnPjMzBfPOuAVaRSLMBw+2XbdsNue6dQPszc1Q9O+PnPnP+n2gjHYY2R15URGeH3YjHGJJm3Ur3gjsbufGG2+8gTVr1kAqleJsZ4NbhmHwxhveE/kFooMsPw+Fyz/GyVtvhfXkSZycNg3itDQQsxkO541KOWQIVp95K0wnDFi1swIPntfD735/2MPepMf3yIh4dZo76jFnIv+NN1D50EMwbNmC4xMnQpKZiScamyG2sW7u5GuuRnYAuVHt2V/JtiMpTg9tRmwg0JEzdQsXovWrL7GC+RpNikRUf6sDQwggkSD7ySeRfNVVQe+7LMrCjhGLkbfwdVTOfhgtv/yCGf/+AOvjv+LISxrY6thpI6KkJBQsWRJQsY07kZo64QtJSgo6ffQRdlw3FakVpUh9+3kc+d8iEAAOLStQ5T16oGDJYkjSAn84qYpCqxNPKPv1Rcns55H54hykVpWi9Cp2QoKj1QDiLE5LnHAucl99NWBRSsWFXCKCRhn0rT0oEi65FK9vLMHMXV+i5ddf0fLbb+xc1ro6wOnFSL/3noCKbSjR9jZSspOUWDTgctgZBpeWbETD22+j8cMPIU5Jgc0ZHmSUSuS98jIS/YxcpLj6qEXXdgBISdVg3hm34L3jXyLp4B5UPfEEap5/HoxCAXsDm7cpyc1Bp7ffhqxTJ7/7sztc/QOjbX+WRoGahDQ8POYuvL/vY5/rVsGSxQGJUldeafTPfZZGjs+yemLddbNwzlf/x61bss6dkX733X6nCcWKoD12kyZNwvnnn8+JOgAYMmQI3nJOBBCILfLOnVG8ahWSr70GjFIJe0MDHHo92xbkgQdQuOxDTBzZHQDwzc4Kvz2zrHYHVjlnzE4a6HnAeyRJPPssFH35JTcFw1ZbC7HNgvKEdCw//3Zkz50bVF4d5V+nsOud67m8PxLQcVedli2DondvSIgDGUYtGEKgHDoERSs+8TjoPBBONERX2AHsLM28ha+j/vZZqFUmQ2o1swuzRALNxIko/u5bqAZ7b+/gDfc5sdFEmpWJY3MX4n/dz4ZZroRdq4VDqwWjUiFtxnQUfboioOkk7tDCiWgLOwBIHDIYd501C9u7jQDEYtjr6kEMBkhycpA9by7y3nwTIj8hQHeq3cRFNHONALZ6ck3hcDx81n1QDhsGEAJbVRVgs0HeqxcK3n8PGXffHZQdkRxC7wu1XAKVXIolA66A5JkXICsuBrFYOFGnHjcOnb/6EonnnBPwPmti5G1kj6GAXqbC+hlPIvOhByFOToajtRX2hgYwcjmSr74anb/6CvJu3QLaX73eDAcBRAyQHsGpE55IV8vAMMDJhAxoVnyO5Guu5gRpm3Xro2UQawKbTR6rUCzgeujYntcXnb9cyU3BsJSUgImiEyRYgn6s++OPPzy+/ueff4ZtjEBoiDUa5Mydi6yHHoK5tBSMRAp5cWduZNV5vbORIBOjvMmITccbMKqL9ykSvx+sRUOrBelqOcb3iEz/On/IizujYPEi2JubYSktRR0jx4xPj0EiFuEpmyMkjxv12PXJDezmEA4JZ4xA56+/wgsf/I51mw/ignMH4f4pI0Pen9Xu4EKxnTMCz8sLBYZhkDR5Mi6rzkZ/osX/bhwIWacCr/2uAqHSGc6MVA87X2RnJuPx3hOx6+wr8fl52SCEQNGtm9+cKG9wwi4GtmdpFGhUJmHhiOux5dO3YCkpgSghAbKiopAeZqLZy6s9tHJ1vyYPKa+8jzx9E2zV1RCnpkGWH/wDISHETRzFwn4FSupb0TD0TIyYfCmsJ0/C3tQEaadOkKSmBr2/arcE/mhDi0tqWu1Imz4dqTffDPPRoyBWG+TFnQPycrlD81MzEuURL3Zqj0QsQrpajroWM+ohQ59585D50GxYSkvBSNuuW4ESrSp2T1DhXqMzQV5cjIIli2FvboZhx86QHoKjRcDC7q672G7zZrOZ+3/KiRMn0KOH/xCfQHQRJSR4bKehlIkxaVAeVmw5iXfXH/cp7D7aWAoAuHJwXlSTgD0hTk6GcuBAFBCC9O8rUK83Y1+FFkOLgr/R/lvJhuNiIewoWT064+BhIzqZwiu5L2s0wOYgUErFMblZ5SUrQRgRdjMpYHr2gjiM0DUhJKLjxPyRrXFOztDbgyqu8QYNI8fCY0cXiXq9BXZlApT9+4e1P07YxcB2hVSMJKUUWqMVNS0mdM/KhDQzM+T9aY2uauRoVcW6k5koR0l9K2p0JjAMA1lhIVBYGPL+YlV8ALjy4GjBBiMWQxHG+st5emNgO8DaX9diRq3OjD65bBsgX9NU/BGrED7gEu7uvSfFyclIPLvj/Fo+CXjlzsrKQpaz5Jj+f1ZWFrKzs3HJJZfgu+++i5qRAuEzY0wxRAzwx6E6TvS0Z1+FFhuPNUAsYnDTqKLYGugGwzB+58b6osVkRakzlNkniqHY9tAijUCLVLxBmxx3Tk+IekgNAFITZFA6xVwg47l8oTPaoHfOD42Fx44KsHq9BWZb+LOqq6LQWNkbqQkySMXs9xvsUHdPVHOei+gLI/Y4wc9c9QZdKFMTZFHN66XQth6BTJ8IBBpGjvSsUk9QARPMvFhfxFKUuh8nEtcNIaRNCkK0ocdoaDXD6hx/F48E7LGb6+wHNX78eIwbNy5qBglEh6L0BFzcPxff7a7E86sP4JNbR3QQDQt/YxtPX9QvJyaLsi8GdUrGbwdqsDMEYXegiu1fl5OkQGpCdHpKeaJLJivsTjS0wmp3QBqix7PEKQyLoxyGpTAMg/wUJY7U6lHeZODGo4UC9dalJciglEV/gU5WSSGXsHN6a7RmdEoLPSeREOImjqK/SDAMg8xEBSqajajRmbl+gqFCk8hjtUBnauQ4VNMS1EB3b9TEqCqTkpXoCqlFgpoYVcUCrjB4JB4GAMRUGAHu4czwr5sWsw0GC/tAF4u/2VSVDBIRA5uDoF5vjmr1fDgEnWNXU1ODL774wuN7U6aEliguEBtmn98DP++rxt9HG/D9nipcOsCVWP7n4Tr8dqAWEhGD+84NLOk2mgyiHju30WKBQj2SvXNiF4YFgByNAkqpGEarHWWNBhSH2GbleD1bGVYchsAKFpew8z131R+xDMMCrDjKTVaipL4VVVpjWMKuodUCi90BhondIpedRIVdBLxe2lPX8xLLcJr7cSIhLqx2B+r1McwPdIpH2kw73H6L1doYPxDQcGYEhCm95pOU0pg8SIpEDDIT5ajUmlCtNZ0+wm7JkiVtfq+ursaxY8cwevRoQdjFOQWpKtwxvgveXHsEj3+9F10z1Oidq0F5kwEPfrELAHDTyKKo9H0Lln75SWAYVijUtpiCehL+N4aFE+6IRAw6pydgf5UOx+paQxd2ddRjF7vvgVawujcpDoUK5+dj6fHNdibCV4cpMGgPuwy1PGRva7BEMpxZHXNxFDmvV21L7KpKgch6ver1ZhACSEQM0mIQIUhRSSEVM7DaCer05rD/1mpbYnvdcOc+AqI6loUTlEyNApVaU0QeCqJFRKpiP/74Y+zcuTMiBglEl5lnd8WmY/X4p7QJk5duxPgemfjraD20Rit652gw+/z4KIJJVEjRPTMRh2pasOtkM84LYgLG/hi0OvFGl0w19lfpcLxOD8D7GBxf0By9cEKiwcKNFQvTYxftqROeoHl24eYH0rFksaiIpdBFLlxRylaVxnaRO5U9dvRBMRLiwhWGlUMU5apSoH0I3xS2sItl+gHgqtqOSF5pDAuGKPQ8RSoUHg0i8lh6ww03YNmyZZHYlUCUkYhFeO+mYRhZnIZWix0/7q2C1mhFn1wN3p06NCbu7EChBRTbTzYF/BmLzYEjtWyOXaw9dgDQxZkXd6xO72dLz7SYrFxCd7RbnbiTz3nswhN2J5xtWgrDCIkGCw2bth8rFiz08zkxfPrPjlAivNZohdlZVZoZI69XJMOZXI7dKehtjLXtgKtyOBLC1JVjF+vrJnKh2Fj+zUby2okWQXvsamtr2/xuMBiwYsUKZAc4XF6Af5JUUnwyfQTWH67DrrJmFGck4MK+OVGZjRkOwzun4vNtZdh0rCHgzxyqboHVTqBRSDixEktoGPtobWjCjhZOpKvl0CjCa5sSDNRjF66wO9kQe2Hn8tiFZ7vLYxfLRSJCotS5yCSrpFGbtNIeV3Vm5Kpis2JUPEFFWKvFDr3ZBrU89EkdsRxpRaFFJnVheo0MFhtaTGwVe6xFdV2LGXYHCat3Hh8eu0zub/Y0CsVmZ2eDYRhugoFKpcKgQYOwfPnyiBsnED3EIgZn9czEWT1D7z0VbUZ3Zfvt7a3QQmuwIknlX+hsP8EOlR7UKSUmrULa0yM7EQArMB0OEnRoJtYVsRQazqlpMYWckE0I4RorF6bFzv5sZwJzuKFYmmOXG8OE6Eh5L6gwimWuURaXp2YO6Vp3J9YtN9RyCRJkYrRa7KjVmaAOI5811mFkwOWVDddbSj+vkomRGIa4DYY0tRwiBnAQtm1IOJXEsQ4jA24PNKdTKNbhcMBut8PhcMDhcECv12PDhg0YOnRoNOwT+A+TnaRA10w1CAE2Ha8P6DPbnVW0QwpTomiZd4rTEyCTiNBqsaMshEKEY7RwIob5dQA76kcpFYOQ0Aso6lrMMFrtEDGxLZ6IVI5dFS8eu8iEdWJdEQuwXmWGAWwOgoZWS8j7cTiIW/FE7D0vtWH2sovlxAxKVmJkHgjchVGsHoTFIoYbXRZuKDnWYWQgsgVP0SKk2JvNZsOGDRvwxRdfYMOGDbBarZG2S0AAADC6CzvA/a+jgQm7HSfYfDy+hJ1ELEL3LPbp/0CVLujP8+WxYxiGC5+WNoTWYJnm1+UmK2Ma1nc1KTZz0wtCIZZzYilZbiHBFlPo99FqHsKBUrEIaQnhC9OGVgtsDgKGYR8wYgU9V+GGwfnw2NHQY7hFN3zY7n688D3VVJjG0sseuT580SLou++WLVtQVFSEW265BUuXLsUtt9yCzp07Y/PmzRE17NChQ7j44ouRnp6OjIwM3HDDDWhqCjyJXuD0gIZjNx71n2dXpTWiotkIEQMMcBZe8EGvbLZoY7+zUXIwHHcWXXROj33LGVqFW1ofmsfuBA/5dQA7rUAmFoGQ0MMjDoerqjSWvakS5BIuBBbOQhHrilgK9ZSEE5aitqer5TEdY5gToRB+Leexi52ozo2Q7Xw8ELgfL5xr3mJzoF7Peopj1XcScHl6tUYrTNbwp91Eg6D/iqZPn46nn34aR44cwe+//44jR47g2WefxfTp0yNqmFarxZQpU3Ds2DGUlpbCYrHgoYceiugxBOKfM7qkQcSwLUBo81tv0CKLPrlJYSVDh0tvZzVusB47u4NwRRddM2Mv7GheXKgeu5POz3VKjb23MdzK2Hq9GVY7gYiJ3fQDCvW+hOO94KMyE3APCYa+QLv6qMX2vEeq6CbW/QOByFWCx3K+sDsZEQgl08/KJCKkBJB/HSk0CgkUUlEbG+KNoIVdeXk5pk6d2ua1G2+8ERUVFREzCgCGDx+Om266CUlJSUhISMCMGTOwdevWiB5DIP7RKKTon58MAPjbTzj2ryPs+9TLxxe9ckITdicbDTDbHFBIReiUGluvFwB0TmePWRLirFs+Wp1Q6EJXGeJCRz+XmaiIqdcIiEzOTqwHuVMyI2C7qyI2trbTfoWVzaHbbrLaoTWyIfRYCrtcZx6o3myDLowQPl+eXvfCm1Bxr0aOZaEcwzDc+QpXWEeLoO9gd9xxB1588UXYbGyJtN1ux0svvYQ777wz4sa5s3HjRvTp08fr+2azGTqdrs2PwOnBmU6h9uehOq/bEEK4PLwx3XgWds5QbHmTkbvpB8Khavaa7ZaZGFYLgFApCtNjx4VieRCledwiHZr3hRaM8NEiJxJNimM9FooSieIPvryNuRHw2NEwrEIqgkYRuyiBSiZBkpL1UlWFIUz5qCoFItMqh/695MQwv47CtSk6XTx2q1atwrx585CamoquXbsiJSUFc+fOxapVq9C7d2/uJ5Ls2rULb775Jp588kmv2yxYsABJSUncT0FBQURtEOCP8/qwExz+OFQLo8VzTsPhGj1qW8yQS0S8FU5QklRSTmgcDMJrd6iaDcPSlimxhubYVTQZQypCoK1OwpnXGipUkJU1hpYfWNbILu4FPIhSzmMX4tO/2WbnZpXmxrCiF4hMk2JO2MU4BB6JHLsat3FcsW6vFIlQMuctjXEolnsgCCM3k4rSWNsOuEYw+ksP4ougHzGWLl0akQOfd955WL9+vcf35syZgzlz5gAASkpKcMkll+D999/36bF77LHHMGvWLO53nU4niLvThH55SchLVqKi2Yg/D9fhgr7ZHbb5aV8VADYMG6sGrb7olZOIimYjDlTpMKI4LaDPHKphRWCPLH6EXUaiHCqZGAZnq5ZgZga3mKxodLa8iGUPO0qBs8FyWYgNlmlrmgIePHbhPv1Tj41CKkJqDGaVuhOJMDINhcayRQ7gEkaNrRaYrPaQ7hvUQxxrTynA2n+wuiVkYcq2meGnKjYzArmZrjBybB8IANe1Gu4IxmgRtLAbN25cRA68Zs0av9tUV1djwoQJePLJJzFp0iSf28rlcsjlsf+CBaIPwzCY2C8b724owbe7KjwKux/3sMLuon45sTbPI71zNPjtQC0OBFEZe7Ca3ZYvjx3b8iQBB6p0KK1vDUrY0TBsWoKMl8KV/FTnSLSQPXbOUCwPHrtw+/BRcZGbrIy51ygSjXLd7Y8l7JQOEUxWB6q1JhSF0DuSitL8GNsOuHIEq0L0GtW2sAVDYhETs4kfFCok2aIlB6Qh5LVW8dC7kcIJu9PFY6fVavF///d/2L17N/T6tmOTVq9eHTHDtFotzj//fNx000247bbbIrZfgVOTK4fk490NJfh1fw1qdaY2+TgHq3U4UquHTCzCub2zeLTSBS2g2B9gKFZvtnFFC/SzfNA5XYUDVbqgCyj4DMMCLo9deZMxpCkIdJQa3U8sCXecW7lzcYm1xwtwLaoNreaQJpYQQtyEXWwXaIZhkJukxPH6VlRqjSEKO35EKeCajxrqAwEVJdma2BcMpSXIIJOIYLGxojqUFAhqPx95sTQUG2pOb7QJWthdc801sFqtuPLKK6FSRe8muGrVKuzZswfHjh3DSy+9xL3eXkwK/Dfoma3B0MIUbDvRhBVbTuKBCd259z74qwQAcE6vTC6hmG/65iUBYEVnIGGe/ZU6EMLeZDNi/PTsDi2goB64QOGzcAJgvV5iEQOL3YHaFnNQfa0cDsKFVApS+VskGlstMFhsUMmCuy1X8ijsUlWuBbpGF/wCrTPZ0OrMm41l/0BKTrICx+tbQy5A4FXYJYeXI1jB43UjEjHIS1aipL4V5U3GkIQdfRDK5+FhLNctFEsI4WV8pS+CFnZ///036uvrIZNFN5dj6tSpHdqqCPy3mTqqCNtONOH9v0pwwxmFyEiUo0prxKqdlQCA6WOKebbQRX6KEulqOer1ZvxbqfNb0LG3QgsA6JefFAvzvEK9FsFWxp5wbs9Hfh3ATvzITVagrNGIsiZDUMKupsUEi90BiYjhRVwkKaVIVEjQYrKhstmIrpnBheL5FBciEYP8ZNbrVdZkCHqBpranJsiglMU+N9ZVQBGa54UTRzx4jcKt6qUPM3zYDoATdqGEM01WO+qcrVL4EKb0mK0WO3RGW0BzzGNJ0P7X4cOH49ixY9GwRUDAJxf1y0H//CTozTY88c1emKx2zF65Bxa7A8OKUnivhnWHYRgM6pQMANh50v/ElH1U2OXxLOycwizYUCxtrNyFh8bKFK6AIsg8O1oRm5us5KXNDOBaKEIp/uDT8wK4VQiGYDtfYVhKbpj9D13nPvb2Z7vlZhJCgv48n55e9+OGct1QL6VKJkYyD6JKIRUjzVmoVN4cWl5vNAnaYzdgwACcd955uPrqq5GZmdnmvYcffjhihgkItEckYjDv0j645u3NWLO/Bj2f/BkAWw244Ip+PFvXkUGdkvHr/hrsLGv2u+2ecnYb3oWds0lxZbMRZpsdcol/LwohBEedo9C6BlFwEWlcLU+CWyioEOQjDEvJT1HhYHVLiOKIXeT48NgBrvMeSo4gJ+x48JQC4RUg6ExWtJjYfq68hJGdxzSE6DWq4NHTC7i3DAleGNG+k3k8FAxR8lKUaGi1oKLJiD65/N632xO0x66xsRHnnnsuGhoacODAAe7n4MGD0bBPQKANgzulYNH1g5HgDNukJsjw5jWDgg5fxYJBBawHcXtpk88n6qZWC47VsR6y/jyHYjPUcqjlEjgIcDLAPLuGVguaDVYwDFCcwU8oFnAvoAjSY8e1OuEnPxAIXRw5HITXJHIgvArBCp5FaXYYFck0Ly9ZJUUCD5XgSjdvVZUuhHMfB6FYIMTrponfax4Ivyl6NAn6avzwww+jYYeAQMBM6J2FbXMm4EhtC4oz1LzOhfXFwIJkyMQiVOtMKG0wcA2A27PtBBuq7ZKRgDQ1vy17GIZB10w1dpU143CNHt0C6Kl3zBmGzU9R8tpDkOZ3lQUr7HhsTkwJdZFraLXAYnOAYfhp+wCc6qHY0AsQ+PY2AqzXrtlgRVWzCT2zg6um5z0UG8Z1w2duIyU3jlueBLwiBjKndfjw4WEZIyAQKEqZmJshG68oZWIM7JSMrSWN2HSswauw+6e0EQAwvHNqLM3zSvcsVtgdqmnBRfDfFzAewrCAK5QadCiWx3FilHxukQtOlHINchMVQbcaiRRcu5YQQmo08Z8vj12OU1BqjdagK5L5DmUCbI7ggSodKoMsoNAarWgxs2FkvkS1y+NlCrpFEfVs5yWfeg9jsSDgq/jqq6/2+T7DMDh+/HjYBgkInE6M6pKGrSWN2HisHteN6ORxm60lrLAbVhQvwo710h2pCay5Mlc4wbewcwqMKq0xqKan5VyOHY+LRIih2AqePV6Aa4GrajbB7iBBFaDwnR+oUUihlkugN9tQ2WxC1yCKfyp5LJyg0FBysMPoqZcsNUEWdHudSJGdpICIASx2B+pbzdw0ikCIi1AslyMYf/NiA/5GS0pKommHgMBpyagu6Vj42xH8fbQeNrujQyNQrcHKtTqJF48dDb8eDlDYHXRO1+jO08QMSkaiHHKJCGabA1XNpoCaJVtsDlQ5RxPxm2PHHru2xRxw0QrAb6sTSpZGAYmIgc1BUKMzBWyLze7gxqjxFQ4E2B6IR2r1qNIagxJ28RQOrAxSXPAdAgcAqViEbI0ClVoTKpqMwQm7ODj38TxWjB/fvYDAf4RBnZKRrJKiyWDlcuncWXe4FnYHQfcsNS+NNj1BZ9WWNhhgttl9bksIwcFqdrpGbx4nZgBs1ICrjA0wpFnZbAQhgFIqRro6tnNW3UlRSaF05icGs0iX85wADwBiEcOFNIMJS9W2mGF3EEjFDDJ4zC3NCTEJPh5EdS533oMLg/PdIofi8noFfu6tdgcXwudjlBuFnrt6vRkmq+/7ZKyJz6zzKGO322G1Wvk2Q+A/wuX9M7Hm32psOFiJYYXJEItd3phf99cAAM7tFR+j0AAgSyOHRiGBzmTD0Vq9z1L+Gp0ZTQYrxCImKG9HtMhPUeFYXWvAvezoKLT8FP7aJgAuUXqkVo+KJqPXfMz28J0AT8lLVqKs0YiKJiOGFQX2GWp7dpIi6BFwkaQgxDY5fIeRAffejaGF8PnMUWOPr8Q/aArK61WtNcFBAJlEhHQeHwiSnQ9jRqsdVVpTwH+zseA/J+z0ej3Ky8tDaugoIBAKlxZLMCozE2LGisOHj6CgIB9qtRoGiw1/HqoDgLiZcQuwIqN3rgabjzfi3wqdT2F3wDkLtzg9gdeKWEqhM/xaGmCrFtqIOZQ5oZEmzynsgmnXQpPm+Rd2KgCNQdrOCiM+esC5E0o1dbyEkantweaVxkNuJnv84D127t5GPh8IGIZBXooSR4N8GIsF/ylhZ7fbUV5eDpVKhYyMjLib7yZweuIgBNK6VtjtdkiIEeXl5ejWrRu+3VWJFrMNnVJVGBhnFb798pKw+Xgj9lZoMWVYgdftDjjDsL14DsNSaAHHsbrAZkofd27HZ/89Sn4IYSnq6eDTawSEZnu8eBtDmVgSL2HkDLWcm9UbaF4pEB/FB0BoLU9cFbH82g6w5+9orT7oFkvR5j8l7KxWKwghyMjIgFLJ/0Uh8N8hPYlBbYsJDkjgMBlhMlvw0cZSAMBNIwt5ffL0RF/nBAxa2OGNfyvjS9hRgXY8UGHn9Nh1Sec/jEzDYoEucjqTFU0GNqUkXhboYKp64yGBHwA6Ob1eJ4MIZ8ZLGFkkYkP4x+taUd5kCFzYxVEoFgjtYYbvax6gIxjrcCLACEGs+E8WTwieOoFYk6aWQcQwMNns0JutWLH5BA5Wt0Atl2DyEO8eMb6go80OVOlgszu8brfrZDMAthlzPFDs9NidbDTA6sNuynHnxI948tgF+vRPJ4Okq2VIVPA7hDw/DM8L395G2v+wXm+G0RJYEjxnO89hZMDN4xjgdWOy2lHXYgbAv6gO5bqhhSLx4LGjqR8nGoKbrR1t/pPCLh6ZOXMmsrKycMYZZ/BtCtatW4drrrkm4O0PHjyI8ePHR9SGbdu24dFHH43oPvlEKhYhJ4k2Q7Xho02lAIC5l/QOesZjLChKS0CiXAKzzYFDXtqe1OhMqGg2QsTwPwqNkqNRQCkVw2onfkNrRoud8xQU89yDDwg+P7DUuZgUpsWBKKXexmZjwPnL1P4inu1PUkqR6JxeE2iOIPXQ8G07EHxjbvp3kSiXIDWBv0pwwOUxbDHb0GywBPQZruCJx9nOFPr9B/o3GysEYRcnXHPNNVi9ejXfZsQFdrsdQ4cOxQsvvMC3KRElNUGG1AQ5RAwgl4hx/7ndcNWQfL7N8ohIxGBgp2QAwLbSjm1aAGDnSfb1HtkaXmZlekIkYrgkZuqN8wYtnEhWSXlf4ABXAUddixktJv9V+1RcFAYYfosmtNms2ebgvEG+sDsIyp1CpBOPjaEBZ0UyF44NVNix106goc9oEqzHjoqQwnQV79ErpUyMLA2boxjwA019/Ihqd49dPBVk/meFHSEEBost4j/+vtwnn3wSPXv2xIUXXojzzjsP69atAwCMGjUKaWlpAdtfWVmJiy++GAMGDMCQIUNQVlYGo9GIG2+8Ef3798fw4cOxa9cuAMC8efOwdOlS7rPZ2dkAgGXLlmHKlCkYO3YsunfvjrfffrvDcfR6PW688UYMGzYMw4YNw+bNmwEAhw8fxtChQzFw4EC89957Hm1ct24d+vXrh4EDB2L06NE+j7lu3TpceOGFuOqqq3D++ee38RrOmzcPM2bMwJlnnokuXbrg559/BgC0trZi0qRJ6NOnD+68807u3+VOaWkpBg0ahBtvvBE9evTAnDlz8P7772PIkCEYOXIkmpubAQBLly7FsGHD0L9/f0yfPh0OBxvGe/jhh9GzZ08MGDAAL7/8stfXAoFhGGQkypGTpMA3d43C/ed25/3G6osRzobJW0oaPL6/wxmGHewUgPECDav6K6Cgo9CK46SaTaOQcr30AsnZKa2PD48XwLaeoHl2VDD7okprhMXugFTM8B6KBYBOTu9PoLlS8eJtBFzCOGDb4+i6AVx2lNT7z4s1WGxcNXI8VKHmp6ggYgCDxR7QA02siI/HbB4wWu3o/dQvEd/v/mfO9zqiZevWrVi7di327t2Lmpoa9OrVK+TjzJw5E1dddRWmTZsGo5F98l20aBGSk5OxZ88ebNmyBdOmTePEnTe2bduG3bt3gxCC4cOH45JLLmnz/vz583HllVdi0qRJOHnyJC6//HJs374d999/P+bNm4eLL74Y999/v8d9v/rqq3jzzTdx1llnQat1JeF7O+bmzZtx4MABZGdnc4KXcuLECfz555/YtWsX7r33Xlxwwf+3d97RcZTn275nu6TVrnqXLctFcpHkbmxjbIMNBoMhoYQQiAk/SoCQ4CTwQRIwEIiBEEIKJZXeQzfNBhswYGNs3OWq3ru2afvO98fsO7uy2pZpkt/rHJ1jr1arRzMrzT3301bh8ccfx6RJk/D2229j48aN/cRrOIcPH8Ybb7yB/Px8TJw4EevWrcPu3buxbt06vPbaa7j++utx2WWX4ac//SkA4KabbsLGjRtx+umn4/XXX0dVVRVUKhUsFgu6u7sHPBYtDMNAr4DRICOxoJi70dhZ0w2WZQeI0O1VnOCbMz5V8tiGg1uJ1oKjrcNvzjgSHNVSqpDGD4C7WHXaPajudPANLEOhJMcOACZkGNHQ7URtl4N/7wwFqQ8sTE2MagWZWEzIMAJo4wXbSCjp2E8Iaxga7Pf0ZJQkSgHuPf9NTTdqOiO5meGek5KoRUqi/C47uaHh3vd9yDLJW7NIOGUdOzn4+uuv8b3vfQ9arRYFBQVYsmRJzK+1fft2rF27FgCQkJCAhIQEfPnll7jqqqsAAAsWLIDb7R5ReJx77rlITk6GyWTCWWedhW+//bbf5zdv3oz169dj5syZWLNmDdrb2+Hz+bBv3z6cf/75AIArrrhi0NdetGgR7rjjDjz55JPweEL1E0N9z9NPP31Q1w0AVq9eDbVajVmzZqG+vh4AdzzJDuPzzz8fiYmD/5GdNm0aiouLodfrUVxcjJUrVwIAysrK+Nfat28fFi9ejLKyMrz33ns4dOgQTCYTjEYjbrjhBrz//vt8zCc/NlYpLzBDr1Gh0+7h98ESOu1uvmN2yeRMOcIbEtKhe3gkYRf8/FSZV6GFw9fsROB6Ke0CTZzP6ghir+tWjjACQrFH4jZaXV50Obi/Z0qIn5x/q8vHd0kPR6g2U/7YgVAJQjTveSW4dYRQnZ1yGihOWccuQatG5X3niPK6QyFkDj7SFB7DMNBoNHxq0e0e2i4eLD6WZfHhhx8iLy8v6hjvvPNOnHvuuXjnnXcwZ84c7NmzZ9jvmZQ09C+rXs/VYahUKvh8viHjHQydLnRnp1Kp+P+Hv9a1116Ljz76CJMnT8Yf//hHOBwOaDQa7Nq1Cx9//DH+/e9/4/XXX8czzzwz6GNjEb1GjQXF6fjiWAc2VbbxO2QB4Itj3GDlGfkmZCbLN8drMEqDQu1Euw0eXwA6zeD3r4cV6NgVRSgw7G4f2oOpH6UIuyLS/BHFBVoJjR9AuOs1cuzEbUxPkr8bGQAMWjXyUxLQ1OtETacdaUnD75wmrpdSxFE0woj8XkxQyPsGAFZOy8aEjCTFlHQAp7BjxzAMEnUawT+GE1yLFy/GW2+9Ba/Xi8bGRmzbtm3EOO+880689dZbAx5ftGgRnn32WQCAy+WC0+nE6aefjueffx4A8M0330Cv18NkMmH8+PF8Snbjxo39XufDDz+EzWaDzWbDli1bMG/evH6fX7FiBf7+97/z/9+3bx8AoKKign+tl156adDYq6urMXPmTKxfvx7jx49HQ0NDRN8zUhYtWoRXX32V/7n6+mLvTOrr60NmZiZcLhdee+01AFx9ocViwZo1a/DII49g7969gz42ljl3BuegfnSwtd/jnx5uBwAsnaIstw7gRigk6zXw+llUD1G309vnQUtw80GJghw73vUaoT7weLBTOStZr5iu6gnBzuJIXK+6oLiQu3GCQI57s8U54t7PWgU1ThAibRhy+/z8thLFiOqwm5mRbtaVtCmG8OOFRbjvwhmYWzS8oJaSU1bYycH8+fNx1llnoby8HD//+c/7pWJvuOEGLFy4EHv27EFBQQHeffddAMDBgwcHTU/+5S9/wWuvvYby8nIsXrwYXV1duPnmm9HT04OysjLccsstePrppwEA3//+93HixAnMmzcPBw8e7Pc6ixYtwsUXX4y5c+di3bp1A5y5u+++Gy0tLSgvL8e0adP4RonHHnsM99xzD0477TQYjYOPinj00Ucxffp0lJeXo7y8HBUVFRF9z0i5+eabcezYMcycORNbt25FYWHs8+B++9vfYs6cOTjvvPMwa9YsAIDNZsPq1atRUVGBiy++GA888MCgj41lzp6WDRXDDSomnYBddjc2VXJC79wZuXKGNygMw6A0lxNrR1oGT8eSNGxBagJMCnBdCJOzud+l4+12BAJDX+SOB1Pj5PlKgIij2q6+YWMHQo0rStgvDHAd6yaDBiw7chMCKUuYqIAROYQJETq91R0OsCxgMmj4Rh25GZ+eCIYBbC4fOu3DjzwhNzxKcRuVyimbipWL3//+9/j9738PAP1mxf3jH/8YtCvV7/dj4cKFAx7Pzc0ddDzKCy+8MOCxpKQkbNmyhf//+vXr+X8XFBQM+Jply5bxc+mMRiMvEMOZMmUKdu3aNeDxcMKdvnBG+p4n//+ee+7p99zWVk5UGAwGvP7669Dr9fjyyy8HjaeoqIjv5AXQrynj6quv5v/9s5/9DD/72c8GfP3JNYdDPTZWSTfqcfrkTHxxrANPfV6NDd8vw+u7G+H1sygvMI9Y4C8X03JN+La2BweaLLhoVv6Az+9v7OWfpyTGpydBp1ahLzhjr3AIR4s4dpOzlOM25qUkQKfm1lsNF7vHF+DTtUoRpgzDYEKmEfsaelHTaR/WxeVFtUJEKRBysEZy7EI3BMmK6cg3aNUYl5aIuq4+HG+zDVnawbIsjrVx8SvJZVci1LFTOHS23dBYLBYsWLAA5eXl+OUvf4m//vWvcoc0JrnlzEkAgNd3NeDpr2rw9y0nAAA/WjBOzrCGZdY4rlN3d93gM/jI47MV1tGrVaswMSgYhuvqJRfoKdnKucCpVQw/ama42Ou6HPAFWBj1GuQopIsQACYGxdHxthHG5LQp79hPDB734+3DNwyRG4IpChHUBHIshxqGDnDDr+1uH7RqRjF1pUplVDh2Dz74IO68805s375dEZsZhOKVV16R9fuHO1aj8Xump6eP+Ro3JTCvKA1nlmZhy5F23PteJQBg7vhUXDxbmcOVgdAIlkPNFri8fhjCmppYluVn8CltVAsAlGQbcbjFiqNtNqyYlj3oc4j4UIrjRSjNScaRVtuwsfOpzCyjYlwjIOQCHRlGXPj8Ab5uUylpZAAozeGc59quvgHv93COBX+2SQpyegGgJDsZmyvbeEduMEjsxRnGIRuiKByKPzpNTU146aWXhhyDQaFQxOdvP5yFFVOzoFYxWFicjr/+cBY0auX++ShITUBWsh5eP4v9jf1H/jT2ONFhc0OrZviduEqiJHiRHsr1srq8/Co0JaUDgZFjB5SZygRCwm5Yt7G7D14/i4RgJ6pSyDbpkZKohT/ADhhNFE7I6VXWsZ8SPPbHhhHVR1vt/Z5LGRrl/mUO8qtf/Qr33nsvP+5iKNxuN6xWa78PCoUiDEl6Df7147k4+vtVePn60xSxLWA4GIbh3bhva7v7fW5nDff/aXnmIZ0NOSnJ4S66ZBzLyRwMCtWC1ARFDGkNh8Q+GoUdmX9Y3WEfsjOWOKWTsoxQKWCwMoFhGJQE05lHhjj2bp+fbwxRUm0mAD72Y622ITtjiegrUZgoVSKKFnafffYZOjs78b3vfW/E527YsAFms5n/iKdDkkKhDIRhGEW7dCezcCK3/WDLkfZ+j396pA0AsGRShuQxRUJZfgoArnN0sJ2x+4LCrqIgRcKoIoM4dlUddnh8gUGfc6jZEnyussRFVjLnegVYDOl6VQbFtpLq6wilvOM4+A3B0VYb/AEWKYlafj+rUpiQkQStmoHN7UNjj3PQ54TeN8pqeFIiiv0r7fP5sG7dOjz22GMRPf/OO++ExWLhP8jMNAqFcmqyMljj9V19D9pt3Mw6t8+Pz4929Pu80shM1qMgNQEsiwFpZCDU0VteoLw0cp7ZgGSDBr4AO2ghv9Xl5Ts3yxUmTBmG4cXRUG7pgeCxryhU3rEng7aHcuzIDUFZvllRtY0At5qL1Anubegd8Hmby8s7vUo89kpDNmF39tlnw2AwDPpx//334/HHH8fpp5+OGTNmRPR6ZBhv+MdoQqvVYubMmfze140bN6KkpASTJ0/mZ8cBwMyZM6HT6eByueQKFVdffTU++uijiJ9/xx13CL6d4e6778bXX38t6GtSxha55gRUFJjBssDmSs6l+/J4JxweP7JNekXW1xFIV++e+oFdvUTsKU0YAZw4mlmYAgDYE2xQCedgUyiNnJakrDQyAEzL5d4TZF1eOCzL8o8r8b0zI4+LaV9D76BzBPcHBZMSnV4A/PtmMGF3oNEClgXyUxKQlaycTmqlIpuw27RpE1wu16Afv/vd77B161a8+OKLyMnJQU5ODhoaGrB69epBZ6qNBUiHZ0JCAnw+H37961/js88+w549e/DII4+gu5urC9q7d2/MA33HCn6/H/fddx8WLVokdygUhXNeGTdA+T/bauDzB/CPz6sBAKvL8hRVI3Uys4YQR60WF5p6nWAYbp2bEhkqdoC7QAPKdBuBUJf0YGNyWiwudNo90KgYvh5PSZTmJiNBq4bV5UPVIJtLiChV6rEfTtjtCT5GnkMZHsWmYp955hlUVlZi7969vJh5/vnn+aXv8cKyLAJ9fYJ/DLcSpba2tt+4lqGcr507d6KsrAy5ubkwGo1YvXo1Pv7446h+vnfffRczZ85ERUUFrr32WgDAd999h/nz56O8vBw//vGPedevqKiI//czzzyDO+64AwA3JPhXv/oVZs6ciXnz5uHEiRODxrpkyRLMnj0bl156Kb/W68knn8SUKVOwdOlSVFdXDxrj7bffjtLSUlRUVOCPf/zjsN/z6quvxq9//WssXboUjz32WL9jV1RUhPXr16OiogKnn346ent7AQDbt2/H9OnTMWfOHNx8882Djlq55557cM0112DFihWYOHEivvjiC/zoRz/ClClT+g1yPv/88zFnzhyUl5fj7bffBgC0tLRg8eLFmDlzJsrLy3HkyJFBH6PIxxULxiE1UYvqTgdO2/ApdtZ2Q6dR4YalxXKHNixEYOys7YbXH6pVIzt6ZxamKGJP6WDwbmPD0G4jqSNUGrPHpwDgUrEOt6/f50gKfEp2siKbbrRqFZ+mPFmY9nl8fPNBhULF0cxxKQA4V/fk+sy9VNhFhWLn2KWkpPT7v1qtRlpaGhIThdnPxzqdODp7jiCvFU7Jd7vBxBljc3Mz8vND0/ILCgrQ1NQU8de3tbVh3bp1+PLLL5Gbm8u7fVdffTX++9//Yu7cubjpppvw5JNPYt26dcO+FsMw2Lt3LzZu3Ih169bhvffe4z/n8Xhw22234d1330VqaioeeughPPHEE/jhD3+Ixx57DLt370YgEEBFRQXOO++8fq/b3d2N119/HVVVVVCpVLBYLCN+z+bmZnz22WdgGGaASJs0aRL27duHW265Ba+99hquv/56XHfddXjppZdQXl6Oyy67DElJgw+1bGlpwaZNm/Dee+/hoosuwq5du5Cfn4/Jkyfjtttug9FoxHPPPYe0tDRYrVYsWrQIF154IV566SWsWLEC9957L7xeL3w+H5544okBj1HkI9mgxbqVU3D3O4f4dUX/d/oEZCtoMO5gzMg3I8OoQ6fdg29rurEo2Ojx2THl7uglkItvdYcDPQ4PUoMp10CAxY7qLgDArOBFXGnkmhOQZzag2eLCvsZeLJoYarDZUc39HZ2p0NgB7oZgR3U3dtf14PL5oQHi39R0IxBMZSr1vT8hPQmpiVr09Hmxp74HC4q55ievP4AdVdz7Zk6R8uZOKhHFOnYnc7LbNZYZzPWLptj1m2++wcqVK5Gby6Wh0tLSYLFY4PP5MHfuXADA2rVr8cUXX4z4WsQhPf/887Fnz55+nzt69Cj279+P5cuXY+bMmXj22WdRV1eHb7/9FitWrEBycjLMZvMAUQcAJpMJRqMRN9xwA95//30kJ4e6zIb6nhdffPGQx2HNmjUAgFmzZqG+vh69vb1gWRYVFRVgGAaXXXbZkD/jueeeC5VKhbKyMhQVFaG4uBh6vR5FRUX8+rI///nPqKiowJIlS1BTU4PW1lbMnTsXL7zwAu6//35UVVUhISFh0Mco8nLVaePxl8tnYn5RGu67cDpuP6dE7pBGRK1isLwkCwDwyWFOzHn9AWw73glA2cIuNUnHjzLZdqKTf7yyxYouhwdJOjVmj1PuBZpsI/mmuv+YnG3HObf0jMnK7KYGgLnjuUX0X1d19buOkIahM6YoN3aVisGy4Hs+vJN9V20PbG4f0pN0iq0PVBqKdezEhklIQMl3u0V53aHQaDQIBEIWs9vtHvR5+fn5/Ry6pqYmzJ49O664hhOL4XENFdNQrzlv3jxs2rSp3+NvvfXWiF+r0Wiwa9cufPzxx/j3v/+N119/fcQGi6EcNwD8nEOVSgWfzzfg5x0uRa7T6fivJf8Of60tW7Zg586d2LlzJ/R6PaZPnw63242lS5fi888/x7vvvosLLrgATz31FM4666xBH6PIB8MwuHBmPi6cOXBnrJJZMS0br+9uxAcHWvD/zi3BRwdbYXP5kGHUK7JxIpyzpmbjeLsdn1S2YU0FVxP8RVAYLZyYrujNAWdMycTG/S3YXNmGdSunAODWWVV1OKBigIUTlSuOTitOh0GrQlOvE4earfwu5y94UarcGwIAOLM0C2/tacKnR9px53lTAQBbguOJlpZkQq3gulglodzfLpFhGAaqxETBP4Zz1rKystDU1ASHwwGLxYJt27YN+rz58+fjwIEDaG1thd1ux8aNG3HOOecM+tzS0tIBj5122mn45JNP0NLSAoBLe6akpPBiCgCeffZZLFmyBAAwfvx47N27F4FAYMBu2ldffRUA16U7a9asAd+7pqYGBw4cAAA4HA6cOHEC8+fPxyeffAKbzQar1Trovlu73Q6LxYI1a9bgkUce6bcabLjvGSmpqdxd9/79+wEAr7/+ekyvAwA2mw2pqanQ6/XYuXMnXzdXV1eH3Nxc3HTTTbj88stx4MCBQR+jUGJh6ZRMZJv0aLW68OKOevxrG1er+uOF4xV/gVs5jXNeth5t52sEPwl2Jp+hYLcRAFZMzYZaxaCyxYqGbq5meGvQQZpZmAJzgjJrGwEgQafm3dyPD3HZhqoOO6o7HFCrGD6lr1TOmJIJjYrBiXY7DrdY4fUH8P5+7jp2VqkyxxMpkVPWsZMDnU6HX/7yl5g1axamTp2KioqKQZ+n0Wjw8MMP44wzzgDLsrjtttuQnp4+4HldXV2DOlFZWVn485//jFWrVgHghOK//vUvPP3007jxxhvhdDoxa9Ys3HjjjQCAu+66C2vXrkVhYSEmT548IObTTjsNfr8fL7/88oDPvfTSS/jpT38Ku90OlmXx8MMPY9WqVbj11lsxd+5cFBUV8QIyHJvNhjVr1sDj8YBhGDzwwAMRfc9o+Oc//4nLL78cqampcTmeq1atwuOPP45Zs2ahrKyMP2+fffYZHn74Yeh0OmRmZuLll1/Gxo0bBzxGocSCQavGzcsn4e53DuG+jZXBx1S48rTxMkc2MjMLU/kawQ8OtGBCRhK+q++FVs3gnOnKXg+ZlqTD/KI0bK/uwrv7mnHTsol4YUcdAGDVDGXHDgDnTM/Bx4fa8NaeJtxy5mQ8+3UtAGB5SaaiRSkAmBO0OGdGDt7f34K/bz2BpVMy0WxxIcOox1lTs+QOb9TAsMPlqEYxVqsVZrMZFouFn2nncrlQU1ODCRMmwGBQVgFpTk4OX881EkVFRThy5Ai2bt2K48eP4+c//7koMS1btgxPPfXUoK6gWAj5PR0OB5KSksCyLK6//nosWrQIP/nJTwSIMnaU/B6kKA+PL4Cfv7wHHx1qRYJWjb/+cJZiByufzN+3HMcjm44hz2xAapIOh5qt+N6sfPz5BzPlDm1E3tjdiF+9vg8mgwb3XTgDt766FwlaNXbceRbMicoWR30eH5b+8TN02Nw4vzwXnxxug8sbwEvXLejXDKJUjrRaseqx/tms3543FdedoexOdrEZTNMMxSmbilUaarW634DioZg5cya8Xi8YhsG5554rmqgbC7zxxhsoKyvD9OnT4fF48KMf/UjukCiUqNBpVHjqqjl472enY9O6M0aNqAOAnyyegAyjDs0WFw41W6FRMbhuyei4OF80Kx8l2cmwuny49dW9AIBL5hQoXtQBQKJOg3UruNrAjftb4PIGMHtcChYWD8z6KJHSHBNuWjaR///8orRR4VIrCerYUSgSQt+DlFOJA40WrH/3IOq6+vDY5TOxROHF++Hsa+jFT1/YjRaLC0smZ+AfV81Bom50VC/5Ayz+8ulxPPNVDUpzTfjnVXOQkqi8TR/DsbOmG/XdfbhoZt6o2lEtFtE4dqeksCsqKqJjKCiy4HQ6UVtbS4Ud5ZSCZVnF7SeNBK8/gCMtNkzLMym+YWUwyOV9NB57Sn+iEXaj4/ZDILRaLRiGQUdHBzIzM+mbnSIpLMuio6MDDMNAq1V+SodCEYrR+rdWq1ahTKEruCJhtB53SnycUsJOrVajoKAAjY2NqK2tlTscyikIwzAoKCiAWq28lUQUCoVCGf2cUsIOAIxGIyZPngyv1yt3KJRTEK1WS0UdhUKhUETjlBN2AOfc0YsrhUKhUCiUsQZtNaFQKBQKhUIZI4xZx450A1mtVpkjoVAoFAqFQokdomUiGWQyZoWdzWYDABQWFsocCYVCoVAoFEr82Gw2mM3Dd2qP2Tl2gUAAzc3NSE5OFrXl22q1orCwEA0NDSPOlqFICz03yoSeF+VCz41yoedGmUh1XliWhc1mQ15eHlSq4avoxqxjp1KpUFBQINn3M5lM9JdNodBzo0zoeVEu9NwoF3pulIkU52Ukp45AmycoFAqFQqFQxghU2FEoFAqFQqGMEaiwixO9Xo/169dDr9fLHQrlJOi5USb0vCgXem6UCz03ykSJ52XMNk9QKBQKhUKhnGpQx45CoVAoFApljECFHYVCoVAoFMoYgQo7CoVCoVAolDECFXYUCoVCoVAoYwQq7OKgo6MDq1evRmJiIkpKSvDpp5/KHdIpy/r16zFt2jSoVCq88sor/T734IMPIjMzE2lpabj99tsj2rVHEQa3242f/OQnKCgogNlsxrJly3DgwAH+8/TcyMv111+P3NxcmEwmlJWVYePGjfzn6LmRn+3bt0OlUuHBBx/kH6PnRV6WLVsGg8EAo9EIo9GIc889l/+cYs4NS4mZSy+9lL322mtZh8PBvvXWW2xqairb3d0td1inJM8//zy7adMmdsGCBezLL7/MP/7++++z48aNY6uqqtjm5mZ26tSp7H/+8x8ZIz21sNvt7H333cc2NDSwPp+P/dOf/sQWFxezLEvPjRI4fPgw63K5WJZl2Z07d7Jms5nt7u6m50YB+P1+dsGCBez8+fPZDRs2sCxLf2eUwNKlS/tdYwhKOjfUsYsRu92Od955B/fddx8SExNx0UUXYcaMGXjvvffkDu2U5Morr8TKlSthMBj6Pf7888/jpptuQnFxMXJzc/HrX/8aL7zwgkxRnnokJSXhrrvuQkFBAdRqNX72s5+hpqYGXV1d9NwogNLSUn7+FsMwcLlcaGlpoedGAfzzn//EggULMHXqVP4xel6Ui5LODRV2MXL8+HGYzWbk5ubyj1VUVODQoUMyRkU5mcrKSpSVlfH/p+dIXrZv347s7Gykp6fTc6MQbrrpJiQkJGDevHlYtWoVpk2bRs+NzHR3d+Oxxx7DPffc0+9xel6UwS233ILMzEysXLkS+/fvB6Csc0OFXYzY7fYBC39NJhPsdrtMEVEG4+TzRM+RfFgsFtxwww144IEHANBzoxSeeOIJ2O12bN68GUuXLgVAz43c/OY3v8Gtt96K1NTUfo/T8yI/Dz/8MGpqalBfX4+VK1fivPPOg91uV9S5ocIuRoxGI6xWa7/HrFYrjEajTBFRBuPk80TPkTy4XC5cdNFFWL16Na655hoA9NwoCbVajRUrVuDTTz/Fxx9/TM+NjOzZswc7d+7EddddN+Bz9LzIz/z582E0GpGQkIDbb78dRqMRO3fuVNS5ocIuRiZPngyLxYLW1lb+sX379mH69OkyRkU5mWnTpvXrwqTnSHp8Ph8uv/xy5OXl4ZFHHuEfp+dGeQQCAVRVVdFzIyOff/45jh07hvz8fOTk5ODVV1/FAw88gOuuu46eFwWiUnEySlHnRpaWjTHCJZdcwl5//fVsX18f+84779CuWBnxeDys0+lklyxZwj733HOs0+lk/X4/u3HjRnb8+PFsdXU129LSwk6fPp12kUnM1VdfzZ599tmsx+Pp9zg9N/Jis9nYF154gbXZbKzX62X/97//sQaDgd2/fz89NzLicDjYlpYW/uOyyy5jf/vb37I9PT30vMhMT08Pu2nTJtblcrFut5t99NFH2ezsbNZisSjq3FBhFwft7e3sueeeyyYkJLCTJ09mN2/eLHdIpyxr165lAfT72Lp1K8uyLPuHP/yBTU9PZ1NSUtjbbruNDQQC8gZ7ClFbW8sCYA0GA5uUlMR/fPHFFyzL0nMjJ3a7nV2+fDlrNptZk8nEzp49m33zzTf5z9NzowzWrl3LjzthWXpe5KS9vZ2dM2cOm5SUxKamprLLly9nd+/ezX9eKeeGYVk63ZBCoVAoFAplLEBr7CgUCoVCoVDGCFTYUSgUCoVCoYwRqLCjUCgUCoVCGSNQYUehUCgUCoUyRqDCjkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQKhUKhUChjBCrsKBQKhUKhUMYIVNhRKBQKhUKhjBGosKNQKBQKhUIZI1BhR6FQKBQKhTJGoMKOQqFQKBQKZYxAhR2FQqFQKBTKGIEKOwqFQqFQKJQxAhV2FAqFQqFQKGMEjdwBiEUgEEBzczOSk5PBMIzc4VAoFAqFQqHEBMuysNlsyMvLg0o1vCc3ZoVdc3MzCgsL5Q6DQqFQKBQKRRAaGhpQUFAw7HPGrLBLTk4GwB0Ek8kkczQUCoVCoVAosWG1WlFYWMhrm+EYs8KOpF9NJhMVdhQKhUKhUEY9kZSW0eYJCoVCoVAolDECFXYUCoVCoVAoYwQq7CgUCoVCoVDGCFTYUSgUCmVU0tDdh9pOB1iWlTuUqPm6qhOPbz2B/Y29cocSNU6PH+/ua8YXxzoQCIy+Yz/WGbPNExQKhUIZmaZeJ9ISdUjQqeUOJSq2Hm3Htc/ugj/AYnlJJv69dh7UqtExs3RHdRfW/ncnvH4Wj2w6imd+Mh9Lp2TKHVZEsCyLn730HT490g4AuHxeIR68uFzmqCKHZVm8vqsRHxxswfwJabhx6cQxN+uWOnYUCoVyivLnzcew+MEtKL/3Y7z6bb3c4URMq8WFW17aA3/QLdp6tAPPfl0rb1AR4vMHsO7VvfD6udhZFvjd2wfg8vpljiwyXvymnhd1APDKtw3YcqRNxoii47VdDbj9jf347GgHHv7oKP75RbXcIQkOFXYUCoVyCvLp4Tb85dPjAACvn8Xd7xxCbadD5qgi4+Wd9bC7fSgvMOOeC6YBAP78ybFRIY62HGlHi8WF9CQddv9uBXLNBjR0O/H+/ha5QxsRlmXxTFBA/271VFyzeAIA4N/bamSMKnIsfV48+OERAAAxdx/dfAy9fR4ZoxIeKuwoFAolDnz+ALodnlFX5/XU51UAgLULx2NhcTrcvgD+/MkxmaMaGX+Axeu7GgAA/3f6BPx4YRFyTAbYXD58fqxD5uhG5pVvudgvmVOAdKMel83lNiRt3N8sZ1gRsb/RghPtdhi0KvxgXiF+srgIALC9ugutFpe8wUXAu/ub0dPnxaQsI47efy6m5prg9gXwv92NcocmKFTYUSgUSoy4vH5c8a9vMPv3m7Hi0c9R39Und0gRUdVhx7e1PVAxwE3LJ+H2VSUAgM2VbXB6lO167azpRrPFBXOCFudMz4FKxeD88lwAwEaFu14Otw9fBMXnpUFBd0EFF/u2452Kd47e3tsEADhneg6SDVoUpiVizvhUsCzw3j7lC9P3g+L5srkF0KpVuPK0cQBCYnusQIUdhUKhxMj6dw5hZ203AKCqw4Hb39g3KroE3/yOcyiWl2Qh22TAzMIUFKQmoM/jx9aj7SN8tbx8eYITRmeWZsGg5Ro+zq/IA8Cll73+gGyxjcTO2m74AiwK0xIwKcsIAJiUlYzSnGT4AqziHcevTnQCAFZNz+EfI6L6i+PKjr3d5sLOGu539bwyLuY1FXlQqxicaLejoXt03JRFAhV2FAqFEgOtFhde383d6d+7ZjoMWhV2VHf3KyxXKl8e5y7Q5ALHMAxWBy/QHx5slS2uSPi6qgsAsGhiOv9Yeb4ZKYla9Hn8ONRslSu0Efk6KIwWFWf0e3xh8GfZVdsjeUyR0ml341ibHQCwoDh07Ensu+t6FC2qtx3rRIAFygvMKEhNBAAkG7SYWZgCgBs/M1agwo5CoVBi4NVvGxBggfkT0rB2URGuXDAeQChdpVQsTi8ONFkAAIsmhS7QZNzGzpouxdYL2lxe7G8ksYfEkUrFYO74VADArqCDqkS+OhEUpWHHHQDmF6UBAL5VcOzE7SrNSUZako5/fEpW8qgQ1bvquPgXFvc/9ouD76Mvg+dmLECFHYVCoUQJy7J4I5jOvGI+V6dz4cx8AFw60OH2yRbbSOys6UaABYozkpBrTuAfn1WYCo2KQZvVjcYep4wRDs3uuh74AyzGpyciPyWh3+fmBcURESBKw+H24XArJ3xOO0lczA3GfrTNBkufV/LYIuGbak74nBy7SsXwx548R4kQN5Qca8LioOO4vapTsTc00UKFHYVCoURJXVcf6rv7oFUzOHt6NgBgRr4JEzKS4PIG8NlR5dYb7QhefBdO7H+BTtCpMSPfDCDkbiiNA0G3blYwfRYOuWDvqutR5AX6cIsVLAtkm/TINhn6fS4zWY/ijCSwLPBdvTLTsfuCx3520BkNhziOSo29x+HB8XYujTznpPgrClOgUTHotHvQPAo6eyOBCjsKhSIr7TYXLnr8Kyx+cAs2fHhYkRflk/kyWCs1e1wqEnXcAh+GYfh05jc1ynUuiDiaPW7gBXpeEffYtwqt9TrYzMVOBGg4M/JN0KgYdDs8aFHgBfpgMP09I29g7ABX+wUAh4I/o5LwB1gcCbqN0/NMAz4/PZ97rLJFmalYIjgnZib1SyMDgEGrxuTsZACh343RDhV2FApFNtw+P6555lvsbehFU68T//i8Gv/5UvnDTkl34OmT+hfBL5ig7HRgIMDywqGsYKDAmFnICbtDTcq8wB1s4oTDYMJOr1FjYibXaXpYgQLjwDCxA8DUXE4cHW6xSRZTpFR32OHyBpCoU2NCetKAz0/P5X6mhm4nLE7lpZIrg7V/FQUpg36+LChMDyr0fR8tVNhRKBTZeHdvMw42WWEyaPiuzIc/Popuh3LnebEsy6czF50k7OZNCNVKKXEmWU2XAw6PHwatCsUZAy/QU3M55+Jom41f16UUehweNPVytX/TBnGNgFD8R1qVJ44ODeM2AuHCTnmilDRFTM01QTXIPl5zopaveVRi/KS2kRzjkykLnpMDVNhRKBRK7ISvJ/rpson4+w9nYUa+CR5fgJ+zpkQae5zo6fNCq2YwI7//hSLDqMfETK5WSomjK4gjMTXXBI164J//8elJSNCq4fIGUKOw9WIkDVuUngiTQTvoc8iFW2kpQbfPz9d4DZbKBEKx13Q50OdRVvMNEaVDxQ6ExHalAjtjjwRd0NKg8D+ZsqCTd7DJMipKQUZi1Ai77du3Q6VS4cEHH5Q7FAqFIgAHm6w41GyFXqPCD+eNA8MwuHxeaBK8Uv/Akrv60hwT9Br1gM/PCtauKfHunzgvZUO4RmoVgyk5xPVS1gWazFArzRlaXJQq1PWq7eyDP8AiWa9Brtkw6HMyk/XIMOrBssBRhTmOxAEdyvECgGkKFdV9Hh9quriblKHeO6U5yWAYoMvhQZeCswWRMiqEXSAQwLp16zBv3jy5Q6FQKAKxJTjId3lJFlKDBc0XzsyDTq3CiXY7qjqU5RgRyBy1wWrUgJCrobQLHBASDMOJo6lBYac0cXQi6HiRjQ2DQVKxtZ0OuLzKWY1GYp+YZQTDDExlEvhUuMKEXXXwd3HyMMe+JPi+IT+rUjjWZgfLcm56ZrJ+0OcYtGoUBocWH29TVvyxMCqE3T//+U8sWLAAU6dOHfI5brcbVqu13weFQlEuZHXV8tJM/rFkgxbzJnCO1zaFrigi6cyhXC/euVBgSioyccTFf0RhRfxVEcSeadTDZNAgwHIjaZRCJMcdAN/8Ua2gNHifx8fXNpL4BoN8rqrDrii3/Rh/MzN4GpZAzs2JDirsRKe7uxuPPfYY7rnnnmGft2HDBpjNZv6jsLBQmgApFErUdNnd2NfYCwBYVpLV73NnTOaE3rbjylvxw7IsX+s1lLCbGnTsmnqdiho2G36BHk5gkM8pSVwAoQvucLEzDIMJRBwp6AIdSewAUJzJNbQoKXbi1qUl6XhnfTDGpydCxQA2lw8ddrdU4Y1IVYTHnriRJ9qUdUMTC4oXdr/5zW9w6623IjV14MylcO68805YLBb+o6GhQaIIKRRKtOys6QbLcnfRJw9rXRIUdturuuDxKWv3ZIfNjd4+L1TM0BcKk0GLwjSuQ/BQi3Lq7MIv0CfP8gqHiIv67j7F7P7ssrv5TmkS31BMDHb7KkmY8o7dMI4XABRnEFGqnNiJMJo4wnE3aNUoTOPSmVXtyomfvA8mDNIFHs7E4O/zcYWlkmNB0cJuz5492LlzJ6677roRn6vX62Eymfp9UCinCm1WF3752l6s/us2PPlZFQIKG1VxMnsaegEMnAIPcHVGKYlaOL1+xRXwkz/6RelJMGgHNk4QpuYoL50ZqbjITjYgQauGP8CivlsZ6UwSe35KAj8QeihCrpcyxEUgwPIOXKSOnZJENal1HS4NSyAjdKoU5ThysYx0Q8A7dmNA2A3/GyIzn3/+OY4dO4b8fG4Ho8VigUajQVVVFf71r3/JHB2FogxcXj+ufXYX34V5qNmKTrsbd50/TebIhmZPcBL8rEG2HzAMg4qCFHx+rAP7GnpRPsRQUTk4HkzTjHSBnpRlxKbKNlR3KuciEV7APxwqFYMJGUmobLGipsMR0QVdbMjolZFiB4AJxPVSyLFvsbrg9gWgUTEoSE0Y9rk5Jk5UO71+1Hf3KeLYhxy7kWOZmGnE1qMdihHVPn+AvzmJ1LFrt7lhc3mRPMRIndGAoh2766+/HidOnMDevXuxd+9erFmzBr/4xS/wxz/+Ue7QKBTF8I/Pq3GgyQJzghaXzikAADzzdS1OtCvHLQrH6w/wnaWzxqUM+pyK4C7QvQ3KSWUCIcducnZkRfDKSklFllIDgAnB5yhlll1d8OJclJ444nPDHTslFPHXBUdtFKYlDjo7MBwiqgHlOI4k/qIRhBEAFGcqS1Q39jjh9bPQa1TIMw8vqk0GLdKDJQpKaryJBUULu8TEROTk5PAfCQkJMBqNSElJkTs0CkURuLx+PLe9FgBw34XT8cdLK7ByWjb8ARZ/3nxc3uCG4EiLDW5fAOYE7aDriQBgZiHXmLC3QVlDfskohMlZw3fYkbt/JaWkajsjcy6A8Do1ZcRPxMW4tJGFHfn5LE4vehTQvFIfFAmRxA6ERDX5meWEZVle5IyPQFQT4V2vEGFE3r8TMpIG3ZhxMuRnpMJOQp555hnccccdcodBoSiGd/c1o8vhQX5KAlaXcSu5bl0xGQCwubJNUV2ZhMoWslpp8PVEQGinY1WHA1aXcn6G4+2RpWKJa9RucysifpYN1ctFcoGeoLA6NXKhLRriRiAcg1aNrOC8sgYF1AjWRXHcgZAAVELsFqcXNhe3BYPMeRsO0jzR2ONUxEq6ms7I3zfhz6tVgKiOh1El7CgUSn827m8BAFyxYByf5pmeZ0ZpTjI8/gA2HmiWM7xBIUvOpw4zJDfdqOcn9B9TyLDW3j4P7wCNVIhtMmh5caEEcdTt8MDu9oFhgIIILtDj0rifr7HHKXZoI8KyLO8ARS2OeuQXR9G4jeHPU0LjChHUWcl6JOiGbhYi5KUkQKtm4PEH0Gp1iR3eiDREKarHpyvHLY0HKuwolFGK1eXF9ipu1tuqGTn9Pve9WVzD0cZ9LZLHNRJko8Fw64mA0CR7pSx0rw1e5LJN+hE7M4FQnZ0SuuxI7Lkmw7DdvAQiLpotTtlHznQ7PLAFRWlhhOKoUIHiKFLXSEnCLhqXF+BW0pEbByWkY4mwi/R9Q1OxFApFVrYeaYfXz2JSlnFAx9rKadkAgF113YpaKM6yLC/UhlrITShR2M5Schc/PsILtJJqpeq7g65RhBfoDKMOCVo1WBZo7pXXtSOpzJwIRSkAFAa7Txu65Y09PrfRKfvYovoohVH4c8l7Tk6IY0uFHYVCGRV8foxbubViavaAz03ISEJ+SgK8fhbf1HRLHdqQtFpdsDi9UKuYEevUyAogpezNJB2iQzV8nMz4NOVcJPgC+LTIYmcYhh+yLLdzFG3zARBe6yVv7BanFzZ3sEYtwvhzzQaoVQw8vgDabfJucKiP8n3DPVcZjiPLsrywj/S9Q1zVVqtLUbuGo4UKOwpllPJNNSfYFk1MH/A5hmFw+qQMAMCXClrNRdy64owk6DXDuy8l2Sb+a5QxtiJ4kcuI8u5fASk1Enukjh0QKpaXu06NrEGLpDaQoJRULIk9w6iL2G3UqFXITwk6jjIf+5DjNfyokHDGKeSGptPugdPrB8OAP54jkZKoRVKwllBupzoeqLCjUEYhDd19aOp1Qq1iBt3eAACnT+aE3faqLilDG5aqCOfAAcDErCSoVQxsLp8iCrFJp1zktVLBLQIKSMU2BZsgYkupKUMc5acYRnhmCBJ7k8zdmc293Ps2L0JhQVCKOGrmj33k8RMR2CSzMCLv21yTATpNZFKHYRj+XMkdfzxQYUehBPH5A3h86wlc/OTX+NVr+9CmADExFCS9WpZvRpJ+8EL+uUWc4DvaZlNMnV0064n0GjWf1lHCoN9o5nkBIXesp88r+8iTppgu0MF0psx1ary4GGFrQzg5JgM0Kga+ACvrTQGJfaThuCeTFxSxcrpGLMui2RK9MCXPldvxirZxgkDeZ3LHHw9U2FEo4P6I/eKVvfjjx0exu64Hb3zXiMv+sR3tNmWKu121nLBbMCFtyOfkmhOQYzLAH2BxoFEZGxwi3dtI4LcIyDwo1+by8kvoI22eMOo1yDByk+zl7BD0hY2eiErYpSojHciLoyhiV6sYZJs4cdRqke8CHUvs4c9vkTH2LocHHl8ADAP+WEYCib3d5pa1ozqWFD4Qir9JAaN+YoUKOwoFwDt7m/H+gRZo1QxuXDYRBakJqOvqw4MfHpE7tEHZN8JKLsJMfjVXr7gBRUg0jh0QtqJI5llw5CJhTtDCOIRDOhhKSKm129zwB1ho1Qw/Wy8SQuJCvpsblmX5C2z04oi4XvLF38QLu8iFERBy+OSMvSX4vTON+ohTmQCQnqSDTqMCy0LWrEdzjMc+n0/FKvOmPhKosKOc8nj9AV7A/fzMyfh/q0rx9ytmAwDe2tOEymZljNsgOD1+HAsuoy8PbmgYCiL8vquXfzWXxelFp53r8otkrRXANVkA8q/mIuIiGscLCLl7ctapkQtcjtkQ0VolAhkQ3WmXz3mxunxweLjuxGjTmblm+V2vWGrUACA3KEbkjJ2I0twoY2cYBnlm+VPJ5IYkN8r3TUjYyd/0FCtxC7uGhga0tChvCCqFEikfHGhBq9WFDKMe1y8tBsA5XavLcsGywPM7auUN8CQqWyzwB1hkhG1nGIqKoGN3sEl+cUrSsNkmPZIN2oi+RmmOXTR1XkDoIiHnBa4pxjqvtCQd9DI7L+S4pSXpItp8EE6uAhy7WJsncpXg2Fmib1oh8HV2ChDVudG6pSnyH/t4iVrYXXHFFdixYwcA4L///S9KS0sxZcoU/Pe//xU8OApFCp75uhYAsHbh+H4jOK48bTwAbnuD06OcmUb7g2nYigIzGGZ4B4Zsd2jqdcq+N5Z0lUbq1gGhGrtmi1PWuVKxOnZKKCSPVZQyDMPfOMgVf6zpNIDrhgTkc728/gDabLEJO/Lz2t0+2RpvYnW8wr9GXmEaPPbROnapIadX7gHRsRK1sPv4448xZ84cAMBDDz2ELVu2YOfOnfjDH/4geHAUitjUd/VhT30vVAxw+fxx/T63YEIaClITYHP7sKmyVaYIB3KgiRN2ZQXmEZ9rTtDyYuSwzBsc6ru4C2w0w07Tk3QwGTRgWXnr1Br5QuzYLtByjk6INR0IhKcz5XXsor04A6EUYqtMsbdZXWBZQKdWIT1JF9XXJuo0MCdwrnaLTOKIT8WOkBUYjHyZu3r7PD5YnJwgjtaxy07WQ61i4PWz6LDLOyA6VqIWdoFAABqNBrW1tXC5XFiwYAGmTp2K9vZ2MeKjUERl44FmAMDCienIPKmwXKVicOHMPADAJ4eV8/4+0sLV100bYdcqgbh2ZEerXITWE0V+kWYYhh8b0iBjnRpx7KIVdopIxcbYfACEpTNlcr0aY3QbgbAGBNlEadDxSomutpHAu6UyHfuWOG4I5HaqybE36jUwRVj2QdCoVcgxyX9DFg9RC7uFCxfilltuwbp16/C9730PAFBTU4O0tKHHLlAoSuWDA1x96PnleYN+fnlJFgDgi2Md8PnlXYYOcOkdslR+aoTCbloe9zy5m0BinSulhKXooTlwsY1OsLp8sMmUUiMXuZgu0MSxk8k1iid2Ikrlav6Ix20EQj+zXMeeT8XGdOzldXpJ+j0WtxEIc9pH6ciTqIXdc889h+TkZJSVleH+++8HABw+fBi33nqr0LFRKKLSbnXxTQUrpw3ctwpwTRTmBC0sTq8iRobUdDrg8Qdg1GsivthNy+V2rsqdiiXz0KLZ+QnIv9rK5fWjI7izM1rnKEmvQUoi5xjIVW8U6yw1QP7uzHhil3vsRlMcsQPhzR/SH3ufP8Afs7w4UrFyOV4tvbGLUkAZTns8RC3snnnmGWzYsAH33XcfjEauY+28885DICC/m0GhRMMXwR2qZflmZBgHn++lUauwJLia6wsF7Fwl6dSSnOSI0zuTszlhV9XukK0Y2OX180NyoxZ2afKmYonrkKBVIzUxurQOED6TTPqLRPgS+pgaEPjmidEnSuVu/gjVNsbmGvENCDKI6jabGwEW0KqZIf82DgeJ3SaTU02OWSyiFMCoXysWtbC77777Bn38gQceiDsYCkVKvjjWAQBYOiVz2OctnJgOAPg2uMZLTo62cvV1pTnJEX/NuLREaFQMnGHiSmqaep1gWSBJp0ZalIXkcu8s5TtiUxNG7EIeDDkvEuHjQhJ1kQ9WJpALtBzvG2+4axSjOCK1UnLEH48o5b4u6JbKIKpJfV20sw8JSfqw5g8Z0rG8YxdrGnyUrxWL+Df9tddeAwD4fD68/vrrYNnQnX9tbS2tsaOMKliWxVcnOAfujBGE3fwi7r29p6EHXn8AWrV8c72PtXH1dVOyIxd2WrUK49ITUd3hQHWHI+YLTTzUh9XXRSuOxvGOnRMsy8YkruKBDCqNpc6L+zr5XaNYhRFxG7sdHri8fhi00c2Si4c2qwuBYFdpRlL0rhEg70yyWGfYEeQcsBzr7MNw8lISYHF60dTrjOrvlRAQxy7ajlgCOWeNo7TGLmJh9+STTwIAPB4PnnjiCf5xhmGQlZWFZ555RvDgKKMTnz+ANpsbaYnRDxWVippOB7ocHug0KlQUDj82ZGKmESmJWvT2eXGwyYJZ41IlinIgZMjvpKzIVnIRJmYaUd3hQFWHHacHU8tSEmvjBMAJKoYBnF4/Ou2eAd3LYhPu2MWCEhy7WC/QpgQNEnVq9Hn8aLG4oppBGC/xdpUCoVSyHOKITwfG6tiFdfVKfUPDz4CL4yYwz2zA4RarLDc0sc6wI4z2GruIhd3WrVsBAPfffz9+97vfiRZQOG63Gz/96U+xefNm2Gw2zJo1C3/7299QVlYmyfenRM+Xxztx2//2ocXiQrJeg9tWleDHC4vkDmsAu+q4FVsVBeZ+Q4kHQ6ViMHd8Gj453IZdtT2yCTuPL4C6oECKdNcqgQz6lWs1V31XbI0TAKDTqJBrMqDZ4kJDT5/kwq4xjrEPgLxpncY404GkTq2qw4GWXqekwi5epxQIFc9L7djZXF7YXLHXNgJAtlkPhuF+77scnphq3WKFpGJj7SoFwnYNS3zsWZYNxR+nY0e62SPdlKMUos4pXX/99Whvbx/0Q2h8Ph+Ki4uxY8cOdHd3Y82aNbjooosE/z4UYfi2thtXP72Tv1uyuX24+51DePXbepkjG8juWk7YzRkfWQnB7PEpAIB9jb0iRTQy9d0O+AMsknRqZJui+yM/UebVXLF2xBLkbKCIdYYdQQnpwFhjB8LXQ0kbP/k7khOPuJDJsSNDkU0GTUy1jQCg16h5MSe1OGqKM40c/rVS39BYnbHvFyYY9RokG7jzJtc6vXiIWtjl5OQgNzcXOTk5/L/Jh9AkJSXhrrvuQkFBAdRqNX72s5+hpqYGXV1dA57rdrthtVr7fVCkw+ry4uYXv4MvwGLV9Bwcuvcc3Lx8IgDgrrcP8Y6NUthVxzVCzB0fmftWls+la8nWBzmoCoqy4kxj1GkZIuxkc+y6uT/uo1LYxevYkQ0IVpfksxBDzkscrhcRRxJfoNut3IgZ0gARCzm8sJP24tweHI+THUfsQEiYSt0Z22oVwrGTZ+QJOVYpidq4SoH4xhvL6Ns+EdPmCb/fj0AggEAggKamJtx4442S1Nht374d2dnZSE9PH/C5DRs2wGw28x+FhYWix0MJ8c/Pq9Fuc2NCRhL+dFkFkvQa/GplCRZPSofHH8CfPzkmd4g8PQ4PL5LmRCns6rr6ZNu5SkTZxMzo02Hka1osLjiC4y+kgmXZsBq72ASGXEOK/QGWd19irbHLNOqhVTPwB1j+gi8VpBs0xxx7Gi9Xpg0OxCmJRxyd3PwhFST2rCid9ZPhGygkFkdt1viFKRFGUr/nQ8OJ42sSIzcFck0SiIe42/tycnLw6KOP4s477xQiniGxWCy44YYbhhyrcuedd8JisfAfDQ0NosZDCdFpd+PfX1YDAO44txRJes7CVqkY3LFqKgDg7b1NqO2UJw14MruD9XUTM5OQGuHojZREHS8u5HLtqtq54xdtfR3AxU/2VdZIfB56+rywB8VkQWpsjp1cwq7D5oYvwEKtYpCVHNtFTqVi+IuElGkplmV51yueC7RcDQhEEGTFUVOZkqiFQctd5qTcGcs7djG+ZwghcSGdOPL5A+gK7kiNR5iS9xy3M1e6+Zl8N3IcbiPQP/7RhiBzG7755hv4fOK5AC6XCxdddBFWr16Na665ZtDn6PV6mEymfh8UaXj5m3q4vAGUF5hx9kkbHMoKzFg6JRMsC7y6SxlimzROzI2wvo5QVsC5dvubeoUOKSJ4xy7KjliCXOlYIsayTfqYx2UQp6+hW+qUVNB5CS4GjxXiHEmZlurp88ITTP3GKkqBsPVQEtd5hVyv2GNnGIa/QEvpHJHYM+N07IiwardJd+y7HB4EWECtYpAe45gZIBR7n8fP39hJQRvvUscr7Lj4pbwhEIqohd3UqVMxbdo0/qOoqAjnnXceNmzYIEZ88Pl8uPzyy5GXl4dHHnlElO9BiR2vP4Dnd9QBAK5ZPGHQ2q8fzufS4q/vaoRXAftWdwfr6+YURdfdOj24c/VIi03wmEaCZVl+1ElxDKnY8K+rapdH2BXG6NYBoRq7FotT0vdQqyU0qDUeSBpXyrlY5IJEVmvFSiilJt0Frr/bGJ84Iq6ZlM6LUI4d+fp2CR07XpQa47uZSdSFNyBIH388tZnhXz8aHbuo23Weeuqpfv9PSkrClClTRHPIrrvuOjidTrz++uuSDyaljMznRzvQbnMjw6jHeWWDN9CcNTUbGUYdOu1ufF3VNeKmBzHx+QPY38ilUiOtryOUBIdsHmuTXth12j2wunxgGKAoPTZhxzt2EqdiSfoxns7MTKMeBq0KLm8ATT1OFEk0doOIo3gvEiSdKeVFos0Wv+MFhFKhPX1euH3+EccDCUFvmNsY73ibTN71kk5ctAtUYydHOpCIyHhjB7j4bS472q2uqGdvxgqfwh+Fx14oor6NW7p0KZYuXYolS5Zg6tSpmD17tmiirq6uDs888wy++OILpKamwmg0wmg0Ytu2baJ8P0r0vLe/GQBwQUXukK6AVq3COdNzAAAfHWyVLLbBqOl0wO0LIEmnxoQoBRKZnl7VYZfceSTp08LUxJjTmROz5HHs4l2tBHApNTmGhrYKUKMGhHfYSSjseFEa3wUuJVELXXDbSodE4oiI0rQkXdxCkghTKR1Hobpis2QQpfwNQZxuIxByW9skPPZtvDAVqr7xFBB2HR0duPTSS5GQkIC8vDwYDAZceumlaGtrEzy48ePHg2VZOJ1O2O12/mPJkiWCfy9K9Dg9fmyu5M77moq8YZ+7agYn7DZXtsIv0yJ6AKhs4cbglOaaop5mn5+SgCSdGl4/K3kjSDwdsQTi9NV19clSzJwb5yozOTY4CFevI4NjJ5AoZRiGd82kEhj8xVmAYdR8jZ1E6UCWZUP1gXHGT1KxFqdXsq5eQR07Pg0unTDtCIrIuBtXgu+bDptb8jFF8RK1sLvyyithMplQXV0Nn8+H6upqmM1mXHXVVWLER1Ewnx5pQ5/Hj4LUBMwsTBn2uacVp8OcoEWn3YO9DT3SBDgIlc2csJuWG73LrFIxmBx07Y5KnI4lHbHFMXTEEgpSE/ut5pKKZn4OXLwzvcjuTOnEEekEjTcVGxJ20l3gWgUYF0Igzku7RMJUiFEnBKkdO5vbB5c3/qYVgFvpRjIhUrml7QIJIyDkmkl1Q+P1B/i/bfEK0/RgjWGAhaR/L4UgamG3Y8cOPPnkk8jPzwcAFBQU4PHHH8eOHTsED46ibN7bR9KweSPWP2rVKn5H6bbjnaLHNhTEsZuWF1v5QGlOsM6uVVphV9MZX+MEwK3mIuJIyrEhQs2VkmOSPRFi8Tp25Os77G7JHOt2gdxGQHph2s4Lu/hdoyyJGxBI7MkGTdy7srmu3mA6UzJRLWSNHbkhkObYE/GrUTFIS4xslNVQqFUMMo3SHnuhiFrYnXHGGQNq3L766issW7ZMqJgoowCry4utRzsAjJyGJZwhs7BjWTYuxw4I1dlJ7djVBTd3xNo4QSBjQ+q7pUklOz1+9AQHOsdTYweE9j5KNSiXZVnBmicygnf//gCLTrs0F7lWQcWRtK6XUGlk7jWkvTgLMTswHKnTmbxjJ1DzBCDhsQ8Ku8xkfdSlNoORPUrr7KLuijWbzTj//POxdOlSFBQUoLGxEV988QUuvvhi3HTTTfzznnjiCUEDpSiLz492wOMLoDgziXexRuL0yVw37N6GXlicXpgTpF2s3GFzo8vhgYoBSiKM+WTI1x1rk64BwR9g+TEZsa7kIoxPS8KO6m7Ud0njepH1Pkk6NUyG2HZmEojbKJVjZ3X54AzWNcXrepG7/1arC60Wl2AX/eEQUhxlSezYCVWjxr0GF7vV5YPL64+5+ShSQs0H8ccOSD/LLlTfOPqaJ4SYfRhOjkmPfRh9jl3Uf2knT56MO+64g/9/YWEhFi5cKGhQFOXzWdCtWzE1O+IxNPkpCSjOSEJ1pwO7artx1tTskb9IQA4F07DFmcaY/7gTx662yyHJRQLg7hY9/gC0aiZu12tcurQbHFrClonHO66I7J5s6XWCZVnRxx+RP+bmBK0g5znbbOCEndWFirhfbXi8/gC6HAIKO6mbJ/iRFfHHTurUPL4A2q1u/ndALIR27LIkdOyE2jpBCI9dit/Z0PxAYUR1tgzd7EIQtbBbtWoVFixYMODxnTt3Yv78+YIERVE2gQCLz49xwm5ZlDPp5halcsKurkdyYRdvGhYAMow6pCXp0O3w4ES7HTOCO2TFpK6LS5sWpCbGNTAUCA36bZBI2BF3Ld6OWCBUo+fw+GF1+UR3fFsESsMSyMVGigaEdpsbLAto1fHXGgHhnaXSXOA6BGyeIHVqDd1OtNtcogs7ITt6AWmPvVBbJwhEHHp8AVicXqQI8F4cDqHmBxJ4YTfKHLuoa+xWrlw56OOrVq2KOxjK6KCyxYpOuxtJOjXmFkW3lous8dpdK31nbLyNEwB3kZiSzXWmHpWogaI+WF8Xbxo2/DXqJKqxI6nYeDtiASBBp0ZacN+tFOlYfg6cAM0H4a8jxUUilMo0CFJrJOU8tUCADZsDJ1A6kzRQSBB/u0CDoQlSuqXkfZNh1MV9EwkAeo0aqYna4GtLF78QHb1A2NYVCbvZhSBiYdfe3o729nYEAgF0dHTw/29vb8c333wDnU5cJU5RDluPtAMAFk3KiHpV0dzgGq+9jb1w+6SZy0Q43BK/YweENlBI1UBRF3TXxgvgNBBh12Z1SzIXi3fs4uyIJUi5kJ4IMMEcOz6tI8EFziJcATwQulB2Ozzw+MSd6dXd54EvwIJhuKYTIZCygaJdJMdOytiFrAGVNH6Btk4QRuuQ4ohTsTk5OWAYBizLIju7fwotOzsb69evFzy4Uw2H24cvjnWgsceJLJMeZ0zORGqS8gTzZyQNWxL9arAJGUlIT9Khy+HBwSZr1Gu9YqXP40NNcKjw1DiF3SSygUKiDQ5COnapiVok6zWwuX1o7OnDpKzYmkgihaQz460NJOSlJOBQsxVNEiyk57tKhXLsJLzACTkHDghtn/D4A+iwu/ktIGJAYk9P0kOrjn3HbThyOHaCdcVKKEqFbvwAOOfySKtNove9cLWZQJgoHas1doEAd5d2zjnn4OOPPxYtoFMRf4DFf76sxl8/PQG728c/btCqcPOySbhp+SRBbHEh6O3zYE89l0ZdVpIV9dczDIPZ41OxubINu+u6JRN2R1ptYFmuDT7e3ZMTg3tKayTaPkHSpuPjHHUCcMe/MC0RlS1W1HeLL+zIlog8gcQReZ0WKVOxQnXYSbgvVqhVaASyfaKp14k2q0tUYRdyjYQTF/zmDJFTatzWCWEdOym7etsFFkZAWG2pBKJaqK0TBPIetLl9cLh9SNLH19kvFVHfDlFRJyx2tw//9+y3+MMHR2B3+1CUnojzy3NRmpMMlzeAP20+hpte3C35btKh2Ha8EwEWmJxljPmP+9ygmNslYZ2dEI0ThAnBIcH13X2inxeWZfkZdkKkYoGwOrsucRsoWJbt1xUrBLkSDikmbmOuQKKUXCSkSOu0C+zYAWF1diKLI6HdxvDXEntkiN0dGpEjVDrQlKCBPljyIvaxF3LrBEGqVKyQWycIyQYtkoJDpkdTOjZq+Tl16tQhW5YrKyvjDuhUwusP4MYXdmPb8U4YtCrcu2Y6LptbyKe839rThDvePICPD7XhjjcO4JFLy0VvFx8JMuYkljQsgdTZ7a7rkaQFHhCmcYKQYzIgUadGn8eP+u4+TIxjzddI9PZ5YXNxLm5hqkDCTqKRJ719XsHmwBH47RMSpEaEFhjkdWwuH/o8PiTqxLv75+sDzcK5XtnJ0oijNhEcuyyJHDsSe7JeI9j55bp6Dajv7kObyF29Qm6dIEiVShZy60Q42WYDqjscaLe6Rf1bLyRRv/Oeeuqpfv9vaWnB3/72N1xyySWCBXUqwLIs1r97CNuOdyJRp8ZL153Wb98qwzD4/uwCpCbqcO1zu/DGd42YMz4VVywYJ1vM4WNOlseQhiXMyDdDp1Ghy+FBbVcfJmTEn2IcCaEaJwDu3EzISMKhZiuqOxyi/rKTxomsZH3c64kI4yQaeUI6YjOMOsHSRyQVK7Zj5/b50eXg7v6FEqXk7t/h8aPV4opr7+9ICN0dCEi3HorUeWUKGLtUQ35DHbHCCSOA+/2v7+6TzrETUlRLNNyab5wQaOsEITs5KOwkGrIsBFGnYpcuXdrv4/LLL8dbb72F//73v2LEN2b5z5c1eOmbejAM8NfLZ/UTdeEsL83C/1tVAgD4/cZKyeaPDUY8Y07C0WvUKA/Of9vbIH461h9gcaSF62AVwrEDwF+UqzvEbaAgM+yESsMCIWEntmNH0rBCdcQCIceuzepCQMSdq+QCqtOo+HENQiDViiLe9RJIlALSLXQXck8sgQjcnj6vqN347QJubQhHqnSmkFsnCFLN4SPHJlPgrS5Sr6QTAkFajliWRWNjoxAvdUrwSWUbHvjgMADgt+dNxYppww/qvW5JMRZMSIPT68fv3j4oRYiD8tnR2MecnExZASfs9jda4o5rJGq7HHB6/TBoVXHvWiUQl7G6Q9wGilBHrHCuZriwY1nxxBFx7ISqUQOCd+MM4PWLu3O1LUxcCFkqIMVcLLvbxzdhCVpjl0zWQ0mTzhTSbSRdvUAoZScGojl2EqzmEnrrBCE7bAaiqDdjAm+dIGRL5DgKSdSp2PB9sADQ19eHTz/9FFdccYVgQY1lDjVb8PNX9oBlgSsWjMP/nT5hxK9hGAYbvl+Gcx77Ap8f68BXJzqxeFKGBNH2Z6sA9XWEsqBjd7BJfGFHGidKc0yCdRdPzJSmM7ZewBl2BG69F+DycsXG8XYJD0WzwI0TAKBRq5BjMqDZ4kJTr1PQ7r1w+MYJk7Ddn1JMsiei1KjXwChgF1+WxM6LkKI0vKu33eZGgUD1qicj5H7ecIiD1iGiuCBbJ1QMBNk6Qcgw6sEwgC/AorvPI9hswpMReusEQSqnWkiitl2ys7P7fcyYMQNPP/00Hn/8cTHiG1O0WV34v2d2oc/jx5LJGbh3zfSI3YDiTCN+tGA8AODBD4+IeuczGPGOOTmZ8gIi7Kzwi/yzCNk4QSjOCKZiO0VOxYog7HQaFe8cNfSIl44ldXB5AmydCId0xraI2EDBiwsB3UZAmt2TZEyL0Be4bAm2T/gDISdWyFQsEN7VK96xD6/zEpJsCRw74iJnJusFHa+lVat4oSimOGoXwekFpKstFZKob+foIOLY6PP4cO2zu9BqdWFSlhF/v2J21MM3f3bmJLy+qwEHmiz44GALzi/PEynagQgx5iScCRlGvrO0qsOOKdnizVMTsnGCQEaedNo9sDi9ou0tFXI4cTiFqYlosbjQ2OPE7HHizBIk2yGEdOyAUGpXzAaKVn6GnbAX6BwJ6nXIxV+o+XuErJO2T8RbjjEYXXZ3yDUS2NmRYjUXv8pN8Dov8VP44WvohCbbpEen3Y12qxvTRbpstQk8GJrAp2LHavNEV1cXfve732Hx4sUoKSnB4sWLcdddd6Grq0us+MYEHl8AN7/4HQ40WZCWpMN/186LSQhkGPW4/oyJAIA/bTomutMVjhBjTsJRqxjMyONcuwMi19nxM+wEdOyMeg1/oRCrgcLl9fMpOyGGE4dTkMaJLTGbcZpFaJ4AwN9YNIu4faJVhHQgIM2KIrKyTGhhl5qohVbNOTkdItU3tonkGgHSiKMOkRw7vr5RghsCoZ1S7jXFT2fy7x2hnerkUOxi1iQLScTCrqamBuXl5fjwww9xzjnn4Je//CXOOeccfPDBB6ioqEBtba2IYY5evP4Abnn5O2w92gGDVoV//XhOXHOIrl0yASmJWtR0OvDRwVYBIx2a8DEnQqRhCTOCdXYHRKyz67C50W5zg2GA0hxhXcHiTHEbKIjoStZrBO3MBMDXGDWKlIr1B1hevAi9pUBKx05oUSqp8yKwsGMYJrSaS6QLtBj1dQRJxJFI8ZNzSbZPiIEYWycIoc5SMUW18CN+gFAK3+UNwOryjfBsZRCxsLvttttw6aWXYvfu3bj77rtxww034O6778bu3btx8cUX41e/+pUoAXZ0dGD16tVITExESUkJPv30U1G+jxg43D7c+MJ3+PhQG3QaFf7147mYMz72MSEAkKTXYO3CIgDAk5+fkOQOov+YE+HSdqTOTkxhR9KwE9KTBB8Iy488EanOjmyGGJeeKPgQ58JUTrA09ogjjtptLvgDLDQqRvDmjDy+xk5EYSfCgF+gv3MhVp0sERdCp5GBsO5MkS7QoV2lYgg7MmBZnNjtbh/6PMGtEwK/500GDQxacbdPtIuwJ5ZAjr1Y6czwrRNCO44GrZrPsIndOCQUEQu7LVu2DFlfd/fdd2PLli2CBRXOzTffjLy8PHR2duKhhx7CpZdeip4e6VZRxcrXJzpx/t++xCeH26BTq/Dkj2ZjyWRh0phrFxUhQavGwSYrvjzRKchrDseWI6ExJ3qNcHsKyciTQ80W+ERazUUaJ6YKmIYlFIs88kSMxglCochDikmaNNtkEDylRoRdk0ipWJZlw/aVCiswMpNDHYJkALLQSOF6dYh0gRZj6wQhS+Tmj/awbmShd4qGu6ViiSOx3vPhrymWMCINNxoVg1QBt04QpHAchSRiYefz+aDVDp4O0ul08PuFt4ftdjveeecd3HfffUhMTMRFF12EGTNm4L333hP8e8UCy7I42mrDgUYLdtf14MMDLfjz5mO48PGvcMW/v0FNpwPZJj1eueE0nDV1+Fl10ZCWpMMP5hUCAJ7YWiXY6w7Fp4fbAABnlQqXhgU4F82o18DlDeCESHVqQu6IPZlikUee1AeHEws5w45QkErEkVOUWk2xOmK51+Ri77S7RRk22+3wwBO80RDaOdKqVfy4B7FSgm2iptTEnenVLmIBv/hpZHHq6whiD8ptE9GxE1sYhR97IbdOEKQaEC0UEd9WLFy4EE888QRuv/32AZ974okncNpppwkaGAAcP34cZrMZubm5/GMVFRU4dOjQgOe63W643aE3jdVqFTyek2EYBuf+5QsMdl3UqhlcMX8cfnl2iSgdk9cumYDnd9Rhe3UXDjRaePdLaNqtLuwLNjecKbCwU6kYTM8z4ZuabhxotKA0R3jxdViEUSeECcGRJ3VdfQgEWMH/oIjp2OWaE6BRMfD6WbTbXILXkonVEQtwRfx6jQpuXwBtFrfguzNJGjbDqBOl8zPHZECHzY1Wi4uvMxWKQIANpWIFHtUChDkvojl24hXwE8euy+GB1x+IeirBSIg1nJiQJXJ9phhbJwhiz28Ua+sEQWy3VGgiFnYPPvggli1bhp07d+LCCy9ETk4OWltb8c477+CTTz7BZ599JnhwdrsdJlP/C7LJZEJvb++A527YsAH33nuv4DGMRK45AQGWhU6jQkqCFlOyk1FWYMa5M3JFG/wKcMXv55fn4p29zfjXtmr89YezRPk+JA1bUWAWxQEoyzdzwq7JgkvnFgr62i4vN0oFEMexK0hNgFrFwOn1o00EcURGnYwXeNQJwHUl56UkoL67Dw3dTsFjF6sjFuBuqPJSElDT6UBTr1N4YWcRTxgB3EXuQJNFlItEd58HvuCdphjOS2ayNM6LGOnAtEQdNCoGvgCLDptb8JsOsdaJEcRs/vAHWH7rhKii2u6Gzx+ARnBRLc7WCcJom2UXsbCbNWsWvvnmG9x333247bbb0NXVhfT0dJx55pnYsWMHSktLBQ/OaDQOcN6sViuMxoHLs++880788pe/7Pe8wkJhhcJgfHXHmaJ/j6G4bkkx3tnbjPcPtOD2VSWiTFP/5DAn7IRMJYdTJmIDxdFWGwIskJ6kE+Uip1WrMC4tETWdDtR0OAQVMf4Ayw8PFlq4EApSibDrw/wJ8TX1nAxJxeaLkIoFuBRvTadDlAYKvnFCpLt/Pi0lwpBiIkozjDrBHSkg3LETuYBfBHGhCjbytFhcaBdD2Ik4LoR7XfGOvZjzAwFuk4VaxXAC0uERXLi3i1hXGv66oyUVG9VvfmlpKV566SW0trbC6/WitbUVL730kiiiDgAmT54Mi8WC1tbQWI99+/Zh+vTpA56r1+thMpn6fYx1ZuSbsXhSOvwBFv/9slbw13d5/fjyBDfm5KypwqZhCWS1WGWzVfAGivCNE0J3lRL4nbEC19m1WJzw+llo1YworhfADSkGxOmMbRFpXAiBvK4YI0+I4BLrIpEjYlqqXaQhrQQxXaP+nY0ixS9iEb+YqUwgfPOHeLFnGIWfHwhwGYJMEWtL20d5faPQCH9LJyBGoxFr1qzB+vXr4XQ68e677+LgwYO44IIL5A5NMVy3pBgA8Mq39bD0eQV97a+rOuHyBpBnNoiSygSAovQkJOs1cPsCON4ubAOFmI0TBCLsagUWdmRHbGFqoih/aAGgkAwpFmGWXah5QhxhR163WQzXS2zHjh9SLLzzQoYTi+1ckO0TQhLe2ZgmQmcjECZMRXC9RK+x4wfljr7YAXEbKMTaOkHIErlpSGgULewArjGjoaEB6enp+PWvf43XXnsNqanirEAajSydkomS7GT0efx4aWe9oK/9wQHOKT1rarZojpdKxWB6Pie89jf2CvraYjZOEIoyxOmMJfV1hSLU1xFI6l7okScur58f5SFGVywA5AXFUYsIjh0RXGLV2JEBy2KkYsUcdQKIu31C7M5G8toA0CGqayRyCl9Et1Ho4b7hZImYzgx1goudBh8d2ycUL+wyMzPxwQcfoK+vD8eOHcOKFSvkDklRMAyD687gXLunv6oR7C7a7fPj4+BmiwsqxN1JW16QAkDYOrtAgOWF3VQRHbtikYSdmB2xBOLYCZ2KJWnYRJ1atB26uSKuFWsN1u2JJeyIEyhGfWCbyG6jmNsnxNqYEY6Y41r4An6Ru2JtLh+cHmHH/Ejp2ImRBu8QcbA1AD6N7PWz6BE4MyYGihd2lJFZU5GHbJMe7TY33t3XLMhrfna0Aza3D7lmA+aOF9ch5TdQCLgztq67Dw6PHzqNihdfYkBSsfXdfYLWCBLHbpyIjh2psePq+YSLnbhouWaDaE4vacpoFqN5wiKuOCKpWKsIF+hWEceFEMRKqbVLEDtx7ISuU3O4fbC7uXVTYgnTZH3Y9gmB42+3ies2AuE7V4V934i5dYKg06iQnsSVB4yGOjtBhN0111yD//73v6IMKaaMjE6jwtWLJgAA/vVFtSBW8XtBgXh+ea5oaRFCeX4KAOBwi00wx/FQMycSp+aaBG+tDyfHZIBBq4IvwArqfNV1cw7g+HTxRGmGUQ+dRoUAC7QI6Hw1iVxfB4SaJ2wuH2wu4e6gnR4/vw8yWyTHLlmvQaKO2+AidAMFn1ITKXZAvFl2YjcfAOI5dkQYJenUMAq8dYLAMIxonbH8YGhRbwjEmQUn9tYJgpipZKER5IrHsixefvllVFRUCPFylBi4YsE4JOnUONpmw+fHOuJ6LYfbh0+C2ybETsMCXErQnKCFxx/A0VabIK95sIlLw84Qsb4O4GoEi9KFTceyLIu6Ts6xKxIxFatSMfwGikYBGyhIKjZPpI5YgNuZTNK8LQLWqhGhlahTI1nECzTfGStwnR1fYyeJOBIpdhHFRSbv2AldHyh+GhkId73EcezErbETx+mVojYTGF2z7AQRdk8//TQ2b96Mffv2CfFylBgwJ2hx+fxxAIB/bauO67U+OdwGlzeAovREfhyJmDAMw6dj9zf1CvKaxLGbnid+/EKPPOl2eGBz+8Aw4jZPAKF0rJCdsfwMu1TxhB0QakIQcuRJS1h9nVhpZPL6ANBqFS52t8+P7mDTilj1gYB4Q4pJp6oUNXZdDregpROhVKZ4ohQAMkUTR9I5dkLvGR7toloMohZ23d3d6OvjLgJ+vx8vvvgiXnnlFbAsC7VauAXxlOj5yeIiqFUMvjrRhd11PTG/zqvfNgAA1szMF/XiFg4RkELU2bEsi4PBRowZ+eLPMxR65EltsL4u12SAQSvu7xRx7Bq6hRMYUqRiw19fyAaKVn7+nrgXiZBjJ9wFmjgJOrUKqYniNK0A4jl2Yg+ZBbhh5WoVA5YFX5clBO0Siwsh0+D+AMsfCynS4J12j6A1vVKJar62dBSsFYta2J199tk4duwYAOCOO+7AQw89hD/+8Y9Yt26d4MFRoqMgNRGXzC4AADz00ZGYau2qO+z4uqoLKgb4wTzxN3cQSGfsfgGEXbPFhZ4+LzQqBlOyk+N+vZGYIHBnbF2X+PV1BOIICpmKDQk7cS9y5PWF7C5t4RsnxBWlpAZOSHEU7rqIeUMmVkpKilSsSqRBuWKvtCKIcey7HR74AywYhttYIhb9RuUImAqX4oYAGF2z7KIWdsePH+dr6Z577jl8+OGH+PTTT/Hqq68KHhwlen6xYjJ0GhV21nTHVGv3/I46AMDykizki+y4hENSscfabHB542vCIW7d5Oxk0R0vACjOFFbYEceuKEPcNCwQnooVRhyxLMunRgtSxI0/tH1iNDt2Qgo7d7/XFgsxiuDdPj8/RkLMOi8glG4Uss5OilRm+OuLcUOQnqQXtdEsfFSOoKJa5K0TBL5xZSymYnU6Hfr6+vDtt98iLy8P+fn5SE5OhsMh7BwvSmzkpSTgx6eNBwA8/NFRBAKRu3Y9Dg9e2cmlYa9eXCRGeEOSazYgw6iDL8Dyq8Bi5VCzNI0TBNI80dTrjFuUAtI6dqFUrDCOXbfDA5c3AIYBss3i/qHN51OxIjh2Igs7cpEQsiu2VSLnggiv3j6vIO93IOTg6NQqpIiYRgYgsriQKhUrnCjtEHn+XjhijMrh3/ei/86KtzlDaKIWdj/84Q+xfPlyXHXVVbj66qsBAHv27EFRUZHAoVFi5ablk2DUa1DZYsUL39RF/HVPf10Lp9eP6XkmnD4pQ8QIB8IwjGB1dof4+jrxGycAIC1JB5OB66Cs64pfIPGOnYgdsQSSim23uQW5SBP3LNOoh14jrltKXDUhU7GkmUFsx468vpCOnVQpKVOCBnoNd+kQKqUWvjlA7LpeURw7CQb8cq8vYgpfZMcLEGdUjtjbVgh884fdDX8UhokcRC3s/vKXv+D3v/89nnjiCfziF78AwF2U//KXvwgeHCU20pJ0uH1VCQDgwQ+PROTGtNtc+Hewm/bm5ZMka5oIp0ygOruDzdI1TgDc+39CphEAUNMZ/75bKR271EQtkoIz1ZoEcL6aern3mtiNE+Hfo9ki3JqfVokcO/L6Ql4kpBhODJw8T02YC7RUohQIc70EFEcdEjl2RDgKuX0itDFDgmMvojAVuwQhPUkHFcM1m3Q5lO3aRS3sLrroIpxzzjk488wz+cfmzJmDv/3tb4IGRomPKxeMx/yiNPR5/LjzzQMjXvge/PAI+jx+zCxMwbkzciSKsj/lxLGLY+RJh82NNqsbDCPuKrGTKRZo5Elvnwe9wVojMdeJERiGEXRnbFPQsRN71AnAXSQYBvD4Avxu2nhw+/x8d2CuiDP4AG44tFrFBDsShblISCVKAeHTUlK6RkI7dn0eH2zBrRNii+pkvQYJwbphwUS1TbpjL/SonH61mSIfe41ahQzj6JhlF7Ww27p166CPf/7553EHQxEOlYrBQ5eUQ69R4csTnfjblhNDPndzZRve/K4JDAPcdf40Wdw6INRAcaLdDkfwD2W07G3oBQBMyjQiUSfOgNnBIHV28Y48IancrGS9ZPELuTOWn2EngWOn06j4DkchNmfw40I04o4LAQB1WHemUOlYKZ0XoVOCbZK6RsI2IJD3TYJWvK0TBM4tFVpUc6+TOQodu/DfWbH2Uocj1qgfoYn4XXjTTTcBANxuN/9vQl1dHUpKSoSNjBI3EzKScO+a6bjjzQN4dPMxmBO0WLuoqN9zDjZZsO7VvQCAa0+fgDki74UdjiyTATkmA1qtLlS2WDGvKC3q1yDz+6T+OSYI1BlbG0zDFkmQhiUUCDikuCkoDvMkcI0ALh3bbnOjqdeJsoL4aipbwjpipbi5yTZz7/VWqwvx7uxhWZYXiJIIO4GdlzaLNDVqQChdKpRjJ9WYGUJWsgG1XX3CiSOJRrUAwo9rCU/DSvI7a9LjQJPyGygiFnbZ2dmD/pthGJSXl+OSSy4RNjKKIFw+fxxqu/rw1OdVWP/uIexr7MVNyyYiw6jH/BzJxQAALvdJREFUBwda8cD7lXB4/DitOA23nVMqd7goKzCjtdKFvfW9MQm77+o5YTd7nLTCrligWXbEsZMiDUvg14oJMKS42SLNcGJCXooBexuEaaDgt05IIIwAbgD1Pgjj2NncPjiDzS/SdDcKW6dG6gPFbloBQuKx085tn4h3xIdU3cgEoVPJUg1XBoQflSNVXSlhtOyLjVjYrV+/HgCwbNkyLF26VLSAKMLz/1aVIEmnxqOfHMOb3zXhze+a+n1+YXE6nrpqDnQa8WYYRcqc8anYXNmGb2u7cd0ZxVF9rdcfwP7GXgDA7PEpwgc3DEVBYddp98Dq8sJkiC0twDt2GdI5dkIOKSaOnRQ1dkCoFk6IfbFSzbAjhNaKxR87cbySDRpJUvhCT+GX0m1MT9JDxQABFuhyeOL+nu0SzQ8kCCmqAwFW2nEnJ43KiXfOaKibWqJjL8LmDzGI+i9AW1sbXnvttUE/d9lll8UdEEV4GIbBLWdNxqJJ6fjblhP48ngnfAEW49ISsXZREX68cDy0Ig6mjAbi0u2q6wHLslHZ64dbrHB5AzAnaFGcYRQrxEEx6jXIStaj3eZGbaeD36QRLXI4dkINKXZ5/XwTg1TDrYkzKERHb2iGnTSx8+6FAKJUquHEhNDezPhdI5ZleXErRfxqFYPMZD3arG60WV1xCzs+doluCEJp8PjfNz19Hvj4rRPiCzsyKsftC6DD5o57F3a7hO8bYPTMsota2D355JP9/t/a2oqqqiosXryYCjuFM2d8Gp75yXz4AyxcXj+SRC70jYWyfDMMWhW6HR5UddgxKSvylWDfBevrZo1LgUolfQNIUUYS2m1u1MQh7Ko7uHEpktbYBZsnuh0eONy+mN8XpHEiUaeWpJAZCNXytQgg7KR37ILNEwJcoKVPBwqXkrK5fegLju6QThwZ0GZ1C1Lr1SphRy8QPgsu/tiJQElL1Elyc09G5dR3czWC8Qo7qVOxY655gjBYV+xzzz2HPXv2CBIQRXzUKkaRog7guptmFqZgR3U3vqnpjkrY7a7vBQDMkbi+jlCckYSdNd2o7oitzq7L7uZb98maMikwGbQwJ2hhcXrR2ONESU5s+3WbwjpipeqszuW3T8T/h7ZFYueF3z4hiGMnrbDLDpun1ufxxZX+JY6lSaI0MhASYUKIo3apHTsBu3r5UScSvW8A7r3DCTshhKk89Y1Kd+wEkehXXnklnnnmGSFeikLB/AnpAIBva7qj+jri2M2WqbN3QpwNFCfaObcuPyVB0lEtQGjkSTyz7IhjJ1XjBPe9QjUvPn8grtdqtUizdYJA6gNbrfEPWOa7A0Ve40Yw6jVIDA62jtf1kmqNWzhCOo5SppEBYbt6pdqzGo6Qx54ILOluaLjv0+Vwwxvn3xsxiVrYtbe39/uora3Fhg0bkJMjz1BbythjfrDO7tvanoi/ps3qQlOvEyoGqChMESmy4SHCrqojtu0TVUGnb1KWtPWBAFCQEn8DBT/qREJhl5Gkh1bNIMCGZqHFgtcf4C+UUgkMIgT6PH5+wG2sSNl8AJy8fSI+gSF1GhkQzrFjWVYGcdHfLY0H4thJlcoEwuoz42xA4I69tO+dtEQdNCoGLAvBBouLQdTCLicnB7m5ucjJyUFOTg5mzJiBjz76CM8//7wY8VFOQWaNS4FaxaCp1xmx0NhR3QUAKM0xiT4kdCimZHMpzBPt9pjWRBHHTg5hxzt2cTRQkK8tkKgjFuAGcRPnqzmOOrsOmxssC2hUDDKSpLnIJejU/I7heBsopBzwS8gUqIi/TeLaRkC4ztKePi88Ps65kWIGHyCsW0qErdir0MIRapZdeG2mVMJUpWL4mwIh9zwLTdTCLhAIwO/3IxAIIBAIwG63Y9u2bZg7d66ggR09ehTnn38+MjIykJmZiSuvvBI9PZE7OJTRS5JegxnB9WLf1kaWjv3qRCcA4PTJGaLFNRKFaYkwaLmOr/oYUponOuQUdvGvFQvtuJWuoxcICYJ4hB2ZYZdtMkjaeCPUyJM2iR278O8Vr7CTOpUJCOfYkZ89LUkHvSa+0R2RwjCM4PFL6tgJ9L4holyqET+E0TDLLqYaO5/Ph23btuG1117Dtm3b4PV6hY4LFosFl112GaqqqlBbWwuPx4Nf//rXgn8fijI5bQKXjv3qRNeIz2VZFl8e54Td4knyCTu1isHkYLPHsTZb1F9fJaNjxw8pjsOxqw8OOB6fJl3jBxDanBFP7I0yuI1A6CIXzxw+Lo3Mfb1UGz+A0KaCuFOxRJTK4NgJJUqlFNSAcOKCnLtMCR07oZo/pE6BE/IFbNgSi6hl7jfffIOLL74YCQkJKCwsRENDA5xOJ/73v//htNNOEyyw+fPnY/78+fz/r7vuOvzyl78c8vlutxtud+gPjNVqFSwWivQsnZKJf3xRjc+OdiAQYId1Uao7HWi2uKBTq/j6PLmYkp2MA00WHGu14ZzpkdedOtw+vqt0UqYMjl2ca8Ucbh9fczIuzhEG0SJE40dI2MnjNsaTim21uBBgAV3YknIpGNWOXdj2CX+AhTpGl5actxwJHS9ASNeLDPiV430jzA2BlO8bIPQ7K8S2G7GI2rG79tprce+99+L48ePYsmULjh8/jt///ve49tprxYiP5+uvv8b06dOH/PyGDRtgNpv5j8LCQlHjoYjL3KI0JOnU6LS7cah5eJG+5XA7AGDehFQk6KRJhwzFlGxOlB2N0rEjI1LSk3RITdIJHtdIEEFjc/nQ2+eJ+utJ6tmcoIU5UZoZdgQiSmNJfxPkcuzIRSmeVCxJQeemSJtGFs55kb4rNj1JF9o+EUcRvGyOXdAt7YjDLe2/dUK6+Ikwsrt9sLpiz/a18aNapBXVeaPAsYta2DU2NmLt2rX9HrvqqqvQ1NQ0xFfEz969e/HXv/4Vd91115DPufPOO2GxWPiPhoYG0eKhiI9Oo+LTqp8eaRv2uZsqWwEAZ0+TvzN7Sk5sqdgTHdzzJ8qQhgW4Qn5SZxPLuBYiqqSurwOAcenxuY1AqBtYcmFHRp7E4djx+3kl2phBCDUgxC4uPL4AOu3cjYSUzotGrUK6Mf5UslzpQPK7Gs8NQafDDY8/AIaRdtxJok6DlODNX0sc4kiOulIgNGKpeSw5dj/96U/x0EMPwefj2qz9fj8efvhh3HjjjVG9ztlnnw2DwTDox/33388/r6amBhdccAH+85//DOvY6fV6mEymfh+U0c3ZwVTmxv0tQ8756rS7sSs4v27ltGzJYhuKkmBnbHWHg++WiwQ5O2IJZA1bTMIuuAot3knysUAcu+be2GfZNcmUiiUXiXhWokm9n5eQLYDbSNw6nVqFNImdal4cxSGq5XAbgbAdyXEII/K1Wcl6yVdK8p3scYgjOVL4AATpwhebqGvs3n77bZw4cQIPPfQQsrKy0N7eDqfTicmTJ+Ptt9/mn1dZWTns62zatGnE79Xa2oqVK1firrvuwkUXXRRtqJRRztnTs6F7U4UT7XYcabVhau5Asb5xXzNYlltFJuX8tKHINRuQrNfA5vahptMR8RaHqvbgDDsZ6usIEzKTsL26K6bNGXXdwY5YGYRdVrIeOo0KHl8ALZbo1xQFAiwae+VJxYY3fkS7G5nQFLxAS/3+J8Koz+OH1eWFyRB9Cp4IoyyTXrJtJYQcUwIONln5jSOxIFedlxCuUQs/kFv6v5v5KQYcbrHGJY6aZXrfk+/XbuOGFCtlz3o4UQu7p556Sow4BmCxWHDOOefgxz/+Ma6//npJvidFWZgMWiwrycSmyja8tadpUGH32q5GAMDFs/OlDm9QGIbBlJxk7K7rwdE2W8TCTs5RJ4TiODZn8B2xMqRiVSoGBSkJqO50oKG7L2ph12l3w+MLQK1iJJ2lBoQ67OxuH6xOX0z1ic38KjdpY0/UaZCaqEVPnxfNvU6YcqKPnbguUh93ICSO4tkz3C5TnVduWAo/1uaPkDCS/tgL4TiGNt1IG396kg46tQoefwBtVpfkLn8kRC3sli5dKkYcA3j77bexf/9+VFVV4eGHH+Yft9tjm+pPGZ1cOrcQmyrb8MrOevzirMn9dtzub+xFZYsVOrUKF85UhrADuAaK3XU9ONZqAypGfr7L6+fF1ORsGYVdZuybM+qDM+zkSMWS71vd6Yipzo4MVs4xGaCR+O47QadGhlGHTrsHDT19MCeao36NkLCT/tjnpSTwwq40J/ryF6k3ZoTDi4sYU7Fy1QcCnEutVjHwBVh02t0xHT85HbtQA0Jsotrl9aPLwR37fIkdO5WKQW6KAXVdfWjuHSPCzmKx4O9//zv27ds3QGR98MEHggW2du3aAU0alFOPs0qzUJSeiNquPrzybQP+7/QJ/Of++ulxAMDq8lxZOkmHgmygiLSB4libDf4Ai7QkneQXiHAmBGvsarscI46YCcfnD/BdpePTpZ1hRwiNPIn+QiFX4wQhPyUBnXYPGnuc/GDuSGFZlq/Pk8N5yUtJwKFmK58Ojha5UplA/PWNxK2Toz5Qo1YhO1mPZosLzb3OmIRdswwbPwjxppKJIEzUqWFOkLYLH+COWV1Xn2JHnkQt7C6//HJ4vV5cfPHFSExUnlKljC1UKgbXnVGM3751EI99cgwXlOciy2TA1yc68cnhdqgY4JYzJ8kdZj9IA0VlS2SzFCuD41ym5ZokrzMKpyA1ARoVA5c3gFarK+LalRaLC74AC51aJZswjWcOn1wz7AgFqYnY12iJSWBYnF5+rZIcNab5cTovLTI1HwCh4xXrxVnO+kAAyE1JCAo7F2aNi/7riaiW430T78iQ8Po6OY59njm++MUmamH31VdfobOzEzqdchwSytjm8nnj8MrOBhxosuD/nt2FH84fhz9tOsp9bv44FMvYcDAY04OuS2OPEz0Oz4huIhGA0/Lk7eTWqlUYl56I6g4HqjscEf/BJ6NOCtISYh70Gi8kBRzLLDu5ZtgRQls/oo+diMH0JB0MWulnOPLOS4zCTk5RTZyqVosrKoea0CJjGhmIf1AuqS2Uw7GL99iH6uvk+Z2NN5UsNlEXlMyfPx9VVVVixEKhDIpaxeCRSyuQmqjFgSYLfvPWAXQ5PJieZ8Jdq6fJHd4AzAlaTAg2Ihxosoz4/ENhjp3chBooIq+zI2JK6o0T4Yzjd92OwlRs8Ps2xbASjTgGUo86IcR7gWuS8dhnmwxQMYDXz6LTEf0suyaZbwjiWW3lD7BoC87vk0MckWPv8QdiO/YyNQwRclPiE9ViE7VjV1FRgbPPPhs/+MEPkJWV1e9zt99+u2CBUSjhlOQk440bF+Hhj46iqsOOxZMycOuKybJvmhiKsnwzajodONBkwRlTMod8nj/A4rBCHDsAnPt5uB1VUYw8qQvOsJNj1AmBpGI77W44Pf6o3hdyzbAjxLOnlwgjqYcTE+JJqbm8fr75QA5xpFWrkJVsQKuVS2dmRbkvNSQu5Dn2xPWKRVS327huWo2KkXQNHSH82LfEcOx5x06u933w+8ZaWyo2UQu77u5urFixAl1dXejqCi1ol7M2iHJqUJxpxFNXzZE7jIgoLzDj3X3N2N/YO+zzjrba0Ofxw6jXYKICUsoTYhh5Qtw9uRonAMCcqEWyQQOby4eGnj6+gWUk5JxhRyDdrLHU2DXLWCcFhERNq5UbDh1NVzERska9RpYCeIBzXjhx4cTMwpSovlauwdCE3DhqBIkQzzYZZCufyEshotqJiiiPPb9tReZU7Jhx7J5++mkx4qBQxhRlwTq7vQ29ww6e3dPAbc2oKDTL9gc2HCLsqqNIxSphawbAuXaVLVY0dEcu7OScYUcgwsDi9MLm8iI5ikG/vGskk7jINOqhVTPw+lm029xRXWjDU+ByGQN5KQnYU9/LC+RokNux41OxMcQeGnUiXxd+bkoCEOOxl2s4MYGkYnv7vOjz+JCoi1pKiUrE0ezcuXPE58yfPz+uYCiUsUJFYQq0agZtVjfqu/uGdLO+q+sFAMwelyphdENDZtk19jjh9vmh1wyf0vT6A3wqVm5hNy6NE3bRNFDIOcOOYNRzuzN7+7xo6nWiNIpBv7xrJFOtkUrFIMdsQEO3E829ziiFnbxOKQDkxZjOZFlW9hQ+EWUdNndEv6vhkMHAuTIJIyB07KMdEB0+4kcuUW0yaPkNQ829Ltn/9p1MxMLuBz/4wbCfZxgG1dXVcQdEoYwFDFo1KgpSsKuuB9/UdA8p7IhjN2tcioTRDU2mUd9vJdpIQ2fruhzwBVgk6dSy3v0DQFEMaeT6bjJYWd51dAWpCejt86KxO7pBv3J3BwJcvVFDtxNNvU7MjeLr5L44A+FDiqMTF1anDzY3ty9drvjTknTQa1Rw+wJos7gxLoqtL3wqU8bfWb4+M8pj3+XwwOMLgGHkGZNDyE0xwNZmR3Ovc/QKu5qaGjHjoFDGHPMnpGFXXQ921nTjsrmFAz7fbnWhusMBhgFmFSrDseu3Eq3VNqLIIGnYiVlG2etsidsYXX0g5+6RFLRc5Kdwe0ujqbNzef1oD3Y2yimOYu3OlHt+IBB780djL/e+SU/SydbAxTBc+UBtVx+aLc6ohB3v2MkpjGKcBUduZsiOaLnIT0nAsTZ7zAOuxUR522splDHCvAlpAIDtVV1gWXbA57cd7wQAzMgzK2pzRmlwv+3hlpE3Z/DCTgGNH2RUS3UUHb1EBMot7Ii4iWaWXUMw5Zys10i++SAcUt8XbTpT7jEzQOxz+ORunCDEOm6Gr7FTxA1BdLErwaUGQiOWYpmdKTZU2FEoIrFgQhp0GhWaep041jawGeHLE5ywWzI5Q+rQhqU0OE/vSOvImzOOK6RxAgiJs2aLEy6vP6KvIR29RTJ29AKhi1w0I09IbeO49ERZ3VJygY3WuWhUgDgirlFHsIkmUppk7qQmxLrvlu+mlmlcCBAS1R12rkYwUppkbpwgxDMUXWyosKNQRCJRp8HpkzjRtrmytd/n/AEW2453AACWTB56zp0cTA06dkdbR3bsyAy+qbmRdaGKSVqSDuYELViW23c7EizLojaYiiVpXLmI5SJRF3zu+ChScGIQi2vk8vrREUwjy5mKTU/SQadRgWVDK8IigRelMouLWBxHjy+ATjt37HNlaroBuN/XRJ0aLBvdcO5mBdRmAuFD0amwo1BOKVZMzQYAbKps6/f4juoudNo9MBk0mD0+RYbIhmZKUNi1WFzo7fMM+TyX188PMp6WG93yejFgGCY0riWCdGyH3Q272wcVExJWcjEhg/v+tZ2OQdP2g1EfFK/j0uR2GzlxEI1jF77EPTVRnhl2ANfVG1rNFbmwa1KMsIveLW3qdYJlgQStGukypvAZhokpnRkaTixvsxapaaSOHYVyirFiWhY0Kgb7Gy041BxaL/bGd40AgAsq8qIaUyAFJoOW7xI92DR0OvZYmw3+AIu0JB2yTdJPrx8M4rxVtY88h68mKP7yUxNkPweFaYlQMYDD40eHPbIVS0px7Eg60ObyweryRvQ14aNO5G66CW0RiPwCHZofKO+xj8U1IkKkME3+Yx+LsON3U8t87Mm2m94+LyzOyN73UkGFHYUiIlnJBqyakQMAePbrWgDcOp8PD3Cp2e/PLpArtGGpKEgBAOwbZnNGZdiOW7kvEISS4GDio20RNH50cOKvOEP++kC9Rs3XmpH08EjUdylD2CXpNcgwcs4PiWkklJLKBEJ1ctHsGVZKjR0v7HqcCAQic3qJCCyUWRgBYcIuwvcNy7KKfN8rLR1LhR2FIjI/WVwEAHjjuybsruvGgx8egdPrR3mBGbMVMr/uZMh6pb0NvUM+pzJYXzddATtuCSSNfCwCYXcsWENYkiN/fSAQauCoiWDrh88fQEMPucDJm4oFQhfouggv0MQdk9t1AUICIVLXqM/jQ7eDK1GQuys218ytBPP4AmizRZZK5oWdzOUHQPTpzJ4+Lz8/UAnxk/cvFXYUyinGnPFpWFORB3+AxcVPbseb3zUBAO5ZM10xTtfJhAu7oWq+9tT3AgBm5MtfX0cgjl11h2PELkfSqRzp+jGxKeYHLI98kWjoccLrZ2HQqpBrkrfWCAiJ0kiaVgBlbJ0gRNu4Qurrkg0amKJY/yYGGrWKdz0jdb3IDcE4BQijaI99XfD9lWs2wKCVv4QltIIx8hFLUkCFHYUiAQ98bwbmjOeGEOs0Ktx34XTFrBEbjOl53O7aDpt70KJyu9vH1wzOLVLOz5FrNiDZoIEvwI6475a4eiUKEXZkc0ZtBBcJMj+wOMMIlQJ2DBPXMFJxQX5GJYiLaGNvVEhXJiHaOrV6JTl2YbFH0jTEj/hRQOwAomrWkhJlba6lUMYoyQYt/vfThTjWZkeSXq2IFNRwJOjUmJ5nwv5GC3ZUdw2oBdxb34sAy13ccmWchXUyDMOgJDsZu0bYnNFpd6PL4QHDKGMGHxC6SFR1jJyKJc9RSuwknRnpmBnicBQrYLA1EQmtVhdcXv+ITlCjQor3CYVRNlCQWkIliKOC1ASoGKDPw42/yRrBfa5TSH0dIbTtZuTfWSmhjh2FIhEMw6AkJ1kxF4SRWBycwfdlcENGON/WdgMA5inIrSOQmjlSAzgYpL5ufFqibCuhToakhGs6R04jK2njBxC60EZSY9fl8MDm8oFhlHGBTk3kFroDkW3+CIlS+WsbgbD6xgiEnSWsg1MJaXC9JnSTWxWB61UX3O2shLpSINR4RVOxMfDggw+CYRjs2LFD7lAolFOGJUTYnegckCb5uooTe3OL0iSPayTKC7iav/0NliGfczCYRh5pF66U5JoNSNZzaeSRnK8TCtr4AYRq7IjrNRwkbZWfkqCIOimGYaKq9VLKGjpCEe+WRiJKufdNtkmPJL0yEnZEII9UOgGEUvhKuCEAgKKM0MgT0lCjBBQv7JqamvDSSy8hJydH7lAolFOK2eNTYdCq0G5z99sb22FzY1ddDwDgzNIsucIbkvLgqJYDTZYhR0Dsa+SEXXmhcho/GIbB5GxOqA239YNlWT4VOzFLGeIiJVGLlOCg4ZHqjUjaSinCCAgJhUgaV4iwk3sNHYGks6s77CPWqZFzo4QRP4SJfPzDv29YllXcDU2iTsMPSq6OoIRCKhQv7H71q1/h3nvvhV6vjAGoFMqpgkGrxhnBdWfv7G3iH//kcBtYlnPG5N7XOBiTs4wwaFWwu31DugD7gmNcZgZFoFIg6djjw4xraba4YHP5oFYxihEXDMNgcvBie7x9+FEzJG2llDQyEIplpPpGjy/A17IpJRU7Pp0bbm1z+UYcbk1+H5QSOxDm2I1w7Dvsblhd3KYYJd0U8MJaQelYRQu7zz77DJ2dnfje97434nPdbjesVmu/DwqFEh+XzOGaJt7c0wSfn6v7eis4ruWc6cp00TVqFWbkcU7cvkHSsZ12Nxp7nGAYYEaBchw7AJgcwYBlMhiaE7DypzIJk7K42E+MsPWDODNKujgT53OkjSUNPX0IsNwqtKxkZZgNBm2oTm0k10uJx564hyPV2J0Ijical5Yo+6aYcM4szcIP5xcq5iYLULCw8/l8WLduHR577LGInr9hwwaYzWb+o7CwUNwAKZRTgOWlWUhP0qHD5sZruxqxvaoLO2u7oVOr8P3Z+XKHNyRkDt+uuu4Bn9sf3KYxMdMo+xyykykNNn6Ep75PhoyZmaagwdAAQo5dW2RjZkjaWQlMyuSO+0iOHVlDV5SepKgZlBMzI+uoJsJOWW4pF3tjT9+w9ZknFNYJTrjm9AnY8P1yzJ+gnHpj2YTd2WefDYPBMOjH/fffj8cffxynn346ZsyYEdHr3XnnnbBYLPxHQ0ODyD8BhTL20apVuGn5JADAb98+gCv+zTUw/WBeoaLGnJwM6ejddnxg48dXJ7oAAHMUOEeQDHuu7+5DzxDF2IeaycYPpbmN3AX3xDDiwuH28Z2zSmpcIenATrsHvX1DF8Hza+gUlMoEIqtT8wdY1HQpq6MXADKT9TAnaBFgh3d7+U5whQk7JSKbsNu0aRNcLtegH7/73e+wdetWvPjii8jJyUFOTg4aGhqwevVqPP3004O+nl6vh8lk6vdBoVDi5+pFRZhXlAqWBViWS+PcctYkucMalgXFadCqGTT2OAeM4PjiWAcA4IwpmXKENizmBC2fJhtqT29ls/JWuQEhJ6V2mHEtJMWclaxHWpJOsthGIkmvQW6wCH4414s0tShlqDWB1HkNJ4wauvvg8QWg06gUM1wZ4Oozp+Vy7+XhRhQRJ3iSgtxGpaLYVOwzzzyDyspK7N27F3v37kVeXh6ef/55/OAHP5A7NArllEKtYvDcNQvw0MVluOXMSXj75sXISpZ/jdVwJOo0/GaPbcc7+Mebe5043m6HigFOD7p6SoMf19I4eH0gWUCvtFRsjim09WMogXEkmGIuzVVW7EDI9RpOHB1pVWb8JTlc7EdahxZG5HNTso3QqJV16Z8aPJ6HhxB2LMvyom+qwo69ElHW2Q0jJSWFd+tycnKgVquRlpaGxERlzK+hUE4lEnRq/GDeOPzq7BKYE5RVlzYUy0q4USzv7mvmH9tc2QYAqChMgTlRmT9HRbBTd/8gjt3OGq5msDQnWXH1gQzDoCyYSj7YNPgMQSIupuYoy/ECQoOth6pv9PoDfHNFqcLiL80xgWGANqsbnUN0xlYGf66pCkqBE6bmkmM/uLBr6HbC4vRCp1YpZrezklGssDuZ2tpanHbaaXKHQaFQRgnfn50PFQN8W9uDE+3cjK8XdtQBAC4oz5M5uqGZOS4FABe3/6Q5fETYKalQOxwi7PY39Q76eVIfWKIwYQSEUtukOeVkajsd8PgDSNKpFZXKBLhU8oRgV+ZQ4uiwgh0v4j5XNlsHncV3IHijUJKTDJ1m1MgW2aBHiEKhjEmyTQZ+gPLftxzHliPtON5uR6JOjUvmFozw1fJRnm9GskEDi9PLX9AIO6q5xo8FE9LlCG1EyoJp5AODpJHdPj//88xScONKZbN10MHWJA07JScZKpVyOmIJU3lhOvqE3aQsI7RqBlaXj99lGw7ZFEPOEWV4qLCjUChjlhuXTYKKAd7e24z/e3YXAK6jV2lpzHA0ahUWT+Tq/0ijB8Bt/CDNB0p17MrzUwBw6cyTGygONVvh8QWQlqTj12ApieKMJBi0Kjg8/kFXupHU+DQFCiMgFFflIMLO4vSiscfZ73lKQq9R86KN7KEOh9wolFFhFxFU2FEolDHLnPGpuO2cUv7/84vS8P9WlQ7zFcqAdOx+drSdf+z9/c1gWaCiwIxMhQzHPZnCtASkJmrh8Qdw4KR07HfBNXSzx6UqagYcQaNW8SNYDg4ijr6r7wUAvilHaRBhtDe4VSWc7+q5Yz8uLVGxtaXzg3unTxZ2Hl8Au4PvnVnBMgXK8FBhR6FQxjQ3LpuIT355Bp6+eh6evWa+orY1DMWZpVlQqxh8V9/LD/R9J9gEcuFM5Q6GZhgGiyaGZgiGs6uWuzjPGa9MYQSEOpKJCCWEp5GVGv/scSlQMdwMxBZL/3TmtwqvzQSAeUMIu70NvXB6/UhP0iluzIxSocKOQqGMeSZlJWN5aRYSdMoXdQCQYzbg7GnZAICnv6rFrtpu7KnvhYoBzi/PlTm64Tl9MifsvgwTdm6fH1+d4P6/oFi54mJhMVe7+HVVf1EankYer8A0MgAkG7S8a/dNdX9xRMQSccWUyNwiTjBXdTjQbnPxj5P3zcKJ6YqsbVQiVNhRKBSKAlm7qAgA8PLOelzy1HYAwKVzCpFlUvYMQTIfcE9DLyxOLwDg66ou2Nw+ZCXrMTM4zkWJnFacDoYBjrXZ+4kL0o08e1yKItPIhAVBR4402QCAy+vndybPU7Bjl5Ko41cBfnSwlX/882Cd6WKFzp1UIlTYUSgUigI5rTgdP1lcxP8/26THb86bKl9AEVKYlogp2Ub4Ayze3tMEAPg4eKE+e3q2ol2X1CQd31ywvSokjjYd4uJfqsBtJeGcFnQcPz/WwXf2bjveCY8/gByTQZFNK+EQN/q9YNnB8TYb9jb0Qq1i+A53yshQYUehUCgK5a7V0/DA92bgvgunY+MtSxRb+H4yP1owHgDw7PZaNPU68VZQ4J03Q9lpZABYMpkTb0RctFldfOPE2dNz5AorIhZPykCyQYMWi4t37d7eyx3788tzFe02AsD55XlggrMnj7Ra8dLOegDAWaVZyFa4U60kqLCjUCgUhaJSMfjRgvH48cIixXbCDsbFcwpg1GtQ3eHA4ge3wO0LYH5RGhZOVOb8vXAumcM1p2w50o5WiwvvBIXR7HEpihcXBq0a5weHb7++uxE9Dg8+CW5bUXLTDSHHbMCqoHhe9dg2PP1VLQDghwvGyRjV6IMKOwqFQqEIilGvwf0XzQAxiPQaFX53/lTFO0YA12gzvygNARa4+umd+MsnxwEAl80tlDmyyLg0OHz7rT1NmPX7zXD7AijNScaMfOXNrxuM9RdMR7Jew///wpl5WKbwFLjS0Iz8FAqFQqFQouOiWfkwJ2ixp6EX35+Vj6KMJLlDiphfrJiMq/7zDb9tYmquCZeOEmE3e1wqfrRgHF78hktjalQMHr6kfFSIaoBz7V6/cSFe39UIjYrBL8+eMmpiVwoMO9hitjGA1WqF2WyGxWKByTQ67lQoFAqFogxe+7YBD3xwGDPyTbh3zQxMyjLKHVLEuLx+PPjhEXTa3bh4dgGW08aDUU80moYKOwqFQqFQKBQFE42moTV2FAqFQqFQKGMEKuwoFAqFQqFQxghU2FEoFAqFQqGMEaiwo1AoFAqFQhkjUGFHoVAoFAqFMkYYs3PsSLOv1WqVORIKhUKhUCiU2CFaJpJBJmNW2Nls3GDJwsLRMVSSQqFQKBQKZThsNhvMZvOwzxmzc+wCgQCam5uRnJws6tRqq9WKwsJCNDQ00Hl5CoOeG2VCz4tyoedGudBzo0ykOi8sy8JmsyEvLw8q1fBVdGPWsVOpVCgoKJDs+5lMJvrLplDouVEm9LwoF3pulAs9N8pEivMyklNHoM0TFAqFQqFQKGMEKuwoFAqFQqFQxghU2MWJXq/H+vXrodfr5Q6FchL03CgTel6UCz03yoWeG2WixPMyZpsnKBQKhUKhUE41qGNHoVAoFAqFMkagwo5CoVAoFApljECFHYVCoVAoFMoYgQo7CoVCoVAolDECFXZx0NHRgdWrVyMxMRElJSX49NNP5Q7plGX9+vWYNm0aVCoVXnnllX6fe/DBB5GZmYm0tDTcfvvtEe3aowiD2+3GT37yExQUFMBsNmPZsmU4cOAA/3l6buTl+uuvR25uLkwmE8rKyrBx40b+c/TcyM/27duhUqnw4IMP8o/R8yIvy5Ytg8FggNFohNFoxLnnnst/TjHnhqXEzKWXXspee+21rMPhYN966y02NTWV7e7uljusU5Lnn3+e3bRpE7tgwQL25Zdf5h9///332XHjxrFVVVVsc3MzO3XqVPY///mPjJGeWtjtdva+++5jGxoaWJ/Px/7pT39ii4uLWZal50YJHD58mHW5XCzLsuzOnTtZs9nMdnd303OjAPx+P7tgwQJ2/vz57IYNG1iWpb8zSmDp0qX9rjEEJZ0b6tjFiN1uxzvvvIP77rsPiYmJuOiiizBjxgy89957cod2SnLllVdi5cqVMBgM/R5//vnncdNNN6G4uBi5ubn49a9/jRdeeEGmKE89kpKScNddd6GgoABqtRo/+9nPUFNTg66uLnpuFEBpaSk/f4thGLhcLrS0tNBzowD++c9/YsGCBZg6dSr/GD0vykVJ54YKuxg5fvw4zGYzcnNz+ccqKipw6NAhGaOinExlZSXKysr4/9NzJC/bt29HdnY20tPT6blRCDfddBMSEhIwb948rFq1CtOmTaPnRma6u7vx2GOP4Z577un3OD0vyuCWW25BZmYmVq5cif379wNQ1rmhwi5G7Hb7gIW/JpMJdrtdpogog3HyeaLnSD4sFgtuuOEGPPDAAwDouVEKTzzxBOx2OzZv3oylS5cCoOdGbn7zm9/g1ltvRWpqar/H6XmRn4cffhg1NTWor6/HypUrcd5558Futyvq3FBhFyNGoxFWq7XfY1arFUajUaaIKINx8nmi50geXC4XLrroIqxevRrXXHMNAHpulIRarcaKFSvw6aef4uOPP6bnRkb27NmDnTt34rrrrhvwOXpe5Gf+/PkwGo1ISEjA7bffDqPRiJ07dyrq3FBhFyOTJ0+GxWJBa2sr/9i+ffswffp0GaOinMy0adP6dWHScyQ9Pp8Pl19+OfLy8vDII4/wj9NzozwCgQCqqqrouZGRzz//HMeOHUN+fj5ycnLw6quv4oEHHsB1111Hz4sCUak4GaWocyNLy8YY4ZJLLmGvv/56tq+vj33nnXdoV6yMeDwe1ul0skuWLGGfe+451ul0sn6/n924cSM7fvx4trq6mm1paWGnT59Ou8gk5uqrr2bPPvts1uPx9Hucnht5sdls7AsvvMDabDbW6/Wy//vf/1iDwcDu37+fnhsZcTgcbEtLC/9x2WWXsb/97W/Znp4eel5kpqenh920aRPrcrlYt9vNPvroo2x2djZrsVgUdW6osIuD9vZ29txzz2UTEhLYyZMns5s3b5Y7pFOWtWvXsgD6fWzdupVlWZb9wx/+wKanp7MpKSnsbbfdxgYCAXmDPYWora1lAbAGg4FNSkriP7744guWZem5kRO73c4uX76cNZvNrMlkYmfPns2++eab/OfpuVEGa9eu5cedsCw9L3LS3t7Ozpkzh01KSmJTU1PZ5cuXs7t37+Y/r5Rzw7AsnW5IoVAoFAqFMhagNXYUCoVCoVAoYwQq7CgUCoVCoVDGCFTYUSgUCoVCoYwRqLCjUCgUCoVCGSNQYUehUCgUCoUyRqDCjkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQK5ZSmvr4eGRkZon6P2tpaMAwDo9GIt99+e9jnvvHGGzAajWAYpt8uagqFQokEunmCQqGMeYxGI/9vh8OBxMREMAwDAKisrMS4ceNE/f61tbUoLS2Fy+WK+GsYhkFLSwtycnJEjIxCoYw1NHIHQKFQKGJjt9v5fxsMBhw6dAhFRUXyBUShUCgiQVOxFArllKa2thYGg4H/P8MwePLJJzFu3DhkZGTg1VdfxcaNG1FcXIysrCy8+uqr/HO7u7txxRVXICsrC8XFxXj22Wcj/r47duzArFmzkJycjJycHDz66KOC/lwUCuXUhDp2FAqFchJfffUVjh07hvfeew8//elPsWbNGhw8eBCffvoprrnmGlxyySVQq9W46qqrMGPGDDQ0NKCmpgZnnnkmZs6ciYqKihG/x6233orbbrsNV1xxBXp6elBbWyv+D0ahUMY81LGjUCiUk7j99tthMBjw/e9/H729vbjpppuQmJiICy64ADabDc3NzWhtbcW2bdvwhz/8AXq9HqWlpbjiiivw5ptvRvQ9tFotjh49iu7ubqSmpmLWrFki/1QUCuVUgAo7CoVCOYmsrCwAgFqthlarRWZmJv85g8EAh8OB+vp6OBwOpKenIyUlBSkpKfjHP/6Btra2iL7Hv//9bxw+fBiTJk3CokWLsH37dlF+FgqFcmpBU7EUCoUSA/n5+UhJSUFXV1dMX19SUoLXXnsNPp8PTz31FK688kpUVVUJHCWFQjnVoI4dhUKhxEB+fj7mzZuHu+++G319ffD5fPjuu+9QWVkZ0de/+OKL6OrqgkajQXJyMtRqtcgRUyiUUwEq7CgUCiVGXnzxRdTV1fEds7feeiucTmdEX/vBBx+gpKQEycnJ+Otf/4qnn35a5GgpFMqpAB1QTKFQKCJTV1eH0tJS6PV6PPfcc1izZs2Qz33zzTdxzTXXwOVyoa6uDtnZ2RJGSqFQRjtU2FEoFAqFQqGMEWgqlkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQKhUKhUChjBCrsKBQKhUKhUMYIVNhRKBQKhUKhjBGosKNQKBQKhUIZI1BhR6FQKBQKhTJGoMKOQqFQKBQKZYxAhR2FQqFQKBTKGOH/A6nFTCQg/hL5AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Manual computation of the frequency response\n", + "resp = ct.input_output_response(sys, T, np.sin(1.35 * T))\n", + "\n", + "out = resp.plot(plot_inputs='overlay', legend_loc='lower left')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "muqeLlJJ6s8F" + }, + "source": [ + "The magnitude and phase of the frequency response is controlled by the transfer function,\n", + "\n", + "$$\n", + "G(s) = C (sI - A)^{-1} B + D\n", + "$$\n", + "\n", + "which can be computed using the `ss2tf` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + ": u to q1\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['q1']\n", + "\n", + "\n", + " 4\n", + "-------------------------------------\n", + "s^4 + 0.2 s^3 + 8.01 s^2 + 0.8 s + 12\n", + "\n", + ": u to q2\n", + "Inputs (1): ['u[0]']\n", + "Outputs (1): ['q2']\n", + "\n", + "\n", + " 2 s^2 + 0.2 s + 8\n", + "-------------------------------------\n", + "s^4 + 0.2 s^3 + 8.01 s^2 + 0.8 s + 12\n", + "\n" + ] + } + ], + "source": [ + "# Create SISO transfer functions, since we don't have slycot\n", + "G1 = ct.ss2tf(sys[0, 0], name='u to q1')\n", + "G2 = ct.ss2tf(sys[1, 0], name='u to q2')\n", + "print(G1)\n", + "print(G2)" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G1(1.35j)=(3.3300564744031984-2.706863274436471j)\n", + "Gain: 4.291431568743418\n", + "Phase: -0.6825322008139448 ( -39.106214488414615 deg)\n" + ] + } + ], + "source": [ + "# Gain and phase for the simulation above\n", + "from math import pi\n", + "val = G1(1.35j)\n", + "print(f\"{G1(1.35j)=}\")\n", + "print(f\"Gain: {np.absolute(val)}\")\n", + "print(f\"Phase: {np.angle(val)}\", \" (\", np.angle(val) * 180/pi, \"deg)\")" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "G1(0)=(0.3333333333333333+0j)\n", + "Final value of step response: 0.33297541813724874\n" + ] + } + ], + "source": [ + "# Gain and phase at s = 0 (= steady state step response)\n", + "print(f\"{G1(0)=}\")\n", + "print(\"Final value of step response:\", stepresp.outputs[0, 0, -1])" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I9eFoXm92Jgj" + }, + "source": [ + "The frequency response across all frequencies can be computed using the `frequency_response` function:" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoEAAAHbCAYAAAC0rkC0AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC5XUlEQVR4nOzdd3wUdfrA8c9syab3TkIPvUsTBUGqKIJ6iGIBT7Bxnh6ed3KigIeecqdnxfPQnygHFhQLYKFIU3rvLRCSkIT0bHo2u/P7Y8mSQICUXXY3+7xfr7x2d2a+zzz5Jl/yMDPfGUVVVRUhhBBCCOFRNM5OQAghhBBCXHtSBAohhBBCeCApAoUQQgghPJAUgUIIIYQQHkiKQCGEEEIIDyRFoBBCCCGEB5IiUAghhBDCA0kRKIQQQgjhgaQIFEIIIYTwQFIECiHqZfLkyYwbN87h+1EUhW+//dbucVVV5ZFHHiE0NBRFUdi7d6/d9+FsCxcuJDg4uNFxHPUzcNX9CuFppAgUogmaPHkyiqLYvsLCwhg1ahT79+93dmoOU9fi9KeffmLhwoWsWLGC9PR0unTp4vjkRL2kp6dzyy23ODsNIZo8KQKFaKJGjRpFeno66enprF27Fp1Ox2233ebstJwuMTGRmJgYBgwYQHR0NDqdrt4xVFWlsrLSAdl5toqKCgCio6MxGAxOzkaIpk+KQCGaKIPBQHR0NNHR0fTo0YO//vWvpKSkkJWVZdvmwIED3Hzzzfj4+BAWFsYjjzxCUVGRbb3ZbGb69OkEBwcTFhbGX/7yF1RVrbEfVVWZN28erVu3xsfHh+7du/PVV19dMbeWLVvy97//nYkTJ+Lv709sbCzvvPPOFdtcKdfZs2fzySef8N1339mOfq5fv/6SGJMnT+bJJ58kOTkZRVFo2bIlAOXl5fzxj38kMjISb29vbrzxRnbs2GFrt379ehRF4eeff6Z3794YDAY2bdpUa56pqancc889hIaG4ufnR+/evdm2bZtt/fvvv0+bNm3w8vKiffv2LFq0yLYuKSnpklPU+fn5Nb6fqlxWrlxJ9+7d8fb2pl+/fhw4cOCK/bd8+XKuu+46vL29ad26NXPmzKlRyJ44cYJBgwbh7e1Np06dWL169RXjAXz11Vd07drV9jMZNmwYxcXFtr4eN24cc+bMITIyksDAQB599FFboQcwePBg/vCHPzB9+nTCw8MZPnw4UPN0cFWfLFu2jCFDhuDr60v37t3ZsmVLjVwWLFhAfHw8vr6+3HHHHbzxxhtXPCVeFffLL79k4MCB+Pj40KdPH44fP86OHTvo3bs3/v7+jBo1qsaY2bFjB8OHDyc8PJygoCBuuukmdu/eXSP27Nmzad68OQaDgdjYWP74xz/a1s2fP5+EhAS8vb2Jiorid7/73VX7WQiHUYUQTc6kSZPUsWPH2j4XFhaqjz76qNq2bVvVbDarqqqqxcXFamxsrHrnnXeqBw4cUNeuXau2atVKnTRpkq3da6+9pgYFBalfffWVevjwYfXhhx9WAwICasT+29/+pnbo0EH96aef1MTERPXjjz9WDQaDun79+svm16JFCzUgIED9xz/+oR47dkx9++23Va1Wq65atcq2DaB+8803dcq1sLBQvfvuu9VRo0ap6enpanp6ulpeXn7JfvPz89WXXnpJjYuLU9PT09XMzExVVVX1j3/8oxobG6v+8MMP6qFDh9RJkyapISEhak5Ojqqqqrpu3ToVULt166auWrVKPXnypJqdnX1J/MLCQrV169bqwIED1U2bNqknTpxQv/jiC3Xz5s2qqqrqsmXLVL1er7733nvqsWPH1Ndff13VarXqL7/8oqqqqp4+fVoF1D179thi5uXlqYC6bt26Grl07NhRXbVqlbp//371tttuU1u2bKlWVFSoqqqqH3/8sRoUFGSL8dNPP6mBgYHqwoUL1cTERHXVqlVqy5Yt1dmzZ6uqqqpms1nt0qWLOnjwYHXPnj3qhg0b1J49e9b4GVwsLS1N1el06htvvKGePn1a3b9/v/ree++phYWFqqpafwf9/f3VCRMmqAcPHlRXrFihRkREqH/7299sMW666SbV399fffbZZ9WjR4+qR44cueRnX9UnHTp0UFesWKEeO3ZM/d3vfqe2aNFCNZlMqqqq6q+//qpqNBr1n//8p3rs2DH1vffeU0NDQ2v0wcWqx/3pp5/Uw4cPq/3791d79eqlDh48WP3111/V3bt3q23btlUfe+wxW7u1a9eqixYtUg8fPmwbE1FRUarRaFRVVVWXLl2qBgYGqj/88IN65swZddu2bep///tfVVVVdceOHapWq1WXLFmiJiUlqbt371bfeuuty+YohKNJEShEEzRp0iRVq9Wqfn5+qp+fnwqoMTEx6q5du2zb/Pe//1VDQkLUoqIi27KVK1eqGo1GzcjIUFVVVWNiYtRXX33Vtt5kMqlxcXG2IrCoqEj19va2FTlVHn74YfXee++9bH4tWrRQR40aVWPZhAkT1FtuucX2uXohUJdcLy58L+ff//632qJFC9vnoqIiVa/Xq4sXL7Ytq6ioUGNjY9V58+apqnqh8Pr222+vGPuDDz5QAwICbMXjxQYMGKBOnTq1xrLx48ero0ePVlW1fkXg559/btsmJydH9fHxUb/44gtVVS8tAgcOHKi+8sorNfa7aNEiNSYmRlVVVf35559VrVarpqSk2Nb/+OOPVywCd+3apQJqUlJSresnTZqkhoaGqsXFxbZl77//vurv72/7j8hNN92k9ujR45K2tRWBH374oW39oUOHVMBWNE6YMEG99dZba8S477776lQEVo/72WefqYC6du1a27J//OMfavv27S8bp7KyUg0ICFCXL1+uqqqqvv7662q7du1sBXl1X3/9tRoYGGgrGIVwNjkdLEQTNWTIEPbu3cvevXvZtm0bI0aM4JZbbuHMmTMAHDlyhO7du+Pn52drc8MNN2CxWDh27BgFBQWkp6dz/fXX29brdDp69+5t+3z48GHKysoYPnw4/v7+tq9PP/2UxMTEK+ZXPW7V5yNHjtS67dVybYzExERMJhM33HCDbZler6dv376X5FP9e6/N3r176dmzJ6GhobWuP3LkSI39gPX7uNz3fSXV+y80NJT27dtfNs6uXbt46aWXavyMpk6dSnp6OiUlJRw5coTmzZsTFxdXa/zadO/enaFDh9K1a1fGjx/PggULyMvLu2QbX1/fGjGLiopISUmxLbtan1bp1q2b7X1MTAwAmZmZABw7doy+ffvW2P7iz3WJGxUVBUDXrl1rLKvaT9U+H3vsMdq1a0dQUBBBQUEUFRWRnJwMwPjx4yktLaV169ZMnTqVb775xnbaffjw4bRo0YLWrVvzwAMPsHjxYkpKSuqUpxCOUP8rooUQbsHPz4+2bdvaPl933XUEBQWxYMEC5s6di6qqKIpSa9vLLb+YxWIBYOXKlTRr1qzGuoZc2H+5/doj18tRz1/jeHGc2vZZvQitjY+Pz1X3d6X9aDSaGjkBmEymq8a8XOwqFouFOXPmcOedd16yztvb+5LrPK8Uq4pWq2X16tVs3ryZVatW8c477/D888+zbds2WrVqVec8r9anVfR6/SXtq37/avtZ1fY91TXuxcuq9gPWax2zsrJ48803adGiBQaDgeuvv952rWN8fDzHjh1j9erVrFmzhieeeIJ//vOfbNiwgYCAAHbv3s369etZtWoVL774IrNnz2bHjh12uaWPEPUlRwKF8BCKoqDRaCgtLQWgU6dO7N2713YhP8Bvv/2GRqOxHeWIiYlh69attvWVlZXs2rXL9rlTp04YDAaSk5Np27Ztja/4+Pgr5lM9btXnDh061Lrt1XIF8PLywmw217E3Lmjbti1eXl78+uuvtmUmk4mdO3fSsWPHesXq1q0be/fuJTc3t9b1HTt2rLEfgM2bN9v2ExERAVhvkVLlcvcxrN5/eXl5HD9+/LL916tXL44dO3bJz6ht27ZoNBo6depEcnIyaWlptjYXT7yojaIo3HDDDcyZM4c9e/bg5eXFN998Y1u/b98+2+9bVc7+/v41jjjaQ4cOHdi+fXuNZTt37rTrPqps2rSJP/7xj4wePZrOnTtjMBjIzs6usY2Pjw+33347b7/9NuvXr2fLli22iTs6nY5hw4Yxb9489u/fT1JSEr/88otDchXiauRIoBBNVHl5ORkZGYC1SHj33XcpKipizJgxANx3333MmjWLSZMmMXv2bLKysnjyySd54IEHbKfFnnrqKV599VUSEhLo2LEjb7zxBvn5+bZ9BAQE8Oc//5k//elPWCwWbrzxRoxGI5s3b8bf359JkyZdNr/ffvuNefPmMW7cOFavXs3SpUtZuXJlrdvWJdeWLVvy888/c+zYMcLCwggKCqpxROdy/Pz8ePzxx3n22WcJDQ2lefPmzJs3j5KSEh5++OE69XWVe++9l1deeYVx48bxj3/8g5iYGPbs2UNsbCzXX389zz77LHfffTe9evVi6NChLF++nGXLlrFmzRrAWjz079+fV199lZYtW5Kdnc3MmTNr3ddLL71EWFgYUVFRPP/884SHh1/2Pokvvvgit912G/Hx8YwfPx6NRsP+/fs5cOAAc+fOZdiwYbRv354HH3yQ119/HaPRyPPPP3/F73Xbtm2sXbuWESNGEBkZybZt28jKyqpROFdUVPDwww8zc+ZMzpw5w6xZs/jDH/5gO+JpL08++SSDBg3ijTfeYMyYMfzyyy/8+OOPjT5KXJu2bduyaNEievfujdFo5Nlnn61xBHjhwoWYzWb69euHr68vixYtwsfHhxYtWrBixQpOnTrFoEGDCAkJ4YcffsBisdC+fXu75ylEnTjtakQhhMNMmjRJBWxfAQEBap8+fdSvvvqqxnb79+9XhwwZonp7e6uhoaHq1KlTbbM7VdU6EeSpp55SAwMD1eDgYHX69Onqgw8+WGMChsViUd966y21ffv2ql6vVyMiItSRI0eqGzZsuGx+LVq0UOfMmaPefffdqq+vrxoVFaW++eabNbbhokkJV8s1MzNTHT58uOrv719jIsXFLp4YoqqqWlpaqj755JNqeHi4ajAY1BtuuEHdvn27bX3VZIy8vLzLfk9VkpKS1LvuuksNDAxUfX191d69e6vbtm2zrZ8/f77aunVrVa/Xq+3atVM//fTTGu2rZqn6+PioPXr0UFetWlXrxJDly5ernTt3Vr28vNQ+ffqoe/futcW4eGKIqlpnCA8YMED18fFRAwMD1b59+9pmraqqqh47dky98cYbVS8vL7Vdu3bqTz/9dMWJIYcPH1ZHjhypRkREqAaDQW3Xrp36zjvv2NZXTdR58cUX1bCwMNXf31+dMmWKWlZWZtvmpptuUp966qlLYlPLxJArTZZRVevkoWbNmqk+Pj7quHHj1Llz56rR0dG15n65uLX9nC/uy927d6u9e/dWDQaDmpCQoC5dulRt0aKF+u9//1tVVVX95ptv1H79+qmBgYGqn5+f2r9/f3XNmjWqqqrqpk2b1JtuukkNCQlRfXx81G7dutkm8wjhDIqq1vHCCSGEsJOWLVvy9NNP8/TTTzs7Fbezfv16hgwZQl5enktfRzZ58mTy8/Od9vi3qVOncvTo0cvez1EIIaeDhRBCNAH/+te/GD58OH5+fvz444988sknzJ8/39lpCeHSpAgUQgjh9rZv3868efMoLCykdevWvP3220yZMsXZaQnh0uR0sBBCCCGEB5JbxAghhBBCeCApAoUQQgghPJAUgUIIIYQQHkiKQCGEEEIIDyRFoBBCCCGEB5IiUAghhBDCA0kRKIQQQgjhgaQIFEIIIYTwQFIECiGEEEJ4ICkChRBCCCE8kBSBQgghhBAeSIpAIYQQQggPJEWgEEIIIYQHkiJQCCGEEMIDSREohBBCCOGBpAgUQgghhPBAUgQKIYQQQnggKQKFEEIIITyQFIFCCCGEEB5IikAhhBBCCA8kRaAQQjRRs2fPRq/XEx0dXaftv/76a/z9/VEUhYyMDAdnJ4RwNikChRCiEVq2bImvry/+/v74+/vTsmVLZ6dUw8MPP1yjoCstLeX+++8nICCA5s2b89lnn9nW3XXXXRQVFTkjTSGEE+icnYAQQri7X375hf79+192vclkQq/XX8OMLm/WrFnk5uZy9uxZDh48yOjRo7nuuuto166ds1MTQlxjciRQCCHsbP369XTo0IHnn3+e8PBwXnnlFXJzc7nnnnsIDw+nbdu2fPjhh7btJ0+ezNNPP81NN92Ev78/EydOJCMjg2HDhhEUFMR9992H2WyudV8tW7Zk69atNWK9+uqrl81t0aJFzJo1i8DAQAYMGMDtt9/O559/br9vXgjhNuRIoBBCOMDJkyfx9fUlPT0ds9nMQw89hE6nIzk5mZMnTzJs2DA6dOjAjTfeCMDSpUtZu3YtERER9OrVi9tuu41PP/2U2NhYevfuzYoVKxg7dmyjcsrLyyMjI4OuXbvalnXv3p3t27c3Kq4Qwj1JESiEEI00fPhwtFotAI8//jgjR47E19eX5557Dq1Wi0aj4euvvyYxMRFfX1+6devGww8/zGeffWYrAidMmECHDh0AGDx4MP7+/nTq1AmAoUOHsn///kYXgUVFRWi1Wnx9fW3LAgMD5TpAITyUnA4WQohGWr16Nfn5+eTn5/OPf/wDgJiYGFthmJWVhdlsJi4uztamRYsWpKWl2T5HRkba3vv4+BAREVHjc3FxcaPz9Pf3x2w2U1JSYltmNBrx9/dvdGwhhPuRIlAIIRxAURTb+4iICDQaDampqbZlycnJxMbGNno/fn5+NYq6K93aJSQkhOjoaA4cOGBbtm/fPjp37tzoPIQQ7keKQCGEcDCtVsudd97J888/T2lpKQcPHuSjjz7innvuaXTsHj168Nlnn2E2m1mzZg0bNmy44vb3338/f//73yksLGTr1q18//33TJgwodF5CCHcjxSBQghxDbz33nuUlZURFxfH7bffzksvvcTAgQMbHfell15i7969BAcH89FHH131usGXXnqJoKAgYmJiGD9+PPPnz6d9+/aNzkMI4X4UVVVVZychhBDC/ubOncurr75KcHBwjVPRl7Ns2TJ+//vfU1ZWxpkzZ4iKiroGWQohnEWKQCGEEEIIDySng4UQQgghPJAUgUIIIYQQHkiKQCGEEEIIDyRFoBBCCCGEB5LHxjmRxWIhLS2NgICAGjeWFUIIIYRoCFVVKSwsJDY2Fo3mysf6pAh0orS0NOLj452dhhBCCCGamJSUlBqPqqyNFIFOFBAQAMCHH37IuHHj0Ov1V21jMplYtWoVI0aMcMj2nsid+shZuTp6v/aM39hYDW3fkHb1aeNOv6fO4k59JGPZ8bE8dSwbjUbi4+NtNcaVSBHoRFWngH19fQkMDKxzUefI7T2RO/WRs3J19H7tGb+xsRraviHt6tPGlX5PzRaVvSn5nDOW0at5CNFB3k7Np4or9dHVyFh2fCxPH8t1ucxMikAhhBB1diitgD8v3c+RdCMAigKTrm/Jc7d0wFuvdXJ2Qoj6kNnBQggh6mTtkXOM/88WjqQb8fPS0j4qAFWFhZuTuP/DbeQVVzg7RSFEPUgRKIQQ4qo+3ZLE1E93UlJh5sa24Wz66838/KdBLHyoD4HeOnaeyeOu/2wmOafE2akKIepIikAhhBCXZbGovLzyMC9+dwiLCvf0iefjh/oQ6ucFwOD2kXz9+ACaBftwKquYO+b/xq4zeU7O2j7KTGY++vU0/159nJyicmenI4TdSREohBCiVsYyE48v3sWCTacBeHZke/5xZ1f02pp/OhKiAlj2xAC6NAskp7iCexds5ds9Z52Rst2YLSqPLtrF31cc5q21J7j7gy2UVpidnZYQdiVFoBBCiEvsS8nntrd/5edD59BrFd6c0INpQ9pedsZhVKA3Xz56PcM6RlFRaeHpL/by7NJ9FJdXXuPM7WPez0fZcDwLL60Gb72GxKxi/rXqmLPTEsKupAgUQghhU1xeyUvLD3PH/N9Izi2hWbAPSx8bwLieza7a1tdLxwcPXMcfb26LRoGlu1IZ8e+N/HwoA1VVr0H29vHd3rN8sOEUAK/f3Z33778OsE6AOXGu0JmpCWFXLl0ElpaW8uyzz9KyZUsCAwMB+Pnnn3nzzTedm5gQQjQxlWYLX+5IYdgbG/i/305jUWFM91h++ONAesQH1zmOVqMwfUR7lkztT7NgH87ml/Lool1M+ngH+1PzHZa/vWw9lcNfvtoPwOOD2zCmeyxD2kcyolMUZovK3JVHnJyhEPbj0kXgE088QXp6OitWrECrtd5/qlu3bvznP/9xcmZCCNE0lJnMfLkzheH/3shfvt5PekEZ8aE+fPL7vrxzb0+CfBt2M9v+rcNYM/0m/jCkLV5aDRuPZ3H7u7/x0Mfb2ZyY7ZJHBnck5fLwwh2UV1oY1jGKP49ob1s3Y3RH9FqFDcezWH8s04lZCmE/Ln2z6JUrV5KSkoLBYLBdhxITE0N6erqTMxNCCPeWnFPCFzuT+Wx7Crnn7+8X5ufF44PbcH//Fna58bOPl5Y/j2zP766L4+21J/h271nWHcti3bEsWof7MbFfc27vHktkoHOfOKKqKou3JTNn+SFMZpUBbcJ4d2JPtJoL1z+2Cvfjwetb8tGvp3l55RFubBuOTuvSx1GEuCqXLgKDg4PJysqq8QDk06dPExsb68SshBDCPWUXlbNyfzrf7T3L7uR82/JmwT48eH0L7u/fAj+D/f8stAz3440JPfjj0AQWbDrFt3vOciq7mLkrj/DyD0e4rnkIo7pEM6xjFC3CfOv0uCt72ZuSz6s/HmHrqVwARneN5l/ju9daBP/x5gSW7U7lRGYR/910iicGt71meQrhCC5dBD711FOMGTOG559/HrPZzIoVK5g7dy5PP/20s1MTQgiXZ7GoHEwrYN3RLH45lsn+1HyqzsJqFBjQJpz7+zdnWMeoa3JUq2W4Hy/f0ZUZozvy3d6zLN2Zyt6UfHaeyWPnmTzmrjxCTJA317cOo3/rMLo0CyIhyv+SW9I0VmGZidWHz7F0ZypbTuUA4K3X8Mzw9kwZ2OqyRWiQr54Zozvyl6/28+bqE9zcIZIO0YF2zU2Ia8mli8Bp06YRGRnJRx99RFxcHG+//TZ/+tOfmDBhgrNTE0IIl2MyWzh4toAdSblsP53HrjO55JWYamzTPS6I23s0Y0y3GKedhvU36LivXwvu69eCtPxSfj6UwU8HM9idnEd6QRnL9pxl2fn7DHppNbSL9qdDdCDNQ32JD/Wheagv0UE+BPvo8fXSXrZos1hU8ktNnMkp5kxOCUcyjOw4ncuBswWYzNZqWKdRGNujGU8PSyA+1PequY+/Lo6fD2aw9mgmTy7Zw7InBhDg3bDrJoVwNpcuAgHGjx/P+PHjnZ2GEEK4lIpKC8fPFXI4zcihtAIOpxs5eNZIqanmDY39vLTcmBDOzR0iGdw+kignX393sdhgHx66oRUP3dCKkopKdp3JY+upHHYm5XE43UhhWSUHz1q/t9roNArBvnrb6dvSEi3/PLKRwnIzhWUmLJeZf9I6wo/busUyoU88zYJ96pyvoij8466ujHnnV05kFvGnL/by3wd6o9Fcu1PYQtiLyxWB8+bNq9N2f/nLXxyciRBCOF9xeSWns4s5nlHAqhSF1V/uJzG7hJOZhbajWdUF++rp3SKUvq1C6NMylM6xQXjp3GMCg6+XjoEJEQxMiACsEzZScks5lFbAicwiUnJLSMkrISW3lMzCMkxmlUqLSnZRRbUoCpSX1YgbE+RN81BfWkf4c12LEPq0DKF5aMOvPYwM8OaDB3pz9wdbWHMkk3/8eIS/je54Ta9lFMIeXK4IPHLkwj2YSkpK+Oabb+jXrx/x8fGkpKSwfft27rzzTidmKIQQ9mOywJmcEs4VmTibV8rZfOtXal4Jp7OLOWes/sxaLaRm2D4FeuvoHBtE59hAOjcLpEtsEG0i/JvMUSlFUWge5kvzMF9uuWidqqqUmswUlJrILzFRZjJjqqxk8+bN3DBgACH+PgT66Aj01ttlpvPFesQH89pdXfnTF/tYsOk0Pnot06vdUkYId+ByReDHH39se3/XXXexdOlSxo4da1v2/fff8+mnnzojNSGEqLPi8kqyCsvJKion+/xrVmE52edfswrLScsvJatIB9t+vWKsUD8vWoX5oivNZVDP9iREBdIxJpC4EB+PPfqkKAq+Xjp8vXTEBFlP55pMJtIDrAWaXu/46/Tu6BlHXrGJl1Yc5u1fTmJWVf48or3H/kyE+3G5IrC6NWvW8MUXX9RYNnr0aB544AEnZSSE8CRmi0pxRSXF5ZUYSyvJL6kgv9REQYmJ/NIK8ktMts95xeUkn7Nej5ZTbLrk2rwr8dZraBbsQ2ywD3EhPsQG+dAsxIeW4X60Dvcj2NcLk8nEDz/8wOiBra5JgSPq5vc3tqLSYuGVH47y3rpE0vPLePWubm5zCl54NpcuArt06cLcuXOZOXMmOp2OyspKXnnlFTp37uzs1IQQLsJiUSmvtFBmMlNWaaawpJyzxbAnJZ9KVbEuN1nXl5rMlFaYKS43U1RuoqjcTHG5tcgrKq+kuKKSorJKcoxantu5hlKTpZ7ZKMCF69F89FoiAgzWL38D4QFeRPh7ExFgINzfiwg/PYd3/sr422/By8vLrv0irp1HBrUhyEfP3745yLI9Z0krKOXdib0I9zc4OzUhrsili8BFixYxceJEXn/9dSIjI8nMzKRTp04sXrzY2akJ0aRYLNYL7C2q9dV8/qvSYsFigbKKCrLL4HR2MYpGW2Mbs3p+W3P19hYqKlVMZovtq8KsYqq0UGG2YKqstsxsodxUSeJpDeuXHcRs4ZI21vcWKiovFHNVhV15ZW2Fmg72b29EjyjAhbg6jUKQj54gXz3BPnqCfPQE+3qdf7Uu8zdoOX5wL8MGXU9koC8RAYar3njZZDKRvA85fdgETOjTnOggH5743y62nspl9FubePvenvRvHebs1IS4LJcuAlu3bs3WrVtJTk4mPT2dmJgYmjdv7uy03MbRDCO7k3LZf06heFcqGo2WqrmEVTeMVc8vufD5wodLtlXVWtpfWMcl62qJff7zxesutFVr3f7ieCo1V9a27RXjVFtnNps5laRh/0/HUBSNbfnlvg8Ai2oteFQVLKo179o+W87vyrpOxWI5/56qbajW7sJr1fsanwGzxUJenpb/ntmCqirV4qi2/V5ocyFmpcVSrbBTbUVfVRFXt8e46mDPb3XZsIE0kJnWqAh6rYJBp0WxmAjy98VHr8Vbr8VHr8Wg19je+xl0BHjr8PPS4WfQ4m/Q4WfQ4e+tw1sLe7ZvYeTQwQT7eePvrcOgu/rEApPJxA9n99DzGl2PJlzPTe0i+HbaDTy+eDcnM4uYuGArTw9rxxOD28gj5oRLcukiMDPT+pBub29vWrVqVWNZZGSk0/JyFxuOZfGPH48CWj4/ddjZ6bg4DevSzzg7iTpSoLjwmu1Np1HQahRUixmDl972WatR0CoKWq2CTqNBo2B91SjoNApeOg16rYJeq8FLq0Gv1aA/v8ygO//5/JdWUTmdeILOHTvg7aXHS1vV/sKXl07BS6vF+3wxZ/2q9l6nQafVXLh2bvTABhVjJpOJzEPQPNRXijlRbwlRAXz/hxuY+e1Blu0+yxurj7P68Dnm/a4bHWPk6SLCtbh0ERgdHY2iKLajTNVPmZjNdb/o2lO1CPNlSPtwMjMziYqMOn/bCIWqbqzqzQufFdvni5dVf6n6OVzavuqzrVW1dsol29a23wuvl25/ca617bc6Ral9vxe+R+sni8XCqVOnaNO6NRqtpmY/XKaPNBrrO42ioFGw3ZLD9llRbPuo+qw5/01X/1zVVxpFQaOpalcztnI+lkZRsFjM7Nq5k359+6DT6Wruiwu5XBxbq1HQaa3FmUY5X7RprEWbtnpRd76Aqyrwqr6vC4XVSIcURiaTiR/Kj8ukB9Ek+HrpeH18d25sG87s7w9x4GwBY975lWlD2vLEkDZ1OrIsxLXg0kWgxVLzWp+MjAzmzp1Lv379nJSRexnVJYah7cPP//HuKX9cL8Na4Jxk9Mh2Lt9HJpOJskSVQQnhLp+rEJ5MURTu7BXHjW3DmfntQVYdPsdba0/w7d6zPD+6I4MTQp2dohC41UUK0dHRvPHGG8yYMcPZqdSQkpJCr1698Pb2prKy0tnpCCGEcBGRgd588MB1vHNvTyIDDJzJKeGRRbuY/Mku0kucnZ3wdG5VBAJs27bN5QqtiIgIfvnlF/r37+/sVIQQQrgYRVEY0z2WdX8ezLQhbfDSaticmMtr+7Q8981BUnKlGhTO4dKngzt2rPksxpKSEnJycnjrrbecmNWlvL298fZ2rYeyCyGEcC1+Bh3PjuzAhN7NmbvyEKsOZ/L17jS+35fOvX2b84chbYkMlL8l4tpx6SLwP//5T43Pfn5+tGvXjsDAxs2wmjVrFkuXLuXo0aMsWbKEe+65x7YuKyuLyZMns27dOuLj45k/fz5Dhw5t1P6EEEKIKs3DfHnv3h7M/+IHtpVGsjkxl0+3nOGLHSlM7NecqQNbExvs4+w0hQdw6SJwx44d/PnPf75k+RtvvMH06dMbHDchIYG33nqLF1544ZJ106ZNIzY2luzsbFatWsX48eNJTEykvLy8RrEI4O/vz4oVKxqchxBCCM/VMgCemNCbnclG/rXqGLvO5PHxb0ks2nKGcT2b8dhNrWkbGeDsNEUT5tJF4EsvvVRrEfjyyy83qgi8//77bXGqKyoq4rvvviMpKQlfX1/GjRvHG2+8wfLly3nwwQdZv359g/cJUF5eTnl5ue2z0Wi0vTeZTHWKUbWdo7b3RO7UR87K1dH7tWf8xsZqaPuGtKtPG3f6PXUWd+qj6rn2bh7IZw/35tfEHP678TRbT+fx1a5Uvt6dyrAOkUwd2JKe8cF2368jyFh2/liuT1xFVev2rIBr6csvvwRg8uTJfPLJJzWeRpGUlMSCBQs4ceJEo/czePBgHnvsMdsRvj179jBy5EjbDakBnnzySXx9fXnttdcuG6esrIzbbruNXbt20atXL2bPns3AgQMv2W727NnMmTPnkuVLlizB19e30d+PEEII95dUCGvTNOzPvTB3s7mfyqAYCz3DVHRuN6VTXEslJSVMnDiRgoKCq14+55JHAt9//30AKioqmD9/vm25oihERkaycOFCh+y3qKjokg4LDAwkPz//iu28vb1Zs2bNVePPmDGjxhFMo9FIfHw8AMOHD6/Tfd9MJhOrV6922PaeyJ36yFm5Onq/9ozf2FgNbd+QdvVp406/p87iTn10tVyfAE5mFvHhb0l8vy+d5GL430ktP6Z7MaF3HPf2jSO6AZNIZCw7pp0rjeXqZxmvxiWLwHXr1gEwd+5cZs6cec326+/vf0nnGY1G/P397RLfYDBgMBhqXafX6+v1y+Do7T2RO/WRs3J19H7tGb+xsRraviHt6tPGnX5PncWd+uhKuXZsFsLrd4fwt9Gd+HxHCou2nCHDWMb8Daf476bTjOoSzcS+zenfOsz2dB977NceZCw7Lq+6xK0rlysCs7OzCQ8PB+CRRx6pcWq2Okc8OzghIYGCggIyMjKIjo4GYN++fUyZMsXu+xJCCCHqIszfwLQhbXlkUGtWHTrHJ5uT2J6Uy4r96azYn06LMF8m9Innd9fFERkgt5gRdedyRWCrVq0oLCwELn12cBVFURr17GCTyYTZbMZisVgfw1VWhpeXF/7+/tx+++3MmjWLN998k9WrV3Pw4EHGjBnTqO9JCCGEaCy9VsOt3WK4tVsMh9IKWLwtme/3pnEmp4R5Px3j9VXHGdohknv7NmdQuwi09Tw6KDyPy11eWlUAgvXZwVXFWvWvxhSAAFOnTsXHx4dNmzbx4IMP4uPjw8aNGwGYP38+KSkphIWF8ec//5kvv/ySkJCQRu1PCCGEsKfOsUG8ckdXtv1tKPN+141ezYMxW1RWHT7HQwt3cONrv/DPn49yMrPI2akKF+ZyRwKvhYULF152cklERAQ//PDDtU1ICCGEaAA/g467e8dzd+94jmUU8sWOFJbtSSW9oIz31iXy3rpEuscFcUfPZozpHkugweWO/QgncukiMCUlhZdeeol9+/ZRVFTzfzOHDx92UlZCCCGE62kfHcCLYzrxl1HtWX34HN/sOcuG41nsSy1gX2oBc1ceYWBCGC0sCkNNZreZPCMcx6WLwAkTJpCQkMCcOXPkPnpCCCFEHXjrtYzpHsuY7rFkF5WzfF8a3+w5y/7UAtYdywa0fPXaBm7tGsPtPWLp1yoUnVaOEHoily4CDx48yK+//opGI7+cQgghRH2F+xt46IZWPHRDK05mFvL1zhQ+33qKvPJKvtiZwhc7Uwj39+KWLjHc1i2GPi1D6327GeG+XLoIHDVqFFu3bmXAgAHOTkUIIYRwa20jA5g+PIF2FSeI6NSflQfP8ePBDLKLKli09QyLtp4hKtDA6K4x3NYtll7Ng1EUKQibMpcuAn18fBg1ahQjRoy45L6A1Z8kIoQQQoi60SjQr1UoN7aL4qWxXfjtZDYr9qfz86EMzhnL+fi3JD7+LYlmwT7c2s16hLBrsyApCJsgly4CW7duzTPPPOPsNIQQQogmSa/VMLh9JIPbR/LyHV3YdDybFfvTWH34HGfzS/nvxlP8d+Mp4kJ8GNU5mlFdounVPEROGTcRLl0Ezpo1y9kpCCGEEB7BoNMyrFMUwzpFUWYys/5YJsv3p/PLkUxS80r58NfTfPjraSICDIzoFMWoLtH0bx2GXiaVuC2XLgLnzZtX63KDwUBcXBxDhw4lODj42iYlhBBCNHHeei2jusQwqksMpRVmNp7I4qeDGaw5co6swnIWb0tm8bZkAr11DOsUxcjO0QxKiEAnBwjdiksXgbt37+abb76hX79+xMXFkZqayrZt2xgzZgxpaWk8/PDDLFu2jJtvvtnZqQohhBBNko+XlpGdoxnZOZqKSgtbTuXw08EMVh+2TipZtvssy3afxUevZVBCGJEVCgPLTITKfQhdnksXgZWVlXz99dfcdttttmUrV65k4cKFbN68mcWLFzN9+nT27t3rvCSFEEIID+Gl03BTuwhuahfB3HFd2HUmj58OZvDzoQzO5pfy8+FMQMtn/1hPv9ahDOsYxbCOUcSHyr1+XZFLF4GrV6/miy++qLFs5MiRTJw4EYB7772Xxx9/3BmpCSGEEB5Nq1Ho2yqUvq1CeeG2jhw8a+SH/WdZtuMU50rht5M5/HYyhznLD9MhOsBaEHaKoluzIJlY4iJcugjs1KkTr7zyCjNmzECn02E2m3n11Vfp2LEjYH2snFwTKIQQQjiXoih0jQuiQ5QvHUwn6Nj3JjacyGX1kXPsTMrlaEYhRzMKeXfdSSICDAzrGMnQDlHc0DYcHy+ts9P3WC5dBH7yySdMnDiRf/7zn0RGRpKZmUn79u1ZsmQJAOfOnePNN990bpJCCCGEqKFVuB/tYoKZOqg1ecUVrD+eyZrDmWw4nkVWYTmfbU/hs+0peOs13Ng2guGdIrm5QxQRAQZnp+5RXLoIbNeuHTt37iQpKYlz584RHR1NixYtbOv79u1L3759nZihEEIIIa4kxM+LO3rGcUfPOMorzWw7lcvaI+dYcySTs/mlrDlyjjVHzqEoB+gRH8zQDpEM6RBJQriPs1Nv8ly6CKwSGRmJVqtFVVWSk5MBaN68uZOzEkIIIUR9GHRaBrWLYFC7CGbfrnIkvdBWBO5PLWBPcj57kvP516rjRAUYaO2jQXf4HDd1iMbf4BYli1tx6R49cOAADz74IPv37wewPbLGy8uLkpISZ6YmhBBCiEZQFIVOsYF0ig3kj0MTOGcsY+2RTH45mslvJ7M5V1jOuUINWz7bh167n76tQhnS3nqUsHW4nzzGzg5cugh87LHHGDt2LFu2bCEmJob09HRefPFF2rRp4+zUhBBCCGFHUYHeTOzXnIn9mlNmMrP5ZCaf/LyTpAp/zuSW2GYbz115hOahvgxpH8GQDpH0bx2Gt14mlzSESxeBhw4dYtOmTWg01kfSeHt7M3fuXFq3bs2jjz7q5OyEEEII4Qjeei0D24ZTeNzC6NE3klpQwS9HM1l/LJNtp3JJzi3hky1n+GTLGbz1Gm5oE87gDpEMaR9BXIjck7CuXLoIDA4OJj8/n9DQUJo1a8a+ffsIDQ2lqKjI2akJIYQQ4hppFe7Hwze24uEbW1FcXslvJ7NZdyyL9ccySS8oY+3RTNYezQSgXZQ/Q9pHMrBtKJUWJyfu4ly6CJwyZQobNmzgjjvu4KmnnmLgwIFoNBqmTp3q7NSEEEII4QR+Bh0jOkczonM0qqpyNKOQdccyWXc0k11n8jh+rojj54r4YOMpDFotPxbsYXCHKG5qFyFPLrmISxeBM2fOtL2fOnUqI0aMoKioiM6dOzsxKyGEEEK4AkVR6BgTSMeYQJ4Y3Jb8kgo2nshm/dFM1h/PJLfYxJqjWaw5mgVA63A/BrWL4Kb2EfRvFebxN6p2ySKwU6dOV93m8OHD1yATIYQQQriLYF8vbu8ey+3dYykvr2DBVz9ijuzAb4m57ErO41R2Maeyi1m4OQkvnYZ+rUK56fwtaxIi/T1uxrFLFoGnT5+mefPm3HfffQwaNMjjfihCCCGEaByNRiHeH0YPbs1Tw9tjLDOx+WQ2G45ns/F4FmfzS9l0IptNJ7Jh5RFigry5qV0EA1qHUFLp7OyvDZcsAjMzM1m2bBmLFy9m4cKFjB8/nvvuu49u3bo5OzUhhBBCuKFAbz2jusQwqksMqqqSmFXEhuPZbDiexbZTOaQXlPH5jhQ+35GCBi1fndvO4PaRDGoXQddmQWg0Te+AlEsWgQEBAUyaNIlJkyZx7tw5Pv/8cx555BGKi4v54osv6nS6WAghhBCiNoqi0DYygLaRATx8YyvKTGa2nc5lw/kZx6eyi9mVnM+u5HxeX32cUD8vBiaEMyghgoHtwokM8Hb2t2AXLlkEVmcwGPDx8cHb25ucnBwsFpnvLYQQQgj78dZrualdBDe1i2DGqAT+980P6OK68WtiDptP5pBbXMF3e9P4bm8aAJ1jAxnULoKBCeFc1yIEjZPzbyiXLALLy8v5/vvv+d///seePXsYN24cr776Kv3793d2akIIIYRo4kINMLpPHA8MaIXJbGFPcj4bjmey8Xg2B84WcCjNyKE0I++vT8RHr6VvqxBCKxTaZRbRITbYbeYyuGQRGBUVRXR0NPfeey9//etf0emsaW7fvt22Td++fZ2VnhBCCCE8hF6roW+rUPq2CuXZkZBdVM6mE1lsOp7NxhPZZBeVs+F4NqDlm3c2ExPkzcCEcAYmRHBj23BC/Lyc/S1clksWgcHBwZSXl7Nw4UI++eQTVFWtsV5RFE6dOuWk7IQQQgjhqcL9DdzRM447esbZbla9/ug5vt16lNPFOtILyvhyZypf7kxFUaBbsyAGJlhPHfdsHoIrHSN0ySIwKSnJ2SkIIYQQQlxR1c2q24b7EGs8zM3Dh7A7tZBNx7PYdCKbY+cK2ZdawL7UAt5ddxI/Ly39WoUSUq4wwmxBr3du/i5ZBAohhBBCuJvqE0wAzhnLzt+L0FoU5hZX8MuxLEK8NGhd4JYzdikCzWYzL7/8Mi+++KI9wgkhhBBCuL2oQG9+d10cv7suDotF5XC6kfVHz3Hy+FGXmDxil1nNlZWVzJkzxx6hhBBCCCGaHI1GoUuzIB4d1IohserVG1wDdT4S+MQTT1x2XWWlhzxfxc6qJryUlJRgNBrR1+HiAJPJ5NDtPZE79ZGzcnX0fu0Zv7GxGtq+Ie3q08adfk+dxZ36SMay42N56lg2Go0Al0yqrY2i1mUrwNvbm6lTpxIeHn7JusrKSl555RXMZnM9U/VsqampxMfHOzsNIYQQQjQxKSkpxMXFXXGbOheB/fv3569//St33HHHJevKysrw9fWVp3nUk8ViIS0tjZtvvpmdO3fWuV2fPn3YsWNHnbY1Go3Ex8eTkpJCYGBgQ1Nt8urTp87mrFwdvV97xm9srIa2b0i7uraRsVw3Mpadv18Zy1fm6LGsqiqFhYXExsai0Vz5qr86nw5+9tlnCQkJqXWdl5cXH3/8cf2yFGg0GuLi4tDpdPX6RdBqtfX+xQkMDJQ/HFfQkD51Fmfl6uj92jN+Y2M1tH1D2tW3jYzlK5Ox7Pz9yliuG0eO5aCgoDptV+ci8K677rrsOo1Gw6RJk+oaSlxk2rRpDt1eXJ079amzcnX0fu0Zv7GxGtq+Ie3c6XfPHbhTf8pYdnwsGctXVufTwVWqP7rtSuSxbq7BaDQSFBREQUGB2/zvWAhxKRnLQjQNrjSW632fwAkTJnD27FkURSEsLIycnBxUVSUuLs42E0Ue6+Y6DAYDs2bNwmAwODsVIUQjyFgWomlwpbFc7yOBc+bMoaSkhNmzZ+Pj40NpaSlz5szBz8+PF154wVF5CiGEEEIIO6p3ERgeHk5GRgY63YWDiCaTiZiYGLKzs+2eoBBCCCGEsL96PzEkJCSEtWvX1li2fv16goOD7ZWTEEIIIYRwsHpfE/jWW29x9913069fP+Lj40lOTmbHjh0sXrzYEfkJIYQQQggHqPfpYIDs7Gx++OEH0tPTiYmJYfTo0bU+SUQIIYQQQrimBhWBQgghhBDCvdX7mkAhhBBCCOH+pAgUQgghhPBAUgQKIYQQQniges8OBjhz5gxfffUVaWlpxMbGcuedd9KqVSt75yaEEEIIIRyk3kcCV6xYQbdu3di1axdeXl7s3r2bnj17snz5ckfkJ4QQQgghHKDes4O7du3KO++8w+DBg23LNm7cyOOPP86hQ4fsnZ8QQgghhHCAeheBoaGhnDt3Dr1eb1tmMpmIjIwkLy/P7gkKIYQQQgj7q/Pp4NTUVAD69evH7NmzMZlMgLUAnDNnDv369XNMhkIIIYQQwu7qfCQwMDAQo9FIcnIy9957L/v37ycyMpLMzEy6du3K559/TvPmzR2db5NisVhIS0sjICAARVGcnY4QQggh3JyqqhQWFhIbG4tGc+VjfXUuAgMCAigsLLR9TklJsc0Ojo+Pb1zGbi4rK4vJkyezbt064uPjmT9/PkOHDr1qu9TUVI/vOyGEEELYX0pKCnFxcVfcpl63iElJSaF6zRgTE4OqqiQnJwN47JHAadOmERsbS3Z2NqtWrWL8+PEkJiYSEhJyxXYBAQEAfPjhh4wbN67GdZaXYzKZWLVqFSNGjHDI9p7InfrIWbk6er/2jN/YWA1t35B29WnjTr+nzuJOfSRj2fGxPHUsG41G4uPjbTXGldS5CCwuLqZ9+/Zc7sChoiiUlJTUPcsmoqioiO+++46kpCR8fX0ZN24cb7zxBsuXL+fBBx+ssW15eTnl5eW2z1VHVn19ffHx8anTL4NOp6vz9ptOZPPjwXRS0/3ZvfYMGo0WgOpnnqve1lx24UPV8honq88vVC5ddFFMpZZlteeqXCFmbfnU2LaW3Gvd7jIxLRYziTl+pO04Zzt0frXca/sea34/tbW5Wm6Xxrq4/81mC8cL/Cg8kINWq71ibtTyPdSMeWGpRqlarqAo1u01yoX3ZouZw8V+6BON6HQ6lPNxFEW58L6q7SXLrbGoto2m2nsAi9lMeqUvR7LK0estV49/UZ6cf68oChazSpHiS2apir5SveR7Uc6/1yoKGo2CVlHQaqzbaBQFLRoMPr54e3vj5eV1yc/kcuozNhvSpiHxPY079ZGzcnX0fu0Zv7GxGtre3cdy1ZyNulxm1uDTwcJqz549jBw5kszMTNuyJ598El9fX1577bUa286ePZs5c+ZcEmPJkiX4+vraPbe1ZxW+T9baPa4QnkJBtRatXCiUa3uvsRWYV16vVUCrUdEp1vc6Ddb3mvOfz7+3rlervbduq9eAlwYMWvDSqOdfwUuL7b1GLi8WwqOVlJQwceJECgoKCAwMvOK2dT4SeC0mLnz55Zd12k6r1XLXXXc5OJu6KSoquqSTAwMDyc/Pv2TbGTNmMH36dNvnqkO2AMOHD6/z6d3Vq1fXafuY5HxansjiZOJJ2rRpi0ajoUbFr1Z/a/2gqrWuti1XqX0D9aLt6hbz0v9/1LZt9e1qz6n2AFfKqfpys8VCamoqcXFxKEr1i2gvn//VYl42p1rW16fPLBYLGRkZREVFozn/174hfVYzPeteLaqKqp7fXrXmYlGtbSwWCzm5OYSEhIKi2LZTq7WpiqOqF73Huo3l/IKq5ZaLti8uLsb7/H+GGhK/+vsKkwmtVmf7/lX1/PdSLab5/OuVqFi/V8vFHdkojv231FuvIchbT4ivnmBfPcG+Xrb3kQEGYoN9iAv2JjbYB39Dgx4a5bLq8++jszkrV0fv157xGxuroe0b0q4+bRz9MzAajXXets7/AtTzdoINMnHiRAYNGnTVfe3YscNlikB/f/9LOtxoNOLv73/JtgaDAYPBUGscvV5fr1+Gumzft00EPZsH80P5CUYPTXD5fxSdxWQy8cMPyYwe3cXl+8ia6w+MHt3jmv/hsO63r8P+cFjjD7TLHw5rrJFXjaWqKmaLillVsVishWl5RQU//byam4cNQ6PVYrFwfn31ba2vZotqW19hMvHbb5vp278/iqb2dmaLSkWlhQqzBZPZQllFJfsPHqJtQnvMKJjMFkzmattUWmzLykyVpKafwy8olFKThZKKSkoqzJRWmCmuqLQVtGUmC2Wmcs4Vll/xewcI8dXTITqQjjGBdGkWyIA24UQHeTeq/11Bff89dSZn5ero/dozfmNjNbR9Q9rVp42jfgb1OvVd1w2vxalgHx8ffvnll6tud7UJF9dSQkICBQUFZGRkEB0dDcC+ffuYMmWKkzMTQlyNoijotEqNfwi9NCp+egjz86r30YP0QOjbMrReRw9+yD3I6Jta1+noweUKcVVVKa+0UFJhpri8koJSE7nFFeSVVJBXXEFeifXzOWMZZ/NLSc0rpaDURF6JiS2ncthyKscWq22kP7d0iWb8dfE0D7P/ZSpCCNfhUucCTp06Vaftjh8/7uBM6s7f35/bb7+dWbNm8eabb7J69WoOHjzImDFjnJ2aEMJDKIqCt16Lt15LqJ8XdbnxVFF5JUnZxRxJN3I43cjuM3kcOFvAycwi3vnlJO/8cpLhnaL4y8j2JERdfZahEML9uFQRGBERYdftrpX58+czadIkwsLCiIuL48svv6z30cqq2Tx13c5R23sid+ojZ+Xq6P3aM35jYzW0fUPa1aeNvX8GBg20j/SlfaQv47pbz2IUlJrYdCKbr/ek8VtiDqsPn2Pd0Uz+NKwtU25oabsO1VXJWHb+fmUsX/uxfLn4dVHvZwdfK7fcckutk1EMBgNxcXHccccd3HzzzU7IrPHee+893nvvPcxmM8ePH3fY7GAhhGiojBJYnqzhYJ51slTPMAsPtLWgrfPDRoUQzlCf2cEuWwS+8MILfPrpp0yaNIm4uDhSU1NZtGgR99xzD4qi8NFHH/Hcc8/xpz/9ydmpNpjRaCQoKIglS5YwduxYu88Obsj2nsid+khmFDo+lqfOKKyNqqp8uessc1YcwWRW+V2vZrwyrpPLPuZSxrLz9ytj2flj2Wg0Eh4ebt9bxFxrP/74I2vWrCEhIcG27IEHHuDee+9l586d3HXXXYwfP96ti8DqHDE7uDHbeyJ36iOZUej4WJ42o/By7r++FdFBvjyyaCdf7T5L31Zh3N3HtR93KWPZ+fuVsey4vOoSt65c9sB+YmIizZo1q7EsJiaGkydPAtCrVy+ysrKckZoQQniUYZ2ieGZEewDmrjxMdtHVbz8jhHB9LlsEjhgxgvHjx7N161ZSU1PZunUr99xzD6NGjQJg+/bttGjRwslZCiGEZ3h0UGs6xwZiLKvkzTWuc4cGIUTDuezp4I8++ogXX3yRe++9l4yMDGJiYrjjjjtsj11r1qwZ3333nZOztB+ZHew87tRHMqPQ8bE8dUZhXcwY1Y77/28nX+5M5fFBrYgMqP3m987iCn1UVzKWHR/LU8dyk5gd3JTJ7GAhhDtSVXjrkJbThQrDmlkY09zi7JSEEBdpErODAVauXMlXX31FVlYWK1asYMeOHeTn5zN8+HBnp2YXMjvYNbhTH8mMQsfH8tQZhXX148EM/vjFfqICDGz48yC0LnTvQFfpo7qQsez4WJ46lpvE7OB58+axaNEiHnvsMZ5//nkAAgIC+MMf/nBNi8AvvviCmTNnkp6ezs0338zChQsJDQ0FoLS0lKlTp/Ldd98REhLCa6+9xr333tug/cjsYOdzpz6SGYWOj+VpMwrramTXWEKWH+FcYTlbkvIZ0j7SablcjrP7qD5kLDs+lqeN5SYxO/jdd99l9erVTJs2zXZPqvbt23PixIlrlsORI0d49NFH+eyzz8jLy6NFixZMmzbNtn7WrFnk5uZy9uxZPv/8cx5//HGXeqSdEELYm0GnZWwP650bvtqZ6uRshBCN4bJHAs1mM0FBQQC2ItBoNOLv73/NclizZg0jR46kd+/eAPztb3+jRYsWFBcX4+fnx6JFi/j2228JDAxkwIAB3H777Xz++ee8+OKLtcYrLy+nvPzCrRWMRqPtvUwMcR536iO5mNzxsTz1YvL6uLNHDAs3J7HqcAZZBSUE+7rGUTdX6qOrkbHs+FieOpabxMSQP/zhDxQWFvL666/Trl07kpOTmT59On5+fvz73/++Jjm88847bNq0iS+//BKAtLQ0mjVrxp49e2jRogWhoaEUFxfbJnW8/vrrbN++nS+++KLWeLNnz7bNbq5OJoYIIdzNvH1azpYojG9l5sZol/wzIoRHqs/EEJc9Evivf/2LZ555hhYtWlBaWkpUVBSTJk3ilVdeuWY5DB06lJkzZ7J9+3a6d+/OP/7xDxRFoaSkhKKiIrRabY3iLTAwkKKiosvGmzFjBtOnT7d9NhqNxMdb77zvqIke7nShtLO4Ux/JxeSOj+WpF5PXV0ZQEv/46TgnK0N5ZXQ/Z6cDuF4fXYmMZcfH8tSxXP0s49W4bBHo7e1tu5VKVlYW4eHhdn9e5YgRI9i4cWOt62bOnMnMmTN5//33mTRpEjk5OTz11FMEBATQrFkz/P39MZvNlJSU2ArBq52uNhgMGAy131dLJoY4nzv1kVxM7vhYnnYxeX3d0Sue134+zp6UAs4WVNAy3M/ZKdm4Sh/VhYxlx8fytLFcn5guVQRu3779sutOnz5te9+3b1+77G/VqlVX3WbixIlMnDgRgJMnT/LOO+8QFxeHVqslOjqaAwcO0K+f9X/B+/bto3PnznbJTQghXFlkoDcDEyLYcDyLZXvOMn14O2enJISoJ5cqAidMmGB7rygKqampKIpCWFgYOTk5qKpKXFwcp06dumY57d69mx49epCens6jjz7Kc889h1arBeD+++/n73//O5999hmHDh3i+++/Z9u2bdcsNyGEcKY7ezVjw/Esvt6VylNDE1zqnoFCiKtzqSKw+tG+OXPmUFJSwuzZs/Hx8aG0tJQ5c+bg53dtTzk8/vjjHDp0iICAAB577DGeeuop27qXXnqJKVOmEBMTQ0hICPPnz6d9+/YN2o/MDnYed+ojmVHo+FieOqOwIYYkhBHso+dsfikr96VyS5dop+bjin10OTKWHR/LU8dyk5gdHB4eTkZGBjrdhTrVZDIRExNDdna2EzNrPHlsnBCiqfghRcPPqRri/VSmdzUjBwOFcK4mMTs4JCSEtWvXMnLkSNuy9evXExwc7Lyk7GTatGlMmzbN9tg4kNnBzuROfSQzCh0fy1NnFDZUv+IKfn1jEynFZkyxPbijZ6zTcnHVPqqNjGXHx/LUsdwkZge/9dZb3H333fTr14/4+HiSk5PZsWMHixcvdnZqDiGzg53PnfpIZhQ6PpanzShsqOhgPX+4OYHXfjrKqz8fZ1D7KKKDvJ2ak6v10ZXIWHZ8LE8by03isXGjR48mMTGR+++/n3bt2vHAAw9w8uRJbr31VmenJoQQoprf39iSjjGB5BZX8PjiXRSXVzo7JSFEHbjskUCwXhf44IMPOjuNa0ImhjiPO/WRXEzu+FieejF5Y2iAtyd05a7/bGNPcj4TF2zlnXu6E3ONjwi6ch9dTMay42N56lh224khEyZMuOwj16qbOHEiS5YsuQYZOYZMDBFCNEVnCuH9I1pKzQp+OpXbmlvoF6milckiQlwz9ZkY4lJFoI+PD59++ilXS+mRRx4hPz//2iTlQFUTQ5YsWcLYsWNlYoiTuFMfycXkjo/lqReT20tybglPfr6Pw+mFAMQEeTP+umbc1jWalmG+dn/yU3Xu0kcgY/laxPLUsWw0GgkPD3e/2cH9+vVj/vz5ddrOXiorK5kwYQJbt24lLS2N9PR0oqMv3Ovq9OnTPProo2zfvh0/Pz/+8Ic/MGPGDNv6hQsXMnPmTIxGI3fddRcffPABXl5e9c5DJoY4nzv1kVxM7vhYnnYxub20iQri22k3snjbGd755STpBWW8/Usib/+SSPNQX25oG063uCC6xAbRLtofg05r9xxcvY+qk7Hs+FieNpbd9rFx69evd8p+Bw0axLPPPsv1119/ybonn3yS1q1bs3LlSlJTU7nhhhvo27cvQ4cO5cCBA0yfPp1Vq1aRkJDAuHHjmDt3Li+99JITvgshhHANXjoND93Qinv7Nuengxks3ZXC9tO5JOeWkLw9mc/OPyFUUSA2yIfmob60CPOlWbAPEQEGIgMNRAZ4ExlgIMzfIE8iEcJBXKoIdAadTlfjKSAXO3PmDM888wx6vZ5WrVpx4403cvjwYYYOHcqSJUuYMGECvXv3BuCFF15gypQpUgQKIQTgrdcyrmczxvVsRlF5JVsSc9h1Jo+DZws4mFZAfomJs/mlnM0vZcupnFpjaBQI9fMizM9AeID1Nczfi3B/A+H+VcsNhPl5EWRw2RteCOGSPL4IvJpp06bx+eefM2DAAJKTk9m6dSsvvPACAIcPH65xM+vu3btz+vRpSktL8fHxuSRWeXk55eXlts/Vb+gos4Odx536SGYUOj6Wp84odDSDBgYnhDI4IRQAVVXJLa4gObeUM7klnMkpIcNYTlZROVmF1q+c4gosKmQXVZBdVMGxc3XZj5Z/Hd1ImL+BcD8vwvy9CPWzFo1hfl60CPWlbaQf3nr7n4auDxnLjo/lqWPZbWcHO5uiKJdcE7h//37uv/9+Dh8+jNlsZvbs2cyaNQuAoUOH8tBDD3H//fcD1o738vIiMzOTiIiIS+LPnj2bOXPmXLJcZgcLIcSlzCoUmaxfhSaFwqu8r1TrdtpYQSXcG1oHqLQLUukQrOLvHpcQCnFVTeKxcfYyYsQINm7cWOu6mTNnMnPmzMu2NZvNjB49mr/+9a88/vjjpKamctttt9G5c2d+97vf4e/vX+NoXtV7f3//WuPNmDGD6dOn19g+Pj4ekMfGOZM79ZHMKHR8LE+dUejuVFUlv7iM739eR4cefSgot5BTbD2CmFtcQU5RBVlF5SRmFZNXYiKrDLLKFLZlgU6jMKxjJI/f1IpOMVf+o2kvMpYdH8tTx3KTeGxcaWkpL774IkuXLiU3Nxej0cjPP//MkSNHePrpp+scZ9WqVQ3OITc3l7S0NB5//HF0Oh0tW7Zk3LhxrFu3jt/97nd06tSJAwcO2Lbft28frVq1qvVUMIDBYMBgMNS6TmYHO5879ZHMKHR8LE+bUdgUhCgKET7Qr03EZftIVVWyiso5lGZkS2IOG49ncTSjkJ8OnWPV4XM8eH1L/ja6I166a3N9oYxlx8fytLHcJB4b98QTT5Cens6KFSvQaq3XbnTr1o3//Oc/dt9XeXk5ZWVll7yPiIggPj6eBQsWYLFYSE1N5bvvvqNr166A9abVX375Jbt376agoICXX37ZdmpYCCGE61EUhcgAb4a0j+Rvozvy09OD+PGpgdzWLQaLCgs3J/H7hTuoqLQ4O1UhHM5li8CVK1fy0Ucf0aVLF9vNRWNiYkhPT7f7vtq3b287eteyZcsaR/K++uorFi1aREhICH369GHo0KFMnToVgK5du/L6668zZswY4uLiiI+P5/nnn7d7fkIIIRynY0wg707sxf9N7o2fl5ZfT2Yze/khZ6clhMO57Ong4OBgsrKyiIuLsy07ffo0sbGxdt9XUlLSZdf16dOHzZs3X3b95MmTmTx5cqNzkNnBzuNOfSQzCh0fy1NnFDYFje2jgW1Cefue7kxZtJsl25IZ2y2aXs2D7ZjhBTKWHR/LU8dyk5gd/N577/Hhhx/y/PPP8/DDD7N48WLmzp3LQw89xKOPPurs9BpFnh0shBCu67NEDVszNbQOUHmqi9nZ6QhRL2777OCLLV26lP/7v/8jOTmZZs2a8fDDDzNhwgRnp2U38uxg1+BOfSQzCh0fy1NnFDYF9uqjDGMZN7+xCZNZ5dvH+9M51v4zhmUsOz6Wp45lt3128MXGjx/P+PHjnZ3GNSGzg53PnfpIZhQ6PpanzShsShrbR/FhekZ0imblgXR+OpxFjxZhdsyuJhnLjo/laWO5ScwOfvPNN9m3bx8A27ZtIyEhgQ4dOrBlyxYnZyaEEKKpG9E5CoD1xzKdnIkQjuOyRwLnzZvHQw89BMAzzzzD008/jb+/P3/84x/ZsWOHk7OzP5kY4jzu1EdyMbnjY3nqxeRNgT37qH/LYBQFjmYUkpJTSHSgd6NjVidj2fGxPHUsN4mJIYGBgRiNRvLy8mjbti1ZWVloNBqCgoIoKChwdnqNIhNDhBDC9b1xQMuZIoV725jpH+mSfyqFuESTeGxc27Zt+fzzzzl27BjDhg1Do9GQm5uLl5eXs1NrtGnTpjFt2jTbxBCQx8Y5kzv1kVxM7vhYnnoxeVNg7z46rDvBB5tOYwpqzujRne2Q4QUylh0fy1PHcpN4bNz777/P008/jZeXFx9++CEAP/30EyNHjrTrfo4dO8YzzzzD1q1bURSFkSNH8s477xASEgJA586dOXPmjG37kpIS/vnPf/LMM88AsHDhQmbOnInRaOSuu+7igw8+aFChKhNDnM+d+kguJnd8LE+7mLwpsVcf9W4VxgebTrM3tcBhfS5j2fGxPG0sN4mJIf369WPLli1s2LCBhIQEwPqYtv/973923U9BQQF33303iYmJJCUlUVFRwZ///Gfb+kOHDlFUVERRURFnzpxBr9czduxYAA4cOMD06dP59ttvSUlJISkpiblz59o1PyGEEM5RdaPok5lFFJTItZii6XHZI4EA+/bt47fffiMnJ4fqly6++OKLdttH37596du3r+3z1KlTmT59eq3bfvnll/Tq1Yu2bdsCsGTJEiZMmEDv3r0BeOGFF5gyZQovvfSS3fITQgjhHGH+BlqG+ZKUU8LulDyGtI90dkpC2JXLFoHvvvsuM2fOZPTo0XzzzTfccccdrFy50nYUzlE2b95M5861X/uxePFi7rvvPtvnw4cP1zg93b17d06fPk1paWmN5w9XKS8vp7y83Pa5+nl7mR3sPO7URzKj0PGxPHVGYVPgiD7qGR9EUk4JO0/ncGPrELvFlbHs+FieOpabxOzgVq1a8fXXX9OrVy+Cg4PJz89n06ZNvP322yxdutQh+9y7dy9Dhw5l48aNlxSCSUlJtGvXjtTUVCIjrf8bHDp0KA899BD3338/YO14Ly8vMjMziYiIuCT+7NmzmTNnziXLZXawEEK4pl8zFJae1tIuyMK0ThZnpyPEVTWJ2cG5ubn06tULAC8vLyoqKhg4cCC33XZbveKMGDGCjRs31rpu5syZzJw5E4DTp08zZswYPvroo1qPBC5ZsoRhw4bZCkAAf3//Gkfzqt77+/vXur8ZM2bUONVsNBqJj48HZHawM7lTH8mMQsfH8tQZhU2BI/qodUYhS9/bwtlSPSNH3YxWo9glroxlx8fy1LHcJGYHt2/fnr1799KjRw969OjBa6+9RlBQUK1H2K5k1apVV90mIyOD4cOH88ILLzBu3Lhat1myZAkzZsyosaxTp04cOHDA9nnfvn20atWq1lPBAAaDAYPBUOs6mR3sfO7URzKj0PGxPG1GYVNizz7q1CwEf4OOovJKTueW0THGvs8RlrHs+FieNpabxOzgt99+G4vFeuj9zTffZN26dSxatIj//ve/dt1PQUEBI0eO5MEHH+SRRx6pdZu9e/eSlJR0SYE4ceJEvvzyS3bv3k1BQQEvv/yy7dSwEEII96fVKHSPt97PddeZPCdnI4R9ueyRwP79+9ved+rUiV9++cUh+/n222/Zv38/iYmJzJs3z7a8qKjI9n7x4sWMHTsWPz+/Gm27du3K66+/zpgxY2z3CXz++ecblIdMDHEed+ojuZjc8bE89WLypsBRfdQjLojfTuawKymHCdfF2iWmjGXHx/LUsdwkJoYAJCcnc/DgwRoFGcDdd9/tpIzsQx4bJ4QQ7uNwnsIHR7WEeKm82MuMnS4LFMIh6jMxxGWLwHnz5jF79my6du1ao0BSFMVhRwWvtarHxi1ZsoSxY8fKxBAncac+kovJHR/LUy8mbwoc1UelFWaun7ee4nIz//t9b/q1Cm10TBnLjo/lqWPZaDQSHh7u3rOD//Wvf7Fjx47L3rOvqZGJIc7nTn0kF5M7PpanXUzelNi7j/R6PWO6xfL5jhSW7U3nxnZRdo0tY9mxsTxtLDeJiSH+/v60adPG2WkIIYQQjO9tvZ3X93vTOJlZ6ORshLAPlyoCMzMzbV8zZsxgypQpHDp0qMbyzMxMZ6cphBDCw1zXIoRhHaOotKg89/UByivNzk5JiEZzqdPB0dHRKIpS4znBS5YsqbGNoiiYzU1v8MnsYOdxpz6SGYWOj+WpMwqbAkf30XOjEthyKpudZ/KY9r9d/Ot3XfEzNOzPqIxlx8fy1LHcZGYHN1UyO1gIIdzT0XyF/x7VYFYVgr1URsdb6BWuonep82rCk7n17GBVVVmwYAEHDx6kR48e/P73v3d2Sg4js4Ndgzv1kcwodHwsT51R2BRcqz7anZzPn77cT1pBGQBBPjoGJYRzfeswujYLpFW4HwbdlatCGcuOj+WpY9mtZwc/88wzfPbZZwwcOJDnn3+eU6dOMXfuXIftr6ioiFGjRnHkyBEsFgu9evXivffeo0OHDrZtPv74Y1555RXS0tJo3rw53333He3atQNg4cKFzJw503az6A8++AAvL6965yGzg53PnfpIZhQ6PpanzShsShzdR/3aRPDLnwezcHMSn25OIq2gjOX7M1i+PwOwPmWkZZgvzUJ8iQ40EB3kQ1SggWAfL4J89AT66PDVKxSbQKPVyVh2cCxPG8v1ielyReCXX37Jxo0bSUhI4OjRo9x2220OLQINBgMLFiygffv2ALz//vtMmjSJbdu2AbB8+XJef/11vv32Wzp16sSpU6cICQkB4MCBA0yfPp1Vq1aRkJDAuHHjmDt3Li+99JLD8hVCCOF83notj93UhqkDW7MjKZffTmaz7VQuRzKMFJZVkphVTGJW8VWi6PjbztV4aTV46zX4eGnx1mvx0VtfvfUafPRaDDotOq2CXqtBp1HQ6zToNQo6rQa9VoNeq6DTaNBpFby01led1rqNVqOgUc6/ahRUs5m9OQr6w5no9Tq0Gi6sV6ptq4BGo6A9v0yjsRa3WkVBOb+N9b11OwVQFKisrKSgArIKy9HrLWgU67X8Ctb9oFi3q/psfX/+9fz7qjYWi4prnatselyuCDQajSQkJADQoUMHcnNzHbo/vV5Px44dATCbzWg0Gk6fPm1b//e//51///vftvsVVr9tzZIlS5gwYQK9e/cG4IUXXmDKlCmXLQLLy8spLy+3fTYajbb3MjHEedypj+RicsfH8tSLyZsCZ/XRdfGBXBcfCENao6oqGcZyErOKyTCWkVFQxrnCcjKN5RjLTBhLKykoM2EsNVFqsgBQYbZQYbZgLKu8Rhlr+fj4XgfG1/Hirg12i/X01lWXFI5QvYisVmCeLyirnupSadIyZ986ayGqnG8D1kbnX6qKVMAWu6xUyz+PbLS1s257YX8Xtq36pFJSrOWdk7/VLGy5sPGFB82o6Mo1DB8uE0Mu4efnx/r1620zhIcPH86aNWtqzBju27ev3ffbrVs32ynhefPm8cwzz2A2m/H29ua1117jjTfeQK/X89BDD/HCCy+gKApjx45l5MiRPPHEEwDk5OQQHh5OSUkJPj4+l+xj9uzZzJkz55LlMjFECCE8T6UFysxgskCFxfpqskCFWbF9rrBYtzOr1b4sYFaVmstsy2t+qSpYVLBgfa+iWD+roFLzteq9etH6qrYWaolX1eb8F7bP8my9K4nwVpnZ0zF3OqnPxBCXOxIYERFR49nAoaGhNT4risKpU6fsvt/9+/dTWlrK//73P5o1awbAuXPnqKysZO3atRw8eBCj0cgtt9xCfHw8Dz30EEVFRTU6uOp9UVFRrUXgjBkzmD59uu2z0WgkPt56A1JHTfSQi8mvzp36SC4md3wsT72YvClwpz6qyvWOkU17LKuqai0oVdVWVGJ7r14oIqttYy00VUwmE+s3bGDgoEHodPoa69VaY6g1CtMKk4nNmzdz/fXXo9Hqzi+/cIr5ks/nY1RWVrJ9+3b69OmLVqc7v+2FfVu3rXmq2mSqZOeuXVx33XVotdpLtqXaPkymSg7t2+3QiSF15XJFYFJSkl3jjRgxgo0bN9a6bubMmcycOdP22cfHhylTphATE8ORI0dshdxf//pXgoODCQ4OZtq0afzwww889NBD+Pv71+jsqvf+/v617s9gMGAwGGpdJxNDnM+d+kgmhjg+lqddTN6UuFMfyVi+PJPJRIAeYkP8G/wfutO+0KlZSL3/Q5d5BPq0Dq/Xf+iMJ1UGtous03/oypNkYsg1sWrVqnptr6oqRUVFpKen06lTJ2JjYy9ZX6VTp04cOHDA9nnfvn20atWq1qOAl9sXWA/dGo3GOh/Zc+T2nsid+shZuTp6v/aM39hYDW3fkHb1aeNOv6fO4k59JGPZ8bE8dSxXHZCq09V+qofbu3evumHDBrW8vFwtKipS//rXv6rNmjVTKyoqVFVV1b/97W/qrbfeqhqNRvXs2bNqly5d1I8//lhVVVXdv3+/Ghoaqu7atUvNz89Xb775ZvWFF16o875TUlKqX0ohX/IlX/IlX/IlX/Jll6+UlJSr1iFN/kjg1ZhMJp566ilOnjyJl5cXffr04YcffrBV57NmzWLatGnExcXh7+/PlClTmDRpEgBdu3bl9ddfZ8yYMbb7BD7//PN13ndsbCwpKSncfPPN7Ny5s87t+vTpw44dO+q0bdV1hykpKVe9QNST1adPnc1ZuTp6v/aM39hYDW3fkHZ1bSNjuW5kLDt/vzKWr8zRY1lVVQoLCy85k1kbjy8Ce/fuzZ49ey673svLiwULFrBgwYJa10+ePJnJkyc3aN8ajYa4uDh0Ol29fhG0Wm29f3ECAwPlD8cVNKRPncVZuTp6v/aM39hYDW3fkHb1bSNj+cpkLDt/vzKW68aRYzkoKKhO28nTDl3AtGnTHLq9uDp36lNn5ero/dozfmNjNbR9Q9q50++eO3Cn/pSx7PhYMpavzOXuEyjsq+r5xHW5X5AQwnXJWBaiaXClsSxHAps4g8HArFmzLntrGiGEe5CxLETT4EpjWY4ECiGEEEJ4IDkSKIQQQgjhgaQIFEIIIYTwQFIECiGEEEJ4ICkChRBCCCE8kBSBQgghhBAeSIpAIYQQQggPJEWgEEIIIYQHkiJQCCGEEMIDSREohBBCCOGBpAgUQgghhPBAUgQKIYQQQnggKQKFEEIIITyQFIFCCCGEEB5I5+wEPJnFYiEtLY2AgAAURXF2OkIIIYRwc6qqUlhYSGxsLBrNlY/1SRHoBO+99x7vvfceFRUVJCYmOjsdIYQQQjQxKSkpxMXFXXEbRVVV9RrlIy5SUFBAcHAwH374ISNHjkSnu3pNXllZyaZNmxg4cKBDtvdE7tRHzsrV0fu1Z/zGxmpo+4a0q08bd/o9dRZ36iMZy46P5aljubCwkHbt2pGfn09QUNAVt5Ui0AmqjgSazWaOHz/OkiVL8PX1dXZaQghRJycKFFadVbCocHOsSucQ+TMihKsoKSlh4sSJFBQUEBgYeMVtXfu/SkIIIVzK1kyFzxM1qFivY040qkxqZ6FnmBSCQrgbORLoREajkaCgIJYsWcKtt95a59O769atY8iQIQ7Z3hO5Ux85K1dH79ee8Rsbq6HtG9KuPm1c4fd0X2oBDyzcQ6VFZWy3aCyqyvID5/DWafjmsT60CHXuGQ1X6KO6krHs+FieOpaNRiMxMTF1OhIoRaATyOlgIYS7MVbAvw5oKahQ6B5q4aF2FlTg/SMajhdoaBto4Q+dLMiNDoRwrvqcDpYi0InkSKBrcKc+kqMHjo/lqUcPrsRktvD7RXvZlVxA63Bfvnj4OvwM1hxS80q5/f3tlFVamHdHJ27rGnVNc6tOxrLz9ytj2fljWY4Eujg5EiiEcCdfndKw6ZwGg1blma5monxqrl+VqrAyRUugXuX5nma8tc7JUwghRwLdRvUjgWPHjkWv11+1jclkYvXq1QwfPtwh23sid+ojZ+Xq6P3aM35jYzW0fUPa1aeNs372n+1I4cXvj6Ao8P69PRjaMfKSbcorLdz6zmbO5Jbw8A0teG5U+2uWX3WO6KN9qQVsPJHN+OuaER3obZeYIGP5WsTy1LFsNBoJDw+vUxEoj40TQghRq00ns3lpxVEA/jS0ba0FIIBBp2HmrdbC75MtyZzMLLpmOTrSkfRC7v1wO2//ksg9C7ZTVF7p7JSEsCuXPhJYWlrKiy++yNKlS8nNzcVoNPLzzz9z5MgRnn76aWen12ByOlgI4epOFCh8cESDSVXoFWbhwYSrT/pYcFTDwTwN7YIsPNHR/SeJfHRMw/7cC8dKbo03MyLOZf9kCgE0odPBDz30ECaTieeee46BAweSl5dHeno6Q4YM4ejRo85Or9HkdLBrcKc+klNIjo/lqaeQqvv1ZA7TPttLSYWZwe3Cee/eHnjprn7iKDm3hFve2UxFpYW3J3Tjli7RDs3zYvbso7ySCm6YtwGTWWXqjS1Z8GsSUQEG1j0zEL228SfRZCw7PpanjuUmczp45cqVfPTRR3Tp0gXl/H8pY2JiSE9Pd3JmQgjRNC3dlcqURbspqTBzY9sw3r2ne50KQIDmob48OrAlAK/8eIySCvc9ffrDwXOYzCodowN4amhbIvy9OFdYzk+Hzjk7NSHsxqWPBLZr145ffvmFuLg4QkNDyc3N5fTp04wePZojR444O70Gk9PBQghXU2GGZUkatmRaC77e4RbubWOhjvVfjTj/2Kclt1xhaKyF21tYHJCt4/37gJakIoVxLcwMiVX5KUXhx1QtLf1V/tTV7Oz0hLisJvPYuKeeeooxY8bw/PPPYzabWbFiBXPnznXr6wEBpk2bxrRp02yngwGHnd51p1OdzuJOfSSnkBwfyxNPIe06k8fz3x0mMasYRYEnB7fhD0Na287A1FdA20weW7KXdekaHr6lH31ahtg138uxVx+dySkhacuvaBR4dsLNRAYY6FNYzprXN5JUBPHdb6BrsyCXyNXV9itj2TVOB9eVSxeB06ZNIzIyko8++oi4uDjefvtt/vSnPzFhwgRnp2Z3er2+Xr8Mjt7eE7lTHzkrV0fv157xGxuroe0b0q4+bezZRzlF5cz76Rhf7EwBIDLAwJsTejCgbXij4o7q1ow7j2axbPdZnv36ID88NZAgn2v3+9rYPlp+wHrK98aECJqF+gMQG6rn1q4xfLs3jf9tT+WNuxvXR/bK1VX3K2PZcXnVJW5duXQRCDB+/HjGjx/v7DSEEKLJKCg18eGmU/zfr6cprrCe2pzQO57nbulAiJ+XXfbx0tgu7EzKIzm3hOe/OcA79/Zs8JHFa8liUflqVyoAd/VqVmPd5Bta8e3eNFbsS2fGLR2JCDA4I0Uh7MblisB58+bVabu//OUvDs7k2jKZTPXazlHbeyJ36iNn5ero/dozfmNjNbR9Q9rVp409+uhMbgmLtibz1e6zFJdbi7/OsQG8MLoD17UIaXT86gwaeP13Xbjnwx2s2J/Odc2DuL9fc7vEvhx79NHWU7mczS/F36Dj5nZhNWJ1jvaje1wQ+1ILeH/dCWbc0vCbYstYdnyspjyW6xK/LlxuYshDDz1ke19SUsI333xDv379iI+PJyUlhe3bt3PnnXfy2WefOTHLxpGJIUKIa6XCDAfzFHZkKRzJV1CxHo2L9lEZHW+hW6jq0Pv5/ZKm8N0ZLRpF5YmOFhKCXOpPziX+d0LDjmwNAyItTGhz6aSWI/kK/zmiRadYH5EXKgcDhYtpMvcJvOuuu3jwwQcZO3asbdn333/Pp59+yldffeXEzOxD7hPoGtypj+RicsfHagoXk5dUVLI5MZdVRzJZdfic7agfwE0J4Uy6vjk3tAlDo3H86VlVVZm+9AArDmQQ4qtn2WP9iQvxuXrDBmjsz95YauLGf26g1GThy0f60jM++JJtVFXl/v/byfakPO7oEcO8u7o6JdeGkrHsmHauNjGkrvcJdLnTwdWtWbOGL774osay0aNH88ADDzgpo9pNnz6dHTt20LNnT95+++0GxZCJIc7nTn0kF5M7PpY7XUyuqionM4vYeiqHtUcz2ZyYQ0XlhaNYcSE+3NGzGXf0bEbrCP965WYP/xzfg6TczRw8a+SR/+3hq8cGEOTrer9HX29JptRkoUN0AH1ahV/2GsYZoztyx/zNfLM3nd/1bs4NjZhII2PZ8bHcaSzbQ31iuvTNort06cLcuXOprLTecLSyspJXXnmFzp07OzmzC3bv3k1RURGbNm3CZDKxY8cOZ6ckhGjiyivNHEgt4P9+Pc1ji3Zx3dw1DP/3Rl747hDrj2VRUWkhLsSHyQNasvSx69n47BCeGdHeKQUggI+Xlv8+0JuoQAMnMouY8ukOykyuda+9SrOFTzafAeD3N7S64iSWns1DeKB/CwCeW7afYnmmsHBTLn0kcNGiRUycOJHXX3+dyMhIMjMz6dSpE4sXL3Z2ajZbtmxh2LBhAAwbNoytW7fSp08fJ2clhGgqisorOXGukH0pefycqOGD+Vs4kVmEyVzzSh5vvYae8SEMbBfOsI5RJET6u9Rs3NhgHz75fV/G/2cLO5Ly+ONne3j//uvQXoNT0nXx06EMzuaXEubnxe09Yq+6/V9GtWftkXOk5JYyY9kB3rqnh0v1txB14dJFYOvWrdm6dSvJycmkp6cTExND8+aOm102a9Ysli5dytGjR1myZAn33HOPbV1WVhaTJ09m3bp1xMfHM3/+fIYOHUp+fj5t2rQBICgoiEOHDjksPyFE01RptpBZXEpSdjGJWUUkZhZxMquIxMxiMoxl1bbUAIUABPno6REfTL/WofRrFUrXZsF1frybs3SIDmTBg7158KPtrDp8jhe+O8jL47o4vXiyWFTeWXsSgPv7t8Bbr71qmwBvPW/d25N7/ruV7/el0SM+mN/f2MrRqQphVy5dBGZmZgLg7e1Nq1ataiyLjIy0+/4SEhJ46623eOGFFy5ZN23aNGJjY8nOzmbVqlWMHz+exMREgoODbXfnNhqNBAcH2z0vIYR7KyqvJKuwnIyCMs7ml5KaV0JqXikpucWcSNMyfdtazJbLz9GLCDDQMdof75Isbh/Yk+7NQ4kL8XF68dQQ/VuH8eY9PZi2ZDdLtiUT4qvn2ZEdnJrTDwfTOXaukABvHb+/oe6FXJ+Wocy4pQNzVx7h7ysPExlo4LZuVz+KKISrcOkiMDo6GkVRqJrAXP0fPLPZ/teT3H///QC8/PLLNZYXFRXx3XffkZSUhK+vL+PGjeONN95g+fLlXH/99XzwwQfcfffdrFmzhsmTJ182fnl5OeXl5bbP1R/tIvcJdB536iO5t5jjY9WlfaXZQkFZJQUlJgpKTeSVmsgylrIlVWH78kPkFFeSXVROZmE52UUVlFRc6d8rBVDRaxWaBfvQJsKP1uF+1tfz74N89LYZhTe3C0Wv19uulXZHwzuEM/u2jsxafoT31iXi76Vlyo0tGx23IT97s0Xl36uPA/DQgBb46uvX/sF+cZzOKmLx9hT+9MVefHQKgxKuPlFExrLjY8l9Aq/OpW8Rc7GMjAzmzp1Lv379HDpDePDgwTz22GO208F79uxh5MiRtqOQAE8++SS+vr689tprPP300+zatYvu3bvz7rvvXjbu7NmzmTNnziXL5T6BQlw7qgomC5SZrV/lZigzK+dfay4rrYTiSiiphOJKhZLz70vN9T8CZ9CoBHpBqEEl1HDpa6AXuMjlcdfM6rMKK5Ktp17vaW3m+qhr/+doe5bC4pNafLUqL/Yy49OAQyMWFT49oWFPjgatovJAWws9w93mT6toYupzn0CXPhJ4sejoaN544w1at259TW8TU1RUdElHBgYGkp+fD8Cbb75ZpzgzZsxg+vTpLFiwgAULFmA2mzl58qSdsxXCvVhUMKtgtkClCpUW6+fK88vMKlRYwGRRMFmsBVxF1au56vOl60zn21SYrcuqirtyM1iwT7Xlo1Xx1YGvDvz1KoF6CPCCIL1KgBcEnl8W6AWGq19m5nGGxaqUVFr4JU3DF6c0eOss9Ay7dsVTuRlWnLFeR3lzM0uDCkCwFu/3t7XekmdPjoZPTmjIr7AwOMaxN+IWorHcqggE2LZt2zU/DeLv71/j1C1YT+X6+9fvdgsGgwGDwYC3tzcajQY3OggrrkBVQeX8l3rRax2WWS6KYzn/SrX16lWWWWzxlBr7MKsXXi3nt6vxxYUiTFUvvLeuUy7d/qI2Fy+z1CjiFFthZ66luKt6tVdBVl8KKl5a8K72ZdCq51/BWwM+OvDVqfjprYWen049/2pdp5U/8I2iKHB7cwullbAlU8OiExq8NRY6hlybfxvXnNVQYFIIM6gMjmncPnUaeDDBgq8Ofjun4dszWpKLLNzTxiL/ARAuy6WLwI4dO9a4DrCkpIScnBzeeuuta5pHQkICBQUFZGRkEB0dDcC+ffuYMmVKg+JNmzaNadOm2Z4YAjBkyBB0uqv/OCorK1m3bl2dtl9+IIPF21MpKDBeciSzekFh/axWe19zHVdYV70dV1jnCjFrbltzXWVlJVqtrtaYVZ9tRdv5lRZV5QrX8osG0mkU9FoFvVZjezXoNHjrNXjrtNZXvfbCMr0Wb92FVy8tnDl1km6dO+Jr0J9fp8HfoMPPoLW+emnx8dKiqeUwTX3GWGPb1adNQ/NyB0MtKs8uO8xPhzNZeFLPh/d3p1fz4HrHqU8fnc0v5dnt2wELs8Z2ZViHiIYlf5ERqsriHWeZt+oku3M0FGj8eXVsJzrHBjQ4V3ty9H7tGb+xsTx1LF980OpKXPqawA0bNtT47OfnR7t27a56jruhTCYTZrOZESNGMHXqVMaPH4+XlxcajYbx48cTGhrKm2++yerVq5k8eTKJiYmEhITUez/X6tnBa88qfJ8s/wV1RQrW00QK57+UC69VN/m40jLN+VeqrVdqWaZRqn0BGkVFq1jXa2ssr+WrluVaQDkf43Lb6jSgOx9fe/69TlFt72ss11g/684vq4orPE+lBT48puFIvgYfrcofOpuJ83Pc/j4+pmFvroaEQAvTOlnsfto20QgLj2sxmhQ0qAyPUxnRzIKL38VHNAFN5tnB//rXv/jzn/98yfI33niD6dOn231/kydP5pNPPqmxbN26dQwePJisrCwmTZrE+vXriYuLY/78+babRDdU9WcH33rrrXY/Engmt4TjGYUcOHCAbt26otVoaxQKVf/qVS8cLryvuY4rrKutHVdYV70dV1innP908T/Ota2rGfNK66xtq8c0m81s27qV/v37o9PpLtsOFGvxpYBGUWyvGuVCTNtn23rre01Vm1r6qD7k6IHjY3nq0QNXUGoyM/V/+9idUkCYn55Fk3vRMqzu/0Guax9tT8pj8qd70Siw7JE+tItyzJNUcosr+PuPx/n5cBYACZF+/G1kAv1ahchYvgaxPHUsG41GYmJi3L8IDAwMrPWwZlhYGDk5OU7IyD6u1ZFAIYRwNyWV8O4hLWdLFEK8VJ7qYibEYL/4ZhX+tV9LWonCjVEWxre2XL1RI+3JVlh6WkNxpfU/gD1CLYxtaSHUjt+XEFXcfnbwl19+CVir5aVLl9aYQJGUlERoaKizUrOLa3VNYEO290Tu1Edy9MDxsTz16IEruXFQBQ8s3E1STimfnAlk0eSehPp5XbVdXfro851nSSs5TqC3jtce6EeI79XjNtZw4JESE+9uOM3nO8+yN1fDEaOO6yMqmTX+eqKCr91BABnLjmnnSmPZ7a8JHDJkCACbNm1i4MCBtuWKohAZGcmTTz7JDTfc4Kz0Gk2OBAohxJXllsNbB7XkVyjE+ak82dmMdyMvcS42wdy9WkoqFe5qaWZQI2cEN0RaMSxL0nDCaL04UK9RGRilMrSZBX/9NU9HNEFN5prAuXPnMnPmTGen4TCOviawIdt7InfqIzkS6PhYnnr0wBWdzi7hgYW7yS0xMapTJK/f1emK19RerY/m/nicJTvOkhDpx9eP9Eancc4sDVVV2XQim3+sOMCZIuv346PXcEePGB7oF0eLUMcdFJCx7Jh2rjSW3fqawOzsbMLDrY/cqf6Ejos54tnB14ocCRRCiLo5XQhvH9JiURXuaGlu8P380krgn/u0WFB4opOZ9kHO/9OnqnA4X+HHFA0pxVWT41S6hqoMibHQKuDSiXFCXI1bHwkMCAigsLAQAI1GU+PZwVUURXHIs4OvtepHAseOHYtef/VzAVXPDx0+fLhDtvdE7tRHzsrV0fu1Z/zGxmpo+4a0q08bd/o9tbdPtybz95VH0WkUFv2+N71b1H5rriv10eSFu/gtMYfhHSOZP7HHNcj6yqrnqtPp2HIql//bfIYNx7Nt23SKCWBC7zjGdIshwNs+R4xkLDumnSuNZaPRSHh4eJ2KQJe7Y1FVAQhgsVgwm81YLJYaX02hABRCCFE3D/SL57au0VRaVP781QGKyuv31Kgtp3L4LTEHvVbhuVHtHJRlwymKwoA2YXz4QC9+eHIAd1/XDC+dhsPphcxafoQb/7mB5789xIGzBc5OVTQxLnck0BPI6WAhhKifcjO8tk9LTrnCgCgLE+p4axdVhX8f1HKmSGFglIXfXYNbwthDsQm2ZylsPqchs+zCOeFmviq9IyxcF64S5PiJzcINufXp4OpSUlJ46aWX2LdvH0VFRTXWHT582ElZ2Y+cDnYN7tRHcjrY8bE89RSSO9h6KpcHPt4JwMLJ13FDm7Aa62vro7VHMnlsyV689Rp++dNAIgJc4+Z8df15qqrKjjN5fL4jlZ8OncNktv7J1ihwfeswxvWIYXjHSPwMdTtdLGPZMe1caSzX53SwS08xmzBhAgkJCcyZM6fJHynT6/X1+mVw9PaeyJ36yFm5Onq/9ozf2FgNbd+QdvVp406/p/Y2sH0UD/RvwaKtZ5iz4ig/Pz0Ir1qew1bVR6qq8u6GUwA8dEMrYkMd82SQxqjLz/OGhChuSIgir7iCFQfS+XbPWXadyeO3ROtpbh+9lhGdo7i1awyD2kXgrb/6vXRkLDumnSuM5frEdOki8ODBg/z6669onDSNXwghhGv5y6j2/HgwndPZxXy6JYkpA1tfdtttp3M5eNaIQadh6hW2cxchfl480L8FD/RvwZmcYr7dk8Y3e1JJyinhu71pfLc3DT8vLUM7RjG6azQ3tYvEx0ueHy8uz6WLwFGjRrF161YGDBjg7FQczmQy1Ws7R23vidypj5yVq6P3a8/4jY3V0PYNaVefNu70e+pI3lr409C2PP/dYd5ae4Kx3aIJ9rUe+bi4jxZsTATgjp6xBHgpLtV3jf15xgZ68cRNLXl8UAv2phbww4EMfjp0jgxjOd/vS+P7fWn46DUMbhfBqM5R3NQuHD+DTsayg9q50liuT1yXviZw0qRJfPPNN4wYMeKS+wLOnz/fSVk1nkwMEUKIhrOoMG+/lvQShZHNLIxufulkj8xSeGWvFhWFv/WoJMrHCYleYxYVkotgX46GvbkKueUXJpToFJWEIJUuIdavYNe4NFI4gNs/O7hK69ateeaZZ5ydht3V9uxgR030kIvJr86d+kgmhjg+lqdeTO5udC3P8eTn+/gt24tXJg0k0Edfo49e+fkkKikMbhfOQ3f1cna6l3D0z1NVVQ6mGfnp0Dl+OnSO5NxSjuQrHMmHpaehY7Q/QztEMrRDJJ1jA674JJb6kLHs/LFcn2cHu3QROGvWLGenUCcpKSmMHTuWw4cPU1RU1KDHwMjEEOdzpz6SiSGOj+VpF5O7m1u7NePddac4dq6QRdtTeXrYhfv/FZvg691pAEwd1Mal+8uRP89eLcPp1TKcGaM7cSKziDVHzrH6UAZ7U/I5klHEkYwi3l1/iqhAAzd3iGJYx0iubxOGr1fjSwMZy47Lqy5x68qli8B58+bVutxgMBAXF8fQoUMJDg6+tknVIiIigl9++YVx48Y5OxUhhPAIGo3Ck0Pb8ocle/i/X0/z+xtb4XN+DsQXO1MpNZnpEB3AgItuI+OJFEWhXVQA7aICmHpDC7747gd08d1ZfzyHjSeyOGcs57PtyXy2PRkvrYa+rUIZ1C6cm9pF0i7K325HCYXrcekicPfu3XzzzTf069ePuLg4UlNT2bZtG2PGjCEtLY2HH36YZcuWcfPNNzs1T29vb7y9vZ2agxBCeJrRXWJIiDzBicwiPt2cxKMDW1JpgUXbkgGYMrC1FDC1CNDD6F7NuKdfS8pMZraeymHtkUx+OZrJ2fxSfj2Zza8ns3nlh6NEB3rbCsIb24YT5Ou6R1VF/bn0vVcqKyv5+uuv2bhxI0uWLGHjxo0sW7YMRVHYvHkz7733HtOnT6933FmzZtGpUyc0Gg2ff/55jXVZWVnceuut+Pr60r59e9auXWuvb0cIIYQdaTQKf7i5LQAf/nqaovJKtmcpnDOWExFgYEz3GCdn6Pq89VoGt4/k7+O68Otfh7D2mZt48bZODG4fgUGnIcNYxpc7U5m2ZDc9/76KO+f/xltrTrAnOQ+zxWXnlYo6cukjgatXr+aLL76osWzkyJFMnDgRgHvvvZfHH3+83nETEhJ46623eOGFFy5ZN23aNGJjY8nOzmbVqlWMHz+exMREysvLueeee2ps6+/vz4oVK+q9fyGEEPZxW7dY3lpzglPZxby7LpHVZ63HNh67qQ0Gndwjrz4URaFNhD9tIvz5/Y2tKDOZ2X46l43Hs9hwPIsTmUXsTs5nd3I+/15znEBvHf1bh3FD23BuaBtGmwjXuxm3uDKXLgI7derEK6+8wowZM9DpdJjNZl599VU6duwIWCdkNOSawPvvvx+Al19+ucbyoqIivvvuO5KSkvD19WXcuHG88cYbLF++nAcffJD169c36vspLy+nvLzc9rn6DB65T6DzuFMfyX0CHR/LU+8t5s6eHtqGP36xn49+OwMoRPh7Mb5njEv3lTuMZS1wfatgrm8VzF9HJpCWX8qmkzlsOpHN5lO5GMsqWXX4HKsOnwMgKsBAv1bBBBQrdM0pJD4s4Jrlas/27j6Wm8x9Ao8fP87EiRM5fvw4kZGRZGZm0r59e5YsWUJCQgLbt28nNTWVO++8s0HxBw8ezGOPPWY7wrdnzx5GjhxJZmambZsnn3wSX19fXnvttcvGKSsr47bbbmPXrl306tWL2bNnM3DgwEu2mz17NnPmzLlkudwnUAghGk5VYVmSho0ZGry1KlPaW0gIctk/bU2CWYXUIjhuVDheoHDKqFCp1rz+MtLbem/C9kEqbQNV/ORywmuiydwnsF27duzcuZOkpCTOnTtHdHQ0LVq0sK3v27cvffv2tdv+ioqKLumwwMBA8vPzr9jO29ubNWvWXDX+jBkzmD59OgsWLGDBggWYzWZOnjzZmJSFEMLjKQrc1crC0FgLPjowyFlgh9Mq0CIAWgSoDG+mUmGG00XWgvBEgUJyEWSWKWSWKfx2DhRU4vyg3fmCsHWAirdLVyCewS1+BJGRkWi1WlRVJTnZOuurefPmdt+Pv7//JTdZNBqN+Pvb5zoHg8GAwWDgmWee4Zlnnqlxs+ghQ4bU6f6ClZWVrFu3zmHbeyJ36iNn5ero/dozfmNjNbR9Q9rVp407/Z46izv1UVMfy9ddP5A9ZwvZejqPrafzSMwqIaUYUooV1qaBRoHOMQH0bhFM3xbB9GoeTMBFVaGM5Yapz82iXfp08IEDB3jwwQfZv38/gG2qv5eXFyUlJY2Of/Hp4KKiIsLCwjhz5gzR0dEADBo0iClTpvDggw82en9V5LFxQgghPElBBRwvUDhpVDhZoJBdXvPUcdWRwjaBKgmBKq0DVXxdu453WU3mdPBjjz3G2LFj2bJlCzExMaSnp/Piiy/Spk2bRsU1mUyYzWYsFgsmk4mysjK8vLzw9/fn9ttvZ9asWbz55pusXr2agwcPMmbMGDt9R0IIIYTnCfKCPhEqfSKsx53yy7EWhEaFE0aF7DLFdqRwfbq1KGzmB20DL5w+lmsK7c+ljwQGBweTm5uLRqMhJCSEvLw8KioqaN26NampqQ2OO3nyZD755JMay9atW8fgwYPJyspi0qRJrF+/nri4OObPn8+wYcMa+63Uqup08JIlS7j11lvldLCTuFMfNfVTSHI62P55eRJ36iMZyzWdM5az40w+O87kseNMPkk5pTXWK0C7KH/6tgymT4tgesUHEern5ZBc3H0sG41GYmJi6nQk0KWLwJYtW7J7925CQ0Pp0qULixcvJjQ0lK5du151soYrk9PBQgghxOUVVEDi+aOEJwusE0wuFuVjPULYOlClTYBKqME6ScjTNZnTwVOmTGHDhg3ccccdPPXUUwwcOBCNRsPUqVOdnVqjTJs2jWnTpsnEEBfhTn0kRw8cH8tTjx40Be7URzKW6xcrr8zMzjP5bE/KZ2dyPolZJZwrVThXqrDl/F3dogIMXNc8iF7Ng7iueTCtQg1sWL/e48Zyk5kYcrEzZ85QVFRE586dnZ1Ko8iRQCGEEKLhikxwutB6f8LEQuv1hJaL7lPoo1VpFaDSJtD6Fe8HOpd+WK591OdIoEsWgZ06dbrqNocPH74GmThW9WsCx44di15/9ateTSYTq1evZvjw4Q7Z3hO5Ux85K1dH79ee8Rsbq6HtG9KuPm3c6ffUWdypj2Qs2zdWSUUl+1IL2Hkmn51n8tibUkBJhbnGNgadhm5xQfRuEUyfFiH0iL/0tjQN/R5caSwbjUbCw8Pd93Tw6dOnad68Offddx+DBg2y3RpGCCGEEOJivl46rm8dxvWtwwAwmS0cSMnjszXbKfKJYldyAXklJnYk5bEjKY/3OY1GgQ7RAfRuEULvFsH0bhFCRIDByd/JteWSRwILCwtZtmwZixcv5uTJk4wfP5777ruPbt26OTs1u5DTwUIIIcS1o6qQWWadbHLKqHCqUCGn/NIDTGEG62STlgHW12hf642t3Ynbnw6u7ty5c3z++ed89tlnFBcX88UXX9TpdLE7kNPBrsGd+khOITk+lpwOdl/u1Ecylh0f62rt0wvK2HUmz3YK+XhmERdXRAHeOnrGB9EzPpjrWgTTPS4IX6/GnUKW08H1YDAY8PHxwdvbm5ycHCwWi7NTEkIIIYSbiwny5rZuMdzWLQYAY6mJfakF7Didw5p9p0kt1VNYVsnGEzlsPJEDgFaj0CHan17NQ7iuufVxdzFB3s78NhrFJY8ElpeX8/333/O///2PPXv2MG7cOCZOnEj//v2dnZpdyOlgIYQQwrWZVUgrPj8LuVDhdKFCfsWl54aDvaynjlud/4r1A60TTyG7/eng4OBgoqOjuffeexk+fHit99Hp27evEzKzLzkd7BrcqY/kFJLjY8npYPflTn0kY9nxsRwxlqtOIe9OKWB3ch5H0guxXFRF+Xlp6R4XRM/mwVzXPJge8UEEeOvrFN8e3P50cHBwMOXl5SxcuJBPPvmEi+tURVE4deqUk7JzDL1eX69fBkdv74ncqY+clauj92vP+I2N1dD2DWlXnzbu9HvqLO7URzKWHR/LnmO5ebie5uEB3HGd9XNxeSV7U/LZfiqbn3edILXMi6LySjafymXzqVzA+hST9lEBXNcihN4tQ+jeLABVddzPoD4xXbIITEpKcnYK15zJZKrXdo7a3hO5Ux85K1dH79ee8Rsbq6HtG9KuPm3c6ffUWdypj2QsOz7WtRjLXhro2yKInrG+tC49xs1Db+RMXjm7kvPZff4rJa+UoxmFHM0oZPG2ZADCDFqGDa+o53dUv/zrwiVPBzd1ck2gEEII4RkKKqzXFVZ9pRZDc394uov56o0bwO2vCfQUck2ga3CnPpLriBwfS64JdF/u1Ecylh0fy1XHcmFJGd/+9Av3jJFrAj1aVf1dUlJCaWkplZWVV21jMpkcur0ncqc+claujt6vPeM3NlZD2zekXX3auNPvqbO4Ux/JWHZ8LFcdy2qlCR+L434GpaWl1v3U4RifHAl0otTUVOLj452dhhBCCCGamJSUFOLi4q64Tb2KwNOnT7N37146depE+/bta6x79dVXee655xqWqYeyWCykpaVx8803s3Pnzjq369OnDzt27KjTtkajkfj4eFJSUq56WNiT1adPnc1ZuTp6v/aM39hYDW3fkHZ1bSNjuW5kLDt/vzKWr8zRY1lVVQoLC4mNjUWj0Vxx2zqfDv7mm2946KGH6NKlC4cOHWLcuHH85z//wWCwPmz5lVdekSKwnjQaDXFxceh0unr9Imi12nr/4gQGBsofjitoSJ86i7NydfR+7Rm/sbEa2r4h7erbRsbylclYdv5+ZSzXjSPHclBQUJ22u3KJWM0LL7zA8uXL+fXXX0lOTqa8vJzhw4djNBqBup17FrWbNm2aQ7cXV+dOfeqsXB29X3vGb2yshrZvSDt3+t1zB+7UnzKWHR9LxvKV1fl0cFBQEAUFBTWWPffcc6xcuZKff/6ZDh062ApC4TqqZiDXZZaQEMJ1yVgWomlwpbFc59PBsbGxHDp0iM6dO9uWvfrqq4SFhTFgwAAqKhxz00PROAaDgVmzZtlO2wsh3JOMZSGaBlcay3U+Ejhv3jx0Oh3Tp0+/ZN3//d//MXfu3Cb3KDchhBBCiKZKbhEjhBBCCOGB6n2z6O3bt9dpu759+9Y7GSGEEEIIcW3U+0hgq1atOHv2LIqiEBYWRk5ODqqqEhcXZ5shrCiKnBoWQgghhHBh9T4SOHnyZEpKSpg9ezY+Pj6UlpYyZ84c/Pz8eOGFFxyRoxBCCCGEsLN6HwkMDw8nIyMDne5C/WgymYiJiSE7O9vuCQohhBBCCPur882iq4SEhLB27doay9avX09wcLC9chJCCCGEEA5W79PBb731FnfffTf9+vUjPj6e5ORkduzYweLFix2RnxBCCCGEcIAG3SImOzubH374gfT0dGJiYhg9ejTh4eGOyE8IIYQQQjiA3CdQCCGEEMID1fuaQCGEEEII4f6kCBRCCCGE8EBSBAohhBBCeKB6zw4GOHPmDF999RVpaWnExsZy55130qpVK3vnJoQQQgghHKTeRwJXrFhBt27d2LVrF15eXuzevZuePXuyfPlyR+QnhBBCCCEcoN6zg7t27co777zD4MGDbcs2btzI448/zqFDh+ydn1vIyspi8uTJrFu3jvj4eObPn8/QoUOv2s5isZCWlkZAQACKolyDTIUQQgjRlKmqSmFhIbGxsWg0Vz7WV+8iMDQ0lHPnzqHX623LTCYTkZGR5OXlNSxjN3f33XcTFBTEW2+9xapVq/j9739PYmIiISEhV2yXmppKfHz8NcpSCCGEEJ4iJSWFuLi4K25T5yIwNTWVuLg4brnlFnr16sXs2bPR6/WYTCbmzJnDzp07+emnn+ySuDspKioiLCyMpKQkYmJiABg0aBBTpkzhwQcfvGLbgoICgoOD+fDDDxk3blyNwvpyTCYTq1atYsSIEVfdvsxkpqS0nLXr1jH05iHozm9fdcyx6ujjhc8X2irnl158gLLqs4JSy7La49bYxgWPeNanT53NWbk6er/2jN/YWA1t35B29WnjTr+nzuJOfSRj2fGxPHUsG41G4uPjyc/PJygo6Irb1nliSKdOnTAajXzwwQfce++9hIaGEhkZSWZmJl27duXzzz9vdOLu6MSJEwQFBdkKQIDu3bvXemq8vLyc8vJy2+fCwkIAfH198fHxqdMvg06nq/P2/9t1mnk/nwAC+fuhXXX8jq6tmoVn1bLLF6fUYZvLFqOXK3JVqKwM4B/HdtarEK5tm4v3Xdv+61QsX7TgwjYqpSUBzE/eh0a53L7PZ6aARrHmqCjW/Snn11vXnc++2ntFUdBUK9it7a2nF/Ly/Fn+9TE0Go0tLhfto3pOmhr7u/D+kuUKqBaVtHR/dq89g0ajvWLuF7fXKgoaDedfFVAtnMrzI3tPFl46LRqNYlunVRS0GmsMrUap9gra8+tVi5kz5X7sTivFS2+qdTuNouCl1aDXKei1GvRaDYqqQ2PwRaP3wmAwWHO5ivqM5/ps66ncqY+clauj92vP+I2N1dD2DWnnSmPZZDIBdTvoUucjgQEBAbaiBayHGatmB9vrlOaXX35Zp+20Wi133XWXXfbZWJs2beKhhx7i5MmTtmXPP/88+fn5vPfeezW2nT17NnPmzLkkxpIlS/D19bV7bmvPKnyfrLV7XCHE1WlQ0WpAp4BWodb3Og3oNSpeGqxf2uqvas1lGvDVga9OPf9qXeaCB9eFEE5UUlLCxIkTKSgoIDAw8Irb1usWMSkpKVSvGWNiYlBVleTkZACaN2/egHQvmDhxIoMGDeJqdemOHTtcpgj09/fHaDTWWGY0GvH3979k2xkzZjB9+vQa21UV0MOHD6/z6eDVq1fXafuRFpWXKipYu2YtQ4cOtZ4OPt+3VT1c1dUqF/r8wrKan6uWVP/xXC5Obdtcbt81l11+G+qwzcX7vyj1WrcxmSr5bfNvDBgwAJ1OX+s+qEc/1bbNpW2u1Je17xvAVFnJjh3b6d27DzqdrtY+sKgXYquoqCpYzr9Hta5Xz6+3WDdCPd/u/EfUi96bKs0cOHCAzl26oNFoa8SFC9teLkbVcmpsc/5VhUqzmRMnTtCmTVsUjabW9tjiVv8eVMwWFbMKFouKWVWprDSTknqW6JhYVBTMqmpbd+GVGp/NFhWLijWWxUJ+gRE/f//zy6z7s25zfn8WlUqLismsYjJbqDBbLvlZW1CwWMDE1TS8itNrFQK99QT56An10xMZYCA60JuoQANRgd5EBxpoGeZLqJ+XS16KYW/1+ffR2ZyVq6P3a8/4jY3V0PYNaVefNo7+GVxck1xJnYvA4uJi2rdvf9kCTVEUSkpK6rzj2vj4+PDLL79cdburTbi4lhISEigoKCAjI4Po6GgA9u3bx5QpUy7Z1mAwYDAYao2j1+vr9ctQl+31WE9d/X97dx4XVbk/cPwzCwz7IogiIGgRpKhdSkzL8qelhq2/Uss0tc1MK7PbYuJWdm/L7Wab5b3ptfyllre9tMxcKw1Nc8NckUVANlkGhmGW8/sDnSBRWWaYGeb7fr14NTPnnO/58ujjPJ3zfM+jVYO/r87l/1F0FpPJxBFfSIgMcfk2MplMFP8O/S7q2OZfHLqCPaReHuOwL47VhkOkDom3yxfH6tU5pKb2bvEXx+rVq0lNvapZx9cYa/nqmzUMuX4oqDV1g0OzFZPF2mCwaDJbMVsVai1Wqmtq2bZ9J5f06EWtFQy1ZgwmC9W1Fgy1FtvrGpOFyhoT+cVlmNU6KmpMp2MqlFTVUlJVy7Hic+cW7OvFRR39uTgigF7RISR3DSGhUyBaTftcL6C5/546k7NydfR57Rm/tbFaenxLjmvOMY76M2jWre+m7ujv79/gdrAjHDt2rEn7HTp0yKF5NEdAQAA333wzc+bMYcGCBXz//ffs27ePm266ydmpCSHakEatwlsDgT7aZl09MB9XSO0b3aSrB3WD00FotVqqay2UG0yUVZsoN5goqTJSUF7DyYoaCiqMFJQbyCurIa/cQLnBxM7sMnZml/HxjlwA/Lw1XH1xOEMujeC6SzsRFtD4/6AKIdqvJg8C2+JWQseOHe26X1tZuHAh48ePJywsjOjoaD7++ONmX608M5Gzqfs5an9P5E5t5KxcHX1ee8ZvbayWHt+S45pzzJ/39VZDR38tHf21gO85j6sxWTheUs3RoioOndSzO7ec3bnl6I1m1macZG3GSbw0+7j+0ggm9I/lL11Dmpy/q5G+7PzzSl9ufl+2t+bEbXFhiKPdcMMNjQ48dTod0dHR3HbbbQwePLjN8rGnt99+m7fffhuLxcKhQ4ccVhgihBCNsSpwogoyylTsKVWTW/XHv7VJoVZujrXS6dzjSiGEC2tOYUizHxbdVmbNmsUHH3zA+PHjiY6OJjc3l2XLlnHnnXeiUqlYvHgxzzzzDI8//rizU22xiooKgoODWb58ObfccovdC0Nasr8ncqc2ksnkjo/liZPJM/IrWLYth89+y8NiVdBp1cy4IYExfaPdqqCkKW1UXWsmI7+SE6cM+HhpiA715dLOgU16pE9b5+qO55W+7BqFIeHh4favDm5La9asYd26dcTHx9s+GzduHHfddRc7duzg9ttvZ+TIkW49CKzPEYUhrdnfE7lTG8lkcsfH8qTJ5H26htGnaxgPDbqYeV/tZ8vhYuZ+dYDcUzXMHHGpWw0EofE2KqysYcG6w3y28wQGk6XBts5BPjx4TXfGD4hD08aDQenLjo/lSX35TNymctnSsKNHjxIVFdXgs8jISNvz+JKTkykqKnJGakII0S5dHBHA+xNTeHp4IgDv/ZjJvK8ynJxV6+04Xkrq61tY/ks2BpOFTkE6ruzegeSuIQTotBRU1PDc1xmM+fc2Kmtcfz6hEPbislcChw4dysiRI5k1a5btdvD8+fMZPnw4AOnp6cTGxjo5SyGEaF/UahWTB11EWIA3T/13D0t/Ps6lkYGM7tu658A6y/68cib8Zzt6o5nEzoHMvbkn/bp1sF3dNJotrNqRy4trfueXzFLuW7qD5Q/0a7ePzxGiPpcdBC5evJjZs2dz1113UVBQQGRkJLfddpttxY2oqCi++OILJ2dpP1Id7Dzu1EZSUej4WJ5aUfhnt/XpTP6pal774QjzvsogJTaE6FDXrhb5cxsZTRamfLgTvdHMld1C+dfYZHy9NZjNZtsxamD05V1Iigxg7JIdpB8v5Z0Nh3no2u5tmmtbkb7smONcqS87pDpY2I9UBwsh3IFVgTf3azhWqaJXqJX7E63OTqlZvs1RsSZXQ5CXwozLLPhd4LLH9iIV/3dEg1alMCfZQpB32+QphD21i+pggG+++Yb//ve/FBUV8fXXX7N9+3bKysq4/vrrnZ2aXUh1sGtwpzaSikLHx/LUisJzOVyo58a3fsaqwKcP9aNXVHCbnbu56reRSVFxzT82U24w89rIXtzYO/KCxyuKwsh/pbM7t5xH/qc7jw6+uE1ylb7smFie2pfbRXXwyy+/zLJly3jooYeYOXMmUPeswqlTpzplEPjiiy8yY8YMtm7dypVXXgnAhAkTWLFihe0PMTY2lv3797covlQHO587tZFUFDo+lqdVFJ5Lj6hQbr0sik93neBfW7J4d9zlbXbulvLy8uKznXmUG8x07eDHzX+JaXLV7/0Du/PIil2s2J7LY9clOHxuoPRlx8fytL7cLqqD33rrLb7//numTJlim8CbkJDA4cOH2zyXEydOsHz5ctvawPXNmzcPvV6PXq9v8QBQCCFc2YOn58etO3CSwooaJ2fTNJ/uPAHAPf1jm/XYlxuSOtPB35tifS3pmaWOSk8Il+Cyg0CLxUJwcN1thzODwIqKCgICAto8lyeeeIJ58+ah08namkIIz5PYOYjkriGYrQqrfs11djoXVFpVy67sUwCk9rrwbeD6tBo1110aAcAPvxfaPTchXInL3g6+7bbbeOihh3j11VcB0Ov1PPnkk9x+++1tmsfGjRspLi7mtttua/TB1K+88gqvvPIKCQkJvPjii1xzzTXnjGU0GjEajbb3FRUVttdSHew87tRGUlHo+FieWlF4IXckd2Fndhmr9+bx4NWu+XiuM22z4feTWBVI7BxIR39ts9usf7dQPt6Ry89Hit3i77wrnVf6svP7cruoDq6pqeGJJ55g6dKlGAwGfH19GT9+PK+++iq+vm3zmAKz2Uzfvn1ZtmwZSUlJxMXFsXLlStucwF27dhEXF4e/vz+rVq3i4YcfZt++fcTExDQab+7cubZH3NQn1cFCCFdXaYJZOzQoqJibbCbUhW+MLDusZkexmuujrNzYtfkVzeW1MPtXLSoUXkyx4KNxQJJCOEi7qQ4+o6ioiPDwcLsvXTR06FA2b97c6La0tDQCAwM5cuQIb775JsBZg8A/Gz58OKNGjeLee+9tdHtjVwJjYmKkOtjJ3KmNpKLQ8bE8taKwKUb/O52d2WXMuTGRsf1c7+HRZ9rotUOBHC8xsOSeZAbGh7co1sBXNlFQYWT5fX3pGxdq50ylL7dFLE/ty25bHZyenn7ObZmZmbbXKSkpdjnf2rVrz7v91ltvZfPmzaxatQqoG4yOGDGCf/zjH0ycOPGs/dXq80+x1Ol055xXKNXBzudObSQVhY6P5WkVhU0x5NJO7MwuY1vmKSZefZFTcrgQgxmOlxgAuCw2rMVt1Ts6hIKMkxw4WcWA+Ah7ptiA9GXHx/K0vtycmC41CBw9erTttUqlIjc3F5VKRVhYGCUlJSiKQnR0NMeOHWuTfJYuXUpNzR+VcH379mXRokUMGjQIgE8++YThw4ej0+n45JNP+PHHH1m4cGGb5CaEEG3tyu5hAKRnlqIoit3vzthDblVdTlEhvnTwb/nTnuM7BbA24yTHivT2Sk0Il+NSg8D6V/vmzZtHdXU1c+fOxdfXF4PBwLx58/D392+zfEJCQhq812g0dOjQwTZ/77XXXuPee+9FpVKRkJDAZ599RlxcXIvOJYUhzuNObSSTyR0fy1MnkzdFYoQfPl5qTlWbOJBXRnxE2z+t4XxMJhM5VXWvk7oEtqqtYkJ8AMgs0jukzaUvOz6Wp/bldlEYEh4eTkFBAVrtH+NUk8lEZGQkxcXFTsys9WTZOCGEu3prv5rDFWpGdrNwdWfX+/r44LCaX4vVjIixMDS65fkdq4DX92sJ9VaYe7nFjhkK4VjNKQxxqSuB9YWGhvLDDz8wbNgw22cbN2486+qcO5oyZQpTpkyxLRsHOKzQwxUmk7s6d2ojmUzu+FieOpm8qQ7pjnB44zGsoTGkpiY5LY/GmEwm/rl3PQDDr0pmeM9OLY5Vojfy+v5NlJlUDLl+GDov+5YIS192fCxP7cv1Hz93IS47CHz99dcZNWoU/fr1IyYmhuzsbLZv386HH37o7NQcQgpDnM+d2kgmkzs+lqdNJm+q3jF1lbIH8vUu2V+KT0/j7h4R2Kr8OoVoCdRpqTSaya80Ed/Jx04ZNiR92fGxPK0vu21hSH2pqakcPXqU1atXk5+fz7XXXsuKFSsID29Zub8QQojW69ml7vbS4cJKas1WvLWus/BUZY2ZKnNdYUjXDq2bYqNSqYgL92fviXIyi6uI7xRojxSFcCkuOwiEunmB99xzj7PTEEIIcVpUiC/Bvl6UG0wcOllJUlSws1OyyTlVDUConxeBPq2/whIb5sfeE+VklVS3OpYQrsilBoGjR4/mo48+uuB+Y8aMYfny5W2QUduR6mDncac2kopCx8fy1IrC5ugRGcjWY6XsyTlFQoTrFLVlFlUCEBPqa5d26hxU91zX3FNVdm936cuOj+Wpfdltq4N9fX354IMPuFBKDz74IGVlZW2TlANIdbAQwp19dlzNxnw1AztbuaNb85dlc5QfTqj4MlvD5eFW7olvfV6b81V8clxD7w5W7ktwnd9TiPNx2+rgfv36Nelhy/369WuDbBxHqoNdizu1kVQUOj6Wp1YUNofptzw2frKPau8OpKbaZwUne/jxs32QnUfKpd1IHZrQ6nheGYV8cvw38A0hNbXx5UJbSvqy42N5al922+rgjRs3OjuFs3z00UekpaWRn5/P4MGDWbp0KR06dADAYDDwwAMP8MUXXxAaGspLL73EXXfd1aLzSHWw87lTG0lFoeNjeVpFYXP07lr3b+CBgko0Gi1qtWusHHKirK40OK5jgF3aKCas7mHY+RVGh7W59GXHx/K0vtycmK5T1uWCDhw4wKRJk1ixYgWnTp0iNjaWKVOm2LbPmTOH0tJSTpw4wcqVK5k8eTKHDh1yYsZCCOF43cP90WnVVNdayCp1naKJ7NO5tLYy+IzI06uGFOuN1JrldrBof1zqSqCrWbduHcOGDeOKK64A4NlnnyU2Npaqqir8/f1ZtmwZn3/+OUFBQQwYMICbb76ZlStXMnv27EbjGY1GjEaj7X39S7ZSGOI87tRGMpnc8bE8dTJ5c13SKYC9JyrYm1NKdHDL1+i1l1qzlbzyuiuBXQK97NJOQd4qvLVqas1WcksriQm139xt6cuOj+WpfdltC0NczZtvvsmWLVv4+OOPAcjLyyMqKopdu3YRGxtLhw4dqKqqshV1vPrqq6Snp5+zwnnu3LnMmzfvrM+lMEQI4W5WHFWzrVDN0CgrI7o6/ypZkQHm/6bFW63wcooFlZ3uUD+/U0OxUcUjPc1cfP459kK4BLctDHE1Q4YMIS0tjfT0dPr06cPf//53VCoV1dXV6PV6NBpNg8FbUFAQer3+nPFmzJjB9OnTbe8rKiqIiYkBpDDEmdypjWQyueNjeepk8uYq3pbNtm9+xxzQidTUvzg7HbYcLobfdhKmg6FD7ddGywu2U5x5ithL/0Jqn0i7xATpy20Ry1P7stsWhtRnMBiYPXs2q1atorS0lIqKCr777jsOHDjAtGnT7HKOoUOHsnnz5ka3paWlkZaWxjvvvMP48eMpKSnhscceIzAwkKioKAICArBYLFRXV9sGghUVFQQEBJzzfDqdDp1O1+g2KQxxPndqI5lM7vhYnjaZvLl6RdctH/d7QaVL5HOivG6qTZiPYtc2igr1g8xTFOprHTaJX/qyY2N5Wl9uF4UhDz/8MPn5+Xz99ddoNHULd/fu3Zt3333XbudYu3YtNTU1jf6kpaUBdQ+mPnDgAIWFhYwePRpfX1+io6MJDQ2lc+fO7N271xZv9+7d9OzZ0275CSGEq0qMrFtGLa+8hrLqWidng21Vj3A7L/HbJdgXgLwyg30DC+ECXHYQ+M0337B48WKSkpJQnZ7cERkZSX5+fpvmsXPnTqxWKydOnGDSpEk888wztkHp2LFjef7556msrGTbtm18+eWXjB49uk3zE0IIZwjy8SI6tG6AdCC/0snZYKtSDvex7zT3MxXC+acfPyNEe+Kyt4NDQkIoKioiOjra9llmZiZdunRp0zwmT57M/v37CQwM5KGHHuKxxx6zbXvuuee4//77iYyMJDQ0lIULF5KQ0LIHlEp1sPO4UxtJRaHjY3lqRWFLJHYKIPeUgX0nTnFFV+dWTWQVVwEQrrNvG0UE1N1aO1FmsGtc6cuOj+WpfbldVAe//fbbvPfee8ycOZP77ruPDz/8kPnz5zNx4kQmTZrk7PRaRZaNE0K0B2ty1Hybqyalo5W7L3ZehbCiwFPpGmqtKmZeZibC136x86rgpT1a/LQKf+9rsV9gIRykOdXBLjsIBFi1ahVLliwhOzubqKgo7rvvvnZ1u/XMsnHLly/nlltukepgJ3GnNpKKQsfH8tSKwpZYm3GSKSt20yMykC8e7u+0PE5W1HD1K5vRqFS8nGLihmH2a6MKg4nL/7YBgD2zhuDrrbFLXOnLjo/lqX25oqKC8PBw939EzMiRIxk5cqSz02gTUh3sfO7URlJR6PhYnlZR2BK9Y+qWjztcqMeCGh8v+wyQmut4aTkAXTv4olWb7NpGHbRa/L01VNVaKKo2c5G/fStPpC87Ppan9eV2UR28YMECdu/eDcAvv/xCfHw8iYmJbN261cmZCSGEAIgO9aVjoA6TRWFPbrnT8jhSWFeYcnHEuR/R1VIqlYrIkLr7y1IcItoblx0Evvzyy8TFxQHwxBNPMG3aNGbMmMGjjz7q3MSEEEIAdQOkK2Lrnhe4I6vUaXkcKap7SP9FHf0dEj8yuO7qX165PCZGtC8ueztYr9cTHBzMqVOnOHDgAJMnT0atVrfbQaBUBzuPO7WRVBQ6PpanVhS21F9iglmzr4DtmSWYrop1Sg6HCuquBMZ18IGT9m+jzkF1D/nPLa2yW2zpy46P5al9uV1UBycnJ/PUU09x8OBBMjIy+OijjygtLSUhIYGioiJnp9cqUh0shGgvsvTwz71afDUKL/S1oLHTmr3NMXOHBr1JxV97mYmx/x1h1uSo+DZXQ/8IK3de5Px1koU4n3axdvA777zDtGnT8Pb25r333gPg22+/ZdiwYU7OrPWmTJnClClTbNXBIGsHO5M7tZFUFDo+lqdWFLaUxaqw5MhGygwmOvfsT9+40DY9f2GlEf3WTahVcOeIwfy0ab3d26h65wm+zd2PJqgjqamX2yWm9GXHx/LUvtwu1g7u16/fWUUgY8aMYcyYMXY9j9lsZvTo0Wzbto28vDzy8/Pp3LmzbfucOXNYsmQJ5eXldOrUiWeffZaJEycCsHHjRgYPHtzgKt6aNWsYOHBgs/OQ6mDnc6c2kopCx8fytIrClvICBiV05PPf8th0pIQB8RFtev49J4oBSOgcRPDpyl17t1FMh7rLi/nlNXZve+nLjo/laX25OTFddhAIdWvx/vTTT5SUlFD/rvXs2bPtep5rrrmGJ598kv79z37O1dixY3nqqafw9/fn8OHDXHvttaSkpNjWCL7kkkv4/fff7ZqPEEK4k8GXduLz3/L4PuMkzwxPtC312RZ2ZJ0CsBWoOEL30wUnx0uqqTFZnPYoHCHszWUHgW+99RZpaWmkpqby2Wefcdttt/HNN99wyy232PU8Wq22wVJwfxYfH9/gvdVqJSsryzYIbA6j0YjRaLS9r3/JVgpDnMed2kgmkzs+lqdOJm+Nq7uHoNOqOVZUxY7MYi6LCWmzc28/XgJAn+ggh7VRuJ+GUD8vTlWbyDhxil5Rwa2OKX3Z8bE8tS+3i8KQbt268cknn5CcnExISAhlZWVs2bKFN954g1WrVjnknCqV6qzbwQAvvvgizz//PNXV1aSkpLBp0yZ8fHzYuHEjw4cPJygoiODgYMaNG8fMmTPRaBr/v8S5c+cyb968sz6XwhAhhLtbdljNjmJ1mxZPVJvrikKsiorZfzETZt/nODfwdoaaQ+VqRne3MKCTS35tCgG0k2XjgoODKS+ve/hoREQEubm5eHt7N/jc3s41CARQFIX09HTWrVvH008/jVarpaCggLKyMtst4VGjRnHffffx+OOPNxq/sSuBMTExsmyck7lTG8lkcsfH8tTJ5K31S2YpY5fswMdLzcbpAwkL0Dn8nJ/tyuOpT/dxcUd/1jx6lUPb6KXvDvHej8cZkxLNvJt6tDqe9GXHx/LUvtwulo1LSEjgt99+47LLLuOyyy7jpZdeIjg4mI4dOzYrztChQ9m8eXOj29LS0khLS2tSHJVKRb9+/Vi2bBmLFy9m0qRJdO7c2TZg7NGjB2lpaSxcuPCcg0CdTodO1/g/jFIY4nzu1EYymdzxsTxtMnlrXRUfQZ/oYHbnlrP452xmjmj9QOlCvssoBODGPl0atIkj2qhXdAgA+/P1do0tfdnxsTytL7eLwpA33ngDq7XulsKCBQuYOnUqlZWV/Otf/2pWnLVr19o1L6vVytGjRxvdpla77AIsQgjhUCqVimnXXcLEpdtZ+vNxRl0RQ3ynQIedL6/MwObDdc+MHdEr0mHnOePy04Une3PLKKuuJcTP2+HnFMLRXHbUcuWVV5KcnAzUXWVbv34927dvZ/DgwXY/l9FopKam5qzXAO+99x5lZWVYrVY2bdrEhx9+yKBBg4C6R8Tk5OQAcPjwYebPn8+NN95o9/yEEMIdDEroyJDECEwWhSdW7abGZHHYuRZtOorJotC/e5hDB5tnRIf6kdApEKsCGw+694IFQpzhslcCAbKzs9m3bx96vb7B56NGjbLreRISEsjKygKwrVd8Zqrk6tWrefrpp6mtraVr16688sorpKamAvDrr79y9913U1ZWRkREBOPGjWP69OktykGqg53HndpIKgodH8tTKwrtZc6NifyadYo9ueU8vnIXr47shZfGvtcbDhZUsjw9G4CHrok7q20c1Ub/kxDOwZOVrN2fz4ik1j0PUfqy42N5al9uF9XBL7/8MnPnzqVXr14NKmdVKhXr1693YmatJ8vGCSHas4PlKt49oMaqqOgZamXcxVZ87XTJodoMb+zTkG9QkRRq5f4EK231WMIzS+RpVApzky0EyR1h4YLaRXVwREQEGzZsaNHz+NzFmWXjpDrYudypjaSi0PGxPLWi0N42HCzikZW7MZqtdAn2Yc5Nl/I/l4S36kHShZVGJi/fxZ7cCsIDvPny4f50DPyj2M7RbaQoCqP+nc5vOeU8fG13Hr/u4hbHkr7s+Fie2pfbRXVwQEAAF110kbPTaDNSHex87tRGUlHo+FieVlFob0OTurDiQV+mrfyN7NJqJv3fLvpEB3NnSldG9I4kyKfpv4PeaObj7Tm8sf4wZdUmgny0fHBvP7qcXs7tzxzZRg9dexEP/d9Olvx8nFF9uxIX7t+qeNKXHR/L0/qy21YHFxYW2l7PmDGD+++/nxkzZpz1WJiIiLZdm1IIIUTzJXcNZfVjA3nzh8O8v/U4u3PL2Z27l7TP99E7OpjkrqF07+hPXJg/wb5e+Ou0WKwKVUYzxXojhwv17Mw6xY9HiqmurSsyuTQyiIV3J9OtlYOvlhrWszMDLgrj56MlPLpyFysfvBI/b5f6KhWiyVzqb27nzp1RqVQN1glevnx5g31UKhUWi+MqzpxFCkOcx53aSCaTOz6Wp04mdxSdGv56/cVM6B/Dp7vy+HRXHkeLqtiVXcau7LImx+ke7seEAbGMTI5Cq1E32g5t1Ubzb7mU/33nF/bklnPP4l94667LCPNv3gRB6cuOj+WpfbldFIa0Z1IYIoTwZCU1cKRCxYlqFUUGKDGqqDFDjbXuuWU+GvDTQidfhS7+ConBClH+oG6jApCmOF4JCw9oMFpU+GsVbupqpW9HBa3LPnhNeAq3LgxRFIV///vf7Nu3j8suu4x7773X2Sk5jBSGuAZ3aiOZTO74WJ46mbw9aOs2OnxSz7SP93CosO4xZp0CddzYuzNDe3Sid1QQ2vM8Gkf6suNjeWpfduvCkCeeeIIVK1YwcOBAZs6cybFjx5g/f77Dzmc2mxk9ejTbtm0jLy/vrLWDMzMzmTRpEunp6fj7+zN16lRmzJhh27506VLS0tKoqKjg9ttvZ9GiRXh7N/+5AVIY4nzu1EYymdzxsTxtMnl70lZt1CM6lG8eG8jSn47zry3HOFlpZPFPWSz+KQtfLw29ooPp2SWI7uH+xIXXzX3sGKjDx0vT5rn+mfRlxxznCn3ZbQtDAD7++GM2b95MfHw8v//+OzfeeKNDB4EA11xzDU8++ST9+/c/a9sjjzxC9+7d+eabb8jNzeWqq64iJSWFIUOGsHfvXqZPn87atWuJj4/n1ltvZf78+Tz33HMOzVcIIYRr8NKoeeCa7owfEMe6Ayf5dl8BGw8WUlFjJj2zlPTM0rOOCdRpCQ/wRl2r4Zvy3wj29SbAR0ugTou/TkuAj5YAnRZ/by3eWjU6rRqdlwadVv3He60GnZcab03d+9Y8ekd4LpcbBFZUVBAfHw9AYmIipaVndyB70mq1PPbYY+fcnpWVxRNPPIGXlxfdunXj6quvJiMjgyFDhrB8+XJGjx7NFVdcAcCsWbO4//77ZRAohBAexlurJrVXJKm9IrFaFY4V69mZXcbhk5VkFleTWawn55SBWrOVSqOZSqMZUHE0o/CCsZtCq1ahUavQqlVoNeoG7zUaFVq1Go1ahUYFVXoNi7O3nd6v7nOtpm5/tUqFWlVXhKlWcfq9CpXtNaff19uu/mN/FIXsLDU7V/+OVqNpfH9b/NOfnZ7sqVKBCtXp/4LVauX3PBX5Px1Hq9Gc3keFyrbv6fenX58Jcma71WJl30kV+h25aLUaVPyxo+rPseqd22KxsLtYhXVPPlqt9qy86sbbDc9rtVjYV6rC52ARXvXOVf88Z35Hi8VCZqVd/thbzeUGgRaLhe3bt9sqhP/8HiAlJaXN8pkyZQorV65kwIABZGdns23bNmbNmgVARkYGw4YNs+3bp08fMjMzMRgM+Pr6nhXLaDRiNBpt7ysqKmyvpTrYedypjaSi0PGxPLWisD1wpTaKDfUhNrQz8Mf0IkVRqKwxU6yvpaCsig1bfyX64kRqzHXPQtQbzehrzLbX1SYLtWaFWrMFo9lKrdmKsd5PfWargtmqUPcNc6EnaKjIraq4wD6toWZzQbadYmn4IutQq47/6FhGi457//DeZh/z74O7mrRnRx8ND0p18Nni4uLOe1lbpVJx7Ngxh5xbpVKdNSdwz549jB07loyMDCwWC3PnzmXOnDkADBkyhIkTJzJ27FigruG9vb0pLCw869mGAHPnzmXevHlnfS7VwUIIIZpDUcCigNkKJgUsVrAC1tOfW+v91H9vQXXubQoop2Mr/Om1UhdfOc8+VgUUVGfvc+bYxo6vdyyn97H9V/nT+9P7n2u/+oOZxvY767N6ByiNfF73H1WD9+c9x3nybXC8AqE6hUmXNhzI20tzqoNd7krg8ePH7Rpv6NChbN68udFtaWlppKWlnfNYi8VCamoqTz/9NJMnTyY3N5cbb7yRnj17cscddxAQENDgat6Z1wEBjT/FfsaMGUyfPr3B/jExMQAOq/aVisILc6c2kopCx8fy1IrC9sCd2kj6suNjeWpfrj8uuRCXGwTa29q1a1t8bGlpKXl5eUyePBmtVktcXBy33norGzZs4I477qBHjx7s3fvH5eLdu3fTrVu3Rm8FA+h0OnS6P9a5PHMRtrq6GoPBgNlsvmBOJpPJoft7IndqI2fl6ujz2jN+a2O19PiWHNecY9zp76mzuFMbSV92fCxP7csGgwGAJt3oVYRSU1OjGAwGBVCOHz+uGAwG27auXbsqCxcuVCwWi5KTk6MkJSUp77zzjqIoirJnzx6lQ4cOyq+//qqUlZUpgwcPVmbNmtXk8+bk5NiupsuP/MiP/MiP/MiP/NjrJycn54LjEJebE+gMcXFxZGVlNfjsTLNs376dxx57jP379+Pn58fo0aN59dVX0ZyuVFq6dCkzZ85s8JzA+lf7zsdqtZKXl8fgwYPZsWNHk/Pt27cv27dvb9K+Z2455+TkXHBugCdrTps6m7NydfR57Rm/tbFaenxLjmvqMdKXm0b6svPPK335/BzdlxVFobKyki5duqBWn38Jm3Z/O7gpzjcPsW/fvvz888/n3D5hwgQmTJjQovOq1Wqio6PRarXN+oug0Wia/RcnKChIvjjOoyVt6izOytXR57Vn/NbGaunxLTmuucdIXz4/6cvOP6/05aZxZF8ODg5u0n6yyqELmDJlikP3FxfmTm3qrFwdfV57xm9trJYe35Lj3Onvnjtwp/aUvuz4WNKXz09uB7dzZ9YnbkqpuBDCdUlfFqJ9cKW+LFcC2zmdTsecOXOaPE9RCOGapC8L0T64Ul+WK4FCCCGEEB5IrgQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKcnJySE5OxsfHx+XX2xRCNDR9+nQGDhzIo48+6uxUhBAt5KzvYRkECjp27Mj69eu58sornZ2KEKIZdu7ciV6vZ8uWLZhMJrdZLk0I0ZCzvodlECjw8fEhJCTE2WkIIZpp69atXHfddQBcd911bNu2zckZCSFawlnfwzIIdENz5syhR48eqNVqVq5c2WBbUVERI0aMwM/Pj4SEBH744QcnZSmEaI6W9OuysjLbigPBwcGcOnWqzfMWQjTkTt/RWqeeXbRIfHw8r7/+OrNmzTpr25QpU+jSpQvFxcWsXbuWkSNHcvToUYxGI3feeWeDfQMCAvj666/bKm0hxHm0pF+HhIRQUVEB1C1FJVf0hXC+lvTl0NBQJ2QKKMJtXXvttcqKFSts7ysrKxVvb28lLy/P9tnAgQOV999/v8nxTCaT3fMUQjRdc/r1r7/+qjz44IOKoijK5MmTlV9++aXN8xVCNK4l39Ft/T0st4PbkcOHDxMcHExkZKTtsz59+rB///7zHldTU8N1113H7t27GTZsGFu2bHF0qkKIJjpfv05OTsbX15eBAweiVqtJSUlxYqZCiPM5X1921vew3A5uR/R6vW1+0BlBQUGUlZWd9zgfHx/WrVvnwMyEEC11oX69YMGCtk9KCNFs5+vLzvoeliuB7UhAQIBtftAZFRUVBAQEOCkjIURrSb8Won1wxb4sg8B2JD4+nvLycgoKCmyf7d69m549ezoxKyFEa0i/FqJ9cMW+LINAN2QymaipqcFqtTZ4HRAQwM0338ycOXMwGAx8+eWX7Nu3j5tuusnZKQshLkD6tRDtg1v15TYrQRF2M378eAVo8LNhwwZFURSlsLBQueGGGxRfX18lPj5e+f77752brBCiSaRfC9E+uFNfVimKojhn+CmEEEIIIZxFbgcLIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIYQQQnggGQQKIUQ7NnfuXLy8vOjcubPdYg4aNIiVK1c265hp06bh6+tLYmKi3fIQQrSODAKFEO1eXFwcfn5+BAQEEBAQQFxcnLNTalP33Xdfg0XrHSEpKYnjx4+fc/uCBQtYs2aNQ3MQQjSPDAKFEB5h/fr16PV69Hp9o4MVk8nU9km5AHv83rm5uZjNZo8bXAvh7mQQKITwSBs3biQxMZGZM2cSHh7O3/72NwwGA1OnTqVLly5ER0fz0ksv2favqqpizJgxhISEkJyczLPPPsvw4cMbxKpPpVLZrr6VlpYyZswYIiIi6N69O++//75tv0GDBvHcc89xxRVXEBQUxF133UVtba1t+0cffURSUhKBgYH06tWLgwcP8sILLzBx4sQG57vqqqv49NNPm/S7x8XF8fLLL5OQkECPHj0AePjhh+nSpQshISEMHTqU7Oxs2/7bt2+nd+/eBAUFMWnSJKxWa4N43333HcOGDQNgyZIlxMbGEhAQwEUXXcSGDRualJMQou3JIFAI4bGOHDmCn58f+fn5PP300/z1r3+lvLycQ4cOkZ6ezgcffMBXX30FwLx58ygpKSE7O5vly5ezbNmyJp9n3LhxxMTEkJOTw+rVq5kxYwa7d++2bV+1ahWffvop2dnZ7Nmzh48++giAn376ialTp7Jo0SLKy8tZtWoVQUFB3H333Xz++ecYjUYAsrKyyMjIIDU1tck5ff7552zZsoW9e/cCcPXVV3PgwAEKCgqIjo7m0UcfBaC2tpb//d//5ZFHHqGkpISkpCR+/vnnBrG+/fZbhg0bRlVVFdOmTWPdunXo9XrWr18vVweFcGEyCBRCeITrr7+ekJAQQkJCmDFjBgB+fn4888wzeHl5odPp+M9//sOrr75KQEAAXbp0YfLkyfz3v/8F6gZqs2bNIigoiMTERMaPH9+k8xYUFLBlyxb+9re/odPpSExMZMyYMQ2u2j3wwAN07dqVkJAQRowYYRsgLl26lMmTJ3PVVVehVqtJTEwkMjKSuLg4kpKSWL16NQArV67k1ltvxcfHp8nt8fjjjxMREWE7ZsyYMQQHB+Pj48PTTz/Njz/+CMDWrVvR6XQ88MADeHl5MXXqVCIjI21xLBYLP/74I4MGDQLqroDu3bsXo9FIbGws3bp1a3JOQoi2JYNAIYRH+P777ykrK6OsrIy///3vAERGRqLRaAAoKirCYDBwySWX2AaLzz77LIWFhQDk5+cTExNji1f/9flkZ2dTVVVFWFiYLe6iRYs4efKkbZ+IiAjbaz8/P/R6PVA316579+6Nxh07dqytQnf58uWMGTOmqU0BQHR0dIP3L7zwAhdffDFBQUGkpKRQUlICnP17q1SqBsf+8ssvJCUl4efnh7+/PytWrOCtt94iIiKCO+64g7y8vGblJYRoOzIIFEJ4LJVKZXsdHh6Oj48PWVlZtsFiRUWFraI1MjKSnJwc2/71X/v7+1NdXW17X78SNyoqipCQEFvMsrIyKisreffddy+YX0xMDJmZmY1uGzlyJGvXriU9PZ3CwkIGDx7c9F+chr/7pk2bWLRoEWvWrKG8vJz09HTbtsjISHJzcxscW//9mVvBZ6SmprJ+/XpOnDiBj48Ps2bNalZeQoi2I4NAIYQA1Go148eP569//StlZWVYrVYOHDhgGxDdcccdvPDCC1RWVnLw4EE++OAD27GXXHIJJSUlbNq0CaPRyPPPP2/bFhUVRd++fZk9ezbV1dWYzWZ27txJRkbGBXOaMGEC77zzDlu3bkVRFA4ePEh+fj4AHTp04Nprr2XChAmMGjXKdkWzJSorK9FqtYSFhVFVVcX8+fNt2/r374/BYGDx4sWYTCbefvttWw7QsCjk5MmTfP311xgMBnQ6HX5+fq3KSwjhWDIIFEKI0/75z3/i7+9Pr1696NChA/fccw+nTp0CYM6cOQQHBxMdHc1dd93FuHHjbMcFBwfzxhtvMGrUKLp160ZKSkqDuB9++CFZWVl0796diIgIpk2bhsFguGA+AwYMYMGCBdx7770EBQUxcuRIKioqbNvHjh3LgQMHmn0r+M+GDx9O//79iY2NpVevXgwYMMC2zdvbm08++YTXXnuNsLAw9uzZY9teUlJCfn4+vXr1AsBqtfLSSy/RqVMnIiIiOHHiBM8991yrchNCOI5KURTF2UkIIYS7Wbp0KStXruTbb791Wg5bt25l7NixHD169Jz7zJ8/nxdffJGQkJCzbuu21ooVK/j+++9ZsmTJBfedPn067733Ht26dWtQGS2EcB4ZBAohRAs4exBoMpm45557SEpKYubMmU7J4bvvviMsLIwrrrjCKecXQrSO1tkJCCGEaJ6SkhKio6Pp3bs3ixYtcloe9QtChBDuR64ECiGEEEJ4ICkMEUIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQDIIFEIIIYTwQP8PvEH26WBVGvcAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "freqresp = ct.frequency_response(sys)\n", + "out = freqresp.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "pylQb07G2cqe" + }, + "source": [ + "By default, frequency responses are plotted using a \"Bode plot\", which plots the log of the magnitude and the (linear) phase against the log of the forcing frequency.\n", + "\n", + "You can also call the Bode plot command directly, and change the way the data are presented:" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC3kElEQVR4nOzdd3xUVdrA8d+dkknvQBISeuhFkS4gKKACChZEXRV2bSirrqDvLgsq2NdeNuguuqKsKBZcRFApUpUmvfcSIJCQkN6mnPePIUMCCWSSmUzJ8+Uzn5m5955znzmTQ07uKVdTSimEEEIIIYTP03k6ACGEEEII4RrSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBNCCCGE8BPSsBOiHhg7diwjR450+3k0TeN///ufy/NVSvHQQw8RHR2Npmls2bLF5efwtJkzZxIZGVnrfNz1HXjreYUQFUnDTggvMXbsWDRNczxiYmK44YYb2LZtm6dDc5vqNjh/+uknZs6cyQ8//EBaWhodO3Z0f3DCKWlpadx4442eDkOIek8adkJ4kRtuuIG0tDTS0tJYunQpBoOB4cOHezosjzt48CDx8fH06dOHuLg4DAaD03kopbBYLG6Irn4rLS0FIC4uDpPJ5OFohBDSsBPCi5hMJuLi4oiLi+OKK67gr3/9K6mpqWRkZDiO2b59O9deey1BQUHExMTw0EMPkZ+f79hvtVqZMGECkZGRxMTE8H//938opSqcRynFa6+9RosWLQgKCqJLly588803l4ytWbNmvPDCC9x9992EhoaSkJDA+++/f8k0l4p16tSpfPrpp8ybN89xlXL58uUX5TF27Fgee+wxjh07hqZpNGvWDICSkhIef/xxGjZsSGBgIH379mXDhg2OdMuXL0fTNH7++We6deuGyWRi1apVlcZ5/Phx7rzzTqKjowkJCaFbt26sW7fOsf+DDz6gZcuWBAQE0KZNG2bNmuXYd+TIkYu6h7Ozsyt8nrJYFixYQJcuXQgMDKRnz55s3779kuU3f/58rrrqKgIDA2nRogXTpk2r0Djdv38//fv3JzAwkPbt27N48eJL5gfwzTff0KlTJ8d3MmjQIAoKChxlPXLkSKZNm0bDhg0JDw/n4YcfdjTeAAYMGMCf//xnJkyYQGxsLIMHDwYqdsWWlcncuXMZOHAgwcHBdOnShTVr1lSIZcaMGSQlJREcHMwtt9zCW2+9dcnu6LJ8v/rqK/r160dQUBDdu3dn3759bNiwgW7duhEaGsoNN9xQoc5s2LCBwYMHExsbS0REBNdccw2bNm2qkPfUqVNp0qQJJpOJhIQEHn/8cce+6dOnk5ycTGBgII0aNeL222+/bDkL4TFKCOEVxowZo0aMGOF4n5eXpx5++GHVqlUrZbValVJKFRQUqISEBHXrrbeq7du3q6VLl6rmzZurMWPGONL94x//UBEREeqbb75Ru3btUvfff78KCwurkPff//531bZtW/XTTz+pgwcPqk8++USZTCa1fPnyKuNr2rSpCgsLU6+88orau3eveu+995Rer1eLFi1yHAOo7777rlqx5uXlqTvuuEPdcMMNKi0tTaWlpamSkpKLzpudna2ef/55lZiYqNLS0lR6erpSSqnHH39cJSQkqIULF6qdO3eqMWPGqKioKJWZmamUUmrZsmUKUJ07d1aLFi1SBw4cUGfOnLko/7y8PNWiRQvVr18/tWrVKrV//341Z84c9dtvvymllJo7d64yGo0qJSVF7d27V7355ptKr9erX375RSml1OHDhxWgNm/e7Mjz7NmzClDLli2rEEu7du3UokWL1LZt29Tw4cNVs2bNVGlpqVJKqU8++URFREQ48vjpp59UeHi4mjlzpjp48KBatGiRatasmZo6dapSSimr1ao6duyoBgwYoDZv3qxWrFihrrzyygrfwYVOnjypDAaDeuutt9Thw4fVtm3bVEpKisrLy1NK2X8GQ0ND1ejRo9WOHTvUDz/8oBo0aKD+/ve/O/K45pprVGhoqHr66afVnj171O7duy/67svKpG3btuqHH35Qe/fuVbfffrtq2rSpMpvNSimlVq9erXQ6nXr99dfV3r17VUpKioqOjq5QBhcqn+9PP/2kdu3apXr16qW6du2qBgwYoFavXq02bdqkWrVqpcaNG+dIt3TpUjVr1iy1a9cuR51o1KiRys3NVUop9fXXX6vw8HC1cOFCdfToUbVu3Tr173//Wyml1IYNG5Rer1ezZ89WR44cUZs2bVLvvvtulTEK4WnSsBPCS4wZM0bp9XoVEhKiQkJCFKDi4+PVxo0bHcf8+9//VlFRUSo/P9+xbcGCBUqn06lTp04ppZSKj49Xr776qmO/2WxWiYmJjoZdfn6+CgwMdDRcytx///3qrrvuqjK+pk2bqhtuuKHCttGjR6sbb7zR8b78L/fqxHphY7Yqb7/9tmratKnjfX5+vjIajerzzz93bCstLVUJCQnqtddeU0qdb0z973//u2Te//rXv1RYWJijQXihPn36qAcffLDCtlGjRqmhQ4cqpZxr2H355ZeOYzIzM1VQUJCaM2eOUurihl2/fv3Uyy+/XOG8s2bNUvHx8UoppX7++Wel1+tVamqqY/+PP/54yYbdxo0bFaCOHDlS6f4xY8ao6OhoVVBQ4Nj2wQcfqNDQUMcfF9dcc4264oorLkpbWcPuo48+cuzfuXOnAhwNwdGjR6thw4ZVyOMPf/hDtRp25fP94osvFKCWLl3q2PbKK6+oNm3aVJmPxWJRYWFhav78+Uoppd58803VunVrRyO7vG+//VaFh4c7GoFCeDvpihXCiwwcOJAtW7awZcsW1q1bx5AhQ7jxxhs5evQoALt376ZLly6EhIQ40lx99dXYbDb27t1LTk4OaWlp9O7d27HfYDDQrVs3x/tdu3ZRXFzM4MGDCQ0NdTw+++wzDh48eMn4yudb9n737t2VHnu5WGvj4MGDmM1mrr76asc2o9FIjx49Loqn/GevzJYtW7jyyiuJjo6udP/u3bsrnAfsn6Oqz30p5csvOjqaNm3aVJnPxo0bef755yt8Rw8++CBpaWkUFhaye/dumjRpQmJiYqX5V6ZLly5cd911dOrUiVGjRjFjxgzOnj170THBwcEV8szPzyc1NdWx7XJlWqZz586O1/Hx8QCkp6cDsHfvXnr06FHh+AvfVyffRo0aAdCpU6cK28rOU3bOcePG0bp1ayIiIoiIiCA/P59jx44BMGrUKIqKimjRogUPPvgg3333naPLe/DgwTRt2pQWLVpw77338vnnn1NYWFitOIXwBOdHIAsh3CYkJIRWrVo53l911VVEREQwY8YMXnzxRZRSaJpWadqqtl/IZrMBsGDBAho3blxhX00Gv1d1XlfEWhV1bszghflUds7yDcvKBAUFXfZ8lzqPTqerEBOA2Wy+bJ5V5V3GZrMxbdo0br311ov2BQYGXjRu8lJ5ldHr9SxevJjffvuNRYsW8f777zN58mTWrVtH8+bNqx3n5cq0jNFovCh92c9fZd9VZZ+puvleuK3sPGAfO5iRkcE777xD06ZNMZlM9O7d2zF2MCkpib1797J48WKWLFnCo48+yuuvv86KFSsICwtj06ZNLF++nEWLFvHss88ydepUNmzY4JLlaYRwNbliJ4QX0zQNnU5HUVERAO3bt2fLli2Owe4Av/76KzqdznE1Ij4+nrVr1zr2WywWNm7c6Hjfvn17TCYTx44do1WrVhUeSUlJl4ynfL5l79u2bVvpsZeLFSAgIACr1VrN0jivVatWBAQEsHr1asc2s9nM77//Trt27ZzKq3PnzmzZsoWsrKxK97dr167CeQB+++03x3kaNGgA2Jf7KFPVOnvly+/s2bPs27evyvLr2rUre/fuveg7atWqFTqdjvbt23Ps2DFOnjzpSHPh5ITKaJrG1VdfzbRp09i8eTMBAQF89913jv1bt251/LyVxRwaGlrhyqArtG3blvXr11fY9vvvv7v0HGVWrVrF448/ztChQ+nQoQMmk4kzZ85UOCYoKIibb76Z9957j+XLl7NmzRrH5BaDwcCgQYN47bXX2LZtG0eOHOGXX35xS6xC1JZcsRPCi5SUlHDq1CnA/ov/n//8J/n5+dx0000A/OEPf+C5555jzJgxTJ06lYyMDB577DHuvfdeR5fUE088wauvvkpycjLt2rXjrbfeIjs723GOsLAwnnrqKZ588klsNht9+/YlNzeX3377jdDQUMaMGVNlfL/++iuvvfYaI0eOZPHixXz99dcsWLCg0mOrE2uzZs34+eef2bt3LzExMURERFS48lKVkJAQHnnkEZ5++mmio6Np0qQJr732GoWFhdx///3VKusyd911Fy+//DIjR47klVdeIT4+ns2bN5OQkEDv3r15+umnueOOO+jatSvXXXcd8+fPZ+7cuSxZsgSwNwh69erFq6++SrNmzThz5gxTpkyp9FzPP/88MTExNGrUiMmTJxMbG1vlOn7PPvssw4cPJykpiVGjRqHT6di2bRvbt2/nxRdfZNCgQbRp04b77ruPN998k9zcXCZPnnzJz7pu3TqWLl3KkCFDaNiwIevWrSMjI6NCY7i0tJT777+fKVOmcPToUZ577jn+/Oc/O65Muspjjz1G//79eeutt7jpppv45Zdf+PHHH2t9NbcyrVq1YtasWXTr1o3c3FyefvrpCldqZ86cidVqpWfPngQHBzNr1iyCgoJo2rQpP/zwA4cOHaJ///5ERUWxcOFCbDYbbdq0cXmcQriEx0b3CSEqGDNmjAIcj7CwMNW9e3f1zTffVDhu27ZtauDAgSowMFBFR0erBx980DGrUSn7ZIknnnhChYeHq8jISDVhwgR13333VZikYLPZ1LvvvqvatGmjjEajatCggbr++uvVihUrqoyvadOmatq0aeqOO+5QwcHBqlGjRuqdd96pcAwXDNy/XKzp6elq8ODBKjQ0tMJkgwtdOHlCKaWKiorUY489pmJjY5XJZFJXX321Wr9+vWN/2YSFs2fPVvmZyhw5ckTddtttKjw8XAUHB6tu3bqpdevWOfZPnz5dtWjRQhmNRtW6dWv12WefVUhfNjszKChIXXHFFWrRokWVTp6YP3++6tChgwoICFDdu3dXW7ZsceRx4eQJpewzY/v06aOCgoJUeHi46tGjh2O2plJK7d27V/Xt21cFBASo1q1bq59++umSkyd27dqlrr/+etWgQQNlMplU69at1fvvv+/YXzaZ5dlnn1UxMTEqNDRUPfDAA6q4uNhxzDXXXKOeeOKJi/KmkskTl5pQopR9gk3jxo1VUFCQGjlypHrxxRdVXFxcpbFXlW9l3/OFZblp0ybVrVs3ZTKZVHJysvr6669V06ZN1dtvv62UUuq7775TPXv2VOHh4SokJET16tVLLVmyRCml1KpVq9Q111yjoqKiVFBQkOrcubNjwosQ3khTqpqDGoQQ9VqzZs34y1/+wl/+8hdPh+Jzli9fzsCBAzl79qxXj8saO3Ys2dnZHrs12IMPPsiePXuqXG9QCHF50hUrhBDCI9544w0GDx5MSEgIP/74I59++inTp0/3dFhC+DRp2AkhhPCI9evX89prr5GXl0eLFi147733eOCBBzwdlhA+TbpihRBCCCH8hCx3IoQQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ6RhJ4QQQgjhJ/y2YZeamkrXrl0JDAzEYrF4OhwhhBBCCLfz24ZdgwYN+OWXX+jVq5enQxFCCCGEqBMGTwfgLoGBgQQGBtYorc1m4+TJk4SFhaFpmosjE0IIIYSoPqUUeXl5JCQkoNNd5pqc8gHPPvusateundI0TX3xxRcV9qWnp6uhQ4eqoKAg1bp1a7VkyZIK+6+55hplNpudOl9qaqoC5CEPechDHvKQhzy85pGamnrZNoxPXLFLTk7m3Xff5Zlnnrlo3/jx40lISODMmTMsWrSIUaNGcfDgQaKiomp8vrCwMAA++ugjRo4cidForFY6s9nMokWLGDJkyGXTOHNsfedrZeXpeN19flfnX9v8apO+JmmlnruHr5WVp+OVeu7etN5Wz3Nzc0lKSnK0Ty7FJxp299xzDwAvvfRShe35+fnMmzePI0eOEBwczMiRI3nrrbeYP38+9913X7XzLykpoaSkxPE+Ly8PgODgYIKCgqr9RRkMhmqncebY+s7XysrT8br7/K7Ov7b51SZ9TdJKPXcPXysrT8cr9dy9ab2tnpvNZoBqDQ/TlFLKLVG4wYABAxg3bhx33nknAJs3b+b6668nPT3dccxjjz1GcHAw06ZNY/jw4WzcuJGuXbsydepU+vXrV2m+U6dOZdq0aRdtnz17NsHBwe75MEIIIYQQ1VBYWMjdd99NTk4O4eHhlzzWp2fF5ufnX/QBw8PDyc/PJzAwkCVLlnD27FmWLl1aZaMOYNKkSeTk5PDGG2/Qpk0bWrVq5e7QhRBCCCFczie6YqsSGhpKbm5uhW25ubmEhoY6lY/JZMJkMjFx4kQmTpxIbm4uERERAAwcOBCDoXrFZLFYWLZsWbXSOHNsfedrZeXpeN19flfnX9v8apO+JmmlnruHr5WVp+OVeu7etN5Wzy9s61yKT3fF5ufnExMTw9GjR4mLiwOgf//+PPDAA06NsSuTkpJCSkoKVquVffv2SVesEEIIITzOma5Y7/+zCPugQavVis1mw2w2U1xcTEBAAKGhodx8880899xzvPPOOyxevJgdO3Zw00031eg848ePZ/z48XLFzsv4Wll5Ol75S969aX26nluKSVvwMpZjv3Oi4QCuuGUCgQFeEBdeWFaX4el4pZ67N6231XO/u2I3duxYPv300wrbli1bxoABA8jIyGDMmDEsX76cxMREpk+fzqBBg2p0HrliJ4TwW8pG+73vkFy0xbFpluE2wjqOQNZhF8K7OXPFzicadnWt7Ird7NmzGTFihFPr3ixevJjBgwdXa92b6h5b3/laWXk6Xnef39X51za/2qSvSVpfrecF62cRufhJipWRX4Ov47qinyhVen68Zh5D+3n+1oveVFbV4el4pZ67N6231fPc3FxiY2P9f1asEEKIaigtQLfcvg7o50F/oNfjn5Ea1YsAzYpx5asUlFg8HKAQwlXkil050hUrhPBHzY/PpXPG/zhma8AXzV6lbYyRsIIjXLvvWaxK4/nYt+jaJMbTYQohqiBdsbUkXbHexdfKytPxSheNe9P6XD3PTYOUbhhtJbwS+lcmPv6UY/X6rA9vpFHmBj7WbuH2pz4g2IMTKbyirJzg6Xilnrs3rbfVc+mKFUIIAYB16QsYbSVssLXmisH3VbglUWT/RwAYaVvC12sPeipEIYQLyRW7cqQrVgjhTyIKDzNg73MA3K89z01dmlWYAaspK/23TSTSlsVk2ziuuKIPAXoPBSuEqJJ0xdaSdMV6F18rK0/HK1007k3rM/Vc2WDmMIwnNzDX2hfDrR9yY8e4iw9b+SYBq15hi60lmwZ/zb29mtRtnOd4ut44y9PxSj13b1pvq+fOdMV6/yqQHmY0Gp3+opxJU5P86ytfKytPx+vu87s6/9rmV5v0flnPN82CkxsoUCa+jvgTn3dJRKerZMG6nvdjXf0GV+gO8u7KJfyh9wOYDJ67bOfKslJKsfS7/5B0fD6Nh08itEVPl+RbntTzus2vvtZzZ/KVht1lmM1mp4+tThpnjq3vfK2sPB2vu8/v6vxrm19t0tckrU/U88Is9IueQQe8bbmdu67rgdVqwWqt5FhTJLS7Gf2ubxla9ANfrR/Cnd0T6zZe3FNWP65YzdCtT2HQbOR/vgnzhG0QEOKSvKWe121+9b2eO5O3dMWWI2PshBD+4Mqj/6ZJ1mr22JJ4SP8iT3bRqOxiXZmogv303/cCJcrI9ep9/nxlMEY/mFpXuPkL7uJHx/v1CWNJa3StByMSomb87l6xdaWye8X6cp+8v/C1svJ0vDL2xr1pvb2ea7vnYdi8GpvSmGz+E38f1Z3r2ja8dCKlsH70P0zp27nesoK0sCcZd02LOom3jKvLat/pPAI3/hV0sFNLpoPaT1LpXq4c+oYLopV6Xtf51fd67sy9YqVhdxm+3Cfvb3ytrDwdr4y9cW9ar6znZ4/AwokATLfejDWxJ9d3TKiwxEmVej0M3/+Ze/RLGLryZkb3bErDsED3xlsJV5XVyk07eESXhg2NLR0n0WH7n2h4Zj16SwEERdY+0HOkntdtfvW1nssYOxfy5T55f+FrZeXpeGXsjXvTem09L8nDMPtOtOJsttha8K71NuYMa4PFUs3bhbW9GcOiKSQVZ9Cz9Hde+zGBV27p4N6Yy3FlWSmlyNy+BICciHYktL+a/Vsbk6w7gWXPj6iOt9f6HFLP6za/+l7PZYxdDckYOyGET1I2ehx+l/iczWQQyfDiF2nZMJLRLW1OZdP+xByS0xew0ZbMbaVTGd/eRusI3/sVcSQPEvZ8xCjDSvY0GMa2+NFkbvqaRwzzORTek+0tx3s6RCGcImPsakjG2HknXysrT8crY2/cm9br6rnNiv6Hx9HlbMaiBfBA8QRKghrxzv1XExUc4FxeeV1RKUu4iv300u3mfye78sOtfQg1uf9XhSvL6qUFu7lNvwuAVoPG0rLFQP5+JB1y55NUuJOk6weB3smycWO83nh+qefeVc9ljJ0L+XKfvL/xtbLydLwy9sa9ab2intussPBJ2D4Hpel5rHQ8W1Ur3hvZkYYRNVjWIzoJrrwHfv+YCYHzuSO7Pa8t2s8rt3Z2fexVqG1ZWW2KbTu2kqidwaYzYmh+NRiNRLbuTcaGcBpYcuHEemg50Cvi9fbzSz33gnqOc2Ps/GBCuxBC1EOlhfDVfbB5FkrTMS3gSX60dmfkFQnc3CWh5vle/QRoenrYttJFO8AX61OZu+m46+J2s18PnKFN0Wb7m8TujnXrerRowFJrV/v2vT9WkVoI3ycNOyGE8DU5J+DTm2DPDyh9AB/G/p2ZOV1pHBnEtBEda5d3VFPoPBqA9xr+AMCkudvZcSKntlHXiTkbUrlatwMAXYtrHNu7N4tiqboKAOuehSDDy4WfkoadEEL4kv2L4cO+cOJ3CIzkizbv8Y/U9pgMOj64pysRQS7oChrwN9AH0DRnPeObHKPEYuOhz34nLaeo9nm7UUZeCUt2neRq3U77hhYDHPsigwPIaNCbIhWAPjcVTu/0TJBCuJmMsbsMX54e7S98raw8Ha8sg+DetB6r56X56Fa8gn79vwBQjToxL/kl/r4kH4CXR3agXaMQ15wrNAHdVX9Ev/5fPMl/+TH6eQ5lFXPvR+uY/UB35ydlVIMryuo/qw+SbDtMlJaPCgjF0rAzlMuvS/M4Vmd2YrB+I9bt32KLaePReGtD6rl703rb73NZ7qSGZLkTIYQ3apizlS7HPyW49AwAh2IH8XngXfznQCAKjSGNbQxr4tzSJpcTYMlj0M6JGG3FLG/8CE+k9iWnVCMpRPFIOyshXjaPqdgCUzfpGct8/mr8krSIK1nf4skKx2zL0ji9fz3/DHifQmM0izu8BZp0XAnvJ8ud1JAsd+KdfK2sPB2vLIPg3rR1Ws/TtqJf9gK6w8sBUBFNsN74Opvz2/Pp3B0oFH/okcRzw9tW7+4STtJFn4AVL3NN/gK+/NMT3P3ZdlILzMw8FsnMsVfRIMzksnPVtqzeWryfIuthBofsBCs07Dmaod2HVjimd2Ep/V6xkqOCiTBnMaxdKKpcd21dxltbUs/dm9bbfp/Lcicu5MvTo/2Nr5WVp+OVZRDcm9at9fzUdlj9Nuz41v5eZ4Re49AGTGL2xgye+347SsGtXRvzwshO6HSub9QBcPWfYfNnaDnHaHf4E+Y8/Bj3fLSOfen53DFjPTPu60a7+EtfPXBWTb6L1KxCPllzlEBKuELtAUDfehD6C/JpGGGkeVwM35/pw72GJRi2fwltBtd5vK4k9dy9ab3l97ksdyKEEL5GKTj4C3w20j45oqxR1+kOeOx3bINe4PVlqTw7bydKwdg+zXjj9i7ua9SBfamQG162v179Dq0N6Xw9rjdNY4I5fraIW6f/xoJtae47fzXYbIq/zd1GsdnG/QlH0NnMEJEEMa0qPb5Py1i+tp6bLbv7e8g7XYfRCuF+0rATQghPyjsNq9+Bf3aHWbfAoWX2cV8dboWHV8JtM8gJbMwDn/1OyrKDADxxXTLP3dTevY26Mu1uhpbXgrUEfvwrTaODmTf+avolx1JktjJ+9iYmf7edgpJq3pPWxd7/5QC/Hsgk0KhjXMPd9o1th0EVXdMD2zZgm2rBNq01WEvh3GQUIfyFXzfsJkyYQL9+/Xj88cc9HYoQQpxXlA1bvoDZo+GtdrDkOcjcD8YQ6DkOHt8Moz6B+C5sO57NyJRf+WVPOiaDjrfu6MKTg1u7ZUxdpTQNbnzd3h18YDHs/p7I4AA+Gdudh/q3AODzdce48d1VrDmYWTcxnfPj9jTeXrIPgBduakvY0SX2HW2HV5mmR/NoggMM/LNkmH3Dho+gJM/doQpRZ/y2Ybdp0yby8/NZtWoVZrOZDRs2eDokIUR9lp0KG2fCf2+D11vB/8bBvp9AWSGxB9z8Pjy1F278B0Q1w2K18d7S/dw6/TcOnykgISKQb8b14dauiXUfe2wr+x0pABY8BYVZGPQ6/j60HZ8/0JOEiECOZRVy14y1PPr5RlKzCt0e0oJtaTz2hf0OE2P7NGNUwxNQlAVBUdCkd5XpTAY9fVvFsth2FWeDmkBxDqyf4fZ4hagrftuwW7NmDYMGDQJg0KBBrF271sMRCSHqlZI8tP0/0+n4LAwf9oJ3OsL8J+DAErCZoUE7uOZvMH49PLAYut4HpjAAdp3M5fYP1/DW4n1YbIphneJZ8Hg/OiVGeO7z9H8aYttAQTr8NMmx+epWsfz0ZH/+0LMJOg0Wbj/FdW+uYPJ32zmW6foGns2meHfJfv78xSYsNsWIKxKYMqwd7J5vP6D1jaC/9LzAa9s2RKFjpmGUfcPqt6Ggbq82CuEuPtGwe+6552jfvj06nY4vv/yywr6MjAyGDRtGcHAwbdq0YenSpQBkZ2c71nqJiIjg7NmzdR63EKKeUAqyDsO2r2DBRPiwH7zaFMNXf6BFxmK0zAOg6SGpJ1w7BcZvgPFrYeAkaHB+kdzcYjNTv9/J8PdXsSU1m7BAA++MvoJ/3n0lUSGuXxTYKcZAGJFiH/+37UvY97NjV3igkZdu6cSCx/txdasYSq02Pl93jAFvLOPRzzeyfG86Vlvtl0zdfjyH2z/8jbeX7EMp+EPPJrx1xxUYsMGOufaD2t982XwGtm2IpsF7GVdibtARSnJh5Wu1jk8Ib+ATy50kJyfz7rvv8swzz1y0b/z48SQkJHDmzBkWLVrEqFGjOHjwIJGRkY51X3Jzc4mMjKzjqIUQfslmJbT4JNqu7yBjN5zeASe32K9kXUBFNuOIoQVJ14zB0GoABEVWmmWJxcqX61N5/5f9nMkvBWBYp3imDG9HfESQ+z6Ls5K6Q69HYc0/7VcfH11b4TO1iw/nv/f3ZN3hLKYvP8jKfRks3H6KhdtP0SjcxKB2jbi2bUN6tYghxFS9Xz9FpVaW703nyw2prNiXAUBIgJ5pIzpy+1XnuqX3L7OXf3AMtBp02TwbhQfSvVk06w9nsajxeIZlPGLvjr3yHojr5HSxCOFNfKJhd8899wDw0ksvVdien5/PvHnzOHLkCMHBwYwcOZK33nqL+fPn07t3b/71r39xxx13sGTJEsaOHeuByIUQPstSYr8Kl3ng3GM/nN6FIX0311mKYPcFx+uMkHCFfbxckv1hCWrAtoULSWw7FCpZh8pitfHd5hO8s2Q/J7Lt92FtERvC1Js70L91A/d/xpoYOBn2LoSsQ7BoCoz4Z4XdmqbRq0UMvVrEsDstlzkbUvnflhOczi3h83XH+HzdMTQNWjUIpVPjCBKjgoiLCCLYqLElU8O2LY3sYivHzxax40QOW49nU2y231VDp8GIKxrz1xvaEhcReP6kW8/15HS8DfTVW+/rpi4JrD+cxb+ON2FYu5vtS598/xg8sBR0epcUlRCe4BMNu6rs37+fiIgI4uPjHdu6dOnCzp07ue+++wgKCqJfv3506dKFHj16VJlPSUkJJSUljvflV3j25XvL+QtfKytPxyv3kKwmpTDnpBFZcAjbju+wFpyC7GNoWQfRsg5CTiqauvg2XRpg0QWgNeoIcR2hUUdUo06ouE5gCKxwbFWxFZRY+GbTCWb+dpTj2cUANAwzMX5AC27v2pgAg857f941I9qwdzHMugk2z8LSZjiq5XWVHtoqNojJN7bmqcGtWHMok+V7z7BiXwbHs4vZn57P/vT8C1LoYd/2i/JJjAzk+g6NuKtHEk2j7bd5dJRPSR6GPQvs30v721HVLLfBbWKYqtPYdjyHwzc+Q7NDy9FObsa68i1sV//lsumlntdtfnKvWD+9V+yAAQMYN24cd955JwCrVq3ij3/8IwcOHHAcM3nyZLKzs0lJSal2vlOnTmXatGkXbZd7xQrhm/S2EkzmHEzmHAIt2ZjMuZgsOQSVZhJcmkmQOZOg0iz06tL/WZp1QeQHxpFviqPA1Ii8wERygpIoMDWq0T1Gz5bA6lM6fj2tUWS1L1cSYlAMamyjbyNFgA9dKOp4/L+0zFhEkTGKX9q+jMUQUu20OaWQmq9xshCySzWyS6HECkppaBqEGhURRmgcokgKVcQHVbksHUmZq+h6bAb5pjiWtvtH1QdW4oNdOvbk6Lgh0cZDwSvoemwGNnT8mvx3skJbVzsfIdyt3twrNjQ09KL7p+Xm5hIaGupUPpMmTWLChAnMmDGDGTNmYLVaKzQWhRCeoykrRksBAdZ8x3OApQCjNZ8ASz4B1gICLLkEmnMwWXIINOdgsBVXK2+FRrExkqKAGAqNsRQFxJRryMVRYgh3qqFQGYsNdp7VWJOusSdbQ2HPr0GgYkC8jR4NfKtBV2Z3wiga5W4ltOQ0nU58zuamD1U7bUQAREQrOkYD1O7aQpPMlQCkRl/t9HfVvYFiTw6sTde4/sq+NMjbSdLZ3+h2ZDrL2r6A2RBWq9iE8ASfbtglJyeTk5PDqVOniIuLA2Dr1q088MADTuVjMpkwmUxMnDiRiRMnkpubS0SEfVmBgQMHYjBUr5gsFgvLli2rVhpnjq3vfK2sPB2vu89f7fyVDUoL0UrzoDQfrbQASvPQSvPtS4Gce6+KczlxaC+JDSPRmQvQSvPRirOhOButKNuevgaUIRAV0gAV0tD+HNwAFRaPCm+MCk9EhSdiDopl2cpfGThwINEurOc2pdiSmsPCHaf5fusJ8s3nGxw9mkZyb69EBraORVdXiwy7ia5DQ9TskTTJWk2jAQ9ibTWkxnnV5OdWy9hN0Oa9KE1Ps5GTaRoWf/lE5fS3WPn+7d/ILrIQ1OIqYgZ8iu2zGwg6e5Drz86i5I4vwWByWbyu5DX1vI7yq036mqT1tt/nF17EuhSf6Io1m81YrVaGDBnCgw8+yKhRowgICECn0zFq1Ciio6N55513WLx4MWPHjuXgwYNERUU5fZ6UlBRSUlKwWq3s27dPumKFz9OUFZ2yoLNZ0CkLmrKgd7w3o1NW+zabGU1Z0SvzufcW9KoUna0Ug83+rLeVoLeVolel9ucLHxduv0w3p7NK9cGY9aGUGkIw60Mo1YdiNoRQqg+hxBhOiSGSYmMEJYZwSoyRWHSBtb7a5gybgqP5sCVTx5ZMjezS8+cONyp6NFT0amCjgRdNcnWF9ie+IDn9R4oNEfzS7hXMBud6TGqjc+pMmp/5hZOR3dnQ/LEa5TH3sI4Vp3R0jrZxfxsbYUXH6bfvBYy2IlKj+rCp6cN1+nMkRGWc6Yr1iYbd2LFj+fTTTytsW7ZsGQMGDCAjI4MxY8awfPlyEhMTmT59umNh4poqu2I3e/Zshg0b5rMtfK/g+PFS516rctsveF3hWEcGWCxmVq1cSb++V2PQ6+xXgpQCZTs3uN1WYdvFj4rb7WkuPFadf+bi9Npl8gQb2Gxgs2Czmtm/ZzetW7VAhwJlAZsFbFY0m/Xce6tjGzYLms1iz8d2/tiy4+z7rOXSlEunrPbZmzYzWErRbKVgNWMrLUKHtdLB/3VNaXoICEWZQu3PAWEQEIIyhUFAKFZDCEdOZtC0dSd0gWGogFBUYCQERaICI1FBUWCKqHKmoif/ks8vVfx6KIsV+zNZfSCL7KLzjdmQAD0DW8cQb0njkZHXEBhQvdmaPsdcROCnQ9BlHcDS7hZKb5peo2yc/i5K8gmafgWauYDi0V9ha9qvRufdn17AiA/Xo9c0fnqsJ40jg9AdWYHp6z+gKSvmbg9hHjj1osadp/8Plyt27k3rbb/Pc3NziY+P95+GXV2pyyt2V+97iUBLDhXGl5z7Kuz/fZxv5Gjl9jneVzgGtPINJcdxleVdrvFUdq4q8z7fwNKqyltdfC6tlmNmhPtYNSM2TY9NM2DTlb02YtMMKE2PVWd/bdMMWHUBjodNF4BVC6iwzVphmwmrzljxWQvAqrc/+8sVj2IrHM7TOJCjcSBX42h+xVoTpFe0i1R0jVW0jVQYfWIJ+NqLKjhIv33Po6FY3/wx0iK7u/2czTKW0uX4p+SZ4vml3au1+hlL2aVjX46Oa+Jt3NrM/sdQk8yVXHnsIwD2NxzKroTRfvNzLHyP312xq2vlr9iNGDECYyXrT1XGbDazePFiBg8efNk0+nc6oCs47Ypw6y2l6ewzEys8tEq26YAqtmta5Wmw73PqHJoOdHps6DidkUmj+MboDEbQDKDToXQG0BnsV57KXp/bx4X7NPtrVf7YC/Y53usDwGBC6YygD8CidKxas46+11yHMTDYvq6X3nQube1/MTnzc14X+dUm/eXSZuaXsPVELhuOnGX9kSx2nsy76A4KrRuGMqBNLNe0juXKpEiM+vOtOVeXlTfTLXsR/W/voIJjsTy0GkJinUrvVFkphWFGf7SM3VgHv4Stx8O1iBxW7j/D/Z9tIiRAz8qn+hMeZD+/buMn6H96GgBrrz9ju/Y5Rx3y9Hfr7vPXp3pe2zR18bOQm5tLbGys/8+K9WWlt3zMhnVr6N69OwbDuR8ETaPsel2F12jnXp67llfVcWWvtfLpqnrNpfOoTn6O4y53rgtfV3UuKm53/AdqYekvy7hu0GCMAabzjSsvZTab+d2D/+Ers5migIMQ2rDSRXFF5fKKLew4mcO247lsP5HD9hO5nMy5eHZt48hAGhsLubl3e/olNyAh0s8GzdWQrd/T6Pb/hJaxB/3Pf8V668duO5d2fB1axm6UIQhb5ztrnV+/VjG0bhjKvvR8vvz9OA/1aw6A7ao/grKh//mv6Nf+E63wDNahb1d7EWQhPEGu2JUjkyeE8H8WG6QXw6lCjbRCjbRCSCvUyCyp2K0K9mEFDYOgeZiiVbiiZbgiuvJJkgKIKDxM/73T0GFjQ7PxnIzq6ZbzXHVkOoln13I05hq2NLnfJXmuTdf44qCeCKPima7WCt3oTTJX0OXYJ+iwcTqsE783/zMWvTToRd2RrthaqouuWE9fxvclvlZWno5XumhAKUVmQSlHMws5klnI0axCjmYWciC9gMOZBZitlf+31zgykE6NI+jUOJwuiRG0jw8nLLBix4bU80vTrXgV/eo3UEHR9i7Z0IbVSlftsirIwPBeZzSbGfOflkJ8F5fEXWKxMfid1aTlFDN5aBvG9m5aYb+2fxH67x5AMxeiYpIpHvkxizYdkXpeR/lJV6x0xQoh/FxesZmT2cWkZhWw+pTGjqUHOZFT4mjIFZRYq0wbajLQulEoLWODsWWlMrzfVbRrHElMSEAdfgL/ZOs7Ad2+n9DSd6D/8Smst3/q0qETui3/RbOZsSV0dVmjDsBk0PHoNS145vtdfLjiMHdc1ZjggPO/IlXyEKz3zEP/zX1omfsJnDWUuMb3A4NdFoMQriBX7MqRrlghPM+qIN8MeWbILdXIM9tvQXW2VONsCWSXaJwthWLrpRsLGoooE8QGKhoE2p8bBUF8sCLKfybqeqXwwmNcs+85dMrKhmaPcjKql2syVjYG75xAsDmLTU0eIjWmr2vyPcdqg5e26Mks0bi5iZXrGl/869FkzqHbkX8Sm78XgIMNrmdXwihsOvmjQLiPdMXWknTFehdfKytPx+ttXTSlFhs5RWayi8xkF5rJKTJzttBMdlEpmfmlZOQVs/doGsoUxpmCUs4Wmqnu/0qRQUbiIkwYSnLp3CqJpjEhNI0OpmlMMElRQZiMl75Xlz900Xgr3cp/oF/1OiosAcu4NRBw6XvJVqestH0/Yvj6XlRQFJbHt4Mh0OVxz918gr/O3UlEkIElf+lHZHAlsVjNsOQ5jL//GwDVsD2WER9Cw/Yuj6cq3lbP3Z2fdMVKV6zLGI1Gp78oZ9LUJP/6ytfKytPxuuL8SilKLDbyii3kl1jIL7aQXVDM9iyN0p0ZFFmUY19esb3BllNo5mxhKdmFZrILSykorbpL9DwdUHD+nQYxoSYahJpoEGZ/JEQG0TgykPiIIBIig0iIDCQ4wIDZbGbhwoUMHdqhxp9X6rkb9J8I2+egZR/DuPZ9uO6ZaiW7ZFlt+gQA7cp7MQa55z6ut13VhP/8eoy9p/NIWXGYqTd3qCxIzNe/zJqsMHqd/gwtfRfG/wyCa5+BXo+Cvu5+tbr7Z8vV+dc2v9qk9+V67ky+0rC7DLO5+rdFKju2OmmcOba+87Wyqst4bTZFqdVGqcVGicVGkdlKflEJR/Pg1/3pmJVGUamVYrN9X7HZSuEF7+3P9vdFpVYKSs414kqs5JdYsNgqu3ymh707qh2npkFEoJHIYCMRQfbnyCAjMSEBRAUbOH1kHwN6dqVRZDANQgOIDA5Ar7tcX6nCbDbXqrxrklbqeXUZ0K57AcO3Y1C/vYel02iIal7l0Zctq6yDGA/+gkLDcsV94MYy/fuNrRkzcyOz1h7ljqsSSG548W3SzGYz6RFdKLrxFwIXPYVu/8+w+Bls27/BOuxtiOvstvjKzl/+2dvzr21+9b2eO5O3dMWWI2Ps6g+lwFb2fO4GG0rZx3dZz22zYR9zU+H53D77s3bB+/Ovq9puf7ans9jAcuFzhW0a1sqOKfdsU3UzUExDYdJDYIWHIlCPfbvBvi3EoAg2QIgBgg3q3DMEGexX4UQ9oxS9D75Gw7ydpEV0ZX2Lv9Q4qw7HZ9Mq4ydOhXdhXcuJrouxCh/v1bEtS0ebCBuPtLNdekymUjTJWkmHE18QYC1EoXGw4Q3sibsVq17WxxG1J2PsaqkuxtjNWnOELTt2k5ycjHbuHphKKUcDQ5V7b7+zlyq33f6eC96XT0cl+ZS9p8L7ivlSyXkqpKtqX6VxqnL5VnxvVQqlFFabfbtNKayKc9uUvbGlFNZz73Ny8wgJCUVhv0plK5eHTZVtU+e2YX99ibz9kaZBkFFPoEEH1lIiw0IIDjAQFKAnyKgj0Ki37zfa3wcZ9QQF6B3by44JMRkINekJNRkIDTQQajIQbNSj07lnxX0Ze+PnMvba7xKhrFjG/oRq3K3Swy5ZVuYiDO91QivOxjL6C1Qr989EPZZVyA3v/YrZqph+1xUMbl9x2ZZK480/jX7xZHS7/geACm+M9drnUO1vcflsHRlj59603lbPZYydC7mrT/7DVUdJz9PDsUO1Ca8e0aCw4PKHuYhBp6HXaRj1OvQ6DYNOw6DXMOh0GPTa+W3n3pe91us09DrIOpNBQlwjjAZ9hXyMjrQ6TAYdAQYdAXodxnPPAee2mS54f/E+/fl9ZXnoNTRNKzfmrK+MvXFjWm8Ze+P1EjpCl7tgy38xrHwV7pt3ycMrLavd/4PibIhsgqHN9fbb6blZy0YRPNS/BSnLDvL8gj30bdOQ8MCLv8MK8UYlwh2fwr5FsGAiWs4xDP97CDb+B254BRp3dXmcMsbOvWm9pZ7LGDsXclef/JB2Ddh7+BiNExLQ6XT224+inXsu++Ou4vvy+9G0cttBK/eeyt5XSHvxubRztxm7MK+y95S9vyhtuX2VpC3beeFn0Gn2BpBO0849zr3W2V/rNQ3t3GtltbJ582a6d7uKAKMB7dx+nWbPS6/TqszH8Vxuv15nbwA5zlMulrIGXdnnqonzf711rKNf5gqUFYvl/PnLP7uajL3xrrE3PuHqCRi2zUE7tBzLwRWoJn0uOuRSZaXfPAsdYO10JzarzT42og6M69eMH7amcTSrkFcW7OL5m8/Per3kd9t8IDz8K7q1KejWvIeWuhZmDMTW+S6s1/wNwhvXOjap5+5N6231XMbY1ZCMsRNCCPfonDqT5md+4UxoW35N/nu10wWVnmHwzoloKBa3f5NCUwM3Rnmx/Tka/9xlv0L4WAcLrS7dC3aRwNIs2p/8mqSzvwJg1Ywcib2WfY1uotToZGai3nL7GLuioiKeffZZvv76a7KyssjNzeXnn39m9+7d/OUvf6lp3F5D1rHzLr5WVp6OV8beuDet1PMayj2JIeUqNJsZy9hFqAu6JasqK93qt9CveBlb06ux3nPpblx3mfy/nXy18QTNYoKZ92gvxzI7zny32omN6H6Ziu7YGgCUMQRbj3HYej0KgRFOxyT13L1pva2eu32M3aOPPorZbOaHH36gX79+AHTu3JknnnjCLxp25flyn7y/8bWy8nS8MvbGvWmlnjsppil0GgVbZ2PY8CE0+6TSwyqUlVKw/UsAdFfeg85DZTh5eAdW7s/kSGYh/1h0gJdv6eTYV+3vtlkv+OOPcPAXWPo8WtoW9L++iX7jx9DnMejxYI0aeFLP3ZvWW+q5M/nqanKCBQsW8PHHH9OxY0fHWKT4+HjS0tJqkp0QQoj6oPej9udd8yD72OWPP7EJsg6BMQTa3eze2C4hIsjIm3fY70s7e90xFu86XbOMNA1aXQcPLYfR/4UGbe2TQn55Ad7uBL+8CAWZLotb1E81athFRkaSkZFRYdvhw4dJSEhwSVBCCCH8UFwnaDEAlBV+/8/lj9/9vf259RAwXbxIcF26ulUsD/azL7D812+3kZFXUvPMNA3a3QSP/Aa3zoDYNlCSAytfh3c6ws+TIVculIiaqVHD7oknnuCmm27im2++wWq18sMPP3DXXXf5XTesEEIIF+t2v/15y2z7PVerohTs+cH+uu1w98dVDU9d34Z28eFkFZTy17k7ar8mpk4Pne+AR9fCHZ/Z71ZhLoQ1/4R3O8P8JyBjn0tiF/VHjcbYjR8/noYNG/Lxxx+TmJjIe++9x5NPPsno0aNdHZ/H+fL0aH/ha2Xl6XhlGQT3ppV6XkstrsMQ0gAt/zSW3QtRbYYClZRVxl6MmQdQ+gAsza916y3EqksHvHl7R275YC2rDmQSWqxxvaviSh4KrW5EO7gU3a9vozu+DjbOhI0zsbUajK3nI6im/RxrWEk9d29ab6vnstxJDclyJ0II4X7tT3xJcvrCS94erPWpebRL+7bObiHmjPXpGp8f1KOheLitjXZRrv81Gp2/l1bpPxGXswnt3P19cgKTONjwBk5E9cKmq+eTceoZtyx38tprr1Xr5P/3f/9XreO8mSx34l18raw8Ha8sg+DetFLPXSDzAMYPe6E0PZbHt0Now4vKyvDxtWintmEZ+jbqyns9HfFFpvxvB3M2niQ80MD/Hu1FUpSbLgJkHUK34d/ots5GMxcCoEIaYr5yDL9kJ9F/6Cip525I62313C3LnezevdvxurCwkO+++46ePXuSlJREamoq69ev59Zbb6151F7Kl6dH+xtfKytPxyvLILg3rdTzWohrB427oZ34HeOeeedny3KurArS4NQ20HQY2t8EXlh2zwxvz9q9Jziab+HxOdv4ZlwfAo1uuNVZozYw/E24djJs+hTW/QstL42A1a8zRNODbRm6ng9Bk94uvx8tSD33lnruluVOPvnkE8fDYrHw9ddfs2rVKmbPns2qVav4+uuvZRyJEEKI6ulyp/1525cX79uzwP6c1AtC6/ZOE9VlMugY29pKVLCRHSdy+eu323DryKbgaOj7JDyxDW6dga1xd3TKim7Xd/DJjfDB1bDhYyjJd18MwifUaFbskiVLGDZsWIVtQ4cOZfHixS4JSgghhJ/rcCvoDJC2FdL3VNy3e779ud1NdR+XE6JN8O7ozhh0GvO2nOS9pQfcf1JDAHS+A+vYH1ne5nlsV9wDhiBI3wkLJsCbbWHh0xeXaT1ltVopKSnBYDBQXFzs1MOZNDXJv6qH1Wqt1Weu0azYjh078uKLLzJlyhQMBgMWi4WXX36ZDh061CoYV0pNTWXEiBHs2rWL/Px8DIYafVQhhBDuEBIDrQbDvh9h2xy45tz9YwvOwLnbbtF2WNXpvUTvFjG8MLIjk+Zu5+0l+2jeIISbu9TNmq45wc2wDn0U3fUvwpYvYMNHkHUQ1v/b/mjSB7reB+1HQED9mwiYn5/P8ePHsdlsxMXFkZqa6ripwuUopaqdxpljq0PTNBITEwkNrdnajTVq7cyaNYu7776bN998k4YNG5Kenk779u35/PPPaxSEOzRo0IBffvmFkSNHejoUIYQQleky2t6w2/419P8bANr+n0DZ7Gu6RTX1cIDVc1ePJhxMz+ej1Yd56uutJEYF0bVJVN0FEBRlH6fYcxwcXm7vkt27EI79Zn/8+H/227l1vQ8Srqi7uDzIarVy/PhxgoODiYmJoaCggNDQUHS66nVU2mw28vPzq5XGmWMvRylFRkYGx48fJzk5Gb3e+XGbNWrYtWjRgrVr13Ls2DHS0tKIj4+nSZMmNcnKbQIDAwkMDPR0GEIIIarS+kYwRUBOKtqx3wDQ+Ug37IUmDW3HkcxCluw+zYOf/s43j/SheWxI3Qah00HLa+2P3JP2RaA3fQbZR+H3j+2PuE7QdQx0ut3eIPRTZrMZpRQNGjTAZDJhNpsJDAx0qmFXWlparTTOHFsdDRo04MiRI5jN5ho17GoUQXp6Ounp6QQGBtK8eXMCAwMd22rqueeeo3379uh0Or78suJg2oyMDIYNG0ZwcDBt2rRh6dKlNT6PEEIIL2EMhA4jANBt/xqTOQft8HL7vo63eS6uGtDrNN698wo6Ng4ns6CUez9ex+ncYs8FFJ4A/Z+Cx7fAfd9Dx9tBHwCntsPCp+xj8eY+BEdWg83muTjdzBVdo3WttjHX6IpdXFwcmqY5ZgCVD6Kmg/6Sk5N59913eeaZZy7aN378eBISEjhz5gyLFi1i1KhRHDx4kJKSEu68884Kx4aGhvLDDz/UKAYhhBB1rPOdsOkztD3fkxRjQVNWSOgKMS09HZnTQkwGPhnbg9s//I2jmYWM+c965jzcm4ggDy7XotNBi2vsj8Is2PaV/Spe+k772MZtcyCyqX2Wcpc7IbqF52KtJx5//HHmzJlD8+bNWbt2rcvzr9EVO5vNhtVqxWazYbPZOHHiBI888ggzZ86scSD33HMPgwcPvqj7ND8/n3nz5vH8888THBzMyJEj6dixI/PnzycuLo7ly5dXeEijTgghfEiT3hCRhFaSR4eTc+zbOvvu7SkbhJmY9aeeNAgzsedUHg9++jvF5trNcnSZ4GjoNQ4e+RUe/AWuGgsBYfau2hX/gPeuhI+vt9/KrDjH09H6rTvvvJOFCxe6LX+XTBWNi4vjrbfeokWLFtx7r2tXCN+/fz8RERHEx8c7tnXp0oWdO3deMl1xcTHDhw9n69atXH/99UydOpV+/fpVemxJSQklJSWO97m5uY7XvnxvOX/ha2Xl6XjlHpLuTSv13PV03R5Av/Q5AGyhcVg73ekV94a9lEt9t/HhRj6+tyt3f7yB9UeyGP/5Rt6/swtGfe3HX1Xn/NXSsDPc8AZc9zzavh/RbZuDdng5WupaSF2LQf9/dAvrgnWPDloPsi9N48F4nU1fNsau7AJUUakVfYnZqVmxl0sTZNRX6L0sO195zz77LN988w3NmjXDarUyadIkBgwYwJEjRwAuOr5sm1Kqwhg7j9wrdtWqVYwaNYpTp07VKp8BAwYwbtw4RxfrqlWr+OMf/8iBA+fXB5o8eTLZ2dmkpKTU6lxlpk6dyrRp0y7aLveKFUKIOqBsJJ9eQGThYfbE30peUKKnI3KJA7nwwS49FqVxRbSN+1rb0HvxkK9A81kSs34jKWs14cUnHNuLDREcj+pNanRfcoO9a6JkVQwGA3FxcSQlJWFFT++3XN/luWZCL4ICqp7csHHjRiZNmsSCBQtIT0+nV69efPHFF/Tt25djx45x//33V7r+b2lpKampqZw6dQqLxQI4d6/YGjXB27VrV6EFW1hYSGZmJu+++25Nsruk0NDQClfQwH5Frabru1Rm0qRJTJgwgRkzZjBjxgysVmuFhqQQQgg30nTsj/OtWbDV0Soc7m9j46O9OrZk6dDth3uTbei8tHFXbIziQKNhHGg4lIiioyRlrSbx7BoCLTm0yviJVhk/kROYxPHoPhyP6kVxQIynQ/Zq69evZ/jw4RiNRho3bkyvXr3q5Lw1ath9+OGHFd6HhITQunXry7YiayI5OZmcnBxOnTpFXFwcAFu3buWBBx5w2TlMJhMmk4mJEycyceJEcnNziYiIAGDgwIHVXtzYYrGwbNmyaqVx5tj6ztfKytPxuvv8rs6/tvnVJn1N0ko9dw9fK6vqxjsY6Lz3DE98vYNNmTqSGifw0oi26Go587Fu6nkzGtz9IaSuQr/za/QHFhFRnErEyTl0ODkHa2IvrO1vwdJmOARFuzVeZ9OXlJRw8uRJQkJCMJlMrJnQi9Aw5y4I5eflXzJNWVcsQF5eHmFhYRX2BwQEoNPpHNsNBgNBQUGEhYUREhJSYV95xcXFBAYG0qdPH0wmE8BFF7gupUZdsW+88QZPPfXURdvfeustJkyY4Gx2gL3/2Gq1MmTIEB588EFGjRrlKJRRo0YRHR3NO++8w+LFixk7diwHDx4kKsq1a/CkpKSQkpKC1Wpl37590hUrhBDCJbZmaszcp8OGRq+GNka38N4rd1UxWvJJyF5P4tm1xOafv2WZDT3p4Z04HtWbUxFdsepNHozSrnxXbEBAgEdi8FRXbI0aduHh4ZW2HmNiYsjMzHQ2OwDGjh3Lp59+WmHbsmXLGDBgABkZGYwZM4bly5eTmJjI9OnTGTRoUI3OUx1lV+xmz57NsGHD5C95D/O1svJ0vHLFzr1ppZ67h6+VVU3i/XHnaZ6euwubgluviGfa8Dboa9i683Q913JPoN/zPYZdc9Gl73BsV8YgrK1uwNL+VmzNrgG90SXx1vSKXbNmzQgMDKz0itrlOJOmqmOfffZZ5s6dS9u2bSkuLuapp55izpw5zJ8/n6ysLBo0aMA///lPbrrp/FCE4uJijhw5QkJCQoUrdvHx8a5v2H311VfA+UZY+aRHjhxhxowZ7N+/v7rZeR25YieEEMKdfs/Q+O8BHQqNrjE27mllw4WTZT0itPgEiWfX0jhrDaGl529UUKIP5WRUD45H9SYrJBm0uvug3nDF7kJ/+tOf+NOf/kTfvn0veVydTp744IMPHCedPn26Y7umaTRs2LBW69h5g/HjxzN+/PgKY+wGDx6M0Vi9xSXNZjOLFy+uVhpnjq3vfK2sPB2vu8/v6vxrm19t0tckrdRz9/C1sqppvEOB7jtOMeHr7WzK1BHTMI637+iMyeBco8f76vmDoBSWk5vRdn6Lbtd3mArSaX7mF5qf+QVbWAIHg64g8YbHMSReBU6OMXQ2nuLiYlJTUwkNDcVkMjmuqDmz3El101T3WKPRSHBw8GUbZsXFxQQFBdG/f3/H2r7OjLFzqmG3bNkyAF588UWmTJniTFIhhBBCADd2jMNk1PPYl1tZvDudR2dvJuWuKwg0On9fUK+iaajGXVGNu2IbNA3t6K/odnyLtnc+uryTJOedhM8WoiKbYWs/Alu7kdCoo9ONPF/1xRdf1Ml5qt0Ve+bMGWJjYwEueU/Yhg0buiYyD5CuWCGEEHVlb7bGR3t1lNo0WoXbeLCtjUAfb9tVRmcrpVHuVhqfXUej3C0YbKWOffmmRpyI7MmJqJ7kBSa6rJHnjV2x1VVnkyfCwsLIy8sDQKfTVVht2ZGZptX4XrHepPzkiREjRkgXjYf5Wll5Ol7v66Jxb37SFesffK2sXBXv70fP8sCsTRSUWOnUOJwZ91xJTOjlZ5X6bD2/5moCji5Dt3se2oHFaJZixzEqJhlbuxHY2t8CDdrUKp6yrthmzZp5TVdsdZVNnkhKSqrQFRsbG1uthl21O/XLGnVw8b1iyx7+0KgTQggh6kq3plF8NrYbUcFGtp/IZfSMDaSeLfR0WO4TEIxqPxLrbZ9geXIPlpH/wtZ6KEpvQsvcj371Gxj/fTWGf/dFt+p1yPTdCZme4rJbivkD6YoVQgjhCelF8MFuPVklGuFGxcPtrCSGeDqqumOwFhGXs4mEs+tplLcNnTp/oSgnMImTUT05EdmDgsC46uUnXbHOSU1N5fnnn2fr1q3k5+dX2Ldr1y5ns/M60hXrXXytrDwdr8920UhXbL3ma2XljnhP5xbzwGeb2HM6n1CTgQ//cAU9m1d+Rwe/rufFOWj7fkS3639oh5ej2SyOXbaGHVHtR2BrexPEtKo6Cy/tis3MzOTOO+8kLS0Ng8HAs88+y6233npR7LXpiq3RqoajR48mOTmZadOm+f0VLaPR6PQPtTNpapJ/feVrZeXpeN19flfnX9v8apNe6rn38LWycmW8iTFG5ozrw0Of/c66w1n86dNNvD36CoZ1jq+T89dF/tXKzxgLV91rfxRmwZ4F2HbMhUPL7Yshp+9Av/wlaNge2t0M7UdAw3YVJl5YrVY0TXPMCQAc76vDZrNVO40zxxoMBl599VW6d+9ORkYGV111FcOHD3c04OD8PIbyZeXMd1Cjht2OHTtYvXp1tQvIl5nNZqePrU4aZ46t73ytrDwdr7vP7+r8a5tfbdLXJK3Uc/fwtbJyV7zBBvj43iuZ+M12ft6VzvjZmziamcwDVzercDWo3tRzYxh0uhNz29tY8eNcrk0owrj/R7QjK9DSd0H6LljxKiq6Jba2N2NrOxziOmM2m1FKYbPZUDYbmAtRJTpsTlyxu2waY7B9iZdzHZ9l5yvv2Wef5ZtvvqFZs2ZYrVYmTZrEgAEDsNlsxMTEEBkZyZkzZ0hISHCksdlsKKUwm83o9Xqny61GXbF33HEHf/nLX+jTp4+zSb2ajLETQgjhDWwK5h7RseqU/QJK74Y2RjX3/btUuIrRUkBczmbiszfQMG8HenW+4VMQ0IDUuCEUdR5D46RmBOisRKa0c3kM2eN32xt3VbjUvWIBtmzZwiOPPMKaNWsqpKvTO0+UCQoK4oYbbmDIkCEXrVtX/o4UvkbuPOGdfK2sPB2vX4+9cXF6GWPnPXytrOoi3uHAp2uO8vKPe1mTrkMX1oD37+xMWKBR6jkAowCwleShDixCt+cHtANLCCnNoFnWSg6bRxBWehpT4OWXj6mJ8LAwCAipcozdtm3buP3224mJiSEmJoa+ffs67jxx9uxZHnvsMT766KOLGmp1eueJMi1atGDixIk1SepzZOyN9/C1svJ0vH459sZN6aWeew9fKyt3x/tA/1Y0bxDGY19s5teDmYyesYH/jO1OXNj5sVf1vp4bo+GKO+2P0gLYvxgOrARNh6Ys6Eot8McfUToDWmAEBEZCQMglF0O22Wzk5uURHhZW5bAz3bmu2EuNsSu/rey11WrljjvuYOLEiVx99dUX5+uJMXbPPfdcTZL5JBl743m+VlaejrfejL1xQXoZY+c9fK2s6jLe/q2imX1/dx7+72b2p+czMuVX/jm6o1vP77P1XAuA1sMwN7kOlXoMFd4AZStEFeegwz7WDnMhSmcAUzgERqJMoUDFRp5SCoxWlDG46jF2SoFSVY6x6927NxMmTODxxx/n9OnTrFq1iqeeeopHHnmEbt26cd999100Jg88NMbutddeq3S7yWQiMTGR6667jsjISGez9TgZYyeEEMJbZZfAv/foOVGoYdQUd7ey0TVWlqKtzEXr2CmFwVaE0VKA0Vpob+SdY0OHWR+MWR+MRR8EmusGMr700kt8//33tG7dmuLiYgYPHsxf//pXOnTo4Oi2nTFjBm3btnWk8cg6dnfeeSffffcdPXv2JDExkePHj7Nu3TpuuukmTp48ya5du5g7dy7XXnuts1l7BVnHzrv4Wll5Ol4Ze+PetFLP3cPXyspT8RaUWHjy620s23sGgAeubsJTQ9qg17nmHqtlfL2eX24dO600H4qz7WvmlVsnT2k6MIWhTBHklkJYeKTL1rG76667ePjhhxkwYMBlY6/zdewsFgvffvstw4cPd2xbsGABM2fO5LfffuPzzz9nwoQJbNmypSbZexUZe+M9fK2sPB2vjL1xb1qp5+7ha2VV1/FGGo18NKYH//hxF/9edYSPfj3GwTNFvHvXlYQHuj4OX63nl13HLjDc/lDKPi6vOBuKstFsZntjrziHCADbWbTASAiMAH3l563uOnZl+y+3VFxtx9jV6Hrj4sWLufHGGytsu/7661m0aBFgb5UeOnSoJlkLIYQQ4hL0Oo2nh7TmvmQrJoOOZXszGJnyKwcz8i+fWFSkaWAKhYhEaNQBYltDaCP7vWsBrSQPclLh9A44sw/y08FSUqNTffnll5e9WucKNWrYtW/fnpdfftnR92u1Wnn11Vdp186+TkxqaqpPjrETQgghfMVVsYovH+hBfEQghzIKGJnyK8v2pns6LN+lafbZsuEJqAZtyQ1sjAqLB2OQfX9pAeSesC+KnLEH8k6BudizMVeiRg27Tz/9lHnz5hEdHU2rVq2Iiopi3rx5zJo1C4DTp0/zzjvvuDJOIYQQQlygY+Nwvv9zX7o3iyKv2MKfZm7gwxUHqcHweb9Um3Kw6QJQIQ2hQVv77cvCG0NAqH2nuQjy0iBjN1rGHgJLs6DcWD1PxQw1HGPXunVrfv/9d44cOcLp06eJi4ujadOmjv09evSgR48etQrMW8gyCJ7na2Xl6XhluRP3ppV67h6+Vlaejrf8+SMDjcwccxXPL9jDnN+P8+qPe9h67Cwv39KBUFONfs37TT3PyMggOjqa0tJSioqKLjsRooxS6uI0ulAIDoVAC1ppAZTkgrkQzVKMopiiolg0fe0ad0opMjMzHe9r8rlrNCu2TGFhIZmZmRVal02aNKlpdh4ny50IIYTwVUrBr6c1vj2iw6Y0GgUp/tTaSlw9/TUWEBBAdHQ0BkPNGrfVoaHQ2UrRKStmvWsK2mKxkJWVRWlpqWOb25c72b59O/fddx/btm2zZ3KuNRsQEEBhYaGz2XkdWe7Eu/haWXk6XlnuxL1ppZ67h6+VlafjvdT5Nx/L5rE5WzmdW0JIgJ6XR3ZgaKc4l+Xv6njdmd5qtVJUVMRvv/1Gnz59qt3Is1gs1U7jzLGXo2kaBoPBsTBxGbcvdzJu3DhGjBjBmjVriI+PJy0tjWeffZaWLVvWJDuvJssgeA9fKytPxyvLnbg3rdRz9/C1svJ0vJWdv0fLBix4vB+Pzd7MmkOZPPHVNraeyGPS0LYY9c4Nrff1em40GtHr9VgsFkJDQ536A666aZw5tqbcvtzJzp07efbZZx0L5wUGBvLiiy/ywgsv1CQ7IYQQQrhQbKiJWff3YNw19gsu//n1MHfPWEt6rvfN4hSuVaOGXWRkJNnZ2QA0btyYrVu3cvr0afLzZQ0dIYQQwhsY9Dr+dmNb/nXvVYSZDGw4cpah761m3aHMyycWPqtGDbsHHniAFStWAPDEE0/Qr18/OnXqxIMPPujS4GprxYoV9O7dm759+zJhwgRPhyOEEELUues7xPH9Y31p0yiMM/kl3P3ROj5YfhCbTZZE8Uc1GmM3ZcoUx+sHH3yQIUOGkJ+fT4cOHVwWmCu0atWK5cuXYzKZuPvuu9m+fTudOnXydFhCCCFEnWoeG8J34/sw+bsdfLf5BP/4aQ/rDmfy5qguxISaPB2ecCGnGnbt27e/7DG7du2qcTCu1rhxY8frsgGUQgghRH0UHGDgrTu60KN5NFO/38nyvRkMfW8V7915JT1bxHg6POEiTjXsDh8+TJMmTfjDH/5A//79q73QX3U999xzfP311+zZs4fZs2dz5513OvZlZGQwduxYli1bRlJSEtOnT+e6666rVr6bNm3izJkz1WqYCiGEEP5K0zTu6tGEK5tEMv7zTRzMKOCuGWt5clBrHh3YCr3Otb/XRd1zqmGXnp7O3Llz+fzzz5k5cyajRo3iD3/4A507d3ZJMMnJybz77rs888wzF+0bP348CQkJnDlzhkWLFjFq1CgOHjxISUlJhQYgQGhoKD/88AMAp06d4vHHH+fbb791SYxCCCGEr2sbZ78V2TPzdjB30wneXLyPdYezeHv0FTQIk65ZX+bU5ImwsDDGjBnDokWLWLNmDQkJCTz00EN06tTJJV2w99xzD4MHD3Yso1ImPz+fefPm8fzzzxMcHMzIkSPp2LEj8+fPJy4ujuXLl1d4lDXqiouLufvuu3n//fdp1KhRreMTQggh/EWIycBbd1zB67d3JsioZ/WBMwx9bxW/HTjj6dBELdR4iWSTyURQUBCBgYFkZmZis9lcGVcF+/fvJyIigvj4eMe2Ll26sHPnzkum++STT9i1axdPPvkkAK+88gq9e/e+6LiSkhJKSkoc73Nzcx2v5R6SnudrZeXpeOVese5NK/XcPXytrDwdryvPP7JLHB3iQ3lizlb2pxfwh4/XMa5fM1orqefeUs/ddq/YkpISvv/+e/773/+yefNmRo4cyd13302vXr1qFGhVBgwYwLhx4xxdrKtWreKPf/wjBw4ccBwzefJksrOzSUlJqfX5pk6dyrRp0y7aLveKFUIIUV+UWmHuER1r0u2deS3DFPckW4mWnlmPc+ZesU51xTZq1IhnnnmGrl278uWXX3LPPfeg0+lYv3694+EOoaGhFa6igf2qWmhoqEvynzRpEjk5Obzxxhu0adOGVq1auSRfIYQQwlcE6OHOljbubWXFpFcczNN4bauezWdkQoUvcaorNjIykpKSEmbOnMmnn37KhRf7NE3j0KFDLg0Q7JMqcnJyOHXqFHFx9hsZb926lQceeMAl+ZtMJkwmExMnTmTixInk5uYSEREBwMCBA526afCyZcuqlcaZY+s7XysrT8fr7vO7Ov/a5leb9DVJK/XcPXytrDwdrzvPPxi4KyOPR2Zt4Gi+xsz9enJC4vj7DcmEBNTsXFLPa+fCi1uX4lRXrLuZzWasVitDhgzhwQcfZNSoUQQEBKDT6Rg1ahTR0dG88847LF68mLFjx3Lw4EGioqJcdv6UlBRSUlKwWq3s27dPumKFEELUW1Yb/HRcx+ITGgqNBoGK+5KtNHFNZ5lwgjNdsV7VsBs7diyffvpphW3Lli1jwIABZGRkMGbMGJYvX05iYiLTp09n0KBBbomj7Ird7NmzGTZsmM+28P2Fr5WVp+OVK3buTSv13D18raw8HW9d1vMtJ/L5v+92cSq3BINO4/GBzflTnybonFjLVup57eTm5hIfH+97DTtPkyt2QgghxMUKLTDnkI4tmfah+cnhNu5pZSNSJlbUCZ+9Yuctyl+xGzFiBEajsVrpzGYzixcvZvDgwZdN48yx9Z2vlZWn43X3+V2df23zq036mqSVeu4evlZWno7XE/VcKcW3m0/ywoI9FJZaiQwy8tLI9gxpf/l1YqWe105ubi6xsbGunxUrhBBCiPpJ0zRu79qYeY/2olPjcLKLzIz/YitT5u2koMTi6fDEOXLFrhzpihVCCCEuz2KDhak6fjlpn1gRa7Kvedc8zNOR+Sfpiq0l6Yr1Lr5WVp6OV7pi3ZtW6rl7+FpZeTpeb6nnaw9l8X9zd5CWU4xOg4f7NefPA1sSYKjYISj1vHakK1YIIYQQbterRTQ/jO/NyC7x2BR8sPIwo/69jv3p+Z4Ord6SK3blSFesEEIIUTNbMjXmHNJRaNEwaIqbmtroH6fQyY0rak26YmtJumK9i6+Vlafj9ZYumrrKr7530fgLXysrT8frrfU8Pa+Ev3+3kxX7zwDQu0U0r97SgQYhBqnnteBMV6z3rwLpYUaj0ekvypk0Ncm/vvK1svJ0vO4+v6vzr21+tUkv9dx7+FpZeTpeb6vnjaONzPxTD2avP8aLP+xmzaEshv9zDc8Nb4tBST2vKWfylYbdZZjNZqePrU4aZ46t73ytrDwdr7vP7+r8a5tfbdLXJK3Uc/fwtbLydLzeXs/v6JpAz6aRPPXtdrak5vDUtzu4IlpHj76FNIhwfohTfa/nzuQtXbHlyBg7IYQQwnWsCpae0PjxuA6b0gg3Ku5qaaN9lDQ9nCFj7GpJxth5F18rK0/H661jb9yVX30fe+MvfK2sPB2vr9XzrceyGP/fDZwuss+kGHVVYybd0IawwOp1HNb3ei5j7FzIl/vk/Y2vlZWn4/W2sTfuzq++jr3xN75WVp6O11fqeZcm0TzVycouQ0tmrjnK1xtP8OuBTF67vQt9k2PrJB5frucyxs6FfLlP3l/4Wll5Ol5vH3vj6vzq+9gbf+FrZeXpeH2xngfo4elBLRjcriF/+24Hx7KKuOfjddzVPZH/u741oaaqmyT1vZ7LGLsakjF2QgghhPuVWGH+MR2rTtnvkxBtUtzd0kZyhDRJKiNj7GpJxth5F18rK0/H62tjb2SMnQDfKytPx+sv9XztoSwmfbeD49nFANzbqwlPDW5FcIChWund9Vm8rZ7LGDsX8uU+eX/ja2Xl6Xh9ZeyNq/Krr2Nv/I2vlZWn4/X1et6vTSN+ejKGVxbu5vN1x5i19hgr95/h9du70KN5tEvj8eV67ky+cq9YIYQQQnhMqMnAS7d0Ytb9PUiICORoZiGj/72GF37YRVGp1dPh+Rxp2AkhhBDC4/olN+CnJ/szulsSSsHHqw8z7L1VbDx61tOh+RRp2AkhhBDCK4QHGvnH7Z355I/daRRu4tCZAkZ9+Bv/+HkfZpuno/MNMsbuMnx5erS/8LWy8nS8vrgMQm3yq+/LIPgLXysrT8fr7/W8b4soFvy5Dy8t3MN3W9L4aPURGgbqiW9/hh4tqr/uXU3O7WwaWe7Ei8lyJ0IIIYR32Z6l8dUhHblmDQ1F/zjFsCY2THpPR1Z3ZLmTWpLlTryLr5WVp+P1l2UQ6iK9PyyD4C98raw8HW99q+dncgv5y8yVrMuwjyBLjAri5ZHt6d0ixi3n9rZ6LsuduJAvT4/2N75WVp6O19eXQajL9FLPvYevlZWn460v9Tw2PJi7W9l4+MZuTJm3i+Nni7jvk43c3bMJk25sS1jg5fP05Xouy50IIYQQwu/0S47l5yf7c0+vJgDMXneMIW+vZNnedA9H5j2kYSeEEEIInxEWaOTFkZ344sFeNIkOJi2nmD9+soEJX20hu7DU0+F5nN827E6ePEmfPn3o378/w4cPp7Cw0NMhCSGEEMJFereM4ae/9OP+vs3RNJi76QSD3lrJTztOeTo0j/Lbhl2jRo1YvXo1K1eu5KqrrmLBggWeDkkIIYQQLhQcYOCZ4e35ZlwfWjYI4Ux+CeP+u5HxszdxJr/E0+F5hN827PR6PTqd/eNpmkabNm08HJEQQggh3OGqplEseLwf4we2RK/TWLAtjcFvrWDelhPUt8U/vKZh99xzz9G+fXt0Oh1ffvllhX0ZGRkMGzaM4OBg2rRpw9KlS6uV5+rVq7nqqqtYsmQJTZs2dUfYQgghhPACgUY9T1/flnnjr6ZtXBhnC8088eUWxn2+hex6dPHOaxp2ycnJvPvuu/To0eOifePHjychIYEzZ87wj3/8g1GjRnH27FlOnTrFgAEDKjyGDx/uSNe3b182btzIyJEj+c9//lOXH0cIIYQQHtCxcQTf/7kvEwa3xqjX+GVvBq9u1fPV78frxdU7r1nH7p577gHgpZdeqrA9Pz+fefPmceTIEYKDgxk5ciRvvfUW8+fP57777mP58uWV5ldSUoLJZAIgIiICq9Va5blLSkooKTnfnM/NzXW89uVbkPgLXysrT8fr77cacmV6f7jVkL/wtbLydLxSzy9NAx7p34zr2sTwt7k72H4yj8nzdvH9tjReHNGeZjEhLjuf3FLsMgYMGMC4ceO48847Adi8eTPXX3896enn16h57LHHCA4O5h//+EeV+axevZrJkyej0+mIjo5m1qxZVd4ebOrUqUybNu2i7XJLMSGEEMK3WRWsSNNYmKrDbNMwaoobkmwMjFfovabf8tKcuaWY11yxq0p+fv5FHyI8PJzs7OxLpuvbty8rVqyo1jkmTZrEhAkTHO9zc3NJSkoCYODAgRgM1Ssmi8XCsmXLqpXGmWPrO18rK0/H6+7zuzr/2uZXm/Q1SSv13D18raw8Ha/Uc+fS6pct4+Gh3Xnhp4OsOXyW+cf07C8N5YXhbemQEFar89XFz0L5nsTL8dsrdjWRkpJCSkoKVquVffv2yRU7IYQQwo8oBRsyNL47oqPQqqGhGBivuDHJRoDe09FVza+u2CUnJ5OTk8OpU6eIi4sDYOvWrTzwwAMuP9f48eMZP348ubm5REREAHLFzhv4Wll5Ol75S969aaWeu4evlZWn45V6XvO0Q4CH80t55ef9/LgznV/SNPYXBzN1WBt6t4h2+nxyxa4KZrMZq9XKkCFDePDBBxk1ahQBAQHodDpGjRpFdHQ077zzDosXL2bs2LEcPHiQqKgol8YgV+yEEEKI+mNHlsbXh3Vkl2oA9GxgY0RTGyFGDwd2AWeu2HlNw27s2LF8+umnFbYtW7aMAQMGkJGRwZgxY1i+fDmJiYlMnz6dQYMGuS2Wsit2s2fPZtiwYfKXvIf5Wll5Ol75S969aaWeu4evlZWn45V67rq0+SUW3vnlEF9sOIECYkICmDSkBYa0HVx7rXfU89zcXOLj432rYecN5IqdEEIIUT8dyoUvD+k5XWS/etcxysao5jYiTR4ODB+9YudNyl+xGzFiBEZj9a7Jms1mFi9ezODBgy+bxplj6ztfKytPx+vu87s6/9rmV5v0NUkr9dw9fK2sPB2v1HP3pC2x2PhwxSE+XHkYi00REqDn6etbc1e3RHQ6zeWxVVdubi6xsbHVatj5yAouQgghhBDuZTLoeOK6Vnz7UDeahioKSq1Mnb+bP/xnAwczCjwdXrXIFbtypCtWCCGEEAA2BatPacw/pqPUpqHXFNcn2rguQWGo48ti0hVbS9IV6118raw8Ha900bg3rdRz9/C1svJ0vFLP3Zu2fJr0AgvPfb+bFfvPANC6YSgvjWzPFUmRtY6tuqQrVgghhBDCBRpHBjHj3it5a1QnooKN7EvP544Z63lhwR7ySyyeDu8icsWuHOmKFUIIIURV8s3wvyM6NpyxXxeLDFCMamGjY5R7m1LSFVtL0hXrXXytrDwdr3TRuDet1HP38LWy8nS8Us/dm/ZyaVYfyOSZ73dx/GwRAFfE2Hh3TF8SokKdiq26nOmK9f5VID3MaDQ6/UPkTJqa5F9f+VpZeTped5/f1fnXNr/apJd67j18raw8Ha/Uc/emrSrNwHZxLG7ZgHeW7uOjVYfZeVbDis5t34Uz+UrD7jLMZrPTx1YnjTPH1ne+Vlaejtfd53d1/rXNrzbpa5JW6rl7+FpZeTpeqefuTVudNAYNnhrUiiFtopm3bB1xoUa3fx/VIV2x5cgYOyGEEEJ4GxljV0syxs67+FpZeTpeGXvj3rRSz93D18rK0/FKPXdvWm+r5zLGzoVk7I338LWy8nS8MvbGvWmlnruHr5WVp+OVeu7etN5Sz2WMnQvJ2BvP87Wy8nS8MvbGvWmlnruHr5WVp+OVeu7etN5Wz2WMXQ3JGDshhBBCeBsZY1dLOTk5REZG8tFHHzFs2DCn+uSXLVvGwIEDq9UnX91j6ztfKytPx+vu87s6/9rmV5v0NUkr9dw9fK2sPB2v1HP3pvW2ep6Xl0fz5s3Jzs4mIiLiksdKw64Sx48fJykpydNhCCGEEEI4pKamkpiYeMljpGFXCZvNxsmTJ7n22mv5/fffnUrbvXt3NmzYcNnjcnNzSUpKIjU19bKXVUX1y9VbeDped5/f1fnXNr/apK9JWqnn7uHpeuMsT8cr9dy9ab2pniulyMvLIyEhAZ1Od8ljZfJEJXQ6HYmJiRgMBqe/JL1e71Sa8PBw+Q+/GpwtV0/zdLzuPr+r869tfrVJX5O0Us/dw9P1xlmejlfquXvTels9v1wXbJlLN/vqufHjx9dJGnF5vlauno7X3ed3df61za826aWeew9fK1dPxyv13L1pPf391pR0xXpI2SLI1ZnhIoTwTVLPhfB/3lbP5Yqdh5hMJp577jlMJpOnQxFCuInUcyH8n7fVc7liJ4QQQgjhJ+SKnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEn5CGnRBCCCGEnzB4OgBvZLPZOHnyJGFhYWia5ulwhBBCCFGPKaXIy8sjISEBne7S1+SkYVeJkydPkpSU5OkwhBBCCCEcUlNTSUxMvOQx0rArJyUlhZSUFCwWCwAfffQRwcHBHo5KCCGEEPVZYWEhDzzwAGFhYZc9VlNKqTqIyafk5uYSERHB7NmzGTFiBEajsVrpzGYzixcvZvDgwZdN48yx9Z2vlZWn43X3+V2df23zq036mqSVeu4evlZWno5X6rl703pbPc/NzSU2NpacnBzCw8MveaxcsbsMo9Ho9BflTJqa5F9f+VpZeTped5/f1fnXNr/apJd67j18raw8Ha/Uc/em9ZZ67ky+fj0rNiMjg2HDhhEcHEybNm1YunSpp0MSQgghhHAbv75iN378eBISEjhz5gyLFi1i1KhRHDx4kKioKE+HJoQQQgjhcn57xS4/P5958+bx/PPPExwczMiRI+nYsSPz58/3dGhCCCGEEG7ht1fs9u/fT0REBPHx8Y5tXbp0YefOnRcdW1JSQklJieN9bm6u47XZbK72OcuOrU6atFe7co0li8LNoNDQsD8DqAvWznNsp2x72XsueK+BVrZduyh9lem0yvZXkV4r/77q/RqXOO6i82nl315cHkBbs5nUXa+US1sugaZVmu78dtDQzn/uSvIoS+vYd0GMaOf2n/uMl9quULQoKOTYkRloOt25fRpo5/6O0s5vU+dea5qG0jR7nJqGpl2Yzv6saefTaeX3a6ChA52GUtDwdDrHv1mFTq+3fxRNfy5cnSONdu48mk5D0+zHaZoOnU6HprPv1+nKH6dDp+lQykbj9P2UrjuJzWA8d4zOHodOfy5//bnX+nLby23T6Rz7rDZFZMEhLKkbIcBU7rgL0qE7n65cPmaLDc1mwVxSDEpd8P1emjN1tiZpapJ/feVrZeXpeN19flfnX9v8apPeH+q5M3n77azYVatW8cc//pEDBw44tk2ePJns7GxSUlIqHDt16lSmTZt2UR6zZ89223InvTc9TkMt2y15C1GfWdBj1QzYzj2Xf600PTbNgNKde9b0KJ3hXCPx/PuyfVZdgP2hBZx/rTNh1QVg0QVgc+w3YTm3z6wPtucphBAuUlhYyN13312/Z8WGhoZWuPIG9itxoaGhFx07adIkJkyYUOG4sgWK3TU9eldSI37csolOHTuh1+lQnLvYgLL/K2tvK1VuO+e3Y9+ulA0ATalzV6Ts28uuu1XIB3X+ct25fBXKnve512X7qCwvm80Rv2O7UjhSVpXu3PayGC+MSXMcX5bcdv7qmlJYbTZOHj9OQuPG6M5dkaKKWLULYnGcu1yZVjzu/GeyF4/Nkb7sPMpeOBW+F1vZF2b/RI73ClA2K2fPZhMZGW6/qlZ2DmU7n6bC63LPyuZ4rWFDKYWmAGz2a47l0mllZX/u2LLy1ZSV0pJSAgKMaOfK157Gdi4NaNguOp99/7mfiUrOAwrdufw0QIfNcb1Th0KHDf25OPXY0Gs2x7ayZ32543Tltuu0c2kqHGu74FjlOPZSDFgxKKvjO/UEmyEIZYqAwHCyixWRjZqgBUWiAiMgOAZCGqJCG0FoI/tzSAMwmDwTrJfw9PIhzvJ0vLLciXvTeuNyJ9Xltw275ORkcnJyOHXqFHFxcQBs3bqVBx544KJjTSYTJlPl/6m6a3p0+05XcST1NJ2u7OUT/4l5ktlsZuHChVw3dKhPlFVZvEM9FK+7zm+zKaxKUVJSysKffmbQ4CHo9QasSmG1KWznnsu/tj/jeG0+l4ft3HFWpSg1W1i7bj1XdeuGQofFpjBbbZitCovVhtl27rlsm8WG1WbGYrFgtVixmEs5evQI8fFx9j8KLGZs1lKwmlFWM5q1FKylKKsFZSlFWUuxWUrBZgaL/bVRs2LEghH7swErAZoZE2aCKCEQM0FaCUGUEkgJQVrpue2lBJ57HUQpQVopADpLEViKoOAUMQCH9l++gEMbQVRziG4B0c0hpiXEdYbolvYu6HrC08uHOMvT8cpyJ+5N64vLnfhtwy40NJSbb76Z5557jnfeeYfFixezY8cObrrpJk+HJoRP0uk0dGhg1GPSQ1igwWV/yefsVQxo3aDGf8kvXHiaoUOvrtFf8gsWLGTIDTdgRUex2UaJxUqx2Uax2UqJxUaJ2UqxxUpBiZXMEgs5hSVs3rGbhCYtKLLYyC+xkl9spqDESkFxCbaSXFRRDvqSXMK1AsIpPPdcQIRWQAx5NNSyaVD2IJsAzQr5p+2P1LUVgwwIhbhOkNQDWgyEJr3BGOh0OQkh6ge/bdgBTJ8+nTFjxhATE0NiYiJfffWVLHUihKhA08Co1xFsNBJWjfaS2WxmYc4uht7Y5pINyVKLjYzcQub9tJSOV/Ukp9hGVkEppwtK2ZZTzMmcIk5m2x+B5mwStTM01U47Hq10J2inHSOoNB+OrbE/fn0XDIHQ8lrocie0vqHed+EKISry64ZdgwYNWLhwoafDEELUQwEGHQ3DTDQOgd4tYqpsBCqlyC40cyyrkAPp+exPz2dReh7vn87jZFY+zbU0OmuH6KPfRV/dduIsZ2HvQvsjKAp6PgI9H4agyLr9gEIIr+TXDTtX8OXp0f7C18rK0/HKMgjuTeuOeh4aoNE+LoT2cSFAI8f2zIJStqRms/lYDp8dyuSpEzm00VIZqf+VkfpfiS/KguUvo9amYBswGVvXseeX1fExnq43zvJ0vFLP3ZvW236fy3InNZSSkkJKSgpWq5V9+/a5dbkTIYRwVk4p7DirsTFDx+E8xVDdOh43zKW17gQA6WEd+L3ZeMyGi2f/CyF8lzPLnUjDrhK5ublEREQwe/ZsRowY4bPTo/2Fr5WVp+OVZRDcm9Zb6vn+0/l8uPIwC7af4F7dIv7POIdgSlBRzbHc9TVENXPp+dytWmVVnIu26zt0qWuh8AwEhKESrsTW8XYIi688jSfj9eHzSz33jnpeJjc3l9jY2Pq9jp2r+PL0aH/ja2Xl6XhlGQT3pvV0PW+fGMV7d0fxSForJs2N5pbj7fnI+CZJZw9j+PwWtPsXQXiCS89ZFyotK6Vg40xY8hwU51Tct+d79Mtfgr5PwjV/BX3d1jmp53WbX32r5+Xzri7fHIwhhBACgHbx4XwzrjfXXTOQW0unccgWh5aTCl/dB5aSy2fg7ZSCnybBD3+xN+pi28CASTDyAxj8gn35F5sFVr4OX48FS6mnIxbCo6RhJ4QQPs6g1/F/N7TlL7f0ZYz5r+SoYDi+wd7Y8XVr/gnrPgA0GDQNHl0DA/4GV9wNVz8Of/oJbvsY9CbY8wMsvfj2kELUJ9IVexm+PIvGX/haWXk6Xpkt59603lzP7+iawJncq/nbsgf5IOBd1Kq3sbQdCQ3a1Mn5a6PSssrcj2HpC2iAdfAL2HqM49ytTCombjsCbaQew7djUWtSsLYeikrsUffx1iGp5+5N6231XGbF1pDMihVC+Dql4D97NR7Lf5vB+k2ciOjO7y0e83RYNdLj0NvE52zmdFgn1rZ8yr6a9CVcefTfNMlaTXpYR9a0+r86ilII95NZsbUks2K9i6+Vlafjldly7k3rC/U8q6CUR975gm/UU+g0hfmBFdCoQ52dvyYuKqvMAxg/7GXf9/AaiE2+fCbZRzFM74GmrJjv/8V+r926ireOST13b1pvq+cyK9aFfHkWjb/xtbLydLwyW869ab25njeKNDL0umtZuKgHw/Xr0G36BP3N79bZ+WvDUVab/mPf0PpGjPHtq5e4QStoPwJ2zsW47QtIusp9gZ4j9bxu86uv9bxezYp99dVX0TSNtWvP3zh77NixmEwmQkNDCQ0NpUMH7/5LVQghXO3e3k2Zb7wRANu2r6G0wMMROcFmg13f2193v9+5tFfcbX/eNc+ejxD1jE837E6cOMHs2bOJi4u7aN+0adPIz88nPz+fnTt3eiA6IYTwHJNBT/vewzhsa4TRUgC753s6pOo7uRnyT0FAKDTv71za5teAMQQK0uH0dvfEJ4QX8+mG3cSJE5k2bRomk8nToQghhNe5u1dT5tv6AFC47XsPR+OEvQvtz62uA4OT/78bAqB5P/vrQytcG5cQPsBnx9gtX76cM2fOcMstt/Dkk09etP/111/n9ddfp02bNrz66qv071/1X30lJSWUlJxfyDM3N9fx2penR/sLXysrT8cryyC4N60v1fPIQB3p8QMg4zsMR5ZhLsp3vqFUR8qXlf7IanSApcV1qBqUnS6xB/p9P2FLXY/VR+qBt51f6rl31XO/X+7EYrHQvXt3Zs2aRceOHWnWrBlffvklvXrZZ1Bt3ryZZs2aERISwtdff82jjz7Kjh07SEpKqjS/qVOnMm3axYtaynInQghft+aUYsLJJ2ioZfNby6fJCO/k6ZAuSVNWhm57GIOtlKXtXiE/sLHTecTk76Hv/pcpMkaxqKNvTBoR4lJ8frmTIUOGsHLlykr3TZkyhbCwMA4cOMD7778PcFHD7kI33HADd9xxB3/6058q3V/ZFbukpCRZ7sRL+FpZeTpeWQbBvWl9rZ5nFpSy6o07GWVYSX63P2O6fqpH4ricsrIa0qUxQTOvQwWEYnnqEGg1GDFUkofxjeb2fJ/cB8HRLo7W89+t1HP3pvW2eu7zy50sWrTokvtHjhzJypUr+frrrwHIyMhg2LBhvPHGG/zxj3+86Hid7tL/MZhMpirH6fny9Gh/42tl5el4ZRkE96b1lXoeF2nkePgVULiSksNrCPXyOmTMsE940BKuxBhQw25jYzRENoHsYxjP7oeIvi6M8IJTST2v0/zqaz33++VOZs6cya5du9iyZQtbtmwhISGBWbNmMXr0aAC+/fZbCgoKsFgszJkzh9WrV3Pttdd6OGohhPAMU4urAQjP2g6Wkssc7Vnayc32F4271i6jhufWvkvfXbt8hPAxXnnF7nIiIyMrvNfr9URHRzvGw7399tv86U9/QtM02rRpw3fffUezZs3qPlAhhPAC7TpcyZnt4cSSCye3QJOeng6pStqZvfYXjWo5FjCmlf0561Dt8hHCx/hkw+5CR44cqfB+9erVnglECCG8UNdm0ayzJTNEv5HCQ2sJ9uaGXVlDLKZl7TKKbmF/zjpcu3yE8DF+0bBzJ1+eHu0vfK2sPB2vLIPg3rS+WM+DDXA8sDWYN5JzeCPGq72vLpnNZgzWIrSCdPv78KZQi3LTwptgAFTWQSxuKH9Pf7dSz92b1tvqud8vd+IuKSkppKSkYLVa2bdvnyx3IoTwG7t3b+ZvxW+Tqm/Cps4vejqcSkUUHmHA3mcpMYTxU6eUWuUVXHKawbuexqIFsKDLDNA0F0UpRN1zZrkTuWJXzvjx4xk/fjy5ublEREQA+PT0aH/ha2Xl6XhlGQT3pvXVel4QGA1r3ibeepKh1w8CfYBH47mQ2Wxm11cvAGCMa8/QoUNrl6GlGHY9jUGVMvTaqyEosvZBluPp71bquXvTels9L3/jhMuRht1l+PL0aH/ja2Xl6XhlGQT3pvW1ep7cuj05vwUToRVC9iGI876FikNKTgGgi22FrrblZTRCUBQUncVYfAbCG7ggwspOI/W8LvOrr/Xc75c7EUII4Zw28eHsVk0BKDy2xbPBVCGk5LT9RdnEh9oKS7A/5550TX5C+ABp2AkhRD0QHmjkhMHesMtJ3enhaCoXXJppfxHVzDUZhsXZn/NOuSY/IXyAdMVehi/PovEXvlZWno5XZsu5N60v1/PCsOaQA+bTe7wmpjJms5mg0iwALCGNUC6ITx/SCB1gzT6OzcWf19PfrdRz96b1tnous2JrSGbFCiH82b79O3k6/x+c0CXwe5dXPR1ORcrG8K0PoFcWFrV/kyJT7cfEtT35DW1Of8/h2GvZljS29jEK4SEyK7aGZFasd/K1svJ0vDJbzr1pfbmeq9UNYcU/aGRLZ+j1g0Hv+ZjKmLPT0G+xoNAYePPdLolNt/EU/PQ9TaNNJNZ2lu0FPP3dSj13b1pvq+cyK9aFfHkWjb/xtbLydLwyW869aX2xnjdt0ZrC5SaCtRLIPwmxrTwd0nlF5yZOhDbEGOiinpLIJAB0+adqP8u2Cp7+bqWeuzett9RzmRUrhBDiIi0bhXNY2ScUFKbt8nA0FWnnZq6q8Mauy7Rs8kRumuvyFMLL+WzDbs6cOSQnJxMaGsrNN99MVlaWY19RURH33HMPYWFhNGnShC+++MKDkQohhHcIDzRyXJ8IQPYxb2vYnbC/cGnDLt7+XJABNpvr8hXCi/lkw2737t08/PDDfPHFF5w9e5amTZsyfvx4x/7nnnuOrKwsTpw4wZdffskjjzzCvn37PBixEEJ4h7xQ+xpxJaf2ejiSC+Sdu2JXtvacK4TE2p+VFYqyLn2sEH7CJ8fYLVmyhOuvv55u3boB8Pe//52mTZtSUFBASEgIs2bN4n//+x/h4eH06dOHm2++mS+//JJnn3220vxKSkooKSlxvC8/SNGXp0f7C18rK0/HK8sguDetr9dzc1QLyAPj2f1eFZeWfRwAa0icS5cmMQTHoBVmYs4+AQERLsvX09+t1HP3pvW2eu73y528//77rFq1iq+++gqAkydP0rhxYzZv3kzTpk2Jjo6moKDAsVTJm2++yfr165kzZ06l+U2dOpVp06ZdtF2WOxFC+Jv9x47xVOYU8gjhlyumg6Z5OiQA+u57kZiCfWxoNp6TUT1dlu/A3X8nvPg4v7X8PzLCO7osXyHqkt8vd3LdddcxZcoU1q9fT5cuXXjllVfQNI3CwkLy8/PR6/UVGmTh4eHk5+dXmd+kSZOYMGGC431ubi5JSfbZVL48Pdpf+FpZeTpeWQbBvWl9vZ7/uicVvp1CGAUMHdDzfHelh+kP/h2ATlffwBXNersu37MfwZHj9OjQDNXJdUueePq7lXru3rTeVs99frmTIUOGsHLlykr3TZkyhSlTpvDBBx8wZswYMjMzeeKJJwgLC6Nx48aEhoZitVopLCx0NO5yc3MJDQ2t8nwmkwmTyVTpPl+eHu1vfK2sPB2vLIPg3rS+Ws+Tk+I5rmJJ1M6gnT2IITLe0yGBzYbKt9/2Sx/d1LVldW5mrKEoE9zwHXj6u5V67t603lLPfX65k0WLFlFcXFzpY8qUKQDcfffd7N69m/T0dEaPHk1QUBCJiYlERUURFxfH9u3bHflt3bqVDh06eOrjCCGE14gPD+Qw9pmnZ4/u8HA05xSko9nsixMT2tC1eZfll3/atfkK4aW8smFXHZs2bcJms3HixAkefvhh/va3v6HX6wG45557eOGFF8jLy2Pt2rV8//33jB492sMRCyGE5+l0GhlBzQEoOrHTw9Gck2OfOFFkjAKdizuSQhvZn/PTXZuvEF7KZxt2jzzyCOHh4XTr1o3+/fvzxBNPOPY9//zzREREEB8fz6hRo5g+fTpt2rTxYLRCCOE9iiLt/x/qMnZ7OJJzso8BUBTghvF+ZVfsCqRhJ+oHrxxjVx3r1q2rcl9QUBCff/65S87jy9Oj/YWvlZWn45VlENyb1i/qeYO2cAoi8g54RWy6rMPogcKAWIJcHI8WGIMBUHmnsbgwb09/t1LP3ZvW2+q5y5c7KVtW5HL0ej233XZbtU/ubVJSUkhJScFqtbJv3z5Z7kQI4Zd2pJcw+cSDAPzY8Z+UGi+9fIK7dU79lOZnlrKv0U3sThjl0rzDilK5ds9kSgxh/NQpxaV5C1FXnFnupFoNO4PBQP/+/bncoRs2bLjksiK+Ijc3l4iICGbPns2IESN8dnq0v/C1svJ0vLIMgnvT+kM933Mqj/AZPWmqS8d891xo3t+j8ejn3IXuwGK2JP2R1ne97NqyKsjA+E47FBqWv50EvWvy9vR3K/XcvWm9rZ7n5uYSGxvrunXsgoKC+OWXXy57XFRUVPUi9CG+PD3a3/haWXk6XlkGwb1pfbmeJ8dFsFIl0ZR0Sk7tJrT1dZ4N6NzkicKAWNeXVXgj0PRoyoqxNAfCXbu8i6e/W6nn7k3rLfXc5cudHDp0qFqZyf1YhRDC+wUa9aSZ7DNjC1O3X+ZoN1MKclIBN02e0OkhpIH9tSx5IuqBajXsGjRoUK3MqnucEEIIzyqMbG1/4emZsUVnodQ+hKcwIMY95wg997upIMM9+QvhRZyeFXvjjTeiVXJvQZPJRGJiIrfccgvXXnutS4ITQgjhHgEJneAMRObsBasF9B5aJOHsYQBUSENsugD3nCO0EbBdrtiJesHpmtytWzc+++wzxowZQ2JiIsePH2fWrFnceeedaJrGXXfdxd/+9jeefPJJd8Rb53x5erS/8LWy8nS8sgyCe9P6Sz1v2LwjuVuDCKcI88mtENfZI3Fop3ZhAGwxyYB7ykof0ggdYD2bis1Lfm69/fxSz72rnrt8uZPyunXrxhdffEFycrJj2/79+7nrrrv4/fff2bhxI6NGjar2uDxvIsudCCHqi8xiaLXjdfrrt7O58X0cazjII3G0PzGH5PQFHIodxPak+9xyjtan5tEu7VuORvdjS9MH3XIOIdzJmeVOnL5id/DgQRo3blxhW3x8PAcOHACga9euZGT45jiG8ePHM378eMdyJ4BPT4/2F75WVp6OV5ZBcG9af6nnSik+3v09/dlOU1MOHYcO9Ugc+jn/hXRIvPI6tp9x7v/c6tJ2FMK8b0kKtZLgos/p6e9W6rl703pbPc/Nza32sU437IYMGcKoUaN45plnHF2xL774IjfccAMA69evp2nTps5m67V8eXq0v/G1svJ0vLIMgnvT+kM9z4m9Es58Q0DaBowGA1QyftrtMu2rKegatYMzue4pq9hW9nNkH0Pn4rw9/d1KPXdvWm+p5y5f7qS8jz/+mDZt2nDXXXeRnJzM3XffTZs2bfjoo48AaNy4MfPmzXM224tYLBZuu+02GjdujKZpnDp1qsL+5557jqSkJMLDw0lOTuaTTz5x7Fu+fDk6nY7Q0FDHY9WqVbWOSQgh/Eloq76UKAOhRSch82DdB1BaCGePAqBi3Xg/76hm9ufcE2Apcd95hPACTjfsQkNDeeuttzh8+DBFRUUcOnSIN998k9DQUAASExNp2bKlS4Lr378/3377baX77rnnHvbs2UNubi4LFy5k8uTJ7Ny507G/devW5OfnOx79+vVzSUxCCOEvrkpOYr2tLQBq/891H0D6LkBBcAwEu2ENuzIhsWAMtp/r3GLIQvirGs1vX7BgAd988w0ZGRn88MMPbNiwgezsbAYPHuy6wAwGnnjiiSr3l5+8AWCz2Th69CgdOnRw+lwlJSWUlJz/K658X7Yvz6LxF75WVp6OV2bLuTetP9XzTvEhvMeV9GMHhTsWEtDtoTo9v+7wKvSArXE3zBYL4L6yMkQ2RcvYjSXjACq8Sa3z8/R3K/XcvWm9rZ67dVbsa6+9xqxZsxg3bhyTJ08mOzubPXv2MGbMGNatW+d0sNUKUtNIS0sjLi6uwvZXX32VF154gcLCQnr06MGKFSsIDAxk+fLl3HDDDYSHhxMREcG9997L5MmT0ev1leY/depUpk2bdtF2mRUrhPB3c3dk8Kl5IlZ0LO74LiXGiDo7d49D7xCfs4mdCaM50GiYm8/1NvE5m9mWeB+HG3hmBrAQNeXMrFinG3ZNmjRh/fr1xMXFERUVxdmzZ1FKERMTQ1ZWVq0CrzLIKhp2YJ/ZtX79epYsWcJf//pXDAYDp06dIjs7m9atW7Nnzx7uuOMO7r///irX1qvsil1SUhKzZ89mxIgRPjuLxl/4Wll5Ol6ZLefetP5Wz2esPkzvZXdxpe4A1kHPY+v5aN2cWNkwvN0WrSgLy9ifKG3Yxa1lpVv2Evrf3sZ2xT1Yh71T6/w8/d1KPXdvWm+r57m5ucTGxrpnuROr1epYCqTsDhS5ubmOMXbVNWTIEFauXFnpvilTpjBlypRq5aNpGj179mTWrFl8/PHHPPzww8TFxTkage3bt2fKlClMnz69yoadyWTCZDJVus+XZ9H4G18rK0/HK7Pl3JvWX+r5sM6N+feS/lypOwCb/4uxz2Ogc3r4tfPStkFRFhiCMCRehVL23yduK6ukqwDQpW116cxYT3+3Us/dm9Zb6rlbZ8XecsstjBs3jjNnzgCQn5/P008/zW233eZUPosWLaK4uLjSR3UbdeXZbDYOHqx8VpeuLv6TEkIIH9Q0JoQ9Da4nVwWhz9wHexfWzYl3zrU/t7oODG66lVh5CV3tz+m77LNxhfBTTrd43njjDUJDQ2natCnZ2dk0atQIg8HAyy+/7PLgSkpKKC4uvug1wEcffUR2djY2m40VK1bw+eefM2DAAMC+3ElqaipgvyvGiy++yPDhw10enxBC+IMburbmM+sQANTyV8Bmde8JlYId51Y86HS7e89VJjzBfs9YZYXTO+rmnEJ4gNMNu8DAQFJSUigoKOD06dPk5+czffp0goKCXB5cmzZtHPk2a9aswjkWLlxIy5YtiYiI4NFHH+X1119n6LkVxTdu3EivXr0ICQlhyJAhjBw5kgkTJrg8PiGE8AejuiXyX4aRq4LRTu+ADR+594QHlkL2MTCGQPL17j1XGU07f9Xu2Nq6OacQHlCtMXbr16+vct/hw4cdr3v06FH7iMo5cuRIlfvmzp1b5b6JEycyceJEl8Tgy9Oj/YWvlZWn45VlENyb1h/reYhRo3+XNry2ZTQvGj9BLZmKJbE3NGzn+pMphX75q+gA65X3YtOMYDbXSVnpmvVHv+9HbHsWYO3xSK3y8vR3K/XcvWm9rZ67fLmT5s2bn0+gaRw/fhxN04iJiSEzMxOlFImJiRw6dKhmEXuJlJQUUlJSsFqt7Nu3T5Y7EULUG1kl8NJmjf8YXqO/fjsFAbH82moSRaYGLj1P46zf6Hb0Q6yakcUd3qTEGOnS/C8lsDST63c+iULj547v1enSLkLUhjPLnVTril35q3LTpk2jsLCQqVOnEhQURFFREdOmTSMkJKR2UXuB8ePHM378eHJzcx0zf315erS/8LWy8nS8sgyCe9P6cz1PDdzLE7+N53vDNJJK0xh8/G0sd34JDdq65gSZ+zHMfMz+ut8Erut3t2NXXZWVLeszdGmbGZyQj637XTXOx9PfrdRz96b1tnpe/sYJl+P0cifvv/8+p06dwmCwJw0KCuKFF14gPj6eZ555xtnsvJ4vT4/2N75WVp6OV5ZBcG9af6znT93QlsV70rk9azLzQl8lLvc4xv8MhkFTofv9oK/FZzi9E2bfAcU5kNgd/TVPo68kP7eX1ZV/gLTN6Nd/iL7nQ6Cv0Q2YHDz93Uo9d29ab6nnbl3uJCoqiqVLl1bYtnz5ciIjI53NSgghhBcJDjDw/l1dyTbEMix/MvvDeoKlCH76K0zvBetnQFG2c5mW5MPyf8CM6yD3OMS2hru+rF0jsTau+IP93rTZR2HrbM/EIIQbOf2nyrvvvssdd9xBz549SUpK4tixY2zYsIHPP//cHfEJIYSoQ1ckRfLmHV348+zNDMl4jNea9eH23FlomQdg4VPw82Ro2gea94NGHSGmFYTEQkAY2CxQmm9vNKXvgcMrYff39m0ALa+F2z6G4GjPfcCAYLj6L7D4GVg0BVoNsi+FIoSfcLphN3ToUA4ePMjChQtJS0vjmmuu4YsvviA2NtYd8QkhhKhjwzsnUFRq5W9zt/P0ke58Gdeb6VfuodH+L+0L/B5aZn9UV3RLuHYKdLjFvuyIp/V61L5A8snNMHs0jP0BAmUihfAPNRpcEBsby3333efqWLySL0+P9he+VlaejleWQXBv2vpSz0d2iSMm2MDEb7az8ZSZ3qdbMarrB0wYbCM2Yy3a8XVoZ/bB2SNo5op3clAhDVFRzVFJPVGtBqGSetsbdBZLleer87Ia+W8MM29EO7UN9fH1WG79D8QmVzu5p79bqefuTett9dzly52MHj2aOXPmXDazu+++m9mzfXfMgix3IoQQFeWWwteHdWzLsg/J1muKK2IU/eJsNAu1t9d0tlIM1mJsmh6bzohNVwe3CHOB8MKj9D74JoGWbKyagYMNb+Rgg+spNV56OQkh6pozy51Uq2EXFBTEZ599xuUOfeihh8jOznYqWG9UttzJ7NmzGTFihM9Oj/YXvlZWno5XlkFwb9r6Ws83HDnLm4v3s/FYtmNb48hAhrRvxOB2DbkiKQKjvub35fZYWeWeRL9wArqDSwBQhkBUqyHY2o9ANe1X5XhAT3+3Us/dm9bb6nlubi6xsbGuW8euZ8+eTJ8+vVrH+Rtfnh7tb3ytrDwdryyD4N609a2e90luSJ/khmw7ns2nvx1l4fY0TmQX88lvR/nkt6MEGfV0axZFrxYxdG0SRcfG4YQFOv+Z67ysYprCPd/Anh9g5RtoaVvQ9nyPbs/39v0N2tpvRdagNcS2sXfXhjeGczF6+ruVeu7etN5Sz53Jt1oNu+XLl9c0lhqzWCyMHj2atWvXcvLkSdLS0oiLi3PsP3z4MA8//DDr168nJCSEP//5z0yaNMmxf+bMmUyZMoXc3Fxuu+02/vWvfxEQ4BvdA0II4a06J0by5h2RvDiyIyv3Z/DzjlMs25vO2UIzq/afYdX+M45jm8eG0LFxBB0TwunYOIJ28eFEh3jh/8OaBu1ugrbDIW2rfWLF3p/gzF7I2GN/XMBgCv//9u49vqkqXfj4L0nb9BKaQkulpZVyx0KRF4HxxuAIUkWZ9ngUHQaljOC8CCoWz8cBWikIHmWGMx7fqcrB23ipiB4HZ1CxjogwiuDIrUoFRMqtrYVCm6aXXPf7R9rQTgs0kN2dhOf7+eSTZO+9Vp6szWMfd7JW+IWuG4aal8CU6Jl8ERnnuY9qvo80Q3g0hEdBWJTnvuUWFhkYE0lEyLm4lRlV9vOf/5z/+I//4Jprrmm378EHH6Rfv3588MEHHDt2jOuuu44xY8Ywfvx4SkpKyM3Npbi4mIEDB5Kdnc2yZctYunSpBu9CCCFCT1SEgcyhvcgc2gu3W+FAlZWvfqzmqx+r2XOsluM1jRw6Wc+hk/X8bXe5t12v2EjSk2O5Iqkb6Ulm0pNj6dMjQL7LrNNB8gjP7aalUH8Sjm7zLK58cj+c2AfVB8FRj85mIRYLHDp+4a/XUuyFGT3r+unDPffexxHNj8POPG7eZ9AZuPJ4JfoNmzyLLOsMoDeATt983+q5zgB6fattrY/r+HidopB0eje675Xmq5O65n3N9+hAR6vHrbc3H9fqsc7lJq7+ILryHRAecdbj2vfXfF5cbqJsJ6D22Dni+Zc2LdscTsJcjWCrA3dEq4Ja1/a41tvcTlDcnpvb3dx3cBTiAVvYhYWF8fDDD591/+HDh5k/fz7h4eH07duX66+/nr179zJ+/HiKioq46667GDVqFAD5+fnMnDnzrIWdzWbDZrN5n7f+6Y5gnkUTKoJtrLSOV2bLqdtW8rxj/eIj6Rffm6mjewNQXW9nb7mF78otfFtuobSyjiOnGqm0NFFpaWLj91XettERBgYlxhDj0HPqqzKG9Y5j8GXdiIowaPV2PCLM0H+i59ZCUcBuxXn6CDs3fcBVg3sTZq/1/KJGkwVdU43nsc2CrqkWHI2eRZ4dnpvO3erfgrN53wXQA2kA1T4sO+ODMGAMQJn/+hsHsP/C2ocDEwH2XljbWwH2+NYmC2BX+30KzQVec1EYptMxWVFo+vn3YOrue4Cd4PdZsVrT6XTtPop94YUX2LlzJ88++yxHjhxh/PjxfPDBB2RkZJCVlUVmZiYPPPAAANXV1SQkJNDQ0EBUVFS7/gsKCliyZEm77TIrVggh/KfJCeUNcLxBx/F6z62iARxK+yshOhR6RkJaN4XBZoXBcQrdgvtrigDoFBcGtx2D2+6ZTey2o1cc6BQXesWJXnGha75v+9jZfEzrx050ittzQ2m+d3vvUZQzz1vto4Nj2/TRwTHgOSee7Z57b4mjKGf2obR57nkM4G5/bJt+lObxafVaSut9LcfT/N7w7mtpq7X1w/8HlyFSlb59mRUbsFfszufaa6/lueeeIyYmBpfLRUFBARkZGQBYrdY2b7zlsdVq7bCwW7BgAbm5ud7nFouF1NRUgKCeRRMqgm2stI5XZsup21by3L+cLjdl1Q18e7yGDV99iy0qgX0/WTlhtVPVBFVNOraf8Bw7ItVM9ohkbh3Wi7hobcdT63MbzHke5mN/SmfiUc4UkjQXpjQXgg6HnU8//ZTxN/6C8LCwM722XNfyXt86U0w6HHY+37SJcePGNbc5s6/t64HTaWfz5i3cmHkr4RFGn95bZ7X+JPF8fC7sGhsbefzxx3nnnXc4deoUFouFjz/+mNLSUubNm9fpfiZOnMjmzZs73JeXl0deXt5Z27pcLiZNmsRjjz3G7NmzOXbsGLfddhtDhw7ljjvuwGQytRmElscmk6nD/oxGI0ZjxycjmGfRhJpgGyut45XZcuq2lTz3j/BwuKK3kQGJJiIq9jBp0ijCw8M5UWfju/Jatv5Yzeb9JymtsLDraC27jtby5Ef7uHt0Kg/cMIBeZnWukHQ+fsnzruzvgtqHOXDrIwiPNne+rcOBPawb4eZe52/jcNAU8R3hEcaAmBXr86JDDzzwABUVFaxfvx6DwfP9h+HDh/PCCy/41E9xcTFNTU0d3s5V1AGcOnWK8vJyZs+eTVhYGGlpaWRnZ/PZZ57vGqSnp1NSUuI9fvfu3fTt27fDq3VCCCECT89uRm4YnMiCW67go4fHsm3hePJuvYIhvbphd7p5bethfv77z3hu0w84XW6twxUiYPhc2H3wwQe89NJLDBs2DF3zDJGkpCQqKir8HpzNZqOpqand4549e5Kamsrq1atxu90cO3aM999/3/tR7NSpU1m7di07duygtraW5cuXM23aNL/HJ4QQomtcFhvJzLH9+OjhsRTN+hlj0npgd7pZsWEfU1dv43S9XesQhQgIPhd2cXFxnDhxos22Q4cOkZyc7LegWgwePNh7lS0tLa3NFbd3332X119/ne7duzN69GjGjx/PrFmzAMjIyGDlypVMnjyZlJQUUlNTWbRokd/jE0II0bV0Oh3X9k/g7d9ezR/uvBKTMYztZaeYsmorNQ1S3Anh83fsHn74YSZPnsyiRYtwuVysX7+eZcuW+fT9us4qKys7677Ro0fz5ZdfnnV/Tk4OOTk5Fx2DLIOgvWAbK63jleVO1G0rea6OCxmrrOGXkX5ZDDP+/A0HqqzMeu2fvD5jFAa9+uuNaX1uJc/VbRtoea76cifvvPMOL7/8MkeOHKF3797cd9993HXXXb52E3AKCwspLCzE5XKxf/9+We5ECCGCQHkDPPOtAZtLx+TLXUzoHRjLXwjhL74sdxIU69h1NYvFgtlspqioiKysLFkGQWPBNlZaxxvMyyDIcieXrosdq3d3HGfBX77DGKbns9yx9OymzrITLbQ+t5Ln6rYNtDy3WCwkJCSos47dM888wy9+8QuuvPJKtm3bxrRp0zAYDLzyyisd/vRXsJNlEAJHsI2V1vHKMgjqtpU8V8eFjtXdY/qw9pvj7DxSw0tfHiH/tnQVomtP63Mrea5u20DJc1WXO1mxYgVpaWkAzJ8/n3nz5rFgwQIeeughX7sSQggh/EKn0/HIhEEAFG07QoPdqXFEQmjD58LOarViNps5ffo0paWlzJ49m+nTp7N//wX+AJwQQgjhB2MHJtAnPppGh4tP9v6kdThCaMLnwm7AgAGsWbOGZ599lgkTJqDX6zl16hQRERFqxCeEEEJ0ik6nI+tKz9Jbf91VrnE0QmjD5+/YPf/888ybN4+IiAhefPFFADZs2EBmZqbfgwsEwTw9OlQE21hpHa8sg6BuW8lzdfhrrG4emsizG39g84ETWOqbiIow+CO8drQ+t5Ln6rYNtDxXfbmTUCXLnQghRHBTFCjYYaDGrmP2FS6GxMmfOBH8fFnuxOcrduD57dUvvviC6upqWteFjz/++IV0FzDmzJnDnDlzvMudAEE9PTpUBNtYaR2vLIOgblvJc3X4c6w+byrhL7sq0CUOZNKEAX6KsC2tz63kubptAy3PLRZLp4/1ubD705/+RF5eHpMmTeIvf/kL//Zv/8YHH3xAVlaWr10FhWCeHh1qgm2stI5XlkFQt63kuTr8MVYj0+L5y64Kvq2oU33ctT63kufqtg2UPFd1uZOVK1eyceNGioqKMBqNFBUVsX79ehobG33t6pz27dvHbbfdRkJCAj179mTatGmcPn3auz83N5d+/frRrVs3Ro0axebNm737Nm3ahF6vx2QyeW9btmzxa3xCCCEC05Upnk9c9hyrQb5tJC41Phd2p06dYuTIkQBERERgt9sZO3YsxcXFfg2straWKVOmcPDgQcrKyrDb7Tz66KPe/WazmeLiYmpra3nsscfIzs6mrq7Ou3/QoEFYrVbvbezYsX6NTwghRGAadFk39DqoaXBwos6mdThCdCmfP4odPHgwu3btYsSIEYwYMYKnn34as9lMz549/RrYmDFjGDNmjPf5rFmzyM3N9T5fvHix9/Gdd97JvHnz2L9/P1dddZXPr2Wz2bDZziR/68+yg3kWTagItrHSOl6ZLaduW8lzdfhzrAzA5T2iKatuYG95Dd2j4i+6z3+l9bmVPFe3baDluaqzYr/66isiIiIYOXIke/fuZe7cudTV1fH0009z4403+hxsZy1ZsoTS0lLWrFnTbl9ZWRlXXHEFlZWVmM1mNm3axM0330xsbCxms5l77rmHRYsWYTB0PO29oKCAJUuWtNsus2KFECI4vfi9npLTem5PczEuST6OFcHNl1mxQbHcya5duxg/fjybN29m6NChbfY5HA4mTJjAuHHjWLp0KQCVlZXU1NQwaNAgvv/+e6ZMmcJ9993HI4880mH/HV2xS01NpaioiKysrKCdRRMqgm2stI5XZsup21byXB3+HqunNuzjpS8OM+PaPiy8ZbAfImxL63Mrea5u20DLc4vFQkJCgnrLnRw5coRvv/0Wq9XaZvuUKVM63cfEiRPbTHhoLS8vj7y8PAAOHTrE5MmTeemll9oVdYqikJOTQ2JiIgUFBd7tvXr1olevXgCkp6eTl5fHc889d9bCzmg0YjQaO9wXzLNoQk2wjZXW8cpsOXXbSp6rw19jldojBoCKWltQ5UGgvb7keWDkuS/9+lzYrVixgoKCAjIyMtp8TKnT6Xwq7Doz2aKyspKbbrqJ/Px8srOz2+1/8MEHKS8vZ8OGDej1Z58Hcq59QgghQk/v7p6/T8dr/LtigxCBzufC7g9/+ANff/11u6tn/lZbW0tmZib33nsv999/f7v9ixcv5osvvuDzzz9vd7Vt06ZN9O/fn9TUVA4cOMCyZcuYNm2aqvEKIYQIHL3jogAp7MSlx+dLWSaTif79+6sRSxvr1q1jz549rFixos16dC2WLl1KaWkpycnJ3n1vvvkmAN988w1XX301MTExTJw4kezs7DYzaoUQQoS23t09hd2pejsNdqfG0QjRdTp1xa6qqsr7eMGCBcycOZMFCxa0W+IkMTHRb4FNnz6d6dOnn3X/ueZ8zJ8/n/nz5/sljmCeHh0qgm2stI5XlkFQt63kuTr8PVbRYWAyhmG1OTl8oo4BiabzN/KB1udW8lzdtoGW535f7kSv16PT6c5ZTOl0OlwuV6dfOBAVFhZSWFiIy+Vi//79styJEEIEsad3Gyhv0PF/h7i4onvALwAhxFn5stxJp67Yud1uvwQW6ObMmcOcOXOwWCyYzZ6fpAnm6dGhItjGSut4ZRkEddtKnqtDjbF6/9ROyvedIHnQMCaNTvVLny20PreS5+q2DbQ8b/3DCefT6ckTiqKwevVqvv32W0aMGMFvfvObCwou2ATz9OhQE2xjpXW8sgyCum0lz9Xhz7FKap5AcbLeqeoyFJLnXdffpZrnvvTb6ckT8+fPZ/HixVRWVrJo0SLvOnNCCCFEIErsFgnAibomjSMRout0urBbu3YtmzdvZu3atXz22Wcd/rSXEEIIESgSYz1LYVVZbOc5UojQ0enCzmKxMHDgQACGDBnCqVOnVAtKCCGEuFg9TZ7C7oRVCjtx6ej0d+xcLhdff/21d2bsvz4HGDNmjP8j1FgwT48OFcE2VlrHK8sgqNtW8lwdaoxVj2gDAD9Zmvx+DrQ+t5Ln6rYNtDz3+3InAGlpaeh0urN3pNPx448/dvqFA5EsdyKEEKGjxgaLd4Sh1yms/JkL/dn/hAkR0HxZ7qTThd2lpGW5k6KiIrKysoJ2enSoCLax0jpeWQZB3baS5+pQY6wcLjdDl/wdRYGvfncD8TERfukXtD+3kufqtg20PLdYLCQkJPhvHbtLWTBPjw41wTZWWscryyCo21byXB3+HKvwcOgRHUF1vZ3TjS56xfn/HGh9biXP1W0bKHmuynInXW3fvn3cdtttJCQk0LNnT6ZNm8bp06e9+4cOHdrmN2T1ej0rV6707n/11VdJSUkhNjaWGTNmYLfbtXgbQgghNNSzW/PM2DqZQCEuDQFb2NXW1jJlyhQOHjxIWVkZdrudRx991Lv/u+++w2q1YrVaOXz4MOHh4WRlZQFQUlJCbm4u69at4+jRo5SVlbFs2TKt3ooQQgiNtBR2J6SwE5eIgP0odsyYMW1m2c6aNYvc3NwOj127di0jR45kwIABABQVFXHXXXcxatQoAPLz85k5cyZLly7tsL3NZsNmO5P0rX+6I5hn0YSKYBsrreOV2XLqtpU8V4daY5Vg8nyvrrKmwa99a31uJc/VbRtoea7KrFitLVmyhNLS0g4XRr7++uu5++67mTt3LgBZWVlkZmbywAMPAFBdXU1CQgINDQ1ERUW1a19QUMCSJUvabZdZsUIIEdz+eljPp+V6xvVyc3vfS+N3z0Xo8WVWbMBesWtt165dPPvss2zevLndvrKyMrZv3857773n3Wa1Wtu88ZbHVqu1w8JuwYIFba4GWiwWUlM9PxgdzLNoQkWwjZXW8cpsOXXbSp6rQ62xqtp6mE/L9xGTkMSkSVf6rV+tz63kubptAy3PW3+SeD6aFXYTJ07ssFADyMvL8/4W7aFDh5g8eTIvvfQSQ4cObXdsUVEREyZMIDEx0bvNZDK1GYSWxyaTqcPXMxqNGI3GDvcF8yyaUBNsY6V1vDJbTt22kufq8PdYJcV5PnU5aXWocg60PreS5+q2DZQ896VfzQq74uLi8x5TWVnJTTfdRH5+PtnZ2R0eU1RUxIIFC9psS09Pp6SkxPt89+7d9O3bt8OrdUIIIUKX/KyYuNQE9KzYzMxM7r33Xu6///4Oj9m1axdlZWXtir6pU6eydu1aduzYQW1tLcuXL2fatGldELUQQohAkhgbCUCVpUnjSIToGgFb2K1bt449e/awYsWKNuvVtfbmm2+SlZVFTExMm+0ZGRmsXLmSyZMnk5KSQmpqKosWLerK8IUQQgSAxOblTurtLuptTo2jEUJ9ATt5Yvr06UyfPv2cx/z+978/676cnBxycnIuOo5gnh4dKoJtrLSOV5ZBULet5Lk61BqrCD1ERxhosLuoOF1Pn3j/rHSg9bmVPFe3baDleUgud9IVCgsLKSwsxOVysX//flnuRAghQsATOw2cbNLx0FAn/c+9UoQQASnkljvpKnPmzGHOnDlYLBbMZjMgy50EgmAbK63jlWUQ1G0rea4ONcfq9fLtnDxcQ/+hI5mU0csvfWp9biXP1W0baHkeFMudBItgnh4daoJtrLSOV5ZBULet5Lk61Biry2KjgBpONTr93rfW51byXN22gZLnvvQbsJMnhBBCCH9o+b3YKvm9WHEJkMJOCCFESPMWdhYp7ETok8JOCCFESGtZ8kQWKRaXAvmO3XkE8/ToUBFsY6V1vLIMgrptJc/VoeZYxUd7/tRV1TYGzL/bQH99yfPAynNZ7uQCyXInQggReo7Xw4o9YcSEKTw52qV1OEL4zJflTqSw60DLcidFRUVkZWUF7fToUBFsY6V1vLIMgrptJc/VoeZY1TU5Gbl8IwDfLPwFsVHa/7sN9NeXPA+sPLdYLCQkJMg6dv4QzNOjQ02wjZXW8coyCOq2lTxXhxpj1SM8nCRzJBW1TZSdtnFVrP8+idH63Eqeq9s2UPI8JJY7sVqtXH/99cTHx9O9e3fGjx/P999/793/3HPPMWLECMLCwnjqqafatN20aRN6vb7Nb8xu2bKlq9+CEEKIADEg0fNb4werrBpHIoS6ArawMxqNrF69mhMnTlBdXc3tt9/e5rdjk5OTWbZsGb/85S87bD9o0CCsVqv3Nnbs2K4KXQghRIDp39NT2B2oqtM4EiHUFbAfxYaHh3PFFVcA4HK50Ov1HDp0yLs/OzsbgHfffVeL8IQQQgSRgZd5Crsf5IqdCHEBW9i1GD58OKWlpbjdblasWNHpdmVlZSQmJmI2m7nnnntYtGgRBoOhw2NtNhs225n1jVr/JlswT48OFcE2VlrHK8sgqNtW8lwdao9VWo9IAA78VOeX19D63Eqeq9s20PI85JY7aWxs5I033qB3795MmjSpzb6cnByGDBnC7373O++2yspKampqGDRoEN9//z1Tpkzhvvvu45FHHumw/4KCApYsWdJuuyx3IoQQoaHBCQu/NqCg44mrnMRGaB2REJ0XFMudTJw4kc2bN3e4Ly8vj7y8vDbbFEUhKSmJ0tJSunfv7t3eUWH3r9asWcNzzz131tfr6IpdamqqLHcSIIJtrLSOV5ZBULet5Lk6umKssp7byt6KOp6ZMpxbM3pdVF9an1vJc3XbBlqeB8VyJ8XFxT4drygKVquVioqKNoVdZ+j1554jYjQaMRqNHe4L5unRoSbYxkrreGUZBHXbSp6rQ82xuqZ/Ansr6vj6cA3ZI1P90qfW51byXN22gZLnIbHcye7du9m8eTN2u536+noWLlxIXFwcAwcOBMDpdNLU1ITL5WrzGDzLnRw9ehSAAwcOsGzZMm677TbN3osQQgjtXd0vHoCtB6s1jkQI9QRsYedwOHj44YeJj4/n8ssvZ9euXXz44YfeqnXZsmVERUXxxhtvkJ+fT1RUFK+//joA33zzDVdffTUxMTFMnDiR7OxscnNztXw7QgghNDambw8iDHp+PFnPd+W1WocjhCoCdlbsqFGj2Llz51n3FxQUUFBQ0OG++fPnM3/+fL/EEcyzaEJFsI2V1vHKbDl120qeq6Mrxio6DMYP6clH3/3E2q+PkDdpyAX3pfW5lTxXt22g5XnIzYrtKoWFhRQWFuJyudi/f7/MihVCiBDz3Wkd//O9gegwhcX/x0VkwF7eEOKMoJgVG8gsFgtms1lmxQaIYBsrreOV2XLqtpU8V0dXjZXT5ebWP33JjycbePAX/XjoxgEX1I/W51byXN22gZbnQTErNlgE8yyaUBNsY6V1vDJbTt22kufqUP/fLfxH5hBmv7mD/9lSxuQRKQy6rNtF9Cd53pX9Xap5HhKzYoUQQgg13DysFz8f1BOb080Db+7gdL1d65CE8Bsp7IQQQlxSdDodf7hzOJfFGvmhysqvX9zGsdMNWoclhF9IYSeEEOKSk9gtkjfu+xnxMRHsrbAw+f/9g7/sPIZ87VwEO/mO3XkE8/ToUBFsY6V1vLIMgrptJc/VocVYpfWI5L3/+zPmrtlNyXELj7y9mxe3/EjONX24ZVgvjGFnv/ah9bmVPFe3baDluSx3coFkuRMhhLj0ON3wWYWO4mN67G4dAJEGhfQ4hYweCv1jFcwRGgcpLmmy3MlFkuVOAkuwjZXW8coyCOq2lTxXRyCMVXW9nXf+eYw3tx+l0mJrsy/ZHMmIVDMDEk0M6BnD5XFGfti1lUmZkudd0d+lnuey3IkfBfP06FATbGOldbyyDIK6bSXP1aHlWPWKC+fBCYOZc+Mgdh6t4ZO9P7FpXxX7f6qjvLaJ8tom4KdWLcJ46rsvSDJH0cscSZI5kstiI+kRE0H36HDioiPoHn3mccQ5Ptq9UJLn6rYNlDz3pd+ALeysVis333wzpaWluN1uRo4cSWFhIUOGnPkJmFdeeYUnn3yS8vJyLr/8ct5//30GDRoEwKuvvkpeXh4Wi4V///d/Z9WqVUREyLV0IYQQ56bX67iqT3eu6tOd390yBKvNyZ6jNew5XsvBKisHT1j5ocqKpcnJSaudk1Y7JcfP/9uzMREGYoxhmIxhxBjDiDEaMBnDiI4Ia97u2R8dYcAYZsAYpicy3HNvDNcTGWbAGK7HGGZAj5vqJqiqs2GKBGO4nnCDHoNe1wUjJAJZwBZ2RqOR1atXM3jwYACef/55pk+fzrZt2wD429/+xsqVK1m3bh3p6en8+OOPdO/eHYCSkhJyc3MpLi5m4MCBZGdns2zZMpYuXarZ+xFCCBGcTMYwrh2QwLUDErzb7HY77/z1I4aNuZ6T9U4qapuorG2i0tLE6Xo7pxvs1DQ4PPeNDhQF6u0u6u0uqups53g1X4SxdOfnbbbodBCu1xNm0BFu0BNu0BHW/DzC4LkP03u2hxvOHBembznes02vg/Jjer58fy/hYXoMOh16vQ6DTofB0Hyv16FvvvfevMeBwaBvPg4Ut5tvT+hw7akgIjzsnP3pdZ7iWq/zLE2j1+lwu5wctcJ35RYiwsPR6/EeC81tmo/VtW6PDpfLicXu+ajdGK6g1+lAR/s2ujOvGczfUgvYwi48PJwrrrgCAJfLhV6v59ChQ979TzzxBH/84x8ZOnQoAP379/fuKyoq4q677mLUqFEA5OfnM3PmTCnshBBC+IVOp8MUDulJsef9mMztVrA0OTjd4KDe5vTc7E6sNteZ5zZX8zYnTXYXNqcbm9NFk8Nzb3O6sTncNDld2Jq31TfZcSg6WtcgigJ2lxu7C8B1ke9Sz7YTxy6yj9YMvPFDyUW0D+MPJV9dcNv8bzb53OaRr4q9xd+5ikG73cC48U7iAuArFwFb2LUYPny49+PYFStWAJ5Cb+fOnZSUlDBjxgzCw8OZMWMG+fn56HQ69u7dS2ZmprePK6+8kkOHDtHY2EhUVFS717DZbNhsZ/4PymKxeB8H8/ToUBFsY6V1vLIMgrptJc/VEWxj5Wu8MeE6YswRgH++EtTyhf0JEyagM4TR5HDjdLtxuhScbgW7q/mxy932uduNw6XgcJ051uHybGvZ53S5sTmc7Nt/gH79B6Cgw6UouN003yu4FAWX23NzKwquVvuc7jPHtNw7XW6qTpwkrnsPFHTNbVr3g/dYRQFFUXAr4FYUFMWzvbGxCaMxEgXPdnfzsWfuW9q1bkvzPjcKvn9M3dIPnO8Kng6H04HDoU5ZFXLLnTQ2NvLGG2/Qu3dvJk2aRHl5uffxm2++icVi4ZZbbuHRRx9lxowZjB8/nhkzZjBt2jTAMyARERFUVVXRs2fPdv0XFBSwZMmSdttluRMhhBAiNCiKpzxTmh9DczHYapvSwXEt9+5/6cf9L8dfFgVqfcXRl+VONLtiN3HiRDZv3tzhvry8PPLy8rzPo6KimDlzJklJSZSWlnqvuj322GPExcURFxfHnDlz+PDDD5kxYwYmk6nNVbeWxyaTqcPXW7BgAbm5uW2OT01NBQjq6dGhItjGSut4ZRkEddtKnqsj2MZK63glz31vO3Fi8OZ565rmfDQr7IqLi306XlEUrFYrFRUVpKenk5yc3G5/i/T0dEpKznyOv3v3bvr27dvhx7DgmahhNBo73BfM06NDTbCNldbxyjII6raVPFdHsI2V1vFKnqvbNlDy3Jd+A/a3Ynfv3s3mzZux2+3U19ezcOFC4uLiGDhwIAA5OTmsWLGCuro6ysvLeeGFF7j11lsBmDp1KmvXrmXHjh3U1tayfPly78eyQgghhBChKmALO4fDwcMPP0x8fDyXX345u3bt4sMPP/RWrYsXLyYpKYmUlBRGjx7N7bffzvTp0wHIyMhg5cqVTJ48mZSUFFJTU1m0aJGWb0cIIYQQQnUBOyt21KhR7Ny586z7IyIiWL16NatXr+5wf05ODjk5ORcdh8yW016wjZXW8cqsWHXbSp6rI9jGSut4Jc/VbRtoeR5ys2K7SmFhIYWFhTidTg4cOMCLL74os2KFEEIIoamGhgZmzpxJTU0NZrP5nMdKYdeBY8eOeWfFCiGEEEIEgqNHj5KSknLOY6Sw64Db7aa8vJwbb7yRf/7znz61HT16NF9//fV5j2tZUuXo0aPnXZNGdH5cA4XW8ar9+v7u/2L7u5j2F9JW8lwdWueNr7SOV/Jc3baBlOeKolBXV0dycjJ6/bmnRwTsd+y0pNfrSUlJISwszOeTZDAYfGoTGxsr/8HvBF/HVWtax6v26/u7/4vt72LaX0hbyXN1aJ03vtI6XslzddsGWp6f7yPYFgE7KzYQzJkzp0vaiPMLtnHVOl61X9/f/V9sfxfTXvI8cATbuGodr+S5um21Pr8XSj6K1YjFYsFsNnfq50GEEMFJ8lyI0BdoeS5X7DRiNBpZvHjxWX/xQggR/CTPhQh9gZbncsVOCCGEECJEyBU7IYQQQogQIYWdEEIIIUSIkMJOCCGEECJESGEnhBBCCBEipLALYEePHmXkyJFERkbidDq1DkcI4Se5ubmMHTuWhx56SOtQhBAq0PLvtxR2Aaxnz55s3LiRq6++WutQhBB+smPHDqxWK1u2bMHhcATVT2gJITpHy7/fUtgFsMjISOLi4rQOQwjhR1u3bmXChAkATJgwga+++krjiIQQ/qbl328p7Pxo8eLFpKeno9frWbNmTZt9J06c4NZbbyU6OprBgwfz6aefahSlEMJfLiTna2pqvKvTm81mTp8+3eVxCyE6L9j+todpHUAoGThwIP/93/9Nfn5+u31z5swhOTmZkydPUlxczJ133snBgwex2WzcfffdbY41mUysX7++q8IWQlygC8n5uLg4LBYL4PkpIrkqL0Rgu5A87969uwaRNlOE340bN0556623vM/r6uqUiIgIpby83Ltt7Nixyp///OdO9+dwOPwepxDCP3zJ+W+++Ua5//77FUVRlNmzZyvbtm3r8niFEL67kL/tWvz9lo9iu8CBAwcwm80kJSV5t1155ZV8991352zX1NTEhAkT2L17N5mZmWzZskXtUIUQfnCunB85ciRRUVGMHTsWvV7PmDFjNIxUCHGhzpXnWv79lo9iu4DVavV+p6ZFbGwsNTU152wXGRnJ3//+dxUjE0Ko4Xw5/8wzz3R9UEIIvzpXnmv591uu2HUBk8nk/U5NC4vFgslk0igiIYSaJOeFCH2BmudS2HWBgQMHUltbS2VlpXfb7t27GTp0qIZRCSHUIjkvROgL1DyXws6PHA4HTU1NuN3uNo9NJhO//OUvWbx4MY2Njfz1r3/l22+/ZfLkyVqHLIS4CJLzQoS+oMvzLp2qEeKmT5+uAG1un332maIoilJVVaXccsstSlRUlDJw4EDlk08+0TZYIcRFk5wXIvQFW57rFEVRtCkphRBCCCGEP8lHsUIIIYQQIUIKOyGEEEKIECGFnRBCCCFEiJDCTgghhBAiREhhJ4QQQggRIqSwE0IIIYQIEVLYCSGEEEKECCnshBBCCCFChBR2QggRYAoKCggPD6dXr15+6/OGG25gzZo1PrWZN28eUVFRDBkyxG9xCCHUJYWdECIgpaWlER0djclkwmQykZaWpnVIXeq+++5r8+Piahg2bBhlZWVn3f/MM8/w0UcfqRqDEMK/pLATQgSsjRs3YrVasVqtHRYgDoej64MKAP5438eOHcPpdF5yBbMQoU4KOyFE0Ni0aRNDhgxh0aJFJCQk8OSTT9LY2MjcuXNJTk4mJSWFp59+2nt8fX09U6dOJS4ujpEjR7Jw4UJuvvnmNn21ptPpvFfJTp06xdSpU0lMTKRfv378+c9/9h53ww03sHTpUkaNGkVsbCy/+tWvsNvt3v1vv/02w4YNo1u3bmRkZLBv3z6WL1/OjBkz2rzeddddx3vvvdep956WlsaKFSsYPHgw6enpADzwwAMkJycTFxfHxIkTOXLkiPf4r7/+muHDhxMbG8tvf/tb3G53m/4+/vhjMjMzAXj55Zfp06cPJpOJ/v3789lnn3UqJiFE4JHCTggRVH744Qeio6OpqKjgscce49FHH6W2tpb9+/ezfft2XnvtNf72t78BsGTJEqqrqzly5AhFRUW8/vrrnX6de+65h9TUVI4ePcqHH37IggUL2L17t3f/O++8w3vvvceRI0fYs2cPb7/9NgBffPEFc+fOZdWqVdTW1vLOO+8QGxvLr3/9a9atW4fNZgPg8OHD7N27l0mTJnU6pnXr1rFlyxZKSkoAuP766yktLaWyspKUlBQeeughAOx2O7fffjsPPvgg1dXVDBs2jC+//LJNXxs2bCAzM5P6+nrmzZvH3//+d6xWKxs3bpSreEIEMSnshBAB66abbiIuLo64uDgWLFgAQHR0NL/73e8IDw/HaDTyyiuvsHLlSkwmE8nJycyePZt3330X8BRf+fn5xMbGMmTIEKZPn96p162srGTLli08+eSTGI1GhgwZwtSpU9tcXZs1axaXX345cXFx3Hrrrd6i79VXX2X27Nlcd9116PV6hgwZQlJSEmlpaQwbNowPP/wQgDVr1pCdnU1kZGSnx+ORRx4hMTHR22bq1KmYzWYiIyN57LHH+Mc//gHA1q1bMRqNzJo1i/DwcObOnUtSUpK3H5fLxT/+8Q9uuOEGwHOlsqSkBJvNRp8+fejbt2+nYxJCBBYp7IQQAeuTTz6hpqaGmpoa/vM//xOApKQkDAYDACdOnKCxsZFBgwZ5C8CFCxdSVVUFQEVFBampqd7+Wj8+lyNHjlBfX098fLy331WrVvHTTz95j0lMTPQ+jo6Oxmq1Ap7vrvXr16/DfqdNm+admVpUVMTUqVM7OxQApKSktHm+fPlyBgwYQGxsLGPGjKG6uhpo/751Ol2bttu2bWPYsGFER0cTExPDW2+9xZ/+9CcSExO54447KC8v9ykuIUTgkMJOCBFUdDqd93FCQgKRkZEcPnzYWwBaLBbvTM6kpCSOHj3qPb7145iYGBoaGrzPW89A7d27N3Fxcd4+a2pqqKur44UXXjhvfKmpqRw6dKjDfXfeeSfFxcVs376dqqoqbrzxxs6/cdq+988//5xVq1bx0UcfUVtby/bt2737kpKSOHbsWJu2rZ+3fAzbYtKkSWzcuJHjx48TGRlJfn6+T3EJIQKHFHZCiKCl1+uZPn06jz76KDU1NbjdbkpLS71Fzh133MHy5cupq6tj3759vPbaa962gwYNorq6ms8//xybzcYTTzzh3de7d29Gjx7N448/TkNDA06nkx07drB3797zxpSTk8Pzzz/P1q1bURSFffv2UVFRAUCPHj0YN24cOTk5TJkyxXvl8ULU1dURFhZGfHw89fX1LFu2zLvvmmuuobGxkZdeegmHw0FhYaE3Bmg7ceKnn35i/fr1NDY2YjQaiY6Ovqi4hBDaksJOCBHU/uu//ouYmBgyMjLo0aMH9957L6dPnwZg8eLFmM1mUlJS+NWvfsU999zjbWc2m3n22WeZMmUKffv2ZcyYMW36ffPNNzl8+DD9+vUjMTGRefPm0djYeN54rr32Wp555hl+85vfEBsby5133onFYvHunzZtGqWlpT5/DPuvbr75Zq655hr69OlDRkYG1157rXdfREQE//u//8sf//hH4uPj2bNnj3d/dXU1FRUVZGRkAOB2u3n66ae57LLLSExM5Pjx4yxduvSiYhNCaEenKIqidRBCCNEVXn31VdasWcOGDRs0i2Hr1q1MmzaNgwcPnvWYZcuW8dRTTxEXF9fuI9WL9dZbb/HJJ5/w8ssvn/fY3NxcXnzxRfr27dtmRrAQInBJYSeEuGRoXdg5HA7uvfdehg0bxqJFizSJ4eOPPyY+Pp5Ro0Zp8vpCCHWFaR2AEEJcCqqrq0lJSWH48OGsWrVKszhaT5oQQoQeuWInhBBCCBEiZPKEEEIIIUSIkMJOCCGEECJESGEnhBBCCBEipLATQgghhAgRUtgJIYQQQoQIKeyEEEIIIUKEFHZCCCGEECFCCjshhBBCiBAhhZ0QQgghRIj4/wI2W27HeLAdAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = ct.bode_plot(sys, overlay_outputs=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "I_LTjP2J6gqx" + }, + "source": [ + "Note the \"dip\" in the frequency response for y[1] at frequency 2 rad/sec, which corresponds to a \"zero\" of the transfer function.\n", + "\n", + "This dip becomes even more pronounced in the case of low damping coefficient $c$:" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACumElEQVR4nOzdd3gU1frA8e9syaYnJAESktADSAcBBaUpRUEBCxYsYLsWrGDjqhewXDvq9YL32ssVC1ZEfkqRIipFBASkQ6gJhJIsm7LZ3ZnfH5ssCSlkk93M7ub9PE+e7M7Me+bdsxw4zJlzRtE0TUMIIYQQQgQ9g94JCCGEEEII35COnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRAiqEyYMIExY8b4/TyKovDNN9/4vFxN0/jb3/5GQkICiqKwfv16n5/DHyZMmICiKF7XS2Zmpieue/fufstPCOEmHTshhM+V7QQoikJiYiIXXXQRf/75p96p+U1NO5w//PAD77//PvPmzSMrK4vOnTv7Pzkfueiii8jKyuLiiy/2bGvZsmW571pRFB599FHP/vT0dLKyspg8ebIeKQvR4EjHTgjhF6WdgKysLBYvXozJZOKSSy7ROy3d7dq1i5SUFPr160dycjImk8nrMjRNw+l0+iG76lksFpKTk7FYLOW2P/nkk57vOisri8cff9yzz2g0kpycTHR0dH2nK0SDJB07IYRflHYCkpOT6d69O4888gj79+8nJyfHc8zGjRu54IILiIiIIDExkb/97W/YbDbPfpfLxaRJk4iPjycxMZGHH34YTdPKnUfTNF544QVat25NREQE3bp144svvqg2t5YtW/LUU08xbtw4oqOjadasGa+//nq1MdXlOm3aND744AO+/fZbz1WrpUuXVihjwoQJ3HPPPezbtw9FUWjZsiUAdrude++9lyZNmhAeHs7555/PmjVrPHFLly5FURR+/PFHevXqhcVi4eeff65QfnFxMXfffTcpKSmEh4fTsmVLnn32WQBuvvnmCh1rp9NJcnIy7777LgBffPEFXbp08XzGIUOGkJ+fX229AMTExHi+a+nECaEv6dgJIfzOZrPx8ccf07ZtWxITEwEoKCjgoosuolGjRqxZs4Y5c+awaNEi7r77bk/cyy+/zLvvvss777zDihUrOH78OF9//XW5sh9//HHee+893njjDTZv3swDDzzA9ddfz7Jly6rN6cUXX6Rr16788ccfTJkyhQceeICFCxdWeuyZcn3wwQe56qqryl2l7NevX4VyXnvtNZ588knS0tLIysrydN4efvhhvvzySz744AP++OMP2rZty/Dhwzl+/Hi5+Icffphnn32WLVu20LVr1wrl/+tf/2Lu3Ll8/vnnbNu2jf/973+ezuOtt97KDz/8QFZWluf4+fPnY7PZuOqqq8jKyuLaa6/l5ptvZsuWLSxdupTLL7+8Qke6Ms8//zyJiYl0796dZ555huLi4jPGCCH8RBNCCB8bP368ZjQataioKC0qKkoDtJSUFG3t2rWeY958802tUaNGms1m82z7/vvvNYPBoGVnZ2uapmkpKSnac88959nvcDi0tLQ0bfTo0ZqmaZrNZtPCw8O1X3/9tdz5b7nlFu3aa6+tMr8WLVpoF110UbltV199tXbxxRd73gPa119/XeNcx48f78mrOq+88orWokULz3ubzaaZzWbt448/9mwrLi7WmjVrpr3wwguapmnakiVLNED75ptvqi37nnvu0S644AJNVdVK93fs2FF7/vnnPe/HjBmjTZgwQdM0TVu7dq0GaJmZmZXGVvX5ZsyYoS1dulTbsGGD9tZbb2lJSUnaLbfcUuG4qVOnat26das2fyFE3ckVOyGEXwwePJj169ezfv16Vq1axbBhw7j44ovZu3cvAFu2bKFbt25ERUV5Ys477zxUVWXbtm3k5eWRlZVF3759PftNJhO9evXyvP/rr78oKipi6NChREdHe34+/PBDdu3aVW1+Zcstfb9ly5ZKjz1TrnWxa9cuHA4H5513nmeb2WymT58+FfIp+9krM2HCBNavX0/79u259957WbBgQbn9t956K++99x4AR44c4fvvv+fmm28GoFu3blx44YV06dKFsWPH8tZbb3HixIkz5v/AAw8wcOBAunbtyq233sp//vMf3nnnHY4dO1ajzy+E8C3p2Akh/CIqKoq2bdvStm1b+vTpwzvvvEN+fj5vvfUW4L43TlGUSmOr2n46VVUB+P777z2dyPXr1/PXX3+d8T47b87ri1yropUMdZ5eTmXnLNuxrEzPnj3Zs2cPTz31FIWFhVx11VVceeWVnv033ngju3fv5rfffvMM0/bv3x9wT3JYuHAh//d//0fHjh15/fXXad++PXv27PHq85x77rkA7Ny506s4IYRvSMdOCFEvFEXBYDBQWFgIQMeOHVm/fn25m/N/+eUXDAYD7dq1Iy4ujpSUFFauXOnZ73Q6Wbt2red9x44dsVgs7Nu3z9OJLP1JT0+vNp+y5Za+79ChQ6XHnilXgLCwMFwuVw1r45S2bdsSFhbGihUrPNscDge///47Z511ltflxcbGcvXVV/PWW2/x2Wef8eWXX3ru1UtMTGTMmDG89957vPfee9x0003lYhVF4bzzzmP69OmsW7eOsLCwCvc0nsm6desASElJ8Tp3IUTdeT/PXgghasBut5OdnQ3AiRMn+Pe//43NZuPSSy8F4LrrrmPq1KmMHz+eadOmkZOTwz333MMNN9xA06ZNAbjvvvt47rnnyMjI4KyzzmLGjBnk5uZ6zhETE8ODDz7IAw88gKqqnH/++VitVn799Veio6MZP358lfn98ssvvPDCC4wZM4aFCxcyZ84cvv/++0qPrUmuLVu25Mcff2Tbtm0kJiYSFxeH2Ww+Yz1FRUVx55138tBDD5GQkEDz5s154YUXKCgo4JZbbqlRXZd65ZVXSElJoXv37hgMBubMmUNycjLx8fGeY2699VYuueQSXC5XufpZtWoVixcvZtiwYTRp0oRVq1aRk5NTbefyt99+Y+XKlQwePJi4uDjWrFnDAw88wKhRo2jevLlXuQshfEM6dkIIv/jhhx88V21iYmLo0KEDc+bMYdCgQQBERkby448/ct9999G7d28iIyO54oormDFjhqeMyZMnk5WVxYQJEzAYDNx8881cdtll5OXleY556qmnaNKkCc8++yy7d+8mPj6enj178ve//73a/CZPnszatWuZPn06MTExvPzyywwfPrzSY2uS62233cbSpUvp1asXNpuNJUuWeD7rmTz33HOoqsoNN9zAyZMn6dWrFz/++CONGjWqUXyp6Ohonn/+eXbs2IHRaKR3797Mnz8fg+HU4MyQIUNISUmhU6dONGvWzLM9NjaW5cuX8+qrr2K1WmnRogUvv/xyucWIT2exWPjss8+YPn06drudFi1acNttt/Hwww97lbcQwncUTavBXHYhhAghLVu25P777+f+++/XO5V6V1BQQLNmzXj33Xe5/PLLaxw3YcIEcnNza/2YtWnTpvHNN98EzSPUhAhWco+dEEI0AKqqcujQIZ544gni4uIYNWqU12XMmzeP6Oho5s2bV+OYffv2ER0dzT//+U+vzyeE8J4MxQohRAOwb98+WrVqRVpaGu+//77XjzJ74YUXPI8K82ZiRLNmzTxX6U5/FJkQwvdkKFYIIYQQIkTIUKwQQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIgI2Y7dsmXL6Nu3L+effz6TJk3SOx0hhBBCCL8L2Y5d27ZtWbp0KStWrCA7O5uNGzfqnZIQQgghhF+Z9E7AX1JTUz2vzWYzRqOxxrGqqnLo0CFiYmJQFMUf6QkhhBBC1IimaZw8eZJmzZphMJzhmpwWBP7xj39oZ511lqYoivbJJ5+U23fkyBFtxIgRWkREhNauXTtt0aJF5favXbtWGzFihFfn279/vwbIj/zIj/zIj/zIj/wEzM/+/fvP2IcJiit2GRkZvPbaazzxxBMV9k2cOJFmzZpx9OhRFixYwNixY9m1axeNGjUiOzube++9ly+//NKr88XExADw9ttvM2bMGMxmc43iHA4HCxYsYNiwYWeM8ebYhi7Y6krvfP19fl+XX9fy6hJfm1hp5/4RbHWld77Szv0bG2jt3Gq1kp6e7umfVCcoOnbXX389AM8880y57TabjW+//ZbMzEwiIyMZM2YMM2bM4LvvvuOqq65i3LhxvP766zRt2rTa8u12O3a73fP+5MmTAERGRhIREVHjL8pkMtU4xptjG7pgqyu98/X3+X1dfl3Lq0t8bWKlnftHsNWV3vlKO/dvbKC1c4fDAVCj28MUTdM0v2ThB4MGDeKOO+7gmmuuAWDdunUMHz6cI0eOeI655557iIyMpGXLlkyfPp0OHToA8Oyzz9K3b99Ky502bRrTp0+vsH327NlERkb64ZMIIYQQQtRMQUEB48aNIy8vj9jY2GqPDepZsTabrcIHjI2NxWazceedd5Kdnc3SpUtZunRplZ06gClTppCXl8dLL71E+/btadu2rb9TF0IIIYTwuaAYiq1KdHQ0Vqu13Dar1Up0dLRX5VgsFiwWC5MnT2by5MlYrVbi4uIAGDx4MCZTzarJ6XSyZMmSGsV4c2xDF2x1pXe+/j6/r8uva3l1ia9NrLRz/wi2utI7X2nn/o0NtHZ+el+nOkE9FGuz2UhMTGTv3r0kJycDMGDAAG699VZuvPFGr8ufOXMmM2fOxOVysX37dhmKFUIIIYTuQm4o1uFwUFRUhKqq5V5HR0czatQopk6dSmFhIXPnzmXTpk1ceumleqcshBABSVU1lC1fUrB3td6pCCH8ICiu2E2YMIEPPvig3LYlS5YwaNAgcnJyGD9+PEuXLiUtLY1Zs2YxZMiQOp2vdCh29uzZjBw5Mmgv3YaKYKsrvfOVIRr/xgZ7O9+waDZ9/5gMQMHDWTpnc0og1lV19M5X2rl/YwOtnVutVlJSUmp0xS4oOnb1RYZihRChLmzL51xcNA+Ab7t/APJ0HSECnjdDsdKxq0TZK3ajR4/2akHDhQsXMnTo0BotaFjTYxu6YKsrvfP19/l9XX5dy6tLfG1ig72db3jtKnrZfgLAdv9uLFHV/yNRXwKxrqqjd77Szv0bG2jt3Gq1kpSUFDr32AkhhPCNMEee57Ut75iOmQgh/EGu2JUhQ7FCiFCXsW46HdkFwBctn8bcqLnOGQkhzkSGYutIhmIDS7DVld75yhCNf2ODvZ1n/7Mr6dohALYO+5g2vYfrnJFbINZVdfTOV9q5f2MDrZ3LUKwQQohKRWk2z+vi/BM6ZlI/snZt4M8PJmE7ceTMBwsRAuSKXRkyFCuECGmaxoh1N2NWXAB82+hWaDlA56T8a8QfN2FWXKww9eNYlzv0TkeIWvFmKDbwFwuqRxMnTmTixInlHikWzJduQ0Ww1ZXe+coQjX9jg7md2/OtmNe7PO9TG8fQbcQIHTM6xV91ZV7n/rytXLs4x4efVe/vVtq5f2MDrZ1780gx6didgdls9vqL8iamNuU3VMFWV3rn6+/z+7r8upZXl/iG0s7zCvIo+yRtrTAvIPIqy191pWL0S7l6f7fSzv0bGyjt3JtypWN3Bg6Hw+tjaxLjzbENXbDVld75+vv8vi6/ruXVJb42scHczq3HjpBUdkPh8YDJzV91VfrPoaoYfVq23t+ttHP/xgZaO/embLnHrgy5x04IEcqKs/9ibNZznvcrTOdyrMtdOmbkf6PX3QjATtLZ3OMZnbMRonbkHrtaknvsAlOw1ZXe+cq9N/6NDeZ2/ucP2VDm8bCxJodP7zurC7/V1Tr3L4PRzAi5x0638qWd143cY+dDwTwmH2qCra70zlfuvfFvbDC2c9XmXvIjX7MQpdgJd54MiLzK8mVdlR2QUhW5xy4Qypd2XjvelCvr2AkhRENx8jAAB03up01EuE7qmY3f2YsKPa9VxahjJkLUH7lidwbBfLNlqAi2utI7X7mp2r+xwdzOlYIcAHJj2kLuDhqpudjtxRgMis6Z+aeuck8cJbnktYpBJk/oWL6087qRyRO1JJMnhBChrMWG5+mububL2PFcYf0AgE87/JeIiAidM/OPwrwcrtk9GYAttGZ7j2n6JiRELcnkiVqSyROBKdjqSu985aZq/8YGczvP2fAIAC16Xoh16RfEkk/XDi3J6HS2zpn5p652bVwFu92vIwxOmTyhY/nSzutGJk/4UDDfbBlqgq2u9M5Xbqr2b2zQtXPVRWPVPXkiKb0DJ4xJxLryyT92ELP5XH1zK8OXdeWwn3oubphml8kTAVC+tPPakckTwP79++nZsyfh4eE4nU690xFCCF1Zc/ZhxkWxZqRpaitslqYAFOZk6puYHxXn53leWzS7jpkIUX9CtmPXuHFjfvrpJ849N3D+JyqEEHo5tnczAFlKEyLCwyiOawmAenSnjln5l7Pg1PBVJIXVHClE6AjZjl14eDjx8fF6pyGEEAHBtn8TAIctLQEwNWkHQKR1t14p+Z2r6FTHLgI7mrNYx2yEqB9B0bGbOnUqHTt2xGAw8Omnn5bbl5OTw8iRI4mMjKR9+/YsXrxYpyyFECJwaUe2AGCLywAgPr0zAI2L9xKqiyOoReXX6SuwHtMpEyHqT1B07DIyMnjttdfo06dPhX0TJ06kWbNmHD16lOeff56xY8dy4sQJHbIUQojAFZf7l/tFk47uX63dHbt07TBHckN0oWJ7+c9lyz2qUyJC1J+g6Nhdf/31DB06lPDw8HLbbTYb3377LU8++SSRkZGMGTOGzp0789133+mUqRBCBKDifFLt7nvpYjPOA8DSKI18IjApKgd2bdYzO/8pLt+xKzwpV+xE6Avq5U527NhBXFwcKSkpnm3dunVj8+bNFBUVcckll7BhwwaGDx/OtGnT6N+/f6Xl2O127PZTM6bKrhcTzCtVh4pgqyu985UV6f0bG4ztPH/Hb8SjkqUl0KplG08+RyzNaWXfxpFdG3B066Vrjv6oK8NpV+wKTuQEzJ/bQD+/tPPAauch++SJQYMGcccdd3DNNdcA8PPPP3PTTTexc+epWV2PPfYYubm5zJw5s8blTps2jenTp1fYLk+eEEKEgtg93zE4dw6L6EN+j7s925tueZtzi5bzmWkU4V2u1DFD/4jf8G8Gqqs9779OuhNDel8dMxKidrx58kRQDMVWJTo6usJqzFarlejoaK/KmTJlCnl5ebz00ku0b9+etm3b+jJNIYTQVVL+NgAOWcr/3WaLaQNAi+KdqEHzX/yai1HLX7EzOvN1ykSI+hPUQ7EZGRnk5eWRnZ1NcrL7Uc8bNmzg1ltv9aoci8WCxWJh8uTJTJ48udwjxQYPHozJVLNqcjqdLFmypEYx3hzb0AVbXemdr7/P7+vy61peXeJrExt07bw4H/M698SJxr0vZ2C/8zy7XIdT4YP36KLsIqJrHzKS4/TJEf/UVfa6KQDsU1Jprh0kNdbMWUOH+qRsvb9baef+jQ20du7NI8WCYijW4XDgcrkYNmwYt912G2PHjiUsLAyDwcDYsWNJSEjg1VdfZeHChUyYMIFdu3bRqFEjr88zc+ZMZs6cicvlYvv27TIUK4QIeonH1nD+vtfJVJuyrNMLxIcrp3ZqKkPW30kUhbyc+DRtmzfXL1Efc6kweP1dNFJs/Gw8l/6ulfxsGcjxjrfonZoQXgu5odjbbruNiIgIfv75Z2688UYiIiJYvnw5ALNmzWL//v0kJiby4IMP8vnnn9eqUyeEEKEo9uhaAH4x9CzfqQNQDOwLcw/PRuRuq+/U/Crf4aSR4n5W7LFwd4c12pmrY0ZC1I+guGJX30qHYmfPns3IkSOD9tJtqAi2utI7Xxmi8W9sULXzolxMr3cjTCvmvfb/4erRoysccnLpqzRd/TxL1e60v28ucRH6PNDe13X1144d9Pp6AC4MLOv+Chesv4+95tY0fuAXH2Sr/3cr7dy/sYHWzq1WKykpKTW6YicduzJkKFYIEUrSDy+i56EP2aqms7Dd0zSPUSocE1N4gAu2/p0izcyzqf+hZ1N9Ona+dujgHu48MpVjxPN1s4e49dBj5BLNsh6z9E5NCK95MxQb+Jc/6tHEiROZOHFiuckTQ4cOxWyu2V90DoeDhQsX1ijGm2MbumCrK73z9ff5fV1+XcurS3xtYoOmnasuiv71BAA/hA3jrqtGoCgVO3ZoGtaXXiO2+DDhhQcYMWJi/eZZwtd19cMXb8EROBnRjD4XjIL/PUY8NkYM7gsRdb9dR9p5/ZbX0Nu5N5MnguIeOyGEEN5Rts4lJn8vJ7RoTGdfV3mnDkBRUNpfBEC7o4vIPBYaS4K4TuwHwB6VSkrjJA5pCe732Vv1TEsIv5Oh2DJkKFYIEQoU1cmAv6YQ7zjMK44rSOg2mnhL1cc3su1gwI6nsGnh3B/3by5tE1Z/yfpJ8fqPGav9yC8xIzna9mqS1r7AeYZNLGl6C9ZmA/VOTwivyFBsLclQbGAKtrrSO18ZovFvbDC0c8PKmRgdh8nR4tjXbjx3X9av+gBNo/Bf7xNt20/MiQ306v8oTWKq6Qn6gS/ryqVqrFo7AwyQ0b0ffQaM4P+2zIGiTTSPcdF8xIiAyjcQzy/tPLDauQzFCiFEQ3V0B8rSfwLwovMqxg/qfOYYRSGs+9UAjGY57/6S6ccE/W/30XzaKAcAiGvRBYDC2NYAGI/vrDJOiFAgQ7FlyFCsECKYKaqT/jueplHBbpa7uvBi1EPcelbNYqOKshmy5WFUTWFo8Utc170xieH+zddffs8q4qnsvwEwv8ssHKZodu3ayiTrPzmsNGZl95d1zlAI78hQbC3JUGxgCra60jtfGaLxb2zAtnNNwzh/EoaC3eRpkTym3s474wfSKimqxkWony7AsGsRNxh/ZEXhQ7xxeQ8/JlyeL+tq54efAmAzJzF01FUA/N+aVrDgnzTVchgx6ByITAyYfAPx/NLOA6udezMUKx27MzCbzV5/Ud7E1Kb8hirY6krvfP19fl+XX9fy6hIfEu18xauw/iNUFO53TGR4v7NplxLvXRnn3QO7FnGVcRmvbL2Sn7Y3Z3inZH9kW6W61pWmadgPbQbAmdie6JKy0tPS2a6m0s5wEPOh3+GsSwIi30A/v7TzwGjn3pQrHbszcDgcXh9bkxhvjm3ogq2u9M7X3+f3dfl1La8u8bWJDcR2blj5b4yLpwHwjGMc22P78vLAVt6fN60fpiadiTyyiZtMP/Dol43olBxF01j/j8n6qq525+TT1J4JJohI7eQpr2VCOPO1DrTjILbty7C0HR4Q+Qbq+aWdB1Y796ZsuceuDLnHTggRVDSN9tlf0yH7GwBedV7Oq84ruLujSkZc7f5qb3ZiNb0z/00+4Zxf9CqJsdHcdZaKMUim2v14QOGmw0/R27Cddc1vZV/iAM++tetW8iSzOBTWmjWdpumXpBBeknvsaknusQtMwVZXeucr9974NzZg2nlxPsbv7sGQPReAf6ljedV5Gbf3b8V9wzJqX652Edo7y4g6vJF7LfOYbh3Hr450/jmmY9WLHPuAL+pK0zTe+NdSuiq7Aeg88jY6J7Tx7P8jLxx2zyK5OJMRA/tAVJKu+daFtHP/xgZMOy8h99j5UDCPyYeaYKsrvfOVe2/8G6trOz+wFr7+GxzbiWYw8zS38k5Rfwa2a8zDF5+F0VDHDtiQqfDxlYw3/shHhsF88Qc0T4zi3gvr0GGsobrU1Yb9uUQf24jF4kSNbIy5SXso0xlt1aYdG3e2pIshE8PuhdDzRl3z9QVp5/6NDZR/z70pN0gurgshhMB+Ehb+A94ZCsd24opK5k7TdN4p6E+H5Bj+dW2PunfqANoOgTYXYlAdfJTyJaAxY+F2Xl+8o+5l+9FbP++ml2E7AIYW55br1AF0TY/nB1cfALQt39V7fkLUB7lidwbBfLNlqAi2utI7X7mp2r+xurRz1YWyaQ7Gn55EyT8CQF6bUVy1/0q2WU20SozkvfE9iTT58Hsf9k9Mb/Yn9divvN59NPesT+flhduxFhbz4NAMDL7oQJZR17rKPJbP/23K5j2je0asK7UP6mlltWscyROGc3iIz2HnTzhOHIToJrrkW1fSzv0bG2j/nsvkiVqSyRNCiECiaE7Sjv9Gu8NzibYfBsBmacrihHH8fX8v8p0KjcM17uroIsEPTwDrcOgL2h+eS6G5EdPjn+XT/e6btrs0UrkhQ8Vi9P05a+utrQZ2nSjmz/C/YcbJ4rOexRaeWuG4N/4y8GzhNHoYdvJXylh2JF+qQ7ZCeMebyRPSsatE6eSJ2bNnM3r06KC92TJUBFtd6Z2v3FTt39h6aee2Ixg2zMaw7gOUvP0AaBGNcJ17Nx8rI3n6xz04XBpdU2N584aeJEaF1bxsbzgKML01EOXEHtTOY/mi+RM89u1mHC6N1klRvHRlZ7qkxvnmVHX4Hv9vUzb3fvYnw4xredP8Mlp8C5x3/V5hKBbg7RWZ7F70Ji+a30SLa47zrtVg8H7wStp5/ZYXku3cC1arlaSkJJkV6wvBfLNlqAm2utI7X7mp2r+xPm/nzmLYvQTWz4at80B1urdHNYa+d2PtfCNP/N9e5m5wz/i8uHMyL43tRpTFj3+Nm+Pg8jfh3eEYNs3hqrMuoe3tA7nzf2vZfTSfq95czT0XZHDnoDaEmXxzy7a338Weo/k8MXcLABNTd8IRUNoNxxxWeWd3QPsmvPZjX6aYPiEhbx/mv76CHtfVW76+Ju3cv7GB8u+5TJ4oMWnSJPr378+9996rdypCCFGRowi2/whf3wkvtoXZV8Ff37g7dWm9YfQsuO9Pfkq6lmGz/mDuhkMYDQqPjzyLWdf19G+nrlR6Hzj/AffreQ/Qs5GdH+4bwMguKThVjVcWbeeiV5ezZOsR/+dympyTdsa/u5q8Qgdnp0XR1brMvaPDyCpjOqbEkhgfz3+cJU+eWP4iuJz1kK0Q9SNkO3Z//PEHNpuNn3/+GYfDwZo1a/ROSQjR0GkaHNkCv82E/10Bz7d0d+Y2zAZ7HkQnQ5/b4Y4VcOsiDrS8jIlfbOXm93/nsNVO66QoPr+9L7f2b+3XNeUqGPgoJHeBwuPw5a00Cjfw73E9eO2a7iRFh7H7aD43vb+G699excrdx6iPO3z2HM3nqv/+xr7jBTRPiOTd83JRinLdddiyf5VxiqIwoksyH7mGctIYByf2wLoP/Z6vEPUlZIdif/vtN4YMGQLAkCFDWLlyJb1799Y5KyFEg+K00yh/B4aVM+HQ77B/NdgOlz8mJgXOGgWdxkD6uWAwYLM7+c+P23jz590UO1UMCtzavzWThrYj3KzDjAVTGFz5Hrw5CDJ/hiXPoAyZyujuqQzu0IR//7ST937Zw4qdR1mx8yhnt2jEDee24KLOyT7PV9M0vll/kKnfbsZa5CQ1PoIPb+5D3E93uQ/ociUYqj/niC4pvPXzHl53jOHvhg9g0XTocClEN/ZprkLoISg6dlOnTmXOnDls3bqV2bNnc80113j25eTkMGHCBJYsWUJ6ejqzZs3iwgsvJDc3lzZt3CuOx8XFsXnzZr3SF0I0BPaTcPgvOLwRsjdB9kZM2X8ywFUM28scZwqHFudBmwug7YXQuIPnJv+8Qgfv/7KLd3/ZQ16he3mDvq0TeeKSjnRsVv0N036XlAGj/gVf3AwrZriHaNtfTGy4mb+POIsbzm3Bf5fv4vPfD7B27wnW7j1B7LcmRnVvxkWdUujTKqFO9+FpmsbK3cd5ddF2Vu05DkCP5vG8eUMvGpuLYPsP7gO7jD1jWd3T40mNj+Cd3CHcnbya2Nwt8OMUuOLtWucnRKCoVceusLCQf/zjH8yZM4fjx49jtVr58ccf2bJlC/fff7+PU4SMjAxee+01nnjiiQr7Jk6cSLNmzTh69CgLFixg7Nix7Nq1i/j4eM8jOKxWK/Hx8T7PSwjRwGga5OeQYNuGsv4E5O6BYzvh8Gb3kN5pFMBuisHc+nwMzc+B9HOgWQ8wR5Q7LiuvkI9+28tHv+3lpN19v1frpCgeubgDwzo2rd9h1+p0vgL2rYLV/4Wvb4fbl0OjlgCkJ0Ty9Jgu3HNBBp+s3sec3w9wMLeQ/63cx/9W7iPaYuK8ton0bN6IrmnxdE6NJSa8+hvCixwuNuzP5dddx/h2/UEyjxUAEGY0cO+Fbbl9YBvMRgOseh+cRe5Ockq3M34MRVG4pGsK/12+m1fCJzJVuRc2zoG2Q6Hb1XWtJSF0VauO3V133YXD4WDevHn07+++l6Fr167cd999funYXX/99QA888wz5bbbbDa+/fZbMjMziYyMZMyYMcyYMYPvvvuOvn378t///perrrqKRYsWMWHChCrLt9vt2O12z/uyz2QL5gUNQ0Ww1ZXe+crCpXWI1TSwWyHvAIr1AEreQbAecC85cmIPyvFdmO0n6Q9QyUMYtOhktKad0Zp2QmvSCUdSJxb8vpOhw4aVn9XmcKCqGr/uPs7s1ftZvPUIasltaRlNorhrYGsu7pyM0aDgdAbYjf0XTMV44HcMh9aifXIdzgnzwXxqvc+ECCMTB7bizv4t+XX3ceZtzGLZ9qMctRXz4+bD/Lj51FB0QpSZtPgIGkWGYTEpHD1i4Jtjf1DgcHEot4iDuYWeegGIDDMyulsKdw5sTUpcOKguHC4nptVvoQCunjeh1rC+ruzp7ti9vzeBe8+7l0a/v4o27wGcTTpDUrszxks7r9/yZIFiPy9Q3KRJE/bv34/FYiEhIYHjx92XxePi4sjLy/O2uBobNGgQd9xxh2codt26dQwfPpwjR07NxrrnnnuIjIzk+eef5/7772ft2rV069aNf//731WWO23aNKZPn15huyxQLESI0FTMrnzCHXlYnFYsjlwsTmvJ+zwsjjwiHMeJKD6GWS2qvigUCsISybckY7Mkk29JxhqRijWiOcWmmDOmcrgQ1h41sPaowtGiU1fi2saqDEjW6JKg4eOHOvhcePExBm37BxbnSfY36scfLW6vdM24UqoG+/Nhe57CPpv7J7e4Zh8yxqzRNlajYyONbglahUWRk05u5rydz+MwhLOg82s4jRGVF1SJWX8Z2JZnYGiKk386nqWxbQv5YY35ud0/sJt9sz6fEL7gzQLFtbpiFx8fT05ODmlpaZ5te/bsoVmzZrUprtZsNluFDxgbG0tubi4Ar776ao3KmTJlCpMmTfK8t1qtpKenAzB48GBMpppVk9PpZMmSJTWK8ebYhi7Y6krvfP19fl+X71V5mgrFBSj2PCjKRSnMRc0/xvYNK+nQIhljsRWl6IRnn1KUC4XHUQqOoqg1v/KlRSSgxaaixqahxaaixaSiNWqB2qg1juhUlvz8G4MHDya6hu28bfdz+WnHCeZvOsyWbJtnf7TFyOhuyVx9diptG0fVOL9AoHVpjvbZVaSf+JWmPS7C2es2r+KtRQ4O5hZxKK8Ia6GTfLuDv7Zup2vH9sREhNEkOoyWiZEkRYdVOxRt+fIj94tu1zJ46CivclDSc7j38038nheB8bZPUT8bTVRuJkOPvo39mq8grOr/2Es7r9/y6hJfm9hA+/e87EjimdTqit3MmTN5++23eeyxx7jlllv4+OOPefrpp7npppu4/fbbvS2uxry9YucteaSYED6iqRg1Bwa1GKPnx4FRs7t/l2wzqUWYXEUlvwsxqYWnvT99vx2F2i+lUWyMwm6Oo8gUh90Uh90cW/I7jkJzAoVhiRSGJeAy1O35XC4Vdp9U2HxC4a9chcOFpzomBkWjQ5zG2Unuq3OB9Fgub7U+8gNdDs5GxcCvbR/lWEyHej1/bME+Bm97HA2FxWc9T354slfxLg2eWWfkmF3h8pYuRjTKov/2J7G4bByNbs+q1pO8ugIohL/4/YrdxIkTadKkCe+88w5paWn861//4oEHHuDqq+v3ptOMjAzy8vLIzs4mOdndoDds2MCtt95ar3kIUW80FUVTMeBCKXmtaC4UTr02lHmtaCoGzen5UTQnRs2JopZuc5Xbb1Cd7jLKbivZfuq9C4N2qnNmUB0YVTvGMtuMmn/vO1IVI8XGaIpN0TiMURQbo3CYSn9Hn/Y7iiJTHMWmWFSDf1aFVzU4VAA78hR2WRV2WhUKXeU7c21iNHokaXRP0IgKngeoVGt34+HEF+wh/cRv9M58naXtn6QoLLHezp9x+DsADsaf43WnDsCowAXNVObsMfLTIQPnNU1mZZvJ9Nv1Ikm2bfTd+QIr2zyIwxRcV1NFwxYUz4p1OBy4XC6GDRvGbbfdxtixYwkLC8NgMDB27FgSEhJ49dVXWbhwIRMmTGDXrl00atSo1ucr+6zYkSNH+uXSrbZvJet/X0X37j0wGg1QehXC83Vo5V979mnlNpU9TqkspspyOO21VvNzV1lOzT6DUll8pZ/R/Vt1udixYzsZGRkYSm8+Kj1Owz08h+r+rWme34qmltmnnba/dJ9WYZtSxXb38VTcVrK99Hya6uL4saMkNGpU8llLylGdnt+K6gLN5d522mul7PZyMQF2E30NaQazexaoKRzNFO7+XfKesChUUyQHj50kpUUGhvBYtLBotLBo8PyOQrPElHuPKcJzT5ceQzQ/LFpCUkYPNh8uYO3eXNbuy/PMZi2VEGnm/DaNSLBncdsl59MoOtyr3IKGo4Dwj0dhOLIZV3J37OO+dn+3XvL2u1CO7yL87f4oaBROWIzWpGNtssfudDHsXyvJsRUzdWQ7rj47FSV7A+GfX4NSlIua0Ab75R+iJbSuU76+JkOx/o0NxKHYlJSUGl2xq3HH7oUXXqjRyR9++OEaHeeNCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWLM/CxN6qz6HY4RvvJdyZ65eyRcOjoaApBlSMoBhQFQMaBjTFiKqYUA0m92/FiKaYcClm9z7P9lP73cebPceW228woipmVMWEy2DGZbCgKmZchrDyP8qp1yjB/YAbuwuyC2F/yU3/e20KhwvddV6Wxei+Ktc21v2THk3AT4LwlUh7DgO3/YMwVz57EweyPv3maidT+EL3vW/R4vjPZMX2YHWbB+pU1rIsha8yjcSYNZ7o4cJihNjCfZyzawaRjuMUG6NY0+oejsbUrvMoRF15MxRb447dTTfdVO4EX3/9Neeccw7p6ens37+f1atXc/nll/PJJ5/ULfsAUB9X7MI+HkPhsf1ERkW7/3lQFCj9h8LzF6JS/nWpkm3a6ftPP7bSMk8rv9pjTy+fMnGVxVQ8v3am81f7Wd3bNE3l8OEcmjZtimIwlC9HMZz6KT2+7LYy26mwnXLv3XEln+P0Y6vZrp22XdU0/tqylbM6dsJoNJ2KNxhBMaEZjO7XBhMo5V9rntcG9+8yr7UqtrvLPVUv8j/52sVqioG9xwvZccTGjiP57DiSz/Yj+Rw4UVjpXX1NYsLomhpLt7Q4zmkZT4fkaExl/3z64LMFE8OepVi+uA5FUyke9jzO7jd6Fe9NXSl5+wl/qx+K6qTo+nmozc6uS+oUu1QunbWa/ScKuXNAS+4Z1Mq9w3YEy9cTMGatQ1MMOPs+gKPf/WAw6f7dSjv3b2yDuGJX1hVXXMGNN97I6NGjPdvmzp3Lhx9+yBdffOF9xgFCJk8IEdpcKhyzw9EihZyiU79zihSO20HVKr/KFG3WSIvUaB4NzaM1mkdrxIXVc/JBICP7OzpmzUFVjKzI+DsnojL8cp4u+z+k9dFF5ER35NeMR31S5vpjCu9tN2I2aDze3UV8yfwZg1pMt/3v0/z4CgCORWWwtuWdFIYl+eS8ou4URcFoDOJZSKdxuVwVnrfslyt2ZcXFxXHs2LFyPVOn00liYqJf17GrL2Wv2I0ePbr8wqLVcDgcLFy4kKFDh54xxptjG7pgqyu98/X3+X1dfl3LKxtf5FLIyiskK8+9jEZWXhFZuUVkWYs4VLK0hkut+q+8qDAjGU2jadckmnZNS36aRJMYban0fNLOT6NpGL+6GcPW79Cik3Heshiim9YotMZ1ZTuM6d89UVx2nNd9hdZygI9S17jm7TX8sS+XEZ2b8trV5Z9goWz6AuP/PYhSbEMLi8Yx4O/839FmDB02XNp5PZRXVXx+fj5ZWVkVOkJlaZpGUVER4eHhNX6KizcxtSm/OoqikJKSQlTUqUk7VquVpKQk/82K7dy5M08//TSPP/44JpP7kvQ///lPOnXqVJvihBCiSk6XyvECB0dtdo7aisv8dr8+Yi1i72Ejj/2xHJvddcbyws0GWiRE0jwhkuaNwrFl7+Hi88+mdZNYkmMtgfP4rmCkKLgu+RfK0e0oR7dh/OoWXNd9BUbfXd40rP4PisuOmtoLrUV/n5WrKAr/GNmBK/67ivmbDjO6ew4XtG/s2a91vhJnai+M396J4eAawhb9nf6RbVC6p0PqmR9jJnzP5XKRlZVFVFQUiYmJVbZdTdPIz88nKirKq45dTWNqU351ZR07doysrCxatWpVqyuRtbpit3v3bsaNG8fmzZtp0qQJR44coWPHjnz88ce0bdvW6yQChQzFCuE/muaeiJDvhAInFDiVMq8h36lUeJ3vcB9/+kSF6kSaNBqFQSOLRnwYxFtOvU+0QGxYw5nUoJeooiwGbpuGWS1kd+OhbEy7wSflmpz5DNv8AGa1iJWtH+BwXA+flFvWt3sN/HTIQHyYxt+7uyquM6iptDz6Ex0PfY5ZLULFSGbjC9iWPKZGTx4RvmMymUhOTiYtLQ2LpW5rTwYSu93OgQMHyM7O9jxS0O9DsaX27dtHVlYWKSkpNG/evLbFBBwZig0swVZXeufrq/O7VI0ih4sih4tCh0qhw4XdoWItKGLF6rVknNWFIpeGze4k3+7CZneWe51f8t5md3leVzMKWi2DAglRYSRFhZEUY6FxdBiJ0e7f8RFG9m7dxIjBfUlPjCYyrOYDEbWpK2nnNaNs/wHTHPdzvp3XzkFrPbja42tSV4ZfXsW49Gm0xmfhvG2ZX2ZcFxa7GPHvXzlwopCre6Xx9OjKZ8I6j+/jxOy/0SzvdwA0SyzqeQ+g9r6tVsu9eEuGYqGoqIj9+/fTsmVLwsOrrnNN0zh58iQxMTFeXbGraUxtyq9OUVERmZmZpKenez6X34diS5/0EB4eTqtWrcpta9KkSW2KFEKUoaoaDpdKsUul2KlS7NI8rx2ebSoOl1ZhW1Gxkz+zFA78tg9VU0ri3OUVOd2dtKJiF4UlnbYiZ+l7taQT5/5xuKrrhRlh61+1+mwWk4H4SDPxEWbiIszEhhuxHT9CxzYtSIgOJy7CTFyEiUaRYcRFmGkcE0ajyDCMVVxmczgcLMzeSOukKMzm0J55Gky0dhfh6nUrxt/fxvj9/Thv+xnCq/8HqVqOQgxr/guAq+89fltGJyLMyLNjOnHj+7/z2e8HGJCRyLCOFe8T1GJSWNP6XoZnWLAsfQrlyCaMP03HsPY9XOdPRutyFRgbVmdewPvvv8+UKVO44YYbeOGFF9A0jbvuuovFixcTHx/PJ598Qps2bZg7dy4PPvggZ599ts9XE6nVFTuDwYCiKJ6bFcv2UF2uM9/jEqgCZShW005bCvi0NYk1Tlsb+LRjyy4lTJljT18O+PTtp5dZ1fbTc6ysjMpyqpBDmWNLj1PLlO3+raCWea+Wyd2zvYr3GpSLLVdGFe/VknNWtr3sj6tkv0t1/y633fNaqbBN5dR7V2Vllvz2ZuixPpgNGmEGMBsgzAAWI4QbNcKNeH4splPbLGW3lzkuwghhoTN5TZyB0WVn8NbHiCo+QmbiQDY0v6XWZbXMWUS3Ax9SEJbEoo4voCn+7cTP3Wtg8SEDkSaNR7qemiVbKU0l/fgvnJX1BRGOEwDkhzVme9NL2Z9wvnupIuFzpUOx6enphIUFxjT12bNns337dqZNmwbA//3f/zFnzhzeffddfvzxR2bPnu1Zl3fFihW8++67vPvuu+XKKC4uZv/+/bUeiq3VnzZVVcu9z87O5umnn+acc86pTXEBY+LEiUycONEzFAv4bYim/4vLOGItKlkHrXznSYjTmY0KYUYDYSYDZqOBMKNy6vVp24yKwoljR0hvloLFbCLM5I41Gw2Emw2Em41EmI0lv93vy76OMBuJCDNiMRmIMLt/G8pcLQuGIRp/xspQrHeUbk3ho1G0PLaMtEunoKX2qvS4autKdWKa9TgAlkEPcnHvUf5OmyFOlavfWs2mQ1b+70Rj3ht/NibjqauEFfO9BBxP4Fr7HoaV/yYqP4ce+9+lu3Uhat97ULteA2bfXSiQodhTQ7HR0dG6DMVOmTKFjIwMbrrpJk6ePMmECRM4++yzsVgsns7XTz/9xE033URsbCxXXnklkydP9pQZGRmJ2Wyu0FErKioiIiKCAQMGlBuKrSmf/DciOTmZGTNm0Lp1a264wTc3yQYKs9ns9R/CmsS4r94o5S9h6UApWXdYUZSS3yXbSxYkVjzHKJUeX3bdYkVRKu73lFl2XxXlKWBQFIyGU68NJfttJ08SHx+LseRqsUEBo6JgKBNnMJTGuPe79ykYy2yv6hzu+DKvS441lmxXFDAbDBgNCiaDgtFY8ttgwGRQMJV5j6ayccN6ep3dE4vZhNlYJq7k2MriPPtLfoeZ3J22MKPBq/s2HA4H8+fPZ8SIbn7tTNSmbfizvLrE+6ud16X8kNFmIHS/DtZ/jGnBFLj1JzBUPYxaaV1t+QHy9kFkIsZe4zHWQ12azfCva3twyesrWLnnBK/+tJspI86qPl9zHPS/H875G6x9D355DSVvP8YfHsa47FnodQv0uQ1ivH+ubdV5+vfPViC3c5fL5f73oOTfhUJH5SOGqqpSWOzC5HBhqObPXmUxMVBlzE033cSdd97JzTffTG5uLtu2bWP06NFs27bNE5OVlUV6errnfWJiIidOnCApKcmT9+nll24v+1m9qTOfXR9etWqV55JhKHE4av4w89JjaxIz57azWbZsOQMHDMBsNns6OACU6WQpZTpEJbs4vZNUsuXUcRU6aeU7bsG2nMOp/6n1Cop/HB0OB+aDGhe2S6h7vpqK06me+bjTzl/2t6/5uvy6lleX+NrEehPj7+8iaAx8DNOWuSiH1uFcNxut69UVDqmuroyr38IAuLrfgKqYoZ7qMz3ewnOXdeLez/7kv8t3c1ZyNCO7JJ8xXxQz9PobdLsBw/qP3Uu05GbCzy+h/fIaWucrcPW5A5p2rnVu0s7drzVNQ1VV8u0OOk9bWPdET7Nx6hCiLJX/m9muXTvsdjuZmZl88803XHnllWia5skJ3B3E0p9SpftVVS13bKnS7Q6Hw7PciTf1Vqt77M4666xynYOCggKOHTvGa6+9xs033+xtcQEjUO6xE0KIUNP28Pd0OvQZtrAm/NTxuRrfIxddlMWFWx5BQ2Fhx5cotDQ+c5CPld5vF2bQuL+zi9SoM8eUo6mk5K2lzZEfSMzf4dl8LKodmUmDORTfG9UQGPeIBZOy99i5MNJ3xkqfn+O3SecSUc2Nwe+++y7Hjx9n0aJFvPHGG/z222/l7rG7//77ufjiixk+fDiaptG5c2c2bdqEoiiBdY/df/7zn3Lvo6KiaNeu3RlPFujq8x47ufem5oKtrvTOV+698W+stPNaKh6INusnovOPMCL1JFr368rtrqquDIueAEBrO5TBl42v15RLDVc1bv3oD1bsPMYHe6KYc/s5JEUavfxuLwGm4jy4FsPqN1C2fEdi/nYS87fT88jnqF2vQe1xIyTW7DFs0s7L32NnsVjYNG1opbGapmE7aSM6Jtqre+xsJ200Toirdvh2woQJ9OrViyZNmtC1a1fWrVtX7h67MWPG8NlnnzF27Fjmz5/POeec4+lfBNQ9dmvWrOHBBx+ssH3GjBlMmjSpNkUGLLn3JnAEW13pnW9DvvemPmKlnXvJHA/n3QcLHsf06ytw9g1gqHglpFxdqS7Y/DUAhl43YdCpDs3AzOvO5so3fmXHERu3fbSO2bf0qphvTbQ81/1jzYJ1H8HaD1CsBzCuegPjqjegZX/oOR46jISwM48YNeR2XvYeO6PRSHQVT2lQVRWX3UiUxezVPXYuuxGDwVBtTEJCAl26dGHQoEHl7vcrjRk1ahTz58+nXbt2xMXF8emnn3r2+eseu1otBPTkk09Wuv2ZZ56pTXFCCCEagl63QHg8nMiE7T+c+fi9v4At2x3Tdoifk6teXISZ92/uQ5MYC9sOn2TiJ+vx8vbX8mJTYODDcP+fMO5zaHeRe22+zJ/hq1vh5fbw7d2w91dZNiGAORwOdu7cyeWXX17pfoPBwJtvvsnOnTtZu3YtGRk1uyJbF15dsfv8888BcDqdzJkzp9xDdzMzM0lISPBtdgFAbqrWX7DVld75yk3V/o2Vdl4HihlDjxsw/vY66so3cLUZ5tlVWV0Z/pyDEVA7XIJLU+pt0kRVmkSZeOuGHox7ew0r95ygMM/AULu97gW3usD9k3cAw/r/Ydj4GUrefvcVvXUfocW3QO1yFWqXq6FRS0DaeenrshMRqlLaV6lsokJdYjZs2MDYsWO55ZZbiIuLQ9M0LBYLX3zxBU6nkxdeeKHK8ufOncvf//53+vfvr+/kicGD3Y+E+fnnn+nf/9TDlxVFoUmTJtxzzz2cd955NT55oJHJE0II4V8RxUcZunkyChoLOr5c5WQIRXNy0cZ7CHPl80vbRzga06meM63a1lyFN7cacGkKZyepXN9W9e3zhzWVRNt20o//TGruGkxqkWfX0aj2HGx0Lofie1NsDu772usqEBco9oW6Tp6o1azYp59+mscff7x2GQcBeVZsYAm2utI7X7mp2r+x0s7rzvi/MRj2rsA16DHU8x4AKtaVkvkzpo8vQ4tqjPPeTZXej6enHzdlce/nf6JqCledncpTozqWW8jbZ4rzUbbPx/DnZyh7lqGULH6qKUZyos8i7rybMXQcBRHxPj1tMLRzeVZs5Wo8FHv06FGSkpIA+Nvf/uZ5NuzpQu1ZsXJTdeAItrrSO9+GfFN1fcRKO6+D7tfC3hUYN32BcdDD5XZ56ipzKQBK2yGYLVX/o62X4Z1TuPGP9Xy408jnaw8SHmZi+qhOvl8n1BwPPca5f/IOwqYvYNNXKFnraXJyE/wwCRY8Am0vhE6XQ4cRYInx3ekDuJ2XnTxR3QSH0qHOyiYq+CKmNuVXp94mT7Rq1crzOjk5mZSUFJKTk8v9pKSkeJG6f+3fv5+ePXsSHh4ekgsnCyFE0DrrUjCY4Og2OL678mN2/uT+3ebC+svLSz2SNJ67rDOKAh/+tpdHv9yIS/XjRIe4VPfM4tuX4bhzNVtSrkRr0hFUh3syytd/gxfbwmfXw8YvoCjPf7mIgFXjjt3Jkyc9r1VVxeVylVtRuXRboGjcuDE//fQT5557rt6pCCGEKCs8Dpr3db/evqDiftsROLwRUKDN4HpNzVuX9WjGS1d2w6DAZ7/v575P1+Fw1WW6bA0ltGZ78iicty2Hu1bBwEcgsS04i2DLd/DlLfBCG/jflbD2A7Dl+D8nERDqfs0wQIWHhxMfH693GkIIISqTUTIjdsePFfftX+X+3aQjRCXVX061dMXZafx7XE/MRoV5f2Zxx0drKariuaV+0aQDDP473P073P4znD/JvdCx6oCdC+G7e+HldvDeCFj5BuTur7/cGpj333+fpk2b8tBDDwGwdu1aevVyPw7zhx9OLfEzd+5c2rZtyzXXXOPzHGrVsdu/fz+33XYbffr0oWPHjuV+amvq1Kl07NgRg8HAp59+Wm5fTk4OI0eOJDIykvbt27N48eJan0cIIUQAKO3Y7f0VXKct5XBgjft3Wq/6zakORnRJ4c0be2ExGVi89Qg3vbcGa1E9L8+iKJDSFYZMhXt+h4mr4YLHIaU7aKp7XcAfHoVXO8N/B8LyF+HIVlknz8duuukmXnzxRcB969rbb7/NtddeW+6YUaNG8fbbb/vl/LV68sTVV19NRkYG06dP99lyIBkZGbz22ms88cQTFfZNnDiRZs2acfToURYsWMDYsWPZtWsXdru9Qm83OjqaefPm+SQnIYQQfpLUzr3wcFEuHN4EjTuf2ndgrft3Wm89Mqu1we2b8MHNfbjl/TX8tvsYY9/4jfdu6k2z+Ah9EmrcHho/BAMegtx9sGUebJ3n7kxnrXf//PS0e228dhdD+4ugeT8wBeHSIZoGjoLK96mqe1+xEWo6uaE0Rqt6Isqjjz5Ku3btmDBhAgCXX345vXqV/89IamoqqampPplUUVO16tht2rSJFStW+DTR66+/Hqj49Aqbzca3335LZmYmkZGRjBkzhhkzZvDdd99x4403snTp0jqf2263Yy+zyGTZZ7LJwqX6C7a60jtfWbjUv7HSzn3H2OxsDLsX48pciSO+PQAOeyGmQ3+gAI7k7rovSlyVqr7bs9Nj+fiW3vztf+vYdvgkl838hTdv6EHHFN+uOef1n62oFOh1m/snPwdl+w8Ytn2Pkrkc5UQmrHoDVr2BZolBa30BaushmJ2GgG7n5RYottswPJdWaawBiPfyfKUxrkf2o1qiKz3mxhtvZOLEiYwfP57c3Fy2bdvGpZdeyvbt2yssOlzZQsqlCxH7eoHiWnXsLrroIlauXEm/fv1qE+6VHTt2EBcXV27Gbbdu3di8eXO1cUVFRVxyySVs2LCB4cOHM23atHKLKpf17LPPMn369Er3LVy40OucvYmpTfkNVbDVld75+vv8vi6/ruXVJV7auT7aFcRxFnBozVz+yGkGwMp5H3GBowCHIZz5q3eCUsWs2QBR1Xd7Zwb8d4uR7JN2rvrPb9zUXuWseN8Pedb+z1YixN6IsdNVNDm5iaZ562hq3UC43Yqy5VssW77lYhSO7f4Xh+O6kx3XA5slxT3cq0u+FeNLFyi22WwUK06vO281cdJmA3vlk2GaNWtGfn4+mzdvZtGiRYwaNcpzoajsBSJwd8wKCgrKbS8oKMDhcFQ4tri4mMLCQpYvX15ugeKaqlXHLiIigosuuohhw4ZVWLdu1qxZtSmySjabrcJifLGxseTm5lYbFx4ezqJFi2p0jilTpjBp0iTPe6vVSnp6OuB+2obJVLNqcjqdLFmypEYx3hzb0AVbXemdr7/P7+vy61peXeJrEyvt3HcMe8ww5ytStUPEDR7MkiVLODcjCbaCoelZDB02XO8Uq1ST7/biIQ7u/WwTq/fm8tZWE49dnME1vVLr7fw1dykAqqZSlLUO484FGHYuwHh0K0n520jK30anQ5+hxrfC1WYIrrZDUdPOAWPNh2z90c7tdjuHDh0iKiqKcIsF1yNVTwo5abMRE135lbdqYxo1qbYzO2HCBL799lu+//57PvzwQ1asWEFYWBgxMeWHcM1mMxEREeW2R0REYDabKxxbVFREeHg4/fr1w2KxAFTo/FWnVn8aWrduzeTJk2sT6rXo6OgKH8hqtRLt5RdUHYvFgsViKfdIsVJLlizxujxvYmpTfkMVbHWld77+Pr+vy69reXWJl3aujzDnSS4GDLmZLF/0AxgtZP6+kI7AoaII/giCK51n+m6vTgY138DvRw08OX87i9Zu5YqWKiYf3cnknz9bvSC9FxFNcki2ric5bx2Jtq0Yc/dgWPsW5rVv4TRYyInpyJHYbhyO7UphWM1mL/uynZdescvPzz/zUKU5kpNVXHmrNsZmq/aQkSNHMnDgQJKTk2nSpAlFRUUUFxeXWyIO3FfsCgsLy20vLCzE4XBUOLa4uJiioiJ+/fXX+rtiN3Xq1NqE1UpGRgZ5eXlkZ2eTnJwMuB+8e+utt9ZbDkIIIXyv2BRDkSmWcKeVGPtBciNbE2XPBsAWnqxzdr5hMsD1bVWSIzW+32fg18MGDhco3NTeRUyAP4yk0NKYPY2HsqfxUEyuQhqf3ERy3nqaWP8k3JlHSt46UvLWAXAyvBmHY7pyJLYrx6LboxoC/MP5SFxcHJ06dWLIkCGV7t+xYwdjxowhNzeXBQsW0KFDB79P8KxVx+6FF16odLvFYiEtLY0LL7zQ6zXkHA6HZ9Fjh8NBUVERYWFhREdHM2rUKKZOncqrr77KwoUL2bRpE5deemltUq/WxIkTmThxoudZsSBDsYEg2OpK73xlKNa/sdLOfct8tDPs/5U+LWNZcARSwwsBaN1rGC3OGqpzdlXz9rsdBozYfpSHvvqLXSdd/Ht7FP++ugsdU2r3+C992vkowD1kW3h4E8Y9P2Hc/ROGQ2uJKTpETNEh2ub8gGaOxNX8fNTWF+BqfQFaXLr/h2KreVYs4HmWqzdqEuNwOMjMzOTyyy8nJiaG8PDwckOxPXv2ZN++fZXG+msoVtE07xewueaaa/j6668555xzSEtL48CBA6xatYpLL72UQ4cO8ddff/HVV19xwQUX1LjMCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWrCp7x3VRdih2+/btzJ4922fLuQghhKio2773aHlsCduSR7M15Qou2jgRi/MkS9o/hTWyhd7p+Vx2Aby9zUhOkYLZoHF1a5XejYN7HTmzM5/GJzfR1Pqn52peWSctKRyO7cqR2G4+vZpXOhSbnp5OWFj9L9GyceNGxo8fz4033sj9998PwFdffcXTTz/NyJEjeeqpp6qMnT9/Pk8++SR9+/bllVdeKbevuLiY/fv3k52dXW4odty4ceTl5VWYd3C6WnXsrrzySiZMmMAll1zi2fb999/z/vvvM2fOHD7++GNefPFF1q9f723RAaH0it3s2bMZOXKk/E9eZ8FWV3rnK1fs/Bsr7dy3TCtfJ2z5Pyk+63IWmYYwYuNdABTcvxPConTOrmp1+W6tRQ4e/PIvVuw6DsDYnin8/aIMLCZjvZzfr+VrKsqRzRh3/4Rxz08YDq5F0U7dt66ZIlCbn4er1UBcLQeiJbSt0Uzb6q7YtWzZUrcrdnUpvypFRUVkZmbSrFmzclfsUlJS/Nexi4uL4/jx4571VcBd6YmJieTl5aGqKvHx8V5dOgwEcsVOCCHqV7MTK+mdOYtjURlsTLuBQdv+QZEpjh+7vK53an6lavDjAQM/HlDQUEiN1Li5vYuk6vsnQcfkzKfJyc00sW6gqXUj4c7ccvsLzQkcienMkdjOHI3pRLGp5p0jva/Y+YsuV+z69u3LiBEjmDJlCiaTCZfLxbPPPsu8efNYuXIle/fupX///lWOKwe6slfsRo8ejdlcs8vGDoeDhQsXMnTo0DPGeHNsQxdsdaV3vv4+v6/Lr2t5dYmvTay0c99SDv6B6f1hqNEprG5yDefufgU1uRuuWwL70ZG++m5/3nmUyXM2cqLAQbTFxHOXdWJ4p6b1dv76Kt/hcLBwwQKGdWtG2P4VKHuWouxbieI69XAADQUtpRtaq8ForQehpfX2LKlSWT52u519+/bRokULIiKqfrqHpmmeK2pKDdfh8yamNuVXp7CwkL1799K8efNyV+ySkpJq1LGr1fXbDz74gHHjxvHiiy/SpEkTjhw5Qvv27Zk9ezYAhw8f5tVXX61N0UIIIRoQLda9+LySf4Rwxwn3xugzd2xCRf+2SXx7V1/u//xP/tiXy92fbmBC3+Y8OKwdFl+tiRIoFAWtaWfUtB7Q9x5wFLg7d3uWYNi9FCVnC0rpo85+fQXNHIXWoh9a68Eo6edXeKatyWRCURSOHTtGYmJilZ0qTdM8S4h407GraUxtyq+urGPHjqEoSq2H2Gt1xa5UZmYmhw8fJjk5mRYtgv8mVxmKFUKI+qVoTkatvxmA3UlDaH10EZmJg9nQ/CadM6tfLhW+22dgSZa7M5caqXFjhovkBvRPULjjBI2tm2l8chONT24i3Fn+dq4CcwI5sV04EtOJnJhOOEwxhIWFkZCQEFL3sDqdTo4fP05xcbFnm9+HYsue6NixY5Qtonnz5rUtLmDIUGxgCba60jvfoByikaHYBs30SnuUgmMci8ogMX8Hrv4PoQ54RO+0quWv73bx1iNM+XozJwochJsNTLmoPdf2TqtwJSjk27mmwuHNGPYsPeOwrbPVQByNu6EZKy/X6XTy66+/0q9fP68mSdU0pjblV6X0Sl3ZOQxQD0OxGzdu5MYbb+TPP//0JAIQFhbm1erIQgghBFFNoOAYcYUlj4SKaqxvPjq6sEMT5t0dx8NfbuKXXceY+t0Wft5xlGfGdCIhKnQmCJyRYoDkLqjJXaDvPTgK8lg/9w16NzqJad/PKEf+8gzbGn99hTBTBFrzc9Fa9kdtOQCadgGDu3PkcDhwOp1YLBav/gNX05jalO9Ptbpid9555zF06FAeffRRUlJSyMrK4h//+Adt2rTh9ttv90ee9UKGYoUQov712/EcjW1/ed6vaXkXhxqdq2NG+lM1WJal8N0+Ay5NIdascX1blfbxwb3mna+UH7bdXGHtvGJjFEdjOpIT04mc6I7kW5rWaFmVQOX3odj4+HiOHz+OwWCgUaNGnDhxguLiYlq3bs2BAwdqnXigkKHYwBJsdaV3viE/ROPDeBmKDQzGb/6GYfNXnvfOa+egtR6sY0ZnVl/f7eZDVibN2cjuo/kAjO/bnMlDMjApqrTzUpoGR7dh2LMMJXM5yt5fUIrLP+O1wJxAWIdh0HogWssBZ5ygE2jt3O9DsfHx8eTm5pKQkEBqaiobNmwgISEB2xkeliuEEEKcTrOc9g+VJU6fRAJQp2axfHPnufzzh218uuYAH/y2j+Xbj/LP0R30Ti1wKAo07oDauAP0uR1UJ8qhde5O3p5lKAd/J9JxHDZ+6v4BtMYdUFsOQGs5AK3FeWDxzeLCgaBWV+yefvppOnXqxGWXXcZbb73F5MmTMRgM3Hbbbbz44ov+yLNeyFCsEELUv7MOfU67w6cejL7orBfID0/WMaPA9NcJhU93GchzKChoXNBMY0S6SqitiuJrRtVOgm07jU9upvHJv4gr3IvCqa6PioHcyFbuYduYTpyIauuzx575Sr3Nii21d+9ebDYbnTp1qmtRAUGGYgNLsNWV3vnKUKx/Y6Wd+57h19cwLjn1XE3HA9sgMlHHjM5Mr+82r9DBU99v5dsNWQC0bRzFi1d0oXNq9f/Yeyuk23nBcZS9K1Ayl7uHb0/sKXe8ZopATevD1uJkWg+5GVNaD/dkDj99tprw21Bsx44dz3jMX3/9dcZjgonZbPb6i/ImpjblN1TBVld65+vv8/u6/LqWV5d4aec6i2xU7q05OgmMwbEuWX1/t0lmM69d25PhHQ/y8Bfr2JmTz5VvrmLi4LbcPbgtYT6+fBeS7TyuKXS9wv0DkLsf9iyD3Uth9zKU/CMYM5fRCeDDzyCiEbTsD60HQquBkFj58239+WfBm3K9ajl79uyhefPmXHfddQwYMMAnj84QQgjRwIWfuqdOC4tCCZJOnZ6GdmzClG4uVhSm8n+bD/OvxTtYsDmb56/oSrf0eL3TCy7x6dDjevePpsGRLbh2/sSRVV+QXLQDpfAEbJnr/gGIaQatBpz6iQqs2wa8aj1Hjhzhq6++4uOPP+b9999n7NixXHfddXTt2tVf+QkhhAh1ZSdPhIXOTez+Fm2Gf43uxg9/5TB17ma2Zp/kslm/cNN5rZg8rB2RYdJB9pqiQNOOqAkZrD6azojhQzHnbHJfzduzHPavhpOH4M9P3T+AqVEruhlawMkekKD/Qxq8+tZjYmIYP34848eP5/Dhw3z66af87W9/Iz8/n88++6xGQ7XBxuFweH1sTWK8ObahC7a60jtff5/f1+XXtby6xNcmVtq57ynmKM8/Rpo5CmcQ1Jfe323Z81/UsTG9W/Tjn/O3MffPLN5ZsYcfN2fz1KiOnN+2dvcqSjsviVGB5B7un34PgKMQ5eAalEz3PXrKoXUoJ/bQgkwKlTDw89+7NVHryRO5ubl8/vnnzJ49m4MHD/L111/TuXPn2hQVMGRWrBBC1L+YwgNcsPXvAORGtGRZhyd1zih4/XVC4bPdBnKL3bdK9WmsMqaFSpTc4ukXJlchibZtRNmz2d3kIr+dx2+zYu12O3PnzuV///sf69atY8yYMYwbN45zzw2tFcJlVmxgCba60jtfmRXr31hp535gzcL8ehcAXGnnoI7/XueEzkzv77a689vsTmYs2sn/Vu1D0yAxKox/jOzAxZ2b1vjeeGnngdXO/TYrtmnTpiQnJ3PttdfyyCOPeB52u3r1as8xffr0qUXKgUtmywWOYKsrvfOVWbH+jZV27kPRCZ6XisEQVHWl93db2fkbmc08NaYLY3qk8ciXf7LziI37Pv+TbzY05snRnUlPqPlIlLTzwGjnfpsVGx8fj91u5/333+eDDz7g9It9iqKwe/dub4r0q2XLlvHoo49iNBrp06cPM2bM0DslIYQQpwuLOvVademXR4g5u0Ujvr/3fGYt2cWspTtZsi2HITOWce+FGdzWv7XPl0YRgcGrjl1mZqaf0vCPtm3bsnTpUiwWC+PGjWPjxo106dJF77SEEEKUVXZ4UDp2PmUxGXlgaDtGdW/GE99s4tddx3jxx2189ccBnhrTmX5tkvROUfhYSHfXU1NTsVgsgPsyptFo1DkjIYQQ1VKdemcQkto0jubjW8/h1au7kxQdxq6cfMa9tYr7P11Hzkm73ukJHwqojt3UqVPp2LEjBoOBTz/9tNy+nJwcRo4cSWRkJO3bt2fx4sU1LvePP/7g6NGjIbkcixBChBJFrtj5jaIojOmRyuLJg7jh3BYoCnyz/hAXvLyUj1buxaXW+QmjIgAE1OqFGRkZvPbaazzxxBMV9k2cOJFmzZpx9OhRFixYwNixY9m1axd2u51rrrmm3LHR0dHMm+d+oHR2djb33nsvX375Zb18BiGEEHWgyRU7f4uLMPPUmM5ceXYaj32zkU0HrTzxzSa++H0/z1zWhc6pcWcuRASsgOrYXX/99QA888wz5bbbbDa+/fZbMjMziYyMZMyYMcyYMYPvvvuOG2+8kaVLl1ZaXlFREePGjeP111+nadOmVZ7Xbrdjt5+6FG21Wj2vZeFS/QVbXemdryxQ7N9Yaef+UTrnT41qihoE9aX3d+uL83dMjuKLv53Dx6v3M2PRDjYcyOPSf6/g6l5p3DOwRZ3L92W+Db2d18sCxf40aNAg7rjjDs+VuHXr1jF8+HCOHDniOeaee+4hMjKS559/vspy3njjDaZPn06HDh0AePbZZ+nbt2+F46ZNm8b06dMrbJcFioUQon40tv5J2yM/sD79JgotjfVOp8HJK4ZvMg38ccx9h1akUWNEc5V+TTWM8lh43XmzQHFAXbGris1mq/BBYmNjyc3NrTbuzjvv5M477zxj+VOmTGHSpEme91arlfT0dAAGDx7sWa/vTJxOJ0uWLKlRjDfHNnTBVld65+vv8/u6/LqWV5f42sRKO/cPp3MwS5Z0DZq60vu79cf5rwTWZJ7gmR92sP1IPl/sMbIxP4rHLm5Hrxbxuubb0Nt52ZHEMwnpK3bekkeKCSGEaOhcGvx6WOH7fQYKXe7LdT0TVUa3UIm36JxcA+XNFbuAmhVblYyMDPLy8sjOzvZs27BhA506ddIxKyGEECL0GBXon6zxeA8X/ZqoKGj8cczAM+uNLDyo4FT1zlBUJ6CudzscDlwuF6qq4nA4KCoqIiwsjOjoaEaNGsXUqVN59dVXWbhwIZs2beLSSy/16fknTpzIxIkTPc+KBRmKDQTBVld65ytDsf6NlXbuH8FWV3rnW1/t/D+3DmR7TiHP/N921h2wMm+fkT9tEUwZ1paB7Wq+uLG087oJ2qHYCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWLIYMGeLT88tQrBBCCFGRpsHvRxXm7jVgdbiHZ8+KVxnTQiVZ/pn0O2+GYgOqYxcoSq/YzZ49m5EjRwZtDz9UBFtd6Z2vXLHzb6y0c/8ItrrSO1+92nm+3ckbyzP5cNUBnKqGUVG4ulczJg5sSaPIML/l29DbudVqJSUlRTp23pIrdkIIIcSZHSmEuXsNbDzhvlU/wqgxPE2lf7KGKSju3g8ucsWujspesRs9ejRms/nMQbjvEVy4cCFDhw49Y4w3xzZ0wVZXeufr7/P7uvy6lleX+NrESjv3j2CrK73zDZR2vnL3cZ75v21szT4JQIuESB4Z3o4hZzVGUU4tgCftvG6sVitJSUmhMytWCCGEEIHn3NYJfHPnufxzTEeSosPYe7yAuz5Zz43v/c5fWTW/4V/4jlyxK0OGYoUQQojaKXLBooMGlhxScGoKChrnNNEYma4SW/Xtd6IGZCi2jmQoNrAEW13pnW+gDNHUV3kNfYgmVARbXemdbyC38wMnCnlpwQ6+3+ReezYqzMht57cgLX87I4ZLO68NGYoVQgghhC7SGkXw6tVd+ey2PnRNiyW/2MWrP+3mmXVG5v6ZjarK9SR/kit2ZchQrBBCCOE7qgZrjyrM22cgt9g9mSItSmN0C5V2cdL9qCkZiq0jGYoNLMFWV3rnG8hDNP4or6EP0YSKYKsrvfMNtnZuLShi6sdLWJIdRn6xC4CBGUk8PDyDdk1j/JpPKLRzGYoVQgghRMCIMBsZmqrx4z3ncsO5zTEZFJbtOMqlM39jytebybYW6Z1iyJArdmXIUKwQQgjhf0cK4ft9BtYfd19fMhs0BqdoXNhMJTzwHzxS72Qoto5kKDawBFtd6Z1vsA3RyFCsgOCrK73zDZV2vm5fLs/9uJ0/9uUCkBBl5t7BbbiqVxpmo+GM8f76LIHWzr0ZipV+8RmYzWavvyhvYmpTfkMVbHWld77+Pr+vy69reXWJl3YeOIKtrvTON9jbeZ82jfnyziR+3HyY53/Yyp6j+Uybt5UPV+7n4Ys6MLxT03JPsGio7dybcuUeOyGEEELoRlEULuqczIIHBvDU6E4kRoWx+2g+d/xvLWP/8xtr957QO8WgIlfshBBCCKE7s9HADX1bMqZHKm8u381bP+/m970nuOKNXxl6VhN6W/TOMDhIx+4MHA6H18fWJMabYxu6YKsrvfP19/l9XX5dy6tLfG1ipZ37R7DVld75hnI7DzfCvYNbc9XZzXht8S6+WneQhVuOsAgj25SN3HdhBilx4X45d21i6uPPgjdly+SJMmRWrBBCCBFYsgrcM2g3nnDfPWZSNAYkawxJVYkKntsx60RmxdaRzIoNLMFWV3rnGyqz5eojPhRmy4WKYKsrvfNtiO38za8W8rM1kbX78gCICTdx2/ktGd+3OZFhVQ9AhkI7l1mxPhTMs2hCTbDVld75BvtsufqMl3YeOIKtrvTOtyG181YxcNdVffhldy7P/7CVrdknmbFoJx+t2s99F2Zwde/0ckuk+OLcgdLOZVYscOjQIfr168eAAQO45JJLKCgo0DslIYQQQtSBoigM7tCE+ff259Wru5OeEEHOSTuPf7OJoTOW8d2GQ6hqwx6IDNmOXdOmTVmxYgXLly/n7LPP5vvvv9c7JSGEEEL4gMGgMKZHKosnDWLapR1JjAoj81gB93yyjlEzV7B8ew4N9U6zkO3YGY1GDAb3x1MUhfbt2+uckRBCCCF8KcxkYMJ5rVj28GAeGNKOqDAjmw5aufHd1Vz39io27M/VO8V6FzAdu6lTp9KxY0cMBgOffvppuX05OTmMHDmSyMhI2rdvz+LFi2tU5ooVKzj77LNZtGgRLVq08EfaQgghhNBZtMXEfUMyWP7wYG4+rxVhRgO/7jrG6Jm/cM+nGzhcqHeG9SdgOnYZGRm89tpr9OnTp8K+iRMn0qxZM44ePcrzzz/P2LFjOXHiBNnZ2QwaNKjczyWXXOKJO//881m7di1jxozh3Xffrc+PI4QQQoh6lhht4R+XdmTx5IFc3jMVRYEfNh/mufVGHvtmM4dyQ7+HFzCzYq+//noAnnnmmXLbbTYb3377LZmZmURGRjJmzBhmzJjBd999x4033sjSpUsrLc9ut2OxuJepjouLw+VyVXluu92O3W73vLdarZ7XwbygYagItrrSO99QXrjU1/GhsHBpqAi2utI7X2nn1UuOMfP8ZZ24pV9zXlqwnSXbj/H52oN8vf4Q4/qkc+eAViRGV/0oi0Br50G9QPGgQYO44447uOaaawBYt24dw4cP58iRI55j7rnnHiIjI3n++eerLGfFihU89thjGAwGEhIS+Oijj6pcbHjatGlMnz69wnZZoFgIIYQIfrutMG+fkV0nFQDCDBoDUzQuaKYSGTCXuKrmzQLFAf9xbDZbhQ8RGxtLbm5utXHnn38+y5Ytq9E5pkyZwqRJkzzvrVYr6enpAAwePBiTqWbV5HQ6WbJkSY1ivDm2oQu2utI7X3+f39fl17W8usTXJlbauX8EW13pna+0c+9iWbKEr+7uz+p9J3ltyW42HTrJwoMKq46FcVPfdK4/J42oMoscB1o7LzuSeCYhe8WuNuSRYkIIIURo0zTYeELh+30GsgvdV/CizRpDU1XOa6phDpjZB6d4c8UuANMvLyMjg7y8PLKzsz3bNmzYQKdOnXTMSgghhBDBSFGga4LGI91c3NDWRZJFw+ZQ+DrTyNPrjPx2WMEVUJe8vBMwV+wcDgcul4thw4Zx2223MXbsWMLCwjAYDIwdO5aEhAReffVVFi5cyIQJE9i1axeNGjXySy5lnxU7cuRIGaLRWbDVld75yhCNf2OlnftHsNWV3vlKO/ddrMOl8vX6bN5Ynsnhk+6JlC0SIhiYaGPSlQMJO8PjvOprKDYlJaVGV+wCpmM3YcIEPvjgg3LblixZwqBBg8jJyWH8+PEsXbqUtLQ0Zs2axZAhQ3yegwzFCiGEEA2TQ4UV2QoLDxrId7qHaJtFaoxIV+ncSENR9MvNm6HYgOnYBRK5YhdYgq2u9M5X/ifv31hp5/4RbHWld77Szv0Xm2938sFv+3jnl0wKXe7eXNfUWO4b3Iq+rRN8mltNBeUVu0AgV+yEEEIIAZDvgJ+yDCzPUihW3R28jFiVkc1VWsXUby5yxa6O5IpdYAm2utI7X/mfvH9jpZ37R7DVld75Sjv3b2zZmBNFLt5asY/P1h7EUTKrYlBGIvcObk2H5Gi5YhfI5IqdEEIIISpz3A4/HjCw+oiCivsKXo9ElYvTVZpG+PfccsWujspesRs9ejTmM8yIKeVwOFi4cCFDhw49Y4w3xzZ0wVZXeufr7/P7uvy6lleX+NrESjv3j2CrK73zlXbu39jqYvYczee1n3bx/Ub3MmwGBXolqbxw/fmkJkR7lVtNWa1WkpKSQmMdOyGEEEKIQNEqKYpXr+rK3Lv6MqRDY1QN/jiqECiXyeSKXRkyFCuEEEIIb+w9CQcLFPo19V93SoZi60iGYgNLsNWV3vnKEI1/Y6Wd+0ew1ZXe+Uo7929soLVzb4ZiA3/qkc7MZrPXX5Q3MbUpv6EKtrrSO19/n9/X5de1vLrESzsPHMFWV3rnK+3cv7GB0s69KVc6dmfgcDi8PrYmMd4c29AFW13pna+/z+/r8utaXl3iaxMr7dw/gq2u9M5X2rl/YwOtnXtTtgzFliH32AkhhBAi0Mg9dnUk99gFlmCrK73zlXtv/Bsr7dw/gq2u9M5X2rl/YwOtncs9dnVU2tctKCigsLAQp9NZoziHw1HjGG+ObeiCra70ztff5/d1+XUtry7xtYmVdu4fwVZXeucr7dy/sYHWzgsLC4FT/ZPqyBW7Shw4cID09HS90xBCCCGE8Ni/fz9paWnVHiMdu0qoqsqhQ4e44IIL+P33372K7d27N2vWrDnjcVarlfT0dPbv33/Gy6qi5vUaKPTO19/n93X5dS2vLvG1iZV27h96txtv6Z2vtHP/xgZSO9c0jZMnT9KsWTMMhuqfLSFDsZUwGAykpaVhMpm8/pKMRqNXMbGxsfIXfg14W6960ztff5/f1+XXtby6xNcmVtq5f+jdbryld77Szv0bG2jtPC4urkbHySPFqjFx4sR6iRFnFmz1qne+/j6/r8uva3l1iZd2HjiCrV71zlfauX9j9f5+a0uGYnVSOvO2JjNchBDBSdq5EKEv0Nq5XLHTicViYerUqVgsFr1TEUL4ibRzIUJfoLVzuWInhBBCCBEi5IqdEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIMOmdQCBSVZVDhw4RExODoih6pyOEEEKIBkzTNE6ePEmzZs0wGKq/Jicdu0ocOnSI9PR0vdMQQgghhPDYv38/aWlp1R4jHbsyZs6cycyZM3E6nQC8/fbbREZG6pyVEEIIIRqygoICbr31VmJiYs54rKJpmlYPOQUVq9VKXFwcs2fPZvTo0ZjN5hrFORwOFi5cyNChQ88Y482xDV2w1ZXe+fr7/L4uv67l1SW+NrHSzv0j2OpK73ylnfs3NtDaudVqJSkpiby8PGJjY6s9Vq7YnYHZbPb6i/ImpjblN1TBVld65+vv8/u6/LqWV5d4aeeBI9jqSu98pZ37NzZQ2rk35cqsWCGEEEKIEBHSHbucnBxGjhxJZGQk7du3Z/HixXqnJIQQQgjhNyE9FDtx4kSaNWvG0aNHWbBgAWPHjmXXrl00atRI79SEEEIIIXwuZDt2NpuNb7/9lszMTCIjIxkzZgwzZszgu+++48Ybbyx3rN1ux263e95brVbPa4fDUeNzlh5bk5jM587lHOdxjq97oMI+jdqtneeJqyS8+jKr3lf9zJrK46o7V20/WzdNI2vDFK/yqO35vM2/dItWuuahptFJVTnw5xOevdppx9Y8x9p9tg4uF3v/nO4uocxhZ/psVe09Pa6dy0nmxqerLMsTV+06kKf2ZTid7Nn0zxrkWXkNtnU62bXpuQq7lQoxCqc3kzYOB3v+egGU0z+/gqYo7lwUg/s9CppiIL3Izvbts9zblVPbKTnWHaOgopCUX8jmzI/d20vLURTAgKIoKAYDKEYMJa8VgxHNaAZjWJkfMwaTBUxhGExhmMMshFkisETGYoluRERsIoaIeAiPLck1+Hjz92cg0Dtff5/f1+XXtby6xNcm1puY+viz4E3ZITsrdt26dQwfPpwjR454tt1zzz1ERkby/PPPlzt22rRpTJ8+vUIZs2fP9ttyJ+f+cR9NlRN+KVsI0TCpKJwgjiPGJuSak7FGZ+BK7IAjsqneqXlP04gv3EPSyS3EFu4j3JFLhOMERtWOQXOiaC4UTcNlsOA0WnAYIykIa4wtPIWj0WdxNLpD0HZyhThdQUEB48aNa9izYm02W4UPHxsbS25uboVjp0yZwqRJkzzvrVarZ4Fif02P3pGWwJL1f9C5c2eMJiMAmua+JnA6z5bT+uBl35aNq7KEyrrwmlb1VTlNrXxz5cVUyMN9rFbxoErKUKr5/4XL5WTr1u20b98Oo9FYg2xKT1V1XSpV5VJue/l45dSOys7o2exyudi5YydtM9q68622HivJsbQutdOPrRh9+p8JANXlYufu3bRp3RpjuRXKq/uuq6hHKn6nLlVlz+49tGrVCoNBqXB8qdI6rry6Tm1VVZXMzExatmzpXlG9yj8LlW93uVzs3buXFi1aVFiRXdNAK6l/Dffq7VqZ07tcLg4cOEBqWiqKYgCt5DgAzeVuH5r7tYKGpqloLheHs7No2qQpiqKVFKaBpqJoKpQcp2gamuri2LGjJDaKdz/Fpswx7uRUVE1FU90/qqaiqC4U1YlBLcaoOTCoDoyqA6NW8qM6UFQHRq2YCK2QWPKJI58IpRgDGonkkujKBdd2KFoOR2FPVDeiL32O+Da9q6hb/ZX7+/PETozf3Y0he8MZ48xqIbiXHqVRwR4A2vMtWlJ7XJe8hpbay//5ynInfi9PljuxnvmgEiHbsYuOjq5QEVarlejo6ArHWiwWLBZLpeX4a3p0Rtdz2XHgOO17Dgiqqf16cDgc7MuFLueNCIq6cjgcHMqfT/eB+uTrcDjIss+n54X+Ob/D4eDw/PmcPdQ35TscDo7Mn0+v4bUrz+FwkDN/Pr0v9j7e4XAwf/58+o+oeWxpzKAaxJQeO9CL8r1ld7rIt7vIttk4mnOYk0f2UpyzG/XwZlJOrKWLuo1W+RtwfjqSvQNm0OaCm/ySh6+Yj23F/OFIcBSAKRzaDoHUsyG+OUQ3dQ83G0qGqhUFivPdP4XH4fgeyN4I2+ajHN2G6eMr4G9LoHF7/+Ury53Ua3my3MmZhWzHLiMjg7y8PLKzs0lOTgZgw4YN3HrrrTpnJoQQvmMxGbGYjCREJdCqaQJwlmefqmr8vnETxfMe5nzHr6Qtf4hjrXuR2LKLfglXR9Mw/vCwu1PX4nwY+x5EN/G+nMJc+PQ62LsCFj8J13zs81SFCFQhewNCdHQ0o0aNYurUqRQWFjJ37lw2bdrEpZdeqndqQghRLwwGhT7dunD2g3P53XQ2FhwcnHvmSS96iS3cj+HgGjBa4Mp3a9epA4iIh5EvuV9v+z+w23yWoxCBLmQ7dgCzZs1i//79JCYm8uCDD/L555/LUidCiAYnwmKGC9yzyjOO/4SruFDnjCrX2LbZ/aLVAIip44SPJmdBXHP3vZIHVtc9OSGCRMgOxQI0btyY+fPn16mMYJ4eHSqCra70zleWQfBvbLC28049+pOzIJ7G5LLt94W07n2x3imV43A4aJS/CwBXel9UH9SZMbUnhrx9uA5tQG3ev87llaX3dyvt3L+xgdbOZbmTWpo5cyYzZ87E5XKxfft2vy53IoQQ9S3hz3/T37WauTHXoLUdoXc6FZy//SkS83ewuuXdZDXqU+fyOh/4mDY5P7KjyUj+Sr3aBxkKoQ9Z7qSWJk6cyMSJE7FarcTFxQH+W+5E76nywSTY6krvfGUZBP/GBnM7X5W1ELJXk2yx02NEYHXsHA4H2mb3slM9B45AS6t7x86wYiss+5E2KfG09PHn1fu7lXbu39hAa+ey3IkPBfP06FATbHWld76yDIJ/Y4OxnRsTW0M2ROQfDIh8ytE0DI48AEzxqeCL/GLcky8MRScw+HEZCmnn9VdeQ23n3pQb0pMnhBBCnBLRpA0A8faDOmdSiaJcjFrJfUTRyb4pMzLR/Tv/qG/KEyIISMdOCCEaiNjGqQBEqyd1zqQSJZ0vzRIL5nDflBmV5P5dcMw35QkRBGQo9gyCeRZNqAi2utI7X5kt59/YYG7nJksUABFaYcDkVMpZZMMMaKYInL7KzRzrLrPwuO/KLKH3dyvt3L+xgdbOZVZsLcmsWCFEKCsutDF2610AfNPtPRTD6c9e1k98/m4Gbp9GgTmRhZ1f8UmZkfbDDP3rIZyGcL7v9qZPyhRCD97MipWOXSVKZ8XOnj2b0aNHB+0smlARbHWld74yW86/scHczu1FhUS/nA5A7t3biIpL1DmjU1x7fiF89mjU+Fa4Jq7xTaF5+zH/uweaKRznIwd8U2YJvb9baef+jQ20dm61WklKSpLlTnwhmGfRhJpgqyu985XZcv6NDcZ2bjKZKNaMhCkuHPYCzGYfTVLwAUVR3b9NYb6rK7PFXabq8utsRWnn9VdeQ23nMitWCCFEBYqiUKi4JyYU5dd8Xax6oTrdv41hvivTYCpfthANQNB37J577jkURWHlypWebRMmTMBisRAdHU10dDSdOnXSMUMhhAgchUQAYC8IsI6dqxgAzeDDgSTPPYQaqKrvyhUigAV1x+7gwYPMnj2b5OSKwwnTp0/HZrNhs9nYvHmzDtkJIUTgKTK4r9gVFwTYkieukll/Pr1iV2ZyiObyXblCBLCgvsdu8uTJTJ8+nQceeKBO5djtdux2u+d92Ud3BPP06FARbHWld76yDIJ/Y4O9nRcrJVfs8nMDKi+1uBAT7it2PsvLpVF6Z5KjuMin/+Lp/d1KO/dvbKC18wax3MnSpUt5+umnWbRoES1btuTTTz/l3HPPBdxDsd999x0A7du357nnnmPAgAFVljVt2jSmT59eYbssdyKECDXN1z9HD+0vvki8C3Pzc/VOxyPt+C+cvfe/HInpzG9tH/ZJmUbVziUbbgNgXtc3cRl9tPCxEPXMm+VOgvKKndPp5IEHHuCjjz6qdP99993HK6+8QlRUFHPmzOHSSy9l06ZNpKenV3r8lClTmDRpkue91Wr1HBvM06NDRbDVld75yjII/o0N9na+aessKIT05CR6jhihdzoe6toc2AuJTVIY4au8nHbY4H45fOgQCK/+H0Rv6P3dSjv3b2ygtfOyI4lnEpAdu2HDhrF8+fJK9z3++OPExMRw/vnn07lz50qP6dGjh+f1ddddx0cffcTChQu5+eabKz3eYrFgsVgq3RfM06NDTbDVld75yjII/o0N1nauGUry0Py3BEhtuHDfA6eYLL7Ly3jqNnKzUQE/fF69v1tp5/6NDZR27k25AdmxW7BgQbX7x4wZw/Lly5kzZw4AOTk5jBw5kpdeeombbrqpwvEGQ1DPERFCCJ9RS2edugLn/jqgzHInPvyHUSnzd78qkydEwxCQHbszef/99ykqKvK87927N//9738ZNGgQAF9++SUXXXQRFouFL7/8khUrVjBr1iydshVCiACiuGeKaoG2tlvJcie+7dgp7s+ruWQtO9FgBGXHLj4+vtx7o9FIQkKCZ6LDK6+8ws0334yiKLRv356vv/6ali1b1n+iQggRYFSlpOPkCrCOTukVRIOPh7IMRnC5ZLkT0WAEZcfudJmZmeXer1ixwmdlB/P06FARbHWld76yDIJ/Y4O9nWslw5Oqqziw8nLYMQIuxYTLh3mZDCYUV7F7uRMflqv3dyvt3L+xgdbOG8RyJ/4wc+ZMZs6cicvlYvv27bLciRAi5ERu/oChxYuZF3EZrg6X6Z2Ox1mH5tDu8HfsajyMTWnX+6zcERtux6wWsqjji+RbmvqsXCHqU8gvd+IvEydOZOLEiVitVuLi4gBZ7iQQBFtd6Z2vLIPg39hgb+e/758LRyGhURy9A2i5Exb8Boehecs2NB/mu7xMWyxQVMjA/udDUobPytX7u5V27t/YQGvnQb/cSSAJ5unRoSbY6krvfGUZBP/GBm07L5mcYAjQ5U4M5nCMvsyrZBawLHcSGOVLO68db8qVdUCEEKIhKX1+aqDNEvU8K9YPkycg8D6vEH4iHTshhGhISmadKmrgTJwAUPyx3Al4rtjJOnaioZCh2DMI5lk0oSLY6krvfGW2nH9jg72da6X/n1edAZWX4rRjAFwYUX05K1YxoADOYjuazIrVrXxp53Ujs2JrSWbFCiFCnbJtLqMKvuAn8yBOdq78MYt6OHvPLNJyV7Ix9Tp2Nxnus3Iv3Pwg0cVHWN7uCU5E+W7yhBD1SWbF1pLMig1MwVZXeucrs+X8Gxvs7XzNidWQCdGR4fQPoFmxypzPIBfad+xChz4+nBW7dzocP0K/c/qgNe/rs3L1/m6lnfs3NtDaucyK9aFgnkUTaoKtrvTOV2bL+Tc2WNu5wRTm/h1gs2JVVAAM5jBMvsyr5J49k0FmxQZC+dLOa0dmxQohhKhcyWQCRQuwWaKls1YNPr7eoMisWNGwBG3H7rPPPiMjI4Po6GhGjRrF8ePHPfsKCwu5/vrriYmJoXnz5nzyySc6ZiqEEIFDMZbOig2wWaKl+fi6Y1e63Ik8K1Y0EEHZsduyZQu33347n3zyCSdOnKBFixZMnDjRs3/q1KkcP36cgwcP8umnn3LnnXeyfft2HTMWQogAYXR3nAwBe8XO6NtyPevYScdONAxBeY/dokWLGD58OL169QLg73//Oy1atCA/P5+oqCg++ugjvvnmG2JjY+nXrx+jRo3i008/5R//+Eel5dntdux2u+d92ZsUg3l6dKgItrrSO19ZBsG/scHezrUyQ5OBlJehZIFil6r4dFkSo2LEADgdstyJnuVLO6+bkF/u5PXXX+fnn3/m888/B+DQoUOkpqaybt06WrRoQUJCAvn5+Z6lSl5++WVWr17NZ599Vml506ZNY/r06RW2y3InQohQU5z5K2NP/Ie1SmcOdH9Y73Q8zt/+FIn5O1jd6l6y4nv5odx7yIrv7bNyhahPIb/cyYUXXsjjjz/O6tWr6datG88++yyKolBQUIDNZsNoNJbrkMXGxmKz2aosb8qUKUyaNMnz3mq1kp6eDshyJ4Eg2OpK73xlGQT/xgZ7O1/3f4fhBFjMRkYE0HInhuxXIR+69TibHmf5Li/jsf9A/g56du+G1tF35er93Uo7929soLXzoF/uZNiwYSxfvrzSfY8//jiPP/44b7zxBuPHj+fYsWPcd999xMTEkJqaSnR0NC6Xi4KCAk/nzmq1Eh0dXeX5LBYLFoul0n3BPD061ARbXemdryyD4N/YYG3npjD3cidGzRkwOQGoJZMbjGaLj5c7cf8zJ8udBEb50s5rx5tyA7Jjt2DBgjMeM27cOMaNGwfAzp07ef3110lLS8NoNJKcnMzGjRs555xzANiwYQOdOnXya85CCBEMSmfFGgJslqjit1mxpc+KDbDJIkL4SVDOigX4448/UFWVgwcPcvvtt/Poo49iNLpvCr7++ut56qmnOHnyJCtXrmTu3LlcffXVOmcshBD6M5TOiiXAOjqan2bFKjIrVjQsQduxu/POO4mNjaVXr14MGDCA++67z7PvySefJC4ujpSUFMaOHcusWbNo3769jtkKIURgUIynnjwRUPy1QLFcsRMNTEAOxdbEqlWrqtwXERHBxx9/7JPzBPP06FARbHWld76yDIJ/Y4O9nWuKArjvsQukvIwuJwrgVPHtcicoGACXsxhVljvRrXxp53Xj8+VOSpcVOROj0cgVV1xR45MHmpkzZzJz5kxcLhfbt2+X5U6EECGn8PA2rjn0DHtJYX2P5/VOx2Po5klEFh9lWbtp5Ea19lm5vfa8TmruGv5Mu5E9jYf4rFwh6pM3y53UqGNnMpkYMGAAZzp0zZo11S4rEiysVitxcXHMnj2b0aNHB+306FARbHWld76yDIJ/Y4O9nW9fu4ROP4zlkNKUxn/frHc6HsbXumCwZVE4fgGmtJ6+K/fr2zD89TWuoc+g9rndZ+Xq/d1KO/dvbKC1c6vVSlJSku/WsYuIiOCnn34643GNGjWqWYZBJJinR4eaYKsrvfOVZRD8Gxus7TwsPAJw32MXKDkBaCX3/JnCwn2bl6lkeRdFwyjLnehevrTz2vGm3BpNnti9e3eNCpPnsQohRGAzlHR0zATO/XWA/yZPlCzvgqvYt+UKEaBq1LFr3LhxjQqr6XFCCCH0YbaEu38HbMfOx8udlMwCxiWzYkXD4PV/jS6++GKUkllVZVksFtLS0rjsssu44IILfJJcIAjmWTShItjqSu98Zbacf2ODvZ2XLndi0RwBlZeppGPndAE+zMugmDACLkeRzIrVsXxp53Xj81mxZT3xxBN8+OGHjB8/nrS0NA4cOMBHH33ENddcg6IovPPOOzz66KM88MADXieuN5kVK4QIdcUFVsZuuxuAb7p9gGKo+B91PVyy/haMmoMfO71CUViiz8rtePATMo78HzuajOCv1Gt8Vq4Q9cnns2LL6tWrF5988gkZGRmebTt27ODaa6/l999/Z+3atYwdO7bG9+UFIpkVG1iCra70zldmy/k3Ntjb+cncYyTMdC/Ynj95v2cyhd5M/2yKorkouGs95kZpPivXsORpjL++iqv37ajDnvFZuXp/t9LO/RsbaO3c57Niy9q1axepqanltqWkpLBz504AevbsSU5OjrfFBqxgnkUTaoKtrvTOV2bL+Tc2WNt5ZPSpfxQ01RkYeWkalMyKNft6VqzZfU+hUXPKrNgAKF/aee34fFZsWcOGDWPs2LGsXLmSAwcOsHLlSq655houuugiAFavXk2LFi28LVYIIUQ9CAsL97wuLsrXMZMyyj7HVWbFClEnXnfs3nnnHdq3b8+1115LRkYG48aNo3379rz99tsApKam8u2339Y5MafTyRVXXEFqaiqKopCdnV1u/9SpU0lPTyc2NpaMjAzee+89z76lS5diMBiIjo72/Pz88891zkkIIYKdwWjArrk7Ow57kc7ZlCj7HFd/zYqVZ8WKBsLr/xpFR0czY8YMZsyYUen+tDTf3RsxYMAAHnroIfr27Vth3/XXX8/DDz9MVFQUO3bsYODAgfTp04dOnToB0K5dO7Zu3eqzXIQQIlTYMWPBQbG9UO9U3Mp17Hx9xa50uRO5Yicahlq1oO+//54vvviCnJwc5s2bx5o1a8jNzWXo0KG+S8xk4r777qtyf9nJGwCqqrJ3715Px84bdrsdu93ueW+1Wj2vg3l6dKgItrrSO19ZBsG/saHQzosV9xU7e8HJwMituIjSO4gcLs23y52gYARUhx2XLHeiW/nSzuvGr8udvPDCC3z00UfccccdPPbYY+Tm5rJ161bGjx/PqlWrvE62RkkqCllZWSQnJ5fb/txzz/HUU09RUFBAnz59WLZsGeHh4SxdupSLLrqI2NhY4uLiuOGGG3jssccwGiu/xD9t2jSmT59eYbssdyKECEW9/5hEM+Uon6dPxZLURu90CHOe5OKNEwH4tvv7oHh9l1CVmh9bRo9975Ad251VbSb5rFwh6pNflztp3rw5q1evJjk5mUaNGnHixAk0TSMxMZHjx4/XKfEqk6yiYwegaRqrV69m0aJFPPLII5hMJrKzs8nNzfUMx1511VXccsstVa6tV9kVu/T0dFnuJEAEW13pna8sg+Df2FBo51n/7Epz7RCbhs2mfe9heqcDtsOYX+uEhkLhw4d8WlfKxs8xzb0LtfVgXNfO8Vm5en+30s79Gxto7dyvy524XC7i4uIAPE+gsFqtREdHe1XOsGHDWL58eaX7Hn/8cR5//PEalaMoCueccw4fffQR77zzDrfffjvJycmeTmDHjh15/PHHmTVrVpUdO4vFgsViqXRfME+PDjXBVld65yvLIPg3NpjbuVMJAw1wOgIjr5JFklXF6Pu6KpkFbFCdGGS5E93Ll3ZeO96U63XH7rLLLuOOO+7g5ZdfBsBms/HQQw9xxRVXeFXOggULvD11tVRVZdeuXZXuMxh8d1lfCCGCncMQBiq4HIE1eULz4RCsh2fyRADcSyhEPfC6Fb300ktER0fTokULcnNzadq0KSaTiX/+858+T85ut1NUVFThNcDbb79Nbm4uqqqybNkyPv74YwYNGgS4lzvZv38/4H4qxtNPP80ll1zi8/yEECIYuRR3Z0ctDqzlTjR8vNQJyKxY0eB43bELDw9n5syZ5Ofnc/jwYWw2G7NmzSIiwvePpWnfvr2n3JYtW5Y7x/z582nTpg1xcXHcddddvPjii4wYMQKAtWvXcu655xIVFcWwYcMYM2YMkybJTbNCCAHgMrg7Oy5HoHTs3AsU++WKXenyKXLFTjQQNRqKXb16dZX79uzZ43ndp0+fumdURmZmZpX7vvrqqyr3TZ48mcmTJ/skh2CeHh0qgq2u9M5XlkHwb2wotHNnaceuyBYQuSn5JzABTkO4T5c6AVAwYAI0lx2nLHeiW/nSzuvG58udtGrV6lSAonDgwAEURSExMZFjx46haRppaWns3r27dhkHiJkzZzJz5kxcLhfbt2+X5U6EECEpZuM7XOBcxndRV6K2G6V3OjSx/knfXS+RG9GcZR2e9mnZjWw7GLDjKWxhTVjc6SWfli1EffFmuZMaXbEre1Vu+vTpFBQUMG3aNCIiIigsLGT69OlERUXVLesAMHHiRCZOnIjVavXM/A3m6dGhItjqSu98ZRkE/8aGQjtflbUIsqFJhEbPkltY9KRsKoBd4DBG+7yulEPrYAdEhYd5btfxBb2/W2nn/o0NtHZe9sEJZ+L1rNjXX3+d7OxsTCZ3aEREBE899RQpKSk88cQT3hYX8IJ5enSoCba60jtfWQbBv7HB3M4NscmQDWFFOYGRV/FJ9y9TFPG+riuLe9RFUf2ztIve3620c//GBko796Zcr+9UbdSoEYsXLy63benSpcTHx3tblBBCCB2Y49zrfEYUH9U5kxKFJwAoNnq3HmqNGEv+QXTaqz9OiBDh9RW71157jauuuopzzjmH9PR09u3bx5o1a/j444/9kZ8QQggfC09IBSDWcUznTEqUdOwcJj907MLj3b/tVvfMWGMAXKEUwo+87tiNGDGCXbt2MX/+fLKyshg4cCCffPIJSUlJ/shPd8E8iyZUBFtd6Z2vzJbzb2wotPPYlAwAktUj2HKPYYmq/mZsfzPmH8UAFBujfF9XlnhMRguKy47j+F6Ib+GTYvX+bqWd+zc20Nq5z2fFNhQyK1YI0RBoGvRZ9wDNlGN81exRjE076prPwK3/IL4wk9Ut7yarkW+XzQK48K+HiLYfZkXbKRyLOcvn5Qvhbz6fFXv11Vfz2WefnfG4cePGMXv27JplGYBkVmxgCra60jtfmS3n39hQaedrt79Hs4IltGAfXUc8qF8iziJMG24GIDeqtV/qynjibcg8zLlnpaJ19c3MWL2/W2nn/o0NtHbu81mxc+fOZc6cOZzp4t78+fNrfOJgEcyzaEJNsNWV3vnKbDn/xgZ7O3d1Hgurl9Du0Dc4rY8RkZimTyK7FoLqRItqQqE50T911aQDZC7HdOh3OPsGnxat93cr7dy/sYHSzr0pt0Ydu3POOYdZs2bV6DghhBCBr+cFY9m65iU6aLs59J+L0cbPJjKtS/0mUZQHP7kXJFa7XAV2xT/naXcRrH4T/poLQ5+E8Dj/nEeIAFCjjt3SpUv9nEZFTqeTq6++mpUrV3Lo0CGysrJITk727N+zZw+33347q1evJioqirvvvpspU6Z49r///vs8/vjjWK1WrrjiCv773/8SFhZW759DCCECUUR4GIWj3ibrmytp5tiH+nZ/9kV3Q2tzAUltexPVrD1ENwWLj2eq2k/C4b9g7y/uztbJLIhMQj3nLlj+u2/PVarVAEhsC8d2wv+uhIuehWY9weCHZ9MKoTOvZ8XWpwEDBvDQQw/Rt2/fCvvuueceWrduzffff8+BAwc477zz6NOnDxdeeCEbN25k0qRJLFiwgIyMDMaMGcPTTz/Nk08+qcOnEEKIwNSjx9msN3/Htq8fZJDrN5rb1sOG9bDh1DGFSiSFplicxkhc5khUUySYIzEYjSgGE4rRiMHg/lGMJoyoGDUHRs2BQXViUIsxuIowFByDgqMoRXnlk2jUEsZ+ANFN/PdBjWa47L/w4Wg4sBrevhCimkDTjpDQGiKTIKKR+ycsCkwWMIaV/LaAKcz9XjGCooBiAFUjvPgYWLMgrHSfwb3fUPq6zA8AZa5IKkr5bVW9V/x0FVOErIDt2JlMJu67774q9+/du5fJkydjNptp1aoV559/Pn/99RcXXnghs2fP5uqrr6ZXr14APPHEE9x6661Vduzsdjt2+6nFK8vepBjM06NDRbDVld75yjII/o0NtXbeqX17ih/8lsXr/+TEH98Qe/xPWjh2k6bkEKXYidAKiHAUgAMo8s05D2uN2Ka04mfjOSwqGAQfn8Bk/IXCfCPv7V9JmMmI2WggzKRgNhrcr40KYSaD573ZqBBuMpIQHUbj6DAaR1tonhhJYlQVIzNNu8FtyzEufQZl+w8o+Udg9xHYvbRWn8EMDAfYXKvwWtNKOn4mRWGUpsF6AxpU01GsbFtV708dbwJGOJ2YNpuocHf9GTubFfd7yvvLhFZtfOX7TMDFDgemLWFo1Z6+snNrXFTswLTVjKac6SqtUiamGNO2ME+du3dXUr6mMby4GMfAPyAq/gzl107ILXeiKEqFodj//Oc/rFu3jn/961/s27ePCy+8kO+//54uXbowevRohg8fzl133QXAsWPHSEpKoqCggIiIiArlT5s2jenTp1fYLsudCCEaogInHLdDQVERamEuiqMAxWVHcRVhdNkxuOyomupeN0VT3T+oKKqKAwN2zUShasaOkWLNjB0zJ7QYjhFLjhaHFT8sRFwiPkyjXZzGgGSV9CpOY1CLiSvYS7Q9m6jiI5id+YS5bIQ5bRhVOwbNiUF1uq86ak4Mqvu3gvvzKmgomgpoKJqGgnubaNjmdX0TlzHcL2X7fLmTQNSvXz9mzZpFVFQULpeLadOm0aWL+8Zfm81W7oOXvrbZbJV27KZMmcKkSZM8761WK+np6YAsdxIIgq2u9M5XlkHwb6y085rTNA2XquFwaRS7VBwu1f3aqVZ4X2gvZvXvf9Cpazc0DDhcKsXl4lSKnZrntcOlUVDs4nh+MTk2Ozkn7RzMLSK3WGF1jsLvRw3cM7gNdw9u4/vPBRRX9t2WdnLL/qiu0so4rYSy27x/73A4Wb58GQMGDMBsMpY7DOp+LqfDyYpfVnD+eedjMpfpKpzxWlDl+50OJ7/88gvnndfP86z5msaWxv/66y/069cPk6mqtlTFuZ0Ofv31V/r17VtNbPl4p9PJb7/+St9+ZfKt4rM7nU5+++03Lhg2ArPFPx07ny93UlZhYSH/+Mc/mDNnDsePH8dqtfLjjz+yZcsW7r///hqXM2zYMJYvX17pvscff5zHH3+8yliXy8WIESN45JFHuPPOOzlw4ACXXHIJnTp14sorryQ6OrpcJZS+jo6u/L9vFosFi8VS6b5gnh4daoKtrvTOV5ZB8G+stPOaq/jf6YocDge2XRoXd2lW67o6WeTgzwN5fLJ6H/P+zOK1n3bRPiWOEV1SalVeTej23Toc2M3xmBul+ef8DgcFlh2YmmT4pnyHg/zwXZiadqhdeQ4HtvA9mJI7eh/vcGAL34sppXPNYx0OTkbsq1mMw8HJiP2YLeEBsdyJ11OC7rrrLrKyspg3bx5Go/t/CV27duU///mPV+UsWLCAoqKiSn+q69QBHD9+nEOHDnHnnXdiMplo2bIlY8aMYcmSJQB07NiRjRs3eo7fsGEDrVq1qvRqnRBCiNAQE27mvLZJ/HtcT+4c5L5S96/FO3TOSoj65XXH7vvvv+edd96hc+fOKCU3EaakpJCVleXz5Ox2O0VFRRVeN27cmPT0dN566y1UVeXAgQN8++23nqHYcePG8fnnn/PHH3+Ql5fHM888w/XXX+/z/IQQQgSmOwa0waDA1uyTZOf5aNaHEEHA645dfHw8OTk55bbt2bOHZs2a+SypUu3bt/dcZWvZsmW5K25ffPEFH330EY0aNaJ3795ceOGF3HbbbQB06dKFl19+mUsvvZS0tDTS09N57LHHfJ6fEEKIwBQXaaZjM/f91aszj+ucjRD1x+t77O677z4uvfRSHnvsMVwuF/PmzePpp5/26v66msrMzKxyX+/evfn111+r3D9hwgQmTJhQ5xwa8jIIgSLY6krvfGW5E//GSjv3D3/UVfum0Ww6aCUz56TPvwO9v1tp5/6NDbR27vflTubMmcO7777Lvn37SE1N5ZZbbuHqq6/2tpiAM3PmTGbOnInL5WL79u2y3IkQQgSxuXsNLD5kYGCKyuUtVb3TEaLWvFnuJCjWsatvVquVuLg4Zs+ezejRo2UZBJ0FW13pna8sd+LfWGnn/uGPunp7RSbP/7id0d1SeOlK3z4HV+/vVtq5f2MDrZ1brVaSkpL8s47dq6++yuDBg+nWrRurVq3i+uuvx2g08t5771X66K9gJ8sgBI5gqyu985XlTvwbK+3cP3xZV0kx7jXFcgudfl2GQtp5/ZXXUNu5X5c7eeGFF2jZsiUAkydP5v7772fKlCnce++93hYlhBBC+E1CyePFjucX65yJEPXH6yt2NpuNuLg4Tpw4wZYtW7jzzjsxGAzSsRNCCBFQpGMnGiKvO3Zt27bl008/Zdu2bQwZMgSDwcDx48cJC6viwctBLphn0YSKYKsrvfOV2XL+jZV27h/+qKsos3utVWuRQ2bF6ly+tPO68eus2FWrVnH//fcTFhbG22+/TUZGBrNnz2b+/Pn873//8zrZQCKzYoUQInQcLYKn1pkIM2i8eI5L73SEqDWZFVtHMis2sARbXemdr8yW82+stHP/8EddHcotZODLPxNmMrB56hCflFlK7+9W2rl/YwOtnft1Viy4n736y/+3d+9RUZX7/8DfM1yGyzgzBnIEobyEIorHnwdZZfK1rxmYZfLrm1QcFCztrMLK0O8yBAIMO8k5VKdvVP7sYjc067Rcp75mWF4gs/RooCaKqagppAeFYRTn/vsD2YcRVC6z2XsP79darmbPs59nPvPM+jQf9szzzI4daGhoQPu68Pnnn+/JcLKm5FU0nkZpcyV1vFwtJ25f5rk43DlXGt/Wq3QOh5OrYmUyPvO8Z0RdFfv6669jypQp+O677/Diiy/i0KFDKC4uxi+//NLdoYiIiETjpW79jp3NwQ+mqP/odmFXXFyMLVu2oLS0FBqNBqWlpfjyyy/R0tLi1sAOHz6M++67D8HBwRg0aBBSU1Nx4cIFoT0zMxPDhw/HgAEDEBsbi/LycqFt27ZtUKvV0Gq1wr+Kigq3xkdERPLWVtgBrVftiPqDbhd258+fx4QJEwAAvr6+sFgsiI+PR1lZmVsDa2pqQnJyMo4ePYra2lpYLBYsWbJEaNfr9SgrK0NTUxOWLl2KpKQkNDc3C+0jR46EyWQS/sXHx7s1PiIikrf2hR2v2lF/0e3v2I0aNQqVlZUYP348xo8fj5UrV0Kv12PQoEFuDSwuLg5xcXHC8YIFC5CZmSkc5+XlCbdnz56NRYsWoaamBn/4wx+6/Vhmsxlms1k4NhqNwm0lL4/2FEqbK6nj5TYI4vZlnotDjLly2G3CbbPFApXTy21jS/3aMs/F7Su3PBd1u5MffvgBvr6+mDBhAg4ePIiFCxeiubkZK1euxNSpU7sdbFcVFBSguroa69at69BWW1uL0aNHo76+Hnq9Htu2bcP06dOh0+mg1+sxZ84cZGdnw8ur86TOz89HQUFBh/u53QkRkXJZ7MB/72q9frEyzgY/99V1RH3K47Y7qaysxF133YXy8nKMGTPGpc1qtWLatGmYMmUKli9fDgCor69HY2MjRo4ciUOHDiE5ORmPPfYYnn322U7H7+yKXUREBLc7kQmlzZXU8XIbBHH7Ms/FIcZcWWwOjCn4BgCwZ9l/QufvvtdA6teWeS5uX7nluejbnZw8eRIHDhyAyWRyuT85ObnLYyQkJLgseGgvJycHOTk5AIDjx49j5syZeOeddzoUdU6nE+np6QgJCUF+fr5w/+DBgzF48GAAQHR0NHJycvDGG29cs7DTaDTQaDSdtil5ebSnUdpcSR0vt0EQty/zXBzunCsvr39ft1B5eYvyGkj92jLPxe0rlzzvzrjdLuyKioqQn5+PmJgYl48pVSpVtwq7riy2qK+vx913343c3FwkJSV1aH/qqadw5swZbNq0CWr1tdeBXK+NiIg8k7rd4gk7F09QP9Htwu6vf/0rdu/e3eHqmbs1NTUhMTERc+fOxeOPP96hPS8vDzt27MD27ds7XG3btm0bRowYgYiICBw5cgSFhYVITU0VNV4iIpIfb7UKNoeThR31G92+lKXVajFixAgxYnGxYcMG7Nu3D0VFRS770bVZvnw5qqurERYWJrR9/PHHAIA9e/bgtttuQ2BgIBISEpCUlOSyopaIiPqHti1P7PL/OjmRW3Tpit3Zs2eF21lZWZg/fz6ysrI6bHESEhLitsDS0tKQlpZ2zfbrrflYvHgxFi9e7JY4lLw82lMoba6kjpfbIIjbl3kuDrHmqq2wu2y2wGrt0dfKOyX1a8s8F7ev3PLc7dudqNVqqFSq6xZTKpUKdru9yw8sRyUlJSgpKYHdbkdNTQ23OyEiUrjndnmhxa5C9ngbQvyljoaoZzxuu5O+ZjQaodfrud2JTChtrqSOl9sgiNuXeS4OseZq4otb0dhixVdPTcKtIdobd+giqV9b5rm4feWW56Jsd+J0OrF69WocOHAA48ePx6OPPtrrQJVAycujPY3S5krqeLkNgrh9meficPdceXu1fhSr5nYnshifed4z3Rm3y4snFi9ejLy8PNTX1yM7O1vYZ46IiEiu1KrWws7mcEgcCVHf6HJht379epSXl2P9+vXYunVrpz/tRUREJCfeVxZPsK6j/qLLhZ3RaERkZCQAICoqCufPnxctKCIiIndo26SYV+yov+jyd+zsdjt2794trIy9+hgA4uLi3B+hxJS8PNpTKG2upI6X2yCI25d5Lg7Rtju58lGsxWpz69hSv7bMc3H7yi3P3b7dCQAMHToUKpXqmu0qlQrHjh3r8gPLEbc7ISLyLCt+8sLZyyo8NcaGW6+/mJBItrjdSS9xuxN5UdpcSR0vt0EQty/zXBxizdWM/9mBI2cv4sN5sbht+E1uG1fq15Z5Lm5fueW5KNud9FdKXh7taZQ2V1LHy20QxO3LPBeHu+fKS33lq+RqNbc7kcH4zPOeEWW7k752+PBh3HfffQgODsagQYOQmpqKCxcuCO1jxoxx+Q1ZtVqN4uJioX3NmjUIDw+HTqfDvHnzYLFYpHgaREQkobZ97OwOfjhF/YNsC7umpiYkJyfj6NGjqK2thcViwZIlS4T2n3/+GSaTCSaTCSdOnICPjw9mzZoFANi/fz8yMzOxYcMGnDp1CrW1tSgsLJTqqRARkUTaFk+wsKP+QrYfxcbFxbmssl2wYAEyMzM7PXf9+vWYMGECbr31VgBAaWkpHnroIcTGxgIAcnNzMX/+fCxfvrzT/mazGWazWTg2Go3CbSWvovEUSpsrqePlajlx+zLPxSHWXF3Z7QRmC1fFSjk+87x3RFkVK7WCggJUV1d3ujHy5MmT8fDDD2PhwoUAgFmzZiExMRFPPvkkAKChoQHBwcG4dOkS/P07/gp0fn4+CgoKOtzPVbFERMr2twNeONaswryRdowPUsTbHVEH3VkVK9srdu1VVlbitddeQ3l5eYe22tpa7Nq1C59//rlwn8lkcnnibbdNJlOnhV1WVpbL1UCj0YiIiAgAUPQqGk+htLmSOl6ulhO3L/NcHGLNVWn9bhxrvoDfj/8/mBEz2G3jSv3aMs/F7Su3PG//SeKNSFbYJSQkdFqoAUBOTo7wW7THjx/HzJkz8c4772DMmDEdzi0tLcW0adMQEhIi3KfVal0moe22Vqvt9PE0Gg00Gk2nbUpeReNplDZXUsfL1XLi9mWei8Pdc+Xt1fpVchVXxcpifOZ5z3RnXMkKu7KyshueU19fj7vvvhu5ublISkrq9JzS0lJkZWW53BcdHY39+/cLx1VVVRg2bFinV+uIiMhztW13YrPzY1jqH2S9KjYxMRFz587F448/3uk5lZWVqK2t7VD0paSkYP369di7dy+ampqwYsUKpKam9kHUREQkJ1d2O4FdGV8nJ+o12RZ2GzZswL59+1BUVOSyX117H3/8MWbNmoXAwECX+2NiYlBcXIyZM2ciPDwcERERyM7O7svwiYhIBtqu2HG7E+ovZLt4Ii0tDWlpadc95y9/+cs129LT05Gent7rOJS8PNpTKG2upI6X2yCI25d5Lg7xtjtpLegsVm53IuX4zPPe8cjtTvpCSUkJSkpKYLfbUVNTw+1OiIgU7r0aNSob1PivoXb8Ryjf7kiZPG67k76SkZGBjIwMGI1G6PV6ANzuRA6UNldSx8ttEMTtyzwXh1hztdm0D5UN9Rg1OhozJt3itnGlfm2Z5+L2lVueK2K7E6VQ8vJoT6O0uZI6Xm6DIG5f5rk43D1Xvj5eAAAnVNzuRAbjM897pjvjynbxBBERUW/5XtnHzsbFE9RPsLAjIiKP5XOlsLPYHBJHQtQ3WNgREZHHaivsrHYWdtQ/8Dt2N6Dk5dGeQmlzJXW83AZB3L7Mc3GIvd2JmdudSDo+87x3uN1JD3G7EyIiz/K/J9UoO63Gfwx24L+G8aodKRO3O+khbnciT0qbK6nj5TYI4vZlnotDrLk6uvUoyk4fxZCImzFjRrTbxpX6tWWei9tXbnnO7U7cSMnLoz2N0uZK6ni5DYK4fZnn4nD3XPn5tr7N2Z3d2zKiq6R+bZnn4vaVS557xHYnJpMJkydPRlBQEAYOHIi77roLhw4dEtrfeOMNjB8/Ht7e3njppZdc+m7btg1qtdrlN2YrKir6+ikQEZHEfIXFE/zWEfUPsi3sNBoNVq9ejXPnzqGhoQEPPPCAy2/HhoWFobCwEPfff3+n/UeOHAmTyST8i4+P76vQiYhIJrzVKgCAhatiqZ+Q7UexPj4+GD16NADAbrdDrVbj+PHjQntSUhIA4LPPPuv1Y5nNZpjNZuG4/WfZSl5F4ymUNldSx8vVcuL2ZZ6LQ+xVsRarnatiJRyfed47HrUqdty4caiurobD4UBRUREWL17s0p6eno6oqCg899xzwn3btm3D9OnTodPpoNfrMWfOHGRnZ8PLy6vTx8jPz0dBQUGH+7kqlohI2X44q8Lao16INjjwp9G8akfK5FGrYvft24eWlhZ89NFHGDJkSJf6REVFobKyEiNHjsShQ4eQnJyMAQMG4Nlnn+30/KysLGRmZgrHRqMRERERALgqVg6UNldSx8vVcuL2ZZ6LQ6y5slbVYe3R/RgYNAgzZvzBfeMyz/t0vP6e54pYFZuQkIDy8vJO23JycpCTkyMc+/v7Y/78+QgNDUV1dTUGDhx43bEHDx6MwYMHAwCio6ORk5ODN95445qFnUajgUaj6bRNyatoPI3S5krqeLlaTty+zHNxuHuu/H1bx7I5nFwVK4Pxmec9051xJSvsysrKunW+0+mEyWRCXV3dDQu7q6nVsl0jQkREIvL2al08wZ8Uo/5CthVPVVUVysvLYbFYcPHiRSxbtgwGgwGRkZEAAJvNhsuXL8Nut7vcBlq/Y3fq1CkAwJEjR1BYWIj77rtPsudCRETS4HYn1N/ItrCzWq145plnEBQUhJtvvhmVlZXYuHGjcDmysLAQ/v7++Oijj5Cbmwt/f398+OGHAIA9e/bgtttuQ2BgIBISEpCUlOTyHToiIuoffITCjlfsqH+Q7eKJ2NhY/PTTT9dsz8/PR35+fqdtixcv7rB6tqeUvDzaUyhtrqSOl9sgiNuXeS4OseZKhdZPciw2B7c7kXB85nnveNR2J32ppKQEJSUlsNvtqKmp4XYnREQKV9sMvHLAG0EaJ56fYJc6HKIe6c52JyzsOmE0GqHX61FaWopZs2Ypdnm0p1DaXEkdL7dBELcv81wcYs3VgdNG/N+3fsBgnQYV/z3FbeNK/doyz8XtK7c8NxqNCA4O9ox97KSm5OXRnkZpcyV1vNwGQdy+zHNxuH27Ez9udyKn8ZnnPdOdcWW7eIKIiKi32lbFmq1cPEH9Aws7IiLyWMEDWjefbzbbcMlikzgaIvGxsCMiIo+l8/PBAE3rt45OX2iROBoi8fE7djeg5OXRnkJpcyV1vNwGQdy+zHNxiDlXYQY/HP7NhJMNJgy9yc8tY0r92jLPxe0rtzzndic9xO1OiIg8z/87pMbPF9R4cJgd8YP5lkfK053tTnjFrp2MjAxkZGQI250AUPTyaE+htLmSOl5ugyBuX+a5OMScq1/8fsHPW4+hyS8UM2aMd8uYUr+2zHNx+8otz41GY5fPZWF3A0peHu1plDZXUsfLbRDE7cs8F4cYczU9Jgz/s/UYttWcw/HzlzHydwPcNrbUry3zXNy+cslzj9juxGQyYfLkyQgKCsLAgQNx11134dChQy7nvPfee4iMjERgYCBGjx6NmpoaoW3NmjUIDw+HTqfDvHnzYLFY+vopEBGRDESH6vCfowbBandi9ls78ea2ozh2zgSHgx/LkueR7RU7jUaD1atXY9SoUQCAN998E2lpafjxxx8BAF988QWKi4uxYcMGREdH49ixYxg4cCAAYP/+/cjMzERZWRkiIyORlJSEwsJCLF++XLLnQ0RE0lCpVPjr7N8j/b3d2H+6CSs3HcLKTYcQ4OuFoUGBCB6gwcAAHwwM8MUAP29ovNXw8/GCxlsNTdt/vb3gpVbBW62CWq2C02HHkSYVdtWeh5+vD9QqFbzUKuG/beepVSqoAKhUgAoqqFRtMbXGdXWbCgCuOr76PKgAu82KyzbAZLbB16HqdPx/P7bKdT46zE/H+SLlkm1h5+Pjg9GjRwMA7HY71Go1jh8/LrS/8MILeOWVVzBmzBgAwIgRI4S20tJSPPTQQ4iNjQUA5ObmYv78+dcs7MxmM8xms3Dc/rNsJa+i8RRKmyup4+VqOXH7Ms/FIfZc6TRqrF8wEZ//dAb/u78eu09cwCWLHQfrjEBdT0f1wusH/+nOMLvJG0t3bxF1/Gd2lrnc06EIvKpH+6Lw6jan0wuLf9zcYYyu9FUBsDu8sHT3N1cK32v37ay/ze6FZXu+FYpm174dHwsArFYv5P60xaW9s75OZ+u5k6a0wBDY+XPrLY9aFTtu3DhUV1fD4XCgqKgIixcvht1uh5+fH1auXImXX34ZPj4+mDdvHnJzc6FSqTBr1iwkJibiySefBAA0NDQgODgYly5dgr+/f4fHyM/PR0FBQYf7uSqWiMgz2R3Av8zAvy6rcNEKmGzARasKZgdgveqfzQFYHSo4AdidrW/kDifgQOttuxNw4sp97e5vu40r7VduCsed3dd6k1fMlKgozgaNlzhje9Sq2H379qGlpQUfffQRhgwZAgD47bffYLPZ8O233+LAgQMwGo245557EBERgXnz5sFkMrk88bbbJpOp08IuKysLmZmZwrHRaERERAQAroqVA6XNldTxcrWcuH2Z5+JQ2lz1RbxOpxPOtiLQ6bzy39Zjq9WCb77Zgql3TYW3t3e78wDAedVxuzHhvOox2rf9m81qxbbt2zFlyhT4eHtf1auzcV3jvrrNZrWhvLwc8f8RD2/va89X+77tR7FabaioqEB8/GShf/vncr14rFYrdny3A3dMvgM+3j7Xn4Mrt202G3Z8vwOTJk369+N18rzazt35/feYkTgNGl/faz633lDEqtiEhASUl5d32paTk4OcnBzh2N/fH/Pnz0doaCiqq6uF4mzp0qUwGAwwGAzIyMjAxo0bMW/ePGi1WpdJaLut1Wo7fTyNRgONRtNpm5JX0Xgapc2V1PFytZy4fZnn4lDaXEkVr9VbDV8vQBfgJ9ofcAN8gMGGQLf9AWfQABFBA3r8B9xBP2DoIF2P/oCr8Qdu/Z2+W3/A/eIPjAo1dOkPuOMBgMbXVxarYiUr7MrKym58UjtOpxMmkwl1dXWIjo5GWFhYh/Y20dHR2L9/v3BcVVWFYcOGdXq1joiIiMhTyHa7k6qqKpSXl8NiseDixYtYtmwZDAYDIiMjAQDp6ekoKipCc3Mzzpw5g7feegv33nsvACAlJQXr16/H3r170dTUhBUrViA1NVXKp0NEREQkOtkWdlarFc888wyCgoJw8803o7KyEhs3bhQuR+bl5SE0NBTh4eGYOHEiHnjgAaSlpQEAYmJiUFxcjJkzZyI8PBwRERHIzs6W8ukQERERiU62iydiY2Px008/XbPd19cXq1evxurVqzttT09PR3p6eq/j4DYI0lPaXEkdL7c7Ebcv81wcSpsrqeNlnovbV2557lHbnfSlkpISlJSUwGaz4ciRI3j77be53QkRERFJ6tKlS5g/fz4aGxuF37K/FhZ2nfj111+F7U6IiIiI5ODUqVMIDw+/7jks7DrhcDhw5swZTJ06Ff/8Z/d2FZ84cSJ27959w/Pa9so7derUDTcbpK7Pq1xIHa/Yj+/u8Xs7Xm/696Qv81wcUudNd0kdL/Nc3L5yynOn04nm5maEhYVBrb7+8gjZfsdOSmq1GuHh4fD29u72i+Tl5dWtPjqdjv/D74LuzqvUpI5X7Md39/i9Ha83/XvSl3kuDqnzprukjpd5Lm5fueX5jT6CbSPbVbFykJGR0Sd96MaUNq9Sxyv247t7/N6O15v+zHP5UNq8Sh0v81zcvlK/vj3Fj2IlYjQaodfru/S7b0SkTMxzIs8ntzznFTuJaDQa5OXlXfOnzIhI+ZjnRJ5PbnnOK3ZEREREHoJX7IiIiIg8BAs7IiIiIg/Bwo6IiIjIQ7CwIyIiIvIQLOxk7NSpU5gwYQL8/Pxgs9mkDoeI3CQzMxPx8fF4+umnpQ6FiEQg5fs3CzsZGzRoELZs2YLbbrtN6lCIyE327t0Lk8mEiooKWK1WRf2EFhF1jZTv3yzsZMzPzw8Gg0HqMIjIjXbu3Ilp06YBAKZNm4YffvhB4oiIyN2kfP9mYedGeXl5iI6Ohlqtxrp161zazp07h3vvvRcBAQEYNWoUvv32W4miJCJ36UnONzY2CrvT6/V6XLhwoc/jJqKuU9p7u7fUAXiSyMhI/O1vf0Nubm6HtoyMDISFheFf//oXysrKMHv2bBw9ehRmsxkPP/ywy7larRZffvllX4VNRD3Uk5w3GAwwGo0AWn+KiFflieStJ3k+cOBACSK9wkluN2XKFOfatWuF4+bmZqevr6/zzJkzwn3x8fHO999/v8vjWa1Wt8dJRO7RnZzfs2eP8/HHH3c6nU7nE0884fzxxx/7PF4i6r6evLdL8f7Nj2L7wJEjR6DX6xEaGirc9/vf/x4///zzdftdvnwZ06ZNQ1VVFRITE1FRUSF2qETkBtfL+QkTJsDf3x/x8fFQq9WIi4uTMFIi6qnr5bmU79/8KLYPmEwm4Ts1bXQ6HRobG6/bz8/PD998842IkRGRGG6U86+++mrfB0VEbnW9PJfy/ZtX7PqAVqsVvlPTxmg0QqvVShQREYmJOU/k+eSa5yzs+kBkZCSamppQX18v3FdVVYUxY8ZIGBURiYU5T+T55JrnLOzcyGq14vLly3A4HC63tVot7r//fuTl5aGlpQX/+Mc/cODAAcycOVPqkImoF5jzRJ5PcXnep0s1PFxaWpoTgMu/rVu3Op1Op/Ps2bPOe+65x+nv7++MjIx0bt68WdpgiajXmPNEnk9pea5yOp1OaUpKIiIiInInfhRLRERE5CFY2BERERF5CBZ2RERERB6ChR0RERGRh2BhR0REROQhWNgREREReQgWdkREREQegoUdERERkYdgYUdEJDP5+fnw8fHB4MGD3TbmnXfeiXXr1nWrz6JFi+Dv74+oqCi3xUFE4mJhR0SyNHToUAQEBECr1UKr1WLo0KFSh9SnHnvsMZcfFxfD2LFjUVtbe832V199FV999ZWoMRCRe7GwIyLZ2rJlC0wmE0wmU6cFiNVq7fugZMAdz/vXX3+FzWbrdwUzkadjYUdEirFt2zZERUUhOzsbwcHBePHFF9HS0oKFCxciLCwM4eHhWLlypXD+xYsXkZKSAoPBgAkTJmDZsmWYPn26y1jtqVQq4SrZ+fPnkZKSgpCQEAwfPhzvv/++cN6dd96J5cuXIzY2FjqdDo888ggsFovQ/sknn2Ds2LEYMGAAYmJicPjwYaxYsQLz5s1zebw77rgDn3/+eZee+9ChQ1FUVIRRo0YhOjoaAPDkk08iLCwMBoMBCQkJOHnypHD+7t27MW7cOOh0OvzpT3+Cw+FwGe/rr79GYmIiAODdd9/FLbfcAq1WixEjRmDr1q1diomI5IeFHREpyi+//IKAgADU1dVh6dKlWLJkCZqamlBTU4Ndu3bhgw8+wBdffAEAKCgoQENDA06ePInS0lJ8+OGHXX6cOXPmICIiAqdOncLGjRuRlZWFqqoqof3TTz/F559/jpMnT2Lfvn345JNPAAA7duzAwoULsWrVKjQ1NeHTTz+FTqfDH//4R2zYsAFmsxkAcOLECRw8eBAzZszockwbNmxARUUF9u/fDwCYPHkyqqurUV9fj/DwcDz99NMAAIvFggceeABPPfUUGhoaMHbsWHz//fcuY23atAmJiYm4ePEiFi1ahG+++QYmkwlbtmzhVTwiBWNhR0Sydffdd8NgMMBgMCArKwsAEBAQgOeeew4+Pj7QaDR47733UFxcDK1Wi7CwMDzxxBP47LPPALQWX7m5udDpdIiKikJaWlqXHre+vh4VFRV48cUXodFoEBUVhZSUFJerawsWLMDNN98Mg8GAe++9Vyj61qxZgyeeeAJ33HEH1Go1oqKiEBoaiqFDh2Ls2LHYuHEjAGDdunVISkqCn59fl+fj2WefRUhIiNAnJSUFer0efn5+WLp0Kb777jsAwM6dO6HRaLBgwQL4+Phg4cKFCA0NFcax2+347rvvcOeddwJovVK5f/9+mM1m3HLLLRg2bFiXYyIieWFhR0SytXnzZjQ2NqKxsRF//vOfAQChoaHw8vICAJw7dw4tLS0YOXKkUAAuW7YMZ8+eBQDU1dUhIiJCGK/97es5efIkLl68iKCgIGHcVatW4bfffhPOCQkJEW4HBATAZDIBaP3u2vDhwzsdNzU1VViZWlpaipSUlK5OBQAgPDzc5XjFihW49dZbodPpEBcXh4aGBgAdn7dKpXLp++OPP2Ls2LEICAhAYGAg1q5di9dffx0hISF48MEHcebMmW7FRUTywcKOiBRFpVIJt4ODg+Hn54cTJ04IBaDRaBRWcoaGhuLUqVPC+e1vBwYG4tKlS8Jx+xWoQ4YMgcFgEMZsbGxEc3Mz3nrrrRvGFxERgePHj3faNnv2bJSVlWHXrl04e/Yspk6d2vUnDtfnvn37dqxatQpfffUVmpqasGvXLqEtNDQUv/76q0vf9sdtH8O2mTFjBrZs2YLTp0/Dz88Pubm53YqLiOSDhR0RKZZarUZaWhqWLFmCxsZGOBwOVFdXC0XOgw8+iBUrVqC5uRmHDx/GBx98IPQdOXIkGhoasH37dpjNZrzwwgtC25AhQzBx4kQ8//zzuHTpEmw2G/bu3YuDBw/eMKb09HS8+eab2LlzJ5xOJw4fPoy6ujoAwE033YQpU6YgPT0dycnJwpXHnmhuboa3tzeCgoJw8eJFFBYWCm233347Wlpa8M4778BqtaKkpESIAXBdOPHbb7/hyy+/REtLCzQaDQICAnoVFxFJi4UdESnayy+/jMDAQMTExOCmm27C3LlzceHCBQBAXl4e9Ho9wsPD8cgjj2DOnDlCP71ej9deew3JyckYNmwY4uLiXMb9+OOPceLECQwfPhwhISFYtGgRWlpabhjPpEmT8Oqrr+LRRx+FTqfD7NmzYTQahfbU1FRUV1d3+2PYq02fPh233347brnlFsTExGDSpElCm6+vL/7+97/jlVdeQVBQEPbt2ye0NzQ0oK6uDjExMQAAh8OBlStX4ne/+x1CQkJw+vRpLF++vFexEZF0VE6n0yl1EEREfWHNmjVYt24dNm3aJFkMO3fuRGpqKo4ePXrNcwoLC/HSSy/BYDB0+Ei1t9auXYvNmzfj3XffveG5mZmZePvttzFs2DCXFcFEJF8s7Iio35C6sLNarZg7dy7Gjh2L7OxsSWL4+uuvERQUhNjYWEken4jE5S11AERE/UFDQwPCw8Mxbtw4rFq1SrI42i+aICLPwyt2RERERB6CiyeIiIiIPAQLOyIiIiIPwcKOiIiIyEOwsCMiIiLyECzsiIiIiDwECzsiIiIiD8HCjoiIiMhDsLAjIiIi8hAs7IiIiIg8xP8Hnhe1ngILPScAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "out = ct.frequency_response(\n", + " coupled.linearize([0, 0, 0, 0], [0], params={'c': 0.01})\n", + ").plot(overlay_outputs=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "c7eWm8LCGh01" + }, + "source": [ + "## Additional resources\n", + "* [Code for FBS2e figures](https://fbswiki.org/wiki/index.php/Category:Figures): Python code used to generate figures in FBS2e\n", + "* [Python-control documentation for plotting time responses](https://python-control.readthedocs.io/en/0.10.0/plotting.html#time-response-data)\n", + "* [Python-control documentation for plotting frequency responses](https://python-control.readthedocs.io/en/0.10.0/plotting.html#frequency-response-data)\n", + "* [Python-control examples](https://python-control.readthedocs.io/en/0.10.0/examples.html): lots of Python and Jupyter examples of control system analysis and design\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.2" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From d459569267d5a47de0b78465cdc280916d4a95a1 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 29 Jun 2024 13:40:01 -0700 Subject: [PATCH 068/199] add show_legend processing --- control/tests/timeplot_test.py | 33 +++++++++++++++++ control/timeplot.py | 22 ++++++++++- examples/cds110_lti-systems.ipynb | 59 +++++++++++++++--------------- examples/springmass-coupled.png | Bin 0 -> 58410 bytes 4 files changed, 82 insertions(+), 32 deletions(-) create mode 100644 examples/springmass-coupled.png diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index e351d02af..0fcc159be 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -588,6 +588,39 @@ def test_errors(): match="(has no property|unexpected keyword)"): stepresp.plot(unknown=None) + +def test_legend_customization(): + sys = ct.rss(4, 2, 1, name='sys') + timepts = np.linspace(0, 10) + U = np.sin(timepts) + resp = ct.input_output_response(sys, timepts, U) + + # Generic input/output plot + out = resp.plot(overlay_signals=True) + axs = ct.get_plot_axes(out) + assert axs[0, 0].get_legend()._loc == 7 # center right + assert len(axs[0, 0].get_legend().get_texts()) == 2 + assert axs[1, 0].get_legend() == None + plt.close() + + # Hide legend + out = resp.plot(overlay_signals=True, show_legend=False) + axs = ct.get_plot_axes(out) + assert axs[0, 0].get_legend() == None + assert axs[1, 0].get_legend() == None + plt.close() + + # Put legend in both axes + out = resp.plot( + overlay_signals=True, legend_map=[['center left'], ['center right']]) + axs = ct.get_plot_axes(out) + assert axs[0, 0].get_legend()._loc == 6 # center left + assert len(axs[0, 0].get_legend().get_texts()) == 2 + assert axs[1, 0].get_legend()._loc == 7 # center right + assert len(axs[1, 0].get_legend().get_texts()) == 1 + plt.close() + + if __name__ == "__main__": # # Interactive mode: generate plots for manual viewing diff --git a/control/timeplot.py b/control/timeplot.py index 6d27be58d..2eb7aec9b 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -50,7 +50,8 @@ def time_response_plot( data, *fmt, ax=None, plot_inputs=None, plot_outputs=True, transpose=False, overlay_traces=False, overlay_signals=False, legend_map=None, legend_loc=None, add_initial_zero=True, label=None, - trace_labels=None, title=None, relabel=True, **kwargs): + trace_labels=None, title=None, relabel=True, show_legend=None, + **kwargs): """Plot the time response of an input/output system. This function creates a standard set of plots for the input/output @@ -131,6 +132,10 @@ def time_response_plot( relabel : bool, optional By default, existing figures and axes are relabeled when new data are added. If set to `False`, just plot new data on existing axes. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on an + axis or ``legend_loc`` or ``legend_map`` have been specified. time_label : str, optional Label to use for the time axis. trace_props : array of dicts @@ -565,6 +570,9 @@ def _make_line_label(signal_index, signal_labels, trace_index): legend_map = np.full(ax_array.shape, None, dtype=object) if legend_loc == None: legend_loc = 'center right' + else: + show_legend = True if show_legend is None else show_legend + if transpose: if (overlay_signals or plot_inputs == 'overlay') and overlay_traces: # Put a legend in each plot for inputs and outputs @@ -611,6 +619,14 @@ def _make_line_label(signal_index, signal_labels, trace_index): else: # Put legend in the upper right legend_map[0, -1] = legend_loc + else: + # Make sure the legend map is the right size + legend_map = np.atleast_2d(legend_map) + if legend_map.shape != ax_array.shape: + raise ValueError("legend_map shape just match axes shape") + + # Turn legend on unless overridden by user + show_legend = True if show_legend is None else show_legend # Create axis legends for i in range(nrows): @@ -621,7 +637,9 @@ def _make_line_label(signal_index, signal_labels, trace_index): labels = _make_legend_labels(labels, plot_inputs == 'overlay') # Update the labels to remove common strings - if len(labels) > 1 and legend_map[i, j] != None: + if show_legend != False and \ + (len(labels) > 1 or show_legend) and \ + legend_map[i, j] != None: with plt.rc_context(rcParams): ax.legend(labels, loc=legend_map[i, j]) diff --git a/examples/cds110_lti-systems.ipynb b/examples/cds110_lti-systems.ipynb index e9d5c2c95..2f28f06c9 100644 --- a/examples/cds110_lti-systems.ipynb +++ b/examples/cds110_lti-systems.ipynb @@ -32,16 +32,12 @@ "%matplotlib inline\n", "import matplotlib.pyplot as plt\n", "\n", - "try:\n", - " import control as ct\n", - " print(\"python-control version:\", ct.__version__)\n", - "except ImportError:\n", - " # Version 0.10.0 is enough for this notebook\n", - " !pip install control\n", - " import control as ct" + "import control as ct\n", + "print(\"python-control version:\", ct.__version__)" ] }, { + "attachments": {}, "cell_type": "markdown", "metadata": { "id": "qMVGK15gNQw2" @@ -51,7 +47,7 @@ "\n", "Consider the spring mass system below:\n", "\n", - "\n", + "\n", "\n", "We wish to analyze the time and frequency response of this system using a variety of python-control functions for linear systems analysis.\n", "\n", @@ -395,7 +391,7 @@ "id": "F8KxXwqHWFab" }, "source": [ - "Note that by default the inputs are not included in the step response (since they are a bit boring), but you can change that:" + "Note that by default the inputs are not included in the step response plot (since they are a bit boring), but you can change that:" ] }, { @@ -576,7 +572,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/HX5edNE33bmkpe28QkOHAgQsHuAUV3KKiOFFQUdyi/hhuFNGv4sCFiqIIypINsqGF7t2kaXby+f1x+VzSNntdwHs+Hn1ok8vdm8v1Pq97T4YQQiAgICAgICAgIHDKI+LbAAEBAQEBAQEBgcggCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQGBICGE4LbbbkNqaioYhsGuXbv4NiniLFu2DMnJyWHvh2EYrFq1Kuz9nCrHFRDgG0HYCZzSTJs2DZMmTYr5cf0teuPHj8fSpUsjdrxoLlJFRUVYuHBhVPZ9uvLzzz9j2bJl+OGHH1BVVYW+ffvybZJAO6qqqnDhhRfybYaAQMyR8G2AgMDpRmNjIzZu3IgVK1bwbUpUsVqtkEqlfJvBC8eOHUNOTg5GjRoV8j4IIbDb7ZBIhNtwJLFYLJDJZMjOzubbFAEBXhA8dgKnFePHj8fMmTPx8MMPIzU1FdnZ2Zg3b16bbRiGwZIlS3DhhRdCqVSic+fOWLlyJff+unXrwDAMmpubudd27doFhmFQWlqKdevW4eabb4ZWqwXDMGAYps0xfvzxRwwYMAB5eXkAgD///BPDhw+HXC5HTk4OHn30UdhsNm57Tx6zgQMHcvssKioCAFx++eVgGIb7fd68eRg4cCDefvttFBQUQKVSYfLkyW3sHj9+PO6///42+540aRKmTZvGvX/ixAk88MAD3L/FGwzDYOnSpbjsssuQkJCA+fPnAwC+//57DBkyBAqFAsXFxXj66afb/PvmzZuHTp06QS6XIzc3FzNnzmzzb3/22Wdx3XXXQa1WIzc3F2+99Vab4548eRKXXXYZ1Go1NBoNpkyZgpqamjb7HzhwIJYvX46ioiIkJSXhmmuuQUtLC7fNl19+iX79+kGpVCItLQ3nnnsuWltbufc//PBD9OrVCwqFAj179sTixYu9nodp06bh3nvvxcmTJ9t8H2azGTNnzkRmZiYUCgXOPPNM/PPPP9zn6HX1yy+/YOjQoZDL5diwYYPHY5SXl+Oaa65BamoqEhISMHToUGzZsoV7f8mSJejSpQtkMhl69OiB5cuXc++VlpZ2CA83NzeDYRisW7eujS30WlUoFBgxYgT27t3r9d8N+P+ujxw5grFjx0KhUKB379749ddffe4P8P3dUI/8008/jczMTGg0Gtx+++2wWCzc58ePH4977rkHs2bNQnp6OiZMmACgrZebnpOvv/4aZ511FlQqFQYMGIBNmza1seXdd9/l/pYuv/xyvPbaaz4983S/X3zxBcaMGQOlUolhw4bh8OHD+OeffzB06FCo1WpccMEFqKur4z73zz//YMKECUhPT0dSUhLGjRuHHTt2tNm3r7+bxYsXo1u3blAoFMjKysJVV13l9zwL/IcgAgKnMFOnTiWXXXYZ9/u4ceOIRqMh8+bNI4cPHyYfffQRYRiGrFmzhtsGAElLSyPvvvsuOXToEJkzZw4Ri8Vk//79hBBC/vjjDwKANDU1cZ/ZuXMnAUBKSkqI2WwmCxcuJBqNhlRVVZGqqirS0tLCbXvVVVeRZ599lhBCSHl5OVGpVOSuu+4iBw4cIN988w1JT08nc+fO5bYvLCwkr7/+ept/14ABA7htamtrCQDy4YcfkqqqKlJbW0sIIWTu3LkkISGBnH322WTnzp3kzz//JF27diXXXXddm/Nx3333tdn3ZZddRqZOnUoIIaShoYHk5+eTZ555hvu3eAMAyczMJO+//z45duwYKS0tJT///DPRaDRk2bJl5NixY2TNmjWkqKiIzJs3jxBCyMqVK4lGoyGrV68mJ06cIFu2bCHvvPNOm397YmIiWbBgATl06BB58803iVgs5r4vh8NBBg0aRM4880yybds2snnzZjJ48GAybtw4bh9z584larWaXHHFFWTv3r1k/fr1JDs7mzz++OOEEEIqKyuJRCIhr732GikpKSF79uwhixYt4r6zd955h+Tk5JCvvvqKHD9+nHz11VckNTWVLFu2zON5aG5uJs888wzJz89v833MnDmT5ObmktWrV5N///2XTJ06laSkpJCGhgZCiOu66t+/P1mzZg05evQoqa+v77D/lpYWUlxcTMaMGUM2bNhAjhw5Qj7//HOyceNGQgghX3/9NZFKpWTRokXk0KFD5NVXXyVisZj8/vvvhBBCSkpKCACyc+dObp9NTU0EAPnjjz/a2NKrVy+yZs0asmfPHnLxxReToqIiYrFYCCGEfPjhhyQpKYnbh7/v2m63k759+5Lx48dz1+OgQYMIAPLNN994PJf+vpupU6cStVpNrr76arJv3z7yww8/kIyMDO67JYS9xtVqNZk9ezY5ePAgOXDgACGEtDkuPSc9e/YkP/zwAzl06BC56qqrSGFhIbFarYQQQv766y8iEonIyy+/TA4dOkQWLVpEUlNT25yD9rjv9+effyb79+8nZ5xxBhk8eDAZP348+euvv8iOHTtI165dyR133MF9bu3atWT58uVk//79ZP/+/eTWW28lWVlZRKfTEUJ8/938888/RCwWk08//ZSUlpaSHTt2kDfeeMOrjQL/PQRhJ3BK40nYnXnmmW22GTZsGHnkkUe43wG0uckSQsiIESPInXfeSQjxL+wI6bjoUUwmE0lMTCR79uwhhBDy+OOPkx49ehCHw8Fts2jRIqJWq4ndbieE+Bd21Ob2i+PcuXOJWCwmZWVl3Gs//fQTEYlEnEDzJ+y8Hd8TAMj999/f5rUxY8aQ559/vs1ry5cvJzk5OYQQQl599VXSvXt3Tiy0p7CwkFxwwQVtXrv66qvJhRdeSAghZM2aNUQsFpOTJ09y7//7778EANm6dSshhD0PKpWKWxQJIWT27NlkxIgRhBBCtm/fTgCQ0tJSjzYUFBSQTz/9tM1rzz77LBk5cqTnE0EIef3110lhYSH3u16vJ1KplKxYsYJ7zWKxkNzcXPLSSy8RQlzX1apVq7zulxBC3n77bZKYmMgJwvaMGjWKzJgxo81rkydPJhMnTiSEBCfs/ve//3HbNDQ0EKVSST7//HNCSMdr3N93/csvv3i8Hn0JO3/fzdSpU0lqaippbW3lXluyZEmbv59x48aRgQMHdvisJ2H33nvvce/T64gKwauvvppcdNFFbfZx/fXXByTs3Pf72WefEQBk7dq13GsLFiwgPXr08Lofm81GEhMTyffff08I8f1389VXXxGNRtPmehcQcEcIxQqcdvTv37/N7zk5OaitrW3z2siRIzv8fuDAgbCP/fvvvyMtLQ39+vUDABw4cAAjR45sE+IcPXo09Ho9ysvLwz5ep06dkJ+fz/0+cuRIOBwOHDp0KOx9e2Lo0KFtft++fTueeeYZqNVq7mfGjBmoqqqCwWDA5MmTYTQaUVxcjBkzZuCbb75pE7qjNrf/nX4XBw4cQEFBAQoKCrj3e/fujeTk5DbfV1FRERITE7nf3b/zAQMG4JxzzkG/fv0wefJkvPvuu2hqagIA1NXVoaysDLfeemubf8P8+fNx7NixgM/LsWPHYLVaMXr0aO41qVSK4cOHd7iu2p/D9uzatQuDBg1Camqqx/cPHDjQ5jgAe02Fcv26n/vU1FT06NHD6378fdcHDhzweD36wtd3476NSqVqs0+9Xo+ysjLuNX/nlOJ+b8jJyQEA7jo5dOgQhg8f3mb79r8Hst+srCwA4O4B9DX3e1BtbS3uuOMOdO/eHUlJSUhKSoJer8fJkycBwOffzYQJE1BYWIji4mLceOONWLFiBQwGQ0B2Cvw3EISdwGlH+4R+hmHgcDj8fo6KL5GI/bMghHDvWa3WgI793Xff4bLLLuN+J4R0yFuj+3U/nvuxgjlee+g+o7FvAEhISGjzu8PhwNNPP41du3ZxP3v37sWRI0egUChQUFCAQ4cOYdGiRVAqlbjrrrswduxYvzZQ+z2dP0+v+/rOxWIxfv31V/z000/o3bs33nrrLfTo0QMlJSXcNu+++26bf8O+ffuwefPmgM9L++/Um51Ax3PYHqVS6fd4vo4TzvXrad8Uf991++vM174ovr6bYOz0d04p7tcJ/Ty9Bnz9rYay3/avud+Dpk2bhu3bt2PhwoXYuHEjdu3ahbS0NC530NffTWJiInbs2IHPPvsMOTk5eOqppzBgwIA2ubUC/20EYSfwn6T9or1582b07NkTAJCRkQGAbZdAad+nTCaTwW63t3mNEILvv/8el156Kfda7969sXHjxjYLxMaNG5GYmMgVV2RkZLQ5lk6n67CwSaXSDscD2MKCyspK7vdNmzZBJBKhe/fuHvdtt9uxb98+v/+WQBk8eDAOHTqErl27dvihAkOpVOLSSy/Fm2++iXXr1mHTpk1tkvR9fRe9e/fGyZMn23hn9u/fD61Wi169egVsJ8MwGD16NJ5++mns3LkTMpkM33zzDbKyspCXl4fjx493sL9z584B779r166QyWT466+/uNesViu2bdsWlJ0A6/3ZtWsXGhsbPb7fq1evNscB2GuKHieQ65fifu6bmppw+PBh7ty3x993Tb+r9tejP7x9N5Tdu3fDaDS2sVmtVrfxDEaCnj17YuvWrW1e27ZtW0SPQdmwYQNmzpyJiRMnok+fPpDL5aivr2+zja+/G4lEgnPPPRcvvfQS9uzZg9LSUvz+++9RsVXg1EOosxf4T7Jy5UoMHToUZ555JlasWIGtW7fi/fffB8Au0gUFBZg3bx7mz5+PI0eO4NVXX23z+aKiIuj1eqxdu5YLFe3fvx+tra0YO3Yst91dd92FhQsX4t5778U999yDQ4cOYe7cuZg1axYnfM4++2wsW7YMl1xyCVJSUvDkk09CLBZ3ON7atWsxevRoyOVypKSkAAAUCgWmTp2KV155BTqdDjNnzsSUKVO4Vg9nn302Zs2ahR9//BFdunTB66+/3uHJvqioCOvXr8c111wDuVyO9PT0gM/jU089hYsvvhgFBQWYPHkyRCIR9uzZg71792L+/PlYtmwZ7HY7RowYAZVKheXLl0OpVKKwsJDbx99//42XXnoJkyZNwq+//oqVK1fixx9/BACce+656N+/P66//nosXLgQNpsNd911F8aNGxdw+G3Lli1Yu3YtzjvvPGRmZmLLli2oq6vjhNC8efMwc+ZMaDQaXHjhhTCbzdi2bRuampowa9asgI6RkJCAO++8E7Nnz0Zqaio6deqEl156CQaDAbfeemvA5xMArr32Wjz//POYNGkSFixYgJycHOzcuRO5ubkYOXIkZs+ejSlTpmDw4ME455xz8P333+Prr7/Gb7/9BoAVBGeccQZeeOEFFBUVob6+HnPmzPF4rGeeeQZpaWnIysrCE088gfT0dK99If191+eeey569OiBm266Ca+++ip0Oh2eeOIJn/9Wf98NwLYvufXWWzFnzhycOHECc+fOxT333MP9/USKe++9F2PHjsVrr72GSy65BL///jt++uknv17HUOjatSuWL1+OoUOHQqfTYfbs2W08tb7+bn744QccP34cY8eORUpKClavXg2Hw4EePXpE3E6BU5TYp/UJCEQOT8UT/ooFAJBFixaRCRMmELlcTgoLC8lnn33W5jN//fUX6devH1EoFGTMmDFk5cqVbYonCCHkjjvuIGlpaQQAmTt3LpkzZw65/vrrO9i4bt06MmzYMCKTyUh2djZ55JFHuEo8QgjRarVkypQpRKPRkIKCArJs2bIOxRPfffcd6dq1K5FIJFzS/ty5c8mAAQPI4sWLSW5uLlEoFOSKK64gjY2N3OcsFgu58847SWpqKsnMzCQLFizocD42bdpE+vfvT+RyOfF1S4CXJPiff/6ZjBo1iiiVSqLRaMjw4cO5Cr5vvvmGjBgxgmg0GpKQkEDOOOMM8ttvv3GfLSwsJE8//TSZMmUKUalUJCsriyxcuLDN/k+cOEEuvfRSkpCQQBITE8nkyZNJdXU19z49D+64Fzfs37+fnH/++SQjI4PI5XLSvXt38tZbb7XZfsWKFWTgwIFEJpORlJQUMnbsWPL11197PRftiycIIcRoNJJ7772XpKenE7lcTkaPHs0VeBDiuSjHG6WlpeTKK68kGo2GqFQqMnToULJlyxbu/cWLF5Pi4mIilUpJ9+7dyccff9zm87Q6U6lUkoEDB5I1a9Z4LJ74/vvvSZ8+fYhMJiPDhg0ju3bt4vbhqUDI13dNCCGHDh0iZ555JpHJZKR79+7k559/9lk84e+7oX/fTz31FElLSyNqtZpMnz6dmEwmbhtPf/OEeC6e8FVQQghbIZ2Xl0eUSiWZNGkSmT9/PsnOzvZou7f9evqe25/LHTt2kKFDhxK5XE66detGVq5c2aaIydffzYYNG8i4ceNISkoKUSqVpH///lzBi4AAIYQwhASYRCAgcJrAMAy++eabiE+s6N+/P+bMmYMpU6ZEdL/emDdvHlatWnVKj7MqKirC/fff36HXnkB0WbduHc466yw0NTVFZGxYtJg2bRqam5t5Gw02Y8YMHDx40Gu/QQGBeEQIxQoIRACLxYIrr7xSGGEkIHAK88orr2DChAlISEjATz/9hI8++shns2oBgXhEEHYCAhFAJpNh7ty5fJshICAQBlu3bsVLL72ElpYWFBcX480338T06dP5NktAICiEUKyAgICAgICAwGmC0O5EQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCYKwExAQEBAQEBA4TRCEnYCAgICAgIDAaYIg7AQEBAQEBAQEThMEYScgICAgICAgcJogCDsBAQEBAQEBgdMEQdgJCAgICAgICJwmCMJOQEBAQEBAQOA0QRB2AgICAgICAgKnCRK+DYgWDocDlZWVSExMBMMwfJsjICAgICAgIBAShBC0tLQgNzcXIpFvn9xpK+wqKytRUFDAtxkCAgICAgICAhGhrKwM+fn5Prc5bYVdYmIiAPYkaDQanq0REBAQEBAQEAgNnU6HgoICTtv44rQVdjT8qtFoBGEnICAgICAgcMoTSGqZUDwhICAgICAgIHCaIAg7AQEBAQEBAYHTBEHYCQgICAgICAicJgjCTkBAQEBAgAfq9WYcr9PzbYbAaYYg7AQEBAQETjkIIVi++QSufWczFvx0AIQQvk0KikV/HMXIBWtx9qt/4pPNJ/g2J2hMVjs2Hq2HyWrn2xSBdpy2VbECAgICAqcvX+2owJOr9gEANh1vgFwixqwJ3Xm2KjD2V+rwyppDoFp0zqp96JOrwaBOKfwaFiCl9a2Y/vE2HK3Vo2umGu/dNBRF6Ql8myXgRPDYCQgICPxHMdvsWPrnMdz0wVb8ebiOb3MCRm+24YWfDgAA5BJ2GVv8x1HUtpj4NCtgqKi7qH8OLu6fAwBYtrGUX6OC4Mlv9+FoLRtCPlqrx5Pf7uPZouCoazHjrhXb8fg3e3GywcC3ORFHEHYCAgIC/1HmffcvXvjpINYfrsP0j/7BX0fq+TYpIH7eV416vQWdUlXYO+98DO6UDJuD4Mvt5Xyb5pd6vRl/HKoFADw4oTtuH9sFALB6bxXqWsx8mhYQu8uaseFIPcQiBh/fMhxiEYMNR+qxp7yZb9MCQmu0Ysrbm7B6bzU+3XISVy3dCL3ZxrdZEUUQdgICAgL/QfaUN+N//5QBAMQiBlY7wfOrT41ctZ/3VQEArhicB5lEhGuHdwIAfP5PWdzb//uBWhAC9M3ToDhDjX75SeifnwSrnWDtgRq+zfPLcmc+4GUDcjG2ewYuHZDLvr7p1MgT/GTzCZTUt0IiYiATi1DbYsbiP47ybVZEEYSdgICAQJjsLddixZYTMFhOnSf/D/4qASHAZQNzsX3OuVBIRdhfpcM/pU18m+aTFpMV6w+znsWJ/dgw5kX9cyATi3CiwYDSOA+trdnPircJvbK5187qkQkA2HA0vj2mDgfBOqe38aoh7LzSyc7//nGoFg5HfItqi82Bj5wh75eu6o//u24QADYMfjoVgQjCTkBAQCAMlm8qxaTFf+OJb/ZhwmvrUdls5Nskv5isdvx2gF2gbxpZiGSVDJcPygMA/G/rST5N88vGYw2w2B0oTk9At0w1AEAlk2BQp2Tn+/Erjmx2B2ffub0zudfP7JYOANh4tD6uxdGeCi3q9RYkyiUYWpQKABhalAq1XIJ6vQX7KrU8W+ibdYdqUdtiRmaiHBf3z8WE3lnITVLAYLFj/SmUY+oPQdgJCAgIhEiNzoRnfzwAu3Mxrmg24uVfDvFslX82HKmH3mxDtkaBQQVsJeZlA1lht/5IXVyLix0nWI/iiOK0NnMzR3el4qiBF7sC4VBNCwwWOxLlEvTKds0wH1iQjASZGE0GK/ZX6Xi00De/H2QfBsZ0T4fMWbQik4hwpvPc0/fjlXVO8XZh32zIJCIwDIML+rJe35/2VfNpWkQRhJ2AgIBAiCxZdwwWmwNDC1Pw/T1nAgBW7arA4ZoWni3zze8H2XDgBX2zIRKx4mhwpxQkyMSo11viWlxsdwq7IYVtW4OM6pIGgG19Eq95djtPNgMABnZK5s47AEjFIs4DtuNk/IbC/ylpBACM6ZbR5vWx3dnf/yltjLlNgUIIwZ+HWGE3vofLW3phPzYkvvZADfeAdqojCDsBAQGBELDYHPjKWYV537nd0C8/Cef2ygIhwKqdFTxb5xuaR0c9LQDreRnpFEcb4rQ61myzY08FG+5rL+z65ydDJhahsdWC8qb4DIdTYeepX13//CQAbL5mPGJ3EK7ylYa9KQML2N/3lGnj1tt7rE6PimYjZBIRzihO414fVJAMlUwMnckW9w9kgXLKCLtNmzZBJBLhhRde4NsUAQGBCNNismL6R//gkrf+wjvrj8Wtx8Wdzccb0GK2ISNRjtFdWIF0yQA2rPPLv/Eb1mlstXA9yNqLIyr04jVPbV+FDhabA2kJMhSlqdq8J5OI0CM70bldfIqjnWWsoG4vjACgb55T2MWp7Udr9Wi12JEgE6NbZmKb97pnqaGUitFituF4fXyOSNtawp77oYUpUMrE3OsSsYj7PradiF9vaTCcEsLO4XDggQcewLBhw/g2RUBAIMLYHQR3frIDvx2oxd4KLZ5ffRBf74hvjxcA/Oqsbjy3VxYXVjurZyakYgbH6lo58RRv0FBm10w1UhJkbd4b7BR6eyu0cSmuaYi4X35Sm/w6St88Nm8tHpP4W802HK9rBQAMyE/u8H4/p7A7UquPywrNXU5R2i8/CWJR23MvEYs4+3eVxd+5B9j+e4BnUT2kkA2Db4/jUHIwnBLC7p133sGIESPQq1cvvk0REBCIMGsP1OCvo/WQS1yLw7zv/o37pqE0Ufy83lncaxqFFCOd3rt4neSw7QS7eA0r6hgO7JGdCKmYQbPBirLG+AtnHqpmhV1Pt8IDd/rkstfPvor4yxE84hT6GYlypLYT1ACQk6RAWoIMdgfBgTjMcaSCbWCB57FnAwqosItPr9duZxjZk6ge6nygETx2MaKxsRELFy7EvHnzfG5nNpuh0+na/AgICMQ/dJTSLWd2xqq7R6NzegJazDas3lPFr2E+qGw2oqLZCLGIwfDOqW3eG+H8fUecLhL7K9l7o6cFTi4Ro1cOK5r2VDTH0KrAOFTN5kD1zE70+D4NZ+6LQ4/jYaftPbI8284wDPo47T9QFX+5XgedorpPrmdRTc/9wTi03WBx5c/RfEB3Bjq9eOVNRjQbLDG0LDrEvbB7/PHHcf/99yMlxfdw5AULFiApKYn7KSgoiJGFAgICoVJa34qNxxogYoAbziiEWMRwjU9Xbi/j2Trv0HBmr5xEJMglbd4bwj39N8aduADAeYOogGsP9ZruibMkfkIIDlJx5EXY9cxOBMMADa0W1Ovja4E+5BQW3b0IOwBcX754C+MTQnCkhrXJ27mn/65DNS1xd93vq9DBQYBsjQKZGkWH9zUKKfJTlADiU1QHS1wLu507d2Lr1q2YMWOG320fe+wxaLVa7qesLH4XBQEBAZa1znDmyC5pyEtmb6xXDs4Hw7CVm9Xa+BzqToXd0MLUDu8NyE+GRMSgRmdGRZw1K65tMaFeb4GI8S4waHVmvBUgVGpNaDHZIBEx6JKh9riNQipGQQpbVHGsLr7EEfUY9cj2bDvA5j0CwNE4s71Sa4LebINUzKAoLcHjNsUZCRCLGLSYbKjRxdfM2/3OnEuag+kJ+qATj2HwYIlrYffnn3/i8OHDyMvLQ3Z2Nj7//HM899xzHoWeXC6HRqNp8yMgIBDf0PFEZ7n1lcpOUqCvM1dq0/H4rM6kvcYGF3aMJChlYi6ktj3OwrE0TFaUntCmMtCdHs78tSNx5jWioczijASuOa4nusap14t6G3157Kjtx+LMdu7cp6u9nnu5RMxVKh+Ks7Yhh2t9exsBl7CjIedTmbgWdrfddhuOHj2KXbt2YdeuXbj00ktx33334eWXX+bbNAGBuMNic+CLf8qw8LfDceet8ITBYsOW42wiv3vDUAAY1ZXtM/V3HE4RsNgc3FP9IA/5OgAwwOn1ovls8YK/MCzgEhd1Lea4yjei1zS1zxtdMliPUjwJO53JiroW1ovly/6uTk9kRbMRrXFUPMSFkX0II8AlWo/Em7ALQFT3cv7bhFBslFGpVMjOzuZ+lEol1Go1kpOT+TZNQCCuIITgka/24OGv9mDhb0dwxeKNcf/kuf1EEyx2B/KSldxiTBnVxTU7M97ydY7V6WG1EyQqJFxeTnto1eaB6vhaJLjiAx8LnFou4cLi8eS1K6lnW4V0TvccCqRwXq84ergpddqerpYjUSH1ul1KggxpzopZ2holHuDCyFm+RTWXZxdH1z0hhLPfp7BzPuwcqmk55SdQxLWwa8+yZcvw6KOP8m2GgEDc8d3uSnzjnHYgETHQGq14+Ms9cSeK3KFd+IcWpXToSTasKAUSEYNKrSnupghwXq9sjcdeagDQMyexzbbxQqBer27OBTyeOvGXNlBh59v2eAxnukSpys+W7nl28XPuqcj0lttIobYfr48fUVqjM0NnskEsYlCc4f2hoCBVBZlEBIvNgYo4u+cEyykl7AQEBDpCCMG7G44DAO47pxs2P34O5BIR9pRrsfl4/Dbc3OnMU/MUzlTJJHE7RcAVzvT+9N8ji63OrGsxo14fH4nkhBBugS72s0DT6kxaCRkPlNQFJo6o+KjUmuImnFlabwDg39vovs2JBkNUbQoGKqqL/Njvsj1+hB19OClKU0Eu8ZxXCgBiEYPOzsKQY3E6PSNQBGEnIHCKs7OsGfsqdJBJRJg6qgjpajkmD2VbhnzwdwnP1nmGEIKdXCd4z62MuNmZcSfsnOFMH3lqCXIJClNZARIvfb3q9Ga0mG1gGKAwzbc46kZzpWrjw3ajxY5KZ4W0P49dskqGZBUb7jzZGB/iKFBhBACdnN/NyTgRds0GC5oNVgDwWhFLoddVvd6CFpM16rYFQqBeagCcRy+ewuChIAg7AYFTnG+dIdiL++dwHe2vH1EIAFh/uA4GS3x4LdwpbTCg2WCFTCLymsgfr7Mzae6irwIEwJVnFy+5jnSxyk9RQiH17rkAgGKnAKGeJr450cjanqSUIkXlPUeNQkV1vHi9uFCsH2EEAJ2o7XEiSqnt2RqF10pqSqJCinQ1ew+Kl3NP8xsDEdUuYSd47AQEBHiCEII/DrGjqy7sm8O93jM7EfkpSphtDvx1JP5ahvzr7CvVK0fjtX1C/7xkAPE1t7TZ4Gp8282PByDe8o24MKwfjxfgWgQrtca4mFvqvjh7y2t0p5NTQJ1sjI9zH4zHrjA1vkKxLtv95wcCLq9eSZxc9yXO8xiIqKZ/G4LHTkBAgDeO17fiZKMBMrEIo7qkca8zDINze7EzTOmw+niChid7+8hT656t5uaWxkuj32POG35OkqLDxIn2xNvTP7XDVwI5JS1BBrVcAkKA8ib+BQYNqVJPnD/iyWOnNVq5UKa/EDjgCsXW681xkSNY4vTa+gvDUgrTqLc3PsRRSB47IcdOQECAL/5wTm4YUZzaQWic04vtDbfxWPz1ggukn5pcIuaSseMliZ/m6/irDgRcBQrx8vRf6hQ5xQEscAzDcB6akjgIx5Y1ssK+INVze5n2cHlqcRDOpMI4XS2DSub7YQBgw83xlCMYjDACXMUtpXEgqi02B3f+AylcoR67Gp05LlNYAkUQdgICpzD/lLJVr6O7pnd4b1CnFIhFDCqajajSxofHi3KQG+buO08t3pL4XVWlgT/917aY4yKRvMwpEjqdgp6XMufinJ8SmMeuUxx57KgozQvQdsDd48j/uQ/WWxpPYfCyJgMcBFDJxMhMlPvdPkklhUbBiu94a7MUDIKwExA4RSGEYAftBedhtJVaLuFacmwrjZ/RVlqjK7Tqa8QP4MpjO3wKeuw0CinS1exiwrfXjhDCLdCdAlygaU5SaRyIC7rIFgQojmjIs6LZCKvdETW7AoF6jAq8NLP2RIHzO6KikE/o32pegPbT5taVzfzPeaYPJYVpgeVmAq6Hh3hIQQgVQdgJCJyilDcZUddihlTMcBWk7aFD6uNpZintSp+bpECS0neFIzeiKE6azQaTp+a+Hd85O/V6C4xWOxgGyE1WBPQZKo74FnaEEJc4CjAUm5WogEwigt1BUK3lV2BQURqotxFwE0c8e9pNVjs3Co3a5A86jaVaZ4KNZ1FNPbaBehsB1zUmeOwEBE4TbHYH1h+uw3e7K+OiGtAXVKz1zUvy2r5iiNOTF0/Cjnq9/M2dBFweu6M1LbxXxtodLq+Xvwa/FJrPxneeGrU7R6Pw2aTVHerZ43uBq9ObYbI6wDBATlJg4kIkYpCTxArYSp4Lb4IVpQCQ6xRRVTx7vaqcolghFXGtlPyRoZZDKmZgdxDUtPDbnJt6G72N/vMEFeBlcZDfGCr+MzkFBP4jmG123PzhP1yxQVGaCstvHcGFReIN1+QGzw1+AVeT30PVLbDaHZCK+X+Wo6OeAm27IRExaHU2qA3UaxANqrRGWO0EUjGDbE1gXi967fA9osglLoLwGqW4xIXDQSASBRbKijQ0HJmjUXhtjeOJ3CQlTjQYePd6heKxy40Tjx29bvOSlQGHMllRrcTJRgMqmoy8/s1WNIUi7ASPnYDAacOzP+zHxmMNYBhALhGhtMGAB1fuhiNOB0Lvd1aW9sv3XoBQkKJColwCi90RN0PRuTy1TP/hTKlYxFU48p3ETwVGfooK4gBFDl0kynjO16FTDALNrwOALI0CIgaw2B2o43EsWnmQhROU3DjI9SKEcJ6fYMQFDZfz7W2saGZtD6bwA3CFbenn+cKVHxi4/a4cO0HYCQic0pxoaMVnW8sAAB9OG4bfZo2DSibG1pJGfLu7gmfrOuJwEG60VZ9cz/l1APv0TFuK/FsRHxMQjgU4UJwSLw1PQ1mg6SLBt8eOhmKD8dhJxSLOM8lnH0EaDgw0eZ+Sl8y/7VqjFa0Wu9OeIISdM+Rcr7fwmhJS4RTFwXrd4kFUA27CLgj7acic74excBCEnYAAgCXrjsHuIBjfIwPje2SiIFWFu8Z3AQAs+7uUX+M8cLLRAL3ZBrlE5LcvWe9cVthRDx+fmKx27oYZrLDju/VDWQjhTFoJyYZx+UskLw8hJAW4xBSfwpQWP2QnBRb+prjEBf+iNC1B5neMmzvJKimUzu35LP4IJZQJuK4bPr1eBosNja2WNvYEAhWBzQZrXLQpCgVB2An85zFa7PhudyUA4K7xXbnXrx3eCTKxCLvLtdjtHFgfL1CR1jM7ERI/eXNU2NExXnxS2tAKQgCNQsLNlPRH5zhplFsWZLsQAMhIlEMuEcFB+E2Ep30Mc4P0vLhCavwt0FSY5YQo7Pg876GKUoZh4iIcy4Vig7xu8uPguqGiNFEu8Vt9706iwtUgOl4m3gRL2MKurKwMVVVVkbBFQIAXfjtQA4PFjoJUJYYVuQoR0tRyTOyXDQBYtSu+wrH7K1lhR0WbL3o5mwDHQy+4EmcYtnOGOuBkbNrxnu+2G1w4M4h8HYZhOG8BX6EdQggqnQIjN8CqUkpceOx0rO2BVsRS4sFjR4sfgrUdcNnPqzgKsocdJR7OfXmItgOuv/HyOOgjGApBC7vrrrsOmzdvBgB88MEH6NmzJ7p3744PPvgg4sYJCMSC753eukv653YQGxP75QAA1vxbw3u7DXfoJAba580XtEihsdWCBh6T4AHgRCOdOxm4OKKh2JMNBth5LGQpo01yg2hbAfDf8LSh1QKLjQ0DZyX5777vTl6yq9EvX9BwZvAeO3b7FrMNOp5CatUh2g64RDhfeWp2B+G8ncF67NwfCPi6b4YaRnb/zKmaZxe0sPvll18wZMgQAMCLL76I33//HVu3bsXzzz8fceMEBKKN2WbHhiP1AICL+ud0eH9MtwwopCJUNBvjIkeNctTZMqRrpv88NZVMwt2ojvLc6DfY6QcA+/QvE4tgsTt4G41mtLgatQbjsWO35zffiC7ObFg48DwvgP/qTIvNgXrnw0iw4kglk3AhNb7srwoxFAu4hZJ5uuZrW0ywOQgkIgZZAbb3odDvymi1o8nAj6gOpXCCcqq3PAla2DkcDkgkEpSWlsJkMmHEiBHo1asXamtro2GfgEBU2X6iCUarHelqOXp7GEivlIkxplsGAGDtgfi4xq12B9dRPdACBK7RL88tT0JpuyEWMa4naJ5CI9Tblih3iYVA4bvhKQ0H5oYgLvJ5DsXW6EwgBJCJA2+Q6w71evGVZxeOxy6H56pe+p1nJykCbu9DUUjF3Dg9vkQ114MvJI/dqT1WLGhhN3LkSNx777144IEHcPnllwMASkpKkJqaGnHjBASiDfXWjemW7jXna2x3VthtPt4QM7t8cbLRAJuDQCUTB7xgUM/eEZ7z7ELx2AFuoR2eFgluCH2qKuDcQArfI4qqmsPP82ox26A1xt7zQvPrspMUQZ93gP88NeptC8Vjl8dznlo4Hi+A/8pYl/3BN5jnWp78V3LsPv74YyQmJqJfv36YP38+AODAgQO4//77I22bgEDU+ctN2HljZLFr3qrZxv+YMTq5oUsQBQjdMtlcPD5DsVa7g7vZFqYFNmuV4gqN8PMETW/wwQxyp3AeO55sp4UTOQHOiHVHJZNwnjI+vHahVsRS8ngMJRNC3PIDQxfVVVoTL3lq5WF4vAD+K2MFj10QLFu2DAsWLMAzzzwDtZr1AkycOBEOB7/DfgUEgkVvtnEtQEZ2SfO6XZcMNdLVcphtDuw62Rwj67zjavAbuDjq4vTY8Tl9oqrZBLuDQCYRITMx2CR+fp/+Q2l1QqFisEZn5uXBoDJczwuPC3Q4oUyA3+pMnckGg7M5cUihWOdnDBY7L95Sbs5qiNcNn/mZFpsDNS2hFX64f0Zn4sdTHS5BC7tnnnnG4+vPPfdc2MYICMSS3WXNcBD2j9jXEzXDMDjD6bXbfLwxVuZ55aibxy5QOjtbhlRpTbx1sncPwwY7d5TvCQ6hTG6gpCbIuGazfNgfjtcIcBN2PHgvXMUHodmew+MEBCpKU1TSoJoTUxRSMdKot5QHcRSOxwtwv274uOaNIIQdDRlov0x3EtxyaflsEB0qkkA3/OKLLwAANpsNK1eubOMaLi0tjUqOndlsxh133IFff/0VLS0tGDRoEN566y3069cv4scS+O+xrbQJADCkMMXPluw2P+ypwq6ypmib5RfXrNXAhV2KSopEuQQtZhvKGg3oFkCblEhzopH1NIbi9eLydXiaPRlqqxOAfTAoSFXicI0e5U1GFAchyCMBl2MXQigWcB9IH/sFztVYOcxQLA+Vpa78utCEEcCe+4ZWCyqbTT5HB0aD6jAfCFzXDb+iNJTcTADI1ijQbLCiSmtEj+zY3y/DIWBht2TJEgCAxWLB4sWLudcZhkFmZiaWLVsWceNsNhuKi4uxefNm5OTk4I033sCkSZNw7NixiB9L4L/H9pOBC7tBndhtdpU1gxAS8s0iXAghLmEXhEBgGAaF6Srsq9ChtIEfYRdq4QTgyrGj4dxgq/TCgRCC8hCaE7uTn6LihF0ssdkdXAFCsM2JKXw2KeYmNwTZboNCxUW1NvbXTbhhZPrZvRVaXsKZtc5QZrCtTii0YKRGF/sHgvIw0w8A1v6D1S282B8uAQu7P/74AwAwf/58zJkzJ2oGuZOQkIAnn3yS+/2ee+7BQw89hIaGBqSltc2JMpvNMJtdzVd1uvjpOSYQfxBCuDFhgzv5F3a9chIhE4vQZLDiZKMh6OT/SFGnN6PFZIOIAQqDaPILsAUL+yp0vM1cDaXVCSUzUQGJiIHNQVCjMwU9GiscdCYbWsw2AK6QcLDwVfxR22KGgwASEYOMIPMaKVx+Iw/igoZiQ/2+MxPZVh02B0Ftiylk71MoVIbRw47CCdMYiwuzzdV/LksT2nVDxXhdixk2u8Pv6MNIEmpjZXeoIK86BUOxQZ/p2267DbW1tR5/os2mTZuQlZXVQdQBwIIFC5CUlMT9FBQURN0eAe+YrHaU1Lfy1vHdH+VNRmiNVkjFTEBudrlEzI3v2sXj3NhjtawoK0hVBZ23U+gUVLQHXqyhHrtgBSnA9rLjq3UF9bwkq6RQyoLPlQJc4axY5+vQcGCWJvheZBQaBq2OcUjNYnOgztmcOFRxJBYxyHIK2hpdbKeu0POVE6LHCwAyNdT22F43tc5zJZOIgpqz6k6aWg6xiIGDsNNPYklNmN5G98+eih67oIVddnY2cnJykJ2dzf0//YkmWq0Wt99+u9cijcceewxarZb7KSsri6o9At75dMtJnLFgLc56ZR2Gzf8NC1YfgM0eX1XT/zpnrXbLTIRMEtifwcCCZADA7jJttMzyy9EQwrAUOpqLj5mrhJCwPHaAe2VsbIUplysVxiLB19M/LRoINUcN6Oh5iRW1LW7NiVXBJ8BTMnlaoLmilTC8RlmJrO21MRalrjCsPOS0E7GIQYazSXGsH2hqdeELu1PZYxdwKJbSvq1JdXU15s+fjxEjRkTMqPaYTCZMmjQJF110EW655RaP28jlcsjlobmMBSLHO+uP4fnVBwEADAOYbQ68vf44alvMeG3KAN5y09qz39nmpE9ux2kT3qAeuwM8jhY7FsQosfZQT9lJHiYgNBusXDgzlMpSwC2cGeOmoZHIlaIep1iH1CrDaE5MoZ4Xu4OgXm8JK7QYDNVuocxgq6jdoaHE2hif+0hcN3x5jah3kwrLUMlKUqBaZ0K1zoQBkTAsQKp1LmEaKtk8edkjQdhB7+zsbLz22mt47LHHImFPB2w2G6655hrk5ubilVdeicoxBCLDluMNnKi7/9xuODL/Qrx17SBIRAy+2VmBL7bFjxeVeuyCEnbOkWMHqnW8Dbam+XFFIeT40bzA8iYjrDH2oFIxmaWRh9T6AeBv+kS4LTcA1+JeHeNms+HmqAGs54X2HYylMI1EjhrA5tkBfIRiw7c/i6dQbE0EPF4AuDB4rEU1J0zDsJ96qmP9MBYJIpLNuGXLFthstkjsqgMzZsyA0WjEsmXL4sbbI9ARi82Bx77eCwCYMjQf95/bHRKxCJcMyMUjF/QEAMz/8QAa9LG9uXqDE3Z5gbcQ6JqphljEoNlgjfkiQTkRRp5aZqIcCqkIdgeJeYVjOBWxFFc3+FPPY0cXGKPVDp0xOvdKT1CPXTihWMBlfyy9FzUROO+Am8euJXa2t5hcHupwQvg0jKwz2WC0xK7/JL2/ZYbh8QL48VTb7A7U6yMg7Jy2NxusMT33kSBoYderVy/07t2b+ykqKsLEiROxYMGCiBt34sQJLFu2DOvXr0dKSgrUajXUajU2bNgQ8WMJhMfK7WU4Xt+KdLUcT1zUu817t5zZGX1yNWgx2fDeXyU8WeiiQW9Gtc4EhgF65QTusVNIxSh2NvrlIxzrcBAuDBmKQBKJGBSmsvafiHE4lutiH2JVKftZnjx2uvA9LwqpGCnOhqdVutjZTz0v4YgL98/H0nNEhViwU0ra48qxi93DGD1WokKCBHnQGU8cGoUECim7TMdSmEYiR83987E893V6M4izEpw2eA4FjULCNRY/1bx2QV9xS5cubfN7QkICunfvDo0m8AUyUAoLC3kLeQkEjsXmwOI/2N6Cd5/VpUMVlVjE4L5zuuG25dvx8cZS3DG2C5JUoVVaRQLqrStKS4A6yJturxwNjtTqsb9Kh7N6ZkbDPK/UtJhgsTsgETEhezE6palwqKbFGdLNiKyBPqAewnA8R+6d7B0OElbeVTBw1Y1heo6yk5RoMlhRpTWhZ3bk75eeiERICuDH88J5jcLN8+JDlOoiI0oZhkGWRoETDQbU6Mwxa7NU41Y8EQ58nHvXdSMP6x7BMOx99nh9K6q1Jm56z6lA0B67cePGYdy4cRgzZgx69eqFwYMHR0XUCZw6/PJvNSqajchIlOPa4Z08bjOhdxa6Z6nRarFj1a6KGFvYFirsegeRX0ehHr6D1S0RtSkQaJuSvBRlyD2hipwh3NL62HrsXPNKQ/fY5SSxLTssbqGWWFAVoZCge55dLLA7CNcuJGKelxiGYjmPXdjigoZiY3fN0GOFK0oBfsVRuMUTfHh66bEyw7zmAfcHGn5GGYZK0KtDXV0dJk+eDKVSidzcXCgUCkyePBk1NTXRsE/gFGD5phMAgOuGd/KaGM8wDK5zir7Ptp7k1RP7bwgVsZSeOWzPOz5CsZHIU6NP/LFuUlwRgVwviVjELRRlMcqzazXb0GJy5kqF2dw2O8btExpazbA7CBgGIc3LdIeKo1h67Kg4CrWxMoWKk8ZWC8y22ORK1UbI48Xu49QVR9lJsW93UhOBilgKvd+cai1PghZ2N9xwAzQaDY4fPw6bzYbjx48jKSkJN954YzTsE4hzjta2YGtpI8Qixqu3jnL5oHzIJSIcrG7Bvgr+Wobspx67IPLrKPQzx+v0MFljm1Abbh84wFV0EetedhURGPEDxN7rRYWMWi4JOmzfnpwYe71o77N0tTzsrv98VAjWRSgUm6ySQub899fFyGtXyxUfRMBjlxhbj6PB4nqYCVcc8VH8Eam8UsBtLNrpLuw2b96MJUuWIC8vDwCQn5+PRYsWYfPmzRE3TiD++WYnG1Yd3z3Db3J5kkqKc3tlAQB+2FsZdds8YbLaUeIUNaEIu8xEOVITZHAQ4EiNPtLm+SQiHrtUV8uTWHlNdSYrt1CEOwrM5fWKjccuEi0rKJztMRJHkSo+ANh+ZEDsFjijxc5VlYYbimUYxm2CQ4yEXYsrzytcYu2xo6JUJROH/TCTKJdA5ZzWEiv7ayIoqk/VJsVBC7uxY8d2qEr9+++/MX78+EjZJHCK4HAQrNrJCrTLB+cF9JmL+rMTSlbvreIlHHu8rhWEAElKaUghHoZh0DObn3BsOCO5KNlJCq5xdL0+NmN+aH5dskoaVoUg4LrRxmqRiFR+HbsP2vA0NqI0UoUTgMv70WqxoyUGYwKpKFVIRUgM85oBXAIrVv3UqP3hhpGB2I8Vc+9hF26LMVr8AcTO2xupHnzu+zjtq2KTkpJw8cUXY9y4ccjPz0d5eTnWr1+PK6+8EnfddRe33eLFiyNqqED8sbOsGRXNRqjlEs4T54+zemRCKRWjrNGIfyt16BtEH7lIcKSWLXrolqkO+abVK0eDjccasJ8nYRfq5AaAnf2YrVGgSmtCeZMhIguPPyojFIYFXDfaWD1BV0dgnBiF5hvFyvZI5holyCVIlEvQYrahRmdCoiK6Ve3U4xUJcUH3A8Te6xXJ4olYjRWriaC3EWCvv5L61pgL00j8zfI14zlcghZ23bp1w6OPPsr9XlBQgJEjR0bUKIFTgzX7qwEAZ/fMDHiagFImxphu6VizvwZ/Hq6LubA76hzJ1S0r+JFclO7Ozx6ri10otsVkRaNzkHY4oViAFVhVWhMqmo0Y1CklEub5xNXqJHxhF+sbbSQ9drT4osVkg95sCzvM5Y9ItQuhZCUp0FKrR7XWjK6ZiRHZpzdqdZEWF05xFKscOyqOTsHiiUj1sKPEujLW5amORAoCu486vRlWuwPSMHNVY0XQd5YLLrjA41zYrVu3Yvjw4RExSuDU4Nf9bCX0hN6BeesoY7pncMLu7rO6RsM0r9C8uC4ZoQs7OqeVisRYQL11qQmysL0leSlKbDvRFLMJDhXOQfSR8NjFurK0OgLjxChqN69XtdYU0rzfYKhrifwCfbRWH5OwlCs/MDK2xzLHzmBhhTsQGWFK99FqscfogSBynl52P7TgKfrn3mS1Q2tkUwUikWOXniCHVMzAaieobTFH5B4WC4K+QiZMmACdrmMI6oILLkBjY2NEjDodIYTAtHcvjDt3ghAC5YABUA4ceMqMSSM2G1o3boT5yBGIEhLQ0L0/jte1QipmML5HcI1ux3Vjt99xoikmNyoAsLe0oHXDBhT+9jfOscrQXRa6oOyawXorqrSmmNlfeeQEzjuxFT2VdujWEKjHjoVIEdqNi5vgEDNhZ0SRthJDdxxBQ/1WKHr3hmrYUDDi4GfGuufYxaJJcZXWBIY4UHjyABoO/A5GIoVqyGAoevUKaX/ZnNcr+sKOiphsOUHL2rWwlJRApNFAPXYspNnZQe8vlp4j91YntqYm6Nf9CVt9HWR5eUg480yIg+ydSluexGJ6Q/viA3NJCQxbtsLR2gp51y5IGDUKjDTwh7P2YXB1GA+lgeCemxmJdYu7bmJw7um1qZSKoVFIOqxbCSNHQlZYGPD+RCIGmYkKVDQbUaMznX7Crra2FgDgcDhQV1fXJvG9pKQEMll4fZJOZ8zHjqHqyadg3LGjzevKgQORM/9ZyLvG1msVLPq//0b1U3NhrWjbWPiRvIHYefn0oD1IndJUKExT4USDAZuONQTt8QsGQgiaPlmBujfegEOvxyT6xoyvUXvrLci4+24wkuCEWZJKinS1HPV6M47V6jGgIDnCVrtwGI2offU15H36KR5wOAAAFRu/gjg1FVmPPYqkSy4Jep+0SXAsRnNZa2pw9kcv4K7SPQCAWufr8m5dkf30M1ANHhTU/jIS5RAxgM1B0NBqiXqOoOr4ISze+AlSv63hbAeAhDPPRM78Z4MWSNlJChyJkderRmfC+LIdyL7zeZQ3uT10i0RIufZaZD44CyJV4GF9miMYE2GnM0PssGP4+q9x9ImVIFZXwYYoMREZ99yNlJtuClhg8CFKC2V2VM5+GLoffmjzviQnBzlPz4N67NiA90nD4DU6U1jRhkCg5yhPV40T182BcefONu8rBw5EznPzIe/SJaD9xbJliHsYtvXvjaie23Hd0kyciKwn50CSElgaSqZGjopmY8wKbyJBwAHj7Oxs5OTkwGAwICsrC9nZ2dzPpEmTMHfu3GjaecrSunUrSq++BsYdO8AoFFCffTbU55wDRqGAcdculE65Gq2bNvFtplcaP/0UZbdOh7WiAuKUFGgmXgjVGWfAAQbjK3bhzi+e6/CHEwhjnV67DUfqIm0yB7HbUfXEHNQ89xwcej1Q0Alr8wfjeHIeYLGgYclSlN1+BxzG4AVO10y2bUg0w7F2rRYnpk5D0yefgHE4cCClEBVDxkKSmwN7YyMqZz+M2ldeCbq6mHrsypuiO33CdOgwSq+ajJ6le2BjRLAPG4nECy6ASKOB+chRnJg6FbrVq4Pap1QsQro6Nk1PG1b/jKfWLERRSw0YtRqJ55+PhHFjAYkErX/9hZIrroTp0KGg9unqwxddUW212TFxyzd4ZPunYJoaIcnJgeaii6AcNAhwONC0YgVO3DQVtqamgPfJ9bKLwQLd2KjFU1s+ROcfPgWxWiHv1QuaSy+BrHNnOFpaULPgBVQ+8giIPbDeaFkxDMXWtpiQbmjGEz+8xIk61RlnQDNxIsRpabBVVaHsttvR+PHygPfJTc+Iif1m9Ks7isInZ8K4cye7bp1zDtTntlu3AmxxFsvm1lSUXnz8b5RNd65bqanQTJwI1RlnAAwD3erVKL36moDXLertjeW823AJ2FXhcHoLzj//fPzyyy9RM+h0wnTgAMrvuBMOgwHKIUOQ98rLkOaw7T6sNbWonD0bhq1bUXb3PSj8aBmU/frxbHFbtN9+i5pnngUAJE++ClmPPw6RUol6vRnTH1qGx7Z+jJzaKpyYdjOKvvg84CcgABjTLR3LN5/A+sPREXaEENQ89xy0X38NiMXIeuRhbOl/Nl75324MyNNgeZcWVD4xB61//42KWQ8i/603g/Lcdc1UY/PxRhyNUgGFw2xG2W23w7RnD8TJyfjk3FvxsS0HL13ZH+cMykH9kqWoX7QIDe+9D0alQoZbRbo/8txCsYSQqKQDWMrLcXL6rbDX1aNUk435w27CNy9ci8xEBezNzah6ai5a1qxBxeyHIUpMhHrMmID3nZOkQG2LGVVaI/rlR6f4pnXjRtTOfghSYsfm3L648at3uOvbXFKCigdmwXzwIE46r31ZQUFA+41VJ/uKRUtx9eHfAQCpd9yBzLvuBOOMqrRu3IiKWQ/CtG8fyu64A4UffRRQWD9WXi9it+PCVYvRr+YgiEyOvOfmQ3PxRWAYBsThQNNnn6FmwQvQffc9RHIFsp952u81TPOttEYrTFZ7wMVeodBQWY8Ffy9FWms9pLm5yHtjIXdvdxiNqHnxRTT/73PUPP88RImJSL58kt99usRFlM89IVCeOIZ5Wz4EYzNDOXQI8l55hfNMW2tqUfnQQzD88w/K7robhR99BGW/vj73mcmFwc1Ru99QanQmnHNyGy7a8T8AQPLkych6/DGIlOw9z7h3Hyruvx/Wkydx4uZbUPT5//yuW3zMSQ6XoEs8BFEXGHadDuV33wOHwQDViBHo9MH7nKgDAGlWJgreexcJo0aBGAwon3mfz6fnfRVafLypFB9tLMW+Cm3U7Tf++y+qnnwKAJB6883IfuYZ7o9j/eE6HEnOx7tXPQJpfj6sZWWofPBBEKf4D4SRXdIgETEobTBwExUiifbrb9D06WcAwyDv5ZeQetNNONLAekm6ZmmgmTgRnd57F4xcDv0ff6A+yPY8XTOiW0BR/eyzMO7eDZFGg04ffYQ/k9iwR6c0FRiJBBn33oOsJ+cAAOrffAstf/wR8L5pnkirxY5mQ+R7kjnMZlTMvA/2unqIunbD7DPvQl1KNtIT2Cd3cXIy8ha+Ds2llwB2OypmPQhLeXnA+4/2jdZaUYHy+x8A7Hb8kT8Iyy+4s83NX965Mwo//giK3r1hb2pC+b0z4TAFZktWDPrw6TdsgGHpIgDAp0OvQNb993GiDgASRo1C4YpPIEpKgmn3HlQ//UxA+43VAle/eAn6le6GVSQG89JCJF1yMScGGJEIqddfj7xXXwVEIjSvXInmL1b63adGIYFcwi530fR6EYcDnd5+Efmt9WhNTkfhJ8vbPLCLlEpkz52LtBnTAQBVTz0F4959fvebESOvl66uEQ//9T5UNjPkw0eg0/vvt0k3kGZlouD991zr1n0z/Xp9aeGKxeaAzmiLqv3mf//FzF1fAgBSb7kF2c88za1bAKDs1xeFn66ANC8P1pMnA1q3Yt1HMBIELex69eqF3r17e/wRcFE972lYKyshLShA/ltvQiTvmAskksmQ9+YbkBUWwlZVhZpnn+2wzeGaFkx5exMufusvPPXtv5j73b+4+K2/cOP7W6IW83eYTKh8+BEQiwXqs85C5uyH2jxlbThSDwAYOLg78hcvAqNUonXjJjR+9HHAx0hUSDGoUzIAYOOx+ojabykvR/X8+QCAjPtmQjNxIgDgSLtWJ6ohQ5Dz3HMAgPolS2Fol0viC9ru4VgUhJ3u11+h/fIrVpS+/hokXbtyhQ7urU5Sr78eKTfcAACoemIObA0NAe1fIRVz4cxo5NnVvfkmTPv3Q5ycjOYnX4BepkJukqJNoQMjEiF3/nwoBw6Eo6UFlbMfDvjBgLY8iYbXizgcqHzkUTh0Ohi79sTrg65GVnLHPDSxRoP8xYsgTkuD+eBB1L3xZkD7d7V+iI64sDU1ofLRx8AQgh+LRmL3GRd63E7epQvy33gDEImg/eYb6H7+2e++qceuroWdQRsNDDt3on7JEgDAGwMnI2vMKI/bac4/DxkP3A8AqHnhBVjKfYfV3BvlRjOJv2nFp8g+sAMmsRT773kK0txcj7ZkPPAAEiecC1itqJw92286SJab1yuaVD39DLKMTahWp6Pw/3ysW28shLSwE2yVVaiZ/5zPfcolYqSo2DzsaJ57h8mEQZ8shMxhQ8OAEch86EGP3kFpVhbylyx2rVsf+163uHN/CoVigxZ2S5cuxZIlS7ifp556CikpKZgxY0Y07DslafnjDzZ3SCxG3muv+qzgEqvVyHU+fepW/wT9339z7329oxwXv/UXtpY0QiYWYXyPDJzdMxMysQgbjtTj8sUbo/IUUb90KSzHjkGckY6c558DI3JdJoQQ/HWUFWJjuqVD0b07sh55BABQ98YbsFYGPipseOdUAMC2E4Hn+QRCzfznQIxGqIYPR9ptt3GvU+9aV7fk46SLL0LSpEkAIah++hkQW2BPlF2cOXYnGg2w2AL3VPrDrm9F9TOsByVt+nSoR49GldYEm4NAJhZ1aLqZ+fBsyLt1g72xETUvvhjwcaKVZ2fc9y8aP1wGAMh5/nlUSNlr31MPO0YmQ96rr0CkUsG4cycbNg+AaCZja7/+GoZt2yBSqbBn2kOwiiVex4lJs7OR8xz7ANG4bBmMe/f63X+0O9nXvvAC7A0NMOZ2wtv9LvXZbiPhjBFIu539+6h57nnY9b7nB6clyCBiAAcBGvSRX+SIzYbqeU8DDgd+zx+M9Z2HcYLAoz3Tp0M1bBiI0YjqZ5/xm2uaFWXPi7WiArWvvQYAeK/PxVD39l45zYhEyHn2WUiysmApLUXDu+/63Df1GtVFUVy0btwIsnYN7IwIH597q+91KzERea84160ff0Trxo0+950Zg1By/ZKlSKmvRKM8Ec0zH22zbrWHXbceBgDULXwD1qoqr9vGuo9gJAha2I0bN67NzzXXXINvvvkGH3zwQTTsO+VwWCyoee55AEDqtKkB5c0p+/ZByvXXAwCqn3kGDrMZ7204jllf7IbF5sD4Hhn48+HxWHbzcHwwbRhW3zcGRWkqVDQbcfOH/8Bsi9xwZWtFBRo/+BAAkP3kkx3yDw7VtKCuxQylVIwhhex7yVdPgWroUBCTCbWvvBLwsYYWOYVdaeTa5LT8/jv069YBUimy583l/rjtDsI1FG7fnDjz4dkQJSXBfPAgmj79NKDjZGsUUMslsDsISht8L4jB0PD227DX1UNa2Anp994DwNXDLj9V2aG9h0gmQ87zz7NJwd99D+OuXQEdJ48TdpHz2NG8Rjgc0Fx0ERLPPovzNHprEyDNy0P6vfcCAGpffQ325ma/x4nW/Ea7Tofa114HAKTPvBelsmQAvufEJo4fz4aUCUHN8wsCEBfsvur1ZtjskXsgAADj7t3QfvsdwDDYee29sIqlfnt5pd95J+t5qatD/RLf6QgSsYirQo6Gx7Hp889hPnQIJDERS/tfhgy13Gc+FsMwyH56HhipFK1/rkfLL2t87j8zyhMcal97HcRoxNGcbljdeaTfHnzi5GRkPfE4AKDhvfdhKSvzum1mlNu1EIsF1c+yDynfdx4Fc5eefj+j7NcXKdddBwCofppdt7wR7T6ClvIKNH7IrluLBlyBzNxMv59JvvpqKIcOYdetl72vW7Qa/LTOsfMEIQTlQeTInM40f/YZrOXlkGRmIuPuuwP+XMZ9MyHJyID1xEn88uTLmP/jAQDA7WOL8cHUYVz4CWAT95ffOgKpCTLsr9Lhjd+ORMz+2ldfBbFYoBoxAokTJnR4/y9nGHZ451TIJWwCMsMw7A2KYaBb/RMM27YFdKzBnVLAMEBpgwF1EQgxOEwmLiyQNm0a5MXF3HtlTs+aXCJCfkrb0JokNRWZs2YBAOreeBPW2lr4g2EYdMlgvXaRCsdaTp5E47JlAICsRx6FyJkXRYWdt4kTyn59kXT55QCA6gULAgpp5idHXti1rPmVraJTKpH58GwAQKXW/9SJ1Buuh7xbV9ibmlD7xht+jxMtr1f9osWwNzZCVlyM1OuvR5XTdn9TJzIffBCMUgnjzp1o+eknn9umJcggETEghO1mHykIIah5gfXYJl1+OY6kdgLgCiN5QySTIftxVlw0fvQxzMeP+9w+Wufe1tSEujffAgA0XXMLWmQJyAigway8uJjzytc8/7zPXEeuACEK4si4axd0P/4IMAzeGzgJhBEFNHUiccIEqEaeAWKx+PS4Z7oJ6mjM2G78+GNYSkpgSUzGJz3PD7ipNV23LCdOcMLKE9H2etW++gqIxYI9md2wMadvQM2VGYZhr31npay3dYs+ELSYbDBYopsjGCmCFnZ33XVXm59p06Zh6NChuM6p3P/L2HU61C9m80PS770nqB5RYrUamY+yIc3M1V8i0dKK+87phkcv7OmxCWtBqgrPX85WI729/nhEkvgNO3ZAt/onQCRC1mOPenxapvl1Y7qlt3ld0asXkidPBgBUP/98QOIiSSlFjyw2V237ifC9ds1frIS1shKS7Gyk33lHm/fo+SnOUEPs4XwmT74Kin794GhtRcPb7wR0vC4RnkBR+/LLIFYrEkaPhvqs8dzrVNgV+hgllvnA/RCpVDDt3tOhb5YnuCbFEcqxIxYLal99FQCQdvPNkGaxvQmpcKQeQk8wUimy5jwJAGj+/AuYS0p8HsvlsTNGbJGzlJaiccUKAEDW44+DkUpdUyf8LHLSrCykTb8VAFD7yqs+xQXb8DTy3ouWX9ZwojrjvvvcZq36X+DU48ZBfdZZgM3m03MBRC+kVr94CRxaLeQ9e+L4yPOcxwqsR2HabTMgzc2FrbaWLZjyQrRahhBCULPgBQCAetIk7Jaz134g9nPiQiyG/re1aN28xeN2VCQarXZuqkWksOt0qF/6NgBg18Qb0CpTBjwKTZyYiMyH2ZBmw3vve/W403MfiQf49hi2b0fLTz8DIhGW9LkEcMun9Ieid29u3ap53vNDcaJcAqWzivpUybMLWthlZWW1+enbty8+/PBDLFq0KBr2nVI0vPsu7FotZF27INnpQQmGrxJ74pgmFyqbGS9Y9+CBCd19hiIu6JuDc3tlwu4gePHng+GYDgBcAnjylVdC0bOjK95ss2NLCZugf2Y7YQcAGfffB1FCAsz7D6Dlt98COubQIjac+09peHl2DosFDe+/DwBIv+OODqKaK5zw0u2fEYmQ+SDrtWv+4ouAcgW50WIRaHliOngQLb/+xt6UHn2kzfdOq4YLfAg7SUYG0u5gxWzdW//XpqGrJyIdim36/AtYT56EOD0dabfewr1e2ew7FEtJGDEc6vHjAYeDezjyBr1pm6wObnxQuNS/8y5gsyFh7BiozxwNwH1OrP9u82m33AJJdjaslZVo+t//fG6bGeF+cMRmQ+3rr3F2SLMy3cZCBbbAZT48GxCJoP/jD59Vmi5xFDlhZ6uvR/MXX7B2zH4IdXrnSKgAhZ1ILke6MzrS8M47sOs9/z1Gy2ukX7sWxt27wahUcNx8OwBAJhEhSRlY43Z5t25IuXoKAKDu/97y+LCikrHTJ4DIF1A0fvIJHHo95N26YWt3dlyoP0+vO5qLJkLeowccej0a3veckhXNHLu6hayXn5l4KUqTcpGklAbVzoauW6b9+6H//fcO77OFN6dWZWzQwm7u3Lltfh566CGce+650bDtlMLW2IjG5Z8AADJnPRj0NIPlm0rxzOqDWN7rfABAl79Ww1bvv1r00Qt7QsSwc1vDaYNi2LkThi1bAKkU6Xfd6XGb7aVNMFkdyEiUc542dySpqUi56UYAbFgrEK/dsAjl2Wm/WQVbTQ0kmZlIuqKjqD5S2wLAu7ADgIQzzoBq+HAQq5V7gvUF7QB/LALCrv5t9niaCy+AvFu3Nu/5C8VSUm+4HuLUVFjLyqD93rfXjoajKyJQPOGwWNDw3nsAgIx77oYogQ1RE0JQGcScWJpTqPvhB5iPHfO6nUIqRmoCG6aOREjQWlEB7XffAQDXD9Bqd3ChUl85dhSRUsn93TS8/75Pr12kh6LrfvoZ1hMnIU5JQdotNzv3HdwQennnztwUk7r/e8vrdllRqOptXLYMxGyGYkB/JIwa5eZtDFxcJF12KWSdO8Pe3IzGjz7yuE002lYQQlDv9PCn3nAD6uVswYG//MD2pN1+OxiZDMZt22Hw0vg3IwoeR0drK5qc3QzS7rgdtS0WAMGde0YkQsZ9MwGwItHTuhUtYWTYsQOGf/4BpFI0Xnljm2MFiiQ1FSk3st0F6v5vkcd1y1VRfRp67BoaGjBnzhyMHj0aPXr0wOjRo/Hkk0+iIcA2C6czjR99DGIyQdG3b5swmj8IIXhvw3E8+e2/AIDB11wCRf9+IEaj30opgG27cXF/tqR+6Z/eF0N/0PBj0mWXtum3584GZzXsmV3Tvd600qZOZb12hw6hZe1av8elBRj7KnUh5y8Qm407V2m33sLlprlzrNZz4UR76A2q+euvfSYzAy5hd7yuNayQoPl4CVp+ZvtDpt1+e4f3OWGX5lvYiVQqzltWv3SpzwpfKrR0Jht0pvC8Xtpvv3UT1VdwrzcZrDBa2cKeQMSRsk8ftgUEIaj3EwGIZKPfhvc/AGw2qEaeAeXAgQBoM1VAKmaQlhDYuMTkSZPYqSB19Whe+aV32yPYy444HGh4xykspt4EUUICbHYHGlqdwi4Iz0v6XXcCYjFa/1wP4+7dHrfJjnDLEHtzMxc+Tb/9DjAMwwm7QD12ALjejgDQ+OEy2LUdH3Izo9C2onXjRpj27gWjUCB12lTUOc9LoIKaIs3KQvIUp9furf/zeD+Jxrzbpv99zkaZCguhueCCNiO5gkF91llQ9O/vdd3KjFKbH/pAnDzpMlTKWFEdjCilpNJ16+BBj+sWJ+xiMHUlEgQs7EpKStC/f3/89NNPOP/88zFr1iycf/75WL16NQYMGIDS0tIomhnf2Fta0OTMz0m/4/aAn9Rsdgee/HYfVygxY0xnPHxBT2TMvA8AG94KpDfZHePY5rWr91Zxoa9gMB08yFaSikRInz7d63a0cOLMrh3DsBRxcrLLa+fl6cedvGQlcpIUsDsIdp1sDtp2AND9+COs5eUQp6Zy+RLuEEK4UKy/weuqIUOQMHo0YLOh4R3fwrowTQWJiIHBYg/Lc9Tw7rsAIezNsUePNu9pjVYu3FiQ4j9nM+XaayFOSYH15ElofeTaJcglXCuJijDCsayoZr11qbfc3EZU02sxXS0PODSSfo/Ta7f6J5iPHvW6HdcsN8wbra2uDs1fsiIs/XZXXiYd+ZWlUXjMcfUEI5Mh3ZnI3/Duu16rBDMj2GxW/8cf7IBztZqrUKzXW0AIIBYFLkoBQFZYiKRLLwUA1HkR1pztEVrgGj9ZAYfBAHnPntwDcW2I4ijxAtbb7dDr0fjJJx3ep2KlxWxDa4Ty1OgDcfKUyZCkprq8jUEIakrajBlg5HIYd+yAwcOYycwIe+wcJhMalrEFD2m33QaIREGH8CkMwyDDWd3uad1y74EYqbxY0/79aP1zPSASIW369JBtBwBJSgrntatftLiDjadtKHb27NmYPHkytm/fjqeeegq33347nnrqKWzfvh1XXnklHnzwwagYWFdXh4suuggqlQo9evTA2gC8QLGmacWnzhyFrlCffXZAnzlQpcMVSzbik80nwTDAnIt64fGJvcAwDBJGj4KiXz8Qkymgpr+9czU4ozgVDgJ8sc23l8kTXBjwggsgKyryuE1TqwX7Ktmn4PaFE+1x99rp1/3pc1uGYTiv3Y6TwefZEbvdFQqZNs1jwUql1gSDxQ6JiEFhWoLffabfzYbjmletgrW62ut2UrGI86Idqw2t5Ym1ogLa779nj3tHR29dmdNbl66WIUHuP7wvUqmQ6gzHNSx92+csTffRYqGi++UXNrcuORkp7UR1IIUT7VH06MF67QDUv+O9iCU7Qi1PGj5cBmKxQDlwIFQjhnOvV2vZxdNfRWx7kq64ApLsbNhqa7325cuOUNsN9zBgynXXcX3H6OKTmSgPWJRS0u+8AxCJ0Lp+A4z//tvhfbpoRiLPy65vReNydl5q+u23cQ/E9LwE420E2JAgLZpq/OjjDrl2arkEKpkzCT4C9ht27IRh61ZAKkXaLaynnDv3QYpSgJ3qQB9M6z0UcFEPZqQ8ds1ffQV7XT0kuTlIuvQS6Iw2mJ09OTOC8JZSEs4cDUXfvh7XrQxnQ3SL3RGxaTf1zgdvzYUXQlZYyOV9ButtpKQ51w8zdXS4cdqGYn///XfMnTvX43tPPfUUfveQdBgJ7r77buTm5qK+vh4vvvgiJk+ejKYgBldHG4fRyOV0pN12m8+miABwsFqHR7/ag0ve+gt7yrVIVEjw9g1DMH1MsWtsDsNwi3zTihUewwrtuXY4297gi3/KguoK7y8MSPn7WD0IAXpkJfrtjSVOTkbKddcCAOrfXur3CW1gQTIAYFdZc8B2U1p+/RWW48ch0mi4Y7aHVq12Tk+AVOz/klcNHgzVsGGA1YoGP/0Zw82za3j/fVcYcMCADu9TYeercKI9KddeB1FSEiylpWj59Vev2+VxLU9Cy7MjhHAei5SbbuRy6yiuwongFug0p+dM98OPsJw86XGbHK4AIXRRamtq4god0tp52mmrk+wACifcEclkSHN6vRvefc9jEUukWoYYNm+Gac8eNgw49SbudZe4CN5zIevUCZqLLwLAPhi0h9re2GoJu39m8/8+g0OrhaxzZySex1bC2h0E9frgQ7GUxPPPh6xzZzh0OjStaNuTss30iQh4XhrcwoB07JZLlIYoLm69BZBIYNiypcMknMwIDqMnbsVmadOng5FKufB6siq44gNKm3Xr009h1+m492QSEZcXG4kwvvn4cbT8Qtct1kteHYbHDmi7bjUsfbvNunWqNSkOWNjZbDZIpZ6rfGQyGew+PAOhotfr8e233+KZZ56BSqXCpEmT0LdvX3zv9HDEA0c++AT2piaQnDyc6D8SO042YVtpIzYfb8DfR+vxy7/VWPZ3CR7/Zi/OeXUdLli4Af/7pww2B8H5fbKwdtY4nNcnu8N+1WedxYYVWlu5Ngy+OL9PNpJVUlRqTVh/uC5g+xvee48NA559NhQ9unvdbsNhZxjWj7eOkjp1Khi5HKbde2DYstXntnS02K6y5qDc9IQQ1C9Zyh7vxhshVnsOsx6pcRZO+MmvcyfNeYNq/mKlz3B4sbOX3fEQhJ21thbNX34FoG0Y0J1ACyfcEasTkOocNVbf7gblDldAEWLLE/26dTAfPsx6CZ0Ntt2pCLAitj3Kvn2QMHYM4HBwYd72uOaWhr7INS3/BMRggLxXL6jHjWvzXjVXERv8IpF81ZUQp6XBWlkJ7Q8/dng/UosELfBJnjwZkrQ07vUaLhwYmrhIv+02gGHQ8uuvMB9p2yMzRSWFzPlwFE7rCofJhAbnhJK0224DI2aFREOrGQ4CiBggTR28/YxY7PLaLVsGh6HtQ4vL6xWeODIdOAD9n39yYUCKKz8wNHEhzclB0mVsOLx9KggXio2AMNJ+/z1slVUQZ6Qj+corAbiux1DCyBT12WdD3q0rHHo9l55EiWSbn4Z3nOkr55wDRffubfYbqrADnOuWTAbj7t1t1q3TVtiNHDkSi70MSl+8eDHOOOOMiBlFOXLkCJKSkpDjlsw/YMAA/OshRGA2m6HT6dr8RBuHxYLad9mnnreyRuLSJVtwxeKNuGrpJlzzzmZc/94W3L58O+Z9vx+fbjmJY3WtEIsYTOyXjZV3jMTbNw71+lTNiEScuGj66GM4Wn2H+hRSMa4YlA8A+GyrZy9He9yrAdNvv83rdu3HiAWCJD0dyVddBYD12vmiT24SpGIG9XpLUO039H+sg/nQIVZYOPMjPOFplJg/EkaNYpOBTSY0LvNcZQe4e+yCD8U2LvvIYxjQnVCEHQCk3ngDGBpW+NNzODwvjCbFhBDOo5Ny3bUQJyV12IaGeH01J/ZGurN1S/OqVR7H/dAWJKF67OxueVjpt3fMi63SBdbDzhMiZyI9wLbfaB8O53K9wmh4ylWxSyRcJSylNoxwIADIu3blPGjtQ4IMw0RkikDzyi9hb2iANC8PSU4PIeDyeKWp5R77TQaCZuJESDt1gr2pCU3/+7zNe67pE2GKameaAA0DUqiwywjx3AOsBw0MA/0ff8B06BD3emaE5sUSu52zP+3mW7h5sMFWUnuCEYmQdhu7bjW2W7eyInTuLeVu6Stu61ZtmB47gG0blXwVK3Qb3nF5rN1z7KLRIDrSBCzsXnjhBTz33HO46qqrsHz5cvz6669Yvnw5rrrqKixYsAAvvfRSxI3T6/XQtJtXp9FooPfQp2jBggVISkrifgoKCiJuT3vsDQ1o0KShUZmEPX1GITdJgYJUJTqnJ6Brpho9shIxoCAZF/bNxu1ji/HOjUOwfc65WHz9EK7Nhy80F1wAWWEh7Fotmj7/wu/21w5n/81rD9YG9FTXphrQQxiQcry+FRXNRsjEIozonOZ1u/ak3XIzG1bYtNlrlR3AitJeOez3vDPAcCwhBPVLWcGYcv11ECcne92WK5zw0KLFGx3CCl7C4aGGYn2FAd05GUIoFnCGFa65BkDHsAIlnCbFhq3/sL27ZDKkTp3qcRs6dSJYjx3gDIcPH86Gwz30xqJjfkLNsWv67DM4dDrIiouReF7HCStcc+IQPHYAW8Qi0mhgKSlh+xO6kaiQIsGZ6xVqEQL15niqYqfiKBzPC732datXw9KuMC5c70WbMOAMNgxIqQuhIrY9jETCLfgNH3zQpvVMVgQ8dm3SV25r+0DMVcWGYb+8c2ckXsC2vXL32kWqeIJrj5OczPXPAxBW8YE7mgsvYIV1c3ObdStS3tLGD94H7HYkjBoJZf/+AACHgwTVlNsXabfeCkgkaN24CcY9ewC4RLXJ6oDOFP/TJwIWdoMGDcKWLVsgk8kwe/ZsTJw4EbNnz4ZMJsPmzZsx0NkmIJKo1eoOnjedTge1h5DbY489Bq1Wy/2U+WlVEQmkOTmYtP5HjFjzPf5+8kJsfOwcbHj4bPzx0Hj8NmscfnlgLL69ezSW3DAEj03shfP6ZCNZFXiVGiMWI+22GQCAhg8/8DmLDwC6ZSViYEEy7A6C73b5brDrrRrQExucod2hRSlQygLPvZDm5XG9ser9VJhyeXYBVsa2btzoyi+aNs3rdoQQzmPnq4edJ9Tjx7ONN1tbPVbZAeDGilVpTUFV2vkKA7pTFqLHDmBnFTMyGYy7dsGw9Z8O74fTpJjLL7rqSkgyMjxuUxFC8YQ7NKTWvHJlh95YNPetxWQLuhO/w2jkvLBpt83wmBcbrrATq9WucPg7HYV1FtfyJPhFznToEPR//NEhDEihOUzhLNAKel06HKhv174i3ApB7XffwVZdDUlGBjcKj1IbAWEEAEmXXgppbi7s9fVo/mIl93oketl5S1+x2h1oaA2+D5wnaHW17qefYDlxos0+9ebQPb3E4eD+dml7HEqtLjLnnpFIkDbDmWfqtm5FIpzpnr6S5rZuNbRaYHMQMIyrUCNUWC/yxQBcnlmlTAyNwtkg+hQIxwbVx65nz5749NNPUV1dDavViurqanz66afo6WFKQSTo1q0btFotqt0qE3fv3o0+ffp02FYul0Oj0bT5iRXeFrZIkHTJJZDkOHtjffWV3+2vGJwHAFi1q8Lndg3LPFcDesIVhg3+35k2YwYbVli7FqZDh71u58qzC6wwpsGZW5c8pW1+UXvq9GZojVaIGLZ4IhgYkYh78m/8eDns+o7h1mSVjGspUVIfWDi2bRjwNq/eOruDcKIrFGEnzcx0hRXe7pgIT3PsGlstQS0Uxr170bpxIyAWI/WWWz1uY7LauUUuFI8dAKjOOAOKAf1BzGZuhi5FLXd14g/W69UmDHjRRR3etzsIt/iEkmNHSaHh8P0H0LphQ5v3ssLoxE8LVjQXnA95584d3o9ESA1w5Zlqv/0O1grX/SScJH5is3EPeam3uMKAlFArYtvDSKWcN63h/ffhsLQVXKGKC2tlpdf0lXo92/tQImKQGsQDvCcUvXohYdxYNs/0Pda72aaqN0Svnf73313tcdrlxUYiR42SfNllkGRnw15Xz1WHR6JlCJe+MmgQVMOHca/Tfaar5ZAEUCDnj7QZznD4b2thOsyuW9lhPIzFmvDPQBRRq9W49NJLMXfuXBiNRnz33XfYt28fLnF6gf4LMDIZN4ey8b33/Y6Kurh/LiQiBvsqdFzRQHtsTU1o+swZBvQhLAD2KXTTMbZ4IND8OnfkxZ2ReL4zrOCj4fLAAlejYovNd+87wz//wLBtG3vzvuUWn9seqWG9dYVpCSFVeiWefz5kRUVwaLVo/vx/HrcJNhzb9KkzDNi5MxIndAwDUqq0RtgcBDKxKOSbbeott7JNZzduhHHv3jbvJSmlSHQ+hQbT8oQm7SddfDFk+Xket6Hh3QSZOODRSu1hw+HsU3nTp591mEMZSi87YrFwlc7tw4CUBr0ZNgeBKMynf0lKClKuvhpAxyKWUJsUm4+XQPfzzwA6hgEpkcg1AgDVoEFQjTyD7enoDJ267zcUz4Xup59d7XHcwoAUrvggTFEKAElXXM62nqmp4cRFuHlq9e+yo+dUZ3RMX6FiK10dfJsZT6Q7uxQ0r1oFa00NAPcChODPPZu+4syLveF6rj0OxeXpDf/cMzIZG9KEqzo83CbFtsZGNH3GNrNuv27VhNnqpD3yLl24ezMt4IpUNXssiGthB7CFGWVlZUhLS8NDDz2EL774AikpKXybFVOSr7wS4vR09mnRz6io1AQZxvfIBAB8vdOz167xw2UgBgMUvXuz8zl9sPNkM1otdqQlyNA7JzQvaLoznKxbvdpr+4qiNBWSVVJYbA4cqPJd+FL3f2zz1KQrruDaDHjjsFPc+mtM7A02HO588v9wmcdRUV0yWU8gnW7hC4fB0LY9jti72KT5dfkpypATyWX5buFwD167YAsoTPv3Q792LcAwXJqAJ9zDsMGMVmqPevx4yHv2ZM/b8rbhcFdlbOA32uZvVrFhwMzMDmFACs3by0xUhP30n3rzNDYcTkcfOQm1SXH90iWAw8E2s/YQKbHYIhcOBID0O9gxac1ffgVrTS0AV35jsG0riN3O5cWmTpvqsedkpEKxgLP1jFNc1L/zDojFElaemrW6Glpaxe5h7GIkRSngzDMdOhSwWtH4AdtIOBxhqv/zT5j27QOjVHrMi+W8pRG4bgAgefJVbarD3ZsUh0Ljh8tAjEYo+vTpkL5CxWIoxU7eoG1UdD/+CEtZWVTn3UaauBd2GRkZWL16NQwGAw4fPvyfnEsrUiiQdvM0AJ6r7Npz+SDWi/Ltzgo42vW0szU1oYmGAe++y++iu+EIm183umt6yE+hit69O4QV2sMwDAbkJwPw3c+udctW10xbH5W8FFo40T2IViftSbrkYle+zpcdw+HBVMY2rljBhgHz89tUA3qC5tflhxCGdSftthkdwgoUGo4tD7CAgopqzUUXQd6li9ftaA+7UCpi3XEvYmlcvrxN01kaJq0K0HaH2Yz6JUsAAGnTb+0QBqRUhZlf5440MxNJV7Jj1hrcKkxDaVJsPl4CnbN9Svo9d3vchvaAk4oZbrJIOKiGD4Ny8GAQiwWNH7LigoaRgw2B6378EZZjxyBKSuoQBqTQBTojzFAsJXnyVRBnpMNWWQXtd9+1yVMLdvpEwzvvglitUA0bhoThHdNXIilKKbS3aNMXX8DW1OTW8iQ4cUQIQf2b7Azg1Buuh6Sdc4QtPoiMp5fSvjo8Q+XMUWsxdViX/GFranJNd/KwboXTu9Ebyj59kDBmDLduZXEPBYKwE4gQyVdf42o662zM6I1zemUiUSFBpdaELSWNbd5r/Ogj1wifAKZkrKdjxEIIw7pDwwrab76BtdJzYQfNs9vpZQIFIQT1b7E3p+SrroQ0N9fvcWk4unsQFbHtYaRSVzLwe++BOPN1KLSXnb9QrL2lhRO26ffc7TEM6E5ZI82vC08cyYuLufYVDe3aV+RzBRT+mxQb9/0L/e+/s6PnPHgs3Am1h50nEidMgKy4mG0665wrCrgKKKoCvNE2f7GS9dZlZSHZGSL1RCTy69xJu9UZDv/7by4cHkpYx91bp/SQZwy4T51QhOUppTAMwxWxNH3+uVNcBC9KidXKjSlLu+UWiBM9/z3WRdjrJVIokObMA61/+x0kiBHS9AlrdTWaV7JFGHTsXXtqIyxKAec0h969QYxGNL7/vpvHLjhxoV+7Fqb9+52TaTqmrzQZLLDaWbEVbvGBO+7V4aotbJ6p1U7QZLD4+WRbGpc5161evaA+66wO70eiB58nqPNA+/XX6GTTOY/1H8mxu+WWW/DBBx9EpUmxAItYnYBUOoN1yRKfA94VUjEu6se2QPhmZzn3urWmhhv1kn7XnX5v/M0GC/aWNwMILb/OHdXgwVCNGAFitaJ24UKP2/ibQGHYtInLrUv3MSWDQgjB4ZrAZsT6I+mKKyDJyICtuhrN36xq8x712JXUt/qc+tH44TK2036XLlx41Beh9rDzRLpbWMG4z9UHMj+Iyti6N98A4PTWFRf73LYiQh47wNl0lhaxuDWdzQkix85hMHCh6PQ77/TqrQMi67EDAFl+PldlV/vqayCEuIRdgF4v06HDLm/d3Z69dUDkCifcSTjzTCj69GHFxbKPQpq5qv32W7bFRmoqUm/w7K0jhESk3Ul7Uq6ews5PLiuD7scfQyqgqHvrLdZbN3QoErwUm9VGwXaGYTgh2fjxchTY2LZLQYlqhwN1b/0fAHZCTHtvHeC6btISZJBJIufvca8Ob1qyGJkqcZvjBYK1uhqNH/tet+h3SdMEIoVq6FBu3eryHRvp+s/k2BFC8Nlnn2GAj15oAuGTesMNECclwXzkKJo+/9zntpOc4dif9lbDZGUFd91rr4MYjVAOGuQzaZ/y99EGOAjbJiQnyNFKnsicPRsAoPvu+w6J/IBL2JU2GNDU2vaJjlitqFnwAgAg+eqr/ebWAW0rYrsE0ZzYEyK5nCtiqXvjjTbjcvJTVJCJRTDbHFwIsj3W2lqusjPj3nt95tZRIinsFL17Q+MUk7UvvMAl8ucHOC+2Zd06tK7fAEilyHDO0vUF3V9+iK1O2qO56CJICwpgb2zkmubmBDEvtmHZMtjr6yHNz0fyFZ5z6yi06XGkPHYAkH7vvWBkMhg2b4b+99850Vjb4r/hKSEENc8/DzgcSDzvPCj7evbW0f0BkfVcuHvtGj/+GPKG2qC8XnZ9Kycs0mbM6DB6jtJssMJiD31WqTdEKhVSb2abONcvWYqsBNZTHqiwM/77L7Rff8Pa9eAsr9tFqmilPeqzxkM1fDiIxYJeP7LhyGA8ds1ffcU2clerkXbzzR63ofmSkQxlUlJvupFbty4rY6c5BGN/3evOdWvwYCR6ScWqiXB+oDt03VKv/xXdmsr+O6HYDz/8EL/++it2+2hCKxA+4qQkZNx/HwCg7s23YPMxM3d4USrykpVoMdvw24EaGPfug/bbbwEAWY8/FlCY5rcDbCXW2O6Raeei7NuHG5dT8+KLHRa0ZJUMxc6WJLucnkJK02efwXzkCMTJycjwkl/UHloR2ylVFVJFbHtSrr0WsuJi2BsbUfd//8e9LhYxXCuVo17CsbUvvACHwQBFv34eG+J6IpQ5sb7InPUAGIUChm3buBmyXI6dD2HnsFhQs2ABAPYmLSsq8nusSIZiAbY3VtYjDwMAGj/4AJbS0oCnT1hOnOCmZGTcfz8Yme9WFC6PXWRsB9giFioual58Ceky9u/PaidobPUdlmr59VcYtmwBI5Mh8+HZPrflmhNH0GMHAOpzzoFyyBAQoxG1L7zI5QgGIo7qFy2CraYG0k6dvM5zBlwiMUUlhVwS/t+rOynXXQexM5Xl7EPrAQSWxE8IYa99QqC5+GKoBg3yum00PHaAc9rHw+y1n/TXWnRtLg/YY2drakLdq68BADLuvcfjhBjAXZRG1naAbZaeft9MAMCF/3yHREtrwPYb9+6F9lu2vUzWY496XbeiFYoF2HVLcyn7UDx93/eo1QWfIxhrghZ2jY2NMDhDIXa7HStWrMD//vc/EEIgDsALIRAeyVOmsFWCWi3qFr7hdTuRiMGkQWwO2qptZaiZPx8AoLn0Eij79fN7HKvdgbVOYXe+h1m2oZJx//1gFAoYt22HzsPMX+q12+nWqNhWX486Z+JvxqwHfE6ZcMc1Izb0/Dp3GJkMWU88DgBoWvFpm0IE18zYjgUU+g1/Qbf6J0AkQva8uR4b4nb4jNnGVTdGSthJc3K48VO1L74ER2sr51Gr15s5z257Gpd9xIbRMtKRfqfv3DqA7QNHQ4yRCMVS1Oecg4QxY0CsVlTPf45bhJoMVq+2E0JQ/cyzIBYLEkaNhOaiiX6PUx3hHDtK2owZEGekw3ryJFo+WY50tXMouo9FzmE0ovZFdqpP6q23QJaf7/MY0UgiB1hxkf3UU4BYjJZff8XIhsNtjucN06HDXBgte84TPkPgruKDyC/OYnUCMh64HwAw8vcvkNnaGJAo1a1eDeO27WAUCmT68NYBbvZHQRy5i4t7d32JuubAembWvb4Q9uZmyLt391qwArj1sIvCuQeAlClTIO/eHUpTK2468HNA557Y7ah2rltJl13mdd1yrwSPVPpEezIfeACMXI7+Dccx5uQONAaZIxhrghZ25513Hg47F7RHH30UL774Il5++WU88MADETdOoCOMWIxsp7ho/vxztlGsF2h1bMrqL2HcvRuihARkzvJ9c6JsPt4AncmGtAQZhhRGrr2MNCeHq3Ksfu55roUCZSDXqLgZALswV82bB4deD0XfvtzA6kA4HIGK2PaoR49mw9h2O6oef4IrpPDWy87R2orqZ54BAKTeeKPXpPf2UG9dikoKjSL86kZK2q23QpKbA2tFBWpeeQVJStd4K09eO/ORI6h3eiczH3wQYg9TX9pT22KCzUEgETERDUsxDIPsJx4HI5Wi9a+/gF9WcyFBb7lquh9+ROvff4ORSpH15JN+PdWEEJfHLsLiSKxOQOaDDwIA6t96C/0tbH9IX4tc7SuvwlpRAUlWFtJneG8vQ6mJktcIABQ9unP5Upf+8QlUVqNP24nViuqnngLsdiSedx7UY8f63H9tFPID3UmeMgWqoUMhsZgwc/eXfkNq1tpa1DzLCou022Z0GN3mjt1BUK9n7wXREKYAkPnQQ2DUiejeXI4J+9Z6fZihtG7ZyhV8ZD/1JBiJxOu2ke4D1x5GIkHWE08AAC4u2QTs7DgJpz2NH34I0+49ECUkIGOWd31RF+FKcE9Ic3K4dIQ79qxCzfHoT7YKh6CF3ZEjR7hcuo8//hg//fQT1q5di8/95HwJRA7VsGFIvoat6qt45BFY3SZzuNM1MxGXMLW46d/VAFhXdiC5aQCw5l/WWzehd1bIPdS8kXbrrVD07g2HVouKBx5oU2VKPXa7y5rhcBA0LV8O/W9rAakUOc88HVBuGoXz2GVGxmNHyXricYiSkmDatw+1r74KwHMvO0IIqp58CtayMkhycpB+770BHyOS+XXuiBISkOt8Cm7+7H/QrV7NhWPbz4y16/WomDWL9XaNGYOkyy4L6Bg0zzA7SRHxa0dWVMRV5FY/+ywG2dmq70oP4Vjz8RJUz50LgG0b4WlKQ3uaDFauQXakc6UA1vOgHjcOxGrFLWvfgcpq8iqOdD//zLV4yJk/32Pft/ZEK8+Lkn7vPZDm5kLTXIf7d65EjY9WM7Wvvc4+UKrVyHrsUb/7pqHMSObXucOIRMh+9hk4pFIMqT2M4j++9botsVpROetB1tvVuxfSPYxuc6ex1QK7c6QV9cRGGmlmJrIeewQAMPXAz6hev8nrttbaWlTOng0QgqSrrmT74fnA1YMvOtcNACSMGI668azH/IzP3uSaLnvCsG0bap0RqazHH4M0K8vrtpGuBPdG2q23ojy9ABqrAba5j3fojhBPBC3sZDIZDAYD/vnnH+Tm5iIvLw+JiYlobQ3MNSwQGbIefhjybl1hr6tH2e13wNbY2GEb06HDmPHrUkiIA7u7DUNSgN4uh4NgzX5WLEYyDEthpFLkvfYqRGo1jDt2oPLRR7kq357ZGsglImiNVhxduQo1L7wIAMh66EEoevcO+BjuFbHdIuixAwBpdjZy5j8LAGj86GM0fPBhh152hBDUvvwKdKtXAxIJ8l59BWJ14CPNIp1f507CqFHsqDcAVY8/gVHa4wDatjxxGI2omDkT5iNHIcnIQO7zzwV806Sev0iGYd1Ju+02NpncYMC9axYjq7Whg8fOWlmJsunT4TAYoBo2jPMS+6PKKRDT1ZGtDqQwDIOc5+ZDkp2NtIYqPLnlQ9TWazts17p5CyoffQwAkDptGtRjzgxo/5Ea5O4NsVqNvNdehUMsxpjKPej61fseiz8aP/6Y63uX89xzPr1dlGiGYinyzp1hupWtMj13w0qPDd+JzYbKxx6HYds2iBISkPfyy37zMqntaQmyiIy08kbyFVdgc5dhEBMHDI/MgungwQ7b2Jqa2DWhthay4mJkP/643/1G+4GAYp5xD0oTs6Bu1fpYtw6h/J57AZsNmokTkXTFFT73WRPhKnZvMFIpfrriXhgkcsgO7G2zbsUbQV+B1157Lc466yzceOONmOYcvr5z504UBZBQLRA5RCoV8pcshTg9HeZDh1B6zbVo3bwFhBAQux3N36zCieuvh1Svw+GUAszrMQnHA5xluru8GTU6M9RyCUZ19T6HNRxkRUXIe/11QCqFbvVPOHnrdJiPl0AmEWFwhhw3HvgZtnlPAA4HkidfhZSbbgpq/7QilolARawnNBMmIOP++wEAtS+9hOQlr0JjbkW93ozGE+WomDULjc7RVTnz5kI1eHBQ+4+Wx46Scf99UJ99NojZjCtXvoIrjqxDZS0rMEz79+PEDTeideMmMEol8hcvCmoeMvX85UdJ2DFiMfLeWAhZURGSWhrw2vr/g/XPP0AcDhBC0PL77yiZcjWslZWQFRYib+HrPsNQ7lQ10/y66NgOAJL0dOS/9RZsCiUG1h/DkJcf5lrQOMxmNH70Ecpuuw3EZIJ63DhkPvRgQPs1We1oMrAjByMdRnZHOXAg6u54CAAwcMvPqJh5H6xVVQAAe3Mzqp5+GjXPs8U26TPvheb88wLab7QKP9qTdN21+LFoJESEoPLhh1H7+kKu8bWltBQnZ8yA7ocfAIkEua++4rMRd3vboylKAfbB4Jfzb8a/qUVg9C04cd31aP7qaxCbDYQQtG7dihPXXAvzgQMQp6WhYOmSgDy91ZzXK7rnPjMzBfPOuAVaRSLMBw+2XbdsNue6dQPszc1Q9O+PnPnP+n2gjHYY2R15URGeH3YjHGJJm3Ur3gjsbufGG2+8gTVr1kAqleJsZ4NbhmHwxhveE/kFooMsPw+Fyz/GyVtvhfXkSZycNg3itDQQsxkO541KOWQIVp95K0wnDFi1swIPntfD735/2MPepMf3yIh4dZo76jFnIv+NN1D50EMwbNmC4xMnQpKZiScamyG2sW7u5GuuRnYAuVHt2V/JtiMpTg9tRmwg0JEzdQsXovWrL7GC+RpNikRUf6sDQwggkSD7ySeRfNVVQe+7LMrCjhGLkbfwdVTOfhgtv/yCGf/+AOvjv+LISxrY6thpI6KkJBQsWRJQsY07kZo64QtJSgo6ffQRdlw3FakVpUh9+3kc+d8iEAAOLStQ5T16oGDJYkjSAn84qYpCqxNPKPv1Rcns55H54hykVpWi9Cp2QoKj1QDiLE5LnHAucl99NWBRSsWFXCKCRhn0rT0oEi65FK9vLMHMXV+i5ddf0fLbb+xc1ro6wOnFSL/3noCKbSjR9jZSspOUWDTgctgZBpeWbETD22+j8cMPIU5Jgc0ZHmSUSuS98jIS/YxcpLj6qEXXdgBISdVg3hm34L3jXyLp4B5UPfEEap5/HoxCAXsDm7cpyc1Bp7ffhqxTJ7/7sztc/QOjbX+WRoGahDQ8POYuvL/vY5/rVsGSxQGJUldeafTPfZZGjs+yemLddbNwzlf/x61bss6dkX733X6nCcWKoD12kyZNwvnnn8+JOgAYMmQI3nJOBBCILfLOnVG8ahWSr70GjFIJe0MDHHo92xbkgQdQuOxDTBzZHQDwzc4Kvz2zrHYHVjlnzE4a6HnAeyRJPPssFH35JTcFw1ZbC7HNgvKEdCw//3Zkz50bVF4d5V+nsOud67m8PxLQcVedli2DondvSIgDGUYtGEKgHDoERSs+8TjoPBBONERX2AHsLM28ha+j/vZZqFUmQ2o1swuzRALNxIko/u5bqAZ7b+/gDfc5sdFEmpWJY3MX4n/dz4ZZroRdq4VDqwWjUiFtxnQUfboioOkk7tDCiWgLOwBIHDIYd501C9u7jQDEYtjr6kEMBkhycpA9by7y3nwTIj8hQHeq3cRFNHONALZ6ck3hcDx81n1QDhsGEAJbVRVgs0HeqxcK3n8PGXffHZQdkRxC7wu1XAKVXIolA66A5JkXICsuBrFYOFGnHjcOnb/6EonnnBPwPmti5G1kj6GAXqbC+hlPIvOhByFOToajtRX2hgYwcjmSr74anb/6CvJu3QLaX73eDAcBRAyQHsGpE55IV8vAMMDJhAxoVnyO5Guu5gRpm3Xro2UQawKbTR6rUCzgeujYntcXnb9cyU3BsJSUgImiEyRYgn6s++OPPzy+/ueff4ZtjEBoiDUa5Mydi6yHHoK5tBSMRAp5cWduZNV5vbORIBOjvMmITccbMKqL9ykSvx+sRUOrBelqOcb3iEz/On/IizujYPEi2JubYSktRR0jx4xPj0EiFuEpmyMkjxv12PXJDezmEA4JZ4xA56+/wgsf/I51mw/ignMH4f4pI0Pen9Xu4EKxnTMCz8sLBYZhkDR5Mi6rzkZ/osX/bhwIWacCr/2uAqHSGc6MVA87X2RnJuPx3hOx6+wr8fl52SCEQNGtm9+cKG9wwi4GtmdpFGhUJmHhiOux5dO3YCkpgSghAbKiopAeZqLZy6s9tHJ1vyYPKa+8jzx9E2zV1RCnpkGWH/wDISHETRzFwn4FSupb0TD0TIyYfCmsJ0/C3tQEaadOkKSmBr2/arcE/mhDi0tqWu1Imz4dqTffDPPRoyBWG+TFnQPycrlD81MzEuURL3Zqj0QsQrpajroWM+ohQ59585D50GxYSkvBSNuuW4ESrSp2T1DhXqMzQV5cjIIli2FvboZhx86QHoKjRcDC7q672G7zZrOZ+3/KiRMn0KOH/xCfQHQRJSR4bKehlIkxaVAeVmw5iXfXH/cp7D7aWAoAuHJwXlSTgD0hTk6GcuBAFBCC9O8rUK83Y1+FFkOLgr/R/lvJhuNiIewoWT064+BhIzqZwiu5L2s0wOYgUErFMblZ5SUrQRgRdjMpYHr2gjiM0DUhJKLjxPyRrXFOztDbgyqu8QYNI8fCY0cXiXq9BXZlApT9+4e1P07YxcB2hVSMJKUUWqMVNS0mdM/KhDQzM+T9aY2uauRoVcW6k5koR0l9K2p0JjAMA1lhIVBYGPL+YlV8ALjy4GjBBiMWQxHG+st5emNgO8DaX9diRq3OjD65bBsgX9NU/BGrED7gEu7uvSfFyclIPLvj/Fo+CXjlzsrKQpaz5Jj+f1ZWFrKzs3HJJZfgu+++i5qRAuEzY0wxRAzwx6E6TvS0Z1+FFhuPNUAsYnDTqKLYGugGwzB+58b6osVkRakzlNkniqHY9tAijUCLVLxBmxx3Tk+IekgNAFITZFA6xVwg47l8oTPaoHfOD42Fx44KsHq9BWZb+LOqq6LQWNkbqQkySMXs9xvsUHdPVHOei+gLI/Y4wc9c9QZdKFMTZFHN66XQth6BTJ8IBBpGjvSsUk9QARPMvFhfxFKUuh8nEtcNIaRNCkK0ocdoaDXD6hx/F48E7LGb6+wHNX78eIwbNy5qBglEh6L0BFzcPxff7a7E86sP4JNbR3QQDQt/YxtPX9QvJyaLsi8GdUrGbwdqsDMEYXegiu1fl5OkQGpCdHpKeaJLJivsTjS0wmp3QBqix7PEKQyLoxyGpTAMg/wUJY7U6lHeZODGo4UC9dalJciglEV/gU5WSSGXsHN6a7RmdEoLPSeREOImjqK/SDAMg8xEBSqajajRmbl+gqFCk8hjtUBnauQ4VNMS1EB3b9TEqCqTkpXoCqlFgpoYVcUCrjB4JB4GAMRUGAHu4czwr5sWsw0GC/tAF4u/2VSVDBIRA5uDoF5vjmr1fDgEnWNXU1ODL774wuN7U6aEliguEBtmn98DP++rxt9HG/D9nipcOsCVWP7n4Tr8dqAWEhGD+84NLOk2mgyiHju30WKBQj2SvXNiF4YFgByNAkqpGEarHWWNBhSH2GbleD1bGVYchsAKFpew8z131R+xDMMCrDjKTVaipL4VVVpjWMKuodUCi90BhondIpedRIVdBLxe2lPX8xLLcJr7cSIhLqx2B+r1McwPdIpH2kw73H6L1doYPxDQcGYEhCm95pOU0pg8SIpEDDIT5ajUmlCtNZ0+wm7JkiVtfq+ursaxY8cwevRoQdjFOQWpKtwxvgveXHsEj3+9F10z1Oidq0F5kwEPfrELAHDTyKKo9H0Lln75SWAYVijUtpiCehL+N4aFE+6IRAw6pydgf5UOx+paQxd2ddRjF7vvgVawujcpDoUK5+dj6fHNdibCV4cpMGgPuwy1PGRva7BEMpxZHXNxFDmvV21L7KpKgch6ver1ZhACSEQM0mIQIUhRSSEVM7DaCer05rD/1mpbYnvdcOc+AqI6loUTlEyNApVaU0QeCqJFRKpiP/74Y+zcuTMiBglEl5lnd8WmY/X4p7QJk5duxPgemfjraD20Rit652gw+/z4KIJJVEjRPTMRh2pasOtkM84LYgLG/hi0OvFGl0w19lfpcLxOD8D7GBxf0By9cEKiwcKNFQvTYxftqROeoHl24eYH0rFksaiIpdBFLlxRylaVxnaRO5U9dvRBMRLiwhWGlUMU5apSoH0I3xS2sItl+gHgqtqOSF5pDAuGKPQ8RSoUHg0i8lh6ww03YNmyZZHYlUCUkYhFeO+mYRhZnIZWix0/7q2C1mhFn1wN3p06NCbu7EChBRTbTzYF/BmLzYEjtWyOXaw9dgDQxZkXd6xO72dLz7SYrFxCd7RbnbiTz3nswhN2J5xtWgrDCIkGCw2bth8rFiz08zkxfPrPjlAivNZohdlZVZoZI69XJMOZXI7dKehtjLXtgKtyOBLC1JVjF+vrJnKh2Fj+zUby2okWQXvsamtr2/xuMBiwYsUKZAc4XF6Af5JUUnwyfQTWH67DrrJmFGck4MK+OVGZjRkOwzun4vNtZdh0rCHgzxyqboHVTqBRSDixEktoGPtobWjCjhZOpKvl0CjCa5sSDNRjF66wO9kQe2Hn8tiFZ7vLYxfLRSJCotS5yCSrpFGbtNIeV3Vm5Kpis2JUPEFFWKvFDr3ZBrU89EkdsRxpRaFFJnVheo0MFhtaTGwVe6xFdV2LGXYHCat3Hh8eu0zub/Y0CsVmZ2eDYRhugoFKpcKgQYOwfPnyiBsnED3EIgZn9czEWT1D7z0VbUZ3Zfvt7a3QQmuwIknlX+hsP8EOlR7UKSUmrULa0yM7EQArMB0OEnRoJtYVsRQazqlpMYWckE0I4RorF6bFzv5sZwJzuKFYmmOXG8OE6Eh5L6gwimWuURaXp2YO6Vp3J9YtN9RyCRJkYrRa7KjVmaAOI5811mFkwOWVDddbSj+vkomRGIa4DYY0tRwiBnAQtm1IOJXEsQ4jA24PNKdTKNbhcMBut8PhcMDhcECv12PDhg0YOnRoNOwT+A+TnaRA10w1CAE2Ha8P6DPbnVW0QwpTomiZd4rTEyCTiNBqsaMshEKEY7RwIob5dQA76kcpFYOQ0Aso6lrMMFrtEDGxLZ6IVI5dFS8eu8iEdWJdEQuwXmWGAWwOgoZWS8j7cTiIW/FE7D0vtWH2sovlxAxKVmJkHgjchVGsHoTFIoYbXRZuKDnWYWQgsgVP0SKk2JvNZsOGDRvwxRdfYMOGDbBarZG2S0AAADC6CzvA/a+jgQm7HSfYfDy+hJ1ELEL3LPbp/0CVLujP8+WxYxiGC5+WNoTWYJnm1+UmK2Ma1nc1KTZz0wtCIZZzYilZbiHBFlPo99FqHsKBUrEIaQnhC9OGVgtsDgKGYR8wYgU9V+GGwfnw2NHQY7hFN3zY7n688D3VVJjG0sseuT580SLou++WLVtQVFSEW265BUuXLsUtt9yCzp07Y/PmzRE17NChQ7j44ouRnp6OjIwM3HDDDWhqCjyJXuD0gIZjNx71n2dXpTWiotkIEQMMcBZe8EGvbLZoY7+zUXIwHHcWXXROj33LGVqFW1ofmsfuBA/5dQA7rUAmFoGQ0MMjDoerqjSWvakS5BIuBBbOQhHrilgK9ZSEE5aitqer5TEdY5gToRB+Leexi52ozo2Q7Xw8ELgfL5xr3mJzoF7Peopj1XcScHl6tUYrTNbwp91Eg6D/iqZPn46nn34aR44cwe+//44jR47g2WefxfTp0yNqmFarxZQpU3Ds2DGUlpbCYrHgoYceiugxBOKfM7qkQcSwLUBo81tv0CKLPrlJYSVDh0tvZzVusB47u4NwRRddM2Mv7GheXKgeu5POz3VKjb23MdzK2Hq9GVY7gYiJ3fQDCvW+hOO94KMyE3APCYa+QLv6qMX2vEeq6CbW/QOByFWCx3K+sDsZEQgl08/KJCKkBJB/HSk0CgkUUlEbG+KNoIVdeXk5pk6d2ua1G2+8ERUVFREzCgCGDx+Om266CUlJSUhISMCMGTOwdevWiB5DIP7RKKTon58MAPjbTzj2ryPs+9TLxxe9ckITdicbDTDbHFBIReiUGluvFwB0TmePWRLirFs+Wp1Q6EJXGeJCRz+XmaiIqdcIiEzOTqwHuVMyI2C7qyI2trbTfoWVzaHbbrLaoTWyIfRYCrtcZx6o3myDLowQPl+eXvfCm1Bxr0aOZaEcwzDc+QpXWEeLoO9gd9xxB1588UXYbGyJtN1ux0svvYQ777wz4sa5s3HjRvTp08fr+2azGTqdrs2PwOnBmU6h9uehOq/bEEK4PLwx3XgWds5QbHmTkbvpB8Khavaa7ZaZGFYLgFApCtNjx4VieRCledwiHZr3hRaM8NEiJxJNimM9FooSieIPvryNuRHw2NEwrEIqgkYRuyiBSiZBkpL1UlWFIUz5qCoFItMqh/695MQwv47CtSk6XTx2q1atwrx585CamoquXbsiJSUFc+fOxapVq9C7d2/uJ5Ls2rULb775Jp588kmv2yxYsABJSUncT0FBQURtEOCP8/qwExz+OFQLo8VzTsPhGj1qW8yQS0S8FU5QklRSTmgcDMJrd6iaDcPSlimxhubYVTQZQypCoK1OwpnXGipUkJU1hpYfWNbILu4FPIhSzmMX4tO/2WbnZpXmxrCiF4hMk2JO2MU4BB6JHLsat3FcsW6vFIlQMuctjXEolnsgCCM3k4rSWNsOuEYw+ksP4ougHzGWLl0akQOfd955WL9+vcf35syZgzlz5gAASkpKcMkll+D999/36bF77LHHMGvWLO53nU4niLvThH55SchLVqKi2Yg/D9fhgr7ZHbb5aV8VADYMG6sGrb7olZOIimYjDlTpMKI4LaDPHKphRWCPLH6EXUaiHCqZGAZnq5ZgZga3mKxodLa8iGUPO0qBs8FyWYgNlmlrmgIePHbhPv1Tj41CKkJqDGaVuhOJMDINhcayRQ7gEkaNrRaYrPaQ7hvUQxxrTynA2n+wuiVkYcq2meGnKjYzArmZrjBybB8IANe1Gu4IxmgRtLAbN25cRA68Zs0av9tUV1djwoQJePLJJzFp0iSf28rlcsjlsf+CBaIPwzCY2C8b724owbe7KjwKux/3sMLuon45sTbPI71zNPjtQC0OBFEZe7Ca3ZYvjx3b8iQBB6p0KK1vDUrY0TBsWoKMl8KV/FTnSLSQPXbOUCwPHrtw+/BRcZGbrIy51ygSjXLd7Y8l7JQOEUxWB6q1JhSF0DuSitL8GNsOuHIEq0L0GtW2sAVDYhETs4kfFCok2aIlB6Qh5LVW8dC7kcIJu9PFY6fVavF///d/2L17N/T6tmOTVq9eHTHDtFotzj//fNx000247bbbIrZfgVOTK4fk490NJfh1fw1qdaY2+TgHq3U4UquHTCzCub2zeLTSBS2g2B9gKFZvtnFFC/SzfNA5XYUDVbqgCyj4DMMCLo9deZMxpCkIdJQa3U8sCXecW7lzcYm1xwtwLaoNreaQJpYQQtyEXWwXaIZhkJukxPH6VlRqjSEKO35EKeCajxrqAwEVJdma2BcMpSXIIJOIYLGxojqUFAhqPx95sTQUG2pOb7QJWthdc801sFqtuPLKK6FSRe8muGrVKuzZswfHjh3DSy+9xL3eXkwK/Dfoma3B0MIUbDvRhBVbTuKBCd259z74qwQAcE6vTC6hmG/65iUBYEVnIGGe/ZU6EMLeZDNi/PTsDi2goB64QOGzcAJgvV5iEQOL3YHaFnNQfa0cDsKFVApS+VskGlstMFhsUMmCuy1X8ijsUlWuBbpGF/wCrTPZ0OrMm41l/0BKTrICx+tbQy5A4FXYJYeXI1jB43UjEjHIS1aipL4V5U3GkIQdfRDK5+FhLNctFEsI4WV8pS+CFnZ///036uvrIZNFN5dj6tSpHdqqCPy3mTqqCNtONOH9v0pwwxmFyEiUo0prxKqdlQCA6WOKebbQRX6KEulqOer1ZvxbqfNb0LG3QgsA6JefFAvzvEK9FsFWxp5wbs9Hfh3ATvzITVagrNGIsiZDUMKupsUEi90BiYjhRVwkKaVIVEjQYrKhstmIrpnBheL5FBciEYP8ZNbrVdZkCHqBpranJsiglMU+N9ZVQBGa54UTRzx4jcKt6qUPM3zYDoATdqGEM01WO+qcrVL4EKb0mK0WO3RGW0BzzGNJ0P7X4cOH49ixY9GwRUDAJxf1y0H//CTozTY88c1emKx2zF65Bxa7A8OKUnivhnWHYRgM6pQMANh50v/ElH1U2OXxLOycwizYUCxtrNyFh8bKFK6AIsg8O1oRm5us5KXNDOBaKEIp/uDT8wK4VQiGYDtfYVhKbpj9D13nPvb2Z7vlZhJCgv48n55e9+OGct1QL6VKJkYyD6JKIRUjzVmoVN4cWl5vNAnaYzdgwACcd955uPrqq5GZmdnmvYcffjhihgkItEckYjDv0j645u3NWLO/Bj2f/BkAWw244Ip+PFvXkUGdkvHr/hrsLGv2u+2ecnYb3oWds0lxZbMRZpsdcol/LwohBEedo9C6BlFwEWlcLU+CWyioEOQjDEvJT1HhYHVLiOKIXeT48NgBrvMeSo4gJ+x48JQC4RUg6ExWtJjYfq68hJGdxzSE6DWq4NHTC7i3DAleGNG+k3k8FAxR8lKUaGi1oKLJiD65/N632xO0x66xsRHnnnsuGhoacODAAe7n4MGD0bBPQKANgzulYNH1g5HgDNukJsjw5jWDgg5fxYJBBawHcXtpk88n6qZWC47VsR6y/jyHYjPUcqjlEjgIcDLAPLuGVguaDVYwDFCcwU8oFnAvoAjSY8e1OuEnPxAIXRw5HITXJHIgvArBCp5FaXYYFck0Ly9ZJUUCD5XgSjdvVZUuhHMfB6FYIMTrponfax4Ivyl6NAn6avzwww+jYYeAQMBM6J2FbXMm4EhtC4oz1LzOhfXFwIJkyMQiVOtMKG0wcA2A27PtBBuq7ZKRgDQ1vy17GIZB10w1dpU143CNHt0C6Kl3zBmGzU9R8tpDkOZ3lQUr7HhsTkwJdZFraLXAYnOAYfhp+wCc6qHY0AsQ+PY2AqzXrtlgRVWzCT2zg6um5z0UG8Z1w2duIyU3jlueBLwiBjKndfjw4WEZIyAQKEqZmJshG68oZWIM7JSMrSWN2HSswauw+6e0EQAwvHNqLM3zSvcsVtgdqmnBRfDfFzAewrCAK5QadCiWx3FilHxukQtOlHINchMVQbcaiRRcu5YQQmo08Z8vj12OU1BqjdagK5L5DmUCbI7ggSodKoMsoNAarWgxs2FkvkS1y+NlCrpFEfVs5yWfeg9jsSDgq/jqq6/2+T7DMDh+/HjYBgkInE6M6pKGrSWN2HisHteN6ORxm60lrLAbVhQvwo710h2pCay5Mlc4wbewcwqMKq0xqKan5VyOHY+LRIih2AqePV6Aa4GrajbB7iBBFaDwnR+oUUihlkugN9tQ2WxC1yCKfyp5LJyg0FBysMPoqZcsNUEWdHudSJGdpICIASx2B+pbzdw0ikCIi1AslyMYf/NiA/5GS0pKommHgMBpyagu6Vj42xH8fbQeNrujQyNQrcHKtTqJF48dDb8eDlDYHXRO1+jO08QMSkaiHHKJCGabA1XNpoCaJVtsDlQ5RxPxm2PHHru2xRxw0QrAb6sTSpZGAYmIgc1BUKMzBWyLze7gxqjxFQ4E2B6IR2r1qNIagxJ28RQOrAxSXPAdAgcAqViEbI0ClVoTKpqMwQm7ODj38TxWjB/fvYDAf4RBnZKRrJKiyWDlcuncWXe4FnYHQfcsNS+NNj1BZ9WWNhhgttl9bksIwcFqdrpGbx4nZgBs1ICrjA0wpFnZbAQhgFIqRro6tnNW3UlRSaF05icGs0iX85wADwBiEcOFNIMJS9W2mGF3EEjFDDJ4zC3NCTEJPh5EdS533oMLg/PdIofi8noFfu6tdgcXwudjlBuFnrt6vRkmq+/7ZKyJz6zzKGO322G1Wvk2Q+A/wuX9M7Hm32psOFiJYYXJEItd3phf99cAAM7tFR+j0AAgSyOHRiGBzmTD0Vq9z1L+Gp0ZTQYrxCImKG9HtMhPUeFYXWvAvezoKLT8FP7aJgAuUXqkVo+KJqPXfMz28J0AT8lLVqKs0YiKJiOGFQX2GWp7dpIi6BFwkaQgxDY5fIeRAffejaGF8PnMUWOPr8Q/aArK61WtNcFBAJlEhHQeHwiSnQ9jRqsdVVpTwH+zseA/J+z0ej3Ky8tDaugoIBAKlxZLMCozE2LGisOHj6CgIB9qtRoGiw1/HqoDgLiZcQuwIqN3rgabjzfi3wqdT2F3wDkLtzg9gdeKWEqhM/xaGmCrFtqIOZQ5oZEmzynsgmnXQpPm+Rd2KgCNQdrOCiM+esC5E0o1dbyEkantweaVxkNuJnv84D127t5GPh8IGIZBXooSR4N8GIsF/ylhZ7fbUV5eDpVKhYyMjLib7yZweuIgBNK6VtjtdkiIEeXl5ejWrRu+3VWJFrMNnVJVGBhnFb798pKw+Xgj9lZoMWVYgdftDjjDsL14DsNSaAHHsbrAZkofd27HZ/89Sn4IYSnq6eDTawSEZnu8eBtDmVgSL2HkDLWcm9UbaF4pEB/FB0BoLU9cFbH82g6w5+9orT7oFkvR5j8l7KxWKwghyMjIgFLJ/0Uh8N8hPYlBbYsJDkjgMBlhMlvw0cZSAMBNIwt5ffL0RF/nBAxa2OGNfyvjS9hRgXY8UGHn9Nh1Sec/jEzDYoEucjqTFU0GNqUkXhboYKp64yGBHwA6Ob1eJ4MIZ8ZLGFkkYkP4x+taUd5kCFzYxVEoFgjtYYbvax6gIxjrcCLACEGs+E8WTwieOoFYk6aWQcQwMNns0JutWLH5BA5Wt0Atl2DyEO8eMb6go80OVOlgszu8brfrZDMAthlzPFDs9NidbDTA6sNuynHnxI948tgF+vRPJ4Okq2VIVPA7hDw/DM8L395G2v+wXm+G0RJYEjxnO89hZMDN4xjgdWOy2lHXYgbAv6gO5bqhhSLx4LGjqR8nGoKbrR1t/pPCLh6ZOXMmsrKycMYZZ/BtCtatW4drrrkm4O0PHjyI8ePHR9SGbdu24dFHH43oPvlEKhYhJ4k2Q7Xho02lAIC5l/QOesZjLChKS0CiXAKzzYFDXtqe1OhMqGg2QsTwPwqNkqNRQCkVw2onfkNrRoud8xQU89yDDwg+P7DUuZgUpsWBKKXexmZjwPnL1P4inu1PUkqR6JxeE2iOIPXQ8G07EHxjbvp3kSiXIDWBv0pwwOUxbDHb0GywBPQZruCJx9nOFPr9B/o3GysEYRcnXHPNNVi9ejXfZsQFdrsdQ4cOxQsvvMC3KRElNUGG1AQ5RAwgl4hx/7ndcNWQfL7N8ohIxGBgp2QAwLbSjm1aAGDnSfb1HtkaXmZlekIkYrgkZuqN8wYtnEhWSXlf4ABXAUddixktJv9V+1RcFAYYfosmtNms2ebgvEG+sDsIyp1CpBOPjaEBZ0UyF44NVNix106goc9oEqzHjoqQwnQV79ErpUyMLA2boxjwA019/Ihqd49dPBVk/meFHSEEBost4j/+vtwnn3wSPXv2xIUXXojzzjsP69atAwCMGjUKaWlpAdtfWVmJiy++GAMGDMCQIUNQVlYGo9GIG2+8Ef3798fw4cOxa9cuAMC8efOwdOlS7rPZ2dkAgGXLlmHKlCkYO3YsunfvjrfffrvDcfR6PW688UYMGzYMw4YNw+bNmwEAhw8fxtChQzFw4EC89957Hm1ct24d+vXrh4EDB2L06NE+j7lu3TpceOGFuOqqq3D++ee38RrOmzcPM2bMwJlnnokuXbrg559/BgC0trZi0qRJ6NOnD+68807u3+VOaWkpBg0ahBtvvBE9evTAnDlz8P7772PIkCEYOXIkmpubAQBLly7FsGHD0L9/f0yfPh0OBxvGe/jhh9GzZ08MGDAAL7/8stfXAoFhGGQkypGTpMA3d43C/ed25/3G6osRzobJW0oaPL6/wxmGHewUgPECDav6K6Cgo9CK46SaTaOQcr30AsnZKa2PD48XwLaeoHl2VDD7okprhMXugFTM8B6KBYBOTu9PoLlS8eJtBFzCOGDb4+i6AVx2lNT7z4s1WGxcNXI8VKHmp6ggYgCDxR7QA02siI/HbB4wWu3o/dQvEd/v/mfO9zqiZevWrVi7di327t2Lmpoa9OrVK+TjzJw5E1dddRWmTZsGo5F98l20aBGSk5OxZ88ebNmyBdOmTePEnTe2bduG3bt3gxCC4cOH45JLLmnz/vz583HllVdi0qRJOHnyJC6//HJs374d999/P+bNm4eLL74Y999/v8d9v/rqq3jzzTdx1llnQat1JeF7O+bmzZtx4MABZGdnc4KXcuLECfz555/YtWsX7r33Xlxwwf+3d97RcZTn275nu6TVrnqXLctFcpHkbmxjbIMNBoMhoYQQiAk/SoCQ4CTwQRIwEIiBEEIKJZXeQzfNBhswYGNs3OWq3ru2afvO98fsO7uy2pZpkt/rHJ1jr1arRzMrzT3301bh8ccfx6RJk/D2229j48aN/cRrOIcPH8Ybb7yB/Px8TJw4EevWrcPu3buxbt06vPbaa7j++utx2WWX4ac//SkA4KabbsLGjRtx+umn4/XXX0dVVRVUKhUsFgu6u7sHPBYtDMNAr4DRICOxoJi70dhZ0w2WZQeI0O1VnOCbMz5V8tiGg1uJ1oKjrcNvzjgSHNVSqpDGD4C7WHXaPajudPANLEOhJMcOACZkGNHQ7URtl4N/7wwFqQ8sTE2MagWZWEzIMAJo4wXbSCjp2E8Iaxga7Pf0ZJQkSgHuPf9NTTdqOiO5meGek5KoRUqi/C47uaHh3vd9yDLJW7NIOGUdOzn4+uuv8b3vfQ9arRYFBQVYsmRJzK+1fft2rF27FgCQkJCAhIQEfPnll7jqqqsAAAsWLIDb7R5ReJx77rlITk6GyWTCWWedhW+//bbf5zdv3oz169dj5syZWLNmDdrb2+Hz+bBv3z6cf/75AIArrrhi0NdetGgR7rjjDjz55JPweEL1E0N9z9NPP31Q1w0AVq9eDbVajVmzZqG+vh4AdzzJDuPzzz8fiYmD/5GdNm0aiouLodfrUVxcjJUrVwIAysrK+Nfat28fFi9ejLKyMrz33ns4dOgQTCYTjEYjbrjhBrz//vt8zCc/NlYpLzBDr1Gh0+7h98ESOu1uvmN2yeRMOcIbEtKhe3gkYRf8/FSZV6GFw9fsROB6Ke0CTZzP6ghir+tWjjACQrFH4jZaXV50Obi/Z0qIn5x/q8vHd0kPR6g2U/7YgVAJQjTveSW4dYRQnZ1yGihOWccuQatG5X3niPK6QyFkDj7SFB7DMNBoNHxq0e0e2i4eLD6WZfHhhx8iLy8v6hjvvPNOnHvuuXjnnXcwZ84c7NmzZ9jvmZQ09C+rXs/VYahUKvh8viHjHQydLnRnp1Kp+P+Hv9a1116Ljz76CJMnT8Yf//hHOBwOaDQa7Nq1Cx9//DH+/e9/4/XXX8czzzwz6GNjEb1GjQXF6fjiWAc2VbbxO2QB4Itj3GDlGfkmZCbLN8drMEqDQu1Euw0eXwA6zeD3r4cV6NgVRSgw7G4f2oOpH6UIuyLS/BHFBVoJjR9AuOs1cuzEbUxPkr8bGQAMWjXyUxLQ1OtETacdaUnD75wmrpdSxFE0woj8XkxQyPsGAFZOy8aEjCTFlHQAp7BjxzAMEnUawT+GE1yLFy/GW2+9Ba/Xi8bGRmzbtm3EOO+880689dZbAx5ftGgRnn32WQCAy+WC0+nE6aefjueffx4A8M0330Cv18NkMmH8+PF8Snbjxo39XufDDz+EzWaDzWbDli1bMG/evH6fX7FiBf7+97/z/9+3bx8AoKKign+tl156adDYq6urMXPmTKxfvx7jx49HQ0NDRN8zUhYtWoRXX32V/7n6+mLvTOrr60NmZiZcLhdee+01AFx9ocViwZo1a/DII49g7969gz42ljl3BuegfnSwtd/jnx5uBwAsnaIstw7gRigk6zXw+llUD1G309vnQUtw80GJghw73vUaoT7weLBTOStZr5iu6gnBzuJIXK+6oLiQu3GCQI57s8U54t7PWgU1ThAibRhy+/z8thLFiOqwm5mRbtaVtCmG8OOFRbjvwhmYWzS8oJaSU1bYycH8+fNx1llnoby8HD//+c/7pWJvuOEGLFy4EHv27EFBQQHeffddAMDBgwcHTU/+5S9/wWuvvYby8nIsXrwYXV1duPnmm9HT04OysjLccsstePrppwEA3//+93HixAnMmzcPBw8e7Pc6ixYtwsUXX4y5c+di3bp1A5y5u+++Gy0tLSgvL8e0adP4RonHHnsM99xzD0477TQYjYOPinj00Ucxffp0lJeXo7y8HBUVFRF9z0i5+eabcezYMcycORNbt25FYWHs8+B++9vfYs6cOTjvvPMwa9YsAIDNZsPq1atRUVGBiy++GA888MCgj41lzp6WDRXDDSomnYBddjc2VXJC79wZuXKGNygMw6A0lxNrR1oGT8eSNGxBagJMCnBdCJOzud+l4+12BAJDX+SOB1Pj5PlKgIij2q6+YWMHQo0rStgvDHAd6yaDBiw7chMCKUuYqIAROYQJETq91R0OsCxgMmj4Rh25GZ+eCIYBbC4fOu3DjzwhNzxKcRuVyimbipWL3//+9/j9738PAP1mxf3jH/8YtCvV7/dj4cKFAx7Pzc0ddDzKCy+8MOCxpKQkbNmyhf//+vXr+X8XFBQM+Jply5bxc+mMRiMvEMOZMmUKdu3aNeDxcMKdvnBG+p4n//+ee+7p99zWVk5UGAwGvP7669Dr9fjyyy8HjaeoqIjv5AXQrynj6quv5v/9s5/9DD/72c8GfP3JNYdDPTZWSTfqcfrkTHxxrANPfV6NDd8vw+u7G+H1sygvMI9Y4C8X03JN+La2BweaLLhoVv6Az+9v7OWfpyTGpydBp1ahLzhjr3AIR4s4dpOzlOM25qUkQKfm1lsNF7vHF+DTtUoRpgzDYEKmEfsaelHTaR/WxeVFtUJEKRBysEZy7EI3BMmK6cg3aNUYl5aIuq4+HG+zDVnawbIsjrVx8SvJZVci1LFTOHS23dBYLBYsWLAA5eXl+OUvf4m//vWvcoc0JrnlzEkAgNd3NeDpr2rw9y0nAAA/WjBOzrCGZdY4rlN3d93gM/jI47MV1tGrVaswMSgYhuvqJRfoKdnKucCpVQw/ama42Ou6HPAFWBj1GuQopIsQACYGxdHxthHG5LQp79hPDB734+3DNwyRG4IpChHUBHIshxqGDnDDr+1uH7RqRjF1pUplVDh2Dz74IO68805s375dEZsZhOKVV16R9fuHO1aj8Xump6eP+Ro3JTCvKA1nlmZhy5F23PteJQBg7vhUXDxbmcOVgdAIlkPNFri8fhjCmppYluVn8CltVAsAlGQbcbjFiqNtNqyYlj3oc4j4UIrjRSjNScaRVtuwsfOpzCyjYlwjIOQCHRlGXPj8Ab5uUylpZAAozeGc59quvgHv93COBX+2SQpyegGgJDsZmyvbeEduMEjsxRnGIRuiKByKPzpNTU146aWXhhyDQaFQxOdvP5yFFVOzoFYxWFicjr/+cBY0auX++ShITUBWsh5eP4v9jf1H/jT2ONFhc0OrZviduEqiJHiRHsr1srq8/Co0JaUDgZFjB5SZygRCwm5Yt7G7D14/i4RgJ6pSyDbpkZKohT/ADhhNFE7I6VXWsZ8SPPbHhhHVR1vt/Z5LGRrl/mUO8qtf/Qr33nsvP+5iKNxuN6xWa78PCoUiDEl6Df7147k4+vtVePn60xSxLWA4GIbh3bhva7v7fW5nDff/aXnmIZ0NOSnJ4S66ZBzLyRwMCtWC1ARFDGkNh8Q+GoUdmX9Y3WEfsjOWOKWTsoxQKWCwMoFhGJQE05lHhjj2bp+fbwxRUm0mAD72Y622ITtjiegrUZgoVSKKFnafffYZOjs78b3vfW/E527YsAFms5n/iKdDkkKhDIRhGEW7dCezcCK3/WDLkfZ+j396pA0AsGRShuQxRUJZfgoArnN0sJ2x+4LCrqIgRcKoIoM4dlUddnh8gUGfc6jZEnyussRFVjLnegVYDOl6VQbFtpLq6wilvOM4+A3B0VYb/AEWKYlafj+rUpiQkQStmoHN7UNjj3PQ54TeN8pqeFIiiv0r7fP5sG7dOjz22GMRPf/OO++ExWLhP8jMNAqFcmqyMljj9V19D9pt3Mw6t8+Pz4929Pu80shM1qMgNQEsiwFpZCDU0VteoLw0cp7ZgGSDBr4AO2ghv9Xl5Ts3yxUmTBmG4cXRUG7pgeCxryhU3rEng7aHcuzIDUFZvllRtY0At5qL1Anubegd8Hmby8s7vUo89kpDNmF39tlnw2AwDPpx//334/HHH8fpp5+OGTNmRPR6ZBhv+MdoQqvVYubMmfze140bN6KkpASTJ0/mZ8cBwMyZM6HT6eByueQKFVdffTU++uijiJ9/xx13CL6d4e6778bXX38t6GtSxha55gRUFJjBssDmSs6l+/J4JxweP7JNekXW1xFIV++e+oFdvUTsKU0YAZw4mlmYAgDYE2xQCedgUyiNnJakrDQyAEzL5d4TZF1eOCzL8o8r8b0zI4+LaV9D76BzBPcHBZMSnV4A/PtmMGF3oNEClgXyUxKQlaycTmqlIpuw27RpE1wu16Afv/vd77B161a8+OKLyMnJQU5ODhoaGrB69epBZ6qNBUiHZ0JCAnw+H37961/js88+w549e/DII4+gu5urC9q7d2/MA33HCn6/H/fddx8WLVokdygUhXNeGTdA+T/bauDzB/CPz6sBAKvL8hRVI3Uys4YQR60WF5p6nWAYbp2bEhkqdoC7QAPKdBuBUJf0YGNyWiwudNo90KgYvh5PSZTmJiNBq4bV5UPVIJtLiChV6rEfTtjtCT5GnkMZHsWmYp955hlUVlZi7969vJh5/vnn+aXv8cKyLAJ9fYJ/DLcSpba2tt+4lqGcr507d6KsrAy5ubkwGo1YvXo1Pv7446h+vnfffRczZ85ERUUFrr32WgDAd999h/nz56O8vBw//vGPedevqKiI//czzzyDO+64AwA3JPhXv/oVZs6ciXnz5uHEiRODxrpkyRLMnj0bl156Kb/W68knn8SUKVOwdOlSVFdXDxrj7bffjtLSUlRUVOCPf/zjsN/z6quvxq9//WssXboUjz32WL9jV1RUhPXr16OiogKnn346ent7AQDbt2/H9OnTMWfOHNx8882Djlq55557cM0112DFihWYOHEivvjiC/zoRz/ClClT+g1yPv/88zFnzhyUl5fj7bffBgC0tLRg8eLFmDlzJsrLy3HkyJFBH6PIxxULxiE1UYvqTgdO2/ApdtZ2Q6dR4YalxXKHNixEYOys7YbXH6pVIzt6ZxamKGJP6WDwbmPD0G4jqSNUGrPHpwDgUrEOt6/f50gKfEp2siKbbrRqFZ+mPFmY9nl8fPNBhULF0cxxKQA4V/fk+sy9VNhFhWLn2KWkpPT7v1qtRlpaGhIThdnPxzqdODp7jiCvFU7Jd7vBxBljc3Mz8vND0/ILCgrQ1NQU8de3tbVh3bp1+PLLL5Gbm8u7fVdffTX++9//Yu7cubjpppvw5JNPYt26dcO+FsMw2Lt3LzZu3Ih169bhvffe4z/n8Xhw22234d1330VqaioeeughPPHEE/jhD3+Ixx57DLt370YgEEBFRQXOO++8fq/b3d2N119/HVVVVVCpVLBYLCN+z+bmZnz22WdgGGaASJs0aRL27duHW265Ba+99hquv/56XHfddXjppZdQXl6Oyy67DElJgw+1bGlpwaZNm/Dee+/hoosuwq5du5Cfn4/Jkyfjtttug9FoxHPPPYe0tDRYrVYsWrQIF154IV566SWsWLEC9957L7xeL3w+H5544okBj1HkI9mgxbqVU3D3O4f4dUX/d/oEZCtoMO5gzMg3I8OoQ6fdg29rurEo2Ojx2THl7uglkItvdYcDPQ4PUoMp10CAxY7qLgDArOBFXGnkmhOQZzag2eLCvsZeLJoYarDZUc39HZ2p0NgB7oZgR3U3dtf14PL5oQHi39R0IxBMZSr1vT8hPQmpiVr09Hmxp74HC4q55ievP4AdVdz7Zk6R8uZOKhHFOnYnc7LbNZYZzPWLptj1m2++wcqVK5Gby6Wh0tLSYLFY4PP5MHfuXADA2rVr8cUXX4z4WsQhPf/887Fnz55+nzt69Cj279+P5cuXY+bMmXj22WdRV1eHb7/9FitWrEBycjLMZvMAUQcAJpMJRqMRN9xwA95//30kJ4e6zIb6nhdffPGQx2HNmjUAgFmzZqG+vh69vb1gWRYVFRVgGAaXXXbZkD/jueeeC5VKhbKyMhQVFaG4uBh6vR5FRUX8+rI///nPqKiowJIlS1BTU4PW1lbMnTsXL7zwAu6//35UVVUhISFh0Mco8nLVaePxl8tnYn5RGu67cDpuP6dE7pBGRK1isLwkCwDwyWFOzHn9AWw73glA2cIuNUnHjzLZdqKTf7yyxYouhwdJOjVmj1PuBZpsI/mmuv+YnG3HObf0jMnK7KYGgLnjuUX0X1d19buOkIahM6YoN3aVisGy4Hs+vJN9V20PbG4f0pN0iq0PVBqKdezEhklIQMl3u0V53aHQaDQIBEIWs9vtHvR5+fn5/Ry6pqYmzJ49O664hhOL4XENFdNQrzlv3jxs2rSp3+NvvfXWiF+r0Wiwa9cufPzxx/j3v/+N119/fcQGi6EcNwD8nEOVSgWfzzfg5x0uRa7T6fivJf8Of60tW7Zg586d2LlzJ/R6PaZPnw63242lS5fi888/x7vvvosLLrgATz31FM4666xBH6PIB8MwuHBmPi6cOXBnrJJZMS0br+9uxAcHWvD/zi3BRwdbYXP5kGHUK7JxIpyzpmbjeLsdn1S2YU0FVxP8RVAYLZyYrujNAWdMycTG/S3YXNmGdSunAODWWVV1OKBigIUTlSuOTitOh0GrQlOvE4earfwu5y94UarcGwIAOLM0C2/tacKnR9px53lTAQBbguOJlpZkQq3gulglodzfLpFhGAaqxETBP4Zz1rKystDU1ASHwwGLxYJt27YN+rz58+fjwIEDaG1thd1ux8aNG3HOOecM+tzS0tIBj5122mn45JNP0NLSAoBLe6akpPBiCgCeffZZLFmyBAAwfvx47N27F4FAYMBu2ldffRUA16U7a9asAd+7pqYGBw4cAAA4HA6cOHEC8+fPxyeffAKbzQar1Trovlu73Q6LxYI1a9bgkUce6bcabLjvGSmpqdxd9/79+wEAr7/+ekyvAwA2mw2pqanQ6/XYuXMnXzdXV1eH3Nxc3HTTTbj88stx4MCBQR+jUGJh6ZRMZJv0aLW68OKOevxrG1er+uOF4xV/gVs5jXNeth5t52sEPwl2Jp+hYLcRAFZMzYZaxaCyxYqGbq5meGvQQZpZmAJzgjJrGwEgQafm3dyPD3HZhqoOO6o7HFCrGD6lr1TOmJIJjYrBiXY7DrdY4fUH8P5+7jp2VqkyxxMpkVPWsZMDnU6HX/7yl5g1axamTp2KioqKQZ+n0Wjw8MMP44wzzgDLsrjtttuQnp4+4HldXV2DOlFZWVn485//jFWrVgHghOK//vUvPP3007jxxhvhdDoxa9Ys3HjjjQCAu+66C2vXrkVhYSEmT548IObTTjsNfr8fL7/88oDPvfTSS/jpT38Ku90OlmXx8MMPY9WqVbj11lsxd+5cFBUV8QIyHJvNhjVr1sDj8YBhGDzwwAMRfc9o+Oc//4nLL78cqampcTmeq1atwuOPP45Zs2ahrKyMP2+fffYZHn74Yeh0OmRmZuLll1/Gxo0bBzxGocSCQavGzcsn4e53DuG+jZXBx1S48rTxMkc2MjMLU/kawQ8OtGBCRhK+q++FVs3gnOnKXg+ZlqTD/KI0bK/uwrv7mnHTsol4YUcdAGDVDGXHDgDnTM/Bx4fa8NaeJtxy5mQ8+3UtAGB5SaaiRSkAmBO0OGdGDt7f34K/bz2BpVMy0WxxIcOox1lTs+QOb9TAsMPlqEYxVqsVZrMZFouFn2nncrlQU1ODCRMmwGBQVgFpTk4OX881EkVFRThy5Ai2bt2K48eP4+c//7koMS1btgxPPfXUoK6gWAj5PR0OB5KSksCyLK6//nosWrQIP/nJTwSIMnaU/B6kKA+PL4Cfv7wHHx1qRYJWjb/+cJZiByufzN+3HMcjm44hz2xAapIOh5qt+N6sfPz5BzPlDm1E3tjdiF+9vg8mgwb3XTgDt766FwlaNXbceRbMicoWR30eH5b+8TN02Nw4vzwXnxxug8sbwEvXLejXDKJUjrRaseqx/tms3543FdedoexOdrEZTNMMxSmbilUaarW634DioZg5cya8Xi8YhsG5554rmqgbC7zxxhsoKyvD9OnT4fF48KMf/UjukCiUqNBpVHjqqjl472enY9O6M0aNqAOAnyyegAyjDs0WFw41W6FRMbhuyei4OF80Kx8l2cmwuny49dW9AIBL5hQoXtQBQKJOg3UruNrAjftb4PIGMHtcChYWD8z6KJHSHBNuWjaR///8orRR4VIrCerYUSgSQt+DlFOJA40WrH/3IOq6+vDY5TOxROHF++Hsa+jFT1/YjRaLC0smZ+AfV81Bom50VC/5Ayz+8ulxPPNVDUpzTfjnVXOQkqi8TR/DsbOmG/XdfbhoZt6o2lEtFtE4dqeksCsqKqJjKCiy4HQ6UVtbS4Ud5ZSCZVnF7SeNBK8/gCMtNkzLMym+YWUwyOV9NB57Sn+iEXaj4/ZDILRaLRiGQUdHBzIzM+mbnSIpLMuio6MDDMNAq1V+SodCEYrR+rdWq1ahTKEruCJhtB53SnycUsJOrVajoKAAjY2NqK2tlTscyikIwzAoKCiAWq28lUQUCoVCGf2cUsIOAIxGIyZPngyv1yt3KJRTEK1WS0UdhUKhUETjlBN2AOfc0YsrhUKhUCiUsQZtNaFQKBQKhUIZI4xZx450A1mtVpkjoVAoFAqFQokdomUiGWQyZoWdzWYDABQWFsocCYVCoVAoFEr82Gw2mM3Dd2qP2Tl2gUAAzc3NSE5OFrXl22q1orCwEA0NDSPOlqFICz03yoSeF+VCz41yoedGmUh1XliWhc1mQ15eHlSq4avoxqxjp1KpUFBQINn3M5lM9JdNodBzo0zoeVEu9NwoF3pulIkU52Ukp45AmycoFAqFQqFQxghU2FEoFAqFQqGMEaiwixO9Xo/169dDr9fLHQrlJOi5USb0vCgXem6UCz03ykSJ52XMNk9QKBQKhUKhnGpQx45CoVAoFApljECFHYVCoVAoFMoYgQo7CoVCoVAolDECFXYUCoVCoVAoYwQq7OKgo6MDq1evRmJiIkpKSvDpp5/KHdIpy/r16zFt2jSoVCq88sor/T734IMPIjMzE2lpabj99tsj2rVHEQa3242f/OQnKCgogNlsxrJly3DgwAH+8/TcyMv111+P3NxcmEwmlJWVYePGjfzn6LmRn+3bt0OlUuHBBx/kH6PnRV6WLVsGg8EAo9EIo9GIc889l/+cYs4NS4mZSy+9lL322mtZh8PBvvXWW2xqairb3d0td1inJM8//zy7adMmdsGCBezLL7/MP/7++++z48aNY6uqqtjm5mZ26tSp7H/+8x8ZIz21sNvt7H333cc2NDSwPp+P/dOf/sQWFxezLEvPjRI4fPgw63K5WJZl2Z07d7Jms5nt7u6m50YB+P1+dsGCBez8+fPZDRs2sCxLf2eUwNKlS/tdYwhKOjfUsYsRu92Od955B/fddx8SExNx0UUXYcaMGXjvvffkDu2U5Morr8TKlSthMBj6Pf7888/jpptuQnFxMXJzc/HrX/8aL7zwgkxRnnokJSXhrrvuQkFBAdRqNX72s5+hpqYGXV1d9NwogNLSUn7+FsMwcLlcaGlpoedGAfzzn//EggULMHXqVP4xel6Ui5LODRV2MXL8+HGYzWbk5ubyj1VUVODQoUMyRkU5mcrKSpSVlfH/p+dIXrZv347s7Gykp6fTc6MQbrrpJiQkJGDevHlYtWoVpk2bRs+NzHR3d+Oxxx7DPffc0+9xel6UwS233ILMzEysXLkS+/fvB6Csc0OFXYzY7fYBC39NJhPsdrtMEVEG4+TzRM+RfFgsFtxwww144IEHANBzoxSeeOIJ2O12bN68GUuXLgVAz43c/OY3v8Gtt96K1NTUfo/T8yI/Dz/8MGpqalBfX4+VK1fivPPOg91uV9S5ocIuRoxGI6xWa7/HrFYrjEajTBFRBuPk80TPkTy4XC5cdNFFWL16Na655hoA9NwoCbVajRUrVuDTTz/Fxx9/TM+NjOzZswc7d+7EddddN+Bz9LzIz/z582E0GpGQkIDbb78dRqMRO3fuVNS5ocIuRiZPngyLxYLW1lb+sX379mH69OkyRkU5mWnTpvXrwqTnSHp8Ph8uv/xy5OXl4ZFHHuEfp+dGeQQCAVRVVdFzIyOff/45jh07hvz8fOTk5ODVV1/FAw88gOuuu46eFwWiUnEySlHnRpaWjTHCJZdcwl5//fVsX18f+84779CuWBnxeDys0+lklyxZwj733HOs0+lk/X4/u3HjRnb8+PFsdXU129LSwk6fPp12kUnM1VdfzZ599tmsx+Pp9zg9N/Jis9nYF154gbXZbKzX62X/97//sQaDgd2/fz89NzLicDjYlpYW/uOyyy5jf/vb37I9PT30vMhMT08Pu2nTJtblcrFut5t99NFH2ezsbNZisSjq3FBhFwft7e3sueeeyyYkJLCTJ09mN2/eLHdIpyxr165lAfT72Lp1K8uyLPuHP/yBTU9PZ1NSUtjbbruNDQQC8gZ7ClFbW8sCYA0GA5uUlMR/fPHFFyzL0nMjJ3a7nV2+fDlrNptZk8nEzp49m33zzTf5z9NzowzWrl3LjzthWXpe5KS9vZ2dM2cOm5SUxKamprLLly9nd+/ezX9eKeeGYVk63ZBCoVAoFAplLEBr7CgUCoVCoVDGCFTYUSgUCoVCoYwRqLCjUCgUCoVCGSNQYUehUCgUCoUyRqDCjkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQKhUKhUChjBCrsKBQKhUKhUMYIVNhRKBQKhUKhjBGosKNQKBQKhUIZI1BhR6FQKBQKhTJGoMKOQqFQKBQKZYxAhR2FQqFQKBTKGIEKOwqFQqFQKJQxAhV2FAqFQqFQKGMEjdwBiEUgEEBzczOSk5PBMIzc4VAoFAqFQqHEBMuysNlsyMvLg0o1vCc3ZoVdc3MzCgsL5Q6DQqFQKBQKRRAaGhpQUFAw7HPGrLBLTk4GwB0Ek8kkczQUCoVCoVAosWG1WlFYWMhrm+EYs8KOpF9NJhMVdhQKhUKhUEY9kZSW0eYJCoVCoVAolDECFXYUCoVCoVAoYwQq7CgUCoVCoVDGCFTYUSgUCmVU0tDdh9pOB1iWlTuUqPm6qhOPbz2B/Y29cocSNU6PH+/ua8YXxzoQCIy+Yz/WGbPNExQKhUIZmaZeJ9ISdUjQqeUOJSq2Hm3Htc/ugj/AYnlJJv69dh7UqtExs3RHdRfW/ncnvH4Wj2w6imd+Mh9Lp2TKHVZEsCyLn730HT490g4AuHxeIR68uFzmqCKHZVm8vqsRHxxswfwJabhx6cQxN+uWOnYUCoVyivLnzcew+MEtKL/3Y7z6bb3c4URMq8WFW17aA3/QLdp6tAPPfl0rb1AR4vMHsO7VvfD6udhZFvjd2wfg8vpljiwyXvymnhd1APDKtw3YcqRNxoii47VdDbj9jf347GgHHv7oKP75RbXcIQkOFXYUCoVyCvLp4Tb85dPjAACvn8Xd7xxCbadD5qgi4+Wd9bC7fSgvMOOeC6YBAP78ybFRIY62HGlHi8WF9CQddv9uBXLNBjR0O/H+/ha5QxsRlmXxTFBA/271VFyzeAIA4N/bamSMKnIsfV48+OERAAAxdx/dfAy9fR4ZoxIeKuwoFAolDnz+ALodnlFX5/XU51UAgLULx2NhcTrcvgD+/MkxmaMaGX+Axeu7GgAA/3f6BPx4YRFyTAbYXD58fqxD5uhG5pVvudgvmVOAdKMel83lNiRt3N8sZ1gRsb/RghPtdhi0KvxgXiF+srgIALC9ugutFpe8wUXAu/ub0dPnxaQsI47efy6m5prg9gXwv92NcocmKFTYUSgUSoy4vH5c8a9vMPv3m7Hi0c9R39Und0gRUdVhx7e1PVAxwE3LJ+H2VSUAgM2VbXB6lO167azpRrPFBXOCFudMz4FKxeD88lwAwEaFu14Otw9fBMXnpUFBd0EFF/u2452Kd47e3tsEADhneg6SDVoUpiVizvhUsCzw3j7lC9P3g+L5srkF0KpVuPK0cQBCYnusQIUdhUKhxMj6dw5hZ203AKCqw4Hb39g3KroE3/yOcyiWl2Qh22TAzMIUFKQmoM/jx9aj7SN8tbx8eYITRmeWZsGg5Ro+zq/IA8Cll73+gGyxjcTO2m74AiwK0xIwKcsIAJiUlYzSnGT4AqziHcevTnQCAFZNz+EfI6L6i+PKjr3d5sLOGu539bwyLuY1FXlQqxicaLejoXt03JRFAhV2FAqFEgOtFhde383d6d+7ZjoMWhV2VHf3KyxXKl8e5y7Q5ALHMAxWBy/QHx5slS2uSPi6qgsAsGhiOv9Yeb4ZKYla9Hn8ONRslSu0Efk6KIwWFWf0e3xh8GfZVdsjeUyR0ml341ibHQCwoDh07Ensu+t6FC2qtx3rRIAFygvMKEhNBAAkG7SYWZgCgBs/M1agwo5CoVBi4NVvGxBggfkT0rB2URGuXDAeQChdpVQsTi8ONFkAAIsmhS7QZNzGzpouxdYL2lxe7G8ksYfEkUrFYO74VADArqCDqkS+OhEUpWHHHQDmF6UBAL5VcOzE7SrNSUZako5/fEpW8qgQ1bvquPgXFvc/9ouD76Mvg+dmLECFHYVCoUQJy7J4I5jOvGI+V6dz4cx8AFw60OH2yRbbSOys6UaABYozkpBrTuAfn1WYCo2KQZvVjcYep4wRDs3uuh74AyzGpyciPyWh3+fmBcURESBKw+H24XArJ3xOO0lczA3GfrTNBkufV/LYIuGbak74nBy7SsXwx548R4kQN5Qca8LioOO4vapTsTc00UKFHYVCoURJXVcf6rv7oFUzOHt6NgBgRr4JEzKS4PIG8NlR5dYb7QhefBdO7H+BTtCpMSPfDCDkbiiNA0G3blYwfRYOuWDvqutR5AX6cIsVLAtkm/TINhn6fS4zWY/ijCSwLPBdvTLTsfuCx3520BkNhziOSo29x+HB8XYujTznpPgrClOgUTHotHvQPAo6eyOBCjsKhSIr7TYXLnr8Kyx+cAs2fHhYkRflk/kyWCs1e1wqEnXcAh+GYfh05jc1ynUuiDiaPW7gBXpeEffYtwqt9TrYzMVOBGg4M/JN0KgYdDs8aFHgBfpgMP09I29g7ABX+wUAh4I/o5LwB1gcCbqN0/NMAz4/PZ97rLJFmalYIjgnZib1SyMDgEGrxuTsZACh343RDhV2FApFNtw+P6555lvsbehFU68T//i8Gv/5UvnDTkl34OmT+hfBL5ig7HRgIMDywqGsYKDAmFnICbtDTcq8wB1s4oTDYMJOr1FjYibXaXpYgQLjwDCxA8DUXE4cHW6xSRZTpFR32OHyBpCoU2NCetKAz0/P5X6mhm4nLE7lpZIrg7V/FQUpg36+LChMDyr0fR8tVNhRKBTZeHdvMw42WWEyaPiuzIc/Popuh3LnebEsy6czF50k7OZNCNVKKXEmWU2XAw6PHwatCsUZAy/QU3M55+Jom41f16UUehweNPVytX/TBnGNgFD8R1qVJ44ODeM2AuHCTnmilDRFTM01QTXIPl5zopaveVRi/KS2kRzjkykLnpMDVNhRKBRK7ISvJ/rpson4+w9nYUa+CR5fgJ+zpkQae5zo6fNCq2YwI7//hSLDqMfETK5WSomjK4gjMTXXBI164J//8elJSNCq4fIGUKOw9WIkDVuUngiTQTvoc8iFW2kpQbfPz9d4DZbKBEKx13Q50OdRVvMNEaVDxQ6ExHalAjtjjwRd0NKg8D+ZsqCTd7DJMipKQUZi1Ai77du3Q6VS4cEHH5Q7FAqFIgAHm6w41GyFXqPCD+eNA8MwuHxeaBK8Uv/Akrv60hwT9Br1gM/PCtauKfHunzgvZUO4RmoVgyk5xPVS1gWazFArzRlaXJQq1PWq7eyDP8AiWa9Brtkw6HMyk/XIMOrBssBRhTmOxAEdyvECgGkKFdV9Hh9quriblKHeO6U5yWAYoMvhQZeCswWRMiqEXSAQwLp16zBv3jy5Q6FQKAKxJTjId3lJFlKDBc0XzsyDTq3CiXY7qjqU5RgRyBy1wWrUgJCrobQLHBASDMOJo6lBYac0cXQi6HiRjQ2DQVKxtZ0OuLzKWY1GYp+YZQTDDExlEvhUuMKEXXXwd3HyMMe+JPi+IT+rUjjWZgfLcm56ZrJ+0OcYtGoUBocWH29TVvyxMCqE3T//+U8sWLAAU6dOHfI5brcbVqu13weFQlEuZHXV8tJM/rFkgxbzJnCO1zaFrigi6cyhXC/euVBgSioyccTFf0RhRfxVEcSeadTDZNAgwHIjaZRCJMcdAN/8Ua2gNHifx8fXNpL4BoN8rqrDrii3/Rh/MzN4GpZAzs2JDirsRKe7uxuPPfYY7rnnnmGft2HDBpjNZv6jsLBQmgApFErUdNnd2NfYCwBYVpLV73NnTOaE3rbjylvxw7IsX+s1lLCbGnTsmnqdiho2G36BHk5gkM8pSVwAoQvucLEzDIMJRBwp6AIdSewAUJzJNbQoKXbi1qUl6XhnfTDGpydCxQA2lw8ddrdU4Y1IVYTHnriRJ9qUdUMTC4oXdr/5zW9w6623IjV14MylcO68805YLBb+o6GhQaIIKRRKtOys6QbLcnfRJw9rXRIUdturuuDxKWv3ZIfNjd4+L1TM0BcKk0GLwjSuQ/BQi3Lq7MIv0CfP8gqHiIv67j7F7P7ssrv5TmkS31BMDHb7KkmY8o7dMI4XABRnEFGqnNiJMJo4wnE3aNUoTOPSmVXtyomfvA8mDNIFHs7E4O/zcYWlkmNB0cJuz5492LlzJ6677roRn6vX62Eymfp9UCinCm1WF3752l6s/us2PPlZFQIKG1VxMnsaegEMnAIPcHVGKYlaOL1+xRXwkz/6RelJMGgHNk4QpuYoL50ZqbjITjYgQauGP8CivlsZ6UwSe35KAj8QeihCrpcyxEUgwPIOXKSOnZJENal1HS4NSyAjdKoU5ThysYx0Q8A7dmNA2A3/GyIzn3/+OY4dO4b8fG4Ho8VigUajQVVVFf71r3/JHB2FogxcXj+ufXYX34V5qNmKTrsbd50/TebIhmZPcBL8rEG2HzAMg4qCFHx+rAP7GnpRPsRQUTk4HkzTjHSBnpRlxKbKNlR3KuciEV7APxwqFYMJGUmobLGipsMR0QVdbMjolZFiB4AJxPVSyLFvsbrg9gWgUTEoSE0Y9rk5Jk5UO71+1Hf3KeLYhxy7kWOZmGnE1qMdihHVPn+AvzmJ1LFrt7lhc3mRPMRIndGAoh2766+/HidOnMDevXuxd+9erFmzBr/4xS/wxz/+Ue7QKBTF8I/Pq3GgyQJzghaXzikAADzzdS1OtCvHLQrH6w/wnaWzxqUM+pyK4C7QvQ3KSWUCIcducnZkRfDKSklFllIDgAnB5yhlll1d8OJclJ444nPDHTslFPHXBUdtFKYlDjo7MBwiqgHlOI4k/qIRhBEAFGcqS1Q39jjh9bPQa1TIMw8vqk0GLdKDJQpKaryJBUULu8TEROTk5PAfCQkJMBqNSElJkTs0CkURuLx+PLe9FgBw34XT8cdLK7ByWjb8ARZ/3nxc3uCG4EiLDW5fAOYE7aDriQBgZiHXmLC3QVlDfskohMlZw3fYkbt/JaWkajsjcy6A8Do1ZcRPxMW4tJGFHfn5LE4vehTQvFIfFAmRxA6ERDX5meWEZVle5IyPQFQT4V2vEGFE3r8TMpIG3ZhxMuRnpMJOQp555hnccccdcodBoSiGd/c1o8vhQX5KAlaXcSu5bl0xGQCwubJNUV2ZhMoWslpp8PVEQGinY1WHA1aXcn6G4+2RpWKJa9RucysifpYN1ctFcoGeoLA6NXKhLRriRiAcg1aNrOC8sgYF1AjWRXHcgZAAVELsFqcXNhe3BYPMeRsO0jzR2ONUxEq6ms7I3zfhz6tVgKiOh1El7CgUSn827m8BAFyxYByf5pmeZ0ZpTjI8/gA2HmiWM7xBIUvOpw4zJDfdqOcn9B9TyLDW3j4P7wCNVIhtMmh5caEEcdTt8MDu9oFhgIIILtDj0rifr7HHKXZoI8KyLO8ARS2OeuQXR9G4jeHPU0LjChHUWcl6JOiGbhYi5KUkQKtm4PEH0Gp1iR3eiDREKarHpyvHLY0HKuwolFGK1eXF9ipu1tuqGTn9Pve9WVzD0cZ9LZLHNRJko8Fw64mA0CR7pSx0rw1e5LJN+hE7M4FQnZ0SuuxI7Lkmw7DdvAQiLpotTtlHznQ7PLAFRWlhhOKoUIHiKFLXSEnCLhqXF+BW0pEbByWkY4mwi/R9Q1OxFApFVrYeaYfXz2JSlnFAx9rKadkAgF113YpaKM6yLC/UhlrITShR2M5Schc/PsILtJJqpeq7g65RhBfoDKMOCVo1WBZo7pXXtSOpzJwIRSkAFAa7Txu65Y09PrfRKfvYovoohVH4c8l7Tk6IY0uFHYVCGRV8foxbubViavaAz03ISEJ+SgK8fhbf1HRLHdqQtFpdsDi9UKuYEevUyAogpezNJB2iQzV8nMz4NOVcJPgC+LTIYmcYhh+yLLdzFG3zARBe6yVv7BanFzZ3sEYtwvhzzQaoVQw8vgDabfJucKiP8n3DPVcZjiPLsrywj/S9Q1zVVqtLUbuGo4UKOwpllPJNNSfYFk1MH/A5hmFw+qQMAMCXClrNRdy64owk6DXDuy8l2Sb+a5QxtiJ4kcuI8u5fASk1Enukjh0QKpaXu06NrEGLpDaQoJRULIk9w6iL2G3UqFXITwk6jjIf+5DjNfyokHDGKeSGptPugdPrB8OAP54jkZKoRVKwllBupzoeqLCjUEYhDd19aOp1Qq1iBt3eAACnT+aE3faqLilDG5aqCOfAAcDErCSoVQxsLp8iCrFJp1zktVLBLQIKSMU2BZsgYkupKUMc5acYRnhmCBJ7k8zdmc293Ps2L0JhQVCKOGrmj33k8RMR2CSzMCLv21yTATpNZFKHYRj+XMkdfzxQYUehBPH5A3h86wlc/OTX+NVr+9CmADExFCS9WpZvRpJ+8EL+uUWc4DvaZlNMnV0064n0GjWf1lHCoN9o5nkBIXesp88r+8iTppgu0MF0psx1ary4GGFrQzg5JgM0Kga+ACvrTQGJfaThuCeTFxSxcrpGLMui2RK9MCXPldvxirZxgkDeZ3LHHw9U2FEo4P6I/eKVvfjjx0exu64Hb3zXiMv+sR3tNmWKu121nLBbMCFtyOfkmhOQYzLAH2BxoFEZGxwi3dtI4LcIyDwo1+by8kvoI22eMOo1yDByk+zl7BD0hY2eiErYpSojHciLoyhiV6sYZJs4cdRqke8CHUvs4c9vkTH2LocHHl8ADAP+WEYCib3d5pa1ozqWFD4Qir9JAaN+YoUKOwoFwDt7m/H+gRZo1QxuXDYRBakJqOvqw4MfHpE7tEHZN8JKLsJMfjVXr7gBRUg0jh0QtqJI5llw5CJhTtDCOIRDOhhKSKm129zwB1ho1Qw/Wy8SQuJCvpsblmX5C2z04oi4XvLF38QLu8iFERBy+OSMvSX4vTON+ohTmQCQnqSDTqMCy0LWrEdzjMc+n0/FKvOmPhKosKOc8nj9AV7A/fzMyfh/q0rx9ytmAwDe2tOEymZljNsgOD1+HAsuoy8PbmgYCiL8vquXfzWXxelFp53r8otkrRXANVkA8q/mIuIiGscLCLl7ctapkQtcjtkQ0VolAhkQ3WmXz3mxunxweLjuxGjTmblm+V2vWGrUACA3KEbkjJ2I0twoY2cYBnlm+VPJ5IYkN8r3TUjYyd/0FCtxC7uGhga0tChvCCqFEikfHGhBq9WFDKMe1y8tBsA5XavLcsGywPM7auUN8CQqWyzwB1hkhG1nGIqKoGN3sEl+cUrSsNkmPZIN2oi+RmmOXTR1XkDoIiHnBa4pxjqvtCQd9DI7L+S4pSXpItp8EE6uAhy7WJsncpXg2Fmib1oh8HV2ChDVudG6pSnyH/t4iVrYXXHFFdixYwcA4L///S9KS0sxZcoU/Pe//xU8OApFCp75uhYAsHbh+H4jOK48bTwAbnuD06OcmUb7g2nYigIzGGZ4B4Zsd2jqdcq+N5Z0lUbq1gGhGrtmi1PWuVKxOnZKKCSPVZQyDMPfOMgVf6zpNIDrhgTkc728/gDabLEJO/Lz2t0+2RpvYnW8wr9GXmEaPPbROnapIadX7gHRsRK1sPv4448xZ84cAMBDDz2ELVu2YOfOnfjDH/4geHAUitjUd/VhT30vVAxw+fxx/T63YEIaClITYHP7sKmyVaYIB3KgiRN2ZQXmEZ9rTtDyYuSwzBsc6ru4C2w0w07Tk3QwGTRgWXnr1Br5QuzYLtByjk6INR0IhKcz5XXsor04A6EUYqtMsbdZXWBZQKdWIT1JF9XXJuo0MCdwrnaLTOKIT8WOkBUYjHyZu3r7PD5YnJwgjtaxy07WQ61i4PWz6LDLOyA6VqIWdoFAABqNBrW1tXC5XFiwYAGmTp2K9vZ2MeKjUERl44FmAMDCienIPKmwXKVicOHMPADAJ4eV8/4+0sLV100bYdcqgbh2ZEerXITWE0V+kWYYhh8b0iBjnRpx7KIVdopIxcbYfACEpTNlcr0aY3QbgbAGBNlEadDxSomutpHAu6UyHfuWOG4I5HaqybE36jUwRVj2QdCoVcgxyX9DFg9RC7uFCxfilltuwbp16/C9730PAFBTU4O0tKHHLlAoSuWDA1x96PnleYN+fnlJFgDgi2Md8PnlXYYOcOkdslR+aoTCbloe9zy5m0BinSulhKXooTlwsY1OsLp8sMmUUiMXuZgu0MSxk8k1iid2Ikrlav6Ix20EQj+zXMeeT8XGdOzldXpJ+j0WtxEIc9pH6ciTqIXdc889h+TkZJSVleH+++8HABw+fBi33nqr0LFRKKLSbnXxTQUrpw3ctwpwTRTmBC0sTq8iRobUdDrg8Qdg1GsivthNy+V2rsqdiiXz0KLZ+QnIv9rK5fWjI7izM1rnKEmvQUoi5xjIVW8U6yw1QP7uzHhil3vsRlMcsQPhzR/SH3ufP8Afs7w4UrFyOV4tvbGLUkAZTns8RC3snnnmGWzYsAH33XcfjEauY+28885DICC/m0GhRMMXwR2qZflmZBgHn++lUauwJLia6wsF7Fwl6dSSnOSI0zuTszlhV9XukK0Y2OX180NyoxZ2afKmYonrkKBVIzUxurQOED6TTPqLRPgS+pgaEPjmidEnSuVu/gjVNsbmGvENCDKI6jabGwEW0KqZIf82DgeJ3SaTU02OWSyiFMCoXysWtbC77777Bn38gQceiDsYCkVKvjjWAQBYOiVz2OctnJgOAPg2uMZLTo62cvV1pTnJEX/NuLREaFQMnGHiSmqaep1gWSBJp0ZalIXkcu8s5TtiUxNG7EIeDDkvEuHjQhJ1kQ9WJpALtBzvG2+4axSjOCK1UnLEH48o5b4u6JbKIKpJfV20sw8JSfqw5g8Z0rG8YxdrGnyUrxWL+Df9tddeAwD4fD68/vrrYNnQnX9tbS2tsaOMKliWxVcnOAfujBGE3fwi7r29p6EHXn8AWrV8c72PtXH1dVOyIxd2WrUK49ITUd3hQHWHI+YLTTzUh9XXRSuOxvGOnRMsy8YkruKBDCqNpc6L+zr5XaNYhRFxG7sdHri8fhi00c2Si4c2qwuBYFdpRlL0rhEg70yyWGfYEeQcsBzr7MNw8lISYHF60dTrjOrvlRAQxy7ajlgCOWeNo7TGLmJh9+STTwIAPB4PnnjiCf5xhmGQlZWFZ555RvDgKKMTnz+ANpsbaYnRDxWVippOB7ocHug0KlQUDj82ZGKmESmJWvT2eXGwyYJZ41IlinIgZMjvpKzIVnIRJmYaUd3hQFWHHacHU8tSEmvjBMAJKoYBnF4/Ou2eAd3LYhPu2MWCEhy7WC/QpgQNEnVq9Hn8aLG4oppBGC/xdpUCoVSyHOKITwfG6tiFdfVKfUPDz4CL4yYwz2zA4RarLDc0sc6wI4z2GruIhd3WrVsBAPfffz9+97vfiRZQOG63Gz/96U+xefNm2Gw2zJo1C3/7299QVlYmyfenRM+Xxztx2//2ocXiQrJeg9tWleDHC4vkDmsAu+q4FVsVBeZ+Q4kHQ6ViMHd8Gj453IZdtT2yCTuPL4C6oECKdNcqgQz6lWs1V31XbI0TAKDTqJBrMqDZ4kJDT5/kwq4xjrEPgLxpncY404GkTq2qw4GWXqekwi5epxQIFc9L7djZXF7YXLHXNgJAtlkPhuF+77scnphq3WKFpGJj7SoFwnYNS3zsWZYNxR+nY0e62SPdlKMUos4pXX/99Whvbx/0Q2h8Ph+Ki4uxY8cOdHd3Y82aNbjooosE/z4UYfi2thtXP72Tv1uyuX24+51DePXbepkjG8juWk7YzRkfWQnB7PEpAIB9jb0iRTQy9d0O+AMsknRqZJui+yM/UebVXLF2xBLkbKCIdYYdQQnpwFhjB8LXQ0kbP/k7khOPuJDJsSNDkU0GTUy1jQCg16h5MSe1OGqKM40c/rVS39BYnbHvFyYY9RokG7jzJtc6vXiIWtjl5OQgNzcXOTk5/L/Jh9AkJSXhrrvuQkFBAdRqNX72s5+hpqYGXV1dA57rdrthtVr7fVCkw+ry4uYXv4MvwGLV9Bwcuvcc3Lx8IgDgrrcP8Y6NUthVxzVCzB0fmftWls+la8nWBzmoCoqy4kxj1GkZIuxkc+y6uT/uo1LYxevYkQ0IVpfksxBDzkscrhcRRxJfoNut3IgZ0gARCzm8sJP24tweHI+THUfsQEiYSt0Z22oVwrGTZ+QJOVYpidq4SoH4xhvL6Ns+EdPmCb/fj0AggEAggKamJtx4442S1Nht374d2dnZSE9PH/C5DRs2wGw28x+FhYWix0MJ8c/Pq9Fuc2NCRhL+dFkFkvQa/GplCRZPSofHH8CfPzkmd4g8PQ4PL5LmRCns6rr6ZNu5SkTZxMzo02Hka1osLjiC4y+kgmXZsBq72ASGXEOK/QGWd19irbHLNOqhVTPwB1j+gi8VpBs0xxx7Gi9Xpg0OxCmJRxyd3PwhFST2rCid9ZPhGygkFkdt1viFKRFGUr/nQ8OJ42sSIzcFck0SiIe42/tycnLw6KOP4s477xQiniGxWCy44YYbhhyrcuedd8JisfAfDQ0NosZDCdFpd+PfX1YDAO44txRJes7CVqkY3LFqKgDg7b1NqO2UJw14MruD9XUTM5OQGuHojZREHS8u5HLtqtq54xdtfR3AxU/2VdZIfB56+rywB8VkQWpsjp1cwq7D5oYvwEKtYpCVHNtFTqVi+IuElGkplmV51yueC7RcDQhEEGTFUVOZkqiFQctd5qTcGcs7djG+ZwghcSGdOPL5A+gK7kiNR5iS9xy3M1e6+Zl8N3IcbiPQP/7RhiBzG7755hv4fOK5AC6XCxdddBFWr16Na665ZtDn6PV6mEymfh8UaXj5m3q4vAGUF5hx9kkbHMoKzFg6JRMsC7y6SxlimzROzI2wvo5QVsC5dvubeoUOKSJ4xy7KjliCXOlYIsayTfqYx2UQp6+hW+qUVNB5CS4GjxXiHEmZlurp88ITTP3GKkqBsPVQEtd5hVyv2GNnGIa/QEvpHJHYM+N07IiwardJd+y7HB4EWECtYpAe45gZIBR7n8fP39hJQRvvUscr7Lj4pbwhEIqohd3UqVMxbdo0/qOoqAjnnXceNmzYIEZ88Pl8uPzyy5GXl4dHHnlElO9BiR2vP4Dnd9QBAK5ZPGHQ2q8fzufS4q/vaoRXAftWdwfr6+YURdfdOj24c/VIi03wmEaCZVl+1ElxDKnY8K+rapdH2BXG6NYBoRq7FotT0vdQqyU0qDUeSBpXyrlY5IJEVmvFSiilJt0Frr/bGJ84Iq6ZlM6LUI4d+fp2CR07XpQa47uZSdSFNyBIH388tZnhXz8aHbuo23Weeuqpfv9PSkrClClTRHPIrrvuOjidTrz++uuSDyaljMznRzvQbnMjw6jHeWWDN9CcNTUbGUYdOu1ufF3VNeKmBzHx+QPY38ilUiOtryOUBIdsHmuTXth12j2wunxgGKAoPTZhxzt2EqdiSfoxns7MTKMeBq0KLm8ATT1OFEk0doOIo3gvEiSdKeVFos0Wv+MFhFKhPX1euH3+EccDCUFvmNsY73ibTN71kk5ctAtUYydHOpCIyHhjB7j4bS472q2uqGdvxgqfwh+Fx14oor6NW7p0KZYuXYolS5Zg6tSpmD17tmiirq6uDs888wy++OILpKamwmg0wmg0Ytu2baJ8P0r0vLe/GQBwQUXukK6AVq3COdNzAAAfHWyVLLbBqOl0wO0LIEmnxoQoBRKZnl7VYZfceSTp08LUxJjTmROz5HHs4l2tBHApNTmGhrYKUKMGhHfYSSjseFEa3wUuJVELXXDbSodE4oiI0rQkXdxCkghTKR1Hobpis2QQpfwNQZxuIxByW9skPPZtvDAVqr7xFBB2HR0duPTSS5GQkIC8vDwYDAZceumlaGtrEzy48ePHg2VZOJ1O2O12/mPJkiWCfy9K9Dg9fmyu5M77moq8YZ+7agYn7DZXtsIv0yJ6AKhs4cbglOaaop5mn5+SgCSdGl4/K3kjSDwdsQTi9NV19clSzJwb5yozOTY4CFevI4NjJ5AoZRiGd82kEhj8xVmAYdR8jZ1E6UCWZUP1gXHGT1KxFqdXsq5eQR07Pg0unTDtCIrIuBtXgu+bDptb8jFF8RK1sLvyyithMplQXV0Nn8+H6upqmM1mXHXVVWLER1Ewnx5pQ5/Hj4LUBMwsTBn2uacVp8OcoEWn3YO9DT3SBDgIlc2csJuWG73LrFIxmBx07Y5KnI4lHbHFMXTEEgpSE/ut5pKKZn4OXLwzvcjuTOnEEekEjTcVGxJ20l3gWgUYF0Igzku7RMJUiFEnBKkdO5vbB5c3/qYVgFvpRjIhUrml7QIJIyDkmkl1Q+P1B/i/bfEK0/RgjWGAhaR/L4UgamG3Y8cOPPnkk8jPzwcAFBQU4PHHH8eOHTsED46ibN7bR9KweSPWP2rVKn5H6bbjnaLHNhTEsZuWF1v5QGlOsM6uVVphV9MZX+MEwK3mIuJIyrEhQs2VkmOSPRFi8Tp25Os77G7JHOt2gdxGQHph2s4Lu/hdoyyJGxBI7MkGTdy7srmu3mA6UzJRLWSNHbkhkObYE/GrUTFIS4xslNVQqFUMMo3SHnuhiFrYnXHGGQNq3L766issW7ZMqJgoowCry4utRzsAjJyGJZwhs7BjWTYuxw4I1dlJ7djVBTd3xNo4QSBjQ+q7pUklOz1+9AQHOsdTYweE9j5KNSiXZVnBmicygnf//gCLTrs0F7lWQcWRtK6XUGlk7jWkvTgLMTswHKnTmbxjJ1DzBCDhsQ8Ku8xkfdSlNoORPUrr7KLuijWbzTj//POxdOlSFBQUoLGxEV988QUuvvhi3HTTTfzznnjiCUEDpSiLz492wOMLoDgziXexRuL0yVw37N6GXlicXpgTpF2s3GFzo8vhgYoBSiKM+WTI1x1rk64BwR9g+TEZsa7kIoxPS8KO6m7Ud0njepH1Pkk6NUyG2HZmEojbKJVjZ3X54AzWNcXrepG7/1arC60Wl2AX/eEQUhxlSezYCVWjxr0GF7vV5YPL64+5+ShSQs0H8ccOSD/LLlTfOPqaJ4SYfRhOjkmPfRh9jl3Uf2knT56MO+64g/9/YWEhFi5cKGhQFOXzWdCtWzE1O+IxNPkpCSjOSEJ1pwO7artx1tTskb9IQA4F07DFmcaY/7gTx662yyHJRQLg7hY9/gC0aiZu12tcurQbHFrClonHO66I7J5s6XWCZVnRxx+RP+bmBK0g5znbbOCEndWFirhfbXi8/gC6HAIKO6mbJ/iRFfHHTurUPL4A2q1u/ndALIR27LIkdOyE2jpBCI9dit/Z0PxAYUR1tgzd7EIQtbBbtWoVFixYMODxnTt3Yv78+YIERVE2gQCLz49xwm5ZlDPp5halcsKurkdyYRdvGhYAMow6pCXp0O3w4ES7HTOCO2TFpK6LS5sWpCbGNTAUCA36bZBI2BF3Ld6OWCBUo+fw+GF1+UR3fFsESsMSyMVGigaEdpsbLAto1fHXGgHhnaXSXOA6BGyeIHVqDd1OtNtcogs7ITt6AWmPvVBbJwhEHHp8AVicXqQI8F4cDqHmBxJ4YTfKHLuoa+xWrlw56OOrVq2KOxjK6KCyxYpOuxtJOjXmFkW3lous8dpdK31nbLyNEwB3kZiSzXWmHpWogaI+WF8Xbxo2/DXqJKqxI6nYeDtiASBBp0ZacN+tFOlYfg6cAM0H4a8jxUUilMo0CFJrJOU8tUCADZsDJ1A6kzRQSBB/u0CDoQlSuqXkfZNh1MV9EwkAeo0aqYna4GtLF78QHb1A2NYVCbvZhSBiYdfe3o729nYEAgF0dHTw/29vb8c333wDnU5cJU5RDluPtAMAFk3KiHpV0dzgGq+9jb1w+6SZy0Q43BK/YweENlBI1UBRF3TXxgvgNBBh12Z1SzIXi3fs4uyIJUi5kJ4IMMEcOz6tI8EFziJcATwQulB2Ozzw+MSd6dXd54EvwIJhuKYTIZCygaJdJMdOytiFrAGVNH6Btk4QRuuQ4ohTsTk5OWAYBizLIju7fwotOzsb69evFzy4Uw2H24cvjnWgsceJLJMeZ0zORGqS8gTzZyQNWxL9arAJGUlIT9Khy+HBwSZr1Gu9YqXP40NNcKjw1DiF3SSygUKiDQ5COnapiVok6zWwuX1o7OnDpKzYmkgihaQz460NJOSlJOBQsxVNEiyk57tKhXLsJLzACTkHDghtn/D4A+iwu/ktIGJAYk9P0kOrjn3HbThyOHaCdcVKKEqFbvwAOOfySKtNove9cLWZQJgoHas1doEAd5d2zjnn4OOPPxYtoFMRf4DFf76sxl8/PQG728c/btCqcPOySbhp+SRBbHEh6O3zYE89l0ZdVpIV9dczDIPZ41OxubINu+u6JRN2R1ptYFmuDT7e3ZMTg3tKayTaPkHSpuPjHHUCcMe/MC0RlS1W1HeLL+zIlog8gcQReZ0WKVOxQnXYSbgvVqhVaASyfaKp14k2q0tUYRdyjYQTF/zmDJFTatzWCWEdOym7etsFFkZAWG2pBKJaqK0TBPIetLl9cLh9SNLH19kvFVHfDlFRJyx2tw//9+y3+MMHR2B3+1CUnojzy3NRmpMMlzeAP20+hpte3C35btKh2Ha8EwEWmJxljPmP+9ygmNslYZ2dEI0ThAnBIcH13X2inxeWZfkZdkKkYoGwOrsucRsoWJbt1xUrBLkSDikmbmOuQKKUXCSkSOu0C+zYAWF1diKLI6HdxvDXEntkiN0dGpEjVDrQlKCBPljyIvaxF3LrBEGqVKyQWycIyQYtkoJDpkdTOjZq+Tl16tQhW5YrKyvjDuhUwusP4MYXdmPb8U4YtCrcu2Y6LptbyKe839rThDvePICPD7XhjjcO4JFLy0VvFx8JMuYkljQsgdTZ7a7rkaQFHhCmcYKQYzIgUadGn8eP+u4+TIxjzddI9PZ5YXNxLm5hqkDCTqKRJ719XsHmwBH47RMSpEaEFhjkdWwuH/o8PiTqxLv75+sDzcK5XtnJ0oijNhEcuyyJHDsSe7JeI9j55bp6Dajv7kObyF29Qm6dIEiVShZy60Q42WYDqjscaLe6Rf1bLyRRv/Oeeuqpfv9vaWnB3/72N1xyySWCBXUqwLIs1r97CNuOdyJRp8ZL153Wb98qwzD4/uwCpCbqcO1zu/DGd42YMz4VVywYJ1vM4WNOlseQhiXMyDdDp1Ghy+FBbVcfJmTEn2IcCaEaJwDu3EzISMKhZiuqOxyi/rKTxomsZH3c64kI4yQaeUI6YjOMOsHSRyQVK7Zj5/b50eXg7v6FEqXk7t/h8aPV4opr7+9ICN0dCEi3HorUeWUKGLtUQ35DHbHCCSOA+/2v7+6TzrETUlRLNNyab5wQaOsEITs5KOwkGrIsBFGnYpcuXdrv4/LLL8dbb72F//73v2LEN2b5z5c1eOmbejAM8NfLZ/UTdeEsL83C/1tVAgD4/cZKyeaPDUY8Y07C0WvUKA/Of9vbIH461h9gcaSF62AVwrEDwF+UqzvEbaAgM+yESsMCIWEntmNH0rBCdcQCIceuzepCQMSdq+QCqtOo+HENQiDViiLe9RJIlALSLXQXck8sgQjcnj6vqN347QJubQhHqnSmkFsnCFLN4SPHJlPgrS5Sr6QTAkFajliWRWNjoxAvdUrwSWUbHvjgMADgt+dNxYppww/qvW5JMRZMSIPT68fv3j4oRYiD8tnR2MecnExZASfs9jda4o5rJGq7HHB6/TBoVXHvWiUQl7G6Q9wGilBHrHCuZriwY1nxxBFx7ISqUQOCd+MM4PWLu3O1LUxcCFkqIMVcLLvbxzdhCVpjl0zWQ0mTzhTSbSRdvUAoZScGojl2EqzmEnrrBCE7bAaiqDdjAm+dIGRL5DgKSdSp2PB9sADQ19eHTz/9FFdccYVgQY1lDjVb8PNX9oBlgSsWjMP/nT5hxK9hGAYbvl+Gcx77Ap8f68BXJzqxeFKGBNH2Z6sA9XWEsqBjd7BJfGFHGidKc0yCdRdPzJSmM7ZewBl2BG69F+DycsXG8XYJD0WzwI0TAKBRq5BjMqDZ4kJTr1PQ7r1w+MYJk7Ddn1JMsiei1KjXwChgF1+WxM6LkKI0vKu33eZGgUD1qicj5H7ecIiD1iGiuCBbJ1QMBNk6Qcgw6sEwgC/AorvPI9hswpMReusEQSqnWkiitl2ys7P7fcyYMQNPP/00Hn/8cTHiG1O0WV34v2d2oc/jx5LJGbh3zfSI3YDiTCN+tGA8AODBD4+IeuczGPGOOTmZ8gIi7Kzwi/yzCNk4QSjOCKZiO0VOxYog7HQaFe8cNfSIl44ldXB5AmydCId0xraI2EDBiwsB3UZAmt2TZEyL0Be4bAm2T/gDISdWyFQsEN7VK96xD6/zEpJsCRw74iJnJusFHa+lVat4oSimOGoXwekFpKstFZKob+foIOLY6PP4cO2zu9BqdWFSlhF/v2J21MM3f3bmJLy+qwEHmiz44GALzi/PEynagQgx5iScCRlGvrO0qsOOKdnizVMTsnGCQEaedNo9sDi9ou0tFXI4cTiFqYlosbjQ2OPE7HHizBIk2yGEdOyAUGpXzAaKVn6GnbAX6BwJ6nXIxV+o+XuErJO2T8RbjjEYXXZ3yDUS2NmRYjUXv8pN8Dov8VP44WvohCbbpEen3Y12qxvTRbpstQk8GJrAp2LHavNEV1cXfve732Hx4sUoKSnB4sWLcdddd6Grq0us+MYEHl8AN7/4HQ40WZCWpMN/186LSQhkGPW4/oyJAIA/bTomutMVjhBjTsJRqxjMyONcuwMi19nxM+wEdOyMeg1/oRCrgcLl9fMpOyGGE4dTkMaJLTGbcZpFaJ4AwN9YNIu4faJVhHQgIM2KIrKyTGhhl5qohVbNOTkdItU3tonkGgHSiKMOkRw7vr5RghsCoZ1S7jXFT2fy7x2hnerkUOxi1iQLScTCrqamBuXl5fjwww9xzjnn4Je//CXOOeccfPDBB6ioqEBtba2IYY5evP4Abnn5O2w92gGDVoV//XhOXHOIrl0yASmJWtR0OvDRwVYBIx2a8DEnQqRhCTOCdXYHRKyz67C50W5zg2GA0hxhXcHiTHEbKIjoStZrBO3MBMDXGDWKlIr1B1hevAi9pUBKx05oUSqp8yKwsGMYJrSaS6QLtBj1dQRJxJFI8ZNzSbZPiIEYWycIoc5SMUW18CN+gFAK3+UNwOryjfBsZRCxsLvttttw6aWXYvfu3bj77rtxww034O6778bu3btx8cUX41e/+pUoAXZ0dGD16tVITExESUkJPv30U1G+jxg43D7c+MJ3+PhQG3QaFf7147mYMz72MSEAkKTXYO3CIgDAk5+fkOQOov+YE+HSdqTOTkxhR9KwE9KTBB8Iy488EanOjmyGGJeeKPgQ58JUTrA09ogjjtptLvgDLDQqRvDmjDy+xk5EYSfCgF+gv3MhVp0sERdCp5GBsO5MkS7QoV2lYgg7MmBZnNjtbh/6PMGtEwK/500GDQxacbdPtIuwJ5ZAjr1Y6czwrRNCO44GrZrPsIndOCQUEQu7LVu2DFlfd/fdd2PLli2CBRXOzTffjLy8PHR2duKhhx7CpZdeip4e6VZRxcrXJzpx/t++xCeH26BTq/Dkj2ZjyWRh0phrFxUhQavGwSYrvjzRKchrDseWI6ExJ3qNcHsKyciTQ80W+ERazUUaJ6YKmIYlFIs88kSMxglCochDikmaNNtkEDylRoRdk0ipWJZlw/aVCiswMpNDHYJkALLQSOF6dYh0gRZj6wQhS+Tmj/awbmShd4qGu6ViiSOx3vPhrymWMCINNxoVg1QBt04QpHAchSRiYefz+aDVDp4O0ul08PuFt4ftdjveeecd3HfffUhMTMRFF12EGTNm4L333hP8e8UCy7I42mrDgUYLdtf14MMDLfjz5mO48PGvcMW/v0FNpwPZJj1eueE0nDV1+Fl10ZCWpMMP5hUCAJ7YWiXY6w7Fp4fbAABnlQqXhgU4F82o18DlDeCESHVqQu6IPZlikUee1AeHEws5w45QkErEkVOUWk2xOmK51+Ri77S7RRk22+3wwBO80RDaOdKqVfy4B7FSgm2iptTEnenVLmIBv/hpZHHq6whiD8ptE9GxE1sYhR97IbdOEKQaEC0UEd9WLFy4EE888QRuv/32AZ974okncNpppwkaGAAcP34cZrMZubm5/GMVFRU4dOjQgOe63W643aE3jdVqFTyek2EYBuf+5QsMdl3UqhlcMX8cfnl2iSgdk9cumYDnd9Rhe3UXDjRaePdLaNqtLuwLNjecKbCwU6kYTM8z4ZuabhxotKA0R3jxdViEUSeECcGRJ3VdfQgEWMH/oIjp2OWaE6BRMfD6WbTbXILXkonVEQtwRfx6jQpuXwBtFrfguzNJGjbDqBOl8zPHZECHzY1Wi4uvMxWKQIANpWIFHtUChDkvojl24hXwE8euy+GB1x+IeirBSIg1nJiQJXJ9phhbJwhiz28Ua+sEQWy3VGgiFnYPPvggli1bhp07d+LCCy9ETk4OWltb8c477+CTTz7BZ599JnhwdrsdJlP/C7LJZEJvb++A527YsAH33nuv4DGMRK45AQGWhU6jQkqCFlOyk1FWYMa5M3JFG/wKcMXv55fn4p29zfjXtmr89YezRPk+JA1bUWAWxQEoyzdzwq7JgkvnFgr62i4vN0oFEMexK0hNgFrFwOn1o00EcURGnYwXeNQJwHUl56UkoL67Dw3dTsFjF6sjFuBuqPJSElDT6UBTr1N4YWcRTxgB3EXuQJNFlItEd58HvuCdphjOS2ayNM6LGOnAtEQdNCoGvgCLDptb8JsOsdaJEcRs/vAHWH7rhKii2u6Gzx+ARnBRLc7WCcJom2UXsbCbNWsWvvnmG9x333247bbb0NXVhfT0dJx55pnYsWMHSktLBQ/OaDQOcN6sViuMxoHLs++880788pe/7Pe8wkJhhcJgfHXHmaJ/j6G4bkkx3tnbjPcPtOD2VSWiTFP/5DAn7IRMJYdTJmIDxdFWGwIskJ6kE+Uip1WrMC4tETWdDtR0OAQVMf4Ayw8PFlq4EApSibDrw/wJ8TX1nAxJxeaLkIoFuBRvTadDlAYKvnFCpLt/Pi0lwpBiIkozjDrBHSkg3LETuYBfBHGhCjbytFhcaBdD2Ik4LoR7XfGOvZjzAwFuk4VaxXAC0uERXLi3i1hXGv66oyUVG9VvfmlpKV566SW0trbC6/WitbUVL730kiiiDgAmT54Mi8WC1tbQWI99+/Zh+vTpA56r1+thMpn6fYx1ZuSbsXhSOvwBFv/9slbw13d5/fjyBDfm5KypwqZhCWS1WGWzVfAGivCNE0J3lRL4nbEC19m1WJzw+llo1YworhfADSkGxOmMbRFpXAiBvK4YI0+I4BLrIpEjYlqqXaQhrQQxXaP+nY0ixS9iEb+YqUwgfPOHeLFnGIWfHwhwGYJMEWtL20d5faPQCH9LJyBGoxFr1qzB+vXr4XQ68e677+LgwYO44IIL5A5NMVy3pBgA8Mq39bD0eQV97a+rOuHyBpBnNoiSygSAovQkJOs1cPsCON4ubAOFmI0TBCLsagUWdmRHbGFqoih/aAGgkAwpFmGWXah5QhxhR163WQzXS2zHjh9SLLzzQoYTi+1ckO0TQhLe2ZgmQmcjECZMRXC9RK+x4wfljr7YAXEbKMTaOkHIErlpSGgULewArjGjoaEB6enp+PWvf43XXnsNqanirEAajSydkomS7GT0efx4aWe9oK/9wQHOKT1rarZojpdKxWB6Pie89jf2CvraYjZOEIoyxOmMJfV1hSLU1xFI6l7okScur58f5SFGVywA5AXFUYsIjh0RXGLV2JEBy2KkYsUcdQKIu31C7M5G8toA0CGqayRyCl9Et1Ho4b7hZImYzgx1goudBh8d2ycUL+wyMzPxwQcfoK+vD8eOHcOKFSvkDklRMAyD687gXLunv6oR7C7a7fPj4+BmiwsqxN1JW16QAkDYOrtAgOWF3VQRHbtikYSdmB2xBOLYCZ2KJWnYRJ1atB26uSKuFWsN1u2JJeyIEyhGfWCbyG6jmNsnxNqYEY6Y41r4An6Ru2JtLh+cHmHH/Ejp2ImRBu8QcbA1AD6N7PWz6BE4MyYGihd2lJFZU5GHbJMe7TY33t3XLMhrfna0Aza3D7lmA+aOF9ch5TdQCLgztq67Dw6PHzqNihdfYkBSsfXdfYLWCBLHbpyIjh2psePq+YSLnbhouWaDaE4vacpoFqN5wiKuOCKpWKsIF+hWEceFEMRKqbVLEDtx7ISuU3O4fbC7uXVTYgnTZH3Y9gmB42+3ies2AuE7V4V934i5dYKg06iQnsSVB4yGOjtBhN0111yD//73v6IMKaaMjE6jwtWLJgAA/vVFtSBW8XtBgXh+ea5oaRFCeX4KAOBwi00wx/FQMycSp+aaBG+tDyfHZIBBq4IvwArqfNV1cw7g+HTxRGmGUQ+dRoUAC7QI6Hw1iVxfB4SaJ2wuH2wu4e6gnR4/vw8yWyTHLlmvQaKO2+AidAMFn1ITKXZAvFl2YjcfAOI5dkQYJenUMAq8dYLAMIxonbH8YGhRbwjEmQUn9tYJgpipZKER5IrHsixefvllVFRUCPFylBi4YsE4JOnUONpmw+fHOuJ6LYfbh0+C2ybETsMCXErQnKCFxx/A0VabIK95sIlLw84Qsb4O4GoEi9KFTceyLIu6Ts6xKxIxFatSMfwGikYBGyhIKjZPpI5YgNuZTNK8LQLWqhGhlahTI1nECzTfGStwnR1fYyeJOBIpdhHFRSbv2AldHyh+GhkId73EcezErbETx+mVojYTGF2z7AQRdk8//TQ2b96Mffv2CfFylBgwJ2hx+fxxAIB/bauO67U+OdwGlzeAovREfhyJmDAMw6dj9zf1CvKaxLGbnid+/EKPPOl2eGBz+8Aw4jZPAKF0rJCdsfwMu1TxhB0QakIQcuRJS1h9nVhpZPL6ANBqFS52t8+P7mDTilj1gYB4Q4pJp6oUNXZdDregpROhVKZ4ohQAMkUTR9I5dkLvGR7toloMohZ23d3d6OvjLgJ+vx8vvvgiXnnlFbAsC7VauAXxlOj5yeIiqFUMvjrRhd11PTG/zqvfNgAA1szMF/XiFg4RkELU2bEsi4PBRowZ+eLPMxR65EltsL4u12SAQSvu7xRx7Bq6hRMYUqRiw19fyAaKVn7+nrgXiZBjJ9wFmjgJOrUKqYniNK0A4jl2Yg+ZBbhh5WoVA5YFX5clBO0Siwsh0+D+AMsfCynS4J12j6A1vVKJar62dBSsFYta2J199tk4duwYAOCOO+7AQw89hD/+8Y9Yt26d4MFRoqMgNRGXzC4AADz00ZGYau2qO+z4uqoLKgb4wTzxN3cQSGfsfgGEXbPFhZ4+LzQqBlOyk+N+vZGYIHBnbF2X+PV1BOIICpmKDQk7cS9y5PWF7C5t4RsnxBWlpAZOSHEU7rqIeUMmVkpKilSsSqRBuWKvtCKIcey7HR74AywYhttYIhb9RuUImAqX4oYAGF2z7KIWdsePH+dr6Z577jl8+OGH+PTTT/Hqq68KHhwlen6xYjJ0GhV21nTHVGv3/I46AMDykizki+y4hENSscfabHB542vCIW7d5Oxk0R0vACjOFFbYEceuKEPcNCwQnooVRhyxLMunRgtSxI0/tH1iNDt2Qgo7d7/XFgsxiuDdPj8/RkLMOi8glG4Uss5OilRm+OuLcUOQnqQXtdEsfFSOoKJa5K0TBL5xZSymYnU6Hfr6+vDtt98iLy8P+fn5SE5OhsMh7BwvSmzkpSTgx6eNBwA8/NFRBAKRu3Y9Dg9e2cmlYa9eXCRGeEOSazYgw6iDL8Dyq8Bi5VCzNI0TBNI80dTrjFuUAtI6dqFUrDCOXbfDA5c3AIYBss3i/qHN51OxIjh2Igs7cpEQsiu2VSLnggiv3j6vIO93IOTg6NQqpIiYRgYgsriQKhUrnCjtEHn+XjhijMrh3/ei/86KtzlDaKIWdj/84Q+xfPlyXHXVVbj66qsBAHv27EFRUZHAoVFi5ablk2DUa1DZYsUL39RF/HVPf10Lp9eP6XkmnD4pQ8QIB8IwjGB1dof4+jrxGycAIC1JB5OB66Cs64pfIPGOnYgdsQSSim23uQW5SBP3LNOoh14jrltKXDUhU7GkmUFsx468vpCOnVQpKVOCBnoNd+kQKqUWvjlA7LpeURw7CQb8cq8vYgpfZMcLEGdUjtjbVgh884fdDX8UhokcRC3s/vKXv+D3v/89nnjiCfziF78AwF2U//KXvwgeHCU20pJ0uH1VCQDgwQ+PROTGtNtc+Hewm/bm5ZMka5oIp0ygOruDzdI1TgDc+39CphEAUNMZ/75bKR271EQtkoIz1ZoEcL6aern3mtiNE+Hfo9ki3JqfVokcO/L6Ql4kpBhODJw8T02YC7RUohQIc70EFEcdEjl2RDgKuX0itDFDgmMvojAVuwQhPUkHFcM1m3Q5lO3aRS3sLrroIpxzzjk488wz+cfmzJmDv/3tb4IGRomPKxeMx/yiNPR5/LjzzQMjXvge/PAI+jx+zCxMwbkzciSKsj/lxLGLY+RJh82NNqsbDCPuKrGTKRZo5Elvnwe9wVojMdeJERiGEXRnbFPQsRN71AnAXSQYBvD4Avxu2nhw+/x8d2CuiDP4AG44tFrFBDsShblISCVKAeHTUlK6RkI7dn0eH2zBrRNii+pkvQYJwbphwUS1TbpjL/SonH61mSIfe41ahQzj6JhlF7Ww27p166CPf/7553EHQxEOlYrBQ5eUQ69R4csTnfjblhNDPndzZRve/K4JDAPcdf40Wdw6INRAcaLdDkfwD2W07G3oBQBMyjQiUSfOgNnBIHV28Y48IancrGS9ZPELuTOWn2EngWOn06j4DkchNmfw40I04o4LAQB1WHemUOlYKZ0XoVOCbZK6RsI2IJD3TYJWvK0TBM4tFVpUc6+TOQodu/DfWbH2Uocj1qgfoYn4XXjTTTcBANxuN/9vQl1dHUpKSoSNjBI3EzKScO+a6bjjzQN4dPMxmBO0WLuoqN9zDjZZsO7VvQCAa0+fgDki74UdjiyTATkmA1qtLlS2WDGvKC3q1yDz+6T+OSYI1BlbG0zDFkmQhiUUCDikuCkoDvMkcI0ALh3bbnOjqdeJsoL4aipbwjpipbi5yTZz7/VWqwvx7uxhWZYXiJIIO4GdlzaLNDVqQChdKpRjJ9WYGUJWsgG1XX3CiSOJRrUAwo9rCU/DSvI7a9LjQJPyGygiFnbZ2dmD/pthGJSXl+OSSy4RNjKKIFw+fxxqu/rw1OdVWP/uIexr7MVNyyYiw6jH/BzJxQAALvdJREFUBwda8cD7lXB4/DitOA23nVMqd7goKzCjtdKFvfW9MQm77+o5YTd7nLTCrligWXbEsZMiDUvg14oJMKS42SLNcGJCXooBexuEaaDgt05IIIwAbgD1Pgjj2NncPjiDzS/SdDcKW6dG6gPFbloBQuKx085tn4h3xIdU3cgEoVPJUg1XBoQflSNVXSlhtOyLjVjYrV+/HgCwbNkyLF26VLSAKMLz/1aVIEmnxqOfHMOb3zXhze+a+n1+YXE6nrpqDnQa8WYYRcqc8anYXNmGb2u7cd0ZxVF9rdcfwP7GXgDA7PEpwgc3DEVBYddp98Dq8sJkiC0twDt2GdI5dkIOKSaOnRQ1dkCoFk6IfbFSzbAjhNaKxR87cbySDRpJUvhCT+GX0m1MT9JDxQABFuhyeOL+nu0SzQ8kCCmqAwFW2nEnJ43KiXfOaKibWqJjL8LmDzGI+i9AW1sbXnvttUE/d9lll8UdEEV4GIbBLWdNxqJJ6fjblhP48ngnfAEW49ISsXZREX68cDy0Ig6mjAbi0u2q6wHLslHZ64dbrHB5AzAnaFGcYRQrxEEx6jXIStaj3eZGbaeD36QRLXI4dkINKXZ5/XwTg1TDrYkzKERHb2iGnTSx8+6FAKJUquHEhNDezPhdI5ZleXErRfxqFYPMZD3arG60WV1xCzs+doluCEJp8PjfNz19Hvj4rRPiCzsyKsftC6DD5o57F3a7hO8bYPTMsota2D355JP9/t/a2oqqqiosXryYCjuFM2d8Gp75yXz4AyxcXj+SRC70jYWyfDMMWhW6HR5UddgxKSvylWDfBevrZo1LgUolfQNIUUYS2m1u1MQh7Ko7uHEpktbYBZsnuh0eONy+mN8XpHEiUaeWpJAZCNXytQgg7KR37ILNEwJcoKVPBwqXkrK5fegLju6QThwZ0GZ1C1Lr1SphRy8QPgsu/tiJQElL1Elyc09G5dR3czWC8Qo7qVOxY655gjBYV+xzzz2HPXv2CBIQRXzUKkaRog7guptmFqZgR3U3vqnpjkrY7a7vBQDMkbi+jlCckYSdNd2o7oitzq7L7uZb98maMikwGbQwJ2hhcXrR2ONESU5s+3WbwjpipeqszuW3T8T/h7ZFYueF3z4hiGMnrbDLDpun1ufxxZX+JY6lSaI0MhASYUKIo3apHTsBu3r5UScSvW8A7r3DCTshhKk89Y1Kd+wEkehXXnklnnnmGSFeikLB/AnpAIBva7qj+jri2M2WqbN3QpwNFCfaObcuPyVB0lEtQGjkSTyz7IhjJ1XjBPe9QjUvPn8grtdqtUizdYJA6gNbrfEPWOa7A0Ve40Yw6jVIDA62jtf1kmqNWzhCOo5SppEBYbt6pdqzGo6Qx54ILOluaLjv0+Vwwxvn3xsxiVrYtbe39/uora3Fhg0bkJMjz1BbythjfrDO7tvanoi/ps3qQlOvEyoGqChMESmy4SHCrqojtu0TVUGnb1KWtPWBAFCQEn8DBT/qREJhl5Gkh1bNIMCGZqHFgtcf4C+UUgkMIgT6PH5+wG2sSNl8AJy8fSI+gSF1GhkQzrFjWVYGcdHfLY0H4thJlcoEwuoz42xA4I69tO+dtEQdNCoGLAvBBouLQdTCLicnB7m5ucjJyUFOTg5mzJiBjz76CM8//7wY8VFOQWaNS4FaxaCp1xmx0NhR3QUAKM0xiT4kdCimZHMpzBPt9pjWRBHHTg5hxzt2cTRQkK8tkKgjFuAGcRPnqzmOOrsOmxssC2hUDDKSpLnIJejU/I7heBsopBzwS8gUqIi/TeLaRkC4ztKePi88Ps65kWIGHyCsW0qErdir0MIRapZdeG2mVMJUpWL4mwIh9zwLTdTCLhAIwO/3IxAIIBAIwG63Y9u2bZg7d66ggR09ehTnn38+MjIykJmZiSuvvBI9PZE7OJTRS5JegxnB9WLf1kaWjv3qRCcA4PTJGaLFNRKFaYkwaLmOr/oYUponOuQUdvGvFQvtuJWuoxcICYJ4hB2ZYZdtMkjaeCPUyJM2iR278O8Vr7CTOpUJCOfYkZ89LUkHvSa+0R2RwjCM4PFL6tgJ9L4holyqET+E0TDLLqYaO5/Ph23btuG1117Dtm3b4PV6hY4LFosFl112GaqqqlBbWwuPx4Nf//rXgn8fijI5bQKXjv3qRNeIz2VZFl8e54Td4knyCTu1isHkYLPHsTZb1F9fJaNjxw8pjsOxqw8OOB6fJl3jBxDanBFP7I0yuI1A6CIXzxw+Lo3Mfb1UGz+A0KaCuFOxRJTK4NgJJUqlFNSAcOKCnLtMCR07oZo/pE6BE/IFbNgSi6hl7jfffIOLL74YCQkJKCwsRENDA5xOJ/73v//htNNOEyyw+fPnY/78+fz/r7vuOvzyl78c8vlutxtud+gPjNVqFSwWivQsnZKJf3xRjc+OdiAQYId1Uao7HWi2uKBTq/j6PLmYkp2MA00WHGu14ZzpkdedOtw+vqt0UqYMjl2ca8Ucbh9fczIuzhEG0SJE40dI2MnjNsaTim21uBBgAV3YknIpGNWOXdj2CX+AhTpGl5actxwJHS9ASNeLDPiV430jzA2BlO8bIPQ7K8S2G7GI2rG79tprce+99+L48ePYsmULjh8/jt///ve49tprxYiP5+uvv8b06dOH/PyGDRtgNpv5j8LCQlHjoYjL3KI0JOnU6LS7cah5eJG+5XA7AGDehFQk6KRJhwzFlGxOlB2N0rEjI1LSk3RITdIJHtdIEEFjc/nQ2+eJ+utJ6tmcoIU5UZoZdgQiSmNJfxPkcuzIRSmeVCxJQeemSJtGFs55kb4rNj1JF9o+EUcRvGyOXdAt7YjDLe2/dUK6+Ikwsrt9sLpiz/a18aNapBXVeaPAsYta2DU2NmLt2rX9HrvqqqvQ1NQ0xFfEz969e/HXv/4Vd91115DPufPOO2GxWPiPhoYG0eKhiI9Oo+LTqp8eaRv2uZsqWwEAZ0+TvzN7Sk5sqdgTHdzzJ8qQhgW4Qn5SZxPLuBYiqqSurwOAcenxuY1AqBtYcmFHRp7E4djx+3kl2phBCDUgxC4uPL4AOu3cjYSUzotGrUK6Mf5UslzpQPK7Gs8NQafDDY8/AIaRdtxJok6DlODNX0sc4kiOulIgNGKpeSw5dj/96U/x0EMPwefj2qz9fj8efvhh3HjjjVG9ztlnnw2DwTDox/33388/r6amBhdccAH+85//DOvY6fV6mEymfh+U0c3ZwVTmxv0tQ8756rS7sSs4v27ltGzJYhuKkmBnbHWHg++WiwQ5O2IJZA1bTMIuuAot3knysUAcu+be2GfZNcmUiiUXiXhWokm9n5eQLYDbSNw6nVqFNImdal4cxSGq5XAbgbAdyXEII/K1Wcl6yVdK8p3scYgjOVL4AATpwhebqGvs3n77bZw4cQIPPfQQsrKy0N7eDqfTicmTJ+Ptt9/mn1dZWTns62zatGnE79Xa2oqVK1firrvuwkUXXRRtqJRRztnTs6F7U4UT7XYcabVhau5Asb5xXzNYlltFJuX8tKHINRuQrNfA5vahptMR8RaHqvbgDDsZ6usIEzKTsL26K6bNGXXdwY5YGYRdVrIeOo0KHl8ALZbo1xQFAiwae+VJxYY3fkS7G5nQFLxAS/3+J8Koz+OH1eWFyRB9Cp4IoyyTXrJtJYQcUwIONln5jSOxIFedlxCuUQs/kFv6v5v5KQYcbrHGJY6aZXrfk+/XbuOGFCtlz3o4UQu7p556Sow4BmCxWHDOOefgxz/+Ma6//npJvidFWZgMWiwrycSmyja8tadpUGH32q5GAMDFs/OlDm9QGIbBlJxk7K7rwdE2W8TCTs5RJ4TiODZn8B2xMqRiVSoGBSkJqO50oKG7L2ph12l3w+MLQK1iJJ2lBoQ67OxuH6xOX0z1ic38KjdpY0/UaZCaqEVPnxfNvU6YcqKPnbguUh93ICSO4tkz3C5TnVduWAo/1uaPkDCS/tgL4TiGNt1IG396kg46tQoefwBtVpfkLn8kRC3sli5dKkYcA3j77bexf/9+VFVV4eGHH+Yft9tjm+pPGZ1cOrcQmyrb8MrOevzirMn9dtzub+xFZYsVOrUKF85UhrADuAaK3XU9ONZqAypGfr7L6+fF1ORsGYVdZuybM+qDM+zkSMWS71vd6Yipzo4MVs4xGaCR+O47QadGhlGHTrsHDT19MCeao36NkLCT/tjnpSTwwq40J/ryF6k3ZoTDi4sYU7Fy1QcCnEutVjHwBVh02t0xHT85HbtQA0Jsotrl9aPLwR37fIkdO5WKQW6KAXVdfWjuHSPCzmKx4O9//zv27ds3QGR98MEHggW2du3aAU0alFOPs0qzUJSeiNquPrzybQP+7/QJ/Of++ulxAMDq8lxZOkmHgmygiLSB4libDf4Ai7QkneQXiHAmBGvsarscI46YCcfnD/BdpePTpZ1hRwiNPIn+QiFX4wQhPyUBnXYPGnuc/GDuSGFZlq/Pk8N5yUtJwKFmK58Ojha5UplA/PWNxK2Toz5Qo1YhO1mPZosLzb3OmIRdswwbPwjxppKJIEzUqWFOkLYLH+COWV1Xn2JHnkQt7C6//HJ4vV5cfPHFSExUnlKljC1UKgbXnVGM3751EI99cgwXlOciy2TA1yc68cnhdqgY4JYzJ8kdZj9IA0VlS2SzFCuD41ym5ZokrzMKpyA1ARoVA5c3gFarK+LalRaLC74AC51aJZswjWcOn1wz7AgFqYnY12iJSWBYnF5+rZIcNab5cTovLTI1HwCh4xXrxVnO+kAAyE1JCAo7F2aNi/7riaiW430T78iQ8Po6OY59njm++MUmamH31VdfobOzEzqdchwSytjm8nnj8MrOBhxosuD/nt2FH84fhz9tOsp9bv44FMvYcDAY04OuS2OPEz0Oz4huIhGA0/Lk7eTWqlUYl56I6g4HqjscEf/BJ6NOCtISYh70Gi8kBRzLLDu5ZtgRQls/oo+diMH0JB0MWulnOPLOS4zCTk5RTZyqVosrKoea0CJjGhmIf1AuqS2Uw7GL99iH6uvk+Z2NN5UsNlEXlMyfPx9VVVVixEKhDIpaxeCRSyuQmqjFgSYLfvPWAXQ5PJieZ8Jdq6fJHd4AzAlaTAg2Ihxosoz4/ENhjp3chBooIq+zI2JK6o0T4Yzjd92OwlRs8Ps2xbASjTgGUo86IcR7gWuS8dhnmwxQMYDXz6LTEf0suyaZbwjiWW3lD7BoC87vk0MckWPv8QdiO/YyNQwRclPiE9ViE7VjV1FRgbPPPhs/+MEPkJWV1e9zt99+u2CBUSjhlOQk440bF+Hhj46iqsOOxZMycOuKybJvmhiKsnwzajodONBkwRlTMod8nj/A4rBCHDsAnPt5uB1VUYw8qQvOsJNj1AmBpGI77W44Pf6o3hdyzbAjxLOnlwgjqYcTE+JJqbm8fr75QA5xpFWrkJVsQKuVS2dmRbkvNSQu5Dn2xPWKRVS327huWo2KkXQNHSH82LfEcOx5x06u933w+8ZaWyo2UQu77u5urFixAl1dXejqCi1ol7M2iHJqUJxpxFNXzZE7jIgoLzDj3X3N2N/YO+zzjrba0Ofxw6jXYKICUsoTYhh5Qtw9uRonAMCcqEWyQQOby4eGnj6+gWUk5JxhRyDdrLHU2DXLWCcFhERNq5UbDh1NVzERska9RpYCeIBzXjhx4cTMwpSovlauwdCE3DhqBIkQzzYZZCufyEshotqJiiiPPb9tReZU7Jhx7J5++mkx4qBQxhRlwTq7vQ29ww6e3dPAbc2oKDTL9gc2HCLsqqNIxSphawbAuXaVLVY0dEcu7OScYUcgwsDi9MLm8iI5ikG/vGskk7jINOqhVTPw+lm029xRXWjDU+ByGQN5KQnYU9/LC+RokNux41OxMcQeGnUiXxd+bkoCEOOxl2s4MYGkYnv7vOjz+JCoi1pKiUrE0ezcuXPE58yfPz+uYCiUsUJFYQq0agZtVjfqu/uGdLO+q+sFAMwelyphdENDZtk19jjh9vmh1wyf0vT6A3wqVm5hNy6NE3bRNFDIOcOOYNRzuzN7+7xo6nWiNIpBv7xrJFOtkUrFIMdsQEO3E829ziiFnbxOKQDkxZjOZFlW9hQ+EWUdNndEv6vhkMHAuTIJIyB07KMdEB0+4kcuUW0yaPkNQ829Ltn/9p1MxMLuBz/4wbCfZxgG1dXVcQdEoYwFDFo1KgpSsKuuB9/UdA8p7IhjN2tcioTRDU2mUd9vJdpIQ2fruhzwBVgk6dSy3v0DQFEMaeT6bjJYWd51dAWpCejt86KxO7pBv3J3BwJcvVFDtxNNvU7MjeLr5L44A+FDiqMTF1anDzY3ty9drvjTknTQa1Rw+wJos7gxLoqtL3wqU8bfWb4+M8pj3+XwwOMLgGHkGZNDyE0xwNZmR3Ovc/QKu5qaGjHjoFDGHPMnpGFXXQ921nTjsrmFAz7fbnWhusMBhgFmFSrDseu3Eq3VNqLIIGnYiVlG2etsidsYXX0g5+6RFLRc5Kdwe0ujqbNzef1oD3Y2yimOYu3OlHt+IBB780djL/e+SU/SydbAxTBc+UBtVx+aLc6ohB3v2MkpjGKcBUduZsiOaLnIT0nAsTZ7zAOuxUR522splDHCvAlpAIDtVV1gWXbA57cd7wQAzMgzK2pzRmlwv+3hlpE3Z/DCTgGNH2RUS3UUHb1EBMot7Ii4iWaWXUMw5Zys10i++SAcUt8XbTpT7jEzQOxz+ORunCDEOm6Gr7FTxA1BdLErwaUGQiOWYpmdKTZU2FEoIrFgQhp0GhWaep041jawGeHLE5ywWzI5Q+rQhqU0OE/vSOvImzOOK6RxAgiJs2aLEy6vP6KvIR29RTJ29AKhi1w0I09IbeO49ERZ3VJygY3WuWhUgDgirlFHsIkmUppk7qQmxLrvlu+mlmlcCBAS1R12rkYwUppkbpwgxDMUXWyosKNQRCJRp8HpkzjRtrmytd/n/AEW2453AACWTB56zp0cTA06dkdbR3bsyAy+qbmRdaGKSVqSDuYELViW23c7EizLojaYiiVpXLmI5SJRF3zu+ChScGIQi2vk8vrREUwjy5mKTU/SQadRgWVDK8IigRelMouLWBxHjy+ATjt37HNlaroBuN/XRJ0aLBvdcO5mBdRmAuFD0amwo1BOKVZMzQYAbKps6/f4juoudNo9MBk0mD0+RYbIhmZKUNi1WFzo7fMM+TyX188PMp6WG93yejFgGCY0riWCdGyH3Q272wcVExJWcjEhg/v+tZ2OQdP2g1EfFK/j0uR2GzlxEI1jF77EPTVRnhl2ANfVG1rNFbmwa1KMsIveLW3qdYJlgQStGukypvAZhokpnRkaTixvsxapaaSOHYVyirFiWhY0Kgb7Gy041BxaL/bGd40AgAsq8qIaUyAFJoOW7xI92DR0OvZYmw3+AIu0JB2yTdJPrx8M4rxVtY88h68mKP7yUxNkPweFaYlQMYDD40eHPbIVS0px7Eg60ObyweryRvQ14aNO5G66CW0RiPwCHZofKO+xj8U1IkKkME3+Yx+LsON3U8t87Mm2m94+LyzOyN73UkGFHYUiIlnJBqyakQMAePbrWgDcOp8PD3Cp2e/PLpArtGGpKEgBAOwbZnNGZdiOW7kvEISS4GDio20RNH50cOKvOEP++kC9Rs3XmpH08EjUdylD2CXpNcgwcs4PiWkklJLKBEJ1ctHsGVZKjR0v7HqcCAQic3qJCCyUWRgBYcIuwvcNy7KKfN8rLR1LhR2FIjI/WVwEAHjjuybsruvGgx8egdPrR3mBGbMVMr/uZMh6pb0NvUM+pzJYXzddATtuCSSNfCwCYXcsWENYkiN/fSAQauCoiWDrh88fQEMPucDJm4oFQhfouggv0MQdk9t1AUICIVLXqM/jQ7eDK1GQuys218ytBPP4AmizRZZK5oWdzOUHQPTpzJ4+Lz8/UAnxk/cvFXYUyinGnPFpWFORB3+AxcVPbseb3zUBAO5ZM10xTtfJhAu7oWq+9tT3AgBm5MtfX0cgjl11h2PELkfSqRzp+jGxKeYHLI98kWjoccLrZ2HQqpBrkrfWCAiJ0kiaVgBlbJ0gRNu4Qurrkg0amKJY/yYGGrWKdz0jdb3IDcE4BQijaI99XfD9lWs2wKCVv4QltIIx8hFLUkCFHYUiAQ98bwbmjOeGEOs0Ktx34XTFrBEbjOl53O7aDpt70KJyu9vH1wzOLVLOz5FrNiDZoIEvwI6475a4eiUKEXZkc0ZtBBcJMj+wOMMIlQJ2DBPXMFJxQX5GJYiLaGNvVEhXJiHaOrV6JTl2YbFH0jTEj/hRQOwAomrWkhJlba6lUMYoyQYt/vfThTjWZkeSXq2IFNRwJOjUmJ5nwv5GC3ZUdw2oBdxb34sAy13ccmWchXUyDMOgJDsZu0bYnNFpd6PL4QHDKGMGHxC6SFR1jJyKJc9RSuwknRnpmBnicBQrYLA1EQmtVhdcXv+ITlCjQor3CYVRNlCQWkIliKOC1ASoGKDPw42/yRrBfa5TSH0dIbTtZuTfWSmhjh2FIhEMw6AkJ1kxF4SRWBycwfdlcENGON/WdgMA5inIrSOQmjlSAzgYpL5ufFqibCuhToakhGs6R04jK2njBxC60EZSY9fl8MDm8oFhlHGBTk3kFroDkW3+CIlS+WsbgbD6xgiEnSWsg1MJaXC9JnSTWxWB61UX3O2shLpSINR4RVOxMfDggw+CYRjs2LFD7lAolFOGJUTYnegckCb5uooTe3OL0iSPayTKC7iav/0NliGfczCYRh5pF66U5JoNSNZzaeSRnK8TCtr4AYRq7IjrNRwkbZWfkqCIOimGYaKq9VLKGjpCEe+WRiJKufdNtkmPJL0yEnZEII9UOgGEUvhKuCEAgKKM0MgT0lCjBBQv7JqamvDSSy8hJydH7lAolFOK2eNTYdCq0G5z99sb22FzY1ddDwDgzNIsucIbkvLgqJYDTZYhR0Dsa+SEXXmhcho/GIbB5GxOqA239YNlWT4VOzFLGeIiJVGLlOCg4ZHqjUjaSinCCAgJhUgaV4iwk3sNHYGks6s77CPWqZFzo4QRP4SJfPzDv29YllXcDU2iTsMPSq6OoIRCKhQv7H71q1/h3nvvhV6vjAGoFMqpgkGrxhnBdWfv7G3iH//kcBtYlnPG5N7XOBiTs4wwaFWwu31DugD7gmNcZgZFoFIg6djjw4xraba4YHP5oFYxihEXDMNgcvBie7x9+FEzJG2llDQyEIplpPpGjy/A17IpJRU7Pp0bbm1z+UYcbk1+H5QSOxDm2I1w7Dvsblhd3KYYJd0U8MJaQelYRQu7zz77DJ2dnfje97434nPdbjesVmu/DwqFEh+XzOGaJt7c0wSfn6v7eis4ruWc6cp00TVqFWbkcU7cvkHSsZ12Nxp7nGAYYEaBchw7AJgcwYBlMhiaE7DypzIJk7K42E+MsPWDODNKujgT53OkjSUNPX0IsNwqtKxkZZgNBm2oTm0k10uJx564hyPV2J0Ijical5Yo+6aYcM4szcIP5xcq5iYLULCw8/l8WLduHR577LGInr9hwwaYzWb+o7CwUNwAKZRTgOWlWUhP0qHD5sZruxqxvaoLO2u7oVOr8P3Z+XKHNyRkDt+uuu4Bn9sf3KYxMdMo+xyykykNNn6Ep75PhoyZmaagwdAAQo5dW2RjZkjaWQlMyuSO+0iOHVlDV5SepKgZlBMzI+uoJsJOWW4pF3tjT9+w9ZknFNYJTrjm9AnY8P1yzJ+gnHpj2YTd2WefDYPBMOjH/fffj8cffxynn346ZsyYEdHr3XnnnbBYLPxHQ0ODyD8BhTL20apVuGn5JADAb98+gCv+zTUw/WBeoaLGnJwM6ejddnxg48dXJ7oAAHMUOEeQDHuu7+5DzxDF2IeaycYPpbmN3AX3xDDiwuH28Z2zSmpcIenATrsHvX1DF8Hza+gUlMoEIqtT8wdY1HQpq6MXADKT9TAnaBFgh3d7+U5whQk7JSKbsNu0aRNcLtegH7/73e+wdetWvPjii8jJyUFOTg4aGhqwevVqPP3004O+nl6vh8lk6vdBoVDi5+pFRZhXlAqWBViWS+PcctYkucMalgXFadCqGTT2OAeM4PjiWAcA4IwpmXKENizmBC2fJhtqT29ls/JWuQEhJ6V2mHEtJMWclaxHWpJOsthGIkmvQW6wCH4414s0tShlqDWB1HkNJ4wauvvg8QWg06gUM1wZ4Oozp+Vy7+XhRhQRJ3iSgtxGpaLYVOwzzzyDyspK7N27F3v37kVeXh6ef/55/OAHP5A7NArllEKtYvDcNQvw0MVluOXMSXj75sXISpZ/jdVwJOo0/GaPbcc7+Mebe5043m6HigFOD7p6SoMf19I4eH0gWUCvtFRsjim09WMogXEkmGIuzVVW7EDI9RpOHB1pVWb8JTlc7EdahxZG5HNTso3QqJV16Z8aPJ6HhxB2LMvyom+qwo69ElHW2Q0jJSWFd+tycnKgVquRlpaGxERlzK+hUE4lEnRq/GDeOPzq7BKYE5RVlzYUy0q4USzv7mvmH9tc2QYAqChMgTlRmT9HRbBTd/8gjt3OGq5msDQnWXH1gQzDoCyYSj7YNPgMQSIupuYoy/ECQoOth6pv9PoDfHNFqcLiL80xgWGANqsbnUN0xlYGf66pCkqBE6bmkmM/uLBr6HbC4vRCp1YpZrezklGssDuZ2tpanHbaaXKHQaFQRgnfn50PFQN8W9uDE+3cjK8XdtQBAC4oz5M5uqGZOS4FABe3/6Q5fETYKalQOxwi7PY39Q76eVIfWKIwYQSEUtukOeVkajsd8PgDSNKpFZXKBLhU8oRgV+ZQ4uiwgh0v4j5XNlsHncV3IHijUJKTDJ1m1MgW2aBHiEKhjEmyTQZ+gPLftxzHliPtON5uR6JOjUvmFozw1fJRnm9GskEDi9PLX9AIO6q5xo8FE9LlCG1EyoJp5AODpJHdPj//88xScONKZbN10MHWJA07JScZKpVyOmIJU3lhOvqE3aQsI7RqBlaXj99lGw7ZFEPOEWV4qLCjUChjlhuXTYKKAd7e24z/e3YXAK6jV2lpzHA0ahUWT+Tq/0ijB8Bt/CDNB0p17MrzUwBw6cyTGygONVvh8QWQlqTj12ApieKMJBi0Kjg8/kFXupHU+DQFCiMgFFflIMLO4vSiscfZ73lKQq9R86KN7KEOh9wolFFhFxFU2FEolDHLnPGpuO2cUv7/84vS8P9WlQ7zFcqAdOx+drSdf+z9/c1gWaCiwIxMhQzHPZnCtASkJmrh8Qdw4KR07HfBNXSzx6UqagYcQaNW8SNYDg4ijr6r7wUAvilHaRBhtDe4VSWc7+q5Yz8uLVGxtaXzg3unTxZ2Hl8Au4PvnVnBMgXK8FBhR6FQxjQ3LpuIT355Bp6+eh6evWa+orY1DMWZpVlQqxh8V9/LD/R9J9gEcuFM5Q6GZhgGiyaGZgiGs6uWuzjPGa9MYQSEOpKJCCWEp5GVGv/scSlQMdwMxBZL/3TmtwqvzQSAeUMIu70NvXB6/UhP0iluzIxSocKOQqGMeSZlJWN5aRYSdMoXdQCQYzbg7GnZAICnv6rFrtpu7KnvhYoBzi/PlTm64Tl9MifsvgwTdm6fH1+d4P6/oFi54mJhMVe7+HVVf1EankYer8A0MgAkG7S8a/dNdX9xRMQSccWUyNwiTjBXdTjQbnPxj5P3zcKJ6YqsbVQiVNhRKBSKAlm7qAgA8PLOelzy1HYAwKVzCpFlUvYMQTIfcE9DLyxOLwDg66ou2Nw+ZCXrMTM4zkWJnFacDoYBjrXZ+4kL0o08e1yKItPIhAVBR4402QCAy+vndybPU7Bjl5Ko41cBfnSwlX/882Cd6WKFzp1UIlTYUSgUigI5rTgdP1lcxP8/26THb86bKl9AEVKYlogp2Ub4Ayze3tMEAPg4eKE+e3q2ol2X1CQd31ywvSokjjYd4uJfqsBtJeGcFnQcPz/WwXf2bjveCY8/gByTQZFNK+EQN/q9YNnB8TYb9jb0Qq1i+A53yshQYUehUCgK5a7V0/DA92bgvgunY+MtSxRb+H4yP1owHgDw7PZaNPU68VZQ4J03Q9lpZABYMpkTb0RctFldfOPE2dNz5AorIhZPykCyQYMWi4t37d7eyx3788tzFe02AsD55XlggrMnj7Ra8dLOegDAWaVZyFa4U60kqLCjUCgUhaJSMfjRgvH48cIixXbCDsbFcwpg1GtQ3eHA4ge3wO0LYH5RGhZOVOb8vXAumcM1p2w50o5WiwvvBIXR7HEpihcXBq0a5weHb7++uxE9Dg8+CW5bUXLTDSHHbMCqoHhe9dg2PP1VLQDghwvGyRjV6IMKOwqFQqEIilGvwf0XzQAxiPQaFX53/lTFO0YA12gzvygNARa4+umd+MsnxwEAl80tlDmyyLg0OHz7rT1NmPX7zXD7AijNScaMfOXNrxuM9RdMR7Jew///wpl5WKbwFLjS0Iz8FAqFQqFQouOiWfkwJ2ixp6EX35+Vj6KMJLlDiphfrJiMq/7zDb9tYmquCZeOEmE3e1wqfrRgHF78hktjalQMHr6kfFSIaoBz7V6/cSFe39UIjYrBL8+eMmpiVwoMO9hitjGA1WqF2WyGxWKByTQ67lQoFAqFogxe+7YBD3xwGDPyTbh3zQxMyjLKHVLEuLx+PPjhEXTa3bh4dgGW08aDUU80moYKOwqFQqFQKBQFE42moTV2FAqFQqFQKGMEKuwoFAqFQqFQxghU2FEoFAqFQqGMEaiwo1AoFAqFQhkjUGFHoVAoFAqFMkYYs3PsSLOv1WqVORIKhUKhUCiU2CFaJpJBJmNW2Nls3GDJwsLRMVSSQqFQKBQKZThsNhvMZvOwzxmzc+wCgQCam5uRnJws6tRqq9WKwsJCNDQ00Hl5CoOeG2VCz4tyoedGudBzo0ykOi8sy8JmsyEvLw8q1fBVdGPWsVOpVCgoKJDs+5lMJvrLplDouVEm9LwoF3pulAs9N8pEivMyklNHoM0TFAqFQqFQKGMEKuwoFAqFQqFQxghU2MWJXq/H+vXrodfr5Q6FchL03CgTel6UCz03yoWeG2WixPMyZpsnKBQKhUKhUE41qGNHoVAoFAqFMkagwo5CoVAoFApljECFHYVCoVAoFMoYgQo7CoVCoVAolDECFXZx0NHRgdWrVyMxMRElJSX49NNP5Q7plGX9+vWYNm0aVCoVXnnllX6fe/DBB5GZmYm0tDTcfvvtEe3aowiD2+3GT37yExQUFMBsNmPZsmU4cOAA/3l6buTl+uuvR25uLkwmE8rKyrBx40b+c/TcyM/27duhUqnw4IMP8o/R8yIvy5Ytg8FggNFohNFoxLnnnst/TjHnhqXEzKWXXspee+21rMPhYN966y02NTWV7e7uljusU5Lnn3+e3bRpE7tgwQL25Zdf5h9///332XHjxrFVVVVsc3MzO3XqVPY///mPjJGeWtjtdva+++5jGxoaWJ/Px/7pT39ii4uLWZal50YJHD58mHW5XCzLsuzOnTtZs9nMdnd303OjAPx+P7tgwQJ2/vz57IYNG1iWpb8zSmDp0qX9rjEEJZ0b6tjFiN1uxzvvvIP77rsPiYmJuOiiizBjxgy89957cod2SnLllVdi5cqVMBgM/R5//vnncdNNN6G4uBi5ubn49a9/jRdeeEGmKE89kpKScNddd6GgoABqtRo/+9nPUFNTg66uLnpuFEBpaSk/f4thGLhcLrS0tNBzowD++c9/YsGCBZg6dSr/GD0vykVJ54YKuxg5fvw4zGYzcnNz+ccqKipw6NAhGaOinExlZSXKysr4/9NzJC/bt29HdnY20tPT6blRCDfddBMSEhIwb948rFq1CtOmTaPnRma6u7vx2GOP4Z577un3OD0vyuCWW25BZmYmVq5cif379wNQ1rmhwi5G7Hb7gIW/JpMJdrtdpogog3HyeaLnSD4sFgtuuOEGPPDAAwDouVEKTzzxBOx2OzZv3oylS5cCoOdGbn7zm9/g1ltvRWpqar/H6XmRn4cffhg1NTWor6/HypUrcd5558Futyvq3FBhFyNGoxFWq7XfY1arFUajUaaIKINx8nmi50geXC4XLrroIqxevRrXXHMNAHpulIRarcaKFSvw6aef4uOPP6bnRkb27NmDnTt34rrrrhvwOXpe5Gf+/PkwGo1ISEjA7bffDqPRiJ07dyrq3FBhFyOTJ0+GxWJBa2sr/9i+ffswffp0GaOinMy0adP6dWHScyQ9Pp8Pl19+OfLy8vDII4/wj9NzozwCgQCqqqrouZGRzz//HMeOHUN+fj5ycnLw6quv4oEHHsB1111Hz4sCUak4GaWocyNLy8YY4ZJLLmGvv/56tq+vj33nnXdoV6yMeDwe1ul0skuWLGGfe+451ul0sn6/n924cSM7fvx4trq6mm1paWGnT59Ou8gk5uqrr2bPPvts1uPx9Hucnht5sdls7AsvvMDabDbW6/Wy//vf/1iDwcDu37+fnhsZcTgcbEtLC/9x2WWXsb/97W/Znp4eel5kpqenh920aRPrcrlYt9vNPvroo2x2djZrsVgUdW6osIuD9vZ29txzz2UTEhLYyZMns5s3b5Y7pFOWtWvXsgD6fWzdupVlWZb9wx/+wKanp7MpKSnsbbfdxgYCAXmDPYWora1lAbAGg4FNSkriP7744guWZem5kRO73c4uX76cNZvNrMlkYmfPns2++eab/OfpuVEGa9eu5cedsCw9L3LS3t7Ozpkzh01KSmJTU1PZ5cuXs7t37+Y/r5Rzw7AsnW5IoVAoFAqFMhagNXYUCoVCoVAoYwQq7CgUCoVCoVDGCFTYUSgUCoVCoYwRqLCjUCgUCoVCGSNQYUehUCgUCoUyRqDCjkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQK5ZSmvr4eGRkZon6P2tpaMAwDo9GIt99+e9jnvvHGGzAajWAYpt8uagqFQokEunmCQqGMeYxGI/9vh8OBxMREMAwDAKisrMS4ceNE/f61tbUoLS2Fy+WK+GsYhkFLSwtycnJEjIxCoYw1NHIHQKFQKGJjt9v5fxsMBhw6dAhFRUXyBUShUCgiQVOxFArllKa2thYGg4H/P8MwePLJJzFu3DhkZGTg1VdfxcaNG1FcXIysrCy8+uqr/HO7u7txxRVXICsrC8XFxXj22Wcj/r47duzArFmzkJycjJycHDz66KOC/lwUCuXUhDp2FAqFchJfffUVjh07hvfeew8//elPsWbNGhw8eBCffvoprrnmGlxyySVQq9W46qqrMGPGDDQ0NKCmpgZnnnkmZs6ciYqKihG/x6233orbbrsNV1xxBXp6elBbWyv+D0ahUMY81LGjUCiUk7j99tthMBjw/e9/H729vbjpppuQmJiICy64ADabDc3NzWhtbcW2bdvwhz/8AXq9HqWlpbjiiivw5ptvRvQ9tFotjh49iu7ubqSmpmLWrFki/1QUCuVUgAo7CoVCOYmsrCwAgFqthlarRWZmJv85g8EAh8OB+vp6OBwOpKenIyUlBSkpKfjHP/6Btra2iL7Hv//9bxw+fBiTJk3CokWLsH37dlF+FgqFcmpBU7EUCoUSA/n5+UhJSUFXV1dMX19SUoLXXnsNPp8PTz31FK688kpUVVUJHCWFQjnVoI4dhUKhxEB+fj7mzZuHu+++G319ffD5fPjuu+9QWVkZ0de/+OKL6OrqgkajQXJyMtRqtcgRUyiUUwEq7CgUCiVGXnzxRdTV1fEds7feeiucTmdEX/vBBx+gpKQEycnJ+Otf/4qnn35a5GgpFMqpAB1QTKFQKCJTV1eH0tJS6PV6PPfcc1izZs2Qz33zzTdxzTXXwOVyoa6uDtnZ2RJGSqFQRjtU2FEoFAqFQqGMEWgqlkKhUCgUCmWMQIUdhUKhUCgUyhiBCjsKhUKhUCiUMQIVdhQKhUKhUChjBCrsKBQKhUKhUMYIVNhRKBQKhUKhjBGosKNQKBQKhUIZI1BhR6FQKBQKhTJGoMKOQqFQKBQKZYxAhR2FQqFQKBTKGOH/A6nFTCQg/hL5AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd3wT9f/HX5edNE33bmkpe+8lMhw4cOHArbhwi4riVlBR1K8D9SfgRhEXKrhQUVBBWbJBoEBpoXs3aZqdfH5/XD6XtM1eF/Cej0cf2uRy9+Zyvc/r3pMhhBAICAgICAgICAic8Ij4NkBAQEBAQEBAQCAyCMJOQEBAQEBAQOAkQRB2AgICAgICAgInCYKwExAQEBAQEBA4SRCEnYCAgICAgIDASYIg7AQEBAQEBAQEThIEYScgICAgICAgcJIgCDsBAQEBAQEBgZMEQdgJCAgICAgICJwkCMJOQEBAIEgIIbj11luRmpoKhmGwa9cuvk2KOEuXLkVycnLY+2EYBqtWrQp7PyfKcQUE+EYQdgInNDfccAOmTZsW8+P6W/QmT56MJUuWROx40VykioqKsHDhwqjs+2Tl559/xtKlS/HDDz+gpqYGAwcO5NskgU7U1NTg3HPP5dsMAYGYI+HbAAGBk43m5mZs3LgRy5cv59uUqGK1WiGVSvk2gxdKS0uRk5ODU045JeR9EEJgt9shkQi34UhisVggk8mQnZ3NtykCArwgeOwETiomT56MWbNm4aGHHkJqaiqys7Mxb968DtswDIPFixfj3HPPhVKpRPfu3bFixQru/T/++AMMw6C1tZV7bdeuXWAYBuXl5fjjjz9w4403QqvVgmEYMAzT4Rg//vgjhgwZgry8PADAn3/+idGjR0MulyMnJwePPPIIbDYbt70nj9nQoUO5fRYVFQEALr74YjAMw/0+b948DB06FG+//TYKCgqgUqkwffr0DnZPnjwZ9913X4d9T5s2DTfccAP3/rFjx3D//fdz/xZvMAyDJUuW4KKLLkJCQgLmz58PAPj+++8xYsQIKBQKFBcX4+mnn+7w75s3bx66desGuVyO3NxczJo1q8O//dlnn8XVV18NtVqN3NxcvPnmmx2Oe/z4cVx00UVQq9XQaDS4/PLLUVdX12H/Q4cOxbJly1BUVISkpCRceeWVaGtr47b56quvMGjQICiVSqSlpeHMM89Ee3s79/6HH36Ifv36QaFQoG/fvli0aJHX83DDDTfgnnvuwfHjxzt8H2azGbNmzUJmZiYUCgVOPfVU/PPPP9zn6HX1yy+/YOTIkZDL5diwYYPHY1RWVuLKK69EamoqEhISMHLkSGzZsoV7f/HixejRowdkMhn69OmDZcuWce+Vl5d3CQ+3traCYRj88ccfHWyh16pCocCYMWOwd+9er/9uwP93ffjwYUycOBEKhQL9+/fHr7/+6nN/gO/vhnrkn376aWRmZkKj0eC2226DxWLhPj958mTcfffdmD17NtLT0zFlyhQAHb3c9Jx88803OO2006BSqTBkyBBs2rSpgy3vvvsu97d08cUX49VXX/Xpmaf7/fLLLzFhwgQolUqMGjUKhw4dwj///IORI0dCrVbjnHPOQUNDA/e5f/75B1OmTEF6ejqSkpIwadIk7Nixo8O+ff3dLFq0CL169YJCoUBWVhYuu+wyv+dZ4D8EERA4gZkxYwa56KKLuN8nTZpENBoNmTdvHjl06BD56KOPCMMwZM2aNdw2AEhaWhp59913SUlJCXniiSeIWCwm+/fvJ4QQ8vvvvxMApKWlhfvMzp07CQBSVlZGzGYzWbhwIdFoNKSmpobU1NSQtrY2btvLLruMPPvss4QQQiorK4lKpSJ33nknOXDgAFm5ciVJT08nc+fO5bYvLCwkr732Wod/15AhQ7ht6uvrCQDy4YcfkpqaGlJfX08IIWTu3LkkISGBnH766WTnzp3kzz//JD179iRXX311h/Nx7733dtj3RRddRGbMmEEIIaSpqYnk5+eTZ555hvu3eAMAyczMJO+//z4pLS0l5eXl5OeffyYajYYsXbqUlJaWkjVr1pCioiIyb948QgghK1asIBqNhqxevZocO3aMbNmyhbzzzjsd/u2JiYlkwYIFpKSkhLzxxhtELBZz35fD4SDDhg0jp556Ktm2bRvZvHkzGT58OJk0aRK3j7lz5xK1Wk0uueQSsnfvXrJ+/XqSnZ1NHnvsMUIIIdXV1UQikZBXX32VlJWVkT179pC33nqL+87eeecdkpOTQ77++mty9OhR8vXXX5PU1FSydOlSj+ehtbWVPPPMMyQ/P7/D9zFr1iySm5tLVq9eTf79918yY8YMkpKSQpqamgghrutq8ODBZM2aNeTIkSOksbGxy/7b2tpIcXExmTBhAtmwYQM5fPgw+eKLL8jGjRsJIYR88803RCqVkrfeeouUlJSQV155hYjFYrJu3TpCCCFlZWUEANm5cye3z5aWFgKA/P777x1s6devH1mzZg3Zs2cPOf/880lRURGxWCyEEEI+/PBDkpSUxO3D33dtt9vJwIEDyeTJk7nrcdiwYQQAWblypcdz6e+7mTFjBlGr1eSKK64g+/btIz/88APJyMjgvltC2GtcrVaTOXPmkIMHD5IDBw4QQkiH49Jz0rdvX/LDDz+QkpISctlll5HCwkJitVoJIYT89ddfRCQSkf/973+kpKSEvPXWWyQ1NbXDOeiM+35//vlnsn//fjJ27FgyfPhwMnnyZPLXX3+RHTt2kJ49e5Lbb7+d+9zatWvJsmXLyP79+8n+/fvJzTffTLKysohOpyOE+P67+eeff4hYLCaffvopKS8vJzt27CCvv/66VxsF/nsIwk7ghMaTsDv11FM7bDNq1Cjy8MMPc78D6HCTJYSQMWPGkDvuuIMQ4l/YEdJ10aOYTCaSmJhI9uzZQwgh5LHHHiN9+vQhDoeD2+att94iarWa2O12Qoh/YUdt7rw4zp07l4jFYlJRUcG99tNPPxGRSMQJNH/CztvxPQGA3HfffR1emzBhAnn++ec7vLZs2TKSk5NDCCHklVdeIb179+bEQmcKCwvJOeec0+G1K664gpx77rmEEELWrFlDxGIxOX78OPf+v//+SwCQrVu3EkLY86BSqbhFkRBC5syZQ8aMGUMIIWT79u0EACkvL/doQ0FBAfn00087vPbss8+ScePGeT4RhJDXXnuNFBYWcr/r9XoilUrJ8uXLudcsFgvJzc0lL730EiHEdV2tWrXK634JIeTtt98miYmJnCDszCmnnEJmzpzZ4bXp06eTqVOnEkKCE3aff/45t01TUxNRKpXkiy++IIR0vcb9fde//PKLx+vRl7Dz993MmDGDpKamkvb2du61xYsXd/j7mTRpEhk6dGiXz3oSdu+99x73Pr2OqBC84ooryHnnnddhH9dcc01Aws59v5999hkBQNauXcu9tmDBAtKnTx+v+7HZbCQxMZF8//33hBDffzdff/010Wg0Ha53AQF3hFCswEnH4MGDO/yek5OD+vr6Dq+NGzeuy+8HDhwI+9jr1q1DWloaBg0aBAA4cOAAxo0b1yHEOX78eOj1elRWVoZ9vG7duiE/P5/7fdy4cXA4HCgpKQl7354YOXJkh9+3b9+OZ555Bmq1mvuZOXMmampqYDAYMH36dBiNRhQXF2PmzJlYuXJlh9Adtbnz7/S7OHDgAAoKClBQUMC9379/fyQnJ3f4voqKipCYmMj97v6dDxkyBGeccQYGDRqE6dOn491330VLSwsAoKGhARUVFbj55ps7/Bvmz5+P0tLSgM9LaWkprFYrxo8fz70mlUoxevToLtdV53PYmV27dmHYsGFITU31+P6BAwc6HAdgr6lQrl/3c5+amoo+ffp43Y+/7/rAgQMer0df+Ppu3LdRqVQd9qnX61FRUcG95u+cUtzvDTk5OQDAXSclJSUYPXp0h+07/x7IfrOysgCAuwfQ19zvQfX19bj99tvRu3dvJCUlISkpCXq9HsePHwcAn383U6ZMQWFhIYqLi3Hddddh+fLlMBgMAdkp8N9AEHYCJx2dE/oZhoHD4fD7OSq+RCL2z4IQwr1ntVoDOvZ3332Hiy66iPudENIlb43u1/147scK5nidofuMxr4BICEhocPvDocDTz/9NHbt2sX97N27F4cPH4ZCoUBBQQFKSkrw1ltvQalU4s4778TEiRP92kDt93T+PL3u6zsXi8X49ddf8dNPP6F///5488030adPH5SVlXHbvPvuux3+Dfv27cPmzZsDPi+dv1NvdgJdz2FnlEql3+P5Ok4416+nfVP8fdedrzNf+6L4+m6CsdPfOaW4Xyf08/Qa8PW3Gsp+O7/mfg+64YYbsH37dixcuBAbN27Erl27kJaWxuUO+vq7SUxMxI4dO/DZZ58hJycHTz31FIYMGdIht1bgv40g7AT+k3RetDdv3oy+ffsCADIyMgCw7RIonfuUyWQy2O32Dq8RQvD999/jwgsv5F7r378/Nm7c2GGB2LhxIxITE7niioyMjA7H0ul0XRY2qVTa5XgAW1hQXV3N/b5p0yaIRCL07t3b477tdjv27dvn998SKMOHD0dJSQl69uzZ5YcKDKVSiQsvvBBvvPEG/vjjD2zatKlDkr6v76J///44fvx4B+/M/v37odVq0a9fv4DtZBgG48ePx9NPP42dO3dCJpNh5cqVyMrKQl5eHo4ePdrF/u7duwe8/549e0Imk+Gvv/7iXrNardi2bVtQdgKs92fXrl1obm72+H6/fv06HAdgryl6nECuX4r7uW9pacGhQ4e4c98Zf981/a46X4/+8PbdUHbv3g2j0djBZrVa3cEzGAn69u2LrVu3dnht27ZtET0GZcOGDZg1axamTp2KAQMGQC6Xo7GxscM2vv5uJBIJzjzzTLz00kvYs2cPysvLsW7duqjYKnDiIdTZC/wnWbFiBUaOHIlTTz0Vy5cvx9atW/H+++8DYBfpgoICzJs3D/Pnz8fhw4fxyiuvdPh8UVER9Ho91q5dy4WK9u/fj/b2dkycOJHb7s4778TChQtxzz334O6770ZJSQnmzp2L2bNnc8Ln9NNPx9KlS3HBBRcgJSUFTz75JMRicZfjrV27FuPHj4dcLkdKSgoAQKFQYMaMGXj55Zeh0+kwa9YsXH755Vyrh9NPPx2zZ8/Gjz/+iB49euC1117r8mRfVFSE9evX48orr4RcLkd6enrA5/Gpp57C+eefj4KCAkyfPh0ikQh79uzB3r17MX/+fCxduhR2ux1jxoyBSqXCsmXLoFQqUVhYyO3j77//xksvvYRp06bh119/xYoVK/Djjz8CAM4880wMHjwY11xzDRYuXAibzYY777wTkyZNCjj8tmXLFqxduxZnnXUWMjMzsWXLFjQ0NHBCaN68eZg1axY0Gg3OPfdcmM1mbNu2DS0tLZg9e3ZAx0hISMAdd9yBOXPmIDU1Fd26dcNLL70Eg8GAm2++OeDzCQBXXXUVnn/+eUybNg0LFixATk4Odu7cidzcXIwbNw5z5szB5ZdfjuHDh+OMM87A999/j2+++Qa//fYbAFYQjB07Fi+88AKKiorQ2NiIJ554wuOxnnnmGaSlpSErKwuPP/440tPTvfaF9Pddn3nmmejTpw+uv/56vPLKK9DpdHj88cd9/lv9fTcA277k5ptvxhNPPIFjx45h7ty5uPvuu7m/n0hxzz33YOLEiXj11VdxwQUXYN26dfjpp5/8eh1DoWfPnli2bBlGjhwJnU6HOXPmdPDU+vq7+eGHH3D06FFMnDgRKSkpWL16NRwOB/r06RNxOwVOUGKf1icgEDk8FU/4KxYAQN566y0yZcoUIpfLSWFhIfnss886fOavv/4igwYNIgqFgkyYMIGsWLGiQ/EEIYTcfvvtJC0tjQAgc+fOJU888QS55pprutj4xx9/kFGjRhGZTEays7PJww8/zFXiEUKIVqsll19+OdFoNKSgoIAsXbq0S/HEd999R3r27EkkEgmXtD937lwyZMgQsmjRIpKbm0sUCgW55JJLSHNzM/c5i8VC7rjjDpKamkoyMzPJggULupyPTZs2kcGDBxO5XE583RLgJQn+559/JqeccgpRKpVEo9GQ0aNHcxV8K1euJGPGjCEajYYkJCSQsWPHkt9++437bGFhIXn66afJ5ZdfTlQqFcnKyiILFy7ssP9jx46RCy+8kCQkJJDExEQyffp0Ultby71Pz4M77sUN+/fvJ2effTbJyMggcrmc9O7dm7z55psdtl++fDkZOnQokclkJCUlhUycOJF88803Xs9F5+IJQggxGo3knnvuIenp6UQul5Px48dzBR6EeC7K8UZ5eTm59NJLiUajISqViowcOZJs2bKFe3/RokWkuLiYSKVS0rt3b/Lxxx93+DytzlQqlWTo0KFkzZo1Hosnvv/+ezJgwAAik8nIqFGjyK5du7h9eCoQ8vVdE0JISUkJOfXUU4lMJiO9e/cmP//8s8/iCX/fDf37fuqpp0haWhpRq9XklltuISaTidvG0988IZ6LJ3wVlBDCVkjn5eURpVJJpk2bRubPn0+ys7M92u5tv56+587ncseOHWTkyJFELpeTXr16kRUrVnQoYvL1d7NhwwYyadIkkpKSQpRKJRk8eDBX8CIgQAghDCEBJhEICJwkMAyDlStXRnxixeDBg/HEE0/g8ssvj+h+vTFv3jysWrXqhB5nVVRUhPvuu69Lrz2B6PLHH3/gtNNOQ0tLS0TGhkWLG264Aa2trbyNBps5cyYOHjzotd+ggEA8IoRiBQQigMViwaWXXiqMMBIQOIF5+eWXMWXKFCQkJOCnn37CRx995LNZtYBAPCIIOwGBCCCTyTB37ly+zRAQEAiDrVu34qWXXkJbWxuKi4vxxhtv4JZbbuHbLAGBoBBCsQICAgICAgICJwlCuxMBAQEBAQEBgZMEQdgJCAgICAgICJwkCMJOQEBAQEBAQOAkQRB2AgICAgICAgInCYKwExAQEBAQEBA4SRCEnYCAgICAgIDASYIg7AQEBAQEBAQEThIEYScgICAgICAgcJIgCDsBAQEBAQEBgZMEQdgJCAgICAgICJwkCMJOQEBAQEBAQOAkQRB2AgICAgICAgInCYKwExAQEBAQEBA4SRCEnYCAgICAgIDASYIg7AQEBAQEBAQEThIEYScgICAgICAgcJIgCDsBAQEBAQEBgZMEQdgJCAgICAgICJwkSPg2IFo4HA5UV1cjMTERDMPwbY6AgICAgICAQEgQQtDW1obc3FyIRL59cietsKuurkZBQQHfZggICAgICAgIRISKigrk5+f73OakFXaJiYkA2JOg0Wh4tkZAQEBAQEBAIDR0Oh0KCgo4beOLk1bY0fCrRqMRhJ2AgICAgIDACU8gqWVC8YSAgICAgICAwEmCIOwEBAQEBAQEBE4SBGEnICAgICAgIHCSIAg7AQEBAQEBHmjUm3G0Qc+3GQInGYKwExAQEBA44SCEYNnmY7jqnc1Y8NMBEEL4Niko3vr9CMYtWIvTX/kTn2w+xrc5QWOy2rHxSCNMVjvfpgh04qStihUQEBAQOHn5ekcVnly1DwCw6WgT5BIxZk/pzbNVgbG/WoeX15SAatEnVu3DgFwNhnVL4dewAClvbMctH2/DkXo9emaq8d71I1GUnsC3WQJOBI+dgICAwH8Us82OJX+W4voPtuLPQw18mxMwerMNL/x0AAAgl7DL2KLfj6C+zcSnWQFDRd15g3Nw/uAcAMDSjeX8GhUET367D0fq2RDykXo9nvx2H88WBUdDmxl3Lt+Ox1buxfEmA9/mRBxB2AkICAj8R5n33b944aeDWH+oAbd89A/+OtzIt0kB8fO+WjTqLeiWqsLeeWdjeLdk2BwEX22v5Ns0vzTqzfi9pB4A8MCU3rhtYg8AwOq9NWhoM/NpWkDsrmjFhsONEIsYfHzTaIhFDDYcbsSeyla+TQsIrdGKy9/ehNV7a/HpluO4bMlG6M02vs2KKIKwExAQEPgPsqeyFZ//UwEAEIsYWO0Ez68+MXLVft5XAwC4ZHgeZBIRrhrdDQDwxT8VcW//ugP1IAQYmKdBcYYag/KTMDg/CVY7wdoDdXyb55dlznzAi4bkYmLvDFw4JJd9fdOJkSf4yeZjKGtsh0TEQCYWob7NjEW/H+HbrIgiCDsBAQGBMNlbqcXyLcdgsJw4T/4f/FUGQoCLhuZi+xNnQiEVYX+NDv+Ut/Btmk/aTFasP8R6FqcOYsOY5w3OgUwswrEmA8rjPLS2Zj8r3qb0y+ZeO61PJgBgw5H49pg6HAR/OL2Nl41g55VOd/7395J6OBzxLaotNgc+coa8X7psMP7v6mEA2DD4yVQEIgg7AQEBgTBYtqkc0xb9jcdX7sOUV9ejutXIt0l+MVnt+O0Au0BfP64QySoZLh6WBwD4fOtxPk3zy8bSJljsDhSnJ6BXphoAoJJJMKxbsvP9+BVHNruDs+/M/pnc66f2SgcAbDzSGNfiaE+VFo16CxLlEowsSgUAjCxKhVouQaPegn3VWp4t9M0fJfWobzMjM1GO8wfnYkr/LOQmKWCw2LH+BMox9Ycg7AQEBARCpE5nwrM/HoDduRhXtRrxv19KeLbKPxsON0JvtiFbo8CwArYS86KhrLBbf7ghrsXFjmOsR3FMcVqHuZnje1Jx1MSLXYFQUtcGg8WORLkE/bJdM8yHFiQjQSZGi8GK/TU6Hi30zbqD7MPAhN7pkDmLVmQSEU51nnv6frzyh1O8nTswGzKJCAzD4JyBrNf3p321fJoWUQRhJyAgIBAii/8ohcXmwMjCFHx/96kAgFW7qnCoro1ny3yz7iAbDjxnYDZEIlYcDe+WggSZGI16S1yLi+1OYTeisGNrkFN6pAFgW5/Ea57dzuOtAICh3ZK58w4AUrGI84DtOB6/ofB/ypoBABN6ZXR4fWJv9vd/yptjblOgEELwZwkr7Cb3cXlLzx3EhsTXHqjjHtBOdARhJyAgIBACFpsDXzurMO89sxcG5SfhzH5ZIARYtbOKZ+t8Q/PoqKcFYD0v45ziaEOcVseabXbsqWLDfZ2F3eD8ZMjEIjS3W1DZEp/hcCrsPPWrG5yfBIDN14xH7A7CVb7SsDdlaAH7+54Kbdx6e0sb9KhqNUImEWFscRr3+rCCZKhkYuhMtrh/IAuUE0bYbdq0CSKRCC+88ALfpggICESYNpMVt3z0Dy548y+8s740bj0u7mw+2oQ2sw0ZiXKM78EKpAuGsGGdX/6N37BOc7uF60HWWRxRoReveWr7qnSw2BxIS5ChKE3V4T2ZRIQ+2YnO7eJTHO2sYAV1Z2EEAAPznMIuTm0/Uq9Hu8WOBJkYvTITO7zXO0sNpVSMNrMNRxvjc0Ta1jL23I8sTIFSJuZel4hF3Pex7Vj8ekuD4YQQdg6HA/fffz9GjRrFtykCAgIRxu4guOOTHfjtQD32Vmnx/OqD+GZHfHu8AOBXZ3Xjmf2yuLDaaX0zIRUzKG1o58RTvEFDmT0z1UhJkHV4b7hT6O2t0saluKYh4kH5SR3y6ygD89i8tXhM4m8323C0oR0AMCQ/ucv7g5zC7nC9Pi4rNHc5Remg/CSIRR3PvUQs4uzfVRF/5x5g++8BnkX1iEI2DL49jkPJwXBCCLt33nkHY8aMQb9+/fg2RUBAIMKsPVCHv440Qi5xLQ7zvvs37puG0kTxs/pnca9pFFKMc3rv4nWSw7Zj7OI1qqhrOLBPdiKkYgatBisqmuMvnFlSywq7vm6FB+4MyGWvn31V8ZcjeNgp9DMS5UjtJKgBICdJgbQEGewOggNxmONIBdvQAs9jz4YUUGEXn16v3c4wsidRPdL5QCN47GJEc3MzFi5ciHnz5vnczmw2Q6fTdfgREBCIf+gopZtO7Y5Vd41H9/QEtJltWL2nhl/DfFDdakRVqxFiEYPR3VM7vDfG+fuOOF0k9lez90ZPC5xcIka/HFY07alqjaFVgVFSy+ZA9c1O9Pg+DWfui0OP4yGn7X2yPNvOMAwGOO0/UBN/uV4HnaJ6QK5nUU3P/cE4tN1gceXP0XxAd4Y6vXiVLUa0GiwxtCw6xL2we+yxx3DfffchJcX3cOQFCxYgKSmJ+ykoKIiRhQICAqFS3tiOjaVNEDHAtWMLIRYxXOPTFdsreLbOOzSc2S8nEQlySYf3RnBP/81xJy4AcN4gKuA6Q72me+IsiZ8QgoNUHHkRdn2zE8EwQFO7BY36+FqgS5zCorcXYQeA68sXb2F8QggO17E2eTv39N9VUtcWd9f9viodHATI1iiQqVF0eV+jkCI/RQkgPkV1sMS1sNu5cye2bt2KmTNn+t320UcfhVar5X4qKuJ3URAQEGBZ6wxnjuuRhrxk9sZ66fB8MAxbuVmrjc+h7lTYjSxM7fLekPxkSEQM6nRmVMVZs+L6NhMa9RaIGO8Cg1ZnxlsBQrXWhDaTDRIRgx4Zao/bKKRiFKSwRRWlDfEljqjHqE+2Z9sBNu8RAI7Eme3VWhP0ZhukYgZFaQketynOSIBYxKDNZEOdLr5m3u535lzSHExP0AedeAyDB0tcC7s///wThw4dQl5eHrKzs/HFF1/gueee8yj05HI5NBpNhx8BAYH4ho4nOs2tr1R2kgIDnblSm47GZ3Um7TU2vLBrJEEpE3Mhte1xFo6lYbKi9IQOlYHu9HHmrx2OM68RDWUWZyRwzXE90TNOvV7U2+jLY0dtL40z27lzn672eu7lEjFXqVwSZ21DDtX79jYCLmFHQ84nMnEt7G699VYcOXIEu3btwq5du3DhhRfi3nvvxf/+9z++TRMQiDssNge+/KcCC387FHfeCk8YLDZsOcom8rs3DAWAU3qyfab+jsMpAhabg3uqH+YhXwcAhji9XjSfLV7wF4YFXOKioc0cV/lG9Jqm9nmjRwbrUYonYaczWdHQxnqxfNnf0+mJrGo1oj2Oioe4MLIPYQS4ROvheBN2AYjqfs5/mxCKjTIqlQrZ2dncj1KphFqtRnJyMt+mCQjEFYQQPPz1Hjz09R4s/O0wLlm0Me6fPLcfa4HF7kBespJbjCmn9HDNzoy3fJ3SBj2sdoJEhYTLy+kMrdo8UBtfiwRXfOBjgVPLJVxYPJ68dmWNbKuQ7umeQ4EUzusVRw835U7b09VyJCqkXrdLSZAhzVkxS1ujxANcGDnLt6jm8uzi6LonhHD2+xR2zoedkrq2E34CRVwLu84sXboUjzzyCN9mCAjEHd/trsZK57QDiYiB1mjFQ1/tiTtR5A7twj+yKKVLT7JRRSmQiBhUa01xN0WA83plazz2UgOAvjmJHbaNFwL1evVyLuDx1Im/vIkKO9+2x2M40yVKVX62dM+zi59zT0Wmt9xGCrX9aGP8iNI6nRk6kw1iEYPiDO8PBQWpKsgkIlhsDlTF2T0nWE4oYScgINAVQgje3XAUAHDvGb2w+bEzIJeIsKdSi81H47fh5k5nnpqncKZKJonbKQKucKb3p/8+WWx1ZkObGY36+EgkJ4RwC3SxnwWaVmfSSsh4oKwhMHFExUe11hQ34czyRgMA/95G922ONRmialMwUFFd5Md+l+3xI+zow0lRmgpyiee8UgAQixh0dxaGlMbp9IxAEYSdgMAJzs6KVuyr0kEmEWHGKUVIV8sxfSTbMuSDv8t4ts4zhBDs5DrBe25lxM3OjDth5wxn+shTS5BLUJjKCpB46evVoDejzWwDwwCFab7FUS+aK1UfH7YbLXZUOyuk/XnsklUyJKvYcOfx5vgQR4EKIwDo5vxujseJsGs1WNBqsAKA14pYCr2uGvUWtJmsUbctEAL1UgPgPHrxFAYPBUHYCQic4HzrDMGePziH62h/zZhCAMD6Qw0wWOLDa+FOeZMBrQYrZBKR10T+eJ2dSXMXfRUgAK48u3jJdaSLVX6KEgqpd88FABQ7BQj1NPHNsWbW9iSlFCkq7zlqFCqq48XrxYVi/QgjAOhGbY8TUUptz9YovFZSUxIVUqSr2XtQvJx7mt8YiKh2CTvBYycgIMAThBD8XsKOrjp3YA73et/sROSnKGG2OfDX4fhrGfKvs69UvxyN1/YJg/OSAcTX3NJWg6vxbS8/HoB4yzfiwrB+PF6AaxGs1hrjYm6p++LsLa/RnW5OAXW8OT7OfTAeu8LU+ArFumz3nx8IuLx6ZXFy3Zc5z2Mgopr+bQgeOwEBAd442tiO480GyMQinNIjjXudYRic2Y+dYUqH1ccTNDzZ30eeWu9sNTe3NF4a/ZY6b/g5SYouEyc6E29P/9QOXwnklLQEGdRyCQgBKlv4Fxg0pEo9cf6IJ4+d1mjlQpn+QuCAKxTbqDfHRY5gmdNr6y8MSylMo97e+BBHIXnshBw7AQEBvvjdOblhTHFqF6FxRj+2N9zG0vjrBRdIPzW5RMwlY8dLEj/N1/FXHQi4ChTi5em/3ClyigNY4BiG4Tw0ZXEQjq1oZoV9Qarn9jKd4fLU4iCcSYVxuloGlcz3wwDAhpvjKUcwGGEEuIpbyuNAVFtsDu78B1K4Qj12dTpzXKawBIog7AQETmD+KWerXsf3TO/y3rBuKRCLGFS1GlGjjQ+PF+UgN8zdd55avCXxu6pKA3/6r28zx0UieYVTJHQ7AT0vFc7FOT8lMI9dtzjy2FFRmheg7YC7x5H/cx+stzSewuAVLQY4CKCSiZGZKPe7fZJKCo2CFd/x1mYpGARhJyBwgkIIwQ7aC87DaCu1XMK15NhWHj+jrbRGV2jV14gfwJXHdugE9NhpFFKkq9nFhG+vHSGEW6C7BbhA05yk8jgQF3SRLQhQHNGQZ1WrEVa7I2p2BQL1GBV4aWbtiQLnd0RFIZ/Qv9W8AO2nza2rW/mf80wfSgrTAsvNBFwPD/GQghAqgrATEDhBqWwxoqHNDKmY4SpIO0OH1MfTzFLalT43SYEkpe8KR25EUZw0mw0mT819O75zdhr1FhitdjAMkJusCOgzVBzxLewIIS5xFGAoNitRAZlEBLuDoFbLr8CgojRQbyPgJo549rSbrHZuFBq1yR90GkutzgQbz6KaemwD9TYCrmtM8NgJCJwk2OwOrD/UgO92V8dFNaAvqFgbmJfktX3FCKcnL56EHfV6+Zs7Cbg8dkfq2nivjLU7XF4vfw1+KTSfje88NWp3jkbhs0mrO9Szx/cC16A3w2R1gGGAnKTAxIVIxCAniRWw1TwX3gQrSgEg1ymianj2etU4RbFCKuJaKfkjQy2HVMzA7iCoa+O3OTf1Nnob/ecJKsAr4iC/MVT8Z3IKCPxHMNvsuPHDf7hig6I0FZbdPIYLi8QbrskNnhv8Aq4mvyW1bbDaHZCK+X+Wo6OeAm27IRExaHc2qA3UaxANarRGWO0EUjGDbE1gXi967fA9osglLoLwGqW4xIXDQSASBRbKijQ0HJmjUXhtjeOJ3CQljjUZePd6heKxy40Tjx29bvOSlQGHMllRrcTxZgOqWoy8/s1WtYQi7ASPnYDAScOzP+zHxtImMAwgl4hQ3mTAAyt2wxGnA6H3OytLB+V7L0AoSFEhUS6Bxe6Im6HoXJ5apv9wplQs4ioc+U7ipwIjP0UFcYAihy4SFTzn69ApBoHm1wFAlkYBEQNY7A408DgWrTLIwglKbhzkehFCOM9PMOKChsv59jZWtbK2B1P4AbjCtvTzfOHKDwzcfleOnSDsBAROaI41teOzrRUAgA9vGIXfZk+CSibG1rJmfLu7imfruuJwEG601YBcz/l1APv0TFuK/FsVHxMQSgMcKE6Jl4anoSzQdJHg22NHQ7HBeOykYhHnmeSzjyANBwaavE/JS+bfdq3RinaL3WlPEMLOGXJu1Ft4TQmpcoriYL1u8SCqATdhF4T9NGTO98NYOAjCTkAAwOI/SmF3EEzuk4HJfTJRkKrCnZN7AACW/l3Or3EeON5sgN5sg1wi8tuXrH8uK+yoh49PTFY7d8MMVtjx3fqhIoRwJq2EZMO4/CWSV4YQkgJcYopPYUqLH7KTAgt/U1zign9RmpYg8zvGzZ1klRRK5/Z8Fn+EEsoEXNcNn14vg8WG5nZLB3sCgYrAVoM1LtoUhYIg7AT+8xgtdny3uxoAcOfkntzrV43uBplYhN2VWux2DqyPF6hI65udCImfvDkq7OgYLz4pb2oHIYBGIeFmSvqje5w0yq0Isl0IAGQkyiGXiOAg/CbC0z6GuUF6XlwhNf4WaCrMckIUdnye91BFKcMwcRGO5UKxQV43+XFw3VBRmiiX+K2+dydR4WoQHS8Tb4IlbGFXUVGBmpqaSNgiIMALvx2og8FiR0GqEqOKXIUIaWo5pg7KBgCs2hVf4dj91aywo6LNF/2cTYDjoRdcmTMM2z1DHXAyNu14z3fbDS6cGUS+DsMwnLeAr9AOIQTVToGRG2BVKSUuPHY61vZAK2Ip8eCxo8UPwdoOuOznVRwF2cOOEg/nvjJE2wHX33hlHPQRDIWghd3VV1+NzZs3AwA++OAD9O3bF71798YHH3wQceMEBGLB905v3QWDc7uIjamDcgAAa/6t473dhjt0EgPt8+YLWqTQ3G5BE49J8ABwrJnOnQxcHNFQ7PEmA+w8FrJU0Ca5QbStAPhveNrUboHFxoaBs5L8d993Jy/Z1eiXL2g4M3iPHbt9m9kGHU8htdoQbQdcIpyvPDW7g3DezmA9du4PBHzdN0MNI7t/5kTNswta2P3yyy8YMWIEAODFF1/EunXrsHXrVjz//PMRN05AINqYbXZsONwIADhvcE6X9yf0yoBCKkJVqzEuctQoR5wtQ3pm+s9TU8kk3I3qCM+NfoOdfgCwT/8ysQgWu4O30WhGi6tRazAeO3Z7fvON6OLMhoUDz/MC+K/OtNgcaHQ+jAQrjlQyCRdS48v+mhBDsYBbKJmna76+zQSbg0AiYpAVYHsfCv2ujFY7Wgz8iOpQCicoJ3rLk6CFncPhgEQiQXl5OUwmE8aMGYN+/fqhvr4+GvYJCESV7cdaYLTaka6Wo7+HgfRKmRgTemUAANYeiI9r3Gp3cB3VAy1A4Br98tzyJJS2G2IR43qC5ik0Qr1tiXKXWAgUvhue0nBgbgjiIp/nUGydzgRCAJk48Aa57lCvF195duF47HJ4ruql33l2kiLg9j4UhVTMjdPjS1RzPfhC8tid2GPFghZ248aNwz333IP7778fF198MQCgrKwMqampETdOQCDaUG/dhF7pXnO+JvZmhd3mo00xs8sXx5sNsDkIVDJxwAsG9ewd5jnPLhSPHeAW2uFpkeCG0KeqAs4NpPA9oqimNfw8rzazDVpj7D0vNL8uO0kR9HkH+M9To962UDx2eTznqYXj8QL4r4x12R98g3mu5cl/Jcfu448/RmJiIgYNGoT58+cDAA4cOID77rsv0rYJCESdv9yEnTfGFbvmrZpt/I8Zo5MbegRRgNArk83F4zMUa7U7uJttYVpgs1YprtAIP0/Q9AYfzCB3Cuex48l2WjiRE+CMWHdUMgnnKePDaxdqRSwlj8dQMiHELT8wdFFdozXxkqdWGYbHC+C/Mlbw2AXB0qVLsWDBAjzzzDNQq1kvwNSpU+Fw8DvsV0AgWPRmG9cCZFyPNK/b9chQI10th9nmwK7jrTGyzjuuBr+Bi6MeTo8dn9MnalpNsDsIZBIRMhODTeLn9+k/lFYnFCoG63RmXh4MqsP1vPC4QIcTygT4rc7UmWwwOJsThxSKdX7GYLHz4i3l5qyGeN3wmZ9psTlQ1xZa4Yf7Z3QmfjzV4RK0sHvmmWc8vv7cc8+FbYyAQCzZXdEKB2H/iH09UTMMg7FOr93mo82xMs8rR9w8doHS3dkypEZr4q2TvXsYNti5o3xPcAhlcgMlNUHGNZvlw/5wvEaAm7DjwXvhKj4IzfYcHicgUFGaopIG1ZyYopCKkUa9pTyIo3A8XoD7dcPHNW8EIexoyED7ZbqT4JZLy2eD6FCRBLrhl19+CQCw2WxYsWJFB9dweXl5VHLszGYzbr/9dvz6669oa2vDsGHD8Oabb2LQoEERP5bAf49t5S0AgBGFKX62ZLf5YU8NdlW0RNssv7hmrQYu7FJUUiTKJWgz21DRbECvANqkRJpjzaynMRSvF5evw9PsyVBbnQDsg0FBqhKH6vSobDGiOAhBHgm4HLsQQrGA+0D62C9wrsbKYYZieagsdeXXhSaMAPbcN7VbUN1q8jk6MBrUhvlA4Lpu+BWloeRmAkC2RoFWgxU1WiP6ZMf+fhkOAQu7xYsXAwAsFgsWLVrEvc4wDDIzM7F06dKIG2ez2VBcXIzNmzcjJycHr7/+OqZNm4bS0tKIH0vgv8f244ELu2Hd2G12VbSCEBLyzSJcCCEuYReEQGAYBoXpKuyr0qG8iR9hF2rhBODKsaPh3GCr9MKBEILKEJoTu5OfouKEXSyx2R1cAUKwzYkpfDYp5iY3BNlug0LFRa029tdNuGFk+tm9VVpewpn1zlBmsK1OKLRgpE4X+weCyjDTDwDW/oO1bbzYHy4BC7vff/8dADB//nw88cQTUTPInYSEBDz55JPc73fffTcefPBBNDU1IS2tY06U2WyG2exqvqrTxU/PMYH4gxDCjQkb3s2/sOuXkwiZWIQWgxXHmw1BJ/9Higa9GW0mG0QMUBhEk1+ALVjYV6XjbeZqKK1OKJmJCkhEDGwOgjqdKejRWOGgM9nQZrYBcIWEg4Wv4o/6NjMcBJCIGGQEmddI4fIbeRAXNBQb6vedmci26rA5COrbTCF7n0KhOowedhROmMZYXJhtrv5zWZrQrhsqxhvazLDZHX5HH0aSUBsru0MFec0JGIoN+kzfeuutqK+v9/gTbTZt2oSsrKwuog4AFixYgKSkJO6noKAg6vYIeMdktaOssZ23ju/+qGwxQmu0QipmAnKzyyVibnzXLh7nxpbWs6KsIFUVdN5OoVNQ0R54sYZ67IIVpADby46v1hXU85KskkIpCz5XCnCFs2Kdr0PDgVma4HuRUWgYtDbGITWLzYEGZ3PiUMWRWMQgyylo63SxnbpCz1dOiB4vAMjUUNtje93UO8+VTCIKas6qO2lqOcQiBg7CTj+JJXVhehvdP3sieuyCFnbZ2dnIyclBdnY29//0J5potVrcdtttXos0Hn30UWi1Wu6noqIiqvYIeOfTLccxdsFanPbyHxg1/zcsWH0ANnt8VU3/65y12iszETJJYH8GQwuSAQC7K7TRMssvR0IIw1LoaC4+Zq4SQsLy2AHulbGxFaZcrlQYiwRfT/+0aCDUHDWgq+clVtS3uTUnVgWfAE/J5GmB5opWwvAaZSWyttfHWJS6wrDykNNOxCIGGc4mxbF+oKnXhS/sTmSPXcChWErntia1tbWYP38+xowZEzGjOmMymTBt2jScd955uOmmmzxuI5fLIZeH5jIWiBzvrC/F86sPAgAYBjDbHHh7/VHUt5nx6uVDeMtN68x+Z5uTAbldp014g3rsDvA4Wqw0iFFinaGesuM8TEBoNVi5cGYolaWAWzgzxk1DI5ErRT1OsQ6pVYfRnJhCPS92B0Gj3hJWaDEYat1CmcFWUbtDQ4n1MT73kbhu+PIaUe8mFZahkpWkQK3OhFqdCUMiYViA1OpcwjRUsnnyskeCsIPe2dnZePXVV/Hoo49Gwp4u2Gw2XHnllcjNzcXLL78clWMIRIYtR5s4UXffmb1weP65ePOqYZCIGKzcWYUvt8WPF5V67IISds6RYwdqdbwNtqb5cUUh5PjRvMDKFiOsMfagUjGZpZGH1PoB4G/6RLgtNwDX4l4b42az4eaoAaznhfYdjKUwjUSOGsDm2QF8hGLDtz+Lp1BsXQQ8XgC4MHisRTUnTMOwn3qqY/0wFgkiks24ZcsW2Gy2SOyqCzNnzoTRaMTSpUvjxtsj0BWLzYFHv9kLALh8ZD7uO7M3JGIRLhiSi4fP6QsAmP/jATTpY3tz9QYn7PICbyHQM1MNsYhBq8Ea80WCciyMPLXMRDkUUhHsDhLzCsdwKmIprm7wJ57Hji4wRqsdOmN07pWeoB67cEKxgMv+WHov6iJw3gE3j11b7GxvM7k81OGE8GkYWWeywWiJXf9Jen/LDMPjBfDjqbbZHWjUR0DYOW1vNVhjeu4jQdDCrl+/fujfvz/3U1RUhKlTp2LBggURN+7YsWNYunQp1q9fj5SUFKjVaqjVamzYsCHixxIIjxXbK3C0sR3pajkeP69/h/duOrU7BuRq0Gay4b2/yniy0EWT3oxanQkMA/TLCdxjp5CKUexs9MtHONbhIFwYMhSBJBIxKExl7T8W43As18U+xKpS9rM8eex04XteFFIxUpwNT2t0sbOfel7CERfun4+l54gKsWCnlHTGlWMXu4cxeqxEhQQJ8qAznjg0CgkUUnaZjqUwjUSOmvvnY3nuG/RmEGclOG3wHAoahYRrLH6iee2CvuKWLFnS4feEhAT07t0bGk3gC2SgFBYW8hbyEggci82BRb+zvQXvOq1HlyoqsYjBvWf0wq3LtuPjjeW4fWIPJKlCq7SKBNRbV5SWAHWQN91+ORocrtdjf40Op/XNjIZ5XqlrM8Fid0AiYkL2YnRLU6Gkrs0Z0s2IrIE+oB7CcDxH7p3sHQ4SVt5VMHDVjWF6jrKTlGgxWFGjNaFvduTvl56IREgK4MfzwnmNws3z4kOU6iIjShmGQZZGgWNNBtTpzDFrs1TnVjwRDnyce9d1Iw/rHsEw7H32aGM7arUmbnrPiUDQHrtJkyZh0qRJmDBhAvr164fhw4dHRdQJnDj88m8tqlqNyEiU46rR3TxuM6V/FnpnqdFusWPVrqoYW9gRKuz6B5FfR6EevoO1bRG1KRBom5K8FGXIPaGKnCHc8sbYeuxc80pD99jlJLEtOyxuoZZYUBOhkKB7nl0ssDsI1y4kYp6XGIZiOY9d2OKChmJjd83QY4UrSgF+xVG4xRN8eHrpsTLDvOYB9wcafkYZhkrQq0NDQwOmT58OpVKJ3NxcKBQKTJ8+HXV1ddGwT+AEYNmmYwCAq0d385oYzzAMrnaKvs+2HufVE/tvCBWxlL45bM87PkKxkchTo0/8sW5SXBWBXC+JWMQtFBUxyrNrN9vQZnLmSoXZ3DY7xu0TmtrNsDsIGAYhzct0h4qjWHrsqDgKtbEyhYqT5nYLzLbY5ErVR8jjxe7jxBVH2Umxb3dSF4GKWAq935xoLU+CFnbXXnstNBoNjh49CpvNhqNHjyIpKQnXXXddNOwTiHOO1Ldha3kzxCLGq7eOcvGwfMglIhysbcO+Kv5ahuynHrsg8uso9DNHG/QwWWObUBtuHzjAVXQR6152VREY8QPE3utFhYxaLgk6bN+ZnBh7vWjvs3S1POyu/3xUCDZEKBSbrJJC5vz3N8TIa1fPFR9EwGOXGFuPo8HiepgJVxzxUfwRqbxSwG0s2sku7DZv3ozFixcjLy8PAJCfn4+33noLmzdvjrhxAvHPyp1sWHVy7wy/yeVJKinO7JcFAPhhb3XUbfOEyWpHmVPUhCLsMhPlSE2QwUGAw3X6SJvnk4h47FJdLU9i5TXVmazcQhHuKDCX1ys2HrtItKygcLbHSBxFqvgAYPuRAbFb4IwWO1dVGm4olmEYtwkOMRJ2ba48r3CJtceOilKVTBz2w0yiXAKVc1pLrOyvi6CoPlGbFAct7CZOnNilKvXvv//G5MmTI2WTwAmCw0Gwaicr0C4enhfQZ84bzE4oWb23hpdw7NGGdhACJCmlIYV4GIZB32x+wrHhjOSiZCcpuMbRjfrYjPmh+XXJKmlYFYKA60Ybq0UiUvl17D5ow9PYiNJIFU4ALu9Hu8WOthiMCaSiVCEVITHMawZwCaxY9VOj9ocbRgZiP1bMvYdduC3GaPEHEDtvb6R68Lnv46Svik1KSsL555+PSZMmIT8/H5WVlVi/fj0uvfRS3Hnnndx2ixYtiqihAvHHzopWVLUaoZZLOE+cP07rkwmlVIyKZiP+rdZhYBB95CLB4Xq26KFXpjrkm1a/HA02ljZhP0/CLtTJDQA7+zFbo0CN1oTKFkNEFh5/VEcoDAu4brSxeoKujcA4MQrNN4qV7ZHMNUqQS5Aol6DNbEOdzoRERXSr2qnHKxLigu4HiL3XK5LFE7EaK1YXQW8jwF5/ZY3tMRemkfib5WvGc7gELex69eqFRx55hPu9oKAA48aNi6hRAicGa/bXAgBO75sZ8DQBpUyMCb3SsWZ/Hf481BBzYXfEOZKrV1bwI7kovZ2fLW2IXSi2zWRFs3OQdjihWIAVWDVaE6pajRjWLSUS5vnE1eokfGEX6xttJD12tPiizWSD3mwLO8zlj0i1C6FkJSnQVq9HrdaMnpmJEdmnN+p1kRYXTnEUqxw7Ko5OwOKJSPWwo8S6MtblqY5ECgK7jwa9GVa7A9Iwc1VjRdB3lnPOOcfjXNitW7di9OjRETFK4MTg1/1sJfSU/oF56ygTemdwwu6u03pGwzSv0Ly4HhmhCzs6p5WKxFhAvXWpCbKwvSV5KUpsO9YSswkOVc5B9JHw2MW6srQ2AuPEKGo3r1et1hTSvN9gaGiL/AJ9pF4fk7CUKz8wMrbHMsfOYGGFOxAZYUr30W6xx+iBIHKeXnY/tOAp+ufeZLVDa2RTBSKRY5eeIIdUzMBqJ6hvM0fkHhYLgr5CpkyZAp2uawjqnHPOQXNzc0SMOhkhhMC0dy+MO3eCEALlkCFQDh16woxJIzYb2jduhPnwYYgSEtDUezCONrRDKmYwuU9wjW4n9WK333GsJSY3KgCwt7WhfcMGFP72N86wytBbFrqg7JnBeitqtKaY2V99+BjOOrYVfZV26NYQqCdOhEgR2o2Lm+AQM2FnRJG2GiN3HEZT41Yo+veHatRIMOLgZ8a659jFoklxjdYEhjhQePwAmg6sAyORQjViOBT9+oW0v2zO6xV9YUdFTLacoG3tWljKyiDSaKCeOBHS7Oyg9xdLz5F7qxNbSwv0f/wJW2MDZHl5SDj1VIiD7J1KW57EYnpD5+IDc1kZDFu2wtHeDnnPHkg45RQw0sAfzjqHwdVhPJQGgntuZiTWLe66icG5p9emUiqGRiHpsm4ljBsHWWFhwPsTiRhkJipQ1WpEnc508gm7+vp6AIDD4UBDQ0OHxPeysjLIZOH1STqZMZeWoubJp2DcsaPD68qhQ5Ez/1nIe8bWaxUs+r//Ru1Tc2Gt6thY+OG8odh58S1Be5C6palQmKbCsSYDNpU2Be3xCwZCCFo+WY6G11+HQ6/HNPrGzG9Qf/NNyLjrLjCS4IRZkkqKdLUcjXozSuv1GFKQHGGrXTiMRtS/8iryPv0U9zscAICqjV9DnJqKrEcfQdIFFwS9T9okOBajuax1dTj9oxdwZ/keAEC983V5r57IfvoZqIYPC2p/GYlyiBjA5iBoardEPUdQdbQEizZ+gtRv6zjbASDh1FORM//ZoAVSdpICh2Pk9arTmTC5Ygey73gelS1uD90iEVKuugqZD8yGSBV4WJ/mCMZE2OnMEDvsGL3+Gxx5fAWI1VWwIUpMRMbddyHl+usDFhh8iNJCmR3Vcx6C7ocfOrwvyclBztPzoJ44MeB90jB4nc4UVrQhEOg5ytPV4tjVT8C4c2eH95VDhyLnufmQ9+gR0P5i2TLEPQzb/vdG1M7tum5ppk5F1pNPQJISWBpKpkaOqlZjzApvIkHAAePs7Gzk5OTAYDAgKysL2dnZ3M+0adMwd+7caNp5wtK+dSvKr7gSxh07wCgUUJ9+OtRnnAFGoYBx1y6UX34F2jdt4ttMrzR/+ikqbr4F1qoqiFNSoJl6LlRjx8IBBpOrduGOL5/r8ocTCBOdXrsNhxsibTIHsdtR8/gTqHvuOTj0eqCgG9bmD8fR5DzAYkHT4iWouO12OIzBC5yemWzbkGiGY+1aLY7NuAEtn3wCxuHAgZRCVI2YCEluDuzNzaie8xDqX3456Opi6rGrbInu9AlTySGUXzYdfcv3wMaIYB81DonnnAORRgPz4SM4NmMGdKtXB7VPqViEdHVsmp42rf4ZT61ZiKK2OjBqNRLPPhsJkyYCEgna//oLZZdcClNJSVD7dPXhi66ottrsmLplJR7e/imYlmZIcnKgOe88KIcNAxwOtCxfjmPXz4CtpSXgfXK97GKwQDc3a/HUlg/R/YdPQaxWyPv1g+bCCyDr3h2OtjbULXgB1Q8/DGIPrDdaVgxDsfVtJqQbWvH4Dy9xok41diw0U6dCnJYGW00NKm69Dc0fLwt4n9z0jJjYb8aghiMofHIWjDt3suvWGWdAfWandSvAFmexbG5NRen5R/9GxS3OdSs1FZqpU6EaOxZgGOhWr0b5FVcGvG5Rb28s592GS8CuCofTW3D22Wfjl19+iZpBJxOmAwdQefsdcBgMUI4YgbyX/wdpDtvuw1pXj+o5c2DYuhUVd92Nwo+WQjloEM8Wd0T77beoe+ZZAEDy9MuQ9dhjECmVaNSbccuDS/Ho1o+RU1+DYzfciKIvvwj4CQgAJvRKx7LNx7D+UHSEHSEEdc89B+033wBiMbIefghbBp+Olz/fjSF5Gizr0Ybqx59A+99/o2r2A8h/842gPHc9M9XYfLQZR6JUQOEwm1Fx620w7dkDcXIyPjnzZnxsy8FLlw7GGcNy0Lh4CRrfegtN770PRqVChltFuj/y3EKxhJCopANYKitx/JabYW9oRLkmG/NHXY+VL1yFzEQF7K2tqHlqLtrWrEHVnIcgSkyEesKEgPedk6RAfZsZNVojBuVHp/imfeNG1M95EFJix+bcgbju63e469tcVoaq+2fDfPAgjjuvfVlBQUD7jVUn+6q3luCKQ+sAAKm3347MO+8A44yqtG/ciKrZD8C0bx8qbr8dhR99FFBYP1ZeL2K349xVizCo7iCITI685+ZDc/55YBgGxOFAy2efoW7BC9B99z1EcgWyn3na7zVM8620RitMVnvAxV6h0FTdiAV/L0FaeyOkubnIe30hd293GI2oe/FFtH7+Beqefx6ixEQkXzzN7z5d4iLK554QKI+VYt6WD8HYzFCOHIG8l1/mPNPWunpUP/ggDP/8g4o770LhRx9BOWigz31mcmFwc9TuN5Q6nQlnHN+G83Z8DgBInj4dWY89CpGSvecZ9+5D1X33wXr8OI7deBOKvvjc77rFx5zkcAm6xEMQdYFh1+lQedfdcBgMUI0Zg24fvM+JOgCQZmWi4L13kXDKKSAGAypn3evz6XlflRYfbyrHRxvLsa9KG3X7jf/+i5onnwIApN54I7KfeYb741h/qAGHk/Px7mUPQ5qfD2tFBaofeADEKf4DYVyPNEhEDMqbDNxEhUii/WYlWj79DGAY5P3vJaRefz0ON7Fekp5ZGmimTkW3994FI5dD//vvaAyyPU/PjOgWUNQ++yyMu3dDpNGg20cf4c8kNuzRLU0FRiJBxj13I+vJJwAAjW+8ibbffw943zRPpN1iR6sh8j3JHGYzqmbdC3tDI0Q9e2HOqXeiISUb6Qnsk7s4ORl5C1+D5sILALsdVbMfgKWyMuD9R/tGa62qQuV99wN2O37PH4Zl59zR4eYv794dhR9/BEX//rC3tKDynllwmAKzJSsGffj0GzbAsOQtAMCnIy9B1n33cqIOABJOOQWFyz+BKCkJpt17UPv0MwHtN1YLXOOixRhUvhtWkRjMSwuRdMH5nBhgRCKkXnMN8l55BRCJ0LpiBVq/XOF3nxqFBHIJu9xF0+tFHA50e/tF5Lc3oj05HYWfLOvwwC5SKpE9dy7SZt4CAKh56ikY9+7zu9+MGHm9dA3NeOiv96GymSEfPQbd3n+/Q7qBNCsTBe+/51q37p3l1+tLC1csNgd0RltU7Tf/+y9m7foKAJB6003IfuZpbt0CAOWggSj8dDmkeXmwHj8e0LoV6z6CkSBoYdevXz/079/f44+Ai9p5T8NaXQ1pQQHy33wDInnXXCCRTIa8N16HrLAQtpoa1D37bJdtDtW14fK3N+H8N//CU9/+i7nf/Yvz3/wL172/JWoxf4fJhOqHHgaxWKA+7TRkznmww1PWhsONAIChw3sjf9FbYJRKtG/chOaPPg74GIkKKYZ1SwYAbCxtjKj9lspK1M6fDwDIuHcWNFOnAgAOd2p1ohoxAjnPPQcAaFy8BIZOuSS+oO0eSqMg7HS//grtV1+zovS1VyHp2ZMrdHBvdZJ6zTVIufZaAEDN40/A1tQU0P4VUjEXzoxGnl3DG2/AtH8/xMnJaH3yBehlKuQmKToUOjAiEXLnz4dy6FA42tpQPeehgB8MaMuTaHi9iMOB6ocfgUOng7FnX7w27ApkJXfNQxNrNMhf9BbEaWkwHzyIhtffCGj/rtYP0REXtpYWVD/yKBhC8GPROOwee67H7eQ9eiD/9dcBkQjalSuh+/lnv/umHruGNnYGbTQw7NyJxsWLAQCvD52OrAmneNxOc/ZZyLj/PgBA3QsvwFLpO6zm3ig3mkn8Lcs/RfaBHTCJpdh/91OQ5uZ6tCXj/vuROOVMwGpF9Zw5ftNBsty8XtGk5ulnkGVsQa06HYX/52Pden0hpIXdYKuuQd3853zuUy4RI0XF5mFH89w7TCYM+2QhZA4bmoaMQeaDD3j0DkqzspC/eJFr3frY97rFnfsTKBQbtLBbsmQJFi9ezP089dRTSElJwcyZM6Nh3wlJ2++/s7lDYjHyXn3FZwWXWK1GrvPpU7f6J+j//pt775sdlTj/zb+wtawZMrEIk/tk4PS+mZCJRdhwuBEXL9oYlaeIxiVLYCkthTgjHTnPPwdG5LpMCCH46wgrxCb0Soeid29kPfwwAKDh9ddhrQ58VNjo7qkAgG3HAs/zCYS6+c+BGI1QjR6NtFtv5V6n3rWebsnHSeefh6Rp0wBCUPv0MyC2wJ4oezhz7I41G2CxBe6p9Idd347aZ1gPStott0A9fjxqtCbYHAQysahL083Mh+ZA3qsX7M3NqHvxxYCPE608O+O+f9H84VIAQM7zz6NKyl77nnrYMTIZ8l55GSKVCsadO9mweQBEMxlb+803MGzbBpFKhT03PAirWOJ1nJg0Oxs5z7EPEM1Ll8K4d6/f/Ue7k339Cy/A3tQEY243vD3oQp/tNhLGjkHabezfR91zz8Ou9z0/OC1BBhEDOAjQpI/8IkdsNtTOexpwOLAufzjWdx/FCQKP9txyC1SjRoEYjah99hm/uaZZUfa8WKuqUP/qqwCA9wacD3V/75XTjEiEnGefhSQrC5bycjS9+67PfVOvUUMUxUX7xo0ga9fAzojw8Zk3+163EhOR97Jz3frxR7Rv3Ohz35kxCCU3Ll6ClMZqNMsT0TrrkQ7rVmfYdeshAEDDwtdhranxum2s+whGgqCF3aRJkzr8XHnllVi5ciU++OCDaNh3wuGwWFD33PMAgNQbZgSUN6ccOAAp11wDAKh95hk4zGa8t+EoZn+5GxabA5P7ZODPhyZj6Y2j8cENo7D63gkoSlOhqtWIGz/8B2Zb5IYrW6uq0PzBhwCA7Cef7JJ/UFLXhoY2M5RSMUYUsu8lX3E5VCNHgphMqH/55YCPNbLIKezKI9cmp23dOuj/+AOQSpE9by73x213EK6hcOfmxJkPzYEoKQnmgwfR8umnAR0nW6OAWi6B3UFQ3uR7QQyGprffhr2hEdLCbki/524Arh52+anKLu09RDIZcp5/nk0K/u57GHftCug4eZywi5zHjuY1wuGA5rzzkHj6aZyn0VubAGleHtLvuQcAUP/Kq7C3tvo9TrTmN9p1OtS/+hoAIH3WPSiXJQPwPSc2cfJkNqRMCOqeXxCAuGD31ag3w2aP3AMBABh374b22+8AhsHOq+6BVSz128sr/Y47WM9LQwMaF/tOR5CIRVwVcjQ8ji1ffAFzSQlIYiKWDL4IGWq5z3wshmGQ/fQ8MFIp2v9cj7Zf1vjcf2aUJzjUv/oaiNGIIzm9sLr7OL89+MTJych6/DEAQNN778NSUeF128wot2shFgtqn2UfUr7vfgrMPfr6/Yxy0ECkXH01AKD2aXbd8ka0+whaKqvQ/CG7br015BJk5mb6/UzyFVdAOXIEu279z/u6RavBT+ocO08QQlAZRI7MyUzrZ5/BWlkJSWYmMu66K+DPZdw7C5KMDFiPHccvT/4P8388AAC4bWIxPpgxigs/AWzi/rKbxyA1QYb9NTq8/tvhiNlf/8orIBYLVGPGIHHKlC7v/+UMw47ungq5hE1AZhiGvUExDHSrf4Jh27aAjjW8WwoYBihvMqAhAiEGh8nEhQXSbrgB8uJi7r0Kp2dNLhEhP6VjaE2SmorM2bMBAA2vvwFrfT38wTAMemSwXrtIhWMtx4+jeelSAEDWw49A5MyLosLO28QJ5aCBSLr4YgBA7YIFAYU085MjL+za1vzKVtEplch8aA4AoFrrf+pE6rXXQN6rJ+wtLah//XW/x4mW16vxrUWwNzdDVlyM1GuuQY3Tdn9TJzIfeACMUgnjzp1o++knn9umJcggETEghO1mHykIIah7gfXYJl18MQ6ndgPgCiN5QySTIfsxVlw0f/QxzEeP+tw+Wufe1tKChjfeBAC0XHkT2mQJyAigway8uJjzytc9/7zPXEeuACEK4si4axd0P/4IMAzeGzoNhBEFNHUiccoUqMaNBbFYfHrcM90EdTRmbDd//DEsZWWwJCbjk75nB9zUmq5blmPHOGHliWh7vepfeRnEYsGezF7YmDMwoObKDMOw176zUtbbukUfCNpMNhgs0c0RjBRBC7s777yzw88NN9yAkSNH4mqncv8vY9fp0LiIzQ9Jv+fuoHpEidVqZD7ChjQzV3+FREs77j2jFx45t6/HJqwFqSo8fzFbjfT2+qMRSeI37NgB3eqfAJEIWY8+4vFpmebXTeiV3uF1Rb9+SJ4+HQBQ+/zzAYmLJKUUfbLYXLXtx8L32rV+uQLW6mpIsrORfsftHd6j56c4Qw2xh/OZPP0yKAYNgqO9HU1vvxPQ8XpEeAJF/f/+B2K1ImH8eKhPm8y9ToVdoY9RYpn33weRSgXT7j1d+mZ5gmtSHKEcO2KxoP6VVwAAaTfeCGkW25uQCkfqIfQEI5Ui64knAQCtX3wJc1mZz2O5PHbGiC1ylvJyNC9fDgDIeuwxMFKpa+qEn0VOmpWFtFtuBgDUv/yKT3HBNjyNvPei7Zc1nKjOuPdet1mr/hc49aRJUJ92GmCz+fRcANELqTUuWgyHVgt53744Ou4s57EC61GYdutMSHNzYauvZwumvBCtliGEENQteAEAoJ42Dbvl7LUfiP2cuBCLof9tLdo3b/G4HRWJRqudm2oRKew6HRqXvA0A2DX1WrTLlAGPQhMnJiLzITak2fTe+1497vTcR+IBvjOG7dvR9tPPgEiExQMuANzyKf2h6N+fW7fqnvf8UJwol0DprKI+UfLsghZ2WVlZHX4GDhyIDz/8EG+99VY07DuhaHr3Xdi1Wsh69kCy04MSDF8n9kWpJhcqmxkvWPfg/im9fYYizhmYgzP7ZcLuIHjx54PhmA4AXAJ48qWXQtG3qyvebLNjSxmboH9qJ2EHABn33QtRQgLM+w+g7bffAjrmyCI2nPtPeXh5dg6LBU3vvw8ASL/99i6imiuc8NLtnxGJkPkA67Vr/fLLgHIFudFiEWh5Yjp4EG2//sbelB55uMP3TquGC3wIO0lGBtJuZ8Vsw5v/16GhqyciHYpt+eJLWI8fhzg9HWk338S9Xt3qOxRLSRgzGurJkwGHg3s48ga9aZusDm58ULg0vvMuYLMhYeIEqE8dD8B9Tqz/bvNpN90ESXY2rNXVaPn8c5/bZka4Hxyx2VD/2qucHdKsTLexUIEtcJkPzQFEIuh//91nlaZLHEVO2NkaG9H65ZesHXMeRIPeORIqQGEnksuR7oyONL3zDux6z3+P0fIa6deuhXH3bjAqFRw33gYAkElESFIG1rhd3qsXUq64HADQ8H9venxYUcnY6RNA5Asomj/5BA69HvJevbC1Nzsu1J+n1x3NeVMh79MHDr0eTe97TsmKZo5dw0LWy89MvRDlSblIUkqDamdD1y3T/v3Qr1vX5X228ObEqowNWtjNnTu3w8+DDz6IM888Mxq2nVDYmpvRvOwTAEDm7AeCnmawbFM5nll9EMv6nQ0A6PHXatga/VeLPnJuX4gYdm5rOG1QDDt3wrBlCyCVIv3OOzxus728BSarAxmJcs7T5o4kNRUp118HgA1rBeK1GxWhPDvtylWw1dVBkpmJpEu6iurD9W0AvAs7AEgYOxaq0aNBrFbuCdYXtAN8aQSEXePb7PE0554Dea9eHd7zF4qlpF57DcSpqbBWVED7vW+vHQ1HV0WgeMJhsaDpvfcAABl33wVRAhuiJoSgOog5sTSnUPfDDzCXlnrdTiEVIzWBDVNHIiRoraqC9rvvAIDrB2i1O7hQqa8cO4pIqeT+bpref9+n1y7SQ9F1P/0M67HjEKekIO2mG537Dm4Ivbx7d26KScP/vel1u6woVPU2L10KYjZDMWQwEk45xc3bGLi4SLroQsi6d4e9tRXNH33kcZtotK0ghKDR6eFPvfZaNMrZggN/+YGdSbvtNjAyGYzbtsPgpfFvRhQ8jo72drQ4uxmk3X4b6tssAII794xIhIx7ZwFgRaKndStawsiwYwcM//wDSKVovvS6DscKFElqKlKuY7sLNPzfWx7XLVdF9UnosWtqasITTzyB8ePHo0+fPhg/fjyefPJJNAXYZuFkpvmjj0FMJigGDuwQRvMHIQTvbTiKJ7/9FwAw/MoLoBg8CMRo9FspBbBtN84fzJbUL/nT+2LoDxp+TLrowg799tzZ4KyGPbVnutebVtqMGazXrqQEbWvX+j0uLcDYV60LOX+B2GzcuUq7+SYuN82d0nrPhROdoTeo1m++8ZnMDLiE3dGG9rBCguajZWj7me0PmXbbbV3e54Rdmm9hJ1KpOG9Z45IlPit8qdDSmWzQmcLzemm//dZNVF/Cvd5isMJoZQt7AhFHygED2BYQhKDRTwQgko1+m97/ALDZoBo3FsqhQwHQZqqAVMwgLSGwcYnJ06axU0EaGtG64ivvtkewlx1xOND0jlNYzLgeooQE2OwONLU7hV0Qnpf0O+8AxGK0/7kext27PW6THeGWIfbWVi58mn7b7WAYhhN2gXrsAHC9HQGg+cOlsGu7PuRmRqFtRfvGjTDt3QtGoUDqDTPQ4DwvgQpqijQrC8mXO712b/6fx/tJNObdtnz+BRtlKiyE5pxzOozkCgb1aadBMXiw13UrM0ptfugDcfK0i1AtY0V1MKKUkkrXrYMHPa5bnLCLwdSVSBCwsCsrK8PgwYPx008/4eyzz8bs2bNx9tlnY/Xq1RgyZAjKy8ujaGZ8Y29rQ4szPyf99tsCflKz2R148tt9XKHEzAnd8dA5fZEx614AbHgrkN5kt09im9eu3lvDhb6CwXTwIFtJKhIh/ZZbvG5HCydO7dk1DEsRJye7vHZenn7cyUtWIidJAbuDYNfx1qBtBwDdjz/CWlkJcWoqly/hDiGEC8X6G7yuGjECCePHAzYbmt7xLawL01SQiBgYLPawPEdN774LEMLeHPv06fCe1mjlwo0FKf5zNlOuugrilBRYjx+H1keuXYJcwrWSqAojHMuKatZbl3rTjR1ENb0W09XygEMj6Xc7vXarf4L5yBGv23HNcsO80doaGtD6FSvC0m9z5WXSkV9ZGoXHHFdPMDIZ0p2J/E3vvuu1SjAzgs1m9b//zg44V6u5CsVGvQWEAGJR4KIUAGSFhUi68EIAQIMXYc3ZHqEFrvmT5XAYDJD37cs9ENeHKI4Sz2G93Q69Hs2ffNLlfSpW2sw2tEcoT40+ECdfPh2S1FSXtzEIQU1JmzkTjFwO444dMHgYM5kZYY+dw2RC01K24CHt1lsBkSjoED6FYRhkOKvbPa1b7j0QI5UXa9q/H+1/rgdEIqTdckvItgOAJCWF89o1vrWoi40nbSh2zpw5mD59OrZv346nnnoKt912G5566ils374dl156KR544IGoGNjQ0IDzzjsPKpUKffr0wdoAvECxpmX5p84chZ5Qn356QJ85UKPDJYs34pPNx8EwwBPn9cNjU/uBYRgkjD8FikGDQEymgJr+9s/VYGxxKhwE+HKbby+TJ7gw4DnnQFZU5HGblnYL9lWzT8GdCyc64+610//xp89tGYbhvHY7jgefZ0fsdlco5IYbPBasVGtNMFjskIgYFKYl+N1n+l1sOK511SpYa2u9bicVizgvWml9aC1PrFVV0H7/PXvc27t66yqc3rp0tQwJcv/hfZFKhVRnOK5pyds+Z2m6jxYLFd0vv7C5dcnJSOkkqgMpnOiMok8f1msHoPEd70Us2RFqedL04VIQiwXKoUOhGjOae71Wyy6e/ipiO5N0ySWQZGfDVl/vtS9fdoTabriHAVOuvprrO0YXn8xEecCilJJ+x+2ASIT29Rtg/PffLu/TRTMSeV52fTual7HzUtNvu5V7IKbnJRhvI8CGBGnRVPNHH3fJtVPLJVDJnEnwEbDfsGMnDFu3AlIp0m5iPeXcuQ9SlALsVAf6YNrooYCLejAj5bFr/fpr2BsaIcnNQdKFF0BntMHs7MmZEYS3lJJw6ngoBg70uG5lOBuiW+yOiE27aXQ+eGvOPReywkIu7zNYbyMlzbl+mKmjw42TNhS7bt06zJ071+N7Tz31FNZ5SDqMBHfddRdyc3PR2NiIF198EdOnT0dLEIOro43DaORyOtJuvdVnU0QAOFirwyNf78EFb/6FPZVaJCokePvaEbhlQrFrbA7DcIt8y/LlHsMKnblqNNve4Mt/KoLqCu8vDEj5u7QRhAB9shL99sYSJycj5eqrAACNby/x+4Q2tCAZALCrojVguyltv/4Ky9GjEGk03DE7Q6tWu6cnQCr2f8mrhg+HatQowGpFk5/+jOHm2TW9/74rDDhkSJf3qbDzVTjRmZSrroYoKQmW8nK0/fqr1+3yuJYnoeXZEUI4j0XK9ddxuXUUV+FEcAt0mtNzpvvhR1iOH/e4TQ5XgBC6KLW1tHCFDmmdPO201Ul2AIUT7ohkMqQ5vd5N777nsYglUi1DDJs3w7RnDxsGnHE997pLXATvuZB16wbN+ecBYB8MOkNtb263hN0/s/Xzz+DQaiHr3h2JZ7GVsHYHQaM++FAsJfHssyHr3h0OnQ4tyzv2pOwwfSICnpcmtzAgHbvlEqUhioubbwIkEhi2bOkyCSczgsPoiVuxWdott4CRSrnwerIquOIDSod169NPYdfpuPdkEhGXFxuJML756FG0/ULXLdZLXhuGxw7ouG41LXm7w7p1ojUpDljY2Ww2SKWeq3xkMhnsPjwDoaLX6/Htt9/imWeegUqlwrRp0zBw4EB87/RwxAOHP/gE9pYWkJw8HBs8DjuOt2BbeTM2H23C30ca8cu/tVj6dxkeW7kXZ7zyB85ZuAGf/1MBm4Pg7AFZWDt7Es4akN1lv+rTTmPDCu3tXBsGX5w9IBvJKimqtSasP9QQsP1N773HhgFPPx2KPr29brfhkDMM68dbR0mdMQOMXA7T7j0wbNnqc1s6WmxXRWtQbnpCCBoXL2GPd911EKs9h1kP1zkLJ/zk17mT5rxBtX65wmc4vNjZy+5oCMLOWl+P1q++BtAxDOhOoIUT7ojVCUh1jhpr7HSDcocroAix5Yn+jz9gPnSI9RI6G2y7UxVgRWxnlAMHIGHiBMDh4MK8nXHNLQ19kWtZ9gmIwQB5v35QT5rU4b1ariI2+EUi+bJLIU5Lg7W6GtoffuzyfqQWCVrgkzx9OiRpadzrdVw4MDRxkX7rrQDDoO3XX2E+3LFHZopKCpnz4Sic1hUOkwlNzgklabfeCkbMCommdjMcBBAxQJo6ePsZsdjltVu6FA5Dx4cWl9crPHFkOnAA+j//5MKAFFd+YGjiQpqTg6SL2HB451QQLhQbAWGk/f572KprIM5IR/KllwJwXY+hhJEp6tNPh7xXTzj0ei49iRLJNj9N7zjTV844A4revTvsN1RhBzjXLZkMxt27O6xbJ62wGzduHBZ5GZS+aNEijB07NmJGUQ4fPoykpCTkuCXzDxkyBP96CBGYzWbodLoOP9HGYbGg/l32qefNrHG4cPEWXLJoIy5bsglXvrMZ17y3Bbct24553+/Hp1uOo7ShHWIRg6mDsrHi9nF4+7qRXp+qGZGIExctH30MR7vvUJ9CKsYlw/IBAJ9t9ezl6Ix7NWD6bbd63a7zGLFAkKSnI/myywCwXjtfDMhNglTMoFFvCar9hv73P2AuKWGFhTM/whOeRon5I+GUU9hkYJMJzUs9V9kB7h674EOxzUs/8hgGdCcUYQcAqdddC4aGFf70HA7PC6NJMSGE8+ikXH0VxElJXbahIV5fzYm9ke5s3dK6apXHcT+0BUmoHju7Wx5W+m1d82JrdIH1sPOEyJlID7DtNzqHw7lcrzAannJV7BIJVwlLqQ8jHAgA8p49OQ9a55AgwzARmSLQuuIr2JuaIM3LQ5LTQwi4PF5parnHfpOBoJk6FdJu3WBvaUHL5190eM81fSJMUe1ME6BhQAoVdhkhnnuA9aCBYaD//XeYSkq41zMjNC+W2O2c/Wk33sTNgw22ktoTjEiEtFvZdau507qVFaFzb6l0S19xW7fqw/TYAWzbqOTLWKHb9I7LY+2eYxeNBtGRJmBh98ILL+C5557DZZddhmXLluHXX3/FsmXLcNlll2HBggV46aWXIm6cXq+HptO8Oo1GA72HPkULFixAUlIS91NQUBBxezpjb2pCkyYNzcok7BlwCnKTFChIVaJ7egJ6ZqrRJysRQwqSce7AbNw2sRjvXDcC2584E4uuGcG1+fCF5pxzICsshF2rRcsXX/rd/qrR7L957cH6gJ7qOlQDeggDUo42tqOq1QiZWIQx3dO8bteZtJtuZMMKmzZ7rbIDWFHaL4f9nncGGI4lhKBxCSsYU665GuLkZK/bcoUTHlq0eKNLWMFLODzUUKyvMKA7x0MIxQLOsMKVVwLoGlaghNOk2LD1H7Z3l0yG1BkzPG5Dp04E67EDnOHw0aPZcLiH3lh0zE+oOXYtn30Gh04HWXExEs/qOmGFa04cgscOYItYRBoNLGVlbH9CNxIVUiQ4c71CLUKg3hxPVexUHIXjeaHXvm71alg6FcaF673oEAacyYYBKQ0hVMR2hpFIuAW/6YMPOrSeyYqAx65D+sqtHR+IuarYMOyXd++OxHPYtlfuXrtIFU9w7XGSk7n+eQDCKj5wR3PuOaywbm3tsG5Fylva/MH7gN2OhFPGQTl4MADA4SBBNeX2RdrNNwMSCdo3boJxzx4ALlFtsjqgM8X/9ImAhd2wYcOwZcsWyGQyzJkzB1OnTsWcOXMgk8mwefNmDHW2CYgkarW6i+dNp9NB7SHk9uijj0Kr1XI/FX5aVUQCaU4Opq3/EWPWfI+/nzwXGx89AxseOh2/PzgZv82ehF/un4hv7xqPxdeOwKNT++GsAdlIVgVepcaIxUi7dSYAoOnDD3zO4gOAXlmJGFqQDLuD4LtdvhvseqsG9MQGZ2h3ZFEKlLLAcy+keXlcb6xGPxWmXJ5dgJWx7Rs3uvKLbrjB63aEEM5j56uHnSfUkyezjTfb2z1W2QHgxorVaE1BVdr5CgO6UxGixw5gZxUzMhmMu3bBsPWfLu+H06SYyy+67FJIMjI8blMVQvGEOzSk1rpiRZfeWDT3rc1kC7oTv8No5LywabfO9JgXG66wE6vVrnD4O12FdRbX8iT4Rc5UUgL97793CQNSaA5TOAu0gl6XDgcaO7WvCLdCUPvdd7DV1kKSkcGNwqPUR0AYAUDShRdCmpsLe2MjWr9cwb0eiV523tJXrHYHmtqD7wPnCVpdrfvpJ1iOHeuwT705dE8vcTi4v13aHodSr4vMuWckEqTNdOaZuq1bkQhnuqevpLmtW03tFtgcBAzjKtQIFdaLfD4Al2dWKRNDo3A2iD4BwrFB9bHr27cvPv30U9TW1sJqtaK2thaffvop+nqYUhAJevXqBa1Wi1q3ysTdu3djwIABXbaVy+XQaDQdfmKFt4UtEiRdcAEkOc7eWF9/7Xf7S4bnAQBW7aryuV3TUs/VgJ5whWGD/3emzZzJhhXWroWp5JDX7Vx5doEVxjQ5c+uSL++YX9SZBr0ZWqMVIoYtnggGRiTinvybP14Gu75ruDVZJeNaSpQ1BhaO7RgGvNWrt87uIJzoCkXYSTMzXWGFt7smwtMcu+Z2S1ALhXHvXrRv3AiIxUi96WaP25isdm6RC8VjBwCqsWOhGDIYxGzmZuhS1HJXJ/5gvV4dwoDnndflfbuDcItPKDl2lBQaDt9/AO0bNnR4LyuMTvy0YEVzztmQd+/e5f1IhNQAV56p9tvvYK1y3U/CSeInNhv3kJd6kysMSAm1IrYzjFTKedOa3n8fDktHwRWquLBWV3tNX2nUs70PJSIGqUE8wHtC0a8fEiZNZPNM32O9mx2qekP02unXrXO1x+mUFxuJHDVK8kUXQZKdDXtDI1cdHomWIVz6yrBhUI0exb1O95mulkMSQIGcP9JmOsPhv62F6RC7bmWH8TAWa8I/A1FErVbjwgsvxNy5c2E0GvHdd99h3759uMDpBfovwMhk3BzK5vfe9zsq6vzBuZCIGOyr0nFFA52xtbSg5TNnGNCHsADYp9BNpWzxQKD5de7Ii7sj8WxnWMFHw+WhBa5GxRab7953hn/+gWHbNvbmfdNNPrc9XMd66wrTEkKq9Eo8+2zIiorg0GrR+sXnHrcJNhzb8qkzDNi9OxKndA0DUmq0RtgcBDKxKOSbbepNN7NNZzduhHHv3g7vJSmlSHQ+hQbT8oQm7Sedfz5k+Xket6Hh3QSZOODRSp1hw+HsU3nLp591mUMZSi87YrFwlc6dw4CUJr0ZNgeBKMynf0lKClKuuAJA1yKWUJsUm4+WQffzzwC6hgEpkcg1AgDVsGFQjRvL9nR0hk7d9xuK50L308+u9jhuYUAKV3wQpigFgKRLLmZbz9TVceIi3Dy1xnfZ0XOqsV3TV6jYSlcH32bGE+nOLgWtq1bBWlcHwL0AIfhzz6avOPNir72Ga49DcXl6wz/3jEzGhjThqg4Pt0mxrbkZLZ+xzaw7r1t1YbY66Yy8Rw/u3kwLuCJVzR4L4lrYAWxhRkVFBdLS0vDggw/iyy+/REpKCt9mxZTkSy+FOD2dfVr0MyoqNUGGyX0yAQDf7PTstWv+cCmIwQBF//7sfE4f7DzeinaLHWkJMvTPCc0Lmu4MJ+tWr/bavqIoTYVklRQWmwMHanwXvjT8H9s8NemSS7g2A9445BS3/hoTe4MNhzuf/D9c6nFUVI9M1hNIp1v4wmEwdGyPI/YuNml+XX6KMuREclm+Wzjcg9cu2AIK0/790K9dCzAMlybgCfcwbDCjlTqjnjwZ8r592fO2rGM43FUZG/iNtnXlKjYMmJnZJQxIoXl7mYmKsJ/+U2+8gQ2H09FHTkJtUty4ZDHgcLDNrD1ESiy2yIUDASD9dnZMWutXX8NaVw/Ald8YbNsKYrdzebGpN8zw2HMyUqFYwNl6xikuGt95B8RiCStPzVpbCy2tYvcwdjGSohRw5pmOHAlYrWj+gG0kHI4w1f/5J0z79oFRKj3mxXLe0ghcNwCQPP2yDtXh7k2KQ6H5w6UgRiMUAwZ0SV+hYjGUYidv0DYquh9/hKWiIqrzbiNN3Au7jIwMrF69GgaDAYcOHfpPzqUVKRRIu/EGAJ6r7Dpz8TDWi/Ltzio4OvW0s7W0oIWGAe+60++iu+Ewm183vmd6yE+hiv79u4QVOsMwDIbkJwPw3c+ufctW10xbH5W8FFo40TuIViedSbrgfFe+zlddw+HBVMY2L1/OhgHz8ztUA3qC5tflhxCGdSft1pldwgoUGo6tDLCAgopqzXnnQd6jh9ftaA+7UCpi3XEvYmletqxD01kaJq0J0HaH2YzGxYsBAGm33NwlDEipCTO/zh1pZiaSLmXHrDW5VZiG0qTYfLQMOmf7lPS77/K4De0BJxUz3GSRcFCNHgXl8OEgFguaP2TFBQ0jBxsC1/34IyylpRAlJXUJA1LoAp0RZiiWkjz9Mogz0mGrroH2u+865KkFO32i6Z13QaxWqEaNQsLorukrkRSlFNpbtOXLL2FraXFreRKcOCKEoPENdgZw6rXXQNLJOcIWH0TG00vpXB2eoXLmqLWZuqxL/rC1tLimO3lYt8Lp3egN5YABSJgwgVu3sriHAkHYCUSI5CuudDWddTZm9MYZ/TKRqJCgWmvClrLmDu81f/SRa4RPAFMy1tMxYiGEYd2hYQXtypWwVnsu7KB5dju9TKAghKDxTfbmlHzZpZDm5vo9Lg1H9w6iIrYzjFTqSgZ+7z0QZ74Ohfay8xeKtbe1ccI2/e67PIYB3alopvl14YkjeXEx176iqVP7inyugMJ/k2Ljvn+hX7eOHT3nwWPhTqg97DyROGUKZMXFbNNZ51xRwFVAURPgjbb1yxWsty4rC8nOEKknIpFf507azc5w+N9/c+HwUMI67t46pYc8Y8B96oQiLE8phWEYroil5YsvnOIieFFKrFZuTFnaTTdBnOj577Ehwl4vkUKBNGceaOPb7yBBjJCmT1hra9G6gi3CoGPvOlMfYVEKOKc59O8PYjSi+f333Tx2wYkL/dq1MO3f75xM0zV9pcVggdXOiq1wiw/cca8OV21h80ytdoIWg8XPJzvSvNS5bvXrB/Vpp3V5PxI9+DxBnQfab75BN5vOeaz/SI7dTTfdhA8++CAqTYoFWMTqBKTSGayLF/sc8K6QinHeILYFwsqdldzr1ro6btRL+p13+L3xtxos2FvZCiC0/Dp3VMOHQzVmDIjVivqFCz1u428ChWHTJi63Lt3HlAwKIQSH6gKbEeuPpEsugSQjA7baWrSuXNXhPeqxK2ts9zn1o/nDpWyn/R49uPCoL0LtYeeJdLewgnGfqw9kfhCVsQ1vvA7A6a0rLva5bVWEPHaAs+ksLWJxazqbE0SOncNg4ELR6Xfc4dVbB0TWYwcAsvx8rsqu/pVXQQhxCbsAvV6mkkMub91dnr11QOQKJ9xJOPVUKAYMYMXF0o9Cmrmq/fZbtsVGaipSr/XsrSOERKTdSWdSrricnZ9cUQHdjz+GVEDR8OabrLdu5EgkeCk2q4+C7QzDcEKy+eNlKLCxbZeCEtUOBxre/D8A7ISYzt46wHXdpCXIIJNEzt/jXh3esngRMlXiDscLBGttLZo/9r1u0e+SpglECtXIkdy61eM7NtL1n8mxI4Tgs88+wxAfvdAEwif12mshTkqC+fARtHzxhc9tpznDsT/trYXJygruhldfAzEaoRw2zGfSPuXvI01wELZNSE6Qo5U8kTlnDgBA9933XRL5AZewK28yoKW94xMdsVpRt+AFAEDyFVf4za0DOlbE9giiObEnRHI5V8TS8PrrHcbl5KeoIBOLYLY5uBBkZ6z19VxlZ8Y99/jMraNEUtgp+veHxikm6194gUvkzw9wXmzbH3+gff0GQCpFhnOWri/o/vJDbHXSGc1550FaUAB7czPXNDcniHmxTUuXwt7YCGl+PpIv8ZxbR6FNjyPlsQOA9HvuASOTwbB5M/Tr1nGisb7Nf8NTQgjqnn8ecDiQeNZZUA707K2j+wMi67lw99o1f/wx5E31QXm97Pp2TlikzZzZZfQcpdVghcUe+qxSb4hUKqTeyDZxbly8BFkJrKc8UGFn/PdfaL9Zydr1wGyv20WqaKUz6tMmQzV6NIjFgn4/suHIYDx2rV9/zTZyV6uRduONHreh+ZKRDGVSUq+/jlu3LqpgpzkEY3/Da851a/hwJHpJxaqLcH6gO3TdUq//Fb1aKv47odgPP/wQv/76K3b7aEIrED7ipCRk3HcvAKDhjTdh8zEzd3RRKvKSlWgz2/DbgToY9+6D9ttvAQBZjz0aUJjmtwNsJdbE3pFp56IcOIAbl1P34otdFrRklQzFzpYku5yeQkrLZ5/BfPgwxMnJyPCSX9QZWhHbLVUVUkVsZ1Kuugqy4mLYm5vR8H//x70uFjFcK5UjXsKx9S+8AIfBAMWgQR4b4noilDmxvsicfT8YhQKGbdu4GbJcjp0PYeewWFC3YAEA9iYtKyrye6xIhmIBtjdW1sMPAQCaP/gAlvLygKdPWI4d46ZkZNx3HxiZ71YULo9dZGwH2CIWKi7qXnwJ6TL2789qJ2hu9x2Wavv1Vxi2bAEjkyHzoTk+t+WaE0fQYwcA6jPOgHLECBCjEfUvvMjlCAYijhrfegu2ujpIu3XzOs8ZcInEFJUUckn4f6/upFx9NcTOVJbTS9YDCCyJnxDCXvuEQHP++VANG+Z122h47ADntI+H2Gs/6a+16NlaGbDHztbSgoZXXgUAZNxzt8cJMYC7KI2s7QDbLD393lkAgHP/+Q6JlvaA7Tfu3Qvtt2x7maxHH/G6bkUrFAuw65bmQvah+JZ936NeF3yOYKwJWtg1NzfD4AyF2O12LF++HJ9//jkIIRAH4IUQCI/kyy9nqwS1WjQsfN3rdiIRg2nD2By0VdsqUDd/PgBAc+EFUA4a5Pc4VrsDa53C7mwPs2xDJeO++8AoFDBu2w6dh5m/1Gu3061Rsa2xEQ3OxN+M2ff7nDLhjmtGbOj5de4wMhmyHn8MANCy/NMOhQiumbFdCyj0G/6CbvVPgEiE7HlzPTbE7fIZs42rboyUsJPm5HDjp+pffAmO9nbOo9aoN3Oe3c40L/2IDaNlpCP9Dt+5dQDbB46GGCMRiqWozzgDCRMmgFitqJ3/HLcItRisXm0nhKD2mWdBLBYknDIOmvOm+j1ObYRz7ChpM2dCnJEO6/HjaPtkGdLVzqHoPhY5h9GI+hfZqT6pN98EWX6+z2NEI4kcYMVF9lNPAWIx2n79FeOaDnU4njdMJYe4MFr2E4/7DIG7ig8ivziL1QnIuP8+AMC4dV8is705IFGqW70axm3bwSgUyPThrQPc7I+COHIXF/fs+goNrYH1zGx4bSHsra2Q9+7ttWAFcOthF4VzDwApl18Oee/eUJracf2BnwM698RuR61z3Uq66CKv65Z7JXik0ic6k3n//WDkcgxuOooJx3egOcgcwVgTtLA766yzcMi5oD3yyCN48cUX8b///Q/3339/xI0T6AojFiPbKS5av/iCbRTrBVodm7L6Kxh374YoIQGZs33fnCibjzZBZ7IhLUGGEYWRay8jzcnhqhxrn3uea6FAGco1Km4FwC7MNfPmwaHXQzFwIDewOhAORaAitjPq8ePZMLbdjprHHucKKbz1snO0t6P2mWcAAKnXXec16b0z1FuXopJCowi/upGSdvPNkOTmwFpVhbqXX0aS0jXeypPXznz4MBqd3snMBx6A2MPUl87Ut5lgcxBIRExEw1IMwyD78cfASKVo/+sv4JfVXEjQW66a7ocf0f7332CkUmQ9+aRfTzUhxOWxi7A4EqsTkPnAAwCAxjffxGAL2x/S1yJX//IrsFZVQZKVhfSZ3tvLUOqi5DUCAEWf3ly+1IW/fwKV1ejTdmK1ovappwC7HYlnnQX1xIk+918fhfxAd5IvvxyqkSMhsZgwa/dXfkNq1vp61D3LCou0W2d2Gd3mjt1B0Khn7wXREKYAkPngg2DUiejdWokp+9Z6fZihtG/ZyhV8ZD/1JBiJxOu2ke4D1xlGIkHW448DAM4v2wTs7DoJpzPNH34I0+49ECUkIGO2d33REOFKcE9Ic3K4dITb96xC3dHoT7YKh6CF3eHDh7lcuo8//hg//fQT1q5diy/85HwJRA7VqFFIvpKt6qt6+GFY3SZzuNMzMxEXMPW4/t/VAFhXdiC5aQCw5l/WWzelf1bIPdS8kXbzzVD07w+HVouq++/vUGVKPXa7K1rhcBC0LFsG/W9rAakUOc88HVBuGoXz2GVGxmNHyXr8MYiSkmDatw/1r7wCwHMvO0IIap58CtaKCkhycpB+zz0BHyOS+XXuiBISkOt8Cm797HPoVq/mwrGdZ8ba9XpUzZ7NersmTEDSRRcFdAyaZ5idpIj4tSMrKuIqcmuffRbD7GzVd7WHcKz5aBlq584FwLaN8DSloTMtBivXIDvSuVIA63lQT5oEYrXiprXvQGU1eRVHup9/5lo85Myf77HvW2eiledFSb/nbkhzc6FpbcB9O1egzkermfpXX2MfKNVqZD36iN9901BmJPPr3GFEImQ/+wwcUilG1B9C8e/fet2WWK2onv0A6+3q3w/pHka3udPcboHdOdKKemIjjTQzE1mPPgwAmHHgZ9Su3+R1W2t9ParnzAEIQdJll7L98Hzg6sEXnesGABLGjEbDZNZjPvazN7imy54wbNuGemdEKuuxRyHNyvK6baQrwb2RdvPNqEwvgMZqgG3uY126I8QTQQs7mUwGg8GAf/75B7m5ucjLy0NiYiLa2wNzDQtEhqyHHoK8V0/YGxpRcdvtsDU3d9nGVHIIM39dAglxYHevUUgK0NvlcBCs2c+KxUiGYSmMVIq8V1+BSK2GcccOVD/yCFfl2zdbA7lEBK3RiiMrVqHuhRcBAFkPPgBF//4BH8O9IrZXBD12ACDNzkbO/GcBAM0ffYymDz7s0suOEIL6/70M3erVgESCvFdehlgd+EizSOfXuZNwyinsqDcANY89jlO0RwF0bHniMBpRNWsWzIePQJKRgdznnwv4pkk9f5EMw7qTduutbDK5wYB71ixCVntTF4+dtboaFbfcAofBANWoUZyX2B81ToGYro5sdSCFYRjkPDcfkuxspDXV4MktH6K+Udtlu/bNW1D9yKMAgNQbboB6wqkB7T9Sg9y9IVarkffqK3CIxZhQvQc9v37fY/FH88cfc33vcp57zqe3ixLNUCxF3r07TDezVaZnbljhseE7sdlQ/ehjMGzbBlFCAvL+9z+/eZnU9rQEWURGWnkj+ZJLsLnHKIiJA4aHZ8N08GCXbWwtLeyaUF8PWXExsh97zO9+o/1AQDHPvBvliVlQt2t9rFslqLz7HsBmg2bqVCRdconPfdZFuIrdG4xUip8uuQcGiRyyA3s7rFvxRtBX4FVXXYXTTjsN1113HW5wDl/fuXMnigJIqBaIHCKVCvmLl0Ccng5zSQnKr7wK7Zu3gBACYrejdeUqHLvmGkj1OhxKKcC8PtNwNMBZprsrW1GnM0Mtl+CUnt7nsIaDrKgIea+9Bkil0K3+CcdvvgXmo2WQSUQYniHHdQd+hm3e44DDgeTplyHl+uuD2j+tiGUiUBHrCc2UKci47z4AQP1LLyF58SvQmNvRqDej+VglqmbPRrNzdFXOvLlQDR8e1P6j5bGjZNx3L9Snnw5iNuPSFS/jksN/oLqeFRim/ftx7Nrr0L5xExilEvmL3gpqHjL1/OVHSdgxYjHyXl8IWVERktqa8Or6/4P1z99BHA4QQtC2bh3KLr8C1upqyAoLkbfwNZ9hKHdqWml+XXRsBwBJejry33wTNoUSQxtLMeJ/D3EtaBxmM5o/+ggVt94KYjJBPWkSMh98IKD9mqx2tBjYkYORDiO7oxw6FA23PwgAGLrlZ1TNuhfWmhoAgL21FTVPP42659lim/RZ90Bz9lkB7TdahR+dSbr6KvxYNA4iQlD90EOof20h1/jaUl6O4zNnQvfDD4BEgtxXXvbZiLuz7dEUpQD7YPDL2Tfi39QiMPo2HLv6GrR+/Q2IzQZCCNq3bsWxK6+C+cABiNPSULBkcUCe3lrO6xXdc5+ZmYJ5Y2+CVpEI88GDHdctm825bl0Le2srFIMHI2f+s34fKKMdRnZHXlSE50ddB4dY0mHdijcCu9u58frrr2PNmjWQSqU43dnglmEYvP6690R+geggy89D4bKPcfzmm2E9fhzHb7gB4rQ0ELMZDueNSjliBFafejNMxwxYtbMKD5zVx+9+f9jD3qQn98mIeHWaO+oJpyL/9ddR/eCDMGzZgqNTp0KSmYnHm1shtrFu7uQrr0B2ALlRndlfzbYjKU4PbUZsINCRMw0LF6L966+wnPkGLYpE1H6rA0MIIJEg+8knkXzZZUHvuyLKwo4Ri5G38DVUz3kIbb/8gpn//gDrY7/i8Esa2BrYaSOipCQULF4cULGNO5GaOuELSUoKun30EXZcPQOpVeVIfft5HP78LRAADi0rUOV9+qBg8SJI0gJ/OKmJQqsTTygHDUTZnOeR+eITSK0pR/ll7IQER7sBxFmcljjlTOS+8krAopSKC7lEBI0y6Ft7UCRccCFe21iGWbu+Qtuvv6Ltt9/YuawNDYDTi5F+z90BFdtQou1tpGQnKfHWkIthZxhcWLYRTW+/jeYPP4Q4JQU2Z3iQUSqR9/L/kOhn5CLF1UcturYDQEqqBvPG3oT3jn6FpIN7UPP446h7/nkwCgXsTWzepiQ3B93efhuybt387s/ucPUPjLb9WRoF6hLS8NCEO/H+vo99rlsFixcFJEpdeaXRP/dZGjk+y+qLP66ejTO+/j9u3ZJ17470u+7yO00oVgTtsZs2bRrOPvtsTtQBwIgRI/CmcyKAQGyRd++O4lWrkHzVlWCUStibmuDQ69m2IPffj8KlH2LquN4AgJU7q/z2zLLaHVjlnDE7bajnAe+RJPH001D01VfcFAxbfT3ENgsqE9Kx7OzbkD13blB5dZR/ncKuf67n8v5IQMdddVu6FIr+/SEhDmQYtWAIgXLkCBQt/8TjoPNAONYUXWEHsLM08xa+hsbbZqNemQyp1cwuzBIJNFOnovi7b6Ea7r29gzfc58RGE2lWJkrnLsTnvU+HWa6EXauFQ6sFo1IhbeYtKPp0eUDTSdyhhRPRFnYAkDhiOO48bTa29xoDiMWwNzSCGAyQ5OQge95c5L3xBkR+QoDu1LqJi2jmGgFs9eSawtF46LR7oRw1CiAEtpoawGaDvF8/FLz/HjLuuisoOyI5hN4XarkEKrkUi4dcAskzL0BWXAxisXCiTj1pErp//RUSzzgj4H3WxcjbyB5DAb1MhfUzn0Tmgw9AnJwMR3s77E1NYORyJF9xBbp//TXkvXoFtL9GvRkOAogYID2CUyc8ka6WgWGA4wkZ0Cz/AslXXsEJ0g7r1kdLIdYENps8VqFYwPXQsT1vILp/tYKbgmEpKwMTRSdIsAT9WPf77797fP3PP/8M2xiB0BBrNMiZOxdZDz4Ic3k5GIkU8uLu3Miqs/pnI0EmRmWLEZuONuGUHt6nSKw7WI+mdgvS1XJM7hOZ/nX+kBd3R8Git2BvbYWlvBwNjBwzPy2FRCzCUzZHSB436rEbkBvYzSEcEsaOQfdvvsYLH6zDH5sP4pwzh+G+y8eFvD+r3cGFYrtnBJ6XFwoMwyBp+nRcVJuNwUSLz68bClm3Aq/9rgKh2hnOjFQPO19kZybjsf5Tsev0S/HFWdkghEDRq5ffnChvcMIuBrZnaRRoViZh4ZhrsOXTN2EpK4MoIQGyoqKQHmai2curM7Rydb8mDykvv488fQtstbUQp6ZBlh/8AyEhxE0cxcJ+Bcoa29E08lSMmX4hrMePw97SAmm3bpCkpga9v1q3BP5oQ4tL6trtSLvlFqTeeCPMR46AWG2QF3cPyMvlDs1PzUiUR7zYqTMSsQjpajka2sxohAwD5s1D5oNzYCkvByPtuG4FSrSq2D1BhXudzgR5cTEKFi+CvbUVhh07Q3oIjhYBC7s772S7zZvNZu7/KceOHUOfPv5DfALRRZSQ4LGdhlImxrRheVi+5TjeXX/Up7D7aGM5AODS4XlRTQL2hDg5GcqhQ1FACNK/r0Kj3ox9VVqMLAr+RvtvNRuOi4Wwo2T16Y6Dh4zoZgqv5L6i2QCbg0ApFcfkZpWXrARhRNjNpIDp2w/iMELXhJCIjhPzR7bGOTlDbw+quMYbNIwcC48dXSQa9RbYlQlQDh4c1v44YRcD2xVSMZKUUmiNVtS1mdA7KxPSzMyQ96c1uqqRo1UV605mohxlje2o05nAMAxkhYVAYWHI+4tV8QHgyoOjBRuMWAxFGOsv5+mNge0Aa39Dmxn1OjMG5LJtgHxNU/FHrEL4gEu4u/eeFCcnI/H0rvNr+STglTsrKwtZzpJj+v9ZWVnIzs7GBRdcgO+++y5qRgqEz8wJxRAxwO8lDZzo6cy+Ki02ljZBLGJw/SlFsTXQDYZh/M6N9UWbyYpyZyhzQBRDsZ2hRRqBFql4gzY57p6eEPWQGgCkJsigdIq5QMZz+UJntEHvnB8aC48dFWCNegvMtvBnVddEobGyN1ITZJCK2e832KHunqjlPBfRF0bscYKfueoNulCmJsiimtdLoW09Apk+EQg0jBzpWaWeoAImmHmxvoilKHU/TiSuG0JIhxSEaEOP0dRuhtU5/i4eCdhjN9fZD2ry5MmYNGlS1AwSiA5F6Qk4f3AuvttdjedXH8AnN4/pIhoW/sY2nj5vUE5MFmVfDOuWjN8O1GFnCMLuQA3bvy4nSYHUhOj0lPJEj0xW2B1raofV7oA0RI9nmVMYFkc5DEthGAb5KUocrtejssXAjUcLBeqtS0uQQSmL/gKdrJJCLmHn9NZpzeiWFnpOIiHETRxFf5FgGAaZiQpUtRpRpzNz/QRDhSaRx2qBztTIUVLXFtRAd2/Uxagqk5KV6AqpRYK6GFXFAq4weCQeBgDEVBgB7uHM8K+bNrMNBgv7QBeLv9lUlQwSEQObg6BRb45q9Xw4BJ1jV1dXhy+//NLje5dfHlqiuEBsmHN2H/y8rxZ/H2nC93tqcOEQV2L5n4ca8NuBekhEDO49M7Ck22gyjHrs3EaLBQr1SPbPiV0YFgByNAoopWIYrXZUNBtQHGKblaONbGVYcRgCK1hcws733FV/xDIMC7DiKDdZibLGdtRojWEJu6Z2Cyx2BxgmdotcdhIVdhHwemlPXM9LLMNp7seJhLiw2h1o1McwP9ApHmkz7XD7LdZqY/xAQMOZERCm9JpPUkpj8iApEjHITJSjWmtCrdZ08gi7xYsXd/i9trYWpaWlGD9+vCDs4pyCVBVun9wDb6w9jMe+2YueGWr0z9WgssWAB77cBQC4flxRVPq+Bcug/CQwDCsU6ttMQT0J/xvDwgl3RCIG3dMTsL9Gh9KG9tCFXQP12MXue6AVrO5NikOhyvn5WHp8s52J8LVhCgzawy5DLQ/Z2xoskQxn1sZcHEXO61XfFruqUiCyXq9GvRmEABIRg7QYRAhSVFJIxQysdoIGvTnsv7X6ttheN9y5j4CojmXhBCVTo0C11hSRh4JoEZGq2I8//hg7d+6MiEEC0WXW6T2xqbQR/5S3YPqSjZjcJxN/HWmE1mhF/xwN5pwdH0UwiQopemcmoqSuDbuOt+KsICZg7I9BqxNv9MhUY3+NDkcb9AC8j8HxBc3RCyckGizcWLEwPXbRnjrhCZpnF25+IB1LFouKWApd5MIVpWxVaWwXuRPZY0cfFCMhLlxhWDlEUa4qBTqH8E1hC7tYph8ArqrtiOSVxrBgiELPU6RC4dEgIo+l1157LZYuXRqJXQlEGYlYhPeuH4VxxWlot9jx494aaI1WDMjV4N0ZI2Pizg4UWkCx/XhLwJ+x2Bw4XM/m2MXaYwcAPZx5caUNej9beqbNZOUSuqPd6sSdfM5jF56wO+Zs01IYRkg0WGjYtPNYsWChn8+J4dN/doQS4bVGK8zOqtLMGHm9IhnO5HLsTkBvY6xtB1yVw5EQpq4cu1hfN5ELxcbybzaS1060CNpjV19f3+F3g8GA5cuXIzvA4fIC/JOkkuKTW8Zg/aEG7KpoRXFGAs4dmBOV2ZjhMLp7Kr7YVoFNpU0Bf6aktg1WO4FGIeHESiyhYewj9aEJO1o4ka6WQ6MIr21KMFCPXbjC7nhT7IWdy2MXnu0uj10sF4kIiVLnIpOskkZt0kpnXNWZkauKzYpR8QQVYe0WO/RmG9Ty0Cd1xHKkFYUWmTSE6TUyWGxoM7FV7LEW1Q1tZtgdJKzeeXx47DK5v9mTKBSbnZ0NhmG4CQYqlQrDhg3DsmXLIm6cQPQQixic1jcTp/UNvfdUtBnfk+23t7dKC63BiiSVf6Gz/Rg7VHpYt5SYtArpTJ/sRACswHQ4SNChmVhXxFJoOKeuzRRyQjYhhGusXJgWO/uznQnM4YZiaY5dbgwToiPlvaDCKJa5Rllcnpo5pGvdnVi33FDLJUiQidFusaNeZ4I6jHzWWIeRAZdXNlxvKf28SiZGYhjiNhjS1HKIGMBB2LYh4VQSxzqMDLg90JxMoViHwwG73Q6HwwGHwwG9Xo8NGzZg5MiR0bBP4D9MdpICPTPVIATYdLQxoM9sd1bRjihMiaJl3ilOT4BMIkK7xY6KEAoRSmnhRAzz6wB21I9SKgYhoRdQNLSZYbTaIWJiWzwRqRy7Gl48dpEJ68S6IhZgvcoMA9gcBE3tlpD343AQt+KJ2Hte6sPsZRfLiRmUrMTIPBC4C6NYPQiLRQw3uizcUHKsw8hAZAueokVIsTebzYYNGzbgyy+/xIYNG2C1WiNtl4AAAGB8D3aA+19HAhN2O46x+Xh8CTuJWITeWezT/4EaXdCf58tjxzAMFz4tbwqtwTLNr8tNVsY0rO9qUmzmpheEQiznxFKy3EKCbabQ76O1PIQDpWIR0hLCF6ZN7RbYHAQMwz5gxAp6rsINg/PhsaOhx3CLbviw3f144XuqqTCNpZc9cn34okXQd98tW7agqKgIN910E5YsWYKbbroJ3bt3x+bNmyNqWElJCc4//3ykp6cjIyMD1157LVpaAk+iFzg5oOHYjUf859nVaI2oajVCxABDnIUXfNAvmy3a2O9slBwMR51FF93TY99yhlbhljeG5rE7xkN+HcBOK5CJRSAk9PCIw+GqKo1lb6oEuYQLgYWzUMS6IpZCPSXhhKWo7elqeUzHGOZEKIRfz3nsYieqcyNkOx8PBO7HC+eat9gcaNSznuJY9Z0EXJ5erdEKkzX8aTfRIOi/oltuuQVPP/00Dh8+jHXr1uHw4cN49tlnccstt0TUMK1Wi8svvxylpaUoLy+HxWLBgw8+GNFjCMQ/Y3ukQcSwLUBo81tv0CKLAblJYSVDh0t/ZzVusB47u4NwRRc9M2Mv7GheXKgeu+POz3VLjb23MdzK2Ea9GVY7gYiJ3fQDCvW+hOO94KMyE3APCYa+QLv6qMX2vEeq6CbW/QOByFWCx3K+sDsZEQgl08/KJCKkBJB/HSk0CgkUUlEHG+KNoIVdZWUlZsyY0eG16667DlVVVREzCgBGjx6N66+/HklJSUhISMDMmTOxdevWiB5DIP7RKKQYnJ8MAPjbTzj2r8Ps+9TLxxf9ckITdsebDTDbHFBIReiWGluvFwB0T2ePWRbirFs+Wp1Q6EJXHeJCRz+XmaiIqdcIiEzOTqwHuVMyI2C7qyI2trbTfoXVraHbbrLaoTWyIfRYCrtcZx6o3myDLowQPl+eXvfCm1Bxr0aOZaEcwzDc+QpXWEeLoO9gt99+O1588UXYbGyJtN1ux0svvYQ77rgj4sa5s3HjRgwYMMDr+2azGTqdrsOPwMnBqU6h9mdJg9dtCCFcHt6EXjwLO2cotrLFyN30A6Gklr1me2UmhtUCIFSKwvTYcaFYHkRpHrdIh+Z9oQUjfLTIiUST4liPhaJEoviDL29jbgQ8djQMq5CKoFHELkqgkkmQpGS9VDVhCFM+qkqByLTKoX8vOTHMr6NwbYpOFo/dqlWrMG/ePKSmpqJnz55ISUnB3LlzsWrVKvTv35/7iSS7du3CG2+8gSeffNLrNgsWLEBSUhL3U1BQEFEbBPjjrAHsBIffS+phtHjOaThUp0d9mxlyiYi3wglKkkrKCY2DQXjtSmrZMCxtmRJraI5dVYsxpCIE2uoknHmtoUIFWUVzaPmBFc3s4l7AgyjlPHYhPv2bbXZuVmluDCt6gcg0KeaEXYxD4JHIsatzG8cV6/ZKkQglc97SGIdiuQeCMHIzqSiNte2AawSjv/Qgvgj6EWPJkiUROfBZZ52F9evXe3zviSeewBNPPAEAKCsrwwUXXID333/fp8fu0UcfxezZs7nfdTqdIO5OEgblJSEvWYmqViP+PNSAcwZmd9nmp301ANgwbKwatPqiX04iqlqNOFCjw5jitIA+U1LHisA+WfwIu4xEOVQyMQzOVi3BzAxuM1nR7Gx5EcsedpQCZ4PlihAbLNPWNAU8eOzCffqnHhuFVITUGMwqdScSYWQaCo1lixzAJYya2y0wWe0h3TeohzjWnlKAtf9gbVvIwpRtM8NPVWxmBHIzXWHk2D4QAK5rNdwRjNEiaGE3adKkiBx4zZo1frepra3FlClT8OSTT2LatGk+t5XL5ZDLY/8FC0QfhmEwdVA23t1Qhm93VXkUdj/uYYXdeYNyYm2eR/rnaPDbgXocCKIy9mAtuy1fHju25UkCDtToUN7YHpSwo2HYtAQZL4Ur+anOkWghe+ycoVgePHbh9uGj4iI3WRlzr1EkGuW62x9L2CkdIpisDtRqTSgKoXckFaX5MbYdcOUI1oToNapvYwuGxCImZhM/KFRIskVLDkhDyGut4aF3I4UTdieLx06r1eL//u//sHv3buj1HccmrV69OmKGabVanH322bj++utx6623Rmy/Aicml47Ix7sbyvDr/jrU60wd8nEO1upwuF4PmViEM/tn8WilC1pAsT/AUKzebOOKFuhn+aB7ugoHanRBF1DwGYYFXB67yhZjSFMQ6Cg1up9YEu44t0rn4hJrjxfgWlSb2s0hTSwhhLgJu9gu0AzDIDdJiaON7ajWGkMUdvyIUsA1HzXUBwIqSrI1sS8YSkuQQSYRwWJjRXUoKRDUfj7yYmkoNtSc3mgTtLC78sorYbVacemll0Klit5NcNWqVdizZw9KS0vx0ksvca93FpMC/w36ZmswsjAF2461YPmW47h/Sm/uvQ/+KgMAnNEvk0so5puBeUkAWNEZSJhnf7UOhLA32YwYPz27QwsoqAcuUPgsnABYr5dYxMBid6C+zRxUXyuHg3AhlYJU/haJ5nYLDBYbVLLgbsvVPAq7VJVrga7TBb9A60w2tDvzZmPZP5CSk6zA0cb2kAsQeBV2yeHlCFbxeN2IRAzykpUoa2xHZYsxJGFHH4TyeXgYy3ULxRJCeBlf6Yughd3ff/+NxsZGyGTRzeWYMWNGl7YqAv9tZpxShG3HWvD+X2W4dmwhMhLlqNEasWpnNQDglgnFPFvoIj9FiXS1HI16M/6t1vkt6NhbpQUADMpPioV5XqFei2ArY485t+cjvw5gJ37kJitQ0WxERYshKGFX12aCxe6ARMTwIi6SlFIkKiRoM9lQ3WpEz8zgQvF8iguRiEF+Muv1qmgxBL1AU9tTE2RQymKfG+sqoAjN88KJIx68RuFW9dKHGT5sB8AJu1DCmSarHQ3OVil8CFN6zHaLHTqjLaA55rEkaP/r6NGjUVpaGg1bBAR8ct6gHAzOT4LebMPjK/fCZLVjzoo9sNgdGFWUwns1rDsMw2BYt2QAwM7j/iem7KPCLo9nYecUZsGGYmlj5R48NFamcAUUQebZ0YrY3GQlL21mANdCEUrxB5+eF8CtQjAE2/kKw1Jyw+x/6Dr3sbc/2y03kxAS9Of59PS6HzeU64Z6KVUyMZJ5EFUKqRhpzkKlytbQ8nqjSdAeuyFDhuCss87CFVdcgczMzA7vPfTQQxEzTECgMyIRg3kXDsCVb2/Gmv116PvkzwDYasAFlwzi2bquDOuWjF/312FnRavfbfdUstvwLuycTYqrW40w2+yQS/x7UQghOOIchdYziIKLSONqeRLcQkGFIB9hWEp+igoHa9tCFEfsIseHxw5wnfdQcgQ5YceDpxQIrwBBZ7KizcT2c+UljOw8piFEr1EVj55ewL1lSPDCiPadzOOhYIiSl6JEU7sFVS1GDMjl977dmaA9ds3NzTjzzDPR1NSEAwcOcD8HDx6Mhn0CAh0Y3i0Fb10zHAnOsE1qggxvXDks6PBVLBhWwHoQt5e3+Hyibmm3oLSB9ZAN5jkUm6GWQy2XwEGA4wHm2TW1W9BqsIJhgOIMfkKxgHsBRZAeO67VCT/5gUDo4sjhILwmkQPhVQhW8SxKs8OoSKZ5eckqKRJ4qARXunmranQhnPs4CMUCIV43Lfxe80D4TdGjSdBX44cffhgNOwQEAmZK/yxse2IKDte3oThDzetcWF8MLUiGTCxCrc6E8iYD1wC4M9uOsaHaHhkJSFPz27KHYRj0zFRjV0UrDtXp0SuAnnqlzjBsfoqS1x6CNL+rIlhhx2NzYkqoi1xTuwUWmwMMw0/bB+BED8WGXoDAt7cRYL12rQYralpN6JsdXDU976HYMK4bPnMbKblx3PIk4BUxkDmto0ePDssYAYFAUcrE3AzZeEUpE2Not2RsLWvGptImr8Lun/JmAMDo7qmxNM8rvbNYYVdS14bz4L8vYDyEYQFXKDXoUCyP48Qo+dwiF5wo5RrkJiqCbjUSKbh2LSGE1GjiP18euxynoNQarUFXJPMdygTYHMEDNTpUB1lAoTVa0WZmw8h8iWqXx8sUdIsi6tnOSz7xHsZiQcBX8RVXXOHzfYZhcPTo0bANEhA4mTilRxq2ljVjY2kjrh7TzeM2W8tYYTeqKF6EHeulO1wXWHNlrnCCb2HnFBg1WmNQTU8ruRw7HheJEEOxVTx7vADXAlfTaoLdQYIqQOE7P1CjkEItl0BvtqG61YSeQRT/VPNYOEGhoeRgh9FTL1lqgizo9jqRIjtJAREDWOwONLabuWkUgRAXoVguRzD+5sUG/I2WlZVF0w4BgZOSU3qkY+Fvh/H3kUbY7I4ujUC1BivX6iRePHY0/HooQGF30DldozdPEzMoGYlyyCUimG0O1LSaAmqWbLE5UOMcTcRvjh177Po2c8BFKwC/rU4oWRoFJCIGNgdBnc4UsC02u4Mbo8ZXOBBgeyAertejRmsMStjFUziwOkhxwXcIHACkYhGyNQpUa02oajEGJ+zi4NzH81gxfnz3AgL/EYZ1S0aySooWg5XLpXPnj0P1sDsIemepeWm06Qk6q7a8yQCzze5zW0IIDtay0zX68zgxA2CjBlxlbIAhzepWIwgBlFIx0tWxnbPqTopKCqUzPzGYRbqS5wR4ABCLGC6kGUxYqr7NDLuDQCpmkMFjbmlOiEnw8SCqc7nzHlwYnO8WORSX1yvwc2+1O7gQPh+j3Cj03DXqzTBZfd8nY018Zp1HGbvdDqvVyrcZEUUqlUIs5i9xXcAzUrEIZ/bLwlfbK/HzvlqMLU7r8P6v++sAAGf2i49RaACQpZFDo5BAZ7LhSL3eZyl/nc6MFoMVYhETlLcjWuSnqFDa0B5wLzs6Ci0/hb+2CYBLlB6u16Oqxeg1H7MzfCfAU/KSlahoNqKqxYhRRYF9htqenaQIegRcJCkIsU0O32FkwL13Y2ghfD5z1NjjK/EPWoLyetVqTXAQQCYRIZ3HB4Jk58OY0WpHjdYU8N9sLPjPCTu9Xo/KysqQGjrGMwzDID8/H2o1/4urQEfOGZCNr7ZX4qd9NXjivH5cONZgseHPkgYAiJsZtwB7LfXP1WDz0Wb8W6XzKewOOGfhFqcn8FoRSyl0hl/LA2zVQhsxhzInNNLkOYVdMO1aaNI8/8JOBaA5SNtZYcRHDzh3QqmmjpcwMrU92LzSeMjNZI8fvMfO3dvI5wMBwzDIS1HiSJAPY7HgPyXs7HY7KisroVKpkJGREXfz3UKFEIKGhgZUVlaiV69egucuzpjQOx1pCTLU6cxYs78OUwexlabf7qpGm9mGbqkqDI2zCt9BeUnYfLQZe6u0uHxUgdftDjjDsP14DsNSaAFHaUNgM6WPOrfjs/8eJT+EsBT1dPDpNQJCsz1evI2hTCyJlzByhlrOzeoNNK8UiI/iAyC0lieuilh+bQfY83ekXh90i6Vo858SdlarFYQQZGRkQKnk/6KIJBkZGSgvL4fVahWEXZwhl4hxzZhueGPdEbyz/ijOGZANAuCjjeUAgOvHFfL65OmJgc4JGLSwwxv/VseXsKMC7Wigws7pseuRzr+nm4bFAl3kdCYrWgxsSkm8LNDBVPXGQwI/AHRzer2OBxHOjJcwskjEhvCPNrSjssUQuLCLo1AsENrDDN/XPEBHMDbgWIARgljxnyyeOFk8de6cjP+mk4lrxxZCLhFhV0Ur3tlwFP+37ggO1rZBLZdg+gjvHjG+oKPNDtToYLM7vG6363grALYZczxQ7PTYHW82wOrDbspR58SPePLYBfr0TyeDpKtlSFTwO4Q8PwzPC9/eRtr/sFFvhtESWBI8ZzvPYWTAzeMY4HVjstrR0GYGwL+oDuW6oYUi8eCxo6kfx5qCm60dbf6Twi4emTVrFrKysjB27Fi+TRGIApkaBZ44rx8A4IWfDuK13w4BAOZe0D/oGY+xoCgtAYlyCcw2B0q8tD2p05lQ1WqEiOF/FBolR6OAUiqG1U78htaMFjvnKSjmuQcfEHx+YLlzMSlMiwNRSr2NrcaA85ep/UU825+klCLROb0m0BxB6qHh23Yg+Mbc9O8iUS5BagJ/leCAy2PYZrah1WAJ6DNcwROPs50p9PsP9G82VgjCLk648sorsXr1ar7NEIgi144txN2n9YRCKoJSKsZ9Z/bCZSPy+TbLIyIRg6HdkgEA28q7tmkBgJ3H2df7ZGt4mZXpCZGI4ZKYqTfOG7RwIlkl5X2BA1wFHA1tZrSZ/FftU3FRGGD4LZrQZrNmm4PzBvnC7iCodAqRbjw2hgachWdcODZQYcdeO4GGPqNJsB47KkIK01W8R3qUMjGyNGyOYsAPNI3xI6rdPXbxVJD5nxV2hBAYLLaI/wTy5T755JPo27cvzj33XJx11ln4448/cMoppyAtLc3vZwVOXBiGwYNn98Gup87Czqem4L4ze/N+Y/XFGGfD5C1lTR7f3+EMww53CsB4gYZV/RVQ0FFoxXFSzaZRSLleeoHk7JQ3xofHC2BbT9A8OyqYfVGjNcJid0AqZngPxQJAN6f3J9BcqXjxNgIuYRyw7XF03QAuO8oa/efFGiw2rho5HqpQ81NUEDGAwWIP6IEmVsTHYzYPGK129H/ql4jvd/8zZ/sc0bJ161asXbsWe/fuRV1dHfr16xdxGwTim3hoCxIIY5w997aWNYMQ0kWEbiplBd+IwpSY2+YLdiRaDUpqfU/OOOhs1dI3Tgo/AHaxatRbcLSxnStg8UY8eewAoHu6GhXNRpQ3tXPXjjdofmBBiiqoEWTRonu6GkAdJ9j8EU/nvrtbwZCnv9POxJMoBdhrfktZM8oaA3mYYbdJVkmRrOLfy04faNjr3oBMDb85i5T/rMeOLzZu3IiLL74YUqkU+fn5mDBhAt8mCQh4ZHB+EuQSERr1Fm4eLKVRb+YqZif0yuDDPK/QCt0D/oSd8/1+PI9Cc4fL2QnA6xVvCzT1fB4NwPZjzfEjjACX7YF4G3UmK5ra2XyweLCffv86k42rkvaFKzeTf9sBVwpCMNd8PHjrKK48u/gpoPjPeuyUUjH2P3N2VPbri3iKwwsI+EIuEWNMcRrWH2rAmv113AxZAFh/iG2sPDBPg4xE/vp4eaKvU6gdqW+DxeaATOL5+fVAHHrsigIUGHqzDfXO0E+8CLsiWvwRxAIdD4UfgLvXy7/t1NuYlsB/NTLARgDykpWoajWirFGP1ATfM6ep1ytexFEwwoj+XXSPk+sGAKb0z0L39IS4SekA/sMeO4ZhoJJJIv7jzw0+fvx4rFy5ElarFZWVldiwYUOM/sUCAsFz7sBsAMDP+2o7vL72QD0AYFLv+PLWAWwLhUS5BFY7wVEveTutBgtqnJMP+sSRx47zevnJDzzsrFTOTJT/f3vnHR1Hfa7/Z7ZLWu2qd8my3CT3gm1Ms+k1hIQSwiWBcCkJSW6ABH4hN4RAQuyQclMJpEEgEEpCDwSMaQZsjI27XNV71zZt3/n9MfudXdkqW6ZJfj/n6BzYXa1ez6w0zzxv00xX9cxoZ3EirldLVFyo3TjBYMe90+GddO9ns4YaJxiJNgz5Q2FxW4lmRHXczcxkxoeWNsUwvrymGvd/diFOqp5YUCvJCSvs1GLVqlU4++yzsXjxYvzP//yPmIq95ZZbsGbNGuzcuRMVFRV4+eWXVY6UIIDz5hdDxwmDilkn4IDbjzfrBaF34cJSNcMbE47jUFsqiLWDXWOnY1katiI3AzYNuC6MOcWCODrS60YkMv5F7kg0Nc5erwWYOGoeGJkwdiDWuKKF/cIAkJdlgs1iAM9P3oTAyhJmaWBEDmNmgk5vY58HPA/YLAaxUUdtZuRnguMAly+EfvfEI0/YDY9W3EatQsJOBX70ox/hwIEDeP7552GzCWmgRx55BF1dXfD7/Whvb8ell16qcpQEAeRbzTgtWkP38HuNAIDndrQjGOaxuMI+aYG/WsyPplfH25yxp3141Ou0woz8LJj0OozEzdgbC+bYzSnSjttYlpMBk15YbzVR7IFQREzXakWYchwX5zhO4pYyUa0RUQrEHKzJHLvYDUG2ZjryLUa96NweGWdmJiCUMR3uEeLXksuuRUjYEQQxId88azYA4LntbXj0wyb87u2jAID/Wl2lZlgTsqxK6NTd0TL2DD72+HKNdfQa9TrMigqGibp62QV6brF2LnB6HSeOmpko9pYBD0IRHlazASUa6SIEgFlRcXSkZ5IxOT3aO/azosf9SO/EDUNMOM3ViKBmsGM53jB0QBh+7faHYNRzmqkr1SpTQtht2LABHMdh69ataociOU8//TTWrVundhgEMS4rq/NwVm0RQhEe971SD7c/hJNm5OLy5docrgzERrDs73QcVzPF87w4g09ro1oAYF70ojvRRY6JD604XgzWuDJR7GIqs8iqGdcIiLlAByeIPRSOiHWbWkkjA0BtieA8Nw+MTFgjeDj6b5utIacXAOZFhd3hCUQ1i72mwDpuQxQhoPmj09HRgaeeegolJSVqh0IQJyy//eIynFNXBL2Ow5qafPzmi8tg0Gv3z0dFbgaKss0IhnnsaR+djm0f8qLP5YdRz4k7cbXEvOhFejzXy+kLiqlOLaUDgcljB7SZygRiwm5Ct3FwBMEwj4xoJ6pWKLaZkZNpRDjCHzeaKJ6Y06utYz+3hAm78Y/9oW73qNcS46Pdv8xRvv3tb+O+++6D2TzxSAW/3w+n0znqiyAIacgyG/CnL5+EQz+6AP+4+WRNbAuYCI7jRDfuk+bBUc9taxL+f36ZXZPDoueVCBddNo7lWPZFhWpFboYmhrTGw2KfisKOzT9s7HOP63oxp3R2kRU6DQxWZnAcJ7peB8c59v5QWGwM0VJtJhDn2HW7xu2MZaJvnsZEqRbRtLB799130d/fj8997nOTvnb9+vWw2+3iV2VlpQIREsSJA8dxmnbpjmXNLGH7wdsHe0c9vulgDwDg9NkFiseUCIvKcwAInaNj7YzdHRV2SypyFIwqMZhj19DnRiAUGfM1+zsd0ddqS1wUZQuuV4THuK5XfVRsa6m+jiGmwbvHviE41O1COMIjJ9Mo7mfVCjMLsmDUc3D5Q2gfGrvxJva50VbDkxbR7F/pUCiE22+/Hb/61a8Sev3dd98Nh8MhfrW1tckbIEEQmubc+cUAgE9bh9DrEmbW+UNhvHeob9TzWqMw24yK3AzwPI5LIwOxjt7FFdpLI5fZLci2GBCK8GMW8jt9QbFzc7HGhCnHcaI4Gs8t3Rs99ksqtXfs2aDt8Rw7dkOwqNyuqdpGQFjNxeoEd7UNH/e8yxcUnV4tHnutoZqwO++882CxWMb8+vGPf4zf//73OO2007Bw4cKE3s9sNsNms436IgjixKXUnoElFXbwPLCxXnDpPjjSD08gjGKbWZP1dQzW1buz9fiuXib2tCaMAEEcLa3MAQDsjDaoxLOvI5ZGzsvSVhoZAOaXCp+Jscbk8DwvPq7Fz87CMiGm3W3DY84R3BMVTFp0egGIn5uxhN3edgd4HijPyUBRtnY6qbWKasLuzTffhM/nG/Pr+9//Pt555x08+eSTKCkpQUlJCdra2nDxxRfj0UcfVStkWTEajVi6dCm8XsGGfvXVVzFv3jzMmTMHf/7zn8XXLV26FCaTCT6fT61QCWLKcNEiYYDyXzY3IRSO4JHoLL6LF5VpqkbqWJaNI466HT50DHvBccI6Ny0yXuyAcIEGtOk2ArEu6bHG5HQ5fOh3B2DQcWI9npaoLc1GhlEPpy+EhjE2lzBRqtVjP5Gw2xl9jL2GmBjN7op97LHHRomXlStX4pFHHpFsNAjP8+C94w/RTBUuIyMlmzs/Px+7du0CIKShv/Od7+Ddd99FdnY2TjrpJHz+859HXl4edu3aherqammDJohpyjWrq/Dwew1o7Pfg5PWb0O8OwGTQ4Za1NWqHNiFMYGxrHkQwHIExWtvIdvQurczRxJ7SsRDdxrbx3UZWR6g1ls/IASCkYj3+ELLMsUskS4HPLc7WZNONUa/Dkko7tjYOYkfL0KjdziOBkNh8sESj4mhpVQ4AwdU9dsfzLhJ2SaFZYZeTkzPq//V6PfLy8pCZKc1+Pt7rxaHlKyR5r3jmfboD3AQxNjc34+qrrxZn8l1//fW4+uqrR71m27ZtWLRoEUpLBbfh4osvxhtvvIEvfvGLksdLENOZbIsRt587Fz94ab+4rui/T5uJYg0Nxh2LheV2FFhN6HcH8EnTIE6JNnq8e1i7O3oZ7OLb2OfBkCeA3GjKNRLhsbVxAACwLHoR1xql9gyU2S3odPiwu30Yp8yKNdhsbRS6qZdqNHZAuCFgwu7qVbEB4h83DSISTWVq9bM/Mz8LuZlGDI0EsbN1CKtrhOanYDiCrQ3C52ZFtfbmTmoRzTZPHEtzczNOPvlktcNQhM7OTpSXl4v/X1FRgY6ODhUjIoipy5dOnoFfX70Uq6rzcP9nF+Cu8+epHdKk6HUczpxXBAB464Ag5oLhCDYf6QegbWGXm2USR5lsPtovPl7f5cSAJ4Askx7Lq7R7gWbbSD5uHD0mZ/MRwS09Y442u6kB4KQZwiL6jxoGRo0NYQ1DZ8zVbuw6HYd10c98fCf79uYhuPwh5GeZNFsfqDU069jJDZeRgXmf7pDlfdNlrDk+WutiIoipAsdx+OzScnx2afnkL9YQ58wvxnM72vHa3i78vwvn4T/7uuHyhVBgNWuycSKes+uKcaTXjbfqe3DpkjIAwPtRYbRmVr6mNwecMbcQr+7pwsb6Htx+7lwAwjqrhj4PdBywZpZ2xdHJNfmwGHXoGPZif6dT3OX8vihKtXtDAABn1RbhhZ0d2HSwF3dfVAcAeDs6nmjtvELoNVwXqyW0+9slMxzHQZeZKfnXZALMYDAgEonNd/L7/ce9pry8fJRD19HRIaZlCYI4MVg7txDFNjO6nT48ubUVf9osNH58ec0MzV/gzp0vOC/vHOpFMCz8vXsr2pl8hobdRgA4p64Yeh2H+i4n2gaFgb7vRB2kpZU5sGdos7YRADJMetHNfWN/NwBhpmBjnwd6HSem9LXKGXMLYdBxONrrxoEuJ4LhCP69pwsAcHatNscTaZETVtipRVFRETo6OuDxeOBwOLB58+bjXrNq1Srs3bsX3d3dcLvdePXVV3H++eerEC1BEGphMerx9TNnAwDuf7Ue+zqcsBh1uPbkGSpHNjlLK3NRYDXB5Qvhtb1d2NM+jE9bh2HUczh/gbbXQ+ZlmbCqWkhpvry7EzzP4+9bWwAAFyzUduwAxOP7ws4OBEIR/O2jZgDAmfMKNS1KAcCeYcT50WP8u3eO4oWdHeh0+FBgNePsuiKVo5s6kLBTGJPJhDvuuAPLli3Dl7/8ZSxZsuS41xgMBjz44IM444wzsGzZMtxxxx3Iz89XIVqCINTk6pVVuCB6oc4w6vHbLy7X5Py3Y9HrOFx/SjUA4KevH8Tdz+8FAFyyuEyzxfvxXLGiAgDwyHsNeGlXJw52u5Bh1OMLJ1VN8p3qc8HCEhRmm9E+5MUdz+7Cs9uFYf03nDZT5cgS45tnCTcz/97Thbv+uQcAcMsZNZrsRNYqHD/eYrYpjtPphN1uh8PhEIcV+3w+NDU1YebMmbBYtPXHpaSkBN3d3Qm9trq6GgcPHhz1b9Dyv40giPTY2+5ATqYRlXnSTAVQAo8/hLU/e0fsRjboOLz8jdMwv0x7M+COJRzhcdGvN+NQ3FL6L508Az+6LLGB+Wrz1Met+N4Le8X/X16Vg3997ZQpU6v94H8O4qF3GwAAq6rz8LcbViHDdGILu7E0zXiQY6cR9Hr9qAHF47F06VIEg8Ep8wtKEET6LKqwTylRBwBZZgMevX4VllflID/LhEe/snJKiDpAcBwfvGIxSu3CTfLpcwpw90W1KkeVOF9YWYn/OXsObBYDVs3Mw1+vXzmlrhl3XVCLZ29Zg59fuQRP3bT6hBd1yXJCOnbV1dXIkKB7VUt4vV40NzeTY0cQhObgeX5KCQtGMBzBwS4X5pfZNN+wMhbs8j4Vjz0xmmQcuxNq3InRaATHcejr60NhYeG0+bDzPI++vj5wHAejUdvFsQRBnHhM1b+1Rr0OizS6gisRpupxJ9LjhBJ2er0eFRUVaG9vR3Nzs9rhSArHcaioqIBeT5Y1QRAEQZyonFDCDgCsVivmzJmDYDCodiiSYjQaSdQRBEEQxAnOCSfsAMG5IxFEEARBEMR0g7piCYIgCIIgpgnT1rFj3UBOp1PlSAiCIAiCIFKHaZlEBplMW2HncgmDJSsrK1WOhCAIgiAIIn1cLhfs9ok7taftHLtIJILOzk5kZ2fL2vLtdDpRWVmJtra2SWfLEMpC50ab0HnRLnRutAudG22i1HnheR4ulwtlZWXQ6Sauopu2jp1Op0NFRYViP89ms9Evm0ahc6NN6LxoFzo32oXOjTZR4rxM5tQxqHmCIAiCIAhimkDCjiAIgiAIYppAwi5NzGYz7r33XpjNZrVDIY6Bzo02ofOiXejcaBc6N9pEi+dl2jZPEARBEARBnGiQY0cQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNIGGXBn19fbj44ouRmZmJefPmYdOmTWqHdMJy7733Yv78+dDpdHj66adHPbdhwwYUFhYiLy8Pd911V0K79ghp8Pv9+MpXvoKKigrY7XasW7cOe/fuFZ+nc6MuN998M0pLS2Gz2bBo0SK8+uqr4nN0btRny5Yt0Ol02LBhg/gYnRd1WbduHSwWC6xWK6xWKy688ELxOc2cG55ImSuvvJK/8cYbeY/Hw7/wwgt8bm4uPzg4qHZYJyRPPPEE/+abb/KrV6/m//GPf4iP//vf/+arqqr4hoYGvrOzk6+rq+P/8pe/qBjpiYXb7ebvv/9+vq2tjQ+FQvwvfvELvqamhud5Ojda4MCBA7zP5+N5nue3bdvG2+12fnBwkM6NBgiHw/zq1av5VatW8evXr+d5nn5ntMDatWtHXWMYWjo35NiliNvtxksvvYT7778fmZmZuOyyy7Bw4UK88soraod2QnLttdfi3HPPhcViGfX4E088gVtvvRU1NTUoLS3Fd77zHfz9739XKcoTj6ysLNxzzz2oqKiAXq/HN77xDTQ1NWFgYIDOjQaora0V529xHAefz4euri46Nxrgj3/8I1avXo26ujrxMTov2kVL54aEXYocOXIEdrsdpaWl4mNLlizB/v37VYyKOJb6+nosWrRI/H86R+qyZcsWFBcXIz8/n86NRrj11luRkZGBlStX4oILLsD8+fPp3KjM4OAgfvWrX+GHP/zhqMfpvGiDb37zmygsLMS5556LPXv2ANDWuSFhlyJut/u4hb82mw1ut1uliIixOPY80TlSD4fDgVtuuQUPPPAAADo3WuGhhx6C2+3Gxo0bsXbtWgB0btTme9/7Hm677Tbk5uaOepzOi/o8+OCDaGpqQmtrK84991xcdNFFcLvdmjo3JOxSxGq1wul0jnrM6XTCarWqFBExFseeJzpH6uDz+XDZZZfh4osvxg033ACAzo2W0Ov1OOecc7Bp0ya88cYbdG5UZOfOndi2bRtuuumm456j86I+q1atgtVqRUZGBu666y5YrVZs27ZNU+eGhF2KzJkzBw6HA93d3eJju3fvxoIFC1SMijiW+fPnj+rCpHOkPKFQCFdffTXKysrw85//XHyczo32iEQiaGhooHOjIu+99x4OHz6M8vJylJSU4JlnnsEDDzyAm266ic6LBtHpBBmlqXOjSsvGNOGKK67gb775Zn5kZIR/6aWXqCtWRQKBAO/1evnTTz+df/zxx3mv18uHw2H+1Vdf5WfMmME3NjbyXV1d/IIFC6iLTGGuv/56/rzzzuMDgcCox+ncqIvL5eL//ve/8y6Xiw8Gg/w///lP3mKx8Hv27KFzoyIej4fv6uoSv6666ir+f//3f/mhoSE6LyozNDTEv/nmm7zP5+P9fj//y1/+ki8uLuYdDoemzg0JuzTo7e3lL7zwQj4jI4OfM2cOv3HjRrVDOmG57rrreACjvt555x2e53n+Jz/5CZ+fn8/n5OTwd955Jx+JRNQN9gSiubmZB8BbLBY+KytL/Hr//fd5nqdzoyZut5s/88wzebvdzttsNn758uX8888/Lz5P50YbXHfddeK4E56n86Imvb29/IoVK/isrCw+NzeXP/PMM/kdO3aIz2vl3HA8T9MNCYIgCIIgpgNUY0cQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNIGFHEARBEAQxTSBhRxAEQRAEMU0gYUcQBEEQBDFNMKgdgFxEIhF0dnYiOzsbHMepHQ5BEARBEERK8DwPl8uFsrIy6HQTe3LTVth1dnaisrJS7TAIgiAIgiAkoa2tDRUVFRO+ZtoKu+zsbADCQbDZbCpHQxAEQRAEkRpOpxOVlZWitpmIaSvsWPrVZrORsCMIgiAIYsqTSGkZNU8QBEEQBEFME0jYEQRBEARBTBNI2BEEQRAEQUwTSNgRBEEQU5K2wRE093vA87zaoSTNRw39+P07R7GnfVjtUJLGGwjj5d2deP9wHyKRqXfspzvTtnmCIAiCmJyOYS/yMk3IMOnVDiUp3jnUixv/th3hCI8z5xXiz9ethF43NWaWbm0cwHV/3YZgmMfP3zyEx76yCmvnFqodVkLwPI9vPPUpNh3sBQBcvbISGy5frHJUicPzPJ7b3o7X9nVh1cw8fG3trGk365YcO4IgiBOU/9t4GKdueBuL73sDz3zSqnY4CdPt8OGbT+1EOOoWvXOoD3/7qFndoBIkFI7g9md2IRgWYud54Psv7oUvGFY5ssR48uNWUdQBwNOftOHtgz0qRpQcz25vw13/2oN3D/Xhwf8cwh/fb1Q7JMkhYUcQBHECsulAD3696QgAIBjm8YOX9qO536NyVInxj22tcPtDWFxhxw8/Mx8A8H9vHZ4S4ujtg73ocviQn2XCju+fg1K7BW2DXvx7T5faoU0Kz/N4LCqgv39xHW44dSYA4M+bm1SMKnEcI0FseP0gAICZu7/ceBjDIwEVo5IeEnYEQRBpEApHMOgJTLk6r4ffawAAXLdmBtbU5MMfiuD/3jqsclSTE47weG57GwDgv0+biS+vqUaJzQKXL4T3DvepHN3kPP2JEPsVKyqQbzXjqpOEDUmv7ulUM6yE2NPuwNFeNyxGHb6wshJfObUaALClcQDdDp+6wSXAy3s6MTQSxOwiKw79+ELUldrgD0Xwzx3taocmKSTsCIIgUsQXDOOaP32M5T/aiHN++R5aB0bUDikhGvrc+KR5CDoOuPXM2bjrgnkAgI31PfAGtO16bWsaRKfDB3uGEecvKIFOx+GSxaUAgFc17np5/CG8HxWfV0YF3WeWCLFvPtKveefoxV0dAIDzF5Qg22JEZV4mVszIBc8Dr+zWvjD9d1Q8X3VSBYx6Ha49uQpATGxPF0jYEQRBpMi9L+3HtuZBAEBDnwd3/Wv3lOgSfP5TwaE4c14Rim0WLK3MQUVuBkYCYbxzqHeS71aXD44Kwuis2iJYjELDxyVLygAI6eVgOKJabJOxrXkQoQiPyrwMzC6yAgBmF2WjtiQboQivecfxw6P9AIALFpSIjzFR/f4Rbcfe6/JhW5Pwu3rRIiHmS5eUQa/jcLTXjbbBqXFTlggk7AiCIFKg2+HDczuEO/37Ll0Ai1GHrY2DowrLtcoHR4QLNLvAcRyHi6MX6Nf3dasWVyJ81DAAADhlVr742OJyO3IyjRgJhLG/06lWaJPyUVQYnVJTMOrxNdF/y/bmIcVjSpR+tx+He9wAgNU1sWPPYt/RMqRpUb35cD8iPLC4wo6K3EwAQLbFiKWVOQCE8TPTBRJ2BEEQKfDMJ22I8MCqmXm47pRqXLt6BoBYukqrOLxB7O1wAABOmR27QLNxG9uaBjRbL+jyBbGnncUeE0c6HYeTZuQCALZHHVQt8uHRqCiNO+4AsKo6DwDwiYZjZ25XbUk28rJM4uNzi7KnhKje3iLEv6Zm9LE/Nfo5+iB6bqYDJOwIgiCShOd5/CuazrxmlVCn89ml5QCEdKDHH1IttsnY1jSICA/UFGSh1J4hPr6sMhcGHYcepx/tQ14VIxyfHS1DCEd4zMjPRHlOxqjnVkbFERMgWsPjD+FAtyB8Tj5GXJwUjf1QjwuOkaDisSXCx42C8Dk2dp2OE489e40WYW4oO9aMU6OO45aGfs3e0CQLCTuCIIgkaRkYQevgCIx6DuctKAYALCy3YWZBFnzBCN49pN16o63Ri++aWaMv0BkmPRaW2wHE3A2tsTfq1i2Lps/iYRfs7S1DmrxAH+hygueBYpsZxTbLqOcKs82oKcgCzwOftmozHbs7euyXR53ReJjjqNXYhzwBHOkV0sgrjol/SWUODDoO/e4AOqdAZ28ikLAjCEJVel0+XPb7D3Hqhrex/vUDmrwoH8sH0Vqp5VW5yDQJC3w4jhPTmR83ade5YOJoedXxF+iV1cJjn2i01mtfpxA7E6DxLCy3waDjMOgJoEuDF+h90fT3wrLjYweE2i8A2B/9N2qJcITHwajbuKDMdtzzC8qFx+q7tJmKZYJzVmHWqDQyAFiMeswpzgYQ+92Y6pCwIwhCNfyhMG547BPsahtGx7AXj7zXiL98oP1hp6w78LTZo4vgV8/UdjowEuFF4bCo4niBsbRSEHb7O7R5gdvXIQiHsYSd2aDHrEKh0/SABgXG3gliB4C6UkEcHehyKRZTojT2ueELRpBp0mNmftZxzy8oFf5NbYNeOLzaSyXXR2v/llTkjPn8oqgw3afRz32ykLAjCEI1Xt7ViX0dTtgsBrEr88E3DmHQo915XjzPi+nMU44RditnxmqltDiTrGnAA08gDItRh5qC4y/QdaWCc3GoxyWu69IKQ54AOoaF2r/5Y7hGQCz+g93aE0f7J3AbgXhhpz1Rypoi6kpt0I2xj9eeaRRrHrUYP6ttZMf4WBZFz8leEnYEQRCpE7+e6KvrZuF3X1yGheU2BEIRcc6aFmkf8mJoJAijnsPC8tEXigKrGbMKhVopLY6uYI5EXakNBv3xf/5n5Gchw6iHLxhBk8bWi7E0bHV+JmwW45ivYRduraUE/aGwWOM1VioTiMXeNODBSEBbzTdMlI4XOxAT2/Ua7Iw9GHVBa6PC/1gWRZ28fR2OKVEKMhlTRtht2bIFOp0OGzZsUDsUgiAkYF+HE/s7nTAbdPjiyipwHIerV8YmwWv1Dyy7q68tscFs0B/3/LJo7ZoW7/6Z87JoHNdIr+Mwt4S5Xtq6QLMZarUl44uLWo26Xs39IwhHeGSbDSi1W8Z8TWG2GQVWM3geOKQxx5E5oOM5XgAwX6OieiQQQtOAcJMy3mentiQbHAcMeAIY0HC2IFGmhLCLRCK4/fbbsXLlSrVDIQhCIt6ODvI9c14RcqMFzZ9dWgaTXoejvW409GnLMWKwOWpj1agBMVdDaxc4ICYYJhJHdVFhpzVxdDTqeLGNDWPBUrHN/R74gtpZjcZin1VkBccdn8pkiKlwjQm7xujv4pwJjv286OeG/Vu1wuEeN3hecNMLs81jvsZi1KMyOrT4SI+24k+FKSHs/vjHP2L16tWoq6sb9zV+vx9Op3PUF0EQ2oWtrjqztlB8LNtixMqZguO1WaMrilg6czzXS3QuNJiSSkwcCfEf1FgRf0MCsRdazbBZDIjwwkgarZDIcQcgNn80aigNPhIIibWNLL6xYM819Lk15bYfFm9mxk7DMti5OdpHwk52BgcH8atf/Qo//OEPJ3zd+vXrYbfbxa/KykplAiQIImkG3H7sbh8GAKybVzTquTPmCEJv8xHtrfjheV6s9RpP2NVFHbuOYa+mhs3GX6AnEhjsOS2JCyB2wZ0odo7jMJOJIw1doBOJHQBqCoWGFi3Fzty6vCyT6KyPxYz8TOg4wOULoc/tVyq8SWlI8NgzN/Joj7ZuaFJB88Lue9/7Hm677Tbk5h4/cymeu+++Gw6HQ/xqa2tTKEKCIJJlW9MgeF64iz52WOvpUWG3pWEAgZC2dk/2ufwYHglCx41/obBZjKjMEzoE93dpp84u/gJ97CyveJi4aB0c0czuzwG3X+yUZvGNx6xot6+WhKno2E3geAFATQETpdqJnQmjWZMcd4tRj8o8IZ3Z0Kud+NnnYOYYXeDxzIr+Ph/RWCo5FTQt7Hbu3Ilt27bhpptumvS1ZrMZNptt1BdBnCj0OH2449lduPg3m/GHdxsQ0dioimPZ2TYM4Pgp8IBQZ5STaYQ3GNZcAT/7o1+dnwWL8fjGCUZdifbSmYmKi+JsCzKMeoQjPFoHtZHOZLGX52SIA6HHI+Z6aUNcRCK86MAl6thpSVSzWteJ0rAMNkKnQVOOoxDLZDcEomM3DYTdxL8hKvPee+/h8OHDKC8XdjA6HA4YDAY0NDTgT3/6k8rREYQ28AXDuPFv28UuzP2dTvS7/bjnkvkqRzY+O6OT4JeNsf2A4zgsqcjBe4f7sLttGIvHGSqqBkeiaZrJLtCzi6x4s74Hjf3auUjEF/BPhE7HYWZBFuq7nGjq8yR0QZcbNnplstgBYCZzvTRy7LucPvhDERh0HCpyMyZ8bYlNENXeYBitgyOaOPYxx27yWGYVWvHOoT7NiOpQOCLenCTq2PW6/HD5gsgeZ6TOVEDTjt3NN9+Mo0ePYteuXdi1axcuvfRSfOtb38LPfvYztUMjCM3wyHuN2NvhgD3DiCtXVAAAHvuoGUd7teMWxRMMR8TO0mVVOWO+Zkl0F+iuNu2kMoGYYzenOLEieG2lpBJLqQHAzOhrtDLLriV6ca7Oz5z0tfGOnRaK+FuiozYq8zLHnB0YDxPVgHYcRxZ/9STCCABqCrUlqtuHvAiGeZgNOpTZJxbVNosR+dESBS013qSCpoVdZmYmSkpKxK+MjAxYrVbk5OSoHRpBaAJfMIzHtzQDAO7/7AL87MolOHd+McIRHv+38Yi6wY3DwS4X/KEI7BnGMdcTAcDSSqExYVebtob8slEIc4om7rBjd/9aSkk19yfmXADxdWraiJ+Ji6q8yYUd+/c5vEEMaaB5pTUqEhKJHYiJavZvVhOe50WRMyMBUc2Ed6tGhBH7/M4syBpzY8axsH8jCTsFeeyxx/Dd735X7TAIQjO8vLsTA54AynMycPEiYSXXbefMAQBsrO/RVFcmo76LrVYaez0RENvp2NDngdOnnX/Dkd7EUrHMNep1+TURP8/H6uUSuUDP1FidGrvQVo9zIxCPxahHUXReWZsGagRbkjjuQEwAaiF2hzcIl0/YgsHmvE0Ea55oH/JqYiVdU3/in5v41zVrQFSnw5QSdgRBjObVPV0AgGtWV4lpngVldtSWZCMQjuDVvZ1qhjcmbMl53QRDcvOtZnFC/2GNDGsdHgmIDtBkhdg2i1EUF1oQR4OeANz+EDgOqEjgAl2VJ/z72oe8coc2KTzPiw5Q0uJoSH1xlIzbGP86LTSuMEFdlG1Ghmn8ZiFGWU4GjHoOgXAE3U6f3OFNSluSonpGvnbc0nQgYUcQUxSnL4gtDcKstwsWlox67nPLhIajV3d3KR7XZLCNBhOtJwJik+y1stC9OXqRK7aZJ+3MBGJ1dlrosmOxl9osE3bzMpi46HR4VR85M+gJwBUVpZUJiqNKDYqjRF0jLQm7ZFxeQFhJx24ctJCOZcIu0c8NpWIJglCVdw72IhjmMbvIelzH2rnziwEA21sGNbVQnOd5UaiNt5CbMU9jO0vZXfyMBC/QWqqVah2MukYJXqALrCZkGPXgeaBzWF3XjqUySxIUpQBQGe0+bRtUN/b03Eav6mOLWpMURvGvZZ85NWGOLQk7giCmBO8dFlZunVNXfNxzMwuyUJ6TgWCYx8dNg0qHNi7dTh8c3iD0Om7SOjW2AkgrezNZh+h4DR/HMiNPOxcJsQA+L7HYOY4Thyyr7Rwl23wAxNd6qRu7wxuEyx+tUUsw/lK7BXodh0Aogl6XuhscWpP83Aiv1YbjyPO8KOwT/ewwV7Xb6dPUruFkIWFHEFOUjxsFwXbKrPzjnuM4DqfNLgAAfKCh1VzMraspyILZMLH7Mq/YJn6PNsZWRC9yBUne/WsgpcZiT9SxA2LF8mrXqbE1aInUBjK0koplsRdYTQm7jQa9DuU5UcdR5WMfc7wmHhUST5VGbmj63QF4g2FwHMTjORk5mUZkRWsJ1Xaq04GEHUFMQdoGR9Ax7IVex425vQEATpsjCLstDQNKhjYhDQnOgQOAWUVZ0Os4uHwhTRRis065xGulolsENJCK7Yg2QaSWUtOGOCrPsUzyyhgs9g6VuzM7h4XPbVmCwoKhFXHUKR77xONnIrBDZWHEPrelNgtMhsSkDsdx4rlSO/50IGFHEFFC4Qh+/85RXP6Hj/DtZ3ejRwNiYjxYenVRuR1Z5rEL+U+qFgTfoR6XZurskllPZDboxbSOFgb9JjPPC4i5Y0MjQdVHnnSkdIGOpjNVrlMTxcUkWxviKbFZYNBxCEV4VW8KWOyTDcc9lrKoiFXTNeJ5Hp2O5IUpe63ajleyjRMM9jlTO/50IGFHEBD+iH3r6V342RuHsKNlCP/6tB1XPbIFvS5tirvtzYKwWz0zb9zXlNozUGKzIBzhsbddGxscEt3byBC3CKg8KNflC4pL6BNtnrCaDSiwCpPs1ewQDMWNnkhK2OVqIx0oiqMkYtfrOBTbBHHU7VDvAp1K7PGv71Ix9gFPAIFQBBwH8VgmAou91+VXtaM6lRQ+EIu/QwOjflKFhB1BAHhpVyf+vbcLRj2Hr62bhYrcDLQMjGDD6wfVDm1Mdk+ykouxVFzNNSxvQAmSjGMHxK0oUnkWHLtI2DOMsI7jkI6FFlJqvS4/whEeRj0nztZLhJi4UO/mhud58QKbvDhirpd68XeIwi5xYQTEHD41Y++K/uxCqznhVCYA5GeZYDLowPNQNevRmeKxLxdTsdq8qU8EEnbECU8wHBEF3P+cNQf/74Ja/O6a5QCAF3Z2oL5TG+M2GN5AGIejy+gXRzc0jAcTfp+2qr+ay+ENot8tdPklstYKEJosAPVXczFxkYzjBcTcPTXr1NgFrsRuSWitEoMNiO53q+e8OH0heAJCd2Ky6cxSu/quVyo1agBQGhUjasbORGlpkrFzHIcyu/qpZHZDUprk5yYm7NRvekqVtIVdW1sburq0NwSVIBLltb1d6Hb6UGA14+a1NQAEp+viRaXgeeCJrc3qBngM9V0OhCM8CuK2M4zHkqhjt69DfXHK0rDFNjOyLcaEvkdrjl0ydV5A7CKh5gWuI8U6r7wsE8wqOy/suOVlmRLafBBPqQYcu1SbJ0q14Ng5km9aYYh1dhoQ1aXJuqU56h/7dEla2F1zzTXYunUrAOCvf/0ramtrMXfuXPz1r3+VPDiCUILHPmoGAFy3ZsaoERzXnjwDgLC9wRvQzkyjPdE07JIKOzhuYgeGbXfoGPaqvjeWdZUm6tYBsRq7TodX1blSqTp2WigkT1WUchwn3jioFX+q6TRA6IYE1HO9guEIelypCTv273X7Q6o13qTqeMV/j7rCNHrsk3XscmNOr9oDolMlaWH3xhtvYMWKFQCAn/70p3j77bexbds2/OQnP5E8OIKQm9aBEexsHYaOA65eVTXqudUz81CRmwGXP4Q367tVivB49nYIwm5RhX3S19ozjKIYOaDyBofWAeECm8yw0/wsE2wWA3he3Tq1drEQO7ULtJqjE1JNBwLx6Ux1HbtkL85ALIXYrVLsPU4feB4w6XXIzzIl9b2ZJgPsGYKr3aWSOBJTsZNkBcaiXOWu3pFACA6vIIiTdeyKs83Q6zgEwzz63OoOiE6VpIVdJBKBwWBAc3MzfD4fVq9ejbq6OvT29soRH0HIyqt7OwEAa2blo/CYwnKdjsNnl5YBAN46oJ3P98Euob5u/iS7VhnMtWM7WtUitp4o8Ys0x3Hi2JA2FevUmGOXrLDTRCo2xeYDIC6dqZLr1Z6i2wjENSCoJkqjjldOcrWNDNEtVenYd6VxQ6C2U82OvdVsgC3Bsg+GQa9DiU39G7J0SFrYrVmzBt/85jdx++2343Of+xwAoKmpCXl5449dIAit8tpeoT70ksVlYz5/5rwiAMD7h/sQCqu7DB0Q0jtsqXxdgsJufpnwOrWbQFKdK6WFpeixOXCpjU5w+kJwqZRSYxe5lC7QzLFTyTVKJ3YmStVq/kjHbQRi/2a1jr2Yik3p2Kvr9LL0eypuIxDntE/RkSdJC7vHH38c2dnZWLRoEX784x8DAA4cOIDbbrtN6tgIQlZ6nT6xqeDc+cfvWwWEJgp7hhEOb1ATI0Oa+j0IhCOwmg0JX+zmlwo7V9VOxbJ5aMns/ATUX23lC4bRF93ZmaxzlGU2ICdTcAzUqjdKdZYaoH53Zjqxqz12oyON2IH45g/lj30oHBGPWVkaqVi1HK+u4dRFKaANpz0dkhZ2jz32GNavX4/7778fVqvQsXbRRRchElHfzSCIZHg/ukN1UbkdBdax53sZ9DqcHl3N9b4Gdq6ydOq8kuyE0ztzigVh19DrUa0Y2BcMi0NykxZ2eeqmYpnrkGHUIzczubQOED+TTPmLRPwS+pQaEMTmiaknStVu/ojVNqbmGokNCCqI6h6XHxEeMOq5cf82TgSL3aWSU82OWSqiFMCUXyuWtLC7//77x3z8gQceSDsYglCS9w/3AQDWzi2c8HVrZuUDAD6JrvFSk0PdQn1dbUl2wt9TlZcJg46DN05cKU3HsBc8D2SZ9MhLspBc7Z2lYkdsbsakXchjoeZFIn5cSKYp8cHKDHaBVuNzE4x3jVIUR6xWSo340xGlwvdF3VIVRDWrr0t29iEjyxzX/KFCOlZ07FJNg0/xtWIJ/6Y/++yzAIBQKITnnnsOPB+7829ubqYaO2JKwfM8PjwqOHBnTCLsVlULn+2dbUMIhiMw6tWb6324R6ivm1ucuLAz6nWoys9EY58HjX2elC806dAaV1+XrDiqEh07L3ieT0lcpQMbVJpKnZfwfeq7RqkKI+Y2DnoC8AXDsBiTmyWXDj1OHyLRrtKCrORdI0DdmWSpzrBjqDlgOdXZh/GU5WTA4Q2iY9ib1N8rKWCOXbIdsQx2ztqnaI1dwsLuD3/4AwAgEAjgoYceEh/nOA5FRUV47LHHJA+OmJqEwhH0uPzIy0x+qKhSNPV7MOAJwGTQYUnlxGNDZhVakZNpxPBIEPs6HFhWlatQlMfDhvzOLkpsJRdjVqEVjX0eNPS5cVo0tawkqTZOAIKg4jjAGwyj3x04rntZbuIdu1TQgmOX6gXalmFApkmPkUAYXQ5fUjMI0yXdrlIglkpWQxyJ6cBUHbu4rl6lb2jEGXBp3ASW2S040OVU5YYm1Rl2jKleY5ewsHvnnXcAAD/+8Y/x/e9/X7aA4vH7/fjqV7+KjRs3wuVyYdmyZfjtb3+LRYsWKfLzieT54Eg/7vznbnQ5fMg2G3DnBfPw5TXVaod1HNtbhBVbSyrso4YSj4VOx+GkGXl460APtjcPqSbsAqEIWqICKdFdqww26Fet1VytA6k1TgCAyaBDqc2CTocPbUMjigu79jTGPgDqpnXa00wHsjq1hj4Puoa9igq7dJ1SIFY8r7Rj5/IF4fKlXtsIAMV2MzhO+L0f8ARSqnVLFZaKTbWrFIjbNazwsed5PhZ/mo4d62ZPdFOOVkg6p3TzzTejt7d3zC+pCYVCqKmpwdatWzE4OIhLL70Ul112meQ/h5CGT5oHcf2j28S7JZc/hB+8tB/PfNKqcmTHs6NZEHYrZiRWQrB8Rg4AYHf7sEwRTU7roAfhCI8skx7FtuT+yM9SeTVXqh2xDDUbKFKdYcfQQjow1diB+PVQysbP/o6UpCMuVHLs2FBkm8WQUm0jAJgNelHMKS2OOtJMI8d/r9I3NE5v6vuFGVazAdkW4byptU4vHZIWdiUlJSgtLUVJSYn43+xLarKysnDPPfegoqICer0e3/jGN9DU1ISBgYHjXuv3++F0Okd9Ecrh9AXx9Sc/RSjC44IFJdh/3/n4+pmzAAD3vLhfdGy0wvYWoRHipBmJuW+LyoV0Ldv6oAYNUVFWU2hNOi3DhJ1qjt2g8Md9Sgq7dB07tgHB6VN8FmLMeUnD9WLiSOELdK9TGDHDGiBSoUQUdspenHuj43GK04gdiAlTpTtju51SOHbqjDxhxyon05hWKZDYeOOYetsnUto8EQ6HEYlEEIlE0NHRga997WuK1Nht2bIFxcXFyM/PP+659evXw263i1+VlZWyx0PE+ON7jeh1+TGzIAu/uGoJsswGfPvceTh1dj4C4Qj+763DaocoMuQJiCJpRZLCrmVgRLWdq0yUzSpMPh3GvqfL4YMnOv5CKXiej6uxS01gqDWkOBzhRfcl1Rq7QqsZRj2HcIQXL/hKwbpBS+ypp/FKVdrgwJySdMTRsc0fSsFiL0rSWT8WsYFCYXHU40xfmDJhpPRnPjacOL0mMXZToNYkgXRIu72vpKQEv/zlL3H33XdLEc+4OBwO3HLLLeOOVbn77rvhcDjEr7a2NlnjIWL0u/348weNAIDvXliLLLNgYet0HL57QR0A4MVdHWjuVycNeCw7ovV1swqzkJvg6I2cTJMoLtRy7Rp6heOXbH0dIMTP9lU2KXwehkaCcEfFZEVuao6dWsKuz+VHKMJDr+NQlJ3aRU6n48SLhJJpKZ7nRdcrnQu0Wg0ITBAUpVFTmZNphMUoXOaU3BkrOnYpfmYYMXGhnDgKhSMYiO5ITUeYss+csDNXufmZYjdyGm4jMDr+qYYkcxs+/vhjhELyuQA+nw+XXXYZLr74Ytxwww1jvsZsNsNms436IpThHx+3wheMYHGFHecds8FhUYUda+cWgueBZ7ZrQ2yzxomTEqyvYyyqEFy7PR3DUoeUEKJjl2RHLEOtdCwTY8U2c8rjMpjT1zaodEoq6rxEF4OnCnOOlExLDY0EEYimflMVpUDceiiF67xirlfqsXMcJ16glXSOWOyFaTp2TFj1upQ79gOeACI8oNdxyE9xzAwQi30kEBZv7JSgR3Sp0xV2QvxK3hBIRdLCrq6uDvPnzxe/qqurcdFFF2H9+vVyxIdQKISrr74aZWVl+PnPfy7LzyBSJxiO4ImtLQCAG06dOWbt1xdXCWnx57a3I6iBfas7ovV1K6qT625dEN25erDLJXlMk8HzvDjqpCaFVGz89zX0qiPsKlN064BYjV2Xw6voZ6jbERvUmg4sjavkXCx2QWKrtVIlllJT7gI32m1MTxwx10xJ50Uqx459f6+Cjp0oSq3p3cxkmuIbEJSPP53azPjvn4qOXdLtOg8//PCo/8/KysLcuXNlc8huuukmeL1ePPfcc4oPJiUm571Dfeh1+VFgNeOiRWM30JxdV4wCqwn9bj8+ahiYdNODnITCEexpF1KpidbXMeZFh2we7lFe2PW7A3D6QuA4oDo/NWEnOnYKp2JZ+jGdzsxCqxkWow6+YAQdQ15UKzR2g4mjdC8SLJ2p5EWix5W+4wXEUqFDI0H4Q+FJxwNJwXCc25jueJtC0fVSTlz0SlRjp0Y6kInIdGMHhPhdPjd6nb6kZ2+mipjCn4LHXiqSvo1bu3Yt1q5di9NPPx11dXVYvny5bKKupaUFjz32GN5//33k5ubCarXCarVi8+bNsvw8Inle2dMJAPjMktJxXQGjXofzF5QAAP6zr1ux2Maiqd8DfyiCLJMeM5MUSGx6ekOfW3HnkaVPK3MzU05nzipSx7FLd7USIKTU1Bga2i1BjRoQ32GnoLATRWl6F7icTCNM0W0rfQqJIyZK87JMaQtJJkyVdByl6ootUkGUijcEabqNQMxt7VHw2PeIwlSq+sYTQNj19fXhyiuvREZGBsrKymCxWHDllVeip6dH8uBmzJgBnufh9XrhdrvFr9NPP13yn0UkjzcQxsZ64bxfuqRswtdesFAQdhvruxFWaRE9ANR3CWNwakttSU+zL8/JQJZJj2CYV7wRJJ2OWAZz+loGRlQpZi5Nc5WZGhscpKvXUcGxk0iUchwnumZKCQzx4izBMGqxxk6hdCDP87H6wDTjZ6lYhzeoWFevpI6dmAZXTpj2RUVk2o0r0c9Nn8uv+JiidEla2F177bWw2WxobGxEKBRCY2Mj7HY7vvSlL8kRH6FhNh3swUggjIrcDCytzJnwtSfX5MOeYUS/O4BdbUPKBDgG9Z2CsJtfmrzLrNNxmBN17Q4pnI5lHbE1KXTEMipyM0et5lKKTnEOXLozvdjuTOXEEesETTcVGxN2yl3guiUYF8JgzkuvQsJUilEnDKUdO5c/BF8w/aYVQFjpxjIhSrmlvRIJIyDmmil1QxMMR8S/bekK0/xojWGEh6J/L6UgaWG3detW/OEPf0B5eTkAoKKiAr///e+xdetWyYMjtM0ru1katmzS+kejXifuKN18pF/22MaDOXbzy1IrH6gtidbZdSsr7Jr602ucAITVXEwcKTk2RKq5UmpMsmdCLF3Hjn1/n9uvmGPdK5HbCCgvTHtFYZe+a1SkcAMCiz3bYkh7V7bQ1RtNZyomqqWssWM3BMoceyZ+DToOeZmJjbIaD72OQ6FV2WMvFUkLuzPOOOO4GrcPP/wQ69atkyomYgrg9AXxzqE+AJOnYRlnqCzseJ5Py7EDYnV2Sjt2LdHNHak2TjDY2JDWQWVSyd5AGEPRgc7p1NgBsb2PSg3K5XlesuaJgujdfzjCo9+tzEWuW1JxpKzrJVUaWXgPZS/OUswOjEfpdKbo2EnUPAEoeOyjwq4w25x0qc1YFE/ROruku2LtdjsuueQSrF27FhUVFWhvb8f777+Pyy+/HLfeeqv4uoceekjSQAlt8d6hPgRCEdQUZoku1mScNkfoht3VNgyHNwh7hrKLlftcfgx4AtBxwLwEYz4W9n2He5RrQAhHeHFMRqoruRgz8rKwtXEQrQPKuF5svU+WSQ+bJbWdmQzmNirl2Dl9IXijdU3pul7s7r/b6UO3wyfZRX8ipBRHRQo7dlLVqAnvIcTu9IXgC4ZTbj5KlFjzQfqxA8rPsovVN0695gkpZh/GU2IzYzemnmOX9F/aOXPm4Lvf/a74/5WVlVizZo2kQRHa592oW3dOXXHCY2jKczJQU5CFxn4PtjcP4uy64sm/SUL2R9OwNYXWlP+4M8euecCjyEUCEO4WA+EIjHoubderKl/ZDQ5dccvE0x1XxHZPdg17wfO87OOP2B9ze4ZRkvNcbLcIws7pw5K0321iguEIBjwSCjulmyfEkRXpx87q1AKhCHqdfvF3QC6kduyKFHTspNo6wYiPXYnf2dj8QGlEdbEK3exSkLSwu+CCC7B69erjHt+2bRtWrVolSVCEtolEeLx3WBB265KcSXdSda4g7FqGFBd26aZhAaDAakJelgmDngCO9rqxMLpDVk5aBoS0aUVuZloDQ4HYoN82hYQdc9fS7YgFYjV6nkAYTl9Idse3S6I0LINdbJRoQOh1+cHzgFGffq0REN9ZqswFrk/C5glWp9Y26EWvyye7sJOyoxdQ9thLtXWCwcRhIBSBwxtEjgSfxYmQan4gQxR2U8yxS7rG7txzzx3z8QsuuCDtYIipQX2XE/1uP7JMepxUndxaLrbGa0ez8p2x6TZOAMJFYm6x0Jl6SKEGitZofV26adj492hRqMaOpWLT7YgFgAyTHnnRfbdKpGPFOXASNB/Ev48SF4lYKtMiSa2RkvPUIhE+bg6cROlM1kChQPy9Eg2GZijplrLPTYHVlPZNJACYDXrkZhqj761c/FJ09AJxW1cU7GaXgoSFXW9vL3p7exGJRNDX1yf+f29vLz7++GOYTPIqcUI7vHOwFwBwyuyCpFcVnRRd47WrfRj+kDJzmRgHutJ37IDYBgqlGihaou7aDAmcBibsepx+ReZiiY5dmh2xDCUX0jMBJpljJ6Z1FLjAOaQrgAdiF8pBTwCBkLwzvQZHAghFeHCc0HQiBUo2UPTK5NgpGbuUNaCKxi/R1gnGVB1SnHAqtqSkBBzHged5FBePTqEVFxfj3nvvlTy4Ew2PP4T3D/ehfciLIpsZZ8wpRG6W9gTzuywNOy/51WAzC7KQn2XCgCeAfR3OpNd6pcpIIISm6FDhujSF3Wy2gUKhDQ5SOna5mUZkmw1w+UNoHxrB7KLUmkgShaUz060NZJTlZGB/pxMdCiykF7tKpXLsFLzASTkHDohtnwiEI+hz+8UtIHLAYs/PMsOoT33HbTxqOHaSdcUqKEqlbvwABOfyYLdLoc+9dLWZQJwona41dpGIcJd2/vnn44033pAtoBORcITHXz5oxG82HYXbHxIftxh1+Pq62bj1zNmS2OJSMDwSwM5WIY26bl5R0t/PcRyWz8jFxvoe7GgZVEzYHex2geeFNvh0d0/Oiu4pbVJo+wRLm85Ic9QJIBz/yrxM1Hc50Toov7BjWyLKJBJH7H26lEzFStVhp+C+WKlWoTHY9omOYS96nD5ZhV3MNZJOXIibM2ROqQlbJ6R17JTs6u2VWBgBcbWlCohqqbZOMNhn0OUPweMPIcucXme/UiR9O0SiTlrc/hD++2+f4CevHYTbH0J1fiYuWVyK2pJs+IIR/GLjYdz65A7Fd5OOx+Yj/YjwwJwia8p/3E+KirntCtbZSdE4wZgZHRLcOjgi+3nheV6cYSdFKhaIq7MbkLeBguf5UV2xUlCq4JBi5jaWSiRK2UVCibROr8SOHRBXZyezOJLabYx/L7lHhrj9sRE5UqUDbRkGmKMlL3Ifeym3TjCUSsVKuXWCkW0xIis6ZHoqpWOTlp91dXXjtizX19enHdCJRDAcwdf+vgObj/TDYtThvksX4KqTKsWU9ws7O/Dd5/fijf09+O6/9uLnVy6WvV18MtiYk1TSsAxWZ7ejZUiRFnhAmsYJRonNgkyTHiOBMFoHRzArjTVfkzE8EoTLJ7i4lbkSCTuFRp4MjwQlmwPHELdPKJAakVpgsPdx+UIYCYSQaZLv7l+sD7RL53oVZysjjnpkcOyKFHLsWOzZZoNk51fo6rWgdXAEPTJ39Uq5dYKhVCpZyq0T8RTbLWjs86DX6Zf1b72UJP3Je/jhh0f9f1dXF37729/iiiuukCyoEwGe53Hvy/ux+Ug/Mk16PHXTyaP2rXIch88vr0Bupgk3Pr4d//q0HStm5OKa1VWqxRw/5uTMFNKwjIXldpgMOgx4AmgeGMHMgvRTjJMhVeMEIJybmQVZ2N/pRGOfR9ZfdtY4UZRtTns9EaNKoZEnrCO2wGqSLH3EUrFyO3b+UBgDHuHuXypRyu7+PYEwuh2+tPb+TobU3YGAcuuhWJ1XoYSxKzXkN9YRK50wAoTf/9bBEeUcOylFtULDrcXGCYm2TjCKs6PCTqEhy1KQdCp27dq1o76uvvpqvPDCC/jrX/8qR3zTlr980ISnPm4FxwG/uXrZKFEXz5m1Rfh/F8wDAPzo1XrF5o+NRTpjTuIxG/RYHJ3/tqtN/nRsOMLjYJfQwSqFYwdAvCg39snbQMFm2EmVhgViwk5ux46lYaXqiAVijl2P04eIjDtX2QXUZNCJ4xqkQKkVRaLrJZEoBZRb6C7lnlgGE7hDI0FZu/F7JdzaEI9S6Uwpt04wlJrDx45NocRbXZReSScFkrQc8TyP9vZ2Kd7qhOCt+h488NoBAMD/XlSHc+ZPPKj3ptNrsHpmHrzBML7/4j4lQhyTdw+lPubkWBZVCMJuT7sj7bgmo3nAA28wDItRl/auVQZzGRv75G2giHXESudqxgs7npdPHDHHTqoaNSB6N84BwbC8O1d74sSFlKUCSszFcvtDYhOWpDV22Ww9lDLpTCndRtbVC8RSdnIgm2OnwGouqbdOMIrjZiDKejMm8dYJRrFCjqOUJJ2Kjd8HCwAjIyPYtGkTrrnmGsmCms7s73Tgf57eCZ4Hrlldhf8+beak38NxHNZ/fhHO/9X7eO9wHz482o9TZxcoEO1o3pGgvo6xKOrY7euQX9ixxonaEptk3cWzCpXpjG2VcIYdQ1jvBfiCQrFxul3C49EpceMEABj0OpTYLOh0+NAx7JW0ey8esXHCJm33pxKT7JkotZoNsErYxVeksPMipSiN7+rtdflRIVG96rFIuZ83Huag9ckoLtjWCR0HSbZOMAqsZnAcEIrwGBwJSDab8Fik3jrBUMqplpKkbZfi4uJRXwsXLsSjjz6K3//+93LEN63ocfrw349tx0ggjNPnFOC+Sxck7AbUFFrxX6tnAAA2vH5Q1jufsUh3zMmxLK5gws6JsMz/FikbJxg1BdFUbL/MqVgZhJ3JoBOdo7Yh+dKxrA6uTIKtE/GwztguGRsoRHEhodsIKLN7ko1pkfoCV6zA9olwJObESpmKBeK7euU79vF1XlJSrIBjx1zkwmyzpOO1jHqdKBTlFEe9Mji9gHK1pVKS9O0cDSJOjZFACDf+bTu6nT7MLrLid9csT3r45jfOmo3ntrdhb4cDr+3rwiWLy2SK9nikGHMSz8wCq9hZ2tDnxtxi+eapSdk4wWAjT/rdATi8Qdn2lko5nDieytxMdDl8aB/yYnmVPLME2XYIKR07IJbalbOBolucYSftBbpEgXoddvGXav4eo+iY7RPplmOMxYDbH3ONJHZ2lFjNJa5yk7zOS/4UfvwaOqkptpnR7/aj1+nHApkuWz0SD4ZmiKnY6do8MTAwgO9///s49dRTMW/ePJx66qm45557MDAwIFd804JAKIKvP/kp9nY4kJdlwl+vW5mSECiwmnHzGbMAAL9487DsTlc8Uow5iUev47CwTHDt9spcZyfOsJPQsbOaDeKFQq4GCl8wLKbspBhOHE9FniC25GzG6ZSheQKAeGPRKeP2iW4Z0oGAMiuK2MoyqYVdbqYRRr3g5PTJVN/YI5NrBCgjjvpkcuzE+kYFbgikdkqF95Q/nSl+dqR2qrNjsctZkywlCQu7pqYmLF68GK+//jrOP/983HHHHTj//PPx2muvYcmSJWhubpYxzKlLMBzBN//xKd451AeLUYc/fXlFWnOIbjx9JnIyjWjq9+A/+7oljHR84secSJGGZSyM1tntlbHOrs/lR6/LD44DakukdQVrCuVtoGCiK9tskLQzE4BYY9QuUyo2HOFF8SL1lgIlHTupRamizovEwo7juNhqLpku0HLU1zEUEUcyxc/OJds+IQdybJ1gxDpL5RTV0o/4AWIpfF8wAqcvNMmrtUHCwu7OO+/ElVdeiR07duAHP/gBbrnlFvzgBz/Ajh07cPnll+Pb3/62LAH29fXh4osvRmZmJubNm4dNmzbJ8nPkwOMP4Wt//xRv7O+ByaDDn758ElbMSH1MCABkmQ24bk01AOAP7x1V5A5i9JgT6dJ2rM5OTmHH0rAz87MkHwgrjjyRqc6ObYaoys+UfIhzZa4gWNqH5BFHvS4fwhEeBh0neXNGmVhjJ6Owk2HALzDauZCrTpaJC6nTyEBcd6ZMF+jYrlI5hB0bsCxP7G5/CCOB6NYJiT/zNosBFqO82yd6ZdgTy2DHXq50ZvzWCakdR4tRL2bY5G4ckoqEhd3bb789bn3dD37wA7z99tuSBRXP17/+dZSVlaG/vx8//elPceWVV2JoSLlVVKny0dF+XPLbD/DWgR6Y9Dr84b+W4/Q50qQxrzulGhlGPfZ1OPHB0X5J3nMi3j4YG3NiNki3p5CNPNnf6UBIptVcrHGiTsI0LKNG5pEncjROMCplHlLM0qTFNovkKTUm7DpkSsXyPB+3r1RagVGYHesQZAOQpUYJ16tPpgu0HFsnGEUyN3/0xnUjS71TNN4tlUscyfWZj39PuYQRa7gx6DjkSrh1gqGE4yglCQu7UCgEo3HsdJDJZEI4LL097Ha78dJLL+H+++9HZmYmLrvsMixcuBCvvPKK5D8rFXiex6FuF/a2O7CjZQiv7+3C/208jM/+/kNc8+eP0dTvQbHNjKdvORln1008qy4Z8rJM+MLKSgDAQ+80SPa+47HpQA8A4Oxa6dKwgOCiWc0G+IIRHJWpTk3KHbHHUiPzyJPW6HBiKWfYMSpymTjyylKrKVdHrPCeQuz9br8sw2YHPQEEojcaUjtHRr1OHPcgV0qwR9aUmrwzvXplLOCXP40sT30dQ+5BuT0yOnZyC6P4Yy/l1gmGUgOipSLh24o1a9bgoYcewl133XXccw899BBOPvlkSQMDgCNHjsBut6O0tFR8bMmSJdi/f/9xr/X7/fD7Yx8ap9MpeTzHwnEcLvz1+xjrumjUc7hmVRXuOG+eLB2TN54+E09sbcGWxgHsbXeI7pfU9Dp92B1tbjhLYmGn03FYUGbDx02D2NvuQG2J9OLrgAyjThgzoyNPWgZGEInwkv9BkdOxK7VnwKDjEAzz6HX5JK8lk6sjFhCK+M0GHfyhCHocfsl3Z7I0bIHVJEvnZ4nNgj6XH90On1hnKhWRCB9LxUo8qgWIc15kc+zkK+Bnjt2AJ4BgOJL0VILJkGs4MaNI5vpMObZOMOSe3yjX1gmG3G6p1CQs7DZs2IB169Zh27Zt+OxnP4uSkhJ0d3fjpZdewltvvYV3331X8uDcbjdsttEXZJvNhuHh4eNeu379etx3332SxzAZpfYMRHgeJoMOORlGzC3OxqIKOy5cWCrb4FdAKH6/ZHEpXtrViT9tbsRvvrhMlp/D0rBLKuyyOACLyu2CsOtw4MqTKiV9b19QGKUCyOPYVeRmQK/j4A2G0SODOGKjTmZIPOoEELqSy3Iy0Do4grZBr+Sxy9URCwg3VGU5GWjq96Bj2Cu9sHPIJ4wA4SK3t8Mhy0VicCSAUPROUw7npTBbGedFjnRgXqYJBh2HUIRHn8sv+U2HXOvEGHI2f4QjvLh1QlZR7fYjFI7AILmolmfrBGOqzbJLWNgtW7YMH3/8Me6//37ceeedGBgYQH5+Ps466yxs3boVtbW1kgdntVqPc96cTies1uOXZ99999244447Rr2uslJaoTAWH373LNl/xnjcdHoNXtrViX/v7cJdF8yTZZr6WwcEYSdlKjmeRTI2UBzqdiHCA/lZJlkucka9DlV5mWjq96CpzyOpiAlHeHF4sNTChVGRy4TdCFbNTK+p51hYKrZchlQsIKR4m/o9sjRQiI0TMt39i2kpGYYUM1FaYDVJ7kgB8Y6dzAX8MogLXbSRp8vhQ68cwk7GcSHC+8p37OWcHwgImyz0Ok4QkJ6A5MK9V8a60vj3nSqp2KR+82tra/HUU0+hu7sbwWAQ3d3deOqpp2QRdQAwZ84cOBwOdHfHxnrs3r0bCxYsOO61ZrMZNptt1Nd0Z2G5HafOzkc4wuOvHzRL/v6+YBgfHBXGnJxdJ20alsFWi9V3OiVvoIjfOCF1VylD3BkrcZ1dl8OLYJiHUc/J4noBwpBiQJ7O2C6ZxoUw2PvKMfKECS65LhIlMqalemUa0sqQ0zUa3dkoU/wyFvHLmcoE4jd/yBd7gVX6+YGAkCEolLG2tHeK1zdKjfS3dBJitVpx6aWX4t5774XX68XLL7+Mffv24TOf+YzaoWmGm06vAQA8/UkrHCNBSd/7o4Z++IIRlNktsqQyAaA6PwvZZgP8oQiO9ErbQCFn4wSDCbtmiYUd2xFbmZspyx9aAKhkQ4plmGUXa56QR9ix9+2Uw/WS27EThxRL77yw4cRyOxds+4SUxHc25snQ2QjECVMZXC/Za+zEQblTL3ZA3gYKubZOMIpkbhqSGk0LO0BozGhra0N+fj6+853v4Nlnn0VurjwrkKYia+cWYl5xNkYCYTy1rVXS935tr+CUnl1XLJvjpdNxWFAuCK897cOSvrecjROM6gJ5OmNZfV2lDPV1DJa6l3rkiS8YFkd5yNEVCwBlUXHUJYNjxwSXXDV2bMCyHKlYOUedAPJun5C7s5G9NwD0yeoayZzCl9FtlHq4bzxFMqYzY53gcqfBp8b2Cc0Lu8LCQrz22msYGRnB4cOHcc4556gdkqbgOA43nSG4do9+2CTZXbQ/FMYb0c0Wn1ki707axRU5AKSts4tEeFHY1cno2NXIJOzk7IhlMMdO6lQsS8NmmvSy7dAtlXGtWHe0bk8uYcecQDnqA3tkdhvl3D4h18aMeOQc1yIW8MvcFevyheANSDvmR0nHTo40eJ+Mg60BiGnkYJjHkMSZMTnQvLAjJufSJWUotpnR6/Lj5d2dkrznu4f64PKHUGq34KQZ8jqk4gYKCXfGtgyOwBMIw2TQieJLDlgqtnVwRNIaQebYVcno2LEaO6GeT7rYmYtWarfI5vSypoxOOZonHPKKI5aKdcpwge6WcVwIQ66UWq8CsTPHTuo6NY8/BLdfWDcllzDNNsdtn5A4/l6XvG4jEL9zVdrPjZxbJxgmgw75WUJ5wFSos5NE2N1www3461//KsuQYmJyTAYdrj9lJgDgT+83SmIVvxIViJcsLpUtLcJYXJ4DADjQ5ZLMcdzfKYjEulKb5K318ZTYLLAYdQhFeEmdr5ZBwQGckS+fKC2wmmEy6BDhgS4Jna8OmevrgFjzhMsXgssn3R20NxAW90EWy+TYZZsNyDQJG1ykbqAQU2oyxQ7IN8tO7uYDQD7HjgmjLJMeVom3TjA4jpOtM1YcDC3rDYE8s+Dk3jrBkDOVLDWSXPF4nsc//vEPLFmyRIq3I1LgmtVVyDLpcajHhfcO96X1Xh5/CG9Ft03InYYFhJSgPcOIQDiCQ90uSd5zX4eQhl0oY30dINQIVudLm47leR4t/YJjVy1jKlan48QNFO0SNlCwVGyZTB2xgLAzmaV5uySsVWNCK9OkR7aMF2ixM1biOjuxxk4RcSRT7DKKi0LRsZO6PlD+NDIQ73rJ49jJW2Mnj9OrRG0mMLVm2Uki7B599FFs3LgRu3fvluLtiBSwZxhx9aoqAMCfNjem9V5vHeiBLxhBdX6mOI5ETjiOE9OxezqGJXlP5tgtKJM/fqlHngx6AnD5Q+A4eZsngFg6VsrOWHGGXa58wg6INSFIOfKkK66+Tq40Mnt/AOh2She7PxTGYLRpRa76QEC+IcWsU1WJGrsBj1/S0olYKlM+UQoAhbKJI+UcO6n3DE91US0HSQu7wcFBjIwIF4FwOIwnn3wSTz/9NHieh14v3YJ4Inm+cmo19DoOHx4dwI6WoZTf55lP2gAAly4tl/XiFg8TkFLU2fE8j33RRoyF5fLPM5R65ElztL6u1GaBxSjv7xRz7NoGpRMYSqRi499fygaKbnH+nrwXiZhjJ90FmjkJJr0OuZnyNK0A8jl2cg+ZBYRh5XodB56HWJclBb0Kiwsp0+DhCC8eCyXS4P3ugKQ1vUqJarG2dAqsFUta2J133nk4fPgwAOC73/0ufvrTn+JnP/sZbr/9dsmDI5KjIjcTVyyvAAD89D8HU6q1a+xz46OGAeg44Asr5d/cwWCdsXskEHadDh+GRoIw6DjMLc5O+/0mY6bEnbEtA/LX1zGYIyhlKjYm7OS9yLH3l7K7tEtsnJBXlLIaOCnFUbzrIucNmVwpKSVSsTqZBuXKvdKKIcexH/QEEI7w4DhhY4lcjBqVI2EqXIkbAmBqzbJLWtgdOXJErKV7/PHH8frrr2PTpk145plnJA+OSJ5vnTMHJoMO25oGU6q1e2JrCwDgzHlFKJfZcYmHpWIP97jgC6bXhMPcujnF2bI7XgBQUyitsGOOXXWBvGlYID4VK4044nleTI1W5Mgbf2z7xFR27KQUdv5R7y0XchTB+0NhcYyEnHVeQCzdKGWdnRKpzPj3l+OGID/LLGujWfyoHElFtcxbJxhi48p0TMWaTCaMjIzgk08+QVlZGcrLy5GdnQ2PR9o5XkRqlOVk4MsnzwAAPPifQ4hEEnfthjwBPL1NSMNef2q1HOGNS6ndggKrCaEIL64CS5X9nco0TjBY80THsDdtUQoo69jFUrHSOHaDngB8wQg4Dii2y/uHtlxMxcrg2Mks7NhFQsqu2G6FnAsmvIZHgpJ83oGYg2PS65AjYxoZgMziQqlUrHSitE/m+XvxyDEqR/zcy/47K9/mDKlJWth98YtfxJlnnokvfelLuP766wEAO3fuRHV1tcShEaly65mzYTUbUN/lxN8/bkn4+x79qBneYBgLymw4bXaBjBEeD8dxktXZ7Rfr6+RvnACAvCwTbBahg7JlIH2BJDp2MnbEMlgqttfll+QizdyzQqsZZoO8bilz1aRMxbJmBrkdO/b+Ujp2SqWkbBkGmA3CpUOqlFr85gC563plcewUGPArvL+MKXyZHS9AnlE5cm9bYYjNH24/wkkYJmqQtLD79a9/jR/96Ed46KGH8K1vfQuAcFH+9a9/LXlwRGrkZZlw1wXzAAAbXj+YkBvT6/Lhz9Fu2q+fOVuxpol4FklUZ7evU7nGCUD4/M8stAIAmvrT33erpGOXm2lEVnSmWocEzlfHsPBZk7txIv5ndDqkW/PTrZBjx95fyouEEsOJgWPnqUlzgVZKlAJxrpeE4qhPIceOCUcpt0/ENmYocOxlFKZylyDkZ5mg44RmkwGPtl27pIXdZZddhvPPPx9nnXWW+NiKFSvw29/+VtLAiPS4dvUMrKrOw0ggjLuf3zvphW/D6wcxEghjaWUOLlxYolCUo1nMHLs0Rp70ufzocfrBcfKuEjuWGolGngyPBDAcrTWSc50Yg+M4SXfGdkQdO7lHnQDCRYLjgEAoIu6mTQd/KCx2B5bKOIMPEIZD63VctCNRmouEUqIUkD4tpaRrJLVjNxIIwRXdOiG3qM42G5ARrRuWTFS7lDv2Uo/KGVWbKfOxN+h1KLBOjVl2SQu7d955Z8zH33vvvbSDIaRDp+Pw0ysWw2zQ4YOj/fjt20fHfe3G+h48/2kHOA6455L5qrh1QKyB4mivG57oH8pk2dU2DACYXWhFpkmeAbNjwers0h15wlK5RdlmxeKXcmesOMNOAcfOZNCJHY5SbM4Qx4UY5B0XAgD6uO5MqdKxSjovUqcEexR1jaRtQGCfmwyjfFsnGIJbKrWoFt6ncAo6dvG/s3LtpY5HrlE/UpPwp/DWW28FAPj9fvG/GS0tLZg3b560kRFpM7MgC/ddugDffX4vfrnxMOwZRlx3SvWo1+zrcOD2Z3YBAG48bSZWyLwXdiKKbBaU2CzodvpQ3+XEyuq8pN+Dze9T+t8xU6LO2OZoGrZagTQso0LCIcUdUXFYpoBrBAjp2F6XHx3DXiyqSK+msiuuI1aJm5tiu/BZ73b6kO7OHp7nRYGoiLCT2HnpcShTowbE0qVSOXZKjZlhFGVb0DwwIp04UmhUCyD9uJb4NKwiv7M2M/Z2aL+BImFhV1xcPOZ/cxyHxYsX44orrpA2MkISrl5VheaBETz8XgPufXk/drcP49Z1s1BgNeO1vd144N/18ATCOLkmD3eeX6t2uFhUYUd3vQ+7WodTEnaftgrCbnmVssKuRqJZdsyxUyINyxDXikkwpLjTocxwYkZZjgW72qRpoBC3TiggjABhAPVuSOPYufwheKPNL8p0N0pbp8bqA+VuWgFi4rHfLWyfSHfEh1LdyAypU8lKDVcGpB+Vo1RdKWOq7ItNWNjde++9AIB169Zh7dq1sgVESM//u2Aeskx6/PKtw3j+0w48/2nHqOfX1OTj4S+tgMkg3wyjRFkxIxcb63vwSfMgbjqjJqnvDYYj2NM+DABYPiNH+uAmoDoq7PrdATh9QdgsqaUFRMeuQDnHTsohxcyxU6LGDojVwkmxL1apGXaM2Fqx9GNnjle2xaBICl/qKfxKuo35WWboOCDCAwOeQNo/s1eh+YEMKUV1JMIrO+7kmFE56c4ZjXVTK3TsZdj8IQdJ/wXo6enBs88+O+ZzV111VdoBEdLDcRy+efYcnDI7H799+yg+ONKPUIRHVV4mrjulGl9eMwNGGQdTJgNz6ba3DIHn+aTs9QNdTviCEdgzjKgpsMoV4phYzQYUZZvR6/Kjud8jbtJIFjUcO6mGFPuCYbGJQanh1swZlKKjNzbDTpnYRfdCAlGq1HBiRmxvZvquEc/zorhVIn69jkNhthk9Tj96nL60hZ0Yu0I3BLE0ePqfm6GRAELi1gn5hR0bleMPRdDn8qe9C7tXwc8NMHVm2SUt7P7whz+M+v/u7m40NDTg1FNPJWGncVbMyMNjX1mFcISHLxhGlsyFvqmwqNwOi1GHQU8ADX1uzC5KfCXYp9H6umVVOdDplG8AqS7IQq/Lj6Y0hF1jnzAuRdEau2jzxKAnAI8/lPLngjVOZJr0ihQyA7Favi4JhJ3yjl20eUKCC7Ty6UDpUlIufwgj0dEdyokjC3qcfklqvboV7OgF4mfBpR87Eyh5mSZFbu7ZqJzWQaFGMF1hp3Qqdto1TzDG6op9/PHHsXPnTkkCIuRHr+M0KeoAobtpaWUOtjYO4uOmwaSE3Y7WYQDACoXr6xg1BVnY1jSIxr7U6uwG3H6xdZ+tKVMCm8UIe4YRDm8Q7UNezCtJbb9uR1xHrFKd1aXi9on0/9B2Key8iNsnJHHslBV2xXHz1EYCobTSv8yxtCmURgZiIkwKcdSrtGMnYVevOOpEoc8NIHx2BGEnhTBVp75R646dJBL92muvxWOPPSbFWxEEVs3MBwB80jSY1Pcxx265Sp29M9NsoDjaK7h15TkZio5qAWIjT9KZZcccO6UaJ4SfFat5CYUjab1Xt0OZrRMMVh/Y7Ux/wLLYHSjzGjeG1WxAZnSwdbqul1Jr3OKR0nFUMo0MSNvVq9Se1XikPPZMYCl3QyP8nAGPH8E0/97ISdLCrre3d9RXc3Mz1q9fj5ISdYbaEtOPVdE6u0+ahxL+nh6nDx3DXug4YElljkyRTQwTdg19qW2faIg6fbOLlK0PBICKnPQbKMRRJwoKu4IsM4x6DhE+NgstFYLhiHihVEpgMCEwEgiLA25TRcnmA+DY7RPpCQyl08iAdI4dz/MqiIvRbmk6MMdOqVQmEFefmWYDgnDslf3s5GWaYNBx4HlINlhcDpIWdiUlJSgtLUVJSQlKSkqwcOFC/Oc//8ETTzwhR3zECciyqhzodRw6hr0JC42tjQMAgNoSm+xDQsdjbrGQwjza605pTRRz7NQQdqJjl0YDBfveCoU6YgFhEDdzvjrTqLPrc/nB84BBx6EgS5mLXIZJL+4YTreBQskBv4xCiYr4exSubQSk6ywdGgkiEBKcGyVm8AHSuqVM2Mq9Ci0eqWbZxddmKiVMdTpOvCmQcs+z1CQt7CKRCMLhMCKRCCKRCNxuNzZv3oyTTjpJ0sAOHTqESy65BAUFBSgsLMS1116LoaHEHRxi6pJlNmBhdL3YJ82JpWM/PNoPADhtToFscU1GZV4mLEah46s1hZTm0T41hV36a8ViO26V6+gFYoIgHWHHZtgV2yyKNt5INfKkR2HHLv5npSvslE5lAtI5duzfnpdlgtmQ3uiOROE4TvL4FXXsJPrcMFGu1IgfxlSYZZdSjV0oFMLmzZvx7LPPYvPmzQgGg1LHBYfDgauuugoNDQ1obm5GIBDAd77zHcl/DqFNTp4ppGM/PDow6Wt5nscHRwRhd+ps9YSdXsdhTrTZ43CPK+nvb1DRsROHFKfh2LVGBxzPyFOu8QOIbc5IJ/Z2FdxGIHaRS2cOn5BGFr5fqY0fQGxTQdqpWCZKVXDspBKlSgpqQDpxwc5doYKOnVTNH0qnwBnlEjZsyUXSMvfjjz/G5ZdfjoyMDFRWVqKtrQ1erxf//Oc/cfLJJ0sW2KpVq7Bq1Srx/2+66Sbccccd477e7/fD74/9gXE6nZLFQijP2rmFeOT9Rrx7qA+RCD+hi9LY70GnwweTXifW56nF3OJs7O1w4HC3C+cvSLzu1OMPiV2lswtVcOzSXCvm8YfEmpOqNEcYJIsUjR8xYaeO25hOKrbb4UOEB0xxS8qVYEo7dnHbJ8IRHvoUXVp23koUdLwAKV0vNuBXjc+NNDcESn5ugNjvrBTbbuQiacfuxhtvxH333YcjR47g7bffxpEjR/CjH/0IN954oxzxiXz00UdYsGDBuM+vX78edrtd/KqsrJQ1HkJeTqrOQ5ZJj363H/s7Jxbpbx/oBQCsnJmLDJMy6ZDxmFssiLJDSTp2bERKfpYJuVkmyeOaDCZoXL4QhkcCSX8/Sz3bM4ywZyozw47BRGkq6W+GWo4duyilk4plKejSHGXTyNI5L8p3xeZnmWLbJ9IoglfNsYu6pX1puKWjt04oFz8TRm5/CE5f6tm+HnFUi7KiumwKOHZJC7v29nZcd911ox770pe+hI6OjnG+I3127dqF3/zmN7jnnnvGfc3dd98Nh8MhfrW1tckWDyE/JoNOTKtuOtgz4WvfrO8GAJw3X/3O7LklqaVij/YJr5+lQhoWEAr5WZ1NKuNamKhSur4OAKry03MbgVg3sOLCjo08ScOxE/fzKrQxgxFrQEhdXARCEfS7hRsJJZ0Xg16HfGv6qWS10oHsdzWdG4J+jx+BcAQcp+y4k0yTATnRm7+uNMSRGnWlQGzEUud0cuy++tWv4qc//SlCIaHNOhwO48EHH8TXvva1pN7nvPPOg8ViGfPrxz/+sfi6pqYmfOYzn8Ff/vKXCR07s9kMm8026ouY2pwXTWW+uqdr3Dlf/W4/tkfn1507v1ix2MZjXrQztrHPI3bLJYKaHbEMtoYtJWEXXYWW7iT5VGCOXedw6rPsOlRKxbKLRDor0ZTez8solsBtZG6dSa9DnsJOtSiO0hDVariNQNyO5DSEEfveomyz4islxU72NMSRGil8AJJ04ctN0jV2L774Io4ePYqf/vSnKCoqQm9vL7xeL+bMmYMXX3xRfF19ff2E7/Pmm29O+rO6u7tx7rnn4p577sFll12WbKjEFOe8BcUwPa/D0V43Dna7UFd6vFh/dXcneF5YRabk/LTxKLVbkG02wOUPoanfk/AWh4be6Aw7FerrGDMLs7ClcSClzRktg9GOWBWEXVG2GSaDsD05EgAAJylJREFUDoFQBF2O5NcURSI82ofVScXGN34kuxuZ0RG9QCv9+WfCaCQQhtMXhM2SfAqeCaMim1mxbSWMElsG9nU4xY0jqaBWnZcUrlGXOJBb+b+b5TkWHOhypiWOOlX63LOf1+sShhRrZc96PEkLu4cffliOOI7D4XDg/PPPx5e//GXcfPPNivxMQlvYLEasm1eIN+t78MLOjjGF3bPb2wEAly8vVzq8MeE4DnNLsrGjZQiHelwJCzs1R50watLYnCF2xKqQitXpOFTkZKCx34O2wZGkhV2/249AKAK9jlN0lhoQ67Bz+0NwekMp1Sd2iqvclI0902RAbqYRQyNBdA57YStJPnbmuih93IGYOEpnz3CvSnVepXEp/FSbP2LCSPljL4XjGNt0o2z8+VkmmPQ6BMIR9Dh9irv8iZC0sFu7dq0ccRzHiy++iD179qChoQEPPvig+LjbndpUf2JqcuVJlXizvgdPb2vFt86eM2rH7Z72YdR3OWHS6/DZpdoQdoDQQLGjZQiHu13Akslf7wuGRTE1p1hFYVeY+uaM1ugMOzVSseznNvZ7UqqzY4OVS2wWGBS++84w6VFgNaHfHUDb0Ajsmfak3yMm7JQ/9mU5GaKwqy1JvvxF6Y0Z8YjiIsVUrFr1gYDgUut1HEIRHv1uf0rHT03HLtaAkJqo9gXDGPAIx75cYcdOp+NQmmNBy8AIOoenibBzOBz43e9+h927dx8nsl577TXJArvuuuuOa9IgTjzOri1CdX4mmgdG8PQnbfjv02aKz/1m0xEAwMWLS1XpJB0PtoEi0QaKwz0uhCM88rJMil8g4pkZrbFrHvBMOmImnlA4InaVzshXdoYdIzbyJPkLhVqNE4zynAz0uwNoH/KKg7kThed5sT5PDeelLCcD+zudYjo4WdRKZQLp1zcyt06N+kCDXofibDM6HT50DntTEnadKmz8YKSbSmaCMNOkhz1D2S58QDhmLQMjmh15krSwu/rqqxEMBnH55ZcjM1N7SpWYXuh0HG46owb/+8I+/Oqtw/jM4lIU2Sz46Gg/3jrQCx0HfPOs2WqHOQrWQFHfldgsxfroOJf5pTbF64ziqcjNgEHHwReMoNvpS7h2pcvhQyjCw6TXqSZM05nDp9YMO0ZFbiZ2tztSEhgOb1Bcq6RGjWl5ms5Ll0rNB0DseKV6cVazPhAASnMyosLOh2VVyX8/E9VqfG7SHRkSX1+nxrEvs6cXv9wkLew+/PBD9Pf3w2TSjkNCTG+uXlmFp7e1YW+HA//9t+344qoq/OLNQ8Jzq6pQo2LDwVgsiLou7UNeDHkCk7qJTADOL1O3k9uo16EqPxONfR409nkS/oPPRp1U5GWkPOg1XVgKOJVZdmrNsGPEtn4kHzsTg/lZJliMys9wFJ2XFIWdmqKaOVXdDl9SDjWjS8U0MpD+oFxWW6iGY5fusY/V16nzO5tuKlluki4oWbVqFRoaGuSIhSDGRK/j8PMrlyA304i9HQ5874W9GPAEsKDMhnsunq92eMdhzzBiZrQRYW+HY9LX749z7NQm1kCReJ0dE1NKb5yIp0rcdTsFU7HRn9uRwko05hgoPeqEke4FrkPFY19ss0DHAcEwj35P8rPsOlS+IUhntVU4wqMnOr9PDXHEjn0gHEnt2KvUMMQozUlPVMtN0o7dkiVLcN555+ELX/gCioqKRj131113SRYYQcQzryQb//raKXjwP4fQ0OfGqbMLcNs5c1TfNDEei8rtaOr3YG+HA2fMLRz3deEIjwMacewACO7ngV40JDHypCU6w06NUScMlortd/vhDYST+lyoNcOOkc6eXiaMlB5OzEgnpeYLhsXmAzXEkVGvQ1G2Bd1OIZ1ZlOS+1Ji4UOfYM9crFVHd6xK6aQ06TtE1dIz4Y9+VwrEXHTu1PvfRn5tqbancJC3sBgcHcc4552BgYAADA7EF7WrWBhEnBjWFVjz8pRVqh5EQiyvseHl3J/a0D0/4ukPdLowEwrCaDZilgZTyzBRGnjB3T63GCQCwZxqRbTHA5QuhbWhEbGCZDDVn2DFYN2sqNXadKtZJATFR0+0UhkMn01XMhKzVbFClAB4QnBdBXHixtDInqe9VazA0ozSNGkEmxIttFtXKJ8pymKj2YkmSx17ctqJyKnbaOHaPPvqoHHEQxLRiUbTOblfb8ISDZ3e2CVszllTaVfsDGw8Tdo1JpGK1sDUDEFy7+i4n2gYTF3ZqzrBjMGHg8Abh8gWRncSgX9E1UklcFFrNMOo5BMM8el3+pC608SlwtYyBspwM7GwdFgVyMqjt2Imp2BRij406Ua8LvzQnA0jx2Ks1nJjBUrHDI0GMBELINCUtpWQl4Wi2bds26WtWrVqVVjAEMV1YUpkDo55Dj9OP1sGRcd2sT1uGAQDLq3IVjG582Cy79iEv/KEwzIaJU5rBcERMxaot7KryBGGXTAOFmjPsGFazsDtzeCSIjmEvapMY9Cu6RirVGul0HErsFrQNetE57E1S2KnrlAJAWYrpTJ7nVU/hM1HW5/In9LsaDxsMXKqSMAJixz7ZAdHxI37UEtU2i1HcMNQ57FP9b9+xJCzsvvCFL0z4PMdxaGxsTDsggpgOWIx6LKnIwfaWIXzcNDiusGOO3bKqHAWjG59Cq3nUSrTJhs62DHgQivDIMulVvfsHgOoU0sitg2ywsrrr6CpyMzA8EkT7YHKDftXuDgSEeqO2QS86hr04KYnvU/viDMQPKU5OXDi9Ibj8wr50teLPyzLBbNDBH4qgx+FHVRJbX8RUpoq/s2J9ZpLHfsATQCAUAcepMyaHUZpjgavHjc5h79QVdk1NTXLGQRDTjlUz87C9ZQjbmgZx1UmVxz3f6/Shsc8DjgOWVWrDsRu1Eq3bNanIYGnYWUVW1etsmduYXH2g4O6xFLRalOcIe0uTqbPzBcPojXY2qimOUu3OVHt+IJB680f7sPC5yc8yqdbAxXFC+UDzwAg6Hd6khJ3o2KkpjFKcBcduZtiOaLUoz8nA4R53ygOu5UR722sJYpqwcmYeAGBLwwB4nj/u+c1H+gEAC8vsmtqcURvdb3uga/LNGaKw00DjBxvV0phERy8TgWoLOyZukpll1xZNOWebDYpvPoiH1fclm85Ue8wMkPocPrUbJxipjpsRa+w0cUOQXOxacKmB2IilVGZnyg0JO4KQidUz82Ay6NAx7MXhnuObET44Kgi70+cUKB3ahNRG5+kd7J58c8YRjTROADFx1unwwhcMJ/Q9rKO3WsWOXiB2kUtm5AmrbazKz1TVLWUX2GSdi3YNiCPmGvVFm2gSpUPlTmpGqvtuxW5qlcaFADFR3ecWagQTpUPlxglGOkPR5YaEHUHIRKbJgNNmC6JtY333qOfCER6bj/QBAE6fM/6cOzWoizp2h7ond+zYDL660sS6UOUkL8sEe4YRPC/su50MnufRHE3FsjSuWqRykWiJvnZGEik4OUjFNfIFw+iLppHVTMXmZ5lgMujA87EVYYkgilKVxUUqjmMgFEG/Wzj2pSo13QDC72umSQ+eT244d6cGajOB+KHoJOwI4oTinLpiAMCb9T2jHt/aOIB+dwA2iwHLZ+SoENn4zI0Kuy6HD8MjgXFf5wuGxUHG80uTW14vBxzHxca1JJCO7XP74faHoONiwkotZhYIP7+53zNm2n4sWqPitSpPbbdREAfJOHbxS9xzM9WZYQcIXb2x1VyJC7sOzQi75N3SjmEveB7IMOqRr2IKn+O4lNKZseHE6jZrsZpGcuwI4gTjnPlFMOg47Gl3YH9nbL3Yvz5tBwB8ZklZUmMKlMBmMYpdovs6xk/HHu5xIRzhkZdlQrFN+en1Y8Gct4beyefwNUXFX3luhurnoDIvEzoO8ATC6HMntmJJK44dSwe6fCE4fcGEvid+1InaTTexLQKJX6Bj8wPVPfapuEZMiFTmqX/sUxF24m5qlY8923YzPBKEw5vY514pSNgRhIwUZVtwwcISAMDfPmoGIKzzeX2vkJr9/PIKtUKbkCUVOQCA3RNszqiP23Gr9gWCMS86mPhQTwKNH32C+KspUL8+0GzQi7VmLD08Ga0D2hB2WWYDCqyC88NimgytpDKBWJ1cMnuGtVJjJwq7IS8ikcScXiYCK1UWRkCcsEvwc8PzvCY/91pLx5KwIwiZ+cqp1QCAf33agR0tg9jw+kF4g2EsrrBjuUbm1x0LW6+0q2143NfUR+vrFmhgxy2DpZEPJyDsDkdrCOeVqF8fCMQaOJoS2PoRCkfQNsQucOqmYoHYBbolwQs0c8fUdl2AmEBI1DUaCYQw6BFKFNTuii21CyvBAqEIelyJpZJFYady+QGQfDpzaCQozg/UQvzs80vCjiBOMFbMyMOlS8oQjvC4/A9b8PynHQCAH166QDNO17HEC7vxar52tg4DABaWq19fx2COXWOfZ9IuR9apnOj6MbmpEQcsT36RaBvyIhjmYTHqUGpTt9YIiInSRJpWAG1snWAk27jC6uuyLQbYklj/JgcGvU50PRN1vdgNQZUGhFGyx74l+vkqtVtgMapfwhJbwZj4iCUlIGFHEArwwOcWYsUMYQixyaDD/Z9doJk1YmOxoEzYXdvn8o9ZVO72h8SawZOqtfPvKLVbkG0xIBThJ913y1y9eRoRdmxzRnMCFwk2P7CmwAqdBnYMM9cwUXHB/o1aEBfJxt6uka5MRrJ1aq1acuziYk+kaUgc8aOB2AEk1aylJNraXEsQ05RsixH//OoaHO5xI8us10QKaiIyTHosKLNhT7sDWxsHjqsF3NU6jAgvXNxKVZyFdSwcx2FecTa2T7I5o9/tx4AnAI7Txgw+IHaRaOibPBXLXqOV2Fk6M9ExM8zhqNHAYGsmErqdPviC4UmdoHaNFO8zKpNsoGC1hFoQRxW5GdBxwEhAGH9TNIn73KKR+jpGbNvN5L+zSkKOHUEoBMdxmFeSrZkLwmScGp3B90F0Q0Y8nzQPAgBWasitY7CaOVYDOBasvm5GXqZqK6GOhaWEm/onTyNraeMHELvQJlJjN+AJwOULgeO0cYHOzRQWugOJbf6IiVL1axuBuPrGBISdI66DUwtpcLMhdpPbkIDr1RLd7ayFulIg1nhFqdgU2LBhAziOw9atW9UOhSBOGE5nwu5o/3Fpko8aBLF3UnWe4nFNxuIKoeZvT5tj3Nfsi6aRJ9uFqySldguyzUIaeTLn66iGNn4AsRo75npNBEtbledkaKJOiuO4pGq9tLKGjlEtuqWJiFLhc1NsMyPLrI2EHRPIk5VOALEUvhZuCACguiA28oQ11GgBzQu7jo4OPPXUUygpKVE7FII4oVg+IxcWow69Lv+ovbF9Lj+2twwBAM6qLVIrvHFZHB3VsrfDMe4IiN3tgrBbXKmdxg+O4zCnWBBqE2394HleTMXOKtKGuMjJNCInOmh4snojlrbSijACYkIhkcYVJuzUXkPHYOnsxj73pHVq7NxoYcQPY5YY/8SfG57nNXdDk2kyiIOSGxMooVAKzQu7b3/727jvvvtgNmtjACpBnChYjHqcEV139tKuDvHxtw70gOcFZ0ztfY1jMafICotRB7c/NK4LsDs6xmVpVARqBZaOPTLBuJZOhw8uXwh6HacZccFxHOZEL7ZHeiceNcPSVlpJIwOxWCarbwyEImItm1ZSsTPyheHWLl9o0uHW7PdBK7EDcY7dJMe+z+2H0ydsitHSTYEorDWUjtW0sHv33XfR39+Pz33uc5O+1u/3w+l0jvoiCCI9rlghNE08v7MDobBQ9/VCdFzL+Qu06aIb9DosLBOcuN1jpGP73X60D3nBccDCCu04dgAwJ4EBy2wwtCBg1U9lMmYXCbEfnWTrB3NmtHRxZs7nZBtL2oZGEOGFVWhF2dowGyzGWJ3aZK6XFo89cw8nq7E7Gh1PVJWXqfqmmHjOqi3CF1dVauYmC9CwsAuFQrj99tvxq1/9KqHXr1+/Hna7XfyqrKyUN0CCOAE4s7YI+Vkm9Ln8eHZ7O7Y0DGBb8yBMeh0+v7xc7fDGhc3h294yeNxze6LbNGYVWlWfQ3YstdHGj/jU97GwMTPzNTQYGkDMsetJbMwMSztrgdmFwnGfzLFja+iq87M0NYNyVmFiHdVM2GnLLRVibx8ambA+86jGOsEZN5w2E+s/vxirZmqn3li16snzzjsP77///pjPff/730d2djZOO+00LFy4MKH3u/vuu3HHHXeI/+90OscVd+FwGMGgtna7TYbRaIRer527FOLEwKjX4dYzZ+NHr9bjf1/cKz7+hZWVmhpzciynzi7Anz9owuYjQuNH/EX4w6MDAIAVGpwjyIY9tw6OYMgTQO4YS9r3d7KNH1pzG4UL7tEJxIXHHxI7Z7XUuMLSgf3uAIZHAsjJPP64A3Fr6DSUygQEofbOob4JHbtwhEfTgLY6egGgMNsMe4YRDm8QR3vd4w48FzvBNSbstIhqwu7NN9+c8PnLLrsM77//Pp577jkAQF9fHy6++GL8/Oc/x1e+8pXjXm82mxOqw3O73Whvb09oGKKW4DgOFRUVsFrpQ00oy/WnVOM/+7rwSbPQMDGzIAvfPHu2ylFNzOqaPBj1HNqHvGgZGBGH/wLA+4f7AABnzC1UK7xxsWcYMbMgC039HuxuH8a6ecc3p9R3am+VGxBzUpqj41pMhuMTQizFXJRtRt4YolUtsswGlNot6HL40NDnxooZY7svrKlFK0OtGazOa6I0eNvgiHhetDJcGRCubfNLbdjSOID6Lue4wo45wbM15DZqFW30O4/BY489Bp8vNvF+5cqVeOSRR7Bu3bqU3zMcDqO9vR2ZmZkoLCzUlJU+ETzPo6+vD+3t7ZgzZw45d4Si6HUcHr9hNV7e3YH2IS9uPL0G9gxtpTCPJdNkwPKqXHzcNIjNR/pEYdc57MWRXjd0HHBadJyL1lhcYUdTvwd72h3HCbt+t19cQK+1VGyJTdj64fKFcLTXPWZ8B6Mp5tpSbcUOCK5Xl8OHo73jC7uD3dqMf16JIHYOdo9fW86em1tshUGvrSqsuqiwOzDO7Eme58W5lHUaO/ZaRLPCLicnZ9T/6/V65OXlITMz9fk1wWAQPM+jsLAQGRnauWNJhMLCQjQ3NyMYDJKwIxQnw6THF1ZWqR1GUqybV4SPmwbx8u5OfGlNNQBgY30PAGBJZQ7smdoUp0sqcvDSrk6xFjCebU1CzWBtSbbm6gM5jsOicjs+ahjAvg7H2MIuKi7qSrTleAHCYOsPjvaPW98YDEfE5opajcVfW2IDxwE9Tj/63X4UWI/PXtVH/111GkqBM+pKWW3p2MKubdALhzcIk16nmd3OWkZbsn0CmpubcfLJJ0vyXlPFqYtnKsZMEGry+eXl0HHAJ81DONorzPj6+9YWAMBnFpepHN34LK3KASDEHT5mDh8Tdloq1I5nUTSNtqdjeMznWX3gPI0JIyCW2mbNKcfS3O9BIBxBlkmvqVQmIKSSZ0a7MscTRwc07Hixm4D6TueYZVJ7O4RzMq8ke8wUPzEaOkIaYGBgAGeffTbmz5+PxYsX4/nnn1c7JIKY8hTbLOIA5d+9fQRvH+zFkV43Mk16XHFSxSTfrR6Ly+3Ithjg8AbFCxpja6PQ+LF6Zr4aoU3Kouj4mL3tx4sjfygs/nuWabhxpb7TOeZga5aGnVuSDZ1OezfadaIwnXrCbnaRFUY9B6cvJO6yjYdtihmv/o4YDQk7DaDT6bBhwwbU19dj06ZNuO2220bVFxIEkRpfWzcbOg54cVcn/vtv2wEIHb1aS2PGY9DrcOosof6PNXoAwsYP1nygVcducXkOAGFcy7H7bvd3OhEIRZCXZRLXYGmJmoIsWIw6eALhMVe6sdT4fA0KIyAWV/0Yws7hDaJ9yDvqdVrCbNCLoo3toY6H3SgsImGXECTsVOCee+5BbW0tLrzwQpx33nnYvXs3Vq5cCUCopcvJycHg4PEfboIgkmPFjFzceX6t+P+rqvPw/y6oneA7tAHr2H33UK/42L/3dILngSUVdhRqZDjusVTmZSA304hAOIK9x6RjP42uoVtelavJ0hKDXieOYNk3hjj6tHUYgBC/FmHCaFd0q0o8n7YKx74qL1OztaWronunjxV2gVAEO6KfnWXRMgViYjTbPCE3PM/DO8my6lTIMOon/KO1bds2bNq0CXv37kVPTw/q6upGPb9jxw6Ew2GUlWm3BoggphJfWzcL584vQtugFyfX5GtqW8N4nFVbBL2Ow6etwzjc48Lc4my8tLsTAPDZpdodDM1xHE6ZVYB/7+3C5iP9o7pLt0fH5ayYoU1hBAgdybvahvFpyxAuXRL7GxyfRtZq/MurcqDjhBmIXQ7vqDmTn2i8NhMAVlbn4ZH3G48TdrvahuENhpGfZdLcmBmtcsIKO28wjPk/eEPy962//3xkmsY/rB999BE+97nPwWg0oqKiAqeffrr43NDQEK6//nr8+c9/ljwugjiRmV2ULa68mgqU2C04b34xXt/XjUc/bMbly8uxs3UYOg64ZHGp2uFNyGlzBGH3wZF+3HbOXACCMPrwaD8AYcagVllTk4/Ht7Tgo4b+UY/Hp5FnaDCNDADZFiMWltuxp92BjxsHcdmy2A0AE0vMFdMiJ1ULgrmhz4Nelw9F2RYAED83a2bla7K2UYtQKlZhxhuMHAwGccUVV+Db3/421qxZo3BUBEFojetOqQYA/GNbK654eAsA4MoVlSiyWVSManLYfMCdbcNweIUNPx81DMDlD6Eo24ylFTkqRjcxJ9fkg+OAwz1u9Lpidc6sG3l5VY4m08iM1VFHjjXZAIAvGBZ3Jq/UsGOXk2kSVwH+Z1+3+Ph70TrTUzU6d1KLnLCOXYZRj/r7z5flfSfi1FNPxW233YbbbrsNPT092Lx5M+666y7ceuutWLlyJa6//nrJYyIIYupxck0+vnJqNR79sBkAUGwz43sX1U38TRqgMi8Tc4utONzjxos7O3DdKdV4I3qhPm9BsaZdl9wsE+aX2rC/04ktDQNi2vvN/UL8azW4rSSek2vy8afNTXjvcB8iER46HYfNR/oRCEdQYrNosmklnksWl2JX2zBe2d2JL6+pxpEeF3a1DUOv48QOd2JyTlhhx3HchClTuVi1ahXOPvtsLF68GHV1dTj99NOxb98+/PnPf8bixYvxn//8BwDw1FNPYf78+YrHRxCEdrjn4vmYXWRFOMLjwoWlmi18P5b/Wj0D9768H3/b0oxz5hfjhZ0dAICLFmo7jQwAp88pxP5OJ17Z3YnPLi1Hj9MnNk6ct6BE3eAm4dTZBci2GNDl8GFr4wBOmV2AF3cJx/6SxaWadhsB4JLFZXjgtQP4pHkIB7udeOaTNgDA2bVFKNa4U60lKBWrAj/60Y9w4MABPP/887DZbFi4cCF4nsfu3buxa9cu7Nq1i0QdQRDQ6Tj81+oZ+PKaas12wo7F5SsqYDUb0Njnwakb3oY/FMGq6jysmaXN+XvxXLFCcOnePtiLbocPL0WF0fKqHM2LC4tRj0uiw7ef29GOIU8Ab0W3rWi56YZRYrfggqh4vuBXm0W3+ourp9bWG7UhYUcQBEFIitVswI8vWwhmEJkNOnz/kjrNO0aA0GizqjoPER64/tFt+PVbRwAAV51UqXJkiXFldPj2Czs7sOxHG+EPRVBbko2F5dqbXzcW935mAbLNsWzaZ5eWYZ3GU+Ba44RNxWqFp59+Wu0QCIIgJOeyZeWwZxixs20Yn19WjuqCLLVDSphvnTMHX/rLx+K2ibpSG66cIsJueVUu/mt1FZ78uBUAYNBxePCKxVNCVAOCa/fc19bgue3tMOg43HHe3CkTu1YgYUcQBEHIwpm1RThzCha9nzq7ABs+vxgPvHYAC8ttuO/ShdBruOnjWO65ZD6Meh363X5cvrwCizXciTwWtSU23HMJlSOlygkp7MYbOaJlpmLMBEEQU5WrVlbiqpVTw6U7FotRjx9eukDtMAiVOKGEndFoBMdx6OvrQ2Fh4ZSxd3meR19fHziOg9E4NbriCIIgCIJQnhNK2On1elRUVKC9vR3Nzc1qh5MUHMehoqICer321yERBEEQBKEOJ5SwAwCr1Yo5c+YgGAyqHUpSGI1GEnUEQRAEQUzICSfsAMG5I5FEEARBEMR0g+bYEQRBEARBTBOmrWPHukidTqfKkRAEQRAEQaQO0zKJTMiYtsLO5RIGS1ZWTs12dYIgCIIgiHhcLhfsdvuEr+H4aTogLRKJoLOzE9nZ2bKONXE6naisrERbWxtstqmxsuVEgc6NNqHzol3o3GgXOjfaRKnzwvM8XC4XysrKoNNNXEU3bR07nU6HiooKxX6ezWajXzaNQudGm9B50S50brQLnRttosR5mcypY1DzBEEQBEEQxDSBhB1BEARBEMQ0gYRdmpjNZtx7770wm81qh0IcA50bbULnRbvQudEudG60iRbPy7RtniAIgiAIgjjRIMeOIAiCIAhimkDCjiAIgiAIYppAwo4gCIIgCGKaQMKOIAiCIAhimkDCLg36+vpw8cUXIzMzE/PmzcOmTZvUDumE5d5778X8+fOh0+nw9NNPj3puw4YNKCwsRF5eHu66666Edu0R0uD3+/GVr3wFFRUVsNvtWLduHfbu3Ss+T+dGXW6++WaUlpbCZrNh0aJFePXVV8Xn6Nyoz5YtW6DT6bBhwwbxMTov6rJu3TpYLBZYrVZYrVZceOGF4nOaOTc8kTJXXnklf+ONN/Iej4d/4YUX+NzcXH5wcFDtsE5InnjiCf7NN9/kV69ezf/jH/8QH//3v//NV1VV8Q0NDXxnZydfV1fH/+Uvf1Ex0hMLt9vN33///XxbWxsfCoX4X/ziF3xNTQ3P83RutMCBAwd4n8/H8zzPb9u2jbfb7fzg4CCdGw0QDof51atX86tWreLXr1/P8zz9zmiBtWvXjrrGMLR0bsixSxG3242XXnoJ999/PzIzM3HZZZdh4cKFeOWVV9QO7YTk2muvxbnnnguLxTLq8SeeeAK33norampqUFpaiu985zv4+9//rlKUJx5ZWVm45557UFFRAb1ej2984xtoamrCwMAAnRsNUFtbK87f4jgOPp8PXV1ddG40wB//+EesXr0adXV14mN0XrSLls4NCbsUOXLkCOx2O0pLS8XHlixZgv3796sYFXEs9fX1WLRokfj/dI7UZcuWLSguLkZ+fj6dG41w6623IiMjAytXrsQFF1yA+fPn07lRmcHBQfzqV7/CD3/4w1GP03nRBt/85jdRWFiIc889F3v27AGgrXNDwi5F3G73cQt/bTYb3G63ShERY3HseaJzpB4OhwO33HILHnjgAQB0brTCQw89BLfbjY0bN2Lt2rUA6Nyozfe+9z3cdtttyM3NHfU4nRf1efDBB9HU1ITW1lace+65uOiii+B2uzV1bkjYpYjVaoXT6Rz1mNPphNVqVSkiYiyOPU90jtTB5/Phsssuw8UXX4wbbrgBAJ0bLaHX63HOOedg06ZNeOONN+jcqMjOnTuxbds23HTTTcc9R+dFfVatWgWr1YqMjAzcddddsFqt2LZtm6bODQm7FJkzZw4cDge6u7vFx3bv3o0FCxaoGBVxLPPnzx/VhUnnSHlCoRCuvvpqlJWV4ec//7n4OJ0b7RGJRNDQ0EDnRkXee+89HD58GOXl5SgpKcEzzzyDBx54ADfddBOdFw2i0wkySlPnRpWWjWnCFVdcwd988838yMgI/9JLL1FXrIoEAgHe6/Xyp59+Ov/444/zXq+XD4fD/KuvvsrPmDGDb2xs5Lu6uvgFCxZQF5nCXH/99fx5553HBwKBUY/TuVEXl8vF//3vf+ddLhcfDAb5f/7zn7zFYuH37NlD50ZFPB4P39XVJX5dddVV/P/+7//yQ0NDdF5UZmhoiH/zzTd5n8/H+/1+/pe//CVfXFzMOxwOTZ0bEnZp0Nvby1944YV8RkYGP2fOHH7jxo1qh3TCct111/EARn298847PM/z/E9+8hM+Pz+fz8nJ4e+8804+EomoG+wJRHNzMw+At1gsfFZWlvj1/vvv8zxP50ZN3G43f+aZZ/J2u5232Wz88uXL+eeff158ns6NNrjuuuvEcSc8T+dFTXp7e/kVK1bwWVlZfG5uLn/mmWfyO3bsEJ/XyrnheJ6mGxIEQRAEQUwHqMaOIAiCIAhimkDCjiAIgiAIYppAwo4gCIIgCGKaQMKOIAiCIAhimkDCjiAIgiAIYppAwo4gCIIgCGKaQMKOIAiCIAhimkDCjiAIgiAIYppAwo4giBOa1tZWFBQUyPozmpubwXEcrFYrXnzxxQlf+69//QtWqxUcx43aRU0QBJEItHmCIIhpj9VqFf/b4/EgMzMTHMcBAOrr61FVVSXrz29ubkZtbS18Pl/C38NxHLq6ulBSUiJjZARBTDcMagdAEAQhN263W/xvi8WC/fv3o7q6Wr2ACIIgZIJSsQRBnNA0NzfDYrGI/89xHP7whz+gqqoKBQUFeOaZZ/Dqq6+ipqYGRUVFeOaZZ8TXDg4O4pprrkFRURFqamrwt7/9LeGfu3XrVixbtgzZ2dkoKSnBL3/5S0n/XQRBnJiQY0cQBHEMH374IQ4fPoxXXnkFX/3qV3HppZdi37592LRpE2644QZcccUV0Ov1+NKXvoSFCxeira0NTU1NOOuss7B06VIsWbJk0p9x22234c4778Q111yDoaEhNDc3y/8PIwhi2kOOHUEQxDHcddddsFgs+PznP4/h4WHceuutyMzMxGc+8xm4XC50dnaiu7sbmzdvxk9+8hOYzWbU1tbimmuuwfPPP5/QzzAajTh06BAGBweRm5uLZcuWyfyvIgjiRICEHUEQxDEUFRUBAPR6PYxGIwoLC8XnLBYLPB4PWltb4fF4kJ+fj5ycHOTk5OCRRx5BT09PQj/jz3/+Mw4cOIDZs2fjlFNOwZYtW2T5txAEcWJBqViCIIgUKC8vR05ODgYGBlL6/nnz5uHZZ59FKBTCww8/jGuvvRYNDQ0SR0kQxIkGOXYEQRApUF5ejpUrV+IHP/gBRkZGEAqF8Omnn6K+vj6h73/yyScxMDAAg8GA7Oxs6PV6mSMmCOJEgIQdQRBEijz55JNoaWkRO2Zvu+02eL3ehL73tddew7x585CdnY3f/OY3ePTRR2WOliCIEwEaUEwQBCEzLS0tqK2thdlsxuOPP45LL7103Nc+//zzuOGGG+Dz+dDS0oLi4mIFIyUIYqpDwo4gCIIgCGKaQKlYgiAIgiCIaQIJO4IgCIIgiGkCCTuCIAiCIIhpAgk7giAIgiCIaQIJO4IgCIIgiGkCCTuCIAiCIIhpAgk7giAIgiCIaQIJO4IgCIIgiGkCCTuCIAiCIIhpAgk7giAIgiCIacL/B05aAyjmkt2qAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -589,7 +585,10 @@ "# Manual computation of the frequency response\n", "resp = ct.input_output_response(sys, T, np.sin(1.35 * T))\n", "\n", - "out = resp.plot(plot_inputs='overlay', legend_loc='lower left')" + "out = resp.plot(\n", + " plot_inputs='overlay', \n", + " legend_map=np.array([['lower left'], ['lower left']]),\n", + " label=[['q1', 'u[0]'], ['q2', None]])" ] }, { @@ -618,18 +617,15 @@ "text": [ ": u to q1\n", "Inputs (1): ['u[0]']\n", - "Outputs (1): ['q1']\n", + "Outputs (2): ['q1', 'q2']\n", "\n", "\n", + "Input 1 to output 1:\n", " 4\n", "-------------------------------------\n", "s^4 + 0.2 s^3 + 8.01 s^2 + 0.8 s + 12\n", "\n", - ": u to q2\n", - "Inputs (1): ['u[0]']\n", - "Outputs (1): ['q2']\n", - "\n", - "\n", + "Input 1 to output 2:\n", " 2 s^2 + 0.2 s + 8\n", "-------------------------------------\n", "s^4 + 0.2 s^3 + 8.01 s^2 + 0.8 s + 12\n", @@ -638,11 +634,9 @@ } ], "source": [ - "# Create SISO transfer functions, since we don't have slycot\n", - "G1 = ct.ss2tf(sys[0, 0], name='u to q1')\n", - "G2 = ct.ss2tf(sys[1, 0], name='u to q2')\n", - "print(G1)\n", - "print(G2)" + "# Create SISO transfer functions, in case we don't have slycot\n", + "G = ct.ss2tf(sys, name='u to q1')\n", + "print(G)" ] }, { @@ -654,17 +648,21 @@ "name": "stdout", "output_type": "stream", "text": [ - "G1(1.35j)=(3.3300564744031984-2.706863274436471j)\n", - "Gain: 4.291431568743418\n", - "Phase: -0.6825322008139448 ( -39.106214488414615 deg)\n" + "G(1.35j)=array([[3.33005647-2.70686327j],\n", + " [3.80831226-2.72231858j]])\n", + "Gain: [[4.29143157]\n", + " [4.681267 ]]\n", + "Phase: [[-0.6825322 ]\n", + " [-0.62061375]] ( [[-39.10621449]\n", + " [-35.55854848]] deg)\n" ] } ], "source": [ "# Gain and phase for the simulation above\n", "from math import pi\n", - "val = G1(1.35j)\n", - "print(f\"{G1(1.35j)=}\")\n", + "val = G(1.35j)\n", + "print(f\"{G(1.35j)=}\")\n", "print(f\"Gain: {np.absolute(val)}\")\n", "print(f\"Phase: {np.angle(val)}\", \" (\", np.angle(val) * 180/pi, \"deg)\")" ] @@ -678,14 +676,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "G1(0)=(0.3333333333333333+0j)\n", + "G(0)=array([[0.33333333+0.j],\n", + " [0.66666667+0.j]])\n", "Final value of step response: 0.33297541813724874\n" ] } ], "source": [ "# Gain and phase at s = 0 (= steady state step response)\n", - "print(f\"{G1(0)=}\")\n", + "print(f\"{G(0)=}\")\n", "print(\"Final value of step response:\", stepresp.outputs[0, 0, -1])" ] }, @@ -768,7 +767,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACumElEQVR4nOzdd3gU1frA8e9syaYnJAESktADSAcBBaUpRUEBCxYsYLsWrGDjqhewXDvq9YL32ssVC1ZEfkqRIipFBASkQ6gJhJIsm7LZ3ZnfH5ssCSlkk93M7ub9PE+e7M7Me+bdsxw4zJlzRtE0TUMIIYQQQgQ9g94JCCGEEEII35COnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRBCCCFEiJCOnRAiqEyYMIExY8b4/TyKovDNN9/4vFxN0/jb3/5GQkICiqKwfv16n5/DHyZMmICiKF7XS2Zmpieue/fufstPCOEmHTshhM+V7QQoikJiYiIXXXQRf/75p96p+U1NO5w//PAD77//PvPmzSMrK4vOnTv7Pzkfueiii8jKyuLiiy/2bGvZsmW571pRFB599FHP/vT0dLKyspg8ebIeKQvR4EjHTgjhF6WdgKysLBYvXozJZOKSSy7ROy3d7dq1i5SUFPr160dycjImk8nrMjRNw+l0+iG76lksFpKTk7FYLOW2P/nkk57vOisri8cff9yzz2g0kpycTHR0dH2nK0SDJB07IYRflHYCkpOT6d69O4888gj79+8nJyfHc8zGjRu54IILiIiIIDExkb/97W/YbDbPfpfLxaRJk4iPjycxMZGHH34YTdPKnUfTNF544QVat25NREQE3bp144svvqg2t5YtW/LUU08xbtw4oqOjadasGa+//nq1MdXlOm3aND744AO+/fZbz1WrpUuXVihjwoQJ3HPPPezbtw9FUWjZsiUAdrude++9lyZNmhAeHs7555/PmjVrPHFLly5FURR+/PFHevXqhcVi4eeff65QfnFxMXfffTcpKSmEh4fTsmVLnn32WQBuvvnmCh1rp9NJcnIy7777LgBffPEFXbp08XzGIUOGkJ+fX229AMTExHi+a+nECaEv6dgJIfzOZrPx8ccf07ZtWxITEwEoKCjgoosuolGjRqxZs4Y5c+awaNEi7r77bk/cyy+/zLvvvss777zDihUrOH78OF9//XW5sh9//HHee+893njjDTZv3swDDzzA9ddfz7Jly6rN6cUXX6Rr16788ccfTJkyhQceeICFCxdWeuyZcn3wwQe56qqryl2l7NevX4VyXnvtNZ588knS0tLIysrydN4efvhhvvzySz744AP++OMP2rZty/Dhwzl+/Hi5+Icffphnn32WLVu20LVr1wrl/+tf/2Lu3Ll8/vnnbNu2jf/973+ezuOtt97KDz/8QFZWluf4+fPnY7PZuOqqq8jKyuLaa6/l5ptvZsuWLSxdupTLL7+8Qke6Ms8//zyJiYl0796dZ555huLi4jPGCCH8RBNCCB8bP368ZjQataioKC0qKkoDtJSUFG3t2rWeY958802tUaNGms1m82z7/vvvNYPBoGVnZ2uapmkpKSnac88959nvcDi0tLQ0bfTo0ZqmaZrNZtPCw8O1X3/9tdz5b7nlFu3aa6+tMr8WLVpoF110UbltV199tXbxxRd73gPa119/XeNcx48f78mrOq+88orWokULz3ubzaaZzWbt448/9mwrLi7WmjVrpr3wwguapmnakiVLNED75ptvqi37nnvu0S644AJNVdVK93fs2FF7/vnnPe/HjBmjTZgwQdM0TVu7dq0GaJmZmZXGVvX5ZsyYoS1dulTbsGGD9tZbb2lJSUnaLbfcUuG4qVOnat26das2fyFE3ckVOyGEXwwePJj169ezfv16Vq1axbBhw7j44ovZu3cvAFu2bKFbt25ERUV5Ys477zxUVWXbtm3k5eWRlZVF3759PftNJhO9evXyvP/rr78oKipi6NChREdHe34+/PBDdu3aVW1+Zcstfb9ly5ZKjz1TrnWxa9cuHA4H5513nmeb2WymT58+FfIp+9krM2HCBNavX0/79u259957WbBgQbn9t956K++99x4AR44c4fvvv+fmm28GoFu3blx44YV06dKFsWPH8tZbb3HixIkz5v/AAw8wcOBAunbtyq233sp//vMf3nnnHY4dO1ajzy+E8C3p2Akh/CIqKoq2bdvStm1b+vTpwzvvvEN+fj5vvfUW4L43TlGUSmOr2n46VVUB+P777z2dyPXr1/PXX3+d8T47b87ri1yropUMdZ5eTmXnLNuxrEzPnj3Zs2cPTz31FIWFhVx11VVceeWVnv033ngju3fv5rfffvMM0/bv3x9wT3JYuHAh//d//0fHjh15/fXXad++PXv27PHq85x77rkA7Ny506s4IYRvSMdOCFEvFEXBYDBQWFgIQMeOHVm/fn25m/N/+eUXDAYD7dq1Iy4ujpSUFFauXOnZ73Q6Wbt2red9x44dsVgs7Nu3z9OJLP1JT0+vNp+y5Za+79ChQ6XHnilXgLCwMFwuVw1r45S2bdsSFhbGihUrPNscDge///47Z511ltflxcbGcvXVV/PWW2/x2Wef8eWXX3ru1UtMTGTMmDG89957vPfee9x0003lYhVF4bzzzmP69OmsW7eOsLCwCvc0nsm6desASElJ8Tp3IUTdeT/PXgghasBut5OdnQ3AiRMn+Pe//43NZuPSSy8F4LrrrmPq1KmMHz+eadOmkZOTwz333MMNN9xA06ZNAbjvvvt47rnnyMjI4KyzzmLGjBnk5uZ6zhETE8ODDz7IAw88gKqqnH/++VitVn799Veio6MZP358lfn98ssvvPDCC4wZM4aFCxcyZ84cvv/++0qPrUmuLVu25Mcff2Tbtm0kJiYSFxeH2Ww+Yz1FRUVx55138tBDD5GQkEDz5s154YUXKCgo4JZbbqlRXZd65ZVXSElJoXv37hgMBubMmUNycjLx8fGeY2699VYuueQSXC5XufpZtWoVixcvZtiwYTRp0oRVq1aRk5NTbefyt99+Y+XKlQwePJi4uDjWrFnDAw88wKhRo2jevLlXuQshfEM6dkIIv/jhhx88V21iYmLo0KEDc+bMYdCgQQBERkby448/ct9999G7d28iIyO54oormDFjhqeMyZMnk5WVxYQJEzAYDNx8881cdtll5OXleY556qmnaNKkCc8++yy7d+8mPj6enj178ve//73a/CZPnszatWuZPn06MTExvPzyywwfPrzSY2uS62233cbSpUvp1asXNpuNJUuWeD7rmTz33HOoqsoNN9zAyZMn6dWrFz/++CONGjWqUXyp6Ohonn/+eXbs2IHRaKR3797Mnz8fg+HU4MyQIUNISUmhU6dONGvWzLM9NjaW5cuX8+qrr2K1WmnRogUvv/xyucWIT2exWPjss8+YPn06drudFi1acNttt/Hwww97lbcQwncUTavBXHYhhAghLVu25P777+f+++/XO5V6V1BQQLNmzXj33Xe5/PLLaxw3YcIEcnNza/2YtWnTpvHNN98EzSPUhAhWco+dEEI0AKqqcujQIZ544gni4uIYNWqU12XMmzeP6Oho5s2bV+OYffv2ER0dzT//+U+vzyeE8J4MxQohRAOwb98+WrVqRVpaGu+//77XjzJ74YUXPI8K82ZiRLNmzTxX6U5/FJkQwvdkKFYIIYQQIkTIUKwQQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIgI2Y7dsmXL6Nu3L+effz6TJk3SOx0hhBBCCL8L2Y5d27ZtWbp0KStWrCA7O5uNGzfqnZIQQgghhF+Z9E7AX1JTUz2vzWYzRqOxxrGqqnLo0CFiYmJQFMUf6QkhhBBC1IimaZw8eZJmzZphMJzhmpwWBP7xj39oZ511lqYoivbJJ5+U23fkyBFtxIgRWkREhNauXTtt0aJF5favXbtWGzFihFfn279/vwbIj/zIj/zIj/zIj/wEzM/+/fvP2IcJiit2GRkZvPbaazzxxBMV9k2cOJFmzZpx9OhRFixYwNixY9m1axeNGjUiOzube++9ly+//NKr88XExADw9ttvM2bMGMxmc43iHA4HCxYsYNiwYWeM8ebYhi7Y6krvfP19fl+XX9fy6hJfm1hp5/4RbHWld77Szv0bG2jt3Gq1kp6e7umfVCcoOnbXX389AM8880y57TabjW+//ZbMzEwiIyMZM2YMM2bM4LvvvuOqq65i3LhxvP766zRt2rTa8u12O3a73fP+5MmTAERGRhIREVHjL8pkMtU4xptjG7pgqyu98/X3+X1dfl3Lq0t8bWKlnftHsNWV3vlKO/dvbKC1c4fDAVCj28MUTdM0v2ThB4MGDeKOO+7gmmuuAWDdunUMHz6cI0eOeI655557iIyMpGXLlkyfPp0OHToA8Oyzz9K3b99Ky502bRrTp0+vsH327NlERkb64ZMIIYQQQtRMQUEB48aNIy8vj9jY2GqPDepZsTabrcIHjI2NxWazceedd5Kdnc3SpUtZunRplZ06gClTppCXl8dLL71E+/btadu2rb9TF0IIIYTwuaAYiq1KdHQ0Vqu13Dar1Up0dLRX5VgsFiwWC5MnT2by5MlYrVbi4uIAGDx4MCZTzarJ6XSyZMmSGsV4c2xDF2x1pXe+/j6/r8uva3l1ia9NrLRz/wi2utI7X2nn/o0NtHZ+el+nOkE9FGuz2UhMTGTv3r0kJycDMGDAAG699VZuvPFGr8ufOXMmM2fOxOVysX37dhmKFUIIIYTuQm4o1uFwUFRUhKqq5V5HR0czatQopk6dSmFhIXPnzmXTpk1ceumleqcshBABSVU1lC1fUrB3td6pCCH8ICiu2E2YMIEPPvig3LYlS5YwaNAgcnJyGD9+PEuXLiUtLY1Zs2YxZMiQOp2vdCh29uzZjBw5Mmgv3YaKYKsrvfOVIRr/xgZ7O9+waDZ9/5gMQMHDWTpnc0og1lV19M5X2rl/YwOtnVutVlJSUmp0xS4oOnb1RYZihRChLmzL51xcNA+Ab7t/APJ0HSECnjdDsdKxq0TZK3ajR4/2akHDhQsXMnTo0BotaFjTYxu6YKsrvfP19/l9XX5dy6tLfG1ig72db3jtKnrZfgLAdv9uLFHV/yNRXwKxrqqjd77Szv0bG2jt3Gq1kpSUFDr32AkhhPCNMEee57Ut75iOmQgh/EGu2JUhQ7FCiFCXsW46HdkFwBctn8bcqLnOGQkhzkSGYutIhmIDS7DVld75yhCNf2ODvZ1n/7Mr6dohALYO+5g2vYfrnJFbINZVdfTOV9q5f2MDrZ3LUKwQQohKRWk2z+vi/BM6ZlI/snZt4M8PJmE7ceTMBwsRAuSKXRkyFCuECGmaxoh1N2NWXAB82+hWaDlA56T8a8QfN2FWXKww9eNYlzv0TkeIWvFmKDbwFwuqRxMnTmTixInlHikWzJduQ0Ww1ZXe+coQjX9jg7md2/OtmNe7PO9TG8fQbcQIHTM6xV91ZV7n/rytXLs4x4efVe/vVtq5f2MDrZ1780gx6didgdls9vqL8iamNuU3VMFWV3rn6+/z+7r8upZXl/iG0s7zCvIo+yRtrTAvIPIqy191pWL0S7l6f7fSzv0bGyjt3JtypWN3Bg6Hw+tjaxLjzbENXbDVld75+vv8vi6/ruXVJb42scHczq3HjpBUdkPh8YDJzV91VfrPoaoYfVq23t+ttHP/xgZaO/embLnHrgy5x04IEcqKs/9ibNZznvcrTOdyrMtdOmbkf6PX3QjATtLZ3OMZnbMRonbkHrtaknvsAlOw1ZXe+cq9N/6NDeZ2/ucP2VDm8bCxJodP7zurC7/V1Tr3L4PRzAi5x0638qWd143cY+dDwTwmH2qCra70zlfuvfFvbDC2c9XmXvIjX7MQpdgJd54MiLzK8mVdlR2QUhW5xy4Qypd2XjvelCvr2AkhRENx8jAAB03up01EuE7qmY3f2YsKPa9VxahjJkLUH7lidwbBfLNlqAi2utI7X7mp2r+xwdzOlYIcAHJj2kLuDhqpudjtxRgMis6Z+aeuck8cJbnktYpBJk/oWL6087qRyRO1JJMnhBChrMWG5+mububL2PFcYf0AgE87/JeIiAidM/OPwrwcrtk9GYAttGZ7j2n6JiRELcnkiVqSyROBKdjqSu985aZq/8YGczvP2fAIAC16Xoh16RfEkk/XDi3J6HS2zpn5p652bVwFu92vIwxOmTyhY/nSzutGJk/4UDDfbBlqgq2u9M5Xbqr2b2zQtXPVRWPVPXkiKb0DJ4xJxLryyT92ELP5XH1zK8OXdeWwn3oubphml8kTAVC+tPPakckTwP79++nZsyfh4eE4nU690xFCCF1Zc/ZhxkWxZqRpaitslqYAFOZk6puYHxXn53leWzS7jpkIUX9CtmPXuHFjfvrpJ849N3D+JyqEEHo5tnczAFlKEyLCwyiOawmAenSnjln5l7Pg1PBVJIXVHClE6AjZjl14eDjx8fF6pyGEEAHBtn8TAIctLQEwNWkHQKR1t14p+Z2r6FTHLgI7mrNYx2yEqB9B0bGbOnUqHTt2xGAw8Omnn5bbl5OTw8iRI4mMjKR9+/YsXrxYpyyFECJwaUe2AGCLywAgPr0zAI2L9xKqiyOoReXX6SuwHtMpEyHqT1B07DIyMnjttdfo06dPhX0TJ06kWbNmHD16lOeff56xY8dy4sQJHbIUQojAFZf7l/tFk47uX63dHbt07TBHckN0oWJ7+c9lyz2qUyJC1J+g6Nhdf/31DB06lPDw8HLbbTYb3377LU8++SSRkZGMGTOGzp0789133+mUqRBCBKDifFLt7nvpYjPOA8DSKI18IjApKgd2bdYzO/8pLt+xKzwpV+xE6Avq5U527NhBXFwcKSkpnm3dunVj8+bNFBUVcckll7BhwwaGDx/OtGnT6N+/f6Xl2O127PZTM6bKrhcTzCtVh4pgqyu985UV6f0bG4ztPH/Hb8SjkqUl0KplG08+RyzNaWXfxpFdG3B066Vrjv6oK8NpV+wKTuQEzJ/bQD+/tPPAauch++SJQYMGcccdd3DNNdcA8PPPP3PTTTexc+epWV2PPfYYubm5zJw5s8blTps2jenTp1fYLk+eEEKEgtg93zE4dw6L6EN+j7s925tueZtzi5bzmWkU4V2u1DFD/4jf8G8Gqqs9779OuhNDel8dMxKidrx58kRQDMVWJTo6usJqzFarlejoaK/KmTJlCnl5ebz00ku0b9+etm3b+jJNIYTQVVL+NgAOWcr/3WaLaQNAi+KdqEHzX/yai1HLX7EzOvN1ykSI+hPUQ7EZGRnk5eWRnZ1NcrL7Uc8bNmzg1ltv9aoci8WCxWJh8uTJTJ48udwjxQYPHozJVLNqcjqdLFmypEYx3hzb0AVbXemdr7/P7+vy61peXeJrExt07bw4H/M698SJxr0vZ2C/8zy7XIdT4YP36KLsIqJrHzKS4/TJEf/UVfa6KQDsU1Jprh0kNdbMWUOH+qRsvb9baef+jQ20du7NI8WCYijW4XDgcrkYNmwYt912G2PHjiUsLAyDwcDYsWNJSEjg1VdfZeHChUyYMIFdu3bRqFEjr88zc+ZMZs6cicvlYvv27TIUK4QIeonH1nD+vtfJVJuyrNMLxIcrp3ZqKkPW30kUhbyc+DRtmzfXL1Efc6kweP1dNFJs/Gw8l/6ulfxsGcjxjrfonZoQXgu5odjbbruNiIgIfv75Z2688UYiIiJYvnw5ALNmzWL//v0kJiby4IMP8vnnn9eqUyeEEKEo9uhaAH4x9CzfqQNQDOwLcw/PRuRuq+/U/Crf4aSR4n5W7LFwd4c12pmrY0ZC1I+guGJX30qHYmfPns3IkSOD9tJtqAi2utI7Xxmi8W9sULXzolxMr3cjTCvmvfb/4erRoysccnLpqzRd/TxL1e60v28ucRH6PNDe13X1144d9Pp6AC4MLOv+Chesv4+95tY0fuAXH2Sr/3cr7dy/sYHWzq1WKykpKTW6YicduzJkKFYIEUrSDy+i56EP2aqms7Dd0zSPUSocE1N4gAu2/p0izcyzqf+hZ1N9Ona+dujgHu48MpVjxPN1s4e49dBj5BLNsh6z9E5NCK95MxQb+Jc/6tHEiROZOHFiuckTQ4cOxWyu2V90DoeDhQsX1ijGm2MbumCrK73z9ff5fV1+XcurS3xtYoOmnasuiv71BAA/hA3jrqtGoCgVO3ZoGtaXXiO2+DDhhQcYMWJi/eZZwtd19cMXb8EROBnRjD4XjIL/PUY8NkYM7gsRdb9dR9p5/ZbX0Nu5N5MnguIeOyGEEN5Rts4lJn8vJ7RoTGdfV3mnDkBRUNpfBEC7o4vIPBYaS4K4TuwHwB6VSkrjJA5pCe732Vv1TEsIv5Oh2DJkKFYIEQoU1cmAv6YQ7zjMK44rSOg2mnhL1cc3su1gwI6nsGnh3B/3by5tE1Z/yfpJ8fqPGav9yC8xIzna9mqS1r7AeYZNLGl6C9ZmA/VOTwivyFBsLclQbGAKtrrSO18ZovFvbDC0c8PKmRgdh8nR4tjXbjx3X9av+gBNo/Bf7xNt20/MiQ306v8oTWKq6Qn6gS/ryqVqrFo7AwyQ0b0ffQaM4P+2zIGiTTSPcdF8xIiAyjcQzy/tPLDauQzFCiFEQ3V0B8rSfwLwovMqxg/qfOYYRSGs+9UAjGY57/6S6ccE/W/30XzaKAcAiGvRBYDC2NYAGI/vrDJOiFAgQ7FlyFCsECKYKaqT/jueplHBbpa7uvBi1EPcelbNYqOKshmy5WFUTWFo8Utc170xieH+zddffs8q4qnsvwEwv8ssHKZodu3ayiTrPzmsNGZl95d1zlAI78hQbC3JUGxgCra60jtfGaLxb2zAtnNNwzh/EoaC3eRpkTym3s474wfSKimqxkWony7AsGsRNxh/ZEXhQ7xxeQ8/JlyeL+tq54efAmAzJzF01FUA/N+aVrDgnzTVchgx6ByITAyYfAPx/NLOA6udezMUKx27MzCbzV5/Ud7E1Kb8hirY6krvfP19fl+XX9fy6hIfEu18xauw/iNUFO53TGR4v7NplxLvXRnn3QO7FnGVcRmvbL2Sn7Y3Z3inZH9kW6W61pWmadgPbQbAmdie6JKy0tPS2a6m0s5wEPOh3+GsSwIi30A/v7TzwGjn3pQrHbszcDgcXh9bkxhvjm3ogq2u9M7X3+f3dfl1La8u8bWJDcR2blj5b4yLpwHwjGMc22P78vLAVt6fN60fpiadiTyyiZtMP/Dol43olBxF01j/j8n6qq525+TT1J4JJohI7eQpr2VCOPO1DrTjILbty7C0HR4Q+Qbq+aWdB1Y796ZsuceuDLnHTggRVDSN9tlf0yH7GwBedV7Oq84ruLujSkZc7f5qb3ZiNb0z/00+4Zxf9CqJsdHcdZaKMUim2v14QOGmw0/R27Cddc1vZV/iAM++tetW8iSzOBTWmjWdpumXpBBeknvsaknusQtMwVZXeucr9974NzZg2nlxPsbv7sGQPReAf6ljedV5Gbf3b8V9wzJqX652Edo7y4g6vJF7LfOYbh3Hr450/jmmY9WLHPuAL+pK0zTe+NdSuiq7Aeg88jY6J7Tx7P8jLxx2zyK5OJMRA/tAVJKu+daFtHP/xgZMOy8h99j5UDCPyYeaYKsrvfOVe2/8G6trOz+wFr7+GxzbiWYw8zS38k5Rfwa2a8zDF5+F0VDHDtiQqfDxlYw3/shHhsF88Qc0T4zi3gvr0GGsobrU1Yb9uUQf24jF4kSNbIy5SXso0xlt1aYdG3e2pIshE8PuhdDzRl3z9QVp5/6NDZR/z70pN0gurgshhMB+Ehb+A94ZCsd24opK5k7TdN4p6E+H5Bj+dW2PunfqANoOgTYXYlAdfJTyJaAxY+F2Xl+8o+5l+9FbP++ml2E7AIYW55br1AF0TY/nB1cfALQt39V7fkLUB7lidwbBfLNlqAi2utI7X7mp2r+xurRz1YWyaQ7Gn55EyT8CQF6bUVy1/0q2WU20SozkvfE9iTT58Hsf9k9Mb/Yn9divvN59NPesT+flhduxFhbz4NAMDL7oQJZR17rKPJbP/23K5j2je0asK7UP6mlltWscyROGc3iIz2HnTzhOHIToJrrkW1fSzv0bG2j/nsvkiVqSyRNCiECiaE7Sjv9Gu8NzibYfBsBmacrihHH8fX8v8p0KjcM17uroIsEPTwDrcOgL2h+eS6G5EdPjn+XT/e6btrs0UrkhQ8Vi9P05a+utrQZ2nSjmz/C/YcbJ4rOexRaeWuG4N/4y8GzhNHoYdvJXylh2JF+qQ7ZCeMebyRPSsatE6eSJ2bNnM3r06KC92TJUBFtd6Z2v3FTt39h6aee2Ixg2zMaw7gOUvP0AaBGNcJ17Nx8rI3n6xz04XBpdU2N584aeJEaF1bxsbzgKML01EOXEHtTOY/mi+RM89u1mHC6N1klRvHRlZ7qkxvnmVHX4Hv9vUzb3fvYnw4xredP8Mlp8C5x3/V5hKBbg7RWZ7F70Ji+a30SLa47zrtVg8H7wStp5/ZYXku3cC1arlaSkJJkV6wvBfLNlqAm2utI7X7mp2r+xPm/nzmLYvQTWz4at80B1urdHNYa+d2PtfCNP/N9e5m5wz/i8uHMyL43tRpTFj3+Nm+Pg8jfh3eEYNs3hqrMuoe3tA7nzf2vZfTSfq95czT0XZHDnoDaEmXxzy7a338Weo/k8MXcLABNTd8IRUNoNxxxWeWd3QPsmvPZjX6aYPiEhbx/mv76CHtfVW76+Ju3cv7GB8u+5TJ4oMWnSJPr378+9996rdypCCFGRowi2/whf3wkvtoXZV8Ff37g7dWm9YfQsuO9Pfkq6lmGz/mDuhkMYDQqPjzyLWdf19G+nrlR6Hzj/AffreQ/Qs5GdH+4bwMguKThVjVcWbeeiV5ezZOsR/+dympyTdsa/u5q8Qgdnp0XR1brMvaPDyCpjOqbEkhgfz3+cJU+eWP4iuJz1kK0Q9SNkO3Z//PEHNpuNn3/+GYfDwZo1a/ROSQjR0GkaHNkCv82E/10Bz7d0d+Y2zAZ7HkQnQ5/b4Y4VcOsiDrS8jIlfbOXm93/nsNVO66QoPr+9L7f2b+3XNeUqGPgoJHeBwuPw5a00Cjfw73E9eO2a7iRFh7H7aD43vb+G699excrdx6iPO3z2HM3nqv/+xr7jBTRPiOTd83JRinLdddiyf5VxiqIwoksyH7mGctIYByf2wLoP/Z6vEPUlZIdif/vtN4YMGQLAkCFDWLlyJb1799Y5KyFEg+K00yh/B4aVM+HQ77B/NdgOlz8mJgXOGgWdxkD6uWAwYLM7+c+P23jz590UO1UMCtzavzWThrYj3KzDjAVTGFz5Hrw5CDJ/hiXPoAyZyujuqQzu0IR//7ST937Zw4qdR1mx8yhnt2jEDee24KLOyT7PV9M0vll/kKnfbsZa5CQ1PoIPb+5D3E93uQ/ociUYqj/niC4pvPXzHl53jOHvhg9g0XTocClEN/ZprkLoISg6dlOnTmXOnDls3bqV2bNnc80113j25eTkMGHCBJYsWUJ6ejqzZs3iwgsvJDc3lzZt3CuOx8XFsXnzZr3SF0I0BPaTcPgvOLwRsjdB9kZM2X8ywFUM28scZwqHFudBmwug7YXQuIPnJv+8Qgfv/7KLd3/ZQ16he3mDvq0TeeKSjnRsVv0N036XlAGj/gVf3AwrZriHaNtfTGy4mb+POIsbzm3Bf5fv4vPfD7B27wnW7j1B7LcmRnVvxkWdUujTKqFO9+FpmsbK3cd5ddF2Vu05DkCP5vG8eUMvGpuLYPsP7gO7jD1jWd3T40mNj+Cd3CHcnbya2Nwt8OMUuOLtWucnRKCoVceusLCQf/zjH8yZM4fjx49jtVr58ccf2bJlC/fff7+PU4SMjAxee+01nnjiiQr7Jk6cSLNmzTh69CgLFixg7Nix7Nq1i/j4eM8jOKxWK/Hx8T7PSwjRwGga5OeQYNuGsv4E5O6BYzvh8Gb3kN5pFMBuisHc+nwMzc+B9HOgWQ8wR5Q7LiuvkI9+28tHv+3lpN19v1frpCgeubgDwzo2rd9h1+p0vgL2rYLV/4Wvb4fbl0OjlgCkJ0Ty9Jgu3HNBBp+s3sec3w9wMLeQ/63cx/9W7iPaYuK8ton0bN6IrmnxdE6NJSa8+hvCixwuNuzP5dddx/h2/UEyjxUAEGY0cO+Fbbl9YBvMRgOseh+cRe5Ockq3M34MRVG4pGsK/12+m1fCJzJVuRc2zoG2Q6Hb1XWtJSF0VauO3V133YXD4WDevHn07+++l6Fr167cd999funYXX/99QA888wz5bbbbDa+/fZbMjMziYyMZMyYMcyYMYPvvvuOvn378t///perrrqKRYsWMWHChCrLt9vt2O12z/uyz2QL5gUNQ0Ww1ZXe+crCpXWI1TSwWyHvAIr1AEreQbAecC85cmIPyvFdmO0n6Q9QyUMYtOhktKad0Zp2QmvSCUdSJxb8vpOhw4aVn9XmcKCqGr/uPs7s1ftZvPUIasltaRlNorhrYGsu7pyM0aDgdAbYjf0XTMV44HcMh9aifXIdzgnzwXxqvc+ECCMTB7bizv4t+XX3ceZtzGLZ9qMctRXz4+bD/Lj51FB0QpSZtPgIGkWGYTEpHD1i4Jtjf1DgcHEot4iDuYWeegGIDDMyulsKdw5sTUpcOKguHC4nptVvoQCunjeh1rC+ruzp7ti9vzeBe8+7l0a/v4o27wGcTTpDUrszxks7r9/yZIFiPy9Q3KRJE/bv34/FYiEhIYHjx92XxePi4sjLy/O2uBobNGgQd9xxh2codt26dQwfPpwjR07NxrrnnnuIjIzk+eef5/7772ft2rV069aNf//731WWO23aNKZPn15huyxQLESI0FTMrnzCHXlYnFYsjlwsTmvJ+zwsjjwiHMeJKD6GWS2qvigUCsISybckY7Mkk29JxhqRijWiOcWmmDOmcrgQ1h41sPaowtGiU1fi2saqDEjW6JKg4eOHOvhcePExBm37BxbnSfY36scfLW6vdM24UqoG+/Nhe57CPpv7J7e4Zh8yxqzRNlajYyONbglahUWRk05u5rydz+MwhLOg82s4jRGVF1SJWX8Z2JZnYGiKk386nqWxbQv5YY35ud0/sJt9sz6fEL7gzQLFtbpiFx8fT05ODmlpaZ5te/bsoVmzZrUprtZsNluFDxgbG0tubi4Ar776ao3KmTJlCpMmTfK8t1qtpKenAzB48GBMpppVk9PpZMmSJTWK8ebYhi7Y6krvfP19fl+X71V5mgrFBSj2PCjKRSnMRc0/xvYNK+nQIhljsRWl6IRnn1KUC4XHUQqOoqg1v/KlRSSgxaaixqahxaaixaSiNWqB2qg1juhUlvz8G4MHDya6hu28bfdz+WnHCeZvOsyWbJtnf7TFyOhuyVx9diptG0fVOL9AoHVpjvbZVaSf+JWmPS7C2es2r+KtRQ4O5hZxKK8Ia6GTfLuDv7Zup2vH9sREhNEkOoyWiZEkRYdVOxRt+fIj94tu1zJ46CivclDSc7j38038nheB8bZPUT8bTVRuJkOPvo39mq8grOr/2Es7r9/y6hJfm9hA+/e87EjimdTqit3MmTN5++23eeyxx7jlllv4+OOPefrpp7npppu4/fbbvS2uxry9YucteaSYED6iqRg1Bwa1GKPnx4FRs7t/l2wzqUWYXEUlvwsxqYWnvT99vx2F2i+lUWyMwm6Oo8gUh90Uh90cW/I7jkJzAoVhiRSGJeAy1O35XC4Vdp9U2HxC4a9chcOFpzomBkWjQ5zG2Unuq3OB9Fgub7U+8gNdDs5GxcCvbR/lWEyHej1/bME+Bm97HA2FxWc9T354slfxLg2eWWfkmF3h8pYuRjTKov/2J7G4bByNbs+q1pO8ugIohL/4/YrdxIkTadKkCe+88w5paWn861//4oEHHuDqq+v3ptOMjAzy8vLIzs4mOdndoDds2MCtt95ar3kIUW80FUVTMeBCKXmtaC4UTr02lHmtaCoGzen5UTQnRs2JopZuc5Xbb1Cd7jLKbivZfuq9C4N2qnNmUB0YVTvGMtuMmn/vO1IVI8XGaIpN0TiMURQbo3CYSn9Hn/Y7iiJTHMWmWFSDf1aFVzU4VAA78hR2WRV2WhUKXeU7c21iNHokaXRP0IgKngeoVGt34+HEF+wh/cRv9M58naXtn6QoLLHezp9x+DsADsaf43WnDsCowAXNVObsMfLTIQPnNU1mZZvJ9Nv1Ikm2bfTd+QIr2zyIwxRcV1NFwxYUz4p1OBy4XC6GDRvGbbfdxtixYwkLC8NgMDB27FgSEhJ49dVXWbhwIRMmTGDXrl00atSo1ucr+6zYkSNH+uXSrbZvJet/X0X37j0wGg1QehXC83Vo5V979mnlNpU9TqkspspyOO21VvNzV1lOzT6DUll8pZ/R/Vt1udixYzsZGRkYSm8+Kj1Owz08h+r+rWme34qmltmnnba/dJ9WYZtSxXb38VTcVrK99Hya6uL4saMkNGpU8llLylGdnt+K6gLN5d522mul7PZyMQF2E30NaQazexaoKRzNFO7+XfKesChUUyQHj50kpUUGhvBYtLBotLBo8PyOQrPElHuPKcJzT5ceQzQ/LFpCUkYPNh8uYO3eXNbuy/PMZi2VEGnm/DaNSLBncdsl59MoOtyr3IKGo4Dwj0dhOLIZV3J37OO+dn+3XvL2u1CO7yL87f4oaBROWIzWpGNtssfudDHsXyvJsRUzdWQ7rj47FSV7A+GfX4NSlIua0Ab75R+iJbSuU76+JkOx/o0NxKHYlJSUGl2xq3HH7oUXXqjRyR9++OEaHeeNCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWLM/CxN6qz6HY4RvvJdyZ65eyRcOjoaApBlSMoBhQFQMaBjTFiKqYUA0m92/FiKaYcClm9z7P9lP73cebPceW228woipmVMWEy2DGZbCgKmZchrDyP8qp1yjB/YAbuwuyC2F/yU3/e20KhwvddV6Wxei+Ktc21v2THk3AT4LwlUh7DgO3/YMwVz57EweyPv3maidT+EL3vW/R4vjPZMX2YHWbB+pU1rIsha8yjcSYNZ7o4cJihNjCfZyzawaRjuMUG6NY0+oejsbUrvMoRF15MxRb447dTTfdVO4EX3/9Neeccw7p6ens37+f1atXc/nll/PJJ5/ULfsAUB9X7MI+HkPhsf1ERkW7/3lQFCj9h8LzF6JS/nWpkm3a6ftPP7bSMk8rv9pjTy+fMnGVxVQ8v3am81f7Wd3bNE3l8OEcmjZtimIwlC9HMZz6KT2+7LYy26mwnXLv3XEln+P0Y6vZrp22XdU0/tqylbM6dsJoNJ2KNxhBMaEZjO7XBhMo5V9rntcG9+8yr7UqtrvLPVUv8j/52sVqioG9xwvZccTGjiP57DiSz/Yj+Rw4UVjpXX1NYsLomhpLt7Q4zmkZT4fkaExl/3z64LMFE8OepVi+uA5FUyke9jzO7jd6Fe9NXSl5+wl/qx+K6qTo+nmozc6uS+oUu1QunbWa/ScKuXNAS+4Z1Mq9w3YEy9cTMGatQ1MMOPs+gKPf/WAw6f7dSjv3b2yDuGJX1hVXXMGNN97I6NGjPdvmzp3Lhx9+yBdffOF9xgFCJk8IEdpcKhyzw9EihZyiU79zihSO20HVKr/KFG3WSIvUaB4NzaM1mkdrxIXVc/JBICP7OzpmzUFVjKzI+DsnojL8cp4u+z+k9dFF5ER35NeMR31S5vpjCu9tN2I2aDze3UV8yfwZg1pMt/3v0/z4CgCORWWwtuWdFIYl+eS8ou4URcFoDOJZSKdxuVwVnrfslyt2ZcXFxXHs2LFyPVOn00liYqJf17GrL2Wv2I0ePbr8wqLVcDgcLFy4kKFDh54xxptjG7pgqyu98/X3+X1dfl3LKxtf5FLIyiskK8+9jEZWXhFZuUVkWYs4VLK0hkut+q+8qDAjGU2jadckmnZNS36aRJMYban0fNLOT6NpGL+6GcPW79Cik3Heshiim9YotMZ1ZTuM6d89UVx2nNd9hdZygI9S17jm7TX8sS+XEZ2b8trV5Z9goWz6AuP/PYhSbEMLi8Yx4O/839FmDB02XNp5PZRXVXx+fj5ZWVkVOkJlaZpGUVER4eHhNX6KizcxtSm/OoqikJKSQlTUqUk7VquVpKQk/82K7dy5M08//TSPP/44JpP7kvQ///lPOnXqVJvihBCiSk6XyvECB0dtdo7aisv8dr8+Yi1i72Ejj/2xHJvddcbyws0GWiRE0jwhkuaNwrFl7+Hi88+mdZNYkmMtgfP4rmCkKLgu+RfK0e0oR7dh/OoWXNd9BUbfXd40rP4PisuOmtoLrUV/n5WrKAr/GNmBK/67ivmbDjO6ew4XtG/s2a91vhJnai+M396J4eAawhb9nf6RbVC6p0PqmR9jJnzP5XKRlZVFVFQUiYmJVbZdTdPIz88nKirKq45dTWNqU351ZR07doysrCxatWpVqyuRtbpit3v3bsaNG8fmzZtp0qQJR44coWPHjnz88ce0bdvW6yQChQzFCuE/muaeiJDvhAInFDiVMq8h36lUeJ3vcB9/+kSF6kSaNBqFQSOLRnwYxFtOvU+0QGxYw5nUoJeooiwGbpuGWS1kd+OhbEy7wSflmpz5DNv8AGa1iJWtH+BwXA+flFvWt3sN/HTIQHyYxt+7uyquM6iptDz6Ex0PfY5ZLULFSGbjC9iWPKZGTx4RvmMymUhOTiYtLQ2LpW5rTwYSu93OgQMHyM7O9jxS0O9DsaX27dtHVlYWKSkpNG/evLbFBBwZig0swVZXeufrq/O7VI0ih4sih4tCh0qhw4XdoWItKGLF6rVknNWFIpeGze4k3+7CZneWe51f8t5md3leVzMKWi2DAglRYSRFhZEUY6FxdBiJ0e7f8RFG9m7dxIjBfUlPjCYyrOYDEbWpK2nnNaNs/wHTHPdzvp3XzkFrPbja42tSV4ZfXsW49Gm0xmfhvG2ZX2ZcFxa7GPHvXzlwopCre6Xx9OjKZ8I6j+/jxOy/0SzvdwA0SyzqeQ+g9r6tVsu9eEuGYqGoqIj9+/fTsmVLwsOrrnNN0zh58iQxMTFeXbGraUxtyq9OUVERmZmZpKenez6X34diS5/0EB4eTqtWrcpta9KkSW2KFEKUoaoaDpdKsUul2KlS7NI8rx2ebSoOl1ZhW1Gxkz+zFA78tg9VU0ri3OUVOd2dtKJiF4UlnbYiZ+l7taQT5/5xuKrrhRlh61+1+mwWk4H4SDPxEWbiIszEhhuxHT9CxzYtSIgOJy7CTFyEiUaRYcRFmGkcE0ajyDCMVVxmczgcLMzeSOukKMzm0J55Gky0dhfh6nUrxt/fxvj9/Thv+xnCq/8HqVqOQgxr/guAq+89fltGJyLMyLNjOnHj+7/z2e8HGJCRyLCOFe8T1GJSWNP6XoZnWLAsfQrlyCaMP03HsPY9XOdPRutyFRgbVmdewPvvv8+UKVO44YYbeOGFF9A0jbvuuovFixcTHx/PJ598Qps2bZg7dy4PPvggZ599ts9XE6nVFTuDwYCiKJ6bFcv2UF2uM9/jEqgCZShW005bCvi0NYk1Tlsb+LRjyy4lTJljT18O+PTtp5dZ1fbTc6ysjMpyqpBDmWNLj1PLlO3+raCWea+Wyd2zvYr3GpSLLVdGFe/VknNWtr3sj6tkv0t1/y633fNaqbBN5dR7V2Vllvz2ZuixPpgNGmEGMBsgzAAWI4QbNcKNeH4splPbLGW3lzkuwghhoTN5TZyB0WVn8NbHiCo+QmbiQDY0v6XWZbXMWUS3Ax9SEJbEoo4voCn+7cTP3Wtg8SEDkSaNR7qemiVbKU0l/fgvnJX1BRGOEwDkhzVme9NL2Z9wvnupIuFzpUOx6enphIUFxjT12bNns337dqZNmwbA//3f/zFnzhzeffddfvzxR2bPnu1Zl3fFihW8++67vPvuu+XKKC4uZv/+/bUeiq3VnzZVVcu9z87O5umnn+acc86pTXEBY+LEiUycONEzFAv4bYim/4vLOGItKlkHrXznSYjTmY0KYUYDYSYDZqOBMKNy6vVp24yKwoljR0hvloLFbCLM5I41Gw2Emw2Em41EmI0lv93vy76OMBuJCDNiMRmIMLt/G8pcLQuGIRp/xspQrHeUbk3ho1G0PLaMtEunoKX2qvS4autKdWKa9TgAlkEPcnHvUf5OmyFOlavfWs2mQ1b+70Rj3ht/NibjqauEFfO9BBxP4Fr7HoaV/yYqP4ce+9+lu3Uhat97ULteA2bfXSiQodhTQ7HR0dG6DMVOmTKFjIwMbrrpJk6ePMmECRM4++yzsVgsns7XTz/9xE033URsbCxXXnklkydP9pQZGRmJ2Wyu0FErKioiIiKCAQMGlBuKrSmf/DciOTmZGTNm0Lp1a264wTc3yQYKs9ns9R/CmsS4r94o5S9h6UApWXdYUZSS3yXbSxYkVjzHKJUeX3bdYkVRKu73lFl2XxXlKWBQFIyGU68NJfttJ08SHx+LseRqsUEBo6JgKBNnMJTGuPe79ykYy2yv6hzu+DKvS441lmxXFDAbDBgNCiaDgtFY8ttgwGRQMJV5j6ayccN6ep3dE4vZhNlYJq7k2MriPPtLfoeZ3J22MKPBq/s2HA4H8+fPZ8SIbn7tTNSmbfizvLrE+6ud16X8kNFmIHS/DtZ/jGnBFLj1JzBUPYxaaV1t+QHy9kFkIsZe4zHWQ12azfCva3twyesrWLnnBK/+tJspI86qPl9zHPS/H875G6x9D355DSVvP8YfHsa47FnodQv0uQ1ivH+ubdV5+vfPViC3c5fL5f73oOTfhUJH5SOGqqpSWOzC5HBhqObPXmUxMVBlzE033cSdd97JzTffTG5uLtu2bWP06NFs27bNE5OVlUV6errnfWJiIidOnCApKcmT9+nll24v+1m9qTOfXR9etWqV55JhKHE4av4w89JjaxIz57azWbZsOQMHDMBsNns6OACU6WQpZTpEJbs4vZNUsuXUcRU6aeU7bsG2nMOp/6n1Cop/HB0OB+aDGhe2S6h7vpqK06me+bjTzl/2t6/5uvy6lleX+NrEehPj7+8iaAx8DNOWuSiH1uFcNxut69UVDqmuroyr38IAuLrfgKqYoZ7qMz3ewnOXdeLez/7kv8t3c1ZyNCO7JJ8xXxQz9PobdLsBw/qP3Uu05GbCzy+h/fIaWucrcPW5A5p2rnVu0s7drzVNQ1VV8u0OOk9bWPdET7Nx6hCiLJX/m9muXTvsdjuZmZl88803XHnllWia5skJ3B3E0p9SpftVVS13bKnS7Q6Hw7PciTf1Vqt77M4666xynYOCggKOHTvGa6+9xs033+xtcQEjUO6xE0KIUNP28Pd0OvQZtrAm/NTxuRrfIxddlMWFWx5BQ2Fhx5cotDQ+c5CPld5vF2bQuL+zi9SoM8eUo6mk5K2lzZEfSMzf4dl8LKodmUmDORTfG9UQGPeIBZOy99i5MNJ3xkqfn+O3SecSUc2Nwe+++y7Hjx9n0aJFvPHGG/z222/l7rG7//77ufjiixk+fDiaptG5c2c2bdqEoiiBdY/df/7zn3Lvo6KiaNeu3RlPFujq8x47ufem5oKtrvTOV+698W+stPNaKh6INusnovOPMCL1JFr368rtrqquDIueAEBrO5TBl42v15RLDVc1bv3oD1bsPMYHe6KYc/s5JEUavfxuLwGm4jy4FsPqN1C2fEdi/nYS87fT88jnqF2vQe1xIyTW7DFs0s7L32NnsVjYNG1opbGapmE7aSM6Jtqre+xsJ200Toirdvh2woQJ9OrViyZNmtC1a1fWrVtX7h67MWPG8NlnnzF27Fjmz5/POeec4+lfBNQ9dmvWrOHBBx+ssH3GjBlMmjSpNkUGLLn3JnAEW13pnW9DvvemPmKlnXvJHA/n3QcLHsf06ytw9g1gqHglpFxdqS7Y/DUAhl43YdCpDs3AzOvO5so3fmXHERu3fbSO2bf0qphvTbQ81/1jzYJ1H8HaD1CsBzCuegPjqjegZX/oOR46jISwM48YNeR2XvYeO6PRSHQVT2lQVRWX3UiUxezVPXYuuxGDwVBtTEJCAl26dGHQoEHl7vcrjRk1ahTz58+nXbt2xMXF8emnn3r2+eseu1otBPTkk09Wuv2ZZ56pTXFCCCEagl63QHg8nMiE7T+c+fi9v4At2x3Tdoifk6teXISZ92/uQ5MYC9sOn2TiJ+vx8vbX8mJTYODDcP+fMO5zaHeRe22+zJ/hq1vh5fbw7d2w91dZNiGAORwOdu7cyeWXX17pfoPBwJtvvsnOnTtZu3YtGRk1uyJbF15dsfv8888BcDqdzJkzp9xDdzMzM0lISPBtdgFAbqrWX7DVld75yk3V/o2Vdl4HihlDjxsw/vY66so3cLUZ5tlVWV0Z/pyDEVA7XIJLU+pt0kRVmkSZeOuGHox7ew0r95ygMM/AULu97gW3usD9k3cAw/r/Ydj4GUrefvcVvXUfocW3QO1yFWqXq6FRS0DaeenrshMRqlLaV6lsokJdYjZs2MDYsWO55ZZbiIuLQ9M0LBYLX3zxBU6nkxdeeKHK8ufOncvf//53+vfvr+/kicGD3Y+E+fnnn+nf/9TDlxVFoUmTJtxzzz2cd955NT55oJHJE0II4V8RxUcZunkyChoLOr5c5WQIRXNy0cZ7CHPl80vbRzga06meM63a1lyFN7cacGkKZyepXN9W9e3zhzWVRNt20o//TGruGkxqkWfX0aj2HGx0Lofie1NsDu772usqEBco9oW6Tp6o1azYp59+mscff7x2GQcBeVZsYAm2utI7X7mp2r+x0s7rzvi/MRj2rsA16DHU8x4AKtaVkvkzpo8vQ4tqjPPeTZXej6enHzdlce/nf6JqCledncpTozqWW8jbZ4rzUbbPx/DnZyh7lqGULH6qKUZyos8i7rybMXQcBRHxPj1tMLRzeVZs5Wo8FHv06FGSkpIA+Nvf/uZ5NuzpQu1ZsXJTdeAItrrSO9+GfFN1fcRKO6+D7tfC3hUYN32BcdDD5XZ56ipzKQBK2yGYLVX/o62X4Z1TuPGP9Xy408jnaw8SHmZi+qhOvl8n1BwPPca5f/IOwqYvYNNXKFnraXJyE/wwCRY8Am0vhE6XQ4cRYInx3ekDuJ2XnTxR3QSH0qHOyiYq+CKmNuVXp94mT7Rq1crzOjk5mZSUFJKTk8v9pKSkeJG6f+3fv5+ePXsSHh4ekgsnCyFE0DrrUjCY4Og2OL678mN2/uT+3ebC+svLSz2SNJ67rDOKAh/+tpdHv9yIS/XjRIe4VPfM4tuX4bhzNVtSrkRr0hFUh3syytd/gxfbwmfXw8YvoCjPf7mIgFXjjt3Jkyc9r1VVxeVylVtRuXRboGjcuDE//fQT5557rt6pCCGEKCs8Dpr3db/evqDiftsROLwRUKDN4HpNzVuX9WjGS1d2w6DAZ7/v575P1+Fw1WW6bA0ltGZ78iicty2Hu1bBwEcgsS04i2DLd/DlLfBCG/jflbD2A7Dl+D8nERDqfs0wQIWHhxMfH693GkIIISqTUTIjdsePFfftX+X+3aQjRCXVX061dMXZafx7XE/MRoV5f2Zxx0drKariuaV+0aQDDP473P073P4znD/JvdCx6oCdC+G7e+HldvDeCFj5BuTur7/cGpj333+fpk2b8tBDDwGwdu1aevVyPw7zhx9OLfEzd+5c2rZtyzXXXOPzHGrVsdu/fz+33XYbffr0oWPHjuV+amvq1Kl07NgRg8HAp59+Wm5fTk4OI0eOJDIykvbt27N48eJan0cIIUQAKO3Y7f0VXKct5XBgjft3Wq/6zakORnRJ4c0be2ExGVi89Qg3vbcGa1E9L8+iKJDSFYZMhXt+h4mr4YLHIaU7aKp7XcAfHoVXO8N/B8LyF+HIVlknz8duuukmXnzxRcB969rbb7/NtddeW+6YUaNG8fbbb/vl/LV68sTVV19NRkYG06dP99lyIBkZGbz22ms88cQTFfZNnDiRZs2acfToURYsWMDYsWPZtWsXdru9Qm83OjqaefPm+SQnIYQQfpLUzr3wcFEuHN4EjTuf2ndgrft3Wm89Mqu1we2b8MHNfbjl/TX8tvsYY9/4jfdu6k2z+Ah9EmrcHho/BAMegtx9sGUebJ3n7kxnrXf//PS0e228dhdD+4ugeT8wBeHSIZoGjoLK96mqe1+xEWo6uaE0Rqt6Isqjjz5Ku3btmDBhAgCXX345vXqV/89IamoqqampPplUUVO16tht2rSJFStW+DTR66+/Hqj49Aqbzca3335LZmYmkZGRjBkzhhkzZvDdd99x4403snTp0jqf2263Yy+zyGTZZ7LJwqX6C7a60jtfWbjUv7HSzn3H2OxsDLsX48pciSO+PQAOeyGmQ3+gAI7k7rovSlyVqr7bs9Nj+fiW3vztf+vYdvgkl838hTdv6EHHFN+uOef1n62oFOh1m/snPwdl+w8Ytn2Pkrkc5UQmrHoDVr2BZolBa30BaushmJ2GgG7n5RYottswPJdWaawBiPfyfKUxrkf2o1qiKz3mxhtvZOLEiYwfP57c3Fy2bdvGpZdeyvbt2yssOlzZQsqlCxH7eoHiWnXsLrroIlauXEm/fv1qE+6VHTt2EBcXV27Gbbdu3di8eXO1cUVFRVxyySVs2LCB4cOHM23atHKLKpf17LPPMn369Er3LVy40OucvYmpTfkNVbDVld75+vv8vi6/ruXVJV7auT7aFcRxFnBozVz+yGkGwMp5H3GBowCHIZz5q3eCUsWs2QBR1Xd7Zwb8d4uR7JN2rvrPb9zUXuWseN8Pedb+z1YixN6IsdNVNDm5iaZ562hq3UC43Yqy5VssW77lYhSO7f4Xh+O6kx3XA5slxT3cq0u+FeNLFyi22WwUK06vO281cdJmA3vlk2GaNWtGfn4+mzdvZtGiRYwaNcpzoajsBSJwd8wKCgrKbS8oKMDhcFQ4tri4mMLCQpYvX15ugeKaqlXHLiIigosuuohhw4ZVWLdu1qxZtSmySjabrcJifLGxseTm5lYbFx4ezqJFi2p0jilTpjBp0iTPe6vVSnp6OuB+2obJVLNqcjqdLFmypEYx3hzb0AVbXemdr7/P7+vy61peXeJrEyvt3HcMe8ww5ytStUPEDR7MkiVLODcjCbaCoelZDB02XO8Uq1ST7/biIQ7u/WwTq/fm8tZWE49dnME1vVLr7fw1dykAqqZSlLUO484FGHYuwHh0K0n520jK30anQ5+hxrfC1WYIrrZDUdPOAWPNh2z90c7tdjuHDh0iKiqKcIsF1yNVTwo5abMRE135lbdqYxo1qbYzO2HCBL799lu+//57PvzwQ1asWEFYWBgxMeWHcM1mMxEREeW2R0REYDabKxxbVFREeHg4/fr1w2KxAFTo/FWnVn8aWrduzeTJk2sT6rXo6OgKH8hqtRLt5RdUHYvFgsViKfdIsVJLlizxujxvYmpTfkMVbHWld77+Pr+vy69reXWJl3aujzDnSS4GDLmZLF/0AxgtZP6+kI7AoaII/giCK51n+m6vTgY138DvRw08OX87i9Zu5YqWKiYf3cnknz9bvSC9FxFNcki2ric5bx2Jtq0Yc/dgWPsW5rVv4TRYyInpyJHYbhyO7UphWM1mL/uynZdescvPzz/zUKU5kpNVXHmrNsZmq/aQkSNHMnDgQJKTk2nSpAlFRUUUFxeXWyIO3FfsCgsLy20vLCzE4XBUOLa4uJiioiJ+/fXX+rtiN3Xq1NqE1UpGRgZ5eXlkZ2eTnJwMuB+8e+utt9ZbDkIIIXyv2BRDkSmWcKeVGPtBciNbE2XPBsAWnqxzdr5hMsD1bVWSIzW+32fg18MGDhco3NTeRUyAP4yk0NKYPY2HsqfxUEyuQhqf3ERy3nqaWP8k3JlHSt46UvLWAXAyvBmHY7pyJLYrx6LboxoC/MP5SFxcHJ06dWLIkCGV7t+xYwdjxowhNzeXBQsW0KFDB79P8KxVx+6FF16odLvFYiEtLY0LL7zQ6zXkHA6HZ9Fjh8NBUVERYWFhREdHM2rUKKZOncqrr77KwoUL2bRpE5deemltUq/WxIkTmThxoudZsSBDsYEg2OpK73xlKNa/sdLOfct8tDPs/5U+LWNZcARSwwsBaN1rGC3OGqpzdlXz9rsdBozYfpSHvvqLXSdd/Ht7FP++ugsdU2r3+C992vkowD1kW3h4E8Y9P2Hc/ROGQ2uJKTpETNEh2ub8gGaOxNX8fNTWF+BqfQFaXLr/h2KreVYs4HmWqzdqEuNwOMjMzOTyyy8nJiaG8PDwckOxPXv2ZN++fZXG+msoVtE07xewueaaa/j6668555xzSEtL48CBA6xatYpLL72UQ4cO8ddff/HVV19xwQUX1LjMCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWrCp7x3VRdih2+/btzJ4922fLuQghhKio2773aHlsCduSR7M15Qou2jgRi/MkS9o/hTWyhd7p+Vx2Aby9zUhOkYLZoHF1a5XejYN7HTmzM5/GJzfR1Pqn52peWSctKRyO7cqR2G4+vZpXOhSbnp5OWFj9L9GyceNGxo8fz4033sj9998PwFdffcXTTz/NyJEjeeqpp6qMnT9/Pk8++SR9+/bllVdeKbevuLiY/fv3k52dXW4odty4ceTl5VWYd3C6WnXsrrzySiZMmMAll1zi2fb999/z/vvvM2fOHD7++GNefPFF1q9f723RAaH0it3s2bMZOXKk/E9eZ8FWV3rnK1fs/Bsr7dy3TCtfJ2z5Pyk+63IWmYYwYuNdABTcvxPConTOrmp1+W6tRQ4e/PIvVuw6DsDYnin8/aIMLCZjvZzfr+VrKsqRzRh3/4Rxz08YDq5F0U7dt66ZIlCbn4er1UBcLQeiJbSt0Uzb6q7YtWzZUrcrdnUpvypFRUVkZmbSrFmzclfsUlJS/Nexi4uL4/jx4571VcBd6YmJieTl5aGqKvHx8V5dOgwEcsVOCCHqV7MTK+mdOYtjURlsTLuBQdv+QZEpjh+7vK53an6lavDjAQM/HlDQUEiN1Li5vYuk6vsnQcfkzKfJyc00sW6gqXUj4c7ccvsLzQkcienMkdjOHI3pRLGp5p0jva/Y+YsuV+z69u3LiBEjmDJlCiaTCZfLxbPPPsu8efNYuXIle/fupX///lWOKwe6slfsRo8ejdlcs8vGDoeDhQsXMnTo0DPGeHNsQxdsdaV3vv4+v6/Lr2t5dYmvTay0c99SDv6B6f1hqNEprG5yDefufgU1uRuuWwL70ZG++m5/3nmUyXM2cqLAQbTFxHOXdWJ4p6b1dv76Kt/hcLBwwQKGdWtG2P4VKHuWouxbieI69XAADQUtpRtaq8ForQehpfX2LKlSWT52u519+/bRokULIiKqfrqHpmmeK2pKDdfh8yamNuVXp7CwkL1799K8efNyV+ySkpJq1LGr1fXbDz74gHHjxvHiiy/SpEkTjhw5Qvv27Zk9ezYAhw8f5tVXX61N0UIIIRoQLda9+LySf4Rwxwn3xugzd2xCRf+2SXx7V1/u//xP/tiXy92fbmBC3+Y8OKwdFl+tiRIoFAWtaWfUtB7Q9x5wFLg7d3uWYNi9FCVnC0rpo85+fQXNHIXWoh9a68Eo6edXeKatyWRCURSOHTtGYmJilZ0qTdM8S4h407GraUxtyq+urGPHjqEoSq2H2Gt1xa5UZmYmhw8fJjk5mRYtgv8mVxmKFUKI+qVoTkatvxmA3UlDaH10EZmJg9nQ/CadM6tfLhW+22dgSZa7M5caqXFjhovkBvRPULjjBI2tm2l8chONT24i3Fn+dq4CcwI5sV04EtOJnJhOOEwxhIWFkZCQEFL3sDqdTo4fP05xcbFnm9+HYsue6NixY5Qtonnz5rUtLmDIUGxgCba60jvfoByikaHYBs30SnuUgmMci8ogMX8Hrv4PoQ54RO+0quWv73bx1iNM+XozJwochJsNTLmoPdf2TqtwJSjk27mmwuHNGPYsPeOwrbPVQByNu6EZKy/X6XTy66+/0q9fP68mSdU0pjblV6X0Sl3ZOQxQD0OxGzdu5MYbb+TPP//0JAIQFhbm1erIQgghBFFNoOAYcYUlj4SKaqxvPjq6sEMT5t0dx8NfbuKXXceY+t0Wft5xlGfGdCIhKnQmCJyRYoDkLqjJXaDvPTgK8lg/9w16NzqJad/PKEf+8gzbGn99hTBTBFrzc9Fa9kdtOQCadgGDu3PkcDhwOp1YLBav/gNX05jalO9Ptbpid9555zF06FAeffRRUlJSyMrK4h//+Adt2rTh9ttv90ee9UKGYoUQov712/EcjW1/ed6vaXkXhxqdq2NG+lM1WJal8N0+Ay5NIdascX1blfbxwb3mna+UH7bdXGHtvGJjFEdjOpIT04mc6I7kW5rWaFmVQOX3odj4+HiOHz+OwWCgUaNGnDhxguLiYlq3bs2BAwdqnXigkKHYwBJsdaV3viE/ROPDeBmKDQzGb/6GYfNXnvfOa+egtR6sY0ZnVl/f7eZDVibN2cjuo/kAjO/bnMlDMjApqrTzUpoGR7dh2LMMJXM5yt5fUIrLP+O1wJxAWIdh0HogWssBZ5ygE2jt3O9DsfHx8eTm5pKQkEBqaiobNmwgISEB2xkeliuEEEKcTrOc9g+VJU6fRAJQp2axfHPnufzzh218uuYAH/y2j+Xbj/LP0R30Ti1wKAo07oDauAP0uR1UJ8qhde5O3p5lKAd/J9JxHDZ+6v4BtMYdUFsOQGs5AK3FeWDxzeLCgaBWV+yefvppOnXqxGWXXcZbb73F5MmTMRgM3Hbbbbz44ov+yLNeyFCsEELUv7MOfU67w6cejL7orBfID0/WMaPA9NcJhU93GchzKChoXNBMY0S6SqitiuJrRtVOgm07jU9upvHJv4gr3IvCqa6PioHcyFbuYduYTpyIauuzx575Sr3Nii21d+9ebDYbnTp1qmtRAUGGYgNLsNWV3vnKUKx/Y6Wd+57h19cwLjn1XE3HA9sgMlHHjM5Mr+82r9DBU99v5dsNWQC0bRzFi1d0oXNq9f/Yeyuk23nBcZS9K1Ayl7uHb0/sKXe8ZopATevD1uJkWg+5GVNaD/dkDj99tprw21Bsx44dz3jMX3/9dcZjgonZbPb6i/ImpjblN1TBVld65+vv8/u6/LqWV5d4aec6i2xU7q05OgmMwbEuWX1/t0lmM69d25PhHQ/y8Bfr2JmTz5VvrmLi4LbcPbgtYT6+fBeS7TyuKXS9wv0DkLsf9iyD3Uth9zKU/CMYM5fRCeDDzyCiEbTsD60HQquBkFj58239+WfBm3K9ajl79uyhefPmXHfddQwYMMAnj84QQgjRwIWfuqdOC4tCCZJOnZ6GdmzClG4uVhSm8n+bD/OvxTtYsDmb56/oSrf0eL3TCy7x6dDjevePpsGRLbh2/sSRVV+QXLQDpfAEbJnr/gGIaQatBpz6iQqs2wa8aj1Hjhzhq6++4uOPP+b9999n7NixXHfddXTt2tVf+QkhhAh1ZSdPhIXOTez+Fm2Gf43uxg9/5TB17ma2Zp/kslm/cNN5rZg8rB2RYdJB9pqiQNOOqAkZrD6azojhQzHnbHJfzduzHPavhpOH4M9P3T+AqVEruhlawMkekKD/Qxq8+tZjYmIYP34848eP5/Dhw3z66af87W9/Iz8/n88++6xGQ7XBxuFweH1sTWK8ObahC7a60jtff5/f1+XXtby6xNcmVtq57ynmKM8/Rpo5CmcQ1Jfe323Z81/UsTG9W/Tjn/O3MffPLN5ZsYcfN2fz1KiOnN+2dvcqSjsviVGB5B7un34PgKMQ5eAalEz3PXrKoXUoJ/bQgkwKlTDw89+7NVHryRO5ubl8/vnnzJ49m4MHD/L111/TuXPn2hQVMGRWrBBC1L+YwgNcsPXvAORGtGRZhyd1zih4/XVC4bPdBnKL3bdK9WmsMqaFSpTc4ukXJlchibZtRNmz2d3kIr+dx2+zYu12O3PnzuV///sf69atY8yYMYwbN45zzw2tFcJlVmxgCba60jtfmRXr31hp535gzcL8ehcAXGnnoI7/XueEzkzv77a689vsTmYs2sn/Vu1D0yAxKox/jOzAxZ2b1vjeeGnngdXO/TYrtmnTpiQnJ3PttdfyyCOPeB52u3r1as8xffr0qUXKgUtmywWOYKsrvfOVWbH+jZV27kPRCZ6XisEQVHWl93db2fkbmc08NaYLY3qk8ciXf7LziI37Pv+TbzY05snRnUlPqPlIlLTzwGjnfpsVGx8fj91u5/333+eDDz7g9It9iqKwe/dub4r0q2XLlvHoo49iNBrp06cPM2bM0DslIYQQpwuLOvVademXR4g5u0Ujvr/3fGYt2cWspTtZsi2HITOWce+FGdzWv7XPl0YRgcGrjl1mZqaf0vCPtm3bsnTpUiwWC+PGjWPjxo106dJF77SEEEKUVXZ4UDp2PmUxGXlgaDtGdW/GE99s4tddx3jxx2189ccBnhrTmX5tkvROUfhYSHfXU1NTsVgsgPsyptFo1DkjIYQQ1VKdemcQkto0jubjW8/h1au7kxQdxq6cfMa9tYr7P11Hzkm73ukJHwqojt3UqVPp2LEjBoOBTz/9tNy+nJwcRo4cSWRkJO3bt2fx4sU1LvePP/7g6NGjIbkcixBChBJFrtj5jaIojOmRyuLJg7jh3BYoCnyz/hAXvLyUj1buxaXW+QmjIgAE1OqFGRkZvPbaazzxxBMV9k2cOJFmzZpx9OhRFixYwNixY9m1axd2u51rrrmm3LHR0dHMm+d+oHR2djb33nsvX375Zb18BiGEEHWgyRU7f4uLMPPUmM5ceXYaj32zkU0HrTzxzSa++H0/z1zWhc6pcWcuRASsgOrYXX/99QA888wz5bbbbDa+/fZbMjMziYyMZMyYMcyYMYPvvvuOG2+8kaVLl1ZaXlFREePGjeP111+nadOmVZ7Xbrdjt5+6FG21Wj2vZeFS/QVbXemdryxQ7N9Yaef+UTrnT41qihoE9aX3d+uL83dMjuKLv53Dx6v3M2PRDjYcyOPSf6/g6l5p3DOwRZ3L92W+Db2d18sCxf40aNAg7rjjDs+VuHXr1jF8+HCOHDniOeaee+4hMjKS559/vspy3njjDaZPn06HDh0AePbZZ+nbt2+F46ZNm8b06dMrbJcFioUQon40tv5J2yM/sD79JgotjfVOp8HJK4ZvMg38ccx9h1akUWNEc5V+TTWM8lh43XmzQHFAXbGris1mq/BBYmNjyc3NrTbuzjvv5M477zxj+VOmTGHSpEme91arlfT0dAAGDx7sWa/vTJxOJ0uWLKlRjDfHNnTBVld65+vv8/u6/LqWV5f42sRKO/cPp3MwS5Z0DZq60vu79cf5rwTWZJ7gmR92sP1IPl/sMbIxP4rHLm5Hrxbxuubb0Nt52ZHEMwnpK3bekkeKCSGEaOhcGvx6WOH7fQYKXe7LdT0TVUa3UIm36JxcA+XNFbuAmhVblYyMDPLy8sjOzvZs27BhA506ddIxKyGEECL0GBXon6zxeA8X/ZqoKGj8cczAM+uNLDyo4FT1zlBUJ6CudzscDlwuF6qq4nA4KCoqIiwsjOjoaEaNGsXUqVN59dVXWbhwIZs2beLSSy/16fknTpzIxIkTPc+KBRmKDQTBVld65ytDsf6NlXbuH8FWV3rnW1/t/D+3DmR7TiHP/N921h2wMm+fkT9tEUwZ1paB7Wq+uLG087oJ2qHYCRMm8MEHH5TbtmTJEgYNGkROTg7jx49n6dKlpKWlMWvWLIYMGeLT88tQrBBCCFGRpsHvRxXm7jVgdbiHZ8+KVxnTQiVZ/pn0O2+GYgOqYxcoSq/YzZ49m5EjRwZtDz9UBFtd6Z2vXLHzb6y0c/8ItrrSO1+92nm+3ckbyzP5cNUBnKqGUVG4ulczJg5sSaPIML/l29DbudVqJSUlRTp23pIrdkIIIcSZHSmEuXsNbDzhvlU/wqgxPE2lf7KGKSju3g8ucsWujspesRs9ejRms/nMQbjvEVy4cCFDhw49Y4w3xzZ0wVZXeufr7/P7uvy6lleX+NrESjv3j2CrK73zDZR2vnL3cZ75v21szT4JQIuESB4Z3o4hZzVGUU4tgCftvG6sVitJSUmhMytWCCGEEIHn3NYJfHPnufxzTEeSosPYe7yAuz5Zz43v/c5fWTW/4V/4jlyxK0OGYoUQQojaKXLBooMGlhxScGoKChrnNNEYma4SW/Xtd6IGZCi2jmQoNrAEW13pnW+gDNHUV3kNfYgmVARbXemdbyC38wMnCnlpwQ6+3+ReezYqzMht57cgLX87I4ZLO68NGYoVQgghhC7SGkXw6tVd+ey2PnRNiyW/2MWrP+3mmXVG5v6ZjarK9SR/kit2ZchQrBBCCOE7qgZrjyrM22cgt9g9mSItSmN0C5V2cdL9qCkZiq0jGYoNLMFWV3rnG8hDNP4or6EP0YSKYKsrvfMNtnZuLShi6sdLWJIdRn6xC4CBGUk8PDyDdk1j/JpPKLRzGYoVQgghRMCIMBsZmqrx4z3ncsO5zTEZFJbtOMqlM39jytebybYW6Z1iyJArdmXIUKwQQgjhf0cK4ft9BtYfd19fMhs0BqdoXNhMJTzwHzxS72Qoto5kKDawBFtd6Z1vsA3RyFCsgOCrK73zDZV2vm5fLs/9uJ0/9uUCkBBl5t7BbbiqVxpmo+GM8f76LIHWzr0ZipV+8RmYzWavvyhvYmpTfkMVbHWld77+Pr+vy69reXWJl3YeOIKtrvTON9jbeZ82jfnyziR+3HyY53/Yyp6j+Uybt5UPV+7n4Ys6MLxT03JPsGio7dybcuUeOyGEEELoRlEULuqczIIHBvDU6E4kRoWx+2g+d/xvLWP/8xtr957QO8WgIlfshBBCCKE7s9HADX1bMqZHKm8u381bP+/m970nuOKNXxl6VhN6W/TOMDhIx+4MHA6H18fWJMabYxu6YKsrvfP19/l9XX5dy6tLfG1ipZ37R7DVld75hnI7DzfCvYNbc9XZzXht8S6+WneQhVuOsAgj25SN3HdhBilx4X45d21i6uPPgjdly+SJMmRWrBBCCBFYsgrcM2g3nnDfPWZSNAYkawxJVYkKntsx60RmxdaRzIoNLMFWV3rnGyqz5eojPhRmy4WKYKsrvfNtiO38za8W8rM1kbX78gCICTdx2/ktGd+3OZFhVQ9AhkI7l1mxPhTMs2hCTbDVld75BvtsufqMl3YeOIKtrvTOtyG181YxcNdVffhldy7P/7CVrdknmbFoJx+t2s99F2Zwde/0ckuk+OLcgdLOZVYscOjQIfr168eAAQO45JJLKCgo0DslIYQQQtSBoigM7tCE+ff259Wru5OeEEHOSTuPf7OJoTOW8d2GQ6hqwx6IDNmOXdOmTVmxYgXLly/n7LPP5vvvv9c7JSGEEEL4gMGgMKZHKosnDWLapR1JjAoj81gB93yyjlEzV7B8ew4N9U6zkO3YGY1GDAb3x1MUhfbt2+uckRBCCCF8KcxkYMJ5rVj28GAeGNKOqDAjmw5aufHd1Vz39io27M/VO8V6FzAdu6lTp9KxY0cMBgOffvppuX05OTmMHDmSyMhI2rdvz+LFi2tU5ooVKzj77LNZtGgRLVq08EfaQgghhNBZtMXEfUMyWP7wYG4+rxVhRgO/7jrG6Jm/cM+nGzhcqHeG9SdgOnYZGRm89tpr9OnTp8K+iRMn0qxZM44ePcrzzz/P2LFjOXHiBNnZ2QwaNKjczyWXXOKJO//881m7di1jxozh3Xffrc+PI4QQQoh6lhht4R+XdmTx5IFc3jMVRYEfNh/mufVGHvtmM4dyQ7+HFzCzYq+//noAnnnmmXLbbTYb3377LZmZmURGRjJmzBhmzJjBd999x4033sjSpUsrLc9ut2OxuJepjouLw+VyVXluu92O3W73vLdarZ7XwbygYagItrrSO99QXrjU1/GhsHBpqAi2utI7X2nn1UuOMfP8ZZ24pV9zXlqwnSXbj/H52oN8vf4Q4/qkc+eAViRGV/0oi0Br50G9QPGgQYO44447uOaaawBYt24dw4cP58iRI55j7rnnHiIjI3n++eerLGfFihU89thjGAwGEhIS+Oijj6pcbHjatGlMnz69wnZZoFgIIYQIfrutMG+fkV0nFQDCDBoDUzQuaKYSGTCXuKrmzQLFAf9xbDZbhQ8RGxtLbm5utXHnn38+y5Ytq9E5pkyZwqRJkzzvrVYr6enpAAwePBiTqWbV5HQ6WbJkSY1ivDm2oQu2utI7X3+f39fl17W8usTXJlbauX8EW13pna+0c+9iWbKEr+7uz+p9J3ltyW42HTrJwoMKq46FcVPfdK4/J42oMoscB1o7LzuSeCYhe8WuNuSRYkIIIURo0zTYeELh+30GsgvdV/CizRpDU1XOa6phDpjZB6d4c8UuANMvLyMjg7y8PLKzsz3bNmzYQKdOnXTMSgghhBDBSFGga4LGI91c3NDWRZJFw+ZQ+DrTyNPrjPx2WMEVUJe8vBMwV+wcDgcul4thw4Zx2223MXbsWMLCwjAYDIwdO5aEhAReffVVFi5cyIQJE9i1axeNGjXySy5lnxU7cuRIGaLRWbDVld75yhCNf2OlnftHsNWV3vlKO/ddrMOl8vX6bN5Ynsnhk+6JlC0SIhiYaGPSlQMJO8PjvOprKDYlJaVGV+wCpmM3YcIEPvjgg3LblixZwqBBg8jJyWH8+PEsXbqUtLQ0Zs2axZAhQ3yegwzFCiGEEA2TQ4UV2QoLDxrId7qHaJtFaoxIV+ncSENR9MvNm6HYgOnYBRK5YhdYgq2u9M5X/ifv31hp5/4RbHWld77Szv0Xm2938sFv+3jnl0wKXe7eXNfUWO4b3Iq+rRN8mltNBeUVu0AgV+yEEEIIAZDvgJ+yDCzPUihW3R28jFiVkc1VWsXUby5yxa6O5IpdYAm2utI7X/mfvH9jpZ37R7DVld75Sjv3b2zZmBNFLt5asY/P1h7EUTKrYlBGIvcObk2H5Gi5YhfI5IqdEEIIISpz3A4/HjCw+oiCivsKXo9ElYvTVZpG+PfccsWujspesRs9ejTmM8yIKeVwOFi4cCFDhw49Y4w3xzZ0wVZXeufr7/P7uvy6lleX+NrESjv3j2CrK73zlXbu39jqYvYczee1n3bx/Ub3MmwGBXolqbxw/fmkJkR7lVtNWa1WkpKSQmMdOyGEEEKIQNEqKYpXr+rK3Lv6MqRDY1QN/jiqECiXyeSKXRkyFCuEEEIIb+w9CQcLFPo19V93SoZi60iGYgNLsNWV3vnKEI1/Y6Wd+0ew1ZXe+Uo7929soLVzb4ZiA3/qkc7MZrPXX5Q3MbUpv6EKtrrSO19/n9/X5de1vLrESzsPHMFWV3rnK+3cv7GB0s69KVc6dmfgcDi8PrYmMd4c29AFW13pna+/z+/r8utaXl3iaxMr7dw/gq2u9M5X2rl/YwOtnXtTtgzFliH32AkhhBAi0Mg9dnUk99gFlmCrK73zlXtv/Bsr7dw/gq2u9M5X2rl/YwOtncs9dnVU2tctKCigsLAQp9NZoziHw1HjGG+ObeiCra70ztff5/d1+XUtry7xtYmVdu4fwVZXeucr7dy/sYHWzgsLC4FT/ZPqyBW7Shw4cID09HS90xBCCCGE8Ni/fz9paWnVHiMdu0qoqsqhQ4e44IIL+P33372K7d27N2vWrDnjcVarlfT0dPbv33/Gy6qi5vUaKPTO19/n93X5dS2vLvG1iZV27h96txtv6Z2vtHP/xgZSO9c0jZMnT9KsWTMMhuqfLSFDsZUwGAykpaVhMpm8/pKMRqNXMbGxsfIXfg14W6960ztff5/f1+XXtby6xNcmVtq5f+jdbryld77Szv0bG2jtPC4urkbHySPFqjFx4sR6iRFnFmz1qne+/j6/r8uva3l1iZd2HjiCrV71zlfauX9j9f5+a0uGYnVSOvO2JjNchBDBSdq5EKEv0Nq5XLHTicViYerUqVgsFr1TEUL4ibRzIUJfoLVzuWInhBBCCBEi5IqdEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIkI6dEEIIIUSIMOmdQCBSVZVDhw4RExODoih6pyOEEEKIBkzTNE6ePEmzZs0wGKq/Jicdu0ocOnSI9PR0vdMQQgghhPDYv38/aWlp1R4jHbsyZs6cycyZM3E6nQC8/fbbREZG6pyVEEIIIRqygoICbr31VmJiYs54rKJpmlYPOQUVq9VKXFwcs2fPZvTo0ZjN5hrFORwOFi5cyNChQ88Y482xDV2w1ZXe+fr7/L4uv67l1SW+NrHSzv0j2OpK73ylnfs3NtDaudVqJSkpiby8PGJjY6s9Vq7YnYHZbPb6i/ImpjblN1TBVld65+vv8/u6/LqWV5d4aeeBI9jqSu98pZ37NzZQ2rk35cqsWCGEEEKIEBHSHbucnBxGjhxJZGQk7du3Z/HixXqnJIQQQgjhNyE9FDtx4kSaNWvG0aNHWbBgAWPHjmXXrl00atRI79SEEEIIIXwuZDt2NpuNb7/9lszMTCIjIxkzZgwzZszgu+++48Ybbyx3rN1ux263e95brVbPa4fDUeNzlh5bk5jM587lHOdxjq97oMI+jdqtneeJqyS8+jKr3lf9zJrK46o7V20/WzdNI2vDFK/yqO35vM2/dItWuuahptFJVTnw5xOevdppx9Y8x9p9tg4uF3v/nO4uocxhZ/psVe09Pa6dy0nmxqerLMsTV+06kKf2ZTid7Nn0zxrkWXkNtnU62bXpuQq7lQoxCqc3kzYOB3v+egGU0z+/gqYo7lwUg/s9CppiIL3Izvbts9zblVPbKTnWHaOgopCUX8jmzI/d20vLURTAgKIoKAYDKEYMJa8VgxHNaAZjWJkfMwaTBUxhGExhmMMshFkisETGYoluRERsIoaIeAiPLck1+Hjz92cg0Dtff5/f1+XXtby6xNcm1puY+viz4E3ZITsrdt26dQwfPpwjR454tt1zzz1ERkby/PPPlzt22rRpTJ8+vUIZs2fP9ttyJ+f+cR9NlRN+KVsI0TCpKJwgjiPGJuSak7FGZ+BK7IAjsqneqXlP04gv3EPSyS3EFu4j3JFLhOMERtWOQXOiaC4UTcNlsOA0WnAYIykIa4wtPIWj0WdxNLpD0HZyhThdQUEB48aNa9izYm02W4UPHxsbS25uboVjp0yZwqRJkzzvrVarZ4Fif02P3pGWwJL1f9C5c2eMJiMAmua+JnA6z5bT+uBl35aNq7KEyrrwmlb1VTlNrXxz5cVUyMN9rFbxoErKUKr5/4XL5WTr1u20b98Oo9FYg2xKT1V1XSpV5VJue/l45dSOys7o2exyudi5YydtM9q68622HivJsbQutdOPrRh9+p8JANXlYufu3bRp3RpjuRXKq/uuq6hHKn6nLlVlz+49tGrVCoNBqXB8qdI6rry6Tm1VVZXMzExatmzpXlG9yj8LlW93uVzs3buXFi1aVFiRXdNAK6l/Dffq7VqZ07tcLg4cOEBqWiqKYgCt5DgAzeVuH5r7tYKGpqloLheHs7No2qQpiqKVFKaBpqJoKpQcp2gamuri2LGjJDaKdz/Fpswx7uRUVE1FU90/qqaiqC4U1YlBLcaoOTCoDoyqA6NW8qM6UFQHRq2YCK2QWPKJI58IpRgDGonkkujKBdd2KFoOR2FPVDeiL32O+Da9q6hb/ZX7+/PETozf3Y0he8MZ48xqIbiXHqVRwR4A2vMtWlJ7XJe8hpbay//5ynInfi9PljuxnvmgEiHbsYuOjq5QEVarlejo6ArHWiwWLBZLpeX4a3p0Rtdz2XHgOO17Dgiqqf16cDgc7MuFLueNCIq6cjgcHMqfT/eB+uTrcDjIss+n54X+Ob/D4eDw/PmcPdQ35TscDo7Mn0+v4bUrz+FwkDN/Pr0v9j7e4XAwf/58+o+oeWxpzKAaxJQeO9CL8r1ld7rIt7vIttk4mnOYk0f2UpyzG/XwZlJOrKWLuo1W+RtwfjqSvQNm0OaCm/ySh6+Yj23F/OFIcBSAKRzaDoHUsyG+OUQ3dQ83G0qGqhUFivPdP4XH4fgeyN4I2+ajHN2G6eMr4G9LoHF7/+Ury53Ua3my3MmZhWzHLiMjg7y8PLKzs0lOTgZgw4YN3HrrrTpnJoQQvmMxGbGYjCREJdCqaQJwlmefqmr8vnETxfMe5nzHr6Qtf4hjrXuR2LKLfglXR9Mw/vCwu1PX4nwY+x5EN/G+nMJc+PQ62LsCFj8J13zs81SFCFQhewNCdHQ0o0aNYurUqRQWFjJ37lw2bdrEpZdeqndqQghRLwwGhT7dunD2g3P53XQ2FhwcnHvmSS96iS3cj+HgGjBa4Mp3a9epA4iIh5EvuV9v+z+w23yWoxCBLmQ7dgCzZs1i//79JCYm8uCDD/L555/LUidCiAYnwmKGC9yzyjOO/4SruFDnjCrX2LbZ/aLVAIip44SPJmdBXHP3vZIHVtc9OSGCRMgOxQI0btyY+fPn16mMYJ4eHSqCra70zleWQfBvbLC28049+pOzIJ7G5LLt94W07n2x3imV43A4aJS/CwBXel9UH9SZMbUnhrx9uA5tQG3ev87llaX3dyvt3L+xgdbOZbmTWpo5cyYzZ87E5XKxfft2vy53IoQQ9S3hz3/T37WauTHXoLUdoXc6FZy//SkS83ewuuXdZDXqU+fyOh/4mDY5P7KjyUj+Sr3aBxkKoQ9Z7qSWJk6cyMSJE7FarcTFxQH+W+5E76nywSTY6krvfGUZBP/GBnM7X5W1ELJXk2yx02NEYHXsHA4H2mb3slM9B45AS6t7x86wYiss+5E2KfG09PHn1fu7lXbu39hAa+ey3IkPBfP06FATbHWld76yDIJ/Y4OxnRsTW0M2ROQfDIh8ytE0DI48AEzxqeCL/GLcky8MRScw+HEZCmnn9VdeQ23n3pQb0pMnhBBCnBLRpA0A8faDOmdSiaJcjFrJfUTRyb4pMzLR/Tv/qG/KEyIISMdOCCEaiNjGqQBEqyd1zqQSJZ0vzRIL5nDflBmV5P5dcMw35QkRBGQo9gyCeRZNqAi2utI7X5kt59/YYG7nJksUABFaYcDkVMpZZMMMaKYInL7KzRzrLrPwuO/KLKH3dyvt3L+xgdbOZVZsLcmsWCFEKCsutDF2610AfNPtPRTD6c9e1k98/m4Gbp9GgTmRhZ1f8UmZkfbDDP3rIZyGcL7v9qZPyhRCD97MipWOXSVKZ8XOnj2b0aNHB+0smlARbHWld74yW86/scHczu1FhUS/nA5A7t3biIpL1DmjU1x7fiF89mjU+Fa4Jq7xTaF5+zH/uweaKRznIwd8U2YJvb9baef+jQ20dm61WklKSpLlTnwhmGfRhJpgqyu985XZcv6NDcZ2bjKZKNaMhCkuHPYCzGYfTVLwAUVR3b9NYb6rK7PFXabq8utsRWnn9VdeQ23nMitWCCFEBYqiUKi4JyYU5dd8Xax6oTrdv41hvivTYCpfthANQNB37J577jkURWHlypWebRMmTMBisRAdHU10dDSdOnXSMUMhhAgchUQAYC8IsI6dqxgAzeDDgSTPPYQaqKrvyhUigAV1x+7gwYPMnj2b5OSKwwnTp0/HZrNhs9nYvHmzDtkJIUTgKTK4r9gVFwTYkieukll/Pr1iV2ZyiObyXblCBLCgvsdu8uTJTJ8+nQceeKBO5djtdux2u+d92Ud3BPP06FARbHWld76yDIJ/Y4O9nRcrJVfs8nMDKi+1uBAT7it2PsvLpVF6Z5KjuMin/+Lp/d1KO/dvbKC18wax3MnSpUt5+umnWbRoES1btuTTTz/l3HPPBdxDsd999x0A7du357nnnmPAgAFVljVt2jSmT59eYbssdyKECDXN1z9HD+0vvki8C3Pzc/VOxyPt+C+cvfe/HInpzG9tH/ZJmUbVziUbbgNgXtc3cRl9tPCxEPXMm+VOgvKKndPp5IEHHuCjjz6qdP99993HK6+8QlRUFHPmzOHSSy9l06ZNpKenV3r8lClTmDRpkue91Wr1HBvM06NDRbDVld75yjII/o0N9na+aessKIT05CR6jhihdzoe6toc2AuJTVIY4au8nHbY4H45fOgQCK/+H0Rv6P3dSjv3b2ygtfOyI4lnEpAdu2HDhrF8+fJK9z3++OPExMRw/vnn07lz50qP6dGjh+f1ddddx0cffcTChQu5+eabKz3eYrFgsVgq3RfM06NDTbDVld75yjII/o0N1nauGUry0Py3BEhtuHDfA6eYLL7Ly3jqNnKzUQE/fF69v1tp5/6NDZR27k25AdmxW7BgQbX7x4wZw/Lly5kzZw4AOTk5jBw5kpdeeombbrqpwvEGQ1DPERFCCJ9RS2edugLn/jqgzHInPvyHUSnzd78qkydEwxCQHbszef/99ykqKvK87927N//9738ZNGgQAF9++SUXXXQRFouFL7/8khUrVjBr1iydshVCiACiuGeKaoG2tlvJcie+7dgp7s+ruWQtO9FgBGXHLj4+vtx7o9FIQkKCZ6LDK6+8ws0334yiKLRv356vv/6ali1b1n+iQggRYFSlpOPkCrCOTukVRIOPh7IMRnC5ZLkT0WAEZcfudJmZmeXer1ixwmdlB/P06FARbHWld76yDIJ/Y4O9nWslw5Oqqziw8nLYMQIuxYTLh3mZDCYUV7F7uRMflqv3dyvt3L+xgdbOG8RyJ/4wc+ZMZs6cicvlYvv27bLciRAi5ERu/oChxYuZF3EZrg6X6Z2Ox1mH5tDu8HfsajyMTWnX+6zcERtux6wWsqjji+RbmvqsXCHqU8gvd+IvEydOZOLEiVitVuLi4gBZ7iQQBFtd6Z2vLIPg39hgb+e/758LRyGhURy9A2i5Exb8Boehecs2NB/mu7xMWyxQVMjA/udDUobPytX7u5V27t/YQGvnQb/cSSAJ5unRoSbY6krvfGUZBP/GBm07L5mcYAjQ5U4M5nCMvsyrZBawLHcSGOVLO68db8qVdUCEEKIhKX1+aqDNEvU8K9YPkycg8D6vEH4iHTshhGhISmadKmrgTJwAUPyx3Al4rtjJOnaioZCh2DMI5lk0oSLY6krvfGW2nH9jg72da6X/n1edAZWX4rRjAFwYUX05K1YxoADOYjuazIrVrXxp53Ujs2JrSWbFCiFCnbJtLqMKvuAn8yBOdq78MYt6OHvPLNJyV7Ix9Tp2Nxnus3Iv3Pwg0cVHWN7uCU5E+W7yhBD1SWbF1pLMig1MwVZXeucrs+X8Gxvs7XzNidWQCdGR4fQPoFmxypzPIBfad+xChz4+nBW7dzocP0K/c/qgNe/rs3L1/m6lnfs3NtDaucyK9aFgnkUTaoKtrvTOV2bL+Tc2WNu5wRTm/h1gs2JVVAAM5jBMvsyr5J49k0FmxQZC+dLOa0dmxQohhKhcyWQCRQuwWaKls1YNPr7eoMisWNGwBG3H7rPPPiMjI4Po6GhGjRrF8ePHPfsKCwu5/vrriYmJoXnz5nzyySc6ZiqEEIFDMZbOig2wWaKl+fi6Y1e63Ik8K1Y0EEHZsduyZQu33347n3zyCSdOnKBFixZMnDjRs3/q1KkcP36cgwcP8umnn3LnnXeyfft2HTMWQogAYXR3nAwBe8XO6NtyPevYScdONAxBeY/dokWLGD58OL169QLg73//Oy1atCA/P5+oqCg++ugjvvnmG2JjY+nXrx+jRo3i008/5R//+Eel5dntdux2u+d92ZsUg3l6dKgItrrSO19ZBsG/scHezrUyQ5OBlJehZIFil6r4dFkSo2LEADgdstyJnuVLO6+bkF/u5PXXX+fnn3/m888/B+DQoUOkpqaybt06WrRoQUJCAvn5+Z6lSl5++WVWr17NZ599Vml506ZNY/r06RW2y3InQohQU5z5K2NP/Ie1SmcOdH9Y73Q8zt/+FIn5O1jd6l6y4nv5odx7yIrv7bNyhahPIb/cyYUXXsjjjz/O6tWr6datG88++yyKolBQUIDNZsNoNJbrkMXGxmKz2aosb8qUKUyaNMnz3mq1kp6eDshyJ4Eg2OpK73xlGQT/xgZ7O1/3f4fhBFjMRkYE0HInhuxXIR+69TibHmf5Li/jsf9A/g56du+G1tF35er93Uo7929soLXzoF/uZNiwYSxfvrzSfY8//jiPP/44b7zxBuPHj+fYsWPcd999xMTEkJqaSnR0NC6Xi4KCAk/nzmq1Eh0dXeX5LBYLFoul0n3BPD061ARbXemdryyD4N/YYG3npjD3cidGzRkwOQGoJZMbjGaLj5c7cf8zJ8udBEb50s5rx5tyA7Jjt2DBgjMeM27cOMaNGwfAzp07ef3110lLS8NoNJKcnMzGjRs555xzANiwYQOdOnXya85CCBEMSmfFGgJslqjit1mxpc+KDbDJIkL4SVDOigX4448/UFWVgwcPcvvtt/Poo49iNLpvCr7++ut56qmnOHnyJCtXrmTu3LlcffXVOmcshBD6M5TOiiXAOjqan2bFKjIrVjQsQduxu/POO4mNjaVXr14MGDCA++67z7PvySefJC4ujpSUFMaOHcusWbNo3769jtkKIURgUIynnjwRUPy1QLFcsRMNTEAOxdbEqlWrqtwXERHBxx9/7JPzBPP06FARbHWld76yDIJ/Y4O9nWuKArjvsQukvIwuJwrgVPHtcicoGACXsxhVljvRrXxp53Xj8+VOSpcVOROj0cgVV1xR45MHmpkzZzJz5kxcLhfbt2+X5U6EECGn8PA2rjn0DHtJYX2P5/VOx2Po5klEFh9lWbtp5Ea19lm5vfa8TmruGv5Mu5E9jYf4rFwh6pM3y53UqGNnMpkYMGAAZzp0zZo11S4rEiysVitxcXHMnj2b0aNHB+306FARbHWld76yDIJ/Y4O9nW9fu4ROP4zlkNKUxn/frHc6HsbXumCwZVE4fgGmtJ6+K/fr2zD89TWuoc+g9rndZ+Xq/d1KO/dvbKC1c6vVSlJSku/WsYuIiOCnn34643GNGjWqWYZBJJinR4eaYKsrvfOVZRD8Gxus7TwsPAJw32MXKDkBaCX3/JnCwn2bl6lkeRdFwyjLnehevrTz2vGm3BpNnti9e3eNCpPnsQohRGAzlHR0zATO/XWA/yZPlCzvgqvYt+UKEaBq1LFr3LhxjQqr6XFCCCH0YbaEu38HbMfOx8udlMwCxiWzYkXD4PV/jS6++GKUkllVZVksFtLS0rjsssu44IILfJJcIAjmWTShItjqSu98Zbacf2ODvZ2XLndi0RwBlZeppGPndAE+zMugmDACLkeRzIrVsXxp53Xj81mxZT3xxBN8+OGHjB8/nrS0NA4cOMBHH33ENddcg6IovPPOOzz66KM88MADXieuN5kVK4QIdcUFVsZuuxuAb7p9gGKo+B91PVyy/haMmoMfO71CUViiz8rtePATMo78HzuajOCv1Gt8Vq4Q9cnns2LL6tWrF5988gkZGRmebTt27ODaa6/l999/Z+3atYwdO7bG9+UFIpkVG1iCra70zldmy/k3Ntjb+cncYyTMdC/Ynj95v2cyhd5M/2yKorkouGs95kZpPivXsORpjL++iqv37ajDnvFZuXp/t9LO/RsbaO3c57Niy9q1axepqanltqWkpLBz504AevbsSU5OjrfFBqxgnkUTaoKtrvTOV2bL+Tc2WNt5ZPSpfxQ01RkYeWkalMyKNft6VqzZfU+hUXPKrNgAKF/aee34fFZsWcOGDWPs2LGsXLmSAwcOsHLlSq655houuugiAFavXk2LFi28LVYIIUQ9CAsL97wuLsrXMZMyyj7HVWbFClEnXnfs3nnnHdq3b8+1115LRkYG48aNo3379rz99tsApKam8u2339Y5MafTyRVXXEFqaiqKopCdnV1u/9SpU0lPTyc2NpaMjAzee+89z76lS5diMBiIjo72/Pz88891zkkIIYKdwWjArrk7Ow57kc7ZlCj7HFd/zYqVZ8WKBsLr/xpFR0czY8YMZsyYUen+tDTf3RsxYMAAHnroIfr27Vth3/XXX8/DDz9MVFQUO3bsYODAgfTp04dOnToB0K5dO7Zu3eqzXIQQIlTYMWPBQbG9UO9U3Mp17Hx9xa50uRO5Yicahlq1oO+//54vvviCnJwc5s2bx5o1a8jNzWXo0KG+S8xk4r777qtyf9nJGwCqqrJ3715Px84bdrsdu93ueW+1Wj2vg3l6dKgItrrSO19ZBsG/saHQzosV9xU7e8HJwMituIjSO4gcLs23y52gYARUhx2XLHeiW/nSzuvGr8udvPDCC3z00UfccccdPPbYY+Tm5rJ161bGjx/PqlWrvE62RkkqCllZWSQnJ5fb/txzz/HUU09RUFBAnz59WLZsGeHh4SxdupSLLrqI2NhY4uLiuOGGG3jssccwGiu/xD9t2jSmT59eYbssdyKECEW9/5hEM+Uon6dPxZLURu90CHOe5OKNEwH4tvv7oHh9l1CVmh9bRo9975Ad251VbSb5rFwh6pNflztp3rw5q1evJjk5mUaNGnHixAk0TSMxMZHjx4/XKfEqk6yiYwegaRqrV69m0aJFPPLII5hMJrKzs8nNzfUMx1511VXccsstVa6tV9kVu/T0dFnuJEAEW13pna8sg+Df2FBo51n/7Epz7RCbhs2mfe9heqcDtsOYX+uEhkLhw4d8WlfKxs8xzb0LtfVgXNfO8Vm5en+30s79Gxto7dyvy524XC7i4uIAPE+gsFqtREdHe1XOsGHDWL58eaX7Hn/8cR5//PEalaMoCueccw4fffQR77zzDrfffjvJycmeTmDHjh15/PHHmTVrVpUdO4vFgsViqXRfME+PDjXBVld65yvLIPg3NpjbuVMJAw1wOgIjr5JFklXF6Pu6KpkFbFCdGGS5E93Ll3ZeO96U63XH7rLLLuOOO+7g5ZdfBsBms/HQQw9xxRVXeFXOggULvD11tVRVZdeuXZXuMxh8d1lfCCGCncMQBiq4HIE1eULz4RCsh2fyRADcSyhEPfC6Fb300ktER0fTokULcnNzadq0KSaTiX/+858+T85ut1NUVFThNcDbb79Nbm4uqqqybNkyPv74YwYNGgS4lzvZv38/4H4qxtNPP80ll1zi8/yEECIYuRR3Z0ctDqzlTjR8vNQJyKxY0eB43bELDw9n5syZ5Ofnc/jwYWw2G7NmzSIiwvePpWnfvr2n3JYtW5Y7x/z582nTpg1xcXHcddddvPjii4wYMQKAtWvXcu655xIVFcWwYcMYM2YMkybJTbNCCAHgMrg7Oy5HoHTs3AsU++WKXenyKXLFTjQQNRqKXb16dZX79uzZ43ndp0+fumdURmZmZpX7vvrqqyr3TZ48mcmTJ/skh2CeHh0qgq2u9M5XlkHwb2wotHNnaceuyBYQuSn5JzABTkO4T5c6AVAwYAI0lx2nLHeiW/nSzuvG58udtGrV6lSAonDgwAEURSExMZFjx46haRppaWns3r27dhkHiJkzZzJz5kxcLhfbt2+X5U6EECEpZuM7XOBcxndRV6K2G6V3OjSx/knfXS+RG9GcZR2e9mnZjWw7GLDjKWxhTVjc6SWfli1EffFmuZMaXbEre1Vu+vTpFBQUMG3aNCIiIigsLGT69OlERUXVLesAMHHiRCZOnIjVavXM/A3m6dGhItjqSu98ZRkE/8aGQjtflbUIsqFJhEbPkltY9KRsKoBd4DBG+7yulEPrYAdEhYd5btfxBb2/W2nn/o0NtHZe9sEJZ+L1rNjXX3+d7OxsTCZ3aEREBE899RQpKSk88cQT3hYX8IJ5enSoCba60jtfWQbBv7HB3M4NscmQDWFFOYGRV/FJ9y9TFPG+riuLe9RFUf2ztIve3620c//GBko796Zcr+9UbdSoEYsXLy63benSpcTHx3tblBBCCB2Y49zrfEYUH9U5kxKFJwAoNnq3HmqNGEv+QXTaqz9OiBDh9RW71157jauuuopzzjmH9PR09u3bx5o1a/j444/9kZ8QQggfC09IBSDWcUznTEqUdOwcJj907MLj3b/tVvfMWGMAXKEUwo+87tiNGDGCXbt2MX/+fLKyshg4cCCffPIJSUlJ/shPd8E8iyZUBFtd6Z2vzJbzb2wotPPYlAwAktUj2HKPYYmq/mZsfzPmH8UAFBujfF9XlnhMRguKy47j+F6Ib+GTYvX+bqWd+zc20Nq5z2fFNhQyK1YI0RBoGvRZ9wDNlGN81exRjE076prPwK3/IL4wk9Ut7yarkW+XzQK48K+HiLYfZkXbKRyLOcvn5Qvhbz6fFXv11Vfz2WefnfG4cePGMXv27JplGYBkVmxgCra60jtfmS3n39hQaedrt79Hs4IltGAfXUc8qF8iziJMG24GIDeqtV/qynjibcg8zLlnpaJ19c3MWL2/W2nn/o0NtHbu81mxc+fOZc6cOZzp4t78+fNrfOJgEcyzaEJNsNWV3vnKbDn/xgZ7O3d1Hgurl9Du0Dc4rY8RkZimTyK7FoLqRItqQqE50T911aQDZC7HdOh3OPsGnxat93cr7dy/sYHSzr0pt0Ydu3POOYdZs2bV6DghhBCBr+cFY9m65iU6aLs59J+L0cbPJjKtS/0mUZQHP7kXJFa7XAV2xT/naXcRrH4T/poLQ5+E8Dj/nEeIAFCjjt3SpUv9nEZFTqeTq6++mpUrV3Lo0CGysrJITk727N+zZw+33347q1evJioqirvvvpspU6Z49r///vs8/vjjWK1WrrjiCv773/8SFhZW759DCCECUUR4GIWj3ibrmytp5tiH+nZ/9kV3Q2tzAUltexPVrD1ENwWLj2eq2k/C4b9g7y/uztbJLIhMQj3nLlj+u2/PVarVAEhsC8d2wv+uhIuehWY9weCHZ9MKoTOvZ8XWpwEDBvDQQw/Rt2/fCvvuueceWrduzffff8+BAwc477zz6NOnDxdeeCEbN25k0qRJLFiwgIyMDMaMGcPTTz/Nk08+qcOnEEKIwNSjx9msN3/Htq8fZJDrN5rb1sOG9bDh1DGFSiSFplicxkhc5khUUySYIzEYjSgGE4rRiMHg/lGMJoyoGDUHRs2BQXViUIsxuIowFByDgqMoRXnlk2jUEsZ+ANFN/PdBjWa47L/w4Wg4sBrevhCimkDTjpDQGiKTIKKR+ycsCkwWMIaV/LaAKcz9XjGCooBiAFUjvPgYWLMgrHSfwb3fUPq6zA8AZa5IKkr5bVW9V/x0FVOErIDt2JlMJu67774q9+/du5fJkydjNptp1aoV559/Pn/99RcXXnghs2fP5uqrr6ZXr14APPHEE9x6661Vduzsdjt2+6nFK8vepBjM06NDRbDVld75yjII/o0NtXbeqX17ih/8lsXr/+TEH98Qe/xPWjh2k6bkEKXYidAKiHAUgAMo8s05D2uN2Ka04mfjOSwqGAQfn8Bk/IXCfCPv7V9JmMmI2WggzKRgNhrcr40KYSaD573ZqBBuMpIQHUbj6DAaR1tonhhJYlQVIzNNu8FtyzEufQZl+w8o+Udg9xHYvbRWn8EMDAfYXKvwWtNKOn4mRWGUpsF6AxpU01GsbFtV708dbwJGOJ2YNpuocHf9GTubFfd7yvvLhFZtfOX7TMDFDgemLWFo1Z6+snNrXFTswLTVjKac6SqtUiamGNO2ME+du3dXUr6mMby4GMfAPyAq/gzl107ILXeiKEqFodj//Oc/rFu3jn/961/s27ePCy+8kO+//54uXbowevRohg8fzl133QXAsWPHSEpKoqCggIiIiArlT5s2jenTp1fYLsudCCEaogInHLdDQVERamEuiqMAxWVHcRVhdNkxuOyomupeN0VT3T+oKKqKAwN2zUShasaOkWLNjB0zJ7QYjhFLjhaHFT8sRFwiPkyjXZzGgGSV9CpOY1CLiSvYS7Q9m6jiI5id+YS5bIQ5bRhVOwbNiUF1uq86ak4Mqvu3gvvzKmgomgpoKJqGgnubaNjmdX0TlzHcL2X7fLmTQNSvXz9mzZpFVFQULpeLadOm0aWL+8Zfm81W7oOXvrbZbJV27KZMmcKkSZM8761WK+np6YAsdxIIgq2u9M5XlkHwb6y085rTNA2XquFwaRS7VBwu1f3aqVZ4X2gvZvXvf9Cpazc0DDhcKsXl4lSKnZrntcOlUVDs4nh+MTk2Ozkn7RzMLSK3WGF1jsLvRw3cM7gNdw9u4/vPBRRX9t2WdnLL/qiu0so4rYSy27x/73A4Wb58GQMGDMBsMpY7DOp+LqfDyYpfVnD+eedjMpfpKpzxWlDl+50OJ7/88gvnndfP86z5msaWxv/66y/069cPk6mqtlTFuZ0Ofv31V/r17VtNbPl4p9PJb7/+St9+ZfKt4rM7nU5+++03Lhg2ArPFPx07ny93UlZhYSH/+Mc/mDNnDsePH8dqtfLjjz+yZcsW7r///hqXM2zYMJYvX17pvscff5zHH3+8yliXy8WIESN45JFHuPPOOzlw4ACXXHIJnTp14sorryQ6OrpcJZS+jo6u/L9vFosFi8VS6b5gnh4daoKtrvTOV5ZB8G+stPOaq/jf6YocDge2XRoXd2lW67o6WeTgzwN5fLJ6H/P+zOK1n3bRPiWOEV1SalVeTej23Toc2M3xmBul+ef8DgcFlh2YmmT4pnyHg/zwXZiadqhdeQ4HtvA9mJI7eh/vcGAL34sppXPNYx0OTkbsq1mMw8HJiP2YLeEBsdyJ11OC7rrrLrKyspg3bx5Go/t/CV27duU///mPV+UsWLCAoqKiSn+q69QBHD9+nEOHDnHnnXdiMplo2bIlY8aMYcmSJQB07NiRjRs3eo7fsGEDrVq1qvRqnRBCiNAQE27mvLZJ/HtcT+4c5L5S96/FO3TOSoj65XXH7vvvv+edd96hc+fOKCU3EaakpJCVleXz5Ox2O0VFRRVeN27cmPT0dN566y1UVeXAgQN8++23nqHYcePG8fnnn/PHH3+Ql5fHM888w/XXX+/z/IQQQgSmOwa0waDA1uyTZOf5aNaHEEHA645dfHw8OTk55bbt2bOHZs2a+SypUu3bt/dcZWvZsmW5K25ffPEFH330EY0aNaJ3795ceOGF3HbbbQB06dKFl19+mUsvvZS0tDTS09N57LHHfJ6fEEKIwBQXaaZjM/f91aszj+ucjRD1x+t77O677z4uvfRSHnvsMVwuF/PmzePpp5/26v66msrMzKxyX+/evfn111+r3D9hwgQmTJhQ5xwa8jIIgSLY6krvfGW5E//GSjv3D3/UVfum0Ww6aCUz56TPvwO9v1tp5/6NDbR27vflTubMmcO7777Lvn37SE1N5ZZbbuHqq6/2tpiAM3PmTGbOnInL5WL79u2y3IkQQgSxuXsNLD5kYGCKyuUtVb3TEaLWvFnuJCjWsatvVquVuLg4Zs+ezejRo2UZBJ0FW13pna8sd+LfWGnn/uGPunp7RSbP/7id0d1SeOlK3z4HV+/vVtq5f2MDrZ1brVaSkpL8s47dq6++yuDBg+nWrRurVq3i+uuvx2g08t5771X66K9gJ8sgBI5gqyu985XlTvwbK+3cP3xZV0kx7jXFcgudfl2GQtp5/ZXXUNu5X5c7eeGFF2jZsiUAkydP5v7772fKlCnce++93hYlhBBC+E1CyePFjucX65yJEPXH6yt2NpuNuLg4Tpw4wZYtW7jzzjsxGAzSsRNCCBFQpGMnGiKvO3Zt27bl008/Zdu2bQwZMgSDwcDx48cJC6viwctBLphn0YSKYKsrvfOV2XL+jZV27h/+qKsos3utVWuRQ2bF6ly+tPO68eus2FWrVnH//fcTFhbG22+/TUZGBrNnz2b+/Pn873//8zrZQCKzYoUQInQcLYKn1pkIM2i8eI5L73SEqDWZFVtHMis2sARbXemdr8yW82+stHP/8EddHcotZODLPxNmMrB56hCflFlK7+9W2rl/YwOtnft1Viy4n736y/+3d+9RUZX7/8DfM1yGyzgzBnIEobyEIorHnwdZZfK1rxmYZfLrm1QcFCztrMLK0O8yBAIMO8k5VKdvVP7sYjc067Rcp75mWF4gs/RooCaKqagppAeFYRTn/vsD2YcRVC6z2XsP79darmbPs59nPvPM+jQf9szzzI4daGhoQPu68Pnnn+/JcLKm5FU0nkZpcyV1vFwtJ25f5rk43DlXGt/Wq3QOh5OrYmUyPvO8Z0RdFfv6669jypQp+O677/Diiy/i0KFDKC4uxi+//NLdoYiIiETjpW79jp3NwQ+mqP/odmFXXFyMLVu2oLS0FBqNBqWlpfjyyy/R0tLi1sAOHz6M++67D8HBwRg0aBBSU1Nx4cIFoT0zMxPDhw/HgAEDEBsbi/LycqFt27ZtUKvV0Gq1wr+Kigq3xkdERPLWVtgBrVftiPqDbhd258+fx4QJEwAAvr6+sFgsiI+PR1lZmVsDa2pqQnJyMo4ePYra2lpYLBYsWbJEaNfr9SgrK0NTUxOWLl2KpKQkNDc3C+0jR46EyWQS/sXHx7s1PiIikrf2hR2v2lF/0e3v2I0aNQqVlZUYP348xo8fj5UrV0Kv12PQoEFuDSwuLg5xcXHC8YIFC5CZmSkc5+XlCbdnz56NRYsWoaamBn/4wx+6/Vhmsxlms1k4NhqNwm0lL4/2FEqbK6nj5TYI4vZlnotDjLly2G3CbbPFApXTy21jS/3aMs/F7Su3PBd1u5MffvgBvr6+mDBhAg4ePIiFCxeiubkZK1euxNSpU7sdbFcVFBSguroa69at69BWW1uL0aNHo76+Hnq9Htu2bcP06dOh0+mg1+sxZ84cZGdnw8ur86TOz89HQUFBh/u53QkRkXJZ7MB/72q9frEyzgY/99V1RH3K47Y7qaysxF133YXy8nKMGTPGpc1qtWLatGmYMmUKli9fDgCor69HY2MjRo4ciUOHDiE5ORmPPfYYnn322U7H7+yKXUREBLc7kQmlzZXU8XIbBHH7Ms/FIcZcWWwOjCn4BgCwZ9l/QufvvtdA6teWeS5uX7nluejbnZw8eRIHDhyAyWRyuT85ObnLYyQkJLgseGgvJycHOTk5AIDjx49j5syZeOeddzoUdU6nE+np6QgJCUF+fr5w/+DBgzF48GAAQHR0NHJycvDGG29cs7DTaDTQaDSdtil5ebSnUdpcSR0vt0EQty/zXBzunCsvr39ft1B5eYvyGkj92jLPxe0rlzzvzrjdLuyKioqQn5+PmJgYl48pVSpVtwq7riy2qK+vx913343c3FwkJSV1aH/qqadw5swZbNq0CWr1tdeBXK+NiIg8k7rd4gk7F09QP9Htwu6vf/0rdu/e3eHqmbs1NTUhMTERc+fOxeOPP96hPS8vDzt27MD27ds7XG3btm0bRowYgYiICBw5cgSFhYVITU0VNV4iIpIfb7UKNoeThR31G92+lKXVajFixAgxYnGxYcMG7Nu3D0VFRS770bVZvnw5qqurERYWJrR9/PHHAIA9e/bgtttuQ2BgIBISEpCUlOSyopaIiPqHti1P7PL/OjmRW3Tpit3Zs2eF21lZWZg/fz6ysrI6bHESEhLitsDS0tKQlpZ2zfbrrflYvHgxFi9e7JY4lLw82lMoba6kjpfbIIjbl3kuDrHmqq2wu2y2wGrt0dfKOyX1a8s8F7ev3PLc7dudqNVqqFSq6xZTKpUKdru9yw8sRyUlJSgpKYHdbkdNTQ23OyEiUrjndnmhxa5C9ngbQvyljoaoZzxuu5O+ZjQaodfrud2JTChtrqSOl9sgiNuXeS4OseZq4otb0dhixVdPTcKtIdobd+giqV9b5rm4feWW56Jsd+J0OrF69WocOHAA48ePx6OPPtrrQJVAycujPY3S5krqeLkNgrh9meficPdceXu1fhSr5nYnshifed4z3Rm3y4snFi9ejLy8PNTX1yM7O1vYZ46IiEiu1KrWws7mcEgcCVHf6HJht379epSXl2P9+vXYunVrpz/tRUREJCfeVxZPsK6j/qLLhZ3RaERkZCQAICoqCufPnxctKCIiIndo26SYV+yov+jyd+zsdjt2794trIy9+hgA4uLi3B+hxJS8PNpTKG2upI6X2yCI25d5Lg7Rtju58lGsxWpz69hSv7bMc3H7yi3P3b7dCQAMHToUKpXqmu0qlQrHjh3r8gPLEbc7ISLyLCt+8sLZyyo8NcaGW6+/mJBItrjdSS9xuxN5UdpcSR0vt0EQty/zXBxizdWM/9mBI2cv4sN5sbht+E1uG1fq15Z5Lm5fueW5KNud9FdKXh7taZQ2V1LHy20QxO3LPBeHu+fKS33lq+RqNbc7kcH4zPOeEWW7k752+PBh3HfffQgODsagQYOQmpqKCxcuCO1jxoxx+Q1ZtVqN4uJioX3NmjUIDw+HTqfDvHnzYLFYpHgaREQkobZ97OwOfjhF/YNsC7umpiYkJyfj6NGjqK2thcViwZIlS4T2n3/+GSaTCSaTCSdOnICPjw9mzZoFANi/fz8yMzOxYcMGnDp1CrW1tSgsLJTqqRARkUTaFk+wsKP+QrYfxcbFxbmssl2wYAEyMzM7PXf9+vWYMGECbr31VgBAaWkpHnroIcTGxgIAcnNzMX/+fCxfvrzT/mazGWazWTg2Go3CbSWvovEUSpsrqePlajlx+zLPxSHWXF3Z7QRmC1fFSjk+87x3RFkVK7WCggJUV1d3ujHy5MmT8fDDD2PhwoUAgFmzZiExMRFPPvkkAKChoQHBwcG4dOkS/P07/gp0fn4+CgoKOtzPVbFERMr2twNeONaswryRdowPUsTbHVEH3VkVK9srdu1VVlbitddeQ3l5eYe22tpa7Nq1C59//rlwn8lkcnnibbdNJlOnhV1WVpbL1UCj0YiIiAgAUPQqGk+htLmSOl6ulhO3L/NcHGLNVWn9bhxrvoDfj/8/mBEz2G3jSv3aMs/F7Su3PG//SeKNSFbYJSQkdFqoAUBOTo7wW7THjx/HzJkz8c4772DMmDEdzi0tLcW0adMQEhIi3KfVal0moe22Vqvt9PE0Gg00Gk2nbUpeReNplDZXUsfL1XLi9mWei8Pdc+Xt1fpVchVXxcpifOZ5z3RnXMkKu7KyshueU19fj7vvvhu5ublISkrq9JzS0lJkZWW53BcdHY39+/cLx1VVVRg2bFinV+uIiMhztW13YrPzY1jqH2S9KjYxMRFz587F448/3uk5lZWVqK2t7VD0paSkYP369di7dy+ampqwYsUKpKam9kHUREQkJ1d2O4FdGV8nJ+o12RZ2GzZswL59+1BUVOSyX117H3/8MWbNmoXAwECX+2NiYlBcXIyZM2ciPDwcERERyM7O7svwiYhIBtqu2HG7E+ovZLt4Ii0tDWlpadc95y9/+cs129LT05Gent7rOJS8PNpTKG2upI6X2yCI25d5Lg7xtjtpLegsVm53IuX4zPPe8cjtTvpCSUkJSkpKYLfbUVNTw+1OiIgU7r0aNSob1PivoXb8Ryjf7kiZPG67k76SkZGBjIwMGI1G6PV6ANzuRA6UNldSx8ttEMTtyzwXh1hztdm0D5UN9Rg1OhozJt3itnGlfm2Z5+L2lVueK2K7E6VQ8vJoT6O0uZI6Xm6DIG5f5rk43D1Xvj5eAAAnVNzuRAbjM897pjvjynbxBBERUW/5XtnHzsbFE9RPsLAjIiKP5XOlsLPYHBJHQtQ3WNgREZHHaivsrHYWdtQ/8Dt2N6Dk5dGeQmlzJXW83AZB3L7Mc3GIvd2JmdudSDo+87x3uN1JD3G7EyIiz/K/J9UoO63Gfwx24L+G8aodKRO3O+khbnciT0qbK6nj5TYI4vZlnotDrLk6uvUoyk4fxZCImzFjRrTbxpX6tWWei9tXbnnO7U7cSMnLoz2N0uZK6ni5DYK4fZnn4nD3XPn5tr7N2Z3d2zKiq6R+bZnn4vaVS557xHYnJpMJkydPRlBQEAYOHIi77roLhw4dEtrfeOMNjB8/Ht7e3njppZdc+m7btg1qtdrlN2YrKir6+ikQEZHEfIXFE/zWEfUPsi3sNBoNVq9ejXPnzqGhoQEPPPCAy2/HhoWFobCwEPfff3+n/UeOHAmTyST8i4+P76vQiYhIJrzVKgCAhatiqZ+Q7UexPj4+GD16NADAbrdDrVbj+PHjQntSUhIA4LPPPuv1Y5nNZpjNZuG4/WfZSl5F4ymUNldSx8vVcuL2ZZ6LQ+xVsRarnatiJRyfed47HrUqdty4caiurobD4UBRUREWL17s0p6eno6oqCg899xzwn3btm3D9OnTodPpoNfrMWfOHGRnZ8PLy6vTx8jPz0dBQUGH+7kqlohI2X44q8Lao16INjjwp9G8akfK5FGrYvft24eWlhZ89NFHGDJkSJf6REVFobKyEiNHjsShQ4eQnJyMAQMG4Nlnn+30/KysLGRmZgrHRqMRERERALgqVg6UNldSx8vVcuL2ZZ6LQ6y5slbVYe3R/RgYNAgzZvzBfeMyz/t0vP6e54pYFZuQkIDy8vJO23JycpCTkyMc+/v7Y/78+QgNDUV1dTUGDhx43bEHDx6MwYMHAwCio6ORk5ODN95445qFnUajgUaj6bRNyatoPI3S5krqeLlaTty+zHNxuHuu/H1bx7I5nFwVK4Pxmec9051xJSvsysrKunW+0+mEyWRCXV3dDQu7q6nVsl0jQkREIvL2al08wZ8Uo/5CthVPVVUVysvLYbFYcPHiRSxbtgwGgwGRkZEAAJvNhsuXL8Nut7vcBlq/Y3fq1CkAwJEjR1BYWIj77rtPsudCRETS4HYn1N/ItrCzWq145plnEBQUhJtvvhmVlZXYuHGjcDmysLAQ/v7++Oijj5Cbmwt/f398+OGHAIA9e/bgtttuQ2BgIBISEpCUlOTyHToiIuoffITCjlfsqH+Q7eKJ2NhY/PTTT9dsz8/PR35+fqdtixcv7rB6tqeUvDzaUyhtrqSOl9sgiNuXeS4OseZKhdZPciw2B7c7kXB85nnveNR2J32ppKQEJSUlsNvtqKmp4XYnREQKV9sMvHLAG0EaJ56fYJc6HKIe6c52JyzsOmE0GqHX61FaWopZs2Ypdnm0p1DaXEkdL7dBELcv81wcYs3VgdNG/N+3fsBgnQYV/z3FbeNK/doyz8XtK7c8NxqNCA4O9ox97KSm5OXRnkZpcyV1vNwGQdy+zHNxuH27Ez9udyKn8ZnnPdOdcWW7eIKIiKi32lbFmq1cPEH9Aws7IiLyWMEDWjefbzbbcMlikzgaIvGxsCMiIo+l8/PBAE3rt45OX2iROBoi8fE7djeg5OXRnkJpcyV1vNwGQdy+zHNxiDlXYQY/HP7NhJMNJgy9yc8tY0r92jLPxe0rtzzndic9xO1OiIg8z/87pMbPF9R4cJgd8YP5lkfK053tTnjFrp2MjAxkZGQI250AUPTyaE+htLmSOl5ugyBuX+a5OMScq1/8fsHPW4+hyS8UM2aMd8uYUr+2zHNx+8otz41GY5fPZWF3A0peHu1plDZXUsfLbRDE7cs8F4cYczU9Jgz/s/UYttWcw/HzlzHydwPcNrbUry3zXNy+cslzj9juxGQyYfLkyQgKCsLAgQNx11134dChQy7nvPfee4iMjERgYCBGjx6NmpoaoW3NmjUIDw+HTqfDvHnzYLFY+vopEBGRDESH6vCfowbBandi9ls78ea2ozh2zgSHgx/LkueR7RU7jUaD1atXY9SoUQCAN998E2lpafjxxx8BAF988QWKi4uxYcMGREdH49ixYxg4cCAAYP/+/cjMzERZWRkiIyORlJSEwsJCLF++XLLnQ0RE0lCpVPjr7N8j/b3d2H+6CSs3HcLKTYcQ4OuFoUGBCB6gwcAAHwwM8MUAP29ovNXw8/GCxlsNTdt/vb3gpVbBW62CWq2C02HHkSYVdtWeh5+vD9QqFbzUKuG/beepVSqoAKhUgAoqqFRtMbXGdXWbCgCuOr76PKgAu82KyzbAZLbB16HqdPx/P7bKdT46zE/H+SLlkm1h5+Pjg9GjRwMA7HY71Go1jh8/LrS/8MILeOWVVzBmzBgAwIgRI4S20tJSPPTQQ4iNjQUA5ObmYv78+dcs7MxmM8xms3Dc/rNsJa+i8RRKmyup4+VqOXH7Ms/FIfZc6TRqrF8wEZ//dAb/u78eu09cwCWLHQfrjEBdT0f1wusH/+nOMLvJG0t3bxF1/Gd2lrnc06EIvKpH+6Lw6jan0wuLf9zcYYyu9FUBsDu8sHT3N1cK32v37ay/ze6FZXu+FYpm174dHwsArFYv5P60xaW9s75OZ+u5k6a0wBDY+XPrLY9aFTtu3DhUV1fD4XCgqKgIixcvht1uh5+fH1auXImXX34ZPj4+mDdvHnJzc6FSqTBr1iwkJibiySefBAA0NDQgODgYly5dgr+/f4fHyM/PR0FBQYf7uSqWiMgz2R3Av8zAvy6rcNEKmGzARasKZgdgveqfzQFYHSo4AdidrW/kDifgQOttuxNw4sp97e5vu40r7VduCsed3dd6k1fMlKgozgaNlzhje9Sq2H379qGlpQUfffQRhgwZAgD47bffYLPZ8O233+LAgQMwGo245557EBERgXnz5sFkMrk88bbbJpOp08IuKysLmZmZwrHRaERERAQAroqVA6XNldTxcrWcuH2Z5+JQ2lz1RbxOpxPOtiLQ6bzy39Zjq9WCb77Zgql3TYW3t3e78wDAedVxuzHhvOox2rf9m81qxbbt2zFlyhT4eHtf1auzcV3jvrrNZrWhvLwc8f8RD2/va89X+77tR7FabaioqEB8/GShf/vncr14rFYrdny3A3dMvgM+3j7Xn4Mrt202G3Z8vwOTJk369+N18rzazt35/feYkTgNGl/faz633lDEqtiEhASUl5d32paTk4OcnBzh2N/fH/Pnz0doaCiqq6uF4mzp0qUwGAwwGAzIyMjAxo0bMW/ePGi1WpdJaLut1Wo7fTyNRgONRtNpm5JX0Xgapc2V1PFytZy4fZnn4lDaXEkVr9VbDV8vQBfgJ9ofcAN8gMGGQLf9AWfQABFBA3r8B9xBP2DoIF2P/oCr8Qdu/Z2+W3/A/eIPjAo1dOkPuOMBgMbXVxarYiUr7MrKym58UjtOpxMmkwl1dXWIjo5GWFhYh/Y20dHR2L9/v3BcVVWFYcOGdXq1joiIiMhTyHa7k6qqKpSXl8NiseDixYtYtmwZDAYDIiMjAQDp6ekoKipCc3Mzzpw5g7feegv33nsvACAlJQXr16/H3r170dTUhBUrViA1NVXKp0NEREQkOtkWdlarFc888wyCgoJw8803o7KyEhs3bhQuR+bl5SE0NBTh4eGYOHEiHnjgAaSlpQEAYmJiUFxcjJkzZyI8PBwRERHIzs6W8ukQERERiU62iydiY2Px008/XbPd19cXq1evxurVqzttT09PR3p6eq/j4DYI0lPaXEkdL7c7Ebcv81wcSpsrqeNlnovbV2557lHbnfSlkpISlJSUwGaz4ciRI3j77be53QkRERFJ6tKlS5g/fz4aGxuF37K/FhZ2nfj111+F7U6IiIiI5ODUqVMIDw+/7jks7DrhcDhw5swZTJ06Ff/8Z/d2FZ84cSJ27959w/Pa9so7derUDTcbpK7Pq1xIHa/Yj+/u8Xs7Xm/696Qv81wcUudNd0kdL/Nc3L5yynOn04nm5maEhYVBrb7+8gjZfsdOSmq1GuHh4fD29u72i+Tl5dWtPjqdjv/D74LuzqvUpI5X7Md39/i9Ha83/XvSl3kuDqnzprukjpd5Lm5fueX5jT6CbSPbVbFykJGR0Sd96MaUNq9Sxyv247t7/N6O15v+zHP5UNq8Sh0v81zcvlK/vj3Fj2IlYjQaodfru/S7b0SkTMxzIs8ntzznFTuJaDQa5OXlXfOnzIhI+ZjnRJ5PbnnOK3ZEREREHoJX7IiIiIg8BAs7IiIiIg/Bwo6IiIjIQ7CwIyIiIvIQLOxk7NSpU5gwYQL8/Pxgs9mkDoeI3CQzMxPx8fF4+umnpQ6FiEQg5fs3CzsZGzRoELZs2YLbbrtN6lCIyE327t0Lk8mEiooKWK1WRf2EFhF1jZTv3yzsZMzPzw8Gg0HqMIjIjXbu3Ilp06YBAKZNm4YffvhB4oiIyN2kfP9mYedGeXl5iI6Ohlqtxrp161zazp07h3vvvRcBAQEYNWoUvv32W4miJCJ36UnONzY2CrvT6/V6XLhwoc/jJqKuU9p7u7fUAXiSyMhI/O1vf0Nubm6HtoyMDISFheFf//oXysrKMHv2bBw9ehRmsxkPP/ywy7larRZffvllX4VNRD3Uk5w3GAwwGo0AWn+KiFflieStJ3k+cOBACSK9wkluN2XKFOfatWuF4+bmZqevr6/zzJkzwn3x8fHO999/v8vjWa1Wt8dJRO7RnZzfs2eP8/HHH3c6nU7nE0884fzxxx/7PF4i6r6evLdL8f7Nj2L7wJEjR6DX6xEaGirc9/vf/x4///zzdftdvnwZ06ZNQ1VVFRITE1FRUSF2qETkBtfL+QkTJsDf3x/x8fFQq9WIi4uTMFIi6qnr5bmU79/8KLYPmEwm4Ts1bXQ6HRobG6/bz8/PD998842IkRGRGG6U86+++mrfB0VEbnW9PJfy/ZtX7PqAVqsVvlPTxmg0QqvVShQREYmJOU/k+eSa5yzs+kBkZCSamppQX18v3FdVVYUxY8ZIGBURiYU5T+T55JrnLOzcyGq14vLly3A4HC63tVot7r//fuTl5aGlpQX/+Mc/cODAAcycOVPqkImoF5jzRJ5PcXnep0s1PFxaWpoTgMu/rVu3Op1Op/Ps2bPOe+65x+nv7++MjIx0bt68WdpgiajXmPNEnk9pea5yOp1OaUpKIiIiInInfhRLRERE5CFY2BERERF5CBZ2RERERB6ChR0RERGRh2BhR0REROQhWNgREREReQgWdkREREQegoUdERERkYdgYUdEJDP5+fnw8fHB4MGD3TbmnXfeiXXr1nWrz6JFi+Dv74+oqCi3xUFE4mJhR0SyNHToUAQEBECr1UKr1WLo0KFSh9SnHnvsMZcfFxfD2LFjUVtbe832V199FV999ZWoMRCRe7GwIyLZ2rJlC0wmE0wmU6cFiNVq7fugZMAdz/vXX3+FzWbrdwUzkadjYUdEirFt2zZERUUhOzsbwcHBePHFF9HS0oKFCxciLCwM4eHhWLlypXD+xYsXkZKSAoPBgAkTJmDZsmWYPn26y1jtqVQq4SrZ+fPnkZKSgpCQEAwfPhzvv/++cN6dd96J5cuXIzY2FjqdDo888ggsFovQ/sknn2Ds2LEYMGAAYmJicPjwYaxYsQLz5s1zebw77rgDn3/+eZee+9ChQ1FUVIRRo0YhOjoaAPDkk08iLCwMBoMBCQkJOHnypHD+7t27MW7cOOh0OvzpT3+Cw+FwGe/rr79GYmIiAODdd9/FLbfcAq1WixEjRmDr1q1diomI5IeFHREpyi+//IKAgADU1dVh6dKlWLJkCZqamlBTU4Ndu3bhgw8+wBdffAEAKCgoQENDA06ePInS0lJ8+OGHXX6cOXPmICIiAqdOncLGjRuRlZWFqqoqof3TTz/F559/jpMnT2Lfvn345JNPAAA7duzAwoULsWrVKjQ1NeHTTz+FTqfDH//4R2zYsAFmsxkAcOLECRw8eBAzZszockwbNmxARUUF9u/fDwCYPHkyqqurUV9fj/DwcDz99NMAAIvFggceeABPPfUUGhoaMHbsWHz//fcuY23atAmJiYm4ePEiFi1ahG+++QYmkwlbtmzhVTwiBWNhR0Sydffdd8NgMMBgMCArKwsAEBAQgOeeew4+Pj7QaDR47733UFxcDK1Wi7CwMDzxxBP47LPPALQWX7m5udDpdIiKikJaWlqXHre+vh4VFRV48cUXodFoEBUVhZSUFJerawsWLMDNN98Mg8GAe++9Vyj61qxZgyeeeAJ33HEH1Go1oqKiEBoaiqFDh2Ls2LHYuHEjAGDdunVISkqCn59fl+fj2WefRUhIiNAnJSUFer0efn5+WLp0Kb777jsAwM6dO6HRaLBgwQL4+Phg4cKFCA0NFcax2+347rvvcOeddwJovVK5f/9+mM1m3HLLLRg2bFiXYyIieWFhR0SytXnzZjQ2NqKxsRF//vOfAQChoaHw8vICAJw7dw4tLS0YOXKkUAAuW7YMZ8+eBQDU1dUhIiJCGK/97es5efIkLl68iKCgIGHcVatW4bfffhPOCQkJEW4HBATAZDIBaP3u2vDhwzsdNzU1VViZWlpaipSUlK5OBQAgPDzc5XjFihW49dZbodPpEBcXh4aGBgAdn7dKpXLp++OPP2Ls2LEICAhAYGAg1q5di9dffx0hISF48MEHcebMmW7FRUTywcKOiBRFpVIJt4ODg+Hn54cTJ04IBaDRaBRWcoaGhuLUqVPC+e1vBwYG4tKlS8Jx+xWoQ4YMgcFgEMZsbGxEc3Mz3nrrrRvGFxERgePHj3faNnv2bJSVlWHXrl04e/Yspk6d2vUnDtfnvn37dqxatQpfffUVmpqasGvXLqEtNDQUv/76q0vf9sdtH8O2mTFjBrZs2YLTp0/Dz88Pubm53YqLiOSDhR0RKZZarUZaWhqWLFmCxsZGOBwOVFdXC0XOgw8+iBUrVqC5uRmHDx/GBx98IPQdOXIkGhoasH37dpjNZrzwwgtC25AhQzBx4kQ8//zzuHTpEmw2G/bu3YuDBw/eMKb09HS8+eab2LlzJ5xOJw4fPoy6ujoAwE033YQpU6YgPT0dycnJwpXHnmhuboa3tzeCgoJw8eJFFBYWCm233347Wlpa8M4778BqtaKkpESIAXBdOPHbb7/hyy+/REtLCzQaDQICAnoVFxFJi4UdESnayy+/jMDAQMTExOCmm27C3LlzceHCBQBAXl4e9Ho9wsPD8cgjj2DOnDlCP71ej9deew3JyckYNmwY4uLiXMb9+OOPceLECQwfPhwhISFYtGgRWlpabhjPpEmT8Oqrr+LRRx+FTqfD7NmzYTQahfbU1FRUV1d3+2PYq02fPh233347brnlFsTExGDSpElCm6+vL/7+97/jlVdeQVBQEPbt2ye0NzQ0oK6uDjExMQAAh8OBlStX4ne/+x1CQkJw+vRpLF++vFexEZF0VE6n0yl1EEREfWHNmjVYt24dNm3aJFkMO3fuRGpqKo4ePXrNcwoLC/HSSy/BYDB0+Ei1t9auXYvNmzfj3XffveG5mZmZePvttzFs2DCXFcFEJF8s7Iio35C6sLNarZg7dy7Gjh2L7OxsSWL4+uuvERQUhNjYWEken4jE5S11AERE/UFDQwPCw8Mxbtw4rFq1SrI42i+aICLPwyt2RERERB6CiyeIiIiIPAQLOyIiIiIPwcKOiIiIyEOwsCMiIiLyECzsiIiIiDwECzsiIiIiD8HCjoiIiMhDsLAjIiIi8hAs7IiIiIg8xP8Hnhe1ngILPScAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHbCAYAAABGPtdUAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACucklEQVR4nOzdd3gU1frA8e9syaYnJAESSOgBpIOAgtKUJihgwYIFbNeCFSyXKwpYrh0r+Lv2csWCFZGrFCmiAoqAgHQINYFQkmVTNrs78/tjkyUhhWyym9ndvJ/nyZPdmXnPvHuWA4c5c84omqZpCCGEEEKIoGfQOwEhhBBCCOEb0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgghhAgR0rETQgSVCRMmMGbMGL+fR1EUvvnmG5+Xq2ka//jHP0hISEBRFNavX+/zc/jDhAkTUBTF63rJyMjwxHXr1s1v+Qkh3KRjJ4TwudKdAEVRSExMZPjw4fz11196p+Y31e1w/vDDD7z//vvMnz+fzMxMOnXq5P/kfGT48OFkZmZy0UUXldtnt9vp1q1buc5qWloamZmZTJ48uQ4zFaL+ko6dEMIvSjoBmZmZLFmyBJPJxMUXX6x3WrrbtWsXKSkp9O3bl+TkZEwmk9dlaJqG0+n0Q3ZVs1gsJCcnY7FYyu176KGHaNKkSbntRqOR5ORkoqOj6yJFIeo96dgJIfyipBOQnJxMt27dePjhh9m/fz/Z2dmeYzZu3MgFF1xAREQEiYmJ/OMf/8Bms3n2u1wuJk2aRHx8PImJiTz00ENomlbmPJqm8dxzz9GqVSsiIiLo2rUrX3zxRZW5tWjRgieeeIJx48YRHR1NkyZNeO2116qMqSrX6dOn88EHH/Dtt996rlIuW7asXBkTJkzg7rvvZt++fSiKQosWLQD31a577rmHRo0aER4ezvnnn8/vv//uiVu2bBmKovDjjz/Ss2dPLBYLP//8c7nyi4qKuOuuu0hJSSE8PJwWLVrw9NNPA3DTTTeV61g7nU6Sk5N59913Afjiiy/o3Lmz5zMOHjyYvLy8KusF4H//+x8LFy7khRdeOOOxQgj/ko6dEMLvbDYbH3/8MW3atCExMRGA/Px8hg8fToMGDfj999+ZO3cuixcv5q677vLEvfjii7z77ru88847rFy5kuPHj/P111+XKXvq1Km89957vPHGG2zevJn777+f6667juXLl1eZ0/PPP0+XLl34888/mTJlCvfffz+LFi2q8Ngz5frAAw9w5ZVXlrlK2bdv33LlvPLKKzz++OOkpqaSmZnp6bw99NBDfPnll3zwwQf8+eeftGnThmHDhnH8+PEy8Q899BBPP/00W7ZsoUuXLuXKf/XVV5k3bx6ff/4527Zt47///a+n83jLLbfwww8/kJmZ6Tl+wYIF2Gw2rrzySjIzM7nmmmu46aab2LJlC8uWLeOyyy4r15E+3eHDh7n11lv56KOPiIyMrPJYIUQd0IQQwsfGjx+vGY1GLSoqSouKitIALSUlRVu7dq3nmDfffFNr0KCBZrPZPNu+//57zWAwaFlZWZqmaVpKSor2zDPPePY7HA4tNTVVGz16tKZpmmaz2bTw8HDt119/LXP+m2++Wbvmmmsqza958+ba8OHDy2y76qqrtIsuusjzHtC+/vrrauc6fvx4T15Veemll7TmzZt73ttsNs1sNmsff/yxZ1tRUZHWpEkT7bnnntM0TdOWLl2qAdo333xTZdl33323dsEFF2iqqla4v0OHDtqzzz7reT9mzBhtwoQJmqZp2tq1azVAy8jIqDC2os+nqqo2fPhw7YknntA0TdP27NmjAdq6devKxU+bNk3r2rVrlfkLIWpPrtgJIfxi0KBBrF+/nvXr17N69WqGDh3KRRddxN69ewHYsmULXbt2JSoqyhNz3nnnoaoq27ZtIzc3l8zMTPr06ePZbzKZ6Nmzp+f933//TWFhIUOGDCE6Otrz8+GHH7Jr164q8ytdbsn7LVu2VHjsmXKtjV27duFwODjvvPM828xmM7179y6XT+nPXpEJEyawfv162rVrxz333MPChQvL7L/lllt47733ADhy5Ajff/89N910EwBdu3blwgsvpHPnzowdO5a33nqLEydOVHm+1157DavVypQpU6r9eYUQ/iUdOyGEX0RFRdGmTRvatGlD7969eeedd8jLy+Ott94C3PfGKYpSYWxl20+nqioA33//vacTuX79ev7+++8z3mfnzXl9kWtltOKhztPLqeicpTuWFenRowd79uzhiSeeoKCggCuvvJIrrrjCs/+GG25g9+7d/Pbbb55h2n79+gHuSQ6LFi3if//7Hx06dOC1116jXbt27Nmzp9Lz/fTTT6xatQqLxYLJZKJNmzaAuwM6fvz46leCEMJnpGMnhKgTiqJgMBgoKCgAoEOHDqxfv77Mzfm//PILBoOBtm3bEhcXR0pKCqtWrfLsdzqdrF271vO+Q4cOWCwW9u3b5+lElvykpaVVmU/pckvet2/fvsJjz5QrQFhYGC6Xq5q1cUqbNm0ICwtj5cqVnm0Oh4M//viDs846y+vyYmNjueqqq3jrrbf47LPP+PLLLz336iUmJjJmzBjee+893nvvPW688cYysYqicN555zFjxgzWrVtHWFhYuXsaS3v11VfZsGGDp0O9YMECAD777DOeeuopr3MXQtSe9/PshRCiGux2O1lZWQCcOHGC119/HZvNxiWXXALAtddey7Rp0xg/fjzTp08nOzubu+++m+uvv57GjRsDcO+99/LMM8+Qnp7OWWedxcyZM8nJyfGcIyYmhgceeID7778fVVU5//zzsVqt/Prrr0RHR1d51eiXX37hueeeY8yYMSxatIi5c+fy/fffV3hsdXJt0aIFP/74I9u2bSMxMZG4uDjMZvMZ6ykqKoo77riDBx98kISEBJo1a8Zzzz1Hfn4+N998c7XqusRLL71ESkoK3bp1w2AwMHfuXJKTk4mPj/ccc8stt3DxxRfjcrnK1M/q1atZsmQJQ4cOpVGjRqxevZrs7OwqO5fNmjUr875kSZPWrVuTmprqVe5CCN+Qjp0Qwi9++OEHUlJSAHcHrH379sydO5eBAwcCEBkZyY8//si9995Lr169iIyM5PLLL2fmzJmeMiZPnkxmZiYTJkzAYDBw0003cemll5Kbm+s55oknnqBRo0Y8/fTT7N69m/j4eHr06MG//vWvKvObPHkya9euZcaMGcTExPDiiy8ybNiwCo+tTq633nory5Yto2fPnthsNpYuXer5rGfyzDPPoKoq119/PSdPnqRnz578+OOPNGjQoFrxJaKjo3n22WfZsWMHRqORXr16sWDBAgyGU4MzgwcPJiUlhY4dO5ZZdy42NpYVK1bw8ssvY7Vaad68OS+++GKFixELIQKXomlnmMsuhBAhpkWLFtx3333cd999eqdS5/Lz82nSpAnvvvsul112WbXjJkyYQE5OTo0fszZ9+nS++eaboHmEmhDBSu6xE0KIekBVVQ4dOsSjjz5KXFwco0aN8rqM+fPnEx0dzfz586sds2/fPqKjo/n3v//t9fmEEN6ToVghhKgH9u3bR8uWLUlNTeX999/3+lFmzz33HFOnTgXwDLFXR5MmTTxX6Sp6FJkQwrdkKFYIIYQQIkTIUKwQQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIiQjp0QQgghRIgI2Y7d8uXL6dOnD+effz6TJk3SOx0hhBBCCL8L2Y5dmzZtWLZsGStXriQrK4uNGzfqnZIQQgghhF+Z9E7AX5o2bep5bTabMRqN1Y5VVZVDhw4RExODoij+SE8IIYQQolo0TePkyZM0adIEg+EM1+S0IPDYY49pZ511lqYoivbJJ5+U2XfkyBFtxIgRWkREhNa2bVtt8eLFZfavXbtWGzFihFfn279/vwbIj/zIj/zIj/zIj/wEzM/+/fvP2IcJiit26enpvPLKKzz66KPl9k2cOJEmTZpw9OhRFi5cyNixY9m1axcNGjQgKyuLe+65hy+//NKr88XExADw9ttvM2bMGMxmc7XiHA4HCxcuZOjQoWeM8ebY+i7Y6krvfP19fl+XX9vyahNfk1hp5/4RbHWld77Szv0bG2jt3Gq1kpaW5umfVCUoOnbXXXcdAE899VSZ7TabjW+//ZaMjAwiIyMZM2YMM2fO5LvvvuPKK69k3LhxvPbaazRu3LjK8u12O3a73fP+5MmTAERGRhIREVHtL8pkMlU7xptj67tgqyu98/X3+X1dfm3Lq018TWKlnftHsNWV3vlKO/dvbKC1c4fDAVCt28MUTdM0v2ThBwMHDuT222/n6quvBmDdunUMGzaMI0eOeI65++67iYyMpEWLFsyYMYP27dsD8PTTT9OnT58Ky50+fTozZswot33OnDlERkb64ZMIIYQQQlRPfn4+48aNIzc3l9jY2CqPDepZsTabrdwHjI2NxWazcccdd5CVlcWyZctYtmxZpZ06gClTppCbm8sLL7xAu3btaNOmjb9TF0IIIYTwuaAYiq1MdHQ0Vqu1zDar1Up0dLRX5VgsFiwWC5MnT2by5MlYrVbi4uIAGDRoECZT9arJ6XSydOnSasV4c2x9F2x1pXe+/j6/r8uvbXm1ia9JrLRz/wi2utI7X2nn/o0NtHZ+el+nKkE9FGuz2UhMTGTv3r0kJycD0L9/f2655RZuuOEGr8ufNWsWs2bNwuVysX37dhmKFUIIIYTuQm4o1uFwUFhYiKqqZV5HR0czatQopk2bRkFBAfPmzWPTpk1ccskleqcshBABSVU1lC1fkr93jd6pCCH8ICiu2E2YMIEPPvigzLalS5cycOBAsrOzGT9+PMuWLSM1NZXZs2czePDgWp2vZCh2zpw5jBw5Mmgv3YaKYKsrvfOVIRr/xgZ7O9+weA59/pwMQP5DmTpnc0og1lVV9M5X2rl/YwOtnVutVlJSUqp1xS4oOnZ1RYZihRChLmzL51xUOB+Ab7t9APJ0HSECnjdDsdKxq0DpK3ajR4/2akHDRYsWMWTIkGotaFjdY+u7YKsrvfP19/l9XX5ty6tNfE1ig72db3jlSnrafgLAdt9uLFFV/yNRVwKxrqqid77Szv0bG2jt3Gq1kpSUFDr32AkhhPCNMEeu57Ut95iOmQgh/EGu2JUiQ7FCiFCXvm4GHdgFwBctnsTcoJnOGQkhzkSGYmtJhmIDS7DVld75yhCNf2ODvZ1n/bsLadohALYO/ZjWvYbpnJFbINZVVfTOV9q5f2MDrZ3LUKwQQogKRWk2z+uivBM6ZlI3Mndt4K8PJmE7ceTMBwsRAuSKXSkyFCuECGmaxoh1N2FWXAB82+AWaNFf56T8a8SfN2JWXKw09eVY59v1TkeIGvFmKDbwFwuqQxMnTmTixIllHikWzJduQ0Ww1ZXe+coQjX9jg7md2/OsmNe7PO+bNoyh64gROmZ0ir/qyrzO/XlbunZxjg8/q97frbRz/8YGWjv35pFi0rE7A7PZ7PUX5U1MTcqvr4KtrvTO19/n93X5tS2vNvH1pZ3n5udS+knaWkFuQORVmr/qSsXol3L1/m6lnfs3NlDauTflSsfuDBwOh9fHVifGm2Pru2CrK73z9ff5fV1+bcurTXxNYoO5nVuPHSGp9IaC4wGTm7/qquSfQ1Ux+rRsvb9baef+jQ20du5N2XKPXSlyj50QIpQVZf3N2MxnPO9Xms7lWOc7dczI/0avuwGAnaSxuftTOmcjRM3IPXY1JPfYBaZgqyu985V7b/wbG8zt/K8fsqDU42FjTQ6f3ndWG36rq3XuXwajmRFyj51u5Us7rx25x86HgnlMPtQEW13pna/ce+Pf2GBs56rNveRHnmYhSrET7jwZEHmV5su6Kj0gpSpyj10glC/tvGa8KVfWsRNCiPri5GEADprcT5uIcJ3UMxu/sxcWeF6rilHHTISoO3LF7gyC+WbLUBFsdaV3vnJTtX9jg7mdK/nZAOTEtIGcHTRQc7DbizAYFJ0z809d5Zw4SnLxaxWDTJ7QsXxp57UjkydqSCZPCCFCWfMNz9JN3cyXseO53PoBAJ+2/w8RERE6Z+YfBbnZXL17MgBbaMX27tP1TUiIGpLJEzUkkycCU7DVld75yk3V/o0N5naeveFhAJr3uBDrsi+IJY8u7VuQ3vFsnTPzT13t2rgadrtfRxicMnlCx/KlndeOTJ7woWC+2TLUBFtd6Z2v3FTt39iga+eqi4aqe/JEUlp7ThiTiHXlkXfsIGbzufrmVoov68phP/Vc3DDNLpMnAqB8aec1I5MngP3799OjRw/Cw8NxOp16pyOEELqyZu/DjIsizUjjpi2xWRoDUJCdoW9iflSUl+t5bdHsOmYiRN0J2Y5dw4YN+emnnzj33MD5n6gQQujl2N7NAGQqjYgID6MorgUA6tGdOmblX878U8NXkRRUcaQQoSNkO3bh4eHEx8frnYYQQgQE2/5NABy2tADA1KgtAJHW3Xql5HeuwlMduwjsaM4iHbMRom4ERcdu2rRpdOjQAYPBwKefflpmX3Z2NiNHjiQyMpJ27dqxZMkSnbIUQojApR3ZAoAtLh2A+LROADQs2kuoLo6gFpZdpy/fekynTISoO0HRsUtPT+eVV16hd+/e5fZNnDiRJk2acPToUZ599lnGjh3LiRMndMhSCCECV1zO3+4XjTq4f7Vyd+zStMMcyQnRhYrtZT+XLeeoTokIUXeComN33XXXMWTIEMLDw8tst9lsfPvttzz++ONERkYyZswYOnXqxHfffadTpkIIEYCK8mhqd99LF5t+HgCWBqnkEYFJUTmwa7Oe2flPUdmOXcFJuWInQl9QL3eyY8cO4uLiSElJ8Wzr2rUrmzdvprCwkIsvvpgNGzYwbNgwpk+fTr9+/Sosx263Y7efmjFVer2YYF6pOlQEW13pna+sSO/f2GBs53k7fiMelUwtgZYtWnvyOWJpRkv7No7s2oCja09dc/RHXRlOu2KXfyI7YP7cBvr5pZ0HVjsP2SdPDBw4kNtvv52rr74agJ9//pkbb7yRnTtPzep65JFHyMnJYdasWdUud/r06cyYMaPcdnnyhBAiFMTu+Y5BOXNZTG/yut/l2d54y9ucW7iCz0yjCO98hY4Z+kf8htcZoK7xvP866Q4MaX10zEiImvHmyRNBMRRbmejo6HKrMVutVqKjo70qZ8qUKeTm5vLCCy/Qrl072rRp48s0hRBCV0l52wA4ZCn7d5stpjUAzYt2ogbNf/GrL0Yte8XO6MzTKRMh6k5QD8Wmp6eTm5tLVlYWycnuRz1v2LCBW265xatyLBYLFouFyZMnM3ny5DKPFBs0aBAmU/Wqyel0snTp0mrFeHNsfRdsdaV3vv4+v6/Lr215tYmvSWzQtfOiPMzr3BMnGva6jAF9z/Psch1uCh+8R2dlFxFdepOeHKdPjvinrrLWTQFgn9KUZtpBmsaaOWvIEJ+Urfd3K+3cv7GB1s69eaRYUAzFOhwOXC4XQ4cO5dZbb2Xs2LGEhYVhMBgYO3YsCQkJvPzyyyxatIgJEyawa9cuGjRo4PV5Zs2axaxZs3C5XGzfvl2GYoUQQS/x2O+cv+81MtTGLO/4HPHhyqmdmsrg9XcQRQEvJj5Jm2bN9EvUx1wqDFp/Jw0UGz8bz6WfaxU/WwZwvMPNeqcmhNdCbij21ltvJSIigp9//pkbbriBiIgIVqxYAcDs2bPZv38/iYmJPPDAA3z++ec16tQJIUQoij26FoBfDD3KduoAFAP7wtzDsxE52+o6Nb/KczhpoLifFXss3N1hjXbm6JiREHUjKK7Y1bWSodg5c+YwcuTIoL10GyqCra70zleGaPwbG1TtvDAH02tdCdOKeK/d/3HV6NHlDjm57GUar3mWZWo32t07j7gIfR5o7+u6+nvHDnp+3R8XBpZ3e4kL1t/LXnMrGt7/iw+y1f+7lXbu39hAa+dWq5WUlJRqXbGTjl0pMhQrhAglaYcX0+PQh2xV01jU9kmaxSjljokpOMAFW/9FoWbm6ab/R4/G+nTsfO3QwT3ccWQax4jn6yYPcsuhR8ghmuXdZ+udmhBe82YoNvAvf9ShiRMnMnHixDKTJ4YMGYLZXL2/6BwOB4sWLapWjDfH1nfBVld65+vv8/u6/NqWV5v4msQGTTtXXRS++igAP4QN5c4rR6Ao5Tt2aBrWF14htugw4QUHGDFiYt3mWczXdfXDF2/BETgZ0YTeF4yC/z5CPDZGDOoDEbW/XUfaed2WV9/buTeTJ4LiHjshhBDeUbbOIyZvLye0aExnX1txpw5AUVDaDQeg7dHFZBwLjSVBXCf2A2CPakpKwyQOaQnu91lb9UxLCL+TodhSZChWCBEKFNVJ/7+nEO84zEuOy0noOpp4S+XHN7DtoP+OJ7Bp4dwX9zqXtA6ru2T9pGj9x4zVfuSXmJEcbXMVSWuf4zzDJpY2vhlrkwF6pyeEV2QotoZkKDYwBVtd6Z2vDNH4NzYY2rlh1SyMjsNka3Hsazueuy7tW3WAplHw6vtE2/YTc2IDPfv9k0YxVfQE/cCXdeVSNVavnQkGSO/Wl979R/C/LXOhcBPNYlw0GzEioPINxPNLOw+sdi5DsUIIUV8d3YGy7N8APO+8kvEDO505RlEI63YVAKNZwbu/ZPgxQf/bfTSP1soBAOKadwagILYVAMbjOyuNEyIUyFBsKTIUK4QIZorqpN+OJ2mQv5sVrs48H/Ugt5xVvdiowiwGb3kIVVMYUvQC13ZrSGK4f/P1lz8yC3ki6x8ALOg8G4cpml27tjLJ+m8OKw1Z1e1FnTMUwjsyFFtDMhQbmIKtrvTOV4Zo/BsbsO1c0zAumIQhfze5WiSPqLfxzvgBtEyKqnYR6qcLMexazPXGH1lZ8CBvXNbdjwmX5cu62vnhpwDYzEkMGXUlAP/7vSUs/DeNtWxGDDwHIhMDJt9APL+088Bq594MxUrH7gzMZrPXX5Q3MTUpv74KtrrSO19/n9/X5de2vNrEh0Q7X/kyrP8IFYX7HBMZ1vds2qbEe1fGeXfDrsVcaVzOS1uv4KftzRjWMdkf2VaqtnWlaRr2Q5sBcCa2I7q4rLTUNLarTWlrOIj50B9w1sUBkW+gn1/aeWC0c2/KlY7dGTgcDq+PrU6MN8fWd8FWV3rn6+/z+7r82pZXm/iaxAZiOzeseh3jkukAPOUYx/bYPrw4oKX3503ti6lRJyKPbOJG0w/888sGdEyOonGs/8dkfVVXu7PzaGzPABNENO3oKa9FQjgLtPa05SC27cuxtBkWEPkG6vmlnQdWO/embLnHrhS5x04IEVQ0jXZZX9M+6xsAXnZexsvOy7mrg0p6XM3+am9yYg29Ml4nj3DOL3yZxNho7jxLxRgkU+1+PKBw4+En6GXYzrpmt7Avsb9n39p1q3ic2RwKa8XvHafrl6QQXpJ77GpI7rELTMFWV3rnK/fe+Dc2YNp5UR7G7+7GkDUPgFfVsbzsvJTb+rXk3qHpNS9XG472znKiDm/kHst8ZljH8asjjX+P6VD5Isc+4Iu60jSNN15dRhdlNwCdRt5Kp4TWnv1/5obD7tkkF2UwYkBviErSNd/akHbu39iAaefF5B47HwrmMflQE2x1pXe+cu+Nf2N1becH1sLX/4BjO9EMZp7kFt4p7MeAtg156KKzMBpq2QEbPA0+voLxxh/5yDCIL/6EZolR3HNhLTqM1VSbutqwP4foYxuxWJyokQ0xN2oHpTqjLVu3ZePOFnQ2ZGDYvQh63KBrvr4g7dy/sYHy77k35QbJxXUhhBDYT8Kix+CdIXBsJ66oZO4wzeCd/H60T47h1Wu6175TB9BmMLS+EIPq4KOULwGNmYu289qSHbUv24/e+nk3PQ3bATA0P7dMpw6gS1o8P7h6A6Bt+a7O8xOiLsgVuzMI5pstQ0Ww1ZXe+cpN1f6N1aWdqy6UTXMx/vQ4St4RAHJbj+LK/VewzWqiZWIk743vQaTJh9/70H9jerMfTY/9ymvdRnP3+jReXLQda0ERDwxJx+CLDmQpta2rjGN5/G9TFu8Z3TNiXU17o55WVtuGkTxqOIcH+Rx2/oTjxEGIbqRLvrUl7dy/sYH277lMnqghmTwhhAgkiuYk9fhvtD08j2j7YQBslsYsSRjHv/b3JM+p0DBc484OLhL88ASw9oe+oN3heRSYGzAj/mk+3e++abtzA5Xr01UsRt+fs6be2mpg14ki/gr/B2acLDnraWzhTcsd98bfBp4umE53w07+ThnLjuRLdMhWCO94M3lCOnYVKJk8MWfOHEaPHh20N1uGimCrK73zlZuq/RtbJ+3cdgTDhjkY1n2AkrsfAC2iAa5z7+JjZSRP/rgHh0ujS9NY3ry+B4lRYdUv2xuOfExvDUA5sQe101i+aPYoj3y7GYdLo1VSFC9c0YnOTeN8c6pafI//25TFPZ/9xVDjWt40v4gW3xznnX+UG4oFeHtlBrsXv8nz5jfR4prhvHMNGLwfvJJ2XrflhWQ794LVaiUpKUlmxfpCMN9sGWqCra70zlduqvZvrM/bubMIdi+F9XNg63xQne7tUQ2hz11YO93Ao//by7wN7hmfF3VK5oWxXYmy+PGvcXMcXPYmvDsMw6a5XHnWxbS5bQB3/Hctu4/mceWba7j7gnTuGNiaMJNvbtn29rvYczSPR+dtAWBi051wBJS2wzCHVdzZ7d+uEa/82Icppk9IyN2H+e+voPu1dZavr0k7929soPx7LpMnik2aNIl+/fpxzz336J2KEEKU5yiE7T/C13fA821gzpXw9zfuTl1qLxg9G+79i5+SrmHo7D+Zt+EQRoPC1JFnMfvaHv7t1JVI6w3n3+9+Pf9+ejSw88O9/RnZOQWnqvHS4u0Mf3kFS7ce8X8up8k+aWf8u2vILXBwdmoUXazL3Tvaj6w0pkNKLInx8fyfs/jJEyueB5ezDrIVom6EbMfuzz//xGaz8fPPP+NwOPj999/1TkkIUd9pGhzZAr/Ngv9eDs+2cHfmNswBey5EJ0Pv2+D2lXDLYg60uJSJX2zlpvf/4LDVTqukKD6/rQ+39Gvl1zXlyhnwT0juDAXH4ctbaBBu4PVx3Xnl6m4kRYex+2geN77/O9e9vZpVu49RF3f47Dmax5X/+Y19x/NplhDJu+floBTmuOuwRb9K4xRFYUTnZD5yDeGkMQ5O7IF1H/o9XyHqSsgOxf72228MHjwYgMGDB7Nq1Sp69eqlc1ZCiHrFaadB3g4Mq2bBoT9g/xqwHS57TEwKnDUKOo6BtHPBYMBmd/J/P27jzZ93U+RUMShwS79WTBrSlnCzDjMWTGFwxXvw5kDI+BmWPoUyeBqjuzVlUPtGvP7TTt77ZQ8rdx5l5c6jnN28Adef25zhnZJ9nq+maXyz/iDTvt2MtdBJ0/gIPrypN3E/3ek+oPMVYKj6nCM6p/DWz3t4zTGGfxk+gMUzoP0lEN3Qp7kKoYeg6NhNmzaNuXPnsnXrVubMmcPVV1/t2Zednc2ECRNYunQpaWlpzJ49mwsvvJCcnBxat3avOB4XF8fmzZv1Sl8IUR/YT8Lhv+HwRsjaBFkbMWX9RX9XEWwvdZwpHJqfB60vgDYXQsP2npv8cwscvP/LLt79ZQ+5Be7lDfq0SuTRizvQoUnVN0z7XVI6jHoVvrgJVs50D9G2u4jYcDP/GnEW15/bnP+s2MXnfxxg7d4TrN17gthvTYzq1oThHVPo3TKhVvfhaZrGqt3HeXnxdlbvOQ5A92bxvHl9TxqaC2H7D+4DO489Y1nd0uJpGh/BOzmDuSt5DbE5W+DHKXD52zXOT4hAUaOOXUFBAY899hhz587l+PHjWK1WfvzxR7Zs2cJ9993n4xQhPT2dV155hUcffbTcvokTJ9KkSROOHj3KwoULGTt2LLt27SI+Pt7zCA6r1Up8fLzP8xJC1DOaBnnZJNi2oaw/ATl74NhOOLzZPaR3GgWwm2IwtzofQ7NzIO0caNIdzBFljsvMLeCj3/by0W97OWl33+/VKimKhy9qz9AOjet22LUqnS6HfathzX/g69vgthXQoAUAaQmRPDmmM3dfkM4na/Yx948DHMwp4L+r9vHfVfuItpg4r00iPZo1oEtqPJ2axhITXvUN4YUOFxv25/DrrmN8u/4gGcfyAQgzGrjnwjbcNqA1ZqMBVr8PzkJ3Jzml6xk/hqIoXNwlhf+s2M1L4ROZptwDG+dCmyHQ9ara1pIQuqpRx+7OO+/E4XAwf/58+vVz38vQpUsX7r33Xr907K677joAnnrqqTLbbTYb3377LRkZGURGRjJmzBhmzpzJd999R58+ffjPf/7DlVdeyeLFi5kwYUKl5dvtdux2u+d96WeyBfOChqEi2OpK73xl4dJaxGoa2K2QewDFegAl9yBYD7iXHDmxB+X4Lsz2k/QDqOAhDFp0MlrjTmiNO6I16ogjqSML/9jJkKFDy85qczhQVY1fdx9nzpr9LNl6BLX4trT0RlHcOaAVF3VKxmhQcDoD7Mb+C6ZhPPAHhkNr0T65FueEBWA+td5nQoSRiQNacke/Fvy6+zjzN2ayfPtRjtqK+HHzYX7cfGooOiHKTGp8BA0iw7CYFI4eMfDNsT/Jd7g4lFPIwZwCT70ARIYZGd01hTsGtCIlLhxUFw6XE9Oat1AAV48bUatZX1f0cHfs3t+bwD3n3UODP15Gm38/zkadIKntGeOlnddtebJAsZ8XKG7UqBH79+/HYrGQkJDA8ePuy+JxcXHk5uZ6W1y1DRw4kNtvv90zFLtu3TqGDRvGkSOnZmPdfffdREZG8uyzz3Lfffexdu1aunbtyuuvv15pudOnT2fGjBnltssCxUKECE3F7Moj3JGLxWnF4sjB4rQWv8/F4sglwnGciKJjmNXCqotCIT8skTxLMjZLMnmWZKwRTbFGNKPIFHPGVA4XwNqjBtYeVThaeOpKXJtYlf7JGp0TNHz8UAefCy86xsBtj2FxnmR/g7782fy2CteMK6FqsD8Ptucq7LO5f3KKqvchY8wabWI1OjTQ6JqglVsUOenkZs7b+SwOQzgLO72C0xhRcUEVmP23gW25BoakOPm342ka2raQF9aQn9s+ht3sm/X5hPAFbxYortEVu/j4eLKzs0lNTfVs27NnD02aNKlJcTVms9nKfcDY2FhycnIAePnll6tVzpQpU5g0aZLnvdVqJS0tDYBBgwZhMlWvmpxOJ0uXLq1WjDfH1nfBVld65+vv8/u6fK/K01Qoykex50JhDkpBDmreMbZvWEX75skYi6wohSc8+5TCHCg4jpJ/FEWt/pUvLSIBLbYpamwqWmxTtJimaA2aozZohSO6KUt//o1BgwYRXc123qbbufy04wQLNh1mS5bNsz/aYmR012SuOrspbRpGVTu/QKB1bob22ZWknfiVxt2H4+x5q1fx1kIHB3MKOZRbiLXASZ7dwd9bt9OlQztiIsJoFB1Gi8RIkqLDqhyKtnz5kftF12sYNGSUVzkoadnc8/km/siNwHjrp6ifjSYqJ4MhR9/GfvVXEFb5f+ylnddtebWJr0lsoP17Xnok8UxqdMVu1qxZvP322zzyyCPcfPPNfPzxxzz55JPceOON3Hbbbd4WV23eXrHzljxSTAgf0VSMmgODWoTR8+PAqNndv4u3mdRCTK7C4t8FmNSC096fvt+OQs2X0igyRmE3x1FoisNuisNuji3+HUeBOYGCsEQKwhJwGWr3fC6XCrtPKmw+ofB3jsLhglMdE4Oi0T5O4+wk99W5QHosl7daHfmBzgfnoGLg1zb/5FhM+zo9f2z+PgZtm4qGwpKzniUvPNmreJcGT60zcsyucFkLFyMaZNJv++NYXDaORrdjdatJXl0BFMJf/H7FbuLEiTRq1Ih33nmH1NRUXn31Ve6//36uuqpubzpNT08nNzeXrKwskpPdDXrDhg3ccsstdZqHEHVGU1E0FQMulOLXiuZC4dRrQ6nXiqZi0JyeH0VzYtScKGrJNleZ/QbV6S6j9Lbi7afeuzBopzpnBtWBUbVjLLXNqPn3viNVMVJkjKbIFI3DGEWRMQqHqeR39Gm/oyg0xVFkikU1+GdVeFWDQ/mwI1dhl1Vhp1WhwFW2M9c6RqN7kka3BI2o4HmASpV2NxxGfP4e0k78Rq+M11jW7nEKwxLr7Pzph78D4GD8OV536gCMClzQRGXuHiM/HTJwXuNkVrWeTN9dz5Nk20afnc+xqvUDOEzBdTVV1G9B8axYh8OBy+Vi6NCh3HrrrYwdO5awsDAMBgNjx44lISGBl19+mUWLFjFhwgR27dpFgwYNany+0s+KHTlypF8u3Wr7VrH+j9V069Ydo9EAJVchPF+HVva1Z59WZlPp45SKYioth9Nea9U/d6XlVO8zKBXFV/gZ3b9Vl4sdO7aTnp6OoeTmo5LjNNzDc6ju35rm+a1oaql92mn7S/Zp5bYplWx3H0/5bcXbS86nqS6OHztKQoMGxZ+1uBzV6fmtqC7QXO5tp71WSm8vExNgN9FXk2Ywu2eBmsLRTOHu38XvCYtCNUVy8NhJUpqnYwiPRQuLRguLBs/vKDRLTJn3mCI893TpMUTzw+KlJKV3Z/PhfNbuzWHtvlzPbNYSCZFmzm/dgAR7JrdefD4NosO9yi1oOPIJ/3gUhiObcSV3wz7ua/d36yVvvwvl+C7C3+6HgkbBhCVojTrUJHvsThdDX11Ftq2IaSPbctXZTVGyNhD++dUohTmoCa2xX/YhWkKrWuXrazIU69/YQByKTUlJqdYVu2p37J577rlqnfyhhx6q1nHemDBhAh988EGZbUuXLmXgwIFkZ2czfvx4li1bRmpqKrNnz/YsTOytuhyKHbbxHsKdOX4pW9Q/GgqaYkDFCIoBVTGgYUBTjKiKCdVgcv9WjGiKCZdidu/zbD+133282XNsmf0GI6piRlVMuAxmXAYLqmLGZQgr+6Oceo0S3A+4sbsgqwD2F9/0v9emcLjAXeelWYzuq3JtYt0/adEE/CQIX4m0ZzNg22OEufLYmziA9Wk3VTmZwhe67X2L5sd/JjO2O2ta31+rspZnKnyVYSTGrPFodxcWI8QW7OOcXTOJdBynyBjF7y3v5mhMzTqPQtSWN0Ox1e7Y3XjjjWVO8PXXX3POOeeQlpbG/v37WbNmDZdddhmffPJJ7bIPAHVxxS7s4zEUHNtPZFS0+58HRYGSfyg8fyEqZV+XKN6mnb7/9GMrLPO08qs89vTyKRVXUUz582tnOn+Vn9W9TdNUDh/OpnHjxigGQ9lyFMOpn5LjS28rtZ1y2ynz3h1X/DlOP7aK7dpp21VN4+8tWzmrQ0eMRtOpeIMRFBOaweh+bTCBUva15nltcP8u9VqrZLu73FP1Iv+Tr1msphjYe7yAHUds7DiSx44jeWw/kseBEwUV3tXXKCaMLk1j6Zoaxzkt4mmfHI2p9J9PH3y2YGLYswzLF9eiaCpFQ5/F2e0Gr+K9qSsldz/hb/VFUZ0UXjcftcnZtUmdIpfKJbPXsP9EAXf0b8HdA1u6d9iOYPl6AsbMdWiKAWef+3H0vQ8MJt2/W2nn/o2tF1fsSrv88su54YYbGD16tGfbvHnz+PDDD/niiy+8zzhAyOQJIUKbS4VjdjhaqJBdeOp3dqHCcTuoWsVXmaLNGqmRGs2ioVm0RrNojbiwOk4+CKRnfUeHzLmoipGV6f/iRFS6X87Tef+HtDq6mOzoDvya/k+flLn+mMJ7242YDRpTu7mIL54/Y1CL6Lr/fZodXwnAsah01ra4g4KwJJ+cV9SeoigYjUE8C+k0Lper3POW/XLFrrS4uDiOHTtWpmfqdDpJTEz06zp2daX0FbvRo0eXXVi0Cg6Hg0WLFjFkyJAzxnhzbH0XbHWld77+Pr+vy69teaXjC10KmbkFZOa6l9HIzC0kM6eQTGshh4qX1nCplf+VFxVmJL1xNG0bRdO2cfFPo2gSoy0Vnk/a+Wk0DeNXN2HY+h1adDLOm5dAdONqhVa7rmyHMb3eA8Vlx3ntV2gt+vsodY2r3/6dP/flMKJTY165quwTLJRNX2D83wMoRTa0sGgc/f/F/442YcjQYdLO66C8yuLz8vLIzMws1xEqTdM0CgsLCQ8Pr/ZTXLyJqUn5VVEUhZSUFKKiTk3asVqtJCUl+W9WbKdOnXjyySeZOnUqJpP7kvS///1vOnbsWJPihBCiUk6XyvF8B0dtdo7aikr9dr8+Yi1k72Ejj/y5Apvddcbyws0GmidE0iwhkmYNwrFl7eGi88+mVaNYkmMtgfP4rmCkKLgufhXl6HaUo9swfnUzrmu/AqPvLm8a1vwfisuO2rQnWvN+PitXURQeG9mey/+zmgWbDjO6WzYXtGvo2a91ugJn054Yv70Dw8HfCVv8L/pFtkbplgZNz/wYM+F7LpeLzMxMoqKiSExMrLTtappGXl4eUVFRXnXsqhtTk/KrKuvYsWNkZmbSsmXLGl2JrNEVu927dzNu3Dg2b95Mo0aNOHLkCB06dODjjz+mTZs2XicRKGQoVgj/0TT3RIQ8J+Q7Id+plHoNeU6l3Os8h/v40ycqVCXSpNEgDBpYNOLDIN5y6n2iBWLD6s+kBr1EFWYyYNt0zGoBuxsOYWPq9T4p1+TMY+jm+zGrhaxqdT+H47r7pNzSvt1r4KdDBuLDNP7VzVV+nUFNpcXRn+hw6HPMaiEqRjIaXsC25DHVevKI8B2TyURycjKpqalYLLVbezKQ2O12Dhw4QFZWlueRgn4fii2xb98+MjMzSUlJoVmzZjUtJuDIUGxgCba60jtfX53fpWoUOlwUOlwUOFQKHC7sDhVrfiEr16wl/azOFLo0bHYneXYXNruzzOu84vc2u8vzuopR0CoZFEiICiMpKoykGAsNo8NIjHb/jo8wsnfrJkYM6kNaYjSRYdUfiKhJXUk7rx5l+w+Y5rqf8+28Zi5aq0FVHl+dujL88jLGZU+iNTwL563L/TLjuqDIxYjXf+XAiQKu6pnKk6MrngnrPL6PE3P+QZPcPwDQLLGo592P2uvWGi334i0ZioXCwkL2799PixYtCA+vvM41TePkyZPExMR4dcWuujE1Kb8qhYWFZGRkkJaW5vlcfh+KLXnSQ3h4OC1btiyzrVGjRjUpUghRiqpqOFwqRS6VIqdKkUvzvHZ4tqk4XFq5bYVFTv7KVDjw2z5UTSmOc5dX6HR30gqLXBQUd9oKnSXv1eJOnPvH4aqqF2aErX/X6LNZTAbiI83ER5iJizATG27EdvwIHVo3JyE6nLgIM3ERJhpEhhEXYaZhTBgNIsMwVnKZzeFwsChrI62SojCbQ3vmaTDR2g7H1fMWjH+8jfH7+3De+jOEV/0PUpUcBRh+/w8Arj53+20ZnYgwI0+P6cgN7//BZ38coH96IkM7lL9PUItJ4fdW9zAs3YJl2RMoRzZh/GkGhrXv4Tp/MlrnK8FYvzrzAt5//32mTJnC9ddfz3PPPYemadx5550sWbKE+Ph4PvnkE1q3bs28efN44IEHOPvss32+mkiNrtgZDAYURfHcrFi6h+pynfkel0AVKEOxmnbaUsCnrUmscdrawKcdW3opYUode/pywKdvP73MyrafnmNFZVSUU7kcSh1bcpxaqmz3bwW11Hu1VO6e7ZW816BMbJkyKnmvFp+zou2lf1zF+12q+3eZ7Z7XSrltKqfeuyoqs/i3N0OPdcFs0AgzgNkAYQawGCHcqBFuxPNjMZ3aZim9vdRxEUYIC53Ja+IMjC47g7Y+QlTRETISB7Ch2c01LqtF9mK6HviQ/LAkFnd4Dk3xbyd+3l4DSw4ZiDRpPNzl1CzZCmkqacd/4azML4hwnAAgL6wh2xtfwv6E891LFQmfKxmKTUtLIywsMKapz5kzh+3btzN9+nQA/ve//zF37lzeffddfvzxR+bMmeNZl3flypW8++67vPvuu2XKKCoqYv/+/TUeiq3RnzZVVcu8z8rK4sknn+Scc86pSXEBY+LEiUycONEzFAv4bYim3/PLOWItLF4HrWznSYjTmY0KYUYDYSYDZqOBMKNy6vVp24yKwoljR0hrkoLFbCLM5I41Gw2Emw2Em41EmI3Fv93vS7+OMBuJCDNiMRmIMLt/G0pdLQuGIRp/xspQrHeUro3ho1G0OLac1EumoDXtWeFxVdaV6sQ0eyoAloEPcFGvUf5Om8FOlaveWsOmQ1b+d6Ih740/G5Px1FXC8vleDI5Hca19D8Oq14nKy6b7/nfpZl2E2udu1C5Xg9l3FwpkKPbUUGx0dLQuQ7FTpkwhPT2dG2+8kZMnTzJhwgTOPvtsLBaLp/P1008/ceONNxIbG8sVV1zB5MmTPWVGRkZiNpvLddQKCwuJiIigf//+ZYZiq8sn/41ITk5m5syZtGrViuuv981NsoHCbDZ7/YewOjHuqzdK2UtYOlCK1x1WFKX4d/H24gWJFc8xSoXHl163WFGU8vs9ZZbeV0l5ChgUBaPh1GtD8X7byZPEx8diLL5abFDAqCgYSsUZDCUx7v3ufQrGUtsrO4c7vtTr4mONxdsVBcwGA0aDgsmgYDQW/zYYMBkUTKXeo6ls3LCenmf3wGI2YTaWiis+tqI4z/7i32Emd6ctzGjw6r4Nh8PBggULGDGiq187EzVpG/4srzbx/mrntSk/ZLQeAN2uhfUfY1o4BW75CQyVD6NWWFdbfoDcfRCZiLHneIx1UJdmM7x6TXcufm0lq/ac4OWfdjNlxFlV52uOg373wTn/gLXvwS+voOTux/jDQxiXPw09b4bet0KM98+1rTxP//7ZCuR27nK53P8eFP+7UOCoeMRQVVUKilyYHC4MVfzZqygmBiqNufHGG7njjju46aabyMnJYdu2bYwePZpt27Z5YjIzM0lLS/O8T0xM5MSJEyQlJXnyPr38ku2lP6s3deaz68OrV6/2XDIMJQ5H9R9mXnJsdWLm3no2y5evYED//pjNZk8HB4BSnSylVIeoeBend5KKt5w6rlwnrWzHLdiWczj1P7WeQfGPo8PhwHxQ48K2CbXPV1NxOtUzH3fa+Uv/9jVfl1/b8moTX5NYb2L8/V0EjQGPYNoyD+XQOpzr5qB1uarcIVXVlXHNWxgAV7frURUz1FF9psVbeObSjtzz2V/8Z8VuzkqOZmTn5DPmi2KGnv+ArtdjWP+xe4mWnAz4+QW0X15B63Q5rt63Q+NONc5N2rn7taZpqKpKnt1Bp+mLap/oaTZOG0yUpeJ/M9u2bYvdbicjI4NvvvmGK664Ak3TPDmBu4NY8lOiZL+qqmWOLVGy3eFweJY78abeanSP3VlnnVWmc5Cfn8+xY8d45ZVXuOmmm7wtLmAEyj12QggRatoc/p6Ohz7DFtaInzo8U+175KILM7lwy8NoKCzq8AIFloZnDvKxkvvtwgwa93Vy0TTqzDFlaCopuWtpfeQHEvN2eDYfi2pLRtIgDsX3QjUExj1iwaT0PXYujPSZucrn5/ht0rlEVHFj8Lvvvsvx48dZvHgxb7zxBr/99luZe+zuu+8+LrroIoYNG4amaXTq1IlNmzahKEpg3WP3f//3f2XeR0VF0bZt2zOeLNDV5T12cu9N9QVbXemdr9x7499Yaec1VDQAbfZPROcdYUTTk2jdri2zu7K6Mix+FACtzRAGXTq+TlMuMUzVuOWjP1m58xgf7Ili7m3nkBRp9PK7vRiYhvPgWgxr3kDZ8h2JedtJzNtOjyOfo3a5GrX7DZBYvcewSTsve4+dxWJh0/QhFcZqmobtpI3omGiv7rGznbTRMCGuyuHbCRMm0LNnTxo1akSXLl1Yt25dmXvsxowZw2effcbYsWNZsGAB55xzjqd/EVD32P3+++888MAD5bbPnDmTSZMm1aTIgCX33gSOYKsrvfOtz/fe1EWstHMvmePhvHth4VRMv74EZ18PhvJXQsrUleqCzV8DYOh5Iwad6tAMzLr2bK5441d2HLFx60frmHNzz/L5VkeLc90/1kxY9xGs/QDFegDj6jcwrn4DWvSDHuOh/UgIO/OIUX1u56XvsTMajURX8pQGVVVx2Y1EWcxe3WPnshsxGAxVxiQkJNC5c2cGDhxY5n6/kphRo0axYMEC2rZtS1xcHJ9++qlnn7/usavRQkCPP/54hdufeuqpmhQnhBCiPuh5M4THw4kM2P7DmY/f+wvYstwxbQb7ObmqxUWYef+m3jSKsbDt8EkmfrIeL29/LSs2BQY8BPf9BeM+h7bD3WvzZfwMX90CL7aDb++Cvb/KsgkBzOFwsHPnTi677LIK9xsMBt5880127tzJ2rVrSU+v3hXZ2vDqit3nn38OgNPpZO7cuWUeupuRkUFCQoJvswsAclO1/oKtrvTOV26q9m+stPNaUMwYul+P8bfXUFe9gav1UM+uiurK8NdcjIDa/mJcmlJnkyYq0yjKxFvXd2fc27+zas8JCnINDLHba19wywvcP7kHMKz/L4aNn6Hk7ndf0Vv3EVp8c9TOV6J2vgoatACknZe8Lj0RoTIlfZWKJirUJmbDhg2MHTuWm2++mbi4ODRNw2Kx8MUXX+B0OnnuuecqLX/evHn861//ol+/fvpOnhg0yP1ImJ9//pl+/U49fFlRFBo1asTdd9/NeeedV+2TBxqZPCGEEP4VUXSUIZsno6CxsMOLlU6GUDQnwzfeTZgrj1/aPMzRmI51nGnltuYovLnVgEtTODtJ5bo2qm+fP6ypJNq2k3b8Z5rm/I5JLfTsOhrVjoMNzuVQfC+KzMF9X3ttBeICxb5Q28kTNZoV++STTzJ16tSaZRwE5FmxgSXY6krvfOWmav/GSjuvPeN/x2DYuxLXwEdQz7sfKF9XSsbPmD6+FC2qIc57NlV4P56eftyUyT2f/4WqKVx5dlOeGNWhzELePlOUh7J9AYa/PkPZsxylePFTTTGSHX0WcefdhKHDKIiI9+lpg6Gdy7NiK1btodijR4+SlJQEwD/+8Q/Ps2FPF2rPipWbqgNHsNWV3vnW55uq6yJW2nktdLsG9q7EuOkLjAMfKrPLU1cZywBQ2gzGbKn8H229DOuUwg1/rufDnUY+X3uQ8DATM0Z19P06oeZ46D7O/ZN7EDZ9AZu+QslcT6OTm+CHSbDwYWhzIXS8DNqPAEuM704fwO289OSJqiY4lAx1VjRRwRcxNSm/KnU2eaJly5ae18nJyaSkpJCcnFzmJyUlxYvU/Wv//v306NGD8PDwkFw4WQghgtZZl4DBBEe3wfHdFR+z8yf379YX1l1eXuqepPHMpZ1QFPjwt73888uNuFQ/TnSIa+qeWXzbchx3rGFLyhVojTqA6nBPRvn6H/B8G/jsOtj4BRTm+i8XEbCq3bE7efKk57WqqrhcrjIrKpdsCxQNGzbkp59+4txzz9U7FSGEEKWFx0GzPu7X2xeW3287Aoc3Agq0HlSnqXnr0u5NeOGKrhgU+OyP/dz76TocrtpMl62mhFZsTx6F89YVcOdqGPAwJLYBZyFs+Q6+vBmeaw3/vQLWfgC2bP/nJAJC7a8ZBqjw8HDi4+P1TkMIIURF0otnxO74sfy+/avdvxt1gKikusuphi4/O5XXx/XAbFSY/1cmt3+0lsJKnlvqF43aw6B/wV1/wG0/w/mT3Asdqw7YuQi+uwdebAvvjYBVb0DO/rrLrZ55//33ady4MQ8++CAAa9eupWdP9+Mwf/jh1BI/8+bNo02bNlx99dU+z6FGHbv9+/dz66230rt3bzp06FDmp6amTZtGhw4dMBgMfPrpp2X2ZWdnM3LkSCIjI2nXrh1Lliyp8XmEEEIEgJKO3d5fwXXaUg4Hfnf/Tu1ZtznVwojOKbx5Q08sJgNLth7hxvd+x1pYx8uzKAqkdIHB0+DuP2DiGrhgKqR0A011rwv4wz/h5U7wnwGw4nk4slXWyfOxG2+8keeffx5w37r29ttvc80115Q5ZtSoUbz99tt+OX+Nnjxx1VVXkZ6ezowZM3y2HEh6ejqvvPIKjz76aLl9EydOpEmTJhw9epSFCxcyduxYdu3ahd1uL9fbjY6OZv78+T7JSQghhJ8ktXUvPFyYA4c3QcNOp/YdWOv+ndpLj8xqbFC7RnxwU29ufv93ftt9jLFv/MZ7N/aiSXyEPgk1bAcNH4T+D0LOPtgyH7bOd3emM9e7f3560r02XtuLoN1waNYXTEG4dIimgSO/4n2q6t5XZITqTm4oidEqn4jyz3/+k7Zt2zJhwgQALrvsMnr2LPufkaZNm9K0aVOfTKqorhp17DZt2sTKlSt9muh1110HlH96hc1m49tvvyUjI4PIyEjGjBnDzJkz+e6777jhhhtYtmxZrc9tt9uxl1pksvQz2WThUv0FW13pna8sXOrfWGnnvmNscjaG3UtwZazCEd8OAIe9ANOhP1EAR3I33Rclrkxl3+3ZabF8fHMv/vHfdWw7fJJLZ/3Cm9d3p0OKb9ec8/rPVlQK9LzV/ZOXjbL9BwzbvkfJWIFyIgNWvwGr30CzxKC1ugC11WDMTkNAt/MyCxTbbRieSa0w1gDEe3m+khjXw/tRLdEVHnPDDTcwceJExo8fT05ODtu2beOSSy5h+/bt5RYdrmgh5ZKFiH29QHGNOnbDhw9n1apV9O3btybhXtmxYwdxcXFlZtx27dqVzZs3VxlXWFjIxRdfzIYNGxg2bBjTp08vs6hyaU8//TQzZsyocN+iRYu8ztmbmJqUX18FW13pna+/z+/r8mtbXm3ipZ3ro21+HGcBh36fx5/ZTQBYNf8jLnDk4zCEs2DNTlAqmTUbICr7bu9Ih/9sMZJ10s6V//cbN7ZTOSve90OeNf+zlQixN2DseCWNTm6ice46Gls3EG63omz5FsuWb7kIhWO7X+VwXDey4rpjs6S4h3t1ybd8fMkCxTabjSLF6XXnrTpO2mxgr3gyTJMmTcjLy2Pz5s0sXryYUaNGeS4Ulb5ABO6OWX5+fpnt+fn5OByOcscWFRVRUFDAihUryixQXF016thFREQwfPhwhg4dWm7dutmzZ9ekyErZbLZyi/HFxsaSk5NTZVx4eDiLFy+u1jmmTJnCpEmTPO+tVitpaWmA+2kbJlP1qsnpdLJ06dJqxXhzbH0XbHWld77+Pr+vy69tebWJr0mstHPfMewxw9yvaKodIm7QIJYuXcq56UmwFQyNz2LI0GF6p1ip6ny3Fw12cM9nm1izN4e3tpp45KJ0ru7ZtM7OX32XAKBqKoWZ6zDuXIhh50KMR7eSlLeNpLxtdDz0GWp8S1ytB+NqMwQ19RwwVn/I1h/t3G63c+jQIaKiogi3WHA9XPmkkJM2GzHRFV95qzKmQaMqO7MTJkzg22+/5fvvv+fDDz9k5cqVhIWFERNTdgjXbDYTERFRZntERARms7ncsYWFhYSHh9O3b18sFgtAuc5fVWr0p6FVq1ZMnjy5JqFei46OLveBrFYr0V5+QVWxWCxYLJYyjxQrsXTpUq/L8yamJuXXV8FWV3rn6+/z+7r82pZXm3hp5/oIc57kIsCQk8GKxT+A0ULGH4voABwqjODPILjSeabv9qpkUPMM/HHUwOMLtrN47VYub6Fi8tGdTP75s9UT0noS0SibZOt6knPXkWjbijFnD4a1b2Fe+xZOg4XsmA4cie3K4dguFIRVb/ayL9t5yRW7vLy8Mw9VmiM5WcmVtypjbLYqDxk5ciQDBgwgOTmZRo0aUVhYSFFRUZkl4sB9xa6goKDM9oKCAhwOR7lji4qKKCws5Ndff627K3bTpk2rSViNpKenk5ubS1ZWFsnJyYD7wbu33HJLneUghBDC94pMMRSaYgl3WomxHyQnshVR9iwAbOHJOmfnGyYDXNdGJTlS4/t9Bn49bOBwvsKN7VzEBPjDSAosDdnTcAh7Gg7B5Cqg4clNJOeup5H1L8KduaTkriMldx0AJ8ObcDimC0diu3Asuh2qIcA/nI/ExcXRsWNHBg8eXOH+HTt2MGbMGHJycli4cCHt27f3+wTPGnXsnnvuuQq3WywWUlNTufDCC71eQ87hcHgWPXY4HBQWFhIWFkZ0dDSjRo1i2rRpvPzyyyxatIhNmzZxySWX1CT1Kk2cOJGJEyd6nhULMhQbCIKtrvTOV4Zi/Rsr7dy3zEc7wf5f6d0iloVHoGl4AQCteg6l+VlDdM6uct5+t0OBEduP8uBXf7PrpIvXt0fx+lWd6ZBSs8d/6dPORwHuIduCw5sw7vkJ4+6fMBxaS0zhIWIKD9Em+wc0cySuZuejtroAV6sL0OLS/D8UW8WzYgHPs1y9UZ0Yh8NBRkYGl112GTExMYSHh5cZiu3Rowf79u2rMNZfQ7GKpnm/gM3VV1/N119/zTnnnENqaioHDhxg9erVXHLJJRw6dIi///6br776igsuuKDaZU6YMIEPPvigzLalS5cycOBAsrOzGT9+PMuWLSM1NZXZs2dX2juujdJDsdu3b2fOnDk+W85FCCFEeV33vUeLY0vZljyarSmXM3zjRCzOkyxt9wTWyOZ6p+dzWfnw9jYj2YUKZoPGVa1UejUM7nXkzM48Gp7cRGPrX56reaWdtKRwOLYLR2K7+vRqXslQbFpaGmFhdb9Ey8aNGxk/fjw33HAD9913HwBfffUVTz75JCNHjuSJJ56oNHbBggU8/vjj9OnTh5deeqnMvqKiIvbv309WVlaZodhx48aRm5tbbt7B6WrUsbviiiuYMGECF198sWfb999/z/vvv8/cuXP5+OOPef7551m/fr23RQeEkit2c+bMYeTIkfI/eZ0FW13pna9csfNvrLRz3zKteo2wFf+m6KzLWGwazIiNdwKQf99OCIvSObvK1ea7tRY6eODLv1m56zgAY3uk8K/h6VhMxjo5v1/L11SUI5sx7v4J456fMBxci6Kdum9dM0WgNjsPV8sBuFoMQEtoU62ZtlVdsWvRooVuV+xqU35lCgsLycjIoEmTJmWu2KWkpPivYxcXF8fx48c966uAu9ITExPJzc1FVVXi4+O9unQYCOSKnRBC1K0mJ1bRK2M2x6LS2Zh6PQO3PUahKY4fO7+md2p+pWrw4wEDPx5Q0FBoGqlxUzsXSVX3T4KOyZlHo5ObaWTdQGPrRsKdOWX2F5gTOBLTiSOxnTga05EiU/U7R3pfsfMXXa7Y9enThxEjRjBlyhRMJhMul4unn36a+fPns2rVKvbu3Uu/fv0qHVcOdKWv2I0ePRqzuXqXjR0OB4sWLWLIkCFnjPHm2Pou2OpK73z9fX5fl1/b8moTX5NYaee+pRz8E9P7Q1GjU1jT6GrO3f0SanJXXDcH9qMjffXd/rzzKJPnbuREvoNoi4lnLu3IsI6N6+z8dVW+w+Fg0cKFDO3ahLD9K1H2LEPZtwrFderhABoKWkpXtJaD0FoNREvt5VlSpaJ87HY7+/bto3nz5kREVP50D03TPFfUlGquw+dNTE3Kr0pBQQF79+6lWbNmZa7YJSUlVatjV6Prtx988AHjxo3j+eefp1GjRhw5coR27doxZ84cAA4fPszLL79ck6KFEELUI1qse/F5Je8I4Y4T7o3RZ+7YhIp+bZL49s4+3Pf5X/y5L4e7Pt3AhD7NeGBoWyy+WhMlUCgKWuNOqKndoc/d4Mh3d+72LMWwexlK9haUkked/foSmjkKrXlftFaDUNLOL/dMW5PJhKIoHDt2jMTExEo7VZqmeZYQ8aZjV92YmpRfVVnHjh1DUZQaD7HX6IpdiYyMDA4fPkxycjLNmwf/Ta4yFCuEEHVL0ZyMWn8TALuTBtPq6GIyEgexodmNOmdWt1wqfLfPwNJMd2euaaTGDekukuvRP0HhjhM0tG6m4clNNDy5iXBn2du58s0JZMd25khMR7JjOuIwxRAWFkZCQkJI3cPqdDo5fvw4RUVFnm1+H4otfaJjx45RuohmzZrVtLiAIUOxgSXY6krvfINyiEaGYus100vtUPKPcSwqncS8Hbj6PYja/2G906qSv77bJVuPMOXrzZzIdxBuNjBleDuu6ZVa7kpQyLdzTYXDmzHsWXbGYVtnywE4GnZFM1ZcrtPp5Ndff6Vv375eTZKqbkxNyq9MyZW60nMYoA6GYjdu3MgNN9zAX3/95UkEICwszKvVkYUQQgiiGkH+MeIKih8JFdVQ33x0dGH7Rsy/K46HvtzEL7uOMe27Lfy84yhPjelIQlToTBA4I8UAyZ1RkztDn7tx5Oeyft4b9GpwEtO+n1GO/O0ZtjX++hJhpgi0ZueiteiH2qI/NO4MBnfnyOFw4HQ6sVgsXv0HrroxNSnfn2p0xe68885jyJAh/POf/yQlJYXMzEwee+wxWrduzW233eaPPOuEDMUKIUTd67vjGRra/va8/73FnRxqcK6OGelP1WB5psJ3+wy4NIVYs8Z1bVTaxQf3mne+UnbYdnO5tfOKjFEcjelAdkxHsqM7kGdpXK1lVQKV34di4+PjOX78OAaDgQYNGnDixAmKiopo1aoVBw4cqHHigUKGYgNLsNWV3vmG/BCND+NlKDYwGL/5B4bNX3neO6+Zi9ZqkI4ZnVldfbebD1mZNHcju4/mATC+TzMmD07HpKjSzktoGhzdhmHPcpSMFSh7f0EpKvuM13xzAmHth0KrAWgt+p9xgk6gtXO/D8XGx8eTk5NDQkICTZs2ZcOGDSQkJGA7w8NyhRBCiNNpltP+obLE6ZNIAOrYJJZv7jiXf/+wjU9/P8AHv+1jxfaj/Ht0e71TCxyKAg3bozZsD71vA9WJcmidu5O3ZznKwT+IdByHjZ+6fwCtYXvUFv3RWvRHa34eWHyzuHAgqNEVuyeffJKOHTty6aWX8tZbbzF58mQMBgO33norzz//vD/yrBMyFCuEEHXvrEOf0/bwqQejLz7rOfLCk3XMKDD9fULh010Gch0KChoXNNEYkaYSaqui+JpRtZNg207Dk5tpePJv4gr2onCq66NiICeypXvYNqYjJ6La+OyxZ75SZ7NiS+zduxebzUbHjh1rW1RAkKHYwBJsdaV3vjIU699Yaee+Z/j1FYxLTz1X03H/NohM1DGjM9Pru80tcPDE91v5dkMmAG0aRvH85Z3p1LTqf+y9FdLtPP84yt6VKBkr3MO3J/aUOV4zRaCm9mZrUTKtBt+EKbW7ezKHnz5bdfhtKLZDhw5nPObvv/8+4zHBxGw2e/1FeRNTk/Lrq2CrK73z9ff5fV1+bcurTby0c51FNijz1hydBMbgWJesrr/bJLOZV67pwbAOB3noi3XszM7jijdXM3FQG+4a1IYwH1++C8l2HtcYulzu/gHI2Q97lsPuZbB7OUreEYwZy+kI8OFnENEAWvSDVgOg5QBIrPj5tv78s+BNuV61nD179tCsWTOuvfZa+vfv75NHZwghhKjnwk/dU6eFRaEESadOT0M6NGJKVxcrC5ryv82HeXXJDhZuzuLZy7vQNS1e7/SCS3wadL/O/aNpcGQLrp0/cWT1FyQX7kApOAFb5rl/AGKaQMv+p36iAuu2Aa9az5EjR/jqq6/4+OOPef/99xk7dizXXnstXbp08Vd+QgghQl3pyRNhoXMTu79Fm+HV0V354e9sps3bzNask1w6+xduPK8lk4e2JTJMOsheUxRo3AE1IZ01R9MYMWwI5uxN7qt5e1bA/jVw8hD89an7BzA1aElXQ3M42R0S9H9Ig1ffekxMDOPHj2f8+PEcPnyYTz/9lH/84x/k5eXx2WefVWuoNtg4HA6vj61OjDfH1nfBVld65+vv8/u6/NqWV5v4msRKO/c9xRzl+cdIM0fhDIL60vu7LX3+4R0a0qt5X/69YBvz/srknZV7+HFzFk+M6sD5bWp2r6K08+IYFUju7v7pez84ClAO/o6S4b5HTzm0DuXEHpqTQYESBn7+e7c6ajx5Iicnh88//5w5c+Zw8OBBvv76azp16lSTogKGzIoVQoi6F1NwgAu2/guAnIgWLG//uM4ZBa+/Tyh8tttATpH7VqneDVXGNFeJkls8/cLkKiDRto0oexa7Gw3323n8NivWbrczb948/vvf/7Ju3TrGjBnDuHHjOPfc0FohXGbFBpZgqyu985VZsf6NlXbuB9ZMzK91BsCVeg7q+O91TujM9P5uqzq/ze5k5uKd/Hf1PjQNEqPCeGxkey7q1Lja98ZLOw+sdu63WbGNGzcmOTmZa665hocfftjzsNs1a9Z4jundu3cNUg5cMlsucARbXemdr8yK9W+stHMfik7wvFQMhqCqK72/24rO38Bs5okxnRnTPZWHv/yLnUds3Pv5X3yzoSGPj+5EWkL1R6KknQdGO/fbrNj4+Hjsdjvvv/8+H3zwAadf7FMUhd27d3tTpF8tX76cf/7znxiNRnr37s3MmTP1TkkIIcTpwqJOvVZd+uURYs5u3oDv7zmf2Ut3MXvZTpZuy2bwzOXcc2E6t/Zr5fOlUURg8Kpjl5GR4ac0/KNNmzYsW7YMi8XCuHHj2LhxI507d9Y7LSGEEKWVHh6Ujp1PWUxG7h/SllHdmvDoN5v4ddcxnv9xG1/9eYAnxnSib+skvVMUPhbS3fWmTZtisVgA92VMo9Goc0ZCCCGqpDr1ziAktW4Yzce3nMPLV3UjKTqMXdl5jHtrNfd9uo7sk3a90xM+FFAdu2nTptGhQwcMBgOffvppmX3Z2dmMHDmSyMhI2rVrx5IlS6pd7p9//snRo0dDcjkWIYQIJYpcsfMbRVEY070pSyYP5Ppzm6Mo8M36Q1zw4jI+WrUXl1rrJ4yKABBQqxemp6fzyiuv8Oijj5bbN3HiRJo0acLRo0dZuHAhY8eOZdeuXdjtdq6++uoyx0ZHRzN/vvuB0llZWdxzzz18+eWXdfIZhBBC1IImV+z8LS7CzBNjOnHF2ak88s1GNh208ug3m/jij/08dWlnOjWNO3MhImAFVMfuuuuuA+Cpp54qs91ms/Htt9+SkZFBZGQkY8aMYebMmXz33XfccMMNLFu2rMLyCgsLGTduHK+99hqNGzeu9Lx2ux27/dSlaKvV6nktC5fqL9jqSu98ZYFi/8ZKO/ePkjl/alRj1CCoL72/W1+cv0NyFF/84xw+XrOfmYt3sOFALpe8vpKreqZy94DmtS7fl/nW93ZeJwsU+9PAgQO5/fbbPVfi1q1bx7Bhwzhy5IjnmLvvvpvIyEieffbZSst54403mDFjBu3btwfg6aefpk+fPuWOmz59OjNmzCi3XRYoFkKIutHQ+hdtjvzA+rQbKbA01Dudeie3CL7JMPDnMfcdWpFGjRHNVPo21jDKY+F1580CxQF1xa4yNput3AeJjY0lJyenyrg77riDO+6444zlT5kyhUmTJnneW61W0tLSABg0aJBnvb4zcTqdLF26tFox3hxb3wVbXemdr7/P7+vya1tebeJrEivt3D+czkEsXdolaOpK7+/WH+e/Avg94wRP/bCD7Ufy+GKPkY15UTxyUVt6No/XNd/63s5LjySeSUhfsfOWPFJMCCFEfefS4NfDCt/vM1Dgcl+u65GoMrq5SrxF5+TqKW+u2AXUrNjKpKenk5ubS1ZWlmfbhg0b6Nixo45ZCSGEEKHHqEC/ZI2p3V30baSioPHnMQNPrTey6KCCU9U7Q1GVgLre7XA4cLlcqKqKw+GgsLCQsLAwoqOjGTVqFNOmTePll19m0aJFbNq0iUsuucSn5584cSITJ070PCsWZCg2EARbXemdrwzF+jdW2rl/BFtd6Z1vXbXz/7tlANuzC3jqf9tZd8DK/H1G/rJFMGVoGwa0rf7ixtLOaydoh2InTJjABx98UGbb0qVLGThwINnZ2YwfP55ly5aRmprK7NmzGTx4sE/PL0OxQgghRHmaBn8cVZi314DV4R6ePSteZUxzlWT5Z9LvvBmKDaiOXaAouWI3Z84cRo4cGbQ9/FARbHWld75yxc6/sdLO/SPY6krvfPVq53l2J2+syODD1QdwqhpGReGqnk2YOKAFDSLD/JZvfW/nVquVlJQU6dh5S67YCSGEEGd2pADm7TWw8YT7Vv0Io8awVJV+yRqmoLh7P7jIFbtaKn3FbvTo0ZjN5jMH4b5HcNGiRQwZMuSMMd4cW98FW13pna+/z+/r8mtbXm3iaxIr7dw/gq2u9M43UNr5qt3Heep/29iadRKA5gmRPDysLYPPaoiinFoAT9p57VitVpKSkkJnVqwQQgghAs+5rRL45o5z+feYDiRFh7H3eD53frKeG977g78zq3/Dv/AduWJXigzFCiGEEDVT6ILFBw0sPaTg1BQUNM5ppDEyTSW28tvvRDXIUGwtyVBsYAm2utI730AZoqmr8ur7EE2oCLa60jvfQG7nB04U8MLCHXy/yb32bFSYkVvPb05q3nZGDJN2XhMyFCuEEEIIXaQ2iODlq7rw2a296ZIaS16Ri5d/2s1T64zM+ysLVZXrSf4kV+xKkaFYIYQQwndUDdYeVZi/z0BOkXsyRWqUxujmKm3jpPtRXTIUW0syFBtYgq2u9M43kIdo/FFefR+iCRXBVld65xts7dyaX8i0j5eyNCuMvCIXAAPSk3hoWDptG8f4NZ9QaOcyFCuEEEKIgBFhNjKkqcaPd5/L9ec2w2RQWL7jKJfM+o0pX28my1qod4ohQ67YlSJDsUIIIYT/HSmA7/cZWH/cfX3JbNAYlKJxYROV8MB/8Eidk6HYWpKh2MASbHWld77BNkQjQ7ECgq+u9M43VNr5un05PPPjdv7clwNAQpSZewa15sqeqZiNhjPG++uzBFo792YoVvrFZ2A2m73+oryJqUn59VWw1ZXe+fr7/L4uv7bl1SZe2nngCLa60jvfYG/nvVs35Ms7kvhx82Ge/WEre47mMX3+Vj5ctZ+HhrdnWMfGZZ5gUV/buTflyj12QgghhNCNoigM75TMwvv788TojiRGhbH7aB63/3ctY//vN9buPaF3ikFFrtgJIYQQQndmo4Hr+7RgTPemvLliN2/9vJs/9p7g8jd+ZchZjehl0TvD4CAduzNwOBxeH1udGG+Ore+Cra70ztff5/d1+bUtrzbxNYmVdu4fwVZXeucbyu083Aj3DGrFlWc34ZUlu/hq3UEWbTnCYoxsUzZy74XppMSF++XcNYmpiz8L3pQtkydKkVmxQgghRGDJzHfPoN14wn33mEnR6J+sMbipSlTw3I5ZKzIrtpZkVmxgCba60jvfUJktVxfxoTBbLlQEW13pnW99bOdvfrWIn62JrN2XC0BMuIlbz2/B+D7NiAyrfAAyFNq5zIr1oWCeRRNqgq2u9M432GfL1WW8tPPAEWx1pXe+9amdt4yBO6/szS+7c3j2h61szTrJzMU7+Wj1fu69MJ2reqWVWSLFF+cOlHYus2KBQ4cO0bdvX/r378/FF19Mfn6+3ikJIYQQohYURWFQ+0YsuKcfL1/VjbSECLJP2pn6zSaGzFzOdxsOoar1eyAyZDt2jRs3ZuXKlaxYsYKzzz6b77//Xu+UhBBCCOEDBoPCmO5NWTJpINMv6UBiVBgZx/K5+5N1jJq1khXbs6mvd5qFbMfOaDRiMLg/nqIotGvXTueMhBBCCOFLYSYDE85ryfKHBnH/4LZEhRnZdNDKDe+u4dq3V7Nhf47eKda5gOnYTZs2jQ4dOmAwGPj000/L7MvOzmbkyJFERkbSrl07lixZUq0yV65cydlnn83ixYtp3ry5P9IWQgghhM6iLSbuHZzOiocGcdN5LQkzGvh11zFGz/qFuz/dwOECvTOsOwHTsUtPT+eVV16hd+/e5fZNnDiRJk2acPToUZ599lnGjh3LiRMnyMrKYuDAgWV+Lr74Yk/c+eefz9q1axkzZgzvvvtuXX4cIYQQQtSxxGgLj13SgSWTB3BZj6YoCvyw+TDPrDfyyDebOZQT+j28gJkVe9111wHw1FNPldlus9n49ttvycjIIDIykjFjxjBz5ky+++47brjhBpYtW1ZheXa7HYvFvUx1XFwcLper0nPb7XbsdrvnvdVq9bwO5gUNQ0Ww1ZXe+YbywqW+jg+FhUtDRbDVld75SjuvWnKMmWcv7cjNfZvxwsLtLN1+jM/XHuTr9YcY1zuNO/q3JDG68kdZBFo7D+oFigcOHMjtt9/O1VdfDcC6desYNmwYR44c8Rxz9913ExkZybPPPltpOStXruSRRx7BYDCQkJDARx99VOliw9OnT2fGjBnltssCxUIIIUTw222F+fuM7DqpABBm0BiQonFBE5XIgLnEVTlvFigO+I9js9nKfYjY2FhycnKqjDv//PNZvnx5tc4xZcoUJk2a5HlvtVpJS0sDYNCgQZhM1asmp9PJ0qVLqxXjzbH1XbDVld75+vv8vi6/tuXVJr4msdLO/SPY6krvfKWdexfL0qV8dVc/1uw7yStLd7Pp0EkWHVRYfSyMG/ukcd05qUSVWuQ40Np56ZHEMwnZK3Y1IY8UE0IIIUKbpsHGEwrf7zOQVeC+ghdt1hjSVOW8xhrmgJl9cIo3V+wCMP2y0tPTyc3NJSsry7Ntw4YNdOzYUceshBBCCBGMFAW6JGg83NXF9W1cJFk0bA6FrzOMPLnOyG+HFVwBdcnLOwFzxc7hcOByuRg6dCi33norY8eOJSwsDIPBwNixY0lISODll19m0aJFTJgwgV27dtGgQQO/5FL6WbEjR46UIRqdBVtd6Z2vDNH4N1bauX8EW13pna+0c9/FOlwqX6/P4o0VGRw+6Z5I2TwhggGJNiZdMYCwMzzOq66GYlNSUqp1xS5gOnYTJkzggw8+KLNt6dKlDBw4kOzsbMaPH8+yZctITU1l9uzZDB482Oc5yFCsEEIIUT85VFiZpbDooIE8p3uItkmkxog0lU4NNBRFv9y8GYoNmI5dIJErdoEl2OpK73zlf/L+jZV27h/BVld65yvt3H+xeXYnH/y2j3d+yaDA5e7NdWkay72DWtKnVYJPc6uuoLxiFwjkip0QQgghAPIc8FOmgRWZCkWqu4OXHqsysplKy5i6zUWu2NWSXLELLMFWV3rnK/+T92+stHP/CLa60jtfaef+jS0dc6LQxVsr9/HZ2oM4imdVDExP5J5BrWifHC1X7AKZXLETQgghREWO2+HHAwbWHFFQcV/B656oclGaSuMI/55brtjVUukrdqNHj8Z8hhkxJRwOB4sWLWLIkCFnjPHm2Pou2OpK73z9fX5fl1/b8moTX5NYaef+EWx1pXe+0s79G1tVzJ6jebzy0y6+3+hehs2gQM8kleeuO5+mCdFe5VZdVquVpKSk0FjHTgghhBAiULRMiuLlK7sw784+DG7fEFWDP48qBMplMrliV4oMxQohhBDCG3tPwsF8hb6N/dedkqHYWpKh2MASbHWld74yROPfWGnn/hFsdaV3vtLO/RsbaO3cm6HYwJ96pDOz2ez1F+VNTE3Kr6+Cra70ztff5/d1+bUtrzbx0s4DR7DVld75Sjv3b2ygtHNvypWO3Rk4HA6vj61OjDfH1nfBVld65+vv8/u6/NqWV5v4msRKO/ePYKsrvfOVdu7f2EBr596ULUOxpcg9dkIIIYQINHKPXS3JPXaBJdjqSu985d4b/8ZKO/ePYKsrvfOVdu7f2EBr53KPXS2V9HXz8/MpKCjA6XRWK87hcFQ7xptj67tgqyu98/X3+X1dfm3Lq018TWKlnftHsNWV3vlKO/dvbKC184KCAuBU/6QqcsWuAgcOHCAtLU3vNIQQQgghPPbv309qamqVx0jHrgKqqnLo0CEuuOAC/vjjD69ie/Xqxe+//37G46xWK2lpaezfv/+Ml1VF9es1UOidr7/P7+vya1tebeJrEivt3D/0bjfe0jtfaef+jQ2kdq5pGidPnqRJkyYYDFU/W0KGYitgMBhITU3FZDJ5/SUZjUavYmJjY+Uv/Grwtl71pne+/j6/r8uvbXm1ia9JrLRz/9C73XhL73ylnfs3NtDaeVxcXLWOk0eKVWHixIl1EiPOLNjqVe98/X1+X5df2/JqEy/tPHAEW73qna+0c//G6v391pQMxeqkZOZtdWa4CCGCk7RzIUJfoLVzuWKnE4vFwrRp07BYLHqnIoTwE2nnQoS+QGvncsVOCCGEECJEyBU7IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQIR07IYQQQogQYdI7gUCkqiqHDh0iJiYGRVH0TkcIIYQQ9ZimaZw8eZImTZpgMFR9TU46dhU4dOgQaWlpeqchhBBCCOGxf/9+UlNTqzxGOnalzJo1i1mzZuF0OgF4++23iYyM1DkrIYQQQtRn+fn53HLLLcTExJzxWEXTNK0OcgoqVquVuLg45syZw+jRozGbzdWKczgcLFq0iCFDhpwxxptj67tgqyu98/X3+X1dfm3Lq018TWKlnftHsNWV3vlKO/dvbKC1c6vVSlJSErm5ucTGxlZ5rFyxOwOz2ez1F+VNTE3Kr6+Cra70ztff5/d1+bUtrzbx0s4DR7DVld75Sjv3b2ygtHNvypVZsUIIIYQQISKkO3bZ2dmMHDmSyMhI2rVrx5IlS/ROSQghhBDCb0J6KHbixIk0adKEo0ePsnDhQsaOHcuuXbto0KCB3qkJIYQQQvhcyHbsbDYb3377LRkZGURGRjJmzBhmzpzJd999xw033FDmWLvdjt1u97y3Wq2e1w6Ho9rnLDm2OjEZz5zLOc7jHF93f7l9GjVbO88TV0F41WVWvq/qmTUVx1V1rpp+tq6aRuaGKV7lUdPzeZt/yRatZM1DTaOjqnLgr0c9e7XTjq1+jjX7bO1dLvb+NcNdQqnDzvTZKtt7elxbl5OMjU9WWpYnrsp1IE/tS3c62bPp39XIs+IabON0smvTM+V2K+ViFE5vJq0dDvb8/Rwop39+BU1R3LkoBvd7FDTFQFqhne3bZ7u3K6e2U3ysO0ZBRSEpr4DNGR+7t5eUoyiAAUVRUAwGUIwYil8rBiOa0QzGsFI/ZgwmC5jCMJjCMIdZCLNEYImMxRLdgIjYRAwR8RAeW5xr8PHm789AoHe+/j6/r8uvbXm1ia9JrDcxdfFnwZuyQ3ZW7Lp16xg2bBhHjhzxbLv77ruJjIzk2WefLXPs9OnTmTFjRrky5syZ47flTs79814aKyf8UrYQon5SUThBHEeMjcgxJ2ONTseV2B5HZGO9U/OephFfsIekk1uILdhHuCOHCMcJjKodg+ZE0VwomobLYMFptOAwRpIf1hBbeApHo8/iaHT7oO3kCnG6/Px8xo0bV79nxdpstnIfPjY2lpycnHLHTpkyhUmTJnneW61WzwLF/poevSM1gaXr/6RTp04YTUYANM19TeB0ni2n9cFLvy0dV2kJFXXhNa3yq3KaWvHmiospl4f7WK38QRWUoVTx/wuXy8nWrdtp164tRqOxGtmUnKryulQqy6XM9rLxyqkdFZ3Rs9nlcrFzx07apLdx51tlPVaQY0ldaqcfWz769D8TAKrLxc7du2ndqhXGMiuUV/VdV1KPlP9OXarKnt17aNmyJQaDUu74EiV1XHF1ndqqqioZGRm0aNHCvaJ6pX8WKt7ucrnYu3cvzZs3L7ciu6aBVlz/Gu7V27VSp3e5XBw4cICmqU1RFANoxccBaC53+9DcrxU0NE1Fc7k4nJVJ40aNURStuDANNBVFU6H4OEXT0FQXx44dJbFBvPspNqWOcSenomoqmur+UTUVRXWhqE4MahFGzYFBdWBUHRi14h/VgaI6MGpFRGgFxJJHHHlEKEUY0Egkh0RXDri2Q+EKOAp7oroSfckzxLfuVUnd6q/M358ndmL87i4MWRvOGGdWC8C99CgN8vcA0I5v0ZLa4br4FbSmPf2fryx34vfyZLkT65kPKhayHbvo6OhyFWG1WomOji53rMViwWKxVFiOv6ZHp3c5lx0HjtOuR/+gmtqvB4fDwb4c6HzeiKCoK4fDwaG8BXQboE++DoeDTPsCelzon/M7HA4OL1jA2UN8U77D4eDIggX0HFaz8hwOB9kLFtDrIu/jHQ4HCxYsoN+I6seWxAysRkzJsQO8KN9bdqeLPLuLLJuNo9mHOXlkL0XZu1EPbyblxFo6q9tombcB56cj2dt/Jq0vuNEvefiK+dhWzB+OBEc+mMKhzWBoejbEN4Poxu7hZkPxULWiQFGe+6fgOBzfA1kbYdsClKPbMH18OfxjKTRs5798ZbmTOi1Pljs5s5Dt2KWnp5Obm0tWVhbJyckAbNiwgVtuuUXnzIQQwncsJiMWk5GEqARaNk4AzvLsU1WNPzZuomj+Q5zv+JXUFQ9yrFVPElt01i/hqmgaxh8ecnfqmp8PY9+D6Ebel1OQA59eC3tXwpLH4eqPfZ6qEIEqZG9AiI6OZtSoUUybNo2CggLmzZvHpk2buOSSS/ROTQgh6oTBoNC7a2fOfmAef5jOxoKDg/POPOlFL7EF+zEc/B2MFrji3Zp16gAi4mHkC+7X2/4HdpvPchQi0IVsxw5g9uzZ7N+/n8TERB544AE+//xzWepECFHvRFjMcIF7Vnn68Z9wFRXonFHFGto2u1+07A8xtZzw0egsiGvmvlfywJraJydEkAjZoViAhg0bsmDBglqVEczTo0NFsNWV3vnKMgj+jQ3Wdt6xez+yF8bTkBy2/bGIVr0u0julMhwOBw3ydgHgSuuD6oM6MzbtgSF3H65DG1Cb9at1eaXp/d1KO/dvbKC1c1nupIZmzZrFrFmzcLlcbN++3a/LnQghRF1L+Ot1+rnWMC/marQ2I/ROp5zztz9BYt4O1rS4i8wGvWtdXqcDH9M6+0d2NBrJ302v8kGGQuhDljupoYkTJzJx4kSsVitxcXGA/5Y70XuqfDAJtrrSO19ZBsG/scHczldnLoKsNSRb7HQfEVgdO4fDgbbZvexUjwEj0FJr37EzrNwKy3+kdUo8LXz8efX+bqWd+zc20Nq5LHfiQ8E8PTrUBFtd6Z2vLIPg39hgbOfGxFaQBRF5BwMinzI0DYMjFwBTfFPwRX4x7skXhsITGPy4DIW087orr762c2/KDenJE0IIIU6JaNQagHj7QZ0zqUBhDkat+D6i6GTflBmZ6P6dd9Q35QkRBKRjJ4QQ9URsw6YARKsndc6kAsWdL80SC+Zw35QZleT+nX/MN+UJEQRkKPYMgnkWTagItrrSO1+ZLeff2GBu5yZLFAARWkHA5FTCWWjDDGimCJy+ys0c6y6z4Ljvyiym93cr7dy/sYHWzmVWbA3JrFghRCgrKrAxduudAHzT9T0Uw+nPXtZPfN5uBmyfTr45kUWdXvJJmZH2wwz5+0GchnC+7/qmT8oUQg/ezIqVjl0FSmbFzpkzh9GjRwftLJpQEWx1pXe+MlvOv7HB3M7thQVEv5gGQM5d24iKS9Q5o1Nce34hfM5o1PiWuCb+7ptCc/djfr07mikc58MHfFNmMb2/W2nn/o0NtHZutVpJSkqS5U58IZhn0YSaYKsrvfOV2XL+jQ3Gdm4ymSjSjIQpLhz2fMxmH01S8AFFUd2/TWG+qyuzxV2m6vLrbEVp53VXXn1t5zIrVgghRDmKolCguCcmFOZVf12sOqE63b+NYb4r02AqW7YQ9UDQd+yeeeYZFEVh1apVnm0TJkzAYrEQHR1NdHQ0HTt21DFDIYQIHAVEAGDPD7COnasIAM3gw4Ekzz2EGqiq78oVIoAFdcfu4MGDzJkzh+Tk8sMJM2bMwGazYbPZ2Lx5sw7ZCSFE4Ck0uK/YFeUH2JInruJZfz69Yldqcojm8l25QgSwoL7HbvLkycyYMYP777+/VuXY7XbsdrvnfelHdwTz9OhQEWx1pXe+sgyCf2ODvZ0XKcVX7PJyAiovtagAE+4rdj7Ly6VRcmeSo6jQp//i6f3dSjv3b2ygtfN6sdzJsmXLePLJJ1m8eDEtWrTg008/5dxzzwXcQ7HfffcdAO3ateOZZ56hf//+lZY1ffp0ZsyYUW67LHcihAg1zdY/Q3ftb75IvBNzs3P1Tscj9fgvnL33PxyJ6cRvbR7ySZlG1c7FG24FYH6XN3EZfbTwsRB1zJvlToLyip3T6eT+++/no48+qnD/vffey0svvURUVBRz587lkksuYdOmTaSlpVV4/JQpU5g0aZLnvdVq9RwbzNOjQ0Ww1ZXe+coyCP6NDfZ2vmnrbCiAtOQkeowYoXc6HurabNgLiY1SGOGrvJx22OB+OWzIYAiv+h9Eb+j93Uo7929soLXz0iOJZxKQHbuhQ4eyYsWKCvdNnTqVmJgYzj//fDp16lThMd27d/e8vvbaa/noo49YtGgRN910U4XHWywWLBZLhfuCeXp0qAm2utI7X1kGwb+xwdrONUNxHpr/lgCpCRfue+AUk8V3eRlP3UZuNirgh8+r93cr7dy/sYHSzr0pNyA7dgsXLqxy/5gxY1ixYgVz584FIDs7m5EjR/LCCy9w4403ljveYAjqOSJCCOEzasmsU1fg3F8HlFruxIf/MCql/u5XZfKEqB8CsmN3Ju+//z6FhYWe97169eI///kPAwcOBODLL79k+PDhWCwWvvzyS1auXMns2bN1ylYIIQKI4p4pqgXa2m7Fy534tmOnuD+v5pK17ES9EZQdu/j4+DLvjUYjCQkJnokOL730EjfddBOKotCuXTu+/vprWrRoUfeJCiFEgFGV4o6TK8A6OiVXEA0+HsoyGMHlkuVORL0RlB2702VkZJR5v3LlSp+VHczTo0NFsNWV3vnKMgj+jQ32dq4VD0+qrqLAysthxwi4FBMuH+ZlMphQXEXu5U58WK7e3620c//GBlo7rxfLnfjDrFmzmDVrFi6Xi+3bt8tyJ0KIkBO5+QOGFC1hfsSluNpfqnc6Hmcdmkvbw9+xq+FQNqVe57NyR2y4DbNawOIOz5NnaeyzcoWoSyG/3Im/TJw4kYkTJ2K1WomLiwNkuZNAEGx1pXe+sgyCf2ODvZ3/sX8eHIWEBnH0CqDlTlj4GxyGZi1a02yo7/IybbFAYQED+p0PSek+K1fv71bauX9jA62dB/1yJ4EkmKdHh5pgqyu985VlEPwbG7TtvHhygiFAlzsxmMMx+jKv4lnAstxJYJQv7bxmvClX1gERQoj6pOT5qYE2S9TzrFg/TJ6AwPu8QviJdOyEEKI+KZ51qqiBM3ECQPHHcifguWIn69iJ+kKGYs8gmGfRhIpgqyu985XZcv6NDfZ2rpX8f151BlReitOOAXBhRPXlrFjFgAI4i+xoMitWt/KlndeOzIqtIZkVK4QIdcq2eYzK/4KfzAM52anixyzq4ew9s0nNWcXGpteyu9Ewn5V74eYHiC46woq2j3IiyneTJ4SoSzIrtoZkVmxgCra60jtfmS3n39hgb+e/n1gDGRAdGU6/AJoVq8z9DHKgXYfOtO/tw1mxe2fA8SP0Pac3WrM+PitX7+9W2rl/YwOtncusWB8K5lk0oSbY6krvfGW2nH9jg7WdG0xh7t8BNitWRQXAYA7D5Mu8iu/ZMxlkVmwglC/tvGZkVqwQQoiKFU8mULQAmyVaMmvV4OPrDYrMihX1S9B27D777DPS09OJjo5m1KhRHD9+3LOvoKCA6667jpiYGJo1a8Ynn3yiY6ZCCBE4FGPJrNgAmyVako+vO3Yly53Is2JFPRGUHbstW7Zw22238cknn3DixAmaN2/OxIkTPfunTZvG8ePHOXjwIJ9++il33HEH27dv1zFjIYQIEEZ3x8kQsFfsjL4t17OOnXTsRP0QlPfYLV68mGHDhtGzZ08A/vWvf9G8eXPy8vKIiorio48+4ptvviE2Npa+ffsyatQoPv30Ux577LEKy7Pb7djtds/70jcpBvP06FARbHWld76yDIJ/Y4O9nWulhiYDKS9D8QLFLlXx6bIkRsWIAXA6ZLkTPcuXdl47Ib/cyWuvvcbPP//M559/DsChQ4do2rQp69ato3nz5iQkJJCXl+dZquTFF19kzZo1fPbZZxWWN336dGbMmFFuuyx3IoQINUUZvzL2xP+xVunEgW4P6Z2Ox/nbnyAxbwdrWt5DZnxPP5R7N5nxvXxWrhB1KeSXO7nwwguZOnUqa9asoWvXrjz99NMoikJ+fj42mw2j0VimQxYbG4vNZqu0vClTpjBp0iTPe6vVSlpaGiDLnQSCYKsrvfOVZRD8Gxvs7Xzd/w7DCbCYjYwIoOVODFkvQx507X423c/yXV7GY/8HeTvo0a0rWgfflav3dyvt3L+xgdbOg365k6FDh7JixYoK902dOpWpU6fyxhtvMH78eI4dO8a9995LTEwMTZs2JTo6GpfLRX5+vqdzZ7VaiY6OrvR8FosFi8VS4b5gnh4daoKtrvTOV5ZB8G9ssLZzU5h7uROj5gyYnADU4skNRrPFx8uduP+Zk+VOAqN8aec14025AdmxW7hw4RmPGTduHOPGjQNg586dvPbaa6SmpmI0GklOTmbjxo2cc845AGzYsIGOHTv6NWchhAgGJbNiDQE2S1Tx26zYkmfFBthkESH8JChnxQL8+eefqKrKwYMHue222/jnP/+J0ei+Kfi6667jiSee4OTJk6xatYp58+Zx1VVX6ZyxEELoz1AyK5YA6+hofpoVq8isWFG/BG3H7o477iA2NpaePXvSv39/7r33Xs++xx9/nLi4OFJSUhg7diyzZ8+mXbt2OmYrhBCBQTGeevJEQPHXAsVyxU7UMwE5FFsdq1evrnRfREQEH3/8sU/OE8zTo0NFsNWV3vnKMgj+jQ32dq4pCuC+xy6Q8jK6nCiAU8W3y52gYABcziJUWe5Et/KlndeOz5c7KVlW5EyMRiOXX355tU8eaGbNmsWsWbNwuVxs375dljsRQoScgsPbuPrQU+wlhfXdn9U7HY8hmycRWXSU5W2nkxPVymfl9tzzGk1zfuev1BvY03Cwz8oVoi55s9xJtTp2JpOJ/v37c6ZDf//99yqXFQkWVquVuLg45syZw+jRo4N2enSoCLa60jtfWQbBv7HB3s63r11Kxx/GckhpTMN/bdY7HQ/jK50x2DIpGL8QU2oP35X79a0Y/v4a15CnUHvf5rNy9f5upZ37NzbQ2rnVaiUpKcl369hFRETw008/nfG4Bg0aVC/DIBLM06NDTbDVld75yjII/o0N1nYeFh4BuO+xC5ScALTie/5MYeG+zctUvLyLomGU5U50L1/aec14U261Jk/s3r27WoXJ81iFECKwGYo7OmYC5/46wH+TJ4qXd8FV5NtyhQhQ1erYNWzYsFqFVfc4IYQQ+jBbwt2/A7Zj5+PlTopnAeOSWbGifvD6v0YXXXQRSvGsqtIsFgupqalceumlXHDBBT5JLhAE8yyaUBFsdaV3vjJbzr+xwd7OS5Y7sWiOgMrLVNyxc7oAH+ZlUEwYAZejUGbF6li+tPPa8fms2NIeffRRPvzwQ8aPH09qaioHDhzgo48+4uqrr0ZRFN555x3++c9/cv/993uduN5kVqwQItQV5VsZu+0uAL7p+gGKofx/1PVw8fqbMWoOfuz4EoVhiT4rt8PBT0g/8j92NBrB302v9lm5QtQln8+KLa1nz5588sknpKene7bt2LGDa665hj/++IO1a9cyduzYat+XF4hkVmxgCba60jtfmS3n39hgb+cnc46RMMu9YHve5P2eyRR6M/27MYrmIv/O9ZgbpPqsXMPSJzH++jKuXrehDn3KZ+Xq/d1KO/dvbKC1c5/Pii1t165dNG3atMy2lJQUdu7cCUCPHj3Izs72ttiAFcyzaEJNsNWV3vnKbDn/xgZrO4+MPvWPgqY6AyMvTYPiWbFmX8+KNbvvKTRqTpkVGwDlSzuvGZ/Pii1t6NChjB07llWrVnHgwAFWrVrF1VdfzfDhwwFYs2YNzZs397ZYIYQQdSAsLNzzuqgwT8dMSin9HFeZFStErXjdsXvnnXdo164d11xzDenp6YwbN4527drx9ttvA9C0aVO+/fbbWifmdDq5/PLLadq0KYqikJWVVWb/tGnTSEtLIzY2lvT0dN577z3PvmXLlmEwGIiOjvb8/Pzzz7XOSQghgp3BaMCuuTs7DnuhztkUK/0cV3/NipVnxYp6wuv/GkVHRzNz5kxmzpxZ4f7UVN/dG9G/f38efPBB+vTpU27fddddx0MPPURUVBQ7duxgwIAB9O7dm44dOwLQtm1btm7d6rNchBAiVNgxY8FBkb1A71TcynTsfH3FrmS5E7liJ+qHGrWg77//ni+++ILs7Gzmz5/P77//Tk5ODkOGDPFdYiYT9957b6X7S0/eAFBVlb1793o6dt6w2+3Y7XbPe6vV6nkdzNOjQ0Ww1ZXe+coyCP6NDYV2XqS4r9jZ808GRm5FhZTcQeRwab5d7gQFI6A67LhkuRPdypd2Xjt+Xe7kueee46OPPuL222/nkUceIScnh61btzJ+/HhWr17tdbLVSlJRyMzMJDk5ucz2Z555hieeeIL8/Hx69+7N8uXLCQ8PZ9myZQwfPpzY2Fji4uK4/vrreeSRRzAaK77EP336dGbMmFFuuyx3IoQIRb3+nEQT5Sifp03DktRa73QIc57koo0TAfi22/ugeH2XUKWaHVtO933vkBXbjdWtJ/msXCHqkl+XO2nWrBlr1qwhOTmZBg0acOLECTRNIzExkePHj9cq8UqTrKRjB6BpGmvWrGHx4sU8/PDDmEwmsrKyyMnJ8QzHXnnlldx8882Vrq1X0RW7tLQ0We4kQARbXemdryyD4N/YUGjnmf/uQjPtEJuGzqFdr6F6pwO2w5hf6YiGQsFDh3xaV8rGzzHNuxO11SBc18z1Wbl6f7fSzv0bG2jt3K/LnbhcLuLi4gA8T6CwWq1ER0d7Vc7QoUNZsWJFhfumTp3K1KlTq1WOoiicc845fPTRR7zzzjvcdtttJCcnezqBHTp0YOrUqcyePbvSjp3FYsFisVS4L5inR4eaYKsrvfOVZRD8GxvM7dyphIEGOB2BkVfxIsmqYvR9XRXPAjaoTgyy3Inu5Us7rxlvyvW6Y3fppZdy++238+KLLwJgs9l48MEHufzyy70qZ+HChd6eukqqqrJr164K9xkMvrusL4QQwc5hCAMVXI7Amjyh+XAI1sMzeSIA7iUUog543YpeeOEFoqOjad68OTk5OTRu3BiTycS///1vnydnt9spLCws9xrg7bffJicnB1VVWb58OR9//DEDBw4E3Mud7N+/H3A/FePJJ5/k4osv9nl+QggRjFyKu7OjFgXWcicaPl7qBGRWrKh3vO7YhYeHM2vWLPLy8jh8+DA2m43Zs2cTEeH7x9K0a9fOU26LFi3KnGPBggW0bt2auLg47rzzTp5//nlGjBgBwNq1azn33HOJiopi6NChjBkzhkmT5KZZIYQAcBncnR2XI1A6du4Fiv1yxa5k+RS5YifqiWoNxa5Zs6bSfXv27PG87t27d+0zKiUjI6PSfV999VWl+yZPnszkyZN9kkMwT48OFcFWV3rnK8sg+Dc2FNq5s6RjV2gLiNyUvBOYAKch3KdLnQAoGDABmsuOU5Y70a18aee14/PlTlq2bHkqQFE4cOAAiqKQmJjIsWPH0DSN1NRUdu/eXbOMA8SsWbOYNWsWLpeL7du3y3InQoiQFLPxHS5wLue7qCtQ247SOx0aWf+iz64XyIloxvL2T/q07Aa2HfTf8QS2sEYs6fiCT8sWoq54s9xJta7Ylb4qN2PGDPLz85k+fToREREUFBQwY8YMoqKiapd1AJg4cSITJ07EarV6Zv4G8/ToUBFsdaV3vrIMgn9jQ6Gdr85cDFnQKEKjR/EtLHpSNuXDLnAYo31eV8qhdbADosLDPLfr+ILe3620c//GBlo7L/3ghDPxelbsa6+9RlZWFiaTOzQiIoInnniClJQUHn30UW+LC3jBPD061ARbXemdryyD4N/YYG7nhthkyIKwwuzAyKvopPuXKYp4X9eVxT3qoqj+WdpF7+9W2rl/YwOlnXtTrtd3qjZo0IAlS5aU2bZs2TLi4+O9LUoIIYQOzHHudT4jio7qnEmxghMAFBm9Ww+1WozF/yA67VUfJ0SI8PqK3SuvvMKVV17JOeecQ1paGvv27eP333/n448/9kd+QgghfCw8oSkAsY5jOmdSrLhj5zD5oWMXHu/+bbe6Z8YaA+AKpRB+5HXHbsSIEezatYsFCxaQmZnJgAED+OSTT0hKSvJHfroL5lk0oSLY6krvfGW2nH9jQ6Gdx6akA5CsHsGWcwxLVNU3Y/ubMe8oBqDIGOX7urLEYzJaUFx2HMf3QnxznxSr93cr7dy/sYHWzn0+K7a+kFmxQoj6QNOg97r7aaIc46sm/8TYuIOu+QzY+hjxBRmsaXEXmQ18u2wWwIV/P0i0/TAr20zhWMxZPi9fCH/z+azYq666is8+++yMx40bN445c+ZUL8sAJLNiA1Ow1ZXe+cpsOf/Ghko7X7v9PZrkL6U5++gy4gH9EnEWYtpwEwA5Ua38UlfGE29DxmHOPaspWhffzIzV+7uVdu7f2EBr5z6fFTtv3jzmzp3LmS7uLViwoNonDhbBPIsm1ARbXemdr8yW829ssLdzV6exsGYpbQ99g9P6CBGJqfoksmsRqE60qEYUmBP9U1eN2kPGCkyH/oCzr/dp0Xp/t9LO/RsbKO3cm3Kr1bE755xzmD17drWOE0IIEfh6XDCWrb+/QHttN4f+7yK08XOITO1ct0kU5sJP7gWJ1c5Xgl3xz3naDoc1b8Lf82DI4xAe55/zCBEAqtWxW7ZsmZ/TKM/pdHLVVVexatUqDh06RGZmJsnJyZ79e/bs4bbbbmPNmjVERUVx1113MWXKFM/+999/n6lTp2K1Wrn88sv5z3/+Q1hYWJ1/DiGECEQR4WEUjHqbzG+uoIljH+rb/dgX3RWt9QUktelFVJN2EN0YLD6eqWo/CYf/hr2/uDtbJzMhMgn1nDthxR++PVeJlv0hsQ0c2wn/vQKGPw1NeoDBD8+mFUJnXs+KrUv9+/fnwQcfpE+fPuX23X333bRq1Yrvv/+eAwcOcN5559G7d28uvPBCNm7cyKRJk1i4cCHp6emMGTOGJ598kscff1yHTyGEEIGpe/ezWW/+jm1fP8BA1280s62HDethw6ljCpRICkyxOI2RuMyRqKZIMEdiMBpRDCYUoxGDwf2jGE0YUTFqDoyaA4PqxKAWYXAVYsg/BvlHUQpzyybRoAWM/QCiG/nvgxrNcOl/4MPRcGANvH0hRDWCxh0goRVEJkFEA/dPWBSYLGAMK/5tAVOY+71iBEUBxQCqRnjRMbBmQljJPoN7v6HkdakfAEpdkVSUstsqe6/46SqmCFkB27EzmUzce++9le7fu3cvkydPxmw207JlS84//3z+/vtvLrzwQubMmcNVV11Fz549AXj00Ue55ZZbKu3Y2e127PZTi1eWvkkxmKdHh4pgqyu985VlEPwbG2rtvGO7dhQ98C1L1v/FiT+/Ifb4XzR37CZVySZKsROh5RPhyAcHUOibcx7WGrBNacnPxnNYnD8QPj6ByfgLBXlG3tu/ijCTEbPRQJhJwWw0uF8bFcJMBs97s1Eh3GQkITqMhtFhNIy20CwxksSoSkZmGneFW1dgXPYUyvYfUPKOwO4jsHtZjT6DGRgGsLlG4TWmFXf8TIrCKE2D9QY0qKKjWNG2yt6fOt4EjHA6MW02Ue7u+jN2Nsvv95T3twmtyviK95mAixwOTFvC0Ko8fUXn1hhe5MC01YymnOkqrVIqpgjTtjBPnbt3V1C+pjGsqAjHgD8hKv4M5ddMyC13oihKuaHY//u//2PdunW8+uqr7Nu3jwsvvJDvv/+ezp07M3r0aIYNG8add94JwLFjx0hKSiI/P5+IiIhy5U+fPp0ZM2aU2y7LnQgh6qN8Jxy3Q35hIWpBDoojH8VlR3EVYnTZMbjsqJrqXjdFU90/qCiqigMDds1EgWrGjpEizYwdMye0GI4RS7YWhxU/LERcLD5Mo22cRv9klbRKTmNQi4jL30u0PYuooiOYnXmEuWyEOW0YVTsGzYlBdbqvOmpODKr7t4L78ypoKJoKaCiahoJ7m6jf5nd5E5cx3C9l+3y5k0DUt29fZs+eTVRUFC6Xi+nTp9O5s/vGX5vNVuaDl7y22WwVduymTJnCpEmTPO+tVitpaWmALHcSCIKtrvTOV5ZB8G+stPPq0zQNl6rhcGkUuVQcLtX92qmWe19gL2LNH3/SsUtXNAw4XCpFZeJUipya57XDpZFf5OJ4XhHZNjvZJ+0czCkkp0hhTbbCH0cN3D2oNXcNau37zwUUVfTdlnRyS/+orpLKOK2E0tu8f+9wOFmxYjn9+/fHbDKWOQxqfy6nw8nKX1Zy/nnnYzKX6iqc8VpQxfudDie//PIL553X1/Os+erGlsT/+usv9O3bF5OpsrZUybmdDn799Vf69ulTRWzZeKfTyW+//kqfvqXyreSzO51OfvvtNy4YOgKzxT8dO58vd1JaQUEBjz32GHPnzuX48eNYrVZ+/PFHtmzZwn333VftcoYOHcqKFSsq3Dd16lSmTp1aaazL5WLEiBE8/PDD3HHHHRw4cICLL76Yjh07csUVVxAdHV2mEkpeR0dX/N83i8WCxWKpcF8wT48ONcFWV3rnK8sg+DdW2nn1lf/vdHkOhwPbLo2LOjepcV2dLHTw14FcPlmzj/l/ZfLKT7tolxLHiM4pNSqvOnT7bh0O7OZ4zA1S/XN+h4N8yw5MjdJ9U77DQV74LkyN29esPIcDW/geTMkdvI93OLCF78WU0qn6sQ4HJyP2VS/G4eBkxH7MlvCAWO7E6ylBd955J5mZmcyfPx+j0f2/hC5duvB///d/XpWzcOFCCgsLK/ypqlMHcPz4cQ4dOsQdd9yByWSiRYsWjBkzhqVLlwLQoUMHNm7c6Dl+w4YNtGzZssKrdUIIIUJDTLiZ89ok8fq4Htwx0H2l7tUlO3TOSoi65XXH7vvvv+edd96hU6dOKMU3EaakpJCZmenz5Ox2O4WFheVeN2zYkLS0NN566y1UVeXAgQN8++23nqHYcePG8fnnn/Pnn3+Sm5vLU089xXXXXefz/IQQQgSm2/u3xqDA1qyTZOX6aNaHEEHA645dfHw82dnZZbbt2bOHJk2a+CypEu3atfNcZWvRokWZK25ffPEFH330EQ0aNKBXr15ceOGF3HrrrQB07tyZF198kUsuuYTU1FTS0tJ45JFHfJ6fEEKIwBQXaaZDE/f91WsyjuucjRB1x+t77O69914uueQSHnnkEVwuF/Pnz+fJJ5/06v666srIyKh0X69evfj1118r3T9hwgQmTJhQ6xzq8zIIgSLY6krvfGW5E//GSjv3D3/UVbvG0Ww6aCUj+6TPvwO9v1tp5/6NDbR27vflTubOncu7777Lvn37aNq0KTfffDNXXXWVt8UEnFmzZjFr1ixcLhfbt2+X5U6EECKIzdtrYMkhAwNSVC5roeqdjhA15s1yJ0Gxjl1ds1qtxMXFMWfOHEaPHi3LIOgs2OpK73xluRP/xko79w9/1NXbKzN49sftjO6awgtX+PY5uHp/t9LO/RsbaO3carWSlJTkn3XsXn75ZQYNGkTXrl1ZvXo11113HUajkffee6/CR38FO1kGIXAEW13pna8sd+LfWGnn/uHLukqKca8pllPg9OsyFNLO6668+trO/brcyXPPPUeLFi0AmDx5Mvfddx9Tpkzhnnvu8bYoIYQQwm8Sih8vdjyvSOdMhKg7Xl+xs9lsxMXFceLECbZs2cIdd9yBwWCQjp0QQoiAIh07UR953bFr06YNn376Kdu2bWPw4MEYDAaOHz9OWFglD14OcsE8iyZUBFtd6Z2vzJbzb6y0c//wR11Fmd1rrVoLHTIrVufypZ3Xjl9nxa5evZr77ruPsLAw3n77bdLT05kzZw4LFizgv//9r9fJBhKZFSuEEKHjaCE8sc5EmEHj+XNceqcjRI3JrNhaklmxgSXY6krvfGW2nH9jpZ37hz/q6lBOAQNe/Jkwk4HN0wb7pMwSen+30s79Gxto7dyvs2LB/ezVX375hWPHjlG6X/jYY4/VpLiAFsyzaEJNsNWV3vnKbDn/xko79w9f1pUlzH2VTlU1mRUbIOVLO68Zv86Kff311xkw4P/bu/eoqOq9f+DvGS7DZZwZAzmCUF5CEcV8PMgqk2OPGZhl8utJKg4KlnZWYWXoswyBAxh2knOoTs+h8mcXu6FZp+U69ZhhKUJm6dFATbykoqSSHhSGUZz78weyDyOoXGaz9x7er7VczZ7v/n7nM99Zn+bDnvl+Zwq+/fZbvPjiizh48CCKi4vx888/d3coIiIi0XipW79jZ3PwgynqP7pd2BUXF2PLli0oLS2FRqNBaWkpvvjiC7S0tLg1sEOHDuH+++9HcHAwBg0ahNTUVFy4cEFoz8zMxPDhwzFgwADExsaioqJCaCsvL4darYZWqxX+VVZWujU+IiKSt7bCDmi9akfUH3S7sDt//jwmTJgAAPD19YXFYkF8fDzKysrcGlhTUxOSk5Nx9OhR1NbWwmKxYMmSJUK7Xq9HWVkZmpqasHTpUiQlJaG5uVloHzlyJEwmk/AvPj7erfEREZG8tS/seNWO+otuf8du1KhRqKqqwvjx4zF+/HisXLkSer0egwYNcmtgcXFxiIuLE44XLFiAzMxM4TgvL0+4PXv2bCxatAiHDx/Gb3/7224/ltlshtlsFo6NRqNwW8nLoz2F0uZK6ni5DYK4fZnn4hBjrhx2m3DbbLFA5fRy29hSv7bMc3H7yi3PRd3u5Pvvv4evry8mTJiAAwcOYOHChWhubsbKlSsxderUbgfbVQUFBaipqcG6des6tNXW1mL06NGor6+HXq9HeXk5pk+fDp1OB71ejzlz5iA7OxteXp0ndX5+PgoKCjrcz+1OiIiUy2IH/ntn6/WLlXE2+LmvriPqUx633UlVVRXuvvtuVFRUYMyYMS5tVqsV06ZNw5QpU7B8+XIAQH19PRobGzFy5EgcPHgQycnJePzxx/Hcc891On5nV+wiIiK43YlMKG2upI6X2yCI25d5Lg4x5spic2BMwdcAgN3L/hM6f/e9BlK/tsxzcfvKLc9F3+7k5MmT2L9/P0wmk8v9ycnJXR4jISHBZcFDezk5OcjJyQEAHD9+HDNnzsTbb7/doahzOp1IT09HSEgI8vPzhfsHDx6MwYMHAwCio6ORk5OD119//ZqFnUajgUaj6bRNycujPY3S5krqeLkNgrh9meficOdceXn9+7qFystblNdA6teWeS5uX7nkeXfG7XZhV1RUhPz8fMTExLh8TKlSqbpV2HVlsUV9fT3uuece5ObmIikpqUP7008/jdOnT2PTpk1Qq6+9DuR6bURE5JnU7RZP2Ll4gvqJbhd2f/nLX7Br164OV8/crampCYmJiZg7dy6eeOKJDu15eXnYvn07tm3b1uFqW3l5OUaMGIGIiAgcOXIEhYWFSE1NFTVeIiKSH2+1CjaHk4Ud9RvdvpSl1WoxYsQIMWJxsWHDBuzduxdFRUUu+9G1Wb58OWpqahAWFia0ffTRRwCA3bt34/bbb0dgYCASEhKQlJTksqKWiIj6h7YtT+zy/zo5kVt06Yrd2bNnhdtZWVmYP38+srKyOmxxEhIS4rbA0tLSkJaWds326635WLx4MRYvXuyWOJS8PNpTKG2upI6X2yCI25d5Lg6x5qqtsLtstsBq7dHXyjsl9WvLPBe3r9zy3O3bnajVaqhUqusWUyqVCna7vcsPLEclJSUoKSmB3W7H4cOHud0JEZHCPb/TCy12FbLH2xDiL3U0RD3jcdud9DWj0Qi9Xs/tTmRCaXMldbzcBkHcvsxzcYg1VxNf3IrGFiu+fHoSbg3R3rhDF0n92jLPxe0rtzwXZbsTp9OJ1atXY//+/Rg/fjwee+yxXgeqBEpeHu1plDZXUsfLbRDE7cs8F4e758rbq/WjWDW3O5HF+MzznunOuF1ePLF48WLk5eWhvr4e2dnZwj5zREREcqVWtRZ2NodD4kiI+kaXC7v169ejoqIC69evx9atWzv9aS8iIiI58b6yeIJ1HfUXXS7sjEYjIiMjAQBRUVE4f/68aEERERG5Q9smxbxiR/1Fl79jZ7fbsWvXLmFl7NXHABAXF+f+CCWm5OXRnkJpcyV1vNwGQdy+zHNxiLbdyZWPYi1Wm1vHlvq1ZZ6L21duee727U4AYOjQoVCpVNdsV6lUOHbsWJcfWI643QkRkWdZ8aMXzl5W4ekxNtx6/cWERLLF7U56idudyIvS5krqeLkNgrh9mefiEGuuZvzPdhw5exEfzIvF7cNvctu4Ur+2zHNx+8otz0XZ7qS/UvLyaE+jtLmSOl5ugyBuX+a5ONw9V17qK18lV6u53YkMxmee94wo2530tUOHDuH+++9HcHAwBg0ahNTUVFy4cEFoHzNmjMtvyKrVahQXFwvta9asQXh4OHQ6HebNmweLxSLF0yAiIgm17WNnd/DDKeofZFvYNTU1ITk5GUePHkVtbS0sFguWLFkitP/0008wmUwwmUw4ceIEfHx8MGvWLADAvn37kJmZiQ0bNqCurg61tbUoLCyU6qkQEZFE2hZPsLCj/kK2H8XGxcW5rLJdsGABMjMzOz13/fr1mDBhAm699VYAQGlpKR5++GHExsYCAHJzczF//nwsX7680/5msxlms1k4NhqNwm0lr6LxFEqbK6nj5Wo5cfsyz8Uh1lxd2e0EZgtXxUo5PvO8d0RZFSu1goIC1NTUdLox8uTJk/HII49g4cKFAIBZs2YhMTERTz31FACgoaEBwcHBuHTpEvz9O/4KdH5+PgoKCjrcz1WxRETK9tf9XjjWrMK8kXaMD1LE2x1RB91ZFSvbK3btVVVV4bXXXkNFRUWHttraWuzcuROfffaZcJ/JZHJ54m23TSZTp4VdVlaWy9VAo9GIiIgIAFD0KhpPobS5kjperpYTty/zXBxizVVp/S4ca76A28b/B2bEDHbbuFK/tsxzcfvKLc/bf5J4I5IVdgkJCZ0WagCQk5Mj/Bbt8ePHMXPmTLz99tsYM2ZMh3NLS0sxbdo0hISECPdptVqXSWi7rdVqO308jUYDjUbTaZuSV9F4GqXNldTxcrWcuH2Z5+Jw91x5e7V+lVzFVbGyGJ953jPdGVeywq6srOyG59TX1+Oee+5Bbm4ukpKSOj2ntLQUWVlZLvdFR0dj3759wnF1dTWGDRvW6dU6IiLyXG3bndjs/BiW+gdZr4pNTEzE3Llz8cQTT3R6TlVVFWprazsUfSkpKVi/fj327NmDpqYmrFixAqmpqX0QNRERycmV3U5gV8bXyYl6TbaF3YYNG7B3714UFRW57FfX3kcffYRZs2YhMDDQ5f6YmBgUFxdj5syZCA8PR0REBLKzs/syfCIikoG2K3bc7oT6C9kunkhLS0NaWtp1z/nzn/98zbb09HSkp6f3Og4lL4/2FEqbK6nj5TYI4vZlnotDvO1OWgs6i5XbnUg5PvO8dzxyu5O+UFJSgpKSEtjtdhw+fJjbnRARKdy7h9WoalDjv4ba8btQvt2RMnncdid9JSMjAxkZGTAajdDr9QC43YkcKG2upI6X2yCI25d5Lg6x5mqzaS+qGuoxanQ0Zky6xW3jSv3aMs/F7Su3PFfEdidKoeTl0Z5GaXMldbzcBkHcvsxzcbh7rnx9vAAATqi43YkMxmee90x3xpXt4gkiIqLe8r2yj52Niyeon2BhR0REHsvnSmFnsTkkjoSob7CwIyIij9VW2FntLOyof+B37G5AycujPYXS5krqeLkNgrh9mefiEHu7EzO3O5F0fOZ573C7kx7ididERJ7lf0+qUXZKjd8NduC/hvGqHSkTtzvpIW53Ik9Kmyup4+U2COL2ZZ6LQ6y5Orr1KMpOHcWQiJsxY0a028aV+rVlnovbV255zu1O3EjJy6M9jdLmSup4uQ2CuH2Z5+Jw91z5+ba+zdmd3dsyoqukfm2Z5+L2lUuee8R2JyaTCZMnT0ZQUBAGDhyIu+++GwcPHhTaX3/9dYwfPx7e3t546aWXXPqWl5dDrVa7/MZsZWVlXz8FIiKSmK+weILfOqL+QbaFnUajwerVq3Hu3Dk0NDTgwQcfdPnt2LCwMBQWFuKBBx7otP/IkSNhMpmEf/Hx8X0VOhERyYS3WgUAsHBVLPUTsv0o1sfHB6NHjwYA2O12qNVqHD9+XGhPSkoCAHz66ae9fiyz2Qyz2Swct/8sW8mraDyF0uZK6ni5Wk7cvsxzcYi9KtZitXNVrITjM897x6NWxY4bNw41NTVwOBwoKirC4sWLXdrT09MRFRWF559/XrivvLwc06dPh06ng16vx5w5c5CdnQ0vL69OHyM/Px8FBQUd7ueqWCIiZfv+rAprj3oh2uDAH0bzqh0pk0etit27dy9aWlrw4YcfYsiQIV3qExUVhaqqKowcORIHDx5EcnIyBgwYgOeee67T87OyspCZmSkcG41GREREAOCqWDlQ2lxJHS9Xy4nbl3kuDrHmylp9BmuP7sPAoEGYMeO37huXed6n4/X3PFfEqtiEhARUVFR02paTk4OcnBzh2N/fH/Pnz0doaChqamowcODA6449ePBgDB48GAAQHR2NnJwcvP7669cs7DQaDTQaTadtSl5F42mUNldSx8vVcuL2ZZ6Lw91z5e/bOpbN4eSqWBmMzzzvme6MK1lhV1ZW1q3znU4nTCYTzpw5c8PC7mpqtWzXiBARkYi8vVoXT/Anxai/kG3FU11djYqKClgsFly8eBHLli2DwWBAZGQkAMBms+Hy5cuw2+0ut4HW79jV1dUBAI4cOYLCwkLcf//9kj0XIiKSBrc7of5GtoWd1WrFs88+i6CgINx8882oqqrCxo0bhcuRhYWF8Pf3x4cffojc3Fz4+/vjgw8+AADs3r0bt99+OwIDA5GQkICkpCSX79AREVH/4CMUdrxiR/2DbBdPxMbG4scff7xme35+PvLz8zttW7x4cYfVsz2l5OXRnkJpcyV1vNwGQdy+zHNxiDVXKrR+kmOxObjdiYTjM897x6O2O+lLJSUlKCkpgd1ux+HDh7ndCRGRwtU2A6/s90aQxok/TrBLHQ5Rj3RnuxMWdp0wGo3Q6/UoLS3FrFmzFLs82lMoba6kjpfbIIjbl3kuDrHmav8pI/7fm99jsE6Dyv+e4rZxpX5tmefi9pVbnhuNRgQHB3vGPnZSU/LyaE+jtLmSOl5ugyBuX+a5ONy+3YkftzuR0/jM857pzriyXTxBRETUW22rYs1WLp6g/oGFHREReazgAa2bzzebbbhksUkcDZH4WNgREZHH0vn5YICm9VtHpy60SBwNkfj4HbsbUPLyaE+htLmSOl5ugyBuX+a5OMScqzCDHw79asLJBhOG3uTnljGlfm2Z5+L2lVuec7uTHuJ2J0REnuf/H1TjpwtqPDTMjvjBfMsj5enOdie8YtdORkYGMjIyhO1OACh6ebSnUNpcSR0vt0EQty/zXBxiztXPfj/jp63H0OQXihkzxrtlTKlfW+a5uH3lludGo7HL57KwuwElL4/2NEqbK6nj5TYI4vZlnotDjLmaHhOG/9l6DOWHz+H4+csY+ZsBbhtb6teWeS5uX7nkuUdsd2IymTB58mQEBQVh4MCBuPvuu3Hw4EGXc959911ERkYiMDAQo0ePxuHDh4W2NWvWIDw8HDqdDvPmzYPFYunrp0BERDIQHarDf44aBKvdidlv7sAb5Udx7JwJDgc/liXPI9srdhqNBqtXr8aoUaMAAG+88QbS0tLwww8/AAA+//xzFBcXY8OGDYiOjsaxY8cwcOBAAMC+ffuQmZmJsrIyREZGIikpCYWFhVi+fLlkz4eIiKShUqnwl9m3If3dXdh3qgkrNx3Eyk0HEeDrhaFBgQgeoMHAAB8MDPDFAD9vaLzV8PPxgsZbDU3bf7294KVWwVutglqtgtNhx5EmFXbWnoefrw/UKhW81Crhv23nqVUqqACoVIAKKqhUbTG1xnV1mwoArjq++jyoALvNiss2wGS2wdeh6nT8fz+2ynU+OsxPx/ki5ZJtYefj44PRo0cDAOx2O9RqNY4fPy60v/DCC3jllVcwZswYAMCIESOEttLSUjz88MOIjY0FAOTm5mL+/PnXLOzMZjPMZrNw3P6zbCWvovEUSpsrqePlajlx+zLPxSH2XOk0aqxfMBGf/Xga/7uvHrtOXMAlix0HzhiBMz0d1Qt/O/BPd4bZTd5YumuLqOM/u6PM5Z4OReBVPdoXhVe3OZ1eWPzD5g5jdKWvCoDd4YWlu76+Uvheu29n/W12Lyzb/Y1QNLv27fhYAGC1eiH3xy0u7Z31dTpbz500pQWGwM6fW2951KrYcePGoaamBg6HA0VFRVi8eDHsdjv8/PywcuVKvPzyy/Dx8cG8efOQm5sLlUqFWbNmITExEU899RQAoKGhAcHBwbh06RL8/f07PEZ+fj4KCgo63M9VsUREnsnuAP5lBv51WYWLVsBkAy5aVTA7AOtV/2wOwOpQwQnA7mx9I3c4AQdab9udgBNX7mt3f9ttXGm/clM47uy+1pu8YqZERXE2aLzEGdujVsXu3bsXLS0t+PDDDzFkyBAAwK+//gqbzYZvvvkG+/fvh9FoxL333ouIiAjMmzcPJpPJ5Ym33TaZTJ0WdllZWcjMzBSOjUYjIiIiAHBVrBwoba6kjper5cTtyzwXh9Lmqi/idTqdcLYVgU7nlf+2HlutFnz99RZMvXsqvL29250HAM6rjtuNCedVj9G+7d9sVivKt23DlClT4OPtfVWvzsZ1jfvqNpvVhoqKCsT/Lh7e3teer/Z9249itdpQWVmJ+PjJQv/2z+V68VitVmz/djvunHwnfLx9rj8HV27bbDZs/247Jk2a9O/H6+R5tZ2747vvMCNxGjS+vtd8br2hiFWxCQkJqKio6LQtJycHOTk5wrG/vz/mz5+P0NBQ1NTUCMXZ0qVLYTAYYDAYkJGRgY0bN2LevHnQarUuk9B2W6vVdvp4Go0GGo2m0zYlr6LxNEqbK6nj5Wo5cfsyz8WhtLmSKl6rtxq+XoAuwE+0P+AG+ACDDYFu+wPOoAEiggb0+A+4A37A0EG6Hv0Bd9gfuPU3+m79AfezPzAq1NClP+COBwAaX19ZrIqVrLArKyu78UntOJ1OmEwmnDlzBtHR0QgLC+vQ3iY6Ohr79u0TjqurqzFs2LBOr9YREREReQrZbndSXV2NiooKWCwWXLx4EcuWLYPBYEBkZCQAID09HUVFRWhubsbp06fx5ptv4r777gMApKSkYP369dizZw+ampqwYsUKpKamSvl0iIiIiEQn28LOarXi2WefRVBQEG6++WZUVVVh48aNwuXIvLw8hIaGIjw8HBMnTsSDDz6ItLQ0AEBMTAyKi4sxc+ZMhIeHIyIiAtnZ2VI+HSIiIiLRyXbxRGxsLH788cdrtvv6+mL16tVYvXp1p+3p6elIT0/vdRzcBkF6SpsrqePldifi9mWei0NpcyV1vMxzcfvKLc89aruTvlRSUoKSkhLYbDYcOXIEb731Frc7ISIiIkldunQJ8+fPR2Njo/Bb9tfCwq4Tv/zyi7DdCREREZEc1NXVITw8/LrnsLDrhMPhwOnTpzF16lT885/d21V84sSJ2LVr1w3Pa9srr66u7oabDVLX51UupI5X7Md39/i9Ha83/XvSl3kuDqnzprukjpd5Lm5fOeW50+lEc3MzwsLCoFZff3mEbL9jJyW1Wo3w8HB4e3t3+0Xy8vLqVh+dTsf/4XdBd+dValLHK/bju3v83o7Xm/496cs8F4fUedNdUsfLPBe3r9zy/EYfwbaR7apYOcjIyOiTPnRjSptXqeMV+/HdPX5vx+tNf+a5fChtXqWOl3kubl+pX9+e4kexEjEajdDr9V363TciUibmOZHnk1ue84qdRDQaDfLy8q75U2ZEpHzMcyLPJ7c85xU7IiIiIg/BK3ZEREREHoKFHREREZGHYGFHRERE5CFY2BERERF5CBZ2MlZXV4cJEybAz88PNptN6nCIyE0yMzMRHx+PZ555RupQiEgEUr5/s7CTsUGDBmHLli24/fbbpQ6FiNxkz549MJlMqKyshNVqVdRPaBFR10j5/s3CTsb8/PxgMBikDoOI3GjHjh2YNm0aAGDatGn4/vvvJY6IiNxNyvdvFnZulJeXh+joaKjVaqxbt86l7dy5c7jvvvsQEBCAUaNG4ZtvvpEoSiJyl57kfGNjo7A7vV6vx4ULF/o8biLqOqW9t3tLHYAniYyMxF//+lfk5uZ2aMvIyEBYWBj+9a9/oaysDLNnz8bRo0dhNpvxyCOPuJyr1WrxxRdf9FXYRNRDPcl5g8EAo9EIoPWniHhVnkjeepLnAwcOlCDSK5zkdlOmTHGuXbtWOG5ubnb6+vo6T58+LdwXHx/vfO+997o8ntVqdXucROQe3cn53bt3O5944gmn0+l0Pvnkk84ffvihz+Mlou7ryXu7FO/f/Ci2Dxw5cgR6vR6hoaHCfbfddht++umn6/a7fPkypk2bhurqaiQmJqKyslLsUInIDa6X8xMmTIC/vz/i4+OhVqsRFxcnYaRE1FPXy3Mp37/5UWwfMJlMwndq2uh0OjQ2Nl63n5+fH77++msRIyMiMdwo51999dW+D4qI3Op6eS7l+zev2PUBrVYrfKemjdFohFarlSgiIhITc57I88k1z1nY9YHIyEg0NTWhvr5euK+6uhpjxoyRMCoiEgtznsjzyTXPWdi5kdVqxeXLl+FwOFxua7VaPPDAA8jLy0NLSwv+8Y9/YP/+/Zg5c6bUIRNRLzDniTyf4vK8T5dqeLi0tDQnAJd/W7dudTqdTufZs2ed9957r9Pf398ZGRnp3Lx5s7TBElGvMeeJPJ/S8lzldDqd0pSURERERORO/CiWiIiIyEOwsCMiIiLyECzsiIiIiDwECzsiIiIiD8HCjoiIiMhDsLAjIiIi8hAs7IiIiIg8BAs7IiIiIg/Bwo6ISGby8/Ph4+ODwYMHu23Mu+66C+vWretWn0WLFsHf3x9RUVFui4OIxMXCjohkaejQoQgICIBWq4VWq8XQoUOlDqlPPf744y4/Li6GsWPHora29prtr776Kr788ktRYyAi92JhR0SytWXLFphMJphMpk4LEKvV2vdByYA7nvcvv/wCm83W7wpmIk/Hwo6IFKO8vBxRUVHIzs5GcHAwXnzxRbS0tGDhwoUICwtDeHg4Vq5cKZx/8eJFpKSkwGAwYMKECVi2bBmmT5/uMlZ7KpVKuEp2/vx5pKSkICQkBMOHD8d7770nnHfXXXdh+fLliI2NhU6nw6OPPgqLxSK0f/zxxxg7diwGDBiAmJgYHDp0CCtWrMC8efNcHu/OO+/EZ5991qXnPnToUBQVFWHUqFGIjo4GADz11FMICwuDwWBAQkICTp48KZy/a9cujBs3DjqdDn/4wx/gcDhcxvvqq6+QmJgIAHjnnXdwyy23QKvVYsSIEdi6dWuXYiIi+WFhR0SK8vPPPyMgIABnzpzB0qVLsWTJEjQ1NeHw4cPYuXMn3n//fXz++ecAgIKCAjQ0NODkyZMoLS3FBx980OXHmTNnDiIiIlBXV4eNGzciKysL1dXVQvsnn3yCzz77DCdPnsTevXvx8ccfAwC2b9+OhQsXYtWqVWhqasInn3wCnU6H3//+99iwYQPMZjMA4MSJEzhw4ABmzJjR5Zg2bNiAyspK7Nu3DwAwefJk1NTUoL6+HuHh4XjmmWcAABaLBQ8++CCefvppNDQ0YOzYsfjuu+9cxtq0aRMSExNx8eJFLFq0CF9//TVMJhO2bNnCq3hECsbCjohk65577oHBYIDBYEBWVhYAICAgAM8//zx8fHyg0Wjw7rvvori4GFqtFmFhYXjyySfx6aefAmgtvnJzc6HT6RAVFYW0tLQuPW59fT0qKyvx4osvQqPRICoqCikpKS5X1xYsWICbb74ZBoMB9913n1D0rVmzBk8++STuvPNOqNVqREVFITQ0FEOHDsXYsWOxceNGAMC6deuQlJQEPz+/Ls/Hc889h5CQEKFPSkoK9Ho9/Pz8sHTpUnz77bcAgB07dkCj0WDBggXw8fHBwoULERoaKoxjt9vx7bff4q677gLQeqVy3759MJvNuOWWWzBs2LAux0RE8sLCjohka/PmzWhsbERjYyP+9Kc/AQBCQ0Ph5eUFADh37hxaWlowcuRIoQBctmwZzp49CwA4c+YMIiIihPHa376ekydP4uLFiwgKChLGXbVqFX799VfhnJCQEOF2QEAATCYTgNbvrg0fPrzTcVNTU4WVqaWlpUhJSenqVAAAwsPDXY5XrFiBW2+9FTqdDnFxcWhoaADQ8XmrVCqXvj/88APGjh2LgIAABAYGYu3atfjb3/6GkJAQPPTQQzh9+nS34iIi+WBhR0SKolKphNvBwcHw8/PDiRMnhALQaDQKKzlDQ0NRV1cnnN/+dmBgIC5duiQct1+BOmTIEBgMBmHMxsZGNDc3480337xhfBERETh+/HinbbNnz0ZZWRl27tyJs2fPYurUqV1/4nB97tu2bcOqVavw5ZdfoqmpCTt37hTaQkND8csvv7j0bX/c9jFsmxkzZmDLli04deoU/Pz8kJub2624iEg+WNgRkWKp1WqkpaVhyZIlaGxshMPhQE1NjVDkPPTQQ1ixYgWam5tx6NAhvP/++0LfkSNHoqGhAdu2bYPZbMYLL7wgtA0ZMgQTJ07EH//4R1y6dAk2mw179uzBgQMHbhhTeno63njjDezYsQNOpxOHDh3CmTNnAAA33XQTpkyZgvT0dCQnJwtXHnuiubkZ3t7eCAoKwsWLF1FYWCi03XHHHWhpacHbb78Nq9WKkpISIQbAdeHEr7/+ii+++AItLS3QaDQICAjoVVxEJC0WdkSkaC+//DICAwMRExODm266CXPnzsWFCxcAAHl5edDr9QgPD8ejjz6KOXPmCP30ej1ee+01JCcnY9iwYYiLi3MZ96OPPsKJEycwfPhwhISEYNGiRWhpablhPJMmTcKrr76Kxx57DDqdDrNnz4bRaBTaU1NTUVNT0+2PYa82ffp03HHHHbjlllsQExODSZMmCW2+vr74+9//jldeeQVBQUHYu3ev0N7Q0IAzZ84gJiYGAOBwOLBy5Ur85je/QUhICE6dOoXly5f3KjYiko7K6XQ6pQ6CiKgvrFmzBuvWrcOmTZski2HHjh1ITU3F0aNHr3lOYWEhXnrpJRgMhg4fqfbW2rVrsXnzZrzzzjs3PDczMxNvvfUWhg0b5rIimIjki4UdEfUbUhd2VqsVc+fOxdixY5GdnS1JDF999RWCgoIQGxsryeMTkbi8pQ6AiKg/aGhoQHh4OMaNG4dVq1ZJFkf7RRNE5Hl4xY6IiIjIQ3DxBBEREZGHYGFHRERE5CFY2BERERF5CBZ2RERERB6ChR0RERGRh2BhR0REROQhWNgREREReQgWdkREREQegoUdERERkYf4P6ugraZoUbxMAAAAAElFTkSuQmCC", "text/plain": [ "
" ] diff --git a/examples/springmass-coupled.png b/examples/springmass-coupled.png new file mode 100644 index 0000000000000000000000000000000000000000..bc898da099c18ec2c67e9163878f61ed10a8fc99 GIT binary patch literal 58410 zcmeFZXH-+)7ClN+0Tn?+kgfi;B`hqw zVk|7|m-rWfzgR8*Isj4z#}ZId!Yup zx=PR4@3rY&*VS$7W@90=b5`>A4^+~HHq5&bbSJR57f#`kkt znh(=EFM50#B{mtcVtX%fqnE~RlJDLyaHlGf3GIB`b+{3DB~XrnLTr}k<*5KMbwZ%N z39&x@YvNdjhWeSha2Ra<+LNx-D3~6M2p1Qv@-{l=Hm>(;5!|L)f%dd#MlTE~J_X*Q zz~91lE|u}lU~AU^EceJrP1;yq9*Y%tjgN)xXNH9byut>4D1jd=ESw~q-+#d?PQv~D z8v7;YP0-|lA{Leymh@9`6&LK)8iF_@kmE)jOU(Mkn9rX;#J6r-5WmXU$!Zx3BWJ$+$6EgV@^w;k;=h0U$9g~Cd7Z?oBFd?7^RH{d5)Tl?{jaAyyOzW= zEOCoWFU>gif12R;jo#dZUi^n`e!qd|`yT7f(2LXZN9upIAvPWd>dN1Yi;aJU3>y#e z`N-C`@b7D~7yI>aBNPPe>V>Iswk@~j7e&#o696JlWTz)k(7v_KNS7)5eToS#< z7RkkB6eiyR*WS%8Y`&>s85mVBAP#IDg&WR9fFDY#?E+>Y(FJ(K#m1{4k(a%J4d9N$ z1LtXLiEPhai&FIXMrt(Q5n+_*xyNGTemvf(Ug~>Pt#@Ar@NWvAjc%) zG~uvoA)4^aRym^B>&+{@A4tyZqiYU0g*=Cjq#tH?VI}nW4om&pWng7?bFx+}%8w3yI?LK<&(b_M;uU*RwI@zQK_vx?V2Xbu{i=1CQJ5apu#HRM2)bhV^QgT>^ycfv2vuqrUW6Q5`8U?MNW3snICB^^RUCZCiVTq` z=C=p0>&K_|N(-Ba9*6fPLcLr|YBW!yMNgXS7CxCoUZQi+h2*W1(xF`rck`fY_9C+c ziuX276VXK*C#q#n%R)m#?NSka5apNp<)1$`@y1h~Vjkq_%rh>xP^j0>6uOAA1eate zcFQI7yiUhj*|Z4ab^5Y)j(h&pyXUa;c)aovaA{w?N2%%dv5tRUE^XN zSw?Pn?pGNhvq8#kwcfSlq9>b8&ywT5RA!7vx&KI6IjldP)}i&-Y+$LmdGXxUM#XhW zWmVGolt0l>SIA(jDIq_@h5E)Nq_^x$qG40xD6pC2-64L+bK7i%;BBgxLEvyYv;t&vOc6UaPdIsDBFY<{P&R4A54}k+O^A(pmR}n!Ook$%wn(qVQx$b#ZNmiSxS0tJOO_o>s%9 zwtf5Gnghtmg$2Dfg!g|6N8qk)gckJ*WU#B{C)tPwohJfVJMoML5wipV72xZV*B?!w z(xR{9-Njjohn%8pQ3%cy4uJoYR<@(SSU^)fe_rC187lqF&P$RP9x+@J*4%wLBOQ zR-0bVcDJ)pFVOeNi$Qjbvb#OiK#wFH=kFcUy{a$Y@B6t_M)$o&P3K{{iEF>m)Fbn@;RbJZM6Sqn_}VpqQo_4!D3AQ0bGy?lV6phx!(X`bq6*M-LFbU zN-4T_C>wv9M<97wUPAOk%H`63ghsEGjpwdBxK-!Hr*rg;Jl0s)_@G0zwot%YHJm=) zaY$W$U~k-JgN-c47c%NJ+h{j5Y7(Vol{O5ReQJA2(KCDatpQ**1_t^9iTy+qp}AXB zqo3r_OM$_`k?w)5hVS1VudQlV$4_3{c`zl4pJP@nJ{8bg>b@(_KdB;e@cEkKU0v(MOUt&fO(sW-61<)PYvt3WSb1nH4B~bYUb5+Dw|akNvgAji0LW;b&1J` zfZ;3=hSf8K2q~d5gkz%SFL1fQm=&N0e$XH2n1nUug5eaVwf+sZ$&IRwTDxs&=8|sB zOu_!ziVqkdqsv6%vM+ifu_Nz$Ji?Dti#nL=gs<|fihB~Yy5s<>@!Gboim>sTqk6Wn zN13-e=oWfP>%K0KaBJ;X`0)Z;3t_l(1yj(vG;!z-H~miMo6u`@r~KrFKV4=W$PhRd zQ97vYsI?}$keU~2I;zl(n*GSA>hFy6$J6NAebE*5Ue=mgtzc?QYM{7}17UG*CQ}U` zu3dMW-z}w-4IxudU8+gU?X7W1s4=kJ$PjUCRIWSDt%^aN?v3YVDgR2wIUE2+C}H#! z#w6ogPsFCvcjF|kacrEd)M;nfG(&W*RE^esUrB2@s&t9a8R6IU+-1{YxfHFNwx3-+ zJ;k`=?%q38v6!Hta15_APk;O#sebh`E3j)_^!Z4zMuaR^RgS6Xq*3KYGr5jOfzG$0 z#M9O7;tXM{O0KBG^NM~Ez+*AuqH>&P+dW3y_c&eqDY9$gXno{fc*TdQnjO0b9^d=-=JyYO+OXkEWwtO{PLCSTD;?IfZn z@^-m2&@T!aI1}DsJ^}zog1{@gqxRcpo54MZH|2S>G+&QF$Tp6Fxfv2YGgnnO{;mdO?yuwQd zviYnJd8EzA<+rk{al)pU8g8wc>Ml_5N8M|fN6g1d-`4gxUMq{LE0*fO#Qk=bBDC_y{ML=Livb~eeI~JDIEo&1 zZUrMe&hnWz$x*{5qaQXtwcDRxrj$f2(S2(Jiay>RDyuE&;wM?5KK>X2ly$Gt**Uj! zbH2yVe`4{z{{A_z%@Kv|&G{a0)Imq}{Ah-tFC>BFjKOJl@^kmUk+FfpMfrIwmH=no z5k((ve_%`yS`a<@krFFNc5Vn-oE0~& zA^zb6kA7*C*B5&$qoMVxjj8>&Qt1HkI@TM!~ghpgd1^(f|N= zZ`34lyURqRXcAfGHQk>ke{28;^Ev`i0<4Rh2ew;74tx~tc?i@YC89zb#A$z2-D=`q zU?sDT&9t?97J+s~-J-5WW-s15UFgC>Jg~arQpCQZ#0rj*@(bcO)Tx@iw zBdx|mKHcBo6|=rn9aO=hwG;Ne!Up#&Yj%g`rK{Eg!0YB88quyoCMg#fVs&3L`be#2w$Wy}!*+FFWhEdZ}gUZ&VXDssNye zQZ&KL(V0ol3-DQ3o`wAf3}Gy!qsaIxVKjaWq|i|m^Xru}oOtefXI_8yQbH2AcAJ-O z9Oro%`sc-?*DzsyoQRc6cOCA|ImL}^#8*<9nF9hB8qaE-z-Pgq^%cmjjxTM0?-E2d%d+z8dXyXi`np8 z&N2>d&4r#=)jiLa2OYJ?Ys|{$9QwCQ{M&(;?s8`ci9l#IO0sjbh0X5_nW`J@wu1Ba zPJftETTBlcp+^j?fggC+sVzWW5?hUIJPVQ0De1vMki;V?PuiU#5gO>$j?O)RvqmIN z00ibu67OutyK~n0Z~s4cT-e>25Nhkfb|$YJGL@q*FIlFnJt4*Om&>x_ci+l$_HR2O zdX*%0%lPP+Js*nEJQ~}%G4cxt|0@nLkqqpm?lxYGvuVY8YLKU9bs^6QNyClIyQ=D1 z*($3>5Hi+8#of}nP7Tgi^U-!upfy{rGp_xg7Xd;{jS7d;R60qfpq-8HNtqhs?G99! zcACiX^KkQaphQe3pN?$XN=P#z9CC!NowTTD!T8+Xkec zQze$d-bAe^ZEwkBOfEXxvK^^7hE0_B@wOLzx$?I-2lgl8H34MH|MO)Pkb`+Kli5qh z<_NBW`^>wpP_p!F6eDA&oBkwt(9o3ka9qJkdm>k$1HAXQqyRiw^bHsZd7PXB;baFW zn^oZxRM_$c`*23TynqHJ{3k7MV0@*7WEx}FsiY0 z>2pwYG>8#9daUBg9Z*P;*4MC_#8y6Z>Rk4Rg9ETR}vXn-xlW;R0hjMZG+T| zNxp$SiavkO?h$0CNvoq?kzq%Sd@S;;2KkM`2{G9CR{;FGJOG!skgl(r=k}0$`*C@Y zGuP1Pb=txQgg%`y2dE>iNf?o8fb?3iU|)$|Gdr)D|9uVJLcACofj}cQj#+7j=d&Lv z7KK9rL$2VQ-yZZ}7{@11C5?qQ=}#klH@E)M9>HwYlwycO(D)K*Y~+P)Y|L{E@}*!92s6 zHAlvXy4#&Aj?Ixro);piDqk_`L~!qDU;TD9*CIYY}n0Wv6(n>H;a$#xCyrTrg!9(J2sO7gZg2qx1J zMy3;w{E7T$&aui%2KyU)&0ykhmzOhOcA2w5j(KdYbkLK0ojZ#d2Jzd)U<3r4kGI~s{CEp&HuozWCR3yhQ}{jJF^FSY zR_e2~M<5^0r58s}?Q^O>W^pyRc?>>IiLG@gB|KPW+vh06UX=GW-u|; zZ+s!$`AiPjq+W%X!q%u`FzZI9$46G}`E0n0T;E;RfzN_CQS7@S9OFJkYbo;MZZjg* zCLFilR)lKg-?GLriFX9M?!tA}^oMv_sg=FlW_{-C(EDg@R41E`I+5qPeQdxnKuBH! zqTCeqZ-RVgih8-*z}>0#73~1Q(5U?*BMP9r?m~${s_XYICCm)mZKB%WwRIwn?#5eq zZqz^LUGRz(tdM3J5kkfqx#E1YVwrRg$ znt-$iVFZg$&W%zB;p8MkC@BSBd*q`;Hivs6FL8w}^L+umU3Qu_CQ7gHL zgWX7aO@&;iu|2jQV+&=9!2mmYGp=l4s{CQf3!p|^luD|-p^Xa}DZwfJlw4ZjgH-;$ zy`WM)@u&&hfcWa5>0LV}eQ%(HGqKZi{x+unst5%_Q}oz(dy*69IjwACNoYTHbl({uZI(CDLEru34y{%;DLCOkvO8 zJw8O3)Rw-~@zM_;k?f(aD7t230I+&k1F3&hqei&vhcVe%ciF2N7T_qoz~%=ezlCyUW`>0Qt<(ENJY70@^F5AD!1h`EcR5byd)~)TKYe z!8a7Ej`Z4`BEr5WA&s@9n~9@xv$9arsHk-RyISj!nz6-2^KA!Js&`uEVLp8EUjI1FP(WsSa*Gvb`rv4|s%Iaxch&D7*|m!abN2~RDK~`tA$rubB4jxRrdAs>JEyI9eRs2R3&=)9T1TR7veVlegZ#1dgI|$)L){bc5xvv7s#0m*s9|5gUe2tFL*0<*Q4AE1wI?k~_ zp*eRrW?$|>Ee#aL?6v39ctaw@nPWkfkRttYBt*r$2hMlMx1L=rLuh2aJy@1eXCy-g z(1B|}bu+4GWg-hdq|mb}!~dyvtw|7c)p=#J4}ndGqq>{duuj6xb<6Ghuohw%d-N(c z3{yJ=Ix*Q<=wQaX+qP=EQwLR8eFVy5rE@_ak9QCLsV8v%JolHkEHCD#Kv~sy$rH>` zRPU_Wf)I+V$dgAq6OwTA`7*npd7AC7Gl-tJ06>+^pTg7Z>%W&PZ5D=YZdLGv?Lsbb z)s4WZb&<7tm6|oW+p8p+tt#A|*?Ve1_vP?{U6*8I2Ry%rN_EtE%;0t>`m6#4rS@g; z#sOMIpj<(;BS0@RXZ;TwZ zD|#vA)-1#n_KF;bKgh9(0!rNo*SnoF`R*4esfUmNi!Es^v880A0THb}3EvZx?{%5; zh!_Yi4=o8Ux8mJm=U38_)-}$k=Chy4)@;_>Eh`lFV+e|85PAfWGFOd%eY+Gal~?U!VF&4Qut!Wbn_nA82m{UV4t48o_^V=_=-9u}y9oYXL>sL{7vg1Q{gg z%1r^A@iKD=51t0_Y)L?nzo#$ChkqTqSy(7vl-@_?IG$dZ=39O>lgFCKE613sY^(yB z4YB(Ru}yy`reXP>jGV`oz4b*NV@|Gcg5@eH~{2O&F(#!o`$ zPZpg-23rsxV|>x9!kfA#MncuFX7yhCg1xpC5+t%N_%#9-Ap;w;qvgLZP$;DyJ! zna75yKUuNjRL<($R#&u(7#^D7yK-mJ(T7z@r>rlX(To>0HMN$gTnK2Q7bWWP5FcVS zpGAsA%nfx!BO&H_p0$^qEsAC4@@!+U3vcfGIOOsB#06uzP=BxwjM!sNpmt|D%Ysln z22p!Yn^!0GvmwaIytiv;nZ;}Os8eV_=P>Jl(?gRk09*=e8W!LreRt~bys$VxVikX4 z=YH@DSxm96lGU6ci{*bKi~rUc%55gis=&BM=kP$(J z@aCP#9?j7%fSyrMW1}ORD0-eex>NF?QmXudo|UTH0&}2{4BUMRNAPC%)=yZdO1Y33pE1(mGf3onX{tgu&~M2zzFAi)M|i6?^@^-i$`Jk#5$g#WZ7 zKeizVXJP&6RX( zKs)3X!?1Duwi^i$@l2u%iODqtjggS}(`A*1VN&1>-bvaf zC$~C2EB@{l{b21ygz@f_f6t55$sWoqUAbxSy^mnfp zt2?ADXyIm$M{|_MW5~vHhmw`-wM*K|Y*o`hO81n*eBXOi8HoWkp8_AKVvN&{WajpZ z1>!bmHD4k?GViU6(e9%_Zbja4T+N25r{#xjeUF!Ohj=N0D5prokm=TqRFfJ4pyz*+ zB9E>`zCsSFy>smj4MiSvlXIe%o51W_(jogB6SuiF@w_}5F3fY-xOTpZ|0(HJ zdg94{K-YH-`ZJ{vpt(d|x{`0}iAkTIN>}79RygKS^OC#$*uHZK+$|Ko5BUnNSbx4U z0v|J-ffz2*)_yG?ZNfyxT|n%(5zfMwCWa(3md|{(FQy_iUT~@r(`xx8Gr3GM|6<|w zGCy-m&+Uk{xpiGYU~RGF!-rv}k}BqU9`mxp-JCVXMWz!%S+T4Pwi zK!3iZuNGOo@y$TcG|2G2d$~aFL`fg~pc^4< zouN&jqy4?l_B|ga1J)D#LJ_89C3ch+%Xn#0sjX?|Byhxh7^iu2CCA1vg~&qYC3~0Q zQh#gp7npwH^=MJ3*Qm!%H?vvLExh!E`t(?9!QC)!Ts%HI9ERAyS2j~^P|2dLpWAc^ zCUYhB-Nb4P*z=jJr6DCZBXQl8wR}LxY^G~`1H>g=ZAbl+VH0DjVFp2CH*}EmoZDGX zR0m`+k%NbgNc>qZ2kW@heU2VzvI#70ieg_|HjeIX?-B7XC((kxb`eoQHw^#8Q|H+v znh7VeO43cEndPxR83Z(wy_A#jg|`A!x+v&H%j-+ckiCCxzV3_F$ zp~H5?DSDG4U`o#NgX^aof68#Z0zdl-fyo9dVq#I$RtRS1rc!(%AtKC8M8h7E20ywd z4QiI@ww&YM8E;|Q9&LLkffW{&U{AO)md6(~d|;AijLBNwcV6fa>fmyEmn+V=ei(X` zV=UjdY?&Wx6E@{tHTt_68$;k48u7uH#&it`M`8yzlG0u6f`p?=7%VPeZ z4mT-Hh;4~0pq4-kQ4k=wzI>2Q{Zi6PF(m5bTde=52>EOK1#uEW0HuS4 z{c}*|_3=vXrZ7z!_d+VOTpHI(c+iP~YICmf!<9mX!%ifB!Hk3yrk>>E$@M91`ncuP z@01Tvmt0@Ai+_k)1PJvL-C`v1s4;$AL&QaQno80g$5&2&W|;E|opo3DU1mlui=kQW zQL+p2Ny#=}7C0Wj9+4Yvl;bOTEppJN#>GwB2!>&iqGVuaaPM+6zfoskRncI}6jG|G zAgJ%@Z}(SK_xp6`;VDvST&uLSmhvD=-w1_f@(KsV;m4ERE>~l_(2#@F(3|BkL*g5i zIGW!ld{E+JRQ;e6g5ZJ-BA15o!)F=tEk_FhPH~zoU|SoJhM61tmyL99UU%7qU8?jF zt=&K!o80!9E&nd(YSFUH9Pesby!2e)Rq4tl6@d+-C{YGrO%+rRd7g|)XR{)Sm z0Eg-j(qVsURA$3Rex6Y-<`*APf*0w;U(dCi=G%=GmvpBQ10)ZME=KPEZky_M|H3ks z=UAq!<{pE+rlQ?^D%y%JE6=EEb}9nb;>7q3x8{zt9yT_94(YkZ!SqO7=&04ZZ+S}l zTJ@R6QS>ao>a&0^v{*`mv0de&)5YuAirT=3;e<}Xl0BH$e_3QS$r{QS*OP?@cyQZ`Ga%Zk9 zhzgOtP)RABn?O|+0)fN}Vuqh^Z_m7ml(d_aj=l22B7h9S@=6*O+!srWQrS~#(qMIn?#&cM)qC4;9?MGoadN(6dz^zO&it8 ztKC!kqn#L3apM=NaBY^{xCy@zu$Op2|6&GCZN;rN0fvzky$$A3LjAmjbh1tFN{W`h z;QQzGc1pc4qg2gu<5JMKZ9YX0grZe#l7wsSp^@PDfh#L@yVXKp==I~f397AIZ%v*u z0~!nw1|1A>=WZ8VLR=jokh$D{AlfLr_AqOiq$#K-F+j@tXVx-P#nxk(M!{e1DU2;E z7ZJ-!vl~8WH+rK`2!y=#)NirEyi)?{5NBq+X8X9ph-i(7hS?FL8ne&?%|*Pl%c?iy z+zv)Z)-4 zH*5G397F5Pw+9NThmQJ%?Z>E_vf6lPC4T9*i*BX_!UK` zKD^ZKRV#>>+3u^{&~+N~zyaB+<^Ecpx7Yw*{oNiq-^ADT4~g?9kjg4+paR95zHFQ* zXGrYcpOv{cBWBDbue8n6%7HFtQkDjT1z;rCbT4y<6i}M72=c-f#aHyGLMMp~<9$w6 zv>%&I5Zc=)mt3qm8XPKy!~WtpL^vI;r=;J)@mSMxf?UW(&8hhgZN~;ROM_>#ay2b3 z=I99x@6P6wZSCJ0l*jZ6o@06iTNdK!ArUtUl}40eFPQ~3ncsxvDX`tvFF8$Ve$0X4 z^EYRw!a~df92EPCIwhw zAHIA{kNrS2e=7SfBn7UOjRf<$ds%o!P9IT}hPrzhhBDst{legPJMIu`v>Ou@#4s0@ z>Sv!UKp+?M5JaEy2RAIZPN}(a%9{!SQ%cYlI_F!nJYqq{$;#l;uRZ%W8I4xJNf?I^ zt+>lu5?BpJjIgeh)G${F4z=2io3FZCf{Qe%rWYNH_-f!OfIU;SHJ-U zYq5Ri9G1LLI%bi$(Kty-HnNoG$y@k5uY__Hspa(#t^Ukw>WfM8pAISy-za=&%WM*K zqS~IlI+*YYf#jG5^-@52jgP2qTBihggi9))HBjRmCpy&5`7Il-U_FH4r^`IM+2Tf(2hy`uId zU^i#l<~lMrSUqIq*W~#hibcAQSbB9XzpE2fO!)mt(=Z>qnS`?%xWL2{jA8Uo#zg}k zdk$irjM%hxKEGpt*MDW^UxYpi0!fU8VEI)~&To`bHXW%%A#lb$TUt(ZbN$b!M1On9 z*(Q48-y;VtXFCi&V}?t4QC@ziG_-v#{AYcQvsi{ZQmx0rYjgNpI%-DUQB>Ypu|OPM z`2ZAO5uE!z8DQdUiG~bQn>YDsV3RsQvhGrw*rRUxlp3O>rfSS#fYLLw zestQsB!cT0;Iz#}cOaGl8*?LZ`T13<^}xLc?oqr@aDUUI4AKI(@2bD@Ky=RoERZ)o zCV7}E7t@ekbc9sf(aP(<%zIyn0|s+=XDsQ=?L{Qj#yN1vylCIZ>khptYe}Cp=hRcr zXHBPq$%?Sv&q4m!2T!wWRTlq{xTS!@rkcw>tmQoUDnZEP>c67S_#Q0Qy3)*7d$g-I zXWXXF(^zNbVyz&c%*gMq)ASlqfn=_JC0%o}B*<9~ZGqH`xk0<_C!bx^yUV=)4rmM% ze-m~f;HswWkK`UjIy!RL`|d# zqy3LZKc%Y?e=>3~EW4w%2A+S%U&3$umEz<00HETMe7RLn8zKUlyvtunFlZN816?xW za#yDZZMY4)g*0IqV6>V@Wkq2}%S#;pO1ipN@lfj< zs9cPQZjqntPK@WZ6FVIaJuZV%eR(ne1sHm!&PStgZv}|IUwqu*9;5#*%WihYt^3WRv!o}ps$oj@`#NZM7cE-p#H4_P(Fd)CkAIy;q&_m8%=2t7SGwp4O81$&dRCMe_Syuj~W0!Q1;c zM)$3e7L7ar;7P!f6w)R8Lh_DBQ_`$O>*}U8Og0?=168krpWCFumse|PjH)~h{M*lG zr~eg)7|W)^UeD)-PJwMZi1dBHWaZTZW5s!{xyw_QRJ^V=!6|Mc<|88RCC}C^QcS!i z`H}!eki!ond6t6HWsq|b@?JrH#(c@MGUPfT=7+$bo{(ZJ?CX+zx|pTvs=G#~zvcL9;*2I+_TaJR6# z%xD*)iFUo%y#-D76s!4mU`8SAz8bz}{9a4iEguZydIacp&oqCJC@ht$7tA}3r#7bb zFvYEOH-sQ9=fIEmox5dk|78+Sjt*8j@*U2(Jb2qEYxp`?wMqq!NT?kW>9p~@GX6dJ zs-mq%6fs-jw@?YX>e(d8|!kkz2*R7C5vOWf4*b!88(PfR0t# zk1H=bFJx1XQOnuB_dDYd@sv@F+b3o8| zSN|`->Lw0mGT{5Dm8nvPLyG*(T>_@OXGE*g1(jpC(Gt|g28-9Xr8D+~;#Rh$C#&mIs0gCE@XDF4~;j%*p7JN}`lJW+0 zCnDy4CUVJ&q|NN#0{^V{U#2qUaACxS;hjSsLzF^Q2u$N&a-ke_Y9}#Y7XWhy6)ph7#s8sIG zp^j}cS=ul9{r9Yz*<>F`!o)f+GlH-(|OIv8+gn14f(8$r zEBg2|wO!lob?DYJ@~EAj$GyGiOQI*UZ+GfadZy>01&7e}YP*l|XiQgv;B@I%Gh2=q z+bFL?+P(y|9+9%}MM-zRrIGWb6hw<-bGSJ42y0nFnA?T^0c zH0Nng=TXo7Nh%)MDEqg?hV8o>-diDZ2HCP3RZ|s#2m4Pft~2H?l$S7JIJ!X(+U7x)t+OyY`7~ z(9uF8+f$9e8Wgk87Qwpc*WD0zeTQEK^P+UUol07k%x}EplASH%;F16@6;hFJ{j@Md zTNW03Stq;g^IYmpOtHKG$hGg29By|c7ZIq*8;b){OGul7Wk+8Q9A#9x9CeS0>~Rah z=gupL+trAswHStfbpU-6>nBSqrRQOnXesP@fPpzg8HakIp_~riLsaL{0heY`9auFh zXXRw6ZWU(aD%0&1YgM*Y34R@<+K+CyL`!XO|I-TH+*90hMxo1!Z-`@Y{M?MeZ+8N` z11iaG_eOqS)Dy@7<|2&C1$<+R`L?610!bN)E3+__iJto#wnf8&t%gL&yZ*q(!-=a& z1kYnf$BR$;muEE@CLa${WJEb3(>x9Eaet?^S>{(JWZ}jAS!Jn7VabX%b-@EVZ1HZL zrQ>gtB9c{s-;465PlD({y|#DIwQtmVL}5w1Ur)j+P+p5qe;;a{!DDycy#aCut&*}8 zXV=fi52br{+k^Iv$1~ek9I2622};?_IlrVAr+kbIDyjPgcjTX7OVY3mS3Tnnx^h^7 zvaE4pTm{jPD^kL{X8yawYK#TD;Q$QAYJ+n%M;)KBJeR*~YNR8IzLBc*bD6T5)^Peg z8Cy$_j;eoJ_ghq_>Wz4bDoYJj|4G-y__c*xx8TW*6K4BUEpOXjO@wIH|JMQzFzDXr z{fJM*fl!^rGV7~%am#196pp=@ss;{kp=}UrJ=nxg$XjN+0@nEh3N#kJkp1o{MK%4LA(R5b6tRI@KL+Ol;@988kdCk+E2e zceYM%BU4%vi0Oft?Ju1;j~Yd_7{*#HGx(9_Y?>#INAKjlQ5#POQU|6)-4dJmbi6UW zd%U%vVabD=YrdfUW_zNQZaOva;Ihk;x69pn5xEP@&($QyuV+4#+_PYjN-yhh2U;u<~@OX?Ot^3kxhoz1eAVrE(SFI^}Iw&+uRyid0qI^o^@>iUb1 z_Fb|%f^p2f>X`H#eFvxFiFDIGAtdbjTS&;xWZf#N_6=CWVYw!-R4w&z{0+Egx>P+3 zs?jGSzM4BEuy<6}E59*oe%Y@31bCcfnh@YjI~GpUQ?Y5|&W+ZlEz-^$&~YVglcHt- zr`)&qlJj{Cknqpw`||7G%S3#w2BYZcQmyZp1W%0m6&9R9LCm=dj*b>W6(04g8joLm zfs}U)1*=3TN9jDw9!3|vC+9DTVVf-pqWKkJOe7zY9wbATOYVqgX;F%sB$FvH?WICD z+;jTtIATg#Rkid%MNxsXnZMo=YDmx*9xL+Z)rV7?1TC7evjxa@tl3PM`tJe z0Je1jdpriYj6ckv|Ea0CEF|hIK_+fWn-X^?02s@t9>% z_e5O{VYV~%p#^Qk)Zu)cZo`{}=B=7q!J(0zh3=i)DH}ltG~%Y53u?RfaCrXYIG)t% z7tCoO{Vk12{6CS#qDdPvVPu&Fsr?yS&vzG?uo%j_JC1II#XG7A%0LB%Y$y7T%xB6@ zJ+O*WErswRIkh0x74wl-?Vh+58=+1PsSK@|fSEXYZhV~U;SO{fdR(9lGKYt?VD)z6 zYG5~Z7K1kOKnkQsYcJ6Q9)Cg(aI!o$FNrnj*dq~?@n99XLLk1VadI|_e>J)6$F6q_2B<9*hPR@ zSPj8F0ym&8clI##i0Yzub6@r2U3ajqTuQICmwxMZ@Y$~sjZO7=F;rAQnz(AKg{pNI z+IH&9c}?U%S4UiSXZlssRnJq^k(2H5cI~_94<~ChYBkTMi(Q(a!E;)QA;&%kri-mV$L`Mtfd|2|9`Rckj6>IUZur7yM_mITUQEbx2+{X2&mRHC5Al<6o zk!ZU5d2YO4v2{cMphg;zrG?mDt{uw=B~fviH~lW~jD8)qYTyet8fB)#Gm(l%7n`O& zvL!C`PEV+s?UJTGL}N~g0QhEjMSFV^;)N=ev8djOssr!rMQT=*RK!;S=O={Gg3!9! zsjYv79oc_Q73F-%wz^(w_({Q0M|oN<6j8O%N?DaqzF{?YXu~%o0<>A{b@2~mXBp^~ zUCb|h7QEr{evb)X!`yKXuG|>0HlFVFpv^Q7_XoEPwRZ)cB;WxUWNoR2598_<&^>+MOk>rKFkM~$Bxel@_mS#m$}4jJ$5x*EPpKD3t;h3;%H$4C<^ zx7+V}SDKxyoh*(X?vo<=MVre?MFAV1fjbA17qyUK&FK8J?}KQY?a965z%EEJ5R|O3olxdhQj>^0jpDH?)8IDoXnnyuar*Q$rF@TYiVEVcmCu z0`-;FN}gNeS;M-gc~@Hq)9-@+nd!rwZXx$eLqZy9sjd6KS@o)1mJ3;4Z(ihnh_TWC zIF+)yDRC`iOHthX4wOLu=*Lzo&yJ$xhwYt2Rm`#VLg0iz?PB8M*m{@!NBZ=g;kl5S z9YqJ!T0!P7ke(j%T1k00ra0@JIWX}YrlHo1c5Yz(IIqx?gH7p7mt#M~5}wtpJe`0F zX5_gU+sE9_TG)Po3Q?*pYKe6%8aNP3|N;CmuJ@l&gU5%9ge(O5*CUP&7c1nxZ@h^nP+F=3POS6pWI%h64r+|8;n5j9 z{m{b2Y1#lmOliF;KJ&mNu3@8@3g_fvw6a;Iom!21D`s?x*DYC#dDsglOC(EW$DlWe z*Ef*Yl&uaFw%D>==G|3>z{s9};C&fFsn}6qb6;%jMcoHh90p(}37DL!y_jBhh)-GH z>W{*orEKsj`jFLZ8n%Y338*sq%9~Pvb?0z4UmT#<3+ps1Z9hmmy)XqIkSP6?}_a z?q^Wps`TsW0RFqDOYx8ILt>RLb3b&PWRtSGtQd;hDJE@6?aFB(z4q6Ms&fIB_eb`x zkt$Vs)|-qU{_p?aiP}ZOz;H+xOsHEwIYW3g!0ts2MH{qzMxW~@9qIMaVmpnrT zpT7A3ev}5)_+XAJEza7U=cF@dvyu1lUV8trzKdsPl8h+Ya^O&QP-)4N$KwIiQzx1V zDPIPadSNmC5aopU%~&on0*qxF3<$b(pR6Lv2i3#0Io31Tip*o}^m@$(6myrA?LoQU z`u;E4-a0DEHe44+2`QyRMN*Is5fDL!5CIYCp&3FNMCl$nL;;nQ6r{UBVvtmZ?vkNX znjwaX^P=Ck_x`Q5_wSsw&N~0GU@>dn=Y5|0x$o<~uIs*cP&c!4DV`1bP6gyRSIbFt z)F@Aga_{uun9tNIwv1P3*3>93czjl#W){8rcpFATzAMj2^0)U;@r77<=mX_f*zF#g z(7HJncs3p0xtHmMajksO0gF=Hj778n`rx-1Dwad}CnQ++t@_S62EFs<`-cxyQn9?s z)1=iNm&B$H+0%a_04_CB*nVvxj=-$E_9? zt-Zf7=sKPlQMCDRbZ%zZ!v%gXWe%uQ1piB&67=8IDY_y0*~vP;8SjM(iq?ehPb3$K zDS`9m$HNc*!!w~Y#=0&PygNg$Obh`VYhFL2-EUFBe|pm$`h7t=`vcv!BOpEo`S z)}*wk!G%hh2gF8N6yCq_vC}h|kq8$y`^WNt(ex@xyzSDZjp`$iK}(hRL=&W&%Bf&g zlLVc>Pjhh?`0k#&kdI^KBm}{=fpxdiA$7nIlm;BZae!O{NeBL{QCy(o!(yOg1d@9W zEk|7XLX^P}=Wq~=N^AMw?K=9R4Lg7M|5MK#ZRVcT7F^Q2eqD1o)w-k?%l!}aj1AlW zT+f6jxBWVK!4oClSY-$JRUwt|FG%F6zutXNs$ZGixWuWN*nmUxD(6D?q)Jw@7~tDh z+kpMu-eD4VVk~JM6eOn_{IS*ljW--(5q~ku5y89boDD{t_u~M&xLZ9SaQG^E`TTSM zVN6W-?3yfT&0F)&P83-F?+i)a?3lV;O}_%X`>h)<4W! zWbXc32-$uAlCN9vv zyJ0fC8(1z|WGV>a2nF;5XAfuG&LBmcOdAJB{wdoS@!e^%x3ajUK zEiEEd->IbYA=RQVL&CvM_Bz56*VJ-&v6;Hf4Ta;zKg*nc|AYI92FY@4)aWT2_yZcz z)l(SGf08qgb(}u*mR!k>b8s@61-QWlfr8oPg}XQwIZHCm^=7lOhnX){dTuB4C|`XR zCJw;2*Col${X8vS(XTwf)RDfE$W)0tg#E`BHEgXl}w@Jy>yVCaxJEM9{I!E zWM_OkGg#-X{*J@uH|!gNO1}vGflcA5f3{8Dhrp_dA8MT9)1A6CMK>Mqo$IdIp-=&SupA7l|bsQ_FT(OBut!_E%-C@;ia1!fF>{0jGq|%8`YvB;4e%j|9 zYvR$Wh7j=aQ^7}K}c#ryS_u!R>eEIi?g#tH2@DXj?A%RPnRypg} z0Fq}WvA=&p-?7qO)dZdn`dEBwRYdRi;B*HAro(lpz<_v#{jZ?AQG_fQ>&0G%)Ef0h@@#-7x-np|rCt5y?@5;H@YYDLG5?W#q*t11iFi#;Jea0&P9UWJ1AxoIqA z5&t#^v0d1x*rf3?v`1#Y4d1HkaMcPh8*{yw+n|z7n5P5VkNTDzue-Xr)kq%?DOfe0 zJJ`05q&dL(VKD0VQbk zyz1A(XrN`~w_BabR}3yav~(J{nDbuU1YFoiZp=zJ>9EETxa8`TDffEpAUz8Ris#wo zR7kLoPv^8RG5EcKq#yN8tDp>4P7!77G@?nKzvm}bdcyQbmE5T6rHVJuLuuiIup{cU zTQajIPV|@xkENis>JMN8P(U{M;ieT4%>q_B1lnMHiy%Dy^62FGoW`tIz30sh--z;% zsv`g+l`Tt6omyaPjl1k2!XH0fbROO~@7yDp|4syS2Dz_5BNCq;dyRF=FlSBB^VMiA ze7t&Rk?CT-tweL~Oo@1sI3^1$>@a6d)PIT6uvP>RWVmj)_RgyN_<94*dkC>1(G&l0 z7Tj+e5ML&CEZ<*u;?n%D`{`*Ft{Dr$ocSU!rjpxz)xE)lWW93N?u<K49OU{YS=PbYYv2%l>p#n`7## zG3P6a@hQ{_-)zsX@8aWg@24*#A|NLAVLKhoIC;Rbc z`yOEL+j@TuaJY4LJl9~^+IMVY;$59I8Zn??$f;Ba;K ze4vmZyN6OY0QY0hzY8KGUr<-aI#x2YMHPAr>YJv{M>LD&Ayy%8f*Le07kP$F_0sW) zC4gQ`ZD$_AL3*~xvI@h-`)K6DoUI+kA*p7al}x^x!*ug`^VH+XWuSvYR{y@|Hl}O; z8gsJXZyWB*b9Q_UZgqLixbKXEWEv@RTLgcI&Ntj&t>Jj}vXtWv75sBiAyMQzeQ&3= zHr>Xz9b3*$wNl;IK-ED0F0g!v^q^PFjwVC;$zxkF)yYc2;vR>l$M3Rp#>>_sjR{?J zR&UEEj$7QS1ym@&e}uNZhqYARv;lfkLa77OV=OnNSK<_Up^pz>-?(1`*sr)as#^?m z-*vZfJ+Vgf&>h}i|3JKGV_1=t07YdB)_)Haf%&JE3N1P&xh?H>(sIu|0IOy#%8$tt zB^9?saW0KMn@DvzRV>dBWSOv0r8I%$b>VKPIkDj{>@U7ft+-FPl zz;7PLz-2xg)m^ zVg@jK)jXMT5Q5D;)!6cWsUhSu$S!9aF`>Gw9rtk$bAF@LRIZ4VTZM84KnPtM%9Q9? z3ixV#^ppk4`8rpCRsojB*1ddaD`4gI`P<#2OH69bhAz9mr+gt7dVz0eAzqe*YObaF@SvY z{b+Py@8YPG&JGl$t)wRDuP&Jnc*K1N3)+-Q4|?Km=HB#VKJv&4d@u};uAf$ujag*+ zuxpXv=<~ZoQ834D`!5Xvki!{Lxd8h_BE$rWL1L>;X%IdZlgozZ1N=AVfo?l?pv1T( zVPL1zAv1sPQ~&QCw%6YY8EE~jwa=l5le$9*=#fNgy9#1#GT^QT(+pp{kKV&tmYc@* z!HJy{l~@6}!u8avu3e-H99xRJcNKCxI#YBSX>&{N!F8^R6k0G6J<$ z-`fK^sXQFZml;QJj9*}RO#pan3zH{1z5QWIYOlF^BX|2~-4j%{jurS~GmU?cQF3?k zER{8v&afqxEC#3);*a%r0HgRti!^MrL-RbO=H4Ud`SveY>dqSZ;&SK(+IKC<>$H9k zHQSu_+bhc6KlP1f74>*$7g<=d=cpJSUW8C5xfbYVJY3dbYVx~NuJ%% zdIlQ?rF}2EteTG}7yu*Q5rfE#fg9JvreA*c?0TF;o+`OZ8Dqvy=K-9%~WmU~U-LXe1bkjcJ6G5&OS0n&tV;VA1v$4`Ar1o2rydtIh zBg^lozxt?7l2#uKK!Ot=+s~Y$CSPNL=8AMR$!loFGze05-`aeWNN63QMZydF~%t;^-PZ!vd(u+jEH~vvak=_Qz|piv{8v z*TO!p{zlmEttG2^kfcZ6ZQ!W1e__cdD2os zGWvJhLR4D8pTUtxx|-j2%#1$6EP&{&#&;7b@ZKM@gX*#yNRwR6;5^-k=c!J{J6$(G zcdU=FRZvk5^;)z@=w_yS&QIfBjUmdnFQ$nF-)jf9mD~el64JBVhPp|zbdGH2kndwo-Pg>X08@jx99&V68S?so5&3OxOHL~e2wX~EP|o2{!>xQ>3q}gla*iH z&*uYrCV-SqDle0WII^uhj7+ta)-Pa??AJKVqU#w{J>HZEaq%My#i=ZY^#?0&{?hUp zj5p1jcMeM+;CU=xeBap=D)$_V(%U#7C|un{oT8lqF1jFC|8)tuSKj^y{t!7h*p}zb zP)-4Llyl=MJxEWyIu>}&=~L15xBr-gj4HM z$qlSPSAqb$l=?ZZ<@YrD8_FdFe=1bxc@ox;OJ~CN?B}DtyPCN$LwjGkpAQ1->(KJ! zpWT}q&44pbN?b$3^>{5e$^A6(WQ#wF{DP$dTCOrIRaa%}jmq%d*|flAAJI2v9W<|l zgqo)7iP2|0AVE~$7`xnd2n#9;qq~M8CoF%@`bpkx|kiN`j{J=);>F+ z2Q>juh8RhzwTUC3`Fh-b2Em~wt=!zkSa7P{hF=nL^(a5#fc_?ZaAFG@qX$$rjJUFM zU$E`tx~|)3H3RaPD$m)W^4IT)3BuY+j)_dR5GFFiZsC1Ss{Q< z+ZQ#LnV%?>^Dq5ODrn8yk%zUW~< zH(WkCPY<)FoR-ZtD!V67)NDjZry#UGBn~_FcS=*8skSdN}f{Qm$NSe zN{z!k>KZPum%@Z!{8luuKC!w+L-x_CmIRzMF*++C1c3luOHZ+Yd@ZJjrgH@rRyyPY zmBQ7jpOV(Tl6x-HsrP|(QjmJxM=z)LBBE5VGWNa*kaPcIa`y+?M{+C(g`I}!zuzA- zjLN-Hs6m}sbDB+O^yTR}DZg|5`}(e&FuSe2;kV!WMGf5YdX!OZWh;U=M&NkQDD7@>3kHVJF_W?f3u?o~ii zqi5=5PO@g|yCb&dLoZ}H$LV7i28ID8N$i9EKUo0-?5ykXV^Z_iV_yW=QrYS$&5$LO zw?*h_=EfZ`kMd8wYz+{u?%{Zop)g@(9nc#1hL{|qPx8U&jV0B>Awt%Ao0z<=I#vl! z(^LDdHFUp3IqbCS(CJNy-d96YLb1nH$|=7H8bE`)nYeB*qz?hwz1-hP@>p_^N62T9 z3~mF=ov3}(@6Zp~BaFw9;T9-*0UM~z>)W_O^-=`dVG{=aWd4VWaO<*DtC029(@e#K zv=IPvk!@W(<+IOBZt|t+a?^XDCX%wsY z2Jre@?E-Z9xGtagC}Rg+A>U0^)r%JTU0gOpg8D4v_ooBsIoxz@FYKrH2u}Ni;bK^c zCB1)n_tKvr$pOf`@*r5D%A?E@97_t$*$0hdp<$K*^yP`53Wx@Gbwt|^tf{3@zs1ex zWv3e|gI$gf4#eDb1XEJa4rW(!5p?)3os`nHHMmS$UpDn;-Q1LEW%gdDU2^qT>u) zB3V16IIjmaNe4dpk@dtPA>e4R@-$@gO|J+Ruvp_g|M7*TA|>JS74))PJoO!hTx{vV z3-dE>;VNF)6bijP?*WDaT`F{rJTax4ofqe@Qx@DXW)MgU#Tt{|U|<)&T;{VC9gcx` z*$SRNi1Bnw$Nib0VR8gwX2$s*()aoT2&z za2r2d1Nm2jh+KXS3h|)e$6xDVE$CiTR%y-QUj8Tp6Kqm4Zhe5y89F=LTW%z;342p> z{~4~G6DQGfu7*V-lXRf{FfLqdFJjI10^;*CxBt9+7?;E1F5(dT_+)<@((u~6@mTAq z{s?rw@@euR6y}ia371GctsT^$7)})675etPue#f;e&{sr=z2Z|Qu3`mMW!01TZt<3q@E?vRk!no?c= zl{FE-va$2$ek-)QvZY>N4{HMBN4lcj7&2^(;KOrQ%SP-Nr9*RZH^ z+zjEFMC<1J)vS;kyr}T`K|hq}>c>o6bDDGT(6;01xR;eQPE^MAY2#SHHPe^DV?ZlH zDx(PouRx%8%Ms=~o@dK3Qm>4mt2TQz&hN)Ttj!1SJ+RkUbQ0&A#`KamE6(FZiB(Lekf%ezDTR@ z;`t@5wpc_#7CyzP+dI2sZ@h0`_KZ|_7O^UDIw&HRR${NdtYWo8ydlC(7i9nlrCM-& zE#MDKhrbojU0tZB#Zk{ts_*R46jCM97t@1+J}X;Ez-*8wyQ^ftL!QE+5qCTyf!kKH z4sD3lgZLvuv6tf*y3b$>6$}rK$~RLhQ2jzw?1MN!U!VLs;1QcJ^Oe%@;ijsSd0*$w zk^|QMsuNl(A3{#^xa9eAWsMQbKx)6k$66TlIHFvc@)N9E9S0JMRHbGrawP=Mqc ztkh1k_J@bLE+>-f&j%0zkcqwRN6^!Hz3_sxY9buTwS1aO+A`5yK%7lbM4Q@dac@ij ztP)v;`>IzsC_|ll*RPOSMwe(*7QA(xUjHI=R?CQ{Aeeb8K& zAT8kEjd{zl6tnP%cVU2;lCYbQlIkhtgFybP;hg*if%~`tJ@+kLy~&;3B!WXznD#zu z-bgpUXm@j<^jm%_YU|(%G}pixN!nRIo+%VolAs`Mnt0fTD*txaEB$Rd?W_vhc(mp- zUtHe$jVy;)gq5hX?X57L(!Rcj9!cy0 zex|SY<9$or9w8NZ`b4Jok0s#|th!w}n7TPC4Eg>m6>#N{eJQA8eP_IpkrLm+%w43d za`Cr8x+UVh#QaoOI$&OV;y5!7px>LTQ{KyJ;wL150cQ?NQ#DLY*#Xa4kGra|*_hi- zHN&!JZn&-~7OzMnF^AcVP;O1~$SWekPZVH~L{tSVh}aF42b|D|Ntbv_);;yEZCiJfJb5}Vw+jR3Ep-M0 zt7sVnDB+d{LN()q=i_U*Y&D0MdKHV4*EThi-+lvA);_Olhbo`G6dE1iZx?B>y!Mr^ zllxupmA<@cZC*&+nM;lBaP|cCfj>2*mGxlNTC?jOIoaRq&4oj{*mlo{ z9U%cO?nq?Ey49xf0}(i5%7L!2;Zv{Jfw@Xk|?dzP)D7OND- z8GW1*c7JxiWox}G^o|$JBBPlA_(Vc^SyT!J9gE#YV+~?rEM&rQ5b zQLgVrZ#wO4hxL@zN9$dskSl^oZ z(36-fqegN%#d{8(&E)nvlzC4H1m_sgc5INojcadpMFxa&Y}X7dr58wZtns9(_NBO` zI9r)8m_4YofJ9GHFeT&#HUKVAdInuVGN@|k;{^Qoy%y!Tx9_#;T`abJIvcrnorspW z{EUZ8ey-H23h%)r+P6b$W#& z5UN#Pdgkhf62HaGY3y^2kXrrggDRmhCrV`If{ibm+-UKEWhi+;^eR@B)L}_FqsvQX zNph0D;cms-`k!HjEFY4>4*29HJ(QR-y8I6+F=Em)u|G{uSh%anaT_5$m}(q%ZX5Vyx>{+xkkE=gf}ke$rL+kxF+T$kA|DAqeo`ab z5+Sa4>^gmk7`xUY0U0@?_XkSgOC#g=-^4NQtl+?%>=k0uizS=!JVhN!f4O zpdK=?ppS@9toO9%+;pRfbnB_oH2-kc*@(*heMZ_9_X<w5F6&Hz+D5&*nffMq z(@(|E8@DPp-kvk5>ym|Wzxy0ChboxhG4F2Hix>+MN+iz~*`W1ZJQ}F-YrGQBB6DUO z$0tyu4=umZ0>NN*S=_mS@5V~>v_m#E3{36jLRR=TYb-nhFIJX{813xTbi*Q!PJMGg{1YGeYkbC_s*b?Ulj*jZmR>unTU|eAOn-Ri@3~J8TA-aLxHnn# zh@fcbm{oIeZXhnE*<;n<`dARz2j%Nv{Xm1ja5~|X@x=TM%NlYG$98_rbC=+%As&l# z5EISh)vj!CGl^Eq{%`)uE@!p4b~5@ptp7sLHT!W1$yTmNIgJoWuiF`_%(GiPm=1Nh z+pRO)if=Dh!AH1_({ojn%&2rQStN%tG`N;pggbFb=Xz}JgqR#p{cHACzqKXFjWc77 zB7X0e23DDJey`ZNk9uCpG(-x`QlKAgmsrB@ijoPThI;n_>&uUquW!NJ25;GrSWY|t z1@c?34I3e6OeLJi+?b55gwEMgk09pF#Uk8>hp<*$dWH~a%s z2{g}a3GFFO{t2j+oq)1l?$zOH7-hlKH?NOEQf^4n1Cf3Tonnm_?Kx>Wc!R-biVt4{ z(J-+3-e{hBIhmpL7sC8ar|kv1#RtFkts)}3v$VTB=O+sDQTb{Py__L!9r8sC8Ax?e zKgn5;2Bxx_2snMoD%!wT2Z9$V(F_4+{ClgAW8W|bV)+W68MBbfOFzj~}#Nd(0t&Tog_SL;%PDNaRNq|I#nlk_Tmc8DWg44YBjvzrgwQpg^GpV!yK zizcS%QnZ|@*=+4{j>>249;kP`xu49|&SIMV zFm=$c5KAvdQvIYe2Xh9;xA{5q2+4#f#?~3sH4COkU!F7~b3D}=^EbK!Z}FpTxJoR} z`Aw`Rp5@}WkHca`qKj`a4?d5S)4vgd_og5`B0(S6YG`1|giNf@HjYR)$ty;RNDaA^ zuVl_R!|iQ{75QT#`H~7*Gj`Oy96Y41^lbMH3GaMJg_|^YCc(OCA zlwh5Tl4tEShIS#w=&-M5rmIy6iVa?24`8>yx-UN#>fJ}P2@ws%99(58iPaRwgXgmn zBgJp$dA~8JS?+)2@D0NjKg)1R16;eeTQjF0BwqEoFzRdFTxqD)4rjHoFhrn?2x>o4 znEbm&>}t9iZ&h_|Im0-Th}TxXvAV6Bc*keD783L441unKZplS`!b@g)ZQe^ztGSq? z`)VFb*RBLIoevO@_>Ib-V*`@>Ez3aF1M30fp4*zfiI(VT@te=kvgQ{m+@*WDYH}0fN*2h zBpAAbZTXJ+8;tPqD}35TE9PE@fJ^nauJLgmJ3G;9iAmq1VkMwLaB*LOyz=_673-xR zJ0p{{yg>xT_i%auI#q<%34qVy-#l@$)((V$mN;v6WsuIB3_#NEzcT$b-6KHs9=ps@>w`9+oe98+*rINREFTQW<9vL5ee? zUFm%xw#c`A=G?l;1-qkfQ%mCF2%Y6O8i*M9b9;u|$1CPLj!I_yp+Ft_eCUh9aS^Lk zFtvOVF$?BKyC?ksNO>z|uUSq?8M9(9-$Z;0%_8znbpsk1+ie-g z1O8JKpVzyeY)_DfL1fZg#`Z|h1t%es zeP(ZBrACnEr%~|jz;Nj#-%i0dh_gG?!Rm`b9 z)HLz$QstNjvTL8SE0A&ienrg38M^hcgZqBMAivXZ4pr~-ziim|i2&F58btcJlY6zD4J0Lm!Mk`_P&DU~d?_Gb9u$(9@ z7n*%h4C0G4(a4pa7t#E3*wg_Gx8bj`NU0c*FH2tH_9q{}Q{=6Wv!{yJxMkhv5KO6< zcZ00hBA;e~oLFEXKbgzn+kxxd14wNer*?vmB!rIF= zmdIb#cbL+j)b<*;6Kpzf{Wq#Js}KnXq*>qQWivyQp3<4XdzM#ZXV2Vc#;D|q!`G|h zELYLkW^8EY?k?zCqO%h89n<#OS*l~$Rdf%#894<5lgZf>)(~^Y>vjmj)0q&FgKZXg z#PFy75hF4lB26@qbG%>MJF8qQAkHXmQ08espji0QZ8e!YglezR!unH1{&eBZ#K z`|m;7DvhdvNTci|Aw6zFA?4bedDO9c4StPRnT3?~l^{eORgC0W0SoY?+h#+BdIy?! zLs*Gad3z=a#EM}v*vJUhiQ<47SolAiHvfXB8V^qvPvwc6PGpeWP32&%#i={9S><+c z4db}C!IVd9R@#)jHr+uzM|}b{w&uD9_m%y4l+9i62450CtD!75P}Y3OcR_BZw68f- zG&Xo2E`zUM!v=%aiNT{M2iFESbp3lZDFb zgOznQb+Od3BEs^L0c$Hy4L}(?`dcwJ0`j*r=)qPP&WzRgiEmCw-`u|u^PM?S6=%fv zS8wIPc42fSwZS)5<>_g8$;wn0rAc)d6cN+k-1Y zT3%~hWQ7gV!p`%S4KFLLsLfQ?I*PdpM9OHtYV-iCi*;-@cch535~fmZ+(u@Gf=s08 z8bO^{&-Ne8qT&%_pgZ+d&z|rw8u`?$j>sfl z$&}}8#dPYxISEr_Xzj8hA$%NzY!Ufqt?-EeDZLcUQ%&Ay8ecYt3bVTsco>-@)Irhh zI`8U~JLPG~RB0bi!)ruUUC5v9`)!hnkmBDDeDUE0+m#giwb4~_ilynoDjEf*t7TFL zIY;<-a@XbQONuFhazS#!aZ~47ch8ITs~LLMES;l|O4Wv*rMnClRx|xAd~&SJfQJ4J zJG#*4eL>pDlr{X4B?_3VsWJyC-n25i zaPTL(C&K#dy9IdwIUG+q12?WhOKez)Nw!^FW45~aw~m$`As@0}v3yEED!*DCNB=Ah zZ6zg1&l%Gr*sRvgE(|*0k9}B|L*`t}N12>?b~kcZo_}5`YTdP->B4i-Qql_2UgCUEU2J3{PQ!D(5GOlM`Mv~VMf6qftBc+7}-kR?sF^Jerbny z*Nn||$jv5*?y#BiQVP%Fi*C3?n>44f#;0pV^*9bb_C$<^Id6{*sVrG>jytEb*9Gkz zDp1}rO00gqp`+^8PjO{i$Re9kBpuI(PYjZklf@jsEdjo3)!5JOj0e>=gJnx1B*E(q^`PBu{W@rG zJkR@OK6;A{S0?A3d`_dN$=ZJt@1O{I>e$>Yd=VB)oi!UH$wXkusAIk2hZ&sRS>ydl zw#pVI6Im+vi|T}lhjT;}~= z(F3EkGVNSex9Sv=b+119@%^9eaDp1?tWP=av`d=w`%be{p6***%I-_~r)7x4^(#ov z8qfq}9yAM?|Ib^`3U6QpoOxZF%Q8G3hcg|M9>@jbs%~K3i zN-1StTy5(uVrlh@Qn;92KXw2e^8Nt}fG}@+@IZo;kI~Lx22XX*Q z*mCYrl5^1TOVt(57;PaC`S;v#bm0N@Kg(hn{ud@+_8ZGe&okD7EDg?}iW?C^JsBom z)f0-`J!O#!koJ?MTWpI?)C@s19ZqL1+IixBvxjd4hmU)Y*@%c<;&orA%mwDpH)uB9 zX-i%+oozfqV0RFoIb_bhmx&AnsxcNh0zubN?X>e53pg_rx9EBmY6jPx7H_y0FE?W|0>$>;&)Pq)miur>ZcK!pKscgwr zX4S5vHXG(8)S^hkcdb3?A>Q!=0acTfOcww&~OE zvCsxDsM4>G|0JpQXc;suS-cTquDE~R8^$}|4HJ{QK4>wP3CfYA-?N31G5eG3M>{Ts zdBl z57N6b3}3kmhKqR1VYFZO&E$Jjsjho(pM49{zYe2Z{$;d$R~0gOSWuJpI7EnV~@@7P)t z-Mv4H`1K~Rh?WRHE#}GE^on!-)npo{JJ&P(ukO9pE!BHiCBCBw zw`fD}Q5VLf zoa~Y8ofkQFdHZ6!_%J1jOdg-a!ZW6?HOI6ybfK9c!)~uz%+uV^MMp_f;aDnfW-G9 z3vObc5jwdA{8-L{b%vkRFIht3Cm|h{{IRIn#Mt$-*F7j&{9okg^FipV`8PvyuZGXC zr!biJmUiY$x?Q}85|j7K>i*G;i8S{KgMK9tYFINn;+_<_cIzo-Pl^JD`L$=faXX{Q z2XX1qw(%GyJwR-sv2Ru zBYJ(=h^+RT{Tk&zGZ_UFUIs`oCqAuPugxw1gMP9e^d))ZbOy{)>lD#ZbE0!|OkVX*1#2 zV=tWhyURirB-g^sbb8cXMR*{eBVAO<1Qu|BTaC^PA~-e}YznCPv|sm(%6fL~I_>t!x^%}#cjvX_Kc$Ta2ZNPFT4MMM|@j0}GGp4*%Q zrOW?G_|7#;Rs(LUbY4?guGA=N0FI^}=4pRxR=C3yBpl3A8F!VLE5j*jrc((>1bAaHjSDhT?N1MKKy`R?vp#w`TF3A*jDjHUxAzN>{|9qawf1nHT(w0 zC>FYza?S{`HCo`@w{4l>VfEPNRxH(PLTIvA&+2L8Uy0iE#Rv&BFS#?wkjgW;=A%^o zj2AUd2y?T-86+a@O?I3+Mz6gxcA1Ky*t=>4ktGwYgSz|KSQfs}XKh)3yl1yIn29iB zFbkt1iowjSe})4zdXqUOk12Bw690kySKsQRAW+n3CfcMj5fi2EXL0n5<|pO+#r)~F zgqH%DOI*zOPB0co+>U%Anc8;{IQtsO3B$)=?*urQesPIzL|Sy@b@#SL@Ves74A9r_ zy>Jmz*&>yD{)|~!9lvyw{oh7uSw)1_j5wxvc`S7*j1?_T7ivY`639qre_l#uPY;fa z$Qp;oUMa1aY8>I=svxF3e&%qcvpQfR`r*Hqx@={>ABkMb_U9~oa~lkD(z!G^SYs!J zOpf%-pxU~2d9!1yOseV7jQYyibhV9Vu1K(jQ7xtfb}hp~x4-B_bNi$`b7$yJ(`a8= zSoprj9fLc8KARMEeu)W|kQlj?Os6&XD0R!hjl3M7gaeunmd;DAo-DQsKpTR~8^MI{ zxs1VQBC?O3iCXuCE`>nB$Qhv=WqkW8j=JO-vQ zv4`?~wKDLhvf!5PS{gYhlvdT+fa5*lbTdo-IoR>_=O;r?dpVhfwSn|)C4Q0L-Rfn_ zlJJ-5F72r|ZKEPs!KhDiEx&2aPtXlLj|Y;Z<=^ohG_*Qs=7Sh}Qp0Y_M=AMxCzJct zrIL+4V^2>1qt(6t zTD0w_2B~a`^V{=$IqoihY0Cqq<&Te*8}Bb%}_A( zPAE0(_?|~Yp-A2_? zx67K!B#+*SepYq7*5#CmJ(h+yNJa#PT)=u`PGtCzM#iKJs~Z4N3VrgVT zOvu!6ZMlD`XVcTry?JY0G8G#gKUo% z(qEr@jO?9S1}Ca$X}$|)B1|XArVZ}tA!Eo#&mFSTjC`PZ(`K}C%k)L0yzvj_!@K0{ zZx*At70oG$h8oAPi_5-2Gf_@Hl}#-8gm*l`+tj0F%9F1tHP5}ijk+mn^Y!j$6IbB{ zBm>uIMkC=MDyoN{#@{3N*=vilYb?aGLpdBa+yZ?}h>?JWy_WU)yc`VeN>#e4e%;?2 zozBW^`Mt!eG8h)M1~4xbkJ8qqdoF&CI#vWRM9VQ{bD9DYq9Ipa!YZN`%WJ=r5~&Z?%8_=H zbUIt%KlmF)^vwg?pYv>VP9_VILElBWvXn4&BnC5LYUB9`0((LQ-$*BVK`HKkd?sf< zgqlpI-OYL%LGkP1$!cW@0d^bYs|Qa& z#K}|Bdx}Cnnn&^%x5o^5=uU{!WN90FLqqwTQdkmEn4eE*^#`+95CDu&MxXY&ouuCi zdKS{7K=9pP#MtQ}zu1$&z*%QK1^!v|5<}|{ddfqvuhf0FPTYSWQGmVqI9JGt8F$um z;f+1GO5?MjLv>YKY@4zcf806wflDqxvZ zf4)Gav@*=+9{|i~IWLPJVyDc~`(1aj+n?dPJMCE6MSo}2GR^z&=RJwcvz2?Ph~ys; zcg#WNOqdNNkbS`G5tX0*L~mKGOOJLt!T?D4Mbkl^>StJo5wl znRJvR{N-fEZLF-8(ntmA(+B>?FYyp06N}m_KSiZ*^g-_E#wWQOAL4^VQ3XE_8YBqFc@IyL zkn4>9zq$kI0iDf$#Qa(~Kwb{32$xbWsG`IS@=-0wZJTDJwnG z7wQ=@*{NR_m#1@Hwwag>hwKVj33w5^R0fnkVd?*FZE*Z46aCfl)MMl-iw%SE>mZ!} z0zQjv-L&;>hCtTW=3%{CHy9y~Ce#0mu=kE?YVF#7L3$6p6TnRmU62yMfQVa^BGP+D zrFWzwflvfgnp6Q1l-_%9Lg>;#s`M5>F!Zy6`+4{Cz2`gQ{H4Y*lC0e8o@?H7Ue|B> zgXHC2TG09N1fFSSx)wN8vWA$j1-yWYK&Lw+Qp)hYb8NJp%1ZI$Kw?ngsG;kNA?tEe zCr4FzM)tWmk6$ClUYa&cmMYOT&4&pkwaLe?!51HWQUnc^gPi1d$ceVUjNYC7;+ctJ z#&0XpMekot$K6)Z=-M77*~HDf#7tIL$krzw9Oo@Ufv=-K89%Nb zaEw%wgXs*W%<&W=nKCFoxF+(LhG(Lt$;0hM#!sj+ak;i>%)UQFqE?pcPB8KoJ z&{ORSXxA{lo+Kps(b=@lpW>eYvK5$*HJ)ZIUSa6eR7LUEFok2w<;lP);1am_u5hWf zuv~NJ!Y|cD;Gl&G@5(+k0r<Wsg>g!96MGbWH>XsjIoHzZ~sr1q3|jNo3#&JSL=7e%)0 zI;7!lSHo}$6Bebw*b_T670v*=-?~l4q3L)+HBlR(5|qmnpa7VrZT(N35xZA@nS$qy zXDKh|mig7?fTGiZ%a8T`o@ua9Lx0P82ZaK3XqnD}l~Ta_VAm|*I;cKwC8ZKaw?mGqb(9I!EH>Y~`$qaK6*XFzw*$tPfr#cCF>T32h~IP3;kXWIkBk zB`;H2_#q_7j!`aiAGJDFj>CHz?Y@-V^9)MurrHsvqa>L{B6c0Z#!Q}A!aQ!83Ow#j zKp#Zsn)d)icNn+V!q9M=f+w_0?AFjLcx!9a!03i_!_MepuJ5q(8zOSF?A}r4?_5Mf zGYURHvP*&dwL#!8T&}|n#;xn2RXy{xFN-{D``wcHwO#D4p1CMQEVFAe1$irMMhy0O ziBK?D=S83d&mt+Pmtm-OrVMgzQL*u=mRV+-bF}$bdYtJb&$v0 zUNuD6v@a5x>eO6!y>ubFa2jLiveZcG$1MklocBs!glvZk1Gz3Mb=vuEOCXLaKca}R zG|XT+Xn>M@$g?KY`ON1$UFnl$>(TD6lW*!dLU}H?<+|yb*+S-Gw0TYkvbaFd;nnXN z)iN-05dgGPG(WnI6W2eZ`F!{?N)d9!>+K`-^WZ%LxC{p9P!Wfai&DF=mT7V-k;!L- zq^KWZC}D#O0&DCp{a-1R2NU(R9I>8QA(NKt-TV(i=2ai8S-K$6J36Y5HA zCTO2pJ{lGNcc4^X*#0Nu$A5Jkcd#xh3Dh)x6+G&QiD?mg=@1qeuqJ*P;4|#&(vG(wtIcx>9s6Z9JSY8YA{J z%!ql|xdd)v1+BLs|JG$Y?f_qvwq>>x;%MwG*pvT2;rvaf_Fd*l%yiZ*ZQ@4=rMxku zqCij02jdE*`#!nwvGQD)&jSNK1P3`qJ-J_*)!RM~=8OQ+8QikQ%klG?Gtu{0rV=-` zJIpo&4)e)&q!;0DZu2~CU1RE*a%I&En!9yfFde4yGdKj~hcttHh;=%B7nAhc@JVRU z%C?vWs9=eY_Y~bg2B_{d?)tH`)dvS(xk?9^yxe_zXKe{x6E=h=U1?tFJ%3$SU1_wm zWRBHN<)^tsG2vD^^{QD=-7ol5g2`(0II!}UjwaF7t1iwN0UacCBKX={^S|`4Gv+VB$ z7(ARaHK)viIK>k;+FZYK+hobTCq|AMFi(mEd&HGyG*Pc(x3tmHR+i4%I=cM!He{+V z5#)m?HA88ipSs2PsKUszUohgIUOslQ?i=GHerEEJro_&Jc8vFZ{p0YEp*L{^nIoBW z%EIa)dhqw0nd_4NQ9ipV<^?VvX_Q{r349p-hbe4GOKGsf4Jr;nP+gYU??RnYum5OiIlxvA!N;cpzX$StAqUy$qxdHjdB0WTJ@$`Z3 zb?nbGcc;Y;RPed(jhN_W0Wls3l>4mai$Tk^LPB>V3(2#*H%vRc_~BiIt5!nGC|9EG zHz^;LVP70}h%QF0!!ny-+QZrG6C|-`=02`DPtX<@BvFiEp|Ocvt5fu+W(UE!dZ4jK zP`oOWV@pM5BoRk)f_G!`gbDw2b3_2{-G=>YUpJsgE(dwm+Cq6%YDCh~W&0ua)A|(H z^Yd%*V_G86Kxqz}(v#t{9nqdoxs~6-7pykdzxwffFhVduTA*tdGjh|T&(XQVq{7|n49xyw^k9K$TPOtq02LL+#XNOyp zjbTZfdS{!8@`x(y+Vc!wne5N%`$liVI$;3{LV2(jSIPoVIj?<|2;!Nj&rd`sLkNQQ z*;n>ZID@)m76~A<{?lT^mhlw9616d$ou^J8xOE;L1ip23c#ot&dQGqRvw>UUS~s(! z9k=d5n*iT9DuF!#5te&)gsf@Yfh zjd^j^SDGIwlFTA4{p65QTzc9P(oV@6f$=DUV$LFqEt73;pVfVn`<7l3 zCZB=ourF`VnWPY}Z3h?YRL7#g3w`>_SA%Nt^z!1uVa zG}{%3`KZt)1 zyYKunogkW(<58Q77>h&_bv=U$PHdTgA|GHWu{>lHcAVlW1)6S?+cjmvo|pW1RiU<* zU0a09cke)FOqWHmNtduKZA)74VvYB&fSwnCi<*Oe_hZV{mW~-!5yoH3lv^k|f3>PV zeFyT|zgRkEp)0Lh3HNIR_Unna=R@uLpN-A{UcG-Ia^zC2%T;Mixh(!T5!uC%2{vbZ zfE2ord^ut6b9Km~6Hi*lb$jKEHPAx#Q3*d%Xy@tQ9JQuRj|modGF=}Xy>ar(IW18S zC|~iyAwgaa&r>Iv301hdqb(rkfiX2X$=0wLk3jEd&=ClfxZ|drtq99yk-W zb$-PrB#K?To+azvnVGL;9 zP8Vx|=5{LML|tOA8ebV)_LhvqAj48h$g@^2*{VSN3ETw$&78 zC<{QB{cSrB5G0pPw2;z#La3Y{5dawxosiKK^>yOimT6Xj450F3^RB_|XzJSb^DMfJ z3^v>n#et^sAi=Z_F?&ge8VBjX?K9OwRdsO0DtU6BSMZb6Nt&(N3gsghp$kLcLO>6z z)NYCfSHNDQPlicXDl%Gj2Ib<>(P)Bhys}W@I?H6Oz2ut5l?&~ey}aIjX*!!`g%ppy zoGT;qWKK2saBu7bQ2g7raD=0h`WHD)&Ve`hF(?!HA@}+5qcAEbN-ir-|*qO zRIueMJreWD4kPqeX-8q!D6Ps}-qPA{Nl|j+dlVK2c8WrF2@|rHeRaFlvnjwh_Vmkg zvb5$8r`LT8TE5szffPgdm5f7qn2M6mG}2_kZ>#01;I#R4BqaY07D?sM3^&~hY`DE* zU%gB1J)n^=AgPl8ce>5_GHRG81lt4NQjDbD)x!8=4$HeRxGNQ# zVp86#Fz>|ZCKk4472%WU??a`6fP#=k{_|3LU19G2(F8Vx94kOXUyN5UJ%HRmQI>S`So?Vc8DHVY=r`Z>a zmN;Qe0k0=J;c$HH9KtZ#vSH4XxAGQlcOleGosc-YON7@>><3G#DPD5MrIO6X@8P4`7DCtEASKBE#gTk29H7BT{b>qb?5x|SLq zMTGW=aws?l%0tBkTA$c)AN7$lx~T33hk&VQx61*+O=#mP)2mKceh9;_>;6L8tet1F zTO~v5|eZch~96l39L4Rf9X>PURklRh%3Es-7{t3EDW5{6jT6_({kK#lJhj>RVAb~pJ&$V}| zLI;I)Zq61*w-a}ly}ItT81;Yy{cyIw00qBmtEb0=;K5RN3*IjB?i$uIk`>v3DRXT+ zrZ`dqwu~o>fvFDFn?Ys~`xrLD+Hpyse`E`Q;cCDWtYLbjud`=G8=ugUR3TcCBdlO@ zgjgLWMEkb@o`aq>Y9We}Qop);k|_(Z`>qVc;{Ro2;4tJ^WGIhG!-i7PyDr0a z;06W=YzEuSzQNQruIi|TmX>Yf0C`FURIB%H%hk)IkD&wvHlC>1I+{>+A;mbw@MPRv zMbIrag}zsoxX$pvsqrx2yWwRi{rs9QXYWAHy}z&=^noE7wc7%S<|mi zeN^9-6T9Q0-bHu3opALr+HIVJ?r~7hsW6K)e-eV(pZY06x0Zz}N;kgh+nRrm`mU~! z-i3A}r*rUO7})38b!7ZW6O#R1)zkKq8_-VHDI`K zHeo}bs`;ZGk}h0BCP{O%gQU#*7+qWc_udrS1^m zadkRCAdkZKLS#fKr6a=Ew@LypU-C1A;No&gaVm6l;vx({C0AAjhKC}^xse@9`OHOv z&HS9$!S^Y0{a+Ecx)vPZnnIx-R+UkHbqwerkmqnPfuxh)3UlguN@i)m5@z5=-wl!k zIU~juvqT;Jeek?XxZZ#e>^tY8Et(yIS4jxUW84 zdbHiLIapa(`Ao_B7RLyco~chyv&wn3krVSM2EBB<(4IQlHI66HvBi8yjv4ZNpaZD1 zbK6ZnZTonqju$VT5Am$FQd}L$DaZ+t>mPkf)J{8EUZ@xPFiU`jMu;`ml{O9A{ShGw zrj76UH5X2uuBbTNmSW_mD*=m4e?>okWzN1B{gTj8;Sp-(}o zIK&+t6bz`Q?fpuT93uX%#+dHSn*>&*leG12M{%_gc7;BMCX@njNOJ&g*S6pCN5WiLgpwgBL1CVc{l%(zlS+6Qk7?u4ooLg8Y;si`gp35VXZ}66hv6tz%V7OBnm9}n z^8$aO6zEeaE{$+0O~RvXB7@{7)nzV>?D^(BvU-`7%PUsiv`)J!KRW73tA4)JHp&U? zqAD}N-Zvle?iNo0YS4|Rt0e*BX)j_{%vmePbqtR~(4&5LlZ*>#Lq|f2J*K2v&VTtV2?vx`_gaejHh@#%VSCi?5-#`1@exOoaxo_`wkx8&qOSnDw zw14PmY>>llZ3$_5_LLuIe+_)Tp_2MuU4FU>E?7O)UJ-DTZ24|qkf9SZldzc*8yP%q zI&kK4rv?1}s%%W;n?_ttzG)U!tjaq)poa_?X7r6pTiYYJrWAfkG_rJtOR-U6J3t<& zXbTu^SGaUBW~)tS1v7g_=4PwI2t#OW;!qUX{DfWU#Hvu+WOf7xS+*P05K{gulOK6C)y=wvh^*OvITcu>;r z%%~9B_T2U;{FjAW`s=^B8>8M-VFf<9K2o@TpMod)Yq*2_<%x((1U8-G>C z_0pn%4-^kl*6FV}94g{bsb9ZDVR`2&(d2A2Npk-*_WEIJ&eD~2JIiwD6d3(KYgSHd=( zJvN+7?%qgJMDX9SYd_9^8pq!g!%lW(D}C~b{h1o!_aDlB$jwEj72Rd6OD~V&QnO3> zrG;Q}c_&`pvNTskUtH6mT`Fe9viSh?)+KYsu~$-Y@;hwE05T~WhV~g0YN$mVLk%Sf zUbd96EZQ+!3||9>q>2ndu29S4@&RX0^5Csln*$utTUQ9*Cov8dA*kSLca(VMmAhM3 z0!hz0h`SH96zliNXA^)cA*pJB#Pe_c4+rl*^`&Xpv>)9OR{pt;}{eBI=iUu;Ayp>-2Dz=vQV33#rFUWw{)h4!N@^V*^D zSGwz#eAFIn#vMG4`TexZXznvLTg5C^2O+XOEh(3p+?=14}mK;L_|4-RZDJyM9808W>> z|MW7|xmS7b=hXUDhS5XR#kxX^^!l7zDrS23z^$Wo$*v4!DdAk#73;xi()!Sl%F($C zjN}$=7q>#$sH-L(+_E<-%49fi=ao-bNA#gVJg!>C=`rqia)##C%6=yj=J@2k(i z9N}`ktq0_Rq;ms)dsCLFx{b@U1E-R7r`1FTz9}T331len@xF^~drkAM!;0gVrM~%V z@3xiG%HQ+86k|qECk&5^G~P>D{K+j5gzk-@Dx5ZP_24CS)<>l!;nfN^-Gc0UUEcQz zvH()ejit(H>d@#+1mEtt_E}jr`+e*vt1PW{Qt~cg&tk5OWevWESy0}2nwF`$q;&o+ zLC=ue$6m{Pg$b`CpS7Hle#5~P;w{cKCKo0KGT2vaF22EOWmkC zVyf}n9e?zB|4|Wi^kKn2xb8%qccH22^nDifl52aCuXRF4+eutn6*QJt^b##60?>PB z9eT-@jzZEeiWUmX4qMAm_q^StN3~ntTvAGXNJ}a@a>OsCaiTvW`%APSmAUiYnA8<| z#s9L<7k|2MU>pP#Jski(Nue$Zh(XN1BWxgAzK^(jOtlzC_bY}e>Z_E z$Zud&XJ>8CG4MS{WL3w|OfYL2LYGz z1cWMz8vF-4bE>c?*)Dhehx$I99|Nj$S)Tm`6By*@5Wcmw-dv8YW355Z`)}V#W0MYDcZeEE z4DjTMEC8!5&pa;ISo&lp?iZ;wxW+A86wV~L=aA+4q;ob@WDB2wv@mm@6a)7ukprE81yvp0qN)L#p0*;DVY4k$scKG;I;Wu0BreTvhi$uz@cV-1~cz?pupZ%9#2$+ z3IFrG!Vr%{X1&uM#72A~MG8KxpN0O&H_K}Us{p!P&@GhI?fC?ePDapKLWEv_R8FSq z&SEYMzjSx*P(&ypRl6s?NSu68+|MwY~J`VlCusV!5!V~>BMAbQojwpE~tMtrmq zz@5l|`GLX@58MJTM)BV_upak_-dz^CYTEi*;McCuZ~ZA+XX5>5BY9tkKDvKQ~C&O@|TPgm0Xa(+FzqKz*x-a!`szy^T1d!nPvAI zsXD_xshKPF`^w)xyiBQzoz)p+IW;ujwGa}UU zqoY)^lXye7S@5xN#8sgybj$;I0U(}LxDDZznFN3uFT=vE>2AsX_6zHy{-f4U#v)y0 zJZp#&dgPUIKJ=>U!!Fo-P=Avh7@}PLJmA*~_%6=}#_QsSy%Z4{O3Xb*ii5)vl}Md! zRNf;hyhppz-{$;^h7pNUdLQ#j)H5fd2UD)E7+QtAyV)U%A^Lo@l&+^W{i;B=WCd<$IUf zuxMG@2MSn?vHVwq4T|Q|wkfNT$5f`(3a>Z*pjawNjr@AK$Sw%Qeuhk7tUiExRbC#u zY`^)u-ZZMHW#jS|jmbuXNz5mm-xc|V zsPCIZo6e$EiK8fCke$bb(2Vn(p4eZsssg(zb$`rI2mSvtalG#y{AKF7u|>OVnF7w& z$w~`Vk^X{}fp-w)yhtO%U`HE@DG9|8J@mQ9qe~l)h)sV%6&k75RCU!}#)T(3_^6DG z;aNP+txs|?DNo!IqkEW|C$8SA$+`Dcf&>oi!~bNH<~Ho6j-hhbdc#Wk@qKV0Va84*)Addc0RvS@ z*{n^~11B$tfdN3CU^)-`dwgW2Bl*MoUVCAukmDo(?4y7uy8NL9%w{p4Q~u-w#@!rO z9*~&xhkw&3Cc^hY9Tpn06;GgB9ufrKU^j$YeoOrF6rbFAEhL8ayP)7|wDsEf22>=j z|8tZYBP-P{IIp|o-k8hD4pwyLjule>^JqI!x-6=K#Lu*1`*ED2isABfZ=#Nl@o{P? z{slfDil4rcdZ}HVNoUd+=)Q$^NI=K5{}ay?@k^VIt&@xs_ejZ?V#R!?HL@F{~UrK%0m;sh8~T?7qJ`MZHPW$pRLvdhj}&LXYr~-d@j{ zw2sZCo&n;`hrTjjugkX4mzCagEt5kh^dT(&VIVb%nMH;P(z*-sBc2X_2ziM2rf(1` z7*&ZV{UxHR!cD0A5Ltf4*~#k;4+(@AcN&50-W@5^gaf0YW{+ohyV8ye}h* z(j3t)fbyE9VEwqJD$~0Jn4o4fAVQcyJri*4Li&#@8iPwb=msL0jVx^!uiazxYhL&w zz>ewSQ;4NAe5j(!HXWY*#$#bgvnk$x&^`FVjdDXIlYWc65S?X{%ee^4+T-L1fLX~xKHKw`5xrYxOQ z!E2{%005t7E~`P8Lfwn0Z|Xt!&9FkofB^`zbAi{FtTn1If?`PkoccQ@Cj$Yur9nb^t7!Z)8~|0j32Z^m9TsAzhy1K4K# zdoZ4i%@cJ1JZ-bo4&OB30Uq9nU~^mcx<=maOa@=hd;KB#;x8v4VA~`=XT_?@!$$xp zh)V#+JNi9xI4tiYKBRk*!PYX(5I-gYNwoC#$=eWi0PG}?L1$7H5M5zDU2xMAW8elD zFCq7o%X-y!$e&krrNWyMwv8WFC?KBpZV;Qbv}3P-qwW$?2(^w3=!=aTING``f;A}W z_SDnvp>iH#e{=qP@3>#$z4ap45)E*VDxj?kUibqq6t^RkAQA1vF(u~(0XC!cMeOH)vWke-dqQ>&Kseuf$nd*q(!@9Si6m=@~WCaTM} zKccI9^v44&h-P?OzH+anWx zF6=*z96gTU$(WjRQ9;3_0`$IdY(4XD|)`+ongJB`I@CPC3BEtt!PAcY~xTGK7sqb$Y&G$shrA z_iT;X(BFTjGbPPcxknbEd3gn!g(0Uex8p~?%md`G0UQcwobEo|Q$#D1f2brhRBTaI z0sl@acSd>*eWE{>>Cx-fbDriWamdKgKUgz62E9@Vz?Dev4zhueGtA7^qFuWf`tHOSg>$W2`j5e%hq;MTY*(|29mHci(9p^Q{EZdPgQk} zg`Cx1=Cd0ipr74*GZKDt=Y3XMi4X;6U? z6dq@VvnDS83I7a|_)^>uJgzyO?%2{|MY{?Bj9K5_hGOyk%__SvUH6mH*1_kbE2pHkKTH^qL;$&9<2?iYEBJoBTY{uWyRFq{)asY7Vomu$j>nCWzUN&zcEG-yS?@I5RtFC}G_ulR*E-o_ZC znXRE`AI+yyn$jXAWo#l-sqV+@*jt`={u^z=+=Hk)K#B(QUQrhz+<{Sxa*pJV>wfoO#ZZ z*}4JOO!*U$#IZyPv!6eH<;lCjZgPkp7gnRH;~@3WlF{U|9SFC-1QWccV9 zU)I@QtgljaX;iM4?6B?~X(DkU(&G=zB>7@sO?o7^J>M;fgWCQiQq2&QfBaRq>4m+- zi*JT*vko;9K>HKT(W3fe-rF(=xzlafpj+9*0ATkokByzroRx2R9y*e=n)>cm8TT4- z1cg>}g=a_-Hg_2l90b;_F{OFps%>zVn_l`K$ZhTCKcl~S9J<_)SwFe{c;N#oI6NVU zAQsh37IPtX$r!)q=nF)-*bIONVgchFN0$BCW3u38O~a0q18Udz`$y*h#?^Cu^EYCi zo)S=*E<>lfDyMLS>r3ykK%`*Jufj|VeLh6iUmYAO)Jsr95*b`!UnfI(br{Uj@LuM# zEO7AZXH<)Tn!`Vat|F3V+iWB)=NCz~UWC_1F^wN=^$QdeCsp zGsUbU&s!Y??-Bi3*}m5Jd?o#(*HzjWqQ(}rJ0z6du`OG`&Y-l0csefFyR*}Kh=CY2 zMY{fqo>+Us42zX6aji;UisJ~#As2#sg%Kr0Pj@~Z#fbGRv#<&!-c3~d@wQv-aztMx z3JnDTXjB#J3T0`!^$q9Aa%`0+!51RJvXleRNDbHQ52TK_rVh(tEQW2*5P^85vZv~yr{W9W}b-y$3nju=aZKC6EAQI#yUUwLfdP9{mD6q+Zy+@=YkZgGrkIN9ML<5oFmR zyVsbr()~c(6Tg%t5GcQsl$Zn`do76re|pChA&DG_Eg&sL(K?O0_Aw$=>gTh4+Ko4% zs8D<{s^9pVYZf26=h2%7A(#J6Umc3RlXf5zzv!bGwodW9^w2e$KJLZn-`!Y{Pwa#) zseoiUTq(4t(>gd>IM#8=x`8E;9JU|GZZF$!9l;edSvkyqPzaVS`$cRY7-0)skU7Uh zSf0K|i6rln|3mj|AtExHNXpqNp~43I+_qU`Ve3;>ldj5RlaZ!$-Sht2nR2tKKgI)Q z(^<@S*^sPnW=A*J_r41qqO-2C>F)G@83M<$r(jp$VB3LI^`uIQI1-;_VAYn zoPr4fRZnF=pyIf-Ov+d^uX`Dmkqp}^|1-uZAVB=!TfI0v(vpD`2b|9?)aUfs&gkqk zwM)+0uXx-47{t2R4>*_Y*#}aV=wh}S?tlQEjAMmu{h_bR3=wAstVz4JmpCg!Y;}Qz zew`Rula2PDGSYvR=&>`t$>B2ntUwRb0N%RkFpy0)MZ5vVYs?OLO}X^Y=*s%^s+v%t z=ozjuC@=JFGbH#gF!t04g_j~1QL|gI=-rxyX26lDasj6|ngYhk$njl4mc6Dpx;Fn@ z^kdS(gW*F0aLB9c#n;Fup?dR+7ud7rI4V28+AL*ipvk-Ut_b><3CJ1BZWD-5aJ1xd z?Blei=9kSazinobO11VL9(DFVq)>a*aEsLs)i!|9@pW`=Kl*_L#?Pe&R>#oK4W-LY zPVSrftR@V+<5EqzyH};_1`JL94Y@v=Pm>p5uQNned{$nQ= zKLMwqq1)MJp6&s?v0vGF@@_=n`E2TUby>m18eqzbLGipf3lf(8R3e}^z8KrB)pkn&kdP9$Nj!b@&GPN-13fbY z0uW4Oq%v4Vqd*EeeEOHWDb}*1X)jopF$sYY@QfSCO)}ZyTuNOyOl-EGGoZ*j$TJ9^ zf&;9G^GN;9>p4`aefi%iml*G)sVIrJRK@-C;1)nMWmFsbjmS>{^U~r@duq_x=gX7# z$#@}ugmM4*J!BZr%Sp{+JJqv}@*J;vyOQqQ1)jPU)6^NmX$}Hxi!nK-=yv*+Da;u& z9X%lVa`27-Pwn>&dcZy^e5Zlh=~l`l_~0@TlDz}W)+wI$kCjurq{Juz=C{GP*MRGL zo+m(*BcPXf@%%^T=*;o-X zet$c0u#TZU%}&wWRNp&ub88ZsA2P_IA{J`r(qToy6MfN&Ra`nBuxpTi=T3$`xQNtD z_kDnDYGsI^dE-ji%5sVT@7nRQ^3A&c&#l(ci&c23%ME;FpEFM(<|6@YFT0^D1K!u# z`yfvGTX4aaYTnLe;jZwdh-9{+x+ zn_UKsc;SW>wu`lyNzp>`cx7@|Ul&^|7w}tEUT2wi0m$INCeTBDP=y7HnxOd6^2R#i zza3xyuQ$!HYW25+rMXfH{DT%0^S?n0O3s-1B)~d}8E?sVdS??EKRkG*RRM()C)p0) zoSXi8$N$&mGDKr~PamF`XTxb}1!CDWGkD!|H=vob#vCQR+MkV-&kHqd`q#a`8t~q~ zk)r(9Q}VwrH2U3t4MNa(`v23vxoNxo?!FLD#t9`pw7x^BqCw}s#)xN~PD3$5ztCEi9Dn%gRU)4uJghtb#D zMc_pV2JH@6y7WFv`!iSKKg<7bY`lqDnqrF$Ecnq88XD<`i;r|br65+T0%y``G3~xq z>_Ma9GK>1$+_bX(MyB*wb^Js@LrHn&Vx5}|=zrcZIQ#?ln*^{;$W4ksoe|7u)(VHv zrzFM_sy_~5z>^^Uu=6c9Ldb+Gi}?A&oz8~NRVh6?Jk6KVqOeOvL1N3aU;?mTsXl75 zMN-$qL;J|~ykQG~uN4CWlh!ap4+9RrXG*FE9KP>Cv*!E!*9v1c*^>D^%hm93-2{G2 z9N578!qv}2h=5^J>_U`t?Zos*mtY25J$vA5Y_Nm1&Vt;t;zu5Y<`8}0K{vg8mAo71LAvGMhMxMUAMdv`v%&brpz_4#JlQ26ZvO9}9`nG94HsZE}X=C$% zi>CO4jK_=mi3m)%`1dXbEXj6-(2-`BA0@zlSi*ri4Z9>BA21oKU~* zA9BejM2B{qpHL5h@J4R?AYj;Ki@>vmS3?${`nS^-mZ1%?ZSvB+*l@o>|Lg66&oawr z9M<#6Z!!6SDS27OW7Ag-Oa2jznE-0f;p|r0PNDp#Z2QUi8d+Gn1+I-q!`@dU*6n&E zh~!&w?NSztGcQXVFgoe6<#f*(zVtuo)W0|GV=MeSIvL*X@K0JcM%b>hTaO6KAx6SwZ08;Lr%ov!Dd$e)eG zI#$oTC~z;jsr~*NG(_HFu7NY~yxt4QZvkTS^t%qTyUH8||1+10gg60j5|CKo@h>Z7 zum8HUVUz&}WA9D>5|w8_YjfM})~>`1eEPe$)yZ!z$lzue!@ujm#tmFRKr%wR>}I3T z;Xi(h_y?Abr&LPRMInx>Vt{O?Q0_pCPw%tR z8$u&H;s4v5rIoN?fbrI-UumcLqJ*WL=l}2BKiB>{wy5$EW^7TUFCBgvN&AFrXBQS! ztqHVY1}XyCs-&eXcKsP!)J=v%Z{iGlv26)HpR&OSGk}3k{v~y*6NXv_0p%Dd>{Pej z{|cU@;y6qK6i2{e7?5n36^e=Ak-ZMqM!ltd#!akGQw^oC`pT=AYw4*A>+Cz==&nc} zhSR7^NFcS0#`}neH-ZMb z-PeIG+R6Z80K+zE?MGVDg2#UXf2DjkTni%l$#I(5)=rB8^+>U{kV@8i_1^lVQ z{u=h>m}TkdH4(w(HOlj}7J65kZDVXQ^JQ%$i}P5OMY`fsmZ$YvKPwhowwgXbTASeAL-SMtBNKp`ej z6fP9*sREmeB; zyGgNExqb?=Z`De0j;ZT&c@%JL($VhO$8FzzJbOmcc-C^;x0%Uvmvi3Tcc-OlGq5T6 z?99x^H98R+7TkQ@o1X(53E1|`__)mFJ+DI7&$?jq@)@|X2P!6;iT&uFaY}J794x z@Dv=r*E(ozCWAmwK3`P#c~?HjUM6OtEyoURH)y*J41hVn>DkS|Gv=0E`*&>3_I0~n zt-?~!p*b6<{g$~=+pXf)Yqy(Sk16)ex@fp<^26tSw%a0sLubKvI@RY)I0qRaMr0J= ziXmXUOv#V>4hqJIREMT(5r5N;Iqd!TV#hKJC+!lXd$_US3+Z<wXAB`EJMzcu-Qhv9R6j`P}ljV&L(Bpm~P%ncMCZ z0T;}pRnNfLF<^RJmLL2bSehTG00m^l-)C~q%Hj+D{ao1wJY;Ek<*RGa%d_X??ECrb zYHFv{7wzJcLyYSMkt%=n1BVb;msoW+5Iq7v~ z{k&`&?tB0aGG{LHn|tdGa98lz#d2R)Y`kc&6=iEVusTWu`ZDfpe8Vc>wGY7d!h{8; zSK`;_`JqN0qB(i^c*8UqzWe2?tc8% Date: Fri, 24 May 2024 16:53:15 -0700 Subject: [PATCH 069/199] use state names as output names when outfcn=None --- control/nlsys.py | 3 +++ 1 file changed, 3 insertions(+) diff --git a/control/nlsys.py b/control/nlsys.py index 358c4b125..69c08121a 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -143,6 +143,9 @@ def __init__(self, updfcn, outfcn=None, params=None, **kwargs): self.outfcn = lambda t, x, u, params: np.zeros(0) elif self.noutputs is None and self.nstates is not None: self.noutputs = self.nstates + if len(self.output_index) == 0: + # Use state names for outputs + self.output_index = self.state_index elif self.noutputs is not None and self.noutputs == self.nstates: # Number of outputs = number of states => all is OK pass From 84a1e4dabaf61ceb204b8b200fc78b10c4fdeca2 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 24 May 2024 17:06:26 -0700 Subject: [PATCH 070/199] bugfix: allow sysname override in linearize if copy_names is False --- control/nlsys.py | 4 +--- control/tests/iosys_test.py | 13 +++++++++---- 2 files changed, 10 insertions(+), 7 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 69c08121a..8d3b86fe6 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -517,7 +517,7 @@ def feedback(self, other=1, sign=-1, params=None): return newsys def linearize(self, x0, u0, t=0, params=None, eps=1e-6, - name=None, copy_names=False, **kwargs): + copy_names=False, **kwargs): """Linearize an input/output system at a given state and input. Return the linearization of an input/output system at a given state @@ -582,8 +582,6 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, # Set the system name, inputs, outputs, and states if copy_names: linsys._copy_names(self, prefix_suffix_name='linearized') - if name is not None: - linsys.name = name # re-init to include desired signal names if names were provided return StateSpace(linsys, **kwargs) diff --git a/control/tests/iosys_test.py b/control/tests/iosys_test.py index f3693cf00..e917b8fb9 100644 --- a/control/tests/iosys_test.py +++ b/control/tests/iosys_test.py @@ -234,8 +234,8 @@ def test_linearize(self, tsys, kincar): @pytest.mark.usefixtures("editsdefaults") def test_linearize_named_signals(self, kincar): # Full form of the call - linearized = kincar.linearize([0, 0, 0], [0, 0], copy_names=True, - name='linearized') + linearized = kincar.linearize( + [0, 0, 0], [0, 0], copy_names=True, name='linearized') assert linearized.name == 'linearized' assert linearized.find_input('v') == 0 assert linearized.find_input('phi') == 1 @@ -256,8 +256,8 @@ def test_linearize_named_signals(self, kincar): assert lin_nocopy.find_state('x') is None # if signal names are provided, they should override those of kincar - linearized_newnames = kincar.linearize([0, 0, 0], [0, 0], - name='linearized', + linearized_newnames = kincar.linearize( + [0, 0, 0], [0, 0], name='linearized', copy_names=True, inputs=['v2', 'phi2'], outputs=['x2','y2']) assert linearized_newnames.name == 'linearized' assert linearized_newnames.find_input('v2') == 0 @@ -269,6 +269,11 @@ def test_linearize_named_signals(self, kincar): assert linearized_newnames.find_output('x') is None assert linearized_newnames.find_output('y') is None + # if system name is provided but copy_names is false, override name + linearized_newsysname = kincar.linearize( + [0, 0, 0], [0, 0], name='newname', copy_names=False) + assert linearized_newsysname.name == 'newname' + # Test legacy version as well with pytest.warns(UserWarning, match="NumPy matrix class no longer"): ct.use_legacy_defaults('0.8.4') From c568c598b5a63f0d31cf8682823885a845ec0144 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 24 May 2024 17:25:20 -0700 Subject: [PATCH 071/199] remove redundant code --- control/nlsys.py | 25 ++++--------------------- 1 file changed, 4 insertions(+), 21 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 8d3b86fe6..7194fc859 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1498,8 +1498,8 @@ def input_output_response( else: legal_shapes = [(sys.ninputs, ntimepts)] - U = _check_convert_array(U, legal_shapes, - 'Parameter ``U``: ', squeeze=False) + U = _check_convert_array( + U, legal_shapes, 'Parameter ``U``: ', squeeze=False) # Always store the input as a 2D array U = U.reshape(-1, ntimepts) @@ -1508,23 +1508,6 @@ def input_output_response( # If we were passed a list of initial states, concatenate them X0 = _concatenate_list_elements(X0, 'X0') - # If the initial state is too short, make it longer (NB: sys.nstates - # could be None if nstates comes from size of initial condition) - if sys.nstates and isinstance(X0, np.ndarray) and X0.size < sys.nstates: - if X0[-1] != 0: - warn("initial state too short; padding with zeros") - X0 = np.hstack([X0, np.zeros(sys.nstates - X0.size)]) - - # If we were passed a list of initial states, concatenate them - if isinstance(X0, (tuple, list)): - X0_list = [] - for i, x0 in enumerate(X0): - x0 = np.array(x0).reshape(-1) # convert everyting to 1D array - X0_list += x0.tolist() # add elements to initial state - - # Save the newly created input vector - X0 = np.array(X0_list) - # If the initial state is too short, make it longer (NB: sys.nstates # could be None if nstates comes from size of initial condition) if sys.nstates and isinstance(X0, np.ndarray) and X0.size < sys.nstates: @@ -1536,8 +1519,8 @@ def input_output_response( nstates = _find_size(sys.nstates, X0, "states") # create X0 if not given, test if X0 has correct shape - X0 = _check_convert_array(X0, [(nstates,), (nstates, 1)], - 'Parameter ``X0``: ', squeeze=True) + X0 = _check_convert_array( + X0, [(nstates,), (nstates, 1)], 'Parameter ``X0``: ', squeeze=True) # Figure out the number of outputs if sys.noutputs is None: From 36263d8f8d9550b436bed27dd9bbfce6559af065 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 24 May 2024 21:30:27 -0700 Subject: [PATCH 072/199] improve error messages for inconsistent size info in nlsys + small bug fix --- control/nlsys.py | 50 ++++++++++++++++++++++++------------- control/tests/iosys_test.py | 42 ++++++++++++++++++++++++++++++- 2 files changed, 74 insertions(+), 18 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 7194fc859..c79d24966 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -537,8 +537,8 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, u0 = _concatenate_list_elements(u0, 'u0') # Figure out dimensions if they were not specified. - nstates = _find_size(self.nstates, x0, "states") - ninputs = _find_size(self.ninputs, u0, "inputs") + nstates = _find_size(self.nstates, x0, "x0") + ninputs = _find_size(self.ninputs, u0, "u0") # Convert x0, u0 to arrays, if needed if np.isscalar(x0): @@ -1468,7 +1468,8 @@ def input_output_response( # Use the input time points as the output time points t_eval = T - # If we were passed a list of input, concatenate them (w/ broadcast) + # If we were passed a list of inputs, concatenate them (w/ broadcast) + # TODO: call _concatenate_list_elements if isinstance(U, (tuple, list)) and len(U) != ntimepts: U_elements = [] for i, u in enumerate(U): @@ -1492,11 +1493,21 @@ def input_output_response( # Save the newly created input vector U = np.vstack(U_elements) + # Figure out the number of inputs + # TODO: call _concatenate_list_elements? + if sys.ninputs is None: + if isinstance(U, np.ndarray): + ninputs = U.shape[0] if U.size > 1 else U.size + else: + ninputs = 1 + else: + ninputs = sys.ninputs + # Make sure the input has the right shape - if sys.ninputs is None or sys.ninputs == 1: + if ninputs is None or ninputs == 1: legal_shapes = [(ntimepts,), (1, ntimepts)] else: - legal_shapes = [(sys.ninputs, ntimepts)] + legal_shapes = [(ninputs, ntimepts)] U = _check_convert_array( U, legal_shapes, 'Parameter ``U``: ', squeeze=False) @@ -1522,15 +1533,19 @@ def input_output_response( X0 = _check_convert_array( X0, [(nstates,), (nstates, 1)], 'Parameter ``X0``: ', squeeze=True) + # Update the parameter values (prior to evaluating outfcn) + sys._update_params(params) + # Figure out the number of outputs - if sys.noutputs is None: - # Evaluate the output function to find number of outputs - noutputs = np.shape(sys._out(T[0], X0, U[:, 0]))[0] + if sys.outfcn is None: + noutputs = nstates if sys.noutputs is None else sys.noutputs else: - noutputs = sys.noutputs + noutputs = np.shape(sys._out(T[0], X0, U[:, 0]))[0] - # Update the parameter values - sys._update_params(params) + if sys.noutputs is not None and sys.noutputs != noutputs: + raise RuntimeError( + f"inconsistent size of outputs; system specified {sys.noutputs}, " + f"output function returned {noutputs}") # # Define a function to evaluate the input at an arbitrary time @@ -1737,9 +1752,9 @@ def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, from scipy.optimize import root # Figure out the number of states, inputs, and outputs - nstates = _find_size(sys.nstates, x0, "states") - ninputs = _find_size(sys.ninputs, u0, "inputs") - noutputs = _find_size(sys.noutputs, y0, "outputs") + nstates = _find_size(sys.nstates, x0, "x0") + ninputs = _find_size(sys.ninputs, u0, "u0") + noutputs = _find_size(sys.noutputs, y0, "y0") # Convert x0, u0, y0 to arrays, if needed if np.isscalar(x0): @@ -1982,7 +1997,7 @@ def linearize(sys, xeq, ueq=None, t=0, params=None, **kw): return sys.linearize(xeq, ueq, t=t, params=params, **kw) -def _find_size(sysval, vecval, label): +def _find_size(sysval, vecval, name="system component"): """Utility function to find the size of a system parameter If both parameters are not None, they must be consistent. @@ -1990,7 +2005,8 @@ def _find_size(sysval, vecval, label): if hasattr(vecval, '__len__'): if sysval is not None and sysval != len(vecval): raise ValueError( - f"inconsistent information for number of {label}") + f"inconsistent information to determine size of {name}; " + f"expected {sysval} values, received {len(vecval)}") return len(vecval) # None or 0, which is a valid value for "a (sysval, ) vector of zeros". if not vecval: @@ -1998,7 +2014,7 @@ def _find_size(sysval, vecval, label): elif sysval == 1: # (1, scalar) is also a valid combination from legacy code return 1 - raise ValueError(f"can't determine number of {label}") + raise ValueError(f"can't determine size of {name}") # Function to create an interconnected system diff --git a/control/tests/iosys_test.py b/control/tests/iosys_test.py index e917b8fb9..e04c0abc8 100644 --- a/control/tests/iosys_test.py +++ b/control/tests/iosys_test.py @@ -1422,7 +1422,7 @@ def test_operand_badtype(self, C, op): def test_neg_badsize(self): # Create a system of unspecified size sys = ct.NonlinearIOSystem(lambda t, x, u, params: -x) - with pytest.raises(ValueError, match="Can't determine"): + with pytest.raises(ValueError, match="Can't determine number"): -sys def test_bad_signal_list(self): @@ -2077,6 +2077,7 @@ def test_find_eqpt(x0, ix, u0, iu, y0, iy, dx0, idx, dt, x_expect, u_expect): np.testing.assert_allclose(np.array(xeq), x_expect, atol=1e-6) np.testing.assert_allclose(np.array(ueq), u_expect, atol=1e-6) + def test_iosys_sample(): csys = ct.rss(2, 1, 1) dsys = csys.sample(0.1) @@ -2087,3 +2088,42 @@ def test_iosys_sample(): dsys = ct.sample_system(csys, 0.1) assert isinstance(dsys, ct.StateSpace) assert dsys.dt == 0.1 + + +# Make sure that we can determine system sizes automatically +def test_find_size(): + # Create a nonlinear system with no size information + sys = ct.nlsys( + lambda t, x, u, params: -x + u, + lambda t, x, u, params: x[:1]) + + # Run a simulation with size set by parameters + timepts = np.linspace(0, 1) + resp = ct.input_output_response(sys, timepts, [0, 1], X0=[0, 0]) + assert resp.states.shape[0] == 2 + assert resp.inputs.shape[0] == 2 + assert resp.outputs.shape[0] == 1 + + # + # Make sure we get warnings if things are inconsistent + # + + # Define a system of fixed size + sys = ct.nlsys( + lambda t, x, u, params: -x + u, + lambda t, x, u, params: x[:1], + inputs=2, states=2) + + with pytest.raises(ValueError, match="inconsistent .* size of X0"): + resp = ct.input_output_response(sys, timepts, [0, 1], X0=[0, 0, 1]) + + with pytest.raises(ValueError, match=".*U.* Wrong shape"): + resp = ct.input_output_response(sys, timepts, [0, 1, 2], X0=[0, 0]) + + with pytest.raises(RuntimeError, match="inconsistent size of outputs"): + sys = ct.nlsys( + lambda t, x, u, params: -x + u, + lambda t, x, u, params: x[:1], + inputs=2, states=2, outputs=2) + resp = ct.input_output_response(sys, timepts, [0, 1], X0=[0, 0]) + From 1f5de6f84dcbad18d7800d33b3cd4f2d6b6d82e1 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 24 May 2024 22:23:54 -0700 Subject: [PATCH 073/199] refactor processing of x0, u0 keywords in nlsys --- control/nlsys.py | 122 ++++++++++++++++++++---------------- control/tests/iosys_test.py | 11 +++- control/tests/nlsys_test.py | 2 +- 3 files changed, 78 insertions(+), 57 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index c79d24966..221c7c943 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -532,26 +532,16 @@ def linearize(self, x0, u0, t=0, params=None, eps=1e-6, # numerical linearization use the `_rhs()` and `_out()` member # functions. # - # If x0 and u0 are specified as lists, concatenate the elements - x0 = _concatenate_list_elements(x0, 'x0') - u0 = _concatenate_list_elements(u0, 'u0') + # Process nominal states and inputs + x0, nstates = _process_vector_argument(x0, "x0", self.nstates) + u0, ninputs = _process_vector_argument(u0, "u0", self.ninputs) - # Figure out dimensions if they were not specified. - nstates = _find_size(self.nstates, x0, "x0") - ninputs = _find_size(self.ninputs, u0, "u0") - - # Convert x0, u0 to arrays, if needed - if np.isscalar(x0): - x0 = np.ones((nstates,)) * x0 - if np.isscalar(u0): - u0 = np.ones((ninputs,)) * u0 + # Update the current parameters (prior to calling _out()) + self._update_params(params) # Compute number of outputs by evaluating the output function noutputs = _find_size(self.noutputs, self._out(t, x0, u0), "outputs") - # Update the current parameters - self._update_params(params) - # Compute the nominal value of the update law and output F0 = self._rhs(t, x0, u0) H0 = self._out(t, x0, u0) @@ -1468,8 +1458,16 @@ def input_output_response( # Use the input time points as the output time points t_eval = T + # + # Process input argument + # + # The input argument is interpreted very flexibly, allowing the + # use of listsa and/or tuples of mixed scalar and vector elements. + # + # Much of the processing here is similar to the processing in + # _process_vector_argument, but applied to a time series. + # If we were passed a list of inputs, concatenate them (w/ broadcast) - # TODO: call _concatenate_list_elements if isinstance(U, (tuple, list)) and len(U) != ntimepts: U_elements = [] for i, u in enumerate(U): @@ -1494,7 +1492,6 @@ def input_output_response( U = np.vstack(U_elements) # Figure out the number of inputs - # TODO: call _concatenate_list_elements? if sys.ninputs is None: if isinstance(U, np.ndarray): ninputs = U.shape[0] if U.size > 1 else U.size @@ -1516,22 +1513,8 @@ def input_output_response( U = U.reshape(-1, ntimepts) ninputs = U.shape[0] - # If we were passed a list of initial states, concatenate them - X0 = _concatenate_list_elements(X0, 'X0') - - # If the initial state is too short, make it longer (NB: sys.nstates - # could be None if nstates comes from size of initial condition) - if sys.nstates and isinstance(X0, np.ndarray) and X0.size < sys.nstates: - if X0[-1] != 0: - warn("initial state too short; padding with zeros") - X0 = np.hstack([X0, np.zeros(sys.nstates - X0.size)]) - - # Compute the number of states - nstates = _find_size(sys.nstates, X0, "states") - - # create X0 if not given, test if X0 has correct shape - X0 = _check_convert_array( - X0, [(nstates,), (nstates, 1)], 'Parameter ``X0``: ', squeeze=True) + # Process initial states + X0, nstates = _process_vector_argument(X0, "X0", sys.nstates) # Update the parameter values (prior to evaluating outfcn) sys._update_params(params) @@ -1752,17 +1735,9 @@ def find_eqpt(sys, x0, u0=None, y0=None, t=0, params=None, from scipy.optimize import root # Figure out the number of states, inputs, and outputs - nstates = _find_size(sys.nstates, x0, "x0") - ninputs = _find_size(sys.ninputs, u0, "u0") - noutputs = _find_size(sys.noutputs, y0, "y0") - - # Convert x0, u0, y0 to arrays, if needed - if np.isscalar(x0): - x0 = np.ones((nstates,)) * x0 - if np.isscalar(u0): - u0 = np.ones((ninputs,)) * u0 - if np.isscalar(y0): - y0 = np.ones((ninputs,)) * y0 + x0, nstates = _process_vector_argument(x0, "x0", sys.nstates) + u0, ninputs = _process_vector_argument(u0, "u0", sys.ninputs) + y0, noutputs = _process_vector_argument(y0, "y0", sys.noutputs) # Make sure the input arguments match the sizes of the system if len(x0) != nstates or \ @@ -2572,18 +2547,55 @@ def interconnect( return newsys -# Utility function to allow lists of states, inputs -def _concatenate_list_elements(X, name='X'): - # If we were passed a list, concatenate the elements together - if isinstance(X, (tuple, list)): - X_list = [] - for i, x in enumerate(X): - x = np.array(x).reshape(-1) # convert everyting to 1D array - X_list += x.tolist() # add elements to initial state - return np.array(X_list) +def _process_vector_argument(arg, name, size): + """Utility function to process vector elements (states, inputs) + + Process state and input arguments to turn them into lists of the + appropriate length. + + Parameters + ---------- + arg : array_like + Value of the parameter passed to the function. Can be a list, + tuple, ndarray, scalar, or None. + name : string + Name of the argument being processed. Used in errors/warnings. + size : int or None + Size of the element. If None, size is determined by arg. + + Returns + ------- + val : array or None + Value of the element, zero-padded to proper length. + nelem : int or None + Number of elements in the returned value. + + Warns + ----- + UserWarning : "{name} too short; padding with zeros" + If argument is too short and last value in arg is not 0. + + """ + # Allow and expand list + if isinstance(arg, (tuple, list)): + val_list = [] + for i, v in enumerate(arg): + v = np.array(v).reshape(-1) # convert to 1D array + val_list += v.tolist() # add elements to list + val = np.array(val_list) + elif np.isscalar(arg) and size is not None: # extend scalars + val = np.ones((size, )) * arg + else: + val = arg # return what we were given + + if size is not None and isinstance(val, np.ndarray) and val.size < size: + # If needed, extend the size of the vector to match desired size + if val[-1] != 0: + warn(f"{name} too short; padding with zeros") + val = np.hstack([val, np.zeros(size - val.size)]) - # Otherwise, do nothing - return X + nelem = _find_size(size, val, name) # determine size + return val, nelem # Utility function to create an I/O system from a static gain diff --git a/control/tests/iosys_test.py b/control/tests/iosys_test.py index e04c0abc8..4645e71d0 100644 --- a/control/tests/iosys_test.py +++ b/control/tests/iosys_test.py @@ -231,6 +231,15 @@ def test_linearize(self, tsys, kincar): linearized.C, [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal(linearized.D, np.zeros((2,2))) + # Pass fewer than the required elements + padded = iosys.linearize([0, 0], np.array([0])) + assert padded.nstates == linearized.nstates + assert padded.ninputs == linearized.ninputs + + # Check for warning if last element before padding is nonzero + with pytest.warns(UserWarning, match="x0 too short; padding"): + padded = iosys.linearize([0, 1], np.array([0])) + @pytest.mark.usefixtures("editsdefaults") def test_linearize_named_signals(self, kincar): # Full form of the call @@ -1886,7 +1895,7 @@ def test_input_output_broadcasting(): np.testing.assert_equal(resp_cov0.states, resp_init.states) # Specify only some of the initial conditions - with pytest.warns(UserWarning, match="initial state too short; padding"): + with pytest.warns(UserWarning, match="X0 too short; padding"): resp_short = ct.input_output_response(sys, T, [U[0], [0, 1]], [X0, 1]) # Make sure that inconsistent settings don't work diff --git a/control/tests/nlsys_test.py b/control/tests/nlsys_test.py index 80baa646f..7f649e0cc 100644 --- a/control/tests/nlsys_test.py +++ b/control/tests/nlsys_test.py @@ -46,7 +46,7 @@ def kincar_output(t, x, u, params): ]) def test_lti_nlsys_response(nin, nout, input, output): sys_ss = ct.rss(4, nin, nout, strictly_proper=True) - sys_ss.A = np.diag([-1, -2, -3, -4]) # avoid random noise errors + sys_ss.A = np.diag([-1, -2, -3, -4]) # avoid random numerical errors sys_nl = ct.nlsys( lambda t, x, u, params: sys_ss.A @ x + sys_ss.B @ u, lambda t, x, u, params: sys_ss.C @ x + sys_ss.D @ u, From b10e3e2ef8afc77ea18566508931e6d84cdfe995 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 25 May 2024 07:37:47 -0700 Subject: [PATCH 074/199] _update process_vector_argument to always return 1D ndarray --- control/nlsys.py | 2 ++ 1 file changed, 2 insertions(+) diff --git a/control/nlsys.py b/control/nlsys.py index 221c7c943..08dfba1a1 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2585,6 +2585,8 @@ def _process_vector_argument(arg, name, size): val = np.array(val_list) elif np.isscalar(arg) and size is not None: # extend scalars val = np.ones((size, )) * arg + elif isinstance(arg, np.ndarray): + val = arg.reshape(-1) # convert to 1D array else: val = arg # return what we were given From 0fab739209553924f454e7daa4f580ea46fe6c19 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 25 May 2024 08:30:28 -0700 Subject: [PATCH 075/199] add documentation for vector element processing --- doc/iosys.rst | 81 ++++++++++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 80 insertions(+), 1 deletion(-) diff --git a/doc/iosys.rst b/doc/iosys.rst index c0c2cca31..6f7051a95 100644 --- a/doc/iosys.rst +++ b/doc/iosys.rst @@ -191,7 +191,86 @@ Additional features =================== The I/O systems module has a number of other features that can be used to -simplify the creation of interconnected input/output systems. +simplify the creation and use of interconnected input/output systems. + +Vector elements processing +-------------------------- + +Several I/O system commands perform processing of vector elements +(such as initial states or input vectors) and broadcast these to the +proper shape. + +For static elements, such as the initial state in a simulation or the +nominal state and input for a linearization), the following processing +is done: + +* Scalars are automatically converted to a vector of the appropriate + size consisting of the scalar value. This is commonly used when + specifying the origin ('0') or a step input ('1'). + +* Lists of values are concatenated into a single vector. This is + often used when you have an interconnected system and you need to + specify the initial condition or input value for each subsystem + (e.g., [X1eq, X2eq, ...]). + +* Vector elements are zero padded to the required length. If you + specify only a portion of the values for states or inputs, the + remaining values are taken as zero. (If the final element in the + given vector is non-zero, a warning is issues.) + +Similar processing is done for input time series, used for the +:func:`~control.input_output_response` and +:func:`~control.forced_response` commands, with the following +additional feature: + +* Time series elements are broadcast to match the number of time points + specified. If a list of time series and static elements are given (as a + list), static elements are broadcast to the proper number of time points, + and the overall list of elements concatenated to provide the full input + vector. + +As an example, suppose we have an interconnected system consisting of three +subsystems, a controlled process, an estimator, and a (static) controller:: + + proc = ct.nlsys(..., + states=2, inputs=['u1', 'u2', 'd'], outputs='y') + estim = ct.nlsys(..., + states=2, inputs='y', outputs=['xhat[0]', 'xhat[1]') + ctrl = ct.nlsys(..., + states=0, inputs=['r', 'xhat[0]', 'xhat[1]'], outputs=['u1', 'u2']) + + clsys = ct.interconnect( + [proc, estim, ctrl], inputs=['r', 'd'], outputs=['y', 'u1', 'u2']) + +To linearize the system around the origin, we can utilize the scalar +processing feature of vector elements:: + + P = proc.linearize(0, 0) + +In this command, the states and the inputs are broadcast to the size of the +state and input vectors, respectively. + +If we want to linearize the closed loop system around a process state +``x0`` (with two elemenst) and an estimator state ``0`` (for both states), +we can use the list processing feature:: + + H = clsys.liniearize([x0, 0], 0) + +Note that this also utilizes the zero-padding functionality, since the +second argument in the list ``[x0, 0]`` is a scalar and so the vector +``[x0, 0]`` only has three elements instead of the required four. + +To run an input/output simulation with a sinsoidal signal for the first +input, a constant for the second input, and no external disturbance, we can +use the list processing feature combined with time series broadcasting:: + + timepts = np.linspace(0, 10) + u1 = np.sin(timepts) + u2 = 1 + resp = ct.input_output_response(clsys, timepts, [u1, u2, 0]) + +In this command, the second and third arguments will be broadcast to match +the number of time points. Summing junction ---------------- From 8b8574732bc396b2d58935af0499e9800dd86004 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 3 Jun 2024 22:53:59 -0700 Subject: [PATCH 076/199] allow renaming of system/signal names in bdalg functions --- control/bdalg.py | 39 ++++++++++++++++++------------ control/iosys.py | 45 +++++++++++++++++++++++++++++++++-- control/tests/bdalg_test.py | 46 ++++++++++++++++++++++++++++++++++++ control/tests/iosys_test.py | 35 +++++++++++++++++++++++++-- control/tests/kwargs_test.py | 14 ++++++++++- 5 files changed, 159 insertions(+), 20 deletions(-) diff --git a/control/bdalg.py b/control/bdalg.py index ce8008537..35b030d15 100644 --- a/control/bdalg.py +++ b/control/bdalg.py @@ -54,17 +54,19 @@ """ from functools import reduce -import numpy as np from warnings import warn -from . import xferfcn as tf -from . import statesp as ss + +import numpy as np + from . import frdata as frd +from . import statesp as ss +from . import xferfcn as tf from .iosys import InputOutputSystem __all__ = ['series', 'parallel', 'negate', 'feedback', 'append', 'connect'] -def series(sys1, *sysn): +def series(sys1, *sysn, **kwargs): r"""series(sys1, sys2, [..., sysn]) Return the series connection (`sysn` \* ...\ \*) `sys2` \* `sys1`. @@ -117,10 +119,12 @@ def series(sys1, *sysn): (2, 1, 5) """ - return reduce(lambda x, y: y * x, sysn, sys1) + sys = reduce(lambda x, y: y * x, sysn, sys1) + sys.update_names(**kwargs) + return sys -def parallel(sys1, *sysn): +def parallel(sys1, *sysn, **kwargs): r"""parallel(sys1, sys2, [..., sysn]) Return the parallel connection `sys1` + `sys2` (+ ...\ + `sysn`). @@ -171,10 +175,11 @@ def parallel(sys1, *sysn): (3, 4, 7) """ - return reduce(lambda x, y: x + y, sysn, sys1) - + sys = reduce(lambda x, y: x + y, sysn, sys1) + sys.update_names(**kwargs) + return sys -def negate(sys): +def negate(sys, **kwargs): """ Return the negative of a system. @@ -208,11 +213,12 @@ def negate(sys): np.float64(-2.0) """ - return -sys + sys = -sys + sys.update_names(**kwargs) + return sys #! TODO: expand to allow sys2 default to work in MIMO case? -#! TODO: allow renaming of signals (for all bdalg operations) -def feedback(sys1, sys2=1, sign=-1): +def feedback(sys1, sys2=1, sign=-1, **kwargs): """Feedback interconnection between two I/O systems. Parameters @@ -261,7 +267,7 @@ def feedback(sys1, sys2=1, sign=-1): # Allow anything with a feedback function to call that function # TODO: rewrite to allow __rfeedback__ try: - return sys1.feedback(sys2, sign) + return sys1.feedback(sys2, sign, **kwargs) except (AttributeError, TypeError): pass @@ -284,9 +290,11 @@ def feedback(sys1, sys2=1, sign=-1): else: sys1 = ss._convert_to_statespace(sys1) - return sys1.feedback(sys2, sign) + sys = sys1.feedback(sys2, sign) + sys.update_names(**kwargs) + return sys -def append(*sys): +def append(*sys, **kwargs): """append(sys1, sys2, [..., sysn]) Group LTI state space models by appending their inputs and outputs. @@ -327,6 +335,7 @@ def append(*sys): s1 = ss._convert_to_statespace(sys[0]) for s in sys[1:]: s1 = s1.append(s) + s1.update_names(**kwargs) return s1 def connect(sys, Q, inputv, outputv): diff --git a/control/iosys.py b/control/iosys.py index fbd5c1dba..d180a24e4 100644 --- a/control/iosys.py +++ b/control/iosys.py @@ -6,10 +6,12 @@ # FrequencyResponseData, InterconnectedSystem and other similar classes # that allow naming of signals. -import numpy as np +import re from copy import deepcopy from warnings import warn -import re + +import numpy as np + from . import config __all__ = ['InputOutputSystem', 'issiso', 'timebase', 'common_timebase', @@ -366,6 +368,44 @@ def find_states(self, name_list): lambda self: list(self.state_index.keys()), # getter set_states) # setter + def update_names(self, **kwargs): + """Update signal and system names for an I/O system. + + Parameters + ---------- + inputs : int, list of str, or None + Description of the system inputs. + outputs : int, list of str, or None + Description of the system outputs. + states : int, list of str, or None + Description of the system states. + + """ + self.name = kwargs.pop('name', self.name) + if kwargs.get('inputs', None): + ninputs, input_index = _process_signal_list( + kwargs.pop('inputs'), prefix=kwargs.pop('input_prefix', 'u')) + if self.ninputs and self.ninputs != ninputs: + raise ValueError("number of inputs does not match system size") + self.input_index = input_index + if kwargs.get('outputs', None): + noutputs, output_index = _process_signal_list( + kwargs.pop('outputs'), prefix=kwargs.pop('output_prefix', 'y')) + if self.noutputs and self.noutputs != noutputs: + raise ValueError("number of outputs does not match system size") + self.output_index = output_index + if kwargs.get('states', None): + nstates, state_index = _process_signal_list( + kwargs.pop('states'), prefix=kwargs.pop('state_prefix', 'x')) + if self.nstates != nstates: + raise ValueError("number of states does not match system size") + self.state_index = state_index + + # Make sure we processed all of the arguments + if kwargs: + raise TypeError("unrecognized keywords: ", str(kwargs)) + + def isctime(self, strict=False): """ Check to see if a system is a continuous-time system. @@ -825,6 +865,7 @@ def _process_labels(labels, name, default): # import re + def _parse_spec(syslist, spec, signame, dictname=None): """Parse a signal specification, returning system and signal index.""" diff --git a/control/tests/bdalg_test.py b/control/tests/bdalg_test.py index 2ed793ef2..b9e26e8c0 100644 --- a/control/tests/bdalg_test.py +++ b/control/tests/bdalg_test.py @@ -316,3 +316,49 @@ def testConnect(self, tsys): connect(sys, Q, [2], [1, 0]) with pytest.raises(IndexError): connect(sys, Q, [2], [1, -1]) + + +@pytest.mark.parametrize( + "op, nsys, ninputs, noutputs, nstates", [ + (ctrl.series, 2, 1, 1, 4), + (ctrl.parallel, 2, 1, 1, 4), + (ctrl.feedback, 2, 1, 1, 4), + (ctrl.append, 2, 2, 2, 4), + (ctrl.negate, 1, 1, 1, 2), + ]) +def test_bdalg_update_names(op, nsys, ninputs, noutputs, nstates): + syslist = [ctrl.rss(2, 1, 1), ctrl.rss(2, 1, 1)] + inputs = ['in1', 'in2'] + outputs = ['out1', 'out2'] + states = ['x1', 'x2', 'x3', 'x4'] + + newsys = op( + *syslist[:nsys], name='newsys', inputs=inputs[:ninputs], + outputs=outputs[:noutputs], states=states[:nstates]) + assert newsys.name == 'newsys' + assert newsys.ninputs == ninputs + assert newsys.input_labels == inputs[:ninputs] + assert newsys.noutputs == noutputs + assert newsys.output_labels == outputs[:noutputs] + assert newsys.nstates == nstates + assert newsys.state_labels == states[:nstates] + + +def test_bdalg_udpate_names_errors(): + sys1 = ctrl.rss(2, 1, 1) + sys2 = ctrl.rss(2, 1, 1) + + with pytest.raises(ValueError, match="number of inputs does not match"): + sys = ctrl.series(sys1, sys2, inputs=2) + + with pytest.raises(ValueError, match="number of outputs does not match"): + sys = ctrl.series(sys1, sys2, outputs=2) + + with pytest.raises(ValueError, match="number of states does not match"): + sys = ctrl.series(sys1, sys2, states=2) + + with pytest.raises(ValueError, match="number of states does not match"): + sys = ctrl.series(ctrl.tf(sys1), ctrl.tf(sys2), states=2) + + with pytest.raises(TypeError, match="unrecognized keywords"): + sys = ctrl.series(sys1, sys2, dt=1) diff --git a/control/tests/iosys_test.py b/control/tests/iosys_test.py index 4645e71d0..65455064c 100644 --- a/control/tests/iosys_test.py +++ b/control/tests/iosys_test.py @@ -2122,7 +2122,7 @@ def test_find_size(): lambda t, x, u, params: -x + u, lambda t, x, u, params: x[:1], inputs=2, states=2) - + with pytest.raises(ValueError, match="inconsistent .* size of X0"): resp = ct.input_output_response(sys, timepts, [0, 1], X0=[0, 0, 1]) @@ -2135,4 +2135,35 @@ def test_find_size(): lambda t, x, u, params: x[:1], inputs=2, states=2, outputs=2) resp = ct.input_output_response(sys, timepts, [0, 1], X0=[0, 0]) - + + +def test_update_names(): + sys = ct.rss(['x1', 'x2'], 2, 2) + sys.update_names( + name='new', states=2, inputs=['u1', 'u2'], + outputs=2, output_prefix='yy') + assert sys.name == 'new' + assert sys.ninputs == 2 + assert sys.input_labels == ['u1', 'u2'] + assert sys.ninputs == 2 + assert sys.output_labels == ['yy[0]', 'yy[1]'] + assert sys.state_labels == ['x[0]', 'x[1]'] + + # Generate some error conditions + with pytest.raises(ValueError, match="number of inputs does not match"): + sys.update_names(inputs=3) + + with pytest.raises(ValueError, match="number of outputs does not match"): + sys.update_names(outputs=3) + + with pytest.raises(ValueError, match="number of states does not match"): + sys.update_names(states=3) + + with pytest.raises(ValueError, match="number of states does not match"): + ct.tf(sys).update_names(states=2) + + with pytest.raises(TypeError, match="unrecognized keywords"): + sys.update_names(dt=1) + + with pytest.raises(TypeError, match=".* takes 1 positional argument"): + sys.update_names(5) diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index d6bd06487..73dbe3229 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -92,20 +92,25 @@ def test_kwarg_search(module, prefix): @pytest.mark.parametrize( "function, nsssys, ntfsys, moreargs, kwargs", - [(control.dlqe, 1, 0, ([[1]], [[1]]), {}), + [(control.append, 2, 0, (), {}), + (control.dlqe, 1, 0, ([[1]], [[1]]), {}), (control.dlqr, 1, 0, ([[1, 0], [0, 1]], [[1]]), {}), (control.drss, 0, 0, (2, 1, 1), {}), + (control.feedback, 2, 0, (), {}), (control.flatsys.flatsys, 1, 0, (), {}), (control.input_output_response, 1, 0, ([0, 1, 2], [1, 1, 1]), {}), (control.lqe, 1, 0, ([[1]], [[1]]), {}), (control.lqr, 1, 0, ([[1, 0], [0, 1]], [[1]]), {}), (control.linearize, 1, 0, (0, 0), {}), + (control.negate, 1, 0, (), {}), (control.nlsys, 0, 0, (lambda t, x, u, params: np.array([0]),), {}), + (control.parallel, 2, 0, (), {}), (control.pzmap, 1, 0, (), {}), (control.rlocus, 0, 1, (), {}), (control.root_locus, 0, 1, (), {}), (control.root_locus_plot, 0, 1, (), {}), (control.rss, 0, 0, (2, 1, 1), {}), + (control.series, 2, 0, (), {}), (control.set_defaults, 0, 0, ('control',), {'default_dt': True}), (control.ss, 0, 0, (0, 0, 0, 0), {'dt': 1}), (control.ss2io, 1, 0, (), {}), @@ -122,6 +127,7 @@ def test_kwarg_search(module, prefix): (control.LTI, 0, 0, (), {'inputs': 1, 'outputs': 1, 'states': 1}), (control.flatsys.LinearFlatSystem, 1, 0, (), {}), + (control.InputOutputSystem.update_names, 1, 0, (), {}), (control.NonlinearIOSystem.linearize, 1, 0, (0, 0), {}), (control.StateSpace.sample, 1, 0, (0.1,), {}), (control.StateSpace, 0, 0, @@ -232,6 +238,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): # kwarg_unittest = { + 'append': test_unrecognized_kwargs, 'bode': test_response_plot_kwargs, 'bode_plot': test_response_plot_kwargs, 'create_estimator_iosystem': stochsys_test.test_estimator_errors, @@ -242,6 +249,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'dlqe': test_unrecognized_kwargs, 'dlqr': test_unrecognized_kwargs, 'drss': test_unrecognized_kwargs, + 'feedback': test_unrecognized_kwargs, 'flatsys.flatsys': test_unrecognized_kwargs, 'frd': frd_test.TestFRD.test_unrecognized_keyword, 'gangof4': test_matplotlib_kwargs, @@ -252,6 +260,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'linearize': test_unrecognized_kwargs, 'lqe': test_unrecognized_kwargs, 'lqr': test_unrecognized_kwargs, + 'negate': test_unrecognized_kwargs, 'nichols_plot': test_matplotlib_kwargs, 'nichols': test_matplotlib_kwargs, 'nlsys': test_unrecognized_kwargs, @@ -259,12 +268,14 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'nyquist_response': test_response_plot_kwargs, 'nyquist_plot': test_matplotlib_kwargs, 'phase_plane_plot': test_matplotlib_kwargs, + 'parallel': test_unrecognized_kwargs, 'pole_zero_plot': test_unrecognized_kwargs, 'pzmap': test_unrecognized_kwargs, 'rlocus': test_unrecognized_kwargs, 'root_locus': test_unrecognized_kwargs, 'root_locus_plot': test_unrecognized_kwargs, 'rss': test_unrecognized_kwargs, + 'series': test_unrecognized_kwargs, 'set_defaults': test_unrecognized_kwargs, 'singular_values_plot': test_matplotlib_kwargs, 'ss': test_unrecognized_kwargs, @@ -292,6 +303,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'DescribingFunctionResponse.plot': descfcn_test.test_describing_function_exceptions, 'InputOutputSystem.__init__': test_unrecognized_kwargs, + 'InputOutputSystem.update_names': test_unrecognized_kwargs, 'LTI.__init__': test_unrecognized_kwargs, 'flatsys.LinearFlatSystem.__init__': test_unrecognized_kwargs, 'NonlinearIOSystem.linearize': test_unrecognized_kwargs, From a402a7ff3aab7db45f620f8ff7e2f5954da53d57 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 4 Jun 2024 04:41:04 -0700 Subject: [PATCH 077/199] update test_update_names to not require slycot --- control/tests/iosys_test.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/control/tests/iosys_test.py b/control/tests/iosys_test.py index 65455064c..cf4e3dd43 100644 --- a/control/tests/iosys_test.py +++ b/control/tests/iosys_test.py @@ -2160,7 +2160,8 @@ def test_update_names(): sys.update_names(states=3) with pytest.raises(ValueError, match="number of states does not match"): - ct.tf(sys).update_names(states=2) + siso = ct.tf([1], [1, 2, 1]) + ct.tf(siso).update_names(states=2) with pytest.raises(TypeError, match="unrecognized keywords"): sys.update_names(dt=1) From f1af2e599e466048fcf58a43a183c42d04db4f92 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ryan=20W=C3=BCest?= Date: Wed, 24 Apr 2024 09:41:26 +0200 Subject: [PATCH 078/199] Add possibility to plot unit, ms and mt_circle for nyquist --- control/freqplot.py | 33 ++++++++++++++++++++++++++++++--- 1 file changed, 30 insertions(+), 3 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index a63ef20d3..481ec4387 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1477,8 +1477,8 @@ def nyquist_response( def nyquist_plot( data, omega=None, plot=None, label_freq=0, color=None, label=None, - return_contour=None, title=None, legend_loc='upper right', - ax=None, **kwargs): + return_contour=None, title=None, legend_loc='upper right', ax=None, + unit_circle=False, mt_circles=None, ms_circles=None, **kwargs): """Nyquist plot for a system. Generates a Nyquist plot for the system over a (optional) frequency @@ -1501,7 +1501,13 @@ def nyquist_plot( ``omega_limits``. color : string, optional Used to specify the color of the line and arrowhead. - + unit_circle : bool, optional + If ``True``, display the unit circle, to read gain crossover frequency. + mt_circles : array_like, optional + Draws circles corresponding to the given magnitudes of sensitivity. + ms_circles : array_like, optional + Draws circles corresponding to the given magnitudes in complementary + sensitivity. **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords (passed to `matplotlib`) @@ -1856,6 +1862,27 @@ def _parse_linestyle(style_name, allow_false=False): # Mark the -1 point plt.plot([-1], [0], 'r+') + theta = np.linspace(0, 2*np.pi, 100) + cos = np.cos(theta) + sin = np.sin(theta) + + if unit_circle: + plt.plot(cos, sin, color="black", linestyle='dashed', linewidth=1) + + if ms_circles is not None: + for ms in ms_circles: + plt.plot(-1 + (1/ms)*cos, (1/ms)*sin, color="black", linestyle="dashed", linewidth=1) + + if mt_circles is not None: + for mt in mt_circles: + if mt != 1: + ct = -mt**2/(mt**2-1) # Mt center + rt = mt/(mt**2-1) # Mt radius + plt.plot(ct+rt*cos, rt*sin, color="black", linestyle="dashed", linewidth=1) + else: + _, _, ymin, ymax = plt.axis() + plt.vlines(-0.5, ymin=ymin, ymax=ymax, colors="black", linestyles="dashed", linewidth=1) + # Label the frequencies of the points if label_freq: ind = slice(None, None, label_freq) From c8cf6c3cc155c70919d4b2ba27c7cb59d44f014a Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ryan=20W=C3=BCest?= Date: Mon, 29 Apr 2024 09:29:15 +0200 Subject: [PATCH 079/199] Adding sensitivity circle tests --- control/tests/nyquist_test.py | 19 +++++++++++++++++++ 1 file changed, 19 insertions(+) diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index 8354932d7..af9505354 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -214,6 +214,22 @@ def test_nyquist_arrows(arrows): assert _Z(sys) == response.count + _P(sys) +def test_sensitivity_circles(): + A = np.array([ + [-3.56355873, -1.22980795, -1.5626527 , -0.4626829], + [-8.52361371, -3.60331459, -3.71574266, -0.43839201], + [-2.50458726, -0.72361335, -1.77795489, -0.4038419], + [-0.281183 , 0.23391825, 0.19096003, -0.9771515]]) + B = np.array([[-0.], [-1.42827213], [ 0.76806551], [-1.07987454]]) + C = np.array([[-0., 0.35557249, 0.35941791, -0.]]) + D = np.array([[0]]) + sys1 = ct.ss(A, B, C, D) + sys2 = ct.ss(A, B, C, D, dt=0.1) + plt.figure() + ct.nyquist_plot(sys1, unit_circle=True, mt_circles=[0.9,1,1.1,1.2], ms_circles=[0.9,1,1.1,1.2]) + ct.nyquist_plot(sys2, unit_circle=True, mt_circles=[0.9,1,1.1,1.2], ms_circles=[0.9,1,1.1,1.2]) + + def test_nyquist_encirclements(): # Example 14.14: effect of friction in a cart-pendulum system s = ct.tf('s') @@ -518,6 +534,9 @@ def test_nyquist_frd(): test_nyquist_arrows(3) test_nyquist_arrows([0.1, 0.5, 0.9]) + print("Test sensitivity circles") + test_sensitivity_circles() + print("Stability checks") test_nyquist_encirclements() From 2168b105e0ab35227c575b02a95c526a04b7b3d3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ryan=20W=C3=BCest?= Date: Mon, 29 Apr 2024 09:38:52 +0200 Subject: [PATCH 080/199] Adding circle labels by default --- control/freqplot.py | 17 +++++++++++++---- 1 file changed, 13 insertions(+), 4 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 481ec4387..a041be79b 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1861,27 +1861,36 @@ def _parse_linestyle(style_name, allow_false=False): # Mark the -1 point plt.plot([-1], [0], 'r+') - + theta = np.linspace(0, 2*np.pi, 100) cos = np.cos(theta) sin = np.sin(theta) + label_pos = 15 if unit_circle: plt.plot(cos, sin, color="black", linestyle='dashed', linewidth=1) if ms_circles is not None: for ms in ms_circles: - plt.plot(-1 + (1/ms)*cos, (1/ms)*sin, color="black", linestyle="dashed", linewidth=1) - + pos_x = -1 + (1/ms)*cos + pos_y = (1/ms)*sin + plt.plot(pos_x, pos_y, color="black", linestyle="dashed", linewidth=1) + plt.text(pos_x[label_pos], pos_y[label_pos], ms) + if mt_circles is not None: for mt in mt_circles: if mt != 1: ct = -mt**2/(mt**2-1) # Mt center rt = mt/(mt**2-1) # Mt radius - plt.plot(ct+rt*cos, rt*sin, color="black", linestyle="dashed", linewidth=1) + pos_x = ct+rt*cos + pos_y = rt*sin + plt.plot(pos_x, pos_y, color="black", linestyle="dashed", linewidth=1) + plt.text(pos_x[label_pos], pos_y[label_pos], mt) else: _, _, ymin, ymax = plt.axis() + pos_y = np.linspace(ymin, ymax, 100) plt.vlines(-0.5, ymin=ymin, ymax=ymax, colors="black", linestyles="dashed", linewidth=1) + plt.text(-0.5, pos_y[label_pos], 1) # Label the frequencies of the points if label_freq: From 10d201014b6faf3ab6fdbf85c0947d22d4c33158 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 30 Jun 2024 09:09:29 -0700 Subject: [PATCH 081/199] rebase on main + allow circle styles to be set via defaults --- control/freqplot.py | 31 ++++++++++++++++++++++--------- 1 file changed, 22 insertions(+), 9 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index a041be79b..8917690ba 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1060,7 +1060,9 @@ def gen_zero_centered_series(val_min, val_max, period): 'nyquist.max_curve_magnitude': 20, # clip large values 'nyquist.max_curve_offset': 0.02, # offset of primary/mirror 'nyquist.start_marker': 'o', # marker at start of curve - 'nyquist.start_marker_size': 4, # size of the maker + 'nyquist.start_marker_size': 4, # size of the marker + 'nyquist.circle_style': # style for unit circles + {'color': 'black', 'linestyle': 'dashed', 'linewidth': 1} } @@ -1504,9 +1506,9 @@ def nyquist_plot( unit_circle : bool, optional If ``True``, display the unit circle, to read gain crossover frequency. mt_circles : array_like, optional - Draws circles corresponding to the given magnitudes of sensitivity. + Draw circles corresponding to the given magnitudes of sensitivity. ms_circles : array_like, optional - Draws circles corresponding to the given magnitudes in complementary + Draw circles corresponding to the given magnitudes of complementary sensitivity. **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords (passed to `matplotlib`) @@ -1861,22 +1863,29 @@ def _parse_linestyle(style_name, allow_false=False): # Mark the -1 point plt.plot([-1], [0], 'r+') - + + # + # Draw circles for gain crossover and sensitivity functions + # theta = np.linspace(0, 2*np.pi, 100) cos = np.cos(theta) sin = np.sin(theta) label_pos = 15 + # Display the unit circle, to read gain crossover frequency if unit_circle: - plt.plot(cos, sin, color="black", linestyle='dashed', linewidth=1) + plt.plot(cos, sin, **config.defaults['nyquist.circle_style']) + # Draw circles for given magnitudes of sensitivity if ms_circles is not None: for ms in ms_circles: pos_x = -1 + (1/ms)*cos pos_y = (1/ms)*sin - plt.plot(pos_x, pos_y, color="black", linestyle="dashed", linewidth=1) + plt.plot( + pos_x, pos_y, **config.defaults['nyquist.circle_style']) plt.text(pos_x[label_pos], pos_y[label_pos], ms) + # Draw circles for given magnitudes of complementary sensitivity if mt_circles is not None: for mt in mt_circles: if mt != 1: @@ -1884,15 +1893,19 @@ def _parse_linestyle(style_name, allow_false=False): rt = mt/(mt**2-1) # Mt radius pos_x = ct+rt*cos pos_y = rt*sin - plt.plot(pos_x, pos_y, color="black", linestyle="dashed", linewidth=1) + plt.plot( + pos_x, pos_y, + **config.defaults['nyquist.circle_style']) plt.text(pos_x[label_pos], pos_y[label_pos], mt) else: _, _, ymin, ymax = plt.axis() pos_y = np.linspace(ymin, ymax, 100) - plt.vlines(-0.5, ymin=ymin, ymax=ymax, colors="black", linestyles="dashed", linewidth=1) + plt.vlines( + -0.5, ymin=ymin, ymax=ymax, + **config.defaults['nyquist.circle_style']) plt.text(-0.5, pos_y[label_pos], 1) - # Label the frequencies of the points + # Label the frequencies of the points on the Nyquist curve if label_freq: ind = slice(None, None, label_freq) omega_sys = np.imag(splane_contour[np.real(splane_contour) == 0]) From 421131ceb316a0d8c838e187714de7c88976c0aa Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 30 Jun 2024 10:11:31 -0700 Subject: [PATCH 082/199] updated documentation per comment from @bonidydy in #1015 --- control/nlsys.py | 15 ++++++--------- 1 file changed, 6 insertions(+), 9 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 68b744759..d0ad2c661 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2086,10 +2086,8 @@ def interconnect( inplist : list of input connections, optional List of connections for how the inputs for the overall system are - mapped to the subsystem inputs. The input specification is similar to - the form defined in the connection specification, except that - connections do not specify an input-spec, since these are the system - inputs. The entries for a connection are thus of the form: + mapped to the subsystem inputs. The entries for a connection are + of the form: [input-spec1, input-spec2, ...] @@ -2102,11 +2100,10 @@ def interconnect( outlist : list of output connections, optional List of connections for how the outputs from the subsystems are - mapped to overall system outputs. The output connection - description is the same as the form defined in the inplist - specification (including the optional gain term). Numbered outputs - must be chosen from the list of subsystem outputs, but named - outputs can also be contained in the list of subsystem inputs. + mapped to overall system outputs. The entris for a connection are + of the form: + + [output-spec1, output-spec2, ...] If an output connection contains more than one signal specification, then those signals are added together (multiplying by the any gain From aaa2aba108c8a93eeafd4b6c1a10c6a6c36bac22 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 30 Jun 2024 13:37:43 -0700 Subject: [PATCH 083/199] fix bug in root_locus_plot identified by @NikolaiVChr in issue #1016 --- control/pzmap.py | 11 ++++------- 1 file changed, 4 insertions(+), 7 deletions(-) diff --git a/control/pzmap.py b/control/pzmap.py index d7662d1d9..dd3f9e42b 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -496,7 +496,7 @@ def _find_root_locus_gain(event, sys, ax): # Get the current axis limits to set various thresholds xlim, ylim = ax.get_xlim(), ax.get_ylim() - # Catch type error when event click is in the figure but not in an axis + # Catch type error when event click is in the figure but not on curve try: s = complex(event.xdata, event.ydata) K = -1. / sys(s) @@ -504,11 +504,9 @@ def _find_root_locus_gain(event, sys, ax): complex(event.xdata + 0.05 * abs(xlim[1] - xlim[0]), event.ydata)) K_ylim = -1. / sys( complex(event.xdata, event.ydata + 0.05 * abs(ylim[1] - ylim[0]))) - except TypeError: - K = float('inf') - K_xlim = float('inf') - K_ylim = float('inf') + K, s = float('inf'), None + K_xlim = K_ylim = float('inf') # # Compute tolerances for deciding if we clicked on the root locus @@ -526,9 +524,8 @@ def _find_root_locus_gain(event, sys, ax): if abs(K.real) > 1e-8 and abs(K.imag / K.real) < gain_tolerance and \ event.inaxes == ax.axes and K.real > 0.: return K.real, s - else: - return None, s + return None, None # Mark points corresponding to a given gain on root locus plot From 1964a866c5ab97c6c5b02885346e9a569783d6a1 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 1 Jul 2024 19:37:34 -0700 Subject: [PATCH 084/199] code cleanup --- control/nlsys.py | 60 +++++++++++++++++++----------------------------- 1 file changed, 24 insertions(+), 36 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index d0ad2c661..a6e9043da 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2422,18 +2422,18 @@ def interconnect( elif not found_system: raise ValueError("could not find signal %s" % sname) else: - # TODO: refactor code to remove duplication if isinstance(connection, list): # Passed a list => create input map dprint(f" detected input list") - new_inplist.append([]) + signal_list = [] for spec in connection: isys, indices, gain = _parse_spec(syslist, spec, 'input') for isig in indices: - new_inplist[-1].append((isys, isig, gain)) - dprint(f" adding input {(isys, isig, gain)}") + signal_list.append((isys, isig, gain)) + dprint(f" adding input {(isys, isig, gain)} to list") + new_inplist.append(signal_list) else: - # Passed a single single => single input + # Passed a single signal name => add individual input(s) isys, indices, gain = _parse_spec(syslist, connection, 'input') for isig in indices: new_inplist.append((isys, isig, gain)) @@ -2503,39 +2503,15 @@ def interconnect( elif not found_system: raise ValueError("could not find signal %s" % sname) else: - # TODO: refactor code to remove duplication - if isinstance(connection, list): - # Passed a list => create input map - dprint(f" detected output list") - new_outlist.append([]) - for spec in connection: - try: - # First trying looking in the output signals - osys, indices, gain = _parse_spec( - syslist, spec, 'output') - for osig in indices: - dprint(f" adding output {(osys, osig, gain)}") - new_outlist[-1].append((osys, osig, gain)) - except ValueError: - # If not, see if we can find it in inputs - isys, indices, gain = _parse_spec( - syslist, spec, 'input or output', - dictname='input_index') - for isig in indices: - # Use string form to allow searching input list - dprint(f" adding input {(isys, isig, gain)}") - new_outlist[-1].append( - (syslist[isys].name, - syslist[isys].input_labels[isig], gain)) - else: - spec = connection + # Utility function to find named output or input signal + def _find_output_or_input_signal(spec): + signal_list = [] try: # First trying looking in the output signals - osys, indices, gain = _parse_spec( - syslist, spec, 'output') + osys, indices, gain = _parse_spec(syslist, spec, 'output') for osig in indices: - dprint(f" adding output {(osys, osig, gain)}") - new_outlist.append((osys, osig, gain)) + dprint(f" adding output {(osys, osig, gain)}") + signal_list.append((osys, osig, gain)) except ValueError: # If not, see if we can find it in inputs isys, indices, gain = _parse_spec( @@ -2544,9 +2520,21 @@ def interconnect( for isig in indices: # Use string form to allow searching input list dprint(f" adding input {(isys, isig, gain)}") - new_outlist.append( + signal_list.append( (syslist[isys].name, syslist[isys].input_labels[isig], gain)) + return signal_list + + if isinstance(connection, list): + # Passed a list => create input map + dprint(f" detected output list") + signal_list = [] + for spec in connection: + signal_list += _find_output_or_input_signal(spec) + new_outlist.append(signal_list) + else: + new_outlist += _find_output_or_input_signal(connection) + outlist, outputs = new_outlist, new_outputs dprint(f" {outlist=}\n {outputs=}") From 9a78e33a65ff43b59694dd269b90bd025317806a Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 2 Jul 2024 07:13:06 -0700 Subject: [PATCH 085/199] fix type pointed out by @sawyerbfuller --- control/nlsys.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/nlsys.py b/control/nlsys.py index a6e9043da..c9af0b826 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2100,7 +2100,7 @@ def interconnect( outlist : list of output connections, optional List of connections for how the outputs from the subsystems are - mapped to overall system outputs. The entris for a connection are + mapped to overall system outputs. The entries for a connection are of the form: [output-spec1, output-spec2, ...] From a03ed38c1dbfefe68c084a8239c3465a90e424d4 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Wed, 3 Jul 2024 20:42:18 +0200 Subject: [PATCH 086/199] Fix impuse response, input data only contains one inpute[0]==1 in each trace --- control/timeresp.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/timeresp.py b/control/timeresp.py index 81b2030b3..d4db83812 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -1960,7 +1960,7 @@ def impulse_response(sys, T=None, input=None, output=None, T_num=None, yout[:, inpidx, :] = response.y if output is None \ else response.y[output] xout[:, inpidx, :] = response.x - uout[:, inpidx, :] = U[i] + uout[:, inpidx, :] = U if input is None else U[i] # Figure out if the system is SISO or not issiso = sys.issiso() or (input is not None and output is not None) From 7624aeb774d5aeeefa5224dc5f087a869e4c3bd4 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 10:23:50 +0200 Subject: [PATCH 087/199] Add regression test for discrete impulse response input --- control/tests/timeresp_test.py | 26 ++++++++++++++++++++++++++ 1 file changed, 26 insertions(+) diff --git a/control/tests/timeresp_test.py b/control/tests/timeresp_test.py index bdbbb3e89..73032c0a8 100644 --- a/control/tests/timeresp_test.py +++ b/control/tests/timeresp_test.py @@ -536,6 +536,32 @@ def test_discrete_time_impulse(self, tsystem): sysdt = sys.sample(dt, 'impulse') np.testing.assert_array_almost_equal(impulse_response(sys, t)[1], impulse_response(sysdt, t)[1]) + + def test_discrete_time_impulse_input(self): + # discrete time impulse input, Only one active input for each trace + A = [[.5, 0.25],[.0, .5]] + B = [[1., 0,],[0., 1.]] + C = [[1., 0.],[0., 1.]] + D = [[0., 0.],[0., 0.]] + dt = True + sysd = ct.ss(A,B,C,D, dt=dt) + response = ct.impulse_response(sysd,T=dt*3) + + Uexpected = np.zeros((2,2,4), dtype=float).astype(object) + Uexpected[0,0,0] = 1./dt + Uexpected[1,1,0] = 1./dt + + np.testing.assert_array_equal(response.inputs,Uexpected) + + dt = 0.5 + sysd = ct.ss(A,B,C,D, dt=dt) + response = ct.impulse_response(sysd,T=dt*3) + + Uexpected = np.zeros((2,2,4), dtype=float).astype(object) + Uexpected[0,0,0] = 1./dt + Uexpected[1,1,0] = 1./dt + + np.testing.assert_array_equal(response.inputs,Uexpected) @pytest.mark.parametrize("tsystem", ["siso_ss1"], indirect=True) def test_impulse_response_warnD(self, tsystem): From 584f39d8882fce70ed203acdb2800800b80148c7 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 18:45:59 -0700 Subject: [PATCH 088/199] fixed small indent error --- control/nlsys.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index c9af0b826..a14de1d9c 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2510,8 +2510,8 @@ def _find_output_or_input_signal(spec): # First trying looking in the output signals osys, indices, gain = _parse_spec(syslist, spec, 'output') for osig in indices: - dprint(f" adding output {(osys, osig, gain)}") - signal_list.append((osys, osig, gain)) + dprint(f" adding output {(osys, osig, gain)}") + signal_list.append((osys, osig, gain)) except ValueError: # If not, see if we can find it in inputs isys, indices, gain = _parse_spec( From 10f009b76ffbffe647b9e6582c6075fae5b5cfd6 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 19:20:13 -0700 Subject: [PATCH 089/199] address @slivingston review comments --- control/ctrlplot.py | 2 +- control/nlsys.py | 10 ++++------ doc/conventions.rst | 6 +++--- examples/plot_gallery.py | 5 +++-- 4 files changed, 11 insertions(+), 12 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index de70f96cd..c8c30880d 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -103,7 +103,7 @@ def _make_legend_labels(labels, ignore_common=False): common_prefix = common_prefix[:last_space] prefix_len = len(common_prefix) - # Look for a common suffice (up to a space) + # Look for a common suffix (up to a space) common_suffix = commonprefix( [label[::-1] for label in labels])[::-1] suffix_len = len(common_suffix) diff --git a/control/nlsys.py b/control/nlsys.py index 976dfdc84..d1c816ba8 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1317,7 +1317,7 @@ def nlsys( def input_output_response( - sysdata, T, U=0., X0=0, params=None, ignore_errors=False, + sys, T, U=0., X0=0, params=None, ignore_errors=False, transpose=False, return_x=False, squeeze=None, solve_ivp_kwargs=None, t_eval='T', **kwargs): """Compute the output response of a system to a given input. @@ -1327,7 +1327,7 @@ def input_output_response( Parameters ---------- - sysdata : I/O system or list of I/O systems + sys : NonlinearIOSystem or list of NonlinearIOSystem I/O system(s) for which input/output response is simulated. T : array-like @@ -1449,16 +1449,14 @@ def input_output_response( raise TypeError("unrecognized keyword(s): ", str(kwargs)) # If passed a list, recursively call individual responses with given T - if isinstance(sysdata, (list, tuple)): - responses = [] + if isinstance(sys, (list, tuple)): + sysdata, responses = sys, [] for sys in sysdata: responses.append(input_output_response( sys, T, U=U, X0=X0, params=params, transpose=transpose, return_x=return_x, squeeze=squeeze, t_eval=t_eval, solve_ivp_kwargs=solve_ivp_kwargs, **kwargs)) return TimeResponseList(responses) - else: - sys = sysdata # Sanity checking on the input if not isinstance(sys, NonlinearIOSystem): diff --git a/doc/conventions.rst b/doc/conventions.rst index ad56c0ccc..21f3ab82b 100644 --- a/doc/conventions.rst +++ b/doc/conventions.rst @@ -157,12 +157,12 @@ response from a non-zero initial condition. For linear time invariant (LTI) systems, the :func:`impulse_response`, :func:`initial_response`, and :func:`step_response` functions will automatically compute the time vector based on the poles and zeros of -system. If a list of systems is passed, a common time vector will be +the system. If a list of systems is passed, a common time vector will be computed and a list of responses will be returned in the form of a -:class:`TimeResponseList` object. The :func:`force_response` function can +:class:`TimeResponseList` object. The :func:`forced_response` function can also take a list of systems, to which a single common input is applied. The :class:`TimeResponseList` object has a `plot()` method that will plot -each of the reponses in turn, using a sequence of different colors with +each of the responses in turn, using a sequence of different colors with appropriate titles and legends. In addition the :func:`input_output_response` function, which handles diff --git a/examples/plot_gallery.py b/examples/plot_gallery.py index 214e53289..272de3d8e 100644 --- a/examples/plot_gallery.py +++ b/examples/plot_gallery.py @@ -6,7 +6,7 @@ # used to compare what things look like between different versions of the # library. It is mainly intended for uses by developers to make sure there # are no unexpected changes in plot formats, but also has some interest -# examples of htings you can plot. +# examples of things you can plot. import os import sys @@ -21,9 +21,10 @@ savefigs = 'PYCONTROL_TEST_EXAMPLES' not in os.environ if savefigs: # Create a pdf file for storing the results + import subprocess from matplotlib.backends.backend_pdf import PdfPages from datetime import date - git_info = os.popen('git describe').read().strip() + git_info = subprocess.check_output(['git', 'describe'], text=True).strip() pdf = PdfPages( f'plot_gallery-{git_info}-{date.today().isoformat()}.pdf') From cd87f2f4ce7934720e1b25be59d76b247b154c05 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 15:55:53 +0200 Subject: [PATCH 090/199] Implement ERA, change api to TimeResponseData --- control/modelsimp.py | 108 ++++++++++++++++++++++++++++++++++--------- 1 file changed, 87 insertions(+), 21 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 06c3d350d..11bc16240 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -368,38 +368,104 @@ def minreal(sys, tol=None, verbose=True): return sysr -def era(YY, m, n, nin, nout, r): - """Calculate an ERA model of order `r` based on the impulse-response data - `YY`. +def era(data, r, m=None, n=None, dt=True): + """Calculate an ERA model of order `r` based on the impulse-response data. - .. note:: This function is not implemented yet. + This function computes a discrete time system + + .. math:: + + x[k+1] &= A x[k] + B u[k] \\\\ + y[k] &= C x[k] + D u[k] + + for a given impulse-response data (see [1]_). Parameters ---------- - YY: array - `nout` x `nin` dimensional impulse-response data - m: integer - Number of rows in Hankel matrix - n: integer - Number of columns in Hankel matrix - nin: integer - Number of input variables - nout: integer - Number of output variables - r: integer - Order of model + data : TimeResponseData + impulse-response data from which the StateSpace model is estimated. + r : integer + Order of model. + m : integer, optional + Number of rows in Hankel matrix. + Default is 2*r. + n : integer, optional + Number of columns in Hankel matrix. + Default is 2*r. + dt : True or float, optional + True indicates discrete time with unspecified sampling time, + positive number is discrete time with specified sampling time. + It can be used to scale the StateSpace model in order to match + the impulse response of this library. + Default values is True. Returns ------- - sys: StateSpace - A reduced order model sys=ss(Ar,Br,Cr,Dr) + sys : StateSpace + A reduced order model sys=StateSpace(Ar,Br,Cr,Dr,dt) + S : array + Singular values of Hankel matrix. + Can be used to choose a good r value. + + References + ---------- + .. [1] Samet Oymak and Necmiye Ozay + Non-asymptotic Identification of LTI Systems + from a Single Trajectory. + https://arxiv.org/abs/1806.05722 Examples -------- - >>> rsys = era(YY, m, n, nin, nout, r) # doctest: +SKIP - + >>> T = np.linspace(0, 10, 100) + >>> response = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) + >>> sysd, _ = ct.era(response, r=1) """ - raise NotImplementedError('This function is not implemented yet.') + def block_hankel_matrix(Y, m, n): + + q, p, _ = Y.shape + YY = Y.transpose(0,2,1) # transpose for reshape + + H = np.zeros((q*m,p*n)) + + for r in range(m): + # shift and add row to hankel matrix + new_row = YY[:,r:r+n,:] + H[q*r:q*(r+1),:] = new_row.reshape((q,p*n)) + + return H + + Y = np.array(data.outputs, ndmin=3) + if data.transpose: + Y = np.transpose(Y) + q, p, l = Y.shape + + if m is None: + m = 2*r + if n is None: + n = 2*r + + if m*q < r or n*p < r: + raise ValueError("Hankel parameters are to small") + + if (l-1) < m+n: + raise ValueError("Not enough data for requested number of parameters") + + H = block_hankel_matrix(Y[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) + Hf = H[:,:-p] # first p*n columns of H + Hl = H[:,p:] # last p*n columns of H + + U,S,Vh = np.linalg.svd(Hf, True) + Ur =U[:,0:r] + Vhr =Vh[0:r,:] + + # balanced realizations + Sigma_inv = np.diag(1./np.sqrt(S[0:r])) + Ar = Sigma_inv @ Ur.T @ Hl @ Vhr.T @ Sigma_inv + Br = Sigma_inv @ Ur.T @ Hf[:,0:p]*dt + Cr = Hf[0:q,:] @ Vhr.T @ Sigma_inv + Dr = Y[:,:,0] + + return StateSpace(Ar,Br,Cr,Dr,dt), S def markov(Y, U, m=None, transpose=False): From 8a9c4974ddb5453b51569d16039816b5824d334c Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 19:01:31 +0200 Subject: [PATCH 091/199] Add era example --- examples/era_mkd.py | 64 +++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 64 insertions(+) create mode 100644 examples/era_mkd.py diff --git a/examples/era_mkd.py b/examples/era_mkd.py new file mode 100644 index 000000000..e8486de40 --- /dev/null +++ b/examples/era_mkd.py @@ -0,0 +1,64 @@ +# mkd_era.py +# Johannes Kaisinger, 4 July 2024 +# +# Demonstrate estimation of markov parameters. +# SISO, SIMO, MISO, MIMO case + + +import numpy as np +import matplotlib.pyplot as plt +import os + + +import control as ct + + +# set up a mass spring damper system (2dof, MIMO case) +# m q_dd + c q_d + k q = u +m1, k1, c1 = 1., 1., .1 +m2, k2, c2 = 2., .5, .1 +k3, c3 = .5, .1 + +A = np.array([ + [0., 0., 1., 0.], + [0., 0., 0., 1.], + [-(k1+k2)/m1, (k2)/m1, -(c1+c2)/m1, c2/m1], + [(k2)/m2, -(k2+k3)/m2, c2/m2, -(c2+c3)/m2] +]) +B = np.array([[0.,0.],[0.,0.],[1/m1,0.],[0.,1/m2]]) +C = np.array([[1.0, 0.0, 0.0, 0.0],[0.0, 1.0, 0.0, 0.0]]) +D = np.zeros((2,2)) + +xixo_list = ["SISO","SIMO","MISO","MIMO"] +xixo = xixo_list[3] # choose a system for estimation +match xixo: + case "SISO": + sys = ct.StateSpace(A, B[:,0], C[0,:], D[0,0]) + case "SIMO": + sys = ct.StateSpace(A, B[:,:1], C, D[:,:1]) + case "MISO": + sys = ct.StateSpace(A, B, C[:1,:], D[:1,:]) + case "MIMO": + sys = ct.StateSpace(A, B, C, D) + + +dt = 0.5 +sysd = sys.sample(dt, method='zoh') +response = ct.impulse_response(sysd) +response.plot() +plt.show() + +sysd_est, _ = ct.era(response,r=4,dt=dt) + +step_true = ct.step_response(sysd) +step_est = ct.step_response(sysd_est) + +step_true.plot(title=xixo) +step_est.plot(color='orange',linestyle='dashed') + +plt.show() + + +if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: + + plt.show() \ No newline at end of file From 562824c1c87e962ea34cdd6193aeaa87ace6fc51 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 19:05:56 +0200 Subject: [PATCH 092/199] Rename era example file name, small clean up --- examples/{era_mkd.py => era_msd.py} | 9 ++------- 1 file changed, 2 insertions(+), 7 deletions(-) rename examples/{era_mkd.py => era_msd.py} (94%) diff --git a/examples/era_mkd.py b/examples/era_msd.py similarity index 94% rename from examples/era_mkd.py rename to examples/era_msd.py index e8486de40..f33a27a35 100644 --- a/examples/era_mkd.py +++ b/examples/era_msd.py @@ -1,18 +1,15 @@ -# mkd_era.py +# era_msd.py # Johannes Kaisinger, 4 July 2024 # -# Demonstrate estimation of markov parameters. +# Demonstrate estimation of State Space model from impulse response. # SISO, SIMO, MISO, MIMO case - import numpy as np import matplotlib.pyplot as plt import os - import control as ct - # set up a mass spring damper system (2dof, MIMO case) # m q_dd + c q_d + k q = u m1, k1, c1 = 1., 1., .1 @@ -58,7 +55,5 @@ plt.show() - if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: - plt.show() \ No newline at end of file From 6bbad5f1e61d31d81c36ca57834cdf2acc9f5d1d Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 19:18:36 +0200 Subject: [PATCH 093/199] Add era example to doc --- doc/era_msd.py | 1 + doc/era_msd.rst | 15 +++++++++++++++ doc/examples.rst | 1 + 3 files changed, 17 insertions(+) create mode 120000 doc/era_msd.py create mode 100644 doc/era_msd.rst diff --git a/doc/era_msd.py b/doc/era_msd.py new file mode 120000 index 000000000..0cf6a5282 --- /dev/null +++ b/doc/era_msd.py @@ -0,0 +1 @@ +../examples/era_msd.py \ No newline at end of file diff --git a/doc/era_msd.rst b/doc/era_msd.rst new file mode 100644 index 000000000..de702406e --- /dev/null +++ b/doc/era_msd.rst @@ -0,0 +1,15 @@ +ERA example, mass spring damper system +-------------------------------------- + +Code +.... +.. literalinclude:: era_msd.py + :language: python + :linenos: + + +Notes +..... + +1. The environment variable `PYCONTROL_TEST_EXAMPLES` is used for +testing to turn off plotting of the outputs.0 \ No newline at end of file diff --git a/doc/examples.rst b/doc/examples.rst index 21364157e..25e161159 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -35,6 +35,7 @@ other sources. kincar-flatsys mrac_siso_mit mrac_siso_lyapunov + era_msd Jupyter notebooks ================= From 614a0808a452c6658de58f869bb5eb1af383c35a Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Sun, 7 Jul 2024 19:09:12 +0200 Subject: [PATCH 094/199] Change API to work with TimeResponseData and ndarray as input, add pytest, fix small things --- control/modelsimp.py | 47 +++++++++++++++---- control/tests/modelsimp_test.py | 83 ++++++++++++++++++++++++++++++++- examples/era_msd.py | 14 ++++-- 3 files changed, 128 insertions(+), 16 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 11bc16240..d3d934668 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -48,6 +48,7 @@ from .iosys import isdtime, isctime from .statesp import StateSpace from .statefbk import gram +from .timeresp import TimeResponseData __all__ = ['hsvd', 'balred', 'modred', 'era', 'markov', 'minreal'] @@ -368,8 +369,10 @@ def minreal(sys, tol=None, verbose=True): return sysr -def era(data, r, m=None, n=None, dt=True): - """Calculate an ERA model of order `r` based on the impulse-response data. +def era(arg, r, m=None, n=None, dt=True, transpose=False): + r"""era(YY, r) + + Calculate an ERA model of order `r` based on the impulse-response data. This function computes a discrete time system @@ -380,8 +383,19 @@ def era(data, r, m=None, n=None, dt=True): for a given impulse-response data (see [1]_). + The function can be called with 2 arguments: + + * ``sysd, S = era(data, r)`` + * ``sysd, S = era(YY, r)`` + + where `response` is an `TimeResponseData` object, and `YY` is 1D or 3D + array and r is an integer. + Parameters ---------- + YY : array_like + impulse-response data from which the StateSpace model is estimated, + 1D or 3D array. data : TimeResponseData impulse-response data from which the StateSpace model is estimated. r : integer @@ -398,11 +412,16 @@ def era(data, r, m=None, n=None, dt=True): It can be used to scale the StateSpace model in order to match the impulse response of this library. Default values is True. + transpose : bool, optional + Assume that input data is transposed relative to the standard + :ref:`time-series-convention`. For TimeResponseData this parameter + is ignored. + Default value is False. Returns ------- sys : StateSpace - A reduced order model sys=StateSpace(Ar,Br,Cr,Dr,dt) + A reduced order model sys=StateSpace(Ar,Br,Cr,Dr,dt). S : array Singular values of Hankel matrix. Can be used to choose a good r value. @@ -416,6 +435,10 @@ def era(data, r, m=None, n=None, dt=True): Examples -------- + >>> T = np.linspace(0, 10, 100) + >>> _, YY = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) + >>> sysd, _ = ct.era(YY, r=1) + >>> T = np.linspace(0, 10, 100) >>> response = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) >>> sysd, _ = ct.era(response, r=1) @@ -434,10 +457,16 @@ def block_hankel_matrix(Y, m, n): return H - Y = np.array(data.outputs, ndmin=3) - if data.transpose: - Y = np.transpose(Y) - q, p, l = Y.shape + if isinstance(arg, TimeResponseData): + YY = np.array(arg.outputs, ndmin=3) + if arg.transpose: + YY = np.transpose(YY) + else: + YY = np.array(arg, ndmin=3) + if transpose: + YY = np.transpose(YY) + + q, p, l = YY.shape if m is None: m = 2*r @@ -450,7 +479,7 @@ def block_hankel_matrix(Y, m, n): if (l-1) < m+n: raise ValueError("Not enough data for requested number of parameters") - H = block_hankel_matrix(Y[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) + H = block_hankel_matrix(YY[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) Hf = H[:,:-p] # first p*n columns of H Hl = H[:,p:] # last p*n columns of H @@ -463,7 +492,7 @@ def block_hankel_matrix(Y, m, n): Ar = Sigma_inv @ Ur.T @ Hl @ Vhr.T @ Sigma_inv Br = Sigma_inv @ Ur.T @ Hf[:,0:p]*dt Cr = Hf[0:q,:] @ Vhr.T @ Sigma_inv - Dr = Y[:,:,0] + Dr = YY[:,:,0] return StateSpace(Ar,Br,Cr,Dr,dt), S diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 49c2afd58..39277fb4f 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -7,10 +7,10 @@ import pytest -from control import StateSpace, forced_response, tf, rss, c2d +from control import StateSpace, impulse_response, step_response, forced_response, tf, rss, c2d from control.exception import ControlMIMONotImplemented from control.tests.conftest import slycotonly -from control.modelsimp import balred, hsvd, markov, modred +from control.modelsimp import balred, hsvd, markov, modred, era class TestModelsimp: @@ -111,6 +111,85 @@ def testMarkovResults(self, k, m, n): # for k=5, m=n=10: 0.015 % np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) + def testERASignature(self): + + # test siso + # Katayama, Subspace Methods for System Identification + # Example 6.1, Fibonacci sequence + H_true = np.array([0.,1.,1.,2.,3.,5.,8.,13.,21.,34.]) + + # A realization of fibonacci impulse response + A = np.array([[0., 1.],[1., 1.,]]) + B = np.array([[1.],[1.,]]) + C = np.array([[1., 0.,]]) + D = np.array([[0.,]]) + + T = np.arange(0,10,1) + sysd_true = StateSpace(A,B,C,D,True) + ir_true = impulse_response(sysd_true,T=T) + + # test TimeResponseData + sysd_est, _ = era(ir_true,r=2) + ir_est = impulse_response(sysd_est, T=T) + _, H_est = ir_est + + np.testing.assert_allclose(H_true, H_est, rtol=1e-6, atol=1e-8) + + # test ndarray + _, YY_true = ir_true + sysd_est, _ = era(YY_true,r=2) + ir_est = impulse_response(sysd_est, T=T) + _, H_est = ir_est + + np.testing.assert_allclose(H_true, H_est, rtol=1e-6, atol=1e-8) + + # test mimo + # Mechanical Vibrations: Theory and Application, SI Edition, 1st ed. + # Figure 6.5 / Example 6.7 + # m q_dd + c q_d + k q = f + m1, k1, c1 = 1., 4., 1. + m2, k2, c2 = 2., 2., 1. + k3, c3 = 6., 2. + + A = np.array([ + [0., 0., 1., 0.], + [0., 0., 0., 1.], + [-(k1+k2)/m1, (k2)/m1, -(c1+c2)/m1, c2/m1], + [(k2)/m2, -(k2+k3)/m2, c2/m2, -(c2+c3)/m2] + ]) + B = np.array([[0.,0.],[0.,0.],[1/m1,0.],[0.,1/m2]]) + C = np.array([[1.0, 0.0, 0.0, 0.0],[0.0, 1.0, 0.0, 0.0]]) + D = np.zeros((2,2)) + + sys = StateSpace(A, B, C, D) + + dt = 0.1 + T = np.arange(0,10,dt) + sysd_true = sys.sample(dt, method='zoh') + ir_true = impulse_response(sysd_true, T=T) + + # test TimeResponseData + sysd_est, _ = era(ir_true,r=4,dt=dt) + + step_true = step_response(sysd_true) + step_est = step_response(sysd_est) + + np.testing.assert_allclose(step_true.outputs, + step_est.outputs, + rtol=1e-6, atol=1e-8) + + # test ndarray + _, YY_true = ir_true + sysd_est, _ = era(YY_true,r=4,dt=dt) + + step_true = step_response(sysd_true, T=T) + step_est = step_response(sysd_est, T=T) + + np.testing.assert_allclose(step_true.outputs, + step_est.outputs, + rtol=1e-6, atol=1e-8) + + def testModredMatchDC(self): #balanced realization computed in matlab for the transfer function: # num = [1 11 45 32], den = [1 15 60 200 60] diff --git a/examples/era_msd.py b/examples/era_msd.py index f33a27a35..9a5fc8c4d 100644 --- a/examples/era_msd.py +++ b/examples/era_msd.py @@ -11,10 +11,12 @@ import control as ct # set up a mass spring damper system (2dof, MIMO case) -# m q_dd + c q_d + k q = u -m1, k1, c1 = 1., 1., .1 -m2, k2, c2 = 2., .5, .1 -k3, c3 = .5, .1 +# Mechanical Vibrations: Theory and Application, SI Edition, 1st ed. +# Figure 6.5 / Example 6.7 +# m q_dd + c q_d + k q = f +m1, k1, c1 = 1., 4., 1. +m2, k2, c2 = 2., 2., 1. +k3, c3 = 6., 2. A = np.array([ [0., 0., 1., 0.], @@ -39,7 +41,7 @@ sys = ct.StateSpace(A, B, C, D) -dt = 0.5 +dt = 0.1 sysd = sys.sample(dt, method='zoh') response = ct.impulse_response(sysd) response.plot() @@ -48,7 +50,9 @@ sysd_est, _ = ct.era(response,r=4,dt=dt) step_true = ct.step_response(sysd) +step_true.sysname="H_true" step_est = ct.step_response(sysd_est) +step_est.sysname="H_est" step_true.plot(title=xixo) step_est.plot(color='orange',linestyle='dashed') From 88e2945e867c857beacb274dddc0810381d4ccaa Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Mon, 8 Jul 2024 22:51:16 -0700 Subject: [PATCH 095/199] address @roryyorke review comments --- control/bdalg.py | 90 ++++++++++++++++++++++++++++++++++++++++++------ control/iosys.py | 29 +++++++++------- control/nlsys.py | 2 ++ 3 files changed, 99 insertions(+), 22 deletions(-) diff --git a/control/bdalg.py b/control/bdalg.py index 35b030d15..7bfd327eb 100644 --- a/control/bdalg.py +++ b/control/bdalg.py @@ -81,6 +81,20 @@ def series(sys1, *sysn, **kwargs): out : scalar, array, or :class:`InputOutputSystem` Series interconnection of the systems. + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals. If not given, + signal names will be of the form `s[i]` (where `s` is one of `u`, + or `y`). See :class:`InputOutputSystem` for more information. + states : str, or list of str, optional + List of names for system states. If not given, state names will be + of of the form `x[i]` for interconnections of linear systems or + '.' for interconnected nonlinear systems. + name : string, optional + System name (used for specifying signals). If unspecified, a generic + name is generated with a unique integer id. + Raises ------ ValueError @@ -139,6 +153,20 @@ def parallel(sys1, *sysn, **kwargs): out : scalar, array, or :class:`InputOutputSystem` Parallel interconnection of the systems. + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals. If not given, + signal names will be of the form `s[i]` (where `s` is one of `u`, + or `y`). See :class:`InputOutputSystem` for more information. + states : str, or list of str, optional + List of names for system states. If not given, state names will be + of of the form `x[i]` for interconnections of linear systems or + '.' for interconnected nonlinear systems. + name : string, optional + System name (used for specifying signals). If unspecified, a generic + name is generated with a unique integer id. + Raises ------ ValueError @@ -193,15 +221,29 @@ def negate(sys, **kwargs): out : scalar, array, or :class:`InputOutputSystem` Negated system. - Notes - ----- - This function is a wrapper for the __neg__ function in the StateSpace and - TransferFunction classes. The output type is the same as the input type. + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals. If not given, + signal names will be of the form `s[i]` (where `s` is one of `u`, + or `y`). See :class:`InputOutputSystem` for more information. + states : str, or list of str, optional + List of names for system states. If not given, state names will be + of of the form `x[i]` for interconnections of linear systems or + '.' for interconnected nonlinear systems. + name : string, optional + System name (used for specifying signals). If unspecified, a generic + name is generated with a unique integer id. See Also -------- append, feedback, interconnect, parallel, series + Notes + ----- + This function is a wrapper for the __neg__ function in the StateSpace and + TransferFunction classes. The output type is the same as the input type. + Examples -------- >>> G = ct.tf([2], [1, 1]) @@ -235,6 +277,20 @@ def feedback(sys1, sys2=1, sign=-1, **kwargs): out : scalar, array, or :class:`InputOutputSystem` Feedback interconnection of the systems. + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals. If not given, + signal names will be of the form `s[i]` (where `s` is one of `u`, + or `y`). See :class:`InputOutputSystem` for more information. + states : str, or list of str, optional + List of names for system states. If not given, state names will be + of of the form `x[i]` for interconnections of linear systems or + '.' for interconnected nonlinear systems. + name : string, optional + System name (used for specifying signals). If unspecified, a generic + name is generated with a unique integer id. + Raises ------ ValueError @@ -307,6 +363,20 @@ def append(*sys, **kwargs): sys1, sys2, ..., sysn: scalar, array, or :class:`StateSpace` I/O systems to combine. + Other Parameters + ---------------- + inputs, outputs : str, or list of str, optional + List of strings that name the individual signals. If not given, + signal names will be of the form `s[i]` (where `s` is one of `u`, + or `y`). See :class:`InputOutputSystem` for more information. + states : str, or list of str, optional + List of names for system states. If not given, state names will be + of of the form `x[i]` for interconnections of linear systems or + '.' for interconnected nonlinear systems. + name : string, optional + System name (used for specifying signals). If unspecified, a generic + name is generated with a unique integer id. + Returns ------- out: :class:`StateSpace` @@ -379,6 +449,12 @@ def connect(sys, Q, inputv, outputv): -------- append, feedback, interconnect, negate, parallel, series + Notes + ----- + The :func:`~control.interconnect` function in the :ref:`input/output + systems ` module allows the use of named signals and + provides an alternative method for interconnecting multiple systems. + Examples -------- >>> G = ct.rss(7, inputs=2, outputs=2) @@ -387,12 +463,6 @@ def connect(sys, Q, inputv, outputv): >>> T.ninputs, T.noutputs, T.nstates (1, 2, 7) - Notes - ----- - The :func:`~control.interconnect` function in the :ref:`input/output - systems ` module allows the use of named signals and - provides an alternative method for interconnecting multiple systems. - """ # TODO: maintain `connect` for use in MATLAB submodule (?) warn("`connect` is deprecated; use `interconnect`", DeprecationWarning) diff --git a/control/iosys.py b/control/iosys.py index d180a24e4..d00dade65 100644 --- a/control/iosys.py +++ b/control/iosys.py @@ -368,33 +368,40 @@ def find_states(self, name_list): lambda self: list(self.state_index.keys()), # getter set_states) # setter + # TODO: add dict as a means to selective change names? [GH #1019] def update_names(self, **kwargs): - """Update signal and system names for an I/O system. + """update_names([name, inputs, outputs, states]) + + Update signal and system names for an I/O system. Parameters ---------- - inputs : int, list of str, or None - Description of the system inputs. - outputs : int, list of str, or None - Description of the system outputs. - states : int, list of str, or None - Description of the system states. + name : str, optional + New system name. + inputs : list of str, int, or None, optional + List of strings that name the individual input signals. If + given as an integer or None, signal names default to the form + `u[i]`. See :class:`InputOutputSystem` for more information. + outputs : list of str, int, or None, optional + Description of output signals; defaults to `y[i]`. + states : int, list of str, int, or None, optional + Description of system states; defaults to `x[i]`. """ self.name = kwargs.pop('name', self.name) - if kwargs.get('inputs', None): + if 'inputs' in kwargs: ninputs, input_index = _process_signal_list( kwargs.pop('inputs'), prefix=kwargs.pop('input_prefix', 'u')) if self.ninputs and self.ninputs != ninputs: raise ValueError("number of inputs does not match system size") self.input_index = input_index - if kwargs.get('outputs', None): + if 'outputs' in kwargs: noutputs, output_index = _process_signal_list( kwargs.pop('outputs'), prefix=kwargs.pop('output_prefix', 'y')) if self.noutputs and self.noutputs != noutputs: raise ValueError("number of outputs does not match system size") self.output_index = output_index - if kwargs.get('states', None): + if 'states' in kwargs: nstates, state_index = _process_signal_list( kwargs.pop('states'), prefix=kwargs.pop('state_prefix', 'x')) if self.nstates != nstates: @@ -863,8 +870,6 @@ def _process_labels(labels, name, default): # This function returns the subsystem index, a list of indices for the # system signals, and the gain to use for that set of signals. # -import re - def _parse_spec(syslist, spec, signame, dictname=None): """Parse a signal specification, returning system and signal index.""" diff --git a/control/nlsys.py b/control/nlsys.py index 08dfba1a1..9528eb28b 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -2585,6 +2585,8 @@ def _process_vector_argument(arg, name, size): val = np.array(val_list) elif np.isscalar(arg) and size is not None: # extend scalars val = np.ones((size, )) * arg + elif np.isscalar(arg) and size is None: # single scalar + val = np.array([arg]) elif isinstance(arg, np.ndarray): val = arg.reshape(-1) # convert to 1D array else: From 8e123aab0a8c6803728ef322b31c618191295f5f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 9 Jul 2024 07:12:47 -0700 Subject: [PATCH 096/199] fix typos pointed out by @slivingston --- control/nlsys.py | 2 +- doc/iosys.rst | 8 ++++---- 2 files changed, 5 insertions(+), 5 deletions(-) diff --git a/control/nlsys.py b/control/nlsys.py index 9528eb28b..139853fe6 100644 --- a/control/nlsys.py +++ b/control/nlsys.py @@ -1462,7 +1462,7 @@ def input_output_response( # Process input argument # # The input argument is interpreted very flexibly, allowing the - # use of listsa and/or tuples of mixed scalar and vector elements. + # use of lists and/or tuples of mixed scalar and vector elements. # # Much of the processing here is similar to the processing in # _process_vector_argument, but applied to a time series. diff --git a/doc/iosys.rst b/doc/iosys.rst index 6f7051a95..eb4311e05 100644 --- a/doc/iosys.rst +++ b/doc/iosys.rst @@ -216,7 +216,7 @@ is done: * Vector elements are zero padded to the required length. If you specify only a portion of the values for states or inputs, the remaining values are taken as zero. (If the final element in the - given vector is non-zero, a warning is issues.) + given vector is non-zero, a warning is issued.) Similar processing is done for input time series, used for the :func:`~control.input_output_response` and @@ -251,16 +251,16 @@ In this command, the states and the inputs are broadcast to the size of the state and input vectors, respectively. If we want to linearize the closed loop system around a process state -``x0`` (with two elemenst) and an estimator state ``0`` (for both states), +``x0`` (with two elements) and an estimator state ``0`` (for both states), we can use the list processing feature:: - H = clsys.liniearize([x0, 0], 0) + H = clsys.linearize([x0, 0], 0) Note that this also utilizes the zero-padding functionality, since the second argument in the list ``[x0, 0]`` is a scalar and so the vector ``[x0, 0]`` only has three elements instead of the required four. -To run an input/output simulation with a sinsoidal signal for the first +To run an input/output simulation with a sinusoidal signal for the first input, a constant for the second input, and no external disturbance, we can use the list processing feature combined with time series broadcasting:: From 234e6ec77c29c677289f37fcccc54ce6ec4fb726 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 27 Jun 2024 15:34:49 -0700 Subject: [PATCH 097/199] move code around to new locations --- control/ctrlplot.py | 232 ++++++++++++++++++++++++++++++++- control/freqplot.py | 215 +----------------------------- control/nichols.py | 5 +- control/phaseplot.py | 2 +- control/pzmap.py | 3 +- control/tests/ctrlplot_test.py | 42 ++++++ control/tests/timeplot_test.py | 35 ----- control/timeplot.py | 17 +-- 8 files changed, 281 insertions(+), 270 deletions(-) create mode 100644 control/tests/ctrlplot_test.py diff --git a/control/ctrlplot.py b/control/ctrlplot.py index c8c30880d..e53d4917e 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -5,6 +5,7 @@ from os.path import commonprefix +import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np @@ -12,6 +13,28 @@ __all__ = ['suptitle', 'get_plot_axes'] +# +# Style parameters +# + +_ctrlplot_rcParams = mpl.rcParams.copy() +_ctrlplot_rcParams.update({ + 'axes.labelsize': 'small', + 'axes.titlesize': 'small', + 'figure.titlesize': 'medium', + 'legend.fontsize': 'x-small', + 'xtick.labelsize': 'small', + 'ytick.labelsize': 'small', +}) + + +# +# User functions +# +# The functions below can be used by users to modify ctrl plots or get +# information about them. +# + def suptitle( title, fig=None, frame='axes', **kwargs): @@ -35,7 +58,7 @@ def suptitle( Additional keywords (passed to matplotlib). """ - rcParams = config._get_param('freqplot', 'rcParams', kwargs, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) if fig is None: fig = plt.gcf() @@ -61,10 +84,10 @@ def suptitle( def get_plot_axes(line_array): """Get a list of axes from an array of lines. - This function can be used to return the set of axes corresponding to - the line array that is returned by `time_response_plot`. This is useful for - generating an axes array that can be passed to subsequent plotting - calls. + This function can be used to return the set of axes corresponding + to the line array that is returned by `time_response_plot`. This + is useful for generating an axes array that can be passed to + subsequent plotting calls. Parameters ---------- @@ -89,6 +112,125 @@ def get_plot_axes(line_array): # # Utility functions # +# These functions are used by plotting routines to provide a consistent way +# of processing and displaing information. +# + + +def _process_ax_keyword( + axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False): + """Utility function to process ax keyword to plotting commands. + + This function processes the `ax` keyword to plotting commands. If no + ax keyword is passed, the current figure is checked to see if it has + the correct shape. If the shape matches the desired shape, then the + current figure and axes are returned. Otherwise a new figure is + created with axes of the desired shape. + + Legacy behavior: some of the older plotting commands use a axes label + to identify the proper axes for plotting. This behavior is supported + through the use of the label keyword, but will only work if shape == + (1, 1) and squeeze == True. + + """ + if axs is None: + fig = plt.gcf() # get current figure (or create new one) + axs = fig.get_axes() + + # Check to see if axes are the right shape; if not, create new figure + # Note: can't actually check the shape, just the total number of axes + if len(axs) != np.prod(shape): + with plt.rc_context(rcParams): + if len(axs) != 0: + # Create a new figure + fig, axs = plt.subplots(*shape, squeeze=False) + else: + # Create new axes on (empty) figure + axs = fig.subplots(*shape, squeeze=False) + fig.set_layout_engine('tight') + fig.align_labels() + else: + # Use the existing axes, properly reshaped + axs = np.asarray(axs).reshape(*shape) + + if clear_text: + # Clear out any old text from the current figure + for text in fig.texts: + text.set_visible(False) # turn off the text + del text # get rid of it completely + else: + try: + axs = np.asarray(axs).reshape(shape) + except ValueError: + raise ValueError( + "specified axes are not the right shape; " + f"got {axs.shape} but expecting {shape}") + fig = axs[0, 0].figure + + # Process the squeeze keyword + if squeeze and shape == (1, 1): + axs = axs[0, 0] # Just return the single axes object + elif squeeze: + axs = axs.squeeze() + + return fig, axs + + +# Turn label keyword into array indexed by trace, output, input +# TODO: move to ctrlutil.py and update parameter names to reflect general use +def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): + if label is None: + return None + + if isinstance(label, str): + label = [label] * ntraces # single label for all traces + + # Convert to an ndarray, if not done aleady + try: + line_labels = np.asarray(label) + except ValueError: + raise ValueError("label must be a string or array_like") + + # Turn the data into a 3D array of appropriate shape + # TODO: allow more sophisticated broadcasting (and error checking) + try: + if ninputs > 0 and noutputs > 0: + if line_labels.ndim == 1 and line_labels.size == ntraces: + line_labels = line_labels.reshape(ntraces, 1, 1) + line_labels = np.broadcast_to( + line_labels, (ntraces, ninputs, noutputs)) + else: + line_labels = line_labels.reshape(ntraces, ninputs, noutputs) + except ValueError: + if line_labels.shape[0] != ntraces: + raise ValueError("number of labels must match number of traces") + else: + raise ValueError("labels must be given for each input/output pair") + + return line_labels + + +# Get labels for all lines in an axes +def _get_line_labels(ax, use_color=True): + labels, lines = [], [] + last_color, counter = None, 0 # label unknown systems + for i, line in enumerate(ax.get_lines()): + label = line.get_label() + if use_color and label.startswith("Unknown"): + label = f"Unknown-{counter}" + if last_color is None: + last_color = line.get_color() + elif last_color != line.get_color(): + counter += 1 + last_color = line.get_color() + elif label[0] == '_': + continue + + if label not in labels: + lines.append(line) + labels.append(label) + + return lines, labels # Utility function to make legend labels @@ -160,3 +302,83 @@ def _find_axes_center(fig, axs): ylim = [min(ll[1], ylim[0]), max(ur[1], ylim[1])] return (np.sum(xlim)/2, np.sum(ylim)/2) + + +# Internal function to add arrows to a curve +def _add_arrows_to_line2D( + axes, line, arrow_locs=[0.2, 0.4, 0.6, 0.8], + arrowstyle='-|>', arrowsize=1, dir=1): + """ + Add arrows to a matplotlib.lines.Line2D at selected locations. + + Parameters: + ----------- + axes: Axes object as returned by axes command (or gca) + line: Line2D object as returned by plot command + arrow_locs: list of locations where to insert arrows, % of total length + arrowstyle: style of the arrow + arrowsize: size of the arrow + + Returns: + -------- + arrows: list of arrows + + Based on https://stackoverflow.com/questions/26911898/ + + """ + # Get the coordinates of the line, in plot coordinates + if not isinstance(line, mpl.lines.Line2D): + raise ValueError("expected a matplotlib.lines.Line2D object") + x, y = line.get_xdata(), line.get_ydata() + + # Determine the arrow properties + arrow_kw = {"arrowstyle": arrowstyle} + + color = line.get_color() + use_multicolor_lines = isinstance(color, np.ndarray) + if use_multicolor_lines: + raise NotImplementedError("multicolor lines not supported") + else: + arrow_kw['color'] = color + + linewidth = line.get_linewidth() + if isinstance(linewidth, np.ndarray): + raise NotImplementedError("multiwidth lines not supported") + else: + arrow_kw['linewidth'] = linewidth + + # Figure out the size of the axes (length of diagonal) + xlim, ylim = axes.get_xlim(), axes.get_ylim() + ul, lr = np.array([xlim[0], ylim[0]]), np.array([xlim[1], ylim[1]]) + diag = np.linalg.norm(ul - lr) + + # Compute the arc length along the curve + s = np.cumsum(np.sqrt(np.diff(x) ** 2 + np.diff(y) ** 2)) + + # Truncate the number of arrows if the curve is short + # TODO: figure out a smarter way to do this + frac = min(s[-1] / diag, 1) + if len(arrow_locs) and frac < 0.05: + arrow_locs = [] # too short; no arrows at all + elif len(arrow_locs) and frac < 0.2: + arrow_locs = [0.5] # single arrow in the middle + + # Plot the arrows (and return list if patches) + arrows = [] + for loc in arrow_locs: + n = np.searchsorted(s, s[-1] * loc) + + if dir == 1 and n == 0: + # Move the arrow forward by one if it is at start of a segment + n = 1 + + # Place the head of the arrow at the desired location + arrow_head = [x[n], y[n]] + arrow_tail = [x[n - dir], y[n - dir]] + + p = mpl.patches.FancyArrowPatch( + arrow_tail, arrow_head, transform=axes.transData, lw=0, + **arrow_kw) + axes.add_patch(p) + arrows.append(p) + return arrows diff --git a/control/freqplot.py b/control/freqplot.py index 5ff690450..277de8a54 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -19,8 +19,9 @@ from . import config from .bdalg import feedback -from .ctrlplot import suptitle, _find_axes_center, _make_legend_labels, \ - _update_suptitle +from .ctrlplot import _add_arrows_to_line2D, _ctrlplot_rcParams, \ + _find_axes_center, _get_line_labels, _make_legend_labels, \ + _process_ax_keyword, _process_line_labels, _update_suptitle, suptitle from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData @@ -34,21 +35,9 @@ 'singular_values_plot', 'gangof4_plot', 'gangof4_response', 'bode', 'nyquist', 'gangof4'] -# Default font dictionary -# TODO: move common plotting params to 'ctrlplot' -_freqplot_rcParams = mpl.rcParams.copy() -_freqplot_rcParams.update({ - 'axes.labelsize': 'small', - 'axes.titlesize': 'small', - 'figure.titlesize': 'medium', - 'legend.fontsize': 'x-small', - 'xtick.labelsize': 'small', - 'ytick.labelsize': 'small', -}) - # Default values for module parameter variables _freqplot_defaults = { - 'freqplot.rcParams': _freqplot_rcParams, + 'freqplot.rcParams': _ctrlplot_rcParams, 'freqplot.feature_periphery_decades': 1, 'freqplot.number_of_samples': 1000, 'freqplot.dB': False, # Plot gain in dB @@ -1937,86 +1926,6 @@ def _parse_linestyle(style_name, allow_false=False): return out -# Internal function to add arrows to a curve -def _add_arrows_to_line2D( - axes, line, arrow_locs=[0.2, 0.4, 0.6, 0.8], - arrowstyle='-|>', arrowsize=1, dir=1): - """ - Add arrows to a matplotlib.lines.Line2D at selected locations. - - Parameters: - ----------- - axes: Axes object as returned by axes command (or gca) - line: Line2D object as returned by plot command - arrow_locs: list of locations where to insert arrows, % of total length - arrowstyle: style of the arrow - arrowsize: size of the arrow - - Returns: - -------- - arrows: list of arrows - - Based on https://stackoverflow.com/questions/26911898/ - - """ - # Get the coordinates of the line, in plot coordinates - if not isinstance(line, mpl.lines.Line2D): - raise ValueError("expected a matplotlib.lines.Line2D object") - x, y = line.get_xdata(), line.get_ydata() - - # Determine the arrow properties - arrow_kw = {"arrowstyle": arrowstyle} - - color = line.get_color() - use_multicolor_lines = isinstance(color, np.ndarray) - if use_multicolor_lines: - raise NotImplementedError("multicolor lines not supported") - else: - arrow_kw['color'] = color - - linewidth = line.get_linewidth() - if isinstance(linewidth, np.ndarray): - raise NotImplementedError("multiwidth lines not supported") - else: - arrow_kw['linewidth'] = linewidth - - # Figure out the size of the axes (length of diagonal) - xlim, ylim = axes.get_xlim(), axes.get_ylim() - ul, lr = np.array([xlim[0], ylim[0]]), np.array([xlim[1], ylim[1]]) - diag = np.linalg.norm(ul - lr) - - # Compute the arc length along the curve - s = np.cumsum(np.sqrt(np.diff(x) ** 2 + np.diff(y) ** 2)) - - # Truncate the number of arrows if the curve is short - # TODO: figure out a smarter way to do this - frac = min(s[-1] / diag, 1) - if len(arrow_locs) and frac < 0.05: - arrow_locs = [] # too short; no arrows at all - elif len(arrow_locs) and frac < 0.2: - arrow_locs = [0.5] # single arrow in the middle - - # Plot the arrows (and return list if patches) - arrows = [] - for loc in arrow_locs: - n = np.searchsorted(s, s[-1] * loc) - - if dir == 1 and n == 0: - # Move the arrow forward by one if it is at start of a segment - n = 1 - - # Place the head of the arrow at the desired location - arrow_head = [x[n], y[n]] - arrow_tail = [x[n - dir], y[n - dir]] - - p = mpl.patches.FancyArrowPatch( - arrow_tail, arrow_head, transform=axes.transData, lw=0, - **arrow_kw) - axes.add_patch(p) - arrows.append(p) - return arrows - - # # Function to compute Nyquist curve offsets # @@ -2672,122 +2581,6 @@ def _default_frequency_range(syslist, Hz=None, number_of_samples=None, return omega -# Get labels for all lines in an axes -def _get_line_labels(ax, use_color=True): - labels, lines = [], [] - last_color, counter = None, 0 # label unknown systems - for i, line in enumerate(ax.get_lines()): - label = line.get_label() - if use_color and label.startswith("Unknown"): - label = f"Unknown-{counter}" - if last_color is None: - last_color = line.get_color() - elif last_color != line.get_color(): - counter += 1 - last_color = line.get_color() - elif label[0] == '_': - continue - - if label not in labels: - lines.append(line) - labels.append(label) - - return lines, labels - - -# Turn label keyword into array indexed by trace, output, input -# TODO: move to ctrlutil.py and update parameter names to reflect general use -def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): - if label is None: - return None - - if isinstance(label, str): - label = [label] * ntraces # single label for all traces - - # Convert to an ndarray, if not done aleady - try: - line_labels = np.asarray(label) - except: - raise ValueError("label must be a string or array_like") - - # Turn the data into a 3D array of appropriate shape - # TODO: allow more sophisticated broadcasting (and error checking) - try: - if ninputs > 0 and noutputs > 0: - if line_labels.ndim == 1 and line_labels.size == ntraces: - line_labels = line_labels.reshape(ntraces, 1, 1) - line_labels = np.broadcast_to( - line_labels, (ntraces, ninputs, noutputs)) - else: - line_labels = line_labels.reshape(ntraces, ninputs, noutputs) - except: - if line_labels.shape[0] != ntraces: - raise ValueError("number of labels must match number of traces") - else: - raise ValueError("labels must be given for each input/output pair") - - return line_labels - - -def _process_ax_keyword( - axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False): - """Utility function to process ax keyword to plotting commands. - - This function processes the `ax` keyword to plotting commands. If no - ax keyword is passed, the current figure is checked to see if it has - the correct shape. If the shape matches the desired shape, then the - current figure and axes are returned. Otherwise a new figure is - created with axes of the desired shape. - - Legacy behavior: some of the older plotting commands use a axes label - to identify the proper axes for plotting. This behavior is supported - through the use of the label keyword, but will only work if shape == - (1, 1) and squeeze == True. - - """ - if axs is None: - fig = plt.gcf() # get current figure (or create new one) - axs = fig.get_axes() - - # Check to see if axes are the right shape; if not, create new figure - # Note: can't actually check the shape, just the total number of axes - if len(axs) != np.prod(shape): - with plt.rc_context(rcParams): - if len(axs) != 0: - # Create a new figure - fig, axs = plt.subplots(*shape, squeeze=False) - else: - # Create new axes on (empty) figure - axs = fig.subplots(*shape, squeeze=False) - fig.set_layout_engine('tight') - fig.align_labels() - else: - # Use the existing axes, properly reshaped - axs = np.asarray(axs).reshape(*shape) - - if clear_text: - # Clear out any old text from the current figure - for text in fig.texts: - text.set_visible(False) # turn off the text - del text # get rid of it completely - else: - try: - axs = np.asarray(axs).reshape(shape) - except ValueError: - raise ValueError( - "specified axes are not the right shape; " - f"got {axs.shape} but expecting {shape}") - fig = axs[0, 0].figure - - # Process the squeeze keyword - if squeeze and shape == (1, 1): - axs = axs[0, 0] # Just return the single axes object - elif squeeze: - axs = axs.squeeze() - - return fig, axs - - # # Utility functions to create nice looking labels (KLD 5/23/11) # diff --git a/control/nichols.py b/control/nichols.py index 5eafa594f..78b03b315 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -18,10 +18,9 @@ import numpy as np from . import config -from .ctrlplot import suptitle +from .ctrlplot import _get_line_labels, _process_ax_keyword, suptitle from .ctrlutil import unwrap -from .freqplot import _default_frequency_range, _freqplot_defaults, \ - _get_line_labels, _process_ax_keyword +from .freqplot import _default_frequency_range, _freqplot_defaults from .lti import frequency_response from .statesp import StateSpace from .xferfcn import TransferFunction diff --git a/control/phaseplot.py b/control/phaseplot.py index a885f2d5c..c7ccd1d1e 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -36,8 +36,8 @@ from scipy.integrate import odeint from . import config +from .ctrlplot import _add_arrows_to_line2D from .exception import ControlNotImplemented -from .freqplot import _add_arrows_to_line2D from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response __all__ = ['phase_plane_plot', 'phase_plot', 'box_grid'] diff --git a/control/pzmap.py b/control/pzmap.py index dd3f9e42b..c7082db1d 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -18,7 +18,8 @@ from numpy import cos, exp, imag, linspace, real, sin, sqrt from . import config -from .freqplot import _freqplot_defaults, _get_line_labels +from .ctrlplot import _get_line_labels +from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime from .lti import LTI diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py new file mode 100644 index 000000000..05970bdd1 --- /dev/null +++ b/control/tests/ctrlplot_test.py @@ -0,0 +1,42 @@ +# ctrlplot_test.py - test out control plotting utilities +# RMM, 27 Jun 2024 + +import pytest +import control as ct +import matplotlib.pyplot as plt + +@pytest.mark.usefixtures('mplcleanup') +def test_rcParams(): + sys = ct.rss(2, 2, 2) + + # Create new set of rcParams + my_rcParams = {} + for key in [ + 'axes.labelsize', 'axes.titlesize', 'figure.titlesize', + 'legend.fontsize', 'xtick.labelsize', 'ytick.labelsize']: + match plt.rcParams[key]: + case 8 | 9 | 10: + my_rcParams[key] = plt.rcParams[key] + 1 + case 'medium': + my_rcParams[key] = 11.5 + case 'large': + my_rcParams[key] = 9.5 + case _: + raise ValueError(f"unknown rcParam type for {key}") + + # Generate a figure with the new rcParams + out = ct.step_response(sys).plot(rcParams=my_rcParams) + ax = out[0, 0][0].axes + fig = ax.figure + + # Check to make sure new settings were used + assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.yaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.title.get_fontsize() == my_rcParams['axes.titlesize'] + assert ax.get_xticklabels()[0].get_fontsize() == \ + my_rcParams['xtick.labelsize'] + assert ax.get_yticklabels()[0].get_fontsize() == \ + my_rcParams['ytick.labelsize'] + assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] + + diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 0fcc159be..6c124c48f 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -397,41 +397,6 @@ def test_linestyles(): assert lines[7].get_color() == 'green' and lines[7].get_linestyle() == '--' -@pytest.mark.usefixtures('mplcleanup') -def test_rcParams(): - sys = ct.rss(2, 2, 2) - - # Create new set of rcParams - my_rcParams = {} - for key in [ - 'axes.labelsize', 'axes.titlesize', 'figure.titlesize', - 'legend.fontsize', 'xtick.labelsize', 'ytick.labelsize']: - match plt.rcParams[key]: - case 8 | 9 | 10: - my_rcParams[key] = plt.rcParams[key] + 1 - case 'medium': - my_rcParams[key] = 11.5 - case 'large': - my_rcParams[key] = 9.5 - case _: - raise ValueError(f"unknown rcParam type for {key}") - - # Generate a figure with the new rcParams - out = ct.step_response(sys).plot(rcParams=my_rcParams) - ax = out[0, 0][0].axes - fig = ax.figure - - # Check to make sure new settings were used - assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] - assert ax.yaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] - assert ax.title.get_fontsize() == my_rcParams['axes.titlesize'] - assert ax.get_xticklabels()[0].get_fontsize() == \ - my_rcParams['xtick.labelsize'] - assert ax.get_yticklabels()[0].get_fontsize() == \ - my_rcParams['ytick.labelsize'] - assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] - - @pytest.mark.parametrize("resp_fcn", [ ct.step_response, ct.initial_response, ct.impulse_response, ct.forced_response, ct.input_output_response]) diff --git a/control/timeplot.py b/control/timeplot.py index 2eb7aec9b..01b5c7945 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -15,24 +15,13 @@ import numpy as np from . import config -from .ctrlplot import _make_legend_labels, _update_suptitle +from .ctrlplot import _ctrlplot_rcParams, _make_legend_labels, _update_suptitle __all__ = ['time_response_plot', 'combine_time_responses'] -# Default font dictionary -_timeplot_rcParams = mpl.rcParams.copy() -_timeplot_rcParams.update({ - 'axes.labelsize': 'small', - 'axes.titlesize': 'small', - 'figure.titlesize': 'medium', - 'legend.fontsize': 'x-small', - 'xtick.labelsize': 'small', - 'ytick.labelsize': 'small', -}) - # Default values for module parameter variables _timeplot_defaults = { - 'timeplot.rcParams': _timeplot_rcParams, + 'timeplot.rcParams': _ctrlplot_rcParams, 'timeplot.trace_props': [ {'linestyle': s} for s in ['-', '--', ':', '-.']], 'timeplot.output_props': [ @@ -162,7 +151,7 @@ def time_response_plot( config.defaults[''timeplot.rcParams']. """ - from .freqplot import _process_ax_keyword, _process_line_labels + from .ctrlplot import _process_ax_keyword, _process_line_labels from .iosys import InputOutputSystem from .timeresp import TimeResponseData From 70d976110f8c687de2ea3206dbd4e00d6d6ed1de Mon Sep 17 00:00:00 2001 From: Diego Emilio Serrano <65074936+diemilio@users.noreply.github.com> Date: Wed, 10 Jul 2024 12:40:20 -0400 Subject: [PATCH 098/199] Update timeplot.py fix name of TimeResponseData object from types to trace_types --- control/timeplot.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/timeplot.py b/control/timeplot.py index 2eb7aec9b..646d2c1be 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -738,7 +738,7 @@ def combine_time_responses(response_list, trace_labels=None, title=None): if generate_trace_labels: trace_labels.append(response.title) trace_types.append( - None if response.trace_types is None else response.types[0]) + None if response.trace_types is None else response.trace_types[0]) else: # Save the data From f2f0e3ed3e638a65a66a13e72085156cd384661a Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Wed, 3 Jul 2024 19:51:09 +0200 Subject: [PATCH 099/199] Improve markov function, add mimo support, change api to TimeResponseData --- control/modelsimp.py | 186 ++++++++++++++++++-------------- control/tests/modelsimp_test.py | 50 +++++---- 2 files changed, 133 insertions(+), 103 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 06c3d350d..0f9821fc6 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -48,6 +48,7 @@ from .iosys import isdtime, isctime from .statesp import StateSpace from .statefbk import gram +from .timeresp import TimeResponseData __all__ = ['hsvd', 'balred', 'modred', 'era', 'markov', 'minreal'] @@ -402,9 +403,9 @@ def era(YY, m, n, nin, nout, r): raise NotImplementedError('This function is not implemented yet.') -def markov(Y, U, m=None, transpose=False): +def markov(data, m=None, dt=True, truncate=False): """Calculate the first `m` Markov parameters [D CB CAB ...] - from input `U`, output `Y`. + from data This function computes the Markov parameters for a discrete time system @@ -420,23 +421,45 @@ def markov(Y, U, m=None, transpose=False): Parameters ---------- - Y : array_like - Output data. If the array is 1D, the system is assumed to be single - input. If the array is 2D and transpose=False, the columns of `Y` - are taken as time points, otherwise the rows of `Y` are taken as - time points. - U : array_like - Input data, arranged in the same way as `Y`. + data : TimeResponseData + Response data from which the Markov parameters where estimated. + Input and output data must be 1D or 2D array. m : int, optional Number of Markov parameters to output. Defaults to len(U). - transpose : bool, optional - Assume that input data is transposed relative to the standard - :ref:`time-series-convention`. Default value is False. + dt : (True of float, optional) + True indicates discrete time with unspecified sampling time, + positive number is discrete time with specified sampling time. + It can be used to scale the markov parameters in order to match + the impulse response of this library. + Default values is True. + truncate : bool, optional + Do not use first m equation for least least squares. + Default value is False. Returns ------- - H : ndarray - First m Markov parameters, [D CB CAB ...] + H : TimeResponseData + Markov parameters / impulse response [D CB CAB ...] represented as + a :class:`TimeResponseData` object containing the following properties: + + * time (array): Time values of the output. + + * outputs (array): Response of the system. If the system is SISO, + the array is 1D (indexed by time). If the + system is not SISO, the array is 3D (indexed + by the output, trace, and time). + + * inputs (array): Inputs of the system. If the system is SISO, + the array is 1D (indexed by time). If the + system is not SISO, the array is 3D (indexed + by the output, trace, and time). + + Notes + ----- + It works for SISO and MIMO systems. + + This function does comply with the Python Control Library + :ref:`time-series-convention` for representation of time series data. References ---------- @@ -445,95 +468,69 @@ def markov(Y, U, m=None, transpose=False): and experiments. Journal of Guidance Control and Dynamics, 16(2), 320-329, 2012. http://doi.org/10.2514/3.21006 - Notes - ----- - Currently only works for SISO systems. - - This function does not currently comply with the Python Control Library - :ref:`time-series-convention` for representation of time series data. - Use `transpose=False` to make use of the standard convention (this - will be updated in a future release). - Examples -------- >>> T = np.linspace(0, 10, 100) >>> U = np.ones((1, 100)) - >>> T, Y = ct.forced_response(ct.tf([1], [1, 0.5], True), T, U) - >>> H = ct.markov(Y, U, 3, transpose=False) + >>> response = ct.forced_response(ct.tf([1], [1, 0.5], True), T, U) + >>> H = ct.markov(response, 3) """ # Convert input parameters to 2D arrays (if they aren't already) - Umat = np.array(U, ndmin=2) - Ymat = np.array(Y, ndmin=2) + Umat = np.array(data.inputs, ndmin=2) + Ymat = np.array(data.outputs, ndmin=2) # If data is in transposed format, switch it around - if transpose: + if data.transpose and not data.issiso: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) - # Make sure the system is a SISO system - if Umat.shape[0] != 1 or Ymat.shape[0] != 1: - raise ControlMIMONotImplemented - # Make sure the number of time points match if Umat.shape[1] != Ymat.shape[1]: raise ControlDimension( "Input and output data are of differnent lengths") - n = Umat.shape[1] + l = Umat.shape[1] # If number of desired parameters was not given, set to size of input data if m is None: - m = Umat.shape[1] + m = l + + t = 0 + if truncate: + t = m + + q = Ymat.shape[0] # number of outputs + p = Umat.shape[0] # number of inputs # Make sure there is enough data to compute parameters - if m > n: + if m*p > (l-t): warnings.warn("Not enough data for requested number of parameters") + # the algorithm - Construct a matrix of control inputs to invert # - # Original algorithm (with mapping to standard order) - # - # RMM note, 24 Dec 2020: This algorithm sets the problem up correctly - # until the final column of the UU matrix is created, at which point it - # makes some modifications that I don't understand. This version of the - # algorithm does not seem to return the actual Markov parameters for a - # system. - # - # # Create the matrix of (shifted) inputs - # UU = np.transpose(Umat) - # for i in range(1, m-1): - # # Shift previous column down and add a zero at the top - # newCol = np.vstack((0, np.reshape(UU[0:n-1, i-1], (-1, 1)))) - # UU = np.hstack((UU, newCol)) - # - # # Shift previous column down and add a zero at the top - # Ulast = np.vstack((0, np.reshape(UU[0:n-1, m-2], (-1, 1)))) - # - # # Replace the elements of the last column new values (?) - # # Each row gets the sum of the rows above it (?) - # for i in range(n-1, 0, -1): - # Ulast[i] = np.sum(Ulast[0:i-1]) - # UU = np.hstack((UU, Ulast)) - # - # # Solve for the Markov parameters from Y = H @ UU - # # H = [[D], [CB], [CAB], ..., [C A^{m-3} B], [???]] - # H = np.linalg.lstsq(UU, np.transpose(Ymat))[0] - # - # # Markov parameters are in rows => transpose if needed - # return H if transpose else np.transpose(H) - - # - # New algorithm - Construct a matrix of control inputs to invert + # (q,l) = (q,p*m) @ (p*m,l) + # YY.T = H @ UU.T # # This algorithm sets up the following problem and solves it for # the Markov parameters # + # (l,q) = (l,p*m) @ (p*m,q) + # YY = UU @ H.T + # # [ y(0) ] [ u(0) 0 0 ] [ D ] # [ y(1) ] [ u(1) u(0) 0 ] [ C B ] # [ y(2) ] = [ u(2) u(1) u(0) ] [ C A B ] # [ : ] [ : : : : ] [ : ] - # [ y(n-1) ] [ u(n-1) u(n-2) u(n-3) ... u(n-m) ] [ C A^{m-2} B ] + # [ y(l-1) ] [ u(l-1) u(l-2) u(l-3) ... u(l-m) ] [ C A^{m-2} B ] # - # Note: if the number of Markov parameters (m) is less than the size of - # the input/output data (n), then this algorithm assumes C A^{j} B = 0 + # truncated version t=m, do not use first m equation + # + # [ y(t) ] [ u(t) u(t-1) u(t-2) u(t-m) ] [ D ] + # [ y(t+1) ] [ u(t+1) u(t) u(t-1) u(t-m+1)] [ C B ] + # [ y(t+2) ] = [ u(t+2) u(t+1) u(t) u(t-m+2)] [ C B ] + # [ : ] [ : : : : ] [ : ] + # [ y(l-1) ] [ u(l-1) u(l-2) u(l-3) ... u(l-m) ] [ C A^{m-2} B ] + # + # Note: This algorithm assumes C A^{j} B = 0 # for j > m-2. See equation (3) in # # J.-N. Juang, M. Phan, L. G. Horta, and R. W. Longman, Identification @@ -542,17 +539,40 @@ def markov(Y, U, m=None, transpose=False): # 320-329, 2012. http://doi.org/10.2514/3.21006 # + # Set up the full problem # Create matrix of (shifted) inputs - UU = Umat - for i in range(1, m): - # Shift previous column down and add a zero at the top - new_row = np.hstack((0, UU[i-1, 0:-1])) - UU = np.vstack((UU, new_row)) - UU = np.transpose(UU) - - # Invert and solve for Markov parameters - YY = np.transpose(Ymat) - H, _, _, _ = np.linalg.lstsq(UU, YY, rcond=None) - + UUT = np.zeros((p*m,(l))) + for i in range(m): + # Shift previous column down and keep zeros at the top + UUT[i*p:(i+1)*p,i:] = Umat[:,:l-i] + + # Truncate first t=0 or t=m time steps, transpose the problem for lsq + YY = Ymat[:,t:].T + UU = UUT[:,t:].T + + # Solve for the Markov parameters from YY = UU @ H.T + HT, _, _, _ = np.linalg.lstsq(UU, YY, rcond=None) + H = HT.T/dt # scaling + + H = H.reshape(q,m,p) # output, time*input -> output, time, input + H = H.transpose(0,2,1) # output, input, time + + # Create unit area impulse inputs + inputs = np.zeros((q,p,m)) + trace_labels, trace_types = [], [] + for i in range(p): + inputs[i,i,0] = 1/dt # unit area impulse + trace_labels.append(f"From {data.input_labels[i]}") + trace_types.append('impulse') + + # Markov parameters as TimeResponseData with unit area impulse inputs # Return the first m Markov parameters - return H if transpose else np.transpose(H) + return TimeResponseData(time=data.time[:m], + outputs=H, + output_labels=data.output_labels, + inputs=inputs, + input_labels=data.input_labels, + trace_labels=trace_labels, + trace_types=trace_types, + transpose=data.transpose, + issiso=data.issiso) diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 49c2afd58..afcdacfd0 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -7,7 +7,7 @@ import pytest -from control import StateSpace, forced_response, tf, rss, c2d +from control import StateSpace, forced_response, tf, rss, c2d, TimeResponseData from control.exception import ControlMIMONotImplemented from control.tests.conftest import slycotonly from control.modelsimp import balred, hsvd, markov, modred @@ -33,36 +33,44 @@ def testHSVD(self): assert not isinstance(hsv, np.matrix) def testMarkovSignature(self): - U = np.array([[1., 1., 1., 1., 1.]]) + U = np.array([1., 1., 1., 1., 1.]) Y = U + response = TimeResponseData(time=np.arange(U.shape[-1]), + outputs=Y, + output_labels='y', + inputs=U, + input_labels='u', + ) m = 3 - H = markov(Y, U, m, transpose=False) - Htrue = np.array([[1., 0., 0.]]) - np.testing.assert_array_almost_equal(H, Htrue) + H = markov(response, m) + Htrue = np.array([1., 0., 0.]) + np.testing.assert_array_almost_equal(H.outputs, Htrue) # Make sure that transposed data also works - H = markov(np.transpose(Y), np.transpose(U), m, transpose=True) - np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) + response.transpose=True + H = markov(response, m) + np.testing.assert_array_almost_equal(H.outputs, np.transpose(Htrue)) # Generate Markov parameters without any arguments - H = markov(Y, U, m) - np.testing.assert_array_almost_equal(H, Htrue) + response.transpose=False + H = markov(response, m) + np.testing.assert_array_almost_equal(H.outputs, Htrue) # Test example from docstring T = np.linspace(0, 10, 100) U = np.ones((1, 100)) - T, Y = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(Y, U, 3, transpose=False) + response = forced_response(tf([1], [1, 0.5], True), T, U) + H = markov(response, 3) # Test example from issue #395 - inp = np.array([1, 2]) - outp = np.array([2, 4]) - mrk = markov(outp, inp, 1, transpose=False) + #inp = np.array([1, 2]) + #outp = np.array([2, 4]) + #mrk = markov(outp, inp, 1, transpose=False) # Make sure MIMO generates an error - U = np.ones((2, 100)) # 2 inputs (Y unchanged, with 1 output) - with pytest.raises(ControlMIMONotImplemented): - markov(Y, U, m) + #U = np.ones((2, 100)) # 2 inputs (Y unchanged, with 1 output) + #with pytest.raises(ControlMIMONotImplemented): + # markov(Y, U, m) # Make sure markov() returns the right answer @pytest.mark.parametrize("k, m, n", @@ -98,18 +106,20 @@ def testMarkovResults(self, k, m, n): Mtrue = np.hstack([Hd.D] + [ Hd.C @ np.linalg.matrix_power(Hd.A, i) @ Hd.B for i in range(m-1)]) + + Mtrue = np.squeeze(Mtrue) # Generate input/output data T = np.array(range(n)) * Ts U = np.cos(T) + np.sin(T/np.pi) - _, Y = forced_response(Hd, T, U, squeeze=True) - Mcomp = markov(Y, U, m) + response = forced_response(Hd, T, U, squeeze=True) + Mcomp = markov(response, m) # Compare to results from markov() # experimentally determined probability to get non matching results # with rtot=1e-6 and atol=1e-8 due to numerical errors # for k=5, m=n=10: 0.015 % - np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) + np.testing.assert_allclose(Mtrue, Mcomp.outputs, rtol=1e-6, atol=1e-8) def testModredMatchDC(self): #balanced realization computed in matlab for the transfer function: From 6c95fbce4e68cf84ec0f66100993e7796f04d61b Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 16:51:29 +0200 Subject: [PATCH 100/199] Fix inputs dimension --- control/modelsimp.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 0f9821fc6..74a65ceca 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -558,7 +558,7 @@ def markov(data, m=None, dt=True, truncate=False): H = H.transpose(0,2,1) # output, input, time # Create unit area impulse inputs - inputs = np.zeros((q,p,m)) + inputs = np.zeros((p,p,m)) trace_labels, trace_types = [], [] for i in range(p): inputs[i,i,0] = 1/dt # unit area impulse From 14ce769e60b95903ffd8f40dc08a660e192bcbb0 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 17:42:35 +0200 Subject: [PATCH 101/199] Add plot_inputs=False to TimeResponseData output --- control/modelsimp.py | 1 + 1 file changed, 1 insertion(+) diff --git a/control/modelsimp.py b/control/modelsimp.py index 74a65ceca..3fc62b7c4 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -575,4 +575,5 @@ def markov(data, m=None, dt=True, truncate=False): trace_labels=trace_labels, trace_types=trace_types, transpose=data.transpose, + plot_inputs=False, issiso=data.issiso) From efa3f39df15d29f8e572afe755ab91fed4c99277 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 17:45:24 +0200 Subject: [PATCH 102/199] Add markov example --- examples/markov.py | 60 ++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 60 insertions(+) create mode 100644 examples/markov.py diff --git a/examples/markov.py b/examples/markov.py new file mode 100644 index 000000000..f97a97853 --- /dev/null +++ b/examples/markov.py @@ -0,0 +1,60 @@ +# markov.py +# Johannes Kaisinger, 4 July 2024 +# +# Demonstrate estimation of markov parameters. +# SISO, SIMO, MISO, MIMO case + +import numpy as np +import matplotlib.pyplot as plt +import os + +import control as ct + +# set up a mass spring damper system (2dof, MIMO case) +# m q_dd + c q_d + k q = u +m1, k1, c1 = 1., 1., .1 +m2, k2, c2 = 2., .5, .1 +k3, c3 = .5, .1 + +A = np.array([ + [0., 0., 1., 0.], + [0., 0., 0., 1.], + [-(k1+k2)/m1, (k2)/m1, -(c1+c2)/m1, c2/m1], + [(k2)/m2, -(k2+k3)/m2, c2/m2, -(c2+c3)/m2] +]) +B = np.array([[0.,0.],[0.,0.],[1/m1,0.],[0.,1/m2]]) +C = np.array([[1.0, 0.0, 0.0, 0.0],[0.0, 1.0, 0.0, 0.0]]) +D = np.zeros((2,2)) + + +xixo_list = ["SISO","SIMO","MISO","MIMO"] +xixo = xixo_list[3] # choose a system for estimation +match xixo: + case "SISO": + sys = ct.StateSpace(A, B[:,0], C[0,:], D[0,0]) + case "SIMO": + sys = ct.StateSpace(A, B[:,:1], C, D[:,:1]) + case "MISO": + sys = ct.StateSpace(A, B, C[:1,:], D[:1,:]) + case "MIMO": + sys = ct.StateSpace(A, B, C, D) + +dt = 0.5 +sysd = sys.sample(dt, method='zoh') + +t = np.arange(0,5000,dt) +u = np.random.randn(sysd.B.shape[-1], len(t)) # random forcing input + +response = ct.forced_response(sysd, U=u) +response.plot() +plt.show() + +markov_true = ct.impulse_response(sysd,T=dt*100) +markov_est = ct.markov(response,m=100,dt=dt) + +markov_true.plot(title=xixo) +markov_est.plot(color='orange',linestyle='dashed') +plt.show() + +if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: + plt.show() \ No newline at end of file From a597bbce38940a79ba8b51ade75c7f7c5419a660 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 4 Jul 2024 18:20:46 +0200 Subject: [PATCH 103/199] Add markov example, add example to doc --- doc/examples.rst | 1 + doc/markov.py | 1 + doc/markov.rst | 15 +++++++++++++++ 3 files changed, 17 insertions(+) create mode 120000 doc/markov.py create mode 100644 doc/markov.rst diff --git a/doc/examples.rst b/doc/examples.rst index 21364157e..db6cbaad6 100644 --- a/doc/examples.rst +++ b/doc/examples.rst @@ -35,6 +35,7 @@ other sources. kincar-flatsys mrac_siso_mit mrac_siso_lyapunov + markov Jupyter notebooks ================= diff --git a/doc/markov.py b/doc/markov.py new file mode 120000 index 000000000..471188252 --- /dev/null +++ b/doc/markov.py @@ -0,0 +1 @@ +../examples/markov.py \ No newline at end of file diff --git a/doc/markov.rst b/doc/markov.rst new file mode 100644 index 000000000..36e0fd8e5 --- /dev/null +++ b/doc/markov.rst @@ -0,0 +1,15 @@ +Estimation of Makrov parameters +------------------------------- + +Code +.... +.. literalinclude:: markov.py + :language: python + :linenos: + + +Notes +..... + +1. The environment variable `PYCONTROL_TEST_EXAMPLES` is used for +testing to turn off plotting of the outputs.0 \ No newline at end of file From 60234806736889bf19adfb51fa77a153fd189120 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Sun, 7 Jul 2024 13:39:57 +0200 Subject: [PATCH 104/199] Change output to ndarray --- control/modelsimp.py | 39 ++++------------------ control/tests/modelsimp_test.py | 8 ++--- examples/markov.py | 59 +++++++++++++++++++++++++++++---- 3 files changed, 63 insertions(+), 43 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 3fc62b7c4..01068066d 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -438,21 +438,9 @@ def markov(data, m=None, dt=True, truncate=False): Returns ------- - H : TimeResponseData - Markov parameters / impulse response [D CB CAB ...] represented as - a :class:`TimeResponseData` object containing the following properties: - - * time (array): Time values of the output. - - * outputs (array): Response of the system. If the system is SISO, - the array is 1D (indexed by time). If the - system is not SISO, the array is 3D (indexed - by the output, trace, and time). - - * inputs (array): Inputs of the system. If the system is SISO, - the array is 1D (indexed by time). If the - system is not SISO, the array is 3D (indexed - by the output, trace, and time). + H : ndarray + First m Markov parameters, [D CB CAB ...] + Notes ----- @@ -557,23 +545,8 @@ def markov(data, m=None, dt=True, truncate=False): H = H.reshape(q,m,p) # output, time*input -> output, time, input H = H.transpose(0,2,1) # output, input, time - # Create unit area impulse inputs - inputs = np.zeros((p,p,m)) - trace_labels, trace_types = [], [] - for i in range(p): - inputs[i,i,0] = 1/dt # unit area impulse - trace_labels.append(f"From {data.input_labels[i]}") - trace_types.append('impulse') + if q == 1 and p == 1: + H = np.squeeze(H) - # Markov parameters as TimeResponseData with unit area impulse inputs # Return the first m Markov parameters - return TimeResponseData(time=data.time[:m], - outputs=H, - output_labels=data.output_labels, - inputs=inputs, - input_labels=data.input_labels, - trace_labels=trace_labels, - trace_types=trace_types, - transpose=data.transpose, - plot_inputs=False, - issiso=data.issiso) + return H if not data.transpose else np.transpose(H) diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index afcdacfd0..14e0135e5 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -44,17 +44,17 @@ def testMarkovSignature(self): m = 3 H = markov(response, m) Htrue = np.array([1., 0., 0.]) - np.testing.assert_array_almost_equal(H.outputs, Htrue) + np.testing.assert_array_almost_equal(H, Htrue) # Make sure that transposed data also works response.transpose=True H = markov(response, m) - np.testing.assert_array_almost_equal(H.outputs, np.transpose(Htrue)) + np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) # Generate Markov parameters without any arguments response.transpose=False H = markov(response, m) - np.testing.assert_array_almost_equal(H.outputs, Htrue) + np.testing.assert_array_almost_equal(H, Htrue) # Test example from docstring T = np.linspace(0, 10, 100) @@ -119,7 +119,7 @@ def testMarkovResults(self, k, m, n): # experimentally determined probability to get non matching results # with rtot=1e-6 and atol=1e-8 due to numerical errors # for k=5, m=n=10: 0.015 % - np.testing.assert_allclose(Mtrue, Mcomp.outputs, rtol=1e-6, atol=1e-8) + np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) def testModredMatchDC(self): #balanced realization computed in matlab for the transfer function: diff --git a/examples/markov.py b/examples/markov.py index f97a97853..fd7c5ea70 100644 --- a/examples/markov.py +++ b/examples/markov.py @@ -10,6 +10,43 @@ import control as ct +def create_impulse_response(H, time, transpose, dt): + """Helper function to use TimeResponseData type for plotting""" + + H = np.array(H, ndmin=3) + + if transpose: + H = np.transpose(H) + + q, p, m = H.shape + inputs = np.zeros((p,p,m)) + + issiso = True if (q == 1 and p == 1) else False + + input_labels = [] + trace_labels, trace_types = [], [] + for i in range(p): + inputs[i,i,0] = 1/dt # unit area impulse + input_labels.append(f"u{[i]}") + trace_labels.append(f"From u{[i]}") + trace_types.append('impulse') + + output_labels = [] + for i in range(q): + output_labels.append(f"y{[i]}") + + return ct.TimeResponseData(time=time[:m], + outputs=H, + output_labels=output_labels, + inputs=inputs, + input_labels=input_labels, + trace_labels=trace_labels, + trace_types=trace_types, + sysname="H_est", + transpose=transpose, + plot_inputs=False, + issiso=issiso) + # set up a mass spring damper system (2dof, MIMO case) # m q_dd + c q_d + k q = u m1, k1, c1 = 1., 1., .1 @@ -41,19 +78,29 @@ dt = 0.5 sysd = sys.sample(dt, method='zoh') +sysd.name = "H_true" -t = np.arange(0,5000,dt) -u = np.random.randn(sysd.B.shape[-1], len(t)) # random forcing input + # random forcing input +t = np.arange(0,500,dt) +u = np.random.randn(sysd.B.shape[-1], len(t)) response = ct.forced_response(sysd, U=u) response.plot() plt.show() -markov_true = ct.impulse_response(sysd,T=dt*100) -markov_est = ct.markov(response,m=100,dt=dt) +m = 100 +ir_true = ct.impulse_response(sysd,T=dt*m) +ir_true.tranpose = True + +H_est = ct.markov(response,m=m,dt=dt) +# Helper function for plotting only +ir_est = create_impulse_response(H_est, + ir_true.time, + ir_true.transpose, + dt) -markov_true.plot(title=xixo) -markov_est.plot(color='orange',linestyle='dashed') +ir_true.plot(title=xixo) +ir_est.plot(color='orange',linestyle='dashed') plt.show() if 'PYCONTROL_TEST_EXAMPLES' not in os.environ: From 92307f0296c2445a5d82c682af2a25bdff9d291b Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Sun, 7 Jul 2024 14:00:17 +0200 Subject: [PATCH 105/199] Update example, values taken from a book --- examples/markov.py | 16 +++++++++------- 1 file changed, 9 insertions(+), 7 deletions(-) diff --git a/examples/markov.py b/examples/markov.py index fd7c5ea70..7608e7bb1 100644 --- a/examples/markov.py +++ b/examples/markov.py @@ -48,10 +48,12 @@ def create_impulse_response(H, time, transpose, dt): issiso=issiso) # set up a mass spring damper system (2dof, MIMO case) -# m q_dd + c q_d + k q = u -m1, k1, c1 = 1., 1., .1 -m2, k2, c2 = 2., .5, .1 -k3, c3 = .5, .1 +# Mechanical Vibartions: Theory and Application, SI Edition, 1st ed. +# Figure 6.5 / Example 6.7 +# m q_dd + c q_d + k q = f +m1, k1, c1 = 1., 4., 1. +m2, k2, c2 = 2., 2., 1. +k3, c3 = 6., 2. A = np.array([ [0., 0., 1., 0.], @@ -76,19 +78,19 @@ def create_impulse_response(H, time, transpose, dt): case "MIMO": sys = ct.StateSpace(A, B, C, D) -dt = 0.5 +dt = 0.25 sysd = sys.sample(dt, method='zoh') sysd.name = "H_true" # random forcing input -t = np.arange(0,500,dt) +t = np.arange(0,100,dt) u = np.random.randn(sysd.B.shape[-1], len(t)) response = ct.forced_response(sysd, U=u) response.plot() plt.show() -m = 100 +m = 50 ir_true = ct.impulse_response(sysd,T=dt*m) ir_true.tranpose = True From a646100091695c635bdb081e431579477851bc09 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Sun, 7 Jul 2024 16:07:01 +0200 Subject: [PATCH 106/199] Change API to work with ndarray and TimeResponseData as input --- control/modelsimp.py | 68 ++++++++++++++++++++++++++------- control/tests/modelsimp_test.py | 67 ++++++++++++++++++++++++++------ examples/markov.py | 7 ++-- 3 files changed, 113 insertions(+), 29 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 01068066d..f4c70e66b 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -43,8 +43,7 @@ # External packages and modules import numpy as np import warnings -from .exception import ControlSlycot, ControlMIMONotImplemented, \ - ControlDimension +from .exception import ControlSlycot, ControlArgument, ControlDimension from .iosys import isdtime, isctime from .statesp import StateSpace from .statefbk import gram @@ -403,8 +402,10 @@ def era(YY, m, n, nin, nout, r): raise NotImplementedError('This function is not implemented yet.') -def markov(data, m=None, dt=True, truncate=False): - """Calculate the first `m` Markov parameters [D CB CAB ...] +def markov(*args, **kwargs): + """markov(Y, U, [, m]) + + Calculate the first `m` Markov parameters [D CB CAB ...] from data This function computes the Markov parameters for a discrete time system @@ -419,14 +420,31 @@ def markov(data, m=None, dt=True, truncate=False): the input data is less than the desired number of Markov parameters (a warning message is generated in this case). + The function can be called with either 1, 2, or 3 arguments: + + * ``K, S, E = lqr(response)`` + * ``K, S, E = lqr(respnose, m)`` + * ``K, S, E = lqr(Y, U)`` + * ``K, S, E = lqr(Y, U, m)`` + + where `response` is an `TimeResponseData` object, and `Y`, `U`, are 1D or 2D + array and m is an integer. + Parameters ---------- + Y : array_like + Output data. If the array is 1D, the system is assumed to be single + input. If the array is 2D and transpose=False, the columns of `Y` + are taken as time points, otherwise the rows of `Y` are taken as + time points. + U : array_like + Input data, arranged in the same way as `Y`. data : TimeResponseData Response data from which the Markov parameters where estimated. Input and output data must be 1D or 2D array. m : int, optional Number of Markov parameters to output. Defaults to len(U). - dt : (True of float, optional) + dt : True of float, optional True indicates discrete time with unspecified sampling time, positive number is discrete time with specified sampling time. It can be used to scale the markov parameters in order to match @@ -460,17 +478,41 @@ def markov(data, m=None, dt=True, truncate=False): -------- >>> T = np.linspace(0, 10, 100) >>> U = np.ones((1, 100)) - >>> response = ct.forced_response(ct.tf([1], [1, 0.5], True), T, U) - >>> H = ct.markov(response, 3) + >>> T, Y = ct.forced_response(ct.tf([1], [1, 0.5], True), T, U) + >>> H = ct.markov(Y, U, 3, transpose=False) """ # Convert input parameters to 2D arrays (if they aren't already) - Umat = np.array(data.inputs, ndmin=2) - Ymat = np.array(data.outputs, ndmin=2) - # If data is in transposed format, switch it around - if data.transpose and not data.issiso: - Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) + # Get the system description + if (len(args) < 1): + raise ControlArgument("not enough input arguments") + + if isinstance(args[0], TimeResponseData): + Umat = np.array(args[0].inputs, ndmin=2) + Ymat = np.array(args[0].outputs, ndmin=2) + transpose = args[0].transpose + if args[0].transpose and not args[0].issiso: + Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) + index = 1 + else: + if (len(args) < 2): + raise ControlArgument("not enough input arguments") + Umat = np.array(args[0], ndmin=2) + Ymat = np.array(args[1], ndmin=2) + transpose = kwargs.pop('transpose', False) + if transpose: + Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) + index = 2 + + + if (len(args) > index): + m = args[index] + else: + m = None + + dt = kwargs.pop('dt', True) + truncate = kwargs.pop('truncate', False) # Make sure the number of time points match if Umat.shape[1] != Ymat.shape[1]: @@ -549,4 +591,4 @@ def markov(data, m=None, dt=True, truncate=False): H = np.squeeze(H) # Return the first m Markov parameters - return H if not data.transpose else np.transpose(H) + return H if not transpose else np.transpose(H) diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 14e0135e5..0e94063b6 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -7,8 +7,7 @@ import pytest -from control import StateSpace, forced_response, tf, rss, c2d, TimeResponseData -from control.exception import ControlMIMONotImplemented +from control import StateSpace, forced_response, impulse_response, tf, rss, c2d, TimeResponseData from control.tests.conftest import slycotonly from control.modelsimp import balred, hsvd, markov, modred @@ -33,7 +32,7 @@ def testHSVD(self): assert not isinstance(hsv, np.matrix) def testMarkovSignature(self): - U = np.array([1., 1., 1., 1., 1.]) + U = np.array([[1., 1., 1., 1., 1.]]) Y = U response = TimeResponseData(time=np.arange(U.shape[-1]), outputs=Y, @@ -41,36 +40,80 @@ def testMarkovSignature(self): inputs=U, input_labels='u', ) + + # Basic usage m = 3 + H = markov(Y, U, m, transpose=False) + Htrue = np.array([1., 0., 0.]) + np.testing.assert_array_almost_equal(H, Htrue) + + response.transpose=False H = markov(response, m) Htrue = np.array([1., 0., 0.]) np.testing.assert_array_almost_equal(H, Htrue) # Make sure that transposed data also works + H = markov(Y.T, U.T, m, transpose=True) + np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) + response.transpose=True H = markov(response, m) np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) + response.transpose=False # Generate Markov parameters without any arguments - response.transpose=False + H = markov(Y, U, m) + np.testing.assert_array_almost_equal(H, Htrue) + H = markov(response, m) np.testing.assert_array_almost_equal(H, Htrue) # Test example from docstring + T = np.linspace(0, 10, 100) + U = np.ones((1, 100)) + _, Y = forced_response(tf([1], [1, 0.5], True), T, U) + H = markov(Y, U, 3) + T = np.linspace(0, 10, 100) U = np.ones((1, 100)) response = forced_response(tf([1], [1, 0.5], True), T, U) H = markov(response, 3) # Test example from issue #395 - #inp = np.array([1, 2]) - #outp = np.array([2, 4]) - #mrk = markov(outp, inp, 1, transpose=False) - - # Make sure MIMO generates an error - #U = np.ones((2, 100)) # 2 inputs (Y unchanged, with 1 output) - #with pytest.raises(ControlMIMONotImplemented): - # markov(Y, U, m) + inp = np.array([1, 2]) + outp = np.array([2, 4]) + mrk = markov(outp, inp, 1, transpose=False) + + # Test mimo example + # Mechanical Vibrations: Theory and Application, SI Edition, 1st ed. + # Figure 6.5 / Example 6.7 + m1, k1, c1 = 1., 4., 1. + m2, k2, c2 = 2., 2., 1. + k3, c3 = 6., 2. + + A = np.array([ + [0., 0., 1., 0.], + [0., 0., 0., 1.], + [-(k1+k2)/m1, (k2)/m1, -(c1+c2)/m1, c2/m1], + [(k2)/m2, -(k2+k3)/m2, c2/m2, -(c2+c3)/m2] + ]) + B = np.array([[0.,0.],[0.,0.],[1/m1,0.],[0.,1/m2]]) + C = np.array([[1.0, 0.0, 0.0, 0.0],[0.0, 1.0, 0.0, 0.0]]) + D = np.zeros((2,2)) + + sys = StateSpace(A, B, C, D) + dt = 0.25 + sysd = sys.sample(dt, method='zoh') + + t = np.arange(0,100,dt) + u = np.random.randn(sysd.B.shape[-1], len(t)) + response = forced_response(sysd, U=u) + + m = 100 + H = markov(response, m, dt=dt) + _, Htrue = impulse_response(sysd, T=dt*(m-1)) + + np.testing.assert_array_almost_equal(H, Htrue) # Make sure markov() returns the right answer @pytest.mark.parametrize("k, m, n", diff --git a/examples/markov.py b/examples/markov.py index 7608e7bb1..6c02499bd 100644 --- a/examples/markov.py +++ b/examples/markov.py @@ -48,7 +48,7 @@ def create_impulse_response(H, time, transpose, dt): issiso=issiso) # set up a mass spring damper system (2dof, MIMO case) -# Mechanical Vibartions: Theory and Application, SI Edition, 1st ed. +# Mechanical Vibrations: Theory and Application, SI Edition, 1st ed. # Figure 6.5 / Example 6.7 # m q_dd + c q_d + k q = f m1, k1, c1 = 1., 4., 1. @@ -91,10 +91,9 @@ def create_impulse_response(H, time, transpose, dt): plt.show() m = 50 -ir_true = ct.impulse_response(sysd,T=dt*m) -ir_true.tranpose = True +ir_true = ct.impulse_response(sysd, T=dt*m) -H_est = ct.markov(response,m=m,dt=dt) +H_est = ct.markov(response, m, dt=dt) # Helper function for plotting only ir_est = create_impulse_response(H_est, ir_true.time, From 42962f24c79d18ae846c9f804a9171e686c4ea12 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Sun, 7 Jul 2024 16:22:10 +0200 Subject: [PATCH 107/199] Update pytest --- control/tests/modelsimp_test.py | 12 ++++++++---- 1 file changed, 8 insertions(+), 4 deletions(-) diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 0e94063b6..286b41353 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -43,13 +43,13 @@ def testMarkovSignature(self): # Basic usage m = 3 - H = markov(Y, U, m, transpose=False) Htrue = np.array([1., 0., 0.]) + + H = markov(Y, U, m, transpose=False) np.testing.assert_array_almost_equal(H, Htrue) response.transpose=False H = markov(response, m) - Htrue = np.array([1., 0., 0.]) np.testing.assert_array_almost_equal(H, Htrue) # Make sure that transposed data also works @@ -69,15 +69,19 @@ def testMarkovSignature(self): np.testing.assert_array_almost_equal(H, Htrue) # Test example from docstring + # TODO: There is a problem here + # Htrue = np.array([1., 0.5, 0.]) T = np.linspace(0, 10, 100) U = np.ones((1, 100)) - _, Y = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(Y, U, 3) + T, Y = forced_response(tf([1], [1, 0.5], True), T, U) + H = markov(Y, U, 3, transpose=False) + #np.testing.assert_array_almost_equal(H, Htrue) T = np.linspace(0, 10, 100) U = np.ones((1, 100)) response = forced_response(tf([1], [1, 0.5], True), T, U) H = markov(response, 3) + #np.testing.assert_array_almost_equal(H, Htrue) # Test example from issue #395 inp = np.array([1, 2]) From a3276b72f32a0b2174f4724252e8877be1465b17 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 11 Jul 2024 15:05:12 +0200 Subject: [PATCH 108/199] Refactor api, keep old api working --- control/modelsimp.py | 58 ++++++++++++++------------------- control/tests/modelsimp_test.py | 25 ++++++++------ 2 files changed, 39 insertions(+), 44 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index f4c70e66b..b57183e13 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -402,7 +402,7 @@ def era(YY, m, n, nin, nout, r): raise NotImplementedError('This function is not implemented yet.') -def markov(*args, **kwargs): +def markov(*args, m=None, transpose=False, dt=True, truncate=False): """markov(Y, U, [, m]) Calculate the first `m` Markov parameters [D CB CAB ...] @@ -420,12 +420,12 @@ def markov(*args, **kwargs): the input data is less than the desired number of Markov parameters (a warning message is generated in this case). - The function can be called with either 1, 2, or 3 arguments: + The function can be called with either 1, 2 or 3 arguments: - * ``K, S, E = lqr(response)`` - * ``K, S, E = lqr(respnose, m)`` - * ``K, S, E = lqr(Y, U)`` - * ``K, S, E = lqr(Y, U, m)`` + * ``H = markov(response)`` + * ``H = markov(respnose, m)`` + * ``H = markov(Y, U)`` + * ``H = markov(Y, U, m)`` where `response` is an `TimeResponseData` object, and `Y`, `U`, are 1D or 2D array and m is an integer. @@ -446,26 +446,20 @@ def markov(*args, **kwargs): Number of Markov parameters to output. Defaults to len(U). dt : True of float, optional True indicates discrete time with unspecified sampling time, - positive number is discrete time with specified sampling time. - It can be used to scale the markov parameters in order to match - the impulse response of this library. - Default values is True. + positive number is discrete time with specified sampling time.It + can be used to scale the markov parameters in order to match the + impulse response of this library. Default is True. truncate : bool, optional - Do not use first m equation for least least squares. - Default value is False. + Do not use first m equation for least least squares. Default is False. + transpose : bool, optional + Assume that input data is transposed relative to the standard + :ref:`time-series-convention`. For TimeResponseData this parameter + is ignored. Default is False. Returns ------- H : ndarray First m Markov parameters, [D CB CAB ...] - - - Notes - ----- - It works for SISO and MIMO systems. - - This function does comply with the Python Control Library - :ref:`time-series-convention` for representation of time series data. References ---------- @@ -494,25 +488,21 @@ def markov(*args, **kwargs): transpose = args[0].transpose if args[0].transpose and not args[0].issiso: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) - index = 1 + if (len(args) == 2): + m = args[1] + elif (len(args) > 2): + raise ControlArgument("too many positional arguments") else: if (len(args) < 2): raise ControlArgument("not enough input arguments") - Umat = np.array(args[0], ndmin=2) - Ymat = np.array(args[1], ndmin=2) - transpose = kwargs.pop('transpose', False) + Umat = np.array(args[1], ndmin=2) + Ymat = np.array(args[0], ndmin=2) if transpose: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) - index = 2 - - - if (len(args) > index): - m = args[index] - else: - m = None - - dt = kwargs.pop('dt', True) - truncate = kwargs.pop('truncate', False) + if (len(args) == 3): + m = args[2] + elif (len(args) > 3): + raise ControlArgument("too many positional arguments") # Make sure the number of time points match if Umat.shape[1] != Ymat.shape[1]: diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 286b41353..ac2c1c078 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -45,11 +45,11 @@ def testMarkovSignature(self): m = 3 Htrue = np.array([1., 0., 0.]) - H = markov(Y, U, m, transpose=False) + H = markov(Y, U, m=m, transpose=False) np.testing.assert_array_almost_equal(H, Htrue) response.transpose=False - H = markov(response, m) + H = markov(response, m=m) np.testing.assert_array_almost_equal(H, Htrue) # Make sure that transposed data also works @@ -68,20 +68,25 @@ def testMarkovSignature(self): H = markov(response, m) np.testing.assert_array_almost_equal(H, Htrue) + H = markov(Y, U, m=m) + np.testing.assert_array_almost_equal(H, Htrue) + + H = markov(response, m=m) + np.testing.assert_array_almost_equal(H, Htrue) + # Test example from docstring - # TODO: There is a problem here - # Htrue = np.array([1., 0.5, 0.]) + # TODO: There is a problem here, last markov parameter does not fit + # the approximation error could be to big + Htrue = np.array([0, 1., -0.5]) T = np.linspace(0, 10, 100) U = np.ones((1, 100)) T, Y = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(Y, U, 3, transpose=False) - #np.testing.assert_array_almost_equal(H, Htrue) + H = markov(Y, U, 4, transpose=False) + np.testing.assert_array_almost_equal(H[:3], Htrue[:3]) - T = np.linspace(0, 10, 100) - U = np.ones((1, 100)) response = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(response, 3) - #np.testing.assert_array_almost_equal(H, Htrue) + H = markov(response, 4) + np.testing.assert_array_almost_equal(H[:3], Htrue[:3]) # Test example from issue #395 inp = np.array([1, 2]) From 250c448a3e31fac9fb035cf01f938f4f2e9225e1 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 11 Jul 2024 16:04:16 +0200 Subject: [PATCH 109/199] Fix few docstring things, change name to eigensys_realization --- control/modelsimp.py | 57 ++++++++++++++++----------------- control/tests/modelsimp_test.py | 10 +++--- doc/control.rst | 2 +- examples/era_msd.py | 2 +- 4 files changed, 35 insertions(+), 36 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index d3d934668..ca2a05e5c 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -50,7 +50,7 @@ from .statefbk import gram from .timeresp import TimeResponseData -__all__ = ['hsvd', 'balred', 'modred', 'era', 'markov', 'minreal'] +__all__ = ['hsvd', 'balred', 'modred', 'eigensys_realization', 'markov', 'minreal', 'era'] # Hankel Singular Value Decomposition @@ -369,10 +369,11 @@ def minreal(sys, tol=None, verbose=True): return sysr -def era(arg, r, m=None, n=None, dt=True, transpose=False): - r"""era(YY, r) +def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): + r"""eigensys_realization(YY, r) - Calculate an ERA model of order `r` based on the impulse-response data. + Calculate an ERA model of order `r` based on the impulse-response data + `YY`. This function computes a discrete time system @@ -385,8 +386,8 @@ def era(arg, r, m=None, n=None, dt=True, transpose=False): The function can be called with 2 arguments: - * ``sysd, S = era(data, r)`` - * ``sysd, S = era(YY, r)`` + * ``sysd, S = eigensys_realization(data, r)`` + * ``sysd, S = eigensys_realization(YY, r)`` where `response` is an `TimeResponseData` object, and `YY` is 1D or 3D array and r is an integer. @@ -394,64 +395,59 @@ def era(arg, r, m=None, n=None, dt=True, transpose=False): Parameters ---------- YY : array_like - impulse-response data from which the StateSpace model is estimated, - 1D or 3D array. + Impulse-response from which the StateSpace model is estimated, 1D + or 3D array. data : TimeResponseData - impulse-response data from which the StateSpace model is estimated. + Impulse-response from which the StateSpace model is estimated. r : integer Order of model. m : integer, optional - Number of rows in Hankel matrix. - Default is 2*r. + Number of rows in Hankel matrix. Default is 2*r. n : integer, optional - Number of columns in Hankel matrix. - Default is 2*r. + Number of columns in Hankel matrix. Default is 2*r. dt : True or float, optional True indicates discrete time with unspecified sampling time, - positive number is discrete time with specified sampling time. - It can be used to scale the StateSpace model in order to match - the impulse response of this library. - Default values is True. + positive number is discrete time with specified sampling time. It + can be used to scale the StateSpace model in order to match the + impulse response of this library. Default is True. transpose : bool, optional Assume that input data is transposed relative to the standard :ref:`time-series-convention`. For TimeResponseData this parameter - is ignored. - Default value is False. + is ignored. Default is False. Returns ------- sys : StateSpace A reduced order model sys=StateSpace(Ar,Br,Cr,Dr,dt). S : array - Singular values of Hankel matrix. - Can be used to choose a good r value. + Singular values of Hankel matrix. Can be used to choose a good r + value. References ---------- - .. [1] Samet Oymak and Necmiye Ozay - Non-asymptotic Identification of LTI Systems - from a Single Trajectory. + .. [1] Samet Oymak and Necmiye Ozay, Non-asymptotic Identification of + LTI Systems from a Single Trajectory. https://arxiv.org/abs/1806.05722 Examples -------- >>> T = np.linspace(0, 10, 100) >>> _, YY = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) - >>> sysd, _ = ct.era(YY, r=1) + >>> sysd, _ = ct.eigensys_realization(YY, r=1) >>> T = np.linspace(0, 10, 100) >>> response = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) - >>> sysd, _ = ct.era(response, r=1) + >>> sysd, _ = ct.eigensys_realization(response, r=1) """ def block_hankel_matrix(Y, m, n): - + """Create a block Hankel matrix from Impulse response""" q, p, _ = Y.shape YY = Y.transpose(0,2,1) # transpose for reshape H = np.zeros((q*m,p*n)) for r in range(m): - # shift and add row to hankel matrix + # shift and add row to Hankel matrix new_row = YY[:,r:r+n,:] H[q*r:q*(r+1),:] = new_row.reshape((q,p*n)) @@ -477,7 +473,7 @@ def block_hankel_matrix(Y, m, n): raise ValueError("Hankel parameters are to small") if (l-1) < m+n: - raise ValueError("Not enough data for requested number of parameters") + raise ValueError("not enough data for requested number of parameters") H = block_hankel_matrix(YY[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) Hf = H[:,:-p] # first p*n columns of H @@ -651,3 +647,6 @@ def markov(Y, U, m=None, transpose=False): # Return the first m Markov parameters return H if transpose else np.transpose(H) + +# Function aliases +era = eigensys_realization diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index 39277fb4f..dc50ce963 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -10,7 +10,7 @@ from control import StateSpace, impulse_response, step_response, forced_response, tf, rss, c2d from control.exception import ControlMIMONotImplemented from control.tests.conftest import slycotonly -from control.modelsimp import balred, hsvd, markov, modred, era +from control.modelsimp import balred, hsvd, markov, modred, eigensys_realization class TestModelsimp: @@ -129,7 +129,7 @@ def testERASignature(self): ir_true = impulse_response(sysd_true,T=T) # test TimeResponseData - sysd_est, _ = era(ir_true,r=2) + sysd_est, _ = eigensys_realization(ir_true,r=2) ir_est = impulse_response(sysd_est, T=T) _, H_est = ir_est @@ -137,7 +137,7 @@ def testERASignature(self): # test ndarray _, YY_true = ir_true - sysd_est, _ = era(YY_true,r=2) + sysd_est, _ = eigensys_realization(YY_true,r=2) ir_est = impulse_response(sysd_est, T=T) _, H_est = ir_est @@ -169,7 +169,7 @@ def testERASignature(self): ir_true = impulse_response(sysd_true, T=T) # test TimeResponseData - sysd_est, _ = era(ir_true,r=4,dt=dt) + sysd_est, _ = eigensys_realization(ir_true,r=4,dt=dt) step_true = step_response(sysd_true) step_est = step_response(sysd_est) @@ -180,7 +180,7 @@ def testERASignature(self): # test ndarray _, YY_true = ir_true - sysd_est, _ = era(YY_true,r=4,dt=dt) + sysd_est, _ = eigensys_realization(YY_true,r=4,dt=dt) step_true = step_response(sysd_true, T=T) step_est = step_response(sysd_est, T=T) diff --git a/doc/control.rst b/doc/control.rst index efd643d8a..30ae1a03b 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -137,7 +137,7 @@ Model simplification tools balred hsvd modred - era + eigensys_realization markov Nonlinear system support diff --git a/examples/era_msd.py b/examples/era_msd.py index 9a5fc8c4d..101933435 100644 --- a/examples/era_msd.py +++ b/examples/era_msd.py @@ -47,7 +47,7 @@ response.plot() plt.show() -sysd_est, _ = ct.era(response,r=4,dt=dt) +sysd_est, _ = ct.eigensys_realization(response,r=4,dt=dt) step_true = ct.step_response(sysd) step_true.sysname="H_true" From 10fa1423dc5a79b8f29f34bdcff5e365e88abf95 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Thu, 11 Jul 2024 17:12:43 +0200 Subject: [PATCH 110/199] Change names for modelsimp, add aliases for modelsimp --- control/modelsimp.py | 21 +++++++++++++++------ doc/control.rst | 10 +++++----- 2 files changed, 20 insertions(+), 11 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 06c3d350d..e12fb4fa2 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -49,7 +49,9 @@ from .statesp import StateSpace from .statefbk import gram -__all__ = ['hsvd', 'balred', 'modred', 'era', 'markov', 'minreal'] +__all__ = ['hankel_singular_values', 'balanced_reduction', 'model_reduction', + 'minimal_realization', 'eigensys_realization', 'markov', 'hsvd', + 'balred', 'modred', 'minreal', 'era'] # Hankel Singular Value Decomposition @@ -57,7 +59,7 @@ # The following returns the Hankel singular values, which are singular values # of the matrix formed by multiplying the controllability and observability # Gramians -def hsvd(sys): +def hankel_singular_values(sys): """Calculate the Hankel singular values. Parameters @@ -106,7 +108,7 @@ def hsvd(sys): return hsv[::-1] -def modred(sys, ELIM, method='matchdc'): +def model_reduction(sys, ELIM, method='matchdc'): """ Model reduction of `sys` by eliminating the states in `ELIM` using a given method. @@ -216,7 +218,7 @@ def modred(sys, ELIM, method='matchdc'): return rsys -def balred(sys, orders, method='truncate', alpha=None): +def balanced_reduction(sys, orders, method='truncate', alpha=None): """Balanced reduced order model of sys of a given order. States are eliminated based on Hankel singular value. If sys has unstable modes, they are removed, the @@ -340,7 +342,7 @@ def balred(sys, orders, method='truncate', alpha=None): return rsys -def minreal(sys, tol=None, verbose=True): +def minimal_realization(sys, tol=None, verbose=True): ''' Eliminates uncontrollable or unobservable states in state-space models or cancelling pole-zero pairs in transfer functions. The @@ -368,7 +370,7 @@ def minreal(sys, tol=None, verbose=True): return sysr -def era(YY, m, n, nin, nout, r): +def eigensys_realization(YY, m, n, nin, nout, r): """Calculate an ERA model of order `r` based on the impulse-response data `YY`. @@ -556,3 +558,10 @@ def markov(Y, U, m=None, transpose=False): # Return the first m Markov parameters return H if transpose else np.transpose(H) + +# Function aliases +hsvd = hankel_singular_values +balred = balanced_reduction +modred = model_reduction +minreal = minimal_realization +era = eigensys_realization diff --git a/doc/control.rst b/doc/control.rst index efd643d8a..366454d42 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -133,11 +133,11 @@ Model simplification tools .. autosummary:: :toctree: generated/ - minreal - balred - hsvd - modred - era + minimal_realization + balanced_reduction + hankel_singular_values + model_reduction + eigensys_realization markov Nonlinear system support From bb82883cb4abf5171e82ae4c025c012f5218b6a7 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 12 Jul 2024 20:32:06 -0700 Subject: [PATCH 111/199] fix step_info settling time calculation for constant signals --- control/tests/timeresp_test.py | 51 +++++++++++++++++++++++++++++++--- control/timeresp.py | 10 ++++--- 2 files changed, 53 insertions(+), 8 deletions(-) diff --git a/control/tests/timeresp_test.py b/control/tests/timeresp_test.py index 73032c0a8..e2d93be0e 100644 --- a/control/tests/timeresp_test.py +++ b/control/tests/timeresp_test.py @@ -1,6 +1,7 @@ """timeresp_test.py - test time response functions""" from copy import copy +from math import isclose import numpy as np import pytest @@ -8,11 +9,11 @@ import control as ct from control import StateSpace, TransferFunction, c2d, isctime, ss2tf, tf2ss -from control.exception import slycot_check, pandas_check +from control.exception import pandas_check, slycot_check from control.tests.conftest import slycotonly -from control.timeresp import (_default_time_vector, _ideal_tfinal_and_dt, - forced_response, impulse_response, - initial_response, step_info, step_response) +from control.timeresp import _default_time_vector, _ideal_tfinal_and_dt, \ + forced_response, impulse_response, initial_response, step_info, \ + step_response class TSys: @@ -1275,3 +1276,45 @@ def test_no_pandas(): # Convert to pandas with pytest.raises(ImportError, match="pandas"): df = resp.to_pandas() + + +# https://github.com/python-control/python-control/issues/1014 +def test_step_info_nonstep(): + # Pass a constant input + timepts = np.linspace(0, 10, endpoint=False) + y_const = np.ones_like(timepts) + + # Constant value of 1 + step_info = ct.step_info(y_const, timepts) + assert step_info['RiseTime'] == 0 + assert step_info['SettlingTime'] == 0 + assert step_info['SettlingMin'] == 1 + assert step_info['SettlingMax'] == 1 + assert step_info['Overshoot'] == 0 + assert step_info['Undershoot'] == 0 + assert step_info['Peak'] == 1 + assert step_info['PeakTime'] == 0 + assert step_info['SteadyStateValue'] == 1 + + # Constant value of -1 + step_info = ct.step_info(-y_const, timepts) + assert step_info['RiseTime'] == 0 + assert step_info['SettlingTime'] == 0 + assert step_info['SettlingMin'] == -1 + assert step_info['SettlingMax'] == -1 + assert step_info['Overshoot'] == 0 + assert step_info['Undershoot'] == 0 + assert step_info['Peak'] == 1 + assert step_info['PeakTime'] == 0 + assert step_info['SteadyStateValue'] == -1 + + # Ramp from -1 to 1 + step_info = ct.step_info(-1 + 2 * timepts/10, timepts) + assert step_info['RiseTime'] == 3.8 + assert step_info['SettlingTime'] == 9.8 + assert isclose(step_info['SettlingMin'], 0.88) + assert isclose(step_info['SettlingMax'], 0.96) + assert step_info['Overshoot'] == 0 + assert step_info['Peak'] == 1 + assert step_info['PeakTime'] == 0 + assert isclose(step_info['SteadyStateValue'], 0.96) diff --git a/control/timeresp.py b/control/timeresp.py index 244d90c23..f844b1df4 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -1674,17 +1674,19 @@ def step_info(sysdata, T=None, T_num=None, yfinal=None, params=None, if not np.isnan(InfValue) and not np.isinf(InfValue): # RiseTime - tr_lower_index = np.where( + tr_lower_index = np.nonzero( sgnInf * (yout - RiseTimeLimits[0] * InfValue) >= 0 )[0][0] - tr_upper_index = np.where( + tr_upper_index = np.nonzero( sgnInf * (yout - RiseTimeLimits[1] * InfValue) >= 0 )[0][0] rise_time = T[tr_upper_index] - T[tr_lower_index] # SettlingTime - settled = np.where( - np.abs(yout/InfValue-1) >= SettlingTimeThreshold)[0][-1]+1 + outside_threshold = np.nonzero( + np.abs(yout/InfValue - 1) >= SettlingTimeThreshold)[0] + settled = 0 if outside_threshold.size == 0 \ + else outside_threshold[-1] + 1 # MIMO systems can have unsettled channels without infinite # InfValue if settled < len(T): From d15e21fdedfa92a2af6909d63ea2e84aab4a8c63 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 13 Jul 2024 09:05:51 -0700 Subject: [PATCH 112/199] add regression test --- control/tests/timeplot_test.py | 11 +++++++++-- 1 file changed, 9 insertions(+), 2 deletions(-) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 0fcc159be..58ef062a5 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -258,7 +258,7 @@ def test_combine_time_responses(): sys_mimo = ct.rss(4, 2, 2) timepts = np.linspace(0, 10, 100) - # Combine two response with ntrace = 0 + # Combine two responses with ntrace = 0 U = np.vstack([np.sin(timepts), np.cos(2*timepts)]) resp1 = ct.input_output_response(sys_mimo, timepts, U) @@ -293,6 +293,7 @@ def test_combine_time_responses(): combresp4 = ct.combine_time_responses( [resp1, resp2, resp3], trace_labels=labels) assert combresp4.trace_labels == labels + assert combresp4.trace_types == [None, None, 'step', 'step'] # Automatically generated trace label names and types resp5 = ct.step_response(sys_mimo, timepts) @@ -302,7 +303,13 @@ def test_combine_time_responses(): combresp5 = ct.combine_time_responses([resp1, resp5]) assert combresp5.trace_labels == [resp1.title] + \ ["test, trace 0", "test, trace 1"] - assert combresp4.trace_types == [None, None, 'step', 'step'] + assert combresp5.trace_types == [None, None, None] + + # ntraces = 0 with trace_types != None + # https://github.com/python-control/python-control/issues/1025 + resp6 = ct.forced_response(sys_mimo, timepts, U) + combresp6 = ct.combine_time_responses([resp1, resp6]) + assert combresp6.trace_types == [None, 'forced'] with pytest.raises(ValueError, match="must have the same number"): resp = ct.step_response(ct.rss(4, 2, 3), timepts) From 937783a427c55e7f18b5b32035f7583a932b6aea Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 13 Jul 2024 09:06:05 -0700 Subject: [PATCH 113/199] fix line length overflow --- control/timeplot.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/control/timeplot.py b/control/timeplot.py index 646d2c1be..f257d2b3a 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -738,7 +738,8 @@ def combine_time_responses(response_list, trace_labels=None, title=None): if generate_trace_labels: trace_labels.append(response.title) trace_types.append( - None if response.trace_types is None else response.trace_types[0]) + None if response.trace_types is None + else response.trace_types[0]) else: # Save the data From 6c7306217070252898aa9fa78d1ef06e37d5bfda Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Mon, 15 Jul 2024 09:26:42 +0200 Subject: [PATCH 114/199] Change _block_hankel to top-level, update docstrings and comments --- control/modelsimp.py | 45 ++++++++++++++++++++++---------------------- 1 file changed, 23 insertions(+), 22 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index ca2a05e5c..9fa3e4127 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -369,6 +369,21 @@ def minreal(sys, tol=None, verbose=True): return sysr +def _block_hankel(Y, m, n): + """Create a block Hankel matrix from impulse response""" + q, p, _ = Y.shape + YY = Y.transpose(0,2,1) # transpose for reshape + + H = np.zeros((q*m,p*n)) + + for r in range(m): + # shift and add row to Hankel matrix + new_row = YY[:,r:r+n,:] + H[q*r:q*(r+1),:] = new_row.reshape((q,p*n)) + + return H + + def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): r"""eigensys_realization(YY, r) @@ -389,8 +404,8 @@ def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): * ``sysd, S = eigensys_realization(data, r)`` * ``sysd, S = eigensys_realization(YY, r)`` - where `response` is an `TimeResponseData` object, and `YY` is 1D or 3D - array and r is an integer. + where `data` is a `TimeResponseData` object, `YY` is a 1D or 3D + array, and r is an integer. Parameters ---------- @@ -406,10 +421,10 @@ def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): n : integer, optional Number of columns in Hankel matrix. Default is 2*r. dt : True or float, optional - True indicates discrete time with unspecified sampling time, - positive number is discrete time with specified sampling time. It - can be used to scale the StateSpace model in order to match the - impulse response of this library. Default is True. + True indicates discrete time with unspecified sampling time and a + positive float is discrete time with the specified sampling time. + It can be used to scale the StateSpace model in order to match the + unit-area impulse response of python-control. Default is True. transpose : bool, optional Assume that input data is transposed relative to the standard :ref:`time-series-convention`. For TimeResponseData this parameter @@ -439,20 +454,6 @@ def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): >>> response = ct.impulse_response(ct.tf([1], [1, 0.5], True), T) >>> sysd, _ = ct.eigensys_realization(response, r=1) """ - def block_hankel_matrix(Y, m, n): - """Create a block Hankel matrix from Impulse response""" - q, p, _ = Y.shape - YY = Y.transpose(0,2,1) # transpose for reshape - - H = np.zeros((q*m,p*n)) - - for r in range(m): - # shift and add row to Hankel matrix - new_row = YY[:,r:r+n,:] - H[q*r:q*(r+1),:] = new_row.reshape((q,p*n)) - - return H - if isinstance(arg, TimeResponseData): YY = np.array(arg.outputs, ndmin=3) if arg.transpose: @@ -475,7 +476,7 @@ def block_hankel_matrix(Y, m, n): if (l-1) < m+n: raise ValueError("not enough data for requested number of parameters") - H = block_hankel_matrix(YY[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) + H = _block_hankel(YY[:,:,1:], m, n+1) # Hankel matrix (q*m, p*(n+1)) Hf = H[:,:-p] # first p*n columns of H Hl = H[:,p:] # last p*n columns of H @@ -486,7 +487,7 @@ def block_hankel_matrix(Y, m, n): # balanced realizations Sigma_inv = np.diag(1./np.sqrt(S[0:r])) Ar = Sigma_inv @ Ur.T @ Hl @ Vhr.T @ Sigma_inv - Br = Sigma_inv @ Ur.T @ Hf[:,0:p]*dt + Br = Sigma_inv @ Ur.T @ Hf[:,0:p]*dt # dt scaling for unit-area impulse Cr = Hf[0:q,:] @ Vhr.T @ Sigma_inv Dr = YY[:,:,0] From 8b9326435142eec4d07a6ec35bf0884fd3d13843 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Mon, 15 Jul 2024 09:55:04 +0200 Subject: [PATCH 115/199] Delete the hyphen from the Impuse response. --- control/modelsimp.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 9fa3e4127..4b72e2bb9 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -410,10 +410,10 @@ def eigensys_realization(arg, r, m=None, n=None, dt=True, transpose=False): Parameters ---------- YY : array_like - Impulse-response from which the StateSpace model is estimated, 1D + Impulse response from which the StateSpace model is estimated, 1D or 3D array. data : TimeResponseData - Impulse-response from which the StateSpace model is estimated. + Impulse response from which the StateSpace model is estimated. r : integer Order of model. m : integer, optional From 7ac6ee027d95659ddc6b45b348e049d9fcdf7eb5 Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Mon, 15 Jul 2024 11:20:16 +0200 Subject: [PATCH 116/199] Remove parenthesis form if, update docstrings and comments --- control/modelsimp.py | 59 ++++++++++++++++++++++---------------------- 1 file changed, 30 insertions(+), 29 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index b57183e13..4cc07b733 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -405,52 +405,52 @@ def era(YY, m, n, nin, nout, r): def markov(*args, m=None, transpose=False, dt=True, truncate=False): """markov(Y, U, [, m]) - Calculate the first `m` Markov parameters [D CB CAB ...] - from data + Calculate the first `m` Markov parameters [D CB CAB ...] from data. - This function computes the Markov parameters for a discrete time system + This function computes the Markov parameters for a discrete time + system .. math:: x[k+1] &= A x[k] + B u[k] \\\\ y[k] &= C x[k] + D u[k] - given data for u and y. The algorithm assumes that that C A^k B = 0 for - k > m-2 (see [1]_). Note that the problem is ill-posed if the length of - the input data is less than the desired number of Markov parameters (a - warning message is generated in this case). + given data for u and y. The algorithm assumes that that C A^k B = 0 + for k > m-2 (see [1]_). Note that the problem is ill-posed if the + length of the input data is less than the desired number of Markov + parameters (a warning message is generated in this case). The function can be called with either 1, 2 or 3 arguments: - * ``H = markov(response)`` - * ``H = markov(respnose, m)`` + * ``H = markov(data)`` + * ``H = markov(data, m)`` * ``H = markov(Y, U)`` * ``H = markov(Y, U, m)`` - where `response` is an `TimeResponseData` object, and `Y`, `U`, are 1D or 2D - array and m is an integer. + where `data` is a `TimeResponseData` object, `YY` is a 1D or 3D + array, and r is an integer. Parameters ---------- Y : array_like - Output data. If the array is 1D, the system is assumed to be single - input. If the array is 2D and transpose=False, the columns of `Y` - are taken as time points, otherwise the rows of `Y` are taken as - time points. + Output data. If the array is 1D, the system is assumed to be + single input. If the array is 2D and transpose=False, the columns + of `Y` are taken as time points, otherwise the rows of `Y` are + taken as time points. U : array_like Input data, arranged in the same way as `Y`. data : TimeResponseData Response data from which the Markov parameters where estimated. Input and output data must be 1D or 2D array. m : int, optional - Number of Markov parameters to output. Defaults to len(U). + Number of Markov parameters to output. Defaults to len(U). dt : True of float, optional - True indicates discrete time with unspecified sampling time, - positive number is discrete time with specified sampling time.It - can be used to scale the markov parameters in order to match the - impulse response of this library. Default is True. + True indicates discrete time with unspecified sampling time and a + positive float is discrete time with the specified sampling time. + It can be used to scale the Markov parameters in order to match + the unit-area impulse response of python-control. Default is True. truncate : bool, optional - Do not use first m equation for least least squares. Default is False. + Do not use first m equation for least squares. Default is False. transpose : bool, optional Assume that input data is transposed relative to the standard :ref:`time-series-convention`. For TimeResponseData this parameter @@ -459,7 +459,7 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): Returns ------- H : ndarray - First m Markov parameters, [D CB CAB ...] + First m Markov parameters, [D CB CAB ...]. References ---------- @@ -476,10 +476,10 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): >>> H = ct.markov(Y, U, 3, transpose=False) """ - # Convert input parameters to 2D arrays (if they aren't already) + # Convert input parameters to 2D arrays (if they aren't already) # Get the system description - if (len(args) < 1): + if len(args) < 1: raise ControlArgument("not enough input arguments") if isinstance(args[0], TimeResponseData): @@ -488,20 +488,20 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): transpose = args[0].transpose if args[0].transpose and not args[0].issiso: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) - if (len(args) == 2): + if len(args) == 2: m = args[1] - elif (len(args) > 2): + elif len(args) > 2: raise ControlArgument("too many positional arguments") else: - if (len(args) < 2): + if len(args) < 2: raise ControlArgument("not enough input arguments") Umat = np.array(args[1], ndmin=2) Ymat = np.array(args[0], ndmin=2) if transpose: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) - if (len(args) == 3): + if len(args) == 3: m = args[2] - elif (len(args) > 3): + elif len(args) > 3: raise ControlArgument("too many positional arguments") # Make sure the number of time points match @@ -577,6 +577,7 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): H = H.reshape(q,m,p) # output, time*input -> output, time, input H = H.transpose(0,2,1) # output, input, time + # for siso return a 1D array instead of a 3D array if q == 1 and p == 1: H = np.squeeze(H) From 8d62775303e18fabff1cbd5927e3beaf6f2a765f Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Mon, 15 Jul 2024 12:05:02 +0200 Subject: [PATCH 117/199] Change default value of dt to None, add equally spaced check for response time data --- control/modelsimp.py | 22 ++++++++++++++++------ control/tests/modelsimp_test.py | 22 ++++++++++++++++++---- 2 files changed, 34 insertions(+), 10 deletions(-) diff --git a/control/modelsimp.py b/control/modelsimp.py index 4cc07b733..685529d0f 100644 --- a/control/modelsimp.py +++ b/control/modelsimp.py @@ -402,7 +402,7 @@ def era(YY, m, n, nin, nout, r): raise NotImplementedError('This function is not implemented yet.') -def markov(*args, m=None, transpose=False, dt=True, truncate=False): +def markov(*args, m=None, transpose=False, dt=None, truncate=False): """markov(Y, U, [, m]) Calculate the first `m` Markov parameters [D CB CAB ...] from data. @@ -448,7 +448,9 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): True indicates discrete time with unspecified sampling time and a positive float is discrete time with the specified sampling time. It can be used to scale the Markov parameters in order to match - the unit-area impulse response of python-control. Default is True. + the unit-area impulse response of python-control. Default is True + for array_like and dt=data.time[1]-data.time[0] for + TimeResponseData as input. truncate : bool, optional Do not use first m equation for least squares. Default is False. transpose : bool, optional @@ -483,10 +485,16 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): raise ControlArgument("not enough input arguments") if isinstance(args[0], TimeResponseData): - Umat = np.array(args[0].inputs, ndmin=2) - Ymat = np.array(args[0].outputs, ndmin=2) - transpose = args[0].transpose - if args[0].transpose and not args[0].issiso: + data = args[0] + Umat = np.array(data.inputs, ndmin=2) + Ymat = np.array(data.outputs, ndmin=2) + if dt is None: + dt = data.time[1] - data.time[0] + if not np.allclose(np.diff(data.time), dt): + raise ValueError("response time values must be equally " + "spaced.") + transpose = data.transpose + if data.transpose and not data.issiso: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) if len(args) == 2: m = args[1] @@ -497,6 +505,8 @@ def markov(*args, m=None, transpose=False, dt=True, truncate=False): raise ControlArgument("not enough input arguments") Umat = np.array(args[1], ndmin=2) Ymat = np.array(args[0], ndmin=2) + if dt is None: + dt = True if transpose: Umat, Ymat = np.transpose(Umat), np.transpose(Ymat) if len(args) == 3: diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index ac2c1c078..d72348aea 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -81,11 +81,11 @@ def testMarkovSignature(self): T = np.linspace(0, 10, 100) U = np.ones((1, 100)) T, Y = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(Y, U, 4, transpose=False) + H = markov(Y, U, 4, dt=True) np.testing.assert_array_almost_equal(H[:3], Htrue[:3]) response = forced_response(tf([1], [1, 0.5], True), T, U) - H = markov(response, 4) + H = markov(response, 4, dt=True) np.testing.assert_array_almost_equal(H[:3], Htrue[:3]) # Test example from issue #395 @@ -164,14 +164,28 @@ def testMarkovResults(self, k, m, n): # Generate input/output data T = np.array(range(n)) * Ts U = np.cos(T) + np.sin(T/np.pi) - response = forced_response(Hd, T, U, squeeze=True) - Mcomp = markov(response, m) + + ir_true = impulse_response(Hd,T) + Mtrue_scaled = ir_true[1][:m] + + T, Y = forced_response(Hd, T, U, squeeze=True) + Mcomp = markov(Y, U, m, dt=True) + Mcomp_scaled = markov(Y, U, m, dt=Ts) # Compare to results from markov() # experimentally determined probability to get non matching results # with rtot=1e-6 and atol=1e-8 due to numerical errors # for k=5, m=n=10: 0.015 % np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) + np.testing.assert_allclose(Mtrue_scaled, Mcomp_scaled, rtol=1e-6, atol=1e-8) + + response = forced_response(Hd, T, U, squeeze=True) + Mcomp = markov(response, m, dt=True) + Mcomp_scaled = markov(response, m, dt=Ts) + + np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) + np.testing.assert_allclose(Mtrue_scaled, Mcomp_scaled, rtol=1e-6, atol=1e-8) + def testModredMatchDC(self): #balanced realization computed in matlab for the transfer function: From e61ac533e46946fd9bf8378f94ed38908cb0496a Mon Sep 17 00:00:00 2001 From: Johannes Kaisinger Date: Mon, 15 Jul 2024 13:28:01 +0200 Subject: [PATCH 118/199] Add unit tests to increase code coverage --- control/tests/modelsimp_test.py | 99 +++++++++++++++++++++++++-------- 1 file changed, 76 insertions(+), 23 deletions(-) diff --git a/control/tests/modelsimp_test.py b/control/tests/modelsimp_test.py index d72348aea..88cc93a75 100644 --- a/control/tests/modelsimp_test.py +++ b/control/tests/modelsimp_test.py @@ -8,6 +8,7 @@ from control import StateSpace, forced_response, impulse_response, tf, rss, c2d, TimeResponseData +from control.exception import ControlArgument, ControlDimension from control.tests.conftest import slycotonly from control.modelsimp import balred, hsvd, markov, modred @@ -32,7 +33,7 @@ def testHSVD(self): assert not isinstance(hsv, np.matrix) def testMarkovSignature(self): - U = np.array([[1., 1., 1., 1., 1.]]) + U = np.array([[1., 1., 1., 1., 1., 1., 1.]]) Y = U response = TimeResponseData(time=np.arange(U.shape[-1]), outputs=Y, @@ -41,27 +42,40 @@ def testMarkovSignature(self): input_labels='u', ) - # Basic usage + # setup m = 3 Htrue = np.array([1., 0., 0.]) + Htrue_l = np.array([1., 0., 0., 0., 0., 0., 0.]) - H = markov(Y, U, m=m, transpose=False) - np.testing.assert_array_almost_equal(H, Htrue) + # test not enough input arguments + with pytest.raises(ControlArgument): + H = markov(Y) + with pytest.raises(ControlArgument): + H = markov() - response.transpose=False - H = markov(response, m=m) - np.testing.assert_array_almost_equal(H, Htrue) + # to many positional arguments + with pytest.raises(ControlArgument): + H = markov(Y,U,m,1) + with pytest.raises(ControlArgument): + H = markov(response,m,1) - # Make sure that transposed data also works - H = markov(Y.T, U.T, m, transpose=True) - np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) + # to many positional arguments + with pytest.raises(ControlDimension): + U2 = np.hstack([U,U]) + H = markov(Y,U2,m) - response.transpose=True - H = markov(response, m) - np.testing.assert_array_almost_equal(H, np.transpose(Htrue)) - response.transpose=False + # not enough data + with pytest.warns(Warning): + H = markov(Y,U,8) + + # Basic Usage, m=l + H = markov(Y, U) + np.testing.assert_array_almost_equal(H, Htrue_l) - # Generate Markov parameters without any arguments + H = markov(response) + np.testing.assert_array_almost_equal(H, Htrue_l) + + # Basic Usage, m H = markov(Y, U, m) np.testing.assert_array_almost_equal(H, Htrue) @@ -74,6 +88,20 @@ def testMarkovSignature(self): H = markov(response, m=m) np.testing.assert_array_almost_equal(H, Htrue) + response.transpose=False + H = markov(response, m=m) + np.testing.assert_array_almost_equal(H, Htrue) + + # Make sure that transposed data also works, siso + HT = markov(Y.T, U.T, m, transpose=True) + np.testing.assert_array_almost_equal(HT, np.transpose(Htrue)) + + response.transpose = True + HT = markov(response, m) + np.testing.assert_array_almost_equal(HT, np.transpose(Htrue)) + response.transpose=False + + # Test example from docstring # TODO: There is a problem here, last markov parameter does not fit # the approximation error could be to big @@ -114,16 +142,41 @@ def testMarkovSignature(self): dt = 0.25 sysd = sys.sample(dt, method='zoh') - t = np.arange(0,100,dt) - u = np.random.randn(sysd.B.shape[-1], len(t)) - response = forced_response(sysd, U=u) + T = np.arange(0,100,dt) + U = np.random.randn(sysd.B.shape[-1], len(T)) + response = forced_response(sysd, U=U) + Y = response.outputs m = 100 - H = markov(response, m, dt=dt) _, Htrue = impulse_response(sysd, T=dt*(m-1)) + + # test array_like + H = markov(Y, U, m, dt=dt) np.testing.assert_array_almost_equal(H, Htrue) + # test array_like, truncate + H = markov(Y, U, m, dt=dt, truncate=True) + np.testing.assert_array_almost_equal(H, Htrue) + + # test array_like, transpose + HT = markov(Y.T, U.T, m, dt=dt, transpose=True) + np.testing.assert_array_almost_equal(HT, np.transpose(Htrue)) + + # test response data + H = markov(response, m, dt=dt) + np.testing.assert_array_almost_equal(H, Htrue) + + # test response data + H = markov(response, m, dt=dt, truncate=True) + np.testing.assert_array_almost_equal(H, Htrue) + + # test response data, transpose + response.transpose = True + HT = markov(response, m, dt=dt) + np.testing.assert_array_almost_equal(HT, np.transpose(Htrue)) + + # Make sure markov() returns the right answer @pytest.mark.parametrize("k, m, n", [(2, 2, 2), @@ -168,14 +221,14 @@ def testMarkovResults(self, k, m, n): ir_true = impulse_response(Hd,T) Mtrue_scaled = ir_true[1][:m] - T, Y = forced_response(Hd, T, U, squeeze=True) - Mcomp = markov(Y, U, m, dt=True) - Mcomp_scaled = markov(Y, U, m, dt=Ts) - # Compare to results from markov() # experimentally determined probability to get non matching results # with rtot=1e-6 and atol=1e-8 due to numerical errors # for k=5, m=n=10: 0.015 % + T, Y = forced_response(Hd, T, U, squeeze=True) + Mcomp = markov(Y, U, m, dt=True) + Mcomp_scaled = markov(Y, U, m, dt=Ts) + np.testing.assert_allclose(Mtrue, Mcomp, rtol=1e-6, atol=1e-8) np.testing.assert_allclose(Mtrue_scaled, Mcomp_scaled, rtol=1e-6, atol=1e-8) From c67da3aa13a6f4804264e005733878348b7cfbf3 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 21 Jul 2024 08:34:28 -0700 Subject: [PATCH 119/199] move code around in grid.py --- control/grid.py | 24 ++++++++++++------------ 1 file changed, 12 insertions(+), 12 deletions(-) diff --git a/control/grid.py b/control/grid.py index ef9995947..dfe8f9a3e 100644 --- a/control/grid.py +++ b/control/grid.py @@ -141,18 +141,6 @@ def sgrid(scaling=None): return ax, fig -# Utility function used by all grid code -def _final_setup(ax, scaling=None): - ax.set_xlabel('Real') - ax.set_ylabel('Imaginary') - ax.axhline(y=0, color='black', lw=0.25) - ax.axvline(x=0, color='black', lw=0.25) - - # Set up the scaling for the axes - scaling = 'equal' if scaling is None else scaling - plt.axis(scaling) - - # If not grid is given, at least separate stable/unstable regions def nogrid(dt=None, ax=None, scaling=None): fig = plt.gcf() @@ -226,3 +214,15 @@ def zgrid(zetas=None, wns=None, ax=None, scaling=None): _final_setup(ax, scaling=scaling) return ax, fig + + +# Utility function used by all grid code +def _final_setup(ax, scaling=None): + ax.set_xlabel('Real') + ax.set_ylabel('Imaginary') + ax.axhline(y=0, color='black', lw=0.25) + ax.axvline(x=0, color='black', lw=0.25) + + # Set up the scaling for the axes + scaling = 'equal' if scaling is None else scaling + plt.axis(scaling) From 009b8212a7d44f901cfda060168c9b3ecc72145d Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 21 Jul 2024 09:43:50 -0700 Subject: [PATCH 120/199] fix small typo caught by @slivingston --- control/ctrlplot.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index e53d4917e..6d31664a0 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -113,7 +113,7 @@ def get_plot_axes(line_array): # Utility functions # # These functions are used by plotting routines to provide a consistent way -# of processing and displaing information. +# of processing and displaying information. # From 7cdd86c116ee02b555b20da77b35330721ba0311 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 4 Aug 2024 10:30:19 -0700 Subject: [PATCH 121/199] add pyqt dependency for QtAgg testing --- .github/workflows/python-package-conda.yml | 3 +++ 1 file changed, 3 insertions(+) diff --git a/.github/workflows/python-package-conda.yml b/.github/workflows/python-package-conda.yml index aac8ab054..a103985a6 100644 --- a/.github/workflows/python-package-conda.yml +++ b/.github/workflows/python-package-conda.yml @@ -56,6 +56,9 @@ jobs: if [[ '${{matrix.pandas}}' == 'conda' ]]; then mamba install pandas fi + if [[ '${{matrix.mplbackend}}' == 'QtAgg' ]]; then + mamba install pyqt + fi - name: Test with pytest shell: bash -l {0} From c2bebeaac8b0ae2dcb773e798825fb64ebf42452 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 6 Aug 2024 21:43:52 -0700 Subject: [PATCH 122/199] fixed incorrect unit test in nyquist_test (OS/BLAS test matrix failure --- control/tests/nyquist_test.py | 13 ++++++++++--- 1 file changed, 10 insertions(+), 3 deletions(-) diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index af9505354..d7cc94692 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -132,10 +132,17 @@ def test_nyquist_basic(): # Nyquist plot with poles on imaginary axis, omega specified # (can miss encirclements due to the imaginary poles at +/- 1j) sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) - with pytest.warns(UserWarning, match="does not match") as records: + with warnings.catch_warnings(record=True) as records: count = ct.nyquist_response(sys, np.linspace(1e-3, 1e1, 1000)) - if len(records) == 0: - assert _Z(sys) == count + _P(sys) + if len(records) == 0: + # No warnings (it happens) => make sure count is correct + assert _Z(sys) == count + _P(sys) + elif len(records) == 1: + # Expected case: make sure warning is the right one + assert issubclass(records[0].category, UserWarning) + assert "encirclements does not match" in str(records[0].message) + else: + pytest.fails("multiple warnings in nyquist_response (?)") # Nyquist plot with poles on imaginary axis, omega specified, with contour sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) From a377bdcff41e20df36ab26d92aff86ae659abbc9 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 6 Aug 2024 22:11:02 -0700 Subject: [PATCH 123/199] update MacOS, pip, OpenBLAS to fix path issue --- .github/workflows/os-blas-test-matrix.yml | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/.github/workflows/os-blas-test-matrix.yml b/.github/workflows/os-blas-test-matrix.yml index 0e5fd25fc..7330e79c2 100644 --- a/.github/workflows/os-blas-test-matrix.yml +++ b/.github/workflows/os-blas-test-matrix.yml @@ -71,8 +71,8 @@ jobs: unset | Generic | Apple ) ;; # Found in system OpenBLAS ) brew install openblas - echo "BLAS_ROOT=/usr/local/opt/openblas/" >> $GITHUB_ENV - echo "LAPACK_ROOT=/usr/local/opt/openblas/" >> $GITHUB_ENV + echo "LDFLAGS=-L/opt/homebrew/opt/openblas/lib" >> $GITHUB_ENV + echo "CPPFLAGS=-I/opt/homebrew/opt/openblas/include" >> $GITHUB_ENV ;; *) echo "bla_vendor option ${{ matrix.bla_vendor }} not supported" From 19a8d5ca6c85d9cb2e93eb6f3e64b70cc3cc48e4 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 7 Aug 2024 06:30:24 -0700 Subject: [PATCH 124/199] remove rendudant (and improperly implemented) Nyquist unit test --- control/tests/nyquist_test.py | 8 -------- 1 file changed, 8 deletions(-) diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index d7cc94692..e48615e03 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -144,14 +144,6 @@ def test_nyquist_basic(): else: pytest.fails("multiple warnings in nyquist_response (?)") - # Nyquist plot with poles on imaginary axis, omega specified, with contour - sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) - with pytest.warns(UserWarning, match="does not match") as records: - count, contour = ct.nyquist_response( - sys, np.linspace(1e-3, 1e1, 1000), return_contour=True) - if len(records) == 0: - assert _Z(sys) == count + _P(sys) - # Nyquist plot with poles on imaginary axis, return contour sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) count, contour = ct.nyquist_response(sys, return_contour=True) From f94b9cf52c468a763ff36102727e6606d860c34f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 7 Aug 2024 18:30:28 -0700 Subject: [PATCH 125/199] update pip test wheel to checkout current branch, not main --- .github/workflows/os-blas-test-matrix.yml | 2 -- 1 file changed, 2 deletions(-) diff --git a/.github/workflows/os-blas-test-matrix.yml b/.github/workflows/os-blas-test-matrix.yml index 7330e79c2..f8371e387 100644 --- a/.github/workflows/os-blas-test-matrix.yml +++ b/.github/workflows/os-blas-test-matrix.yml @@ -204,8 +204,6 @@ jobs: path: slycot-src - name: Checkout python-control uses: actions/checkout@v3 - with: - repository: 'python-control/python-control' - name: Setup Python uses: actions/setup-python@v4 with: From 25e9474187c9361fe2c156828da6bca283ae233d Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 8 Aug 2024 07:25:41 -0700 Subject: [PATCH 126/199] pytest.fails -> pytest.fail in nyquist_test.py --- control/tests/nyquist_test.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index e48615e03..73a4ed8b6 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -142,7 +142,7 @@ def test_nyquist_basic(): assert issubclass(records[0].category, UserWarning) assert "encirclements does not match" in str(records[0].message) else: - pytest.fails("multiple warnings in nyquist_response (?)") + pytest.fail("multiple warnings in nyquist_response (?)") # Nyquist plot with poles on imaginary axis, return contour sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) From 5f6833f7d095bf5838c6aba81385c82b08de2f73 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 27 Jun 2024 22:27:08 -0700 Subject: [PATCH 127/199] speed up suptitle centering --- control/ctrlplot.py | 8 +++----- 1 file changed, 3 insertions(+), 5 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 6d31664a0..a75d1e7e8 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -68,13 +68,11 @@ def suptitle( fig.suptitle(title, **kwargs) elif frame == 'axes': - # TODO: move common plotting params to 'ctrlplot' with plt.rc_context(rcParams): - plt.tight_layout() # Put the figure into proper layout + fig.suptitle(title, **kwargs) # Place title in center + plt.tight_layout() # Put everything into place xc, _ = _find_axes_center(fig, fig.get_axes()) - - fig.suptitle(title, x=xc, **kwargs) - plt.tight_layout() # Update the layout + fig.suptitle(title, x=xc, **kwargs) # Redraw title, centered else: raise ValueError(f"unknown frame '{frame}'") From ca61be3d7910ff6fc3cd416f7e17b8b94ac8fc58 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 27 Jun 2024 16:05:42 -0700 Subject: [PATCH 128/199] implement ControlPlot class for plotting return type --- control/ctrlplot.py | 68 ++++++++++++++++++++++- control/descfcn.py | 49 +++++++++++------ control/freqplot.py | 98 +++++++++++++++++++++++----------- control/nichols.py | 26 ++++++--- control/phaseplot.py | 26 ++++++--- control/pzmap.py | 29 ++++++---- control/rlocus.py | 32 +++++++---- control/tests/ctrlplot_test.py | 12 +++-- control/tests/descfcn_test.py | 16 ++++-- control/tests/freqplot_test.py | 82 +++++++++++++++------------- control/tests/kwargs_test.py | 10 ++-- control/tests/timeplot_test.py | 11 ++-- control/timeplot.py | 24 ++++++--- doc/conf.py | 2 +- doc/control.rst | 1 - doc/plotting.rst | 5 +- 16 files changed, 346 insertions(+), 145 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index a75d1e7e8..7e7fbaa1c 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -3,6 +3,7 @@ # # Collection of functions that are used by various plotting functions. +import warnings from os.path import commonprefix import matplotlib as mpl @@ -11,7 +12,7 @@ from . import config -__all__ = ['suptitle', 'get_plot_axes'] +__all__ = ['ControlPlot', 'suptitle', 'get_plot_axes'] # # Style parameters @@ -28,6 +29,66 @@ }) +# +# Control figure +# + +class ControlPlot(object): + """A class for returning control figures. + + This class is used as the return type for control plotting functions. + It contains the information required to access portions of the plot + that the user might want to adjust, as well as providing methods to + modify some of the properties of the plot. + + A control figure consists of a :class:`matplotlib.figure.Figure` with + an array of :class:`matplotlib.axes.Axes`. Each axes in the figure has + a number of lines that repreesnt the data for the plot. There may also + be a legend present in one or more of the axes. + + Attributes + ---------- + lines : array of list of :class:`matplotlib:Line2D` + Array of Line2D objects for each line in the plot. Generally, The + shape of the array matches the subplots shape and the value of the + array is a list of Line2D objects in that subplot. Some plotting + functions will reeturn variants of this structure, as described in + the individual documentation for the functions. + axes : 2D array of :class:`matplotlib:Axes` + Array of Axes objects for each subplot in the plot. + figure : :class:`matplotlib:Figure` + Figure on which the Axes are drawn. + legend : :class:`matplotlib:Legend` or array of :class:`matplotlib:Legend` + Legend object(s) for the plat. If more than :class:`matplotlib:Legend` + is included, this will be an array with each entry being either + None (for no legend) or a legend object. + + """ + def __init__(self, lines, axes=None, figure=None): + self.lines = lines + if axes is None: + axes = get_plot_axes(lines) + self.axes = np.atleast_2d(axes) + if figure is None: + figure = self.axes[0, 0].figure + self.figure = figure + + # Implement methods and properties to allow legacy interface (np.array) + __iter__ = lambda self: self.lines + __len__ = lambda self: len(self.lines) + def __getitem__(self, item): + warnings.warn( + "return of Line2D objects from plot function is deprecated in " + "favor of ControlPlot; use out.lines to access Line2D objects", + category=FutureWarning) + return self.lines[item] + def __setitem__(self, item, val): + self.lines[item] = val + shape = property(lambda self: self.lines.shape, None) + def reshape(self, *args): + return self.lines.reshape(*args) + + # # User functions # @@ -105,7 +166,10 @@ def get_plot_axes(line_array): """ _get_axes = np.vectorize(lambda lines: lines[0].axes) - return _get_axes(line_array) + if isinstance(line_array, ControlPlot): + return _get_axes(line_array.lines) + else: + return _get_axes(line_array) # # Utility functions diff --git a/control/descfcn.py b/control/descfcn.py index f52b43a2c..66595fad1 100644 --- a/control/descfcn.py +++ b/control/descfcn.py @@ -13,13 +13,15 @@ """ import math -import numpy as np +from warnings import warn + import matplotlib.pyplot as plt +import numpy as np import scipy -from warnings import warn -from .freqplot import nyquist_response from . import config +from .ctrlplot import ControlPlot +from .freqplot import nyquist_response __all__ = ['describing_function', 'describing_function_plot', 'describing_function_response', 'DescribingFunctionResponse', @@ -399,7 +401,7 @@ def describing_function_plot( Parameters ---------- - data : :class:`~control.DescribingFunctionData` + data : :class:`~control.DescribingFunctionResponse` A describing function response data object created by :func:`~control.describing_function_response`. H : LTI system @@ -424,12 +426,23 @@ def describing_function_plot( Returns ------- - lines : 1D array of Line2D - Arrray of Line2D objects for each line in the plot. The first - element of the array is a list of lines (typically only one) for - the Nyquist plot of the linear I/O styem. The second element of - the array is a list of lines (typically only one) for the - describing function curve. + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects + for each line in the plot. The first element of the array is a + list of lines (typically only one) for the Nyquist plot of the + linear I/O system. The second element of the array is a list + of lines (typically only one) for the describing function + curve. + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. Examples -------- @@ -443,6 +456,7 @@ def describing_function_plot( warn_nyquist = config._process_legacy_keyword( kwargs, 'warn', 'warn_nyquist', kwargs.pop('warn_nyquist', None)) + # TODO: update to be consistent with ctrlplot use of `label` if label not in (False, None) and not isinstance(label, str): raise ValueError("label must be formatting string, False, or None") @@ -454,19 +468,22 @@ def describing_function_plot( *sysdata, refine=kwargs.pop('refine', True), warn_nyquist=warn_nyquist) elif len(sysdata) == 1: - dfresp = sysdata[0] + if not isinstance(sysdata[0], DescribingFunctionResponse): + raise TypeError("data must be DescribingFunctionResponse") + else: + dfresp = sysdata[0] else: raise TypeError("1, 3, or 4 position arguments required") # Create a list of lines for the output - out = np.empty(2, dtype=object) + lines = np.empty(2, dtype=object) # Plot the Nyquist response - out[0] = dfresp.response.plot(**kwargs)[0] + cfig = dfresp.response.plot(**kwargs) + lines[0] = cfig.lines[0] # Return Nyquist lines for first system # Add the describing function curve to the plot - lines = plt.plot(dfresp.N_vals.real, dfresp.N_vals.imag) - out[1] = lines + lines[1] = plt.plot(dfresp.N_vals.real, dfresp.N_vals.imag) # Label the intersection points if label: @@ -474,7 +491,7 @@ def describing_function_plot( # Add labels to the intersection points plt.text(pos.real, pos.imag, label % (a, omega)) - return out + return ControlPlot(lines, cfig.axes, cfig.figure) # Utility function to figure out whether two line segments intersection diff --git a/control/freqplot.py b/control/freqplot.py index 277de8a54..f3dae7ef0 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -19,7 +19,7 @@ from . import config from .bdalg import feedback -from .ctrlplot import _add_arrows_to_line2D, _ctrlplot_rcParams, \ +from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _ctrlplot_rcParams, \ _find_axes_center, _get_line_labels, _make_legend_labels, \ _process_ax_keyword, _process_line_labels, _update_suptitle, suptitle from .ctrlutil import unwrap @@ -33,7 +33,7 @@ __all__ = ['bode_plot', 'NyquistResponseData', 'nyquist_response', 'nyquist_plot', 'singular_values_response', 'singular_values_plot', 'gangof4_plot', 'gangof4_response', - 'bode', 'nyquist', 'gangof4'] + 'bode', 'nyquist', 'gangof4', 'FrequencyResponseList'] # Default values for module parameter variables _freqplot_defaults = { @@ -124,10 +124,21 @@ def bode_plot( Returns ------- - lines : array of Line2D - Array of Line2D objects for each line in the plot. The shape of - the array matches the subplots shape and the value of the array is a - list of Line2D objects in that subplot. + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects + for each line in the plot. The shape of the array matches the + subplots shape and the value of the array is a list of Line2D + objects in that subplot. + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. Other Parameters ---------------- @@ -1008,7 +1019,7 @@ def gen_zero_centered_series(val_min, val_max, period): else: return mag_data, phase_data, omega_data - return out + return ControlPlot(out, ax_array, fig) # @@ -1483,16 +1494,27 @@ def nyquist_plot( Returns ------- - lines : array of Line2D - 2D array of Line2D objects for each line in the plot. The shape of - the array is given by (nsys, 4) where nsys is the number of systems - or Nyquist responses passed to the function. The second index - specifies the segment type: + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: 2D array of :class:`matplotlib.lines.Line2D` + objects for each line in the plot. The shape of the array is + given by (nsys, 4) where nsys is the number of systems or + Nyquist responses passed to the function. The second index + specifies the segment type: - * lines[idx, 0]: unscaled portion of the primary curve - * lines[idx, 1]: scaled portion of the primary curve - * lines[idx, 2]: unscaled portion of the mirror curve - * lines[idx, 3]: scaled portion of the mirror curve + - lines[idx, 0]: unscaled portion of the primary curve + - lines[idx, 1]: scaled portion of the primary curve + - lines[idx, 2]: unscaled portion of the mirror curve + - lines[idx, 3]: scaled portion of the mirror curve + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. Other Parameters ---------------- @@ -1923,7 +1945,7 @@ def _parse_linestyle(style_name, allow_false=False): # Return counts and (optionally) the contour we used return (counts, contours) if return_contour else counts - return out + return ControlPlot(out, ax, fig) # @@ -2170,19 +2192,20 @@ def singular_values_plot( Returns ------- - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to suppress. - lines : array of Line2D - 1-D array of Line2D objects. The size of the array matches - the number of systems and the value of the array is a list of - Line2D objects for that system. - mag : ndarray (or list of ndarray if len(data) > 1)) - If plot=False, magnitude of the response (deprecated). - phase : ndarray (or list of ndarray if len(data) > 1)) - If plot=False, phase in radians of the response (deprecated). - omega : ndarray (or list of ndarray if len(data) > 1)) - If plot=False, frequency in rad/sec (deprecated). + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: 1-D array of :class:`matplotlib.lines.Line2D` objects. + The size of the array matches the number of systems and the + value of the array is a list of Line2D objects for that system. + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. Other Parameters ---------------- @@ -2193,6 +2216,9 @@ def singular_values_plot( If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. + legend_loc : str, optional + For plots with multiple lines, a legend will be included in the + given location. Default is 'center right'. Use False to supress. omega_limits : array_like of two values Set limits for plotted frequency range. If Hz=True the limits are in Hz otherwise in rad/s. Specifying ``omega`` as a list of two @@ -2213,6 +2239,16 @@ def singular_values_plot( -------- singular_values_response + Notes + ----- + 1. If plot==False, the following legacy values are returned: + * mag : ndarray (or list of ndarray if len(data) > 1)) + Magnitude of the response (deprecated). + * phase : ndarray (or list of ndarray if len(data) > 1)) + Phase in radians of the response (deprecated). + * omega : ndarray (or list of ndarray if len(data) > 1)) + Frequency in rad/sec (deprecated). + """ # Keyword processing dB = config._get_param( @@ -2363,7 +2399,7 @@ def singular_values_plot( else: return sigmas, omegas - return out + return ControlPlot(out, ax_sigma, fig) # # Utility functions diff --git a/control/nichols.py b/control/nichols.py index 78b03b315..c39f46101 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -18,7 +18,8 @@ import numpy as np from . import config -from .ctrlplot import _get_line_labels, _process_ax_keyword, suptitle +from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ + suptitle from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults from .lti import frequency_response @@ -60,10 +61,23 @@ def nichols_plot( Returns ------- - lines : array of Line2D - 1-D array of Line2D objects. The size of the array matches - the number of systems and the value of the array is a list of - Line2D objects for that system. + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: 1D array of :class:`matplotlib.lines.Line2D` objects. + The size of the array matches the number of systems and the + value of the array is a list of Line2D objects for that system. + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. + + lines : array of Line2D + """ # Get parameter values grid = config._get_param('nichols', 'grid', grid, True) @@ -130,7 +144,7 @@ def nichols_plot( title = "Nichols plot for " + ", ".join(labels) suptitle(title, fig=fig, rcParams=rcParams) - return out + return ControlPlot(out, ax_nichols, fig) def _inner_extents(ax): diff --git a/control/phaseplot.py b/control/phaseplot.py index c7ccd1d1e..93f69d07e 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -36,7 +36,7 @@ from scipy.integrate import odeint from . import config -from .ctrlplot import _add_arrows_to_line2D +from .ctrlplot import ControlPlot, _add_arrows_to_line2D from .exception import ControlNotImplemented from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response @@ -96,10 +96,24 @@ def phase_plane_plot( Returns ------- - out : list of list of Artists - out[0] = list of Line2D objects (streamlines and separatrices) - out[1] = Quiver object (vector field arrows) - out[2] = list of Line2D objects (equilibrium points) + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: list of list of :class:`matplotlib.artist.Artist` + objects: + + - lines[0] = list of Line2D objects (streamlines, separatrices). + - lines[1] = Quiver object (vector field arrows). + - lines[2] = list of Line2D objects (equilibrium points). + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. + Other parameters ---------------- @@ -205,7 +219,7 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) - return out + return ControlPlot(out, ax, fig) def vectorfield( diff --git a/control/pzmap.py b/control/pzmap.py index c7082db1d..b10443f04 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -18,7 +18,7 @@ from numpy import cos, exp, imag, linspace, real, sin, sqrt from . import config -from .ctrlplot import _get_line_labels +from .ctrlplot import ControlPlot, _get_line_labels from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime @@ -207,14 +207,25 @@ def pole_zero_plot( Returns ------- - lines : array of list of Line2D - Array of Line2D objects for each set of markers in the plot. The - shape of the array is given by (nsys, 2) where nsys is the number - of systems or responses passed to the function. The second index - specifies the pzmap object type: + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: - * lines[idx, 0]: poles - * lines[idx, 1]: zeros + * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects + for each set of markers in the plot. The shape of the array is + given by (`nsys`, 2) where `nsys` is the number of systems or + responses passed to the function. The second index specifies + the pzmap object type: + + - lines[idx, 0]: poles + - lines[idx, 1]: zeros + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. poles, zeros: list of arrays (legacy) If the `plot` keyword is given, the system poles and zeros @@ -489,7 +500,7 @@ def _click_dispatcher(event): else: TypeError("system lists not supported with legacy return values") - return out + return ControlPlot(out, np.asarray(axs), fig) # Utility function to find gain corresponding to a click event diff --git a/control/rlocus.py b/control/rlocus.py index dab21f4ac..62ca6ac2e 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -24,6 +24,7 @@ from numpy import array, imag, poly1d, real, vstack, zeros_like from . import config +from .ctrlplot import ControlPlot from .exception import ControlMIMONotImplemented from .iosys import isdtime from .lti import LTI @@ -134,15 +135,26 @@ def root_locus_plot( Returns ------- - lines : array of list of Line2D - Array of Line2D objects for each set of markers in the plot. The - shape of the array is given by (nsys, 3) where nsys is the number - of systems or responses passed to the function. The second index - specifies the object type: + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: - * lines[idx, 0]: poles - * lines[idx, 1]: zeros - * lines[idx, 2]: loci + * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects + for each set of markers in the plot. The shape of the array is + given by (nsys, 3) where nsys is the number of systems or + responses passed to the function. The second index specifies + the object type: + + - lines[idx, 0]: poles + - lines[idx, 1]: zeros + - lines[idx, 2]: loci + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. roots, gains : ndarray (legacy) If the `plot` keyword is given, returns the closed-loop @@ -188,13 +200,13 @@ def root_locus_plot( return responses.loci, responses.gains # Plot the root loci - out = responses.plot(grid=grid, **kwargs) + ctrlplot = responses.plot(grid=grid, **kwargs) # Legacy processing: return locations of poles and zeros as a tuple if plot is True: return responses.loci, responses.gains - return out + return ControlPlot(ctrlplot.lines, ctrlplot.axes, ctrlplot.figure) def _default_gains(num, den, xlim, ylim): diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 05970bdd1..87d8bb2ad 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -1,9 +1,11 @@ # ctrlplot_test.py - test out control plotting utilities # RMM, 27 Jun 2024 +import matplotlib.pyplot as plt import pytest + import control as ct -import matplotlib.pyplot as plt + @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): @@ -26,8 +28,7 @@ def test_rcParams(): # Generate a figure with the new rcParams out = ct.step_response(sys).plot(rcParams=my_rcParams) - ax = out[0, 0][0].axes - fig = ax.figure + ax, fig = out.axes[0, 0], out.figure # Check to make sure new settings were used assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] @@ -40,3 +41,8 @@ def test_rcParams(): assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] +def test_deprecation_warning(): + sys = ct.rss(2, 2, 2) + lines = ct.step_response(sys).plot(overlay_traces=True) + with pytest.warns(FutureWarning, match="deprecated"): + assert len(lines[0, 0]) == 2 diff --git a/control/tests/descfcn_test.py b/control/tests/descfcn_test.py index ceeff1123..b253b9aef 100644 --- a/control/tests/descfcn_test.py +++ b/control/tests/descfcn_test.py @@ -7,14 +7,15 @@ """ -import pytest +import math +import matplotlib.pyplot as plt import numpy as np +import pytest + import control as ct -import math -import matplotlib.pyplot as plt -from control.descfcn import saturation_nonlinearity, \ - friction_backlash_nonlinearity, relay_hysteresis_nonlinearity +from control.descfcn import friction_backlash_nonlinearity, \ + relay_hysteresis_nonlinearity, saturation_nonlinearity # Static function via a class @@ -231,3 +232,8 @@ def test_describing_function_exceptions(): with pytest.raises(AttributeError, match="no property|unexpected keyword"): response = ct.describing_function_response(H_simple, F_saturation, amp) response.plot(unknown=None) + + # Describing function plot for non-describing function object + resp = ct.frequency_response(H_simple) + with pytest.raises(TypeError, match="data must be DescribingFunction"): + cplt = ct.describing_function_plot(resp) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index f7105cb96..cb4aa035a 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -1,13 +1,14 @@ # freqplot_test.py - test out frequency response plots # RMM, 23 Jun 2023 -import pytest -import control as ct import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np +import pytest + +import control as ct +from control.tests.conftest import editsdefaults, slycotonly -from control.tests.conftest import slycotonly, editsdefaults pytestmark = pytest.mark.usefixtures("mplcleanup") # @@ -82,21 +83,22 @@ def test_response_plots( # Plot the frequency response plt.figure() - out = response.plot(**kwargs) + cplt = response.plot(**kwargs) # Check the shape if ovlout and ovlinp: - assert out.shape == (pltmag + pltphs, 1) + assert cplt.lines.shape == (pltmag + pltphs, 1) elif ovlout: - assert out.shape == (pltmag + pltphs, sys.ninputs) + assert cplt.lines.shape == (pltmag + pltphs, sys.ninputs) elif ovlinp: - assert out.shape == (sys.noutputs * (pltmag + pltphs), 1) + assert cplt.lines.shape == (sys.noutputs * (pltmag + pltphs), 1) else: - assert out.shape == (sys.noutputs * (pltmag + pltphs), sys.ninputs) + assert cplt.lines.shape == \ + (sys.noutputs * (pltmag + pltphs), sys.ninputs) # Make sure all of the outputs are of the right type nlines_plotted = 0 - for ax_lines in np.nditer(out, flags=["refs_ok"]): + for ax_lines in np.nditer(cplt.lines, flags=["refs_ok"]): for line in ax_lines.item() or []: assert isinstance(line, mpl.lines.Line2D) nlines_plotted += 1 @@ -124,9 +126,8 @@ def test_response_plots( assert len(ax.get_lines()) > 1 # Update the title so we can see what is going on - fig = out[0, 0][0].axes.figure ct.suptitle( - fig._suptitle._text + + cplt.figure._suptitle._text + f" [{sys.noutputs}x{sys.ninputs}, pm={pltmag}, pp={pltphs}," f" sm={shrmag}, sp={shrphs}, sf={shrfrq}]", # TODO: ", " # f"oo={ovlout}, oi={ovlinp}, ss={secsys}]", # TODO: add back @@ -417,7 +418,7 @@ def test_gangof4_trace_labels(): @pytest.mark.parametrize( "plt_fcn", [ct.bode_plot, ct.singular_values_plot, ct.nyquist_plot]) @pytest.mark.usefixtures("editsdefaults") -def test_freqplot_trace_labels(plt_fcn): +def test_freqplot_line_labels(plt_fcn): sys1 = ct.rss(2, 1, 1, name='sys1') sys2 = ct.rss(3, 1, 1, name='sys2') @@ -458,33 +459,29 @@ def test_freqplot_trace_labels(plt_fcn): assert legend[1].get_text() == 'line2' plt.close() - if plt_fcn == ct.bode_plot: - # Multi-dimensional data - sys1 = ct.rss(2, 2, 2, name='sys1') - sys2 = ct.rss(3, 2, 2, name='sys2') - - # Check out some errors first - with pytest.raises(ValueError, match="number of labels must match"): - ct.bode_plot([sys1, sys2], label=['line1']) - - with pytest.xfail(reason="need better broadcast checking on labels"): - with pytest.raises( - ValueError, match="labels must be given for each"): - ct.bode_plot(sys1, overlay_inputs=True, label=['line1']) - - # Now do things that should work - out = ct.bode_plot( - [sys1, sys2], - label=[ - [['line1', 'line1'], ['line1', 'line1']], - [['line2', 'line2'], ['line2', 'line2']], - ]) - axs = ct.get_plot_axes(out) - legend = axs[0, -1].get_legend().get_texts() - assert legend[0].get_text() == 'line1' - assert legend[1].get_text() == 'line2' - plt.close() +@pytest.mark.skip(reason="line label override not yet implemented") +@pytest.mark.parametrize("kwargs, labels", [ + ({}, ['sys1', 'sys2']), + ({'overlay_outputs': True}, [ + 'x sys1 out1 y', 'x sys1 out2 y', 'x sys2 out1 y', 'x sys2 out2 y']), +]) +def test_line_labels_bode(kwargs, labels): + # Multi-dimensional data + sys1 = ct.rss(2, 2, 2) + sys2 = ct.rss(3, 2, 2) + + # Check out some errors first + with pytest.raises(ValueError, match="number of labels must match"): + ct.bode_plot([sys1, sys2], label=['line1']) + + out = ct.bode_plot([sys1, sys2], label=labels, **kwargs) + axs = ct.get_plot_axes(out) + legend_texts = axs[0, -1].get_legend().get_texts() + for i, legend in enumerate(legend_texts): + assert legend.get_text() == labels[i] + plt.close() + @pytest.mark.parametrize( "plt_fcn", [ @@ -598,6 +595,15 @@ def test_freqplot_errors(plt_fcn): with pytest.raises(ValueError, match="invalid limits"): plt_fcn(response, omega_limits=[1e2, 1e-2]) +def test_freqresplist_unknown_kw(): + sys1 = ct.rss(2, 1, 1) + sys2 = ct.rss(2, 1, 1) + resp = ct.frequency_response([sys1, sys2]) + assert isinstance(resp, ct.FrequencyResponseList) + + with pytest.raises(AttributeError, match="unexpected keyword"): + resp.plot(unknown=True) + if __name__ == "__main__": # diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index 4d252ab19..91f4ea599 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -11,13 +11,14 @@ # is a unit test that checks for unrecognized keywords. import inspect -import pytest import warnings + import matplotlib.pyplot as plt +import pytest import control import control.flatsys - +import control.tests.descfcn_test as descfcn_test # List of all of the test modules where kwarg unit tests are defined import control.tests.flatsys_test as flatsys_test import control.tests.frd_test as frd_test @@ -26,9 +27,9 @@ import control.tests.optimal_test as optimal_test import control.tests.statefbk_test as statefbk_test import control.tests.stochsys_test as stochsys_test -import control.tests.trdata_test as trdata_test import control.tests.timeplot_test as timeplot_test -import control.tests.descfcn_test as descfcn_test +import control.tests.trdata_test as trdata_test + @pytest.mark.parametrize("module, prefix", [ (control, ""), (control.flatsys, "flatsys."), @@ -300,6 +301,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'FrequencyResponseData.__init__': frd_test.TestFRD.test_unrecognized_keyword, 'FrequencyResponseData.plot': test_response_plot_kwargs, + 'FrequencyResponseList.plot': freqplot_test.test_freqresplist_unknown_kw, 'DescribingFunctionResponse.plot': descfcn_test.test_describing_function_exceptions, 'InputOutputSystem.__init__': test_unrecognized_kwargs, diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index dda5eb25c..eaa78bdff 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -1,13 +1,14 @@ # timeplot_test.py - test out time response plots # RMM, 23 Jun 2023 -import pytest -import control as ct import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np +import pytest + +import control as ct +from control.tests.conftest import mplcleanup, slycotonly -from control.tests.conftest import slycotonly, mplcleanup # Detailed test of (almost) all functionality # @@ -138,7 +139,7 @@ def test_response_plots( # Make sure all of the outputs are of the right type nlines_plotted = 0 - for ax_lines in np.nditer(out, flags=["refs_ok"]): + for ax_lines in np.nditer(out.lines, flags=["refs_ok"]): for line in ax_lines.item(): assert isinstance(line, mpl.lines.Line2D) nlines_plotted += 1 @@ -381,7 +382,7 @@ def test_linestyles(): [[[1], [0.1]], [[0.2], [1]]], [[[1, 0.6, 1], [1, 1, 1]], [[1, 0.4, 1], [1, 2, 1]]], name="MIMO") out = ct.step_response(sys_mimo).plot('k--', plot_inputs=True) - for ax in np.nditer(out, flags=["refs_ok"]): + for ax in np.nditer(out.lines, flags=["refs_ok"]): for line in ax.item(): assert line.get_color() == 'k' assert line.get_linestyle() == '--' diff --git a/control/timeplot.py b/control/timeplot.py index e9e566961..c549a3439 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -15,7 +15,8 @@ import numpy as np from . import config -from .ctrlplot import _ctrlplot_rcParams, _make_legend_labels, _update_suptitle +from .ctrlplot import ControlPlot, _ctrlplot_rcParams, _make_legend_labels, \ + _update_suptitle __all__ = ['time_response_plot', 'combine_time_responses'] @@ -89,10 +90,21 @@ def time_response_plot( Returns ------- - out : array of list of Line2D - Array of Line2D objects for each line in the plot. The shape of - the array matches the subplots shape and the value of the array is a - list of Line2D objects in that subplot. + cplt : :class:`ControlPlot` object + Object containing the data that were plotted: + + * cplt.lines: Array of :class:`matplotlib.lines.Line2D` objects + for each line in the plot. The shape of the array matches the + subplots shape and the value of the array is a list of Line2D + objects in that subplot. + + * cplt.axes: 2D array of :class:`matplotlib.axes.Axes` for the plot. + + * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. + + * cplt.legend: legend object(s) contained in the plot + + See :class:`ControlPlot` for more detailed information. Other Parameters ---------------- @@ -644,7 +656,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): _update_suptitle(fig, title, rcParams=rcParams) - return out + return ControlPlot(out, ax_array, fig) def combine_time_responses(response_list, trace_labels=None, title=None): diff --git a/doc/conf.py b/doc/conf.py index 7a45ba3f9..824f57904 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -105,7 +105,7 @@ intersphinx_mapping = \ {'scipy': ('https://docs.scipy.org/doc/scipy/reference', None), 'numpy': ('https://numpy.org/doc/stable', None), - 'matplotlib': ('https://matplotlib.org/', None), + 'matplotlib': ('https://matplotlib.org/stable/', None), } # If this is True, todo and todolist produce output, else they produce nothing. diff --git a/doc/control.rst b/doc/control.rst index 366454d42..2efa23809 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -74,7 +74,6 @@ Time domain simulation input_output_response phase_plot step_response - TimeResponseData Control system analysis ======================= diff --git a/doc/plotting.rst b/doc/plotting.rst index 2450c576b..753ad2cc4 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -484,14 +484,15 @@ returned values from plotting routines. ~control.suptitle -Response classes ----------------- +Response and plotting classes +----------------------------- The following classes are used in generating response data. .. autosummary:: :toctree: generated/ + ~control.ControlPlot ~control.DescribingFunctionResponse ~control.FrequencyResponseData ~control.FrequencyResponseList From 639ffb4406f44f24690070d5b5fe9204adee6321 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 28 Jun 2024 22:13:59 -0700 Subject: [PATCH 129/199] add storage of legend objects --- control/ctrlplot.py | 21 +++++++++++---------- control/descfcn.py | 2 -- control/freqplot.py | 23 ++++++++++++++++------- control/nichols.py | 6 ++++-- control/phaseplot.py | 2 -- control/pzmap.py | 8 +++++--- control/rlocus.py | 2 -- control/timeplot.py | 6 ++++-- 8 files changed, 40 insertions(+), 30 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 7e7fbaa1c..fc1fde4ec 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -43,7 +43,7 @@ class ControlPlot(object): A control figure consists of a :class:`matplotlib.figure.Figure` with an array of :class:`matplotlib.axes.Axes`. Each axes in the figure has - a number of lines that repreesnt the data for the plot. There may also + a number of lines that represent the data for the plot. There may also be a legend present in one or more of the axes. Attributes @@ -52,19 +52,19 @@ class ControlPlot(object): Array of Line2D objects for each line in the plot. Generally, The shape of the array matches the subplots shape and the value of the array is a list of Line2D objects in that subplot. Some plotting - functions will reeturn variants of this structure, as described in + functions will return variants of this structure, as described in the individual documentation for the functions. axes : 2D array of :class:`matplotlib:Axes` Array of Axes objects for each subplot in the plot. figure : :class:`matplotlib:Figure` Figure on which the Axes are drawn. - legend : :class:`matplotlib:Legend` or array of :class:`matplotlib:Legend` - Legend object(s) for the plat. If more than :class:`matplotlib:Legend` - is included, this will be an array with each entry being either - None (for no legend) or a legend object. + legend : :class:`matplotlib:.legend.Legend` (instance or ndarray) + Legend object(s) for the plat. If more than one legend is + included, this will be an array with each entry being either None + (for no legend) or a legend object. """ - def __init__(self, lines, axes=None, figure=None): + def __init__(self, lines, axes=None, figure=None, legend=None): self.lines = lines if axes is None: axes = get_plot_axes(lines) @@ -72,6 +72,7 @@ def __init__(self, lines, axes=None, figure=None): if figure is None: figure = self.axes[0, 0].figure self.figure = figure + self.legend = legend # Implement methods and properties to allow legacy interface (np.array) __iter__ = lambda self: self.lines @@ -92,7 +93,7 @@ def reshape(self, *args): # # User functions # -# The functions below can be used by users to modify ctrl plots or get +# The functions below can be used by users to modify control plots or get # information about them. # @@ -157,7 +158,7 @@ def get_plot_axes(line_array): Returns ------- axes_array : array of list of Axes - A 2D array with elements corresponding to the Axes assocated with + A 2D array with elements corresponding to the Axes associated with the lines in `line_array`. Notes @@ -247,7 +248,7 @@ def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): if isinstance(label, str): label = [label] * ntraces # single label for all traces - # Convert to an ndarray, if not done aleady + # Convert to an ndarray, if not done already try: line_labels = np.asarray(label) except ValueError: diff --git a/control/descfcn.py b/control/descfcn.py index 66595fad1..b2fd88e8d 100644 --- a/control/descfcn.py +++ b/control/descfcn.py @@ -440,8 +440,6 @@ def describing_function_plot( * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. - * cplt.legend: legend object(s) contained in the plot - See :class:`ControlPlot` for more detailed information. Examples diff --git a/control/freqplot.py b/control/freqplot.py index f3dae7ef0..aeee18a9d 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -988,9 +988,13 @@ def gen_zero_centered_series(val_min, val_max, period): legend_map[0, -1] = legend_loc # Create axis legends + legend_array = np.full(ax_array.shape, None, dtype=object) for i in range(nrows): for j in range(ncols): + if legend_map[i, j] is None: + continue ax = ax_array[i, j] + # Get the labels to use, removing common strings lines = [line for line in ax.get_lines() if line.get_label()[0] != '_'] @@ -999,9 +1003,10 @@ def gen_zero_centered_series(val_min, val_max, period): ignore_common=line_labels is not None) # Generate the label, if needed - if len(labels) > 1 and legend_map[i, j] != None: + if len(labels) > 1: with plt.rc_context(rcParams): - ax.legend(lines, labels, loc=legend_map[i, j]) + legend_array[i, j] = ax.legend( + lines, labels, loc=legend_map[i, j]) # # Legacy return pocessing @@ -1019,7 +1024,7 @@ def gen_zero_centered_series(val_min, val_max, period): else: return mag_data, phase_data, omega_data - return ControlPlot(out, ax_array, fig) + return ControlPlot(out, ax_array, fig, legend=legend_array) # @@ -1930,7 +1935,9 @@ def _parse_linestyle(style_name, allow_false=False): # Add legend if there is more than one system plotted if len(labels) > 1: - ax.legend(lines, labels, loc=legend_loc) + legend = ax.legend(lines, labels, loc=legend_loc) + else: + legend=None # Add the title if title is None: @@ -1945,7 +1952,7 @@ def _parse_linestyle(style_name, allow_false=False): # Return counts and (optionally) the contour we used return (counts, contours) if return_contour else counts - return ControlPlot(out, ax, fig) + return ControlPlot(out, ax, fig, legend=legend) # @@ -2385,7 +2392,9 @@ def singular_values_plot( # Add legend if there is more than one system plotted if len(labels) > 1 and legend_loc is not False: with plt.rc_context(rcParams): - ax_sigma.legend(lines, labels, loc=legend_loc) + legend = ax_sigma.legend(lines, labels, loc=legend_loc) + else: + legend = None # Add the title if title is None: @@ -2399,7 +2408,7 @@ def singular_values_plot( else: return sigmas, omegas - return ControlPlot(out, ax_sigma, fig) + return ControlPlot(out, ax_sigma, fig, legend=legend) # # Utility functions diff --git a/control/nichols.py b/control/nichols.py index c39f46101..451f790b5 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -137,14 +137,16 @@ def nichols_plot( # Add legend if there is more than one system plotted if len(labels) > 1 and legend_loc is not False: with plt.rc_context(rcParams): - ax_nichols.legend(lines, labels, loc=legend_loc) + legend = ax_nichols.legend(lines, labels, loc=legend_loc) + else: + legend = None # Add the title if title is None: title = "Nichols plot for " + ", ".join(labels) suptitle(title, fig=fig, rcParams=rcParams) - return ControlPlot(out, ax_nichols, fig) + return ControlPlot(out, ax_nichols, fig, legend=legend) def _inner_extents(ax): diff --git a/control/phaseplot.py b/control/phaseplot.py index 93f69d07e..fa5cb691a 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -110,8 +110,6 @@ def phase_plane_plot( * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. - * cplt.legend: legend object(s) contained in the plot - See :class:`ControlPlot` for more detailed information. diff --git a/control/pzmap.py b/control/pzmap.py index b10443f04..23491fe8a 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -451,13 +451,15 @@ def pole_zero_plot( line_tuples.append(handle) with plt.rc_context(freqplot_rcParams): - ax.legend( + legend = ax.legend( line_tuples, labels, loc=legend_loc, handler_map={tuple: HandlerTuple(ndivide=None)}) else: # Regular legend, with lines with plt.rc_context(freqplot_rcParams): - ax.legend(lines, labels, loc=legend_loc) + legend = ax.legend(lines, labels, loc=legend_loc) + else: + legend = None # Add the title if title is None: @@ -500,7 +502,7 @@ def _click_dispatcher(event): else: TypeError("system lists not supported with legacy return values") - return ControlPlot(out, np.asarray(axs), fig) + return ControlPlot(out, np.asarray(axs), fig, legend=legend) # Utility function to find gain corresponding to a click event diff --git a/control/rlocus.py b/control/rlocus.py index 62ca6ac2e..94c768004 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -152,8 +152,6 @@ def root_locus_plot( * cplt.figure: :class:`matplotlib.figure.Figure` containing the plot. - * cplt.legend: legend object(s) contained in the plot - See :class:`ControlPlot` for more detailed information. roots, gains : ndarray diff --git a/control/timeplot.py b/control/timeplot.py index c549a3439..11bbd1d6b 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -630,6 +630,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): show_legend = True if show_legend is None else show_legend # Create axis legends + legend_array = np.full(ax_array.shape, None, dtype=object) for i in range(nrows): for j in range(ncols): ax = ax_array[i, j] @@ -642,7 +643,8 @@ def _make_line_label(signal_index, signal_labels, trace_index): (len(labels) > 1 or show_legend) and \ legend_map[i, j] != None: with plt.rc_context(rcParams): - ax.legend(labels, loc=legend_map[i, j]) + legend_array[i, j] = ax.legend( + labels, loc=legend_map[i, j]) # # Update the plot title (= figure suptitle) @@ -656,7 +658,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): _update_suptitle(fig, title, rcParams=rcParams) - return ControlPlot(out, ax_array, fig) + return ControlPlot(out, ax_array, fig, legend=legend_map) def combine_time_responses(response_list, trace_labels=None, title=None): From acfadf0034887d853f56c1dfdc6a67018d0256e9 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 3 Jul 2024 06:50:03 -0700 Subject: [PATCH 130/199] fix bugs in legend generation for pole/zero plots --- control/ctrlplot.py | 15 +++++++-------- control/pzmap.py | 9 +++++---- 2 files changed, 12 insertions(+), 12 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index fc1fde4ec..e1517c38c 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -275,25 +275,24 @@ def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): # Get labels for all lines in an axes def _get_line_labels(ax, use_color=True): - labels, lines = [], [] + labels_colors, lines = [], [] last_color, counter = None, 0 # label unknown systems for i, line in enumerate(ax.get_lines()): label = line.get_label() + color = line.get_color() if use_color and label.startswith("Unknown"): label = f"Unknown-{counter}" - if last_color is None: - last_color = line.get_color() - elif last_color != line.get_color(): + if last_color != color: counter += 1 - last_color = line.get_color() + last_color = color elif label[0] == '_': continue - if label not in labels: + if (label, color) not in labels_colors: lines.append(line) - labels.append(label) + labels_colors.append((label, color)) - return lines, labels + return lines, [label for label, color in labels_colors] # Utility function to make legend labels diff --git a/control/pzmap.py b/control/pzmap.py index 23491fe8a..8b1484a35 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -391,12 +391,13 @@ def pole_zero_plot( real(poles), imag(poles), marker='x', linestyle='', markeredgecolor=color, markerfacecolor=color, markersize=marker_size, markeredgewidth=marker_width, - label=label) + color=color, label=label) if len(zeros) > 0: out[idx, 1] = ax.plot( real(zeros), imag(zeros), marker='o', linestyle='', markeredgecolor=color, markerfacecolor='none', - markersize=marker_size, markeredgewidth=marker_width) + markersize=marker_size, markeredgewidth=marker_width, + color=color) # Plot the loci, if present if response.loci is not None: @@ -447,8 +448,8 @@ def pole_zero_plot( markeredgecolor=pole_line.get_markerfacecolor(), markerfacecolor='none', markersize=marker_size, markeredgewidth=marker_width) - handle = (pole_line, zero_line) - line_tuples.append(handle) + handle = (pole_line, zero_line) + line_tuples.append(handle) with plt.rc_context(freqplot_rcParams): legend = ax.legend( From 8b7d3993b322e57b8c843aa06d9755bb8bb33a12 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 4 Jul 2024 08:58:30 -0700 Subject: [PATCH 131/199] improve consistency in use of cplt as return type for plots --- control/ctrlplot.py | 2 +- control/pzmap.py | 2 +- control/rlocus.py | 4 +- control/tests/descfcn_test.py | 8 +-- control/tests/freqplot_test.py | 52 +++++++------- control/tests/nyquist_test.py | 14 ++-- control/tests/pzmap_test.py | 4 +- control/tests/rlocus_test.py | 4 +- control/tests/timeplot_test.py | 123 ++++++++++++++++----------------- control/timeplot.py | 2 +- control/timeresp.py | 19 ++--- doc/plotting.rst | 11 +-- 12 files changed, 123 insertions(+), 122 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index e1517c38c..6487e87c9 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -49,7 +49,7 @@ class ControlPlot(object): Attributes ---------- lines : array of list of :class:`matplotlib:Line2D` - Array of Line2D objects for each line in the plot. Generally, The + Array of Line2D objects for each line in the plot. Generally, the shape of the array matches the subplots shape and the value of the array is a list of Line2D objects in that subplot. Some plotting functions will return variants of this structure, as described in diff --git a/control/pzmap.py b/control/pzmap.py index 8b1484a35..a8417f3d8 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -503,7 +503,7 @@ def _click_dispatcher(event): else: TypeError("system lists not supported with legacy return values") - return ControlPlot(out, np.asarray(axs), fig, legend=legend) + return ControlPlot(out, ax, fig, legend=legend) # Utility function to find gain corresponding to a click event diff --git a/control/rlocus.py b/control/rlocus.py index 94c768004..4829a10e0 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -198,13 +198,13 @@ def root_locus_plot( return responses.loci, responses.gains # Plot the root loci - ctrlplot = responses.plot(grid=grid, **kwargs) + cplt = responses.plot(grid=grid, **kwargs) # Legacy processing: return locations of poles and zeros as a tuple if plot is True: return responses.loci, responses.gains - return ControlPlot(ctrlplot.lines, ctrlplot.axes, ctrlplot.figure) + return ControlPlot(cplt.lines, cplt.axes, cplt.figure) def _default_gains(num, den, xlim, ylim): diff --git a/control/tests/descfcn_test.py b/control/tests/descfcn_test.py index b253b9aef..a5f7a06c2 100644 --- a/control/tests/descfcn_test.py +++ b/control/tests/descfcn_test.py @@ -188,13 +188,13 @@ def test_describing_function_plot(): assert len(response.intersections) == 1 assert len(plt.gcf().get_axes()) == 0 # make sure there is no plot - out = response.plot() + cplt = response.plot() assert len(plt.gcf().get_axes()) == 1 # make sure there is a plot - assert len(out[0]) == 4 and len(out[1]) == 1 + assert len(cplt.lines[0]) == 4 and len(cplt.lines[1]) == 1 # Call plot directly - out = ct.describing_function_plot(H_larger, F_saturation, amp, omega) - assert len(out[0]) == 4 and len(out[1]) == 1 + cplt = ct.describing_function_plot(H_larger, F_saturation, amp, omega) + assert len(cplt.lines[0]) == 4 and len(cplt.lines[1]) == 1 def test_describing_function_exceptions(): diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index cb4aa035a..28ea0643e 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -141,8 +141,8 @@ def test_response_plots( # Use the manaul response to verify that different settings are working def test_manual_response_limits(): # Default response: limits should be the same across rows - out = manual_response.plot() - axs = ct.get_plot_axes(out) + cplt = manual_response.plot() + axs = ct.get_plot_axes(cplt) # legacy usage OK for i in range(manual_response.noutputs): for j in range(1, manual_response.ninputs): # Everything in the same row should have the same limits @@ -397,18 +397,18 @@ def test_gangof4_trace_labels(): C = ct.rss(1, 1, 1, name='C') # Make sure default labels are as expected - out = ct.gangof4_response(P1, C).plot() - out = ct.gangof4_response(P2, C).plot() - axs = ct.get_plot_axes(out) + cplt = ct.gangof4_response(P1, C).plot() + cplt = ct.gangof4_response(P2, C).plot() + axs = ct.get_plot_axes(cplt) # legacy usage OK legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'None' assert legend[1].get_text() == 'None' plt.close() # Override labels - out = ct.gangof4_response(P1, C).plot(label='xxx, line1, yyy') - out = ct.gangof4_response(P2, C).plot(label='xxx, line2, yyy') - axs = ct.get_plot_axes(out) + cplt = ct.gangof4_response(P1, C).plot(label='xxx, line1, yyy') + cplt = ct.gangof4_response(P2, C).plot(label='xxx, line2, yyy') + axs = ct.get_plot_axes(cplt) # legacy usage OK legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'xxx, line1, yyy' assert legend[1].get_text() == 'xxx, line2, yyy' @@ -426,8 +426,8 @@ def test_freqplot_line_labels(plt_fcn): ct.set_defaults('freqplot', suptitle_frame='figure') # Make sure default labels are as expected - out = plt_fcn([sys1, sys2]) - axs = ct.get_plot_axes(out) + cplt = plt_fcn([sys1, sys2]) + axs = ct.get_plot_axes(cplt) # legacy usage OK if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -437,8 +437,8 @@ def test_freqplot_line_labels(plt_fcn): plt.close() # Override labels all at once - out = plt_fcn([sys1, sys2], label=['line1', 'line2']) - axs = ct.get_plot_axes(out) + cplt = plt_fcn([sys1, sys2], label=['line1', 'line2']) + axs = ct.get_plot_axes(cplt) # legacy usage OK if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -448,9 +448,9 @@ def test_freqplot_line_labels(plt_fcn): plt.close() # Override labels one at a time - out = plt_fcn(sys1, label='line1') - out = plt_fcn(sys2, label='line2') - axs = ct.get_plot_axes(out) + cplt = plt_fcn(sys1, label='line1') + cplt = plt_fcn(sys2, label='line2') + axs = ct.get_plot_axes(cplt) # legacy usage OK if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -475,8 +475,8 @@ def test_line_labels_bode(kwargs, labels): with pytest.raises(ValueError, match="number of labels must match"): ct.bode_plot([sys1, sys2], label=['line1']) - out = ct.bode_plot([sys1, sys2], label=labels, **kwargs) - axs = ct.get_plot_axes(out) + cplt = ct.bode_plot([sys1, sys2], label=labels, **kwargs) + axs = ct.get_plot_axes(cplt) # legacy usage OK legend_texts = axs[0, -1].get_legend().get_texts() for i, legend in enumerate(legend_texts): assert legend.get_text() == labels[i] @@ -502,22 +502,22 @@ def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): sys = ct.rss(4, ninputs, noutputs) # Create an initial figure - out1 = plt_fcn(sys) + cplt1 = plt_fcn(sys) # Draw again on the same figure, using array - axs = ct.get_plot_axes(out1) - out2 = plt_fcn(sys, ax=axs) - np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out2)) + axs = ct.get_plot_axes(cplt1) # legacy usage OK + cplt2 = plt_fcn(sys, ax=axs) + np.testing.assert_equal(cplt1.axes, cplt2.axes) # Pass things in as a list instead axs_list = axs.tolist() - out3 = plt_fcn(sys, ax=axs) - np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) + cplt3 = plt_fcn(sys, ax=axs) + np.testing.assert_equal(cplt1.axes, cplt3.axes) # Flatten the list axs_list = axs.squeeze().tolist() - out3 = plt_fcn(sys, ax=axs_list) - np.testing.assert_equal(ct.get_plot_axes(out1), ct.get_plot_axes(out3)) + cplt4 = plt_fcn(sys, ax=axs_list) + np.testing.assert_equal(cplt1.axes, cplt4.axes) def test_mixed_systypes(): @@ -552,7 +552,7 @@ def test_suptitle(): sys = ct.rss(2, 2, 2) # Default location: center of axes - out = ct.bode_plot(sys) + cplt = ct.bode_plot(sys) assert plt.gcf()._suptitle._x != 0.5 # Try changing the the title diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index 73a4ed8b6..39f080cae 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -399,17 +399,17 @@ def test_linestyle_checks(): sys = ct.tf([100], [1, 1, 1]) # Set the line styles - lines = ct.nyquist_plot( + cplt = ct.nyquist_plot( sys, primary_style=[':', ':'], mirror_style=[':', ':']) - assert all([line.get_linestyle() == ':' for line in lines[0]]) + assert all([line.get_linestyle() == ':' for line in cplt.lines[0]]) # Set the line colors - lines = ct.nyquist_plot(sys, color='g') - assert all([line.get_color() == 'g' for line in lines[0]]) + cplt = ct.nyquist_plot(sys, color='g') + assert all([line.get_color() == 'g' for line in cplt.lines[0]]) # Turn off the mirror image - lines = ct.nyquist_plot(sys, mirror_style=False) - assert lines[0][2:] == [None, None] + cplt = ct.nyquist_plot(sys, mirror_style=False) + assert cplt.lines[0][2:] == [None, None] with pytest.raises(ValueError, match="invalid 'primary_style'"): ct.nyquist_plot(sys, primary_style=False) @@ -505,7 +505,7 @@ def test_nyquist_frd(): # Computing Nyquist response w/ different frequencies OK if given as a list nyqresp = ct.nyquist_response([sys1, sys2]) - out = nyqresp.plot() + cplt = nyqresp.plot() warnings.resetwarnings() diff --git a/control/tests/pzmap_test.py b/control/tests/pzmap_test.py index ce8adf6e7..04eb037ab 100644 --- a/control/tests/pzmap_test.py +++ b/control/tests/pzmap_test.py @@ -119,7 +119,7 @@ def test_pzmap_raises(): def test_pzmap_limits(): sys = ct.tf([1, 2], [1, 2, 3]) - out = ct.pole_zero_plot(sys, xlim=[-1, 1], ylim=[-1, 1]) - ax = ct.get_plot_axes(out)[0, 0] + cplt = ct.pole_zero_plot(sys, xlim=[-1, 1], ylim=[-1, 1]) + ax = cplt.axes[0, 0] assert ax.get_xlim() == (-1, 1) assert ax.get_ylim() == (-1, 1) diff --git a/control/tests/rlocus_test.py b/control/tests/rlocus_test.py index 15eb67d97..ae5b21e60 100644 --- a/control/tests/rlocus_test.py +++ b/control/tests/rlocus_test.py @@ -204,8 +204,8 @@ def test_root_locus_documentation(savefigs=False): # TODO: generate event in order to generate real title plt.figure() - out = ct.root_locus_map(sys).plot(initial_gain=3.506) - ax = ct.get_plot_axes(out)[0, 0] + cplt = ct.root_locus_map(sys).plot(initial_gain=3.506) + ax = cplt.axes[0, 0] freqplot_rcParams = ct.config._get_param('freqplot', 'rcParams') with plt.rc_context(freqplot_rcParams): ax.set_title( diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index eaa78bdff..81c378a57 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -124,22 +124,22 @@ def test_response_plots( pltinp is False or response.ninputs == 0 or pltinp is None and response.plot_inputs is False): with pytest.raises(ValueError, match=".* no data to plot"): - out = response.plot(**kwargs) + cplt = response.plot(**kwargs) return None elif not pltout and pltinp == 'overlay': with pytest.raises(ValueError, match="can't overlay inputs"): - out = response.plot(**kwargs) + cplt = response.plot(**kwargs) return None elif pltinp in [True, 'overlay'] and response.ninputs == 0: with pytest.raises(ValueError, match=".* but no inputs"): - out = response.plot(**kwargs) + cplt = response.plot(**kwargs) return None - out = response.plot(**kwargs) + cplt = response.plot(**kwargs) # Make sure all of the outputs are of the right type nlines_plotted = 0 - for ax_lines in np.nditer(out.lines, flags=["refs_ok"]): + for ax_lines in np.nditer(cplt.lines, flags=["refs_ok"]): for line in ax_lines.item(): assert isinstance(line, mpl.lines.Line2D) nlines_plotted += 1 @@ -180,7 +180,7 @@ def test_response_plots( assert len(ax.get_lines()) > 1 # Update the title so we can see what is going on - fig = out[0, 0][0].axes.figure + fig = cplt.figure fig.suptitle( fig._suptitle._text + f" [{sys.noutputs}x{sys.ninputs}, cs={cmbsig}, " @@ -202,38 +202,38 @@ def test_axes_setup(): sys_3x1 = ct.rss(4, 3, 1) # Two plots of the same size leaves axes unchanged - out1 = ct.step_response(sys_2x3).plot() - out2 = ct.step_response(sys_2x3b).plot() - np.testing.assert_equal(get_plot_axes(out1), get_plot_axes(out2)) + cplt1 = ct.step_response(sys_2x3).plot() + cplt2 = ct.step_response(sys_2x3b).plot() + np.testing.assert_equal(get_plot_axes(cplt1), get_plot_axes(cplt2)) plt.close() # Two plots of same net size leaves axes unchanged (unfortunately) - out1 = ct.step_response(sys_2x3).plot() - out2 = ct.step_response(sys_3x2).plot() + cplt1 = ct.step_response(sys_2x3).plot() + cplt2 = ct.step_response(sys_3x2).plot() np.testing.assert_equal( - get_plot_axes(out1).reshape(-1), get_plot_axes(out2).reshape(-1)) + get_plot_axes(cplt1).reshape(-1), get_plot_axes(cplt2).reshape(-1)) plt.close() # Plots of different shapes generate new plots - out1 = ct.step_response(sys_2x3).plot() - out2 = ct.step_response(sys_3x1).plot() - ax1_list = get_plot_axes(out1).reshape(-1).tolist() - ax2_list = get_plot_axes(out2).reshape(-1).tolist() + cplt1 = ct.step_response(sys_2x3).plot() + cplt2 = ct.step_response(sys_3x1).plot() + ax1_list = get_plot_axes(cplt1).reshape(-1).tolist() + ax2_list = get_plot_axes(cplt2).reshape(-1).tolist() for ax in ax1_list: assert ax not in ax2_list plt.close() # Passing a list of axes preserves those axes - out1 = ct.step_response(sys_2x3).plot() - out2 = ct.step_response(sys_3x1).plot() - out3 = ct.step_response(sys_2x3b).plot(ax=get_plot_axes(out1)) - np.testing.assert_equal(get_plot_axes(out1), get_plot_axes(out3)) + cplt1 = ct.step_response(sys_2x3).plot() + cplt2 = ct.step_response(sys_3x1).plot() + cplt3 = ct.step_response(sys_2x3b).plot(ax=get_plot_axes(cplt1)) + np.testing.assert_equal(get_plot_axes(cplt1), get_plot_axes(cplt3)) plt.close() # Sending an axes array of the wrong size raises exception with pytest.raises(ValueError, match="not the right shape"): - out = ct.step_response(sys_2x3).plot() - ct.step_response(sys_3x1).plot(ax=get_plot_axes(out)) + cplt = ct.step_response(sys_2x3).plot() + ct.step_response(sys_3x1).plot(ax=cplt.axes) sys_2x3 = ct.rss(4, 2, 3) sys_2x3b = ct.rss(4, 2, 3) sys_3x2 = ct.rss(4, 3, 2) @@ -352,26 +352,26 @@ def test_list_responses(resp_fcn): # Sequential plotting results in colors rotating plt.figure() - out1 = resp1.plot() - out2 = resp2.plot() - assert out1.shape == shape - assert out2.shape == shape + cplt1 = resp1.plot() + cplt2 = resp2.plot() + assert cplt1.shape == shape # legacy access (OK here) + assert cplt2.shape == shape # legacy access (OK here) for row in range(2): # just look at the outputs for col in range(shape[1]): - assert out1[row, col][0].get_color() == 'tab:blue' - assert out2[row, col][0].get_color() == 'tab:orange' + assert cplt1.lines[row, col][0].get_color() == 'tab:blue' + assert cplt2.lines[row, col][0].get_color() == 'tab:orange' plt.figure() resp_combined = resp_fcn([sys1, sys2], **kwargs) assert isinstance(resp_combined, ct.timeresp.TimeResponseList) assert resp_combined[0].time[-1] == max(resp1.time[-1], resp2.time[-1]) assert resp_combined[1].time[-1] == max(resp1.time[-1], resp2.time[-1]) - out = resp_combined.plot() - assert out.shape == shape + cplt = resp_combined.plot() + assert cplt.lines.shape == shape for row in range(2): # just look at the outputs for col in range(shape[1]): - assert out[row, col][0].get_color() == 'tab:blue' - assert out[row, col][1].get_color() == 'tab:orange' + assert cplt.lines[row, col][0].get_color() == 'tab:blue' + assert cplt.lines[row, col][1].get_color() == 'tab:orange' @slycotonly @@ -381,20 +381,20 @@ def test_linestyles(): sys_mimo = ct.tf2ss( [[[1], [0.1]], [[0.2], [1]]], [[[1, 0.6, 1], [1, 1, 1]], [[1, 0.4, 1], [1, 2, 1]]], name="MIMO") - out = ct.step_response(sys_mimo).plot('k--', plot_inputs=True) - for ax in np.nditer(out.lines, flags=["refs_ok"]): + cplt = ct.step_response(sys_mimo).plot('k--', plot_inputs=True) + for ax in np.nditer(cplt.lines, flags=["refs_ok"]): for line in ax.item(): assert line.get_color() == 'k' assert line.get_linestyle() == '--' - out = ct.step_response(sys_mimo).plot( + cplt = ct.step_response(sys_mimo).plot( plot_inputs='overlay', overlay_signals=True, overlay_traces=True, output_props=[{'color': c} for c in ['blue', 'orange']], input_props=[{'color': c} for c in ['red', 'green']], trace_props=[{'linestyle': s} for s in ['-', '--']]) - assert out.shape == (1, 1) - lines = out[0, 0] + assert cplt.lines.shape == (1, 1) + lines = cplt.lines[0, 0] assert lines[0].get_color() == 'blue' and lines[0].get_linestyle() == '-' assert lines[1].get_color() == 'orange' and lines[1].get_linestyle() == '-' assert lines[2].get_color() == 'red' and lines[2].get_linestyle() == '-' @@ -432,8 +432,8 @@ def test_timeplot_trace_labels(resp_fcn): ct.set_defaults('freqplot', suptitle_frame='figure') # Make sure default labels are as expected - out = resp_fcn([sys1, sys2], **kwargs).plot() - axs = ct.get_plot_axes(out) + cplt = resp_fcn([sys1, sys2], **kwargs).plot() + axs = ct.get_plot_axes(cplt.lines) if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -443,8 +443,8 @@ def test_timeplot_trace_labels(resp_fcn): plt.close() # Override labels all at once - out = resp_fcn([sys1, sys2], **kwargs).plot(label=['line1', 'line2']) - axs = ct.get_plot_axes(out) + cplt = resp_fcn([sys1, sys2], **kwargs).plot(label=['line1', 'line2']) + axs = ct.get_plot_axes(cplt.lines) if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -454,9 +454,9 @@ def test_timeplot_trace_labels(resp_fcn): plt.close() # Override labels one at a time - out = resp_fcn(sys1, **kwargs).plot(label='line1') - out = resp_fcn(sys2, **kwargs).plot(label='line2') - axs = ct.get_plot_axes(out) + cplt = resp_fcn(sys1, **kwargs).plot(label='line1') + cplt = resp_fcn(sys2, **kwargs).plot(label='line2') + axs = ct.get_plot_axes(cplt.lines) if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -486,10 +486,10 @@ def test_full_label_override(): labels_4d[i, j, k, 1] = "inp" + sys + trace + out # Test 4D labels - out = ct.step_response([sys1, sys2]).plot( + cplt = ct.step_response([sys1, sys2]).plot( overlay_signals=True, overlay_traces=True, plot_inputs=True, label=labels_4d) - axs = ct.get_plot_axes(out) + axs = ct.get_plot_axes(cplt.lines) assert axs.shape == (2, 1) legend_text = axs[0, 0].get_legend().get_texts() for i, label in enumerate(labels_2d[0]): @@ -499,10 +499,10 @@ def test_full_label_override(): assert legend_text[i].get_text() == label # Test 2D labels - out = ct.step_response([sys1, sys2]).plot( + cplt = ct.step_response([sys1, sys2]).plot( overlay_signals=True, overlay_traces=True, plot_inputs=True, label=labels_2d) - axs = ct.get_plot_axes(out) + axs = ct.get_plot_axes(cplt.lines) assert axs.shape == (2, 1) legend_text = axs[0, 0].get_legend().get_texts() for i, label in enumerate(labels_2d[0]): @@ -521,8 +521,8 @@ def test_relabel(): ct.step_response(sys1).plot() # Generate a new plot, which overwrites labels - out = ct.step_response(sys2).plot() - ax = ct.get_plot_axes(out) + cplt = ct.step_response(sys2).plot() + ax = ct.get_plot_axes(cplt.lines) assert ax[0, 0].get_ylabel() == 'y[0]' # Regenerate the first plot @@ -530,9 +530,8 @@ def test_relabel(): ct.step_response(sys1).plot() # Generate a new plt, without relabeling - out = ct.step_response(sys2).plot(relabel=False) - ax = ct.get_plot_axes(out) - assert ax[0, 0].get_ylabel() == 'y' + cplt = ct.step_response(sys2).plot(relabel=False) + assert cplt.axes[0, 0].get_ylabel() == 'y' def test_errors(): @@ -552,8 +551,8 @@ def test_errors(): for kw in ['input_props', 'output_props', 'trace_props']: propkw = {kw: {'color': 'green'}} with pytest.warns(UserWarning, match="ignored since fmt string"): - out = stepresp.plot('k-', **propkw) - assert out[0, 0][0].get_color() == 'k' + cplt = stepresp.plot('k-', **propkw) + assert cplt.lines[0, 0][0].get_color() == 'k' # Make sure TimeResponseLists also work stepresp = ct.step_response([sys, sys]) @@ -569,24 +568,24 @@ def test_legend_customization(): resp = ct.input_output_response(sys, timepts, U) # Generic input/output plot - out = resp.plot(overlay_signals=True) - axs = ct.get_plot_axes(out) + cplt = resp.plot(overlay_signals=True) + axs = ct.get_plot_axes(cplt.lines) assert axs[0, 0].get_legend()._loc == 7 # center right assert len(axs[0, 0].get_legend().get_texts()) == 2 assert axs[1, 0].get_legend() == None plt.close() # Hide legend - out = resp.plot(overlay_signals=True, show_legend=False) - axs = ct.get_plot_axes(out) + cplt = resp.plot(overlay_signals=True, show_legend=False) + axs = ct.get_plot_axes(cplt.lines) assert axs[0, 0].get_legend() == None assert axs[1, 0].get_legend() == None plt.close() # Put legend in both axes - out = resp.plot( + cplt = resp.plot( overlay_signals=True, legend_map=[['center left'], ['center right']]) - axs = ct.get_plot_axes(out) + axs = ct.get_plot_axes(cplt.lines) assert axs[0, 0].get_legend()._loc == 6 # center left assert len(axs[0, 0].get_legend().get_texts()) == 2 assert axs[1, 0].get_legend()._loc == 7 # center right @@ -686,7 +685,7 @@ def test_legend_customization(): plt.savefig('timeplot-mimo_ioresp-mt_tr.png') plt.figure() - out = ct.step_response(sys_mimo).plot( + cplt = ct.step_response(sys_mimo).plot( plot_inputs='overlay', overlay_signals=True, overlay_traces=True, output_props=[{'color': c} for c in ['blue', 'orange']], input_props=[{'color': c} for c in ['red', 'green']], diff --git a/control/timeplot.py b/control/timeplot.py index 11bbd1d6b..cb56aa9c4 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -454,7 +454,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Stop here if the user wants to control everything if not relabel: - return out + return ControlPlot(out, ax_array, fig) # # Label the axes (including trace labels) diff --git a/control/timeresp.py b/control/timeresp.py index f844b1df4..d1064eaaf 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -79,7 +79,6 @@ from scipy.linalg import eig, eigvals, matrix_balance, norm from . import config -from .ctrlplot import _update_suptitle from .exception import pandas_check from .iosys import isctime, isdtime from .timeplot import time_response_plot @@ -745,19 +744,21 @@ class TimeResponseList(list): """ def plot(self, *args, **kwargs): - out_full = None + from .ctrlplot import ControlPlot + + lines = None label = kwargs.pop('label', [None] * len(self)) for i, response in enumerate(self): - out = TimeResponseData.plot( + cplt = TimeResponseData.plot( response, *args, label=label[i], **kwargs) - if out_full is None: - out_full = out + if lines is None: + lines = cplt.lines else: # Append the lines in the new plot to previous lines - for row in range(out.shape[0]): - for col in range(out.shape[1]): - out_full[row, col] += out[row, col] - return out_full + for row in range(cplt.lines.shape[0]): + for col in range(cplt.lines.shape[1]): + lines[row, col] += cplt.lines[row, col] + return ControlPlot(lines, cplt.axes, cplt.figure) # Process signal labels diff --git a/doc/plotting.rst b/doc/plotting.rst index 753ad2cc4..bfe8f78a1 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -24,11 +24,12 @@ resulting in the following standard pattern:: response = ct.nyquist_response([sys1, sys2]) count = ct.response.count # number of encirclements of -1 - lines = ct.nyquist_plot(response) # Nyquist plot + cplt = ct.nyquist_plot(response) # Nyquist plot -The returned value `lines` provides access to the individual lines in the -generated plot, allowing various aspects of the plot to be modified to suit -specific needs. +Plotting commands return a :class:`~control.ControlPlot` object that +provides access to the individual lines in the generated plot using +`cplt.lines`, allowing various aspects of the plot to be modified to +suit specific needs. The plotting function is also available via the `plot()` method of the analysis object, allowing the following type of calls:: @@ -146,7 +147,7 @@ Additional customization is possible using the `input_props`, `output_props`, and `trace_props` keywords to set complementary line colors and styles for various signals and traces:: - out = ct.step_response(sys_mimo).plot( + cplt = ct.step_response(sys_mimo).plot( plot_inputs='overlay', overlay_signals=True, overlay_traces=True, output_props=[{'color': c} for c in ['blue', 'orange']], input_props=[{'color': c} for c in ['red', 'green']], From fb5c194fb249dec2a66c5852878e08af75e951b5 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Thu, 4 Jul 2024 09:18:27 -0700 Subject: [PATCH 132/199] add unit tests for common plotting functionality --- control/phaseplot.py | 8 ++- control/pzmap.py | 6 ++ control/tests/ctrlplot_test.py | 115 +++++++++++++++++++++++++++++++++ 3 files changed, 127 insertions(+), 2 deletions(-) diff --git a/control/phaseplot.py b/control/phaseplot.py index fa5cb691a..e29fe8d3f 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -36,7 +36,7 @@ from scipy.integrate import odeint from . import config -from .ctrlplot import ControlPlot, _add_arrows_to_line2D +from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _process_ax_keyword from .exception import ControlNotImplemented from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response @@ -141,6 +141,9 @@ def phase_plane_plot( pointdata = [-1, 1, -1, 1] if pointdata is None else pointdata # Create axis if needed + user_ax = ax + # TODO: make use of _process_ax_keyword + # fig, ax = _process_ax_keyword(user_ax, squeeze=True) if ax is None: fig, ax = plt.gcf(), plt.gca() else: @@ -212,7 +215,8 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): if initial_kwargs: raise TypeError("unrecognized keywords: ", str(initial_kwargs)) - if fig is not None: + # TODO: update to common code pattern + if user_ax is None: ax.set_title(f"Phase portrait for {sys.name}") ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) diff --git a/control/pzmap.py b/control/pzmap.py index a8417f3d8..9eadaa319 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -315,9 +315,15 @@ def pole_zero_plot( # Initialize the figure # TODO: turn into standard utility function (from plotutil.py?) + # fig, ax = _process_ax_keyword( + # user_ax, rcParams=freqplot_rcParams, squeeze=True, create_axes=False) + # axs = [ax] if ax is not None else [] if user_ax is None: fig = plt.gcf() axs = fig.get_axes() + elif isinstance(user_ax, np.ndarray): + axs = user_ax.reshape(-1) + fig = axs[0].figure else: fig = ax.figure axs = [ax] diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 87d8bb2ad..ebadb98c0 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -1,11 +1,126 @@ # ctrlplot_test.py - test out control plotting utilities # RMM, 27 Jun 2024 +import inspect +import warnings + import matplotlib.pyplot as plt +import numpy as np import pytest import control as ct +# List of all plotting functions +resp_plot_fcns = [ + # response function plotting function + (ct.frequency_response, ct.bode_plot), + (ct.frequency_response, ct.nichols_plot), + (ct.singular_values_response, ct.singular_values_plot), + (ct.gangof4_response, ct.gangof4_plot), + (ct.describing_function_response, ct.describing_function_plot), + (None, ct.phase_plane_plot), + (ct.pole_zero_map, ct.pole_zero_plot), + (ct.nyquist_response, ct.nyquist_plot), + (ct.root_locus_map, ct.root_locus_plot), + (ct.initial_response, ct.time_response_plot), + (ct.step_response, ct.time_response_plot), + (ct.impulse_response, ct.time_response_plot), + (ct.forced_response, ct.time_response_plot), + (ct.input_output_response, ct.time_response_plot), +] + +deprecated_fcns = [ct.phase_plot] + +# Make sure we didn't miss any plotting functions +def test_find_respplot_functions(): + # Get the list of plotting functions + plot_fcns = {respplot[1] for respplot in resp_plot_fcns} + + # Look through every object in the package + found = 0 + for name, obj in inspect.getmembers(ct): + # Skip anything that is outside of this module + if inspect.getmodule(obj) is not None and \ + not inspect.getmodule(obj).__name__.startswith('control'): + # Skip anything that isn't part of the control package + continue + + # Only look for non-deprecated functions ending in 'plot' + if not inspect.isfunction(obj) or name[-4:] != 'plot' or \ + obj in deprecated_fcns: + continue + + # Make sure that we have this on our list of functions + assert obj in plot_fcns + found += 1 + + assert found == len(plot_fcns) + + +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup') +def test_plot_functions(resp_fcn, plot_fcn): + # Create some systems to use + sys1 = ct.rss(2, 1, 1, strictly_proper=True) + sys2 = ct.rss(4, 1, 1, strictly_proper=True) + + # Set up arguments + kwargs = meth_kwargs = plot_fcn_kwargs = {} + match resp_fcn, plot_fcn: + case ct.describing_function_response, _: + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + args = (sys1, F, amp) + + case ct.gangof4_response, _: + args = (sys1, sys2) + + case ct.frequency_response, ct.nichols_plot: + args = (sys1, ) + meth_kwargs = {'plot_type': 'nichols'} + + case ct.root_locus_map, ct.root_locus_plot: + args = (sys1, ) + meth_kwargs = plot_fcn_kwargs = {'interactive': False} + + case (ct.forced_response | ct.input_output_response, _): + timepts = np.linspace(1, 10) + U = np.sin(timepts) + args = (sys1, timepts, U) + + case _, _: + args = (sys1, ) + + # Call the plot through the response function + if resp_fcn is not None: + resp = resp_fcn(*args, **kwargs) + cplt1 = resp.plot(**kwargs, **meth_kwargs) + assert isinstance(cplt1, ct.ControlPlot) + + # Call the plot directly, plotting on top of previous plot + if plot_fcn not in [None, ct.time_response_plot]: + cplt2 = plot_fcn(*args, **kwargs, **plot_fcn_kwargs) + assert isinstance(cplt2, ct.ControlPlot) + + # Plot should have landed on top of previous plot + if resp_fcn is not None: + assert cplt2.figure == cplt1.figure + if plot_fcn != ct.root_locus_plot: + assert np.all(cplt2.axes == cplt1.axes) + else: + warnings.warn("test skipped for root locus plot") + assert len(cplt2.lines[0]) == len(cplt1.lines[0]) + + # Pass axes explicitly + if resp_fcn is not None: + cplt3 = resp.plot(**kwargs, **meth_kwargs, ax=cplt1.axes) + assert cplt3.figure == cplt1.figure + if plot_fcn != ct.root_locus_plot: + assert np.all(cplt3.axes == cplt1.axes) + else: + warnings.warn("test skipped for root locus plot") + assert len(cplt3.lines[0]) == len(cplt1.lines[0]) + @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): From 97a523031f4e12874c8fd84c89c4509c5c5f5bdb Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 5 Jul 2024 19:15:32 -0700 Subject: [PATCH 133/199] update phaseplot to use common ax, rcParams processing --- control/phaseplot.py | 81 ++++++++++++++++++++++++++++---------------- 1 file changed, 51 insertions(+), 30 deletions(-) diff --git a/control/phaseplot.py b/control/phaseplot.py index e29fe8d3f..1a7379d8f 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -36,7 +36,8 @@ from scipy.integrate import odeint from . import config -from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _process_ax_keyword +from .ctrlplot import ControlPlot, _add_arrows_to_line2D, \ + _ctrlplot_rcParams, _process_ax_keyword, suptitle from .exception import ControlNotImplemented from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response @@ -44,6 +45,7 @@ # Default values for module parameter variables _phaseplot_defaults = { + 'phaseplot.rcParams': _ctrlplot_rcParams, 'phaseplot.arrows': 2, # number of arrows around curve 'phaseplot.arrow_size': 8, # pixel size for arrows 'phaseplot.separatrices_radius': 0.1 # initial radius for separatrices @@ -139,15 +141,12 @@ def phase_plane_plot( params = kwargs.get('params', None) sys = _create_system(sys, params) pointdata = [-1, 1, -1, 1] if pointdata is None else pointdata + rcParams = config._get_param( + 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) # Create axis if needed user_ax = ax - # TODO: make use of _process_ax_keyword - # fig, ax = _process_ax_keyword(user_ax, squeeze=True) - if ax is None: - fig, ax = plt.gcf(), plt.gca() - else: - fig = None # don't modify figure + fig, ax = _process_ax_keyword(user_ax, squeeze=True, rcParams=rcParams) # Create copy of kwargs for later checking to find unused arguments initial_kwargs = dict(kwargs) @@ -217,10 +216,12 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): # TODO: update to common code pattern if user_ax is None: - ax.set_title(f"Phase portrait for {sys.name}") - ax.set_xlabel(sys.state_labels[0]) - ax.set_ylabel(sys.state_labels[1]) + with plt.rc_context(rcParams): + suptitle(f"Phase portrait for {sys.name}") + ax.set_xlabel(sys.state_labels[0]) + ax.set_ylabel(sys.state_labels[1]) + plt.tight_layout() return ControlPlot(out, ax, fig) @@ -273,6 +274,10 @@ def vectorfield( If set to `True`, suppress warning messages in generating trajectories. """ + # Process keywords + rcParams = config._get_param( + 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + # Get system parameters params = kwargs.pop('params', None) @@ -303,9 +308,10 @@ def vectorfield( vfdata[i, :2] = x vfdata[i, 2:] = sys._rhs(0, x, 0) - out = ax.quiver( - vfdata[:, 0], vfdata[:, 1], vfdata[:, 2], vfdata[:, 3], - angles='xy', color=color) + with plt.rc_context(rcParams): + out = ax.quiver( + vfdata[:, 0], vfdata[:, 1], vfdata[:, 2], vfdata[:, 3], + angles='xy', color=color) return out @@ -362,6 +368,10 @@ def streamlines( If set to `True`, suppress warning messages in generating trajectories. """ + # Process keywords + rcParams = config._get_param( + 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + # Get system parameters params = kwargs.pop('params', None) @@ -411,13 +421,13 @@ def streamlines( # Plot the trajectory (if there is one) if traj.shape[1] > 1: - out.append( - ax.plot(traj[0], traj[1], color=color)) - - # Add arrows to the lines at specified intervals - _add_arrows_to_line2D( - ax, out[-1][0], arrow_pos, arrowstyle=arrow_style, dir=1) + with plt.rc_context(rcParams): + out.append( + ax.plot(traj[0], traj[1], color=color)) + # Add arrows to the lines at specified intervals + _add_arrows_to_line2D( + ax, out[-1][0], arrow_pos, arrowstyle=arrow_style, dir=1) return out @@ -464,6 +474,10 @@ def equilpoints( out : list of Line2D objects """ + # Process keywords + rcParams = config._get_param( + 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + # Get system parameters params = kwargs.pop('params', None) @@ -491,9 +505,9 @@ def equilpoints( # Plot the equilibrium points out = [] for xeq in equilpts: - out.append( - ax.plot(xeq[0], xeq[1], marker='o', color=color)) - + with plt.rc_context(rcParams): + out.append( + ax.plot(xeq[0], xeq[1], marker='o', color=color)) return out @@ -549,6 +563,10 @@ def separatrices( If set to `True`, suppress warning messages in generating trajectories. """ + # Process keywords + rcParams = config._get_param( + 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + # Get system parameters params = kwargs.pop('params', None) @@ -598,8 +616,9 @@ def separatrices( out = [] for i, xeq in enumerate(equilpts): # Plot the equilibrium points - out.append( - ax.plot(xeq[0], xeq[1], marker='o', color='k')) + with plt.rc_context(rcParams): + out.append( + ax.plot(xeq[0], xeq[1], marker='o', color='k')) # Figure out the linearization and eigenvectors evals, evecs = np.linalg.eig(sys.linearize(xeq, 0, params=params).A) @@ -639,14 +658,15 @@ def separatrices( # Plot the trajectory (if there is one) if traj.shape[1] > 1: - out.append(ax.plot( - traj[0], traj[1], color=color, linestyle=linestyle)) + with plt.rc_context(rcParams): + out.append(ax.plot( + traj[0], traj[1], color=color, linestyle=linestyle)) # Add arrows to the lines at specified intervals - _add_arrows_to_line2D( - ax, out[-1][0], arrow_pos, arrowstyle=arrow_style, - dir=1) - + with plt.rc_context(rcParams): + _add_arrows_to_line2D( + ax, out[-1][0], arrow_pos, arrowstyle=arrow_style, + dir=1) return out @@ -903,6 +923,7 @@ def _parse_arrow_keywords(kwargs): return arrow_pos, arrow_style +# TODO: move to ctrlplot? def _get_color(kwargs, ax=None): if 'color' in kwargs: return kwargs.pop('color') From da5be15ccd8c8ddeb0893927a2b4acc96b66cea8 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 07:22:04 -0700 Subject: [PATCH 134/199] TRV: fix legend size in Nyquist plots --- control/freqplot.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/control/freqplot.py b/control/freqplot.py index aeee18a9d..372ffc809 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -1935,7 +1935,8 @@ def _parse_linestyle(style_name, allow_false=False): # Add legend if there is more than one system plotted if len(labels) > 1: - legend = ax.legend(lines, labels, loc=legend_loc) + with plt.rc_context(rcParams): + legend = ax.legend(lines, labels, loc=legend_loc) else: legend=None From f8180343f20b82cd7d83184111967b041c4f49cc Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 07:22:56 -0700 Subject: [PATCH 135/199] Fix suptitle for root locus plots --- control/pzmap.py | 10 ++++++---- control/tests/rlocus_test.py | 3 +++ examples/plot_gallery.py | 1 + 3 files changed, 10 insertions(+), 4 deletions(-) diff --git a/control/pzmap.py b/control/pzmap.py index 9eadaa319..396911cdb 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -18,7 +18,8 @@ from numpy import cos, exp, imag, linspace, real, sin, sqrt from . import config -from .ctrlplot import ControlPlot, _get_line_labels +from .ctrlplot import ControlPlot, suptitle, _get_line_labels, \ + _process_ax_keyword from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime @@ -366,6 +367,7 @@ def pole_zero_plot( # Handle color cycle manually as all root locus segments # of the same system are expected to be of the same color + # TODO: replace with common function? color_cycle = plt.rcParams['axes.prop_cycle'].by_key()['color'] color_offset = 0 if len(ax.lines) > 0: @@ -470,10 +472,10 @@ def pole_zero_plot( # Add the title if title is None: - title = "Pole/zero plot for " + ", ".join(labels) + title = ("Root locus plot for " if rlocus_plot + else "Pole/zero plot for ") + ", ".join(labels) if user_ax is None: - with plt.rc_context(freqplot_rcParams): - fig.suptitle(title) + suptitle(title) # Add dispather to handle choosing a point on the diagram if interactive: diff --git a/control/tests/rlocus_test.py b/control/tests/rlocus_test.py index ae5b21e60..efc2ce45e 100644 --- a/control/tests/rlocus_test.py +++ b/control/tests/rlocus_test.py @@ -278,6 +278,9 @@ def test_root_locus_documentation(savefigs=False): plt.figure() test_root_locus_plots( sys, grid=grid, xlim=xlim, ylim=ylim, interactive=interactive) + ct.suptitle( + f"sys={sys.name}, {grid=}, {xlim=}, {ylim=}, {interactive=}", + frame='figure') # Run tests that generate plots for the documentation test_root_locus_documentation(savefigs=True) diff --git a/examples/plot_gallery.py b/examples/plot_gallery.py index 272de3d8e..fd28d6ed9 100644 --- a/examples/plot_gallery.py +++ b/examples/plot_gallery.py @@ -125,6 +125,7 @@ def invpend_update(t, x, u, params): sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') ct.root_locus_plot([sys1, sys2], grid=True, ax=ax1) ct.root_locus_plot([sys1, sys2], grid=False, ax=ax2) + ct.suptitle("Root locus plots (w/ specified axes)") print(" -- BUG: should have 2 x 1 array of plots") # sisotool From 0103fe7eb84894230e8eebaf1f72fe8e343b2eed Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 11:10:36 -0700 Subject: [PATCH 136/199] update root_locus_plot to use common ax processing --- control/ctrlplot.py | 90 ++++++++++++++++++++++++++++++-- control/pzmap.py | 94 +++++++++++++--------------------- control/rlocus.py | 3 -- control/tests/ctrlplot_test.py | 10 +--- control/tests/rlocus_test.py | 5 +- 5 files changed, 127 insertions(+), 75 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 6487e87c9..f4e882ed9 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -3,6 +3,75 @@ # # Collection of functions that are used by various plotting functions. +# Code pattern for control system plotting functions: +# +# def name_plot(sysdata, plot=None, **kwargs): +# # Process keywords and set defaults +# ax = kwargs.pop('ax', None) +# color = kwargs.pop('color', None) +# label = kwargs.pop('label', None) +# rcParams = config._get_param( +# 'nameplot', 'rcParams', kwargs, _nameplot_defaults, pop=True) +# +# # Make sure all keyword arguments were processed (if not checked later) +# if kwargs: +# raise TypeError("unrecognized keywords: ", str(kwargs)) +# +# # Process the data (including generating responses for systems) +# sysdata = list(sysdata) +# if any([isinstance(sys, InputOutputSystem) for sys in sysdata]): +# data = name_response(sysdata) +# nrows = max([data.noutputs for data in sysdata]) +# ncols = max([data.ninputs for data in sysdata]) +# +# # Legacy processing of plot keyword +# if plot is False: +# return data.x, data.y +# +# # Figure out the shape of the plot and find/create axes +# fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), rcParams) +# +# # Customize axes (curvilinear grids, shared axes, etc) +# +# # Plot the data +# lines = np.full(ax_array.shape, []) +# line_labels = _process_line_labels(label, ntraces, nrows, ncols) +# for i, j in itertools.product(range(nrows), range(ncols)): +# ax = ax_array[i, j] +# color_cycle, color_offset = _process_color_keyword(ax) +# for k in range(ntraces): +# if color is None: +# color = color_cycle[(k + color_offset) % len(color_cycle)] +# label = line_labels[k, i, j] +# lines[i, j] += ax.plot(data.x, data.y, color=color, label=label) +# +# # Customize and label the axes +# for i, j in itertools.product(range(nrows), range(ncols)): +# ax_array[i, j].set_xlabel("x label") +# ax_array[i, j].set_ylabel("y label") +# +# # Create legends +# legend_map = _process_legend_keywords(kwargs) +# for i, j in itertools.product(range(nrows), range(ncols)): +# if legend_map[i, j] is not None: +# lines = ax_array[i, j].get_lines() +# labels = _make_legend_labels(lines) +# if len(labels) > 1: +# legend_array[i, j] = ax.legend( +# lines, labels, loc=legend_map[i, j]) +# +# # Update the plot title +# sysnames = [response.sysname for response in data] +# if title is None: +# title = "Name plot for " + ", ".join(sysnames) +# _update_suptitle(fig, title, rcParams=rcParams) +# +# # Legacy processing of plot keyword +# if plot is True: +# return data +# +# return ControlPlot(lines, ax_array, fig, legend=legend_map) + import warnings from os.path import commonprefix @@ -181,7 +250,8 @@ def get_plot_axes(line_array): def _process_ax_keyword( - axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False): + axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False, + create_axes=True): """Utility function to process ax keyword to plotting commands. This function processes the `ax` keyword to plotting commands. If no @@ -190,6 +260,11 @@ def _process_ax_keyword( current figure and axes are returned. Otherwise a new figure is created with axes of the desired shape. + If `create_axes` is False and a new/empty figure is returned, then axs + is an array of the proper shape but None for each element. This allows + the calling function to do the actual axis creation (needed for + curvilinear grids that use the AxisArtist module). + Legacy behavior: some of the older plotting commands use a axes label to identify the proper axes for plotting. This behavior is supported through the use of the label keyword, but will only work if shape == @@ -204,14 +279,19 @@ def _process_ax_keyword( # Note: can't actually check the shape, just the total number of axes if len(axs) != np.prod(shape): with plt.rc_context(rcParams): - if len(axs) != 0: + if len(axs) != 0 and create_axes: # Create a new figure fig, axs = plt.subplots(*shape, squeeze=False) - else: + elif create_axes: # Create new axes on (empty) figure axs = fig.subplots(*shape, squeeze=False) - fig.set_layout_engine('tight') - fig.align_labels() + else: + # Create an empty array and let user create axes + axs = np.full(shape, None) + if create_axes: # if not creating axes, leave these to caller + fig.set_layout_engine('tight') + fig.align_labels() + else: # Use the existing axes, properly reshaped axs = np.asarray(axs).reshape(*shape) diff --git a/control/pzmap.py b/control/pzmap.py index 396911cdb..f3fe1d068 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -119,13 +119,6 @@ def plot(self, *args, **kwargs): and keywords. """ - # If this is a root locus plot, use rlocus defaults for grid - if self.loci is not None: - from .rlocus import _rlocus_defaults - kwargs = kwargs.copy() - kwargs['grid'] = config._get_param( - 'rlocus', 'grid', kwargs.get('grid', None), _rlocus_defaults) - return pole_zero_plot(self, *args, **kwargs) @@ -267,11 +260,10 @@ def pole_zero_plot( """ # Get parameter values - grid = config._get_param('pzmap', 'grid', grid, _pzmap_defaults) marker_size = config._get_param('pzmap', 'marker_size', marker_size, 6) marker_width = config._get_param('pzmap', 'marker_width', marker_width, 1.5) xlim_user, ylim_user = xlim, ylim - freqplot_rcParams = config._get_param( + rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True, last=True) user_ax = ax @@ -315,56 +307,41 @@ def pole_zero_plot( return poles, zeros # Initialize the figure - # TODO: turn into standard utility function (from plotutil.py?) - # fig, ax = _process_ax_keyword( - # user_ax, rcParams=freqplot_rcParams, squeeze=True, create_axes=False) - # axs = [ax] if ax is not None else [] - if user_ax is None: - fig = plt.gcf() - axs = fig.get_axes() - elif isinstance(user_ax, np.ndarray): - axs = user_ax.reshape(-1) - fig = axs[0].figure - else: - fig = ax.figure - axs = [ax] - - if len(axs) > 1: - # Need to generate a new figure - fig, axs = plt.figure(), [] - - with plt.rc_context(freqplot_rcParams): - if grid and grid != 'empty': - plt.clf() - if all([isctime(dt=response.dt) for response in data]): - ax, fig = sgrid(scaling=scaling) - elif all([isdtime(dt=response.dt) for response in data]): - ax, fig = zgrid(scaling=scaling) - else: - raise ValueError( - "incompatible time bases; don't know how to grid") - # Store the limits for later use - xlim, ylim = ax.get_xlim(), ax.get_ylim() - elif len(axs) == 0: - if grid == 'empty': - # Leave off grid entirely + fig, ax = _process_ax_keyword( + user_ax, rcParams=rcParams, squeeze=True, create_axes=False) + + if ax is None: + # Determine what type of grid to use + if rlocus_plot: + from .rlocus import _rlocus_defaults + grid = config._get_param('rlocus', 'grid', grid, _rlocus_defaults) + else: + grid = config._get_param('pzmap', 'grid', grid, _pzmap_defaults) + + # Create the axes with the appropriate grid + with plt.rc_context(rcParams): + if grid and grid != 'empty': + if all([isctime(dt=response.dt) for response in data]): + ax, fig = sgrid(scaling=scaling) + elif all([isdtime(dt=response.dt) for response in data]): + ax, fig = zgrid(scaling=scaling) + else: + raise ValueError( + "incompatible time bases; don't know how to grid") + # Store the limits for later use + xlim, ylim = ax.get_xlim(), ax.get_ylim() + elif grid == 'empty': ax = plt.axes() xlim = ylim = [np.inf, -np.inf] # use data to set limits else: - # draw stability boundary; use first response timebase ax, fig = nogrid(data[0].dt, scaling=scaling) xlim, ylim = ax.get_xlim(), ax.get_ylim() - else: - # Use the existing axes and any grid that is there - ax = axs[0] - - # Store the limits for later use - xlim, ylim = ax.get_xlim(), ax.get_ylim() - - # Issue a warning if the user tried to set the grid type - if grid: - warnings.warn("axis already exists; grid keyword ignored") - + else: + # Store the limits for later use + xlim, ylim = ax.get_xlim(), ax.get_ylim() + if grid is not None: + warnings.warn("axis already exists; grid keyword ignored") + # Handle color cycle manually as all root locus segments # of the same system are expected to be of the same color # TODO: replace with common function? @@ -459,13 +436,13 @@ def pole_zero_plot( handle = (pole_line, zero_line) line_tuples.append(handle) - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): legend = ax.legend( line_tuples, labels, loc=legend_loc, handler_map={tuple: HandlerTuple(ndivide=None)}) else: # Regular legend, with lines - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): legend = ax.legend(lines, labels, loc=legend_loc) else: legend = None @@ -475,7 +452,8 @@ def pole_zero_plot( title = ("Root locus plot for " if rlocus_plot else "Pole/zero plot for ") + ", ".join(labels) if user_ax is None: - suptitle(title) + with plt.rc_context(rcParams): + fig.suptitle(title) # Add dispather to handle choosing a point on the diagram if interactive: @@ -497,7 +475,7 @@ def _click_dispatcher(event): _mark_root_locus_gain(ax, sys, K) # Display the parameters in the axes title - with plt.rc_context(freqplot_rcParams): + with plt.rc_context(rcParams): ax.set_title(_create_root_locus_label(sys, K, s)) ax.figure.canvas.draw() diff --git a/control/rlocus.py b/control/rlocus.py index 4829a10e0..a65604089 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -173,9 +173,6 @@ def root_locus_plot( for oldkey in ['kvect', 'k']: gains = config._process_legacy_keyword(kwargs, oldkey, 'gains', gains) - # Set default parameters - grid = config._get_param('rlocus', 'grid', grid, _rlocus_defaults) - if isinstance(sysdata, list) and all( [isinstance(sys, LTI) for sys in sysdata]) or \ isinstance(sysdata, LTI): diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index ebadb98c0..0fbbd25c8 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -105,20 +105,14 @@ def test_plot_functions(resp_fcn, plot_fcn): # Plot should have landed on top of previous plot if resp_fcn is not None: assert cplt2.figure == cplt1.figure - if plot_fcn != ct.root_locus_plot: - assert np.all(cplt2.axes == cplt1.axes) - else: - warnings.warn("test skipped for root locus plot") + assert np.all(cplt2.axes == cplt1.axes) assert len(cplt2.lines[0]) == len(cplt1.lines[0]) # Pass axes explicitly if resp_fcn is not None: cplt3 = resp.plot(**kwargs, **meth_kwargs, ax=cplt1.axes) assert cplt3.figure == cplt1.figure - if plot_fcn != ct.root_locus_plot: - assert np.all(cplt3.axes == cplt1.axes) - else: - warnings.warn("test skipped for root locus plot") + assert np.all(cplt3.axes == cplt1.axes) assert len(cplt3.lines[0]) == len(cplt1.lines[0]) diff --git a/control/tests/rlocus_test.py b/control/tests/rlocus_test.py index efc2ce45e..38111e98e 100644 --- a/control/tests/rlocus_test.py +++ b/control/tests/rlocus_test.py @@ -95,7 +95,7 @@ def test_root_locus_plot_grid(self, sys, grid, method): if grid == 'empty': assert n_gridlines == 0 assert not isinstance(ax, AA.Axes) - elif grid is False or method == 'pzmap' and grid is None: + elif grid is False: assert n_gridlines == 2 if sys.isctime() else 3 assert not isinstance(ax, AA.Axes) elif sys.isdtime(strict=True): @@ -174,6 +174,7 @@ def test_rlocus_default_wn(self): "sys, grid, xlim, ylim, interactive", [ (ct.tf([1], [1, 2, 1]), None, None, None, False), ]) +@pytest.mark.usefixtures("mplcleanup") def test_root_locus_plots(sys, grid, xlim, ylim, interactive): ct.root_locus_map(sys).plot( grid=grid, xlim=xlim, ylim=ylim, interactive=interactive) @@ -182,6 +183,7 @@ def test_root_locus_plots(sys, grid, xlim, ylim, interactive): # Test deprecated keywords @pytest.mark.parametrize("keyword", ["kvect", "k"]) +@pytest.mark.usefixtures("mplcleanup") def test_root_locus_legacy(keyword): sys = ct.rss(2, 1, 1) with pytest.warns(DeprecationWarning, match=f"'{keyword}' is deprecated"): @@ -189,6 +191,7 @@ def test_root_locus_legacy(keyword): # Generate plots used in documentation +@pytest.mark.usefixtures("mplcleanup") def test_root_locus_documentation(savefigs=False): plt.figure() sys = ct.tf([1, 2], [1, 2, 3], name='SISO transfer function') From 4f3d618f6f0d65442dc005bb199f951377976936 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 6 Jul 2024 16:25:16 -0700 Subject: [PATCH 137/199] implement pole_zero_subplots --- control/ctrlplot.py | 67 ++++++++++++++++++++++++++++++++++++++-- control/grid.py | 4 +-- control/sisotool.py | 2 +- examples/plot_gallery.py | 10 +++--- 4 files changed, 73 insertions(+), 10 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index f4e882ed9..d1f4881b1 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -72,6 +72,7 @@ # # return ControlPlot(lines, ax_array, fig, legend=legend_map) +import itertools import warnings from os.path import commonprefix @@ -81,7 +82,7 @@ from . import config -__all__ = ['ControlPlot', 'suptitle', 'get_plot_axes'] +__all__ = ['ControlPlot', 'suptitle', 'get_plot_axes', 'pole_zero_subplots'] # # Style parameters @@ -241,6 +242,69 @@ def get_plot_axes(line_array): else: return _get_axes(line_array) + +def pole_zero_subplots( + nrows, ncols, grid=None, dt=None, fig=None, scaling=None, + rcParams=None): + """Create axes for pole/zero plot. + + Parameters + ---------- + nrows, ncols : int + Number of rows and columns + grid : True, False, or 'empty', optional + Grid style to use. Can also be a list, in which case each subplot + will have a different style (columns then rows). + dt : timebase, option + Timebase for each subplot (or a list of timebases). + scaling : 'auto', 'equal', or None + Scaling to apply to the subplots. + fig : :class:`matplotlib.figure.Figure` + Figure to use for creating subplots. + + Returns + ------- + ax_array : array + 2D array of axes + + """ + from .grid import sgrid, zgrid, nogrid + from .iosys import isctime + + if rcParams is None: + rcParams = _ctrlplot_rcParams + + if fig is None: + fig = plt.gcf() + + if not isinstance(grid, list): + grid = [grid] * nrows * ncols + if not isinstance(dt, list): + dt = [dt] * nrows * ncols + + ax_array = np.full((nrows, ncols), None) + index = 0 + with plt.rc_context(rcParams): + for row, col in itertools.product(range(nrows), range(ncols)): + match grid[index], isctime(dt=dt[index]): + case 'empty', _: # empty grid + ax_array[row, col] = fig.add_subplot(nrows, ncols, index+1) + + case True, True: # continuous time grid + ax_array[row, col], _ = sgrid( + (nrows, ncols, index+1), scaling=scaling) + + case True, False: # discrete time grid + ax_array[row, col] = fig.add_subplot(nrows, ncols, index+1) + zgrid(ax=ax_array[row, col], scaling=scaling) + + case False | None, _: # no grid (just stability boundaries) + ax_array[row, col] = fig.add_subplot(nrows, ncols, index+1) + nogrid( + ax=ax_array[row, col], dt=dt[index], scaling=scaling) + index += 1 + return ax_array + # # Utility functions # @@ -248,7 +312,6 @@ def get_plot_axes(line_array): # of processing and displaying information. # - def _process_ax_keyword( axs, shape=(1, 1), rcParams=None, squeeze=False, clear_text=False, create_axes=True): diff --git a/control/grid.py b/control/grid.py index dfe8f9a3e..c2d00391b 100644 --- a/control/grid.py +++ b/control/grid.py @@ -74,7 +74,7 @@ def __call__(self, transform_xy, x1, y1, x2, y2): return lon_min, lon_max, lat_min, lat_max -def sgrid(scaling=None): +def sgrid(subplot=(1, 1, 1), scaling=None): # From matplotlib demos: # https://matplotlib.org/gallery/axisartist/demo_curvelinear_grid.html # https://matplotlib.org/gallery/axisartist/demo_floating_axis.html @@ -101,7 +101,7 @@ def sgrid(scaling=None): # Set up an axes with a specialized grid helper fig = plt.gcf() - ax = SubplotHost(fig, 1, 1, 1, grid_helper=grid_helper) + ax = SubplotHost(fig, *subplot, grid_helper=grid_helper) # make ticklabels of right invisible, and top axis visible. visible = True diff --git a/control/sisotool.py b/control/sisotool.py index aca36e2d1..a6b9d468b 100644 --- a/control/sisotool.py +++ b/control/sisotool.py @@ -136,7 +136,7 @@ def sisotool(sys, initial_gain=None, xlim_rlocus=None, ylim_rlocus=None, # ax=fig.axes[1]) ax_rlocus = fig.axes[1] root_locus_map(sys[0, 0]).plot( - xlim=xlim_rlocus, ylim=ylim_rlocus, grid=rlocus_grid, + xlim=xlim_rlocus, ylim=ylim_rlocus, initial_gain=initial_gain, ax=ax_rlocus) if rlocus_grid is False: # Need to generate grid manually, since root_locus_plot() won't diff --git a/examples/plot_gallery.py b/examples/plot_gallery.py index fd28d6ed9..d7a700c91 100644 --- a/examples/plot_gallery.py +++ b/examples/plot_gallery.py @@ -120,13 +120,13 @@ def invpend_update(t, x, u, params): # root locus with create_figure("Root locus plot") as fig: - ax1, ax2 = fig.subplots(2, 1) + ax_array = ct.pole_zero_subplots(2, 1, grid=[True, False]) + ax1, ax2 = ax_array[:, 0] sys1 = ct.tf([1, 2], [1, 2, 3], name='sys1') sys2 = ct.tf([1, 0.2], [1, 1, 3, 1, 1], name='sys2') - ct.root_locus_plot([sys1, sys2], grid=True, ax=ax1) - ct.root_locus_plot([sys1, sys2], grid=False, ax=ax2) - ct.suptitle("Root locus plots (w/ specified axes)") - print(" -- BUG: should have 2 x 1 array of plots") + ct.root_locus_plot([sys1, sys2], ax=ax1) + ct.root_locus_plot([sys1, sys2], ax=ax2) + plt.suptitle("Root locus plots (w/ specified axes)", fontsize='medium') # sisotool with create_figure("sisotool"): From 0dc4790a6d6aa86faf29c1c892e1606a866c527f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 14 Jul 2024 10:37:57 -0700 Subject: [PATCH 138/199] update unit test for ax_processing --- control/tests/ctrlplot_test.py | 45 ++++++++++++++++++++++++---------- 1 file changed, 32 insertions(+), 13 deletions(-) diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 0fbbd25c8..1b70fcca7 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -59,13 +59,14 @@ def test_find_respplot_functions(): @pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) @pytest.mark.usefixtures('mplcleanup') -def test_plot_functions(resp_fcn, plot_fcn): +def test_plot_ax_processing(resp_fcn, plot_fcn): # Create some systems to use sys1 = ct.rss(2, 1, 1, strictly_proper=True) sys2 = ct.rss(4, 1, 1, strictly_proper=True) # Set up arguments kwargs = meth_kwargs = plot_fcn_kwargs = {} + get_line_color = lambda cplt: cplt.lines.reshape(-1)[0][0].get_color() match resp_fcn, plot_fcn: case ct.describing_function_response, _: F = ct.descfcn.saturation_nonlinearity(1) @@ -88,6 +89,11 @@ def test_plot_functions(resp_fcn, plot_fcn): U = np.sin(timepts) args = (sys1, timepts, U) + case None, ct.phase_plane_plot: + args = (sys1, ) + get_line_color = None + warnings.warn("ct.phase_plane_plot returns nonstandard lines") + case _, _: args = (sys1, ) @@ -95,26 +101,39 @@ def test_plot_functions(resp_fcn, plot_fcn): if resp_fcn is not None: resp = resp_fcn(*args, **kwargs) cplt1 = resp.plot(**kwargs, **meth_kwargs) - assert isinstance(cplt1, ct.ControlPlot) + else: + # No response function available; just plot the data + cplt1 = plot_fcn(*args, **kwargs, **meth_kwargs) + assert isinstance(cplt1, ct.ControlPlot) # Call the plot directly, plotting on top of previous plot - if plot_fcn not in [None, ct.time_response_plot]: + if plot_fcn == ct.time_response_plot: + # Can't call the time_response_plot() with system => reuse data + cplt2 = plot_fcn(resp, **kwargs, **plot_fcn_kwargs) + else: cplt2 = plot_fcn(*args, **kwargs, **plot_fcn_kwargs) - assert isinstance(cplt2, ct.ControlPlot) + assert isinstance(cplt2, ct.ControlPlot) - # Plot should have landed on top of previous plot - if resp_fcn is not None: - assert cplt2.figure == cplt1.figure - assert np.all(cplt2.axes == cplt1.axes) - assert len(cplt2.lines[0]) == len(cplt1.lines[0]) + # Plot should have landed on top of previous plot, in different colors + assert cplt2.figure == cplt1.figure + assert np.all(cplt2.axes == cplt1.axes) + assert len(cplt2.lines[0]) == len(cplt1.lines[0]) + if get_line_color is not None: + assert get_line_color(cplt2) != get_line_color(cplt1) # Pass axes explicitly if resp_fcn is not None: cplt3 = resp.plot(**kwargs, **meth_kwargs, ax=cplt1.axes) - assert cplt3.figure == cplt1.figure - assert np.all(cplt3.axes == cplt1.axes) - assert len(cplt3.lines[0]) == len(cplt1.lines[0]) - + else: + cplt3 = plot_fcn(*args, **kwargs, **meth_kwargs) + assert cplt3.figure == cplt1.figure + + # Plot should have landed on top of previous plot, in different colors + assert np.all(cplt3.axes == cplt1.axes) + assert len(cplt3.lines[0]) == len(cplt1.lines[0]) + if get_line_color is not None: + assert get_line_color(cplt3) != get_line_color(cplt1) + assert get_line_color(cplt3) != get_line_color(cplt2) @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): From cec9e7053dfbc872c7a3890bcefed6e01194a6dc Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sun, 14 Jul 2024 19:11:44 -0700 Subject: [PATCH 139/199] update label processing to provide common functionality + unit tests --- control/ctrlplot.py | 4 +- control/descfcn.py | 10 +-- control/freqplot.py | 3 +- control/grid.py | 3 +- control/nichols.py | 16 +++-- control/pzmap.py | 41 ++++++----- control/tests/ctrlplot_test.py | 120 +++++++++++++++++++++++++++++++++ control/tests/freqplot_test.py | 33 +++++++-- control/timeplot.py | 4 +- 9 files changed, 196 insertions(+), 38 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index d1f4881b1..dd640c647 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -384,7 +384,7 @@ def _process_ax_keyword( # Turn label keyword into array indexed by trace, output, input # TODO: move to ctrlutil.py and update parameter names to reflect general use -def _process_line_labels(label, ntraces, ninputs=0, noutputs=0): +def _process_line_labels(label, ntraces=1, ninputs=0, noutputs=0): if label is None: return None @@ -447,7 +447,7 @@ def _make_legend_labels(labels, ignore_common=False): if last_space < 0 or ignore_common: common_prefix = '' elif last_space > 0: - common_prefix = common_prefix[:last_space] + common_prefix = common_prefix[:last_space + 2] prefix_len = len(common_prefix) # Look for a common suffix (up to a space) diff --git a/control/descfcn.py b/control/descfcn.py index b2fd88e8d..f94687a3f 100644 --- a/control/descfcn.py +++ b/control/descfcn.py @@ -380,7 +380,7 @@ def _cost(x): def describing_function_plot( - *sysdata, label="%5.2g @ %-5.2g", **kwargs): + *sysdata, point_label="%5.2g @ %-5.2g", label=None, **kwargs): """describing_function_plot(data, *args, **kwargs) Plot a Nyquist plot with a describing function for a nonlinear system. @@ -420,7 +420,7 @@ def describing_function_plot( If True (default), refine the location of the intersection of the Nyquist curve for the linear system and the describing function to determine the intersection point - label : str, optional + point_label : str, optional Formatting string used to label intersection points on the Nyquist plot. Defaults to "%5.2g @ %-5.2g". Set to `None` to omit labels. @@ -453,6 +453,8 @@ def describing_function_plot( # Process keywords warn_nyquist = config._process_legacy_keyword( kwargs, 'warn', 'warn_nyquist', kwargs.pop('warn_nyquist', None)) + point_label = config._process_legacy_keyword( + kwargs, 'label', 'point_label', point_label) # TODO: update to be consistent with ctrlplot use of `label` if label not in (False, None) and not isinstance(label, str): @@ -484,10 +486,10 @@ def describing_function_plot( lines[1] = plt.plot(dfresp.N_vals.real, dfresp.N_vals.imag) # Label the intersection points - if label: + if point_label: for pos, (a, omega) in zip(dfresp.positions, dfresp.intersections): # Add labels to the intersection points - plt.text(pos.real, pos.imag, label % (a, omega)) + plt.text(pos.real, pos.imag, point_label % (a, omega)) return ControlPlot(lines, cfig.axes, cfig.figure) diff --git a/control/freqplot.py b/control/freqplot.py index 372ffc809..b7f3b5d99 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -2078,7 +2078,8 @@ def gangof4_response( return FrequencyResponseData( data, omega, outputs=['y', 'u'], inputs=['r', 'd'], - title=f"Gang of Four for P={P.name}, C={C.name}", plot_phase=False) + title=f"Gang of Four for P={P.name}, C={C.name}", + sysname=f"P={P.name}, C={C.name}", plot_phase=False) def gangof4_plot( diff --git a/control/grid.py b/control/grid.py index c2d00391b..54a1940c9 100644 --- a/control/grid.py +++ b/control/grid.py @@ -104,8 +104,7 @@ def sgrid(subplot=(1, 1, 1), scaling=None): ax = SubplotHost(fig, *subplot, grid_helper=grid_helper) # make ticklabels of right invisible, and top axis visible. - visible = True - ax.axis[:].major_ticklabels.set_visible(visible) + ax.axis[:].major_ticklabels.set_visible(True) ax.axis[:].major_ticks.set_visible(False) ax.axis[:].invert_ticklabel_direction() ax.axis[:].major_ticklabels.set_color('gray') diff --git a/control/nichols.py b/control/nichols.py index 451f790b5..c7de052b9 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -19,7 +19,7 @@ from . import config from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ - suptitle + _process_line_labels, suptitle from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults from .lti import frequency_response @@ -36,7 +36,7 @@ def nichols_plot( data, omega=None, *fmt, grid=None, title=None, ax=None, - legend_loc='upper left', **kwargs): + legend_loc='upper left', label=None, **kwargs): """Nichols plot for a system. Plots a Nichols plot for the system over a (optional) frequency range. @@ -53,6 +53,10 @@ def nichols_plot( The `omega` parameter must be present (use omega=None if needed). grid : boolean, optional True if the plot should include a Nichols-chart grid. Default is True. + label : str or array-like of str + If present, replace automatically generated label(s) with given + label(s). If sysdata is a list, strings should be specified for each + system. legend_loc : str, optional For plots with multiple lines, a legend will be included in the given location. Default is 'upper left'. Use False to supress. @@ -61,7 +65,7 @@ def nichols_plot( Returns ------- - cplt : :class:`ControlPlot` object + cplt : :class:`ControlPlot` object Object containing the data that were plotted: * cplt.lines: 1D array of :class:`matplotlib.lines.Line2D` objects. @@ -81,6 +85,7 @@ def nichols_plot( """ # Get parameter values grid = config._get_param('nichols', 'grid', grid, True) + label = _process_line_labels(label) rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) @@ -113,12 +118,13 @@ def nichols_plot( x = unwrap(np.degrees(phase), 360) y = 20*np.log10(mag) - # Decide on the system name + # Decide on the system name and label sysname = response.sysname if response.sysname is not None \ else f"Unknown-{idx_sys}" + label_ = sysname if label is None else label[idx] # Generate the plot - out[idx] = ax_nichols.plot(x, y, *fmt, label=sysname, **kwargs) + out[idx] = ax_nichols.plot(x, y, *fmt, label=label_, **kwargs) # Label the plot axes plt.xlabel('Phase [deg]') diff --git a/control/pzmap.py b/control/pzmap.py index f3fe1d068..fcfc72f36 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -19,7 +19,7 @@ from . import config from .ctrlplot import ControlPlot, suptitle, _get_line_labels, \ - _process_ax_keyword + _process_ax_keyword, _process_line_labels from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime @@ -173,7 +173,7 @@ def pole_zero_plot( data, plot=None, grid=None, title=None, marker_color=None, marker_size=None, marker_width=None, legend_loc='upper right', xlim=None, ylim=None, interactive=None, ax=None, scaling=None, - initial_gain=None, **kwargs): + initial_gain=None, label=None, **kwargs): """Plot a pole/zero map for a linear system. If the system data include root loci, a root locus diagram for the @@ -230,25 +230,30 @@ def pole_zero_plot( scaling : str or list, optional Set the type of axis scaling. Can be 'equal' (default), 'auto', or a list of the form [xmin, xmax, ymin, ymax]. - title : str, optional - Set the title of the plot. Defaults plot type and system name(s). + initial_gain : float, optional + If given, the specified system gain will be marked on the plot. + + interactive : bool, optional + Turn off interactive mode for root locus plots. + label : str or array-like of str + If present, replace automatically generated label(s) with given + label(s). If data is a list, strings should be specified for each + system. + legend_loc : str, optional + For plots with multiple lines, a legend will be included in the + given location. Default is 'center right'. Use False to supress. marker_color : str, optional Set the color of the markers used for poles and zeros. marker_size : int, optional Set the size of the markers used for poles and zeros. marker_width : int, optional Set the line width of the markers used for poles and zeros. - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to supress. + title : str, optional + Set the title of the plot. Defaults plot type and system name(s). xlim : list, optional Set the limits for the x axis. ylim : list, optional Set the limits for the y axis. - interactive : bool, optional - Turn off interactive mode for root locus plots. - initial_gain : float, optional - If given, the specified system gain will be marked on the plot. Notes ----- @@ -260,13 +265,14 @@ def pole_zero_plot( """ # Get parameter values + label = _process_line_labels(label) marker_size = config._get_param('pzmap', 'marker_size', marker_size, 6) marker_width = config._get_param('pzmap', 'marker_width', marker_width, 1.5) - xlim_user, ylim_user = xlim, ylim rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True, last=True) user_ax = ax + xlim_user, ylim_user = xlim, ylim # If argument was a singleton, turn it into a tuple if not isinstance(data, (list, tuple)): @@ -371,12 +377,15 @@ def pole_zero_plot( # Plot the locations of the poles and zeros if len(poles) > 0: - label = response.sysname if response.loci is None else None + if label is None: + label_ = response.sysname if response.loci is None else None + else: + label_ = label[idx] out[idx, 0] = ax.plot( real(poles), imag(poles), marker='x', linestyle='', markeredgecolor=color, markerfacecolor=color, markersize=marker_size, markeredgewidth=marker_width, - color=color, label=label) + color=color, label=label_) if len(zeros) > 0: out[idx, 1] = ax.plot( real(zeros), imag(zeros), marker='o', linestyle='', @@ -386,10 +395,10 @@ def pole_zero_plot( # Plot the loci, if present if response.loci is not None: + label_ = response.sysname if label is None else label[idx] for locus in response.loci.transpose(): out[idx, 2] += ax.plot( - real(locus), imag(locus), color=color, - label=response.sysname) + real(locus), imag(locus), color=color, label=label_) # Compute the axis limits to use based on the response resp_xlim, resp_ylim = _compute_root_locus_limits(response) diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 1b70fcca7..69c45492f 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -29,6 +29,7 @@ (ct.input_output_response, ct.time_response_plot), ] +nolabel_plot_fcns = [ct.describing_function_plot, ct.phase_plane_plot] deprecated_fcns = [ct.phase_plot] # Make sure we didn't miss any plotting functions @@ -135,6 +136,125 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): assert get_line_color(cplt3) != get_line_color(cplt1) assert get_line_color(cplt3) != get_line_color(cplt2) + +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup') +def test_plot_label_processing(resp_fcn, plot_fcn): + # Utility function to make sure legends are OK + def assert_legend(cplt, expected_texts): + # Check to make sure the labels are OK in legend + legend = None + for ax in cplt.axes.flatten(): + legend = ax.get_legend() + if legend is not None: + break + if expected_texts is None: + assert legend is None + else: + assert legend is not None + legend_texts = [entry.get_text() for entry in legend.get_texts()] + assert legend_texts == expected_texts + + # Create some systems to use + sys1 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[1]") + sys1c = ct.rss(4, 1, 1, strictly_proper=True, name="sys[1]_C") + sys2 = ct.rss(4, 1, 1, strictly_proper=True, name="sys[2]") + + # Set up arguments + kwargs = meth_kwargs = plot_fcn_kwargs = {} + default_labels = ["sys[1]", "sys[2]"] + expected_labels = ["sys1_", "sys2_"] + match resp_fcn, plot_fcn: + case ct.describing_function_response, _: + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + args1 = (sys1, F, amp) + args2 = (sys2, F, amp) + + case ct.gangof4_response, _: + args1 = (sys1, sys1c) + args2 = (sys2, sys1c) + default_labels = ["P=sys[1]", "P=sys[2]"] + + case ct.frequency_response, ct.nichols_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = {'plot_type': 'nichols'} + + case ct.root_locus_map, ct.root_locus_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = plot_fcn_kwargs = {'interactive': False} + + case (ct.forced_response | ct.input_output_response, _): + timepts = np.linspace(1, 10) + U = np.sin(timepts) + args1 = (resp_fcn(sys1, timepts, U), ) + args2 = (resp_fcn(sys2, timepts, U), ) + argsc = (resp_fcn([sys1, sys2], timepts, U), ) + + case (ct.impulse_response | ct.initial_response | ct.step_response, _): + args1 = (resp_fcn(sys1), ) + args2 = (resp_fcn(sys2), ) + argsc = (resp_fcn([sys1, sys2]), ) + + case _, _: + args1 = (sys1, ) + args2 = (sys2, ) + + if plot_fcn in nolabel_plot_fcns: + pytest.skip(f"labels not implemented for {plot_fcn}") + + # Generate the first plot, with default labels + cplt1 = plot_fcn(*args1, **kwargs, **plot_fcn_kwargs) + assert isinstance(cplt1, ct.ControlPlot) + assert_legend(cplt1, None) + + # Generate second plot with default labels + cplt2 = plot_fcn(*args2, **kwargs, **plot_fcn_kwargs) + assert isinstance(cplt2, ct.ControlPlot) + assert_legend(cplt2, default_labels) + plt.close() + + # Generate both plots at the same time + if len(args1) == 1 and plot_fcn != ct.time_response_plot: + cplt = plot_fcn([*args1, *args2], **kwargs, **plot_fcn_kwargs) + assert isinstance(cplt, ct.ControlPlot) + assert_legend(cplt, default_labels) + elif len(args1) == 1 and plot_fcn == ct.time_response_plot: + # Use TimeResponseList.plot() to generate combined response + cplt = argsc[0].plot(**kwargs, **plot_fcn_kwargs) + assert isinstance(cplt, ct.ControlPlot) + assert_legend(cplt, default_labels) + plt.close() + + # Generate plots sequentially, with updated labels + cplt1 = plot_fcn( + *args1, **kwargs, **plot_fcn_kwargs, label=expected_labels[0]) + assert isinstance(cplt1, ct.ControlPlot) + assert_legend(cplt1, None) + + cplt2 = plot_fcn( + *args2, **kwargs, **plot_fcn_kwargs, label=expected_labels[1]) + assert isinstance(cplt2, ct.ControlPlot) + assert_legend(cplt2, expected_labels) + plt.close() + + # Generate both plots at the same time, with updated labels + if len(args1) == 1 and plot_fcn != ct.time_response_plot: + cplt = plot_fcn( + [*args1, *args2], **kwargs, **plot_fcn_kwargs, + label=expected_labels) + assert isinstance(cplt, ct.ControlPlot) + assert_legend(cplt, expected_labels) + elif len(args1) == 1 and plot_fcn == ct.time_response_plot: + # Use TimeResponseList.plot() to generate combined response + cplt = argsc[0].plot( + **kwargs, **plot_fcn_kwargs, label=expected_labels) + assert isinstance(cplt, ct.ControlPlot) + assert_legend(cplt, expected_labels) + + @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): sys = ct.rss(2, 2, 2) diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 28ea0643e..d157070a8 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -394,20 +394,39 @@ def _get_visible_limits(ax): def test_gangof4_trace_labels(): P1 = ct.rss(2, 1, 1, name='P1') P2 = ct.rss(3, 1, 1, name='P2') - C = ct.rss(1, 1, 1, name='C') + C1 = ct.rss(1, 1, 1, name='C1') + C2 = ct.rss(1, 1, 1, name='C2') # Make sure default labels are as expected - cplt = ct.gangof4_response(P1, C).plot() - cplt = ct.gangof4_response(P2, C).plot() + cplt = ct.gangof4_response(P1, C1).plot() + cplt = ct.gangof4_response(P2, C2).plot() axs = ct.get_plot_axes(cplt) # legacy usage OK legend = axs[0, 1].get_legend().get_texts() - assert legend[0].get_text() == 'None' - assert legend[1].get_text() == 'None' + assert legend[0].get_text() == 'P=P1, C=C1' + assert legend[1].get_text() == 'P=P2, C=C2' + plt.close() + + # Suffix truncation + cplt = ct.gangof4_response(P1, C1).plot() + cplt = ct.gangof4_response(P2, C1).plot() + axs = ct.get_plot_axes(cplt) # legacy usage OK + legend = axs[0, 1].get_legend().get_texts() + assert legend[0].get_text() == 'P=P1' + assert legend[1].get_text() == 'P=P2' + plt.close() + + # Prefix turncation + cplt = ct.gangof4_response(P1, C1).plot() + cplt = ct.gangof4_response(P1, C2).plot() + axs = ct.get_plot_axes(cplt) # legacy usage OK + legend = axs[0, 1].get_legend().get_texts() + assert legend[0].get_text() == 'C=C1' + assert legend[1].get_text() == 'C=C2' plt.close() # Override labels - cplt = ct.gangof4_response(P1, C).plot(label='xxx, line1, yyy') - cplt = ct.gangof4_response(P2, C).plot(label='xxx, line2, yyy') + cplt = ct.gangof4_response(P1, C1).plot(label='xxx, line1, yyy') + cplt = ct.gangof4_response(P2, C2).plot(label='xxx, line2, yyy') axs = ct.get_plot_axes(cplt) # legacy usage OK legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'xxx, line1, yyy' diff --git a/control/timeplot.py b/control/timeplot.py index cb56aa9c4..b572f6770 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -139,6 +139,8 @@ def time_response_plot( axis or ``legend_loc`` or ``legend_map`` have been specified. time_label : str, optional Label to use for the time axis. + trace_labels : list of str, optional + Replace the default trace labels with the given labels. trace_props : array of dicts List of line properties to use when plotting combined outputs. The default values are set by config.defaults['timeplot.trace_props']. @@ -382,7 +384,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): # # To allow repeated calls to time_response_plot() to cycle through # colors, we store an offset in the figure object that we can - # retrieve at a later date, if needed. + # retrieve in a later call, if needed. # output_offset = fig._output_offset = getattr(fig, '_output_offset', 0) input_offset = fig._input_offset = getattr(fig, '_input_offset', 0) From 89cda3d0c22d87f43d23a062e2586cc43aeee717 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Tue, 16 Jul 2024 19:27:03 -0700 Subject: [PATCH 140/199] update title processing to be uniform across _plot functions --- control/ctrlplot.py | 9 ++- control/freqplot.py | 21 +++++- control/nichols.py | 2 + control/phaseplot.py | 9 ++- control/pzmap.py | 2 +- control/tests/ctrlplot_test.py | 120 ++++++++++++++++++++++++++++++++- control/timeplot.py | 18 +++-- control/timeresp.py | 3 + 8 files changed, 169 insertions(+), 15 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index dd640c647..0e53a359d 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -64,7 +64,9 @@ # sysnames = [response.sysname for response in data] # if title is None: # title = "Name plot for " + ", ".join(sysnames) -# _update_suptitle(fig, title, rcParams=rcParams) +# _update_suptitle(title, fig, rcParams=rcParams) +# else +# suptitle(title, fig, rcParams=rcParams) # # # Legacy processing of plot keyword # if plot is True: @@ -159,6 +161,9 @@ def __setitem__(self, item, val): def reshape(self, *args): return self.lines.reshape(*args) + def set_plot_title(self, title, frame='axes'): + suptitle(title, fig=self.figure, frame=frame) + # # User functions @@ -467,7 +472,7 @@ def _make_legend_labels(labels, ignore_common=False): return labels -def _update_suptitle(fig, title, rcParams=None, frame='axes'): +def _update_suptitle(title, fig=None, frame='axes', rcParams=None): if fig is not None and isinstance(title, str): # Get the current title, if it exists old_title = None if fig._suptitle is None else fig._suptitle._text diff --git a/control/freqplot.py b/control/freqplot.py index b7f3b5d99..fc2cf6d0f 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -142,6 +142,12 @@ def bode_plot( Other Parameters ---------------- + ax : array of Axes + The matplotlib Axes to draw the figure on. If not specified, the + Axes for the current figure are used or, if there is no current + figure with the correct number and shape of Axes, a new figure is + created. The shape of the array must match the shape of the + plotted data. grid : bool If True, plot grid lines on gain and phase plots. Default is set by `config.defaults['freqplot.grid']`. @@ -173,6 +179,8 @@ def bode_plot( rcParams : dict Override the default parameters used for generating plots. Default is set by config.default['freqplot.rcParams']. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). wrap_phase : bool or float If wrap_phase is `False` (default), then the phase will be unwrapped so that it is continuously increasing or decreasing. If wrap_phase is @@ -948,13 +956,16 @@ def gen_zero_centered_series(val_min, val_max, period): seen = set() sysnames = [response.sysname for response in data \ if not (response.sysname in seen or seen.add(response.sysname))] + if title is None: if data[0].title is None: title = "Bode plot for " + ", ".join(sysnames) else: + # Allow data to set the title (used by gangof4) title = data[0].title - - _update_suptitle(fig, title, rcParams=rcParams, frame=suptitle_frame) + _update_suptitle(title, fig, rcParams=rcParams, frame=suptitle_frame) + else: + suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) # # Create legends @@ -1603,6 +1614,8 @@ def nyquist_plot( start_marker_size : float, optional Start marker size (in display coordinates). Default value is 4 and can be set using config.defaults['nyquist.start_marker_size']. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). warn_nyquist : bool, optional If set to 'False', turn off warnings about frequencies above Nyquist. warn_encirclements : bool, optional @@ -1870,7 +1883,7 @@ def _parse_linestyle(style_name, allow_false=False): # Display the unit circle, to read gain crossover frequency if unit_circle: plt.plot(cos, sin, **config.defaults['nyquist.circle_style']) - + # Draw circles for given magnitudes of sensitivity if ms_circles is not None: for ms in ms_circles: @@ -2243,6 +2256,8 @@ def singular_values_plot( rcParams : dict Override the default parameters used for generating plots. Default is set up config.default['freqplot.rcParams']. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). See Also -------- diff --git a/control/nichols.py b/control/nichols.py index c7de052b9..75199a8b6 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -60,6 +60,8 @@ def nichols_plot( legend_loc : str, optional For plots with multiple lines, a legend will be included in the given location. Default is 'upper left'. Use False to supress. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords passed to `matplotlib` to specify line properties. diff --git a/control/phaseplot.py b/control/phaseplot.py index 1a7379d8f..488b27564 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -54,7 +54,8 @@ def phase_plane_plot( sys, pointdata=None, timedata=None, gridtype=None, gridspec=None, plot_streamlines=True, plot_vectorfield=False, plot_equilpoints=True, - plot_separatrices=True, ax=None, suppress_warnings=False, **kwargs + plot_separatrices=True, ax=None, suppress_warnings=False, title=None, + **kwargs ): """Plot phase plane diagram. @@ -135,6 +136,8 @@ def phase_plane_plot( in the dict as keywords to :func:`~control.phaseplot.separatrices`. suppress_warnings : bool, optional If set to `True`, suppress warning messages in generating trajectories. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). """ # Process arguments @@ -217,7 +220,9 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): # TODO: update to common code pattern if user_ax is None: with plt.rc_context(rcParams): - suptitle(f"Phase portrait for {sys.name}") + if title is None: + title = f"Phase portrait for {sys.name}" + suptitle(title) ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) diff --git a/control/pzmap.py b/control/pzmap.py index fcfc72f36..2e35716c8 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -249,7 +249,7 @@ def pole_zero_plot( marker_width : int, optional Set the line width of the markers used for poles and zeros. title : str, optional - Set the title of the plot. Defaults plot type and system name(s). + Set the title of the plot. Defaults to plot type and system name(s). xlim : list, optional Set the limits for the x axis. ylim : list, optional diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 69c45492f..f77ccfe91 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -128,7 +128,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): else: cplt3 = plot_fcn(*args, **kwargs, **meth_kwargs) assert cplt3.figure == cplt1.figure - + # Plot should have landed on top of previous plot, in different colors assert np.all(cplt3.axes == cplt1.axes) assert len(cplt3.lines[0]) == len(cplt1.lines[0]) @@ -255,6 +255,124 @@ def assert_legend(cplt, expected_texts): assert_legend(cplt, expected_labels) +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup') +def test_plot_title_processing(resp_fcn, plot_fcn): + # Create some systems to use + sys1 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[1]") + sys1c = ct.rss(4, 1, 1, strictly_proper=True, name="sys[1]_C") + sys2 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[2]") + + # Set up arguments + kwargs = meth_kwargs = plot_fcn_kwargs = {} + default_title = "sys[1], sys[2]" + expected_title = "sys1_, sys2_" + match resp_fcn, plot_fcn: + case ct.describing_function_response, _: + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + args1 = (sys1, F, amp) + args2 = (sys2, F, amp) + + case ct.gangof4_response, _: + args1 = (sys1, sys1c) + args2 = (sys2, sys1c) + default_title = "P=sys[1], C=sys[1]_C, P=sys[2], C=sys[1]_C" + + case ct.frequency_response, ct.nichols_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = {'plot_type': 'nichols'} + + case ct.root_locus_map, ct.root_locus_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = plot_fcn_kwargs = {'interactive': False} + + case (ct.forced_response | ct.input_output_response, _): + timepts = np.linspace(1, 10) + U = np.sin(timepts) + args1 = (resp_fcn(sys1, timepts, U), ) + args2 = (resp_fcn(sys2, timepts, U), ) + argsc = (resp_fcn([sys1, sys2], timepts, U), ) + + case (ct.impulse_response | ct.initial_response | ct.step_response, _): + args1 = (resp_fcn(sys1), ) + args2 = (resp_fcn(sys2), ) + argsc = (resp_fcn([sys1, sys2]), ) + + case _, _: + args1 = (sys1, ) + args2 = (sys2, ) + + # Store the expected title prefix + match resp_fcn, plot_fcn: + case _, ct.bode_plot: + title_prefix = "Bode plot for " + case _, ct.nichols_plot: + title_prefix = "Nichols plot for " + case _, ct.singular_values_plot: + title_prefix = "Singular values for " + case _, ct.gangof4_plot: + title_prefix = "Gang of Four for " + case _, ct.describing_function_plot: + title_prefix = "Nyquist plot for " + case _, ct.phase_plane_plot: + title_prefix = "Phase portrait for " + case _, ct.pole_zero_plot: + title_prefix = "Pole/zero plot for " + case _, ct.nyquist_plot: + title_prefix = "Nyquist plot for " + case _, ct.root_locus_plot: + title_prefix = "Root locus plot for " + case ct.initial_response, _: + title_prefix = "Initial response for " + case ct.step_response, _: + title_prefix = "Step response for " + case ct.impulse_response, _: + title_prefix = "Impulse response for " + case ct.forced_response, _: + title_prefix = "Forced response for " + case ct.input_output_response, _: + title_prefix = "Input/output response for " + case _: + raise RuntimeError(f"didn't recognize {resp_fnc}, {plot_fnc}") + + # Generate the first plot, with default labels + cplt1 = plot_fcn(*args1, **kwargs, **plot_fcn_kwargs) + assert cplt1.figure._suptitle._text.startswith(title_prefix) + + # Skip functions not intended for sequential calling + if plot_fcn not in nolabel_plot_fcns: + # Generate second plot with default labels + cplt2 = plot_fcn(*args2, **kwargs, **plot_fcn_kwargs) + assert cplt1.figure._suptitle._text == title_prefix + default_title + plt.close() + + # Generate both plots at the same time + if len(args1) == 1 and plot_fcn != ct.time_response_plot: + cplt = plot_fcn([*args1, *args2], **kwargs, **plot_fcn_kwargs) + assert cplt.figure._suptitle._text == title_prefix + default_title + elif len(args1) == 1 and plot_fcn == ct.time_response_plot: + # Use TimeResponseList.plot() to generate combined response + cplt = argsc[0].plot(**kwargs, **plot_fcn_kwargs) + assert cplt.figure._suptitle._text == title_prefix + default_title + plt.close() + + # Generate plots sequentially, with updated titles + cplt1 = plot_fcn( + *args1, **kwargs, **plot_fcn_kwargs, title="My first title") + cplt2 = plot_fcn( + *args2, **kwargs, **plot_fcn_kwargs, title="My new title") + assert cplt2.figure._suptitle._text == "My new title" + plt.close() + + # Update using set_plot_title + cplt2.set_plot_title("Another title") + assert cplt2.figure._suptitle._text == "Another title" + plt.close() + + @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): sys = ct.rss(2, 2, 2) diff --git a/control/timeplot.py b/control/timeplot.py index b572f6770..dc7f4274c 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -15,8 +15,8 @@ import numpy as np from . import config -from .ctrlplot import ControlPlot, _ctrlplot_rcParams, _make_legend_labels, \ - _update_suptitle +from .ctrlplot import ControlPlot, suptitle, _ctrlplot_rcParams, \ + _make_legend_labels, _update_suptitle __all__ = ['time_response_plot', 'combine_time_responses'] @@ -139,6 +139,8 @@ def time_response_plot( axis or ``legend_loc`` or ``legend_map`` have been specified. time_label : str, optional Label to use for the time axis. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). trace_labels : list of str, optional Replace the default trace labels with the given labels. trace_props : array of dicts @@ -196,9 +198,6 @@ def time_response_plot( 'timeplot', 'trace_props', kwargs, _timeplot_defaults, pop=True) tprop_len = len(trace_props) - # Set the title for the data - title = data.title if title == None else title - # Determine whether or not to plot the input data (and how) if plot_inputs is None: plot_inputs = data.plot_inputs @@ -658,7 +657,11 @@ def _make_line_label(signal_index, signal_labels, trace_index): # list of systems (e.g., "Step response for sys[1], sys[2]"). # - _update_suptitle(fig, title, rcParams=rcParams) + if title is None: + title = data.title if title == None else title + _update_suptitle(title, fig, rcParams=rcParams) + else: + suptitle(title, fig, rcParams=rcParams) return ControlPlot(out, ax_array, fig, legend=legend_map) @@ -676,6 +679,9 @@ def combine_time_responses(response_list, trace_labels=None, title=None): trace_labels : list of str, optional List of labels for each trace. If not specified, trace names are taken from the input data or set to None. + title : str, optional + Set the title to use when plotting. Defaults to plot type and + system name(s). Returns ------- diff --git a/control/timeresp.py b/control/timeresp.py index d1064eaaf..f3b907620 100644 --- a/control/timeresp.py +++ b/control/timeresp.py @@ -192,6 +192,9 @@ class TimeResponseData: response. If ntraces is 0 (default) then the data represents a single trace with the trace index surpressed in the data. + title : str, optional + Set the title to use when plotting. + trace_labels : array of string, optional Labels to use for traces (set to sysname it ntraces is 0) From 3a8fa7a23c1795cffe7a18715a493970b377721e Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Wed, 17 Jul 2024 22:27:18 -0700 Subject: [PATCH 141/199] update plot title handling and make uniform --- control/ctrlplot.py | 97 +++++++++++++++++++-------------- control/freqplot.py | 16 ++++-- control/nichols.py | 4 +- control/phaseplot.py | 4 +- control/pzmap.py | 9 +-- control/tests/freqplot_test.py | 31 ++++++----- control/tests/kwargs_test.py | 6 +- control/tests/nyquist_test.py | 85 +++++++++++++++-------------- control/tests/phaseplot_test.py | 9 ++- control/timeplot.py | 8 +-- doc/control.rst | 1 - 11 files changed, 152 insertions(+), 118 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 0e53a359d..c8b580e7b 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -64,9 +64,9 @@ # sysnames = [response.sysname for response in data] # if title is None: # title = "Name plot for " + ", ".join(sysnames) -# _update_suptitle(title, fig, rcParams=rcParams) -# else -# suptitle(title, fig, rcParams=rcParams) +# _update_plot_title(title, fig, rcParams=rcParams) +# else: +# _update_plot_title(title, fig, rcParams=rcParams, use_existing=False) # # # Legacy processing of plot keyword # if plot is True: @@ -162,7 +162,28 @@ def reshape(self, *args): return self.lines.reshape(*args) def set_plot_title(self, title, frame='axes'): - suptitle(title, fig=self.figure, frame=frame) + """Set the title for a control plot. + + This is a wrapper for the matplotlib `suptitle` function, but by + setting ``frame`` to 'axes' (default) then the title is centered on + the midpoint of the axes in the figure, rather than the center of + the figure. This usually looks better (particularly with + multi-panel plots), though it takes longer to render. + + Parameters + ---------- + title : str + Title text. + fig : Figure, optional + Matplotlib figure. Defaults to current figure. + frame : str, optional + Coordinate frame to use for centering: 'axes' (default) or 'figure'. + **kwargs : :func:`matplotlib.pyplot.suptitle` keywords, optional + Additional keywords (passed to matplotlib). + + """ + _update_plot_title( + title, fig=self.figure, frame=frame, use_existing=False) # @@ -177,42 +198,13 @@ def suptitle( title, fig=None, frame='axes', **kwargs): """Add a centered title to a figure. - This is a wrapper for the matplotlib `suptitle` function, but by - setting ``frame`` to 'axes' (default) then the title is centered on the - midpoint of the axes in the figure, rather than the center of the - figure. This usually looks better (particularly with multi-panel - plots), though it takes longer to render. - - Parameters - ---------- - title : str - Title text. - fig : Figure, optional - Matplotlib figure. Defaults to current figure. - frame : str, optional - Coordinate frame to use for centering: 'axes' (default) or 'figure'. - **kwargs : :func:`matplotlib.pyplot.suptitle` keywords, optional - Additional keywords (passed to matplotlib). + This function is deprecated. Use :func:`ControlPlot.set_plot_title`. """ - rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) - - if fig is None: - fig = plt.gcf() - - if frame == 'figure': - with plt.rc_context(rcParams): - fig.suptitle(title, **kwargs) - - elif frame == 'axes': - with plt.rc_context(rcParams): - fig.suptitle(title, **kwargs) # Place title in center - plt.tight_layout() # Put everything into place - xc, _ = _find_axes_center(fig, fig.get_axes()) - fig.suptitle(title, x=xc, **kwargs) # Redraw title, centered - - else: - raise ValueError(f"unknown frame '{frame}'") + warnings.warn( + "suptitle is deprecated; use cplt.set_plot_title", FutureWarning) + _update_plot_title( + title, fig=fig, frame=frame, use_existing=False, **kwargs) # Create vectorized function to find axes from lines @@ -472,8 +464,18 @@ def _make_legend_labels(labels, ignore_common=False): return labels -def _update_suptitle(title, fig=None, frame='axes', rcParams=None): - if fig is not None and isinstance(title, str): +def _update_plot_title( + title, fig=None, frame='axes', use_existing=True, **kwargs): + if title is False: + return + if fig is None: + fig = plt.gcf() + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) + if rcParams is None: + rcParams = _ctrlplot_rcParams + print(f"{rcParams['figure.titlesize']=}") + + if use_existing: # Get the current title, if it exists old_title = None if fig._suptitle is None else fig._suptitle._text @@ -492,8 +494,19 @@ def _update_suptitle(title, fig=None, frame='axes', rcParams=None): separator = ',' if len(common_prefix) > 0 else ';' title = old_title + separator + title[common_len:] - # Add the title - suptitle(title, fig=fig, rcParams=rcParams, frame=frame) + if frame == 'figure': + with plt.rc_context(rcParams): + fig.suptitle(title, **kwargs) + + elif frame == 'axes': + with plt.rc_context(rcParams): + fig.suptitle(title, **kwargs) # Place title in center + plt.tight_layout() # Put everything into place + xc, _ = _find_axes_center(fig, fig.get_axes()) + fig.suptitle(title, x=xc, **kwargs) # Redraw title, centered + + else: + raise ValueError(f"unknown frame '{frame}'") def _find_axes_center(fig, axs): diff --git a/control/freqplot.py b/control/freqplot.py index fc2cf6d0f..650265531 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -21,7 +21,7 @@ from .bdalg import feedback from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _ctrlplot_rcParams, \ _find_axes_center, _get_line_labels, _make_legend_labels, \ - _process_ax_keyword, _process_line_labels, _update_suptitle, suptitle + _process_ax_keyword, _process_line_labels, _update_plot_title from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData @@ -963,9 +963,11 @@ def gen_zero_centered_series(val_min, val_max, period): else: # Allow data to set the title (used by gangof4) title = data[0].title - _update_suptitle(title, fig, rcParams=rcParams, frame=suptitle_frame) + _update_plot_title(title, fig, rcParams=rcParams, frame=suptitle_frame) else: - suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) + _update_plot_title( + title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + use_existing=False) # # Create legends @@ -1956,7 +1958,9 @@ def _parse_linestyle(style_name, allow_false=False): # Add the title if title is None: title = "Nyquist plot for " + ", ".join(labels) - suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) + _update_plot_title( + title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + use_existing=False) # Legacy return pocessing if plot is True or return_contour is not None: @@ -2416,7 +2420,9 @@ def singular_values_plot( # Add the title if title is None: title = "Singular values for " + ", ".join(labels) - suptitle(title, fig=fig, rcParams=rcParams, frame=suptitle_frame) + _update_plot_title( + title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + use_existing=False) # Legacy return processing if plot is not None: diff --git a/control/nichols.py b/control/nichols.py index 75199a8b6..457436518 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -19,7 +19,7 @@ from . import config from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ - _process_line_labels, suptitle + _process_line_labels, _update_plot_title from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults from .lti import frequency_response @@ -152,7 +152,7 @@ def nichols_plot( # Add the title if title is None: title = "Nichols plot for " + ", ".join(labels) - suptitle(title, fig=fig, rcParams=rcParams) + _update_plot_title(title, fig=fig, rcParams=rcParams, use_existing=False) return ControlPlot(out, ax_nichols, fig, legend=legend) diff --git a/control/phaseplot.py b/control/phaseplot.py index 488b27564..bf99be8cc 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -37,7 +37,7 @@ from . import config from .ctrlplot import ControlPlot, _add_arrows_to_line2D, \ - _ctrlplot_rcParams, _process_ax_keyword, suptitle + _ctrlplot_rcParams, _process_ax_keyword, _update_plot_title from .exception import ControlNotImplemented from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response @@ -222,7 +222,7 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): with plt.rc_context(rcParams): if title is None: title = f"Phase portrait for {sys.name}" - suptitle(title) + _update_plot_title(title, use_existing=False) ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) diff --git a/control/pzmap.py b/control/pzmap.py index 2e35716c8..1c86f1323 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -18,8 +18,8 @@ from numpy import cos, exp, imag, linspace, real, sin, sqrt from . import config -from .ctrlplot import ControlPlot, suptitle, _get_line_labels, \ - _process_ax_keyword, _process_line_labels +from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ + _process_line_labels, _update_plot_title from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime @@ -461,8 +461,9 @@ def pole_zero_plot( title = ("Root locus plot for " if rlocus_plot else "Pole/zero plot for ") + ", ".join(labels) if user_ax is None: - with plt.rc_context(rcParams): - fig.suptitle(title) + _update_plot_title( + title, fig, rcParams=rcParams, frame='figure', + use_existing=False) # Add dispather to handle choosing a point on the diagram if interactive: diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index d157070a8..509dd555b 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -126,12 +126,12 @@ def test_response_plots( assert len(ax.get_lines()) > 1 # Update the title so we can see what is going on - ct.suptitle( + cplt.set_plot_title( cplt.figure._suptitle._text + f" [{sys.noutputs}x{sys.ninputs}, pm={pltmag}, pp={pltphs}," f" sm={shrmag}, sp={shrphs}, sf={shrfrq}]", # TODO: ", " # f"oo={ovlout}, oi={ovlinp}, ss={secsys}]", # TODO: add back - frame='figure', fontsize='small') + frame='figure') # Get rid of the figure to free up memory if clear: @@ -552,19 +552,21 @@ def test_mixed_systypes(): resp_tf = ct.frequency_response(sys_tf) resp_ss = ct.frequency_response(sys_ss) plt.figure() - ct.bode_plot([resp_tf, resp_ss, sys_frd1, sys_frd2], plot_phase=False) - ct.suptitle("bode_plot([resp_tf, resp_ss, sys_frd1, sys_frd2])") + cplt = ct.bode_plot( + [resp_tf, resp_ss, sys_frd1, sys_frd2], plot_phase=False) + cplt.set_plot_title("bode_plot([resp_tf, resp_ss, sys_frd1, sys_frd2])") # Same thing, but using frequency response plt.figure() resp = ct.frequency_response([sys_tf, sys_ss, sys_frd1, sys_frd2]) - resp.plot(plot_phase=False) - ct.suptitle("frequency_response([sys_tf, sys_ss, sys_frd1, sys_frd2])") + cplt = resp.plot(plot_phase=False) + cplt.set_plot_title( + "frequency_response([sys_tf, sys_ss, sys_frd1, sys_frd2])") # Same thing, but using bode_plot plt.figure() - resp = ct.bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2], plot_phase=False) - ct.suptitle("bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2])") + cplt = ct.bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2], plot_phase=False) + cplt.set_plot_title("bode_plot([sys_tf, sys_ss, sys_frd1, sys_frd2])") def test_suptitle(): @@ -575,24 +577,25 @@ def test_suptitle(): assert plt.gcf()._suptitle._x != 0.5 # Try changing the the title - ct.suptitle("New title") + cplt.set_plot_title("New title") assert plt.gcf()._suptitle._text == "New title" # Change the location of the title - ct.suptitle("New title", frame='figure') + cplt.set_plot_title("New title", frame='figure') assert plt.gcf()._suptitle._x == 0.5 # Change the location of the title back - ct.suptitle("New title", frame='axes') + cplt.set_plot_title("New title", frame='axes') assert plt.gcf()._suptitle._x != 0.5 # Bad frame with pytest.raises(ValueError, match="unknown"): - ct.suptitle("New title", frame='nowhere') + cplt.set_plot_title("New title", frame='nowhere') # Bad keyword - with pytest.raises(AttributeError, match="unexpected keyword|no property"): - ct.suptitle("New title", unknown=None) + with pytest.raises( + TypeError, match="unexpected keyword|no property"): + cplt.set_plot_title("New title", unknown=None) @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) diff --git a/control/tests/kwargs_test.py b/control/tests/kwargs_test.py index 91f4ea599..020910e73 100644 --- a/control/tests/kwargs_test.py +++ b/control/tests/kwargs_test.py @@ -55,8 +55,9 @@ def test_kwarg_search(module, prefix): # Get the signature for the function sig = inspect.signature(obj) - # Skip anything that is inherited - if inspect.isclass(module) and obj.__name__ not in module.__dict__: + # Skip anything that is inherited or hidden + if inspect.isclass(module) and obj.__name__ not in module.__dict__ \ + or obj.__name__.startswith('_'): continue # See if there is a variable keyword argument @@ -298,6 +299,7 @@ def test_response_plot_kwargs(data_fcn, plot_fcn, mimo): 'optimal.create_mpc_iosystem': optimal_test.test_mpc_iosystem_rename, 'optimal.solve_ocp': optimal_test.test_ocp_argument_errors, 'optimal.solve_oep': optimal_test.test_oep_argument_errors, + 'ControlPlot.set_plot_title': freqplot_test.test_suptitle, 'FrequencyResponseData.__init__': frd_test.TestFRD.test_unrecognized_keyword, 'FrequencyResponseData.plot': test_response_plot_kwargs, diff --git a/control/tests/nyquist_test.py b/control/tests/nyquist_test.py index 39f080cae..823d65732 100644 --- a/control/tests/nyquist_test.py +++ b/control/tests/nyquist_test.py @@ -161,38 +161,40 @@ def test_nyquist_fbs_examples(): """Run through various examples from FBS2e to compare plots""" plt.figure() - ct.suptitle("Figure 10.4: L(s) = 1.4 e^{-s}/(s+1)^2") sys = ct.tf([1.4], [1, 2, 1]) * ct.tf(*ct.pade(1, 4)) response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title("Figure 10.4: L(s) = 1.4 e^{-s}/(s+1)^2") assert _Z(sys) == response.count + _P(sys) plt.figure() - ct.suptitle("Figure 10.4: L(s) = 1/(s + a)^2 with a = 0.6") sys = 1/(s + 0.6)**3 response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title("Figure 10.4: L(s) = 1/(s + a)^2 with a = 0.6") assert _Z(sys) == response.count + _P(sys) plt.figure() - ct.suptitle("Figure 10.6: L(s) = 1/(s (s+1)^2) - pole at the origin") sys = 1/(s * (s+1)**2) response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title( + "Figure 10.6: L(s) = 1/(s (s+1)^2) - pole at the origin") assert _Z(sys) == response.count + _P(sys) plt.figure() - ct.suptitle("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2)") sys = 3 * (s+6)**2 / (s * (s+1)**2) response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2)") assert _Z(sys) == response.count + _P(sys) plt.figure() - ct.suptitle("Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2) [zoom]") with pytest.warns(UserWarning, match="encirclements does not match"): response = ct.nyquist_response(sys, omega_limits=[1.5, 1e3]) - response.plot() + cplt = response.plot() + cplt.set_plot_title( + "Figure 10.10: L(s) = 3 (s+6)^2 / (s (s+1)^2) [zoom]") # Frequency limits for zoom give incorrect encirclement count # assert _Z(sys) == response.count + _P(sys) assert response.count == -1 @@ -207,9 +209,9 @@ def test_nyquist_fbs_examples(): def test_nyquist_arrows(arrows): sys = ct.tf([1.4], [1, 2, 1]) * ct.tf(*ct.pade(1, 4)) plt.figure(); - ct.suptitle("L(s) = 1.4 e^{-s}/(s+1)^2 / arrows = %s" % arrows) response = ct.nyquist_response(sys) - response.plot(arrows=arrows) + cplt = response.plot(arrows=arrows) + cplt.set_plot_title("L(s) = 1.4 e^{-s}/(s+1)^2 / arrows = %s" % arrows) assert _Z(sys) == response.count + _P(sys) @@ -236,14 +238,14 @@ def test_nyquist_encirclements(): plt.figure(); response = ct.nyquist_response(sys) - response.plot() - ct.suptitle("Stable system; encirclements = %d" % response.count) + cplt = response.plot() + cplt.set_plot_title("Stable system; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) plt.figure(); response = ct.nyquist_response(sys * 3) - response.plot() - ct.suptitle("Unstable system; encirclements = %d" %response.count) + cplt = response.plot() + cplt.set_plot_title("Unstable system; encirclements = %d" %response.count) assert _Z(sys * 3) == response.count + _P(sys * 3) # System with pole at the origin @@ -251,8 +253,9 @@ def test_nyquist_encirclements(): plt.figure(); response = ct.nyquist_response(sys) - response.plot() - ct.suptitle("Pole at the origin; encirclements = %d" %response.count) + cplt = response.plot() + cplt.set_plot_title( + "Pole at the origin; encirclements = %d" %response.count) assert _Z(sys) == response.count + _P(sys) # Non-integer number of encirclements @@ -265,8 +268,9 @@ def test_nyquist_encirclements(): # strip out matrix warnings response = ct.nyquist_response( sys, omega_limits=[0.5, 1e3], encirclement_threshold=0.2) - response.plot() - ct.suptitle("Non-integer number of encirclements [%g]" %response.count) + cplt = response.plot() + cplt.set_plot_title( + "Non-integer number of encirclements [%g]" %response.count) @pytest.fixture @@ -280,8 +284,8 @@ def indentsys(): def test_nyquist_indent_default(indentsys): plt.figure(); response = ct.nyquist_response(indentsys) - response.plot() - ct.suptitle("Pole at origin; indent_radius=default") + cplt = response.plot() + cplt.set_plot_title("Pole at origin; indent_radius=default") assert _Z(indentsys) == response.count + _P(indentsys) @@ -307,8 +311,9 @@ def test_nyquist_indent_do(indentsys): response = ct.nyquist_response( indentsys, indent_radius=0.01, return_contour=True) count, contour = response - response.plot() - ct.suptitle("Pole at origin; indent_radius=0.01; encirclements = %d" % count) + cplt = response.plot() + cplt.set_plot_title( + "Pole at origin; indent_radius=0.01; encirclements = %d" % count) assert _Z(indentsys) == count + _P(indentsys) # indent radius is smaller than the start of the default omega vector # check that a quarter circle around the pole at origin has been added. @@ -328,8 +333,8 @@ def test_nyquist_indent_do(indentsys): def test_nyquist_indent_left(indentsys): plt.figure(); response = ct.nyquist_response(indentsys, indent_direction='left') - response.plot() - ct.suptitle( + cplt = response.plot() + cplt.set_plot_title( "Pole at origin; indent_direction='left'; encirclements = %d" % response.count) assert _Z(indentsys) == response.count + _P(indentsys, indent='left') @@ -342,15 +347,15 @@ def test_nyquist_indent_im(): # Imaginary poles with standard indentation plt.figure(); response = ct.nyquist_response(sys) - response.plot() - ct.suptitle("Imaginary poles; encirclements = %d" % response.count) + cplt = response.plot() + cplt.set_plot_title("Imaginary poles; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) # Imaginary poles with indentation to the left plt.figure(); response = ct.nyquist_response(sys, indent_direction='left') - response.plot(label_freq=300) - ct.suptitle( + cplt = response.plot(label_freq=300) + cplt.set_plot_title( "Imaginary poles; indent_direction='left'; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys, indent='left') @@ -360,8 +365,8 @@ def test_nyquist_indent_im(): with pytest.warns(UserWarning, match="encirclements does not match"): response = ct.nyquist_response( sys, np.linspace(0, 1e3, 1000), indent_direction='none') - response.plot() - ct.suptitle( + cplt = response.plot() + cplt.set_plot_title( "Imaginary poles; indent_direction='none'; encirclements = %d" % response.count) assert _Z(sys) == response.count + _P(sys) @@ -556,19 +561,19 @@ def test_nyquist_frd(): print("Unusual Nyquist plot") sys = ct.tf([1], [1, 3, 2]) * ct.tf([1], [1, 0, 1]) plt.figure() - ct.suptitle("Poles: %s" % - np.array2string(sys.poles(), precision=2, separator=',')) response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title("Poles: %s" % + np.array2string(sys.poles(), precision=2, separator=',')) assert _Z(sys) == response.count + _P(sys) print("Discrete time systems") sys = ct.c2d(sys, 0.01) plt.figure() - ct.suptitle("Discrete-time; poles: %s" % - np.array2string(sys.poles(), precision=2, separator=',')) response = ct.nyquist_response(sys) - response.plot() + cplt = response.plot() + cplt.set_plot_title("Discrete-time; poles: %s" % + np.array2string(sys.poles(), precision=2, separator=',')) print("Frequency response data (FRD) systems") sys = ct.tf( @@ -577,5 +582,5 @@ def test_nyquist_frd(): sys1 = ct.frd(sys, np.logspace(-1, 1, 15), name='frd1') sys2 = ct.frd(sys, np.logspace(-2, 2, 20), name='frd2') plt.figure() - ct.nyquist_plot([sys, sys1, sys2]) - ct.suptitle("Mixed FRD, tf data") + cplt = ct.nyquist_plot([sys, sys1, sys2]) + cplt.set_plot_title("Mixed FRD, tf data") diff --git a/control/tests/phaseplot_test.py b/control/tests/phaseplot_test.py index 18e06716f..5e7a31651 100644 --- a/control/tests/phaseplot_test.py +++ b/control/tests/phaseplot_test.py @@ -10,15 +10,16 @@ """ import warnings +from math import pi import matplotlib.pyplot as plt import numpy as np import pytest -from math import pi import control as ct import control.phaseplot as pp from control import phase_plot +from control.tests.conftest import mplcleanup # Legacy tests @@ -116,6 +117,7 @@ def oscillator_ode(self, x, t, m=1., b=1, k=1, extra=None): [ct.phaseplot.separatrices, [5], {'params': {}, 'gridspec': [5, 5]}], [ct.phaseplot.separatrices, [5], {'color': ('r', 'g')}], ]) +@pytest.mark.usefixtures('mplcleanup') def test_helper_functions(func, args, kwargs): # Test with system sys = ct.nlsys( @@ -128,6 +130,7 @@ def test_helper_functions(func, args, kwargs): out = func(rhsfcn, [-1, 1, -1, 1], *args, **kwargs) +@pytest.mark.usefixtures('mplcleanup') def test_system_types(): # Sample dynamical systems - inverted pendulum def invpend_ode(t, x, m=0, l=0, b=0, g=0): @@ -135,13 +138,14 @@ def invpend_ode(t, x, m=0, l=0, b=0, g=0): # Use callable form, with parameters (if not correct, will get /0 error) ct.phase_plane_plot( - invpend_ode, [-5, 5, 2, 2], params={'args': (1, 1, 0.2, 1)}) + invpend_ode, [-5, 5, -2, 2], params={'args': (1, 1, 0.2, 1)}) # Linear I/O system ct.phase_plane_plot( ct.ss([[0, 1], [-1, -1]], [[0], [1]], [[1, 0]], 0)) +@pytest.mark.usefixtures('mplcleanup') def test_phaseplane_errors(): with pytest.raises(ValueError, match="invalid grid specification"): ct.phase_plane_plot(ct.rss(2, 1, 1), gridspec='bad') @@ -176,6 +180,7 @@ def invpend_ode(t, x, m=0, l=0, b=0, g=0): plot_separatrices=False, suppress_warnings=True) +@pytest.mark.usefixtures('mplcleanup') def test_basic_phase_plots(savefigs=False): sys = ct.nlsys( lambda t, x, u, params: np.array([[0, 1], [-1, -1]]) @ x, diff --git a/control/timeplot.py b/control/timeplot.py index dc7f4274c..ce4134e94 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -15,8 +15,8 @@ import numpy as np from . import config -from .ctrlplot import ControlPlot, suptitle, _ctrlplot_rcParams, \ - _make_legend_labels, _update_suptitle +from .ctrlplot import ControlPlot, _ctrlplot_rcParams, _make_legend_labels,\ + _update_plot_title __all__ = ['time_response_plot', 'combine_time_responses'] @@ -659,9 +659,9 @@ def _make_line_label(signal_index, signal_labels, trace_index): if title is None: title = data.title if title == None else title - _update_suptitle(title, fig, rcParams=rcParams) + _update_plot_title(title, fig, rcParams=rcParams) else: - suptitle(title, fig, rcParams=rcParams) + _update_plot_title(title, fig, rcParams=rcParams, use_existing=False) return ControlPlot(out, ax_array, fig, legend=legend_map) diff --git a/doc/control.rst b/doc/control.rst index 2efa23809..1544f93d0 100644 --- a/doc/control.rst +++ b/doc/control.rst @@ -51,7 +51,6 @@ Frequency domain plotting gangof4_plot nichols_plot nichols_grid - suptitle Note: For plotting commands that create multiple axes on the same plot, the individual axes can be retrieved using the axes label (retrieved using the From 8abb6189f0eeaaa7478f6f39bc80bec04ad3b8cd Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 19 Jul 2024 17:27:28 -0700 Subject: [PATCH 142/199] turn off title update if ax is given --- control/ctrlplot.py | 9 +++--- control/freqplot.py | 29 ++++++++++-------- control/nichols.py | 8 +++-- control/phaseplot.py | 13 ++++---- control/tests/ctrlplot_test.py | 56 ++++++++++++++++++++++++++++++++-- control/timeplot.py | 5 +-- 6 files changed, 88 insertions(+), 32 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index c8b580e7b..3da3447f9 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -60,12 +60,12 @@ # legend_array[i, j] = ax.legend( # lines, labels, loc=legend_map[i, j]) # -# # Update the plot title +# # Update the plot title (only if ax was not given) # sysnames = [response.sysname for response in data] -# if title is None: +# if ax == None and title is None: # title = "Name plot for " + ", ".join(sysnames) # _update_plot_title(title, fig, rcParams=rcParams) -# else: +# elif ax == None: # _update_plot_title(title, fig, rcParams=rcParams, use_existing=False) # # # Legacy processing of plot keyword @@ -362,8 +362,9 @@ def _process_ax_keyword( text.set_visible(False) # turn off the text del text # get rid of it completely else: + axs = np.atleast_1d(axs) try: - axs = np.asarray(axs).reshape(shape) + axs = axs.reshape(shape) except ValueError: raise ValueError( "specified axes are not the right shape; " diff --git a/control/freqplot.py b/control/freqplot.py index 650265531..038ea877c 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -957,14 +957,14 @@ def gen_zero_centered_series(val_min, val_max, period): sysnames = [response.sysname for response in data \ if not (response.sysname in seen or seen.add(response.sysname))] - if title is None: + if ax is None and title is None: if data[0].title is None: title = "Bode plot for " + ", ".join(sysnames) else: # Allow data to set the title (used by gangof4) title = data[0].title _update_plot_title(title, fig, rcParams=rcParams, frame=suptitle_frame) - else: + elif ax is None: _update_plot_title( title, fig=fig, rcParams=rcParams, frame=suptitle_frame, use_existing=False) @@ -1679,6 +1679,7 @@ def nyquist_plot( arrow_size = config._get_param( 'nyquist', 'arrow_size', kwargs, _nyquist_defaults, pop=True) arrow_style = config._get_param('nyquist', 'arrow_style', kwargs, None) + ax_user = ax max_curve_magnitude = config._get_param( 'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True) max_curve_offset = config._get_param( @@ -1773,7 +1774,7 @@ def _parse_linestyle(style_name, allow_false=False): return (counts, contours) if return_contour else counts fig, ax = _process_ax_keyword( - ax, shape=(1, 1), squeeze=True, rcParams=rcParams) + ax_user, shape=(1, 1), squeeze=True, rcParams=rcParams) # Create a list of lines for the output out = np.empty(len(nyquist_responses), dtype=object) @@ -1956,11 +1957,12 @@ def _parse_linestyle(style_name, allow_false=False): legend=None # Add the title - if title is None: - title = "Nyquist plot for " + ", ".join(labels) - _update_plot_title( - title, fig=fig, rcParams=rcParams, frame=suptitle_frame, - use_existing=False) + if ax_user is None: + if title is None: + title = "Nyquist plot for " + ", ".join(labels) + _update_plot_title( + title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + use_existing=False) # Legacy return pocessing if plot is True or return_contour is not None: @@ -2418,11 +2420,12 @@ def singular_values_plot( legend = None # Add the title - if title is None: - title = "Singular values for " + ", ".join(labels) - _update_plot_title( - title, fig=fig, rcParams=rcParams, frame=suptitle_frame, - use_existing=False) + if ax is None: + if title is None: + title = "Singular values for " + ", ".join(labels) + _update_plot_title( + title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + use_existing=False) # Legacy return processing if plot is not None: diff --git a/control/nichols.py b/control/nichols.py index 457436518..d2ae0cf8c 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -150,9 +150,11 @@ def nichols_plot( legend = None # Add the title - if title is None: - title = "Nichols plot for " + ", ".join(labels) - _update_plot_title(title, fig=fig, rcParams=rcParams, use_existing=False) + if ax is None: + if title is None: + title = "Nichols plot for " + ", ".join(labels) + _update_plot_title( + title, fig=fig, rcParams=rcParams, use_existing=False) return ControlPlot(out, ax_nichols, fig, legend=legend) diff --git a/control/phaseplot.py b/control/phaseplot.py index bf99be8cc..b25c1ce53 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -219,14 +219,13 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): # TODO: update to common code pattern if user_ax is None: - with plt.rc_context(rcParams): - if title is None: - title = f"Phase portrait for {sys.name}" - _update_plot_title(title, use_existing=False) - ax.set_xlabel(sys.state_labels[0]) - ax.set_ylabel(sys.state_labels[1]) + if title is None: + title = f"Phase portrait for {sys.name}" + _update_plot_title(title, use_existing=False) + ax.set_xlabel(sys.state_labels[0]) + ax.set_ylabel(sys.state_labels[1]) + plt.tight_layout() - plt.tight_layout() return ControlPlot(out, ax, fig) diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index f77ccfe91..84f10bea0 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -126,7 +126,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): if resp_fcn is not None: cplt3 = resp.plot(**kwargs, **meth_kwargs, ax=cplt1.axes) else: - cplt3 = plot_fcn(*args, **kwargs, **meth_kwargs) + cplt3 = plot_fcn(*args, **kwargs, **meth_kwargs, ax=cplt1.axes) assert cplt3.figure == cplt1.figure # Plot should have landed on top of previous plot, in different colors @@ -136,6 +136,51 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): assert get_line_color(cplt3) != get_line_color(cplt1) assert get_line_color(cplt3) != get_line_color(cplt2) + # + # Plot on a user-contructed figure + # + + # Store modified properties from previous figure + cplt_titlesize = cplt3.figure._suptitle.get_fontsize() + cplt_labelsize = \ + cplt3.axes.reshape(-1)[0].get_yticklabels()[0].get_fontsize() + + # Set up some axes with a known title + fig, axs = plt.subplots(2, 3) + title = "User-constructed figure" + plt.suptitle(title) + titlesize = fig._suptitle.get_fontsize() + assert titlesize != cplt_titlesize + labelsize = axs[0, 0].get_yticklabels()[0].get_fontsize() + assert labelsize != cplt_labelsize + + # Figure out what to pass as the ax keyword + match resp_fcn, plot_fcn: + case _, ct.bode_plot: + ax = [axs[0, 1], axs[1, 1]] + + case ct.gangof4_response, _: + ax = [axs[0, 1], axs[0, 2], axs[1, 1], axs[1, 2]] + + case (ct.forced_response | ct.input_output_response, _): + ax = [axs[0, 1], axs[1, 1]] + + case _, _: + ax = [axs[0, 1]] + + # Call the plotting function, passing the axes + if resp_fcn is not None: + resp = resp_fcn(*args, **kwargs) + cplt4 = resp.plot(**kwargs, **meth_kwargs, ax=ax) + else: + # No response function available; just plot the data + cplt4 = plot_fcn(*args, **kwargs, **meth_kwargs, ax=ax) + + # Check to make sure original settings did not change + assert fig._suptitle.get_text() == title + assert fig._suptitle.get_fontsize() == titlesize + assert ax[0].get_yticklabels()[0].get_fontsize() == labelsize + @pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) @pytest.mark.usefixtures('mplcleanup') @@ -338,13 +383,13 @@ def test_plot_title_processing(resp_fcn, plot_fcn): case _: raise RuntimeError(f"didn't recognize {resp_fnc}, {plot_fnc}") - # Generate the first plot, with default labels + # Generate the first plot, with default title cplt1 = plot_fcn(*args1, **kwargs, **plot_fcn_kwargs) assert cplt1.figure._suptitle._text.startswith(title_prefix) # Skip functions not intended for sequential calling if plot_fcn not in nolabel_plot_fcns: - # Generate second plot with default labels + # Generate second plot with default title cplt2 = plot_fcn(*args2, **kwargs, **plot_fcn_kwargs) assert cplt1.figure._suptitle._text == title_prefix + default_title plt.close() @@ -372,6 +417,11 @@ def test_plot_title_processing(resp_fcn, plot_fcn): assert cplt2.figure._suptitle._text == "Another title" plt.close() + # Generate the plots with no title + cplt = plot_fcn( + *args1, **kwargs, **plot_fcn_kwargs, title=False) + assert cplt.figure._suptitle == None + @pytest.mark.usefixtures('mplcleanup') def test_rcParams(): diff --git a/control/timeplot.py b/control/timeplot.py index ce4134e94..cc417ee7d 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -175,6 +175,7 @@ def time_response_plot( # Process keywords and set defaults # # Set up defaults + ax_user = ax time_label = config._get_param( 'timeplot', 'time_label', kwargs, _timeplot_defaults, pop=True) rcParams = config._get_param( @@ -657,10 +658,10 @@ def _make_line_label(signal_index, signal_labels, trace_index): # list of systems (e.g., "Step response for sys[1], sys[2]"). # - if title is None: + if ax_user is None and title is None: title = data.title if title == None else title _update_plot_title(title, fig, rcParams=rcParams) - else: + elif ax_user is None: _update_plot_title(title, fig, rcParams=rcParams, use_existing=False) return ControlPlot(out, ax_array, fig, legend=legend_map) From fc09a856488e65914f05809df8b2fad3773759fc Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Fri, 19 Jul 2024 18:45:58 -0700 Subject: [PATCH 143/199] deprecate relabel keyword in time_response_plot --- control/tests/timeplot_test.py | 5 +++-- control/timeplot.py | 6 ++++-- 2 files changed, 7 insertions(+), 4 deletions(-) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 81c378a57..081234624 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -530,8 +530,9 @@ def test_relabel(): ct.step_response(sys1).plot() # Generate a new plt, without relabeling - cplt = ct.step_response(sys2).plot(relabel=False) - assert cplt.axes[0, 0].get_ylabel() == 'y' + with pytest.warns(FutureWarning, match="deprecated"): + cplt = ct.step_response(sys2).plot(relabel=False) + assert cplt.axes[0, 0].get_ylabel() == 'y' def test_errors(): diff --git a/control/timeplot.py b/control/timeplot.py index cc417ee7d..31d17c117 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -131,8 +131,9 @@ def time_response_plot( List of line properties to use when plotting combined outputs. The default values are set by config.defaults['timeplot.output_props']. relabel : bool, optional - By default, existing figures and axes are relabeled when new data - are added. If set to `False`, just plot new data on existing axes. + [deprecated] By default, existing figures and axes are relabeled + when new data are added. If set to `False`, just plot new data on + existing axes. show_legend : bool, optional Force legend to be shown if ``True`` or hidden if ``False``. If ``None``, then show legend when there is more than one line on an @@ -456,6 +457,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): # Stop here if the user wants to control everything if not relabel: + warn("relabel keyword is deprecated", FutureWarning) return ControlPlot(out, ax_array, fig) # From 4fe5f533a67ac6fece409a40d2ff5449a4b04ac0 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Jul 2024 13:33:13 -0700 Subject: [PATCH 144/199] implement uniform legend processing + unit test/doc updates --- control/ctrlplot.py | 62 ++++++-- control/descfcn.py | 11 ++ control/freqplot.py | 108 ++++++++----- control/nichols.py | 39 +++-- control/phaseplot.py | 14 +- control/pzmap.py | 41 +++-- control/rlocus.py | 22 ++- control/tests/ctrlplot_test.py | 268 +++++++++++++++++++++++++++------ control/tests/timeplot_test.py | 16 +- control/timeplot.py | 72 ++++----- 10 files changed, 478 insertions(+), 175 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 3da3447f9..e6a7589f6 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -30,6 +30,8 @@ # # # Figure out the shape of the plot and find/create axes # fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), rcParams) +# legend_loc, legend_map, show_legend = _process_legend_keywords( +# kwargs, (nrows, ncols), 'center right') # # # Customize axes (curvilinear grids, shared axes, etc) # @@ -51,14 +53,17 @@ # ax_array[i, j].set_ylabel("y label") # # # Create legends -# legend_map = _process_legend_keywords(kwargs) -# for i, j in itertools.product(range(nrows), range(ncols)): -# if legend_map[i, j] is not None: -# lines = ax_array[i, j].get_lines() -# labels = _make_legend_labels(lines) -# if len(labels) > 1: -# legend_array[i, j] = ax.legend( -# lines, labels, loc=legend_map[i, j]) +# if show_legend != False: +# legend_array = np.full(ax_array.shape, None, dtype=object) +# for i, j in itertools.product(range(nrows), range(ncols)): +# if legend_map[i, j] is not None: +# lines = ax_array[i, j].get_lines() +# labels = _make_legend_labels(lines) +# if len(labels) > 1: +# legend_array[i, j] = ax.legend( +# lines, labels, loc=legend_map[i, j]) +# else: +# legend_array = None # # # Update the plot title (only if ax was not given) # sysnames = [response.sysname for response in data] @@ -131,7 +136,7 @@ class ControlPlot(object): figure : :class:`matplotlib:Figure` Figure on which the Axes are drawn. legend : :class:`matplotlib:.legend.Legend` (instance or ndarray) - Legend object(s) for the plat. If more than one legend is + Legend object(s) for the plot. If more than one legend is included, this will be an array with each entry being either None (for no legend) or a legend object. @@ -436,8 +441,46 @@ def _get_line_labels(ax, use_color=True): return lines, [label for label, color in labels_colors] +def _process_legend_keywords( + kwargs, shape=None, default_loc='center right'): + legend_loc = kwargs.pop('legend_loc', None) + if shape is None and 'legend_map' in kwargs: + raise TypeError("unexpected keyword argument 'legend_map'") + else: + legend_map = kwargs.pop('legend_map', None) + show_legend = kwargs.pop('show_legend', None) + + # If legend_loc or legend_map were given, always show the legend + if legend_loc is False or legend_map is False: + if show_legend is True: + warnings.warn( + "show_legend ignored; legend_loc or legend_map was given") + show_legend = False + legend_loc = legend_map = None + elif legend_loc is not None or legend_map is not None: + if show_legend is False: + warnings.warn( + "show_legend ignored; legend_loc or legend_map was given") + show_legend = True + + if legend_loc is None: + legend_loc = default_loc + elif not isinstance(legend_loc, (int, str)): + raise ValueError("legend_loc must be string or int") + + # Make sure the legend map is the right size + if legend_map is not None: + legend_map = np.atleast_2d(legend_map) + if legend_map.shape != shape: + raise ValueError("legend_map shape just match axes shape") + + return legend_loc, legend_map, show_legend + + # Utility function to make legend labels def _make_legend_labels(labels, ignore_common=False): + if len(labels) == 1: + return labels # Look for a common prefix (up to a space) common_prefix = commonprefix(labels) @@ -474,7 +517,6 @@ def _update_plot_title( rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) if rcParams is None: rcParams = _ctrlplot_rcParams - print(f"{rcParams['figure.titlesize']=}") if use_existing: # Get the current title, if it exists diff --git a/control/descfcn.py b/control/descfcn.py index f94687a3f..97d98fc58 100644 --- a/control/descfcn.py +++ b/control/descfcn.py @@ -423,6 +423,12 @@ def describing_function_plot( point_label : str, optional Formatting string used to label intersection points on the Nyquist plot. Defaults to "%5.2g @ %-5.2g". Set to `None` to omit labels. + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). Returns ------- @@ -475,6 +481,11 @@ def describing_function_plot( else: raise TypeError("1, 3, or 4 position arguments required") + # Don't allow legend keyword arguments + for kw in ['legend_loc', 'legend_map', 'show_legend']: + if kw in kwargs: + raise TypeError(f"unexpected keyword argument '{kw}'") + # Create a list of lines for the output lines = np.empty(2, dtype=object) diff --git a/control/freqplot.py b/control/freqplot.py index 038ea877c..95f7cffd6 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -21,7 +21,8 @@ from .bdalg import feedback from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _ctrlplot_rcParams, \ _find_axes_center, _get_line_labels, _make_legend_labels, \ - _process_ax_keyword, _process_line_labels, _update_plot_title + _process_ax_keyword, _process_legend_keywords, _process_line_labels, \ + _update_plot_title from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData @@ -87,8 +88,7 @@ def bode_plot( plot=None, plot_magnitude=True, plot_phase=None, overlay_outputs=None, overlay_inputs=None, phase_label=None, magnitude_label=None, label=None, display_margins=None, - margins_method='best', legend_map=None, legend_loc=None, - sharex=None, sharey=None, title=None, **kwargs): + margins_method='best', title=None, sharex=None, sharey=None, **kwargs): """Bode plot for a system. Plot the magnitude and phase of the frequency response over a @@ -142,25 +142,33 @@ def bode_plot( Other Parameters ---------------- - ax : array of Axes - The matplotlib Axes to draw the figure on. If not specified, the - Axes for the current figure are used or, if there is no current - figure with the correct number and shape of Axes, a new figure is + ax : array of matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified, the + axes for the current figure are used or, if there is no current + figure with the correct number and shape of axes, a new figure is created. The shape of the array must match the shape of the plotted data. - grid : bool + grid : bool, optional If True, plot grid lines on gain and phase plots. Default is set by `config.defaults['freqplot.grid']`. - initial_phase : float + initial_phase : float, optional Set the reference phase to use for the lowest frequency. If set, the initial phase of the Bode plot will be set to the value closest to the value specified. Units are in either degrees or radians, depending on the `deg` parameter. Default is -180 if wrap_phase is False, 0 if wrap_phase is True. - label : str or array-like of str + label : str or array_like of str, optional If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. If MIMO, strings required for each system, output, and input. + legend_map : array of str, optional + Location of the legend for multi-axes plots. Specifies an array + of legend location strings matching the shape of the subplots, with + each entry being either None (for no legend) or a legend location + string (see :func:`~matplotlib.pyplot.legend`). + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. margins_method : str, optional Method to use in computing margins (see :func:`stability_margins`). omega_limits : array_like of two values @@ -179,6 +187,10 @@ def bode_plot( rcParams : dict Override the default parameters used for generating plots. Default is set by config.default['freqplot.rcParams']. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on an + axis or ``legend_loc`` or ``legend_map`` has been specified. title : str, optional Set the title of the plot. Defaults to plot type and system name(s). wrap_phase : bool or float @@ -478,8 +490,10 @@ def bode_plot( if kw not in kwargs or kwargs[kw] is None: kwargs[kw] = config.defaults['freqplot.' + kw] - fig, ax_array = _process_ax_keyword(ax, ( - nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True) + fig, ax_array = _process_ax_keyword( + ax, (nrows, ncols), squeeze=False, rcParams=rcParams, clear_text=True) + legend_loc, legend_map, show_legend = _process_legend_keywords( + kwargs, (nrows,ncols), 'center right') # Get the values for sharing axes limits share_magnitude = kwargs.pop('share_magnitude', None) @@ -989,21 +1003,15 @@ def gen_zero_centered_series(val_min, val_max, period): # different response (system). # - # Figure out where to put legends - if legend_map is None: - legend_map = np.full(ax_array.shape, None, dtype=object) - if legend_loc == None: - legend_loc = 'center right' - - # TODO: add in additional processing later - - # Put legend in the upper right - legend_map[0, -1] = legend_loc - # Create axis legends - legend_array = np.full(ax_array.shape, None, dtype=object) - for i in range(nrows): - for j in range(ncols): + if show_legend != False: + # Figure out where to put legends + if legend_map is None: + legend_map = np.full(ax_array.shape, None, dtype=object) + legend_map[0, -1] = legend_loc + + legend_array = np.full(ax_array.shape, None, dtype=object) + for i, j in itertools.product(range(nrows), range(ncols)): if legend_map[i, j] is None: continue ax = ax_array[i, j] @@ -1016,10 +1024,13 @@ def gen_zero_centered_series(val_min, val_max, period): ignore_common=line_labels is not None) # Generate the label, if needed - if len(labels) > 1: + if show_legend == True or len(labels) > 1: with plt.rc_context(rcParams): + print(f"{lines=}, {labels=}") legend_array[i, j] = ax.legend( lines, labels, loc=legend_map[i, j]) + else: + legend_array = None # # Legacy return pocessing @@ -1476,7 +1487,7 @@ def nyquist_response( def nyquist_plot( data, omega=None, plot=None, label_freq=0, color=None, label=None, - return_contour=None, title=None, legend_loc='upper right', ax=None, + return_contour=None, title=None, ax=None, unit_circle=False, mt_circles=None, ms_circles=None, **kwargs): """Nyquist plot for a system. @@ -1550,6 +1561,10 @@ def nyquist_plot( 8 and can be set using config.defaults['nyquist.arrow_size']. arrow_style : matplotlib.patches.ArrowStyle, optional Define style used for Nyquist curve arrows (overrides `arrow_size`). + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. encirclement_threshold : float, optional Define the threshold for generating a warning if the number of net encirclements is a non-integer value. Default value is 0.05 and can @@ -1564,13 +1579,16 @@ def nyquist_plot( Amount to indent the Nyquist contour around poles on or near the imaginary axis. Portions of the Nyquist plot corresponding to indented portions of the contour are plotted using a different line style. - label : str or array-like of str + label : str or array_like of str, optional If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. label_freq : int, optiona Label every nth frequency on the plot. If not specified, no labels are generated. + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. max_curve_magnitude : float, optional Restrict the maximum magnitude of the Nyquist plot to this value. Portions of the Nyquist plot whose magnitude is restricted are @@ -1609,6 +1627,10 @@ def nyquist_plot( return_contour : bool, optional (legacy) If 'True', return the encirclement count and Nyquist contour used to generate the Nyquist plot. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on the + plot or ``legend_loc`` has been specified. start_marker : str, optional Matplotlib marker to use to mark the starting point of the Nyquist plot. Defaults value is 'o' and can be set using @@ -1775,6 +1797,8 @@ def _parse_linestyle(style_name, allow_false=False): fig, ax = _process_ax_keyword( ax_user, shape=(1, 1), squeeze=True, rcParams=rcParams) + legend_loc, _, show_legend = _process_legend_keywords( + kwargs, None, 'upper right') # Create a list of lines for the output out = np.empty(len(nyquist_responses), dtype=object) @@ -1950,11 +1974,11 @@ def _parse_linestyle(style_name, allow_false=False): lines, labels = _get_line_labels(ax) # Add legend if there is more than one system plotted - if len(labels) > 1: + if show_legend == True or (show_legend != False and len(labels) > 1): with plt.rc_context(rcParams): legend = ax.legend(lines, labels, loc=legend_loc) else: - legend=None + legend = None # Add the title if ax_user is None: @@ -2193,7 +2217,7 @@ def singular_values_response( def singular_values_plot( data, omega=None, *fmt, plot=None, omega_limits=None, omega_num=None, - ax=None, label=None, title=None, legend_loc='center right', **kwargs): + ax=None, label=None, title=None, **kwargs): """Plot the singular values for a system. Plot the singular values as a function of frequency for a system or @@ -2237,16 +2261,20 @@ def singular_values_plot( Other Parameters ---------------- + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. grid : bool If True, plot grid lines on gain and phase plots. Default is set by `config.defaults['freqplot.grid']`. - label : str or array-like of str + label : str or array_like of str, optional If present, replace automatically generated label(s) with the given label(s). If sysdata is a list, strings should be specified for each system. - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to supress. + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. omega_limits : array_like of two values Set limits for plotted frequency range. If Hz=True the limits are in Hz otherwise in rad/s. Specifying ``omega`` as a list of two @@ -2262,6 +2290,10 @@ def singular_values_plot( rcParams : dict Override the default parameters used for generating plots. Default is set up config.default['freqplot.rcParams']. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on an + axis or ``legend_loc`` or ``legend_map`` has been specified. title : str, optional Set the title of the plot. Defaults to plot type and system name(s). @@ -2343,6 +2375,8 @@ def singular_values_plot( fig, ax_sigma = _process_ax_keyword( ax, shape=(1, 1), squeeze=True, rcParams=rcParams) ax_sigma.set_label('control-sigma') # TODO: deprecate? + legend_loc, _, show_legend = _process_legend_keywords( + kwargs, None, 'center right') # Handle color cycle manually as all singular values # of the same systems are expected to be of the same color @@ -2413,7 +2447,7 @@ def singular_values_plot( lines, labels = _get_line_labels(ax_sigma) # Add legend if there is more than one system plotted - if len(labels) > 1 and legend_loc is not False: + if show_legend == True or (show_legend != False and len(labels) > 1): with plt.rc_context(rcParams): legend = ax_sigma.legend(lines, labels, loc=legend_loc) else: diff --git a/control/nichols.py b/control/nichols.py index d2ae0cf8c..e91659bc1 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -19,7 +19,7 @@ from . import config from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ - _process_line_labels, _update_plot_title + _process_legend_keywords, _process_line_labels, _update_plot_title from .ctrlutil import unwrap from .freqplot import _default_frequency_range, _freqplot_defaults from .lti import frequency_response @@ -36,7 +36,7 @@ def nichols_plot( data, omega=None, *fmt, grid=None, title=None, ax=None, - legend_loc='upper left', label=None, **kwargs): + label=None, **kwargs): """Nichols plot for a system. Plots a Nichols plot for the system over a (optional) frequency range. @@ -53,15 +53,6 @@ def nichols_plot( The `omega` parameter must be present (use omega=None if needed). grid : boolean, optional True if the plot should include a Nichols-chart grid. Default is True. - label : str or array-like of str - If present, replace automatically generated label(s) with given - label(s). If sysdata is a list, strings should be specified for each - system. - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'upper left'. Use False to supress. - title : str, optional - Set the title of the plot. Defaults to plot type and system name(s). **kwargs : :func:`matplotlib.pyplot.plot` keyword properties, optional Additional keywords passed to `matplotlib` to specify line properties. @@ -84,6 +75,26 @@ def nichols_plot( lines : array of Line2D + Other Parameters + ---------------- + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. + label : str or array_like of str, optional + If present, replace automatically generated label(s) with given + label(s). If sysdata is a list, strings should be specified for each + system. + legend_loc : int or str, optional + Include a legend in the given location. Default is 'upper left', + with no legend for a single response. Use False to supress legend. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on the + plot or ``legend_loc`` has been specified. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). + """ # Get parameter values grid = config._get_param('nichols', 'grid', grid, True) @@ -105,6 +116,8 @@ def nichols_plot( raise NotImplementedError("MIMO Nichols plots not implemented") fig, ax_nichols = _process_ax_keyword(ax, rcParams=rcParams, squeeze=True) + legend_loc, _, show_legend = _process_legend_keywords( + kwargs, None, 'upper left') # Create a list of lines for the output out = np.empty(len(data), dtype=object) @@ -143,7 +156,7 @@ def nichols_plot( lines, labels = _get_line_labels(ax_nichols) # Add legend if there is more than one system plotted - if len(labels) > 1 and legend_loc is not False: + if show_legend == True or (show_legend != False and len(labels) > 1): with plt.rc_context(rcParams): legend = ax_nichols.legend(lines, labels, loc=legend_loc) else: @@ -188,7 +201,7 @@ def nichols_grid(cl_mags=None, cl_phases=None, line_style='dotted', ax=None, :doc:`Matplotlib linestyle \ ` ax : matplotlib.axes.Axes, optional - Axes to add grid to. If ``None``, use ``plt.gca()``. + Axes to add grid to. If ``None``, use ``matplotlib.pyplot.gca()``. label_cl_phases: bool, optional If True, closed-loop phase lines will be labelled. diff --git a/control/phaseplot.py b/control/phaseplot.py index b25c1ce53..5004332d7 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -94,8 +94,10 @@ def phase_plane_plot( color : str Plot all elements in the given color (use `plot_={'color': c}` to set the color in one element of the phase plot. - ax : Axes - Use the given axes for the plot instead of creating a new figure. + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. Returns ------- @@ -265,7 +267,7 @@ def vectorfield( dict with key 'args' and value given by a tuple (passed to callable). color : str Plot the vector field in the given color. - ax : Axes + ax : matplotlib.axes.Axes Use the given axes for the plot, otherwise use the current axes. Returns @@ -359,7 +361,7 @@ def streamlines( dict with key 'args' and value given by a tuple (passed to callable). color : str Plot the streamlines in the given color. - ax : Axes + ax : matplotlib.axes.Axes Use the given axes for the plot, otherwise use the current axes. Returns @@ -470,7 +472,7 @@ def equilpoints( dict with key 'args' and value given by a tuple (passed to callable). color : str Plot the equilibrium points in the given color. - ax : Axes + ax : matplotlib.axes.Axes Use the given axes for the plot, otherwise use the current axes. Returns @@ -554,7 +556,7 @@ def separatrices( dict with key 'args' and value given by a tuple (passed to callable). color : str Plot the streamlines in the given color. - ax : Axes + ax : matplotlib.axes.Axes Use the given axes for the plot, otherwise use the current axes. Returns diff --git a/control/pzmap.py b/control/pzmap.py index 1c86f1323..d0b775274 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -19,7 +19,7 @@ from . import config from .ctrlplot import ControlPlot, _get_line_labels, _process_ax_keyword, \ - _process_line_labels, _update_plot_title + _process_legend_keywords, _process_line_labels, _update_plot_title from .freqplot import _freqplot_defaults from .grid import nogrid, sgrid, zgrid from .iosys import isctime, isdtime @@ -171,7 +171,7 @@ def pole_zero_map(sysdata): # https://matplotlib.org/2.0.2/examples/axes_grid/demo_curvelinear_grid.html def pole_zero_plot( data, plot=None, grid=None, title=None, marker_color=None, - marker_size=None, marker_width=None, legend_loc='upper right', + marker_size=None, marker_width=None, xlim=None, ylim=None, interactive=None, ax=None, scaling=None, initial_gain=None, label=None, **kwargs): """Plot a pole/zero map for a linear system. @@ -227,27 +227,35 @@ def pole_zero_plot( Other Parameters ---------------- - scaling : str or list, optional - Set the type of axis scaling. Can be 'equal' (default), 'auto', or - a list of the form [xmin, xmax, ymin, ymax]. + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. initial_gain : float, optional If given, the specified system gain will be marked on the plot. interactive : bool, optional Turn off interactive mode for root locus plots. - label : str or array-like of str + label : str or array_like of str, optional If present, replace automatically generated label(s) with given label(s). If data is a list, strings should be specified for each system. - legend_loc : str, optional - For plots with multiple lines, a legend will be included in the - given location. Default is 'center right'. Use False to supress. + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. marker_color : str, optional Set the color of the markers used for poles and zeros. marker_size : int, optional Set the size of the markers used for poles and zeros. marker_width : int, optional Set the line width of the markers used for poles and zeros. + scaling : str or list, optional + Set the type of axis scaling. Can be 'equal' (default), 'auto', or + a list of the form [xmin, xmax, ymin, ymax]. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on the + plot or ``legend_loc`` has been specified. title : str, optional Set the title of the plot. Defaults to plot type and system name(s). xlim : list, optional @@ -269,8 +277,7 @@ def pole_zero_plot( marker_size = config._get_param('pzmap', 'marker_size', marker_size, 6) marker_width = config._get_param('pzmap', 'marker_width', marker_width, 1.5) rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, - pop=True, last=True) + 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) user_ax = ax xlim_user, ylim_user = xlim, ylim @@ -315,6 +322,12 @@ def pole_zero_plot( # Initialize the figure fig, ax = _process_ax_keyword( user_ax, rcParams=rcParams, squeeze=True, create_axes=False) + legend_loc, _, show_legend = _process_legend_keywords( + kwargs, None, 'upper right') + + # Make sure there are no remaining keyword arguments + if kwargs: + raise TypeError("unrecognized keywords: ", str(kwargs)) if ax is None: # Determine what type of grid to use @@ -323,7 +336,7 @@ def pole_zero_plot( grid = config._get_param('rlocus', 'grid', grid, _rlocus_defaults) else: grid = config._get_param('pzmap', 'grid', grid, _pzmap_defaults) - + # Create the axes with the appropriate grid with plt.rc_context(rcParams): if grid and grid != 'empty': @@ -347,7 +360,7 @@ def pole_zero_plot( xlim, ylim = ax.get_xlim(), ax.get_ylim() if grid is not None: warnings.warn("axis already exists; grid keyword ignored") - + # Handle color cycle manually as all root locus segments # of the same system are expected to be of the same color # TODO: replace with common function? @@ -429,7 +442,7 @@ def pole_zero_plot( lines, labels = _get_line_labels(ax) # Add legend if there is more than one system plotted - if len(labels) > 1 and legend_loc is not False: + if show_legend or len(labels) > 1 and show_legend != False: if response.loci is None: # Use "x o" for the system label, via matplotlib tuple handler from matplotlib.legend_handler import HandlerTuple diff --git a/control/rlocus.py b/control/rlocus.py index a65604089..6365f4e8d 100644 --- a/control/rlocus.py +++ b/control/rlocus.py @@ -127,8 +127,6 @@ def root_locus_plot( for continuous time systems, unit circle for discrete time systems. If `empty`, do not draw any additonal lines. Default value is set by config.default['rlocus.grid']. - ax : :class:`matplotlib.axes.Axes` - Axes on which to create root locus plot initial_gain : float, optional Mark the point on the root locus diagram corresponding to the given gain. @@ -159,6 +157,26 @@ def root_locus_plot( root locations, arranged such that each row corresponds to a gain, and the array of gains (same as `gains` keyword argument if provided). + Other Parameters + ---------------- + ax : matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified and + the current figure has a single axes, that axes is used. + Otherwise, a new figure is created. + label : str or array_like of str, optional + If present, replace automatically generated label(s) with the given + label(s). If sysdata is a list, strings should be specified for each + system. + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. + show_legend : bool, optional + Force legend to be shown if ``True`` or hidden if ``False``. If + ``None``, then show legend when there is more than one line on the + plot or ``legend_loc`` has been specified. + title : str, optional + Set the title of the plot. Defaults to plot type and system name(s). + Notes ----- The root_locus_plot function calls matplotlib.pyplot.axis('equal'), which diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 84f10bea0..5abbb1dc2 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -30,8 +30,27 @@ ] nolabel_plot_fcns = [ct.describing_function_plot, ct.phase_plane_plot] +legacy_plot_fcns = [ct.gangof4_plot] +multiaxes_plot_fcns = [ct.bode_plot, ct.gangof4_plot, ct.time_response_plot] deprecated_fcns = [ct.phase_plot] + +# Utility function to make sure legends are OK +def assert_legend(cplt, expected_texts): + # Check to make sure the labels are OK in legend + legend = None + for ax in cplt.axes.flatten(): + legend = ax.get_legend() + if legend is not None: + break + if expected_texts is None: + assert legend is None + else: + assert legend is not None + legend_texts = [entry.get_text() for entry in legend.get_texts()] + assert legend_texts == expected_texts + + # Make sure we didn't miss any plotting functions def test_find_respplot_functions(): # Get the list of plotting functions @@ -66,13 +85,14 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): sys2 = ct.rss(4, 1, 1, strictly_proper=True) # Set up arguments - kwargs = meth_kwargs = plot_fcn_kwargs = {} + kwargs = resp_kwargs = meth_kwargs = plot_kwargs = {} get_line_color = lambda cplt: cplt.lines.reshape(-1)[0][0].get_color() match resp_fcn, plot_fcn: case ct.describing_function_response, _: F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args = (sys1, F, amp) + resp_kwargs = {'refine': False} case ct.gangof4_response, _: args = (sys1, sys2) @@ -83,7 +103,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): case ct.root_locus_map, ct.root_locus_plot: args = (sys1, ) - meth_kwargs = plot_fcn_kwargs = {'interactive': False} + plot_kwargs = {'interactive': False} case (ct.forced_response | ct.input_output_response, _): timepts = np.linspace(1, 10) @@ -100,19 +120,19 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): # Call the plot through the response function if resp_fcn is not None: - resp = resp_fcn(*args, **kwargs) - cplt1 = resp.plot(**kwargs, **meth_kwargs) + resp = resp_fcn(*args, **kwargs, **resp_kwargs) + cplt1 = resp.plot(**kwargs, **plot_kwargs, **meth_kwargs) else: # No response function available; just plot the data - cplt1 = plot_fcn(*args, **kwargs, **meth_kwargs) + cplt1 = plot_fcn(*args, **kwargs, **plot_kwargs) assert isinstance(cplt1, ct.ControlPlot) # Call the plot directly, plotting on top of previous plot if plot_fcn == ct.time_response_plot: # Can't call the time_response_plot() with system => reuse data - cplt2 = plot_fcn(resp, **kwargs, **plot_fcn_kwargs) + cplt2 = plot_fcn(resp, **kwargs, **plot_kwargs) else: - cplt2 = plot_fcn(*args, **kwargs, **plot_fcn_kwargs) + cplt2 = plot_fcn(*args, **kwargs, **plot_kwargs) assert isinstance(cplt2, ct.ControlPlot) # Plot should have landed on top of previous plot, in different colors @@ -126,7 +146,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): if resp_fcn is not None: cplt3 = resp.plot(**kwargs, **meth_kwargs, ax=cplt1.axes) else: - cplt3 = plot_fcn(*args, **kwargs, **meth_kwargs, ax=cplt1.axes) + cplt3 = plot_fcn(*args, **kwargs, **plot_kwargs, ax=cplt1.axes) assert cplt3.figure == cplt1.figure # Plot should have landed on top of previous plot, in different colors @@ -170,43 +190,36 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): # Call the plotting function, passing the axes if resp_fcn is not None: - resp = resp_fcn(*args, **kwargs) + resp = resp_fcn(*args, **kwargs, **resp_kwargs) cplt4 = resp.plot(**kwargs, **meth_kwargs, ax=ax) else: # No response function available; just plot the data - cplt4 = plot_fcn(*args, **kwargs, **meth_kwargs, ax=ax) + cplt4 = plot_fcn(*args, **kwargs, **plot_kwargs, ax=ax) # Check to make sure original settings did not change assert fig._suptitle.get_text() == title assert fig._suptitle.get_fontsize() == titlesize assert ax[0].get_yticklabels()[0].get_fontsize() == labelsize + # Make sure that docstring documents ax keyword + if plot_fcn not in legacy_plot_fcns: + if plot_fcn in multiaxes_plot_fcns: + assert "ax : array of matplotlib.axes.Axes, optional" \ + in plot_fcn.__doc__ + else: + assert "ax : matplotlib.axes.Axes, optional" in plot_fcn.__doc__ + @pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) @pytest.mark.usefixtures('mplcleanup') def test_plot_label_processing(resp_fcn, plot_fcn): - # Utility function to make sure legends are OK - def assert_legend(cplt, expected_texts): - # Check to make sure the labels are OK in legend - legend = None - for ax in cplt.axes.flatten(): - legend = ax.get_legend() - if legend is not None: - break - if expected_texts is None: - assert legend is None - else: - assert legend is not None - legend_texts = [entry.get_text() for entry in legend.get_texts()] - assert legend_texts == expected_texts - # Create some systems to use sys1 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[1]") sys1c = ct.rss(4, 1, 1, strictly_proper=True, name="sys[1]_C") sys2 = ct.rss(4, 1, 1, strictly_proper=True, name="sys[2]") # Set up arguments - kwargs = meth_kwargs = plot_fcn_kwargs = {} + kwargs = resp_kwargs = plot_kwargs = meth_kwargs = {} default_labels = ["sys[1]", "sys[2]"] expected_labels = ["sys1_", "sys2_"] match resp_fcn, plot_fcn: @@ -215,6 +228,7 @@ def assert_legend(cplt, expected_texts): amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) args2 = (sys2, F, amp) + resp_kwargs = {'refine': False} case ct.gangof4_response, _: args1 = (sys1, sys1c) @@ -229,7 +243,7 @@ def assert_legend(cplt, expected_texts): case ct.root_locus_map, ct.root_locus_plot: args1 = (sys1, ) args2 = (sys2, ) - meth_kwargs = plot_fcn_kwargs = {'interactive': False} + plot_kwargs = {'interactive': False} case (ct.forced_response | ct.input_output_response, _): timepts = np.linspace(1, 10) @@ -251,36 +265,36 @@ def assert_legend(cplt, expected_texts): pytest.skip(f"labels not implemented for {plot_fcn}") # Generate the first plot, with default labels - cplt1 = plot_fcn(*args1, **kwargs, **plot_fcn_kwargs) + cplt1 = plot_fcn(*args1, **kwargs, **plot_kwargs) assert isinstance(cplt1, ct.ControlPlot) assert_legend(cplt1, None) # Generate second plot with default labels - cplt2 = plot_fcn(*args2, **kwargs, **plot_fcn_kwargs) + cplt2 = plot_fcn(*args2, **kwargs, **plot_kwargs) assert isinstance(cplt2, ct.ControlPlot) assert_legend(cplt2, default_labels) plt.close() # Generate both plots at the same time if len(args1) == 1 and plot_fcn != ct.time_response_plot: - cplt = plot_fcn([*args1, *args2], **kwargs, **plot_fcn_kwargs) + cplt = plot_fcn([*args1, *args2], **kwargs, **plot_kwargs) assert isinstance(cplt, ct.ControlPlot) assert_legend(cplt, default_labels) elif len(args1) == 1 and plot_fcn == ct.time_response_plot: # Use TimeResponseList.plot() to generate combined response - cplt = argsc[0].plot(**kwargs, **plot_fcn_kwargs) + cplt = argsc[0].plot(**kwargs, **meth_kwargs) assert isinstance(cplt, ct.ControlPlot) assert_legend(cplt, default_labels) plt.close() # Generate plots sequentially, with updated labels cplt1 = plot_fcn( - *args1, **kwargs, **plot_fcn_kwargs, label=expected_labels[0]) + *args1, **kwargs, **plot_kwargs, label=expected_labels[0]) assert isinstance(cplt1, ct.ControlPlot) assert_legend(cplt1, None) cplt2 = plot_fcn( - *args2, **kwargs, **plot_fcn_kwargs, label=expected_labels[1]) + *args2, **kwargs, **plot_kwargs, label=expected_labels[1]) assert isinstance(cplt2, ct.ControlPlot) assert_legend(cplt2, expected_labels) plt.close() @@ -288,16 +302,176 @@ def assert_legend(cplt, expected_texts): # Generate both plots at the same time, with updated labels if len(args1) == 1 and plot_fcn != ct.time_response_plot: cplt = plot_fcn( - [*args1, *args2], **kwargs, **plot_fcn_kwargs, + [*args1, *args2], **kwargs, **plot_kwargs, label=expected_labels) assert isinstance(cplt, ct.ControlPlot) assert_legend(cplt, expected_labels) elif len(args1) == 1 and plot_fcn == ct.time_response_plot: # Use TimeResponseList.plot() to generate combined response cplt = argsc[0].plot( - **kwargs, **plot_fcn_kwargs, label=expected_labels) + **kwargs, **meth_kwargs, label=expected_labels) assert isinstance(cplt, ct.ControlPlot) assert_legend(cplt, expected_labels) + plt.close() + + # Make sure that docstring documents label + if plot_fcn not in legacy_plot_fcns: + assert "label : str or array_like of str, optional" in plot_fcn.__doc__ + + +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup') +def test_siso_plot_legend_processing(resp_fcn, plot_fcn): + # Create some systems to use + sys1 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[1]") + sys1c = ct.rss(4, 1, 1, strictly_proper=True, name="sys[1]_C") + sys2 = ct.rss(4, 1, 1, strictly_proper=True, name="sys[2]") + + # Set up arguments + kwargs = resp_kwargs = plot_kwargs = meth_kwargs = {} + default_labels = ["sys[1]", "sys[2]"] + match resp_fcn, plot_fcn: + case ct.describing_function_response, _: + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + args1 = (sys1, F, amp) + args2 = (sys2, F, amp) + resp_kwargs = {'refine': False} + + case ct.gangof4_response, _: + # Multi-axes plot => test in next function + return + + case ct.frequency_response, ct.nichols_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = {'plot_type': 'nichols'} + + case ct.root_locus_map, ct.root_locus_plot: + args1 = (sys1, ) + args2 = (sys2, ) + plot_kwargs = {'interactive': False} + + case (ct.forced_response | ct.input_output_response, _): + timepts = np.linspace(1, 10) + U = np.sin(timepts) + args1 = (resp_fcn(sys1, timepts, U), ) + args2 = (resp_fcn(sys2, timepts, U), ) + argsc = (resp_fcn([sys1, sys2], timepts, U), ) + + case (ct.impulse_response | ct.initial_response | ct.step_response, _): + args1 = (resp_fcn(sys1), ) + args2 = (resp_fcn(sys2), ) + argsc = (resp_fcn([sys1, sys2]), ) + + case _, _: + args1 = (sys1, ) + args2 = (sys2, ) + + if plot_fcn in nolabel_plot_fcns: + # Make sure that using legend keywords generates an error + with pytest.raises(TypeError, match="unexpected|unrecognized"): + cplt = plot_fcn(*args1, legend_loc=None) + with pytest.raises(TypeError, match="unexpected|unrecognized"): + cplt = plot_fcn(*args1, legend_map=None) + with pytest.raises(TypeError, match="unexpected|unrecognized"): + cplt = plot_fcn(*args1, show_legend=None) + return + + # Single system, with forced legend + cplt = plot_fcn(*args1, **kwargs, **plot_kwargs, show_legend=True) + assert_legend(cplt, default_labels[:1]) + plt.close() + + # Single system, with forced location + cplt = plot_fcn(*args1, **kwargs, **plot_kwargs, legend_loc=10) + assert cplt.axes[0, 0].get_legend()._loc == 10 + plt.close() + + # Generate two plots, but turn off legends + if len(args1) == 1 and plot_fcn != ct.time_response_plot: + cplt = plot_fcn( + [*args1, *args2], **kwargs, **plot_kwargs, show_legend=False) + assert_legend(cplt, None) + elif len(args1) == 1 and plot_fcn == ct.time_response_plot: + # Use TimeResponseList.plot() to generate combined response + cplt = argsc[0].plot(**kwargs, **meth_kwargs, show_legend=False) + assert_legend(cplt, None) + plt.close() + + # Make sure that docstring documents legend_loc, show_legend + assert "legend_loc : int or str, optional" in plot_fcn.__doc__ + assert "show_legend : bool, optional" in plot_fcn.__doc__ + + # Make sure that single axes plots generate an error with legend_map + if plot_fcn not in multiaxes_plot_fcns: + with pytest.raises(TypeError, match="unexpected"): + cplt = plot_fcn(*args1, legend_map=False) + else: + assert "legend_map : array of str" in plot_fcn.__doc__ + + +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup') +def test_mimo_plot_legend_processing(resp_fcn, plot_fcn): + # Generate the response that we will use for plotting + match resp_fcn, plot_fcn: + case ct.frequency_response, ct.bode_plot: + resp = ct.frequency_response([ct.rss(4, 2, 2), ct.rss(3, 2, 2)]) + case ct.step_response, ct.time_response_plot: + resp = ct.step_response([ct.rss(4, 2, 2), ct.rss(3, 2, 2)]) + case ct.gangof4_response, ct.gangof4_plot: + resp = ct.gangof4_response(ct.rss(4, 1, 1), ct.rss(3, 1, 1)) + case _, ct.time_response_plot: + # Skip remaining time response plots to avoid duplicate tests + return + case _, _: + # Skip everything else that doesn't support multi-axes plots + assert plot_fcn not in multiaxes_plot_fcns + return + + # Generate a standard plot with legend in the center + cplt1 = resp.plot(legend_loc=10) + assert cplt1.axes.ndim == 2 + for legend_idx, ax in enumerate(cplt1.axes.flatten()): + if ax.get_legend() is not None: + break; + assert legend_idx != 0 # Make sure legend is not in first subplot + assert ax.get_legend()._loc == 10 + plt.close() + + # Regenerate the plot with no legend + cplt2 = resp.plot(show_legend=False) + for ax in cplt2.axes.flatten(): + if ax.get_legend() is not None: + break; + assert ax.get_legend() is None + plt.close() + + # Regenerate the plot with no legend in a different way + cplt2 = resp.plot(legend_loc=False) + for ax in cplt2.axes.flatten(): + if ax.get_legend() is not None: + break; + assert ax.get_legend() is None + plt.close() + + # Regenerate the plot with no legend in a different way + cplt2 = resp.plot(legend_map=False) + for ax in cplt2.axes.flatten(): + if ax.get_legend() is not None: + break; + assert ax.get_legend() is None + plt.close() + + # Put the legend in a different (first) subplot + legend_map = np.full(cplt2.shape, None, dtype=object) + legend_map[0, 0] = 5 + legend_map[-1, -1] = 6 + cplt3 = resp.plot(legend_map=legend_map) + assert cplt3.axes[0, 0].get_legend()._loc == 5 + assert cplt3.axes[-1, -1].get_legend()._loc == 6 + plt.close() @pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) @@ -309,7 +483,7 @@ def test_plot_title_processing(resp_fcn, plot_fcn): sys2 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[2]") # Set up arguments - kwargs = meth_kwargs = plot_fcn_kwargs = {} + kwargs = resp_kwargs = plot_kwargs = meth_kwargs = {} default_title = "sys[1], sys[2]" expected_title = "sys1_, sys2_" match resp_fcn, plot_fcn: @@ -318,6 +492,7 @@ def test_plot_title_processing(resp_fcn, plot_fcn): amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) args2 = (sys2, F, amp) + resp_kwargs = {'refine': False} case ct.gangof4_response, _: args1 = (sys1, sys1c) @@ -332,7 +507,7 @@ def test_plot_title_processing(resp_fcn, plot_fcn): case ct.root_locus_map, ct.root_locus_plot: args1 = (sys1, ) args2 = (sys2, ) - meth_kwargs = plot_fcn_kwargs = {'interactive': False} + plot_kwargs = {'interactive': False} case (ct.forced_response | ct.input_output_response, _): timepts = np.linspace(1, 10) @@ -384,31 +559,31 @@ def test_plot_title_processing(resp_fcn, plot_fcn): raise RuntimeError(f"didn't recognize {resp_fnc}, {plot_fnc}") # Generate the first plot, with default title - cplt1 = plot_fcn(*args1, **kwargs, **plot_fcn_kwargs) + cplt1 = plot_fcn(*args1, **kwargs, **plot_kwargs) assert cplt1.figure._suptitle._text.startswith(title_prefix) # Skip functions not intended for sequential calling if plot_fcn not in nolabel_plot_fcns: # Generate second plot with default title - cplt2 = plot_fcn(*args2, **kwargs, **plot_fcn_kwargs) + cplt2 = plot_fcn(*args2, **kwargs, **plot_kwargs) assert cplt1.figure._suptitle._text == title_prefix + default_title plt.close() # Generate both plots at the same time if len(args1) == 1 and plot_fcn != ct.time_response_plot: - cplt = plot_fcn([*args1, *args2], **kwargs, **plot_fcn_kwargs) + cplt = plot_fcn([*args1, *args2], **kwargs, **plot_kwargs) assert cplt.figure._suptitle._text == title_prefix + default_title elif len(args1) == 1 and plot_fcn == ct.time_response_plot: # Use TimeResponseList.plot() to generate combined response - cplt = argsc[0].plot(**kwargs, **plot_fcn_kwargs) + cplt = argsc[0].plot(**kwargs, **meth_kwargs) assert cplt.figure._suptitle._text == title_prefix + default_title plt.close() # Generate plots sequentially, with updated titles cplt1 = plot_fcn( - *args1, **kwargs, **plot_fcn_kwargs, title="My first title") + *args1, **kwargs, **plot_kwargs, title="My first title") cplt2 = plot_fcn( - *args2, **kwargs, **plot_fcn_kwargs, title="My new title") + *args2, **kwargs, **plot_kwargs, title="My new title") assert cplt2.figure._suptitle._text == "My new title" plt.close() @@ -419,8 +594,13 @@ def test_plot_title_processing(resp_fcn, plot_fcn): # Generate the plots with no title cplt = plot_fcn( - *args1, **kwargs, **plot_fcn_kwargs, title=False) + *args1, **kwargs, **plot_kwargs, title=False) assert cplt.figure._suptitle == None + plt.close() + + # Make sure that docstring documents title + if plot_fcn not in legacy_plot_fcns: + assert "title : str, optional" in plot_fcn.__doc__ @pytest.mark.usefixtures('mplcleanup') diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 081234624..6cc1e8641 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -698,22 +698,22 @@ def test_legend_customization(): resp_list = ct.step_response([sys1, sys2]) fig = plt.figure() - ct.combine_time_responses( + cplt = ct.combine_time_responses( [ct.step_response(sys1, resp_list[0].time), ct.step_response(sys2, resp_list[1].time)] ).plot(overlay_traces=True) - ct.suptitle("[Combine] " + fig._suptitle._text) + cplt.set_plot_title("[Combine] " + fig._suptitle._text) fig = plt.figure() ct.step_response(sys1).plot() - ct.step_response(sys2).plot() - ct.suptitle("[Sequential] " + fig._suptitle._text) + cplt = ct.step_response(sys2).plot() + cplt.set_plot_title("[Sequential] " + fig._suptitle._text) fig = plt.figure() ct.step_response(sys1).plot(color='b') - ct.step_response(sys2).plot(color='r') - ct.suptitle("[Seq w/color] " + fig._suptitle._text) + cplt = ct.step_response(sys2).plot(color='r') + cplt.set_plot_title("[Seq w/color] " + fig._suptitle._text) fig = plt.figure() - ct.step_response([sys1, sys2]).plot() - ct.suptitle("[List] " + fig._suptitle._text) + cplt = ct.step_response([sys1, sys2]).plot() + cplt.set_plot_title("[List] " + fig._suptitle._text) diff --git a/control/timeplot.py b/control/timeplot.py index 31d17c117..bdfd93b8f 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -8,6 +8,7 @@ # Note: It might eventually make sense to put the functions here # directly into timeresp.py. +import itertools from warnings import warn import matplotlib as mpl @@ -16,7 +17,7 @@ from . import config from .ctrlplot import ControlPlot, _ctrlplot_rcParams, _make_legend_labels,\ - _update_plot_title + _process_legend_keywords, _update_plot_title __all__ = ['time_response_plot', 'combine_time_responses'] @@ -39,9 +40,8 @@ def time_response_plot( data, *fmt, ax=None, plot_inputs=None, plot_outputs=True, transpose=False, overlay_traces=False, overlay_signals=False, - legend_map=None, legend_loc=None, add_initial_zero=True, label=None, - trace_labels=None, title=None, relabel=True, show_legend=None, - **kwargs): + legend=None, add_initial_zero=True, label=None, + trace_labels=None, title=None, relabel=True, **kwargs): """Plot the time response of an input/output system. This function creates a standard set of plots for the input/output @@ -53,15 +53,12 @@ def time_response_plot( ---------- data : TimeResponseData Data to be plotted. - ax : array of Axes - The matplotlib Axes to draw the figure on. If not specified, the - Axes for the current figure are used or, if there is no current - figure with the correct number and shape of Axes, a new figure is - created. The default shape of the array should be (noutputs + - ninputs, ntraces), but if `overlay_traces` is set to `True` then - only one row is needed and if `overlay_signals` is set to `True` - then only one or two columns are needed (depending on plot_inputs - and plot_outputs). + ax : array of matplotlib.axes.Axes, optional + The matplotlib axes to draw the figure on. If not specified, the + axes for the current figure are used or, if there is no current + figure with the correct number and shape of axes, a new figure is + created. The shape of the array must match the shape of the + plotted data. plot_inputs : bool or str, optional Sets how and where to plot the inputs: * False: don't plot the inputs @@ -114,20 +111,20 @@ def time_response_plot( input_props : array of dicts List of line properties to use when plotting combined inputs. The default values are set by config.defaults['timeplot.input_props']. - label : str or array_like of str + label : str or array_like of str, optional If present, replace automatically generated label(s) with the given label(s). If more than one line is being generated, an array of labels should be provided with label[trace, :, 0] representing the output labels and label[trace, :, 1] representing the input labels. - legend_map : array of str, option - Location of the legend for multi-trace plots. Specifies an array + legend_map : array of str, optional + Location of the legend for multi-axes plots. Specifies an array of legend location strings matching the shape of the subplots, with each entry being either None (for no legend) or a legend location string (see :func:`~matplotlib.pyplot.legend`). - legend_loc : str - Location of the legend within the axes for which it appears. This - value is used if legend_map is None. - output_props : array of dicts + legend_loc : int or str, optional + Include a legend in the given location. Default is 'center right', + with no legend for a single response. Use False to supress legend. + output_props : array of dicts, optional List of line properties to use when plotting combined outputs. The default values are set by config.defaults['timeplot.output_props']. relabel : bool, optional @@ -137,7 +134,7 @@ def time_response_plot( show_legend : bool, optional Force legend to be shown if ``True`` or hidden if ``False``. If ``None``, then show legend when there is more than one line on an - axis or ``legend_loc`` or ``legend_map`` have been specified. + axis or ``legend_loc`` or ``legend_map`` has been specified. time_label : str, optional Label to use for the time axis. title : str, optional @@ -292,6 +289,8 @@ def time_response_plot( # See if we can use the current figure axes fig, ax_array = _process_ax_keyword(ax, (nrows, ncols), rcParams=rcParams) + legend_loc, legend_map, show_legend = _process_legend_keywords( + kwargs, (nrows, ncols), 'center right') # # Map inputs/outputs and traces to axes @@ -571,12 +570,8 @@ def _make_line_label(signal_index, signal_labels, trace_index): # # Figure out where to put legends - if legend_map is None: + if show_legend != False and legend_map is None: legend_map = np.full(ax_array.shape, None, dtype=object) - if legend_loc == None: - legend_loc = 'center right' - else: - show_legend = True if show_legend is None else show_legend if transpose: if (overlay_signals or plot_inputs == 'overlay') and overlay_traces: @@ -601,6 +596,7 @@ def _make_line_label(signal_index, signal_labels, trace_index): else: # Put legend in the upper right legend_map[0, -1] = legend_loc + else: # regular layout if (overlay_signals or plot_inputs == 'overlay') and overlay_traces: # Put a legend in each plot for inputs and outputs @@ -624,31 +620,25 @@ def _make_line_label(signal_index, signal_labels, trace_index): else: # Put legend in the upper right legend_map[0, -1] = legend_loc - else: - # Make sure the legend map is the right size - legend_map = np.atleast_2d(legend_map) - if legend_map.shape != ax_array.shape: - raise ValueError("legend_map shape just match axes shape") - - # Turn legend on unless overridden by user - show_legend = True if show_legend is None else show_legend - # Create axis legends - legend_array = np.full(ax_array.shape, None, dtype=object) - for i in range(nrows): - for j in range(ncols): + if show_legend != False: + # Create axis legends + legend_array = np.full(ax_array.shape, None, dtype=object) + for i, j in itertools.product(range(nrows), range(ncols)): + if legend_map[i, j] is None: + continue ax = ax_array[i, j] labels = [line.get_label() for line in ax.get_lines()] if line_labels is None: labels = _make_legend_labels(labels, plot_inputs == 'overlay') # Update the labels to remove common strings - if show_legend != False and \ - (len(labels) > 1 or show_legend) and \ - legend_map[i, j] != None: + if show_legend == True or len(labels) > 1: with plt.rc_context(rcParams): legend_array[i, j] = ax.legend( labels, loc=legend_map[i, j]) + else: + legend_array = None # # Update the plot title (= figure suptitle) From 2e4961cef029956021b7703f3213d5ed0eca4bdc Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Jul 2024 13:36:08 -0700 Subject: [PATCH 145/199] change suptitle_frame to title_frame --- control/freqplot.py | 22 +++++++++++----------- control/tests/freqplot_test.py | 16 ++++++++-------- control/tests/timeplot_test.py | 2 +- 3 files changed, 20 insertions(+), 20 deletions(-) diff --git a/control/freqplot.py b/control/freqplot.py index 95f7cffd6..394d9c004 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -50,7 +50,7 @@ 'freqplot.share_magnitude': 'row', 'freqplot.share_phase': 'row', 'freqplot.share_frequency': 'col', - 'freqplot.suptitle_frame': 'axes', + 'freqplot.title_frame': 'axes', } # @@ -253,8 +253,8 @@ def bode_plot( 'freqplot', 'initial_phase', kwargs, None, pop=True) rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) - suptitle_frame = config._get_param( - 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) + title_frame = config._get_param( + 'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True) # Set the default labels freq_label = config._get_param( @@ -977,10 +977,10 @@ def gen_zero_centered_series(val_min, val_max, period): else: # Allow data to set the title (used by gangof4) title = data[0].title - _update_plot_title(title, fig, rcParams=rcParams, frame=suptitle_frame) + _update_plot_title(title, fig, rcParams=rcParams, frame=title_frame) elif ax is None: _update_plot_title( - title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + title, fig=fig, rcParams=rcParams, frame=title_frame, use_existing=False) # @@ -1712,8 +1712,8 @@ def nyquist_plot( 'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True) start_marker_size = config._get_param( 'nyquist', 'start_marker_size', kwargs, _nyquist_defaults, pop=True) - suptitle_frame = config._get_param( - 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) + title_frame = config._get_param( + 'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True) # Set line styles for the curves def _parse_linestyle(style_name, allow_false=False): @@ -1985,7 +1985,7 @@ def _parse_linestyle(style_name, allow_false=False): if title is None: title = "Nyquist plot for " + ", ".join(labels) _update_plot_title( - title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + title, fig=fig, rcParams=rcParams, frame=title_frame, use_existing=False) # Legacy return pocessing @@ -2321,8 +2321,8 @@ def singular_values_plot( 'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True) rcParams = config._get_param( 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) - suptitle_frame = config._get_param( - 'freqplot', 'suptitle_frame', kwargs, _freqplot_defaults, pop=True) + title_frame = config._get_param( + 'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True) # If argument was a singleton, turn it into a tuple data = data if isinstance(data, (list, tuple)) else (data,) @@ -2458,7 +2458,7 @@ def singular_values_plot( if title is None: title = "Singular values for " + ", ".join(labels) _update_plot_title( - title, fig=fig, rcParams=rcParams, frame=suptitle_frame, + title, fig=fig, rcParams=rcParams, frame=title_frame, use_existing=False) # Legacy return processing diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 509dd555b..8f8c53861 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -62,7 +62,7 @@ def test_response_plots( ovlout, ovlinp, clear=True): # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Save up the keyword arguments kwargs = dict( @@ -158,7 +158,7 @@ def test_manual_response_limits(): @pytest.mark.usefixtures("editsdefaults") def test_line_styles(plt_fcn): # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Define a couple of systems for testing sys1 = ct.tf([1], [1, 2, 1], name='sys1') @@ -266,7 +266,7 @@ def test_gangof4_plots(savefigs=False): @pytest.mark.usefixtures("editsdefaults") def test_first_arg_listable(response_cmd, return_type): # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') sys = ct.rss(2, 1, 1) @@ -302,7 +302,7 @@ def test_first_arg_listable(response_cmd, return_type): @pytest.mark.usefixtures("editsdefaults") def test_bode_share_options(): # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Default sharing should share along rows and cols for mag and phase lines = ct.bode_plot(manual_response) @@ -365,7 +365,7 @@ def test_freqplot_plot_type(plot_type): @pytest.mark.usefixtures("editsdefaults") def test_freqplot_omega_limits(plt_fcn): # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Utility function to check visible limits def _get_visible_limits(ax): @@ -442,7 +442,7 @@ def test_freqplot_line_labels(plt_fcn): sys2 = ct.rss(3, 1, 1, name='sys2') # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Make sure default labels are as expected cplt = plt_fcn([sys1, sys2]) @@ -515,7 +515,7 @@ def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): pytest.skip("MIMO not implemented for Nyquist/Nichols") # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # System to use sys = ct.rss(4, ninputs, noutputs) @@ -666,7 +666,7 @@ def test_freqresplist_unknown_kw(): for args in test_cases: test_response_plots(*args, ovlinp=False, ovlout=False, clear=False) - # Reset suptitle_frame to the default value + # Reset title_frame to the default value ct.reset_defaults() # Define and run a selected set of interesting tests diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 6cc1e8641..775371d55 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -429,7 +429,7 @@ def test_timeplot_trace_labels(resp_fcn): kwargs = {'T': T, 'U': U} # Use figure frame for suptitle to speed things up - ct.set_defaults('freqplot', suptitle_frame='figure') + ct.set_defaults('freqplot', title_frame='figure') # Make sure default labels are as expected cplt = resp_fcn([sys1, sys2], **kwargs).plot() From 02f2724cf36f1eb1a290c64a5f507d495cdb2e00 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Jul 2024 22:55:18 -0700 Subject: [PATCH 146/199] update rcParams processing --- control/config.py | 5 ++ control/ctrlplot.py | 26 ++++--- control/freqplot.py | 20 ++--- control/nichols.py | 3 +- control/phaseplot.py | 20 ++--- control/pzmap.py | 3 +- control/tests/ctrlplot_test.py | 136 +++++++++++++++++++++++++++++---- control/timeplot.py | 6 +- 8 files changed, 163 insertions(+), 56 deletions(-) diff --git a/control/config.py b/control/config.py index b6d5385d4..260c7dac6 100644 --- a/control/config.py +++ b/control/config.py @@ -10,6 +10,7 @@ import collections import warnings + from .exception import ControlArgument __all__ = ['defaults', 'set_defaults', 'reset_defaults', @@ -121,6 +122,10 @@ def reset_defaults(): # System level defaults defaults.update(_control_defaults) + from .ctrlplot import _ctrlplot_defaults, reset_rcParams + reset_rcParams() + defaults.update(_ctrlplot_defaults) + from .freqplot import _freqplot_defaults, _nyquist_defaults defaults.update(_freqplot_defaults) defaults.update(_nyquist_defaults) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index e6a7589f6..14b27c703 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -10,8 +10,7 @@ # ax = kwargs.pop('ax', None) # color = kwargs.pop('color', None) # label = kwargs.pop('label', None) -# rcParams = config._get_param( -# 'nameplot', 'rcParams', kwargs, _nameplot_defaults, pop=True) +# rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # # # Make sure all keyword arguments were processed (if not checked later) # if kwargs: @@ -89,21 +88,26 @@ from . import config -__all__ = ['ControlPlot', 'suptitle', 'get_plot_axes', 'pole_zero_subplots'] +__all__ = [ + 'ControlPlot', 'suptitle', 'get_plot_axes', 'pole_zero_subplots', + 'rcParams', 'reset_rcParams'] # # Style parameters # -_ctrlplot_rcParams = mpl.rcParams.copy() -_ctrlplot_rcParams.update({ +rcParams_default = { 'axes.labelsize': 'small', 'axes.titlesize': 'small', 'figure.titlesize': 'medium', 'legend.fontsize': 'x-small', 'xtick.labelsize': 'small', 'ytick.labelsize': 'small', -}) +} +_ctrlplot_rcParams = rcParams_default.copy() # provide access inside module +rcParams = _ctrlplot_rcParams # provide access outside module + +_ctrlplot_defaults = {'ctrlplot.rcParams': _ctrlplot_rcParams} # @@ -190,7 +194,6 @@ def set_plot_title(self, title, frame='axes'): _update_plot_title( title, fig=self.figure, frame=frame, use_existing=False) - # # User functions # @@ -198,7 +201,6 @@ def set_plot_title(self, title, frame='axes'): # information about them. # - def suptitle( title, fig=None, frame='axes', **kwargs): """Add a centered title to a figure. @@ -270,7 +272,7 @@ def pole_zero_subplots( 2D array of axes """ - from .grid import sgrid, zgrid, nogrid + from .grid import nogrid, sgrid, zgrid from .iosys import isctime if rcParams is None: @@ -307,6 +309,12 @@ def pole_zero_subplots( index += 1 return ax_array + +def reset_rcParams(): + """Reset rcParams to default values for control plots.""" + _ctrlplot_rcParams.update(rcParams_default) + + # # Utility functions # diff --git a/control/freqplot.py b/control/freqplot.py index 394d9c004..6c9894f1e 100644 --- a/control/freqplot.py +++ b/control/freqplot.py @@ -19,10 +19,9 @@ from . import config from .bdalg import feedback -from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _ctrlplot_rcParams, \ - _find_axes_center, _get_line_labels, _make_legend_labels, \ - _process_ax_keyword, _process_legend_keywords, _process_line_labels, \ - _update_plot_title +from .ctrlplot import ControlPlot, _add_arrows_to_line2D, _find_axes_center, \ + _get_line_labels, _make_legend_labels, _process_ax_keyword, \ + _process_legend_keywords, _process_line_labels, _update_plot_title from .ctrlutil import unwrap from .exception import ControlMIMONotImplemented from .frdata import FrequencyResponseData @@ -38,7 +37,6 @@ # Default values for module parameter variables _freqplot_defaults = { - 'freqplot.rcParams': _ctrlplot_rcParams, 'freqplot.feature_periphery_decades': 1, 'freqplot.number_of_samples': 1000, 'freqplot.dB': False, # Plot gain in dB @@ -186,7 +184,7 @@ def bode_plot( values with no plot. rcParams : dict Override the default parameters used for generating plots. - Default is set by config.default['freqplot.rcParams']. + Default is set by config.default['ctrlplot.rcParams']. show_legend : bool, optional Force legend to be shown if ``True`` or hidden if ``False``. If ``None``, then show legend when there is more than one line on an @@ -251,8 +249,7 @@ def bode_plot( 'freqplot', 'wrap_phase', kwargs, _freqplot_defaults, pop=True) initial_phase = config._get_param( 'freqplot', 'initial_phase', kwargs, None, pop=True) - rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) title_frame = config._get_param( 'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True) @@ -1026,7 +1023,6 @@ def gen_zero_centered_series(val_min, val_max, period): # Generate the label, if needed if show_legend == True or len(labels) > 1: with plt.rc_context(rcParams): - print(f"{lines=}, {labels=}") legend_array[i, j] = ax.legend( lines, labels, loc=legend_map[i, j]) else: @@ -1706,8 +1702,7 @@ def nyquist_plot( 'nyquist', 'max_curve_magnitude', kwargs, _nyquist_defaults, pop=True) max_curve_offset = config._get_param( 'nyquist', 'max_curve_offset', kwargs, _nyquist_defaults, pop=True) - rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) start_marker = config._get_param( 'nyquist', 'start_marker', kwargs, _nyquist_defaults, pop=True) start_marker_size = config._get_param( @@ -2319,8 +2314,7 @@ def singular_values_plot( 'freqplot', 'Hz', kwargs, _freqplot_defaults, pop=True) grid = config._get_param( 'freqplot', 'grid', kwargs, _freqplot_defaults, pop=True) - rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) title_frame = config._get_param( 'freqplot', 'title_frame', kwargs, _freqplot_defaults, pop=True) diff --git a/control/nichols.py b/control/nichols.py index e91659bc1..498f37b05 100644 --- a/control/nichols.py +++ b/control/nichols.py @@ -99,8 +99,7 @@ def nichols_plot( # Get parameter values grid = config._get_param('nichols', 'grid', grid, True) label = _process_line_labels(label) - rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # If argument was a singleton, turn it into a list if not isinstance(data, (tuple, list)): diff --git a/control/phaseplot.py b/control/phaseplot.py index 5004332d7..c0839974e 100644 --- a/control/phaseplot.py +++ b/control/phaseplot.py @@ -37,7 +37,7 @@ from . import config from .ctrlplot import ControlPlot, _add_arrows_to_line2D, \ - _ctrlplot_rcParams, _process_ax_keyword, _update_plot_title + _process_ax_keyword, _update_plot_title from .exception import ControlNotImplemented from .nlsys import NonlinearIOSystem, find_eqpt, input_output_response @@ -45,7 +45,6 @@ # Default values for module parameter variables _phaseplot_defaults = { - 'phaseplot.rcParams': _ctrlplot_rcParams, 'phaseplot.arrows': 2, # number of arrows around curve 'phaseplot.arrow_size': 8, # pixel size for arrows 'phaseplot.separatrices_radius': 0.1 # initial radius for separatrices @@ -146,8 +145,7 @@ def phase_plane_plot( params = kwargs.get('params', None) sys = _create_system(sys, params) pointdata = [-1, 1, -1, 1] if pointdata is None else pointdata - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # Create axis if needed user_ax = ax @@ -223,7 +221,7 @@ def _create_kwargs(global_kwargs, local_kwargs, **other_kwargs): if user_ax is None: if title is None: title = f"Phase portrait for {sys.name}" - _update_plot_title(title, use_existing=False) + _update_plot_title(title, use_existing=False, rcParams=rcParams) ax.set_xlabel(sys.state_labels[0]) ax.set_ylabel(sys.state_labels[1]) plt.tight_layout() @@ -281,8 +279,7 @@ def vectorfield( """ # Process keywords - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # Get system parameters params = kwargs.pop('params', None) @@ -375,8 +372,7 @@ def streamlines( """ # Process keywords - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # Get system parameters params = kwargs.pop('params', None) @@ -481,8 +477,7 @@ def equilpoints( """ # Process keywords - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # Get system parameters params = kwargs.pop('params', None) @@ -570,8 +565,7 @@ def separatrices( """ # Process keywords - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _phaseplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) # Get system parameters params = kwargs.pop('params', None) diff --git a/control/pzmap.py b/control/pzmap.py index d0b775274..4f8062582 100644 --- a/control/pzmap.py +++ b/control/pzmap.py @@ -276,8 +276,7 @@ def pole_zero_plot( label = _process_line_labels(label) marker_size = config._get_param('pzmap', 'marker_size', marker_size, 6) marker_width = config._get_param('pzmap', 'marker_width', marker_width, 1.5) - rcParams = config._get_param( - 'freqplot', 'rcParams', kwargs, _freqplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) user_ax = ax xlim_user, ylim_user = xlim, ylim diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 5abbb1dc2..754db3e0b 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -92,7 +92,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args = (sys1, F, amp) - resp_kwargs = {'refine': False} + resp_kwargs = plot_kwargs = {'refine': False} case ct.gangof4_response, _: args = (sys1, sys2) @@ -121,7 +121,7 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): # Call the plot through the response function if resp_fcn is not None: resp = resp_fcn(*args, **kwargs, **resp_kwargs) - cplt1 = resp.plot(**kwargs, **plot_kwargs, **meth_kwargs) + cplt1 = resp.plot(**kwargs, **meth_kwargs) else: # No response function available; just plot the data cplt1 = plot_fcn(*args, **kwargs, **plot_kwargs) @@ -228,7 +228,7 @@ def test_plot_label_processing(resp_fcn, plot_fcn): amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) args2 = (sys2, F, amp) - resp_kwargs = {'refine': False} + resp_kwargs = plot_kwargs = {'refine': False} case ct.gangof4_response, _: args1 = (sys1, sys1c) @@ -336,7 +336,7 @@ def test_siso_plot_legend_processing(resp_fcn, plot_fcn): amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) args2 = (sys2, F, amp) - resp_kwargs = {'refine': False} + resp_kwargs = plot_kwargs = {'refine': False} case ct.gangof4_response, _: # Multi-axes plot => test in next function @@ -492,7 +492,7 @@ def test_plot_title_processing(resp_fcn, plot_fcn): amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) args2 = (sys2, F, amp) - resp_kwargs = {'refine': False} + resp_kwargs = plot_kwargs = {'refine': False} case ct.gangof4_response, _: args1 = (sys1, sys1c) @@ -603,15 +603,60 @@ def test_plot_title_processing(resp_fcn, plot_fcn): assert "title : str, optional" in plot_fcn.__doc__ -@pytest.mark.usefixtures('mplcleanup') -def test_rcParams(): - sys = ct.rss(2, 2, 2) +@pytest.mark.parametrize("resp_fcn, plot_fcn", resp_plot_fcns) +@pytest.mark.usefixtures('mplcleanup', 'editsdefaults') +def test_rcParams(resp_fcn, plot_fcn): + # Create some systems to use + sys1 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[1]") + sys1c = ct.rss(4, 1, 1, strictly_proper=True, name="sys[1]_C") + sys2 = ct.rss(2, 1, 1, strictly_proper=True, name="sys[2]") + + # Set up arguments + kwargs = resp_kwargs = plot_kwargs = meth_kwargs = {} + default_title = "sys[1], sys[2]" + expected_title = "sys1_, sys2_" + match resp_fcn, plot_fcn: + case ct.describing_function_response, _: + F = ct.descfcn.saturation_nonlinearity(1) + amp = np.linspace(1, 4, 10) + args1 = (sys1, F, amp) + args2 = (sys2, F, amp) + resp_kwargs = plot_kwargs = {'refine': False} + + case ct.gangof4_response, _: + args1 = (sys1, sys1c) + args2 = (sys2, sys1c) + default_title = "P=sys[1], C=sys[1]_C, P=sys[2], C=sys[1]_C" + + case ct.frequency_response, ct.nichols_plot: + args1 = (sys1, ) + args2 = (sys2, ) + meth_kwargs = {'plot_type': 'nichols'} + + case ct.root_locus_map, ct.root_locus_plot: + args1 = (sys1, ) + args2 = (sys2, ) + plot_kwargs = {'interactive': False} + + case (ct.forced_response | ct.input_output_response, _): + timepts = np.linspace(1, 10) + U = np.sin(timepts) + args1 = (resp_fcn(sys1, timepts, U), ) + args2 = (resp_fcn(sys2, timepts, U), ) + argsc = (resp_fcn([sys1, sys2], timepts, U), ) + + case (ct.impulse_response | ct.initial_response | ct.step_response, _): + args1 = (resp_fcn(sys1), ) + args2 = (resp_fcn(sys2), ) + argsc = (resp_fcn([sys1, sys2]), ) + + case _, _: + args1 = (sys1, ) + args2 = (sys2, ) # Create new set of rcParams my_rcParams = {} - for key in [ - 'axes.labelsize', 'axes.titlesize', 'figure.titlesize', - 'legend.fontsize', 'xtick.labelsize', 'ytick.labelsize']: + for key in ct.ctrlplot.rcParams: match plt.rcParams[key]: case 8 | 9 | 10: my_rcParams[key] = plt.rcParams[key] + 1 @@ -621,20 +666,85 @@ def test_rcParams(): my_rcParams[key] = 9.5 case _: raise ValueError(f"unknown rcParam type for {key}") + checked_params = my_rcParams.copy() # make sure we check everything # Generate a figure with the new rcParams - out = ct.step_response(sys).plot(rcParams=my_rcParams) - ax, fig = out.axes[0, 0], out.figure + if plot_fcn not in nolabel_plot_fcns: + cplt = plot_fcn( + *args1, **kwargs, **plot_kwargs, rcParams=my_rcParams, + show_legend=True) + else: + cplt = plot_fcn(*args1, **kwargs, **plot_kwargs, rcParams=my_rcParams) + + # Check lower left figure (should always have ticks, labels) + ax, fig = cplt.axes[-1, 0], cplt.figure # Check to make sure new settings were used assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] assert ax.yaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + checked_params.pop('axes.labelsize') + assert ax.title.get_fontsize() == my_rcParams['axes.titlesize'] + checked_params.pop('axes.titlesize') + assert ax.get_xticklabels()[0].get_fontsize() == \ my_rcParams['xtick.labelsize'] + checked_params.pop('xtick.labelsize') + assert ax.get_yticklabels()[0].get_fontsize() == \ my_rcParams['ytick.labelsize'] + checked_params.pop('ytick.labelsize') + assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] + checked_params.pop('figure.titlesize') + + if plot_fcn not in nolabel_plot_fcns: + for ax in cplt.axes.flatten(): + legend = ax.get_legend() + if legend is not None: + break + assert legend is not None + assert legend.get_texts()[0].get_fontsize() == \ + my_rcParams['legend.fontsize'] + checked_params.pop('legend.fontsize') + + # Make sure we checked everything + assert not checked_params + plt.close() + + # Change the default rcParams + ct.ctrlplot.rcParams.update(my_rcParams) + if plot_fcn not in nolabel_plot_fcns: + cplt = plot_fcn( + *args1, **kwargs, **plot_kwargs, show_legend=True) + else: + cplt = plot_fcn(*args1, **kwargs, **plot_kwargs) + + # Check everything + ax, fig = cplt.axes[-1, 0], cplt.figure + assert ax.xaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.yaxis.get_label().get_fontsize() == my_rcParams['axes.labelsize'] + assert ax.title.get_fontsize() == my_rcParams['axes.titlesize'] + assert ax.get_xticklabels()[0].get_fontsize() == \ + my_rcParams['xtick.labelsize'] + assert ax.get_yticklabels()[0].get_fontsize() == \ + my_rcParams['ytick.labelsize'] + assert fig._suptitle.get_fontsize() == my_rcParams['figure.titlesize'] + if plot_fcn not in nolabel_plot_fcns: + for ax in cplt.axes.flatten(): + legend = ax.get_legend() + if legend is not None: + break + assert legend is not None + assert legend.get_texts()[0].get_fontsize() == \ + my_rcParams['legend.fontsize'] + plt.close() + + # Make sure that resetting parameters works correctly + ct.reset_defaults() + for key in ct.ctrlplot.rcParams: + assert ct.defaults['ctrlplot.rcParams'][key] != my_rcParams[key] + assert ct.ctrlplot.rcParams[key] != my_rcParams[key] def test_deprecation_warning(): diff --git a/control/timeplot.py b/control/timeplot.py index bdfd93b8f..eaf949d92 100644 --- a/control/timeplot.py +++ b/control/timeplot.py @@ -16,14 +16,13 @@ import numpy as np from . import config -from .ctrlplot import ControlPlot, _ctrlplot_rcParams, _make_legend_labels,\ +from .ctrlplot import ControlPlot, _make_legend_labels,\ _process_legend_keywords, _update_plot_title __all__ = ['time_response_plot', 'combine_time_responses'] # Default values for module parameter variables _timeplot_defaults = { - 'timeplot.rcParams': _ctrlplot_rcParams, 'timeplot.trace_props': [ {'linestyle': s} for s in ['-', '--', ':', '-.']], 'timeplot.output_props': [ @@ -176,8 +175,7 @@ def time_response_plot( ax_user = ax time_label = config._get_param( 'timeplot', 'time_label', kwargs, _timeplot_defaults, pop=True) - rcParams = config._get_param( - 'timeplot', 'rcParams', kwargs, _timeplot_defaults, pop=True) + rcParams = config._get_param('ctrlplot', 'rcParams', kwargs, pop=True) if kwargs.get('input_props', None) and len(fmt) > 0: warn("input_props ignored since fmt string was present") From 4f4746dd89a92ff33dd6e37cb9af1185f7f7c91f Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Jul 2024 23:28:50 -0700 Subject: [PATCH 147/199] deprecate get_plot_axes (with legacy testing) --- control/ctrlplot.py | 4 ++- control/tests/ctrlplot_test.py | 34 ++++++++++++++++++++++-- control/tests/freqplot_test.py | 48 +++++++++++++++++----------------- control/tests/timeplot_test.py | 32 +++++++++++------------ 4 files changed, 74 insertions(+), 44 deletions(-) diff --git a/control/ctrlplot.py b/control/ctrlplot.py index 14b27c703..3b479c18c 100644 --- a/control/ctrlplot.py +++ b/control/ctrlplot.py @@ -148,7 +148,8 @@ class ControlPlot(object): def __init__(self, lines, axes=None, figure=None, legend=None): self.lines = lines if axes is None: - axes = get_plot_axes(lines) + _get_axes = np.vectorize(lambda lines: lines[0].axes) + axes = _get_axes(lines) self.axes = np.atleast_2d(axes) if figure is None: figure = self.axes[0, 0].figure @@ -240,6 +241,7 @@ def get_plot_axes(line_array): Only the first element of each array entry is used to determine the axes. """ + warnings.warn("get_plot_axes is deprecated; use cplt.axes", FutureWarning) _get_axes = np.vectorize(lambda lines: lines[0].axes) if isinstance(line_array, ControlPlot): return _get_axes(line_array.lines) diff --git a/control/tests/ctrlplot_test.py b/control/tests/ctrlplot_test.py index 754db3e0b..976edad8b 100644 --- a/control/tests/ctrlplot_test.py +++ b/control/tests/ctrlplot_test.py @@ -89,9 +89,10 @@ def test_plot_ax_processing(resp_fcn, plot_fcn): get_line_color = lambda cplt: cplt.lines.reshape(-1)[0][0].get_color() match resp_fcn, plot_fcn: case ct.describing_function_response, _: + sys = ct.tf([1], [1, 2, 2, 1]) F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) - args = (sys1, F, amp) + args = (sys, F, amp) resp_kwargs = plot_kwargs = {'refine': False} case ct.gangof4_response, _: @@ -224,6 +225,8 @@ def test_plot_label_processing(resp_fcn, plot_fcn): expected_labels = ["sys1_", "sys2_"] match resp_fcn, plot_fcn: case ct.describing_function_response, _: + sys1 = ct.tf([1], [1, 2, 2, 1], name="sys[1]") + sys2 = ct.tf([1.1], [1, 2, 2, 1], name="sys[2]") F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) @@ -332,6 +335,8 @@ def test_siso_plot_legend_processing(resp_fcn, plot_fcn): default_labels = ["sys[1]", "sys[2]"] match resp_fcn, plot_fcn: case ct.describing_function_response, _: + sys1 = ct.tf([1], [1, 2, 2, 1], name="sys[1]") + sys2 = ct.tf([1.1], [1, 2, 2, 1], name="sys[2]") F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) @@ -488,6 +493,8 @@ def test_plot_title_processing(resp_fcn, plot_fcn): expected_title = "sys1_, sys2_" match resp_fcn, plot_fcn: case ct.describing_function_response, _: + sys1 = ct.tf([1], [1, 2, 2, 1], name="sys[1]") + sys2 = ct.tf([1.1], [1, 2, 2, 1], name="sys[2]") F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) @@ -617,6 +624,8 @@ def test_rcParams(resp_fcn, plot_fcn): expected_title = "sys1_, sys2_" match resp_fcn, plot_fcn: case ct.describing_function_response, _: + sys1 = ct.tf([1], [1, 2, 2, 1], name="sys[1]") + sys2 = ct.tf([1], [1, 2, 2, 1], name="sys[2]") F = ct.descfcn.saturation_nonlinearity(1) amp = np.linspace(1, 4, 10) args1 = (sys1, F, amp) @@ -747,8 +756,29 @@ def test_rcParams(resp_fcn, plot_fcn): assert ct.ctrlplot.rcParams[key] != my_rcParams[key] -def test_deprecation_warning(): +def test_deprecation_warnings(): sys = ct.rss(2, 2, 2) lines = ct.step_response(sys).plot(overlay_traces=True) with pytest.warns(FutureWarning, match="deprecated"): assert len(lines[0, 0]) == 2 + + cplt = ct.step_response(sys).plot() + with pytest.warns(FutureWarning, match="deprecated"): + axs = ct.get_plot_axes(cplt) + assert np.all(axs == cplt.axes) + + with pytest.warns(FutureWarning, match="deprecated"): + axs = ct.get_plot_axes(cplt.lines) + assert np.all(axs == cplt.axes) + + +def test_ControlPlot_init(): + sys = ct.rss(2, 2, 2) + cplt = ct.step_response(sys).plot() + + # Create a ControlPlot from data, without the axes or figure + cplt_raw = ct.ControlPlot(cplt.lines) + assert np.all(cplt_raw.lines == cplt.lines) + assert np.all(cplt_raw.axes == cplt.axes) + assert cplt_raw.figure == cplt.figure + diff --git a/control/tests/freqplot_test.py b/control/tests/freqplot_test.py index 8f8c53861..6ce57c7fa 100644 --- a/control/tests/freqplot_test.py +++ b/control/tests/freqplot_test.py @@ -142,7 +142,7 @@ def test_response_plots( def test_manual_response_limits(): # Default response: limits should be the same across rows cplt = manual_response.plot() - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes for i in range(manual_response.noutputs): for j in range(1, manual_response.ninputs): # Everything in the same row should have the same limits @@ -305,8 +305,8 @@ def test_bode_share_options(): ct.set_defaults('freqplot', title_frame='figure') # Default sharing should share along rows and cols for mag and phase - lines = ct.bode_plot(manual_response) - axs = ct.get_plot_axes(lines) + cplt = ct.bode_plot(manual_response) + axs = cplt.axes for i in range(axs.shape[0]): for j in range(axs.shape[1]): # Share y limits along rows @@ -317,8 +317,8 @@ def test_bode_share_options(): # Sharing along y axis for mag but not phase plt.figure() - lines = ct.bode_plot(manual_response, share_phase='none') - axs = ct.get_plot_axes(lines) + cplt = ct.bode_plot(manual_response, share_phase='none') + axs = cplt.axes for i in range(int(axs.shape[0] / 2)): for j in range(axs.shape[1]): if i != 0: @@ -330,8 +330,8 @@ def test_bode_share_options(): # Turn off sharing for magnitude and phase plt.figure() - lines = ct.bode_plot(manual_response, sharey='none') - axs = ct.get_plot_axes(lines) + cplt = ct.bode_plot(manual_response, sharey='none') + axs = cplt.axes for i in range(int(axs.shape[0] / 2)): for j in range(axs.shape[1]): if i != 0: @@ -345,7 +345,7 @@ def test_bode_share_options(): # Turn off sharing in x axes plt.figure() - lines = ct.bode_plot(manual_response, sharex='none') + cplt = ct.bode_plot(manual_response, sharex='none') # TODO: figure out what to check @@ -355,11 +355,11 @@ def test_freqplot_plot_type(plot_type): response = ct.singular_values_response(ct.rss(2, 1, 1)) else: response = ct.frequency_response(ct.rss(2, 1, 1)) - lines = response.plot(plot_type=plot_type) + cplt = response.plot(plot_type=plot_type) if plot_type == 'bode': - assert lines.shape == (2, 1) + assert cplt.lines.shape == (2, 1) else: - assert lines.shape == (1, ) + assert cplt.lines.shape == (1, ) @pytest.mark.parametrize("plt_fcn", [ct.bode_plot, ct.singular_values_plot]) @pytest.mark.usefixtures("editsdefaults") @@ -379,14 +379,14 @@ def _get_visible_limits(ax): ct.tf([1], [1, 2, 1]), np.logspace(-1, 1)) # Generate a plot without overridding the limits - lines = plt_fcn(response) - ax = ct.get_plot_axes(lines) + cplt = plt_fcn(response) + ax = cplt.axes np.testing.assert_allclose( _get_visible_limits(ax.reshape(-1)[0]), np.array([0.1, 10])) # Now reset the limits - lines = plt_fcn(response, omega_limits=(1, 100)) - ax = ct.get_plot_axes(lines) + cplt = plt_fcn(response, omega_limits=(1, 100)) + ax = cplt.axes np.testing.assert_allclose( _get_visible_limits(ax.reshape(-1)[0]), np.array([1, 100])) @@ -400,7 +400,7 @@ def test_gangof4_trace_labels(): # Make sure default labels are as expected cplt = ct.gangof4_response(P1, C1).plot() cplt = ct.gangof4_response(P2, C2).plot() - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'P=P1, C=C1' assert legend[1].get_text() == 'P=P2, C=C2' @@ -409,7 +409,7 @@ def test_gangof4_trace_labels(): # Suffix truncation cplt = ct.gangof4_response(P1, C1).plot() cplt = ct.gangof4_response(P2, C1).plot() - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'P=P1' assert legend[1].get_text() == 'P=P2' @@ -418,7 +418,7 @@ def test_gangof4_trace_labels(): # Prefix turncation cplt = ct.gangof4_response(P1, C1).plot() cplt = ct.gangof4_response(P1, C2).plot() - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'C=C1' assert legend[1].get_text() == 'C=C2' @@ -427,7 +427,7 @@ def test_gangof4_trace_labels(): # Override labels cplt = ct.gangof4_response(P1, C1).plot(label='xxx, line1, yyy') cplt = ct.gangof4_response(P2, C2).plot(label='xxx, line2, yyy') - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes legend = axs[0, 1].get_legend().get_texts() assert legend[0].get_text() == 'xxx, line1, yyy' assert legend[1].get_text() == 'xxx, line2, yyy' @@ -446,7 +446,7 @@ def test_freqplot_line_labels(plt_fcn): # Make sure default labels are as expected cplt = plt_fcn([sys1, sys2]) - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -457,7 +457,7 @@ def test_freqplot_line_labels(plt_fcn): # Override labels all at once cplt = plt_fcn([sys1, sys2], label=['line1', 'line2']) - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -469,7 +469,7 @@ def test_freqplot_line_labels(plt_fcn): # Override labels one at a time cplt = plt_fcn(sys1, label='line1') cplt = plt_fcn(sys2, label='line2') - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -495,7 +495,7 @@ def test_line_labels_bode(kwargs, labels): ct.bode_plot([sys1, sys2], label=['line1']) cplt = ct.bode_plot([sys1, sys2], label=labels, **kwargs) - axs = ct.get_plot_axes(cplt) # legacy usage OK + axs = cplt.axes legend_texts = axs[0, -1].get_legend().get_texts() for i, legend in enumerate(legend_texts): assert legend.get_text() == labels[i] @@ -524,7 +524,7 @@ def test_freqplot_ax_keyword(plt_fcn, ninputs, noutputs): cplt1 = plt_fcn(sys) # Draw again on the same figure, using array - axs = ct.get_plot_axes(cplt1) # legacy usage OK + axs = cplt1.axes cplt2 = plt_fcn(sys, ax=axs) np.testing.assert_equal(cplt1.axes, cplt2.axes) diff --git a/control/tests/timeplot_test.py b/control/tests/timeplot_test.py index 775371d55..9525c7e02 100644 --- a/control/tests/timeplot_test.py +++ b/control/tests/timeplot_test.py @@ -194,8 +194,6 @@ def test_response_plots( @pytest.mark.usefixtures('mplcleanup') def test_axes_setup(): - get_plot_axes = ct.get_plot_axes - sys_2x3 = ct.rss(4, 2, 3) sys_2x3b = ct.rss(4, 2, 3) sys_3x2 = ct.rss(4, 3, 2) @@ -204,21 +202,21 @@ def test_axes_setup(): # Two plots of the same size leaves axes unchanged cplt1 = ct.step_response(sys_2x3).plot() cplt2 = ct.step_response(sys_2x3b).plot() - np.testing.assert_equal(get_plot_axes(cplt1), get_plot_axes(cplt2)) + np.testing.assert_equal(cplt1.axes, cplt2.axes) plt.close() # Two plots of same net size leaves axes unchanged (unfortunately) cplt1 = ct.step_response(sys_2x3).plot() cplt2 = ct.step_response(sys_3x2).plot() np.testing.assert_equal( - get_plot_axes(cplt1).reshape(-1), get_plot_axes(cplt2).reshape(-1)) + cplt1.axes.reshape(-1), cplt2.axes.reshape(-1)) plt.close() # Plots of different shapes generate new plots cplt1 = ct.step_response(sys_2x3).plot() cplt2 = ct.step_response(sys_3x1).plot() - ax1_list = get_plot_axes(cplt1).reshape(-1).tolist() - ax2_list = get_plot_axes(cplt2).reshape(-1).tolist() + ax1_list = cplt1.axes.reshape(-1).tolist() + ax2_list = cplt2.axes.reshape(-1).tolist() for ax in ax1_list: assert ax not in ax2_list plt.close() @@ -226,8 +224,8 @@ def test_axes_setup(): # Passing a list of axes preserves those axes cplt1 = ct.step_response(sys_2x3).plot() cplt2 = ct.step_response(sys_3x1).plot() - cplt3 = ct.step_response(sys_2x3b).plot(ax=get_plot_axes(cplt1)) - np.testing.assert_equal(get_plot_axes(cplt1), get_plot_axes(cplt3)) + cplt3 = ct.step_response(sys_2x3b).plot(ax=cplt1.axes) + np.testing.assert_equal(cplt1.axes, cplt3.axes) plt.close() # Sending an axes array of the wrong size raises exception @@ -433,7 +431,7 @@ def test_timeplot_trace_labels(resp_fcn): # Make sure default labels are as expected cplt = resp_fcn([sys1, sys2], **kwargs).plot() - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -444,7 +442,7 @@ def test_timeplot_trace_labels(resp_fcn): # Override labels all at once cplt = resp_fcn([sys1, sys2], **kwargs).plot(label=['line1', 'line2']) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -456,7 +454,7 @@ def test_timeplot_trace_labels(resp_fcn): # Override labels one at a time cplt = resp_fcn(sys1, **kwargs).plot(label='line1') cplt = resp_fcn(sys2, **kwargs).plot(label='line2') - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes if axs.ndim == 1: legend = axs[0].get_legend().get_texts() else: @@ -489,7 +487,7 @@ def test_full_label_override(): cplt = ct.step_response([sys1, sys2]).plot( overlay_signals=True, overlay_traces=True, plot_inputs=True, label=labels_4d) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes assert axs.shape == (2, 1) legend_text = axs[0, 0].get_legend().get_texts() for i, label in enumerate(labels_2d[0]): @@ -502,7 +500,7 @@ def test_full_label_override(): cplt = ct.step_response([sys1, sys2]).plot( overlay_signals=True, overlay_traces=True, plot_inputs=True, label=labels_2d) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes assert axs.shape == (2, 1) legend_text = axs[0, 0].get_legend().get_texts() for i, label in enumerate(labels_2d[0]): @@ -522,7 +520,7 @@ def test_relabel(): # Generate a new plot, which overwrites labels cplt = ct.step_response(sys2).plot() - ax = ct.get_plot_axes(cplt.lines) + ax = cplt.axes assert ax[0, 0].get_ylabel() == 'y[0]' # Regenerate the first plot @@ -570,7 +568,7 @@ def test_legend_customization(): # Generic input/output plot cplt = resp.plot(overlay_signals=True) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes assert axs[0, 0].get_legend()._loc == 7 # center right assert len(axs[0, 0].get_legend().get_texts()) == 2 assert axs[1, 0].get_legend() == None @@ -578,7 +576,7 @@ def test_legend_customization(): # Hide legend cplt = resp.plot(overlay_signals=True, show_legend=False) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes assert axs[0, 0].get_legend() == None assert axs[1, 0].get_legend() == None plt.close() @@ -586,7 +584,7 @@ def test_legend_customization(): # Put legend in both axes cplt = resp.plot( overlay_signals=True, legend_map=[['center left'], ['center right']]) - axs = ct.get_plot_axes(cplt.lines) + axs = cplt.axes assert axs[0, 0].get_legend()._loc == 6 # center left assert len(axs[0, 0].get_legend().get_texts()) == 2 assert axs[1, 0].get_legend()._loc == 7 # center right From c3707d3e7bd4191c01ce24168660262b10494fc0 Mon Sep 17 00:00:00 2001 From: Richard Murray Date: Sat, 20 Jul 2024 23:34:55 -0700 Subject: [PATCH 148/199] update plotting documentation --- doc/freqplot-mimo_bode-default.png | Bin 53368 -> 53337 bytes doc/freqplot-nyquist-custom.png | Bin 44066 -> 43976 bytes doc/freqplot-nyquist-default.png | Bin 41581 -> 41642 bytes doc/freqplot-siso_bode-default.png | Bin 46492 -> 46401 bytes doc/freqplot-siso_bode-omega.png | Bin 45851 -> 45790 bytes doc/phaseplot-dampedosc-default.png | Bin 103085 -> 102936 bytes doc/phaseplot-invpend-meshgrid.png | Bin 161158 -> 189738 bytes doc/phaseplot-oscillator-helpers.png | Bin 76927 -> 76107 bytes doc/plotting.rst | 114 ++++++++++++++++++++++++++- doc/pzmap-siso_ctime-default.png | Bin 15186 -> 15186 bytes doc/rlocus-siso_ctime-clicked.png | Bin 86011 -> 88472 bytes doc/rlocus-siso_ctime-default.png | Bin 81401 -> 81315 bytes doc/rlocus-siso_dtime-default.png | Bin 90229 -> 89994 bytes doc/rlocus-siso_multiple-nogrid.png | Bin 24271 -> 24424 bytes doc/timeplot-mimo_ioresp-mt_tr.png | Bin 64394 -> 63374 bytes doc/timeplot-mimo_ioresp-ov_lm.png | Bin 61492 -> 63987 bytes doc/timeplot-mimo_step-default.png | Bin 31828 -> 30667 bytes doc/timeplot-mimo_step-linestyle.png | Bin 38704 -> 41690 bytes doc/timeplot-mimo_step-pi_cs.png | Bin 31861 -> 33075 bytes 19 files changed, 111 insertions(+), 3 deletions(-) diff --git a/doc/freqplot-mimo_bode-default.png b/doc/freqplot-mimo_bode-default.png index 86414d91612ae91d1704fad0fe487c910a2d4dc2..88a45071bf5753272392a2be09366d65a2d4dc4c 100644 GIT binary patch literal 53337 zcmb@ubyQW2*ENcwptMSdh@gOUHz)!s9n#%McMB*YC7^VJARyh{ARyh{Eg{|ct@Av; z_r34E;~U@oRh3 z?sh`xo0x-{Ki@yi+`hf`C_wMUC(*{djfn=$!wkmcvC*oIJhSG{G|y7J`EOo)E<6*PRWe(rk9G1VtdtPudAzaHSxSBeyKagZM#xgPEk?x4#g)N;Sxe(Wzf?NDL$l=uL`Z1={E?Xz2^U`YWTI<;M1y!!f75RyS;Rl4_n ze0DfbK{Lm0rE5M+Mo@QcAT78yabq;U{$~&oo6*jkH+E=rv|kEM$-6-mq~h_em)HU# zDk_ADiHRCEEqLaWW!;4{XNMbdxIPhd$^-e@LU08nT$VLIFN=y;ua3&=?-3FCXJk-Y zOq9&G5NO|;3+CIZFhQ~`RRdehrG^OJoQt!n`wq4aKIS$Zq6r8H$hy?%sm=F)K)u(5 z&V=*uq4e|TNOr3|EvBV=$Mx3%hvAq z@F{9*&!Sme&t6|9O;p+$AFd{OD#^rifA_f9ZOdxZksZy~);4s{RWDb1|Ni|jfwsGx zfbEjs+0mp`wpy-|W~pgJDpoS1YS9m+LVR4@pK$16Udt(N4h9A(DG3RMZlitC$?nch zg{1dKsvJ+BiXmQPV`EcPR2=qw==wS+AV6L@N9FrNZtLd>g72${2?>9$EG_+ni`f{- zRk%_5D&*mMmSXnMVp~Y|`1m+M>GgVcepX>&;reGxlA%wZZaIL@t~dFhBaS%haV|A% zT54))nw5GrkS3u>PEKB$ocvr$N=ngzH{tATBR@MsIzb*{C%f)^tJ?I%ix&||i#%W+ zWyIy7K6HLA;C@nYHt$QG<;Cl`sd9L_nxq`^P#{b2c*-tID_{A+g9nIDQpk|b^r|u& z%|qMXE$U=c;If$bu{Bkx@VD=~x9f6*a+ZGU7dfY`sZ7hUf)|)rSW4QiYfswB%+5AH z;c$c@;)FI`CMnOfRBgDe?bYG#uG|d{R#y4xLVe%Vp6jb)Ar59{Sq6G~`)~&BI*nly zc2if^DliH$5s~VAQf-T#oIW@Zazj&-@bKWE!sX@hES>pv58w9N49OVze{Wb@5Q*}4 z^S!0^bwy>(W#{+vNCljQS1x_(5nMCQFD<64N*5h;b-!ngZVWTkoixcQDJi9kiHc_C z*X#vkWv!yVf~@nt)I#WF&U@YO9_8EWX|1)rlN0Ad@G8feL~ffDUj0@Ku!cihFxj)@ zr&Lr!Cl9a8!9h*o-jR8`ft{oicr#yq#;~a=Q_IZ?2?;ra|INx$J4CYXj^zk;&~o1u z#ghepo2RKho^cy4)Ng~oR`*KZkz?bzMgPe|7vRyOzh zGj=5KdqiS5IXU4Tsl3?hES&sH%47TK;=&yg93i{OSN%%qj8yGM?1w)}O2Ye7 zU+J?GlL-+vPVkDP#-N=+4gmYt>@2;iJpkYZwD=(X$OAuAwzB?`E)+Ah7Wa@y|s z@g~gq`tq2^ZbdS8_SI;fX1__#HOXCU>=OKH2&8S zDUwNhi_m;)rZ&zS6???_p^j$R#ut_Blth7y-QK@%%ev7~lOxs!GqB+@7NDS|{`m0; zGFMETWmS9OMcJg~;!=B<`Akhruh4Zor^N)b!Ec;ocds(nLsO5lHR^@M#Z$;$2qSPi ztiR2j@zu)D-%*nb7w_yjRJEAM%nYh>cNF%^YKL0VZ-OiOBDG&uUjF8DcX$43r|mrE z_PO#|kC&ZgWp8h9 zNP8Id{?+;R{;;z4?%(p+(6~7C=hoKDP{WoMLxffk-;lrZ3-VHEG@#CPCGbUo-RI}$ z8$+K+tdqV}usJfO7Lj;jx9fu=tuQhGt*Gp?@CF+yZ)z$GIjp_5B z{Yf4B>zG%ufF}9$LH+d=pIGWQxHHN`vsU$&tx)-ze)&I8t##!HBw#W+-CG9#l*)ku zq`TY^fpBv09IznMgqtD}*PBW_6y=UE6G8zji%b z_Yq6g-Cbybx{QN^GxyVORMW|(n`2a`c>I~Wpy$OdYW>9?I%F*hdipOyS0~;%IrQZZ zU-Rr2KS+7l+1TRMtJHS4%973@Y3{*eB2J&Cd4 z$tRqsWC)I(-;^PU?+V`Vr^*@{l5gMQlD|K=$2Dc`o!xv-xZ=h*GGM+an(Aq3S6ANr z+9P5py&7(ROY^Ya+?jv+4oA3)^=g8X((8&R zPo7A|abjv~Ypa!-wnS-rtf@FI264%&sQd|F_QCNSn6mA>INe_x&L-eZ2!;U66xM8K zh!R8`_TAr!Qixu7?`vVKzxP;NE@qv`cw0;B<{%h zuY{|EZ$xuhJsj0?%gugykMR+JbuWbf0aQwKU8fZm7IvQZA^6?hy&S1-NkK*R2{QE# zBm(aB-e?x@R}Wo2K`h?~9~{b5fHYzZUUzbSz8_V8aXYSCX{~Ic_gPH;wyhy2lI`L&Uvf%rVz-RKm=L42!`04QxCW&s+m)^O3sVkTrG<1}fK z3VD!PSy@5RD;PJQ@;Lwd$Da58g9khw7u>00K`DSc5jYo#UaKZr+vC)yuTK_AbTh}O zMsr4zhdB7{<=LVBc#)w76g13$HAr-DPX=q>(w2uVGY|r9NRl8C9kuU z^Pe&?h1AsWBj5rOq#!bXJ~}$|xNb2?$uIf|(8`3x#;!Y);p4A3Z!Is2nwXgQjEahi zVg?VIuNuVQy`^_J6L#uNYUNyM5&qgB91US=6|f=CvH-zW?3UFTM6&UEpSAz`4i5#AP%#U9Vi1z>Yi}V`2kJh;^Gz;u>4j|SMXU5**UctcndZBOMzDdTi`=9Qw4rVH3ptMnZvc`03XV_oqZiem)QQnOc zT~L^qm;}!^i{a0)sGn zKGOK$bO$Zr?;8Jif4hWJ@PF)P|L>{8mT68*uYB^2lvK;;XnB+3oDU8|U{)3w1P2e# zM{ICsdn#1@6HedG)MMlZvC!C9adY#W>}DL{3jZHJexMzD<}$$z^g|!!D*ugC@C|Cj zP3!d`+K(SUk}d;$Q_NOkG3p{baD5-NoYzNK$o`|dDn~u8ieos_(na&EH{qfzDLi7z$j>FJQ4VGb<>|Z;49bcTQz@*WXbkZ*hq`Nx z{H$o5uRH0U2-JrQ7vBzRkLqQ`o?A_${$=v$*DINKAF#=!o=xiqIsegc>&WFhG}9b4 z%kjv4r)s!-_`bJ?SA(vy#l@oPrDf*37&cE-l0d%0?4`(wup2rYj$2c2bag49V_kym zWen#FRc>}z*I!KMS?SkEWpPuFyX`!p=8{7NSJjsW(Oo}QBECjy2aKBvsjH*E!crax zxG8$u^Vwk0pIV`vqdr^JYMsxmKFoD)RJtCCK^MUYb^o0|{$HO5AdmYAGdcm|669bT`p%9HJ>X7q z)XRg%##B~%lX`!DqipZ&OnrZTgapagZm!{mvd?TvOs*pu!`Ena$xO_EE>5&=e6(&( zG;xL{JoVoU&lV+Zh!U}>{;7@+6&2+aWp7kx=?NXH-NwVK z4oJ-z()gT-F|a2g$Bv)lh!-~<+>)+WoUQWrnNr-Pd1XM0QGK#Ti>c80M7mz#ByH&! zEsOeC(vSIutkm%F4paxDY|P^2&D7!GalMQKb5*&Rh{wed!o_%jQn&33-YYQ7=H3kF z)_TW*_FW8l{wh)Agy;^NtMyZc4|M0pRL}Z+?|8~Qz7*I!qPey!P@!M;uA!S$v=#JC zs2VWAT}Zv~3)x$&qnotj&G36tEq`LFe*fKR+J)O+o2%lhTMt~tc1Lyp`lCDb7~DY6 zX3rRmkhm=-*pU)FuTIgHeSCcAHLJpb1%Mh9!)^08zy69Bz$>LU3g$xX@yy~%oRtwY znqAQ>sU1h%Mr=mKNXs$SkA)AkEb4)e~FZ=t4rBAN;f73>F*#GRX{OJ)iWg)f)kGOkq z^r%lgBIorVaD%GH389G>v@4E6it9=su750xT1pMK4z3M&(J*Iy^2=fzo)4%^w8 zlQ|o%rJ33a39VbBu?t!GpO+%feoaPCtvMCsZE&v6Hny%vUp}i$JHk~|+~D9h$%CTX z`u=!&mHSqW*(hUcFqwprQF>~RH@2W36l$jW3)T?+y*q%plOduIZH{6YpK%ZAN>75D z+$oSNyGKWPoasWWc=(Cd`TGsHZ`sjI@SgE&y+twMSPof@%EVj$!;w4~E(F}%ce#FA zyiU?yJZ2L`{!*QaxmRv?wf8v-ag;Jl#^T&O(yggI`BGCAc~3HbA9}>)FD&Q*n4PzPcV&Zc`V$q7mo$Y;n_U*m60F!|d6wG1-XP?N*g?P6x9rh3UPl zNJS;B(PMXVYx?4^$6SdEzO`$l?W5LI4Dk`xMy5yR<;q1;SqhfcG>d(`+XDXh2jnNM{o&6lt5ID043FFm*X}}Xk~38bcyR>mQxVsq9M&As%Bpj${oTulvcoul>eIw~Y!N zD{E*;Nr~8aVvF8)fJVSW%~$rDECCiWJlY%&4-bdlQ>ei6+T*EYbRUh)9XSHsxvBy=(D$i5HgSFSS+MP)TIu?fW?}pt15>uQW#@gys{tFP|bH_3q)} z4bx0k12?$4x2Ffx;*{g0g|mxGq3+95`cc4BVd3E-z$JtT91&`JUUC3D47%@&b2z`9 zyW058=Hlqrohuh9{(ByYP-wff9ET&MA4ag-R(HJkYuGm`Mjm#T$&w_93TNCjMnY>u%hrh>|S zgZc7II`gjyTRXWNGo%W*Tw3sFH0-`~YO8hD7^1!rRM`CIgDQBUq;9%E)wqL>z6kcA zdiwM;&@XYX$lr$p7O#FrMG=eXE#0|vm0OW%MNfB>#^QN-7b`91L}!pz@Jir=jV5J< z-D~x;l2Czhz;BEz1Dy>BQ28e8X(j6|idc?ZFnkE%!@>&s4vjPz!d1cuK9e3$;2d?009JUWACq?}}0=>EZw;91|_Ae;9R5aL3$Peb4L1+VPn37yoJpe^ZrRUzbIA$h{~` zq-uwa)*6@n0<}&V@glX{nw=(eTU0CxV*eBxdo0mi$Lo?WoG_*^mpr@6<<4b5>{5@w%Jm_C zyS8P5=epZ#|4j1YWNR9Z&#+s1Sg|e6O#N=FPY4Z^K&SZiq{A@k!@JQuGW9ZZ3Ko`c z!0JFB_HH;UBD?8ciYV)!63I=n?q4(gn=ELB*fLfox%L;CCLl0@Pc5O@cW)u*VSfLYn+iAdlu!$eY)=nEk;8~b+MK^RrL~g;n6*wY9Y_=z=~VqgK&8hTMfK`rX(ZNkAXj`7GAiV=Am8CD(uRO^@;E4EVYfC1+pY zLouJaba}mxhk014eou`7UYR@QI7Y}9``kqT5hwnlP^UC|Y}1jR6E9mT?MKd+u%}}Q z;l3HZsA@qUwX&0kX_6;sioAx6UNL!!r`)YLP_iZnfZ5XFsCEW0lT)r6xp`Qx?%3Q& zebE+vBR85g84p!{U$un8f7>bTt9|;XA8cwKXQL>e9We~$XH~>ne0BTYX_6Je$OwT4 zdj(K8jXOJ{yv1919r1qtxR|Qq?qJMQFe?12iI!m(*#FJ}Z$x0UtUHg_10Z6xnxJ!0 zwrN^tmm$8R5pA?n+Q*c}^h8Y~p=%Qb#T-sP!?L}`*cQ`_E~7T{LfiF{&%@f=EvBe} zxivLircC)xWgaoZ(lNtgFTO?cxQ*x*W&)7h(BRkALY?G#yPvt?ywNc7Eb4Ohh{JiU z^u%Rt=Xl_ODZ38GJMN=S8@-S2CJz=~PCn{AbF9R{vSdTLbpnhnX_OC;Y8iQQSNvT4 zN!KK^KID$nyY<88JaWkeSFiCmLJa1&(^jjrJYN;ZspGW0te0}cx|?|Wi@$i|ksHJA_o zI1nGG-L6e{|C%vsS}>WDb9QQ+SLe!qCLX+~Mvt$QqtbY?`;tk`vQXv3W*jY#kR?Dq z`(x&iuvVc@IGfK!l?7AXeC`{r7@lv6ulHi^qcNbVODE`dX0kQVCSUAHBTwFDVP_1d zTM)kUt)52?6XFnty4On1e-{^D!fa`GKP;@n$HY<%)op)lOq!p!iV{kV(QdGT(!PTNPU+OqQt7=g}sHfJi z7Gq8~<3^si)qYv;vw`B(D|l|6hTH(9LJPD68aFR$52svJ%`9tkI9{=#sniG{vhZ(4 z_WgOQj2mQhMdjA|vnpWZ$G_W}hbhqe&51C1^Zd}~11fM5E3(*BZyRxv^)5ucjLG4P ze*^A~?jfVoxPAB5sWWg3w;s5O4wgG4ZxWe*k99{nfmDaQe0-%@<80&O77VjQ99-O? zA&R>c#Hwx9+KE-XiJo6Jy7FHYL5ujfp0r2DD!{*%7S-8u{KaP{ti@KrevEDUVm}{~ zpR(G>qsPJXXEQ9}YUUS?{BaSe1FG+ty@8DpoDKcGs(#=9?!f{gQEcK#X;kEAH{(nF zY)AFF1|*I|Lr157b#WSOD=G)LNx$*qZ7H%)oD}~*rNod`?F=<=w3#$tyirk(+-`yg_WVftPXF^nR|d-JPi#dJ+)8l?vocFNms_|>TQbzA zl6SZB_!_G>r29BJLi}q}D)XFhb?aDDPvl3JkQ*E}Ms6@$&G09}3?O}`2B%4i@X&fc zd1Q*C1i6hB?Zi?UO~Nt#tL3xhK%x7m3n3yCx7_UBZxcQ}_&WI#Z61R+x78-mvR#D4 z49gHvKOryj^bonPtu|w95O)0VVEOWgG}u?VhoAH7kT%`qNUAwVw%hO!cJX0dGGSH)D*7JSmp4DyJ<7{=(bD#A@fekkTk+c z`Ch|cBKe1?@utA0H+Qbr$Pm9@DLbS1r_d4e#Z`K}ajMBxvxzzhZyu7{s)#m|x zb^&-lP<}`Rv*;(JqH;@G4ZATU9n4K6_D}Uu#|D4b zLX>g|VP9rS8I9qXwpM!sU~2HUU+Z-@N@AtQ{DW*%Z2aUjn_`BTK7Y5d)$CpA$hEvp z{Rt<+e`nvoproTdkGQKpXD@L2s({*Ovx!yk>@O|?=2kG1S2;gBV2QX-LhlPMOOv3~ z{2w43lfvpT7S^#q_GVLtWq0t(-eV$3`e*)!4Og)a2Z1;WNR45kq0UF+#xS?Q2L1yt zl8oQEPgL$M#Z(Mn!@#2q^%5bO;O(wfeO32zHXleB+>xrkSV}HV@-Zh- zUibPWx!rkI0w_2whU zP1Xvtgn55(J}Oa0+1kE>rfF-oJ_#m6-}`^xof7u@48)3^T|MEK7`HVR6K*;zgT3h< z18IWk#th_vb8zpwwe(C1t?8PWRf%S{BB z3vrW&`?d60uzzZd>+{ifF=bzRMgWy_6*h}wMTY1wOLtVf!*K=~>OW%+3_@nFQEkuZ zVMtG=I1m1`AUE^v08hp9)l{!N4;OBrnul4A9%kIkta$b#tEWf7Mtb=)6YWAzD2Tgy zku580Fpo9HKOko!EUvef_;x@ltxMbUUxp$Q*J03dY~nXtT52vhjbu;;K_99Q z92SA*@pcp6rwV!Kg;eT21W>#`0J~oVvk8zJY^@i3!YP%VcW=z*EuJ?)xmGPqKt6T7 zZx`rt9;IJ%*~#MCdcyYo)vZK)gUE?t+q zNQ+ewYt5Zb4UK=wtC|oIef}j`P~X5b+LK(=xZR=oqimYgvjiwSGJ1BuUVzi z-0S&#S|-DIB2|A6OlQ(hCy0mFQ*#~o&$rgGlwj`KIQ(V^=wzMR94{tG>uw1oushk& z#b?y`%}_qIpb{Ao(ej0eO{LtD4AekfNkU05P8!LYPT+G2O-PV(cdr@L#}{U2u)-!A zJq%c>(&{%Lh*d44j@Wj5Qp`2}E5EJi^iYL!=Al}vL(p98!}+nH*hyUBw@h8VVQ!zx zR<|hrj>X0Ia`A<#R`K}^UC7UkGUkY#wrJ-1vZX+GKd=G<`=DYgop0y94Oca@Dg zkD$kfvw&%~YzF7z!h$nQq@7n{j2YFA8j!JJxFPE3$eFE_t2glDO+2^F&Ejzl-Q+tu z?8K@-q#!}t!GF;A(*68zxkG^Ho%t)_FDOPDGm-Tee!7k2bic9xKnFAUri)>vT9ekj zobI+zZRGn{O7PmqJUI_Ux-ycI!*y*%>0{&c%E;SlihW7sUQ8K-`Kov<()zQ-UE}D> z<{Pc8z7O=}2#uqxbb?v{gMht?4BGFbV3C6G0;9dX9fV)x2y$X*=t z%58AMTo$EazgI~6drd*X*EET!(63*;fIdX%Dj+yk+sHkaKt!SsB%Afk2{HDewXXQvzt4KE|*a7lG&o#cE@$P#&Cz z4-gGuzV|0Jd&B;!l#@GKTxM?u#EP~|IH`*QoEM`Oy|CU(J}$>F zQQR2Ykg%0lETye%;fcQ|^EE1x54C(D_(kC+kDK3#Z?Ui6b?p)NwU%3aBFhzEmG7VO3^C1rD}Jvu$~GDk%Q{s`ExJI@!^&N z-R6qzx^q%rM=r~$-ynzS0b+v80Wq%J+uL(Ko^~R+GV+4aJTu7E0y_v8HE0N`@E7jO zn)(P-qD>a#1uxU_4^D~|7OZz(Sa=cbI{DHU%57O-9tOtm6WjGA71 z>Mg^EqzzewL9Kx(p)k%!?RTjTOLE_PW7HF``u!4!p8q0wr~V<)5j1ZQNRJBtA2YXM zhJ1a(1n_Q1$p!mh;11+SI;{ zL&yrJHdee6$3JWzm3qB5#yv{7;mJe>v!=N-ExCi>!#2}W&dw?MNfpMSzNrO>cIqVe zCU9++!(rvS=;)Ln*#wnaq4m5l5-TgKGssjEigH2s16G2GKlS6sH@yVhj;uj%!;|)& zCaFe`nUL|>=*D4$qk(3p=64pocdz3dRR4=-t~yBKJEW~pt{-s_a9UGNtvf2@Iw+2u z8aS~Kx3mdv-5mY>TmVr$-10UXpvM5f({x-d|C%eJ$V8nrupV}GfPQDpoO9EW59X%> z1M>X*{LI8b2(?OAqCgzb?qS2(%EkXOtaF>?pn(zg6B}ZgilWY2@0x9M)az^~MVyJu z`5V6bP;&_v}R*-){t6wX*o!(0ME zu-Yt&Syun$tf{FPE6_!j^>F(3;|CSUm|Zpt+fJZ8x{HBfKQj5xl=;DcDK6tSPLmne zvBCLZs`i*4~!h!>h=uqcKVM+3Q&zlQS)Fg3O?{20aB#%>9CcjX>pb>-KFq5Yc3P zMaa}`?t+04ToQDlXx&QCwX9ZawqJNW_I+?0?fPOKrEakavUuG2GGmnZJE0x|jJ)DPy3AI<#yuIYMXTHhO>=OFtj z60@LST`MmrLd`$EMqDjLheN>5@~%z7={fW}62F%L0@KgNiB+{rR=sJSaN-)Ior?0W zO|8sR#+ADPZ9(M=Xjq*=aDdPtX-B4 z-(6TOGh(fn@r24XbPAELEGJ>J6_9yN z8P48@sAm- zOMC9sX^c+vT-dxEk1^L<%X_P|DM86mAAZc4c+;M~d#vjaZdI8w?zgKg7MC9bH|8K! z6Y<*9WMwH;?|~M6ogWDU8ynK{M_PsS9iSFd2P1q795$3*CEP$p8OoG`3lYAf3=x1* zj;(8bj zR>s1>$k|6hzIl^5t{VYDpyVy3yhu->iRX7I>iPT6Zb${POf3Qlvu4@d35?2Xz#sM| zKTa>^pol_H1?T>x_5qQHEpDKCz-Z?6=^q*u$+SmOnY=Lu66TGX#!sI<@#a$^PPCu& z^pCFlHK8ThROF8-Jw)>un$S+#`)pwqndrj(kvEc+z+%{PxAYxGi11b=*f_#z{)*ayL!o;v85e~2*|APjNMR4a=g|xYcEtU2Z$5$Xa=W`W_ zhAZDW<|(=mMFU8TH|&f=&|dw;#xfwEVUCg91j(}J<%Tw?pnEhZLJQw~{AX{b0vBWj zQBHSspPPB+?YyQMGcgJMtHgr@(=%)yNQ|J^#p^f+EgPsK*CtA{F_5xtENvxTytv_7 zJ0k~dBnZD+4OoY>{$GFs$EpWMj3g3=mg4s^s&ejpsdk2*dFjiEDZ9YRk~Le22;}EM zVlUsldzaP;GOT`+ECJW41w5cG`pPU8$=e8oE9yUfya{^TgaNGAmiL6iv#l&MZIQTv z&_fK~5yMhMg9gKQXw|OvldgB*>N#lUBs4*M_jj_~7&uNE@s{@K%kyJ|eh04uM8VM1 zP(67vzq&da{#_}nh){FfNE1ZB)3NJs%WJX>JsF+K1#cg(kHV-~;~YfzXlQ7l56LRD zw0Lc4V~M~x%?W3Uwi18e@*uf`JP%R{D(nF9XuI#;2Ht=$NDTDcE+DHU6!LJdBKX>Q4mryTqS1*_T&AJfpWH*l451`!N2&Vc4aERXKddocnN>C41r>& zGPR$S4@s9E-+UcXRRfGY@1$rLTSw zRjsJ2tE<86C%`^q;dN zewEO3$(XJ9U8;CqTJ!f1u7(f``LgqBp2>RJO zkenR_pgl4*eFiy%@h zIOj-J4m0$(vs3cRJYG;VfBpK!Y(4jUr7NZx)(7ANROsHWA43dxNrJ9Z6hP_G>Dl8?v0{h33ekKe?*NR@vl>3i1C4vl_Jy1E$91Hc`{{2)#Ogwhc9CsrZr1{Y-{x&{D}1c~Z2n!_qw%~Yiwld1lE zlMmc8 z%x(rnEF{>*qNSm+u8|fOx9z%VN$X1vrL_f`_x7$X`)~nRNrJ=ggGVd>JYTh1gR_P< z5fmwRu&^A%)nO);uhk7XgN*WG+c9nD#Hmy$Nj?>HSAj1w8ee8KDkxt~DR>^0Y6X`2 z;*)!0k%#Q9&OEHzE3(V)W!&dc-?HE?m-L-Bs-dW?q*CpITpn7pzzoG4AV1IJ6N#DFaji+Vb zyVxanVW%^)oQTK$N`-oH%gkC+CS(wn{PJ0BhGmVniceTr?j=jR{R@wV2Te<- zoEL*iEz4Oz3i2%}Nd^`QV8s#%@|th;R@FvI6^i!_??!96O6ZD9D4FQ7_m7RNs~-&% z+3p-2Hk&K5s9S`qZALS2isw3ZcN?uYB&aM{|PLiS`5xH02;v*zH$ZKJpD=uv}2 zNV#vBH1g~J7-iR~AhY5hqo_t8H>9LI=5<&XQM40*8GJ=W#Ry3(ufsD?NaYsQ+JP&t za3Vhkaee8iRwo$41$uA9&dmAowsF&^yVBD=JJ6)`Gk%4Y4`z>xWO2S>OJ&;PaTfK> zRa9RB{@7ecafaoPCx)B>ojJG><20N}@9B%>4H!M?+0|(oi{y_@ZV$Tho;_PVgT=+Vi2$oL8v38UtT(Uc|njQ7VNuB>l zj(wBAG<@Rc?zI=#QxFh7H8*#3bTnbz z)tOn;ub=%i&ZZ^K>!n`%^}Cs-r%1)gL*kY%?h0M*(M_LYB=@E0JuCdGt=IS#zFfB| zBQEZvyF4*m!jF`DYn0k$N)1?g=wjemS&HFR<1EshoskD?+oCWp{08FA+s^kM{1KhR zAy-2^pW9v*oHg|^$wP6v^WD?TQz_@Q-o=Rr!TZXRNyPvLPBe+mdP4k|PV!y>CYn;j zhbrq)eMv$1aBYsLD;2Ha)(?`@Yi8+e3u!_LzP>qR4OxzKGN4H*E*P_>` zSNIl|9rdM_rQRT)kgz+O@tZ87N0sj8A2P0lvXWG`7%t&Pep9eN$|(3Um9poFrg}Rq zUb45vU|3GCFyb1Sw#=HQ`|Ufo4>PVXTpQ&59XIw|2F(t4VPO9q!HRELtS4IODd|6| zKm=QJu;xQdnRr&F3e=xnJ*Uz&A6+>iyUxzY{mtCljDkZNWQvL)t8M2yzs-{WOL%L% z{@M-_e%c6N;Ga76XTY-4-8nB4dth8271(_a4^VaJCu zl!G~G2Ory+SO1ivX{KKMAtQMnLPIHf*R4X=eLt>$cuZqDA5%5|N$*g0POXGMIf!bC z(7JvsM}@{Ki|bjkys2z~1J2t^v+#%-D&}pZjrLJ=y`CCR%9E?J4?1Yh4;>UYz%Q_a zN|#ufHlf-Olm^?N2tGkFNiYE-CNwPU6jp93V0lLt*9XxL{(2y@11xaWWB!b+&aR~O z4$VeIwyK*4t~bAE9hfU#^>#zi)e~jaZwsOre%m^Ka1$#dhCA9w&q@9v`0%E5hq06V z)i}OAz2taLU$8Dl5c+qkxaSyEfz$~VlV9@EAG00Cj!M?9Pt?A(3)I5S6~HXP%DqTZ zdy(n$t62Mfh;j6Z!?9d|{Z)L|vy@+Y#@Ye??`iR5nBI{rybK}qta^1mNcq&uvfm?^ z@IRNPRoU_cxdE{?4l5=&1O%%z)u0-WVKqbp!fzEJZi8t<)Gs7i?hvKaKE|Qf)v}a} z)lstvfOcUzG#=ypnJlBX;PNe_FB=+9v{FN3$<3?tjk{k^$Y5|oG%FBFVMFozLZ2d* zOIt<&?$a9aa!8upo!meyHjj%(xIvMFl`W*5G;^|x7ecZrxaEiAUQAmx|@=kN*69FCdRu}(VrnhUQ|@1 zaWB@y2ok=7^=a4qhFcqGwN(x-(P}1+R*u6e&G{pxls?4#s|dRdil~ab`CpOkX*8cI zhW?ZgPxunQBR4hBDBoW;4(J$*3+=62;y-%2TFk|hWUsI`o{B>3acWLLe7j2I%tln> zPBWiRf4RdW*W7pwdPYq~BBWp{@^3(2d>&8t zO~JMVBl}?o&A^tANvL0fvFEE2zm5HURvoslS}2r|gl+Iumvz6p2lshfK+bFoZ!#X& zK`^hIOG0cpHQQnQV0zb(8FxEFsny`0@5~hzNZyku+#Mhn8FS~4ON+z)YI;b)QvL}B zgjhdfowrBB2r+pXt;l~xki8_Dp}pnlo!?7i}KBOu3Dn|RuSG#Kes|rj{)32X$RdkZBb&<&!5QyjWTI6e&QjI@KQ->@hy{8 zdv03ZRcn&0O*buOF`)X+afp|$k)7;UEsXo4d{@r;(#tM{(>MO`~PV35G zsMVrNvd$=`RRHxAbaa8hAQVC$0Rs#|0ayF5w!Hxfrro75nIe~c&?j%QBEiaOBVs-9 z&nMUpgN=_5yyfp{dxy-{ITLskdeu?6H2Z`3KDX{(=HVh14XBF)oh?sw>rN>BSt!sJ z4b!z!%W2sT*JThpK^OZ~uF2YyIH0uF9Z`ARMZ4lV-R^!mDJLJGySPir`LLIw@0=Ot zmbx8YD!iXgM|kmLZcicj`pg)K9_#n;H~?ov13sEh9>-~MvxABM@?cPg%Y~knmX=0%;+3ab`83g+|8QW=DYXDF7ZvqmFi?M;krLn3VR zp*QCEwriT#hqDo~U{ZolTSJ)-fO;_7Q-LLk769%ngzJvzR5tJW-*F(6KO+L1Ux>Wb zz9;WZ=e=#MEBr7UVqDG3Pw^?vgk+%^gt21>CwBy6`$OP{nQ(xnYsI#Awc6PwB(jB1 zo>|=@4@=R{v=Vm1x{aD=XUVxedv(LwKlPiK4{(p0H&tZV~pVv2#K-bhLsK*t78 z9N2-p%KioeHrKB%&-Y;uuRm9v3$e_ZA{t1#inKLR8VEbWbBl}3u%2|fp?%!}@AD4| z$}Oq=?@=3g*}kHYcS{DldG|A!nc9z=l7YpkQ4-$%ye5An1)#{k^2hV&l~qYfx0xE` z?^0OKQsJxps95=`&^pVA2fYHGXrNkbR0yOTEFQvRQuKi7tvQ-7gK-LvAqnhq19yNK z!RQ7BZ};$U8Tz#gkkz5UvrA5lK~jL&j#+`F?4R~7hO-0u`uc|Hi4P{szo<5pCiJHb zuBns=#H>b=x9TaZO?D*3HQ7~cJ%c#@$_Xd__YI($dm`M}eDL zg_Rt5x)1UzBr}Ba3Ubl z=S!pu5Vo~t4M@QuB}FJmv$9~Vw;BEtN0o?J&&)4XV}K`^1lyU;I4@#uRV-pb(S#)i zdex#&;C<|G%$o#SUY!>1^juBtY>5RM;M#7y^4w|BjG9Ma_XZ!FEox9Zj8Y#jtklVM zsZ~UT>(LeCZzDwfS`~GC_pTE2u;fafOK~FASToH+f&iunhO#{1U~=;EP4EIN%D&68 zW&|aG?EGQn#ski9sBF%0QsABG%W@vB5Bg1_lTJ7iDh&R%P1teS-lA0tTX>fT*-|NTVR32uLH{UD6Fo3KG&GARxI3=>|dR zmXeb0ly1LusdLBiJ@4_n?;JC8&y3!%_vXCTx#Iu-t)9isU;%nU9I(3T8a!Ax$!$5| zR`ChHOSSX?OFe5&5b+!53Eoq|i>z^{7DKon`3brlQZ+>OI-Pb8$wtAz80q+^x z%?>Ls4ELI!!^g;W_Hnu}AB*iNKqAV9OaOxHh<0#i0gor-Dc=?&@awQDOXd zc?X-vJj3C);PnRJw@<>g~b0+1Ulsn@VPJ zpbrSV1}b=Q8^R6f`!#et7;lGW55xqh_TM2&P+$v{-FYuU0SUrj8cH8svDj4CD8L1nlioCm6nMjkv>g27?@@U*!`CLUq%BHujlY1z{JH%8 zcC=5?@wZsTE8w(M9bkwiJLUGveTDQ7PJgbdpO)JQ5XO!5C%qAm7T-k^JaF`Y>1rH` zgVC$EJ>gPU!bjFy&*&!J;_RHe= zDpzZJMPEt=X$dEy=)9W4tVSm|#Cp&|lDH(@8-hgs-gx*pN}l0Vx#=iUo*E$X5r^4y zp<^9W(bE4uN);;RJ=B)#*K!uFOtxiP?B(ysF&GZ<k7g}?a&Yfga^IQ6gFHJUcw2ja!Y?vg z<~)92>ozCP*y~uA&NNG%4t>H6P*@n-Hdy21<16H<4xPJP2mX%+`05fc{e@Zx8R)@y z6&+A0^CvS$EzJSkKl*e%%~fV@p2fdtqhaUSg^` zPw48T^>(d0k3}}`^!IeazKcHX3JyNQaK}1T*9Yl|%%Ab)s|5*HO>3}vL05!$fX zy>_~330uQ9r7u25&^yn?GMGxWQ!$rDUsoVC@G5owEl>DYE;q(rdTx2g#ZpCM?R~9( zM+|X-id*zdl?*A_RmJ(TxYxhCi?PMuS^EdGUwnZM-Xi2dPSpuO`uH_HVo{r#k%5Is zkKclzaT=Ic6Lp^DaEHApGJF@1Lb%px*!{C{M%|D=se&pne#pw!ko@tht<%J>Ymp#q#XQ0|ml81l^hath6pGLBA=eQ5g0A~62}l7@0g zSML7Sk91I!Qe%%YQ~M}9Qs>=Wb#vo--yls!f0mK)9&NLd&Prg%pUF%4jO6XL33x*n ziP`)>K+y{WFH+|fX2j1A@%gc->3w+a0Sd;wRQv1n$OU)`z!9qYwu^Lykv=MI)YW1Y z$~clA-}5Lk#mGCmIyI(O4RsAP1NyqJ7E_e^;l$H=?BScx6wsb?$QT_N5(y7RrCiDF zHl=*UR?Mu^2uIWBX%rvin@G-yB%AXI&Oz_r-y(I}*HU+!y|%kH764sexJ3xAUE{j4 z0*Ou|WX!0laEU)T!R%u*s-nd;Dq}@?xBGmFZ+;C4#;8rUyd)`~-sG@#8t+7AHdMxg z2{Vz6CWYm5kynW*&5tx$V^XpCG3YI%)>^vDLb$8#4Xo1LB1UDL8Mw}=!h<02>p+T- zQT>^@IRo@=fggh$R8q&8%ju>%{aNzt12NF&gD7x*;&0YMNlA&3qaY4OpQGJX9Z2YZ zcRyiBtS}V$*BQw`Wz3T&Vb3RBnYCGl5=t}X7Wl?+GN`K~A?MNPYI9MAR8HqUc z0CRzc%qx(&g9LFC%qxI91y};h_3FJ%XdiG+#c-Grck%7rI)DDW=}>_;;wXbV`+<>5 z^1;npX)MXI)X??{b}0^!33y*l?`6noLE_?|qCvS6SeIMRDvrOg5{#KY#Mt8Llzh2N z7p=_YzzPh5LKU{lb7dTwP};#H623Dazk=aMhrl})x|4WeC>o>(&(VDtkRg*IYu7opI+e6!JQv`*~V~ML%DdUpNAB8R{+F+$+A|E^aKKR%-IO3emx%M2ouI0S>`CwyjeYbG# zIY!v&5zo5BvV>QnLEw5D(Vq`K0qWW+5Y)H;P=$A=Pj(chl`e2gBHk~uaHAJ>TO2R&i){dK}1gKNy6%x>eP?Fpxw zRTMJ83xnkMd#SHZu=VoRs_4l zC?ycVC#Yw`pp5B+r=+9r$T~(nZ@#v4ce=u!<7ZPQYgPX4ywLCB7RvNW#pT1cyCHg%~dn)3l^MsD!sQbYmL-AbbliOe@rF7n1L2vE) z5)crO0`))OyoTUn@6qMM#G1hPOSyenIZ~m~Usd)3z_3@2IY}PC|N@Zu|z3F4H$0-b{ z3+WsT<#NsS3=F+!_h>BAVrTD9AjB-7{hWg&fPa7DEGWyA$}Gw06tX8kFl(`7N$lO; zXANg&>RGk56?VrnH}{)hynAzDV`huz=<4c6i& zh$v_lF8Mh?RNetk_QrH4ozJ3K^NF-}rs&SB2{@#b3Rg zVbD_@#XRe-BGyc!KP)FZtg<3KmktwNQJqdy|WcOSSAOc#)3NWlLFY7M`C%IAsOd zZ9pVw`~%&Or^%qoMy8;-U>XMQ-9zB#p)Y`n(HEc0&X`y5_{GQC>j7&-U+I61JQI{; z9_;!Rzh|*5IzI3!7f%9_uo)7h;h8pMFld3G{dU`4>dywUH=r?Z1+l*6(X81k4MJej$DKwl#Q<-iI;5pf-lgn7p11KxCy#W7nja; zBZ&F$`CW%InX#mALYd^^x_%p4vtcT7jp2KxpKR>?QD3eIs@B&Z^E&P^y6!I}v@MXX zN+k`of&@(eYwf_+(A>GF^k8|XCVmI$a}8uX*=m)M{H}*UXZsAqg`u*ScY%>*_qVq- zYTYFb^HM~w$*k?A^FmPYjFy%bLNfu0`DUN2R8qgfX-@OsA+ZGI)!R@-^yrI6XJTGj zNS)o{Iow+Zi&6!X-<9^gYRq|LTc2BErHv)J?R6 ztZjkdOi*g1xV17IwCn`@ilvY-XcBHCxdZ=Awij| zr3oo<52;1);cA&ZJd!a^#Zb-u95&4?PvvM=;2B?iI_Z8>^4)tyY!8JLrV8;JvWHEU zFGg;&8RU^o|E|b(Rjsi0L6hBRUV3)6)ca^;{8R+wONje%sjm}SB=3o%#?0q|1sK85 zYnUaV_Dz!sAP~p>Vo1@@5y=Lx$sr0$fuFd!P=IvCmoL+0f5gabG_JF~hon5y;v%=% ziR7g1?-%zc=_x51mAUD}H_A~);$EIjkGRApO3!g5wom@mi!GorA_`Q{*8Bb3Gc0nr zS1Ly)B?Nhh!{o=eAQ~CSRU0uJVS()VMWcRU3?dfh<3opmJbu|?THMCgmJYO*kZaoI zU^eREfu81Ysf83|x{!pAK#x`lRyZ+x{sLf8YO zw|ZXv9J|{yXnh+1dh9*M1c-IVbPx+KJ#OE0%LpWHPoJt^SkLC^bbsyxkWQXwuT2bW>$PbAj*^4UfTCrG1{|mBM6dNisArLCTe{fGiYcHI)6L z5UyYa&r(L#9pWEwP0*#Io8P?gWry#}fsOc;M6)ONDDu4KBS~iZBYcUjlXXhCrVw>g zUJ@?nT&(zy5N-^GI+Z+olENTjEKL9cjE7# z;gxg3$lS&%>FvB;-jyEEQtcruF0K3O1a$Rtw71$6nMUX+6D=7dN@{3VUE0Wm_>w}` zvyvl`I}{WiFE=J0HI+L=-6_{d2N)NO4rS#dz!TA~<;G|#tfy1ty3;k`SWV}srbrz>L3`TmkS3f|}pK}7!Hb4nC`JQ>;JeaCO~ z!@&%fMf|M@xMw4J_(uyn!^VKilHG#g0k=D~zszJ!Er74GpNmQpm~xcwyuGwDn>ok= z7D;Hy!??60zE!XHrzxTf{}JxO@|2)vG_pNvBouvPtFH$oe|s$Xc!6M2d>%_+*!!@# zU7OrX_Pm2L6PQ-PyLwi$WcYhxXjf;i^zuOsQ%!!}V-ccDCa z!>cPo;F5f)CBp4>^o`-GuR`4qmV+GhSW`5IwF-AZzqF)5;~S&oUUejbXw9vRa{}YJ zk1m)s{UEsN9Ja+Ap*&>C762Y41|_K^*Nk_d?=8Y*{zmyVj-!sh=)!K@xJqcwrDSln z(z~i)!l*7JCA--aIj$!(2P+btIwL&ju*$I#86Q3e&@1iTsw9?HC^3Am8!&2v7#Vbf(*g$i~-{?o(*qIHkaq2t`k2+Ya`(Q@I zil#^S=~7@yAE*gJ)UrZ!eBKuZ52a!ov}?+nL}?a1bquOt(jeNoKF74tlL>?e70d+X zy|N0y!r1e-plc1)E1-d@OhLuk z7%6t1T@Vdrp;5R9PlOs|J>H|k6&AAU`X3}J zMC>cr$F96Te|D?c7&fUL$?KyhQk4r^iR+X)npaDwh)5ewt^m~S+m<*<7i%Yf7d4Y& znX#Z5&C`Q}Ubh4gCGG4J7lqHvcjrr7e8i7&3?e0`C6GtmD6%wMm-JEN$8sk-%kQ&k z6=-bjXm0dP=ri;#AR|QMwqJuzhIxv4mvJ!*2sKMghXg@i2z5HJBRL}zxo!QSSdD_= z0%&f(jGyj4NC10N(?6axs+4g(U5)rMv;SaIF+0QJ}w0%F5M=+=Jxhy!|o}w?#ayFsm#HNB=3|M>=L1& zeFvwB)WNAtMvXKfigbd_r>i&E;Xf!uW8E$Eh!?jCfOe00FL-Dy$@nJG`M0yv)E~X1 z8NaXcqzgSNOwssm<)^pr>sdrkTWM(Tw#hv`j5*Vu6?r9qMBe-O3f%$4tcHJ^(f5cj z5={oLu6 z31q<-oVIaLKF&g>#{;mp3d12_nTf%+0HqoiE|6CuTxZ0liy%fpbPYp`7RaXH1nNwE zeSFc*&2y)^ zfz}ZVYzc0(i@3NsmZ;JXA3k8`T@#)JoVVmif@JzMm~nEg4nT|>19dz!UqL!&)o@MG z60Td3pj$0aZ^ZCAvOp{8>_m(~!X)^3kX;UvknAVeOy4~*-l5;EKbLJ-goxx=RA^YD zsD|KG98bx(jhBR#b*jx3FI_vq1#@ z)G{K9#931X?Hha{H19iM2U3@52%=gjP+o>c5a6|HlvHy;QmaoWt zjrxsxor9KKRgJYqI@N5jerETs>$?6Pmj032nm{V$y4+W+QC;+5Yv9Tx zuG(D}+V^J{V$!b6q?(0}PKBz}mA_7=z8-(J%zj-RMvIMgp3n|7g^2D8)$>^ zVF)3;;-2}mxC481`1om)OfTw%A`D)C?pCiONhy*^vx6@el;sjGbdVE4G8 zmjH_D9$;|4eodReR{M_#`B`3T>;G(MG}3919p_lCP`6$ieEoWJnPy+_+hg2K3Zu%n}cf}K4AUJzNlq$qTs5FZea3m{&dbU|Fy(S`a)GvR90III{!N{o4<$phTk3lQs?M|BuJcGz8$%oQdEy2a)sE)<@Ot+R#X9|T)OX>%OIlo zFETACc#U7k&#ry@$F6K$J1{@uC=a8h(!a(Rm?7CQ9KiF$8Vpj}E?707KD!C4RG6TA zcCt7c{qc1;vNEjEFaJL+(5V{nz4~f{VQzeRTn&c?Yuh|ZgSNBwpN#)>C(|3+&)C_| zo3GDgj|g8F4CAk6V=r|xGymxy`y^347EIIZ?24Bq>NJ^vs=tCwlY| zl^*h6_}#B?J%cFeAA^D>w<6|5Cx^w4_6+G1v>WWk1i(&9a{qN&tUPF53dCxE@aOp_ zv*|~JFd!|97RCjSg@u!P*p7KhX9&s9vGD=|6MX`7%?N5A+FtrF5e2?EeUKi=C;$iH z38O7Ib_npCh|B7pqoX5OPDs(f^MH4Y^ZD{>YFgTrn>UxY_rNHb0IWQ}H*btAd64Jf zdKNqn%x6DC?t<7O5*+7Z0wVb~KA(jb@Gd^S1Fp(wHlr)BBIEY$+h`COJ%Ex7gxP_S zt(~3oh@%b$np~|geMevh@KP3b4vGH{UgrOJ^c8`u4_bRwmL}Bm8mywa1jEs5MB&zb|bZjE`ag7QYmIu@YtKaCH>WVIt;LJ(pWtDA7hf?8)9a0}MA&ip7gxehUgf|a#b zdLD4{Uq?pbK+YC}0Oesq+YN)nA21D}9f|*^b>;$x11u3dzXD+umG{4xs{DXewNX`z*zp`uyt2gl%sK-3MM~yck8xT z&qcQX9l{#6H}0MYf02Ry7-^T@f>JHjNX&eZIAhaNk&gC5)`w(Gfj!mK<8qy$hTvW6 zJd}!pFv-ynH%H}biPZYw6RAA2T>R$|tqsMHUL!?HsG)$7Ma&_PnB^mnb;4 z7vx|h?_x8Nf=Q;z_#a)~UN$^;XZt;(hcFa96#bw-0L3tv6&F$RzoF zC1}Fb8&*)@fanaE=&*(+(=s8b-&ha&7Z=I+Z^cV0>iq9#<8c01Mln<+%dpKHXm_$o z%8iGCwLR&-9%g5~1|)KyG5l9)_ytw{)Na$1Zqw9e)0BnRgWjnMELK~O)}JH|`DFHC zKYWwp@-W8CCl(__S(yCm!lURsOmY$Y*3H6&kyH|-R>j-6N7)^4+k($O8T87p!I{&i z9w2Z|71k91Z!}#hkrE*ZBnkOi0ZHKHh*@cW`N@BazY(M(y{Zs?@B6#Zh8&Wk&KG=l z4V(VCseC8DV3K@N^O^I6OfLwY>CJZaE3as6cW0awMUa&n0Igf&TrvU;Us~ld(FobCTcY;?}Dw z-Q1hQQJwGHz(MhEMTK%Z+NaEBt=PyGIgB^L*qOq!zP{OZ8{Z{E`J$ebR@)z#gyxec z7Z5@K65`9t%cGxBf`+68e##Cr??hEEhsw5;+RPU(205dFpHZYfhGl@XMSJy~>24~a z+)YK7kMC$slFLg(&pBOJ)2WA%V@>K{A`)8{gUa>xHzq&ygoMb}Pi_kWvFf`E^}A;Q zuUH!*1BSPMc7Nj=4o>KC+xGvNVo&FO%p12m?D6NSM#zQ8j3}U?{;CvjT?n}lI9V@3 zF$)jP`!Bxum3Qu?hgd8|F;rrwV{2;U`nZ;356x|9RCc+t25-^`45{QvgCgN0L0#sV z^CLqRTUrUUgC!-sd}4N0r33|-&pAD_1l@@4U8A{2Kz)xuP&-L5rg~~k;CzH3*}_En zmHG5?r4(g>^NCdR_2Q;r_zjW2>%Qclkl4 zgc{nQhZe!yu7tSY_oW^Gw)|W0Yct5_QG7yj%W9TMGLgBEYUpc1xQiX-oHcjpN5M+$ zZmxQ0~{fzW@k2jTCT0X`s1MkK-MP++sGsb+yzZ&8*o!1`88Ck<$pf3jyN^% zK5fp(JWFb+$+E@cA3SIlIZs_aJl(q;!GJz%Pmqx#Lzn%u=M#f`UC?Xkyv?XxyQ#B! z789w@cG3LP!Zk3OB(R&d+O`z+jT-p8l!a5{EgVmmZhg2ii@Q@57HyfYUx~Q^>ESHY z!xNe52~*JenL)4u(EdSogN#BWA{VPAv(r^vN?iOdC+By>D6IspDX`MiEHrjUL{tju zeEk;kCxKO0N^j4#q^|aGrJ*cIXw@58WCh3z) zzZHP`<}ahh>)Ow-sz}Wi%=QsM%TmHh-N<`Zs|EvDAMGJ{b>O9_8%M33{NYgVs@m}) z{^HxvsRw322z=l_+>Xp(q9hF&@=8|7SBhuy^4}!%k(L@8Um|-GdzI@kzNFsut$7sF zzJsCBs@dey>C3lER~}V9Cu=IOelTwCx7Krdzuf&2<1ZJlu2Zoo_nTK?`WpPeVhxCi z2A(6=1^uk+U2s)NAG3)4EpCjkc|(A&MB~bDKE%2{f|J4Bl_Ac(-3+;C^v<%f0$(cK-1v zF-(Do8#)K)wc_g6Zh13G8B!P1I4sMZeyfvwz;(~%$vdIX^=dCxEt4NkZV-8UI<^X5 z&kEXBSR~E(M&B%%9jt2JIL3w&`utzKW#YtJX+{olc9l=1V**F(uehmKzQY?k)MOcH zffh}A#@kWo=RtF9Q@n*f%WeI=WJ))9kV@**7XnzycKyNqa_w<+UeZ85N8{S@*HLZK z11H8Knb!4XPS@vjr~GMmG2*T9FI0-x4j5ENx$c>ak!c~4*?B4>F@Sy?n#84!moY^VfJwl>s% zqn2NAC5U8FdjG}FsZf%WZ_t*_A6}ge=HSss#mfW)$^^vApy2Pgg$(|a>%%k0b8->BXgc>;!LCoZj zF%K`@oDueYes}fD+al~uk-UDyhyp9#-wei5hOe1O(z%t+SvBAa6q2WiNiRp3!t-7U10yKk^O zbm}stnqxRQ^Nu?&b&%GY zfi>n^UAY|4;VGoDnf1pb=Phx-$CQy!-P#qIQyUKik53u+3LfKJomj2gsYa+?7xhtr z2nwUOhE0LA`F3S@yMc=2)=*@x*A3ja%fup@=-*dpJE)eifpU)20vfJ6^1qqe$UwY; zI=N9RUy1hFEzZ5;`ht@d0|)z)ClAlkq{ni9rKN^lHrB;BU^)XvX972_Phl|f4^FtG z%IAAyZfU37+1P}B=pfPn1-$BVCgR>T>DJo5?`{+BxYV7&0eR(@g`N}Rm(h(*yZK9B z>LPX?nMM8f2FI4j#w3xv-k*H+s9m`#IOl?a!#0Y~lrywt#iRn{I^PpbT&Ik(kzR<| zQl&{P_tw^_b!G7z6!T$q&A%5o_M)srvHU8OW5~&Avnb*gF%RbCOTRS6f~eMFEZ|Lm7kQOWn&A6Ut@VW_0_4A91$9J zL^>qzPLwez@NZSCT>wNNoetuX0dWW5Dmb?OcvKokH7*=-$iXcW8T4dJ_;@N0~@)Q_oKjGZ5 zZPR1*d;}z~PXAp+D?nJU&{oy{BuLR1{~YT{gh+G9X%VbG3A{AlTD3aH!rYmp%Orld zo5|g#dOaog%#XYDMQTpzwg$LaduTxv7_4xyqtda1MxE{<5GpNrzS2)Z)>9&@7c{80qV{_ zJ6%DP48Q%47YEwQqOMbmH$ejR-64T={9WR%!3JV5N$k`)fuAv1OZ~XGD84&x&ztgX zznl|tZNyfmuy^JMD2+g(c!!U#`qApen;dUJa@mz{U;*#sEeX%S%OLX4kW2pE6Jr&z z8Xg&mETMx$7Z2GZ2SUCZEV^Q;|AIfzMv1fgHAc#u(@5+KeXf*n`%AT4u7z28z^LqZ zdbVvD+)$Or;_qIZQ7Hu9lT0%skHAF0rb7AscFAAQuUV81naw%@1A^g*y3%G*M(eT0 zzv=0{rSeKj4n4jg6BkuiS1(?6baE;H>zcCJbPH7?;>@Z788z}3uqs&w)b>RMqFd(a@fHU=rot!XruY-EWJr0kI5-#|Ix#k_wgvBtF+Y)as-fs; zXx@DIur<%3l%oK;rzV(n(y1zb%K9I{9RB?55z6~rKD{pa>_jLv;dJR}j@v#*z9n_y zz9ZYn`Y&ipvBdbjeQR@Qi$+n(R)sWYd!kQ<_X_Ct4=nKl?9*P}OX<$9QuBN8U?*s% zBH{8mCuh|n5Msx|Qj`5W_mhAoP@5-jg2^r(bSxYhs{;6FI5;?fh@9JA?1j-J8WSk* z03g8tFMv*oTCHQe=rp%nZc5{5$omf2mNGU-i3$o1PV- zbS{pSZKYX(x-e?}w3n8a&r=S=7iF^{tJ0@l=QBqbbwcL=$Qe5NUt8ybDq!yu92(g8 zM#uZ$-&8?h&mg<+5buH4g{w=|^yH&2%C3)&G<3Sgn|V2B61=!pBakzDFs59hNArDl z`ys&dlBv6gu}X_dw^RjghK&sQ?MUZmV)IzDRarl8s~S^wdm>G38C=e6p4YO6<_3== z8qy|(Hi8$T9{k!EHj77-U0*Yz{1ww?92E#9e$>M(M0)#91Uk_x? zay^@_;+SQU_@cCGS2G?DY9pz4FO)DIrdyJclJq2yle{LjL05n^#l9ZPf>v#*5h|T8 z^=e6<(P{qdl#5(#`;gI&0WCwKA)4^GBN5gNwcD}AR;n-o(YMEPfa3h&!P{{hgFae+ zgewEG(c94BbCmU&k+X^xDMPW`G!;`+3QK-DT2$?s*vg(`TC`*P(lUw(zTx9())7s` zp!&Isfz$q2XmuD7k0$LHaAbel23O8;NeEd7v~{AthrN}^CKEc2v3oNr6(FavSnPbs zkiZ|MR@bB=v+rVp4T~Ib3N(87{c3Sd#DfPk?!1&9V6s|p!!r`;gK-?7*!+PjVRPH{It`O zz54^ojV}ooO$~mL`r2Qdd_@OF zc;4(%ZcY;#O-aPLMtTASlQRx+vhd zCE{~pbE>Xs{2yb1q^ok2gQWhopPh$S?~g=vmai~X$zttk3Epx3ZCz6ZC_fDpmZMn8>%YAB@*+cx40mfd1G!Q;cGqsZ+WU zs~006eGtJSSA8N)fKh^*EcKRgoI#4BjWNi=E)7wL`qswJeHoXuc0AHd!}HS;J3>?R z9idh&!G!s89nivGw$YcW+T56i-NZJ+Vv^*(Mqg7Y3(pOFH2fav>Q*3jGo^Lm29MfV z<$;L3Wg$FtoF3lq@|+GLTCzU%lT};k_502l7qJUjIaM3RQ+z~XpBM6-TlswlkP=I< za(!19g|Zq16I#UchK9Td{qYmct33OU&+T^aElEy_U>wY{nrw>k;ud$kwZba<H%s@JJ{?ut8}vTT0kNiw)d^Xbz@Gbh9%gqK{&ckB@u;AOQKWt`h^FbS3Lj ztk-YS&a(0vcHm`kq2cVde*i&)slP@urIJp67G3CPT|Xq{Wy`utX3pI(A17sfFD2wI zkut}zJ>4Ge@@L!XWTu6pKtgfrmBGd(XGHb=cN)q8eRrI#`Cqxa1_R$a?~laSSJLfS z6`;BChtzdpvMk&%pDB4{hLA@|4F*lj0cdjeA&fm518+9LjF+KeZ5-O8Y6KCNk|~iz zSdQ}7*J=y+$jo?KFmDD~vs6aAyA(zZDv(SDwT-aoY0@3@j?I&WT@vi`eUv^sobYZz z#;zx~>k^^4_$1K0Vb#gZ;`-j!rj&2YcOL)mGK!+g_P}E=fm9hPuX5upiN@di^k}PU zHuBT{4<{VEGq_1K&vHCO;qi46^0vIIi6`%#fmJa;fMjm9xG5U8`Yd`XU!I&Fno#rbmLVR~jlSuLWh+5|T(b&hJ`Uc(OIh*XZ@y48}Vtt47OE$_9 z#jBM<=I`1*bH=>SpjW0vk=W_dWlQvjxa}S)L%Ynvuhoy5=NxYsgwYkM_^MjPJ!Z^5izsLP?zk&^ol2Kq>L$;lqc$7&}zJt)!FU z{do>{xPumD19+!{PHJ4zBX9`c40ra(ofwy*j-Bqu?LDCQL_hg9Wo<)}eAHI>=3yz` zSL5Q=dm&CR>HimftB~?lUusZ;wpLFt>dB6AQ)y-ItuT>oWp7l4PtT8pdbPpedJt9* zbEvf63;Dm~bx&qpTI^0b3khZuj8tKo4P$Fjm>4hj`Ml3qg?sI>*}S2@8%Zy{Kl51f z_Xr1{UuK*wUDs8`KPj4`*{l5^uA~inNG$jtOHn1_RbKN=4xnH$g#6F@BXNxeaaX^G zz3;+zW_zliJt<*qX`fYa0cz? zOPfSDCj9XBofn&F<)gQz$uX+8aq@C`pZR1GNv2#C^rPK=i#riF~F*TTISq^DC_sZZ+zpnb4YBdfk3fkXqr6M{letFS?DwYa7@XpQz4 zC=bBq&%$k_4io6GoVvNQa}IHmB0za?)PTSqQW}NH`TFY6e{k~KJ)%4Ag@RaUg08sj z#Jz7c3~*b1rbO;w6rzzyDiff z(NIv4Y=V9+{3J(DjfcVHMVm}`F`d}uOR7&VF>Oma2@)^1=(1S5yFV5=LldTJY{lOd zM%6;U&Nq3_*M9DYwS^-W^n$KsW@aJ=l3s}iVEQ@sL^Kp2e=3AB5Tgl|o2w6i#wyU< z*}(s{=-j-BaS_9F_6Wr656$~E1DIzOa7!kiI_}8Pz4ez<;x%JZk&2%lAL-ra%8BmU z)Bkz!g;y>^l=PIP@uqBymI;SBURP+ z5{zn1!OS)gOaB$$1mX^+tqXqLlfXzz}m|NT07!R5* zU}1d#ELqD5)L%j{o&lAER$C-}pyVmq-<{a|U}uoj*1iMc_R=RSf;I#%PnlADW6qyQ zynVwmog>|hQpi7i>*MXr?h=)o_OWqDnmeJ7kbIai9>d30W?!7_s(VFMnz`h%!%;e}`=S1M+kEZJ=Fi-VECHw&iK*JMK|bRYw%UgiN=_pC#fHxeW_PBBdu3!) zRvx7F5sp}L^N-rrL9wiQv~8PSXsn8& zG^&Id9~9V`J;GYT9(rBc?H(AODvH8`6(QOnn9S(6HAt!kXk3Br1>k0z?VRg|mFO%n zAcO(}Y!(Xjb9?)1S6A>&i>i0tIMx-P3{L&ebFbbyShju5{h(SBkfgUdjMmW_o0fC@Vt z4b}so_Ab+pR5`N3qzQHuB!Z#{S%41qQl$zTnn88v99*|hpLhX@uy^ms(~X8X)841$ z<0`hAs7UqdM#&ZOa)tFf7t%b4M%x%Px^c;LhVcPDCByc&HlFv6*qkgZ-{yi}hYf$* z{pS%JlS1byDB(0aQwIAj7;2BL%)xa8vI!F4Yz8Rj%;CH5pM?+`$|_iJflK19*R)*R zZ7!*X0af;ce%tw1^3?av!{g7?OOGZe$N2**>!Un&oXM3B$J`HPm1 zipm$59&J`Ya)jIK29Mo+<(!hC*-p)1rC}C*@!ewmk+~8hV^{Ib`KMgPio7`_g{enF zw0Z09`LCw43VK%&T1U0huJ0xoXx0gs1_$}s=mXObIL z!g)6jiD<6tO6k3mtE+)gQP+Wo3_UmlpSxa$^V%m9Yx&g&pI_{*PdC4<5m?c zvMCq)xX$Uc6B9}aQjPFYh(SFh?YWKyGRky?)$AU_GJvkB*gOOz4D?$%+)ua2AmeHR z8Rb_P0)q};ETHkFyj83S)}9vImzp!z1m?0@viDcFE%B>kq~Bpzn{I?(<~o1h>l0?> z`!l;68=CObWV5$(fSfHnDynqB16IvK%Z5p>l>ic$kqPf0&^;UXMCXc0_I@{i#wDSH zoFzpb30Ya$F9HJN&C;^>1a7r89h)pJ-&*PL@UTjV<&AwPu&&U+knZ6={j}DTeoWC= zd|H(zFIPcjbdBH>93@a&8r#i-ewdJqiHYeFyc7=A#kd1GfMq^{=OE^Tja;^|e2 zc`xZCeQi;gc%Zhz^T}E5Xs-JS8E9RE4d!{H;%50{e~;bL)8f=jTeB7um0vkG-=it> zp!2vLI|SfI$Hop%xdLTgTHDjr!D&j5*G1wC%04~cX8Q7GmdU~1FPQ^PXWA5JFRK{k zhI4~uzBQKwi=KL3{S2!`QFbMEl|k(g`(T%{tNY~qTqKVtpSDq3H2u(EtXbShTILRY zOCsGYfht`d{a61_7O(u%4`Vh8r!Kx_ zdxb^5Qb)6g&UWJ>WGk91G0HBVg9I7+O2(qCl1h+hGIk=kTD;7`q*cZCswkZ91h2$K zL-B~jCgS}tT|$tu%KIPZ&M-lJ z9zFe=>YU=#o(mJu)I>a!kg?b3s!2%Tg0sZ5ADzb^0t8xxjnOGFIr-xwMFj;P^}Ny+ z&fCSpSkmdm@c)$koFWpa4cwqnAX!Icv);G}O0~8yo>)zexJAH{gW&T~YL+_{ti-}Z z*7P_bm~{k+x@-^_jC z6WqQ*G{p@ZaIj@mvU?YJJj5gK8*QJ_f$<5*F-NC7ZSNTu6H7^TVHnI32d4GRV4OQw z_La;=mYG}UKR%(x0rrwnc`NMPh{4FU`A)~;1|Ii$h>xrP#K+xtwDm3Lb6m=iLBxwXo5eb_E%#rFZEwZNGBMvZF%kiy=c!lUUq)qR zVO_Y81nJ>g-S5>4ekCT`(w6gj`uYW?LoASH4NW+K&a}j0+ktvb_w`+vS+Ap6Mq_W*!~G^`G=)%0y8=3}i; z&~e%IVG(kdW(3K#J>Q{~=3KW5E0vBxXYrAX53j8u2FoZz%6$sKg zYgh+m4Vz71F-+_zBWyMTsy3!DjhCe@5fKrz$BP_qWzqu=s<@sKYsKAdOd^&Axq0o zda%`97mgdC)z(6v*b4n`L2JG$GBOe*&f+g$GDCB9Xf^I`af6)>JWY@_qWTDz*@w@4 zLn$&sG(i@u0hgZ~a#Fw`fC(KGW!eCmq34gTL~vNJFoNaaEb{burq|$NoW=00+jNDX zf(COY2v#bQ&JGSh^Ybh%Ev2Y45{_8mSF7)Ns^KEj_Vb%jkFlI#|58O4@lGCDRsjE? z>uQp8iahE$%FLQO1amrWe$*R+i74#3n1fkpR_VWLKAmi( z{4-=^iIl-%@6)vpXe8pMZaqkw8EP6x;+Gu+nj0pD*Uby^^IadB~&^uE4i=KK@2y=BocH#2kT$`$Pw=4`}6 zu;vLWqT=?A()jxmCy6p#aT*@A{C>*9bxJ5rwixDE0^<(b#6U_`_O$UDyIrAUHsfnG z3B)e8q_wUCMjJcZpQY04q~>4!Pzm@U8c>@a+bfE1we#tf*S_;0{oX)w{*+pq&uPbS z!JpJ5-xinN;>l=`X7JxT@6YieCLUh8GZs1gE!JVRCBh9;r6P~#7v69j-K@NEzz#9r zc~xoYM^K}rTzwevR9H_hwI35gR}V#)%3pzaM&eObF4dT&2P*IgA?9tgcJ*TFK@-r(iAyt~aRo==R9#|y~+7P+OA zdGv1@-mP4gGHHUVX)SuN$xs$?}i zm{Aut9Trjsyt#_WwvVIFK_}POC!@tA?dB$92=AvNEz(M8OgF!(A~KZr?mVptr=qlw zlR3J7IzB~&Nb5!0u*R*c&D+Uo8qYF%HiA=B-r(+1Py(G>lT6#Q8qB^)CedVdH3=Li z4=yG1DcMs;8Psxll_-2EZK&;jvMwB*czqI`yZ(4dUDF$L0c)o>slVAX$!kH3I38{I z@Kgpg)+NT3&|(?cE;B2J;WI#FAHh_MnVA`3Ml-NKvBfA>_O6X0bkB>drq|fRo5w0r zrWXl|`9^!UL0-h4&ZLfvj@E|lQEQDnWneCu^-x*1iIU|HB`sBwWm3jJE9=w|FF$M@1TwS7q^#^kfr ze&3w0UQ^n;OtK(BRgD+#d(3yCM;&6Y>6)CGIMgpgHawz;H@_p6J?F=`A)7L{ZKwOc z^IXIKud%Oy%4+S_{RAvRP(T_Kl$27s1?g^SMd>bSF+ddLLqJMOK)R*7q@<(;1VOsH z1mw(x`#-^f4rK;^u7g9vrGcO2+xQUeW{%u(Xk+ZAR(qDm?lz5_&i6{gf;QBR%UCC zT8R2Z9b#s=w~>F)e)B|EFo``Di9OB@y71sURJK{^7wk4HZps!jVSPU+mZ2)?fERnG zj{jwV6Ss=BibEGlDrKQ9PAUaj02OvWj=Y~DuA8bCwy`M2QsgdduvEI78SQ&<7H1!9 z!(sYz4ps{Y@-~5#=LE4WAJsAt#fsZz8^Zwv|18gcJJp_58?wiF@Q@Z3$9bF$r&qfz zFVlAGp^*nCQ}oUL4?c%3dxM!|VWeHY<8h>8bVOr$Luztq@y9Lim8u7wq-<1){F3D8 z_?rf%-)n?vs!0x(Gxr8C%d%wCPU+v2QlB~r-*>Z|r=FD`QlaUX`y9oQP4h<8BWY*c zrp713`HZ}cMf=m$Snbm*A1Ss%tY%X~sx!!4bDY)B^kS^j&3;|sZ9 zloE-CnhlrJwJcvuotqIW1I+W}vu4pmyXf99qGUVOzG#9Zcco|)nt~S%93;e%T*nU8AC_TwKs~c?-rRNorQD zeA-PtKW?L^-#hT7y_MikA$mV#e>*QW%zegdN1jJz?@OXDhiLA6cAA~SHSI5p3*?J{ zgE^Lu^!D@gVi}(RaCX0&X$Tb&8My`S=j$-1c^4BS4~}!ttKJDDVQ&Vc5V(4{=P*G+ zcE;JrjtceW0V$_y8zF8>`1Q=} zy*OT0VD+#|*;y=qmK0h&5;V6{)B90a!Z$<2QRn*8yT#|^&WLy{BZsvuma z$pWF1qbYIn#=w99thg*u*O0E|-Ra*wC(?5eO zTUr{QBTi%}5Doke6m*6{;JpLzp{a>U0hj}{7d~Y#f(9Hh81QeV)AxsO>7Oh6K&F&{ zTDKrr{eW2EDMNH+rGVh=>jFGEQi^Nl!qv$;3SxbaQWXc;PKf7OlcdMj1jNm2T9>`;jE6+UYCSI=I;0fVd+7tify$UkpHg5DnV9 z-2%AXWaC%U%CCq!4I<~7&u?`~Xmc*Te0<3?e6#r>-pktoWc}P7!-*HKr(0cFAfJ^t z*0|<+2`!;Y1g{um5nLZd&lSRdV6*T#kmoV_GjczaC}%EnwcagqK=`NrYjiUcp%@6e z4D-%E^_;c0uwVkE+ohmKFnNGbd3#8L;pIEywU83&27e%IboyW}!3-d^AhZbwDF-QT z#2Vm(XZ9AM_=gKr=vL%a3shiK_j_?Up?r?I4MY0^%J-71v#VUM2@4$XRs{b=hI%v1 zgfm!kC<>iEqPw)E99qIvNfk|ZO^6Ct?p@bYCbH*CTYfRx?Y5p!L{q-|**>@WR&4!7 zy_<*rh~lrV+LycZ#ZAIif$AT`sJ+(j!b!~yOp*`?1R2)-o=@KY{d*Hw5_~sajg06b z31OhjR)GAoH^ISXa9WA5LhZpA*UL)?qN}q1aVmyh3(i2J6K;W5S&iYIN8Yl_i}Rog zug8+dw~}GiPTbRQyVZ8@nc3Fi8+2AqoCl!0c}3^Y5$Sx+N=+e7%($~ZbMdx&8Mm=D z<_WXEvB*%9FzH9?JvpNdM`<`FB8GOEnVIXmyQYx9S#`A84kx0~X;LJW9BBD?xkwBR zV(BO39?CoJhB*;>aiR$<1OyP7I)s0&o*UxbW(Fgz5($^ZVJijgrT#<5&U54Zgmuvk zaqC?N15>cPR60 zL^>Z0J+X79(f-O*re&C-p63p;9>G+9^4taDdKd3UoH4}6Lil6PwsdJWRQG<{h=iGr z=lm@=vasQ(OpWD4^$63E3n^OL-0D4RjTBq1?uUeR)6>&ZLvj30&6_(QZ>79^iNH;@-CVyA>9c=d6ct;g_v7d~1 zeBcxokNGKkVY0X1l32U>tb>U@fwJLHn8a|3S6FCg>7i3AbMCJ>3~tdAGa3&&RzeSH zd-)SmcnZTuc(~Uo>*10B<=3mx%Fuv5CP^&=K~M7Y2_#jKjtizym)mG5F^9J%rUa;k+{3i36|<#Ze%@9ezWcx=Q`zUj&7uX zMpDyW3U!T{g$1mEFOQFpYiMc~z+ZTIds7j2-BeRoU-CWy*X7~I`ml@+qjJBU{qemb zEl+;Jhha;WCG+v4k`GHM>fLOIF4IcYsm)4`jfEn3>ud8AZUD}WdWoj|0A>t|{WXP(XDgyGNLb=exp)Hz;Xi)p3kf}q@gWbA z0**A2SLV#eGoTtj#PoDaJ~6t_I6Cjw&g+ZEB$CCZ)qe65HXku|QP>*RnS7Bx7wy?C}vK2+sP+jRk?|{VFBT zpan~VI+8qfBEQPr(HKH^;#)dSZzBg29>DwSAO%JR@7Nv)1~V0>AWf4}EMEvX{uY>a zk~=y&B6@ii?c5t&8Ujpyo{K$g3H6iMf}0vgkB%L*#)sCAZ}<_c#K@h6CC>TDlW)ss zD3E;*c0g@`mad46rW)(ImoWN?65vC}nY$f!MFg8m{Nksn2tY5!)$X? z)IqsQBf8JeT2!;HuFJy=!UgSVt4kxu8h=HLaG|Rgnr{7!{>sawLn)}&)sTn3QCcir zb`W5miXW8bnQlY<;+k(Ur3Xb6B2^t;NmYtNVyGwyLLSMa8IHC%&#+D4M4n%IpmxFt zBZOZwE-m}!QleQ?Pq6+zrMUixlHi5bkzR(c!R@v(k3UKa%v_Hw@UXkovh`IbI=24n zH10X)!LaERW9Q;C38u}?r_&V#nV=lR`US^uX&Uc)PX1sLcL*TRlY25xu0!qDlf@G% z)qbg}$~kwNP#BYH{LxMQx6Wq*Uom3Gvc1eHx7;PkNLx=Fru>(8MVqnAe*zgls~* zsagFHY;GB`rZ6QcsLsSYcr2PRkPf^yELYsuzm_KrpiZV83pm<1d}o>fRR-UpiWa}) z^aY?un8N0>y)qgJzy5o~@dX^DG4dgT9ny`F90^#&3b35Oy*89u*rRBk@9zRG$JuX~ z*)xi(`#KiA+{ySbsy1NBfH7@C*F79gR$(L1*u@#>8A}v(P({j!cQUw)xzKiw$M#1nys~5*4^Y4h1L4yL zq*Mn4V53AJ&GIUnzKoa{3eor@UM9hKP*0ddn9c(|11U zrE5lN4~PAQ%VIZg5NO-)uRnz3(62Dd1wfTOSa_Gzu6pOH=j%wE`z{i> zfcVh=1UK}TQ>>6>+7w7)^jV*+f3-|2POXqmSy8zyk8|tR8!R#0V`)0h^Lh zt$)Fejyh@cZmO;3Lfgd;>L04`OC-rL&oEnx7xm7OqG zLDW$wV5dz7@s3{u?{f$s2Jdrd2_C>mAJXw?JN)U*<3#;SrbHp6lRuZcAL7GX2OW!G2CEHC-uVL!_IXrvi;WA9Qy)cM)lA*6(VFe2@S7di6S3@!mq z2jQa|%x{o$;oc7?e4yZ%wT0e<9ybttqXY#gV?tZF-@H0HEc;-DJ)nQt*whq%;lirS zw5okWbO$yiiz>WVO(Dj_U-N=vaR!+5i65G(M7_wf(kExuZMCU<29CO&umF(sQ9xVZ zjS^m2Bo}no4_j$=9#X2tiHu{;o_$sNIH*u_;^|>JE0Hrw1a0v#qV^OR6db*o;T-QF$ zMN{kuJuy(O`5xKSBG}9KL9bbxiQg+cRAPw3XqA+-J?Hq*g^kLhtt$T0pW5jpN7xE` z8U!j~tGH4bg3mG%8qtEL>bf9(!QahX0Rv@p94cvf*DoyjvbeK`NIdlqem-auvt3IcHGU;Ds8{` z5xPR}j@|x@y*aCj!kv3(tS(J|-caF5_VDFC#vFbJ6&x0;lBN7;i?wobN{+K-*-C(n zZ6$4JBY%q5Z>Ot9Dbw!^HU7IbevLDo`cze+tcvi=_)eZ#p^Feq+k>l%V|%fB0fGCo z8Ci??cOz!nP!7aZRWCyTHbi%yu0$o_o>+FZ0qZtZ!fbW7%skonpTk|UB>DE*-1IU` zY6XHuO&g&<1zrnlV9VBHV>S{2V#}q(AIbRRGmaZ5(}Xr#>D)X#HeqNC*+X^Eblr!c z3KD-!Nrg6$NsC`;wziA&AbzDwUsVtn8)~^q-WzR}yJoRdE2;Ny&1%Q4mfkW`Y0(F} z-MMw>8kMGxpWr#==S6Hp`Vs0zH+z@r2S#@F(YFAxOsVo2XePX58(aLkXNtpN6GN=H zAOHepu=K!T0uZGAH$tKVku8k!#UV1m4dw=jz29#1=LNV@K`-$DNMuNC2}n9ApFt00 zzn!k1&2GK6_{DyedfadC#PwB+R@(XirgjhiJ*Bye*Y#syp}H2ukN0@QfA|)bpmcTJ zMvliy?RFb`-efYBg;x<>ki8EToHseHGliaUxa-#HZX7xF{^A63)B(XlG`PGOK{!2v zH9}87g&fdrJSg$;gFU+Us_%=7i&w98n%)5)k_ec@?{0tbz4s*TssmuLIy5)74vrgp zJS&?8xgZ*x5%qYDzFVSRL^vAjf^ zL2CCxqw-wQUi_D{v7vs5$r2dQ_rLvMR$N)#2sP@;S_caQh>lQs@-A&m%wI1^$60-^Z+P6kwEXypFM~D6p`C34$b3|V!?^vzS69J@>r;02Tc6`4 zBUW-mFUS+rZp{O9iHvhY83T$&b(yCa(lNf?>A=KuwV$F_ICf_5(!=J%woi{E?3YAc zH+GBu==boaw;k&u49hr=zx~*#la0d-t6vLbGqT<3V$`I4FP(_F;Y`|ELU>>;s4AxA zKrE<4QZVIw8C63~KKP!}*nWuMoa@EO&oVw)F|wZkN@60c1Hk%z&FVlF39$G+j}`!> zJ*EBo0}d4f1BB#=f-@o;B07c!$$GRTXr?`~&~ZlY<0=map!sw>JQ0KpO8G#Qg~_gI zDWBgw2}NrpKJFYo&2dLtm80$9+$Cz#v7qxUHzpRYQ#p&j-o4p66t;AD&(S+U25zdt z-Ls=gMENWCLhIcKIwD;Bsy zz%-Tt=ep_{Afi+%28aC>-anf;Xq;p4wHnNxe8Uj`F*WrSl-Vr^`Q(JaKom&W8sl8Y zWr6lFIXQXi*$vn!Pmtp4K$nXb=5}-e+ zWx&ivdWb{R6gMy}>1$nOf_JcVzsa&J`$JdD%O(TGFw#n(2_6#WRLD|w(0PnHHpX0_ zAe8y}UCel=r2Mjr^aRu_lBNk%2Dr@$2=*^;T@uX^?81jj#5;w>+N0`S&y*qp|q=snEsLyPUR_tvht~<$h!j# zyHXSNMmiDU#vhI+GPrv|^Do-6VP;BJsossik)mnD>i1O}|8!j0HH$#G*lq7G3BBG{ zbCPj-3kBFi@*G%~1XYB@s8u={j(x`A6B3H;jNvV9KU`_s67XZy9Bimi;2w3IepcidK0{YX`SxoHp>Uk;^{*sJUPQ)T#7W*n zwBGiIbNQ7fB=)cu^Ly>*&*)a|%ES*@RC1=M>PsUjrmC zQ5g&FWsLW7=xM8=3moWwXojKMFcq21HWnE!!wD04HRVoB+0BxcI_T9_VoCf3%e{~L z%Xt?`kw@pYlcevV#>BlZu9vX!4raT~jQq-1uY>gyk(c1H$b=-FA)14RhDD;&8>~P2k}3`Rz}k*pl#*XwRTA%HEUXQ#9pjtu zkKlTP7i6R~3TyMI3g6%S{EndB5rVysI__uz0JEQafhD)PS+Zsy8}hd}$?Z?hHAZ=f z^Bbsu9WD34DL-ME&%kX`rYhfuF!8B?zij1@D#a9X2i+y9mHv z=hhB~dRqNPY-rTk`fa~YxCy_U+96epEMUlqqCw9V9BW(#%!>bDsb$k(0p(^juzg{# zu~tiQ60K3;y2&8&CGs_jidnNS4IM+Pcx~{1lV^1+jowARdLFm49k_ixef`>_mR;bg zsc9LsFTB83n$xzg`1s;&5;EoHi_?}f$q9Jjh6^B6)r*lBkR z@6A_V*xR{QD<-*~;g$5#`{GvLWXeFl>>p+x8Y>y!yuLW$fR?;N|-|DBc z#^y9!Nc*Z0dkY?2E^QWuWe1+}rqBR3;!T%Bko{6j+3y+^)&kKBq52lg5e`uz8BoHn zNSd$`X-Pc4D|wfjNNdPjL_0a@JE|Cu>m%0}`DB8RXMI?)+?aPntr80pUL+8&-Kfwc zY=tnMufTyP<21%XT8ntk)rW9OLkm<%wE2ycP#`y#0;c1|`JtH6bN4H!u9?t$96((sg~lW@jwDms>GUj-+lKhn@e*lMpPc`+|oX>v%d?HFK*f#Y2lEB(ZBl( zX#Jx{(kX^f2p%q}NWcp@!t$Fy9ncC>S5tiAKrF51#A#mD#*$}|e|^RnGC3NHtI2(= zSKMv;urLr8q0bO~edWp(K96n2+QYH6Wq~uG$=JJp7u;t}t`S`P5vmIon-Qd{e zcpD~D$V3tuqDJf>vy82|?lefMMbb1teKol-{5eJefQY}pDiy0su+iex*+8?dr}Roy zS8}uhdmhtQr-$A-AO@w>J57B_xWwU8s)MSEp+tC3$HEIactn7E+SsV$k+OnIU7yylCqfk1)LDM?BC*W~2g=){Pl+nD@w%-{2ENH{N6 zGiGM%MQH0bWn^Oj4SiIb@Irs57U7jEsQKYS21!ZDC!({hA$0D*Yb6tKp1-+-kl+wM zWf+i1gFFt{b7tQ@-bLt}lzjHj5cm=xpD;MWAWDJIoAQWl!U}aE0s7-W`oh&&>C*gH z6!$WN=pE%2>0kQIa1*_!xRtOZV#&yuHEV4_ELDhIh;dU>N-i_InoY8CR63MhXE9N0 zAco+#o5#m36;<8r*{mdQH&2g`eVH4*gNj$XeFifpHP8W{6YgyESZwrKuJ>m4xSM~o z?1$ZkY{ve`nrvJ^xd`DhGIPYFbKcEqd+YDto4Q1cILN?^2bEVr(iDg3LPV_^#mAL9 zE?5cM^mWdLpVv3|oH5LAM}M#OEKMQY|Fw4J93J`O!YOw*w{<{bcq>Fe+61T4qybA{ zu;OSNxDbP@?JUScA2tOL12hy3T3S>-kS35i9*qjP)F_{oD4))5Anr{uHtSViVY=+b zY?W9vVjhhZp*5gelY2NWV^JLPm7H*9K*|v(uxH*YJ(E*aRb9TgV6|T+M<=nUBBFP3 zBoLiC>n8j3j;htZ(2hOflJNfFbE=?RPa$_YW@7UJ7ea{~sh|w4#x4KSUki!N5;@{o zTB@qK*OOd1Usn2Y69yBAm(lwxAx?yg!i%hYd}ZT%a3{bvLhx2R0zYeJX>nSA=Ky8g zaJdr$&edC}32^@a>%Z~OHa}~;A@Ug)0CO0d8r}YzR(QXLot5?MC-v^DkD!OO`Ff+|0n93Hf+sVp@57#5KYm4dcXi5`=@YzKbRV_8|9_5co*}dPAezpyU{*Q#QxHzt8HA=g55#tGcxSUHH z_cJhqHiL|7N)azopl>7cLdZBn4e2}K6`FP$!$-u%M2phW7+^n+{82^z0CJQ-mbf1} z)0+XkoH`MQ!MduI?JrL!gR}(M=X~c~7G-TNi*tR+sd#2%^P|kcdaR6r5-<%l4w5{7J@;_CGb-J($eAt zn$ZHtkq1u{9*>>HCJ-gu8cqB3=^Gq8&N29)1mZ5mt(Laf#U;ReTw7gJ(*$9&W@Kl7 z%FGNH85uE+{Ljjge#4ETCmp9s0^yUrpCdyf|E3j$A;OuII1r|4!K9r?Ojc1*6aMGc z5+qAx-!iDs;EYy~lahMXTj^>y15-LJB1u&+PRRo;BMTgiR6%4H4(CxuSb6!s%Ydtm zeT`=GI?ZMx3i&EU%Mblm58mM)l&vQh7dPc7pV6ZOAN8W5B9Hd2lh#VtwOI%VnEjS0 z0U{I*$gePbdSJpuj;G>EQ|G=lJ5Y%~;g|O%#`wS08s*awS1`|CdJNj6orpNm91!e1 z42x+h(Ujm6aQa^g3WKU21OHM`UpYym! zc}f-4mnigxzB_8SArpGNiUh&A;zWUOx-e@J{73(VC@n^f&;e42+cm51s@(GBNB=JS zjI0_lg=fUzejFs&fGx-(Lj3=uo|G_1Dpsu+2`D%A^+}tQgx|1QYXF zM4ll%r#XJc`7+Gt0R__a4obB5{!gDlglHD#A52sIBO{Qa|7&Va^;Q7|M!FZS3y?;m zDnj1A#r?gv791HFDKGR#x@a6}9A00h+wV*GGrg?h8&tOSGfl9CZ4r>EKi`+ufE{Fe z1H9A#z2JP@N?_(sJMsXSBcL5C1XJ?2Qpufb@$8Una3V6s|73$AgLNgW`j3bS#=I1W zcQ4@LIzJ&z3VO2qy}o$J5T_3Q)ec9lILeUxv#x&*o#(zc*}=&~dH46>`->l`SRqN) zu-YS0D@zBl>~{eeT;Jz-2bK>wr?r9|=fo#QNxdTa79dtd#CR=2l0ux|+Ak z(7+U-4MTB?w_{4}*pri656t9bWG3JzK7yp=$ZSt=^#lP!(#MadA%&1*3f5wN^$#YH zsQS_zh&+XG_?+a1tE}HXP@X?`PEA)AyMOG!VBFn7IH%1@Mdh7*3j+|QWNa)F^fOBs z8&<*4Cna0Iycc2gNB>$_$arjKrWX-J$|;U$Qgf)g&ACQ|lzKc^+crQ#{T_r{%BnG=DViQv>L7daCfrjcC3<^60_Q=tKsKaXvQp~zZ8C4YxKhydnc9o$U znSMJ$oAxXYVX5fr|CoLX8U*VfWj*MSi+UDpEl5K4)XOV2gBpeglWXem zWvBO2$|l4W6<62Y-R&6H><*Fj`v(X7OtcTJLZ^1y2DTO#H{O(lQI;xqwPq=x;;vo4 z{u~UL9G#q4+tt+6%7D}pM;e}gv(4dfdePlwXaC-)EP9l|Y+954*%P2`XXNHKTk{MZ zj{J{S7^G!Qh}03{Dat2bQN&VxHoyLVe0k*8tj-bHFE@dtn~2&G0r6EfV?YwbZ8H(l zE2vaeSBLxhVwu25vgK$-~WFp zasJ~gbgK4o=D7VgDPaD=V+=+_ZPQcViUp$Oe@S}S%wao$!yFj6S@X<-_y$?gfxGT7 zj|0Y2DyU|70wpd?0=WIf9ljMC3)tV$(9j$m9YNL|l+p3w>-_z~dp|(>o@)@?0|gqW zC=>=Kh?4rrif(1|HQ!`en~)J&`0@Hb09ygoRT{i<^~NAYq@sC`li$=G7ac7NDn0+h zZsiN_MtVszSgHJ>7U&`ACCK;za79QY+w?iv^8wb&24wABAtshoP{0NK{|l2tm|+6* zKn})H$A^1!(6P@}EahhL4*F>@htGsN0P+sJikkodKwR=BRC?VK3g8qWS;3g+aKYjK z8BFd~)YTv9oPaw08~g@G$H(Bg`U}D|j&|~VOu+7P2hHoXZ;!};v!3q4^uo|nIeSn18Y?LG=Vt+dItw?NI@@{`>@_Z7{I0T>=Ri zqJ9TSQ%->F>s@in!2Sp{JjaF=;E`Q{I}FonWaD>RE@)w7Vw!}P=>`MCR*y8z29OR> z`9S>vFdK{r%%FMnf___z2Ekxy0mp*Mi8yq^U`0|+F2Lj%{Fe^EfCBkki2Fhq4Jafc zatZ*w$8d{5=aTQSV~K%*QMT13h{R@blH#I1rKC8(ARFQb%v}_aIW=-xt9y=#LQF&` z`5k>>(hjl^q#R?3ffy1|enB!W0dVoRSI1&jMoWh%mS9|lbSMz@vEE7-obNCt1!Ab- zB8#vpM-r;g{;Tky1898%Vf$8x1w~YCmCblcl)0I3S5JVAxso17H~P71Thtmf$|7LBDATg$ooxkiQdke=X`+XjoV>5X|}o(MgP7 z0gws@;9m+pg^b(s{pN^Op3b1~pZzK1BgB%b@4*^cTPOd)-It<$n%V{_UJ!Z$KjJGS z*ycg{MPdC4a2V2Iyn7hx6O1^E75K2tzzYM_`!!r5P}Q!cz*CNJF)h@AQI9I{W;5V* z?;jjw233rlq@c7>F*6_{R%hKAHAet!Nh&CR;amFr8Xkn^q% zVjZ{~lOJ%@bO6P9I}ad)5qaKTUhvwTU(EGc0K)srDF~bB>}4$lzAU^rmMfxXQ9#?@ zsX19PI+25>2Dkwa;FJbEB}U|*AI#yI<24X1mE^iM4m;e$(o#Dd;N5{@dJ!Lgu4L4f zPEfE?(&6Hy?WdA{sKryD6touvlG~<>xj7>gZ&*q?0qzzS87Y;w!21D~XZtS6)0L$q zd1zN>4sj}fB_$_c#KkRos{>|-pgKbw;bVf>VJSoJ!&PPrMEq={+IWcP0bv#C9n-fv zqI^3(yTAlSd@T#0%mCI8@v9}-fp6d5xO1m)yoThd&mW>rcYt&s_oXU6HZhrm#BPu& z=n_Q|tUT|J5Kz+-I2Vn=E=|?SiU!#N!qR}v8f5TjN`7Oe`v_2sAl*zXEK^Viyud{! z!rOCu{w{=bK-e)ISRz4`eAj0-0f7(DA#Va-Tt!C*su(K>cxT}7)7i`g+-XFt2~EZG zBt}ZXCvSl|fC7UESbaqBi%kRhy0mKa8@Y*ziJO}n=)%M$CC`FZw;-EBz?l&aOjUd1 zo?ugf=sM(aRZeJEVEu1G`wLr-A4Gh#w4^CITA{QGz4`}g-i z@(2gCIau4MTl!@Luu((7MC1)nB|a~w4K29?A)y?sQ;@?bXz4R~S2t(cW##3QVTAAN z@4p3atcs@QfVB|9*%{C_nt@>>Jyc8CFnU#8T}vHNF!_X=)%#1Gi=+}<6iMNt9UL5x zVFjE8+XX=DDRQ`c$IyL-7=~BhYkg`>yy5P_iiJ-(1KMYIP{z&oXAr^?g$J~;T-aU0 z#B+TFGlLa$<=kdQzKp(f$Dl1O(NABw1=2)q01`%~d0++=`)g?_>z=gq=+Qo8Osjwg zrpZ7Fcn%~G`}p`ET2r22iPyXLpr&4RO;#h4blAP2aY6b3Hjewnmc&1OPO8<>c3kAq zBHjYko_nUSzbL(V2vY!GUte$+LZwj}z222M{pzX7Wt8tcBa~Wrr4!*h-_k4TuyD|K zdtO4&a17_Soa^w~B3fBzj$SO<|FFSAL;G)<+5fMd`VUR~#G3-$K%Z|Y_(xV!>0Yk* HgBSk=;`)ZO literal 53368 zcmb@uby$^ew=Oy{01*KNDG3n-q+1$A0Tl$1?hfhhQa}Wx1*8#vbW3-Gbc3{XclRFC zZ>?|bbM{)-Ie%=gYbrA5eB*gW+~XeiczxeVirv8=#y}ttcV54G`5u9|=7B(<{6R;B z-*EO#%)>uCHX@2PGUoa=_F7hYh__lc7AEF4CLgpP+UZ$Ye=s*=XX0jJXLx96V`E{> z%gk*0?+-AUTNyC7E-K2vL2g;RQnE%Mu(gmclysrA4+uoh!t0mMWgTMIC+!{ZhED5t zwoKYmkG!a;_Hmr@-v8s7{^h3h%lh0Atf?&ZoojvJWBl;j(Nl8F4`OI*t9&yXMfLM@8wf&4Je z+pm}iZ{&N?gvbL;Ozp1>L~&bcSDTAT(J9th~RfFaPoV`*-S#6K@L|gwy~H@i_f zoof@SofeckOp^(NybT?JDWwrlV3yzkS?_ohjaW1?Pvz-3aFei0gakIZHJ`6Eh7`0zjQ z^{V4pf5e1kD=ER9x*U0WxJQ@somPa)(WJf2#@Nsfkyrq+$n)pVQ-mU|6O3n@e5ZT7?UQCwzbX3?*N&qYO1YcEgf zN%`!Wrl%8P%xj_=8id98C>)9aZZ2gP!78J zwq!5P&)bVGw%o5&HhO<}o{pQ>X0!&8D+ry;;|^)Eq^}L@k=Ryf+4&V!45dj|vKePLmt9NbH>@kpk} zSdPk5+lBV<)dHQ?!R+j8|1tN2A%&su-wACmP7jQPg+EnjHKN+iGqrr*BVHgC3tndw;DnzHn{x^>&nC+(lPj#3B#YH5?N%2eHF5)q*hMGHt%gVTIe+5$n9?56P9qjB#gKZnj$KO3( z>sI(v(4F|)Gk<)8M9}4XRTY1Ke?K9&MWRl*WLmORf?(hg8Wu@nS=sl#WU;xmwKWHq z%abJ%A-AgjV|*$P7nnwp4W!xcSZLV8!NOr=g5n{dW8<25MDBnqf*Ld>fr1=koq=; zO>b!|y{$(QU78h{24Y)UTYc;{#`<#A_)ZVjTE)m+Up{}1LhiDS^3G{9K8bcAS4H|{ zdUV4M0Y17&XtD{bbsY^$){#u}ZOPhKMf#+8fwY~ijc=u0x6u+8R)(?&Xr$uj%a`Jl z)6>6zyM{b4E2}R!FBvzRYx2c487uN-u00QhFw3g@3n$UWqr_;4&JFB~*LJlDg2P)? zRT4Nr_V7~g+JW8_z2AGY(Q?5oNj|w^>9B-2oFr{zA{l%jBHe4qfp`BtN-vm<-PV+v zerP?or>|)857)E98#iv?5D~R4cEyl(Kpf?>Teqm%8qB~&_528-x>a*;f|8m#wcp|I z24Ru%enV~$3O_%8{;0{&`G?pMSPuB#Z*aThPVItx*E2h$@ys2bUtC1-JF+3yXWC`& z&b0fL01poj0x}DWj{gWeX81-vykxV8?X2V|jG-^>=$;U|T{| z?9WzWN02$r-&J>7d91CYv+}!ua&M`J=IPUsf;&P&LS*jemSoQBtm}4sV0bNt9J}C+ zGiz%dMIQ#}zHaphUCo07YC-DARxb8y_9rMb8U1OsCQmaATT-CijDbZiC;^s(f`US@ zQB4Pt1N&&&y;i5h#2=s0VIf?BmVsd&t~7hN=QI`$9S2$4X@B{nXtLJMZ1c;PFL4M7 zm(#7mdM$_K6toIQ+s|D}Ohy}`IgJU~^)Y8=X5f6@ot+Y;WUqMk3}{};P$QAb!1>|0 z`AbpJYbn=@VL$R6cCx+XCcK1scu?MhZRDdH^ z2GWxI43X|pb~t9-*3n@-=(t(FgpQ59)J&i;4>orL6}3N0f%y`WkOJ{^XB7KrfexDW zQg?GtPtb_Ea{z>Xa8TZYDc7UPY?abLLDy5*2gOReoVh~zg_KD32D4IYSo+X}1aNm( z#RBb{5Iu*KuShgBG}PTr^a9BQ{N%Gz-~t&mYN|TR9g{@^910CU=t4I;VGcdN%*%~yD#GZNw~U4|?*|E<(!wh} z>%|8PZ*T9HA|g9Gt>o5|wj<@dBotl`f&~E7S^EAQ-}omjZEwst?=B8bo!2c~RnkzL zhPQvwAd|GOuWymrWc2c~q2R^-0P*Cfu91<_20e(8Svu4OI7ybFFX{jfGFh$vF2IQ7 zG@l}2X3j(XDvCa1@^6GW&->q^M&F;F>Tz}R#Ut~0dVQy{?Z|@u&qyXm1#me}~w^dar(ZEPYr@cCu zaeQ*pmn3q#269R3&$YZ-GC+}jEZ#Wo1HY|0KHa>%+?R~T8y6U+*2WkqNQCgC zUI8y@)n(ISi+c6yRheOVv-XGML^>AdLlY}2t5>gIYr!EW+^;T3c&wU+v~E$f_kFh# zmzBlaTkO(l@Vb?YB~s=Ac^fgDqap?n!Qpfz?be+;3*H3k4{2z8V$3RhdwbuF6&trg zhFDG)g3L(fx-ZRCdu|1H62+#6v9hxAm6+4d!vkSfzJPDSrBXhQw4|7)=1c>_)3vS| z%a9E<0SX?Uomr3SMY3u&+`wm4p0C1Y_DX-c8LL7q8T(64LCw3iwsuc2-;l!wS$Wu7 zuK#AOs;+)5F5akLXnD3#nmn-bN^L$wLv$%N}cUteFKEqLo|BcseYR|ki(xnd|4w6wJJ zrU>xx26-gG{o!NapMh-2eP8nO%;U!Kg}F8U9vkuQOCc0WRam!gzew&2j*VTX6_=2p zqNB^~9^cv7dBUEUwSMn5#1ROY`Sx4tVoEM9{BeBtxz;4YUp~(SmW!Z6ewN0{k?*h_ zQEMHL5_&5wefR8eV=g&Ja5go@EYo^iz-j*v*k_A=VS&?u(dF@6(3>@>INor;l7Z*v zE?nkQolucA!Q!lu_~0bXl*^bEDCgi25a>WyuEKxo2?m#52S8Qa(vlVKR^mI$M}q{{ z2#Ob<2g@gsKLG&3B_#X>s6ck1oF6bY1LOq=(`+C5sqh&TpQ);<#?9dfmwm3Bk8s>u zoLN|Cj?{2#WAEWdR#h4|76C892vQ3 znV1#_Gi0EU$wo=S6XxIwRcV@T`*%(IH%$E>73}{MI;uU^d?(FlI63bN3DvSGd?XO& zV9d-!25)dT;Ph1t3P?bVdlpUXV zbiK}Lc4-N%t}Tq_78aJ>Hx&ka`CQdDC?^4&$VF5NyEeU#P%5t;BTLrn+S!Pc%6MN(nK^bow^NZetlMf9o=t+Baqy5HjSo0Bu5X7!WVuygRI7 zF6Ufr?W2Ewe!hKlWRE-(c-_v?QSEZ%k18vL^dQC6e*L$@Ig*o^tKUjh<>b2Ylwa}c z%s3Qa3z2p{7O3?qn$Ygw^Ls*D5FEMG8X0xAbF}|(u;*ENP<)aL`RuM-#mlqVAJ!XB zN;e1dIMwoMPKz`37Q#mk+4ykLxVkthG#%$UJ=|DZ&3`HIi@78?LP6q<+1<9$nDE(ZSh}=r^_3kB!E%B=H+Fm+=SZzDSnBuMLrZFNVuh zdoW!Zfs89%F;6=X`5^_r*XQxR1;;B$R1|#2)M3pqz!=%N$>HuTB#4OoMTFck zhFV=eFo#LnH8*?Chz6OytvQQWi;SRS@|rfDvmmdiFuD_A0r7)Dz3Tf5AFKk48DX=E z73$WX5F1jZ61pK2Lw?n&|8(;!2~Q|Qkg*ce+s~doL!2FL*~=ZjRrVbUY`gZ_0OLss z9o{!Z*83`~Q91JjDm*fZ4N;%&Sz(C(VvXX7%3LUJd;ph2QG2{~z0#T^I7%j!s!m)= z*MsKnB`Sj>(f-z0{IVwbqw7^)F!re))!_yh8Jz4cd?lZrOPV}MO{Qxc^9dh~t5p@~ zF0*Xpj#ukEO^(X`ozR`zq{>CorQO)au*kTl`KA_sf-UiJmu?>LLtjw)bx}PE3JR)D z7GwDLI@t*ro&S79`{L*Kh@Rdb$`7P_2a*d(YHB_dO}M7SO2468?c(u*vBAQvp4yV%awZ1TDm}x+qZ^7Q zbn-E83YtZKj5gFzd0(dwdatd(skk8l&i}!9H}8-(MC)}zY-nd^L9n>?+)Vk}i!+-v$9(Lra{*t>?WWdur%Rdzif_;y zBTJtwxnS{eru5O;`0b|2d=olSn~IPby~!{d-jI~@`kx2>j%!Cc42t%#w;=G)LQoyBHWn=hHt9Qasr# zFo(PE^uFon#vYS>gJyMDNFSSL?N)tzB!h@_T~T8oJTuXIKCD=MTs*J7HL>w%y|Fd1 zc_fjtS4Aqg6z%zx)A=1@Nm8D={Ex2adq>ppYmZ2>oW=9kKk@y&<+3E%D#U-^yv~1+ zR8yWG#H3nU1s<*-`?P)96OGBdOTbg*=cy)Yg1MybS%#|H@9>7u$tPbo3ALbPkcISX^lQ{ z#6wc%blo8*U2j_BINRfS)@;U2PyE)x!+SN08&7bvCHwMemd+(+uu$wopOy{`lg~TV z1}JE0QOKl9PyoE`%${7$M8<#Biq&Y9=uWaazwZ*M{%#hRmzVR4i`TYW9+=B!#ihkN z`4O?}b5A8y3ifQzG~T*(%ko>~rmJ!@fIm{_gwv=_Rm-toho=hqKkYzOyFB@upmD z!3q8q)MZPml92IupM4seq>E*z_JHQZ(VW+3mxH8zpf^k8;n5w_uKdFvwiVxAsh!r1 z{zrycI{ZB(uVy7~I-4W4xzDFKVEbTiOVial%`JT5y(`lL1pfW|JHQG0K&clN7UtP! zsN3v!pM>8b7`CLSes=rdpnBQIkb@Y|aE>$|swawPy@hnSdLDBrB{M@1W%>Zn!FF%UWonVh@pqo>h0+KZQQE})i52_&)HSY_>H5#J zk{5L4DMn0{Y#TzCJJ`Ur90MQJYb1{CZnriZfTVGr&wU99c+AWkw7+ljpRmcSm)ooC zokafAJ!(6>Io!tbqg}3J2Sc83@jZ^Kul87Be&BPn!}CpRv@#~m@Uzz zacA7(`E5nSE}g8X*hNcez!`<@D5Ng)BY)&&FErkvp=HQee*YB7#-FHiAuus9so2>I zB}M^E0Ii%ExiJa#rh}tn0T7I4l^a}DRaJ_$H8v4zP-47#^9D&_149;TUV9Odn3(9~ z`{K(O`u6bN_AkXt7wsE`x$CdIYH88}^cNZVekDe_Ep-ivwJ|bS+J1*K65oovgCGZ% zAh+h!2t1PyaBA)O?(L`3F4om?S4S&p3Gvk&?I*4IT8#(*?K+TB@bK}i=6~I7ofPu2 zcq)iWYJcZLBl#6^i};9bir$x}1{jQ0HK*vF>Zfr_k)#hFm!_|NMnbR;Offfhf!M?$ zBkKl}dTC?BVP1WJA0%){7)B#yC-+L2gBUd~BIdOC&*!N=hUv)ePsOd=urFv2BzJcb zZmIS?{#5z7=!cj@V%CfM!ss)fRh@{wzYe2jg(Rf#`Qgjt)B&UKy#jt&l_Eb6El|nL zxZ5;Z3s3Zvan1jw#9qmj`+7L)KKns>*mG zS}%R{zb^NFy`CW|IOY(VFe~%haut(LGLC}xm;X3w(Zgqp{?H{!{D|g(hD~Nu#l*m% z+ZOtGe``7c02~0r-xap>Kx(MH_)OLG7@1h|CV$7#v^4KDFUq)-pWw9__&LmsG&&d+ zuMd!EkLl%nAW$zfRs%-8%!Xqbu^lEQXjug%<(g8J1M7&YbwKiZT7ui`UXPIZuVAk- zUGFnzHfsrzE5hMGa=XWSeV@Z(f6@K%@A7pi;0bxYAzWtrj9%0hQ!LGP)P)7o71N)e z*|mWBbE|gS+4SaGgA9f;<(T|leGw0f^odY8EuA0nVVb)P4AX zxqT>ARxj-1$)g_R=qfzubP}C!B}>eBbD96T5<~ zHmnf7skp9&UkF(3$rHiwi25m;J-Ou=b80%pt<_*}LyOEz?cyv&Q#uiS`kVM~3lQq$2(#Zhq7L$CoeY zi#-WafWgZShE>!^194`rxy3uBVi~p#qA-p|hPIBV;3`${h0E}G$F}$VJii)d&vqpY zJAKKX^n#t=#!9We<)xgQ?EOLOJQTT`XQPxHDIM*3GJO?vDc*D`8|idFeOq+~yQHGW zb-zzltIX6EIx{KGNa?Y=KYlaFTF>t6MDH>FZN5T0hMf0!r!u?A>2NevyI|}|!RV8MF_!2e{!;tN(S;OK zr49E4);!M*ciG*6;hobO#`{dpM&ooY{6)vkE4Q}$aTnJ<4yDf=kIlVAJL%=^^ck*? zw_P!#Ks+TzTmzD_*;0v+!pnKJpWkCCZ==1o)n0ccS65K6FevOKfAJlvF_s?A`dmGy zKvLNcdycr|YpSGXVI>aE_X^!6e7aH>c5+fi6y>hCXpJ3s7dI#V%ySi6*qAep3_a6V z=3JwD_x^oOv{TL}$>is0jFXLN14g|c@H(4C2>Gi?Je6CY9j@2mCMGtCKKBhMs?x@a z3$Ps6YV9c6${X2z+hSKCipG05=yO7pd6D4_2AL0_ORxKko`Hdik1qzo{D2(AEefN$ z)?oWoB4_I2ieqItOjO#W4yF=T0@eKAgSO3?qVbE950KtjWZWX$86@t|^t8F;afU7Rwt+mhQ%` zdRJ!nFg2F(#S?cN`%UM{_k9)Ns&vce2t$+d>;H^#PwQ_HmwqTvR8)8QzT>GZSDxFf zP2o!3ByudLIHE1xH#qa=HSZm-V~1}arnPT1E!ptTwc6W#Tbd`>Y3>jAD%oh68g#Lv zj-N67?E6pbqfo0*r7B7yk&n4u*9nOqwEXVAYx7}~Inwf;UYQA^3`%uq2JHB^FZCq! zd?jL6#RT{aL`KjJRj8Yvl-^Dt)nN+ZiLC~2?WQ=*L{A;(B;_r7E8C(- zK@Cr=7r_Mes8D%YjU|egMI@vJ%Db`DNO6?LZpi2qc&quApF1-6ABeFbV{iOC{~^`V zPWPA&2ll?U$r5^tt#2aa=OSC83_tNt9jG2aAi+x1EhV_CgDOGw8pPD^c1rZAYQuh> zA4KuZr50N!pXkoVoM`G?OVn{Z#LwL#Z5*0>bZbANQBHU;qBbqQW8BBm@r>nCpoWsD zMSGaMYxd|xnvyeZ*tdyCf|q+#JUcdgvTrFBM)Nk=6|xB++hY^BxE_9tAaPWsa1E!S=NupQf}JX*st$me?!H2K<*|7Z_I z)CPU2LcNO!pMa_Gi+6gmg}ap5GHKVH>f|RSzZKo7!ln~12HF1od6Yx_G1h4UD(U3+!GjClO`F@s`$opdfO2DC$5fa$#hw0+V?@RhG? z_v(L@;ox7C#Wv(io)ac?*K<(TZb&VaUaZ`3T#Eu2Wb7<5Ai(?V5IT5b@lK37ykab= z);I8D;sRQKDpt^Y-#?SGrmGAt9VS`G;S^gTBdy~Uh_-$kL@Vr~C%Ti8TaV@e?Zcaz zQ&o<@*k=8B%Isxr1>2DE7Z@{` zr?GbBusaVyTZ`eqA9 zY)T>lPs0VK#QJEgu`^eiT6$#G3;fy8-kK=#E3)Yj_rQR;pvEYMsgR~Py-+AnOrFeEtm>cW1d;{NF> zN9ef^x)3iR-sxhDFGfT)uJB;EdX|=Kn*P_-!LKG^QRMb%KOtH9^zZ!#l%{N$4)Yaw zbSq@diHjGY3H9U0JL`o#_sGeE+H~m(*XurBXYzZ4KGO|K7iWowlRDQNPunH4`C{us z)t+SYe6Rnp?}GJXAx+^*)53&sjsa=B|LkmkNv>PK%{K!xOCO_s?Vk7^dQz z`j2J%1DdN!FR2peN@H^%v^IuMK3d?P6s^;XvIJE@Q%eh*{iZ6gplbI&<0OUb_I@CV zEcwOApoPrBO3ofP!WvE~qq2oUeIwn-b$FlZX!k5)8WR0MBBFh`M)5sF1qb$@X$3po zu6oRx(THF0@%2}odScp4)^1Zh_thSiL*l+Z?v)s_XEPZJ@d@a4ow=3(Lk_lTRdng6 zAE(G9RtR2b4y*HG6Sn-UCOR+U^A1zG8Mt@zg$w`kdKv{UPmp?!@cii~;lYsSX?iXr zuSD(97uLul!^rzXz)G$73+pVE(qN}lr?YrQjsjElz68OB6IhHc8&8y30=gZQi^+=+ zx;*y$cpZ%mS}ElMaX0}lJ2cJ7i0*f6u`@5VqM@>0{FH~Z5UlpD;ne2NNNufmNZv)g zig94*ceUkJ3-2FO&UTh%*7oSO7aHX z62R&oZyzC?935HBCb)rvw(hgNVyb%ag&qVkfwpVIS}cU$p`QfZnG^^Vxme=p(s%rl zdMT-c$yh(~yXuJzlfGH1*09ePk^-B)wwTA;a4sjdJoG5|*5spJ6;;v#oPdNR+I^F| zFMIHx^IOZ&$dhq*+4F^tT5yEr&{+R=V)Nk0yGGiT9@w=#*fCv+V>^>E!uG=%54S=rBtoGHn@{H0O^l7^C&sax0o(MJ1U1xr zYtG?Qh1}GNi`O}*-~tSK;?T%`aJ(=v=5I zeSLl}L3B6j(Uhw7x2Gc{de34ssSg5Y{BrLu>!oQ{TaO~Pp>6-9bV8E_hm^GIR|w@T zOw4TQnE!7QH*nO1iT<CX;YaYK11AP|QXnQYZw)rc0LQ%q=-)zTnK{UQ`rm-9(0 ztLxe)AEbDnl#4(N>YOEQyWwCsn#b30P_45}xbnB$7zF2nwC+@jIV+@KtH1Ekre-{( zvqeYAL@=ar5trxOU`4RS_JgQ3JHaHQ1a}ZP7N7m*f0onGjt&hA8~v$wTS3E>Gb1Bo z0{Fo5?MCdcgse$prqH^(?*RazMxwk;R~s}|R8&-dHa5DTj~^xEE+}+$&R#lc_W(*b z`qJvzS?yGbs0O5Lq)@-h=t9XGXOp?%!6qSThfu36keuvD-uI_K#{7Mi6APVdjR^4bQ9iivpeRrp@CQ=z?i%yrQP44BoO&y~gY2qC+`yz}jUv!+J-E-V->G@DIcYmJ3?0l{=;#mG z*!rc1f$u!rn$}oxN^se|1v;TW1+8S)|9~(-_fOr&g<(!4Z@hFx53&FR1O9FNj+4TU zp6Z(X?4SRymJhIl)E7&Vt{9s`$mY$DvtolHa)D&N?WXkMs)NZbst=D8?K%7#)Ao3( z=*Vv}o-V&MTOUsvD;SBGk2w9?dE%yww;(4y!ursRRL7K3gQ&?!1g zpEP*iUJxDu42Y3~laP}yAl_(6*}3|GaRKzHRrx({e~Ry!`in)lz6Ar47L#r4&s2OrY07bV+&BWk}UjX z)8$#6_6_%)T*DV~-;o#mKPb<)r#*3}MK!Y-ra+bVsGS~sF4UW5R%t#^kY_#|bMdVX z{?An(G^o9FZl~RM5?E=`cAE-o399Vp4%O1O4{X>ZLEjy=mK#B*KKznoZ0!ze*W^yd zp@0Qp+b%{(z;1`51`<(h-ry(U+uIgwY;0fr{dIsYN5l%cMn9c$XnZp6_irW?WV47b zK|xEom77*?&ff7lHfyq|%I1!&b!_~K{vTSEG8TDmIV(<^{dt#ULqXNKLdI>32h*w0 z3{3BF3%J#{7c}EGA;b^?Wl+Sr#7ygChHg}+OTlAb<`Swt>P{cuNy;7er&AN}Cl$Mg zvTh>-d8v61kfg6)z4`*931|D zHVKp~NVSuB)edTwe2(^XjjO8b!BF?5B2byYLqYc8q4VgLM&Wl9LE|FpnDvQ!lFc97 z?b`|2M-X-SnA70F)7a{Nz9yudVTMlnLcm$_^6>!~fwWvWkVgpRqV&_I)!hjoTwP#M zpRG8$BZCN}H@)BaS^&m9J`AMZy?0L-$V(uv7@;jMc}9Xfxgj@i&Sx#l8BG7%G=LlP zkhoFoUW`<{ma*{4TvW;#;Q-Gk089q2OlT`oof5%*XFlFZpgB422`e&R>?jsUF8?WBmepuW1iJ?+*&guT zUc)!`txir(Z01w^Ah&F+KAKv~%m=a;)JdRXHtYLn1@0Hq&ng~Kw_ z#@AV)P@m6PaisM@Kf$At{sINfG0As)72&Nqk_+582XUERzX62TC=Xcic zfEMgG*E55Wx8LXW63vm7T6y7so@wrt{#~KXH(DQD=%P;aYsNx%+UrbVPCeKx8_G72MIs5%39Al9Oj6#WHmOE@_HN($%_WtX-IO}f1t|z7uK|54|>}*W`tcp&)^TbB5v#}k6 z_~LjqEAM!JKq`vk!@bf8tJ{-MH7&nG-YNy%{KAig_T0O)ukBD(1wVzOu`B(g_m1-| zH{p(M{+z7ju*zw(Kk{dkE9@>QW$)8a|F=(%5xpR(16N`N?XhHnU{{iee;J5TXlZHx zfYdx=m_i%5-(NoC0dJObUBz;(PCmAsNfSyUw~6ou0F!ol#$`txYB$atxT%AH09{@U zreEk+sVBljh4#qy{ywl<4=N`&+b#ZHW9A@RlaG&B%Wm%%yLI01t{5RRZH*e5(VLH5 z3Qq7eOaw*zHO+H3@t;2n$x3F_0O|p{DJ9DE#>L9HAcG?|?KR;-I^_;Pqo2kjOh^e7 z$Wxj;P_7#d1|nC%iyp|>kwp~Mk+E)P9iN|^eZPV#-zydf#WlqWPpR2o>)o+l)X&`@ z>Kd9%M&DyE<26bAg!1Rx6B$BY8`{iF`HI~V({UqygvoF=5y<%`T=u&7cbagQZBi&e z{4^w;rcvw0X(R(@!f6Nxawf7Adv5no3ok-Z$@UM2(E2O=#y*L|RKn31E03ifNwTQk zVj{a3|2f9I-i{7`(4SVfhkJf9aubM!5r9s8b|fT$DTPrHPYDreZqTF#j04vUF$Qgl zj5l|sFLo!c@kD>csKZy2uX|}r63?M1yu~N|GFR!L5A-;_hOM-)084Aji-E4@1DE*E5bc!K5WIc zJk$6FYEJuh+2_%6`58UUc!$|rNbwm`6kB1x6iRBVi07_1O$IxUzGxLc4d(+azdRqh*ApeegNo4(qG2s!fPkGL9$pCC2pftH@u@4dbf zwta5P)-E!>~&WQU(UV#k)o91VLbQ?1NH$J)%qvHE^xu7^yIe)HzpG-fN-BvM_p&}R89-&Z_on&Rd@*fZ- zpj;!aU}=j4WK^dAC8LUevvrf-?c9NAd8qz6HvhY1EBp84ti%6XbGm##%X%z(#i>7U zi8EF4syogN&A1}>98114?o`f7{D9Vo#{e5N@B=W-LZ>iQXn+kNFe|byni$pv)I5%k zj%IrSl7j*JD=8TT2gW-73bJoc_xlHXFO)YW0zoM!YrLS<_?d@2g1SqS1*!MML_I2d zU6jtZG9WIavo_L#pO+qu{5D|r2>}mCP@tKVtpG_J)#Jw?7hPrKMg~Rn8JC6l>t!It zH_Bm%{B#%TvxYA1lh+-7fV~bRiv^)#{B=O#!BRRj4@TvpI#^eTs!>m5QhOoBeD-^b z^iSbIPr9HPYHI4;%d@Sph=>+QJS)?+LgqCm)F2VPb2s5{ShM&^cZ5*?1YgH#;(^LA3K0jv+)?H|!1GWbFc=nOz-$AsOlX6b<+#d7u zx>N2~uCOf1n^rKU1U*vbG&JhJ0e)31pd00{cLJx-Iq~<>4gZ_5w+yR$=yhiLJQ9rT z=s;q=>uR4{CTi8VvUr;xnEtL2KFqN zRqcp^Pde;%Jyj~VdTc*oi3T!N8d}=){sR!=Ly-%C;s@=U>mu~fTmMfn;y0Pi?^K}k zM6vB*l*2-JdV2D>o^m)R2&~MC>sSBw8SG{V1d5M4+slFL6RXF-})Wohz=xMH?)jT>3lLcD&H#dOd zjY!btSj2O6w_WXrpmv6M45v~luPw-gMt7t46Zj53xHij-a~W5t>uiodj8HB$3rI-N z2)FH^EKj-o&rk=t!n_6n5765{(R&XUw;VKRqu_Tyh3o3-_QLQA*xE}NHZUsgYtaT} z(F8E}Bz$(A(uV+4!eU}N0N|;lZpQLh!%b|8m@=rA;h39my(tZo!=%}}zfa8MkiN{B zDAOIe!tv(^O3pQ_d9g1o5T1jcq$uLV>s>pyGrGQoB z6FnAMe>3Atp6M=_lH~C`jpwYFSKWEFr)JoAd#871?nm=@V)OV5pHiQa{R{8BJIXHI z)lXxY6*fxzwX?H!1?^q`Evgae08{KR$i+UmD`h$k5ey&1$&Ax%@`M*>LBum+RMw*Z(O93Rg#^e)7ckcB>DJgQaJ_ z(bj(SEa32Ob7UwpZOEt`yf16g%=N#mD=X4->ox2CtE{};5p&alJ>3-j1Ci44F`8z{ z7_<-ZR7_Ix{>u8gZM`#v3z{Vhnz0n)jz0G6?(`;!b$r4dN8jG9n-)h(*W8)aRtgPP z&JfH3C{s?tF8t^_oPV}5vUU?*i3kO)rvFzqNYgOBC;lQc$iZk_|LutJ*9+y51Y0$$ zjv5Z!y^&Z%5rd#(euJqY9&(-69PQp2_Rbje&KT2P#9;3a&$%D+^ma5#+ii}HygQh7 zv(?VK-Nu-^^e?RuWUbp67*Ja$C-FS;OM0iMsJL@1cE zsp1)*s+i&_nc#gl1!&hJ6#1K$BT|sydrvJhLxJ==?UY`VxUp&;K;{#WyuA)CO!P#M}q|BK}Kqy-lI#SvDQzijx ztKCaZqIFotrYL^JGe1vI;L^ogakwh=u{p5d*BkW^@2W?)TV@M;49Lqx z@U0{s&&T9|8WhM7p#SfiJnwMFzP$C!BQpLMqNiUhkw6+H9=f&zfa`}T1aCN0_LM49 z5NCCaeeN$6L3BjYu(`P;_}8drX1)n&{+#jK$xhRda@yoao$9FwYwhn(1;5{zY27OK zPI2FI^iJV8(w1FScimVdS#HVAPFy^NWckOzqwKQ2cP+nw=?@b=kAI1)WO4g3E?vd<;6(`je5?Oc;<0XA2g*(On~|R3iGWc^sLD$a zXa}p9Rq_T{*?BC#hJr{L6}i4K`1R^Vn1?OXYv+zK;jT69gS!8cc2bpcbWgnBc>OTR z2_~Y{kT2lT!~#h|qMR0JOB$l?{o0EK0n(wD0z3TJvyP z@^E}XI@X$$!hgIi#BAd-?7LG!Ro<8cn?G@#kNCET5M$y#i&eNr7ry1S-Iw9zB%Gf1 z#w+s8KTlseWOzA5#1GImrQ}ZOql~1{=awZ+2z-U9Jz$MY=sv5AkT+H}Qxz2^TA}oi;}UmEHmtJ-!!n4bb}+O^|<1 zXhT3gWmQU~c1J{il`}WWDZJP@V-dfaOxc0h@b0RZV<`zOiwaM;+AD2IlvYR|W+Pe{ z2Ph;R42i$B4cv_c&ty8t>W#o0N0y&eaAGGK+aT0p(EeC*p+?;K z)H_%mg8m$DyIJ*tyjjhOeu?>XH%#L6{PQ}D$rmNjf-Fb$hiy7`&I{MFB;%DyC0V)0 zClYr-Zl`51OH>lqIiu-RGq-a|PP5IqOgO|EyQ4-)G$#0UEN+F$%Yp#JhjB^gD|ib* zkD0y^4m@uOBL5n1f!88B(RZ7OYY(cFft*S>&J&CO*y;%e1rsNM+iQ}M#|_eMsfk|I zPaN0Zw&_S&F*%3sz3QOXm->0Pcl#`|@*UnX;Y?5P?{}Y@y$90daGY{tRT-Gnn1~QC zx&0Z`jXRy}J=|C*Juy#%EazHK@@?1TVbo~FuQxWAwdV{E3fMFLS7OR-#fsp^xj z%`)6#YRE9ItDv#v+dh1ETKo8M>6fn7LdDY&xA!@MvF%T0pGAiNyE~j5op%V???25)kR)R#t5Kg;7w2 zaM>8z+GTVOR^pAyaYtdtuyd@pzt2xk!3}XaplhVuz%)ypeKL}UFG*eK@xZ6*9(Qz_ z1+Bu&vs~ei2j?$EZid@k(h0nft3b;-ZV%C(K_y;b_>-FWq;t?Xooh`eb*f)OK?`&9 z*OE%;t2V}J3){rVcr>3Eqb}%Cc zbYQqcG>B~SPeIjwzc{k9fE;2*xsHlpfhjzYbQ+7%6q$^M0-PQx+Yon5Rew>s(i!D6 z#apIjVZ2E=76{rzrTk4o8n)ZtOV3$umr}D*%W7414rU!8w`t?GnWcKnLe6-aEv>7v z51Tau)dJp68wEE1OI~3s6chf4t`?oq8%}HGxdt3hkNhc0qBM$iLX_%|OnpRV`8?(b z=v}>$Q3WPf^DXB@6Zabiko~Z2#rN;uE0$SM0P#e?7z2=>I_y?hn`~Bnf`z+N&gTbC zVuibXKRRQ6d*hH}OX}X=ouXirI?oTPdUV9y3Ui>m052x^ia4*<^>r2~Jsli$8A4Fv z=kb+~fj<7~<|+_2J>4|c81;MMd$b{yDjUKDM)DMkjqYRfZ+pyr>b11ABoS~bs@I9) zv8F~&+-kCL9G7^X^?u-#Angq;z9MPah%A2je8ER8pE$)*cg45PtIS^#X{=IBj<{tH~DGQ$l5ktShoGKkB2GO1DH#zJ8{N(5FiTk zkPkSJjqH%{@aEzXb(Kv{G-%Mtsl#h_cGdx&lmOhEp|@#Nmwu;y;aqi}qEq)5*bV0x z&bXVZa+B?=4j*O`lE?le*vFC&oO6fEGz|uou;|D#9ASR&9x`IISBuJ^VL!<9%Ysp{ zL5&z_*LaSjvX+_Rd~j@bDOthuFL@lMt~)m^w7IlV-0EoP@E~{NuD4`XMt(r1HdJRY zXH{m@@i^=m^64MI?l^7~j~GtZ2*5-UP|nxM$;s8Bt%&MdZ&ci0YOYapJbN3Sry>l! z5yc|IkU0`$G1`|YNAKd|q6l*0tK(Lo-=*f{P?Ri`JpIoWTRAvQ)fjeXSFpfS4E85u6(eY#)InKQ{lE-X6nypm0y|*_9BcWB$_d^ieL0p-E zxM9L!E&%x~lLaQ`EfpsTiLaf5*1|CdthdW5*eh&!NvBPuW=8eU3VzEvm7@RotUs!1 z?G4)?j`ZNuzYBX1uJRd+yna?K?PQCbhFeClA~Mz42606;9=Ly9MHk;fpyWw;%BiXq z`ft$CTE5MK;Vj`7FGzhp#p%IAJ;IsbDH4z18Vz7H9RWl1Rxk~-i=_ULH6_8&h#}qd zh7Jp1yFk!8{Z*d4w+7wUawX%eJIt%IIX9wDtb3NmM?=1g8AU{BQLevq>X4|eD0u=K zPYw0#xQ(6J&cW_HDAHK)435pS%dVa-n=fY>qmzKs|cDM$5fogeA z79&s}AYg2@xIqt?e4DDxkvxqTUX7pve`9G`Fy{)4oFi}wM9@e@AfGD$LX<{LmhFq9 z=|b>nn6~VFSa9ozJ>L|4dV()_CBft|<82!by4$1Ad(e6P|6Z(d^bU_@TG6J5@<~epY{|vM^P6bd6t) zG|BK2F?6zK)N3G-yjN8G1ywyfz9$JD9f8a&b8`dlW>l%*5k#G5)+038^idfKM_doA z@GayzlFtwLd)r#h#HxQsYR_->lP0?m)~^coj-a(^wsSGTVG=+WG7CzLrp;+McgcdE_ckTjVc(%tYJdAZ>2j(h!Oub zRLQz}oSVkEZ5O;TpTAvmu&%`~eEUP=d)yP#jsHd2TYz=Bb!)$fVt|Aopp+s8-JJr0 zL5Y+!f^>I-3W$P$fOH8+m$Y=ZG)Q-Mcb)O5>)r1;XYX&n-*qjQE_Laj`OIg|5%>KY zjs7IkWJQGEDWx39X?ZhezNE04Z)4rY;?DQ-B9C7us_|v?ebHSE>VqS9 zE^lEGiBXXk!CrU7eA!^(p4Mnd#w}H?chtt+zq`@?!xkUgP+g!3RRkF-QuTuq;qLwW zIdCtRA1=};xXWa{PK@3fwCbfD_X_q|zTOmhCF-EP>!dV$_rjhv<=JV~YERO*+6gtw zj)4?XpSF@S>0EkM-;bq2KwMAZZDT&DH=F2Z%eWR!KitoeIBab|Y%Bby`pXug(q(hJ zzX9lzNTldj?(B$!hk%@^2kFX!mzjHV{?NsON$AHtm)k#1exFx5nW}&ba=EK|c-2y8 zH=fMh=D8=&b9U&0og1=RqnTU6&1!zdvWe^=B_H-W)VnNuXFbfq2NZ1Y@Go4w)U|29 zJ;di^x%O~dsYvw$PTb);XWkz)ZIbV7X-!XEB0+^Y`P_luRC0B8v7`20svyI8SeY?d zMbqXlR8Tbfe(sLJ4LE96jf=Z!$2WuZ-yZbY>P)(FWV0}ZD7f-83N+-|rtzcgEh@ma zvkg#Q98D~lA@D)n!!i+UxGbRKQV~M;!1Bj#MMUV}3rJV`93;33S^MweKoJwTK9;G2 z!+d+g!X_pr!tSyR@Ho5iV=~q^uF;`WW836((pUCgyJCAg_l=10H^OR9&-~W}GFJ!qCT34pQsCWNU)KQN7ADR$XdrQbaMK$YTaXP^A;*WA86%2_ zhzQc&rd2Ke0@e$JN&#{CtU)0i%T8opVw&!vobEu;rhu2`{wrG|NU~{*3K=3e(yhJu z%NRv%=aDbb5vuupi6wIcTK*oM1S_*yc)A^wjD}8^Oh`MbGY+p0ry-s{bvIH}wL%kB zVdGRKEHd6kXb!h5_NFZWng%2=U?U|%Jn0vaI?43(^yh$p>T>6!8v-u8P+?DmiV54G zFWdua5v%MNKT5URReJqbKHA@%y}nuPrS)muChMOC|NCiXgK^5Du}zm+qcG%isDx{B zTd@2i4QJK0275VI-;e*P;7II>?;u`GK(rigF8~H&ZtU!o135&|(9lqvz}OESE@D?# zSA;KiUp%xD8j~s{`DV7|7fG|ER((a^CT!?0HwUB%V~`t2W%V)^`9w85Za`g!PPzU1 z(nzQ=J(f7D1APSAG8R4WVMZ!72t=SH-v#1^zc>Redl3H&K>PIH;tIVB(~pdG^A=1V z7=#oqS8tj~y9{&WVPc$eRuw*A9S)9?691qcl-AwI+$ zP+1iQkrep-eGd^@4JZsLz=;E*DK5)dM%&e4@8+3DD~U}yo_%}zPpO~l-O`vl^|fKm zVfp?vb?M_EIPg6rXKOBb=3Re@|BhF7bwPuoxuIA3ih>?%;6tK8@W8*UaB(hbfyP)J z1OP~w+0M5|GB7Z}yV*zqt|Xe}f!s^5=5T>fQBs=S?MGNEfFhE&ql(xpPiUyEZTvVW zsnbGY>Sy@ z>Lo-}1GQijGhkbcx*QopL95ds|1XH)aBmI!;a?WRcRIJKH&q%xl2s&oY+%be#My|< ztWcZ}?eA)v3{+B6w*C}r-a3CnaZmB9^$hIA2L=jI2RJDl=(i9X(mCZFtgG)@W-N&0 zt>IH&)ogQb8|MD1ozE}qZ2r4p#ug%ude9(nDyXDHgxK?xG6>#4gs?H{xW=YO0@dwW zlfpoFgOGO&3}g!*bOBGo3yi+$xw%~XEgi&?cwZ`d`0K{Udei4DK@;Y&U;3AMi}g6_ z2)HbjFH76s~2% z-gW=+2;}Ug4#FI#Tm{>%-H(Z-EY=8lC~33hvlDUXxi661xbZ|s=RU&N$bnD<7aza( zt2wxC5~{VK@aP0(RqN6Bzk_lg?ZnYBP{r+X=-Iu})LlKWAiQPF+cXZzstKWxFyeF# zbFhXzvTDq}J8ZFf5M4#5Po^=hF0ib%Q`If*u*NW2k^px4XgL>p-9LAgGkw^FP3RSE zf(Bv}+6tDCw`_v3lL-_r0B^Ecg%y8~)sQl6BN2CJEV^TTP9O8sA;{IbaAJ-uN$aD- z{la&6m^0NktKnxCR*dtkPxKq&qFDzOD`Dr&f+*!a6O%vCE|5Q1?ZsSw(@J<`pN>{k z%HCd194;~5SxFe4BHFeoX>C%sLwq;;u;LA91OF>^6}wlcLJ9Sbql&>+|EqXPKGk?y zLoCi3-UcIH`2~N?*DdrH_`oB1Um|=uwUy%rr2VDr#6#j`6(I{d4yU%trkVD0QpnyT zu80{=*&t2Z(2s0^wkHHeNI;Q4&~Mq|G02WF-f-#C#`K;eA|EGo;rj_D6SeYkno+Wy zBZjfxZPH#9<}1@a9HY1S`N`leW?*LzMj%ZfJW_C{c;u!}xZ02wSbTo{^bn7BsQWu! zj5|&UzbQ7U>1dA|T-QQL()(QeL08s}n@)Rp6+G_`e}KwNR_P`>&{t43fZW4-I3JH> z*1RAD&Aj~h!$r1o!@GM|jn7wpGPTW}lJ)hbz!g$4xGplWE0}R`7=6zD=q6|IE6vFg z*UgHZhU}IE%?q%pjF`hNU%osJeKW-1e6&_^%SY7mDHaM+3>hkw)mc=X&%S2N=`h$h zSfe<+GhkC*RB|grcxlf?^3Uq8LfTQ*D#lcJtm-%Ga(rC*P=}7MGS%&7>GxwCLu~E! zO>5N;SIydJU%`>xMAthP@bq?>!_K7o*&(4P_N`fHwj%d4Tzoi$gpYM}bc8*pWSM28 zWJ3lnt}XWky!?uz`P@D^*XOIZ>HcjZt}ry(;kT*PvsXQC;j(_|$G=Jxl%~{wlO(p; zxtTZxaxgnMvysJtcKJH&Ra^)rK{=^d?!*P0O>JRM8Hg(&pewzuyBHN{%xpPz>31RY zexovvZK<$AFjz#mWzB{J@a=8sUUOyiMv+5mB+k z@2^X^66zThdesdcdo$JqAbf?U@Ia|O3-mIP#@DrL6EFFp+0B2tuLVL)Jy5rt0avgH z^1pL03r$EVL_bk(VICp1Lg4eUc?lxcMJx%f5l(ovdSr5Bt-+nFnh+CJSTl9*frFPAVVO z;J|}}mf~zqOJ!|C!xkuq1EQi@J$T5^wqnjWt$C1kDT2g=Te4Jd03b65eHEu3;Qe~+ zM>Ycm9z=hG(DUAaYSD7OgFLC8qIOIK%^`a}`rPn#MVH`sKE~;EjlT2zz@5h4*em4p zfTNR5`{b6~8kN+msU-E5UtJKn*eI9T3-UHZl$|;ucn;U+3msqD z-u1pjxT@KmO&d+rN9I<(I#xgOd)w_m6|#ao0?KR8#t6Qn;Ki05syX75S{RCQQGWSFR-)kF){thvy%olAwOty z`*dVl>3Uxk^zWPKqMr?Yeh6-C6mFmD{m=C zx?wkL{wFRj{K)4w=xJ*XqKP63fz1X`${G4@J!%2fE)7QL?H>0&`TedYvdUm4V5$s`4{v2Z*2x`UYUwv(mr+sql%%`R+b(dtE^P8+;v&$ykj;yz?bTgR*q#F?07}jf>DEB= z9dS^DG$o^u(}PkfH0G^s;beE~2t94{U5IpuBK#rD-}0OL=GzAAHw*yYX( z^La#>^F&SfsuTk;;SGclk{j@K23UC6S++_eUW`#X)Q{5Fi=(LGtbaHwKEdxY^^I#_GGSvv|G z6}T&?=opM3hu$#^vJG}{U<*9|`3+*Z4DpS4?9AWk69Y;D1ju8RM z29J{}_uD2ut&vDVf1+YVY-*?i%kqwT&FB|iXxMBldeuPNnGqBNZbKesibFWn$EgBt zk3ff|l|=`!@D*%q-Ic+7UkrNnXVWfGaS+XF7$#QV(kEi}YRBFex=KCrPOjLqUw^@S zc&@u{TCFlJg;7z%)VDgC#6wHe1J`k28gC+@t6nO>r{bBRKoHLPMy%>V!!NmS5Qh;s ztVrf2RlVSk1{jylqMW3h9O5Ff(?zdX<&k*Rbl_e1{^;fnT;ghNW1;z>>KN6CQ!{TQ zzRZ76RA+De%*5Pxa}q=j%g=slPh}gileKHQ8k~wOc^o((h!$v*qO z&|_=(5zUg{>&>BZt6wBPZ&Qr@+~bisaM4{*6}eNEZ&Y|I-Zl-#q4q)-bL|k-+W zS@Tp1_V4^1BD)`qWMyRUYuU7(sIZ_wTeu*GyJpv&1o^J~3oo<8y>!mcRbJ=8S=M^K zY`$wa#`l^_sKs?|V!Ax6z0?gk?7IM8h7uv%@}L!*Ew8{Jq^FeuOt=wy(atBF{F#+l zEtQZbVDJ4_YoNRJ(dZO5A^3lmrPu=Glh^Bl@0RxmTzL4oFglv<-8}A$l#086`8Ah3 z^o`)KI-$!+;09zYu)Ltf6Qbr_*sn>!PZa{8$g)_gmg_UJD+3hOrl^wD7@W9QkZ)WyzE$6`o8UOm zZHZyGcEpw(n=ufm`P$XXA4C8y0$-}uJlkB)bIh~WvTxnX3=;rztKQ8?i8P#BN*;%e z;#%bHGIopk+opIzXY6xQT3|Bg{A}=A{TZ2KpyhxIYfw5aolaU5;2}t!wO{IL&cj<= z5`>0&0|j;E!_;eCn_eH$yP87=p0Vn&E64>QcwQ)Yz}bYo3Y5F|!=+;Ipo$COIY-uv z3CHRtH_vw(cP{M!)c`B;=0|YRJ}>@A0T!O{S8z)D&_8ih{1Yc1wnEnVyPtuIv<{tK7J&D%8}(O4*^V}q+HVmVY+(xNEPky2 znJHw$^o@Y}8=;_1wvc?bkj}NxbUEy0URLV2WaDeGlSy;S!gYJ^`sSJq?H`wjKGr#h zAuWKOk#Imgl>S-n>OdX3;%wI(%RLQ+G~3ayo{2`jo4uC1CkIY5@iH4-Z~d@%Sy!1H zi=|XR-I}BL|v%NBf#&ax1ROthS(%3%FzGppntLAWAwtc~FVPmf=sC=&nZ#U`AkxGsAL1<>ZIq5@43`5j%eT2Ov6!=6Zi+GS?1b5* zqy<*=b7~1()Rkg>F@j>RObE=4H81Znjjts%w0{MzSB)6P(UdKt(Yp491BXe_hQUvn zXT3j@E)^0)cL{x`_ZheVRe)Aoy$4l?STb`5f3)a3w z3RV=|HYMu!FwZuWUX{N z;bTwV^TXwp*o4~(HOrsGJZ-n=xZAS0l5FrrYb$@1(M^ zXw}F`-d|w7VMWy7vr2Oq){ci`d^eCbjoDg)W zvS9hxgg_B$h){LK>yE!0-QzpLj;o9dP~){Y zVg8l0uXN<@B{J8c8s__4YW^nP%Z2C>(4bk?;cI=51wzxbks5WY)WAWV(Llaua_~wc zL$<#%um<~|y&dpM=@$|;;ZOZ_K5)RR&W7G~;GD;CWOaqHgs_QplL%9fCwSW5dw2vD z^(vd0nT73n#hFdkUP&^RO6uNdr0|pdaSVCN&qyx3GBqivG~VR3V+4bv#&n}U6xTlk z<*FOduPD*>vo~Q{00CmI*zNf;ye!sJYIleLCYEX-}^UNZGI~qW^WczWxH^dOlSA-rQ*j2!CaR* zIJB_I)dnv%(a{&-N77JwS#)x}0bANDs3VeanxRCr)+0Jv@ZO<-(PJ7^eMp7z;R5y` zc-B6B`sBT;hWanhCNz}s;`Gy&#Q6Z8`(d*OE`-IjVnojZa_Eo}aJVQ!VDWAbK2{U68wlrDYa-0S()-29pE)eoOm_m~$1@M~A_#LJKlde04x4fpHU1M(B(~ zgPJ2bCuhI332;(MZ0Kq{u`Bcv73}{P4`vqAo}r7&0^f7PBUNRnz~)mG)gkMRG%Vs_ z9Dqtu&ab6e=tqQyHzUPOK=(rfQ#_K>A6)Mi@Uak#Jj@SSN`~e;vYlJ_jxjVCZ!q4t z>bp00@e`0@vaCM|eGq#LDHLc8*wmmsh7-pO%kJZV@{$zES-9CFTEV(81%xTE_d)B; zX}#*wFu-QMB_`&;I21Cw@pCAMUm2ilKaN&Q^oI)QfX7}sWoBlLkdncUVYA$C-Whcb z5UVYa*))H-=_3mAZlJ+gH0M_@rk37N9rysG!)#P8twZ}ibJvEA2$PJAY{s`aU&+`bYH4k4jli`dsBYft-|)BibZN=Ms=pgW ze?;JePCQv3ARvV<{Xb8m{hk0yy3wpTbh{7WZlYEJ&59KORn?Y^V}>GLj{ILcI9S6J zD_2*CSE3@VODHECx{^W?>wjhW(5XqYAr1`Ty|l#9!rQ4JJppsZGV=pR@A}^cj{d{^ z>^hp%`_2yf2Ji5n zg^bL`)|RmJm&2r7s{519LZ6!;4+#g25T^rg$#+J_|}Dy!1$|x+7K?Ij?~* z-jq$t!V(BP{al+BCD?W^ziXU>Q{gTLM+p4&s5pR_KRr20D=X{ik%eE5Jmqr7@sWA) z0vC$-)+S(Q!kH9;_W>}fH=s-jN=JkPZP}S~iOlW|e1M#soR?sZ2)r+W48i~?za}fu zIYuHM_>sJ$BTRomiR85p7$4U_+*GeXz5%Dg#WFQ@?IN0<$F$b^x%ZdklT75Ssg>0N zPc4)9GqV0_!GE3@uo8iE#(dhnIAD0Pl>J^Irzg}*rh^v^na?A(5Y%-5w}w!0goz{l zQFr$X$aV*52n>}(^sGoG=9j|1#JZs4M9Jq@Q4Sf-aWdu3O6L_a z_rG-};q^F;lG5v)=(*M+U7txi=LzPSYHnBMwQ6ncA(|5LG`S9agqp?e^X_8MH(K?8 zf^Wc^?f^iR5+?lI>bqhk34P}>`KjcolgMdEe`^dj~ zgoN}e9|{W#w*;WSE)CwD*U&o$-~Ytgn)=kvQh+jhl>AF8A>}D!c6M}X2TWhjh9X_M z8?4mP-0MBT{8yFMdr}F@_PX8`VmWOmETK=V{s+`mI5lq}-!yUukV0u-JiZVs8(1Dx z-Q?m*Gm_t+_xE<`%E^5{4^;L6-N$9#RSI^;L-_I}}#YB0#p zffwgJ_AOt@q_mv>eRrHVx};Dw(ap%n0q!{JT^z29dWHY!$wdu0d@nkipYl9)1jHf) zJZSgi#dV0$0PUwkoEVVX4*%A~&>tw$!yE;kbQ4XEri|RPWppl`MkZmo^H0z&?{3^4 zZg*o;$EK~Pb+Fb$6t10bqrtg+ZE@+Xs5I!iAHv0un$>g*mHoH1$ZWBP3c&{;mQ~vk zYeMj@EBg$&0?xr6zGV*>!O((7FfXUGws(iIl?#**F{wiSnCKZAIS=2;#a5!D5tg$ZnP^lTuF)F}w`U(7xZ9_?I|{O7by@f<3trE^?fE9HNi!RsEezCw zgU!p^dt-ea@v>dPyN}rCM(w6BVH8Ons0NTxD5|762(bDaWrC-3nKjPhm4r(@4xHzNONakxIhR@cF9QI?Va#A!My4+S0|0}7)=UMZxS)+R@#(W?23?-| zk)4Sos5V%(i+zbUq4$}YbJ`qH7>pnWupBh{0A#uWE@RffNM&(Nn{%#pw=Pzg;aYe- zX{3*pGkyKc@nQu~&b!j+U$B)B(FT&79H*kK{x%4aiP+0wPRVZXaXNj zDW^l*U039vf82ae8PgS5yh9X(>Miu_)dIJCex6CPptg`057Y(+DEc2Yl0BTDt;c;r z{rpLz!V|_Ss=#*x^6dVREh5Gza)VLM`#(;VI^)P#2l?JWqXRKvGTyk1g@wokD9h$d zp!XB|jZ4+5+xH`$bljU+kgR%ww;bkUl*ACD3xh z-e*{;5xmkq=_Y{JL{E8gQ6N$4M*AmIsSkdSeOw5vC!nu2)@ArdQPs!yruT%D#NmJu z*HWxMFyOIMj(^lsd%(Sx>Xn$cI?Z=8e?FJtcB6y(@+~(@SL{DgYz#mx;EJDvT>b$! z_aGArul?p-B+4GIa?8BjL^ZAKFr}kFo`B*@gpU;|%^97gq0sJHv)h?sh4o^AARU+R z>!h?>1Z}ACcW#lI#hxy9XDe!%!GQ(byGavj&9AY)>OHB)_LNe=~|3JNuT>Qv+#AEq?=$oq{+iI>nA?g2Tk5jkOn*V=W2N}|3jAS@J z>%2Dg^3S-!WhB;E_qrfBW$b>Br$1>ml(9dxT^mhT%}rD~QIMtuav1MM4L?>4J)h}% zn;=~n7dL@3UkvfQb;TxEZ#Cl63uL*y^CVly>#EP%c3*hUdlwg^ zXglVZBJ5}k8O?Mn%T}1d0!?BcNl*z^n+-ez570d=@Uf<;zYzpWIKknm3U&931Nsv* zo?aso@!S`V!JR0ZHd+CUWe4AHr%kWIiwpI0(?WmBTWoso8?T5CS}#0}9*`_ZagTi0 z_1H%6N?0N;jHhU#OLba{R7>liu8sIbJ~}VHAbw*wkc{pf82@B>ejWBl#W*E?cwFwI zD`m0ZOlnHn@$Nx=t!78x_=Oq+vk;ezRtJd#MhSaFG%pz;F@a+yaW{ra6NWiJdAI48 zJIl+JInPV4%E>-0-)P&XZ=D}vzC41Kl>TSzM)^g)3r-W$zA*DJm{w5;OtBC)l7k-- zWJwk{cFOZ zyu=hI>)7T4Hb?X{a1x9Jf?9ZF9J<(l7B;u5$n0$J$p7};S}!WdCB+`@R6FcUy!c6% zX#g=ZLRDWhAkCc1G;>`g8uTp{!dUWs{T%>~r<{>b6I0wph7jm+7(g=-0Ah2dKh(dg zi!T2;b}|Gny#Y)A$Eh8}-ZNR}4P$%^Nwft{w((%vn!WJ*X@cGRbJi z!a5eU3Y09acj$*&%RRW5kD)y~X$OV$qQey*UPlSS%(Y$;5qcs@cfE&TE=AZEh7PPr ze>xT}BO&#GTmfs>dT;O}ptn3p&bp+4Iz?$a(UmHY}Ff$K1Xraq% zE&XVxMl<_M7^m6lj)(S4#U)__5tFw~xA52NJM&u&w7SsL$CBg*ODhidOek{h18MgdJ z9GGaGlBUz3-RS53{5Ipfy^a$}gw*W%P7&(Wz@Y+h2Z(yw=4_22%0 zmE28;NLu{L3RKvyyzcla_=$`!TrpQCwmWEa_z(tBjTer&Ol4J^T8KQ6l#am5mzt^B zrN#7map;+Nu3;&sojSY%G9#$%6ZTeoZ7afaV0*SucDG$XHZOc@hLAzvtb_8)FOgO2 zC2<>k`6SBY@NZSVLf-|opDFWXpJNvMmhJ!a_T&rg+?s3g)vHDxd;{nngu_91d%kw@ zh$l!TN0}A<5G>P^4SYy%1%*hYkOJu_vaXFLD|e$pd~7q!rHW4GgLYp9ANLmk3{Nj*JasDP^2cn* zIjDF#GC#unWAUN^j-x94=AZ_dTfZ$$iJ{7o5@~ONxN~EO?tL{b4K&$xfYr(llU}5} z{Q0Ov)s9z?=BkBp`|PKM;j5;8sh+q0_SxA{el|9uRCadg}3kY|e_^7@kN&B<7mF3&RvOU>*kXZn{2LuQ$V7Y!G^K^h={|r*mk3ctT4QI1Hxh%w*44|iUJ0nU!@YQElgL;tJ;q+Ge zaLnpr2e2GeV#_Zk!pG{mbTNB(;}tJ6b8s;ED4en{ODV#ht{H3A8oI8p4r+ay!IvBP zYDN^Y!VTGm_GnU45(_B&K;o&s#14uZd(djx&xYyJEA1i^4Dj(q{senRYv#%bc0tZsFFT7miJf9OSXpc#Ii_R z&~Skb!+>B zXg!8z>(3a07naMl8T+8gU13Wf(O z(8!9tZC6V`y^%naD)mpn)BsNkWN+JgqaR)U4BJhQq_$2nWee^_zB=(2|8=XWc1-4R zAqu8{QqDr>ogagqACM6+$|D$dP@_WTk#27nlXemP1p#Wck7lZt+~BcEpCS={15;iv z!_+;{rO%)bQNg&c)U-@ZV9{(Z_Ie}521o)dmfFHtJi+#%CQBb;fU`rFk5kSUJM-E_ z|J~I+*|7d*$+_Ew2i+!Jiw-GJ(2h%Kq<&9#lc+$4dOA4r*1Cv8%2hp`B-3OsKgXZ; z<``hgq8~aBMvDe!ibJ^Yb89>;pQDXJxg%>(5yXSGkDmNue;Q&?TB&)R37FvXD26c zeU-^%2F|4Oy|Ff5RZ;~G&xK1d0wLi1`dds;n=O8aAN1di8dKQTcgYUgW4{X>_t)t* z_)(%0!R4(*XPfeNOVBs;(saQ7}!oHB#q<4XC?nXMQZswKgYJ^P1+ zHNlKkMEnT#P=qNc9WUB@>Lx3Q)yD6@f zf96(wBZqaag?v2x^RR{fOt7WOK-Q)1tpgKXB7rrDhS&6ECy}DkH%Ixu5Ib_r<*--j z(G1Y_!$ayMMTK$MoX@$Z_Ns5@gP|FQun1%G)xz9aBIdhE0X3}EszLo4!o}68*D*zO zO$SGRNzJ4Zun+b)tK6Z6T8u}ss}AvUoBaM#-unyP2j|qk3(n-|*j#i^+gH_O`G8P0 zZLr3n!x_qE7)--Ha(i027^qdI3vCmeDGrqy`~v~agvtR_*+FWbou5bCCL{S3zS?;% z-#}&;MP7UtCHg_pOjjG-YDboQT2NMS#=WOw@6>m-HE0V^zjjlC2e%$73{W3LF0`6Uri`9u5h*R4xGpx;ogH=JNJ2nd?N+1IP1ThpZ~TirxVXo* z59t%kJvGr+DyqXbmd_h~o99$M;9t$)C?)fnif?lwp^v%T@`mwp)3Afw)DrULe5d+s zx)7J$O#2R>il{)BI{Ax>@+#45U6oH!dbbEK^?d+)6Z!CCfBXV%>SKE)VTaCxvUhaO zau+#ryD1*k2`^Qn7=D#rIcM~&%~?!JOpN00-P+&1F>u*}14T5ePeE}Nedn5(>c6qG z`o5ik3C<9=9SE5Kse2c*muODUgLu0I=uL&&3Et)#6O@k69D{Ie!Bg#FH zK7;nR4T=>?BRjHk+CwQUPWfE^_?INLcpQnu!D_waAZl(|p{L}rFPqj{j}TYaI3asN zCPe}xO8mY|m^QRT&7@_8KCr*yFJ(`m*;5}4xBV40-silK&J$2qOrdyHkF@qAr0|tS z#Nt?_DgcOmfE8_sFWx@ua&=q$9?w@kZ`;Ix0Og+zu2GXy6_QM#7Lz#?VfkkKHLWIt z5YBWvm|l7fIt*|%TXnwr1XJgS@yWS7ND{Awgnzp8GAizs@~?xYJ9N%sYqVWlPlArj z2>>@S&& zo2Kw?6xDQuF%|7-n7HIyG?a`u#$p*xnWKh|EV<89luxwaa^ktb3jl6pNT+s)>TD_w zk^AqVTZT&i!{dzI-N?Jzy)~Ra0+nk=ewbp!z!5dMzJQ7q^DF1HLb=HGB~RwUO%FkZ z6P9E{A~CJyzQaYwf15k`i>)y43ifyk&G}F!c3RnLw{=1nYx|mI(*>v7VMS<0+ z8Fg%?Y~AZjb(y|-vj9&u>Q2Oj(au)Av&5h3G$AAYV(&U(Dfd70f3HX0^7B)hC?}`W zQ!@({KjQ@D+0O+h7KRgt4~4D*&8^N_q3qw$!2DtDn*cpx=bZ|~6Z*Fw31y+YD;uv@ zCABAl?@H1WgHeZ83>^#*X2l{X6UynZzfz+lG=Y%^^?7CL*qimXut7kBd0GW@mYeoPRhR$4(+qRen zA60{%-nJ(HE2>25>hIg=$fM1c@Ja2Cy(E!nc`gDM87z^+mvoLa&BBIxB}X1&ZV=cM zbg?rWJiQGU3P8-GL0Zr(4HL$hVaT-%!j40nu0U?BS{*4-#lHiCL~TodE$!&#`%IrQ z3jO#9lEnSBp3%sk)Z=cL5B5zSGne36+TUghF_WUJ|9%&!*|=Ht7Hjt)*Kto$YuPD_ zFDkcXEeW(ZSZ>EV1|Dy@EXCQe33fY!K;tw&llUs$%;IzN0g-*AX@Si2PBa2Z2*`tQ z-ypCTFjMy=w*ug-8w3V0!Wh72)VWBX6*RfH5D^2B;AO6kME=kS3|duGRI~#9h3Lj* z@@EJq)5EZ2a}JNfPVW&9YN-|UG=82Q+&-_aRCAWWDgHkDnq)kl5DaJeaAi7Zsf4+( z&<9M5UA!IM!$KHqSprp!eH@z=!bDI#tTwT2mAwk@GmrIREf^8r^ctX5>f~;K0iZKm z>+#oZd2=?tON`*_fzd&MKxJ4kS_{ zbv^_tv2?~3iEXk}1CSJ1{N0#Nv$;8*n;V1N{KIDNO5@%~^{(UyR|3lPCX8;JfZYBb zFK^_hPgjuz1Fs=Ul2ptrh_92SBmVPTso6LSm$-Ke+lvbqLU1p96O*F2LiH`A>C4d(1vBoGu&0Ul=eD51 zJ-pd=Yi&sBokNddt%t`)$ApaDQ~Lb?!T zw#yTt+syr6;%AeD@C(#Ul5p_8F;b7#S5l(6mWh8)C^Yyyc<0fQc22b)8g;>RYEw#j zhNG=*VHZQrLW-i8p?BY{T4FG*g7uO*$O|4cbg5NNiDqVI2v4SNT)o)b(n3693K}CA z)0qR#GbB+SpT-`C4$`-8-`p!sR!rghjtpgvkXrgj%AHhK6RiuGvMPc)&Dr0vqTBaU z^Yf>?sxrY$WA6F#%Z}$+dm!?861pq#SMbT!3}<512;S!xcJfrSG|ZIRpxZ%pco;@+ zFAo)BSDrqf0lY3X4UOud5+L|?yYJ6^2@b|3B3jJp>sYV?)I5|mS|J-**@JxCi4&6f z-4$8_3}OzGX~=Z%0IaHMW^~;5r4n-@%Mo{uvCI%_!D!g=!3)U|d@0KYBZG>k4?UWy zlLThIzkW=hSl64*m!YYZ`F_c)4#Avf5VX z4DDAIs|F|YWhxa^%+cVYo&ep|ZF+j&$VifCmqUHP!8U`qUzv5+Bk2u*J3c}!24+Bj zb`b^fk0bI?Roju?$(R`@i$WK2m6pWH(_Cuy*<>!c#2kh-lRPGB$%z0nwER^6bEV?Z z7w)*5c?SO?$SSi&Y_%{2K`ex!s$EQB6POz%KO^jt+{IGqX3g*I^h zsp~?!iufidWB}2Nptztg=l}V0B_c~<>rE1M}4^FgV&yuk5Y{`WN4c55EDtXWh(x?oKz9;X< z-Dtc9C|I8Tk!ue@=m{m8A{f|?SjA3u8Rm$&EWSMuw!p9tSuJLoQ7tyyf1$>=L0|Tx z>*s@#T*cEVeG4(em~XMtR4RRGeBJM@z9~4p44gWuF4;b;4;-8fXG$pe0jHpxFA8_t z6kcUc&hKkHm|nGcW2zyH@f9kvZzO%RFhCGQQz?o9bg`Hdtw8 zlHX0;-_`r{U1|R3lU8m;K|>i@-AFfunwollKHiUnTVxr#txT-Fsfip$bCeGovFDnM zaD$ZBO+L-oqKM-MMR4$^g`efVMngU9J{h+6UCY17*w%FqGewQG%h@|0fj6=eWpc`;{(Z>HLdNq8 zPKh0dckkYTh^AI2*Pexh{1Htb)%8`-c9-zUg2tso1s)A)qE`x zTkH;3y|vU8T%pVAvTN5W{RB??W1~Qd2kxOX83w4r?1P2z0F+}0K^4*=Jh&?nSDK{H zR2s6+PHT+ZRMDu}=aRWp50>o5ugClN(>pYOh=eg!Kirfh&t1B3fl;&eayU0nspXs` zoUu_3RnYO&)Y3xafN+|m>X3Zp)k?ckuSZ|+XcTZ2xdVA0k*J~f` znoiWVpz?1|_(D8`wramgyL&E1;Fm&(>h; zWo(}{DU-0Uy~4ze&NlHb^t2~5J>O?%jKzsU8}nkH*51sMtXs_-7Be;<`THg;isdI{ zThlceik)RFMWJwWpW|`ZPVQz14Gx~&<_8=z)yHd9Kg(htVEZk!HKZ)Skd;@PX>_Gq zHB_S~V^pF^j{@W5&7(|*h1D;UhbN3)(Xg`06XxM5R#n#d9a31A3!GWXw3JnmX6L;Y z*WI;#J(O6WZ&b!|u$2(`&UB`C;H1=FA&SVPg4fr^(b@Zx*7WA8$AZ$ankqLV5&E#Rj4PQ zw1!)&a7czfjGPgxaBEv#GOTbb4?x}kdAOV-9-;t-Z){wWdBbq9$llu8nhoTpyEA}& zYi@p)nwt9kC9MSg-bLHmt^lT}fj)oZh{43{own)r5R1i3yKtVw+@k{}HN#X=zmwsy zinP@thWt8ft!KvOzyJC^0$oj0ePewy)E~e#fT1i@+*b2uoyFndM8C4s$I=OnXquaw zQRat>77X3paWd2u6>o~hcix+N(?dZ1C}Z|l@I|R}ek5E0(6BOxNq_2jZLgVQ`<7;! zNPVD?i@-5px5d8bEek{jnGFPBfNBqRVGCm<|rA)xyaot*loQIhU3XVQU!6k{Ug zv5sPlkRv6@s>031WtY=%1rcdV8X5|4z~?KCOz%qg4^9sLb9xzgYZ39H{s8&%MFvK! zt5;tGyGgR*rE;8n8ZxHIRz9;+k4PNgx$7SV=Ib@L>qFa?ml_KsjJx{}-~VFE8&w z{E6=7e|>5Od+XNFw$%srCqV*r4&>^Gq*gZS2c$-!aK^%?T;xMT!0?b=_D#3Jw6l2A zv2v3u=^0#o19Pd8f)maG-M^Z~HWy7dyb_;EDnF2#%ZHIQKBOl+W69F-DmTR<61x{d zVGa{_RNGMOWkUbR0?E^01y^qcRtbwiZhP*m9kO$>X}wS!jqfDI7a@m4XLHk{5bZbo zpIjwt)DVT#c->6oal~(y_j>yMmur*lh>BkPgZS_Sy$~`sP0fA=-@?+8?;pN-_I*E;=ys^0>$DP) zIW9B#lJPaemw@Q5Vc1203N|J3XH7gHiAI4$G34)E0S3tiC~7Zs#3B}H#6JUlpRSQ? z7~>4Tn^4aJbsxBm$gPr^mWG^=5JM-x?6BP(co`mvioQ@(T-g0fH*aCvr~F}ws9pil z27dTt+cLE*U67X3V~hVLwg2#x=|lPRC!altBL1yEHvS}z@*9pmcq8o3ujMgGu)jt5 zmXx#wOq&pZbO9BsXeL-0UWMEeExh0Vmr2L;wMyvBhJ$DhnPY)^{`^3hBS(m;%}p@N z20fVk^V{fuy(Tn^;de$X=%5|`;yeI^3dARbjJ&pWQVWTRX@{vj13%0uKo?O8oo{3e zkHo5O?m%N(+kINvt3l6Z-ahfbDSsk;9bQKmH)Pv{7x=BQPqiO7~z#Q0#J_PY4OqV&@)7I8TxqyZSr`1Z!c~n%;qCr)62rp9pW!0}K z5fVCV^6^Jhf^U`bi16PMv7IBrSMoUw@f*xqq8BhNQ}R$6*_095she;8w__JGBh9pk z=af{rI^_516{(OraJ6H(JD)CvuJvPIl+%K3$AI(6fo;bKWDzfvN&3dGRet}@=otHU zQ25ha@tdLM1y4F!#C+wS%En9}6XiSREZKa5B9Dc&{ADBh)bj;WNdd3HL9J@d}k^`PU8WCqT+x3@9p zT@K8uoMb-8XXNArKuQktkl$5lm^qw5enb9fskdveYyQGIsMA?(K59VNN$L{&JN#LJ zA_@}z)Jzq3NAo!%)k#?AUG0BMSFH=m)>RLSgmbyLxL`{RhD5aLK*6d34EoC~$7fNL z(8S1Mc|wwkaa$#;?gq)jmtVtW9%C_CfVAM|_Kh8->K!Gk!NdpUJ0}tOf3A9G;iX08 zRq^5Iao@l9-|w9SaiW2ZzX@FGlBKKDf3Dj03b)l+G5esw$scf!DagtKH>+#>!t;a| z(r}`zV<0s0YZRia+_4w>i!77c#ZdwS1F5K}$U&QrWOCqKX@N}6v9o|X3M)#|w$ma* zUfJ|cyE=dBV_F3(AEd(xCiKP>b(^$|)o&d}`O;e1yuwCv(KG`$2gy*k9bvs?UU zIX_<)42CHD3Vqt%e4m$@C{QGJP%}QYUdW^AnTU_arU3?lvN2iOPxjQGY}cPpJM2QP-+9Y`}CFI0D#d4+(~bgpJnysLZj_| zpMb} z_6WtLuZt59<0lS2eO1)-f`^G!(M3@wcKCHd>7dZlps>kiqBi-^CoOG{Nv{i;2YJAM z8==ca7*B_%HPL05+(|`I8$Fx zo~&n^^SOmv1eai%XU*4RJ#RQ*u!8)#zjfZ%PU9M@bB{b1^h__`;a8FJTpw(&aJg`e zWWJ*&-W|u~YgNT;qGT^O4QNmkhU}k#SUT_J*5NVN+=8ok#-|v3Uz2E)oo=48%IUwx4)|zvU@s2k% z^R4$zK>#(C>9BFMEiO-TKCb$d4T? zdAG7N_UN{w!unA7)qO!D5eDZh_SeL#RWcJT)p5Ouf_LOOxhovb=_kJg3_Il1Gvws> zZ!w7%|211=&%xv+{ik6OKf6>F z`?qGAkEyv@BBBSp_+9F!1Ivz(M`;T@0v^Z)RQ6xIhGfN{ zD<4ZBD)Gzb;ZsEwQ>){gw|IWIH>7ZwrEu=;a3qYcT8e+Yf$eL{R_=sZ4Pk2A z2vZ@N---hGAtt7#g(e->5dSK57Lv`H?Mupcx6Yvt`xEZoi1`Y56$oxp)p~G@`ODSv zTTF~?G%k7+%Z-Gqe#;9s`Zi>Up2X%u$vB4@d2a6MP13b_6Mk@9sYEL*4_J!X3`Q2A zc!cN&O`_Btsw!gor5}Gz$i1CX@P4N_Lj9u^;RfaP#58$zT>X?CCVC+~krEo_LK$J1 zpBKNEtZljW;oK=rr9V1wFqj;|SyP(!+$IEDR!|0x)~!J zpV4ROL3;dZn`4<82fLQMUbRZzdOxO576ohOGxJf;1p>o$IlBC@wyI_~2q5-X%{OgY zyf`6LLbUa|fx%E&cvp`n&2fbC5mS3_P(i?epcZSF%d(?Zn82dp`_a|>SXG~xB( zu?j^PHo^k}TY~sf{9b0e(SZFel@Fp!xUp_ zYdtDRlfj2k=~E(j3pqtXis7hD#Y8J1;2UDw=66*&b>se@{KL9ir-< z4@xNNV9Al{~xgH)W8Mr_k^GE3-Ugq>iu z?p{`!-7k2waJpm0c3bHp7X@74lu_MCS>2HdH(aZCq^=)6sWmb@=j+1q49c zgU}-2xmZj0A%n~w(DC6*pinGv!cMc_T05ve>AqKjN9= zbJ@kD;6RHu`_e)Y1)=|F`~3W)Hw1%&qvds5i;`BAD%F`4dR+-9`A_%cKheHSifejs zM;z!NQ7OIW-s(Tpe!`2u{SXugb}DwT#)<)OhHbv1v$M&B zyB9okl>LW{`p(TwD`_^YDDYhfMCHrlT~gV%Vx)YPLbAaBDp|<0_F~JhdbDM1MG*^1 z+*~8$OMYJZGnL%$T<*B$wo951PT@5m*PrksmXylM4<_eF)Zf{k9r$)@sfp|JQT zI`dA`8S5{(7A4nzSO%4*W)%I1GRwQ>-N|AGONWHPGR_KXfaQ?k zI{7D%1?k_axC6zZ7k=u+7QWAA`{q_#V-ZS-;VTmQ4j`oG$?otP1P4QCEr3q*TUzlR z8$yWo62x_FZ)xviM2mR|gA%`-F$uZ~FfjYRTnInQ$=Ln3ij&U!IP-n!P!^dq+`{X0s1M;_N)tDFfQR^$%x5>5ok#7OAfM+Kn=N%Ivj3|(h& zfF|8UbNcH7c(h?lfT|TS_HJkN0g%-UB7FDEPvUI=|3^HSs6%A;Loq^P#Dmv56T7e8 zEpQZg<`<#hEfPVlUvuN*6{}d8+*|bg!5>CAt*h^ZKEC&H=LUZu4UgQYchTE*M!XL8 z%pdJLx4acN<_0%IpAJ}7a#uQY3l@3st`pvyI_2{H#e%#h^obKF90Ni^Od*6B0}y}2 z#4)U$8D#`vU%8QD5JqhI--M?yb~NcJn_@nzB*%(tn&RNAXxLQn(7Q%9 zG$RH8B!FCSsLX#Za`b29(Do&e-E+&(z6^kgJ)Q7V9yF5#(Zj&K{EIlK;F_XQ1V~7cC85s zjtgsfQmA!Z(Do)`@9eTU1=1KK9qfn?QH&!jdB}bdJ6Iq>#Du`Cm4NoHcAgE0PJZ}g z1|>D6&MT#l`7~U&3tp?4vJmL_$sXx&b*^_v(dmq3!oIoN*=74#smbneBo9g4oe$X&OL4^4319%!$(*`XRi0>V0 zS0O}L9v(+XcUXcg4!gnv%QXqfBM2a3v8N>j>Vpsd4U)bSDJTMxXx}=Ue5xZP=Y=Y_9Dh7{-%Yf2wQA z$0Fkt_Tx~jP;Zp})0tO&BM17zWEX(xrLA@bZZ<^3#3uFWk3ko%s;auD)|dyxy)l{L zX~%v=h}EOv0t2hy-0aMJyBue_cMK-Hi!&1_1vL8?;v{q%nQk{ULrl}ZlNL9;!1}{`3O@@$8ZOlP&^IUxG!>4D< z*M_L?HVa&^7kp><6s`B!AUn5Yn_f}li&;y&g(-y($O?{NR?){Brih`Yrbemf z0+PR@;aBGge@hA0K;xjUsX1Ox1NRMwc?Wa-WYKH{{a>MnmAKA4+CZBRm zl#^nPBG06v*?kIYjVepg7hXFCNKH1ZoBIATrH;i=is9`zEtN~X#mb5wAtwz!q<(&W zur|Sr4oc*m2X{fK1uAHOeS1;1)NvA&Qr5ln6)4~o5ReTC|-T7XHAgM=XuQ5mTUKBfxI*U{(wBqx9n(@!TKhmj@iadRtYh$W>bc4ue_e$QReN_&o;7fBUxXm%=B}_tVSzjvW0HT5j}ti zMSo zLGR;=^k%!Dvi%w*myl&k{RXl;HDbTz&66)f;nKlM0Y+N`r);MmCmUfY#JP9D5_dAL zDk}TLocp7AQroj)_ndi_cifg!0G?T&&pGS5JMk*Ha#cQ)cLCXKcT2_J2V3x`b1eY` z)OVvHr5WbE(AzS?Ja1P<(3(EZJ&&?qv&v^xS77r{zT$NEtZ?=LW;KsI`2>AYqg5@k z0RQt_lgn;Pp$?ietZ!>j(I-ulhv0ayBO+P!h<`a;iz&)k++L$eBT4dWY95>?o2#L7e%Py$ zxHO56?$w{8L)WHqWIE){atQoM)2w+x5fsAlXYtocBSxNw73=1)Z6LIcHvX(*ocWXU zcY#Jxy;1d5mxIIiYsmT&WAhiUZ=`n@?Ml(U5+<*`@%~Cvkfaml1Xl%-+Ic4vSkPh< zk!?#JMX;b7iw$Y!{A|!a+Pt?EC?lohg7tcs?|w}we{ldqt(XaGKu5u(<{S1^x7Us< zrJf3g8(3m!H<23(HFx7vGt&>oV-gN*4^1z%uU`bt0MznA$b_mtymayX9_^iqI+3XC z{>(QU9gNiuf}eET7^{o+O*BcP=&%3G*5oQ0lX^g8eE0}K!IABb+7b)=st{ib#dwON zlTEZTL>Dkh+T+8|9hXDRj80N~3k($BDX@PiB1AGV^pLC|BP>}$N9cLC>UO_234dyt zT}$HQ>qAp*1$%*a&GmRYZK`}^Lns!%&rbnr3Fv*ugIh zZ{A=eW@QB;gH*)N8=%8bQ0~VA*d}tf4B8ZH1;b6OI@^PwRps9axyyQyPoC&BX}5*$ zdMj}R_l~&ywm_REg_G+I|v^I z00=-?;(?L)2|#6$UE#jWCHRe%`1{9;#WGID&rl2=MRMe3Dt5J(7l}Pt^ZPP~Jpt<% zNGrFL_s3R!<2g$d9v<-smoKTy5MM&(hVP|G!U_9w~PY(lknpceth~o%=CEA5Xeo-l;r#IWK zv@E;`z{u%%FVcWVOGT9Un)0x1Yg)T`|FDtuqu@>dJQ8JZ=eJ4dlhCEQgO6)- zEH?fuI+*!Rm`5+Sd%Rf#U&46_2Qo000wyN(z@1GGzee=U(0e@G zUzUDrqJ4VX_#y5n{owKT5z(>b_C@z{HRGR=?Iaz&m-G!5mEe&^Hpk9z3C~8D1Rx4_ zK!Q>LU`1SWk)S?s6ut~oo<5lP+#wC}Izod1CKAt;qf?qSwFR*n4d98&p~FswD%Yop zQz_ik~qsMe}&`lUsQokHRmBXj;r zZs;`c3)iv#UYdNJsC3YVAR)vu8xFGLtuXWg2&kTb=?O4dfVhy6kx@W45@p~X07KOC zHl}LR)jO~SR;rBS7#~7G9|HKTn~pd0yutWuMb)jX%?ozgMipw}<=HSsg?_9ZX8P07 zr#iZq%*nQo)5k}>G~^>j@g%fVFv@o~8*aQJS|*+y6*&K2mxp;KD~knTgCO-=cf6?l zvuDhfLpihXSR~0}|hx1oP78bqp52I~G*cE}Ly;#de1~&k!R^BIUbJ!~XiDgTDVm zL`0$2k#ikrcMzNG-hJOQ%KpaJIyjVJ3&rBuE#tGev^rN`8GIGhbT(^VQ$036l#of4 zN?|IPUAmigX3nU2cH(imU9a}xvB%k=@~lSMsiuMuzs@(juhYbe0ySxG5Wb{+`w zq!3gGxlqVJ{S+d3#)d_=zwrR%50tfNpfVs4ynxwKhbZsYTZkT~*-&BRTM7PHw19c$ zJDuFQENZSA0plx_G&fpNOKj*f;6B~)_zA)ZL zKE(I3`n-#Yx*RVBSseA=-{IsZ%@_&9vjH*Ehc2-hA}^YO1*BbKaTWYc5p(bOOYNx( zc8bYjn>QX8r>k_OzT-D@j0&A8lcL69ta+$9WAV`H&o8J^@Jhq$aO0XH)~yHvRB^XL zt6|4CU0wYdM^3n(H#< z(JJYugnIwIEGc_EHutUP(_{74z5xZX(Fo~>kJqibVW48{QMR;)d68gaB2W7d@y=}@N2Y0*?bWAN%=Jl}<$0#|toj%n|Y*y4U3K=pvq z{NQsLUuU#r01-0J8KmxPAhR_LTH>}>L zWG?Xntw<{Yn>qAnV8$|9?ZTnral-&2)kNKQo{X1SP2tMohPm20a$^{7bp24j2V3}6 z$&$y15`^WKSH5KVzuq3i*5o#|m6gQeLzdEUxj4^G{xsKWv%V*qmnJs%@f3^JOzOoM zAbv`KT@OaFdCw1oxCzv`1@O81Eh8xDDz$k@M&{3(#C?4!Ti+`$#V*R6ZvGJa z++F#4$!5JdHDFfjIo>qY7t^uoOak;%I<%q72VS@Su@%=vVp{-kU|I?p&zES#zCrb< zl0BGfkHr+{&PG$r=d^ONypjhmCcy^qr9BCL%~UCYQ|!vOu)Lvi{>!9#u2`CyiZy8a zHPsF@FjNR0w-u(1)W`j;k82JmxeQJ=uAhj!cIZ#F3*NjDq-yxbonNz^uC#S)B=#$- z;!W@?UjqL=9!RR3g|U$*nA(8HQRIgY!~o2R-UyX{m>zG@N%joIzmO5|o%!x)k6hy2 z`r^mo>`!L%Q8@*hIe~EpETJEc$L{5*GVeS~=e((tWM1*IjdkgopP@76=1Acye;V&- zAOa%KIus|!77yt6kLJtbJC1_Zv`EQXTaV=xziN|$D&;_GIw`Jb`rz$orN z1#4N^*qoA^DMQ^@RI|B9k&u1bL|u)3L1bZ+6p?;J$2Z+Ph6iLn-w%h6^~qKHze|nA-+0lY?igH}APb^Y5Kpyh4A4rqR;Ug4izj z9i1$<#rK=;yDK;nkf(BRU|y+ZSTXfwqj$o?)O_l6mN@Lxg~M)v7+{EJG5C$!vkSCW(a}X27RO(Ri`8&ArZH9WWXdORN4IpydrmY9FNYa;JUc4 zjS)Mi#hC*B$1^qFVP2fqaD9zZ7IyGtW=sk`x++_(e``7XBEVT> zhA~-8T4eg#-*y z>aPwxqV1qNlQ%V`hi2Ufcoln25Yf@n((;6t0lfy@`pdJ@Iz_ zW@A~nUyhjV>k!%B%vrqK2g;+Kr)vB$K>{^BRg%DbWU|20~+UmhS*6w=4cr~3Y+DD$V8%D&fSR^ep=Yrel|lJq`LHr6v! z+nJmgY-yI?S*r$QBL?~3n={^C%lqDy_+Z`PB`n#?6ufWHC#!~f?#rpcH$);~1sL;E zxWT0rg66h)9{GPD5E!nu1~3t9;)hSYjENc?5TiaQXPbdG%b`;a5ZDv|d*==F|ACaC zrhmybE}1^H5p1+^@I+vd0pCmHx~oHHYKg!(zN)Zdn5e_|2xhWvP!_WdkSg0U#D^b{ zJQsZ5<08IPD3TJrO~ac!nDKL(>l16W4EJs3PdV7*N%)5FWNVMo2PM(rkkJ^C-SaLXX3Mp& zDpx1f_u|+WBhec(xtUQ8Zt2b;8^cupG=MR1+rvg<7$v0&k=Tj@V`4`pjSuW(Qv8{A@}5N?7(gPxp*1PryKAnwu$>Ah-Y@4U2m0 znZWaF?E%VKlTB`*H2|7KM6B*%vIs6eKOndZa_kCBzmg)fPB2G*F*e=+gq{c}c#&{0 zV9Z7fJ7tZ}5hoiO2_kE|{%A%PMj$-13A&Xw>H^eN!XFzjmJ^92OW50+z)RoWL6?8<>pR33?(cMAP%^YY!z+)q5# z?D>=D8K8)OEC>~_`7u8L4vPMvFw|r~ufZNk5cjl}tN_mkYV@%k3WfSPQb@;9w|@)F zA1*u@&eKQo@8Fpw0>630_Lwg0?p)u9Z-vSub=-t0f#Avn8aV8W+`Q)PhN!-ocJD@U zve37U&jM>nH$$C8Sk~{m5R0#fKZB~a)!h1-cTm}VWoJ|3aQBrvse`2aG+pM~y<-=j z`shf9RdBK^5~LeS3Pw2*F!s7`_1de7{|m@N!y*9`o)x{8oJW~@Vwei@@|L!fAb=g4 zsRH1X2cTNg`Z@#&_*OQQN%r|g{p46|wpw!Z+2B*;nx2S@R2J#p{u8p+xmJT&2q+` zRpLDLXD|4)QP4>hu$1E5VOD=?@+m~@DxQuI&)W8ac7tR^e6oZp;peFAFHCCh4DxOj zW1*gtDeqtn;%zm4rT4b;lE@a^{e-AT`S}w zRaf@Rmyh-e^#k9wGu7W-$xD}4=ZyL7nMd(G{DT&@e)4_Jl^b6}=vKWd%UsupZ4C_K zPgaraRq*+YLjL>n=TG7B)|QgI)lZ+*dYp{Q7L{tP!H@*4D{dAhKih1zeC(o03LWho z`7R@1{lc@V7jdomCp8zr#xkh)Pm665$?a4W^mCkgE~Y zilT!d=Bv?Es&3|aTP0?HdpS6f-)XB$o2il{nl)?Ii|z5TsLPf|U#XJue@{#6 z(P?xt%kwEWR&6#^;QX63YWhh^)MmqR z;^cO(GQilpQz%Ba$wlO{5n;d&lY2NYKPLVV%fuv5c(O3MEj#DuMfnDg@HW>i7{NC> z2IHm~o8T5c)xpbZG%1|DzrDra_8iM~qYiBqqL(rG8yUnM60Vq-s4&u*tdHX&wqpPf7W3bo+k}i3NA7(zZ}IcA=PrWMd?#!X^hl zmz8(|s+u<|@8;wvo}$#{6MFuzb@?L4NKZ7E7leU*h`sZPB_lV1ahvrEQ`W7Nf|ucL zsp?wl#2b@fNiR;Zz6}E!|ma!W>>G!2@dy|A= z5}c61MqPVeMV0sz&@uTjF+aiV5t-dk*l%BY%4CO=} zT47wH9lWc;xR=!}(qB0X`#Hb3LZ#x78*Cx=4C^XnL$746`X} zQZ}81%&0$1fINVzz;BGrxRm)bnMRR#_M5@+%Za`+;Tl>V>p`tU`w8_1*$my+rA#tH zGv5AX`Vd^a4NsWKgPXIk{?9&i?pw-Sy_#k7O9P+mJ;U37(6)c*{e!xtrt4!)1U2@z zaUwMA<+3{1G8xiaq@3;O{rerbp6x6|3=WLHwNEN%__G)jPbgltM^*m}3v(Yh0f^ah zM@PpoICxIjHWOOMVd&f;Mbu~z*wfM7UH4PF0qjJKpw9%GUEm2eVPC%603G8q!!sBn zak*^h$;r!C?hff{0}T^|mP)NR$xzkS3NX@kE0K`%ya`MC`;Rr_`<<^ox-^IBZdH1y&FSZC>-EcH|H(Z9{e=+LhyPzW~Hh-Y_s`yF3K3qDkplt2H- z%|}*cr@z_DVw&)Xa7-ESIxU%UINupMZxjdAyq7~gXCcOs%Vztaq5I`?=L=lk8YjWs zxl|NM;|mH&^v5eJ*nB^EQJr!Fp5D#^jW2W@F;R{>guoc9@)_&FWD)$BlDyV_=cSX* z%aYRYj+?o!F-q}B__@E%KCmV~Oq9UlLt*ivEl_`T6`6jG=6!Yz`#b^0lc^dv#Kf5!lh{h;t;T&g z?H{Vr5?VXtJ<;dc(_vv#d1RXQxl>`8BZ1?%YQhA_WJygXwB?DoA?(qe6s#nCq*-01 z=`uO|enlvJ)4@o51I4c1_b(ZehkiX9OOhG7@T>e}oI>x9){48&HiJLQb5cUI=)UL+ zObWm!Fi|8VixgvjSd1Q&4>^sq&`OQZ_99vX$2i$qX(_3J1B28@cE1-MhP67Jo%|_= zVimL%GC+?WFSjv=myQ7^1oxP{i^vdyj-ms=m7{9IY{f$5^Q?**N5hZJSR)3_yeA-{HEO5j zxtgj~p%M2ur#4DFt4kvbb?39WDG@dKtI;$StFoayf$@To=L1^LKWJ(s^`18>V}bj3 zhaabScW(8jWez`T&E@kWRWpA50>8kbEQ)k*##s6Pt#BOv;oNspv$H2qK2WDq-QBmJ4oexZ&|F#K0w?brk zFmn3a4*aVNN-Y!YPD%ICw}NHYHT4H%gC^$YJeEUuu&}Ve>w7LO*4hXZ1QX8VRy%8> zKpOZnUOo-IbexDwp3CnGiT%spm%T-IovaP?L0$KFFrTai7_OjB%*@JaGAiV){7b-- zZ*w#=lr6JD#kLKJgo_(?W>(KV+W>LEQjeSHpFh(Rf5!e!z5gRKc-hzaSW}Y~hMahb zknzS0pX@mSrl=0>k76sTl;z{ck8+z+wGlwSl~*N}h76>HYgex(t&Nq+Gqba6$b?bn zev1|8nH}!>_Dvn*;O%AjgQLRD!=wMG|8v}W!95pGlyUX%>$nFX0>@bxeT0~S5kUi zdxb+}`k&Yno`0o$d{2NhMc}_(X@Qcwq(zX;{3A{hUn;E={;v0b$T_}FhX$UXM4z1~ zvHhXncvDDkEL@yVH_l(GXuL|FpGV$5dU89z{&%_-$3OI7*7{e30HPyGkZceda&(JM z_do8zCz)atvWh!q%ReQ}w}@FNar*6Ou!x%&27*)=`%KST68LR~|6c+Pd%!V3&5#`O zj_x1J^Z!Y5z>T>>2X`BRBp^*V!Sy)IqE43D%@-<%?eF(5yNM9b-a0-0v)oe{R0Xw^ z*v8?}hl`0c0T9Uooge`@#1bXFAsqn?0L1IYXkoY9KM6!0Ob7I8?P;rAd|zci*Fdi7XDQLz&(fTZN0{XGqDpP=PlMuw%qXQQ!!Jl zpE6+Foer{#j6sw}j+UyqK9DZ}&=G})2N*%W04sK5mg~LN)nNzY$rFZze~`(rb~cKo zRdjV7b%F&9L36`7PS(o~%`rXH0Bc3031FjMZ7~V)0Lmaj20jmT+>zi)jKp3jFc5+J zokyJ2{rmS14p;LeOH43wr2vEFD&u)D)EB-o9+_j_->asqTdJM8rO=4+P z2-ZynCxPbqExdN#C7a=JbiyND9r3>}e1KF4XAK8f@y!;z*T~4s4FOpZhcxDqpWcIm zgL)2Ke8`{%w*5k=^IZH{VloS<{%lUufb-gW{>kie8H z9diF+8Vtnm_t4D$ik&`g8>hu*d>E?BXxNjT-_EF`WIrK%pl+Z)q;!iNadyVZ*eLt^_d&G01VC=wXF<;kI=_viAS+LSfrxf$#pK$njT?OPE(ShOs z`I?2X3D#d-QE%Iq|17hMpj*bJm7=600v#=QS@X*<_(<+2!qJpChyo&;(`Yo};ScHF zO6%J&tV|hRUG7cs|2hY9=db}%yHHRB^#HPaOHeQxjFEs437*uyogYv;!60P7jk7{z zXJaxJ$SCKBk$Z#Wk6MS^!&L@(d#NoEY zOHO_XstqulQUam8+e&77#on0ZYOs@7gq$hb+;eYD8yp%X0SnZxa-4-VRc<4I8el?7 z%ku=+AyoMZaDHLefPAMbB#6~ct%KoVK9DcAlhI*tYbuh^?2ADC(6~iMhx~QW^)rLC zvoybW^tqg*<6jeU_*|yWxy9`XcaG)OU)|Y1b7s&IDli#*Vh+O9U1`r z6@GTbdf7NA@|;=NX^%q&B9S9l6t*C5+0;j)^`U`*x0smTz{tXbi-V1=)Flci>flcI zZ2I&#|GuPTMovx%8ttvA=YQ!2?&ZtnVcL3n3LvLFJ6;lx4d#H{Y8c84R$DjuUPKN+ zc>E#Y_qwQi$-KCr6M7Hv+-VIWgI#7CBwLawRF;=M2<`y!ciIy@J90?3=q4BUzDvpf zd|~Ub`$Qcwc?(!VW*!^+ei5>wZ*p_L4-CWu7{tU- z0Bj6F$m|Lk7@VVGEM#E?{qt^am8O=4UrhYvflx|7 zf03k|AO`$I+hKhdRdw}q2r&rO6|7cHx8EikHQP!@-cX1@+Z_QcRixvDR55k)33xW% z$Hyy0vFpDH2$+SrEc~LZ4p(U7+JH#(4WT*0ZV7h-6dYs2%5lOGkclMX75GCEvVGY= zgMb*hAUZ?PMvV^RoIhV=zbJPK4ek|k@($Q})>iTH@nK0KFAoDM=y>pL9xJy|hOHUl zEPXVOf2R6evgG_DU3iR8Q+2qixXOnxlQXVY8P|mxI1AVWsl8V5UVGZ~w{J^YR-_EaItnU%Xjnpl?yLYUIp}+tlxN zu0p4RctyJZ+313erRG|544)dl2(dy7;vO)Ev=u?h;B{>%+hqq~IUm&tp z*Da&`R=ZQ2F-hDr#!_ise^|KxoVlMbO8r~W{*Om3^0oiD#{GYu*#~I1TL0ICZyWhA P;Gc)mN>X`}PhS2n#6@Nw diff --git a/doc/freqplot-nyquist-custom.png b/doc/freqplot-nyquist-custom.png index 06ccda040e7a8930382c8783e964617ec1010ca0..eff33135bc03709e5b25de4e720ce8b0d324c902 100644 GIT binary patch literal 43976 zcmb@ubyQSQ`!+mux5ChjNJxW{(jXupE#09=H%Rx;ppsG|ARvu2(k&p}-CfdB-yWZ5 zeZTd7>wDLF|9Jm!9cSinW}kiTecjh}-S?hw6(w0bYzk}$1cLWcPFf8DLH370kd`pf z!8^Reb8Fxr=<-6_Mcw|5i@S-F1>}{9i-V25i_JSzIyVa^=XdsYPdNlQp0d$dy0|zv z3vqJV{=X-1*gL)D?B38;2N%I|kkfI7KnP3_|B&*<^4>upg}g7NB{V$J_U7F^KCS=7 zI66#CuY6g5;h)HX9ba)__!V=-kd7r^mMRQ~$>XN(Ou#WMd!-{fBI1!0U%ZayyDXQ( zgyFs8yF0m5zRFzocd4#^C6R^usr>c_qIkXOZ|4ZwE7))(F=4@kD^CSV@cju9|377y zhhTxXB)xGN{J{YeCK^gC{_iYWDJ(j~Ct88gyj#L36p@epFf z$(K;XWely)cE+JXE|!^M2k}qTkCuW6&VN;j{oSJP=;{h=UtSvEU))RRrVI8EL!2(M zQ9Wyi($3|vots1zbANL(Xbk-}xcdHb8D8$XJHe5@``w%fGEuAt_xJZ#8dNXP&~EY; zr19G0j!#H1nXa&Cq@{v&u&RPVZL2=|fXUf>!$Uzqp-+u{b9+lfMYXrX<*DfC$gRjo z!qI%=BrPK&`RIfGh^r!_I)SVV=J7Mc;62Bp$e$7t5e1MLd6&=6@>1ZL^N{;qE@Qw~ zDf#V!Gc#$&tau@GtgJXGDJg{E(ok+wR6d(2NT`X!-V`@v|KhX3)ToC^>4Mn(O^|A~ zOzYqv0TL1tRLoa6A|j&9ZeFNJ=Lh=q^t3S)9k<K)+Z!*`s;TR$ zcirXkI5LKaOG+X`LnTa1V34KTi$z&e(?_VtNNQ?oN1bFw0&__wQ17EwjASuC(VLr_ zBQV1?l$$eE)*s^IQ9sB9A00X9I}h+e{0GJEsajiGxuCfCn?^ooeXT^mku)kCB_3YioCLa?*~+Kj*J3c00Cw znV0DsVO>&(u2%4XA{t#w-w_QA%i;3Kq{y(5fF08RQd_a@X-{ce(wd zD4Sk2E^hnM-`&#gUkR)qGBRQ!BCs_yG!X9`9_i}U*u79v!mqYpj5*t#G;0sV15@}4 zzPac&Yb)TgMd*8brnNU)L%`N&dN5bVm7)mcx1(C{K6%w+&U0;6bJ1YvcY8KfVSxkD zbJAB;4VaqJwwWqJA`m`;XqM=QgMqA+G#s>jWKbycxpsqJi(T*iKun%enn1v;eRJc$ z83DCW@bzIc?V!j7m6Nmc@n)u<=}68?h`)7dBPnSlTJzoC!rPmf8Qq)nS$pjYb1cZx zMykDxq9QInjc`~yoM831n-(K;u(`(wOr#ncSb=e!kz_wkHV5D8BwBPwk+(1SUhlK@ zRqTc0QBF;8@?+pr8Q1A^=xJ(pRj~CHq$3@pr^+ee8cX}jyB}HyH;h_`S~^VY~;Y= zVrG>#8{!MsdOuBL(0KS;=p+vG^_d}+d7bZ-XBz40^+j}=o;Mse?H;+m8ywD-)q&VZ zNCezY)jF{;s;m_4fe*$LYCG>v!`Zq1U`fKG*8v-0PqY-nduM zwpT91tvog^X zA*ZJ<-gj4<5P#05OJqk!$8(yzv@|Mnb8~@yN6P1JMe4_>XlTm-OWMIw;kI88{&_Z` zm!F?sn`2!?re|hGFE1}Yla~7F6ADc%91MRp77YV~o`C^PP*5=G^pecb@81z zc5!2dUM8w`%k|CgwD8MIkH?Q6FHPv#cWN2=pcQLcH~Valu>snee1C)FQ zf>8Se`9oxHe}BjK*M(*7hlaQm&oGVrZh0Z%bc8LYGF7$ znT@Rj41TYMpJ_kS`w!Ne{$#{jhF>!=F`0EnJVZPrQV#v8HyKQ@4j)9;+U5HJZsY~Y2`~w4#i*&27!Sj+*RVCuHU)YNa2B1WMhK45Kwg8 zVE{Hwx8;kO;486a*XvW8R=^{j($Y~VgcXx&H;>C-pA8!c& zAbGre$qdVht#v_v1nVfQG(;UKDl3b7h#g|%#mNuA)&gmYOsW#VttcNoeb7Tp)V-lB zscEpZhfRnu`({XeaG_lO55uMR9%|{g`koHUQga{|6cw41v1zx+$jDS62lz+F#=gx2 zae3W_*JwCs2$GA9xHtsI|MqlLne*>+(UbnCHVzJ4yN8E^3-346iwsL^GDkhZ)hld# zd_=r9Wf_4@+Iz^_3u=C_#|I^a#+pQ(yW7kDdYZAp}4rWPN>| z5EGS5q^7Kl@b>zm8=#9pwHbyn>-JX_=A)BAu?9ADtM<63K2tAMtBk@46 zuNALKU3P42?4y-PPDIw(d3Hr#qGeO%N+@iH8F1N5am~3-8hBi-CsA*p5lae_;31LxhmY<2|1z}yOGNMg!eufF zQMOn$3m<|RjFZnbhIWlF|0AUOJc$-rnuSCUAEM#sUEjVJ{RBx&N}}iEn;19wcfx7% z$B)DSK3uMS!DsThYLM#CkGvK$wFV~7#l^$fB@6i0u;W+qQ ztw19zI=X6;e}4TbmhnkhsUl-GYFT)vX+U$cm^n|%tZ3^zR+ZL;ikBy6#J4^5*|8eka4@G3la_yrw98TlS-|1nou^12lvOS%u|G5H9>`RD(fI!Wd>LkDz@%XMdrZ?pMwB@)5IQdjHh>W(fh z4kP14WDE^63Z;&i#|-DC_Qys3=dk*Fe|&0cYwVUB&=;DBTrFx5&j%m@A>eCeWd#C> z75&Sso!D7e+BCCqbM6T-Gc!{)G9pM(oOtWl@HDbB5MaP#CZ?di^?D(y8rlC`d{t@R zwYr|DJK~`n?n!%Dt$0$`2$8!Lr?NQsJY&d^B>`JPLPCWlAt`>+Ly^GP$%zLQIiS5f za=k<{i%>GFY`~EtX}8)>Q7emY`@iv$(PYCJG#!{36TfWpnm(gm7>^1c1#)>TM}F5( z2;q;32=VU@(&&(q%=d~(8#*cU%5SXiPM__Yt`+`<8wG?zN!>X+uqNb(ew=d0x9NXf|$kQ;jguMYQH zotx9$Ui5&xyvB`12l;ui;FVukC?zL{`DQR98nEp8`71xbCHs8E3F*mR%nnp;gK}eUmFY72AC0&hdNFl8cWUs;<@sfn@*1Sng7FgnlAi zbBNv~!#z0qi`#yxv=mI3bdrydi{20WDwsQ(DIVt6C%iR=Np7e=mhK$tAm=|W(NRZG@ z^hbPhQ7~?&WOmJ?&!LW5{fcfTIl+X=;s~KyOH{QGyy^QqU{4M0&fDRmkDZ}aFs`1G zR(5r{g<+BEwA2#hgR$~b5p4~Z` z=WC)(d?oK6w&>3A#1fkhwh)Ps#f~Hx@>L#YrNxSUN$ycHo*D{{S}9?Ro5wjaJx494 zk2^3F{@#>h!5aU2HdUy^Jt0;}e^^&=&IU0Xo93+xvKdJb_gfXz;Ga#qNQ#m1F!qmb zN{>1y5i%BLXDaU}Hs>?#pskl+Il%FHB{hiQlDC2C2YPkUDd6S5DhVYy$Pr3?MFtug z@a47YhDrfpUmm`HuW5+((8zVo=}G&NlYhbwwKyt{{RC|dPm=HPo?&SE9jGH*T(E`U ze|KRvjASY-{Je8HS<<@We9lU{h)vTV@r{__tfhbQU`S@!Tf>=}%z`eIMXL5oq}I!w z-`pZjuO!2~j`E9_08T-ixM?Yqlv|!^;Yv3Xid`SO*QB?X`Q1mmdSQE>9_M4@!WQ73 zK;n0_bKwRBsPf=OIq83Ktd~R!nvST|EOfJ`#G6Vrf^Qd?h)g_{!#wsrwGzjK8LrG) zm^su-h9H^Totyck<+nU-PHW4*lej!6DW9)5Jb6R{(pty$5Fr=9N~}DYVfhq5n&&}RMJ|ysQ$EEzyXHubUK*R#;=tRg0$)8iM^k$CxVbJ7a_IZ!%!O7J; zdW%b@8uTQ*o!Uyp6L+?JoH#=Jf0l=bV5mvUX7yt?M+xE^YxzgP!WBgvsdE?cNP~c zFkv)N|9q9O_{gJK9}V<*Ob8d3JbHR>gw~x93Qbb$*YaC^%Ez#r{}?T(z%Nj# zqzd}Fes0Fr_o!4Judz4cRFmQDGxVndxT|GP!TkRCXUXIk2z^33oR1Ixh|V6`i8d4K z*Hns0yVukGOQ&~?RW1zvm4^%DrkOKkJ3Pk5zXS_2PQOiDk79mWF}pH`U9pS!YqH`L zCTQZ2tUUR5Pfn_2i2+yOv0r)|WA^ujRnX3Q*JD3jmf?E7n;3 zc7M=){&c(%N)206Qy~BgIL?im+7+p~-KeL%xcH+O>W4E)c+k+5TIHIR@ntrgJ=u z_&-M5pNrK+nj$km2{&RXWxJ+hb&A>kSX0cVU7t_<$e)BdF8d)JvPi=E>y>}-DdB(STEpnzXjb*m=tuhtJdgd- zInk&v!b52U;KsQLYN2k7xQty-&cL4!nrRunqLr2kyZDNL|DH})3(i`aAssM;LcTNz zq>K%xu!{4V8S5Co5)+I-uA%>oCOITkXrl=Hm#2TWWM*X ze8U5BkN#;>a2zQDt1;{Hn|6#S`RPzs(Su#K^#K;HLghv9&Pnp}61zM`{9eNNFdQj`# z5BXeVV?Dt)<=URSO3K4?_+vB%|0QOtG5b~YrRX(&ZqV%yJU8{;X@%{ML+R(H5O2q8 zOmD|8P#n0-^r180SHz-Z!vPD;HD%95o99yg!wxl&FFQz-mw-5xHa0fS+id#(vcc#h zVa@-Q4IYdcGOPvZ^yfGQOuFo{X z>^jpkj51o%XA8^AhYPN~6p=knw^Yq7ES4KD7IsIj3N?${fD2=Ouam0=Y#l(vNa-bL)htFn(7j>DmYC&tTdG zVQIxs2ZKl>`|3h_aCzhO7O=+w`qZRfX2dPj&)w)aISGJHhd^@Guz;Hc81c zT%=5OhCMuX+@11>O}&_UcyN022lZgi@ORfbH`Y>xMV|vuq*H#rO92>h@$tcMTHmP< zK=s2e{`d3f*h#!Q3{W0pjQ}vD{p|0U=-u5N zCMKqXfeHv)6z|+n!yNtKdp#~F2F@<^$L0}q_OB=%#=<7n4(%@ohXM0n z>!ivX-o3t5|Dn9r&b;V0dBME3igr&bteMc-o+fmPuJ=WWc-ZFA6k^rO9bzAonI0@* zN@LU-rNmQIWu1KTY$%&Hh?PP;#_ z^ZxXDuJGhR&}|5mW>L-0?XXVw=B)zFM&l1k?BeoCnxwdee{e+@tDaklhg697M)+lzPQ)d#>`Eyn&k|^ z_z(}~ca=7^*X4H&Pk815c*y zp9#)Qhkp2(yfwrd^CY2&eiL7y$fcue%9C8|u^juf)@q+-O+%nYK~l>>ki9R*Pe4CV zD4OW{_hdl#aryda2mSCPpn$i{G+84(i-}r&k-co|Y~OxAzHJif=Zjz6S+3@JjQ-;x zea0d(q{r8dbj?&0vLu~CY;?dGI^AY^r!spWCv4ZZ`MzqwhW2w5&PTeZ91!k+7#xO! zR8a^Uj@%1&dlYr`c0w3gRncGDUuIuXIxp9%KZIGoMz**cvQ$*U54jAS=V>zFBbABl zTs~%GfG_Pnmz82!d7kDqxF$Vjg}X&I=TxH6(VZMjmm?!!H?1>iDV^Pl8}1(|pIdxU zs$vpcm;Sq&#DYcte1fB&mLf!}gd7<*=mre^T|gA!Fm5El)hP4l~BZ9dX%AOjTSLx0&!yq2L_2)ujt&ye{gmdE)C#8~3Z zGg5Pzn(%!ib@WQX39$|Wpw(um$c_X6^Eq_rH|hy$F5B0W(|4GCSZAU})Rtp=F=K0B zUpjq>1cNS)X%^e+iy~D~pnP33HRr`6fL|ZCtV5`yYwbX&)8Z$sYz!X@=+60LG>e30 zl_OnVEgYXaFD!VHGDbd}#E-S*KQA$bqC2C%5Td$fEQBiGJ7F)VRntTo6=d!hcZagbUj8jG0vG=t~a7(mdTZmeOF*| zj_TlL$Gb4+L^`V0cGMD;qY#tQw=B-FVdm!9!C({=w;+jNO_f0wI`Lz>D%yFiTfuag z@2j(Z1JQKU_U);5GI?}T2@P@!-%b6l4ST#0$u9~Qx$v^_P=(l!Cc0KobQvN1w|4I> zd5~{Wmue`gscC32!}%cZUdA*Ul~4&4SyvWU+78uf6@0?ZZ5k+FJ`Sj5c}j5-Dm_io zIl;&TH+6E#Z|6?5aNO*;6EG^2kd#v(cx#wT0jvl(%pOvE9@H3z>EU7LTi;I8MqT&L zg^Gig3ak8!Me>b64#EA%IPrj3uL3-fO_{OB7x;^V)YjV#CQjJE( zaHd-`jb1D{{1LJs@&rliO;`1EmwCXH95y?G`MOJ~C_<9Ou>x=PD$kv^Ndgv>-s>(-$z&)-OTVk0t6=AZdi;Dd!T>*c%6`RSeWw5h`h!O1xZgF#Gp&#jYh)`@e{>6HcdPG&99G@FGwHdNroJwNbX@7>*nBsAcn05 zj%O_{icB2MxL4Ldse-cqo z#Pt3gjebxQ=J!)+z;VOe#?wGp({F*vV0d+cd!AOfKWsqKB&rhS)hra){(`+T$a);z zyY@ubS3rNq;h?SGk}WmfKe;85e@SB4$=iKWTUdx`e0dJ%lbDfe?uglKD>2-Rlr_@5 zI^9`S`hZoEqb*J1gPc_rlS8s%7_Zj1)r==7E$?{YC!glgJZ|zxfQj%{Y{HUjmRPEh z99HZ}inVP!h62hxPt{-qAdj`q`2B$`IdVM`9Wp#ObEy0|iblX|h0-)-6zmy|G{_0H z5o_AD!Q)FW>KK}W;KtSz$GnP;U!LGTmWz%Lw9xV5sc})86*TG?25wsWlu|$=o~%N- z_l&>7XZuZswwy<7G?S$R$KfxtmK@39h8+g)dGj?X>A*K;jU#_)R@Mrz(CMdw9{iw{ zmODfUqmj3uTrZ;tsm>?}9k%IQxDnbLC~YtFTL(s&iJ~M|7ZbXfq#EW9uZ+!LacjP> z1b8&)kg^Ik1X5C=dpI44U+?@Xt6?aZ}aqu6WB17I5j$y`O60+oGnXU*U zGMG=Og-&o^{rLtjJ1?#;GR?Qj@AF+;xD)+(hK&nq#S^QAC@;uF^6JQrfLOj}W;rC= zVsf|?l;`MjJ{eUl8KTc0w|#p5g9LIkm8LQGl%ZVN?C}B|h#{!eUW~GI2tY*hpE&&~XHC0b;c9J&bN`I&o#T z9Xh}KP2a&dr0frzM?tFRI^Qb&7CrGd>ULzPSc_Qf`g56}u^8Vr5(p_Cc?r{_3{OYM5HQ;{5>nyO6SR7mxvwZAy4{d?;ZhWF99 zn_k@jN>2WOy?atY)=W={_f1~S12VsZn$f8gtssN9*2fD2?fOvI@iPtdP{NgX^k||( zTQRt7)1aGx9hc6qW#x*BiNd?YHLfQyV$X4&VpOO9;0H6>%$6zMOADihCP4%9N}!fT z5A_Si%mDL(7~7bZ-3sSU1V5jk?jV3Gv{rv+Rgkm(w`dXp%6Wbo7sc)5YOzjrZmnpc z|DnD&n>NoUN|P-$Q0uMV_gxkr9uU^v83(QNN#%xk7<&@aBxkItJdLhJnOzKW!n}xA zF9_7=k&+L7z#nU;^WtW5Ti!-QJ(?#3f3k8WtIIT3?D0DZ#KiT9P8;|G!#4UoxvIye z%;3QRe3{?i+B6t(IEoa6!G~{y zgx?&R8a?G@zpKU2A6Q7yPmyZ!!s3e_^qOn!DV$Rn$YN z>;ivI73E%3FCe500!qH+g-j2wI|?c>`3*2%(dTR;gw^0Z1$<)kwnE{-<%NBoW1o0d zJN8PTE}pNbrrm6K&N!9i3W8~Mz?my$Zd|_;gJzt1qH>78iXTieM>7BH&4UT6{YHO4 zlf^^Cy!F7n@!z_O1>T@uUT5`|;KN;r+PRjhb(PO{jOqk5#vtUA1SgD@RIxZ8m;54S zmON63k6YQR(8LxDAO&%7R=A8rM;?LILIha3-aP;fh0j;9I?%%%_m7}lxG2CXIU5={hsy+! zFFO%2*35*%J;=VJ$b}`%IMrj<_4vMTd9>YfdV_{ZPBCnL&?Y}Qn4`}QdTU+QOFf)$uWYE3K@ z{|WQfuuD4N^Y+U*>r1aNEvco;5xfAwNs~Wp9NJvA-fSNV>lM z&K7a7OGMu@CjWROPs)NYdm~KrsSVVHrUN?2(x+J&A)DSU&b4Jgv099)1&S8#n-`tS z=u0UG2IU>MxF2T(fME-V0juD4H`a7>nqtq>g#y@Wke2yRB#r||(5RP~2W!~DF4TGN z5(V&(yqZ6Hrr%yqeK~i>dY68a!ls#j%IE+Mb^CLy0-V2%Y(ks9#KBvT&~`b+)M(#UHa86=Qk zSy_fRbi+8bN0=NxDM-=oVmi_nE3ox+dIRz*o+1e^3iP}_1`I6z2DIIz_qILiF!Beq zZsye;M-I0(AvvAoJ)u|!YPDFD;vB{qm;&_guRV)ynP@xDbiJKsVz#C^qhKJT9lxnrh>4mR3o!U~SWw`-QS^9E+0|T$C-bA~=sTwJVlz7lMtVcn*Qm4|>LGiX>0OiqUO ztUD>D@Srg%r8&522fN_(RZO{7qh}tnR?!mj?p*TQg&wT#FG)fy|dWASWl+a(8=8L{1)Fv*3w?L&_%Z z>)TW)MW53blgR9_+pRLfU9YlN^`Q@8>8q8V@G?-_csC++Rj5jN zv{cj0b(lUcpsl@la3y7mymx~3ij+0c#}U(caUo<*-ZisBVP;cR#Gh=Y#-6sVy`6|^ zuKKdL)!4t)xa_`2ZF=Li4jZX9sM$vjr~jvBuP^Vl{<^?%GD)_jqGbbvX+~?r2e`J^ zIA3e3#YCFxyV+;^W_S(<&3W3}+%rW{YHT?9C-n9$%C!L}hP-A$L6?2`ywTU>75(?u z=+J)6o?xn)+w1pjCwY3O4yQOdEBPJH+B&3KzOQj1mph-KJujY_%g&hUkWyqnypt@s z-SlA)iVA-iA2OEnQFpD(R^dl$6|Vd)mwi@;&Aic8iPjB;t*R zv3(p3xS&&@eYdoE;XrWz4ARxr^|h(#?jyx7N-!^L>+3MkF{jUQ+r6v!cE7WN?e2F$ zS3sbru+RI?x0fJ06HDFB*pwaYZ(WUx9LyMoE8k&3rtU8_t|x*HS`23U49+aPe7wp~ zm2bSUKYf%u>Rnm3{ne?zPgV6NXwl410po`R$_i09n%kJC0? zh}PHqeCD6$GuG4@Ob@VO52}62SDfnXuDe|xT75d$&Tj-xt#;EL6wuQXp08ZOqM-iw zj3d8P%7yjxW{1Yzx^&IKuZ*o_wN6WaV6M1v&cLXWEVesDx}`HXhw#WFJ&)Wkqa<*_ zyt7Uh@6!81USaO)YTZWvV0^@&%w=0`%SFih{`Ml>_d8uqO~EN+k90NGaJd9A8_g^M zF%lVyWI;U6F@CC+qMIvbN4q}%BhppkAfhMs(|9?$#qhAfs%FFL^UE|1+=!26H~xgz z+}YFE9B`ybJWrIy1X%`u&^V@DV@ECh2(%~beUGr8sl*~-QgSgd@0i?rMf&qn79Y@v zm}c6~=A7Pt`+o*-#6%HF>T@!dSC`eqm1&)5`4xcP0;Q{Tam!H!HRM z-I>+q`P0o7omleSg0KBiJ}Q@}C=HE(#Rm@UFCp>od{e} zfEA$r27Bn5;Re_W@PTm?7NP)`VeoJ4$OZ{Wf7{qZq~lemgCG?;kb23}8|0HPebl9rmrHt{W=1UeS`{Y$7Rk9A?>e>&wd%a|S@C zW@Gh=i}ctCk4X>I$HEEutN%3E%pEPV+4R~!*%B6zQR<~V_5=W(RyzDe)!xmOxg+T1 z3-73xmIc#ZCG|w=M)w$?0#)hd>*5b}SKP9{*D>QVJD6=aItwtRz}ka>R5yZ#l5M`^ z2p!v}+o9>6I6U5`SG;aC@5pYQ38#N*c}1*owA#Z9?+tbG;V*)I2jq2B4i|4{vCeX zpfS7}gLT`w%q15c*QP92prHH(RBbtqZnKE>tK0|>PWQw&K|gN}jPPefDVKC6qvs*$ zAa{t!b!@JL*S$N(#)cfd(&WY`3+!N?-a{=TK_FWYA^x2FzF<^3q-iR6v>hM8kK*=HTk+Zl{`^V zh4Im4+?tBXWBXcVBSTmBi{BnEovw+74P67y?5%5?jilAwO!g34#JAZG`D2^ya}Sk2 zvSF{vnh8P4Uk>%4j+*os|4x!-q45a`BaU?@iDk9+uq7A0_#?{;(E=i#qQ>{N?d5*= zZWIU`(alr3w0mzG&}LEgDP{i-6+h^JCbJ8p7F;T9_Pyh>u@+q18?~K_@JN?5_~%hK z`Axcd_&qyCczoFJn#s8gy=ZWoOQRxaQ`JrpQUekrqzwKYn-9jU2+1BJCAIsTKz}+7 z5Mp|yxn1OgZ5JaKz#0V5CjGJzAFV3dKpxV~h`M^v8@}Wu-fKiQ^oVdp-B(aEv~OW1 zyrz0>IyU4I=gAd)Fd_dV;1=vQk{orpl7kXug~A2Vah=Cag@!QC^Ksvz>S6y)zKl>^ zWqM&UU{zc`NJKkjWUWw0DAO+ZEDTGZ26^&iVLBQ}Y6lS7-Kc-D${e(#Zr?_?Mk%|I zP4zjuG8TTJne-_m$lQCcB z_;TN-et+K$&~}XHe~z19(8KI>I|bNze}3{JlKkA;S-nk!r%NG8->96+FZkHi0#AsI zVwS+Ml^FCtv;k>i(_hlkwHM)bXf*Ssipjry6~%G3))ycLj6)7NB{|k11@o5Xo_Z2D zwska#AXtB;VbqTq=~NQIG|lhDqqfL`8?Rioe;hx%yPbU}-6I`_|A3xRB`{f>`|H{x zZ4Dv0w#qQ9KSBPR23TJKb^di&p<2wh)SiCj;eb9K@hGRE%|a3)p77C4kM6hnjv}xr z9xTxb9N4 z0T%uo3or0Y3{KN7wUY3|%kqV(|q% zm-83fXI+3%xrF@kT@=TndCP*LQU(=pcKoDA>}sLW7q9%se|^<7vwUjwHODaWFGY$^HqQx%80ytt$6c72!Qkd`pKuc~!;>Aav5cYCbFicSCSA2Os|nmrab}PcO1lc5M?`o02H({U~H~ldTu9k z+~R{itBY64J0o=qF~s7WPr08w@GDJ@ny}6hphEvwgL#A-iBm~iqs`XS+bdyZ#X{ji z3UVRbx)V*|%TNj-+1Q`n9rG08W-3mfRToPCs8-ILJ%mQ{l7f78* zkmk(%7N6Z%H;?-^UA#EcYf(Y{2-Z;PnMDjxJPX5nKrbXd@@X9K&z#Rs!E~6m&~C%q$@c`6vMx( zxW665=)PS@`X@$%CzLf*u7#>|U4Oq~(qeUbTCkU0{6* zKRULhr;Y*AK5tRM8;!x=umyx~%pm^qj>&K>5B;yK$e($55s79hm2=C`z6wBEQbSRw zNZLoxi+zj?(uV{0>v*XRpLZBpX7eT~?LX5qjKJBm=%+aRIlpjd#LINp^f z!fqSmbPdu0y}emJh9|KmP}J*LQB}UdM(cawrQ1}v;FyioouOIf7mzeSfjK6Dd8W}X zthvQxT+78D(`#_jq|IMNKY<)i3`Srw5=lTG&%3p^SUSkk8Z$@n)8&j%QU2S4xTKI| zZ{}_}8&1f?+7YawXk7ni=jw{%ZI1w?nxGz30Kd=g%Ax9mg5ULE@A4f2iLS@eRqkWN z#GM6kYaJFh+hm^)W&`0a`~2hy(jKxrL`2^(fx_Na5C`Jnwjf@^amlvg4EhJE_5PNz z&1z6AwRH?Ru4~(76IDgam?yDNAKY*DvIw7@yhOdi(j5?U*?SR%72jgiBlWHjl@J2Z zj_q$SV#cu>dy#)6gxtSi-2S9sR-vt0FqW;KB~_;ecM73NaYQ9)2OF zHE($@Dyki*gVMg==mEHj^e@z*v3O$*86l6KiOrdyK%79X+ISIpmQ`cd)8REcxD1M} zwL%YK#qT3UKyAL0UW^J3x=|~~xWFXt@5FInwR0g1bYKLM8`@3iKmRVs%?7eztzi%V z46c;oq10j!R;s1kE7B zMoL)h)VC1VkSYq{(|PWA*3*2o-B!c0_UVe3Sm&r^?^#~uYiw~Ha(vsqUOP(c6olPL zdRJNow^y-|;y7unHwwMz8JG6v(EKg$C;&`27?H~NQ5vg<1n0*G$mU7RbPtb@+Fl1W z{uQg%?}zKN$?698n|Oel3K#CE-I>Si4H-M&vMM`@Dq9>)pCp{^jX{=D|0p#qHrAZW z&n=ED7I0C`2}|E5Tfs>04MebABX#0;Uwv2yfWfK)?zHgs1+&(U$~ViMVfC#qyfdK& zho9s9UptRNAf`xUvJnr@cQHMvK-(YDLpn*2r$FFe+nT7se&2ZES9$S!yO*KfPk)4; zDRh4^qSg3%1one^=HGml`FZC~16kT;MSmo@aLaI-0g8evO=q$|uMze!PGdjkZ{GSP z?cMX}N-i?K%4-prjR>xAw+3N(9U3XB^ezbBh=$qDc@9KTSaPeslu!ri%NbnWzE1B_ zrM7VU)ThkIADoC-;yt}!jT2 zL0ezjCKa%_mQif-|8?C=#Gi%}t#ED~@d7JD{;s|i4Dgc(TE5E8F`_!>A~8q@yheJR zA~u@aWdU$)(5bL8v&>zBU!Z*R{yQ^K?I}mm& z`?hZp1<_9;-u1ztx#U$g(nEO>mW03GN`*9-&!FRCm_WOs7_*l7tv7fH{Z!hm>&#Mv zfnt4-T-}r?1}BSnlw4i@E9CBFuH@O@KP^{;kz#`e51}En1WC&Wy;vpq-RvN@2Z+wA z`-4`*BeFk7Ba(+Se{J`FMKM1Zvy3Ar8!BEa)v?VUZd!f$R5Yn|ZHOCgrL z;bIj*hNxuo8TUu(&5ku%7Yicc9@h*s;3QxZJt3R^RG$wi_gU6?$^ma>oisn)Ih3tu z1ldtUovH?@N?WJKtEnE;t7*QKX$DR5Z6ZT5l2b$TA&yKJM>Z5e)Vm;3FgzDV zoZp)KD>jAWp2gvpX*hiR_UVsjemzwQl+zCfBEx%t5X!E3-Z#b6!-leP42ddU1QLq!ekAa^8Fh0=+%<`biR{xnEF+vbBprs2&Rd zz0pO0*%h5_YCx@4s!QdjM9?gj} z4*K{(K84@tdz8gRBt@58La=wwN!x5J9NT-eqm(e+T;(`qvA$qjnfeh`VDG?)9F9lY zV21Zt8y*G7p!-(<+zWsd$JTk;b6Z;vZ^F>-hHnD-zze@8Y{vJJ2g{o!o}IytN`8Ua z1yej1vUS`d!MQ&sbi zQNglNKj_yR`@tsI$-{rL@M7;)=D(hGJ0GTC2YqOmNmUvwOO66^xK;bp>_kq>oNJ(E zJjiHtGT=iD=xn=)f$R6n#$`f)1BTl^wKKE6M#nzj7NNiO7hj~arv<*yP{QoZ)V5Ty|s=+XhY*W=^4fCkt-)dz@H%$nzNHADR{ zjA>1cm!kg?)J+goB}1{KCVDUg|B1rHz}rTzo|RJd1kjC#TDXZPEs1fmEvF~UkyjvF zdW$-2YN2YOOsIGEh{a|xiPeQmM;p;kq*jW8J>!?Qahsf~B_@L*R1%z{8wU2ql-?Lpf*y4=XT%Ynb0|{*AcODdhmzDh%L;LtU;fYJ_ zx*rCjxZY3xV0p*EGhzJK%DR{{pv$d;vVHjuZwXewdY+Cr=X+VBtuvNStuPzUs>_$k zX+6{XB^!+5C91xcDf9_RfW4Yoeil`Et8W-SA-y6?W$6}UFrn6ab4~0&EaSj_c$TSn z2Vo*QTUto7o+}KaP@27wsj28+6 zTQ75gj~G!9_p*F?DB8KsbUsHjNV#)d6Qh8}F_jr#M)>FCN^TH3>1 z`L&Vf--rOrcuZhn=qy0x5)goH4rX?P-$mf|zH|U>yjy3U!1>RJ7~BlM)E5?>ZGcPaOz_=68BgwR zqZ(5H9!Tal`y70;P54Is?%lg3r@C{K4W1BE3v3_t!K{huJS%lhQ&1oEj3zpxpjV2o z66(6UJ4l2SJX0fuwD1LUF|YD#9!J}&qu&%P0kzak^L<@5%c*o#T@tv zh^Z!@=cZ<6Y69i zgpTY4Ms~u@B|mW>==ljPLEa~|qfD|uDnu<7JA?*otHIMHp{Qg8tz%VnGL~i{cB0i- z&9UhizKT&&AEDDfsi6$v!I!vo!Lf)vb;;t3EUx4Gs7K)EGN7W~0*D_DDQrLSG^1Gp zz3P#mJODOzo1Sb8)PgF(hs?~_mX;P8KQ^rb&F%6xtM4E!04qwB?;uOjyF6UZ#sc4R zM}9dvIX)64yOq4z(~B?&v(U+Rd83hUrFv zn*P|x=)kPQ1Z)?vn_*JrT_3lR=O|qVB_5{rljr{rTW=jz4^E+qUaqb<%e{`tq{qFs)cdcj6 z`I$$ciZ;})-2PiMrb_KNE?Qtfuu}3Ej^@U$aNX`*?8(%SFAy|$si5;zyZ`50 z-2{f0eV<+pe#8bfzcz#jF4JiEkuS-wcCC5K`QK@G9#JPxy`$UEoaMT=bzj56UW;U~ zYVC{8ava<16MPb;1y;E>I6K(>`++@&o##Qk7;!0O@Dk3f7FXicTG6P(E0Gh;>Wh13 z)nqNJ%R~q~Jc-Yg)A$1!()hK;G2g!@$;v4!W2t|T7~47hKT!xPUo@DQIMu7JfdB9u zz7Kx9!O2vF=+~OR~qz1sgXaeF0Vrm&HV%i#*auM+zTjo8!+ z%k`y2&^0qNHsW7eKA*j1EItj7N9lhW&dnPNhfU>}-8H)#*N=9it+_{i1V?@LmDbp+ zIOgx*AghZDDUr2s?3ouJ;ON+kPv64YUO}7LI9)-5{OIafvm1SYH5xy`-fGgfl=rJ9 zxjF-vJRef8rKF`ry?a;1ty2x~6W}mNxUY+VOvaob9*~pV^Hh_Qd^_U`qU09+sltvi zYpbhmb8{CSDYici_O_f?5J8*6R%IgZSn{)-86^4mN}U-#Cq7ZS(a=ytdG9WIgUHRc z+@q`)O1|EAJZ($MD(y**F3$+N#XNsoT{Zp7@YTF14TPhP3u56CagL_QZ)U(esw}hd z!eZ3E|Fc6ymb{~UW!I~rA(*}D3jN`k)cc~Olw14T{szzOABkA+xUUm-v$6*`4Vh$w z{FjR0EvYHl4iihlgl`~Bu3Yab(%U;YY@L6Ma^XTt=Ql@Z2t0R{I{2vo)EvWN%2=tt zI02_CRPU0KBq%0BL3D(3b-xbR7VPfaJ8aDJQu+r$fCnZ*uR8 z`kPmbH@V8zpHg_yVU?Psp~VNy<;U(uiqyK<62STJZii=cvx?0OQha$}Ca2NDA`3rC z@zZ^x$F+Dg2r*V=MEmQ7cKXwk({6MfE{)u~_IBl|MTJRw9?$GIqPLLL->+@|Jrg*aE8y- zLxdrp6s74~0(pd5+DFK#@lf}+Ndqd0Sb@n-{pIK zX`-ci45g)`_HVrY*-SV5@XcfMsOfzr3euf1Jvx#U7Ik#q?hIQ;na2^}8&N9?a^!wV zq1N-nXGQ#ccB2U%hHi#Df8%g!s)qU1KA9QTyITZ;t&@oP5*^2zDiE3Y;NMX&fTp~` zo4y!q^m?J6$0lCy)9XY`mKB!LFIo#a=ruq(xoz+jgH+FRasvK@euJ05tKeV~GP2;^rn7;i2Q5-(o43Hzq>7ttaVj)Ojn}9Hvd3X*ei@VC zjrXn@7oM#CrEn5V$4hKHGTm$pr>)@F^7p%ugYF>xA}oq_Z|vow$OQ3zEpc~umea}- zj+3Egm5V+>7aP`eg3SByi3MGEbFHc3*Tl}EHkxeKd7%sQ%~~v%Rk7?x*w44C>N-w zgENg@DgE%X*jM?}UJdA(+uUss87U7Od%nT!S`G(vYKGl^iZf5kCCELib`d#07Y^+O zw~R1K2D!SzBqe$I9%qkEleK`8ih0?M*nEyfJw)|A^&MAtH_yt80C4tXPF*Ds4+~$) z^D<;6yiy62dRbkS-U)iKqG)56*ERUAfb`5HCN_EbO^&Ihm#_IvC_a@0eM+^Z0p-=S zm9L; zimiaDs$amFt>4#t1c<@A8!rD8VG2G`+FK^8p*lD1Uqu;v;YDYKM~}#YNu&IqPsvJP zpn$pM_YNsvqN7zfAna(~`axkxKJo0Q?QORj4a1M*?MuOk$<-bM1G$zJCN8;&mcz^bHG?;gn1|o1x1oh_D8CsO0C>MaS zgD}e!WhKVR8ngQlJJ1_}X*?r2R=;+E7S#DeV)S&=Hh^MX+ODynV4}2R!RwjA1ZfLM z0ECp|FcwvLFF$=SHlAxEWQ1Ijw%oq=1R@eV;*SZBlcP?LKC1t;TbVk~9s&&#ojE{0 zbMh#Tc+nfH`@2A(EjcKcF_0H(P4Ufi;+>5<@T{HJ^(Ah-ByExT zIGk4YFIoF!-PRy%?fJV=G`YJUx-t+PVGjh%<#2M+R%eBYM!GN}Ntmg`$$2&Kl38vU zPw7mQ5NgG1^9h1I!VO#>GyGhXV6Xa(!$kTgp3nJMxFxjbV+_8W`GPLMW)xiIdcO_(8q4%(kOqU!1^{O zLm$#@-m>J@vcwO|?H(1fp$QKi>396_UWcdwyQZBQY>OC7d&l7t4oL2H#L!Ek7Nmuj z*bFTl5oE0kE@ckCzQPG;b4E&n0UR`bg*V^mT1w=D2*Ij!ozu}!$!IFe@kYtm-2%ad z543^;e5`ngtkG0>>P*|hHYE$jZ&(5^1!kNNqMuoelV78CC|v_EZ%JBO%DT-50v+3=pJias2HY?LFU zvqwbOy(DHNI2aP%I(Cl6QgW9;2#?+*|NhvWYG;W4qfY-1voP)m5Z&z6Ioa1?hXIjf zO=-4G;H^bLfTSd)+xaz|NgZW6U!7tiU^)oD&>5(V3C+sUt&1oq@$qvz#|3c^9QaXK z#Rb2&PbAt9I0r=)jy*TYgdO{DK0gt!cvde{9^^wEu|J&KV2Q~;{}kOT`{d*#qal3) zzLZfafnqVql!VBLS$;U-wTP-bn#yXI6t%WcY-Z96TPE#SFzfGm;ub<4p~mfWygIR1 zGDxK0$Y1R{XYTqEWCYVP3ELR|#NCR{5?P|S(142f1ob^Z;ta3N^c9ndqL^$BT#8T-M5Mib+h}U8ZIbnUs zp;(q#HnNuV%ObSP_GOouvgN*PBh7U~)*C{~qxNcQrqQ3Bg>vrND}LzmNc;68$HY>x zvFp!XgHtRR)N5vR$))7S4=SJ4H;3mfxe3fIt-XkE$`&+q$;u+s){^p!65GgFzm~ak zOA+R8f$3lNA~4GCTgkzuD0DnTl`rGC`@f_?LmnnEh$yg*x0nkTciEO_UY%GKsHQtS zKwRrU_x($?$S3za$kI*pYv6<7baLL#(%uiWdC`Q#5N3&}vANFz?|5&2$nD(c3&9F% zX71C0`5?Vc21yUf{LJ1^0Qj6BRIY!ggpo3O)3e9j&)b-A*+P9Ja<4@2eV*ui)&0>)(Wk}SF+3T4MV_eq=;QWClI64+BruQ33_ktwTa_(B4_^mf_Q6#tQ zPsL#*c`qkc+crAo@*km)ZS*AayG{p|_v+?N@KE*HS-F<|6p?Z(jwLUTj*Hqmj_eUL zDLgm{WrRHyMDAe?MG5K&Ynxd;5)P#=j{$%(Ggcw{aoo0b?JRQ2m{o^M5v)!xi#=rT z0hT8zjDs2U;57wpu+T^ayeEhqP;YH*^VzsyeUc|=SoZYyU3jZN18EPWiY+^~I~FDk zyBic9RiR2#GZS+~1VSMgyl(tAY6ta1hwFu!>0wnVmo%hh{;27KVMbH4XnoHIogx1j zMZmU?Wi zF)Y9!38ahGrmUPV1#3=iLBz%)lT~SI0cxz24b^L}e5($a-id&c*^T*Nuk=<#IPN>4 z;=;;Cfr?{mre#+FroPIvK{qi1<(of$m<+#gc9x8CAB)CG#zh_u3xvl-8PjX!1GWXF zhxIl8xe^D$4_D%>fPjNK`D5@^9DH^ZYO&psx<_zCCdL-RgPXHWO(Apa=lnY^LN21k zJmH$gk`8(bVExjZ>TpG8y;v6){c^wD^Q5;;rIVJD`I)VoDk`B}AP?TvX9Wu-gqT6a z$74zJ&*)9gqc$sQ9G_4^r0@v$PqC}`8)-C9I+^4-?C!5B5*r9n-(jM3g&7_E+1D}J zELi;@?03}9r=rSOG(nA8^ARo0Yeav;mrEr<^;-V~0>((O z*$QDS($e&zzn_x<2TkIPp%p_+Qxh9Oy}jCKJ^+bNsmcX5LJHyep4w;dfXvolG==p& z%0HB+(HqYwHe<-*!5(F7ba(10?0t?hrA;l*4hGDBzMHR8rC)KC70+^#s4qe{h<#XERy!_*LlP4hCIZ$SCse_4wak9G0!}y@a0v{Aiah_ zz#}n+G?wuHj9Fej`sy(#VBpXg-ha=0bGBnux{CI?_1VU1f>ohMDeJ2Hc8}Tq#5e_d z+ee|knQ4gdD|S8*lamv(6w6-gK8>38on zsktVTJaTYj4A}-5^kx1IV{68-GJiygE^U^efy)j{QR=BNR{URG+#F*Ju~2l%jg1W#pemw3nBTvD zMv@O;b<0g&Z2#Px-*`5~B2ESRrsUawI+6aj%5!^KG`UGt2$R9)v?Z zdirhcsm&$ansnWJAE;>r(2nc{34#?g2C~cvc8N+Wh_3Tn8Qp

>;GgGi!IQCT;6GO&41}g_WL4M zjv^zX^2)cC;(c=~U8UooGmL-;s(q-8%S5jL=*N2>_N58Mtq+2nzk_#KNDmKwvEB2u za*tlsf0BncWG9MMo}}bC2#hcX_hC5HJi;$ii#leCK1wpt{q+8Zf3z?cH6cUq;lYU* z!u+nNFUmc6P&4?lTUp|WZoN_bi%c7F%))F)g8RC~{#ZKy>V*B-RAr$zmtm#6e7iJo zZaC#PpkZ`k%w#HTJ5s(xfLJwk(GoqYEo5b)d!Vlm<9jC0oPUG9A`OVb`M0j=k4AAU z-G70oh0XRC8;GR(`G?-PLv%DPL=L(`Hjx99!fRq!Y`Tfe{0%)kxR-0)wu{*S(q<+DuQEWvrI>EywVJZcf z0&-di?C(%oR>fLXbX|);Zo`CWQ!xefMOA1VB_#kCg_OzA)B4Sopu0NvqZ0?CHKWlW zDK<0qL2j8drgC5zs^uOaBVqtLEycAB<>VWa#Er~sNatN(vq&q1hjp2E%!o=}8c>>t z6HO+|pj|1#qQb7A6^ag8jdl$l=yt-yLgL!#=VaY) zyw{!y=e%%qwL3!C3i0ixJozcAub)s~$q@cHVp`Aa&roI8`%CFiU7(<{z=YJ4&X?iiYnwfWuPY)INsidr=GqY z#r84Rn=x&-aMc!I6N5pVzNm#*2K2jlWe!6~k2g}YT1TQf0Fft+&)48}kP))xB_o0) zRLaDo7|SuzLciYa2i7$)=xv>WcAXyO%;HFv)&qnO>=F`(2sDsuae%#2&b3o18kH?*W zjtPOZ(eWW$Oz5mnZ?J^K8GqjRfyI7L6y?%Pg1~%4O2w+EmQ(g*$N;pEtna;5M_!Jm z$X8t;S3OVgZ|VD5^phbMIfKMg4+ul}!>G;hH$%536y;|#BuX6l>04L}w#Kp-Mp_)J zs*1)xXch}BYvvw7U4gdOM4yQbX;@#q)&w;v6(%x9K8J$LY|0xNfha+3qim=cW^+vT zP!Z_s=a})rVQ*RP@W0Rp9o;5*CL`0=Vt^e$S*awX85wv>kOXbnO4cE0cW5lq5A{`} z+LItXn2$Ov0#ynSH)d^HbrPSgiH%iX_S3h5w9@?Mx{ChVuQP?r*YilF&_an|cKwtr zKn^d5q^e4I?qo~OP>dVJ}?II(S~R?PFr&}34$)4pz(aTB^9Cj4-F>7VvEb03&q=P z=9Wq=3j}CMpG+-%UY;5C#wekE0*S6VIef@{cM2!4MfmqkusG6B(U<-c2-~#^6VLun z(Z|!WFJ*k9kh;mBkr*M-CK`*1^rwCy60ITGV4vgoR!NZnO)%;CTp$okT8xhp%&0># zr)8cB54E`Z(eLjPb%FX(D4I_ojs z5>^i8a6c%04lXtXA%TS(M905gDl)IFzU{EDKL$_G6hCZljLJRgtNy4YXhSp5%l%Yh z{x*R;#dD>Q95*%Q#ej_4u3{|FTc#yR@|g6L@ol=rTR>hVh9*}U?_-Tee=6$;d{Bo5^yrre9C6BOx_b`oogVJ>KDQwC#P5;AUw#nc z?;MGtqGgp&*1|M;BcN1JD931ZetC}-ZkR%wHG z8~9yG`~nDHPlkg=BdUor&tyaqZU!KRNt4}1uz9Ym(On0G(F;e}rL+;Gv$P~fi&#x^X2K4gS^UK~NWv;L`Gm?uVzTYMl{RNwat4_&jbI0kcoz^E7 zG`lQSa$u4gXo|7FkiPfnm9x54AThDT;C~gkl+qsbnTSCGQL=!_v#E_%FN~Ur zaGy5u*kwF9ec|uM(~akfdiO}-ci9wdl1JD5XrD~F>hf-!_VfNzV;}GqE%qg{1i0YjPraO z6U+~guRKG0L_);ls>6&dIXGU9p1D1Y{^o`njLps#w)}g!dY8CZ@5=cLI?%xplRGv) z=taX3EVz3qF4e8ox#+^zI)YyH*5a6F>-Br8Va^gc~ClUmJXylpm0L zpbCvTB|G%emlC;i>h}iI(M~KR_aNv)2F1p1)i*@njOM%*ym2NHzpi?#6b)bk=w9}q zOy1K3J0>@i74DT|-oI6Vss@_*qy=xqH#ebMp zNTtcNvfP1}+iOiB&rX?RXzzB+tZVyZIPE#0Gf76pZ@dDE6ZdLm*)}q|xtI=5WUk3q z@HU8|I#bJ3QMGJ+fHy?LSQrW#Qjow*lfuqns0 z$hvKMGT$`$k-U8va@pJj^4e3bD3;SniR-U&DUYn`F@SsQGlkA!o| z;*J_NOPfHby#jt(PcLm@$P)0bMiM8xJCW>xd%#4w&uCR5G4ZZTo&A1{YWY$4sU$W~ z2`P?1yY{sWXY|qFO3%2?{`p|`S{&%kvdV8iAY%LLtz)AG3=|o~Hi$HLZ)!HU@hldX z98c-TE_6gPBUwGLVDK3WVFIXGOwe0OBP!%~mesG^Iqq_X5mHjV5f}XZhEm6dP}E&F zhDMI)bN;lgdkGPx;YANI=zsDX%u<%O+NmUiW?^bfI|RBH(I}BmUm&dS zbcDPd5mAVL?~@C)_mc1DY6gu^Zfcsi#}Nu*HUwX|XLtSB;L;aiSUD#8f&H`Kf)^}2 z2PF|3tkrOf&=GTahdScM3Gw$+P?0B45Be7lTZ)n<*Szp=G5YOD17O0j^uq_7NR%xA z6b9g#g+TvYm(Y7`xCBrpS?*B%UU~h%X#vtjP@{m@qD&1Lv@CZz_gSg&(AN4>1b+gw9@ipp^*|PsPUqQwVr&ea$@?;+-^fN@*V8Pxq2p+E`x{u_@C5yKjvW zpbtyla2AU&O6U7T_zk_Ps?rx=!2=lXaTzTDlzw2^araRLySZShkW`!`y zcVDR#(M&Ui_bGD7_StFaA5GT=INZ@K-vB(-0-ko5+R`^GC!TekS=_Sh7`AG5x5tLG z|Cn(a!10-tIvwqJ3VcMoWI0;4F05~urAazmNQ2kmDt8I6yKA|xRt~7k+I(QaFPTH{ zA?SENih5i=UTFf(_5Hcd4k&?V@|937=5S0XW+cd2C`PVKch5xFS(bX?8!v_*d|fK* z3Qg7~`OEw>gwzw(B_<|?_)zE+p1Et%^vZ^DmuvXP`wx{qJf{V9Z?7YV9L3>X1rfH0 zitvvtDanj)W2nd&dpPQ26@Wz^tIm7e>W{?buK{kb2F%GkDfpO@^cP`2Pj^zI&T&yD zCQ8|b<2RjM~Sjsf;`Sv$)1S!)S>cK2tdl&GKyC>r6$w z9I8e;m4`j-;f%c@9+$tkDy#{=HhPRr3^LuQ^lk#nUWN3$T+5bd{Jpaf{{as@W48)KpM z;L3U9AWt~2Zr=Ck+e;pTQ}yk=BiF52c`ya57Mpvl?e!7dHZ;9&)bvLV&&3i;Z;x z&Kl|&0;+Xn_>Tt}<)bUJ5rl}!3Si_&H;)PQ3gn#UVQZXw70>6x3ZJ{UvZ0Y^-!1=75 z+nx75|Kimlj++2lGk9vc`c*$Aq#ZnRNm8v(2p-3sb!Y-lDBJx?gFp{DB9(6Gdxx~xKNw&^>0b>o!biK$eCby?Lj*dz{|xw~Wu;T678{Tu0Q)=M_*&o~ zEitonC8`=_p?^MSjQAjXFQ1v_HGAlB*%|b%@Pf=p;i9(0XaQ!`r%&k4&d&Vl1JkwE z5!ceiGxp0#X!@5e?NjXKQ){0|iVkaHp1DnB!qWQChiWA-TkWoRZd;ZUVTykx@@S3+FU<;FiYKa3m06zn_Ba{Qdb6I0*5Qh1gawiZ3cGgVQ+Jv=;g+L;z0WRQkENF!9rJ81qpsMJQaTOR=z z8Px%;e=bMOILT0&S!r-#WwO4FS>n;<2bmg zR?_oO27V8<-Khh*NIe^=ACi)}fBwLbau&7XZ#!H!8B>L)>*oaZr;jLqUA~-JaZK;U?eQWYpW=So0HRk~4m@(CpUrS_y{*Hhrc3Mg z`nTALC1IB=+Z{OD9dpy#ZSPnmf|%&fQXdRB!q;su`X-c;MX1d{`8j2vSy{iN)A)Hn zsFP;fscR(e%zj4_*TN$6Euv`SPdn!$R)k~GOE^l4LSUck6_=`W1cIkMJNK8n&>)wm zdyc2gSs!pbhonv!#l>lagoIFWh5APdYa1KPoSa3o4E;u+u~#82q#p*nQRzO+QnB0Adv}<8Ug(5_7-~U0^Sw~gXcI|%C-6_%`U4lqU zg9xICf^?|}k|G^j0RfSa5T#QLEUJuiQ-A5M5V(d)|01m52~{T#U(iHvxe#eA#_N zpckfO?(XhJA?x&^p`pirmy_?`yN7_c5{rQPpF16V$%Sq^^LE~RfGi*mzjQ`v>ijHp zDlD|k+g*3jpuaCb<#lZeX+{fQ5&Xzds@hckP0WoXd0n30D<|)z{=msf?r|>6xjo1Y z9;jg+$~>bY&texAm3uGune_E_s1oiE=(70x2$lMg+V8gqJ5By=HEZvM`8Mi5YFrnD zlJB6ym5XuuA|jG!?v{=+IxKZv$=2afQZ7A113Np4f)KkLuW{{@#93Do_a?X(URP^2XYw13f@JbC1&_Q#%-(#j(q` zz@Ur5q{J_bjg8^rZr3negH}+|Nhu+skV_NKz#Ff4)pNP%rIVA#@@xIE``OJQQr1Gu zdj7G?N*+UuC7V`)_DgshR2Mx`xV}e5Sr#=?n+{$kuSSfrt4{4=k3tcoWC&)296LrB zg`y30S`V{w;`F2#m4U0TNY)hh3~55cG|=}CVpZ~@pJH6*24Yk zm8vDNH&NDE>w-PruePTwVGGDf9{%Fu;z`o`r*v1ZO3AKBS4AW4eiA|pmp$Qnly8Xl z)+}XYZ3l%#0PnoY?c29w(WP|d3Li^mcjX>CP5z zUC_>m;RzU*br~dlZsf-KQR5R!1VSM#jg*`U%kQ&tK-=`1ZfcPrPo;&nNxSt~DYX7| zPeaViBw|VS`b*PEbBbd{JnR;pdsTc#5MpGrADTS}1s{TpiJXjSB>X)_czc7D8E8Y4 z(>vZ=Tu*;i5=*n4y&OxEa#$sF-n15Bl&ZXTIY)@GPom3wWHJQ znQ+ubc53os#yILRl{kxDvVAmM!03)*{XHxce;W%{(;Ax_-bRB>%{kYPM_|Or#5^z z!}{rOyL29`jNZQGF;l`mDP@a@CN~QVsazs{o*(~d@yf=c@;~3v+8N^~VT7xXBQ4>q z8oC5=h40&Cjvk}XEZFj9>b#50nz2##r<+sG6oAWl15ZNs9kfzTuIX|^5)&I>xv9pnB7N_1=;&R$jr*}P{1hg2W1U;AY zxseB(I1&nKBi&ah1CH$I-;RhS%fkUwj2JAQUd8IlaFm*=c3nWBguv?scn|woVC%Fu z1rY4O&un~rdDZ65s7RgNRFx1{rw1w#S~n8#h$s z`K=g78Z!PcoHgUQ{1`}-X$J&bKJ0UIym2XyBhc-$yWxLaCE=F_##wrtu%w2mdfim$ z4X8o^ofU4Y)0c_44g9923H$m`-uw!5WUb09KuCfc{czIL($WmjU-0ws5yD>YS#C07 zggTQFeSR{#hkA@y7!JAIs)^cv?yMv!c!7h&Q&%gCk(|WT%=Xyfne67L=s#uWulV!2 zb1J@D;6z|!7*|S86)DfcTeE#}c-VO-CN~tODCU_z5A*6y9^Yt@##x`&xW2OpHa%VJqP+RyDYUIv-?m^^-ApkS5);M*%bzm%v^jhkXDvU|k$AfjLRF?G%1Ye0 zn{*{|%H= z5_(DRKFN7Hjl5_=-h&bSI9ojlON%dGS5Vtgpn6e#3i0K|0?Gy2JjL=VUVsDH-H~iu z0HP6o@tzBw>8eLej-h6>UM_1^UM0Lt<(hxiHXS^ap(CP8ohg;X*&+kg&GfVfwY|Lz zfz5-Zhx+yv*_hDm9~6yCjmD>!8I8aDXm-MngUhBbJ^N9h%FEONZ|!tS+9XoK23f71 zHZ-W=P~$1gv8c+W3<24SC+(o8X`lZI+SgMX3I(++VM0GtZ_C|&qeV-#)8Vv5Dfx5m z%pzk$YY5H4XpseCmR5m0SgCLAz$m<@{kF2#q{vYD@;Ms9W+7qqtkNd?1AWcBG8y(8}0bgJUe1Rw^%u;W1 zIPjC00fn@rZT#LV8`9FEH2Lf6Pub@?zV(SswPC*x-Agrvczr zo`cO}-IclS8_ZZhy!nIAPR=EhS{eEbqH**g?*;rLdYR?;kcND6@Bx`WA!J@|VXYc@T<73N7(E6Hw+n?T!loQBy`{<||mB zEXu~2$wvb_&RG8P+6bY_5P>gq^@k4snv3SD3R(8*+k_~m!ZnVukQ^p%>jtpum3k(s zhyL0*2l;qX(oIsB{GQ&kji6KyCUqZz)4A0Z81cP(GhRkeqQ3h47xfB#*g~O1EyDD%#o`vL?8~ATNsiV-V9s5a-T8Vkq^Tx)CwY0 zG=Hes{QY{nkgZ0FOb3BgjHT*V_6m2eiDHFdGc-N0xs!C!BD=_M_(*EMGYOA@5mcR< zqD_f{ZJ{XtPv+leUrSW-PQ)m{-he0+#H6DKFKi1b41*(R>5vYYv@A|V3x4*VFkO)p zAxP|a*S6%V!n=C#ba1UJd%z&BF7Ez_l}hdOd;P?7vD{F_#Gdz(iIv?y4_|V(petps zD>t&mXqv>Aorb)S%#Xyc^)aSdVZas%@%~%-DRRBmpymFNhTyTAE}Hr((eb%br3pJS zhK>T(IC#>7cIVuEVZ2f5NGi&Y(12^ZvLg5;QOT3n!*K6|yuk?Ya%i@*In=PAZ=j=@kj?v7@ss+)w|WqHd#r zs!&3qef?nI7TZ_RYoGGOtTZ24<d^!f}47O`8+Rsy?>+vd~cJc3QGc zU%c>njBWNve9=Z~P7uLI=-7rR;F*$q9}}nNDkKRv+~8Dx!S;~+tknEEa13gF<^q2; z%{vEBLob>VE|Il>y6QZT{>JuZvMjQJYk7-&O<-f!{6{Tf)bzjQp2S79rGL6^b@`4PAv%Xw zh6;D%a`~li(1JLKz;tXvQIlgZ3M<%JomiLn4$(sAquHv61v*G)bVk)96nJi$xw9O1 zrG6>hWFmkT{S&eoI5x6ysJ~8=l=(?V2s)t=r>`YeeFn@FJKkSBjsqfa|I!YPd=K=I z2vdBO-cgj2R+6)9r*L`C@cL+7yr$hNHtL$%wFJ+yedg%F^5{pwBp>EBfm*S*Wgh=C zv%*7!l;HRe)275}?|9Tbj{(-@qqdJC;s!%OxS6z|b(hajpWlp-Y!M>VK~2Zz+%J2t z@biJpZMmgT;y#p@FcAWU&QqKA+vY)rzoSXZ*noRZfU>QuN8bE_;{Z_k^`j-9Ly#gcuCVMt@YWD z!sBm^h4*{-S)hB^Kr2lRVc};Pq@x}eDS^kHN33|#&LXQ6Hp+Y@O}`cmI|$3o?XLRP znUnv1v1H;E@N3~9&TKB23)C(o6CdKBMh_1J={jWWPVHm!;q%@=o-{LChm(=s9qDTq%&84f4{@| z!HC7LH03avH+Y4D_0$NV@n+BFs-I66wp&gpP$G`@Bgw% zepjAMqrr7CG@E4-bkiAMv4Zi7mBjWG?#7ogmv^E6vt==WmXcHGNUi-~p-1YsQjp-u zlAJK~iLl$Vg_yrZ{+~-z3m=6m(D3fY zV|6OuZSLx3!|x6leJ+sp40btj{mI!KHsgF}ZnOkp3v3jI)^*042F}w`btkL5dB(ML zaE5I^7%>UwEvO+U54QJKUnhix`_{}fhPdRf@+k9=?zeE~z|cKkyq|3cji|O%LknlZ z?vEuW`k=>nKZq;sJ|=hCLBGBGB|&Ti&gM!y91*4Z+_{nXJ45}#0^@^~kq1Y_#l4G;rlc2lKqxCKqoA}q4HzV| zi?JqcfRU_PFsr!>lbIW#PlK?e34;$d{`#7uG3CO|`de~w&(Jhck=I7Ca{Q0ZY=u@3 zJ;8Nz#OR%<_r7L#s*eP%Zs4eLQ_X@;6<0SX(PNJ_hP<6;YS>DbKtaF|mNE;D!?~{K zInxG*O%%9)Yrc$RAJPz`be=3r+U?nI&oLZghB0AcJhqo-O$`Hu9DR-;9z0q_HoBJ5 zAQECZ9cJ(24W3M;po=*)P~-<5sH!{m4qm`?^Z|4usHv#tpw?`IzRNwJaRJ|y7&wEf z0N+F~i-=GFvh8pJv#|0=kWIGFzDxq}9F7UKDzPBVG9OTvPY-B~3_nDjKY-S;E)jF~ zEaR;dxm>0W(zFs6Ke!>O537tXKL{iUEE$Vf(Pp&LuC24i$3%ELw?O8Ih5+r7Kku2V zPF6V=hXNN{fLgHgRESk^F_--+{|f<$hy9`(0As0hXoV5P*Maox%>=V0nZxI|H3s%$ zhh>66WOzmp;)TBO6{NQ= zk|NVu)mxe@d4wk?id9Ce&(Zd+nZx$Z718(dLGg(^-;XYc!Wn@1*6rsDl zr@2ckldR=RV`^~shOFUrbgfG#a&RZ1cw30szX5&>muT~TPfTgS?lmh;OxO&~${KfX zY#nW~`8OH3MB}BC!jM`g#I(X5+LZE*|x%}EF7Arj89qpqVJEL=v z;%*Nc*v|ncbF0VAOT{tKJLtiWXAxvfzc(GKh-?-BhLe?g^ZRI`K}eRMR&$7Nf{J-I zJ@_R3dG%!pTd+DJ4!RP=UTsTfY7nygZu&hkzC1yU>#FtZS${2z(SbkJL`5FErPZDL z`3~Lw-P@_&*<;h`dIjZjHYKn_mrdCo$I*OkDT}KbDArSc+lQD@BV8sAYl2fSoHH_g z*^vkoulWr4qHXXU&r|reYz|7FNwJIdWi8#`b|(Zb94^Y3?L1?Odn}D=gvT!Lx)HKV z&-|Uj+ffBTTwbH`w)C|h)sG}1Lk5cD9uL_S6!cgsKlbz9Onn)dtqK~fn7A;SudqC{ z*EH*8#dIAeH%rp8>{1SBuM?z)#fYYq{qiRj%pn_vc10kQPs7;vXFE*^N)2RlGwOA@4=dZd(-rb4{;iMrDVpe#K zMwaiYE37~Ig@;5lM5l*);bE$96KZ~{zntCakw5&hrB{>K0-gX}HEDCsFx*T`kViv} zYrZ^2*TqD)uo)qs27B$%v}Zx}{I&$_56u)_&;G=c&L_utUIGrq=Rr5pIT0o^Gxyx9 zLs-{C?h)EXHZKizEn0iBT<+OcbN&_y`*vvFyK$SaY-`?G7;hflxFq0JMOn~hd@&yN z{=y!(07s~a;@opKv;=8)C)ZYapci30ycvgRcf%WPi&Lt90m~X%7 z$R-(T$t~N?*19jd_R}eM@KRdM8>_eKLK3B1)5^-I=|{8&Y&$<55*(jY@n`XZcN{;K z@Ldb25mB;E1%WtVydZe~%6r5_%y>-HmSqmc-IRKyLuztco zI|9^j=YLBpSey5jJ6uvVy`A@ z$%+PJ8)sK8V0UoPrBflmwzbu?JXYQmqJ3MqSgWwp|9z<=^!(rwQeobg*@l@D6!@H* z>=1pNjzGWx9|We>PPFiGELpdX3kNf~Y{jlBD6AWOSI;CrI5-Fj4sKi-$g1WLx4)4O zIF197SFW`1Z#`LEVr(FoT!<&NZ?u0%;&@NvPGvmGq2GLY$YRXVLOAlU$I!!6MVmxv z>?Le#VYI^N@nW`3la()pZO29VVCtitL+OVzkdz0`3Ic$7?c4;>l>Bv;->k;%oSsF{ zcmd)$#|tq}?`**LUM;9Q;Q@H7vHN0-9bV5>TL~k)B4jv}bg~Z-aqtF|TstK#RG4RI z*7tWFDm-SU_wtg2R=>dN1t=&KWDB|l^pd{ZxlH%-GdQduf?>s)yKlGgShQc%6FMLR z33V~h|6}52+|kffPLVn9eow09Fc5eO<_RL%is#}_Gu;m*k#JS8_5&222+;e#M*q|d zb;83jkl9f4&~IASkX)H+50DBCmQT2(?)z<88Y@@K&&_x3Yd5w&bEoo0L1saU1R5m)ci!hUx?7> z?dQ`w$WUw#U4ewDiiH4^OlHwDduX1p< zcRK~!;a;IY(*A*gQd4DCztRM-mO_E4@?s!LSsjd)EjXVTWRUxDDrbI$4@Z&%O65m` ze@$Z7UJ*S1911^eO$ycEq^-%qvAX=l*qhl|)3fbnlDq9!-tKf__Koh}zLKKV=}$T% zr`XUk6QnOQ(#?nSm~)f&_g*2mOb~LU$ zi`b)Y`T>AF2Ui4&aEgi-c=P5>)rN4DU(OIZ>D$Vnv2=JC&EiZ(tZ+Xa6EKFqMz%Lt zFPIj&2%uTgVuNNDbV?;EylFZNGwnu_|KH(d9#yG+sB#GPKe{`R;rYua-=N|rn0$`S z%4Jksg(RtweVk7eg6tilU#H$DnpagqXUuzAHXwsUfQ&?x1No6LDDTu+679v^3k376 zTlEHh&wI1)rzdz&#tIm{i{aHh{AuBe{S9%=|Cr8Zz$F=-G1Qv$lI8avq7cewbS|5( z7Jr~A9o6wzZzSnZNYY9va z8rl@Kmd&%D@nt?{{4}+}B~rhC|E`e2EKv9_L+$oPYuVS=E{9!LbnZyoJ2yv-cV4~c zX~f)XSx|59yGHk<>Zd9gL;5F`Q+woayk@{%y0?S=$eK7p!P)u9mgQdzyuoEy5-#Mx2u~ z$B^V(6sIaCh!V`84$DArzsE(1K*B8XJ-r0^%E}5@K-(i&6os7s^bu1u0FVCFu^tr_ z)hCIU*HB(jKD|Pq8@8GYx6GG4mP+p3`o(!GxmR^rmbb!0t30^iKLb$|E6!YB)0Z4y znlpb`I;XYt|V%mZCuX2vh`0 zmb)9x9dKy^q+YMaO&B)I;l(vF0BF(L*mNNNmf-pye{fe!6B2y<8u!U^wR0Tr8@H1% zQ=?V18mMT5;PeE2R6-C>aB*`t!mEK??2H9N2;3`6OG{^oAIUx^c#zzoXlEy2?6Jbp zzLOv3>stOTD|dV0gEk5g9N)(N59_@WY4prMc9v%FkC4!~Uq~ETf9U4tagxW6pY9W^ zoyDP9JlN3C(n3@ZVjS-eXe~h1t9th?aoySO9m{9WP`_-4%@l#qHFU%(dok9($Q;Y} z7#$SjqoaTJdj}G7`pu!cA4WM`Eky~Rjy!B(`{biYSn{pWY41`ayqzZ=->DGNKKydA zoehSN5mIrs+gZ&E!c?u$-*!Kl;=Ch%198>4zhIU=H_O_HZ02-Ru}IdQ}4A0#@SD%9othHa3lp{2Umv zCx6oOjmOvC|Dkvf?w%1h|AowBWT^O-ZfsjRHF_4u#twK7ZH1uOyF zk+8aLZX?2Guwf~B3KZH6X0pseCY+RBYts0hnH`qlGzbfK83p zdIL~yP|T&ahK42Sz3Yc3;dQrk-b8a=Hhi@gsg_9F9D!5aj|i60QX3kCDGW&TO0B6N zCq{lB)+2*Adn!APhj{(acfY9$EZanj;$pY+Es*(^Az@Jmg&sAMpNko`q#02*Q034ImQ2`abp^He)Y{37R5Lxaq`>dg__Qh(-3Hq{@JeSb)iwP zO?fWR;_B^Nfq7Z}4Sy{>+GW)zyz6$`2hL~n(6RI2D&8E(eAsY)dgSWG#K5o-%j?@q zb=6V}5dy?bf49$_ZqOJG)u0ecC zN=;2owfPPnh;%5;J&lbNYT?=ihov#QvKZy&pZNopVm*N7jjY~15(F(Z(uxL!dPZQ@`6=@ z%ALBm<-J^#5JS|${?#>+JH&h{GqYPQT?5lh(Hpiu(-Im&3CQOGTO1xt=tu0!ge#ASZ?0l z-|IB$LSfCwPQnNa0ln+t#?MLVcVv(d(eg>mmM$MMiT<754&mVC3O8HKOpeRn3meW$ zux?$y9~<|XRAJJ;3K8r}P9WfgI|`(bwY*x97uM=-IL|!81fE zPqZHYZC3`3iJw-NzxwK5Pc(7`HPy3Is>EZqb{~%KV~)U5zpScF zi5v(Gd*5YOQYU%U1rf{w{!dJo3bVo8M~ignHo&i4MpwgNn8HA`_e zJ)Tm{LO(h?tFw__9Wo}2ZONRx+pS>kyC$5mAO&9>PAYtH1;7e*voxpGeh}5`Iobj)p|KGO%XzW4D=eSCae+vlQC$1*YEz>w8{?;!u`C0k4BhQwhj6WGqsXFBn} z4D1dvIs>8wC20dh`#K{ zyo7YMsn9jf05j9*H5PMwIT@sk24G!PtT7R@YZ$F|VQ*nW3_rOHsvmVrqX!ei)!dO} z@hx{RMn6!EkTS8ZW&WsQ;y~8UwiV$akS5nV!EjV9K?g6V5Pdf~yU)|}584j&q*Hev z$BwH|>_4>;R2>q5&x3_RVE~Y2%)0sJAb}b{;sLOK><6=_>Yi}|DU+m44})?rL^fr_ zUNkN}h^f7zAD)6)NCUxOt(vt+lXd=#R%UE`9Fdj-A_Ax zmyip{NlK=EUaN%jI%db4LS9cNz<$uaNIwFYbU+oi+$fbAS2mC%8YJ*gSDJx#_`Oaac zB9cqv>*D0(EHf)*G#5YKLjT%2ntbGD_reiXG~)33TeHHsX}pb1L4ao`y@3+7K;-e` zGnX#ev+CJ|xf#Dq>@$Z7umVe0GZUdRdCnYG%`64b7$cg6Myp*5sue4(04bwTgLiOA zW>R|Kd_xpfwUNJHxjHYNe?xzJxK1C@0HaHDH-*A#g>_-$nBeG-AI+z#UIo2JbyKF& zfPe;>7jHuG6)6;?No%i@nb1&hwZ2LHRq@o4-mT_ixMZ(=mr7`ovR5G?N%vu50Mj@3 zhyON*JfmuA^P(fICQ*GoJ}=js(=$oSpM2%ua|C@skel2Pe-tp1-`#*Al3;VH3CIrw z8HpetJ+x(JdTMLqN4n6?V4Jx2;DH}X90hIWKimIrvr25~OmMt>8S*W>CQ8TgSGEj0so%2b^3>_k8oEt|B|Ese^#mPXZ4lyJTLV%)C zSS62l*ZLH?SD(wufHE+WWP~jmAAJ3THWk8AN=p*C!9aq zyK)wj+x+-OpyrVlW_bH7kRf-*rdey84ou%`5gr~NS~HH-=rMjk*o~L0)RYVA6(T0e z?b~5^hJ(n?&u@d2q<0_*yaJG+kj~SfR`b}GSbx3h+Rue;=rrAIzn?#7`%Zv;bh6-S z9`AM?c-;SDTdW0*AGD$~HoIwPEbnF~bneHcM{j*8>c_$4K1n%B)YTT4OAt3sDVP^F-8lE7|N0_<1%gHy8G^71ITYs5BM3x{-I)P z0NL$oHDzv@Y>FaSgkmI}PKhj!L0TuxH}q?DO_sK|*J|JrXfEv$trek+H*lEYDK z;0^%D>+{;zV(?M~SHa7mX>o!mJVGz_Iktoo?#HERvQ-3o-E2s0fVfd=E2MNZzHWY5 z|7V5P-@|*F~OzOcX82|B!+y_8j_>)S}VO%rL2UlvY?--3i zeq7A^Es~g7U#UGbgrLz4ObpgD`%M`RBqRI1Yfa~xLqC!)&qd#@?c0R~LBfqVT@bVE zJXBD9wBOW1wG~*%X2)jM_coYn*|FeeP0}ZNf?>`Kg;fbH@dk6B~j+rjjdBe*@fwrmk@zPJVKmrOboXC4wYKOC_O%91tLIVQ%`FkJgHu)&&ce1;5-hm>3*ph@yQD00gw)J`vZWKbl|<<9chheHP;f z8yl;Vz?&XadQ6MVS#`3%Tkg?ChjL}r6PhA2Jo#gX4mCC9=rc6qVyc9Cd|kC|;4Xs+ zAEURo`YVKrq4xK3z&tF3@;_s^MFN77_VV}sh8oYcL{`!E9q?G3vVQk6<;Fm+PiHdc zPl_!t0w!H7W-Kg&Q+#LTTY5?a?i6jza;nbg9mpk7ol0A#A$EBw>QCw`_W%)m)4I>V z^rjHLWNK=;p0TKpcpI z!vpwfRZ{HXV8Dt+#lVpC-j(-Ac!$EG38o6j&C3AJz^g=r3F?9~hiuBDUfS8s2x&SF zr19^3?(<0obe5KIQ4+KPO1b$JjYrgXWMz>st%2hJplxB0+pz#NalshfsUR>y1qPH> zLh~Rf+`@|VlUp_%M&Mj!=4!_eGp1P}I1&H|vni7RPD#c;ET1?+{~W}!{z1K_8)x$W z9uq$+#3#363l5@+y*)*)5!#*lR<`XG{&WNa^jJ4lml(2f`UrxtyrjL|=@7F6G6Ba< zCaLjktf&|d4HicK1#z#^dR*PwYMdw5YyesPbxRszs+xqjxx1$3+=;;3I=Ehf#!M*?K>bd}0(Yx(T=R33;2Hs>qNHK>dL}u<=Q?)#N zA`b$)(|tsV3Q%j{a&g0+qLGvAOcXhxY@dKdV%8IA0w)c8P-I|izDAZZ6U}RKIYCYU z$jr2|k)~2EXgp+NJU-#l8y5&8?GOD^8&h!y3~qsSoh>qJ#EKRr=2nKxkGj>HUcd1` z93~cFt2`)L4ngq~0ByP5sL94my}f<3!jt#+FXpR23Wcio#wtNl4BTJaGws(KTm#h` zgc^2p&Ub#MIoDL|h$2jPMlt#5sn?dcYH5J7!YU&`TEM4{(~L0L~Dtm4I-RNd{JTT9R2o&RP z%iz|>%O=U?%|7tzO8ek=JmTdU+F-$9J1XqLN9c{?l}$ae|MyZ4oOZ#xRxD5 z01SsV2`85ONDG;S2fQH7nX?a9XvGc{kOn$<(8(YWpIoog0pb;1F5bN7`UeEllr*_S zj6Pv7(fXpAHg5M!&X=bka0JHJ(1av8{nS{;8{KwK6A^UJkn(PR|Sw2&%hVcOWVa~_t)~) z-Dv9wlPRVFwiT=-Qb;f=E)?@}EyOIiO!Pys3x&8;f=gqw%-r6r{eneZ2!M=GN(l+Q zdvtOLIP3HGN{&i1zlCgCc2@7G&L$; z0nh>*I@oPm{EQPg_Qq0_=!}IcIvmu#6-*$~1+b%nH0}W+GOR>^THyDdkPsXQihwxI zZZ^^Uz;W-mZsVFSIP6aAWZyv0T>!i@s#3ZK*WrVYa`>_Cbd}&j0@SFYq!7zF$@(UKZCSzRm!15) zB~A_PHZ|mN&5;yH@pz}lLYtL|?x|xQuMhvKuy%W)6?msd9*8OGwWj8AOusc|D^6YA3+F%+6&N zfP$u`<*y+*3rQ^ycWzrg^%ll)5Pv=oDUPnLYO)*vzu(%T4@`A@4XqG|Dc_^HYQNTh zYmf@PCi=c-)=yEl-=`L|duKCl5F=7^s+GS`_FD~WGf}po$Ss`>qCDE>!w*qQE-R>m=WGKaN3J)#1tN zt07c4)2JLrGLgiZn;7#09YQTf0clcHEcODD!n9ndOnv1$t?ogwXhAMDWAF?-!oVlEkx9#N3E*h?07=U*`XYnbw?e(oIf^4` zI^Pn!G2L!?z0vZzgwL>*C<5^huo>RIP82uM_|S7wxTs*jmT8NpVV0H(kXfs>2$`}iOdHbx2CGDys zQOxZmx%+C8iBV|iT#adDJF2sfnipJxCI<|d<}V<`{!Xkw>t~T?r1a|^cRpt&`_TQH z>Us4h$>8FqNZ=$oW=tYEFZ0op(WXDsgwiesbRRMMyD^4AX2G+zFa;SG%GG6w!A8h25jT?K7TS!=*n5EvP)>)q-1m`jvId0i( z0jU%0ksguN4=gO$+QJwJO7)2{i}wtc-IdVAZHD{go{dq zh11=@*OED)6sXu+ua+xcWcJ;AD*!fqnV@+Bf70~3quPFPE93O`*?&Sr>;7Q&vAsp! zv>kVzp16b;Q>+mVbdD*kW?vzM5_f@Oh0<0%!Y4$080E%NpxW_mJ`0gF`3J`FtE4Qq+|VF z?@STzxJG;3laC%=NyIEXU8@p~qkYjDXnTB8zs&BCUrQMNG|RG}sa$mq^7WfV#j~gz`aD z^AtS;OU8}iHnX!xHJoGGsWZ;{^um^j)}%*6Z#+`yBZ#Au@H<;&y$CP z04*6`d^E26gW}8nbu~h!$YBc^eUxVDAbmmjxg0HruW`Tn&<-Nd`t1+3ug?s9pj1hEO$jQ6#o#Z&0O~20HlF z5y;DGb0O&Y6);X8;DA8@_POAz?d;6_Cru`|x*uI7rWvvT%70mMPFt{c=)gwvJch8V z1LccvU+#4HPZ`#d!g5AIh|wYfvNEcS|oaTJ2Q7y6Vt`-{&(wjG93 z->C$8T7v260EnRb$9?qdP;yd`W@vYWC)-rZn5b+SmGxi^O8Bgok!+No66oI!Uv8wu zlgrOn_UKp_c}e?8+k|Qx~?QSKPy|Ap^2#CxqzKc%KWMxm8eVorCTZf7P*LO==sy$OC}veW3akN4phC4u0puNr=U7gjMY&F{8V#Wy&dB>E5n zS~f&Oos7ZD-s!+QDplX^E=(!w`p0A{i6ZU&2g zgv{jvdejXC329QDboW#$*?bX{td7mu;x9UQ+8ek$r%DzFu$dvV2HyMT(}~@L9ui=$ zF!6zhk8p?OIy+|P1_bPqGH_*L{%Rh5Ay!k(PjmTqjWADaxA9RPsj4DLz2t&ZyZZwL+(WQZHy+6yT8aw zi1`gg?v53x)ldn-uWn0cd^vK7YfkSr2AE(#2;binVH^qZJu;Q0(C`8bEm2r(_Jrn{z7({-AY2cD1R=Bx z!_z=iYU0j8`+aSDz$Dy|rnV8(dKn!9gV&398SR8&59bC@Ex#pkVpnfRS_s;hZ4<^D zyd$rM12Wu6k<$7B;q(B=vtkS=J@kc^1_T1$)5}u5ornfBCa#Bf9A^p+Y36dzTPy5O z5P2_n@D20DW+Bu78b8x7KaujO0*;i2d*gEAF^c0*L|*y;FG-V=cL!9$Qr_Rz@k80r zoH^lzfiQ*UUe!(n;ujCzMX4$2mn@YEiR=9^@nWxC+REcWvA-axREVD=;SnB%6B#>z zl>&MDZW;bs5*uzyRk!ii7~Jh=%#38^*ALDJ`dF*it0OiK{R7)gCN2tA7QMH}r0xT{ zS58DZf&uDc(tULO@#E+lwD$o|2cHh~$>0PtEgMfzPlEHQ!1X(WkWvWacnAdp77if* z6*E+LKG5gLMQ8+pRIzB$nW}7AN71IZ%w0p5_w|%K-)!nHE39xdIN#Ag9do}RnIx^A zYvl$6Q0x?7`2qYcA@UZ4(tSWa5+&~k_RGK*_AZDnn5|pENC<1izFlOl5^14Vner$c z5O{R^)S`ce00LNESq7!n9OpC1$WCwfQrND6)5s#4vfLTIj|qJOV9f$|Nu0c<-$Mp0 zUD^F{hSPz)7SI?DdpHW!DGR^K;^3MjSQul#?8yZ6)OoI_fa0oh7r{ri0%2bi1yMLcLxVX zlHiPgshutIIR0(a0jT>+>5R*cd^(iTvyxiN%aU3_o$a>rlSNPTIx(_Vd>g#r5q&^0 z(_ldZR$@D%=F7AqV>7bd=Hw^Bi;)D91j5!HJr9Koh0CE22dJTy=wpT>vxWw%q7)_D z*Etnv`V<7Azwk>N(L>?KFZ8I^rIO<=%?fgg;7UBfZiisI}g9sk7y#9A9~ zNIx0^QlnJEukApylf2wxE7=g3-i7OXim0=PmPwKd#Soq&2GHCf`${|h5li_~Gu!Ov z&YNUw6s)Q-ZT>BVAAfH^nm6drU#&XEkfVjk$V}|)y|WL4ty{mwXXBn~+9A{_AXRaY z(&c*T9&Lt%Ob6$@gd2K#fDHg54#P66KVZVQikZBfNM5%zU6}NdmKxboh(M*0wKH|b zT#%sw;d5|RLzHzv72Y4agW-ebZSZa#Zyidb3L%h2IJEy(g7e0o!3jBBM<$l!k*8LF zO$e|{B?RI1@yt3zx2;JqdamSmhFBo5lv z*=^kB(W5e=$PgIr0=Ei$-um8x{zGl@gV6|CQQj*@npct84Ifj-p*%c(*_shz`|;9# zt7jqo>(+UA{nKlw*T*P|dF&X4b8vJF4wim9QWka-K^Eg z8@D#lr~0NxFhtEUOMZ`(EaxX3I!lCiBF8CT{jE0`X5p+NX4Adx7K{-hFMGUppL}xf zJxbU*ny`4RFFE>XT+Zh%E27!6ef#KdtT5Nmy6%YkiIjKKJKX^6&&Nl%D-Can1|*+v z@Rl*YFkPu)edMM66GL}N$Xh868Ug#HegkP&5~$C=g%x@AaB#ke7v=gK$;rut7n(Tt zYs0DNS+Cv6(N=herR0L6NSH+TdVyqu-9^a?b8n5w``YeCsiQEKy&ul9s}_B*V11jqJG)%n(r&w zmB-&OdAJ)@-syg}VKjKNG>VZz{XzV|L}oBe4$eKVw~eN=agE#>^bsw0;)!?nPgq@a z$1DDl7|_NhHZp)^pUPyWMO&dC%@nuq}T?PdU!}Q^?F%`xJ3Ae6xAp)#X9q_jkT)SGP9c9(z6d zRvT(kz-!+6Q9D84rV7U7r`VpUzuq~5QgZ&+oIkSdtCJ>=a0(4FZXM2nCmH>=~p+mZsCWxUo@YOhUZ8x*zFJEiFa2!YYa1v zDZQ=L!yR87Pw3h%YsITORL>RX9Y^&TU1OaW)KI~=JT4~pjQ0z9knVQ8dLdhsUwABl zCAae7q$QxpZQRu5p?$M^G-RBlSy=-yEG+FHHDeM?C!KALDm z)CcZn?MfFle0$&fJ;g_dMFrzM{jZdzkK~0P1ZG}8Dh~N^x8J{?b-tR1|65I=*)3jK z?#xBC-kFoBp~+qQD{{-8(AHU;=vz}2P=l{%E%1v|_blbG*Tcpw{G+{AGlBwdkDw7* znU+s^Zc9ckWDCUk$v#+-nb4KOUJ=sdK%bw=5jsY4c-) z>b8QV&^HEwbz9=N2?o(piRad?eUsyN>9@;!JA-iX%=?+WuhM+5?-?F%G`S_!btj%g z+i>9bn5>x8>+0Q8#}45wE!O2Ycm)#oM}>TRHV~6`<;w;KSvaeei{SyU_grEl9(2L3-)5#5P|Xnb)L|-i4lPc=!AH)Qhsk6{ zS`lBnAsO9F#Q$tk@H!Xr3fn;Mu{ha>f>+{3c{2~YThMNQdXEk3#t8B4xnz?^|EIRE zj*2q++8sg>1f&#@PzNb#Bqc>c1VKRQ6cFhiI+PHk1VlhuB$Ngz=~lX>yJbLH7?8W? zx9+;}$G6tE)?Ii0fd%uP_dVzAv+Lc@vmLtDB$XLbvk5nsYX=2*kuHV8weuO?g$&6~ zogE?ucKUY0aGQ+?UD@7`ljxNRbGquq2>1jO`Cr#Jp0IjEL^qvaNlch@m zO^q=(h+nvGuf@*HZUs(i#VFq;A>GGj*9Yn}3C~A`J;|li&27yO4*6%M zG~2fxC0TeWYu^;C$jrN9Y2dUY2&1y{@iM8KaJ*$xipxJfe>iQK<~jy)pPp zi$?Xz0@bJH;UQLu0NnH+mQ$`CQiqz8$N8UAL(eGLCno!s|IHyNV=pq_g=aVvQi#W3 zk0&VUGEXmnUI-t0f8au{j-^R*&+k;adHQZK(6xV?|Dp_vC#}kXN0Vi@hYj&I8EbLA z&|NGm$^C#BT321Amx_20BO0idSOUAaZv*SVdmd-Iw93Mt;YaahAY)c>8oAqJEBd6b zv)~O)Y)Yf+gL^r_C;!^&v=0r*XB$Kk*IP7bXT;=xVID7lP3a?A7sHT#%O8^+7Z-A|Q7%BU^?=jRLfT5Ib+MdC*z2nurh;tCX*89xQZ zOWe8GGuQmnP2TcDAytHOB+>GaLZQea_5JA7PaU-}Mm`76O3TXll6s&(KBgy0*sJDt zbeWS)ZdX^xa?WfYGY=DVe@AI*dwBYg|B@_=R%_7hYw^Rx9Jy%?O$^i(vm>W9Y;Bj9 zdk7NGFsd{=vN+amnjTv z2;?RD`+xNvk;h_QV<_h4qVz8&hl9y{mP`MT*58xGsG(!-uZf&f_D6MlYv?Mgca$mDYx)hDZE%BKjO0xn=+ z6y-vpk~c!+KeWDiSgud~wP^A_+7VUXbx0)8oZ#yizE0io$@-+MthxQfU?hLipeJw& zzt5R5*Y^2tX%tNgZAX~!m7{g*iw7qgjOAKK$%S?Qz88eAN^-79+d9Xi$(vZ@4X8T6 z-mvVe-WI*H6u4-RyMMBgn%ZwTTOkyH8RHoC83V?fF1#z^(q3L-YHDivdXN3c2!n3uzp>!Zyr@6ao-*-NvCRGxVrG!*jKP5ewB~MrhrwH|6N9% z%tJwfzb?E~qVaDxCdPC}o5#W()O%8#{}gakl(}dy$m5xHT)4|A8ffzKmRSb@Wx6@t zGOkJGB&~#}05ot<$zBk!2lkf+0$MCOTewo4F$wX6Bpw*ZXfRYd3N;k@HKN-U&Y9H9o)7mx@&FaT%0-8$xPkmIbpr? zLX7TkWarP3bAsErob>8>XaO@xcyD+c{nyaM`$a`t8-!@{a^28~h_iN_epVHnB7>U4 zZ%0xG!y3v7ysuv2iScx%K>au1PkCxkXe1BM_Gb(}0Rbhw_d?JfOYBdJbG|w`+d+vL zyQ1W!Ty80X1Z8peXQXstR>zyhcyXgbnzlR^BZp21WB?w`gxJUVI#b|m3C^g?vos zE^jn_G~F`;IbbxhE3(&%SH*90k-uHmp%Xg0)4iyPLkvy_;3WLLZOR9jaZ$Ki$HJ>iH>ksL_Z2QZQ& z_V)Iw0bEqQ@ii|uFOP|dDF7fnaR~{|n2WauhahO7iH&Pa$j6^sd$X~cl~Tu+7ANG8 zTOV{skE3M%e(ITT#fDPnbzSVUM$?we+%fW=0;M3n-%h=+6h2q2!&HB;1B;_tTNj(M ztO*L_dw$VnWB%(j?`&SkrqT3qE&tdMt@n1Uf2i8egnP3QDB^Ug95O1q$kx?xmE|vH z$@8%Zz8%lJi^#1gcgn4=?vjo^LOp{?EmxEzrrKK9=g(ca!C)+1n)r%cjrbv7Y#h~n z2Y>ri(&%j!rJC4tuCbPFVaCSg;NrP0KbOsd(jA$3Um4uT;(X?0{j`6GP?~C^W4JDc zg}nKy#7t3B!Jic<|B<9B$@VIrm&u+gKR3G+8m*Ai;7~Iy4jn5{?{#S2d+wh!+h&n? z>kfKgbo~dU8(J@2{G34h&W0sN>vkd``R$|!yjCvD7uLZloMMa`(m!vly}z@pfIC?N zTl0oam#wg*tY)x1(&;i-M=usFJJ5x@Wi73N7k2+1;7J%sZ>7AG^Z(h{_@1qZM4Mtq z0W7(1uQ4xgts8MmR86+^Xs#s8^@ga#FORZsF2yj`)+0K5^%W1Bhw0H_3rs)y6z4J& zt5eaoq`y2c5=&F1m7?0UFNAq)CEc5S1S^CLr=8vno?LsIhu$o*T`)GFWaur7eIy%n z(G%AgrGEQJewFA=#IP10qIv;+Z^w1zuMyw!pYZo;rdiJR8)!{Uc8-jZ1^I1wf>zn z<&jb1Udk{BaykdWhO}ri=6y%O@aT~X8zsSQj|w*t1NyJ_FZ>=;^35yY8R(c^X5fDL z(rTN3Zt0xpa5svF1Ht-5 zQCkvJ8qDM;gt{09<1wfRXC3rt>xqeDevM81J>FozPYl=h*}2_!m{z+>t4At8c7t42 zUzUu|@Ii+``iRHKKHeBZj$(9~Ar=%7ks zIi5mdkfy?FMYa&@V~A`fQUoeRABK^bZxr|TFFSm%va-D8`WRi?;2_SY;HhIYq2Jt< zq@;>TzK(s;_GLmIbn~iIm}78S`|*#^Y^ zSy=(m4f+b{KY#Rg6z$SuEb{8j9;k8Q$m8M2GvTn{;jl2hg5O#2Ua>Is(=O3-3v-@EgDWPX$4U--pKB)nv_*O%765MSmeXWVz~%L+|iY~D>Kn}2#&Eqt4>X3Olf4oEdwrH(7t^QSptQ8mq1{G@39J)7Mavjl9ILh)&ECD#N1JaN7 zOK`{xF*|Iy;lbRo*Jp)qg^6_>pou-2aPVoSHfQRR{+(gc4z8zls7~)05DCy$iwlQ# zImZ^4qlyc@?bJ$Ch9rBzSwOlRim)gIr52z4ZQ`0X=cS=>?RH@^QW9_@$&;|OEc@|J zy4{@By@r_l_*(c3x3nyLdU-&!;3Jg@8U~46uz=GIe?ASzO%H)jni>L&h~K%39Uh7F zm4`{n%C`1Flmh?#OZ(ru7-xoi&fBqO8lhdF$)mL(maM{xs$s|*dHd6B7bPmGiXM@$ zD%yhA_)!yiUc-jdLzEN0e~a(A)~|Cn5c&%xk@y3Z6^|D737qWU^$`$~ey>YwI(wXH zdS%h6nho4 zx;pRm8b7(T*?q+I2zfv?)*1w>@+b93VsMY-{;wy(UTS1tWIwofBuIjbU9kUSN&2HM z5D@H*nMRS*({G~HJ@Mftxpm(a{`a(`zQxZH|L3x3l?|N#VnvBG^Wr@AR>Ce;R zv5#LE0)7>#zfD)zxVf`Ge-1o6L@~P0;n>G7I|DtZD)b?PK!nqchj8!=@!J@a>v4y}p1Y1rEP1*g463aOuK@3sZjQXB#D= z!P9oE+}x2dF%-ZJjYA`b;;fwUl_ccNh*zZ45HYiVf-QA12z+%np!UIPlIo%Jg1n8n1Bbjn_kQ&V>^$Llu( z6*^2u6*CubCAXl!d}H{_40l$?F`(^eMI6#AyZ*2PGnTBJoJaGGMgWWhv+5h_ybV#< z4_S5fnC4kah&9T9-{BgU?h;zvduG1n4cyjbxijuIGc)j4w?GXAqw-x=)JuX2s~_8*&mT_O1A+LSRGqxad*yG|eIV@MHqStO_>p_-xy+h_P`I6peAY zZjDWuZUOx2{^e6@MtON0yGAyz$FA8*Z^~~t?W2Io=>=)2LRU=I8a#?3yMCRh(KJdz z9_|lp0%ib(Kix}%IK_N5)f2(v0L4%e=rdR{R-3)mE}6bzLyc_ZjN;;Vz}|qXpkNQg z_kkev$x#$Oorx2d(@RTZLMd5y*D|9vo}a}+XFZULCptRov`_bo{LaDvXgtytcg+2! zr3ua%Fq517jA5SP?#S_hwcDJoi60(*nqKxx;O0&Lg@xya?(-LTv{tQA0DM)~eDy$uUZ&LxKM;o<~ z_kEytI6s>`M~~Z8PS$D1ZF?M!TU0N9&;K5MBI={ z1%e^xUj}Y!8X7IrZnHhu9U>t?m!3n%Z>%~SZ}5`>95Pn*q&l!6cOTP0GJbMWE+izG z2awLgBO{Q@v9z*!4k|ETyW}+}@U5yvQef!uSj%{WD4s;OwzguYAuTN(zgP?1s>OGI zFk!oQtkL7EtEt^DGOSaFGcNRV)=W zaJ})v0ihudcAn-0FJ>5z4e6Vco{mWBY5)2xZ>++W4m^%EdJjyP(dp~8wU?hVGZmGT znBZUn*$6!;0hV$B+J!XP2syWq2tU!%a%*3`H{@$#V$z)~8f#F4a)izu$@?^vEXs4e zV%tj{QvdiuLqj?BtKLOMMmi7CAQ$4XTg*dCe6g_MpC^lQLL;TBIP^KPy3=qnQuNZs zW`9aoSNEZk(ju@|K?aP(X5t%R-bg1DqBe~uON$Qqf@KgtnsNs5#}Zqm?uuN##%YW> zMB7YOL;wbGcfz{J2P02L-jD^pnlBneVhN7f=j`m@YUkBb;AX4;yKot?@%y(9;PkNj z3FX8v&o5wyKrLCgo(`c`ovN$g0J<+lD`?kyivpBx6~t6(o(3%0@{p=j+q?rAEv=%l z@lBT4b^6moG%B%%iRCdYypl0vw*;Rsee0BQ$9!2snH!qW!jwGDPr-k58$j+fpMya xv(RV26cRE!a1%TZtUt>5|KBhDpHA({IUZw%Q$HyiT{QweigGHlg)+vk{|AnA`Tqa_ diff --git a/doc/freqplot-nyquist-default.png b/doc/freqplot-nyquist-default.png index ede50925ba17cda9576bbefc5b73406bb5d14be9..ce5215493b1e2b230f6de1b9cc21b2addd905d93 100644 GIT binary patch literal 41642 zcmb@ubySs6_b$2tB_)&+5D<|r=>{dGOFE>xyHV*D=~hCNO?P*vfaIpTyYsB=_nk9- zciex@9pnB1ZsFbgUGG{mp83pY5~?UKiHS~(4uL>0rQVAvLm-HsAP|H_RAlfI&XL(w z@DH!ExQ4TeovE{%fujjT&cNB;+RoY9!tkZ5iKCN+oh>^v4>LRCOLJ#udnY~?7MuTb z0kfT>8B6!Nh6?x)H2e3OP7nyT0sIT$mvEj11d>H4CHC%vd)n@tn>*gxO!v`2g0<&? z;G=I}18_X!>BW`8@bU3G^`fStJ)>T2TM4_CG7z*xHNJe=Sp7%j+53Y=n$+F>2ERuH zuhQe@BUj*Q!%OHM-zY^o7L{NnP zAS*QnLJPlYWbi!%4}Q(2>1zl&_>G7&`!h)3zxNZNefszAxrj$^;lBy7l>i@;rR{Ot zOS3gu{4uY2f2!1|_F~?Pe|74h`9bK%j~~CrE%m(iDzQ8;Da0mUft!u|u&r4_{y>jE zEd1aN-4nh&M52$+AKURbY(>#5HS8qXv-(|vT4KK>A|N0jU;oj?h0|@phx_6FqPe%f ze`P}3ZtrqA0EbHfe(QE#9-hNC3>HNtC4((xdk2SB7z{RQQjxm5Yn_ssTDzGQj{4+D zM{n;|TGZI=?CelH8bv`eSiM+q>Kg+@1OxSgAOs5A6z$+1Q?S}l43>tk6%`y#a@_Ool&Y$#>yy4rNjiAYRKHQ&E~`twII zfmye2w${mG@iWR)y&FsQoGS@@pZy;0+@Kr7soc?EHd9Df2~V7e%Q}h8Z0Lo!5}wJ{Xl`F=^A|3= z`2uqeVk#CE1#kf!9i7td?rxkaR1Nqs?Lp&3#`4-)?%(n8o^3mne^eEYP2@ zY{__FnZPbgmf8aI?udawDQJPflD-~DsJ94q(d6O&u3M1HxCdu>W#wwOd>C?hdoqlM zfx%wQLq$Uqo0K$_9}PQPYKMJ@PD~`^p0!7crBN{5{`} z-tN8Bw6q8{sLAG^AL};r^Ya}Y9bePZyyc4@hF79r@Rp5N#ZXF;x$VC5M@~QH!KIOZ zEg+EA)APQlexHwkNlVPfr}63tJZzvze?m-RB1%QY6dBPelKsQoh11C(H@iXGqYS@$ z4=hr?zw53xhw!fk8Z5%SdgY+PMTQnK7)>?iw`<4{ki1YhQ^l@ea=oP@-~2@efl zReAXdUG&oSc3%`Jzebrc+UL)o1&%s!UsF>nYigps1$!qYE4x}gEM(LjMY=m(9!z3e z(|UVLlj;4<=jPmDM4YhHaZP%8d0C^**`nUtMQ9`QFnfG{i|{BX-o!ez~~Ukdyt z0mROE_Z7_ZJy+5?jCr8D_ zbzboCCezT!NVD2j7it5R@P_=x+PqSWS~jUAoTaG;1c=^&0pqp4`1S7Sfb(eK`y@16 zY8+zXneD5Qk&#&t_mV320MsnqAQXlzN14-Ja3Hd?)prn>1MxP&HpW4uE`(C zV!cK@kOSA2!&%hkL7a@mLZoA4{9rne^y3jSGCg0qJQ_B(dWQQl+DS`fSC_zxx5?ag^JpJ$#K3aIl?WI$zKcmn(7U?2N;^AO9D_7g>G=X4 z)jivc$Vy%Jv`hw)Si|!2@|HI@f1U2Z)UURo#Zj<>x}74GhK2?$pGMC{z1r=3XdFle z@W*}k?p+_)^g<2}j` z!wxW;>U6GKw0;H_7PILxlLDREZy^2kkFKFo41GC8z!T93B>d={Ea>Yo~BqD4n?58pG8o2XsSQ`7nE6mH~oLXYyUsNzW?iw0ehey39J?DU`<_J zmhx{#-Kc-qlOZfiQAI^mQ4z=TY`S_w3L^0N_SRcORFp|K2!25a-P-CZ&a-EZ6T{`d zAv|{T0!>%zBv>zaT7YN5k59g40h4>Sd0lvg!WuL%9FMtw4 zTTPygWQ}@u_YHM*#O5Au`W(dkIZc$^d%sq~Rbo%IbOD%16D2T~}ma6~(hDg02g2f#y3O^vg8A%L=^p56|Y|6OM9 zRkc7Za)JqTqq(Z8N^V#kK#K|$rgYQYsnS{Bn>`xRN5=|;I`#-40#P}w5AZIn&{!fo z!Nkl3-XnSg`T6tbGg4BUF&}K}`2XhyOkZCW7Zr8&_lM`_=R5V$>y|w}%#`OAj%sWa zJU>70wwW~NAib9xAu6Vjm;dh*{r5Pm&u*(LO;d>8W~Yi$NnCFc-X2xXvzlQ z9Apmlk3OAsE<4YKeH$Lr6Tr8$M2HI?VpqFH@Pd?7v)+{nKo&s&T?#bIgT%uLo|2Q> z%^!@bf25+NMI|RE*YjAz2QflgOe|mxo$%lLUvar$xC1!Cs8e$o5IvZ}*?;@svNPeL zEdKArs=C36{qr(0nAHD8RU{XQ2-aob0qlCxI7i;DWnr+j!KeL)GCDnp1zUaO)e~|{ zXo|!7f=u&?Q-0^$U75e3tKl`DzFRduX*ww2>zJt+#cc|bevB<2_AXZ$p+pe+Mfe;) zqv9tDO?T46!%YTa(?YV_s89918Ddir6O>o*;ReB1zK=Utj9Zdve(3zNo*!p%y`?ks za}DoQ`gG{iER0xq0jaAa8v9goZp0*8NF#QrC=Hzro#EG2Wl|Qgpj=RbYP>+&?$lYw z>ysvaCwc|q?Nel2>ew$@bI-P~gKDysfB&)gJ7qP#Sz+m%(oSA!DT{8dzPO!64mV$63Uzkqj06&AB(mk{AQL$WW)0tqI~6sZx%YY| z?NY;?0UE+i5bvXCq}vAm%(vX#?Fb`ee%vUCv!tlbZZCy;NKyD<+OK3o*eT$JaNVcv zF4HpUonBffCA1u{F00wfCgmQDgn9>a_BwxGWpT(MdoMAb9}6R}WP?V3-*NelShmlNtJhn)mxk2#&} zX|uDv-~5eZds#)(njwE#%a?RBOS*Hb@o@g|icj%-J>}>9D6l|W!fuC^5L9$130(o- zZE;;p*0x07b_y!bPrnsx{*z0egAwfsu-)%76W&aXO(yeqom-Cg(FauiJ9ahtyoQXN zS!pc1zxLltf{+5oSJhtF6sF*je+u{MFFvxjqrt+P8EfwjwYM|#yyU^%-xCXP>zAA~ zx^C2+r`lq5sGXMp-4iV<@py-*02(G~t=L#6W2=SMGtDFDgng1xs80w&kd( zBfY(uM^p~CymIwohMa409=)?Y#W>6HOF~h>^=CZhM0H?wG1FfK}$;jpLAPN=Gy^G$PGyk}ie?$L`k{N&8g{Wh+5ZPh4LO zz_tSJo|8AeNl2f@-yN{1?HZ3nb~RQnqpbhd^I<~`!T#!pRv0JMDfUU**wy6@y_n=b z$|ikt3^Q5a>O=@H_sq3WOZ?!i`gY2bb(_g2m@6qi4AOOem_vaNNsKR4GlzGS^kO2oYr5!@u)erNa#1#Al2+Izwr<=-KvE)=7afil;@6`loZ zcKYtWaEZpzlTFTY2*$r@edw3mVFNBcK=yRVk2$PdaV-n_&wOnDPFWk@wJJ~ij4z|E z3^*OFQ;W8fXJJQadG|EK`fB*>KW@~;sRdpBz$%~b7?7P(AYcHttmcivz5 zMLpeFD}o9ADH{f&r>!_IYo%o}%?HOcyTyHwYJb_i49l|rm4j7nL|vojRuY%Xf1=^( zE*>|JP!thmTdOO;()q-Nco`PH=pT^J#<2gVUFFGfqk(FM*3af4**myN``U$zQE1i?u(Elx%0ai}$zFI$*gFl&4y;Wh^C3fTJ zu<&*$`i$EyQM;i{&4P2gJy!bW_%uSOfM26+Sn6>^=sD+siW+odNSwdM^Zj!|>PPy; z@i859p>Sd`QEhHY)@vI4!(fzSkJYsiikcJxz z;bq5ID0VS<$Jh5P$@${WR*Be8TJ=9@H1MXjZA;AG-{8PAd9F>FmQ91jzDv`r{NF4nG4ES|lS+tDz~OK%kdYH_59gk`TzC;Bya;m2s%Ano=}QO zBj2I1%ePL0v(bZZp34>RC=L*&mVtoKH^zQ#KUZQ8F+IgFm91c*$dD%}QVuB+&sKIY z$b=;9u^7ro@M^R5Nj-7cXbK$xM;iaqJR8301$zAfRho=5X>#vWDIxUuIf*aQ`#Puf ztZXsyL@F|A{nY1cU0*&{#bliQ+G|Eq_P(!hIY^<3?d5>~WbwAbuf&FcpO6lnz8ldmCo<`Uj7w~oqMicP(s%GjWGkm$m#QAk{?itTi<*fj* z9D1~Obt(gLAX`pwVjvVR51tAQ@Kc^p`%b41w_zqTCULgRCLY{}vd;3=(fCse zpBsR2^XPDS&BvryoZ(;lV2e04Qr5={NfmPt(t%v((Ep1}2Ox-aHJhdF034gA+iM*d zi5F{8rGg$tCd9(K1KA~YPtDTBu&iFGi=vLuIri-gX1kK^a_I2V1`Jv}7T}@!tfa)2 zn1rJ%7ZA-}tTP?0Eg_zz3RQ$^`*!W5K6yb~VDL8S6uaUz$n+stl`PF+)ek~F2VNLg z#|Z{cB2SSQTSJv{0#ifcA8!P1jv69qU#$4}h!YMF%(*(lndWUUnxg;Ami1^!)iNyGQ*0 zIu`Xa@hZI!0NHaD;z26WnfFOLbXPokMUF+Boj}AhW06|?cHesIwxy>WX6b$joAWMb z3N|x+-E$Bk|JtrK5NEH;T)D=qR~}^9EG1}-w?1nB0eL%#`bFZ$T@lps)~9;6j>8@T zo(6U=_BgBu3l_7uCyrN&1Y{B?Y~EvlZi^h7^bYEgbBBDkM7Em4LI>?cZanM7Ep1za z$!{)-j?ig~zq4FFX$WbMSs(Iz3WPQK{*cWlFhgPR=*>gJyLQ%4`YQ6kb@kXU@wNTg z*M!;|<}LCzsyk6eophWwwMSk&$M03u+di>@cX@a}vkTifK zc7*~xiQ45BT=bCLUg)wV#w1lhiH&4}-=j+_zo*rHrT!oY&DWVi1ijOkG&Cn)gFSbU z$R|nt=Ve-n?~KaPK#eanE6kd5&z6~plSMjhH4dC}D)HlBr(MC?vLmi3=Uv z{>@ffi(@sano&P}Udj;Q;0-c}8T}}UI&v=|d2HKB(r$8JUV>UVtGQDiV#UY1AfSlUACNWoGuwa=>ToLDA5H}Qp1%WuPp=gm@ z%Vci*F4zvpPexm#b&uetwqnimp)ca`j>lT@hm$JbA7qU6ZXB^INXBhy6k>UQEdRnE zfyI_MEIM3}PMq@vZ5(8ZY?Yt{r)~GG0Vm6?@26%JX-H3@`C=2=$htPOW zH0CmkV_(@jYw%U|W8TEo-}+`9257FV)E)Bm&sw>L?*j-I7I?orE=QIId!o_U%@Sn< z0yccYz0d~wFAxO03wzNF+$0;A?= zs4BWaBcAwDF>oD#0#CR=ndh6zA69Hj(gjH#RzNkNY|!1kGCzM=MD{F9>T`F({!%2q z1#Ot&)~NLtxyLQPe$ndr-MN5fo@3t~;Hf1&Ja|1kJiI}#Y}TQhH0S5fjALFAXBRI= zXw9|1-0bl*mylLs>(5iR6C+@3CdS1$ZR_TomKlw&KYMjuATGu?D<@x!2}Mw&eaBE;b8H6WPa2?#m)6(2Kwl+^%Vvg7`$^zt-!VN&%>h(b*2jtzpzqSj z{8}e#h2<|fV-+}U=f6MD?`Pt*-&!2~`cSg3Pgm*bpW9#NscVb#UR?ZfU|`_u*RPYR zsi>&|OPvraBw0L}J-IWO3A!#wfK*~7j->I@N`1j=D@pn>P0Nkv;YhopRVdS@hm!8cXU~Bf72_aTi zRwL#dJiMg3A7%yzBWGr2VudzpH!_R>an^04ASKn>*_kW4Eg)hmr>&+g^Z*X_plV~x z_)W~B-LM>zz}A|Lr0P3r)yD}%`@f33F|9xU=Z?N@e-(8#-nkg`Z|sz9hg>+dj2*3x zX-;on39AS}7hGyN_u<_>NFy+#$}S~yF8bI`nS>j9d^p!W=VK8x!Utkt~{ z5|n@f0}Yn!ksbl7^g@OVKXD}uw~~mZ7(H`NrbhmZ@{`V-mdp7jwaM;c20bM0R~rk* ztHjO)&F6$i%XN$*0_m5hUGD-scq=_;Cx#zl>f<-^`yanmP*6ZbM4T!&!xjz3di;`( zF7)#9GFGU2exA(B>t?0OiX#Q<;pb+=Bo57_>d-^REdBjK^_{ge%f^)qZjI&p=Mdaw zBqp8dEthyJeds?%(m(1c?xy_LV9M#WGo7P(Q=xSBq|28VE9d3oCkqoPHkLT=ot)Ss zBO{Y!f2ut^cu45pXok_72hm_%g97(`gixZ^E1ZEjj3dW+~ zX!eB#)-RxdiJRC?zM7|Y-B8o2V}u$2>rBwLZ5mUl47Nr^n_?TTd!@e5YNmpq z7_u*|g!hE{aecc#|Ne`~a8asCkV_eH4ettUKLz86XyB@&@Dt4QB*_q1>x&eS18NO# z?ULE}AAT>Goo@h#G-(V7sgun(4ajw%=i#J}ks_4p5{;rG`OwK}anft3y6UE zq%DY@2D!%!B<@$kcum5y-F9}q_z!%-=!7>37FgGVd`J&zx%t&{v4DJFvyj?Hufv6&lKUQjKeYmO|RJU4_&iiEKHe28L(r-DR zwuQkHLNmcZPC*gcCknxa%i<@8K!xF&3rLdYY8Dc#_@m=84#c_i8f*QK-2UwkAb*v- ziVaZSz;l<86^by$|2tQD248$JYjGkNx)u#CQRg-*F_W}t`tFAzPtg-to zhJk_CNxr*}N6OU+$WjTjd=bJ2B!fAZ5cm^~e71eQ*!s8W^K)5rH}BH)Mi12l=HFug z&$l6hov3+$>gwFC^Xchk^sU2#BVY;!#v0*03LeY&FhXV-efJ!07dZ*rJ8SJ~O*yIi zKGcy=OX5_It>FZGfvAZ6^bwYjuYQcm%s`mp1PH+fx4XA(jp?9>e@|CX>MWHmat%Qr zK}(6GZkqizXw^Sv{O??exWTy&5Pu4ejnc=Klt~<;1BWw$7C{~8rkVY< z>%cmvxkFT$#J?0dMBt>9Kg{(|F6@~eTUlvj=tM{qzADaY9W?=W;lU7MJ{NF&X9och z!Wb+5uU1V~6a~{KkqRXjBld$rTg|${(prTHhR@?pAB>z$*8_hB+jFx~0oB`|1R6d^w4k7zZD@zuMW754G5{V5rf6BN2R5 z!+$tHg$8LjyLboCtVT`NIeZ_>OP2KM#uoI3q5Ud@FysJ_vRysRIypeArdWi&14Kfb zx$>o}S5a=ih59IpVhH5E7ShMK!B*n)+@PUt4q$Lc0x_`L*6iM{qw zKyYfF5s&?0VtfGD91nBlCr^cj2#REZ9a4el*GpSyWFN41ah3p~?T`Yjnpoi%gBU#k ze;NPPEmGjRz}>#zt0~xAOV-6EgQ6?;f2YrNUlKif)nPz_m2lifjxvym0=D92c7(Ck zBq;zaVsm{NaqiG@LPfjMvRH6+ZIrM@5oCbZDSNp8EIt{M!0;=rv2Hn|zm zG(!LmV!GPk>`6An-Rz74cmb1+5)8P~oSIL0XyU!BK^p_~%IV`%;>xg{;NUU-mhsVC zaC{{qiKp1qqm#*f*QNl47;HJth#`L81Qf~Aq~PP(dljLBqTcVl=7t~Q{-HgUv75!M zf^z3j(Ag;Xs+PTeA36f@uHfA38@x8jzq?o2IF8-Nh zb^Q1?UH(Ki#6T}fz}GCj4+RpW;kbTT-1X!$#;>bI|& zJO-T2Y^8g*#YLl^2#06`aYUCs;6>1EB{;0~ki8D5akEtdTUD21<~u$7xVUf)u&fEpYXu;7 z>q?ti2m&tdhbq**(r&JkbEr*TIAJ zfw;r1^Myx)v$!GjE+csa#mtN7;x%w5pNPn#&cSyw27qs6?~{Lc1TS=_D&)3IbPlhH z%lftlV77e4C=TyzWuq?4tRq+;aAIr{Hmqy{1bUlab}NaQw@FZ2qWMplbOxv4H~lt} zbJ+Lsx6WNFH6X7&JT$i*Zhn2B&qyPVE`|y!=)5rdOb@oz*=6jRKf;uBF95`{m|K<_G%4Zv zqn6B@Fh-rhGdB_`%3RZD@|1Jxi>8Qm)B;Y3L9YUfgut{~>oTZ8!f zS@oWAa_g*uqEHu$+)d0X_6j}l3>PX|(2dx$WX8EH6BEmiY$D|9!Rld9^V?0pFvRcEXOsfe0aU&SNHea4pyCfQkyl{a$F9 zJyjl!pKjoI2!^9*w%QTkD*-7=NFU!fN(JHtju|6G4Haa+@-u|?Vj^I?CdUu;PE;`T zu(Yr?4r~f44>81TLshHlEBi~PPi=;H;s&kx{&9ad2VwuxMTx2;@|Vq2ISvlZi(ULt zL|Vr6TwxWBl5Ly?+u^l~+HB(-5ED>S*Y}OPCmv*5CdcPTbJG$kAn4)lfZjU!1ZP#? zB_8Ss)s)C360jA-rn!uMr)F}njY`D_elDge<~Wo6|qthyNfncvi> zTWm7z@_Nme+k_AV1bDmtvxR%~xg|m4zo~K(Cp7EgRLYVe8rs_ZK$O%2w1I)KvAFD} z1K$-gg>HdvErD4s?T4v98n-0BA=2FCLVW12akgQ2@GDyD*;cKLM8;5ewB%w(=V4;P z{13DqggwK>RhX%}7?oi;0$*@F=gF|}Fwm4Kcv?5=MeF%F(|_CEPM`wFfl|V#`^k!s z<7^aP6DRta^I|%$+?q2|i}A&IEGxGFBT)O`H9xh7(D zb=6hyywuXl3U=z9iuQ?_nRz{-mNFj-Re1jA`r^Ru{sHvv;i|u@o#N&scC#V0=)2AA zXh$HrtLC#cH>U+vM|a@RxgiI!6wr_H@exP<+>!tMO+|0m<-mG%VkBl(fUV8a_Qo~w z#BOkvSR>)T@&rDp`(4jB1A`ga`Q0`Mf*ZB_(ekfwGIr{79JN$?{rY8RD(=Wy9T6s$U0P(D zr+ak^LkFS?s(*!}hMHHVpSmPJWIHv2)KeGcX}xo8<&6#=ST>a_5|sTTfBv+s}<82SLxT!CV z*GcjB2T&H5IBzMxdi9D?+nYO9RjoVKkNnZ%Z=$0BPhQQMS0Gqqt)!Fh4F538`(FBu zS%C(S7k?%v6BmFsq-L+&bkGn;T-S#u3$-VcO+sR!Mh-4$ejtwN5^<@$%;ZBTh zh3zZZBgi|lulAa-boni-D>44b&#r9c=`L)4_ygzyjI+nwoc|P{pR^OtKmEleWJlm$|zv!$yR#ui&+Kh6*|Q#IevzNIz?|c5|FZmKcl+sgdnFIdQmM_t_lk$d+RNa4G zU&QXs=O&-1jV}gY5Q+2S*5SeH<}E-sXO}gF{>{?DBAEQ9sU~S^L8@tTW*k2`GUaW$^SzGO z{K&Pmd#o3W#muWAZ4WM=keVE&-!Lw2)yxC^mhf_U|7>~C?+0A-52fFVP*s5U|I(}W zb5)|_|1stmvHoDrmSoOV70^ogUN*M#=YDWb+7zK#Izik015b>xq!OzR}gqaC$kIOkzcBycZah&Kgvh2 zx&QWiFy&`ktVfUe=*U13(Ic&gl>6nqaFvtaK5;|Hg_tFt~| zQ&VaXbh8#i&w%06mhQGjr{05At! z+EUKg8(yInxQKA3$6T4`gL41=EdBYaS{Z+F*xl7QQ?-i1%c=GlT0cU#_+n{Kw#H2c zL!%@wdpx+F9n2>jI!`QZ6;M*QoCVyxKntzK#{>rzqogbegcn;>l{txjm9n|Ns?5KY z_dx284IdmHvltJkvmkPBdEcz40H_jN+{GEHA#JxD+AujLA9@7E3aL-^NIMUL8K^?M;YqtTIk0r-Xi~qh4{ishzUg!rhh7`Oe>nq!W7VM$xx`Pv~`3 zE6nwpI-sW76R0_)tx|b3bY!FrIKlDpC~AmG8(?A%N?^rvJNyzzEUsQd)Gt=WC0~^Q z91);v-qZvWwvt69T$Xic&cx{r`7gY7c$WzwYvvgOC^g}BHH=FIs(O0Nf5dM@5#TaH z5@9`@uWw_C2E8D3w3p(N>zc@BO>-u`epDNavn;=WzL}69>1f~^yyId-} zC&x1Y3LS*WQ3pnh5+~Tn{8V1++Har-jGEGzxxS<;6@MAS;0>}D4;xQgEGPhoM%!aE znwYu9NB`ALIJb;onoC1ZGK8hoq655Ri=q8Ocn<(n0&$kTi zO2dtSGdqoR8b5B5^XO(?1a#?9--4nTtnm$fUn1DuwW@~4&m*W^Uy$9h*YH1TNwsTA zj%QFud;_4$?%tk*qvP_=RNG}R^kSQc7zw^UGY88xEao4TT>sHPDhnK-ctqRkdtM zpU7%VdOAk;9Z=2?<+^xRv0{M6NQ=D!b=MU;uh3g96#m}NZN%Ft5j8Vb3Va$pGZl0Y z0s?|(#Kh7nD!5>Fh*DUXoS&Z`5z&~#+zqfDm~WdE0gd@ejN62b4$#0xAZFfAX}^!0 z*Y_P5eAjjSY95aK*L=kG~~NPsmXQ3}}nyb(+FrF8f5ip|Iv0$O?^9{ZQ_^70&9 zT!tKE!e3;a1wG<1ApxF!{IV2$D!{824hGf$l)?Kzx@W(?VL6<0nUIia5Hrt~{+@er zTYvJ|A(ldWysp}C7?L<6OuZvv!13hQ3b$I$)7_;WAUXI+jm-LTK(tMt|Juh60n$#{ zs8F7FX08J92IjQ6&@60OnL;I#04V{Y^J_3*z}$(plb}BG4B{_n5{5{@rv*$yLFx)F z1IcKhKXK(oVIn-kTn2qjKwrhh)XnK6RpW9;?Y2fzdMPSRcJv{2GQvLgr2JI|K~$rL zA{IzI(9RrC1@TXBxg&9U{we=r*vwUT^g7PRR-G~%~*T@vX~XH44~+v>5mA-J$9aO zm~O#gCV4JmR31}lk$c;e_fM;*GT)-@N4{FvjQxyovn%5MovhrGSATSUGc!Ryzq1iH zE7{98POdUP!v!+i?XzKmb+0L4E_bjKO7HcFz~jQ%NSF3DfNQFq zYYEhWZUW#_NK(pk<0Z=>y;Q_SkB#(hFb~!SM%kjJbF-S7GJ?rGL&*JZW58_UdA<_h zo8nBfL#edOJd8TuorrBO&CB0fdE<@UJnlVZYRdw$8tQHokm^6phIuy4cvh$$R<2nz zlyBnz_2<&MlHewsHF0EG@7BHIAd&;}h!L8pIgs=!x$Y9cv;ju*{WSxnWR&sIawnLJ zNCZ8j^WEt&y)!h1ctFM0B&xHXG)5*ci=(FgphaiE#&c-3vT|SU_5pk;+L7~WXa7yv z?LDiG&>OL~%o2Kl2MfQDkP!{1s$bBsc91sySi>B+de9ym%(OL8@l5uxx!hk(-Q$Jm zu)gVNi%(1Cs)U?xj`(N#-6#JL4R)M!nPl}kw-y3Q`}2G`4OahBlh0RmMrve$@Y4ax zXN8BdOyFAolrwfBcz|V>YNj_ht03kC1Q_UDzXSrFD}5Ve1}wZ%f!ZWM#-Cz3Y=A0I zb_;ikX+3K;O|J`3D7zf=sVO%H8aCI3cJbz8|j4f3# z7QwXO5X`Q5kSb9Jv0~uq<>g9r?ANbv4GawG@n{QTqr|~ss$+e%%`6DF%5o!b5i~~MpW^>I@2IeIj8l#K6 z^2WB@mjVfEz{nL$C#l31NK@Xh0QK+0SJinRBz;vM_O0AXMAK<}{yT2w@Q;iE8uZ%4qaGaY6&Vw~g#bLhvUXOH= z*O@wLg`dR$JPxkn8X%hXkDkaqIl7hwLC~q+47N$KJOtKFM6w4n`SLy0pETT#NE+Pr z-WDr?c_Xco4nl_J2c~o4;z{=&5kG%Eb>0^+&i@SJ)VIT=D;><9f;TE-IUTFs3C!qx zUEQIiCgHeU#VsvtXK8|8Jvbp6bWhTpwSZqbYvF5E5*JDYW>qvqwdUw^B%51vDdll1 zW^*fo@0ts;KoH#6DkfS!@`6u2bCHv>A$=2fSH5k@@2GXZhQBZFRl0$?Jk^C?W%%i6 zLTH-Z^QW!;u}1bWYT6^6fDm+e$a!x2V%q;=^5@A`kSyHHR%o=h$k$ujW4+iL@-DWp zjgi1u_0oKm;5*k;ZAfwRy{GHJJmw2sWH95T^l{-#^qm{w`nV$r!^$CfT~Q9u=W3hs z0+GRVissP$ttD}a!fXoR;`-ZwXk0;W9n=fgSAXUZ{)y$m+`;xtF{iu|9soOW6Pvxo z)-RzA83kpYW&Jx^LJ8w4pgho2Q!v#OY~E#lBg{Pu3k7;2ka-6~GK9G9hQ^8M!rFqZ z*xm1=k)F$;BiLd!c#FT<5Wmu>16t7dyz(f&kAG5Ahjv(@)qHtwJh;Zxyk_wHhF=YY)4l42Auw_XA0YAnA>^ch{=itN?+9 z4%P))#G!*}hcFqa*UIXs&o|V`Z3_zw74-1`6-Jc-op#mL10&Nw2LDvh2Qcx8F^%3O zlYKTTPO5p_hlg(US7-K%O+Y{Vz@3dvCSUa+DH7tewqiI89;Mdf1NOX*!&d+=u8clX zFsOvpntZ_Ce*x?NdCl%uO_>M?>Ep919W_CoiFHYSXdIX9{L0eOJ0M1}tRx14128FW zZfW_7jcxQN&6grDZ8JBQo}W(-G6>%)Cm;p^r0wYH${LwkC)bOWDxD^W0M)~Uu2*k& zI6jKBM!J^Bp775KI7-sMwhNN*9Ao+GPbM^EZhg8__{-`QUG=xfEfZ@Vjjs7y`l!2J zx6(;AuCB!1BLskbCh4jf>f44PpbivtBCw?@tRVo17*}Pb##W~*!}r6OM%Ba7W{}?I zn&|*Msfh`do}S(#6qMMwxBxKe3z%6O-hz^+RnPD9w^Oe?+=QCGZ!4pd?}?tau= zkNz0Zq~*&H}4b4+{mT za#*d?2o|83K=Lm=>}u7`0=iyOsa$1NI-yUjtWDkx%(2yKKV#xldUG+j?8g@s$?9nd zxEZvO_`wK=`n~jH{rxK?UDJd>t~tc}JTOEG=-SZeXuD!jt$P=#W-e zyBjyC&Ykx$78)HTSSRccWamiO&Cm0)UE>aiu9BU95&VUGdUo zZg(ZXmcb+iKrE(1J!E26^;P{=)5pUtVXLof9}M{iB?5su56D#^>I^s8E__wq_w|5S zRn(aSx%g+&4K*0zINZ(kdAE5H zZKBBtA&#I1HFFQZ$#4O`9XZKLKPTvyldRDAa$`cMVrMP}69{ zE4P6Xfx7$Vq$THh7VNk99|G%P`i&~kwld~mrK0!*G|bWI5>3URm-!=R{#MA1qxd$y z4a{u-bx(Aq1(kqcBQ_zm^U!Qt@8fZhxofw^Y~TvlSuVbB;Wx--{MFyUtU+p8-TDVO zKUMFl!INp%XE=TT3LQ#3xbw&j85sNp{|V5R5W|a4Fzdxkf-@kuarQm&;{_TGsW>oI zp0;q1J&fbWkJkJAy_+c$!4y;}U>FjyQI{47&$~8~VAQ%wYMP|g-c{+;{-J24zR&Ih z%*{YO@=!|~g@KFc0ramg7>m}T#QBpzoA}nk=g?(uYJnBT#sE>obHBep$|0BlW`ri- zX0d?fqbn1$pqDiWoE@+<7}-(=y$QSW9&+MJmrfrk2pgIbf}7{$fc9X1h;Kg~r!z>h z>tr_9hw9el6PRbxYkC!9auI1NEdmKcT(BNCx$TEudK;}fIMKM`yLcjjK$+W61Xpp- z*JuIup48-R5>4~G6Pa7|PM}2Laq||Gqj&3eBI`$>*lU;`;BS3P-5CO0NyFS9zwRg@#aSfw>q*fTMM)6Ob*$0Do_gfTsCZV_PQEpl4|Df*!%nqdLIYz_&TV}cFoObPCG=-=#NX6IN)c=F_8HLrenWozpQl!4QL@DD65 zHt9{Uo^kks5Pt2TPPTB+BU<={yJ$Z;Q}*nYSRSAfhp^ou7lWQYg)~%Cr$gr##O{}v zh4-l7bX#o2DZU!FW2YC%B`;mG?#Hpw89WFL_*(-&IVc7?K-dC@5U5&Vmf3KIj`N5( zqgF*oS69)rHGNdxSiZ;6anmiA+lTsMA4?88?=m6((BcA9567oq)*dJ`%CDD7;Ucc> z^@wd-4oiGcBP?EcNy5jA&g3M>?tHN?ylcaQe&QBqS~Jk^q=H7XFJzxrIE+Hj_?sC8 zUuvUTd+gYFyLkK$I3idO*6nyIZ8Y1VkF7q|Sb3zW+IAoiodswPp$L`@|jl z-ut?KTcbF#Ev}}YdcbL|HDzcmFgQ5Pd3)By)ipdJp%0Q^icld-^7?D)Uh7wgwxoad zi~4*0KI7Iv!O9Pe^{?=K5WFEWAgI>5fcx!CD~+K&*3U(_=;s$bQT{XmxRIpDy{fYr z+@EU0n$@NDhl@$fkenmj+-?S``KxLwy6Q5RTqnzk`%kc(GE(ZlQj%FMpUmNx_OLHl zGF6_t=l&yB>vCD`(@RA)xiVHvYWce}0xk~NC|zLMW@cqwg6ftrpiTf>aV6~Y=T_k1 z#E7{&)ey5i#HBA*6I3LiJ8-3Yd;XA+XAaS%TGWIQsszM=0jhl}<5CYH#NxD;i&m9>jMX?ayI09h+ zAjWHt-ADGvB74WMtxvDezqdTGljD!n(d?;BI!siRD1`HPzK8W4aNhV04)aWG?P0ca znVVGlNl80fRajXajG*5lwPK}%bC_M#1db= zIb4rez@H>Q;a)?BDkAL-Qa0VQ<48`lL!d?^+1obr<8Cdy*TC@3_*`fx*Z)e)8N6g< zbwwfCLQ&ufc0HOzgYEX&sCwB0NSk}OPH}A{9S=7$t-kYlulOETge| zUiuM?zUf}jZ05emN0$G+y5L+<8;9&$sj>@mbDJys3a`$}E`O?aZg6H^YaCQ;St4sI zUMt#1LO>BmMNK)uRTMCxTp*ffXD*^>1XLAOtz-W5ue2qw89*I~k`+NfnBm zSFc4lOO3xn-g=dR;OfENKlNRm$T|a;21gHk&&XDRfU#Q_2G$F*p@SA&y9)=t;{x71 z0>MEW{6nH;Yot4Q6|>#o(H}NScPH3fUD>B6r{4THtGlT4(fP-?$KGHviKBwneiP%Y zP9$C5H^)39=W15)YSU^-1pZHATVj(l5{h?Wsf31liGy8a!vL}=Tl>PL zNJ>omwnhSZY|)FB*NhF-vD?loUymTm@KnLTK4;allEe42ikN}^Sq#DI+-CJHIH@8P zVgyRy;^uafl2T4fEB++u*X*zv$z=^aAuX9ZxIT^>bRv~1bzq~4Zm99e`$__ninrL&!4~mF7oe+I}F3fQo&tdeNfaDc}A3Hk)No!2JDGUHz8a7q+!9x5;nGs0NH1 z$;pjBq8x5PjpKDyvC*^dt8v94ak64iTk9dU05>kR&laAC_iCV`<{wRmdeEc7kI|w& z^1mtB(#@Wm^J}oMu~SM*KZ9c47DOR7zrNE!uit zo;q389jMW`%%cI=?XpO>=?X{PpC5FM>j%FM-1b*TM%W)V2P1MA5hpdydt7sSFUqY2yze(i>FV}0a9F_M4;B*Y z$SX?*9gviG@q*XLBz9;&Al3mKxzMS^h=_L|KgvyEOZd;d!#F-q_5OAkBGP-w zS-*rAv|U>=^Lk*?@FlOlnKw*ox{Ux8d7RtJZWlbq7t;3zds=A{{LutLT{MB|J(|G z{Cj=9k8Vf$lzJU7QOg&n+t!ZL0N&Bp*AKaoV7WJL!0vfrVtO((Ym4dcJo|vp<~C~9 z$H&EakhJlv`&!~(SKezx2o(aCF;V?Re>3H^!JdM1sl%^46v5!hff*V6ICbsM*!I@! zY#Gs87YX;2l$2b3@xer|!$@RIy!c0KWm?-9cOV}aPwE?k$&`kZmtRRQy=~&mf@s9<6 z*yKGX)_mzjn_lRsPQ!q91Mp^QkprC|I!@P24?A`?3IB%-{&u2IwE%y!C-8|Gn;+*NU z>ssRXK3RTUp5EzFvtyx%sk5O>ni=1#7*iYY)-<;ox*Z0z6mHzru3Kef5q=Pp>A}cG~;rLjqQ1?L`wg{n)jt(fXDwfIz0CM)K#Q3X(vx9@-V9KM- zi@%#JTw#kM+Z)B67bp-s?KBv%Cz!7)ePm*6EE`!;6lUMnk$_Cr!~ppFYzs^37+q{v zMrqlWYc{KT<48kmQWGGdpXH~EAMZ#3{10&0C?x5w-^d0#;)@Xh`%|*1iI~^^aBBTZ z?g{4iaof|jtCf3g3J)O?#NA*Y<-LqPN6yq%0u1tT8YnnP^}!+*@HDM?ZmwZOVzBOo z0Kfe}L;^%&P{dKJPS1v_{MnkP#`_jHd&qK{PW@uk(*_}K<@x@mM+0x@Saim#>Uh;3 zrXx7p6LxQwp5N%aL6<873CQTW8koICg6sD^JX+?7{2T5pzMFR0?3RAs7_Dg!No2KE z5_1OFagb6EoI+;m?-;%BQzd?X$u=Wr^$7i+*CA(f44(bR2_sw6Pr+|=T_iYYm2e0ha8%0&q889oF_o15dvvbX z{A?N!9# z)FqJrJ2bB4>)h79vwgBo3?@Xj7iES_p1<>{&bZICMX!F z)zcgya+ohQ9g5*G!mgOMyW!=P_olmHubXx1c}$@~-(#Z7BlDhbRrYWYx-2Y-n{Aux z^Jx>nUmjV`LX0Fxz6(m9D@yBkQn@XAktpDD{Vt>%?}A-wEuPLraE(oSlzh+>AU>9E z-fVuqBtcq^_^FI>Z=^a)%FT;JJJ!4a`fGn6Q%P+as(B7mRF%e2!}WKkRGq}Kf_5C%eiZi{AaJw5~qT&^Z|)*v=pDB3=P!o$F(j>VhD z4Yyy{WP6LeWD}Np7#V&dv7G^tKM)XVoo6JqEdP-GF7LGiah1I6uWIyizd{Cpyi}PF z;z4bykh|`a#7c-%j?j^S#i0`gXt8e(&1ww%6Cu3ysyGttW{*?1CViz~QGuHA_F?uz z2ecOleYMrKM#I}sV46C^Gm}=Ly{L4)Z=El{R5!B5LowtpNR#+*J9_2>$&Xq7UAB;g zQZWz2R&eMdr&@SlkaN(hc~9E;4|uGR`~aj0JhU7{h4|{Vy&8_Igm#(^d@C30a6uXm zu|9v517)3gLvJ zK`)%`wHd393jR0L|4w`mx1uRlSNj9$LrkpBGU|Gq%ImS#)i@3RK?#0_@)=DJw-f3F z#&%HD{!}^z)tU@wt!NUbDbo=`lNgh& zxMkEyB4zakS1eHZl%%r@6`f#An-<`X9l;M>g51`)>2rXQbQ^)_IRaySB7*Kg;T;e> ziN8u}`bBoR0-^wjmLC84vl8kqV|&?ZvSCr$FqZ|~ohGnCfpvcR@WctPOL`eh=%pzX zW_U_y>B>1S=h+vK;37^<5ia*ZYixVnBNu&yG5=9vB3F)eb7!p7kN-T~$-x1^DOY+Y zCMJT}_}_}#_wV0dmtnJ(G3NPg?72Z@0IXhHrDF%SMXOz=ySW~^Y`mE7Q-(4pzG_cc zjyZ0y8I>uB9!;Tvt`BS9ZZXgNZ^^HffAXw`ocW+ye5oD&?fJ!H)l0|89H&f)y z_+wq{A5kDV3$hDA-PtYBRCD(o-KX2OF+9Ky7ViJ*8!~f`!2~1_@~O}PEaO6mnG!P6NKPcV@M&n1N%1(_mCO2MfgBYL3cwm66QbN%&)#p)M$%j9VD^SeP625&)f@~@#Y+MDLee7SC z5y^~>)9R4L^CvjFx9Pqau_V^CCrnX=miKq09UQ5H;Sd%#L<|lZ4+~A0{}pO9KNCg* zxMGO`;1(mno(O(EQqQ3+k7Ko+UP#{>%Hctbwy`6=m5`-?R+yh3Qe4bqkGgt~l@;iH zM$9DE*4BUAJf~QQ)hq!XB#(_qQ-;RC`c=AUlCh9rj=48;s09bBCvLLToabMgdwNu$ zHrJPVo1{qFJvO7{3#in=^ydNf(fGa88G&muE&znPp=Rv)=h~eL&+-IchB6Pk7TvEI zDuMQe0tG=+4daSdk9xM_n6IPtCXIHOtxQu^eYw9sq)g0F=nHYfA`V zI$GIAZ$k=y^V`1K#=$%M7>x+s7Y+RyqUHxh{zFMgr06fKnxTj>A0fxF0RNgsOT9l( zCT&RjU0pJ(&fPf{ zjZKOQ%4LbP&dd8t`5s8MnH=8pIZ^7GUTP%eo6n;~P?Gu<&jMo5Wl6o@lcL+sm=Jgq z!PTgx8qYLzEa)=*vn^jGG``z~`!EK04G`n3czdTseAeu`%-D>bsH1^0w?#C23rRZy->YROaTd}5 zR91z>2kR!+0o%9Ap^)sIiFtW$%L)2z*ZFmA4?*|BG&!Q?MOYK&j!5?!8dRQenv&Ck z)W<)%#1gj^C}jxl~aBrZ?zKa#R9#+v6Zz)EYlHC^Sg z+eW4ZWDZ0}rH_fPZ%qW;tRFRRx4nWHbHf(% z+i$4@FS2fT&V&OaaJJ6swiOO-vW9@zRto7}JaFrSB=U`i<|}1l07jO%A!WGz z{V&^``sT($|CtIRwbf*_BMDJ(n3z3@1nWe);w`F$4|NH#P)LIr>8(PucsW8va?!G|5`KAtbTodGk2+}iyQDjr4L{3{kjJvH*%uQ zp5Mba;qSXyc~4(ef8#e*MV)9%}Ko6i#qjS+d3 zpZmm0-rx{y30$DivHj>X$Hnum^0oltiFmCc<0i`vK^aI_VS{O0i%}~Duuv;(Jb8)M z8OmTfew1V7*>jMUbW|c*g_SDXq{}lnZjl0DQC&0BR}wpaFjhRh0q+F%1lpHr?<55< zn`;y96`0dE)}@7Z!=Y;Os5LP1DTHYQ?lKj>(JO5{uU)6x!ojIXu(~N#8kN$R1H)Y9 zxo=M0m$=6Vy8W(Vz1AU?BfgRPAQNf+q3t>?Ud}XlQ7(e!6_?@j;nSz98fq9>IXQR4 z#S_^z%S+{Ko2!kYE3QgvT3?gU1d5)w16Pcie;>oE!j7ff`mLZTdM3gl`*^9PQdrwC+-oejZgb>h>G10u>e6YJQhD}9z z0rH#uKLuSe#P7}h{SY{6nsxH82=FHYXbQg4X4n+GAz+EeK_o*)&+l$2YA>CN)3qkR z%70d#5f*(ZzX0bYcx(2f>8NqoLlG=CBEpvNCX^<_ySUKwTIz?|mVN&B z&Lya0C6*{`Ycls*B^%9y@sQ^KsIJxjeErLa-uF0d#4-$Ypo?I>2VY7l1qnzRI1Zfz zr_60eO*Jt-_F($koHT}ooHt9yVN{FQOuW^tpZ(I4(l>EdRS+1!)L{ei;ka51##RY( z1?-+flD&&b2k_GGB{3IG^Hitl{W??k1`3@-AECtntY#+$)^rH}k2NF0i(gnlEpGJX z30UK>u&_|`uxF)YWqp7$RXsFZaAH2elAmPKIv;^ks=X|9OMo4XY@}C7Q33{pqs~@+y06qn}69Wh-U`BoK894lVrJNZB zx()!kH-q54ucv`}7g`CFXL0Gx$OmMct(isMy)mc^%6fs&pr1d`=nx_m=o9UaAurHd z>=u_`uHrxoQRtrt4TwO&PQ19X?}ogqc!yD;5B4&ko6?7L4=kc5#+vyG`FKClS)G8F z0_c9men_%YQBzOlFzTU)^d4tgsWM%mtEPpBA6&}TWtMPowz{yOR6V_B+cBO9AyC54 z2`Ps};W{5Uj=d^oh$G`vy33fH7PY>$TL=190-~j}8b_T`h%Adi-wGw7-S0nR)X-6u z4&dPW;#sW-+B$9Fly(Qhf=>#fqCflmc_8y1trazO7ue*#MQJ-! zgC~S-Hlh!l;=TJHIVK`3y_Wtp7oqJrdxK}WHo*}bzpoNB^zG4KLr{bXxxfbxe6BWH z{p!r-oH_1GBG_C3x)V6>JKwzsI0nW7I3$p&)i&y-6*);)8u~j1tRTEJfmY#$$1VoMEJ&+{jo)(2DakPP3F5GMz6^tl z3pOKgmh86Vdsqn%IITRef^B5CgSM-`A99c-b-xMun+HZ{APoieE9KxsU3~JZcctC! zoQs$8ZR<2FPrcr7Koxh#`RVn1JPjbgb$;?{!U@@lSc_?uMMQs5|&HqDzo z8;5*{|KoBtXIH~3Z)~0NZxJ_xtD=75OG|t>A^(v6WI776_L5KK5 zN=UeAE>0!V#Wm^R*|&g3gGuz2cy$1BaA1P4%&3DDRm`pJ zfdbG1f(XPNzO4Hx^qY`;^@`lc$Y^D={KpydB;)YV2Zhg(${N;dDt^Dzpvrp3?Jp9^ zC@E}%>g?ka*8H}XHIwx@NIWrtC=fAX1RlHrBz6DcjCt{Fetz~pVAtse7G*QY`-*!s zy~uRL?)FllP6OO_&J!RLzDPH7Rrvcc@XTkl8^K5ePO$dLKU4G2$i=ik*bnz9&cQq& z87)fwv38-WrhpVOBuq6dbA~9NaOQ!xa>65STrpMuStVI&3ZjM!y{Gfau~iL>Pg<9| zq)yAv_3tyUY(jPsxOJ_V)CsW)d1~B}R{KtsbYdD??>4*gQvT@*Ozr=RX_BCdng(K+ z=@B`PVP_SU#(3C20SybzhA+Pxa&@s|(B=A-)P2dj{MrbtGX#hLu@H=t@tD``?SFU< zmtX9+zxaRxokCXI2-p>$-UyG%%C&~z3XvTP-L4%iFKf&T)8U}J~>Xu}k1 z!5>TaG^7JF?p#k(l*R8DWA#T0(2mc)+C&R(o zzb!tl-7L*C6{*=)o@)mQo$$|^vTm{oC)_~Y?MVN_uT*vLW7%`p+5Yx$PnXJakO7!u zAbQ;G*}770{Ka_&6$5^iSw}3&;XT~#F5p)H9hn0FgRE&PSxEgE+-pF!L^YaNyjo<< zs6~U1jeU#`Mv9U>$=!ujNkr?ANYw%yCAp|s1|*>l91_UD{H>yyx!5ZvR?GNOI#~hC z9SCd?@Rh;VA~!=L3vsQAIv>-zWGqpP=l6|=iZr3MP@E`ociqt zSCUO4Wo<7I*dD*pXXR%jy07V^vGhbrDfl4D1cZwH{z8@^kX0t)Ubek8&^UBner^K_ zdZ-E&uKwEJyw4(47w>Y=?RA%i##2LU=t;utljNF*(b`3=CMx&xP48Bu7>N&qvIY<+ zt`<+(5(9jvBG`pIO1F+{j6taa_w(JQ*De-z^7~2NdhVd!gSV|RWOBPI+24;~JrNJu zlbJ+5<75KsWD!G2Jgijqr?*Toh*Ma1>>YJItOL}htZohZ!r%Ztb(qF;IlwxZwv_=c zOO`XMWn|%3(&vKmpF40gLW9~2A!6&TG3b%O$AlAf(7?iSJK%cIY>LJ-+V1N^^aH9c z<^uDSl==@pG{g*2&uyHG(RBe~IIHa$_%8ceY;d>jKoT7H9`v*4J@9-uO+Gjj2g++m z=%+a+Q^HHB6q(cmw1J}H)^LG>16ALG@_3HQ)A5K`Fvc7_qj9i|!CnPOQvgm&ldY_q z4S>kGy`3uIc+OA-*67;B$A}1I2gRpid;kooC?$U5TW-=_nhr@2H}BlA+n>Dm#-=#hTtts z_Re&LfNQTHUYl?sqA3h0HqVim)pP>n)`&K*g+OPSvmuVNY#08-02k(MgI#0g`shev)sSP zU%kBRiJF>#7D>=N3+cNDa+$EGD90b3cj)PXJ=5IQh5-d|tA_JK#oXtpX@_C2bK4gkqP@va~31t>`B3^!^WiQ)`@h9hDHpNoX=NLR}8M1p#*hBot`dhllk0 zvY0C0{G9i;c@K_;tJQi7DA66qh>-@$n{YRi*^jMJ8Wd8wUmagMk6)ahLZ?73@2!mu z`GG{S3FvgSu&}`7(GP9kK%oQrAB0Dm;2>dQsyDnII-3KHTdqMvJN^4k@|R`*HlNY_ z=&clD4E;+0N4MMQT=U9CK_W+;vZyBB+nn+L>7esFb6;oZ`;T!*Sgd_FpBgool1AnJ zCv1^g1Yrx@bfV2A^abP9ZA1a5(gi}^uh0fj#A!p&bjRiYiB-c{0RS4z1Ru_R%oPu3EV$wety0YlI`zmYDCD%$)TkbT;~56q75TO4<9~+w7U?8 zOF0>|r!X^Pfreuy!1Hv)H7C6BIeXgm?-;sAZR)%5>*1e5_R35YX4cL$S^r-M7?}j` zj1A)C2wiXM|C>3Z>B$-zR)_?yNbofO8<%tZj@~3ISo9r?G zIs%7#=v4loiSSuKG4JaZie4ekh|eh+NE$&*hjF(>`_9_hR8d~eo0R|03o+Z?*O?pU z!D=08%70j3t{G}c% z#21rxaS2cgI;$11^h`$*2brG`7`MULM`frx^|3h7+gM~<>hD(1~|CU|}v>buWUn)n9kZ2xyb|FBT!py7> z4{AMJ>CH$ys`vsh>u29D><95DsC1A|M!Dg1WHVxy1v>%Uk7_f~CtH?1yU4*5 z9?n%1XclCJqTT{&Y%o8cimLl%1#Sz}O(4pYcQ>cjvF>@G{PRm8AcuN1poa&943Omj ze-DUCcoELtC-C*0xeeR{>csbPi^TWDlu7dQ>5Y!alpdFad&Yu!x`JA~` z4>+A3Zc7B9S@zYy0APZ_@3{3|g>7U~yvc^V*lN8LD*fO_xeebNMHmC%+6$^_KUnP1 z3?PC45`Zev^(8)_YUvVghTjn$f#@94X*XAvTi zRg!JXyQ!u9|H2=CF?xx5oI1NT+^yF?t4h2#eE!8#Z&OcWjegc6Joz4bG%j<_WhHes5 zHRm@V$`SYh*07{4nyw|Xj)mMIo8;#M!xf`2glakqOu`)BL)a6q22=~6c%j)0oYVn} zkWFi_YEYvZMJF5y;{-(F)vgLOg4Tp&1sa85M9whlU)cP4`D@O3Xb-ZSqrA zzL#U3o|}K-H?V6vXnXLzP%-~GEJ9_loUhdJt)W0!K#|w(Wc_W@YFVn(7u>AJTm6J4 z{kjKpw z^>kZcNUv}ZvP3#1NM^j)ht3Z|6O`2qns&ENf3ScK2*e_eR<{OeI-xwC<6H9!?DFd1x(Q*fTuxqp=onjkJ-hyzIaaPMU z46I|I?1J69$U$gR3YN@{N^AZ5z;f?Px?DdqK^mxlv45wv&DKSD!WJA-NOBsch@rb$ z6-EvTOp!r6VzvE)Q7RNo4Dk$u#-${DNS@%hsmnrfJqpg)5PV~yV4quwAM-`D8~L_k z$UelL^R8!hq7xv4OV4EUFmj-6+#n%TvX8u~ZurXT!MY7qCw6U>8klgc5^&&egB8;C zY_W35*u@#_1CWD#bucezjEDUw5AZuA+-oCz$St;w1e0cKz)Ixq4y!2$n~-AGgxpOw zZN(a3bhTbTTTM|1$BD?=60i;ssRJTe0-`Ha_Tk|g_sZqC7`?(Sb9>072B^%GI!i^) zrSq0ZaS3NrXasjinxE+jV{Gy2Mp-QH?^Q4cbqADS?vLcPAj-~%CE)^UG={(f-=Aog zk2PwASu-9V+itvdDSZ8r4=d(-E@q%qF_ekGiz@X6e<8A!+%U#Xh6FJbG!Yp*V|{Tf zH2CQZgypx8Zr^)W3ET{z)Dz|AoBgrufQ9@f)Nb3L8OoO#f!K_Uj-{oPJD?=1A>Gz( ze}@Yx(ElK}ic6t&@1ZJB7KM%21vm~h5DGJ_t%Lnw*UzVO*LfLbA5D-h4WSznG&L zFeuQPP|bLUlT*&<>{4wP#1rz230ei3? z2Iw8&xNh8rZs78>c@{C_0eT&w8K=M36jEnHe*}Xib>w$2{5s{M5x10cZ5Q`Z)bQ{8 zqS5U&cx=t@5CM~TIur8PHWn5j%u=Jehj6e@LUD)*p|47+HUHk9-#78T3==|Q!Dh;U z`7M(-YsJD43ex4it@tR0oS_F!9|OUh77UsojY6tVP%yps@0U}93i! zEuJ^#Ha;N0N3!6J>pcQm_P?5(y&cJLjXEE|Du?^f!<-9A1b))oA!*8smYT7{4Cl9T zX>z|E5Nx_siz3f6!{3_g<2FyO1wk{?s=qdt!vC&k^$X%Sp?}J49(_T22C_PCNQMKv z0Dc-W++!ZMk;_@sLW(cE4UFhJofzDo))p)lg4mG$>1zE=iY?Rzp?JiDRJ_lAHb`vz zQ>ymw=dW3aK5zHcVM4QM3B2Y=h?TSSO5OT z2T-@$tglW1`L4212^FeC74URKEZtp*JPzyaHD8||j+#&N^SZ!c?j+4 zZ$gJ-1c9QWqQdloMY==8Dfx-i&Y%zd((Bi4MZ!A zXAJWjREs{Ku(;g*m>|7@c_)t$FW--Eve3X6gx^#gRX=ayTziQ5@}Bf61?gH}sB`eo zvad3jLDQFxH-~1wAWs|(y4U#S%*`QeX{ZJq&;NY@t0kNEmluU_cpfoB4$ja>T4b{x znwNh2_H74hoQrTwgYLY+gC>UXR|(Iu2omHVm7VIn?nCdsuW>DC`Ya0>Lk>D%QR98H zpawQaggg;lf!EO@3u7qPfAj}NX$3T@CL#jOvGX7LBY@vPuUKxkKfj3n>ykmc`2^a) z;zGArP|L-5y^sl+Qtlwj7#-%oiBgq6?LJedP z4}Re&iOP4vwFv&NcZDsq#rnCXgO9RNmO^oA&yu<4Wsg*qA3*Kd*8b2j!1`QO?2 zkI;bF5!L?cfP|GhG?)j|#OCXzBJj|P{5f76u3kJzB2Ux*rgIwv#f8ijK94l*j-d|p zvbBb{u7dSYW8Lg{J7}!&OXt5`T{mTviN%$&f3DZD;|h^=RN9&AP_LOXGkJ#m&%2>V zf@TBn3_z ztT=NYYPd+_ZpFV;{~m}#8^qF)194mm@9T&0S}!Fop-1H2(2O`T-Q>K}!=N<;*Fo53XG^5)gl12Rzosr$lq;gqz2wIaZgf z`hEQX@Mttgm)=1iKF|Ss7_3#$n|I(H#tp#XeY(Y+!rMdAY!+{kj9{UKMW21MtRRHr zN(7)OslHBWDtNz`cG%U)ikns0BcK;{c68ge&9W> zM>#)T4iA;p@S>rOA4*P!{VG<^z< zmKFX*_3l;D3wwcBc08QWmkT9Et~lP&foNg(S{3>O+oMC}+b*Yh@&1}Hzz>L?FB4Ah zbc2!b8_l~$%^t$R`Db%_9b)EAOJ#X!1Xt(tKV+$2cHaN?nE6~=qjABOhW_1?yUlq9 z5nQYyXxrQQt>&6?w%J`lY3qkeES`5S9PCN+f5@EF$kSu%NhF%I(u#}wshN|}8{Ryd zb4|599XIrjCMm4M3=8xyRN>xAiVfLhHC`Od36LUWY`^H{@AWQ0;h($H%HR+UzO}Cw zJMMAru)S2X9K?0DP03T_*)~!sB0!=~SXfkvCQw_9 z?)`U>i=uC}9*2lfStr}FVja}}c29h;MgdFyBct<~xeqg3*i*Dt0z_d|d;j6*XMtKy{ zVQ>HV0U@ainI+99`oH38(mG zgE5@8+Fj-_S=VHrzNa#~eA-wwC;QksQu zDI`aQON8k$==Idr&9G@QY43|&s^!`nCu{39skBle%;&^2;VM?=(ZTuk8K&-C)|Fw@hP zW@Sx}4R!ct&x&vyshva{7H-WR7vbQ`%XN6F{(0uV`<+WUbHXWwkadjq(F=1Xl&-Nc zTVjG(kgw?3TePsizwhC59;xC~+Urx)3#$7Hc(FY+l4DZ4w7KFv_u9Wr^-t%=g-pGa zXSy4O3ljw&cW1)gP?GN+`$Sb3Eww9OC-@-kmCtb>9=mcwglrq~F)N`;O#+V|pAD3& zeCF5K`CHDD8y;j+pd7?7#1r=I#*uTD^l%3ihrld*W@}HJV)Nv(zcgF(WjF8q(HMTf z(|)W)B@0h_3Idf6x9r;)44f2i)=OxFj#Ye~SFa;C_sVaa)M2shiIEl+WJga`Exq7~ z3e0~N-Q%lt_;SfwQ%-qoq0aH=@qOyVBwmUMSqh1lGAQ)hgt%Nq>V7b6^+yBM&)oOX z&YrEcZ|$ieZ~t$z@XvIag(lOrN-Js6R(%=@dhEN36_`o1nN8-JPnD;v&{3`CKV259 z7mjEAo?pb#NW=T={d=K6`!i&DnqFIYBs{h%|e*awn@07piKRGM(dqwpBhTi z!4Id$7_X@=@()%t_c5*-&RgmGCU;Fpjtk<7cgFc1?yg->)Yg?yMX@Kq$l^IO=wO}} zX1sobX`NeKp(ET^+Uw^o*70E=VSxq51JhIt6hRhFOAD{R3+H}o-Jvgydtl(T1gt9J zkNY_4g0DjRIw*DqlDdmBQb=^Da@)u-&AI87eIG@Fq0r(cyL^ds*SBXbTmuB8Q^>EC@>-fZYw)U~b zWns!7MnIhWNO9D_rFL>|`6dQ?%}{Uw{>Z{+0*RpUeKgdt9Wza*Qb&a8+V^|SXIgaH zEY~FIv9SzP9MtP112U}0eUy&Ikg0ahx_mL=-P2mtXCG`$g{Ot+NGewD+Hzi1rp>b2 zY^|P&IySN9n-obvy~X-^RSqUqlPURk7V@(zBn=E7?j`^F%p)3;ufdu-^9D?Xv)OIJh) zPXMDLR6*+L-EF?74s_HBiXO!c6zfi|G7CxJ5^UFCf3V#Qba~=J-H_Y_s}&lj8hZ!4 zwfTS6$j4t!_=g^<89WRpG*VE@y;!)4%<9M=sa)0`JXTauSeAnLnuH0qrTOUFq|X<7 zAXl3}gLW?@Y& zNllODE-Yh}Uecmgv~hlGEe5VW8rZVh9QgGj`mN9owy2@FPe6?ILGUBhKQX-gU+--A zQn^P5zKhTx^q*6B(zea`EhT@(pYw+KZkvzB=ldFk3x$M~c$EJ{$k}>2iCWPl1j2{j zj^@Ep*|BrKx*tKOnHlOh=!i%5L#*d3;M`qyEUDn``<$3tC06Z1cBICV0QG z^k9+_N3`k_LIkqF;z^uX#XyOfJ&D}>91VX;)6YhK`aAr@L&u!HqeR%|bHlG!@-Yz(`M2Mer$01EyRXg#BdwF@OU%_VqmHF=?hjNO(yOiTd>lw&WwkX8zZFgTL1H%MeK%L8zFSu5S;jw^fdOn z$;Cmu_}Ay3%z2h<%oXYLyMlaG+9h@!yrzW%134sVseLf_d3SWZu1$*66mCkVZiiZz zq}|XA5zz11eTvv-;j zSx}AN1xf6NQn{GLuwep)CoeydtLB0?Fln-jQ9qNRp=V!R(-)bL`QTy)Zjtn3&Yy76 zTDj==u*3f132dYPB>zL-FoG0T=m&42Z`3H2>7RBnBExv;z!)}3_?)KGnmV6nw0Y9` zbl8zRDclceuX~n81bliJe;X^)Y*Sh}@4ARw+^(vueT8z(+apDRla^W^>)+pRwPshn z`I=7!TbwfOv+i%mJAC=34GlG!t39r{PA7nZ5cr_c5! zu!mP+_Y3^{z|aq;Fz)*iYQg72AwM49Fq^cacZ4<7SZSupE z=5iV@+H5Uw$8NbxkMrRL9V~EqyJp`yq$O$d{OE+Q5ZZZ_9brBo_-^QwTsru!nDIt; zZ0zwa7K0qr-689nE)vCSkC- zaXFgcq~iteDy$a@*%mi_f>A>y5NlIA`-$klSe=SvyVT7-^q@6+`AMiaHI@OruHbrA z(85kiE*{w@>T)Zzg50hk)nL*X>im5UveXE=J8JI-yEJ}&`_0AiBH(kUO=5$L@6Cqm zu*Gv*y4+%T%VbKwPf5Z??FUEM~q5d5&Tz6ZRU#U@Ha;}|UuFxWLj$n|bB`kHAj_JkN zl33)-2mc}Ws^60$ww0w6G*#DvjWJ=97Lt9vOpx)#{?C0vWd8qR)4RzX;kfW*^!4lAiQ*R<*0HNii)<>Zac+^G#f0 zScU1U=^?}j;`(s3*j78ktt>h3Wdpr!QV5VOSX!D`ANkV2Kq(x!PeQm;J=9(JYiw>b zLXqfztHDV`DltUcODJG?nX7PcgtBmL?aC_bd%QL)uqI@~R{%M%+_a z9Be+X2O1pL)zsNY;ZNMo*q17z*3uAd)ly4G?Q24{qjOCeMN2K!VaBeO zQeszX8GA9MWn6;}MeVf(Wth}<6-`r;s1_x**tgu1>HTA#`Qtv%y?OFilK08`{@!!W z@4Ua?_k2zdHL7QA(I6RG5Fqfh;2v7=_Entw1j%W!?3nBRzVtr6^X<{m?}n?@#=Z=t zD*H3sF(a27__#B!u$PP`0tbgaM2E^N;C!vkfBxL9KCB;mN-vm#k7g5mID{h=L50?^ zU4zH}>?tE*cy`h!a7E(VEkAN)BUjxC_KL%G^XXi8MS z66DKDAwoQY2<4vOMRE`uxF{3sr3d43NNq z(lrvp+><}g63?H&7TntYJDm)m6)XnBQebhe(niUq(vGFwQ6RQUEoxi{F6p=<%L#U*-cB&7vI0Ig;!}BnI&`p11#AIY45XAlR%F4Y^I*S(NdR=V}H}p+4XD^yE z4JWC+66WqS=R4b3=nK4Z*UYzL)e_H+gxw|b=O197S=QzqM7`2CoX*i10 zmp`*DZ!+SF{_^`}mM?w)sU*D64>CB*O2=T7VBNPuSn9$T!Sv$B#8 zYBb`lDqaBz#~(^HSe{*MrcJeq>FDTOQ_KO3AE%;{5?FSZbCgv@oOx-CdFlF;@6Y$E zD=K)HpowhrvtOyJ*8*iLV933WSmQ^+bfz}N-`*`xQ7az zMFQ@xxTQrxwPQyX;4e{)jg2UJl|zdVn0z_N*%G8965;HrVE7T`+B+MK0tn~vXV*Ju zhtQyn&EdyY2~96?W&^d^PoEt941E}fWlcCl9JB-+iDHuxPwk_3L>}z;V@gK3`4f7y zl$DkL@wNlEZ=5Yw-@!NvLn|o}w%^^Z=yO|bhe;~cTT*KTz(;8QPO z>XPdZ4#KHG)m*sXi^ay&cuuO27XeAJDR(v2=yS&kQT3~`Ym9Fu^Sbb^LE zlvsMlFs+kut5N{#zdwhDWKwb0yrP#=Q!>cYL{_s38wzdkWHH!m9Z$jHl^fBYybYs^*8$J5gUhr=~>=uCzO zF5D+^xmP;2p9HmBKY`H0Oi7--PVb{du5vffp0fA}zOXxQuzago}0-a1^Py~}mMr_W~`5K<0!o0mY(m*{sI9mmJkghvl1wD5AD!<68 zV(-OlQ9!LB{Ocfr5Q{C20^*hvW6u^mt*EUnTqYu?XoR$7Q(^7bIyJwv)JB18Qu+R| zw3d&Q?CI0!tO383_U+q$WGevkXv{e0D}3$QNx0!L&&L4R$j z8WPRm3B$(CO%B{_Ew}T40|F?M4|hh0XMKI0^Tqoj^?*;`z?4;at5p=fgTc{U{cF1axv?9M@*wzx#EDfbBFU*TJGU_C8Q|k69{TZjb%PmXTORW^3%N;kM z;6F|0m-owjF*yrVf99m!BL0r=-uLkP%FoNtZP@atq4sP`A7#gymJ_%b!LJ*D1 z&K9P&Z%@;02Qc8nYC)f^nO=Ld3VM$ZifH;yFI8v8_JNm$h0pnt8dFIO#Ak2mxS1_g zA@(QZ77$H^%|p2J{u54_v(#Ur^MB1r{t}DJpC+3A;5m>g`1HvwG8bctVXn|}<3ZT$Qfs$5_N@^W zcAENN--))8nV7hD98#gt8xQy-Vk*8X`=zF4M2iN$>4niliipI6%Ce-k7Kxy&g{T1o z@l|gxT2YY~sG`Q6o{N`^K41xl02l-~_E!7RY}U8w`T0!CNJ`>`TS3-EMIQLW*c+FO zGLw_{da%yVd@2fj1kTNDjM?Ack3cLD>$oC!dZbr@2v=NO%yQ$#4ZB9KeBUEzjab~) zCI#AQwa0@YTSWJ;O`SP=A1DQa_LGJv+=k^v4Gn7T@2H-44W2OPPkZlz)6D>1whJz0 zWMblhhUdgiHySzGo5+q4Jh;V<%rKJRpesPO$wj%r;TXruX|>G&ag9c4#=6k)H0?HO!#hEi5eT9~g-K zMy>}~uqore*|H&ECk$lc9IaD7K~=OfG+JTyZ64jXZfYH5y`!*c)j&tm_r~(f%lcKzmB$6yoAFUIH-t40JFrTdeWq1l=73_vhmfc zgiA(?w+RY4=I?_hZ)pcFiNipz1w8)%BJN(O-C7+n5kRY`@PBK#d#1p`oqUlK$zi}; zqZot5W)QFkJA~01m|AND0vZG`J9LapPcMhP_0oi0b_y7K4`hCEF)^%p-^hjUEtJg< zVses|ZLO?gw8-Hn;O66@E-iF=lPN+6?Ar-7S-GWslNy?w4zLu&515u$nxb06FHI z3wTbBKPPVGo3oPMtpRfu2t2SmxT?TNKWhP zOELB)J6GSjrtO-cp2CzB4c)1X%f`^^>L(!G>4kZgcrVr16q6cj4DJjM5!>)|`G5KI fm)z=qIhY~MdH*|=36_p&1iZe!WMTRo>m2iMZDIL9 literal 41581 zcmb@uWmJ_>8!fsKB_$LPBt@jVJ48y5mTpPu?ovv+L0Un&yIXP-0+O5V?#{Ee-*;k+ zdw-le#{Gd3Z>)IM6LZdI2P?=)VxSSCK_C!}_fld?5Xd862n1mf1qu9yb7XcE{KxAk zuI{L8W8&yyU~deOHE^`Gv~jfj{OOgmvAx4*8*6qZ9wv5%S7wfmwhnyE%vS&F0wx=K zQ|6v^b!G4nR9h(x2M7eq0RDxLC!G5k0{J=fUhM5h*VNrP7gyZ1nVzGAgx#ErdDJ)L zsN|<~Dj}J;^mMA0>Jd|s?h#J}OYf#4KB?h8<3IoEdpa+Q{{B_?>3poLv&+2jBlKvw z{(Y*8jfOf=6I0WJfnT@hNx6Br;)>X!DCGXwbAdB6PvGB(ejB1hP=J4znGy}50lz>Q z8I*$H!mrvic>_U%U*pLB91;M(vEe1E?|<$Odo1$rZfl80Kj426TAq zGg&&O=dwFhKI?JNOk%%#G4BysR>tzzoU^p~Tr;RC5IfTX{<2L4?s-=Vy7-Wd44;Sg)}>FMdYbEORp$&CjsDL(fn8LMk+b}*}2 zCr>+3ltya!tCxsLNZghJ@bmKW%A9HI8XA^YRt)#pW@P2$Fb4+*wH-&qA3u4rw7csm z*Ynxh+IpkkAG_uQ7=31^?01$gZEYgy9{cq;Lb_^dL5+?43!W#kg?qwxr#MVZOn?9W zg_OCSm|R~RL}q1C_#t6@>WiVw`$*@!KZ}}LH@;u2pYO`7ZEjdso*Jd3kw> z2;%q7&Rpm(81(0x+}==AXDQ_?Ct_`BT~`@Ju=6(zJ-SyFLeYIrxz;ayKbbpd>8WK1M|4u5Psk_NITgWrsm@# zl$4Zw^ypFD?J*SL@^no8=;)|jpQUQ%p#sXZa=lZE{EC-1$!?{4X?;Bqj1LhR(`aX+ z7>p0t%)iZE;vmEr7P?`0xLJ7U9UK(gx5LNBFKO7O6S}`#QH2TLUm7yC-rCR3&gK;s zt}KT#Q*m)6Six$J{wm8KE&5^Au+UUIZsWT8`)){66*41PvwGR29M%V7NiD99*M9x_bvUW#Q|@~7DS<(wqsi?=uHhk^d%ky~SnKMj zhitmc05K$!#ke0gIVI&K>!-)S<_P!q_Y)?CMke_j);}aLY9UqmuYCRbsH3Apy}}69 zVPk0R3o@zxaJt~E_s!m{z2lNBu^+hwJrL z?t59;wTlHG)6>lnh_+o9-uDkw-nU1R(EIG{?AzOuVfbSp1Ie7BfBq=cSWb7;SixLZ zqa|%^ZF#!zo{2gVildP8{lVa#{qZ3~NJkM@{3Vy=cQ%i6OL0Y9V_;qV<*i@2tY&_h zaS&26Gs}YuXlZE`iHV8h;_21sLNaL%T5d{~_x6haj*n}kpPa*N=zS{;doaQ6Yb%k$ zssaK6n$7nMdK-Pz86RU}V!+vttEgamQr6VHK+<@y)zXbKzP`O(0LBe}BQVDP*?I>& za8*?m#}frGQ`70zs;ZB6_V!9G*V~1$-i*}n=RZ+kV`pcCNrVynoORzRE1^Lq#szZ+0||Jq^@#iW+rasbP-KRW?g+f zEjS%Kdy}vHH$6um0f)fB+;sRT!}A#R=6sKTznuJCU{q98TW*FoT3bf|Iw}@cZ52=U zuU}DdaeoUUVTVhdu#b_owcKzw5=$*_vi&!|>Hc~L*h}hIx!gxBD=WqzOcFlpg}6A} zDow_BL73H+Cr3x*zz*Z$;vC%XTFHD?d!vhM!ijm0>kP37IX2^Zl6dT1KYR8}OkCV< z&S|pTY~=O!&JJVb0+=j=PD5N%lfaMcuJhg>WWF~Ctr=R@^#Q0jREJ>49S#@UxqPfd zznzoA9nxosNYcU8zF4>2@*cU%OUBySPxTnLz(O6yWVtmu{4;5C1zR+Wg{)i0Fsv^x zS0dq-OCb@q2xV>s2RksFh&#P6(Lq9vWAw^MFEo>8kBja4poe#)Tt{15&h05TH+PNA z!q9S8C@LD-axiuJD_Yv%{(fl)@KW+hO3yRAuW4bmHl`Q*bF;wPBy7O_#_n8WVklF? zH#~Y(Y%;Rp7)qI$wH+MMs&L@X#d6*6uQsl>ax>Ihz3=QIbv*W}S65dLyNPVdTn==t z>z0t9hQLbzS2p(NkN))e#gFxk4M|y93@0b21S?6TZ>iD`_jhimBa#}e-hy7&r%NZp z!pI`IV+L$VLz_E%idH2hCH{edq_sAlo&pkC(XuIA8a46p@zDth6586c8m;FGU0q$} z&U-Veu!&MV8{YHjKjzgRfP2Q*^NiMMbdHXX?+U@AXNV+2-6QileTGBz;S~cz(fEns zr%!d@K&Ur3(kAM*oAur?mC>7|LAhe*fp^J3D9R_3|Flm9{U4o?vOHN$Sy~l9Kwe zB8B<`F^GDHhD^3bvx`O5jf~zTB_-|7*2j*Hj;=^Fkrw9X_bI__TJO4J<%Rm@To%GL zy>3gVH#g04=lv2KVYv!u&gKWU2)iutEjBJ0?wN?W$<@*x8^x~rfzO- zO%L}s#Yiz692~Y6b1s$kYtrC4jaq9Gtr|<-Tx>f3O^E8=7jWQ?BS;?Gi>az6WKQnH zY*4 z13&*B`3vrg7j*0<0}5Zie#K3b%M}w7qmdUl@;6?TFf`1vpEgdU1tA>mhbOTA+*`s7 z*JaeMo*qd%Cnpu_`n4C?<>ez4!{vS=z)AH(q47HPsf{ctzNkt_AUkoilOd6R42HqvsNcBpSa5j?x zf-Wdj2JXqO&-V&FuhtTK_FTZ>rk$UkFK*HGYyY9`G_E48uKpc9-Ni-ywf)8eRYF2S zxvOLl?S3l7v2UtV_+zITjbw@sr12---g-Ln&Cy;A_V;H>Mv{V5r_-F?Sp*u#1gzQf z;qF4UusxYdE>%ifo7kr5D6m@QnP@6`aWy)~m3*(S-GK{r+ppiKyE});6W#lt#V00K zI&LYc7OA%bL;SpF?~iTz_8MegmK~wYEmGh(qM)EGj!2SKJM%6-eM-RM3ydobU)S}g zN-Idj_F}c#{+pLo{eMi^{(s8+{;wYc)}Tz>q%sMtAV>^AJ~Y83`7iwhktZ)dpPYw> zp!#|jcJc<2F5>MiWME)0!SoJ(!Ezk%~WEPv;*P{0weYK++6csK!$Ih(Q8i5_^By%4nkRwit_OC zK1@(gwl%EYYGr66?o?cy=;`Rl0#l%@Ol53D^Box(fyWd9kkjPOxqwVg;JBA!a!DTp|4|qUo2np#mOoD#HU1OeAgVi7eqej?_eA| zN5?8>+J9T+3@y=w40i)(^c#GMSz0m-3qJ^CNk$57wIKN+__ga_H8nI4nz^~?vnBEU zYN6=a%UcOmjy^Y( z;rGbS0vEFm11a1Gb$j{w`5-NJHY*0liNxL0&iuc_?7ONJsz;hIF5PIYsi~12R-+Bc ztWsu7GXZ8jki@?6%TMHf|0_DvVn2PU(fRH)wdbuEqc7N*xWq&kGqN_2FMRs+X}96v zOLNTsV|3%=OavIq(HIVzct@WOfowLoe>y;V{j%3V-oXxOFY-;L_h3i#9 z^~C?K;JN!fOtVr4;}J;JbIQw~RZh=tKlohi)h;N3{Cvc06$DA6y_xDTGU0hNJal+1 zGDQk@t9IU}?H->7A|EYd5_x>*mqwW$3 z1n}H4Az;@QY>K8V&lmU2rd#gyX`jT0b0iILyu^B7Phuq){61hpnmh}uIJhZfpHfo@ zmnar3RQ)M*tC*$wQ!(H5^6UI&6{8id&p!R@;yk2c&45td(3GqfE|NhBk#d-)hfeKp zDfV89reeTrvynmC5K(b2_9rSBf4K->60RA#?Z#*4?+z7aR{TsV2sA0!))FEdMB9(h zbQa{Ct~h|vV^vT!pZb^nRBHE&{iK-x5n>4~S-fZtpf28O?<-Guc&KUgJ#b!4b6jA2 zNcPRpf||<>Kh$Jo#GEjakIcOfjSNkPU`aljBdO=1MFFE?=VujlG=Nu(nV}YDY)ilR z8!Z3A=jN98b)W;y+?zHhuUjOx+*pND-W1tch_$ccAmUv-HHH&X*2_wbx5d_|PG0W> zfos_0FhAAg7$%M4N)VO2Rrfo+ZSjmSLoDJ^4Q7DMQ_xTSYIWBwHp~}A+V5si9H#M&1`x*N6hH8AK~P! zEpp@YjD)7QGx!x&F8j4_Qi@I##!j-2Nyl1`Zb;m2Yc@6+ zEz(qF<7{LIcDFVuL10tuqru5ZW>2v(QWvyj_cLC$8s>D{s$#K}< z3R~7DUHv23Z_v+xgd{?0xsP!N0)hHe!p885Pm?$0wA%c*=yZ zA5n}{p4$ISwRAbU$?hwCATp7m#c>~4@7_(%DB!?y!XWFVgI?qv4| zF~8-C8~N+4)gMn{ghJYkRC^1}7WLmVBFmWPTXWPjkle!3AB~2XUzunzLEMXz{qmz5Ty?_tVGb>jqpWE6u+MBNwOu|z&SVcJni6dUj10Mq5$PA zvF4}{%#GROjTg(VuR`;MVooR((f;(Q;S2r=$f*Sb$y zWGgHQLkL?ZF(?)hE9{h#i78@R0%r#+p`5SSpL2_HRgJTzVO&pl@;AHif#Jt0<_+qU61X*B#Qo00m7Ql4cKltpuzf*R z^IFV8mx+&Qo9MT=m!AS|fFGq(9T|K3*$iSf!*p~{OecNjDW;>L;|J*8a(ndrs5`?@ zGJGF+5IMsKi{$8yHKd<`IS>%84c=-XB5Z=Q@`rT(^w?&rlQT0hl7X9QC`mdyGqKg8 z(8}(M^(=1f2Dz`6VohNZ7vB#cPWq{-+< zC1!eLH_pyT`~CC#cA5}TcRQ;>)Z&NQWrzh<-11)L%2%N;!1)bCk~hS0jp^eSt0 zGjDEEl-S(Y87%F63jkK>_l~x$!?_luhm3wj6n|(QW3~8v^?lz&@Nk+Y} zLwePwBkyj<$QPbGlJI9EG9_#VPbUt%!}9>reSv9KeFrTLnsRilI5zd3up5tJF~JCb zH8s{J9Un6E1`a5!5y+aT<|ZEQ)d<{wp#5YdPbSpz83poFcgWNB?p2_e8}uV%rdFe; zK8-|d$3}`hO_B9#aVzHWdA}dn$;IoX=&;Q#isD6`@9?Q6Mk}iht7%~!oz=XWsWec!pVZlARzC19CUd2=cqMRXRxMRKggIUU8rYtY+N6tq-l-^48jpS=~*qMx@O%*KfaO z5YowzwYSFO_HGJ5SW0j5R`Ka*S_@BXj$TL*MM*K{q8B(?A#IsY4sAC>YJ-XQ#QSx8 z=j717-$WS+{wk2_3cS5F30_xYA?EQ`pye?g(V;`^m)GY~@Nt;rkJF(Q5`uj3O`t2w zO_Nm48>IIOLgYoglPbflOd%T+BZ@}x6Dym4j!(?k=mn1Vm`Vt6yTNHxEm2C1fFEvI zGq&U_H#H&j2~$>|35bkd%MEq6J!~`mX~bzvi-hPDwhy-?JSE6@Xrj+3tzA1ltI?Ja zzp+2?C(v-23WP7Lx{9$Ej-KVQCSXwb?mR zOKXTf0S6Ae*-N6G9xt3vQfMbt&Th*#@MBT*x-|2POHEwmEmWH@Sr&5HxK(c;_NFp0 zP^+Gg{P#54x#RM*%=3D~5AyTccD^<>8x?HT{_**g+Edg~_{<0NGE6hra3>%)Ic522 zTWcrZ+zjazQ*WA<`f|XW9KO=%dVYF7W zs3Uhsrox!nVH$vTPDE)w;2MNvY*Hr{#;y9u}(*rXD3SoRexW^zv)b`A+xBu-dKp#$re z1t|o|nSICGERcrUE&Mi{$Vp_qxHaqWGRo&7{~gS0_IFk&hZ>*y3Hw1$a}mEnKgcL1 zm!hHiWd*28NLOz&5>$r&9kbVh~aWUhlWff4vOqZ~OdH}4=vYbnbA z=oyI@_g+wLn^O0IDmi3&!EG@$K66_FZXV1vtA8w&AX8~-UE``HGAITM5eyF~hZ`-g z*F9^}K$14!WC9WN)G1Qen1p*$JBb3K6gQXgw;%y|Z&>-#S8=3eR+u&Lo-HF0JCkIq z+Pq1}ad)tEeHqMnH#-=FluvsV4Y+WFV?SP0>tmQxd)(HB!c3Y>3@xMCDy8r@^T{&2 zy*x`-oIUBn1kQy0A~emCN4+~%8OL_Ck8$bzRhDl6HnkBKJqM|77XIRpUGwJJL4V^U z#%c<0C*>_FIp0T6g=8$S#d!=xN@SZSaocul?eHjQ8}5xZJchq{rAS!4KkRD9b#0gf zTH|ey&d}__5sUN4xI+~{w|~t4!ly87O&U^Km=3o59A6q@iDi$jj$%*_d?mg&Y*;U! z60)kwVY}c@0A)<1uy6x4jw#_ZG;v`)Vi^QQ?OE=rnKegLxLpEwci2D5(K4MLn(3=r zyqx@VY1YBJ>a_Nm=+t8nkSDPst2}kJ$9jc@7TT4^o=0fesHdg_H`7qRaDmHq5lTW3 z#z^6j`v&Rw&+0te-dF679KjnIv=laI($NH;Zfk)s{wZpe^LuA;fOCxuo?%^x6)Um6 z8BICZCvFG15`0Z8=U4E1*r~d){6+@SLTiq$a)>PwjnsDOAVOEGvA=tIvQ!JN0I?+3 zp!e<_;-szzBOvztgMunukCx?%lu%&VG-#l1UQWum(5QJ*$A7#ttLW)=!-CZ7=`D)F zzqC@Y(Mg14cNWDmfF@95#BIYM50VOtL=$}Q3JFQc6F`Hp8}&vh?_U5aNJ&>$PFI&y z&-3Vs%d8zTKv8l%Bd~Sm_GjrzynQHYy&K}OCQT|>vj&dUvGnj?PSg9B@oR=Bn=-#& zO+RXez&9@a){dE~(!Xu2yb$8LS3SvQw=4#TOZoZ*z;C!6_fgxqxS0O__UuCn*IpcB zps1s#hP4BOMOE4%eBpF^L=7i?4|w|2cv(P58zI3sJqx~G#}C76$vUx7q^@3 zRaojK5##rmJ7WtOQR9o+3dv04M_iyw3-!vA*;PD#-|# zVh?`q1j&$(S8R0cJzuZnPUUAlfi^>lR(;a%1hQqhIQny?t^C@ET2%jFnyONZpunY# zZIKLpEN!Rlv2?Zn;84&fZ8I~PfEFAYlEja9c5%tAsX6~O42L?ubKA_@!IYJi0p`0G z#TOZ+H8wFGKit}Gwhptp;&?gu25Gb2%@@DflQ@sAH?yE^W}IX^zVwS=)IUgRM!t@) z0G&RM$@0q6%9#Z9KEjnZ&6AJbL+~NDpVKrG`b0!cP3;2}&e_>n0=Bx2j#vMyi_NS^ zdw|7i36++VP%$us0nl%Dj(?pi31EPXjN#wE6L1hFnHE<%b)A&bpn)`&RiK}!I49es z#{tv(J08ITYs^ zM~KTL?&LN*Sex?=u`ep>Th)@?(}sS|GPQs3+}oaS7{?$D3{E|EFL8Cj$rvF0AX?UA zcQd_nWn(eu%!%@=zCNkDTVlY(q442h4h}T34-32ltPByi^=c29kJ0)-l4_p%w}|+M zS_D$Q;$(mVStL^WW2;VfP6iz86TCeT;g+_*81QtVXtbv<)=3yF1ID>iT)Vuw`a7A^ zq7J~H06YJ5wmr_ES(T@PzAz>)93B*e{PyizIP*D>A)Eo0mR^-f?55ze<$Bk`1^fP5 zJgAS5+bHkesUNiwSd)#7^^c>H`&%8lxU3fPcD@|#OwsgRyEra_ zL(Fly+a0B02rg#;P(R3?Gw?MMLQcK+$;*&}i z4uFpy)s75MzNJwtVQH>Q>o}Js%r`e~RM^39VFl%4Q}gjFvXa5ywgYISSaK27{=xuv z+!(S{ty>$j0?t2hg3+(Br$@cmO0|>GUQ#UA+YBD}g_q(OtC|E0H%6?6l+x z@EJM&AVPL!tG2uo>M{)0U={(}u;DU*z$vP9BaIS5?| zTe@&v330V_7kVNkn?Qe10~JoKS3@YI6&W&QLm`dk)AjV|v7K+Wj)L1+nX-9xNFtMb$DE=JC}C_$c=Y#TX5g5>P|S4EpDD`< zPj65Ko*uibHSZuDpQSE64Lhv)s;#iRw%)vw=y`k}hW+l*L_ z@1_O)jh~1=kLBGLCEZJ}*0mE6EJ^Pa{^YJ&%vks!=CnPd_~)7Uq|KjtHjqPS)~b>o zi;V28#f>}MbQEi!v{TLNx`~(@hx9j6(#JM7!WI#?3Ilh0u&b-ymE3#SdtWKI>%9VWs z34uc--qSj5sbnW^rcP9{RP0%qURPH8H0kN{$jta@)iMCBHSnt<l90Vt{*`7s8m((jyv*D$C6zUTIE{nnGu1BDe~^cZeue{)VzUxR{+&@b9W%~ZWH z)qyI@S3FUlB{?t8BB!Y&IOLkDe;fWo=IvoCI6x|AvLF9)uWbHUDo6LIWTg!C(c^n; zD*5>c2Vin0f6ei*mS4&0A_P9HUm@Qf~~aqykfaDgPl{vQ+RY)hkjq zxMyLoWuY9t|0EArZe;jPHG%RIrW%cL|G5;vFWP*sPW>Y>B2JeJ+6~hF^GZwG$OO(W zKC?-YeU^HNqQD3nO@-Ej_VYiZUfx=f3a3d7IwVqMszO6Z;b&-gN?mxCq#9S1yMnfI z_f)=&9N3`_3;?cAN=vC4i!jYzVjpi0co(17J7~+hUqOj|;I}2}7A|GByoKDBQ7rV2 zr;?!hb}%Ikpq1Vxb&ns|ya6z4Vq%U4DG|v^Puy=2i2HTDEjYyh76WktpPP~Pv9I0* zF8p-cbDGLM`ccL&J{~@BtxxeU5nk+n`%}Q>^QS^D(pDZ){ItLgroB*IdWSo(7MlbB zD8*S_f>SN=`CSuC8)3k8Is?cSRasZBvpdXQ+mR3?`DDzx>HdW+XQ}INN##5RO&`C* zboqk^hR*j@v-p#y5(~swuADQ}bI78C8)E#KtZK>nDKLwapEPL9 z_bnN@-ZMd&ZACwqnq1~Yv`_6}YJl~&I>HMqmwP`O3%U8ESf=P0I`~5sC8R4a5Omqu)%5E~C!L;r<5rny$ zt7Ui@KO^9(9_<(SB_NR1Muf!tbI~$oL5Ik|(DC4RZg|76+9>eP*SE=+R7<4b0#sd4 zh5@CP?T9!&kV1X{962|pCIuP4wvNtwDXGm>>8?IYDAPvyfiohD=?D4s zu&vK)Az-fG&QIEtpITp%+_tWdstxkF2JEOhP-!IL%lI>jV;Q-ZxZj!$y;|VBk z{WmouigZxl-xhC9MzGGu!K=ks8hNicIk(PGrSFs0k^XYT=S9y84z{BlH7^&d( zuO2RV5ht1ZI={qPqod1+&4A5mfMx%mJOGx-!YtX+>_y-tOLa;ZuhM$H?|N?)4rC4g zCFTpWhFU92vaO19%In{iT4_aEaU+z~)Vy$Uxlo18&duc)6$w}`{J&}mumIstEpYBI zEZ76qDFT+BoE%bEXwmrBhwVRl0xg9F%kJr)PKFM~E%6~&Df_nfR%!potDA>?yi}lc zudcd`frhhcr#w0h5JGD5|RlNEAWY*5NzR>f-}_FdaVU8=I7h2va;%ojeZTzp6@Yj zEF{2%68}|s@NM5ps%*4HNLR^~{O;wz7-UU$|nSXBd_>V#aqHRKc#>sToGaj^$aI5^`;lkc;cElSjir2-|j^ z0X1!N)c@9iR9{@VIM_pewDkS`IayuYQ&Zg9ox8Zb-Cy;2%oWu8pUun`;YAt{pMFT= zJFD|*y*t<1-ri;*42SEKigX$ij#hfKes1sY?ZqQcC+K`h(S;VW-~6mDhaVx)DsFro z86cJDvs{yw8?@GhAgm8(33PKiZ3s{! z!&SmSX(}cmp;>!r4WdlM!<`evH`nwH_WGXXf6h;Yi?=oeIV0_Bw?unVB1DSaZrzn`v zT>o+0Yl}pCX=f*N^{JqpKyenT87vz$aP*$RBguHpF53O9+VAh`!tkq}L&SqnE~4L( zfxk6m#3U!gcin17X6Ozj^fKy?SgYo|s1(fYm@$Tnic}rmK&~4=>FrpUFgg{ znLL4(JhDgxaxYOwK5<2mbUQK&Q*Oj+jrc}}MjSQY75`^qTLna693<(Gnc;3NNH*3F zGyDvz0VMr%H$i~-#Yl*LQ)W-XD7gd;e=@t;c~F!;kRSgS#nt&8o6DA z*VjP_`h6_7T5E-M%rsyO+gCC1*I!C^pK-8 z$J1s7Rp1&5dC`ESDoqJ%l(Me;TNT77D&e>vxuW#OrN9pXD&cXHoCd0VB}jfFVSuH0 zcSAf3o&ExG0lWYSs_htDECJAUj@@F@3C4oT{*)gK<4tFENl#b;xm?g5dsj2 z^W(0Cx%1X705oS+v;+gX7ZZ0fM&*BMD2x&(N2WYYc78PQn*&~PWo_5DHk8x`A6X!k z*mk12s-JgEvGu&p#nWcaki6meS?rk_KYNnXjc zppM|ZlrQgqV*#aCdyx7Nq!YbL$P;x(>wMI zfTp@be8e0zb9g}RO}CRmTf(aF@t?G!3$FYi>?^cO}{dtUp8P8qDkUe!Q07M|) z8xy|V$eyB~WZL8*mw&O=S#ENY49T1tAI$}4F$Gvg#eT+0A5C$W2K9oR=oHbr%HX-_ zc*`LMQwLRESS3BsN0HP5o0iGIc3Jil*d*DMaP*}gL9njdUfZ~ziuz8lJ+jRzu1HgC zwJc)Cm>)2{%UopOV}Ow#z{$ap!lOR_yZu;ku8>us6blL zk#TTk6>C;1a;w}rAgKks?V75gyo^_Ucvd;8g_~Bm@xa38eg2=4jRdcE0%-)qTU}A4LQl7r#6h{G=JbE5HVsKH)<`d%F zAE~Jw1yH(6k>N`OHe%!B`$=TATf#LKhHBP$ef5mwwgA8a81m|#<>F1+6~wi1lVGMZ zMRCMCEaaSWKr3Os>PbpvKLWw?Evq%@p${pK77J7gzlDXp0s2YMBasfIx&Y7xi44d6 zJ=;rLwOY=`uZ=IPHsC8M*c@36eI`n5!bT4;lf_8E0Kklh$+>wI_T0^$hV5>>tIPVb zMX?-w>=4Us&m~f<`fP1O8mL0puWO$c6tWXcM=STO7unYsB>ZZAt+H_6K$FaFMpk7 zNf`tQ3E0@zOT&Tno7JiKdr-HL76<^Pfo{&|?h6~B$bk0d>%b@}-*IVHhX5%8 zTpwXC`lAZdIR>a4{&FVSj#HIsL2T= z7%vHy28D+rb8^a)Fp#x67L!k(SM+aB$7u}Z4A|eF$e;l%;Cmc)@2^Y9^RIK1yDm|K zNsP5V$P(_;vKPTzcM^x7@qvQE52)x_Z5KsS)6za$TK+cT^M0JP=??N-2+B!}%Xd-7 zoWC7}EwE^4B>xF*9^cH;?1Jp@FaLyu3JL7?V;P_6QVNUBe z*g|OD3U@*-&hpmp-1+*VQb8adLdqAxSBsc>AOeVlx zqNH$YthXgIwI-bQOOZJLky#Rq2k@?j(x~yz*`SCo)AxD-DDG$Ld%sVAVVj&{C1?=O z^jfMC0HSM|&@cNSM-Yr8RnUV=O~(ljGBm_kEaHcZwO&}-V(wwwk@GT)v2q@fO)?&v z#7xhdGs9+R{f6Y~FKJ8H&JRUarilzdP_mTNwlc6&$@N0TdyEm^)m!S*z%@(15|3f~ zkM5_m;4X6hb_Zf}@8o;=$^{I<#9WExE$Q*ittD{U`)SynvnN@51uADnh>M^zh=9lT z6(oh*Mrg}>6sydFKF_j#Z*}uWH%#1g%^Va8K(Ykp=w>4um~Hc{D(t+;M2aU7<7s>b zznv;E2?yK|KY2nhWT^m*cmz0F)trQ~(jUoQPsRldH3S^sIpsDi{^RLXl_8*!0-O|} zBO{>5fp+7IEU&$EigYRlXX3TqdmB>#_y(q&{X|E;cNWhFwQW+@0Vqx|e@W@x@JLE01_TQEX z5f6&^die`6*(wsT0Ay>bk(WRZT0-)o-Kq2Sq20Jvqjq6okudb_ z44~cjtU}3KcVCUKUl^!h5^}Ow9$#%_jMducnVXwWHG8;tj8j{Flzz*( zqO03C;KHrmh)cd3m`PJKrT6nkI45V;sEI$fysZ1^9y0Rcm?c3=HxWpw>WQo&2m zYDB>2NHeM9Lc%?3iwHV;6g|eNEWeNZt!VR{W2MJJA(vw+&I>g4p6^LMRe}IoewLd& zImxdxTQ9!M4REVKcL`YQZ-Yr|z&c|A?ya7nG*A)u={nHe7Pd(PK+5eG4vNU|3q!E(AH0Nxe^`sB_F3V&&)$!m=j#4PTbQKem9S00}_d z%?XM2IiuoA*|UY-H#TqAR3^u@JAy&)}|<}S)a?MGDu&)|Jv zvERQ-fnvK6m&P)-v=GxYE%2HOrylQ2%xT5@6?GO38YdD(HYZX6QTRu04&^bkUk&9T z<9(K;@pIZNXWA%dy6A`M7l~pCpdug7`}6s49k03Fh=tv_1%M#hCdDHo3o-GVi+0Sh zfL`Oc^uQ%nM-{6LgpGSIMc@W1JTuFDfV$Z2JVp$Vznwtzb!DbQl`qaYTW-dG^mc!i zn>7%SXFAr~nLtJf$`jqfb+Q$3WQTYy#`L1+8eLXa931EP)8u;4nVZ_O6Ln|SJN&Jb z^FR7~@PoWNaQAqh2vWG60y09%%BlzuRqgwCXp78$)pd&io$;A0NhMQFtY0A51OPk- zpW0E)_5`4SG~F{5^~5-Do zuz<9qU2>-a2OVhz{HRf*vYd~GxB_|5OtvFWtOj}3uLKZ_cKZrVqxAd z9ULsLHuv+oKy3!3Fu5u}RSHMUKhj7;cR;y8RhiUn!tR7b0X7Z%8-F$!H$likFbMKi zhMx}OsJiT=L6m!xnuKPVw5!)}Enc)SSM7 z2g?+BKLZykOW|=ipZruvBcrQimd^Ux75%PL(9PA}Ch+2v_wLKCFX#yF=xL$uwRS*X z1ih@oB|441S0cc;4`r!eUq}I8q?gmW;IdR6MKeUj6RsAy;omeWh z++?O_kw_($du%^)1f<0dCvJkSHcm(x*1bR;MXA=>8jb$^k(;G-s*bZCOY#8RHBUYb zFN1me^q7NK&Tfi1mMd=xTGl{|x1xeV8;-odTY#v*3WW?hpNq~0AKL9df7_wYQBIqc z3V6{efUEB}(S7jQ`Mp~-7KOblCt8N=CHk-Oz|u>U+l$Oq%C{AqrDhqO40z__p{+}Shq^Z0xzQpONv9^scsCvaq<6+$!1w;C)OExY? z(4{sn#f4Y*HWFk4X?qWmfY9v+f;~g!oKr8Tlp0$Wk%71aniyJ@ zt<{_ZG7x;XTzsnAqmnTDXy5$)1V4M7f*kZBXAcMb8~OVTyN#L4=~ z-J#;;oF^%?#a6G|bcTTniGX0qYOlh->^-P!J)KV!;5d_y_j~f(rgY>Mx%IK|X@F&= zBP{7oFdh98f_<0uR)M#YX!A340J1NX>q#5DL0F|w)vk{+k;P?STOyn=K(lzg24-zh zdhJhQ2E-_(mSxkJdn`A92Kj{!=LN@54 zoCpG219HsY2Oemk&NBtIL&9z^#Z+fBP#?2fs84R5jHUyW%V8sP?=N@KH*|Z`c3Hnh zF&6-p#Yks=QWAY-`04J_%<6?ri4-+xQAixp8&>h_bluJ5nJsQYItRTv1hbtffTkCb zp?{$F$w6SbxZPx8hl-|HBRuGU&olsF_nS9wswT;cMXeDs>YJ}r;NlVM2+av$w)q@u z599cWqpNjdFs!U!-TKq>0I+y@_jN13)ZjL%#o6l~mXb-cEAX+88)kn+%bT&?od8<~ z?Gzw+fxB)XMwnTv-n}x_cawhR0GRX2_Xa@3e`1Q!HrVe|HIyKj@lYaKf`F^WeY{MT zpU~3xWj{i|<1-mhQEwhj3Qb?N8r}1qudAIb8+#=s;0|z-SsDTF_Rih)q^r2oGUsPo zL9Oot)9XwNj?fTx7bEh+uLTlZ#0-XF%sUaTA8`YUr}3Iv`TT^HLm2L6LDB&PfCI*e zqM);($C4{HCg#()rd2eM?fcZ>1Dwe9cG(qFZ$LH0HXX0kwLBQ4-gJd+Xn0o#80_~! z3nVVwK6}jT5yLfOmP+3NF=@em12rcVO{I9~%vviYAm|5*3vpEq!Ag9~wU~Qy0XsVZ z-89dQpCIi9vWsL{v$$#`GjFX=O*jD4XoJ7NrOd<}$6l0TS{UKSOSSb`ZfnCI zL5S@GWdX>Dmf+kxOZmzAi}`ri^ZN+(G*!{EAPVk?uqtT2g&gPwFsrl(5-+ngT8x|pZU z1?F&NX!8s_!tTmf;oi-_##85Pf~oqQapJh$PA&}So0G6Nn3v?gIj{d3J1h-dt_PCy zpw{WGFUy+y>Q!lADg!AK$ilS|4$S+X@8`;=%CYq&s zw6iZt)!YyQ`WHyXp?Pr@}0FF<46Jtt*^Q)Jl2JSwYB3uXTcAl)#$FZu#R zA1DAH0PRf2mslS4$8#WlJ2l4}kUkh-AfJ`YOV^11pVt zZh0z)-Q#yhiTS$VVEUqJIih zbe63p!D#(aaV`OQN6Wyl3jZLGwf^|i-RW5P=Oh6A*~rw?l&%vRQSMlQ+tG2$EuYKB z#!@eHHhRw{rr6-pqEDd32jD?FL6T+LOXUJQyc63F5>76J;8%f?$FSxsINk;__(<>C z6pxmv_wUAnC*^DK0Rud6^O+2CkxDigMatG!iJc}}I)3=K>hXL!XWOyF30!VHdB5!J zm1ae~`QY*!z+o?DIlc=Y5DkvM>)3Nv$uq2$p?;AjCkdL&0b$tIh+GG3y6VdIE(!{EAASN#N-XtprPaPD*Z(2>CunO zmZX&bLDpG^Rk?QSeu9EQmq-f+Aky8agi51?bc1v^0;05pNJuJ3C?F^?Dd`XAz? zAT3>IyncJ1y{~iD#ae$XWzILA7|$5@{To+oW)7xy(PQj0g=J;>4H__;=ijTGmb>%e z+0(bf>XV$bQdTh9A9ItLIheC%{{^_6Q-DYErRLBII4<{KY@^!R+JFWVL}OR}K`)GA zcTUQYK;-p8ikt#JRcCeOo!5IB7KS`*V+gz^vko_E!-MhisA1g{} zYhnMKzi&#nHAj$$k#V?jbUrmMzgGlu0~h_zIv%`*qR=ohU27^#gt|}PG%(YA^RyVa z3u)NxTI)lyUyf@ScRR>S>$u6ENy1W#jtZR}H6qcgRQ6215b!ZOdkZ|!(Xp|O;L5kW zz0z?T*`hp6?P5;QIHkE6c{ktgy`oPP5zZ&XWRH)3QM)& zVe-mwtfuQBb2?I~8s~IFMPHq*-)&`f3CDW1NQ-(cdmTs*3_wG$INp!t#M%XjMY^+N zg9O3a%xi5NzpVHokL?e|UTaWGS=m|F( zsH3YTyj#0llCIMgZtN1lfSdWw&!;A^Wg#{Sw;BNPUvE`s^|47^pa&z`xks+F}C7;{Lt|MzZHSWCKsVWk_qj zcp+Z4S_3tuas$|85^9Un*q>6sSg#hhMky=GN4t7gT@{qO087AmKSA-O=F;QE1m8i9 zrH@cz9P!L0_1~Vu&ew?`o{bQ))Xrw|HZ;aZtrv7nuQiV;kM3{G$J3@AvB$~9Um4v| zz_IPguKl)Ny-kRTXP*mZcs`x#J~;!6blLIB#hW*8BCsq_F_6*FV7BHl%H{vRx}NY; zj^gFZ8|jh^moMk*Jq+G-?%QsUV-I`*?k;n8yA{GpsEFwb_=zKX%9g{gDp5I?<&3Ee zXB;n~Eil!fv`ScmOE1_sKg^;NrbwiKeE+?W#fqrgU?t;-d(;e>?uCJO58+ngqpLu2 z_jaJnZvMz?g^~WiP7u{MH-2enIn6zJv_HTe$VIE_tyC2N4Y^22m|arxHcLLishL94 zVPpC(oRhRy|Ce~*d-sn~`&(9gTA}E~#6+cny|-`|en++nf)nRI=MmF$lg6+c?05cWpg4%tY=6d{!qlA zLMHhK=RF95AUOZX@R`_c0n{~cdUhPk(HTj5+(xl(W4LMCc+tV#v@KGX{?v^!3_DVr zLhvtmqbfA|vai%FESOJv%n^L4-g?v}dFIm+#bAFhGzn*)gPC9k1Uv;$8uOM2s=rHp z!BFv7D)*)2(ER~8j8K4d0Y1oZwB(r&kXcssV}*D@Q#ZfMEe?*ZIPH#nA_3J2OH;#_ zlm^{Y95aP974G-=Aho_rIanlIc#_~Oq6s1yL(t%{etGtc9jaG6i^Z$QH90F~y?8z9 z1mRmV@EVC{m!xH%(G6AC#=w5>F`Z``NvNYz+27P^-#I96sm2M3%v*h{Bt z&rUdDQCjSk=d>+6ywm$%8kgU{t2RG=ys^7BF=ka87IyhE9^OL*1)I{Th0bJUFPp%6 z|9Xd#P{37Cqhi}$w)ID*4&YtBgZ7ED9lOK8UPw&dzg38*6RVG`9*y~R`&yEd<)0ap zL==zG7I__h?T8$?;*>A(chJ(d99i=`jZwuA2sjbw>%>Q17AhMne>CvT*EprNw0)Ut zi`Ni<8X_7*3>Feqo?JsdMeo4mD|YHDum3Z*?(VrRLUvoje>e(vh!lYMh2&BY8q0@Z z`dPS3ldWHEhzee8vx&_1_MdflQ;zQT-#ZfFbpQ;ebv38Q(!tHmuGGNRcJ*P@$+&Yj zxBX=GTv<+b_U!WVXjwzljHI8$sox62r|)xwn6vQp^1xZqbsO|hF~4w};`p{TmN||K zHHGG$+qD(LBz5aY^2KW_?wZR%@q$l9@u+PVsA=zfnOQf%rN}b#e$*a%f!h_Q%;~g> zw*r^WdQ!`t{;Bo@&p;~8)G%}o?%cc!-|6tmfu#BuVKUpx{^rG03=9nKZh|K-+MS|mfMP(%jZE_0>(J$-BR^9XE7<}IX`>J-pv9X~6L?q%I zE@f>dQKf$mGPCBDy<6$7PCcg?s0%>tpU0W$lhHwKv(b1Q=0NrR{m^G{Fp7QsmVzTl zn33Rj^y&|<+5gh;9CaL-vQ3VT@T@$4QJV(1q~t{9k{mx_DD<|LqIS33uXAv8S-HBB zA5awmvm`Z>6-}CYpOueKb?l?V3EJ~_DLcD=y8e}*N#?gKeuCBso`a`pp8wUL85w6jwhsPN0dXE=^jMDW1@rLr^Gwe@Xe_Xrmf{P%fS$4*eh(E8yF*hN5KDPIOj(f9oP&wz`K2h}XXf(u?)w1A{sxmNf)P@6pQcHZgzjdrwk5#FFBLQ-%0MQ_N zG@FIX{oc^&+#ShtfTnqGf}Bta(e%dNN;sX_nf9yX?|Uv9;$9O*C;h&rZ2fllmhDN} zv%YK55Ug^W{vbw8dabbI5>QKfcnCqF-z+&ygao8=*^0>sjp`vdr2x%$9a#y1m)5!p zl&_(!4&H8+$B!GK2!b&5-U&OKR}I}z>bB9?Z=I#1W%+XRM`Mh#1rejfaG?D{#CwB8 zX2@hBN>R+?uIC5zM(Lm-hCr|3jc8CGrqyk5wEDd=@w%?4e_bPnuo6t{&Z|<8Yq3Nm z@fP=0$@NcoUqe0K{IR)b-iG^~z)M!i9e;#O4OZTw69jOiAlu{P>l+a7zuQEnya8(m z$>`m_B*bU}47ZuNxyC>ui60C&e}-a3AL&L@!UIUD>vN0(jNg&oeEHLVJGrfhJr zO*+Mg=ca$ZH&UxsIM4o4{25P@CoFgR25E$Kor^ouJ$NRUc7>jcd&&fy<=-*)cH6`E zx2?pn;iEo);0x$p5?^>{j}NxTo(zZX9~>ZPF?zJ`VE$8}0%Eo*Vq?jWOWzx^*Svd| ze9F@zVRidL5tNzFIBb`6MZwecHK5=~OK7E}+Wq9(>Grk+s9ysz1IMwK+JTNRKW1AY zCd`gS#C*Xz!C5VoF%5(=;A;2^bw3HlGRh~fh+FeM+nd93J{+wYBwH{GT2Y6cXa|&e zI%P9#PX~s!x7va=53z!sAyQ%wGOzgJ#YyUC`C;=G!h`>AP|iLBU1Z>Y(fVJ zC3|-!1KRSr_*wTqT7MR??C(gP%uyFQh7?Z3o3ht-q-8fti-Lsl(3=yHVu)L0)k*1L zjyi9(1t#@1xB|5+s2Q8y2|dy8He1iPxGzh^Aws|~Av8>S`hMQNv;U)EO|A3!sSc{H zSH9Ri)>1f$9a_|Em9cO+r|>`lMOU)^;Hl9bxy+1#{BE>Pk5nR>?9BaPI&Yedv!>lm zBA>X3K-uQ)gdH<0HHQnDY$Do_ek_(4mIlpA^aFePn!1)sla#uM(|V{&-UG?psv3;O zYmm!>GXmth4}Q1QH(f{v%yI2j|U3U_d|>86C@pPJ@dA zgCO|X`t(afIA#m`jh{d2lFQTBY*9aPbQjwm^963nU%Wj~cr{60S)cA%cT=4h9uF7@ zi!2dEhviLs;@H2(a6*|X}Mp}SY?C7Qxcnjt45Cu=hL4qlPNnPwX# z4Ifq|6g-;qN^L(hH^$bj@N&?qqU{5N`u$jMBzF#CwL4=&9}~bE{;NSEz(TA}+9e;3 z>(4BC9Oq}O)5#YeswL*QhFfKVVB_y4M++!?BB=*B5V1_z-_yElQXJ|jxoWn#a36&q zzO?{*)ZF^>?V=4&&*CIVPf@_vQ{Go@ zFxcDP8N3fwT;w?@L>L6u#P{SoI8GUYIl*mS!*Mk@xqLTJ5tQTWKZhs^1_Y@*ZJ$z; z=|63T5;7Dt(684Xh9tz6%3EuKKMYBYpw9NJFGEQ?A6y<2;plKe*he5CD3L1u5{$TR zmS@%QBuF4cwv##6eG=bmRA^$mJHjnDOb*Gio@`pw7n&O@g}TZ3iIRmhr@?+rjad%}r`_4e&qU~JkJdc7hz{NpfH z%Z3{?^Ks?);q%7oRL_~M8c52;!xW(!S+UHS5Y+tmSY_Y`$aa<(7Fg-_yYE8L8F7h^ z8nM^n2a2aAiZW7jTF`0YUtWE~{+xLhEK4UV7dGd*eC(*H5H{m)r`=!bn;U{vP+caF zGK#~>Y_lnSdj8b&uDwQf8J`1k{_oZs9lGu6@)jyUn);rve*H2XAJ?8dXl-iZ^4Ks0 zoxzWej*s?JH2}+2#x|tX(6Baao*9gO+Ss66?B2TN+{b%Vok{n11z&bjC-p8QWMq<^ zK%_eJ4eJBgjn4aN9wkN(Bf6l@r}I7)^Td+t?KvYKqsf;a8e3wXh`GNOMGMofrWRVS ztbYXr&FAH0sGXM?tKS<&x0sWGzprjAkI^3Z~z!+nU1S zp!<_KxACalJsa+zvQnhIz5Nar@%#Mzh|0?NtS3G`K3rGvZSz!yOG+<1;$|bJ{G|k< zM(c#WFsR(43+aBKp|)eI%t&?96?~kxIXM;0Jl+yzzEE#+U453;rS0~VPTuX;Ce%3z z;}}+JxP^N0Vl%Y9@{E~qC6%A_+0wFnnxCV&fDwzkml7!Msg7(36%_2X_P{*>zdJ+n zJ7;Ihw?u-kBYw@fK0V$});o5bvJ^}CzMcgl^$wD#Z{) z`T6?alYmLC?|0&wt(1DX4)h@n@NX~2tIK1VEMaCYZwtB`7vbyY-*bJTC6`rtDqg$R z#r)*4t*4Kz7c1JQG7jY~-k9NY=ZwiWrAqhOojm>`#>@z)egjwI+j!S1&1?X8Ov|qc za?lXBgK9YM?@|dROg%6OqI3ttM`dS zQ^$osFQQiwcZ1=x@kzZJBrde*@pc`4b$u0wtFh#_8a#ETjU*&J?0Q?3d5&R9=q0n? zI0j@?$9vs;Z=Bf<*5ghpJ8YT2vkFPn27;05vOBMrWv_#t3v!nzL#gtFxIEGCU%x(w z^tiFL8_tnu{zsC0LrV-TN>T zL=uCf9ClMKgQ>q5YBH(9aiHYhhY0xsbFgsevG=?>==cI_tqA>BqGE!P7G{NPV{538>$LI%CZF_C-naw~NaqY9O&gwaKODsogCKCL@vPs&<}`8mH6I z_S>b@cx=HnJM+sQ-V3PcghXk_}n4uq-rd?$DcZ5)NnIr))b z2}c1eOMLrQW?z{?Di2k2Kx9Hx^QEk(zLKp1Xo`*?OFA1+LO7aWaWH~T z2^+1GOpxv|uUMI$%a{X@rLHhb{(a4@-z@hteXf$twSF!kg+Fg$<2`x`Zx_kW0^&of z)QSS!My9972VzHmiglek`H>z5t54F3%n#pPN-c6J5sYQU%9S);X_U{ zhmV4=iaR8 zGW)88j}VdA1_~M-0F;03uksbQPD`FxcaO>J5W6d=GbIr0&wXxPJdak7T4l*+xePA3 z&ooJ&?0I@^)U+pXD;AF}A@~Rddr6+^hoR4o1ESLzL(>_3WtXoc5aG{n1$>}8dKD^w z2l?!8Sd2cU{0XorLv@&hNI7!;Tfhf5PdtT?T5$cuud)C7&QAs9%wGne^l^2OZ~O_G z?i2<}hotMn>44qZI7+)0zs6>~_~Fsv$P(XETWy2+Mk2`@TwKKdf>S=R+1a<8oSgPy z5{_mG8C8LQl{<+7gy2|qyOOjuyl_C(-O&aM4nTxtb)&uWYWzX62NH1^Kwv_s3dyJI zKO0G)Uhqz%Ny)R~x5wtz4X~kJRejC@`ZJIHF+GKoDeXaqKS_8U;cFj2PX}T5)xE7p zNST~YI1bilIOz>?6g2K^xzF`tvD?=foL(OQk8u^8e0P^!U4(OilTCFnhB$_>rdKjz z9hjP)!GU6CuOjon<^GjIPGt*&yZmU*@fIkR&zUd!W=QX4uv`WV#3I1Mp758rm~Fba zO^<#c(UoMvKC|n+1~L;%(2SU@2B^V=`iYr3J;W|!Mcoc-fMQ_>q+Rb|YUwuNnUsCv zG8*d$&N*JPioJo?qY4iO9T7I$i}j)Ut5~Xoy@mWfkO%X>c~zxatGO^B%H}uPP$vN$ z*h2iam%~UMIDpH9L!IRyC^Fa0XTYe19e7!P(fdN!o6Y71?zUpbIawtA4g~Viyjw;W zB0KhT?H)5@GgdM{#1Hit%TimA{@NY5ussIy7MQA`K%V|<X_+1Z32K8XjtJ-B1IzqoHdCC|*{ao=YXfMLspc!3=J{o-R=8RSUOn zwPd-!7yW*2e*JWR@^ruaH_IpPqT2;cYq-_mNkCGdVClHzKk+k0-Jo(aS(0(I6ONU< zH@QQ=;)`h45vRkg?{6V5F)ngD3J`66{L)n zK`#x7CM(TRh;|#qr66H$0{ZOOTyWK{3i-vK%w7}*~^vn7LFpv@P%0z~hP z8P)Tht*pA-EN>Ckl8+yWS!ocN(gpK8SPK|Drm@1p!+~>MZ^>7tsn|ex-m~QI!JW_C zhJ5cpj};TJ-{?g&E|u(Ymnj2 zTyW~ajYW+uSZsT8)gijDW0)Yrd4<7!IjSE0HG48(4g5ewqJ?4W?hBw;+~p;5g7=81 zxS{0?UZGYZ} zqL_J9L`m|MK8Vx<&RtN`*1nBZL<1BUa9)8UHlR8T7XhEV0EQyWeXVceQ2@k6Qa_+n zf>_X4_RP>ug7dOH@E|bc0>6S&J&(QH=&kVO)_XmLMIAuCn7xN*WLSQDVwVT(&*Q~K za-?J=SPOYZfTk=(z|h)VpGpUxDlha`IX*ej5#I$l1sZ1Q5g4$vu?@|{ui;JL_4M5P zp5kfgWDmMxOiKq35=a(S;eq;R8i*|8BFmO|N{+7ACB7Wmi7Uz>y5!d75>nFp;_R5% zS6;%8O}J)PK3jm%A$Im0MC+8P8kMUhl*$%#WMtR~1{7SH?olYMr%&5J(80pSmYJX5 z@ohpsNm6F)rKfOlj1#zb3iQH=C&GX|@Gpw_JHNE#yAQ@7sHb{}FxZ|XZ;uFoE*Q8t zbuY_NK{5x^8SDD7J8rH(^hJ1X;JSe+^5*g6R@FXOD&kSY5QPD;>~5`!^3tuJ0WGbE zh<#MRB2K63E$?9V6fT3`v7`3@;~y1RnGs=79-VI^UeAD#h-G3D`M8x%YW)K!r$IJ7 zeyoX*nj(;?nu=l$1G889sO|IhT|`KF7$s1=t#b2LvGK?k^*p3Ne{ZAb(@4J+#kpSs z_Q5p0ne!aOKp}%Pnb4ArpZ}mRPF-iRV7gm6G*C&we0W7i<+V@q9LfiZvc=7IuAkWX6xiV2o4-zoIuvh<_C+3y*|IaZrpkQk^E>4T}2!JKMsF=$z=77 z(n?CrW9aGQ+1{#tn}UjpYVk>Q5ySUmy-l|sRlxLu78h6cN0kDj&8tA!&Rk1L@O?cU zq}ET>Xn+TPtA!!8XjkeXJ7vvRLZCB2vW<#%sng#&+a)V~M?f&LL<49WG|hVmMoLj?ZNwqsQK!4!YL&#N$Rp0T$-U9j3{6SPE z)=&B$W1>B`?tASc(W*vH+&?%6^h0or?~2-HK4^RRk-Wc%wK#(PDLcCgICY^AV>?hf z2X2z;jicwr=f*<_9d6#Ld!2|9ghQSg&weZb0~@>Ut0NVg(xN1Ar2)rJo8G`*$TQf0 z?qTX<->NZYN81w!szFegL~A^e_fjQ*nGFf;A1t35J2!u)zvUEUn5_j#>-1{Ib*O0p z?mRv!EfNj~_*0FT*8_Y4=cYdojW+QagP#lW=oVUMWYmNLAjrhzc+1ZMuG_me^LZ=s~d%py&2 zW(nu%V!!`=$Uy~o*?cEh1p&7c!qEXvQqW1Yw9u#SPl1KA(CS)Fe$9aY%OGif=xk+uXqU z4*S9#SY%@xvm2DIr`dRQIf&k7aTXF6*M zQ%cg{L@1BaP0+V`_DU=Uf-CK1JD#LA$!z;HjRM5bj4np9wA4F2r@FDE*r7zb*P1Y) zD8cWYdpo45i$7ArLExUR+qMK40NaI`KXt$nMsTi(x?!!iW{~6IMWb_1Zd0UniHN1T zHsPcmzn-aH^7Z)DAOt5KoS|1Ze%U(v@{`9|%uEmi+}1%Y3)7$D_*n^}xY|MWXK^EIK`((YQ*E&V(%F#rU1> z=1VVWPir8Cd(RT4=<-Ym+V5rPb$~*)c9r#4vTX%IOXZjF8j&%Zg@nWdm~)!ql_2^rUEm%hQW z;X(sgsU@0aC@s9(8+yP7kn)hV*7c3wyQDPs7ZH0pk_S%P>_Pcd3xwzQR`!V@EnR+V zBWwkE2)Ynr1SpMj{3b1s);GZA1-zGwJS@UF**B-(t9~{1;|Ah+{(s;r&k(XzUQRk& zF;Ta_#Cnb|p8$hoUJU}9pm@ko=T>HhxdI7R5M7vqHptY%BHd-`$Bzf#cy)wUEdv8_ z!p;jW##z|Ya7E`UMc+Ku@5cCj)CN@}+|py(r=b80Xaj~$lHPf#za&& zE;7=EzCk%YUC@N;zfdvIo+&5xHiaB)smD_{eNp>RRt4xWQXqf}+Jsa$%0-|?`n|2D z`*3?48(e}J^iUBJ5!r&$c9HAK;Nvpv%PXRi9R2{dKyB1%wh5fsA@m!|Jg`?;KD+qU ztW0mh2+q0Jxw(6`D#F9@kPO9CjW0A=O4$&Gu1iv?r-pSr~D^Cm2X;eI<xFO9HphB6JF)L@~R0M-Fzx25T7|s_d69v40PZ?0endc6|Z>_w9ksgje_=g zk&sKELyPnCQ)p@qmHA=iM90SuerQGG?BTmD228CWIOD|x8*|z5Hp*A)HWM?)VpXHC=Mn&wD{ud|4^&7rRwha?XDTyz1AWt)W<15IEr~XM)=Ko1lo(a)F zqd!z+WMnl6G(9{#pi9@oCr|n>?fF47vI=O11x*kB0YHc6URZc@gE=NEi-e2}%<@ao zLq!yhQlHubEuN2b%Z;&JeRs7PeBpV6{i$8G1#kX`lA}aS z0-A4Obp81G`H>Edpc*EnqH2S~#y*JBRPt75CqBifKij_1)z`A%N}&%+Y< zWR9#sAdA81kEjp4P;5Q)g-pWjkC-3Wdj0_Zvbdepq762_3xfFO3sp43U>i;iFWX*o zJ?B`odGH3gG+x!Aeo~a4tr)7^K(A+MHgMwLcXmBw5TAanO$00`V65}?;*rT_UK$iH zssr(xPymDg)xN7zP{WhFwYUvRcP{yh2;TXH{M(&{D(ka6775)RO1Xze_N1TU5se z@vad9*n*EGL%K_h4G~J`s3OJLdC!5ef@9Ww<++HVxZSuZQfqXBAb(Ad2O0zA}Rx^052}eVV9<^Y_L7_ZMa1 z__Yn~8xT2eLH!T*bi4W2^GiIM$VDcXj78d=y?{Gu6icDqciC0>SHT0{5cguSZM^Fh zq;;&0k@7hyXkSs}2msogoV}T5%wa}fF1YqXsO$@_7v#2#W&sk57zHf|AiIAaL0!7J z&QEjIRQq1VTJwT@5YK97sZZ$+aTpW&C48jT5ctcV@bk^hWn5<*o`83Rkk{<~679_< zc*`OO67XFT`4xx55Xn}uyM**&%3yF`I0yCLYqWg3Bn5vmA2AYcyAEu(Dc<*h=);P_ z2Yo&2)0vL-GcQ1mGKxF~13Iu4vAGHiLgMm-o#8D^sOG7U^M9c<7#B#n_MegdcXg+_ z=8oPV$rTuapTHm{?Hd~kIVjwh-r7*#0G{A*0TjCt>>_N;koMhJ{>BF=Uj#Wh$f1bz z&fRRB8LRC(!T}~zzHa9`1b&zV*;Bzns=5`;oyJa8Ok~O<4j*5BhWxg=8_u{e=6*}f zyD9=41k13JZsHUNK^rDca=x5er|bNoF9DjSgKkb%-OVoK$!S;d!K2md=d8lxN}@P? zS>A`48h{5z0l$S*gJz49gSYyTkuF-UYSQcVP#HjdoXsBq$@Lef%0JzvAgH-yVdUBfr@w~eUTPQ-f`vxNX z{a@Mj;3bmu(Q~D}^J#8*PtfU1QA_kgNz;Xj#{)k*YHOx2jeg`vECC0#Zy!^TwPkmt#Ri%#U4k@-m*i2^3EulsH>`Uu z@c;ll_SkzMF%sP=4`5fnPXRiVb{C`yu0@g-Cc1};Bda1_jT&3S#2C%4C=aRJKil`TMva! z9}`Is%AJ|t$QVl7moxHw#BE}r-F6nA^LXmUUFaiSnFqIygu+uQM7NqR02fpMMswx& z2L_aD!jhE(0${4J*Byw0m>ojU(<2LN2p@OS$J7y(R+{n0nC(T)K+mg9CpT#K zM2F<85uvt@TSXij0v(Ql`qlP8{CyNqAF}03P6L38dk5yX<4Ms)Fl1hsm^wVaTuP15 z%MeA!7e{eN7Zos=y}$sB4lG$tMIQ$rsly8Nn*}#B)Vp>#v?rg7Tf+Z?Dl-G0CDIYY zF~Se}(|G1sPP&8f;X~VZu>A^|6JEYw@B(g$dud<*;nOz{yiV0BfN>l7w>|wC`CQE)gUseFRVWFd;^; zhKd52dHhVBCk$JY@UofOz4xW^R_?GeT3&#{nwHbz#f5HaDaa6mVcG*^l?py)6t#bD zN0T(dNR?YSDT#s_FXRb4jICajVwQ-J-(-eBpEdOEo$vO1-3rQeL+Wy1hIIF>Nu}Bz zf*fea=uKGggb)Sc7F6Y*-1eAne_p<MwW1wyYs*2;_vj-AS z+SEbDu=|4jBjtcrl{73a%qq~Vz(oE(d`P7BT#*q8ZLC8GXQ7Bb)pQlXIamk30tmAf z#1(CYr4d&-K5_r&cY|5O8X#asu(svb+}DzcA*Uts76ySxVr}yEvv)B+dJ!D91gaQ2 z-M-!EkG$XJLYNDr;|4iYVNQH+P9{Q@9oYJY%y&iYB!<6aTl={Jj63c57o?U|Q*C<{ z0OP>H+T7~pYdLejIc0}wwuuj5f`>+Mw3X+%u;_~t6BCXHGFP8i<0*tL8L@~J^GH-@ z@G9Y^OUC=pF^C~~_6!_@0czF>2z>YvG>QV8ssiw~w!IE`z*=ja(9a5^%?L+s@T&f4 z-BtREB0;d!LA#}jg+RseYD2sWVP@|`U==IT4h#iTR~B%^pd*-lC$+!!1pnZnI3Q;4 zX~kp)1__&ZecSr*b(~8K8_3JR^;39mOK|oEx#S)rd_V_3Rc{D*gUBkMI`k1kWRS0? zkpm0iO9J4c@Y+MWwQ_qt2x++9QCzWYHyX#Vc|so*9u;Z8+Qy9JZ%hkTjp*2bY{{(t zPyKms5fCCGr^1Ugy^wSRF~u9kJrrP|~|*o`1sIu;(_@B5(jaKkP#Hhl%9n^Wfz%_s142=#^|(QcpO!l5Wd z)kS|4^c!7(RU?FpH3i|&Ot@*Ge^adUWe&*cjU3IDCO$(}Cnf1DWH za8Y0kSWH92j%U0zD~jXl%^@4A9>$a-2?Z6dtK^=R{hk&N$=ap2KbIiTwNDEiSSn zmo!~}mD9OGzf--{W6|81GSwJefoq9p?2>hhI)q3iu2xOH+)9OIFJ%hPK=XSk#wIII z@0|Dbf5%am6liMYv5;_r(tUgNhkU}GOrd(I$k6U{=uhgNfQN8j%d607KYJ!7Qb$Ke zVX~#9t!g`pC-y3j#%!+l&Zo zi{cW!!uo2EzO@d)ncgP#Fxfv`>H8BFz>)rXR5RMw8}00vPlMhWh>1z_>RtSA1BUwf8*Ujd8D&h8=iL{l@J=Z825RmT0!P6~F3@bIn+2<(<~ zjpzdl0!YRNa3KBtvHM^D*VZZeK1)8jQ^g*tLPn)8dFf{)-;ehga5$xut~^%xob1imEp>1a${YDM*?0yqmvl#H%Er@(V&y zdU}@LvayS>;wnOXsJl0Vz_dPq>Gx%4=#y(-pEF%&Xz zXv`}5{O`yWpMQCrw)9Sl_{+9S0WiWjh81sv+)iZ41Vjx=dEMSS%gvRpXH%2Da)OQv zC)j77wceOLedCQbeQcw^P0VG;6)h|B;iY0=wEWhsjqGR}4)3YrhlKJC6%X~D9#1KL z^B%r4a`WZi=$GVH*BG-+@Dq(`+%eyCwce;NoHD97C~zC<#Q!}>$uxP!$9s6-iF<(Q z5aX>nEN5amBhPv>_exaG(C7<2r=K5oa`^IBH}{)0Vp@T6*@O*^p3g4E9(8J-Bf&Exq9IngiRfhM#QcH^{MWk>GqyR}z?xN~e_# z&muG8xpcao5>xK%@}>~8r89o+fwVr)r>jItN{x|beVhBGfgdiC%t^_xEz~4Ka=kSD zdQfQYl(4Q{_3_CivHfme%daj>YZh2|zZ$Xq<#Q=}UH`bT>_ITrit z#o;GUqLL?vLnZw@&l6;C8w7=hfIm2{4w??byUUB<=t zmv*`9XoaJn#Cus%f}cVVKRgh_Za9(lNa1KbeWRU-`R8EI(h6xPiISTwB@6fk!$(JnsU|;Z!^)! zaW(wd&Y6Fo1I^AoW|EnXTWfbSCzhq$zTwiOcQh7UC-c$MmNG)!$e_nO3~!>8clvr5 z;P@kgD7bB{X+=lLXxY!cb;|8+!|2i$yysu7m-EKBj#BkJ{4}Xh(;rx$?YlT~sAUSZ zqtTA!TqJr|VjjGt`8MmIXMU$f)T+)pS$W1K6Nl5+4?E9~wQ+8Uuti*$HCo;?F(||< zdt$jRPcp4(RGfnNyc8Mr3(ZBdxt4q(gM=$Z@SuN(g*2zhw~mX6(Hl_o&%S2QQJJu6 z-YSfmSr=8F3thoA=^8fu@loujl=LF=MQj1`e&hL;IZGaIJ2_!*1=3TW6|Sb27++mI zLld~YJf^r1$07c<#CNG7%Db8~tG3O#&x&VjYlL2)(Q$^GB`zH_2@PcE(A@A|S>Cj> zWtQjcwz#N|tuKw{Q?Eyh3XQhL;aq^{y-We)XPbH10X}TsLHXusStdEZt%g|b%+<+J zjTdq`P;R;ONu_iAS!#DKqQOeB;!Jjv~l(TXz*XlkqD9_r9KKknLhOnZC zmS2G!AAeP&dP9+XQ_PRn0UT!J{vN~qAs;jTwQaxbr~lcA z{);!bypxmqVFPL;Yl08HT0RmXE&Wi#5f|e1ZeppScAIVEaN%*0OXW3^@Qqrh9gpRf z4=Qa`cYQ(&l%-GZ-6k;^OuW(2q0~gwy1cPFXiQtkYqY~TueEKBV@DI`ADr{i#PnOs zP!?&A`m#&q=2F1zV^^I^R%7DmNZRDj&FxRG$He9CI=Y@mZd8&iT&CRB6x$p>yuP-K zwke8&;}5HKeb5VS8WpPf|~E%S@^)nKH}?i&h~ z(O{~@<4e4j{{DV$M7{lcV;H(v*Yz{&{3hOnGJm0o=q7wJccN#8yj%lx!Yncsc2z?Y zB~^pJe$tMly|KlJ)~R!sBk(Yh=YB-pf%3m-c9A|+;D_@&=Cx9Wjp6&!eA6%6va}NO zT8~3TY=rfr{El^lzR$DoZ>bQ}h&>53x@2`HF}E=_lZ>P#=B4yW%j%V)Pq~DJ_8cv3 zUSz0lUvGwYNs+HAydwYXT>rz$L|t^ln8c2nJ}Nn=HM6La;H;~#ZYbE=aon&ey;kf+ zLXBvout}`LnKWHc%d4YG-3)&-=kkrt8SU!YJla+QS(H?{ZdmYEZ;|CA>i#fd2F(Wv z;qY3H8*)wAH9GrdN5+C?iq8!oQ>{Je&i=JpY=&Q&h6I64466|k3{$$;Y#{7+dpL5V$;sTCtA!h>G{R?=eBLb=mf>E zS2b4f?Jn^Ixoj$Z%wDAkVh!Kp00QyozMn1UR+Ls+)r670rC0nzc*}I){>*c zj-1p;NN#Q0#<&c?GWCNqw3+D_LFnDd=&O85fA(h$`6VU|UiH1c;^Xz6I-NeZ<$WSo z2UT)}s2nqs@QXd_o0W;Xgcl^lRbG`=iDzzfx6_cmhW(-Zxfbn>>PUk+L(~nXT1qmG z*33TKnV3&Y!v;NJQG4n}CLge}USG*S+`OT2;z3H*%fxMALuyAKgHmK6(jiH8%`c-v zu2mCOUOTEotAbAQNeuCUU05$PqS7rfkC3GdNbPEUqFG`=_~BXYGY`0bv^Je>?Ua?j(L} z%M^Ltza`uw|&fmAe6SBo}7ux?k73z~yF zBIZ(}2p_c*YvVN>js%^$wZ6{%vZ5ZxNQWD^o9uhlYL#3s~4&y6*f4tq4A?pJjlrD;&T(2;GLi-dU>P2YT% z?rsDO*cWfK?lkaMKG4k!Z`wwi%@~@o3D9#-S6#>Lr&)z-u4}n>4rYqe-*>ymtH4wXzmHL{mMy>@vEdlhH*r>gKjca_^11s+)9*}-o5ox zXcIhtw+<$6ji_2MEH;jnJ+r=?e9|wFjk-1WJfU00HmoyDBEfJ6iTxKN9=@(ix9gIY zDQ>30-HSudnts2;yrSq~FUR_p=hCe#IY#>jd@wlfYP(!jexD;TU|MFP`H;*l&8nfh z`L!k2iJMZo!tEAUs;}kZqF6&_E%#XG(mg72F8#r_7kxE1{NgnGVi5)%<*uD9OuC93uswp5Cz zN#%yCG08E6URqMUniKBN@u=;7%Uvbn^H0iL-WRomK%l)}QT_>&t5@folU&W1RwwA` zz-Qc0Ve#$@{kdx-s+=nAAIk-JuMC;DV579zQ-?LzDvo|ke!D`OXDcV;eBpMI=*Cij z6)H{MDdN$fu}j#M%*T9JwcK?M&phUmvf;|PU8L(^}#c(**WscZ>pKiSFE zzxysDQ!3kE^3=!@UH{XraW@tu8Tc_FTr9G$V1>gE#gl{a?V|eVcV+|etwl|51LE^o zuWyOMrpjW=ms!&DqF1)tGp$zAem(yO7nN*|WlU;*^Y16@-(vZH-WE6No_Ctr-<*qf zwr4m%)!qyV!M#|@bUyZioXOU-<$8%*-npD*MIlv-hD(7Y%*zV!C|-=L{Z+{0b=6T; zD5rgGl5_=lXm z<)dW`ElKDw2 zqcc*OZIQCEblw=9$^uSZMwu6~0p$+Dzg`ef4KzRa8N{StAXP0JAXJL2YQz(AZiD`- z9oj!WQmMamOpGX#U`Mula=>fOzE7bHFIepB#RspS7(3)&4m9o(Gj4?EI6qM=_lpRY z-jL&n2RH6L`bf$e^JqMpVrc&RE@3b;zJQL(WPd=IIbM4bI|MXRa9+EW3_nyk%bh5H z_N=UlK?WugMgiS`kRoEs`({6121#Y&2i)R2KdRE*&C&Ok=Ox?6X!+*ohfTgUt$BS* zL2U~{+f_nF--HcIgpK|xtsEBjmh9wECPz+p)4PlH;^L)@09UM}n82hl9_5+l^`ddvuY=GM)W*>e%)P@xMyzG_n= zJG%piOS8kLHLVgG>}9pp!AVrEW)S;t*U?_B9X8>MnVS9ck@UA<>} z^R;6b@|ee~RLw8Qge?)rr%wIBvGMUJdnJd8K}#6V`=dR+=OJc$o5_rNGWeD39&gCo z3Y9pX@ZDJ~9RiUZAlEdDoybANs1e9~nI?EpH~Ou#v>=+ey2xd5=@Q!9oP6ltfmZVu zZhVyh(8(yxWZ}KR-$zXK*EpfBzH*mmGEtkiF<{_#lxyupg@#FDOU+D#&P>G3+Bxw% zzx8R|Wp9c$oc(sA>5KHZ1s>|k5VK|U(XOvVq(nN2cLM zf>QeZ*T`;t?5uC2^J1}%v07_)ns)nqe^HkGa|+b33?5o2A`H#U?q(|=hlSQ~Hs>vG zrb*-od0(1MD^KRwqDgSDYI{cqQYUf7EMGR@s)NIz-^t9m_P@^>SbT_bD<~?u_XmWG z^TZtUsyYIMyWJJ%z!#%PtwzH(=7v5qDYR-An~j}xWskG3RL{~?vNGi1vcl@%vB3wO z!u8G+Ciy>bIlxxP9Yes9LYOG)N_C6W%YEkn{t{E@@Jm)`{E%Cd2v!9sM=-5$#wz}Q( z2xf7aUFkH$QtADT8z1A4P`sCP|Ndc+92SIxM9RS2!Y5&#yor!52)kBZpR;}b{JH1! z>pM=Bo^8g25r8PbW&janLY$>tpB{7A`=W&f2Ivc%N~WGXEin>_H1XNB`IZjE;sJGo zU!NcHhCW;E8()7BQ`)bmzsQ4ds`5&Xjx&f_a5A_e9g`v|g@abC?{su@B=fV!5~y=P zYed)WioB;I1o`n(IC_D0xRG`FAZ{XL!_xfnm!~JqJzNd2Wn`mh7UTfCOqZs-7 zKe2XqkN>!J<3j$uf&!`sjZY@$twQ$?>P0VKe$Z7#BCR$j@nQ{>qjGXcD2WPw&w8AiUiNBw z+6#i=&;b}z>f`4ZJ(lI_>S_aZdnKX0T5@j9L}r_FIdsI?+e<`5MpnT(Vk@1063&v- z#s#zd5Hg7{<+UvFKL!IIP<-VaB#x-nx($(BQ&(0ZBqSwILJc5jIpbQ%zDy^pv9Tb{ z?@#<>SZ42j9o2A)P(wkwHAnz&4ocW!7OJ|!x@4mZ0b$)@w$EjpEsz5DCWVOOFd+-A z&-AjK>LX}AB=ZtmPGahzuZA?#v&GiTBu18@>c*oe6iTvD5u}|up$;+y?&_D^-1V*s z@dL4=AC+>2)d(W8va;|X)u^y2!KtA;-8;&mTb!_D~p(B$t?GV zRykR_xZDNGsrfTk1#z^3_`1&)mtXh2f>{2Wp#BbOxv@{sWNCp9jNbL*0!)G#V`LkK$mjUpnd8BnFT{l^R_ETSIh-K;KjEQho3Bmjj3 zU0((*JG|xco@!5?XkM)irS>ki$bsd;g|j4uxcdT6b8M@k93qOgIIohx?pm5gSv6!5(a}!;k;eS;Q9Bp&%Dh6`2A!) zbHuOU+9qQvEhFP~&%^Wm@7^I0VXr12SGC{E+xwuD)Ey|$Eh;IY{ag@UMFWQ5X@yg# zZh9mDN~62GJ8>}37?Qy7D57PpP+JNx_eGB7=fEm1$wHtX!r|cag@>Pu-=ax^FTsNV zh+nz^dpVn)Aq**!fLD$dofb@#wfTRS?Y0Ob`9!bV2Bi2nAkBC1;0?dv`Hx{}!j zY;8!-0XEOdlk(`_g8TL@R__3$i~*diX;|F;!NG4JvDq{Qw`YsN$qP2C;nKPZaQZ*W z%R4T}t#Vkzw~v?!71Zb=Yfo_QE?QZ26|mP%BN9h~z=Pv`>ZtsiZ2)0?2gVfxa{^Vv z@dzSXo*&P(yu2*A3ml`N{{Ezeg&;7-6c4t^EqWsP^XJdz@gGX=+bQMNLA7+)&StpY)=bW zKMC3}Xb?Lk-ux`3EtB;zK=g!g496evgBaBK&Ds1q_VzqyuW}=x&YgotD^1QF zWzLa2sKtGdkB{>XL3Mr^B;{D)p4r)H!a0LOTXr=8k;jElRaJ$z2_6J=wxHDr-Ptj;J7YgnzWPZ3M!2pz=1i(jUFv4!%zHNBo zr?vJ_D@%KLTvT)Bpeg diff --git a/doc/freqplot-siso_bode-default.png b/doc/freqplot-siso_bode-default.png index 3cf235a31167a1b14a99467f6e2c6a7faf82c340..f4e3fc67eb789f63188ce6dc0e401c2206422d0c 100644 GIT binary patch literal 46401 zcmd43bySsM*FH#hBV8g02m*qDz@bx+h66|o64KoQ(v3(e-QC^NA}!r{= z+@tgB;0K?hq^6^)jftbnCwpT!`A?3vmNt%-Uksl+8{0d4v9W&3#>@8h^>Z^vM_UJe zc6O`({ts+6_NMH;8=9)%BIvg7KRUp{;eLAhhR+wy`vM17T`D6Xs^*%!x8UNc2EF-x ze3V5oA3~qgY|fAYg$%TY)NI;+x@z)f;r3&mu-(6w#y=hMn>qEm{}TSdarfrN2bOI zGL^qS-K82_`g>fQq`ErshXgjsyfM2@>~~l0T0#k_sS1XMFEn(Wh|tl|w;cHsjPeUZ zC(O?~_Sj0Rt7GF?wNGX(%A&u2S1L1t7{UI=VNvpaN5&*Bw_B6CxjY;`TIrl=cB?AO zW03G;L{G=-_#%}R?eC97KtND`chc{6vz^yBFhCE1G*u2>?9Vk^%vzvhVbO!x-X1hX zt*);AJ+$JXh+$M@c=5t_Ys)Ovedm=Lw1hLVuuv|ECj#7`fRyz8=1|J@Mv{$rvbL5M zd0F!bhEZ?iOL}_$>}>i)kHZ%7+i|X`SE{*3+j(i6-Vb+wTT=TI*xR1>fUR)7S_$H_ zUq=hg{2m{V;xl8p5iLzk%f=Sz;{#XPdSlLGIjuBfbA1A13hn3!z-&1A%fdk(QLI(7 z<9kI!M0B_Gcux}&5`u(;1U}!h^!VTccK|jMlfbrULRL%+fyVoe18&Ll6gxrB{R@l- zhxColj~@hZjZV8g6gJK6i5y06$RoHPip@EV|33Tm&L(oyjQ-WD5NT>RB%cI*ub&^- zTh4qhbeo)E-6ZYjTTdE=cyhC%HrbUMO|J84V&X& z+lt!mPQrerrj`yR^Qm%^N9>%y`q}y0#>dsTxwzEsZb7~c+_a<8@&5Af1=t@bk)-n2*cdddJM(Ep6$Os{ z-IssEJ5819?l7i#W`fVx&sJFSB>npFBeV5#(SvPR6-_yg-bV~AFC0vC!o0@Z*0!9S zlCl`V+|V$y(Qd8hFAt69(Km83vI1ff5)H45F-745@(3wGyH$TMf?tV=`K`dJ;+C{u z6La(NHE_beW@A%FL_ip?v6xaPdwkkVo3{IlupxGCZYUM!=l5~L)=m37PFo`xafie5 za4A1`uVoIqo6je;&A~s|?dqx_v}~%V%4D$ct~fJOOkP%2B~Lynw{T|$>8R{BQdrjZ;10WurjsrtWROz=JN3?bJ|DqcN=m9^PH771Xz<;V z+FY$wk-D0i+U@;FhWG?3wQKsxy-}24?#1quBKXAM;2`uHIpM8?d=ig*L};jrVyeLQ zi9i4zw2#(+)_?5D-vEaIJSgVwRGH~Wx+oSEfAz`t1#tGZ=NsO(x3|ZAb-z4_Sg3{{;Z^%8y_Mn4m~}6_Q~;#X-w2Bc-|!YPWTKVpc6R z*e!5D2|wSOBG~SXzw)}-W&{qx8jj!PV8Cfgw>Kw2?{B_x*40rbZr|{*i^bf~JM(d- zzkmOl%~ZZ5WK{UP*z5)!GEU~Td!g@j{SpR)X}%^l8TM(%|sm(8pwq0H=T ze_Y`^Jlo`^JSN$iuk07s*L%(oIN|#O{?@Bi%zyv>ZH?vO z!fBPncZZRjo(>C-RTxPF$1FHoW6=vPFhASskdvKV?sBMSGLR^0VDKDQ=<4~`+ly|) z3b;3(SGM6&bf+7GYe6(#zb$zj`dRDLF4FiM7{FB43X4iti^^Ivt>$X)F6L~YJy$zL zW%Zk>9#=QJWn^y*e0n$7Bvctd=*b*7urT7kRU zR`gy4N7E2EMY*4x0egFv)LvJg4w_FDR@c_xUC&0P-S%sy%*JxDsrVfYZqBx!J$t4W ziBC@cmrzlleJx5ja>05NY(>v!&I;#!Eio}MQem$<$;~>GLGoPrq#m%SADdk{95#nw zd1+pSwIy#IE=}*V+rL5dus@ue@PXlod2eykxKp+NoGUeA2@W{S{CLlObBOxOn zUvH)n0;~aCVBB>InZw{O?zl7>e#c;NR(#P^XZCbB$Wt+f3F1WwF z)OhmHz`&hWyF#F){56`dcYwJT1_lHa;N#=(toOxC0N)R7nC`HyD*~n;ISX9QlUuH+ zsMrA>VS#So10tM8HinUat&5?yxkA=X;@E}0WMw}hA}H1 zgaf@!Np;h4803z#G8sxPm^^C>1zTGn=zgZu+0ii$Fiwr>aO%#Fmmk>7rt%bNY5=B# z3PC_r6VDay&6ECFiCT;ERs{$Rwbq9ty^%6ArG0C^PcZ1 zVE|q$9q>2cQ__)?8Iobd^o)$BeT-@2+r*AFAM31BwC~r})&OW+@xv8*&dK>tyox}q z{sRs?=2O1G#i4>C1+opi%#dh+&HsP-X7t(}0s9*;aDb5f0|PUeLd){#z}SNs6rj-1 z(9rj?vSL|wU%gZ5eH3`T?s#9ldexd52$C9F2_gWAzg3lsE(%5TiP9s0T z6A&%C(nbA7cF!kz@=GG#a*!kFTL!)BaeQZ@d)xGHc&7HCRPbZc19vW?;pEG}V)?`4 z31?S#osUTeRzXE_420l5aeSdg^ze=yKRa8&sU(qy^YisZ!^AA&fG;lie|JS`-HG#Y zt_C!T|JnmVAGUJM*P5^6&4q<8uMNLin6Jr&2mU6RTZ!OUi1;}5P%R9w)H^cg-cFamDPf-Ml{^b`I2u3Y7z_;!caq`$ z(i)I#o!^jqN7sBkEFi`H#$MY=Vbn-bReG2^|42SY$gxWxUN(^~d;$6V zfYQtJZJReSOvKc`oIcn(;)g4;yG1~;Jjt~=L_n}~c+!OMwrSg1M+PncPi(yOh>0rd zYsf(hW5(6zb1Q`dpZl;8cyVPV`KpY5*R3~{SoSyJcn=Z;BH)mdXt-jN%8 zQ>7tGi1d4XpU2MB^5uADX~M*dFyo<&TPo7G7-8>zO z8J1tVAyCgC7@0sWh-U|mdZmvJh>q?%zo)I7%j1iwDP91qf-g2M@}EWd zUW2`{fSc#cx2SK&i1k2$RIjI(sTGRwMFT=DJ=yv93lnPmh=2{zPMb%2PFBVtA>LTe z+ck7r^YLsPcz}+73Vppf`a>6W<<2aIwnAg6u6d1nb)+SILPCjIH~fv_al2vt&~wn^ zH`S71N_jBhrxay1h-DJu;~vV=JYt@+hp7&&L=Hm?9B}L*0QRewXa#f|egdAoHT4Ic z*p>RCXd>UZ-Sm|8w~Keb{n|vEGR`@hXNxg+weQLL7e1sfocmxvTEAU-v`?+AtPi>W z48oIFj*)?zD$(xsfk%WRePaLza*w1aQ+j_qq0GYUjl0l;w)>T>Ljx?o=*PghR-fg> zn>58$nC-1)y*H5~DSUqUF68X7CD0mmNtCY^e?1o}=Bnl=2dD48{gU5#FIXz;6UaiL zt^Gqo8vp__GBE`M2wUN}tpbOEfx&DO2OPM9mzP(|ur?a4=TL0GMbTV?z$xLg59rzF z-%uxi!|EVIW2ZS?{mZq(E8l8t`{eVP=!vW)F8d6wTxhQD#hKX8_9+9*=*d4LOy|l| zEV^w{{U-r%!4*8ilaY~GUtd20cYX_C{K@HQNO17)&z$g)x0{j@662@E0eBrjYDBez z0hb<`GWx#qqec`*7~!{zkLD-c`UqJw>qJ?9s`J3?%6KVKDoyv7Ca z#iZ}YOOTkfqrNR$T$v}}F7z2()-(K=-RND;LQ>sWuIuzTRQ5pg zSlV4VV`(|8`sP3=Ks~R?tSPL=-ri&A{*OsbB}AY0v$q0lcnH7fB2B->L8RThsMcpOZ4N9^%kZiffuBPeDgj;gaoF{S=akLwYIDS} z!k|Kv&CGkFYNyp9cktJJp6fxAu21~%g-w|o9R(8W<3dx;V(;B$syubn^}|7g_4(sw zsqoH-Vy_1zrRBX$FGQhc;<%^QiQDUOCw>CFCPc6#C##-Q%H;W~XQe|$ibm7Nn9R7+ z$IJ>nODCAjxVh^Zj!wraYB1a*d`0s_%O(s)%ttJUszYUa>;hseaPZAWvZnZFNvp}v z8msn)JWWQ-Da)M5eX+C<&a|+!x^q5H{%pf8wdc;QJT$GwWXOvBoMrAfUH0&H!x~rl zY}Y^k=w!D6b`Ku2AsgC}muocp0cTWkS_k!fA{FKx)hKDS*+0&(^OgejN^IXgW7v2&+syX0q*V z4%k#TG7PaHnQDYXj+3{wX--ROi*_U^OpTyZpe|TwDy%W=rhn}@w5hZ1aPDXd*{nN$ ze2jKa@(mS5L}4Z6N}sYF^5}KBacF&OPODTzkRAX>g=9{<_T97?QCDB+h2Gz6&hBhc_rV@;_x(uPFVMrrn;3F z3g3Hrc@*iEgu~2wx1F6Wor%J9yA5lMDhkx5DTiUiEI)fIgCiq44N=1e6}q>1h?80> zbpvX4EUG3VCl3B3LZ1ydznNpd;;@U3K`_sOKJ$&x5)0=SL#*~EcalIM3r71#h@Vf# z`Cd`td+HyNUWa_q&WngP4oeZ?Gxz%dcqnAnO5afP0VA{l4?1eF&x5`&q4-aiWO@9s zng5}Ir_2as>0L{sX_b|fTtOO{d>5#*#e+;UP3Yys-wl}IYSp*%$i%CuZ3U!j zMIzoyMwopgC(u9a%V2-7b~n;d?6MHB7`ts7J3Xb+;4T#O>F(~9kd}71I{E}^&~RIG zb?hKXWCtmm1K&e9*;|lEqwpj}fZ~Ij6)vb(x6SM++1-4q@SE9iEiGq>9JVrTb7)r2 zFXtoZwx@{w*lwxHRK>TLpq(+Wv8V@)$Rx=0dxPk|4eh`hQRnONuZ;Tgv4X@W*@vq( zcV5!&J*MJ46FFANpq%SRluxi;v{%9kX4iINf1?OL_Z3y7L5*^Z#WLd}mx>^lR8xBf3VA$F z@UX)lJv%Rtkc{l(<}tvC^t+O*t1cc=3auA@XIx=u^sip{nBae-_ut`*t4PTB z>hYbNP}ViQbkc!>VsN%PRI_Rf##I_UW!o^0!y=%?JZQu(%sjQDlY@9#ky1Kf!O2mJIylfrRJdr6k?;}9r2^4@w%k+g8y&u1V znzy2(BNu?pp7-Zd)-SyQ2*M7{#QQvg555k?gh7$UHy~_#wun6drhW$57_pzzMp9o# zC}%B)9HI#PF8ycA)oo(Q6L+VAd7VS-OeuW%Jvu(>f}c$VgU4JZ5{;gfKe&3!;Gdzd z89tSSmLr~Wdti?fQJoN;;ao;fZPSr}mUaLgxXxMvh=GozNT89Uj^=EZXgmCOU~ zF#fz_S^r5pT>Ra8$f2TUW1S7SEDE@aZ_Mc5m_tOrlV%eb3#iKGN2@|#d>H$Z+TOl|O!YZ87HV2|<4J@a+hjt!!*hj9%{fO57yE3nW1B zQME^Fo<8y4pyjr{P9xT2Pu@ti^gTGV&`b#u)jfIWh89`kFfHO2uU^q!9g5w$++-hC z!pR|ETNw_7x`=2xq2rqxDOxRQ4XtHDHG50O;mr9G(PpT?c<7) zq#42m?U)jK6V-kcZr0~RQHUwm1$>#op>tYnJU({l9(?gPN(5rDD=h;_94m!~_vS+w zT)b=#yu_msf+6ozDMtnv9V!dHtK#&2AgYuFUsPode~T1-G9#D=#nn{A)wBW&=~4YA zqijT0u_9W0hkmC01JE39yTWgJbPsg%Lfz?te0IT2ob`AyQr$rXAE+X zv?u*cvtEjSAB=(R=q8s|CJ&W7y=@y|bHj(bg}E3~Tre<|8rOkMZXuOFKg@laUa*t| zUn|+*tc%jcgTMU^Kh#4@fA4Fmh?N&nVK>4Y$*pVr1Sa;#Se5ZJT~)C!dX)*^5IvL) zzomR+sHI{3tZD+E6!}a^)5Q2b!*i16FKYFj=`izbchE=?l&eKcYLu1r2c8k))ly8R z!Qt_9a}oO4G-}Bzn1h<6-`6eS&x+|s9+jx&DE4TYXv*wr5cGhgFF#unr&o33XiNiK zjP>uZpCQ$qtgH+4mv$6z@@i(=mcL*5E<@X^!~O9e6LSIW2#-#VReee|-pKVe?V5?3 z#kTvEFjM}XOnpd8$h&KI+05t|@!#hnIPj3Nb}Exo6*)enJ?}evt9YXHnH%I^!a`E7 z1Q2`*&6FVvp(RsvcymMNiK&SRNndqzlM*g>`Zuz=iy?{qvu6UFr~QT1nBx{(i!VYS ztc@ z+YHUKf@+a;Y$4HU|4>%gbgr@K;BTSA zIUIIHOKDw0S0gJ1$-wXABz=F_Ucr6dh^yQX!6~{htuj<3?k0w?T)@f=^>Oa%gKCdy z&unOa>vu7iTIc{doUVbM1uVYmq zEOYsGDdkR0B2yaSj(61z-Z87fiF>0 zToG3GKyi9jFaOEPeaA!5_FXL{Lg}|;L?(aRFmuLQGt`0x78#~_e|0CFK?~Kh&jBtk z=`OVF{pR|R5!sk3ey55Bq+DY(VLp=`ZiordQ~pAe@sCd{M>ShEJ<47b80X^cqk`HO z{#+lEV)NS<>iYp2e3&aZe5mErfB1ZcPWw-bJ@HhB;Ln85YpDvUp1>~TG05c7Gxo<` zm43H===}+#T;ING?Yj-tA2)T=xFnXV!{(RIg6cjWr&>m?rwF6mW zY1E2CSGstnAF%h5Q3HO)=|j!@M)m9y)4#bA+5k6j>Y~h-q-BsARjo=Mt!7<}EmhLw9X#^GX~w zN@Nc0hpBfi6Gj4kfP;(*uQ&C0_8Ywq+xIXL^UYJj{d@Xc9i&xnfl8{4 z7qNc*BYU@Gu-}HUC%%8n)O6v@cSWb!8_;Ve;6_jlD>RiZSucueK2DKhTUq5wA|Ht? zaZzt2^*qFMd$zHL(bO8-6{jcLyrY86$xDY|bJ%tohs=9Q66_O-SuB+DH|!~z;g*P1 zoobKU9CWx3bD~AsxkH*|*boXlAl_F^uSmYRM(ZHGkRZ&PMQ4Y|C4Yg~NkW2|XQHHP zpk7v!0rs4G_LUt?->D|ilX|u~`$A`@p}cBH6b@XLLnZF;GP32e!@Lk(BLVN@;7Ro% zZV&wzF>H|zgQuo|k#8oEt3tb}?rC^%=l3lk4(O^z2PU;oSWBXu&y$SRYgTHX&PChezP*K`wh-IiM}an4FeU0TPvzc<#X*lqH^U!L5`%X8yE3Gkagqdgh`gbU` z^$mODPef%Lw%*!R?ALG|Lc5fztQbq9 zvGmht3t(bjVE&qWCWtKhR}^>vq;x++BSoQxYk$TA%J;1xzqV}@_-~$ z!!7M4oa_O7?EF1b1M2g`=b?i-RwUfd5x5@+#_PwT{6Emvio>o!MSCHP*5dSaldkb# zyN*f8@aLID%e}lu_E`qD#HLbNqb_4~(vOZ9RCA67x<{Js%o>_Dg4bl}khwu7W{o!&H7790kS&Xcjzu(JAt&*k=XTrY!-CCB#SaK{~Wu0Y~SAWbj;z?u_^MgV#CVE z^cj&r`@nynjFur|nntHeORvY)gBKC0SM9y^IDDgi3$Lp;L&R?jv zb*np*9C3NC^HXd#|IC(|rPh(RwxAy9Bhyw0EfS1Q%OEiMm*q20mqZdUs8_8i>&cnT zC`(ruT5fu}ELPjqq#A(zGg%QBDI@Y@mw_|TK5UJy?+gjX*eD78$+Bz*vnAYN+%L=9^5a?{-l+) zHexQ~3hT7ST081P_*K_}Wu>(4wj^!9A$8JUC`@YK`A5p`+Yh|+5+@xroA8~1HN?4- zl|sLPYr&ZPUJN(eNd~PR6bG9_uJBO&U3r>}G(NO{-T~Y;qG`gn?mL9G znM2ncBt<11E}C{`p{*{}Ez>T^ky(0py~ioKqnXUJg~Mj$ER7CAQ|Zi&J9ErhduBye z7Gql#EP-RgH)F&6y@F-|c=A#W*psPhn$9|YeXCaxQtR?l<&n1fN>6O#oA>c`9sw9F z^S_jI-h<&HmXY|@#(sLmYS4W`q%&4VC|qKY__&zaVb-wdwKJ2!Z-I^ zbTZe217t9Yb|3l5yc)uxe4@#(ISD2Bgpuz8h$%Z~SGC6HHeF#f!76BtpUS{0=tecG zqiL0)etk}K^X6;?9s34%hD^nB3Lu@5^e+_m- zTYHnc%ZOmx{c!1eSL1SRc24`3m4{|ng^T#f4f^AGb>)xQOAo81y55vgTJj*2WS(g3 zCf!~3LeGBIhJymNL9OfyruqN0@6lF*u-sW$89jXjS2#1{UI^iMqN*z6vwv-iv3RWT z1rfloX2Sl1BrTiRf0}h2`rC-3^B2fSQvXB+e=C-35Ym`0Yl@O7er<{nwJCW5Clzxr zcZC)5D0&}bV`G8q^_c9O9H?GMrR|E?qSvjJqCd$~|F`syTK&0^5?8elPt*ir59r?rpuFgArum#M=<3sPqIl>jt z$PCUcnW(W{2!q=q5gP0wZYXxY(PF^0{E)BQd+?g@((?xO-J=Do1@8KlYh@>kR$5opFd?1*mTj*(0-fO+_>|Dar#@h3!_j;@mjN9 zpQre%t)KjHveLX(^JdT;3x#V51eQR0yL29YfAo%rs_*hVJb>o(Jpw5{zNoYF1jP?P zs0_}|rdRa844$6W^twOSaKG5w-Ys})wwJ0tBfS;^fjIMZA_TseNCJhz)x^w0U1%ol zxJ6~uf@m^#)Bg0<;^*15)W52*uYwLMK>|PEgl@L7uxNym0gna+G}fbpAN~Mp>=0lO zZh#r!e*|X|NNKqIn@9EafCGmGzq) zqWEU3Bu?O+4J1zvCY0KI#7HdzN8`Rl3mB7p;9hh;Vq)9?qt)&1xVPc);dYnu6cDB| z0Zj$eV>bqVs=}H8YpN9R9({d%&8AAJ0ISx?h46_c5lEZMJ%56q{ySH3aP(`64_f5xwu+dTH3p-wJ7SO1VArXaj-&d zPuDOQ#XRbNi?=|orLR#V6{bE&$14}W;??lZF+b#zoyLN?LutuRJ# zUN(fj4DOn2emSnHIPvO%%4Ht@H(=gr!A?PEcw;zCQA!F0uo#{gZQEmcr+@f@sMd}_N_;tN|ETAGZ)Qv`)G%6% zwe_4y3^aCquh|xKT8v~ll=d)W{AHz|Ih5jaUK)V6u;FW>K_7H7(Xyafz5C3DZE-kb zUM2UgJS<9`W_^}4V3(O$pn|NDXO}mx(f(a+=46H0h_1^5^tuuBVF1?%aH4QQo8`~I z!20Eq_a@->Z1l6YIa>JM-<%u$%a)1rxZtr_8~|i0KBpZu<0L@eOH5CHuIGJ!9@g`U zoqaQq!rA~d4ji}t1ps#W2;d2u&nW=1955ceqwBqyDs&7CdkYV+<7kSb)2up9%iNhC zE>tbUO^xSXX*#x(SlLu{HmYK@QBEj*wo}`GkFHJ@ZJuXUKaOYlUiQNWGKll*fPjEF z?nGVXO+lZxrbES^Ujh5^jmv?Kb@Or0-{IEB2M?j!y{g8*wtPVK#N^?6{W=^RH}YF# zB&71seFS+ut`{?=KLySii2HTYu!X(dlf@BTj1K>)u49&K(G)~i%Ms{xJlhO5WLAjILM63^-zJep#G_a-47 z;ksHk)sY(o?N(pX@OF~+^NqrD8+nE)Q;J!lk`e2{umCl+h&c_Lf+rku*gQtKQiO(% z-e8agP6s%w)D)d&T!viag2akX4*u77-r}q_k<0BjTtVvTY+mrU%Twli1eW8+Ak|+D zyR6cV`8!1sRkb6+X7O*z?n8o!fU~Z}su;!MBP!4is281Qx=2)Ll>qg^fXQ2)r2R}g zbBoP`%TlFh$SDdMZdurh1*f#j4(A68NuV)u(t*jIKDJ%1RdTm)=3>9U<#Mqfw1npuVwnMTwH-8&0M~GDt_~Cg0h{YcI|SK# z+jE6O+Mvb5JcLGMmhq=Fq{e!p8|0qAR*}mM{H}lf(~%7Go5xPokG7IQt(!PV}tpKm@PY;SK%NJ%v|y_x_W6#t;0n7BCT zKJJWpO{L`wCty%}j|OOH|36|C_3e+`Ur-0ed5c52)WYvbwUgS}BAWQBzJCeBDL+qK zd#~-8AKhDO)pyjtI-1-%mhi4FtJJ~)uve?iCqln}$IHyhVmXvmPXX!!Uq5!Q)ag@r$ol0L}DpaTM|be0|cHbYEESC_;RgO4dCpS?c_b_9fkUlyAiv@4$2&wxFu z1*`h6u1{rE6`8P?08n=@^6~uyR-Fcqh*Hn3=kyu$@&Fr961ttt7gIeC)8s}`uX9W7 zNGC20G;k>Gz?J4&|49|1W?%mIj~c}4?o13nML`gq|oNmzuUH>9IYoicNJ?>#?CbrkH$T<{%MQd#v&2f=ir=xZiKOHcOB4DEh{dZfnS1H#1W~Y*zP!d}B6>N^P7$^r=(2o9+t(P`#3Pu{_E;Gu z$QTOuJ_KvMPt>Zu)au!X_}9nVw9D1iTx$E>w*`f=cFG*I8MHOj2tsYT>3Z7NH+SOA zfKne$EeP}&1b`P0xX$T-`XO-i8xiP%fM#I;5OINT5dhG`tVRn^l|R;)Lt%-4vG7tz zC{-qgLH7-f4JE?Gtg$MfAD0cNP++#`>96_z-*gB5j}Dh*F8Uv`)K`ou8}TYDo?rP~ zTbI?^YkFfs--_mXPWN-O?u=ISK%c^Oy~xV(Ls+(c;^Aa&CR3u-2rRDKI^ruwlODC) z$o4N@=cX2Wxd^GwWIl%{&J`FR;MSMhED15l|LOuX)c0Wd0mU~5OfH<1!`Ef$Yr@0* zt?Cm~LGrMnV(5MkD?-XIlL_j@cJL4`_yf)v$U|fqbhWf(t*zOf_{WSLx7cBl2go`U z4NHX{_enc~th;{2@|T8xX3wb0Y^1e>xy1FPZ%+x!?`$;v43)}AH!tenIVl(@-I6{u z@%ufN_8Evv33;c(zB@xeIXONNZ>p@v$<(T_Q0r%+n;%e;gnMr+Z~x?I0*x%Wu#dRI;D3pk$uo)KzCl?T}on~KdEB>ecjTa$#yS6lPuzs1(bho&QuOQ)g zuDR#=*3(<+d5={1@$T*8%~V?=;9&u0 zyAFd@fPe?=#d|a}Ad7Ms$fZ7(8^EV|Kk%_=l+pvypU;$@M?`&ny*mVTgibgIM8%^n zLPedU>$B~#qIuQ247aU}AXo6sJPaS}0Y9Yxs{Und$)+&D|5X$l^VqS1jAu-f2t=Cn zlQ<6F;cn>ZSJ=8_^!89$RUD<+kW|sL|48{LIUrnY{6QIS7{{u=X5TP{IcRl=&j%hJ z9?)=avatqMI)lE<)v`XF@$__`volBQ1{g6235qHz1R(67P`(>_(wwz;T$-HkOaQ+B zlVXn7TATt8Psu7(Sx-*^h!ntXlz>JC1mN*jAn==D@F@c-IzI)tVa823e#QUm(2XI1 zZHUHhOdcc#cT2otW2qNg^{k!C-dP?e_ZKm8+Vu&YZaH$lY666;46pjJsX%vG%L8x6 z3un1|Ct^a~A}XyH`&v^zdUqd9MQTty+uq z>&@8;&`6{g7l+qc%^7n395JtvOA|_YVjhtV9}dCa0qP!nua)M;P>MEeqaSF+;+nWA zFhOs~**-PS;~pl!av1%;lGa7l!#TUPw$Y(hqQTLn?YIZr;s(Fx{Db@DrW-a@AIWC; zzQOMsU0sHXdp7g{hP!Ess`EwsS=}5KfyE~5i1IpjPJQ2&yCzyfs!ht70 z6Ayp_0J-IWuxa5}I(r`(2GbcAiovXMwg7#H*>chd2^F*Y<@sULSV; zr+oxG=gE1jD>J-r@dA5&3l$OfC}&Pfeadsrcg}C3G)VS74fh$sY4xI<&X+r%eW6-& z3=fN7sq-!B4HL1qw+{}nyZZ;`*&4QpThB3%d4&a9Qf~j#g5#(36sjwZ2(LMDNqbAb zwRsW#6Pf#&igQnQZI)t_tCu-pZ!)&@Rc}WNWVH zcus{uZIN>*Ng=-7g^b*pi1*@0z!o&{UEP?Vy5w5N(StKidfxRupHDE?KF|!iFujV${HlETtF5jOVP%UdZYsg`^~_TEf*T&K#IY<1ki9l zq4*W@|F}VbYo1S8cgj>A-+>#Iu6xNgoBn=l&7F0r(X!X)!;h^wwr^1yd8d=BEtbN1 zT_uknhx1GO1h}&WD>7=9)Jro`5vQBo96-{j0N6|*;aLYM^(s&kmHz7~8-f>@0x~M8 zBpxd;(n87?L{CS&uyn26(pQrG_rC%>Je-Atf`klge(cLL1v=nTlJ*CG)?M>DyrYJJ z&Zw)S2t|*6T;QUrlaat{7M3s|;f(t~2llIFKe&0vG5NdeVecOEniHUa$(k@n$H4)L zJ8nlH3*uCG5*wfNv+o)YfqDQ?h_&xb6bahrggtThJ+}&jGMe$!Tj7Q8$-+O`&g8pO z2+hNd1v;%prhbvT_F|liB08B$bAD?o&Y&8o-!Wlj$hPB5Woxqn)K7Y5QhZ-*UItbA3e3_ktpC513Dz`lPm5D#%~5%>9fP7w2qDr z%vDbysn!9~OOmt%R5yBfO3u${fMHDmB;0X~9q0fKb|l;gAHGNMeuM+u@*X_1ch!1% zBi!6Su5r&z4tnHr?<*4!^FkZevd*zu=~GEc58unGaZ6LO<{Y{AhxLrZ;VXpeS~YD( z`q9?UUTEmKy#!$4oqJ2_(_-RK@f+|Y@p)do!6ae(3=kqfNl*>l?zh7Noj`0|50qL( zT|jY7a|J3hnho|jgl`?wKo#rvZ;?POvJN2rV9UR~1OglnL$tQ%#s=n$IXv^b>^VHm z(*IR>jAHNqJ5%JUS*JR#J?NC?ITC#PkKs5Zmq3h<9qse`0 zUq=e#$JTdAAsTsh`f0>l&w8(&BY&_gHkD3T*Fi3@>_7cX03`Wx5FEU&R!{?RX@)=! zNBY(TOW*St`Dqfs7yxKU^}6|jf=fLBQVK;N)}5)hqXU`XlT84T7|grZ=oP!k}^`4A$Q>Fm>^5#PU_J0Sj zHFjeIw!d1D7rT%V&}lYDYv;M}&L3rTkM+J=qanpY0b-IwZVO@*zi-EDy>CDN!8>Ss^n!bm3IZFBR4;-73E&0* zYimHD{$$4t+}uPyKt{j;q}$AE*H&bSU&eBww+%q`4idKA(x%AZU^GQ6n5qg&kDH2l zXUhY4`EP)K)r>XJP4RnQzoS^0DM%wL=`BXjBU(tp1Zyhl2G?rnGZeiaU2W>wr-ww_ zlx*sM*b1Ll*867rz&VmM{O;5?HUJt+w*TlXmo_&x?1A#y8ra5Pu-yao&nJ^?TKmAa z+h~K2%irIw>y-;YXndT|b{7DYoY6oTcmyVJ^7K2jNc|X;i+%vbKhQPrgk(IGc$Am0 zMBiMnyx(4_=UuO&Sjo28y+a|dmZP4I*Qag>tzBVe2CT{UR>JP}xJ34PL94H`jZQ2; z@3su0{@EOr0rdCb zY)?XH;6Mw#T zQ?}bmOo_O*(aG5P{1VQSpYq^p(R8e0#*!&i%-NX-s1U&$%kP1BDUqs@CZIVGx%sQ_ z)d)dm)u%VHQ||chB_)wzu!*{-6g$6A76?RPlFw6DqmjUqH)=tlmj(zeY){r@fb}u6 zo1$zjwm^WA`m#$&=w(2<1!K4K!Y+HabIX5wt0iLJQhAYQ;VD4}rz=d?WM*yk=tfo2 zUn_Z_(2{w0sE&^3rz8xDTu#i|F~~oJbMg+vb2ILV1Yc!n+{uYO0s;b?7D`Xbp>7Tn z22c!6?_d07`F@{?cSZ(;jO!a4>N8OAd<_T1fHD^qG%Yay{EvXYsB!2K_xuB!B)kl0 zz+;(w^;g`;1P>8O;T+O134nbh=h;MHBIROkS%WtA7Mcm#izQ!9Th?OYAl^#SZav{Y zP`Cx?cmvIye-5ZDW8>o+DHb=g@v2X=r%OHVbEZrGcd&6QHZt@_*#F{`V)PkRFZBY- z9MzKOd(W1EzKNRanz^mF_J#X;x-a z;IXhs{;rIH?&i8>S}fkx&Lp*G+dX~ReRGf>-%Gix&vcz^^2-6ckRQ+Rw;bj4OXb^` zkXjrz74$rhyZ_F`fQNS+Jpo)0%)0;6H$huD%+#vP9jwaFkojIUW%ud*sEqz_p%!^W zM?Q<{)p>}QTs<>(1OjGl+H&JNjW2BEbajiG@yZ3kY zx6e4^IApjOEbixd?)!>)&H4ZTroOv}7u!^I9#>I{6sO&j<3lPIyq+m>W1Z%Pk0}CF z{AgQ#Bs!VyfQ5K?4Tt<8q%xzm?B4!;C7QR^3y+aSDLr{H9OmL1Pm&ohK}FI9qA}18 zvnAzr>uql+=1wFv`H2vj zr6O0Y=#5F@t7~~GPYyRG!OT=$kOAH>ac*lIZVZ&i*l&7YR(;TQTH5+8U&Hr7wNp6h z;;ZBOoQspGrmlRim36{Z7oaR4N;E13I^AHG?|y@d6&M^mA8V1H<$e@2l&4wZer$*M zA!JHN>OE@yzP_i)hsJ9Tax-M_QrT1O2^ub{s1J1q2oj|9R}vKwi7~8DQ&{YdUEet_ zsvwhs(H+dM>ZPXFAt9@aRmt5rK>4cOkd8iN8*sNxbEqSDzU z(Iby6T1EA=%|nO5Mn^kMY-{GmE71SM&Lq-nxCvw)Zxv&-1?)C@*e&+nmCKXh{K79Dl-qA4&JOLA^ zH-RbK{?|8*ll@iI1q3`u=>VMCC}Bc7=&*MdY1$JaCIIEbiZ>XdVlJ5TRNgVo$+rfE zOYGjJGGJHHB`&d6KsuioOiFM_F>W8v`E>A|N`@)7J~35sq8gnJl4)>AgWdX1B<3LS zsB+rtvaVRx5hI>!qjC-xNylS__5~Md1j&JpQ&zK5+g5i>lbVzXfsfx6$FnSkPk*JTP=B2>+i=<+z$qW1~`nd#*&V6 zt2g7V{@V`Y;dGa;ATv8$HlFnT5FILDPdX&HsE=W_u@moJ#~aa%yF3CRBf_9IV#x~$y}ND*+b}v? zpJq_y??&$1ow$ZW{)PGbir^AEcGd9go)q@>j6>33Cbs0g2?aOlqWPJH=mF)gV zzb8XgRlFC!E0~t>rjdixF(D}SXG_`~@0T(&&X~ZrZ?o)?mx~0v6M12CK)!kva@aSZ zu1O1P5a5!Kx8OV$0rh{d(g3gsMc3=RZ1{sH%p38aK8@&IX$`mUSK@$!Ykf`gS?Gn1 zo2bHF&lUIQ`2S3%*%xYmz=;#hdi(8R-@Y&Gs-g*Dh!~N1TxiqM3$pc_vcb+{C zkugpQKKV!4hJqt`1xKFjU)K$6 zePYqbyCVv92A|Ziz8)|97XumfiON1O7A$TBcq7JxXv$dC-ZDvPmpXFefw3V!>HTkQ z5j&LpC|Y>`<)^N}mr(9!b|YJ_K13?q_qb*s_DHSPNIF6@Zi5Qhy7IpK-W5avfvvcF zQ~1VzVcya;biHk?{U`CRYZZ{uwtq54v4@G`+g#j$(A-Kr!N^qQtt$It)Yk^XDqsx; zJv}#eTTX_4w#NJ)SO8FGIYPMot?Tl;bEqWJcv7`@NWj1{SNv(UPzifW?aaTBcQS+} zz}w>1pX?U?1rv`6Spt`+nApPOpM#cWo_N`*`}?K8{o=2x;X$^2spFN(#(wl}?!ONC zkk`_|KK;nQ?B$Arpntu+p?~d|s=H!={e-Iz4SYpO!(VD_({Z5`2#KT8+(4$HkP~Ew*M(l!yU0-& z4Rqzd7j#g8L|5`wSp?xagz|UC+`|4*!$7FBNlnI7xHqp>c!6uYh=DAp(2JK~{1bmD zlfQN_;;n&-Tk?;F8NI*oVdUolrgLgiOL`&{UK8z{jLg0o&(QdWf6Bf86btQA>;4%_ zhlBh&NWm&8La^WC6_boKulZBWT*C&xzHd@xybHJAyV3!(MP9Dd8M6PToBxc7=WpX5 z8Yrzqxbsi!bGbXw%JhirB~2pDElQXcKiNKiWz{Kp3o%>pmx9dZ9wXBZB+szB3!xMr z9=WP`O8n6-feJc2%jQr#a237fZl8xpeBcM4`ot*R_Y#e)?{mB@?y72359{Wa?)@_r zYImd1jl+DM5Ff|6>ye-dcI@2E6^|L7Tr>f(RZqvz6+8>YeB^`MRhVjsc}h`QZs$tj z9tTFB5hCH68fVmZn+vvJ3_JxPG8$ZKcV6bn;mP-?k5jaN7fv66RG7{GiA70nU{jbi zO_2>@c4`anucXWbsVa&AYPi?`5cEcUgweyq@~=Y|LST%&bmCi_($YMkcS_cMP|)A) zh0jdi=V6dw(5d`q?ZC$Y6HpP(}{mYJm2T{txT%;XtaX-ZJ;{Y2@7b zk7)hvAX!F?$iHYTvSF!>WxdVGs+60<^;n`pm`-somz3rILPI_ra2&k+8hA+IhI-!v zb9(A(Ii_xJ=PEoQ#B#}PrQQ0P1G~PC#HmL@Q^%Kgo)>loY0zp!~aac<}GmUH>@^;8>=E9hToc&!jfGh?*~azzXW^zsH*cQ}nOLG^U8p z8hGt9->vJbl}Wd%d5Dag+I(ieIl=rg{2QT}Dd)mDv5!Tkg-JiU)v<45R0qNF^}j@V z;#yB1GY4N@f9@*&ipE`pfc{(+Zj;sDKm19@j=T|%mWSq@PP9Jkb^Bg}{^mcPO)9Vd zEikue*>Sy_Y>Fb=OdH*MTVSGW^7pUuNtk$RUIgWRM$EC5$(>ktU8r7|2J?P`fDcKH9-;x(CrhJskEN06_Lv)i&EbIw1i;?~;G^ z3?EYPhCs5CYtgE6u-kqJf0}D*7!Sg&@$hvaYztaa}O zXSRT_tOe9VjN?L=XS+}vWd~4XSTH|e_`b*`xPD!NOw}C*hIU#*#6p~Ei<#U0HGi3X zm9~~w%FOH@hz8RO3*Q$OvPYlZhsYCDP*HC4J?tRS@%429!B~>V$Bu}*s&A7%d=S69 zIL|q!(aci;J%ki|)4!5^89p@h-`=_NVMi-(R$f{X&o{SmLkbECdK((L2&7g(9wPNs zywu%*v;&m?mimiK{wGb-AFd646I&%jcP|Ma1hoJi%@8n)PviN*L20DVPTFV6jTlJ4 zEko#8iP?0zAnX5FUj8mnu9)mO{-HRchZu>*O&z>ON|*GS)c??Lv{OAeG~gaY1f`Fk zKDBhmn1SCu+8dD1aW97iJsd6{K@JaqcP21^5Kt`$Ou6(Lk-~b#{(fuJJY&M%7xP_I zjsI)R>`}&HZt>qfP^m(_VSJVmG;>d%J{^F)pQLBL9aOs{=aSJMKR#Dc@gLMU_dv4v zzrA91aWUtNW#}(PX{3Z_O7oeEAbHS5Y*#v z_lqFon4X!55Z!W<4{xq9xgjMa_nSVJlglp(QOU{Mk6wEkS6Enh?J}S%X5A9~Uo5Ec zv9XRZOSOLsDsyFD1~XZdFupA4u3kG9Y~GJlP+Cn1pxSvH*9t(am45?bSy`ek_>4(>_UX3T1&i04G>xnKt(+D;#fF83o@>Fnear50lL^!hI0<~4fTX?V9C8&1Z2MEp2s)luS zbqOrUgjnMx16~ah1sMoxtOzxNlXSN8B*DNRkZJGXF!uj7GmTsu`3Ru3eV~cO#KICL z-tE$#hS3mo#~U=gzJ7j#pOF494hMghn6&)guI3tPGDy2SI|vdrpzkO_lG6e^ZSShdr-~&gV_euh5t(o-5;hP%+1TxZSS0B$#$*odg-;cW>U;6vnJI3_?b^A*`QF7CKZ8n4HZ?HUz80J z4WI`FrZqy73;{wK2(+Q#z70!1m+PJ>b&m?@*0V7eQ1v?B`~dfw{|Bu$do$d~c+bei z2kNhBM@v3dar+WiBG0rx;<>L>icf$y+kJ}}qbXMGp?#ngTG2WU_w~={b@)v_F$a1D)n~^yJ3liKlIi4irz@`iUsgpR`^p)pbXbR1XbEFSXuwyb@aH z()x@Y#b*eeoYHiENochw$4M@MPfp8$j(l)&M8Y%&sRW}Fi}G#yByu(mSo^33IsC=W z=-<23%NVF4Gbb|H)BBpnl3Rf%&Gehn4Vm5KTUU4RB)-mO_xikQXg2YUHvMXSLVdT}1^9|_DcMP%$=Bim)hbS`ua;yPoAr_uoI%kDtF?f4S%iiK zI3ct5bF*KtzIj8-fEu8H85ZxMZG(atmaG){b3|M6^?SabeRSwgnuy~Y>j@=G>r>gr z+KGM^(xFQuc_drx7SD}XETJrUItic$I|}_`tJ$*1A=~+(AZIDTU;TBveJbQb35nf7 zQ?*wrdGj;DiNNz8{h9ZKErhk0%ZAQ^eqM24lTy@ZPX4-5xb`uHQBSKWQ$CMW73&)UL*{gUH5nX^$V5+VgTV9&{I}WMJzjIa^XR`3 zuiu&~jp7^NMb7=wx%m#qmLmA(xA4sRkBF zf}OKGrschoqr1W~ezdkKSDT8QtFYX911JItC*xJqG~+xU{zj?>HblN`7UV5HgUA2# zP^{be&8NalHQlyT8lL`h@nr+jiF3B?w$_@mrPl%<`(+a2$1J)${G8}%9ZG=jpHbjp z6=_k@T^9PNC9cqsH`k4to{e&StfJpK7DH9upDN-3waqrEBiXQo)p^yBhQ|j1zzUd} zTPVV9q^W(RoN`1LPQStc#_#;+EPTHnZ|ra--zquSoqc22d&fB{Yyd;oH1%i0E}aCv zLk&sw6pkB7W3lS&Pgb=Z0?QL@sah;E)l=7xkkPsYU{l$c$!lNc9^TlL7*(+2{mRrO zbnZ@6R~BE7bjnH~krvSYGyARf0_~vfU~Z-^IgUf+l`$MYE8VX@qG{MDMXIQ(<-9G} zYKN=vQ_X;I8rb^#Y06wJ?YA4&lB4lg=`)hI7~<=*KQ%{5bg#R45f8=s&3~j z>3%3NB}FfCCGPb~+~db+$w;0j>a6N*x!XU^vUhbv)BY(B`#W)QbXjxf6JA5<%!~*j z9wF2qj#&C9UU}Q*<<*u!4dG=Nbcb);JSDj{MI0Wfq+M)MS$;7baTA*9x4o&DS9WsC z5eeZ<9RBk2%HHj)s|*wAnY?>L1i?eMvEeUoTS>o0@K^KOjnBRNH6DAX>0L^0WB9iy zl0*;fMVA7W?zG;w*vMR$@9Y-c;zrYtl}0y-NmnWhEEi}o-x%EDz9LQ`O_>oU^5?xBB4S2CcaIz$^v^Rnco-uNTf>Kt5B#0{zWJ?<-3Pp7X>1HJ{$K zN-I;kO)$UEyC-~_$zVG{JEVnuLsE}bTv6q5Mw(#XMI|JfLg#z5)=X6u91hAN4qu}7 zAt@j&Z8j=$hZ6q2dYhuxgrIun(|~lsT-_k)*G?S46)q#XlRmyaf#amumfHcd56^## zTvrl2J0r? zjf|x33{fuCdets^x`l#AqdM3J@9YUG?Fp*}3Yb`Tj$=&jn!Q#*8kKYELwikwf=o;C zR!i^O=;w_+iyVB zF^w?mhWT{WIZ8EJwt=ph*H-(b_k99YYIJ$`QYWNwgm0+?$<9j z{7+T+%!M&&$kXqHBSB|`|FSN4?CM&$fVC$o(u40!S)UlpMfB+T7p_E4UZwg93+(wA znZS2X#MAI>=&Vj2Jo@Ey=WUL=$YsrgKGlKzkHXeYL4K21#C@rU?4=)aF%<5<`&Fr| zwQ+^-0L@((cSFbF>$#5~euzZGW2D2)X?YhHK2UK)B{^WziatA&W}MVFtAo91~{{S8?|FyCOS zjUgqkJf?NHTo3zDc4NF(-jMnPFS;$NY=t}v((VYW7Np1t|2?T8>h>=rBS~q}A0(rW zOTp8ZgIBb?ntFxBwcH){^+%+5knO+IAxh&H|0oKML4eH;D7=E7S4yqE{~Dg~h>VI(yH8q}lRX!UrQBkzT9m~I zyhCkN&?dQSOMdVXoOjP^Ta{&RU$F#iJ{bEDP8x)ftlWCC z6Et#~R&Htif&HenGxl&}YpX2m{dGUKgM5LMH&-{0qleCK>CQXe(@~=$nIA59!fV@? zLcbN8d&Ox>3MW`5zBMV!QCoLn=50Gv86O=cuA$87-d6V;Y^^_E`TRLOB~_3AylVex zaHnTzFEeiqt$+9RY4e=19`g!CeaG7T!m+Hv(VR18OQ$H#8cc>rV%48V_Vx)MFE=JN z41=;e(#kpCaxZfek(jEfl?J^>5*E8gNh3umCY3ignoRpGlfFHfb|jO2B$IX|xj9*( zXhbYyfG5jUWnUWP;$((1N_>?R^d@X4lD$pscv?Wj{$hdHH92C(#v%p0<-q@^k5ID0 zksqPuLO=>Z?||t2pevsz$4!nJlC%+C0`$VdHItFT10D6f?Cj_IIk7|^BjeO}R_$C5 z>d6IT?LSD~1QyPsJ>lb=yyAwmkawfzX%hx*mPHE2MGDqM3M%^aOoCyJGtWBnoH|(! zIybw9N~BHwy2B%hqcn43^86=J@2(a`2_%jd`rc|@`PP?7%l+Vyns;L11CNDOd>{Yj zyF`}b#evuux0oNuyCjG9AqneWaRne7QPw?%-!jzb_b<^zYKfgL@D_fIy9?9O_@eQ= zMZuprKb$s!Rti9#jEIl#8rJn%r>58QeL^JpHFLn=X9CND0mhFH_$ZWw%|fo9x{Dqi zWMdhOtuq?0j{0tO*;loAo{UP_s-reoO*~yah<;|Re2+u(US6SsW%+Xr{q%2^Y2Pf< zKQ}p@2)3ELAZ|ltQ>l5EHSsQM?Awl(#v;|2&iZ}VykC!rLIjjbKEAZ)C7>jDVD$cV z`z_({uh(w-VEdBsP%yoY_+n?!%%kjCp8EDlHL|M^QbYHH)9(YO&vm!k3vGZSsK-$Z&dg?5Q$Q9lsvSc=az`j`;lj~AaXJg4}OSB*4G}z7ovH&q&Mu$ zfJ#=%)q^H=;wmMMj)%y%rqO2^#WSJ2m#`LP? z1+(`4%{&1esqj%Lowt5(eqip%Fd_h#ng)wTo*XZnaCmEek1(k#wDzAB+e-};GF#}D z?S|m;;u9L=ejsi2Cx45_^?{V?v4IPcZHkn`*w|+B?X&kBDE@Lj1s4xj6|o8z)&jnT zLNyJ)31BSMjhc=~2_gOXe-0gP*@;nNS2@H44Bj|=_BG?bkR{cmb^J} z(;GK~S>$OPyl^SwBnhaEBL&{F7B7nz>7JvE(R;nt)qVZM+D?n^wy&uTqV{$qoS-5h zqlAA?fh5t#q9P}rnQ`fv6UGWZeMUr+0q#QN`xsp*X}^%XM_8k-Kw0FxERjX>MO`+H z#+MmCDhb1VoAMBa?Dwlxa^lmd!{o^$j(O@gj+efky+=?n3lu=~lj~15`&TlSn5@dqLQ)CK%vMHr8)XOyw^YYjL{=j66HshIw`>92H>BB z4^3~eurhmPcV22-#dg71l=J4IN0cpP6~Lhox64rrl3sqe`HeFChJL$)be!>s-) zFWks@bMHGzHmAfB93(OrOn2Ode~dS!2@y|{$wr8HL&)uB!zX;h7o0BA&q<^21Pn0W zE?l7!-{2#Nb@Vg5sef!?)9j!NfyeA^L_%3MR3RhXL!5M-Fk6S;gt4Mw2oI%ZMGV%w9HBwxQSXuR93H+L60 z6$F~it*T?tX!Sk3(0JwlkAkn4B8#a8b^K`P0~QBaj5LeR(Qk#hO|6L$l53re0trO1 zBLGeWDRhuif>A$fTcUUf^7=1{m3V@lg^pRRL;^9H%K9OWI-pDj+KMF^PxhBn`7Soz zUJJ_5tJx=vo&)sNd+|QV24s8PPscAMk)|=FdFaS!X;X^A`R)cT$vqv$JH5n7G1V-%P$!Y&_6G%W#CTuZb`tZ!rD#C*Z=gzNMSw$IZI8+JHXaQgJyN)efT4> zEWaD4#p*@9wzkrinc+E_ZG2Q#27xcp7fhNyBoF(5YCw$>bqxCeu|dk2I$+Fz+`YA= zSL8c%_=CEU$? z-1)-a4{#f(JLzlMyK1}JK2;o(B3aEzR8~7OpO3ZtNP9sfrM-VRwO=(A)deF{r%GY@t8{l754qW>wkB*s5jkX7Al<`2419r7CwUsk^{U&Nf?S zl#EjMMc!OBE{4{)Na*)izqIZBg%;H*oYhNI5XBE&Vl6L^AEQI#3R8l{h40bO^RHR< z{-lx>@(~FBx8MuWQ4Nt_2k3%ZznXCgS;?r@@f4hz;6OtLUtqg0OH}qSHMQXSmdu_h zf$bykZEI)i0A`WFsLmtK%5#_Ng7TtM+SN&)@UIS+2ff&$-`=yl?kA?Y8`UzERrV!W zYnP&Wb3>wJLl}Eq2Sy6rKf-oMqalOn(0Z~O(FAHBOYttWH2cJ5A_rDJr~=%97DLdk z2n?g&!Aac??uWK^uuf| z;`ARh;w{gTGH|k;PB!9Xj8EKHl! zQX^mNGJLN%s5kKzY36WWg)H2t)`13X=9DYd0=?fyMPynT9ZIa5LWy_lnEG2Pa_pa~ z$KhCL!M&Jrs?3Hrqg86E5HbzEqz@ntOYaKtgcbCVKG|>fnxIZXsV5n`x!e zpn00h*Clv5ul{;MdGLhHEiDua0xl>CmZxc6t4d{CihSs06O`N94JD*tVlbS|S7e@W z#Pm^-m@enQ-i&|Pz^mYxsG8?7rWI5-h{V0}ggxJrvino-WavGM68#V+N2FEWyQOYj-@LnbuLS*M$TK8IX>^PD2JBIA}WxaP*IZIjV@N@u_J!pl~RGdhj>3 zZFksNZ^?FG#fUvlu{iS7+9&d28|*+clW1US6L7(|DfgsT8*x_ z`(dS}rLHk?&_Lx)DuaVLv0Mfa;y5ZPPvwZW&p*x~Xp*pDjz;F_|Hx(WMcXhk%|MZI zkV}2^-Ly2ZGL|o&HX!Zv!^awAPj`w9U5qjRh5)(1)^7_aHXx_nTOW@elcSs{)R(BE z_g?zm-k!PR34U!6=)EF-6jZ*Qf_N!}!9Ikns`l_)z=;ISF1x)e9w(-2^u4rJX884l zh{|*ePD%o8(TruSnh#PD8s%3PAQ^m0wHLFN!g5{Q<;`~tJurJWT%1_st>31lUFD{M z0`^oI17<=*a}|Gg&kT*nsKd{1c$#4)dZ!q2H)4)Ae@mP>@6)hKW6phK?U-#*?$$g zku@tz64m7oyuxnG7`oe zqxQ%?j*QxdO4V&+(ipa^DmKR$C+n}SBxrmspBLmK5^R4`LY!*0ZARG$j=WR`l0W4Y44&wP!EC+b+K3*GX^H zYy0-hx`s1mHkw{#h@@7{y_=dkP5X!_n-ytw62O=Vio5U2Mhjb`AcltySne8VTb)b= z^RWFG!eJ8>683=0fWChAP|X8)!-VJQx)4-ALl&oM5tA|`590sBm*$YYh{%;4HgI?v z`q|Kq&Woxqwql8SJ~N*z$T`VCRpmO{d12hJ=V%*FG`*c$*rHZAfx?T72QSVN55-Py zM_zr>2WHZV8X|{l8A~+(HYtxwac4j^-Ua?hXcQ>BU;@OdyU_el(Ccg)tzyCs3+(OY z+<#i7DGTKJhlVrCW7h=aLBa6^gu3D=CR6V! z0vP+DW0>9fIh*yy59~C#=BWtDr^osvbs2dxyXWM*M)OH5WW=#Zw3q8Hbr;ixR{5K} z571|Ikoh3b1njLASVdX^1#=7rR)kGd!XNv}47ft?^6(7O5`rUnRu|^ErUuc#Bi)|O zUL3vOflo}6@F5Yg6h?t#C_2{ISfR4BGKT%GlcmoZeb3`Z|8c;hnV+oF*53HCpENOM z9#MNBOdXYw1_5s*4ni6P%f=bBa7IlAGD=sH==5JN)X?O!7u>)Yl0?1UJaJk*z||v{ ztkVqq$=bbhIoAuTdu;9%33cn2cpBPRAD=tuPQUJdzPy@+)lXODh^zPbG5SD;yb0g~ z20fGF_cSa@-u4mQ5PIa)vN6f?u*7S~9g! zdl^B+9HEc`C40r4MMPx*U%XOYS-(MAe-Oiu@)f2N(T_;xMKYb+&+pygn#bg=@I+DW zKXJ_#=Oz`&yUGVHSHze`kV~MKsJxii6}N*meHie$x()UD`sbmr@g@G$u>X7WL#T_I z6)m`O3gZhd_&Qa+DAHeb;2Pi5p?^@crP+?enC}&xm}kKBq@x{FE_1wlWh*j*U{HgX zLhK?DU^Gd9ES-+aEGiPBVJUzYCNWkk5CxGxXU8}V;hYmXglZKi=!+b#i4;FxKSC=t z{91lcd!k6grZJsvvQ4nq6Z>sHJfbR16$=Jlu=jw+3y{Uw-uyk5`=sWMCR(3y$#tp? zzL#@d4I|L8gN8BTnSIod3% zN*DfoV>Je|pRdaC#uh|P-#$x6fHmhza%JTwggaT&x~hdX!oCH>e3D@O{5#bKU=n3d zRTY(10J({Qjs<8-ONco2@EGi+nL6UV<9$;*SF%&}gRS|g{oNl(`o*vfnd}_q3AFZ} z`2Z8P(Y)jo@l43A>Af$H+C<^HG(0>}(6$*mg!ZpEAn;kcKhNTe-43l0u3*4{JOSUj zw5;p`)C#iCF2LGS=duvWU!| zIHfRT<_dpm`^?7s!+DI;m|5_Fb3ADtrU&Xh1@ZiBhR56rC;CQc8g=gfUUTlN` zO=uTkK}4CUT1upa_x6W0<#T+t+j|VG31|z5Xdi0;dB?68t^g8U_oAsKMqm72w^{3M zAm5%@6@1&J(c&hZzE{7-iW}hkV&jV;1sn4c0xxaS;c2}b-#%g;lJoNu{(i>-$`&jF z4a?5pbj^031Y>@6cV=i$-6wTrWoBY5gm4jFA6k{ztfWV)curT@FOgR?|4IIzlY9Zq z3k)Z&zlM`J45vRfi2ZWjfqb#!0ijae5HWjqT3Va{g^N8Nyu;1rHvLKy0*CMc=AY_$@4z7>~QUh@*bW|)g?MKcT)EK=0yvRJrKIRbp zTK_Y;&7`JTXj`$}ViE7UTV#%WM7w@P&R_RR*9F6lnxPhA|#6qaVDX1Ls6PbNQkE0kk>~}=(&Ce zWG!GR^#g0`1=z+bd5Y{=p!4|_a170z4nv{HuO|wOZGX}bX)sqW8Z5>mt%V@Ak>JVlyeX}FU6Q7isd-Q2obl=iRWG6%koH)rOlbftlQMqZ}Bf$@`Sw+O|7AW-52P=`}y-{ zoB8(ZAcAbnRWA|Z5zP<=4AuJ0+cghD9_`TIJYURcCdfZ3JWKoViCWOifZ8*)@laS0N&5tFkAH!_KoHKc>RQ5t8l7DEJXggdEEkCS^2-~ za1qCbB##5KGDlcSP8k>&Y)q_0oEKT|{?&8~<`X1kxQf15X~k@dT+_U_P>t^S@|fZH zYhL_@SAXmqTgE!V&tH)v0zuIAa>%LexCZh1Qi^)=u;IgHYQ}?3WMY=gv2& z8%=0a=-SfRdwvqRFOFMT3VhIA&3Yz&#Pvt-%8g5ov*$+M+I39=ok9nPde8nRPOc9Z z52}~jhJa4}Hi1UVHO1%phCTjItv$V1e5N!yyi_UaDn`~u*YQ)S9)l1Kl;~z&!VtQr zYKZCI>7uw6pfbom5fl67$sOJ1_)}NA-5cHLeHJ6o%%S0;G%nFgxAUs5rO{}j;>cRD z>N9TaKh6qM_g`bp-*i(Xbu$_K)hn7VTCDw)i2M>+(qcTv7tSuukS+v@38U!)pt0Op z?Hr1;NAc^ag7Z#M;*EvJ)>#1%zHi#(;5(?Rld;tw-G-jv^lWT+5gp&4!}4gI+x;-% zgHHipmPP+aZ4lzAxPR`EICfUQ-{|jImR{DNbzk^p>Q05Of5Ce;j#uD#)0{BVZ@l`B zt>!S@K|I5+IN7#O4fH{TU+gZb){ri>oV+*8!h>st!fB$v4ZF++{@F2owBo3q!Ip`T zRXFPxskto1m>`pa}zIXSc3!dt(tr0?jSmToUycZ+~eh1J$wq#9cgn1d|I}bt%Xm1X^r6aMnG}t z<*?D}e*tKoV(7gDdw74NnWN2WTi}t}%(5qlkF?>=0FB0F^7E!~1_Sn%B$6Vb_48 zV3WOr6zMscyAY9_b-*ZegIu3{rKS`xc(lEVeYKgBlNP;m5tsZ%nM#QC#4qHm{#IV| zDe{RApM2-(Q_tS(J6FlQ*{+Y4_Cd z*F#KnyVv@kc3&l)vU43y+4rVDa5ea2U!IR@$r62h#ILYaxdeeI0MEn%APa=E zeazjufGr6VIbi^;cBT>|fHbo6bnD&u!A9cZ=0*st0>FgpX;wfa{?nXCAfcz6?hdaf zRV2vh(K4*i1}ePs361W4HIaXytQ_=ZCVg-#Ckb`8pHPCo(1p8UMWLhpnJ%~a4HK@A z+6yaAy!xUzjFIDFXLI?=Nr%-r@4 z8mF;Mn0(IRQq9>l-Q>pQ)q__wr*>-UCFOrSo2nANXUN63(JdVO%J6={x1@!DpIT&m zEJTWX#9MGq1F=0W5`u>P^$jYZe*sY43vVQrP7DbQRhyoNH3Gu{{{AX%I?BqD8XDvP z*Rm?6fHXlV$7@law=bK@O-If-eX;#E($-=>d>sfelMw&JOXpkr%MKpY(QhSUG}g)a zoo)l(jk>PZy6EkFJHs{Mi{Q3UIm!%8~~xA{-36j z6C>*7skkt#2V_J>1lfU}o*tW0Ado9n_)Tyh!){+kBCU3t1pY7Kj_mh zN%iCXrrgM!=+!hvBl*SW369BTPu`Cy5vO$z8Bb?beqNLCFd+PxC$F$QFK0TOwY^QA zlE2$mm36e=h~z2E?%h<3Nx(K?)K+Ebl+++CXUm^-VdE$7Rr#hSCl<~1Xh)AtRBCUJ zzHcUFxl-1Hs+$sVVc|6abXSO-&n^xd5K!IEpXo%7=LzlX?N6Vu z_;gcL;)B3Nay|umZ!vmH@Qi<}>&3;lo1b z%_)uHmey8+n>SAto19INUdG&iNd?U@5lJzgA*<11Khg6Qc}FTd^9E#60)pE<2szq1 ztRD3}yXRnK~N0WyD#*Vq%NKb4+cKcm1QwY#pQK3 zda@hev-G;&eV~R;368uM9GlM#dkr6$=w5R;c%hFnA01h;`AhbIZd$MR_@)s_?1;z3 zotoZhlw0jHUp<7~s~Q5>d<0i-P*!C1N|*)nYQ{MS=J}>x!=L%~meBq3{16(4+MKq0 zgVV8s*|Pc5I}t4P9Y(3Sx!BIm&PY=phuUAB#=NPhxDUEEOXv~~X@sjo9PEI#x%MtvYHBR^eOP&|8a;MrCRE?sqF?af8CzNmzC;~vompx9cJcb@8ntPiz$f+g z#NGQN_9AiA&vz?hbvsQS6>N?6Ga(&S)z~E8emk4uiM_h<1Wmg;h&t8k`A?*JfRZ4H zpZZNG^+&(3Joj^Sw+B^qx1sAfx3VWM5H@Zj=xF)cHOM36P2k!DQ`*y4ulPZIw}@bu zK&MnB3Srks$Vq6j>Z9lO{5JdnSEKFtJj%RpzF;h;sA~F13k(R=HYe8(KyItRelk@uNDT@u z5lgfXtl{jeU!hG5(9W41C%NSyRJppIpd7LF!<=;Tds2U0?zC{cA@gjnrt`Defe@d2 zuj0Qm(j8Yj9-oS>s?Iy^4UNTqrP21Nyqio(PEwWgndR9}q{YQWPDpGbO-xKMu(6py zDg?}YMbaM-ycUg#tGlz`jN9u_YII)f)|zhy$NE(SFwKe(-+8(ml9R(!)v`cQ9p8*+ z_Ui2Y$F`UpRIU55url7!P3S~v9O(9YO>^y79(v<`z&_=gWq5BnpP-mX?N{N1(F#2|Eo4V8dIWm2=^tA$2F+@fWl7yQCXek_ zETouvEZJbzcdzzs*ft@E=ubE2%Iy_7@}1FI_cxFpn7yLETR?2X&5~rea(s4|mfBDq z^^|R)@bY;mOK4J0$kr`kkE;%!c9pR2F?^Mut_(MO9*1Kx%}K zpfDMjnGtU+hc|Fk!3tbL0OftAuHJFHyYvDPr}Kq>y|;-U>GkPmwaD6L)yS+hx|z8$ zaXX{mPw^XOl8irsl#HSt+~DzItJlDy5x^2lBu1{g)jsg%YxjzmpKNEoJyL>SzbUZy zzf&|`d#`TMdEh+sN`*ztTu~i6Be(m^f!mABKf5^oT^q0A3V;1d*z5C)5S|v>C*PT* zJGt$4vcn0JpU5n9TRwmH$b0x>~+H@Dr26vuJ8G47XnTXy>1 z@&>8A)S4ucl#BJ{*@CpVFu|CXXMP&yB~(rcS1X;?HGpX)=HlW~Rw1R#s2pdBfT!@q zTo0NN^$NJTG;=gPy9DZ9g`A8-n-?yoX#N3Cg>@>%`SS)&*QG^yeTUNDgNAIWfW-FV zWSu0OyVmx%pt!rx%1TC>$)kk*jE2w+Pk}wE&`avnyw|DMwnFYt&9sNpLSd{TYX@}v^|7Z)>b70#l8=Ux8GyUNYkNprn~<> z_1d$H0jLy&ed&byxUZ>)zYuD`eQ_N|iZjCCle#)Cb3)iQUthyR#-S1#85fA_v*g_! zRNcm=ZU;$vFT-2BGiQ(sJ!q#0(73mandq9t^3LeKEH3B*@Rvf z=g0}&niraXPnixGQMY(Ha)XlwvWLUObecq&W6PI!)CJhY5wVKmuGSp)?!V)6=7~PD zyW#f*Q%;x1?j*ZtXyh86s)IR6eV3?QVc1=86}<-aQB@mekAsgcP57uLPk+AGW3R2#77zHKdzQWZ%J9ZMR2?6G#-cC`m1T z7yrwy7)w^Go5^@{mhcG0amn~?jAh!}RVl(zzdJimZh9`PfBT`}Qf+aw_I$DsRutek z7QNavhKTy>kMt*1?#G-tss+|h83O+G@}rCDWps#$Ccd7xtsXs&s%2sMv{Hzjy7p=; zb17}l70Y~=gG^afRdlCeg0=BbSUQzg+G6lWb6TBVEXw3B5^ry=*I?jW^1n)tnqcNs zk8ZNFCXT68FikD2B$aoz8jrnt1a+Tc=S>}P2?>7Z4GPG9JG{I048~u?DnGHfzgVl- zV=Xj1;5P(6#IkpGOeqPwJ2@uyFe%hgCm}Q}tU|&GXE^g_YKRnVN=gdS9`xscZR(Ef z?*{NmZ!M>V5fBmi%B0_BV#*miiHsxy{~+MMfxfp5Nl7KmOTf$$P*4OzY+}FIg-`~l z??Qd9Un)z9-8gH1yC086bTWShyJphjyVT9*Nq!w|n%-Th84}kGn zHsshVd`JPH$0e}ELwAobC}PGz`U=+@;Aqzg37Y|yh~TjD@F?f2Ab`%b*0gy~qR0+% z%ba<|xnh;}jRAg2eGA5OBGBg}R zrlJWcB{EaWJZzbgj15Gn6qR|NLWNBk8xYwf^IU{VL^71=uCLBLzv2Gw{p+5;&PTSr z_xpa|=Y5{_tY+QvavV7(@}!u02f6(96?TS%#?snSlowFfn4ZS z%!tHcM3hxf;Wb`QI;^g~5ySYDQRoT-6;H^|U&qE4W-tH`3FLO85MmYBy3Lt1BAVBF zXY|{Tyw(S|np2pQID+AtJnQcJr1kqvvouqj_*}UkDWd#COTp$$~+gyJ-8EwEyz zp*Z3uM^9w&Z__K|oeEh4l$Nqf^EeXs8B`ipusEg3hXp{y8U4`_BW1AAEE-~aey9;* zwY@atZ@b19499!a83fpDxIHa5zY>tE;{?{rp4f8HjHYNrSblY=*V%7&SJES28qwIX zoMkmzINSPwsB&XvG+r?2m3dwddZhOLwAI_3zjjD7EsC!FHqjoq z#=@8W@Zrb#pOg3}^iX3?Mlc?XGrZ>Bp(FA0!1+D1PM&F-I;HSTrO?=sFmqv&I}9C4 zq@IHRntBQsbVy~sDQ>ij^*@lE(4V3BzAdZQ>nv;h6P|j5C{T)^cP%@;!RnCk-(mgl zxSA|I(rByj8QKQE45`Nv@Y2Hci$;%Z_xc9}-SIZ(({j^Rkic zYfK1x!R_S;X{A0|T%kAOz9P>{ZkBZ$CmC|lgRsY^+$>SaL+bdh~$6syI8l=$gL!BFp4{!frnXO zuC@Kh5DD4#!vY-ts9SY}4pKs3N|2}IlHbv)wd+{$VpNIH{tvMs)3$vOd13i+c#HOi-WEFpZ^@#CFeR7|| z$be+xhj&NkhD4$tsP6WKaSx$Of*pE4JbVah@*W-@lqnp4NLa>TN`J?NakJ^M9@~FK z#kO<~>;?!VTRf5VK2}Z3+Mn7a>>7vFJX$NvTY=tos%BJGibmvNP0f^&l4!Wq^ioW6 z+rn?&+zTE8G35`jLMR$`{xhs~I;;sN@x#|1rHA>V;ivwDcKp8L#7m-c-IZGEx_bNx=dc2_mH>Pj*r*8Z(voE(zP)* z|ED~WMHwqT3O#n$eNiL((YS(8>~!pV@NzfJ32p5fDm4W{1}!F&Gc$*B+jc>dCPKnE zC^%RnW&&PYTf%FmyZ`Ap zL)hQ<77`_vzX3k#--?Snrl-dP`AhT8d~3q;aJx~_ zqk3~f<`wk8)(gg~_CYq*>O_RtFVmlVJr3UVd!IGXMKj;mOfk52AXwgZ?d5opjTO!n6CpnT`It}UMqp{4jT352bSHBi+^(R^u#xf%G}2>vzFT>-(@rpQ&!T^?xuEJ~rP0X_OS0FueLQm;yZKmHW|zb_pJjI$ zC=B2CmiiFRE3aQ4wy2M;ffb{%`NH?XH$TyI{W+|>q@U!}g>DEONk~RTWIs?DcRBUH z;;Jzus*9}}ksrp7Z2ZAP$9Zmilxh6Almn2MALWpZ$?Tyx5ss(H9E`U%A1frvN}**_!GnqB=#PLNX0V5t-! z)El5}cv>&tbwa9LUgN`i{(eS6iSL68v#`_@-Ms})m#_4xwC$5(B`rd3rL+e+rt7t2 zr2>j*+YSC>6r0SLQScwTD(arNXHL>+jp-rRUF)Yyg3k3t>HS)KQ2X3j*lcf;P#fz+ zvNT`)XM~<)RPm3X7KIW-&S$Y?ImDedjS!=q40|gw$9G9xqQj(q=9Buh269fm(7~r8 zJz*<2Len(sXzWG-T3;+RLE-HCyKt`0vsq0P&WG)#+0%_p6`T_iZ)%H2bVe?v(8i0`EYf^G7+~cgt5uXx$s` zF^I``%d({{($q|l7j`F)=1KIGk$$m%l79EhMSv!Dak}29{nl<@RDb&oKX9)yk1&WV zIeB=Ix87^zXZnNAa*1Gkr*u*Ce<2!Qc0exJ}jKX>RzuI@oUW%FKhTKEH*7)F0#AYf>cU0a^oeb zdr!G>#(dthN1IDM9trCnt-hWR=SJ z-YyMD5(`XB9J#P{%_(h(kCuAh6eM0hQj#{gnmD3$K_Dn6>B&iz8qKXwuZztwlWaEd zzyH!_E2ur-V82Sy@z1NRaW>hpV;yZ|`S5_MH}u`5&yCp(9LX|zam6Q<%PCsOl86e9 zJv*RtWeHt2(@blbrVi(wk9&`|hOwOHT4$X0WJCDFU{MAstK*SF`i0wS{A$mqZ_Sgw zRh8AE@|2uqeIrX=^wcqOTT&y%e7`lP#7ZH*0Kxn{U;L$++)4I z^JOi}5g!eFA`EgP&N zq_ymullW5?--JInEUjr&b3ptqXY0X74@tF*>09du+ZTmadG_4$oYI$5>w{)Gu<@b8ErK6SzL6j(=!Km1!rHywSiXNIoP~WhKY{+ zmMy8R_Ru-hCe-5_VijougM$YiR|}fMnUb{Kka8m}_M-ZKANa=k+57uO>QsU|j#!)! zj-Xllo;5BZYj;$~TF25g)^iVybvRGnQSsO@bo1gAGW^RsJ1oi3%&NPs#`zSyzy8o-UiuqJTBYlDk%Zky%5)oyPQa*U?kR zPhFtxRSymHj$(JmkS$VR?xA~?WAxO&ynIR{2Rx`Z@X-ql3Zi{jE+r!)gKqi+%KIrE zqSOUb?N5`)W&5owRxEb_q;Q@hA%khh-^w0A{&GDeWaWm^LJp$p#7F@yj;VhGi!-Q012>VdZ;M4h z>*?*?Z{B2ej-VAs zctK!gIQaRGfT0Y_Wc!*Q$o>J^-qoGpB6~p=suI=hSP^w3x7=j-8Syq50m?PXmGcqlylnW6e5Z{Fj%KB_lM52b80Sz2J^o+d}$4!{^uVTv|+ zkR>kAH+F8bFwdFq>1UVmll4cfPf?>-GktZ6r8*r+*}+%5)bq9Nt^G*XQJbd6p&jdX z@U2De|FeBWA?jDriKtN3URsCE%ehZkFr|eT!s?G5twO}FU&Z@V5KfZQ^ z1C+~y9vUbQvaVn5lxnY`B`GT_yNz|%Ak+IA6GT3bj)6}^Jxmq{mK zKn>J+Ay6p{DRvo@F|BVq_e9lVPZ-8S{j^hN=^#vOA@! z+1lH?%ziw_Bv({YGPiP)%ih#*mQSp2W%muBq#h&Lg?dDR;YyHK{rvp8OFY8CJ%@y7 zEs9PIFV8nD%^xeUcikgk>iu&w3Ff4j2Z)2w2<5e0ASFZ2MmsRI_1+$swm>UJPkd8N{4UNOAE@PSLUEP`nS z7$a}bqq4Jjqaz!cnn~>%xKAD0(x5F{Se(&>u7&|&i4_bhO@LsAsIr^;e=-g?-YZYY z9{iSEveJ&8Tf%5>ZrfURb~8`=3SSyT%%RXZukq*fARIl0QnPzYG(}! z3bMH*mk*d1BrW%DNuYqAK7F#NJ0e?L)tXvdEHCf&)vBuQ%B-4~>of0#UlGUD8ODsF zvPZuq8`0#`A>z*6s1?Vs8vZZs#+65Sx{4MV3Ee@PFl-KC%dQUs4i<8L#B`}2=p0lIYkIda zi3%5N=(VqK4iR!KQi&3JTkC^G9Igx@7b} zoJ^L!DspoVXSR-Ey5?Q{V*aJBZNLH;gufo>rR5@08}iQI1%Zm}`ekI~e>-%`#< zS_YcfU(_7N2s(cB;cPNNY14J64B{+$_Us)jmbL`TVXzR|tLIP6ZP$B5Vq;^w2v?S~ z9(dE`GL9wsk_LR7FkSqvRzR!i)C(Wa1f2TMytcy8cZrA*Pyp5v-j#|@#^<*Q zbdu%sJF%?97#*16fF?ag3)<|u2KL1bj4(z%@;OYy53jzl!DJ}g;b@W#C@OWy!fRPCmOb!zEQn-&WM1=~M7cOwx zqZil|#z`=4^|)ML3QjS~=?Jjq8xaaf-g8}jYj}79pPOyixX~YYd)M@#Q2qp;r9}|1 z2+>I`2!M+BqHmya_UtCoxAG+=%qBr21r0(rpiwRH(O1|*f3Iorg^7(=Q&0ophjfOJ zHfCgGl=WFuAi5KXI*{;6D*7pPO=C};31NJ8%zF0yO8cg&T zltrPXS$e{6mS_blc-)5i;R;`Tf>D z__7uGD1IigW5+FYJ7@?^mikyl4P9L>@beLUgnVIC<-IUsI@#^qa4S5V7`to-QL;d< z@6sd-vV?Wq+<9itY2CiI?>l~+1N(j_%U>mbAMvd6R{>H%#D$Yw#CCmJ-?TK*rMdE@ zV2}$8vLo1(W_9hVCe_jWz`j@Onh2y$F7v+j50KNh1;c z638qMjE(ia@2dv;bYfDjLL>{PO zQPo_@SS{qtj(Hm(kf($lA-f5t}A0EUPRed-~NFh#nmf;otpP3=lP>nE(mh*j$O1}53ZHRgBQ@M97PPV1N3$=w^chN0^--rZq84BfQXRiQSm^tb>H)-g& z)Jw2^h$|iyk(0Z-Wyh0q?sp^E6Q{xv(i$z&TWp9dk(dp`8spqWD|)uJGHaqY^QUdA zmY&{W)RKfPkv$Y{rC>hWjvNFg^RNr9p-61q8i;}F@%~`R6DLlnfLDq90sc-Iz0v4r zP~(>7Es+}dR-O?C7Y+?C(xpq62-9gW=q-S7QvSFfa$HX@@LJbK zZRWUvK`lnM13K(1Fh4-ykN?H8p)J>xn7K+u6E0gfI4vzLu>_TMIKp0_^dQ{DU%hz~ z3{EiK;vTGn0AQ20o0jpHnj9mOrOFYp?(HzYX0Kdo(ts0w2sPzFqIbB*#j2nPX*GCH zAy9fp%xi##)K+ovY?(Ns88|i4HVJ>}_oJg!?7$A*5XuxD7_8BBPT%5!Bb(w6b|N7o zMkmn%!YleH_29-J$M_zgJWqq?4+*@rVH{4ng~b+xND_Kc6PRpmd~ALQ{HdoGr^K>! zvrpWK!j2r*-_8|W8jkD5a~58z*eNDNg^-@}gu5}`)(F;B_4b64epYT-&~vl&3Ei9% zn5nlwi=UX?m~!Al?uStU4ScoC9vbm0WCh|ujE*SfBRs26LKBAANJcPUAL8m#YkP5@F@ZXtf_lk}GxB>qkF49Hi Y!2ND>4!-pxB>bm#;OPDw6*K?;0ty$bsQ>@~ literal 46492 zcmb?@byQVfyDnXdbeD*Pq)2yzN(-Cr?(RlFltyVJ1gTATw}41XcXxNgo%{El^PQXH z-aqab>}2gZ*P8R~_j%SAB?TEw3{ng@I5^CAZzVs#!65{|!ND(~p@46=M&{PQ3!jUW zhKq{5nTxxjlPR3Mp^Jl!y^D>d(Q`LbCud80I}TP}Ru1Op7A`Ih&irg_w*NkW)!xaR zt!G0+1q_1j@K)0q4i3u@_JGe9$+Lumt44n(DW>Z2eQ(~~Llttj1E0EQDX{-}iz!PN@UQP8 z)WD6Lzp92MwMm?BLI4 z(y)O_Q(qe*(8xrcc?g7M9j!)-GzgVIp>zI^_ma}mSqvBgZhH>iWa4Pc3b3(xO*(?n z8NxoChlPc$%vhJMM~gfhxlIaok9^tg2zhdScRF;vo~Zx(&!3f*aJCDd%{haibfGz? zK9-+9e`YdZ95$Us)i$aQV2Rwd#ZXIFjASAI`0?Xxe>PDnoY1pTTbvX9pK12M*tASc z;YCHv2`t*56!KO-k=Y%&)ixdcj-~n4-R;yxppK1)7o?C^=>8M}Dc4}8+?v0RkB=Y8 zl_%5lJ%<<>8Ie}m$`ol;hfzy>Dl=$DsIi;>lPMNdcic@j-QwF=+ejywO%Gd&&Zj7d z?Ck8ne*GG5_I7``sBMi+PJU-+X9r2vZFF-yA6Li2#uimo#lKwi7onx4h1?daF)0cj zBP}m4OG-%{Pqsb~Kp=(H*-*yP)(3vunJVh%&jak{8;^Ytr2 zK(EP4tPJH3)4qhO+gs=Lc=Za;(+#K>lUk9eGCm=T)-SN&QSAl>=R4zEE9z=$CyA|h zAyZQtclY=2-o0CnSJ#7ITJSzBW{0oUUJ-hKH-zw_KaKPL}BIRG9XS zO%!VvuJ%NiLN9@I6c`#B?zk`d<{iv8sy83D+>XV>#8{O-K3ujIf_42s#Hy1|$>$__ zzgIb=8q}UyqEWumbT6x*pe7+MKBlhcDJA5v6mSC;rT|Q-+vMR0ArVdEu}_!qWnpDi zvv1tzJ_pl4Dl00+fE13KycxHsEh|&<-OfoI3l2u&Vq%gV=H>cjW`?W*2r$QO^&YMu6S34h(pNxSGab4|>-07k6FM>j$ zW@ctk(n#s~DoYi}b((-XG%PD$CW>5nz^sy#kT6&HdhOfJa%bpxv-c%5!~dZ^B|Tlw zS{s~;yquisA}|YHmnvw=X)x3Cj6}q*2|8{yo|*Zai-F-S@)(dh*WHO?h^g?yl`+?g z7ve0hUKPw-?3T8|<{TItgzc@dvGKUNzHhZv>$Hs;9xg7FE&ym1w6(Rh0Vs{t{vz1b z9SZk3$At%4diugiJ#X7;+uB9HMz49-Nr-c*dqi>(YJuuaxh8^(3?< znw;-L+H1p)U~L*)chv}#M*sfZ5kvvMvu{36nE4@rT3u05F>ybs>z;PA6ojSb>%Ujt zGZu)53Vs32Q%L&|_(WlE==^54v@kX{cBl6n{qDRXwWO;Px(3>EnOG1?xpB`kx4o(M z?np8ceisHXknT8bqwnp-NU=80$B!SOJ3w);QU|)hm<)`JFM!=^@x4{spWJrQ@w;A! zEM6YW%SuThOMH4t&C6T2!{xjo7e&tJ)c%l0cG-Uk1{&9@DQRg~0k$z|!0hIHSG`)k zbaJ#%y_EEx?{dnT!>|JhoPbzQ6ouzntc(T__Ud~)dWE&hAz{Sl^z@YZ1F7o!dfo57(XpEk zk~1;6Z-JRIJ0TS6 z6dIV{A}7Shmuz&~x0o!UX!bf^@qfIf0`|z~q?bP6enCh|*{ayPW#8YdavJXHd{V!V zE)}>WgTsYp*9BCK47d4_$x~&;#nG!x-s)=41EeZ$A+NLNTwL*q`hLkLCr)-ik?oq# zC!qI030Aj8vWxUv)7e_@fMLVGxje)QP%AX;{YraxF>CL#{Wk>I_>3qDfv+hkJAaSU znAq845mBGLHtv3kfPmn!^&^z{wE>)2B}o9dHk_dLwkFThtLx1S_GCGjkAs|x-0pEq zl{BOS5Se7RuU6-EGCTi`R{FF2ZDhI(f)iQO3O z>C+;$$G@^{>&fQnhVu=sIzGo;{pmuDR*T>HoRdKGQE5K30kp^6x;4aNa3`Zs6m7&N zS&puvvJ#$wfdQzTaOTgS!LSt%5IAi5Mx^f(3w#HM>yE0Ev$N;ba%lbSL8Ik3lmIST z_=cgh<%V&8wl>dsb5JfrIIW|j1IjHfF75&3$@A{Gr+nH*$8$ZNI8qw86B!4G*Wg4& z>>npebo+pr8U!k&Sz&?>e!M=Z?_XS9MB^*}?w#RCmJ~U!LqL8$0~l|3_uTd2J5XGY zqjpr!or1j25fLw6z4`)vkXBLg2DZ(ieiP0%rpK)kDhlj7W z1tJ0`ALF>%4S&(QSm(IvaXIh4J({ODKJ^3*?Kv}Zk)DVQ^{)(%OF~I%Nn>`uI}d_< zuaMy2d?D`()mE^$R_nloVz~}yiowh@DG5n|LJDWW3{<6Zx=8qDE8EJ#BA=9!vPAg! z7v2t-0LoHRHf^)hc-T@16X@~XbE|MdmNCQ5PX$csC4%;k;B?0=M{^5m=iO3CiHY-T ztj6E_Zl<|IVdrGM&)W8OC|nf8!+m{y^ zYM3ZNGo|{iR)vN`%m}X-7);$DnSKfyMhHZ%s{1h8tY1adC04K)9afg`}$s zOxEFtd$nRM914m7AUSd%dP()74R(mvK_L8BLh%wa;(wPuz;cuSFL}uSmw`6-pK+pa zr$zz=!^Xw^n8mPg5CuEy6g~*#6)P(pE9BmEIkre{RU!w zU?!S(dy$6Wsi~<0?nB8*NwthYkYaYc()E;rAHP{o-#Vh<4=-*u`%$-}N0z+0F~4@J z@Hsil?#|S=@@;L~2AW(Bb`u+~sM@H``TajrF8jPYeHNTwlae&JWD3}l;rN&OO&5oU zhffvY5D^j4F)^E$kdDMn$-j&cd#v&bj^q}yrxojGcts_+y6*K(ofUJ>;D6>`%Va!SFU;3BJ{1N+nbe!VYyC;=K_nbz z2Gv@89!JlCVWxZidU$po_n*WODczg*}(MaT~wPdL^! z>XM|EP{{a_L`r96XQ!pZ{h?j*0tS}oPHLihQJ0+*(Vje%e#V6>xAJ^fWoV?LBua=R zwPie4z=$7DqI5KCXa<9XZ0Q&G>vT93c8mMxoRnEJS-&ns?b&;$is|dkv#<>VPc8^(!o6 z{(Q<|*8WF*#P%`lS#YDxJGjH%a%YR$+SAMl^E)zK_>rb|y+@^0M^X^$ImR~jvB z>QK1i?o;VYDAN^rAx`)jh|o+ODx-zl*BRr8k3IK!PlVquX&?h*y zmet%>=BL>;Ev+3!ypfQ#L3}`oJ_w#Q6PwF1coi!D7iFXr0xiK9)z<3~LCINXcTo5XjS?4EAy@Ob6agQ(1uO3!h4T>nDGgiZ>9p|IV zgNM&KYnB`F{Q2hiCjBxDLU%>0+e_-V9!8`4KA5Yn6XA>3DQ16%Yq?qp2Oa`BQo0ia z1-iESc6O}bjS%qHE_+ijcMq?mp`me}9|yDt0|SG!X%S?^uC(8cSLSIx^wvmqSg4p=i(k-D1WBQQdWSQ1sOK* zxU!{s%~pG99Ua%!*N;IK%kFh%0j5F2!s@Z$M7Y@83<(Y8aVQPJ?&!OCK%%;k zc3x7q2_xKX+gwUt^s!%-vf&{_~+U$w%l!sJTBMF+8G01 zDVOxR{fSViu9+W+zsW}BY1~JX9N;_y;e<1HODvwcnDiBTZV|05^`#^3w0(Z*w&PEd%S*pA? zJ2P`6VBCnh@oCgrLe}K&FvCSgjC6TowHC`->hr>U1d(QfNTWwShOp*{E~DIjgl;De zKeb!oNT(W>0Y20C(H@Q2Bz!$pJ-8zB+qPEi^@i^`drmd)j4+~d6)rcyq&n2oF zp!7FF&W5|2G5%vM1|~g;TL>?<38x55TQO(!F&_*U4$843KVdy4>idK20p{1IrYbMX zTy`fSK{)o>ZjKkEA}~b)p>*N--ZBZ@H}r44s^|Cp$r6>*5z{)SkGw-Rg|-HPb{v_mIj|tnPg|KFW%O0d8AV9&97`E@h{A-{xPDaINV!UQ*Ewww|A-A({3bx zRk#|TX3bXTKT`uCntSZuSbuiWd(bcWA^ZEa-DAQjrt=0s03jPGQ&`#%vp=dA4u%CP4ubx28chr4nT&rw! z*P$1;ArhsbnVUfjB)du%51-8*hZsyff5w#tAF5|DYK>j>DSs=Kj64h^b=S=H-1|=7 z{e@@7RYuU<$ivl!zkZQIC$cynr1}MHn08BTfpY1B$)Mr|SLStYbx^-a`HV_9ReT9V zemP}jF~Ae@lDqGW709J>7k6JwSDNDy6K{F-Jes%%cKls+)sJ*v<5~aBR$0Rv^$fv$ zRRFhe!b;&{e0kOJ#C+$izR*2~kbSG_t@pTWvFR;ehH|@`g22VT6G|z!A1OgI${puY zp3r>>e6w_yqHLt^gBF25%SGbggV0j{W*Xcr$jk-tQ1)azBlfw=ffVA%ol%V+D{tHGjMEY8fce{ zOiadmQ|0&s1dw9K{AfB?l-ICAg3UY$aNtWzOI}@`8_DJ#z(Pa2-pa|DfIz?cA%=zU zNnawHIrzZEI?MOL4DF~45jbQSKf=f#{}uaatJk0It3wC~@;S9N%6*U#OByhW6~g6( zgp>uF7jvOg3PW_Zn>LmHs07u}D0xWv%pO}R)Tlh|Uhn)vyH(|3<+N(iCX2dr>iT#0 zN=VLMt4^D0WlQCPDhFA)TP(gF z39=!seC}msz*+NoB7gbS)Qb;Fo!Z&bRo#TKMngeUZB57Sqj>ubG-Yi`BMRN`fPlej3q@*7s92O|QzW1oeOOUo zP!rf|ETo-O>tdHo!QS*o?U<~=7PwHMlXkW%yee5xu) zMP1>Z^GxyuoRY=o&FEj~_`xnNJ<(apBbx8OFv!yWTp?~J&35(Kp`;M||I`7Oc{X^j>iK2RT80|k2%kY<5yKx|A* z8z@We{#{cAxoUA6Bw`2tynDMo#edy~*=l<-n?_XD?{~Jn&5o zGdw2qiaaWP-v2~8TfE_06;G=axJ|2WYz z`%=74K3foRN@)$Z47)=;B$0A`WmO*s;)NFQ#`mT7YLA0plRKn^x)7r)UP%cZnJ&a< zG-H9O-K6;_XA8Uey{x|lP9`o{J}wztdEiCg(7=n?Xe*iq6Ong$YB>6JIFVM!&xI;P z8u1Q(WySmB1-o0I0)6}{V%CO-k@*%SADMsPCT4IubJAXxyFSCGqo7t1)IMM z32!UUy1}^eHRApbkMcuO(8n-R+)&pwf2D6X4ftxT@QsAo^$+tl35fwA*jdx;>7tbz z@^|iobR%Z)Z4>8ix1)mJef&zZ7=qLETz!;v2K+@M*3JH&_PrfoS{;5zvwQLLgCsTy z@;ZK8@^qY9TW(cl^!OOVaE%nUu95gK2|*S|_*M$`^03gSNO2F`39?0rZDGRwA*^it zpIP@-_!HLpGR;*FPcTD{==cyl;QuKK+xnT&P$)dey=)WL(ull zQH)pP)qJM8j-hD^{v4WA+bv4=3nUrY;bVx4{_;!a$bWv{2M5Is=26os{36RCOx-f< zN44Ir##6y|F=6JUt8;}=k2D7d_IEYqk12OO(%wz^Rf;qZcletTo1{Rq9(9HUCpepT zz6DJu_RKTpXT5zk^pOO6!iHG~@N0I~@6f<=BpDC>xS5QY?N?GR*xkYNPWhr4RBo0rv$tPsOPQjy4Cz z^{NL>$hw&tdB1U2yP#-~%&poe3w1<`?ThVEx~~UcmWf>`y(Gf~USZTcD2j`|oRRXE zYTOpdv?#~)>zx(C%TjPcIYNL5d6rl{;|Q&{<+sWtjnxb2Kz+L|FR?R?XS;4ne~wfk zW>kE~h*8McXsL)k|Ae*b%%}V+ER}8S+^^Vcw}}zo6pGjWMm)lo3D`ZA(ZalRik4KN zPYfUn&_Qt1$!_f5_>tsGve;%BG){+rpA zF4--Y>v)?1&WZ;M;oayBXK2-p>8g@H#r>=dN0|gCc)=rB+dOmh_-fXPYLO_9+~&0U zbWGOHJwF{x#Ukx|-}nm58>3g+y2Msda(@u^zb_fM7^l{w8qN}x*%Brxh~%qLAtGI+Vlpv#pXk?A_pF#B{V6E9^vLoqs3jw-nMis@BC9qm{sl0rCD#f zb{`$DdjnsD`cEXv!8Va>TfOgG^?x+|c2<=YNT!EAoC4${fU8m6d zR|FRrQC%)Ft%6ED*Oi$Ly1Y$mt{e z@M5uMa(A5XDnGNM_>xh3NI`yvFw-H&dApJA=ggDfohYu+fn4aZ+sf`)+`681HE`j+SUJ1oV;#t69#&6D0(`w`lu_TrIL)APq-8 zVGeN$ZjDm3=X%XoP4DxoOSqeK6rrf^%@!AT0Tr95oKhr^)bZckQw{T9ig#_XS9DIy z>W6lU{yO13CSMBVA>e7&h?LGW2L<|Rl~_>?l!a?Ky7mxaW<)eF;LYa+fq=$v_YKDG z@93e%7?}fj7nVum(zf6%WA`zVn6!YP9Q2|ld@@(HUoNxh1{CYR`F_JEmie{e%m8M$?zuh-sN z0e36UbV`bSZcHeOX;vzGl)H^&a*NwxmN|(JVPL`2;=_$t={usL7ng7igq?}qxg5Sw zwt7@h4rvmDP+Oz!>BFHCw)M`NUs~R0-YYSu*&8k65WB51aLOB;?DbWVhUgX3Y>)GQ zC9>P<7&Mk*o=Y2G^Z&l2A;x!FLuI~ju_}pt?bu0MKIdX7m`L|2+v82M!g~?o6I|w- z#(M&Pl3$ZL(=5R}zmdu)O>o}MH~D2ZNB@eGdfw8*(qmXG`A$F7>4=9jlrW1pT7CZm z0gKfx{8YnS#Ec{FRj45desWok3(B``BD%S`*}~9QvXW{99p%Yt%n6TAsWk5zm{L`8 z;(f}6)7U2Rz7gZJ$p)#4tR|n^MfW&-x|Lno=8C58K?+fhB zzUz)fc}=7hu?jTF&t?h`bZGyN97iISFn1i?CamV-EUQ{68;TZ>tEjzG^dtg?=t5+6+A)!LF#w3#)yGpD$6%t znnNyszlcG39xh5wA1xTs@qW{38SN=6Fj{ft#ycHhX)646(3r8U}^R)I5q#5K=4 zm9??pbO+3*CK}}x$wO0(IjhSx)hrErTXg)U+`hZYoEFxE-s}>Ouq0@E|8iE=xqnm^ zqFVpuR>e^&Q?6!2ae`&jOxL*1t3w?w>f>y~|DG_A^EtRuUhvSm-*Dq_mVi2v)7Hn7 zKl?i=cBA!s0rUImV;8B=%k#jRpv-+P2KK~E3r<%$s}_S)yXQPJ0+V?h9cNy4&4ORF z*%V)Jv_{lxM<358$SL4Mj@G;7TIQ18B~B@IpS?F3%Q+6dYP`CYJwWb!Kz@=g*=WN! z^HVrxYIJ?o0TrBp58po()5t)mxEP~}ZLQ+P-^um@39de=>Y$oQ(MId%^;E&aJwZ9Rn#z*QJnj6oSyNgssWo)cZ+0l3@_25ZJ|v2rRcGUn59jYh z+XB^cqxW)PJT~!m%_?@5FbsZU(eU1B>57}TgZybDUd7JM^CTM*b&Wk1(1an- zEQA)NT|D9>iy(LRU-Y-5DWfLCO#~Gol%y6RxE1?3>ke$ZfrMnq#eHj3cDl&?J{R=0 z883&S68ahC2vM~dzIwbX|DCTA-fb4$#ixMJJI6j2ke~EMf8O^sAm6^4n->Ud^y;dl z=E^ALHmh*)XHETkG98zo=u$>itDDf4l#c%EQ`)2OFliP1>z&rEmbz!_Z3soX!fig= zzLWw{Phuf$gNdght*I3lQ$Z#KW!Nn;_OEECTs{t;7zZbqYgCQz&GlXD?LGk*)5}9WY%Ay52i}rBY%3$y&C3s zf0am{`bB=EqT${dAEo+SsZ>gZwh;JZaQWZ=a|zUf1~8;Z7(7FjPO!4qC_buyH_@4K z8xvYm<6G1XG**S-3at%U-EOE7pC_X_iF$G?LDfEev}C;duP>iZJ^MF#OJv9_o8q(0 zbf&NMxhk?%Dg1w%@)>8S4kRic>1_jo z+Me+EKgGoO@pCgy(@{c542lK)=VN#+rqQ)@ZT!1*B5>#7tGsspl+YQERuc~x*-VI) zhTX*?&O(ma>2RlI&WD*0$1_$!AR$neV zRe{e34mYkhjbga0PZk{I74#Ghn9 zWUgIo8F}lzi`xL>?Cx(+0NsN7*l{cw71CQG+yH?YWtLJg z{3&ta#@Scz|zke~ZHh{^^(ScwFgjHIi4 z^7^H`k4KO?{!lWrH#_d!nlWFRG$0vADc(DWrX}CJGjUU)Ig-R=k#>uk5@{KLSwvW- z*=B}PcztHxw>`8WvR|87owSwuE%Kr-dfztVl{MF-a6#qtDc^RWHN4y8{q8728hiz- zjshP=ZJ4yVhyW2baD!7%f0(Q%;*K_O%(S81`o7D%T&9Ye#vVK*dsx~blg`G9p*KQP z)=#9BIaxf8CI8L3vB(sCG&+b^BplbXBjM>H`*bsqNhN;_#gO7$--V+z)K{c^<59fy z-NHeGMTZH323Goeq~g6B!ub{R`azv9cBRiC%X^ZaMf^7eXDM!rzTZZuU=1TqBJQ17 zaExySz{8==6RAAWL2&4=zah<}6?MGdg)(Gfm9c#szL{QhMHwbh8nQWk(vkaQO+!KW z_!Y(QRp>{3>@7s)`;SoJRia=`V}t!%iZe1^B;B|8TL{oJP0)|CDWFLc3t43Ehj!bd ze{B}~8VAcn>1JK?xRoE8{7$6=-{fOHYNvM3757XhYyOsScEcvil#;jT`YgtlseK{1 zlhtbcr5@j?(X&Y8E85JpQ_E{^TAV6WF4Y%XKbr`2QmzYTSGnnS_<99YIrGErJF=k` zd$$U$>b|ArrDhZam<)eBFAKsp&T3{ZEX!YMjg7M1nqzWHxnBtQ-;`J=5$HmitqwQi zs;$mI>7*!ZaogRu+8q)b0@NC{%S6j!2k1VF!bua+~w7 zd_E0<#bDbpe<3H4OfcV^u?nsj&+};7j}tOM{=~EomRm;rJUb#LTm9fN&K|_R+DwMr z46yvLl=%7|~A_2p@Z^2s{L3+H`@ zD<+^{!cPBjqOO1n*7kM~vj|9+L9I0(7*%&3SXyq%n?o1fOnY2mv%gEEs-fsKDmLe* zqaKuib=IkavCz*aPmj3v>mTjy9XWRxpN55O{?S{eS}ZZ!5-7Y{kH(v_ak@-!i2N6D zmkJ+uNhbAOWtmhBtsY;O%mYh z9l<)dr{fiP5qH=DebN5CpKzoE9Ux?&247=}|K{Rbvk_48J zq?#IG>)pu{tzx0jY1%}cj@HL}d-q@>Fjh)!xU_g{4;-4_74guSlIHo?^X_wb=~9S> z_Z5D&uujh}wwf}wzOC_+u>hAs;59#56k}8>*(E-R- z+u|Zsc-PAQ0jwQ=?tFeaZ1y}!b~&}tqM&psCzW;M@{#QKRv+##Lz&CsyHBmPDWRJ- z^jxK5vqFTz{a}WpBL@HnDzufAm#1ZA9i&*E&jL`0JAi5eV9B0YT^NvhN3k$STR5cb z8|Cn=>rzMSgwris^^KiLXM|}nv*yRu;y_) z7z(RS4k{#``WW+7PUIOTnEXZH5yr4P+Zq8y-5K3wi^UcpaEYt{r|T2xtCA~64RF6r zO@f4Mdi?-7#|P@Xbl<*!c8Mwz898}BSca7vKhSr@)^qQ*jj1G>Xu>?r6Ez`wTUVqN z+hUu2<@jENaPQAXq}1&@0Z8}h>E%%?SAif`5uOCUlxM+d2NACjywCmlBn9IoKv9nu zT)EG?62U!!eqo_48|d!>$l$EUYCn> z^z4zAtUor~#@wmaaUzw)HNH^^jxVK+mm*h>BvVVeU26P%clfj>#>?rAM{8$XWaP|^ zeovi|=S3U0aabrGNI6^J?0jd}IMBuT!FAY7HN%%8Mp3df%hKcFf35siA)ejzg1ezR z!~s&bQj?JpA-{RE#;k741pQ|D>#%+^9Xe!cYTBR56TQ&v{Vgf!Es*F`Zrc?Asxuq> z&d2KN@UKQw{Z9YF#r`Y_w+%5LA0Nb&((lR;G)p}J40Vt!FDvUKnO$9Av3Bj>Y#FRv zg|zpN5BJtA0s!WgE1#-ne7iSYiT?Dd%eDs$_u)RG*|+U~WGc=SrA!>tk@9TFXq91frrE1^TR zb52iSc(>eCJLt^CsG+lE zEJjMxeEISPbO@^cr+UA>b^rexPNuI%*@JJ#Tmqd<*4Sg6O+)6MNFmRpaDd@?>91e6 ztyCMkEIm`|`G)?npOoiUJ$xJljKuGooyirtElP|}`^Vpz*RNBy<;W(U0N9l3EVs{< z!$HffoqKR89cXZMi;+c2e+&wmpZL^n&}P8<_$UUGR$&@Jl3kXJANM%mP7aHuWa49@k-?kSK?nG-PGGAiw1$7hz4`QsW8p7 zQF-R*_UmLhjpB*Z?t;Sag}1vB%J?q)y5m9Ib6wlAZJRrjrBnd5y9{JRB5%~NT;mFe zc^4o`Xx7@L$(BF*pw|IpBS01Y9UTQL32y+}Lvr7FV*ymJ-iu-Ue?a48{sYBYuKaqU z=3u#z2P(LppI33BHk;*{K2eQU|0J9pBLB1lDN(E#DGUkQxTDAO4a>-&0+8e_mq_~+ zEu!!)aX&v{fHZ^5>NF$m0TVxxEkh#U#_WBu2ZQ9Ut*yZjs4X`;Of%Kio2qgkS{%1B z-5UNOm%{l49J{)?87iG^2+RebhMWuv9G02%;==d}051CZ^Jj;1B`ec^b%2sju(Y?ggZ>LdD87grz=x5L$9+4Eb=P&~4;dg3KGz+5@a0Qd+8-lR99IBrWMpjI zEC4S^Lqih;(EZ@kyZ7&%UQK{*7JzQBL2b4F)!BK;!;=WGrjmpOX+WxxQ z5((r_i%Lo&1|y}cvFHF(YTOeQo0g_~&a0ili|BC>HYZ{|U6E6`+XP zPpN_e+ALf2W~`X)7mO0V-jj_f9dJ<~E~v7bC-r|kWiwKS!~^ODK)tbgB$Smnl^m3o zhJ|7L{rea6fQ$Hr|LJ;FjpB*c3ZlOR*j0e;2ecZfaE2#Li?ZOi5z7}Y2&^=4--|KM z)UUREP(FMOdai>0zVw8GKFAXMwZE)XlAE`QCz~oiJr=$1GI6tY3@YpU{X5hD@c{`1 z<>b)+v9W!|b(eOD1E77cdqf_@0MJsX0=MqRZ(0K|NhIX$wc`zy7fEwWPRLUC? z{LP_Ta@LQY+gefaGeZ_qR|Ru1CfPDomqcOT>yf@EC4J7w$Z!`>QIwLBBIkGcyy$lu zd3EJ+03gbwrl1kt+uwiIEZbIHP*n6&K9!qXz^xx|nJf+z*}vfz=g!y1KtazncW zfSs!Q*SiJK_wO9h+o{`K^$;GM>*1Pfc1|9cOK8m9@0O2F$X7)jd00%s{2` z!Io04yWU9k1RZz)V-W<9T8nBefH2l*_Hu=!j^@f|LkiUZR-s~6T zs+bp6YMr|{rnB22l*KB(?9R<%NGcj$U8iNO_7(QlCza035F*MLFe|iD$sRcZhUZ1nFUOXe`6$L(wgxv_~u=$cQ2n91MKR@3}>af0iaNg~c zbhemsoRtWXx_`G_GMpR0q|eAT6ct4P=qn7s+CbAZ^g4B2v&}Vjv$#R6wO)9%g8KIq zC~Cu?gIA6^oTLK<*%s=pfj51t8uv8H0y>)?8u^haw=z2N56YXW*RVxwMB4AtH1Bdp zz7lzTzD2ES*Vlji)m0K95BOSiX6Xi%)6kWSdJnJM0ZJjS*N!WaF8mZQcL)eX9VTyL z6B4?CttJuj;)Fu~*4pc*``uUqe0C4O+rEGM_ATU&qufdWC3WBv6bj&%(BR>cD56>& z1igAE)9OPpF)^2|;r0TRuPu@XFk0To%Y4Rpjt3d12gahX^y>Ze+~;-8vmNGfZCIA( zc<*FLRi$4}Z&BvxZ56oKIopvEr>-Q2r#^TMAhVHCiTHho2{Hht zAHSmVJ;MPp1BwA)Nil1b1pvfvIUp3hpxNgm)CWX3fGM9g02TQ4yeiLAvvi+|4P*0M z#SFdu06k=5@vM-b_rM_q(Rd{3LH{Mt*IER_W-G3_5oTI4XZP#=}=XfIqvuq<{JH z7n7v{aBbVeKM(=cC>KC#0MpQ+kEQmt#qe{$gxi`ZCNuDNkZ$$6-vX}EdZOqDI0mRt z+XJzdzyG7wCJ6xn0TL3@Yv38Jz*TgBU>tDJ3MSB(L>{k)q=n$`I6z0k(J3R|`g~oO zX(+aQTk9WBa=kj-X{+DXkHgTzy(;3){P51-)w)qA3-Vy!AMev390ULs9SLXR()Zqo z*=({)y@nK)Bu)>#n$_w2o>)uQ2R{T>hb|BJv=4@E)r+;d068EExKkFbswKcO5(o4e zz>)ccMWsiun&!R$b96vs0U&%RCsFS`$iV=jyv>3$YupMJwuWL+l}w}$%_Cmz*DfMl z^py3d3DnMXCIYGvRKc2?zzNG>eodHZa;MK%EuH2+%zU0$w8Ti~R_X9S6Xp6C^$n#b zqVw@3U6-KC8c9uA^pbULvSV(PbReH52) zdRxM6B8!ciHuWNhFeravPO}Om{_f5PAe~@AeW6j)<$^cY3g8xgi;Y#bz0H_CtM`UO z#Uw>)+Ziw1UTl4w&I}U=tPvQ~VtcYQLzd!Y}qzb-Lvdm);8=e8{lByEwMD;Bb zccl5rW)5NJWr5Zk#Z9b;H~A5Ao90H>kz?2AF>37Ct$Jav^_%MebNZZ(SMw?qFX0Rq_2l*-NAjIB)gzC`U#{;9#uQ zOuE$AM#hW~_GAs9a|KMH1@y{1>^d*s!`>%L$*95b*e1irV`U1=-YbkHjl3wS82YyT21{gp z*G9UegoT?YS6_C%3nOai=;)kJfBQn@`-K^yAa%~-5G>Nj!hgR=gH`I&7h1%^6relX z-f&rV6JoS`nKXJ#&KH%0Ep#~Vhfd~AdlZd~I+dZ@A1<=LT!?A;G*XRp{sp%AtYh2| z3xeg23C?E#dfv#g9kkc+@p%R(fY%*6VdM~0Wvya3|1LzIgDXyRFEN8HvV#4^wDiyR za^jX6v|sZ+ZaA>ChpqVxSHS%MkbQs7v;YcW1L?vp7;$w?+8YRW*8^GC>wHs67 zOEYy(3E>h_g~gjas$`FMvNMamZp%J98Aw>oXSmwslA|2{^yU65yUtR%Q=~7>Z$P+8 z;Ry?ACC)%5MEF8}S$7x<&B z_VrE$RTJ8BA2V;a*|3S>DN3D%^@OUPj-H;#6MfT2Za>MgsQF2BGFZ{+(|XT4q`w$K zt*fQ$@Mc_tC=djY1<|B;3Ea7Efef#vRtT8zr6L4^C!;G$UQ+SZ=6lzB?g%#ZJKXy*On#YmIKs#KLV ziO<6yC`NqF=AwONVEt3ZYKI?uvbO7Ift$M2Y4P!0FwbLY`3g`R2GayaTmAhhy|$>~ zq$5eY9`6?)L4x4{lyt+-+aW>taunAWys2u0NS$^X}e>rdAHFwE02{P{rB+ zMQu6C0i0;?5n&{XU5cRyUfm;6k~3<=Ejli%br~x|Scm-lD#=_u0Y?JWMk^3_UxsMw zMa?du`wt##DHp+4lTIl8Iw+;peD*q+*axDw)d{z^=tobW)psCQh2g0|;L>Ts?R>N( zMyHtG534ANiNW7q9_Hz{`b7}4e*~5%8W1FvRaI4K1_7_D9q=>vMX_`@K^+S)%K-J0 z1yJaUV=oT@!pcPkPgqP1eo|gdt3gd)P0K4PLVog}Jl?((LD;^L=bp^Ai^AfsTDG6- zlY~b9PlRdTqcZgFt%clnR^r$Zu@hMg#CMHjdN~g!szAE zu4Dqm4{@UIlnej7u|;n_ze{|Ee%a9&ZNpalRPrJxS!*WSPQ_9Lg|}^r#^-XY4FON+ zdWHS&cw6r;$Y3rXhOP!Rk+sduN|)^qFb)>=TvI#AI` z67lyd=8N-nBXCfmFASidXJXMUWMg6x`cF?E#a4_^0`Y`zV3YZ=wkM7Gr8)yW;;o}_ zdblsNYU;|zmme6t_m(*X$aSomok92CEM~g}3Ij$*N8i1DD_S^y0;u5FU_O@Gxeh?G z2dp#WaVP|iT*xbq+jcK8zqDb8al!Xe7vv9hH#>#NT-Jn%x@xzkZW+4BcYymh*)VVL z8W6bKxF&TZKrKxm<%Cfad5>4qa$Cz6Jn_BZ)(xjN9(DFHB5){1*6O&rKDs_G%EnGXcL;+5*fi_^}F)xCc8->mtC{#$V~ULocz7{Tv!W zC6W#@P<7whX`Ao-u3>;a?hI(&>b8%77-==;dpf}52_9rWGd7)M7YM_M%&Y@G;+*g0ys$U&7zo5@WfL6cUB~gHo&mCN zS2z)(Ll1?!!`YUyJ0~ryMrDs4UaN>8f%p9Id4Ci7dqvMibqjp7lhLoZ1d=Xg@W>2| zJkCcZ?0nrAHkeIwKY*FCnXQRzeK;@0oU!w*GewvJzy zr?LK?pL4=mf*BgHSDvepJQmXxw4fFTBV_<|H=@JI+B+Dq^*=8l+{!uw$&Z`7;xT~D zK2Tu8t60DsHwAD=rmL$9&Q(~wPI&GO{2qvfwQFpsSy&>0Oabz)gp-rg_=8@v*GQo{n>*(^k*CJ;o7Hg3Gwlc;4TG& zn8|T*Yb8gR3b}vUfr~fh|+&EPJzaYWSN_Tw+;t#)<8t9gXsnkER*}q??^4auc}WgC3X<+Vc%8@F^^o1tYBgv*ltj>% z_KCas2zmO~UEuvZJa|JwLg0S&^i(=;Dk!82f@16!fezT_WZ^KN*+rj6)h`h}EhzNy z!bJmU)Ylw``(3SvJ7PW_a6M1@lJC~J57O!*zpXDEr2W%h0LiUdi4J;OcC;|8u)GZn z*|_sQOif1w^U<4^N~i{tk)n>b-(_Yo=y*Fa%VyMtwLY~9%~0!1>CE%6%}d}Rr208# za_mMV1k1uez#gTXEe#L58-UyXOcxjrrciS@dawpg#hCm{eI`&=MUCe;$qG*2hVt(JFe?@SM!H7^s8)j&@jY~8$ORB zdj)o>^lnbK{WXVlq`D-=E&0fOC8D0qs#q4St`@zy)5i7rL-7~au6<*0(rI7TVKJC# zyBN7ys~WG2s872C zFDp=s>F!nT<|rDJ+RGz9*Ee>&IaPM$W$6~S89~y|Q72`)^$+d zXE*li&J!TMvxZv6C*aB4xN)OmDJM5ayH;pjjyQD3CXilJY`{lh>jkI1 zjs_`}VK%Hdsumnv&zi`V0DIlvzf?FX?Cvo0eh5>!W;k4BHWHr8z0~oQRT>50BorbZ zf^W##jKFaJt*OZdU@=IlnN+ni2KH|VEgE8Z%)s?)1kc#yTKJz|;LZK~dlz>$-OzeI zkdU@|w&-*l6T60kWL%~=P%WTreD^mQz5%&gm79!B#|=UhpN9JoU7eksLEQDj*&wjI zsij4qeV9f%ZD<+JJ%=CgqO`taCoY%o9`j}~?>ZJP8OmiwGP|0igz5C-*GL*FsG~Mc zX>^q)?d#^5X!d+`e1T@d851qw#0o?g;wVkqi&akR^AOF=^`?j;JwH~5l_qkXk58gl z0c%iucC>7I4Bfg)_z&o5e1tkEv&QGnnToN`7GNLfNx8uM*O56}o2h~oFdQM_>2fEU za_9;-+`$0M&ok>2`FN|}FXu|nm6W~EJe_}BJLQ_!r%C4cg6JU}danZmXF>(mrmZ}W zsrVCw#-Tiw)4sDb(2+e1Xn+M^-^_uDzOdM;{XG-h<9AU}Er4c03O#^AX)xgAFzSpp zHT3cEL10EGh{YNRJTu4Zbxt|5e=h8qJPpM@UFVl8oP!N{&-Narct)4IDYL!9jONG@ zSXRJ|IqIiIBrTqHPMpRHm~5I;ZDSL;5l{ZKDIt^uvdTRm|44+Wf%F`rq#xPC|BKdF zS#xeymM$22s?X1kOHBusye;CM-gMnZT*xJ^XeR~^f=ir`dH7l%foV@!d zgoUc60>g3M2@r}>z$I7~iSUphWymdd-&+~Mz&vt1yMgR?#n>zz(?N8F&x=SDDBgZM za`a4-A9CJaA&s7HvA-lB^I~HtM{sQ7aaNM?=s%rKMBv_DKVnTl-SH0(52wVUgg@^x z|J-&#pbhYK&GZ)lDY7GPH~%qcw?f!zdP=LoOcu$e(+z*fVf7g*|F^>BzdMlss!ohg z6qIb5yQrjkaK&zX$Ma8g4x=yjoC!*yqgoxVzNG5T7&Q>*WZTc)b1KuLnP9J6au0nG z!m)pG|Gek=BO$=TP%*G+no+sPPA+Hu+ED8_GrL#Hxk^JgeFoSGClrTZixU+SL!?Zz#q2mhmKBE^b26wFcD({$kJM%A9(nAHIN z-dL<>t6G-G2m42_BdG>4Izt8I(WSs9+o6{~7DK^}xM(ziQF&Z5k$+2~8$}z${|FVK zx~0c_HmI?XNcmmhBl53DpJktsME_j1JjD3B0powZ45Bn1Pc8yJJQU3qGHJyJt+A6_*%Dqx-rL-3QCH>oD+GETu8M$CBn25Mv{itwA zXM_?G<(~*%fb%2U8h$^dJ zwRL{~nPw33(jd|ILL~ZsYT;Iv`=7XP{=FFl1w%WI&Y|ko+F)~jWA^~Zfn1aPId5!R0B;kOIk(40c{aqSsg;AV+pYn@6oW zE$P2$(i)mKH?+;A6N7VJxGq$I${ihEKJ?$b{OA(nv8RN9)s3L8;QR@>yz-Yg{O7lL z;DsNehyVK@Gj;e9igB)cFfYR$K%RE!$Q&Gl?kZmM^LT3*#PrB2|aW@q2Q3#-RxJXGb%Ml`rt!6cN3Tadpajts{;-8p+a*lJ=7~XMB9MdHoSO9TG%dJDW#4qV`DW4f+*b+K^|pPa^Ruzh;6Z^C4w4 z=Jgl4R~fQ-VR>Zp{-fs+`tg+wi=;cWm8U#(Ro56yN}Q69F6h^|^O}Aq-3|JUtFQ3A zo*Q2O*WG_}ZTb3xe!5j=)T8UoDIfDC`4)I9EXeFB)YqfKF(r|^m0Ha1Tc2Q;(&(U@ z?Nzw$H8JH@rE=-<-)@)34yyGr^CCZ`IoZLQ@bFP(x!Zv5UpPnDlyU=}(KOEOquxF_ zVa#(M8mloSgmsC;Yq4x0m<67=CylyY_NrTGvER|;s@$rKsp*Xob_8}`H4_e=2N9<1 zh5J=&7OeMpi526Vj^{*eF^i~g64_7O94Ro{r5`C+_yyb&%>j&&IOa^J#gqK~iNejV?m`Y62p910 zer`g4+d$PRPrp`le^m>q_{G@W89%&+A<2IgUKmM|#JD+4ZAFmUz=N-w`A{p8i(g%} ztn~X!c}LsLP>VIbP38MdtXuoQo`U2f)FxOX{vu?4^DAA!*k|>9O~Uw4oNwDztUV0* z+rRTOwQk5yPfGM|-FP1!q3N=i#Mn{}t6k=AKkQ2wn>e!8i>s?`yJreoM?OoNCBj@jg%WBJwj65@IUsKu)FCArV!0D;)8 zc64>k!GAEYv%dut+9&f7&H%jvwG#gh)~aBT+Jwi)uLN5D$wVuAO=kSdXWAK7rlMs0 z=-KYmIk(342w(gN)zNBbHVK}eZ1e0%$8h>pRNMth43OtI03`&bR*-Kn6=EFJEIk zA}ke|lzsD4NOh|}#V~;Xcn(j+(<&(EXwPp6@PM2yTeCS&s(|b_pXjzWvoX`CWSHo_ zr-p-z3m5}`jZr8O{%Z)0`6d0*pQk~ZCAg~C1f3Dvbh((fy}g|RbUzSE`uh71R(Yfe zpi^AEs_7uPh6izwwRO?hsPjK~0J8rB4`9*0?EK;K|AsTPJ$~vVcqVYVt(jFzIdP>v zJp6KMYU)E-S%zD;Fd;?9M7rZbX2h=jTKRO%2uM8Egn8@!0*n1$r zgb+7|`^9BgO3ghz1VCAVMrL4e@GR1a1=Be&MqWXqnUIKR=3OmR>)?0T+R>4_8(_{G zhtSkW-_Q$|a*7 zTrITP|20C1l$^XDxL&Xnz=WUcblO~Ho`VYCL`P^}Z2J$8H~pChf}hM=UbdLMsQ=2z zDvSI*Qo;Z$yH+}L|swo14yBLIIp{3zdwe{)A(TJ_H?rmkDD_#ltP}Hw_mwW^PHUmY2R^B z;7zUt5f1!+{u+5?fRFsw+WUXPD#I)MzjD#iwjHr3(E$ev>!x(hbey0$aCOJv&doh3USd(*9TwT93ZgO&QDc#rJ z3XiIurDt<#>&VoOiHVWv`Vc#QIa#s7>Mh_oiqrm@zYz)Iz z@VLN^4J|l{!l5C`wEs-Q_a}UZevLrr5hrB`2*;GWo-O6JNuxkDSl@MjP5RlhcVl{q zl`B+~l&+H(b)k3-tXlGT6zzYHi1;6NOE7M!bx+0)e!S&%cz9U7-7SFBe*s=sJz5K3 zN?p2Ht73pv#uaFF0`iQ6ce6f#*!}kZa6zY{BGzgDUIZZBr{~Rt65?#1Hbq zI6)WAi7F>!sCFP*j!XjoCbWa$Sq@5NL|VllxItR8u$fWtm@4MmfT*{<^hLj^c@p$y zfCZH(jQ3}y;r_E~G2rU(iB;MNt-}4-5dld8+bUQ&H=h^vqy!pOAE2eqX*b`gu0P<2 z$qsPR>gwukZ8Yt__O!}r`f1z`|B3MV4;Jl1@$XTaA5ncKH~INTe_zy%sKltYoqLQ= zE%@-|OF{M{gC2St0HmL+XT*^B25HCv+shehtkJ^mU&!6=_?nQI^JX#nZlST0 ziW>%=PAKBtqKkgKGM4v2x6G>xPnm0&S+^v)OzpRaAXS&QVKSeWB!RjRg;>1^-btfu zU4ZCAJm2P#eTY{Acw&&%rdxKr4f{4WKK?C1!FXt5AxtGW5?_afEg%I$gh`3K@dl-m z-*-Xw#G<+&+2OjVdBol}2ho)rTpN$lVW$vlV8gb@>|I+XV*HcHdT9#SLcaNuoMw4ci5Nz|D~y>84v(K>l4PWj7$(0b z|8Yg^QmE*qCth#w{(yV)ME4HwYR~Leu9X=1J6(~qd2CXXEE`?y0J53hpEpe0ENK)O zpNil6e1%7!ZtggWNZkf6)Z%kp3%iJTyziGpq@CqP(jL7&iu&gd(Ub=xCS&-=FQWrKG5BF=#83iz)wG`(-zVY3ej zHE_M~Vd5%H?qrMQtRvftn%Sw+A>ozouT$x+<4jU+PAKJE`v^X6^?|dnSC=j^e08(^ zIOhNs)lFMAKf=TtE+|x9@Tf5}Kixv%zyIe(w9S@$0uSIO&UcxlrY8c&mDjH|X}UHn zL9@u0A)GgFX#I@>S||pulMC?C=jM@j|!N!aNb(Q@r8RYq7x&Cbbm! z36@^8Y@&)|+bz}^T6`aN=QPbOJ=y|?e_CaTG;$ZMMU=`4pR%++XnT?_-F<`m&5+op z&9UB_6YebLT5CM_x9)o6BS$+JY;!9Q*aZ7(ZIvr@R_Lv_J*Q*Ib?0)6PM-{)<6hOq zK~M6p_1ttM@FNty52-P?l(Fp$sbO;bm7|-m6I4Y8xUZV({*^ot&-L72 zfORH5GGTg+=J~=^)dM_(^H*#A4d0riQT*L1?V#_Cq>3Sd1A3nF5;kOyJuvg_qEgjr zNgsde5gz&KoN8)|wRhesfM#%hFB*-OWBBXkd(U!cKikoizRM(6^Q9M6MLW2l#}ha5 zNf))T(B^tn!iIDZ8elx)L^mdCfP1zWvxhopSl=6!61tFvOB+j#c)({-^Ws1~mkI>* zB+O^AK4lvin}^HKhORZK+u)?%#CmL(Gs)B?ey^rN3=7PTD}v9_)2`pd*RaOBBBA_K zVE+MeBua`+*7LwU2?~C6qmr0>*coTr)s=G-xaJMbk0j$*oA6%y3wU}>oxk$T(Fp4;NV@yRNc9!kYxiW*o80!|w&Xs9`DkDJYUAl;Qc5VTimT5_xhF^9hH? zfHpk^v*Zbj1VyKW(!KGkIAPw8$R#UvZq6NH-#)p)G?a9F&l|`6K}oA0LwwZRy2vN} z=Wj6Y+@mEgDelteH1aihaFak6{jH!^sF{4_AQ_uctCC7`d8C*G?PH0QQw{@T;V5#^ zL#FqiPD<7dGm`~rnvAlY;&MDGOm%T(l$HV?F224zisP-Gf?4jH9I3Pp3tn>U9ww~{l--tZ^`9I;J^-s!4&`&hAIwfj@%x+ccMG$HSs^B?>X7si|%>J>eK$Ie?5J# zO~WwIUCfv>m4~$d+~C$1{lfT!X{AUnV&j=^Ihi_?V=n#E#s(2Qw6Cj4=rW!nT<>yY ze~d7=8o6WRlAU)$f*JQs`u>-<0jfsU&?({DYo9R5}6^{s-Drzm!Ib}>-N zhZ;Tu1SBxndiWiynbS$L^brT4gu$@=dV;uI+-PHLk@wwD;@Exa#QOwDHgmHO+r zms#C#3VO7fha-=Y24>~UdG6n=KTKquCpY)JB35tRy^s^A>Ac&P;7MWR&R$nI);`cE zl|q1>e=g!5a*|=+*IBw|B}*;jgl2v;oY+#lE)KO8!mmD1ZL$8JT6?rNZhRfn@=5*0 zs8;ntsq~s*9Zt|d;##BnMc(ZT!bu(@oqHC_Z}gLT@;%pX0+jrt1a2vMs|}}@FyRjB zUgpC^^m?|9cnefx1}l$-y|#E-k~h3w7F7hjY3ujxU(F0KxOy~nr&qAYW%tsQm9rR& zJ+QOxV|4Rqg~G+ph3lV@Gn+8=ktrE5k^s;5B+06)Q$ipZeDz*9$hx;dKgI>Yh?Nro zK8xgjhyD)g-KEv;_>^HQ%%LmYE{8sQ@jd)?{bMIN?dm+Pp+;9TrH@%nPP?B@cgOVp zM(-IRbM9W=!RQHWi!|kpa4<&&q{;Ot4L|EiQUdWknj$mSmrewNMU-OdP|*^@CNO~u zf#{xyj7-wp+(rIHITh?EP8~GnL#-L)~Phf zLl|Jf3G-Me$Ams$S)V@gD-28Y97rf<%wh~Wr4|T58@1C`n&R0zRhQmfrIg5jrmUcG zYC1JQx!GN9PuZ*FrqY*Ssk6UunkiyNTIqVnm&^N(jP<}P^4^i#Bcz_>QX2TXj!{tl z{%J~GZ)EcqRFQe|Z%{?`4w1h(9xs<-ES6F1ASlfp%GUO$nRYFX7>CQ7LoYUm%r=I`rqB__=J9ci#aX7v z@e5LBvNsC%l4H$;bNvA;yi6`WlKM)*bM9xvRNrrZrszg_5dOdZYi~KNI$Us(cISC> zQ5U4OzuO3XZyN}bBb#t|c(^DJW(6&g-*+^TuJoxG%P2K)yy z^gfS@XqXQyCuww_P1H`AD`l4svuju=s+%h&x|9#IC!AS+9%kfH(i8V-Qg+WU{hSk> zul%@}f0Ouo(W3LIRl6d|#?Xu29QDcZx>whI)>b-XHBKjz>55F_@I9|xwl;Jw|IR>!5j2%B%%x_6r%;~cLV~i*@^v5psD4-UcY0&dTf)58w$0A1e$8n4 zciYT8;%{8UEq3KeF{-i5%C|dtZ+9xUckT5U-r~Z-zm~4_^2V*)$9^N~yZj0n)!&2K z^wO)pKlW=9Zn)rvzhql-Nsf_;(dp-F`|5II_gxlBzg`rflrw%Y^c~-WW$e9v`S+PK zVSZTH1l)wSt~yzDlV{Y)bl-Gjy(0O0_Hds0q}EH*)MM354;yih8Kbd4Cx+HHj{D8U z>-C@$Y(3cg6&MtBgO>J{Ro&?zpL{)b`FB&2Qp)3WRTTg&lc^GLy*!Wz)$uPHm665I zCy9zttv0_9wOi|rbLYL1IwOx7lhC&1r}#7Tl+y2KHJt|O6i{7p81#=HDue`?Fp%avoHF!%i1LV#_v$ob}>?=Jf z5+>J)GWY$CmitUz{*tfV2=BdHadc1hfRDRFr@42HW)fh{U!`HoF9N?eSYYbMCJ3dY zwax0v*?;KB`qo8OT(96}s-E0O8SOE`e^5B2Uy}VkW|df6zw&~;7&mhQLCy!RmDCuaZ{+)f05IzEntk zo-pK{WE!D)(G(U1m9l%%i21FpAC~?)W1H0xPXScV#JAbV_GYoKT%_p(FV5pGlJ`pT za_WynV`3EONv}Q?2^D6H_qOHoOE&^cg8A)*c!wX>&MJE@$Jva8q_a}?8zYaNcgT7E z{CXOAahHLY*(;jeGu8WKHcwAKtqmfftsGKNh}n^r=Qxz?(nVjCS-zli=n* zxycmqVP5GlHsAd*#&g^}dGC z9RK-v>+#e0+xg!z#IzsL13+-4hgH~0XGh&nIpyq|FQtqu9$Zg}XV|4}gwXl={;3Oj zb%j`S1}=xXCf-C#%GBAt*ruN6GDp|mZzpY9Jgyw1^hWj}fB1(?Nh|td-hUBH?5I-T zr={eI!$~J&R~9Q)OBpsl*Hq1xQ@tqh0mttad+chq-;!Q$&Vwu0+mkQ|ncS$#@@Ce*Fd{*^x895+L!$gv!90gcM)57pMIzLjQkdbF zuRUDOy00#U_3kq1!?!ah7`SR#ELg-afkLabbXgCwd!8w@wC#bAf{vbHVUx2OC{Ua(w3r zC+Aj2YbRTy>hl@J7xbBr?~J(QWl5e!%Xz|8^kqoM4YR!HqcDLW*N?do#-BCSk zt#;mI$i1gdXebW&%D?UJ4eyZt+3Tb?*XR8p-lcsIF;h77y}*!tRekX6ePXIDS4<{@ z&x_1<;A761STbe1q{Hw0=9sGJ=VI?&DOsi5h0Ok5UjEnj-}rYbW!s11riteg{%k}y zc=lLmnA<}YODN28@`36x{tg9JO0mNrvDg8mFF3T6Aw?)c&o`fIUZqji*LfBbljcJI zasGp{G)~xT z!JKA^)tAKPXB43p-lT=~ulK7b=xKe4{{Xoze?{BXj3sGEe>6Z`J!XCzgpwn6)m}Qv zRuUJ(7UV+RZB^A@7)lw@3UK1)4m^5|J^izSoi&tTE*1V2M38Ry+7q2Rgg}9W;)wGl zKi=ma?^=aq2`Q`n$Jozg5fT#j3(62NJ%j5Uw60I35OyB0Z^K4R=}r}yus%JxYyBx2 zeMEB4kTl|*PIIxhZ7Avc66>Ck@cu60R zZdz&MwB;^*AFoGTx85_ee+t+E;;*N_BPnF|zp;N|@a?RMO}E1Gh=je=f4;nZSfx;Q=S_>fh4ODF_OOz2FbOZVttQ3P=MYo!Nq4 zuYW98<|v@3I0T`t^k{XrvgrdCevAueI9$8FmYL4wmY<8jr9FmY=uN2$99!R=QMTT69PIBuNs-V%j72TQHxPW?uTbKXieDJIvf2}cS_uBL zzfjBmmxk*1b)w-drg(n5F(a{_<3DEx`k(GU_2r+13#r&2X2b=OhnAUgON)Sd86qWH z%)yhi8sld`b?3lijH7nS5zkA8gLcP?rt8D1M(-W^a1;?5&x2xGjDjPolRc6=XHwS6 zYuq8`m+w5_`Z0UU3z?VHBe;#XJXDw|OLLr4dXe}RyK#4XPJen^TN@a8TH+>PWsAS^ z;6ExWN&1a`oVL!JIae|-N1aPBR}9PSY(;O+n0y;tH7BK%tg?Z+x-Ddy6WOE|8b8if zvO`V_8fUxiv^py7jNZ_#GF#VCG4pZZ*H!+c~YXXk5Ab>Rlq{BjpA!iJLBK{CFt_LPx zqYX^f0wN=EEU$0#UET;fyqo)vrwg<%zK>@EPbgfarl2|M}MACB5vJc)kWy%l^As) zV>oZo)B7RA@Rq3SLH!yL9xevs8WG}0N&vMU%u0e5%^;=K-!b=&k1$w#H!kp!hDLo| zL-VV-K*{+yH}hQ}f#Pp6!!(VLkDsESw=KEPvgid1+#{Nd0NkYIaI>F@WUR!E#T4;? zPo@Jo>ia_b<95EjzL1kWpY%L;_o5`O7pdACHLG0xJXQg=FS7}qu`Bi8zC8eWJ_>vR zA2PPLl$Lw0*yX!w15o&wN8=hZO40H@mv|12J;36~d-BBJ@kNt_4J~8P&k=*Fd&j+} z`?pC3B%8GAlBEky*Nf;l455pN5T(pop6PVmAld;*x86lNl#y^V|O0LOX{ z454d-D^y6UmQ2eoUe(0(LG?*7qD24W75H;8k#I3QO~o;U>Be6_&_1pB#B!MafqB9$ z+|TWknjK?UnoIi2(%T=xl+!_G-5L`0jpHOWQf5E5n}0J(cbOk^E^Oo={{$=6jePL% z_1!CRj)3rj((~$i#!YWb=n2@t%)Ff1eVDn4&~EUq-X-)}uRBi!bu1Z-l|w8%pz=m| z6E#0HK<*dcdR@eFIi}S@h?qk;TCG+jz^|%A&EtB&j)LLKq7!x+W|61n$&sDYik4rv zUwz|WyOPJYtR$PZ7W;?N)5@)9_vVbtBV+nEEVm2;6AOB1xl(0?8> z5#Z$fwB%6(?D9Bd5}?Gh#o=PQ?fEV`dir$Hqg%d&lb4qY3)Pi0O+O(3CXY!M?+;jZ zZMS{+qOShzq7PVnN7DV;(nizsQM_B?gUggHGs=y>qlIY5gfCeXVxAxAq+S+tmZ@Rz z0ir+0KU zV6W!Harqrpqd8K0pW^6XPPG~F|P2t4}`&*WapBS!*P|*4+z+g!y+=5$Cgnqd)uopO?{myKUF8_tG{W)nG@VR!phU_2;&rd_U zV)N+EjiMF2$ws3x-L+HtUg&2XI9)Biy~yPyb}fL;d58t9;Z z06;pt3t_5SQMUDPRuPlR^93fq$8qkYh2D>k**{FOD6$4BZrV-b6eo?e4jd;n=rYaA zbmQbLKWQym$#cfu>Kl8U-o5*5RT|Xk? zsZ0_-eOo+IG5P_b2N?0>0&fa(`fl)|!r)NBix)2fdm|Wl1)#R4Ad&bZ*at_YC1=k( z{6wf(5F`MfJnTA*2i_W(53))6YWGA>GL3(yOH>nKPG+yBo3avV*!*g1WZ9}a?~mtt z)6Y(-@TO(O%}_5p8C>P2IunemR{}m+-1?GqjutU=|9(Z|Kdz^HH@mhv7Hb2RJ2I4} z6y)coV_*yDLa<&iakv5=4GJMw`v@d7ePBm6N8qG05h)d5Z?K!9Id9&s`@1&2B=@!F zWJl|hUzKH2=3VW8oz2cozJAH$CAQ`Hr-oxT-@6^@7pD<6PFPssXBJ-GNT}|j_X6Ar zoDW(r5J^Z_pD78Zqj_6>C`%iMGP~0@{qGAp9ns)hz+WH{e@Q@b z=3n!3{rvtTt=|*fxP8Hu+^8p0=VwwdiLmllr~rZrgC{v1zD~dxbK$zMaN^s|`yGSk?-kKD^Jm56P;qPE_;s?_7%GHcXFxf~LV!Ryhk3&x)w& zpkF|5BFdPcbp?J2UQ~e|j70cEGpoG9DmAGO09S2eC_(1)&Ou z3)9->-Hh|OAy-a3u17&+P`uX46fWk!?a(UoGsvlLp;aRq*I)d>%aFT&LNyS8@TS+r zY4@NX0MlU$e(CSvR6vk!upKcmGefFN%j(ccj$}W+)?qJ+^8~V=L+$YL8?l>`9vg1& zNV*<fkS%?fdEhEVbGQw=V_ z>$N;8;2B!t8+xgHNfbeBjPvkHlTqRB#~bWrJe4tATfnL#50no&6n7)4Dme08b}KDr zqqIquMh2c)>eIySGA-ch_rsfs989CbB-RH{pW;E`^C}7wYrqmH@ZDAWN7t{51yX}> z1c#y0lA%pduATTTKZ>E4D~-6nj%nt1xJt#hF9AR4BPc$tyeO#4V{zJ-zQr^?Ef+6YJxKsbVc(8J;H7kx01|Vj&UAUI2O_J~ zlb>q3;~lUn=kq^|Z#OAB&fQV9*!m_NaGq-!V4erElK78x4aWK^KM02n7U_ z=jpP}+ES7@Xb)P@2?Xn53@OYRy?*ar43k2J;;JX;f?yEp0>q~Xn@;dx+6RPaMWV+r zQT-=c_)#(_ohiO9>W(%=9+bOOtFXV~|M1I?wEAewIx`_KSoN?t`@i%w|J5rxRZss-|uJMKc4-SL)$^UA~m&=8_KHHg&0B7)rnX!R)d2 z*HM;0javlIA$=?1H7c_1Y0Ft42v{t;x+hRSEZp|Zm$#dn^RHs+?z)lB0xAr&-5qHU z`U)eG&cxjr9bqj z_HLV;QlP(AigtEeTVE-7ZSX{rNI-^Zovr zMLszU?x5f6H7$d& z@kM4stf1byR1dbJ%Ei<--BcaA>@X?b)I17K>j+J=f&nYb!#v7xgv!9ZGK^;gJmQ~h z*Mc2K6idg9Q-vHTERWH=H7;XoQl@XMY)oG5zGFOpWbZNV5$|)4zIvlycvAJ{>%J&@ zTc;@lb*ZZTZ@vt$>fpu7VY}`^rywF~fHCmEW-Hda0Mq6Rd>z_BD^xUMeii6Q$aqv3 zpGujpj9aheG|>b*`coSl4&+3HZ~ugt*J?u;kZoBE5)FgKIKiiwcqss)7pBH$_^fhg z@E-4b70b1Df8&Cg%4Gp$+K!E%pX^Wu=VBLW@VPxyPecNxZEIvr7Xz zJmgN{@7^`Q(Qydj)A)c$fDr5#kTnOqeM^WyFTiiBUbYTUAiba80%08RW%v}x4glvU zRdpB~mhnHHQ#{qg)Cu!b2$=3Sdsg5{mE~c?#w^$K?aZR0T*plLTDu|Kr%0OC=W`93 z%G90oOq_44j&E`uZDD*xKdrW77CS(Ry5$AY1%iY?AW(p`D*)ocJdA|1w=adArU+Na z?e6vK^>-rVAq=qmk&6CQ9dk<7Tl`ILm*?9z>e^VJQ||9}JO|b^#3EOQi|N7le`qVt zKV{y1lddkTik7rQU}4tZWSDvQ;6gzx1xY$FK-JFqa9avZ^gtDvg7_;{+? z^1nslVh7Q^pYUAMYsKXZsmVfKS+wm(kWTi`97%jATKo71WN&PXbNlwh4W*-&VH4sT z_b&KZ+42zR!Y2f;#ke z(3?BYQzl-UjQQ4z5==@atd`JT&!=KN?62VCA=7 zZ7uE=em#RqV}6p@al`^=c+p2bV!yx&it7@?u zn+voL%sr>SOI!WuFN~x5Pd1-pmHT=$?4%9xW6$^ZWdiz5Neb3}1hK8HHZ9fR|9qD_ zMnp9)`#dJ5XDFTHq-J3J;EdA9;$dc1wM}6pc~`(6V+pqqZNBbFPwy^ok=k_CvF_N@ zsK#5!G>P8Oyu-19mmadR{!SsHg-XK?)vpo8aG@vb+@_Ud(OGLYe~BUXj5Mnj8Y>&y zf*-lIE&%ZW@1oC5sa9%21pU`v#Vyo!3gqqq|3frv6DoZHe0L$ND64yH)0qLq%I|fT z?`0Q=TR*JhCE76~Zpi-r*kd%N325VY-z&6NueQXLpWY25LWKk_5~^U~wy*r?{+!Gq zcIICSVDTp|gTtV~oOc@}tq5rd=7+Ynx9h<)z?G@Gsr1l8G(_!1DD9PF+ZR~)B5Ioo zMd0!}t&rB(pL2&YE_i3w2>T4OF zV=@Y~w9iW44A1v`tNvIvvN!hm)8|#AG1t{kj%s!_=_cCjT11UM6dzz`-gCUm&t^0qzrHUR;QrCLCuaNV_nxRvr_QKjVdT@xGwn4t4Z%zOe*9@W zsHKkh0o`3>MP@Yh#)&TekOyvn*IhwHr3JRr4gk`O)7G6c_!53?V8RJLBHnSw4tCf$ zpL5wgNBat~0l^7H2!uxLQ|h$rz3To`6W z9y4G49z1w3y|5rp2D(5&)`n_^EmwNcU znDDca1KlFfbGX1(tntlO8p5?X0?z|<@D*E@T7Lid2r(!f92_9r7ynCClAwDAg*9d} zXkf1W%pifIl6QIupTOPJRsP`&ThZS0=+A9CE>zF5Ni0{%>hmYioNW|kC)M|@aNI3* z?IeZ$NO|%`lbUi))$En4>|~R4FS}vcnJJ>I6@0Ie9`;v?*=eS-dK(#uS$}qV92gpU z3yK2phNCwtIyAMkkQtm5+$M4n%dkUlZXWKE9UmRJb|(s%^;5v+X@6b&jNL}a*>vVa zwBOEm_1l1iMDSqicP!Tke$SgpGGPl&=ybiVRW`-d{+=rxdRqb6WsY0DQBdsX##MnFkFk0js%r`mpsWQ)c&ZeTWA^9PT&yBKbXC1s_8S>2u zS@PjCyM}ZRpL;J8B7NfCe9eEBKyihtRjXLk*F-RXv@ky`jb&l+ZRHEpsy)=5?QI|` zKLfu>7_|^&Z}-#X%S@>#V2O2g(F6Lqj~~uaQ`6hvC^LkOwBpN`@Te#$V5l5&ZUE#L z#O3@j-Mn^57$M|CotVm<)g642slR?ZcwFl{JpY=!WnjGWMA6y4*y&-&51l2BXzhq);$$l?Vtw zqN1;wwjrl^8y^0B_6y{qP>}JwbU=Aw+7L?gH&|H<+TxxK7HD+ExzP0M@ly|%-U??S+jJP zdk)QyE4|L+@65EHhnv-mSJX(Mh^L`bd{5(gRZGn~1~;*h%+7vsyc!d3;>-OBC!|46(g1vbLQ*z7H4K&1xWq!WdDxUYx~`- z>&s^MU{4OqBTIEYsg_P@KIaW|XJhu96-7mnvrCqqqd|x26ip6SrJiO*M$55qtuKLu zA#puyp=8?`wMvFePTp`@=eNtrorxbDX)3R28uihx4064Vv)Zt-rwiOcH9vF=9mnd; zLE9MAu(GgkYyrg)!aGnB;(AL=H@GJ4)5GLK zEMm+D?9cCGlsW8vG>j_x<%}vIOJaSq>V2^0wJVkUlOr}bY<%RHk`8*-pRK zXodt+^5A&EUbNLp7bYh!kF;f=MsSOXsV$=zu5l5?G7;~JP9vL!ZX;fFZMrnug)#5k zH$fU-9Dha@Bt%CLHa6J`!JX9P7jS;}HHcDPhUBg7*Bu@fS#t7PmNSBKDJ;$k4V2=B z+N@bzUzrBDm4HdS1%(bE_iXlfo<&TZ%=4Wr>zx05g+*PY^wJ2NKPp=LP^Hy&n1HfK zG?#H`*Dna{`x+Q=#?No%Q5cwBva_bgi?>|Q%KNUi+F)ggzre>AprB(l`@rLhn=I+4 z1w~qTp5>Lb%sjZSdDWFuq2CbTVE>*3SDh*wO+#G}s)T{t0p|u%&j6xD0&In81Ey+V zqXT~3Pbk=wD!qhM;=$M^u3uI7OqEFe=O*i4r^)!GPKvxK@=V__kBO*OT1v;#vId7X z8WyHfaBAND=)5f7L-I`Xh3=E)3!e?56GMNl<)rFV_@ll{py(ZdcRxzowXE_VN!^9F zCL<;7gOCPgd}1OyJNr3Q{Ez_%w;B-gkcH*6{XtLWTPKXq)!20|Lz6^hIOHG1d?_U- zh?>sFfBUBtB+`wfUlr8&_Nr44KanLPE7c!8rs--cGjG^3(Z~6DY!-LA(jD9(LaG%8 zSw@@t%A{T#92{4LUq;7SehEarz{*1!A}J1y(gV*Y=hBp-e6q2t>U@)GRI#5gv`H_| zTYnx`TvH2OZg;zG!Bcj6OE1{u=#k=Q-9k@&>D6+ptk~KV(~L{CsIbWyJ*O8*WSNmu zz8LT+=$?CVxXxC`A$?tZ555ul^n9wdei2)Z_{(QOq&Iq^2#Hf0(l1QWzaKA+*P;?# zA1fzta&iJ{t*oRZCTvBifM14dD{F|jdvyTv169bh9UL6u@7jn_BDQMc-%-1?@B9Rq z_SPgH_mGReE76?8ysMD$R;l2v5;C;(gF^_e5W$Cc)->4L9G90YZg#djEF!Py7`kZD zTo96+;3tzQ4%bX)g8Q&UYq?p#OuYZ|^~x6$S7l=2=E$wx8K|4&L|2FFp0Av0jIE;| zpHh`Hd4LF2tx4&lag^W|e>Ztu_W++$^y)g?UK7Ei+C2D@ey zD}U4Amy4haXg52w$S-n{X~ucv__GWzPeqpTPUnF0qE(4*E`u3&mzanfcFZ8^5H$i;%q@H~GfQ_8HSRjN{A1 zD`sb%0IAW*V4zbmzKvtoaW^vem%Zpc2~wVqiA*f_2nO*E*zm z-4S<(c6{oIdjGJO(uL`yvmFKm#|@-H3(_zI2jEe0T(7k)EsOog<&vcbM)k?+wGWNY zNc>nm674s)XS<`XZ!Zk^^KVPjGi-O9k%KDv&N+^_ba?V)V+Ve!=G}_v|i&j$=HI%+K(xhZSu2Os) z)xlM{(Xc6m0^tA~ssE(!p&L=g?v2i=H`e)lsFU(nwH+re=z4h69_|7q)_JA4C7RDl zJ8h5+NZjW_ib&2Vc$=J}m~c=Kmr9rY4eeS0OQ zxPMmPPURH`a@LgcIN? z45Ve&pNqmvB$VRW3T|YU25r+1%)XEISTb8?%74bX%ftM_)`O4S@461b__F4KN}DHk zpDWSq^7AjgtIML~A_ONjibKIAjr*u8ix6c%MY#jbL8@}~hwTyx-{(Eo5Yv5`J^V+S zSZPGi#TmKaMkd#NN)E$)aiF3)9}$c zLZJ+iL^}TP)U`|VO?(5y|MBuv+eaw7>`4~+B|Pcm#7|9i|5(7!OR zg{wQqsEL1$9z|QyAoATvLBN!zelWU6yYlxurm!}(?~5A7gOS!Ofz;UXf{N;(p1O&r zNvJ+d**U-TDigi8C|M(yD^)Wxlk;M~re3ZV6oiU({qFJ*BC>$w1{qfaCUwUkGz1G1 z@uvFPmx+s+bpZ(-&sPNYLLUyl8g2Y=oed7C^Bm($KFe{FfL7+AR4l3`d;Zk4G*loD zq-SMqCh&e%)X?aF5Dh5}1*N`?iW<^Ajo~r|%Q(PS5$F@J=f3Nnwtu*Dk$|8DXp1lU zGoC3Z^yh3s$#b!O?J@7^Qw?--&&s{eVxp&_NIU9_cA z3Z*jIyQpYhv?qB;s3h&JeYGboe#bY@bwBrg|L)iG`}xZsb)KE)=lgk&<9)o3gAj6q z?C=#xvyot8{|K^rXqCiVCfQIdI2LFkQ-8e8=pFz4)}I{CWnWeoW%J|&N;a^uu(bAS z*g?|Ea@s(HSv5i0#`Agv>hM{B-}+8#klVxu*kWsI3)c<@2#1COM!mzteGzp4qtyIX zDw@qCLx|Z*F18vU*4cMo5+WvfpW}pH-JR+k*(JQ6zU2M(KmClaYEVQ*MP2O|&O8dF zj;Nt+3cF6hw+euXF@Bw7Vqy{+8EMg70LfugG?41&!_sVYtlEF-UFOT1bsrGDi=yq% zh&uAOZ5}6|Csd~1>`?xC|5x5ytuvf5$j!~2*Gr_maSSmr$`DIfdI_xoLI&~3kt69D z8O9CC3Xloj>dnM`O4z1d^ngnAhRB;nlarGGImqtrHKu_(1+L6|dwX9xLYh#>5!AYn zFq~~HlxVpB>2M(P%6zViV%6P?9VmUxDLRxeoQG$JO1849Dk`_7=f*fXtP?YXz+(z5 z5^(-e_jwB-^R+OfSI=k~f*-?Jn`FMOXOs9a#Az{d@)coXVnY9+$oa}lG3VIWJLR1G zW^N+wK8#U0deeg$CKoOvg&O3^Lya%rWj_LlV7tY@y`|S&4Y;F>+isqoJNI zYBc`ynTgri!B8DmTtuwbRGU^-;^r{AT3fFcs-QDu3UD{idq$`uwnABiV zTVt@q3nd<*LP$m<|nqYwT!cjQdxAd)kVi(bc)%Jgfq9rX)d(; z2iMzuYqa|he_xs7DJ$wDb9+BD2-$bcvz_gs`4M0&HEeEfJ)TRIGGB_Cb9kKHmw3IZ{1)%|sdfPgZ3W6THWxstmc ztcTLvV+uYZUKAJ9#9nS+%*u6nV+PR;c6(i^Pl6uuv z=GZKc{_!=6{^qw|Z@)F(Jkeuu^zV=Lg*JBwE;hcl^CEk8M=l*t;-O8qXS{NHT={E> z>#>uncg%2cjuQyS?~nWsghSC*H|hC?7DoS+kr&UV+=QI^r6~qm>rV);W!NhxLDXG39O#{os;yLS(HQYA7WVZ?jrP!iz5 zRm2eDJ41zW6#iKmlj~vMpsc82_{+KmTo&&_{(Sv1Yv0=y(tEny^)-SiDr!tj$-CK; z84Y2%D3rK?d;b-1Q?xDEW-Mjx##Bh^pI<-`pPoC;_-V@4wzD%KODdlq8+0{#nHgv{<_#tfi;c-TG zWpfM5@TaIZC>3bREnM)K3yETrSw;jL%kl0 z@oBA-(`SN=sIp7F5=C#>E;&zdAtx|h|M#50ZGjK6XezobbA_>Mj@(eZYCczeqTasF zsU&V(wNPVX$gY~Cpf|epeqx72oGMJ-9-R8TGt{heJ`>0PT+!nE9S@`q2aggc;r_hP-9rxyd2WHEO-g0LCLf7v2#kz%n2|wqp!-N3? zW@E*Z{dYzfnWn1Bb7bDpDCz}1%-=OQ|2Bo8_+MY>N(MW` z9l0%jr-;)-PjBm`Mu#UKwV%KC!;O1@?bi6Y#urXZ>7_DXKVRPE6zSQ&)0u~wP{V7` zxPI?el9#YR37c3&!@14zYZM=ZWR}fSsqGgwnR|mb{PS#)(N@2CYO>JEJE8UPME9uuBu(A!m0QO%`$ z`@es2c!*v@?(C+yKQ61fFSA*hp)m>hvPg4FR_|=WparK5s!x~NBH`WaX6fETuJ}#u9jF_^4 z@yy~wo}`XY(CSS|He><WEgT$g>)-pzN{zEr60jK8L}OnCimO0Af;QLI!=$z1*xX>W7IYPr@J>@mnvNL z67|#VWc?GqEj8C&W_T88sAw5jM~_%CKj*KvZ#q{MMr~x8wB&T@t%9Q}J9p;GJz*7_ z=TD>y-nL{PQC8_6n^%7jqWK`?#>j{Z zqEC|3uc-cRD$!(MB4!3v>%*5y9z&L=b?_oS0G&fzXSqt?fwG3@?!G>9tmJL0Jqp}1 zo>E^QU*e-vewM}it(UQ*_^FzjKEt58mc!fGu@!gE-6gl!M7y(jkA+1@3sD(Mk(6w9 zaFCvws`zJ6?qk02SBFCk8xl%?e?LZChnT7-(jL!wrL2O_w?PwZHD(JPrd8fa`0^mn2de zuFol}Q2T$_=4`VPoa9T>Yne$Q7dCn%KWWeAu&<*Zm&E%Ix);0^DG0@h|FS`0HIGf= z8YjZF1A5~kmG$r6?-dbgSgrWy-ZlE>zrb}9iS1@44w9&Pg?h4n6T z()MlJh?jD_gn|Y{LK4wy6SHR|{o`&l_6vVCLFC|z{wf7A<)@5(SBs z{au~3MzpAqeZKXddXhGGwik?s{Iv&*uNMDPPa4y8Ku9R0bgCkTdecr}=keA9g~Swr zc*SX*9D{PG3z93a70XDdycoLKUmx* zX*I0f#v6QITUS>J979;{@v2GA$Uo{J5d2S{KAn2ohe?!9vwOi#}a_ai}Oe+dFO5k^|CF!V)OLkW}>J7gAg=b%xmb|@EY*)LEY(ZaP+20ngA zkGTikxs!Ws|N380iK#CTdj0QW0ajGTj0+13u!Zd%8w+#{%kBnSX#o9hOYE?2hkixl z50r2MC2^%ve-60x(f!k#cXT>Gj0w(H)BDu+5GbEsh?L{YV~hO7SHJ8mzAC!s5I;Y+ zs3>#TU(1yZ2hB+WiJH&o80}VnMDZ6F6^X8#e8JQ4V`)izmGg*la3j;=)rnXEb}y;^ z!(9c%6Z^^RRtW`>FL?mb6mWP9m|2ZqaD186Tvr<&yHxs#%a+n%!%_3Pyqe?eK2pJW z*Z=Le+0(MV^B0ebK`~q+2`+^eq5_j60`gW5I+-WJ22w3@*tp1pn++wv7VFNOI^eZSk%dzpix)_ul(o_AqW7Fi-o0BEC?P2 z&goS(d7|WujEvplj{7ky#+V&Um+a;(+G2lN4PM2nz|8FI6$~QLvVZIEpI~`rf4l{{ z5Q{FFf)pKpV1AVnAh)u#q@k(lSnB{nxgoH>ES4yHXMtK3H8nLzx3u4TKtGc)G&_Hv z+-66f1S~j}uAkaCivKy^Q>5EoqtZvWUroVdP_g(Bbt1d`>C;*W zcLoOWOE2^CM1dySRHyreb}|S5F?$Y=`r{Z))Q?yda&kI`n809=(PTMU`RnFRL48GS z?HyQtIEJ3w6v)})79BDAzhAwH%dxTBCF!~e+zCV|83?$r8=9c^kxt%W%dBN&aL_a; zIQY12+l#jquQ#UcD?Y^LGw{qJ=Y*^+->H;_)gTMQc@5czO@LAhCrCbMzEsQGl1B(a|5UW8_k?G{j2UDP(XKRiciLPNqS5wA#tF zuiw@PbKyI8=zv026Ko2y9S5$`&;oQ%cVE7_#Dkw@6L<7;8f&Hi72~9^RrBF)k0~i7 zWo5#yae8j9A7z!%8-Iq81$Pp7RmzxpWAW{USSkbSaf06t44a||L0ZgtoM7Mr1t!>! zRO$d?pbV);OhvFp0?daIn9o(=7Hk5bIDe9yd<&0GIJOZq4GijV?1Pz!TiHX`Kdb{d zHlR1aR_9X;nUQ2?XZQ2F*RNe0r;9@QboM1eO zQAbSgDXi3f{AdinpR(22kFKt+TS3}K3Bnqi<$=PrxX+&z6n!E%4}G(T7ZGluFHVv@ zOi97o`Y@mn*tLJbZZ|BW>0ZI7iST@nkB{H^OBy^q6?OGcw@-Mr1`APFcXtBnbDrvE zc!fS=W_r38OBL0%wfC{5$FyzRmH0HE%mCt`0%QN``p{7+DfV&$HT+>vjd>w;o&Kp{lHJcB5?1wZho4iS8XC#pTrPFUf$2G zg8%YmWz21U`~5}^dqM)V$iDBETTEi&-Z?9LZ&(SUXml9^BGx=m_UM4hk)FGlty&&X zjkOrfq4Y*+M>7>6pmz%S5=YIAg|wjGqAF~`Xi^t%~#|SSWR*ZN$3hjn5g21uBaO&3BJ!K5h z&j1!55kAMa10l7KxH?as_<<#e5Mn0ik4sUF6$xH`{(fvPt*%XZkwYf12o6E4@y_Dy z-u`57{UUop zO(+~8jVQnu7Yq0Vx#U;&qfkngTdMrEa`MKF8!(Ja!CMo?=TJDN%7q-P=pF{dK1qM7Rbe(h6k~V9sA>a*!?99nCp-n0LotuV!ywvm^YY#yt{_B^&H9NQb60qg{lMoB zLFB_BoK9_i%gKC5S{7fL{Csz*?;5nG~`t zPIi5Ka^{hk(_de;3kkb!uho7|#De>RgSu9=(Z{UYUff2kOmDNn#2AYsjCbzcv$Utp z+gde4%s=dP7X?XB-6eVu&*ga|WC-WGeF%|c3JMDN2)q(p*(KW=kWo&BENOo3;zdRH z#vv#V0s?rc$9AE674SUA|5T|ed)JHn|7U`PbKU<>o*nu{5wxGBj%C}OKob6)QBal7 JmNmTfe*je7%}M|O diff --git a/doc/freqplot-siso_bode-omega.png b/doc/freqplot-siso_bode-omega.png index 0240473ad5ebe7eb152a23a50bb51e0fe8fccc9b..7763d51bbb9fc042327574a5a5c8d13edaa58629 100644 GIT binary patch literal 45790 zcmd43WmJ`4)ICZ_r%I>T-+nXUiN ze_*n8FlFx9Qd0zPf@UYF?g$5mqYwKBpD&ze4hL5uE%oW6l3UvTqN^L8@>T1}kyYOx zT54))Dypi{)bYYse8SB` zIW8*wK27TW_q36-{mRs2&!e;<6T<90Mr?I@k~8 zyCna=zp!gKS?^(YJ6>^Ej>)0BKk1>wrc_l{rf}bQj(~vh6)$+P(UsqeR0MTZ@;e+l zl@*)My&IlbpYJndBMbbaD8u@Y8+AU^2UUlN+nOy*-EJbkTjFqaPv) zHjC5FSBsgF=o~t)+ugij?7x1?zE9~(5YLx*ctNG5%;fwoM!Vy`hq0x@K7V}ifhuU| z_5v!Qr9}qbrbw&)MY?QHy6e*Jep%XKXZXvYkdX1einJmkBBQ%bF0t7K?`Y!xlI6VD zQBfgqhE8ujTrGng_$5+n9SOc2Yjm~E$<4jFTK3%?%S8dJF`6mS9>$glOUp;DJf~$WVzXU!RPM4&CLy$h^Y5XtbmBPxcH+-<=mj- zh+t?-i?F}Hf7AK6bbf(`9)Cf>X&VaV*IFBG0RaKCxr(8yq!7A!=QoR-sgq`F2%zxLMGbDOW0Jon<>NKB3hKWR-_RPR+751h`!?X?GESVwRQ z3Tl%JdDZ;`k2fEz1TDNadAODifUC@9f^Xdq1zFlyuvBrqz*QVN&QynTyL@&q2W(wo<> zCqaDvWo2dE1K~c!>$sH<{)CjpiiBC^!^Kro(A}GlaYw zdaaX(OgLY^7I|2UWZsWaM3w*c-=TqRAb55KiHV7Oo14E8EX>UEZ;x7@wrX#-Qf((K zrV9QN6BFMIBrvGwSa6VV3JK|e6<}duDT9;$aDO45E02YPGa?7a&c>z$V%2%#j|@`H z(@G#tL9Tf8JFe#5Udd|R79XU9Xd+gTgXI?A$B`KtznV@D?{UpEIiZ_R(NR%@PrPs5 zh)zK-_V(v0&k{E`H~;GE>+gYp$ST;IdUhNu{77fN4|_6@hs$~8$S#GATN;^^d{_vb z`ceqEmGOaG2G(@}7Nrc&Nkg+0a+F<#w$elCTf}8H`eA5b;Jt(Q)8oTb4}~Yg)3#}b zyZFHpq!DZrY=aTr(p=8mf;CV2`N3U)_;Kl>52BOAhR2|?n$DHLaXDHVI$Ug=YjA$= zeS4nm`}BAdx{poH_Xz~U$?0kT(L}wYDFXq9L<|`fC+E+)Ivzfk{iGJ1yos?tGO72O zI1~bsva;9^&#UhFdH$!92{~c=wa)Mt>y0i8?}aJ(obr2XxFf0=WYc*3$IN~?ZV%rK zoO=i!{HuPCH&T5Bp#!^VdUd$SVKw_LFT*3kcpw2^?P*jLht;qf6Yj-}7itwoXgC7L zaBz&8HNQ+pGB|9P()2q*P7Z399Y8*2gVaK?NV%f+_pLx24S=8>1UHG1HgFBH2)pZ{ zmV<)>3rX}~h9JLiGk63bd&z;ENz7ySD%1Ot7$k2o8`Hyu`Y#~Uxu0!4CnMV*y?XUY znHnt%x7|cXM`yBBHxq>ZM2R+k^V6dz8$0{W<-9FCwB9o!2XC&nZgZwmjRB59y@FbJ zZUN%S4I;B?)!pyXYUX)4fds@$cKu=IVX{%=7B-J`xj-%Vr@=JU9DeAoBIi&2thGjTK?H_`c4Tr^nPM$9NhU79z|vUPl_? zxu(;wurNB-4Cu>HuydpN^0}|)m*`aBxVgCpO)8^Xq6_zCN@G(~NlCe^dUZ`WNao57 zQKCt?Ydi&Xb#=v~h}vqGeFmD`&#u8v*SVd%h69xhlR_YgnB9a0#Ks}GB!V}-ST+c$ zFUf4dAjz+8ZFPgqKZwburl6p}B;g1H=`#%^)-v}qlgop76t$~kko=g0n?Y(_+uc>q zdSa|yXfG^n?gx+2Y`Tcpaci(omm5S4tjK};s9TTWCnKrFRZf1WMi0VOR-G@C-XVKqo=38nLj=`0r^a4WzICS%b07S`1ov<`OBrHC6K&IX0O51 z?ggo$b)_v(z1fQwBu>-5?{CFws^3n7!dnSSYYZ8$h@RdnA0MBci(AsijHae0xBc=S zx05bHG*r|qm0}IA<2Do{W8)K$1OA;iHm`x&O~t|S1NiX_(yViXt zJGAa>n4dLu2+2nnM3eDm|4)#gLswSxYHSui8yFb)yhuq*>;V<+OgEF?H3sDO^@9T$ zP}i*^Y_|rJlZH(G)!N49<r);s)b#N7}D<|NZdT z(bFRVibHXOURwad0RVP|mpfyk&aSSihzJOip_D##t;%^Ib9)02rwjsVYI#}L`>=j{ zvfQwTpl-I^pgbR(`{aLR`l8CEGld^NezXATV5-`3hTy;I%V*q==X`y7bxz)viZN1+}%c==p`JrA!X{0oVlyWg)VU@+y=Zn)*1z73J5cDkIcRgen?FI{qi;LUygGWSX z5OzDx0uNA^la5Z3lL*ry5E%!T+)@d%C{oA&e8wVSoc0552a`{H8|GAYg1+Lqql z-WGr~Wf6)^K8gQc1Z7=I=Qp)dk_M(I|n;li|Ka4Etvqs<2v7QGp83Ab6@P0O+{v%!1%H z8A{<4oBmMsv!H;(VlqsE()-7DhUc(-8yeMT8CY5Al<7Ap$EBnk0Tn7LGm{eBgu^vg z0+V*XX{NWz-Xj_s+F%N2BsjMCe8Tdms{$~@-YK&OQ2FFv#ZZ718O!e-8-sJ>U~stpve#kdnexC3Trn+lvrVJ^Z&~ie5NRN>}6^U zX~Mn~l$4ZsV)iaPupTLYO-cE!pkO+{ksKs@zkL3Db)N;+I#HpAMMu9C z5Lh_$`40E5wWkNA?D0E@9(YjD7&L35guHLFW}p}s^fnO4K>FV%gLlxn%gfqo2;;$L z3q|5BGA+j?>51B+GjnND&zZioL|b18?`d-0?ceT{_#d|xnz>4@A2JdW#6Nxd$NT59Y6Y;LCc2-4cj9J(|4sw{d^^m2Wx9v>BjH>ltOq>X40<4 z&l#a!|HiwQoY}TF=a=O(oh63d&6gy^zVX(UM!)xMNxYoos7L+uUq=`b_w4Kc@s|D@9uigbM+<*+s(0{GaKX6Bv0a!w z3Au}cp^u@tV~4B+i-!ni{+e*jkMQ>vA9MM$PSU>?8X_Sx1mVWK1;spPuXi9|u~Pqx zqt5Bw6B*G|EzRe}L)>w)`!^qt;0uVy*H~yNHpiQdpKWz!{mSq!elqoTL&`N52=j{~ z$+~phYJ4Gr+6ZfE^Y7W>^`NR{5B$B&M%r74vGq5o(|J?B&PIDi8|(4srVKbLSo5$D zJzOPxO%Ta6FeP%R*x?Uij&{)VbqD=STs0~6Yy0&LsDcLK!4r`;uiw`GRJqSNd+{=< zq8Q`hP4@ary8(zA9=AenuC?^+dB$`{OY~t`#v3;WtORcimLuIDp$7r0$MM^I71ER? ztY~Eaf&}Q@OOdeg@31$#(Gm!ESyb|%ObZm})JzPn31Au#S@+Kx(?}$a`NZeU$eY6Yj@aTotq1u&u*GB>j`K%<@ymW@@YgA;&``eg1=PgC-XmRZy-J!VZG$ zTjPoYqt~Dzc5q1-Eu4~{d<=uSD&SR5h}4(lG4gYjv_ud7%p5dfZ~TroOBkz?SMA9^ z!`v|5ZNyedtNzjT7(t`Bq?fBJHd~J?dDd0F&5jPfxa9a~@0Jz(5egH%8=2H6*Bfsw zN@4UQ85(RIg=4-HwZXb+Ys$~^$GizavZ^dD@pGN4cu33ZeMmKiY^glob5>km6F+cz zf1!CPp@@$lr~RpPB72O^3=itU5phv1F8`HDSXcdzRwa`!qG0~j!^IzLH8{c1G zx843N^MxmwLh$>oBEhk!6Xa2wIFPL#*^O1b3TNg*xMAEr_SlhO>-g{b%TXd;@+B#-R{pao7;iA#ZS5-Od{N%c`{5nyN+2p1wkl!k-@P3B_ov%1R zHn;x1NN;fBbT!*~$62F_1j+_c2~^3=YAGp}E&N!j%(7EOTuMb9-RGDWX4{ z8mU$k&8?wv)u%qXQ714l727rtn>i4hJ3W0jP8_!K}2B+d>YP&V7xt^4puWw+IEw?|E#pXVIDDOVu+R=#ic*9<^Fx%f2!cSXgI% zk7#M31R%RSy>R`{pFeBc+p1($l(Bmv~aShYQvQ}8SA_v*T(cAn0`Ck+oiAt9le z2MT3{iSd)mOL0gOR%C%e{k_+PDU|IZ#hD<|qvNuMOg^kjXP_NXD5g)G|HcbaA-v1Gm_VAN|JKcNX3oMlwKhe z!_4eKR@|0?>w%;#iyl}cWoTyz)wga*!M`a9!u=UU?Z>oIgZ$B{U|r71i31UNA)-0w zQf0w!%&dt_Q8TpL$$7!$H_4U7(`f^=-dTs@&Vk;I4M*$olu zB`fZ}W!?Qh^3sTV)PXJ*7h9YefSk0uBmoX&8UYrzPYI zru_4lMjd`>`7;ESC4+WMFUZ3lgKl6S#W7b6hOPW$}-`^vAFeAs7yi0_Bk|*JkS=8KoFvumN;M%t7SD2 zHF<4BttE@jEUYVlhK91*{t>#=VZE$INyV6TS2$YMLLDFy_5xNk?9lj%k%i^3d@>T_ zMGd*gG_gZ{Bm_@!`hT)9k)(6B)o%&~K(E&1qZ1^UW8(}t;=dbjD5y|Kna>r?mi^M`*2IXY_nk9-I3zVm*b2=zg^hUR*J30YH`wUi4OFELUXlGg< zmy5d+&Wb|a@Lvr`OPD>6p*paHO4Vr$ zgLrB051Oi-`p14xZyfb!2*I_Wn(;j|%>7uj`%V)7ywo>3Iz zZFoU}1N}hn3C3RrjcVfMlnY)**3fvVoHFW$%R!31YF)HlK^&cxRyxXpFGkfm5Uu(8J{&`Vc=Y`{VJRi$pBU!# zWYKb~u~YM-NYiU(A~X_f6MbAMyhMrJZFL+U26B?8PlcTWo6IP-BDs{Q&cC2DS|F{I zFoy~{HtVxEVDCTR69^;bO}Ed~wn17nj+_D3fsyTWwk9vrmV>uCE%+#&5Eq*zFb+3G z{f}!#vzR${P&iW>?vXGfa&XtSWwT6QC1Mw15{=?PbYi=5UU7*quUu&9dpnT)yZ@?oEgr;&X40mGfx%>O>{n@-!;y!Vqw)-sY!1^ldf zJ!58guMr_(nCEMk$o`WLPG7UYA(@Q6Y|H8^}beLJ3IwP>i2#WMt*$g`f7YUXH>R6Slb&BluTQ1Td*WS1-PYxBToz@Zs+*K6Q zShj}V*fs%kR$EF=9MOR!DmR^?@_6m{f~aR#S-xjq;n*Bx_64kEkZXIijAoMYm`t{w zLzpvmyr(rnp2Jf({nbrpx(M7+V*X~K!?h%#wvFuSZ4Q}QNV(Fx;GZrGxogHqL2ocn zM_pB*hQ|}p0#O_ECg_iqMCB@r79YG+Pf={sdCuK+kOnhT{#yN%E#t69S1Kk#U3%J^>SWT+vuU3 znu|hitvA@|GF{quxnAi{Dep&4Il)Cz6{%#lb>G;35!%)N$`ehb)TsT7@V<(ClRYBte z@BG0uKa2ZK$+q$6SZ*9=8=|D-fPTjbwF;$_(LvlZCSzjtIw%>2E5OF`X5{M8^Q1@< zh4xr`D4v95MVqLW&v$RuS0y?A>56Bak!qgUenws80Fk*G!9W1jW^qs`rrkGvt2r{) z@0+e==Wdd7AwPNJ7ECv-VgDF6tr?{p*>v0Bf%qlFqUi3<78#SsuiO6$fglEdA3D5P z8{&9XyqYvf@F?gVt}O9F&6&>M5RKT1-#N}YkLmPrIrJ~(zD&y>s&h*MkqH)E=+7>! zyN;w~yP)t@OhP^?=!=Yi{_I0-EW>ZbAOBu`AEp!Lj7#%u7lJ@ zMj9{YgkRjZOE1NnawOcUQl*LJO^r6&ygGm)pISV1cj^opOszgsp^()(3#X2uH99tK zw{O<+PD^>DIESQR*2L^bx!fB}W`?e1;s^3UWr-SlZ*4!J%Krsj3HlfJZ}Bn1KhWmr z^~TjlrW#&9RcjnOKk`*?xVT)^H!T=-^3!5}kM&pCE<2zTfAgqLD?fbH#8=XVSwO5b zusK5j9U&N)nn|3Y|07_bvk+dvjL7l1&zr%7!{m+pNoWxvC*8ZGGbZ6Ls=AtA%%XX# z1PLQumPV$Vw*;X2%8{&3)x&8LM^PM361u%|$7M-yqlgfAY=Sf$@=@d!r?yR!ESeAK zT@yRS+q3S-8nzdk#A=;y-~g2em8w6E+OI@!MC;sF zu!|h-E{%Lp*&~a#m8vJE5YYyaN8$ES?5$GQ7=jGk+Gm?Q_;xsjNZVYv3^;eOQf_)1 zvqgyfc}A8i3Iv599i@++_*sZ}mi<{phNtmySJBnl%844u@;~_WJYgcQwiU!fpJ~%T zoSlV2uRc6^uI59JLks2jMvW4eJclFkpN* z>v5FOcv2v2e`o(V7x}vA_NAEnK|DKL_!VW4Ms9(b5y8F(kZHJ zvLN?GW7{oUx%yApxg6GG=;^6Fo0~ILGdrx=`s)b?PJ92zA)(AWf~S7mRc0jBL~srz>G^OJHX65FSlPA{xTjwTYSO-J9X*`fR|?0h ztA9L~^^T@o5ZahdTTe2=5+nFc;8I(oCD@o){Ww?;-rSrhf6 znk~kd-G8o*ua=)iTYP=bZwI=xBR?0tJC2++;yAt9>=Zj{eb!~fQPG6CPLTNZ=cJFT z6Nf&xnJp_xxKzZSKE^Iuqk=KX{^rQ(Q`(u@ILGZynNFF!zEb|{Wq7P>uO)>S3#6wz zZBk8^k3mcS(kC@eh%$@j!|R6vF|CNjb8&S|Lm7kYzP)p-`1iW=^F#&R&|F8~GPEL*lOb+^gzE8*d4fsEWhycwIRsEIiEHk14^?~lP zk$ORe(1P~v^}Z$+UmWXYoi_HCeS?FsPlE{xKbT&K@B|M$&Jp0_cL7?m+ZW8+M4%MD z_xA1W?UJ8A8_ZQ0V}h{~n5)31+r4pbFsd#tFHKI?y72L9z~z{Vd(<&PM_MvhBKfbW zR`Ay-9^;T$DHs-xm*pY~?>{ zQq*%77e@x;)7LaK$l!L6aVQ1>19}53Z6V@!VF1zudyy)D&cnqnLQoRh(w^I$P-mYV zZS?62pLQNB&XK3Kw`*@-JC3-&7{$64mi8U&7G_+}dSr(J6_gF4Ih)^2g)XP@D0jx^u3cIVzeH{u&qR75OF+9Ln_R_xGPa zyLQHMrDSBfW@a80nQR&a{lIwU#&e@YQd+uWetuqm-tA&a)g8c#nSXYEIu&{f>q} z-wmY|y6P|S;2-?E%1^9|;>%D^3iUFDSg#s)Fvaq($8L7k&zPJvWBf8ARritAzv0EQ zwp2BoE#};v=OB`+&3St7Fm1XR=cto%CI4LO1blr|zPWq2)#}yZ)yc*LwD!s$Y!BXOQt`onGEH<2jH>_%WRBIAz?AYe zJ%pCSFyqDYPXId`00_OLm1C$k@HM15d?f+(>GcucTG2?uo9%^+x_95-`wUA@w7m0a zNp#jqWJEONAnEJtYcnXvb2~UV7|Qw>n8acJVs38k{$@LKf4L>o9}$I*-w3ei8Y!3o zp{gPu1SO+`kM7zJdBwOmcd8b~UjLw^H0$Y3wA~IC!pg^AkrFQn2OzcH^OnZLw<5-N zI{g*>o7!Ghzz?ripsj$(aTFM<5@%!8jJ^Y07LC`QZM@Wy)GvF~CGL$L$#RKp>)2 zs4~>|9E0i;KHdTmg$@$dtv@f}qZ?+9?lZ>|+WgQP&*RPm`6Bmh{uY68|3=&5@J5}E zlOW8cXrV7XS1PC1Y3WvcaZx`A@N&HB_Ni8YjD`)w>FXIJB&6r$re4iP7`1wWM{(OaO8peqh|Tfq0pg+cx`D{ z4sAo(#$Tp|8LAhyfiW9e!LbRHxf7m+Ni0y^X$qOn*NsTQbnLKZPJ~A`7yfuhBY%wS z?fdW;TA@#sm)>Pb))YDBNtCu&Hr?Hc4Xgzj$)L|=QCE88#T}`mtQkA#nDVOMBO)Ak z=s$@@m9PI#7}j2n0BsW;D6eY3LBc->iPf9d>y<3CB$DGMCl65e@%|Dp?hOWEErQaw&Nu8YH*BWzI%o#zxuN7q5xi30T(_Y6N2p(}+< zEa#s2is#x%pU3Gs6Z^o^`ursR=_nG0N~~h*J5K`%)qIW-^nDH&94%!KHV_P`tX_M< z-t9+fC44%oU>QOHiD);{wK;Cl!)S?U`;5bkW&Pc>-Im-==c#GqiC!Y#wdWphW=h9) zp&W~GUP7qpfzc+_+0HF6b3t}a*_PQ0oX5IA8_FV+e|ziHzXs|9M6_VdNf7Sl$PfmyTxjE;z$FZW z>5eDofDY+?fvQHG0qtUo(=$Zt8@cx{ahxJLM?^;eVieNy2$DT2ZqQO?K~w$-2@vs1 zLj*FsoY#vE%%7@4mnr<}1dj*I%+6k&d!w9F7*jNdpe!u6P%&TF4uS|8T=GasH&r-= zqEBO;8W^S8d40ilV+K#y2qz2V&1Jd(YLe3{IV0tA488j3x0uzO-dp z7n<9@B@6S-1UfbvvNR^AhszRfhM@_GzRM$rvv}aq6j1*cMM?tcr04FW-S^l!ZQtB_ zQ=Zw}5s;;Q<3u~#Os5)}yVYP`qF9I$=WJpvKyNwX8(A?Ytv`#z8eDV<8Pu9%q$|Mw zpJ0@G$T*&*3EMM-B-)*0u(;wGQS*5z0`}IB@6+k_I=TCwH{?wkiQ$hX5|Ym8Nk|8{CsYw07)t?JH|klEtO&N2%Gv45;(z}PV&=W7p&P*WbS zrtU$XB_fF;|7iTV)=Ob)p&@czo2|+RjmL$T5+#3~HZ6keoc|j?+6jsIW5>326uzoM zGkTky>PuNX?1fXmSu0VJl1PfX+O}`CQwE{;uI9J8o~t1=r4C~dy&f8K!s3dSA@PEZe*sFE(rc3Z{F zO5R61`adEaEIS-kXbLx*t1b-g1sJ*irrJeIH+Of$wU0|yqt%c6D1-EKQi^@vsg^3v+5MC1xtXN+So z_Uh1PczVWz&0O#0p2`*VOb&~uCWE)IcF%Dscct5r`{@^a%2ZtLwQtWxmzOg;I|Ib{ z<m4GDulk1G`>g9Tc)wPe!_ z`_5x|6OepUZGg)-@kwBwUa!Z#BqJLHidH!{H=a!2N8S;kJBBynQFi}x z9eolkrzALe$ZBjjUAd+iK0o3BGppT9;tJtm)u_mWfLnkpe>r= zmr%)+kQ-h`S^0|}eDL=`I%8#VH7?Ek)8!?2NI}*d8Vm=t6^Cj56y|4RY4h;DLTD(2 zZLK41rGF~lP#1)7+b&H-CEjuxtd=+q{v+!c!yq19Bp6t*E?>|X$SfzfoM>@JMNXfd zTaEZ!GKsd5EgE{NYiev(&X_H4DHsqlnp0b#ch~e%zdGJI-jkZZh8i@!8F8US>Z*I#3_zGe;Bf z2?Ko7P8r))@2fx7IpB#Xj1>FIR036vnZz8hzb?)Ql9D6(OEqd+R{Ww`7T8aZ^bB8(ORp6U=t+bmFqvVS#hgziP=?9n z3tzY#Y$&a-;rSyY{v(!?ixbkbySg)@5jqN}PAq=ti);4*b1pJDgU$cAqAV3ZT0_1` z12rgWfqOkKzgD6#S1Kz>bZ`P`w73%=IWI47($LoHyM)Og zbp_;)X5+umDosaR{^!)pJ>v$gU`N7}sP+ZdM`9HDmIGwLWj~i#H5}5$B#)0vO{`^T z%;(mvnT;c76I&BxQPPHOEvD+nN9r0uclNrWlE^if9ok18C#uvyB0g7XdUAeFO-Gmi zb=7FAY$@$x0F=Ou%@ygc^&%bjn}05EQ_nyUzA zHyy?$B$O~SqXQajht5&h$uKml8r?=rwJmw8{Z9~qfn=Sw$qJZqc!UEe$ z{dDm&6r7n=2Ry8V>8p-)%`6{VP+kgZSLWxbd@?I@8?!&yBE~wG_B14V96!`?IoT2g z<+L{Bh6|ieU^jS|rR-Y9#HYnU_rG>w0pVfDa611wAWu|vy_NOnoqMVDfHHVx`}*1q z7Pufq9Q{`=!%kNTv9E?hAz)w^xPFzBI+iN_5wUgh<#~yBDp#?1w&^;_xs_JnL|-z1 zb|Jd1oeoTIQ*j=7+w z{*g`Z2MS3I3RvyLjmf1Ob)Xh##!6WTHeek)ZqM9lK7ucwPbW_w0u!9;5x;IL_i9?o zg^7SI&WB!h^=t1L-jFZLomtG>r_dNRhbUua>9qoI7T%92ZM@+h(c0(J{D8!|*)o41;~Z^rchso15CbZH_~WaqJny^9o%h$V zSfPs;*B(Hx*k#1_a|Tw$f(+eJI*v104m88e$0q7%$%BtPMMHa5E@#>fw(45jwM&iN zQc**yu}!ZwBgF}hq7A{|Ku4o2(KQ!`^*n*4-64(q@47K5;{u=^zvASq)>^Cj3D5|T zKN8Lsr~UjX=HS2vlOO(1L4OzZZ%0;zd?<&~a%?{pMe|QboEgzMQjn{YiyN0BUa+Qx z@_K^Cl-of}_u%~Vfqh0(p2Y7%SEO>eS;pR5vfa)l9o7zcact(m>VPA7j_U!*@I0&! z1y_p)oYn3`o_d25eMcycgghQN4V~{xo7%5W*6V>>FO8%UEDI{9aejK51Jm-}-u`dy z6Crk9N<#S}I$=O`e}SnL;ZKQ@W6g;SsjsZ;sMO4=^$%Z!o|)Bp6!E3C#-_@auez~W z#?X|54kpe&Bg&kzuZ(N;+Hg9lIPlFS!95b0AtsD_xk$whZ^#qIxd1pBtsXI z@_7i*AgTe*$@lSw7Up=lJ>QKY5<2H+hKunu!`Kv5Qx%$<@e0$sNXTe|`>9 z13}+onw%-Ra~p-gLwWeYd&U$;3g;W^8Fv7?Ph`)jK!+IwBkO7mty88L4*l|=3V293 zwe5eSyA0Yk{&Y>qsKOEtX=Im(hU|$WP|KSGIbs(u`-DeE8Ug`6Ca9$pf*!z%A`bDm zfa7sLr7qT}&H;{{B2f8eXVvoF`eE0jZVYiRGdSD;0&xAmGmN@ze-+H1*Z$y}i#*-4 z_#@)5_D+9^NRt0(f9EsfETRtSXjt*nZl9+scbz+Uw~aA5V_YkqwXGb~zPuQX&d z>95$#A&Stf86z|Amdf1soS<(9nAyN+9u+o$%H+xfJh}ZoUwnHBJAD)68W*H|JKIo6 zi(A6xfe=5S<+Xo$P<_HuV<7k*AJ6M^&jX-gukPb!qAtN6ba%H8gu#32VauQN@b@iG zcfxR|r>99m-X4z*pkiWUn*gz~G5T=aaHjAGkkALp=5@@>B**G{I35J?5&a0WR9Of%c|R~$1+=uZRCdrSB)@2#DpW;022Ox8zzOkF zXPqhlu`rj_te<$U{`fB`;0Fi-kd&970VGZC+!dPR6}H(+#v-qm!&c%~i`E>d6sTJ| zOu8R##RI$-+$&7+V6`Dal8>S#c6I9=`i#txv>gty*-OYe& z3kZjub|dwry|MKa6ciqz5)|&#PfIN`!dk&9g+s!B73J|rxSWPkeL%*plL8f4U*z#% z1J98ndfi9#%3F@7v14wGH%PV+fS9ja0t^0|BQAzkJ(5jWe6lpgFdXdU=K8kuu{l=M z-h3EadG_xlnjR>qr@Fen%qx~hXj&RT>7N5M#%3HOJ~x|*2vC3#>Va1N`274AxNYEv z8~?+~Z8iG=oLcpA10oEDsI?51b+bcl(vtv6`R(!v95=FB4j^7Zl!HR7vn{=@y?%Ct&JY7~`nh!xwa2&(E(VALY=9ucaPM%#KW_ z^_k|)n?P{#p1*t<2-NXFlx+e;-7tSf6ghta%=*Qv1DJQ@KzKM{8ynnOW40U_8hQ&v z+fUn79MBT$+_A7Rvq4|)gR_eW&HopA+>44q_l)7tw580o>3xc-v60+g86UZAscTiB zVXPMf$L}BFSS1`L(`x^2N~dZthRF@+FI`sNSFAHg5xalUbo^dAot~qb`>MODRP2s# z3VnffP~KkK+>}lIXv(r&Enp;1u*jg7!Hr1qyAkmLW6`B(eE4iwq!eMi94a@-dBDj*f&~u`4`kzovxR=Nav6g^=oQf!GucgJw0ME&rJY8@ktur3H&3Ts zm@a?A0y0PG!)#jU+^~x-Ip1&O4a^sE^SKZVam#l?D<9>O?9zr_AM82t0beCB zs_lshkmi@&eERaa7VH2L=> zz+P^ip6iD?*JYIjKvbExzP_%wpV9mMA71V7(xzB=M1%p@qi4^a!K^nz_s62Z3w4KJ z4a`-?$H!R!d)*uz^^f(9J4hnb`93|~zj(hn1iG5hR9V=Nr14nz*Ekyy=1pj1>2IJ| ze+Xo-NM?i{Xdiyr#8*`Bsjh7)23kf{h17nQ?Uj@>os?$dbUDp`vyHM_OKoBCym7Z=AcrEeft(IWo&1nDg|}xbr^T0!EhaxohfbpCl6?Wf7U&zqt;1^r z-j{%i53gKpv!3Ftihb1G)5Gp{Z3m2Blcr65Fs$GG*DRjjjaW%%YC~hMpVazop59yplj0!frPD zO6cj{(c^sQqlJY0BJVeFAQ`g#Hd4y|#1M=0J z74Wuzkv?pUGc<%{Yio;)MbZgeQrEx^1#>gqT^*UOwED-my@%cF4O$V(`eT50rQR;o z&WF&;o7Bk%-Nuvn{O6U5CE%Xk7Vv536gYzRg;!JVY@kMMZNed`;hs*nh)+C|hBMz3 z9z`qTYqmzM&5$ULV31BJfVqd+0B8UQoCCmWFq-jrwL=~+ST>#Sr2l;>3-DEfpB2kcY74($GTs3P@{w*ORrZiSA zJk&4J(y(0Z)x6TaiEZNn7sxFGpxNka^+!w=^5%OZ5n}}Ax%V&@=VlP}Y@Y!rRj)F8 zUaVPb0{rAafn5QhjE>id7-+JTH|Wha+o;f1z>biyet`$wJj10u7 z@Clm#s&HF&7w*GrEdey)MI=TE(ahSm_oH*q6ZivV2UavK*sc>&_JtGsK{IgDQ&LIR z{H@KG;BXz%f@3cSwSzGsi?2wBFI4gD&fYaG7{Ej38cOP*_@6Bd%Rk7T5Nf9hd8dG; zjuo7!wY9a`7GGhYNcb%gO97Ive5sBg9Ppq^0ilA~Q~|Iz6}{r(A^?#Z_WVtfpr=cA zq3=LEXa;bEuCsbKkpumKd&uK*f472LlmOg7S^+SD=v3kuUtv{4w!M*|vS*z?3&Vtt%>;b#RtQbS8ffjKjVI9GEp#H+^ITJWnvB zP*-3791pJ(l(AyMb`D#hTSh#cmr3XQ3BX|Pl*KMEwSt4a(M71c0epx8*DHZ=F#9Or zT7P)L;>z`Kp%47Re7RY0b#*mO&@%yS4V&G{2N;eG#1ZNRoU)ESEfSV~h+vu*}jz{d!Pcnja|yb-$H$wd!8 z)4;wNO8!CvK23ldII?>H3!zqPLk?_~{J_O;K0yNrGL@{73_x>GMc|GRP-vqF()tgR z%a-`>k{55Irf5U4**0Zz<#)zdk|?`tjlm?qtx8k-Uho14fwww-OYB@Pz0*-Ei%oKx zX*4q$$q)p2G6R?-M~q|r_^9EvKu&nLyJ9XYvR!Tl{w7R6;FGsM-H?*7`V8yr7OFgU zZpj2{(DoLP|B!(WuXz{S)Rl*yFE1Z|r>_u^q;hjA!^=$$15jOYrZr_|a%7qNGbbBO zf<{{@WolY)o`XXU1J4`36LlP1=(<3$n*Am9a>@H@@qRuYm=~9PpS(%9Z7|hr@wW?z z%V31gcQB@$6=S)6e~jvfaktv2gZuDe;}1W$C~WLCO%ouTxdRANR};y?ufT*chLNn* z-@pFJfY1K#+(ydaF!oe-zadVZ=rBC&Q!9uCJvb70Cu}=_Giz!R0Hyge1ES*p5@j5KaRDa&C)rmqV7^cWT7EF( z4g~!jlUCgaNlDbWIMpNjS>SO7w$kk|88Ctd1}oK9m^b|%alLD%D+-wRZ0KNa@<l4R7rK&U8u? zGOnj9l&p@D;v%D`Vs;2{$* zjf1DVUV?snak4eN6%Ej38stY8jN=^fcVlxb&db}y`#DcKqu0y$oCEcQesURrD=@xq zaE7Xw$!Y!%F!g{eW%p6?(7`X%+EN17sqxVg1ny?81Xz&O)zxEW|8v~IEeK?Tp4KI{ z+Gr4P-hF3fSE@wU#Lu{0T!Li5dcibl632PFeiV-8+^Q3{g7rT{*j;(-hL&XPHQi(H z+5x-&hImu}&lSSeQrc(KzPJeaI z_^^P^|AtezYaUcXD{Y(8qOCSdxQ+PDd+3Er$c8bMxsGTVHhkhWgt2oSJ}BQGWp<=NlrCIUc#UvYfILF2#mD)a50$WVO+u+<3xStyNm%6bf_{pps;z|!u8&v_pHYD#MEJaJF_zkVNW zliv7%F1zx*>#8*v7{a(M%b60S6)>Cl175&B0sweYXaDz!iQ^#w2}n<^$b2Xq5|CZ% z)&xV&+PV%CR;~DoLwtrrlF#f=R0L+C@BT^XjTUrLo1RSnpB6VUaC_qaV(l%UvRvDB zZ5pLSx)Fm^x>J!*DG34TP`Vog1OZV}MM6?SO1e8Gq>=6p>F(Iq>zv=W=URL1f2_5~ zKgMLvIh66n^W4vUUvZwt6-#YaZqrIP4aE;gDM1J#3mP6MhJQ8fOAR5@fmMlLVt42x zBw7*?biB*-NEoeF4DHoo9knvu*ARFZ1onMAT;{r(xs??@Y9|ZWmo(Y!iDTH8HgP&@ z-nG1WZn~1%)Bd7fGWU0$CR7fpDB{#i;wXw}1y&jZg~%!}}Q)*ic;W5mnpTHpi)}<q-O*|oqTxVaxqD(@XkL%W}w?fAx7hbyU@^U5KkL| z8qZ>~>I*n!5y&6F!m#>#Lbv#eS`s5TCAWUy-R*pv_%&(bf=6~0N&3Rc$$?ejyEk&@ z!=wG)kh5J`wGB&MYz4l1+ap-YB($lGl`O}bw5I}2bQ2?qqd)WygE+`=pcDoT19^a1 zkOVF?$04=@#r&#F!k#HDEQw7$WLPEJZFF*CU?JBS7^^X*$sZoBmuuZACB#o<;5&Uf@MrXp}F2{}^ z#;~OM;ifw?vh|X3csCI73m^Vy7VstQ;n_`V@M-@e%4lqmo=K~`aqL@|O!yL^bcfyW ziPJ(&!(YKnw%_F{8uW(3RwD$jHzEAF@Co=*2ObVB>CGCYkDsm; zIPZ<`A->w9%%tzf(f;}kiQg_5b=rM;X9QP*#DB_uwd~+7+LfyR*4Gsx|M~tOF_8FY zxpmg9VW|#n-G;2?o>+C{KB2l)wmJ(tCx@gfe-tSANox)mcPDfVX2o>tRA-zNp5>&!x`c!(nC1Td zu(@ufjX&=7EC}>0Pj49<6;Okz>#mWpwA!6N5-{<1J86erI$>F*pRuhmU4KKmwB=#F z>iQ;0{O`XHP)=qN&Li45BEzW}Wbv)7!Hqa4-Qk1^Zn)x0f;tFa%=*(G06hkJ9ifGd z*Wp%XvIb*}ilT*D`_TJ5;Au?l?)B&kpDwEI3dwnr&Uy95eK_@>1DFbGgZ560h=^kg z*KbCwA>DPF)ccd$TM)I0S8nM)s-0e2W-ew9N6L9#_!ct$9jHt33lYI$5ZCI>qm>T7DL--45;9!stL4FtD{dv{aGuHwfJiH)*3JYf+L)8RZi z7PXwJ85aj{1l*eU66bFtea-KK*5 zEIg!Z1eu5dU{#=_2)evDto0idxj34GEa~It&p&_rlMZhUKK6Z>y zO|rstahwHh~;9WAPEJ37}H%qIr=5@wSU>;JR% z7_RoZ!{S|v1l{{_DdB$#lmbufiSm)Pvkqx;41lsh26;h7Mh3LuMkg*)$55Bo*W+rX zHv)=^xPizcf6qgpOTtNKufCt z`2rHKxn>gmY3zo1bE@^`HQcIedL&4SJ0kvH?gP_Om6P=9`aJLJ_Z5q;(OyzX#Mufx z0psUx-&cDUWi7sTgaX`gB=CNa)Gg3;sNao1$*r!gMl@TY5ph#UCi(n6+Wb4`k*U-AXx;GfhK^}K=}um z-Q&c;z|in24$eG+%mWeOHz-cXho~c-7~)I~OWvVZ*ZZb(>shW4Tx$&Sgn;UU$4`jV zxZx!MNCsY0bQ-|oVBTP4d-$%uQVkMXCFw(>& zssL=EC~9$4Qm<`=5Ky7kv_lSxvIx#x~bqkZlAIvpG8dckGS`f?0@Z8vNZ zSN=L=6?q0sP!2Cqoju=}ZGF=ieC!~$_vU5pL!DG;K&t)yl~#V4eC=pQeLR-QW=~Pl zOrcOGAW33lk|dpG-un3XJM)0#&A;A7T&ukk`=kanH0y1i=2N>qkgpN0D>#cc(7`>z z|ND1{?iAe-E+Vi`aON-_?~R?n&~@|+xAx{38|e*y|JTLEZ|XJ4FY@pW51wlL^;Jwg zDDUFdQLQ{<+Ms|?h0@=_$1H~3I10zL81!477zylUE(8;?mE}B(=B=`JPA*P=|5Af$ zFlNJ?X5z%HbVdoS(RUlG@_FXG>6wMeg$R!_V)Y)_9Qq;C8qi!`%h<(Ot2Qmpt6JdM{g`qc=3=MmQ^DQ*v$UC(6`Eq`(6L5|A8ZM9H+m%)Cn3Z?Ffe0 z&$hOk_wM0V>*%H{*#3|D3#|fdou}znIF}BJZJRa^Sp?o|w2gHmkUYROM7nwNW-Qfv z#8LL++3(-K0ev4N|#RUv#zS)+URthQ!<3RJ%t0q4a>|!l-+S z*zWoxa$$%lzG=Kp_RLACGPw7Dr3uCS%CYCk;a~dpdo#VeqN9AbIehalfX?4bTS7yF z0$5~lP*n8mzDqi5ja3ujTzVGP@oK=HtD}4k+2J}=X`yqh&rTLg9guzl{xY<~b>Q}{ z&i*)#J?kF{K16Y3BM8|#WMKb)&}0AGud^IWUDsJ>kZ*Hw=IZY5{*0+XgU2h0yg`HS)us^8D9Kn^SzUCSnwok!iU&&>UaXoY4p)7`uhs>s16AKh!(pOg!)BlIT5h6lE`(l4OS~h$53LY#- z7uXz8)J^e_bG0iYlBGkH0LY63&BNZ`4hWHhb?te{{V_^yR!ep=;4u0{tnQzP6F%?f z)co(b_u@KSj}M&t5e70V1uf#ofB0Z~5CGe<$e|noTA1B#zV$2t(7C2bNl7k1E<9RF zcx?jOGw2zujhBZZCLdX_G#tAiO+oqA87shbxetW84)|HC((|=>nQ11sLV)*Rmad2t@7MYf zuY+_#DZOjS)1ql|Bn;Zsco9D9o>y-sQMomc?lS*qiDS53M;gr3UQx=Ta2&Y(y% zt)+fsU9DwcnJ$SsS|e_|bEmkO8Fr5jW=jP7AtY1WP53rV0sX71{x`NE+zS1CHov^dWey}=- z6tBS#75bzp3I2VQz44QeuH8RhWH1rM(U`#YtLU+`{=QJU`KABp5o(M)G z#jH7LZq532C!PkVg7%DiG!Q7oQYFG#qRK#3M@Dd>c6Y-By;wP|!m|j&V?y9-6I@%` z98o5?mi*!e>4=u3w^^~`cRmSRv(J||@lkKsB~lqwCrZ)<;(a%(6q+4+i+ zVc@l9HZYPszvido$v8myCWhf#<--?0wgbYct&Id zP>BkaCxue(f0BM`X#SJP`SfzBUjisSd%ZiA& z+LWEJo}4`}yOaH((7kU#V)IH$oFwKrmd#>?XuLQ6_`Kbxq2-mrwAeY-+u#L|^%~Wl z9y*<#eH`VA*_QXbD+ILFS`iSReGccKWQ~`2%rCCu&OO>BGxO{5BT?ipSC_psk#d9r zzPq7^rKm7`RWvT*VP$ZAfLs5)f^bse4*oA3n&+sy&2<@$Ca=jK2e-bjLo$}8hfgOB zpU&cA7#5T9(@*kBY%|u}y)1MKpLu@D2w|#=$pXm$%jua%!=u|?bEn9Q z2BdM*F_HJ#&BjNnAOo)?t$ETBf2gRaWjndP`rVIiD)D$V}VTqn&!Z=FI?9A zDmh*LcS~;+jAw?y!)~fK;q1O1?E$5vj(JCwPQ?@|V_>Oop`sbqE4>X|$Z6&5! z0}}}zAVcilxT0x5FD@)aCmG@qgkrXTVlzkY` zDeD`A=J4e`PDi_!NQpIz+G?<-o+VK&`xY*0LVI^j;i-Flo&Ga zYUPVYReS6@h^oK6@LEh0>ZQ`~P2I5UIjC0(hK(kUF9$BB*q`A2+op2{Dr0QBfp-;7 zt6Zt*4(AQN^_A{&wZU)C*-~0-e0f)IP7ro|723|^+2)!&+FC8nS*uknwqn$&AN+1q z?NiUPywX@H<@v_gA-7AcT@ChLuTNs^tPY+bHdMt%l*>Hm5!D#&7ubp(bz%)8`q0Bs ze)a{89k>KAq@WP=A&@PAR#i~s)q#VPI&q^xNdz;8kq^ge^iozs`%X^H;JneV9iXNJ zUZ5$<*Gp_Zv5QpO6ET)aLOw&nqWbczu8~$alX&|I(k9DKZFVUiv3B0|)b6;4y_Mw? zE;MyO6?Ml**YiT+mw!LJbQbm8HCQurD>DW07|ZQ}I9 z+YH5?HEJj4RTsK_{Qk&i&9e&e?(%O~GT8kXk4h5rr7$rP+OO%Z7RDU%w7b_$&Ky5uZYln{$!IJ;C5N2hsjI-}6Peu_)x~S#F0Ku`%qZQsx+NetDu}-ME=rb)vQ) zsQ7IrV88xJUumo8Iz!UfG2xTZ=N&Prh8Cy8xGk_VbWy6o<3js)z*h+;O+A3e%Ry)d z`e>Jnf+3w(!Jj`9A!Hco=l^CLEIh-s*+uu$l{cdnwK6p!CeB6?L@$b7jVJC|V5=OJ zPb;t3IH?f~4$wihqUa%YOZSV=J$`OJ*Q-ajM(k;OD_h}pu;N^OKq~D=1|BK^EhiQX zB4-i2LV^O@?%}NV$B2lxrKQdv*L6MipCSAOD3+jMT<%L#DDOwc36`t3>~@up6Md-O zX`@2akr^0Wo+xr5FLGJoNug&@VuMrb+WEqQVAZ(8v1Ju*q;BPJc9Ul% zR_ZO(=WhCpGf5xY)EP3lVRKM7T}2`pkzV&dnULCpw&Tm;hehRq{m2gW|M93kJl%H< zu7*YVU&0U)Z;nyoVBlapOk9Agnx{Q+!|MGOgP`DBWYp+q!=%2Mnd&O+(f8)R+#{1C z2{Iy19ud#^Deh!NV?LOjrtL2urI@uU8#xBQp>365%&D2M8>y|G@Q14yW?1yWkTVRp ze&NP9w+)!BHgpE}>A6N+jqKzi&W3?VshsnrV|=#YDXvgh_t>_TV^x76t|$hzXS^HW zCyy#L6VBm3Zp+(FefX5QdZM2tyh>kP?3l${9l0*|>e#!S8D$VYBgs*x&Eob5TWI83w)@R|hwvK@NA#{VBGyzLg)5cB3up2xcUaM- z1ch#bX5{I!o5*O0Ef?Ajx7gV~fC|j>d|z#d5&6~*Q0yyfmS5~?NF`t2^sUBOR_spw z!Og}NDj9g0YJV92;){w>VQ|XJm`9zwI-ZbC{A`;uk-baf>7B9^wLA1pSN=xWzX*}E zWluW>9nP$~DfTq{^k|*mc;KSBR(|wQZ2VHpa5Z~T5?2?M$9>}JR*%wgcb%hR0E%{k zzw4nAgRNijqw<=H!ej!#YbitP3QTP<@FkA=tqqE#qD`OphtQd~OYbD46O8J-O3=F( z*fq->1de4Mbs7vbTlSmveD1d({Q1RItE1zVz^%}fAT8FE7avRuXjsL-5mf$}G@)zf zBmor`{Y+UDMhVm3#T0KmCaxYhrg=JEQwmAPS$_JxHOv=o_V0;OS|$M!)|3Ssx_gmj zpJjR11>Y&y@V_T_y`8dPM`q%goOFB-?G1UZusu1R9V4LjEZ1U zp1ixVCBYUc6B#e%Q{LCNd=dN3sKvQwfxKtL#+V##Av8gY9=Z-77rhiV{vfD$Q2bNZ zh=Xwc8$)Y*j8WnwS#S;7?aegj&9~^EnuFG;JOgzkgwaE)a_(3b8U=Z8$JL*%1@i6MZV6 zYg7(d)puHnmnIS&k#fxoMNiaDsN89q3>uE6nXj1Y@A5;a z>5e#N{vCk2{Z&$k6z?HUtXe@D<%;Ke6vucvs?r}TjaG5}`trlb)d=IoX#R)~^}X1? z0advKn7t64M@!-wtV_!F`~bh$d3g1B{h|9r_D?-IG0@%h-tDiHwVinMy!oEo6y^TU zUbTmo-1rOA;(J1`y(&{jL_#1?n}T3i@A%_CavFSeP_Gq%wC$PiYwv}O=Tac4%D>cN zKJETiu&Kq&5XSjlp`A|joZNK^rjlqSDG|Tn-qy0Hj6DyP9CuT2X#{7G!w62_z z+}|v%yGkcf4$y*k%njYj3jP(|0BVe?y?bluM`9WGL0mDtUuAcy4JSvKFO}bv zQ~XkC++bxkY^CMJ5n`5Rm_3PBNcS4fSq6w(%{oi)M+s&R>bhtX+Y7t!9s_YL9FiUt zeXxUAnq&5q91Mu)T+R66UTSk^boyjXFs2P~7qF>-D6@6t)_WwE3R8qzT7Dnpw@R*H z@Iw#mapuiba8hnuSKs4bJ3#8rC0&ZVbm*;b!(#KX6>FPAR4s%0hLqq^zcq3;bwO>f!hD)H!N(uWaW3SX}3@ zjN3o5U>-`Jzu`ha%9VQ&o~fuJ zIDnf1W^6YeteaaE6uu!r8AZDpaUy7P9c~?Q35~zb#UKfKKlg;XZs*p2Oid~V%OJUM z59iIfAtv%rW60pqs)qVq=F_fk1v@?HAW3S0$Bj3(to1D+sq37AiL#KFr`*G`WJyNY zLwe`lruxIGcqFN%V; zmVVMWe%aRKc6|{1+=YnC2ZvK+hYR#E4L{z8(QbCqldg?hTm40TYVi$P)3Nso`D&=`Hnz zdlELKZh0KvhK2ZQt64g;g>Za_4EDjV#dTs~(N_%Zct6673sl@cXo!pp4xYH39un7j zz-EjTZgy=N+^$hv#&|Ft#BWdz2CS&*xHer?yh<0K)HmgWSs`7eGUZF1=QM(<(Sqs;_N*Uf}mI3^?wTf97` z#2fxeL>`!*Ku_??>~6)aUXz2fHzkUc@LInA*wZ{~WvK7hz2NKx{T0X}C1Ds!x^^Wm z2(GcI1s#y|K#PxnpRlp9Ep{h#gMoAeRPWFzk__Q<-FX4_VkHxZt%({0eg)@=DC+N` z<6ad|Bdm#zXPywhSCo^JF2Cfm6*QASh!TZAVAqk}k#f5g_rSm6K zI@NCZe5_%*mm<=8H7<5+y0?`&mAl{Z&IDPJK1fff>>R69r0fJ`O^#<6QRrxyNdDF8 zn3&Gf~FF21#pQ(p`*jM9r2YexGXGIK1tMWIfppRThWIvYm5J!h zN?K^Z+LFbi5pG4yyn<;>FpCQ@jO6+)DWt72>)MZBzP$hW!eFw>6=6AtKbZKbh)vg) z1n?e0tM4tNq?Nk^QG;-lc#R|#z-n)-8SN0!wSMVb@Mc8mtq+xsH;{4A?iap{_PGhj zmZeIj1Ek4!wY9Ik6N)wNfragOY1IRyM8aEjsNg|ue2e?M%!Uqz&*U84_ru3a>oZ#( zy6X#)Reqw#W`!6-1e)X^UdE73L-lpdN9l@zxeZP8*_@$Kk(zJkXxu`^Ndh%g1flnz zHrlzs`zhwH$s@gn$Tw!xv{(Z?t7gvkL+}X+m8X|rMi&1aJUWRcGpd#LSI(u=07X02 zZ+vW&CH6qpj^y%rS!hOksNL(O(V*Y>?-Tr~{pC?su5UWCBxYPTq_P2Zx_uKDEFtLm zLda0M<%at?Cp8peF;z2R3LX3;GweOyE!pl92_xz|ck-CH_~I7b&G2YhMH==7T7U&& zNwcAWsq15DTu+5fqbG-S*x_fzCSKfX=ZOiQy9Pct_=wa2B!N2yhUsh-@FJ?Fb7tJkAf5jn}If2@FYCnMj%F({n zysUHlUFw8!cGe73mtD`nzY1`h&STG9sOw-E0y=_fuqzxq(ZQhe)#r^7aNA2qoLKZ} znR%C=8h#a07;t6pqfKx#$C;;((-_qcWgpcblS?nVtx?}KdEPsZT7b)Uco>5}yQm6l zT~PC{-seA`CSW7VtR!bLgGGM3DRXX3C;`t4aB%4**M-Nw@jeiJd$YwhL5!d?qgY*I zGVr*o8)8p^(EnXJ-#(qla6|&5lee8da9C=M3rY%S=4Y6x(Y-+_wR}M6GE9>e}b*|?&9s+J4E-vmtu36h zF^7e4UPBely>==}c@?R|wC^og@_SO{C;>_-8^deK@34#?Ou^I8(&CR0n1UGYGZWy+ z7}>y?l@i@{COx`6hq`V;Jfl$3+p)*PuzXU_oSH2vuNwc`%>SKJ&phkXdwF|egNAKD zO($gTqp5?3KL!jv_{7BFwQDt}8;1SqiU>~vpl~<=FL6M}O_PN~o<@+dL#=Np}Cd(kM;7jMJNpN6nGJ1xVCVtzS_>N5M|su?KL z^qvEw1bi=;(=g={Y!LZ(K?DB|E140?Bl_*uVc*2j3kjKDhEK|vuCZ|_4Q{!WQe8D$uHvM`3N8R|&@b^)7;g+2_V+*=*G<^}!S>*P%P z1t1tD&6d({y*HEPo+A{7$=j@!iy*0!E^Z>M%<80qGy@Do3%{5sn%RJJ0%<@gCpF3i z^blQPJQEp@84&`~`1UO)9A|JEpxlSk?Rio9j=R8bxIwo0|{ylk!S{pMj%hG`DC5Pj&ZOMkv52eO- zG)8iZ42}Q{!_?V19rsQ#M92D{HDhNpYJ``|3ly3hV3a^uf03XO?=t(If%zGViyv&} z*?%HfJ4oMNP}da{Wl*lQL>`tH8Oz>IICFnfDy#h4MxQlQE?c@%=gHUJy}x z*dp@<)_gm&GKvXr%=YdsYO4YgG}pHd4p?8kZ~|324QS*b5<@s9S#_$SYFR;<26GIj z=jI*)2_j0!*~+hl!8bjY2)$wB7>Ot4j`tJ6DN4~9@g2$d=+ek;Jd+XPnAtTLcb4>l z^NttTOZB0R4S@|Zcq-~)C~GT>N24Z)&4vMuKaxX5+s4c7VZayx*y|C>jpJ1Yx#%BF zfusV?8&rsBBUI#o44ib?Js>a-kD5e%*-y2Fl|;vJrf841;pV6O8>_K)qH`WB{yS#Vd+GkNq0oB|Jz@)8D}=aT8dPTL7GgLOLR=kRy^_W zVm*0&R^r*ga{by@JlF70)p)(W_kr%U+uZSj_e_x)$omp`ttvRraW~liNL&87E_1g8 zz3$wRAA)hU+8HR!!4T2>$~TmbVAGWcA+am;!lQUCDPWS}4X}3uYekP!`@HZJ;)eww zIq4xr_8~&M`7?vTp-+OKqSE9R6-&S%y%3kw*NjVhw`<-xL*yqWZ~m^k{*!C zU*hdZ#0=*XcYVv=BMvNhQLXhXM(_-h009FB=eB?V`LkzNuU%V$O0W~AGT10j5MZX8 zL)B1QuYw<#r{<5CG&w*2A|877qDRxHFfI?FE`d1Yg^|%BgEfry<$z0Q2=R_&$n$=h zx_9rcz^QxlU#ISd89X{=^3N16+$bh$1kyE77Zq!hq@3u5_#&MbvkaQhuYKamKE$^I zAFA33&(~+ZwQ`%^h0A7RBUAtLJ_GY$nJ@Rjx8K^P;V7mjbIe>IZQ29eKTrmV|SoHN+mk?KGsinyYnz|N9=5Z(;t zXt0FG!XQM%6g!LUeT~@P89|4F2)&>Gs8$`yD)L=*?u0lsaEo7$fgJ6Vw z=hw_qCEW}@k`4xS_r6tKG^rbVmLq=vN+6pqFJk`@P@!~)nQ@}PqQNR5KJ z0uVt=Z*J;F=*ukRx6mM%C!j;>$=2k9JN*015wtz@puR#J9dLvq*tHO0vItAjNemeD zmg&ePfs%z|Gs{^#tE zW!N{Kf5}0)fYFR(qVD`~0~lb1gJmxd^fN}?@$2bF79}8@H5hUQ%-W`-0qMO=UcLB zeRQ`+LXpUg8)tDdt#W7M!=lO|FMe2TlW&4E=i2wqH9`BIkL$7Nn3Flzk3I{<;J>HP`$!*R%RxxUMb9&l!+?dXev?o>9?$oJ4QgPLR1vcW=Y3f z-FVL>;#k22N<^7(YP-3(Y#~PNCR>FH?_7a1*a>q!;2(mAe`Qg8+SGLhgWAsr(_YGr zza|g(6!zwu6JN)zMX#Kr+xXLZS`?S3ON=q{I%suM54(SCIFe8BQu*kZ_id)||Ciqg zR)8^(ns|%9TOj)9(0%>0)t+{$VCJPbRz%-ZY(B#foA9GIqK+1$0r$9f$q|{xAl8e6 zMrtfAMg$W!D*rdP!X!--kfN50Use{!vcSy16G)lI{>Zq(Yo^)-b0)4%gEgwH=mBW3 z?z>Qu?PGV;V1`IEHe9tiohQo*uMSjC z@Y{0)E_qHotW_A=KCI!tOH$djas6MDCAoN(v7KLIGv>{`8or3@)SlSapjlS(cVye2 z{^p6hz1w4dm(HifX!FH%B&E9JQ3G!G5Q(^o+#fM;Ax|Zxn_NlF#S$@p@np^hI63K^ za=Q^IIF)Y3s_`N!{)A>!E@$?wc3hY(pmT5qiw^6t2Q@;Y|mZ3|ZYA zJ@PO)V7nhDM$`AuypADdxGZ2c!-t`AXlAm6=h*2X4mc1CF108KJuf0L>L-PrG^tPc zu$de}zW&E64cb7KD!l39g2F;X;E9+8OUkBm``*3aZ!(c~%RO{32Nb{%i&$`{0U>O9 z*VRGjgx+(+_|cwKL+S~ex6%nJ54n^&Wg5hd;vpl^d+3##=2uFfLJ@8*>04%sIJnFw zUSFQWTw)#91!9#TAsp|-)q<1(RrVhn9j0|el zpWW4tFa3QUar@p_tAb`1yZx@IQlT7@?`b7hjq>foaScMg;1#=n?cF&?(DJ*?JUiE! zfkJrki=PCb=Z6Z}F(30aVD+)G=0K==_n&8m&U0wHmQ{bCw`q~yYB4k!di}1X7wL+n zqJae;LHf|HMS_&DyQT-ied)ZafC%JElS8+fR>Fd;DCJG!&HvBUYXyPKHaO-W)u=0g zY3MNSRyFl2D8ZhX^H5M+LkYY}B8OIJ*mY}%ciAQDl?ZQ*osji4E2;JS3Q#sao2pQj z9m!Z2@WbQ>ha%k=fp}R7#AOO%=iHE$y?~+e;8iDK)9HYr%2b{g2~e?sxw-vW&j}?J z!7<5}=LsD>nCUsax+F<@WrO?`I_7a|+TF|b30HTb z{qv*kp|vlDKQT~{#cv{CRl4z&iYfgH7Mf&s5qcIGUh#5d07?Cn&&{WJ^{V%>mGYa+ ziZT5eNz4N&!Zq(RUXc(lL%oV0q7`FbI1)ESOG#pYXSZg=FmkxN-D+sOwELyIhA*LG z%gAV{8m-hji)eToGZ&BgMSmD~I+t!IMRVKx^WVT104B>nM@)wnY$o}Wj+1;|$oJxe^1Up^-1eDQ8*4g^5C1riM&xn+^1=XiGVug>r63Hm8k3vONX zqZ#e7GUOZI4nWZi(OKL+ylBarvYg4bWcbO#x_e@dO?URa_oW^n_FBqp=c=yD1Va>3 zd$z!4ZV?(7_Ncd!wlsLZZpgUzLHL?yNt-d-z&B!HkrUOf zg~;vh31jucTAZ#$qTOH3+!1$Z=cGN7qqzAaj!eFH8{ms`$4TAs%B?=206Hljunreu ztZV3)n65(L4OG~6m?~0DY#4WTP+GeH#EF!$vM88O3`7$e1x+_MLC6WzvsLNkV_P9f z=v_6xsFACj2$`@t6fPaH@ajkIZ-b++t+a@L6Il^6kN#GK!BM+5qv>Vh*>GgK_S->^ zF~JJa9C=m3Lg}XMwF&Lxc_@h=%V9_tU>)h{($lWBrzoVcHy>>NK;5P`Ayzr{?}=Hh zfil85Uk=sOYFDl!QgTufzuo*5)$ic|y9)zK8Cqad1EqCUJ?LR6iPhzZBw533Z^UMfCyfTnR_tc5(-RulbBbbq=Vl; z>t=ir7Q@D1h#g>LA9^P^6IWd~6YIBMo`_6~w*`9IO3smwwBG04GBPb7z8kX4V2GtTbZ;1+EtLxU&i-^_Si>93-kyG_#x|A!gtGyP#q$foq zq_CJrD6*PFPJ7!OSx56$>?zLoWH8xgGv3Npt_ICY!|Drtubkr z5ozJf7|!6DaF?IK5%W5M?l*1mwELG`*^k#oyg!PJ5svZpPw8V{|3Kk*^(dHcQV$Lb zM5QfK$L&2B455(K3=q>QL~#A?drzm@~g5e1Ps(j$7>%)?3^K+HDt4KP!8+SN4KXr7-%F-)Wx7V2r1Q4^R1C~%eEevu2P}uRuPOg=F%xCsTDdb46EEbWjuk`Egd>KALkqx`?Og(E?)smKIxeaY8E z1AcQEaXlrk8e4XZw1UZoek%#MPd1m#sSVrSj6wZ!%O>AKQ8DJ~w#dzL3-j?r9_ z>iB5klOeS6H;UMoCWl2ogl@t|fQ`#ei}lc$7f~!jq!o!_kNMzN7ORoz>q>ayg>E?-ZzvBKgTTJ->dx#h+Z?uaOU=w>i=sp8dX z7}g@(4(i7j(2fkol7g-QHLg2K$i8S@g8G#~c z_QM{`G1l_N_G<=o(rhF)dj`nn2W95fC0Lw2KeOh_j?vC5C2Y(c__H6b9yXzgqXkGs zdJ8}a7VxIjetv%8gQ2uyHTe$_i2uh!m5Gj|ts=NgwD&KWE<#$>L zQo~wb6ANpcREdlM2zT0yj9}d9UA-OQ;Zxqd7@PpRxpj?qB_v$$ zs|7y{x1U#UEy$DlcQ5R8E7Yb63%~UtKaQ(> zv^0zDN0JIjjVnBSC$aDFJEf8@MqeLRPUSmq>L9|3Y!@)4^bcf*Hl*J95RUTY(kIFr zzMwUZ8?}hgTU%qy@ZRKCFg+(fT=0>I_1u;#rGNKQnA>FYwv69AiBPL#OFs4Q@aAPA z8rjlE*nFk9iAPD|EkVL=5`KgvDcRlYS7&e`-U4VZ-;{e{sX?zWtRjSL;LkY%!VTP@ z?4Cm^pN$?3tyhx`BQt{-xXDcd)~yFqo3vT}7aaO~p;u9pkn@CMQ{uY~&r?N~Z&}Sc zI9+XFBewgN*I{2`v&w-aVm>vBdOzmrt++AYo^rV>y)#BTY%E0z-HVH@>fFHgFsgA>^ z#1@hnl_2-YQ%5R{z}kmq5dl;mo}rM+5U~=mY%Cb~xl6A{4m{jrzW$)6IqTObPIf1A zw%ky>KLyH4Ta}5poDSyGv_6>XP;8mXh$Wv^I9YEJ-jDoQP|@*sAHgD3kpMLH^GGrS zX5wBwWlf!?DkmBm$PM_8d9Mq0oI^?KI;FIRkyrx=>+I<(qx#eW_+55{(WA;$o;o!~ zy$Kc+)bL>!!1_H=Oh}zoUu6E0z94*LcX-gCA>F#4uW&G?!}a{cWcz4x9@3Y=b8HFN zE;awPUCL0`QQ$T{!qC2$-<=`mR{PAnc4nugZt8>rKD!=*}RGL3QEJG zci%Z>cS!g~n-H2MIi|norQ2A5zY&*pBVvnF{Vb5HOM8!c>Ks1Pvu77Ok+oYB&QrEf z?Ly3Z;A2J@rh@Us@IEayE^xOVVOUW(%vnk#`$ggGE#pgt;tl2CSUSYL0FWRgglh}( ztn=Y^yp>)GrR#~>OB*jp1JC}-loK}M z6J94dG>myls9!JD@CJuC6#k9ti%y=eDqM<2-m^OIR%B!T6oub>@GhL6jUVV9LfM@) zO+L;5s<4wGoyk>I2zF2uc(m=o<%hsu`QuRwucs*_EF!FFP+dfn&%g!_D{Rj6HQ;Tc zps>#y6P$3dmj+chg0RN{K3H@b?{2W{U0iiPRXCce{DfrYJMxvG#F8;Ci{7qJMQX~! zKD>~ZHS&p-?H2~7DwU5!I;?qNnp%sGaqI)yT3MNsv&Q|Z$D91llvw8@2Zd5qjhx>M zw`H{`W-ZOdTALDE-0ruy(VxQbaTR4J!7)v|H*py`zNYJl1P0PrWVzeI@Q@aRSli(ONkiygxpA`344$@oN9a??tvDAgGRoOM!tte zKC!;IdV)djNNlYmL2gcjwV(fc>*HjmlDNjiPAoZcCq|Z(9``0&Y=Sf!vz%Ag=ipGMc zZWs8!2!j<8LX81E4SR%7`JPPLMNbW%))^jNw$FphrOkJ~kxT*N?|$BYM2X5_xuW(l zDQo;0lRyX4UH!4H>hUulmo@qDo0Va+1$J2L3q+9uOcf{Us`B|0&+}_ylQy&_*Kb=1gGPuPZ|$=Z5Yh?=SBi zYe7xB(SNT zoZY&E-cpYp6}%y{CMby<8P-^il}x#iFF-qhhNfEU3M5IQ!I=Kh8_sb|!eU6@yxO$I78uxuqnF zi>K)K@%&o8*-)g9tTve&3E$fno(;0ZAJ{?3aey`ri#12{!ZRjQ>y`Y%!Af(PCsi6& zW~R%i16IfKdgUjV;B3_4uUuYWJI5W#l6wFCJ&c9P9xZ{Sl*4+milWp}Fb**?1kz?M z%TaD<#ko#9(#BRq-}$(QJSJl7CqEqa620hJ9g+@gIb5}mdE4`YPnQ9b zPnR)x(h&4YgsG1V=SOohC)DkEttUI6pZa^Gkb#M5NWPOs*yRJOc16F-F=?FzuOV;D z_biYJjZ%Ou@i>BHNgKRy^>r;XJroWZlsyxNnpdo}m*k51A*h^;aYU--S=xX9o#|)n zP;O{M2qMND8E>>K9b>w8FS}qIn1u!gP`l8*c+RRUWZB{OI-aa><7m!Viykp z153_ta|7=V@h;ht-(-mrm#1n zjCu>lMaZKoGm@~*7_aJ44_okNsRE@)3lt_42;=DAcZfI0&PC)cu0rD5qHpderFvO4 zXW@UIY=}uJ!u|vXG*hqxg9yTMRJ_Og$qJI0xmE_@f~H0+II`3gwhi@n2|l0U1ZB`R zc(s_X=lls85zFq+!jfq@^g?_*{G|9j46;4!!<{a^y5}2H5bj3PAs8V=FV5-9H?jU# zXICB$_1gExQU+Nn30b0)BMFJLAW7NPQ6x)QB9bjzmLXEvTBWj+R1_7FeF;fM%95QN zM#;Wqg!l97^jy!m-s^eZKi>Z6Dr(H!_wT;H+h?IFvHo#{&xG9jOQ$N^`ZRloY(-IF zzhX}#HSUobdFhvyg-L$!V{QRfZ`+=B3VpYLXz=p4y6dNrB<2w9^ogxosUSd{-B=ks z63IV!%R;r2F4wQ}L-wwkpRkczXA7#frK+etpH9?g&=Tvsu?JmA4;I!|&}$xDSlzEb5};t_C-A>s zwsaHlX*mRf=U;E;K^Iq9ppSvxx$+J4XcC`56aL}Dhm5RIX0-FS2i()9_ zY!TzG4TAb1K@LBKZg7|D-#@_Ug?SRuLuq^EsExFkxVjV-TRtfR?S`hi77$f@GABvc zn#pX())&j-^e$Igj{hXkTOv;I=lz-KD7a!i%4hCV>vhlOl5u<``S`{FoSSeFmH1nm z^>4<<>m5JN4~lnTTBm)^&DdBSe}82d6P<=a6b}!NR~y9K^-i5iqS?Z)WzlP$8aau> z^L@Y|b5{GwifyIh-P~g8iD!6OPpYXg5-?_f8Bd+S=7A9~v7hnhL!^oX`9 z)Yk`aefWptxXSA|1&A#1hbLVx7U~>WyMPaze04`{jH<^-hi0aE(Gy2)eSO?SmofW3 zYO66yO2rb3hoS^=n;|io!Uw7 z+%nkMdbL9KWBRrR(^+?n2TEM}f0%nR7_p2&jf%(=@L(U+WEA3L!BCHAp-7n*@&#mM zNTIbg*j2O}2!3L%HphEiB!rr(T8x40gWA@U7v|s!h??9NiCqd9S*ud^n6K4uQtDau zx37o_-0mO5zL7R<+H@@6rSHPzKpioQClQ*+1ta-kDvRUSpe*t5h|1BUnp#@P85!YF zUlfUZMo(`i!Zn;kGRCJ9>DvRK?TSFW;opH+Rm4^4uySm8?+@EYRR*z|OKK6{Xi-W3 zXy6S!JJ86Wqo-GVDgmDY?g%wM=O)uPQb_fCCRe}!g!ZytIbC*+$=vs)IgsQi#d1z_8ol|&$+j3RmEL+`q3mk&Qbw-h+ioD$Jq{+!iexRDL?_Yo%%lKG) zvW&5Kk?uh76(z5>qXPxCO;QiKyo7HCa@a)8FMwN}F5`ZqXlC0Jsu%Fl_s9Hx=bze? zgW|zsNvCg+&H?k;_S3*8?0D5OBU?oPkx)ul z1jABfYuFz={;!rRdp9p^6-}rQbXy9Vr*M_^E=KC%`mFo1g0RTkWGPd2SEa0ITTt@l z(dLSnpx$89RlLdKziuUUn^4A}MK0lap0@LsE>4csCzMxzN*cRalCoOOYv0Q}=8QE* z$R=oxB^eOSF>O)1?kBR(A{TmSCq6iuU-Tb6F*dAXz_rBQGQ8bce9y9~o{)(4&v^o^ z7Hs<*+*DA52m1PQ<*9wpJyRLF2Cg%VNL~P&dBB~`Ep{^Jk3CwWZs}*td<6nlSvlyb zcU9lJa%$)FKKPqmDg7jd*NCe-U16W2C2AKDzU7jdpLW=!^rb|D!~q>LoUR zgbv609CdauT@bEzZ&%OKP(0gFRduv}5$`+ZcgxKuOoF-7^pL2XW5hpSM9*c~hld`1 zDafIBsO7M$Uh>ifetIT_%Vk4S_r^hmRpBjEHU->wZ2RVa-FL=T)lr1}qWS{g`wtYk zjyud}mI8~MD!w{8?`d7IvR{_lartB4zVp(J}CN>PHp;4pRc;2$-CeF+5=$wvb+jWb0_!(3O2zL$E7k;Qye z(<5^>h5YIS<|Qav&#NjIV|@NAP?3AVw~rmWdA>YM-)gIJP|jZ~PNm)(G_=iGsC7Th zRwpDO@A*LH5tH~sa;WaGgu(#>%W&1E8YPaEJApl2jXVRC2x&i)^4K5+A~B=ic{tE< ze7R9%l67jLxlaGPhR*Dkc7utJhwTroU@+t{)b^P$WIv@?nG$?3D0T0XRKL`NI=qjW zu2c;au54$S7{_ZUi2kz?iP-9N#*!MLaiy3e*{Pz}IV;U~1Lnb1kC!eUB_@c1=2aYjAepb@D82<$f^(ou}mI z7FC0im3HK3GcR5?GE5EUx%!s;%6GVv`#-Jg^jwh}k>2+3iNX0x6W{;*-u=^w-rd3J zcZ!$i^uDr6hij2y5?j>&*z#a&>5Y`8;@b>-tk-w3pV#ob$k(y_V)=&{lLnOn?#`;r z^`F`HojU2EA{oLh#`bajmgQ28rGm?=xDDKk=ZnY*dx~OeNXW7xKeJVyP8w|<(q;M)Q~UuZQoXE)lo10 zqHm;VCbn()6p|1($Jp?QWW~CG-3)q#hTcWVR@s*2&QdFMl14|s%8#O-|;mVTp=oaqU0UB*P7|1XUxKwts2L(_cKuy3zbusi1 z)74_=e8U1|{KI}OhU@>WpAbDOhH|AByxHs>(V6V8F^FKE6qufmLxRL4{yDc zd_-bmI>xX#dgJ|llpRX)dG&VRbO+rpEVrR0TjUCa4}?x@eBkfUOtoztY#nHusTyiF zn)<}Ans(6Tady2*fU6uie3R#M=L4hujr^(&N6l$x(v3Zy+!gX3>3&`Fv&cUr)JD^} zC<(a`D=RA`+r8pp$r^=Fa;)7G5O~0TuOabZ$O7wM7=nV!SMZTa5k}|c>M7Dh(t4$h zfB*V7Y|VD{l1;rmjjx?AtayBX&n_WO1;>mZ?~@zIR99!7J_)MrP;`Ra)J!0sna!H$ z9qL?Qo{`ZCX(j|V#zB=2yjCKs)!s9D>QBbn*2 z|F9%oqQlJiN^gf#dU)!=Q-{oz>DrXSJHe8>rb>rfl?IK9%)E=(SdCl*8aU<;$Oqy{ z@b3oZ?JIgFIgUsvzhF)_y+>bH*9O?_cp5RHhBW2v+qby|1x<(f{(I(yi6qgp+%!b` z7UaUrFCmv(-7vsAt1I30Fuz0d?D zRJ&grsqG2<#PAGu9U0X}&7YfcK4EV<9=TOzZMrzmvbA}!iMzH4o2{`jl(I0hcs@Ms zx5j>pL2`a>l3?ZW8*gv7I(!|a_FrTWRLYrQWs=xyl&Z@zvMxMS|JdgemI`OJ<0Ik}3TpS2WEzW4X%)yT9NJ4$43)w}_)#STNq zoJ_*R6^?a=HbuWOcG3F*-_*)3CFdI$PUqXua%@Z!pRB1#Hfb1blZ$FDcqGAVXcKe4 zr9e{HrDR~1Zff@Ij7~uK6;b8+H9KB$CT^k<>ER1xpZ4v*y;c``Pm*@}(d7vNs?owp zy&PK-3|#79h_R6iR3TTO`%-birke!&ay+CUi)wfu?sd_`KJvda$f zdz19(hL7V#&-)a@zNiyrhQN+csKOC8I>*{+$hhG_WTeTt`9Ih2!Q5ipJHnWqfo>Gs zb^Z#0ybP=SGWWXc$}}8ct0c!?X63`S2P}Hz9DzQ#Ug|FW z%F0S>TiX_|wa49ur_Dz7i$fnj?`!s)&!5TEE@`7@2P?5SQhoNna{TVwoT~5FZcX(o zD9W92cfydM>)@Z)f7i?GY-|AzN?LxJjK*OgLu5e=_}#mXqs;~9zkZ=zAq4P5pZy^r zQEH#l>{D>sh}sqFLFPyJ~ot{5m^4)kJY;>Bx-+ zrYXID9m~*2hP&;>W$aHD*mgC@)x@$0-B{=3>*d}S;NXMvz;fUa_!a#`$t z!1wmRgAPj}+KivWQP4&}%{a@dniDdxhcq?EJr9*v!(gKtqj5fYyXz(US1M;ymi*b+ z*$E~E=jDpc-PHBj2WEy#Q*tO3;tXds0Q>&yb!vy5d~(asg5Zs@9Q^3=ii!oHkg?}x z1s<}NZ^$H#aK19&WQcF?Xw7B1*1X6O&HUjquavPWrWw$N%P=c=b)>z&Hk!~9K^*J7 zbK+bt{DGcK=7Cy7dl$83>U-;_cF{16iKf`FffP{+lef2byybHscc8Ys>DmeT*zdD} zX|it5q9_&p1p$5%7#2VqHx5l=Oc$UX0fVqFcpczTwx8?R3Co_Vo#$w_D)Yxviy@G? z^pmDSvbM1q2aNcI{{nrJH&?R1uPiOu`^?*JRRD*vm(G-+fLMNea{)OTOmSxRKPW#T zu#0w|u4uYOSrHf^caUJ>Y0H)^ds1V4q&`7q^td9{ecFjKf8uE$V$LI=q;m7InhBMX zg%u~<{1?2iphGTf-H+?LOJOe8xH-Z12&A0j6ddog=IV5Bs`|E>i*$|UfPas((@j*hV8Kq!`;rW znZL8(FdZ!x+$ALyURYRYk_)Pp0H)@Xr>x73@bRIn=L;5va=4Cs)Vc+Z!kIP)U6I>k zkJ|=JXNK=Qex=mXR?_Rb`~#O1Zy0S-*{Job0{)aBwyJoOoAh5!>&M>4vcwO_({7UJ z`%Fy*anWKIyqks4j|IzfPFAv4TaKo-xSWwVL1*;bkh5?p336&_YrDKQjk<#&unN85 znlXCc;^N{z;jcIVTPEE54x}~_Rh{(0&CZ%`GbYJ$Z^c;()-ufO9D$bxCwiq(AWa-mu`$J;Ul0%rrgvn z#jO|2{m;XQL<)6az;BgWvC`i{zAI1uR+}Zu{MOuM=KHNN`}dhna)BMm8$0=rN&8tc zBb2anu*^D<>4>J)K4)hcnDmaB2%=?37zH#)p?MAa=!=z>WtPvO!#Om1{eI(W{XK`j zvJdzrd5(4=B(;2AY;(vQhqfhMemQ_Vzy9Odvu)W|%gfbpjMH@u1vw9XVo7D_^6I{K z@80d`Xckk;t?G$TA|N-MMeFSn9AafWM@-SEtJU6Cq^_yS3Mm~z*Bxrn=Kgaw`b){l zV(48H$6|p#-ABk!clnGym2aNrIWQjUURzT`kb=O@`IzHivS` zz5cp!5Tccn*`V0XgPRqD#C@fRNIgU>2}59zf{asJ3V^5oF_?1g+f9?8&4o zY>C_L3AZxciI)_T2 zCBidHnFQdb<;#!8aBk+uCx&C+75?p~ z$G{;wVr={tm-$~AiQHSSqXBW{v=v?q(!8sMg{kCs z2+K%JYY2*ZY21Ul1eFAMo4{eO3~ZjEseBj`;VOv(LW}iftIjpyy?13!sinSj2bQ@1 zVaz#VYrtynz9mTL&w`&Bv3n$s3AjM~%fZjjH$Z!q*moe@7_&TvO{&8A_Zt`(#8E^D z$Si=N@s4=F0-Ef_AyST2e2EA}!ku=h^(|P;;9vt| zV{)F#i5Bpq?W=XQv?e;P7U1c?dpBsYSVn4SXo!l(6>}RE7!cMP=q#fWRc)GmDxsC? zSTZ-T4(6J=5UYpVLIzwM6uZ2F0O^D5SS{k#(3)s&wfVoF(a>bCJLrvT8yIjC<@v@? zg_t@wnmtya=Iz_DsS^hi*y;E+>+iXacY;BSjnkAHRnWBLveat=OUHTCtjh|KY?B87I}ym#;Tnf9Rs zi=v-CO#pbdW}jINAMp*?8NA7sEz+XFGlZhMoh+gVZr1^n-kY~=%15wz^vB^dF?I}*Kk4-W;x68&86Bp6H=+6V)1B#U#v8S1*Y$oBX5fA20yXl!g; zS0!)rjtAHVmFEsE(uPL~l&NW+GeZEFMKXxHAfOVi;d^c6)+HwW6c?sScS%RWPT~!zBeBC_sC?+W>C>0{KwUwk7{=cp?#)>8~BH zw}W2W0p4P~0?IZ>tj$%3EE1mzK#+-STU%SV-tuJtcrgI6S_qRo!le$+4JzMie6DqC zKpyttL3E?AAWSWe;c|YCLq<3dmsDn94Z)g(_qTO~9}uzSM1F#VE#35;V+Pn;V?b(; zwUjJQhxp-R)PNzViy5+HC&SiYJAdL~WR{|A4&b~Tgkq=xiTwaIZYY|Mu-}BJAVxR= z7UmY@UXkS#mi58hffBef5jJo$SK!fF;H{okq>x1!FUJy-BGF*7jO*$v|Ig6*pCjpsq*x0++SQ$TaGjnpbvbW=8Yd_S0U#i zcwXPJ#?^{~K4k}?X}#NDWV*V=uh1-6Y1JS=tfYA^^PN@Ei!Cq&26d;^Hffm}{mW-D zo>|j`zdq>}>5D@xM}ih-$s2qd(b+{skvL)~G$EE;T(MYhzzZC)KWwrvq0k?ak^Uce zfyHYz{!%KAN^k2zHCu!AO|Ke}8@1pQ{~&WT86t#{at&QgGns z&p6;6+Y61HPq)+UG71VWxw&g=hTDAa8a9)y9h{wCJbM;!chsKI($X@1U|yY+pYDZb zU|;|T2j_9vxb;rGcF0dneWSE~Df>gUc|&6(q)?UK?{+7j(IhG&Vs#_I!2JID#KX%A zkBF#Gn%Y;*EThOcO~h9K>^6545euX6Zll}5oRbOI+X(RcZ>sr9Sqx~eU%!SSASOPW zF^R*apolImX3{k9<({v%XFI5OJJ2SOG`cz6aM_!}4DRdzNAWwx;Qjlq7jZ&jV28@e z%D|2v-|m&eJB$ineUtA{q{FA7q4BxdNPxLNpHOz$9?LrC)OTNW{kydVKi2B)zT|gj zYuEnZhJhshy}h_dAwwjspnw4b3Es%aNa%9L1g7PDTps#1-Mccq=F_z(wjYmFUgz6^ z;o-<_ZEfcV^9dm#2rx_jPrm8ihx|?MM@lv}%;l|@WR;bb%=#@2eU)f5BdVb|*<^G| zsRiJiVsb^dHaCl~g^mN}vL(?cZFq`{ii&P-Za!*hB?_1ik+?3m`R?vc7Ek6WrWE1R zD={BjZKl{4iHL~oDvLh+q!RLY*Lt<&t!PlHuZJL4Wb;)hqC*yC!kMd10ZUh4Klk z>ev)~nM$dADi>#GsuL3v>gwu~+}2YC0dtim(yqOcgu5r}{gX8{HBRg850~>FO-+9` z0sG_@5z$|)FbWp1UlIauah=FhEYc`eA59n5ne&5WOBRKPhbO0`6sHS&YfSFA><%Sy zPR7$K7kOVDs#^>v=WcFpYFyuWAGKaFK0Ih__EY<-wYIiS=E^4&p`xPhPL=9Rf~`^m zmsV6zP~#?xX|kQK8^83v+*cu#R9RnJQ_F!A++JT7j0&Aad);3pBd9@g+96EY>=)q=XW$lvNx2QBNT5=WP;^O9_8tUt(@9ypvJzh*3 zm|gmVMHH>~#T5TLEZ3O|BeSVRw|U#$ztm|T>Tj*Ujn$%h->+WQ+0GZ)x80cU zjOIwkY0xVs{{#F|O3&bNY)iJ3IT5mKM_Nel&g{kQQsV*!2C; z=Xm99WMm|XkOzBudV204@3N1$uCDI)6Fs5B&{s?{RT@hs9e|ypHt@Y5gaHQ3{Glqu`>+u?Kq*bY z@t}5kJWCw8FP3u9BEwh8+}ylWWIh*sD{o{(Gn~wAa{70GS+}8Ls5TmypZVkc4FMsc z5f|CbVe^sP`q|Z$#rRKI3`&7-UtUO`b|O=M{`O66)o*h&WAuDy;zNZYY-eYu+XIFe zm()KC8t(26CSuVZ18xsONGGv@&s#q~kqqBUQo~j^WtDGecN%q%?}?%i18C)ce4|SN zJF^K4Gocl0?8n30i>coQTjf?QE~$~1o{n(ZUy93`BEe&wo({69YH9rfhw_`He&KzS zZ&wIvDxYJ}a0>6)LH#lwKE8On-vi9p$J!Fz#;>A}*TKLbP9f6NkRo*^rF5YW#iQ<( zz}{mi_`6CzRD;mJo)u1&?f>)$wire#mLj6l&~UXY6oj+HwKZeAwwulIN9ca0@Y?4o zXNWLsRRsKC(Wx>U{K0Xj1y&8B6PxJ$G5oZid)lHgarWzfNyj8II}>8bz|4%03A}NC zskQl>4n9CJg(nMQX*pX(3j$n7SlEvn%l|O~5xdWS_v>Y5& zzdcwLDe7!y#rCF3nQXipwP1m9u%`@9-rL^iNJbGgG&EE=uJ?_*O67cMe|k*ev7MU{ zO0TcytzUE_hi)`F5%bDchCkhl7w`cfnS&Bw8042;=+~nAvR+m44BQOS`ySq-PI0%?fHerX68GRz+CQUpHzk3RRigZlNuL;XDe1XjI7 z0ar%!g1y>+7O*VU~WfjHR^Mpjljetyz`p&>eD9vPky~qtEcci|Xx~)HG03Qo@2h3h*U`RKCjbYp@|bI`*x-+mM_O zjZU<{7+%Q#U@ok%bv2HOh=Ar+3Vx>$uroeBK4W_q2@k@a9v;Ul!Puw!)uU@iN6Kny z1oo{LM2Lup3n2bZ-s%|~FL@u~l99=6jif;=x$dvm<3JEy+1t~Z+ibf#gcdO!HarP8 z4>rKRCyO;XO@HA81qaVIxiS?N7Us%Y%F3c5V^cBv`fm=A0@sbn&!=b6t|`#)ao!y2 zwBebkwoqPJTuc&lXSK7llaQ89h&bvJ;kBJpYkK@U5bpyjj%YIONDu^}_6y08PGUEL zGgN$}Q%LMUruKPLuHP#6H1F)}+}+>bpSPTYvxXPjilBnxn48Gwn2q+0RbOBK8bns`@4b&V0I_~QphgY^fE7R?_!YlcU6^zbCnX=vxbI= zh@vDP!2bNvDAg|XYSqU?Lwg^NMOjp)Q(rcIot=|232dpLe#xtN_wcZc$7)={_vztk zux2$oyXT5xA3aGk0l${Kp*bY{+c;vcZ^NFaOd7MK4idMt!m`W)Eo$@zJmi{s;W z-WR*MW!kkxy3KwMw}rrES*lt2`9Dw!d)1JUkrg#HG!#G}kliS@HZ3pBn*dmN#^|H9 z=HH<>+&Kliw1^EMIBRGG`1sxU%0ivsYjykGuHM_Xu%NJl)??A6oPA{`AbO5}i29xzK1?vLLVuPS|R zoJ6iyg2}FwWo3;H7aBqK&Re*M5JTzz0!m!)rhKKeY^#Yp2?+^yi;+|^;h;k&;I_KO zkBZ4$H0QGsI#^Lwlr{)S{xlo138C4wEvuI}wtFDPG;5t(K6I5)i=nw-yeN3nD&!s%Xr3 z88ErBv4N=NKd`j41Owu{Mu}GEXBu(f^BcEnb&FFMv1*#HC*5>)?lkLtUFXy%^Js?n z`L*-kCs07ETM3 zSm_R!XM!xu;^N}TvMDMO$WsjWko!gMkAg4Tdj1y)`A(6 zRwjEqNoP$5_T}xa-XorhBGSH}`Rhw#IQ`qF&&RnMQ6-@3&HnQ5r2l_jq`Uz;lHB(` z$jM1KbqQ{#pJtCBG3qTOzyhC3L`5POp0xB?1ECDdI~oc2XQ-Jt*(a4+&kmJqn%hmT zJC`8`uL^4liMHX62ewv-;Y;l+SicDGz0#rysSt(spE2Q;IG01=!`06o_{d78I}6fj z7>1F=WRQ=ekXlo?Wru{L_%9ef+-a;C5X5~Y#ZD2eW7W^H)Q;<7Yey|8G7(L{5u1^L z_Lkk6pJC@kYFQC?rd*Mzhba51UegDO)C)x~_2zb!5#@Y|=@lk*T!cAC-CG?q=4+yG ziXXFkqJDsNozfih!>A#L&r18tRf*HJBMZk6Vp)OF$IMln-x?h{)exq5&yMd)4s&ad7$fwJ=TGJ*i_E$c{M7Hgslwp zVjfjWS+mDf!PrBR#bl*>VghfL=`#;3$I_p6ImxVf+D2eX!%XblCC89E>427cy<0sU1J?ckcJLd;@+o_FwS}q{>^~oNlKJkX}{4X#P0)vo14r<8?jU>SP8z* znB|Ca@sob>+x*GQX+}$K;(FDRdDfPXgct&tNNGfxzO$Oa`oYCYQ5q`zpY0SE7WMQT zCaqs@b2aSNdNgbwyG*W@O=m-95`PvlzO)Hq$>><64Y&xykXP{M*}ENEpUQ`*Ir(NR zlD1^7Yi;upsp=yM`ricDJ$hOym(?!0d~FHOgK2-VvMq-M`>Uc@!om)h=I09scQWEfvlCJM= zvKZt-O$rkBx5s%1d$Wp&s;a9_PA*>ghm@0`LP}J90x==wgqn(q`uBwep_Ue*!P?3KMo&*q09&NT$+N`Jii(0(Z?sBJ z?fXKD&%&bcyU{C6^}S-(%0AP^ijmXNOY{RaTa&%v0=lTkf$aAo8(&$_c6t%(Ff~}T z+k~`T*A7>+d%H8cCo-9QUELv{zvmeZ+9RL1xp(#}DhIsHRh&ah&Pa@s-pukxvgF6O z6%OYA$!Rs&+E&g=(js%&h&DKeYkA@IORmS|BNILEqlELc4VSEU$uw;qWi9J>$CDbm zV5-io_%6fan6MR|DRL#D;JqVGR2ni2;AtJ18lAd}Lvf%n<}jAvJ@;zO5r^xrBfaa{q) zFp&ZgVRdg1q~yJtjp;*Q%=z{txjMvj~-?^?@IE%J%V6P8l$=u^P9Xrlrgpy4W9p*&D3BJ`w3TnkL z)5lEqVqRV&kJ!cS>Wud?mWqCpGbuJgDkF-t<2d#F55EP?QL5{JFmj$4!$5Gf&@Vof zlZL?3lKgtXnBdQs7gwGkIGS7_v|GOUhCY3(?xAje0n(z9=i7SAb^*EjLHf0#qW3mc zpLI;1x6erES6+ap2LC19r!q6ox0?nu#e7=uXO)$iK&X1h8+5bz_9cnl>taR{mX~J4 zU%u%fSn{<97LF$_oRhWGX#2^`zWv!QxY}kXaovo2xTn;RL9W<>;dXbwVac^ZZl#xO zpz7CLq+R}MNcn;O)sTE>i>Wn7q7%ydxHoe*W@r64OPEMXp+wViugGX5zQ2Se5aUbD zW&mCa{vqheG%3(J7-RN41bJP%fBV{U7Q;Pe%&zN79LN&>`a`h=$J9%X@)-$@z%N5V zc;ilJA0DRN#8T?$aylgB>~ISkdvoRODkH>lLd9~#r5%D*{_oF_1SbB{E0g-@Y}WbqhwWEZwwZ1fiyXC~Xu zgg{KU^51h}t445V@gJj8+)_qX!R+P6d$M*mTqH$b772C=mgs6qsvJ8_u5T34k1tc^ zK!O)c7+>7-mLAKPzm15fCcU|DGN!~W75JK})0H$NHe&iAq54B8$uMI+2O2D9I8O%S z#B$~Y&cRV^_=j%UEBqStt6bMl#9*iEmVdohJ$xLyl-m26U|cHR@Zc;ngOYI``1UDG zB<@2T4;oF6&}XDDuo4a;tVfD;ew^K$MVO22`{PAWe3kb)`{-hdoN>QnQBv9^ zK(JDT@kJRLTf$3iX2w^Iy%eGe!)vuVCm6O;Vp6y#J2x+XZUHZF;G)GItFXQ}8TX@N z)z%L4fN;#ft0s%ZhbRb0BCc${cl4xhKEVjfDi<3?Hax+{sVCD=48D$G-&D1(VhF+6 zf@byt10wv?C3O178X_f;2VS$ohf9QRUAWGqDxl)E2O)`?^>VxQueU=Ov& zu?wR~ri!>^xsq5?hZ)x_oru~?@5o~e5TxIqM#vAmXzv*+Q~j_n@Ey_e=H~3ck{gXB z#REb!gifnUb8CZj@ce$vdT-@dsy)HN4d?zn+2eHrcjMzSOvAb~ik4Pb z{m~1zb(s^PBR<+-FxGna`C?=$D%7RshrJa)MpqNx!z=kT4RN&q!K@{()41Yj5(sRo zejLPxMua6pe4vp+Ainq3*YPKbp6oEw>bv(?;a{C#SkOgggWl$6*(UO8O5Q+(`!Wt+ z`yqJD?d0K02A0J?Yhhw;K<7~IA{Jk%YaFu)@V%r7X~>3dQ$=|;1z$71l6`p3frA%0 zfq6Ef7;BB=MWqN?X|L;;lV#}ixn9J%HfE(_%O~5l-s8HrH9S-%*T=9wiIZpJ6Ne8~ zN$(r!WB(cxJ4GtwN~5*Uc;E$WzNI?1+*Q6J@%Q4opzj)Ob%PCc3AoefzFMboME4Oy zlJY~*JFMu=Clu2ifZEWX)Ix;!*y7_<)?Myi&9y=Uxf?BdLX{GiYlcS8O2ZVTs3C}4 zu0D#X@$U#i-%<05`7Sinsl(Vt_mlA0;8-}v?8^=rd;1{GuXFNwvBow0@mYI+mekII z8^BJj>BWtnX&?2bEEe-;M1AoAtOr6zh-AgK(aaM*vlj~5c-E1L+v88MPfQUn1H?Y< zzWNpL*Y}Be>ryAa{cLoBrJEP+d6T#V_MWw+^bpY}ou+RZS!ra7r<$ZOQdw4+$cpg7 zB#X2Z0YmqAk4nExp--V?Uh$;BV^JM-Z8lBnH|vTNFk`3;y}yCYGvQ>U6{~_x&4wky zJ|85J)hWSH%|~hi^R8Mpxz;x{WUrw0@>4}34QKkwzOZE--5Ya?pOn=iMa-hLYa(TB zQ>rnzizNg49=yjN-*?XR31B|RZEdY~t<))!EKJ=tGci=AKVNbYic##JnDM4dF?r=l zAwRHQta!4`g$A__HlEMca|jbWf111cWqyoX8Xn89Y}&U9daNs0<9R$ZU!0?c;*3au zVw)^wP3V_gz!1VOfs4_*ArBeR*d<*B`+&%Fq0Q+(w+)q_W2b(W%X%M2e9n<^h5Gn1 zQQ)~PF3KB?x2XQTxz#5gWaM$Vj*K}0wkM=EQKKu1-=$Gc+|1tX8J1a5Dl8MhHZ-f9 zUie+$uWVYg5LT}^O7)ypk{ z*Z%XbHthvNqm;yt%wcsW1QM<15fa*ye(t^8i{TSh4ueOB5N&2&w6s2oe#7Z90*2Z3 zAxUv6`xoMlS;BqI*%2qJcEU%+^P%2J^7%>P`|M8M+YHTROO)u|zqr5W%mztc8zYbj zilA%FXaWazN04xq9<_{&Hm^&Su^3(@(4baYbup*ei_NP#v}By{6MPfyKpj?#ZDiSu zqmAILjcnsubmZk-p_TcPn%D%(ls@PqoCz!m zx=Q3J%D`NpQzpugg`kqoP$wO?Y%X^EvEn{~X!TJbNP9tMf%D`=7FcVcIzEi_b zlz*f0iX|sYSq5_xvY`FRSD{G2PJa+O@UfM+Y66v`i zTFV$o7ujg(W``{9K*4q@=ZFg>O=naARn*`r&aqx)cvZ;F%W{;V-tE9un7cuxa;$As zhpK%q797lX7o;E9ueGSxH>eySP6MMIeWbN^DS!#Bwv+E@|nGH9zTuz;Cf6k zi1o61$Ab*)&Gq)^y3hHRwF1z{NNggoz8kEIdNJ@5E za%Ho&o$y3gc0&8)OFPA@)U5-SR&N~UbWqp`Y9$SlOdDvR_IBy94LfQT4ynG{PCj>{SJEAJH z2@I-xGW;J00PsvnDd*{>`6fzb%c^vgRyr7Ty}#7Ub5#R=|G`aTsB{j-qqQpP0T( zq?af2*pdN+Q!)o~3^)J@vpex*4yczk;!L_z*-L+g;u~;=r1pXkVYYHqVm(3DsdMj}>>}4{d4zOr!og6pPIo)Ri>% zCDe}M@-}UAUwwTlFm8V?B0}Zv?hYMzfNAQ77LV8XbP9$CbG2BXG{C|t+;Td3@iyav zzrk}oxxQ4j&lq(UFE?}66=>fV8m@vL=*cHOUMk9Iso!N-G`T04pv5Sig><6RFs{|0 z8k)sY3WmkSVS{03?jD%*^#sDJ6BjcvGOhvi-w=#-p)<0biTsIjgLbreB4T1y-TToO zwN6e>FzjS8B%`9VtK-x1>i=7?qnqTYr-O8ZH)0d@p#*0D zdpeb;@6g&0mDbAfcWmNDLHR<56!W9B&v#*tt?-(s=6Ztl6FI8gb8(6CidsiBkjZ` zE2{qAL6_Y&MjNTZTG15ex{j2y`EQYv%fmVj&Yl&RCH)v~U4`IMdd_0VU(%g)FGuVP zeed1vE-VpAmCMXWHz|u;nX<#JLAfmQu*bU9sozSS$J6w6`tOvZp{G1;HP``~doXCO z&|)@Q0#3*A@ec#wTS$SqFCZ$A-(4M9{FU+4{Q`(b#jNff!v0!EcuJy38G7*H32HNc z2GvJFO1j?2YAf+762(5ZmjXAo@}%`?dPJBW)*V%><~@0+Q~gVrvU?MZ0=ee1h2!%) zHCN?L9j%4Xn+jS z6qjZ75v6+cA!Pm`*9?|ry!(mACf$oAV`=jH-W=E4VwD+J#;7g-S?N(t&DR$RzWbu8 z&8oU$pMLWnyjtOR-h|FS(CWd+uF_>^{1#INg+`)RDA=&8ykhOiaF4#?kws<>^F?vn zYvuAu_Mdtv;&Y*&zv}d`36546dOxS1I8AClAULZ}d)_53@AmFFuO4AULa}q22;rLC zW{otImZkf)#*5?;Y2p0Uw(jZ-no9mpSWuhOm^ zpHO0dL5b06jkEhvZ_snmDpTNgVWnQ8WP-s9)4TlnXAPM5e7Lmh2%1}MK~2Mmw?Y_` z1+WDSXss#8W6hp0TUFYpxA&9#!&jRU+9J#L%75<;B5F`C%zffy?Dp|u>nR8cvZek) zuZMDnc7SqK-aGC^KsFiew&A}L-kixWpJ#M0tV=?WSG8X$a)12B-fkB!HcF{G>nFvd zJp|UPttr{Uf1!Is^_0Sx#)kIa8fP+!u{U2ER6M27?>M-@{?6+C+=AWbhiQ~%OD3m6 z02;%5X;uHc7@I+`aqOTpkInsivK~8e->}YAD&EpiYt3ip1Ye0W`TXDI{$NV3nvUTN z;r|FwCNS;mCJr{b+j`gi!maI)b-~$HRYPbtBO~wJd`Nwj#Dxrte(QAnYj?|a{f{lb zrT$n1entifb!exFqLTmTxOgQH^tOD7@`eKwQ>tBvq})`hDg;fv*PLflBQ|$et_sw% zKYnzklcj^;Ql z%N^Te@ms9yeVOWlY|c^VsuG0e=^sxeUfMid)wVeJk|!g1eb%&rW-yY=Mv3D6jyh z%JW77n_(m@<1o;GI&4k1`KTzOo+(a`d@wox*3p28^T7oE9l?wPbIhyd!Ep+u z9MG)I`Ywy{k^g%jz8?k{3lGTW{zUH#uj-Fw4ZiiTxK;@QlmyxTI~$#g*&=6fB5)g6 zDpv5ulgAN5$vmTED5w#-5^Q1%?`RBmZPE!=8jMNnzA=)s{~KpyZYxy+2AYNS$#BG zuYT|}Q9zyx_f|Eos&JSlwY#$+w?CNV@b}IpNF@4)!s3YW(bisImROyU{n(riY$VaR zM{XlU{19Be|IE~ z>o6;-AqeTCB6rMySm@#H4POD~#!$ANHwGJYaL71yXWV8hvT#hby-4E+?=y~k$y{)9 z7Gj&rfR^^$*VEgEo=2EBAjNp72caQe$HsWX;6#_#S$JJ^zN-p;>$4oknw(Jr!Z9Gs zJO|v(W&bD2QVsMs{jrocNB&RNajPIWa+ycMEglBGBB#j~B-rZcx?Am!_?)3%o^{=@ zLrPLqbzj*w)LM@$KF9Mmr^CQ;N9gu}%6$LNDI}Ti{m*aF4o(8z7*(bNcpy)_Cc$8c zgnI+Hj)0_hNdk&qz}47vxZ;?(rYiA<$6^f%X)lpRo{uh>e#b=?>R0*pJPLD7L4)S3 zjt&}5+?;3{qNHSs>%G@?qzA|LyBCX#zVhmj3srH#R!bE8T;7&|a2(P0``ZST<>??zElDr-XmSMLz2jOAs{LwqDs?A3G*M^x{R& z^e@KwT7{m}enD_nNBcEdXDGZl?zQ!>V_1!CmtJf3&Z1D}d6*o{u3QX$2jGN!Z)0O% zfbzP|_h;h){R^1aY@IDRC}}I@KSS^7YU{KXmN5 z$RIl|P*xyM3e&!hddly**`~I>l5nJ>a1I#E#J)%xdCtZbH<7QLqjCJ{jk-E0!f9T=t{mTE zD*mWC%cCS?O2CLYCxVs|dz6y$6O*I|m(kU3|*az@|cVp?Wqrju+!uQ3f98@95t zGFNhBT&BikUX^WKSvjh@x~!t&24GM2^!3dh$Yg@pVLqH(X*Ng%_?nV{VGmkN2}#LW z6HD-bT_U;*M%%@SIx#<2?!1pjMBzmh0(f!^djwY|dmy+P1t2ji>rQ_SN3J#8=yV=h zOzqgj-znkqh$TcGg)ol=3wlX9%TJ^DERby}zMzW-cSl7->l!Y-|DqDrD+Y*ZfKjea z7x2Bd&?cpH&zg~e;S-oAM@!`_;=O6smHGVjtC*Y|8u%kF+c^SF&FOJh;5Q+hD&5Uh zWs~xWcOsZ%loYp^<`)5rXIViL;Ui+8z|IzDI6FG({Y`(zS?SJ|jzmd6e(HI16@2bv zOE~(}lJHMIr|knKv0RJ8c% zH!{);zk>|&JKRlZwxV;on@eWs^oJTMg>{~MS<0jBl#A)~2}oId+J(Q6i_HB>oK3lQ zohFS`tZj#V`==DJ?jiN|2D*BB(1fL9e^)#B$`G)IH@5)eO5byX(Cc#F>OWI$!kxpV zdqVa1MX_EES!aSgl(Rt;?O#ckw;I4H$Cc7e;M8c zIx~wp#Da;^0^|i=9MZM2OBSR{o%6@^z)VWUuA~_@L8_>~2;k0Aa+(i;VZGD&wo0Bt zQkOWku!OleT{t#%9#{gD^N1~a{~2(uzoZ?^SaTnIg{cE{w;{wx(CGcl&p!i@(~OA+ zlqcn9S)=78)G^12RK}teLgxq1{KQM4g_0wJ)V>)TTQSGFz{LTqQhIcQ!`&GU06vPk zA4S+$_@m$En8i7Lmi0}6R7E7@bhl=^9?X5eJ8Z^o)gJ{^V==(5WdH+(YR9U*YH5^;C%6K4)*W0m0HXs=x0oeM}VBDRc}WL z?d*XH!t`=~cERuNzz6WcnRV)-%iABx0t!|0Iee}i06kk`x=e4j)|wa=7Pj`fhub0n z!2!f@p|c^*jj7R8{&=8+`AyXfjFe_KAzLehdcm0e{_!P+PORHQ3Wf`&^bQ`<>sCt2 ztYK*I-pB85uru;Ge&C43{S7b*8{wqRsd!SZ6CU<9X|8oI3B3J--E9ZkJO(s7)(uti zsNSFf$*AV2vfl_5RXl*?mzw=szVhYEmpFuky-*7PArOEQTR;(FK9>0w0Ev*6#*1Gk zfQ1Z|@}vp6n@<+0zoerRV1})cPktJgXH#!@1We%C{$prtTE7nIzD9I7BQ7`$^dL@q zD`>%Yf5OHv;_BkU4GxdRSIsY~7a}8pxjkCSe)tG9$q~rQc#QuKZ#hF{xfvHq* zn^lkgRGFSUC~|kkbJ2nNWMf3|sHeXl@LmNRfZ=|xO99>td?^Q1NG|&`UqI|udH3!O z$UZy6)lhP8LZY=R!ZAQQU`hxZ{O?ctIi9|N3#=a<8T?lYSY$Gctr97yJjmSM+GTU_ zbWS~Wtv8{SvOxGCBKAN`8rgp@JDEKX>^c;D|TT-s|0`rJI z#0&FAl%7Ta%;zs4$2Ff@fS~T>CD0#7y;V1F$E5dk(odbRw|96r0xa zmTe=Wkl!LSiKd5@s2(q}j2SWO-c{w~6chf}L^W1A^C6Fzb3$G0P^5eHukK^319kb6 zBbdNSIe^+F8PQWfKsUe6Vw4JS?9C6`pZq`oqNG#`{rDZG>_atDfTq4@D6zgrCoAma zcRIynKy{bmBEy6d#RtC9MpFt-L5xtrARMl67^zcS$8gxX!i;DC4tMcnQUW0k(X}C` zySUcPNTkKlSvn8PzB^73FR7U}FytJrZH{16Gi7aunEV&mIWS2iDa|ty@hjzlg1I0X zrrny)fD+Ei$_fDq3C;m9m^E(~mRD9*k`KGeSp7VzvKeYVx^67?g3aiPXz=J5)69Ax zxjuOP&G~L8`B;>BnL6|fb$~%l&WjRm04Q8tSoaD0rc^y@F*@_oA8&mj;GvK=>8|7g zO+`bFCPBSx)XR>Em2HPm%#S|!GGK-B%Lcd1D^VG!x~ky2901l^a*?$?J>GH5zgJal ze7xOrba&4OC0~htYm>H#-9p0`AlRzd(NA^k z>sNRZX_56+dvKG529^fh7{7O)5*7S}e9PNCtv8xfBDSRM7P16PUlrZ0daK4Hiact! z*by!<qatBZXqh*zhLOwN>G@tvg6<(0P}a|YT5gID@FQ`uF-ocAm+7@8ZV8!HT06B2 zS)M)IxH=pLVx3*`>Us(8de7aN!c3_jJJj_9+99tnwmsWf`o zj`@9JX~cOe%^hw-e&FxMMx`a>`P%wA*ddGaZO9M^V!ctsoJL&;z>RfQJ$ie4Nie3m zCx8M&oh~1I2gVTzkE!wT@Bt9Z9#H1CwO?Pn|886F+WKNrT>;>yQ;(Cj25D~UwN@z3 zSR?#L+&en+Hzi8sI`spo)3*NJ52e%QBWHTzubNirb+MS=Gs6GYfl@DoT!EXvLNb&$6v>@6p{?*`e?)VycxGGwH@$Yrb`F37j3x))ZE2 zfi1fDiw~{DSa0-p#lC+e$wem5W>tK!T%0|Z)uC)`{2WNv@POnC z)S2Z&bzlxQ^>P0{V4nc0_=5rB!``th@j+eZ>+PJlH4p_rZ}MS>57YsFMW1f4$zqUz z0AO<@O=m~11Ju+JF0nz^ipq@Y~@`Uo6S(uk<2s0a6V;eJmK?)v@@ zt{q;>Jz%ncf{xBKk@xdwNKcOhz|vnQm0&xvf<_I9DNQXbrnk-Un<-#h4(jGV#l)C_ zM{-Snwz0AC{Vo#_xq%8qef9|O`OO!bTqo!HfpTV0sPiQ~eK_dv!Z1kRH`(Vve*ON= zL<;m(Uaf5lB>%HRop&Bt#frqfkG#F(^dO>lzNnmLcTf7Xk!-cH+aM^h=QJX$S@!n= zHF(D5d6a!UZ56<)kU0pkOvP&21;J4|oT;x~H_To(m+v}*8b2IJU4?{&9bH+T5b)L2 z2Zo1x2M5t53;EznivR`DM$h2O%#0S0l7$0NE>v&?Dn=dypA*R>9!W__sN}TW|7m>G zeRbbdah4W#q21r#D&l+7Cg^Yu#XSXodh z{()FmL?*#w$Qz(1u1Nek3j+tcOL*uv*HWHDhWc1;oa8GdB(13f^Y7^zX* z3v^{bM+E_bfbo+imz}O4MD*VW204&S2DzkVdD|@jgRN8;b^lqNu~8`LrC6Ye*4aEFqQSNQY}# zfHcKnYbuydITvZ*p0<%Pd_ti#vH<{iXopb-@dFL(@bP8VpWFS4N|+@Z4ZB*T<5q>~ zqB%<#DiMTl${MgxJ(TOTUO&))fbky%2$-)_^Nz>FvA-lG4Xk#D@66Y;bz_T~ zf+EM%BB9*`hjlEE?Cj@2 zxOIGfZu+M{MInVJ=4#nL<2#dPmH(3;P_tRZ#XW~EGcE67rBkuukY(l^7Bp!}CBZao z-Rk%yajDjs3wkcmN2I+CRA27XJ`eDw;9r{<;0fY!%zpViFqn=^I?tU-*PB2+IP3C1 zE{M(gw7~FHr_RRc;r8MJulm0Z_XJ2t=S>RU13lj+SSgYr5Q8fuvIhc55WB<58}rfh z;hqTSnCRK_=RwfY11MLT4-G&?SAg%u+h8|$12-PmHLF)~{d(puxHiDW5M5eYD<5=A z-qE69U@P0$hIv*`%VDnrx8)RhW4b8IWqDI<$s2#mmFs>MFsLuC8MZ|E=v%k&5!joO z9qW?5zIr-bSxHQ+5#I2zWP7jScE2IP9g%>45aVses(i3h0Y(hKt=vHm3rTN zqzYXNFAe3&l6u8Od&Q>uf8@-^QL*Lzx9(<(!`k?rOJzcSdd%3EA4h%%ZzWdmyqsU- z{NTtQN{Fm#iMu}lU=mVibw2&F$%aiul@evk#&5lFUe&HTW>-vVlYPd4*}v_ZWMpKX zF)~JmQ+a&?;pg&bd32a}c_{O3FbKRko@bjdQ0XMJ0c>=(0GcjIkVt?{&D%A{KqayZ zi|wuhz?*=EPJI>dS3pgR0F_=%h+qKfdWZu_Db}r!aVx3mz=VSjVTmW=q=_3dAUZ9P@;ws>;9+&~msrd5xM3^qD%H30P`tR*BH zQS{+lHLc$Uv@bxJ2UM(|ftnf*7q=7Cx=`^QXoUU(br4j=cMlY#7j8y5pr>(^Jc$Yv z^b2|r?WTST`qO>9fwS#ae&JGS-OEeOC1G^vu>7e`ffDk=z%6|hxPDLWCMRh2o$FtY z6(@<}d-bz7*y2lvYkvgF#RcE1#avMxW}@+l34XtOJ^;k(?A*qQJ~rqsgN22IuYCQr zmP9?gHz1UaiazOXR$2o!q7kUK?*aP)+MhwCU_dH5Pt}YM+7~h^$v~|7H)qy{8&92O z_Nzy1E5~>wCqFJ?SCM?;f93wKjw@sdViPOBwKsfHBIFUvLeDYd^gNhu3CV7c=`jcgE{t!6k{ z60(Hz{VpxltL*L`-p>YJvJX^yQp(!}Y;J`M3w5?S01vDk?+46NbLgiy%+*-IYf%$! zm5^3|<5>Ncd>M}XRJBBq4e9)n%U(=x^FXb|=%4N@PPDn#$0@E;xpQNEy>dC?5^>&H z!dN1hEcemw^~nz6&n;q;IzH*=+e7kw*mrbs2&vt*v2}5 z;8X9KGxjutniw?x6kdL(mMZZDI5A!K9vTBR<-_m7s0uQe~lq24+^Yhh^ z@U$T#`-PG(1#bpZP-b;AM2b}>%49zmd-dvdl`u`PWbM3#93(^4z@)07!xfkZ12NHWOcO;p9d|p#!w$ za^~MBo4~YmuhiMEjvZB;fA}SY>MSju@5ugF{TRi;B?QZvMulvQE)~|ciyzQH-F5J_ zDulmqHcDZ!igxN0uQz6yFaYlx;~%fDDF+pSDaY#Wt~RSxF%-B=i_o)!OX4s?<6ZK2 z0X}I0%)#Ol68eFNwHJ8*e?T;fV<8W3N4HK^|3d(r_hxs=VTA=O-@sx;ED_<#$RAwW znPVIOK5pI#k)ag4_)y^fM&~7p(YGEiL=X5Bzf_(qs+oW}82I3mmg}{shNdRCmEGOn zOywdnFug2~!CIQ0Fup=28Tk{AE==|b>mWc^H;P}`9AUWM2=KUHRto{$* zD3CLC_b?RJy?btn2^0`Rhw$Xf$kjln%8v=06mO${XkMV&bC+9)w}cRA0!)cWZfs11 z*p9}Xp6UfZc)vuHhi9XOE(A!IO+XP1BlLK^e!e#y2cQjhz~J~dHWd3b_z#~v9y7Pb ze5*=Rl8lsrRkg&;{2S$%>v*h#sKnn62g=T98-{ zVUCqIu;sW5J@*Jmafg8J609Icui5Rtksi(@;TQ$oy?HC0!%h3@g2?s0HUJgNZm>yO zfGw&*J`#l0pc}m#glW6=d}Xnad@@*84drM3{wm&5y@rw_5QewdaoV9x8vxqmR+|)P z?_&-fBZX9a|9@C}3#hEqukV)z0SO6dL=;d2>5?=E0RfdxK|;E_lx_^VOOQsoyF@yr z5u{U6^6XokXU+LP=Y7xnoONam6`p7WqeHPxc z9JFmPUqdF|s-4=Q4+8IMr7SoUfhNxhttnbAub1TfObVpdzsl3hZ0IpIN<%|?UOAE3 zPWE%g?g*uh(Ij<_#y$Dj{`!V};upvhPt~kD`CAEHCwEbdPJ5771lJDr2*k#O*aaX~ z@B<`(HR8JfEaKA2h?ueC##StXCFmoy$R2LNi+$Jghw~o>aNR$2$$j+k5r1H6U)m=T z&FeMGzt&z2)Tr;A&16b-vMi>FgmJopau0}R054|o_>#m53x(cwBm%uDB zovw)iJ2@i%B4E3GEz=z_I}N{o$Me#Db26%XX(M=A!*eq%b1r8t+@SQRBtJ$3hL^o)z6gqi`OXjG)K z&RqhZPPcxugnm(~>)Ta#%CcclUN4DP2p66Q5K;sW;T9p`5!PV*tWeD>>PKqDwu z4*op|7(*h78XvF=6<*Tyd((=wHtj8UeE*a|Lc*cd=vzyWdYtOmk*UYWFjMK`YxqB< zzq*#Qyd6DUmi%fveWy@q6bW4H-mq-9g;2KFpYIn8V3Jr&l;xGkhS3NaUrj;W&Z@5* zTCg?}riV{Puh=nrG$%@atd5Z8`r^_uRsoh)zB9wV*_Re!_EVCmo_JYCDZV(F^rY&v z2RYC4u80C;C@?4}hSLxafeKo^*-P`B*oTO5L4gZ#^@C4|K~>I0iIwxQIh4O}my+)@ zu5UduY*`cjT~CR9>R3=#2sfI)-;{>TSp;Ox+S=PEZvFN@^L>b;4L)s9<1pBn54R_F zufjZV#UHK5sZ$6I-40B(`x&pgd4d?lEh4EW4Ie_-EN>fW&W>S64-=gqV||4O#JG;I z5y0U4kipr|u=L^!ga0N@8;Z&fiYpIR&$_LxZ4=&aK?NwR-l#RT%)A(qm|ex`beY>V znG0J=;T!Gm4^TsB-{C_d290tZ&_zB|3k0JN>$>G{=W1DwRa)2*L?Cz>@CTxn$Z>f+ z@Ep!@>-xiODC%f2aW>z?-+;?7y#bD8xX|o^R=bfU>_aycVwOLJCbJ~fFuXwKH^22E z-i0AS_iz)Dp|rl8FCUL8og{X$k5z+BL`|KLh4EX9f~CNTh`A%!PR%TL?%OO{V9>Y| zcE?6FssL=}A<5sH>3&txx9jfc$Q-FOn${S6P=K#vf7kzH5boyjZ`lXT#@$Qpu3e+1 zX2*Ql%1j_=nv9!W>I{!sU0!av`R8N2r*53sx9&A)_t{`4H`LMUC^}th+!Lr0m;Li*hNvL~7skLhD;pu;ifR}iovl}X(4-w2n&1EK&ttXgy^FDVbjkc2 zMexnF4JKD^DtDJ5=RlPq=D$xwgcx0567fP5iSpL$-BD>B{Mu!Rf8 zKO&O^Bnt^YdKe8{TITL-s}Cwp@UcwMe|_5Ctu?Bzr#{rZMgEM|HWV*e_%e-PG$bz| zKZ|&;DA%g+WxgTB3488ar12NUihaTO5Kgsx!eq1$<(NieE(s)LM1mctEslWwp`!jx zLqoE~Als%AtRR=R)wVUhG%jM;km)tMhbJL1s>2WZLbGwMaR8=>r_F(Y_--)^H+KYt zeF)L7TB&g>0HyBU(*og$L@3n@K-=W1l?DRqVnlHnF{ug_b#T5qoPO!a>dZ2Cw=}19 zb!WNbh8Ji}MXl*I4+>u(jQ|e_S;%>hseA)uiVSz|1ecU>O}p;OB5*lSm+I{7#HHdZ z{A%5NnHNcijcj{+TQqaf3jV9mWm5xqM$c3*4832ybFA#z_4HIxL5Mt>G`#dRc z-jWkrltSb#>X3cw(S_#_bA0LlS*(niyl(~GAS?VYt2L}i;+=dDqH%Gb@_s3$;p;|5N%`G<5VCuGu~rp zH$GM+yI5m>GO>n`%$iGU?5_mI>}I*MISIvvY^8qt$^K<-MnNvOm1A2(rE1!%-}KYS zImP!w7qfPy=fjmjoA5NlAunPHXc^RzhnxRrD&%TSaKgdfxVn2=Cf(+{^3js|#aXYd zMcZbFONUjMwdKoDsKhjYoVl~7r)^?lV)0ygl2BAmu6Kam`sxBAXSVXH+)XAyAOh-K z*6Ep~sf3J(U9FyFL6yBQ?R=jh8TJ654i>UwF^# z&^bFKskPc=xYcXN;(S{Tlt$9i(}QaSI!+AiHAsj^56+W@Q+(+auA1amP z3;Yi+#76ylww&@p{Gl__c<3Abi~IZ){$n3*W@&FoRKEDQui9K1y!QB)d%;G<6PK%n z{YL3oSy+gIcrAcwASW{ffDI6n{hNtI4Ngks~M2-ePW z718hQ%-4$Vvp3cd-O(NdCqQ4-dZ~ zp;+Vd3kYOh|FaoUkj^lX)g!g_Aonsbky~lFo!XTI(R#hXm5^8>{=1Phr!nGiL30@NXs7-7QUw%~T(zY3K|Icp1B^-#7(B4Sz@gQ@D zDT_;1J!I3vZFV*l!{fdG-v?78h%)<8j%{iO$H|w0$*FU@8SThj@MV&{t*zZ(hzysr zv5dz^i93nSOr}_xAHDPoCAqPmmsGxn;`MI+-5ZhaP+Yx(n%VT>GQl^T$3Jzx?HVoN zwq{@#m`uuHu-ZI$R+0)?i}La!FOMc)S#dRlIv&st&3{IDZ}u9cxCvXt~Sm zTQimMNq-ES@x0;}N_Y9Hn)>^PWB-0k#13|&;35tWuM5R6tSl; zw|#Poy}?UQ_oEOl2Vp%$jJ`6g4YcgX(kj%FRgyo<$w~{fa^V{Fwox zqCH2?VYBImEBA2kh^t)ifDrShdo4m(^7p%pvpQ}f?T%Giu4!yz`vmjZ&V-~$H)YC4 zuPkrhzWHYWJ~U&(E}=%pxA56~ub_a{IgL*GK8-%-!{4ttm|aC3t@m;opj{8F!WVo) zMXitlyYp|pXeu3ucHXYXeP3qFzVTb14LP6x9ci@kQaZ(RMf7WojG4B;y-H6`_5|<^ zqR1fpKdz~m{N!Kt`dVpb7Qb_HcK?YrokS75@!{~eI2=(RCVJ5mA|B(;LRCTf2$-(0j#j@JeeSUs^;QqXej`lAvFF$)zkkREP zE)im4aoXeXZb1D8Xb}w(kRVg!sW#VPeT3vnZ`N#(M(rnExtBtujrQwOY zG6IaD0b0;LBh&g+xlkk}FYz?G>(^5!o%58`f3zr-)n>a-PftJDN4Ki%UCy#H+t8jm z7=ER!80X8jG#kIG^}en&p?9_9QzruGv-TV4)635{Q_~ecG15j}KVxFOu!RB-lavOQ zJ_@sX4H3hq%0(mpYw(b9Rrfc(`S{Uv#MSEeQ1j-y){o-zqp#lpJJI&e4&A+b6Q9oU z6^5u|cH1NtYpmWmS-9qV^Mk(iNs|s68-z)?7+z@)2=^Z@*6h6Hw}^i^O_{{}qUXnN zy8!qu=>JdN|KDNxza1n0qd$|7hFWn&Nw`hCez1#qVejIBB)tdqU?o&!*udS&;0t9T!!~`W0R0t8qG@v)a z4y%#$rEH>V`t9oNkK>{L%i)uU7(QjchY$Y}_b;k_vBk+Uo}Qz##P{zXynOlcRj6(b zMidf)4vP?*f=j46#A&XipuF562CZ*uirT_r>v6s4?eYH;Bh!2Sf{F8k-@cyF1)Cwv z7@LW4zTHC?*}JkP@|SeP#W4W5D-3MH#ZJbgJH=*DZ$Lvs>r0m+qH$Sg2PM_h6~2Gh zxK$X3{=b#Dp&DuykR#mr&q%&k2H;}jOcg5gFCT6pBxVr3u>p@#t=znOw^yXM^F1TL zh5;{IW--$v%R7ar_ExNXjJr)`c)YjrHJUwb@)!ybbHEWCr3Lmdr~w{Bb}*P$ByoLx zeW3V#nGxHiStza`QvBcQ-0rF6mC2wueuAu?7o>Q8LLK8dpVA`69nTSDl_p(KomlwjbBgHj6wo4Sz0 zc0HQ&16{-5>wau2pJJ6{CY+y7uZgrCtA!)qtdxI;e-mB)9cCK}pT|3~9JOU<9`cQ? zuEt?X4Z((4bgh(GBE0FjS!#@`pBK9b1xp=;49YURhQ(t+US3`(QSa>U>%+4|ROBGO zYHDu&HClh(3dGIT1|uI!a|-E8>9l?|#o-Z1s+s4ipXDC7-&T<+3%T?V>807H)CiRG z?rZ5nTq{TlwbxSbCFlL}gB4xjiI)`8U2gDZ4IDygi4{>^ntwysq)Hxi?Tjp)>b9os zEx!snW@LRiZdQEzedI8mZCs2)B(`{w&r9EtSvQj%Fk545VpvG=XvX9w#>h%O-d`hZ zN;U1^$Kf~3E%R#9#;SfTmKc$fY;1EI4AtUt8 zSFh9#?G}(Tik5zO<(!iGA^T8tCj@1NX*;N_?pXY_9GauArv$;WMmF`ER-=W7t54Mq zsb80+nkYXXcD~L311bIxqJ(iirg4h>M07FGoX?H4 zR$qK5Nn>g|4Xj?Clt)!>`jzH9k`c1cI$?anxrcA-$1w#?-}*5|cUugT4>^*`cvve0 zPnL%T2j}qoA~<`TWRIn(8&=={2I8H^vBG`59YVIvx1xNWz?6XZvqx<8g(N@jEzAoi zZH-Qwyi!(6;ePrG*_G5I@wBnIaX!QN!+|`Y?f4iWMZDFxo8zqN2e!Q^0ncH^-=V-UujVQew$)7q#kHyYPk#M3Xp;v&DH_$ElMRHbZ29N; zr}}u3UfggJ%cHBvE7b@rdwX%I+PS%KH07*&yX)neEQ>at7v;3y!P8YKEV|o+9T)oq zsi7)gM`E2;+WT*8W!f|umuR~oy^_dleOIJZ7F1agmRiJM_d4$jRX=^Q53xjDyuZ2S zh1$_R9pCA_JI+|LTDSX#`rm@y?HS~C{9`|>TsypzuD&+%>S@>jy*W2Z1l>pG}5C$Gmg;jO}~>%a*~j1yb9jT4Zv@#^);I&vCr9CY4RVfun+=%OCqG zNi>dZO_9}vf%8|sF7ZqHbjW$5O;FmOpI;a zXW@>&@!62wiAT(gKUaJn27h}9GmM?kKY{0rEeu<~bi7#-8O8p%T}w`b?`rP?;@DA@ z^%j36apo4Z;c9$EkD~sPZgq3!rawxQC^qiMsNe&pU%m{)WGD(Gzb=?E)3a?KpT3LU zvm@g+&ow){g6_)@8u}Qr+xJ(IMo>SYF5j?AeU3wHp!?;C?$WWotqGA=J|F7O!CZ;e zpM%##NHVTn{@Iff9hl9VJB?b?TzK@*`nCjJjV3J@vTP&cm0{j-XMr8pvl`~SC(mX1 zrfNnD3;K;-4hM=<2=5b>7?!2^+O}|6fd{p#1g2gO#3Czq?T~Wh{zfBzr%DNJNCujl z0>$y9Ak)`eXTam&TuL++$KONe(+Z)k#7uVfvC5Z!AivvVIkyGw=+%jy{1W}JP`f-@huu7r)nD-xv(E~i zb3+yVpDE-H(<#+m^$zSrt(6ydZdU4hk|{qMbeZQ>yun{{4TRItjM3vWz&rdK9aEi$9@J!g`nT5b73N#fk@;#U0bLf>HyW zmktsVuz%qV8(nDtW-v%ZTVlCQ{DXrLl4lL5Gl$}J2|p*f!@x%3Rk?6#!XEt?UhI7~ zQjMQ#MzzS_2khEBMqWu{lSRAZX`YsNj3*VmP^P>}BmVI=1u?J4+O3h>S3S0IKQlON zzK(wGBht%gOCh!V(5{3EC84b`@fV~PDm zR3j@Y_z(#WYKr*rK!YuOTLC-V4U2m9wRTO(=`T0zuGW)An0cMu{V{|jj6|aOIJ5tC z%dCl4&ommpf4^j2H@oPku+6K zsingF_t$jYhO1vspS@G&?Q_xCJ5Sv}Y_{#`%iqdOM1+pDkT_*qyWX)FXgLu)UFQg20dB}%t)ZN$=s(}tM+*!vQk-Ploft&>&# z_6PybP)cQ(!PLJ)?fJv%A>>@>y})A$r8%3^Ba!lu^CgiBI%eh|=mZgABI0&zYw$H% z!Q4%A7?ibz`?%@6gj^2$tIY1nbAbWYASe*Hnm&h-K_fADB0otnxm%icmW~%R82c*$^-;{=eyh>2Gvd~tH}SVi zHEtqb^BOL}(`j`R*HPW(jh$yEhkDx;b3~ZH_aAGO`ztNI9PzgZc*whi1X*iq4rpY7 z1m}Iflg*r?U&$C=$X+R@-IweXF$*6N(WahFSxJp|`EM$~QM~A7=Tl!?O5bdwt{XmW zyPdiL->ikLYM5SescHv>kOs;a1O}4=#VIhvAW()BJ1~Um-dj<5NwS*;5!VMFO-P?; z4E4T5&gH$g6cychmmL-RQ>PP;D+Nn2{<)?>NR*ggdE9hW#p*VPQK!^sVG!S`pvI2< z;M`h%d+(GF5()g423IQo?U>j~IQe^tJQJStf{mRjc-H z(2LvVj(9YX20eb;DdP?-MqQ$B=#O%>0FI+?r8X^4l87XSdQQVS(mI8% z%}Z_glvpq zfc`1|{#b~N?h+F+J*#w@LQm4jFyVrJgOM%WG$lp}ZuY^gH^14OEl7LLLN^(3Dj$h| z#tB&#?X5$D(q8Y^=VdC}k9$y^k!X>=ne**n;kp8Qwq%Y`Tvxd?UQo|hzW<*CPf zYK!d~cg~~=6tVWWW_3q?x{R3Lcb&vK;OJ|ah!Dl6?nIYY(Y3EiLkYQGpEcq9qKOUOjT zD0ehvFt7C0;`2Wu<@hPx!Nf#IU++CMc^xlFFl2T00mzS5mWbNY*RPAx&B;GT?_YLw z>oo@20=N{5S>5%u>CYy2tfJ8RH?LRg1=LZ7I!LYFe^8XX@66h2 z&>Abb7*)6>WAAfvU^7ZYJu5aSim!_z=zqyp zn-AVKFBkBPDhpVaPN5?%_K_nZub#FPXpusTAFw-5}W; zFNrNV@;v{t_8cG6Tq5_0W+AzFC2>?W!1FcEK4ltqh*ZsJ-q%+(@mJukW&}L-CvsK6 zVTC6W^7NhGtI4peZVW{iDu^q~{}l$E^8U#th~7feq+QL%OJa=4$bu(kA5DU35zs;I@h~QjLki7j zjyDT!tFLa%BsKQyhg)4a&A1Uvkop2D`2ON8!1&!-MBXz$?r;d(q`BNblr-I)dlrZ3#1rq$mW<9-Px@V{`Jfj}uA!lT zZCOR6vbn5jFsL=t&Q>TkdWE=Jjkq{0=ANGF7U*upXxPVpS!jr%8u#>qQm zte+fxIjW+s?voK&`q0v?Th((TPo7b0?4m4B{h4vUv)n(9D0Cc82*m9I(2_fh3}#|X zdD=6I`B@XFGdZNXSqyd(i|)(>+YDb$bc2#mM|<%afHkSbkO(LL(bh-Iwo1(pA>WUS9j_ z^MAh8Kat4;c(VY#_AUEHAf zn)_-Wn}1Uw6c2GMy#eQ;*F(r31Qdo}AplCov{BjF@si9sXGL5iw9N5V*83e(K>JZz_~lBPu(CrVdPPHwL9febV01Q{?R=+0KES9$VVIi_9a)5 z1V$^KGG?0(GvtrFU@gJh{c(=W(!tDAbRdb1aLo=k-gvtEIJ$g;3;d346N>GH2XvET z{P9}dD1BOseL9*$$ah9Rw!2vx5ssgUq);DYFKgbt7YaeygcTy)@%DFSz^z`I8cI3O zcDa@-QuN3kOrY&dY-R4e`j#*(F`(kKO$E53)9u4o?nftFjanGu_So}nJuhsr4y`7s zTiMU9T_YU`Yn-M{-bHI~fmEbjR-@3~Pr%HHDiA{#iKkWOVDN-eEFw9!x0epuHN0SX z|2FB&*T^hhj&3p%W#=aXi*lQwp;rLT1wwfh6v9Zpzrz6h5$dfx!N>QV-On&TG4*ZG ztew=?qg6f@$LdGo&O+M;wb$1;-mviSaO(+(BgFt<21ss*mm84#FVV4n9A?@xr)gNz z6DT|r8QuBiZ63T%?3<(2+*#r(tl}1oY*C;;nW=tcCU@oLqBCy(E?-||W91o>;dy>L zHE@;AjN~&tq1neP`0U2_a>6Ui^4vewn{nWq z>vd}0yhx!hbmm)xvL}{FRhK)u@yBOytLq;X?=tsI$(NtN4&polxk~6}@ea^#klua% z0_Esn!eSSG2BFaoLfm_NxTU?K^6!{ml3LV|95F{&BzmiZF!C*EzwU2%A!Nk8_j-R0 z_Hf2`vwok*3vjLGep{BJ6}(2%ne~J&f;2vV!}WFoWAelq%a_JS%M*BzLcoK`_J0e~ z(PS8irm7tbp*u#2#Y|#!G#MD?T%7k;(HkI(>>m)&2*wcvi~%8rhcJtXoLqIz@xQE2 zi19233r&#S6ic<~G97mlX*P z*C5w7%Cw4vN6z65fGg#S4R97SaSAsrriP+`JwrFe| z98Y0hbpD!xBQbq(lrYAy71xN<3uiFY4 z51u3>TV}SRlqakxTQnP>v&|edb^>909K0Ve3bsvF+Ejw43+V`~)1AG&?a%^ArxAt6 ze6oXkRAYWN%ZH#erJqS-uZjf%wgloUyFfqQA4E=VQ`38Ojh*MSs@J5nPTnfb+VPk z%3MJXNsCh%F8m1=FMz4zTFjrgcF%Wb)^oAsa`Buqd9TiuvlD{%b$C2(ND3s{>d>A= z`AQs71N4&{1i2}z!&b+^#sqaFfTAdP6O@`SQ$J9+;xIQ_#h7IASO=V>q+9%5--Qgx zC(AB{X%b1VF$`Ddh_E{H^{=ccgx>K<7a|z{6e{u>LQa-AB2h^5pP%mbc9re!?&c_n z_Q=3!Z2xC8j;2GJ>7hch%LiV!SnbxvbSmK~g5H6%PK3Pxto`iQcsz4(qmp(7N7=rb ziKpEwA?S+bWeYo7{A?vf-N1Zk0Y@7Fa}5xc)HxTRM#siJmX{Bo8s{&D$d27)WExAh%VY94v`&q)PPXU;bo7R$vjZ<@bXakzz`4M*z#!|HUcn?z?wFc z{3Q>*W{KkWlJ)y*@^a-&{qI`L47|mQ9i$o--`(vgHWf_lX`5fcH5>KL^eai#Co15W zH^Pwh@v2YduS1dju1)Z5=|3M$y`bL+^7=>~B_JYLL@aDD>My{%z9OwF?=kI!ztG zs{FT#aOz%gDBu|qFa+E>jjy>)Bg8%;SGX6*NItIAEt*eRTiYU=8tq~;B>1I0AimFa z1+M_L0>D>LH)aHrHv$`lD0`}^sv?S-Jk0_mpHP{goHY1PZ=y%k4dW%9cX@Vxd_=38 zaP&`#@E}a%Z?`{0cAVMa?tUZ0yupa*S_Dzj{y$|~YBkJlDCFtFCMgrc;d61iB!UE* zik%MnFfIs2P#|lqG5%_vQ}Z}lCTqX zl)1ysQ7Oxg-LSI2f86@9yMqyR1MEN1;6(fht7H_ZxA|~32|yHb6y?EqbrTV(=jlJ= zs1`wQkRHGLt=5hO@#@w~8JXU4yuOdcsF;J+XUa1_ujlr1zz2=(Px5PA!XOPDhm?Sl zGU!k01bQ!}*{TEd4D3~m(Ax|&`s^NclckK_g|zjJy`t*`8YJ{Klhf^aH@ps&XqSek z)JQi4f?BUfso~JYOT%bGi~%TJ!@&?k6k;!ge-9W<#hPz&^1&Rn(}0T4=5g-I!O0mA z8oCHtP}V775LIw+aPZkI;=*JS0vr4_SkLlC$$SVdM~mZth8ejCO>IDh=75}CSncy; z;=~hu5qgp74(;|qD(Vc7Q)erp905cE)Q3{Gwp{RrL1PQ8Zre=?Y7GjGvh@LKfndnO zf{-%0_Uo|zq8t2TGSEE{33{ICgCq|;EfBcSiic3Ng56WQfF1S)K4n_6Lm@I(td6nH zFOfLpB(Ivf6x&}H^9NtJG9P+Wzh8LMg%A01yF4Y{*I-$RjC>6Ap_^=Mg?rB}-Kvia z3=|dF!JvB2J{TIQf*E@S{NgJIK(i;$h^P(=x&jx%f@`&2hGTyDVl^njz!oq?>FM zzZRAvay$3*F1~3*-Z1|5)(rMF-O8e8OcWt{J;{I6L2w)r{+q8p@hN`Kt#5@RKefS9C<{fbL ze_ve0K$u7F)}L~K8e1&yO?ChfUl8q7Vdg$J1n21RDR(xv32B-$M10@h-4;JO?gACCYK#A&+`6MDLRgxz{?YbFWA88x;O(sygU z|Dd1|)t+y~hH&`FaSl^}-g-0U zKxmI@8ai3(*lgBT-O6{aeD)CQg-EFY3ZHHZ*7xt+}PuKEeN*3F?k^D9kN=Dc`3pLgj$iuQlDTSV(qXnR^= zS`EPnr^R#)1?D0yD{&=HTsK(npF>%n&bYfZx_P)=t2Ku&K=1((PusblZmmVehV<7$ zR@E0j$S=1Vn8ZXMxRZ*Dt75$^pr@nA8y`U~;YYTGUa>&Un6sWjxTQXS{%nfZLH+|& zo%wQpOD_K*=VYws~w*cu;6-Zf8E$pUB-bGg}45;h@7)K zAiM(f&JPBmP@@*oWH#00WGZiiV*KkN;eWfW-p)?w;8=K$Ep`ZUG8kjZIhqgX?T`{o zG(Hh2md9I77o-b#Dw+-cl1P&|ycER@QMy?d5T9`fc=HWaA?vt<)*i7ZI^%J0oI%=jA?NA z`m14qr1u&HnnpObF!K zKi(DY@GKws`J?T<^+QOQis!8%@i6>**w%^-A=gZvkB36d5OX6^H7kgwk$4OPMeR9- zvcCEHnD?BS*OAjGxj})DnDrCFyJzmOjrn_yL$C?5M|@8K8C(j5k3S+!;(KD`=%7qGVrUYzbC?48hm_uad9 zWL!oBz*oy(DSRTaiUdL5YRO-~&E-5iorolQ-b+(Us0!Ev><)3k`pav>$2E%Vu`H)` zyfGK~B8>qhC`f`DCBbWio!(jsXjLW&=KqwqIL{MC(>?Uge+R%<)jz+y1R709IS{uV zdqe@#5E@|*8>nR7{P!59geuwX!zEgD-ZT8VYII03r!5pe#Prr;@5A8 zYw||a9~DJay{OG)B{3oNdPIu;`rQ{&dr7Qt0!c}RwU?1L7i45uH|V-#7QLNBdO3S# zdMsibj()_~#K-L7S(pj7rNm#KK4bOLpWvtzspL+0ZkF%l)&{bq@%P*X>a;A>Gn4`r zUaTmHmHPD8ZbVsvpwqjtu`vvE2)B?~tgt4}vrcxd$~|}#p!{)ojab|^>_?8_$?j&0 zR(gqrZ*#_HdpVwhO>VXwFOQv#6b+4h=X&-V-bU9cJ|GF7tQQAU@xKGMD_Z7YXOy;k zC!E}B&wq*dH8*^!0ibesI(J3b~= zTIYN8%BMM}m)W~76yv6+oX|e;-MXXeVAP_4lOLik*i=fEp|uB8^4odfST4)(vT3wCQ-JA-%piqgUNUos%=T zzJRm$^2XO#O;y*u2MjSz8FwZk8$X+oPdZ84Fzmf*56{nITh8##C6Lwhy3znyv;^p- z?gzI0LcMl8V2Orl6)eFkNCrURbYPK^`^Cx3ZuQJr=)k~J_zR(16*40yCx;U&5hN76 zFA*VXr64mNuQcVMgbiu8c-R;n!a$`($iUTQwA$hO!{M>gLD-jGJME=uYta_xkh+J` zNl~e-okpWL{rlqGs5+!ojIMXaFn(sQdU7=O9QO*5W zRRBr2i*Dxj!|`1c>IM*z;?W370=)w$EP8<90_F9z^BN04p@x$iveTHbp*wwv`P6Y0 zkD}tYN*l%**WJsUhCMAhY|xeA0rYH05U~3W#{pp2_##xP@XqVTm!g5(2-v9sJJ1~_ z6Ex8Z73|)`&(KH^Q zIDRX6H3(<;{GY}CfOhx}ec$sBekHGRBK(R_5TW0FoWL|Q@VyH2IV>t(Os(7Y79YOb z@Od0#=TFe)oQ;jkXm?fIreb|M*t=sjPL3GxKefZ;-zT0_l`dWt3CK{cmXuR1{LkkI z*N0%N;n50zg@h)strnJ+^f-p|tlf-_jUO~sgm(S-4rVjOvK3q2^YuWW=9=p`MHk{H<_(AN zgj=lKz?1he%3l~?86Mr(z%`5WVf!qBOJCJ)Exntp);-Zzu{r^w0%IGIg5D!h!Mc-D zyxF9SQ$s}h9g$9L^4a7-hvSMNG-9}noqd}pE(DscuhF2^z=i;)lUeJ^u^K1NuBf|) zvkk93t8rzNlt_`_G^-D!fBs1%pk3$ zH(6nYxEKiL88|tKJiWcq8qQ)wJfR;pyUn7^?c2AFp#641-SO>aKYUCb=vFTHvx6S4 zmVlbN8!?N7-Ks|Cfsm5K5&fdUqY~$V$06hLJ|CIaDK!aLE(hw!Z*9cw44_J#?&`35 z%-BTAO7z&Ax?XDUFLvKKoTMP?@!w>}T^SE-F$!8TgS3+e*U|eHfTtn6q>R87&JlTX zG%<5tmhw#b-P^YcW)p@s*z@sU4%J_Uf-1P4Ah4gvLkS`!ku7Vdb@#STjB5KZ!YpzfHQh z5y@y_S7f$`VBEwMXn_bi4jeNE6rXa0VyquI%`FO=T2-ct1W8+SV_06AnGqD--3b#^2z0k3jzTEa;Wm745 zN0u^h^J#`&#bev>-a4#D{tWG~t~`7C^r%bwyveM5stu9Kn5h?mWd*jZqmRy%W5%U` z2cok>;^z40jvEknY{lx!>ylitK1O?jp=+LVp)nnt^LjUtg=zi-)>@(1_A(+T;z<76 zrM&pu{rBhsKS-Ci7~u#^MFh)3IVw?Uq$cH`8-%CY_QM)^v%m*-VG3Zlo&LD%@v5UF z7UG^#?*IDM5%|{Ul#&$aC&FzK5oa{2^>l7^7?E@E9wT(8mm zj!mvK2)i9S(l`LW3-TvCOo*=Ur9*30V~6bPCuqK`-m{V(5(|pX3HQS)uzXuT;nGf1 zMy2X)t=zYd@6c=SbhS6sTG0KJaCv2EEPV3`mK}Bp_Q0-NE3$K$Nt>A&y;LyXgM#;m zAwCsKUR@3G0(OB=V0#8!vR5ZCV<-elA@*M_*+A{rq~o2^yz;U4IegtS1FyvCOWn%} zeZj9hr&e??V(ufpW=0kL)G^zW6J7sh)UDiaZob^ry+{PQ1A`fMWKubO(y_(vwQxC7S(cP-XsglVst;t=y^i-Qz;v5_iPJsmn`B zETx0wZAU@u!{TkS1H(aKf#5QQ#^{h^iuvL1 zb?%%6PHrdMrSmRnqsU*oyY~gPs_j|8eq=C`t6BoEqo?&iQoum}h>lR4q}aXCSDkb* z;$huOw?84`(Mzv?VEiur_CiE+C5KNu2cL3wIC#GEac^r3*R$j%UwQF{RE$9XX#mHA z52`o6EYyW@JqWKO)b__B3(>-q&m2r)!sfpGj2J!hS+%ypb7lArC?P108@m~`eArloZkeK_*x+mi9U3X#IH+=VPAL32al&>L`amN`=Tn~1yxF{^J zNzggkz6Z@M7NVYq$7nxRa=)bt>V(2WwzdwV&p2lBEKJR6fF6_QbKxo&UwTUHkg^u} zLaYSWhS8s;`72xtA&G9PYF0p&yhAD(iShNJbcvm&My#m zfGCJMtK)i6I|VVqZHys#%%7WtewA}}!Jy&?jfVs=0YLLATV-s5ViL{L3MV#NuF}3d z+D=Rq>1pM`%w#3rY4y!3S@|GiZiT)SWV%55t%Kz@wii{IR)}9^=LNL}TIe5YW85Avh+f(ihP_Cx+4VCfFO3l8tgf=#@e*nk9fd5n4yM zJWl8c1)0^xCLf$y>NvmVxmifDF9Irg7Q~<6w;HUnGm$$1FBzg%g@{by^oW2QLMhQ{ zJc>oV4MM^~wLHP2Sue1I6Tk0VD0YM#nnKL|BE6MC|0R)r@eZ4D>q>$8zL9(-FB z8H)$j2tOfuhvus&YL7Tw-PODgoEbxiQA0 zF^oBR#^yX!@<_5!N{;dwo7r`*HLjkOr?<)~iCThMf0&MyMC6z6r?%ujRhvt0S?PDb4_aQzuu7f#B+{d)Z7=^qI#V3zyp=jK3z+S z;BwTJmYgf%wRnMf&XEbzuN4X;3ZAholk5qg*M6@Xy%ipprl+?e9E>4^k>FA-mI-Yg zZa-*$JwzXk>-%^jEK!lKoQ0^kzgDy0nY<<|Uc55dw5JEUc8)U2vaJ9B)}xjl&zg8( zNJ>fVJn=5w9(pEM1Sg5jn%yUGCT@jC&;X(cWJx(WM5vxv2k4PmKu&##h#;iW*zeIR z{#N)cKVGR^ZK}QlRz1pp4mgM;gn~I`*xc88d562rZ+|A0o*NLbAo3F~CfbLKv7@CtCk=Clr<;~9itl~0tf&ar7A?Gq>nGj1Y5T%KtIk0r-?Bomb4i~yLfWP( zdEB9u_Aw2{E-=QB;lWvh?&un8vu@h-f#yG!W zcWf&}w#*>`VPS^LeJSwHQ2+hT2Fc6B#yO5-@#d+{@8`7{S#_^*PG7Y{qO4lnccKmv z8>umOD{*wK7byP}hT%pMUkf92~;UJR&-uU6VGaMbBI4DE?eoo`DpknwHNjeJ0(UJRG?bpo6tC}xFl@+j3Sd4|9 z|K2C3^HG=ccvv>q{%$2M50=b0M$IQodA@XY6}U{o;{dQWU~3#KD>dSU-C_~?ulRV} z1}Lek6dPOyVmh4KKLdZeccKyM27>`B$VDQ^hUn|6D_ch11Qf$BuQUK{)TL+q=8YTA z1-uTyw7d=V9zqh5M_bdiGa3R-l&)O8D&guX2pOb&&_^lrzstmCo+$G#4 zcHgB@z2bi7Rg`u{9ZJv?M4^T$f2BbUwk&85U^&->{s}efwNu8E4;HVirr=Z0nEcLP z&kagtiM{1ZJSUV<92FV<9Ya8LA*8xnwcr1JXUe#A0MrU?ENIkOaJ^;!3I^>ya9ydZ zMZbB$*XEX!((5raruqBDLW%9*W%t^Mgmn9%C!#nCc0^m}<&zI5I|nyshk6YAya~?# zugb1G9Lv0IKd8u7ice1Pmqr*V#gC^hoD4Y3%(^?db=ReoJLVYf6Uw^lFc+2S{iyTLOGIH1SyUI6Fur21v zR?6j_w+X%mi;;h|)hg|^_u3ejK@S#@pMM+@3kF<%4sx^tyH6odWD`f0l-2VA`$TmL zOfNlzVH0Il=11iB7*LU~i3B77ZFSCY5~llXLQfJ@+ghFEJNi1)U3jb{sE12yRww2l ziH(g7BouZ`+_nSxkBnrs^66e_;19GeGcyzWX%9dVO!{?yMfZDK$#n}l-q5fx`Ya_uprCn{hK$! z8XAd!B}`j42ngum`G`k9s4_`paT`> z)aKjA8j5m5+SOlX8+~8r-Ij@EJHY;!fNbaaMkV&qj!z!}ZBv?2}s-Pc&-M2EKfv zE4zvM&8mvQs{?hXD!aFl4ekM{CrUF=K4Oeg510(4XGvfro}Q8t z(v)qM+F-IcI)jO>4{WKjDe4*X?A8GR&l?#U-#kCM{atZE$taduxben!oe3{p#>p9B z!uM=64meX=B#$Zny`)+?^o*Egir+ zKR7AaDBR7bLcICU&SHvVfr%XB-nSw**Iy<_kPWu63#DZWLC4x#0KG2t-RxP2Ub$bO zvZ_i8Qngp0Blu!$l;=o%Zi1uY*pgQ!`P3v~6y zGP5vw)wIZEcPF%atikZ3P)O6YuHXFD_LohHs6C)hD#%Gm6Z-Ggwz^?i_3PKhupS@o z-gV+}C@`rm4;5mU5XZs_{`=V>QeT2nZAMkNjrk)l+vJA1@AOmBr(Cb7Ucbe<9c!%c zK$Ww!Tcer>9+fTIyMYD#=jW;_J|&7|`g8Nm)y?a{sni9%f<>{qxkCH;r~J zEM*d0+RPcqz!w=`iZ{QgSUhbKyBhbT$LHUP%hH$@wd5UiSEFE+1sc z43Uf{g@WyuLK2r&ns=}&NIF@tlV?KL1g%<7zYw`DNLM1Xgh6@vPB=exVBm+0*tM|K z%!k7#m1a2ZwS6z&6q4K^6Dy^mJ?1vAYA*82CDBMjMZklexnSzT`losbMX0(a<~m(D zY^v_5!R{39+|ZXI^{z4n2R#xGacj-~<><6o>hZ2NRlZSQuE(^>3w4IHB@RmW4y8w* zC<}fYLW?gHQIeg7XuF?wRH31}ua>om~JQtptMU5U9* ztM?hX@E1|Tt-nul8^rS+Z9$Z;933>ydX>QmSRq?B9*oA-Ha zjEKnJy*pN`{%`P7>QWNrAS<}Tp=07%G2@SSZaHkQ&gj;m{r20s|8;`5F;Zedl}B`I zpD8zUjiJ+dz06GIvbJ|pUXK}5kK8!UdJkR*t+5G1{#;Vm(23nV|Fdvp|thaku zaGlMHI3%~U|w{htf|CShBwNw0!8#!NGYe%hUq?%H|zLDwiG_<;}8;xcufoYD7pOY zMj8f_Px#YzxgP9QFu63r_e?n zbyk1`lMHWHSI~u&i(TU0ZoJ%AJGc+zM{OOb__;YmwEfgYTh8z#7jA9wU6GtA_o5jN zyUT=M*u8?=c`HRrbNwOG8VqM}kia2D2y;=SCj3Bp)H)uXm6`~Xx^w4F0zEA)jc{Fr z1r1X$MoYVGKl108N)j}_!*NpZlAh}=gdNTJ9v#>1_PM1o>wPzyy>po|xi9c2Zr=}O z{*|@|sS`ZK-jTYej9Aj<4CDLDZ}z6%`qnM}u4X`jxydt)gVthO$RPgNvwdn+msGG# zP)0#JOI!Z!dLd4xW8%EpFSx(zbLu6>jcVt$1`c+t^%y*t_w`4w|FPc0={||NwZ)i}gSi3lM zO{$Qut!L_$gdktLhS~IS@62oZYgG0|vYBuE$=919cxB({S>sQq22%(2Qu5UlO6m%R zrn*9e7j(owu5=&2IdZeF{?Kk$X}fi+tr0W`N92UWbVR|SkIMdDdaiae!ubw?LCWyo zKm(Eewe06uiZqWq)@^G#-+%VjC5wfViE1h%Ugamf2W6uUh?ZD(iC0^hzj@H;$^Kk& zW$OD?GwU+MSNdlz_{T`L$648Xw^p8J()F#S&FtyQ8dko~GkQ07KJEci3Pa?K|Kurl zCKqN+4x#Ft%UryxTv8u$3nW<^dR#HwS6tVn&&tzovij@IM2^U-rxp0ZQkOipUf!Q6 z_lneJaWqoI@sr79N&g;_w?$NaqW|L29b0HhdtF*;7^jwsr?S2ohg)4zmHNh1Jxp8k zi6wqNqfahamp5W#jsHcR=zZ_|?S`(JMtXX>EW{*rb^nA1_$_<+74CA}9eI~vQ)teB zhT`Vm4Mh?*KUzzx7*7(cZVOR=CAR?ZU({V4f1+0FOvd(MxC72}v} zbv7-~=m(1}RBa3`lV5QMyyrkw@P1n=Wlq!hlvohD zm_~zSV&3it&kqP&&V(|NtpW<3N4wW@Q==uvXtL6nyXjKMdrH2F^j_0;T87zta*E|N z@AT1yCTjj@6q_**jqh!q<14F#F}HPoPw)R$XW<(d=bv}DE;~aaE5+s6my_xX+a2r# zH1+N=@T+);gHf3I*cku-lv>P$t>qr*vpZlVFHuLzJN_sHG*$oKHAqo4UzIO1n|auj-tiutxb>yzCADlTNZ-<_}D z&j`(gU$r`P4lpAPh2#4khsF$vg&h24z&%Y`n?c8f9Hf8F7xX~jY2~fOK@3n;oSU5H z=|u(b&yEm{tbBf*4|!y`!*cT3%ck4^+XjYxq>AP7NblTv7Jw5G8n->cC*_^G27Oi( zoQ0OH;l!jCdfY$K(u|HDe}jfojm%60rE0B6!RZu8pX-OOe;h*ER^nHGdeV7rqE~Ia zk_p|0X=}p0dmlh%e)Z;tD1x5|QVM8misxpRO%mf%E*A%r&q7g$3NZ7PIwrjih0b`f z=fGICA{ao02?F`>;Oh=#$?GhGnQ5%OR0@OU$*Yt$=;ha zCWPN!vDEA2(xom%hkS>HUh|8nt*0dh1|${zqUrI)c|DHQ3WY_7A$QpvWjpuwVcDYO z;S+b&J?&%UX^YEW#N54p^x5)Iq50}qR@PBtwRusVeDZZmQIPX|Q{%6GxW(2>TaO?^wUkv`~^=( zr#DgSr*rfY=Zoy4m*I}G!u=Tol(O`pRj#zQ(7iH}TAZCnhV!h6R1% ztK#2p(u|h5TMI>F{=597^@`i^N1~2`x6igS85}$AzFcN%v2a;`V_$ak-X9FpA>w;) zsr<{x6n`Yf;H0HM?l=N0YY;I|;JMShl~TBn_JznN1BAo4DDl%db!Y2wFAy``Ik(rDb@L|HgP>Qj##_28#k=PE#lzZ5QA;o%9BPyjj0F_tz!%(-+3JBi9z_ z*JND~{YmrWgS0eP06@>YMutYN>oCnZ)ao=CC3X^)YX*-#gNF@h;q!oN)O^gM`ncTL z+QJD%%W}5Q;ox==F88-py+=Kr2|gBDG0PH{3$VaBa80llr{tqAPCqB&DsmcI;D3m) zJw}jts%7ics*$7BDxSZuFV$y^Rk}OrP?{-r@I@L|K6>*eO`|S7e zjw9rf=PSQ6gLbkNc~1~-))j$d<$^M2^J@xN*F?T6?l@NRtJ7XK)Mg~?+;bK3C+h(zlabb6pjJBckFg5&I|Y~PPg!Bh<6{8 z&wcuxs+b<%Y>8#k%bp}eAUypPsVC;S_%{t5u>ieh%Qs`1T{q;{sOj0)BEaJ!vh7&e z*kBp{!-L7{9(ocZLiY%6BBNhQf6tdkt>t9_}!LJ z20wnhr+oG+8r?Mw_+k?*u=!7 zwzk$}taMCWUPLPsmcb#5)VjHwhBi<5bQ-3vl1aN@)!oDibOv4lqxeLP&lXFe`ARt6!-*yKbG zGC_0HSR6Evto4-FF;cT_pO~E7qJo8e^=pNj<-B;FCMMRq=gD@a;O@E=t!pX=kpC;w97 zntG3i`|CC$9U|o|0jt5j9X`N&@W3RDnPzLru)DT<>7+oULyxyQ=7R@I@pBqOk3NnV4it{=~64C9CY?zTHB>Go~yJ?=~Tg1odK<7pbschgOh_Jt)QTB5<9;Q zf!|@+8+G?!6N@;R9~Dar6^d7+QCy;SH2tCgKpVPAf+T=BA(8Y}7}RYXI6{z9klY+F z-DE}#r`-GX4J_~%;E>3Zn;A-!u2}T{GTvQ{uP^4i2Hcg3l+TG+(i0R`qT(D4s_!iXbhm%8nlYiX6mcfk!%71CMj3)HhMWS+G-!$%K*( zLbm6v>QMN9gKly!PK1`Sn^Z%H2+u-6OdOet-&JAR)a~;wPwR#bTZ(Q6vjYQR7&b9;Y02*c(kI% zb-G4KE22{5SJT3H#c~CaySZG?{y#6z|9l72g%oGUt&_!VVoCVtkdFTTJT2>x{{gYF BXZ8R9 diff --git a/doc/phaseplot-dampedosc-default.png b/doc/phaseplot-dampedosc-default.png index da4e24e35912702153e3dfda5ba20af5c9fe85e2..64ca7bd362a9a7585d2ce085f4fd56390e459ee4 100644 GIT binary patch literal 102936 zcmcHgWmwf)_XP}7A`+s~p-4AKHz-}w-Q6J#(jXu$-7QFWcXxMpcQ^R1eINhtr{}}- zucha>rg!-y$|INbM-ojMxqobj%ovF1I6CFDp6U|2xd;4#8ob>dT|Njrr zS=$=Z_iU@kgF#+>6IHc?f|w4L7LX_n7~vZSYmkUy<9|aW^VzMe|2DeTl)eDQ%7IF0}MRZ zz-JR5igskgVcpB(lT za=s=x`UUKF2BKXa&Y_u`n}gZ+fJt8+L`FtpGZ`U&`0!zNetx__ncneeUUBDa#r@{J zRvL&#dA1_7@<_}L!M!g=frE$F)75P&RIQk;u_g${ zq#bt^mY0*e%s4$-sF|oRmZqVhVgI(;`t`{5XfzERGt@?Rr~p~i-idaYB-sX7N8`mX zSFZu%^7jK;sLaevY;NaIN=iz#wY8_S`r#Qe6qn%zuLS5cYJVvesf`tDHkdaD5O~}Y zLe@Dq$6!2+Peo0AP{`+ah~43j(lIrK@$%(Mcof{uz9{mN(hKm})#iuej`{h-)m5D^ zd=7p+JtC(ScQ#g5)*pU;5z*21T@TM4sC=s%8@^RlENJ9XjYLB_eUYSaFJJ0|C=7W0 z{`R=xWWO-{=g)NY8Y>kwwQ;a4sT59!A@`z;($ZfEOvdY*n?JypiABOT7whcquk!Np z7Crwyv2$?f>gx;qkxH2@Hw^Z0my|@#5()2KUjD$v#RdNwKX;{OK%kXv{bGcVoS7LN z4-e1H&CU6|kNm2~_GGz<`|-2`9SiGVq$AO8Rro<>gJZGM6zx5iV`qE2&*bD}QnkcK zlX6iQ@ATz(7V}tUqrrI2f$fnr`nuX$QE;(cuMZ=j@}$#v$CsO2v*Y8jO;=mJtdx|LVru0Efd;y|ghxvaH;Il9cXwirj*jE)en{CB#v|g| z?pHC8agJuo1i-N4W>s=ER!hI3Vc|u4!U^KSKJZXEoGfeNGMoH*=D?&;`8YQ_E7}o& z8V7k`3a`5w6%|!vdwctD5dwFG{=va$MkXfGDzzd{0#2u68px>Pl9JKq=jT?nCoI(- zXI)s}DRNR$VQ``nu{06j)7i<%$py#SMn*XxtjYJfu(Tm#WRH)_b zNy~G+fw3{U!``@1%h2&sL-y7{oJ3h!nVf}1Av1`}zK#w7DoV;RYgp0c<>m4DD)ayC ziGEL5%;VEjcAM`@iG^y*C_R1sY>@H9iG@RI*WC%YolEWaCn-%=n%(7OWPUM&JO9MW z_k5eRxwS=Fq+TN>E+rK^U8GLV!NnyZ5l0t8A{L2`=(oAOP4+dFTQw*wESA-3k>UkB zyto$_D9=2V4VC-U3mqSy=4howJ18V1+8>pG?!}82V&d6yV7qX6zE?6^%zoM%Okk3e zlZ&jh*${?29dcfNNLVDs#>S?Pw`b#J`aQoPXWH_7Uw}?PP~v%F?imX%8VS$CVa5GJ z)d;LuL=O#{=L<0ZL=>!WO!i)}G5nxdlOc$~He<=nyo2QM>I*^adLVQZuf4x3tyP*483}gM*n($H8LhUbSjA zIPTTVHM&&5iDF=2%(yLwz2_3w_I#=W|GUy^iL-BcxjF1x?w1T1(b(A7@wJYC1DZ4@ z4=NOzhWmGAK*Buoqq4ezglvFMwNp(I5`e?jeyW(eFH zy12MR#>B*2KAf~jfKO*+WQ?m@H#to8wA}9($bJ6orDdWyT!h#q+9>MXJ>6aJt8g5-OY)XP>+v~ zR+J(o#v`c?$15f)2T|Zt_4a!{p`oE3s(+uK#>}c5_|L&Y*#;j#JT>e;C?_Q+2z}FWRRACDAAnNO)>pBp088sQ#<^BEQ;GfF@H+Of_rFw^ync}(d#YK(ri3yPS zrBdwHn{JjT($H8={Hm(1SdLoed6N4(%B~5LWU!wLreIFb2k0x@9~^m~F6DiE zd`ip9_1b^DqKFZP0;96KoRhfT92@q8y?;FM{JT+9v%EfArhmUP+vvgs5|o41M0@*s z>`itzt61da-KEBZ1Xqwn`#emi(|Z+!2oMSB_$1jiyWAiMu3Tl2~JzH z%vza?t=OqqW5gptGH2!ZPnt(Qu|1Teq$Jdmt4)E%0YlZwOr6~hqucE_R_oqw zzY(UnU*lZtjP&&P@5gFisQu2#VKkehfE>rN`;BIDN(zVb=|{Wm!7tfzOJlrH0Ig_V zXuL%T!B~SvN7%;!^%AV|^x~p{_N3bz_GLUkeE?k$gHkFjEe&$nzJC@9r;}xtTwWO1^?!3=9b=+#uw%-+g0S_gLTcL7AAH{WkwZ+wwI& zdn?ljcSo*l*6w5;8rUO{yO+wBl!<9+L%}uNKOx|-6>K2@5XRZnH7YsTt&8LBn>SFq z%fSXJgVmErivy=+%4l71>7i#E_=Bo-WJX)tlI+B)NdZ%*`0lYriiGYZ>4oVjh zBV#0Z7?Z>PBhUt*LZ40vDZfn`o_jR67)@-0HBPN8xDwy zi?4$+>IQBije7NAeTnPtC?W6jt^T`r?{2RbtnW6$`JAukjG?hP?I}{YoQ&oxO_RA@ zB7gowFd9zoOaJ0qjIf~<22dclT)%(+{uLMJq&YGbdi|s}(&Bn!RbF0BK||AcTwRsG zYKaRn$zUQ&@b0e3_2FE{ z!V+*}bH{;o}d2iaWADRj>!54eF%%f$s0a%3sI@YinymCg4pD z#beuV;+a_o=w}lkZu^7jPym7BMtC1WKy8GLOQhxE;DDrT2K!wZ7+6@<2FD|mo1N@9 zt@h5&AK+p~Ur*{-S`L9&p`@TlS1!?#jQ`|K zDByoO#I~|{X*c=F<=o);rseNhKXu7ymI$hxynF(iwN{Fy$J3QEA`;TxbP*nt(co%= zacbMr(o?MVff?M37YqQC35Vi#fz&D?Dk_@7N^iF_yai6mXm33Ghrd6g$>>MWljZY~ zTUc7o)!GmP*acY?xECqmy!X5QB@G6B@4jE|wz=OdiKwVxN0O8o4q!IzsAr9xPRdKa z1$*}MEwRZ;bJH>%$kNYGH`?fkFMQ!qGDX5aJc1*v*WHGO$nOL`zG0>Y_|63c$G(GJK)Q`H zXkb-ZJet~st6#yvYzR94KX%2CBKp538#LD3|8H98|JwBb4|?126k$qFDNbaeDz5fN>PEavfS)*oKIdIcpYBy`q}L=Q0AcTlax#KhJ> zJeeb3{39h2;e<({{z#_{Ll8z~W#h5qKped>7-@E4VWLEv?}PIybW_i_seDCn(g~?N zuIsC-tx49+eL)!1xE*f)2oEyvybP3FYY@tP{ryDD%nB`q0F?_03PQcX!y7nV>o_Rn z@_gn7I2BU9&fEY5R8UmhJ29_PLqtUUW@Gb(EQ)0{_20@~iAD;Vno@$ki=WOKe?_AL z%?r^F1`Q3Zu&C&2;PB{3mID3$>iYWHVS0+DB@s#kTypD{Cr4Oy+W&$lJ1R9*>Hu7- zt*XQnDA2_SWsS*bX%%C6lai8x7Jh#wE;@R*rsS^0=xM7F0KLZ3cBK1R+3=xC`EfU0OT#{&+3;XAEbTotEna=AYFk>)oO5Ly$e+aLj_V1VrMXTU$mY+R zDzU3zF*XrF^@n#I?HG9_kCxRRWTK=%!SYzk7nmI&FJnqVGq^d3H|d|C`y8JXv@sry zAl+~LoEQ~NU1e`(II_OS^R1eJty0xz;1@~Y3p~Bs0|of&*qlOlZe#-E13W&N(cMi< z^mpj1;VCJaSxrV@C#9sMoWFm6hk+rK#_JBn?taeEDw;F5@C%4KI)ijxyzC~~%`Wd7Cm%M>T4GA}7{Z>i-M zvhfSzCfzhtco!l2YV$z5qkHiO>v1()-Q0Nh5@^X-D{U&eM!It5-1g>S(Uy`EW=r13 zP@z1$vz^0C=_;PJI4_tiq)3NQQceXY*%`eLHEoIp56+ zXS7)t92^=d`5D*pcs|hC)l~-C5Kv~Z8T8;l^{%vDNd*P;xcR}#@pw@Tls0TW5ALUj zo1GM=GZ^7X6_z2RlL2$s4EFy8>)0QjbGxSYrJ z8j@3961aT^+)ercEW6XO2CK!a7bwY)vLOFQYKjk1lNtdR79AaZy6TI14#*^psR1XJ z5LqZKq--?_wJ$h<9Eg#&1ET%1zoH8sv}LoKw>LB_Y3)?m?f<3YB<%0Zn47|-w9SvqiYc@u&b#aptGH(BB^BSoSq>ZZ z{T}FI`?frf-m$u8Oc+vCrUozd7&lxTI8i0qvJ#PHWxJolmV(@DfZL zZ@=Oeb(TfLR0|oGfm1n*lu%q%G9p`?XbX)X)B=Crt0TP?H$|4p!8pHP8S6CMw{>iI z;5>h>mGNmx+%X=V?NwG_aP4ErWDF{+`n2^Yf#;PuG5__~P{ROul~ZYCTb#o9i2#o; z#r~{fGNEt0gg;BX@tP5k%_dW&M>cN^K$JTlkTEUxpz1SN-7qK`p|_AHezRne=*BKx z5W^m$)j6FjSuJcFA*+y~ZEQtlEW^bH**lV1*p~&{Z*i^jb6M14KS-?wr@R6=Exy-~ zdweBr$G^Hm7{SI@UM+9EY(?rD2?v3lJcl;lWawH7H;QF!I%Xuv**Jl*iqkoa)U=UB zGN0G9R3^o5%8zjAZ%4;ptX9dGSN_IQ+U@8Kta^@B(BeuyG_cG8liM*BNrN)>X*y&u z^;zQ)i~KoEp$kq|J&RGSkA9|vi78@?uQx`PPz(8B*E=frr^P46U}|S4c^dW1a;Q_= zQiHaq6zt_bflU^ic<~s2W2H1b5ersZ9JgB?W3sDD29W#I6!MuRAD=X^Hc)N$kqnDqDFH!6>q|=$+HytKvxMG5t zjZhhy+hc;6al~bfmM}#OARyW63jQST;Br|vnyG9`?(R>$#ecq$X5M>Ie_`_NrPH!U zdX$NsuFfPbZOPO7u9F^msMGsgoexbCn@KFBj6wE7gf9%myB#jJFT^xE!^vTZ!FGLw z(|MB3nEaLOlm|shl@+hQgGA9(2-P*+9=!}beEDiLuwAMsG4-S5Af=(X0+>(5&!NUi zV>vQkt>@to#4`iIpIE7{X9)BuYFVhFahsQ-dQl&uAhlv>bC6&$R^%l-YZ9w)_fHZr znnm1^@P{bqcqb>kXQsxcH#lE^c8IxvWB?PYq}TTJ-lf*lE90x#7y`5j90K%gsY&I# zGAs%9#ANB)JGb@`ESc}B2y@--KeVPkv^RUx{a|MJ5}&A@bAc>uY{S`&2sPVb;?vdISv1rH~iQkyN z@x4`kV1*Jji!*gZNG75ti;V&q`8Z|sfAKuo``r$5|% z2P?>A4GV-Fa8&8KVY!yb>|mLpmQf8JVKS3uwp zO@^KMOAk+ONpwGKC_<=E@Jhl|D=Nm$A~SGfzT5XH{nHY)EP%a#)VubZ+lZb69=ls2 zx+E8JZ$L1yC&vfWtD&eRC4I^%U}L(!A1jMtZ#n)UKh*@QZ+`XK&DtW@SsSIZ&CZ3p z`jLH097WR&UzM{VE;rVi=r>lh-CwqslvK(L86xJq38Si;=B$j6G|CUfYFVikSTUFV zLpdNMJawdmX&uELr9jhyX8-cCqK0{EYwajuzNci&E;^_`=F#q+h&n7M@|SyFVr@Vg z8kh$I;Q?zAxjTy8kRFVJ!al6zp z{(jFUrBcfpN%GdF*=tKg9)OSR8$?ckIO^h1><4dfgsQKMzvwQm-*X4yF?u78=H;X3EBRzHwy76o!f#D+(rhJf=#*`z|yv z@eGE4v0M`5U9c>@v3UJ=;f;WrcX8ki&(V^zvEQAoTbtFP2lXxj8Wjm@oLU@s6pX=m?ZckpLr74PI5r}wrHkOEfF@^iL z6CRG824y=IbO5BzswV1L8~UeYQ#xWA&8o$Ni$zA*5WO2rnk-8DQ97gW;&xg}DdhOD zYgdMzzX?wonQVtj1t+zepl9N$=-c4etwpT;uFFq+^>^$+-?nK1s#qPm8pD_Be`&w= z_omzb-L&w}U)`CNa$SptJ+Jt*z3TFkt^YV0tB9ZqBu%Z04a{Kpp)2RcFHQuY5+GyD z#KH?Bd?x;k&>HJUB1WAusBu4_*(NlRz!brqgd^#y5%38lO&0!F#7Yh2!LvXh zBxN$*vC#z}PLVR~?&uAHjS==^O~vL;(ds38i-D_whbkLgVQoHt$IIHhJqp^CUI4uRas|Z)*Drf(y5qZeY9OSj1;Y6G zgI?=aM*^RZfE%@S;s)+)z3E7Bcg#yPvQxf5s+^PxiH!@1b%?+#pef#X`OSaDilP>G zOPu9z_fF}ZBpLX#+hhafUCbJCTzG-(cxs`-kUJ%gFFL4y7oqSRIx;PdcUD@nnz7u> zJ-MK)(Q56bmSuQ1rog)p;gu;KssUf|@Zz++2?VtOvDmwnqp#~xN5;_c^F47+JwJZl zwZZ=`6d$TRc^&bqD7~SC*!%+$T9+J(7l3Er<%1`ylx^hX_Bv@q!(e1iBf6?9JqhK; z?>j@i9re7+ENd=yqm0V%{!ixV4-zvwH3_|j$S0d^m(3nOUeqI;^g96Xxta2{%z`)T z;Qg+yb=v}}Jt(Ph-n8b=g^1D{S68y4?;sZeE2?7ZZ&fj(WHf zSn7P3YCV+h-8$PM2Mzh|_CastT+_EoOm}*eF1Ej^8x!we#V7TuJ~(UF-*MuAo$&p) z6Zh%A<+5*(k0pAAvgbu78RPk6iC)BA>=W=Qa2 zW`H9(y63{2xQ{Nc9o&EdVqcfqmKKC;wvXf!h%U~33_;Wil^3O3H6r(`dmqnLP`s6> z8LYQnRreTdm|FMoT|8`9k%tMnLtrs@r8iR+%al>GCJo6Z;Ik_$gTSnu2nfW})7rn< zMwQ;*>!{?_dp_MlkEXmENi&|sh(l>zeSPf4n88GsX|3ZM@k_HmM7tf#CbKFEV_@f! zuyv|?)Tl}nUD2%D!}Vt;{)?u^6cvt|lHQTRm;a?$bY_ySEh@)OqcT#eDA=9zOCRKq zvjeFQ`8>WTXIoB1cO3$pwM?Gh)a!5ArytC5sR2|1rvadtK;GE8nR#1WR0CsrQ9;I6 z^J-A;nJ#7!hIeAt%nFhSX!uY42`QD^X02b#s%0A~#S>VEzhbBq6Au5kH`V7y_n~Orf zydZU{Ve!#cq9Fdt9Ih;ZbXIW$^_Y13CEgFsvbn*hBX+1X$=$)uR9^V%-rE1NqKpmz z1JQ>+hx8^ABwv$nW#y5=3p5@jOil!xEve7Arq%z}c(L-F)O+8H>@MAw(Z)%Ly-xe% z<8DqzV+}`a%$g~bz130c45~xNh|muTJfFz@ySBGGNTs={1l$UPsH_Ou$KtC4nmeD^ zVlH;jbis#BOrk}aL5VW z@g&r=9Ul95Ic@h3!AxI>OB(b4j zNHY|Xn|<$O3YT1yg)wn|&sg_Ix=AUIY@6cN?1qCiwV4Di!0CLoF5?K{+H5WjDO71a z$rDYrk_);Bu6cOc?Ma4BR&WB!r0U&?W!T1yK>c0Y2=eRoJ6%1GZ~9U3^8K^cs9Cvk z7vDTR0sQJ4CBu3De-q%`d$CoBEUkZ3#tZ-|Pyd>oF>mkQE{%onLXjkpHtG-8JE-`v zneZBdU6SP;VIx;b%y4=>=+>R6`k%iZX@PVExzw#HxeBJU_GD3@VgK1rF-?E6zR_Fw ziBH(+y1l*9Baw&PAnttX*v^7CDi6yii=W5EQIu=mm37e|Do4tuE=c(=Z%1q{4HN|1 zR|IN)tHBzwJ4gbs%f(KBIr2B&%*~o_MmySUuUqp5jrLR0Prtlmhl~5b$5r*u|HCJr zy~_y2-bL&QJvx%a3>hiOBnc=$#%+8I3VBt4U%Qy=qyvn_(r69~7dWln3UjH97@goGtD?|UXTWfqDZIK>00VRKJvum2Twx;(y33DUirJv)zpCxu0 z$DD#)_&yScjIBuvw=n(A$InoF9BDvZ@Zl#op;Rr0pxZ(@s1JJtt<=N|Gf7xV>H1#< zasNJ1BYHXY*y{<$x9Fmn=>mj?eKGU}upWCe-F_<{_B2cUOd!G#r15z%1P$5+0HtEz zOKpkTHhZ|JJE?r!?%dw+dBW>!Ih@9%ZDE;?a zj+L_m76&RtTwc&8k9Sad6=&Sc$Ty7TOvm$yMGEeozrF);%)64{g{;Ee#098GWJ|eV zA^=j$Rz75EHhfo9B?1!wRG-_DkAI{|f(_v82PH&SvG8SOzTB>y`1b}?kc)4R5)UT+L*ypn2 z{f6v%l5~i#f-LgR*H_J=w~-ex8f?=d6^z^{c4!=+Dqx}s;3gEwCJd^(yz>Gq9%D{H zjW?~?{Qu3V7$5}|r*)Wt@ZXVub@;Q|T3tMdd|?b249Vlta>i{vhG54OeG!Xmi~}0U ztw-hxa;GZ0hOC)SnB@{wE^9ZUuSxg0OK%*mi8>d&QER#HF%!x&Budq= zQ4wKwg`NzG@MbD6`;xBS%~~h7(c`gFa^R06Beod>4ZIU6rbTo^{4#tWZ;^BcprgL4tN8NfjdZfsTeS*5LLq3wk{dSk;q;U zTWH(>@bi6J{j7iN|5=CmmR%h%x;kOaoIk?J?a4Y9QmLw9`J^;fpRHdr9ybUS^2L0K zQL~#E$r}^bprGmLx!X_0ex*{%5G%GqK$fjUQO{AacG*SUNzhv0DHIW(^~pb7`T&~GyCm}9 zN^alIl~kBw&`?&l`>=mBFv;8O%(3Y9vq&S4jPg&29Y;2a0X2Jsny9_-TMR1A68<{m zZYS%Z$F?uGb+gR9yf}$~{K1xCq%oc7p$hSBWowMr&7>A8^z*HrkUuIW0M0 z0fE(UdoW?fZE?LT`0l7?h23@&0U&&sFFXq$k&C4HMu$8r>1k6 z(Y?3fO$)C{*>W}`gd(%WL3O+_dS0ytM>Z4u^z{{B7VA_XYi3QU6aD^0DCNp>$#Ra} z)9a15Q}02v&;$&hL~&pMtB3I`=`AM!jhDgFSSS}Op=2m>&V z01MG2#NHSV0tk@rV=M%0I;~JSk_qj=27$5*w+a;9(wdr{wl;4ZCZkhe4$#-Ly+Sfq zRKx(H+x-I&z<_@O;$>FI8aJ84Ng4u)PcWGts&!Ft7#sz+i&GL8uB#(s(J!Hf;WBzc z<(tMF+f?jHfASNn35%{@Bw~Vw=oiwPLeuyXBC^@=tpjb5*{C;GV_8@GzDEqIgX%V* zg&jdQ9YE@s2XGwI7j#GXiC-^X>KL0EnN%dg5xqR+g!qh>(Oq3#(Syu) zdVm|^&D*zaz+HPe04yb+4Gc(BRaGr!OTB?jGo_^Yem`-f?AsbYFkoG>5fG$tt>Ad4 z`@ru9S^#mprDj3{Y;@hvSsZ8sL=+k+MdfHpx0O%Dt>=eXOwdI1GhK8h)Qmn@uuyO#$ z!~_dLh1nDp#8|zw6Ejfq7ZalXSzBxGki9`D4wWR!^87`8uzjTuvf1w9yti$(f0t_% z_U+jRP#!WgUx<0k3PmgubXpxdTxdTBXrNn{$D@0W5e*#wdM%`K0H5q?QE1s= z$#swmm)cqPt`4ZutOuRXyCHh1Y7UW;kG6+2l6Q`3H<(O3+0C-%m7wTGrj*SAHtT!` z?MX1qkT?RcVyAyxDf1LA!1uRbBQsZu!3#M}C@4zVr)bM~U^NmIysu2?KB=L`lXfsZD#z$EVPaH(_g2<^sJ z#04@5UY1gR1m29cl#DTP3r@QTdZ&~PH-{`^Wp$+Or6qq;cQ@;T`WnDiH#7x4 zmePaE7!1OJ0~RKMj~yXt;qnu!15h=e8|Z>sqz$1?cUz&f-s6O5NUGKv0%8~<H?PrtxVBxDkF9XtD+Z#)r5D5PBx&H!aOWt#$U`O)Zhh>*p z_0vn9FOvIPzJ7Z}NNv%LjLXZ|9jO)drKNGcq$T06jqG!kE0B>SB0FdPlAYfT!+lo9 zKi`TjR!L%$9$WaOL6fhu=oA15nan?FXw=)+rqxCMiSJ&`Wrt|kLxBb+0EY*AInNMt z;~$oJGf7Vs8p|iGv3jtyQ>&u6bZ}(SHR0ou#p0Z>iEf)VDAOSAkLfCq#Flt8$!bX4Et<{%~Tzz(U~98w_yhRQqY9=wx8`Kx{&ij-^rl-<9rmIQo~=z*zCE zrs55jEinZ989L*FNk;yWfqAoQ)&W{wTkRdCnn(SQP3g%sY~AJ5ba+rsTu533?+0Nu z)mR!X2w7S}0^&XpbJQT?*`YNjOsBZcH{i|FWa+EhV@elKenoPzGEq;(qXM;<`9H=S z&KBqK;t~odP@ni~d;5s^B-OS7t%x`cXPoZ7kxw*sC^LO!{0$flg3 zr*9tF*xU}kXvn6Tp<{gT2T(9=vyYWBCS{7pWik}Bt0jvb3MOST#wQC(D_PmvR=WJ5 zl<^)li-2o{v~>#C6ALfdaxf_c`;%jTjF|^lWIyUdBn8dP6^g}0z+fe4lNef zVc^JGQ7FUj?Ks#`^40{W?jOtz)dYYCN>#D(A?~~DH9WnBO^JWIZEaE!5(eot_1&4F z2ttqy%?PxgIK?76uQH*XzfXy=ru6-;sDbt5n`#jf@_;Z(Azz^KS=8Q@VRG^Kfut=Ia|1uV@M( zxMK0SN2FgyQszB-kB<$c?gUino0LA#y1!Ms>Ww0bkF2ks8-@9SZ8k$pFsN5TayJ<&KgG@h1|G| zA#=ygXa&a23ioKGJeLP=slojnYm+Ek6wqUO;(xVABOad1G&sF(?6Yu*kGfinz4K72*JY^!82iOJ!s2 z38+;8Q$lt@IPsF(`@Q1>L1luTh19nB#XJR5(INUBw^W}C7tRQ0-ja}uJHyRbCC!_% z57(Gg?fvyF(8a8`oa(`t?@$DF6Cw#vNh&U75HYBhP*Xm5NHscJbKO_jG-dD1$Nd^u z_}jV5v&r+648$yi_v$R61Ws3NIZRlf)tsQ1Qsb;D--%OgQX7mjbB8Dtmo*#r)BG%j z?uGOapO1m!g-}5ZcFXN2z=4DyUTrp*@<8q-gq9eceM$MJvOLV`WYCX@N>O?EE8xGg z0b{@9ma+@h^Q*zK;$j^KMkq#&9zi}|NO$Ndv9Yp%Fz!of91q}9_uj8c(t8>&9@5~B zoo`F0W(J+ykd-}}P$`-%8S5GRB)49kiBJktVte9NG(%|tAv)85mM3HSYd{Aua3iSZ zGZyWCAzZQjoXz<_wDY|B`M_bSz1dWG!1bgPqDIOUk+N3&kT>;9E*xHJka6B}#&?yFufGQj zm^L^aqYEKJNuVTO`h2QW`{m!r$LNHvEpX zz9A_G#6hT1`~2b$UVM8 zV*nN+P)JSz9gqEP@v%ka1P(Oh8EIkfJepVY51e>Cu`GEKmEX$B>#oJJd(5VV07j5Y zyS8ACjSUOwFdD zJdo0=&376Zn-4i|ma@MXd(}+G`+AloYrivA954cCrY}H8wW%TwZA^y_a{JTnoND}d zR%}2iQ0^l{oPz)TWhQ}=xbY8MKlOLnnvS49d z&Xyf(STc(#GXPO*=gw>%mJR!fdN7>rUQtFU5dKC_cU?C@b$UY~+jl6SW+j@9Wg-d;U;U$5@GCu!>904|YZ*6C?P%Va;1meM(10Jlm zrlOI>B3pn?H8vw?Q9my?!cabMi)DZ2aDVIdI@OUTaeQdk^`&@ZCvc*u*0Ox?0_FDX zYVvr(uXJTJr|N7N8BQ>Be+JD2M#ewrG9{rzj-}Z^33zdnDLf&@wRs;vM)I zJFw>kAtdqIG&>+fp}i_XIZDC~TYYO}w!n{qsoN)sA$8cjcD+(`bCM;5N$F_ zlQ|^9?N}SoLHmvQb+5nae-<>^)48w;wde zue(8mjC~N&V1A<8(<>tl>~cUVRobLbv;z(Rwiyw-;`;uYxE8dNFq916ogr;|G&^+e znrrkiociT&Xx}T1fRie;UZ(&!4S-%<#z%;ifUHG;F_;Vuz1~;{4Xkth^-PZ*k1&8` zR2n`KkoGhN282Ukh1>SFew`V!S|jq^4*Yfq%)JCM_euQUhOYW|)b(CKF@LHD%%bGM zMvw23`i72Wqc(8QlSs>U4bNHto1YCkLy6Qt&}Zc&vypTx!sTn)X9>;hvGUDPm*z!> zFxzZ+w7QUhhr5f#Qb#sTgbW39AisE@T$2%stpYy-5R`GR;#$FhUL)Q{h?;&nJet+aJPyFkNpP%V`@iUzFbuYu{V(X&LPS> z@)Wk%jthvfHNsTMlMRuT&pViZyQoZXL3NtNi5sfkl?1-$f(h+%pk)#ZaO1pP7h)q2 z$)Y!?MWe%1JUz})sTMwnyyH2fb-n<$ve#Gjdn2};cQC2icw)k`FKltR9i-m?V#!tF zYi`mzu&W?>H@1+z7V~MCuRA-Mv=TmAvOos?21FVKMkHjjoo*l%t6drw5Xvaz;oQ&h z0?$s8=Gy;Ul|x_ln^p;oULzXmjZ6$(f`}g7k)zQ96{n7-ZsE4SV~VAP&B3r(t6&6>*&;UvhI6_7bLot8X?oZ4h_Ho z>DEFY2+kFpFauk}#clfM)OzyW9D%P%!y21cEm=T_)-^P02mRM(#xk!k9?s8tnZabk zo?gnL_Ni%~G~=trElf_@(0{#w5gFri;*7R}0vnWF+=`vUy(r^8>{Hd$$Q@j)$ zUV&k~w6d48vu%W_d^%3>ha);3wRKd-iPx=^skpj30nHI05s}yr#Jm#9gpHSLS~c8S zC8R*_f`nq&tOYa+!griz3Pu$MfO+|H(pcV}u8QU$0uw zu#AbdKnl%F9Z4SE=^Nk)$$jVR^bMCEyL5&+13-fqsjBg+wKVJlO>N7@SHCY+YJu9Q zDLWgM#X}3(zULzl-EJDPnN?3bKap_4J3=kQ{Xccy33ToHlrJoThxN?u$>vBE?;Rli z;ictJAX+ok`npz(;LsGvT}-v?+-|kHOsc(-VB&z#sf*Cw@kz_3A0<(_yDx%N7g@VfbT@MREpX%vE`NbnpCX4j|#coN3zs`LdC7e9iZM{t*4Vv9sxlvR8(>{{f_oY`}@b?Z@WzGr(21So(Y z-e_aV3d*Me!yv=)f`Djiex3U+)~0xjnt)3TJb6-5+W7=JBx}8aDSZajiKwDBGc29D zm~F1xAhi*nl#_$iDs9?X)3=|&EkA9OKLMO1MteV0Jupp{L4w5EBLL{I0A zAF2VY=&7|@9umIQk^&S^4V#wP-T1^vAU&B=SI=Gdatct@ASUbB+(LB^3weIva+)rA z3#@{j0ER2tJ&c#d)PB$k1)Vcs>b%CqS)`Yj{QriS@HQPJ!hjSF?^$0XwR{fjH4rQZ zT~zPz-;Hc!1ylsi=~$|HF!dsS*#19CUB3y+KL{{> zUo?ndzQNC?Edm%7lFkKapm<5r6A`L^(M^z}Uq|eZMvu{c=diDiZpQ+$#j1gR7{Gx! zwm3lf#+XWN23mr6417$^Gan*IT_8MltWEv%H2lleDnXG*ZyY}0P)T^ZYb2mkMKS5} z+Vae<%&MGLRh&xk(Vfv3*muPWQ!9|bFQ@|d+}&|-)~5=E*`R@S>EbXE@Nm~Yy#GI{ z-a0C)ZT;g#MM6OoLqGz&@ZHrdA4nF$mYH7!@*_BRnIK zY{ER((vu-6T6wkMLB15h$TAk6sCQ^0lc=n{v@J_uzts04ET)Qzi~f#r+xb&dY@OkJ zq!#fT_ofD9j#h8C2(9lO`gTxPGMV=^$p!iaoZxf1JQL(0B>LOy*>nqvHTRk^b5{voKz0Fpo>m3Z1;~e-6v4C z%FFRIhQgj&c1iEU3L;Q?_O*)aJ~MAlZN^CGpT`Y|jR>cea*;{a_c0M7Bji4x>(rpX zQpZpNrU~faO|_f$=LNAe|2V9Yzpac2g~Ta%si2wrZ?!jHTm%R|xgSC0u$q|)@s~gF zDNVFB?bww;OGPqp%bgZz>oXa6w^nFnAu`k@2x!&>#S}HeI6;mjl*5_!#2$?=ozH)4OTSUzF1YlcF2K3 z$F>Y(iAD0N*t@9o=(yhe|KvM6brDdC%Cn+7VMEP6iTtJMdue|1p~c1&9+=_^rZ*wh z_(PH2EsyhiR+kF#zPemj!8j~owlDSp(-vYskZsm=JNSzIyDS8<`;l*XU1HwQM8jBs zti;RA(I`-&S@!Et-L)*Ln%C|MH@d8N>IG&93M6g$;2hB|c|dG(Ymp|$9zGJV^$nIZ zIwsnh{R@7kGb&oH@_=&DG9}mRm3fNyci6dJgeY`TOlG~j_Uj%D-Z^(Y#2eTA(4` ztI8vskd*gf=eN6sv5tTH(0lh9M>xna9nm@VF7`=;L+K+RLl8z9^gT@33-mE#(rqW% zP+287$}sAWe}a_q)As3zfOj|yFRZQ)r)24$VHkz?L%mp4azvJoV@38tDD<`+bH@F zt0h`guuK|j`c+Fvf11AQ1z<3Ktm$dH4f?wBg^b` zcOfj^d_J5Bhp*jF<$plZg(vn=3qI%baEX)M7ab0|u;rB=?$)s{T{C?PPszi|RTR$j z4-nCg^jvt2Z7Nfm3}fvK{b8v5`#=~=<_ob6OFXU05ChCW>N>-r7ADAHyGPkrF4w#v z(+BkkhpY-5nD8}?$TEv0I;uhmkjB7C4b4sU&$$6JrK3Hg!G|PXIGp9=uwZjW$h3o2 z1g)OCksmDIv`@qO2?qr+YB@QTk-pzkLQ({z=%=WwsG2zZnZl%Mq%cl(?#PWKR%P{B z?f~NZ3sEiDfR%s~olF484Q^ka180Omn$!jM@VimDQan5wrVVqro$nT%;Nd=0% zu4vJxZron#0-b+BA|R=^&9=mp1$obF&RWXwm?5VriL2+2-nwsR*yzix2JrrJk4-I- zcw3Kil`fdh7^8I;IpJs%eD=_zKZ)xU22bcU+dIcjVW9mh$W{4M)+la_ut zuyTYxZoVmDVot731pPa1b!$abfs`^8^Ih3}*gRo$TC^9t*49ga>yRw!c5VbQ*98qj z;Yt~o7CC%Kmfe`FVxk`MOMc92QDju()eA$^Nc_(RknuY5=!kaV&(DTGzvG+d93-|9 zu2k7?{({Uj%`>hY(W}qI4>n*WjIQ{HDiV78d&k^x@MC*xjU?%>?aaQ^QRmI~;4FX` zb}?;dyR&^dq zQAXQL%r|Scgvu=QC__E6g_*zviM7qwS8N6COH7?PLrCueB+g%Y5vz%*sgb;cXQzxA z#<{{rcUZ~8sRIi7lIlKLOX96fbjjV1q+ty1Dq>=9?Cky_Q8YJBV5KW5Q+f}=U;g7B=FvdO!4hC`JE5zcWar<3-LBSRz=14)E8Wl)X3nA#r?( zkvZrGI{&YAku%@bx4dvtW_Amh134HCwGvuV+Y~MVFtecn8jH#4&;&}o9zj7k2oLYI z7gnWKHIQsdq0`*mZLKcv>gxLI*RR!4dey2h_8EJRkPuuF=N$pp<9YP%9`jy5U5V>O zu;0&S(iJT$a{Z?VegSQ2ZK)a2res_g`C>nG!utVIUors-h+SJ7Q_vxDSzBHhOXKHB z%4O;KAh-5aIXWjIsoF$IG+%cKEr!ZO=_N&ek4^GNb$#P=RU6q?=c?B1=9IZ;hQTTQ zVsSmx!=C=Kw>WI;=6wI)%2r~DGlz0%{g$Ic5-F*#YafpEr%HR}D`c~tyVAykDHx)f zQrZupq|7Z$Es%B|z3tS8_)+(*J#DCx#z>sS8pCG<0y0uE1?drHVaVI>VZW}1ApBp8 zTiYhSZ)nzHjIS6{y`{fp|2Vg#xU&BW-DxiSiDEd9kr}=BgMTROVuJ$bC&WR4!yDL7 zrB9z1`a9K61b3KfQR13%0&c+A7aihzUaDSbF86xXSk-mhnOp zRFk$g7suz+S7Gv~Cw;d9$?pTL;jTtp5F~GVaw%u-|C_(~lq}q@z`&Rpc9Q$dC-<97>bU0v1f%Mm$aSu+;bmc=Uw z>(c1a*4)2i!3I?nuR^=Th0=IT)T)W14Nn2dLy;6{Py+{T?#~}VF|k`}YE?Sp)mv45 z2#X28N?em_?@%CHmU|x`zu10P3k3n8EceEXTU!2;9PgLAsR1^i4earUid-FKw^-pp z00Be2)%IY-dwbwt*GK$dq?6WBXm)_O(X?Y8Yc3b7qpj&3E~22J>X(Y!Z0gC_xYI9D z4;OMVX2xRtF;I0P6MZSIVC?=4qLxsG3s|0(%PAYydY_-j2EugC@a>|ikJbVw_zq5G zpyw?tn4}*)JguC#JE!GQpUVn$`K{Gs$SBJRGeV~m?)cj_Wl4#sY|{!(0BK!l72R?YF5;YfVVD;jk1 zavtvY7>kZ@Hm5L|Hxr{7hE%hD=*u+R>pNU=TsFSI*$E8|O;u-eyL1MY#|aP?)=ju! zSprxe#w(!Yo$NH@RBjYhqaYAZKp?JkP$r^2;pZn+P*CXX>MAa&V!Bq5ljEC{Bd*T! zzbGRM;WfqNA;cV@NzS1)_Yl5H$V|oR>suK5;(2m~*&tbIEgdGv&=V1jOM_7#E z>jV9%aWHv}+<+jA>L6cFDq~%^SGA{_V9`wcX#LjWma7zGkk~kP9l4jeSmwz**oRIA!{CEEYIQb4P zatzGP=LKh}X|U$Pt6<5%i1RtpyJDrIdXnXYCBSMt9hss|bj9FApm8$AH>P~+9tKyk z<*Wia9DVeKDBnTYVP-KXv$)6t%5{I=Wtb;1LvxM!2dBatjD`&Wl3pWmJ=Vm{7{%!T*8Y+y2)Q%G{)%@#lR3b<2z}Ad7Mr+>v>ZbPzR&jr49vx_l zqT6{mi5poC7ztKp4)_*Kn6*L!9!yB<+ys(=p0?~aj(0&S^?QTQrKz~dm}f{7ulC;c z%`*e&$J6CMUR~RkFn80hI^&#{w=oA~gK7Uq(4on>Qqy|5jIBbs$W-YDS(!-Sl)rPg z&oLim+KSEFJMvNW@~OrltZS*tRQhm?^FfIxo-jIg%NexfGHyzhEO6pyfd(IY^sp zw@9mgNP>(SQvS3+k2h8hArB;9Dkb9yf6O?3Dy<3F1qmpOL9_~630FON2pA1Pq1jdE zwS#MK6n>ChGg#1*omPH7YMGH=9WT9TM;Jo%3CU@EHHps(NfqfJJ}?*)(iUC;rc==iTIPmTRiW;qj2IKXJ$8$X8}%D+K> z681b=HWo$#zvxq04sZ$J=v2HvKhu*_-4MSsc&Rfpi|Y*~mw-L=hmtpTGJ2thQvCEE znRa#gpDwCtEYn_mjBECfjVw`QWo38whnA{UXwY{o5j56UOg#I=U=e>lbPIJsy21)$QgX+AF2Mg&YwdIg-|kwDG+?guB4eSP?3W8ZpqfKn__gvueIQ~ zr$8zauiw|_1CBEpdPV|NEFkLX65O^M*2LwI!fMa0)ZYak8mK7$?CR1j9Q8ikoP>oJ zHy-*_?py&`FMAf{MvVA20U)rb#wW3{p+N7_2a_oI$~vmKvpnV*?my8^s`S=->yQs* ze(nBnwzf&zC2ON43uVJA(!TQLiYD*j1Y`Y*c0q_NKe~Sns#B_SU=24js zm^L7{z^;hA%i?-R51#d-Ybj`5V3)5~-kGD0`NBixTKvjN8#FYEnXf_OGvNQE z%ECke?|@uZCEFI=Qb^Hw1Idvgj#Sh=d#Z}isn%|z-B#d?oW#CA6=`xUyc|>cvp7Mnqyn!9A zq?rnF!J5_`n)BoH?DZ^^N&fa%btD?Y^4F>b6I7mgCnT*bF>tPO3Z+h9p&JgQhA zUw%=<5(;Ig0{^Y4ADQBaZ?Ldp0m|w=j^#X@TEC77L{>2y^J z7a!jfBGoQuht4~V=r*S}ft(r!*tS|J(pR_rV#Vdze+f+73vD6ZNbR7?7o_k&FbEFz zP8SmWdk(ra$4=ywxy=@@J$My4_cu^+x}}p6~y+#Sd#Gb^+$zD zXrx9tPEV3I?e#=|+uXhZhfJQ*)B8@jR+x#82O?lrHXTST!^`&UK7Ss^l5k5|t6^vEq4LVu5+@Q=ED@9P%dVN0 z);OwKn@aEe_=3bfas#3)79}nEh}E0(yJ3PZT}eccNMa=W6&jqJ@Z+ecdY&^tVnXFX-$odTB$~0i`6pminLK*}_RHW;9N(Bbw=}zLkP2wM>J@IgGasJ5~ zn0RMZsbxwcxos(k5H_MrylR%U9V2^7zCkxkk@R4D_)5X0ZHKG~=FH^%u0Hg>1s&7Y z5&dl=nRp`qd+=hnubgotDzqve*+D=Z<#lY@f3YyeJAkT18rJS^S`fn}i)>u*nArLI zz5MjH8#v`qGyTDrH^JZT34R)5J8cIDc5d-C4R9hRUsCIQxdF#TD4+Xd?6UY4e{eU3 z#ye;+$UzB?qTYCW>-IZfvp&4{r{kMcf^~rzuk}lqW2uI_Z7!l=inLz7@>*dqWQu zU0K2*jj;eZ<%GyBGp6lK7#DmL~eU=A*awS+J1qG^|ySJ-S%2 z++fK+1jL6uWxRfocj2H-Ul+W7(8ym3!XtQ*(>om6fr4p7Cs9zo42NK($W)<{?feo< zx}D|IhZi*)cg>wEpRJ__}GusCU zzW_?}r>Gq2r7MeNy}1+fnsBg7Zrp-mVWv89B)60m4Bqlyng7-fOHXt5eE><;*?vdT zw$)54&>bYP;28D5cu%TXiH+VQTZKdVd`VF4gJ^kMD<9p2{{Z4o32aHqDpCzAWn5Z^ zEo6HlNTH+9i(dz*#}EOdzj8pbEp7>0?=s~jtDCB`_c{*kp~frpj-T=}4iZ?)D3D>g ziT&w2lP|UXLE(!-%2nJ7?h4zv1Jd9g6`6(h!_yfWQPI>sxDRq*fNn?sX{= z77&vv$bJB6NgHTO2qdR#_AR;DZKU}N`PK4OT6jn{_BLOQdRr=r#6SE?uxQ!y<1>^* z;4dz@9D3eYqJmcD7lzOkQVU7(98ae{;mz~B!6!BMTRB>QHUj8ePAMu5puJB- zVt|TpY;Ah^34wsYX+u+yd-)E=Z@1n1;WSW0_OH8}20RnK#GwPPJ;4n>utgx_0-o*1 zQ{DVWw9zA@L0|@8DH+llOu+1S=lN3cOKQKz#UD>e@1Q`C3=7j%AJAFwKG)|w?3R@) zIgxk(OJzuul_9FCDdVbvX{)x~O(vS|t3aAlgq2p0-G7Qn*{F6{!<`XYx0*u*wS%1r z_5M?pR%G*oK+x!gfa3cMozuQ~koCa9?uGL|+l0-cJUp~o12`f8w&3Ca@wo4fsWJ4N zq~K|SM4q=ys&0o#@H28#j>2W^*z_9<|ga_lsfz5XWq@g=a2%9)cmBm&Y9@l6` z-w8Wktis3}sQY<>qAY7yF~8PmN^IJ?7Lg?Z^b)bF7T&CQVnk4ctVZbDIQ)m`MgbAu z5F*^h>5b(uwHOJ6A_b%Z2yNviI!YJFShEt$PCg5xNBX` zxZ)%5rF(V5O=P$rW}Q?w(TrdGljl|q>Fji@f(ROWB`G&VouEkzY0C%yWhddZSU}A5 z5`rh2D;5wym;=-ueBD?Rl>3h7t~}6nazMLl`rhb2q{`O2jCk*t$_a#H#)|j51Vp}g$2p^9eny8LHc(7;$_vyOIRxr&k{=18*e@U%j1ZxrTEaEE9thK z3tu)3xK10!>;>YGa=m#aRLUo_VuN*9vI0H!^|F`VNlPiiV&K8(0Jki*S7%+hsr_^H z6^A7|;|f;_q!2hG z0jVIfV>zt$;2oAYPNoLH15Yzg*~h0^T2tT{t(y2Z`KMru_rmMw0p;#nb$A(9k9r$_ z@xY@$7jVW!G=#t%K6CSm)|2q`amQ+10~yB?r_HW)bZMaF)Ix@Y{_2w#)K7Joq6Yat zM|xG5|JXW4h$(%EnGod=r1Nlq2WI@~CQ;AE3xkg;xz8mweV!(9y=ag_Qb>R>(i#TbstEmdC@5XuK6j8e(hl$%W0o>-6WYM89oT z-Jk~JLT2tM)7&<>@X_+c&EElzXV!uQr>Ip!xfi1;K*T{;{saCB+A0OJGgo#Ow*Ggx ztKf~Kc+~K{wHG-<3VEd9*+$A%4O5-|48DsPCWvE@9oc7klrm)S9AE@13!A&A@~qJI z`wv(-$sXTYL*PdZU1W|=!wU<1v16WRh0J^fX)-N&>d!dB<5c(UpH;hh;1xCa)hANq zCq4T8JglB6<#lMnqbCM+Jk`thiE{>V=-Qfl-Dj8gGcI&_DGDi2b(yj%tI8~k7Ge2- zXxM?NQ|axlFz1p5S{RDHlOw>a`e)n>`9bEP+3j+2*$%b`RJLs!N^fcz@*eM@t2;TX zz}q)29th##yU-|-?_L`;$fl?e9P-qnaCVD={x|Rd?007lz1TXEkRl%Z&Pb@gmVP#% zT6OT`sg_BekLW_Z+naefa@Iv|vnl!_kf4UmM`=5Y&U%+b&=~Im<$e#aBd6*`U~=;O zJZ3l<4p8EEEMm5+Fppa=5DWLBx24!w_@YDp_UQRZ$1gfK6PbpM5@67QzxFoKvwDLi zqK>H9ecHiHv6{wm)QlVzjM?4pxpM!Ft$=Y;wbeeA7k_%N8RH7J6gbj6xJe~fr*s_A zjeg*gn)ob4dQ?eUAm2VPFGlx214NIfhTI(*01#>^F#-2t?d0lg=w^a?u3r*MI$E6< z>~gIxc2N+FMY`inyUFm^8^8dwdNp6a7)f<h)8lN>wO_trK91wMy1ENBqTXh@k} zSsj>wcIN^6HxYI4i|6F;44l+3QMkHA@py)SRd5a!=!-}>$d0_`_q5`w{RWJ+^8=lF z;ZF;2Os|`a{iRUdmpmc{ziFw3vwpvpfX02WxRZbJ05nt+A^{g+cPWjT!CuhbYWU2> zp8{X_4HZ*+TT$h$?Sb`jCE^xPU8Z70p`&pv3h-3y!geN1Yj|J~{QLC}52g()3`+zR zSNQS1Y=PWf`+)W%NxBB$1g8h>XDHxpe93~STN%0gYo8NH!teFT-moY#tK?TARdQwsLFwcr1jZH*Md8hXjS7y29^~RvhP39 zrhooeFZ{k>h@mK-hQFt#93$_&5rS6m4*gfm#;yq^=m7a|wx!6x2MjNj7kP69wq~@^ z)445&&n0_5SZouVNgF?x@7a9KA6#cOd2TmN2u*u^drBPFsQ%J^_5Z$Ay*n~s9=_#& zG!NtnaCnpl+pIRc^%8 zv2nd|GiBtz{y#i3`w1Lidy{N!_r+bSpg?W2HEl6Y^)T-uc7sC;fg8W1{M+Y{*MfRe z8=l7m3+5+W;3kfXTa)d;?|#ma+Gg`+PP;1z37;b416MVmOkyH1{A(4Pj$6E8Xm)^b z<0W^AN3tZ-!`o~^rGG`K%^lvWwNk;STK*=|%;twj!0$RXygqIRh?fJnk>-a!O*=?>v5EP2+h3bCs z^81?!LdXDWEk2h{(ZY!mfu})2=9F`HJdG}3Yv2I}mJet-ycD@o z24lTVVczJd44H1P;{BY=4DmrG*PrgVt-#awizNSKyZuf@98GM5dhcGnh$U>2pU=3Q zb}z@?dl0+?vcf`edK)}>gj0?2ErZqSvZ(UetUQ%}$g3Bu5T4gycLJ8tsI^d%Fb$*A zTU1z{`X@SkA$-%&k@1O(isd;N{#z&3^wBNhHB2ct_O{Hlf&GR1HU!D2fb|`4$%mY` zRW_dt_iix50dnK78kT_*l?tv+a#RODNwP||rV6_`9H7z#c(1j|-ikW3;`m_nQr7Wg z=kn)oiePVY0~PYOg4z8kavNsU0bjFyAO^Viz=m%KqYFjaT_ju6i_5I+Xd6J4Y2laB z1{JODYRbdv_Wh=VMu<2eX?=vD*x-i7KJicv8I*G$rv;U_l-ir)0+5-zjQiPZde#?` zkX3*ReTS?ZKUS#bZ2zdBJY5N_}r4P0kozadPOX6@yIN zwr~+65zgE&o+kr?$TtYDR^GU7zfczlalZb3qvu;^r%xbPkJh1SOedGkigj#&1A}`& zjO>5A(}}?8CpTpBL7!{hO$K8uceWgYUSC_h!ESv9oW5DoZ9ml;Y)ZXU**eIl_#!6> z+PJwSn;vDA5AV+mQ7PoS?R}a1!0}c{&egkKn(BEWf91w*AzMjldtL|`$C+3+{e~L3 z2E7wNw;{}zSr$6{(xKFtj@_%9%BVRkN+fV9aq3$} zf{y&~=A>fw2+k0NchrPaUQ=XAr_ru*Bpyp?U4dripzEDBIXXaHdtg}L8}e5){~x&# z0d{Ac+#p(Ve2xecXHQJImAl`UtXM=RDk#26N`Ofpc_NoIK)i! zFrjV?yrrns?a^Pr9tX|-6I*rIFQVkg)F-J~e`10d*~9Txjb0PmDZ5XZ?An$z4RoVI zs0mUj5ay1GT{nY@3v827u~8a&)Xh_AdX|bXXOp73~ zhGhQScXN$4yCq_nei~E$MT+C5lN#<<&?^83S*`bM5rjbmzYks1hc&pWx#43(@hvIS zn5RA*YIh=P7^|KE2=0L30_N5SCf`Pm`tlk(Cj76U3-^nJuVV4(G^qVmCQ(gfJ_y>Dt5S0EN6(H@he+&RdA>ySbn#nKL&Ry15J9 zJ|>iJkkz@vf5lkBi29?5mwk!7BfxI80S`fid1k>5d6!($&B+(0-;v{<(Vc-r5nOwR z*VmOWN$P37D~R0OsDQ2^QgeZ-4Gat)VfBwUnmZMS84H=zfZ+qxqx$88w$YXyQ%ck- zZL1elL8j6l|N3_U4$)zF6JANf1-;kA?C`OhLg>HRf%_vNi+Z6L+!87A27(kSZ}8u8 z-qKmvs5ZM)15Vu#ZCT zoN#aRDab1f8OAhFL(~HzKz!*(;DG!f%}3o>_GIk{c5Q6{i$?JiO8^)yC+YVx^8T;B z*FbP3q;1pzL^J1OjjYS-kdy(2b2Bh{K?3>6n2A$+gJ|mp5Nd07oDlA~7K9ccDjXwc zCM6EgQcW;3kro<$q-vYrvVo~E^yK0jtm?@R{TVftfiV!4`-HCa>(6dnn6iDkXrI3O zWD~q$rvJr9MOg1(=+0-r+tWHT{E()YpZW$zI6(C%*3e_7EBR%sv_6C7N>5bT{q(Vevc!WUo4QZ$xS-*^7mw*&N_p=y=(^6F>9Ln(M6ta3 zR`%x=cmO9C_H-;U=q!6P2SqE;Q391{cAJW9q2pruOxej4!k}7zE4+V;75xpKk<2lw zEQaJaa~^Mk6oiri!ZfObTE!R~m#YC5$9M9vi$6(d^}?9{wI9h7S6uaVj!^32Cu*gF zTkM?hPV6T?>I~m}nrejql?Cb+IEmv#)!?E4uAO=pdfk&+r7@V{7D^XkwiWm(U5&4^OGeNl%;Smatd3nMs0@I17tAVygkganPHS%yfknc^4c!=vOt3x5l*$ zRuP+^ZEyWF0V2uuaN$37y=u-5kMAA-uTEOm@d1q{X9(-enG^=Dm$q_KKxaZAqUS1k z<0t1y6uS$ZV{k1&AEYmkQ58HvB3c>Q?1A5F!w2MUYy$uLNV?lQGQ%g+e{UhF_?pFs zM)|)$W&Wp>AJ^ceq5PxZk7URkVCWsz6Ozzec)#3%VHAwSa~En4$lYccJCs3@3Tmk> z;E6(&h2iICLnD|S^7y74p7CtHtjvw4ft)5xHNzS`E;JvAT=~9tvpeB}`Tz;iD8l77 z0C;GstM(_Vz3&BxFsIt|P9+)~tZeHUFoI%fZ98ZS=89*f?uJYI0}%-@Vvrr)4j>&v z`Rm)GHzO90QByBYQx`R~ltcDDzn=**;fK!`{~%mpU@g}A$f0ff_bfxnPn#^V*zgj? zy;f-??0X3{s|VjW6ti-qAK~`gdmHi-e19SRu$@0ew%z6pa^C0!n|}&dyfCkgg;grW z@j+%9a7ymr=|Ci>*uZiWP11y4etPvItclPjgz@N}R_Z+td%7UtLEMXU$bM@9hu+%N zjX6Wgz-F6cE&c1+C%TF;(L+^hInmXg4$a zsBOex+Fu=5f0x`$QM=PM!CktL5%}_^x=(eN12l~Y{()GMOZG@~6-aRnBxa5~Q{a6@ zw77|^J7{l-fzH+vO7kvdL~IoMOSqf@8YNp}=Nx53q6Vx}sxH=*7B747>Zy4GMlS=K zKnZoBpOwvAtDIXNyBpnDYE1U2tZeSL+qPlROg!n8m9IjpH33}3V^xU)j5Wqtl0Q)S zX}Yeecq&?mX1e7FX>GtcA`&q)LY?_*Mf|F>SlNL7gzW9L`ZoBnkktc@QM-$3O^nd4 zpj9fM5}-d0#|O(fl>}FR;?GdNaN>4kDyU|^;h{pT`fwA_)ljYmQ13OQqU7y(w$oXa zWxUMM`5A6qSpY$FDy$Y1{^2d5y0LJS1~_aw^OnWVER01B1+suB@fFg91y!m>u7uik zyh74=xmZYg9KdxDtA_(Ur5@YP`9X#k6gGaP+(0Bw=l4$v15L)-<*bC#`i(gT6qQ%Zn>)MFvA5BDPq>DAuuY+O#^lHbtlKDz-GV{2@)T#9D|-HhS9w zYsRglc>Hl>4>X!#@Y~z=^Dx*XSNb|lJ-aRbr#XKY?0oG>s~g0NN}=kCUvo=C?|zny zp1A(Iw>NOt566l+{~KJJvIBSK5%bH*WNQr^iNJL*&wuxL*}U7wBTM@Nqv-M4D<=49 z18&hlSi6hi_a5&M#2;V-#xJh&efMl8)0q7!*-4orHHbkB1-b0d)MHn=X$mlz`oC3zSQ9a^J2OAux7t=$-kJyZ5E-ap0pw7OF1A;)JH5%e z^+*#gCxIsURb1USXw4BPth@Cb{iImLD6&_YE{^gN1XA>l)3lA_{{*5z$P!RPpX4CZ zB9MHAx!jnh&g4t&z3niF0BGK}lPwr3(vl)Y`;mXumt=558+C|JRKFw~sT@G63tg=e z-LBf}L^m5wJhkNRkhS?a{&8ot#ud#NuRjhZ!%HrQFYoN)o>!;c`dq*lh}@-=z#iTF z+~AQM(M$BcC8UZ0=yB=nD!DJyke4c+uBoK|fq!QNo0JU+;K4-p8Y-lK0HmLuOn_^c z`o$3bhvLuYf&M9-TtS48wc8HFuFNhnlY09+=p{eWR-~{bL~d0f9K~p1yAP2IJU0#r zYhldCJe$WG9j>E~m`_Id8EJXr+yPhW#&geB9J_=V(89P|XX{U32MA(zv@oYcfQVT_ zsxOuSn0mbkgeS=irO7D!&FvRJ)?j4r4gzM@(AnPY{|1n>loYb%g1~u2F-?yAkW5|hF%)@(jx$p%3@xiBr++gz-!FIvX z%7369PEqc6@%mda523*Q_o|N5PHMx7~<{3SY+C@VKn<4IL9RrD|O1b z&GVO564-vZrC?N4%Cb~j{Pfi8_uI-_3F^ch(Mrsok~%w$$G>BZjsOnhck~>=&x+!*KN=so zi;(94I+QY?;&xpWO2VIJACqxb_`{Q!=a5&}NaF#U^45hGzv0a#?9JAf4ef}U>WX~Xhm{6&qV#a11Xa8aC`Y}ZQ|NE) zi2%a)E|3d{?r#~B+v}>{hee}S5C7BVirc@fClB6je5v$_gV~Lz?4M3N+9I|jFhpiZ zbB)pWKnjK12UKmi;qV8bm)r0^WP^UkaGe0dkHSV+YmeI21ns&4(=51Z+mjAi*y5Eq ze>V=^0Zd=(dd-K%o&^I_DN!2L{Y?v*gfIEoq+d~LB*78afLe_YB#p<6^EhI}1fp^I z35-eBO{2VukRjvP@rYCHLVUCem~80W>JNXppK<#%#pt<1tWEtpjX23xPXWQ!A7}x> zfrry2IqD?$9ph?fEdp)}5&KYEUtXV!?Z!jW3Jg0<7-!%f6=B*5u=aW2bY8trA3By?MKE2Ly>Cr9VTm`MvipmlZ(|Mk}*g*rq&N*tX1$GKSkk@E(xXQ7La3Zudek4yIn9aNK!E z%P)|gvnw=5oa(Vgx+n<1p{dzGX~kT!YPJh^m4oDwK0AuLA85`^U(Eb0dBxQ%Q*8j{}7I zLxt14CjkZ))-Tv6;qK28w=36+s{hfci;?Td;gV;IuJWjMoB1d&tq(#(KskU!sDE`w z#69;75Q`klOv%B9N7)&HyT-t(OleQ`oP#?iz?c05sHzj75D9FRgH?R)yu$-yY!|!` zq6I7TEoOC6Ca!u(GagriU-tY@mhbLi%+ytpnYx#+z2-p)Bb|1EviT=oY_Y1QUfHn`>l5axoZ;c#jj3?M40 zBSP4w^3!)uV6qXV&r;u=4TBQ3#(Qp6>foL0GhD!fV_*(OZqiGBmD^Z)bYKVSoq7{zBp)0V51MAe)u8m~=nz0gQmG<5|f< zWwqiz3;I*^%2jDF7U$*LmEZu8A01 zMeq((ODRX5GvUj+@-)Gg#O}Ox%~bWo#+DvbeI&$`TK_on4^cqY1~DbEm21K<9?&o$ zcMK2XPh+z)z(ww#U2aPDdYFk)9GXZbqUginbY|-AG;IwhJJ`lHnsdN!onqLQdrtu6 zTeyVjngvJ4adU%kDlOb1Ow4972bW+rPE5oUYq!DG*iEeg#D!zFaI-92ZTvK{E1KgI znY_F_TwOhs%NsO6GmgAe^vQ&3Ke%WMs5lP0L4$A~ zp0^6c!gTRdBxU59mn!ybcWOeEZ`$?Ht8M=3Z@itotPQc(wm;jn(*W<7Q+RD~GFkgw zfx7|`7+bYBD_o@-u2Fw05eiEtBfj-AEJ8+@aN21*nx*69vOOu?&@kB}VrDcv_j^Lz zc}QqN&C26G=CQsn*n4N%dbCd&sAJpM6AVk96nT_BSMUCNv%xFLzC8Xd%g^{)Pk%c~ zW3fi#Kq0(nB?F7<3_)_--NvDm>^OZ-RS%Ww{GpF(ed#m0Bjz59Jx~~i;F_=PJgVl1Ye_v zQoK?{N>fuaocMF3%fh~YxI)&keC&lXTPKdTp&zG^9XZe|C9deceM@sT>G3}{okwxO zObeKBxIDrjQE>|S;PmWdMUZIiCUzu#_2BA6Zwx8vMqhc$jkQg~*B?E7hec8dcRTKl zptrJ(efLaF_fK3tSm}_CnJ?ZBYAIQbeDB*y6UE>Ns90!_-mrk>f$IL4-M{)8J>b z&xO3i1gNW}pZ3_lzL)X-65^$yqCk*PpLqkt{M;t^_pyq{x zEq;;P5r#p{)lOtoFHDcWByr!vdxnX#Z-m}Jsz2G;aG+b1n1Qn+Cn4omFKWif_4&(} zFWrg!iL0v{OCAuqjz2$l9?AQty~7CC6C<$Yd(VW6Ag+x9*CluK^<}>HzN1oU>FG`4 z_^pl9ElxktWn_+T#$o003|y;ibi^JZAJkhhFg)=!l|IlU^jRe~^hE9VGw%-E>NM0h zZK4lCpWD_MpXxGVtT`Ed!xk@=WvR|>jK@{2G{0dW#Z4?rt0Qx(le(Qs`nz)8lT0B2 zO^2II*$?4w$e4)r34VyT(0Mg_{)3UZX%f)8+@*S>K7&s&uAe<)KGvDV*D7I|X*Ofa z;NdUusPn0NI%Y%X8EG3QQXn@t)8S6Ka?mz7ee2d2QNAY4wr&=y3=%q;6R3l~W*vuu z1skCNdDjnHf1uoKx^tq;I2X%TPM9w8S!CD26+JEOujb}d={q4R*;@u=Gg$OadwM7CGC4zkF~pbsJVy6NKF6!jIyh)i3fo$ke4kH-_u#<=u9#l%BW31i zBYXpq0aJDTl(6VEpI@^!R5){>PxMR97>5glEr8%(A{lyiT}uvr#aC$alJw5 z1sz@M%uK@9uc#_2EPR1bpwpjk^5i*PO&u;*uXE;%q*K+Jt#fJDDIq$lb~&?^FH}?2 zMzMbu;PBm*JHBDVP3_mXSZgtX$TTBia71fxZZz%L0j(}HcAO@525T-&PhHuQC6dX= zI1`J$@?7L6AhOho+zX5>6PA2wd zJf?T7e*E0L$Rr3WwU>Rd0#$O~H+gYW0pmA#q;rO9uKILc`3MVVM<(PtBi?wJ5uql$ z>(%c)9lRew1B+2}>&U3ll_?TOMGl0i& z{{>X6?d|QM|IzZpa4?El{|* zUNSEkQaql`_O8jM8eUBIrh^&G6WbJhtU{OmAf+Zbu|j&TjPr5B;MH>pE?>|Z>m!(4=^(gSI?Q7Ol3TObU#QiyH$}) zuf@PE!vE)m+VsC$`1D&GeF+!=quVtCYBdgS1ZlX8^$B8gJ@s@c+_)ndGHmojqNBED z^;ZP4x9oK;3}FddUD53__d{cO`@4pfJXpb2tzk&C=~CaDSWaA&{>4fHeW0{l!D6^i zydqc1F6zOCd+*Bd#L%}S1z~Mhf-s@MTb&Qj`!!LoT~{X>HpqF9AM8hUbLy%G6Bfwc zTAOzsDh)qwerA74L*wVLxBO{;ReEZA`eU{2OSrpysbbc3!2^fyH_q2@LS#BjgfeRf z{C~FVuM$K^9KK#%Y`ZyMo~*zXB@2s-zu;Z~hmHJ-91~^Y0GsdDl#(LigkR{(bg#@j zYjAIB^YaT!`M7t~PVA2RCz#@Lu_wLHIXTiIigm}ss1-2o9TyYkr{_jK#~gRdn?aZM zXrJi{gw@)1=8FNyfHFI;Y zP0YTRF{3iys%n?cce57J7w3x`iRViwXLr!q#BgtzNF^#%|NQjwFfV!?Zp32Rl1BnJ*v(Toy!p6${ZI8+v%MN2+Awe0y{iozPuB-qqOQ ztT0v&Etc!9e}`lI-DEvKMdr5u$*eRy7uz|vcQ`lRS&?zY>bKd>trho7291Zj&%Sw@ z$Ms6!<4x{J?7Gc*7lYd<%BTUKzEjH?314l$0Hg@^gseryZqxQXSS>R=N^d$TU>V0I z6(ASt#JO8U;$X|8xJptLKf!IR z5tylAs9P{aZ$G2U*qb`E3Zs^@pNvIb$6c!*8Y|;EYRA0SRa43f1T-|{9t2%DqlGIO zl$a>1*ka<<@dT=5FP9SX9z4(qzlZw8fj@EnxQzDHalFK(BMFVTs1o1$hCPXG#v>O^ zxzd94?B564juX+J{J|H*IJ`` zdn?Ljy9_;Pryh!lxe^{Ox0^J*vqwsM3-YCGiL=~8WosYtqu)Uj9YWK*K zMb7983MsdI-&RkDg79AV*qwZe;~N3LcYYSo)$F}ekg8*fneOr~GD#z?yR-a4&ghPM z$6`8v@8EXrjqcO=`?2pRWu{QL9Lkql&$p8kOdNSoaJXe)zv` zSNaMxwl7Hq+1Y6<#qM`2+4;5)2~r$cF64SUJ?qyq0H+PJsDJCVG0A@KuBru{ZG9RyW3J0; z`^*F{oh=mGd2)Y?E|w!*E&td&3=nh;13|UWQww%-(`y>cr5h^Ln4IZj(ZtM|A&=#V zZC1KGMn$_{w!j=oupNR~7t>B1QVOFo%m)aiQ_yL3F++U_qHK6>LT zMCSN&atAi7M~<$jXNiw{t&Xgd{BrS)uDNSlA)h$b`P^NYo4<4!R*+(08*jH?>I)a? z{G`{q_m?-Zb*wL_cw?$(bL#)$=_-SQTH-y8bV&4bt7+ zm+tQF?(Vm|dGkIvckYaN&e`2x{@3Kc4#6JFaI|dyrka^y5v)C_gZZ%ODpzuBB{V1* z5yQ*&gXj+-L;1CBbyW7h1KPgiAYuo5AheV~)G&!s>hPz{KnE&!r3EOUYLvE8dCfzn zA>UNxH46?)c&1n?S}!;FG_%A71&R)o&5$puCgw7ZzPgi^^ncJ(h4u*B;a2OHrJ1(B zIBCT)US5T9H!;7l9RIXhYdj5x6^cV1%5*`Vt;AS3)@1B^#!n=kZCj&ij&v!L z?f6*}abGXs@jI3Crm839W?SWvVg~N5nf1%-E?kaIc5=UL&}b&kA!xzd0-)>hCAP1t z3@Y))9G!QRYIP>IxuC*V>GXK$WLxMuu`I7HZF4#m*TT7N#z4f(#SNl`&kW#5?HjPE z0$icvs075^JaKgH=f#gZFZqcN&&PK55}f3L2{l!Z8;9D`U_DB3`f|?bCB7C3o86TCjV(2(PA%Qqnb?t?? zv~JmPT8@^kY%PZfgJJ&t+ZiSeHU&)<-|ehLr3!3QXujiN<AO1Q1blepx8RPPv+3a?xKQ2(n!;ZLtg#5ml&?i>&vnD27aTz1YJ zmq;BA+4qWX!3PA^t@5<6!<_GE$Vnx+<#lhBUJr*O{Wyb38(f9$GgrLv_AE$og0Ipp zc^3eG(`>Y?^z4}!2abRI42MTuv7Fk^B+J&Za9>| zii`L`!mQ@@0r@e?vXnG>=g_F54%}>x5q!tS_x<$CigE&h#GO@PkB<3dfiFRe_bw_p z`utJA@;QXwB(RsNSwGe5Pmq>=2leFi?|x=HMiMlBUD85EET+>|QHHfWrQpuoZ20}) zDi<9;zwH}uyQNO0csZx};L9>%AWx2)#~J}d+3Mo_n(uE@ky3^8^|tuLd!bLD&{@Bj zRB3+x5q$jx-yeR&_r-P@U}L?H9@bi?HRFx$3oF-iNR{|~darP!A-OxYjU1*qyrpNy zsWgFv5{G38OHGdjsNU##yvX@xvq#9umaixbJQ*9Xm$4X@oDTo2ouP(-TTwnixgF8` z%vY|UOyPQItcfc3lN|U9`;5P5`Xf@kKT9BO2drNJqERf`zOWbc?BZ{nw)3JHF(vWO zJI1=>64qUD0gWV4wW$J_LzY$=Iu!wiJw{vXV5w@$LNpgBv#XPL*N`(Lrfl>a$2Mb~ zRdVIE)iIhtz96?qa1qKk9}mkSp<|lf{kJ2XD+QOE#y*vQlWi$&MVjNad$QjS z_5v90LmxmcpILmd#^=HAv|Hx~eM0vPlt)(LRlGtHO{e^HUdxr$9I+=&OZXbqkASGH zC46AY!;Mm*p>8Qp3GucGvalwb9S{y`D#5p?%?01ihJ|U6e=7d+QZZoqHiPNGdqX;k zBw;#^!iBBHpKGhIWWx8qI^I6;X3+dHY2|hb<@muqUu$8Z_y+5kT|4KS7QoS{d^dY5Kf`7m{K`EXMjY=$iThNi=);g+W~wj5|^O0&>)X0W+OjytXyla z>O3v9JvcsFNXMN6U=3Et&B;_QUTsAt85NBFCqRnl1Pjh zB|hlCQ{(p7#!eDjY0ozUr=^)j@i;;X_&egtmCA55sV1X89V8IkW+@aTwyh)o`8j{b zt5WXRJtksL`fw{qAoJvaQ=r@hXgGn{ud(?`m4WOOCw;rB>xz>w(d`1p^|@q1+l$!o zl9kkg@@8+ZTQoV%OoQ2IA&dP>cdp7?H@ZPC|H=ODDECq1w(V!YQy9Jea*O^(Xpns5 z#G{tLCoKy%U&F4os0`i?d49sX&%tiy%fyliG1EjF&lLvT4=6F<(6*|Ls<53$Uow+S zc2$|?PEP2}U4wzjs=O{G{|smlSZjNm#zH_eN-2@7=1S~9&i(lAeSfT;DKtNM;JZWx z?+S$w@e(SaA~{5+4E?j2K-!|%jmJpW_;32^pUFy(4u+jotzJgims>k)s`lQ}ktptp zg|BC2;(yj+G>@IGS4OyJFQJ%9GD5JEI}xP%gebi0PTM#RD+a!0MCXJ66b4xSX6C6k zfq5_&G!nBm%(3LA`L!Kk?kJTmw@e@ ztdBNs^0vhX!nc(L2R>NM^oI%HBoLt2Ylpaz_4)I~<&zhj=I=uhNAH6plWuU5tG48( zqJBen@^FRW?Uet-6<6+Vycu_R5Uk2*btg_G@FAQsTQ0gyk}kKcj>zZf2>-}X#*ypL zq-WpzBRWvD-l%o<`v|b^o0O#$BX{z^rE2H<$Q#Z<`c*;!F1cGm?t@= zJe(*+We&U=_DI&kEG*q7Znl3ux~Z&EjbG13ZE4?mQ<>gh&E4>E&gE&&_+ZmnNx$^H}lk0x{RUsQ;a#ZPmstrO(g8X})^SfIZ1!m?FHn8aJbooWob9 zoGLx}1cOg{^V$IOO_>s1lY*DDp8g?Ikn#+)GWHLDY1F&VHoQ+;aX}?yBbRRFYn=bP z1vJ=;mDTujd-mP6D)Iw&H&p_lSe@_5kj^FGTR+sWFjl75^CSQ~Rho@^K3u#ac`$zx zcQcLyQ42w^@v)_OlW$QlTA6-g0m=L{FV2wGK}XJp6s7(*(dD$tDdoC zXg|ooskdM860)~8wNXY=XO^VVI=TkFs*E3%3V+f}C#4rQ!um_cu{JiS=o%UbdlZ)7cYUk(rc_^$X1L1*5p zarV#LE0bR8N!OXh&d;=UG5w~}QELCzR!*3T)298mnpty;dBiLV1Rozl=bLntOOC1N zYkjMz$zsDs2=Fs|o-RC%f50pXMK|OHvmFv2D;?hghzdSHCj`7#L@PFHFGg_UehM8!o-q7AT2;w(F>kL`q*0H@r_=; zeaa`VR1v|ner}JVBvdP~9?>Y>x4k-dXRGwcrl;+>z3}X}Hc27ohM3OxXra@~y_1b> zRi2me{{V49`F8$f#rGH4++bLaO8@4o%nsU3M|Y!3#@nI?4#Nv~vgA+a=}a`;f`k=f z&a3OnoYYX-usGHa40_zgo-=xpH1D9mHZ0c=6!XN2X)7T%#7GGS6jL0x$zKd!@%Me! zlVfQO!$}|r>}QCIPEpEzO)ZG@75k#$%-tRhen$?@&Z223&lIVhO?Rcf8B{IFy@US< zZykG+NC^YR%*>0RxwT;Oc;r#k;P zL;l<~I6Uif3vkcQl@{jzC$?*!TWM)F)!Dx3cUF5gaN(B7-GeJ3y3ApX zIqvL$tWxpMb}8gfsY}f2iJxR+YD%nm&8!@xDSBXQChE>s0u~hv!N;-i8uso5=-|#S zgFN2492nMlo>(GmwpGHXORYqxfuDD4Dqdpxtkv5=r%u1C^+GB8U#h3drtG3&veRKn$BF zP8zxy)BF5c?ZV0n9__}VvuCJ&z@u9SgYCf?M2wKMh?{$uI}nbVVn)VI6PrD>aCeZ; ziYF|esSV6UaDOTjt^@KiomZJ&4^2|tbQ*v)bp9rU?A20T5OXJcuLRv%hKK( zc7e!Y`C=b=PdG9)Kdz(qgSwWH*w@ETgx%#}A;YCfc4%+61GB_qIhc0@D=i_f!P2+P zBRO@Q_J}84ag+b#aDAZ5f{A7tiuuJOE$DOHoTXpR0%R%JMMdfJUs?&ox*kZ&PQ$v% zlsLm>N`h+;vUqtQt+vDss){pd_xE%l+iL(x98pff8<$_yC44_=qy7z;0#rM4g(9-G z!9~B4N94Y6yQyG(wX?1Iw@k!+zc98HOQT%Aj!cP&?elzeZ=@P-@Z6j~4F!BiHrHj^ z%AhTP7PN0KGKcW@ela>V#i+JFucoX4id-KDGOQK8Kj59M_wF&w5=hzuP{Tx%DiSp* zFxPjDI)t9TD1T`}GhA)-PY2#$=ku3xE-rv`$Y|?A00>NNU;#V(mN-Wn4E3jtXmT*p z$hTvyI4hV^4F_ebI41A-Rm)a@WJ!q3ZMvC*kcv0i zkKiXaydm`)L{QH!?xbPv=JxBHU1z&hyF-m^7L$i21i1v0M7Zyrxyj`XkRpUg*(1NY+g?^Q`YbDIvF@B3}PUlKMc2tC|$|D!f$ zn9T@bro)tDG9X>j5;8XSp}v^*b%k*rln=Thf70}Vg><@eQ*x{QRVYg7-x_eA?ylO3 z@?jGedPCdNK6tl9e~&$$GWi33`uQ5cFiauvM7d55CC`dbt~8Sfc*;niN?anyETiR)ugMLuVmX-JGLstdkudZ!)C2x`207b`2ZWZ*1pz z{P*A6^RvTmx3DnREV0i47Sbm=qO?ZKP8zYdE`#aR&t6RRI!ev}%J zMhD%44CD(}7PUdouSNf=psk@*tG~c|{+T}&a(vX)n&)3(m0$_}>=i`Jih!3DhvKA( z(8;p!^=RWSd;7nA#2NRfV@o8n^I_+(A_su%OhurK1Z?MIQ5PznWT=+#wweT<8mpGG z4GO5n%!SD3Uq>Cl-$v3;TpqF2Iv_U_Z@wcE=q@od3TB_NEv=GOAk(;&@xZy+b7EV! zljGI|M10t=uoTL&z>uBj^btOfuNlF&AvX>4Sei zRe4@_{3TaneG|*VG$vsJi*oIBm$RPB+rEFB;)P|?rA52G)dmy>+%lfY$J&mCMb6^4 zfM5VZ2Hp?=^x<94|7_*Ok=KBfBa+C1ElQp=$gztcBq5 z8A*5zh`AYfWkbmjimS;N_tX#ze0MJ(jbKGZsEG#(`bpCDjGmuVFgIzS3Y)ZkI^Ew` zI(Vd#z!vx5%iQ-@<(z0!@iSC9X?YXAz@4a$5IPlYpe&T~HjF`?1;{>c_PTmOK80^V?1U-dBz{&ySj7Znc;cdTR`hu17Z`;ldl&9L_TMculJg)&dL z100XiK+#E6QLQp=cQ=dsB8 zi7pl~Fk6bTnQ3pJ4Ortv4W!k-@qp|&ra!#3ygc>_wuV4}*U}semR7Uw*~#hvG&?L1 z7ACtpSl5JmjvJ-keKTvksOFS8a@3-YYbdwlY_3#szKzer^zKX@u$Tq-rpVR*KKV-F zeIt!?HSqv{dt2K%I^Hb)=@1akX;gaKEh zK;DZHGw{yH#IeWSI_0d(4S31D|NU-l=58fFeRjtmyIPSt*e|ryZi{sGX;E?Hiz~wa z{-HT#e64lT`(s3cnmC%HDHtQ6+(3<~k-#%HtJ#(c)Gu^T_&0-MY+KTY_`lF$ZGmAI zrabH@4Td)T!Lqooz2cPG-_TW`{TzjUXPG-T{M@~g-mZoIYG`O^FqF`7G+%|!X{Ibx zTrmBQ5MqBq@uh@qH|he!L$r;_^u5ZK!It42N&oA~N}bLAzDu;tph@&iZ;2IPU$6!m zYx|z`H1uh;H!F?>at@H-`@+K9*h_vyOWypY+Y@mjhlm$IWc-@E?tSaKx z&GfyCYG?uW1m-CamBnkkU4H) zWF+KxLlVRso>?l`xOTeFQ12^fyacgaPWC7g$$V01Q3?ir>s>#2OXgy!)rr z&aPq$ILSaaApkCjnL0W^1lBdPg;{lZjE5x0y}H1eTMgcK^W;<1;%vb`Hj{LIZXJ2! z5$P|Eu`H>ni2_~zp3J#eaT)viuG`_4K$?2z^C!Qi03#gr23YraiX?#+XAEvYkiYdH z5_R@7sL!$q`{~fRHkmLY{h>9gzhe-ek7uB*V@6g9Fd;jKnhhIO(r+w0d{)76T8xld z@JQJ@7~qmi002)BxBdRM|0j$kH=U=E#nW(XnINAhJzlE88^@sH9UqU&-1fwZfq{Wi zQLET{jj%Se+B+kAG#exkey}%n;O_bQPJ%Q`HY_+6LH@CxW02rRB%9Un*?7vkhexM- z??9^>WJ7?RLMcxVe+ejfD8UngcRMiu4cu_Mzz~Nyk^+PmxVyRYr!Pczn}HoEuC5;l zci_)vvY8l&PkOgBEdcNVS)xC6E%-M$tX*Un_xgyKw&Fmh-vH*MS2!cuwe4;Td=s#a zzRnDt3|B^aAYavVDw9$1=fzx8Z#dog%U`*^ezZJp%s<@(7yhvAgg!QvpCnfio5)P zusS-OVM)u@ND48f82}81w*ALxW#nlo7tXUstGwR~*qcS>@+RP z#Q*B)>AB)|DfRYaB$c-}j#15N?GJo;dAat@(fm*{7n-Bv?O$cnU=ef}vKq=YfRj&_ z7*9yVW0Ow9j4M5Z{U13S5L^S*`~6=vcV^`Sy$lF$c6%Rw9ez_Nf=ye*>FACTJQ@nU zx7K`hS&W|_loYjkm35|3dmm?BJps*Wv4KHxLM-uP&K<-R?McZ-*?R?yG$73SSA4MPXm{IS| zR1BxyP`2f6>~PNq?*sS&>?72;3JtG4ZIHO8SdC38Z?CvhiPbqj{fAF!78CNhqqc_j z2VnH5xf@q!1!Dsh7y!{Oni6ye!W!LD6o}xHIOGh}8dWI~5xD*R{g{}TwZlURF!LTH zhj*TDS1t4Nj4SkT`umv_KjMrtJkv8qCKT)FREd9z3cwq$_}ylA!hVw?L&;M2-qlvu z0G7RESq->mSZ#y03*bs;9(qA5qh{X>4nibD-LZTGL|JCc`tYYk^x-ZMw zHn#%_@Dl*Q{+TNapsWnGd3%W=rm5T0#(FFG2l#gF+B6c+_cnfv4FFIWje@I7j!I;@ zEv?6H27Jb1bL>=rPlGQI5K-d?Q8kuX_;0E`UprIVuaVa@Fd^XJ;4ZqbWWdz>{{~{| z5#GI9JD4s4$BX~lOxm+ED}Im*``<;u1+lSf^wV_Gk#LqLfA|6H4VH?G%{^eTv~2$8 zoyjkCb5Bzyd;YQ-IrK!D(6v;kWgvlkm4H1M>sB_5SCX<6>#-6#8BO~RiqK~x@kJv- z)7xOTvZL9>($MFn9v|Fg-f~C=N%G+h>_li3kG)F6IL#-sjLn7tpq#L>5dmA5o?pPCN2z!C0a1Q))(m?A&#eM*0JjQ#HdaVR9`4d8<`?WP{BPyr4)DTzJyd8WkQo>yC z4SM7roJ_L$Rh#GoMliNaLALAz64P&6-0i~9?Krw7>sb2wVk}r(+A&rm%`1Vu7-6awx4kpLxREu%FnMMQcmPw{(sHND8?T z4Huz&R1l&3DrkX^?`H#^8Q9r>QYckEh_Yu1@D9vG2m_@tk|_1=G;uxT^gvy|e%*hw zg717$rNtlvIADu$$X%V%S=df&4Y(kV%bzp@J*KAzP~YsnJ4aN23a1>Fp1UXCUyv)4 z5VL0KZ6A)d|ce$21(oT2|4lhx@G8klW96)m%U7r+fxw5-=EBb zF4yS}T69ms8MTLxs6|+7jF4xbX86gLGq27FCw*{!>L~A0bhi2;z>9`QfC)4+1|xH;PRL z85&@lq6f1py@FJv=DhPCsXR=l*N&5`i}Lj*9{2klt7?8VYD{A$3xMRd9~<0R*y6y~ z+w=DxlCOS;Vm%(@4(6&56WQg`HJuSbue^g_|vRP_?&> z2bzSz$ya8Bn@jD<0vHIe6LwbfpTOO2|2FJ_{<2uX#^;x67`?y!+jerd2#vMCHym6) z^zv600%U#*uZ2O-M8wfS=W<^dRbxb3p*Qzbig04(&nr>Ah^!r7}M_`G&{ zFvZ`~ZB$7Zoto9})`lJ`53uio34&67;_kg@Oq`-{W9Y%S%&p5Bb#$c??bZ4ahk|a> z2;Lb83aU*o9oWY)sV6~AwBQ_YHkHF|O_@hZyn4V*kfhsbC7#}9d}&B{i&%ijljPwf zw~z)XBJfu%_kZBpB{}}ZRfU4kKl$LN4NRS8$7=uZP zmqSWyyrFp8hY(}m%;d{Xb*X(tboRH58Rw-3;&_ww9gphSaY`%rmK}a%UtDJ{NR*T< zFXG$kB7hh5WX*ZMWBDoRqXaeS$TiJ-hdPD)!yL3p|oMdfXM748xZ`~j?Cosml67kv3-Bg$XXP@X>X|)v8EP@6c zx~d5NT^w|KL{BOSc7x&q+b{~0i!P2hnF=p7FoUQzj2AI zCSc_{A}Uqmw~q{K+j8a95i*CI=D)rIKsoJ#4*PBF5R3nFU(?U7v_X0WhGz~S#lwP) z>CVao&8H*%bJTYAQojwvfp{RIC_|;x{GqLu~n4itgn-&N^MG?rHIs} zhYj*hh*}@&dj`HlHdm8-$2$n0t*nT)ejyN2{e~~^(opf5_#15B0R`?$pGx1$B6I_!WfZ%+oo5FbC}Z(}iqqg}fdRzmr$ANaaf|NN3~ggoo+0OJ>u zR5o2wOC+64BwZo+R~&Oh)anQm=U1V@iw5-N$(a)t#07G1TZpGT9g7Xb5=dWAf!+c* z904QESP3Ofk5!;!c{((ehz^L4UC&?U3e#b*iPFn0FFZobmz}Y ztsJQTJvotu5&fR6(g18%-@sFb_=Pl~D)2smP~r~Ecsb#U=q?Tfd07z3G;kEAYoH8D z7J!h7D~r!V0n+X~2<}k-tGsK7q7RTuPKXNnt}e!`GmsSR#!>}_Zd)5XM*RVf3_A$t z1PG&JrVoNim%D?BE$G4DhY-)U05bwY?b!ec?%nA;82ClNZ#hJ=(OEl20YKZ`#n<bc}2k+ptJ(E81Lu1M~ z4K5@2vv-qWF794+y70{Py~K?v0HN<#O#mFRRwp)?Gb4m>)h2fh6!;#G%=^a4o{uSwaoC zF-eC-^Fl{==v>$v(<3Ah(#E=X%XNsa5m*o9)46>Ok4LXfM|T zGL3k$Rm37h3V*#6Qt{C$lYw-S-PM}(j*XiDLF#!p$$YQkXp7`*5|6*od zQ)p|K>ZI48Q3=!Xe*F$UjP-P@l5>uIleSTTo!KQ!Dc2685$0WOo5pO3+AR8^(X_fF zgfac=Ol%V+G+wGoh#aG~xruL)J-Egf<@qUNU!aKgtTEzWzxL{^=t>tL(Or76+7=82 zazV|JWoX~`^NgFCR4Ra@KgG_nn? zW=cboSTe3$Of?{MDGq|lWzt7oAm=Zs zK`8vkpH@1G#PBx^M?qf|mgK~-#fL)FZeg8;v@Mow z_zCM`Anj}#J;+!&IJ$?1iU*_|wFn7xsw5ylU~zni-k4{v%T?_WVOM@Wqw!7tQr^(QzucY4K6QiVp(l2(xpS&Xg_X;%(DECS5+_1iqQYUR1V5eN}Vl zARArfCczDC9f0@d9;akMw6-%pOd9Z@vo1c+YCvRbMba7b_usqP;Xir)9Knn#9I2u_ z(z2}XRPM<8M8p_DKYhfPEC^0_tfmHS(jpJY%g%FUV15Ob`S7d`@2gSj-fe_kJ}_u{ zTJi$NdAxbWvn)e#mhbG-4|=}m#eEos8Z)KD3RP#y)clJC@yQ#o{g_O{9Gw`1er#VC z8Gu4HFN;(yFh=hZqsNU_2{zEt{g*sbX1b~`(Y+!F`dVc*`;aq%haT;Ytwc+VuwJ0A z_TZ@nidcj3%t{UWC#FI^l8-rZy_YtGMq3;i2MWJTw`|x@y&x!zn5CPKP|(b~4UBUu zK>n!0a!nHLtGGv^=IQykD!3wHLVOJ3>asG&l-Cq6ND%S}1JRakIKE&MYkr<|Y&G`i z9^kgV`6i|eEn1Sa+C7fn-VzxcKXkaU(%)ta+vFqxw{O1NhAax{4n%o9|K?$){t5vC z3~_C4AGij!B_S*{k;NlydUX*P^u=f)x)JGLESK{37qKA0F9T_XpKZ$^&ZJ8kZ9~}- z09{kB1wL+65MqqF9N=~+vG|raqQ=EXn-2ULX!qkQ{M!jcj!X_1EvpuoMdh#$#I;FC zQAvEBL^U{0pw(i4;X4B&N2G(cP1QW!Q{izGaPAV28UDTY7|P7dWdxSyMq{un-HdC{ z)_Jmp?q#a(aGzS7;lEbD zn6Y001Fup=ku+r^Cnh{XF_Kv0=u1n$69e(QT(?$Aiv8SESfgfp*LqV{=O3kdZ=RWE z|L(0QBUYbKwN78-P2Are5ncu*Sp)7)1AVe-88rhOPInwxB`Bs}`3GjbvvT9te+}3> zAD1wV#XQ>UN}#!2u8g3dp^KJq@$mZQDs(L!XG`Fg;s4z+)vKD(h+k2z&7?v$|7$6< zVDjAaO<7>``ngakqZ{jK4{2onkgywdSs-f+MZ#;VOJ!%ft}23&iQp{S{g1$P+CtA$ z56*Do@)HYYm5KN)f$KA9cfG0gAZ}5Sn#%n$LDQNxO$aZ655i;T_kT=N!UoCPs-a>( zX5g@Q634z#1aLb68)lXQlDa4@JKk2?nJWwsA>8;{eqi55%G_#@ymNNTM+1fe=mO0g zw6hfC8Qf7)FxAc2SnJ!79sa0M>HK|M2JcnFW4`zBi!FF7^k283X)Zozp>ZGRn6B&P z&_i>%lVp?*!IuaiDVH|$j&!4ZFB*jaY?v46%au@|KmJS%C4`_daYeU$uUIN+rWp9L3gVHGVwA#0 z(3v3Q@AK0B_fCkO`RKoNC>A?k8ElLk0OW|G{rauUl~M?};nj;8YUWpAuZ(2XDnFOY$l2K{D% z9A01zV>U#AKIm+`(QpW*8*2&t?g~NgsRX>P{=fb4Nm#*flp7I@D=h3`MyK;>-Dv@aO5qeYw5(1ees2oRwZIxh9|5J?@e zjTuP)CXfbeUfWi76O{_{S)zfzH6CwFNDfgIBX+HS{Up~3nd^a`UG7Z%N9_^ZVrs>* z60t|`!MOJLQVZSwb`_)f0y`+miRkE%^@b5`X8IHBtTa2LRJ79Z-ET!#o6d$E9hvdJ z-01?BkmO9PJ+jN$lKLwXbeXU_PZL_THg^ZRq@b1oO z#r3oWPRmqZb>jaYGHlN9RYSmRoaeHcB+AWLe=MDQVEwpwI~VOYp=sm{CfQ<%HRVJg zOJ0c6f8vN5E5YH(1%?CUr>yiQewtO1L}`Z#D2=+cSA#1(y&pe7=vBGq7Sl6TBBxl; z4;&|8eT&}Rx=ujV`B({ACS>G((xWbbpHXU1%ajAjGHhxIEFkIcpO*3c<`rB_#!XdG zKXlHn%R_!X3iipL@6fV6F6f3B)ekHT`(oW z%%E-6TzDM)-6*AlYl=!Ef($ccw9%Q<+s%Et`ug2#9X`%LIiG8^r-w-9vNYHkO1wIpMKd)u zebd%Gp08)&G!8?nW4#VXm#ro$CgPAKk_saE&Z(e3($!?7t6PRhnt2p>3!2{-*M618 z%~xDu5~G*OO2%mc{443Wg=mN+ZpLk4QXj{)esS*y928o=G4iP*B zb&ay%aq!flCE}TW%`-7GhhJUUH9DSJST*(a^_jE<2M1>r7Z0sn4s6>XA|Vwm9Z0Cb zmA~xed8wU?^;XJ}JKMT(c5#gpv2#T2xm#QkW{yhWZV`$JC*V!H(a9+hu#Ta??=dVM z97x(!%@zvbN-8k8EVrN7A~OA8D?*u?JL@6y5}v3FN;{ zCgQbAN(IW)3v%nDQe$+9{u0}j$!qj>AXg~+W+|>vXO(}5+N_}5lS^2NNzJ9?0GcY>{-G2MnVk!J&mFwh3uRn=LKut}}i=qltUTJkUT34#z zzD5KjdsM*n9~oP>z@=her5t3XAK^<6YZ=3ezw&(vs`wyoc4DD0k3ZXm57QPb#I|5*i3DEm$kF)kKE}nxg%EO~($mxDN~aDyTpwD#ths3a z{{55jQBherz|Ze{&9MRjNDuEbN1toZK>dEuC(`DMI~a zY{%()J5Rn6jdzVaM6d^BS=MY{Y8Ssz#cCHVdz!0IXsBS7ay=amc-l`>O~!IqI$-Sl zbC;33EK`DUqeDsRGK`l6y;5eh&@U?6Uk7_vkPAX3QfIJK{^1+2a73M5_=bUeS(sdo z0Wff$Ie|%!VM;!fqSL^CS7NLU|M9yTL7O#M0~Mk;ePPTx(ja|b(fg2Db|Td4)6Qb% zM&)ObKq8{QRPo7}8c09D`F}vspnCpQQ^-as)(bogT~uPeJ|JVaM^Q>Ry*}UaIGueY zaliU0R4gL{220S=(0u&zMZ;4|SQtj5$)Th&wWNfRiHS+Q-l}8GL8H;G;D#4mA1Wz@ zk}eF&xnSz z{+8#EM5*o~OWKfyr>uCU(%{FjL!NF~lQ#0jeQ*hcG*AXjBEGnPVO*)|k0~@$VKAK3L{H0w(j8z4< zq#U;%q4@Dbm_Z_>FQP(RUR>;rWeUYUg2@|Teni`{hEm6W|9Qg`J9&YUa&l!QtHbHa zaCb0nBD=9%jrs0SVrSv6A{sinjj00pqm`EAL^eaHPvBBqAl;3C>$$;YbP( zO5==)sU;G`;dejrP{ADD{puSahkrMEV2&I>dF4>Cm|x1qcy(w<^DCx=D4vSWT^#9t za9LH=DCcCGXiA)-%5{^$4P99Q#eM}N0UtmPL2u>X=uHV)h!8qV+J~Hq^hxZmzo6!n zlYUQoikFyL6SIbnYb-lin8A-wZC`GjVt|~>Cy@1>v7B5URxLxqOa3)<&^Zn`FR8QHPhF^^y zc1jd-Z@71? zFb_gZT>L*U=>S*L>Cf?Eovx|rpk>>$A|+Nm7~JvP-WP(;rVNVVM7$0#8Lqb{Pp6)* zy5JV>`lhDM_4SU!vbL2q(-KLEhp$Tr3jF)*{`{Kq6Dj)HZx0bxo6EGTP2+%7>_CqqKvK#(Ya~+srXRgXNv6!wTGK3y3 z#R5HYEQVlkJLuAbrXtWVF0@JN2xeb~Gij!vuI%c1x*IJv=6+Pmv3(}J=&L@&7bWpe z%JH=OlNFj6*&3Qj8aPb%jnU}lRQq@R?zw^dQK*#dA~z>&xx!(c3bJ5F9i;-;ELM+z>j~g zZ3P9i0AHwuJ~|&&^g4kb1a9senTNXczrdsiKZ55Ui(^(?sdfz4a+t&NA~w~mq%|4M zJ#q*3jI|;o5Hpw%2T)vN?>-F1(!t%Cu&RTh0sS-#WzmG9ph^#ldbR+z0y}C7O;SOG z4Ch?il4}OGr((y59Y`^t(3v1G<)7}eaXs04dJ?Dy1X_?&#s$u{CZ$*SAZ^ZR$Tmfo zOUx3RD+VH4#6rFHf-RX&0Snn$Pbp``JJ9cDt!jfO|ICdM7crQ=PW$92#>N2Znj;7E z?j~1!VUmnnb(4V*&3qM;QmaT~$TvqbK~je<=#IXcr`D|%T^flAlIHg{kq@tS#8bzq z49LXP4RYU2{*=NjUr}mwy)@k9YUt3#i zHecxnR(@1;G%Y>7?qD3_+~VTuQ->o$tUI~de_*^sR+D$3>@<_`B0>4YEe6Nv?uG&W z*JlMYa#$~qup|a~Wk!_-e$84J*Bng0pvj5`Zk435!A>|Yp?Ee^H#7YnN87g~MNNp# zNZ0I>TkzjUvgjZLnW0_1>fF2$K`Q-jBlCWx>_~HG!%<2=l`k6whE8!qX2~;CH>zaSzd5r#LdQpYL<>JC;R$qsM;64AE4othZ94MNU zGJl3AcqJHU1Cs>adFL_@w}#1mMG*rg5MmC2t*%&V4UHOEWAJ(HOIss(v}XKh<7AOX z-Ft|?zP<`get-W)MMQixG6H#MPWHZRO!u%(S2+(0c^fK}nMV=|IM319AXcjT%s_w@=u~H^}w{d^;NzdW|RBH#c@9rS&kRB9=AD0mki!T01_& z48zp4vQ}aJJ*cmp`g;SYtbbX3LqkgyRw^d49ZZGOAv68$P1Sn1mWC zByB&;WrPNqu}s-Q!e)w7ZPKiGe-vP5f$&rTTC)XUJ=8A^89yO_Rv+z1f{wR1p9mD$ zfxta8aqNN5u?58VYaokH0d_?4s{E=}_;Zmoy!GDG%zj~t?aRx4ZXDFfyDN_uS!OB^ z?0k|v7sFdhJ~OGrFYQ=4s>5ncg@}`bu~3gp2EY;^R0u!9?^{UA;3y-Rqa<)e%ID|f%2q6P->`^Rjj2|*a=Vtx_SkxU?m5mz* z#Pc5DZvpoqa}~FJQ^*~pEz0sR(P8jrRv@){dn(=)t3z=L3xgwu3Wm(g@nMe?ChT1=$U`h~Mw&rNDH-t!Dlu>Z> z7Vqc!0O8)|lR9cVsHF3MwBS#aZzN?;-14)UlZo-MSbI)i4v+r#QF5qlfZ;ebNpW#dm+ zNX@JDg(hffejDEeV$8%uTcL>+F`!c$F3$K7M`IR&4C_vC{dAVeN&n&Pl8W!XrfVTl4rL1b^KQP3|%>e=UpYK9PCrzOUK&pmlzZc}k zTu675&-Y)7QbI=F_MKbX$HPDo29Pecxy);Y-nMDFo@Y}rvRzsw*1it)4U3~h^%5^are`sk{jJ@yYFPir- z@bJ-baXsM9dC8xVJK>!ZmG-aJQ}Dr@EPF2FVy-&oK$(%AWNfOp&NZ_XK|98MPOMiS zpjVjoepjK~b#{Y#ge^o0Y@4e;GAK| z3u1P6X0IGy$xqoqq7O`aO5b;1wyxvY?q3~=lK=OW4lcDz#}Cni4u6v`9h8o3$`nJ~geb6*z>bHJqJBG(Hy(>9}{h-Xfn| z1&P9)g=|%lA-P` zw%PQV4deqsjiaz7lEZ@fEsm>-_BQZ`YDa1QrvK*)-;x#^1*sqw4F7}fJCGL!=_Est z&c3=TABP7@zPrx7zW7_%ceggZ^FQGMnegk)yWp%l7e&i7g2}YU#wJ!!%>nay?mj0> z4i5+YX?5V6TMPy5i=mlrXao;??Zhqm2E4k4U-z6*|UI%3b&Y+}kK<6+wWXJEJ?0hbK<_EpVRcY#f3P{zCl^J;s z==rq$%)cUXkCjSjh2~X_lA%fk8X?Lhns{F~)_~xZBN1Qea%}=Yy^liSeFQQIe@Zm9 z%*xG%Di)&{(UWxhX#a;mW#Qiql_L&Xj2IwPlTxAwoP`mpDZa!7We_P7ah%b!L7n*| z#arD%b%>j+A-9>)b6om6!~w;>bn1iN2>za5g+l@z$auEw%AY%YGPGe12;AW;P@F-?NU*wur@JhX#fXEfU9IV zy>)mJpUZCFmGXZGRV}gJLJ!pT)cf1Y?#Kp0fGVG+;JqAg)dfq7@BcFcQ!+FOR>j(m z$BUA@#zo0?4pmwb$8Q_;lR*mv46?Z#IgtqPdh0@#QTvZ|Pb2z?e}!Ps!?ci0^P|Qt zx3Q$?6!`LAJ#$!vjSNK-xt!PlV~LU%`8y~Um2NY{u-$VM!?z4rtsm9TOia8Z!_ir^ zTLUl)3CHZ+G*@BrAVslzHk!N(A?g93|8HisPD2#X;x*gKY*T0DNx**jpjy(1#>w&SC@>kIG#8hpQg`!;a2Wyl z+7S$EdJifsmvU@;uOGEs!Q>}!KHJjP$O_!6;S!>8!ztT&9&%EjVJ&oRt6y zz6|Efi6mn1+=zoI9}4R-E*^0PLaL!zhY$kzeWG>bWx=_+&J$!2vHiFG^YJm_`Zt~a z?Wg0>e(7qmy7z9r$l&wGPt)mvQ}nz9lZX+2Y~-=HcRkRYL|w|rfK`Z~{Y>seX!mmD z$JcTSpz6MM1Te?klZ`su)EOO13Z$nc^7aCfO97m9k>`S%r18UdaZ$qR{IYU3SFz1Z zZ1|D1%1!R$)5|VHV=kkjA_l~9_#`Ah;UPg|xCrfDVy^NaA<|f?Y=7LPj79+k%8)S< zD;VH)zvV~Aynbn5K%<}Ed>eq1yl&6i^pNs5^i}Td{_IEh(c~=^IT|-o#E8H?Scvvk zQ+K3E0!Jz4af17Vxsenol5fo?w+%^euD0$gTq7P$Gi&yqw26J#xqWQeGj@ZOJdc4ycxQ^<2S+j1k;xe0;8S`JM9JY+6-N$78^|0F;Cn8~_9&gS?(l zdg!;tcb(~heZ$pRAE;W05q}c(&?O$3T(PRw)aXwXkyl|WM-9L4?n~Ya$~TP2ihTRZ z(^LwS++dTVWaA5MQ!9w8Wj4kGb%tRNy0HJPR7!L!%#gJ!Ulye=c)JyxOM!@x>39t| zkar?1joQHT%U+XvME|WfKaihUhZnHi=lKS70@e~b!!cn@G<-f@< z7#J%SFiMk-4;|eQ^99ZZPao$@S6Yrko8qqHTEFq=Hx=nrzSx7cf#D)eXZ?|S;>KtZ zO{BM`e1GZQYt}xjD38T}3nvarpG5WZhXn*G#XTxn->-G$rCGrJ%yUYzignof^OdAD z%-N*IaHL*qQDD^oum<+^q~Lj$esp9n_g#(DbVpGhHA2jx7{BxzLBCf;O(|5LatwS@ z#v^=ms=&3LcwvbCWv})f-3u+S!-8QmA~yIzWky+S?^A_RBc+E3k%odhD%_G9Tx?B2 zN0$UP+R_*aiD8o+rcbmmOYayMB9kCDuq=CXKnCnej<0W7xplt~21zq6zjDHY0`jZ8 zHY=6qWa55{|IG7)PC+J$nOVIIf@qarzjfQ(V50#uI6z(hlpC03#R{N`0L5qx8X7HQ zzq&JSOMqHdiM>{3n{>D*_-X*l_WL}xo|2t_m;)_{svpkI?!k-RvKcXQxD>v%IKpHw z#T*$oa&zZC4wBDa2T@IJZJFu7BR=PU?a&x1{cb_b+Vpft?iNqF$|7!OxLb^}bQNB3Cc)-6;ZNW4o6%Th;j+r?5s_a&0E!sWT6W zf5~kMaF2sQJ~d&>?14F1v2nt(I1qP&h0?fTVci$2OEoTfm}EXpfHet}p-DY+>7u;k zo`Pl+e};ku83TR~{ZZVZL{9p;f}x8B!@JueICiC<5fDn?k33_Q`5Tm%O5Aam0EWsS zsxb@D^r+hh%b}CC>Brz(w`?jihNueVF}h>_F}zR1f`S3tl`)NE3jyPOe%|`T1bg>c zKJml2&s~eUqKJd`x<2N;GSebBY*%VcX zo-$OPh3VrZ;#51G8OmRlyYNZwPt(6XtG2iUp2Ym+nqdJ&e&)yxJT_)(w7M-kJ3T#0 zn8hJT*x16CpMlZH?!Iqi(x1}v0Rx}JAgl;EmBLOFqh{M}B1zwb>5KB0$3l4(vc`>Z zKS5IiirR4o|KAD9F3Y@5wEnNr+*HmQF9VQDq0I(eh`pKVru%i_XD=JnDIWH&REUDb zY6LrQx*MPR>PV><$eDw@6Epd3i=K z5^NEkVN=Py*$CfqrmpC7+|<5?^p~g56FJ{6i*I}m?8DW@X6iq9nTZ;)A!2Z0E&~)> zfU6zCnhZ4G_uw-ERA{+V4Mj`Yb1T8)t-csi7GcKAg_I)>cshmsOL_#c@H``s-v9cVlZx~R^H7LSH5I*H)ZrtP@_8=ZV|cVp#)%9MbMmz?_XjX4}eb_ zgs#MsijHtGhtCeB%Sa8Ek|!$2t+bjHs*c5-k<;5)xDsaqC9!b`^+h@Ix8}K8+Pj2S zm|{qi{F=KvA^LAfC&Eivx?>r}P%S)g(jP7aRz#xdZ$AJ}>UA+l&|cA5N5A`ePa#oE zIUl7^I=g0y`wI1E(IDlm49T2D0LEL*HKoENWnpJ$ATQl#5~tpVD}l5+_MPp=@P0z* zpg4kR$WwDqr5c!I(2oY_G4&I=Cm!=us2p4H+lO)lkZellETN+Y-e8eTV*yORh%kpn5`;BG`kUi<`6+}M2NRCtRImh{%rn9*#`-XB_~bJ_=B zG0P7RZ!pnA*8Hk?FcN16?|(%(yM9+xOCR3l``i!d3i*lh#pa@oT=tZTYS&yT?`^aA zVo@_RB?p#a^cx|3%?rT(*52Mw1nL{E#SM*(q_p~u;@|lqeiO4I%*3>l12s6S# zHT;2g+5RzKUdXJr($J9lQg`x4p=!HU zUq-Mr16^~4-@vi%62h~=-5!YgvY|lwJ*iX&ru9ySFE$uH!NT=CK1NPjl^s&x0T>mP zq9zW&9R|R4G23O`EqH@+yvm_fBx6^_@g=l?*8hqeKwZPx#E(R9fOPkf=cevWu&5Yd zY(dX7HQ#=ccfoc14xDd3K1@iK<*T^bs^3O{8iMu?bgl)MuPVg>0fInCykas?W{jJ& zFng@|88sywrf1$>Ug%g@x!xDKLwXip-OQbb5x{7sl0n_AY6X7RP3r06bK1ZI0LOK&*!6IRiCbu$!$U4~%1u zUuA!Xh7iJ^hcx%E_(3e9PbvJ`G3|7ViAeFTo8FOxkZ-58yLp!JRv-Pb<0eHWo!jyeNH5ce(2`)sI}ousxEsJ_lWMkgOo+;JR1P6_X8Ji9%K z1Y+0K_H;1LCuTaI#2oLJwg8|Kz>&RuF?%V(?W9mpfWrao$M`LQxp$l(g+a*HPnXQ(%@q ziv+&X{#DuA0AG&}fL7O^>p0|-`=Qwli=vlNh$2PiZy}~32=cDm8Bi=Pc#O=n9qxv?lsT+m+^WXJUYO0*!@e{cVGi_^xr)6 zH3^Db@0`AKEDRG1{<&I~Z_ExW7HsdIMi&{x3`ICKfZV(4dr>lGdF6UHQEbKQaEIX0 z`Sk;ULb^>P0_>Pl^^>`7(WWO?V-NrW2c=pY>~&2MpvXkkVtrG$yF-Z`&;(B8@7{pI zdI2agyg-n*+PEp;-+N9AXbbR6T$1$xqSQGT$R46jcy~n5lB%cjiM7wxern63H5K2P z@Jf#~&bq`2o}XXAyix)D`IkOq8w`o;7aL|ng9*LGrhDL7Qy!YCj|B1OU$vgZg`;K` z1U{wGlYh8vCJA;;Rq+(IoUuBN5lVjYYx_8rOzZlrnYNnzxCi&U-I_ zJ!(B>a?ZI|+i<*wibRMFDAGw6s7PNin`zi4y$sICL3sC9 z@UADjb1?^oyDEU@(v*pYC7OZkG+EuNvO5*ctpdtW!_~4(> zkWGWpBvuUBVb8 zCN&@+eMt?&Fo;}z{I}qx0s^;$`1}CBf)UcwL_J9jr-pC3oZ)%3h_r^cA7G52kU_)* zz_kMUd}@_G&2V1p%-W|B`9x#@hX6qfy&91}cjqZN)`Eiu4DVuJlpW=WOyk1#ZO4wD z5!CJP)KqQiHkz3u5Aq?%Mes%^^cN>#zp-Qf^NIW0Z-uElZbh-0t+#+m^aJoc?jP$^ z`71hCAzB1;PMByoh+E!+DEO6!R8_iM=lH)g`}zhKT~j!=fPueKex+tP-9IptDf#pi zibYwnMx=ZO%Zs?l%+; z{H&`XB8N@dzRWVc?DqAPurpHZxLGTX4( zXIITtFht&t<3}m~wwUHWsACFvrGOKRm-P9yjl}3$B@d4YbdXjt4>|Img2m-m-BQ^l zahjiKa`2JkGgH`X&W{6Evz5OXjbY~nyu0z~04DJRK<%n4(x<|hZ9bym`q^Y{BMhQf!MuJ3FjsVj8SH8( z3p_p8j0m}mof(0))sd7nq$T~7hL^i5Lr_(z)WFH}__awXxabBxSx3ZskFJ`46(v(& zsG*!biUQd%kzoFh*%d3`FxiVD_z^HZus)uxebq!ZIKd6<#FW`GC^ zDS+z35&FtX6$23vvHJOys?cEA_V%doIGnaasVT%WJ&B)M9b7)p9^|>OeQ}U0Y|cXU zktGCUBouPcn|cGcs;6fGc@?QeMiU7n)SP&ROt`u?Ph$c3rSwfcN~Msp{*A0^Swj+0 z1y-W6G=-ez`Nae-FqegGr!2a}iU@&-V5qHE*wl_bIM5qMOMM9-u=ViWQI)T#X_F4& zLCeTizdix&OeKlzgQE%*_ zhpVt;Hs~Zf=MY z67S>PNOXjc_sq<9+S=AfHmH|nLC**c$jq=VIr~<@wPhbzwhHYkxjTNp3VDO_M+{gX z2&iMDv9QCv#0PL-0!07tq$~^Irw|5IfI)rF?*(kgVB10wTeD+e3A~i_7e$x?d+g>+ zb`Aic!YWX;`g|K4jw6*oe+@ukQC)zI&5MsSD zDTM}2`{Rk)!efWtvt_SGZ@m?7ZeU<_d2z@F082Oq=^oc2LB;N)%lDAqaf#$a3I9gx z%~GQE8tgjIPU}ee261YZLuLmL{GV@ z1!({(I-N9bC%f-I#-<+zzxnVn_yH$127}0pVrA+Qd1|$H)CsJ<##E9`bP&i{Ae&qmO_^{_=SQ4wAETG1C%$F|c?=VC_RE-e%NC7dWPn1A*vw z+2v!~PS4d4Pv%tzAi@e}k4-L*mOnF$ne%-2I#54OlN-Kih63Rt?Gc>ANeH5c zk(7@%?|j@(?>q<~SgbAwHB0H>&#~$8tm~GSW?n41WDU6|C(u&^v1&gQ`bXdJ@<))N z+=Q+KHNdT4AYN=ts4%Rq^O$hKq6jy_rJTK^{cYwEE}DA2sUR%V=YcH@}H~9B6WdMfW@%~BU=oIORv&jP6oQaOg@c#c% zuW=y`;M#rC&Qgq&3%I&ZZnS^aYz@e2B26Hh1^GW9i*74)&a(pz`u=1>l}{*NCTT_@ zU=wWD4z0IWp7H5pxC7Q1-7q)-zvNSE&vy?cZzUWcs{_Imat@yF{eF^y`RrsP;92|Q zQ=mC}%o zg+O~ng>n{M?k7D}-iKuY8CyLIA7X-UQ^HpO&IMyg%~T@$U{|<^4@txVzu@PZB%OB7 zseb$CGSmxYZZ)jnr*u+FjgaeFWdn0663|#bzvn3vu*zaM%efoi^haQx-f;EO`;miRe&T7`9oDd>V*76wNKVp9v5&IFx78e;0MKZs#P6 z{&9VpHF;HzERaAj-?OOO`i7OM3)qXyp=czScDA7MS@peByjL{FU09#YWodHKGJHMe zR|TPQO?(e>PI%)&#NbL03nGiZ8^%+VA|aB@pH*n+X`2yuGq~19s^tTF83>$`vD=2aoaHVk3^u6=nvVFn&opO|iXnOHS*X>T=q@!u+ zZ>-LiAO}k`S~>lRBEs*$oswk<{fwU4)j2%o- z^OEQFjD@c+w+9Z_@o2g?$=I;yS>YkR7Ky&YzTi^aRRGMtBFZ#td5`&nf?>y->*mDExxq!+8iCNET z!WutH3xBx+cNahrNu6Z?uYK@sjL`++S0Jw7S@mu82TpNkr$yVM8FfG<<}|0Rq|U@!#3mfN}P=zE(u@RlF)`=0GRL~#4jhlj($%qWxoS{Ak)K*e2&?OF!rFm z#MFJ^1RWtucAMPY8E%8`&t2{4Vjbe5bgq{K0PbAF((kIhUQY$By7?~rGNi(XOLLhT zlnld&rI?vi*EfHhQ>yjH1yvUtaBH77^Y?mZaN~aeDljL>JvsW(`6~$g(#N_MLY_5H zEi?U=t!=zsL%l0maEFwS%7oJp1ALSqSDVPU#0!4aaH7Wp0%=7Wwf)mh`F+W6^#;;A z8;Be|P&FJEKMV-ma( zcn{?CYw>*P@6pYQhrV|FZ-Jn@eM`vNcwSRqgF=S*bYOS6{;{V8bU6Upf&|kn?hOq< zAK!+;4X|12N7W08rBIKvTHH|;IzPE2?B{{jx$gZDKvnQ+vk* z-Y(GF-PY?cyCK}dpW#MPlq31BZ~%30Lp^;I^i<({eTSx@zX7KV?(Q`eR7R)9B1nid zwUa24R4_`v6yo~?f|>|=i{n=7yRCQ*z@lRFLlPd?836M;BoKT>g`B_k+H5a`Y8i$X zB!a_s&;m1`LsNjthw+C$_M=Um4aeNocy`N~r+5y|ywO$2FS2@7HS%sprhd z7)+L2+NTwnMm?MxP25>Kwj8T0oW}2wqhEr{0T9dr4UP3kj=->d;!XYrOx;JDvq10M zvs!c_YsxG$#zS#CxMmR$syN2D0G#Bb>n|2Kr@tV{fV1j0^b`e}sABFtMTL7EB9*KV zX+Y!H#Zhuu5^>l;`{fJakFj4tpdo7=5wf}eh?0IKZXZ4mPy^F5v6qBAtN@fvlTH=F zhM!(d-YBpwFe4;_!%H471r)x7{?U(f;8EfwPwoX?X}DJ3NVAZurqU|bEvvOqB&0}p ziB}@Zhl^i)9!<>pwMkhT%e`U%WIx;_A@k|wo~uPPMFA_V1MN%UvA4RQF_z1IAhF%H>E!y(Y=Ri}jXO&X#NE- z-J#2b8;?Z$L)*npbA+_Z)v~IVmTPTDfY6)&r6~Ll@;`liy-kQB zqPMx$71YD9uw*`y_~+)BgOm9qDrr9=m;-RvpgVNdtjb+hw!*@;)JE~~_CkUNsPYsf z8`;l|(*sS|#6#Cr2oZNUPK%BVFZg@wFA{(r@Z!&lXu(u8#zcJ&VCN-TYt|)DI-Xtr z;Cg{ySd=z;$Fh8?{x5h{U<}zCet1jE_6bmef0lNigjc%x?k`bP-d&G>@$ z=e9#F8G>i&eWGnLkk*GVIosK>bwyB=R9S0jk$E0(>VpCGt-AW&elM%z^`$!&IUkA{ z@((bgHeGDjYidZnq{uF!3U2s*fPB?p^=Gererk4Zru~1pe~|S%(d2~4GnE+pgP!y- z7{kLD)1^;q(Zh0F%m+jE2V87HV$(JKLQlTd)NaWSN&K0}fC=pON}8<@gUJW-9w@E# zr)4VYe#5=wG;p3lWFB$t1VkY~nJ+!5K#TiYUiC}scuNYP^|{^*LQY1jB|j?;SphLx zIXkDp*%M#rv{^)bFQh~V+XQaX=iWp&nHO%%S;wIUckU%}KYZ3U)A>Nj@M*5Nfpi!x zaLH|8nkXH{B`ou)9cU0>G=ZCC_fyr+z($806nJbPAys^Tqpo0H z|HZMm72eGIZRn?|E1ncF<6QeXL@pTi?{-;jjDjp$}UL94es)vU6r zbRcEX8|svYdcKS!^1FviIvTMk9?E+_UwZA&sbq3;wZsFDZD3{?&}cAA$yNvRC}hWB zJf{UGsfEvK47htF!*3;~cDDEb3Ick4Rv<)jj_0}2AE>$A1;N+*|1WlS*h*HEITg@- zFNK9blGrfBAZsm4$%R8qECIsLqZ?3@bPWtdbiZlico2(m_iiTGr&YG6z(NkOxQE*_ z$*KIVW9M%F%N*Byxu|a%05Nxxl^HzIwplhcZy7KyitQqu~x92aG*lAX$ zlVr7D>a#@e?>&>bnS-EYvAq&v1!_ezQ%O0;`%l@nnfS_LXH z?=G*FpX)Rw*_CnYui?LZ_|La7g*-B*1fwqc9wMq-yEhQtjeu4MT0{#Ec;huQ8)ncV zg{;X**`=zs~#r>g_ zXJ_G(e+dEKFEBj;0y23b=U}wC_jGMZJtO1?T`WNLh@; z-gh3L9p5+P=ePI8R)c~hGd-Re=rIpN99573=v#^EdjyrVy+HXE8PwNMlYtaQS98~u z)JiB7&Mq<@(qT06OEVjdS7>&iBc!3BDfPMXxbl7(fVq%pnx^0RiI__W;0VF*-XU>Y zPqqWv5Qf?sPLH%t6aKbBZ zn8yJ1pXlVs4*Uaqll`IR_aeZ5(Qxsi8f~M9p+vq6NSKwcGmmnH5F+OP#CBEp_sLuz z8{Z{>VLT!L+{)mQDLw+4jdOI}j>cMBDGo&yP>H{*S{_vC1wn6X{H&Olm75T1)c{|I z572NyT;W3soUgH8Vq<4#cLRLH3BZK&{lJLV{r(Z+Mh`g z0?sQqP*P!j${DA=w9Z}piOPSM1TNwk5r04dgM1& z{AzC4dErIeYkwm=CO8=}$kXWnNw|HDg@o_n0mcfm{Pk~!yTEea#gt$36hb4-5ekwU zZheor&faTp-@zyDZyPNB)nD}_ohQ_^4Qm6Ibz)5BKTh03PDHR=E0E;%JX)mBD zYENc869wEk7*z}Nk7_#>C+Cn8r2}GPRbn+?a(2t%BZ=n{kW`deWSPJZH9f9v*x^_m z^ZpiCzSY@(QVg2yuf%ijtabiu55mr~n0)4g6+&GRpw|GU<&Jq?d^1Gvc@rgfPRfF} zbp7zrugx_8&X`uGFGZ9l`|7OTKQ?LeLtd>RPHv~GDwyh_{un6>ptv(wgGPFe6tks^g#!EoYh_0XF}ByQf)F}Z)o7Y*}#0^ ziVwniri(2m2vfibozMC@17S1Ge;98wlh-PCR8PJ;4_3Gi;}#@`aZ{5?>6sO-uL||+ z@a&qJg!`o2l<~dp@Y?+yFG+8?h4WFg1>E85la-7VUb`Zdb35P@_wz#@vEYI)c@+_U z4U7}(kaz`ZkQIRgx=;5JX6TBWoZq zU7^QKF7gf-G0?j*wyRIP5_GpJK;%Jy&S2z^M~9)kpSb;yK-kiM+ahB~$VqTl_U zF`zA5h9NX!>WdiWsYmILN}L=R#sNL?)x;!+}6KueAa*G zFlpC4csD<#i)@0aq=2JN zKOiGv(?mz27v>|(5NH5uhs$wHHHE&9@blc6ES#zu%qF?RmK4Rav*8Dzmx)b0)vY4; zHycM6e4Mb`D}D@t9MPz$SBbW;Zcx^q{r7aN>AXP_vc+iMgTeyA%7E{pul>^ZgawdMB z|9Bfh!nSL*)K6EQpOQG2{+Nb^2%->m2~pUt=^S2LkK6}SRrTv<)(lV&TRzJx29?+~ zpPHwXq~XxxfEU{|B$mpaH#ttAs%(Qot&R1QRq53%Gw8)hbRT^(0KtDVOGCX^tnQ5a zduFQOQ@*4FX#6D2DDJ{cm(YsWpYq4g9&LB0&($qk`;rf&bsVFhgM)T9dC+Tx-+LR!7RJ*QuVPFHf1svQg zf91vjso8bEV|6$fp~`?pH<_=wa+b`OW&n&!IO$4*1QG+AkK793y&`5jB_G*dXvJ(Vbb{yNe5u9-$XGR{_I;j&9zUeT; zTQ6FJu!tzArJ(>B22#9h(FdfL?o(z$V2g6|Y9mJI3SbR%U_P_go>4VlatrJrW#Y+KntZJ# zLw?QK(~2%>qeeGzW-Eq_M_&?BMmmc7Jzwo+Y>0o=9O zv~1#_^JBALsSCA1k_pyzbFCO9H^=l3)3jg>^zWS3jw*w%%p@ zd$PKyV91)ErDVO<;6`D+SUo_swKj`E?gvF?077#aHX&CFsq;`nl^$aq?wfhI=OI?X z;B$I0b}2Jb13|83`8&|6MKa#UrmRri-T_WzcsQht>s%a&W}y%tiO~GU)I#LuK|8xO z>SXKqO!SA`YR#$@HfNhM?>5tNn=pPNN5LJU=&ZL&ZM*TW$wO(isHuK&n81GSg!? zde(d+GUhz*xO-Ugg1@-xepm&L)1Umv^hYZYQ~>LPK&V19=U{u;#(K==eo!vgGTsGC z4x$&*S2&BtB}3{5A-66c%mW6&5!s}Wwq#Oqgftf2Sz!q-X@l(uD%eyZ9rbS&?zM;F zH+hcz;VkGfy8qYw8OehtK{hlOI3T13Yn?wBdXi_I2qy6TX3vX%q_hLF-3?|Y+r)`+*AF>gEZhHqGGwI>qv#J3)tb8T4rsWT+40v z=ce_67hnHa@ziNfMe*J3aV$E=VSMPEPW**{)p%&+@VN zD@}VB-&^baV1C~z@CGVIL@TIFt0&;>iuljaSCJE6o>DHFNHrH7L{l1a0$V3X@)3(r z$p5JK;zp|zz8*->{?Q^j2BjL1altj33B7aZ)T+v`ZxU(23T{p5LE_7A;Ft5qVcAp^ z>?DC=?+3g);0QCcwrEETMeJxbYbGaL*;C_hf-*7+EfPn26gw-Lw!tjr2NNE|H4uW^ z&R4-o07W>cm`H^u2vFXGx&a(*`f{%<2;_8Ooc(BX3n8GESsb1g-vZOo?zM0vxb(ba zVGiPMF8Z48$ZVW$bNUU?JbyV(Q6sr+T(dBlwWEl7h&*o-e(oolV{(vr3-j0!kwl3c z=KUGQF5vXA|G(VHonrH`fEPK038$m>#l{a1;YB60Q?-cYc%ouKSMt0kXGE0l#G*?L z`^09O_Eyr<6WZngD)dqd2es8PHsTZ*7~L+ALxgR@?*UK3HQF?n<6f_N!_!aDQHLzR zS@#S^#|<_r%+Jtab(|Wo{~jPT>oP`%2$q3>)fwEU`KWB1al0c4$Dqd;HWMx9QT(Ea z|1h>Aec>ylCWULcHf0{9m%mEKSDp}Y-Pj5lFYin;J^w(v0ejEp zK-A_H6xj(k2gETJUnH2+=Vly(p;ZZT@;HQ}8!s4IUvV!CDY9YD6!-E#sYJR+BNnHR z&po58fIdQx(RBbPw3^5~eA>0+hj`Od24cAA74DVViy#491iH{jZ#|zS$sKEpJti!( z_kqq8X@6lVoDh*md1tEwH{vYl_6y~VT{0|u%~z;1fI6V~k!$D2-Tmx*!apN_kMQQUdzSn9=xdZ2 zRuj^Ml)21!W0X)|@KDg}G}iJ^Q%{~;d{eQQh*E41pg!B=SF(AQU0E5$DKH&s>2b=& z(HgidBx{gV6V}aAvNR=_SU7Fly;mO9TVwc!Eg~Z9M=xgPDS2YdrA4kUfn2IaS9U_N z*Rw|5WN~$TPR4{rH(`s^v=zrYq&IUPkt&cTm!v$5Mya^T8JCaWzi;5-%9WYTqNbL> zD{r0|m>pg*Awad1>(|jobLZRbx>VQ_iuItPky!jn5&nJKPN?{J%*xG(cgBlldcadm zl=~icHc|ppx>6L4(42ec#FU#`4N-a@$-8>P-l%P*d*5m|rrJ%EicIZYOHDTLvv%#P z3}+U+W+%P;I6msv2M_r$)ja)4^TciH#l zpvSW62nh6X z6N~s*M+bTG=0)|S@3eJFcFwMK&Tm-E(d`UJO7xVN{Lb_IOfzx%*X|sxF4^PF76i$y z)L~!emTL4gD9pGw1>2@Rg`e`*CEfeB=PFJIE(TX^ZLEBKr`HtpXUnYqMB|LnnKh<0 z<{=)}Z<9Q}S^gi$}-`{viT7e&_UqooCnT!A`uSe8T0 z)x=RWks9)CaWRj%^By?l9%_k%$7*$!ZtDmL@J&yU>I_yXkA1D(>h(5?8N*#)YsEeY zShSdPd5Yb^B?-XSh|6ziXejmN|E_CHhR>VHdE2rl?5L3X63dZy*FGpo6aRKmQmXbY zi}3#wE5J>clGk}+RerMGEl_)mzJaxdKi(HTdeY@ww_YF|LF9OIa;G$^_jIca_i&#l z!pZNq20^t~U7()@Ep=<-*>>8*y%1E1D7T%6XswAA^#Tb;e`pBJvBYfUyj!P<7Zu_Y2MiRX<{Gk)M*OR&a* zVpX*KDQMS3w1Q&%=-=Z_tx4P*@vcH!JosS6)Ob9{1O>>1tE=u+j4*IXUvZ>WWNOs8 z^Y0zJY)kT~`r{e|OdA=2f>Te|UM4D0ffKT(R^4FrL^b`|<_2ZntH zcL#oVmsreCp15R={ZscEr|cASWFZb>PyNy-x(u&^;*Idra1*F#6%%? zGN~thON=G{%g8e#x!W%V+_vIoJ7uw=Xv+4?ZrxO`qtI3|Aax$?udF0{;BOkAd#Q%W z4g~t9EpBKNo3TbMKb+rwk&eXUaaRAkckZLkbuo$uuhU(H{9!2?W0g|coFL|>Vh_0X zyeg_AIqL#h@h?v8t+Q>D#Zyp-#Pi}4suwAJAF+0h&L*W(kcht`is$weu2dZmoTL4I z;`DsB-=)yk?QMC(;SwsB^bKFyzkehSL^AlugDK`E?jET+28W*f-9=_*_UVc(XAO{9*K>11zQumJn74hvP$bbY{1LHxHW1u-FLkmQOA}mOmAyAQNBkqF zAZUstR<+CT=xL|U4^9JrSb@KUDm&M1l<{m7^x>m-3EtXli(N-Y-={l5mLGDcYs zH&=Efv(xVhUTN7?RN9nKRr5vBD99HrO9%UL=G>KiFt)3v5zL;B|Km@85_@Em^rvG( zWjTt_>xQ^+8i|HOsk@AL4yBcGlcD&Z3<%){ar(2A(hyeIdb#0ao+02 z&ePY%0#G`!H&t1ASv26hTb1^tvtXG??kQ+~l$TtMKb1yCdzoJBN0JjTw6mR^Dcg4= z6TTWwl`8kfmmf*!%CxVF{&nTLa#!sBpYY*^`cZk}hRfL&qNC|(nqVHDyuBk9 zfAnW7Vv#h&-@I;4>c9Nt;U4i9<2=_@7!ub|xX)TBwQ6UGx~ndbYUO@>o+eHD!06If zSR1%Aq)K699Pb}tG1ah#Y3^I-tCWh!mDk8<3*g~ zJW?>Q!?(Pu*9JR&!o#huAavVuoJ~K+W*!b=FK$aDof`cT=!~_WY}YU?R<|^@ zvX-k@k0aIoynu%^_iIz8G`;%2#k>21FE*}*r&_6C#AWj7ud(_1#zdyeBi`Bms!gv| zjg&3Eae^9IR{JTU3*IQrj=yO_Oo{lG+(h{B4Yp5GTk$HsOZLA{`iNL|LafgAO;r1h zk8lf5J?E{{xn-eWBnEXh^!&di-K>uEA22Yp9FJYXA5W7F@Au#GXl$3ebKqtvMM7|s z{~#R0X{k~(GZ@3+4raPH9Ba0hF4GePnR4$)54yzI=zfncit z@rZZ#hqU5^%5@DXI zBbqgw_4}WK<&l|FK=X>Th2g6m>92mUz77okSS{8Knd5O6SKic=aL#zA1aGW%3~uW% zf5*hDpb#eiwX{xgUwq&my_mf#DN!tQ#K2;XuHr4XljA07@&`s*YAPir=V}-!OvSYA zy^$1a_d9eHLmBiO^BScp=cc{M^KNJi2{~tz?ED)Wf*G%rw>N_wjQ+F|i(xYKr!Em9C{0{B*qoE4 z>K7~B3zP3(aD z@%|^&!C75JedpWMbF=TEwwyAg4#Kjlzl=s%v#-kUoE7iy&nw|7Fdsb5G%v_vHN`fI z7ph>+$yV(tO5e`O(2$V+%s)5Bf13GNGKxm$VvASm#N^g)zqNNFA*oY~_0(CQzX4plLMmAeFUoBhidr%dG! z{BF>SWaW$-148(?;LnYnEf^j!{M;Ccc{-vz^7V;Y{?~jZrCfQ1tP!1SG0k^Hm1O*k z&smOTKBPt9BbMgGzO$>NKl8-W6o?y1>$+V^C1duM&Bb19Mb=?y*d}Uh8_8Gs6&@y7 zSgXF#Sz%pa8U?1?-)UU(;uqk1$HvCW$xHu&B!>Rt-j4^mzn3hr4tgVzZMMc^#Zm`H zYPder1b@}-bfm10GWSPzUpwwMFTI*9=~DmBga2BSaZFfX`gF+!%Ou6=2lL5KIt zq$}2Yx6E!OEJ{iCb0&~z_8M>cY)`tFlg;5ihhN89ck?Bke_w=aKewkwYFd39&G#MY z=Tti3R$fLQ)Q>y`q23}7JyBA~qvQJ#OW+u&Rgv|9MuKTN;pg{LD(-wa*q>c(o=6UGlQW^bS*Ce}?zBV28q>@HCDl7?o7|oQu@=1)Ebw!jTLzYFda;zMrriE|_;9z;?%tADwX2{`Wv-+e`y|5Jzu6{XHTMqJnacLi-p>p6={YX2--9QVw zcxP*zspKm>H7EnUDAJ9er4hpKHT1`|?vtqxpSX|8Z4P1qI~g8Wg4fAaN+W*{e`&kC z)6SFJbNFsN)7FN*$G2uw>gI}OYsGiVPJ)pGu2@J)7%v)i3^wohMysoiv(RpmC#w0% z7_ZMVL3OzgyWB5^^U*Xb0gWHNsuXDR!|GSHUu}Dtr6>L2Y%=kQeqmk|0?YZ<{RXFj z^)d31M=)x0cBzFgmIEJm?(N0G8r@oL<_?8W~cCR(bSg+oUBAtS?oFk@`*IPO`~ zR6Od7(md)Nxlk(ZiY@817Q4N(!-%faGxKHiD7yzO0%;Z%FwHnm6L7FT z71NbM>`uzaIC`+Qtk!R+CWa%)-9TwS3O+MgYHXv5?G^rh0?>JI&> zg&G?CClNJ&W?hn+&T^t6Drd87Mz*ThhZ4?$?TC6a6q%BEH~W_y1^AAUz4LABS2a25 z>td7-b1Nxy9TVUpf@E?Z!=xpwvG^O~D^c<1tT$1uUky<0jzmje6PcQHePpZkeUZE> zj)7v`vydX0cE0e0*w`5fs@{Z~*}(#Blb+d|C7Se0XA(r!v`x~T(CtX%0`5Bg zLp;aVAIj!Cb>bW5@sJ0R*>aGquN+I8I`f|D+_zroZ z*Y(((qTOsaB(fr%d2Hzk`~JS3dvOAR1#ooLy>$0#xO#S`a{oo|2R(_RsFIt0y_IV+ z!|;r(A_8~|^o~E{l-DESptA&M6s#?6t$Q^cJoCV)tC`&E-(p`QP^%zdJTX03Jby6n zCH(u8bLE$MQV{&js$1_HJU!=nH3rZT+ovK@Ypv055voU*hl8aqzBl21idlx67rxQD zqjrA=yi)9LF=-=@vWOj}scVX8MRRj*t?_FvflWsCQuP!&<VuxMe}Hq~{@cjUeTl#MmK=!qEnDk(hwBR%eTt9W_@{{Lt>K>wTUO)dtZ^u-FQGP< zD;E5@*SVOldEvY=nw&M&H>5YUXYlB)4^kt_4KZm;^!O25u@rPOI>#}dC~Fjl{%a+2 z#WWk*`TF11gQ_PH7PVk|^HH3>?0P}}5c{|WN)IBVwgs=%5<$Q6R4)E>V(+2L@BJ^} z|Lp%!_0~~UZe6@Eq7njv(jX}zDlJ`-3KAmH-6@T92nf;&NQZ)eNOyNhgLHRym%ul- z=e>7)cMSc9bB64_p0(zh^H-08;LM8}wYJNLO-_5Qj})-i_-#8jV$Wod;raMFlTv>m zWIr6(74#Jn9615Od`aGGJV4&%Aj zw`Pjtt;1Fg{I2f3SxJ7%X7<^#U2_MC#*cE|;d!%hUp(<-r9$)LZ*i@A#U{&ejaz|v zEFe^>@V@_EOj33sZ_@eRBe;ZaAg=#wnKhrhR~HY$)>=yVj~3+hGm<1(HP3X^f(x*8 zgcWZp)CJSm{ra$qq^vaKX;|wcf~1DDOo=3iH_Wn^I`!Ld_k?}q{^FWRxQ+d-`QAwO zgZNw7i)>d;^CXoQ8nL=oFBYb9Ox;QsFy9Z`dU%+`sFspzOMo$MuT^CTA-9O0kAXLrM7Af}U}A1{|O= zgT1Km7}W;oCy1VWyg;ek8)xi4G}n7#lQx)D@-&PKt)at3)SRaR^Dr968@`@_6#*bH z1>~-s zBAc`CAW0nU&cV*+4D#OLR&Degp;b`HX`bm$N+u_H-;VJohzijvF(F&Gwcp=Xjq`;i zywD=@$;!7WH~SN0Ug6Qtba?;o?(Az6|B@WX$O?t2Z*#-F$Kk39&$BF=7;4>FYZtwZ`a!NKuO9ZUB$i zWHIC@@S2NosrUX84vpRU8fADowK(5y65oFEisn&(dU5vD?K`qJ~J4r&zsJw3t7Lar4jI%^YqFE8}#(` zbt(;%4qxO+bS{Cd+mep-)r;A>jR@5eA^#XkM^1kJ?12{?h{ZZ8su|35 zm=t&#`H|~{^XN0vOX#QI7W*u(^a4OZB_W)Vu8-HrKZ|*8H^ zw!PHzo`eb@U6rYcf zSB4-zw*W0+HIiO=Bb(Iry0Pa$9zNh*vPyc}^=NF(fBb zoWJ}pCDP9HbabYVw={nWhQgav12`lJ3^`4`LzKu()yz!DFs(yvb8_5}M3Oi;oQsIP z?EZs!_FU;U^QCPrp|!o&lf0?>-Cmxmm)cX`bla1pqc+>0l|~nZf5>eg)6w~aTD0Iz zJPvPKS2v%05Vw;Ikd}5R-tI+#$gy!0S3Fbbt^;RagVq&O;+40QwJEgwDkVbkC6X1b z35qZ>05zgB{d0TE))G)HtQY&vOVMx5BGoK%mZ1L1!Iw7*=8a-_i`Z2%ZJ0wB0C+g9 z9224V{dMKKi|APG?t1~FGiP-v?wqLhDN1QJ_1&6V`4*mV(%rvj&5w!-Fj;9SuABqI zN;CA$8CTj+{W;C;3}j)wDi-1|e?&h5)p6S|s28NHrveq9={>ojiO4V}B&@A*eO*w+g?1nS-Tb87Iz2YxQreQo7u%0pSIrOfe)0b>#uL?)J03u^|QgTfysS-F3x z;{9NNDGSk-0Y-Gu6ZzdVg+{dcK`hQzTeFF$9`ckg5grl>p`Yej8f=@nykfnD+hT;u zd@xZPNmy7{DJDced0SmB_>nPF9I5$M<=#~>(Sm(0jU=M=ZVbtUp%{Sr7_MKWVIct~ zB?rF$3Ml$>FYyW40uyy!)(@6I0F|HGToOWE)3}(H4K#n-NRWQ7Mr;1V66)Cd6e1yI zR}Xg!-!UaGSl+I4x(^C1cic2KRRkSbzIa4mQ3%ATx46$xd@EM^SXM+fGs)3sQNz)R z_jr0bp*0K@YhVOMAAXKndPhw3tC4&6q3bJMXo2D)<0esIQ}I>9FL$r&X+#6ZJ;6z0 z!p4#>wSgjSfn5$uYV<}aRe&5YA9j68zD6N84Mys0TCtks4=Nf|rgkmRR2G~CyEAn_bBlu@ytYT^Fua)5-Cyn-_W}0 zi3+GVYdkge^@|vnmxO6hu$y3(2Rs7COILRqKwPQ}>@~js**{%xvXFan zV-|3;-O(89qL7~(hxfCNjSsemBL<(reM5{>kAdr2qUNjg{ZHZ5YjR-ABD7Lin5;!_Fr%zZk`2<^ZIeDmX09oXbb)~^?{dT zKNd%bqEEKhJK(O0!5bK&nK{}%e3Nv!M)Yw=YLU&!`mN(~SWtb>I7?!@vT85JMtI0E zJDiPbJ6BAB%kdtew}>I|!EGIQP$TZ;7_pe|1qIH-6+e4-rVg)H0E|PkqKx3kzMixM zWImpSbGppL=S9avB$&zW>qm-wzL$zf$JOKe_+!z_3kw#sOn+NAVf z(|F(8aJN&T(%NqG}+g=c}_?fXsu(+mE+CSFQ zF~ge-xLhn|LJ(R;$r&+pBfH{KeS zr*p9auAJH)XS7HzHA(czZsG8r!@GQZd`X^H&Ph)50R&-98nJ!gQg;m$_cscV7i{RG8)AMlP4YbR{W3Sb zr8n({5F%Jx;y;-$QuU;vko3;AJg(;B@SB^P_L{pkf(~N(`hZ3%gdEl(DITXi(S~Y^ z*OCf}*;^`&8eXcYtnL0)wa93%<4GP41x0VJW))MpyNSso^WkhNCZ_Fb2YB@kPY@xq z5xgblt&$QOyq;7k7d&yS`fASz?C`z9X;@))g2KH&>HCtLWNKoAD>-o$gXSuo|$1J4W=$>d( zXr4Hk1$0SNn{m;VwcwFVphWgkcgwek9DIF}gTK&knc8eC!<>Cn^(&2`^5;lZVOtLe z_IP3>V?J{fUndssK_B7oNrxD=gq*TD!2p0b>0D3F?$=>EClsa}|?KnKy4bo4$!;6{o5xj{;P%^-JqEXH!#+lev_3gnh|9 z#Wl6$$^1-TmAiNz3ER5MJXBVW^Tp zt$Ml0I6dOofY%gUjIkQ2XPQa^*FL$sXKDL{q&zcED7kBsIX#I*gG1=dNBF^nN;~4j z2M1K!m*iw-TK4U({t|6%-j2d^0TkHT`s_w{;p2kvPN#jSh@?YP)G0F1(?R5bYuIj?*%XJ+=jFmp|Rx_#cp1TFNYM?#@*!tJ4R!Qst&C9htsWY` z#fH$T3-&MV%gqukN!iKfP;3_(Dl zSdYXBusk-8s=^olt{crz5!FtRYibbT%s1?APiqhkwftB~j1Vu$e#xQ{{D>qB9Y&l8 zy-GGdrsh#)_0)lbp&8>-rwda+I+)%MKP}HB96-4pyLqCCRv)xG=TC7THZ$b@>SzpS z$Wcr?uaMC}gz@z8_wU~yeU*a!IhwEgRIT{;BfP1}$xmTn^zcGOFWBm_j?>Qmmlr46 zyETfB@gEQI_zcFyk$8K1cfCRSRm>|2X4GP&XUEAyD3fP&V)*y`mdL?z}Rka;( zBrS2qFM^LHvIY)Lfe7VQ`jqoE!D<;(?=AL0=x0+0m#du+#lzsmX`fjB_&-d55bFIZupD{6;^rWt*%{L_4yj z8Jq}Uv7&d=+~hs_m?)94BBpP@qmw#&VQi0$IW&IhGf9lI+294Yo%f`TW!lUAp_D)C zqX`<#aND&W+aOILwITHJVjFmvTyoz;vW3MP@4TF!D>w3gmTt|pj&(Egb$@W;l+ zZlRDg_rv38|9f^IDI-%e>&mQA{uyf3QT5XDBcvOG6E<-OuE|kZ*~8UBEaOVvTn5Be zagL=4%?+)AGgs^>Qvz9C_|PZoXWcELEkRQ^=Xtf<%tqZfG1yf36aZr`}!a$ASo(=UMADNNCTnd~Q1)W&D%T9jn(m=M45fK57)fr^NW>+h^Dd@t>5Ff?Pv7_-S0F&v8ujmAjd>| zZ~XidDlB=Ik@jNbND&)rJanA${VL*?w9%}Bzc7jxM2Lo`FktOyhy#P6*MtxCoi%W6 z+oY*cvZf+UTe;{|I#CHJltSn#<;)F(;Awq(`&uBimrVbfJ%o|lY>u*4I&2Jof9R!S ztx5s#btH)ZpwRjzj?9Q1j)46t41`?eqH&jYI?iAC#g+)XbOoTv*=dQYH1QFFfBjR1 zs@`l9{aL;TfqbdvHH@@`0$y%ErsN1*Hh=9hOWQu?P$@eq>fRq2d4f50ddd6$#>8u0 z_vy;#*r*7k3qdtyQXOQ@t9i&VEuJhk8nuww#tQp#a0EuRQ*sU#6=dYk)CKlI54iuB z^!MYuhgsQsN?LMC&ScJCv7+((Lrax>op|moZ;jHptcv|CdnnkmOm&x5GDRyVwNOjO zFwrm2g+uYk?D6^_jC4P<6-c9(-VR2n+j!Xbb~pH4HH7rn=pZ(ISFTX0QpQSN@qMMu zUfq$*Hw(6KyCcR$7YiIs4J<+k%*Pj^=+KvWV_Edb9^?~%=EY13^<@Xr^5q~^KTwXl zIf_@K6&4>)`XY=xO})&Lj2CtHDF!D^5jB_HJt9Fs z51kPy(gHL^!f8XSR%gNhy0ySo0accfb#=nFLU zw8h_TvhS8EagVCZnV27iT?})N{#MWLu2_P_A5~ZX{@OJ27uTnX4qk`Ua&|PH)Sp=j zq-FBvy}bw3L~O)|yAHa~Ke_7r_To&jk347(C!sYDw^dDy5!J4-$>RdH-u%HV4G^~KFiS>~qp z;lQ1hyPPE1aqJ~hSU@*7YKLe(Cnv@2!Ci3CI5sHXu_u=MYwbHvg3qbMhG@KMnwq+f zX~rX4s@R?M2hdUcUG}F03bFyHgD3YookcqBwlgm3!|@7HfDE@FI3xt(a_VZ1DO<1GsG6b{kObcP#V8P1kRl zzzZ@DdWCu;tkWw=cwmwhCIya0VH2PGN@C-QjnlYZ2>KECIz z6JsRAC*xK+!%BpiF-7+7wdqm!K1u^6-os0c0IVY@L=g?TNv)anr6OrV@|tSJD3btHE*T04HWzzO zY*O<5?#=m`zJK-UyqFNnj0`brdK%q^e=ED%3JrFZj6gQQ9()GCY>7)`23jCwL)|AnRTkx%&C9e}4 zg8_Y?^6z0ncT1z9lNk{xKLaujro!7I0@6Trk2tPK;qS{rWX22$OqomRa>w5WSDhg+ z9y|1Y>x4|Ef@y`TDYc~P*K(dwgj9ea;-Mo;l{acM#SiK4trKIRFj9}EFtKF3GIO># zy0?J0oba8h+FF!3h=V3q*<2NfNM%oBqL1JFQ?Um0e9HB$(HgY2%%kEJw0gG((rAp7 z@`X}U#@Z<`?}^A6tAGBMqSYDwj&97RhSxt?`IvmwFHmPKj1kJ8i2ywq)bm&DWB00#>(fu<#IkS$f(blFy`PUx!2$fPZxWA$Gdp#>!yLYK>=E<8T=`e*Uv(bhku)tpJw zI_mtVL-y-yVz25Bm+k8-O8PtIFt{EJzjKdao87OCgDw@Ct3{C7do@TbEW}=}tr<_h zTV!fcr8=FOeyX3W6^jY{i!M;jxgm$|9Q7?E!$GJ@NmVpSiN@Z^tTMK~WDr!MA>o`j z9wYjmfL{FxiZ4-mFzQE_KB3=D)DK@Q2fs;$M<3V3gVNymsA`>m?k)<|h|q5x4)*LS z!b|VTFYN{fk&jj4BRhNj_k+(ekw7LL%gX&}Bc;-whzkV)puEEMYT>}bJe$$>n!Do! zQgfL<%jplPCGUr2^EU6ai$i-*xF+pCR5(5{9r;1^saMD2A!|~tNkr(&97mm z1APGkcvpeihRr|0rAUf3m{-mU8Ll)28tF87ywC%SG5Lu zfW`bJ3rr!JU#+yw)PXzKS%JHg~EZNB%H@7D%a&OD5; zF@J=-u+vZ20Z0l3&A8)JSxVYE6f0xCVSXHA)&UNX9iW2Pd4LRMr`o2*?abPxj^Hfy zE5lpV4ELk4`weJO_zWjx(j;Ek zdT{uYK6LfBeat-ip=GRxBu6&vO_s665A5VF60g)84$$IGwO zBH#`?A;#SG+iJ_L?!(EgG9hvC(_qYiS9FVKzi`{T4{28@D$Z;Ya**;r`i(vd% zBD6CdZwZb^_4rT7&H)ymejQ9R=-n*iDlea51Oh<>M89IzJC3>#ET|P#529sqO@~j_ z9Vh?*JK1xGg$0@PqhE>XVqL4c#~ijQnE<=I5Q{FrH(0DE<-q~CWYL`U2YD8raWxzB zYa}CVbXLAscR>i&uqkzHOtg;{wyc;)ZxT1ZV3BW7P*f_C5e=0J_@iF)@56ZJ6~WK3 zeYi3A?3;%g(qqw!YeK#@(2Or9FZZpGm-%^t?CR}MGOmpu6V(d&^?*)gp{&f7P;fc3 zZ&^`dfsDpAr6U+sBA}54&G4vW`h0lr*UoP*2no+Q0&8kNSRSs<>lJvP%}^umkN{** zTj*U|sTa|V7fo_J^HsLmW)z#P69XAP=s93lA7a@rWH>kRE*1AJJp#YMnFI0~?H%Mv zGL?hp3F1pXh97f0opee_#$LM7$JG~topE9=Z)F0z1R;n%+4J+LmcPn%<1eafk@hc( zgyXn@y;Q(YRi#Qk4VOP0BV9cTp(4CmfM>GzdD)~kem_$DEU(rU%hq)1DJ#R-GOZ>{ zsO&oVz#_jODz$$t)3opPTRT&m(Ki;^1|cH-zvLe!Z7}_DtH4*Xjg?;|=JOxS3`x|= z#jC*Nk8`=lJN{>Asv)LoWT-nSxR5t=Sur9~wc)sU9wW&(j?LHvjjP2z4MyxBlkcNi z|N4s*q+1BtwugXPpM@%nJyx=7`u8MiqMn1g0#|5U2DCY-FB}#=2Gk(Nm>;0P4bH>; z{V3;QU(<&Y?7KDDBS{qnYbsRNn#s}*J}9oFJQ$Y2^PyA?jFq3y51d$guk0f`T$=2( z!KFf6AWXJREgepCpY1V1?E^2O)5p)vh+u>gYt!~wCkW>n>;zgFg7lc3J?PB|f#(Om zg5u}lmdVQ^V>;#p2?6&rHRLrK^bpxF3HtBD>!cyy9Aq$ml;lhsiqYM4L?zXKfrI@* zoj);-NSceuv9PF7g6RbvYL0A*QYJ7jh;I{zf~AN>@{9BtkjJ1?-ULByu!qRslE*+RBitTHpgb;bT6BQ~WbhDy8%@bs zpdl$V+nwdECs*hF58(0waQu<0Z1fFKv`3d&ZA_#{jn0$M%3WG-SB#u&H>xX~&(9f5 zr0a9y6Rs~kj%WafI`9m-_Pxht;ig#6cm<#%La|XvH^B?=yNC|*zj+uuYBW z#WeT5??Y09oX3Q@mfWriq&vx)xs~2YjYy!!J4CmBNcTHL@W%EnXC9r0(el4uE2w3$ zO-q@5Mfl19IKtri6tv*^?+9fgvw&*Xe0r(@a3KRW;0=8RZ{z}5>MMS=8^_L^D`x~k zwd%yJQ8rJSX|iwYMU0O?T5>+Jx2W_C2NWxDsPj*m=0Gr}Qpp@tRz?)a|33+1a8RWi zAr3&w(2-OZabShWHcpI1fodRWzV_I)0sQHzmJr!2}&T6f`aFe7t#yhWSppDxC9lM9u!sk?vJY36csrgd$0`bMtr z1-Iks`sA_5e~FdWIz(Q7e!CkQY;XB z(-xK4J-6=3auIyOynC=1qMpjw%DiXR{xnN}=*j{FamK~rH(;%MfZwJQyHIV$+Z&>m z3@^yDNt6l_NlTMW;|LV}DD}#HL4SewYpzYaT^N2y*oI=|0k2v4sOrMFSaIUz#=4GA zl_;+6NO=$CsfBfE2|=CeRxpCwPPA^>%G zSZ>t2lNXo9}_hO4E5q%DCAkyFlt>v{Xg}?2un7)ZH=A8#7>r@Wh0RQj(Va^0HR^@uv zI%w^q`JKX!^_VLM{uYkM)R!8-xqlLuK)!MO|0oXk3hwbgt8@*LZH4DleY|0#e{v5n zAFW!3K=ghOviEA`3~*9`0W081``p|WX!H^1iw6@JBa-2k=WDsbu_yoEr@H0CH6}x` zBTO&p#%GM9@2V+iCD~^S5F$tc&Y;Etly`bmaF0wd?f}w_6j?4eZh^%DTx9u++bThc zC^;|&&imnk8TA$>!6ORUjgff*CC@bcgO1j>`koW8>70(1rxQE03qg$>HmC z)vC1`APj}gU?WQ5>Eh^sulHJK4^g!3X>OqHE-&M{9XXB{;7g8Rw0U-(jUNIm*Ub|NHQ3VWEL7# zSb`1eKdp`spv>aiarM*;dD)E<1ESy#Oix9xcPWY55F8Z;IW@M%K*)9A{$C~fD`}o0 z0(wfx-S)04>A*F!b*fknkX(^#cz6NF0Hob?IY(Tqj}Hv5S#)J7Nf{p8QhHI}*&CZp zgs!+MKr|zI)ZteoK5($ys(QONZ-*kPOyUrJt{1>6W9RYzhWQ6@zLgb! zzknwzN)o99?3Y-Kq-PeFzul)I@oGN+5VvN@>8AuP3_ zkCB4RBZHl-=%F^}&5(2hbD2*5#{VHGIKjaQ?w%G9an;s2T4!`FRg!Q%=ve`E;P>IR zHSn*@SE0-zP}n7$@;L1va?IlQ&q-x3RjNLzkU0LoZ2=a0{khWRo9yABAkB)GbU z==4jU!Cks%+%cB$rkNsBJaQy)qhk)7fgq>B+}IYk_(>0XD6xA1-@3t5a~X@DJ(&zv zVv%ROK8v>{}@?MPuPe@hSD{_PF4d<$)YJPT^k>=cFe@_+{rw6pM}kJ;S{7e=sYt zv#LAS{0(*KmBLNuqR#N~MO{+c`JUHNI)WA+v^Cd8H;`a>@(O*51dKnd@{)=N2iMWj z%7E%kX@MVi+iTekCy(AytJO5aP~*nJC?Q6v_FPGo?8GBlOhT2c=l!r7ZM0+ z6sNP~h_UyLvlm>&@q}O)s7R@6xI6}VUmJP4$`dWJ`$)zp_%IEw*eZO z4LWbQgQ#`}H_-e_-*S0YqSoA+nZh;SqgSyr94HVWS9L&RNjQw2Bzq#u#`p~iQ#C%S zL- zs;j9!?vNhTgO$-~qqJ6IrYh(YiWUmkhCyR<2F?p4Fe2>Dkh-Y46+Zzp!I^oO^|P`& zUZfZ22Y*83Pb*6J@u57Ze2r=1Q~&c*(dFk`Z2G=LFi3#E_)L!uKNWU2@a2N)E92OIau^PE#+Xm`V45NW ziD)DXgQ9!YcrQ^2P9XR#;y~l_g82gge+YfPKvPqGiKVla8u(qfxRQ0IsC+^~VGsbx z>*Dc^4+Q3E`gdp~sq+dyfJg5r zTVm|24dG)c^1H?EphKyp+~28zcmV7mixzqlS;Xb?-};b5)~POm@aibNrz8 zAGe4N`5Nr%@4q(+oeQHzUol4=Ipb_5MHmobYg0pCX&u}Cq}{}0h7RuF4>QAqo=oI# z;OaoAI(Myip134l5-%aF%^87MlB=+GPM52P~}eC?gf(~q_v0|6eDXmEU%7kJ*fs-*ySdyxM4Ts3STVuLF% zd84kf9AQXVeTs}T`(X!rw{1@k<)hOsC|<-Dzd^#)VX%ua>g}NwIrg*4(Sr3W?nZa< zXS;6zab1M}{WU25Ks9Z(()=Ec-40sp3{mIm8lG+<+S-CJAxIY32uyzf5*Kh$7J~W_ z*islM9I>$G`puj29>1Y7k%e6V00?ZSmmS%&)|Q4v+cf`1hkZvX1og~J-{_VAJT!IJ zMEiW|a8xi*&<661fcWr4YPLfWDD2$mo#=t837&r-Kr=k^Q33x`pKQ-a``6LX-B1B# zAY!9w!aZQZDMb4gH9P`#ecMm^8E0d^_jvC?PNfAbGu z3(z6QEnQ#X#$x`}+=>^+5G76Z7bXu?j>H`&hOhmAIonj}XMgcUtE$FU&Klun|I2RKhDz=2jX#=uLu<-+>S7-(^vyK5%N$Mr@H|2*e=RU)gB7A`Da1f8&4e zUsKH&{0OAdjdE9&N6b@rhI{yp#vsHx@;^A6*)fe|!1QZHjJ~h9#P6;4?_d3a?g%z9 zBJ{&lyu|A}d&A8U`-N@Y?|N#5iHKoNQRxNHz~Fw@HhX5-=}3E zc7%FxW7FNZvU0-F>7lt~_)kTkDFIdvCZ4qQ8Ge!@aI6vR~iQB{FsUlh>XGaUI?&E&Fot zdlivjGJ&tj0#Bzd0}pYsGDxfNop{ICtln|~7KBgmnocB~2FPoJuOnYnmE??Ky|W8l z*hpLEKL+0K0g=ta-vj;JX`ArYN1q%H;A3IsbeaRp}$X zO^MJ$yOl8qL6k^oSDl1d+PD`+%%$lndo3b%w zONY(`h^m>5oUfFr3&u8huJc0r4-q;kMCZ9urhl8ibe-k?E_5xevGR+d3} zkoH$&%h^DhdjR!zKs7u2i@fMZKP_3rFgiDWGjK`Mj$|Qn9j=D@zYWXh^^;uva(HH9 zAESoOJ)ycVH~47r!8-(@JJnAhN8jX*O+R6`K~lEyl8_EzY)Vu_@}^4J@9Pi+Aj~4x zGbEqh6g6tQdvQn`3%~LI+7zfeALbP%!OS=Rwg4Gi#ezv=$r~xW63`BseI-Fee*CFX zg~$)EJb}6|(K)qJdoSQk&JaR3E_k`|>|+RlILO8R8e4$8;MN_vs=IzPl8-oCQeRs1 ztp=wQe9ts_Yo0l>8r+H5d42YviLL(8>?GN{U5ntp#G0A6lNEg9@6UrU{uPp^NVJlA z+l4p(epPA&Y2QCaV$R{!a!$9Y+t~?mHuz^{H}U0m&@l%#!m|0B!9{7n=CtRh)kSu1 zm?~@rl8m&*VmfNsmym8jQq#Un4e?0lNuW@kRF=Ms9#irb_q$*wKPR63(@`|bH9|^T zh1=dr2uSA}JM>+XfiA7?yIhZRw8ValqeJk{dRuBXUt}2goguUbF4(5Qrb2G$PoSeW z9J+dd1mtXy^_!i$s;mr>_v6DcoEOS)TeV6@jt}R)O4gtsy|0`fQ2;;N%isSf=3!cx z9>A=J%5}WQ74%r@Lw)!?#CF?+OFFBr7e@4FurQ|^nf*?sg%2xd-QZW9F!I&UWJp0$ zlrB{JRl4)r+N|J{a&n}*o^V5!^ae2C)LzN6C~+LZ?R zDL6obls0s9A=df5;<}dpD0gRS>6e%~jM?D=s!yjQbPuyOpi839+W;BslVmdjG+w^+ zJ^}*vlP{5xV$#x>p`oF{BpiX8o0}Mx(Gd|oMMXt>%Zmn&ZVEZ=QX)ZEZ*yyF`WUD8 z69}W~0b#f>3h1xHe1mPF(Nvfw!%#*m%o8T}p`)!$m-a1Y$vjbm_UhHj0dt6z}qK?(OP>9t=y; z2M>ZpzOzg#e^KYVHvRJY^ZciFbpyeifpdyDblvS+1^XCR{$Ad^C?xsof01@#1sbZXO$pg?wp3S65er1Qnuct@|J8C?F)i@N$LbNHNk~XzBs5zi*Y$^Ua2gc6OyngNA z(c2g54R;bEO(RE6qY2_;OziJ#Z}K;do?IIZ6f|Z9PCE0B?Kd`SZMqz*K~n~y5VFv5 z71fUQcIDyn+S@Bq=D&R^fIe!qkM@ke7Z6yRsT0~5&Z$~7|M~W@nVDJK)GZWXO`M$H;2{BK(;XmEU^O1JiUe9fa~x17 z$A{wYk6X31L{2CoqJdBc&iCdHi5|SmdD)e%({;h88f$%qA^nODz|AzrwtaB7z_|7e zLeCy%-L+XM3;03sR(r_&ynGZPciZ$hR@){a@rJ?SG}zYinhg;#VM|l?%R$KZIc2#S ze3Qp`fd}E#nwpx-eC}12Q@qsF)Sp5_Ihi0kn8ei7G%_-B_jtm}u2>L^qbqh!WFQHEkg!>3b9Dl_a44b1l(;4k zOq&0 z!S?mEPQ^eZ9InaHwq)qS7FLE?v-0dZHk`pz_SYr5ew1Xh@+T9&vnIC7nfB$5COAkb z-pLtX&hhKdj6kd)P<@dMH<5X>vBIABz468B5+8-P2Y_^S1*F4p*xvMdGFza0?iY-69UB&H$GIxui^5b7p(ANxeT?Ev<{OD@&6BW?U8qw0oo1$D_!mfF{ ztzKYoyL#{16zGH48X&)WAkBu60tg=E!%E_`J5iAEkm2Jzn2FW$3X~s{oGhQK{QPjX zH~w@ai&5rdf>aCb@z=oJU2CoXS1~7^>W36Wz^K>chqXCbQ8cz6LdwNvHuy+GLu0hU zjy{53&Iry;b4yE!32alX1Z{wUPvagUxp}l9S*|Wvjo)yfK6DW+`+Ve&H6=34&k_kE zTRM4^IK;VF!}j@|`BTU$5w1{e3Nm4_=uk!#S^Sax4(3ck{6=US#O!V88b@N+3WOO6 ztU*Y(fxS`$m>JlWgFF5GU2Tjt9xb?>z5jie5xJoS2YL5C4J|FJ|s-VnpH{iW8` znQG?)q*HkNNXSH6YwLdfO>FDy%M&iwL}GTM-8Kr(Z~Z1{7#IsJgxUt@hii=F{y1LI z%h#M_EAdmY&>Oc3>bl=68g?Qh6BvWjGC#RpYVRry!2yl*M** zC|U_E$1!R~nOm|rvGQlei4j0FXt10hZRpi}b$`q;9TCmv;cRfrGL*V5qvofAX)JKb zpacew^CrRkAJ&7R@gQ)t0&-whWXLxA#k|ScP2(14BF&qx3Ci8sE$FR16fy`4(=}H` z@9m@^TZHp7_H%dK4~@qp7g!T&?G+5I$vmQ>0r&2`6GoMQrsp|YeJ5nv7{TNMxqFbu zLs6UfFi>PX0^Tmfki7E{VjMtOFf2$!AHI2g8wRl7zeN8gY4|2*k%?BhA{-V-Fw&lx zNO*ellgaRR9M1vkUqrZ*QJw2tQill+v9H&`Sl1)YZa`nlwB1o9NNy>pwtN4KRd{<6 zpRf^<1q#Y4_61v!Kkz*K*MjJDzHHB1hD@^Wf7YEruL{?eDKsGnI3Q;KOb{}aFtJbc z+NTOeRf8gyhrnTP-I?Kv2sA;EWYC>g@7l4IJZ1zKvYICi8|(scE-_n;;3qM1FG>zq z^WhV5q@dR)PsS{-&{l>z=e;d>UE943B8J+T=oSbJlHWM=YOr^au)uL_{%F5?)$QH$ z5kZLIcrhaCLz0Rso)?4+8Hf}o2fP@pfRAeg*D?6BfS2faF>pae_+>N;M!SX*Ng58I zBHBhCEWeh;M*_;aaCdo{dt6J^Fq<|UR5OsD2t(-D!6ecCJ|nfCl+IqN3ik%mU75J|9gN>7D}|kiVUpi;L!iwU$xdf z=<5M_>QYjgB=qdyEL%v6cL~5Xe3CM>cIM>Di-=&d(`( zlucwF;>6ti-)<%*NlfCao00=_9dKNuyQ{lK@_51%1A|E`u^X=Yzf0!Q$zG$<0G$If zVS2g5N4OAI=#S^8=e{Q@S!66K7s2EQXXXY82r-ea*y+6clzvIeG3PE_oLWE@#S8b; zjBh||mtmpJ_I&^DdvSH~JN0?rKV<^i4W}hY`VPE`D+|l>u|es+xs6W z4Tm{vrR`<~|G@w&Qf-C#YyWqthCPTVjh3VKRay{7Qc%e5(Esw8@B&i}f8{z32vz=Z zQgFxuavWB6F{_DQ*k-8|Z{hLDk(@tOZ#S6a?4!J;J|IO88yPIwAiNVbtU*D7-XP-q zyj9iB*dr0c4x^XhSheTX^rz{n5wA|pC2#i=@xItTu(7p4x z&f=fg<7<$E3WhX36y)%zUbQzYK?LKOwN$Ul=5O~HsHem_IgUHR6~PmzxAs?Kc9rnG zp@sl9u*kjo!`v#lXFzy;DgQL&> zJ;yz7IJWz{tHbz^O+n0md!cA-uvww6r6&#!qqV-ar-YbOkV$#H0RodmyK%b1kfX@D z79oH)^oW>Z=p)n#JaH;IL|EU+Q<)zi`-9k`&Xv0jy)wli<`{Q=k;K#;qk)PD2_fV) zFFPb46beCzUi(Y!0mZ!m2CIeR55kb2w+>Pw@3=E z<0E~sa=DD;T*6}J|IT6QU0B1|D@9~j@r<^U*?!i0fL>%Q+DkGP5z<4z4h?J}$UZI$ zw8@)w1Ih@ZVT}4q6;^4`_U&gQVsEa}yG)Ysd^W`Kc9kXd{Z^vUderZMP!oS<=~c?n z7}=l&480KI#o);@$*OnnZ3nUv@QK8&^7y93Z$Y~q@@gV7fhd359sw-e= z{G~QxN(%@1mF5gxxV(}-z%QNKWRncR!7?pCKwK4_v)mp+P`XLvGZCnHYji2IGA}!R z%{B?iaj?5WxWRJIcPdz}zV$B(08H!1(#D5^S$T}p5eXbSK#X8;9dC6&p6{p%I_o17 zcLXKxi)5jxrIFkPoD+g^+DLsU=3N~Ca;>Zt9sHa`$%);v=tIX7`g*Bds=ae(zN zk-XtA%lrkXGf*H}$TEO-nKSnQvUP#V<~m-Jf&`Q7k3@KXG5)tC?owuvha3rI4FYlkFA%vPyq>ypwl{!u zp-S~euyHbsA``2}oB!7xX?c|Lr3l=|7wny5_Sv5y6BpQ2T%RP_Qp6}8e}2wRBmGIZ z;p_h{{t0VPToY^4f9sdz=b{StmvH1d`pnA+jLnLN?DC4JGt$%Y0>YD!O`~~v2Mb8S zgh)Mo$Vo%;79ewm0N>zkhJ8I|35X!!2&e#01t)>^Z$lQkLJY^dSh@z~j`2&1W)3d* z*`J&;j!~jKiTfnXOs_6#ke??c+E^`CMkXBeUkSGbPv= z36Sjd#pSJ_69eSk)si`IZTo-fDrH54nCfb>iF2U1h9lr!0GvJw^wI*qVj(2o1%9~W zBthk8_W|N06ZMYeW%(&1zywe^Xo4-Im~>uAeJMCV^MbesT+$XD@KWRWcn2X=QudyMWf2eN~&)z$oYQ_rt+m9Zn}?h3gu!zM!T19W_Y( z3)X}pT7ng3CSeiGJ6HcJ>F)xP&XLBD1Ie&}c7bo6F#4SHK zk_;UTp+XoP-~}Q;%LPl&2V6C5ebQns0Jp!@JK5AqVIOIfA{5kv&7&{nJb_Hq(F+zB z<^KzIC>icU?tutq2x@`Ac==@2}KbRX$fhR5S0)Rj)zc5X*h_0 zbazSjU9bMWJNNtJyEFGP!*B+eH}+n8t+m&Bo@d{|0pSqXXLUf4gp6#Bg2p73_@8Hq z{JS0C0jI@Ee9+I%K9T zw>C&T&le=qfFu*$+4;~n;nbv`;sGJ~N#pKBo2!+Qt$UzN|INI=;jk|N8oVV6OcRZd z@1tetpDP8)D(gMVlQJ-GNgY|vMXM-hgy2IsWYh9=y)6NJGZ0iA1%)!bI~$0O#%j{C ztTd;&50NDspc^5PvAL^X(AC>vDu94!2YYMcn&tC z?yQVdc&C8;hXWfMpQUMsuIu|ea4!TUbl*=L8h_y}1I5RyQ{UfzKn1E0R$w*z16~s- z$Igxh`|M$uWu?Vmr>b0ZxciT*4MajcxLVl14E`$QMe?xUX{`@|N9+N0pvs~X0JW;F zl8FaaQ4X_VF7$X{C9KaE=AAWUsKmdhvcL8_i|b&BQA<|3WfGcwyjy^wUfn$mK{X=M zNMc|12dmnmrXBTfhBSFMQ+(!L(^tBtYRd7Db zf*VA2(9mivT7Jz{$0)QxE?)=8Fkt4tRlI2uSY@BwzrItwJ zHdF}^4DJt4TK`!v+94Oz5mCFJOzjAL2^6;#A66tzix5GXz2ngHg;&TruFq}`*D|%9 zX)JJF5sHySvJX-Fvs2TbN#ug>c6`YKEe6<713^o;Yylrcj_tJstq|(_yO3)YQ`{Hr z4Og*G&*qR3kABl@%P$7*9MB$Oqx2L(dJ+g(Z9iLt%vtNa*4aVv8Aw0%Yc@)MO+<_z z(%XURK2>P@Lpy56ZCF=t*MSql4yc8Gi>U(RJf;I`VJ|qjoY&@=<85uX4?H_5IDWf} z_z>yPu~yTLyr;myX*i9?#EGQCG?V zS)dNC8Lhe9AR+8Xws1&ilxknR+)KhXq$dFmcVp7vrzj+|K$L|7?!)cehG%DzUIAAy z{m3h6`&gFnD>(5=Uk{hAp|4LCT{cc@xwP6bP)#?1v^tQH>g&!g(8BWrPX$!y5$M^Z zQ7SLCs3hJ4N_a44!evG@CC%S>^9<;7Uz`!)Nt%*M zD6db74DKjHmIBAXi~wyu#k`M?yaPxotFA82&$ecu3}{bd!JBUo-ABu&^_@$?Qb;Tt z#Hb(_6k)ASKQYRQ4GC=cuGV>MX)W6|eE)L2chBpQzwavfhje7(& z0|E&ljRSPk-$embp|m8iC$Hx?2oNVn9P^318l#T^}jiTgt9Z90^I~4 z@H9iiLtQy~XQeMaSE}XjtW`8VV}ZcM;JYmhAkQGqJOL{h$~zzYS#`A36X`&h@$VSu4huR}p*n&Oid$rEwNS)h4v^YJ6JWJ4tpVtnvXKNvVn{IkaY3zTI=(?aq1- zoyXrA$>sI);OEuTmowj4)|M(hLZqyPH?8ec_(V3y1@a6iC+EI`+%*Ny9#JwO9G1an zoNnv%=p3}Qz>@8)pUuu=nGp;qob1rn6wKI~=fs(^M}QV)`xOaCwZOf^hgb`v;PqRJ zb6yukz)*>3P`@qR3zIK=pDZ^NUenpM+S^NKMN@J5I2nOSL96Y4u}sxVDNU*_&DDnd zEnDxokSgLI|zEb5P=q!4H1(>cmyY~YgkGnta1&f^SwTY+)r z`RnFyZaUtfOpXl$7Z_39)Gq}o8t4OREl#LDDJ)SYWv{Yi2e>5UfI1SPjP@^iVAmtK zCkycgvnx&+9RB$!s9ZB~nj+18cq}NVj-Y%TJ?H_#W;nvqn4wGgO-KTO{jDZ3b)hx% z=8O3z?)UgUjz17#02o5$?mkI?)5hryU?B#FMi0shb+QwNZ~&%rZD!3DIQ&rR`TP-| z&}ghin^?*h#MRnytBJ&;khr0YIp6mxaYRBYQuj1ya~pW8xBOpncehF^ZTt1 z=S|B%-_Yl1cjo?h=tWamNZZbB=j)4d`f$L=IN!t&`)007*@q}8=$-E+L|#r)gAxvw(OqcQeski1 zw1_a6fd4@#iRS`^Z4ozMeHVZ4HJI0WbT_fOYaIo)N=9w7okA-~wpt3 zYNsGFoT-v`3m}ZcDcD9xW6W_t=tES2`BrT--ep?fWM07VBgCt_7oXz-mu|Et`GKf_ z225lUj7;i9P1vS?2iSKTyDbnXVMD5WSwyn6VZAhby_L4B zehMPz+_rv@#Q@u$^X2H22VeT@kB8{n_}T9`x~n{u78Vg>oZ7Sj+*ku>1};h(DCwEV zwHy`P>>s&^fCp5z7tL>87$zt1y~)u+#j!X9rd_A{mAnKIpp~p+6k9P8ylA9 zUxp97?cl$Dn@q3Ym-+{9Mi${pz7ZX!p%kT6P)l+-SjjET*W1fWIaAl%)xX<|X1q;e zWU|M|O3r2XvBc@=Z-(?G8FxRUC39Wsd2C!<&jtqvb<)YXx9X+pswG4EXl5w(YaaHI!;f*so}L~8BBF`8 z{(u5vdp4Zoory@p2l;Q`a_OYWhN`^z*3h7PA^-$Zkb_w#_9iE9!tv`klD->URS&kS zXBR-K#s+mSAYDa5qFg8NYg&CzkHKP?%75QyoYB^bmSTSlexzIxaQR}c9o9r@kavSC zu6cd=I5ti00k#BnZP<5#{{{~=vZ@UY4ape9$sYEXfRJCsioU67bKdn_<4PaldxLJO z75=9mU1p^qCcwLHCyZBw>PVB6q@|AwdHR%o1s}Sok@wf9=~xO)KRxF+D;r&2ZkHJG zs|ABADibG=Vey@1Q+YwFc=am5d6gHVbGhmEpntKnZ$p6h=b~EAOtf&zpM3c6A*^5@ z+G)vhr^(4taI`PYprJrQi9;9rIet@5gNdS&l8HDY%g>{wuBa=EVII%?-A;cLY-js3 zzCx^9wSR`0dn>qp7l-tpYacP46D8zB9vp7v!1M&??B9>GP&?)N`|HjosNmu`d@^;e zSQ5v>!vlwLmYUka9r5`>emky=OiXk_);J)ia;czuVY4+|f#u%4dvMfs4fK}#e%88p z#l*xs3l06&)fKJxMkP8m)&JX)ySuxqx3~B(bfMvTjIury58=RPTRXdMCkD;e+55O; zar1yUY3S%L)u<9>I>W)ip_MEiE?|KfottaQQjh)K)FfO`UT62ZwDcu|OC_bMs;ckS zV$;^rfFK%3;P@q|j)waBU^vwmARa?bhxbPORjsXA3knLrYsR@vLR9n&|nxXcaU#Me7WyR>jOJRPv<>f8$vTAB-G@V%( z73(YkjW9HQiRC(m&6@o8Zl#9}U}W1;8Hxw$f8#UmgPkHumyC@3i0-rrhUS`#)U z%+}{7JaIx}Bw#=PM`tIi-2P$-_IvbsvyDNJ+fybzeL8-_x9Wm=%m&ECsgcX?Seul+)bTrE)2oFMv<6)C@`#>3AacY`NREbz$hc59+=!)CmXmR72?0S4sy zvM?Cw+lPCbF(Dx#H}v$}hP^vv*I$UajbF{fU`&5i+$)@%p5{!Iy{`|CEbYCRI5{@P z2D77XU|@iq?Ro>EQNDRq3e8_~viEJrYJ&BBeKA?xb6G3_JBq(oSEB&q0gsu*B;&0n z_h8FuC9_$$d7cnbyiiQj&Jd&C;cye@<_13Lh7F(aYbF^a-k-`Z(P1*kRDUI#gYyxYP zJST*84k;NK1{Skl!g^+AyvRcl5)wAtf&;i;#`Bwb50?c51n4U%1+A^6-W%qw+M9om zOeKh@2(~3lbfBGK0`-lJjTs^;H$TVtuU*4D@>j_dGlgjAUDKu{{+KoZ8P?&r^+=nsE`7k%&cTz4Z{fRnQU z-A=VLvy+;VGCN!)(-_I}Wpe$FqvP&ouT{rFaq+*QY#d{S%L$E2Se&ai4UzRZ*%X_s z9qs+o4$pd|+J8p-z6n-1IxQ^%#F37Ujv8*!>>cs&@^bU=U}m@dGVNGJMPothQT&J? zUsZFvUZJVE8Jup=>guX}i=V%L=(A^|pL#8?@#L?8ZC%42%9RkUMt zdiuoWn>R10Mlfc+eftbnRxp_Dqez7#w07h0FY~5qpM$kVDgQk&$a`gfe?PC4Bo+!m z>}0hLN=l%(xL8d~>*lZ0+YPsv#?THVIS2W(FYzG9SnC@Yuv-1OG5LcEB4b`&-tDpv zIXMl9tw$Z3+P$yv69#A!_Wfukl#D#|^zgv=uY%tM@QuM?`o6oQgClR ztn}@a#Nb!{^1&LrNICDOZSh>YaiyzQuj*P@47JjYDvhLvgb=~fq&Z9z^dx%{9DHfP z&3PF-dCJtsM&>se84sy>4b6W)5Z|^NRWhHecF^eV7@&(hDMb7=@C4aWCxF)@J;waVq;;o)(Bin^qpcS8e^QYIxlqt_G;Z_rD+X57%% zXGh%Q@9ph`vbzI6Em0qr?yU?X|9K(LgXs)UoCanY zvycV2!0n&~{i`SC+-ZEYL58m;!~)hlq>)e}%Gom(BNjfsto z&C=yc;$IVOv__(`MwYC z!g6vJ^x{s5H(gu=!6L6o`|T9DrNWyt2OhXJwY6#gUR#SE4m>{GI-t#0vbBBv1LP!| zhKDWbrQC0p-028hJ_%t)@$m_DkRsc>Ux-KsD4s8%mt{at4F_n z^M(V`ho*r6GtBOEa&~v_HHPvft;V|cR2h!T?w+16Axn8tzPJd=IehDhT-@BzpjpW! zB`K*!NlA%?CBdy8b0OdOqY~J*h_jKEl_2B*nvmke;NjzE$MG78KS<5iOwh2X@Qwoq zkPYreO(VP5LP6EB6YGzw=I!m>7V!uS5)ex2FqdgRJ~{Ho;nqWM6U_LQjRXH zzc6H5O_0dCdw9g2AZPX)uD3!-3tVVo4X|%Z@)~yZd@^C%o+33f_YA^oVw+2_Rt&vp zH{stbk{~rGLMl(-pHvUcrSz{H&{O0;WqrDTGTKKOv1|kxf3sV~i@*o|lavw!={%)) z_^(StQ4nsEacXDe_^1)2Aq6o3AUK9di!Dj8BAI2-ECGO73GTMSn7)#5VFv7E4)b%k zC=NT`zw*pE3OwYFIIpxC03D_U*%~e`uHR;lQG*vXH8mtE_%1FkHMO-Sl|CQch9DNG zz=jT@JhGMOd2fVY48}Q7F{l&=4+qf4Sm5ga(|>InT-stR?{= z;n>Pb2Rx_V`yL#>?V)=wSQOGin0<+jjEsD@m)pQXf1z@T34%@o_!i!=^E*tkx~VBW zc;m@_R62*06x~Br=KBPWj*c+R#-Jj2e7F(_djoPDxEhOQJYQy6Sv=?^!^SeHDhHxY zvV=Cxiy6Gn)Q?pINC))_M{D&_}oCbpvO%6 zC6zrVCnvbFVy5os%#7-d8$YPOto-`qcz>%OMM4Y!vzD*~tAPHUJskhNjWJl#jm^!^ zL2lS>W46n1zZK@v13I2CKVnq0v<{UlXU|@>v0=;3&Ytze*e@t4DRFUe;f&^{2iQ(D zgcA@D2n8JMyyw|~-?BK2yp>k8i`&2j%?TQG`!UP0_8)Oizyk z;W;vr-2HQ9KPDxG5fUTPuTgAQ`buvj+5X1LNIH!0WMyw06e#>gK>rwgiO08I8n{#$ zlzb7Znp`R$QOVSGg{o7)-rU6;tye)X)Ck@iK!sVEnU7w+JX?LZWoF-+_{cQhzUQ66 zj~_p*?d$-&E(#mEnW}=qLP5Bhn3$OPs(-FdYBRV}Rj6xCO-)rE?Ja=Ky~$T7xXe0R zXPoSd1D0Sd@B+}W5HCHYnOv%OIsNyy2uDjgSx|( z-t*)9JL_BPo3$pB$#gf@U02nvUAuNqkerO@OJqD`7#NtB;$lJyFfef6U|?WZ5D~zi zu#PTlfPZj03adIQ+88@J>)9K@Nb5P;TG}{Tn(4p)YGm(VW@F7v&rZ)o``*;i(bj>B zfx+tE7tq_-n=nvmZF++bL9!K7bAW+C(}VsEo5!DP1_KKNBQEqw$tC$9#mGfTWjf#} zp_W_zSMBpaGLFs^1=9=;t9*Ivxn`%kJo#sH`gF?aE+Lg1WMZW&KCj6oG${?X?-=#o zlL@?Mit^M^LFBC19^i^jnH^Sh50ZkAA^8Zre~kza_sQ>*wdpf>xPShYHRScT|M~4p zRAQLt|NI^gM-T@2pO>(F{0@T&-UeQ7s*4Ew0s0X>0waH3!^!>U<9yP6h~d-!=cAu} zMiltxbA1s4UVroDYCqlVkLoqNWiT)>Xl!hZ=kw$W3JNmnO5w0;`!+RYtz4o#cz<(N z@b|vCxmhZSP5Q|}K>?k}>zdePC^`R_^YUQ!^Y&0mS$Vl2MRb|#*%o!pnb*N`3sHhp z*W<&T#eJ0pB*~k(tgI}6EgKX1KBk1ii84OV+mT$^G=*+MCS34`tIyI}N=qZr`0q=X zp1hv>o_=JjgoSJME4Q3wQm-`qBrpHw1sdT-2t)JAAD?H*+|I9PXlOnssZgpmxv_2! zr)_V>=@iGF+00cUX=rFX42z44dz_DoUfYZqmm6cg+ zmKxP9-%e;74<>f5wEBVP^Y{0Mz6ZugC|f{o`3;<$+_vd>&dU^TXM}W{UxSc0AF(bh_}(40JVEa|JUm=g zO^s2%1Myd8W`C$oy(5*6k57D3()!L$PduYRt>dmjKI3?fbo<;~qQmwOBRGJirRC0Y z3%}>>`D&W?BQZUF@kA^a_)}V@giw$GC%d_6Yunp_2?@A&mw!KJ$Q{pFl#Diex*r@I z*g86refaQ$PNVu~+0iB4%ER5&c(x=qOpa_?v3FC0)vV|BYT&K#Q&G(lNT=2P{Q~d% z1SJ2e-m|kw(?2p6carqb< z8_U7X&Fp?@d3t)<7Ycn?99DBoZEbDvWaC-l7^$vXxMSnv{hEPN6zd1G6+D+S2DeuS zlPWsGMamesxV<1HK+3jGPsf2Lig9}!{JR}PqjI`eP_nkQ72xmxyvhBF-dP4ziEk9C z=-STCkGeWe0xn10#d;^BE&^V+pOKNT2L=aEj*oQ@7wYnqem68TIF~!^EBpHTmR44F zbae&5K0~nG=!sG=uwJNb9hc>oUhfKHWM*#f?DPk3{(7{eWxg{GV%>ApXSi|sGf9bS%z2kBeFs1_d|U+Q*YzBQQC4U*LLw3kvctj_I%`g7nb zqh1L4!9rbhoQ_w5)BY4lkRJ-`0j~)9dZQ^5*lh@(9uLFjj8D=4uUvNJZZM!CK2IY8!6U2y4moIGbX8Oj1L zw_K==0(X>JVKR)4iP%VQz|_t%kM!YIKZA-w|w8yC|$CTClNg=!T6guHGazaFSQUav6lGWzQ>ulEzcyOwkDAnNmH=xym4~huf1W4V&GPyRS>G+XSFc)f!zGL$DbrsHlPf zkp8S^oT;%P0-*s{QDHhtQf)aa2ud&EqaIv;9K&=(gUbmCs5DA$?j%qk&{xQ$@eSst zd8r@X*;5v%lo(Is$p!BHz>SYyJ$*TV-U&4r^mZ{P)D@djq##{ zuHQpLQ6J(#WIj6X$W^M-g<#R?&sSRwBrpf=PnW3l#JWc%Bq05HLFDm=|LMNH+^GNf z>I#4l->nP3v$ONp!v&UPqJElDuk-yglOu#k1K-mS7T*AKQJ&*@>`|lY`J^tnGARH z?OuUGcZ2g0J*)YISYLlXjge>)n-v)Y1A}+@V1WpN(idEEK}{k`YeAbWP|H~?9sNH*(*JpLSod@_Im zW(PB6w+0{=qG9quAGzI!kckI}g~dooNo9ew-;Jm;9TnUg$?(fk$d_oE0yj<$u17p` zR1CZjgF-5jmX`M1n+B5Q{sh`EF|2}=)PUA9X_yG9tBZ@6)qM42nk>Z8p;10lM8Vd! z^fA7ws_Oi-pJDkz6I>posHkWHB(lQvS4#Hf_IXeqH51^`6}n+|{m}So_g$@rCIRxq z-QqXct#@gqX=ph}zt5vXL`zQ}8f|iS2FENdE7Q9^UIj&8X3+ggQ%g%S44>29Fh6a+ z%HqY(C2G*XjMqAXz<<{>H2fYEgam*YVZI-Z?1%U=DvKs^f8Lw)tCtGheU^X?KB;PRW`;9v5LZ!f^gh)zN%S#8i<61`dwu-ZedAEIM@|fT4`+?9)%F z;IxVvb?PbqTpH|$Jcs*}ZldpjfeyFlX5eRVxL?u&R5I$~>Uk?HF_@C@RA4jAf%x zP*7wyPZeuvQ1BgCgG-NbKiHa@9XvWbJT&S8Ir(!={~2hnv@u~C@_pP-U19jR{9Zh% zsi}pUbr4d~@YjTdLx7aYeZWM!$3v3=<4Cu3Jm{?;s? z0?s#9q`}T+IrC>UQxpje&E$Bcb@MU&FpFy&G;odAYJYsWMEhguF4X?S=p8LJk&%;^ zf%r8|qkVX5L6e?CkOh4#;rPsZKkgWGxo!F72joqODcE{ z*{?S2IlWyq^#s=U7jh%IbvHhqCa%#sUN@Vm!xmG8xS)v>0u0&&Fbji<$ASoIqZo8r zFpl&;{6;KLE~370P*ueNocb2e=+mc9s;a7`_M3eQ>%}@PLrYEWG@4AE0|SMEsgd(w z1d2~gj8)%JP*CU_grh&YNcTWf69!|=FO3>&z)#91TtT0sQ7P`|?+*dIfp?+~z-qrg z3igj5KR!5lTy>8! zLshHHzu>;Hy*y9@bmTdq`vGGjn^karK9&2`;U-|e(2Mw1e9+rXCMKqN<)DefZVeucP-|t~grvm8KF-UY*s`*+56Y=cO}tNc%TF%b zDbDdsM#!=}C-AtqxKOYJeEY2R1(DLu9H0mNpd8g|ZHZI3oCN9PmQ}J|5%DF5;j^DE zI1DpdFL0ovqhD`C%i20SGemoOP{P8(LT}7`l3KmmG6;}dLPEmZzm>tKo!C0inB0Q+ z1NIdT9s~u8b_FCB;CovcO&=Lr?wKUx=#2n>^0?j21@llj_z-%XW=(TVz*G2aU66so74=vO=To{0y!wx{jZG&PH zn-v}a6hmWU``s~eP}H4(qrz%oT>?1Yoh~5)M3xT>AourY!$y6CF@c)&CQFU3Qi&`< ztL=ej1I)v6nwkTkFA0DB$_8?o90s7{`QQ1tAPmYez+gdwAcD#VN$iG}4IX;g;M@A@0aY3T3*?lCkijmW%8oqwpS z3jx3alo38XKG-=rcFfM=>gX(+Ct1LKDr$|y{Q#zHTjqIs9-jM*uEl}hjl7x6w6s#l z$jA^dZjnPd1W4$ye8pS|qr#k=90@QBMnk!PnwpyU)YOzh!`HuAN6mLK3I&td+6I6s zDl9j9l7lH6@NlWqlanZL>6Cw$ni>Szo&bRy+vtrZcXxO9tUdxXA55H$E@czNTHL)L z)ygX>qD8{+$hB&1GbZApKN3vpo6XwB#yOxXa`Y}OX+wZiA=Tetw7j&@&(QMI!_$+T znVC5s(8e*FmIr0)oUIhKKY+Ucc!+|YG9f;Gf!*Rv`zv%Z+M6y(Gc+>#55ogpKd#zp zUfEnqc)RbfW}}Nd-bdYUhSt{foLpQIU@rLyVy0j`wD8Wvz<`vKgF`HW_c9)nh)8EE z(Yl#|-Fo4}1()+()A`||hWTQB)#G;3nNw%*+p%O$2PpG`KKmkKoB0O3LP>vFSgs{50`UQRYL*5-webN9!E%$nG z19xs>>HwrH-p?KXpE}hKI^BO|C;(dj|COx&V-nf_T_2o>0S7pNUnmYE92y!L5YIq< zG#@#w~hL)NT4774Yvb8N@$;qk_5f z28tpqd=wM`8J`2kDokXdqapWEV>`%WfS-O|13=%12a_Zi1Sv>Je8K$B3?^2Q1pJv9K~Q=@MMVWLK9*~1Z!cKAh=P}wz}fk#AsmQ+b^ER%At6-s^ixlT zljb0kJ9>MOKXBqYjg36uugL!WY=(p82}xMQpKlD=o$GD*wU^@Ek?I(l zuYDu)VBn>tTKk%aHe)mv(WZns-_VqCq1SKxK~4O_HWRV0 zsj_;PebF%YY}w4u)E5_b-{F=gmN91gSA_$_1a9hHh5d5yg7&E=8-)0FsWKNi) zerbLItF)Gt>0A$^DC-jd>YslHxQNloHVhLhqCYNq(}+B0w&4b`5K#qb;Vp6qnp!Bunhgc81b@wf7>+k_ zozNsmlcdNL$oC$YoC?*m;sr?{bJun0w3WDr97W~YShq_125A-s{)YRcbEf*5O9OYR z6hY`~282p7!r{{G)mJQv!sOYoYVEH9Yz3_uN*1_J{cncI3^8_$y6a~@kh3a+N?%mcX&x$2RT;RT8ayxYfLDKF?2t-j+FlCY=;8D%hfJlK#S$6z^N zaF)C@9Xfxl6WXcl5f)h>$LO?cC({i$hxNb_bN$%peCvoYD@U=(Tc(4+_6^MZc&vl| zKvE6-xhw=>Pt6u0Okx`Ze@xps_fSea&5iUA8nq()jNi0f zTIOd|gb~nb{xYyQtKzRE`jeJawwx;sEajih;5R;ms5aZ5qD4qtnyG&bf7tjNW`fiZ z3oDQwNASd6OhC7=ceN~UMckq~7;3coE@H5wZ{o)$I9})UDD-%jni57^N0czCAM;5+ z&)4J6{0jK|S-s^5Y?xvMq~6P!RdyI*+E)o-YD@QTo0}7kvLnlxS8nokF9^we3z5P3 zdT#fg<4*z%c7gi35siZR40b{nxamtxna}ynP6R~@R+1g*4L|1d$slB9heB{^j}AdR z{&)s;q1(6c#~v*d`rL&GAC!J4T-+hG6&va5>32ZPQjlKRvQ?_R3}S_P))); zy9(hI5)*n!JY@sI<{vNMELt>*o~GtvfzL^oMw5S|*$|~8A-C88QY#Y1#5aipW2^(o znH%Mqs#YwIfAC_Q!Yo$QKr0Qqgq5H3akYsHcM6VU)myb9G)ePf-zO`+;TCK~Sktkd z#3%Pkf)tOAYD1??IWrfxPVraTbv_AY$;&y8IV#N9pOYrjWH$yy`?ozK&`*!Vj>ywBeq(wEoWmc%y4=w4w0BLiX%#*wNQBDr!>BLm8{^*e zWvdfT0&$^dpmxtKsT&n0gA|I4h7!jQ8Y6v!qC$z%c6vaQ1Eu@P?zrz|4n21`S?fL0 zU);sk@eztii;i15c-`#R7K!B9$%J{B(9Zx{Tc3fhTf$( zD?DCNM|4Pp9T}G&=%bdd&4I1X+mLkL%^1IMO9jGJB`u|oi zNG_5_LbjzK`x6vNF@(@R6(-fYepDfD874+TzphME-#n-lKiVEaD4lE}z2#uFC1goq zW5v;51z8&UJXd=%nm5H#{w9ch(no~m1VpZoH|m=d!V`Nn!FmG=v=9R-d7ig>aSVht z>UTMvuI+cj0dCPGRJbe%qm0bxgBqbsW5>v;Ld1_l7%d(pp=d5;Ac`UgmyBe#CT06g zF^tko3+LvK^!<#IgHd{Gig$aaf-SMwd*XW=4J}BXN&Ea?cdNwU*L2fx1cC&n} z9J;?jF679XJ}J@Ia=}9r(e>xDyGJwk<)!8nR4Ay)q_1`_5^ z%%tiXmeru*B`KuSeAZ1Ha~f=jy^BS=+7RUy+(<<}b6SKMjX9I@GYHv9?{b_f9^SJ* zFG$rHc{_%o=kS_yk12U-@~sO>9vlw*L9+WL^uHi5>2(@1`MulFo`X7NB+rpPcO%Aa zL6x4gw2YS+RtBEkF2}FNvrhPj1M(L!u`kNu6e=0|4?+91Xd%SJig7!-WO0mHVff5$ z*FjU7R{}+&i?;k%kpOZf0y?#8oB-zLae*N$1WCe{^i%{1scC)r=E+P`}`dzb( zNJS9b%8vyw-ym_~^cyv@);_OryZv(W;-oW6GuFSWbW;k_9G03?#2M}9;qt41JzP0} zAwX*$1Y+uY_gUv<{|0seBP-<0W0`_yo)SjUfH=7TlB5BFakyn&je#Bfj*|~7(_zfC zI-O}+iJlf_)}Ccef>lBN@2PJ6$;5?nw#x4Gsgs7uV)FT2xF0lFpcP@4haexDsxz=> za8k&D*9}SqW*~Gkba$oq{55}K0}|SF3fVU1$zjgfK~pk|uMAb!WA)gdraXeXNwt3}@t3ysOd*Yf#gO79f#_+(-&-OB>` zc!ZB_|MwiC5VBkE3P4%f8p3yHClVq=tGh}Pk$EH`V6Q_POBk*<3A}dMTZxtX>_zStPx*L*)o*f%H+wc+2iY$aG zG0*x-1U%TrcN~xeRN5J|W`zs7sKEUT&riv+1A5mHfix`DMY#k9+-^*bDKF^RCKWA? z-IR&F-vt>Ap17Q1a+PF-B`{*tvlyF~mV5}b$9JdCJ_T2iwXw(5%`;lXXoF@(b<3>s zW?zQvcq*Vm3|(qxA%3{K`mNf`a@)1mAuH4CHcz+>R4vp!7xkVRRgmZdQOEicJktLUB%Jh_QdW^2+3t5mh zfn`1FCCb*;tw}h&s{GvXmn1_M8UM}E_pQ>_8*k69X30Q=*Q5liA8P@75mm2aq8{;E z8r145VpPSgR1bQlVpDoswKASKbZ@rB!sH3 zo86RL!Av}pV#R`;KZwvU;^ccs>F`hHe-5>+KYjae#zwAa11$2-(qv1MF`Sv>T`iDqVUwmk^vn2ti7fdRxp|4vIv;+kqWK-{C zSK5oP0S$KHR4uhtpqz7KUAW5nJ>$+9GfN{2=91mzUvKzj_kPp`9rLMRZ(}&%G<-zO zR`2Kjta0qfFq*OX>EFBhBs^+L9xiMGkPCf&m~tP3116EB+*m0cdY-kvN>1YMsKa8l zuoYC@I06(;W^dQEJP8s&FZU_Z#6Q5=x#@V9s^tXvK0qQBw$aG{>uq$sD++@IIj74e zg6xBxuYOf*s&vYYm4pc~TtQUQ?2L##u0`6RwiS8)9_fEs1(^#D;DdLhHl?g2QHyb7 za=)u?ySZHEnd_S<+vn=mEw!8yI!w^Z)v)l|`Awqb<0hia_RYHS{SwD3@*Vsz`8fTl zwKa%Z4<++qK(@D<7|iLDOYA8Hms;!&XnOgQ#00$eri_)^56#YZku7*84sqEXW(GLa zHaL~+y>8(k)QSQSE{&&FvC|vQVn$Y9q!e&G zBbCE|LfN7!t)e3uD|19*{zVz%rqf*H(J>x~G3Vx6ZKq~hc!efU|F0YR0*Niqou4(V zP8BCxa|?g0jgFy`{d%QmA1NE-`keVRTGRhcks{EC2ZrY~mt1#51CMLPz6w*ix@ z-UZdzX>b_}>sm;e74GEH_=xeO85j~7jdtyTgal$-;o+tt?^l*sn+)mSN&76HSJ}u{ zipy|rVQw02&ilV1p$Ek{V^0y~w2DL)LuMb3*N;2C6phRKyO`+sqEN7T*)!%PsGk_e zD)?^4+Bo{roA+>!YySs;8X>@8l{4H}s zFob-vqaFjP@n%|WgGrUMAZf?Lf#|=STug2;k5&C^vaH_8Dh`Qt0mBR+MxgVK7X+_e zf$BZEXo)(gPY(%XW`!{4H?R+1St(?f{iq@cQ(n7URJqo(!AuW{*8G^Cxl^iuL{G7K zx&bi&vx(WRb$?%imT&fjc;v<(U0X9DKW5Rf5Yn)d-_WwRT73f4t9#|o0F^4Y} zDx+AL-LDzz{Y+vykWztmRG<~*#tqtN@^ zkNy%bp-g1*KjK}{zpVy7fDDjBEf=_cK?CstdN@aonoMq&j}?L5+3WD+;`-Y+n9aBB z3d^G%i$lqAL}q=N1WkC~Un~5s@@RfQ?{C+K-Pzmjk(G5!k19IW=0&x`eJ*wX7YEEy zj;D6IlZDnVw*r1q%!2fad*tzxLTHgak|;5z4`9om`gh>=o%^PqX|(N+iA5AlH5piI zqG)1#ew^v77$*_q4+dgOo|qoM@^-jG0NFgb{j-H?wm$XV9P!bCErIL@(!&f}+n(};TzDl66ufy=G$m-3GUINVQtF^prHHL~YtW}FS)5eX=mPEpKjm`Pss6MHt$Ixr9eLVK(j`7x>@*qh=uOA)ANA zdNbsdU(2!Nu2o!gy8|pX9`5Tz(jKNZd^{|$Y%GdDp9$A)ycc_*r|=}E3fxvsA)(KF zjX{e0gufIFDn*EA{u!9%cv@~TxrcIfZOq!Xwgr!!s+lU)F2d1jv~@vffu3;BoGaS& z*iiUE{~>@2<8`TSE8PA4J=l)q0_hTL0(XiHa;1|3q$p_4ChMIn9^!#5E{^&w0_L?_U62(K5kU&VSnsJ?H| zKI}}NDmEp*-rsP#_4ND}QLXi!x1|=ZxaYX?veaNcgcoOG?rn_7+5;VS{Mk0{Lu|v! zW6vg2Gr@A|pRP+o?BDTaJjn-w*%^bsod*c!d<7V|?SqvXOK({us-{LLkj!D7+Md;Z z{i{wPn>yh890d^xX%#p#^-k70!RGRfjm;6$x`Vy_2WslEr$XfdBvjN5up{4SN8^Wg zggefT(Gu`xk2h@*AN4> zqch9o;@m`;myUu?99{BN_c36Uc~$6-^vbl!6Zw5}7p(AOrqz#SVOkK^It0h0pbakClMJ2d2F+Ry=yKJnrdlX@zpcBp&=r`TjM7~|dS zl3xPvz3J}bih~A(?3HLXvyF+N9~Ffs6MgiyN(u$JiVqm2fnH@~DH=5+Cr_ey>f)$} z19~*!-<{6sh$@Wv-7f>)*ov-u5g0JEZsiz$^GXY=^2@LHoe5^(l&NEqd0ZjD0u;-| z2Mo_`ZEe(!;lS;9+(R0%)442tdUkela?%Q%AVA9pW~W{13XS)9G&Au@08NSRbdK8F z#0hpc*1suaZk9w(fcc=2hOm;L4Sv$TU&Ju5Nza<||Hc;#^HqAlI4ur1@)k z`c4fy^_z(M{?eI?lyS;3*WZox9)1TmsD6MP6RR>U4CwT1;GD9}4;JT&)opPCMo9mR z?H(7(r4BO?=E7l%G+pcC_+f1B-+s~*@$sQU$APFbz>JTNkD9X7*2fNM+B-Rslap^Y z56jBP7y}>IKq70w#0fBUm3rLRS6eUkC9+z8G6ANx@4yzibfMYV*}1W`6?==0xQEgu zVjocHWYS*IYUxHFze;ZB+d!YiblmW4V9_P^XYz}XsF+?uFvt(Jl$@_U5n6>bq;QIJ zA}=l2#+IQ7)E`TyPmzSM6jpKn`HJ-60&*l-zTo^b;6>_Q zT1o}BsW>j+f^bgtI28xm&0SzX22P_);B~wQ24H92X>1)2pOlo8#{ytDM02788|_@b znrHmd2R+4c?u_X%^krbygLm_;ig=oLO-Lr0e3mjiBR2G%e(Auy3GL{WRZv(RD=V3_ zTe+jig0dy!m|RZ{rKFFv^1jf=0o#0>yBiF!iAc)Ggg?>{6KAYplf0hzlvqD^39UMwxKursdZYd;>iRxkUb zd7rB(vF>;{nb7gPno>4nE8#8WjmI6i65gs^9nlf0RWDeqfz=YvLpKsY5U70Dwm9Sq z#3H!khr@!b&EP%kmr)?)fIDt?A|C@7YjpD0!LLNXlXT^A2rBAFaIijD7hZV+wTZ)F z3l$jmoC&~JCjy|$Q3juM;*s9&sEZ0eRi12SX?(S4#jLf8zx6K7Ei&5PD@F4n)msDJ zjl8LsSVn|*w)@X7wPXsY$6p3Fq&&AsLmG3hgp&5q%~dD9rLuZZ9#BCDU@&>6K=1kH zD%yb))WI*pqW={BD-2RjXp{4g z=F&Ga@5m_FgA#LaERE(h8CukdFap3(TGaY5ZwmNg03nci!Q69#S5(!8sfoN0wH67blSG18pHE08j7ZOesgOO}|Qz3hstJ}h+o%?(N+S#n@? z)L-viBcv;Ilkyr|9CAz>jSHpq*Dc!AIb2CaQUKy-kFjTHj?u)m>^@qW`Jdlu@?%NnW(Jmd3efXXV{n7`=C!v5&m%LrC!#Br^ItXDV9u#Jp){(4~r*$2(> zed9DT=`kxQ8FVi7D&K%m#-6o}J$|+Sut7E9!Bzhf%xZN{(R;A}P7|*eNH}wU+&pO+ zJ@mqR%B~=3;hiZw8Q0E!X)O35k!duXt+e$wl#EMDg|BnE7Xnlua*jWB^#djH#o3$8 zV5{QRidw%m|I|DtdEVB9B8k?0e6oxk)vLRj6`<8o`&*3=uRU;{ULSCr=IPrNU8ke0 z-rH~gm4%Vujp`B;yTN#R@67lXhS`7<&M;rG-r78;6h{a2=(u$X<<_MRq`Ql= zX+Kw!0F@G64lU=b;j8yZ2T>=I< zqYof%jUzQk(SC%5Z#6-yXiSMybD|{_AG@IOvQd=;^tLeCVNG9w{>YN6JK_6*J&_Jm z74w6}QbWg=&%#BcOlMaZ?`rLzf#HvhpGd))qHd*?6ECH8y@gPi!q1A~JpCUDR2gsW z){_z}9ei&;`e0Ir$yCO87`>(L?V0v$dAJ_zE=T@?fP@*_`=@WBR)`i)PwzLz&sgIw z)kGZdSl_D>7`0zvU2|)!AL;woWRiD@IFStJFOi6&H!x%~+H4yY$5uw4l`?OG@e6mn z6@%2Z^Z7z=E$z~*OL)%&4~$?U$I0wYwUd3n5`+xw{;oIwuwE|6pLT)yGSlG>1k3XM zzB#)q^4kbHuC~peJnFTxrCwiOvu(Y-qD46z0u8i+jwA?Rdtn-Z5~WQkwS=c?3k~>| zU`#r_6m(mC7F3t~V~~uAwIno;Mu|@|O#z?T;9ZflT`5avZy)B10*z&YA}PB{md?2a z9Dj+=Q3{`Z6u__2;8(q}#5V2-DyMGb5LV3J6PQ>QALM?^=Mgp^_yt9w+K5WtYdQLU z1fCQaY?}L&qWyC$eJvrN=mQqA{NU`r0r_e_sAc71A?5(=C`zmTBKcFN^BJaIGY&Ce z;{ejs;g)?fKlL#lZ(6#{o0T;}=ar_x`mT_tpcsv_Ms?$B-=JC_syIL^MIJCEz-GZS zv7yvO!o;pZ%=2LC9Sr}b4Sgc0<7J83m;Yd;@#DYaNiHT|P zL1|aWs8~=~Q-m1or+=M*Q$5;E{gn_Q{=FJy^H~Pd<<39`sA#t?2o( z)0gUa;jr7zvGbL#FOk%^-tB?u?~pn2nAm!K&=$iO@_+V>M=1Uy@HcV`!>sH7se?u%usfzbVw z0-b^wv7s-oJxSAmI3={)v#s8Hm6hC3!^;%Ae2Rxqs~Us;BfQN*)o26rx2o;?;LVIO zv@cu;j%VIy2||1~cj#cl0z=^hD0(X$;fL9*>aqt-bcP34gcy-uDRBgnxlXOK^_E3K zum?P80|zm=FxR?5G+5a|$Cv~8>fHC^ ztqAP2^#(??w(T&Tox3E)eTofI8&F{!FYP*p$`6BIes-uCW3)jvm)C1e0c+*6zj3PG zr(7`5)hWj>R-hVB&boS25GU>Shev<6oufV zzmy)?h1dp zW+i>YbWwj{&6z64rA5coc*va3gF4IFx_r@zeO^)<)vXAhVl3gdoAMiAW1>x4%3d-t z=0k;$F#?tS5molj*u)ROoJ{``FXi?zIkSK||f*zYA0yaXpV1>PJ z2oV5gv;6+Hx}V7*06klz4u!;`Z{<-NsO8Nnr8K@KkK~~)SPssf3L+L)zh&T~{~)O; z0{g6)_lH8J(P;EV$#L~RC-0L<-&gZL2x)BXRn7zm4Jg z?vc~UwwCQkf#riOSpQpWBDPHtRy$seyCV9(Z{!Cy8GtzJ-A(czSk-Bz!(1HX94KDg zDA!sJOiu7D%{qo3t7^S$V@s{};H=h4IZxlDR)Vr!@NwYlUh7FGe{pel^h_(v3BcN> ziym=vE(~tYWv=`%;XSRiFr2i}wVMhV|KE_d@g-m0l8a)MAp~L=sGS3i*$1ePVvY!4 z89M7pRrNDamfla9u=;kUX^1ZzZ9-5|*JaH9?Ypo#a>V|#*T|n#8GntPCN!KBYIist zS8s!PN|ae837Hp^v#L9Z4@0#MXuw?^VqF@38er|)vVwm~mPA+qySMn! z&tyCc;vOQz23X%A^648q(_6ET10$mMTE*}RJUnYoe;m>~9G0*7va>JdZsT4k+#BfD`2e4xiBQCQuyc5nhyA_!qVk}v z9Vjz}e1yZGc%pR*G3&&u?k(OOxFJ4QbAG3jJbB1 zf9}PP{^HNU5-ixnx~5=MOb+(eN~K=^#Q~S4#(VDq)MkJhxi@!~=nRE?VPFllSaO+D zX0RBV--Pi`bl)Zjhyy!^9a%Vk`+6_E5-ijLl$pYlfOQ}lE%Nrv7;*1KeqAs+V|;Jf z4(hLQ|M!K6y_~}LHfPVj>Wl@|f^PPBH2T%?vPgB2UmT)p#}Y34)cjo`vlB?6M5#Lh zamaiv)$hg8!Kl3sa2Y1_?@sR%@0`p;aid?+8}R`(2fS~xqBX0%hkOXtd53@vV0d$P z0WTPIs}$Fp0!F2n_webUNv~OB>=-BIZt5`})JOidN!i-eZLQSRA>3b3wY)?6Hvc?B z2D9rYDdN1#+-Qj~DKL+{UQu}JV^qTYuYpJNJ+F?+qp7_!(bBtx#YOa*kNPu@Kb$ctac;c@RU3p`cet8@A*Zuqj2P54~+#{WqFi-GG zYSzXF4lD=fPcwasv8z6Zp{CpNHr4usKLJZmvuWv=!$5+molQK0nl8qE>t8GbH$!91 z?mMvdhK1@H%i%T=A<~P~X_Z&@)Wbzw{({-$rCGX_(H~&5!Cn};59(430@kgH)mh!d zh9H8tz)i4rR>i^#X$g7Dt+V&VM1x^T2vGp|xjF}t9Lf1&=&&nPJ$ba3qy7x24$Xw8 zO1-?y_Sa}n*7WU*hGedcOyXPe#|?l1E6=7M&m7nfpzb$|{iXNO{!mG`VfURKu0IT_ z#r9Ajsk(|-k2s{`HhS9CyWbU)nhpT3$CJw)mx}%-*d#E=21bL;!0>D^=pR<4>*ypE zAdM#Wkqi;eW}4f+1JA3H3gO7P8M2PS4i*?yMoc364M#esqoBtHqIf#84>lF+z_NpX zXP`bcs) z>BLxPso#z=~;mlOu^x}-@NY^xaj~2Sd-qJBCV`9}`-uEFpb>;I-)>|}oOdO{j#f(IPA7=G;iS>Nc5KmNz!<@zzNO2h92 zY<&h+fjjpi1DjYn`PxHD!y~!y@NR)5I{>JqE5o*nvG!n_*6jU@_wegm8a^$2vB57N zffo`OUi1u%2N)E&-n^5mX-t^x-MywI)WQi+_D!SwY6!GhkiL|o=Hy-UsOwUKYzAB| zr;Fb&1K4&m!2iMl@FhD3ID$G%*(B9k?)b&-2HcL6{Hb@vNo`XFP z9t~+I=>zc=L%(O`&TC7!u6p?oj_Jc8nd5`K%DpFBg4G-G>^SeGEma-gCvJ}Kiz-`4pI!!3+~cMSKpA+`Or{J4d+`6b zpd!=R8~{nTGKs$7CdpT7`b48hico291T1fEY!1b?pEm0|2FW6ZAM1oxd%K(547&!d-vvCZ9Jt=#CU=3THLIKv6Kq-VX%1RR@ciGQLUubFp z`~cNBV{AeFlEV3FHG0$v)%43EDQQc5v(6EvN=9*o6ISQ{c>8u*d%xrf>8;~|Z*b95 zY?spsZsRsKZC3)@vfq3yBXB)N!fbP?pdEQ-ZBkvE&I>l{iKd~$K zNJrBVhX9`k*q6q5Q1#M}J@6OEiG#QmDYt=1%!1jVaKLf-=)R?@4h+j87h})9vIEWl zl6sy50_}cguAR5t9x1d5cnAHpGTLwH3pG`)kMyaZ<~>q@{|RQD+x_HlMEOb@QkVLr z2Mmf1TzvQ=t|3bVQ{^(285ULOC57DWvCQJ}xczF375G{Yd&Z5*UrKpc0?=x-Xs^nk zGjh@N!)JK-8nBB)eLDFVr+6Aa0j!^0Q0ph!_y5Wdyd2SS@76~q&lS4CfMm95?bi~* z3Pd>o)KMCR&E$v3U&!H(rk-NVtzu>k^~q>-J|yBBSh>wV4ThF7F?V$>z!Ql|!r`e+ z?{*-EDU*r6;I$m8*`xMgxtHUgfO!>Aw9-DDjp=-UnzdrFkDR2&- zs`3!oG{~8w;ONSTJLKR=AoMP6P(j0;_w*xR> zK)<^|5oYblsg^L6PnRv2o%k{r9jfb8;n%x-NG3@}x9p7ikdlMH6A;4Flt%3c? z!AbuGM{^6d$Df`>^yRqVr7si?gfUpc$~;j`nu@v>3mbOc+M`?e0e8B1}^r3Suj;_sJD^-4KsMlD{~%J_R()H`vwFy#;l(kPum ziUI*~5g*6^>ErasqKTi8 zIX;<^BZZM={6AE^Wmr~S7p{$nK?ni@5{gK-fPj*MN(j=@-HkLzsR&3*cZqbjv`R^L zH%NCk?6KbW{q{b-AI}dTJveUGz2=-_T;saVIV6_(R5hH0*{g{J^tcd}%$gcU z)|qw8B-LaDE6hJv_+5SYmv{YW&l`j9%k{%w*2gQ!bC1<0?IqaR{@zCUm29 z>`P1$nUb2VIdcG8WILUrNh_T~s6(95tW?L_f5*I0hlE@v`hf*u@A4QqZ6Fp>@6)t9 z+`4v;!G1~(`rO3j)z0uoNj&f9D*33ybybX+pv3y3$~e2G-`X9<(>FFhHLeWSUmTbG z-G-?gF}$ZH`kmeQyhEn~C1981J8Z{=W^QInw+VDU5{2PtURkqJ*Pk1xh%dHkZZ^lz zp1bg!eb|k&)aVKhJkZe&>xQbO8t?l5=Q!xSOZyFciy1`k8Cd-L(MRL`+UFo{K)jWh zRTN*I=m0Z=jMR$j4{9D1vT-jWO*g1_F^NpuALVPraZY`~%A_2zABRP6V-DYoHSHhe+E&^Ul5NTPG{SP;w{*t|u^d7IATiu!PC}==&B@ zz{LHq7s5rGmr{_D!JTOIH4HSz`fven4va*>o|QU{dIMzO7Ko*ImmOrYG<$I4QL5Fyy^-&f`uFHo zz%fG3Q8namanZItur+(`NFUgYO}Oq_Iqc@K^|^T6UsCV1_r$zUEVjBH{@5-zX|q47Wg_gYS#A?YlEf^!QqFSkSOi6&itDwNkw^a z0(pci^w;`FTRs`)bCvyRe-{CZ)wfdih1~~%Vaw$&I`D-+&2*YKuv_?)^Uu^DG<1#Y zE=>;&BQraCrS#ys9yVoYo<8(E1a&_MGO1Q~wdKcVRdRMbkcv=XrcgoYOnyEY|E_RUv2kcVYz<>aPOPmYE}d)(q) zM9JHn%!`r5Nz+E+F$6wfw$m+WtRC*0B+R3--u!?KFUd39xK`hvx$KE>sDNC&YIbRV zXl>l{Y3V=O)1#_a_f~7Xc~YGCb22BG4R|r}I|3K<2^reM^O0#17)>^>@dzz1$m}IB z^zHep*fJ#w1~pr!Htw02QW@#H;DDMp#hsYXg$FVnW{z}7tXcrf*P-7vP|rBKRlfBs zs-xYk8|vl0uJ#~m`RW;6c^9wkooGoK*5@Kcs_mKZ#&FlUigSb0#=Jgmetx(!y`0p>P#Gbv8`}>t@4(4Sabq%D>6(anPIRK1@RHjpwNDPQ}ZRzywj}19o&|O zwyjKH#ZwvQdNhursd!5^_FA8PfrU8B!)QTC@)m=H=J}cP zsFaNx1SBcNl;V!93?y#%Xy5UBb-jFGsc9&cFZe{^v+1;)+;i(N;$`JUvI3C(SPS?C zMtJurq9*WZB}dq$y(i=w-Kpc;2W>XGeEk_T&rmUJul#*&hQvS8*4xxjJQe$ZHb!bo9_fNN8x* z=U^ZUK_l*kYTm2mGCM`EV;`j{xGm=AuVkU1ZwQDfHo$#&;lKuqU{{Ekdu*IAn1_IBE>cp^AMS2XYcWZD#AMV8e4R{ zeB+jmHM9VV$0<%Km3tDc$k4yDta(@qI&iUHTrE5+wyD~i3=PrEhP5GE2t_ZWiZoxfqStiHB zsw~2ziv}??KtVowVQNLfJLKxrc9CfYiOc`I`i%H=88S^;VD?@$ChLWrYaUFhkTIDB z7h?4NR;0}LqqIhPH>nV*7cgr>azpYUy4oF~{C7gPSN^>>X2F%N%bv>TZd*3af`#_;Drjr-GSMW2}2$&jJZ){%Ns*PkyMtVe%3^B4cnuR=%_*pv0N+9u+^P@t)s?1Xugi_v2h2#zrI%1^YCx7mB|h<&k){8}Kf`M) zxu^uh)LuV0FctI(7|1ghwGE))U296tt3-#a16Ua6x6HjjsDkm)yG^g^q(|W??N3>L zGXF-Bk5`fT0a*LV(zZk$0XeLiv=k-ZPO1xvSN82oL-X_Jqp=YuT)*lH#ZUY|McvCy z#`98E4Drt(XEQ|)>?B@uT6XjmP|0HNaPW0mPLR}gmrRx7fyaSclvT-{8QdCytdG)H~Y*( zfdY@M9cUdY|HbZ|1J((u|MJ9VtD7#1NG2vNR$swg(ah8n4Vo|z3rS|^PoIPWP`phtm*_YR<9|v1VtD&zyI`D1}d@V(r02^M%Tz9NFDU>6twztk zW&>t9u$bdM%xUKlc#x!#u3W6{E%j4nY87ivTSc|!`J|%Q*zdLn61GLxr~yk& zzmXvej=w=mrM??YRz~d&`OmJ=J!wV1+aLT`V6Y?z32OhRD`y#VXan8}yTe`sGRFg3 za5-p{VN|XD5XbnRA=moIKzmtyHoVOn)P{^a=s^6blL@Hd}7 z2(Z1$oygfB%(_q3t>Q~mkwf=|$uGr_rn!$ zb2&%p^ABJpzK;5Yo*o^zQ^GG_0u6SE{0cxzCqQuW4G3V`iwC+L_Cr1~fT7T_uowc6 z2Y^{$5zK6k5-W=2+qVeZ4xd(PK+p<^U6M%xwc&rO6M#GX4MBW#SigLm3^rIqZ;1|V z41&;$b8$5eWb^)vh)ETx%FD$umk%6jA%)ddWR|s`zW(;LtO|_ccq=Du;~1}(*7$vPV!RC6etq0@TZJJox1ea%885#K zUjmi5y3~L3w*F!)gSAb{EH6LHjgNJz=Rx8l40nTX+abH^CqE2Pa@uO66g}*X2Fki2IuJ+KLkgNthvA&3;wScxqt-0YuFQJptg-cjQWFfg%v5?IsJd zE&`9OWhnASfQdn%C;8<}ous~bFvwv7CyTO0#q))oe^cH^3 zyOz0={Ura>TrDLvj&!t>U8kt#XM^uO6!R44ehrdBmA?S#-n54t9FhIM)$HzMF`YQx z^A}K(Dl*35wXKS}=efDK^|fODVvXCh3=h;oWF9EE6e>YI0Y&H=3*74Q7!K;cQN9|r zIqRF6DSd^j%6#Bp>1)YuGg!Wn2|i%8M4YT%OWLECDSg{xRktsnM`696ZjypOwT*GC zKTAUW1(o)m`PN6(D2v$0oS7o6pu17BVjN0lL;U#q+uuTBLF_jy-~-G-)>Fqaoi%?7 zd#>}wyXVe)i51+5$kPPdbxwVZh3T(o+y6W#Gz~mt8vttXr%Ppk0RjP9p;G+O0z#T& z=inHvc4SSKKy7VrNBF3xY%jgBeosx+Dbjp0EUlO>$XXsr=a+PnRI!=TiuqEaJkp%feY*xC(M!o zPNiYA{V&h6a}D*~i(;vLbdRmK2HA&up~WtfzBQPwD6g8=NPDG@)Tt;CWdi9x((#T4 zG-r?j_HFX9H_$}{L)uhRt(a&i0-BjIC^;*l4+A$;ICIqUI&|};*mwPjpI$v$IeC+~ zvd|59AQ)38q=;puj1yJ2GRtv5a$Gc(V|lQ{Ym1y)J%a$A>sOQ-m79i8U!&c)u>+8@ zU0~x_&;GdqzWr!kM;2hmBMeX!@Sc)uX=$leSO&^v=`XZJAdY_Xk-|?vaYemLNGMXE zS&O{G2$ox|+n43g&<5P88&*y$YYvI4Q3Yv z4#oUM&Uw;o^Zf2aQ29<{zur4>&~R!ibl7y|71&OEm}-zxWiBt?SL+BCa^*F&p@;## z<|~^o>%s((c|@jOrU@0rRVPQn7}5pL0J~w9g#A4yDHRN+2MEnz84K|Rj*RQpR-f_i zF7WeA9RsZ;@l!+a`nzLGhrt4OEvc0`y3@n_{zx5lLT^RT~Qn1)C$9F4o}|GGw0 zCfxj8hi_=a-1o}ngYW*_PnB_}_wNu)`C&rE*+sfWiFmz0CL7t2 zW8FD%AYa_5>G*sx+(vffSfsmU=4LvTj0bhZOVmOxxdePVSkw>}UzztD<1R82_5ealE^vJvBw92{MTPse z($V9Wn16^;m5fokIkb}pwE26p<(T&v zI7ifCw--hnuq@{l4GKJ1VSG}us;r)cr3b1k5}Ico30|};Gb_SVhzA?0r&1p>v_v>V z+vSng?p=zfe|nDas50hDz`oIbIKKLpq*dSejesG9jstG*Yl{T?bc;k$`Hln#gRNh$ zsaILI&wl(3VkP6vrIxna$$!U94qT1sa;A7v=O(9-m=af!VV61|B#5X+CHRi#uk#fU0<6y(3G79x1sYc@Dr4B65)gfgJ*}n#SI2CIO@_rRUwjYtZ)n4Jbux3Q8;`Mb5#zI|p|KYOr zaM$ex`}oR9%G*`91!kK7Nm7S-!aLkt&@>FQcgj>6`|bY~0JTbcqt{h)08a@FnAlX}KG}z_%F`4ccokghu9Vdv$cBp)8ei zXDz&UM@H%}3Vtv_qgzvRh(#;$A%Udb00~Cz-<`fmv`6{#HR%5ytUn4j%-Mm#ljbK= zVP)P8RwZziy`y=e8A=5TburUZZ{STGB>oz&{S4cglf?^L;Fj=}a?>N9nLEh{7&tE~ z>@P;6xlZe8Um}<(81`OPNBc?MBnSOE{LyrEP<@C}2e^yx!pj2YZK$Q}y6^vqHMDTz z1Imhz`b|b7`y9?K+qXq5e4n_v}hpKfKEX$vs9~evO3L(QZrJ3UU0|U@-8pj zGXwk}1qW0Osn&%B!R}>#N?7*0vww$9KmXk!_Npm8dB{6ieX#8OkT zLgtLY2}6C@qjhW?r&Y_gZ(~UtehPiCgxE@AQrU=4*Qd`SE+HEWM|u&+naR>TmHaM0 zz2fdz-LVu(T4cd_X9x=#Ttu?~P1ql84F-S^c&W@@=f;Ai1cD;~{lNKU>xK$JvAt?d zGmte}+|em1O1^@%Z%6?Di|rjE`+8Dvcro&}BKU(G-`Lyuz$ylifHBd1t{hl@o zQ*nM8w7jp@R8MZQ0u&Fe&*$w!*K1UsoDaY3rP5z5{$TK{6XypALpA(AZag6Gn~w)Z z9Hb0D(h&{)1z*?I9jn&m!^E2fT9EocY~yQq(tqJyI-gG6*d&n)fjs81R?xTj)MR*? z9s-lKLw56Ya;Eo79)-8lJA-*${~*`0EdQIm{Vo{IU>ZsSMilJY(F(;0{Q(D9i|kI9 z6#Bn@bDxpu2maSmwNr?{>?BDe%_86}mzt*KFXDP)tmby&2aVBDg}QeC%BvSdJpxxd zhl3B#0J+CyI}}gDm3p@lOLKYr%kzsku1p*op@mAdvwAquBys5LAI^lBt&sV4=>ulP zaw3=ZFEhn6P=2kjEv3RlaH0mRA=e4ECtw7Ue?&kOfOd3^$4XKtx_pIdWyR+s!ie~s zF_YHqlyE%u16`p43*SH2MXg;&^d7FVA8vD?as-_3JOR!__aXXB-fw0I4+N$RzClbb zFkF4@^X(Sm0s+r(7|?S#9K|~8jsE*}KQu&rowl&E{D%_odl2M}xDm#)g8v+vOMsYU zz&k6<;u&?yJr8-JL54qoMA5=|y?2l=HlPaRINL>OW2?en>OvP349vj`Iz{HsV#Gq; zD9JVd?)w4*#RG~P@SdG6$-qX+6gTAcQmJ3XZieLf>ukBD(Ds>LNJFzH6F)q}Nj%6` zFgw|hc{;sS=_i-h1l~r8;HOBG;-<9z7*Gm8ERoF|SjKoEy=F7~!5dJBe3xsukYxcA z(##RDM$yx}2i8X1{5n0`Z&KH*ayL&&#MCH5oeVaJpQ@t6n5qsUc?nyxG~XG-+TU%j zR^5g)*YzjRJ!l13sF{^Vq8)g`iD@R?xaXoAU-z-3NFB+BmD-i)Oy!HAsGD~j@2zaY zICp35w;2;ZSq@PUHydXp2j^d(rPHU*nR(^W`>5cEmzq{Ag3+G4>z{2MZ0Msplpjig z3#B=T5J_BKI<9263b6Umy7RtC6n-m)53G<4IWzVI!HEx_;K?IXDd7KMUDgfVgM9$z z(*V>%6n}_!Sf#7^0yLfcL|Oh3%FWtppbz zX@I==qa!$Vz^F_IMrECii4$FOHMhrN_6XL=%JP|n;U_#07X|M3`aw2~l#lC;j0gBF z*6YIC`g)W>Mv3H2m-W59?^r|wGRJ4PVX#Z&OJ38SjBpYp-u0c9m){OO zA^R0Xa7I`~!ETTaag8;jTazWXY~1FQ?QY_`^ZUV9F*SVpb!v%VChGd|v2KfjYUTJY zBtSW#ESVofrQeo{J6_hQr#s+Q8MxF;vtRQ)?!+YDe7l8%*Ay#RJ?4i%uaHxVY zeeQ_T8l}{xV!?-&r{{<4$<)nH$vlvAY`CSy^8Wjej-HL5%5lY(4uy5w*20DqdyZNL z{VQu}7~-B?X3sJ_BPWTA4NV`!m9mLEN|HC%)qq^(>3He)nPk?CR&+oSI-VOe1FeNrq)+2cYnGg=Jwd)-eIq9=Q zUKaZ_ln|;o3GlzLbK-yr2ujR=cbtPq@GcUF>LS+0$MSpc%ef3r_E~DUYutp%en0HLG%A`W{C1t)d(1=$lKzunUAl4JTfkX~4~kCY;OgSPz3L8DM#a z%{EXrDOe=%vtx!MU>gUmH#d->T^$M0SO2#gbX1IYVdsGLsQ#vFURaLn7PN8n&!x9I zZHl<&fd=Q4TcVU@F;$ppcWI?Wg-fmWlN%h>a|c45F?j#ZUgY7)+uVcvfa>(&_6|$n ziS{cqPtF`^c+JnhQ-axQX3M;(YSfVxr4~|u09FZ9{0zoO*C*d2e$P9DJPAh3C5V-P zPCR<#|@0%1e2fzuaY8!J*4(3gKiVkt+l zFMy2{18agIuu&e&yN=3?7kWUr*y~ES1t3WgWy9Dz>1}6a1s?E@zBILDgHhJh!#?CQ z+{rhoPTouzGDd2cq{G)Ci3MnO7Lzc!516%>gsV58VABv=fae&wb6y4&Zd7nNIPseV zCkCnWh&(2Uyr_f#VCNn?@+mzZN6E9Wn96_%*_T0h?uD;gFljX?!Qcd4*CU~(3j_g_ z=t6*s4AtHs`i08w-V$EOm?+Y#(USX4bTT!Ux@1;I1GTUhCBjEN|zA|8uZ?FNNc zQ{9%t$c*F9)TR<8`deWXKjs-z3U=yXBgObvX(9KAhH4c;+QF7GHEr|oiqn_w4e?ELx}*aNl;hq?fc<75|l#Z zdbU=linPn>s`^jCt%Cpj@{`lP!?#vKDFsG82qjI(Cz-4pw>IWap|~Dc>F0fI&+P<7 zI%eQ45$18V*v%}qM#A^hKl{Dnq4k921fRBPy2&rF`{tTIgAoB8F%-d|Ht>8HFFDQH z9F((sOfC95GYKawR!tJd{*)Cu9Z{Wh#6B&<0#R7rBVHStL)Unw(NkfZbtY3$ z(&|-6Uw=ArxLvpYi2@8>!(jmIO zjsb#FAghWEDk-CnOT_F|`mK~*24zP;YHy6wm|Ee2*SG4Mwo2aMY~HCSgV%-yB$ATZ z${ABuI_Au00CdYwU-%!{Tb=nNF;-2TvcSsBGN2@I)MBpZ9vm*H>bWqj^@;L)o#5O3 zri*^ghhIs>agK*1?~CM3$}#6{h%=qCOF&r5_2&U907oJ}BRK$KpKwN&=s3JDW6eCG ztd?m7Gg4TzM&mCnIO{UhKJJeSuTquVg)F1i``aFLaFt+n8u`cEj$p8sqzE{a$`&Cn8MGB_t2!n zSgH^ZCn$)Veem-aNjKgU%oRteQ>b8lE{4fkv=PX`I|uj#gzyO#Odx#T3c~3XC}8jv z`@2~5S`-+Eu6xRlf=Na=R3;&0yv%0B3W5Oex)NonIk(UjY++7Zg!u=)6i8CLpIWL6 ze)|6&?Q(l(hO!eCdL@>7oLm+9snxC26Z11_fXlI$VY;b3%_dX>e1M8$g%y=iXaD5# zKY3e%K~kPjDr;b7gZKbZFG+KeS&fztBQgC0gWf<4hFJDXd?mA3uHxo&68;^ zOFDo`G=fv2w%{oLsQTXja^lC&REp0Ar*I~U(kUp!@hCko7SwgIp?~hOb<3uediVte zF_S_-Zs2&q{%D;<9yKW>s#>Fpe?Ic5&=tX{cZuJaRdIa$iTjEN^VfgC z+CmcsLufE>1=EHvJW=&(*(xf5W;WCz|^SJGequ8GaGORku=XLpQ)w6X6<+ZEib~9e zap#_lN-$u3!1=7mh#MxGjPE55&uqXAk`xgnMutqZbiaI|mhDAwyEesL~Mu= z{!YN%X%hdVws)D)6?^PCK~0q6NX145D3t*mO!(4YUtIt}iIvc>G`aI9TZH?XUxYKYwd&Qo}3-x=tv6)FSG=Au7;F z)lczD{`QNPq_Rqt^e9OxHs5aae^|cm+7I-wOZxC1WH(^m2HmS!+0P5TK1@WE`rqVi ze*VF$Z`PdOz>tZ|RUEh~6^7AaGy(Dtq8UTx@IZKf5=T5#tV0?=ANUR|9Dyd=l(1eFN<~NWi8RZ;{1G`puA^y#2|=B zRj00Xo?lMpy-=Q(;@U@mr;C{qpGZ_ASPML|AlyPwFtEOa01n@*_pQFSD8LOGeIo_h z0uY%K%cPa0Rbsr~fXctv?+YfLT&p`bA4Lhte8h*76M~mG@BO(0TYqTntK0}o|9GwiEG6Xphw4n_#Q?x?e@GAha0G||0 zoJa?=NF_C0m+&}kg7>veQvDUMguk&;VlV#?7Gnkp@}B~Ofan4Kd-L^lpd0q z%$bWL5D#5GuFs1up4C4vM5IQTcU)|i$Kmvl1RH43Vlqs$U{2oS12~<3_ zDBxLekLwfvTF(G@{Np_*KDYX@?lU!(0FcJ=t<;(0{#@p z3-I;xeiTf?o`baZCJz@+?ML_N^`*}G$3Lxu1D3NJfz@RThvgPy?egdVF--KhuQYU^ z1%ZGD0%5W%KpE=9{LuLaG9$k<#@bcQ?!hrW4A?`m_MBM%``-YOkqZ zKwY&7HO;;b_oSaSs3E>xRrJN&=WmZKxS6@xxI*{l@gHm#a?rvDQ5qIW&U@kDWIqd; zVoYjl|D+4#{)<(C?#yu*86e*#P%8nH%~|@qj0E(!o8^6zjS8YV#xas2Mp`}$f>s(3 zs9?}Hdxhtb^tM@@M&x`Er0zB*y52lm27 z;L=|@nK?)dxiqNa9XbfY@2LCc8!HPJXWWL$@Uw?;zL2_fv~@S3R)(T&5`38Q^+_{O zOJth9pgVb{veOcf4}obHfSp#xMt1A@2O&sk8&Dg8XZJy1<_u^TQ95vYN%Ym%Xm1-PHQ* z%C4fV#J?Ltz^KyxAZpZ!2NwlYJNQ@h;2e70>h1F?CxT8U8)B-h@|k~`<-+1M8fP=@ zz~AdRVmOByehpc|nMf`=cMQIr z%%=u|Bpz{nG1rb(mJ8?A*;xztUlyrKfF~bOIQ6)(;SdwKB5NBgbwyx|riv9ddc;!%&R8G!A&R#7 z!AqF%n-?bV635^?HQ4MSj3y?v1|1g;c-eF?!9>veOs%?1>qkOvq2rW4K3AAP6T6C? z?JdcmWK1-)uf!+wIvAVshYSA$zrs`$V$9dcGh+QaYr?>Qs10!e2w5tF?WI=gHiGos zH~5eCy)B|OvEGQ?HK_~=#t~Oi3y@%H3l6gSs9NIV$<{YENJ~-fZ3Z&v&R)~#KLEKt z=k>V;oc&Vbv%|=r&Mh-jiU1GexkNq(F9N-csWI>bI=j7|Sg9x9_27IVuS7aUJQhl6 zdsYMxqnqV6VC$ot`+$ukc3F}(7MnOTp4%OWlr?49?>Xw8N$@*oXKY%Tz%Ggie_XXN z;l=kGG%$N)c#jSodPQf=NA|$lowucc7u$wE=c_1@w>1+_s%rkc6m(K2**^k@SZ{qF zbrwjQuqF>MehqRQ2*-&kvbN)cjwLWPkOHFtxUbBg@S1)W=u}^xTYCWkonV)>qjE;-HkqJu6AKq~1t=Z_ao^ZrI7<@&U^ zEV>3q9Omx;MBsqe3^G>G4exa7eKL3DiU!1~H&?-L9bGB}o(ygp4$>pI8Kxbx6X&RJdg# zaOuf_w+!5HmAHYA@+-qb>wEIZd)?A1u*1}_i79b7SU91^JSN=EhxV(#Rg@^lktyBK zGMNMq)Y5AbFZEFFPfnGzO`gE;W~sZMYKd+e%q71Yr5>|vP(aLN4}hsy=bI>?n8U9< z9|OQems)N}7~mb?n_UBlM91n%H{bz_54`R|9UcfwNnlPn**2&k#VECpUUrlGV1XCo zxYnvToLLYhXF?B5iA%xM*f6ca~qVOM1~3Was5Mp+)w0v?a24yBK%l~M}Kl(itM zCq^o*21?Mz!Nk0ZO4Z5A+8s7`Yt1?&{6?2m3yR$_oN0*5&0RAOgQk3t0w)X9B3)U`hKcQL@s9ocC`?VXBjQtu}=3pIIg{+^3+yH7R_2;9Du81m~T@u zF_I_MavRQELg|$bNPC&qSmn&jLI8F) zX6hQ*hZ0uU&i#YKs9^}PxK;ONJIdu`f6M>JzX=z{L!q9CRpYL&iM z;@6-DZGes8LtXLI^u2+n@P^}-NX#i^he8emU`wCWZ%X?IOy63Rvta?hl`v?)h}gXE z`Xsp2hF~Ym{w_RC=z|O)L47joi(P70ktUOcFy23Ojkl|LBrtP#ZRo%yJ{=&W!2KS? zUT@mLMv2@2QTT*&E|_={X#^z$?DoX+yg=Y?0NG`eUiqI5G2EQe4tM(ic^H0=&QH8! zJ@0N!o+mh&73PZ`w~VvAUo3a<=7uHf%2xgWu2&Q9R@wzCz@Vj)GY~kT!y|#w2+|nj z+^1g&4qdKXpx{O)a{QC4A4n0bq4{LKM!G0Dq3~B$(70oOy`BYXuhx>`=dQx6G zK7d>4MQ&o<|LE_JSzcZajz<7~=F90tvT6k(?C3NZzT*TdfM;Ex<-H+{&?m&PSkp}1 zC|SLZ7 zNA^zoxuA>DgQWB{1Ml3|YiJ3ttlsGy9l39=_eA@8^LxW* z_e>0=8BUZix&a7fc*bxL62)gbSNt$NkIG zHC7~5@fDXc8t$iuf0a{|0Cyn6UBjI2l5gW4Qgx8`orf}I-H2H4mBeBp9y%XwI_!uE z7dE`QFJzq-An?Ha#G>~j39ae%)8|pDjYU6e6ic2|KR`phMp?zPcNQvhsf^b~=V7G4 zFyg}IFRMjnFgo3-$4qk%!^zc2)ZN1zPb0lSVOkClpNqWa^->8m!%hJ0Q;nkl*UVQ$S>$WWY9f;*|7G}FPpOm|1d ze*0i^)3|NinB)ka@^&F7W$MrD&dE2bp*x=}@B5-P>PO+mX$%duSL&hn>c64HyW{q; zvsD8Z1umS9Vp1;r2p5bacfupDTvQa%w8vHL)J7DmRu|lUED3i3uS`^Okb9i7CGa}J zeT)2@<@mSJepXct9aj=~+u4{qrPA!`DL;NgfVDCAD%t04iJ*teg1)eT?a(VZnh^YT zvu^Jj6wEAi6PnNBR68gIMcK7SDW-rat|i2D_wtk;J&ycF~r zX57+YBHW!^uftkd7fVz4J&{CN8LnwFzLtvvNEtL87S57Sq73FwV`LXy3fkkmpBzSDT&XN!jz9cNPJhdxqQl_G+kQBE0 zl%iE!`E&mIi!6mU$QRt_bubSc2hepp+*?a}K=vjrw78gkeZ#End3aRR{KiILMh0yd z&D-n!^Z_ZB zdWLFxm+C^4#PP{1yd!s)&$3z%7vem3eoWoas=Bs0WUhR-BUbcmcF9;s$SZu$L<`^5)`m&_bqaYGvy4w1;~Qo*8j^vp_J@{B%Ll_hxcm#kLD}2elcl@&^XI_+ zw4Jpz1#h)AKZBO*&J6+r0>0xJ&#LkBiwl(s%LmntTZV9daCB@eyK&E>x%o9kL#=Xi zVlFPODsooV0yP)eJB5d@@bD@_r!>nyaQ?*_Se#xqC(H{Leyqe^6~`ec(1*jJC#%M~ z7L=}<{wOW^GY9?ab^oqKJDZKm*v1-+x(V`@o^I^^gU)(%4To=8(+S#Lv9}2ef^}CG zZELDF9&c^IHvbZh?^vJks=i2hpt0!w%}^VdW^FUi_*K zyZ!_Z{TW_dONiqAXcJ5kd)wwe%CAJM35?{`$_ZvHMTTz~!{!&rJB9g-g99J#MU_hA z6E`-_+&qM|(bqeqTzB#D<+tX!Eyf!Ecwvr~nGvOm2It%IrpbxJCF;aHc64z2d*GA> z6&^ZXtNnCeU!Pn}O-<~eL}96FbFzUCUD#h0e%h}tRnw{}r}d4Am@$0S3w#)9e!lz@ z$EG4y0ZoqQWp8uj6(|<$Y$!6qFnuK%{@ECsl!S|}{b_p@P!M)Q09dv>sxwPJE{2N- z*-M%t8{&I9hp^JFK#?5U6$zZsi_O0Vt zUz)^ok4rw$;D>p8MUXVmnW}L%pR9`T#i!-^SpYX>ha@I;!L~Y?Syt9~t#s8G_3Dh* zJ4lLf-NQ2acgpu`(iDUuB!war_9*3L6q#w$ z3PXRK+w}QoXRgJ)rjv;>d+GY%_D&h?$na&kXOXwqU&f_*!2+8nG(^w|QchJ@@E#r7 z)aT*1o|NhmUfRT-+t6=vrROFPNh&EZ9%{ADuDmtMip=6LO4p?zCGzg+&e#la*YOG` z&XLAVQVa6QBd%vfZ)zA?hr#Pz;-+^2C%beJayOEuro(QX4d)x1`$;a8ZA3lcCM>!- z(P6GitP*3))gLkPkOQ)B zoi1a&o`!4p{z-k_5(nBxMHHuKasDez~D{ChS!CX zjdG~~#z&Rk4~~sZXFLS7yBMwA*K-q_8&E#aN}|)G#u03^4jI7{xmZ9?{o-{=s)p?|VY#}m)x4odqpR47t}8<; z+V$feo6%deh*)232|e66a?Cu(OvZ}bSmK-p@wS5G9KaSPl6|eTZa0wd;EVh#>Y>rp zHSzT&D^|;9x`}g|TvGtKlr>MK*sy9ZAx~_u#n-v%Wimq_yO~rIepRgjtmtuXld?>dM5y)3~(zfP8hhOXSE_L5QR z!Bu4oPYB6`x48c`aH=L{e@XHMKV9pd<7jVosL`b zs4*k`d9$~Mq52DNTI;?WqyANyZpP#2NdLn(T3p{7d{ta>QRt z3g43YrbMG7C(W(cvD&ZOQVu`2kGsXUlU~ozgZ0wUqg!>naVeZ_Htq?Oy*UrDb=9@k zD$?R5|1PDFQ$FFq!@WGsba*~`1-0E!f~27;IZj<{Z*^Xjt?2HGAX_e9=&uVm{*$@i zniU7?-YDBF=qN(WXcsFPNud!DueG%wX}KK`y!64op}jd#NkvO*`|mF2Fyfb5rYaDa1`Yk#HR$8p-NLL^D&<HK%8`n{$i4JT85qd#+d(e;~8*}YD4hFbfg1s{?tTLn+A{1Z03xErLNH5Z6Jsr}Q(qDZ`x0TtoRlTaStZhF1*VV%Db3`2Zl!LpO;BuMeod6czHA}rV@?f0C+Qh^v zEh(D4u1(`Fs3Sigefh+k%$>c^lt*+tFUd1GkvqCKkgRHOWg7F@x;;2VU8Z&7lR%A& z)e)hZgog1MZtZ&Kv)#GduQqZgU&3SBFKPHept#eSD=;zMUYi$X*CI<1(!W>hMi-AH#g zh`>urH%NDPH%Li$cO%`L;XCI#Km4Oy>Ylx4=3aNKh1xONmH4_$9Mr+=HsR}sNv#0u z!x~0MSu}1l2)-ZNV~%8fK4kF@6>DWIW-+Xc+U<8X-o*&m+b|IKZj7ZQ7&|-Kallla zVcgQf5zg{e?Yp};aP@%*JW5t#xr#-)Dxavq=`Y?e*K*4;|E{ds0lLJlwly zDs?KRj7H0AIZ2jRvbJ!pkPxtwmzl&>Ju69+K1?t89;`I$%23YITTLoR9UuFJC!v`I zDicm1U(`^8f=|)CkORtvKqTwRK%XoxXor`nYYoYB5f{3H*B4Y8zu6^O+0p;)31!sj zj1rBMfoA6vSO(@4TWNz(R;{Tj*$oPRHr|=KdZ>Ohp0eE&tmC+SSbWHrGrX@~1RbbcBXv z!(a5AMZARt_Cu;020`Z`Y%9s1PDc9$qrMt_TeHEKRF}4!q3|AABbt;rN^HCN!8~uI z0nqH9bbr66FAeT-N`le7o~9H6K#J<%<)dh{FOhtcF+1*Xv^D*fclA#w*MGK7*WAfU z2w+1<_X-t+W1 z{gJO;Fn<+yBn6{+929K;`@I&4my_KL^R_?FG%t}j&_Z3^QUw^e8 zw@P;D5y90{oy~hO$Kq7JK)}m%(Vyf99%72y4$`v|d$Bhb?R1Zwf*+!GW&7TFM^x(% z&H6}Mf~J(72RNkN-R2dTq7Ma3xi0#8tO5GBqb!cCrT(R9M0CY!>dPezmD->pluE3g z-JB*fsshuXPOe&XduXqs$-En3=M^mw?@5wMbNK7Z@adnzS z775=5Lf6Lr5@IYP#@1bQ>mHx@F-u**9=J*vmR}RmQJZ^K!)_|&+jP8{5HncXbUI@o zVdI2tJ9{_GsWX@+E=a=r16qu>fC9|xSs;5x0vm$UWLn$LI0`H z2(pqgL4;xVFzRU>r^I^LZwo2|PyjtVxL4imcOL)lFXu)>fDJ>j)!*!T5AL1Vc~YX+ zyAhOOLyJso_e0r7JQ;pfAraJIr>Kmc3=M5If#=wnG#kDpO&zAXUPpj|UP&VCDA8k% zrE_&2a(fORH97g9tDW(opt|MsxKUyE0)Vvw`ti2Tm-20Tbly0zzx+-jYULTJ^C1Pb$$ zo!^E89(Es@Kq~e?jX=6pYY9*E0M=Hl*Z^H2S#wP?z&cfuMbj_Lg`mC_VL<rAl^nKq~YmY@3_t-FUOb2isyzg$`?M`GDJVxJCVe-7h^Gp z9sk+09+i%d=EhFwXHOZE*P`w2>`FW}xiR+5_!5);B}?hw#thQYrv$%fv5v^dOG8&x z(^tMGLssk5v{`;lrA+RZx>l(JpIo65U+q32xY4=*11Ok599HdgapN7YGK728D-SB@ z7M46DSqpbO8zXQff=5KdvA~FE<@>G7JOF_BW;+TwRdY!%rTxNxuf;>O(tyS0lbfYl z|LbYl|IJ5dy}yFO1lFVSsBK{(F1(Wk*77aHCUlYC7knj#cYdy-cf8dm)-Tv<`VVV2 zlV&X~$7EmyQQBBqmQna1kHm3(Lq1wCnL$DC=uNIV`zyEk^le}R6?(VB&?9t*cGa|q zO%+2O@m)p&Lu(OMP_QrmRZ$KsMzpOsOFJJHL=C9Buq91@!=NdRe{*ntGIZl;Rh1*5 zp-&mgmAY=OLQ9tA%SGjAxbh)`3O2?*@K(40w8i9G3t9JY6i){u!=OhpS{tiPj?5dYW{aVZV z9DB+y0{kK}g*ob4c*%cu29$J`y%A)2*(2Jfo+Az zin;rn1WSX_^;EEbr)&SI-_QZpqfXZ-Kaa~o#TH&56@M;g?Mt5A`E4INVMB5#xOY9$ z@j*wx;6ZvYPvdub3kMgr07` z#k~@#o*&MRdSW=#fKu&Q>}=_CSEj>iG)AwIC>mrer7G7Fwl4g!#D?Hzj80(>OJzXX zXFy72fJSAIb>A=cBRmP0otzbrV_T1iqq$gU35q%vR^WCCLvl3M%B1J#v&8pow;w7} zcl+e0ORfOkcyJ&zHtN;pesmfEzjUcWA(;1&g!2h;29@wf_jq`e=^4}QtRZ#V)|o$-+}1AH_c03o)G9O> zQw-Q&SFe7lDbeWb_#caOw;$~thVoroTBelXZ$|{mW8HV5;*(|$wc8;x6s?i%LbNp3 zf9Yia7x6|Q=mx#swct`>xx*Hzeh2jd7c*!vxXL_fw6}BhxZUlHqi4EAfipveE6In2 zvSJy|XB(Xx$tUD@g|GxFDuF=8O7TcQyW~Elr^lyspKJ%m`m1BTp}$NruiP-R?4pJ> zz;SV@5)2>svV6~apxGo3u(_=n$g&`)n(V?)gcWR9 zi^FLFU2k~W%K*w&l~ELP$M>M;<;FwM1Dji~ok7)*tJ5MSG091g8qHqWAmOPsFf0)P2DA>Z0 z{pj3Dneji&Y}BhfJUndI%$b^*jLy2|n5>@DZ1d4JOvmC%6uK~wtZ5-1^#&j-*!2#u zc2v1h5AA}lM<7~xq;(e7%ChIR4e~0HjGm=0k|5tid1=BV89@GkE8WnOVj5MUI`THR zO}YM*E>63#_~jpAgtDaXTNoCBzj4&x94Dk#%;f2m3B!jr$0XHLC1?t^l}OPMZ7bP2 z2mio;FaxmZ*v>qzE~))cDibM^Ba5a5_ng?41YIuTL@1p&01b_q{^m*EcsSq$0X2VN z)Ii7}Q?WkIEI@ui@Q!PKADE90#;2EX(nffjvz>BhJvk>uEjpPv5=X!M)Nm~ng&;0{yDGFsfs0-^*6s~#8*{$zi| zNE`V=N_6Y05&4tE7Dt{^`R`4@lhPpOPtwo)j|6EWh6JO32j_pi8AG)=-+YHB^aZYB zq~TXCHtVs;!1MIrI z^TFL-BwvG?I7F)xR1%M_4AHkshq>yNazf0^nsB%C7(iRswOL$btC@|Dj=7*0V=7ov z5Jkw3`7d~cmi(1{dPH2VBRU$XWW$O{)%|R)PYDjf?%jut#HGnJ?yQx|>#EYLN5kf3 zwu%^X-IGwmL_PN?(*V4Lb?vnIiVr{TEMzeNZvP@EdN%a9CK}op zbjy7PP;v`EQA5uWq#eu2USsc!hgJK{FFzBv$44p@7R5~?UsmWpf6(>jN$*JkMn!PT zjW8jvbWi@&Bk=%Sr@9YaQbPaTY{P2rLadn=-yC{e-$8cBhM_Ab0N3Q z_|QULMhQv|l*O2SzM^qEC!)`vVn)H=?yK?qMK@{!AN(QvW{_>2NG>U6N5B&w_hpxD z{MeD=W{#o;qv7;8%ujFk#DtdyF;8o505*5to$Eh6>M^yj$6H0BZsmGB;w{bptMeC> zOVHFVkw*CEpeOo*;`yl-{zZT*)&Uf@{on2@T?m0WW^@>-YcOtK>eY7$Ck0)x!gn&eZxW)++an;le}*?L{*sXAvxcaNGu9zfBsnf2N+ER=++646@LVZA7Wx2F@)h^taTk?G*uoBeimtCO^(ciWh;nz zBMfDPsT!k61vO>Q1}GOvJW4*$4`8!RpbxNt=CJ;L#GFT-_V1aOC$XaCI>6qM(y&Vf zeBrw?>c8DTS4oh1NBUv`*)V+1n(A*ao~;u)bIR2*lI)L2E6JJOIo%ig4$0rbvVKFZ zWu;#;G1$#V!Uf`uC^_L({*l@cT5C_wMg|DOR;H5{%d23gvqCWyD4i*)8C0LP3%tt0 zA9GL7daifh6(3uK&9cK73wc374xAC+NcX>o)Imw){+DQZg{AGA1yh1^JpCAqy=P%= z0RS>Ui{QA~NuLDbXMKM`2PT@YTB!#s^UGd>n~cT*jJ`bjA!Twm(s?b+WX` z@dQfWJf!2W8PegU~KGWR!6=0WXq8+vset+F%_x{5HgQ-~C9>((@?;6um|HLSIEe}8s1$0SVIK5Zh#ChRmIA_$ z$ZZ|q(aQ2kK}>aRXB(o@;}(e^Qv zZ9i`vmoS0#5io^;g}&hpkT`6&de<2Uk3wq;69Myp-iTf)=Nm01B;|}3Y4xeQbv1p> z(p)}#_w9MzX1VE4ma^srq}x}O=~fbxQu!+32mkT#ov}9y;10FK=yM@emRa4Hj8 zxj|L(`Gc=CuuM0^kA>bi_DWA;6e)FjG#}Re=W(-gqLv)YouM*pgEn%C^{D5=3{WD) zj9Q_+c)ApOBZ=Nlackn z|1}V6f>UQ?`CCj|Z-BqQE71P!oSck7m#rT`LG@Ej3mgk<(l|In8VdMuQ%{6Iu>lvo zql=9X-UJDUaaGb2ub$xw4_*ye0fH{Y#2T_Nk9Pj7!)c9=J&`sf2a4IcvVi*=8Z^rD z@%iuaH{JhJ=!p@mk}tk$ZXWA(ro=$M_3^?akv;SSbtusOl7s`J#eAdlK6(Nt1dw12 z!ZCuw8_`w;ml9C(9Q)N6wgB8fE#aBh^Bo7b&B?E0I0n1hoSYMzuYtlaJ-hXz)EhBl`(>@uDRBpY+==KK2$%*aekDi)5x>}879 zMZUa!*d^TbiGt_B9W71N@Ndqpyca*6>REfc)P6{1k>zIoUWb3|x2*x+syO~VBt<6X zcO+i>WB3|So=VnD7_zP9`od;vzzCtWExa|dO1C`(+(cx2rpZ%gr{HkR$jpF?<* zfF<%3qtScT%fMbvkjNz?tMuKiPo=)ie$!HW!Ir>Yb`vapwEl+xqj?(L*4ts%cx9fb zlwSVS%Uz5SZ7p8QL0E_T+vfQkP^QbT`~UqR!Ey84!~=9R!Aor$CZx{-K>CJGC<|xJ02#O zyPt{v6USF^K!F1$->#hM=?~AcTZF>fAj_`L1}pu5c6Bfiig~iO30$f&m(d!cW?;&w zu(;cb-K-_x!EJH8K0x~&kr1Fq-};#Tba4VInPuA?PJT=!pkQgrV*f2% zOIq^AjH1vftTdJD||7rE-&P2(@R^-0IKp z8p^viIABS6)mp&?V+^px$?^7R^Nln0kp?jqIxJrAbjc@7UC9X8saE&UpZBl-P6>kK zRt@Z)^TX7>}|xi;R(w{TI) zsa8$*AHBB$M4GzY9=^@#e^dYf2u1#6F9enrV@EF2*FyA)C}FPZQ|zmZa9#EtqCz6A zXHJ6JI*J33)md-bCm-6adkIV*?bNO>3?EdQtv`Bo5)%#*HFACQCxgA88@OBO}H@^eoYCj=#Ni zeSHC-^KRk(NRH0%%K6D39!#H$VN*0V3lGQ%V+$`~s$}cQ4MsI=iFd)Op zQ3r{_Le~$8`QW6JEC(`Q&rSttvJFT2rfBhl#{~z5`j!M%j7MX&t=JF@kYyJ5x4@eS zmS`041cc{E)Tnt%;|CjFsU9aJd{uEkJgO*aQGQ{-)FZRBqy{6|Pp%fb#+(^4o26+9PzUdzGe{-_i`9(**V7FwUX{E1o$vl^0|2{{ zf<7?#BRf@w$pDl=)n8iX?KlG*%z9~*&N^4IlBF5}Dt^ISwOR2n>yG!E(4Bv zK~;-McdMf3VnXZub7smowzTqpzeyQWo|>aUHB1IJbhP+^UU7B|Ec3ErwI@w9{i}2* zgR&Fz;87zsUtb~oXJTacZK$fOE7(TEN2k3TS>8_Z-AI2Z0c*7eYOj2BM4E!AnF_CF zJODh>8d^e- zN^mrGfO?gK0M~ivW-Z9Wt*K9eUUk$){OS<{W)z#_mM{>b4R~t3Ec*uZ0^ovpRTcp2 zv9gGvUF=wd3OErR+{HKmG4I4*}nxFDh(q;9#wV79x+1`kY4i%93=mx|L!>{F{(Hsd9tQdi;4_h+W9jKH_!s zJlby|=IYy?QPtomjqu-I>Sl_6n*ej-8{Mzym|HJ@tpKfXVIdiGd*>S3SRhyBfXZyo zdejWH4@nKCaN@QV;XQnL;9v`sD1`P=Emm>jL_-9M%RywL8jap^%bJF9BkGOLc8lm+ z_p8**Md!1>{eTFjD*q&-21Z_q3S*;OQyy)j0V%pd<&0XDW**S7KrKbTT!%_uag4As zWglQDEaSR;6GgAQ6(`w{DBty3huhNy#vs7XB@&E}Ek-ag#REv@oIbYod@B172+{!A zMS?3I95ctV$QyBX&wzMSDtI^mr(06pIYs|Q&GP`X4&H3sUBHz3gessw`x_Ua2Q@&k za|hg2FwnRBbZJ1gA-GEC$3KwH4C2V0w)aMs%t=UKe8bU=0Z(6mz z8vh}BTuh66kfYPRpCe3hzF^E%O8qaoVTK3>Z_Py;wSr%L$zv{AzbpwxhUvR58`p?m zU`UgO+_>1X^qW~T1<36v@2Q-Yme%1l@H};|eIsW@_MI9DvA6@eQVY@WKZ|dm2TbEH zC+c5NPS@oe)G3NcblgdDz7SU@&smM!%9<_-@9DihFaBz-6_k;eHXFf|(Wli6itGkN z5_pGKjf#sJcFjP0@`r$7V=la(c~y{ph6&|mT0lXDIX9C zcyjQ5Hqr-u-EVj@6*`gHb=NY6=ABLiYqHJZtZ=AJn9!2+qNS^K9@3G}AQeTgPH>(shkbB+@1MI~4ZTo{+34d-=V7 z;lEX;Opwm&y2U6y6z3$zI%Cox1VU?LpCtn!2phX^0lgv%zM>GE^L*}?U^d?|s-u$= zhrYi4NL|6TR2V6wB!*z9{aE~&5;!6N#S3&uAS$gCJ*?!=@}ll<^mLIDSuD4+^1VrN8qJc_=7ELTk<1<+3xn}365&$ysO1^Dsi^qrBY;H$a@e!BIXMk7Ar zKx!4GE>?W2rEOCod!-#*hkFMGUmHcrP$GDF50(Nj>C{w%_NwyJxMMt;pepXwE=-_c zp`qUJ@<7`vkk6qU3er(ERVaFctA42)=Q)io&Hl305=?jS- zBQoWhX1;uFI+z#%eE@d?9AHstUQZILS#oCpm#?jlbL!-|U~p-4I5}{{`r3%(D(pY{ zENb3yF@1aDLcOdoQ-*(6s5Ll4Q%k(`#hpToF4vy(Ytfq?0;~Sy(8ME!l__Ki2Hc|| z0*t2pG(>*%l%dI#QF#@wCnQftE*yWa<2g?rY10cMGHi5UbpAUk16cfy#ZJOvo|3&H z;QR_L68lrWre%(1s_19BP6-dSw0|27Ge7oB92@mX{x0)9VPpt;gQOqPqBZ=h^ z=-3%!(Q`|10oDMk8g@UrKHne#ety`$vyG2)I1-3TZ_X@S*<>S+a$G8m#^nTGPbdIp z|4^Qr5ER|-+H;EE9SCg!xveg3Bohc7jUunLaBguiR(BH*P+MmX>{;GC9)(CTZ7CUi z&Ngy6!R9$+SVx9h8~Gmjg!lzAXM}$h{U3IpMg z8k%Sdf9>ads)1WQ4pft-Rn*-nrkwYo3v52Pp!@?uAkX@-j;XY~V`2m?`^?(zkU!f2qUA+k~`&veWX||J4Z5 zN#LySgB$~T6|nH0Je_9@jw3qhe?=0Ek{9kQnXA}PU)5&oTKAf%9q)YC){)&ywc^DiR$gHV}1zyMcON~?an(eGICY7J!Whn)J z(|x}ROQp=MI^}1NK%A|%A!qesPByDy&pNd*e#&%lWz7G^{RG?t;xxa40=_Ro5>O0l zpiBYziz{#13`xd~Z~}=euNKSss_&3h;G2pZ9hf)6snVMGo2if`JNOwPf&o zQpID2o3 zeTBH^es8f81vrRO6%fSlj{A9}J^m#os*Zp6*?&P?7_O5DEaT`A+Wf8r_jggV)FD?1 zAEjk+{l8J@QMu>VB)Sopge1EM#Ak>B2b5ld%40M2uBz>Z2Ke52AT3D%1oZ3{!IKg1 z&9)eH$^-W~PezCs&DvtnymL^D*+soH z_?;J7O3IX*P;uu-2O=~xG?cS}b*X%u9f4r2|7jZ0eKRPB7ng|BfTL>H`jc%z?gj{= zSKT(b@d;SuYRY0C|LL+iI@cNeXlDoE08hSB_^}snKO0nSLt#`d?ThDd;9&W;l*j~p z4atBe0b2qoUiZ+ zKV{Yuj}@FRz{!)wQXBs)Fw1@eR+cbiBs(GD*y^;NH4#5#@7P$PtU92 zu5(538AV2j3W)Ukb22)r4tgdO!XM<|eX$hW0(es3$|l!%YdvnP`yxpqqodJ44xr3s z5zIHKpU0jde#IWrfhPV#ztdoS1F;m+YSm5oJB1`G4_h?Mja+f4Tk$>G&D>w|;N3Wz zN*2^OzZPUXJhu^FUX1IG`sg3RR&h}Jz#|y~9>05x`j-@P;4nzP_mWAr>~5F0wigsKfsAP=JhBXhhjoLbNE{-$RMC=1HnDm4X#vs zJ@{wshxV7G)c0sx`CNU*u(r62h#yv`npkT>FZFw5cc7p0@PB;(t&u3DFtj%g- zIuh6)N!ex<-<$qFK1fAC=K z7|UAuRVSQ9L0X=QfdKm&;3@2Z{-4>Msb_LD4A_4vZiK1Ozm8NL0BK+VOX5{&9m=~} z3oONf)LIMx+e-CA;b&ldd9C+Zb&1K@8lzUTCoWOQ!S8_!yC0b2D#1=d3cBS?Oe2^c zNdimEO_=iP2XIy0C4lZ|!AED+7!LdT<95N~r_6aWBLs}9Gq7~Qd2Y%fe)|y(>1_)w z!e51g4UDA1OYt?zFBvn|6#>MO3?W)s&FzNlB%zCA zCLiMH_jgRB%X$1imBtfyd=1-t*G4|=V^@*ZJvN@Az1BSvs-3OiTWqBPytq1E{j@oy~7Rbfkm_T46N``(; z_sJoEQAZo-s)i;MWc5;AKuJzpAr>++AXQd)TJ2<{9DWolh&*v2fgjSqIEjci=T3jL z7q334CuNYHUL`f2u7ay;Y5og$`cr&u0hh|p=3O_1Fg+<|K^m?Q5i)*(xW@>@y!1uG z1Nu{|7}47Pg@`m`fk>eOmn<(=X3{LC5?!2(%1)LZb1Poyh6F9|nDO4TApKluPm4WJ zw9yc!6l>oZcm1KX-zg2v0frPG5?*IMRxz8t3XQzAH0=bue|KmC4_xuVIbHajVqlm! zpy^(;Mt1I3ZA-;zzy8uzfTaaBA4Yw;Zt7?60b-#C}n!i&P_rin0Rfhx!gYj6`E zlQAIz7sKqH7b9G?)-TtKHg4DRrYRQE$LM}SdJPhVL4TYV-V_W$>NX%^fg&>AjZH7& zx{v}!R2Rpp?S1Q)<|B{_VCBB3s~pP~O*`pE#mcNeDV($ayBFrzKoI!yO=f zjC-vY3V+d7va$;o`UA<$(Xl8E!4r_zW!rHV`74pdr@G%FeZ=ch{)Tao zIx!s|^wJV5?nF+7`|Y+kps|~^@hyx${yG1G{n^OtvgzrENoASO466AFWqR0LYKzS! zqt23fJJcAVHJ?)b=N zWdbY?0}V|_U!Jpg58zK8J)cxFMtc9m(Syzfy;D=MnVFezrMnTt{1PBUlb4rwdv{l9 zK3$}-Xt`Jy?&}MYl9GD+_N^X>I5O6H3h}4C{fV3@Kxceh4wI@#2XyHOHJXmG%By<; zMI<1>yb=3*`JTh&C8O@>NWI_tGox%aC2#`(yDKb~!VhTNncl+Delvv7v3wv`0$L0M z`bx3~fcYW6Vs6~fAAr*9s$c@7Jmc0D!zwlEgA4{de9m~Zn99-E!rJ9~z z2hl1a7i&QSgce{FXp|2&4@CvHAFG-Ic&)fO%hRo_VYw`v`s#j1Jb(E{Ukf9r<97JY zUoE+2j95rJMT&P)+zO>8B;XqRvi_qqB81oJphxiKQStD){pFcJu>IZ`**b_(v+fK` zojLC#u(3T^;{J(@*LC}EQ(Rhly4g!X0Ud)%N)N=6Q+Zt?W_5kiUKI_i#k&1EZl?oG zc9UT}kWJQVu=N9(nzOY4RCF}7tQ+o>Hvy*l%QgMzwsvtmhx&#lQ$^UeW?v7aQrpg% zrx>8PsP`A14x-bboJ?daNb{CuQc4}GSuLhKa){!AW4KbL_k|JvW%C=nJ4V6&x`)px z7KOc2^4OHvfD7u?_MT+7n}Y(^bL+36`B(#|K^9v7mNb%Vnqs%l#WX|I#zXJ}7&6lh zUO=WeVhl@K*lp^+5KO3+FPwUqi2sf{jRt|foPhDgu^xz+3F1r~Vk|9_cV{f1Zk|W3G{U5p&`^$W_D(WQCl`N4#>7BK#?#$1w+pnz|j=&c4nA8cJZcshrJ{RGhV| zebn8#e=qhxYok^t-;tp*2E!usn+j=naadja*t_-U>gFGoikQXa9`M)h`-{r*e}TFG zlv0EO2{`zRqg1HWq|@+lUz8u>FjRyP+Rk+T*p*o3=vb$BRVi|!>n4Gd8g{%R)+c!1 zu2^IA(u^N>es2*x#z@VSpIQkuYs}5|U$LX&jD}`+Ln@oLoGUv&-*i)^YBm1s(y66! zk()NUb_iCcMp=midc*b`p{IGyWA9r2!qU$kaeijy0rn$)xicuEEHD!k;Jz5m5X^Yh zC^;-VF%@zzN2M=@gwYUTngzMwUk3PmgC)_kv}3{WWNUDN_k)l zuS`lUGKEvPEMy+I)_&^A_^cIfFR;cyJ5OHnzdYn} z#_>OxMLa1twNRlo(b&2&GeFQzf?+p|w%&uvtf=yn(qg}XXjr(jgwh|PLKdms%#BKP zED(1%J4P>Q;YxJWi^d!(L<&BC+TY*b+S-!S(0Cnb6v+pM>y^CoeSGx9M1*BxV&brN zc}*zuYMvTaRaakGGbao=wf^U1^|~4insvyaU(<4Af~r+$>3zjVDX7_y>w`LeSYHi( zw(rZ#R92BuIT3{lnhs97D%!@)nqLb;s(PGY;`_L6(Nge=eP&HcY7{-+kxof79**Ui zvCCuk8EA_)))eh{*x2Z6Ns>_%Hzb$#GmqmkU~)Lk{a2h*`%}Iq!_Kf$?xvBsj9fC$ z>+2sLwjW%Z1(h?C@t((w<(kLS+urMQ3V0oG&_ey#h%XyHf2C3;`-@u zSZXI3F7D>$24*_huXhDvlRW>muh#ndr7ixxuKn&hPhi)gyj4_OJmiF$u~h%Kj9~nV z7A#rq-)rldd|JI|xy*+u>k-QzOos~n;`Lco%b?DS_^>G|yY|RNOBYu(i1+)j^Vjo3 zEz~!_@5LxL&WC;~FWEVR5wiab%Ssu}TdA=yO{h}I!9Me@<9p@gQMCfyEbNQSyYEb# zY|q(p7?$&9(06@m>1J?G>=&7kllI-CqY)vw@#1DBqT zE)nc(Yiny{BA!^%FF)6IcKZBbkqSymEN>C4p}u|lCPF4(I;;hLq7*qDTUAxHbuqNp zfRK>zU^%aB7lwtEwR2&isZUmsg^Lxu!>=9;P+t~5=5S#u&3}xlZQOq1j5@BYZb+vr z{zY35Md$bhxiK6WQma1QM5R+I-P?p*z)5q_Y&HkN&iah28o7vCJU7Bd+iIuJUsWP7 z)e7NPe!AFg)d!LS+fvWZGt6a9V9_n3@TAqYYBV*>)BOcs#>?9Pe- z=s3=on9%xv>k*haTcX|#E?XzO3Iq(QGk^i>3f^B{j0uj(3O@A!LU?$(Sk>*MaaT-Q z+Ia96rEk+m4?~iTUzCz!;^OOfyBWI&)5VWq)@O-&^-mmKPx<;0knNtYw;{>!JV#(< zW%WECq$d1ioB5SU8W}9u_?3TcH8a<;hyg*Y?_qL_rRDsI%8jNj_f4O@rB374y@*9& z&M56X!T$8yk(OwU{kXZqnD$MZzsO52lqtZgolZPo*tZFS0Ro@9?UL`^OQkXg{-EU- zmK%;ceQ?I^0|8vTt8MxFmi9=1pB)$7=92#{{IG^Ry0M08?@n{tq6WGiYFpGwb+V59 zuotv>iW%X0jVv7=eyB0N{ za+BlYl)qs7ot;f+f4&a|I(5Wp+XIS=i%Z+x4#7$Li}y0;8+a6>i=B~{yPcF*1Bc_$ zTr>biAgDcIP~IJtS4L18Wau#jIq($M{AY7gfQMMXi;>@UGAUEUi4%?h(YBIuQqKZf zlDpdim_A1qO%LF48GB24=;7}{Ni9A?Us(jN5#tVr2Cx>W#k~kobs`Ff(#OV((BT)bx>~(?H;SL=6uoF37dKj8@lDF6X*Dj*2R-#G2Zq zQ`5LzQevU|Hmez_q$YE7|Of(?WdckX6aVp_z&yNRaF;cQmv)NK46E%e9IZ2ucz z=yQ@?7X-Rw=1C|0%=b-x))tHzF0qT2x+ip?Pk@-3reqTpX*oIxJUb{LX$lqKeTdQ+ zY^&Hl2Wl)w)E05cu zbftBFzMA^wVf7_AGBV%e=7h1f&pDv8EYG^>JKNiZ;+t!KXY<+`EDy+6VZX9jCSBP= z1p=cXOga>ukwT}JQUeO~gDSai)_d*E(KLW|o%XCR1j*#sc}%$zi?P z=biOAEqjS8)JWvR4G}Ib3y=-~p)dHUq;Z$i)@S}W9i`stl(EUx{`8mS)#@1s&`$~2 z+i)l5(flBQtOCi6zpMQbfZT3qFNe?aMtOBmgB)1)W19NMo&?<;c!%5Gbt%;IDSD2p zhy9OzK18B`X!VxC22s=Y6@}~Y0ZfUN1t&b;N~p3=YPi+^ehzLXbrM~gyvLHj()_s6 zQ|-??)f}1kOGhb0DXT|~VTzu|dl@g!30`Qy3a%mzY70|DiA*MPtm=qZsJJZ59dpO#v>w`=uHNdoOv zjTuBsGq)mt|JK#ZUl6ooIv*-D0v%^E>k}AXtxUVU3_t@T6FMG$=xtNeA>NJD%G#Pf z=IG5FD&GFlyXzq9%dQakAGw_yaNle=+M@ws8u|2Kcugh(?C0!&)=Q;wrpoovH3wR!o zX$0SYLwEXLjLW2zWM9Z{@(k@9t z;VviFqHDm%Cn`7(PE8NZP_t721%MYFdts&g_BtNQ@(muY+>KT*=zNu+-B-ah8yGs4 zhdtdOj3UcGQQc4^v)GWwrlmN_pP?dUm#ehPV^992>611pgu`zGHW{k=JxvCR{b6%SUd88AA{Wf3<1e`xE{Z96D^pO;6M#fz& zpWARl16!(&$=CuBp=O^%L3JIP8xoxV&G9$rtFsb153crCxszy@4RU20ULU~CX(9^L zfWlvNG{x~TT5|H;FNy@qYii_0?BVXKm!g1(zuJ26Z)oy-5>6= z+)I_~u{@HlKDuL~SGb(8$A>3}rMhi9zEsUiBc*2Uh4o)PH;QmkmbMmHGAjXa@AUg> z+e_DPE>5`IkJKM99RtqL&tUj#H+2to7i_J zS-YDu04@U1L?bRkmZI{;0J}WmroR#DF2cj3`C@t9f?`Lt;#>?Gd?T~X%OK)yN5Pqp zc*Lec7`A&?sa;vmVgmePN!QB=X_l{vvk%yai5Ld~pwSF4Pi7S;FQ zWej%%T_Ze?MqZU_;D`p<4^Vn;*k77fjD&x^Jg+g<&_$)Xwk=*)k;efCq3lceIINEY z{QckA#Rw2W-S-Uea9?;0vbdAHfUG!5{|-ollz_UcUc$r<>qVqE@R9_fl+n(CJNrlI zJ|!Tmr1rHRaKF>moch3fTsSAtvJZ4jjZ8B*!To&?;S7fpB$Y6J_@`iLVU1~48cPdO zx%<|A%YCorbl|b3g~f8Tw^=-jey82_^7YBri^J7_*2FSIb0_>__dyGp9uBuDO||U}aQz zeX=s5_rQ7lZ%4+7`(b`u`(SFnS()?4YbgHhl|#pB?X~#L?AvgNbEZYM#L`G$-Aj4v zJKq8&x^7Hc{_k&uUYuuc<|mfylXIJz?EXB#l^L2-hxk)Ca?hXvs z^>mj{4`p-ZNTV+jsT3Po`EupE<^k?xugHD_Y*66)DRpS3ZRK}Wipg~c2ADFld#P_u z4xo#LR|6}9hsziih)%*&fWO$_fFJzT)x2G0bD*T5hM>d!BOdd$9XyH7n z`2nPI!{F^>x48T*{D;gNYtZ zo7UcB4hszVYMNvhjnA$LBmLDyW&ebT6zJTsIeQ5ozxhVnZq{`*UTF|mX~M^swZLcd zS-m!ONtylaBj}I^ z!WaQkSzEmxP3Qff5068&Xr5A*F#nu`!zUcjFJKmaGpT0d6aUIxP>|1mYoT71z_1|$ zv}$!qWhJpKu`NWf*dTEi;jj#VFe>h)b>b|{#dy-Xn8AM1Xmr7~V!H$NwY4AFimRA@#v1~mL2WPG89-ef`ZOekRj{$LVW-f0D0oM zZ051n@ofq=>KceRI?faLLHzOczs#tG^$O>~7djn#e~K?~A*d7^cqFLu1rpG2xk6XV z0*!W?k$*X&W|(jdn(Wyb8rVB`t7EgYbX4f8#5n(p%7%TL8CLC zp)vxz61={*vJ4_+-&b^2VFSE?LGktBw|PXeOfPRH%%Dx;l&W`ysTA)UHVv$Voy|CS zIgERLx_TLKwH!^iH2|-GQvUmr>|6vv{sqvsk`?$!!0wlrRTFGX;3dHMp=a@bn0m{w zpw=yF8v{^LQb9mKTDqi55ou}Zl9rT4Qc00eK%`r`yFrjnmF_O-Zg}U~=l$a6IooS* zS*-OuGsd`wmCqgQI|GZ&V87`F&EhAY>q}UNi|x|Cps*#tEBXp*Kd>lqn=646!t~!n z7%XR6WrDnY*<`=Bg5pblsXr)on3k|wWi^RN}9 zjNS+8z=wejI|#`}d(X=qv(iq}MMZgS-&k_CaE5)LWG zDeRYJ=~Y6_eIK>uFjG>)t4)+1e=v&<1AyjS)^x9eGIzC8z?)~Z!bF{-7K zja)ucvZ)ryf}8TvrcWLSbCFy0(k?Pn{4?o#gTf(*|Ge)xf?ffNl@yZ-f+N^`pdLV|^H7zc zIGd=JP6aIokLSk^lR+`_X6HoUWKCTgdj+gshqP#Hxq*1u#I>HV?rmvj3E6g4CZdnH zV`8o}6+IE(J}kaB^aI6>gb8M>JRW%;0tu;apA*9D11UC zVj6{-ZIN`p4ctos_x~E4EVDSv8A|cABJz$Gohu&Szq7Kg-_f#>zx9OJtqO1!E0tj0z3DQ-S{Y7>Xg-&m6@lZ)1k~V(;o)%Mr|LD} zuPoWBN=7#G;vOM};L`@EQIfyOFTyi+3T2Q1L-={%r7I@buQ;AJVn#?W=o${SE{`+ zuxbV+X*co8FVI4RbW{(ZZ}8d!BIb4`M*zr(9}aYcf_a3GUvt)|06$3O$?JRd%W#+8 ze!uwWOCK$xP-6Rnh_>gCtkAFiUUljM16ZoDr)7B75db8ErFn9ah!lM2U7Ks_48IQd z(@VZ7YZqMC?qXOj+aLfL{1$#+YnC#-$K8H2>eKSyhza8qtDBn4l3-eU_ z-R}ODv1m1n1hI@|C}XftsVytmC=pXgy9PSUtiY6y^I!p4!&w#vQNupwm(H{Jq23OGiQ8%;&>*ljVQH zMA8_LaatYpMnIj-jU!Pu`M_D2O4-njWxR9x1h9@a)17$0+6)4}9H7kL2DyD;rw4zw zy2CzH{+XdIIbJ=cfovwX+}$mo@QB;+XBy*4z@L3&iU6yPbz{}%dM@uj0=ne6GJ7+meqf5*LjU%17( z|DG3v62f|`x*HS@V9Zhzq|N+JurU=F4QqPMwIcpL6I@^QC1Fy$9 z4{*6HvkuDmORpt?0h%n&?S*T&mkszXU-635l;uC_{*=$TsAttYp$13mfutQ2D8|!Q zFoXc!mJ+oRSO{KjamlLC)bh<%$F|75k%YTxd#M>E_f-pGd8d&hZUUM>M9G;xDE+PN zF`;|Ow|jDP;NuCLQgd%j#B9OaoF~w@O59w0VIzta7esM-?<&h5{24vpa?}(4WjBYO2n);`iS%+A)^(0k6Zs`5`USmZb66`*$&;={~KtZl3hA`0CTIw#=9zt?a^bK1s*P2-r zW|n{Nt)&Fa5ag)?LO~yv7-cf9fJfwAnA>BAfz^MNwGoHhKeLt<6ar&3 zCxnm;1(6ZVeh>_$Ke{tVb}R;nje!YKVYXetNgqr%O+rgva9!10iHn8w=la(ekA?@h zyc{04Xt^}wv$%0Eq93fcz))f5=r4IU@xu6ABiT=^n5l*i!O894^Pg?GDI*vhME;>& z2wyxD_+b5o#;I#;Y^>OMM?d5duZWb?9at(EfLGFG@y*=t) zh+vSkG}-zxR7DOm5|AL~Y``MI@MAjGTAM)tpLhVVdQwNidR3I9)!V%>fzK~Rrs8u+ zQBGE!aaGw5(8b}$;VkAseB)4^lT8zRf_Zvl)C6Bw`)L$+yQ&Gx5ulnM1?LFfcBcgX zNWCY|ClfITvBw|a+pRhp$7?p!)hz(Kx8o;nf1QV|xigqhqSHUUp^Z;Nk!>UezH5YL zNvh@WS(wF`yhfVY@D9U|S_mEmKw2o2p~>2D$9vI@`$t(>v{8!kjZlvRA@LJRWkCVD z$+V&z7TRDbPq z!{qR&3D!5@0|e@GmV+m}F{kgx$(1tIJhOM6s~8Xt_W0fw)Pg}#ZTWoI)Z_azRczX< zI5{^yL6r+G{q)puYQ#4F0U>|VSM6*~GR&VxkByU5DYk$T{^^rnfLL<&kRkBUe&|&a zaT{9a=-rLmTz(k??LvHNF@<1JeB|=xVZXNk&Yk?4Gak+8$M=yd5Gka;e!<#>R}{w7 zlcDMx171>7Qx4G|ulU=^Oa?AISVA_Ms;e$+Dzn5M$8|saV7kKG`sY&^y>UKvLj!{c-5Yg+seb`wdwcd5qekg1 z0s;b3_kD%j+}x286Rfvy@3}e=$>Yt9bH%)K!q6^F__xqkB>hSphiRWv3L~Yd`JMuuhV%aMI zVdr-Fj0FIAao|qIzVo<3CgqTZle?)&R20ab0GjAl$CJGJg1P+u1@kqDq^ z&$pJVVqSkvO=G*NX)wttNap0ZZ@zMsgJo$vHLZ8esSCu1`>=#-^0~dRxLD+JU}kG; zt5)O41PU*)ClqHv$F%fbJRL zfo7A!G(R5ze;7t87Q(8YeG_>z|HC{)*UDW5P}hihVrSeFEvqf#i1AjnJK4WX0LLB$ zV2I}%5-jaej36Ci9uS%kBoUz1F?V1xVn<%m*v6|Cv%Qyk@!n3KJ4p08QiNx+eAzu) zE!DVI3RM_#V*vtgM_vLQHpBN-Iy1jMVa34!3ta&4KvJX#W92e-+WSKHosV=8=qL;9 zJOqRqTGEmY?@*g4-a(kY{SCq$;FjG6IN&$>GSUTWj29z&1A3D$?__%C!AA@b=y@nF z?n*`Q#nvtsU1Lh;AHmk${4x(z?x2?e|sDxm8eP5j4+HshPuq3Dod))~%&)v3Bd!Yn;3EJhDI&qkY zoj7Y?AsnEP5<-hxa@j`SC;HKY?tB1vPfcwylK%6*dPS>HCDM@) z813f7^Sr_l!vLq?)k-UfaxK5xARb_#NZ-(dKJ(VDRpK&5-kCT!$#Y+gN0z>_dlQ9H z?|w78HDr)5^X1#ObU@Mm_U)UVp*Rl% z`e z0$5U4IBG8q-zs~&w}yAFE>LQaO3I-61O^MyAaej$D0Bqd$AuvRY$;0d*J7m7=9KlX z5&u#`ki5}zr^9(U!MEe%7{N{rvRv8{HBT|+$0+}sFtKsq!vIcS|HtJpuy{lne<-Fr zMqq{NoIonv?MibwW8CNtemJxI%v2m5upu+XN_%rk;QZawLW5n|*ObugVy*`q)?Zon z&`wIT8@762)v(k!Xf_(%=6A9)c5HP|c!e2!n>N#cpO4g-_%XlN;3JimGVFQ=Tuvkz z#ySgq-?0~5g+m(?oJo{0*MZ_llnNh^39;Ly9Kd*r=^{)+h8x2*Lplfv=|~*+lMFKz zU&)Wx#3Sw`Ob>@ABN|vt_I?$K3V9|0P6K4aQGccb0e5tK;;a~W^8;`;)p?o`5stHo z)6--U60>_apalU^AN^~yt|D;9&W=Cpz+X-%3UO4}`{qu{K_3^D`*IOk#mo@sxv2Q&b`4jq) zgoG~dyUmIjGh$Yd&|)5?#x0f}5cE|^*9UzDY{y#Fs6;7L!*sMHZ9S*~g9uhc!yyIs z0*sF+ag484`WwH?3!{UrFe$L)b>37xl)FGx=K&E2RI~A~(&~KK5Qd>dCbx=ZoNp(6 zmj0j9C$JJpt>FdG+NEW6!gs^7(Yw8A_^?(UIa;)EjPINAEz&kK z`iM~DHv*{O@5LMaweM$0&$M@`y|M|6f~o2e-z;e}H<8SnpAe8T?{`!WOX&f^L9^u)8s9ZiuhCv*RvE^xEtIs41{U1Opcr zIKOBBhX=S4L~9S!4&CLkyjQ_dV{P79?gE+LIuSDNbYuyyJty$P-Un}8Pku)7L~d;! z3AdmKzL$^|@GwovS2P_SJ5-xl-x&Z&JZoX(1r2$xN;>4ifsH|{OQ;}ML(EZK)Omh0~tIn4M(pXCLC0+17s43Q08CWmiT`u_0;fTpACvi{Cb z_#uZ+Euh3ODEwfK52}Ij8Aru-m}9#%G+;&Cfm{sVK!@?C%F|iEuERTR@Xl0zcOHQg zZ2O@ymM2`X9c=eaYK&CpWeRyZO9@4%_i-eB;lyiO!!wKgi&!*+XS3{W%NGDzrN?M> zNnQX8#cpj^qGS{<=DS%BOfk>aS-}Q35*1Ly$vqT71sl|LXMJp|@^qPt!<(Qv0Fb}o z-rR4RhA$0bKehpu0vnXc$vpLgck)a%C8zLx7VW;f4t(%cpJab~M}Xv2bMZ0IsXhUq z#=ym7pk$bx z-)9ZkX<*v&?PY#Nkktb@CGc#Ql>#N1GvV_I0~KBT%KiqjIf#ts1r-qC-_ZcT2SyQ2 zzgPbTl@j7e`AlyF&43y=OXbjvqU+rMOT_fheAx6;)^AnU9SXtpe1Q(oWg{F--xpS| zZcbpMz#%(6=ZKYrut5NFN+Ide25_DfRYGj>GqjHay7d} zgt7u9D>5=qCj0fLmkZP=&2SM?Ledh#PH)hX0^|$4yN$&GP0i6QuNg<3{a{Id3w3*! z$CH%!-|)iQVR#z#eAsQE-^f({r?}}uY6Wem^fYG0av02bfpZh8q9&=K05Id%%2Er% z?miLp3wMB4h6}W^0JTpwd4%~x=^)^p%ih7S$Mdcu26`zXWFJb9KufBr;Y3K&eOVWW zE_4z98ovP83Rn)kpVceA51z8TV<%7a_Xzqa%D8aMKxwUhbL{_nfbM@r5sV+KKpwfh zao%IuX3qGbDAw@h5G+H-N2AI1mL`tExK&=yulPk_9I!?Dud6vBkM{PB;Tr<940te% zQpmY_1>p_Aums%zLP`X7w|S@o6oR%}6>W6c-*)tb<%FslOyWQOm3tF_2n;5#GWH#p zyU<vHJCAOpVGf$UyitjU>AABlI zqaP~kZ#CKRLuDE<-B*rBg+abbnwaK>*v;z)&A9-1fw45^O3_zyOqh0_7^{%^5P>+1 zLTPQnu~ARg7*#jY9qPGofKsNwaZ9}9uV+L-1IAG}g5{aaHL3;%B>qdcX;dyd+D?ot zjw;{1DM{4uC;fLz%jeg2UPxOmfV~h)w}6pP+)`tXbZjL|$$LED0|x z*klmW4rGJ<-t=w&QDx#e-i@D-LqP1+-~yMU2mog&l0UR;{JyFxgMb9fPkGQfb6z}0 zQ^mfJ8Qd4!80eppF6~TgKU!oiq%}86q zo&ONzbD@cp9l0ia6+({~Upd=~(l+T3HdbIABqvso*rt7kk$&`n0S~OOcOjT3B@E-> z^4=IF*jfM}fr@syg$?4^$1v8gu^@nh=%mlEu{RwboXA8dWHR@1smBdw_`qs^?oNmC zf%@0ju)Ln;8=kSTsB37tGcGXPw2@0T%UH~PO1Ah?LZ#xwL4^qiVZ>t?lgXI z;(|;1WL^ev5EyuD)^eMefPWs&Yt+zZN|fDt3GfhGDQW?AIkY|rss$hqurBz$og@pP z-W~ktEW*#X4gD`G{_T@9TP_xhx_8pgk(h8qB+wHu2~91S@|F_{LUvr0Em>w-K{>>p zmBH^RAoNvG?%qsBF(Dp9Zp;VG_#b5_LDtD{9;X>(CJmU!=&Zph=16oF%$oe0aeA`c@#5>+y3zD z-GiISNGRbC8l_{n_?hsdz)%UXb%^v3CI^7)U~sT9r@$|Ak;T4n&p&JQuwzY#5YI;( z^b96PFJW1XxCT7}{^oof#-<1+*w&Ty|DEB@WQ5BLxf!7+YqH^!q9!4+tB|n*2O-YE z(nBQl2V9AIZz*V?K7m#NxYCknp0-h6uBxTf+(;w-rWahvCWHAHk^x(pgR$r@A7O67Gy~&)EA5>#EvJ`Rrph#!wh_fP|`u>%rb;-6UWP z=F1nft$x4{48aOe@q^Smr1$$h7+CxU!ZWrmy2$zZ>aykV629eu0+Z4^ASW5vytfdF zPp|n|_7sOBwSfSHc;_Z(m7o?RJUCJ4q_P!?A{yD82#JXWnuyWCA5pK`jbj5z(-OBS zcr4&VF3imQ1Xf8s0|W2i;CpsU-N}`emAxBA?1TliyLSX#_J1}tT?bH7s7b`JCJ zSpHaKAs`&z;ebDj@4YeL_oYaWY3m$0sAKjSptmH4Tu36RdlGPPX2MK|s}jz6!}Jy{WPO zeHUx8aMef4zv@(>are&+%f|2O?z}Gr+~pzu+d3*t^AZ-!iI;f4Zsf@R-J5jpJ|~X@ zWId!3z!t0(;vaYp#w1|xvz_?Ab=0VR2zx+WLIRh-4~6TjNr}*wH2CF2Tq7kLDjH=j zzdM0S_;Y8zEgZrPK{tc)bFL+DXJ_XPM8vvOu+Y)HIo)4{sp%)3Iu`|H<>rz;p+GHW zT6%h^ib4Y-PeiXy;Wo+?@fD z!c>kAsVgv{g570cL{`+RKs4+Xg`;H-h|5E-7nYPtc9DO9a=vv*+PyOU5eCUi`GHhy z1=r!^$XU9{w!#&Mzkp=YQWu{;djw)$C}iY>*9Y(7)jt5}7FZ;x0O|VahX_F3 z%q;q*^&>Ik5pyF*W< z)s^>{9VXHX*Ygd(+wPrzhJpBn`$qJ@uVBDQU!9Qq|1~4r8&061PrC&ZDos+1yrU>C zlxdRsR+FpNzb!3cp5HMoxnf0LplxGfp%m!UNx}AMc6Qds#|H(QlvLK#^a&W4>^H{B z6#DE=_uqPXdrL}6Cci*G7#u==ACooQV2W*6Jm4I@_Dxge)wVb~&aIgVO@o;ImlwK_ z>&3QSLJ308-T#{kHj6%K1dvFM6;FTQ;jO#7yo-%{*qLnvagPs2(*}`zCzdItGY)+G z#I`ujP)MZO*!c+Qh#AY#G5%6naaF>JPOenvgU_T&Dd^vxFs5jt%K4%xMd@0Po@eyPTjft5pyA7a!JvykX z>st#(GQS{m225n{FHe@uBit-4ElMHhe|^*o+GMhAX%U-f{y+&X=vVkBVt?X?X;r?$0NskP|I| zWb&lk>ppx!y?cair*e#=F^caz$@r(@9zyKExTeQcI)%~`N!YjkFJJ%{atAt0SNER-f8!9p75x4(PEIeD3dlk8i}V{H zSF%}1o9!7Rw!DRsyh>4V5HVmL7E085ZRl*wy!2Ei$Oe5xk^EhhqJZ=KWRuLA1Z=Gt0E~1aNKCChb^tGXprg5S7Av{UT=2W zXIs>pR8JcwQ4~LWh~P?_j@0y&PvN|^U-)PAS6vDJ>G%CLD}p?(q^hD%&Db^Jiblxh|y}#&H(vk2(P;Q9TaR#rJxH zbhe$@?;$DG@QrQ|-)w@>W=GV$gNL+51zkh3?3c?;lAas%SjY}QO6w$K8+w%?i z{|>Sboyv@1-GNeeIW-$Kfv+9zoyO;ihKVfnGj&tp>GrL^7>G>;xfhF{gN?`&6b{N4Gs9|Odkj%Ud~x5rq!6O~uG*9O5PS$n ztGN!b5l7+!qYZG+$GES^!Ajv$*|tPzc~TP1m*V1-;T`Ynay0$>nwxK$o39ZGBe`I7 zfXo3=YJ|mC@2o&DtWaVq8n>NX1=Yh|aVx=5&V`MGMoQUJs9uo_#kXZ~SZmmZ z2}5n+{^*$ny@`{y2~P#Xvw8xc*=m646nyauUQ!S+tx(|l8Qep(M@I{zf8re~j3QMy z+y^D$MSTbk049iDFtd~b9+6T#e`D+RH{(zxgjPI6o$PidPX_YdcILdLMN0z0!__x1 zellazU0iBz672>6Gu%{BpN7Rbvd2AtB_26~dA8L%M-Fl>eIXuElZ^N{F`};O0V3TB z*Y<>+unYM&!o}(Lo(b<2IcJR zti+%V6J^1cw?9J;O1jUwo)-^%MV`Ys4FVX6w12|RA|ltJyc1GTP=M^&JuqGF{Jeqn zJ422P?H8IG1F zK=Avbc5JQlfy%k2L%)-b9P<-St2{DOO`pFP%7lygFKyTh$#5XLM5 z`;D!Qs-`44%%V9xw>tBNa5x{?Zn6c>NEy=s-5uga8bKe#6!_xaFSb{ru@|mSDqoc3 z=s$^|S9$A#akVz_=i1|+V3?Ky#r{KnM@EpjrJ3|4Sd0`Vw{jH~6@B}bY4q@KfBz_` zhJZ`4zd1?F&CNa82d33)tXy16GmYK=J`se1EdpW0AhZs6RYg=n-*AyNBTVzm(}d)5Y&+-%)AS|G*nPK5IhOQ zeC}qEYk+*$pW}W5J36cH2hf%{Td0XcBCHo|x#mEp1R?{L!#1{UPjnDX=D192-f$uy z`1=`|n1F2gx?t{TsVNF*^^gzvGY6e7ly)#>DAfC8T_Su{&%g`lNxipYm!*cWog_>* z>@xZ%3>ILHd-r@A;zF)1Pm|h-j|-GhLxTLNr#%wRcDd~Lw~B=Ob;EAkOGxg)fff}a zP%B1$Sh_1qEh6m$+o%!D4Z4~=ZrjjA)En)A-DexT7`L`}EAwGGgKW|Za4b2n^{p6<58@s}%^LTLY3ZWw zl*8>s4bRTG>A_69CO->ayn2dL&C(CxyAtF3AQ5h0@7x=Xw<@$Bhh9Bi4zsCm)#Yo1 z57ySG$f8URCp+j>F_NQalRcw!h@h=|#MUo&IC)k1r z9E__oo0OiPnamsls}zA2Kyf<@j8FvX>g1q*;f4KT+X(})+rUG(b#r^9Fr?@59Lh6z z!CKWA4IMuHOiM@k5RIY@~|n{pt(VI;VT?!=Gzou>AO&HVBC^oR>OsRl0G zw)F|4;L`yK(Z2}4YsmCY?3AA}lmYPfqbjS`7!W@-S*r*4lMgNa?$4tPqDR=f#oQ+2 zVITMR@>iR|_t23u&ce32#>&U1vE5mj4<=4zRtUiYJyQwDMs{_p2?Cc5*TUq*>>Yr7 zR!2}0RXSH`^`s@~?z?3;O*>(X{(iTj#PGZFJS0gUm7EnrLBRNG(==d`KMY`X-z@}g zWcrS;;kh=vhR*%BU_)y1Q|ntOTTe?}KHy0D3H>|;i3%!sKR|~JTk9N%UrQ0VKljSX z>EP)m?NxK>D4*Cd|K9o&2fr-{s|8&m{|oB-caHx(FZ*o^1t5!s;57X;m#-Bh2p4;_ z(`O`(Jv~q0j~?1zNLtn<@MSIW+)#9YZ}ovc-m#gdfVAJ~?6To=kh_(5+(i(s2O9a4 z^cU{y>ijHG4GDxzb#)Us7^p~i4gB|RU#_5l{&U{h&7-D%rivJJ#Jj!uU9iXs+HMws z@C;}fq9N?ezzvJr`(TnuUYUH*aBC6y2+x$R$GRgnbza<9fB7W*32r_3xp@FrNzgC7 zZ&pAkZ(z)*{|EcP|G4YI#*!jxLIbpOQ;8|0w@v_qZkJ^_OuD__E*rF&p7328F#1zL zKOis$!qZ{Tx$tvPt6q4F56@|G(h{k+LAefKyV*u?Z{cb-a3uqv?`m_aBUkU@;1VMBdiEZ+gBn^!CZ z&0je)p+siljR%UTFy+&?qZAS+lim2(V7~Dt1qSV)SPzCej)io+g#c^6X+o_T#QkEP z@4vw)Q)AtF*7R)?D7??l*5yIJ{t1HjevT>2fJYwL0<>rNM<2Z4fh@M^2Qgkw9Drhv zuASq7_DDt{EeIg^=jE(E5hdOrzmS-ppob7}xN9i{im+jNVotj8CDmvz(zyQ)!>Fr* zHl0f?std-J%71fC>1fFSbjn@xZ^?H@}L{kYMb7 zT$VI6XsCcCQV1&7`QhC^9&ADnG{v6ZUogKaD0eip+0TVuyO+q_ z`BjZ1v|V$YWk%1a^OC@C#&oh!QgO?V#H3%nboMEVZtqItN6^c`wn)6+lVsuiwUvs@cto^(tgqYQslUmWm+lcA+ zU<`}#eo|@%2~lu!I$jpz**pbx1bvVptMEi3^-)Dzb-;BLn7WO){i7Ft^opWlzZa(y z6phOVZ1FKkCOyPeQa!?vwxgu+y@>?uS;}T#JM=WH$#fq5Azc{zFtUkXEhja9)m6CM{OFytg{3 zZtKa)pGYhb$u&&icO1t~<3`vBf5&!1*3<$l&j!}0qGTOYsyxoqOF7KqBaxod#o*_V z*PcLv-@J20+`CJcJfc3K_t0>BHl$>c_t%%U@NR?)U(?xPK+qT^t|B*J>=2NNLMwa|WqhVg*zg)xPs| zO(4X#U#8_W2%%l#Sd2|=H{3q!pS8DKORA{P93WcCU1R6A-j+G`!M(_;FK<|pvG#XD`DZ{BLyp899!0=>>DXN)#mbcKb1`J1Ms z!~DB%w>oF^R3|JntpnK0#OBoWNyk$;M%}3JtBQ&_!oUY*bdRozAE!66d~Z_QUC(z^hjq=`|s|)R2aI72eL>R%V8g zgbj}^1|>*RCL>U{XQSYBci-=cV?qzSoYqsZ6J?FM4b(+UeDNmS39UmDJ}(OHT5g|) z`nB!}$IrqGV!!98*A;$2Tq@Nv8Kz2avcBw(C<>j$od74JZtj_)cqi&$lCATBnV2JN z^a%xH2EP1rbHVwN%lllV=n=Q3ol4J|wn;->ya|W%$*^gs)d;TDnrX*4UN!5FPU|eK zJ6|Y1C$BVZj06ok&8#RpLX7hQ9mn2FdULfu z-MG2kK_|AxU-DPPmPpKuv-0GaPViSuJaS& z1dGjO9Vn~|B?g3-5o#vhX=|&RrObRlf6q>pWZ6`N)bbG{d_I-T#cF9o=>=o1Y{dMO zsBB#{x36Vx$v#yj(nOI8LmtuLGH0Sxa zvj(#&6+4uK#cYnHm|MlzzlW@K=hh23{CffSh^uFF@sfmM**x4+wTF7*>4&?m?Gk<( zlsg87>|~n(sml3H%@VDtH*PpvsmX^g26jEkp6MV<-L@&7D_Na1kLzR3TF}$Nqz&8U zP1Na5%f%%nt||Z8(P-H_o+;IghoiZKHu1hA|x()^G4U@gqQQ!RU)j}TvLC< zp5g(q9UhnPXyQ!vzHAuPPV3h4F&jIo9Ui5M>{|O*Y)^8OgUNs;DJ4-HOTL7r98G;w z_?Q|a{kYcncUr~5sAxPLd@{d@EbZ@EezVy1^HI!uvv1;G`R#S*zK{@O?ERE2=AD9R zeKk);RDKM+a$$~{@3&Pwg;QTSP)TkNe0`=vI#`OY=_~aM{yO$2lx@B)JH5@!BSSX) z{|ps{3akQVr5xXu&DUK#dheuv>-px`OWKmmFz$+YgTD8cdY>}tQ2Xv-%q1sS#x{>p zsb+OBf1ls5H<1n$Nt;zvxeZq{4?If14Kx2BP)g2?Hu&8vA(oVL&&qMBax7|I-#jER zn6P(f_{y=2t*v7$_jwzgByLsO9cGh=cf6Vmhs;J1P!{i(m&Me@Gv2mb`x%w5bN9BR z<)77*yP>*r+KVl^Dc975IKKrHiY{jl>!7Y^NW5<31jbChBt5fA?4p%Q6Fx$TOkO zaJ77|dZP`6z+C4cPWKIMfxBbFGI^mA-Apyl@0)oN3>CGO$e@L&7=z|>*4A78DF>HG z{@)~dbNNiGNpF=FTU2~9ah9LeY6^?i1YSpT~-qz zEvXmwQ)JrdcHeM*Bl<42wr>hUol(mPS29IRs&KmR$Ie7L$Ik;hihDtDi=<@H{I02C zF5XS_F_UCOtuQ`3YU8ozjg%A|+wS;gb-F2=iacF6cUDq(iOZSp&?e!0&YZpn*H+NU zIcrs#t)G+qe2%)Hb#(W+28G&(E7_H%^}=*HD|dR{M7V#*^9rwX7*Ohv^@onWsdt$A zULU62loM-UACO!yyQSa5k5~P>As!=XQs|P69Teoce^3qV-x{<@Q}VMuX-^xysVfmC zs__O@wOG1?>GfAldfEz6S@rPih5a!MTltaXee#>Bd$8vY~vGt81ba!_)5h0jdrei1n!aGeS zo;yn$zP;cN4j0;Q`5;dGLA*O?;thoTB!AyPQ6aI`td51#EOhABQ(4w0N6t z>6A39N{gfovCh{RJd*3q@CI^oBIfWJ{&2t#H)D6FyH!%ZRvyRkjGzX@? z)>8Rrl_N@PekgW0`Qx5!%6l33K(k_%?4xW> zqHdWWRt~PA%luO|?)uA$(O^$i!E#p4^t{xxspX29-un>@(Z{cE-sUy(DK9hWH@F~r znPd{F%sv}<3$Spvt(UuFPTcLe<04C>qRt0#J~O;VN+1@K{ol9c$x(b!atU7Xek9d) zMWz?g<9(488kN?XFSeVjmEeBq$m}I`6RgRoujyYgBv9R*G4XF_dd-@qsww3BM0r|U z-&2e0%f&m~G!1>lFI;Z>@*6k}a6%3pV&w9M`4oi)J>YOpja zkWD?tr?GpoziHoqq3|6l#=n-!qwe)C%tGP}N|&6~c;T+4f7EGqr51B}u=}c0A^8#a zDc06XuQa8%L&)0o=XO-Q1wkfU2}|pP6t(M2Bd7MxsW%s2L#LrlC~0p-evNtP{7|_v zf8vd!4K<$XBY20s66!;8Jxi_2h|$SWUQ&NG{#7Qk+K^B!C22HyZmq#FR$Wkd=9bP( zA}-z9(+h?Pr#1;R;l$cbxa|%msr}Guc24$59};&U>N({#mw5M;EA!L+{8w{ zYVeaMs=IS6f4YwkAKvC2`-x*hY&Z3=Kj4Dp-W#cc@`oLI5K1EEeu~w1W$*W`c2|rr zg>YQsyXbMEcg|LxJa;3u>EyV(#gYtSx!re1jH^IS{(!ms$yU3t-ZFBG>-h;qgDQvX+*V2tPm-d!{Rv-uUXL0_Lq+d}h&)LV zsuotvm{0AY1g^Cezubo$PEQuX35&SagO_kN9J#xpzzaOz#CnR#H+>@6^9bsz&@x)6 z!Mx$gjpO?c^Oi{(?Cu39>rA=f&yA`7nZ?D2I}J7GMio+o2G(yo!(Uv7@2eojTDg0W;yd^|DRvyFR-z)@>cvqV3~v#BkL_F;+?Jf-zx4guyTd%OcXv&ARWv9^Y{DY!$DUAigV&U z6pbjNqSYb~=ms(mIGgbc|2yqy<>Bd!)Oae(rIYX==nJ#38g}f8SwY znD(^n&L1uLbUi3SB#>1kcHVpmdC=L|y}Li*6MOGsTB9)@!JyoIa>+v*j`6OXYkryb z6eqK-eJPNzMWBxSvrim*kl|R$t{i4nP0NNxXB5k!wpd!0M{mzioQXdwU^Se|OjjGg z=+WKU|Bb4@77082A)}mbG^FttO#`?w~&qdjV;zj z`O+9=hm$E2N?ut<)4(UC4%GE8T|-VzF*n7{IqKs^ZzvfM*66dFE9dSnq|L{JHnWD%q7v3ce{tAJn!OTJpboF+YpT*P8|Hd2v_#{^ zUPeqN_~E z7?NRyB~Ry%UPAY-dB)}Z#`klgT)LvVbQ$Kyq#~qaMi&xnE^2nm?Fl+Lo|T8o^InaZ zJvUuMj?@|l6C zZXL5%u;B_W6Te0@JB(yt^0rf2VevuX&P~oN`OK5P5DW`}gzL|S%MabS^7uU}3KhBU z+eA|f)F_-q+m&%HA7%X7vHjhW)*zYvG|%uEsWv*Dyfd3 z*m>VS91eWklQGuNi+W7A%OfM9%Qak&UX}AQ!)+!8rP8NT^btX46kg2}?0z?Eip{L7 zy`KouNa9LY#G7pVF$^-?KH1ldEMmx4-i7=9Q9$1>I5yF-9E=pdq|4#EQ$|Q}T3a^M zW4nxLZVy%V237i>`$A(K5_MPTk|SgxJ8zTNcLs(ewF2x9t!WvIJw1a;UQ@iAq;#*0 zQtyV35CjY;V?=eS)y~`PC|CFq${IxAr$LeMj1+i zmo$65y@BnoiL@-bk3FocMRKn5vwxo8n3eWp&5TxPA`<l z>C~P>`4}>IYK3*%aq*YGh)vnx(lBGbGW+6MYP0co_-uQYXwT;LULTQQ{;z5~jeEv$ z6|g+1U39ZrqeS(GPZr)Zne0LXKl2RybuJ0~OS7AkgcD^J7j^sesl3Su_6G+u2D#0G zo5K?Ow$GyNyMz7@S8o}X<+kk)BLa$q0)hxwq?D9^G$J95bR*p$4N?M9A}!rg(jeU; z2+|?l4T^O4JMMMPTIYYgANSttTKi$%bB;O2uV(O(hjx*MXr=kn@q&e@OG*^x$`q!{ z`xDju^3sD*H+)@Ra4fSYQ{0;TkO(sBbCPbaDl$Qh zoMj*X8jiQx^)F)VRCny2!bku=%Xz&Cw`*-PTVq9rYNd2>#Ux_4!={|w7%;DG$FDVc zhqwM`FZ5z6surdKjQPrxQn`1nyARh&`sAWJTp}|*?ZLf==`aJg+Uqr;c)B~~hy!L} z;=%7ic!!kDk)P+*q3F*ZPbNSdi7cOWZ|ugY!e#2{@!$kwlG}LU(4WA?bp@Rg^Zx35 z(@xG5wosQ&*W=}KMwY~!TwbWQUWSoEtFt!NGdRbFHgJ#00`byc@ZKHi4g%0YJ(%?U>@+kO-9e3sRF#S$)q!|L zp&LK*nP)`VIesdc@sAUrFnj%yA^7PDllM3WAp`xfobdt_798M|p ziq{1np{)5f(DW@9kw1&l3@9zX8-B?t<(4+$B@M%egCus(uo0P?%c>U72B$Gylo{a1 z&n=8F-OrLnw@h?=#3}RTOr71P!~vLkZE4gM8hTJ~i8GDh_&W+uZX!UJoNa>`RZ zQv8fgk;L(bK`}RZi8@N4PZaG<`|a0KDojv8_pL+-i7}wQG)Z#he|Whlr^MCz+DU^y zVYfF?w<)+1UTCpMa)9c&tY2Xzxwv zk+xfA1-0E%o0C!og@LNz{kn`MHoyBv5q%M0hR^~Yaq-L#4>?JPc?bMCaQ*PEB*3_m zFad9pyAh%A%P7~el}Oe{RO)ol%{BAcoH;zo8{W0N#|V91C~bXxNo9V+V?f$|4+>Qz z%jl~}VN_?1bdFb##%{k3paBrMzjLJjq4#?PQv*~;>a$ne=smJYXwA{LXJ%`UE zzi`#{oCEDWO8&KzWWnqREM)4NS{S*%`fb7IYC_$E?qEP>cx$(xRxDHhb+rlT$*C$Y zrlY}!j)nYl0V`mkCmNo1?_6En2BQX6A_ zF6Zaw1-CxSn?H+=1wa4qGn*%o-)%ED68)3V(`(Lv()sn{C%M5Wa63M-b+wq8Eqemi}#8>Ow6&IqGbsj@LmhPLyK>rJ5*vWPA0s_yLGg-eu$C1M+T6(U^hZve5vHnROg zcRA+aC0~7mo=yLPFN;9I)s=IUckuAU@;X8Q?(umo(y=!cZ5BFq4GhNWB(FNj%9IoY zV*UQ{@p6Y*qP)fbro+;l_VmeyeB@_2)7YAw$Jq)uFirJ)i)0V->@M=NQd6ax_N*xa zyBV5*Iw&&QuUbDaeN`RdE0DP8EYEM$D(c2d^{E6Sdg~On2h$n8v`~m+Psy1Y=z-#gc*rC?y&J(=;aDN@WmUXjP;=`n&lN9A&o7MS!u z{)W6+xuOYm19ZP2%}gU#dyG6>8rwAB0bc_x5&Hg=t;&6!6B8#`z5r)Y)#l-Saa7Mc z=KKl6NnyEWoKU5;C-Bql99Ease$pt^%q>h7bLO0AH{x7@!s_)%D%I-pxOAKd_g!rg zSEB&mY_e^5Ikhrb)%R<)3&{L&IPX>F@RW>RRRJdLrqy2DSE_{u%CR@CWv}-;#pJ$H zEL<#cpy7&+4Gj$c2-k)c{UCjmS@PxYk5)YGwNI|D*@Q zr_xAzn9r2u-CskIUh7)F=M9aSy@b8T!4+-bZg68QlxodQfDz&h2GbdLPfyu%Qe}JS z7sjNG0}4NUN*V7=@C;qgsHHvLb)$w>=~0oCS5C=Cs>5r$qp9yiG38m`?`zB;`vhAT zHCWXnOj0d#C?qb9czZtJfS2Rt(bZ|(a#6hwPBE@1O+nRn1f=(I%pGvIP8Yt$HJ+fM zJP>eOi?BEmDwN;dDKb7j|HyG=Z+`AMFDJul^n@VvC7u=L^dC`pIUc`L5p!U!T07}( za*jU7bM4%9KTjInQyt~Ac1n_E(i@titPs=by=G!T`9dob&5+enrt)~sV-M?1!}=-Q zOn>XcejKdYUsNah$h*6@!$(SsNuhv$2PW2=&yu9B;lbYopT#J*=h-I%8#sNTX zcXG^9A9|=oC0)n_^8^)Lu;-;m2&*p%9RFzPKe>4q3i3HfbG5bGo`(YP@=_%2l$o^6 zpd9h{lLBjOZ4{#0w~?pbzFJOjpuj_0Z7V6BAwE9Mj45o^)4aolS{m!Bpv(GEuRCl?wY!ZRXy>77qGv9@nw$W(xN|O9s>N0D~@g z$=-aGrnn2$m6w}Ya7N3_7HP_R54D=0iSOXzt1j}HL-Tz%Y`mK;uz>9Icm8iHmZkz9 zRpwhg633r8i~Q!Qglg`_$;9vWcyKmX*R6^tnklcV3{JeThwm2yPXF;gE!Q)CHyN{?<#uv@@WURO|7yh7yK$qJp%Cd@}PUljE8LGX^x8tlWkxy8i{*R#b)StNmTIA6`Dw3LmhZVUDJ_&AZ<;fDUg zvV!EB_Fm(cO!=?hxT;Lg-1CQqO-!d&_WHNl*|whs+B0u)fv|JrXG8^!nuw64x4GfjD7(ph5in(Ks)JaNsfzZ^ihRiTvz*lDB7!2xvlxg|vEhG9K#(|4L(~`h8QrOg1vurJb zpU+Fi5WESHe%$*N`N=b+vZop=7d-Y{{xri$2=@;KGjC;|$a4waQAcFpNC=8C*K(02^y zn0*wbz)Mj3Uedx#o`*KqebFABHG-BlEHqkPaO=I(3tyq`xIrNq>Lok!>UUojQ6;SD z?yMSEwstk}ciq^v+%Xe~pu~g7l0N~$5LQxiU-z$Bx7bbpfpog+)8jqz=(F3>n$ZVF z24+mw)5H@w;sm>-|I`k3ltOs3kV-OI4kCNkt9*Q}f_26C;_SGb-x`+OVycD^d~xt> z88NRj^Jd*Hu9elet?B8(y8dXf?&8YI!m4xqxFC4C;5o_Jg39S!g-dKpR7-w`s5>5k zt-q$dUohPy>=|=^`mUIgY}-!fzu0_z(hgI6V@?butSv1< zWme*XvspMIN{-tv?0+>^1UAs-D6*#0T}z3nM{ndEn|YmUKKXOV+jhB#ziH{OJdEY4 zETz|c#%H*tr2xvt@_Z%^!yW5g5Hu!>9G0`i;+p{Rt@YcWuQ5`c)|f7#M;GyW0^$>XGH{MI3R_fzIi0A0VW&iaPw`faej<>7<_Ml~Q-j<%8ylOU9&~i{lGjbB+V1;9-1R!5 zq8JSg4Hn~Nf#Q+WQ}QVAV%a$w2FA|*h|Y{sBaSJmdlgMI2sa6cW?Qn_PJY+&bcX2n=$i;V_EpXD=oiN3rACqYH9~3Bjhe{$hIZV6sA0TydV0za zPJudBN)Z7Jr2E`5;t>E3eESnX>6p?xC=$IUfd|ry>5kjM5F@}J;~*B9XL+r5EPfXz zhWmfUl#3PsWRXQ>=H!f-oSdAf*xudMhp5fNGIUK+cuJ7>WHr5Rr-S~m4&7pvNU(1@ z9Ovw{05oyQKX3@dN8=wes4(w%UWO?#7;Ae90Fa%(`Q*1RqO7?%d2H%SXn*ike?edO zP}9DiB|LAiZf8xcLOCTre{4S@~5rPZyCTQJyX~}!MKzs2l=KrB=|2}i3^{>tgxw^IB-GF_amCUmwi}F$SCkXEV%<1_9 z0h(d{fwqT?p8+i2PKi0vyCg)RcCc=CjjWyKsG7A^#*{4#otJQ=g*HN)3{O)jzPp(5 zC4A&fcqQM9%&hUy?WhU+mmyK}0) zCml2$9_`lomMy_9rzqeurJF?Tvm4Ec!}>|RR8GYL|O9cFEBpC zgJ!KQfdsUSjE3MwmrCZnD=RA-5fO3JczG%yFE3x^yiHzFF)n_Dw3py_LfXs7NCJ3Z zmmD5c?S6tIW!Yjx#CB5J{DoaUkBE7HZohy9KD0N?7PWV7n#rZ)Ew?}ukmXJw9;o@F z@3o3@&u_z9PMhT=+s-$DK=N0o=ojdN2J*13VCX9-@b+hVN|qohL{ST;jXg!ELW+*RyrlB?-|pn^of4xkb&6R7c@~a!$!~46Cgg>PhrTqE#acU zv8Q#iCABiYH-qRaHF*UmH;hfDL_Y1#}j2}2l*;NH&J?e z%$lZ=K%GPH#zg$*Wa<;N@Lj#VMd8;^f|we%hn;vfiGU{xR%}b+D`@2^1?Sim8e`%utXqTI-Ugy2A&oi<{^|y1oriA_u?LG^ak{d zuTKn~*#gcww-T9CBX}Q906?Y&jsl=c<0dJqLT}b?Ot|55=bhh2SdPy(s1Duj;nhl! zyn;8c;GwuXh}@v>B_gKcy*2PQJr~5UrEk{7fr>|PR42DPKIh&7a84*d8lV+LZ8TIj zZGTYXF4GJs57KKxeU$oWP-bChLT3P`si+}2WRa&eVPC(sVuzx##{T}&Tf zC>B$Z@t5;haT&`hiagc~k-FA~LcT%@%|a&Ey^G7i8P(Ko{;EyY1ya+Xa*p6^bYU;r4aq_<7Y>#q{MI4E)Jc_9WuoA}=Oj*s3|6{o@18 z1oTNgnfdYv1!-$^6G*YC11^B(0P<-L$?YHm8Q|_*b6U6AsQ@VE5V|9qAg3l32LPhw zgWaVx?P=*~9VUPw(=lCyTUYS#QY4ja_E(h^DDEC8XMJiP61v5KXBI51X@r>_QI6L} z6S)IQ-2DEY-mwn=g#z!P+(-C{_UPDvZY?x3EW&fDgNOO2FDR)dN16)MvX)u)_G@Wx zp%&jKK0zBWp`y+6D3(ksM!w z0=~HNX=a((#J*@DCJdqnHNyQ~O0OEcHS7w^ezG^+iPB89BdGEN(NB-IL0V+d9-LC0u{#%*i8OevxPgHgYRu1DfD;op*MT zp}*CA!zfhByqQ@a$(9)eg49UDn2D!?k>qtT?wMa#hv&SDlL`Ygh-b%V59^ZR zd%X2bp!os)>`u1;CUN_0&|N;~zIW#oRN{KTyc}7ia7cIgJi1@US-o~|mxM^^vCHom zlZ(1A^lz($$#tBxXc||${GDkEkF5(rUe2dTa@8!{%p3(laK5VOwoEmJO<5UDYhW{F3{4-pqXZudtgXFf8&r zom@&wwN7-^f;3y!EmJ+32?~8G8q|ewAHcpW7?te*P+zJNWJWmVRX7Z8dOZni>l#;{ zvVhBp;HNSBwJdmW1fIrVe$t>bUKP9c7{a7M;o9|gEe{BOo_<1F5`tLwn6N z^}}~o{J8dqHW{^{SEuUlsh<(K+Nm{?5&#nY+%8@)j{@Jt{1lxmUux{~dzex9T36r8 zc6#I0wre1#0RZmU=6QtL3f-IaY^943ZkjY-FrXlj7Bg%q1{QFI@NOAf>(e-%Zc0|7q zD62hZnBp^NC|XQxjAI1YUDuab*{>^h}6CD@X` z;xW@0yQPX**$Z9%j?ZMZswSvliYw?#eKfrNiPrj-jqOh7C#A+BtXd6AyBS; zVa5x^z3+Ff_BdB=r=!St%$=X$9klI7TWNhf)3>3BBdp3nn`xyS4Rje31huaXjba0> z);>rS%oSm&!8V$AmT%Z_<^$ zv6%J8P%D|a-MXVwoTjv{Zv^01H+)Z$>E1rQoz?m^x6XSR`m1>Z%R)(#bpuO3pG;cu zV?(l!opXxvS2#Oo%=sfZ!LstX{I3g7U-L+~)iiE5-PigO6PYz9{YPl8`An<`R{vKj z{Ssp$r9V>3slnkilS5-J5SW31KcL#cv8-BTpH*E}+& zJ~LIr$SHP;XhFvIHuer`-NQbKQfx!@aoaNn;k0mA0uH^=0dp0r%3%lig+LNe!pD8j zSDl{4s_^3VPq;+1HI5mM-&rJqas~nx05socR%1qIiN=zW>KmE82NafC zl=WlqN9O4Es{YlyaLU1m_v(ykisoT?Piry;KnE@nj3Jh{M!uoWev1c7p-ajjmiX?Y z7eHz$<__Lg`U2yooN8f4vCwlsR3_!Q)P6*LYTvY=`qcjLXSb;NSl)OK4#W>1;rpMY zRu{|!dx2Iil}jcyn^U-C*8&5Yuj8dakM6fvk~&gHv1m-sI(^$&4V{pnNlk`C0Om zeL3n?6LicYdKLY)5{nkkqQ8f>MYPlQFK^W4X)42yzlPe{g;-NuJ=%5+dVID25#0Z&mFy0&z7(HL(z;_#hLAj!txi^WRB0Q&e*I_U zNi4sSoex6XsqMasgO51-dZ7E{UANXUE8+qbBw+2S8S*0V*Trd`o{ooZ*kpcyU`F}s z_yGwjLtBS(4yRgo3q8u_rjFZSi6JZK%Dv!d?(a}MtyCJCi5|BDGm61&Wm}Gdut;(B zl%J%PZl~9{OLcWsUtGGXGj!XWTbcZGjXI#ZS6|)$2T3z%5Z#$@O~3v@Vf4)aA(Wea z>abk_Uk5j|abWxrQZ7k^J9=1Pyi%=;Nj&0cX;A6n{FI9>3eg}P+pBYapQxTZZ~*}S zWP!HsQj8(fmJpDaWRii9Y(ES=s{vapH0Y|}Hp-)j7qslMlzM**CxPOLt$Z)mO85*f3sF9=fOd#r=bncTbo( zZ};?C_Q0!ur4-aj>-~43Q6Ij?$;P5*Qv45|H{4YJ;}br?Q|k{OKD>GJ#-w7+=>>?e z`AjxYnQ1FO!bg4%o`vqe$shmzO@n5K^eIW;nJqe~r4%0ze!Td53$xnr|Zr& zwXPV=fFUdw@IMF8odY*I-#tUN^eYFL(@ISAZ?6oLc^l0MdTNu5rOA{VQ4}ujK#L^5 zQyz5(tf-6KB}p2-DU(ruPT zBEC@TzH)q8el21BWa`#G<)sz{4Lmap@EAols1jUbu&p>6)csn46aj}58ki-6?oI*s zEIFgaN-Vz%`73{(fs+prr@$89V-BMuaClxQUuvPk05k8ETYuKU>R&sObKf4AmCFO| z`H2^pCX_H`EbaH-bNOOCp{#2YLm3Fq0jje&b0k4GKg9(S5KxhWfJhcjDY52P)90P! zpza6wa?GCG_q#0>i3?ZGWx_!I$mR*iX8BAoQHwRx^q?eyi@;!e>mkui>mpcY4gTXb z{FHO|yYMgcaLpB1pH!FO4m$xioLR1ukz@YEyo^)gi*o=D?C9zqk;1h)?w6xHRkCx3R83AV=0Aw zbo0G4D;z3NUa3p*i+Fi}osvKt9X908LoEo+P^;f5(o~mla7}%)OTjr4cdpZziT+eRV4tV9!2x1O40mS-%)Gyb1qyLGWwLxI+6ZJ(!qkgvEwjPx!G^4>i>6|#@7T^!6MwI74qAL}N0*j0 zdPOB5N?khVeB;<~JmChI_z+{xfI zYR4Qq!+Xe0v#2yZ?c(*nyeuyE>+P*nW%p*dCZD-c`2+6>%rC{99}0fojqfl+zdz<7 zphinWSvRJIQE~_`@GpN%PTo(*)@l0d;UTrQu4OLrIl9bah92?DMRRyXTk-S)@C;PU zZkwIYpWDA5e@UWHu|>`yU2qHB0IIf)TLpD-O8x|hEExr{R7K{bbw8ndnpYLE!jVMH z`sl$sf7gnog6$;m&S~sNLXR*#?&t;3AIcGz#`Z?Wt&?jX-p``|0xL|tOb{35B=&ri zsV`33L+Dlo5ulT>;ft4F?z8&3pC!h^aCx3IX}zZ2KQO%M`p=dapq2v={*<3vP&>}s zlW#QK*9R48(Ys-Ab8*>KL*b9Z@5s3Sd1I#=f%1J*dQ%l8-=mulh;mly9RT)x=d=(s zxG{Y%5l!rAWbHs_(T0*Bh^5-WmP3)Jiu(=tfVu-gvAIh}f)TX2{v+NHs>Sdy4Xs-w z?Wv_Pe7aX;xUqEY5@fx{a};yIF|%l3dj)`-ydfbDsM~H|5RX8Aru391t@`+hJJUZq zVjiuAS{+cNvCH{elkuNR+3Di+ls^<%+*)D!`K-h3xuI*^gJa}MnmLO;Qzd{AqrM9Y=DNH)6L+n~`T8Ai zjW8umHN$&djp+~Tj2_+gE_Mlnss!x@crl)Zf9i!+`_rF4wm+tT2~e7-b0U2+f20wNXhiC~sHNiD{1)$r>UYRNRlO;`@ zq(KMuoI}_C^*tXt?7;7~=$(!~c7BOl-sQRjek8JqKo%{&HHLYR8|-#0m)5NJfUd(j^5W=Y!Z;#RDyg>u$;TRoIlf)Sfz&Vd%;qg@`h{0qAOh5mcx-R}P zb$OEIn{iWBI?C^Kz_un9cUgk#<*S*tbq#0w`+iRRxUja%bE0&O7I19s%wTGntf^Ms zmV|kg{y<0fhnF+V|3DKbH~y25;cLC26$XONl9mZ9Apv7^R87n4_T|*yhT;WPNZ~)c z$)$QD*vI@>kpwjCHmo`CBHND>rRW|ONxe$fg6XIJEOAwf>ZC4-fwYTcS{^>aKU+M4 zrjNccc?p!}2+K9``AYW_p`hSAK&c@!Y9lKRu{ z7y1B~utBR_4*J){lgAg;pL|NBT2Db9n3mkl`ED6Vqsv1L>^6e(@b92oROO(3Uub#n z&z>7}2>`J&%(w<7(p`R+Np?h#W^gG5a4FvW8bl8wN(na^T5vPg%m7VT=@wEFjtxFK zRLxusU_1+KDmcvdM_xoAV|A|DA&mJ|YNoIS21?E7E1?V58Xx5}C3+WK=P^Qvw9=9( z|3B13-HsM>Bg7}h7Ft+L0G9qU2t+&wMWeIfu9^o=62><`LP1}gGxnqq<^ZN_c?67u zl?17KW#a>;kJnpU>#S(?I|vaW{Pw<=v&7=~Y8&(bb*#BBl73{QT0!?lxf~5;2PXdm zCn1@;m|U5kXa_6Zk^yY+vf_ZxR7s3cGd{auG4xlSY{*YDGpkrrTsz0x+ZNr$@Wzdf z!pk1;y2E4zQciQ;5kQoa8urdZXNt)DmVpZ4$hXDc70J6e-2Y^HgPk(%Y_9 ze@?7Jg$RF6CA5hPWjal$0|!jdu~#vk^d!LY{|IF$ZVsfRt;`Ko{|vdPv+| zQufhF=>YP>w*lxZL5C`vv+6K=GFod3Ut9#22lBve~NK4 z8aGKw8^}z<+h3o4zT(hRLRrO!{QS+EG$~fF36|;Yv4^lFF7ca%&w{K}d)! zE~Wt}&!rMfai)+B;BJncb39(q`YMS}mAi0POXMVLIi~ciNb<~)8b^HKNzJd*qphxD zM~uqR3Xpi1MeKBx5j7{u<6GSd$aJ_Z;{-_sSp*-Imq&i2D@DB?#FVfj$d@YrTv8=3 z(u70K)F}1bqguI7D=*%L6Ts6qWvoBi$Fare*%B>tJ-{PwVkuhe&j?!QKZ)2{I%R(Q zr~kz8sCS~Nmp%G$&zKF7q%z6wnO6+oc_CB~4k~?G5EgwO8~-?yjATAo;e9T^5s#?a zT<~EhJE;H5=xp##;Md8~pbP0x*cb2~?QM3txjw#9F8UqBxGJJZj>o1Jy0hj>re#op zkOg#JK^hdXYZ%3EQUxl=e*{iLPYV8wZ7#zMqE8A>R9xjxvx0XT_;Z zusHEG8aUs5_w=++8U0psU(Rgssx&$u$SRHhl)`?KK`q~@Vwz3(mV}6^=g>( z^aWGk9JIO(cQCLzg|3Ff)$pE);wM8PWnB`R`SPJ@#YB8?_nL;jy%MXH0ldXKokTp4 z&-e?vlF;yWwBWRFwpRx?Z1Nf7DVknma)ueL=xo9ivB`?Ur@JN z-l+=^Z`n}a{&ZhT`d)_I#cs=$Q9FJt6u3k{x#7okerB>_q_E-w_!&YxT|&%HMhM<@ zvo!XCnM#CG>l>%;YZzsKkQ00Yin~Bhe@@car5`feKhZJQ_D3cOX4$ah3C(&lp6PfJmtQttE*9Ovb3)5oMj4xt(u)5 zZ#Ca^u=K;eE5C47X8Mc7k!2(3dh+xwkpW9O-Ro%H z(ZNj`C=Z-xuM}$6cR;@J73aStZCfCW0WDson~af>QF)u^+4eOoB8FM`pV83JP}HxC zHn_W9?513sjj@KBXzx#wGv1*?&Jj`Qx8?nElI%0ak*Kc|2#r3b5DNo~nRQ zg6ZoQ`nCsVk9s(k%WR5;(+0M{FJAMMMfN6+LHl_VW0t)x+}76w_=FvYI5xW7SYVc~ z8RiSkczKWFmWgTb+F>`S+3G;Pki_jk&dM4AZ=j>zx_ei=(c?TIIGF0$vnrV)Hr?-N z5Q}?sy4mQ^246r30$-12E-##V!Ky*9+RRttRxN-;`~1~ntr`*yXUCu`_Y?Dc)($2v zP0Q}F6Z>bDWE*uuBk^#-Al7E5ax7LIuci$L2{?D&38~i0b?Y!bgrY@a#x%M$i1&#!`*5nwJvtqT_&-#5`7Y*psA_3p3M%B`1eLp z^YnKrWL2L#d8kc@p^P4TXj{YT0_Hpis=!z5dgPM7Z4V}Dvn?hC11_LEwd|K0xvO=LjXNuy?`DFU)zaT1dR9g zbpg}@fA;oVv(~X|`)in?uDk~IMY90c&qj}+M|o8{h1x3Ak%+0vHTgjc4?*p$nYoOa z2YRn1cXM&*&8_Bs$__#tg$}8Qw}^4yZeQu@?xy18Jgl%hJ39jn?N!NWh8(>8wb|Kk zJ4>B$0-hI^Itw60!6tbc0I}t_NJ!pJfT$7Cch)$p#d15C6<9*vvF)*g@m~n>udA=u zD7g6?#@dpU2h>!Ji9j12JIct0>*RZlfeo5wMC_6H*7B$fqR)1UiAM*6!L~CUm~tVm zq;I%CqR8lgGQ)DW(6C_mWyT%l*>(GRi&+@+_)pkmR(g#AoPj`zWa8Ta^+QvqyWq^v z=T7|D;fepaaPWozpyse3x>lYu+?gqO*Rk)-T^*J377V$^BbvhRj`9rDWV*V#4mVKa zIIZum^d$XKBd~6(wp+Q5i8%+k!tghKkvS(Icv*V{4_2W8&E9zb@6YeguYfiJurpy{pgnbEVKkWv*q``@{?O#tw~XxU-EPhq zl<}v`py3=E_-4P_=LI{8#b#c3ssvV=myhrGXd%>PK9DB2-pI|3cWtC-rRmy(mLET0 zQ$E@Hj>Yua)U+KGqRbqH6ET^wg6fFF7_#4>|2jI}W`0`{mW%BN@El?slctd`VP#uh zX@hA$Sk-M!0(?rKm^RuJv2+N=oT_s+*1JBu?DT-od=)?*2*)~xz#tp7@l*~K5FSFl z9smu8ibiq;;YX)>L^Jnf@`>IIw9N#HT{{9u)ip@GmcoQDV88b6^>1fqZprQkY893f z7~iTOrFK4u3BcgK^6++peC_&pC#IRx7Hbt;3deGcx!)SgW?O^=C4;uuiAX&sNE$%cM#1PX13n9f!k{i zOnSp$E-$veYbq0u3ijh;S=0xA178$`Lxa#fQu?;9r(1bO%ltOXL6-fdZf7f0zzw6! zE*Sj4q8J~^qkaQP6%7K3-{95VFS)3~(9=6pPNsmZ#4`M|dLJv^niJbC&>_VNj)1A3 z`0!X4-?o!@ayn{g_ifPkT^uPm674$oAf1X9W;FaPQ3jp|JG%OynJ#!DBQ)?{^9N0Db>Hed zSl&M*@bE_U5zC)JO!6#Vxppk+v7jG$sAB4DYQT&nH^Hs?41uD-4Gu#UWF4&}sP8mm zTFJt-0GQ13%Q_C(*?i^)kh+3t7a5(Osa1PZDW1qXJv}bj4_m{m=^HD^etaxU$7IbP6pqcofK9>hO$`QT z zz)NEhDA7DLoT$}{+cGq)IWuKu^S|2iD@U8}pLF5w4%vmqgP;7X%SARDgziB)1R^*h zp3YekQ!^$~+5v>^7fP|7AM;mNAqzwV&)8e;nS7=&8oVv(b7 z7<@n9uq3wvMBWIl2rB`BI^ke*ulsmwl`wV)Nu_Goapk>-j3+rTO(F3qjg9pUwS)6j z{o`g(Q6YZ}Y<42BG|}*3rl%aj*~KDIEI&jtWjPg9UN?IJu7Y{+^pe#LGPi>>4@iXF zoIE#ApOjRfdix)#3pB}D`=2=KJghSRclB2fkZ2xAs0o(B5CF%p*YiT8ioO8H+Y!Vq z1avk5hHq_jcsu&rTZGeMx+IYXiV4s^=to2^zYSC5QV{GMy>?=FMeF;H|c>G;)H%Q_O<{JAxuUXK3is{;G{gijyAdRNP2KqT#}}BBU*X zp-XU5BTyt0n5{wH`irOV2A8gpMazdcK6T#*8v1xC3LOy9hX z@rY4ZmV{8Nm(=UZQBrUJ@KHxL#6iJFZk!6zGc?e-#6Bq8Cn&@7@b(rJ{rBW;NI|w= z3!zw5>?iq%v9GZcqsY zkh-sKW}IaC>ayN;aP=RunZl>vHyCK>QHCg64_JLlfTzI-ysf_|?cwe27CWJHgn5JH zW{C&Z6;-Adv|MDnAh{Rv)gNg5(RMn%;3DfToH<+!;Q>HX=tHn7gcmV#x7+Abh~p!v z2oT$lE@x`8@VXsYlBC{vu#W!PR^*>?ikp;2N4dwh?(AZ~{K8v{G^5ZKA}E)?JXL-m zLy5SvPcU&IB=l&*62$sA^lZ9>x1W;fofDxJYX@K|Iw9m*KZfOa1QbEGGM_C4b8IND zU=iyCgE#25eEfxg+tP4%%2Trg`9Sut7?>qOz-WnN6*$IP`&>_17S@M^7D#zS;a1=^rM+7z=I!ewAeQQ<^_4sHz{ z4gFDITH~;zrLlF@A3Q+*ZxsM}&eZul1~cP3NaTcRdVtP-=tf6bd&bE9>SU?6h;0^o z%lJ*0xzDi#h*oshe%pJ5%22R33OP*z`p~b%cNc<9L4#8u6M#j6@$Yx2LFCCd-5ox~ zmXU+8Y74^1nAz~0c7nY`DN5{5T|Az}V}J8(bpi*sz`0{?9DE8SvI2TN2ylQzs$(-F zS#Lgz{VDc(2peuP_S9Jhs`Zr$x-D9jIvdF7!Q=dNG`axTwanXJ*QH2+6b@6#>Ps?* zyu~9cZK>5^zlVpzF89z5{r)=?d^yKUyhme?Bi(M2VgicptKzp|AyFgq&#nm~+I|ri^4kW3}E->A@W?VG80@!0!MUV$N>V z@liifGQ)w)9QZBVu06)`S#oPV4tr(#LYz!MPzTQ9HQoEK9J%WE9!r6HZgHK4F)_i}BypD%~k{@?1fl+|6m7)hJS%3*8C&Jo>uojhZgq zaS;+!kXqIOEDz;O*p`cdvD1Cb!|ZJ9W~&k9$Af?CV}F1)A95wqC21%kP0eqGZVvlh zd%>%&v{;e45wNcT)BhvtzWUvR5GGNmlzRv*>clv;9HLH9BEXR_B!&-pL40B9<{GYuy^6af zuSrYbM#t^H+%Zk?Yq*k~`P$21gEy^DA$hpa9j_&IsrT95`nOWMib2n^pO6k;6@Q>L zStsSMe|6xIt(DaOVlr2@_WA??>t+yseRZohlMFH-{6JL-Y9fRvtUf;%R>FD+$T(b@ z7FV5yu~&OL0Rsj6+*N9(iD!ll2Sd)Y6|~;~oEf zq?2&)@cv zM+mBzk3Un@(=`I?2@4U3<6?<*O^u{31@F`)we$!}0-O3j?aiOwi&2Z^BCadnzzxI3 zF(}!~XLg*=7tsQN6jzyx8Xs7PtW&}grS`wH;0^!&RjUNBdT=_bK7AShW$}XvxW(yk zfYW^qJND~0{)4p6M^K3J^ zdh4%MC&Ua{IuHt5wUrM(0U_h@f@ao};E$n^gu5rF+i!|0M%80EI$Y_8NR;nO&6c{y zIJjV2Q^UmF$VAfjc$0}4``=ski>_P_d)LthF@zw%fZqu%u7<-?Lj`zL{-1m{ac{); zeBQ3*JEMLTjL#FmNP%|VW_5Cm- zlU>419!Niy`HmyAvlw@Sm-Sny$CVzOja*RWx*b5y(?oXgVj&KoQXpZs^`vnE^+N!e z4X-SenVle-!kxAdwtgAv~ zj{L*dz#|A4khKmF%89OmxD5zjeKN4~lo@3CV9D+T|2aw(_|OjCKl!-IfS)$=;V4ml zSeSBqEhkU$ak-KJbT_g6BmQu_tH#uxj=CDgD1L>52-X23w@Qwhg_5`*e|Zy{pm-+M zs|PIm5h_so0M7(J?@?V67KG%I=A$L2+Wg<925ns|aEW*-JJ)SX=KzD4$0`pTeGt

Yal4OLDzV?eC8)+-!B$v-lR{9GDF@cB>_}QTjZ*4q z97#b??!eLw-!TPfFOo&~K@!X;QM=BB6o?RM!`}%6nmGJO6Owb4d92MC(rZI0=DeQ3 zPoy54c&_>j=k|Z!l?*h4hztnECB)s*rXVB|A3;68wWN9fd=4#20tcD_NNv$3H%Y?- z&GGTf^uLfl5jI&Lz(z2Lk&jOc{#UMBDIje1?u_W?@Y(bBM^fwSND&|*C)hzK zH9)OFiHt;f<#+oMR@o&#H zSfxp?Wn`t-0+rzRD(yv^^pExoH$)``vO^{vG3DOPDHE45bsmXwKS;Sk)B~@+JXKA& zyW4T~UhL3_ifYgwK{)dQU_5m!w0I8AM2C z90bE(-*=q#KXw=9FB4sa@wmu}zq8$7eb@+oE+VgVv?6DDs|DW^dAgwHr$NuOoZ+H6 zNer}W*lVjsbtif2tOqW1b2zcW~eIY_7MMs zmGiAooEx{A(43xwD}?9sFT}vQ^mok*(euL3X@zCNsB{`K4^se~XFJ0!MDh5hw%yf# zydc0cb6+;yZ@?vIZM^c|nai3}wB=W53>3}`|92pDicu$oquX_MKn!1i+j(?nA>G}k z1W!XLSR8Ke%StLgpO`Y2E$+AD+jB3peh;*2_wt#004t3Mq}GjpiTBWt+^b~g)D`|G zD;*!EyG>M{MyWKM$AP_6^Ac9&4XBXv)ek=83njc(KqN$#lHdL}w@SA`B(JmUiU|D4 zqh|)-QTpIpOj`{)%8#2N;R@v0KrfKqU!O?j8bxCVnykQhz!}8&kW38NlIk<&cR!ka zgx@B+3Pw=s4Say;`yN0|YBDBKLX@+3Z_T#@PY-c+tk-oN%2PF01c+^@LMP>2%6AW< zv%nDXIX#;ZQdmKVJG-gJxGegAePb3htM@gWKEUan1F=_#F~$eF8`4t1yRtR#i5l5Z zfiS{Cb@Yy`>nozXl6J-@#E$&W+#L0II^nhu2vhhD^N&A+s0+0IAnJl7OvvzE?fL&2 zyAo)q_r6c*W=R`mD=n5RktNC=MYbdr+1;{aC(AIllD1n@QX)h$lq5^W*hNKd$-Wzs zCF>}qu_W(j?!C`*p7WmPocDE3C(F$I|Nr0b_uW6=&$qZML9rxj7jUbi^eKn+vb$nL zeN{?N#CeTC%ZZ&kNea|c_~KWXf#=qyD;E%`>G%$ukUIQ*QU5+zGP=WtdJ*AQvsP^a zfbj!zN`kNB{M>hn!Abe0xUdo=bI#r60T}BxXge&{jF5HRU}y9z93H9Y5Fi3 zBy3O~%#*(Dvx3C)GTCSFhZI1Hk(Zk6KU1I>KP`mzbdW9~Dz>Tn7n%Fh*(E)YkgB$# zC&YF7`KBw{UWIHW-38t1DgRas-(dmX9<<-83y5V+Jn|(Uf&HVXKHq#-aj@qMc_^+0 zw6ok?i=QSuvZuW$oPS8&Eo0Q`DhnT7^%A@ZKyD2H_(`N&zQcq7pE<*|7zM#JUQYYS zo*X_DXAg^Pevi-2L1I#320I@g`Y`N~&0m&e`zNL>g2%u#=(uLJ`&-A4Q)hLf6G>h| z#pR_;rf->w6?gu%fMZuEhhu{LdV&!j|NMDKi#WF*HNfnf?;jaDhYA_!cnP52@|k^S z+yRT*&&iql&xyrZP+v#Kf@*^Er({O5BwpU0B<@}C*Ef7!MZO}NHf>rXqN18Jv&hA+zu zCvBXUNf~tV)>fk_=bQ7Ebf0nnt{n7f3SC}e1Z+Id zoSDd^`*3f6mI?xjvZWtAKS6weWcTmxSrk+C`Jp=={S^?}<5x@(%X?{F`AFn|r zX+E^y>8=|G8ZAMJw^DIo?y69lo+wT>B$KJq09vOZh4LSy5HjLtw0|$wDJ3NZ(5!+~ zN)PeH`>X9XCgoD(-n3UATI}g1k9+gbeDRT!ULMB-`f7ASdeQb>^{nUglGkr5z6j#+ ze*gOE4T1N3jOf7d@EeQ{4<3%S0GV$CjrM@iACXeKEh6dBqn$Rkww6?{tzg<%wOvDF zD~L1#r@G&~y)81)x=a4T_l6q4^$W#*!|e(2U2dxFH$d_=miMH@{nGLME@oVSqYQun zx6yXaSy=_77)-2>$z$FXjY!#pQ}0c`F5B2%Ww7)zy+^bvDj7C$yG{SuX?hfCV{ds) z|9xg~@(e#v&N^mG7{8TFduVek?U!$uoYK9Me3wT$EN+lrMdul@1IqYwtYWN@(dR&7<)1&Vt|zIVSSSVQ!%cQ?F=Ax65z{8UpG`i9tCdkuh4bmSUo!x5y5%F%f z-t$*-;AqaRol@!R-Ti@>vw0sBXKpyyT{=T2N1GpSKa$=K$vtM3*}NosJ4+%~8YzB>Orni>@KjPv zvtdA+idZ`5CZ}^s-03H7I68niLCnykd>^U0T4!>~`tt(qlb5c7q9UsgAt!lr6?SrH z$kA3vQSpV_r)jH1_l6u2Dm!gbYs13A#(O-qS4MNP{j}&WUvD#5!I-73tWvrc%4YPP z#=**BaejL9cqw0``_S+(2W#iu-L@s)@0l06C++u*#6Wr4w~*e@$I=GPTc^XPTSq7z zc4z8hChXHLUAlz+e)RA+KNUCi^_B1I>mz4m6iT%e^Hcc=?gwsI-zZh`@m$?dmpMx} z8`Wiz#ejO(mJC`UDJ7*}qrC9SmDLX^Gr>gS_)QlVmx*VQ!otE5yqx%YYRUTI#f!22 z%4He*p5ERqe%}&$uA_FHJ$})TTTM+(o^Bq+PngiTQ5w)>RqN^Kc&e%H$Td5*hu5!j z$;!%-X1ag<`V|xu^aZm}$3j^)ajsguPIzdEK?yO_2>J0Eb80JpEnH{vJ4D~UU4>%Z z+{cUS1k>$TTsW|OJv-aw$f`w_3^F-7CFQ80A*UN90aZ$t#^<(b9v%g;t5y9+U*pS1jxK_zoXyn$2B|vk$)y8na~L zxTNjQQLW{l$KzJ6cbK0Uj*pL*bNZ7Pzl4fvRaw3LEHw&bIQ3T4OV$dfdr$Xfv&wtP z)7#HusRS9My@`9}{&~R2%c-+OElyk?&s$&?#lp+Hmjm0+IUk8vg`8$v^iP zyMyhcXVB*dgwg&=Ej-=+{rg+TR8VF0A2TZ}E6Xh?aC{rRBS|Zw!b+&v=7VB``bBI+ zdwcs0p?x>AEOL~q+3BRn$Q8h&kbpbDM!rwhSiGqe@1$Uvt+g$DF7=ocPMMCrK07`$C^%T&<-->6VP#Pi3nt1>zv2A3 zw3L^d`w$afw_tAyr`8Fp>o+88;CI`%Z$FQ@uqAql^@;mhz`TXZ^jK>qPvz1N>oWn% z$;FAj-d*{ZfXmosVPP>jIXT*qvn}MuWM;c_eS#7tyj@yaS|~(<@P>9{5refUHzk#o z3$04;1(v%n{=#4}e|oQFM}~^cbi}XuD;OL5X?XaOvG^Gfco9NPjOIf-xD0%Zel1N$ z7^Q^HTq|&_+gR7vS7Fi+JYCKZwYIi)1;v^fa`$^d@m1H-a$HJQww=N(zmk+S|)JYN25S?Gi?QUzj5#Jb8bMtMH!(>_868$qZH_(l)prG({ z>6sP95cg&l8d~)Nak)El!>4?0l7}$WWl;z#FFNk)A4NVE5cSt-5DrckjM? zdEGWyCiRk;hsQJj@1w^uG3nY2%ZOzrPn5g1h}X5Yo>=(Nv4~wXU?1%qY?UJW$nr&$}!nI z=GwJuyaEDUCtj6^5Y*_OlS531Fw5ys+(sZGim?lsQes{ZZ9UBt%W@*c(Z$7LP|;hz zcdCdn-M@#`49E_OJZ(Ge>e+9m**^;$u4*oEc3hR?07*|II4DRT`;kmP<>Zv^=7$uAJ_?s*9_U zI%L=!44`Niclb6uP_q!!3jZn7K)p8+_H)jc<4Iv7fAcK8gz`d-v`& zAt8&Zj6L85gr}JAP!%coxjo1J76cwYkG$ctC*!MX!EW2QA{}s?k0T>`fNxnA`RwTG z>MHTe9w1&U%q=k%&l&*ctHV0g)Mvak)2)NW;q}!G)GdQeX@}hlwyB&G1wQ6b=83*S z(heJoBC2oy4ZXBfGMR1HuE%b*Mn*F3H zJ@^+H(>a09m29TrRV=hZXvM`Gw&tX_@87e%q|wT|eF+3Y z%$+*{o^X48{QaLbjdXvTHE?zo_ww>mx>;IW+*Tan-tqiRd;2}mUY%6a^cyio12u3` zU%TCNHf-HmkEz^k+rx6!F;wZRg@evt*%r=kZ*RYmhbMTDw66$eVSm6l@5snV_9vo+ zx%td^R*nKh*6qy@_b~DE$jBq}EcYdwKDQg-S)>$NWS$rr83AES@H^$pKDGmWHDQWi zB$9V>aw|8IXqoX4sD?8G1R7(s)!$(KYMn*;o`mbSBm*41VX}J?CZPEO~ zZ1;NX~j_}mGg7uq3wwYAyb23{j@Ccm#kd=6+%gjg2=mFFc}ya zz%?#5Xe}o-Xf8e*P_;WsckZpKs$yHcdP0~1az*G6&4p2s2P|bh9j$zf?pmfl43-m)EwUapcU(+iE`Y#$%#UZ?Y48~yy5a5QIXV1V`Pv@A|jKrMWc0K&%q@J=q} z|LvV^U^viBcY!jl0uh<$|o+oCK%PA=h1NlS}XHRhJ?fCNj z`|FO5IFJyolvyN7#~NlB-`4@t9mFKdc`1vOQPf8n`1C0ex3cz#xI% z>g(Vwt#M)M&;+2eS?1ZNe@u48-@i{Q%ucoaM--wm2x=bTy`Jme!VKo9iO0Qj=Uy>C z_BaJuuxb$BB*&8fJIYCS%359%>;jPCJ+fdnJ^(k7Fnzo*%bf?~Zior9E zuF#exwKB6rqvqM|aEap8Dz5CXn-)sFsl6RX+SWdbrHs3-uC95k<#9T-k7$&imv`GF zMN{U1W|)b>aIMCF6o?PhoZeVcJeo zO3JVVlDtM%MjxgnJ?-!=hFeYleHceXGj3Lx#r2cYnaH%}#V2b!*8ua=ijF zVJ5iGE2*{6(|YXveZ@AjgKvk=8N{raCfXa_`ntsEH{z4EiQc@&Znvei^~9sC_F=Op zU9rC~-K7CBo2=!9r@tG^%&%HDm?+*>y0FqGgpiOqsPw!On+ZAU4Ye2A*KvKf26leyk;u@BS3D<-b5KTrLg z-dnuUbkJq_*HVe{`2sLj(ayjam(PzR#$35_#nH=4mK)f)8rze)x|a&hHtob78srxg z+^xAGAd*fd?`?WQH@34&-V0S+*WPZPPocyDLTM?YQC&ZHPt;&xB+*;c$mpGwUpZc_ zfAKf&n53j6Q80Z<%E_4$e{{LH54~^M1>a+4=A0{xPfS);mLp(c^K*0hQ0&>hGS=O* zCdS6kX8n8zU0$uvVZalYoL^Wl1Q6K_QvK9&Cl)}OTUfowY7wSRpH@nUg8>oM(yFxb z_6VOJ=9AoyOq-HYEZkDlBXazl1VuVzrh{mUH)grN2>N=uuD13t!nivKzSB2|=;^}< zyH;;#Bb5p;AdY)h{q~z71Ry3YEp4yEOBPqWPs#2Dd}4!Uy4fi!D?=QyXS1^juVyQp ztIFESJnNv#w%;L3H5~psmRX^lbzq3~|Mc%4{uTJF(3U>Pe&FvnMw(w2N&0Lu_v9RI=%BlTN{OgD1y%* zUF=-3nVqfvCPJcI9D>ag`umJ?-T5X5~8dm&5Pk z0ve8*m^e>%<}rWm>3IaJ)nk`h(}O+Sx_kR={~PTt6m%D?76Z##YZbP(L$ zyu7^3ufj`3w;ACeNjutbp5FDsvE**2k4;Ndc^EE1UA8gHG@jDx~Y%w-AUc+R+MZD(G zQ%HhVSYS-AdkNe(0L9Mm6x4ryc?Abf4w@BujfI_^{mHBb4s|Y-icg>gS_e({l_zP0 z+YO0RNKhyK$r* zT5bdY-B`RugN|q`Zjb#4+-WFoW^$3Hf>Z#KFvS4Wv%sS7_O4t~hLJCWTEJBc?ZTLU zL8<{T_C~nBVD0sv=IHhubpN#OCA=P38e%yWr>U2Vc}^qEfv;Arnj1~K6%!r(aH4H}1$LqG`RGEjYKi)Ls% zygKMp-9%+i=ILaC;zkUu0pES&rcH0qY2YQ<3W&9YjLb09yg0Z-L1ZcDiAc@_2I{_w zpE!K5En4A8Dt;q!L0=qTKii%xuZDmZ@%*5rpJzH!!QRej6Dt>x$nYkx?nj~ zPEna`=f!27ZT<}*Vhf%hc3RiRM^4)O*^}8Y9HIuEqv}RbL^DSGq3hX_*{?(OryAX`0gfC=%{l$uPFkN>@Z2g4;jg$Nej_kCO z0G{+tD9}*M){T2UPMKRS_fx`bIxAEU}U(NDLEy7Fro(tu_ Qv*61>*W}Q19f!#O0TD!oDF6Tf diff --git a/doc/phaseplot-invpend-meshgrid.png b/doc/phaseplot-invpend-meshgrid.png index 040b4555850fa56ac975a0d006ddc8aa9398158e..eba45c15345bc516666c9f387dcd6781ef488bc3 100644 GIT binary patch literal 189738 zcmce-g;!Nk*EfoQfP^5@-Q7r+gmg%EcT0B)A`Q~g(hbtxAl=>4<)J(7;(4F<{sDK~ z?_&&y0>^#!S#z!VtGPoz%S)gj;vqsoL7_-ViYY-sLHk2Ny;?_r13%%ISl$AE@i>3d za8|ZAb9OUyG=-8gbpB#v?`&gfMB-}d=wxYc$Iisf#Lhrs;q3gyiI3c^4~ zM<=;hZ6^7Y_Xe?$MDDfNW2wJx)%a`SPq9%Lc`^`=8d&Juk0PGr0!zF1#@!+$AL%~r z_+;=`HdnK|xtc@LyapkXu)=6)@BaJcVHG2I@ap^je(~#w!F(3`pRX-i(GO6c{`*Y^ z+yBqM*rGLGYx9w$K>uA`O?>$|L&MwKJDI~;t#Qq5f09zG&L&i;DA%z2n<{Vq{#1eb ztspVwbM5)NcOKK<;j+H}@k@&(mmrIkjFF_E!9aX?cyQlMccY=9ai13TGI2hdkClp} zQeAkG&)^?8tZ29MWQdiVZ*bUzS>v)@{7_n2+TeZ5*6ao;|9uM8az4tZ+NSXCUF`GQ zGYJ7G@Q;H6^RWyD&EK$PYD1l0;c+>vFkZiY&7e`au84Y^{cFZbkp{zbQ4J0D!c)NU z_G^I@Hg*zXBsCS)x7Aj!&EsR;>}wc{4|v1F!~Z;27Z>rYtq&0)>SAJB?U8%0Fy46} zvT$(~h)3eNdw8%q?|uG;g72CXLdU=mkuR5OWN9gNI9t}}efxXAHaQvR?(#4sH5Gq$ zcJ_nyY=myJYl8c;g3zPb$B$6bdFWhRTyV%Z2A*HDp? z4GRhidOzLnA`|jrSX*23^YbV3x!Hx<{@vW%pQ|7S*PLHmWV0A2QBqcxt5`$Ef4W+- zzq!3Nw6h!i{*HXU-A}06e2mjWyh69x3^5ooU-k9n4#981sth^*s}J$_@%Dyt|JS$+ z3X$LM1}cJpgtS>bCMZf4%i?qA4As@$y}#VZ4(^JZhv)R}up%xq)82FKPb~TVTDy?G z-y;VR5z%y!a>4ZD8ZKMwZ5yQhnaIt}EiElAnZ*!Vs|?E@Rq)0?kx_fKHWLm7kHvPe z2L1l#VoJfm#ie(4Hj&l1FKfa=c1dWjx$Tw*vf6r|F^Av5wdVa5tQsdLXUo;1b)ibJ z(wMTCSZ*K!85!BLrFaAm>BZq(MURtx+im{())oaqAj#26vpQ4|7NZuz{nhb%CY=V7 z8tXZEi7^9g&%sP#ZpKkVYqG9utXnT5l-vp8%P%C6$n6RZ(8ucP> zEY@0gfgKyXP;H*N`n(ZBj3_KD+;w%l6by=KIPilqu(7eR(tfSYD{5(JNxQPD>RsE@ zo%P1q_E1+Ej}vT)EY-t3q#ax}u+snykHdzhNXT14+52Qp z+n)xerj!?Z6QbNccQs%BE%T7_@o8Jk6eqBFURaRw@MucP%VRn7rtdphjAsR$fR#m@ zn3xa|7w>}^d)(15A5EhLpF1}%?~Q+@$pHF){)dbV{pG`txVYe$7&ODdcv=xh$KNqY zNz@n^7zm(JUFTy$%t0X`NZ{~bdHeVTzatlqzY#1eD+^B2_tgY_1PxSNX63oYaw=$i zd>kE8U0aLU7ez=fCN7Sc%4v(vz{nWtF_iimZ^-|bqM~SRaBhE9^v5Ok(_o%F+nGs zEz_n3hX4^2#mzP;Gn1JnL3#u1PRb0wilOt*-~V`M@MtD`fhZ+euXBV#!ZS4IDw!Sg);~D|C&F*jDu}6zVDpB3-^|Q2APO|{-QznD_oa(rjMEDLnk~j!pKh! z`YKcj35o2itd5K2z}HBy;PeYu%q8tNGYwtN7OT=59?e%#UQPV^gfsz#@vcau2d(n^ zALWjnk<_ZXI`JZvN${G*dV4>0?pko|{O9K8W|)}7M7WQ_!ml8$*F>G2o%2ge#m!^>+RgVyf$}t`-hm@hrw>9Wnh3^|Jxg0s6yA|a%eUvQ(aeQwm+HI)6=u; zwp^xF+jQt)VnP8G8ygGy;Kug0spsR)jh!9LI%uHf1g)UcB)UIjIaNrLk(0kcLFpYF z9K6s0TZjb*nNlS8@^Frs0|F5Sut*X&ARE21vLd&}+EHoPtP<8bAu@ zmC}qs4UasbV$lAb22krOZfmCfQH0*lkJmT%_r`{Xo&K+2WE=It222z5`RQ|ibqWp` zo6CVpzCz~cKpeH){rqoJBo6CY1_xOur*p^5p^>ULfd+Ta$IG`5$9*cA4Nmv)>0YXi z6;9A}F7jNB=Uz#mi9+BF_QtbYo}cbtF8k{jS-F1uXbh?7U=3vHS~U@J=R24B{k!BP zIiCN^9jmFSf!k5Pd4xwLGTHhQ%YVJ>1huuh>vX(Wi@x+{+p)>@SbDBpH-*y{@9OI6 zXrVg9Zlwt{czJJcey~Gn<{Y94`CR8Vv$9A!_Kw4&qjv$~P%*FfhGP#53}k~BU$0c8 zq~LnCw#gdP3^lHWie%HAKiN}rb0-Tu-FyuUgpP}KyE!q;RoWK_7br$oP*4CnXY6GM z(9!*}o-1!?Y)qKnS#ET~z{E5(G<=2A{{97w1Oyzud?`F}^Wk$joZX(UGDapAT)tRN zp9=&ZZyOEeBLHIfzYxe6xF66^QPD$#6a;T`gX+!BcSd^p`X<|aya)&g=9^sT;l2iR zbbPe2v3X$u$^0H{;0JZKOFvRmhX75e1pBV%`@3uYe;eH)DXhkDkN4N+yQAr)y3GJq z>Y&DJt<~{9SiEc;DDbPgEx}R6imOka9;I3m(%mT-EKy%Ixw2AGz32;j1=!4 zPGN_5>gG(GELvBbp7s;J$Hwjl$KQQ3k}F0!FX67--u!P*Xao*xAUFV%b++1x%=)9j zNZ2Rm=OqVInD0ES-Z{O{GNM1=O5n}2!0KJ>PlXT(c#bzX7*8F7DwpcFXN;!vDc9TS zVlnCb8BCym^XAQ~bQD zG$fy&9wDBsGD%FZu(0ExssQH2G6j8P(K$b#LhfAQP>F^CL%3agev*izlKUPWZoJ&! zp!&rXU^!PTKrsFT;THnC92y;s3SLk=8AV8zU*bBy=@2CM%6{vMm5Y)~^+92G5Rh#46f^9u_TRmKwk zf%3Y-!tY6Xo^SB+@vUZxd%;OFO;FQ0x#^NsF*%0zZHPvSQXQ-~}PP1HLwa?G>|0qB~WoBO%l z*JsKJ;AtAS!>{Sb!WpY+tJ?jlP6HBpdL(LUY6^6zOJu$ODjL8A13&8N0Zv0CnYWF) zCs+k%ATR&cxG!P@09eam?Zbn&2^;PUaO~RH+7673F}vu$@YPJ;JImTg)&IQ=Z-eh6 zFIci|-?jIaP{k^Ach?XFKtnw)XVf8{D}epC>M0l+W)C2MX3@L2*fjmdoXSVDdp;ml%k~rxY)9V3N1xg0)m{P2Bfcz38QsUbcM{v#ombsPS?{~{CT4Cm}kDKs1-zjT|{ zSc$EVN3(YN5B#8D;kj}HmXjGL`|7S{N*_^yn}gfCJV+%58G1GD)zF&@xBy%jyz!DY zFU-u~*p=8KSsfQF|6RNplkOC;ctqNg{+iO+vC5|LeU!A&F*9`&x@K}^sex8ZkI#Q{ zKU_L=EKQ(e<2&it4m(sU|FtrX3XeqB&TA196R}5=98x_!S{5yI`Gy#|8!7)3vA=%Z zBhJfqKJ!q+{L{rSbT4do*RHd?Wnv(6v79rl>1S_de?`@`5-(Q)L@Npl*;+At6@{PM z;~0*QIrj?*UHZdc9=Hy1+8kp-b>2CboXB?NP#ytJ@=Q7NIE$m>kA+DBb<&?2`_oG% z9r-!qL=|xfA_hqqA$5lznM^-!{&eTlJnN6;{^1nil%E-nSy6ksJ$#8@%9s9~#6LJC z9;_|S#3H;?V<{Q&2F${{*sl26U8rQPnsz!$>8FH;Z zT^W38dCbm!dlXDMs$OLJCF>+ay&-(Wohx!x%|L{rE6d0Zk9MHs$czdY9rmd@eedItyeP>?0PL1d0_Wq{HK%uMeh4o&5+-s_3=}d|8uut$tjcGq6OdN@DZx58}ohntn zv_^%fVp1mhqB2- zYi-457vIX^c*j&m@`ZQXymxGC(v%#;5_^4^-qzb<|FGwdJ(PhLO~!k+>~(rcB+rWI z^4>e8uZh0$G$yD8;!0?+Oa(ht5Jz5cOWa-p_)zSP@xpQf4t1Qn*W`15m@?Gy=6;)h zR%U)elv!6vI~9DV()}${-!8B|PPI0|;Z6wq=J5}QO@d=x%gkG5iJ@k$#m4tdZtx_= zm%P0CHDu~}o0nI<-t#4PDbbhL3u08|yx}5LhC|xNg_~-ZNUeXibnZs@BE;?24|fmG zjn1`HeIr7IE$gH`-2WnXsOxzI=jKvy+OI~4IM|E65Nb*`wjT-f>W)A>0eLk5c-9+a zWbbuWqKoXE5*LD&AM!ThuR<3-QKUSnY+>WGZugEYgpJ(=k8^gsu9a6Pskn|&&C1Si zeI5Rdi?pY^T;$$I1qT_rL|$+A&^C6f$oWq$x_IrSsnHx1!^jpwV8_2dAKI4j24;{q zBggs&(DC!qPI`2veDORN*z3L$uLN3?ct!AMrrcUF6>Pmr`O!a-j2zW#meS^xf^oz+ z{D*GTW|d5d>z!O%`yzuw?c9t#!GuQ0G#PZGX&4yzDrM3 zXofOpqT2nDQeo&$Z!dVLUNIPbUHDyoXj8)mtEiDq$x$VDr$}l*R zd&+>QFP|`n&5hybLd$L?o7S@PUi_{x%Ey8oNd%1nUy|n^+$qdy} ztRPE?-#I}nhn;0_H|M2;!6@*}M%k)1^*fxIBy%9?=q^;7aaGub!>mWEr%q)@AuR;s zA#&XPa8jhr>^$`QR&{PfC)Yx#!I!UE>&+aF+H%CNGOD-swQPFl6hJ+nKzYKH~@Y{OV{GKDfeuY`{y=N2+dCNHEKzE+K zQ(Qy!m4!zlSc$27RVg4n7+QuM_i>k4Jg5CKmQOR~^od;<+2XI}-<{i;S;Mb6hK5%5!&4Z+F5020(Ry>wV2j89;;GL*E)q zep_p~vw70fup8ZHat5x|_1+1JB~I!yoyk^l#J7zy#Ou#Z zKeJbOC1t+)JsDbsVai1JZP*oTwGst*H(sJM*I$?!&H3LG z(eo61FBdv0_?WXB{&eYHl;@U^frOKe(e2AKIx#OR(t31jZBr7mb6G~0K?ieUsJMW7 z>5HuE9YM~TB1yqg`iXJ%m?$WHdxh({6dHw7`u4qxaB+>N?;>`0pwEQGC3K=0+v+~i zpYOARpwZZ2SR^+dA`V6O=Wrp=n4mxCmW48mMl1iJxUkoVn_Ien_Zh|RIV1p_pYMa~ z_k>Au-?Ac=^nBHjj`Slb}jak>aKn ztd3cALj6%N$(r9vOuUR6_6{~iQgW2`SN|}~Rw5 z>+O>^Q72b6Fs$lh%d7mXimC7+#BO5{90Sb8yX}@NNjdUd(!YcwlOI2#K8_OUy8ky5 z!>h>EJ&ux1vyu6?wfpZ6PQ`}HuGwJWxi0@&*icPa-b#i?woU6`4n_6D^aXE6e-)M4 zqAsqvlP-`wYEA2-myw5N@sbq1<0$pG7FRF#Zxv{0Qp%l}y6k_XFvCvKv(p*MxZGUg zKhf|bXzZ);V=^#iGT&VyEHqTVq@|Kt_;iu%;?JKD6{-uJ>}}q5VH{-vr3N!&2{pQk z*_$C#m{`wLh@?>=DC+oGFLqhw1zhhvS zzcRzO;?oR#=v;jVAPvIPhj#2wl>sPJjdY(6HQd(@`u0qd=LBcyl~UHYp%=s`s)s4j zv)44M*!GLHuh%Cl{DuM;b_Pzghvpwu%ap1|^r0wR6ntuW_LnwqUkLAz671c`@gp5u z`IRw+q2nCyh5cS<;A7Q;C(UfU=yK0ez$u|MINg`AAs+N1mfs9EwXPcGldCraPapVR zH;sdStZ&;KByQdT!~@_9B7|J{t~!z%bE4{+kDf!)`owF;4LuL7tQtQDZgwL%Z<-U^ zG_YX^T=5jtFzvKaS-g_a2q?|i-Aqnn#U?qvpUV&B-0eq~-36>zXq<3wyKh1I_K<%1 zGN0sz0|x4HQ_@!q!zLJ37m^ewklZWPoi~rpQ?C;V+Fb3U7k*G8Z1$bnFZo7T@}^NW zzA4>5j4U-DV>=dN_y-4rMI?;2J~sDrim4;-rBM4GR-U80AI$>3y^`YxBwi##t6w|) z(WCkP>$%sb41z0N`OVh$(NsDUc#g}hZatSORl1waJ&v{o*EhAJ{<3te-!PkRoLG3{ znCo>YY8#rGbp6@wUEXA+jQJV+f+N~KMs<4Hhj2E-TRLKTfl@ZmH1(#?1&;qHUiP0> zh-Pz+uIW9#klxT-T;fc`hGJnJv}NFBd_P2s!W&b=py9HHo#`Psf^p=^co zDCrDWl0R(FajVDKIFq;UKU(Ljk$!CX1#2oGBcAM&=Fu$uY zv}E+;dV!)Ponhfljjwc=xV^@Ivaq!5?1CwU_?>HF*mL|T{CL+~?2cd*vaMn`XhB)( zK5nqDz>-Qsc;I=GV!oCs$>(TY^_XIzC#ilfQyMMs5uJZ9TY4@%g*PzIUI*BE+u|oM zyrtx*%F8ekVVDeH#do2YE#D7cunGj<`V>o_Lz^i$kNz`5bXOI8Z1wvT#JjrpU#6LlyR%A>CPVMdM`OnOQWGW}g?A9dhfEcDoe7|A)x zzkA)=H?p3u*RsTpwo6^wkoQ}RYWJ)!Y^o<0o20YwI&T73vRAW*xN9EPbYEIpDGM%Iv7JgQP6;sfei2u{N;3$~F}XVM{C0Y*V|U%k3}(TZ8<^}_19j%C<6xr)$9%a{iE4Aj_f1( z$Ow;Q#iQv!v)F)!cv-{#NzZOKqtR=7OT&gr6q~r4q(gmd#@r%YDOaWK0bTG3$3Kqa zknJQ7@)51F`orch^~xYdl)B~R3$8Q_i-^~p?Mzt}KM0}6byn&}kt3*-)K}5H6YwXC zeht(t5OPn>&;n+J>tCFyq=VxZnbgDzc9pXxraGpgBHu5b9Q(s5q@Tj~%^c-(EwN>V zQbUX9EKCk-Q0n|Vg+J+TSKWPm;aIcPYy?>V1ZcsHXXK{q*QfD1#$}crtObj(8@oe> zur0F(`|Tnn_3J!CTc+J1Bi8-3xBA;URT-KtCxD~^aY|bKQ54kjiD@=>r`W^%xREVd zee1Nq4aN z_74Gy+z-e90!j&1(B1ebPr1Ul@#2K94Y;B28J5ZnX+W4S9ztXznIkk%>fy%dU z`Y86-wx6CMNGfhUPC-_ILndM?_`LZe8EJv!P-D;$8=*u|%;}6%pNHvw6}NoPsCTcv|HKG14H z2iby3K+wJT3@KkltLR3r+1uqP^?m!p+{f}h$oH$R1kI7>!jWs=L!ETqeQ{LP!Vx6U z^DOFdZDl6@CDrvhifXIstml#q(yp9E|A_BtfVS>;IJ&0J(#l4I$+m-P9g&a{5jSTy zzC890h-je0HN9Etw4!LwP8JALq_0!pf#iSPsPdxMUwDh)EnlG9Gp~Yp8=Md}{gZbY z50ai$U_rNE$z3Bu&54uIeb3cJu|7;I)U%!}WluL&h|)AA)Zgkb4b`Z%i$|QP)o3Q+ zatmj;RSk!qzy8vonwg20P4HnEXF_!Rbz`fvy!x(&Oa0KKkO>$@n?*5 zYl5H5;#M{LJIKCQyw4qt^y?LklI4{SoBZSwSwx)kXB7N$Q>>pYzS^r+{eY(`m|W_* zoa&G(aJDWa0wFlf3xk+)T0Maai|4W6bWhFUs;Lpm8I-W?C-C*e;Wq`3L~l|mxo}ZX zp3Fu#v+Rw$p$uQ?Q(-Z+F(47_Rz5fjU9@#^JN*@^QS* z5W`k8VXt_)&fD`H+-JL~quS}Bl*VoN4jhrT$r@Ehzrm1*Va7qL~j#x>9 z%c8@+&y`}(#6Garv;K{&{1A;~navst0OW$pXnH&2#W@MM%HikFJ4aDeO&Xx3@6A_vvpsj@hxwTW@$7Mw8&~HTUdUpu2uB>RL0I? zu`xk+n!BJ$CyP`?DN*itrZroJO)cwhyR=^SP&3L}U}2pn43%Fhpl!yS3T`%&-+G!g zy_K(6Y}3EEXK5hJUXLYXOyS;$8{=|~k?Fl34;dzzfWnAOJCXT@Z%)Vyp9YpQ+Zo3V zx8`qG8~W9MYP+Fm+CK3wUfm<6aVkZ+@OpmSMUtrcKE~Fdmq5fM)qO?odFS1ELiu{L zl#_mcvuGz2418Ar%=*qZjDQNRu^w5(d!~ZwCugIS>$Qq(c;J@b&n*M2UWWZYU1y+r#G&N{U+~;Wb1Ieveq7jqF;0C7Mg`S;9~lbtHt+H_S_%8x&>K2jC(D=ShhiI% zmlCn5UJV?_p!DFt>bdG$o2e=C{SyixO_QI-Ua#tSd=rVxQ1g{9#b5eq`)(lO<`~w} z!wMXXd6qT~z*^mlKeZ19Mpt86_t$le^$yMpel9CW%%Lo5w0bL+$9}oc1O&6Io~-HL zVs=#{SlGlZH_2|b+rU1gM|F)0KWP)|_Y`S5IHWo^X zhc2ybQ(ilyAKi->+Wh2i|(qiH8@gzLD8 zs(n$K-F|$A2edAh}T=GIPXZL2?k9M~$k%-t@2 z!MN&=-NU+y-sAM+Cb06F${ug>Kva-#wc<9HA(7Wg{#tqqKWCAYX!hcC=2zvjAS$`3Bbe#grtBC2>Jtw;Q3%8dMN4P+#BK#5njmhDg?FUn zh;BQ7Tg9=gv3&?Jvb7p~vclI-jJ660AK5H9Oj6FJ_7GS7j0)yPG_p7Nginrl9L%LLx88^5lO_w%u=l zmRwIAmgFZO4>T-b25Qlky&zRdxf**7ti%jbj(NeN6=nSmZB1Yv^&aD<(@x^ONKRl0 z9EmViyMAJCwP!(03Gy4IR2}GYJgDw$SWJGOs@M_DCsXvx(F_cf74A4LKH8(XTW{n3M&cldklszN-7PszMtvDn zYGhvOirW`@W~thL&8?ZTVUb6|D?pqlGFaM)lCnsBQ^kDor`1+z0v{IimTf>aCN9Et zUn~Mq#rPYDhZJFXClbp)_VH)J^O{9!m-vL#4KJVSH!0tiESn-V8cm1r_NrL0`;LDdKXkX4flJ6w-Cl6iFgERRx zGe_U*B=E_KZH4{VGZzXPW>!0bC2*e(-*Bc$x&KXo>rwlXM^YEa zUOsLP5`rtc%}7CD9e}KNn)lU<*!3-%15f_@7#&4hLxqQq87c1Vbp?8Y6y>}&O=Y#p z`mW83Me2;~+&gr-fvA3X0k`^i$d5lt@he`Ys`hhCVgX21$X%9gG(11NMGB5+@2f3# zMjEVF&oq5Z5wmL6sM;=bb#pUcs7K{>fnGl<9=Q-QX7FD+Q{y{mN;+NziBJAH>V4$x zz!==QmiC%-c+OeinN#%{ds3#(axD9(?drBh~JTd(qM-J-@eor2OF@5eOJCYbrKH`afbXzHZ>J zQF9F>d1SxGre}DZexPlxQlc8ctb(>FKq``B~$fBfil|a(N#!tAH(mdZE z@|P&+_5-BqVS4he<3aZiX6DE@7r3?(sQa@*5H@Jg6*jenVd+rIYQ8!y{@}wIy4@d% z`PcR_J%uB8!+3`3CF0E6s^Z{JDccz6$z9X-8XXl00N$T;V?-Jm9dK2|=I*TpYk(z{ijRKFDWhDllg8mc10e{%g1uY>7W1gmdOuiUnV zpZ<`tTsBJHJP-M#Quu<$;GZeOkfFV|TUCS(c-vgD8lJPOkVq;g*NuSy~ zjRB}N$M6~xY|8=KCz+Q|paK{2i|tP{$%}o#Hp$kzlJ(A1ZeCZj=-25o;`_2 z59~H$qm8s$*gUiePRgNNl}~i%(^4FoILpv;Pf$~E&7L3`rW^l4C7Ak{H1#IDU6G8k zQ-m}})t371o98(7bdHu#IDbN708+FgEhVY~JkpQf;VcL&dD?`apHXn;_yfcTZXUFg zM{ndLFv4*Gz$(2dWiG?C@Z_B?f>~HtPHy&BD_SkAfdh%9WcxSMRCQ#y0BkIx4Owr_ zR{REbKZ{Mo=xaUi_D#0)tHcaqk2(HZw09^SR_m4@pvcjkUc#Sd^2l3#kO~o$4okKu z1_4+Y?nK$wtmq>r+GYfb?}^tXU2Zq-O>>!gxe7F+ce*?0bUMJ+FTXj>2R2H2a(Abe z=R&~_+vc3F@q{VZw5x+ zs_|}2NY*psCot4rjL6sy^GA{7sz){tIzpIKcQ)gXU!@tRsmge}`>Lg28?>tb(_ig0 zYY@=iZ#-V7xP1tKJhujde5Sd;ndaQwhm)d9wq4o0hEiNRFjxoaVJh(t#DjZ#(p731Hvj~ie~l2IJY+bVRPu2el6`kp^s zqS@#jQ~c{=*=BUkoQ5|^B7Sh+-?yPXH0EGM_yi7SI%e|0Ga?|gztWd7KQ1~La=3 zuVfFjcFS$Sxf>hil>}oEz}#YKwUUG&Xp#_d__VcKw zYbx4;l{INTAHK|kU=c@9HoMEegohY=gY1{q<9X%yvooc(bO_L~10En0>mrt@Na@>v zSdDK~Nt109F$5`usX?Y-R0loLjoK-U!sjk03) zkD6S+8-5IyHDC1D%dTX0f1mXnYK{%bqqQ}2|0gXH7k0Uze4rHi6z zrrDo!Hpg-t9=u6rDRwt@ZF+~wTJ}}f2)UL*gv5o>xbad4N_7>}8my*6*y5ycmxnD7 zJXN|QkB=^GzA>=L&vT{BQYSz5u1Wz@^jU??4c_4VmI9b|aKI%@k6T(hrX3pDKEM_l zPoP3z!+maoQ{K#U(!fhs{30MWDP0LlXdoG*qfy?8AK z$4+tb`J087whs{iCjOHyBARN8g%zc*BSi|_o;7-+Qtlq>VOU-~cpTv&U9WK#G-$Ab zX+MF(8F!PwD=vZ9@V7lbO4vrnfGU7ZExO~O}`wE~(W1^-ch~nWm zE{%4|=|S=}a(;=sTsr&J%@uVvqiM9+Fa4!h8E(9*UTw37Jl+&P47LBp$WYp(YFz1T zEMb?w2UA>)ODjlo#eX{zoT(}VWz0@prbx$wh4d`-Z2OzB|5J@5l#d|Le7=>C4q}zb zk@yaV8Mt~Tk0x9%!ElPEFMm|UyHkgNNjIj$+=B3R&03}5px0cG)#ofsbICl9y6JOVJ=Gt{23{@EE07&1WQ zS8E%Re0?P%N=g=3+r74}d;Jy!F=I_tWkcRhh~YzjgI`O$(qPZW9Pue>KRAzzeD~nN z@D`BQ>W~jx#~izVXeTEH<|6?)_h2|1dqT3|j_bHT>{2|8(95gHDCx)6CgaJB`6^4d zk)!A0kr$~@yW_WtnxHlYro|ZMv5kvYFCBiHfU%>yZ?oPuICcFMn2njI0KFoeNL!O4ca9zRxx#OCJzk55ibGg63VU5YG5`K zur5MoJI=pXjy3CLqp$eq3U`c+Z&n5-l4Z?~o4QVoM8}6F0vAN_R6XpsKpAh$mMEu; z@xk)x+w}A#nEz2ebg!-!Qf`7*JHTPxzr9FvfhyBm-%Uy#C*P_g7!O7=T;@i0y{hrE zef0(rzs)DxTQ3lGHq(4N^l;jt+Uz_vZwpS9RjW0?u$^GHXNKV+t?VXOfyFrSTlNG# z&ctBqzK!_%-hRx)kK0O=?tw9G3fWackD&hGnZmmurKymoL8kxZ4>&>!?26g zKq!*6H;N^IQ(J7-GVXt!`NlK1Z!KY(Ur*ypP?4WLiGV_6!PnPoZJ#p*lzG`Ii{^~^ z6k%$Lk9!VS%QOUwUuV3<(ix*OTJOpkULjP?BkM6_5Pe&!gul$Tyl;T8L>tBHj$I9NS@2H@Ze|)1GQ$;+!N{OymX^KMv_)K z-0|QGF z^je(SkN0&Wo7Fxo7=Hx$)JEnTTjG?{q#rqdfjVb3J>~)S+;mO-dg^Xw1Wzwe21_dk zUrzkeBW%fD8%LjXhDXJI$vNrdqk(yO{Nw)HI8(<01(FlBy3%=yVrZQ;I4-z4Iu{(5 z5G1#;kbnPJe0ZVc^<_lm4W6tNH2*RX)RRzse^&d8KR{JO*Jk2@9M`o@X-ag5f}K$!yZ+nKqU#T;()=c@#Z$Z!~XjG#Hnsf0l1tH zGr&)rQyVh{k|x1enn%3^iPzfxpO_tm*)))C^l>qNFn9?~Sd-pkxqa2EMpbKa>X*Y{ zqkWlZ_LX^l2_rwNhzCc5MDQb+`~xG5zt6-TR`6SHsbJwn#o;O-PcSdk+)0IUHv@is z)28<(s!s$AJcuPW+M0f1O&ZeRZ=nT7Fi5`HJuWqo6(svfSz&b$pL@~1$Y&?ktEC%) z!vl2}z*o_lGS~Uz%iM==J&4E2QbIF5vs z+Wk71&;^TrYiq*32*;17Fca5z^&MkX&nZzPk_aqX8}Yb5ad`MI3iOXjXsCrk(*7%aKokaSDB(s+Pct zIT49qNenCD!_9iipmna`_v*Pw%o)7&jn%F>)re%67t)5@u~)+{&Wy5YCH@lgzB~kQ zTm%c|SAb;mUM^vZY$@TCC@U?j@!a_rYP9jBaRFzX6u$2xvNt!LGszYC03FafgtXxC zxqF)iX5bCmG#3L4Mq-|b+DEG*VZ*%60cE+kt4|jPuL%#95*pxs(5(qr9*p;2!0{3LJTmM6z3d5p9BN7PtUU33e=2!V0c=$MPq< zWlxD8SUF&6O1IAwZ3T$vH0N}4xaR#fq^Qxm_oHGWx^5I@lZ}jXqcqw-!Ee(dUx$?< zhqWT7l_C>b6Fa_H@w#%3kI#L38?X&w$_4$a@f;E9s-Fa*kD#@YnUktgd>dtX?XB*1 z^$0e^b9JaQ@Q^EPZ>1yMgPF5&45|&))Q`7eOmp&r5f-ullM#s z^QAil7L3*lXNyONwEmd&9er?Fq#0ZUDIPoAhr;+tFH;1CKZa*NtHrS0@b-1r(gE7j zQ5yb;E!jxbuf8!)PfL!w!ugPguVI$RYop7--C)VW756!wzJNtSUav0gfq)hvPu4~W zM!G`wA$9xg?h9pwGjpb3GMEnmbIT7kW88*wF7>7WmFXE5pijUkE*9Z;j(wObbH+)%vAS*k6X-e*dm_U=I=lIvDa2&5 zQ<741#{eHL8c{4;mQ%CoKUW+#lFlENkoU=p(`8sq$=E>-OdO@7?=XD0CcH zfM(uJg)%Iq^`Gh{Zs`;T2trmfXi~cTTdUuui%aX(A%A^Z75^cY-QC4Zn3{!gcag}_ zVl1~f?aHJ+y#dUk7oiTQM5E4N7oA26pw9EAhWV~pTrW#~jIA_|4{P@J?RKMh2Ik^( z)x7LC2HtNfBKzn{Z{G9;#&}*f+zioqGIHVNq^??MGo?={`lXquo6sW7S#4cGw}R(- zSPJoa|9t`i`i2?DA3Te)|Eyy$Bb8%dDkCIOI=r1PPyC`FimW@xOFVU)&UlHR2?M}z z;lg6t*nRMc?Cb7dfl!Ba*eAyiWTQvb!unr^vXtgAH|Dsb?_Ba~tSp4@`x0;F5)JJA zAdmabF)43CrQk+&6{~EMqG0$&q$24p3uy&@Tdpeh!rN<1R;w;l!~s>&(s%|&((wS5 z)Zi@sl*a+X!3)F8z-?qx7F<<-3cB#k@d-z{8OC^fHhlHB55?20W{|KKiS#m;jVwDytF*~&{!cc!c zl3+gX%oLgrJT*dX>7Mnj*M-{Hxk}1hv5CG>r3AWHSU={f5%=$M95#6EEpkGxw4Xe! zDTJ_@|M=m}<}Nl_guY0STzr3^4P-TZf6CB$fO%^$7e-xf=D4{oTQ`NR5cAEtJr zDpsxhSV1b&?_UkCyyu$Ay}3wgL{><`!eH}d$IKTXh-Z^_a`A}tjAcz&XMJ&{AINpk?oOAdt$z5PR(1_juV(VFnzhZsy$wDkpjId95s5jl99 zhUeuR+oAwhH#+iBd4_BS{GFN!k}fg7si5X|U_=5>sm(@M4y3J20BZ4F1$qq?*~g?k zssHs?VS~;m9N(L3Hn`6D?7#N`*$*{bKmC~TTE!~rPPakVjL!Xa1*r~wuwU^|(SiXE z$isu<6k>=7s{Wsi^!?zVTxBJaomX9{5 zo4!Y`clsik_WiDLD7Gz6DPXVcCBsGL!Ny%b)g;7obsHQk%G{Yd`D_ezdF(fH7&1nI zI&pYz4AP0gn^r-4UOwDpu(*X&-PfmyN*lnm$8n?*)a#8uv(P-_FEzC9#xSF$S;ZeX zzr4mbJH|Ppp@9h^h!z8DScpBVS_u=;BEk>_Mr5UKGJ%0l_n`0DEy6SfCk)8dS2rIx zHOGEl)EO$GN@m{kN|onw(D+!vvj|IK9E1uxbUvso)K4^nr5rhB`{)h#`rFlQUd%>Q zHmogYFZ0|4akr)f|c{g&$^#wdJ%j&&58feupuW_&K!Ic08C# zpz@Koi`#cu{G1n`XOCyhHg`iLP4yvB<*aV54F6)`KY2*ViNhpw%u~1(G3%M585b*lUG8?TH^G?EPjPx66tT)BMUijQA&3TthOG|KRJ37(KJrID%UuJtTq^5 zynuyy8WYW|)REcqc<{52{0sK`dnXBY+5V0%&9-+f5`^(>>2c@bL&DTA?EhRN3{0s@ zR;Ep4$=7$zTsO1ax^tG6|M9t@;%!WjRn8E8d2LPSF{MO2mCjTCi1`(i(WVM-{o6Ek z!K$Puq!y0QH;+&yZ*78L4u-QlzAVaxbV~)rpOCs&%9nx=0++(8q;G?QUlFOf=!|9v zgdHzx4mB5jAXw_|f&s-v4|iAXIK%Q4PbrDDBRZXv|Mo&?d==U%+ogwE5C`*Dt%9{v zNnD}~ZV3vTh3zp5cFuyE;)>eZPu4=EH2-|DH+jtV57emMa8bI!Hcn~rCYfv`GY62t;&{c8V%9f(H{ zK{;Q`$~miY($TeA52b|hQ;UY{(WE$8|6=o(0*#{tyRYzw6d5vmi2r)SuZE>zAHtY- zj_~b&kdsAKHA)$(NBAhOD)Fvd*J4lRS*a2XOcfin$G%02O@`D-&Yd`ZvfgV;Q=MN@ z`4d-$(a{%e^F9ZK^+AN8O7Da9dHpl{gy@2}-skSbVu@@2{j#-vfO62S<-_&(achWW z97!V+R=ueH&FuT{LozI+CQ3%1OeGi>9WMU`eDuuAY*>a){^5q1l#ix$esgj?V-Rm} zXeGr>eUE=;(&hF-O2~)R;P5DFGnWlF*?KI}d#RpXRoC4gi{Czs($$x-WWbd14_WsJ z9SG9H(XHR)EMQq`MRnPne2xG9C`8-#VCUr_l_b0x$S~PXzXdzo3mdS*&2DWeC{v&b zsZ+d;P*s3fv&FZ+sKRkU<@Rho6$5)HT ztK^+uY$TqJ4P7oSM?(Zm!pa)eT`SGovHRR(%qe_cCvcbHy7(RO&6B1?a2E#NFruJeOrW+(Q{UXkAS z*NA^2*jaQf!~C**VUv_ocL@l0MMJo$_3?|6D`_{T7Kbq3ABYY38icy!NaxEOL*O zn|bJyA?q=)%2?tw!e*KtFkC?B{(Jxw1uM2B6sJ6-rm_$8sQGg6lZQ`dk$+q4_se0k1=N{t*NCOaXss;T zKd{XJsRmj^GaSB};`h$Vq|TEhL`;p3i#V9a^F_FjQuX0rD|31|U_EO9g7H7lt`_1F zA1254PcMuN=TrTp`B> z871zd%9k=-cS`%|(|bIuVo-Psczs;-Y`L-6|6pZy+ zV#dwi0>&k!ip=kqR}mJfy}8%Lr?#5@?S>g|*-WLWmRfnmMZG6#Grmo8BeBuYnZ{Ca zxzU1I49ncW;{0S}v?G!?&AJgK9xHHWDxOaMHzjeadN=34hJlIO*t4VAK)llGFO3D< zjiD9+ATh#>F+`WNZOQ76+?sJ+yyxvMK^rR&!t$=;;$ZrL82-Spi0%HKc18jsH?C(L zYby)c-Et9=M82LEVQpN&aW|za>u46 zyJ_|EUwz?S>}7w~@i>%C4E-4{@eAVbMbhUBjDj3?pwx5>Ot_`DKoS@XFcy^mEY+AgOYzRm_joWn|y7;8e5@-9IKdSH_z4w5q zqDILT8p0NTs+O?0YWPwqEC?d-|D|eNe?K*WGbHs5M0)q96$0Zyrsek&0rRA%S2>^X zPKcqF1P08Jpl{jRFT)XLMGH|$F1q#%3N?)a(L-(*uLm^TZtAx+CnBgRPh2e2=Y2)9 ze$SS9n~-6k3%{5BsDDg*pn5M0_noJis9{pbV?R5Q50v}SnA?-mXKUdFPKBe`t$9qN zE4Hz9gCTvQKOwc##)Q2%T>b+ioNBmxb{JFrE{tuTDr8apX^DlYjdf*Qy^)le+!n5P zd3Dm~KiWJg@^!~z`jjE$n7_}MG1=pqn{q>JNq&JRNQj<=O~alt_S;b)8IRf9ZXZ2K zu2xvjO}SVBw~moxQ)4TTeGD-i|BoIx0cRzct8WPlXMZQnC>|v{eTKv~*g>HE_^dW{ z#<8|)1gTX-r~)kQ*{9ep&vdv(lj{1;mJLA119QOM>8FZe`oKT3hS@1 zmR}Rrooy^w%+PIxF8@9{>|*3l;gg{r-iY?T+;l53bH{#$8uZ=#>y?z&aHpetHFack zQtgmDyccjhvpLj&>KQCM~B3Vd(cgH-)!J(juWqcksh?c4Bwf_t{VjJ0h7zxMO$Eg333D7x{C zObsI99{B>MWspdG;xbSm3iqOM{{DYo2rv`XsK4Ji`;RcI%$7#1AQ?*q2Di zY>OtSILFxkMOh3MX>$Cy&A>d4MN=a}pHiDBF(@O%6ktxU*J>bHd^LA!^v3M?{$2N@ z|Cn^$HwEFaLj>z8^^F$xAn&a5A?wW5O&GSdc>HT3iV*JO6CFE-bftRVm}j!ohJ{ z^N#OENB8rZKrqNPD0s%toO*MJQzrOyIX$ePrm8ya%4W3?WjXBCHvQX8m-O+em2KnB zfPG7_q_0qsEPh93udCd7f!aiudDFd@y*yZPWvNAa2YWbab_rGb{qQ!b;=o--!f`|M z%Qe^3IR7{;*Rs<^)jGjK?@6ODN~a#FR8!He1J%q_$JOJk9JwhLy$6-I+LGmmi@^&E z#V&3c=ZsA0Vn*Q6gB#R4ou56 zI~Cv=CV`o()OW^N)gp$6*uQB%!ypnNwd^`-OBN8VX^zE^<4uA7@HxHl5iKNZiffs@ z8V6#tg~Gy(L%>yrrSAL*R_CL_kbw6tHE*=#y0SzYH!aQvDa6zHxUYhqdyuYpybIU9 zaaI`28n`8~`_4jlKQ{+TuHxm|NiKI5ADbu@_hSP1^Pa1+f_G(#D-*QpQVg!Ti}qKx zL0u`EwgR9+f#TTT`-`qn7co#m<>HzBopVEOGk5g|Z67S8A12A%9A@SIp#5$|5xRQl zt&7Gx|2~fr%%sch3te@)iM{K+OG*!3nigjTT_nc_BAhUfhcLhi`!vdq6py zWz3Lg=v3Q;m}&^g6syXHoqP1Ox#;=!A@-TY;mcVqr^lgvA`t6_nYN{W&HP(J(T8V8 zshIBNBWvZ4A-`g+o2$3d5db5$-_a71$4;4aoe%u|!zhRdK3?ddUDZ7f$B!(X2af=_ zag&lqB3%l~K0fF~st@TYOy9bkiL#MZIQ$oQm$m+0B5$1gF2oq+&9Eqb2={*}AmDV} zV(vZ5jT^}L7Hc|;HVqzO(~S`k-6W#A0^e4x-D4~X26k1Fz}A@3=gBeEco;*AZtQ1wxhUJ`WVGoRNT& z0?8Jm+`Z)dX@8GUNA;&i7SXnz#Kc_)6Yh+|>NzYt<**sOMa`IMJwp||h;J8d2`e{#j<;Y7B zMY^i4HBtDcPkbjy-2KJXja%n7bMMj>|M&RLp(DuNEgz)Jyaw7!2m?$0SEP2svfN#> z@WMgj24-fj+#g`ppWQaV;$$5sQdT-JS&%rpaa(dbWvhOUFKF(B&*yK#`>sCu2eA`p zgooWRuLEl+y!AiG&9CHjdg=7%eW{l6e=(7bG{1dxFw{US$-*b9>a%jk&CUJcJs(Is zIlnt;!o}dsoQ$A^sQ#27~?8D%n^jxGG7LK^-%Cu-1=eNHRM~ z=DnWC@;2AGdu}AaM?OTcz`9bWW@>YH>7H^A$n_ibueT+ z!;WTVkJ^m)Sois;YTi5)3Wsv_qzI3Uy30ibJ=P0F)OjGW-GA^vk|CxPSXXXVytYfy zfNcUMV%y|o!q=}~1D|*0ix=<~FYT%DyEn$^Jlf<*@l1M-) zTbU0~8PuwH`Y5bVf3IJvvt#Vd*i0<+s&UmD&kIE4PjRS-Ie+^!6RR0xAlngbj292q z$sAQYM(gP{*jA#J*DMhIAmY#qvA~}Cq4R_8NL>*&)yx}?@AQNiMvpa3?DuILu+y^Z z{ps;vm^uv?B4qFwhWqPe8=^qh0IwO0VVEBo8Qf9M_RgYajMuWkzuFHMK}coLE03!`|S=cbX-!x z$>Nl3Np7albv0}wbAP!byrOJu(WwF4E8u@3E-HXIWI<6U_eE39 zzsSmC=e(A7HtLDmK4uK1SEk(h%-4Y>%{;tjrJnw(f_8}Chgx>$=HFO>S$h%@*^`Lh z;77S~Jk#_KGdH7I4PLcEmoO!K5B=b?@fr1pN+0^ zmCZ}oHZ;?=gA#U_Y(aDF-`BQmC+TL+Ghb?x70XKCh~mKHs;gQfHh-wEgN-i zo37PJ9pjp8WT`Tux40&Qcwb#^IkS?%SMEbkUXu3oi7k|-vziVk>5{m>!Q0D<)BO${ zRJs@(J=b{y8=)tO(1UQguG1TGVtg#+ScFP^oTr2wq*s^ou|=>sp@{E4yFMke>{3Bd z8v(y_1g}~OqV!N{L~U#we5AEpFa8o%+&TDbCf#cTp9F`M*rqeb3vBp_$`r7?l+aSmtG7X%Mg6}b!7Klt61^T#b%+?TOw0qk;OJHioxK=C$3!l z;;$48NY+TVB;(Qoi~c##z8-}P-Av?4Ll_Je>Q2X8BnfEe3VxxAy|5_Zh_V5|gU2ex zLJRi4X=kkFW(YzYo=Ohw!xMh-U%03@?DB}TvHPB!PKD&NA-6F0`ai1lreN7|=Vd!m zEm{ryy?#apzWrx{rsPYzWv`}hu%{RZuAb)_#Ggdv3=S@|ZZcg~pb}>en?;CkQKKNc z-b#s~JH1hd{hKn*FD;5naZQAEu`NX(_lMEBnaYXIu1z_ZHt%QrXa9^QDvyAvlyt6> z!kSjrHpqV1_Lqq1!*Rk0u}jG4xr+OH6)Xyz85Km^@o|S^o8rpO(b1ry;;hW*H0qnt zKp^#Xy#L}9N>#C|9AlEzricR*&tb&UzRWXR8b|E;?$wPaF~1?>VSjBS4C#Ou(JniH zSL|+an)3*Zioz?@s$BW)gM2!pTBsV8n5ea|Yw&$^eZrY0V%3XZZq6l;k2Dd1RH_Oq zpE$LW3g9Vf?ZVr)zcy%mb#~M)nvVE|BK+O&fUx{$X~a~%ZEc!}EaPo7%VFu2^CS4Z z(pG=?F-=p5D^&!M)rxiS8ETIR^KPI9I%(>gp0f4N|1&f}q42^Q7+~|P!x#Tapu|Xk zTJHO6F$L=^?da(j#cg+&l4>GfeTy_t_B_L})nTEgaRzH0RuD#4&lwo*yFgYK=z+DY zSusB>>}>BcGCpG<(EDVKG+$JF@4Hg>YG>kTyZS@u&JQE-KTZEp&C_qqC3GL}rVA(> zojFK>nVpF^XBbdd}Q9+3O_0^8XR~awDz% zp<){R++(b(b2`MnQatX~=%I8ea~%AWPJlJLl(E!4FAe5l26m}0m*s(w_31=rd6;yu zd1b<&THk9Fu8*U&Qa64- z@1APPXI70rDw5F{@p(08uB!im8;rJSCJpT7pyxi2H2HRP(&d+&<-6ZH$ieBPOP|N~ zG3pz!dKqeWD`xzXHP@2oStUMnq`7KCVc3gP^M;o0MUt$=yGpI)YK+~*gtKtiawBq! z1n*(?^$22rircO}x37>t0{az+*ilJIJ)h9=)&P4uRy0?8*#tQE(B$Og_5SYeZ=W@1 z7=1Iho;J+c!~?j;U~r=>DXd@eNfcthv*lTf4D%L==Fq3Q(4HvVG>D{VO2J_XUeuEa z-kdqm?Oql1eG6%{)_ea^kHAw(mQ$G}JT2~Pb@daM91kR)2ULq1l^rQk_)VT`Rn<*b z=O6c>J zYJeUZDr-M1EyYE7Qm$k5Mcm7!_W3V~yL0Zy-rWf%SayT@4?_mom(ydTs28n=_FSXI zdTisPfn}Gqa=|=KAr8jXAD;EpKs4)M89soaGGYUS+*tk_^&c5@(EnXS3_E+8(k&j%1%ScQy<+{T#|rsVV70)^QD_GM;u)F?`=2p7W;g#+&$m$d z9LS8E@It+hfuY*_Z{LLWjCm5#+)eIh`EHAd8`|BEPK&!Z=3~tR8Gmd1u`*HFq+d-9 zdZ#GMjIC}ejfI8>)qVt~PN~?!;r3naHL?vKr0kR(@ZNGjb`vSpvf)ko+y(%>Km-F^ z(4W%5VdNSIzrJMA41=Xc*}xQ3Oi4EpVty?ZCz8{;KZM(trH9bccAOg6wR1z4n9pVjm{%7@2*-umIV zP~vQQS{s4jAEl|pg`(hu@{EP(k#5L$p@^08boQY+I0 z5^Yy@Ea-mvSY!=TRA1vXUE>O76dj7s-Er~Ml3!XsB>wv+3JO~~<;XK|NS!UtJ8;}s z$ti}ANn@YkR7sCh_?%*s-HuI^qUaK5OC}qI^;CSV?zSU7-I~$;mL$dur@>Pol7P(@ zOlXSL;U;YNK}d;?8Vh-%$H+-y#6P?Osz`C!o8r^tu;;Ucr1Urd;^X(M3&XVnR7J$;G?Eyyl;K1DnW|B)eHOQ{c$tEn%O2!Ercki}9P23m67V9(Ky?D5 z9$vh54XrATKev(Qe;a1~gBdnGQ)D_%i*f*@)js12zZCS9M}-wd2Td2+wliaf-9L_{-5#hiESg-la)$mKksd0EI_WM(!c`8w%ofez1vtdj&R+b#mVH*Oz7K$?%3qUxNj`0% zcfRo%5tMNjn(b_MY>a8eZkElGgTKuyNsJ|?*h5L+N{2%J#=JRH?7>SD1V9$RX-oMs zu6)Ky=!d!%e>jh4KrIKmW>M|@pz8=ktD)jpLF^BcaRrMaFRMLu(ma*1`OH@6k`6Q)U-p(UC+$q` zWJj1}M3-3_3cMiinj>Eh^kR+ss&ZZm@z+UW#eba_G*EJHzuSUHR`)5gILY6oinsnm zdY@DZ-Z*TE`mNx>E67AL5%OBpiLB<-XqbX_f*>AvJg>pQv=E`vI45EK@OkRjULQsh zI2R(m9cf*BfXLOsepyp?q7?+h5RqTE4gQkT0fVx#uZxC8Vdd3#{pG|WRIL-V0EYN? z=08uzGVUDzB0Qaqnn3`F_AGPU6P-UBVItfLHn=4)x@3a16EFYyp(|P=2eW95$lL4OKBmCHJQQp^5x&Wf|NxmW9i;< zd)LdSiP>Yd-Nf~g2~rT!d9#UyP<%Rg8kYIPW-0fse5qjRg+jsLiLjDFsnrHX?#idYa>ve{@(H%Si1z;cr9bxL-W(^KS41kcI(9juH{MNRGv1f zQ-h{d9K{Jd@s;Eqhc0cK8@7%PwL`FTK<9_<4fX=W&^y^zJCz0bBhc%w;C2A&l&M-L zRzRq`15TW#Iu33%zNlyu6X1+>#zrHH1Od(|vgMl&3UvpKQ8a-X>_WUlS&{gYa4rX7*q-eCrdQ5dqJ4fA6mzk8G(5spq1Bo20e*otm z+Bw(oD^bg+_xC;f(Ohfw6UnnrHT#ReaCb`04$p`!a%d3G-(3GNUnb6;8QY2Sc9ALl zOWdioBUDtT7hMn|h2Pc~#K`4_2>e_J`zy~>Gap!X=yuhgJk&VW@HU#JF+RmvmwxoZ zf?$HZ({maIjEzx$8u_!E`tu%vco_g4RWywJ)aJMQU+3APC!`kb^eiM&--M$zu0Mey ztOJ-yd~bfpuY54-LsYKtLJslxQnI<45!W)PkLV1|`VuyT0jwz#-dJ#8(uj}iKO85C z?`png2M9T8NN}eqne!eH7cNOvaPVL-0aL9q9;Q3s^HXRc9TNO=MzW6G>`}CSuC)-) zHT|DXEcfVZ(g)iy|7qU-BmM=S3)oRzJF;eQ97+_hUK4(xiCTbVqiW6OKW*JUC?|QH zP>IzXpnC$qk^*44hH`Y&0#5#DRu`Okc-G13Y{3JDGx2(Qaw>e0T~im94pfT(zTXBSqX=x?Pb;-+k_82!NK zg=|J2wK1NW40UY0oQw{R7Lbbv8WnpPMr4Dla&t7y1@j+qZf#`SzH8)eV4)VYg+cQg z_bMecGSE7`W$~F#{K5ZUKR9mW!-aQ=nuonYqK;R1r<97`waSzRbGc6Tj>`hzoAqLB zF>9)Y-LzlqJ>A4h&B^|8*`G4)(1bu@%KfE07!cU)#t5b@dM5<47R6(j=o#CMIM4Mx zsyc_psQ!ck6Lz4Z`%d25<~S{u(lh<_kvLd2!>7M8zEmPVh<&F%$5RBDi@1ab00vkA zm(`Um+vt)%SClNt@GuZ%Mx#!b%bW2>+Q8Rp{;G2iU4`UKU-s-mmwGI2`EJ)j0P4MzP}3q zRl2(js8Wlw%TS)>2mTEu3tWl)w2SNdqR^1S-$VGIcWyP(j7Wd0NJqCqDwEAoW4ylJ z`_-#9M;ScYgRv~Ky0Vk$`a{%RKT1S@5Q3*x<_x$`!n)y1s8y}Na`_I}Dn)@m4IloN z`M$Ei%L;im726@CBNsR3Lf;pVwnm-tGk?pE#>!IWT^~0%?#7p#Q4;^&K1=Q7?H?39 zolmq&Y{mnM7+kKdpQ_j)*3IFv4FdzLZ%#?dn41}|KmM6`IluP=-65ZS!425TWsW-R z%X~g1RoSvSYT(dU>~Dz$KCIyoCft+oyS(SF;ZW#p{;#&(X0azNnr2)}g)z49=0gX( z@F4?8-w)%Hx?zDj`8&G?4A0M`_zbfcokpSA%om5fCeI?aSMt4RwS8B3suQ)J5H;ok zc29f`bh5Te`pTwk-uo{&FOk&1%%2CH@O^vE*Q48;RmDdmXqZ3eg6DAbOfIs6t0qWW z*t2G&0ZiN*vK_Z?U#x!`{oq@-30QzWx_N(oPF!CLY(h%tz7#Dz&d(+eXyb*k-f9XS zo=A`}o(Bnb!!rh-Cj_F5TH>D#Re%)*QF-5lzUX=z{p9{#n8^eSPUj_6r&!9UlqhzQ z%yuP46nb+f%j;Pn`z(q}Tn;w7~Qh#-V0&{YQo``TZjo^R z`8fX1e$r>8-YT!mUQ!}Kt+D=SDF`Zt9Y;dg$Zg70W|w7Hhu1nfhQ6j0(FiKEektG` zcjDXrnM46372x@G_Fo#&G4O~m9Ap%*7!DqiRPE7eppXI|v}7sfor&gu*~@vvM?*GY ztogwVqXb%7KG&DjTo&qri!WSy-=C3(@sN6gg9YgA#FKS|U=-eJh;D<{3ieFT{*Uq+ zfGvX+Jdj<1cVoo^-vBLxAnXmHVMiHCA;BgtN4h*8QKcL zxFImomlnvtJO?Pq#FO7uV_d@X;hqn4ISsc5-Z*Y3`>vOzE=6OH6^zeWy-lE#Ln#DYKWPxfJ_cA>t)Od^7015>VE_eVAr z98`R2twD?X*_Zwx_wL%`WLoD+WoaF}ln{w}hswo3|DZ5~58@y{{TH|Gnj_T`2I!03 z`D#+FYJNwyjL8u+0cixT5HXo3aRzV4{^=*!B<+O%Vmjmb`P94h?REXcM?^zC%a{>R znE{fnAEbK|*})*;Fu=)RkvP0l(ht=Y`C=|s%R7eTikmbTD<(fm%XgvugT<4s(~bh@Y1-hF{D~INJBdgHxOKO znCK!QkYvDju3*4Akm}f3`vqqZ3$ z-H0JeSYK6v?-b1ajmh*T&jk(-eTbvJ7D7G(VZd2`bJ;MGgaaJJ_|>;tXIfu+WLo<- zOPvd)I^8QF76XHBN@j)L&#JTTlSQ+FCyqr%_v@}U(H{^5^N#(hOjAz71l;%#xH7R9 zwbY)|uD|;{(b*M(yz9WB@-ux%R0K)8wk=j+l{39Klj!Nz;?L(Xii9RxsRkB}U&SC> z4!-^44otDf0KT3Fh`9huW---M{~kAcjB36jaAm_>W+&Mcpcb&Opu-u+`ngFJXXo+| ztOguVRJ!`TVR8A&M;3WL??G3$5cbw;e%=$kP)qIFsc?ks?0S!za3`GIgBR9o-2|U^ z+w6%&u=KywvRBm2zoB=B=M7Vbf51ZtkJ`T#dabJd4Pwpf5UuWDO;Lkk&`(%O&uRSN zeB7zgxYTUXS<^f1}1pNGrcD7vnlXE*cz{yowlwjX=J zeVvMV<+()KH~P*Zb+|#B<0b4j{5|8c5Ql~me(NbSBy$F7fWIt`Q#a-?E|FVY2&fbgPOFcsO zWU`HiHj?=4Q1ScF!MdGD)<9F;ct6VO<(I7CtL*f(pMmp{BVEu~yK%-Y1${TUm!A%iGLRZXpd9<9O#m+G zT8xNixJK-+u(hbUx1y`2H2%V-WQm+aVaA(w@DZk3;5!!2;$Fe^5@tK{d0d$J%-O@0 z;WF$4-RHf#c|I<7)N;gn$8CCYu0oLbSa!FeFx@q5VFjoc5K?-Ya<#~-(;UW9k`4f4C)x}vn4b`H=b!xEXndUe$9`YeT3`--cZx}MS zQU)Uu!lfy%MG-uMH={Tz5AT6<3P^3z{mMoe(J(*_iz;U~yR@;?+B6l5yo3V4W{D-~s1#&{6{nKcZPzGn)rx7AQo9~dB_@-NWy%({W${6(Hs z)nHr`%<6+eQk|u_2d-wj$bJD=@ zD8=^tI)h+(^S+WD`@2XdgctzoFdk?sfZ=MHhhZ&-nz{9hs1Epm5K!hjYwV*@5Lf(w z>Kl#|n}4_M)Gf78)KY$z-ul5-Z(?Xv3<)4%-030(N4_*sLW&pCXa1U|z(s`HvkqsB7=t`b(3v@z{8KwNc#t4TJ|3=&wpKXEuhpLH7cMduqWTs zBH|C%{UqsW&hq?Rag1ZN1$vYD)Nq@H$wjS)cM&|UwnDlFS%d4PqgO30n zMlsT}TJK$Ly?!-xI2>+r=g*KNFv9z9?LRF&B7kyLgT1Czus#+QnMv;fg*(!EGd2^l zQpc=bQY|(6$Fr}|qb9*iF<)R8+P!g@&5RmvoBM*3n%8X|SX8=i5t&Dqp(l=$ZI9{x zK4zE~gNupJJq9Sk@wSrJI)x-)4AiLojxd$OxMHZ`36|N4N;-;_67IdRv8X8O7XD`u z^@+@88_G((^Pv8GD-*!r)v`kjAhcbw0M5VHH)*F%mx*tN4e{xaUG+rxuQ6nfpqcF5 zB_vQ>+75o{%8+VL)}0!f%3c4<@GYih92M!|GyG3)M^#;HhC8?LMzIOWMCFWJK?E?>=>drG{=iBRi&Ko$r5THN`%g<@j1vy|hg#pqZU>mVJ zPM9Ga9KSe>G*k5*8)qUsvCW0>7jZ&7Tm?|7ORcmw7yf49@%#Ort{*@!G5&Enl)UM9 zP8=hOxb(n=yFjd+g#GR7OQMkKu(+{%>Af7DRcOK1+B`BS6vsTCH*ju6eavu||1-1A zL_Bk&n%-7wWJAM!t#SIHLl@Op>C3CFOSo*Kv!^jD@ZCw@)cuo_;m(lN30XAxem(ec z$JjxZ7Gmx5&~|(g2Dj;j=(+|0j$AFBJ@_p-Oh=2D_+HtD1p!10Ccaw@Pc~)a^cN(g zndyFKcdC@)+#}KZO1w6m_aU@#8*Ji0yoc)qBV?&zCijdb!y7K0fxYM{ymX0^uMxE= zIHX;3Irtx_zN?#o-Er4x1++>ili}*BezeUNmj)Yoev}$wOtR6yLr9C^zfGI_8Hi?~ zP5bgGK}X}8C?7m!*E--g#n$fH4j2Pr&4>-_g2>2V&YXB1(gr0o0?^I3$+^*o@@DhDJtYw=zGAsxQC$A*T+4R(N{Kthc$jc-7 z_m%7t^)dEw8h{fS3Vpz~&UDHbvi*jvePJ(8)0C24%D*-lE{srF$DZhxhJE$^esPva z25X+1scGO+vJ=wT-2O-hRvS7G2X&ElDvn6Ogo_H+Zkdw&p-8nBPMAP>f|t3?yD zXJE6u-Rr&{YKjZ)6ZV8+_~9n}vxr1zFkwRWhox<;4SFaUuUqpXpGsbMS z6sla4S$o%eEVny=aL^=7LB*^f4~S#HaLvD+#ul2f|1We_1OmrfUX@fpG7?gaBmyUx zG2mSwMTN-l!Id4#QxicD_XOZiLRQjntV^XR86f14p+Nxk~s zvU#DjgH`t$klRALdN|;tg=P)3Kh>W$Q*;D!4Taou7enZ9@A6gs0Koyr^rNw*pKaGS zE=OUnE(m?N1%bjFn^)!wS>(2xGUF>U-!w(<;rCbNR@meMs-D`A6!X6{gcMl)DvyuVXwq4+ zZ1u82J{}q)Ck)%Zfz9$nS!fUpKm%f6@Y{4HH%0K5)I>|7EKA={?cDz%r>8!SKS4f>O*vaL;`*-6W zj0^v__fhFERV$O_C}ewZ?b-{S7x(w=>Nr_qHyNYC9i`gaS)qTWVN;Gm!A>{NrTX$y zzR4t)D813vp7$pr_0ls}$ljl?Yl+?nIkH@D5vZ(KJU5}8aOc4+SDK&EnmX*h7DRu4 zx4xdyhmC?LR%kR_t^L=_tcT<7EWsIZ2QKz+Fz?-2*=;mdW3wdMYD&mK`&&@YDU{KN z^v0eoGRVT|!CSlrE4;Nn@oOri_BO)PqX)FZTACN^!GnYHpNcS1mIE|(%$E!$YLO;U zWOaU5U$UrN`_~HmY5VRn@2P5i5%P1L=x+hn)!yo>iPhJPKlHnb0zdb%T({3@Q2ScV zZy28RImbSJCHmxdNGD9&Hb&;z-<5R)%f8+}JyIpc)Iop1K9ui&6m-$=l~&@WoyAXu z!}`2=)>Q~^rlnr}vPUGTsHyh@$d$Ef#9o5D9nF{A9B}EjV1nBacTZHaE%ND&?bj$r zLP1}oZo<6%BW}YUr^PJZW8=8tU%l?DqbF4#qLZXqj3);0Yx{05)aiY?itig)3njMB z2xeJcqoA=UYMbRAj!%AcAu7)O9=n($=TkZR6p(Kk=EBJHxu$gM51xHotPS`p(9EHs zVSQ`7tl1WNZ||19&lLag&w>$g@6$>r%QnVix*uxodBb8UH{194$ZFF1kDABSmcoU9 zx1&9F!@45tjJY;(y4%kx_@(KYt!$3|h1A8t->ZyF0@c6MWBw`%5A-L06OLWQmMcBk zJ1Uk|6`Dwm_55iZv!?FO7B7V=^J?BYFw(_t#BAbKT4QZ2b@++N!84S;Le8cil-5SH zH!tFK7dKNVCK8aGnBxw*&P|+rbxwb%GB|&DAEVu!5M?$!rNw~ZIhj1qM)c<4y%chm zWT%@33Hr6*r&q^Ba8ra)`*$H{@3@mI)Zej7wj9A5Csseh9dcU=VEC)LE-P*7?lfRT{zB>KL8pIeXcYXXO zxu)EqsT*_U=4lo(-zAl^t7~tc=GUAkOP|fMP@)eXUC6}RA1X*{2_ZKT@)j!Ry_7($ zQdBat|E$YV<3VYOJVQS+VtbY9CAK@e*Gc_grYXFrse@DI(>KZYu3>^>qhGhBSGEsd~D2|{ftO+ba5$yZezD75^0CIp=*$)&{Ou@)H3~0$;uq={mk-D(pZzIu&50O<^7VM}0=N*2Ng8h4ts?(9WNHpa&lh=2OmI52~(036YHoP_7 zYRKq(SuZNq=-~g(PJY)C6A9ZuPn)I4J@I9eV<+$iSW&DRs?B!REnNR|x_0)Cb~kg~ z8|~e8_PXZ7=*E^nsm@T9ISD&_yrHuE){fjj-&~kbco0p&lzSlWCB7Qz8o@vL_}M?m zb~saDmpLmyCBmT!uuypHkrf^JVNoMSsY#0POO|k0)?|#nBi6pLaV?Sr7-NdMgSjmouSv8ugztbH|0x6q-`D>-(z(y zRkfzXH;`4#?t4$uC>IX9?5}2w(WGLp#J(V#x=FDeoX$)rODqs8N z>zuJ@B1opTFh{L434|54o0fD{YW#(_f}GAgtwkPVbREehdVPX}N~gK*%u0z@qj{D7 zeE9{><)aDnT3@=ozv53>8^*a#qrYjj!DEQh%g#~$Osjwsywt0bLqC>COuXLSMSFQT za2CdtG@7IMlk}FSCeW>HYro;F*8EE+19e$d6)b0`=Q`yga#zzp|dQ$!~HBRCV6a6TD#0RM~Ey z^Aupx)y{CZYKo<}qi)01x|4Tb`sLMSr9-h!zph67|80||XYX71D)c%e3zYU?d7vLg zP${L-YfKVGD?eS6@O8*`WJwdvkO+aY#RI)*P2nOaran?yQ=Bcp?Y zcP05d`)^+-0Cn-^yop>Wv-m(v9Ia^C9x!g?abiRCW$c>I9W_r7bUtx)< zRWYniemh^Zd*^J?nctOl@blSk9a%|5 z>H>vv1=i{^sn6SIUijHjG);9b6}Q;Tod%hFXnwDZM<28YH4l*c5>K!^%+Ofc9x>gD zEvOm&NOkAR>ytkk3wwX5&-r%dPwWrZ8YKcWf&IL?l-A-zAum~eSbj49=6mry(LmVO6d#rqLA3OHF!!K6@E*Vm)$86H^qLY zL?fzAvewc@2|AeK>ZN7bN8Ow)Pi@BXpT{Zov~k9lCx3rEJtgo+Pi=i!J)1Y3H(}pa zF$&)LfFTmccI@E4`7QkRL{*{4V~e_CFk5WmJ{R8Wu@G zKw3dUy1P@lLApzjhD~=#97MWBy1ScANOyO4Nr!aY;r==6{BXIJ-=3NG$r(A*=%htL zf_X1{4Kv;#H`3RT5`O1p!~-h~a8}Ixo%|>>)GJ^7^*Er#q_G@K;pAe4N?&OtFiQCa z#Gf=jY5G2fix@SgdHV85Sqj5rv@$MD(fn|oNol9=&=U|za))q1OEJq4ftI)(Np&|# zITn71DPTXJ>xA|%N6c(%JV=s;HnHA@&IaCUj5~QO-;-^-`vKqbwLT+$S{-)qs%@)){__;9SNrk#4=l4)!jbPYbW`Ki6L-Q!Mb6-T zeQmE+>DFnk7xe4D+8+dO)}FBdYaYHo7=?;!b z`g(SfQY$c07V*{DTopO(J?ZjfB;RJS1Xqh^=WmX>a!)2(lvl+HIngO*&wUc_;7nI% z3BzUD$8-D-1T_spZ;UkfeKp~>%vKh|>xBR5NNTfy2iJXcO!KyWO}#Owks=|@I=fa; z&D@>&;2APX(>bfwxrZj~^;lnX%VYByrM02Dy0dj=7WTD3isqH3&;q_4G4klKaaZjmZ;<>#*mvVmIP2U*|M zoC-r?dN>_8idAVf|3MLijq=v4Nk+Yu*pL(m-hZzT{T-OXsy^Spnmkd@qd$U~)Kt*n zCquJVre@Dl99X(bm?-*djx7ve|9$cJ5?*}<76Lw8A`c|LAFI2}eos6 zc%9GQ`fBPe`)$s-@dhw)N;@!}tj>JTWDSbF?%h3K?Uvqpoc`c9s~=#$iSH|bq?@aEj9L!4}0NgD@u zYwb2)&FQdEl%4kWO2AbarD!8MR@(y0HNBQ?gpon0_`h_ucRu^k*p$~*W3n!D2AWNl zYW(aZB29^e&JFa#$y690eX{^ zv`Uuo!UGwnFxa?GF|~4^08A+1A5PK~xb=0Ze^)~x&nO8F8$gI&dkZbA=fAf~#}!-} zUv5|1IKYN1FGWNjy=M6(22Nh{?GqW>!iZj6!gvO*F=&2F2)Yc6NB>($j6<=1Ei`r^ z@96q*MibhVsaH!&R5}B%>qOEo@%q_m(>=JiNWqdKQmZ-G>?EvwJ_+=okYNVcOjeb&z255d*(rjSY)_%jy2$q?KWMU>Tqy9=UrJTWCYiA zLoX}5WuC6DtskHyW{&$c#< zyUIhmqK-n^+WIDPUt1!&GXJD~>vg%y)8hqAPGwO`@5F6or00wI*-!6acKt=4=uvTe zw-{9kd;EhucEZ8YiigI_fre#QHM)gl=P)KD01GKf2VAIVg2dP zp)KYC7`)gxr+;jzC9$tAJNc^lTcGw=`!h`k@+2q_F}H^Z?OpH^z#K|eRZHz%b;e5( ziafm-<>%9FdIFMxwNC$4mRTVBwdT}I%Y48n`oR~=-!0(7BRV!7-sb+kw2~4A5z#Ca z`mi;wyGuWKeQD&+p!o3Ld<5{QirP%2*~HHV<0~K5XIt6+@dP)Ij!NS(nU$>ugbhcT z+r3f8!-7&;=v$S0&Rx;ak*WCqM$9+F96lj#TyV$zl2osZU`>s7XbEv>8Q-BISS!l~ z@C~fN8Z@VD@PCBK?)n(*b0r%xJ);Yf0NxP#3;gJ31c=8SP_nd2xRU=)dxE#Up2|>= zXJybn&W=OnnTZg{#e=ILdN0%eZ9UH82*10%hkTDFJ8DCW)iSvq z$8KHl8n2W4LI|cY&@kRw9`!CEdScOEV`FJTyV z6fR}0qO9vFI5frr2O~`JXg;60(U2{Xyi3&G?6Xvp)!D6dbO(}8qgVGH_NoM?CqG2Z z*sCuqTY-FNHG7?;r`!K$)HQ=EN$X0};BLyXnfj;Pua@*!njn6`1`5c)R7vwk@ofYN zA805*VxwD9C3*>J*putYwWV&7QEpwIUk6pr+e8JrHs=fY?=OK%O5jj)8A7DO8 z^=(==JtADH%k3{NaW>sbaw%aObs~5)Kk^6Y+#0fn4z28KfnhLGY~%_?~{UHZ7!3`PU7)J6+QkT}a%bAweH;^+*j_Vv~Z;|}z3<<$?jsCAj zDCoxRsW_^qEfkHCX9)GmN$Fz!D28(_61qWvgYt~JwD)Sp|DXl-rngd6Ukf}gq=5ys zOB6>h{RCh&V9-^Tih^1fh{h#fz%@&!+lc_;Pz1-iTTNS7-e)*l@3bdfetmLu-ddtKTq+{K=+-4YQhrks}L9JqxS81c`j2a?6TcBwf%I#%YVmD) z6N)qcl^?F~x39N#BFFf;YH!MU(*|S*v(KE=t9SnyRl(VndW|*7t)2YE7y$pEzGnoc zPT$$|Z!4{`Z^1h!sMges|DD=V(~=(d!iULSz9{Iof4_*d5FWff4jtTXHJ~`)k!*VV zoPM^RzWb}13!_w~eWLenf?-K##@-?bXX$cS|Le}BSmN<;hH!!KkD306bGUElxgeMDC^qK zfbT-xPdAMft0rRYLSsL#tjm+CZbE=+6^AV0jAWub%8Vd!$I-v>bKGPHu#DwvxC?Pq@rNF+>(IdEO7#A(paz7duJzB#wjVlMS3;;e67UdbTjktNN#4Hq+uQD5 zhCGZ!^OGr}TXh#3XB{@FJM%Z*yeAknnPBM(;7~+uuuR^0IWNflYS%mzUZGQLv3wi( z^pIuaG%=I5eNlLOd+Jwp`*I{`6)op_w(0ff&L) zn#?81(a1Rq#7onoAH~A7$IBhTI(&$e<+%=+p1b>iBI>lrsl6j%{l&_16$7Sawkn zpQfABR(%M-!|hG3W&>E&a|G$VTPy2c9>EVvliO}Us!#Z+kOxlr5uZq=J+VG$P{Jz6Cn?l%`?=@IO;LAtExPhyArC8pc4 zk3Zfvu+qK;?noP<+{Uax$X1+8PzE&iC)6X5wV_r>fUKFYs+gXZtAdj^{F|gQce1|q z{RP@E|Bagn)%@>LR6XOvYiK`pQBAmi>J&1kppfQFp!xa<0#Sovcm^wrr#!CWlJdU~ z+===_!;{yq9xgtVA<{+Uy*yZFH%(15nY_0;fR`&`sAyew=;q3krs)(0l=Gx1wy@EY zzYn8K%t_>{6QOvGHxr9tO4r?hik}>Go;uhceoNF-?(Zvi1un~0cyg9C8ifWv(EaHA z4me-{E;H^p^agmeAyS1KS8u)RjX6W4hdLDy(!!D( z6Q}%Yo0@RMqnlX;0Inn7jgL(+7`YAmdeytDWb)}f%AY;7 z??Bm#KP(ISh^_Ws6EAfHtiTlMSbrB;Uk$;g7P3dOM|@}7?EayybTm8C#wg%KcA3PJ zB2{cDx$6}(@S%ngeJI6y_c@8=vSwxO&) zcLiWQY*(_zb_(hFHkV4%ll3v3FmOrNeC6Z7U`SGZ*f^f95*-C&Mz-Fc4H;PD)_DEE zh*py)AtOa=H1rWZ|9<-O^8!wOJ`tZUH(w{=TOS!BhgR>t7Z{#>Z8&M|S)DuqE|Aqf z3+&f5=dNU&P;3~@2Pt9%_Vanz{#^3h4B9;M?RfheWkEbPSkr=At!Fi!743GMXlg2`q);C|*LwniR1!op)t6 zM!DB#$-=iDg*kpw9kB5OcSUG*Rb}RJFN_l0SrD+KOo$9Kl(mKM?|7lQ!Ak9;n^oYl zt{$D4X0~d@b+{2+!|cQx{f2i$Zm(EK{LYw|NO@Ps_THPyo7U386QmQ1$@+2yk5b@q zar<$-k_wsWoNnfBYlVg$ZWW0@Hj-8&RpPdU$Mp-z*d0wbV}-zm5Bf$W%}_wH)Eo3! zu~2ktvuK@w@3@@PS|G6-Y~jhXmf_0>b2`_dl~I&Ih4UA%lGYDqZT2E!)pqWu2liUC zSV~_KXM(&dn~^&+g!AQ`G9Wxl_t9*w7@(hZOkkNLa_6zYPyDy+8r!r{q=Xr(CX@d~ zQ49kNLz`In0`%bG_z$>+H^~=XTq{=YVge(Y633cQt zULT(JNl^F#F${2%%O^Lwqm|{ZJ&5Z?Uq`mr=`IiMN2v|3|Kc7R`3i3iBNPtZz28To z+D_;66H6^Z0rTp+()f=xQwJ#vsf|#^w2O;R%bT=Tsd@9M^uc;mTfzt)5JE7?Y&=5# z3BNNOL7%w(?OF1Hn7)9fU3^vy);UtYG(VPi@ZtI9ytiecii|6?l$?HYB5m>~zO)NY z*wCx~U0n-*;Qc)Zh^`FxJ4tx8gocM#$XOj940t949_VUgz#MA>@501tp5d+?Uf3d! zdnH(-wG`6^7p{G$iv^%oC}ushDH!umOHIiPTWtckbxX3S5@d2a5 z@k(FfmGAAhep1_KpQlaQ@C%KP@)Xs5XK4KGpL@p-8; zTpQcnT~&vd{UW1bLh8pil$%8c7TrF2+cl~8tY7;5#<%_cgpKN2NfiK>jjgGL-Qs2( z&Aa9Pj#IK&`HSi&oH{Foy!iwkz^JyqkbbKT)^TDEaqwnhpb;I8uq$7lF*vk<$6;+d5)obXm0dEo-*h0<3R z@e-bq9fBtGB$bUizgZ<~gS?M^8M-#xqWszIBF{yBBILql+AdOD;K>25!D{~B-!BMt zSCC8R!|(akztL?^`WAp8O4Ah^BSWV6E)1$cS}^+96R>e!^x4fZ-%zAErJrGX@mqA>7bK1whH;vpCA0BWP*O^Li=(N+kWih0NHlF8t+V6Oqcg`z%yg9=jbtXyzq-#>1;Af0X~#%T zKUP%n98ho*Q`-6`q!8^j6kIiFgyi4X5hQO+e0!URLcW!Nv6tDcl}iqW3y}C$mnUo6 zG4ehF9@9J$y{RIqb9Qg+tz__xcpdE5xtj+=eZomxfKb!sbSZ~cBz0X1MRz9)u)Ta0 zHEL+#0R;i{TNJ{2F;Qi%g&%}s%9s7+H;wG+X6=b(6O5K|=Wi^Fs?;z*J(n!BRGnOv z!HyjNFx0?TC&qWV z8;9T*0(nz?eILx!akVbxD@99QWEShstiQ2cQV5|?_@pY>wAZOE$4?lW4gBoA`eZZPa|G8NFWPS17Yn?l_Q{5X@?004V+_Rj|A+j)ow1H<6iyh=YI? z%1A8Vc7=a=_$E@I#}W7T2OvHK9H!R}GECoPDu z2<%U-rYB)k;G3XR0rl{+hZ4oQAfp#crDN=y)ZfFTZO8H@ne$wAq9lXqQA~246u=vF zgXkg(rj20$K>|&mtT?W2wX;r1} zKkCmS3N*xz?r9J5sVo}idn<%b_p3dtDj?RN@f?*?`tqx81Wd@@ZI9dh#d)a3W6`3p zF5Iy%Rin{lF6F{%8jPK2nlLBW8hJ@+R5x;ggPthGHBcOpk;kcw#=GMK2994l`Nlqd z_Ykp5cQj?TBi98R9=0VGj)ne%nffr}TC8X>GJ9k8-@aE||4B;gPbgTzCv^kF(U9@Z z5TeV-qIJ$4G|f_JMx8dI?6v4nhPHYxNgR|z9ycm5s3MwsygdrV!WVy|L<`rNHU|%! zK4WS4@HACjX&|kat9+E}+YDFBf92+2PItVoch6nJSi+q!umfNieVV*2tdRf^X2zlM$GkDm4h z={vyACICwTz={t-R>YNPaMdu;KAbEXK@=fr)l|`2&Hp{xn|WXKX2@=1R zmW1XK5{3rdN^7nF!=qk5?aUd_l;mlTy<3ddzso*YN^i6^K~Y*ry-bL$n3LS?-Ps$d z{0pU!K4)WS)fAkuDw9}zr!lXDMIBRF-}+i;(*Ty>0j;<_uj|g87lPMRr83IxR7IaYgZTk*ltayz13ip+!8-BIeQ0o_Bz> zR-$zNm}3jFAik+1CfnZ@9G(p-{^=&zK(D4*Y#K{L`Adc9Ol>1K=Ngfb>!h>0(FNa` zufieoC6Aa?03{9?=C1yHTSWcM3ZrFfL$STg>qGXc# zy_oYY{Yj8sD{41cTwGHP>`eW$+LnbHqKBDc1igA$^h**ltr~=ijs;_$83u6px&C19 zeUvRSTQtBPw_Y9aEStDK+Z=Iw8~$;5Wn3UInGfEmroc#bsE%j4%K@8#! zQC>mE=WDzBE&b0M*Ub%w*cGsKq@_& z3T*0RlY(%l;r}0-BVJ{8wVBDcosc-CU=mE%=$^cAo?MWdJ0et5-F39(Pwfx1op|ro zJ&rwKa*B1((UoQd7$W&rT;+j7gvwXa<_Fe}60PPL5o80DD}$>3C+?pLncz0@itCxQ z=xMD-gAO430FU=$HInP~+uHEXEnqCbu+{ZO*B7#xrv6@O$=yEcA8|^CsM%KsF*vA~srN5dA^+{7{iOt3_5$KL2p#Ty+;LWOTEd4Feg{I4=gbHH+J^`h55h@cjRPO8y1LJe|rYFn@M8DT| zizrJg{5h!bHIP6R2+T>0HOBq`?>eP4kIw1;V_p&a-0z6Hgp@4>F$qs)L+%-gdJasl zgpMM1rM`ZG_jT?z`NHauBX3%&#GRyUPCyubg4>bCZE<G8lLuU)I!Uzzv`ZClUfpn`7GSc^8>GVqStSd_WGU7B-4zkg`O;v7j z?xI4<2n`Iz`uc>i$MW6M>e=`sr0E?#?LWK@4W?@t;{g(FcYN5!qeQeft`gE>lu93>AiduQTWUW5+vKOgAMj~b#r%EsoEJJ zTeRj9f=HCE@?W)f|9%arPL&?9sn^bHf2nbJ-&SqyX?Rr{98STLa!<@}u9IL~hvio< z?4Uo)CcQnbI%P^EQgD&N+`$MXA6nh5`n$uW@Egw7mRccwL$tPwDYb=drEI%lVeP1> za^8fIJF2VfeQ$zG8TJbzdIL1xNGATCpdn0fO3=F%aILsl?|c`td$N_K?+(^hj@}6h zMjT2-`6=Op97f3oR6%^Dz+_(d%8deS?z9g?(#Z?W?~elK>CXYsLZjH(%u}m0)IOmk zpfRw4Yv8NASr>$J=f(hvWxxfR%GcnV0+COr>qmqbZ~&wCs?pi3G73zb?ktor>3(L8 zbsZ0$rz>jm8}`;~EL36kqZihs1FScOLJ3yWg*@KVL%Q8VnvA1@=#a_A?IdLQk;-gB zL>&j0VI%%Z856vplBFlqyO5!Ziur+;&?A7&tS^^n{)++ zjsEUl5UB3~DQd7S^f=IG^LnOyFgS0cBRNyd3R6c7PH+Xo>YWCf>21jjtXt}Y&)IML=k@%% zwRrYL0Dxy2C!aei%It&pRn;Q-qB-lu-=F3(Y`QcnRN+l|ioq2X2xxKNgAikY^a@td zZ->-=&WQU9RgY};_|FUKPe838*geTF6xbU(ypww>0i)XJj4Y<6r*MiCL{z8BN~^)) zw`8StXFn}vlTiK~VPW@nfk#IEdR>|I-x<}^8j4o`HKcvMCz{K;tGA0^;OoHXgDs~s;~v_X9Badk!v=TP2dEQGgQ50`)6=7K{ z&4|-}@pY}J@cI+u#~_fR>ssP{CO&4VM8x06cZ^wTx^vY)X@BXqnMa-FzXT}x#U-Sd zV3^68_66|R1Noc^fOS15UfQ5Pkt&|tQ;&Dw6iKOKf709(6PU*OFG3QXmowJklouBi7!JhIG(e$PL_{Mo6tZO-dYlXZC05%X01#L$8Ut6UMd1ad z_%91KTGh01a~DzQdC9FF-4FeVU$SsSYWIs`o$5h?8*j1uMPARF{IXDmUE{%k^O<3# zr4^1GrQKq*fPTQ`C)_P=rT_D-jkP7VHClMc_G)8DXuQYNvLgxU29W^=?x0mPii@W^ z$EDj&7~bakknz>yjne6Sf|i9rd-FfJY=35H1abk9R*{}}W>4X&77ma$tk6jNo0u)4 z8bfUelnNQFrOjA5?BghPZ=pM+tlyvMct9_Jn8CjbFcwG3(mu)?!Cb`)37Z{te7Tpr zvskFjj(@NRN1?5`hY>tmT{kPh9Zg=RT*j@7!vw_&7a%hVB*Lx^Sm~FHcCMuIjlBl{ z=!1{{Cxhdh3*Tqc^HId4dZtPx6nPM^2TUW(8qaS9sHm$EN~(;{UV!{%$Y&4$M{Jls zbqo-U`cfm>uKIMDZqc1_5}#H5X}DA8Ne4%&LXw(Z*9ZMj&io$M7$L7hzmd$e_i|bE zwj0|Z^jvrIV&FGn9cviC=VJb=V`$!>;wc?kz?da};}Munx4N{9T;Y*vyV0|Zyw+1k<#r_b0i=?T*SI9!?+h@%Rw+n8UE<_8TLrf|znkhKMJ z!Dl}xZZ#5%R_@DJT{J!3yh`%a0x52z^|7aDpJwamGk3EiEoe_(tjB-jjB^3V0rR*e z+t%kk|0*v#Wcjx`N3zwHODhTePaP+t)Jlw#3Dr(AW}euqZ(s@JNNH|yKtMJV&6D8}@a#Zg0$&ISqN%lJ;K#j$ zY!BwKP3-p4%Pj9`^vqGYJM%n2pXjMnkU@sH8m!UR{9B8rGp?hOjN2E$I(dKDjn=w? z*$D(t(9HvA$xWQ4@viUYg{g(((KeGRd%;y_F4j~KPmF!$_ zO=lT2J*hSwnmAeak~HfUB?!-?%2kI9Gx4Nsj8(fSmNNtS)oe2KAR#d1ho9$3(ACk0 z)dg6pTJq>xt}+WEg$dK)(mG# zv_#Vdy5anuEsk*ZESqy7Z9MKrS0hKd|I2s2DmP1RwE5ztvlMr%_qm0 zmqF<0=WZ-2UjMDlE1dnbB_F;L{pFiugWUG6UnefHaT+6mwx3Eu73yu|oB@`bj(sHD znNr=8UlO!p0t@OT(gb!i*YEUL5Q@9BiLps@ZU%F0yNoFF(qdh7mYGRQmP4yM9-QZ2 zI}4par^|vs-o3E^bP#2U2&X2F?PCC%1%4Emrt*#kcryZQV|hcX@16vc`;9{*GSz6t zJ`Bfb>>YICUk0G=*ja8u2~BVgZZ0Df5^lDeX<CGa!@#L;!x3V4_j&RBzd_vS_IhwFxA9 zUR;$P?c?u!yM9cSrrU@hzRCvugw4DHe4-UpZ-ZDL-oAC&TlNblQot2GJ%Z*NDxKG_ z<9UyvvY{C)c3Zme0^06#Bd(Lzo()l29U!V(KTe0=0h(&YBP(LM>@ond2{x3%rbC)O z1LHDA@_wQ`{t=D2{1IdLJiBmdf#+A!wM+S9=+DshVN`776$94`zhl1I?0{b) ze^N3i3n!PYn&qUe=qt z?qObOp!sQ}1XIOT1S^mNWR0kk5QbAbB~u z;sJLDfTP`Mobf8UB|tUzKmH8?U7$aDbc;ks78dK_0R#g5bY=Jug=4}9!%Bmy;Cs$W zNi|nqMra)8_hTSMQN^Gf#UwO-)Q+FX+YzcK;(7)AP~!yg1Y(ySuB1R&z+^aSJA(;E zsyF=~doE{RgP<6fdRmozh;KtVv=a@_z_wND>+iIVQspr3quM;_Cm_6e)d**KElrcf zp(dcpVbBy-{cYs&&uL~|(WU5~$`6*{oFFWQQRmvsMIznLOU2WmNX;IQFrVg9j7 zd^8Bil+)X@xLP$(2i+SRiVa4nF}y$t(0Xzcdf~h>pX}HR{oYhxpRFvgxj-6S-=1wf z+E18XB_=ZstYqN8eNU8-4fWT;EkBCyRUxSP0X6f-9nFvdWzPDxlE2n({0#}(o?Muv zU96Lrbg~jOp?;tfVDHIgg;!xeNCM=xnU?T_b)(oGH!msKDVgu0A-68Q|C(Otq^}~E zKYxl8aNmf{FKA(XKFl>%@@A`g0)@^xy9boFKqR7d z828XecFhqRXmtR9!3#&xKK1-)q1;KZA7w&xHyi#S;~dlRObnVv%WSX>*`DUvHk*J} z@^i4qESG~f6r}Y|ou}Uc%B?3vv<3*k(Z-5fqxp@Ij4QANeA5Su7Mu21fvteWTxW?q zP$}v8Psz0=E&kU4NAsinG&lKBZ;+7-(tk(Sy6!72kBa32DfSg(2qWx>_70n~8P zR&{ON*Y1-^a=|IWz>v;y4Mdlyp0o3!W1?~!|ClE(wcMD*%9*v@0eBN2dBFCsprhP1 z$o};(O5tZ~Yx_%%a$vBS8>PFuyPQ0Uh&tjGKTI}9HlU0{m+`u^W43pimw@3n59JVfgI#y8pR zJtW5R3Bu(Y5I<`4#QJc*YzvO@%@XzVm4+*N-)3R~GOyoD9Abs0X9J!@^^fx6|9}g?<9VP+GHv-i znMwxdF$VrOetYkNy^cNoG^6dNKub|i8G%ARTUoWLO^IOiOu><^uPZ~nwh4)4yvKY4 zhR@T7quul~JE8quAuCC**gh`5X|`Id|M!r!NbR}?PFDRucrYGk{K19#gRo!u$#KUp z?y#gMuzO#UtF$rR)B-flPCidsRVp_0$|wUige&Vdus;-Ns&L{X(QU;|{5H!zzKmud zVl?Ycz3k@T+NY|Ybd4voqAvy@U=@0u&2y(qB>F_lGsmcwJV>W@8_CjoS`T)_FX&gT zWHY3@*BxYE=SOqFH972=WHzst`)J0`c4Tft{^Lm4)o$}0DY`-iH!Gg&^JeaMT^`u4 zL9eQFU$r;4lu;6371QNK!d#KHNaI3Ij_~4;=SH}(#l_@|3=)NOL7V&Py*+bYr@b$` zEZU_YmKTZttcwb=8-tN~%!kFPUiBQf0fm3tQ@jn(gIjDSK~&gl6JAD6wD;(6$E!}kukaSBD;5~iBR+bB+$Ko33@Rig^45Mz`3SIsFD^XW1HNr#w( znJXi};~-!t@bGOzdIh>;XQKnp>%r}#=$M#p%#YN^3bY$lvdOBQiohf9j3WZs6=D6P zG~hJ2NJVT|0)tdKRDo&&nANSxQ}J(>4-LqxH-b~ox^fa#8nib21+Lz|{V>6PefP3u z!c9FS-Ku-en}2);ZDB=p$FSG16^|kb^5W}*(5A7W!THP!5VvDCnh^w%z4aXR(<_D} z&0CXaN{l8560FXBj~m^d;~SJTuwvf4_e ziN;Qk!Ve+f`@n$Akf~$%bL&TyJh}BwbfKJ_oWKA?^eWqBUP}4jmrP6c%X7r(gAE@% z-H#$wOmJqsq7WtSCbAprMR&omQLmAnN39`$W-A@>Ts@kzo!29REiSn1Mx+#op#)RH zLlZtPmLcf~Nqz_>`_;l$Hm>H;xYGC1A#EartWHFTqw`VPkH5dP*dI(EMKe*o{|xL7 z08RU^b&S8k(+NkV2m(P$ArHIi^bdvB?8kTe0D(-HcMfXFgV=ua<3C3jGP0?f6DH>m zLeF(S5ern2>IN2x?7sojLbzPKhXn@tJa5)aR=X0=ce5M|s64W7(^s+>8BdoSCwzS_ zaL~2t(9Afay#jDRg9s!Y#KEr&uAfM%TQkq*k1Qvry`&`4b9)Jkj#J}2*cn_)^iy|( z-y6_c@q4oI?MBRxZ_|BO*snc!Yky4Ru1>#$;GGX#a!kRca6~9^0NJwnDtHRX4KQMP z%_aShKSno4h_4pms<{M(en}$KHgCXxbLK9Le+dkS5*-Hs=@oPtK$18zH0iufY7wsK zV(JS`v=1nGAP;VbD;hL~>7U=Plj}%UFnT>COks`)Zjb(kRa>mK3CM{q>!%-ZV0^uQ zPXxJL;w_E``vlZ^K}h{29~cPh^tM*nC=}90T(m3L6A?6$npqQ^H%wEv%`LYQ_Zu~Pf1KP#M?@;kisyqo5?atAui+HU{_NIC8vB9evFTw_&9-ZjJ zR8@a(i^F=B(iu?rIE98F^*yJ+U(mv&0Cx{G+iLOOI9!M;qx?-Yd}W3An4hT_b0Fy4!mtMYf34eRY{l&f!vurbbq-j#o*DH#h1yLB!P8D@_lLthQZ(Tqy2x zbYyQ*F`$@EO!C59oF0S+0qdQg?^;QQIaZ+mHA4VmF(5l7m*m*TShhR;88mb6cZt5b z%At)|QaBPHs)?2?>VpIKB^>0QKt~arE1sOh);?H#c1`<}l=#^hEsA@TfS%AyDGizReG;T*S1UYCdN)<=KWe}MHW^4r2BhUXS{Y! zs>ftOsym^jz&Tj_NgNWA3g9hs&$+w4qsWs}E-&RjWYNNRFYw`46DF^46lcn-HXb3? zvRb^cOTEv2AQ^1xaKb!9$`9RYSY~95*l3b@wL6*~N&S=K=>xA5_4Tr=K{$hfnVFf- z{SlXptgN)O^g2+P9`R0^TtEn*>yLKb>0RArWntQ4C@6$H>-k2U|N1=e)&EN&_yWc) zKEn8=K40J9*E`$vBv|s=lP$vYdX0iyX!>+M@ZsOu9E_HtIbndA)vy`t4Y+#8qWJI$ zxJ<@cve&>(9v;lZ(&WXn{y+t4oYx?$b++}@o%8ec6sBsU;7(*nCX-b>Rn_#su>XzSkVrTC@*Ii^+8;NMi%5;qd7HdM34o zLBHwvR{V+kScZ(VIB?PIXtOW(HE0*n`{cN0bLry|Hguikh#=RybXY6f9h5Q~iA*k? z)LqPj{EB3@a)uHu(2zJ~`U#A)KdQgtPEh>=NjM&%!s6wrIpu&DkiKyF6_cF=g?4(6 zhREfo1C7@VkIR~mQ?ESgPcv1`w$^VY=X^4amKDIUxa;a7Qh_vj5+0v#W2VPSS2HGy zODtzOMs^dlo0F(;iEFS?Rb&zF^0uQ_Z32IpOhu<$a2txabcViSb#08_=Da zLt(FD4n97&D-a7>~ zq|-aiUT860M6Lrh3o%u#KRV&uB^`a@jV6%u0`D6t&ikLxB1g-ykB_iM9)dl95HsiV zDS7spdwR{^AGnJ9gsI@{2JneYhhv3zr}EC6Q7}&Rq!tb)PcHWL{f^L*Wz^tFCASwa z_&(|AYQ2NAEzX;+-x2#=O4o2FwppZ2RT~4UiVx}9l9NoWNR}Lj3*E5`)<9?JjX~!A zHO799Iz3J?6#6alx*I@wklv?!bjlD;3Zn}@!mIkl>?tJez75b!^+t#fi1BI~nTl&0 z!2>5yYCh@RK&+RY%YPr(e*dRv&7O4Yl&z||GA|I=MxV`u@qVHw{Rxfn`v*DGl`8sJ z`9lnu)r6~q?oxrI9^YBn)P6~XIzylmaTg~4*(?hIPOi~-XG>$PBeTSyOH)cvHPNv5 zFU$R$w%WUzlI;@Er}(g-ZmI6ZT@3CA(pvuWx<_TQ##}f2*H1k+U-jvka`oJr?%?U( zZJa>xsz*C3g3B~5%WrW9Stp=b&`@(#9Ap{m`5e4=n?CbMSXQM?Zgj3TFk|7LAgKO9 z-|p=R5^vy&5RKylGOgQ|#=n<1jS9{$eikdJTE1kY5V6kfr>T=J3>6cE#)(1X2wd#J zM{fJ3f{HU(jcS5=X&F~9I-yU>?fxjQaTioB>oT2yHCm@ODUv)#7B+*1nRy}O%&FLg zCs|jST&!Wid^Xo%4C3aPTkBmfb*72cGn;n05OBj;l6QK|S?ymj{PYLs*7gxq(6t&x zOT=t?E)%*|6k5_AYl~-65D$FAr$&Q&Pc-i@{Ul^#fa3?X z8u_A}lVMUXR_Xryn757AMYp)SQJhK_FCzF1!esd@Jp@28%-1?c{Vg_#%39K1sq-TlVPSxyIB`X)8Pv;EzuTv|s;z_wOMkb^QvOTXu7oJHoLiqRw*CHu{ZoPP(RJz<^;=D@8bKvKUjE zFX6Dr*v`s#F-E&(&~`FUdPXai@50NqkotC0lXhPtV@-vYoKC1%r|-pC>o?df|D~`7 z!qBwB*y0I<(mQn@JR9RQ6hKdvF8%N5X~E|v?WQ;7;T8w)%t}F!;*ImZeq2ga5tP_B zj;JH=4+Jr`pJp6mXLG3A((4UXZ3icj9UQRn6pb3cyR;L@#TKGLf`E!JaURPlGkWrLncyMc-T(|aH!UZPzzKIne^DNEa`aKPU_F!WF zHX*hwk6cgSla}e^$$j{{YjhKJU+rHp0)Ob%&jIm1PgqrEi z)*Cas)$Gu^O3O3R>@CX&m8{#H2zB=wX8~CfV4z+QBVzUyzX7^F2rN#5?#qS@+4ZP^ zn2gV3ijgZ72k{DH_@?cn$T&My=&2bT~c^> zKSI89SnW-;fL`R?SI`J))=5(@ZUMLa&h|*m!|nO5r2esCyXIK%Y~_482VPgnl26|N zRXS2xZ0t#&SVc#@GVwv|d!dR^*N?o$Yvh)YbQf8hy<|Rw z*|l&vf-!#*#a^*LSH0U+U}yWkN?#d&Q%k7R2KE%FHQpT5)U4l3J__J3A2nzaNQXF0tZn2YNZw|;_hZO-xrCfelhasX4l$DvtJ1Q&+WV9=PsYc z8jH~_gux}{Jdv8s-jx(-8i;u?B0KEcOm_fjRrYW67$<}FY?TsOI+==-nzVoX#>7-j zI60mSPn-+{^gPE=6%eoLj)MwecH`T$qyIIQiI+S$c z_Rb38a}}5Lnv3gHB_|$#$f#tkO*AZ(;+W}sd;oxXLQ`pZ!`eoJf+Htq{U%>=aWCs> zW?rOlV2EU}e@*c)T~Q1v-M2C`{9uY-9P-TQD3-6kJBoByLW18Tb=qg@uVeRsv~Y6Q zgZ1WW6T`6j)u+{I$uF3^+e8TOg054sH03qBz>?8hGrs_%h(AwXKcC48Jc04=B-c`#78qz^@2MNTt}wSm;%tUT=HE623^mvLL;>@GOg11 z1f_SUOmov3XE0!(KwNP{anrj>*s5 zQE_o%4p&9)CpU(qR`c`kzsuGP9p3z!J-MNn*K|xY5{s-4S7Ve+s~2eE&S3%%Df=DjsCdI)hDkygAo~CEgWlB3o)z=_;Z&K_T zUH!w!<*PgVAi)9Hr1Lb)Hdr^jV zm87VGJWLAI1)*4qc(?et*p!bwxTU~Qka`!#}UN;>*ch(xzH!Vq2-xuy@p*QBgS6ram520T@lZ~a_e&CtJlkdO8+ ztxKj`8|1W^o~1)7rrip;0>HaiZ;8|67~icvTM29rb$n6`+qKn3rORdQ%Ey1USYa%@ zKl)bk-{lfSs%ZwQMcZRUsjYq%WrJMR@nzpg@QpQI%KSqAoFMsPRO@dC?&c-mKlZc) zC^`#sF>mmg4qq7o)6o)smvo~eqMu^%i*DwsYuJi_4=Uu^SwgYWz$siz@G?qS(?`m~ zZQ}kNOaR)VSo5fZclSv~s6;hfrbYa+l6-8C3T)+w{Q#WWtDUpS>++`PoX)3i4ook&l}4Pigp z0$kqF4^Y{OAbl}kr|I-_lU{mvhOAnlteF({ersEyC7B?H?!KQj9>ve*l$;2B$MqGh zE>MZ-!oiRpL8i@W@*|i+v*Dl z?#nF3Zn?SYZDBM2vP^P|_4D=Dd<{{# z8l#ZyzYkZp-g&~+@pX+;?MG|lt9}?6!M_P6^%?I>4Bejb>BD|Bvzen@+?izKk4v7G z<(pUC%JGyQNj~~de+f|$k#-oiCAefotyYZpj21We&i5}X|Ah8ZvDFs&C%qTX_5!m2 zfESk`QnK}L$_cT!y-~%93OOkO{v5YJu_f7kf8bMzHDyuKf3p8PP#(}u4&g>=KaBKT z^rC6RE)2_!P?z%pb%ryjt^VuinEPzIw~P(v@#(@acVV-Lk(1qX7Un2!k6av6y&cw9 z-e4<)(KW~UPx8;F&e$95-ykXkZqK8I8Quf%)FZxNzptIKi3OVi9S5)%eP;L&xfk^d zN%EhtE5UG~z0qQT{p4rLwa5Dw-3mfLGyMk0Blqk2%l{TTKWkc|?0mOs8hj$i)7IH5 zx<6Pz06Z9|2D>5gt#vf>SD>1HYVRn9iTM^(2jtrXDFQi^8adfW}?_m6y&kK z7mPX`tM!u2;^kB>ZNaW6LYCn!ZNdCLR205|Aq`b7r`(lCvry)7HlG3F)3lT7>0RFqb%8My6cteF$05EVO z*~Svi?-M--1X=3GISJufMpdXPR+fv85gVZV?x~p|drvtVXzQjkhVItyEHpWf1U(qS zvdeT^quV~eD(67n3w6YdJnp-&9C5v^2=@mVL(YlWZ!4{&A-ex6mFMNkayi;le+O5i zKTGO=3hY;4-xzjxS%RCUH!*6<@?}c9yL;mCavpbu*n4-4%cJYB+@Bk{5SG+*$#~-8 z?eGeWzm7{S0>2Vk|2_O}#XHcTjJhN3J;QUHrX#6?OTC(YpV}n!L%tuRCJT<^`5FR_ z{?;=pe}BJHT`tev&~aWu1*Q&zu|Q4;8qx*ntnHT=y~(0gXjwm=u$`(^_A zl@;d>EzMtCla&N1WpddyU^|#^SJ4qDlzAKoo$v9bPTe3PS(Shr0Pw5(*dJsqPWt(l z>eq;kv0Lj90JP_$y;| zRY5P!@e66`!fJeKKJ7P{ks`9Uk=AyN03U7#;`yT~fwJGeRStQ?DZ1Lqhv%h2V>Hay>JQG7w}+fChtTzZ$c3=roolPxlotuQY|D>EbiwbHbp}17nHs z{`U{+CfGSPI*(Y9&UOtZ7bMN_UGTvl!#L?2Xd?EqWXXaB;D?pBQ(o6~Yn%g~8|SV- zaN22~&b>mI-yrJcacCm`JWOG_ICdBToJ|nofG~pPGkMV`r%g)gC=%5Q;BWZV zi5{lMMsM(r6eVO0j42M1{;HAb1vrmo@pv)dNNK%rL(M$qqTaxu5M75jsi%yrC`4u@ zhEU;4UHymqotb3EC)Zb&G;qV~)XC+LM`z79dBmsl_y;I1xej@8e~1ees0KkhfEZ6a zj8$(xJEd7=TEm59me(MRQK6b}06Q!T-e7PpXs)!tWd8 zIm_iqhS2c^BQgrYFL1X){JZQ>#oHIei=R;C29G$Yb}BhLy$TQSeiBr-5BT5^?UKij zwoFD2)jv@ue0T14SSY<$*rI!6h>qdaFV(Pn5#$x&@#t5ERpE_!2COeZsjc=vXEC5l zQ_Mmn3yc&sAwLvShGMT>c?%&wWTGD?2Oz#EgZ*Ir_2#+9lhdWWQLO;_fKPWh;2GqF zZi&R7u5RU`H8@!{SQPUm$N-Z7>>WpaAGz6Fh4LP<))Fho)AhDYeo$22lm;|cSbUMf z9b}LA;koqeFkq>HsbVpEZ77TQe}n;>y}b^9lY92grL2t&5dfcnz4;LE@d%i~-yhZ8 z-Acl5Wgdqy^Y_hI$o$NaacRg)5U3{wwBF_B$)_75cTFySy`hvVCkrW`>-A8oRBY>& z0V^#ZdGyE`Sz!hCakhhP{7B3;$WR|{c4TG|k82`DjI>q~g^r6MkR?7$);y#GJvxeo zp@8So`1?1^0LL~($5o`^R#xy(lX6RY{g0&Okx{8Xyu~iIU)(=b{j|$ORmD?Bs~cfr z|1WlGCj`Ebj;nFohfYfPi+iK1nREVW91@A1{wTx}xZ;0LcWW2teNQ?BWwWEyG{wI( z#s+uvk(5x%V%rs6#c33*5C>TgGZ;+wEi*lqHU`tDfuyJsrdR3yw*KF0X=5`tr zgr#oCH&mL2d<0JDA`tDfv1GO>5fG7RSsl9gU3Vt6g+IS2sgZyG+*pAa0e^rj-nAWn zOrzU)>XWMmGuJdv2Otn_G#*KKu3bneYpT{3Sh8ycAqMDe|7Rg?=X8OfB707?J&2!7E3_-Du9J^0^A_$7i0|=8(?^LL+klwBN2P#6I1= z_=~%-@mh(*oW~LSDSI0m@?V|5)ZrTDI`WU>v^wCz5E;+#oXG%k{*QG%k)(U**1)I% z`w&PPE&!H;^Hhd7nQ#^TbMP*-BM`dvuS35(y(l}^Wd~bsg1Ze~hdb$B>=|GtAr!)9 z;6?_PhtPJb>z!-M*OP+Y-<@BCgXeU?grhzm2zy{H1sH^DcEBWQ+)tR^ojSGoi=i#T z*8oyC-QZv}vC*Wc$7Mtqi2@pxjTqv=H`=wsBT|0)nHy$s)6J@;UH?&}!`7&%~7RBX9VBQNpC%lC9HqL&#OAa4&?@A+O&j2-Mq; zMG1b7~7iTHC5G;jds@ntKJ1+)TgRPstXJmq%X^=DLn-^ zzJk3F=5bAx>)3F`rzS^e1hQ#z1ft4YB`Oam8p@X!!_jA`fO>!>?=`eWmJVl)?RX@6?(4B9> zg=b?>jxTbREi+rVzkP6I-e9pC^mFB{F$RotWA1*yG5PxA{dBBZT}H}u7V02svY!R*R}ph3NhEuNFu~H@`ZZq{m^bvwG3=R7+KpXFywJ2 z4yw2%2rQ-T0qW3H~CYTCXAzi6=_TTz4c))I6 zYq{EJ2GGnUHj$+=n!>cs{VJgJm#X$8~wZ*Ju5GmUskoMG#~0RMB%uRd?`-TOH7njKg! zD+xJ{V+oZi5_O1lmn&DsO*r>0E=wij>treM>AbwFw)2 zPsn{f$9p`fzZVa?x@m_VZ;>x`ejmUoig>Ssfo(zB=D%@w2()xStb{S~(-eNOS731U zOg3EMF|m2dHkO>s98g^rEW;F8JoYL__zBF9&Xd`HXN^(f7hx=pAFDl*HWsbIs$$Yn z)#LsdbZ`9W@O1VJew;<6yyHjgB6&K?SO*-8ljA|*@JN)>rjA{$Bm|1YBSAYgc9F{$ z7}|~~@&vA)H)`|@>H4+*4Y@9%neIHYsh3e@*oLulVY}bv%y57cNEg2>y`~3Z?|uMFiRK`ab` zSm|Co85mru+NtHhEj4s!%enF7J$rZ5&feZ@-aJ2%#g|EwpS(XgsurFy;kejB^jG!g zSNr3sg1F#H(O!6_v4U|EUP$KQ6Q`ma0N#WZ9IZ$KM--KT2**z71qq;=JG8&psE~Ho z2os(@9|3j^rcYqKig?SCx~QfT2AEm%r6P$0@4x%OpBUPJkxObfmHnqK-scJ81hg!X zS#0WV`^HyzgEPLrM)h$?hIg4a^!p}>qxA9|>wf{$3DcYwQDe)E<)yIWl$aaYQgwdq)9M0*9` zgfonpeoydTKzM_eDdLm)0(!u2GuDIz3yje)+!8^#9cg2GN%Q@_;GJQqnm>|$^9cRd zmcRZ!OiqI+_g2bkO$`PGhr=%LPCG<04P`Bv!x&#qFD?t0qEqfwd_`|#1hf4+N>d%^?dv!4P>FZ$xGCtCy2Kh@|Gj!#nN9DOEYhL!%|>+CYe+8+$xOsWO&L z3aFLgj_L@5r#8*jr_76?SX04emi9oSD3mXu_nA3A?lYP%uQs>u>XuX&UvTfH&9#T* zDg1RSl(v7A<*=!vVz?^46O)Ty_bz4m{4XZat2pVmdU=|Z%}Dg0$4dzK*tnRRc`JHA z6~Bml72#_}zRjreMyrVS9noU}il}ClhJitLH~4OhpE|J7;I@zWkrmL=UBh(29x;uJOQ*hE3{! znTcnK^#pGDt=0`+5bF<#qqaLjS=Gy0M+}=64fSrD`(LhIF2I{I*1q?}w%i@)Dtf4q zmO9Hfn=Ya9FfN8NuXvMaUF5VyB|ISN&*46ghW;eDR$#Ae3iveCCG&lW!3#0C2Luk_ zYWSGf4~$-43xspK7eDiRJY%qn27&F?b7l-c!ZtJ$l1dGmZY}p|y30Urz`WLU0M0%xr zE;Fi$8};oiv7UcmOr5}K9}$uEHS+q!>k&J1^OIrhaCCVExT)A?D+9r9jasL_7uFEZ z2sCAkacbLMj3jLft$1!$Z{t)MuzoINS76$gzD^JomG3+=CyD7etF-Kis`bob0qdk% z7q5)61Kq{sTX%S;#G}l%xcTYt$7J-y7=i&Fszs`9YBTGaEzqH$XzFCy|E6=lLGtqN z_L$U3>_>;nZ;p(7!$<)KB<)}rAOYeRUF#q5G?5oS&xhHnN>9J|xr45vc zs53Dx&)F|%wxyOsy)I**h*Hb)WY9^a97?p)@-}kB1c|Z2>dFJ!HZ-_gn9@{y@pM$F zEsNgvoa(_gi^$rqs+3ivN}R9-Id3aG)^2^GbPi5$)}T=vw|7c@&1;{3G0#1c44<>? zepKgH#{*Z~q~8^M_@noe_9Dw&Ni$Q`Qz$P zy&*99GeL%GILkPwzixS}D5q6KMUn3Pe47>H)4}dYtR7}-7kUL!gf{GE`E}xb04}Q& zPQYo!k+a%@GW4<^RB{pSa)j zlkfw&z{{5(%p=SbVW7W!Fk^*UzaVj7xg3uosjVz*&FD|zCj~{Rx8waiZQG^qJL&O) zhZJztfWMjk9Aa01Eu3JW_EZT2SaS;aUCQfHJG#yBYOhTT7{7^z+1fy+3$e$4YPm&Y zOTr#C8fbPDmkn)e-qnm%T`hV1>A!E?944HadD`ow_~80Z?#+1{69gi<9&6x<1;T)>aIciABm~0DTMM#sih601rZJB%tG`bCc*h2_ zci4j9*eoh9GDmpj?%si6I}xd@Dlg2N$qTFmeeNH9amn&7aOXCUM* z(LRlk;6PktU7mi6q)60M?QX+F1}q2YiFKyYaI>=K)@p$V2=O6FFy37lT~71lp$QG| zqr?lO%<$eBoc((lZDUISg?1p=>$3Z}q%maBvKnEY>@S>5R5S!Z=$nJ*}NKYe=i;sKe&S&6Z~Kg&crzynxX;}3%yi9<%M3r0q{ti z#)k_n9Phaso2LO8`5bi`_%Q7zX;l*^@EZciRDL9>(fz7 z5zo>M#AumB_&h0O)i8&qCWMF&0GSk$0bKt~!2yGDy8KC&=bZa3Sht}}zs9gEmRU;@ zPlD8Z0i*`Qpcuzctc0#>SNgf}+gch%ICoFvPdL4T3%;tyyN282XKPpVzh@taef(B+ z$ag$%Ve;++DU=C5{`)Z#c+bEChboAA-qvyP;;Ik=1i9LwioM+Ak@pj|Vy#Fj@9mA8 zY_Yok@@Hu()mxh+H+mkqgo}s`k_bZs3tO8pj*4KQ7OrMBeG=Q}lvw8vIq&i0?b!>e zEi45WzB}pY9N~oOgFp|;fNn6xbB1voV&d~Zl{u|4=0f$-QaqzGkn%_gsnI7Si}k_D zWw+!n0^QItb}ie@?PqTGbp@XnnA*TMjcvui@`Xr+#KlO2GXwqa31+2Qf>z-s$$D4! z%5#dj6RYx58RET73W>TfEbx~Qk>@pI7Z++di$0=v#u|ytbh4hr~A5yKP%tytJ|eT^n}zL@*6it9yLe4JkYQacj}c6f$6~mk$iAA z|MxW`M(4S#eA=+?GFXi3wys`7eW@g^t3-XT@QkR znJFCmprS3@vA;D06!bc%D-^BlVPKFMtLM*Arne+*KXpVd9{&UrnTbYLW046tmg`wg zXlUe4X>E{eE-S(<CTlETV zD|473_|F^W2y@_ts#2&&(Gqgm`$aj5Mo9;4Bdj}MIflRjP|A{wWQ8FBHpLrZ-{=_` zI`#O3hC_Jfl4tX-EmJxanc$s;AuSdw9PAH}LI=3ymAb?vfx)O3ffM8^=uk*9C`c&OjO+XafQlv|Is4 z#g-*Ga566Nt`F~h-0>I9F1z_$O1xZ?dF~{M4evieZYFKN(t`)cEUmLA6A&Gr>2U_P z4d^}7w|nrhHPkS*eibJY`1?IrG_~F~tA6^g8e}RqfI9o)7a!-EbuWf;!|RhikJ-i=*sK!sMpxF(mO`Wb!0z5$!#9 z`_pu0$a}SN3`5+{wi;qnEPfVfrJ-h$Fh_+&ePP&n!P~kAxB#HQY4$Ocj%3=uYkUK7 zEjX=BQa#(O2B3Mz1X^=%f9lU%zS$=P`*bCi%WGKFV_T!dAZX9iAv-`3TqOa*N z)-!%^_8(UZ7A?B>FB+S%Ltbt5ICmMEGwkXIwL4_wIvW6D0=!5ZE77Z{^4x;Fj}0g^ zM2!aaaEFc76l5e**$KO5<`d1gU<~X%xBm6@C*2xYH6{F>T#@l+_Hws;2Ii&OVY?v_ zg0}wd0ob&P#JL`nA_SV6P$=Cg*X$`u(I`})x6C|8yJ8uu_vPwUP-W(eWVDd~seWMd z`n%Hpgj>Dorg_9>0fk_Luj^8d5UZ7>>pvF~ergj!wgO}4=0`zKO@^t*+EtSh&qXw+1V-}ReTbTzMryxBG} zQtI1ThiB^edv3d79xMStqFo!#61dosVOgWEN^Hjp>V8&imZ#w^>4!+@tr$WQK;lQ~O%jF9i)ZvbDY)z+Q{YekQ$aw3 z-{3d-tq(GA6~zFBuBUuBRZoBh& z`ONU${FjQ9f!f~J?mOLh4yL>xzZ5=?pK^_{f$|PwBiIs{xpn2unC=!5$C_t%i2jSv zxL**BIa3dZ4e%SzCM%jo54-=j!Py_wLMDq7RK-N493U^FQc>}+#@a}sw2c1pH6<#hwfwkJmqfr;k!q5 zZO2JiNh|)f>clz9F%-<52ssCYMd_4Pt-n`R<#03(#I{`-5@IqUcVNn}k<>~0y$m3$ zQVvxOBMzq@tE2Usdd1_lIz6$^2iP-GVr)LNl8V8x?m`=>Vyf_H>S*80X~ zAKpn9RWZ`hEU|iEs3H~mr(D(@9mHg}x-7@K7J=f<7vFuiM)ZDQLt?4YN>d|+;Z{Xg z>-xz|Tpg+adPfWceWfJ*6iU(aJ|tu$B=L7bipGKWn$=yPBjejCyR%c=0G&2vO6U;d zFbI-REjP2jnmT{f>{dM6>gL81SAD7hvyYut10)xB%TcA{b1QT7|4|Q@bCe#yq5twj zwMFPBU>s*QDl(2KA*$cF#fxLuQ?Wqz@rvE3r}F#KZpDaZsA(N?zS3jZZjNO_K0ztf zpBv`)V!OvX0a~(w-0$*oEczzj;f|#UR3q8o8vIy{PPCjsPpw{={&?^IKcJV-#lr1} zFnD-+&DJFl-&K~Nh;u+n0pEFBAjF!IT4Ue5a|;_B;oxM2e!0r)_-IA-S7!FQW0{Gg z3{vBFZItbv2jPi#H@R83O(kbo5CU+=2e@)uRSiClU|RRDITa%))V7SvjAJYfi>Lfd4ZPOXHP+?k1@`-vQ0gxWAlHn+`UE=Rx6T^yPu3o zYL^u6Lgg}qnq{boQJy@#DY4n7(MfWsHkxsM3tao;pBZVhZ$OLLtsJ=zT|#z@`ACqa zt?17>1o$-^0)X<#F%`2OlUs%1PU&BQA@nZ$VdlR5STXSV# zn;aR{#Z9tA*qEa~*=z^Jm`H``a4mXsJLX?QVqMEZ@;~9PKbe;%<^tn!FfpA(kq_3B zhV_SH+F(czKOq8j@~RbE{!UB>?`=#gQQdS$WdpR?!K6{Vx3oPye1t)3Bfo@CfT=PD3Na1JMrIVTtS{>&Nqixq%n~*th4c8A6hUJ7}Y=; z@KRvbHnv^ok7?D7(T63tZ{Yy_1|dyH(Jn^~MkGr;*V9ugV+e864vYX{yzQV2BzkQFDB3$=`PO2ba70WtuW3V#G#QYHnd8XE^pqY;T}_ zK}+&#k)C-H-bL*4_;wyYiYMG%q=de}6j3Tm6(Bb;iox41BDbrk$uBiZmSiyo zvNXKO_RjA;TA}tp=tz~w=^50>#x`ergSYsZhK;PK;`R1c50*JoEY zWmMD+>+W33#LyZ38`*OKzYAC|!+#N1-4l&UXfCe@=iJ%8wee_eWBta4Pw=f1&z!*Q z+wQ;I$Nyy*fVD^>J^5WG@=J^8Ce8+&C$8Tn9Ay}q4Y!t7)q`XKqi!h{WVN#8?4@j0df#-tmX_ z-sK_EJ$y1eRyhvUfmsR_i!x=}I~s8(VZ7H~&#pBQ(+WsE)nZ4iQ(4`Bn{nBp&%B3C z6Bj-_slT4f{F*l(`xJ(5lRSzE&P^w@>TQu9^}+hQ+?9Rp1l&_D|M51cJFpk;t$y5A zG_%B~#3SXl)mgBGV=NT!=uAMl_DX=7uQ6Rp?{B$>6dp!F5<4AY06?k9`o-uS)zBxO zLj~^s?WpnHh5LvGZ4=Is*@4YXfOeq#VQ@|&VfqJUp z&fb%MmV6)9$@Hg&2<#=OJxZYd2@FUs8kX!oPiVMPeyy$%4xQY5B>is9&oc8MlNkYt zgD)D?5%w2!QX#6_A-+ZnDa1_No7aUlM=+_X*nFVuVJA%PzGJxLq9BCxie8KcYy8e2 zZ_YeB15A5TzNJ_j?9_XH(-kcO4L;Y~ z&d0B|TDl$05FAv#hrrmve_qvljOROcPXTL3jfX{WSs+u3lY6i zWx7>0dy0T_VmJtIK3IbJx42(+Q2h(;31w6698~m!L8M;iOR&%LHxFO!-(z9nABoy> z-&+*Cz0_AGuZk`V2DQ7@7v_QBfH27R6V4rQe72T0`s!+%At_l7N0CH|Q7{p~{qA!N zJsvFbx}3jqK?DFU$z@e|ZhM@(VtWE-zQfC>^j}&Ty*{Zbez9B{bsQT0>j7U* zT0>jw_1#9_|1;|guvepyzSXyWykfFzu-Eb~*f;_%6_)O1=m0Y7j&Avdacq}A^Z*!F zNX{?zpd1jYSSqfn^`PmP49-X}66TRz7)c{G)`G##%=qN>O`JJ-HvpL7GT~UIcGdB9 z49fw?2SvEvF`g5;D5gW>y!XGWWMZ*SdYLzy`0}X7bkG#q(o!v)@mX2&jA5FDM6wZe zM>cpUBk|u<8RAV8630tHk;^Q!34d6yoA{qTbQzb$@HlzUXZWEP#p`Wm`Xm(CQImht zie}$Gupa}dV%p`SJ6ofs(H^bMtw+zck|;nPXCr_hfc{CU}a6ZGZyr0 zjn8lNo;<;Yqbv%5r{hEY*+EsEvTC|K-6q*~mt^Kl#g?BC zqS1NR`!$$5E>=si_+S1*cV*|kvgibR2%yB^5M5GPMrNZnIOWQgJAOwjTah&<^RtKD zh8$poB{2JNxUM}cgk#90lxhbDq%H6R<7WO07DS(zGOKA85TJlw43*yZ@4W9}iYiu= zBUQg>9OCXFkD{F>p*+n{*Sn~2yA|Z#Td9yJ30yuxd{~}<;Np{^rtu0kF61 zu2F$kHY01e2dJoru=(IB?J7rIHL<&=7|b8y1aoU#Hcs(#)%LKys|_6n33u%0%FbXv zstqw0;7Q?#YUOE7J^{qRxaQY8pnv-67I&-fHse0$mPSFJq-F#>V3Ec)4I}pO@Z#}+ zQ2u`+nakzv!zPwL&L%CM%FX!L+_t<2U#;%YclVv_I8!YVqYv%sin!J*HVo8K#t$Ik z!Jw=b7a>}WWw_Br2GN|3&&gYlp4wbnkP8EEFrc-uro9wV2WsEU$y^h9pVS9j{VK}I z%ZM3hkSzcdom$wV0j3g7u7M_`>!SFCG?lz3*ZE_IcrhZ1f>;8JH6B_UmG&CMWOa%= z##V~q_aOZZUuX?B&sRm_=THfPBY+Q<1MLUH$Dh-@yshQP(N^2uUtzs1boxF1W<`D6UKvr0G=Wed+ zb@_t&^ya`e5`FU2dOqL6$uQ@va2sWOi`E_o1da$MnY=LPcEg8{cyRr3o9!nEM9R(c zi$2(f_&wd)C@t9;B3G-rL);C#0nrl)+{4GGt3mFiMIC_PtCS0c7~NG|DIJ*hj&L|k~YN>j>qe# zq>@SWWZDGfBrvMFhF>k)uZ4K|c&E9$y{TZiHhe2Bw7_8|{mgaj5hBj~6afc{caHzh ze3nVx*PHyI*h=7wG->kDn$769GTB7w^7Mv$mZSc^h}`R-T4ts}7-nN6*>9at6k!W2 zxQ^H@Kskkl4k?Qh)Cnb0VIBe(5qZ#q-@U;cwg1s|s^|Hcd4TB^ocHX(!^G%XWE1tZ zr62}#zNwxZN=$&%at_J+(xR_5jXs>9iNXYwc`at5p$DWowt{BPP_+-;{)LX34o?J1 zg^(3qR1ec63=YdRU8YHqrKBGbE|p#vzKJCc#k8n-l*!pL4?4JJ>d>$W~8V* zJ%I!wlMRHiEZwlAF@l&E|IX-_VmaRjEo_%-cv;NZ(c;W={xVGzigBL-dj?T3hZUhA7Qw$ z2Nu-ZOhq~CEqe-y{@Uk$A<{_DKV^!)>EBL0-KrRw`n%a`*40@vrm??|mxlj;Hm*W+ z`1Bcp7j)d*{;ttRV*0?*+a1gGIp-aLar#>~$&JN-2K$AbGj+qI1Hpq8mI+gV_}#c1 z!Xw;t93Q5wA1nNr)9;(JuMKCnnqlIorSnbKlOf~NHID5%zOmcT4#|qROYPj)TDswS zG+Hgj@oek2o6gI9S4XjEcM8GSAgj|T3HG<#hmVEXBQn?(bQ&5TQwW+prTbM=8M>UQ zc=S=-ZT62qsLF%<(jrR{kq>xMcX4xNNB6H$sDRpyk$_xI>tzPsk zM{_y*bI5u`CNLux)YvkavvtZ{`CubRYlwv@Kl1guVMOKeSk5Q474=vHG3^3EYn?Yr zRRUVi@oW_^*!p(xssf_xUVQuUDTVg7@Gkz{EU%58lgDpXk#RGO7XRBa9Lk9Y?*lC= zYFnHRN&qFUrZf5C;o__rDr^k*(ocK@IRsQSLPEyK-*c0e?>MjroJ2}~S-RmL3g)#Q zxo5&Y75W9~KvT~6J&x(c-?9hws%m2>x!qwX0Wn;3bY8LPcod1`?d4IOBSAf*VIwpI z`9v*oK2Ol=c7lq}jU`{hznGR0Ul`1@E3=da)KtKrCeR}KD{ zgmG^=neo9B5k2*XZnrJL9q!q~66WVE&#=hemy-4R)SDWeqTl`noAeIy zWZrOzs`TApCYl|;jW3rn#F!(I@BPbP2~a$_Ulf_2KF&JpOqqatbbVZBx~@ycGM%a9 zrs24QPlM_C>We3fCR%pY~-lu3imMCgb3x97y4yAQLmr6vbBy z@jo_+ZZljgD{l~XO1ly=n(BGaotfRuw8LmeMw~pK{#G*~)=5RFYaJPPK-O>Uzs$}p z5hcm8D65QMWRxr){V7*_Mv% za)H$X>XTu9&mZzK1Xj%y{6{x3NNq1SUP4JwryU2o(u{#(fQ&Qs;y8rfFUQAg-K}>Krs%>hXPcHF(iNKeCMFL2nsJD*e z=e~TN1j&`1y0MOD%`(;X+aLSf#Kgru4f_s*m zqM6O{Sg>tJXUcE?G{ylXxgunShMMN79hsE7!#TM%`7dsZs6b&6io zLL184Ua$ntnsH1w?bE48{No0`=QU`kv4oPuglU9Puidz{%;t#CQ~$KqTj;&V?(?7Y z-Bh~0e`F$-N|IFqHIvANfnt(j_Xvk*OukN#Yee6DGD;i9L^IVi9V#&D+!q!diTeB- zs$mZ6nvZqy?z`H)im-=LcPYfa9f< z*qV8BSt7Q}UNXj`=$K&mq5D0Zn{&$jOun9^8@Z_)Itt=ZMqq_L`-N{mVE3uwu>q#I zzjTO}d?D)_@@6Kk6spj%I}wQ)*%y9&3PS@%zvjn%(P9lS$$P}h)4F#%3+Q9cuCt=P zj+?r_W_9NcwrLLZJfNmJIEthnTid;D`xlMsGNz=Go|cBh#Kh#X8X;zTxs{vQtmUCM z3q=l_TU$c1vUoLCBg)=8Ea#{wd*_x|C@A5>n!YKmQNQ-e>fhK`e2!*7M_~}mAFKZ6 zL{ZQuVDX+Pb{E6g&wnlZiAq-;HPWQwNT5?LaVRxD4UW`=WnQC}wy3^xAMb5d^8;Cy z0^NUtB7S)moU^x6%8U=he!q4*yEC@7=VI5@?qfF_|M?sRWxchKNk8|;WhG8^#n8H@ zUFMamNv7p^sOU~3N#oGqV?OoTM>zeDHPX{sScqd@Xaq~u2w|BeX-8pN?%O!%zwyUG z_UcEGCI}^bF4Ph>j?-jK&g#s3(9f~@uWMjrcqGIkC#r4bLg(*0^oHBVWyUt70-BQN z?{-qj@mjx6es$a5{b#{4KNtMvjU_shxB|XoxW93+j`Kq|PG?o-Z9c8Zkx|rCAMC7^)r4W+L{9?&MtoRW&QXAXM`_7TD#N=)9ZbT7spEb+=6N-)xFT5i z*WiQn3zyahGxNB{&smzDTuzkL=ioPzy6LhV6-bZ{l@*s@;b<{aCtxqW!ezEW;+9WV z`uPs$5=oje86$P&(S}%YxsLo4rp}u;;yF0a*@E|L8e}y8-uj0x7;P;IG&Ff={=2=~ z^upXdMW7r#Q_23@L*&qvgH1C7xl{|py8ipQTI)+0YS9z~G?aQ*BzPx$%qRab8^E83$Qj1bCw(Cw;H&JeW&ga42XXT3McZAx!S!(s_ zsY#z_KQV1zPsHta)n{wa5_t3ymnE5xZEu~EiT0;-JHAOU8d6h56(%XCVbAYmDHP!I zjQ2<=$=`c1{fNhWCvMja3Ry@Jlf2<`FB2w6V-m6QGEfU+`g?jk9h^M|chA_yFrQB{ zi3UI1rRYY!(nxs}uP6BgFZ|AYkW_ z{DEAQm-nS}>5Yd6YnOo2pUJ$b=57i%?1Y4bcs7H(v5aaDk7uoGNwu`JsQx_+$zdj@ zxJZ3xF1--;Wf4a-Kk9{;C;6{iat>Y{!tz%nrkp&5j99Hfc#lFx^UePsOV=Ei=liyw zC%0_dc0FOswy|n0ds)jZo6B}BySD6FwzX{gy}zH|`&WNf_kG>xd7KB%tDR5<-eGwY z*|z#z>~l5z@INEGGR(jb0k5>;ve97q4ZTr;R#2BcuO;i!ncZQ38C#{1@gKPCULU%s zX_pv@E_2@P%bCHzeT3$J@HkYk={x!(lm`KoQW#V30xzsH@|&v z{QU;PjZA9}8mSlCl{HT`E349)b-nrOSAiuYogS4ko$D0V*3~d`XhzecmFB8NQ9$C0nbWS zkf@!5ITrG~B_#eURaMShW5K-*dqeo`j&Jj?AeG;j&yiHp|GwJBLj$MiDD}_V!2f^r zv$K7ado%qkg|T5%ux;Sk-pKNbL7=Sy~md-hY45i`Kj4P~+F%f9aY& zvQ;(FR4{lN)V?0D{!4T?U{<3CBUwCWaH6eNDF-`80lfE4!YdRS|LgmjFTRJ8tJT~w zT8*Noo)s;R14YrK6qKk{0NJSt|s#8RGlH*9RdAtEI_RXGOK9>o`08kLdm*p&i_ zv!bG|{T%3j?5s9+EHOk`u^8K?A$Y#e=lI7CCpL%uGr|}V5~KH2V84s{Y|f(h>P~w< z!8ZL*g)0gO58;{Eb99x?P>-Onjt zuciYV8xj`SHBvs*HD$V~YvmpuF#@%R{4FA1R}RAkBq)}xOz2>pmohocfg;MQ>CV3O zsK|3PK?Pqi?7y_FGe$P&0=?n>Wfwm?ozQ_e^m8mF@uj==d8|!Tso~26#NVy`BPG|u z+#GEC$GS0g-xrU&(u#o0=@tWDBb^a+O#scv^4zI?}U46G<7HSQd2-G z<}W_FV1l8a0^9%}hL0tF`P$^=((Xh5SH{>l#cOiw#;CsKU=U5FcfM^i2+}l^myXs9 zGz}j^;b}XG=I|68G_~RP3d-j*70U&@J%b5ka3f*M%F2N9A57Ye=I&FA15&}ohw=MfS{r6oDy%Cl;j5gZLyXsH z3Y1j@D2%#F>$6~T|3gD7j#+NC9AKWa|H4jGIu9dg03G+;hm^%2so{#LC)b~&Y6?o_n1jZ8G+e0l*7!<-U6 zpa^GZERrlw#w<6lQ`P!7bQLC2EK>w66V1~<-}cvNUZfjiF3>a*qrQ)aoUUfv;cltx z^&bAcGesygG|9r`X;Z<&8?4y({MI#iY+X}ShC`bj>hp{*6C_7ITLl9ZSXKK&F4rKA zE5ww;K-pgg)@rzN>RN#)GrY*ydHH5qK~pnWM8qh=q2cPAV+hK*J||8|6q`f~fu?g# zhK+#3awL<=8g5#EFh8nUpu|?Gs^?g^hkg+jN7GP1PXjgNqwkVA>HzfW5_JYkiB|wo zg&=nDS()O}%Je8PCqMAd^Ij=iS6Hf#{Lv~oido9Pp)OofK&O$aZLCVXgle95v&x>t zMor&Z*PqFY!8C46I0|f7rE`LQcjO+1^8HgALu36$|G%%Agf7zo3YS^O|IeRK-j91f z7u#H!Vuarw!c2r8cd>5n?t1pGw}Q|yWN8Q>rOc7ZSD|}F+kG{(MU=@eN9x=#ju`^pRGAGEt*`c*J{f)w~*t2PO)1Y1@F(&S|*c->5H4Rop|Hu6ILz3=MLd+M`CBn zKZ`mga^&ed5OeLG`gD-hRXx7vd^|}E#gbd$MZT*cEFP9wWFkv)rTf+8@Y=4WJ zJ%RK5!SS`^he_688&wD5K`40vg1#=tnlzLH$7hu}VuK?&lq+H_#m+)Bvk{0=&><{RqyNZ2cVP31B(va zH+=Z0u^wjCmH(Ufbaiz-u7>F@mn?Gf3JZ79IyZQ}ucS`y1kptgthpytE)@NQs?Y-0 zTS&WuI+yfg{YB(F`U#p^&Zrh!;=}jy)eo=WjCd}~Gx!kRm0dvcT)GQOKfs6OL+h;7 zIcCTOm+ytSs|ieKto_>=Xqs!_tVHAf&v;7V4(VmcLw-cWgIi4nK}tUeO$_2ve$@6` zp~H9%2D_e1O%cpe788zjxb}?^CY!HZ-u0_A{D2(&gENh zDR+}-G(L04cWx>x=4vve7{u7piiFi^$JOb;7b&gvy~q%r*HLGFFeVbnG(?_I?$;S5 z_r5}GT`Q6gfG30LFFLE zj4oaF9L7PA%ddfQ?Gizz+ckavGPD5nX;_&1;xb2c%UgL^E?>-gP`jp@iy-|6VM+3e0Hv2_?>Tr89c z{E5)mV(BZ?!^^ThaN{zRLdysaH_y9r462n8|AN!ob-)inh0XQ|6splS=-(~2|KvnJ zCPi9NzN};MN*3_W0M9NcNVMVm%#x`@=XSmx-HR%S3}XMb-VtZNX*QbjU%4kCA<_Bm z#q;lP)^q5FP0nB}fJ9+H5N9=xWq0$h{U68~5Orz*Vh-owwD|yqTx0H&P(?ltK+m~_ zB~rtg(G--o{=|tKz$>XB4Qc`^fs%6EyEICp9=uaUD#uveXLcP5lY^@#T_6$V$qQ$? ztZ^Lxy0V>;;aD>lOCK+^Qa}0@#puG0aT3f(^dTmH>S=z+(kG$xyKC+^!|^P@Q;w7H zoccsyB8XqB0dwYo(_>9DkD4AWE}S`SDCEc!_0~*8?+NT5QEZQl!{@&iz2@MBS@Qd5 z7UnE}0l{Hu%~Ig5T{#+paU~1zWbT`WeaT+K&zojog>$dQjwQCuiH!`J;~gFla%y6oVw z!9ZG$8|0|5n_vO2m$m4S3oV4__fKx*y~383$SWNmBU=5i1Kf@A1>okp9J@=Ef7O;q z8Edr0rgvKk(DJG%4RTF~B0eKKtrexUY&Aga9*pttBlx!UGOS z;=fk=g@Ay75uyk~uYJPD1HJaGHTdN|lFi@e8H8@)^Vm)8^nEjfq)v_CHK555Z3pX% zrvt-L6aU3=HMOkghEMlSVbcD26K~fZN-nn`feBWrAH&|M?1H{-j6tG4j`OA*XH8!E zi%=cArlt`i0@QqXRvz~#2~rXh{x4k#M79?#L=eP%S;X6;-zCNIxjq-t8-g{EaB{;W zpFH{s45JtvBV8H*VoSP=!-6XYtNa8PejhJRM>WuOP6w~%Q9wf&D=|!+?TlOd6XmAk zO*wPRR(|Qgp^0kYhA;ZZbzPN<%f|!M`+ACDN3Hjl)%y}Szbb>vcLXiX#_iiZ3HG}@ zb*ZfiWrfA2=%lyzH}}1TnbuCOP}BZjY&3hPQvu62k249H1w|tq!KkzDZIiR7Ap!f8 z2rpCUE}&!-9+vmNtP}G*kGsMZ!>L(Zv^WLqYj-7)v)}|P!4@GRFu1%g7~YJ=#M1tQ zH|BIZw#Gf7y>+bU11h|MG}O@cD)knaHr+;=#DDL*Ub30F zR1^p(7zi*jvO0aq@IUjrzDn9jlNsu%rAG4yF-J|G0M7j@ z?*&CB;N|S_o$o6S3B-)?Vfn4o6smyP<}pvMz&acTc=0xR%<2){_3VsfJ^dq13*!gS zWP+Bu3d&ZZUw_5l1UU9vZ9=X-_9a9^`C~km0lJW$mr!YPe7#!Fg*Rr`ne~Cz+N4Hm z%8w{hE*qF7!-e2@*j*vPqxS9WQ#&4lRLkGx_C^diOM>Ox_~&)8413r7uN1$ z(fI`js2_+@&7+YS!pktCpug$*QE5R=j`wT3-Bx=y z#;?O?<|kH1;ev|F(YK*CHj`EPiBb0Yqh>OL>XM|JNAxpXfzjk75es=S3%EEh68w|r zcGY7p36}WjKcT25x{uLPY)Yxp5&pzr7a)-U#2_%EtJAT5KW*IY1UB+PhNV(Xc{gKB zq(S6q6g(Mrz;z?)B!AYXK~xi4!(0PfqZ7!BH30`<(??>E@|8@T-_0n*cz#rA*lKTI zEOO93A-;bL47oawc>*>F$NjXHbc=u`>O0qE`DMBW#yp8)RM4Ew(64Vs0VXQXGA&xy zLRc5u<&(OT7XBr*n>L?Cy_N7HoN=A@Y81t_suqtTJ?PQ0AWkC=OuA~$N{$|DPIg2* z{&q|?U6sj$`gCOc6tc|gUpO>r!!`JxH=eJH)oLFDb|AR;I?+O_e?VSqzQDYE0SjY> zVS$rsK)Oad*w^CNB?=GzM0T+qd9nb&@;(5l-FUrt0A<8+BM0-%34|5(y>mGx{q7TX z5#83`9jVQtpZ>4UvP<_z70F+|%$)T#wXt3hJEZnh>eJk`_(c78cmcA>dDVM76_WGY;T&RwPO4&b;=2ShvzuL1_vj$t(DvzIF9f zYw(h-Dd?|P{vqM2dS0Pan4BFx?(cpKd?5Me^RHXT`z;T?--a^eY{?9A-pB(v?N3g< z+MIx#4EL80&`Uw1FbnHx2N?!0&1tDSz_nx+f2lzxZm-KNM%Mr9@q1a&Av(mUAQiV= zO!{kaM8gl3Mp1rzmi=%z#<1URU)tTKya;vv++c1}E`7@0cX$sk=yKkDoXgam4eKQC zg4vFYZhY`CK=DBRPb@|kk`lTAJ+1`87J?-Z8%CX-WZ^h9+)5>To0gRjpd9b?z6)JE zK-J(6YgYxo&t>jtDd7_A1-xR4zepOj!JZ*wb6@jX!2?8yk*8zxGL2ath<92N{&MqlLF z67iNdmWkY3X^FYz%SO5gk-HBRr)>uuiAf<=*vwL-@=SUc{R2a3IhQ^AXq!*>eEFk$ zy}-dA6E4KA{tb7sBt8&j=;w2@;QKpG15=4OL+6)3IsxhDOj<`!`24?3=G!HnbVNb` zn9eUN0Rl^%I&=A8z17zHlvGF>A+MSP2a$yIFZVw!+`ndYlR;nM+%*w=`KpQm$`TM*zt1=S^N-8@`IM|pTdbc|Z1 zzf&QMKa>wotHZOGBeX-68ca3U;_dM>$keAz?%y)Wtx9YbCi>@7 z=C-CK1xiM-I&B6L6jJO0RNxKM-~$^xyC`Jxs4pugp8oZS-z-%Cf~731_-BPe+#iWe z!=04zPJX!c(x32X>c2W%1U0Gm;P=@&D86kF&nV>ccj&OI%VQp5Cifg1#g9OlnXBV) z0@x*!b*75Tm+EBTXryw|Ls!4rVe+y-pgPx_=zTl3jBMNQWxRdo6f(J7K~X}Xl7i_D zCtUKE73l*|h%rPNXn+nWsUEvsN}aJZlxg3Z0Dbx+=@_&NVf`VEg@juWaOif(kpLjt zF2_RRYO^8!-@;TA6y)dvlIi0={6V@bbsi!QMbs^-{f(^;#`!C^)qcS*ZPZKz3x8<} zy3QW0KlgYFPQ2&`G(NAy8*^+g)erXW{L}3n%yNg~42lDRlE*(Ts&2pnWj!qZQWLWf zSYBr5qSg+D{ykT+CR>S`&;Y+MIf_lo9usSI7I&3Oqjezh zpH+>}#GEeyigP5u@Y!-Ssm9!PY4qYd`1N5cWJ%{OmVdEf6G6!LNe39FB!7;EKL1&d ziQIU~nsS@<-wEXE6E^%@;31R++u2smBR1>V1IlMtS)r&V7s*-5x;2OZ+j_FKb%uW^!0@^woQalBqT2W> z>H3+B^i?#gGM4mZ4@3)MttQj%sQ>Tt0aV4oM(2>+MjVe9$E$n51*^bFxU>BIBlCA> ziOjt(yvDy5N5*_O5QVQY^{G?66lsP|&i32sge66Yank z<^dm| zB-uK5K~4S0d=2h-muy=z=W1%3xR!VaP+Yw20D_~qu5M9}LrF1|*%j9pwv3PXKq;Qu zy4gO@u~pJxcv#3%^w1*4eD4}AP|5t-TR#DHdn+P~=T8B(N-+0l?_?MT z!Zv-&Lkbk5R)&_!k=a^z~h>u4EKC%CJy`@LmWcEe}^8**Kgfpg%x>m z%Tw>rnQHLns?DXO+oG?|?t1it@`AXm^hAAgJBHbzE8bMBc_noGYZKLyv4j<`Cu#WL$N%}i2C_#@DnwZ=DfxjNfT{;pH1g$moFuSKRGi!Aw7 zNaih3JUAQymanV?(?SKRy+15enE(akVez@YFuqKhj=)jokmso(;eUSx9gwtNM6^<`Z$4wNVT^_N-;<3*o*61P<=RbX~Uz8C?8>L3%>^UUCs02T-+iuIXX7;{Mc4y z88|&K%`h=wFwr6^NO!ez!?02K?7JXP8E?sKe~^Rrm5BVY266HWpgndmuI|5|!;W#h z2=d$jrHvw9R_Y$7kO;2Myo7+^f0eO~QB@u=CB>O? zcI}{*+V92%8kRKuMkCD;fS)$zHZn4=`P^PL6WpP}1c@19Y`n27Y55U!MZIulGxHZZ ziIUkt$kY<`Z<-t-!M8Wd#G`XVBmng7^i{~;Z&StJ-=8e)#GlKE*|7i@DDIx4eZnsv z#X-_|GyMw~A~e-pT01I{oK;d#G{?K6Td28oHSbwPM(DVoIrTzg7T@L#Jzl`n87L8} z*?_GBpw9vPN&k0JN^fIhITG+T0fYi-G$$4}E};I}<=A!uK-qMO<-g}QMxhEFIpq%= z%xLEl6n}D1vv)(9qLOOQO?TRmyUx_<6@y!1G>a3Ud*;?p5KT4mQ4gZl$4fV_(AgLf zgcj$0=8)IKwMhFxXu$s%W;rC^*kjJiF4$7SU+bOapaRugj!fP!juwBjlBgW=(k8?g zEDKqEzrAabT6Dehbll3YnOxfM2Qa~^EAb((?+M3rD5o(D`!~az1prqXX`ApVz$v-2 zW1}dbmJf9|%v$nVl!lbyH-IJN$r=0Yr@+kGQwKPitoa{H^&5g(@@8j>^u-E(tt}};AtMcF# z*QSL=fPt2$VG+vSSHYDgfC%;nQYV7J0o+n$u#G!OZw)1_@X&oQqxLLMKC0}@Y_Nb~ zB$KrB)7}pef5?ZTBHK^w{Un3Pg8*!rb!~Hag(t%LH1iCg0aWkyB2qLTX}!jCh#So4 z-&H?htD`g?B*>Gc>;4BAnE7ByoPixM&#dI3EKmpI#Up|tKH}U%X}p zUl}a_6*KcmPWeyE_~_TRT{@{vo@^u~AoD&+BN=}AgSTN@1~@F(a)ecHy-gS(G5^Wd zJ+&rRTSy2kN5aRNlBq%ywF&QNoPm{U_%veUTYWYF4Pu7LUlv@KiG5+byHe@!MO6G( zHI_%N4B8~-;kD2pXDFzqq?RrZc%Q(?>mRUR(>WI|(70?$B@N{(d@;f#^5wvWHC;Cl zka2sC@f`L9k0(om&;WAHu^*66msTUaLvh%$_%Lt_z|qlNGs=l3q~38iMH0}idc`Pz zXK$JN#Nyt64nXz#g8(82yNvi19@O4H#<>?~1v~zUkv~ffk&y*U?!X4mjxKGzH`JzN z7nsOjPH%Y}JfTx{)5D*YiHqbTYXKbcpXf1c4y~otxDDKJRN=Lj`IVoY0HVQjZyXC1 zZ0wDk_fHje$_`);$IElSPyUuxeoWqhD7u+RnjsnL>kk)GO&yK!S63RViL_((K^JDt z9^aM4B}WK>FJA9WIfvxgf?pVxjQe^#u>jIfr=y)f`K8d_x8q2j?#A|=Z0l!Mbj#T* zN~MJJ)EFkHQ1HBQVTc3mBen3MIO@uA`{eSmXx&oolFIN`c|~@$YIHK*4193#gl-gU zx}*l-1}=&<3J*Hjd#r$e=<%kKZ)YPZnzthHBM~aoLNY_{WM7U$&x8ZK;1mjVB;Xg+e=!UOrd=IHp=<%?%;K>xkP&C~iy-QK@v5M?;}!;r<-Wx}Om?ndI;0Q(6U;4GvPYfqlcRm(eCa z@?SaBEqBxzbPcGkPaN#{Nx#;rX5DV`7Is3Hx>`roDVo0aoun{2gkz(Q;|w~#jO4$U>iZd|4ZV?QLr*2fRZIQ|Zv7;gL= zRY^&Sr=ymkwzOI>6cE{rl?t1}$mw6A#GGIU$4%tXL`G9y$NtH1>M2nf?gLW5fYfF| zEajW`$PY?=KYS~(cEEv*=nTc?VV!W?irR;P$RvLQtNh{nt>1*KOk_K1y%yA ziK6Q0u<0g;JH*itIBSHZ&@J_Og4-RUJ#HnohbgX56>)00e^XP!NwI?uWq}r~zYa?0 zc43>gN$+18$5HH-ij%l-?cp$sqc^QEr$p%Q$HP*cP|WZ*8>M^`0xWiXY?=R=t1`+3 z9eSKcO`HS)jdi=FuVM%b`lxCdn0Sp6u+58rRch5LekOPIlizBLB}57@p4rMyI;Ys)4lWU~ zzI!i3wGbgBnFv{U%_alN0~V;waS@ z1635^Q&mcZI>-Z+LWqgx#BS~!1o--J51EqvE7HGHgz5Jxv^PBt&Z;Q04y*Ln zKDugS#k?&{$2Iu?v#MBa6k8}TXJtROLjC88D8PO3cf5ZMyEgnBO$Y3(YE-{lZZ)G< zkQWpGiS(^{xy0j3gQr=m7=K-tC`{`s7`)QM>0{RFc0oM3cQq_vSlQmJ%b%e|@6@Jo zy+h4T;4yzwP=u_XEzG)0F;Jo0fGP%YVPH%Hjrw^TTIn=eR@q%*d(yn>crU+|TfGE0Kg1Iugch!F?0WMrs@(gaP_y1`q zr}w;23D&BPdEgp!1WZZ@`huYvWuNpv2Vv#JB8xP3m3qsd7f8nr1i~U=$36pBYrAet z<{&1L>HkPdN{WLQ7_}b=qKh>zbB&m*2w>}^_Eut?Eyw+A(+-prV5*WTi%F1y08^=h z*9$<~b0&;a^fnJGNZ#&6d2sqS1W=Eg8=G}l=9*cvpfF;0MuvEm2j<;9LI3BG9Si@t zJ^7WtE(hSyJuGg)LRV`_H$NOFQ?we4tR#`L-(AuEDUyV(#1fFInb)Nwx17~*0!QDR z`Q;bpfBGu6jf>i+@u!p0b1|D(!E&lGN8$n8qOVgiQnr<6U4;po&rSF!^nYvqGx!0= z1tVIJn@OXfCoLaUKN=MtoqXy)0{E_3V5!oWCdrgGXs62@YQYV%^ikX9;6*+1#*_=r z0+2|H@Bo*`tf10@zBr+%?-Sy|VZ5d(>x5!A8sFGJ!Nz%Cr}o*P^s)8DR2yMxv=EG_ z(K!Yvh9of-UWpiI3w_Op&k9p$3&!YZcCncn0ZJ>ZyVsTki!Dh-HfY3F@Vj9dacD|8 z6v_vA7t?nT;xCDQo_lUsCJMcpiaeqE95&XxSFxapJFsK4h$6Fd-rDg zk4ym4DS+nDUr-X=olk@|05Ai6uXNEpt6%vM5V}?>?sk&!v?NORayb8>2h}J3N7lUZ z)COnQt1~mJms2y!JqkDx<1W{z&tbMwprE5z+Eh!|mIb=G&Nm&qgTO|98BfT$bEYCq zrs}13=i-h6JWt{7pa3KH(p8w`Qv8pE9`8Oz8-EUVAR-Uy_gRn+WM4Q)oJ01yY&W+q zVK;A)WH<>NP7b`io%URW{Qmwx*#GwGB?i9@sfkah1?GjIVtYPjsqAq}MQTPG0ucr> zu6}EY6aybxw)KI!@|0XELZml;^uiv?n(rd)rI|VjV3R1$dSUX-fNxEs0)CQ*T1(7( zX9M<`535cuO%(*R&{NOf&!??)ya5ZuYoKh4+h6qEB0bfWsZgYKogh5l3S`fZfSv9z zEDz-0tbL|!%bm`^8(3Ls8?Ea`l4=F;YCi_?!iH)%GNzfUKd_7RJZeIrFx$Aoq&%WB z0f{J5KM_@r^li*=ETz|eARS@8foZ0F-~h`QTZpt^h@|fTcG!vLK+Dib2>4d@5n&HW72fq&m)x?=f=qaH(%MeArd zt)7mnyC#GaIsZh!Siu}P+{z+yF1zfIWs>Z^PmRrxqZqh1ykwl$SktONcTeXLdLrl* z&jV_(?nd;dYO)yW#QbZIhcJC_uf4G_L|V5A}~Bt8!h4 zi5dq$c5xKbqwFgZg)OkAM!BpXJm%>2G_t>uK&uINueq-G!z(cscrZw6Yc^tdVa!+{A z_TjzcORmw++!H9HHc+1l)SJBJhOESVOi(j&Y*SRNVGdZvqn&s0?ho7?FZm>W!^7a10ps%M37*^z#aWe*b2M&r@66_ zIp;s*(f(*@--?W~p~GEyO$BVl zL4f{|F`$m2bwm;;OKS~?e08&!ETVdO9+lZ$)0POnKdnc*s6MEvrb;nVa98NAOyO0A zP!Cl_F;a`RrW{IRq(U$}c2JCZVEV;>(L%Fk7?i*3h4q5HAGShOad`>LDl3uEtWSL( zu&8?NMXj1h$~Z>c0Py51`1p7=8V~^8XdsRblhU1DXki+fYDt^+yDCYO@)WL2QY*Vc`{((Yj#eY!1|) zWW>KkO|^7!KmB&11yF~|+-l_Gc@>gsxv-Tt#k3tQFe@?jsad~mKpiJj_B7sTug^!i0-r za+SQDoK=%SJq%Ko47XgcOVm`?&Oqks*+7dU+D`1e?MG^M6EmE zUq;IoN>6qtdw1mfvqX&T@~?&5;t@E@##Ns=#WO1%&Dtr+bf#UAhTu~q^A%Nh6#5gv zF#b?eX*2ot{1*5O!_)sb)pT|NMCi zpMI}=c(O5?W1Pm88ST>h53l{tos(Rv3axiX4`fU&)0+12${Ysh4>FY-vl_Q@F|re8 z4)0(yBpXt!E%}ZwIu?aU7*24h)GDbHZFXD32yz-pe1IGQFGvFKqVO^}VxKt9s&@rX zSu~n=1A0~EEY>r*MT4o=aOxLrfGJy*9i zC2hWF0T#Uf<)>tclHT}pgsPu_n-(tHgz+srV!nue6h%p8%KMGwv;S~nKrdQs+>a?F zQH14$NLHwj($Xs+JFw9&*TbFcEzgpx^f`STCVOX+&ato2eBl5)6fDq|R5lZ5%S-?F zxoT3D$JaR&K7dEjZ`}uA8ZD*+C^fs8=ns3tmZ;?DV~ZoI@&Fre=1C=Odgh(G4$zjBP zyu&YMZF1b;hVPi6;V1{Tagk0HI@hL~*}T2M6!Z!XFuS-> zz%5VIz)2eU`|Qeye`0@PJ`>xpNR_^p0|+$1`%1`|T`Se7+Fl1Rs;TESJ@nS@jAs8VF~!)L zfx(}USR_5K(0RZ{ka~3+1}?eVF~cz_0KEP1`;PFU4-2uS;vg&%`r+;Q+~i`jJC(}< z6%LIw>VEw@8e7MO80Go7ax|JS^|D`CS=X=TBSCl^TdgB*^+*x&2M}%{4M)%+c80Fy zlRgUlf_R0xR32dSUMlj&kum^$E~!r)De-DdcMUx|NV)VM5kpZ&5gE|z$`1SRh>p7) zyL{+kBIsvs+kAlSt{?w<&W4|x@Q6@>Shi6taat(W04_N>=-%gd)@$?y90}m^@MdAy z8~SR?!86ZTaLfKj$-W#GpdeqsqVvN{BM4H*a$%v>;wX(XJK8+`K+w0}MEJxQg`GQI zWn*cOmyBm^)JtRm4P{7!N-)Fa46I7?wLv8P74R$3#}vj72U<5rGb3!L z_ZB3;2wfjy%2A>i5iwx@@_p}<(6civ0C}-E9ec@@@aob%m^Wq!Ip=mvYXvUXQbJO1 z5CjH&w8h=WcIX=m%ZvB|s}&^MD@;piq@X7<^@^hOItWAvb*!iGithhiCEQB@6Orxd zY>_NIe4}$bj^mP<{}e){j%Zu=6Ji@lS3&}&?Rp2ndB-(sRm=8=j_0%X#Re-ZIXO8@ zkMDkl58e{_V37TvG?}17@R~#Ekza?UvzH7(AavcS`K+v*dzqGr0zrbqB)o!bk0h!A zD_fg^>5Mk#{H)5pV1pS95NKrt9hIZ22K^NEgF`z%YyiWSmmY z`x`=i2Y|Ta4&ap7daG{U*#(ROtM#Lc)R>@_oyD!1bdSoF4bq-RLD5~9*Ore>jPLlW zahe=@B|=>_YHWj!CtM}Y>_xe&cq}B}y$X#ISfm#F{!#EuJ*{r>*C~lQhA2|P&In^; z5&BR0D_|Yqm&AU8B1|gz)7Jwecx)D+hKIX^-}2sEZP)D_x7+=|xuW{gk7Zi88fw3! zSZIv&Gy!AO;I4>N5UwEy3iCDhGEN&@Ly}(+mQGIzhGsMWb#Lyb6$cD1H^ed2#v!^r9LyN+!^7 z04b>3xsRbx_s~N$_-^Mf=-)n;=vR=(Su5n6QD8fre|~v6A|m3$$yz(!Oo_5I5Ys{> zhQyVAe^%f5)$AYfft(4c<<0AL|0_Wk48Q;Eff?;*fC~vu0wM7@x$12Xfz+ttfsSMz z!@?)a_fsgEhGImWAgM@kB~HlFK#0EwfW2RxuHE=DWT;SI2~C?DGj|$J;k1jY9ep#z@{6)aXR21 zGP#JreX%m#j)0-B?)}Gy*Y1RK6h3ra_Qu@p`W=_CDXkzl$6tV6jcLfCyP!un8YpV^ zJ}u{;i!x29GyM;P=X#U@uvm7Jp|evDl5zz67sLZXc0nU`Vu3&)I}38zYW4u=(tvei zX>SQY;uuo6g@C4V@pSbYvKNeFJN||DJ3D~606}A0nxkgd6VJxwKXwbuw&hw3xr+Illvf>dp;-#>hW&dW@rx13JdH zEquxkOXoJSB3kiqDZrlVNzBhUVr(vg{=zR8&{8qP;nkgQ>8@{QE6r%y`i_!4_Gc3x zng!|ayjSc*BJLQ(K{B&4^jM&2)UmoR^%7|C6)^qDy`C zu}c}FwzNOtG2Ry#p{Gw3_Z#p{cF@z){u%aa?*e`zMupc?h}P6d@F>$xl0E_v*paHW z1mY3@svuT0r$@wHhRtXO#;{^GaB)0kmNiToqpnV}mJCD3XzaeEC?CKHX`P$V8&lIe z-C-{pFCM+NFVFc59yblO5C4{f0OXSxZ`N!CNZfzF+wpjvu?}~RdIs( zuaBhW+Owf#OW`tpnqW-z(3jrvoZ{ z+Jkqqju%dcO^}KTI`Kvce1k4vZ<*6bkA^)`*eljkT@dwc3QsrE3mYU+ zVxt;6+B%wqmy6E(HmM6$O!I+-rqtEAWOs5k3Eh)S6#e2+Dj(OcoEqtNrHZzrDQc)& z$Y&n%VkadVMyw!JM=+7~G26;*?PiJ=2sQp^-=vG6*|_&Z`yfK5rWAEMg1@uQnK%vr zL~?}M{R_2E76#H^er%N}VmYB2rH_xbZ6yuls5)-n8T#xb)bW_3hwd(#-Lf~@vU+XS zq@|j4DEA%+gs3aipitc2c4>dH@@-upnnnM8tF;YN-v4Lbu*CDgrIDKBkKjV8*J#=^rp~C<=}<9C>H#R6 zA-wtnh~fYX1vXztOC(*8$vC;;$qYD1mKbnPY!3#qa=yWWGU;M?R~&MK_+Po?>Ww%Z zN{?OonLE`Cjf;Blhs44S;wjh6jX4<=Ip=~DE+4Hv|89T_p+( z)m;S2q|DoAdb2%w?knN65(CWS?gvM;|3Nm7DuySJ@G#eP1M^nEwzjr?Net>Be@8-0 zj{fb5nDzBdg};L5)K_d?qVRgh$-42-YZuqVxOer#GJnhoPfNjyJ0(jBZ8Cc#KBSko zBY#b@l&Vlq5$4QFd+YpwB?hW-IrhM|42U!5u(=N)c`KoLdXz*2?Je}h*=<5%qG6(V^s@wRegmt|pTwfY4Wp2A z1NP&-7KE@hiQ_02q8>0U0G4ZRq{XFu$&?niotSbHf49g1r?!F~TR2j`%(w?70om)( z4R5T{O6rd^+-aq_(^Hmuw`a2==rG)F3FmBlbA)xp)3(b{+VeUo00dK@X=BIx?o7twWTa!s&*DQtsk3%QFMM`{=1v0njVf_f%ws$Ov%R)b~(!saE7$(4dro6*l=HX zoHWz|cEZX^>;8Na#Z(A82{flIz;K_uxC8+a-*5)_0$RQ1bY$iuRJMi5Iv;WDY_e$Y zy>_Ln1uY`2u!#&opy!O;2B~5)6_pXBez`y}z=zS^q-_nVX zA3vsYTVZB@KjRm=9^(q{=oH2g5DbteqY>V4Mnins0Y{_5(N2O3(Io84lkJu@l*A*U zWyp*_l5~M4r=+QF7Z+|Gp~nzRZHSSTXheb8%RMrIVef0^Xg?+0`R0`^V6yKHpJ3^o z*V|^!7A}x*gE4{t;UtGC=ALWMe-@l=hcX-)GVK9e3FFM|c=G>(Q-0)!^Q%kjfYtse zJ=hw5Xx!cRpmZgFcpbF%LX@uS$4~HyPqFUs1+RHQycoM^OQ|WH7B&n2yl|?hLu2EB zz36ATW$4f8;NzB)fCK^{kL7fxBX?rYR+(CP&x0xHB#4x!v7ttBv+g3VA|j_}zcsm# z-cPQoETx{_8UQ?buQ{*Lw!ce9M0E!0EEd2VU0E7g^GP-(YEm)fOP2H-Ux>O zY0+!E3sA0uKQ8FPcVPJXRZxLAas56$Z=(cRvyM8Vjy|7PYyWJ3MtTsjm*N$nl%Jzl zoRu;&JUW7tG#Yge7$%T!6>ahqgo}q~0??)&fH-(@)_%U7W|7_fbbG8?snv4ihpzk) zwxJQ+8v@?XCVGE7h?>1vYPig;XVam~6IRdf#I57yxnjWeS(WgzE3%O@1F7+>0*P*m zJ^4mdBb(R^exd0@&?i6tVM`d8&BFbkT>0GaMsE~H{kd#uJP5eJ#ifl|I_;fVu5WKm z?P-$74Or|cy9lS1mFlToqVoD%K~v7^K^S%V15x%}as(nrU9CP~TG>3<2Ivm$9h*_= zzX}#Pc;?U(#Q`^XXbvKjw9p>EP2E=FC`4>dYCnVWl7w#1A0MmQWxA?yGzjTBp1D;I zl3<)0Y6B?^Ob}C-aoRQcb0gfyXrTvpgYylgU675VFO#5My&7D2;e$pdZP%B5sEPO- zjRfpp9I!~A+~^JxA+8Q^pC{yG8q+VD31~q6fc;rAVX5okN9P%3RwtF@<$3wP?9>S> zjKt6gd+n=&MQn1Nwr@#HV0qh!|0C)wqoVBIa6d4lbV#>!w}2pnbP7WwAkrYxARsYx zNOyO4^OBMR(p}Ojt%OL!+5FF0>wLj4tc5erv-iIDeP7q_f+uHJQ+E0@;S7CRT^2>S z+8Kw=aBM=D$BQQ?UMsu934A5hSQ^^K!oU5Z0d5VIwLDe{HpYUMiaJVQ=#T?!j<*hYPDaG)hImb)k&(j4dFAt0Vg3MZE zer&SQi*;@kFIG8yYQ`XSF0NV0+&sRUo~!x_WG&T#DvU{igOB5MY)_)Z)>Uw&-?C(s zEXpB(&csC(9o*gUF)-|Gfhkwo4%j?ST79$8Cs<^-Z2#-*~2X(zXl@ki^UE)Cg1MGz3p=U80Q}VO} zIM2Vw)@IxYY);Ah|F$x!(w6iwA7C$QOzRpV}}6GHooXQ4cyf z2?gwqL8dQcsiT^WWA;DIW0kq*|Aq;7xJ=OA`FwOoc1`~!aRFhb9{y(>{$0k;0us0+ zXjTXJ1@mA0U4OWL-gWc)#qI6c#N|dH9-+I7ABmtKN{RTYpJewSQ;sT3aB(P*l4E%` z!sN$$Q?waX0mPH>RAMJ9hz+J*k6y#goccX#K!`M3g(B_YsCk2Vv~}$`GY0Z~19O|l z6)<`Tt&+mRR`lHk+E!myF0Fh;t8*Z@5^Y>*Y~#8HpitYBOJu$R^YlAxhiOotiOxBT zlV7*Id`cj=>e%-jDr7OS7=7TwuxCw6;DrN}(?Q>_WZ5)z0@httL%-(-|f4VCb>NKrDtq-)}! zfGST__uJa%{pAVo`CtS>uIPZ$+L%u;FM#p>t3i^Q+30_E>Hl4c3=AazQr%k(a+W;BAT;~w&62yTWGdtSgaGOw&GaLakeJs|Dbh*TBfDf#YUbuis$yB$m4&P`2~S&m=A~ec01WMH}YzIFtl`Y_$~1 zIW!1~S#4hnJ=)t)F)M2RkVFczR_Dlp!nI?48S*^q98FGM=_>yUD9SqND$9+y@4rmO zX+7n4!l#vt#7Cbrf(scLRvhW*MYI{-|Z@_aWD-?_SKM17uU0=w9 zO9P^!0;$~ntQ#8sekku2Qk7LxN9V(O^bR+7)fAh6R|iPlOBvZi`^xHrIDeAbNVR{% zru*q`&X|!_i8R;h?0I*&^YO(}-Lq58SIqVO0y^)3Dga{Qrp>W^dt~!lijJn{jh9N!KCNZZZfMYMurf{J7uO2u~P@3aPCsX*zj)f0gZDc#?{}vPtS7SkB{&^_b1-rdf+N0jJTND~dl5cRYV)TrPugX2_U9|x_;A?>TRvk~ znigPcU>U$p@DCg$g&A4VMofPIilqGVR$U$SqyVvjIz}zMGP$q0Gx52GjpNuk5q1<$ z)#kP#%X*lLF))}qbr2bjmLbjIvf|dS>9^!CItAI-XRYshyZvSQg_xLLec^~pj2HeD z`8Nl;$b>mvs+t$=d09+>CHSV#W%-Bz)^?6$k%8P#p!bh`B}oUfDhTa~pyTe@<;l>+ z3+d<_QAR8Q;Wq$q$$z znKY8NVuq}0EqOo+1f2M+N-e1Jg>Ipi>1zgcctS^NnWCN$7rA`d6__2|{n#Py>zb_= z?G-Zv6eAWp)?n|mqnWB)R@^7|ixOyQ@19Q7$F(>i3WqL5R;HO^q(K_Wb*55id|n-; zE|wSLG?yz5N`I)#XDI6j&Y3>{0#yU%r_GV84RSY10=jjF5q||zmWd%AZZ_IM{a|jK zAsY5m)Ex+0zp`QJnmFq4`?g-;s{#{YH&QOeqZXlBgfvx$z*^wlo0=E>X-mNBa51m- zY|OHksxFdhq!=;{chEzN)qeUT2d`;1-ox%m?rSt=aYx5bP);*U{1WZgmIkCY zxXX%Xa!Jr!-XeW{poo>q6qcG4mM5pPfRN<1{N+CtiW=Vw!Czzhw-;j2QSZw0ujL;* zVKtJXyIOH#JYj)h-+yB446`2Jgmj1|?2<^jaF6(l@`6@KBj<0PLs=~qT;pe?@dp&v zy*Q3f2D^z~_d5*QxT}5sTB74IU^Qm12@R5C>fz%uBk{`lR$x|*BQpb_J-`TYC8ZCrCp%Pml% z_G`#f2k*_4^u=P-bv!VTa2tj_HZB+5=3MTkTS7ii00#gpie^GyDcyQ%5gLHkHNSv_ zSRn0ao<1mJEt#KfProU!z-aJCpFn*+0+@j>FFVDyJX&}V`@$^9$ZVQvQQ`uHfsAdg z#56JJSft!C78XoO%F29x_ui>Y+wagUmuow_u)v}q$(o6Gpx_V+5u=z6`K)DGSwKm! zZ*pUv*&x6|x}95Z7s=r+bIS$b;%-{lnlXcVE>!5xUQ-y~QWR?I{YrI)Fp+orx4{rQv8imG_t3RRI}9{eQm1L!bCLUp2YAOBAnoEJ5H0afZ_!Q|n_7%m^5M4O(801^~!qw`{I z#;tS3z8yz61E*!p>%Djj7gifDVUjaiHv>O(P*w!R_8W6}z^padQ*2(hCmvB6Q7a`> zWi#l@rd#1q2Ky)aY$SmDVVx;jCL+^@gb}Tv)R3khYEeE%b|SIrbx>8iWcS}@2qmyp zO@M#w!}K_$N+!nAwRc0}%yFH!3o$6(OO8}unl|3fM6rv*(GlcD`XV1p2||9zL}L_C zH{FdP&0@77VdkT=av@!KUjKP%{n0dkts>ox5brxD(b@wp-2^HW=Swu9W5@AT8MKT6 zs_;iY0a_X@pz8Lck{Nn)o1h}DMx`4DpgDti(hbtT>snWcI4M`g?6}>1_0ZJE4D!^n zz@iAxMc{J^Et^vm=?zx(7f-s#KpQx^)Z0z@D0m(AVVS(mu=!RUq@XmwQbvybzts;0CJb_edzVn=C za*|K7cNknbni3J)s3X@EwP}_0xjoeiIjC;#!B#zCQ{84jz+@TzY#9I?*_vnFH|v)I zH4?Lfw6)FI!@xP6p;A(}-1KT7Ig3UT9EziI@l*TfmvNQ_?o5qWFk8*SXd6Ks_}-A~E+aV;4i)IB{gSlyi?7!8LolN5S}~By90Y4vg}`z0tDZ_s{{7npa{3O}&n6^e zJkNe@{>pIpI`djGD#M|Rd?)*p{dcxuYXC0pA${xZ52oRG;Pq$8awU|Dq5%BzYxb?h zmUUlBED}zbtu4FdXsSPvng|kjmcE7yet?IydGfapB><)RQ(0cI{@JV{4tVP0wBfW2&S(%9q|E*R3eTL4xP$we<=Dfz=gfLJl@1?7iD8- zXWwuXiOr!Uo}zl;&e{B7g~ZwL)29~{6coH(e|J*{6*t}6r{?CKp7K!ne)-~;xq^a* z@k*hLIT3m`D7U{nylkK(G`%p;7WDTu+>FI7WY58-IR0L8!pV*(PPiWEH1Y4rwmT6U z2H^vmd0(DP#40_+=*C6yEAm?yWRi5|+|Z(aL&8Q0c%Kd?NlQ_*POB&ukfzE6$rs4+ zbX=Ly-Aw!e+K|rX_<95#27OQM^;yLT#k3^W^ny$)?wxm`J5wfBnOl`YgYwjGt!t9r z^=OKFs?HFd9nM^V+=l}Edm*Px!EVLxZr2B8>J2)Lu#1Ji-~zi1qI0pYR)40vtL z3Chl<0b6v)E%*NrsuBc)C(HH zkmSR7V_Z5nZnF=wXw7Np1>&&#P3(s(h(Ec*-ut;~|8L*E6=`)PSnJ451X8d{Dl$v))>FgJ-9>fzyNay<<%@U2LA<7HnzHz z?vP*8@=t`)C+;!M@=aIfCj_&s;YL>uhe-x;3bZIdCkfsPx;3!x$F6sRBS|Bx!~@{r zpYgi@Sa9vi5y9Zqov%pNICu-3Rz9=<(pbV>MRoKcJ}P2*dRk;n>OuN?5}u9iGxRVd z*iPb`MpKQ8-+txKU|m{}Le=YOG3~4vAGuh%ETnE=K#};lmW-Tj*_Ph~0CJc&DD7`j zIdLb-*j+v`0ZH5vE|*3P$#3m^*aB{+WP<<9Dql5fPjSTMTE*kyiNs{rAAB`=vc+Ic z-Gy>moQVG;|7%zA--gLkl}S4<7<~q}TW$cMVxB(vzKWOmp^`^I$b1t+Ql69IujT61 z1rn*dybDZxO8TU>aM`JoQtSGJz~$fXbG}6%$UN&P9CMK>5sky8Q$A+AJW*)G%fCtR zJD<~anvl52?dYI#*%_Dh^b~!BFfP3HlZd+*RM*i786Q^@6cnso|FGPM`Aj|#c z4I1lWTSxbbBbA)t0m9sH}~R)$WX4*#n2i1xy13gK3KOPsCg*E>c9i#E!z zcyrAMx572atYuKJqJlO^{?2Y7b#;8#djPNWyDr&kSz)7o;EiU@*IZN=W{U9bwCIS_UB)6sp@2&3@Q?vbQ#CDA2%dJJ1 z2?^4RbwA0r_Vzm4Irc{~rU)1_ZMWS6{}WmMATbZ{_n~9*uvLSpfdAI&hs}En6%%;PzG4HvPi|Ki4LUBB!fdCk$!2eGX?3-nr6sd{ z*Old?uv+2u>%sOvU6k>g;OC8A-_T=y6pTe`3eqOps%?1597niX7`2emFrsG_3*rB{ z!e4n{Dg&WMf;mwWgUkn`&9=jA3lyz4pCnQN4(bswL_l5L6UB3VSEpf3LyH`L7(9zH z{m1{w!!#x}5aTfiA^|`y0ug(n7W49&)xPy-a+m_AchzLxA(+RiR7nDxy4?u{9N1$Y z>51(zS{30RjPJ}!2R`W#oY(U=L|Y37#nwp22X=im-(XZ#yGunXG-|@c*Xi2Lmv{P^ z)WT7n;E`)-pwbch#BnAP{|>i<;!sIk7&SH-krZgT-#xOFWaYaS*q3b>0K{=vSDjiM zLL^O$vivyGJ7OSEJ<7qrw#*=X!;ERmK2N zR;CMTs{C~u3*GX`XGO=mrjQbeh_yfC*J-?UZSsUUPw*45mAd>& z(WuhZ#Ld^FM)4Q%Pf+Fu#x9ds5q^CY)pe*8zKIYyNH@r9nE0G*{2WYKYfH+|KfUov zdm;(L{s-+8HPMouCJ$F66p6w_kSv z9UfmRBek^iE74zqLj|U%qHO(A?+@L#Q>V<4F{m-+^UO6Nxe?2WmFB|6+(7Z?nn5m3 zx(rD$=ihkrAocmXLkh3Ee^?VE%XKo1BEE4-RIu-kHXdYY^L$9=Cl8xo_-VxQB=LFm z$HRAml?JF(phftuw_tbI0|E{Xb3@ZfAQ)C74R8El*{`0r#xE0?XF%R%Q5@xo;NST_1;JEE!BQmfomUTULKbDI#QsF0OE z==eTrWwP+*=nizKfbA-`Ll~6oyGp*FFUd2!2LI4OT3E|SXbX2bp_59n-mmjZ=;Qe=Iw;HfmtS{vzZP;`&N`1Jkz*8wWc{D z_hocr6mdwSigg>Ofx|8{d)U#*`?&#i&AT~obIg~+NqC_}46lmN;CMN*>I3zc z`V8_5!P2(6y9SI*FQpPZxQQee$p6}=DfBVJhftEs_$e3Xpx@pv#SnU07K0}C%0)Aqbcis9{NPynueJu6rH5U^q%M%^NphG+if;17;3)0X)cIvjOHWbc2q#q*D z7D(-VFImL&3mSN?zYaQOnud?s^4H?zY5X`$GLOgbaZtvSBZ&{m1tcfFb$Jnw?7ksn z^k_=W$Ciu$e@a)AaIZ}#P_8I6lWm@(FW$H^rcJVoJxk-uB-m%1Uh1`#dj4gW(E>W) zO6^AWzOAc@*;w-zcP0?^9Us0ZJX5)W&LWMf%;)40p@6J`;fb>yC@ShZbniPM$Md;v zFfm-aq>U^WUuoF-I zY)9;pjASFq{yGQOWDmDbv_PQ@y7xeQxX9h-5Di#l1`1?*^Z|{MmgN5g;&7SmY|KsF1Ng%ivuF1gPzA zp%YB5*}^_FN0`_;em6LJjbZ&!vjmZ(ULcQv|2=7R=#l``fp=iCe*k4Avsb!GMT zEn|-^K-q^@1+~FOMB6F6cmcW|0s>|-ey1g^f536C{$ukSL=9-yKJWlD<1D5u1o4%d z6l|(5(uRBV`!@@A3v&-xjOg?6&{sR)oZry8Uh~6Wb6Cs4D(DLjLYPy*D6km~PDoZ3 zTA3nX-lC zhOX(g7qW7b6cheRwM+vWY_b~MILl_J56F~A%j};CGd&-8(msIU2kTxVVF8>ibcis6 z8ea1PYSy4`%8`Yt6~ysCLwae)h$lJXj9RDhoG^osqZFl^7(004>Rd?c<@0s0ED1V z3Y|J=sz83bUPPI~Pt4F6)1(dp)ZP`kEQgIt?(w1@_T8E6$eQQK_8|s+>3oectFC?X zZ}M?*>2y<&B89~>398-15Td4xG;1d;1Krq!Su^}cU>!hA-WaiffQcS}-f3D0tZG`$ zcZ;BH5em8e@|UP}vzDKE;1#7RAZ~j=k(#9jBIeI2Y`Mm@SlUDWjlQ`&G;7L*lQxDbXfQG)w8;rtMvS;Dg9Y(i7#&sC?|s4%#G*gIWkP1%=kIWrh^2mq1u_-YuV znc%80y|$^DNI*#d3G(@)5JwlOsGwUr1C^eEPSYD~5hpwP8=ov|-P4))$>{>_K2>e3 zMi3e#fM|5yoYZU0o$Ny@)E{GX!g&#|vb!IeTVJ&Rm7>#^t;%^T=>6aW^kjq7n4(Mw zAT)XLr-O(k$D1FrF|Euqkj(X_*8A!-=;O%!LR=P(I%XPJ0gE;b@S$Eu&%iddlYkvj zOGePzq1xIia8i}ex#mRrxwzNaLY!2@Mo}cUg0F`uQu+NAHBAvtn0;(rlu-D58B|1x z^F~MT9MGOj+{u>){1)fw`~t}EQIOgx+btd}g-%6mwHzDincPSV^{3X9*HZj<^u9{r zQmgqCQOtj+?1dkNOV*G08hE47XjCmEH z#0GQh96rG@n|if-Q*iJaw-vWuIK6FELwN&u3V>PL8_8b?!6&AuioT6=-&KQCWm^0e z>%P;}Z}v-;SRJd(dcty2uOJ5pl2t#3BT#uroEaQO&|whTDjqHjm}x?Ms9?4nHjbb| zQWShjM5+ZJ2pu(dc||dgLQkeOo`XkB^7W-Lma8b@We#2_t*^%r-5F@ad?kK!pYv5{ zA@;%dl74cL>_#uCHZ5wjHP1^u91>;nBGdTaF`R`%M~f1-JfU=@D=ofDkU?=iX!;DPnrNRr>Qqyn13b3Rv51cSjnU4y_WGh8dJk{c3Cq z$K`!m>AraV1w}>j0iY|41mb;Of*$DU8CMHrZ;uame1fIOgs!@qf5zTlig?(5ep8`T zN^GX@Z|zRHrDc;j1PSv(UmlIus7RH5Fyex9duWQ8p>;zC2c4H=i9u~H%)Z?-TiQmr zj^l-F`>Q?1ii+h&_FXCiIx_MxKyeOS5JlHKm+uOxUi@r{Yx;!~~RBSPR50s^)kotPW zLAB;d!24<>Y_#s}sWBemV=8BxKB-7L78>=8>G^|q<8(g1(gl;V1Jgv0+=IoQ9X$aO zkmTc^_3z=hCLXYq;s67n^yGjJvUkRC(veGko6F!26G1#?u}yD(wIRa1xX9AJ5kgJQ z@}W6&z)`9q_rN6`W%Y-|&r#6DRoL#k7mWN2^xsjBPm9zD#?9m_BLgUa{Op|NMDqrz zgs#%$kSEty`J=K%tPm(^xokk=n%^ScHa6~a3A$PtTzuSi=7K})P;e_a} zDF`6(waoOpzta2SD?vd?IW;@me}9+L&ys_W&TFYxgQJC8$QOs3Ykj%wC0;odwBJ(3 zmq{!L|F|DEi-beo{li32aa_MJN8`VQOj{woZQ_yE0_3tL>Zus=%p`1pWvdyCxif7P zZx_dc9G^wYfzXajiC_^^EWawPv86+&n_7?#bo1b;iM|nq#qv&GVi-e(ESAJsoa-sx z*yoomVpNgqM6wvd6tfgB_dVXIdK;?J8MvJnrcr_p0dfF&h784fHr%jvpE}m1JXHJV zj(<9T>;Sy>R2zfkCp+5KI!bEFb9#32pSW*f@wVsx$lBe2e-rXv-4jD|2$s8t8 zvTt!Ap;Nx&)k!Zy9@shD~LwHjb9ntFO5)uEbejU z`|{>cKqXxe^XlqqXk=}IN zjEX9?36XWojFgLXpLA=iDbn3k@EJ->L~xKh1}~&)LsDg`9Um zg$uB7QQDheUCo?l)n(Z*Kb@nx6QI?UVaEbqNP!iX)SaKd`NNfV z%!M4{#*8kaj@_SzsnxtaQTRh9hftsZ=m7kzX{NtdMb%9ZHYIexX z%uRGUPN^>cIDXXJ@qZ+q?3{pPtNFtZP}qO4nE|!ViRZHn6YmBF8bG+)Z=PnhQ?~an zu8+S>vqNNd{)`SY240@wnwH{mPeg~!cKRZ@e6X^@NM{ zvV&N|h2#*sQaNkXOb1giMt49^kdPaRa+ozm~|8I^CBjWwZx~RkLOLS z{FE!?glm%ApOzmdrfswUM=lOo-a9!+*U4{2!B&WJ`%z3c1_?=V#F|O;6oIIxS5Z~H zX8#`uvSw~riB3LxRJwdF46yt-m#4xQ8<2p11_Hoy(-9E`OR^D7H(}7yL3L7F!P%&+A1=*gp0d#I(^Z^u)L4Ru z$#|r{m&o)KR;V_Lqv|aD@Ra=gI`jZo{ggr5MOzy}o`xRyFJi`N>RMeC(|sR>dbnde zy3#ITq@1;f=Q1imSKekHRIC&uj>%gM;)-)AU~vQN^!7^=K|)SJQ}Q4VYQ7u)Gy0I7 zlIG!r_p-@pCeP|>ukXjNg{F}1FS_x+Vu0;?6Gd%lq)Q1TMMxx)K(H1%@RU z=87}ZGFA993hot{0OA`i9cB(Y1z2Xl-mAIu;E5jIn=pztnjt45#=}z?HCqG$%l@ADOSvZq&B$WTEwvopO>D#?q_YbPr+MPE?(__ z^_?6RKB~=$^5HG4IWEfibJ2_dg#TqdOx8q{?io2+wsg(l1V!BsUMoFZ2mo#gWGH(t z_cJ_3SlaFlyw0y`{nH;OV(CgFeh;y~wk8_)uwgPbG6-(bJsK=}F#i0dvkMK_r;72$ z`=tRPY-e3#J$UZZ3VhWskBwRMjDMsMT4{EHw*vKv`ULJjT`Z+Ih%YnkZ;T;5XP1u zDNP`?k3`xEgRfRwduLGu{~jbjl|sGOOMQ_^c98QC?ZpyLss?hy;_XRB>9U`?zVOQ| zN$Ag3ch`TOC;RoC{~gV6>0Q2IGVuCNmYEcZ$CDGCCSAYi=|21M9iWtX;9jmo#>XCj z1gTsAZLx&bu)#~HeP?^LvA8T^+Hmhe#PIP`HEWnE*{p z4-@U;$Lvh9cAVLfruY#Ev3678Q&u8*Is3Bkd!HzFM>;SVF^-|Fs8Hyo10YsUQKFz|YXvd8JsS+OzpnK{(;44!>5RdC7> zASh;GzHD+XWf3~lSN|`tp(%;C$lrof(7k=&Vze%@mShq;H+jM9&Og>IHo;UXWn?h3 zN5z~gC3gx;cGh?EfIjCaa;LD_cPs(0TBEP(V2I4CH$^`94$TKk;My71UaWwf2-;w^0w z(UPdTm)-YS_lXSgrj=$_0??ek;c54?0)7VWyX4j0!s#tkpZndj(x=qa5b9$0Kb?p& zKgQSO_qNDWfiC0pUWiW@$UuLyPzIo$0#djp&8x^DPyzzs?n#d`+I#LX>s6l5BK2e({M6Q>PRH!P9dUptM z|L3{Xrk>$nRe=?K;&a@yVQ07+i{Dl~u6x(9uhuw+JDnNWZz~g{I0P%1<_9EerLT^%NqUmNwxW~Ce!tq5xh^#shG7{2-Uney< zI4xa`6}tD%&};8uFVfpr0c|+7*Pr6hj_yFdLKOgmR9rOJpn5Cx&M6Nt1I#<`y=<-6 zWJVhU#Z1-k=g`Z`?S4!uQ9_ZM!=P0iEfBb{?>~kHIhH&4C^Lx zQI_^9Xr|Q%Lgq-@Tnm%v9deuLv+4_Oe}~nek|*L@R$ zIG%d+7UcEYBFGLty(UA2c-*&0=yklggIoYtnf;x)00gc^L(GihIDIy9a`O^SkzUY) z^nGC&D~1P>v4o$0TZ8u3MT^0+y~9_hcfqW(EN|YxIFB4wd}Ae07ro=}q{K1gZ|MjS zg<4kZwBE6<`(vp{R6ec&_CIdVKz1?wVW~m>$^&yZWM-Ybn>z(BXCeoQ&RTOkn;!xg z-vC{sZTtoB$3Gbfh9~RgKE*A{CB(2bn;#NEfZHSBUISbEY_QG!)UA=!ZNE8d6I^K_~$znbr%AY<#D(8=YEM&GOZX1mu|)!rW^ zAo*CO!Jp+s?fQf)YfBS8w2(ce93iWckypo5Q0k@t=^SL5O+m<^Pd~i@+Il**&X*C~ zDJe`0jlRAR&%+$w^jq(TJ14l3))o)CIuDIEJ_y7VIjsFpO@On9$%JlKeXjAv(pOc@ z^*4gn?gN_0XaV}qn9Q;=Y=eip0mRlERnKhLP#v9DClDP!a{jqi%b@u0ASYDt5kXs_ zzjz<_-wn_fZvWp5gZ+of82x{FU~Kl^?NQTXXo^BK^>bSC^t+Y0$tVDS$A?|z?w{SQ z9PG`;5|3FBvwNsm(aA%jViQ!*jGS>A{}wlSb8;c=07l^Y&k*24w%v+b$0LV*8-uU- zcYfp{@I}MWe-TYjlUKX)2rE1C`}s57SV>t8Od8$XjyU|qG@FimR5s?Hm1D7nGe0ID zxzwL8KD9wpFWYWSO+o;fV}ZYwzovF-s!JLxR14rL61w2o8OWf8lQKdoa5H>HrIrRm z9svc3)tBeTRM{_G#K8>3uKaiR`5%WM-FLm15YDC5Nc1lH)vXp<0r6MYKSxyE4jbn7 z&8G;D9izt7XN$3i>o|my=XM*h2x@et-sRV+;uIh35 zZW_XGL+CiIh}p^{YwZr{H0D|JxiI?f*oX5U&`_O#9(!JSdAa28qlqY#r#mA9=v7@a zMXcPFB=A0YT7FyI!Za=>^?cXPubw%?w(YJs-mx{$bgT1FE*zzCVq04g&W&p5bv1ye z=xGRO!rOzf@ne)D(mR)HpSBcK*oGemyq-0c(Pc|>YX?234wXHBZkFRrg|@C-m}MeO zubs_~+pRx(IgJV^*V%t*8$bQv)*rWEP`>AOqbF(}7O+_$*T5^G*d&}sthFI7eoz)f zF&tu)njNHc(oUUeu`oam?>$vwnBse;lFmZ$yECQqFRc@b<8cpWR~oqh!u&{o9NYn) zQ0ZU<{5!F;h2=~D3R(bu<{nmmcK@?bDqCIGQSM^lfxQzBH6o4tWc7AJWBnloVF9P> zZ^gUOSxZA^9eQ5c^&C4Y)F86#-Pl@ltYsronlPYSqJVIvu9ank@>)b{(AyX~*;)WQl=tBVFzn@g+Hk=ouuTY338wkDtL$!FK_I` zPluk>u7sEPt-3920(0TlNOFN%`_;Dl{{|(WFRv(ao71LQq~ zyipJv^VYUvv6~JLt2tk)`&q)ua$D*8C4}xo z4sp*W0SXdrO%3Li5eV=DRrpf?+=?-E4+MOT2_hY2re*+Rji4}eb5iO)1bP84Z~xdb z9%*N|I#aT3qdQZ%RLjVSh@k+Z(aKb<89MnY76eb6&QAqgz9t^p&`Y{%krQb2g4po5 zd&zmK`bU)6mpZg$F_6=6^O3d(qCzbh2r(;$yOr#PsD0=YAyv_alYBGwx;}PC8xbGp^Ck`k>7^S^F89nBkQvAn>ITQ~M9mV1vd^8|U-jrCu2e zNZH|dKj9HBXk;dMZZ%jzLuqNQJ_6Rt!8r5x;~qJx>q`f+Pk&-W{+_Hmu9ReKw^@#)g(QaSyzM7@_7I45R;0U>~i2EYZR##c7sc}v!GJ$kd zP@tsCJKAg?$nY!x;#8ci&|?7DTJjpcFKX7Z`qC^kh6g|CPrRwnJC!&n0I!=2WRqla zN7Q|L=NbnEW5l}r`ll0|<=xLpqTcy6yovPK*(!T9`kj1@=)APmq<&8}46+2r6t(t| z;BCGq9pUu}OwDs{vMTft40&4_U)#~h3}EhO+ARy5wWwkZh-<4C&}I`eh6*`jv;8%P zRIFr0-jL!W03FhO{ve@UBXCap0|?bk1bMJ0RDZfM{#s>v^XEa70k`(}d(Efg(|D!- zdWAOupcb?Z`zS{)HvJRi>c-XeXXlaSX%v-ugoMfmA)u!o?I65h*5|({h~CMn_WG4e z3#HIe&>NLNZlQ@5VpoZy1vbQ65c-%*g9qH;WG%Y5pxin<%LnW&zAtzq?3@V4@{SOj|Q<5ng;(UDUHGtEmxinEbftwDne(3tZwI~l|Y$K>78q(!#%eA z)M`=CiLxwk9}9z*a#%rXxiP=#6+L>6BqEBzLg8~V2SiH?<>}8KtV}EWVoobEGbab}*A@tb2bJFJi2=Wr($M2kJi@x5lVZ`&*W&wh6z2+y~sXY)1p zJG>B1?vB`7UHKgv)H#}!((c!qST;X6TFN@>ymRatWJR1cD?!l1C2~NeVF00^+u;B! zk_#1Slc8p2To6cl1F+q?xRB&akl+gWPw{a6&f3T=h$?7lX#4lJ{6@xm+}`1BEPc7a zXjY2!jDYrNO8-AKIn-{IdLEwSbY4d5#-H$UwXM;XK$ji#;Xqu^$iMOdnv>4SX;02W zdyG@;CJ5!C15F3+#xV7CvbMY{zg zbwSRn39t-`dw;X`1~IhWZs(le{k9Z9RCyj4_I_SB_2goUJ?yX;rPHLI{lhrEy}mT@hi>a!$}jfl>J}zxc6{}4`zASC%%te$!bw44fa4Wz zK>E;0GoM6@Q}BdZ#7m0?1xw^ek;T+hZn1-lUCGU|hP&X*BYnd<`2S?@L; z-ICqpoZi=8hqh!5^YaIo~Y1iBviJV;!T2$>r4 zDUv&2pBKR9%Qi&R0TKd>%gkJjepm!aPnd=mPotRcO+ z_%mREHjEARRaTIMhEi+MlKUf0eLTcoM+qs+MWmS(=kv$sU{HWA@ZC98BRzP>uc|*j zf@HwjXRF(lN?08Iv%BEC9)Q~eao-I2TLh?O9{ZzCkg&M2gI($DzVbyy3JjFvCK;m0 z9mM;c-&+P z$b3Ysa~nVhx8BO~8D0zzqLZtWufYjESsZ*PrqqpS?sf(Qq{n%J-S6=KB-^sVMm2eK z8lvT8t=?5sEMR%wXZHh$5uuM?894d|eotgXvku~|P#n+vlLOps%+R1CHp^!*XT>QS z9eYe*TLsiQ1nFQzuuE9q$*+jXZeQ>RvL!xsl>Zr^#ZRU1pD%v}1Xbc)kVCUqUe2s-Wa9&4fsx`^)1T9RGG7{)C+^#=}`Lr1+xAhUj?h(~li=TI_pc{Qtw# zSw>aaw%vNs-QC?S9nvKw@X+0j(jg$--3SuW-JJ_b0SRf5ZjqJ-*%$9O#{P@KSnIy8 zm}kuc{_*l5*TkkX#JnA7GLUn z-rji=0ax=`JeG)RqQ}ib@Ajv{r}m}>fnU1I1MG`j`vZd#yh@pNRQlD7^d*Le zoBGl)UQwD7f;3^3t8nv!v->9$cdO2JV0iSUpH@D#y8~Hf}#x|va2)D zU2LVW?ri{|m(NX#efz(9w|RGt#Xoc;DmB2AfiFS{gL;*dYsG9_+X`(!3d8e_O(SC{ z^Kr!67E<%Aj<5`eV(|X@fphKzA|;r?84>e3x7diJf)piBJf^Rm0@jhVWhR-mu$RC4 zF*~_nspJCB+gD^R4?F|sCk(S@ZNv?Yl>`7`sMdRV8G@$BJ9>Q#`RBLyNmiYbdVM!^{g2t?I)?)0(D=UU9KC-HVW*W@1SUlc zFgzsX=jVSJ{N;ArQQXxXj`wAN8lMnnJ>uA0?K|%6+5a3XNGI053=(vlqs;!%h z{Pb`dyxQey94U@Xh9|pGS~6mcv3fS177A(~xuqcKQSokx7<15}(5-u`_UtC$LBL@J#9Y77-09k-cjCh0o~COFfX0 zq#2JNtEFa!1HW;-@@*>9NLro`rnp+@bbcPhRy?hv!HIQQU&?EcA+yT7=iqfQ3aw(vqHm zsN6U8y6i|~TlSw?;TUud=9lIyiIgIj(%Y{fTWPg#77=O#u~hvT6~0l5;}^Q&o3PsS zODhdr6B|O(rC5TES_pl>{6K?rYczRK@43E4is0>UFp0?XQ4*wv#f|PxIuE)z2*4H4 z_OY9!hf)GKeZB|^D~HeF9nFO#l%^0kUgvD(!Zb^R?A+=DpvYC~zAVf_wl3~vK0h~- zi@M(`5LJv@+4WC}Dq>6W3eB8-7lg(T$X@2k|H%z7F*+M21z2+)F$sd_Ub{+01>eV@ z7X$-5ApBC*RrQNjS(o#Ayc*Rtg?YHH5aHVGsI7ET6~c0H@p^?W2EbBS@_DvupQdj>9=riod zi~qr%{HAlXR#bb{#Ab;)%LiJ8bxxhbL1(zRLCWuk6vT8QBM3SHgGJwxUMy1}?VDo1 z1ghYsQuL^Ye-@iuGw22VBS%IKH@+53w!5O}!vltG{7Z$Z!VS`@AEvVWAfxnZ_ z!&Zgjn;&`l4;pinV*Wn0Hgs=yrRFBOO33!qDIyH+KX9o1&MT#a58DWfrU51h6~_=r zoQD3GX6yo`;6ijGMgwC#Jgn5oI{zXB0l|u{^Iqae> zZdIsV-5iK!l%>X|M`bbl0Y%S3CkMP|jjPkY0Bv4>ah$hDnWiN24NT9%MB~R{cBLdc z+2Ci|eKtoOGp&g&Y!YFWw+>djSEs9T-%;EW3h2}BKu1q1Eh58WvRL=_Z%s#_Gnn~x zJPZ(O;Q*ml&{!Q+LG3WrAf+P4j3BcK!ax=IH{WU%;ly4uZ1ixvKD&hj2oSzEqv~r- zBUC}l&;h9Xfy)PTfivc**gp8~=8&^zOxAHt=hVP^l-pxLs1xHDEaV&C`UOw2XNUi_ znNfjs1)T}V_g2cP#Sl#8y`}`|^D;6A8Ji(kYCNgyQzYQeyLiWv@2IS5E1mWjxrZS7 zD}h8cEWXQlr&~$>zZl$Mm_PIB8U@`n{EJ%IvE*?JbmPKWSX?$E0*ZfM8}9f8G&FGT zHQOb{yW1A3G}p$AD|o^2U%BopT+Bac|T2G-}I%fzwWUU z1Y{uUZ&pypz?=#A*{h9|P{d8pX$PKE`@g67gUc}MtkXWK+jE532QE!ZSFH~(|E6pq%_50S<4EO5L-dxRn+V;0Cq@{P?C-_CV)WR}4*+JNeOUs$BI0Dwv1{+HI}194hlroM zTTH!ia;gXEN|S7!YrAoYxr6*O`8q&Rhuk=!`vs5e0G;dq1o+J~kf5&KB~pW!9p4nn z>F6!=LYX}@WOiO0tOKE;MJNco5Ksy+T2l`;nZKcVhYRROjo&FW zrz;4%NG&ftcM3gOw;R}15T!87Vk|$28=DsSyv6?y$#yIKlBwTm;~Z$y&y6nO)j>`| zzr-cpJ$Rszt$J*4?&AD@a%ceEaey{eysVNvzXx3LXV4g#Wq*fIb3gI6P(XoGaep77 zwwbLA(Xz_xk6<$Eh)^4jb$k09%}E5E;9-87d*rL21<`ebWua|<&zhOX$D7b+(p^GE@kctGg#*?GwQf~1nG1pN6MduAV!k(fOp6?ns7_Fp5G zl9~gi%6=!xm#Weys2QEyUKbFwMpauRv1#|2_lpfQGAtvhnMG$qn~s6o9mc<)peb!N z!!2LTx1V_k6%y!Spw{o}1_1S3hadBuvMLi8ekTEhbUJWPdvkrN{E*-&bl|@=a0Q=E zTVv(qnq7GLhRhXE7`3d&Kw{wE`8S*Hwmk^Y<4q4md}8i=Re9O6w@EKNB>ieudfM_| zvvZ-9dnO>Lu*t02eh#=mNlt5AdE-fgjqS1>N%qnsnxaCMH+MLC)NhJeAaBHLi!4u2 zS_n+=kMo_=r(%wOA~>b9;IWxy+qLU5KwZiVR7Z(Ke^svJs*qt*4?4Dxu!BCdnhUoQ zeFh*ClJ_tJC6g5tm7$=u;sBWA|3ETLsN?<510tyHU7&3K^DDq!E4F=_UfQ)e^yAMm z&WrcvVuOAKtTUbWRl#ATdnUQ2% zSjL?XOd{v_O>bX=-g{=7tLxUkg{z0*%cE74{5R*Fq+%_0f&%0RX3KpzcNN(u{~0*2 zO{pe({AO^>POX0N0QMVBh?ffWIp%*AM<+N>iBI@2kU7PY%!LjQPg3E;AU7hq7R_urxp}*>p?c2vB~#b(o;50M4icP?bF( z-ppErt)q7TzRzLn<%uUpjR!Wj%6qm9T5X*F62^1skHdw$BqcV=%Q81sIIgPu6|usiWumq+EhZ}~t|Dto2gl#av9scY-K?Fbnf8-cZQ?tb>;|97{lM(mrg z9Kg{}?Oe%sVHKZ1mNYz>ifr&Lk=EO7IB8-Dj!yR0UyAZPUJ!P984Apxwm^*%_{w&> zoD7Ej6k&MT-C^IL+uwMH`>i(W?G!An1P{N4L+j1^KO`fn;B|@UvZe9N(=MU>8W7n( zKz}QIK5JK?2E|19Vl8ZU2(R{5fKD)7wn5Yy|5hQ|P53IeHtIx535tPi)hWXc+S^yU zB@A?H?t37zN_$m~He0|v)#nM;M8A`$iSmx%h0?d!(+3my?8D3HZ;8S9>lv@sFOUu( z(UPqNw*drbWd8f^#l8Nw`!tlFLlTRz`nwHs_A$Guo`3WrSz7{t*>`RVkbe#FTB^F# z;Uh#)n`ldkS|QcUeqA_&e-ws0$S85eE+W9YflgxGm&vRNrTu(B)$ZuZ%;zKPI|&;f z>C;2-nLcyi_P&31Qr_7MTn~`cz?mu1fQALjer_)rsX6)-kD$a+k>mmEHyEeQ_d9~z zu6}WPH%9nDfV9~IcGgiY=eJbH$0I8(98iXqmJ@zzZ@2@L0xiBPJBK}95}#l0Ulqjy z_Jlxg_2u$^F?rfSBHVmjT-<1VD+n6n1UK4kGcATC0)eu_gc4!9%#Dfx@;5vB49%?U z`OvTkz(%7_y|vCyC9GbYhDbY4!>7-qWg8c#A+pXF4Nu~2YHeB86{kE-H-S; z&vb)oE)3mI0`=}pNuN-DdEmXVnXY~|9*I|Dibo8Qk2ThJL*!ewu+oR} z`_W-sOwjCH8rCuz5E0A;{#+~1Zju3v?5~DIs{Leu69o{}8$w^--dR{ui0c`~n|kwu zwsjd$V0tlH*)qh8$M&C(p=#wXSlN{^H^4pmI|thttg6XVmO|>;646;$K?Wo?V9=%Q z7Q-v^lcN7=?NkFH8L`~HhrcVSJL?F2*0aK0SHoD}lo;IHA{+w))H*YH;#cEq4)7L0 zvx$(LvB2xw5siT)>$ZZ*4kE5cLII@qT1-2~{}@m#c}SN?@0@krrB7V}N(zMEYKc^c z38BlQO==rwd)0b?Z@Yv~_FAnnL(Pm8v#+LBxivWUqE1)0Mb7G^6qAv6@TT?en9Y3& zFm5F#I(y>(39Aed0?eh4J-gUOo^~u3nl%S*clB1@ylaO4#e*Zw+|ijx2s2BB8Sd0n z00Sh>cr3beb^O~ie(jT_#_%DPVdQdx91L*YKObsvmdgaSlPo2Cd{lcc*T5V+(D1}A zZ*o-}A4Jc6g#dr8@7d)K60ydQHY@;x3M@%s65ue&zBsKLbH2KQg8<7OZl*g|0Jwg^ zuDV%q?x`NHCzuMqRN)8b-6IPAuTL}2L<{FpMxVsx?@Y1Q<>O`cq<&i7pihwF&CnEF z@ux08Jzyup!^Ze*M8f~u_rg+PTB#tRJiB%U1#T7spPS^Op3B?8zCNLOwVMsVyKz)W zh@dHQg>84=mUR<|T%XfMd%e5Fju(~oxP4&Wet704=JEp!wau$kcLZ?O<{D;TKXoQ9 zEI=S?IeNvPsJ5_>v%{3^5nT%9WnQ-mVUR=lTAPJ}j)vT)pS(T3gktFGrW&iqf)T`* z*5DDCk@)2OKdo(WiDJ?pd!IjUNGb@%{x}u$k~Jd9)N@%B|pP%l?kR6TX9%ARuv}5yu-pwzihQuQ8YMx49f6H;AMR9 z9D(??R7}H=J$T|ELZcIkuGm6%h3GXX2&4Jbj-Ea_$<*vYQ%p`X=pxPUB=$B^*=#qG z|5MoR?67XXT-x;6`*VK#lrV7CzdNhnNKNTfbu`%8$(e=znNwr{S3}fAMT7K5s%7G* z6`umQ5Xts@2QtZ!i&uy2<>aNoI*oNLx@qjR*KSU(q$|1#M3q(V24S_Wh)qA2Di!-~ zN*8oy(_hqeqWb)aG+qLiKB$&bid#HUb8G z8pX0JLJKp$m1U+l{Q?2dTm^Pk&mZc-g9l*9;A(AjNv=cwT7*iM+$aY03T^(fhvQL0 zU@_nTBWO-@)Ao2RnSlV33odK9n4!@zmKgw-xBg@>UqbqZ#11U+RZ==n>VvZf1Q#z6aW}IJ%QpF=;+5zvEg*`d*)`P7yur@8xhDj=Y9QUe0Ruk{8}12YEp}D(tuq({TXy4 zT1;9ZhD;j0DOJ6)8BpRM>Q@YCUqHnEHY`@k93TG*FcoWkrW|OHVa1K#_U`{zbjIxH zpa|f$O~R&z8sUH{rr1Jyeo*m5RpL$_i7=8Fl)V3vpT1s&K}O8r>QhmS;dz z0LY%kcoIz)^2~Z@W1l+B*w5*U(@&`_Nc=#KTU)@b_Oo`Hwp=`al{@-G-JOAm?P@&T z!e2YuPY(6rEx*bQn2?vNqE|d$vXpdW!|@k?a-#b84`t>-)X|M+4}EscKb0ArsKe2q zkcHV4{L)k{V1Oz{#l9?dM<4xDd#iv(e?v%a&704GNaJU&pXHFOP6iJnE+r`leuO^u=-6BhWe&5nJNiVV5g!=>V?}8t{~Da2mer zX6PIe`kZieH#tZo_&cEdYl=`oE$IHQra&z$`=U-qW)$Q#Q}pEW>#y`61xMB zaG{4(r5|`UWeMP8p1H^_zms|LZ*e`!;N?VdFM=)Sdn#VHtVE zPVokCgn|S;^!_AFLlC~!lU8zikF@5ia4r^^hD4Dm8)5?iyV<<>w)%&eCK^_fNIa;I zQ`OB<2F>hYlxR3ZzD>YDe?BFPNkFn*DHa0{+sB9YLcX0+10dZiSmBi6lwTV`|Ambo zjQ~#CM)#r)sH9s0eP-iGY%1SSQ3?lgV#NmWfBd2lf#3_?m2JT+kZoQ&!U~&KnF|pK z0{`qnK66oX|t} zNK85P#$XT92?{Evqz1e!yhc*b4KoKvZgYv>Y3cIK%?Q(t00)Vnz1}+2zOPT5y<2K& z$7#Tb?-Yt_8?%zJhSU#8kOxfPQht1)i14E^y^m)~K<2mVpzD22!*dW*Z- ziEFdh-kj8gcxYvp`@&RH-!%pky4&N(+55Q_U$uSWceiXrDxFSOH7j^cvw>TUhdvAi z%Ke?PDOnszRog5=OS!X#fq#wP17iQ|o4AyFfya-fju|S~@T#**z7?>$@u=l|BDbT1 ze=>xKnCA@UTA62K9(Qz8O%a`%=2{BzKa&yKcE6zuiRA1A>Q6^e!kJbKli#?5@XL=jQ!>d$sSc$1AC%ag;uy@Z;2w#4h8s30(*N66i;sC&ot!5~p%+lh*wE zY91|W8Fj))DD~Swdnr|;pOGYE4XF&io{YDaCmHg4gug6~Jp{f(c?Pr)ie!_ujYk6>(JdDgTzu#eOHB_ICff>izXfU0WQb^T^5gtJcf>&ic z+{^YMdG~w1nOXlI^`+nzth|+OQ4tN!1$8Pi#%HX9C4J-v zNk+ng(vsER*_%FFa(yC( zsl_a?A0MjLqBrZ97-mG%Ob&XgCBd7vY4y7?sojyy{WQacZJw7`kqU8E|j6go9{2S#efAe7&CRUpJEv2Hn79z>YL) zMlcD_`{KiPt0E*_iJ|muenN?IW?^kD=F`K?$Y){q3GsbkUuS1;FQu%Erc-0!X}q4_ zBpX$xK!&m)6PfZ%DWL`{IFcGiGEXsH(-2K&iClUqU!8-@(q}Ts9-@~DX;tngMvUbj zL9I7?@_n?Km{@~2!Rr06<5}VkJC18)EFuc}XHL0snE5*H4X;YQ1v)x5B_dvRV7puh z|F)KS)GUH$*4g|_!pav$_4(>Br7Fvw60()KCAZ$eKL}TY1QrgIJ15ZP{?LXsWn?eQ z_anDs?C%grx5}l;M0o~tkCA_-J|jUK_ZYU$&<18Cnx9~ka?tpWZrYTt5HY1c!BRbE zVnBRc{hPIWi>?RZzV#!|2Xg6BEd+8I8wU@{y7`?Lxs~w1BnORLEVjE?)JS#Hv0nLdM)UMkmT3#lFpiB78}d?Z$$aaLL?R(x@s+}c-9gh21{3nqn zd+;ar&-}^I_&KI=1-Ht&O*ph$vFoNC1HFW!!`Lu0-R6pxTRYv1T_z)2@^2OLj<$97 zNxO~vSLai>A|vU2|Bdq;9$DUcc(=}s2(rxmSx>4WWZjNJ^{&oa)H2TLf z+3l)#u<6GJA9k4hNSb?|GbuWhgch^*KzoMxKZyBy&``~y?e2Lt!ZUs2woAEV7(OX3 zh=Ka7LxwvO;n|F_1Z$&K&42je!EvSeC{?Y=t8ciM^L>x^@isYRiret!41U@%eJ36s zxu<2Bqi}ZMF!`B1>`U+VI!R+;P-hAK148GI3NZC#LupRy5%#I8B4*#Ocu;v2N2G3Y(l_A*hXcqs` zpx>HJx2#BG&Ba;Q>1vbBF0E=gwz&kpzD@j}i?6D@1zS-y3ctLCwtoSe7`dFCj>D2Q zqm0UQzMrV(xDZF227dVB$#0k#*w)gtEi&eDh)R4VGLr1-EZt!#+)ECNw znq;9D(xNgYus?pFpMKdCX2HPEA1=Ut-*lZSNZKX`yY%A+tnGfny~O0?q#e(fhBos7 zM0`R*T0udg{{H?f5zoqHwEK(Q@y)HRum8|cQ5z2fUe@U?weG04LA6+xf=|#7HPidM zOW|eV_!G5CRlm4*=)OS{A<-(dW~bYzmg6Lxnlz#Yy=KxD!BVG^C-Wi$96T+^yh^4u z`Q4haI&{7LakC?(O}|>tm}9;w-24sEgASZ`8%$1hQR)R0TPoPDL9rjt2O;o&E}20* zjM80pvh8okI@soGm@D3gMon3ArDd2AmpdA23!FbE>?T{<*+cbdgQQF3n%3loC{1!R zroX_A&VF@=B?;#sCz-tezNVs%A5L^-3{|y_Md508H~*B2p^~pwE0znce*O1mehI;F ztK=Ie%pnHKGPQHy0O(vX94*8JOcan#PK|eR9{$LwpzEP(j5A*jIW4kUz z7SH+0kqk+o5GBNo9z5uK;SK|Nw&<}7HuT1hm64s-1~fQHk>172YZw^VCH(qjgpZG( z<^Pmv`jI3)KK@VNmcbqjhY!1{XD@`*H(SjJR3g;#ylmwA1FQXGh{rJ2-;V7ge2#euH;AKKf$4Ha^wGs*M zY+>~^4WXWHONJL|oodw8kh`TyqHosud$%mneGK7JKSBB*%MY-dg5~Hm#bu=`uqAQdT9*5|lDa-Js8WwC*VxstWl$vRRtY^Jn+HWuhkwlx8 zRF6N>yj$w9LO!Y-BxvEFNR`0Nzo#99H(he6Z_aJtlcJYo1dzebhs?rW*!S*7G z7ESyxUVr!tEm1zEpI=zeG3szbc>O_-QBxD&nrE9Zb_lG3ld~xu^tiLZ4dl1wEquL8 zneNUlm@c?cUheo`^2Hk(wOR6|^35zfwSdOTDI%5@4<}@J1DSFuUm)R*Hqnv8GeGZr zcZ^bSXUPzelqytHJX0uHnW-}I?wG_~?h7+&(O;&f2D4)Zyr$2Tjv-eAq0%!=g}Ry=1)+)e)wL~$#bC^l3(i(% z!GCOS%XSlI%!kl!D@Yv&z!2 zICRv;=3`EN2z#Q)ArlcAJ#(A)I@k6suBi|{j6X)9vj?78}lPU2AuX*wyz=RsJ$Hv57fzp=MyJ*rQ({=P-CX#{FJB>U&*4kBc&WPzJaEtqbr=H(TxWRA){9 z9|WS#RKnxPi$kibyd0V7ZC;o`jl82Hn~BdRg2&MU1`Q33;Gd^gMo?##l2NpT!`p#r z^+Jr%+pk$LcalW6MBvKM>1zi^OfTucXUDyw=rqp!vxs2D`Og;Z_fiRa>C#>!%XmRufBWLnQwFYNL?hJW zBYRJV?5K>VyFwl@98*KkQx7KbCQ+o12(9oO1s}$veYnq6kPDU$%T`O@4`ENXW0(^8 zal-T-SmS!2z`y5SH6bGW>z1Nv=b91Ij$xTV3iEa0EYHf~7D{0cZK-HEb0wt9rlTk- z*GT~BlB{(XpJpP={iGY7SHmNF=WMF8)q^VmPbw>}tz-7&!b-LLQmckvFgs9VV8yd2 zZFS|~{5BW-6y&K1V;ek=bo~F_?Ynq-4xMk0G<>R%8YVp^vIAGZe1+L-X zC4~ zmjCWroLWv;8Hz+4JA+WxWjk72e$p8@EM>h4QddP@qsE{26}_9jf;+n>bYmonI#6T^FdgK5vM@EA~;Avigu?VmfFZC2z@KmXxU<}UdEo4 z=MOq#>#kO7meEHGuveEysQCN2Y#5PB<@Z#~JMR1&v|(42<>f7$u&BVt7VG^dwvSm@ zGyU66tV@_cpWwSoI_mkh%u}aqm03AU?<8(_ztnKp`51o-`wU6CDyo(4?=n;hA3yQW z>w=f$4M|3)3f?#U!PO2=u1@>U#>|xpHoka+u#~0Q%l`tdj1fExD4BZ+IcL>iAvO$% zO&-yP7(n46L!zUj6_u4`3=PQ=$c2A=d1wPp%sNMPwo`fS9*4LFhK3r(#_`81ZFFM4 z1kh?~H#!=M(b{!)A_EssASOP+%oDJL2u37fV155sK_R91?$+!i7YVPvj$uY`R!s`W zYhZv#P)$P><=FBuMY)A?3lWKiO8dK#71`!_G=hKJg7=%}UOlhxQwaW)UFeNEb-j}W zAmTdDUMsb|t7TtkfA~P%(~Oh&%$VETsd%qn2Tg6h_9i&(RrX?}E%X?@Qh|Yp2@0UD z5vJ_sM7wY?c}4Fx5$Ryd1p@>&GwSWBgoU*QEZ)|mq{hx;v+fqqE{Z>hSoiA|yptBW zTjd;46D(l5KAVqn*~EPRTxrvUP~TOA%+p&e<1rQ$B67I8h1FEi}{uQ7_|ixmJ;FZ zCt`jMC81~pW7f(*;WufrrGKw&$(V9A4AH9ZW8xN8hl`8!tKj8e8vacRYHNQbe@W1J z$#_fH-gc$nog99z0Cy#=NDvaH%K{uclu^idb%S>Y=EJwa4Gqbrkh8PuZJ3nQ18Jth zwwCQ|<&t`LHW%N6Hz|e6o==S4|1*8ZdA91k_+9S#e=0!;8Y>t%BLu(e;{|?a%N^#6xZS7G0gqCWkjO>Pk)ydc`n*9sXxcdpu=}63EVCGif>oPXw_93B5FBHa;o% zL2B{J_l57{0=FGP)N`{qBBVl=gJU(k#A?gEfz`HXx^gD3&K4Ip->>5i0G%axh36Wp;#>Ye}4J55k!(v8QE8FPDbmHg-6PvLEQ3KCcU-hY zpHLxGBbsYac8puiqC=QrRL-zzqK53^8KhLi%fdSp_4rPig`aeak`f;l zCqJ?&{E9GhU4#xg50gWP{t{^@k^SU8UcnPGr}tV85lAPD4Sd`09jRz>f0Cy6Yd+S{ z+!obiv9V`J{czVHx0|GR@?SWdzBV}Ig$}4B zN+SgyjBRiKwwlc@TL2yX0ja~wrH5xQoelIb@Az#Ah~cG4F}r%>n;(`dstNdjnEc~l zS3J*Bfu@6&-5C_CY-LE#&|p-16c+sI*LArNo%Gi6H7Lah6dfx`%Qo&hg#r0aOb7n@ zvsBAG+cW~LIF0W9VpbcgWhj57L%?V8XmP)mlWY#Yy(jP;jFyOF^CtBQs47l+je`B@ zasu`wHSqH&@P@_)swF%@e~Wiv=-av$bw|%zn?O!V!$8a$R*w6~4$CLHZ^i;Tg90o>Kj?Ganbhex4$ zPc~q9SdbFk2(2D0Fw7{jM2}UFmmJ*R)cQzK78cnL|76EoQr`crXoT|Pq}8nEm*CJS zES&Wqq*3#kSeVN@+cYmNWV5Zbl9_j!<)S|LIK^$vhbkKQhM!MgC8H-MUV%J-jG8st ztMR&${97UAC3@HN^l%1A)LB)ud%9uWh-^Xzn`aNw{L}A;nwjPGr35#%BEf-wE!VNi zMmD8HJzB8#wZ631VsK(g|Dt%G{X9%vQ;ehQxa)#_A9(<{3~`kZ>b`LAexMq z!Eu)8U{#Df*>n}PA;@;#<10344QAh=Wn~9SKU*EdfgjS^?sA@te0NZ`Pnhj?YQ{|+xBRo|F&msxipX9Fs&LQN#7x$2XOOmDXR^hQjmzGT za(8wK+GXqYEQiR^(bk`A%C?KffLvMFxhZA;!?THeE{Y-le?n=-;V7mQL$-eIlC$*X z)q#A=tfxl*31u6Gc2^P##oXFB#}KCpwl)}NcM0kIW*NFFx6_1zb8tiP?VtHek7|^; z2Ton-s-oo>A>p~)^yJN-JoN~C7-G+29j|>f(UjC-h>&P9;uCqE2My8x)nc}DCA+}% z{mhp+(W(kI4P;nwVMJAaZ;O(n?&>+(01uNt@{ZV)xze^~8FEz45d03aS~|$w6&gpz zh0mWwpaCi@jsIbAzBwNhN`ah=^NH)bf}c=0TeikQ^loB7@x<9p|J*BMqb@v@yU7&W zj`a3JASa{0Cwvz#YxPzfKiiyMFE5^DpHK*>AovKyoUJ_m%Sy+0y7GG!(egpO1(C^6b_j>Ud0L2R7@+_3k*jeUpa!k>xIf&(TYS1qg3hM_fY42hI1 zn5%Ec<8$;q*IHiO7-u{cUdSr-)}{J#aadv#F+KucYjW%m3+A>SqKdkBp6+ZglF*=; z<05&Mnw5=j>Kju78E%yNidda|YF&`Kkgn}q`184cdjL7}bPA0@fUF5C@p^cYL57?8 zE1Xh1rUW?$bUG1htEP|FMXYYPxX#Tv7We3_@lc#L6ZiXL{g;IQsz%t`ljCsjvf-a{ zltHET{vC<*a5oHyuBblG#TlWc(NCnh!J3S~`R4?qMQ4QbQtv-=0E*X97|>>w^(}%G zA&tWF*xYe81!p~GW)I6f7c1<=np&CI#k~xm8u4k6yG`pI$#@acoXcS9=Y(fAp$iKi5RBm z55C?uRlw)HF_w2a<;y$H(x0iW4`au|%mgP1Jx4Abrb`#3tM~8X4^Kh^H9u8^9Lrh1 z2_OSv{6rc3l}L;LJ1blYE6oM%>K2Uo$x^!+q}yuYh+|Fh*BeM39dpbp2d0+J2R%D@ zX-$#O;?Czn0U<`4tOSLsHA8uv?4jTm|2y;kyfmG!5%m#2=+BtVWVA-UnV_Pa|6FTj zlKu>*{Q&$K2$#P9KJooF7Mj6XqtEG z_8zwu?-Pa=`4CKrP(B9mksMK~$%2Y+Gc*57LANPTEI!Qp#$qhSGVA$LU##npmh$nO zFCx$l8z7iRj#hrSw$@XEhjSMy<9c?t$(}h*DU|kKJenLv60)z4Tl;Q}ccG))p!w;E zbB7^v(m5CJs~qh8$k!z4>W=ndz9Mdfdd@oKqDC%EgZB;5Pgj5bv80DRAVGQWjc(#$`%4Ws6YWs_{ zEO8!i2=^zoB^J}zq4D%Vl72?Q4ntP`nn>{@j#O|t+12QY*AY#!K{1Ts-*EWcYn^-4 zf0RtQgDfd|fGd3-DGm&XQ$Ur%$8W?M{qB}J0&Lr+UWw?TzB03!_e9**yRLr&-cywZ z`oTIT5*5~JhjYJGsQ$Ew)hCt`CMo#fYS%YSl+JsP;C6BGI_1B35QiF(hkag^z_ikq zDw&~~n8o4gef3y$N^LN(vXUxQ8$032G&hSkeaIW1LcQDX68zrZKL4DT4QaAt3gg^U_c{GCw*aSfpV5(hqefN z<9E<4^`+&8{RiK;0pWT1Dw`N!A-eXT=ViwhCxT;4A-C91GSNKJIR49fbNO{i3);GA z>Xu@hhgVhg{3ZAxF{7@>W-F&>`iVG{Zd`t&rRzi1-^peKKGmi-$DjYLZg4cQ-?+T$ zBh;-lq#-!xX%TE2WNRsgv5rRtR|_%W?hxb3e;<%s2=!LW_V2l|sK}*S16fdw8LM&z z1lJ*VcR^)sm?csb1gd`U7&7P-}E8ThUdwmGxY zy>3&e*GSm#k8|gtZY~H3HGx)q9IiR7nZ!c9oryUHzbL}rv^F)oSlt^ulr(|nhTge7 zXx!gx8y)G24zEU9oC}^e&$*As9?3J7^zdEgMsKMO?9A>aYnQt_gpki4+wE}a7(Epl z^A>$tbQ1o%^IS?chzR6Lr)z14@vLDL`aQLpzjr-wVjJQ0=3t3fZFh0Y$AlxyKcevU4;Ei2RUm{RgJ72g zC35Rtz)ARhSNb$^z?p<=Nd(0wZcA&>{F22}zq!YesL-I@T>_noa-*Dk|4#p_Y^i}D z4QI)pgJy>=ck=Wo6evN`J9E2ks`gDv~67no@ukYV?CzqDB*VD80@3B zKK=@#KC)dh&?2xt1=&8)5}+&%iE^I22?zyi60b=A3(s#R%p_~pApE@23}q8?Dma+L zul;`5D-HpWUwH;g(PoH1&OeS(D0paYPkRI7srOu_> zWW3+yhg84Px9DEsG=!?D^})wcgUA&{3{{Vp>pUV`&4ZwAO0-9nhwlfTAra=_Fan$& z!a3K?F0OZy`2e!H->y>ZNc7n|rj*`m-OlenHNe?&E23PWepE1LN0W+NFx~b&ac{w8 zP1pDOIM%-TL$ zy|RV0N!HB#u2-ER%fa7|?E6nyYF4&4w8}}@*U~UD#9Zlp;Gg;wE-N(9@t1W9ufQ^c zpN6Dck#x1tv)bSy>qm6vWKMB5!MlTGgE~I58n8i6SkU|>e%|B{D=}KX%<_D-2VNpA z*?Q)9hcFckqNQ2rDJUvhRj?VMDRZJwCn}i3iXsY#>mQu#$AP_V=gB9KbpRXTE4&$O zCC%UyXj^KW;(+)rffgP8W-x6H=H>k+Vqy;6>Y0M?X{6it8(g5Sr3IL@;)(7zr;D?? zQnQ2ah38Vq7cNeu zBg-Sb|7K0JK437(?aIJO>q%X%ApGydR-__fbFKHGpMe!g(w5Vj|77;Goj8~QMMsxo zCm^NBTl2sn#ZyLliNMGTz^ki|{;UU;vCJW@kY}HdqXD@#@ktA2{!UC%%P{Z7>hI5X0^k<(Q*uv@KCz4n> zp$H__svp`Q@4Pe?XzAcydVuzBn2OekhF9}qsfJ&!5Wk0%*xkhk_u#c2;Gy^i^ni!Y z>;vJF@oe*3tbtI5wntLKs-ddvAMNO8gN3-@NMaR2bYFiXv~i6OIOnlL7=+H7LDyg1 zyye5cA&8dNKR&4>&uH*S!guBZ@tDTHe9YUUKW*pfb87mE#+O={_#ylySz;_kpb;=@Bl;nBR3vt!f1;-G!6 z{3(YJ^Yh>0XVZspkr1GK64$G1`ayf519Cs8R0j&nvGVdRN)B@d6dxsIL`bmQ{``Z1 zGCqAB?FoQ$E$Ku6iD7IKJ8lD5)!Ez2ZW9WsFs?D|qmjR7o7FUS7EW$W3MXL141VRqTm%Iq|t77Du1>~!qvSK#}6 zKmz-=Ls5OU@KuHE#wNWDk@VWL;H-mhxgm-~es|3HuBwYG_EtqQs8c_erWcvi$_G`! z?U%&<8ngM_XMiQ1__YTm*y-lI2Nso(dvVF1PTAf*X>k^|k*mMJq+IQ=TK0isnS_?D zYV{5BH+yjJ@1m?8j~(>_Dgb27jGgjL$Q3xIjo2L-FDs_iW2boKbxd8U7g=jK5JPFj zXf`yM%kAZ|m`FGTN27-`_{Ai3T50Nj9y}?i`Z&J=f&&32QQAZs4OJMK?d=gB1f+ld z{$K>HZlnPd0Z$f9;dGsrjc<{nQe$eOB-=RNob1Cvh74NJwB~D^)EaCoL zDUEuaznDFT>{b#(#Qow8f;nwM7q0??iA^6_}2Nx@c!}+2b}Z1d#^p`Gv`L87eR`l zu|5#JZV^Z9Q)McB2bI607B9>Wo~x48*q{(Kd1?L^(@%tZR`_4cVz6F`w2p`pnvI4{ zg4NQDb)!4-sVgn2fOvPTbqqxciex;Q*3G1HlSsf5wmjbq#Nz)lz*^UL`z7&etizeX zF7M%RC}lrCC*JNw(27a_I>pE}4b?Kfry?=OGpSi>)iTNOuNAFub4_mevwXRj61+O) zUmosc0}_f_slSh3A@Sr;U;nN)^+q{8_2pOuRU?FWX`@qn-gtZSo?@O5mwUICNciAT z;|PuBAe->+w`nT=w+Unp{cLs?v7^X8HoD}~2^nAdtWc`ZvClDG;5H@B*p|EEf%c+Z z5~V~jIIG_JD1?`UWt>)%-9jvE^9bd0yK{gB5r({%bnckxWcDkM)$JLq435GU1wSM| zCtF%p5)p94JU6bN%4Brhec4YTr+7yvoQP1-qt&wSEOq;4s135%{!%Pj4V2t;+H#T*M?LwQVgLcK_SpEpt1U|}!)ACQZh9kRh~9zLn z*)ueR^zyVG%CAYCENjb``SoAu!-8n}ckPVmDx3zlGj z$PdEJL>RLYTXB-7O<>ISMhkiJDJ%N)>$@MC0&WwVH5fnU?syW5*L`R__9~(Yg5^x5 zQS&a|@4zZNdt>Clblie$)^2*L|^R}Q25C%ax-kTsoV9KkyKi~ektbj zqKWgt&q|{GM*ydx)!4^Fv$P5?Md51ri)qbnWe+mS{{EdFGL}^%pmQQdd}P>{mX&2P zyZRPi65AFLl-$S*e%aZi=+rwpe(v$GhD%)MmP#*JRk8f;Y1&&EkvE^nlT|`ZB!ZW} zDt;UK@kc`X%%JAT`~&>mf?-75%(!vVNcW^6szXW7ttMh)F_Y#w_io6d)_5V``ON2( z+K-@xPCVg-rE6I?^%0JH7;uqRVHmQK=x-CO?+_+DJp$?1L!^TW9aTyHtHf2t;x4mH zx_avL_JAuWrqyr2Kxr&l$bDN0q+Hx2i`!?4orxYTf=^N4z-YJlxbTKm4oCmmQi z_ilcQ^sle#T)H7AY~boFF8iexJRkoa44MoW^b_BjSB(5Kgg>OcZyskg#%^*17bRS` z(R={iN4AJXe-mjzI0sGkR9jq-5l!OCsicii4o><`D8(BnQI8wv15htdkSTcJw<%wm z1C`eQqG%XC0xwsuUn;iC$`$?x&$u{pzK^}Lap7tG^H)PeTevqK9|~9ps__|M5p$A2po{SOS`<<6Duj% ztr&hLO=08y(@+rk9K)5D6>ka0#8CO|Ng@*nU^o@Ur~%IIo(y|$NcnrxpKICaqX*@& zjeSVy38oq}(sdLyHX9zYPONv9g6~>;-5u0$a1e4qC>^i-^wM(Eqx|`7VXIOAiPM%M zW`ygUmBdTkh&wuw+6%IA)6LSCXx0kzj96#ly)=};lU+@}s(7jh@|eEpDviJl*Sg9t zi~pW-9h2hQ^|@Dp4r*FjU{W;sUpJ~O)un0I{T3pa*V55ixJ}px(0`p89fa`I^In{p z5I%_GrpX;oy6aowU|8xFb&}XLAdm7%0Tccx5@$aglKjuG@6EkO+5>mZM`x&bUxt4U zO{YThc|yFpj8+u4)+)cW&j$5cws?3*YVmO>^2BLD$^!hPP?=l`4N%k?9?vPrLqc?TI5kH~F0}3Fs_Z+p$4d~z2rw(l|I$T{rgcTTq z8T21%{($N4KpItw$@}V5j*Nm*y(a&q>ih{VsF?XxNh)t@ulBBy&s82N@v*6IC%`Se z!IL+=&s59oEn)~^div_9{lS19`yty*1Fxno;2*xOPCW3f-aO^#Q0uTiWN1(a>w|Ol zeK2g3%ypT2M}MF64_M-CK`6teGKsS|sa%t#z3(%?igVfI5h8K5bwDa68js+7e)>jD zmXYJZYl#%8fB&!y8IWi(t%6vG7LwocRjn>XFzwt66vhs}n_hCVUU`}la7)M5P+7jp zN&G`w-1GPVGh2}f&g1Ap+`P|8+ib1qIt!bfuSL{a*AY(x zR?D=KgdShZeppPieDriBPRkK{JH}sTLH(nhO?Rlolur0l@3#>=Vs2dcjmzq1w%UjR zD8YC(%38>%*77{C?X@ey#7ClX6Cfc^kscB35zfq(->qe8%`3*imy$Cso*#M|_WOKG`V9Ad$m)-fsny1*fNG8MW~X z8~Ah{32r~gTJmcrxeen3<0#xTC1=|kTSKq)lIbe_tI1QYTV~+Y2ZVcTnru(BD>E|T z>E9$%E72y(l)s;9<5skmGt!n%usvEflb(3qgk+{^JIK!4fUbtgT0ANXt9T9O9Y!*j za$d233WAP|(6h5NnCQ;AmRBk*7Wa(Gfxthi4w%0=JBdg|F zp62+Nz-^H_iIhuLWSAG)5aZcnf$1;wmmgyR&Z`^s#vGYY8xtAIDJ2%G`?|mRf2R>C zkwk(;!K+}*hl{=<+huUZ1tz)ffI>@RVfo|Edc_v@Im*v}s~<+VeHZOw1q(;_8}es4 zOFSh-`QW_H&Gad1jL!9HZ&hQEaJB}%n}sDi-Di8K&pG9c47~XffomJb9jGlvq(0iOwmx% z>W4FL4bCV0c0;LPiI4Ad)kwM8-d3Z^@#Z@*x(n`&hLe_?Z>EQVFn6}bxG2b-O&@`^ zYge}^wmdEOMkJsjj*>diJ+Yd_HP-bZO*sRdz20>*WjD?ABYQ8ksKXY93zxmZkBl`u z78Vvijo+b%XfP2W?W)%KQApvrup-yKg$2<p(doLsc=gyU6cfmUR4 z`5h65y&Iozv;~Cg=0oAQNRf|GDY8uhu?qQvyo1P|ny;Jl&PpOtj?B`$JPNwVMP?$J zn5?(G_Ffo$Aib4?+HiaS*V8avA?~T-5*IO({U`j*)1b)(C+sv1=30g2QppDff6y*0 zYx(t#`1ppWE_izd*}^TeKr#ym%=0E6Je(&WgQpMfRwg`G9qQ-|80l8Q5usu3?ZE~z zB`4qX#7+03r?F_3&a~;jAu6C=XTOz261vL6=^Qwfe%rS2&9}ARt;Fm2K=m|hAti{u z1Ku!%R(Q?-Jf-csKPy$N%7o;Cn^^EOazFWX4wi1nyxJWmAC}uFLU$Q$c>&0OSxu$= zlNo7zcmMH8TfX%}T3K5@Clf4d>PLjEn?Tgc*9)b~yZ!Y-j$%iEQwdecv?M01)g(^~3 zH;%T~;=pEm5-Kj9U@DxzmV>!_z$~`Bd5TpUIL>#IJO6L)rnG`>AY+%U`A z=Y*ht4SpP4Fd?rZ=4>gs0Rf@Qf(vlN?o8h!;}pH_$j6->r*0R`N-PQDYw#)c% z#sux|Y!gPI^cxnfuegE5O;b2d%fqX;7~vyY_F@r?7!}7eJ}*l%Ph~Z%!8`dp9tk|v zLpiUgcW=|*8mo~7}y=k%JKMhhs zTI|*~WC1J6OioH8!PkPNdsVn!ZG|L^D$oF(yzsdD))*e_Jl`q5-czHs;#lCX?-0mJ zc0cNR%4gUHw4hbe1Bfnudil%aC_?@XQ@ajE^|NSWwe*y5eQ|ygQ0+CMsP{VFjAY0J z`qDQ@e!wGCBpy~u=Y=3&Mum0>=CgmR@2{6%X+7j1-oD%NJ0eNs630{92=Y&6&8dpY z?EI8wFP}a5o}RqtnP~DOc5WWbU(hTpMC;(4S$eLD&xYgWmEdsKQq#uae%=5Qqtb7b zTss=0ngUDq2$IEjn!n=(j&lQ5dj>Yp1xvs3Cga7i&S5lM_)pe|(XxNI2+qYOx2 zmgT0Qz!&~TG@0CI)s~Cgta-UI=QT4eOav>(7vaw{|GDsj;$yEy;6EClCz(OtF^vAJ zag^=)u@U|cj$WQs-k_-x+@K3*$A>s}t01Pp1W)jn<5q~Jc>(U;pYf0PnW*1k z)CacLXquNq*Dq`bgJFpmw->6QXnwpeyU>ijaJh@TYlj=zPw^85Gyts4%5?cL`qcV`9;YvohAzMOWJL$AO1%!O zp&ZCRe05UVhCF_j;5G34B~)W2=I{Qn*BJlBDaz15J|Bhf%9$D*FRVk?){?^{Q3`W? zItRfaI}MxCyA{1#?+w4??_Ur3BCTAle?K0liZLqCR+NLpWMQK7L&df;#@3Oc8O@^h z2nLk4w!r)dlDMaDC@FV>x@e1doGAYPeLeQ_eCK3hVrnp6l}-aw3X{&OvXM~5Pxm8% zJsfpHWf&-sx#b-$TUM6_Ld4oZ{4**R(GKy5sCkAMq!jc7t*syBPIITYP``*m6Zf#F zxp-3Fr5=->kHxcjd{94=8gihpjOK&^-*)`&M%d*AG0N#kI`>j^o#^0P&h`S3LIaMf z_wV^5InB?G*gE!%;f{NRCCSZ}xor@YzjUQTInH^W-Zx6s!%3%t*1oyQJ}6k`hjaSF zV8&TK{aG}s-L=f7mviLTKsnuqJ8C!zYPXx_sISF>Hc%WTUj{#`-at`jsrJ}Bgfp4s zRI=rvoj_6;gdG1e%oSr!d>->4imeKDDf6Z``O?3r8y99tC}sWFTMQh?#RhjrzJp?; z8+adbKFfDKQle~`31Wf`DHq}k9k+Tng?YXfXV+ynd+sE6%WJVUb?Aj_GOV0Hvx}(F zp_Nn5q;1;Kuzx>4&yGKdh*#TfzkeKkCSL33spcyt)>O#-x4!q;icXa*3$aN`>`{DS z)Mo<0ET0REAKk=<5ffEkdj~Kj&qHTCDBls3h1M6*Nhu@rqUePO5{Vu<-srI81kL-S zE-eQMSSw3L4oKC=1UMsFH=EHJ?l* zB*!RV=za5otCMZHT`D7)6ff;@;MG6va!2OV6a2@rr5vEM)Sjw+Zd*R^YJIShi#!{d zb97_SYv|U_9f!RJ>m%7ny+mAt#xsCFy)JjMG7QBiNymONmV7s)kIak2Ja#%vT3ojG z$F=~CS|+Db<@2hm-W>v}iPy8^JXq5jPjV_>9}bX80tNIYm$h-c*0?s=>*(tM zs;=CfCwML)02!PrKGBH(k96UWju>fbKZ}CC6g@}dc|qkqa>&dl#2^Len@c9G%+7Z0 z3%eB)1%*rL#{2}$$zhp;s10`d{%=Clllfmgdc@YmY_Me|3FH6ORRoBN%adkFLhd6~L+PX+%^Q<3C#Y0#@Qo(k;bg{H3A@C;{)D#(hdEb4 zgN|ZVGi1Bb`VZBeRLJp)i*?^z7B<>)t3~eYd6CYgkwg#dMn}LuXa45l`=ev^jMBW2 zCNcmr8;)?4Z`LS(uzy(GxYt|~&+;<&^Tm5W1WzrE6)6<7uzKG; zdxI)xzxKOOeAF@dKFQuf4h2>GesY<)zfaC5^s^PZce=ms-H9WRR(N0HptRn4|JoQs zUft_i1M$`LM!{E(B4!Ou245sv$zI8RT})@!TB*2NUKGEYNq^IapvJz_L@MPek18Mg z9IX|3CvTyDwMV06K#Cm|_Hiil{oBgZ2{9R$k<-%4*P;)y=UOh}NWeNXP{)4yV zI(bf}e2|p6*7D4=%OoahAB5NzjsU}Ew{*>to^a=UgIH_fFH3z506AMGKWCddDw zAE5Sa%;SufrS)PdyG?G8WAM+Co2Rwb62z&%mK7IgYwey7%=xN47Zfk?sYe-rv%+AaYbT&@Gb6QyS z!yl7m^^()n1QO(VY*qpUjG)nwo+D`}QLEUR=`}+R=F0U4k>@E(^B)M)kSlg8BeEW( zc5$oAmv?n~CFzmq=_wHy=Aq7JAB(lbRVJSkqUmhvP#}A>gdXg} zUcz^~UQS-^Zjh)w9C#TZ62|H;5zi8a;TLRJX1;HNSIVTv4#EOOD_F)`{#I<(ZpU2f zN^n}o5&o87SXzbv5gr*Nd^sjCS+!UrEOW?hC7tu5uqh;#U0{xIyFJ-``d|E=N-k=f z@=i{Q{~kU`&L&4fS_ydiSVrro>FhpA?XUazZvKyA)wAhj2ZV3rvOP~sW+)VS*T0N- zEyiovOX~P)V&BT$l|Wc>Vfqo-!<&H-3@lP6YcG*9?xBcaoxh)B4a~%V2@K80efuz- zNHOlUcnNvP@rN9wBiTdzjCcXjtb6g{?{q+d@kV)C%So0JMCE^u@bgVH5*LM8mW2R|6rf!{5fb+G7&Iivb}1)z3UUP`<>zjMa`%^GMo1 zyJE`Cu>AVS{7)js)*7EYGO{DVS6l7omn>ErnkRt4gfvcxc%-e}xPxCYgUW!{$tqdG~5(;<#;&Z-FVZ_EU>{8ykFf- zxylNLov`EE)gurdIBDtQVsS5~EfPP2@4Z)bI5-qoQcii9MQ7`>(vzd|$+CikA~v$L z`to!(mt)I4F%OB5^`HvR-OVJ)$7kWda^Y~G3%5G9A4%=WBOW@Q>s7JWHLqY$R~h-{%n!d zUsMmPy1UYn>!r-^z>lR@=dCXUrK%|x_5(A;g4}-;-d{O%KB<66qm`4ma0;goZRdB{ zPgJ><+>v`JOfx;i>_r3*`<|VNR2}wtxQt$+1!BASD|}-bxj-u&Ayg7_Q~q&wnZ|te zCii2ALGlA}el}8AoMFT(ZHc+}Uqlk6lPU{8yYWs>(<_0g!0?5AHgP^q+6JjH26ahQ zaHN+*GW96WH<+%x|FIX3Rq9JnJF466bySbm0m?+#rmGkBVkxyh4XsNmR(j%Td^ei$NkbbH%c>YV-(K`!vL}}f==ketz!l!wO-xV zBwYZwO^fmWKDwyHU%t&=Xff3DdTkr5LY7nnKM4tfdfGO708P`RwWmAi{#S{V#J{Vl z{Q4pP2>~AUp^uG2Gq!kDi@0LnYY2g}$FbEXF4hULt_-UBlA<>=v!Y1~AV|x=ByxZu zXIRLS!29{k6Vfhf^U}1v#qGuqK6!a4|JQ}Dk{B2Pp1|48AQ`L|7lGPl`^OaVQLQP5 z_dzyk?LTr&dXcNl+!}>>v5>W^YT~JIe=PfV6wr$AC4^8F%aC?eVp||axj&g@zg4Rh z1S??as`${~XprC~JIU%o42T$3qM&+)LkHx_56RRkT7u@D3h3Z}*M1OX(3?d= z)2FvQKv^%E5TW$xvGr~|D@Jor{-->5WBhb%jAiL!7@Ye=8HIdSSf>EE&HvqCpbgZyECC%pSuHxhug{`~8|1k^^~u z7M;cR?H_O?Q|8;FbxlmaZ1S3bYO}J3>AK< zg!UjT&>ugOhN$_cB$dWmA0$MRASOE zqs_}vS#W2A#-^Oi40iV~!iH%0%zrHVPMeJ6SK~WyzDQWAn2vfRQt`eHISl`&FiXRLRL|-e4nBI|K%XBz%dMH}Q-q_A19ev|y5hmNA7pOh z8BHKF&16%CuI~0C4-Y?ibT(lV6YH-3KOcx(G^y-%odPfXJ*C(zu!D5J54jS;%H%rUt6vV5P+=b-gsV+ zkVC8yr(@$OY?k(>bwl{p-y-7y!TCUDt0lxfIQ32GFXM{2MT{_c9MGrrXi4_58E%Z`B#R?eG`H zgbE>6W9lxJ^WI&um7T!5JTbhNrvW~S7-RH2p<0N~fAy!yeVtdlTS;p&mCJD*VHMyTSS{?sj_w2PXuiKo-;}Q5A~q$R_Koi z#Q`^RahjJ#Yzzd<(~7Ck!~%jYqHc?cUgN69BJxFF!Y+Yflj5x`N-d`LG2@=hSWe7?RoEMMzbVbE-d%BE648pz$8->PUd}c+{O@@O_ zRm35vpN#D~R>@;IOy56{O}ML;3=+O$<0HYxRh)2A9vQV@?0>{aC_65Mh(fC2#h2P0 zoT}+lDFpaaZmN>Xe)_`%r7AQOM;)I#Fc*LYDOeEzPr}RIhVn#Q49^YI9aTPYXyWex z;c~X1<2yyeHp99r0P?}$px&&QYm6jrrSHe8vj8P3<30*}$cr`<6j{x+8AJ?!5rHnF z*SO7fQx#K%#Ci+>;ehr9ycuo7u%sE?bchHu*?7gGeeSsr#i2J>D3rdzK)W+?% zmaLb7{MlJx8x$Qv#1j+UK4f`!ulW~cEBbHeI8zWNnwi4<~#F~3HVs|kiaL4 zD$2>4)uiRhg4WBClDk2G;DJ+2n@;(KiEp8CDypFLBMdM=;_RJ$p6vJkr(2L^tifa5 zR+btYU-?GsXn81@AYgL>i9$<=_|GkspF>g-U--B&W_J%Vrkbe1y8}K*CvE!K5sp@T zFSThw7q4JK$9H`QIqT)B^R5XC`KoSGC^x8;xKI8vi!u-nfTKUZA}ld5%HQ-)f2#}z zQe&mm8L5#_5jV$s=S|~00~TS!S{Vsb_G<67M>oGtKZ!0?O0?yBtLG+LzqR`H?Dg+0 zl%aoQ>T86WxK@!L_YMw?4h>cjiC`-EdkeXx+WlQ0cIy3QunyfH8y0*wRP8`R{5-Gg zil!oJe*FGO$w;yXXK6A*e5|JR)8qD=_3*pfMP+9W{`}e!6BN@F_{|$S3QX&D*k`*N zxnADxq@aX&JP3_j|FeK!mvei#oG0pVNp04Ktf8fFIbozF1Ysnf;8s6s>1-37O5(k< zLEf5HH6$AwBp~-@Jf8JKMF@V+myStV+*ngJ1@v~mH;5P$(~2gHqbQ2Tv_X*Ua%5{O z6ad}DYJrV>;TRx}&1M;duxC`RcA99MV=j(rW@rU$Hwk0**QJ#WNI&Csj4Xx?Bu@=Hoq3(s+PURG32LIQjnMJ`~p%8iMgayjIo+wU2)s$s3h{!#|cBLx@##RTSMlI{L z%EN%YEPJ9HituEJvnUxh5d}(Ma&LY3iuAbSaQ}EccZ_86J-T+BoNezO0(V}6yQ3(itWh3rUg~d3d#CV_>$g8h7|YRVbu#LW;Un^h4ANxB zJUha#+UjhC?L6{K-1qjmRO^|32l6>j9SY`;?~E&&UQXY)*-wqP`htdYF2`Hc!XaDZ z3#a*#Y`-h73jKxsjxKa?e^MN=sosHKfj_bATVxf+3e5z9EP=eQ{l`Au~y4* zd^tJr0mQ{va3IGJ44=9n$3riNmyh71s&R}HfQ34KvnH@0j#Qe9*AF>rFU1rM1g6%dhUhz3?Q?0nUYyF;N z`<7}xHzi=BZVS&pUG_YM6B(vfLH>TX@y6i4zuXRk+7CJQT82)%q2d1W6_;GPGQDZ!)xrhJ-r zjSeCXS*X@HF38-#6NPHz%cbk1Lb{XG*41TKeE1>eXZ`uq$)S+LKdc5#sTDGl%&n(V z>Env&L&8`jOz~u&<`T8r-_DCLjZyg3R3nD|V~3O)Z+OZU4X^(mZKA%>^_=nE>5pyy zclZ2EkH>QVyw|JXA!<6QZSA>mA`w7xXv|0H^JC0keo(#auTm0>*_^CDuW^3-t8XT| z|Lo-DFf!>Qn+5(Wet7fUDOsm*;5@M|^koSS@;R@XKh2hTmHxTQ^O6_}e8yNYmtf2U zUmYQ%bnQOK7!a`I6X3(jQZ}9B_sU?QLww|wFTzBnGOKsYZ;JC^1etkg4Fu0)cv%b9kIFBuu8&7wd?Xi!#<7LI zu1cpte~7_3V038}HVA;{2f_TZ*q~zBPblP^j8&F(QB2syEn=Ex4%A)4g0VWczeB6- z`g8Ph5yI7ukqhm&`>}|Ik?AXoTJf?={GmHPF+546If&O*L+2Sb<8MrN;F06?+@{(p zZ=UL;hHR?>^hEsp{&T`zkmBsj++Vc_A(0{=WuOMH~vs*JwHjcYHmPm{=@31j-9?qpxkFS>5zeqxX7++YC zckYbm=c8845i=*RgtbGqUIvozWWsyWonQ8LKe=-12K3uHJmpTnI`>lEO}_xaZm>vC zNu-^pR{EU`YRtwWlo=hIZhfzq1ED7&>a38EYed)K#VgVMJxb+2JR(qEy7L^b{<`)q zTM+qiTiirthwpfRl^HLzd*EL*AMHk4ezmQn<+u#{Ro=DS^O8r8)IQ~DsP3sV3AmK% zAoxX$Wz?HShmPe{%D=6)8(4bwnggl|bx)r#v*udMX$i9LbvX{x845{$D93nZ4K^G2 zJRbCyP(yh2Z9Lx3`{$btdb__taUrKJ7$ zh7?({5haWokzzj|QK$D$RpK?y2YZX1mZZmqEZk_AjxsYz$Q71gzP!=>cEzWgI7CP4_#odjB-cm8WZ#9hl7FPY$kt z{nHMD%Vhs-aIUFP7wJdRKjm+aE;Sw0y!uH;O^vNC+k9jT87lwYSx;qYopA8II2w_5 z6JW%*57gXc7MFNL0^9|8wl%@|AFlT&+t>!2j)5?fBSM-H81GL7>*n4=5S3w_MV5JG z5g6sQVhM9~v{~}roq0suA2AR&oFxW+VO>OZoE%GTTWP5!K;OdP^F0Z zwkf6>G^;!MiPRJU-Ii5EeTi?Tp3SBhdjHP+lBXnpwgtp+x0WK)wXl-4$AemI33yZ@ zgP`gNFeG0$#_^?PiOkls)uDUP1emD#wB9Y|s-q~l`GfY%;VkyYe*!)F|$KvPE_tzi_GuHgcf77ly&CO|3-RN!+JJ zPncr~z<2<;!QM~=YgYU>c|kEN%!fkoTbsi%6Z{7x;0&yVjV(lRPFl~h>Ld3&WPyk0 zx@(;%R^^2G;|Cb9-!z0XxqiG=BVFN^hwt5n`jS*8B)! z+HP)E_@}`>YQyNh4%O$~VnU5!tIVR1N=PUWjklqQ!?Ld8lA1_+wZ9Ma6bKBH$G2)8 z*2`gBuf`o{t??1lioLQa#Y;r3NGfZqt{&>o<<1UTCnA1NI40(rFM<60#d65Eb(_x89LGaQ< z*$M}Vz)Ht0?g0{&Icn&d8Qb!~mWHdSlEhNX68~W~)ghf(3f>qU&tp2w9!cxBM7yf@ z-4p*r9E$p}fMH|rRVW2fEEuNEr>Z(!t{$Deoeusl&s+I+2MtzmEO)oYY&C+%KTD3? z6Y8My*;oPnO#HhN%}{zlVGR9X{u|1Uh8iw=Sr~>D%J|N^&j9iJdzh;0x^?Y{l%C z)jKEQsE>X9TN-AEKUFRC>HToJR*wep?T5r-QK*hF`B*=Ed#okKs@}P7dLr&>wl&Wr zlaEdyw4B)cWY{<0UiJvO9OuGvzR!}hdT3S4{l5ob-Ttm&ovW{5_42N(gk5lLRHoJl zx>ENCKM0($7STeT5RX;6`4HB$`>r-^ryRgU03+54eT(SZeFZ`_2$mBL-PmRR6W<7D zN|gUOrmE^I;qI*@tyC5|A>WhiJNuhuWcV8k77+8be@W0NlpB#PASA_y#ALX|GDQPf z$ca7O03mGOop`Ni@7H5Xi$SexoCSGQ5sLGeBBIFOzBLBizV^zfDi5uAYY_0gRH;Oi zcLo(k10W({>J{0r6xX88d~tUT=6WC`;am39_3*i(_Y^@F3K~1u8+JW>t7jjGtMJ$- z2x9}K^7~I+zxV0!yT7vP!5XKari)FjbbUF6eaajy4+$EC;0Y5z>3)oZxPuSksJC;w zND8gzk+{xHV_~Soiw^o*^Q5*f|MPN~zK`@cx}qlgIJgz*0Xvl~u5{EhoInjZcae?> zk*w{Q*PDT;m`L?caL4&ld0|ZCVz+M^zdVeYn=c$?hH90y07u^7apL#)GdR%AAb@gsi6e4AVk(YDV8I70H}t zXOqfbys!o?*!PHG@q(9P5Hw1g51ga-D4+PbqdV2g_=?IGJ2+Eigq+JY6H(Y)V$8nf zc!+??1Rn^3huyY|d(krTwkGE=_OU?@uJ*u&l1LC32ibC%)6~D7gmI?b^x!_sp%S`^ zU@$t=UAuxilE+MQd-NfC;DKxb^cf2cX9y)XiC!>(f6M8nrd{jm?CYwP9JRO9f+%uSkV66i(R(RWx?4H`~6))%3e4{C=w zsHaEY*Rg`Mn9f5?&;3p6CSi0rJ=&X1t(NtVkc`p3>B85hFzWgUdJ7E(l!h`gR#tF5gNOnO9sbNX&!BA;k=&K@JqGlLML^X(+eOOgE(w9ck~WvI z_)oF$TrU)qbUMI$Mf8ugT_E3~;TLUBQB!S&HIQa}P_wehpi=o^#Xp~qxA{(XKjWha zDLRhEc*W{28J9M&(V-s$B3^;zn(N52OwKD!hYWc{8p%fJU~D3D^&}p-xtdO z?H3Vo{b|9E3O;JQZ$6OLR?KW(9jFOrRnILNL*^JymokzqrNL12g5iTcj+t%rQQ@Q3 zZGjV)lm)VD?LF3-a?$vX`?8Yt8I$R+DJGqNW93VU#bl;-J7LYAIjcTw_j5sO_$!)8 zi2pYn;{4W!W^M7nDYDg2n;{c&&_5~F%g`$xUdW`|E}MMGq5x$kHjrQ4mnjya8z&OP z=QMZ{noV~_vzVb9h!9Q1k>L!lBy6mB;VD-0h|&dtY@DW5`hh0g>hoy%;#@ z6U^5HM&?QEhjw*9siv9Ne-uaysYzi%bu2CSuf!_wG%pjLDHO7vxFx48Lcm7ge0+p1 z%yHhopZLG$A-^@SZ*B&BH6B8aem{sC+D9PZ46!L)Qg17$ci!KxgIsbe+S~{Hc}ipJ zEdzeEQ`SV>@y~8;l-K8`_6?o0RBhC7Z$_mt=bxJX|AG~f>5de?8B z$U~%U8Jix&_9F+aO6?XX;gjfE~*?A!mD7M)g&z@#_5X;Xs)+Hf{6w zGGG0SK8jTExZmIQ=)pB4F*`f4*=sCwTE~8Nyq`RgdX9Z}=at8d2Iv9CD^H)wwys1X zlt9CyMA~~~M9vmvmRbf@|HLO3_mA;-Z<#)(XRD8mni~A-!okc3`x6{yImP@IwmzgiHtHw^OY(U=?ab{g`&U0@m%;;b(isC2Buio@A?buWIrfIikFhq0+mvca`SN< z@A53y`v(bmN@_;^+wc5c{`~7}O8V_ENJ==0a&aqx<`ZM6?Ct2rKKzV&%VVn}B21?9 zi!&Va){VU)*p{i&ekwz-8Cs9RDqLxQChGJC?sLt%SN;lleg*(RM$uxRhtoV14~vQK z7Fk;S_vT?6mGww(N5l#*A>0fim!H4Lbw}>gkm;(-az=4KU>v@p zEzo=g1-my-%WET{b^{mAkbC|i(FjeYGH}ITPx>S6Vof5 z!@y87YdQVn8Hhn^#iAjQ(|~WV^j}lG$DPmhi8*XIptYbv)>H1&pT#a?o}8?fc6JIF z?HA_i?_poAJ%0PN=BZ*?U@W@bZ?^v=`T7a_NsyoYn_k%D42o1UDzB6eyH1-)>M4`( zUA%uM|F_;-394=V!ldxdh1oiKq_EVvD&+vZJRZ)p0r%xe=Kf3(@CdZ~SuSFs6tXlt zd|gfw@Fiuj{tqkSt%EyU z(BOXql%;I-EwY!J>j1atE5KV*t3Kxf!a|ZdZ!Q)Q_xV+AB^Mnv>SQYTNB;@2E$lLz z-U=DE4S$k;{g83rF}x=bNG@X2^1B`F0`gEV(cEPSJ)+sOp`>9OP(M_WY8aCni5YE({$hP5@v7pE5KzI9`WwzyCJ7RrY*|e-o;`@fmI#`3ZYeZ zP9z0J|MA#DJw#W}DZGV?1$uR5?#uFfY|@IT@XRj)CgJ+1KMZk>JVAq!G1UhCC>3%z zLyO-{AN2l%f7)x;lv1%)HRxf)-T~`4+$sesE#}*V2v$j^x;}(Y%m-u z(|$eIihp-;vho6MT7nk~R?3ZqmKic%&%Zd57d*I7v&N-Hu%(fBv3^b>eyYeG8AoV4HOP*#y)?!bFk&S?WfQ^$gG(Mj29?3Gr^~aC*l(WRCdQ!Mr)TFLM;XhJQ zQBfkSUxr9qiAX4oKe)cZn~1g($9z@p#d~E~L@{2wR`+0(@@NrRkVEiH=fAkD-Fh@M zbmTX00{>1CD3{B|-Y{$_0B=wd>7*eXO8@P4=loKQ^QjjD^5s6_-kI_9uBy=e-x3LMwc4wB`Uu&g7O)_NE>k?f zgXLa=%oIY9eGyQv^iv_*_np@s6{1%TAwKs$!)uN>byiDw1jQrR%MIco z6;i9p+L_W_QC#BGhd)jC6ftx1gZu^v%q^8k+399brgOe}v~GQ&-rp2ntC7Gg|Go$1 zz>w8^{_3@MK*_5Q?Mw5TdjJN2U3O;OwZQH09$x9L;H~`f$$=VXM0;#%mpW7EA;Qj!zL!#bj(+*Bc2!R*8Ud3B3|5%Jk+5iIY z^wbgYhFy3waucv|p=Tr&H@ayFRq{}WP9Sa81VGgl@9nx9c%Hqg1Uv5ne%B5DF<4EZ zM0S&b(*P~)ljm62*rraXjc_Mi5Gx)zvylBn;O)&NVR3Qs*{3LYC{|I$`mvuqZdWM597=~^g(QY@p8U~vX&I~Z5~I3pk% zs?R3y>k&!0EN(2XLod>Bg*S^G)z=9(Cn8(=kI=Gbrf~s=k(+mPM0o5G3>#P{1g`RM zk&qQD=5jgJKH~Un;N^#>-M0~)t8V0h%knIiJibIK0-iQ75g~f;k^8=M+N#QyjglfN zjEEvGVVwTG479eXDuHdlKx?FowMTU}QG`9`leIVPjyuI(RbffBF)C_Bx}? z*P9k;Ve`6LB*Bt_=9z-sQ9}$4>40CxOtlsM;8VBb#3m-BNL)o7`#v+@%tWFsoLInb zUI2d6$?`dlCBw3K&(mR?`g+@4tnM-Ml4*N>=xN=XOjLdS-c!+VMIR=n2{NFRAY20g zVQm>#h`^V4U`D*uc;IEp%X=CGI*|3lwpJn_ArXKtU|ez0PBBdovRH;vxcAWiMQKcB z=4*-QdiKr1y?}lb&?&%z4Lgo!VLI+Bo4D?ME-nRu-L84SWjUwcVFYr1etrKOH89@O z8v3T&G@i8|A2pp9APOZ74~T_Y-`&4=e#hr$v!ycuIRRnSgL5U0SBH4ypUiDJK5-GUP`J8`pRZz z-`S9|><&Fk`I2IIQ78mbQqBKVR6cy>`*+yVS>o81p5(JIGCNtw25x=eNJ-4v&yR!O zM{{m5FNX?87g819@oF`E!b2J{`t?7a&H|{)E#BgEmxy$i2m*?9iqa_{-6h@KB_iG3 zB`w`8-QC^Y-EW`!-n^MRb7$_{5j^Mn_Ws9OzZGPW?&v30C@Ad@#qvp782k|z4+@+L z-vY=v5OHQ|DcIWxfI4KG7dzX8kl9?k0~F%mMOAsQUT54u7<&Vn%s6xERHV1%P|2hx zR-b14+o=wQD?CepvTx4=<`lfMw~bn0q$T_IZ3!QRQWS|*P}31*=2-7zi&*Pk z0w%;5ExlWV;k=lLjiYm?j=X1TbM>DJiU9QObYz{vajwPleCA>nFb3Y8dET0K=}{t9 znyVrnh=X6&f#zeq7br&?6AV$GIh8~3YH}!MHG>eN{my)};5dOuS5ynXJyG78t`X&8 zI?W#p+ydi8zxfvNXeE1^X8UwW8{f^YXltcxhO#fN7c;2=8)h9y$JkpT5d|4z!#jT zDY#R>>9TYIbkLy2E6vXZzh&bDIl28fgW&5#S3(cpubp?XFe5FgXGEc%Zi{Xs&w|Do zh;6;Iya93%09gS>N_Ru`xc?sf_l`Xq2rdA;Nsu&ycS`oJtQ4DCKSevBsq*Dn#YYQ3 zIXmc~F}&D;o9r=n$E?}KNw)EHU#XO~k4!e-zo(NGGLYKelr5Rk1y@Cc+9DK~khb!g zCa3Qm`GSzJuw}u&fctbhd4g9wpT_1dOw}vwB&xh8u&q@1Ev?C(czY&<~8`T$QJM(?yn||ue?di%qyS} z-$SOJyBH15X>I*9LC;ePW(%I4oXEhPE2B}+1umDv^V<4E043U3b1<4SER_9mxzDmP zqfXoYnE4Z7lWx5OpwYm07r88xAW&zf6b|)GQ8;ECxJBII$1_CSS+e7&`m_Os*ls3G zH`TAj?ZaA}`17I9OX|udZuf6|D_;JX5EZRu*TBm8CN5rfRy3f|=wVQ#bFt>HzwpES zdv=}c-kb;cuD=? z?+w=T^x;YJ*;ks@5L%*Pf?Sc89~Ub|FM~Jq$={rT{f!PsNb9`Ok`WR3V##)*n8ua| zVpVErhK`jyIRJyg!r6F;0H6$CZ7_5ca$V2mw5lxxvE8e%0Y${Z6)iNd6dc+53Qthq z6%{}>EY>73!Eb;0XDVkDDfUDbu{v+=*g?>1U`061m(uGP|DtRS7!!iP(SYN6%LPDi z-7E}OSt0E`s{d#|p9F*=5R>=>SqAE9WWY*IYHVSncpq$Jx6CY8c?QO&>HY<1tI9;B6A__$mbFJpzDA z5SSz>=n9Ppgm+%RAjVI{aNc~CQT+xBaq7!-Emr!_?^-p%7a;q;y?{{_Q@#5PbMII= zQnOKl;iZh|{vq@fTA6gPLzU+?LLhg>_VGZEz!dj@ud?Mn=rQsV3)$IOj2W$Y+gUJP zkAO<3dB+x>7T?_cIbJJ_n<1$FUGvl0#(Urgh?1s-B5zX&k^4jl1;x;c^V!Vj*U`p% z-Ma`vj~&aSz%RqYqG-T7vD!F?3|fxISoxq@N9&!}%k;gVZQ@%=(|Mhde$<&awPy^u zTmN?zJdJq&oTEb>;9`GwdoWXr%HJq0C1_suI!?_*E)O`EoWG**$bm+S+L>n|T-K#% z6~b}@Q?k>o;$`rg14{f*keDNUI3_9tzubz#CV|I?>V8e|!Ql5;4_N4tj)hx#ax1m< zwKaXh=kPwl8~7l7g7)uJJ;5|=;ei$!SbT*MAM%c&S8YSIm0n{EQUd4yMir$7x7q9U>1-E6@QLAG24!1D%Iy_38!a?NwYNaKN&oOZU6e z1Ag}k6T~Sw@fs#0yN|Y%Z9_tT_x0f~@aBVZ)qRZ+)BZ$;l~s)gR~YnoV0TFYb}~DE z=VelN*G?dCT;Lr7?h}!O)gCKvu@y;^9Tz`nAUbP-a)T@<-*jyu({77vWO? zX%v)F`SC@sj<>{cztrTZr?!ReAN!3Q2O|nc+S~^80YKx8gaP&zy zATQ=0nJk)jcq(?rii~#Go-a4JUz|AuL6GC;vPPUz>HXy`eLOtaV7%ysVL#i|&6OZ# zqwAW&BC!e9&m<0{>vY2stN5VUGz&p*6V4eAWc6Ae1i?)M~A_!!mpiLLL;{1EGiB zZ@IEC^(dMvXgD){A1$_Qq@J!h9kmL*L8{wK<^5_TlL`@mFPPc1@R5Mfpr5YXlqGeq zK){I&pNC4?cV+7>lrnRIJED5D0U`6MHq(K;?D{EZ2X$^JoxWbA#dzanzmcOb;5Q2V z%z+4T5e&70XcyZqy(hgMvUgi_0`Ax?uroM{l9^ zc#Nd~U4FLx0Hgxvg=(|8G*G|M?AyHia(M3hdbT}!pyel7=%Kr=Y=Qp|EQUHTh}PQy zOjd=T5ra1<{|)c$gh>&1G6y#BJ%BJ@kUT6msA`8Wgn|wXNvA!pVGk*F5ukuHMdh#d zb>cV=6c4i^C>_9qP&>dfM->hwE$vO6K{^a{oF?vQlpe*|e#Kl`zd_1~;M3ONa&2x0 zqA~boO zk!p)N(ds@x0SpEZZNH6~!Hg!VG_%w{ZJqEm%(XC=@S0&NUifBH8SvN%;v;zDe6lhCJ3If>MG6?{pGo8O zE$C{=BuoZt+_v&L!{1)WW;j``UYcZwr}L1*QSxK%{GC?MP3_T0a>Wq+g5W8 zrb^FDkZrc!Qy*xa^>DXL3~X$X7bgzQHr%ba0E@7k8GJg~YmJ6hoBmT8jF6X?1$|e+ z6z7&FmKujlD%ejHuhW76k_`8-8pwK@5D~P~Bb*r^;Dqc4yk(?XZU`XCG3v|GnJ!*& z{)^CCev&8rPM>l@XlCVNVf+#1ev27T|TqUs^(BwNMxA``osp zd;B@7&Vo~OGBdhyJHdgtBLFe-))5%|c1mmPC?ABlvqm^8R3C>MtGbxTfh}L3MUD_0 z&%auW;DA0b`ECIud6qk@eTFC&01Lr{L3Y(zrh2NUp7fiUc={Jpz$OatGL^vzcU{3kpEKTcRzwfA}r^DWs~)(oF!P3< zu9qo6qS)a(NHqvL@*`@2b%sx=s}8T%#dvS#hb1_WNURvDV+iNmR|%g%mH%C&L? z_>(=EeheWrRrGAmmpheoX5YyN2VSi#m@u4qK?5~CCI2YAG>UXQ-VnksH^2yb17b$Z zFt(wxMWZcNWqdDW(Wtx{1xDf>#g}w|8WMo6z;@%65&2}Y+W2oU{7ebo0CkP%L=lEl zR(ul!Jk4mQBuonHd;B@ooCHH+9e3jU=JrDW-=KxgT z=8|ghBJB_e+=Actb%v;8XlGtM?}RA5%dz`=*4w%MQ~jI z4$JnOb6uPO84y_Wi9?*{mbV;qL=-;Sj>T9%bfV3H& zZ2yk724cc`JU7M$PCyMNtACSL;Ts@pODVZ>0oKY~vIl5A{>_RegC*vM%c8@CluvI# z&YEcn@$+BoI&LIj5rAZ;H+`IQRSp|Awt)XJg1}0MGM;aHdtKDFbJJyqdom4yGdjNl z(YruRth>}i-58qpj7PqCaSG05EL7+J9OlK=le=jD>A{(I`pLaak?-0O$=a-AYqWp! z9Aunb1b#`@9sw2s0@u({ukrphqg9=;#JA?i;d{|FpsbEmp5jj;C1n1368Q7s@mw;d z>mN4xK03q@ZahIQb)t0s+!}8|y5`Cmcy{n;Ft|&EM1t<_wu{p3ZiD~u>1bnD4;^^L z^+p2_BXsrTEA~&{G~&d8ouRYz$W$uF2e<>-NVt2jymlOW=dn#d&VY*5A7h;!5d<^@ z>bbt7AY?AG+DNq^`3>f!kN3+972EyGnfh{;vzaX>z{UY|YxllP6y3CMq}6SK#P4a7 zn<$Y=AHUJ~a~b-;7o3M8Fcq2i|NDIGrL&1e*N7HENYoE~U{- zb&kS##QPOVPRjK6J4B{qNu99b?T|m9I_^iV5FjabW**X`jTY$X*CQRJH#-i2_=~`_1< zr!P1TmP%L-A}@r5DS+emgj^Y_?ZPX^p|5rlOg`d)Jq|eLAfr;i8U^0%&cPE|-I-k5 zMoAv9=m03kgz9_hKOSzrM|!~9ze}>|3mU(20|Pkl<%WZ;SX)87=vq&}y~7@xLNHO8 z``f)ZjIdJ!_}p|dyin*h&6(}{2dnj4XeiQXCcR@M0jVlqo#r+BSDurtd7zXO{c`$( zSt6hgcrG705$nN6*k0tNSyBIuLi4k{%CmJjp#|#IJ>f|+V#iT2Fz#b*@BIe&6rz#{ z%e@dFvJVNOSm;jOGEcj`YEo?NdEGG|KM0~M^N5=}Qa=2^h)lZQR(Q34z)1E9qVg4r zWABA@3?izp`4`MmxAQ504G2gaXKxliC=Hv9Y)OPXAAX2C89W@VufhZB#ank-_Is}~ zGEhbODT(^QU;$4u7@nNgCg6$I#TUq8>z z6M*vRN5pPeG-O~x*goLHN{K#SBi0JAIzH*BS25hw0#>FD!QLKOyVplGNA8V~9yZ#> zsYw8=`M_#h7oakdFYoX_P$i!fc16ghNgO|}!e)n);H>!^dkz~bn4Kk~r^KZ_GwqUX zV?eC=l`!Dd2aEhux>bWQwtxEf;Glrv|s3FgNDo+WK76DJ3_<8ot%uT{1yZT1%N34 zVO-(5$4Q?!6~7^p!UMm7-%&6E#l_OuY>n}UmZT}fk+9Hi5D5^8vyY*TCmvs%2q2%Q zz<8QD<;4%8en4UT0TjY%#M2Ja?LjE3W1@ZKhJkmx6WabWv^He#0Qan&XrT{jZ|fY6}(GPfFj_1(dYUds9*;^>l96243ks%deyz%a>Bq&s(Aa#pVH?jdN z=}yFk4B-Od41V$3XEDgsaP2WIM35dE0`)&TiK2kyPXI*sl<4`#`-_gco5t6(?lt%& zn!AOC)!Y#D7)NcM{-`M8>6H&JaBH19#I436f9!R4A_h3-Kp^B_5AEXvvDS0|xli?P zq3;ho7KkP5H+r%!_O1?{+%-NNDTYbUDqHt~yKS(SR`^x~zdcC70di4Q69l zrOfyBI!nl~_3^6BukdECY%Y%=z$0l0;K|DLJ*WaT=uF%0f#!^?2sm-k!pH@!hE5TC zQ;9fW?q(b}!2_@FN)Q0_LOio?ZQwVM8-UsBctY~uhwPd3Vys_jiTFRUFyEP~E8gxI z_w1CYY$KW&quUdblB#xEq_BbQ1=vP^k%YxD263+t_)KVfTyhEE`#YN&P+tphpn>Kt z0CZs>S<{nK&3i1Jto_m|Tpy5aAyu6T4LYsG4FJ>t)BuQE*r>LM|FB>ARqS3z0N}KK zfiwnSSAp1#!}}%91yo(f$|I6L+}>tx$`Y+N?>K=aN@#fd+wg)Vdrsq1wBuf z-AFe7{JBE*29{~V&>*J1Q8c8R&mb~@o=SW(&&{@M0Og>5rw3cJ4`9}~ag3fVu?Ibp zaPrl?96rmWZT(aPlJv?4q*j*fCS)Mp0^te&#TmVW?c6);ZQnWZL%t3y37a32^fBes(;nNd5eFu^$Pf=BXHKkKKbV)Ujr`G;XZEW*ggOc10xUahK^(G zSR3)~He|VAn~PgQj}8FOoAgI);kk4f0QA;W5D&-2l&{$o$2br4-Q*4I8%N9Wth3WzZ>o@ zeFFkT6Drm@f$T|FK7~waSf*@`6HH9TXL=yR^nv?2-L+s$C{#S`H5WlQ7+?(|<)2Fp z1tUR6MiRXX+^y}(E|qJeq_OnCTO4*iekc!4c_`dRTMP)sM=yoBC3Pvjxm7sR$7@7{ zb;m8^B>^{Ov7==6?#!5f`GEsqNJ)7O^#J*v0?0AIvJJDK*R$_Cps+v`M`Sw^-*h^Y zJrX`!P#G34t(H({hT5S9H;_v#u5WEs&;q&;4B&!-Fm9k3Sx^=!EUNEM#aLzZ zofB^dry$^PbTMeI9)SUE8Rg$}jC4e)Bm>qvSTQW!!as@u7bT8dL?VsG)r?Y zV}vEUjs!s)JUi<_fq>HPDt>6Nv;HO2>j$z<03Z|$0U_g7KaC+;FP1>4?8b-x?Dasp z$N4gk@6OZ63|yvKGeSE>PxZLb0^S;A=8E!k%!ogRDErd&&5;dkav?;S;XZ9}&4)j` zgSV?9=KOf_uUpc}aNPtnt8elcG~93L;oH)%FF@)A)B|;S%(cOWM#SL4J|vUv@=I$5jbq|UXJ<e_|}*_Daq`kyRfU1p%}qY4@I!+tGQk z@kOIswg)AGct1=Uh{*2vN;xBfWp6g2pnyJ-b+2pt0SFEbqG3xKj0Gz9D4!+Xbpe}X zu^VS#vv&3rMZVV?`r$iDR;4fo6M2PdTSUO0um&na0Q>j~ytNe!$pFFu#yNBc683zV zQ)6@`R$p~37=F5w5_h?a2~*c_2EkcJA#qAF%%Or=F8;-xuJMq;YnE~-Nm0>tfG1aS zxnTKLGay2ls9aLR;UaIUeZ{>1n2^y0mDnEE}p7}pR4ze-I~%ra1Oj+ zL7KIy=YhxPVX5RAJ7~)FdBCs*sYRd-wTjGh&GRL)?u2Zk}9fs!-WgNwwo#yU!%0i78E>b-{&B8{lTL{wxX z;4q+uV$hjHP<2kcij|h&Z8+A5@14?EJEr>rCasWK3WzYvfyoJVpt>%~oSI{Njq+$(q=bq3!*2CEMN_qL>wC4lu+@-7zw z3xCl0m%3RRtinqV1GdeO!Z>@WW={_+jfj#V?m7M7sQi=Rv?U+ZTL7U1RS zHl^KVm@pLg>|-ttn@Wkx9RRt2!4`(0vXiqcu$QEJbRvR@5xHhiHBlY>8vyrTV9lQQhBt{^MBwB2iY;gKxz4?2|-{jpKfA8EzjA^ znV;Wy9i}=tD;N?5oJ5b=pNN~7Wcq1dFDqPQ;k@~V6-$A1TYuBW_YF=?5J&hriqGIg z`rS7=`-x_w>$_)86XSPOnrK@sf3;#Zsky|XIYu5rR!#!hJr6x|iC%Nhlzcx$Jnbfu zKYgpbXG3NibR4=kcy8qM&lo4M{1I&}u)c1V{_ZMq8q@t$nS>V&>f}?}fkr$Qvs(p9 zwR=moZLovM-7kUguIy%KWLw*uAH~V1QUOrrC7T*j!}_u`hk@M=Xr0p%!*@Bn+zCH3 zCFLJm$$~05Bi_LI%#apfw#`q>)Wz5~+o)5-e|&f?PR#wOFKA}D{E%O=_=fPFGfFZ4 zD-%-PoT?24S9pP>tg_kMwxG^bpV0COxi~D}N-k58jD%i03$)fA(Z3o3%{|Mg_5AnR z?$F5`k{({9Uu9X`q+SR6)rGE!Zv)V;AJG`sY_`PCIhKjFNnD@HZfW+J;rns=FX_LQ zCvP0dwX==({=6P1yDM#_{>c8iI>iECw@_nn&hT#XIFxgaZitE4Ohz+Xd*i^Papj~i z!Q%%B2Tx`5V!S$Y?A#{**i!0!bI$l}2*Ed<%zFtBE72B@CIVlmhisPJsn7R=O*c1p z58dlWmgO5?`Wag}OnDZ{Y)s$slPp(BbdZ@%x6Novwl-e#NH&v4o`|y5a?U>KEr3jB z*>(x0jh*t6{EZ(@J48>2&iGKvMs!;&{G{`6-nl*4^vx7-LrTjJl#Na-gFub`*BMji6`K8A7A7-rH)m)=~|QBzlH6 zzY@MZ|7G5_szhqtIudJ>Mpo)KSkAVE4X-(tCxRgSNk4)YWR@rW}WM_Lvy%WkNAlqgLKXo1#)%?uARSIv*`Z)B zO{Wz4W_L6brQoMhhdi5iX082LZ)n~jLvhxGb(h$13xr#k*dSQlojGqOhv2s0kHt(w z|5fBp_j-*9+x8H_?(=uM>%OG=RjgXEq&k;JyqHa@}Qe+?TjY zHXf-KwMxT*fQOiR%0v(;ndb;mCh+JOp(-=bIVLHn+l$Bv|+k5lA+dXrtWP1ozra|2`HR@8Z z$PL~4RVi+dT2Bh+`6Am@;mt3@9>Qip*D|lfjylUe8JMRP$D(5PT%~)%KcN1V)~To` zqf8B72uXG@vp)S3JRzU#qwUX$Gu&A`zBcL|+)t|yu*R1na2eSq8<-zj^r0%rtdzE( zgR>}|FXi@1atl-a?PkPUi05MNm*cJ)NgATs)y-(o$4vPA2<8`UgX>;kAm2yK%mdqp zg-*u8oFU~Agf!N|EwRYyw(({C98@;K-Fe0HO?v;lY&I%sK_g)}Wyw?9svkf1uHBe( zC;qJvG|P2%DT%j;jAVU{69{l6z21hpy zD~g?yw&6@ykUDk0!HffR>xj)~Dvm1$tp+$)M2U8C@Wx^Jf(7m$rFTTv8h8aphe8_c zd=h;eBn?S@fhgDbGW$xHJPhx$>u4x*2OTc7Zn`RkS$@NWhfk|7>c2;V(dM0xp>2`b z#5w4DKRI3(M^)d&ou+0Tx1NeR@09 z2fc{+F_2O!32tZDXHmxQVO2ru@RjjdhMo!fSi5d@g6>*buUB9I^r}ZtQR*A3gbMPN zZ7CgsC}F+XGU`VkD7?F#}lXv=PFU2}8fX_G8lnd$wYrD?t})w!{R7A)wo>LkGBUHJDN#gpd}fr>fqd|l(#zQ~Q8_(EGpXkflBLBeQ+ zk$?EOcM@f#hbmOU6&n5h{(0vW!}UpkZpY{B%(Q@JRb12Kw0TZidz4-C2k8#r&_(t9PFXn>k)|`Wsr;T9enF-0&d{8}J=Nm( z2tB28Nw%Uls<0aD1}=%w0ebtkUsz7IQ$mgg8?k4xqR#I#3$w-xoqm^>afKB}@_+JGOq zZfYc)rZ#f&#(MqKv4TCm%*dia<`^RJ$!o>5#9nu3u#wTts^4SYZOh7 zeZugX{LpIoePrT?gK}H`987G&W*>2{G=q8Vyu{lbaiw$#A*R>2*49+)qSP0%288tf zlSrDH$CSZ%9XsjZ+T_C?PU#c;>AF&%^FE03q&PllyCjyylVD+AV5iHa_7z;ah7#NF z56_^&l56i%OqBW{yY0DRi*M>u@Y$;eqhLrV?~|;tC4amIO>!q*!{k?r*Ry1?g01pT zIS)*Ec7J^Ne!Xs-?wFbTWyaODMNi^4UpL`db*c8qJ(FaC_#P9cIki~z`3ujZhJ{!! zJuO#W!e0tfV{{Q(X0E>e*T`?UM;>CoDu2Siy3l1oVFjO*f!>VkpoV80OlaD*!&1V9 z&;`BQqwglk^Ss#~t@SiKBuk}1VpIkc(^MbiU|FnmMIj43B2UtVLirlU7kE+x@0*V- ziETX{gxL|uhjkJCVW@9bN>F{8RLg6Mshu>oPd&WESmxpP%9|-7I9(|L3SBM#fy}6*zr#Y2weu zB19e?>Eb5NxIp2g%96=Q;9)N4TizSsn&Nvx%lrY)KtmjtD4O8Js-11_A7JJEw>zXt)6ZXg<+{iD`|IFZc6}( z2cauP&ar z=*PdWi+lYs?&fUDvD~l=^$6Lza!V~NY2cm9rP*Pq+)rgCe`RC*W6us9oVy=AhL9tW zw>oVanh6c%VlA|KXOu96cf2=QctcH@d$fP>r=CLO!J(@2x%ewNoH8p?(UR-HN0ypc z;q_aD>|V(MndF&Y#x zCPP?P{KApf?RRpYCu+XN87==?=YbIgEI6&>*ZpV{5&y>ZkU-`(Yg2eOVjjr_D)8N3-B}?YG}Q-&cxv8phSKR>t%#?I*gTOyJKSx?;`>M4G&@ zRNk8y9Y{%aJ2|PKhiduDUggSyAej3#byKQ!C;IN8cx$;E)EMu*GWi_%4#kEitXY_X zBWYDrFgdhVL)q41)jCdS-qo9?-EJYRyu9`|-aj*wUkDtj)%t>?E7i#T=KQ9Gpz?=! zSgxGh2V*Q8Tojd=zP8F6`0a2Lle5vDVrjfNM}Ea9H-d@t%wM}C;7H_$k~$zTU{Zhl z7FfV7Sf^E?y66r?P$RQ?_Y8CJ#S}d|6pFc`FQV-O26{H%9KksWJ=ZGwQ^Ft zEBu9ows^m8U%4}>$zf=E@b_*4u9puhhjk&({A3s(@rC~|@(gVgxrT;Nx|glN?A;OW zyYZB{%1@E7)mZoizNS(ANVA%W3b(_UljW?a&RP|&eaQ6L=q)jc*mg#7S4oEMO z$veOa)|ntUFWh|>d2*j!4}7wuAe~g)AEQ$oG~>V?8<4~{3l8)F$&F@aNt2FQ>iLM^ zkq&pGPlqp7FU&gy1qQnNUqm=N`g~M6B$yLS%b&3t-7N!q<~-Up6)c5Ch)he&FcI|} zKg9(^&W8X^Ye3kAORe(p?i$W*K02<{@FtfP{5qepazeMgPcXlWlkQknFtEgWt{iQs zgiLZgUiE&kN1$pY{SChw+mh+dnIjkbtA>RoM|vxbZ?uVvn%etcHPlV!+dFdueQtPl zr4kiq@?YB0u+iFlxFQSkPg$7tT;QEUgaTLUNn$^4>tXn|scV;HC2Z2|YI?Fnc`RG> zuU2W9nY7a(4i4#LwhOyIc4a)S*(wErtF+aryV#VB_wfp-r*_qupY_|OhJy|%Nd!(R z7fIk&L!YDEyFhdM%t@@i-S9V)G{lwb%_aiIk>YtrQxK+&)E;SP@>A~iI*sTC@^yvL zX9cp5ENYIAde6FgR(idj0y?ZgQnyc>$spa1zU%EE`i9jC{6TR*Oy1Y#bL}uoM+r#7J=R@8 zK`e-cKOx`W&1m`2TQ$Ap^Q37mx?zD%LC%!kRY9i&dS&dlafP})4VJG!DFI{2lipw7 z8Dt0zyL2@8WrED2=^O3E98D+e!yn}Q$4^)eC>1sATa6@gQkt&w>l7a`5#J1?S&4dB zA+n%U6?3Mw#aIeD^QcL_t`Zr1xj zRPisC*t79}nv2*q&X$~_7E#5%ZnBs$riGIlZF_$fsX4FQ<*yN;zBr>5-`>CSyc%lW z#jNLpe1|`m(VKTk_kD)R&!1P`;4$OE`FzF{e|oI5f(_FWM{Fitc02jg6CZP~lqyyH z9rrXhZ3geDN1ALss_P=&V=QN@fU$)c{PLv<#9vyLJ?j@OT0L4wtKB5${0S!D!$^v5 zv+mvFUENuVktOQe{`T7cdu`{OD@%tljWSHVIr{SO^j?6}OFK}c#}IdXi{7`&DTXxdm_S0iGK-zu02)|2+bI{lW-Fm8Eam=VY z@>Mel!DuI<+)w>6)t|1KBR{+dm+V2@ayZrTwNf3QEry`(XObP6<4hg) zUvDq&_pO6ZR)(~?#&_n&*hgc(l=zT2YG+FR=6ND?%jO7juYO|5_T<+nxT^m1flzol zybjzBvho&8bN*Z-t>1OM<+P@ORcGKrO}8|3bT2@uum4~qQ-Eq9!uu=jOX5L) z8`QwOxJqSB74{?EthXp1LRwsP2NX`0oO=fL$lCI=Iu zT?x?mnH7zEJg(jN`F8vJ<8V=A@fSw2M~}2)?IQ|yh5Pewy>Py~hh-nH*60jiN-xp3 zHW!+UN?I+a-$!&Ktf3jim}CUB~`)zFA^XZHq$RI^RH6L~#b! zv#$p2DJW<=)HO!ViNl5sZgPY62L&)%h z^D(rRn&YpZ#d^HN-v?c?xComg1HIBHvp-Ab$4^R(Ggg^8M$!x>zlHaqsk;t~xDQrl z(_Q<=VtLn#zMJjOz0Hx$b*E_aEavgFo)sv$ycV@ zBcYhB@4l?bi~T6{r3l~u`2EW`Gnh$9EAUJd`QWMfMV8iTcXtSOg=n?YZAE21u99J} z{8*C`U+u#mW0@);lwgvlGyHmpU}`>`Vb34u01ezTm6j5sf9x^8 zC`l94P>Jg7$h?A^=(Jj3z|p)Gj5`qO3A1iwQ#OkF$7z@}sD3GB#!E~pv%O^2Lj0<` zyCBu2(hHU_u`^f_!H)imNl~fG5oxwcrf)|;?k~C576%Q995E}3*0!~*pc-)*{4O_Z z^D&eidL}@Ye~wsn&2y1Ktj|Jo?>N)0JC7nV}76pIGg?s1%j6QYn9p zZU&EoN@EQ(4f9wb>aCAPPB>PVMY03jOq*tx?&Vk5BmxUv96U_Xn#PGEE)F*Q@8UnA zhO@Y?$x;5@(k+!gwLQUVA)5*TpOoI-#{y~NFL|G*TW8CqUJMoK=zT}{VNDc}F-o%J z?zXXF#-lbw4gVZiO50j~)W;>ID*7h*TKnxbuPPrl>kAEOiy9_=bOXHHLf5Yx4F`Y3 zFTPe-Pfve0qIcm5*m-KBYqrvDdz9Hw@z=N7PI2W|Z@}YQa!{A?>Gv(Sx<1a@Mai3o z3X{Ww&e>~dZ)!~&eJI{+FLKx)LR55D#PfNpSGDwS_YVz# z5{{fv3aEUD%DK8Z_*8;)?Rxt50!`$s#S}3g?P$M2H#Z_PV&K*||2v6_150_xQx?t7 zn0vQB3yr6u7tc^R(q7e4xTl8ER>w&Sfw55u^lQ0k?fEz?GMzsr8rK}0A{b2I-7>Z9D?_YNvRx(}_4ZQY&OGlERLIXz7YOZQqTm?kn~av8;09x-MEB~n z+G$}hV;y<$Ba$EK2m@Wm$xC3?#!lm{!9^EJb>H_GFdt&e!*=;G_7TC|%lk==fNl$B z#2!iKA%tl+lrkHSl#0C)iR`V}bJA#BEh2ld5?`~jwto|EL6*)8=c{;j8~52tHbh4T zld1jd+99S%7RR-Zf46WHW|qQ)H%K3Ye3h)IYgL?-XWj_9k1CfFk~1@7zJ2@F*3Qnx zzBp}3#-ZZL9cARj20K?n=iriQ@}g{Th@w_ZbT(jNK;yb^nv2)Pk*F)RL8sEos(vBm z_mE!aV+S}@8((J71(X+1QV*(A^cuXX5lfbP7hs7_&$@$=#0aReksuXCBZ`#SR)NFi z-4C*NE~aV58zXrg$uaf(jo%~}jIw{LEhBkf9S9>}{&mMaG|<3hes)OO)G+yY{B0yO zZvnB4gFaR9E%sOv3kJ9;cc*HgCz|q3WT}`@W zORwxhR^$MjC+S2~TJB-fu@iP>FehoUuzXn3BrjWEy{WwIRL*8WAKhq%d@qVhoZvWbFs zD&>R^ksU)b(zj1=ps{8tE5H=soy!{Ex!;Qmeyrk1x?jeCYgnkD`I5BhP^(z zvqfoNOY%87D%qwT5sQJf2JRuaTPh}H!K*N~Q1!J#M+lyFQ?7+k_R*3QI|W7kSTJOiu3Lfq zEQdqzvS8z=Es+Nb`rw}0a%WxRPiA>{9q1owaNTeFt;=cyPOVQFt>XB=b#g6g_@S^` z+uuzGihtSJ2Od$+cy;4lBON?mNvuQ&?}NQMYZqxi_%Cpd}Q2n z`x?HmcWd4tkR*8=2xWeV{xd!9HO}|73HE4(oUH&&WfgbMVd7JCet*yp zd^`Bd{DhqRx(EZOr}j(Ix2B4 zcf;ZzW`C@@q0d{l>nA=rF#noI?!*mOKejjmFG>V|O)p&kSrbPXJTaX=aIvGc#Oy^V zlqXO*?P)s9hmgO`bcBIv^zOuH@J9I@cwqe}dG{JK+viO;q7AeLi5P6b5L& zU$W`?LsjgPHkFMV7S*m)BhQ{G;JD>npjW;7^6-$AMIJ=?qE0ZJG!a;wyg2sWv~-M! zlQeqhSkmOMB}T;Fb!w8@m-lFIp*L8R@NRT=Ci3y|F#uY}!LAk28>*bZ|MJd}3=}tH z>864Ls7rVv%$z~Z5`s7Pq)j#V#3+evnIF*8o?QPirkR0iYR+G+!M!}$Jv6QMo@2GL zBoaS_a$14_to*oSS&hEI<0VB6Mg^Bdl}t3QZmBqmJ`bef|KZ;Xq3!cuMQ|NX`KF`Z zC9S9D_zH{=2EpDHOZeR_A*hkS;!k{#X@JohhGq zeHX_R)AxS(hF{Jsbb|qDSA6wRTD_Q!S+g#3D31m(pn(~vB5jAOTX9({Mk_DJnwFQ< zii2S|A?APLN>229KXIt;#vMs8KvU8>^DxDsezIisJFB-PAB{atS`T#pEGU0(wEN)1 zvEPj@k%CvbDYf{_G3NQo{(I&$q4-dIgDe;y%f4R<-YLXUh^-9C542fz`!}2iybJW$ftelNEZ)eFAG&Gns;Z zEIqBaGw(oW1gS1j(^|fkoUlVmNakA2teRl-RKF!vS1I}zH3q}OJM9~k0aD@I?N8Rj z(5$XhWN4P1;1%xI(9W5fFtDZ^TY!mRKu_Uh%2rjGay1v0Gq|Y7X<5WIA>BQ9s^024 zzOt@X0L5CkpYkV8lJwAF>x)uTvs^T{SZwg|g16snu4{AUi`f(yEc@v4qnWA&e|Az= zN^MeNI!zv@`W?ym^gha=knZEh(adZyi3;ynS@uxc6y2%G>B;JhAjS3b@{ha(pf8i8 zt;(%$9U!rC;<(jS#?iKjM<60{<~iN=MtF3g4g=3EPAp2p7K@LPgNCtO54Mh*ps3P_kqExNkv4laE6KHKCq6WD6v$=dn(0uRbP(!&}P1$IX zEk3qrmbK1#2A()+Lf#x6?PF6pOd-p1jJHH4J8DsLM9YiuR-{&r3k!;DsGK|LbS=R9 z>7}ebKVzqVcLwL4QY=2KxUpl}F`TF=_wKz{DtNm(wn;YK8z0aZx3Q4sK zYh6a_QpwTl+(1xzAG_kH(k{hT~*OR_tvDlqlVa4dhd7a3hF1;M5wRHcP!OLAAHzw zZlQB>KC76Km;_41Sl+o;k*Ci5Qj2>v@9{2l$5X&(neN;??=vXgR$Gz>Cx}AKx#I`J z-Tub)U2^5)*dt$MD8tG&_&cxbIqeh|F6(Tz#iA*tH*{ZLyxSgEyZMH>E;YA=z2C5K zws%TKAK1ziR@})s+=Khc{51~@`YWNPdF8L5Mwmh zK+{;Cr1kC3Pd6%GsOl8+`~!-TchHuOKkvBY2IhV(MeZFoCG@v55Nto>Zy5}29t(z; zD>i;Puof1R`4yHbq?ZLBb9~2|U>&76p{^Fw{#rP)c1E~t)0h_wQ~u?tPtfGtFKE(t zfNe3DBi+Z%xN+u#X^!B{H(73kMrE}q2H6sQ@Np~*=aucqbA#oUi1aJuN-{TmD5bYF z&>1V2Z{VhFjiyIwaf>2Xq=TvvT)i6O!Lo#zm)HPo^~7;f!+`-C;Awt&xYH6@h%kTg<&a=qu_HI z34l`-a>~{dU8bK;ayLkYuO5!*lJ_UDceEXr7QID+<0MS&163dwLA)mIhJtTpNmSYV zFl)(?&{r~1n5Cm{y@oi(mzzZnDhykoK3g*_qSm$`XVV_?&*62{k}^EWy<};02D5u; zX?N#x(TFa-^jI1mqNJ*EYeqHye+9oewrMWbqT>ut!$geE2eUT7uZm`&6l_ImreqP_ zJLRKhq_Y(W=ebN~fl+u=yvaLX!47uy6WncAafz5E%VL=#vOXfRnMxzz2VQH*?0_ed z1+`z+GOj7FG-s=ljnW?o2nLVvWNWT=z=W+xIK8|fur6)@bk;gJ1u<5aJO`Aw8)C$| zp2Og76GV9q4x&r-eOc+REapxW+tG1)cCN9=9l08zvT15&f&tnPk*dp23(6?I-}V0P zb{5hF@mB6~x-sWXjP^uUD{#l4{(hc~9;~B~!9O=Qnf&uR`oUaI@qbu4%cv^ft?MHo zDhP;lqX&1&0;(i!Ghn9E_b!~OlKhXPgN}83ua$RfON#e=aS93$#woR z%~6IJyPI9RPs4;$E^gy9Nf=qzfKPl^JIy9x%R8rzU(kZymppQ{uVPiP`|haRx>T0- zyQ)R|+R*lnVBhGJ3U(;oTkpE}Za>|;QqgD4v@=o~%T8lqcnvCYcF!^hbm*u*Q9(A4 zKNcOKH~&`{8aQR6r0&QBw>hpo^FVzO{99}C;=`n$WR(=-I!{}7F^t3|=00IIkTZRI z-W_OYX@%G-Gcbi796Nk3*{UCW&SCtUIKy(>uOmbYhm={&HkWp70-m>uJaOr}U!NcR zJ(21C$9(sM65FPC&BfVr$%|3iTH?ud)2zX_Hk}lTV_~f`C&t6g)RbJFVtUE1oF96a zY722AsQfa+nME^BRx*P{qCh=2ZydO7dlaf)yt>~(x!M^^4SkQXX=xEvr-i?5P>_+O zWMsrlH&iKwJ-7~62dd8YrS(UwERwIh_>yO_JD!FO5w;7Wkg}C){T?~6iW?Ff1$+9+ zMeOh(Jyg0ccVNpq^eLHg+Skzn*Omcn76TsEQ5scl3{8)cjG+b!nP{3AweP=&Ma8un zgZIf%++7ua7qkF&bpArVbnz9#vC!5yUj-+R`a6{R@GkcwvZU7sJoI7$n<~_HjrwK& zA3##z5ZA6(pj-M6WSo3gb0n8aHN;NE(n4`$xh7sV+3(8j>9QXed!pyG^er!D0%|it zxJ1ZYH(Mf?rj69orA#ab4Et%9*gRU4K>LB=uVin1^i+KF{qr#ENU8bONW$Lu>BfGZ z`acyc)H)Z*vy4e9hZBzUky(RUWZ`{J4ZN))<#KdiKEY)Ro#yIf1*p#0B!3bpk?3y~ z>Ajgfts0!}?#sk+4%vtHrAllCHLTHGCtre^dc1MCRtYxO_Wx3FU{ur(7K^Z|{tPM0 z7S3rb3t)aB6#m~fiPt5wY^JTq%C__B*`btBA&Rc%{;Nyr;ym9>Iity;;qiPt*&X$0 z)=E7NgVU+%(S*m$Gq42`-tc{(YBs>N)$jH>iRbh2uHqqDa@yADeL-q%%ao=n2(Dg# z3Qw|`?56aL%}hRevR_DG7@UkpmUC}TFEZQ&RQnzeDZ{S5(lCqLsrwg8t_Z!x7)LHs zuqRA|RA=c8OW0EbyQW@j+6SelXx#O7UabmkrtI)L9N|5`8gs77GL8{s-sA((?i2l7 zcwc=@ViA>JdIGXw0-0a}vQ3+S41<@gjVIZkx2jTOxKj#OeLOd zPwC(xvFKDrxNJ|VZS31d{7?Y2uRX2>HxxkS@BJLog+WAG}X39m>`NL#HNS)NK) zf?pwAshy~2m%qcT#^2#vx|^Jcz%Ycc8al*MKMJmZ9(3LQE~Zfs)sJ@;FPVFD2W=nt zrGA& zvHiWge*s_Y%M5LW)R!7Qlw;p?ANjC`g6Y=KG*Gr%`ix`;hS%PiCl9T)F>-W+`wdN| z&hZE+!xqOeCtX2)FGSWgCtZ_(|1r$EB`Wm56eT6s_G)a7d(uY&fXR=OWP`ZzJi!qAI}e7r#C5%HH9B~uOR9{ujv?MtwO|JI|y<}ua1G>U+%EI#ZU%y8;GRh6p6uNU}r*L$2MoElI@TIGO zK61-=$C;wVl|~)*6tQlS#gA^+p^$Pk1~9+kM$9fJ{m*?SJrm-ZyYy*t&AeF!Lfrna zcSb%f^nZcXQF38ol*~hsjD%^$Kg9DVveLhZD{uRKR>fn|ocifmDcJ2XDs#;{Vn#M`G>V-AzE7cs9A~W!{_oS1IT?F)=to5zWZ7?v8@;dQl%5}c& z)XlT|uSX_5Z&$B`S8tv65T>?J>7G>wOZb*(9#~6p!PeuB7gQgocJWme07V_e@Meub zXsFt2uk_SGptXHD##_pPZ+%kEWJ1}0sy^Wcx8UD*j{b1hNHxWj9j7ip_{7iM>Qe7-rp&3T1iAjFhIR_Oc_*`WiX~ z7TmSRTc9BA07fef(~EQsIy@HqFr$jbF9pK^`Jq~b2oN~nOuBk!zP$Gk{6rIHD_*6D zO(3jNQsCqKmMbjcYMqU4v6T4FNJtI-$hHoc=m@zzF+Bh!Jojnc<_2%)$3wppr>* z1W{$*15~BYN;2FbE?TqFit{f-OGaOIB=y^`jJ1bq-&GgkcZ=d{$6h35&(?BJE+GY# z-p*Bb#ZzTZBl%`8#SnhAc7>5tGfQFk8{5sEfh2z#iv$5i0A%FKo-YbTqv$dQt$Jc8 zH3&HBm5Ka|vw*ANZ zdC>gN$2ix4o}Si$f!%Mcma-C0>)l2}ewys-CG;|YQEJ1L)Bj|a2k+H)!H4js$xs#iO zKi{EDC9r}Q8P*$0Op7+6_(e%^5ckF5DUFO&?(hDvZI|+9+KneUmliMH^(zb2SLFxw z=d|@#9OHkd6}P>6qMIx~9n?P_q-qsmi7M zI59yPDOq^^)J(28S(mnk1<02+x>VNEE4KwXyE+FWPwjivqn++ruhs`PG6yOP|FES= z*nRHM@T^Hx=^aqlSU((;Q9fZ6(C$Vr)c~kQ>Ng3RQx5^QkPtqCWW&1u897NN#ZE>6|N9tJ`HCma&uRFj=5Z)|#Ik z7~>BJOIDoT6}cbbMV+W-aN#c+)%^lxV4f}}?;)Qy<2YC0A-PUSC~WA?&GZS2kB>j^7}y>4R`B0( zVM_j!$STS8dqTbI_mWU>pI~PQDT|^T#&%Afe_=v^Qen=a2t{gN_6vnC`7ehr!v6*S zRPW|I_dS)BweZ3u zsh;9$%%Oa5v30U7`I7$TvL;HpW!mLxP>{T?gOD#x?fv{Ds1Ig5pSHC8G`zF6`!92^ z=gC4o&7LoUks*+6`vZK?#7T{+`J??ar%m`t~|b(8cZ4IMd0Lz#bFZ=pCVFq4#ogJwhvfG|8I4U0h9+mm-oKR+m>IN3fZ=uAE*vX6)Na9}8@%x|qG3+trjMxNe#nxZr$q zA6aPliC;Qr-B6uBp_M$%&~?7BS0zmxfS?eMNgl7DxYS?oM~;`3lS`c4bRXwzJv#rv zbSjQCo~uAvP*`YpakwwXq3HS*o*GRZoyE1aPTpBBF;!JOcJ?ZkvikjY(xsJ^6yL{> zZFlMD?;}&|oR>J7Y6SD-2PwTbz;6Eolhapa#$5_UHT~x_fu+Y@=(s*F-r6f}tef|7 zl4o;WT3x(sJK28n{Ql4oY?EWHGi262mE5JuGeMk}@8@ibp9*9>vZEt~T{3&cYR|ru z)*x#&E0S>6i;nkmOwXrFRg3`P?KgeHdt195J?D2(WY=~SihVq`Na&D}??3ILm&owM zO5u)2`*PbCUMWF6t%TFtDix~v;H0D?AY0K(z5V!;4<9izm5HMsBFx+?;`g& z<5O!h|2<6?p*x~6vYW2`Thd97un|@*P#16e)~%2bQH#D|fief9duSnlYd28{zsz7= zaec#w3s6kYRS-zo`dR_9Lj7#@JStVBQgr8sH}h04c4|BnyhF^6uv-4jgsmODBAEH6 z>&+R=bDGmwg;GO8oi8Dq$f8^MaAb_vY*7$xVbP=yEJp(Jh{7Xx4*_k?hNO|1{o$E> z*)0cQ9ajO75O8A{oSO!m9xkn)DBrcXIN$_K^HT@-wZ|H@Y$@1 zoVL*=qt!RQP!b(^xOphE&o*u&e|=cj{=w~`aFFcVY^%_FkXLB`Q02Mrm6VE&OC0&M zj7QJ#M4tZ4v&{F}p;X@$7tZRP9Y&%39vtO^krC%AS{}2#mcmyNj6b6w3D(oxGyl-3CN+3|D*fdTP+L0%i>VDk&~ju73i!_#36JIOTG=*|e{o}+w%m=)Gdi(MQIeJQ@}^=0e5- zsBF)BSEE!q;4jk92r3&be^ZzIZS&u=te343%Vy)0G-{l|+^5TnUn1WOjO~HfYc0rn zENqH+!ey>EIi>C3Wc6@xTuH`)KOe}t#YjYL<@OSA{%D4D3$W! zVlwlYAt3c3;Z^$yMxIwAbLljDQ4w2-Bo$i4<6NwyJ2(#=(sVJet`3_x&n~Y*o@!U( zNkvymej8%nj(5UhIj!V7(*f8*c8_pnwe72!cG+@H|3mbAXN|z7>@=f{tL6I!)(!7x zo^yQufURS&5s>i8a4ro6&WALR18<5dug+94)a(D;G@{?UWQdjDA!vKS>iX_~#HA{& zW2w>*{L39PEnB9(9V`M4?rz*yGqn-?_gSmX+0c(DjNbw%Wjtz3g0nzl@Z2dffB3Y_ z(wT+u%KwOF>U$#fIY~neswVMA2VzPri-*nN+(+!<88))ONeUFV#)c2R1F>UysrUuW7xPs@v4o=DKj7mSF_j#=M!y!=m$9EVQrzPiAx z48D%aoc=BM3c&#v^m^kxjqihpTf20co);tz$<1TbtveQbu4k6ChzsfF`$M>j8{Nw3 z%Yu1U>U_VhU2p4GrYnfkHmlfNPaI0~(k7$zP^eOTLSp0M!XqWM=)iyU$nb{TaG~vk zESGof!Qr9%&H1Xmiwi9kl^>%<(NCXik1|?Axp_!)84Oh90OAXu@G3#3$?}J(q&TYp z9$pKg=sqSRm@h+RyXqFVJ6zG*;OMRHeVS*YtosnCnh@+H!ISeMXZsR02kwTLzqz(E zZ9amiqH|eKB9%H(LGv~?9M%R3WM4}hE=>@*j56M!{PMqejox z)`f_n3(hgOcR5SjoA5&{>=$bB)=>Z3^qe^^82PqmLXq4M4MOC&cGtPXYn4WliH|j& zMQi}!f=D@USU3mH_BeYP#&ycsG;eJ>Z&qR%remgci`}C3q7fti;=>e2KNKZm*)`oH zRtg(n+K^K$dgL{}V;9#xLiNWE;gX1Y}Gpw{{AmN~IFp;rm!8wuOoc182P55p2SGgrG>DiIQHi^9y_o;}ZdmA)Qz z8n0mQr`=}7{{A`xqc`HEf%J-T*2l8Bb#s z`I?bSj=JwQ>339xYNtWTZIWZ;lr18Kd!b}L<0g}WmcgE-Yn+x<5l8NLyxKFtfTX6}e3#H|$Ad7tc@f2Uu7YKAiu>+%*X~>% zJp-UCVg$Bkf3_YCb_^Bvc$q67Cl>kvOLXU`VD|&qjT4CnT9;varnhL|X!FO%h<&dz zCcc;JIwq;8*yZ0a$x?Y`?NEJA#}TQ(lQaMD;R1@;(GR+E1%>`g#)i85ZF1j z*{>!LnlZ!p2~dtdq~f&K?mwnu`g@ay1`L{hj9)4-BDYhv@H``q;Na=c7cZMh7UI7p zni|NRE<4b9_s3jZLay(tohwZZ{b(n7STeuhhj=UR{~XI@Q(xhUH{Q~PxsGN^qGs3{ zgoqE6H`3K60X_xqQmDI>p+l7iEP27pbdTMRI>dD4SlfV04Jau*TPZO;O@Eh_GXjaC z<+c-{(H}e#N+}WPN2~M#_v*^#EG)jd59Byy+#D0RZ=?#|9eI`$Qbn*;JpQuN>Utwf zxs#79RVKjI&uRYlMshuLE%N3V7&C-nEk%QeCJh)FkDbZtR;>{Q7LMPNE;q=!PN_Px z83Z>hUcwv?W6H5^`IKF%vu*X~ej zE8C5)c9^%UY(vte-&Xov9=|NmB3RIN!2yq&8lum)BVkV=s2X7|jp1ts1q4DjhdBLo zdc3b)ofBjgOgR3l&|vq~RhbUS_*EnGj7s^xN-V}%%g!}d+_kH7+Y|lD`Xgu7N8)D} zxv!?L!nAGz8NVt8yK17FWnB4j$FG9tcJ zB(TWs73t61Wo0h7Pu`x@i(OT(GDzUSuJ${MSZ_^DlrZfQ$0{dnfYPR$t~KTJM+|G> z%wKke3>@oL|f9i&BUkoEd@Frijq zS=GxWXV+6vllidrw7)jgL3EDLpn10`@YS8S&SVc}SKfrPC*k0s$y1iMyijdrl?kID zs_+k$5g>8ypI@Ip!F#6-i1|W#W*mQIHA{sa1J9$QGldWsKp$-^H*dTl|GxUxAkfUm z3QNDsuyZ;P6xe1s2jW&I;l}ryKg3F$Q1rRh)J(XWwyS}77&_ngJD;EIv*B_0JDbJ1 zS=qGd(cf#Dru$gP>ipK}QXpY;Z-Zjv&1J2v`LToux;Ltq_Y)SZ#>=AV5*lS}h@~E$ zs27!MgI#3g!OdfpS`?KF|u%&Nw^oWG1|& zz^o^lE+CNKE?(eY;N#H2ykPPi8Y^E}__gx9bhl6b@8eOsp+!>Vwp-dsrB9~e)9O9d zV;oX^>k>({iBp^Kr5A3NEjTwqkE5xiDAG7RLZ*-7il2vFxv&K*y^!(df1-a=R5B$jxts=?H#ec1RH2$`~vu%&}{!_G<$XaN_WtAdq+?Pm>Tt3o& z0@g=bU1HCySv-Sx1{|{3Xfh~IWTJj^))u}%A4Y3`{tF_88tWCQlhmPR0;ovJkNA9d z)efC)ZQtF+1KOWV3$KmzFiw#VU**%=zQZh=2e$g1U$R`A((LHZ&!1A$E)A8JL}1)Y zyAvxR%n`~*z1V7IrK5`pSrF6R`rfly`IzFtVcO;deB7zA?>8%jkHlkVv43-%j2SNx zY~DX~T!GxCo2L!x;Y|=}_tZWcQo-9`?xYJ>6J(|rvCU>W`J+=t58%i*^)4GC(Ql$C zuSawo*d=p(%4adfy=|(>VKnVy$i;k~^q}6fR9oALE%90WQx9>(bcM$IOPhXiE{g+7CGEo92-{vO1f;i7>g<;!|2zH;)Oj$Pnnt zd5?=^F-CLUoO+ydpSr$n9g#18;FR++Yjqv6KlDQ-Mn;~~+iEb@Ekc~;$FtA6O47kq zKr?I;Do>DW=`$XwkLTfC6-R&MPhFZJ4z#lgjSksu;-y^Fmmm`;l^!Vc7Um63L3?Go z8)0OmvF>x1>PddJbgF~sBR4xmF@3IMQD0D{iYxVMm#^uUIZTCDJJyGv%2B+zQ{$g+ zw!JnkFTdOJyG>30+fNBLqSrH*0+g)2%=v@@Pd1kM#(L(fF!^6!Ey{;BE&J=(#zsNv z_!IX{dwG6qChp`+d_ju3-BMo#4z!rK!*KVu&)dB;l5&7aK-5H9#Mb4uA9MMC+3~v& zSL`!uEmp`*oS`4(lIM}u-=(|j069!?hoa>cEn@?^;M9T!eI;&D>j`D$gWEYUV$$9$T&ZYyxx4-U%BuEWW9-^|LubOflY5$M(M zIk}?oEOqhRM4aujL6GUEQun!~2@&iG`^_g8YN(JZ1Hzb{@nOX6H6MV>S3E`B-~>v3 zE&Ein(5tttgn8^@=+%LQG&B2O<15k0&_o|dfj?`dGSmCOcT}JiW8WaRJRu*)=cHUz z`-*fdb^m5g!i`_rJKWupoO!eQlS~U~KW)NrMZtYIUYZ)etYGe8*A?%z1Y=Y&>+xch z(|CpRHre(65@x#VmriQ^ozU9k$^>&Fp;%Uf7@+Nrrf&=CteM!it1s=N&~qGd27F^) zb&E@8P-vE*OPNSh1g=uBosN5Rb3mY&r*RW`i%P3DQs3=kPDgfkdryOyVmGS3j(3z% zx_^|Yt#$Iuxk1C1`dC1%^%hD-eO4N42P$8eZfUw}#ibazIlgJlm$G8J+|lmt@fK5} zHzAAcnQt4ZGF(&qB+@W#A3)`;gb`qZuTC7!=Qp^$@rQW?C32<{xKy_zG`k6dla8Oo z=-zIX>gWVQ|HAY!g$CCm5d*0XwQ@H(@7H%W0%&g>&15I-92Z`#0fZMQmNd|j0RE!;O*C#?$Ihoj&8~OWB1yk4eKVW#!%$d{(OY_y#C1)T zf_N%mqn|>_!5p>XkyGS-5GdeGwS2MqN1J{X(yd6n|D1zH>ce!z66c`2hmbn^OC*3= zME^!9FO?^gcCWn~yN7S$YyU37UX66Nt;kedgweywYYQ=w-K0q|Dg%W3^LjD{fhk%f2t($7IG^AkiFy4Ff(&pnHu;u_AVFuP@!C{)bc7FNf6>}ck{WPG=A14Fx41cHJV`zi!ma+3}r~+@9s#)C+2?J-SRdeTz9Kfp(1UKm+BjygHj3gF9h%* z=;XQ<#bL#Rx#v^)|OonSrXk9Tl4Aegl9xm?WU!A3{I{zLKOO0CVQYb=wwq~wbI?}m7gI1)=}m9kl!%2vJZ|#wFH82-4=ZW{V^w46iv!gA;Ky)QNItSFiexhw z169h3*7bX-^&dzf)t54m1uA9x;@X+Mn3?`+JqG^M&8ZxTpzq4N?gDuqHwItJ%Xj?7=`DFL5VJ(UkOFQ)*i){VE@3#GrB%Wsj~a4k8I z@Wi`5c}?u27A$f2cz<&a3Ml!pcQd1}w07;6=e?=@3Y5>=g-kje)H6dx>KShOGabfv-<>5qMo&#z zh6{gieS#0BzEU7f?VH}*6bcDPqp_d(Y2IJb2``=mJHi!5hfHR1jrvF2V}vrElGNUp z#6<(Q-=VjR`v&kxThc5*IX z6&#bKo6z9HI#`)>%wDznPm%tU@Q(>$`g6-;Wi*Egdy64Y^D=Fr$*(-D#X>ULjcBAf zX>gq047|Ix4Vp1YuUI+aHbM5{e;NUn=&5XGtU?Iy{0E*J*Ja(;N+!L(jLE9wM58Y< zm6-oka zptEt~Vf&_4d09wQQG>J4{--qmhJv4EWmk@NY|Vc)QKq7o%679;Py`F5L<~-D{slS` zAHVOMQX$(vDA2Xv^HOGkb92=z&O`v}hlEW}up07NM02#9IbwN7-)C`#aveI-{`r?! zk(<-<6`D@Yc0QP5JB{wXMbbnWF+sYoJh#7KkURc3HlQ#ettrDwvaHTfB|)bkYjw;M z@;(UbVF-c@~dirMa_V58f^*f0=McurLBuT3?Gvx7^ zjT#QU*}vyu2kn|phpX1BR0}(A+y2V6{r(p!Yx|5|Ny6c4+E#>)2_-6y)$K!})**N6 z_st)DZXoxdHFBwLLTGtz*y=u-9!v1cP{9+LB-|C2h=vZiWiJk&(JhqXpt^0xUVL9d zrnHM{GsJsvQf>wZ1jYC$KqP|xuZsK{`y@Z z4o^zZJqC=mhjNjlF9+K(n1mjQg(eB7W?BU;gz*2V;dI(E7g_mtj02~X#(d;vA0Kg2 zU*~xUTiD*;&Tn3I)L~XR!J`C`R(i|sw)fAK>Dohy3!l1Zs4X$AbTXc7yAzW@BeyG;uDzlO_Vb@K6vXfdjfY;A zBz}3%?~+(_P(YUsES+SHUy2n0J>V+j{4%44fd%YSl~{>aE&t=fme8s!?lMX4vhkts zsOc@8{TO*$wK4r)TK}7mp%(ujPlT=p|1qp~bbs@6=*xdBujW-F0z-m>G2gZ+`im6m z-ajZWF2(DqJfyF$;0cI8#^kt@v8x=t-oQlopjaLPy9ZYbxX+eMc?3N_*awLTT8X-~;X<9UY8qR*in1AaJkwhR;~Wi+6(&Id%5gZa(;IPy$2>qZiGf5SM34(?gRiA#Hf-FUporiOB&#L5enUsR(^FjNC9|rLKSn*&2SyQ zZ@%rQr6;#9FPa#1%K|Pf6U*@_OX?jt?@yN|7~ytx|Cd5ler)Cv`D=MO>6!6qPf|+NhEqAm+)QD4L&#MhtMKL5llBGlNMu zbB66B4=YClY3NIz zRS9&o2?R<(n+QZ|e@GW!U$+BPk5;X7hf0d(Cu07Fr5`Rus8mvm%*~O(ey^HcEP*Eu zg*ETN);Y3UYpLI*ZOKz%vn9K_u&PsJsxRC;UU) z-K3Xp{n6U3g!+cSjePb4DIw^SEWH$e>!l6&PE!hTx**X2FD*0Fimqu#CovdeYNkWj z&cL?LB!gs|WTC||9VNNu)y659iU+Onw;ALY|6byW>+8EGa_1JkwW2WttK6&f{3!$! z@54F2{W0p@H+`$HxJEsQOatBy$3wx_FPucgT#_kQHzLL_0ttOsw2pKendlj)g*!TY z1%8!`GhOf;Eab8m{%|UarFVar;rOVqrL*8mq?SELY}vQI5Gbj-2u|_t&ksaAU{EEr zlz$9Dk(W@pea)A$dmj)uv#}g>RK(%-?yWS|bN-wcCOty37;=SO*JP1p3G<2ipwyvwInh7G1-EA)vVwFB81o(H6yTg@v`s}O+ z5;{Pp^tH@l=xq)af8d2X;jPOBkib#cflcTj2WMj1Nka-0o+#QIcW6rF0f$0dRr?NS zQf3XK{t`rE28BmZ01-%cPQ+khgzi)l27Z@br_Go4*TKr3U4pxxqHz#bp0w3KUN8)t#tSFvSVR%QVM>!!BK!{y^EhMpMH zM(dQ(55R(eX7}lAl^*2M`yEE5KepK|!ytn#biK(=alOxWugC;cYXq$xIV^zV5-r`R zF?2vIa7yLLl4D%>aev$Rt+|tgzJWJZq395WE@ut3^N%Otmj-RpPZm1{nc@YWH$8=X!|` z*%2K#X3F?(x4U5<6lNnHq;C#^^a!0b@FO1dW8yXsCuPpdzLHO%$l~%Ts$}wPBp>#? zOO0!|y>8`nx~~9r$eNE zKRGeAHmNe{(sAus9yXf@MbXFGIO19MnA#l|6Fl?tev`YZ#2fD8hl4TgE4M({!*fmr z9V?&f$iLnP_VI}jd+t!QJ+<@nmL`7*3UmsJ(GwzmCB`qvO^*Vy(jw|^ky}EoYJ@JQ z?1TG-J7;>|FItJ-KaTY=Z#V7?w?KgoeF1 zmF$YMO1q=tXsCZ(u5|ve&i@Fk<@05Z4%uBj{{8h-c-OtIHHkpa>!)3D5aLNSliQ)? zKxAS8MiVuvT((+FhuE9!F8;4D!buf~Sx+008`w0-<_@@Wu4Z1cJ`zg$)N?i)#o1Qw z4v}>VE49>rx0~&fVx(hk0~gzDMB;#t`SXrt)a79G=ZtuX%xJPVZQMS__C&J#^>6DA zQ)J8Yp_BM@6FjMK(^(09FP?g%xM%oKdo95#1gXSiC+y?7F*9wQdKGQ=r~cqR8^clT ztHWQv$VBL9NES8t-s!Ylb()nvFb^G`2@jkvvJg zmSH*qGJg%Ia((?hp-(~neP_CBsIP@D|4N-5x)mCI3MPEJJ=SgigEk7BL+se%QBI&) z!0f;B;lqOT{pL5P0{b`Q(2U`?dy1Q&-i&K=b?)Sb8*Zob^a*};pQ%c(wyJ>-mgqar zed%z8-A{u#-Mjn1CLqjb2^>Vd2%P(13uD&EHp7+y5B75Q$zO^sxW7P1Iorv64sAYn zER03Is8A`mKCCutNoaWvpJw>oOXG3({Tpo+>E|#5SWH;B=zr9{gL=o7pbOs9`L4>F zhYt=LHWyA@14G29xSJc$k>)S5!AWqDHpR5kHa3WZjQtv~=L_w?*z+uAS6X%waf#j+ zZFz1zsuwcIRfx@Rv!*gZzH1XxBIEiR6|#Yg0C}ys+<4V&b0EPWtJ_2W4FEnyy2_3( zXas-W7d-VDcMej^ecV^qzw?Dcc7xzG)Zw_wX)rKwXZEcsk9)Bs%jBK=mEXsDkpH_p zqvf=%y^ss)go_J=dI;kCX2wsP%{9g%Zy^{OJL;F2kBQMv~Z>7xZZ%fd}2|X;ZYo8sjt0$Iz#(}xuTDUVP{Q<-`c8wLpNUI)1Hb7w;N)H8vGM>)E4 ztu2vnddBv)<>?i7p~$61p|UzxZt?am6p^*d^zyitaQ0& z-B+kMUIn(!svxuA*`qW#)itEO8#imG2DwK9ZNFrcV>%U%ASFEydu@j2AViDtLPH1g zW{_pc#dR1rLBEjpT?Nv7ZEQSbwQjV54tc+7!TJ>zE6hrEmeFc1y zhG<;-C7K}zqN@nKW4Z_Fk>N}RqgP4A71vJ)cxGbRN$&>#opQ<_B}V-EAD4!?7dcYd zVg8)P%4;*=9O?1z3%ZPLI^-$0!3e?fFW3q&DDA1#pdaVSl1b<;hx7m8`8*PMr6B*r zWfZS8C&`s5b{t6v2fUDWoVCR&J7@6ojU!f&Xh0 z>AN|0Zwz1V7qcr8?l6#Cv{?IQWW1zoB9r*ijqm;YPto)^PA*Vs<7k@1VCDbA8I9t0 zoy`o_5ze%^bWu!1u}gVQx#TPyc`zcVuiNjuZ+Tt{g@(Qq9~Mn?U6OBjta2h;od2y6 zEQsbBx(bmOf^*+pXpfeKa64e~fy$oWv1_uW=s7R*bVBdBK*wL(>PLG~_^++~`x6c@ zy%YMu_qauAxt|BGk?jh@UqZR@su45{KxywC5cU*;c}+DBZ!^@E{}mTOVi@h$E@U;bh_WB9y^<~WRXmIJn}qUC-^u<+y7r^s z0A$VTNA1z9js-2xIfhhucF4B+L0|uYm$n@(y$V(rRDOcEHosf;2AucLQK`&;(uFSk z)A}ijJ}FPP1c`YP7|~K2*kp{&XgVfF(P7W+uN;bwk370Xj*J3W4+>?f6ZLd=?63`K zk{}O~4pE-9iRS$F9yff^Le9PUc8n`$)fB^B_^TPc#oQqk5KDg!&jBL5x>&dyCAls3 z4Bl&S0hxpe5R(F;rgX4990}1U7x>Ha@7iK9Uu<)J{x3$Rxilb+A*b8L@aL!9?ARIQ z1WL3JGJG*Z1D4cojlUz-e>8=DU-~TBJx8{u6q%mzSA7z7#EMh;9Lu8-S^ufzs^Hv1 z)bHGN(3Dl7aPd#V!xLR;GXQ9Sm|l*GeK2QU$d&i(zWEW_!QYG2q9?pYW;D4PVytL9 zh2pD*r=Cx-o$1P61&c*{o7@XZD!jPJrAY~-qEyH(VV%Mzw~4?J}QqL8r(|K z#5(^TAzye`QNn$_8qJgE@KSN%Db@YG^`EqeC<4@k!Ym8K~81(Q3A?Zf-#60A)KV{+yle+yI&a2ajjZtfZ65T$LR8S>`YojoR z6EmOWD~7|VaVS}pt=9angvL`!3x3AvTdz;hv&^+;pY5&3>my7Q2udoZir`=K55?tv zj=RD7R~(}bcUI%(N<@9oQwe1y{#d^4BO&7H_3BN2PZm5N7^;;0OQfx80TPsugb(Pa zvSB(#qn_QZ4L}O@gG>@I9zzQ(*uDwn{vWM56zEK{Mu~U5T1nTGW&^Q~r}I`V6hKfr zefLM>739*OwtGp{3o8IA(u?c^n@v#&kj%sLayy%c#TE!Ir1|<0(oW6CcFyo9lp&Tv zMJq#)%wcUQBVn|lUB(;UB<+&OecGb6-oA|^Cw#tf_&~X4rHk%uSDZt~ZT&7orgcc!zNU~gK)^lOX z7#mANnadqyJ{J`F0DJSwmq#!fVq{wAy=~eGd(G%rN)O zvZ~Ld9NHpgxh@&`*o@*9{ha1L{WrR%>;Xu{FO)MOM|(Z6c`1xg+Ag0UaS@4oc$X!? zpCaCk4j+Mlmgfh*L%#vIwt}4ezqY7DaYXxoM-6Ea0n0Z~tcYL>L`t2?H|MJ_&R(pr zz&+YE0F~7u;LOPj3pz~BY;^yAJA)?@O6Zm$KLb!UA~}OCH>rT>O;!`bv`sWiJRSq- zOZ5wT3I}pfR>!7TQ!B<{$~c_(`OT|Fc!;Tw4cuK3lA*H~!!h1Xj!+>0wEAyDJog$` zHVAA{XT8*Uo0r(V_y3JV00doB4gVChRVwEVJ9r%5{)~(a{(w8*LD|>w-5Cw7kN>4A zcVfUDL{`rz-mAZKb!z{l_CD+|Da`bUhIo?Uu%aiYxsH7~AHCGmqzwD=ULSr&ZJyDn z{YR+GQUyRD0cF%8q-B6JgktPY=265El{_11DW7zC#N9L{R331d^fc)~fo};l#07Gp z!xZvNDVei6zHsE6bDva0u;eogw*2A(B2x~73scZAykf6nc;QfhzF3}=%}6VYWTVBd zStC2wgCmD<24PWAqhqwgy{BB`bhDOtRx=6x?`@f2bL8b_le@r|;e4yev2FpxlFf7V zT{!a(3I|8PjP}-|LwZ|gAse!6Qb^H566;D(s0LcAnIo&&3)}m`k|o1 z)mDF$6=Nt1Y9u2Lmh}Uu>xbOlMY=zx1?hACAjGUXLpdD^V;Mli(lvhCW=l1*3aa@i zO3sfVunF}84oiI*z22pFVK{z-x|2UMPpY)}u)h9)35;!u2Bl}?!x<2&f|xfn&Xn0} zuZFZ3a38QC)ko9++vU!)5(bb`rGS&|UDrCp6xBcU9NqQ~T7!NdH~1+)_4}P4{eA&D zC5#*>FfN2pn6+QJ@Bm`6Gft&&&-5rRU=r%Vsc5Ra9392~t0-G2ez1*zN(HiFpcn8w zvul%6h&^eA7NdMZFzd{1_;-k?Aq@~vJ}>Zk5X)G`r*OFN+!ZQ5`&Yq{>-7Gt;HhQZ z_)k;idlD75!=i&(rwat+YxzIJ{JKe;n?`>3sRvb7t=(^QwUi zcx|@z0Tr)(a}|@n4%`MxfGq7EB<=sJ(y*uJ&cx;!No$bHN78WQ+3n+A z?e3(S#^Uu%m{2&(4;-tmH4R_F7P2Pt+85`~J6RRD_ZTwIP*(~2dcK3A`a*@)V^kKw zjONYj4eI;<2|Ni&bk6>^9dysg&HK1;JCH&-0}6%|SOwa_f0Hca9O55OhbyY&R9OHB z2FWbmp{zza(p;AxvGm6ws@OodoM*{_E&~&F>%@DqGRmEgO_sLC5B@YX(xIeYAgtb6 z2D0>)Qs>|LIc!PaGcB%&ayw*$-46{{dO2x zbVkbREngR0*g46WoC1NNzm^C%An>G4rtm$nqu>pEC_8mCMv&2h%?@#X0N)hFgPvxC z-)4dbdO9cE2XNW!3zwB%@gA}vdHDgf#}0qEQrg$PmrdeXzi#NZ6oE8m>S3IC6zD}R^EjAeV<0}#RM*@;W|f(n07-2z)8&wxLGZ<_dhfcpTP zj2ye?u<8CNC72Skq=44*!;bPc_`a5|Gcvg1=1k3g0~;VRqgvLOhp20Z-3X)0ooSrX zcz+uj2lh1cCztZJ+$Z1*s)F#L*y15M`nj@6R{OknV;v_j~XCa_)yS&K{0oG4@`2t$)oqpXWC@0dCAwnfU6Tv*98CJWpQV_Zr^b za@86^+0NyjaRBueIjXU4`mhkbO`}N`=XY9{{(dV zjE4*YYWG_EhGQN@3FsAkQ3fdpke*6&7ksqvpHRihLk0m3w24hoNU08?g$2j@E=|;% zOr+BSm{bXnvy!(EEbdrb<%BLoKsIQGf^+M_BzKluzelWwb9=#U`wGMI4il@T4vWub z8suW$B4K|veh*ITv`#XlosJ7WB#2UW4tS%r0zAfDd!;)C5xZ7xjG0(`)*o>xX>{Gze_mijT8rnc{XgBS(5e{-3BH{;FKLXyZeRS33{aOxLmjMoL-UDL* z+sT|J-;rQtf`yUR!Ip-Rb$?^ z&^8k~3|elnv)alOEC3BcY_ShH5!M5#1KqzVpK=b8YQv!N0BJ$+hj(9OYjRrbOU-Dx zg#yF@hz-bGvqIz6@tHlf%54A)8E7h+?;lR4sZ&`nmwD9Golz7&I&pC>^?L}_CkR$+ z>I5h<{0flyMH8H;=ZzL*$1O^OhGch8tR@-;G7xgxufaltcqn5rBKJ?P-2dEqw~RpGC1JrXt^dpQa-$JgkaSqK!syLUTCh0b|WjmzY z{{+UKOLW54;*L;mH+Dakw1X5ccs}=9N7~6;D8$02$SuFvhW<7x-ut*TRFyF~+}JaN z=}TkS89vHX($dx4_72ELaLnmx4ZCU%ZpGl)jIwYnRlg&^%C-hum-;LpdV^`&V|jMdvC4aG_vy zY=9ii+`>T-^SPLbYoA_~pDVQM;wMUc24fiZNV(JXS0RUJm_A6+K-_5b5+mDo(mDjL z_j}$(SZ{Y;l+!`Co&-$o>ZZLVFj?2JyvCd%Q}%dS1p><&Bg_PpA4}hZP0)=RW=aGWDl(4gV58S9$W~^Td91M60(DDj-0bjL2yc3oPi+DjHQ*LVCYN8pB2B`pHw$m#tCQ^=l+gEp@lmQO- z2xb_}SehJE1x~crX>%AGz9GM=p0Wk}M7GFCdE3-|z#(t=cP4%YFn&lUiP;dkyzj_)yEcpT z6y!KMSi2_qK5s0ecoeI$w>I1IW={-P@!Pf2IV-)_J`JoMiG2@-*4JwM5M$IYmtOhFxbgi1pteO~b;7=g-^76t%yxVe&o=7y)PYVTJULpBZvClO zc>U&?YF0Q;hSREiVN~Lgq-O0M!RW7WZh#mCS+sm4pzl!+lDSi3UEb;XiDszUVxU3{ zg{=6Rq>X6l$Bi=*vbHwATeRNax#!j3QmgABUX$q=JDQi{wIxkxOA4jGU^#DCiHgr7 zjmM?c1X%&nE3V%kQTTIV35BP<$Uz)o-=+2?;vFJ~_W;W881@x(%xXOcOQvjFcvY0p zIzivgcQ_g$G|3+xdN`%D9scc|aYH{ngI9^exGlOZ%l*b(M9^m;{T} zl?#2cGQ(sG0LaxeGWJ#5jU(wp#2Jb%#aZ64DCJW2H-*(zs#X4_Z29@kBNMA2|8Im$ z!z-E5^DFg&GO2}Kzhtg(6@fs zij?aP{bUZGb6~#u;E~HUK`ZcNPDc-Sp;gDJ*}_faRr{)OLr@eq!V?F^5rzy=3E&a` zJb6d)&LhHle!bFswQzh|Unjs;L?2lF78 zoz$Uai?uX#<}Ar=tOn-E8zYT#KY+9o(*Mn5UYr(=lEr(=6x3@ornLM7)`>cb`(>RM zH4hV@+?Kag6K$&zuhS4|9a!k7#UN1Yjq}hE*>dA;Qt5|Mw8kQiEI(Lg#L$vuVW^2Af^Pd&G6o$mDv zh@ZSrfPJ)AFRb!x-WP}Xt)-8R^ftbG5|q{}1ldaL{t>Z^ACcTxD~MTLl&T2AYWG;e zxe&6M*&b+UiwFa`8u<3Qfyez?_!#2*<__r&_`G6ATN#L}G5qB8Kq%{|BfHRbN8e<+ zSptLtRT7lY(+k>n3|)h+rh+F}=+JkXoCKU-a9_g zc4H7*U_*8iI#HRu>be7&RJevy7ccver(0jB!~g;aQGRoNPfSIeb0}qNHJxT^6f5bZ zA=xvp0v}=>CZ{R7kXq7N<%ya)h#iB*hfC7PC#GVns2rh2kL)#;F?mV{y0@b)_u|dF zUP6=pj1wnlO8Gp0jWROT84t<&)IERCd;UYe2@*8`8LyrmQaw(2A;uv3QkM~^hE0V_ zv;=>1%CC@@4`n|>^FySZLt>eVUWkhrxV?}MmD4^xAI<)ip1G8VY?TWQd{P`g_&C@5 ze>)D(C1ab#0*?f^yqX5$*dV)6vgdciv^Y#XyIuF?H?)GuvfcUQ=0tx^FSm)SS5|0dBGk}R= z3cbOWGo>9={;!6ass({h!&M#VS#lgzIKWfl6sWO~SA|rJ0oE_QxR7q0!KubD^%SXJ z^}HXgTyUvw%S#3HqPA?!e#Q2W*~yXg`pbO}ovIBAKIre`-i?n`Ohl-G%hsw4y)4J& zEiz>5cw+v~Su>0VdR&QYMRQYq*eVAPaK}s+sflhU`h9#tsR&3bB5j7}89z*wssmg( zbKc;m%^Y=4dPD;q25uJU1CZJVD6WAQYRu(+G}wgWh!2n!9XC<5sg2ji|CnDVz%@Vy zoHs|?v*hQw3Ykq|2&ZCDE+Kbs-6*=n%f9aeOp)0m`q?U}`5$nGFFVh@QdU3@`D=p3 ze0jSGkpFaP%dn@E3u8K3%qKKqJ#UaAz~h(g(@^Au9wsskgil5QG^583t~49-~8Qe2QI} zh%^`lbY?dmRH(Os;+!+hZhDf+i(Y^LYzp9ZL)HMOkF{C{G#f?OKRaVn(rC06=;HaJ z$5vZ`&cJt>A{ESG04D809U2Bi=Hh}pakqyJ*zZaDTLQpM6KS3xiJP}6IjV$L{`Ey= zAzGtQS*SMgkh(onOv$(IEG-7k?>Tr6?F$0H7R{&fE0@2pSlE$0pB&pY~r zS?#peHkSXRZuXxbQQ7|^cd<{OyOuy3=od~BfRu0>z2NWwfCTnx%cAig+Uk%vd>&r zI2?&t73g<5mSv#|(0+qtlq)>GR^qLtg!0SG#ax%UFaiJ_W&wEymM1(>lMntdPKr*6 zn&rw>ZG)}n1&j+-l)8{jC&;1c1lV=u*-h7up|Qu5P08Ao;tlUu4(<7+SlwlSv|{*( z&enOv^O)jtaB%QFz4|wt_nA^KW++?nWxb~d5xb_Ox_Vq|*f9;dH>{ElYvyq1CRnv@ z`(~b0RF->%Hx|5b8%aQdEs`D1J`GKEA%j`So?zTWqXJ#oUV>3Y}>hkPEF z4rT;&JPn?~u`sFl1;|J!tp=#tK+A}zGk?hlsepN=$IqVFW4+JTe(I!}BF9F65o)a# zFoRQTra5`~?ZJlxdPujyQ4i@^p35U$#U7N=%nILiwh&3?xw(oAv`&L=>|59V2%v=V zB?}c~K&v5}eu#v&fcpvj>J0X{My`GMpLn>A$+H(qAjuN7tdke=QgH5Vwh>St;mMeI zCgoy*Th4>b70K_P7`%i|B~5fa`N1VHhSQl|?^)N~9ag2Vfp@T0vr$UW==1RHU2 zsP#tRPsx<=GDyIG!WRr<{Q7slekS(YhvSV89NL`}$Gaene}eA|saj~Mv)~kEKJ!mB zgKuZ%Y@bb#183O**Ky^tF$A*syI|h2%L@uo@yA&H5OMbgO@DJJq^@D(QJHP~09@MR zjeTd@$DbgRJMOZ3Mk5amI>7|kl{2Wxgt4RkLIfE^;-NFYRE<7oPZz_>4lS#|6~U~TWJ19E5sGB)JD)V zo|>j#24-IqaBJDoV5r>Agk=U6D?m>wXGNOBQn*m8VUKOw*742KpG&wT5ICpERwq%r z<6o`_(E*_WQYSc>A!SW)XaJP_TVXJUgaS{PWcYUq_zFRTr2b1JL40Vd6lUKx&Rc+7 zEns}0CJ*)ZFIqUT zv+hHh*Z-tje19E%5Oo%gtsdlVvqKLzbALi9A7XDA4g!+Fd?HAXH^cG_@Y5ZKAEd-_ zP~|mTD|SZaT4VJ5$ew~;M%3Q*z8A$=Q13aPcYS?n`4erghZcv@ROg^bxND2C zA9Z%i;<>K^q12TSS)U9!2bk5BJ8vd$zKSKT9$f&HYl=+>Z&$iH^NrH8H(r#W3N(an zO^*gAJ$PW-2c`g|O@6}``{SD~H3#c{Q@#MaMNb~IPCVAn+u9OP?DCqZHLWqG?3wtHar0?jzZg8!dNJu&Dz z9QAV2!ZP?tke?tTay?6pm}w8C6pZ7yV_4};Vs)C%dJ$_j^bKciZB0G?Oyu96oMvjT z3$a*oN1uv$F+2ncIRF3V+>GQ~2KdK7iP)iO55PH`jgCAqd0l5#)n@Z+Y;J?h%z3wP z2m>{LYf<)-j2l?h_m>+ppDl%s{tE$EgT6xB3KA#~9JJYWQ)<``=%fIDkLn?Q_V}>D z0n^r0d_`0>S%s z?G!~4-$(H~&MbE4)IF!%hHJ2_AgToY0|=U~8gN~}i2)e2#T5^}6wP}GVnNoa&HQ(z z$_CIQY?vI*rA#BFN)|ZZ52df-$L|pfc9HKxH;aG_o^i5>rcf;Ak;HQ#{X@VQu8meQefGb9TJl zmzj8j2tgKdD`eUAIUgS%v6q+EjP}o1Vrp}r=ev4aGf1*8pjm&7Gi&fv8iw%h6!OQn zS3~KEIktG-&+*1}eeHRe`M;TS#Fg+DajbhR(aadZA}bay|9f8Vz}wb&^04lO0*=4gmZ#A{A(Tl6pG zN2pn2Ga~(4+&Aw`Qcl+Cc07BMojtq17I3gQw0-Q>TNx&EN_eTrb9G*=@ZG)k-Saa# zLMb;yJoXbWs=&`RhS%#=Vi%QrsIDQ+fk`}+=sX6L0x~9g&Np7KOzwDk2zJxO3=oV{ zujsiL(cq3~LvKJ-@32_(EB1Cgp6m|2DswTnZIRy>2DhXY2|c+LPdc)8qMpsI-EZJE zXvB#kt(7LY6~O24`{wXSR1_{xWP&2L1&3uJEo_zRv7Uobyfc3T_B~Lr|9VdVSXB?^1?*`R!Gws92H@ zA&Lq@riWtFrRwjCGpMiK)`q0^*Pp9sbN<}## z#`fv!hu@CuxBS`1cC&ZR&jy@C$R^9$1rFHrRZ}u7$%B1Wf9$&nF*_?WV{hr0W@zsZi;uP=%ff(NtbmNP4dnSW!`-X4X&3 z&^8RAg*!WovfQD$V_mIm!Due2qIlFxgMkkC?-8b!WJ*_E-oH zgJg3lEJ=`3xr8wMxeyJ8&t|f9#Y!4x#Z}#92+_v@)3i7F6@_|bO$I1zs;pIq41dax zQcn{+yUlzGD{hoT+p6cQUR-n)u9WP^xJMkdRjNay?2+o}97@sC%9QudpSo6{h#^!T zVl>q=eiXE9`5kfgnStW+8`}10MWa#jiPzrf7m|F9CvHt1R9}v$o1ctwyDH?=r~A3I zpnft(XkYK%wHKhgxXk7>Fm&LSmzN*$hF~R3)0vr>og*qiq1;z2 zjQ7s#0cp2D+}!wo-W)zjXnCwSPPeUU_CmpY^_VC-E+l_+z4+}gi;KjU0D(~NOiAzXuSxxY=X_jILB=x4X8KRh(YG`OEF%g0_{g$)#?_W~{oeZbN2wSnldw$nisy>lxA)r%EOipqM34PYCb_}A78JaA& zB8R6wFgf|DV#XC~eWbup--?lrj?VdDK<52i(@nE7&3yRTrhuFMf7IEC0F7&~JKt&$ zFdy03+4=75z})?CSdEhe`(&pX?|xJVg{z#-O-q@co*vof&wZpbK1kBu5u}JM1E^um zP7_vpPfzPWhD@tqnd{J#-biI$3buEE{dX?J%CIaUr;W|Ni&9 zJPAq3mTgC^BgBNVp&=bD9bH6nGH zhA$ed=>H1*(lQLth8I{hcCU7?541xG$rog zarvun`df#&l@$=B>kCfMy#26<(<>`ATE1(kNl2iX^nUG_?+Y!}WQQgT0qNC%v%hEl$6k%=Tm{3zAK5(tI`qvZ9s#avsiV4@Df4aAXE6Cx7 z*lzBOW`*anRkbl)O>A39vA^6S0fRPEg;_;KWoOJVEG;cfY@gpJkTA`==D+{f}x-BayUR(VOKhbxDzw+Ce zG>zuv zjm`b~?65v^pN0l;ezYm!;P6Ptb?t!}FBxvm_%l^iq95AT{(Zvd*eW^5%j;}tXo#cQ zh}HEZg|9SLW@{!n;&!l#P_ zMy95QFo9utY6v1=RKFPSuu*&rOD75n3ftAj>S9NfQr>XC87~tvbFmd4SqQE4(gh0( zOL%EK{(?cBLsX z!Mkg?xbXihDd95wjs5)<3n3xllhPBkF|_}zhmOv7F#g;6co+U&NlN66T*9sW|G(w) zfBf(94JZ!zXJl`BK5f?`drFx2q2n-4Fi;X3QwSQwo_)g_RJw4p z=qNEWGc#wroYS;o#(*A#QMf^K)!TIvo}P6Q6AZM+&8XplW~l7!?8pW^Qc^dO&tham z74E}E-6U6H4{l&+pxIk>#N9jc$VR)!&D7mp=;HEnccY{)y}0>El&qYO?OwrHb*O!m9hN|A?3O1~oPH>~{Z>>iwnJxpwDABW%GM6hXB5&HW2e$UPI8Ml;%ar;BJ-nuYM zT$1+|mMCrd`+UtZ%oj0iVrFJcDlcE|9!=WNad237Znn0xAWtOffa!+^%xNo zqNb*12O2#sBstA|c%J2>SpcJ=rdAm9&H#ze;ZdI=Eo}mKyxgsLIsaO>V*{A=jy573 z9JnHv2LwNV{!~&`H90;CYOgIq&?65fJQS!5|M{H_5d?F03L7p7UVO;G85r2!^Z$PA cfA`<}ieYCohP~9R7zlVhlTwiUA+G21Um?ysj{pDw literal 161158 zcmeFYWmJ|?*ELEg(jC$b(h|}k-67K5-Q6i54bm;r4bt5u4bt7+oqn75dEW2e`EkZL zKhHIWDBQQ#y|2CJnrp7P7NH7q;z;m#@DLCXNRkpFiVzS`eh?6lYp^ijC!Z#kw!mLp zPNHf~Uu{jCT=gA{A!PNP?5u2^tjrBaT#OwY&24R1895kP=t<0+oa`LAnV78q?;99x z9ZZ>Mw6}f1P2lV#)EyxpQ1oB_Ko$xVm_tB9KuC%RD!HW}Ww^R2iQWG8(UeZHJbYmiOFFADEe$Q3zdkhEodW7ERNXOH`N*`y${iSI5SpNri(k zUkLH>hjJz38tm2s2Ca`)+q0--Q}xWvLq*8+FLy?^SH_w}#Kg#ACDfXn%!4vE)$@cy zke&9%*UeppMYaTjp3Gf8i)^(I{GgOBRIjFTcXub?_ew7MTHvrZPRgj;7Lk{?J$16u z9soYse)|s=|J_<3yt(gGzUp0y{wTtU!)vd9&$m`9 zEh!wUUY9htC-YPs95@IF;fk%|6|*^0`yW|ZS?~G${r&TfHP8$U4JBn|^W?MmolchS zLl>H)b##bm6W~KdF2*fQOiXIbCVpv+l9PeU1~UA+5|k_T$zr`NjypdcUHC+f_~zEu zx11bu@5dWTcJ{gfX3Lq<^&lLbj^$-SM@L7C>Ed3~EN?M6Il0))uI}#r)ph|QBBJD! zl=XuHsol{G;)O}AY7-;|&AOh+Npw0ox+dqtzWd8v=_f?j`m)=T<)QIxVS78fj>*X% zI;|dPL_{y+=ixX^`GSEkg-Wyp1O$6i1t_x>x=aqkF{HwkzkhFBY!9`Zbs?x}YECse znsPhsb=({;HhMq0#4PfKN(yeR#k2tkL(wQWcz7YQ*h-IUi?*i=XQj8r_+@T(Qxc4%UMQ%W$2l5ZRrY~)-ZzER!`T_ zOunHS^QpOJS0)fUT`n&*5t)6m$6MnIr-*N~-NZDPOH0qJwUjpK5%Bsr4$=}XCU zZhrp7c|UQr`=yCWg^p|*yY=2;J=0JkgXfm1#ot0S=|p z72??n@lWKu9pIKyuOVHj51r+GgA0P#pz9l4Pz4GhcYKa`H2>A|>3ns_+?-l4GNH!S z{i^T34DDtYKvak-rE304wA*<}IrfWh!(=#>Q~}o-U&S8t6ehA)KF|i$>wIn#jc7%BQi*LVRmz zXfRmhc#jyMQi6p{$V~y!)fyKj`9Rxpqoa7t&~{gY{bm?%Rzdg)Zff`LmwS{M-ef8uFC_7Kw0NY%5kVFdVk&b~}bNr8iYhfMEva$LWP z4WWO&(TkE%As$T>P*HIzJSHw80_&$xYoRQdGr?Oo#+@NIZc*C>a1_+h(Lq*m|L_2B z+y3mbzFHuk1^)No56Wok%TAxCr^_+XOxuZHL2DZuWZ)UG_QjW*oZm7rF?H&FgblDe zeFU^%S2XJC`>*Z!MiUYhY`4nR95@MB+JxdWt--;;0L3EAw!4jRvi|GCS$R8WXRI0x z>sUuOH#b;7{z3i5CMNKJNraLZwc)c4XUfvnwznybjEpeN9gpU!0;KZL6~BIc-KfBK zDDWM^v)v1|mTy19A|qqJ>2zBzR4NwN(LG+Q=h*i|M?+&qnt%p@2?@9uDoDt`w)PXB z=S|PZNF)f|je`S?t%f9BpT>bzu#|UUHdrAcA*^<5pO==FVg`*qV8Sod+oC8mzQ5niO5ykB-W|*8*ZYWR?g>bC&xsobg(yOMGGHudllDC5NC8i&f0V zWo3=MJU;>?p#XvvEiX7(Zhrk4fUwjN`BL*tU|`_j*qHCuH6<|{2+_#8I$lTn>|dc9#-Ztm`1 z0CrjG|4}S`nq#+J8IC0v=XBgb1i78=W-bz+1N%JL#MrpXdXXJqD_n-EyQ?c8ijc?Q z<;nd3$e5$rtDpT96dE;V{!)1!|BG3o&uFox$siQ@^eAy4A0u5X5)A4I$qpEl~jzCf~-0X`SPUDE~i^L~SkdkIo^t?G51mEDYnjluR-r&97 z6sXb$0R4E#M-l+J-le7V1Ugm45*3Eh($cfDvkyy6pAvv%o~*T0<#st5=qL7#P%JV! zS!&d3bO-|HshZkf!3nffpS-|xPlrD=GY7|RB*)5!8_pCNvDtF%`?GEo=J$wCS5xvv zCMMX8{3fI6k|4XAE!HuB{MrY!erYMakg)K4oi#q#pbyHcN5{wacbm~5zNKOhEdjna zuq%O{Cc*O~BOCh|6%}Q*+LjT`|L`h&5TvE0b=aFi{0nf*w{ExWByev63Fzr z3QnKJaYqJ7*|7Bf-rgXfS*lD%@PD5}?nB%DBcYq}STrzzD z(kQ?q>P!Y(@+CEG&aqFZ$f`{{N|RtoH+~_CHr9>nkJt=NfPfHiHQJ?>D@r zul)c2zwrNlOZt4fAksm~2XeW0VF3>Z2gl>~WMm|bL)vRKTR6mQsezd`A&geJ_zc9Y zl928HJqpHuaL{LkE3G`%i*?&i_m{8e zegzm3KD&~^*#F*ymN=9IwrlD{#62!P{#$rBLI^V9FQAQkiCFD7MCxpo{{ZQOkcI!r z0uzTxhk}!{;dj$3q+Tz@{U>T(Ka?M_v5VzJt z|MPCL3$|E+W8`>_0Ftxy5aP*vS^R^Uvd4i-_82ud|B_kA-D7+NT1<4p4qnIUlMZ6Z30r zpd9S%hb8>TIKW2^z{7Xj>c&a=*jfg-5ug(#9g?6KH9W|lLTb#5W z8*<>YYN$GPO|1|xc_Q#0DY?z7ubJg}<;E6qz#45?NDNK=_>s4Mbj%je9oLAN;Xi7} zr1h27pPQ)8sbW{`^s{`aau|AhR>4TonNr)lN6=mkFT{bz+{g1gyf+V=F%{F*_dkg4vfx1ubCCCJu^<5YmdZcxvc1o)rvqoWzgRpM+Pf7Rx#GUKyF!HU+JRC zm>D2vSaPv$Ms|d>L6@y`bOcd15G9F*;K>aWjSu9W?x&5Y&bjdiTQDY;de>t~x!;$C z?Ghpy$|-!P+i}2Tp&6XVgQ>sTp2D$AT;!sK5=3o4P3RjPI`54-O;jedum99Pq7u|x z##LTt(y*9pSRRjMPOX|lPRg3qBl9U#{hq?8ICN-W)5wiBmZniO>e})5Pi;Te;}V{! zfmx!Uqt*2caQw$f8_8|A*rDou89(~kZe+ZwV3gC#=DbLQd&SAW%W_27(y`*&vR!BE zVlc^lE2!Lb;4L8k+US`UC-pO>9hzy{IY*j-!-^sEh^YQTgyJ%wOJZz_?;;t;qWR|x zKBp5a?#HN8(z0hx+{`}{XivnMKiHz1`Kbo8%^iIn31%D|!bEtIN zs-o^vd|!2h2;qxtBNSfTJEne%k(Sv{=NR>)fcfM7_Cm|TT=UWczjME{N@h!7L2KBE z;R3JIvp_h=svF10k+shED>?sUpQwL)ej}&{lAYB;P3X^`Bv4RLQeI;{p%}0E735<& zFPp2q39SaZ&Mk_V;b9poYwN**fsVdDn2eQ<^GeJ*oe1OG1h?ORdsoer;AwPju-z8Z z$P*+aMy6vjODI2y3!Ahhia(R_BV*UV+5OV?!(b@kI`aLjvaPNLAi%l2_(b2mQ z5y~`^EB}*PvFO`o_MlheJv`cAU#YdG<6F5zsV?}JM5&+hKXFcLN`#Q={}7g1WMo=a zr4S&fDKt5l>J80NrxgVb`I{NzBm!FqA$F{J$C_g}S=tzqK7$tubje`@7b z4OsU0cHeUcc3k-&?Je&4_ePP}nNG=ZXQ7SbeRxSWkQkdDzn>M(-7>q&)kIo3R4ZG0 zD4oD{yT8p@`abrnD2uOvd@4pl@3@)4{NQ#^ZP^s=Yd?oyMi7*%rsEY1^f~Um(T>1_ zT9AwotM5DRX{WrevN!Xk1Bb32iRc&s=5M33XMupcFYdzAyLRI13YekK&DLUbGt`})V z4^ik^e&Fo`8#s&SS#>GprJsfGHb2>zh#(!kO7%%RPy|ZXrK0zY{bjojb{hZ90~73y zlM$Zm^U?idM&dwjZ%szhJAtPT^dP1<$K~@HR@2#c*0K&zPwo`yG>a96w%H_mn^D{B zAx0(6Egzpz!N<2umBZ^gRVXtat5Befu8xs| z(KAxTl{6U7Q|_bL&QAKpDEn6wB^fyI7gSt-S${J1A|P%h^HOO}pK1XHxU)2CDJhu37}Y5?*R)n@x?FR~iRWj>NZxH8~Y8)28?90Eb+A@!9 z*Y#%7Jn)>a+ShVgw|%f6m;cKR4Q>FfXD6-Owy%!w&gE{Nqv+^vzJvCAnw#Id3dWEd zvl{mCM)U532XPw8O@F{jsM-n9Y^VEg+qIOHZUM)*_Y9g1r4egQE%EA2@mI!Y7*0EK ze|_mOl7x=L+XaQOp}M7oa##`QGXVn#ev7wtplA$6#D(er4)FJg2#OCM3eT>AFlN^8 zdQ%Qu$&iqD!1Xc$prOjDr^ksAGbLePHbWFE*d~QMqL1fPqphk}(6cS-8P)n?!x3K) zBxkFqqwt>fHsmKOET?)3^Kq?*Q}KQn32dnV{s;qCqq8YW3FPKw7v^)aKY}oo>*2 z@Jupqw)x2M0a2Wek|p$85504vyofx8AnL&I>?;toJop__-neRFm9rQ7*2bz5sNZX} zExJTHo8~|k?wgF*+Op;5r#VlYGx!TKc%_U}`gzY{q&Sm&D^xO63rUL%tI8;zs0ej! z3?_(Au&Rv;3h7pNqex$Z%BcVhYyyw#SwRWWcfL&35vu+u47sN@6{HRgRmDb^^}X2H z^w*uyGbKP)T3=0m`7U&@k{Hb2Qn>ST5#Nuo>?YQbb8Puo{`{1-(!@xTJ7uEOv67TW z9_zz|l9iItj``s9L1eJ5uza6Ou^5(VNx>bQjBo+R+3o&^{L@xZ zizpa~JgqP>(~fSH-Y3Dxc@O5qAn^#zRa^F3{fi;zKO+q&@_+IlOUbt^kz@{((?Dj8 zWZK#lettkj7kU_vWwSqw93`oAlfVEB?d_G*5qT%$G0YvdLQ?4<;;5lY*UoU{RhCIq z9fg`0FML=mM}QzLM&{oxUiZ^I;m2mONG6h8aKYI`Q+S_f>6;aE)gY8+6>2Jmih;Xw za5^a72j~fj{Sn@zL7K&KDkcCj3H~GA3N)E~r?v(r{H!-2l{-$D9)W%`wAtc(904{| zu_+bZ;9(Zao?dl^MFx;-?DRyFe<_$eC1C?P3b9P*y+8Rw;Lz1YT3(*H)|en&ouZhS z$UM6fUK-~9y{s|5^ehWsW%u!m9U85?)qt{wPFG_uRc~aFiL0J=O7Z!ArNw}uTROOh ztUQ#r9QHZAT@?B(6qV`cFL3*?IM+M^>?TVzXK&c9>NX2h4^=%Pblqc8DvTd8HR<_?;DAsR%M^=l6zT(sRbpV+^g>`3 z^-WH_-c846`uOcl1~qJgK@QDw1FEFo-d>u;jhOF8-ywhA9VLmayqcYsk*e(K?+oC> zSV&=8ms{{i$m=JEv#T=bf3zNQru4mW!K-+-ClK_jgOnqHlk5X;)h4cCs6Q3WHBdOb zdTQFmMu`4K4%?^JzWouOot!>$OHoa341e4tw6!7J^gry;GwcTJ* zfQ>mk%VnAV>gCf-Ej6X4tdSJs4m_?QkFw$U1gxS1o7-Hm8gC8Fr{zp9Mv0M$aqB+) zA4J=vIB(p}MdzyD$?h_;**v4ETk!om{F=m(_Lw;5W8{F$^yKnBa-}0HFl{`~We`F5 z>%1L%YV-_lw}gxL_({rgFWT?(~c&>!h(KBw-)KP^WZ+clG_g?^pXuwL=xBAq_N%ju7+R+YiOQxT6-$ir3Qom<|ed8}E?c33< zIGXWS3!4C$qi7jUyLeNth=PJS&A79ED6hiR{K#@_Tt&>*SV9QfhMo2#cZbDVb?~}b zG?VB{QDe)+BQrJuJD#sC+quc?yW_LUuUNRN$HhF=m(MN(dFUR){8Dyq@U%hk(M>A5 z13hvri){z(U3buhI|d_NowCXE?WAD0O>GOZXYgRJs>mxy8p~XT<$+N8J~FUd>)r`Y z*<<69Ta7m5M#CE-ksy4_Ou}ITngTtU_1*BW!pUmCl{zehz-gPLMyE~B=9%MfBQ^ZZ z_vyc%@hr5@?MsZaZOO;FJSTVYnMfa!Gqpva6>^u{8nfSxJQ3dIn_8D1bPm9L;reQ@Ko)Xd#m)nW@_q zgU4;oL`3s204nJT+^Y=Nh=zz3vQws^NJZL&kH@tSKz3?HjOy7a%(de9K4TFO#ArA5 zbX^%j40FAgQnEN9*JutY3kr~L!o?^yIcin5fjQLXKT#nheuuEZI{nvy1MfvTS{$7q zQL%g%jYfc=EWXegCcQMCo?z))mQKl7Xk~oYxpmGD)@onjHn$=w;?l;B_~Y5ZSv)iK zUe3{eXXK9J^o=drG*vv0-}|j9cibANNhxCq$%qS>-^A#-u?3w~E%6=~;>u>2od(Tk z(%UY3c8}D$gX%TzAkNO4!gF`|_2!gIV0678KR+6?79AT1dXy)cH_K{DL>?<4nOd@v zeRWXxpuY%x^u!4j=>nvuUmjym#+y)U`s+`bb?k*G8-(Z|q#&6;tK^y=OCtq51lK|c zXK_K*g6poaWUahq=?u`_yC5?f?R{8f;CAV2Y;w6-cxXN}Q&nbua_XmI%eI$`ez&Vg z@YQui@8u`e9j6*bc&5wzmQ{BGKP6gA~MrFCKesFFl3JFpijjq6}#zt9@ z`DKWN1Hr#+7n|NcQ1YFZk3L>ZJ!hG?CPx@)mu$1yzn(B{)l$|?5xLbz;7@PiRhNC6 zg^{BdVb+Ls$E3p4NN}0q;&@{|f<|k{#JEwas{LouxXMQhsCx~*WsBxttgtdmb}6+5 zr?~teh)S6x5^0ctkQT+Fmfm2!y!RNI4naxgL=%e^`)x}c_rM0Rb~@$SfSI9Vun6P` z751LpC_k!{fr?MjKz*=83gDl6k&I4l^M`J!InIsZWAKuVjTx=Sc-iwZbq-HV_w70S#ZJ=8tc+xIv*tZuDUI0Ee}Kb5>a2|NNnuLjid%-ETn$K;PG4Jz5c zVDtHrZ4YS+4+0kr1HkYg7-b?d&%HZRMVkz^BAZGR^8QSYChm zlWTSj1)uV5AYO~greXLL8oG)l&XJoXvWUkP(*vPiCxT|`9(c@OJ!ZQ{g*qeeN`<;H ziZGS>PI)?}Q`Z?HHKpR}v?+Bp9hT$`bv+;0S>!lZZCb-R71|Da$C_t*#wG&3$$V1I zh}8MDO>N_NHxt+YB{W{(Hrm!QA>G}Uy=!VT{RKhJj*b*xT$-{S1@TEf+ObHf>rop@ zjW?HuotBF{tt0k&EC3BG` zpZc5Eje%_GFyLA#)91#E)=kcw~wNV3`9&ZZFj8m_VN{W4Bu2>@r!nFS2K z?Nb4=yN1cXpSigMKSz6<96eX^@f~{d;%v5n_pG_cc1@7Ja|Twj;?e*J`3 z8R~7H5K55OC{NVANlrv%IqywX`(T{j95*@>Zp^Ak-21&w86LxkD$MX9MF^yf% z9MT;HhaLcX{EBm|l-^@rgQsTE&dx_$A_(OdovyUW9!1J;i00e!Sf{TB_kGU-8^3mZ|N()Y#*p4drxVwybKSND*&%a?;!P9 z3^on%t8^KDwR{p*qwN_OF)S0ltdMdoe)!&Wvz&-%t?d&u`48dE!(6qS#8=?JfvQ3Y zipzq}2gOLpwhcA#rZdfxrf^e#C zS2)#SO$;4SMSz&?Pf+vLMO#XHGc^}1PZvaG1pP=LPsLa>5S5C80d9t|zgv@{$`w(= z37pXvsx~!@$9J1vr(_9T#J+w?VVhA5G89mPeiijv%rvD&Zuq`nyFLr`kY%;jt#$E_kuwj~7PTRh!Mlx3Vl4sY(c z`Rpbq|JA7g$SDjVaJPK$Tvssur}etNzh1D!2~jlp_Y5L%7F-$pfyX?thZv#j-6peW zLS}5*zs>nDfxtBu;94@2ytZ2z)d`Q;LX}*u25|5ko>y@Ly0)q70R=S;3yR zqjU^>nzE1C*a;!r zwzUi6jUa&q`uIC1{G+*OL>aBkVe z_St$2GbR6zFCy(p6hVkp42y5c8MiA3+unf-gSWlq;vFb}Z#q^*4ftf_&5HjATw{{my-}#7l7Q zip3ekYRVLMZo1=syW97n0UN`&W%@hLAs!Mfqb^Jkl<+m))x+}#RYTUu`HYHq`i}J2 zg1k*8!Q36QyORWNM4Nrp*94K*PnKMBj0cKY;Ge3wvg3gzHS?Q=l#KX()jcu)ky5d} zY-|dLEH6lva3(vZ@r`mDlWP6SdTS6^p&#P}cs_Z3;)ZrrbPSakB_-oZ`@Ti+YbxTp z_n0AmPLmcW3_a8Ap6s>LOIO8|-_My5Vb!&`hbz{hx^E*+2et@S)KF!F^6`Kd2oRS{ zXVkLN6Ap@Wpf#<0Dvsdc;_7sa_s=DYIW>P@KG%u*;s-)rTy#wS_^*v;rR0F@yMV?M z{=?O5<=-Q(CS%X!uQ2Em@wyMHwiP6>h&ol@x4nx@GR1ij(5`fdg}Z zq%_%PH99vh?=}9VD8ZaG1e%K*MtNIf^=XNo&flrmEv#TX%c<<>I?c{R^S3a==+gp} zpiqMI8*nIU-FTE_=9{?Q3BPuEDBjnHfF-h2rl5SS(-jA0k&RLb^+S~JvSZx*J0bge z<*L)}8#R7~=xaAK7U+Mxp<1;1x8Gcpoa<<-Mz%X+y;`?vZ?NG5`1ik;x!?B%;37f= zVrOlsnZeicl?uk#F)+r>OcSW{m%0~~(0u1j{Wk2i0v-(rN;O*Jr^yP)61kOi2?-W- zIIo2=s+6jfLC7XUjJ6-W?P^Qv&2JDu+>SY`ma^?PIODwBSWqKKv(?4At!%9 z8@fiE&lNGiKSLG$%;n>5mc8|mmC?54wbS!4>X#z-mc?@TEF7y&Oox5+uQM6j@?{82 ze_f0_*QhA#il*@0?03+FFsfxUm87J##E6zniAWh#rB^@8yXb^c%a{0CVD$OMj`z@m zV@OTD;!Q6dPF^Trd?g??MP%Uqus(3)YGxGdE{}n}j~jVxi8Wf0=dn4YY|Lo{vgh`8nJ%>Kk>-)oZ{3n^wIX*jw)?c- zf`%b*7jz1b|7`C$ZLmyVm7b0sLHZlBRB~iRuLpj@QJ~2^${2rHf2`_+C{aPHz5Qst ztSd+p=diYULxtNs<+2P+oA=7;^z(e#gz)P3Vi9GaU(kQZNERohb}1Jwg~H%Qv~&6c z6{&-It=$JQqdBhc3~JjK7$TDne}Q}l(RI0MaiPQtaarqeqb04k*=UBmDn)y>Kx3@P zJ?oHNRlx^YJ_Fj|UCUz1zxpLm->f`bQuKEbX%|c8#a#4jM(!)*Y~eNKQL^evpRPuu zWu|}KgL}H_#Vh4^4go5(Y1Ywjv_s7Jri-8@b^ur)#5WgZ+6d2&IpsQW9<9DYf$<<$ z{&dIc|FPJTGB8eA@MVAkJan5--NcQqyxyIzDa8Aw$s|A{u@ZWq;&m$ZTU~eGI677e zX84pyQ?g++7@}QrIh{zCi=%X*&e;Ix%qOjz^dO1$#{Vl?kyRUN_l>l@=$iz~=EXB9 zVHD6h`qDd(j$_Fh*Y{1#6nsDd7h$Z_3puv?4m{1}yHDBLf}c_^wsw~}k{v%H=E;QV zppN6e39h{{Rkx!6-PqgKLzcoI+oDCRH~x?a@^-*QDzDX6zgycl?n5g4`VJAM?cND; zh=S+}>B{H)#L2P=NzGB4!qWQ7z!Arv5Ta+0sy`dmAUMuAzxArp0#i{LH zU+)+8w-XRvP%lF`<87935!%+nZ?1lG0Jk0m($F}1b;a!NuYteAUvA)pnx0p|{ys^2 ze=<{gtUk6Gia1s3#V~8Y+DH&5Xr~6hn=>gfLZfm2OVe8Qwbe-6e{t=zA~mo9lzFUb zOc`~ORPtm2qpo$+g-BeFb}$p)$P0d`XsegGxk4>%ZeEr7RlQ85xfC>$Ccv%rB>Ul7 zZvm$lU8s$-7SN|gWBTfMFIkrK+<5*OK>;_@8S@UL*r2cnu9A|P)sAn*vg#&o`vWg% z4}2!(dEhu-KV%T|ZiiWMp(ps;Ak?ByX-~zH0J^r0>usquCv~(s=6jM^pXDtY)CImg z0*}K@ksTNxoM?$Mc5bv)xb8~=2yJS!k)RPxJG+e3DyTPrZn%^d7!>eViviS{z}7xf z735v(V=nt+WEVnVbUryuzJ~}k6vB~X-2n}AbhcjU#>^#~`lVoMRw5T2l+MB2M3h;U z+k=a*WxNYEJhJyv)e_G0yagejDIqCP-i);K~)0K>7D7owah?P~bOpsrdvx7g^X^4-H zi0lxY#oq=THHAg$Zy4F6&FLRFKg4>Y6hyV{qnl|dagV*4nh@F&lT=?n%e8l<2!TraLd4+|mwE{2yUoZ9v(lqm;TwssM=P zg9esrUy@>RrQd}g$l@ID%x94ROTLR3RNy;o21Y>~s8HyxGIOT!Iq`lBA3>9X@)+4q zh)Ung(s$)hp=>E4^DhBXs|hhB6(5SKB`f;xh(Xe6?K03WhXaoB3+^gR8cPqfPyI1o zc(kZOe|NC8;UcDXOK;ET&k$SN=ezF&SbIycUzR`%KZdf%5t z0{hB7(yY;E_kBYY#zp7OHF_s$k(?Li;`|=jVnLq%z?T8^+gWFCJ;&dM1U`Hm_YJV} zbDwJhUtRDOa)WTGp&=yR_bPVK@lq!?$%C zq~KKywa<3ni$i{T@_^P*b}T;gj1r>CGnB<)k1`**0jgSi1g%U*uXEjQ;h#f{s5tpJ zufbvi8)!t|Zm;HN zl>7T|#NKZ@7BzPbqcVXK1Dy}rDs7l ztSKhVYefecQL;A1u4S_0W0*0!aKgSM^U;FM`$bU}RM*v$)esduMrS)&)VNJoY{2=O zQ~z*Rr)qs8XC{B^aUxHNQ4Pe-`HUUNNGapJcnumF>v{HdF5d^v* zpx5(@!#{yOP*$j|6Y@b zTX?FpyzUw_?QYy-xjnWA4TuZjRSyVyE~3F?CSZ0Vd7=L0>%0%l=A906 z3zu{-dtOrs)_$W#+rM2r?_EN2?&HCsr0L7w#!~)&6@k42&=GouxuE1I2Gr-F1@Dl2 zeA`PcFc`lO7DI`lx!0cf_bwJ>1%xAnohkUp^1!{fd`bQ7cA(H51lo>fS1>*c&N)4s zLtUUr>y}+d2TcCC>D_@pvx!esvD9L~j2QTG_`dN7(Q;ITG~qKL3OE55XO zEKXP;u9X}6SErjZdn(RFlo+5$wY}`3%y}g#9$a@LPUHKKWW5Ms`pTgoCn=aEUuQZ- z_!4P(CqaT1O1gifT^&1JDdxrQgq@gcVSosf<(P;gFa3R$H7`8S9%5KenF7Zx_G3e{ z^-MJuK@?2U>KyElA0Iz|FsD)?x36I_w4ydtIT>rVO`I22M`z+V`|11D_6?+u!23Tv zNhb+C3yz=KghuamN$7Nk&f4Xw&$SR)fYs|cy<;Q-&r{x$6C?TBw>zz?&@e}60ac7n zhHLu2;|4jCwkXgQpeJ65$P-TEvj>e~l30m7&`KiQT)Z$`^#Bn8=5!=0=Eb>Qe(pKo z?#=#9gB*#-baVIbY`w9Oo${t{Ug96g4YX1*L=vsJk z-&B^QXeO`>sQwIg-lRL} zN$(%;>r@Ggn>AwN^QiVr$N~|57=VU_g1)lm%Ls+h&Sl>d#%sSDG=TftuGQQxkiqmB zAdk!0N)xJHk3<~&G0`c<88pUzBTz)@EtFi(^S2#$ha!wYIHbhCjCjqlmm^*CT1QU% zV`puQk*~{Jr31SH8L7o;aC*=Fw;~y=-JJ@0Brs#9_wFsGwiUCwg=kELR1F!9K~+Y4 z^DFW__|-;|<;qM_?L&yOp%YE2WpRt9`7^Ojt+RH*S-Kw1>RN@5mY;=<6yX*b`x3#t zC@A+~)*OeI6YfBoJYvAS<5mOJ83L$NfLFLug7*auOdJ%)x$bd2!h-VzQ#+M*b{Hl| zu=Mp-ysd%&e$rlI{Q8pfub!uf8$1}K%rYD5ocI&b9?VX6Rr>7C7Qpe3S3S8@Q6=?( z3v*?h5(pdQL=y+C(vj~Hqxv?TE;{DSs(I6MC zSrlZ+M(m_eV0spLAD&;HqygM)+LRb9?w$1-}jH4sR<| z=qOemZ{zFMc*J3ZBEG=p4*;Eg!|Ztb7da38-*WC#bF?Sa&l9x6l5H;PC>QmsJFJcU)%O&9A2N@V~*1Y&1iYv~OArb`C` z;tEzd2arp4+NSqH+oUsAK4&%dBUDElE5coMUbS^F(>8>{Iw}JVyEd zTsO#oYGF4`2gURjN!=mrXPV@d&0c53i$7%@7>cYI9QXNdwJs-2QG`+W?hi8hpZs#n-^}P!P~`(91d8JRrOzf_Q}_LZq@uEPLuR&0yjpI64C5n1kBvn zRVw`ku1B56DEnrB%cvRODFuVfeN!Z>1D# zYNl9m6OZ&DB?0fA?V@V4mTJYTc^h7%^)r~-eVy8)S;q{}8_s-#rkoJ?m7`q}oMsNzbhQod1`=%aSTFi~?1C$wmm7v>Pg zNPI3vjiEyvz=YX?hZM{gXD|a_$T&!1aTPd?^_2xuo0OFit+)G!koaUqefZHbyFBT} zVt?dxf(9{|BZ_Yf3+f~p_XPulqPZJpc@&hI!VIpKS04VFq4TdMBXF3dr+1zas$Q$L zcK&N3UI;2#p=ACH((Zi6fu-)P)J-l6!ed`#U{Yz5Zj8H14o!@Eo-o@KY)uaIM=6tQ z#(TOvv^&2r%7aNgxVw7o&!F`l@k}~QJ8)%va@uhmPXH!T+!j)*9YikSi+0XFBoc+M zHT#xh9UzS!5Z|eh{!KeqcS^Hwn45hA>13X`wQ75|jj4T~nuaj29g|?3T9s=z*pYAk zCb8Dw-07pC9i6}f$2GfT8NX)PW}Gt)LLLKXl;o;Hqr{DB5>(%YoE@%c1}O`@&edU2 z+r)vyTWi}YM3XpqakKH2peaG**28AlySnOpFaq)HHl&741@T{4MY_hB0U^iB`@eI! z?BW%iL!)%(H5Dhrpi7ugq?`Y93jh7fEH3i0RM)afFYp^a+DyL%18+^!_Qt?Vp~64@ z_ZGBxUdJ-q^$t&i7RrGodOlU2=2z9SR`HCd6gC_Vgy=@FG(gT*w-e%r8PC#n+}L#C ze%$~mE6pTpF`e&pA|5}8OriyK#pHjnKgS*41s?NscH?C`ftcg^Nzgv?#>ij{E= zfy@Ysqf)&2^amXm;{&nR(XmlpnYJ0fAVslqv9YufZ#CxwrS1)Z~0%ROws=kTIO$$=Ie%_L%L`J1=I7q&dV#uyiT z6Qq7RTf!0Y2=zye*Ay`$QZb>RV~~<&?`^*9%4GyBK~294s>K`XfGx#a>6{cBD~W7* zzpxN(!5Dq}9oV^`{2yK|04kFbob8vC!(xkT7>_ZozG*c>nFt`))GP&FI0>R6rAFJp zRJDQj1HEcyjYDt|4^~&4n3BPIiBTzSv+n6UkcqmoK*c`NwyxF%4ffUhN^M7Emb zHW5D<7UlQJ90~00Lb3K@a?eW6J2iDdAD{E+7T(SF`T0tF@^mi83UAg^OaKx+ZNAt{ zq-ETNg)C6FMjzW|ij4tZj}t933^+mUtL9%!qHnXryFi10o3=6DD+4l5Mk@Nj24FEf zsg=u z?r+rFXFC1GUXx`eMGwk&Q9)FfAh>|JL+nyEdN&HWJ#*7;{!;$oKb)ZT84N5%Xt@Lf zKV7UlJ5qp7eu+xDET_Bx$rs5w*zj$S8m4%;SpVHL&YbJ=`_tQb=}+#U%@?QYLR`^2 z@K8Om$D*A3cADb$p|wmoW$E*w3Octl3!e8#TA(_vfQkhzy&6Qdsj!tGeVt5Ee~TO@ zyDXUk=N3z4BMO+1x}M_{Y!zJFbjF!?;)e;6=?V~(-BYW!`eaqnZ#)SEFucqEA?m#2 zss7)%Zzd!~w(xC`y)rYRY!V@RWbcr@3CSj8Co5UmduQ)W_TG-Y$9zrK2W zk8?ifJ+ABddR{&dm3Wml1lQ^yZ9IYRfw~x`zQM8#QBtpy{S^3{@DA)m)Qp<#})2E5D#&Cj;r=jxM;a zG8V$l*q6$48~Q?BOR<|uRsM#C1QChIcbyP+F`$9~fx8bUAxlgtjFft%C`W1b*5uDn z`u1nxYsvd;0rzD%^L#(f*wvPs`k2jj@s3ThogX1{EM{FIC59;INqCha)C$6w3`7>q z%a3f`iP#j}x7XmV#WAUAK`!<|S@`Qrj~22w6?SxLoMV4S{Zr(D;~<>li&my%PBtuJ z(coPw6%Mt#e#3t^Mq1JCIq+AH**R0jgWbeS_EvL}Gjf`2ZWgQ-zpLQ4Jqn}1s=s-o z*qr&?eV&3cw;Nfy=_cX;QoaB8zcj+n$Nwv;8?#5rAXgMWeteabs%9W6(b-%ZqPEkg z`sxj@^Cgp0t|C^y!3tHwu}aFbQ2eooL*H%Hj7f+bI*k&X!dNOH77C`VIsiUjtzf|e ziY8sDuxX`4f7qs2H1hfHQlv*Nc_HqL2c({8%Ib7~tb+V=W$6R%N}V2Sn2hCbwNiWe zqPrc(*`(IE@j?6BB_w$3z~k@rg!f;(5VabX1grXow7g8q5!>zQ1RfrFLV_EWX(PBb z)eB5*oxh%{bWQv3B_VnoRuSn#Rq>pP*cR2KU5yEWhGr+tB)|1(V{HL14zMCp!g|Xv zpJ0u$R%b`X{Z9a(Z1$VC&)iq2R;QPZsfHc}BPhK}rF%n8nYdNLc@MP!R*kzbdJM|| zMPJ)Jcn}H-cwRp8hNAkJVP6l9;LXsIq$EMXrN_5F>6C!AGm#H|8_C-Fv;BbyYO7?{ zO3AIWfMcF_^R>dm0c4!&i{FOX!S(%rE#8Qca;*%rJN&&Gi7#=t@28!hiNgN0bEp31 z?!dsu1q@kWyBG0;rF8Pt8{@g|-T!aCxGz{=J4H|AU*o^mecRoUDchzOEo8?eOe#Um zowB`ysp1N!aEq{J5s*?cTgOa8%+P(~pogGL_mU#euS2Q2g%zi&7$k_CFbf>6sa)sM z2ol}lOSks1gR@m#BmV=xp_+J?Bq%}>@@Ot(#7Q`r4|KGt2(PP8MjLtD1vWJkQK|gf zBRU4P$BlGil+^qb=y<4Ns-&*ECPS~}=9v!-k^sELA|L|Sm8xX!n(5A1os${SG@kyv zP{uBQo}53YAy}37Q=|}lZBUgAOv{KId92Z&R=3WsY0Xop&v@tu1OgJWJO*A7AY9YFaAY zVdx*autem!61F5*i@roD8dj_%162>k;4PH-+HM_P&_>RvD9ej`{?lAGd@j};F$ur>#YfG-cD5@S9BP8 z>>*}e5?D6=54$@VFEEhcc-!}6hEs)`QNE^DZ$s(JS06vzR4c7}CALL<7dD0}GTIbT zolp{ujCf!3H$1P>XSq4yJ`g%?Mnceb710!5_e;#FR6Xz@StMT7a&;f7B&`~?ZKNTs zP5Y;~5#(_yY7dkY-D5?*`_~PEZO!Q7A!xdn^F%baFYV|<6R=w`5?+L{8$2bzP9gbb zt>MX1)wHZG0gcR2hRQM1q&oLh-itAehGK!u^Y#bF&Fwk)kzfhOiUw(vzq;R z%bx{m?8ir)1ME?f!8V^K%Nj!{S}!uCpZ*9ef2?PZYt%P1|&jVAXe{Zg|RaMsJ_9VyK! z2~PUWmE`C*vcsN<+;H}{B~u+u-^b8btNi+!Hku839;G+}dCf7&v`;TOKB#)gc01M(Y+R+(Yu5pISb|u96EHi(8c3*S?AN_E(EJu;2F|6Bxnf}#$*y7BVApesO{G?6h#zRb*qN#y+FMuPgRq%lfIDB3sGh{x9zqpn|W;BYDa9 zmkjr*0y5$f#jJT6A&{tnJ#k0VsYr2${>Bjb0QfZ0u(3W19=o|s3*9VeU#Wyz^k%m| zA594oVPMBu3EiZ8Yl^yuWlhUrJ3$8RAT4u>@sl2KIMKzxceX0ZDRXnWEgF6=DAJ!B15h*(qsS!P1yC2o}??% zXL}l8nLey)LLZY;Rdfintea}^g-|BsV!N62>!p1~X$_&$Q<87=yeNQ4NUZC3XgAsT zZTO7qHUn!4X)2l+qLm&%Y;YaQIJ

kUK|Sv{u;jBs;rT7ms55H$sxHVZ&4UVq#@u z!AsGTMZxml?OkY3dAQelOEoogOtkJt&01E8UDj>KFkbl3?X`5rtsezx zhI)8_VixHC(#5Y1NaD+xHT4cECF3D1BCXi{OZZ;XB^f%qHz-hfpV7Ac3RENH#DlTdQt zv4fo&?la9H)WA7ul6LsBdB^Aq83um6jXMB;MV)>~pP2e+FNlz#=5 zmbN+GZGddf$aptLbO9r?a#G&uMG|qvKT<(&bmHV^L-_&ip6w_CZl`P@O9CwJhHPZ!&4 zS&tM8l{%3Pv*v%NL!Q^z@YlVh=Ts3nJA@-lrenpj=pE|(S}&T0h7}>&uC1-=n1&p? zFgy1Gia?6^pFM1CeSM_wt4#^}me3F^9v*D&F5X2iMcO5Hn0YkMlNJu2a;^4}2-d~j z)b{%#ZYotax|J!SfBv~!p>X~X6aq-56=($=hgd5&*B7e&vRJ*qH}%O6BA7?D7SMuY_Ccv#rF_islmw21qakKe^_eqIc~sxP2{{Ja zoJIE@vh|u-qgejB`M|1mA8sM{YKw1~Vww5U%uhScZ;beKpL?QmbHB~|S6g4)dlunQ zajUl=S?~NZK+v{%@^lCyBI>oeOb_38I+b3_)n@OQi6xJEg-DA4XRjlXcDw?SCupBN zQ+CzoS9-R0DC>^aPU6TD7VmZXYQ0}@wqE8daalYwKDJiaRoB9Nv1CmxT%)*izjq zDKeNE{EGCl$#)ud?Iu6A_q=4iZ6RPC->T!4!)5)PtI7#DlUms;23&3iOsKnNg$Ce( zVd0#Ww_~K@P7I!TFNItU`)#(HKkQ_wMR$hUBJxJ}rpwF^6TXCtT@6srTmpUFW$zl#WCQ8l_w*dHeeBJID9U=8=XNg{JlkiHx(5DBzbE#5CZOty{VBXk>}{rADLVDa=m zeXWj1S;%hNKnZ=KFusnbWl7vin$@p7^e;AtJbU8;UVnh=W&NSKS4tWt`?_;Yedebq zjE2uFBZUfNIT1kG?mu^7`UZ4LM)9Jp8#cm&lp@;4@gEs(bKew+&rbgFco!?^-`Z{M zzTYp!_nO839KVH`*w2N6n-Pp_xbLmVapQYzHaPi*XQ_eH1JI0;p& zM@`HxDT0cpMkMN;?r)4ldHwYgYW7K&3t7LYXZ$Q2PHJdKYkaK{Quwx$mps1P+Es=w zek#9;^PxGf{=J47(Lixyc+S6fWF+2}H@rC-^kb_T%O)oXWS3nv+d`*$O-Dy6Oyz}O zwR-u8bo?WC>yqrsdkSZT>5;F8nwHsw%E=hi61dkMS(v~@zkag1yT7H+#7lXc67Kff zBv}K!e|kCz6PNgpUh^$(t0~D4a;`OaK0xZ}vE({z#uXPACq_jS0xFI!KT>2L_lu$N zmp5I_(1HPP!`Z<$Ef{Q=g6|ixNJdc)rK)Gd)Kx*M_eEFV1FMTSh_OGf7g-<6cgYZ1 z|FJW(JXBk8I@_#pQh76!dDEmekJ{ZmSB(gs@%gR%)XR&%)%yj-CdX1ACw^Y2r4kO9 zHb|kLKd&LxVzeQ6*HvcOeNVL2ahHq!s^G z$#n58R(o2IL2bFqW_-S|DO6!EvW%wNfTyBdsYve=BcO@m_kwNtptN_#8VmPW)Td2};X7`a0 z3Cd-3@Os<4a2fvU^C$FtN7l6mW07^tFW(u3?NuOHEbrFH*V_f{Q-lL$kAlv*bbpR`s#EQd*v63NHNG60e7i!tsf7(sQk z<8oFID@|GTyO>CDlj5nN2Wv0x>41c;Wyq^``&+GvPc`y5`GnM1qB!=%^d-9%^zZ+T z;ZRtX+I9G&3vP*!4+D@M*{W!S&An48df9oQk_*Lr_*Wyyd`!W&4B{W8gP0;ArE=f}KBYv$$7;`UJ&(S7%j z?vowH-uZIz{ zK>4+sF1%(4LYN*5i9jw`7Wj9-Ic5-)4LkV%6k0kWp|8EylGz0(i|5CX*s-x(Qw;3T z)XjY?WDuy(RxCz@m3hMG?3T4^24z>NH<&U~suSdvRhY`ZNzD;uR$5XI3or~gPB$2N z9mT&^W}v#q@U0S$d{~OK!)LbAwwh~%>|YNYJiajmmB$BhS#$CD%a4Djc%?5IRRsLa zz2tArvsp5+FS+xh*u!mBqn)f;g~Qi3=TMMQGdj9!@kgYpA9?ST_Li{sXJ_JqL!o~y zxJWEI5TYu$SUmFpCqX=#mnfnW>Jxu2M7ooO ze*O$bFX$=|xdRvnzz6c_zUc#GAUOsX*I2kpr9X_=9Q_^DmUuu|dfIxy-`GDm~3z;H4npw>&yp`cmnt=&`FC_qtY zOHEB_S%ZnA0~JvLNRQItjUl@K8+4IFvx_7c2S=k0AmDTEretC3{TW4Z)yk;j(2sh)bx#R zKraB5`??Kn zPzWkikbW;bAy&&EodxE2UAqsD&E*O8LNk72>#fPeJLKzwQte8`^A^EUmNHKwo3>W* zqTfEsuQ)idUTN+AJ60XAZ6ppI%^W(8URvD2JZh}POq3RNv;zE05XGm_NSO97g$I&P3oxr03#p5>TpSh2`c(vQ0 zS&EiQ#e$L%31n*^^aA=C;u!NB3lR1#cf0`cLx@`*Dg<7H53?o0&Uc;|=cu{TevPKv zd9XJs`Bc1c7Rp?o@|LAz|FL{$Ty7~V;JK|C(lZAsD2Z2*z)0iuxZg5>S_cxefTro& z_Vmxd_-~KqP_ph`a|3zv&m3>p@wa9(K8;R}@mv!j^m9T3^1g=Xt1lYmxNNz?GY6Hu zNWz39NnwK;tBXT#B1Q(DiAB>81UlB79|^{x3%0|yHQTa=v!38qHGE_TkRX8b8C0}T z3y6pJxc!8~K64sg*u!bfmdge5z6z30U#Bnai^QTp#J0-MotZmor#O@*qTw2U@?Fcs z?=@7qH!po}G4WIMo!n?PgR%vkx|Ef@WR(SxC(w4>W%DU_zB@9tM|S7E^G}}J-NKZu zz)hu&;6jf4Y<=YX6N@V8Y*IZZ2M5ekpieEmp@qv0+lv;*05gd`v>qLoR#kpI}_EiQFT zN`-G}Tw+>^ebZ>or-=~=S*hPRdBOJ@%3%WObaCG@GJE8)-frGOg1}{{nIk*Mc=Y|Q z-XGs&_)cvCqbC91KDrwb}t{dWhWLviEbj5IdYJxmmWH< zriK&?tTJ1*F>oF3Js-&XwR3(t?N{*tuhuwuZpFiqBa}k0=CODKwddPZ#W#I}r?(bY z9}1GcY^X%2#k|>1cNM9b(OS9X$6+}pXVF6ha)^g4qhUO`2&hi3aWAsL(ce#euE9ts zm){->tbh9Oj{N(~;pRxTH)eXQC2#POlREP_@BJ2gCHX^34}MALc7hr--SJ13l%)ji zYQN$6e_%^dew;A$+iZC_gC#VlkPK46-Wt$4OG53bIr}YPdAOlDfO1(t>IK63Pg~=A zsjIUd7nU#)r}O{W@osyW4rLbVHlls_@PUno2j*??Bez(XxiGzCH^YU}tWU7cyQvg+ zp7%}0bY=Br0ty|l??20`<>uvd(l{Yf^8ipQ0-Yb$ON+XVjs?T1ukd0yk`Ph@6d2-w zPbHgUgTn}%t4~X(sHp^udrAG?jpbvCWVhxw<0(3hq5D42Fvi<+{Ps(>8WA18R-);k z9ctVb%?olj)?-q0PQD!nXsOZjEOJuE|H|uGdcM!~hE(p767(YPS=2_Ho%`!*8`g&i z9=uUI#S?67JxLHWSgI}GpqylFQGf&sGoqB+c^PlFqbex(g}G)p$bWQcWA8vw-mzpZru-}NjrpReQcpaTgFf}m4w9}UN+fdX_W43DDgLImPw z3iPrsl#@-4Zh=iz&+6^7Ta9aiNizli!GT7yyEALz<~TN63tl<%Z~nnDUAK!DYQ!GG zK)!VUqi$+FVD}>nVjZIC)Uxp?j%SH(?tMB9^poGHQ@P=((h>ZN5j1&$(iz zO62L2D2b(bGKv|TTpvQgm>Jf$e|n4b1@THZYM^L9-z44mrJNS|3>^&fp;!|2;d~jSfXELaR{)VAKCxV(Bc6o9s=e~ z&^}@+O$PQ@#mIJv0~@ID#QLb-iAmGM>Ll@A^dskGMQlKe*A<8S<}I%Zo&J`k(Et4l zqZ`m{YzVq@THc*(Gj7HA=YPqSfUYsi5Pn2Nmf=DW7n#Vr{tm z1KpAuZ(W{}ZEnvJgd>7T5kOp?{elKqh|zSM$tTPhsnvKE*){d6Y)>qiFflgMNiL-M z?9affnVf3P3KUMGhK*8}t&7ChDf;63G2&hr`1on7^#X#P@Lno~|EDu}>QKh-nJIH?e ztMx8wWbsHzibFWi@1T=(uJjI&LgYw>20T63`xo@rXvvp0cC!A65U(L?I?$7`r3J-j z&j_iiE#Th&3BjtUJ7w@mU*yyMSye|1uzs4#(*DQ}Xd;WY--p&K?@aB5s9WNP9KTo0 zbD(fu@GM39ht1r*jq4kecV{g@^Uj(XBlt)6d29We zc2M%sbQe>(-G2H2;V%`LKc-|&UITI6t~m-3$MA`*z$qRGsfipjX;nB z0t0dFN{}WrUXA7@;6PxemE(Q9)f7s!Y2H~Mlp6fvx1GAc{MB9QB0p(5ZP;=|z=^mRacR5Ab5BKtdU#tJ~yvbc_8*St3ozG~1!J`;xc-j%)0uzpd zQdzJ-9yR{=x(BAr4WKYRcEoF7pe~SLtu9YdgWVz1w_`k_8P+bJ`7|q%maHLj#}`THU)Oqx zz}-p*uQlDF$Y&H*cB$6 zpXRIT%d28q z=MMMzR@@hx%ug`=aD5t(8DN4)S@<=TFblnXZmZLEobhg$$88VKRu%r8(Ge&GuldvU(LGQ|{?Ey_ zGK6jUEc8c0;H5jmS9Bi2pmvwxqmtCZFu@&%m5RyVAIrI}&C?Xa!=vS8)v2JK`ZseG z>;n>DaFkLz2^NCIAJ`qXKa~jm^7o8UaE1dcS6rno6!z4!qoZ44NlQGIKJ#|@srzsK z^H7$-2pRZD%Gp|RrA7trgZ<594GVtj?w8Cxrz-7F#x(?{_uLn6JvV0wkEU-d(tZ$h z{h23zy80~J-o>StUt02mLv|C*&IwvPqX7^o$Vdm5@lSvX7uNuBet`>reQ*7(`*D$7 z>Dr}agXgHs`IF@#M~F}S+SJ^>L%k!QJtf=zoj|;qkTWnaze)oDmD_YNck`sc3w52z zKL3GYDX#y&=LJhk8cmiy4~1t%fGMLJXQ_0`a!sWz+RAlv zy#+5xPtpa(%PUG|@Ofo{%>lZp;KKAPNE1snR>|TChdV;F^%OV1BV7o5P?Y#G^oM`Z z0MBqL(B}e)`K1kSFx>UB|Nd$`Q5Yj1SN~S$Hl3A1-t|Fh$>lO2`N>+FzZikpPf#?^ zmp8-PhAeoY;~qB1&Vy1<&3^wb3K)h=KDj`r2O?*d{z6V^Jl^=%LVYW^g)kPNb&3af zA?DEKml~nyt25*FwqX11mw-oIa&;ee*H`OdqOzz!n8`AG;US}Mw;S_j@9X=pXTxm+ zza=WpCq(+q*gq@ec!30zEaN6Z+t@=*JRm3Oz}5n~eBj(`{$5{!QQZ2yI6?hSB7e%o zg|QJLs~L<*x~Z1YjgUpxdA*_5a_FUp$WqRdIk)b)?}|TaoTpzhXLN8w%;2%wlia&Q zpjkaLcQ`8~)_MXAQ4K$W*9Qfe`%DWgoQCij#}2?baHluROCAp%3`4-d?BHmH5ta$U zLz{qrw%JMR<|0E)>j}Tuf9@~g`!-rLIk7 z+d-4=RVlu4L4z=qU$WQt5&;5S0TcpkUiJ9-50?HxA$zkM`J**&C-JD;j0@O|pv)&^ zhx9ePdS(3risoX0Ib9=k2sYdF&xu_#&y;ToUB2ub&1jOwW} z^&~NW%!uxg?iyUdkOuv&-v^1cNw;2hF@)C4KJ~f^Bb_baI{sN`J<)ao*9S}Op4F&dJgAs@_EqyRMAhi%TzkH=;oT2~ULKXl`LGg_6$O5iib$!;+ z6y~eb-mwj21roUFZmN5d1z7q=`PzO}_V=FU_nA%(9j8u^uit*$!AF6w7j#(o8bk@8icu(E;m_QuQLAVf1(^tpl~`%v-&wA* zPlnkX0;k+|zM@iHTwn7?VG%bL#8*kKl2bCHf&;P|If+!xp2WBzBA6`5BK8CuE(-iV54MK7M@T3 z^tzr_Th=wtdrzvA{I`<#xT;FnWqjYm_@NwctYR#T_^F*p{rhk(!J}j31TD|ojn~mx zAvCvt+52ZvWofAI7@4U*GemZR|51h2hb7&XpUh@YlWsuQ%8(Qnd3V>Qrm6P*NE1yJeEnSb(<4MYmOl|Ou6eeOvQSUh1i0_Mj?S@1{4rK7OGsC2Mc=vThUtB z{{Y~9VmwpzpL-;c;VnM`vC|*2w_^34J#;yKUU&SYHD!io7Z4(3O&bhgP(S&8E&d8d zTg)|=#!7Z7E`szjGF1*aa^VpBkm004Dq6G^PD#9%rV`Kx@XAnZjs7m{F=g+oqD+ar zt(U2{?bi1~Ay742>Dtm#Z&HQc*6*dqXWS@b!;j3z$v$H4eU6~fH5->Sw*lZNi-ev2FbB;;QajOJ~?$*GU0@Z%)g6J^|kJ_ZDu zCkH(%b*Fsl;fZ-hjj5fCPjs{;pG0~l?UnB@SwiEI1gpMw0NI6O;EIiq>AhbpbPqnh z-d?n7M;X<6Dq?1a>ODtCxBA+@s>;8hVGh3?{W$5_;J+6Hic}JyCcvmrO&uj;i;@9n zR;t{~iPn?37!Oc|LD2agrM4_tXP*%I5A8PsioVHO?-yn4sW%{QPOOY0{dYTiiooVk z*vhPa$QLCB$jBEmopKXkcW+UvexUgT5g?DKSAkb;Yf0xz@4N@nQUv_jxg?sww*=A3 zFE&r7yAxuRDV>cc$a<&VAjR7-SLVUDprR}VpNKui@{ankex(NJRgotj@VfV>wJBp-RFmK>sO zP4&dWF(sM;``9cA9?(;O;FsMrM`7xGk>vMKUhiUtAT++kukB-Y@k%@Dw_#v$L+C>S zG_+u4AvYO>?5(fVvw6SC+fLRc7f-KYzKMgp$$NTiQ6jE7c*JH9t?S%JPRcV^S4I(g z(>Zl7yoDUVAb4r^)B8!3v{QZ1fQHi;Wi4s6H<0-dYvE4fba#WenR9I+yGX{k&E!wa zM1H@s4qg6X2Z?*Zsq~pJYx(r2?)~a@(K}Gykah}?G(=8i!?%G9bOAS+Js#bsZ0!%I zE`Uu9`!H&1YvbNgbgBQn+LkSEbqVe<$iM4``qS#?hws(T*ayDp(w~pGeFqKcbn*_H z`zWOP5+%Eu7flPcVdvyTvJrWZ~KcD5`xR$x7Ui5 z6KB?XgWbh86+Mp?nbQgM@1In&D`v8R*5n(rc;tBb=V z*Ob1_&hPX3=3Q%OXW=k~L8_Z$I($>5Ed)}nVD$q7y;1fBcrgRx&VsdVi1W06xC)jN zwD@9*%oT^k@)kBmPi-bYdw`a}EoCyegngmcbUJgR;5xH;x)qE7`ma-w1E9Lc8w zj4c}j@&ZIU&E=-=!X=%`Um6)rPpmzf*nSGhkz7${4c)aXl0=#(>=d9zH9E9z_jx=I zIs(`o2eOJ#Z?Q%{Yl?y8Z)m@Bgr519JiTXqWF~)^7{)3+mrt&UfA(LiFK=z+?vNq#hQml(OfLe2O-#`s4Te}AE4I6x#;Cbh!6h@iE0!BDH|A3DM> z!^8g+-;FBQX52sjoIe5tCLE$#cXBdkrvl2^^LJ1IVIwAft@G*m0y~0%D)6=9uhr5+ zCxZdiv>=j*=hnTsT(hWu9-VT>on^X8fw^c6%(9J zsZ}lRe~D8SXP}q>O+IMz5QJ#Iq>cW#T(?(ys=D5K0>Asz=@iR zgNK7*q%ya!*yW{@_~l2zsHTZjnSc=+`cKZOp^Q4#m7@9L@^H$upcu>it9z8?E&ZRq z+3YzShlGG~Z!V8CnX?RlVHa?6gU_XLDPh{W-a9(li?%m;+q{SG<6?5^s!`4d1C2%E zZux4f@04rXhSmz{x$o6Ok?}>y`9MRP=gOCO*Y*`YC{Q6mUVPB$t_?U&h12~DPP(-u zLP*cGef427co(P2hE0Vlr+0JoSMfwH-3f|LEVAd{2kQS*-swCQ@PVaxM#IDVa}OT- zQry6=h=yP?_^Ytm9LxEw+)B@I_-@Mf9!6@e>|L#A&FPGI2}!gF2R#f5wgz|w)HDAR z`zDn5F-A+14zxPSvoVH~OEZ(sW<4GPX3%PX)nd(30&L_ZF5X0RRL48-a)>J`esoLf z%dUw)fG3y!7q0=sB0nY=Nal=0RkCLp|2Lrb_D9xr^k6b?Wts1kFf+)%yH;}8|C~nB z$vhlJ{J;yG>wf?aE?MZVg2(S47B7j_e|Ign+luCUz7BV}6R(f`P2fYP_%Bu(Ssi(- z;|c?5CRy9|mNUC(ol67+<^rgLwS5j>ah;hdOGbDdIQ~;^98i>cZTqHB<4@Q^{`~EG z5F&YlDRN}EhxYpc$F0&`^x(!hzm%?_p=Xr1vNeCmykK}+5JpYx=W<`n=1FqF;G0RC zX#>R9_OwdMq(+j2U_;7T1m)Yc|6CrNsSCn_`P5BnivCu>xq>zzu+liF{t_UZXgC9<|MVw@S)@T$1F6I!*5@&E48>%a=~ zxod#Tt#slr9p9^fTYG*>XJo)Q=a+VK1NFfZ!x(R1tCoH1`#9(N2w~@j#o$x+c4sHr z;>yMQja|zEe%cWw4`Qd(PzpG}gU^tcI9?V4nlNMG;?uW|#yK-Q%Eeq6OgVAaxDsO-G(0GY?EA@tU*_=Gll5W&sb_1=N=GWf2?kg$! z6b~Fl`W=arAr{t{C5xlSn;Sx3*&qI1FfbH{PbPaY`1RMw_%!;d%q`8KjF0>7Fxf$K zbxDLME-NGmnPO35ul;Lr|0~5T5Zi@CKcsscZ}#`5hszHatKZQ%rPZTiV80(#)*qN} zZyK}cK~T)PTE{&Qh2uJ@(w|Z@Lt0jjx|_-eGCqNW94OGMftfmDwq^dXa!?ED?&^MY zY~x@LhTbQgy@^Rw&=uNi`&fRXl|oGt)-b);k2 zOX*>F#%X7p_(V|g`JR2JG)#9wboaDJyQ|Z5%I#s`n!K5PET=mS)#4^qA2QulUq)k&P$q7^7~gr z0rc72RqmeK;m?nEE=)=I3`;-Z94sewVg1_JymGTa6$^Tjiol}&9K>RKQ<}7=vC?ob z-pv&Bj`%Hv4(@{oPH;)!TuyDLG3grH={N)}D9z ze-yJt_2s{%(N(!|mN#Vf&3Gr4BDCy|3Er&=gb>Qk%mK-lM=7~B@)QaMBfFoKiC2P- z$P6Y_FG?4eQUy^i@tZ%~uS8@`8^n%A-dpLKaOz1LiNTncKbuOhtAvfkGrpLqglLR)ia^%;9p<% z>)7I7QExR|dt0%1cYQNatk!A0pw-`|R;3wzRT6bDmV#4>=Y#wPnV9IW=W1%o){5s1 z9^(tzoaMn3dCfF3_$xd_9%VSM9JTAbtX8B$qlb6H5(wL3?}lc*m!*ler=8InWue-{ zp3$*Ujmu4P@6nAF%B@^36}TMo__~5Go;${A_MqlC-nC#oc-D8}Rj;Inb;mP3NgvnC z(62r`+EK~nXN=YRhhe6jeTV9J_;NAHg*sO4Z=*5q9PoTxpS$bz?J6gihdxhW)|zic zg`zdOd0}tVocFs%V@z;l4Aztjw_Y&bEnaz>TEeTj?PBwbC$4h4_{yMf6aQyJDb?YXCBI_#cOI2Jcp$$H zRNwJ^ljd|O#GQe~6SfC4uW;sndOvhpjP!u__Jz81eFcpyaYVJ}xR_eVX6|SgEAD48 zRkrBUgC0r*?YZabQAp~$@2rMgc$dG5NZ#h$kFP1982l=E`zZBi?_b1=X~rS6PeC}k zn&r1Ux@XG9Ovc$r1<6xWy^Uqc(03>PeJU@)P!DO~B$51QGHc!OgsWh1`{IICUs)QJ zIybyzMZ315K!)A1*#6b`J;(RKXCj{if-WzMU9YF}PivdWNs|IEXOh*Vb$HI)FSgO# zZ+*WP;!@`+{5gr+d-2=Mz^9PItfJn(JPgHOc|zX2zW3Gzl_yJvJNfB|`1MqtHYxx3 zSWpm_RO3?YF>T;0(YaO%k(_0mya%W5J4UR9OczgX@1D$PmY2v)4se^`quivaMyoeq zF=n*PFO#_|%gxl*J&Qg{q0`IX&op<$Ef!q6ponU=OeM2$-`e`O10BunN3))+ z{f$Saa=SXKj$aclN6qFFD)}))(rNiZt7mxg6VnE6Pr*3Rvk$dZOrDCLg^e|^+-ge5 zi=@rT43|%)jvP8G-|PzK5Oxmwo>4NEz5D6DfX!?BnaaBUi+FfV;`DU-Q7GPrOy$YL zmioyv_o4wRlxwUAWyR(z;cf8;@IFR1=BMoEDB?PuXn9u!OWv7zbRe*GL5Sf^l6hie zTaa1y#+K4~vf{~z(OMSaPTaU(px`4@wxI9Kk6iK^_LtCj+z9%K@ zT~RtKN}s@EHs_*?g6%J}9RJRy3DB{cn9F4n${z~b8%%h&_MKv0eUQ3y67~9*^6}oZ znf(TvTDsSZv0y8T7qtQ==Rb*-EgyZrGiQcpoT@+KfqNVTI zq(_T#dA&bgDJW3COMfRsd~P}peT{TOM#NAMTTk)u@?4mnMTXi3C8clR$4KCChQ$6> zqMKpXR>sgX{7d;!N(Dg^o9SN|hoc^S+i@Avqd!KP`YA&H)dnO4w4@UC3N^^(%$QekLdI1Mx6Z-O)R(BG8f*|#g!G#4Y}9&kHxLx z`3Yk|Pj}Z#e+Q2j%@hS2yT_bEZz&rH5kx#4`?ID!F&AM)|Ni-b&8iiqQ?lw4F;wP>Vlk;T% z&>L<@lP}(>Q;J^Ie9!w}b5AUy&2zdfV%F71t!wz;wN+Ke!59hr&|?<)rX)SSyuBAq z9vsNOW5qg zJli;1if?q<=y>d&oz0;WV4W;PsAmso zY%8TP?=(D)R3?@w-q^vtB6QzWW?hso#VM1NKzUae|F-XRT~?6y{)@jff7Kzk)3-|%k^qtn`$ zV9m8W4t1XNVor#}nY{$JC!)u&_unU~Q)m2lGa3?z)oZu}69&}7i_7)`)pK55b}63XLE?`UWAAqy=x`t7oH?0B-+mT+VSI=4 z-GnIg$|L9k|D$zn45PnPtpM{ALmV6$;S_W3>$?rq)wc1H+P_4+%9FEtV~ZrH^JE`q zb-PbDaX!4T>vV4Yy?Qn`F-HgEuQJ_Me_!EckUbJxtnYL_Vn`ioaaZ%0_PXnGwLp1;Hx{IAQ#s?8P~jUdwK%oo2!drl$ZZ<7giEI;)>p3;fLtuh!& zaf(YQ&(J8Fp~GD`J7DIwU0`BErDLRM6IbqdS*vtYZ-5 zKJkB8I?JdkyRHjU0wSe!mvpx@JklUYcNl$XaG{5F;d;!u@7QxAp$FW`h^$K-t&% z!2Q4cI`7JCc|xx?sZcp!w^@oipCD#^cxMCqgr|FG;`4{ZPQ>W$tjKA|Et;7<-}0;T zv*dgkQ2&*^=P;nYKjr^+%DZ#IzXRIWulO@jzqKUfZD`~8XtCH!0?zNc?UwqGkh@T5 zs_D>>)9)O`jBE$GpqV*6-#Vx}X819`=<{!fUg2q_+}xnBiW;12a~OS;Y#OvAA$*vZ zXWIYZ`F#m{M1^V#gX5vo`CvGj%X=nVb|qzaT*TVV;f*(&=jRj}u-kK%m32{fjHC37 zvoeX_N*I#Aed{~cw;nmPO8<-^VpjZHkFl*-1LK+2qZ_0PXv*-4?u_ApoHr~vwy3$|JLZwn{ord_gp|9!cb&Rsy%M`V&s^l(>X_wvmE34 z0d(D-HKz=Z%YqhrQ|EW39>YVoA4921e~LYEI@nM!5|{BO5j|~LI1KK)+DlWEl0~na zk&7C}^`t1Mo{m`-SeM&%|8w=8kC!UQAV^71+^M{!$!T2f3ewX22ns|BNg!wK&9O1h zf2wabHcrllWNujOS=fhnI(eCn#_+Ql9F`VKiiPyMa>=7T?K?l#jkpl}nYi`J{znd1 zi|_}`GQ~Z8;Ekqls*bPnkUrb3DJ4Kr!EM;8D!IS%9@vO<$HJz6uYJB9no$@8J)+{y>;4_K)t~j{sc)pB55{%* z{t%om#eey5?{MdWy4JAULNv+QweG=}%rbQCiiqOKEQ=1K$tg&_{zwtOEQU$J-ix&r zi@P(WAc^~;N4VCXw+vGizli@)?$h)h%|#@Z>0?@sI_qaKYmuJy^S7bpHqnoS!}t;S zGbel9UJVY~GIc&>3$05dzY%Zrg{T2ZKFbrb>`LQ#L+iG!-xefMhqIAmw!V(Dgvq6L z#`NyV|1yy^`=NVB3^i10Bi^>Q3Y20@Dp8hZGjxg8kt%C&7eR@?F;{}yBx!t&Pv@}W zD<0eE_5RiDnTOqfs7;Y+`rdaWPKt*(!(HUjVS8_mRLA9UrOuf5=28uZ_){X7&eSMR z@8--~h*Is&ZoKZ_y>+TIw)n?!aMWV;m|51bUdB(p+3*4-=+)Jysm}G&aRK%fJk4qD zvnjm9;xYRfS)T#Ra9nlbo1H>G{eSG5m&Y_H)iEAYr@PMYb;(a|_fM|ZW1WuLGZmKK zGInHaVnsMMZDeSEe10&WD}#nwKB3}xxL*6I`%RcUh(>>7htF6o*OokbniHuo^QEXW zt=Q>p>lr^bD`9?Ut$p_^wpqU8zM0|g-(D7ZK`n=KTgw#|)RS=w*OOG611}q{V|`Iy z^M@}6$Uc;pV_ku_4xkx-Y~E+tf;!_9V1;xJGMPE-9)veHGR&=uQnRN8@UtBTYSKih zsDB75OE3PdD_Sjo{_ej>a=TS2RrZw#u`k*-6R%v?cO>O(Xp6!=F#UPRzl`i2ZKNb) zDo|ZksA>E$Y~L~^VZ1zYkWZe0C5kFO86p)nss7P$p^ZJlJtQ?##wqiR81xnYM6nTu z3>|;sF}`r!c z>KNm8UiqkaNV3j#jTj6alUN=iB8xhnw%$gHbu6)HI7Mbor>;GQVQi5c_q$&=~O8WrLKFvsoi2&~G~~8s7cV zAQZfiMcdvuqHifk#v^Aya|*uDn%6PB-ZxHxnb+npf^LhOl%iO8Xixp}^C)G1m++lN zKG)^lqX*zS*_0f9XfVDA5gE^npdw{0q@r$XDoGeD?`SPHzMTn$^-Hqxez@*eK3Y|7!jhfXuI;>H4j@81I0U(hJ58O(X6cnzx8&g~zZx3kp=ou7 zgW;OnvF!X`3&w|H5czMG{+9C7pq5jW%$A5Ym8!sp$)a^r3+_t*}RegjPj`;~+ zZ>Fk6jff6*HrHJFf0&nGOdT~YmSS(PN>;da6t)7Q6G+8H{B-YVw-R&Mx%> zo$o8z@czMKoNQbDd1VbcC5(G?T`P(wvj04_9iFsJjkpOZ*kSTvrPxQdD``oH*I?U` zL?V2rsy$3w#ecT-8#hui_E@ZmIe67Ob|!fTd(FR}`fQ`wOQ~$Cj6$)c4FUB)8++;P zE7vrQW@jn+RtujG3#!LpN>n^x#PYAtc!7)Lw_lupVPtDTCu~_0xZk?Nzvg7>Fkq4L z_1z?Oxfdl;RKCISjXgd7Yc`5EqeEF&FA}Y(LZ~C3S`!X5(!MdEQnM(2y|Nm;djt<5 z&t={0^pbC*uFi1cC-h}jYq6^xDTN^~s{eAQy$K3x)!7|4Gh_m-u-^4bdRZrV?=|E& zWisyV^F7AV_l~RPoIlq>SHR-aWiaIAA@^76^jpU(+%S=*`xTA5`X|;;D<9uZ(`=uk zj}OLm;-CzTT&Vn3UT5EQEQ*cvdmIbriIcGT<;%x!Cdm(BUxen7 zK)Xv6GPGs^WVr;r&!cc+wxgeSMPIm#^~UXFgbBw~qH z_lqIKvq>N($&rtS`q06aD5h^-hVGw;VCK|}OF)%}RKoCb27{4Z%LGK`*a9P)fYj_y(w7mpSC?kzbL$rw#9b ze*fBVd8c@U_d(LvuVcVHetx0ec^ARwDSS(tZaqLwZPUoL?-=N|T-9o*H5jIk$7TNH z203JzKu~il z8l?b0v+r`S1jB(+;)#Da=;$?0grI`^`~$BxV{x*-DKw7!#M7EO@3{XOf`5eq>KeO^ z!LEyp>EGY9N8sWNr9{#?Jl*#0r_UEYzjm{D^ah2W62mk)EA2n++cs@-fjXI#*tjXm zuF+8N6}mnl?z@}`RF+xC)D+0vQSHam@~)4+pvz1*OD#>-poQ17X2C71Grb`=9;GQ; ztnnPC^u=9l*?t+NtXD9K04Wbl8-8{^>`Z%#p3MUd zlzXA03O+N1UZ>3vO1+!MpXAX_sHa)YwSEwFUFHw_6rp8?jmzze^0fZvotiLSc=$Z@ zW?=!SO)%Jo+oT@yke!vQkd|@~aT9)S;~)Gf?rDMDJ9WeKB2M=stauPST{kHOe_j^~ z9_Rh)|5_@WnZ*%R&JnFsCCvW7m&htCFp3Fbr|`99USMOvkEY)`Tn}XJ#YS?y`eAtQ zuprwgoiYJBO0DDnj% zj(ouEX;Jyt;YXeSuYLh#eB_&>OTA+jNTRJ4*kjWU>C7xbiKAsu4;3F_Br%`pQ88PC zUD&xZQSOGun}Zy!cNJ8FXr-)op#G5@Tom z<5{JC`*6KJ9p^2km!M?ft>z6CXjLf6jfNY-j}G)%$U&Wk2sy&>M=0IT+=#S#yoD|a zr&3agG)2VO&(WtW4p_Ya{!aS`Z`eKx4t)xopA__kV{v^n4Zn7kub7oUzJ==5-s=yv zX%^w*9DR+QQXfk9(JI9HE4-UOMimLYzS%aZaDc5jHK zt4}u-oO>^_s_K&XHmcZB%H;5QC^ai)My-iXRq#WDl`OMObvS4F7gWfS=CwPXQi;2?kZ|HoA@GCK+*zV z4458DacTovbLjpoV4csk6zhm%1xRFazPjGOGHsD|7rDQt@g|veNNdFoMRnwN@DdzK z-M#T5WiDOy+TX5p(FYq-+T;|ts)k$P>p`2X!y$>H*RD??ejn&2pRCc9P*-ObWZsbN z46puRDottXE-9WAXvrpw-yw$>-G~K4HBi=EUA$=^^so?Wph2%$(D)oXTR*+y5KT#HGq#j`>RSkaACvA4w>o}QAT*KOzH zWeg$0ygn3{bj*;F_oD2z@DPeyXDpv1(Fi4)ld(9&q-mp;kEi|r)fK>bw|KpchDXNS zY#Oz7Yt&$c1Y!kB(1aV0om|o{ht%dP6|L&J%^OO^8xbQ%^SQd0h}VoMs@C(!o)2DG z)omn7yS)4ZY^}IUx;yuut*w0lr!dmkx1Y9b`cA%u5F1OXCXRc6pWbpf?`s|OyoAKV z$GS?O2bsC^vd6RHmeP_-INma*j2RD_5|^UE##Lsoc67%&s$6}@EwS*{@+STn*HR)7 zT!gL`v+c=iL~wWvzoxyuTM6;gf44H(kIo~bUmiJ*Q!iQ)WVUszC6Xry*3&jD9G-F! z`YIIlm_=yg#8tv~#^`r7S!iwd`Q<>5Rh#p4=C`p{{i)@q+KDxf%0XGw^SqvKrv31+ zl=4emj08RIYSzji*b<8PM)nOl?C+oXZ(C;k+^=h0Hx`e8J{x7AJGh`g1~K|WBdKEH zG3#6$25M1;AwQB&oL99+)!?<26nk5Eqr|4wD^ZprWxOd}a<9Ew=0e{+#2I*8kAz3L&p!H5T z3R$np3!hKcLO%>jQ0i<=btm^zkd4p(Vf7Y3ng>&*UX^B^n`hd09w`qv*W~xOQsg(*>_D|aJwIQY z*bjJDLtOc*-)c1&dZp5=zW1TwRGLs={M_R&f0CPXh58Tj3EtF=MS0H)Vqi8WY!kfD z%-=ZQdLwsmb+g+d0D=B(de;Z$x2`}fOi3EqiF(KBLJFtnJGjGx0EBWRZVvfd%}35;*z`U(QNS&SB__@{mjT zUYbjN#a}=j#Uw+ck)h_{IkCDDglnC*Q+MXe6SzkgG;EcvOiyW|@@L)MOZ}*X;t7mG z#!zq1DatpU59(=VwO51jrTYPS^C>n-exYCWISUzY|Ch{a!8k{9L{OZH#3xCDf3a<1V=!ynO|tu>B87Rz{@KK+tTb zqAqKhZuGcuUstJ=w|EJIeePBHtCiEvQrUnPYOgDS2YaX|QHi}koJ!2hU`m|i4l!eo z`T?E6|5N@gW8aX>S83H-J|p~K@hpDou$>$Up4?3w?UtKgs^ZFS-Nx{!^X}6ir-n&- z5FFx{Mm|CIo#L^TfNJU~9Z5YP5OGbrx8QeFO|ux6y%57*$LJm0SBJ=4aey6~JJ3lS zchxV$#Y10JG!6i$88eU3$PH7iZM_u!?JGAeefJTl9OX1> zYc6U1Yo}Xql)PoXQJ(!+e~bhyXQEF}ab~h{>_x`|M(P)^9xRBL9kJm2r|+dQD*`ag zyWeilzr@%0ET8c$|0=lW>+1&C9|Ll%`0AY3U=%eE+eA5!L+O1ramT^JseajTgXi4L zd0dcv1Dh{GcpbsYZ;+ik-xtW7H|e>J>N8-GC(07aQ0PEe5qLI_Z1Z3$1j=H7Guq~j z`Q8Qk6g4C};)O@VIgkXv^fDCcL$Pu50>#z49lmuTwcl@jlUyfmZY`kdOYhg%5`-QhSxgCvM~uj@eR2q!uhz<~8>Ym9s_}ovPIxjcH%UMcW|B ztf#GKxk!WY7y2Gym{jcj7ZJY$p7GCw8*8CdY?xV@zT1|0{nHKmQ#$$r9gY+36O2O% zz{Alb%AU}oytVVDh3WE(ftIy^<;vpYN1a}hr(D(MYOElH1S7UxJCBgHLU+;1Ga<%B z<<&aMw(FyGk$3V%;frU(-wVS{rJXS?aUR6=`tH4f7g&}~=?!(&qzB5k@siVligg*? zd6PaZq^v>SKcVggxBy%4iN5va3Wv(9vHH#YF?FL?%>WuNH ziWFTBhw{hXQqnsww-`E!(e!VHg|5{WVw9%~YT!IhW`avvrhnq@pLp3>tq6i_SVt1! z><;H^6jS)ZXJ@s+0V9w1H*BLiRi+sJC|ErU3n{s|Z$)o5VsLzNtbYPyZ}B{5NN(;4aYkutga+sFjC%vSaH(2-{)`fK>kQ@LBBcEs8kVop);0&S(cS(;1*i zK)6|K+owFeb(DP*_!!p??*kSPM!C`(G6`}7163A`w;nTGikKV&Zb<6AQh7ER6E4z- z`caVDx)Wq)3?LjIU-Gm#5$745)sgMdozlTVdKPXCDcA}==Q<~QF0+ktiNv@|Gj&oj zTLpp$mFpIf>n?4;qBowQAcjZf)FrpTj|_=kFl0*>MgMHji%GlXR{;+j!^kG5aJdUi zqK1jf3#^Q>S_FAfO}xnKr`Y!oQp?^=&am^xkWTgKlpWHsSSUA2@5BV+!-tr;jwP|9 z4Q)A$(=1U>P+>1hF81-IqBZ`$f%Gn%+~sJP4+%)z<0JWP=U;wy{anyt%PV1$2=Nmt zCXTnb@#@bTcdlc7xz%>s^JXV+x_H@^iO$+t7h~d1VH7c(^35ELdcFoEI5=}A*EtDT$=ijoAZ|Li;?mN5 zpQlI9i!qtPh|#{jmFDx2FGGo(2lF+d^ckMNJ&s!vpgvCzNKo^A`{v?!63DzXkZd>& zI`JOf)yzg|c9r=|sd#Zyn5(3|g61w2*6#iYo8kj*^aoRW3}X1(t``pAbz2nV3ts4T-a2|| zP;YJZCa38qj`2V6@SpWDKnO%dmz72pmo2jVvfxFqHJHv2wuH$q8=73dl_ z8^o8NkKj@waL*Td5C*1Y{VCX+DY0illKxizke50i*6dmW9?|<4k#$&V%`TX1dca@J zW-!d-Y|H1U&k}}?*=fBgM1t?9&3T(0Z{QG`odK$`P80VYjXyn3Hj(7Mbz5n-rA#h- zm4w7wnF2e|khxs!&wm=hmunK^ff6I(GkR5LDcm7TXH(M_NKyg&W-_fEYWZz*X595^ z42Wy~oXM<(tW0E}OQ8KV%{Au7vS0iZbYrV|W)lXwxIb9*uj#h%h7F4k~)J z%Z=gt`@`2N>Y(029#;pSCh|WN8ve=7{*jqUIWRc*5?xq;4L8miL;tFuPW6mwmmIIH z%q8sYKfSWsdv_o=LJdcI_)*3HmqF&zR;*Lf^e3ftz9%FW0oeuJG%%cYj%NG&cIiul z#a2UI3EFM1a`K%14j}4l$Oj$$hb#5C=#}b{KtVmh^nGtTZ?lr>G;E)|edQp~SW-gDHl85kE<2Lz_1_iIEmtUub*CeQCcKNPOxh;{R@eMAbhV}1b2+15pV zU3s}$7d%8GxW@KQcE0&2q-K!}dT4z5C~QNV*2hioj-nAqDw^@Qgl39qh3vI4CF5cO zD^Z?}SXGsRCEZ75Rt0y&b+O|$0c>Y8bwr>UMepD<` zU+)EE+35K`lI+9&2BkKztHv**fhF}mS@$^4?)vN;ceK@LLwYO$oIFb`l@FinBODP8sJS#P?>nr_l4O!#E!`hPOE1A6Dja_bN7K2|F{7%NKhBU5h5|sVb zzFtscz|-g1#Qq@`MVE9}E`836gKF@-M;P;4UgVNa!>(Z^F21+n z2u)q${;h!Q7N5*gX1?-#^-$%eeuhH2S*=k-GZ%36IJDj{yGZCD1!-@pB?@;}0Cc+r zGQyg%2Lx@-5{SortIb#Xd*KzA)reU-6RjlZxyxp~6({(hNoetLlP1kaZ5?H3y|MV- zwj(|LBvo$o3}&E&{NT&b;F?xVt|qL%)W^yOy+tN z+1Jg@O_KNgzmSlSj;~xQ>R%x`k5gJkvO4e%> zZr#7a*X+u2szHrgec!iZd5sne5ys<22@bc`^ig(fiY2=V>_}C?EZJ#9YHQCMw zX%*gtk>x%;1=SQx{&($92D5>)l(t-BmD0l9Rm}HO0WZ?C%i+DEJ9Sn4wYh;^n|OR5l-kRQ zG`_STS4?&?CZbett|Epe^Ne^MV>Ky?jkC#S1ZNERS?3CARFKG-^>@{n&ZD zUxxETmg-zl-Z?oe%4dK8VyN0~VyZTd?K=%1Bif-PM^Sv3OcxHE}%%ixV zJA=q+7fx(K0`pU4rP9a`>JaKD7)-)j4SfY=yzYI}!i<}V3YS}vAPuoIIuW(Q!(~ZR z*;F9foO3a{ZA*T?lO+UGLJ=n3Ed~k?EMCFgcvN}+gJP5id?`anbJYR1mRD=i;+Y_r zaT8s(8IIB>Yo?GdYY9P}q=iLpX8YM|OJ0A|AWraU3|7VCLI;m*IeCsk;u#hATglgG zt_Wb!Oe9ID^@tOLA2vDWb~^imRdZf4gV?MLeJ4`FA(d zeV)H&Z&x3GpByAln#NnZKrzHSnkjb3v;R~sca=qOq1hNa9DgH!r?;o(;r{4d$0bOQ zlTj?tamSoX4qvD!@+Nu*Sd^oy#?SBSV+)@hnK7gvA#&ty>CxaXytJ=`4NaolB- zgk7u`Mvn000Ge}ycln_Z^Mi3s!d{&fd3)kBP_9Pu&Dl`2nr22XuM}W%{D0j_`Rfk9 zb@}kYg+)Zrv6t;eWMyW;r76j1CwgHS__vE28ym;?&?DNie%NHTlsf<$nqw_WXlFi6 z_mG~7)Rdul-OY#)LbB%lx}w+U(n+9M$z`tAPUFboVO~Y3LQ8e43xb;IyQ}0XZ_)M(fno8rMxVCNylU;wMuTv%uJnt z#QW)Q1eAMm1=a#CXAjZ-zP#e}T@n;@66zo32S&Biq@NkLFF}(wCo}2mHZLnloOIc0 zZBR)u{T0*DUcUS$FYlV4fBBoE*7f#>VVELX4$%2P+wvD}a)D}9j07%%RN%MCU_9^5 z@_3#C5!YAL+i9NRYEIJL+Z z=lKJmHWYH|nHw1H{RiQN`AQV&i)oui&nVzVxamj?nDxtV6!nXx=i@n*% z+18f(poaAcD{Bm#7E~p+l!L%fT)bUtTbIG*-3|x9{@W(ANjqW@=Cbh^iczS|g zO3&yR<;G^O2nS?ddL2Ba@7?p@@9Q~nY85pZ$bS%z> zo{woNFFBf|Ui^c+$EFJ{kgsxdDEkIJwjzadBKryNleZzR7RlW2BSA;=S8l|v8Ww(D z5*8(z$=4_&P!0-Tzz7vOtE5SkO>yk+NdTEDN<($fKpz^6~J?tf1QDNb1iwA#` z%Q5oXq=cm=7srD{$yWMw*B|?(O-cffR|~fE+}trJ6rNEV8(+6Z(gq2PJli|5#O`eu zTMayG`O^3wquuS&6X!d>5QH7qk$!}9t3d!`=~@3D(}SpJ4az4QS;6Q2^xlMD%r?QD2HILIriCTeU?cv#HC|pt zJ5{dMF*n3<`1p4m*TomC!@kBnrzvXna`S{d9C`LJJ@^hb0hiROmwWcKKOPdx7yZjd z@XRR^^CQyVr}=ft>*ig$fBUD)4QWqq1T-P4S52(gYunx1GZ@{Y3WGf~-HYezN|DyI zPYUn8Ahdx`JaF5sh$CZ?qPF>CiT1VmA-Y}7nZfrB4{Q98@a^i7#Ans*+M6mO;xL9| zZ@s3b@H~M}(0AyEI6Tz?9)9LYZgo>i73Z`Cr^#-ieuUhh2s}-_P%M>7)!)eVFhjqQ zbdVgZ^uIY6{o6LGppg9G%e9U{2jRF}3rTR8O9EMT_K4(YqPQuhikLP{2sPG2Wgz5= zROZj?>zzUgeV%{Za>3Kj!oQI%g2le$t84|#QT4iEBv~26(G_vQe&2SNvX&7aL#j4JzRD% z(kFegi2^vjNqYF16R04RVa^R5jri2+Y2Q*U3kLPAh~w`cZ3S;6G66+Xzs3^P_<+3ESp0Ybc5kpdCW7PLB@mv2xKup}U5U8Pa}&iwX6us+UHF{-|GxU-rm~AfZPzLc zbWfWd3(IWo_sP~DaKYJ#)#Lga)tLc?moGjX00D{CQ$zX=lo@wEs`LX7Mm>eI?8Yek~`{mWN4ZhL>HmomDk&yF1a@_%#vOn4I)Zqj^5*Wi=!*DcNy zBIW*1gujG9m)||qv_!N6!SV#w&+9KxR_5U)WgXrJXY1YS{B|k(z8{<#2R0i4R^Gj8 z;_l_6h2bQ&ssMkS|A1!_q)(*lQvYw2dNK(_b!@W%yRo^#sOA0Y?GlNW z2|%qB$oFOW6*dTpv-;@qPo#I2#no;)7b%hBF#Lo4Zk_2>Oy1=#91qF=xqR`4JSF8J zprP-clCCWzG_L4&BFXcsMnLH#ge@Y%pvoIhA|E1m;4Dan?hCRdOYy%nNpWn0NQpTw z%VNSHBILjv3n6U<6!%f2N#fzfhfX#rv^4l%&=*njEUx--l)2zc|$ix-^ptECq$52d&?HQPPQ`l=uKZamE-&JfGPzQ76&2 z^YirydZ`fZr`&2i^tKOvW$*p3!s@F4Cp6m0!VGQOO6*UpIILoc$M!EZY>17@x9dAq z9iFa@1K$4pXN-SS8+WBL%n5W6$5Ns&AYvXEi>g8O_A6Smh@V3mw=(-W%|>f5V2WA43S)itCnt zBeUxHlO@p}^s#g+6j3d0wR5p>P9FA)1D}9-n!Goq=k0tAa#i5C1xkuiE$U76(cQPQCk|>&~(*5+!9%CV5ex`O} z|I=2Ss&C!nF{TE$gxZ%p*? zC&Y9|0mlMZ98Zr44z```R;7Ga&9?;Qd<{PxiVg;Gl*JX9nRA7>6z0-2=uQ`;VYWbC z%URrT@t^A`3Z?ai3ep8*QXQRp$o_{q`ay{IMkH5_q0E5#)Z>5l?tUWlG^kq|Zof^(9#W!q2{_IHsKN(h-oIwJU_y`ei`12Zh8FHEVJ6dE1p!G~ z#>Oq}+}P#89bLU%(9ijLj84x)l^QXgB%v)8ov=JJs}6XeSYR6eTo z`a=$$ttPcEJltH2VN$U0tAeq4d}j<(Lqn&i$|(`-Vd4=1nctr*SVi@iFF#`_qgjs| zd)A?hKEIL_DlpEZYctg1_(~h zMHI3L=tphVU-J5g=$~f)1aU2NlC3uZ%F{|%_24YaqsDn)?sJP+AiiSTI*eq;$wsg} z23A4cU5n20!YMSBMZfmljOlZ`55Ij;t%O*_z&+y5}QwN7haKeG4QuE&I>r1+5x@=81eUd_>+OpB`e&v9QN2(&*3a-3J%-jP_k z%F=2ZCc`CH3*uwV%?wE)C31;OUb3>jDCFNR51Hm3Udv^D7=XAa+d(kEx57z*SoTax zM4ayBk0hVp#aJp^dm9NC_)|mAChxs4Sr_5Jkw)pz$}bVb-eTwV>0?;O)UF*8j}>#W z{W_1`Ot*0Uo);l$ByD?>|4HG_&-F}^H(%# z(@_BWIHs#g3^Cw>n=du@i96vV@HMJ7GB129@a7MQcSpgcM<`Xj0yHsAk<0q8&8hHFn>y;Oo7ZBxX5Ni310I27cez7Y7eJAiX);pD}<9qouoU=$| z)KdZ#dXDnn>0_b8zms;Utit3pc z0tW7sqw8cfq;NLxR3{xi-(D?9V*KOL_W)XRl6Pr+gqCZ1nVNXEoHCdvVW`{0Ar#FRp-{jS z9d#*N%0o;vho$t$>T*%VdYnV;oRSSdmuRXJIBP?evY}e0EZE8jF>1QzS%nF_fecy@ zyE-gC#*Bcbr+({)IFcWoPGA2t*U4ilS_IzAtjG+$gK{Yg+7gxaz%1Kx#&&h@82N_W zvCq}EfOoAnuNcOwr?r5H@$Hv$e0A zP^AWM^q(z_=cEB$b4@aEl(GTKWZY})-Q!RaLd;`_2W>z(&LxmXKAH(X*tnPlikc0F4BKqYiDS7MJPJ!Al&#Jvc%9QkZ4gbsV8T7 z^df^JFBDq(J1p?BN08Iv9N9p2&q1z za1;DbzcLcyK{}^cgUa}j5kNazKnesf3eqLrtI;Rts6o-WE|BxpKhwjN`u;WkY%$}G z2pILCn}`4sRx#TrmijxEBT{I$H4NQ@p|o(@9~>64@DC$YrMLW3h=WoQ<+(=znRk;1 z6oh1HLHWZrY8iZNnQWG4OK*whe>C54QH-klE#*M)gbaZ;=&!*5PX6aT34I9Eq1M*X zy+YLl^_-uBT8_9;Cztw_t5O+*6S2e%2`OtSU7MZ^z)giB8WNI7COH$8KDAB~4qq(@ z!MR`luwQSp+M4bxg41@ORMsfpW6Zw_|I`mKvV{+8Fy>HIrCG}~ws)thdr$Bnjtf`D zGWr#O6pfNMI3yeIouc?bK?iw}e#R1$g|Ro7bKfkSQBPL^m0h1{6xOTedv$VD`5ref z;9~+&L_$K}(}U4|nE@!EGi0hn)NQ8x6bD5v3pkUXU*CMot43@+W$B%R02O1dDDq@= zpi|y9Bn*Y##buvYf+^GoXd{uDc`CL`yRZn1uRXr+K;TP*IKw&;nxQswHKbZg!D=F7 z`Vx$_&sg)`B!Z1FbF>GYvvX1l(hd<$pI1!d+4T5(;kp$#fI`%{ibNq~E16QshmtNCXRS)#*;5Z7nFSI3Hd->jZ&Y+lE_-e*UL zdUa}K7z~;%oZo!*3g|7%Lym@D_H^s~_>Af(yo$+#_?R*R2%h~^Xgp(w(iSLNe+&7e z4RjSW%`x=2<@?yIt-6juZH?K6ef6vh;@gCI3}UG{EQ()}Gm5*ehfkZqLW}nBR*e@% z9it-C6&9<%S|u;Jq&_(I90w|Kd&7b-Hy*2+PPcxmr$6n(z0r$r?DT``NMpU5Hu+mHwVLs=&O&pnf|4eJ@Lod@|m2iQ3xr` z?x(VW=5GPcfcim}y{?=(Pkgtk5(RYI_DeL0(_-=cE!ij2mJ1i6za5#c%`NdwEJqPm zB7~3xoh=@mAq%N;2L8VcIpM8@#}oY;K7W((Y+k%013lyVM{hjf1O}=_;Q^2RX4e#x z)b?)*-b%?AT_0HE63isQaWqm$z+%Y&QyF~|ge-T+NH$JLL3*4j?LXR2`}V2<^a6F@ zBMH$v@nkiMa9RK90CAWVLI3D2|TiMK%au3WWiF~3h?5uLBJijbd~$s zjEF)3vn}ZWgbDMj@T}7r|2GfLM*+SVXd_u8@R0mo-S(Wc5AZxLd!!OgXFlAws>0QS z|427yZWHR@2}8}(X)avOjSbe!#Wk)7A~&gL+aVcz^$PPjSm9vvLgb6pea)x{!5bVZ zpe;Dooi|{Q&cFXfI>MB1>A8QqlPZCYR7y4%94wNP2w@I<(G&^V>fPT^kSPL%%hdfz zyT=Jb=8yFP!rgM>69m)=@&-#LzudPDj6g7Z+$=VCN^aL%tz^AMjA`@j3T@WDH!k6(poqEM-ls2e6ym74%S?!gCPvGB(&s8bgee_#cqCvMFHD%7 z&w)d2mc?p^{l$Q^>h_6Cqo0%T{KqLQkUqoe!8x2RG+P!5PCamssn(mZKnlcim3h`G z1}=Sa1O?u@W!9xP(L1&Gj(9jtl}8Xd?LnJ>fK_ibA`Ozo*hI!F56s9X6D2gMY?xP+ zs0b~e5tD#EvbD_d6VzaEdWa)PT6;F_77U&{>;A<($csY?(h|Z}0V`3Xve1$L9pnfj zNAMIRl;eWM%rKx1a@L1g)Oo3Mz_9{h<4L|mox`^81Nb0BK_kS^7SKCrdCI@TP*`a8 zWIwtn_`~y3v3g#)h9T0DC*-@z?4p3;bUZwVOMCxZLoYZAV&*3si<@zA$1%yM{KkDN zCtzbgf!bb5Ivp)DayUXigKl~^vHc9GC;p?U1h>dn3!hfaizPAnJ?A%`>iO~4Z@qn* zZW!Q}s2_kA&}%z)cGxo(jN~e`1xs5W756rpevbD~DP1pd4vBa}yyc8WRNHME(3>y6 zy}Z#J9twi<&mO*wL>pFeJ9$6Shp#oYo;Lvm^`ZfdE_`qz$SxU4P(QU`x+EA`dPv}R zE@vVyf-at|lwLQIC3jZk*CdMrJ#*Y}hw#QESsqSs{E>2NfDpdfm~X##o6)&<-A7$c zpUVJS2%s11aT<$s(scV8CqEC&C~U?AQpBga=!OEAiLtPd9wdLhr?kc~dSx%s{R8;` zfKQyBk26tcMsR?0#LkaMr`AN87A1&s1%Uo|?!3GBxP-Y!%o28p-+mU@W54QKubHp` z2Bx)Vhj6Uz9SE10JqovRpTnAPxewnEwO!`qN?peN>c_;}vn@B3CO95+X7XL6;m6wSe`j#M%(L-EGo(!F`1HIEToHEBHAB~+F`55_ z|LQHR+^v+ymEE}(J0b`B!Z)bhBhr6cu&N37)6*&c>xT#xFj3lpR+Sx`ZO{S6H5;?e zrFKv#iWM2vzZyNl#CDdD<0`?*Whmr&GZzL`6IprgDpb#DU++GJJB%EkgF1CbmV;`6 z|F&>S^r7tJ?ktNe&fCoFJ_6(FliiO=WlIvfG|M} zo9{n&r$798Z)@zUXXB@ohRwuOzZ=L8f6dg;ywnSO3r->vMg$E0$#{pq`eEpwtggr) zRM(UC+J-AEy}SeHN!Q0p1riEP{`9H-LrX6}E5T_+%2LkGD9L3KC9{ju#B|7poM>I@ zmOaFDfQ|FD)HBDlWhnMj9EIqm@(PGyjto5t3+4&^pwtmrI$gp{z$yjHl@?GOVBq$y zp!fN~^WxoGDkN}XOm9g9E#+6mBeGx8zFq>Ve|ukV7?0L+di>D1^!Z?sRcJ1zvr9n< zPCO8`SIy7kgM!5Si8#XPXQFcngV z?ekCW0!vD*|1EC9D*eM#8csF6ZH08R6wS_Drg#A*)KXx`U51KBO({#P6MC zd6v}NUp>StCWI>0LmE{_=cXB#0d5~MdkRcjAS43oO(V`ersH7;dz>(FM(^0#_IraG z8IRe?xOsh>;Lo!_VJRYPI4qILjd$?%=64xzo>c->A6}#=o7`85gvKs1F-^-ACm2hg6J{RoU3HxbPbb2Z|!}nyQ@s;|B-Z-VNteS7akg= zQ9(e$pi4;sDJc;or5i!IQ;_BX1qn$dRl1QHQlvy$T5@QlJBRo--}~DGkC}V!EB4-N zo$KZ2bCL36pYE))54yg}WmRf0#!$^ZztM93@8*(1kj_iSaW3Sm-#Ra2HNszezrJS9 zziB=-ALtXudf9j+(1p2rP-=F~b|U+2m$87;d2b`ev8}=BwU2MD<N!>4-(np**}QT$wvm1H#&Ri|*gjF`N97@z(kj_X85I=+vOb|k(;&A! zXCK)6KDVM2EVS#n6B8+(rzJ>kqFNxAI1@lq#Kr|iFPy?#x5(s8UK|%y^)ypBr*DsmX1r5Z6}In% ziS4PwZe1zS$rK2lGabdjLUkbEEbmOA@*;i9|Clt;=ioW}ugGqmS~(nJvaAFWk4HU8 zIQoC;2|<**nE23GBG$pE@tnI}<_2D*mL~`I@c&!wm0hmx;y7&-`Bl&Cskwi!9E?<5 zHJW6on>C{~N^Vs<`g^a0u6o^Q)GJwhex&@Xu8UaJq3mIyI!mnAbCQQz>e&-f367|~ zIx-p7F3&oRtV=UvwLX^VT19gGGteW*;E&SPyHe93z3Ba_xTfssqZ5@f%$_W^4O3-n z|EKRk$8Muz|NUtO*(YPp*>PNN=RIVS*j>wUylQYIev~iT!ny-xSLD|i_rKRCoCozB zn#L^HFAFF+^^KTt5Jo8sCjZp00iIG_#q^tX#zN)!dO7LB^xGhVA^uM%J*z{cuX(>( z{jsVp1z}lnz98$VhxN&M?|{2+*V#o?#4%A!!(G0`Z{^SW#GC#@kz#lAd3~;Tv+c`n*tdc2axeKH*fP?A5#aC^B()_oSAv zgFIhJE?rDbK}K%|q#AJ}e55xPrdq!(Ln(eJcbYmAWgrAXZ2+*Sm%Zq9tjN{9CYJuV zBs8DaS5-q4>4(GuEh^Y4Kp?nvBaO;35>Rk6HC7D>PZ#<8Z+Ye<%ZHJsD(%K_dcOVM zbP=?Bq%nOSeHT3dd?ldcB zB)qq*78N+Yr3sQ7wqing%bOuD*mIdCQ4*Cetj2CA zB44Lz=1>T@P2&^&*Laz58iKfNVbvFqW~1`+4P4Jq!l^Ikh);S>G_04^*FnJTpXlw) z9jbCXr89>llrwFKWC*)wq<7*o^$uG@a%_2R@KXKk!q+9+#J z({g>;aG)!z8}yLBSR6ESU&wx15*_k{+29`zt3!jW_mw$Up966X;kpX(>+aj1_!Ul2 z#G!}I_S`ET=e7p56D6bn+ZNQ<`&ccei*4De9+(u5@_0Vf_cWQ%7lD==Xo^8E+Sa9t z4b%>M^o4x~%U%9PaZ8F8dkYg@sPh9iJclL*V;uwF8V#R^wd(&&fcQB^CWQI{y zikWdC!wCU(g7HCAD9-ve{wbNGe~4Ncc{P58x8t?#6du&V^KC}TBMphYF@O9?1} z0yp8RRFuHkbn=>Wt~{hoxKhh{*mcM-^5zDnH~lbt5#m2W$7WVv$x(k#CRIO(l)tz>QhBDJrM_B5$6F>JE<3X?}UyYtR z^LxK*Kq;d);Kzq24pymd_doc>0J#*_?40g3NH_7oxIHHH;Wq*cRw!3;sYviK8`Ca( z%D+=qbK?n|=FIKktH@WXeq2_ikq~a?D_9ycIy7V0tihYhBGhP37iU-R zaiNX-qij)M`xr+(o|0dL(YJA5EtXBEfC0@FwMjm`z{~IQtbW3ttLn`C!I>?=m|JEl ziX2?{qXO04y)|81@p+tRgojzec#o_==-HD$R>4eXhtkAMe@7KMB!p>9XOXB(Tz6Ho zKiP~|)D`e#Y-Uork2I3&jP3tCbbg@tc|c$k+$$%Vav@jc+ie

|1r571WYsFDsAsmZIq|Y)C{56&FI$2_H-uTSUP8 z3|cREqOg^^oCu44!+J+(d51V(An6bO6=g|Drzn;;Rf>z!?iqU-DvE_*#^;n(P*29g z5B0Gq-($zMskY@mDA%7YE){=Ttt6zMb|3Rmy?LwsmY%N-c6IAVivl7rY&~aCH*hdr z!C)n=QIxTH2JB9U!eZ);vjjMW^dC!{c6SBT@aE1T`6rNqbsz4rbCWkyGY1RiTJA*) zdhTkL7B_uh_zBnZHmg=z7WHnW*20~`1inbb>%Jw5H59t8=X0k^KCN9i7=HPJ!2hxO z?WW?b>6bc0vqoNd8)beXQSm@{#D&3YsNHj$a}n%*o&WInz!7J*tDH5=pHRu?t;pzcG>AJ-SV|5-n&Of@Q(AsN3-siLTLWw5iXMG=NS2m64RW`Zm z61^&1F4k0KBFFyPA<-Avtp*bbT;q)E4Ugph-Q1J|)h!qu!q*Rk4SZ|(aP@RL9)ADu z!$}g5Fku#}E5smLjF(~k)ajEu$+?4$*BXyR!6>kUtLRFRbT|3Sm3~_q?@is4%T)8w z+q-klzT;jWprixzT8Nt{y;llc@sA#N~NO&u&6to|#WwG|nEOzW9;J)*c4SH3x;tXDde)M!!Hdi^s8 z#mBx;1)@ekEx77f7u!7C8=t$0u%{o@iLaXJ2w}i~B3L8{Xe}UGa8{NURy%vjfte?h zQj;CyGba!ao(tGBg)1ocUC;(z+wE6ZwJ=q#@-eZHB#q+;C=&QvT|9vKU3JlH<6Y)2 z-|wlP%?XtWoz~vUsdWB4oaQz%(yk$Qb|$TLUtD@LFn7AKlrhAga?$(;AUStI^1RwJ zRr-lfF=?pkETP;F6d-)FNRHMGLh#~=vJ!Eeb%&h5is5BjE{q(%WM6W_A$K^utR%?123t= z&R9|G=M6@0vNnnx_;ijZ#`UO7TO3klRkBr6P3qi^8DNlnl#3YA>x$-m`7iM5#BIn; zMHL^P%hBwh3%MfB5^5g9;5xAKg;bAmTW;?FKQNA=6=K5EIQV29N&UzM@r_12Jdt=) z;#2w+Sv@l6-NfvptJe|O6K2r>E@-Ku)9%Iu>z0m1<DkoX1aSJ8Y7 zTy!%)a&(kHU*+AsD3#@m8VGvhjviYO`}ty}P3b>lj9Je;^u0n%HR3~jPn&aR`58em%i z$_31#&fjQDU)iLT*v`EDrY=xRNRE*I&{fb)6Z~RVeI`O|rFsb=7D^ zxQtXxv{dq6J$7smXLcL<1c#7|haEkWK5e|TnHY`cg`!GYpx;|9_PjvwvyMIgUGYYT z4`s3O9#y?6I-_6s@Qj52y1CE5{0rt9{UuV-`Rgr>L_tbjdxKdaI}U>8<37g+VMLh@ z`lLj!`|T+}+^4lOT%ku@88FFQ!CdfRml`c91O5UpJ#VinvuBL7S3AI$B%G(hKOPZO z^JfI#z2;2ycTY^ha_EUm^_sXREc*YP=BwX2a==mm6;PqrP%Z0%9{~`^Ul%=Z(I%DH zxnRMb#onF}Hgk0E%Vj$I@g;qYu%Yc9+o=l>A5?KEhPF#UcOWxT*yk6IYIqfN)3>iY z%y{BTTxkL$1C%}`MX2@hM$ssn8dtI%$8dbtigI-$#vA2I=y_s^;9}+O z-m)jwd$h*LrK|HvP&w(i@!TDJ%>HoTG)-QwW88Q5jJ!JAnnFiHzm?W8Q-uFKS#J6B z6@Gr|4EcV~>-+Y#^I|0>YrB7HrDW6`RK5hj5Zc`${_8M)K1Jex-Y$8t^WU6pXIR7f zMRuKi?PM(Jh38vq5~Ml%1?Pti>Ry=j!?G&Z97~LdR(K`u&{bA97~i0lDD=@E!5TCI z1m*B|gLv7K^RMb8ew$DAu=zZ;LkAzePUOe+r`x|a_OzG6)+O^zLL9cax#Rln02?i* z#fK{mXxohy)@yq(wS(gDp+jN{)9YSni%o2v^2^4WE-pG)4#n;aSbv%n>0CUS;8kGF zEo6qlq;07nAPb7l+(ExxEtpt~+vS&ra;Df$+&Dbp6t|d&L~+(|9L?sfVBN%)?7)1= z>+4vEgKc{N8T%M*wE zaNGS>-1Ib*l-}Juo)xu4OY`jMr#14Zl)TU5%pr`LR_|0(Ti)S2+9{qD3?FWkHSKUE zcYy3Xpx?|y;%(`iN(oz?O zjxDV9fCHMfQeC#}zZ6Et5$2(4iNE_8x|Hw0VUQofW{XB}-aFP2BuO3!*I2nG3?Itq z)C0fy-gEPEitWRYwc^+x7yIh=kJ-uoA4~lR?Q%!3Jw5C?T%cR$46-SbBG z#|X?J>zi!WvEs0Pg4tN+-Y=>J#GfyN#$77@aEv)*Q2RN}Zt=@k0925aogT}w3t9*#Y-k8A7RAo^s zc&_Kb!!A+_9SD|tS+N>?3G}RmrlG^}Gcl6AU7{KXOl_K*hfb*zLj-(q08?Iy{T@0R z?LRunB7Eya<&&oOG<`Y2akI|m&3XFG!{s<+KAySR@r;S$wo6u5nP2wb!A=z@>$T zCfE531CucJjZ!^;!Jd0Ut>Mi%p_M0AezAe3kl*xQ?Y*#|^aHubQQxyY|Z%bp2 zVetl2u%w<2?xb-2zT-NpY)=A{K-b9Vef-htvaHyMl16l-XHf1Fnu(3sabn;@utoyi zj$=GAG_N%(LywV1>_~s&hb#!boY$nL`V>N0zIk5ee)IBxeGAf z)?%Tvu8t7Xq8GC(5kCITnhpxJwLBl~s60WBFd$d`HR2QjmFYy^yZu$147s2&LL=Wi z{C2L%L3JTCfFzBh=vy;a202e#)i0qFjmn9%s{i~QeTJeX|@aC@=tT&+glwl!ZFqe90+$fj}JnNE) z@=r+i&|Te8v8bNAN7@lv(=YG1zePUNaDP#Dr|H=K2Eq5a(=XwHdx5ZjNIY*6&*(Q-hPLM^K6?*jJ#`rIfDBI>O zdA7&bBYa-Z*U7P*X~v$5XdL^rsT{yyDY$j34ZZj2V)pb#i-V1Z`S%;XT9s6dG=eTY zXarEK4GyWte?%e;uT#F=A0X|IRO~wz&3%P`_ead919#>oc7)(0!b^000#8S0@^#Br z8TIJVH1YD)&aVm{b3psEA@1g3k;()Ra0drq>Cx3ePjy(fBSt=LK#d?=<|W0uzsB@= zlpVF`1ftf|SrFIiFjfMhD2O~TzHQF-7ULbAc{{~X{2X1QM%%7A?gGB2egDAgT-5T) zz{F2Uh_Y|`8HgsFn#8WKi7>}Z&wqXR&<~5-XehC9i%QD0njXpk{nHNF3nxa~aYA?k za1cnnu?sSgrxZfyC#0ZELks)y!{~Dh$UFZi4FpYBEf=&sdLQ%Hw)O?RF@SXd2$L(Q z^ODmaNEFHVp_CdlkoE&ic1P_rHG-Nb*Orf_Xx}elV%xK!rS`NR===T_&+fk?2J_!i z9p~pFuZ$d~k4@^no&1b-dBTgSlAA0Nwx{e$R#V@T}Jvm&B z%9K}aC>GyIuMdzCab_Jj)}U)W?ly#GRvt4Dt`3@r81#1O>?p`>=~F0(gNlfZyGYgw z;f^abLz6<<43a`1??8hz%psHaH$iKSQc_1EefRRt8}Il_`oUp0l~sJ!H)?Nka`V#w zt9RzK%wjIMPVCi&%X8UVetUv55LmDtm!;tvY-cX!p!pspR7T7|5`^CRw@|n1jNN_V zWl6YoKAyXCb@v!iE5vVA+DT-qG~7SFH#g<50$se6^WGte=2oh@YCwO#8^??Fouc zNK$yOdH-=Y6XZlSgAcJ))9y?9^}#pZSDwr4k}7o#2UG1F72g`W;4UDRx{u9Xt*{erXe>f0vSk0+Lgb19kJA1Qm08@PX4MrhN?`kh|{MnaJ z%?+@&I7P7ieI4i#pgDN<%o07S8_%{^&f3U)=r}cv5phO0F`Rui!P~i5bIH^g>VAE8 zc|w+SnA#VeV(hEO{@`%@3BUls)&|-)J>RX$Sr0$Kx;MY=9xHs9yS|70ep^-Pae;^Qn8A+p}Mp1c6I-)oOrFo;Z+w%M*I@H%WQs6Bs`#=bW7voUBvCbs?%Sk zD*FpLeiZc}FjMS$C<+xjJPJ9rUt)t5UMln(I4M+j_UK?qR)%JlFuQyBY&Ldm^%c{6v#xHtrNq)$6vL!I zTyds|rgD8AQp|a5=fG>x<-qUrw#*-?bf0e#8Ae_vdJO+~ZQ^sn*T8eM$+6?7hZx{- zH#-qG@Lq_UKUxXCdY7dD?cyT%?1s`s$N9~vM#&&uI-9C@&k-zLq18cvE|Xa+$}hI^ zi%&v0w)d;SBpTcy!N*=s71g*Ae^_{D2%%Gxz{3lSO?^QRf?IB!-aqD~rbwK(E=-tV z-R|&Of=lXd{#)hYr~k9y0*y=&uE5^DlPj)XeH2=HUD9A`sU*#!g%JYWPGLM&_oIGy z`xg@>LGS?cLZ+&|A;Y10BKutN?h#K|z6KG+K{&}%Qk4g?3)5{N@GYYIb$gsO4*oQY zpC}URIX(UHq2Ax`Seiw1yI*%8S4l`yEkpZL>h<5O1sY7Z+h}9f+TV9x#EG+TDony!8vM^bu*xQ3yQR;&_};?DhWq(uOTurOpfgT*4(Ia zuz+O?;YzSX&A;BS`|V!cN_7j-o5UXu#?$(S2C65X57$PDTs+sofl5{=DphrFu1Yn}`w?cY-;0}d72~<hD*R@#zxg4aa^8on%s*h-tM+d_5`1aTqsEj( z2vS7gKT#~Te|AS80(~NXy%Uk{6H<~GNh2$N<5syAToe=+P`WYC8#N zl}M7 z+)wnuKmLgqkDi7+F9@u`hgc?v+>e5&1;p_ePg`s)1z0Pgx%QMBP(5B zmdaRLv(?npbT$^-aW*gFy3?_n1Mv$V)9ieVK=mf@GJkB+f4Nisu%ao@6+LJxcGY!6u&W1+iyKgr=|FY|)j|ztHM=8xjD4d#1JpZd| z?*0?R*G_AXm>L>%t;*;~=?nR^(($2q+WwUllQ3bi#`8D#=>rW??Chh&PHAU^Jpo*; z{Hhm;-@tLbuNweNkjVJQTncSCXwV5njNL1nh-|p?OjN$1NJ_-pc2azSV}_386agv; z^Jq7x-3rx7isgOlloVI|F{*_q@h`dW*5nvx))+tkE^%KJb|fzqDfl2>81Q#`s}{>~ zv*u6U;QKeCZ|0*(uTbdo(LeETQ9bcLa6UoWRP%gr%?F_r=Zh23?FYN)y#u?}EiUrL z(XrX1nP6F83t?7~0-y=vyVn4}{)(UNPx8Q*q^iotb9|{^l+8a^0t;TjQRjyUB#P_& zsGa`nw?G>?rkUj|M#hquczePXz%^PZB941Swj2jv2s-Wc2o9E8C{KHDiO$W>e-`zw z8r-{g|Ni^PNX-kY$}|PiiYxy7910KPpRJ-Pia77XPBXz_R0(v+qbj?dzaHG3=Q6v$ zQ`FOm2SMtg)*qPKu3KuG=H7eoM8B=3?Bg+THHf47ZTMaB<8S^uClU@}3jXtGXmqhM z>ZYbsn?>>)(`m8%)hvT7#M`&=sn?POe$_N&)PRx+k!Ij1p^;}+BN1~?Si{}# zxn3@e#(Ebd5jb}}{n=~GBdCi(tbF~IOUNnFbjQq5tRLUvk(}1V%15hL6{3wBq}WKy?l|Xe#&?bZkpy+#!UsCV!>}z{ke6S~Y})_xx!@sl5(^SFMjPystjQ z>&(_I60Ph?3k=bpRAdP12wC^_zfB7rvB_`!b{9HqC#(BcYOwH#A22b6$j35$w;pE8 zX&)IKRaaH*Uog@$fh7c7{*Xl3u1=Cnj!Z+6<&;;K$HRI5L5T_^dCgOaNlBPiLz)Oa z=1YOKHq}A;3XuZBa+wEAziA>EIJ>DOcN5)kgj^nX{@4AXQ2BACGGF8Lqp;of^U>HDhJVoaXyMF?BQ(S#L2$*~STT{{d%6T$% zw>1&$571lNv~bCMLG_nvXnSJ%b#ciHL~cm>?m`I%_C{80bLhFyYA+HGezJTL6;kT+ z0Pz!S_+WC(Ch);hHGbiW^vZ8IM)KZ6aImp8+X~#cHC%yBdh3>qVcI$F_NPy`#m@KD zeJ{^FmU@!qjy9)0^I4JGj262c3zz&jWs{VY>})*tJi_B%|2ks1bkL?|BtJc{`Hm@% zBwLHSeVOC${rDKLgB<)8kWUD<{9$!{eh>uPU%)1wN#kzpDT9n=ui&K`%mCFV3>3~otUocLnDC^)u`$31%z zhMxs~2Lt_QrOqMiN7KSSwZg;lRWqIJO{0`*YQ`zco;jIU9FBaKhrUJfpu$Tu4U%!GP@XxbkV5@G!C^GD zV8o%T=*0EpJNvnA?+I1hel%}I-nA9`_TzF3HH)l85)D?UOJ*xfEu-{uA`SOXwqet{EJehoEVWFP3KYhq~qV)7~@t<;rD{c`oR)Dr^sqa3qRM zK&!{=7xuj{&T>5nQvs|XJoe}@+e8?N4e#APC!@nDI7m@lGZiy&fT)wI8w7Pf} z9s~vgAulcYa`TL?UuVwawbKiNh^DFq!M}$m39P6!^F<45!}vjzhk&>X6Llg8Vi*Li?}I6}mfKd_PqoV#hsBMSZb*Y^fps-Cx?tA0VeFrflr zn`PB@$Lf8qsPw;5rxSwdulK+qJuU1l8Kv7!JXYH^7UZ?`#}i0G866DDqbw@{ek`a1 zObiw(jOf!pW_|rt_y`pQ9-fr)*?%*r|gX@(FG=+NM>wP&#&_E!P>dt(D3+bA~8;;ub z51D-aD!gjp$nCz!PQM1$XOnXI&DT9?biF06UOrS+RKD*~1A9$6Gb`82GBs>G-z*3B zZa~C@qb#;Rf<)|?A>Hpn$Yr^gQAp@B9-XKEtM*8zIycv|_snTCwQI%dk$zhZN1w#~ z#6n5vmjJ%=1ORwv7wD}?pQ9<}jWn45o2hHkQDX-VoFZNX33+1}7eOuUtA1K>Q%566 zO0&!(d>3NH2MNDX54w)Mt@nEyUFPzE;PCEHuMjADu{`pg!x&O-q zZxITt&>f}rn_yD^>$YFo)-i|dxVM9j+%f2V=$lyiSa}J_-e<^vMhB%a!D*Yo7`AKt ziNTiy)WFWP*NV>(zh(UBL7ci2`BPZGSFTRA33h!=T<#zEgE^NrXJR)Te_{J48u<#r zbEmsJ^1E#J$H3CAbLR}F;Jnu~ju)4lJRyDKk0sykb_>a1iIF$}aa&Fg)^w^J?*ip& zN4^FHa8m%9A!b6#g&#S+ljiWV37Hzz$}{F~8gKaz3{CF|4tJ{0*rPV0o?W+5`|?0j2HK z^%Q;IbXLGrN%)Iw)yHPYMX4DX^+nQ(+!k>!+%1PoRoHNW7W?Jpzl^AugalbTJ5EMM z#zH-0yHUn44Q}9J~rx|<}(K@{_@@qOfacsNw<@?^~N6v)o{r88tX9N+S zGnGtyK_$*ImZWOX9G{xWyN=YkNlp0<)O8)^gj((S@gFTCHCS;L;)coB3znNPoQjnn zH<3d2T#@yGxV>n$;^=sg=Aibp?ZtKsv=dj(!bw z0D!hiS;~C0z*W{A(lDssR+YbF&EXG!zl%tUk-0jM@fn^)M;U&Wb*HSt$q0Ji=pUDDl#a)xnda;Yk#wB-ulZo5VKB@e)s zKx0@M%rn)SlJQtSsn=}o^pK(sKi|8v-@6Y^LGjg}p3SAcy?#XJ*Fmsjv7eT0`ZNpTlt? z7JG<#Fq1(N1#NRO8Qt7-8~(sDw1*~cB;h_Nz5QjR$+k7IB4odWA7J=to6{S2Ns^B8 z+}bqGtZeMg+8pf>RJc5!#mkM^JnwZf05j;vB%`rbx+2bxI{H26t}K%>VBj>#ZLNOS z1{Qi|lT480bEVGcu0}9i*Vtw_{s%6M4$V65hRP>w+(AAXW;@cV588xrrg@oEt|8F* zvq+7{r;Y6nC7L@TJU^3(?+yfS+S4%8J>EIPjYDjfhVeK;oZQ3YzJDN=F^_K5IT^bp zn;%zUjX8F*oRj`Vt@bFkX^Zz7%yZ>KAgbn|{VE0Sis!_~lb|df?|Zmj-rG0zM$tJK z|6tGhTjwV6p_zPE@IMI$=jT};lo~2m^n0Yl8gj#M%b&rx`Abx!t4&aKfeR<26DeIX2ksY(JE)`GA$s)jTLWP$ zoK;K)J;)V(?$9Zi%#%vTuB=M`#IXO~px|%aB;+VwZk4J&arcnG+pcIdVmQr01pmtA zt8AlF&B@~r^VpB&I5NGI;XCtR6)3HofZQQ5;8geOEv3Znl&1QjGamFC_Rr3t%bYUI z_@T+f>Fs&tetAxMm0vH)I}5QL=vzcDG4bk_WfalwlBdqA6T$921&tbhu(E-$5W41{ z8WT;WM%rbTwx###PH!$9-I8LYtsU9+E{zq4f-GYX+y-n(%ex0dU7a2tSju{YRfiZ$ zT0^l0`Aw+fl~~x_9DIgS)*LHUJ4D1GD7-Yj>q|ur1T{eJ1~)_Nr_~8Ucl(fG=&__`Os(s^xsJtat2a zPAzWNHHYSG_p~zMv1lw0`J8U6W*5OU-)TZihHd4MtiE(SOF_Hv;^`-DitkxIN%azc z%Qe<=%2f5!{wjEwWi27fddKg^6J*wtT4A%kx?^_hSaiJ!(}o1jMi4PQHZ*KkWfsfB z$DDMH-LI@v#NKW!7w*5?8d@JFET$7X&2;o&9!Wa}DaygX)>7a--Cat?WQuLw_;_EB z&abdKWI;dgjGf>f64&{cy+r#A)3~jV2zH(|m3$S~oWVV;$7Vg)`BVs@owHtXw-eF& zkEnLh1!VnKWMh-a_cM1ta&2M59J0c*gaz%$ia-?1{2Pk=w1!7M2LAc9h^%^p0M|1N z(Z@fbET~8Sg{e=;zlVM3LQu$t2JNKR z5RH!N=uZRG*2@J8@Ng-vlF7h>JzxTNINKG60}P5+;4NgtTKE0fx&p60(;%PQBdl?p z0B~(sevFK8d6L2dVg_is*mkj)1oohG4#%ca8OQR+eiZAQzUV2i-Qm^y{d%+4>;3vy zy*PbLcWx{e=4EWj(>ZM?BBIyfYDxPy#SC?E-3hM}4rroo3XN9P&Em2iR9W4)^BB?K zeHF^N@J1Ab6sg@hF2P;69t?*6oqc3qh#%eY(`-bc`!>Tog3`;lL=WQ5T@rN4bzxvD z?Aq*z7jZ_sP(UOXzjdTe#mArEhc!u!5b8g>aPi34>(BeO1ASNt;ZB-a6VUX23Hjt&p?eS$UK0F5uvcWYF_dTGW}fH>7iNt_xt4)?_Wl! z>wC~X*$L*uFZ19AhDsdDCdzRvn%MQRyyll28eQn?e|pqXG>;=Wvpw7LfbqO;Q122K z^wd{T1m+FzC250doLuiIi(ad&eCW!;SN_O8png{v)IFrwFosKKi)60or>1P1nF7!d(j zsKk2|&yeFyTg>18B;56c3bGruHvC6FcV6Xb!L6n_P?QT(0`F{-?1n$U3RErb)$K3r z>TzLM#E+=h@XgOJo*iwNO*!hc$|^h-=eAN=)RwQbMt)wp4P$h$$_`l|Fz(%-T`kCZ z&z9V(rtV8W6TTK&5r(p0(>1{C?dobV{hoWeyoN?aG&fFq#(~HVCj9kIR(_q&al|gP zPse!ss(UYrzOSai;AGt?!?U5IaKGj^mYOqfWdR*M6{`SM2)x0aU|Fyz3u{v_)J}-kASfNVq7w1Jk{tTKC$it~yg$n@T}%3dftdnBzhac8Ndg?RZP&5sA z$L@#a?(WAo%q_~#WV8*tR$Ukjyi_C?37lMl19$dM?oX~Cr_Ym;*2n){zrUwfa!dQO z+RwT3qWPoGVVXD)^XAu}w>W82T$BA`eNagdyk*M=Z8215gOvN1Lq20rzNNsfMMcQ2(xSPpcOsxvUKp9b3dk|2x@9Aj>bKg`!~|UY>9N%dZto z%&vXH4AtPy69co<(~8hz6?y>1SUn8qWWro*RNceDr1se9rFaJy9Kf9`QuOB`EnO`6 zFlnDYNGq`Wqg1iNEUKnm#GxcN*{$@r**~%ggc{JeOF7iQjH%8}#V>^K=J6r1jKA-! zCOzKvBjzw^_M?}lEoYu6jQA)>oxLlz{~>HqVY`ZRPdvX-Gd9i z!)_Y*30tviHjxF7lHw3wedEFBN5Sfh+4_MccS&l6O<2J0E4*T|Yc?Wqm<+$zkB!~FKJvNo3kgC6`BHP#?>kEj6SiYRnvIF5v3u@RReNPq> zv9WWRch|?tuaS5tpPakO0b_QeaUuW+OkiHs=dHiLxVYVfH_%55uOH-CCl@V_lur)z zmi=ev7tOJ9H*sZQH-Psy@zwQshc|bNjwMfkjp?5=gE5J-vdNL<^3$>_a4&z}CO0YE zyE>bL01z6^@Dnm11b1p&|AW8|&-npg#FZ+Z$f_7ek@+Yl=}b%L`=cA!l4NUkTm^py z$Mr^^VBxbw9Q9J*M+}b>Omg4ozCkp1`Li;Hd3zyMH4$*Plc@&i7&=Hu8k?XkW?tz6kGF zWPydN@r{nOUNYbOP9u01NoDYlj_&FIcR!l2@@zVBgQ{`VixhFeezwVJ{#QOq&^S91c7R}xbIQUnx&Oz?gHyen&IHK?kuFs44pi1 zLGG^95+dyBQd=Db`8yC?)PDmCLKVnKVYABluR_Y@x3Dn;x2jnWrVrnVblo#M!KovV zj;ocmSEgy3>P3VIzODdG{QJu1(beeM-kA|oRYPJYCpGbzkFr~u;6XrZ5&l$Qjt>;C zT6M{ngs-)M;@?F>@)Id`US&ohq1V1+w*zR~%1&R^d8G{_+a!~TfSNgcsNXpz?t#f@ zd6rx|hZIQ)?5qsW@8A+OIOfFJP1~&tg@=1>8F@;`@aF-71ElXGr*AFoLX6zS#+Hk- zXLjb*c+aIsJkBM{!>;n@}x0XfB<3SbD*)*=}sZ=NyLMzr18Q_ zuc6xt3&59Bjq6v3A~+kavY`O@w7UB1MQ5z?xCh!YvPW}v2-@MgjQ-<~n`r(>i?xgu zPfxMg?&>N3(S<3;ak5E#x0$Sr6&siN((Fx(O=G zHO!BTuW?mudY(|Z4*0c(AsYQJIoJpZd)i&?{V z#wS$pA&xF9k~yi!8^s&!9|A*k|j+QQ@b?!e_yjLTv*N`tvVgF z>SLV>|ML2F>9A_`edJ9=f&9lcYBvS7i_4u+UHe~h`}-x2d0b`KWGF}+)>=!Ngl{Ko z&RytBUf5O_QBl(nsAoSj5}fyl`X^ynT`GuxI0ZM|Z* z-@43~WLFsAy?L&S>15~;UXkFh*NCGD!@?L?<;%R)gL>%LmIXsoZh_?C6`#&cg2$C` zy$Ntc8p-z}YCG?A638pxI)4WeAT^=ej=?}Q)!%ONGSo|XY9RG0Xg_1wU5kHl86P%* zwA2v-e{Mmu>d7}z<*zZcgm&`dcmZVl!Y=hnID@7kZA0&&$60B z`;KS*j{GYH(Oe=wCOYQM-@v>B-lsw{2Qf6^bppn86nly5TXtuoiQm1mbX~9cLeB)_ zPdF)khKZFt>zm4bmkb(u{Q^+)-k!Z%&|iQ+BTZkyp51gyUqSor$$8}T=~xl(=YD(@ z9S3WTlGG=Kae9Vws`1IAANj>Mw$V_S)woMze#1Yy_?LpZWUSCZd`e7|Q&d!7M8A87 z@9c6ZLUsh19ak_s5VgX5=XfEhDa=;EM-+-n*U48=0ZKA7sVre(X8z;k??jxNvP8{}6^ z;>i9LEwkCYZ>Ix+5K!81xzBx~O9bf_e>$N<)^F6x@c{P^yh-K>5}U7_U%$CYWvpVG z8nc&__`dL4cTXp1u#3n)iLBj-@i=Yo(#YS?n^lS;eKw}lpsB*wT&7_2o+zgHW1i`N z3eh*rhWFPi#*Om6e@+&oZEm?MNJ+tMzcX)28yp_HWfImgkFk470@4DsV?2(mshu+s}9au`MbE@Oj` zptZsokx=n{lIO#K6p)&+4S1~kz(Ax`YiqzwLKdJB?a!@Av8~vK=zfgFbpT&){bK!B zf9kqG`!bYopwK^a`I6--p2ul?ucM)*<@km*FZIWU zu`8o6Mz^m0THwNE4P=O62`#>`y@Y)Y>QpnW;;*lAxuFUj39UZ2b*ebHn`)%G{PJa$ z&;p?`5EOwal30YV8zBK9RBBNi~OUZRP>b*1I8KE+&zWh z#6;AbI1fSB&RYa=C(^Z?%W27TsPg`)@LxX1zcQQ&KfF(~5ZUm%LTDqj`1*N-lNU87feCPZch96wR ze(u?^_FC&61ASfMQ8!`vB(-awL=0Fde=>K`h50%@uWC&8TF_mE=Cq^OX+4;d#l$%j zO=e{k0f|{*<=PR(|rnO(jM5{t`oCw=h8-*Y_!G8LE}}~LnIZ(Rr}H-9$3XU3YL4m*fos_B zotXC znSj(0;y4=qjIGhPzEcbPkA}aZbUjXK<4>Gy6T0^pw%69hfW9Mv#1~;xBX>BZCGr8o zlUOrXfveHquvr;f9b+FJcAQy%u75~C+`rGLt|m_jp*`lYCJLf*Hp(d(aac6}gdSNnB$;936NcQKJs>C9UtkR{{~z z{umYX`SyJ|!PO~P!RxFM`}Dwff4{@usX^HJ1#xB8=7+hn0j^lLdDqG=C`sq~1q!`f z-H3nzt*>auVYa5#UohN7%K-tZ!50o#UU9!w;Ed6!Q}jhDz3H-f-Mji*yV(3i1TKh0 zS=zO6ms&-iQ|}k)W-7IDsv7VZa(W?lAQT)Ob7S8OKT(C}i$KeeB#u``9y`3UJEh(l z?x*da-rj9q${l(;(?@WxP>Smh7(GX>_j=2PaNF?t3_W`iq^~+$Cij<}EFoL`XAfJf zaI0s}31v@XJLLy3?Ap&|#Y;ozR{EzH;)cF`z{wsO>RtFQ#t&VZyLOY1zv%67KXKlP z=eM}p9*T;N4mPP90dDmPx;yt7nLUMzX+%Qx|DA;m^96Z%YFgwMg(ihC*jH zT%FKUwVl>P=8v2yq7P)_4`jLEOhQ0wWda+SYW-a)Ch04EU4J8D5jUvk`C4frPnbZq z1Y6kiJZuPpQ1st_y3dhpiE2`pUE@!l&`Alm=4XE;l1UCjvKd?LYA$AV^*V`a1;nZf zwNfM4dR6)NYAM)k_$7+^Dt|xA&`p`Az&0&T^<%zRs$x~a*+z_yw5z@9Oy((5-Xu36 z{_0>@QX3m?UWL;?Q++;Jd6^)Q%UN_{wM$Bq!XjaX*I8#-D^?L2M2cSC=1A5kx60?8 z7LmxF*IZxN(u$2GhF27YYcSvK`oa)Ziu8s2*z7-KmUDF<5O@hH{!V_hLdN`C5u(@n z-b*SVks8L}$#R(au462s-WPN&JY4F&(`tli#=6t`oJ4hbaM@X>Oq8P)z7Y*szVmu1 z7{3rGdQ$T56nVru2A6jI7ZJ5VIzlCP2}AxJIcOf&L%9C4p8C?4N*YUqO&m3m;BQJ9 z+mrkoVY;P(9OnISr>pJU+U0^r^*+4y?kr|JDVIs_aFM8zenxLewpZn;k}pCkWLYPM z5m*KDbIFT9neU|D;Zj9?dp)>^yc$75gi*>@rf+QE zb2=5g3d}v7DRnx-t|G4Io4;l$m{jf^)ZaFI*4pHoI&=RXIE`O&W(WoyT`0T*x{s05 zXmt@Ffi9tTgjQhVK&R5CrKPZv0Fr!k;27QEKl4brvTkz82Pd$Rn+e>pa+lMIx7^-+JE{Jm_X!w|7L`=xXLG{35Id3%gZqe@2Phi?1Wau0@y1cjuTnr2dXk zYsDst7Ph)~9sl^(#fh%$#S`61{0))Kr~~=qYd4BsS5vxow$Dhm^DQm4@6FsXjlGU4 z9jz`!<<~B9W(40Er4K=fuxu1>DRta-Z-F7YaGu-MQbQP=!U_dJGNiw;CXnH zu8?AI;nO3l-r!&9y;gSCPMm~|i2-(}U^(d85t)O>j;FINxqlWShXgDK6LM56tdMZ% z_Wk#SB%&ZDCME&q<372DfEOQ2YwO5k9tJ!NcPb5xBX7B9@Cmr0!F=n-Z>0Om%x^+WyYeFYi{TuJ)$B=%1?Y(#e^1 z&De$?c)$OUm6#*G9-V@~9cRFs`tuQ};Zp(Luv&k69KY}>3-R7%w3?;PG=%$5@)7XK z({pMK`I?f$Fqdo#F3VjL%9 z!2eZL*_2MCMu+}&@EqnMY_ByDem#2F>6_rsv3{6DAp+(cVdDecKSKks+Btk?vt9|V3jJ`S7xQ2$ zZje*k7Q%azE<(c}_TUkhii(O}IST)<&WoQU{A+GnKnJB6y#Hz(Aeh9)D$kDm=ZuP9 zP@slGh>2GAP=ghXluxqHH~>i>37aXGGBdJw#M>tF9o=KN_GiUftKa#WTvu~<=D4Qk zlw+$I2`bh&BXWj{`cpHL^G{|6Jysvry16e$MCUn~7|6-^5FH0Q1dBAx<-~K zzwo8T^mXkb4Mv{Kn!B1sN*5SpFKHi^@Ux-rc@Zl8q(>sgxL2kmpfMN~E$&G8f?e($ zqFyDyN0s#Q{&Y2de-k2YF(V`4PzBGb2vN&0mL2@)d5*@Y$A}d`pgrqhQ#Afo@~j%g z!4UwvE2yN9?p2(BB`kqyhS{?w@o4O(d1d$^!KrvNz8Psw_|^fR{(9|j=kIQz-upA< zchaSl@&N@HNLgSnp#R*?b)D+FIhvpS@4pBpt+LHOpX-Lu`Bwo;*>*Z0_u1A5ihqCI z6PUwSWb(?Fa|xx)E0ho(C$aktS7aTEzBr!3%_y8JLj31@q{J&+AGB+{X_KZ|o5ms76VK$tUsX#&faH}SC(h+k_j4M8Swre(c$z4AATcgl0 z$@IZ5-d$=~+qrZo2DT^Ty~XC)K;kPNK3jNNnQ?T-8B1@%6fMX_R%YtICEoA8EK6jJ zZWGwdbse=1HvzO(!A?Co!xvUf@mEEO%F`{R3qRWMy(~ULqVr8D$zRC>3JjjhP`mhI z^LUXj;s3BoU(#U(%%7k(Zt$Ne&sqL}&sQUa1H_VC%X3QT|_M{ zEnd%8BU0WmsR+$1fYAtSd;8DU+lW7Ws6q~^&biOhj!bP34upNy!Xzz;S<4@dNh!H! zOhWb;_~e)APg;{AY1g7~JaE(p>$r=pB`xz9p}IrYLm;j~*xu!8eJT;hKAAeFkjcJ} zMjr29Ia@w6fa49q57>z#)*DLCW|gWE3Ii2szob%|xn4ee5TL)6R_8QSBW$+A&xii^ zAG-6NHS-nLAO~j74M@2ld~IyN{#JaZGeIT4dthw*jxDOd*EKTU8>y6jNJ4T?Nzw9- z*{aaII8h8nXxEnnX6t^|V0%_Anv2qiLMRKxB}!-F!X{OuHoL~-j(m{i^78)jX<^$l z%w&MsXV2?#z@0dX&N4^HJ_?!Uz|jVCYJj44slJDok=-olSno$*tg5p-d&k&gD^s%CrPFT4L{9#k@b!bU#*$)wxJikoWhV1p z>nfHrX3raOfGg=iCEV9!@d{0ss2iirEC>z^f{{sYA({kdPv8sh;b);mAb8GO{o!73 zFZW=Oii!$ALVKU@fA`_NQ5#lW_npDNT)3HK4T^-#6eb`Pjf>LcBju38 z;96b-iY3{XLmo!PWFGQK=^o=RduUMKDuq=wXin{=Ptje zb$>Ha4>c59AEIwY_TNs*Iqkf(@^Pe={WREX=efNWKf+0qm=@$Hq>EXVN^VyMJ~uAN-M1#=0% z6`9&iFes=(CSMb?P!axl;|;8o@$Lg55mMTQHkzRJOCXb-3^^ZXk8RWxMMbrmQKqT} z0oLC0*8}6zt$WiEr(;q3vowZzS`$m29EZkQH8vYwx2(AJ!4&oHL3*a}Kb#P!gjoJB zh6hu5nIhg?pv_qJpAx_UjERlC0^pjRZy6>ii?*s>+B)FzugTMxB3KVD`k%`(H_;`8 zn51)>9S6SxwRw{7n>kB%l3KUyYXbY?cO*|4`tf(1=T$2iNcOCWmi_IfMxh&SZaTFix3m!(?k9rbQ&d+G^w4(X`H2f;Q`E zZFYQf73L=9({`PNSu*$dT5>iFNSucdrb0HjSbQ*GE+G9_ zH-R3pp-oJ)pmNAGT^x7*oWKY4DXG>(=aJ=_2kGM%QRD%hf+Ik|&BnC-@rxVOS?ZMu z$=H?@9o7t4X>2e9fB2ra&1wrPIf^FH^gAvJ2@+)*@Cbj9=Si;3j0fDp7`eT@t)90Z zHiF6y!bjx@5ZMGi8lR26oMU<|`wUn>xz433C64PC$)#;yR2@emzxu#@!JVEVLmuU> zF(xbJrB1Surjsl%aoS@rK)YrvvOD-t9iPo2mtKHognn;uyd&Ym3l26#t(1Q!UJlC1 zhtG9n5ECpM#@g%JPcp8>B2ccO%YBy}fdr!Qe3o0nEQRH5X%{+mA<3xtzxx;@P{J@F z#H5HxI|w8D4tn2Zr_rS)T+aLn@~?tRw&$B z-VY8I&tF@6afGq6ft z&g8bn02P*%AtWakrHTk7&n`%JO@gj4;F>noiTSSJg?dkTnce;v!6luzl!OLr!X{ye zy^6#uipDh~*49NIL|}TFt)^DhU+IfhF`klr4jUNzINNEc!JMqe#m$}^ZTS=`Ths3+ ziR-cV${dGv9pZt{4|X2Amv7-#w5$p|LJnE)#7~T-G*ZhCx0XY1=R&JRhWy_AB@)C{ z2?xHnzHq+gK%!!w78~vhA)W{Oq6!Hkdru354tjP|>IZ0Hni*68-I-I3a8Jpnh@jsv zYQ7d%D@(TK_b}kJ)-q^xhtTG6RWKNq z7SOd&0|OOs=Wg7;UMwps>t8w=PNcvL@`44pIy5Oe8dh2kl*#Ol@!ykfz|=cG*|R<%pZrg2O2^2 zqTo0~5&8LpXQWif1IwgRYIdBFY;5zAq8%Lty>eMT0_9704>*@RW8Y;gd=5DTKX}G- znrc*Y^p^4$Ja5^_N=>~WjQ*Z0>E-1>Zwy}Vw7BouZn_@KLF?LR$}6 zKP6w#CH}r2xC!=t=#1U?iKb*nn}7W5_>%hQfWiS+jgRC=AY%W;((*Z2*2_+63mg|k z*(w5XIlKt4@k`Y{r2=*R6*JZl_6bC z&A&9iUpDg3AcrVIj>1ql+XaKj`pvM)c;HqQQU|{w2IL;6k*$$iD7S_yXttXgn!EzU@DmkeqE~s9?OOwxED=p5qJnx}~ zjtT6%$GrWyFvAy{=)GR_%49H@g%kk=wMc(JegIdX0ce##5?{V>MPO23q}#ZWa$BKY zUtfoaP9i6^ZXnow4z7N`SsWW8ZsH$Qvm`=A9`xM+oUWK8EZN+I49Nn^ODQdUrfos* zX8T4C!-N_6``AoWqXvW7t0r<_Y^Sg8UQ)y{;gD>S76%x2PNta%Wb=q&;ir3(v-$Av zm?|Bt;YDuGbn9T5dCk1ZZCbr3IE<;N?~$pEEJ8S<`n~WwZ#L_2RA?19vnhAIk@`i} zIqh=Y{*c8;+r3DB+twG;>D^+eB)VJklu(IZ(d)a;*>8~{YH36v+3i2tB@zeLh^50n zj2;=AE-{$U!Jhm*-|)RepXm?D15gjrZ9&K3?O{J%n~A%$w!FK8@w>v_8xJD(sOiBu zfOK_rwT1uT<>-n zVb8Oa@EHZ8w-`V3lvK}7h@gJqkUxC#u4r6TNf^}Qr2yG1GXE%cYVo4jErkfWg60iqRe(#B+<&}WW7 zs&#G^<%yL+4k(xcj*HO`d!ov!s;l4D1yn*p#GY&J1b|4`W!?K=Yt3^*#@N`Hu@)LO zd{6*OM<=2A&UsO%k7D}Rxe=^*RCtQ~m0}R=CRRwhIC>*JhFu0+ehHso_B{V8j5*zJ0A~r0{W8omPR#HM2ZIkyxo&8T<=#@UAGJr# zI*j%oGOe61LZtNdy<|Xu*bm3G7?+)4V3)ZeZD2qQ;4>j_ulGHS?Ch9BN2&rM&xgby zjMV^PGc?KI0)gDZg_C{c?6fMK@0;zEsVj@2dq_-Z*t4#m{b-dnr1TW@C+rxWV;0)2`dtyce^@=}`?HB1Ec0l&MBv)UbXorEx`g?<;qyPQq`FH%YVf8?#1rqO zrK{R(F|0!?QXEdMWc|9UNaZS5q*?qgaKa*LcGnPDbm~?1HU^xwSRBi!BYtRPnQ)gDcDDhXYAX}r=?24-zo5# zg|HkWMM}$32Osy?5GGl#TjuWF9ZmCPkN@a#NiORjjy-i36=8SF4gq(f{ch0rU(yzF znW98fOSD?~@!{0|mYkyYBc#7u24_(3emzz>6?y)m4K}0enX7EW1(8dI-p~D_8x+)R zqo?KhpP~X1@+>t{g9e1b3ds1C`{^78huu)LawCCC{;$To!~}^77mb*cIM+v1NF37A zuKu}PdeiwAag$qNlJe@9Er=XO#a}eBscEisR57@~%7I68Mt8^KjNeT_7)SD~m`14Sa;E&V>t!({ zeKU?P-e3rFN~MJ!6*s6S6+xN0d98}xs^0#sB~;Dds| z0Fa(~@SB(yE1K-))k^4-A?$6NcW4z?(#QCf4@d&?J9899RMZsYFkjnhciZ~ms5rCc zg5~No8fJnet7JVO0*yHRMH(*4I&)zSzZ=@T+=PCvXn}(Wv3Rf%+~8NFRw+6Fmvz)BiAOT?!!6H>A}A8rkW3Yr`}I$! zlHOkejdit0`Ds+B_`f64W;TxBes{){ScujONSU2z#(s54ecmsiI-S+|Kf_0(rn2pEXFYO1;Hw`1dFBVCS8&X^e0e6-|eXrrZ zS|w(tJYw~HDr(b06aE~`MPG*?D(Y{A7lgcu)xccA^BeD3MRAI5N%#oabUJ7I?jV1l zpCLcUpu9RWv^zC>lfd0V9aiad%hMaA<`JO83ha2%a|xgCa!aZ`7@l&ZG}`)hOG3m_ zL;?yNk$!2rmwxmC)f?0-H+)3==RDH7F`dPY zNW$-U(=lD9lB3`HE~ee}VEe3fBVy7jRCk3}Z^WXZO-G=$x!LXa@E@aCe(@)4e$x() zB=I5iA{%4*5wZlFI>=bCl)2g85Ea>|QLPRLM)d-e61(x8FV^8kH9lDZ(GU-TN~ZcD zz7V=XvkCOLiV<2wJPpg}E>Q1s^m)eii$Z21S?XyyG-an`sZ9jVPMk`IZ<&Q~^r)-w z&PDC}JrAK%7U|4Md0?JOsVTmqAnw&wX&38jz3M*HuS)8pwZCPC$*NfqZ$&j&wt zrj5fYw??Sp@n7Eu^sS4hlgBe3+1-mK!Q4})bi*5{bst5KnjB!&_X^C;r%=~v(MW(} z)CFYGsAwvSocQ>7{bn0%dbNDgRh_?*#>Ql%7>Fq;DXRemX=!1VmCSWd+B!PkYwM1! zCAGB}04{EP=Y2iKa0N)|{&wg0r*OgRvB#_9GDRbrEiv=d=ZbxE9!0_ygylfU?cbnE zZJ4@+9!r-a(G?Kg*x8&}kr=psKh1rlD+HOXO) zjWxDeQ+bcBe_ohZNH8GzO!L~Qy7?E0W(+5`4pF3uIDJ#+tc%(<_78de9<~waSTIi> zaDTbtzS!Tb<5GJ-011c;;SavN)0P`GNwhBT#|OS7wA`;CN_u((HIXYg0F3#qo;S=O zf;rT~lj(TM6y14m)P&GhLAo_e4@H`*9 zQQJ(dr!CvXh>TxEN(HlZ2COBz$yixgD{5=cub;BBiJO1;IDI8!9vm5ws?qhlx?5aW zaJ#zJpk-k2T{9_}rDS89IuY~fCI|LDj&CAGv5LL!fvAnx&PY`BC9Qt(=V7X{gw#oW zA#}P*%2+qkZkJtpGJbiC(y(on$AjK>9+5byP94bI3wC3YQLrdQ#D5(9>P9i!uJS(uZZc zkbgUtjW}5`X3#IK{cgHz0xM@t6WVv3ppw&#X-Jc;~T@h6R z^uUUMgj-9>!|nV zSN>&q?kNG-3}X)>E-tR5wT2{daqF9o+~vrYLF>l+HYO8h z*)q%K5jw~y-B;T%=5EKnY5Bw3n1STM2~ZO+heYowRnEjfx0+Q~z|a5cr24$#k9hR? zCb2S3de#8;3K>bfs{rv9E{c2q27--KW@}@rIH49(Z>*{~MJ2US&iYfX>sAQ(Z-PdN zbj>+ACU}OIQyeSqr#rHC<7Xc zV+}M8BMD@%)6mheF-iT*#{HGx?c!KAh`+xmx$h~bwyv(lOrfNHg9SYBP(VrfLv(a( zfb$I^@6#QK<9oL zxp;o6nQWVWM5PXYsDb6n@N8Vrsw@5(b7}jwCA`f_6Tj?6$*kwTyhdh)y~Xg9T0?gU zPTF@^Q>FgFxfoe@$x6~74m;k8 zBq{xHfSiSc&kYJMXxSz$!s-P5?naw|MFLHWp$g;?m>s9NUXHf2mwb8hDD}I+rgtS> zh$TSuTXhx>=?xBHy|h=odw*n{Zm7S>oUdWUfiQVNQ!du?@{JDe9n35D1M9tyNP(!r z71AWkw1www1LhAp=Aou(7>wYJ`-wO9DL+bQmwPQR6+s9a8=I_*41BdN3jhcIzL*w! zI#n;IM0M;qqF<#=E`XkQUU)pNEqvE%0L&B$r-i*&1#I}75Y~M$f!h`f6Bz=2PwFBT z$Mul}1%0+qKL+2>doUxqVKo3X%l!|jag0a5`}&hP*L3Kh%K*Ilt4A!^$EJ^0mszkg z44k?CY7B54n&rjyi>!I_iM-~4-lz#nt(|0AHS-FJfo{vBQRwqjG;C;};!Ecx6w~@X zJ1sWb(4Qo`i1mcb66Z#q|vqXg>U)O~W59ZTqGd zGoQTCoGL&1a3;5~PV$NtFn-(CuqwZ0-S4C)AVApGB8@Jo1;^P#;U^#Jvf~KjgVsA! zSYMBIknhWOcea9R^e)`=zU|0QCtdW3$L4V#VPqwhj9D5W4-j`JT^{x(+b?m2b~8jC&-^0KAPF#B9zIt z`%{p}K6x7SK}CFqW)LpOGV^nS@SZB2D>MVP=HO|3w?dM;%{&DfHtFU9>Z@l@-537? zthTG?x=1hx+XtN(o*llMUTx;J>$Ls;(Lfl{|7q!EL5!P_02xsEoGHH?4<8UPg)Vve|w zqQbK9c8C;dR2i9rf^#N7r~Al|>L_-27st5r$YfQl{QIE&n`U|CG9GEm7UAx@k~qvI zZu8T>9xQX=KMRL$&khS9{g9_$Ika^jP%!f4%vrDAcU{S0U$d-*_giDi_XEtd3GSl# zN_`E9=CMvr>28BB1mLsc{H&h{n-ZymS&_Z5_XA7bhj4wd*BNM%VRqd`W7C!=s5Ldc zQk89sP z&L!hJNE_$ishU)L#rYX~#o5br3(}++HGK#ddy)@7f`4yG=W0=e6J{-BP%+TcT&Y#H zk9z>}@JQKp2DM#?Nt`*H7eBvVD;2hXxVjw*KPuXeiVRb=FA8Dk`QE^a2e}RV99%vj z{CmKO007TYA(&>KP{SjbL@^pGLLe~pTc*9d_p`ZE5>&Ap6F7FqQYVRlSx^39a7v z9@8EOP<9VgT7LI$_(^wU-%EHDXby=SWEk&T+=_)SWFiL<;z_h|vc)Mw!He!8KV`N* zNBxXqN82N;{u?GTRZd5#+}Yn}nM~vz_04;QHIi(hQD|aH){-oPzv-i7(0FGtPmlKZ z$X@7gEe0J%5jYF&`dz=0?c?qH4aCaIAd~JOzz1X5W`Yo)q6W8o2D8Ilz831b*i)x+ z8NkS7jx?41`0)&H0xX_IpFOD51DfF1kq4YUp^8jftD%k!;QEkv7yXQn^LN?m^9Fso zdg758Me7ZGg%&uYsJ#IOK@u)5oWKAVhsUD3`M=9iBWKcjKS2O)p|!-Ng&cuPsW_V! zx5|>s7C@)9$RYG+{9c5eDS|=orD^?FOXbZQ9c}~O{?f^SKq!?8^p~SIHlW_SZP^J5 z<-Zbd9`yzu7*?G_3GpMx-2wdVP9p0)K4=Tf7(NmeUd}sElNP-81vY2p z0E8M=l~U32qSUj5PJIR|i=pQmq$0mC^<`}I!VdZ4U&}2|twQow$L-cRQqzWH^4cX1 zb|+~hksx;m?LbavSoMjE&WpRgi+Nn2TLxCg<3a%dacgI@FSMenN=iiq-D)Be8%WH2 zg;WV0>V!cs!N4ZbkqZ2XV0N#H)zA+&dzgGd=&;c6l2=SUivPo6pcqR6G z9|dR7+&qLZod^}Qtg#v;`8|0w22-kYG1$pd@1e^h2H2u1dU$*JZBgnDc__2VM+oJNJe#d7x<^b%_$8!G2d21qyU`qo}eZkageE>q@D2gcF;*J z>Jgp0B(*Pt)Co8adp(}MNw{av2LwBLC5rvP`boLq`uV&Ts~)noXN4Is@BFh|PY8=c zRgP(=nb0D@)YoAq!|fLpEkfa>)c`;va(TEkZ`~Lf9`-OCxW~a~Wu@J@86pT3QnsKa z+N{hDEqD(wOcz;y>$fASe?ZEteSYyp8s+8nq5Y(_)U!6$N%Zdh^Ss58=A(QvvCNO6 zd@8jYC3+lba|dA|2Mjd%Xn>oK0Z@WG(s{P#8je6g{7ZO$RsI}!lPfLZHx{_t;jxiR z-6f*VbDHae1n8R+Qn)1ng7JQzay;L|8o4w2^Q-PAE7)#-7AtKP@27x*_*})OX#ql8 z8Yjljw8)RPTo*VJ{j+Lf3St``Im#n1MN)&BXcCz9o@iO4io_EEKeQ2Cf{`Z+VEue& z1`DY+?|PCpwl91hSkZ@_dZ;#gA5`v33}RnfJ-fM+Wm#FOqcOleO5xT@P{DM_#Klmo z6rfw$!+Hk`)Fz9!*O&5wh6D5*J~02fe7{UyaHJ2=uF&ppGN9sza2l@BuUoO>xvk%q z!?rcXST;mT*ij-%<7AG+m{#dFTnw_j(Dn)Z5Xv>~SHvZP%(a$pvdGw_fv>iFmh(jJ z()p#nZF2x$98e00+f}9;uq0%x{5-<2qUisc2c+OF8+4)v#8T$X`mOg7Y4p8#+yzi4+Po5uZO7D0lHNiA$2fBuS8I14^lN_KIG4<96 z4q6XvpsW|K)&~RDhGCJgt?SIL$B!cFu zQfv^16V@2IK||d;*&5pOUmNH>@1m$~z1!OP25L=cFE+v0MKHFbuc38o4o84ju- zcxAtWQ3Wd(hTN~!^&bgywz0WNdn}6`;}da^A*)9+Vbim^idJNNc;9yaE|K##GWD+t zsdz>Ou{1M;!igD@Y1p?%%tybScnRgW2^{#oi#P!bTwH!Hejr)D=iXc;@cJUvyO8PB zw2bHe^vLpL3p9_5YoiycIiW-eE?mq`H6G=L@Lp*e1dZ?}okLUjIc{5}aA4>Y zj}$=Os9KEqhus3cl7s)~eE`rqf3{%@+d{109OZ}6PgzFZ%NJ|xQK5^%gE%t}I|{w- zf?JT~k zMYb?-grUA6*5>iFa5WcYBgqKfI-0dPYu@>D|HJc27N8QHzkOkkIsSwFac(=0MNXa%D-1=K7hAJcf%8^tUBq4h-)I&PEF#jieHXHt@~zyL+a zuEVvRsXsWz+@?+fn8BYzE?xW;H8!jyOMW9Hq&k6W4G{s|$l+~J@fH(Oz`VM7blB`W zMhodY_QB_`C$q5tpWrI$U37L&+Qt?AkBy_ji)_bT{z?9&?>db!a));dZgkJ|)8iSD zniw`plk%bTg>KltoboW*b`lEN_R?g5YWVVW|8X!1J1Q=2aBCp4;qwyPofF{T3ACAG z!7{P(-!?0CBs4T6A~|dpC!o6Y$p_Q~+oZjWR7TRBpPkrm_Z*OmO7wUl56>Cv`lJp$#Po35W(w68@#c^QH`Q#lXNas2~|Q{HszOvr$8 zNjf?KXEjAzkim-jz`^s#yIksW1yYVy82b1PL0@gKq0;gb4gtF0)3xkO@M?|=(-BqF z^%)f?h_sJHnguM%$-#>P06Ye)9;es{7vsa9Kp@@oy8f#U4?u0SwR18|E&5*=pd?tm znN>yeKPAY0?77wVZNnF8L18x*Ax#Z?rtTbwR{N0-0_5*&D`$Qya8$p|AvV7#Voq!^ z;+~O1bVZ-8v9wX{l@l@`aYB5Oqa>?_LZ^;JeWmhJtzkj;dP!f6yvMF@9zD+CbZcp+ zx_mFtH^Z{BYOVSJQ#)V&64lB4J?v;tF0803t05dG|4tc?&Jq3LzMhDU{NYN{fcvAZ zRz0{Wr)#v`ut4xqQ_)lyu&B2)gf#V*T#L3tI1}Hg2UKZGKeQvxAvthQk+(^Fp2}c_ z^}G3X1D}1M$*BDm9woy{mmwv5y7_ZZnsN-o_CN(&Q6n<7hMObPOmJo6_Y=Ma^@_Vp z$_oCW3>Oi~bV4{p7K5&UI$f7c#@);6DF*5~@3CZHa0W48b~XP+0#Py~10GZ&-I%CL zfY$6iVQw6SQ%)G5U-+6Sep(~_$(6xkz%7%XG3#ah+}UDBqnL)TA(6#tlmG*@YV&9G zHG*X1{GJQ64SSy>;|cPOyoho0t(yO?7yHP0L-M;r+SJr|8&YPgqyBR(yadVd`K?w*9 zVCyqOxds^}_!9P2hNnRQ=m-DxT1cTR1(?ps%M|)i@{&k|pcI<;fN7~AUw}AdoHBFd znXmANhesl($#(!$boJDyc!2{aLEHx0tM*i--!QrT;RTeWj){IEP1xLK?MTii%7OEk zI6Y7_vcI*cBv)K#6Vxb}>*a!%rCpnqw)bC^tJ(){;NSv`Lc+BD4fQQ=a=G7>j9OaN zYcLFIXte?qI^n@SNQX@shG3)Lr}-U)c-IsE2&eJasq-)91!f?OuP&xgr~*HK5KlNJ z;Xy8J9HAtdWUQZR8(QzC0BZzE4}4;-;uVaVHxl9D7XQ%q-V34syrpUplP+`ayvn>w z5o&(bDaVV$9fQ$`dem@$B@PCK80qcp`r>T2`SZgSBNG$yei{SjjZX^2%>d>g78=Oy zlNXOX>`b9f6FAh$!|e}}t$(=wAQBIp@@cE+nam_P2-JdcE`0FO0<%3*EMx+r zVccn%&U1@JT49sCYGw6Cd&t9#yV$a$PDkVxahovgO*7XE?e#Z3J>#+^YPPErqb_-V0N1y|5wq9__!Kb-zf!oGm=-=q>@Q`6XjF{IiXamx)_=T8^6JH8N?m zmnz@GDc42fC(JurDyC6crf2~D5K|8U8yo^U%ELQV61Y!gP?5yImlIQtF;Y;?e=~fN;#=6I*Om!|wjRx8=ok#_ zpUsjXcFouT14&l*PnY2j@F=7g1z>zX@9c;GN+sSuQ8c^`j84ZAKPpmEF%kf*)j-HW zd6`Fa3Jy;WE$EMKtlo#Pp9+AxjsTD6vN|BC(othJs_VO1g?siZBsRTZ9tc_hgMttV zZbkr_oQC>ZOrU=gg%TU#wyXMz)}O&H*f)`q9zzC<{DZ64G7C^|Zm@#M{XHCdu;ozX zSZy0?B~65SSpjnRzCS&S_Hv!B{uV?2sfrNq_#4#IU$MTm8d*fmZR6Qk&xI4X#Az1_ ziy3zM4mY@kvC0m98cM|-rd1MO@wutrj-jhe7SL)@-u`7g6ImFz5KrAWv!^gc%G^MK zx(>NUDwJEr#!rAy`57^Ee)Nu|reV{y_cOrssPVz=fpfV&0RRQcDszDU3yFAuNZfGm zN=I%pBO5*M5z4IaFjAf@eC!(2cQ1AVw{IpZcIMr|;71wCg#k+b@+j(X6|A3i;wtiC zcQ;sJC%mVt7LRD%vXcnUkZ5L!ZrS)(NT!XPOUZ6KJE=lSd(Y|zjM%(ti=Ba6uXCpX zKq)-!nYI;8fvI3eNnT?+a7$qiAm@YCuL=U5UfC=6z+$3_c?=_K4L<>i3PQ(XM$9&T zM-$#J0*4|cee+sAzOeU>1b$2d0hd3?I){j1u@?Hd8e5y?qJT3 z5H~O%$t>*iKFNoi1KJJ})*={(44ow_my4PUFHL{>*2yII5D+8ytgw%JLbbZ9JG^^?}UROsD-{11|Bz z@@Q=2q&smjo7KR;-=n39764lepC9KveD2&K3axJA_%EGKAM-7rD`lQVPZg2!IpBo# z`Zr0>83qHeaT;<$tkU?;GD4wT(y`hveozZfRHv7!_qt|iZcV6685}1&C&dF|Hwz?+ zp8AqR&$XE%gJ;mLcMPUe5<6;SSO9*pbqm@Yo2+at-sfWTE$7wqz0FuPlH_4tpoxD7;f_Bb2@geZWWV z7YjkcVCYf!aleBki?26^v6K1~bp&Is&$S$kk> zXEXA@J~j5M!@zY7-7?@$35Xkqxy1?0h69&2UsOiEJ^J^-(;{++oAUM8wp^POdC}nl z@XK`>M(csrB6VWj_LP)j$4gkqh9;Tj?xn9AJ)W(QBXwz>V%j5jC_Im3JU_6FEya{L*z%nesJeoDg=&el2oqLyTl~o7l7K2eW zFqxCaluZdqhxIBfhPSGM)sSWV`Mw3G}XA>9Jff)CvwATe}z2uchc(jg%OoXvZ#?+*|&d#}CL zz3$M6;+L*mw`vq4*+NpxYEah`u!7>yY_0#8Nrbl-KCd>8eYewek_+T^_EDuXxdZ5x z5$1ZV;=yCDpPhT*r?KtNPD0xLvELjF9bXC23@ErdE6R9te2q0Rli-Uv4QL(>2x4dS zGQln8YoH|gNj$qA?el%T$7!HW{&j>?^>csgJSa9G7-kCCg{qpOiWyH5svFy4I9b}w zmVtgCzj-B=SPHAh+8+-zrVb8GUn>ewP;|E%cM7mp6}%5i9F7ukc_yI=xfYV0jq4KI z1(C|PF4OGNuJq|)m=bmCQCDyGPtloi)}k_asUIg<;d|EJ7gDtSv(Tt_C=PjHZf)*; ztU&dAQ0<`j7NzA4xK3)!?xu%KVVhB`g``Fmxr{sF&6=2``WUp}?w-y$wE<=m}# z36NMxqZ6;yqm&Zo#Q*rIJ#Iaw-+WtFmXXa?iNw!BVdp;CKFS4G1Rui7%<*|B*SANF z2g$`nK4~xZg&8c!drXJZ*cbwN#VbOQz(cjUE!g7mfq4b)MfGsQ2A6_?Q9$xG_C##> zs<%%(*nW(j1NF4uH8{)+Km>4E6rd5?R7M%j64n0gaQVy05I24!@hJ%$F2t=#ePKSv#8U(lzshz51Ax*JJ>+L zhrOzkdVg@F=OuoV$t_RomYc&Xn*nNTB0HezR6L zteA-Uo0)fRJSW)a*E3V|r>gYPxu9sOjwASlhXkiMTuxVnIV@@Oa`apN+RK(TYDdVl z14B;h48kn$DZ;&(6f(4xEUSi-Ne9q0`Ra}KxPi=5pT*G*->u{)=CZHZNg~UcU$13l zF*EcR^{v#sUP4TbS0QMmXm;UwC$}kD2n!!r5$5hJJ809~#N`7+-fn#Zz4(SHw`FO% z<=ZbxCD%Fd9#<7FF&GJ{FK|!6FPI_NG5|>T%q=cz7ETnB2=`);4jH83`;Tj`%lr2F zj!zUpJ`;P9AlJDfMrO}x%J&CdNm6rTBZ&_@P#93?32A8)Bm@6h0dLytE7(IE0)fyr z-@r;}OI2)M8l28miyIy=bK1Z=RCQL#t)}3$9v5E3D`pSdQWx7^XDlS_5 zeN19K6GoYzd3GFNtGa>iA;C3y5Tgi-VzgWGxzJanR0`m68j***W(DO zHT`XRZ4sGN0agykOXlH4?0Kh!c71;fwg%&aiZf4D%e`@&>UMMiL8O+JPQRTb_}%*& z%7hO=5Qy7tMMtyed#OB&W~9=j>(wu{ypD6Pe2VbZpxkb7X?mD9B?&r?g|y{dxhmau zg2|R-#mJWM-)X;S{#&^k#8HYgd!eb=;k&meU>j1ULcU$Oi6e1Zjb``1eFv0s6#f)d?quLw^Z;>vLZtiZPQXpTn)5lEk@?$y(h2=9v_ zv;F&L?i%c4`P^2eAJupyBL;|x86U*7>6R7Ey_zsOlpx6HMlC9YUuRW zDe!UtlfucO!PeO+1$ioI6nNl$f;yCRWZTHEptTr4P)ikT`et*rxG#l|ejq5OKv z8_5;yLRl)O7}8!{vyNx@E2n$!PQ=+Duf*%CE6(v$W4eRTps-UV`k&Y*5u zgM@+%3*S*Z7ebLyD~^-csWraG>x_@DLU02lI|muYLy;Aq_1|BtYky6QK_N(cqxnRQh3mVM09j?Vs>`yRH0H~NeSyF8I-~1ewEnlIcqQc zw$DP~lfhpiq7V{};Am{R=L%EqZ|NZ}ro^lc7Ro9gGxs8pu*HK%-{^5u_I;;n$MYeC(yD`bs%Zt;(J?p{cQsi}IWi64_8$3a&zN>#Va+?%Do`v zu>i!+T>0i8D9u0Sh{Er4p)9Dv0zDPR(qU&L)1PqHxfYC@;}K){YH{4~5Td;8*wCD8L z6CDL&Vd{zNTFG(IO3(*J;M2+ZTO^3j=${zBkEs;5vo)E27^}yKxN?NHw@&8>(yM;! z72?*VOdzd4ajah`Fz|eL97lYBUz{~xYUzQRwE(1Dn|?Iq_y#DD|8|)Dm-`)`ch^An zu*&9;weC_Az&Hgo|0l!G8Igw#et>__0~PuZ&_{p8Gc#jP`=+RKuTaqCD8h~~A0cVD zxP6%&KkrkIp-m4Gy7xY2vxEr|pp6`ZDr7i(3~uKP{%9J#c#ygXfq~C%I&oM3mX&z$ ze!}EQ^#ejGCLFUBg&WFaY#jXfTf_HGhQEcJ-gFLbNUn3F>d20=HO|6wuTKecuh;1I?K#3-ebOKI0ic?=kJsogF~4Y2 zUh_J;-r)7K{O=-#mPS-t^GL;{VX9mot#8fIgnm~_yrHoKDdB?;r2M@6m&AlhY@%Sv zXMqfBZxLh5-(hYNKu!-p$-Z1H*T+^idRvpc(NR4Wv$g#}Qrl25`_RZ-fq4apx-lT) zo@?3)D`b4VhF?&JTM^E;c~unDOT{9BG-C#ca1%&T(>I69r})V!U`$VA!i1?Rd&Hh87oBF}MAETI11fo<3*_=>`I%#5YgPdGsze?T z=X@TU%A;Ar1ZwHr;WK+)o~_)L9aN{MXO@?GNIf&QZZ{$}oDb(&cSoW5rcKB_5lQbZ z_`x?~JnhR%Unu!i8?SP^=!=#IbJWEvA^~>%L&M04mAqW-QW2F>3_gcXB@JCm3i_Y@ zAu)dztw|eAr%Mb*v+5d^Mf2GCx`R&xl{0o*CC<)tU2~E?0=p?>I=`GZ9bi=3nfE&V zO#1Wt+IGTwn^Trn@X7P}SUt_XoH3n!_C8JMYt>k&TYE$}=2mb-*Xglyp>Cq-+aBbdZsS8UxxR|zVootzN=t^N`OX0?_Xa4Ui+`ZPCc!piK``)SJpju zmVkO;_EJ)A+KH8naoX1H*DEsEGH#?R?788N_xz2-xPwg3JEu=)0BwtrN1&VO^4=#> zy$x0=j#wV5uj29`#D-pxi3fuozoL#9GZqd%K3r>((uO{GbT)SG=W$Mm1xYvOYCiKT z-aQ;vivkeT^S?zKF^YZGU-Oofv&Mj1$uXL9&Bh83CXDA5#BF`<1pf<-G9Lf zXl=8VG?Yn^JdwNrV*=%NWVs#HwtiEi=nb9<8sr1d3}jOTUs!9Riz7W2xWeG0%~ig- zI1-Azn_xG)za%xgU3ow12jzM#-byNUR2~+M^6tw|jB0byr~YwgLUQ_g&f~#M3c73p zG9PMa*JdTYHS{GvVA@*%fM`T(y?#hYWLCJnblS@$ z(^Dq%_2a)`gG$;!F;Z4!+JnIM^~WD)e;_ap*%(kUxoez9)_O=y05}0y@T`a2+@W+t z%sipTN=~4Wpv;5*W21cbtk!))vF-A=Q}cdR>j`Mj@=HoE$t--WS%EPE{d9icvghER zvpzU}E4J+POo-q4;EvBqQea!sSMg5i0z-FB%Sc7HJ;z1Mzf=k^CX*px*Yc@&?G4ad zZ-^K&xpl@Iptxkog9bhJ348x{Qo(CnjS1RRJD zu0OvyAG=c+by@$~AE6QhD)5v%?%_99{QQvi)P7NGBAV0nBl83~4KAVL6Si5a6cpQX zzdB~Nt>^`UmN9&D-zYBSH?SJ6vG{}%HiO=|ke`-awr`Fp?KFNNP zaG&Ln+gmj@qYv+p#m`trvq(g2i{LY&nu|~HaT7vm_31LbMb83Y>1Yv{Osjeg3ro3pVQmifMB^sywNVO29qP+lDwqrm7NsL!3S+Y&*LT^_{*R@ z>V=Xr$jzF!?E1qC{cWXHnM_0vecz@HE-DH3eCA@jcc#eipID=Wb0r``BCH>Qkx8co z`L#?_7VyW7aJi=a=#Z8`&0Q83mr3ckO7-J|y!eXb^*0oMj|448F&yCITGq>~DWsn0 zPphXQv(%WH&LhAufA75warSd#mTa{a&y@_~y$?L1YlGe>I|n(Ce&(VinuRp4y^{E| zsIp(G!oSJH8b6<YfHhrw?z_W zJQN>NnxuaHz9w}0NcUB3g8En6`t`PLxxhO?w-Y+H-u6p$44P|yS_s1pgORB^_q|Y= z@W0#jtAOJtuKB3R40wYoxEK?y7Zagqb5Z3k^>nh;*4Ec@X=m5J=ap!xc*4Tqdn<)h zNT&g6wVUr(+`gW*mQ+b>BDlex0Ia{kq0_V>KffGSITbNm#?JZ}X{Zsq3jU-8F3!QN z@9)m#!Lp)lb;cub=Yh*ov+efuv~zA=^t96m2wR@bsqxb`V@&U|rR*t!gGnR$vAIa< zx9)+ersO{7I;^S+9g5KTSqo@sgYg6?6DX$9$a$O&(7~=@(k7%sZToUgjfxJHknm5v z3RE42r}{gNdFfc8_`$8JOXUT4CW5Baw>ZU9OQWvu(>VUTRR=E@A2SCjS)As;H`^Dy zK34oTADCW`^fk2(BPD*eQ!Sg{g^P(x{4OR&8zZ3n%`xnH^c3&mQY~8A9VBoQfL`kk zdkLAza@g6s205|WjT&eucpVJXXSm1_biO*{RKFYlCGUi= zAZ-CIdX5l_ZXs?3r5WxYMt2c2M8`h2)lHQw0N&*QpNW8b7wZl^lm=K(@bR(Gq}=xR zY_Fa!Rm*z1Renz8M(TX#Iw<*5#JX;QIIPJ^`wL+xo9k;1NfISdj=`j$e4^f|FG31w zogRy#Is`IM102rxSMsMJr8<*kFJ~K#Td8d8YX03yz~%DiQEcmNrg+$>z+l<&TZj4f zUn>!ChXNne_i^eKwW*FQ)Si$CqHofkPz2Tx@_Ny^avyT_h4{soLsMdCPC@(EkDu*X zt6T><&R&DFv5n`o^&oMEsjV+>C**UC-rXI1&Lg~$22VhS&`3H#zN(-38*%jYX8WoS zpRP73qHvnXOWy9`@)r>JxeEL0;b216?_1X2FiW8xurulCVpXKVK|Z`Wwha0=9jNJ# zSOwJ^m+zt{f5$z3&BJpZSz)9UI*ury^0xyNeu;XaiF6p5uYDVcIq zqbk(st#FQ#g}wji+R(g0MJ!xjTR$_w`k)<=PWOTv7r5F2YK+eF8pBGPH8x9^9REIY zz+UOzUTyV41Eh?De{W~pqJb4fSyx1%w>dK@pGdr|Md+0f$;h7yfZq4AF?|VrrJc}&@o&=cJb|$A~7a4G*w?P#v0haX65g(S!{5LT=xz#D0sf2OiLhuBB%H!sS#7 zGpzfC8io1N`l}Ut$lm5=IRtpf`dNRqxjIHKl4k%rCjg$Bei&4Mbha@1)Bi3~&@mT- zCbCgXnO{#NM4ptbmi};*{g2^o6j-Z1ZYA>#tV#nXazQ_mlTcykRT=TLa+(eXnNg$W{^XpA=f?)O9w=9Vq@(dP4 zsN#759nrq`8b?q7DHSa(IdK+Lrp;kYa$lP zZ|R8u4tk1yEfIxEDr*?hzW9)8sBw%XzMuE*sU)5F*8x&mb7Iq?TilPc|ndEnk zNsd0#b$5E@zuRk&sRTlLs~bOA^MK1EZkO&94*WG7TI;!xZuuRyjrFJk{-=FSe#)|L zR0ChSt4R%0bus6i+zyL4A)PVh@d$g1P@rwed&i;BI){{_xYbxTN9M5L=JmQl%NYBQ z0x&>2(o-gNBMElUrvk5FMf*G^Mclq$Gkjpf`?Y>kB0kE?DBwc_N-bC&%7cd2Qz180 zj%G}x^JT52mZ)I1lnBS}`EcK1Jti#Zx8)XpFn24i@?XnSl~&mbF3c4OYA_Nq%oGh; zFI&xSA5OQ9w$fkd-F&l=Gn#Q4k$7Utdhz@H(lP`$70#1`iTDn1O#KqAd1?eHS#Z(7 zmshh&@sS;6eamuzZR4Y&pDqj*0y1p2km^dZBL~<(I7FU2q?_zd zNUrIRaxz&U_o~I?`J0MJ~dMlDNIrK+n>puq4NS9=2P={u$-b>1Fh7H1nqe zrI$fHI%idbrOAafZJ?_Dcb%6)&do8PSeB(O8)or7#g7fJGQ@A23KssYsy7vV&_dz; z;DFUo`&!=d@AbUju&5yFM<8Dp(VHx=wUFi$|5p;jXW;8PPhI-=m#PN$E^;;4dd0y# z#DVfDghdEaZX$ZRv7%Zb$+YYw%!D9ivIM*S{3nLyF zSdWCI9Z6ZC1Ze0+KsLgX2$rjbuLGALethFclze`SM!lM+JyhrDj26;O54mQEi$vx6E zL+8w$vKVVfKjYMrOX%dnlNWKE|7avx2-bq?m>1SF0}IxJ!NqTF3vPXn1oT3Z4cd`^ z;}siJVm@mEqO=fNAoWLwZ!jhLPfKVk!NheBl2ZZ7J>PFRzC4ec)jkoUmz^k6k-)Ll zd=EY5aP99-7tSU`&}5OsQ1@+KGumzMs76I`#F=S3iy9{UHpKa=VWP6}cU5MJfKto` z4JuVbH&JcnMS$2S5{8tQm9;tIF*7rNEmQr$ca69?Kb=ydwFVHl@8z#IwJwW7qZxcC zq%jwr_O-7jr>EC1wXi&%np<=lIk0}KjJs&`JC-o+quZ$4$X{2!Hqd;qaLq6H0uVFj zM%T$?qptds?q|DpZp}Z^uvD(JqJj;_fCDSLv4-<(X(oO_wG1y`cPEo;TVv1{&Wov{ zKtZyNSTXk(b|>DhD>z&mJR$pNGPz*@8BkTcKle`JP%;2jjGK zs2FQ84#y7J!iWhi z+zA!j0g6zvM2&lNl#@l*&MPR%%U@3t5SF}p2$9q zx`eFF?boR_7-%Nnda7=tM?}N*!VInURe7NR?UKEU6ZKi0|$)*5k{NiZY z^c3!WenAD1pS*O?c*bU#&G+$B#?2lTB$3JWkBcdp)wD05ngg2UfhNrpFOui6N-Nkr z;z>{Kr9U*|?YzVq21P;J#i#^MH^Lh-$SSU(d;((% zqUQ}hW{IgBtK0d7Bm`&yIouomBiV)1W{4!29n{$;-%g23|9;9r&ZI<1NTzsAQNS`` z)`uj7ah&c0A+(>Zi)Wa{0S1htycdFsgImIB4QKtwDx(nbsGB=mBj{B$J>q_%Wg4+! zxq@3ix55SL*q*!&H6N+ce*;#<+DM!%564#aI5=ysPW2`Pg^4f%h)gkOboq;D9ahg-e*S zwVmDS#0H%SSCDR!Z~wy~piX09M1o|YxsC#;_)!+-=mWOH1F=Y!3&zvCpPlnK^}i4( zN2NZeqsHvG|MFdQgAd`Td+q*nayC(U95uQP;GzYH|16~0Z!Rtut8^6!CU-huZD@j( zT|-^X=ZoY2kWdo)usXlZvuyKkwKc8dVYeV?c5FkGqG>Q;679n*D6l4KSGSaA9rw;g z>}!d&A%o=}*EI_Q^*C9VEVMCdp~;gxqTz%uAM{bLs43{D_DGl%|o) z8$(4s-}nu%1(E@LlE-`oK)3=SC046mXRi=L?=C&x>56o8yk&SqK#T)9ffTgJ z)`0T&NgDVy&8`;jnsT(b-(}LD1Zbh1ikkbG z=@R?%t+RlVCbV2!f_z;lZNxyUlxppEwu!L+s`d`=Os7 zIzr-hDFDIvFWJXYSJUdIT>ugAb5g&0MLgH%G@xJhMZA~3T(RNW{Y}B~uBYfmm>^{9 zYtX}ehOjFQ0BJ=Zop`f^UHiS~%_Cn-h!eH6R1MJq-z!UCo(jpYti*d= z$G!-P>{rx3F3*8)Nz-DrAE@#mx`ZGyWgu%G8!2bp0JYAm6n+EbDHe%DJ3q*WWyf%>R zas1@M^UjTk_VevKJ=c309i4f?HHopSBsFqOSo`)(ba!ViW&~W#kaSQe6s5~_A4iAY zVGFJIIN}KK5<{8{2lH|{Kjz`HBvdl|s$42^JK$oZzh~ngz~K8bCWK(-^ceq)`EY-N zG6fMJ_kE>!fDYmOk{Y!lQ-*cXNex;!ObBh@#S?S_npltzW;LGulAPZTQxf>eHMsyL z=;V?*^YccNxWL;>YhZl4J6}y()pn)|vRw(Xgj{6hd-Do8E)q(ajCN;SzR4d2M??YF zQr3%hRfBSo&pvBokmQdA?S+7cQ{sGNM=$x?X<9FA?wNz6wzavKN%-)ZB-R@5-YiH+ zNY+>b;QR|>iN+4`H4b$Fg_F>C>=jB`edac{9&l8ksseMQRr@HZX?m>6Kxo%c4bcAs z@<*bV{Ymc+#zx;iEDX-x0~H;4R_$0eXUj;(Z=(HT7JH9C&6QGJY1D zj+0=r!lV{0R5znpVX&M2Z?6tRj8Q%zH6JNcJJph~MqEZmnDiC==nHjDA_nv*C9)eP zSMo&J{z%ZvalBS0*}7NVx<>1Ebxk&mg%A8O7L$pVz6tDKB?cn0cQ?L9P3O0lnIWgG zjak>`%hOTaqTR>V?S+{;la|VqbTJXk^>J9y6SUc(;K$*b7)T>e!VlR1KUUttBW(VD zRa}e71IcO|jf?e#Fg>XDXFCCeqS;T;t(=`XB@ribhMBh@D}_N+^ta2i+#UC{$)I@$ zfpy^3r3mDc|KD-p6!(4%6ebjtTTIkd); zh6J8F0U@#RHz>E#wJy)z<`?RoI_$PSgFLZ`7YVVW@3$YY0i^~!s%@>cnB+pSe7iAE=F*`e?|Y)6aya9t3&7C${~RT%`5H0LIC%wIjb@)X=j2omzX4T(NMEv$LY6jmW*^zX{W}ArK)jigOJ} z@axZmHt<%<${~e5Q|9p-yrw6}x=&WEq+6S`p?W=LP#UZGY$>DDbT9f(X3!Xgy!NvI z!nG?c`gNb8wTrDQ_7M1tCsF2%l?U9{c&@>Q1!c{LXwj1GtlR|9cmHbST?l% za?|OswXfo7pgE}deYf*-lJ`WiNtW<|rt`_(l(xHF-@Y1!B`5Z6D_LN}&BwuEA8#n$ z3}X>kDhzCPoUZz<%JJO1(A}kW>c*Il1<+KCg#Fm7>tXahiG)7TiG9McSo{QbY2XH| z{T)$4Z*W9k{TxYDV6@R*KA^nargPl6JNgP{;12-JAj~Te{KX`+s+IJF#zWLk`0$7O zFZWSfjyE>C(bQtf&_va~!U8xAq!Z=*{0F9d9%jZ1I;>w<)_}fe+oBHDLvd@&MRd zwRd0&MW%3u{H*p#lfLQX{31Y;-(;1V2m`qU;o9FOG8S>eZA>%@SUi1P zvfKMGXBkGSc8-2SK;R;_5)5cPr)#3}&l*|Z^2(KO+hMgGu{i;TMp`&o&xIqX(SSkI zx|JJ_{cshu`2Z!N3>g#xtbDv?A{ieb0CxM>dF=C(mL;aFUlEx21qa>F>`U6#**vkH z%RucMuSbIhaD1ScjyYL$#*=`h zTT0=#+h{_eBUlgb*ckk#!P2%!p5oR0f7!^1Qt`8)J4lVIQv!SX;1#@3!%lxr@H_%& zC4^g*{~p5?eMmgE{Z^Bd26vENIId0l*r*$FniBt|yV&J}JlJHv5XS@BWql!^^;-!N zX=4grd+fIaKKegSMFBMmU`jY8b2`8Rx>N_9f!vAiB{O@-uEzx=@|%(zBXRQN5iO8d zfTF&-8Axznh_*3fnM-*0>_NnA#DkbkIpY&>KOLDs^W7)1_B@1RWE+KN&7`LGN>R2!M=iX-RsRQ-6pFIiMIhZDe+!a$8>PbJ`h+--omGw1dw zbP}bDd^85^CE?+O9REM$o##pn)A=%4edDnatc9PqNc}m+zb1|xXF@@u881g`I6Q@y zdoc%|r6mKMIXNC}lV_%qpnLul>&bm}y8mlx@dV8F2=5TAFnIa7lQ#UFf=$?plmAdO z2@`DIVN)kX;rebh^qxfkruF`UJUECC*F=z1V-ytvj9=)lfw2Twj;Fh}t$D&hs{(3t ze$V!a2`fE@K2ODvbGTw(7eg5I4sQv<##BIWd1@!^8Sp`akW;H<;mQxaSb?5iHsO7F zk5iq<7>b#9$$ulLUk%-xKZp;J_@5`p_A%7BulaxQJ$$t!#zSTe!e~;3*1if0*`6iC zPdB6GfKue85Ow(gm^QEdjVN+0G85P)5b?m9sK$_SRm0xc`@qj{N6Njn)*$ zrGf&GhU)~vh)De7FknitkO%?{PSQ@f(%|mKlG3xq!){tuSeBSGK>j~t>}r?{Ju;*( zuD=tvG>dDlHdWiAb{}(DT(?{Cwva7%9WU@wOE$meJjzNRxW2p6ON4uc2-gQag-)c? z-g|>}aat7COLui2K|&NaXG6~W;|io^Z$-`YRJ__N9w*i3`pg{TRLR{Q!vT{L;GSqf z%!Gtcm~$w>3(7PrBleNgRFN4Q3%tjm>uXw_hcxy$6!d-Hh zKF{)*S`NEG_ryxUi2fCyK0E%4^P-;4o&Y6A@O%ozw5tj7Ld?XOsguz0;%6Jy1_I67 zG4JyY%H3ufs1VRA0WLY0H_7fEVrQr zuZkZ|?A#PtG+v8eHM3AggaGYoNlI$sI6A}dm&#k`D1g1-J;!?uz-8P$62MURv0(R^LSvDeXH~8zw1V@6Qv3Gc`s;+MhrHcX~-;rEJ)&J zJxn5?*%3h^?3rtn$YqTllNLY;eX_0}%ETNnI}3 z;p+r^)}owWGQvl~C)>%T?v*_ra208|0tuwcx807HXr^|K6cdnqk?Dqu>*$`e}p6GL$pYNy$o(K*_6!xd@i1lw(3o?}5wXHhq3dKiI1diFX32 zugBA#wN3NG*rL^c&zycB;sC$gGlEFvlU9?r%NUvc?D`iKCW8Gw10`h53awZH&<#ac z4M@G&XjD^L1=d!)l4AIvgV-gp?Y%w_F%u{gwm{tSItMzC-g_Qd0Y(wBXgZ4|+#)&x zI6Zxh6S1xFDyD>p=q^V~eACd5If~(#4DSJ(#|7U88X=6K;~|xc>PWV#j-O8Y72&_K zLx$)H7R3>~H&XWcBn?y4&5r9sjM&fYr`H(@RBz&>;*rwLWP1w;sF8)7ck9{#EA~Qs zy})?w`9&!zQMmYcP9HZEMgD{F3Ub0p0FYSp=kR5MZDoGVcWS|>e!;5O5-%nQU}!_> z6W@IpVT_s@P`yHb8%^==)UMK5;SHA0xO?gqZ^q88DsLb*;t|Pkn`6tfYyOg+ie{S+ z%+nj1_|Ux3$GbvkCc%aSA_FwS|1KEK;hTBl-K_te4?Gg?(4y-0as;l`$Y-SB%>d^u z7*LZMq6YCM!z{n>tm6Rn3lRQIN8syYQgiDT#tkMWVeFP?MUoSFt^>}(qtbGY^=^?h zS-b7hjSGZS{rCWL&}DuUAXL6(^m`@KS)ykP*u{ve?t)j)JCTZx0Lq_mVU&?-+Q?!a z^3d>}X+(4#d&u%y@3Z|+yw~0-^$5dO-Q&)SC3)kQk^-3@fF!npP@GjC+C$rW<)I2k z{aix(=j8YpmJ&qCMF72)0c~=#-|wO4*a2~!$9PKn?)h;*F`e;&K54s)N&C_OodkUx z7{+)ot@)^v`_YOdCe~zw1wg8@{H`GAzv|n%SW`al4Y*uBLC2>6QUpH@nK&b)9pLNs z;%xIYYddNDAa8KfYa37Xa=#I9UZsw_xg`I)(CDOmZE}e3W5P$mpeh?K(RXZt2SrK#!4n-ci1AuV(_P@XRXGQLysg^lG{`o!m z2+y!!T}v~A73dB~B391AK2Y06PqKX0|DvMh0Y)2d$Qg*;iHP<*iPBgIpyVmrCS^eqO zRW@HQ4C&RcrL~`X1+Kax;MzTktcki`ABrEJ-S@?Feq^pAYEqw&N!{Cg8h%J(Yts_w zTFv1R9s+{L9d;e%H73-;Gz+^={p&g9G_b?qVKI%BIRO3QB+$l(2|AMK;SjnWm#Yzk zKZWXPymSSk0`OO7BEx*V{vzjoM$qi#!NVI}7EFKQg0%o>LjEINn;5}N+|}^Y!ze#G zP9X=QG#&udIZm+9dRJi0Q_r=tDw_TL@om~1XfOZQBWcl1$~gCRsHSGD2czKxS8(RH zE$u*OH`XXH+os?$>l#; zV2i>aI2`Q6Y=5(S@7X2hFn;_ac%f0{8BuK0Cuw8HnYcy`38s}tUk#Hytw_E$ zqwrJl=sNF|BS@Nf(xa9iRkM2ZvIPm}@P3Ybnu8KF^8jh^_0i+2ac4Y*y!I7#c#C$R zg+wg;Nk$_0cKFK@^F!sp))tbktyZ=$D+_@(7HkJ!H3FPvkbyyU!Jt!b<;D*zTT%rw z+9`92(O^v&!^Z-j)!2m*tu}dLFe4unSdM18kCe@(dx?h7(#uxMriO%r5FgMTvXDCj zG;1}bf9)ca>F$I+E=p|hUHy&k6Ny!xe)pr{_1kP3973VWAsOkl-m}XWA(+%Uo&jB} zUt`IRDlW)P4)0OHTsGyy1cYCDq861WU^1%N-1z_tnzxMl@>#R($2K`+wd2MQiqTiL zt@%34Tx2-Nv;mB)fTa_mQ{EqTAo3Z`$Re))+v@#3>J&%+C!rW>aO}w0dRpnoEQ2)I zQ5w-P)C&`=v`vaCh6ji!W=9@QKR<1_Njl2@C50s_$QO+riiuJzPmx4Ti_StI+>#6~ zA{ze>D_qq$`3%j&&%z}l1ls68lKRlp+PZz3=|!2%)qsDyDX=A6xti8 zdbX-CUs99wlofX%xcr7!b>eE$fOKex;XgoW??ka`9S$rGPa=%UpB zZ{*Ll%9v!qN6}-Pdh59kgs?+AVq#I~5d@P6hCf3(*d|=BelCQ7=dXG&`7-@gz!h9 zF1{@gJ3ZiuwEiy2TjA5dS-1mIy1>~1F{B&yA0cRe@kgmM!ZgD1Ks4!Y3Sk6P<-XPD z)0Pl8-ur$2<24QW&-qxX@QvzYPm;p5BaKhNm_RRfZyBEH7d05qa=5l2`z;@GebU3d zs7TomOWQ>%tj%Mkpck3d*|a3ynUra+C(4Xz8&S=WaI|_gd}mP11skyIA6~y|>Spj; z>9hmESF%pU)KO3Tjd29ruZ@Zg3*=X?T6(5s4e$2dn!O}?6lp&Gb`X1h9avW|01@x% zbg#N}qjhFieB;THn2SG}gF_|G+5$g78UkiQR29y9)B0xkB^d62sgJV=k(V0P3kD$X zVvYCLAuAJZrjDHgVm*mh*FJitQF~mCgPkw056d#OEvw5fxs#zJjGaWY|3M zta3zh+DQOFy8z+iF^t1ve$^rjZWu{)>?~q_lXG}=4PcLN4xCiE=s6~Fpxpw5D+Tv! z9}k$X^HYyjvWQ8stJ48#sAN7t6Qi@;6X5*YS=7NI1?(3duQ}Z~d3Gp(I{qwHUW3SN za>3{iYlTv7fP=GvI#wl}+&}PoK&B4~gd>yFefr=yM+IhOW0$r6wvyBCzw}f^!&Cw{ zfR^TwS?3Zj-sMhJ4!K|k4JZ+G%Uzt-&F9fy;rkb(*3 z`WFpaEIHDv%FZm;_rKm71~Fg*#eaW?$HQIAx5vJkN+~R)k6{_OK8)}u@7lZrXG^rg zPDTVIgM&>rpeQHL|Cb6E!1((N3ks*>bdy{$3nh(OTG#sw$Fi=AZv9DJsvy@&0+0^% z1ENUqxt#ur+jw;QMI5z)!vqkcOHZ3H8n8G4e9K7|`Sx}fA)~Eo_su6Ic<;sCuupI8 zWFLnN*+RoLM|!sFN^b?X`wix^J|$WtlIencKYcMy2nr|?_BqHU_;h$Z*J`WigTr9f z079$oA9BC|qk`P7k${IT#|)Z6|5`)A+UThIj8gYYZq_HL%9=y{!YQba)dR|(CO4#Z z@BnBAYVgn7A+3KePJ0s~war`=!Rr6P=TaKBxJa$Jec1Ni<9h|+@Eh6P(~5%9cO-!x zZ9(gZVSvG3;t;{8bWB=&&o%O!$$90CpYW}V0J?Ki#qeed8c1SFk7Ep{1>!8!`%{9m zJ|F>E$iQUIL4OghNdf0L@ZnHY&%pnv8?{!f)0*oEzV24}n{3_3q&#pI!Hqp12kBSL z6U6M$8LFB*rfUgCo+p7sJyVXg8--)VWU%U#p<}J@y3kgmgW+FSo=LHWADVOHwhA@@ z*BU82JXo?j`qPs>ksx`V3oV@$<06c%LQqy@+^2TIEqBn?pO1(0N2J&g787N>z^GYl zKY9TqFCzGWg4H{GnHKDyaA_n^XcYTIplpL9Obs08%AhO{w;2fW9K`^j8&~Bw-EdwCEl@ zJuNBdK;*t1iE^s2ca8h0Za6~7^zdl?=x#kTel=50Hf6=S76R5)l39whA#AY&=AN1o z&^*q^_DdU_z-IlEr)@2@79F! z2CE&@?6oyXwoqH*RiI6cpBm`TB7oA!0O#MiMVUU;I0-H_8$stUIlV{riA%WxzdkPH z!RIFgc!}hL#ucP8-KB5i7zp{S0yhz4NL5a1p9gzj$d2E%32qUxZv2Pt0aH~#=?9dn z@`dut#V$$#VBaU4^^u(M#radYpQQUi4=82jNOH~?-I1y55v9MBV{yl7wV1#hU86mC z9N=WcMaZ)$#bu6-K-4dO*YhMI1n6pA3(;Z>3XgNXnORU#{99b)GjT-lNJ`UxooU;A z8V<%yO%=w|gSx}6KN1W4TyqJ}P1*HvvrP~kHf`e2poSK5&0OMLR*fOR$;3W1OqX$~ zPq`Ir4N9)4V)QuK&XRu1mLF3`XXA@im6aWr%3An99WcrD`1x9Keo4ft{L%w3pan6z z(ES)P3p&aW3u(_yWGu43T2a6y90?G>lfMoYsr4v;71B(YioKFM;}!pm^t1%lT#|EeAW#B;bL+F8~4$z`s88}!|vk9oh^44T`3re;DNFfkd zV3vqjd0Kzugf24Swx;C3rLYh}dz+`NKvnbfrBSTW_|Sv`^6xu6h8o3JsY~wxQm^Syk%ze3qdjNj zKB%ny15a~-S9BI}2pKmeK8aETS)R$w&Ywu*L(Qd=dwgR3CI&v)gr+L0=T6^TJw<9a z-%Km4{$Ts{DQ!yhEr^5!eE%fk(l=LH+{2V(uYzXnJ9n5OKyGmSO0A;$IF`oWl@u*x z4UJ&>S`zEK5%>9QD72L^dvs9kJr)ec=g_eq^V4vezNj?nE;=H_=%74Rz!w2x?lQ=# z!Fn3K(&^fAN3JZ2LA|=`Rl%hC=++*8cck`8-@2-z_mk`Je1O z*5EGpN;;}mesQ9-wXZcHbJ*Dd+}hhKw?crd$YhQ@gR>373Qr;_skj{N4 zoLa9#KG+TcTDB(5qedPabwG@_{q=PUU}tA73BMd4t)75qst$MyuH9}d>VQ!R2E&Ao$(z zmDf}T$?deSg4GVtryjp?_`5Xw3Y8EK_vJOwrl`QUSaIo267=`!A62XdQu#I0&a%GW zin-jhH-??wie@69K}39EJk(iL&E|__VrJ)`G%LILLg4AKczCd9lx7U1Pg1ZGQ=Gfu zcNdaJGFSimAd|AFLfGz}u5OC7NnU=q;wdi=@f@e`&&Pa&=lwR4tq%;D0L1{#0iBQn z$Hd_-U#Hq_tW(sk--`Bq-9>tZiu&{ic&fb>16NT%S0wWPSo+GSDBrJZq>=6pLAtv^ zejqK~AT24~4Ii8_Fm%Uz@qgZruH_o$zUPW__TFdjQLUHJksY_p zj=19(pjY9^u=BjU&KHZjZkTF2U4x~5fAUB9*7Iq;M}l_w9{8dK_2nM-1Et@0RVUA* z-w8ksv+dC_(U7_hb@<$U-jRs44kWCf%JZ&M`OPflaBFQa0x0u8uK{Gd;h=NKZ?n21 z4*_tdsFLPCfs@)>iRCm^BuRHx3Y~bQOKYmv!gUU?cW=M`h?!YS`ft~9&dC-}Y_wECcd$D6A&b7Y^tzXAawl^Y{D-$SVMUz1LJ~cnhQ%X3Jrtf zUqxP2lL5&bQfc!;O$|TjRsGPP^s0| zkoi^##&A^39LT3nKO0eD@`|?1)F1-7-l3v<{x1#7E07#aGqDz^YuS5-Fb{)Ek5dVm z)rOM{bN?#_N@KV)55qf~J2=|itIe1}+&Xf-BbxseaGVkxSG|G~=L-i$LJym47DwWW zuE*hqV2(jWXDJq4rp<@GXqV2^REexCFH6t}+;D6!1B77Jf)U%^kV=OO;cAALA*^v9 zI~sR9e(LV;UH95?UEL;UJoWA=JWZGO<#u((1!!Xf(}>)MxxSaZihc7e$ITo9tgjEh zno<;Saj5}Qd(-H&yVRbv#ptl{J<7z*92NlwDH2m2k>R|gQ~lhj-V?Y$x5GeXaRh2) zB&34(0Er_bXyK+RSAIPVCGR_aNKr>01^ExR6*xm2V?`uC?@Qi_+P*q(sURnP>z$ap z_uvmb;QY;d0jNhOKjC)#JkcmR3&!@HPZSTUR9kmU$q5PF`EiN%g?EOR99PAClBkGZ z%L=l@PedT)Ijc$JqKIp9FtMACV>(>nt-=SN1-Q5(UNyQFZ;A0(Kiszs>&s4|m|Duw z9PXC>4@OTR-9W8@U)MWb188t-|CPq*-3a+7&yzzxF@4RDLtX)+_-Id;k3Z(^1Y&!@ z<_X@EMJOOsU5Jt{+U&9If3XpI+-6OCe9&vXS;E#8j8_8?_WCI$#zu7NTt0AmGUSx@ z^_zjWU>OOr{M|CvwK=!lQf2ry|4zZjh_3BNNiG$%I2ZsyYEdYC#>p>{Bb(bHx6j9olkAkY` z`6yg_sb?QBrF{GBT$LeLs<=-G$XG;8*6fA#e5A@W2&Qk{gsp;1BmjE|k>3n9%y~IH zy62tym?Gaij!yXBJPNO0|M5pr95rIY09ye+z`PIF|5^^&#g>?e;p{xfWA)8E1ve`t zVa&mp(1#EbCHgqK0gzpAjpQ`@yFBguK@aV&BXHqyHSDbVc`)#T_$P1Gmn)poHg{jvwG=zcxUsHgjjj1?Xz zFo93n&CX6lq-!(K(G6vdXK100;v{JU2)!NaE_Rh~CZLpGxwYm=;Qqx@_R*j+`y2TM z)9U`)RdE<(O0DR$x1`5=h*P^S$YSjQvV~{^fn{qg1^cr<9y2CZM9dBbDToV{Clz|} zVFTfgK|UP|QL4%hp`>C9Z2C0pItETp@BkyO=Rap?K6!mM@@XXePzt_;ys_yQ1^%n> zHn`(y#VNW}qSK0LI^8crVBQj&v`|vAC7Br0JBFkNDRFp)@><^Ky7$4by$&9F|7#5) z@I5ZKvX8%ZgY0=r*;F*UN8&@ykiH7mUaS)|#s`$5r`%idwb} z;bI_wTKFRQ4;!v;!lZo}i^25%nwOu$(G5Uh&Mh?2<^XU?r#HAH+ zaZFI%fyQtxf)eBQkram7_I&7a^W==S=cPph7H!9m&g^vTx8yHYgqh-t5uZpSt18RV zz5WCIjXde-4KP@;|JaV2pL2tM?bn1^SN=lMogC*)d2U9khHIzkpFb6DR{40oQp-cr zskh>J@>y3Ik~*CSy~$XYnXfyUv?Y`N)O@Xb^Zt0uaJU4}Imc>?hiRknoR=a#T} z*OBdWa`JE5Z@&Ds89)V|hkq>R)|!kkH+AfU0bjC%Dc?_HiQc)S9os$8pxo8$Q?xk} z5Ir!GiZ%esl_`EsG9Z5vr~K8Q4E@~KX7n!sj}sFghX!3hVXyw=OFKJ2Bmd09f8Mt_l7WA*SSG<(UYQMktCP9EfLNk_`_on19A z_oP_%t!vLCcRaz7e%s?FEA7kiPXshnP={>zz_Jt>u_tB#>S!(V>2l$noCh&2pLAh> zSwOIwug6Au#0%w6LkVW<%yw#Q*S3P74(VH3D-8W9-QEw6V`FPx#(y>Q)BV%Q(#qXi z+bWPt&uptYTAN0U?WT*dtta!E>u__Tha)k2ATrnenz-CQ=5OX<&cDv=_r}WvxN-l- zMlnN*$+8zG8|*4ve2}7~Xm}=E=1woxZqGu;@aNncRJ5L|X|9@NQ;5vJ?EA=T?o3Wu zwpS53g@j)q+D$A`T1q%VjkN~hqTy-Tb0kn*ZI3&%=%&Y!n4EIddhoDOrUo^^C1I^^ z=1e`Fm+FC|O|7+IU%-ZXjR={b)6Jk5(v|vq zU>|jS?@S5wUYn`Hh45R&e>JDWU5r-3IkHKBU}fD*g31>Fz^fm5`k_w&WEFk*(9iF| zc)31h20~pVXxe)R>HS|Y(_BMw3^Q6aco5pv;WEoG_g5A}iO2uh&(%T1Gt|Lfo6p1e zAdwf;XJXI>Ji~`0py5I z?D~b80|9qVTs__<*i1F!Qh+XZylqre9Qkk}9IE2q(Q$>9)9gu>k(r52?B#t$eS8WN z3R65~e(5*Htakorb=y)IrfRXdq%f*S18K($WuB40u2q*|70cXFo$o1iR zU`X1diHaT`IBB|%w@wY8(|;0~&(Lkq;hO*z!XD4t+_}`UM0T`8@|ZsiaEs*_Kc!k) zxkzK@hKA!vAoLhhz?5XEd_hg>>;@cvhdO7$abRCRh{@1(R1!o|fy@TVj8Uy2J5eX< z)BDHLfwkiEPiNrF0J6Eh{#>xO!l?b@hQqsnoeA(^(gnxT`fhH-=|FLIc#bPPaKc25 zIGqPaM;+8*prc(hP`U;kM9#mQ-D0g4EI?zB!V8v%c-7hk6W@6#1&HsyIioapUiaEa z6u+KD7uYBWQDt}+Viv$)Ei-~Zm|!H27yOc}PUKh2VV$)pkj0ty)fGd#?hTvb?rXRa zt6eB|D?)>~ch0L*lEa`gA{hqaKeIW|jG! zjCa{zmNvl;`z0mxSMjSCv^F+FBhbk&KV8~@10+m`a~tY~B_ox5*K}$0Fl6&@abW^7 zFp?8)q9pvNT>ISUbLpR5LrFZrs44dUC3Le1J4@(iwR!!7yE^}BU=(K>FB_av;Nkn` zN5U>9*+BJ|Xfxig5Ew?0_?b%?kRHR6kSo>fZ;2r%A!8!)bp4K+&klpU!y#n|>a&C6 zKVPfoc)jbR?CHO&-E{6V`%(RqT)zg7TUC8*kmq4LM14I)Zxicn2OHU6eXV(HqpGE# zmSgJN9vQNMg*S*=--yuM@o@bs$18)t$^T*|3;eYDFP3}7%S&!FB;#HY!2(148)%4R z^~G=Oa8BzNz7!PLZRVu;#*_4K$hgmN0O5U4GXa~z;#8+{0-I5K37Wt66zrX}M^#s{ z<@$}TK29_x8NvnbE=TM{@yt>bJ%B#5`X~$|(=ps~CrL3`@CL-;(6{q$YU39x`cV5}hl>j!3pvlt9dt^UhR_JRth zkwjEFWH7Y2O(!Pb?$rtcm%IM*X?2W$81#m^n>cgi*~G!1#_n=rgQFz^qNvGf*uBII zY_Xqcn7R0^EWP)cv76lmnJR$71t6TS(;Z%jYfpkedo_O$35LTpKkK&I=K%h{dA(A-|Y}q@=31eM$+T7rFtdO zc6H^r-$9VV2FBC-lNh*m`_21I|D*i0Dh|qQX6p5SFQ(px%XnP=9hU^aw&pvR9=7N@ zGKCm7&qMp(=DMc$=U7%j!T1N<;$=o3ejh_S$kZ?Thb4+JlI+A;%T( zs%3wrk^q*39^l^wQ`I8X4wL|4|H9Hc3fE|*;eaN84tXQ-T4Z8#Kl#@4W(f|6oBx0O zMVStUBnH@*k;x6p{k>TNAdj;VI^yRk+H2PbH0M$9<^6npU|a}HmrerZ zaYOLgmc9rlu%`uF_uNeS#`PBx-9!f5yIv64De*BgL^IB2mT6QxSA)LtK}mtPtc8lm z{}~wi`#hZZ4Bh^`T$-*MfW1m|rw0YI{gWp>@bbkw_W>Y&`^v{xv6AolXEA-4RT$2U z!%!aUcQIt8Eqv4R%)IiNh&^vi&NTArDEdQi6N5LXC(b>uQepd{V5D=cMW4<+^V{hD z%kkR_0PeMw_xVl}%LXu=z!cnF-!23ee8D&Dg0O%+NQr90GCc5lF*@n2bY~((7K}Cf z(PUO<7tUv`yE^`w*eeh;lfVs2xz8(jK8qB^&Vczd0lwIstdP`sgKF=H$>cBNYb%)@ za1CIy)LsmFAo+#{02dlmer5WI-IqSt61B7g_W9`)>+sFpm1aIR4L3{Axd_GmIxt>+ zz;5ICsa>0QE|eu=NYGX(Db+o}ub4caq;a?_xzIV5FqoOHjmav?-l~hO;-l<`!V<8qm?s#R4Fs)bPiFvk zA`h+AGL(svkod!O0+_z8j*O?;PL@PH)@OGc(U%46OG(H-%Qt5&7S}z`Y!qxu3X5>h zfbnU0MK-X$voF}_Kw+(ZF*H9AS6@3xKTGw-yrn2fHB3sG7qGQrx*)+93dti0 z7}|hwgtUqPNOIxh;@3)#+i{;(TX#0lD}~Ok_o7q&>zv9s9$M0fOx33BY5~9~OiqVY z8nww5^h(26TMk!I$n9M)^xB7M`D}?gh6M2OFDiq<=ryM0fSXr3b@H-kx$elo&`xzZ zCARx>-R9kO!{$i#C!pnE5ez`KPyZn@&x!R*gX}nM1+xLgu8-pO={p3g5a)$ZwBkWY zXb00Bo)1pnwb`dhb>J7nZsU6Deyee{1{GRAxc@?|d2h0oi#d46^Iy-P_>qSjOgd2A z$eAHSasvcwAKH!9t}Ae!AKHPBFxcH_nZe>eZXSoBGQ=IZ;FR8?8`-_)ZyBjBDkBEv z<#A4F76e2tZRnJTLlDu)lqhDLaq*&hee!-Gdp>z}wTM4r*{9DU$-NqG2b|Y(voF2a zsv2x8T#kSxmOVOEY7Du%ylOBAG|B4X+i);1O|$0-z~)=u4p$D#p;R`@pObAWFbJC>hG|aJ}?K zI~CIiw83$}tsYd#b9FL61`#>p^=@10$&maCdfo0o^`N9N3`Gqy0fq=9i{&rq$Uj!w zvwMCwLWYi9>@yrFP~z*E4@-b_$s+CMn{wCFE!Q*q+ay60;4sKO>HGW`I6K@GuNv0M zY4>Uu7v#4upPjOmEyzSR8Mb>$$ucGROyU=PeRTs3cqYZAQw$t3|IgL6w#*MqPSeDR zeEIW7gD6H?F_RA+34;vzwr)kJhP`y!`(IeFPBuGx*CHiQ!m<&{R=+i4@{FYst&8=X z5EL=OL)20u2ARD(sHG1e=0=K$hXswLh(v&MI?ze?t(@+1yUkRzM%ooi4sV9C&+DV@bjC^aPD7etRRpy z`)zw{F#20b1S|_^>XD9-8XD<`gIEVJ5d%l!3zVTj|0Q@(@hKwFV=7_>d8{RC50)15 z>0v=1B`Qv9kGzOXUA|5xrESO zhuLPbzi9T$zM4vO4sUW}zvxj@z~IPco0zl^4%67e&~#F;hLj&R*AEd!#MFYU_r(iB zc5Y~W%Lx>@C!nwdg9xpD+g1ec4@WV=U+ z7SQjVgQutG-FQKM_6YM`P#X09L%%*l8tb;o0rS&!?@-eNV-Ekps$qc+=8Bm^V0 zUnLc;bR`0*V|8GWOSIjQsvu)?jd>)*$5!OGR@6l?-mT@+B+{1LwNQbfGYaps8tK>KHsdg}w4J!0{@UD7YgV-2tUELbRuHs+0 zU^FD+?1$6M=}X`h0Hklh?@iNAwyrA@={lrq4fFeZESqjVGK4|qV|u{c!pl6C^Ixrp zyP|U+@l|Z9{$Z z#g+EB0{~%wQg0o&EC2?u)qNjXH&H+one1ir?g6kmR`|FRq_uvsn>ZIS^jt>}xtNp` zfVQ4$n zs2?rm{RE6?-dv~Wn%gR)DMkG!orUtEw8)oT0M=RITpiJTF6T(}G>S#iPHpML4&X!k z6}o@K^7Jg1^v@e9K!N0%#a#);(=O&YFJs>;A}t{mIWu@5A3}L?s0qfKPLK0A(`Lm{ z0PZm#P(`lLtokQ&L&uJEJiv}7#eo%J;1x)A`Z6+L$s`mCa#%j*9tDA$8H7PyWhJjI zt!xYEZDzGU)fnH48z%zG!|OCj$4BF?Bltv1wELojY22Jy8Rb5iOU`eu zJB-BvH*QXoF*0yi%L5v_LkJ`m!`673#WZ>}yz6Bidof#wQ*#pDpdQ#DAS2J%riE?Q z*ahJSM~_jPtbs;9-Km1(1k|JE5r&vh@)+PL4=yiz>CJL&sdwb7uUw)?i~?B4#FhQo zlM~p1gbM|X&zheLgBYvd@AEl*VAikE18_P}ZI>Lorek#4led1ef^wijWzeBC`($Zn zjnn5H&iMjU*EJ}4siq4*MDqk9arnGbQ_;MEIoU7zc|=-NN8`V^9>|pBl`{Zv(XZS3 z3O_bvkI#*^|B7cjf(;M&eT}arB}}8~++mMOmGfo?e~K6Orra4dz-9)tH8z-O$oo}6 z-oOH3WFF|JBtZEQxcf)9s>l*1Cgy8`;k)yn{>$2L6pnIV3}O8|s`7xqk4<&2(i~Ya z)3rkG09Cbb_@&_HW(=#v7wJc^G9wC~I_)Q&!-Q*mu3I7+12h zN9lZa+n{Z`IdEi+iPBPPe=(4u=)c0`*)~sRd7jW1eVl5whINJ7iSzaEOt4Ibx?~X_ z9Y@P@KQT(FZe6eGAo_ZIi$W0;_{*Tn*Dgq-uQUEh-MnD13u%3^$(x#LX{@t zjkT$Z!I6f6{OI;2I^pnaVjKP!sP4HLmpTG3f9s{q}}w>DKuhbkqO6?`x;B$8dB7&lW(ro&({@)bvAtFOl|aBqD2)FY zMhHjUHGnU*YPQLqilWGClmD0G=<8^D35ILK=B%L_?D2zF!g@R>s$Wie4QAH*WhVZx z&;MB&&d2eng0H7-Hoj!mBFB24#*2F4{VG#$2%d+dL6+YQW=$XbbTmNpFd9N77 z9~exek&m8QFMcbdL|~$*lpTM zVtu)PbHa#|$8I=AjB6vP{D=HBSg(Gveaxf|45%) zfOi}Dp8OB#iRH^57TO>0`O3PFQ-x>pE9gnuf^J(XCa&9v17eo7_WdJ+oxcYm=??Hbk>Ay{!=BtxTgua$u`x zg)Y|b2n^bn>v@@7-{+CD0kzdaXl?e-h3!;98CZ3gdP+2>HrVNHC6 z3GJG#&aoSN)v=JZJr*-x?XqS{ViY5PFZHYKwywG{cP6GT@UjeV&qb)vuSJmQ6Xnz5 z==ok{iTdziV`E?Y@mNiMH`u+pN^v)B(7snwSBL(3y&BoD>K&DpMK(jjR^gkK>5pE@ zQC-f{b-!q|JH)~PseQ2DQyWR5!W1^ezbdI}IdW24oh^HQT` z@S|o5KA>>_hKB1Plxl2)0zv&k#nJjV+b$1-clp$T8T)r?CEnDES$TDh8b^Iy?O?K% zcDaC>d&qnHZ{AK-YL0AtEgHYo2}H<#Mjr9gkf@J+_`Q4g)afSV>lLW|g!ZW?-7|0c z4EpzgdG0`vB7MBUr;^Kch%@xj^UGtZIySrueW3QNMmFHY-Q2Rrwvt$1@~C2}E`%J8C2L36T{L_CxgDmn zHa4g*Vv3%8Q~#d3%1QGAF`?;Da%4884c|=f)+GO%3muZus4wc5V=^p~xn;s+gZ_}4 ztb6b6Rn&%Q5hcjr+rbrrKo$&YDE;b;KYV!BJa(6=fXvzk$tvG4UHMMv@NotqVc>*`=9{F)5~9Ii&_4h6Yv) z`{;v58s=D+U1l#HlThM6zAfi9)4x@(fjwo7JlTl)u7#?jt&r~{9@FRFF}05%(m)3v zGyZPE+pu*B;%x6o%Y-;GeJO+N;o-3iHFMI!hDSu)I64~35%sZJtYxJ7fI}(d8eZ9c zcaQ_E`Te_lc=!zGVFhfuX0o`^HE$a+htG|j%D5S+`deyrxM|a3@z;DIr{||ubhYS> zyB`L|RwE5BTmQOqMu;m9oK8`l>%+j2Xl>^Q^fYB<4fNK}hAT3^W5bmlX52B?kWOzc z`!VLHTXoGupT`wG!qPi2OOUR(*5sts+NAnHs~KO|qdV}GN5J!z`>Qe$=ip`2{m^=` zx3Pa$Y*PLboVrzSZ+2aJc|Cd&9JNRn=~3`-s$adsf)C}r{^Y1mdG(e4d}f_tyx-z{ z;x9bz^VE>E++#^B!xq;CBAig0Y=V|DxJvXM$ND5035n)LQwfE%>8rk^DERcKEBd$P zqOlp-GEg(7iUWGYR1dMy`9PZPN-OfU%kydgrJCAX8JGq>PTvbfpQv_-cH(*3(+F{` zcfwOl$%z)E8NWG421Nqv#?=vSyx$x+0gVUynkCPx28POWXw;;gDXW-#$mFe znR8rfs&>kyPJOBR_1$tg(ej_LN)My;KQW4hZfI{0!vEB)xUwa@ z=_fdSoUF+q#F%@H^E*nwq?Ho+OXo#|*66Liq*g}c$CmE_&n+F#S2s_au4FaM$>koq zyEY>O!3XEVxoW;16-OplYtu)kZT}qcc89|q+9ZC;=F?L%Vve!m%M=*M=Nau8WFO$y zDlR*5MtqWf-DN3BvSCxGK3LwElBg~Jz4dK7c^Mx5&Xe6Dys$eA7hH~C_pPfechrV( z>ARk9vqeKpf2IfLBi`p{eiK%$kh(qX)q-J_01in%e*Ea|@6Ve*L_tTV<>C4E@Q|q< z<96`JB;VNu3N8%BBT{aKFGbF&G)Mnqg;&AgN+<~mhzB3a{U6g%(I zss2Zs(`obN4X2%7wFA}4=Z?qqRr6COCB8zY#QeHM)AAqRYP%je8Y3_tNi{h?B<+;{hkQYpZh9?#Q{AcZ*X^sM$xcrPCi`@&QWWg zq;V-VAm8Pf?BOKX=_KEhh`R+zM+$9%W%A@-#>`f+TkUJt?M&>Lk&m=~29Cc~e>-a6 zn!`T0(dF0?vYfBCldDJ1PWYv&%PjkUJfHr1_KghQE;* zLOK=>O;SzIikpzg=TF_({07`MD=jj#aTXPhLdtf!_ZR+VL!AJ6Fc} z7$Bz!?F@o*-JeDXWY(^TPjac@J-a)sRM*hx1&z$m@Nk~n;oQH~Hd3Upv(!G;_m3q? zt*b24V9P(*HR9CYkApGlrvg<8+N)AYVx_z@~BHqQ6f zoUr;(jVm}>jcdnPR-MxQD{alQGZSlxATCZ4x~ySGF2-Ck@nBEpz4L{)P(W^krBXx2 zpgC+iTm1!v-k?#D$+JDe(9m=N1fAWzawr8=u8{P>p{rWao>FB8`T+}Gj9crI{ZB%U z!}*#AkpfzIZuA9*_vbbhbdQ4NtDW0FMJfun-XKr^N1ckoV9s^mDXcO!b``WpxQ%C% zUeEW{w=Q-rsKS?{%D-vc<-{gqXp`{!dtU8WL*;>izoCrM|M`0vb99cTOLstoBL3KD z4USf@j`?>;TN?K_bN5=}tB#GOeA>)RRZzK-dsq5S+rquL>l&%z9F)vf2T(;#%aJBy zs{I4E(#@f#k>Y>CjyVyTd_np78aBMEHH+{~ID7U3F&D5;qPbS`$gExQ7Ghc9!wmQk zZ&mZdTd5ko6Yyrv4vTfbdpn)_ekY*E?9|Y(k)B}Vj}jW}^NpbI8rtQgXiaHl=!bT}hC$B6UsOfySuaU-WZS6vbN2i< zg5+zDo}ccsDueI@Ej-eP``~A-GU*{77&3>YiI)D?P!BUEk-C`ExWFVgram({Kpd|} z8A8&g`}Cvj&}Y*a@241n7dOz8X=s-Da$%#xinDciT;?^0wM8iGeJ+)9z)J6!X|=Yo z)W;v8ukX~N-QBx%U0uS{GAYI=Fp!osqJO!pthkL3c~4E=<(FJouYCw?S%LdV=IRYs z6CkeOD*Xm5SQg^>G6PgHSyrL~gXVghiu$ia?@b{8Y@5O_%5QEh1-x+JlQB~5*L?-5 z+W+q2zE8kxFyN~Dp{@8?)rM-_x>rHeW_n>Fec6<}@`2bU0d?ZYb6ht5S*r zojm^b(cZO>aY%LU_lOwoMtU~%W;hiE1=AhRud~ig{Zf98b8YMMO{mStwOM8!gQf2X ze1rmuns07|7ssjJEtl_kOm#D46NeJL)J*mAcw)w>z&HNTQ#j>bk4e?(fgY!`h?v$t zId<+fTkme#pN)}Va8h5`>L8RG47Dps{-h^lZ$GT2(Ypa#>77i(=U_nU1bF)wS=Z8cKp0 zVq$ywdke)|Wodt4Etk$5{K@RT6|Q57YcsZI-U_EGynWi??Jm=$)+-PEaEW(^8UF`q zv=407)s?rzk`qU&Gt`t@@*-p!bb-n+t=VNCa8*#R40shL4h$KH^Phj&_(&DtC}jn5 zTOJFHgJVfa`Y)owZ5Zv$7bLc#>FS*^rmm^O{kOZ{SbwPee)q2>%jT{O?8mv!!sc@% z(@7c+PXletKfvOqb8#fpm#e*sI!YZ|J@TkL{Pa8W-g)3tedfCLLu0iSlvj%+M2#@| zvtnDxHbjsVjT&nAx`#^Mt|w9J#AjROqyyif4S|>#R{q+cb*cY!ihHM_D9%WEH=lJK zrgf?aW98t%!vF?$`RK;TK~8OVggjMlm@!uqG_-|GYxm=0*x6Zc9oDjiKMXW37Vp^^ z=!|53#^CM0u22|qEq0lSw5>_c2$amYHFYSUVru)Yk^HA%L#w=mM}U}ag7u$(a~GZm$L22c*Ez>d!fVVoyuPE z^ez`Arj7B{ZK6wLdiyaN=zhg6+tSrB+B)S$JYQZrvUKf9fn7XlpWYB*eQSACzqG^H zTT()5p^KE9RvG-NuQV6hvSc>dw>?xJqUV$od9!-0)du0Es%vKk+OW1vly~(g!l}zd zvF*J5t(YB3YExIA$C2*zQAs_FE#?mvO18`itW<{){xki(U>DS}yLA<$$meWgXh=Cc z^h?G8%K-!6XqhY8I*r#%RCSI_B_Y?>>7JmVHY-g`vcd}|Us}wycw*ZY+bveFG7YKb z{lgs1e>cyU2_;C?9V~;4=kbT5*&Xzt65LUVqo*zK1r|PyZ;6m7CnEjE*1?A#_t+}D{Q_wZrndd&mh1ld}B^rKrXBdBjn?%qQCz2h0ZfBR~z z_4JUX?;45n5Xy)G=h1%+7One7F7fuFdQ4-}C7W>S(T|jRg&ilGUl<~Nn>K&TVtGpXtv3YwO_JIg+Fc(#{7l#HeuqDOKkaC$p=wofd!A3p-$PBMpFU|{SZ#iTzXh+n2QsQC7Y z{Yx{=YuJCQ=-AkWW{ZeT*n9ReLDCZz+)X|W|Gh~~7wBG>YicC+N^3ZGhlZgPG6h7+ zP3p4YdLGdtaFL=jp2|Pn^!&cbX#l7P0esLk(w}@=JIu&BM7lDOK0{Q#@HkktCH`(H z$=kj3JG#S;vpfyo`xdNB&97m>_?6mJ?Gk6_N^%4$jd+vxvd#NXc5^<@=)1lKd`f)s zDaxNss)>AQDJWik9^{~7_g3>imUrg*jk?pQ9+H)Jt2fOHjtg}{#W8xa-IIMD^%nTf z>BX-bkIhHPDxolR7xzcvZBp zv$6i1n_Z&ZgYH;)oG&Oz2rMxTvHZ!&QyC&#YdE8;z8V08nI-$=Lg^tRSkDlHj=2@{xlKw-5Mgbg{%k;x(X3-JXG?BE zLF64IQ^*h8;NuJ>tyfa6O(ik3q^HQZ2Z^59?keF^{m zW6k}H&OR@=C2e8_A9RY_{+~e&;<1T7e{(V=z*_hBSfUiC9JWc4tzc6$UImD1UQxeE zLZOQ)yqEl3-VYrYoP^t2OwoR;Cm79lFQ)?wUj6&QBzCl0fR{b9ZK$CHA zinV^(!Jd{_F%SY<7pwg&;=m>IY_8JB3se|t+rNk-pZW*2H<$4@E{O&)2jKt5XOA#0N5PIgw#~ z1#5r&#Xr9{aj~LaVx#-fNZZ~rclB#>EldwRi7qO!Onn7@N70pIiShw#2B=*-d}pbs z?Nn2W3^DXqZ@%;=*qg5sjH#!yRiT6MjNiwK3s=x-^kt>~mF~YMYmS3drRMXt9VmSD zQ78?hHOL1*nlUaP*>*41m=Ce8qV!8()BK# zk_};CM=5JlpHM4VIm6_h*T8=m1^=;`t)58J9sf-gW;9L>(h_YYVRh}^ert4yhM5etR{yrEz~4>vy9iD7icrn`(JD8 z3g9MLlia=FqKnDv)aOP)@^3Z)gMkHaZPVUrxTd~@M2%d7KTQPdD2~^xSI!!-$hJ&-H(P>h%*J98KL1(jhWHknzSxkFS zWrhuw*a`^vNY$Vt)5a7F4~b7aO7;1}l{x6gKblF8o;Ffe+j!MJsNF-7KHL3ajM<{U zxn?h#?s`V(={i*GI1Cg7bQrTp+sjt)UJElT0*q~UYnnQ3BzITIzny91Jw1hc66Jat7$k#E9-WR7OZvIQy9ohUtfw^~O-lVu!EMz3Wkb$u-fZHSt;h@hWe(})@c$JL-8 z8d;5m6L>&Jb^hk0Ocv_Y>NZP{qB>8k}ltr7P)SpvpgRVa+G13N{@0`H=Bb7}K z^$>4;hW%Tdf;7QX5sBRRSK;erT)hDkVc1#7_^dA94?%l(ri!0ioO@wrEDJ7|KeSMv zUPlyMTHY%rMZ%u!qS{%JyB4u(dsSUY@yJvbnU#MtabTq{l9gFuip95KHflwt^mDDb zyf=U{y}%=z9}^dj{z1kQGKvZdi$u>u`R|l5{Jw=~d(Uz8T}RSvM?rU^@ykD0ZgRHX zro2Tu-_0$YKh$>1d(TVgidg-PzN`uKGtoR4!3Ijh+;YErKM^FCEI=@6^lwZG;++^d zQ^5#a;jWPn9dcNq+Q51nS4m(4=nv_SW%P#!5^`3Xgv4WQLrb$GM~1x6p4N#_DV=?v z-MK>Na-rOQ{;zH}Z~1sCwVsNX^{aQJcm^sgjlmOH()M|P#i+>J)3j}Pjklq;BtzTf$3WU=EHtu3diu9pPrF_o?>>^1*F$;na&>(QL`sZP%DR!F#dsl>pS$b$-G*E=1dAGgm-5$}*} zX`vUTsGS>+^DG;6$=}_+Go$-u4dQNR{S%h1Aj?MMq~$UzLwQT$b4+L{#9qobBFT)q z$-E5I_j;na4jl#+E+UqnEBy@eQ!jcU0g|p4jZR8x*D6`THqbyw#YmS1_TKmOJ~#W2F6G1&dUo46qiQ#S%of zzxg}XG?)%G?)Zw=GqTmoQv;H@=Haa$A^CcPdNrO6%e*$Tgqk~ck`}_ubxZ!TY=^M+ znSbjC7uB*^ZjVR7KhmjjZP?S$jg=?2;-imGr03d3U4Lt+YUb8fcd1dOdHF^#Y%Fzf z#EDUE&cpbb8laZ}2*DW|1)ATP`}E*)znRrggSMXQ;Un}aoR81(n2b!sN~loT&q0K& zOm;*)^V6)S@PmOJRPXk$8)HbV$T^eagnN92laCILYQqUWgp9y^9O>|BMMqh zm^jS3vSshkm*_O6BeG-R8~4#aauq_clbXc2J*~_l;j8s#Q!C4SZ6m+eVpX&q)5u5V zlss~A?@X22Q0BL|g!wy!IiX%!%VhL3>dbzp2yg`Pg zL@$X`3}oHK6*RF}+ScMZ_xRz(OW3_!g1u6kZBFV&XktZAT3}sdzt16yqWjRft)aI( zJtshs?xg+Y?g;RS!H8n9cs3UWCGcYpANRzBaIyZ@edsFS;(IXDyPFw>q?=~H3ZS{( zUim;c!rJhPbgodXkS)KpbK*R7GmB;FmdgahF!&7&=t1s&0bbz)T z;%ISk{==*8w|+;0^=<3bJOWG(6i>s1^Y9rKUScgt0v)tQ?uPPg+S8EAAbtQ^NJY#U z9P%5y>@mg4Qat{G9DhL*U4zu`Z`-e>e@=3}i*!&3m9X&_+3@it4fw3-3{c_o)k2O%-}X36zOd>?Qyl(j)Zjr{9Y19sSp{o@Ni)q3|2e#v>q_a3-p{VF2WBHGj+czOmihEjnUC z1%&J^U4A?#>*LL%E1A}7Vw>!sT_O0hiYfP_r}?ze3pYzg!0}#;+0(6*xK!)9?&&J7 z&oZHr6q?OIt}A&yDvf{Y^pKe%mTCn{e@J}>+=k-H_SPwUE06K&KesF61^fkxB}eVt z{jRiLgLewha)P?KckOyIKcr>a^^`wLze32E#>epR!LMum=k!}OZ!W^h74eTy+iAzN z*@{c~2y4vm4OzTg`zSy@?&&QBw_z813g}dy7sPH~Va?h6_&{2GXQ@t;?mkml<)#$I zg(Uu(R|xUhF}jrT_Jwz8*wxeiC3ve$$`pkb>OW4dIpY*~@V^`NU%hzk^ zGu_VVsKTkghDm-bwo6UaSG;Gx&gTyQoI5jRN-9yl`VRa%DWk|jZONvLlP>Y8qMppR zJW3b-xu#kd?V~eUh~nDh;l~e!B*L!LgZqq_OWz56TPb-HtS z)fYMm+K7J|5RH%LI6X+JR>5EtXq;>!roLe?-^5$(@rrP%x}XCW6c8r}bA=Lr+LTLK ztrwf=R>Og(s5vOqf`};Wb=HK}f_nc*6I_hP$n#O4L=8Pp$~U7`o}Kz)qfO|r7|q~n ze8^6s2CH#=fFo5&k>;}ilB&4&fe#@#!|PHL&5fK_-W^|~1k_toeqj4tT#btnsv@er zUZ5d>{Ilkg-jTC3Wj;^>eRTc)^0%Q!xT5iCik)|HY0cmClPAVDAbD+FrJEp#cY@K> zl$r}Cs3TJVtYu~^UkE5AhhCg!m;!zz1%VB-TK(`_jY3cU#L7mMJBe5l4EK``o8Gj! z{+!*{0NUcmTP=fcL8WI&OOfBifeS-LvK6UJQ6=Q=SRFIh0ihk2w&|b)6SeU6bd8d0 z?AvzQ&IvP?=l6|CQiG}e=bbubmzLRLm{P9RTP`Qgl%r4Cx6R4P@_`-p%nob{WBIYP z&BnDGT3_TG!OMouT(2oAO^CEc-#NVJ>X?4(p@(SqWJTu--1)C@@Q>Fj2e3?y*Z-sv z-pCREL2u7|gnY6ii>+Z+>ueKg^LVi>WARXMJ%qtCgV(>VdTMmC!D;uyYY)b>|5CH% zLO}iO_WIrGSw7UWVD)}Hn}e?d+fCZe%-{XQ*% z`Ji^BWw~X)EYT-v*T@trN&N^_+JeOCoT$c)9@CbWCZSavZFydN%(9>q`R4Z`MUxghm(IG&f}PfgLYS{K3r;&HHYwsV20E z{iH?FW%8_;*?&oU?Jt4*ueg$$M-{>ywXH4axCzd17Qf!6!XT9b-zoCVJ_@9fw=o z`~l6yRTsd=8^}94YW+*hHFzlP)prDiIo2Kq_@U9dSXkRa7Ou!mYV~4mVDSCEVg%cW zL|LelERJKb{axX=x;h%GtmwzNNwFN)6F#*=IlGvB6O-7!q3z;kTe7H@2aR7*1(gWl zFnrrbl`gBsRt;~!Jbn=UoUC}JpTGIxFBqY~|3bQm@w5RGE2Sp0paRh~WSIL08x+yX zHjpvuQjL~7of`Jd7_O~<7Sl(s-!olX=iJm%@aU{i{YX%06~tMwO5j11bcSIl=)XuQ zpidWP^kulpmUlIupR&l!iR<_#{ERE-0@ZjCD%44YNr%ly+4JLqn|?ShqEv6YRDW#$ z$34^OvwQB&ojMO#4x_=n;xJO%@xaLvOODa+J*!Cid7&N)%O^6;^CV@Kbc>F-I!dUM z8?QkVS*lK;@qToQfo-ah6dpB6(O|kVRfU*lVfIVH1pZM zEJPhY@)V5E#nWt#?)fkJ^Ql2PDx@bYr;9_Vf8`I<{2!s0@f1F^?Y^-g?xuTSk`y$C zVUA(au&-c4g>JiKR&ag%Sx2ZTvfRQ=5K~fRUX3+0MT!pXp{SaLFh)(HB^L0$6?WrE z9JOskVj`1NyJX`<*~R$k14%PPwW(KWOYHFe)CmeV=gL1ZwNeRlkeD2ai2f}W?zi-! z%sG;a19r3D-qXBh0Avi|jXn&f=mLn(cOA&KF#s71{~1aGZ$M)Y#h#F+OKORZH%1|0 zg1stW8)xc8Y~t;l`;JveU*AN{t(E$+O&?My4eahgNO97$`ED>{xpQIaz+4~yIzMUA zT{(4{y4hyk$cRZ+HbHTBJ-{0%%1X5{xB@G_TPT1fBHlsPxR+m?v2rx9c@u65O_-g5o7dfoHN9xVNfM_# zE3P4$Gw#YFMMAs?hhv`Dn>4z{sZt~`k*yUPe)%^_GP}^1s2@BpmS3Un(dKnx^kGLU zS4(JuopOGVx9?BC2e~0b-o8ICbRE706H^jBtu9FvLS1k|H(6VGhZHfY=yyfNL4+IZc5OSk%;|A9Q!Jb)u~x&O*0% z`9#!cl+?NotnVS}Y3G8qXGhRU2{->>4XXO`7p!FYhz z#$5R4*{r(p-WRD(`)fXkUf=#Z94Uzwb@>V=^$5ea3``Qm&n^^+)b=WF1)t!XUez{r z4KTd`?O}cyX;F=#U|Vm%Ga_W}!b(5!KFORjCc!c4MqimcpxbpqMBHro9RSpB*Zx$p z076qW`jNJ{J;7oj@?33*49@Lw1AA!U-WCsVB|ZxnMoy^o>Uxs$a-v50#CgRC z^J&^U1S%4m#_)B&*G9KEdp_7iU)e+$I{KZmKcWJqvBsA!W@+#SPanG(X9~JbtU#ce zu^){B@a;1Vr5rIq-fj5j+rIBiIO6{B5z}O=;%mY)lfRKoDN0~2LVi%&8ywYZ#xTsn zd{1MD(%A|3T?OG3_hUC;6k~^BizAAYBD6_ zJ>ZeYdSHzrts&0JmHG_eB=ORQ`TWoGVg<*g-~D=O`KZXzS5mv>Ec85lL-g+bMP=Pc z`<~WXZLQ1$P83y*e>v~UhGWh)t7=?qmyg(&-ahYHpk3H=Hl02B(l%#1?}ME#{2E%_ zmFQ_9bLDO9P?1;E(G&R<*ykqPBRW%+WvthZ+_vXBWY_y%bxE}LzMqEUyUMjYMx=CA ztPX7~1uwEoZsVu}as1OMSr;huXWSA!iaH?-U_d~UL&z9^x2qs39Z^#ujUTv;+AUah z`K`AjG#D}@f9aQ1s$*%r_HTMjFEx#Q23KLfgXUf7g{V?Np?iJ6XzprF4&1Nt5Uw0I z>0RqPqx_x1cDP7;2Ou=dDfClBk(pAG?=&L2NhmtZ7q&@Lk&Y?el{e2OWgku~bwVo`%cH@Po5{^*2h$ zWA1e7K!Va2R}XSh$JzzuvyNK5t!tFh&M2?`met>ZV5ZMEYxJOEwOGoysV-gn32@TG zYjY8$U#7hyakI}g>0smVT+H69N7NsxaE0tc*9Jq{83-eD zC3z)i`7cepF4IFym*5H;x3%K%lomXNXEmOVw^s!^*m*=*h~uddR#R}IX3(|j#>10j z4?zT&J{|*qKVlM4B2_d@ulhmFfUOzu_*Uyj$6_X*KgS()*1C2wQ#SJnWye zK>HCf!z>i!1 zo(-CW4cWpC~=s$HDuzp^35U{&3?3RU435N;kaG@vOu?F)Ko0Q6T+3jWu|Ub*wfM1+;mf z2yCC!*TErpw#r8ttuOM{=eIl-c)X`KjU=ghM+5))1W7WzWi0CYU`gK59jG&#w7BT) zC{_;J58BD~5dlpxo^j68T6YoOfpx6}TVKAB9a=jVv!Y2z^!8_1tP9W4e$PasezoE` z639?!DQ~Tx@&LIE?8#yHt=-n}$w7?j7(W3uttS1pXbMm2qs9OR+&g-l-*lW0@$9KDvkujLQv(|!eAUW=bMtjL8c*<1{qWDIkh~= zH6|&vsak?FL~leEU}e5a`gd7}nS2U-NFx+nBBzvRP3yggftB~LC@XJH8p%;yq<#O6 zj~i&Qh!QiAR=B!sDq*Q(R*?cXx>S1Pg4_G`KKu#HQJbQ@(4XcS%TxoM+7HY{p1?_Q zhpGNL(t}qZ>($Agi{!_6(bcBZ1~kH;oX{r~(>>X8n$M{I9N@ej3NWaE+W?@1#7jM~ zY2|3G$%HYYOR|GmJyNzH6{{khn)}k@=4F=|qgbLIJ2eq~=XZ^!Yk~J*)4``*c#K`h zY~LP*_NC^O;Il)1HT0SP;&Okfl}P{j>S7nAju(i9E6k4Gk0$(UGxBXUVc?OW z%rSxMuV86*5{BOm>~y9sW^oosK=?LGyl0fyaIdCpC!ktbCFYW`EZ+`}fgN-8ZN1!E zJv4D@dWEq7ftfWGht)~*X=?FsSMf$-CInRqykC4X-WG}Xqge5A%SbnBgiX}OG~loD zGfn>$$9StzpSIhKQ53)~vNyZ4Vs_-|lBDh4N(_>^eLq7)IWd3c*i%!{)%a|@!}NUu znV6~~95}mvyxtL%E|@DhNx|ulX{bG8kx9m|(Zfi0eyW zxx>E9^{h+kD@loICq(==$j9dtKsdO3iZ(AB=Ra3X#tN1@H)iWGLok)nd^3ESSjfUz z-j#pX0uhP3ULXtE6PjSJ3jTVtm-=9Xl#k&{#&$Gu?JNZXZ&0?+leVsrh@TbWgJPsS$Kr>a||>)uN~EBzPNpiX5)ZK z(>?3_30=Febi+BmZh_(T-4u;jh6?G!m(r^eAD{{diD5Jhe*8`S>e;epQmsZ)RgAv; zgLZKhFMa2!;ndXFK1y`5VlC}x0Hh6%0At_gUmmJ;mU0ck52PG<=g3cd;)%I^$Vq=fdp{raym9{Bg12tVSH;>zw}U8*7-( zCnLkdoxvV2ESY`B=bm2)Z@9Md$ip zwyHraqKeehTehpYHNz&f zOshbsk`!~fX_9ogDcb28her=P@r2xE{v~Nv{XRw>>BYIFR*X{;kS*FBKd4A{*33$^ z_HOmin?wJ*n7lwaRLN5UWyI55r<}U|k*T;?q^+|W;tzxA_wCKr@$AKA;|S<1BH^$! zq@(%irQ5-3(BOKnZyc>-JH95%phvj7igtWd3@^Be3O;+4Z`8=akfa~7OnK5Y_YfO8*&_7Nql4t|+GDq=$c79zuQhi+8RUx@E$TB2G7J zWHe}x6XKbU+!}_D=WVbbjUlpyKSC4Ne9*aymIDbtmQP9Iry=jRuk!)`$pN6A*JM_H zp(JXmLBe=*_V?-iS0l9E-P%7TE;3>OI;Z-><_7Q8o!$-laF^bOL9s?xCr0C3jYJ(G z{u_x@Z*SDngsKoOh4sdNL@h2_nDCjX(h}suyo+5c#TYoHu^pE zABHlsfWwI_JBZouTj11=e0UU7Xu)lMn!dchWtw_*A2=D)IFWCTAs64J7(0%FYzo2A z&@IfY8|_?%L&8K8F_?_oqpar8oPJCG`Uu^OIpuHUMFmCB@<{McO|h`}%^RBqVF6wl z=bF2jo2;Ij=xYcUx?0}+TQ!i8HNPrWKE9>$_})IK2xDg!_x1bbWSWb|6!jGOMI&&i z*_t427J$$99Cm|33fxXg*~o@tqMfBe+~>+5-QX{oi49D12&Pja`cV!!}iVrz4R!0(Hd z!nIE*eUTtEEoLg4W4bW>PiI2l+HYhsR~7NbN_`;H`=>rWQ)c+YSb~bgFj211gA6=$ zn9-V`xTG_{t}*(!>cHN#Bob+ImwyDe*N5lMu;<36M4q5g>8ET(GrqnOfDbpw)b9@< zXLyQy$ol#G_%Yc;mDH945z-|oAXzm#kKsM!jCY%Neus+KW+r$uu)gr6%t_Q@#N49{mH8oykb8gR9m?GjomQX2GaO*l4{J1EC8T5Z_Ae84G>#07t8675wgu z^|D~63qTH{XT!vl!K-o1#`s3jVvf_T{abVt+1ao8k*5d6(9d;3ytsCaqon?sGxTB{ zqzP|cbzP-}C~&Xmt51~;7R(*>QjGrFQ-O3(A?18hnCeRe7emgkO#QWGW5B&ayyleb zA7%6k)>7;@yOMN0wM3@k=%~PA!5Twa zD47{KFneR9|EMxl*hsANY0MD_?oOO*FU6Lv!UZq^SB0f7B*lN<9IP zE)<*=n&e&Z>SBkd-$@%k@^;z-P-`eX;3oKlK-(o3YvYv+UdH})c01hfIbW47j2gk| zoMmixf;oJh);N$nD%nS=H+s_}G)$QTR1LS(#q)q5ACTGcl9!$X(X^ON4(W?Yon?M` zInqyg>pHI(k_WEcWiw@STIJP)GpL!Dndmzy+qhNXJ|kx9RTx1q%s+O@Od^fh9xCFNC;xBcKe+@-5+PDG+! zyaO;{v2sM+uOPAL5fqj|@Ba!mKw&Kr((j-d8qzv?o6%;3cxZ!{trPumafli*shu+&MHz zotOIffvB#AfVKKF8)_II@!yJn2yp*2Mr4~8>=BvS(LtGkN&$)^2VKhZNOpwlKPtMq z-eDX_;Go&gvxh4eZ8bE_D7bQ9rSJ-5htn4L;Mq3f07?`tV0eA@$_9a93pLJkccb%k zyZJTp^OhYE>Ip({WJY{kt^-;8s7+*wX=7*|Nq^U+h;tzzqHV(A- zW%ctBR*iD$h-`jfaSF5kAlyNVidXFf1Lt8&ve9`lOrN%$7&$kv*`5L{nE;g9@uy1= z`N!)u3Qo@4Uue4_^ew--b*v}5D9H_5Dj7~)5DpLuOyB8DpFCuRpPVu4|> zS9khR%J6Nl$(nMYZ@I3WA6?-<&3X(s|J{xWBqQh199u4b{>e*z-g{pcG~V%2Q(o$w zqnfpf5sG>l)MwE%#E&SDl**8FP@i>Xr$w~-#TZvw&@5JNFy9k^P}snAP#*}S&2bb$ zJ)4E4%{X&1hWR*`mThRE)NEUUjrp?RRdQ5H$&VAV`%14-aSaV%vwPh2H}MYnJLLAjjg+2h3Vs`sym~ zv=4>`*Uq^mTtgr;Xu?tLog-M&(Hntc_=vH42~+Rl8V>$uE=-vfg3w-ouYw3hU{EoN zySy?mdo@6EM!k3gpi<)XTDrWz1lBl12DA%(t*~q}j%q#1d0(tWv(tiyCk^)(oFATE zZ;fV{9_UV5uO>OT=26Uyuw(uvCQ%MOs#sLW1FMoKlZW4}EEF6Gj@>WYg|@Zx1$oDY zlEBb2!g^628VWtgcQk1TA51;fu?iv@juQE*ZS=sSXOsWTW50SZBMSBR4V^M0c%pt= z^!X)gS6Ns_IPlv?cnF~V03NV-vUEpzkFU1LTTH_z5-IxQ54a5LhR3^6Jo zY<_%c`pf4(*7Z{MHb%u6xJlCjm}PZDG;$-8FrES8Gqj`U)h< z(>H4Buv&9Lz!v=fgXCuY(m6kzI^#T}2R`|rJAw~bZOn9-b%)TvLMo|C8C0ts?$n_L zbqA9p{+b8-aUZ*bJ*EmzcFT&m?7TkIc>e~b-czX^>4ZogG+WbTM(FT&9hrCP(|(JjGEOob@MI_p>P8zA$tfXK40boXzXuZT6o^mdWF>2r zhwyCL!r zj%t0zRgW;gQQKN*ngP_9oTQ;}Pa^Jz%Xtb9IdctAWPx$gVpgC2z_LJ7Xp9KMR3dHk z=Lgykf(ZnF32N{y`6gNXtwljlF5P!PxUN$N10_kSx5>;+fBC2ln0GGql*u4d0o)vL zyAF6WP2oB#vykTcQ(b(>n8v&{Nt!5|+*T@{px4@i zM=CDlJI>!%P!9USNjBP8_ajajLDJgAi(&SuA6rQv1jR>`3yIP!yebz0e{}~oj>@A$ z^*Ol(w&xrqjv;QH1hjpbZ<;Rt3VM4V5;U*4hqUmmk73fc08-YWPM>n$Ax>fx&=sNq ztOELIk?KX?)QgG0M*uQZU?2v0=E%sx=A99?8#T#lUje!@(I&9uTB-~DIGfW?D>GeS z;^XI+%9qj6*N?kP?TaF*&>KpW9;q^0N{k|rOnkByMQJVLKHN|!s>H8CwAwg`2*DEx zSN7bQ_6ETLAJA8EYnXA@a5u)CvZ^CPT(LiQ(Grky;v@#(vIgoKQPhBq#IX^`=l-;> zmW|IhZx@eb!6dt;#fJoT#&e1yNJy7z%H%CUvsD1mr^>U%h`fok3f#TfGNht1^x&F_ z#pM*RJN)=dW>CD(8ys2s+T|eB(6whEjNc%zoC8hdMRnr|R&7^ohlx^6bS3E8#1tWA z$Pk!B1`mHY9x=n=Q#F)V=Eb6f`ToNTFs)WreLV~j%Fb`02P2d`8JDzG5N74==TCBs zS>O9n@$e$TKSG#aSgp~WRf4??DHWn>%HX0H@MxCD4nBjNh^IF(XXB!$hZUfvYhI&37Hn-b9lupdf1c+D6Cq1!NIYFt0P;UMYkQAx=16m?LZ5LP*hqmL; z4KFWMZQ^%>+Z(DIsJnMg2YWO-i_AjuWNDnMd)K=@?3|=eVb?~-iwfD~SdR4q{%YQ1 z{`;1UWi{BQ7?(qtZdsHk(sN+JImR(*WNF8Ax&Jm-63P?eMt^v$f}|*6xpL53Q(XW7 z)JwqtyBP@Y4plQ7ieJj#F}hR|C5P-}^+^M~i@ttR18hFPg#-WL(TOY;FvTL`%AS*E zg-2U|qC!xd$=_a2BLEE)NXx>1&_9r6>dbdD5!J#2t9jYwZmQy1v1XBIRKCaOP^^_YK)lL zeQ%TC{s-&?-Bs5+Gs-%t)7&e*fEBrMv^ON&LL0Mg(*!>N*Jp(=(j(Cifj%VLbe9Vn z1oG9qafXsfOa!nW5QyFm!3L7hHuKJ}zMUo~pdE+dP4CHnk~Kn`+OCqRp`~RI7^-%-7zL zdw9io0+LC*gXQ(JkhMaXbovi=80$VlXbHw;;>y!3%U@IfIiWhe+V`gl6WHxb=HNB# z?3j|6Ov!FW8e9=r*qZ*ty}aL2DZ0FPV7%O}XhR&BRC7{rugk@>p?326>a&gSnpX^%W`q;^R_bOcx+%DY0q+M!_d&en z-7*R!pm1FbchihtO!Y#?Pt*FxIZbxTW#a?G<29J0FZ9KyCLFXqT4sT5nQhW0SND%` zg4YipBOD+T%-OU0(3i~-?kpBz_3J`5?K{!}7HeM4enZKK%lZY5XffU()M%~e0qP)u zvgY!y6kiw6Z!J&VRm+$!*hC6k__5_RJuJ|ti=(;?L+09Nw@5%gl%+f=hV|({-{)6P zEUBy?FBV@G0#FE>D|0v$1>P~q19C+AHv=ihA8}UPS$%}xbqK3WKzJ$j?T(?4oNBtO z;@P`+Rkj(=@eW;y%Hh+09AytoTX~;h-SaS@t|~I9d08F>8d+Y&7=YX3-U+z(cmIM6!@2!;Jg5@6zw0x3I&*|hcweIG z_2-Xtk82}QvTTppYs|tuAwk2lGU@o~NE687pT{TtLUvF-hDYxKBV>u%o_KU=_;BQI zxH||O1{i?0sBWHJ3-xxMOBY&pQ5U^lV}qlMpnO5NJTbrCOJhrBg@S_Nv7!TIbf;h3 z5;Zw-6j;hF6PO3F_ujsLIAa0fSGJjRjjk*Vy_!#WXmsxwTy9T@o*DP4_@yyKKa$fR-MdND0Bbuu>f@L!pmTp5fo0yoV z7b7%|bieA~S!`aFIIt;AA5ZTiUMe}nzy7f1#{(<+W)jfuj748FmF|;Vsl0e~E+t9e zLx;0eZJFI1tFLh2H}|!f9X1+dq+g8QX0&?4|I-`lkc7k|SzrIF%}hx<69Y$v!>K1w z@s#wJZi5}jpy}MWB;d;nK;UT!)2m+7FQ^qkw<{|uIF1LpE*Ax_=> zDdy?n<^sHsz~cVWu-^8-SIO0UJx{5an3=g|a>EW3U+LKw_H`#5<*yk^Dy1fpa;I&l zgnS~M+ M_JgGsG)_Ihx7^=8syC_rp>o5P3W{1*Bb%5l#pl7x*zL!Z9MY{n0w6Rz zopCn2UsRpZ{6D;-4 zodhq(O9sqBJ-k1RhdvCZLRotT-r1zagWc|;qR6uhZkV@6N^_T)sM5|X0Ur8Ff)(4Np3njW}b1m*@NdLXB1Zj zC=k$rImrgajaxoy1x4Dd&V1fittynEoRYNU;n+|TE^oqRFG`GhtEIpX?#@s_z0;#* z_N5=M=E=PRyGp$;)ad{?WuaF&%4n|pVasRk6=i)lJX zlZgX`C0lH94hy1m7cRN`k8H(=;Nx?6leW9pjhghv?RL!%&eLK=P)JCqZiL%t^85YG ziKG_{;%62Me0ICTRd9)!EL0z*p1i&T(89`!j`Q*H@z~J>)YpJB!6X0Ya(`*A)?Upn z+)jv!pP&yguGWll3CN27Tz$3FZGqU!Vb2WG8Mw6DSR0Sxet9n?l^uFvRjFqqx@Uh1 z7!eFr`LO!bN+g>f#q@wH{?(_egKiW7|Bs!+XCq=y7raLs1l<6;5(>Pf^g=_5W%YX{ z5X+hPinz;7jw>5u^48@{Tn};yMW3PC(jk&i>QL`VGva_G&HUAyzj8 zWUfR2^jl%Py_Sg$Pflk6rJAXz2r|LF*q+JK426dlCEad&iS*b$ZdlYPDgU%WMDV;g zW$}%`c=cv9%{Z*Z(Sz#@*zbA|$)Nxg=wWs)8MPnN1P?3t8hoDUPirc*+0G51G*CNQ z6CS^9NL57Ml#lb>eKqg!8t5}J#M76=5;9^?Y9QY&JPMuv# z-07fl%+Xzg)6KO6baxg7fNdU}sH}#(RYe)#$~@O%7G6C98?%U`$?^yAxOPpn1!ksJ z`5P_sq9op5POyh2f#@g@DEjimfT5h|`bsrOxPu}G@Q^@+6vUT&TAe6HzDfDlfCJd@ zL|-1z3E166o}aBI5Bhh~#)I#*sWL67-gpHcv1k2Q593Zf{?V@Shk3<&Z=y}(<3Hoi zemkcVVn_S0taV&pT|fCWouw`fD2K49`dy}HM9%RA7c%M@x0h;?#&*cCdC3`3%Db%i zY3^JL7G#C)so2_Q8i-yd0cdoXxDa42$eisad*S0lj-dWY8JzfCjcXwmm2wtex%_}U zUw+<;2&y*xyR;Jlim?jf`~2=4!&A|Xf_A3h7qjCg4SjweK>wi64AOP^Y4kn_#?QM< za!%(_lHX~^%+xzVEEoR^Dk69Voc5;bu~PZ zLsKXSK==ZRKf8^-Y?e6`0y;1-tHf@l`J;I==RIl=I`_fe#HYY_TMBo&r!6O_3T#bg z31=y)d76v;QJ~_8s+tr1Rz8~XsC_LUu=@}Hg3DQPi%F7K~Da)0p` zDEzdi))VClo|K?;M7)OS-Iq_GefDod13M`At2^nKzi)F5pr@nr4+_c@iE$Q9R8Ul0 z+uc>z*F>71vC!X9$qxh+4*k~71cq!aS)gTc;o6CjD7dK51NwB6h3h*UY82#&IkvDLQ%2eLMn}*PRpeR7EKlX@g=CG-FXo z3w8zayPKG4mPyI>Y{7UPKbXULB1L>E^=BKiO9A9%7s-Lje5?0P5D!iPMfaKEBR^+I zt@~L(w@fX1F4!)*rX;#bCvZ(&dUP@9Uh7KXL;+9|571g_8zil3^PTwedj^0F$k>+a z&3SKw_NjIg_X81*&#%t{k$*_YYwhFgtO9WNKpCXBuWw|U`vtK|t^^K~*&-Z|n;TbY z(=`@}L^3`bTcQ{22Re&Yp2ejlOgf!j{<@!_NdpwA{RNyQD2@Zoz(ZvRVZ`t^_LZCDAU5gvLd_5wy;v@ z@ha{I_i@?!Jmc=NYJmm<9hBJ<|Je!d5crl1M!xNnKZtK6iwEI1mN}t5^`?Tb(DzR} zdn~@s4#_|we^fQS)7N8HIf@4JrV!S96hhWm*HSypQ|)M(di2!Lajh#5+5q)3taxc1 z;dr4@@f%)n+kAIq_ z0=A{@Bl_Uf5(JpKN&&OdZfhMHI^+C|gtQMY4{1^#E=WBkU^}|eFQ#&(&kv`*Cb}vY zVJ;jmUuL2JocwdcdUXEz%|j)VJscUg*q1P|orIGxD^}JIKsP z_(`a35VS_fQ}$F>9s>MNUd(SL3IDwIK#C_ZZFzm*!sq5r%Mni+uQZ&H{?hiJF34|v z$h})uRBDaAe|f#~WD7B(h{ZGHij|UCEFt|G`m(w47099XM@JbIZl`)ulp8&LFaz02k7B{7amA=R#JiR8n?BEOc>@U1`6KTnEZYiH+5RiV0_R!!oS5h$ZvlPeO}C2n zi@s@#3fKveUtN8^;JP9}T`i?QE8=z~LDb)VXEn~u%pYg!chjl;eJQKj!LqE^=N*Q- zcaQI+OvJQm;OuP!Bfhl#tS#U3RhI0pxyIV}8^na5Ff`g_>e|glE*pr%beg&}|LdWe zxnu&aLhGRVNThsGWl9}(&KPS$A5>V8Db;(%{Vb#P4Iw%B7)!K3zLn(0{8(4i6z$i4tW z&xS@RB*vhDk{dWc9`WM3GGD0S=3`wlZd0eXA)+dC1A)zY;Y+$cXD+oUUlUb=2DDw7(A2i2J}Dx@UEayk)wc4#&+jN%uDMPc*}-ki zTvfXAaueBSngxxB&DT&3nb3gs>$4R434Bi(yvUDYjL-Bi%Z`HULtOczMr%>jRkv?< zS)IjD9FDJ~33J^MYx!Z%%)-e=b8C~6{rtS5AE#UdxUMq3BU(3Ijr;&+007Fjz!(8q zl@;CCiMk$(N~Z3NofZU@LW(+<&eDY5q%kRwZc<>b1moH^{W^HhQN!fTABGQaBEOUZ z4uDZi0RVezO*jXcF0b5mbmDRLkmfFoPV!ds1av8#){I$7n`AFCgRCL&mROx|4B&gj0 zCqrvNCiCr7Z+7qqnbzTX)K+3v6&h&5$k}@W-5`s+?zPyS93mHOpgu2H-7>JYGO2@* zNTn4~AGM!x>u^n@>s?Cr!92((+tv72QO{b(6hVe`?Ie%Yv4P^cj4@1y=eTh8f~d&Z zhE~xfql@QJC5QLyA=<|INvC%^G&bKiIqMa1D$2C|gfu8APg=4CerL7zll#qJkd$ll z+E$S1=GS!vtGY#k0EGiqREuC&(iFD9@*G-sjdONL`(X*A0rqD9X*Nl1Bteyjd%}F; z%T>um?^ZUMrM=8EIxeb+QVi#TWBM2-5U)D5o>d%A^;YV8p=Xg}2NUAU-IsB^HKhca zU9p`7hibJ&>_KfZoM-1rU9^Ieyc$M#_4Vsf80>-wVP*&ZToW03*6C}&Q`||k+xK_W zc7?oY_sa&C<0m&ZmqVmm%T3uLZQUV|?(Q;CKEI7n8CX9z+@I}UL0WIOR*VEL3Syi` z@Z?4XFCR>z-yKkY)FD8k%s5SS3a>x1QhedV1`_m25w?+$8f~UKTVFul`$HKkIZ4wW zzh4BuX}HjG`L%I>p_e6^=2{4BLMCmz6#V`ci?bL~W$sK`&}sU@iE!ouAIysvM|s49 zv=R%{te^Yz*{Le@j6}hV07|WO4g;ffJ}IT{Dg@>qL7mxE5`S&*pX$jR;CQ|cEQ^sF z+C3siKA8GOBrHu1+U5CxI6M{`t&}oeWrO1|!>G4Ehd4Ly)KU3jIUujBWwb{F|vb%Q)!-UtL zt&hj~bPrD`Kn_xhh78+S`onO8NyqxJ*^3~s{lB6F2Ud~3mCVE(%IW=tvg6?V{u_Xu z0|)bbx|;?>CfKHJ^m{~chB9(N4OTkHi3R@xV;fC1=FZQ0fw;n~3V%g(aQR?#z(da-8ma6=T) z(acgkS$Oe|F!uOEAr#b^K`Soi#r)fi%hX76V9R13?L9694m$`zHK-r7{`s^)#H+}= zxs&#`V1|aq99Ji?)Z(Jm;+&AdnCkp|AUusk<0Q`OrZcnFE==-RpSkzhOG_!V{5fyzTykU){O?yVgeD@eqi z_Nn?t;xd5rdAb?8;Q3@d9l70d==5wsmR$q>ABhr;p4FW<7HW;Zu+n}+n(Ql%3=lf0 z;szV638HfApHH$OOo9SFb7JV%Z8Mo*fS$&j#Mmv#j=m4KWqpz}N=*{h7-TovZm4B5 zyWf$NnSb&6JBo@zAj~UUiUeL#<#@v<#-kmj~dZ@^M{v;?bP7^g+qMNfU0M5lA0`FInVhhb(gaI*yQxp(4q4XK7wRLVQ=2PH+|eE=<)1rIbDKtC*JOa^Gew?LYbDsJ$;3(fugkK^Z)pt)id z7)}QA8!a;^`%)u8uMqo3jio*XCLiK*4H;Bu2q5RLfdKA@tDON|$dk`M;%8EV>q@_b z;KPA0OD}j|#;vvzHej|LQ;WYN!9|)_VNf&Su-Eu);+AjmWf-FB?%BH1R(=KM>9W6! zFLMj4O&kCbC#;BjKvzA8Tp)s5Kt;Gu8+=VS(Uv(A0LBkqJ;8eFX6!pC+@{~{mdvKY zYgqb~N+L4w?82+gn#ejD7Cr^Z(@V4a1;OG2g+@n>EG?Q+y2VhBwF6BQccAtRtT^xw zmRo&6$`%BUb3B65#a#!tA-UlMa<=GA`YeABIEpmzaIN5KmPbC?+dcU0Z%PFO@_!uI zhmc!O?HwBG>g(I{ND%hx)}=R^g9p+%aCy$3Tb(|vlAVM${?{sg?c4O)r%yL+Kz77WOaSQdAC)RXE=2|5^k4wqiYiP-#TaB!!5QTq*G7Ut)CRQFO%;oA0-{69}-=fCDc~$RU%;3yjcBY-;2Hx6iC*caQ`1slr3aiH2uUj^*6uKLXk0z9eRDicL+a z;@8^J{Fy<&Q(Z6w0u&x@)lwS*|H|DLDM$>#!E9WXS+W6vWDGbc0c85dy4rjq)B#-{ z&!w6trvQ(1U>sA{J3}Q_`!PZDhyS9?-z}T2_c&#@GD< zgMl(gWkKOkVrHIi_i6&9LFGrvkD=oF?$6fGe%(4;04vD?2y;bX7iR0ESOjHZ$_CI> zP}pXQEFT1X1hrREi1Bq1lgaWrJzBAxrws1qQ-(NG&W)3k9;U&n!j*~iiMI2@_rJZ5 z_}sM~v+bJEDk#6Rwf4gHUmZfTEA4F_DFnm{N7eRs0%Lo((dEn?ZmRegeQ51L*(_4! z+oP`85W4IBOM4B~VXDa*Mxdj)E{n9qEQ%G+E75=;4&(Q0_m9v*F&ekQuik+vmtOoM z7B)|Qygs)?wgt27MW7`0>4fp71g@=>p1?Q8FjvhI=gzGVWN%<{{tqakEL)xK@ zTc~pOA%A9{()-|-=7oQbwt3+5r@zFZQVs7wF_hCQ7G_RCWzoHSB~+|vUHuF_&2m-q4k%Q*Y znnQMp)L3u=i}PjDvnQ(k!E?t5MqUB-6=_;9=_068zO|ybGVU29(_`9u0LiEMJCfh6 zn+%0LGt3VxjxF!KFdQ3t3t}%7@@>VP4S<}@C`fE?w;<$Qon7ZHPqzmM30qn|@!oGL zC>Wl%Z;=bEG`Kr{O)@zqFJbLe{%YH>@b`?HFv9XmDw~LXE!18wU;qqV&djxF{CM0P zZe~3iidWF~NC56K%nL(b;Jtv(ubk^*Co40@-0PPC0-AK*K%(;9D`|Q*zuVjadVjFc z07+;>2scY}cfu`zZ0-8`f01J|{0|>$OEG+HI*m8rNY6PSr{ZRnf6@23BCl`8(tHjw z)OaKyr_MUO`~-20nQ|oRV{rc5T7lD|xg6zHv!IU#8)v2m3doA39^D@#(OvRt8jR8S zxMIPUvHF0^XbRnk6T=piWNnjX6+Fgq&uws#LXkXUUSO5^`>-3>4cz{QV5XY-)l!e^ zqD(!`9jWZHV$?5e4?a~pOq1l{QHZ4Z0b3UCdA?xH&^Lm&W48V>OWG-NM0(v@wX>rH zK9C57Ug|E6gq<)ql|`n>A*TZh{QB)u|&b2gYlbLq}|rLJ?Vh*}_l;s<(;G z`%a&`&VA@)1{39GEWK2g_l*0#5U2Dtx4MZoFq(?)@Be=6u`4o%-w#)sv$XxAik|{e zS<2_m9Sj=9aP(pCZr=Lh1bwop)>xM|GF|t6d_Cx$!$D-3a4ToUbYOVDua7hUhV%hw zSs>u}2^cCW*}o#)1Oj~a^1iVdaLX&dD?RCJ?Ge2NWpypL73$dehS1p%Y_4Ck_I&aL zl1KnMSVcgyva?&N8(!|6?reit3F=4K<)9CR3kL<#b3WvZFI_ni6%NAi+ikP@l7LNxGI0nLM0;;y zBQbBzxyH5ASb+N#s;B!Lkf8@vR}jXSg3!F&sc7L#ZGngbqxjc^TE7w7yyJBt1#-q z6ews86)!Y4_REJQ=qhx&pekD&|Cu0vvfjS-kiP54RpX;y{~-aI5t>0|ZB^qFG!-B;5-r)+#)b8rpOHtBw--VOT#LaJYIVqCJ#?30YREdK?%!3I`nLtJ z8=bt*YMWa(wr>L8NzIff>69;M?7-^na}qTRoX>i9bUvN(8c-V)rdNS=a(0z_9<4s* zZBYF1{;U0w`e+}FA9?{~J#j6f1cO{4Npwk9O7=e~m*-K9vHS^{TZ@u^I+EUA$mUo> zBX+g%{xR@agJRPOQ4O|qirmxy=dc4fJop9zXU$9gYCUz4y7QS)QI%=3^yb*mXoHd2 zmFxIuO44lQUAEH#Q`@rS;&Hr`IE3$+B>)v_!ou1B91!XGEmF5Gqi&9F{{phbv z&N20~8XU*`(tEv44hJ%S{oSwijnPjZFfnpF4zIq~{x|Kw^Q%ueS*E(??aM>La_ zAu@1|dFuLU8CBqFj^(~RBuxNQ`+c~LM=Sv|8F*eVu99JLz#obTK#l}IO4F&& z50sK(cb9w=Z43cn2pxH#U&h40$~)}1`%Wg~J7Muf+Oxv+L-%(yCvzx=^fy2mAkZiJ zOusawSo*1%v%Nu$1N!FJEwMc1Q?2(%^@skpb|6vx1oK2?p(q7{jEvPNJ&LQ|0(*70 z$pI2gRdkLtM@)OG=mcU>bBlts0rmzq<`!DLe7LLYCSdugNVIlf9`lmb>^N9dlVI;QA@PIT?tB zfN*^RDfJ%E1fd3di%iqBZ&V|?d!7a9;VN210&t+8CIn^2&+(UZ<>$8{(N{9xX)6sZ zFIU|&XOsQxGNgZ4FroM7W$z9neNDWgV2P#t+F;Q>O%8ow z>8)p)5DR?Lx!zH%KbMtU90+sfnOR-3Vu-RMp~5N{_&)RkEDw+o`{O)SrB?cp<7CeA zWF7$y?fHGlFBUUzhVYuE*=W7m63)x6GDAY2!f%HcJH6td^#T@J*+1zBd@wCHhy5wxti;yL4X6$Hpf3%h?L2dq zcdm60prQk-UUsu{*_2oJTY=>bgK*5Gv!CI-@0rmZGxrc_BHbkV5Sxwr$ac}vlILON za5KqJ&G5jfs5g=<x%fzoQ7n zF9J+EPs+W9qh+5vVaj!?Q-CuMzDk1rk#@tp9nlSG3t9s#3pAk3dS&OkAbIS)R71qNW9i!DqXNSA*L-h=kK8ifu&5q>Js0M?Cl;2WIJc>J`Y*Uw-bJ}N z@BU$MVPCZLcamSdsJhWfOW`EU{D$$q-)lh&Gq=sQ@fBd}_DYYAbRVgoXY@@MOh+6vf}pz5#`Tk%{Em?2>X?WNh+! zu; zWM}t&Al0Z@rBC~`BHl6!613k-r#F{0gko=BSI6b~b6vIJI?z_u^@?_-W-n3Zi6a`{ zgS7IECtnX_x=%Q=iT?{b`wR!##O*tm55u7Jy4Yj*Ut{t!2jyGf^5C%q5| z_xsw{rXQAad1l-dahFL4wRQ+bR9w@UBwaWFlkrR437oHyiMLdBgu}MUO`!jC01F)p z=iy0`WfU-Y?jXl6U8U+9Tm*|{_9+h5mjr36<3OJ_xSc3&i4pBL1clDm|MHVv%59RR z71QXU^9lJPC=FnF0PVasA_D2B0>=WXJXR}ON=UVyF?vhCpq_;>?c98E6fJN>Xr%I4 z9fr#5nTZ7-B*Em)08zH`|9ABvrMdqnSASU7o5R%DWy9yCV5KWpL<-_L zrYDsJgC(<(0X>hxAhmw(Om6UPpvt%WvI`qZES6rm#=f)?*8VWgF!8*5XB(+K8N;$& z&q$(%#U22S`IqaQ4USeH=Nf54%XQ!L^T&Dyh8W^9#7dIO7`0tBM?Ux>_5wUO%pu9u z0jC+6ZgsWUwvax!Q01l|o$NQqrH~`nsmlFOr+Wq<$6t49hbt18f<2PKrk(BdhcqE8~@QJB$OR7?3@Oh-D*f0p0|$p;ezFW3sdIBDpQH zs=jBDL@q_w+~@bz0TYL)^`Pe<;f#nWUWGFaAmq!8R0I8o&6#XBN+r6^&q4EaPicX+ z?}NTRAJI$3fB^Q5TTRXUL6uL80JYe)s_oR%5f_O6@vV0#>ew4Nf|`&`H~XLfNjPKc zR!R&jKvDp62G6RU|FiP!M#4V85JCQbi|Pq*eq)#z0OSU>c1ynd11Ev9bhTt*etTvP zMT)0&DWQdx2?@HrKh+}w>XV}ZBrc^Gp0QsIQ;X)#F-m`~Wno9t0`@an=n`he5D9VV zpWAR!d$+pV`yw1Bbx?emp(nE#&r zy=Bxk7b|G|%8xYxi32GQg9-Z?nSnKT_j?!As`TS?@w(Y$w^{O2@TTbHIhk8*x?MeFp&#t4dA#CvYq&_|-=>Ce*NK#mJmr2$|7 z04{HFe{uEn$}pZfod10Yh2AFOUtxglL%1tNmG)$hkf8~mVE0e7zMd6WpSmBGfbcNSQE0{T^6EXc@`FtcQjs%wtyyZ9~~u z7k~(-4b5+l@4_JyBGv!|{-VrPdmf&^n%=~+<_7ae`maGcjuF4t75sRP zU$^AYnKpsBi~QO-Dh#3?WG~_ub{xf;ytWp%212<36^O%-gmSYO+tw*n_woyjz*B=x z(7M2dj3<9>mtz%Y`wDwL0BhPXr9#F&Nq}H}bgTvZop_bx>AV9AG2odla%9xA%=C{| zHIw_h$cb4?Hk$*3B#<;7C@kgSn1*u^!PszXqo%fH1^X7z=~6xjySz~&*73;fnE%uf z5-1DKaxk)Te_F%1Z=V>%Bwl6}Ui2(2_<8;?2zjgc14n+Ix)I()dsTos+wt?&mw!{L zSDl|yUAm#eG!&q@ef-7G^Tq@kKY}Fl@ngC`sU}5-f`xt@R2sb7xRN=V5d6)m+~}VM zPzR^T<}2b^5`;Dpfwvb72liLVF^pS9!GM{{#vO@lqM5PHzBxIuX1_TAtH|f0Ogu4C z-UL}>Rk#Cd|~>8{)M4YCJOCkA|{l(p5X|B?GUqE@asV&Kw!(_s(;D*?(Zy4wZ{2_5cA%!tfox;2{MV4^K1H8e0#{) z{O`~tMqT`cCAtp7{P6eyr|Gx3oCp{T(cA|l(I@=*ptqOG5jj9R`NE_WZ=xjk`)&HO zY|xNI33FKHN2s-p%pK*dY&^Rl-N9+^%WXJgdK?1g8v*?f7q^Uz^V~&7Y8VYd-&&S_ zSR3*CpIXc*(c2TC=EJB)LduDyOKICJgU3h{N`NMU`GV=yp;eE90wkZa&EYdQkdh5B zfR__W^F}GDosxPW8P0)Ff;=xW<+wo$Tv}_3*tm=1n&#!)e^7o9hUATwUo#=%MHef8 zM2unPAEzCM7Ygq+E7>*9f#3do{lc>T67lKJbL@Cu(lU$+kRAXU2VBC^o~3sVw8sEm z0!HE%77ULkBO9l~lhk@a+zKsTWZl|C`4*_yAr}mD0+svRwgJQ80lRX>5SL-8iN_?6 z(D7tzGgfose~E+vlhEzAsEv{{#>luI4AoDb%DpLP>=&gBTFy_7&D}KVyVevmZnV9{ z$1j#Df|3;2XS5#Li6@CnzzGvn*=j|+@6eEP*u*ZU>iKkU-#jxkZ1l$$2VV&2b+-FD zGc?_~QPnsZ4%$SOts|)1ce6$<3f3!&YotAZjnuoIf?H@C-sb9OyCb@Uib+dK;+Tgh z5!qr;_k2aj$A+=ff70%vJI5EY{{e{z?XW3B?JorrClYkTzWrhiW7U^UHBRD2j(D${ zWBderlLh9;6Mo2heMZ`%YB>>17dLq;iF~Y{WBf1!;&Ujw_(1w%r;1rOam+ZuP1&5% zKS`L4(tYc6Z|teVT|6oxG617Oy;hs6lCbb5)#Yb%ctd#NL77hp!&v7YI#aR-kpMlK zQqU!P4(SF691U=6egdZ&IY_184MvjrQ7$fBpp8Wi%7P;S65rIE6m;YF={u{px>qf7 z*O16fuBZ}vJWFSUqq=tdF2lH7Vgn3IY7qGknhyEn64OupB;j?TjqXLRJ!HPZ*F$Ah z`*Wc4J6Nbe`0%d2MrRt+Paet?C>DMEs_xHoh9^`~iZ<}=2iyXWIn}`|FAG1MICqC}tP=i@g{S8^l z7Cp-uXr`W}Gu1cpBlB>8`WKIvHg?@Ray`4W4`8#}cnN&$H^FPy?-7}Hn59)0%_lp8 zO}U$1muF1x5_TvA-pQvu`^c&L?Avn^PKo$MDV5*SccS)H{C>wi68H1`amVLt4%KbK zKxVw#Q*O~J8Vs44kvqd#FA`?vsTjh2o-r`ITXzwmbTPECu~RCp?Y>Ak6xqFBuo!RV zm*6ef{|0ycbtslhzsmjJ*8V#AOTmQx{3&mL+28Uz{MS~(Gpf$dzOs?G@x__ovFxJ% zEp(ykWt5F`+R;-7ll?%JxLS@Fam_N@3XUijycUBoi^Z+hpJfU0qEs)wYvwFuZOs}O z(bIdL8Ff`hbekx6WZ`j=SPDh=l;)oni@vq6GS!<}do^vgetG%3hcJ#CQ8VzF65G~E z*^Xi9E^vqsl&zA0D@}P%PVN{#(o?W4?BwH&Ydp)8OFUa%j&oIhV+56dCGF@y{JyFD zhIZKuHTI`w{@%Js2CZ&WXFht_Zl;cIsg`PSor#>^O6<5dzWKW4l@i_3IZunlGQi)& zSk4v-sHXm;!p|t%#mIRgH4~`Ex^z{R()Fc>j=;C_BN?yZpGmf1j4Wb#SfYJuxyG@C*7oZwn6y%&!=4>u%>ij#WK#vZ*K*&%Rqp&oFjB*7nmc zYriNzZ89c}hI6r}`yUq0+1q*qMkYEnawhFkSDQYg!c!7qlS1`olFzFtjR;r#w?p~f z#rI~`@FcfW?aI^imtFB{j*wAnaMf>SLr^Dn(thf%PX+#K4?!65lvX|3Nw)>dU~Kms^y=sahH`& z9aGcr7Wp&-;gQvX#pU@psjg;uAlgw$_P3g-mU&8Q9@=Kr&Ke^5SGZU1IwBq-(+Iyf z0-&X;x$%CtZ_|;ua!$HjRE4T=ne|IlQrAFIuh0lRR^x?lt2yM@jc?PMSi4M0R^Q?a z_Gc$vI`5vm4Tuc(8R>Sp)cZ*2y=+Iqb>T-H+d^)Nrv1w8`8x&)$&YjFa(jAlue0)X z@{L#h%5lb;c7hxC?5^KP?Wf4cpVdXBzP?=O(9)ogbI)0t38pP}VUoqqzemey*zH+l zMz~;Z6P)!@I$T3Z>l@jY)Q4{$a~8CXwRZ${+3iZJ&E}r9<&iO+(7tCEL1YyFbFUE% zc28oUXI+W3BGf(dFyHNf`(0W!`bnM*hs%;&nDpz{p6v;)(L_aT^R%Ij^XB;h<*BIA zkA>#*$4;8%UvrjTD}nI4WuAOd)pcc@*(2%F{ppvc)Lj~pa$G7RT@7p-c^!R@$aHLe z4UdG2gOR-_jIVmco%t%0EVcN$!tAS7EJ>BPd6v5r_1qGYo(Fe_ez5lqKKIgpsO0f4 zZMCDRzvEHckP?=d-Fxpwx7Y0$KiC^CUpFfkEOTB9C0;9k%vYc@{$VxYB&Ux)UhU!b zLfa`}{r-yD3-dDS7YzT-`Tb7QmC_l;mUhjgt-~KA-}cZwJ7|7wr4pZ3(xB`SfU?Jd zH#HbZq)X;!H+RA9*Q)E~)3hENRJE`-4#TTK=?#F29rp?HDJQWjP)($`d^{ z`q!JgZxlQWCZ;DIO^$%ME%v{{-!JBBvPr+$y|nu_8V)Wp#*=)neIBjcdb_^;bFl3B z_{g}X$N&-jM4Q(L3-<^%qFr_`HPu+5jIJg#5JCTKp6KFiTY^)Alf<*=U+)pcMB$A< zecXxahc|z8_C(DEV-dMlCDeMw@fhS-y~1(jJrrYW=?#9vG^)n?r~9GL%X^RCtz2II zy8YhK?}wl!T28v%!@PpGhrQUP%bL_vvvREIHki$VRrSAgN6NqOx^}bY^Z%ILqZNP! z>S)k#{iCzgghRIW=*oz#nX=wb@9ysL+pewcTP`l=k3#hOT3~C8(A43`()9>T9z3Xt zpUi&*YZOMH7B|2BgtPQW?#uDcjJPAdaSgjHQ49K+>$aABJ(+qhw%WjC?#P}459yi@ z&xGION=ScN5=Hn0Z|G3jyb({?ZBrOW+jq?RIFXD9A5)(iVHzbv58}Q#ukGP8=AUoI zH;I4g$r&$_y1Qib7h7+;pj53#wqHGPOSk3|8VVJSV%0dab3Z%5#7zSh4f_JByF< ziwOp_)x&f%R{jR#*L`;WJ|=7OfIzJ}=2oqwj=q6y9NTqBzVc!{t(t{H@05GUwE<}p zfjR%w-c_O%{czO5s*^O_3;fNs-VP_~^|8^;nLa}6*XbpT<*_=3>0$Ozg6S$VxxxV> zwyT%~=PXC!Dd+T#%A?gpN=*C zV1vjbVSWlTE=*klHgut}Nz6u*8obfX$8=YY3Gkv~7bw0{EXg|Q#+!8`LE0V>)WP>e zH3jX)bgZM+e;%`3GU1_!nEir%w=g*^)@t#W+6?=G@_Q>@x1|H~a^B?p!7xQw|La3P zF_ZO;09WkQ^wRpmuC%g>^W{lwi%n7*}JqaZj)R`^4hxrSst6 z;l`G^MUn?gkf9IHrK!tVXbl( ze4O<0btUqtycaumdhsVS#(k14%0Bm8owMyFdoVAJ4;rQe6ldGS-ubFNdb8%cRUn*V zIlOdMKTS5mVP^9+Q^x)uS(omU&kDL;F~hX-X|~4VS4vnDD>FA<*p{i|+OveRIq4U@ zoW3bcPCUyW*S9MqTkpzfc8Zf}5%7dI)78(*D{5jImGfI>>i*pDFS!m#2ae7yZK9*R z^X?r4RyI&s)%4#l`wF(2kWh)q!C3Cr^!Tr@miLt?@tITMp%p)oyJP>C%=}HEP?+H` zbr<{?naZ<#|ystjpm!cBxhyKW(H%W}wmYQ4y>;99u(%rZsY_wy0x@sAO zTeFBWj>gS ziD6__Bfia`bVKO4o7IyM@yRvQ3S~>m(a=lpL9vHhT)}f}*wd!=9B&JYH=dhp-AU1P z^|rMzl0k57mwY!Q)vzN$=5w&Q?Elm=e$^3A)*tbDG3|FX_140gxipyG$TJZa%qHRD zLsCXTlKD-eO`593MO>Saibzo84;jXf>}fW2froC@(&9orW<`tz%kI~9Oaiyvlyipg zj+bnI-LB=z)kNbYdHVq$)|BeOR~PFI&+%k-s}f6VNLEI!B4;}ecpuFvg7pjoJp;G? z`~c4>tx}=spUwM1hZ`vveR~hg@4>U4l~Q032>AewEc?6dT#Uj+6_o*=!$(4c*p(Wc z4Wf)1PVb#N>-@-@TUD=5|2}T(uxa9m3aLRZnITNSr0iLuV$GbhqpQz%>hOfigg>a? z%UFJJco_b;5nKJ3dM|t;q=LqCwbKhZ_i(;&)9+F&NsrW^+ ztZ8(%rHuXCMX%#IF!>R2<=%LT5pkQX68)j8iJOC~@U5nqfo#FW!3|n!vhh~MUaW$u z&2hV@MXjZ4Mt89rle*YgO?&EkVwL{#R*h>YY+KcI>(&XT{4Dr>A(VdkIjl7En0{yI zeua*>)sM2OW2*(k$csjXG5Mg2^JVcqjHYhIckN#vSrHEo<0Q|8U1(+umHruHCy&yA z5t2!51Ovkumt&tSJQIaSxDFq}LFf#(vEh7HW%wX)-=R!w<=e9R)X(I^38%20j~=%1 zM|u^BAD*bmAlS^jlHMJ*-a*hoaGo5U^D~WN&6+pdDC)tkza)!S=%{#;_%N~s&K89F z&o@_@+v2CJmm3f27Kl_-{Mf$g-gXlp(Zr8y+#t6l!7(VK9c=qpX;Yc~g2D+yPVU^H zlUB+h&%e2zV#03Juks5bW>%+Z4P#bhsvXkYz_^F_u_`}u)H^pSopGj(M#2$>5}kDg z?&a9?R5HK&c0(eP@;e5`LI`at%p9AQAtlW?&35BYP67!LcWU!YL_1s6&-S@rGhQL@ zacmsWzJH+Lg+}wAC_7_}whpx{7LQ@bEbp~YzLh)f{Y9XgwlZ{rAm=tcE(*6>QnK>@itJCQ74RoW zsEHDJQjOiHy}Zu6<5wuuW3V>7v6J~bpTC$I(firu5bL3e&LweRHuQqB}O1sCT8r z@vu~r?_xIDKaoeKCyBP3Tz&4&_3|DN2aK*`FbSffjA&yyn5hFeW;bK83p-2L`op}Y zO2t?n2u)zIz0u{mrfvNs)5V;zwm1vR(E)wmr1KnWh9b(6Y+{H{$Q&aU?0IUPaReHF zp4wEU8Q+P)41CeO7C&(EE!NQgn*9S&?`<5MHsz9@lF!p8_8VBQTnOT^G_c)TGbYBB z{O`xt?O?&*jXYNG-Iw$B$_O>Vb@lJid842okX9R#A4 zstp!Zr}|1DV&2(Q{aR6HH&NZFDyE>yy5uF&y|U#O9j)&{?R}bR{kd_NQJr$Flh1nv|yS5g?5@bCIaWxMNOe+xYD>E2fjGvTD!eTEf12%|DOS$f#Em z)k=;ks(EWf^??;BB6EXkxMY|gHlwC_S&HK*10BH&?Z7eCa4Et8M?T`Q$dqIFfFto{ zgz!i&s-OjvC%>7N$hf>va1A10q3pJ?wwK7+AdG+}fL%dM9xMlPk%oGzAxn ziH5Ul*;1QEhci0kYahkfoW4r4Wf@}@F3GJ3_@)?TSP)~4E*`umAEfd}4%_E# z-8Eu{7dA}Ve8l=#9Fq-XBk1WFXtR~Y9n<_~s9C_q)$XgcNQDgksAGBC{OsIbaiTDz zw5hMi2=l^4eV(>EN?cgj4}U7pt`G`A8F~4(iHTTE1CMA1wXAP18F&8*$wtI+7~e(2 zu+Tht;$LMoeb7#1Fqk15i9t23I`^!**1XQEEbw`72+oBs=h+v*Kn~6EgW3JwIrn?f z>DXS))49*7mJN1-jNzf-o6@qiydaOdIQcPC%l>Yd;=)=Wx(9Z;aK!J}97l*ni3QuD zRI-a#>myN{w9gxo*T=gesc>i`bWMmOcIGBArFHLYDPE4Wjdyi^nV7zVuhRU$v&b=& z*_m;CbJAAi6E+9K9*SUU^ItcBuEzagt1+nbd_Z2F8`k{Uee7{vn@f_3VWsLTN?=Q30Bve_a2Tb47@edFm5xy*04o__47GZTf ztNVq&xZPXc=fPs#Xxym3*uH|w?@pVT<;j}#qFbD;rL5((gUzB<+0rtR#YWltC-J;b z8>Sm?q}Pu&@7jNTnt7zt;GeH8sqntvY`J&A58YrS+rC^15geiF%KEFXlAL?Mf5PnA zzVF4jnfJ)V0Z^xCOy=lYI@@DRKeh2CMhr;n_LCLcXu4S}dAad1#t)`H8t}hJyz-MN zjy+paAPuZGczW0K9*@TDI>GlMEL4pWkeSJ`E~&cS*uBOVSD0E(c$09>o^L>3bmH{y zUO|W*2KS%(r0zNScsNeKV>Uf}Xj!-d3#D_uFNCg%)v2+GW#yut5f({}DdNF+fp(ib zTcgDL_v~-_lU|?gEnra!#ra|q%^kZOuJ#$9{F!n;oppNpcF*mOKYWt8>OVvIF@VvOXx6I{^kumqI_qkt1u`%BKHo-DGSNjHYbYA*pr#qbBUSo-hC0yMIh z*3u^i+#Tq9NxR8Y_Tl;(BSV~(h(+1_leK_*NiMGEA!|d4RZ?R-~ zemX?ePJFw``)|Qg^(%Otcuk((hefX$T27S0HLVqf&xY+0m{3mlYWa4etS zcZb*A8JQvSa%wxalAWJdZ(qFi!>in|I zkyI0OGv(TWEkRZI@Gj4a@AwU;SzhF!OwvuJU!9A-fCuw#d{yJ~b5<>mM*@kQpnEA-e;fkUj}j4{{OR51T5EAw9-DY9sJKDs022Y=!~sil(;qcp8o2)ETenrGJGe%;N< zJVkmhi(_uVO>2Y09Yi_OVjF3)_T~qD)iH>-I@7)yH>@kr-e<}OWXsxbaAJI&dXU&3 z!}ShX4R|-@Hq-wLBRYM!#*>ZsW^;IW%hOXQNeEa#cRSxThz;TupCxnSC@+4*Ua+HR zfG~!LdudCDeQZ_ULgvbk2h|e^4?;Nji4J0W$>xSc%@`G}5ZH3(2fQLGF5jx!s)xZ) zsB8|GhTLkYY-C=9P$m>};fXQx`RzHkVYs3Icf-*PX&^N2Jx zH8o=Tbn0Kp%A(WK{(BicfI!eZeCWMYYCC$Ef9>+XmgEkWjw?!`qS3-Pvm-3-*`Sgy z%^f8h4y2Dn6bmS?C461uH2wsxEfvPTFDYHDuKu-@-FO2L+qT^OknP_kjb@pP{R-Y= z^sJM63+=E^bu_&@ZQtshc^^~Z-u7>)iN*cx&Th|ea%?v}JAq1}CL#qQ!c1YFA_a~c z_2xwDi0qgAWPD9jXwH8v^NOyS)TX%wte?jwgyCT>>3`;_i%jO&DKF@7P%T`a?q_ML z*+7__B8zS3bt`^PH^n|`3=&-jH5)(4+bRPiU((U1+$&au*3__t(V!*<;pkB~wnex2L>s zSI_Cf(L6Zhqx?yDTw#`%yn#pon?K;VoaR1i>fgZ1#b#p>1k3@MgVoDGNw$iDh|`U# z$){#E0@AD4*qkH{Gj!h7^|#Bn7C(s0xwbfa%m-#iMqt~BerXdAd6u!9cfO@3Fm24m zmlCB`)Y&uLez);9iD~MsYJ+(cH`Z5gT2hGu*tQ5Qf3I}?q-P1nJqBGm0om$*wE1nlcqdIE_98FpuKC!(ng3DglyYc# z;jH#BN-kSl+lcb=@(TC!gZiCvn|TrRu!zV=gcX&Dd(CL0+iAUs&991g_zx);AN}ut zLtAJV7`jdN{WEi`4qLO8Qu~8QxOQp>!fB+@aBz69lOiIX52Of_JbjDX=7(Ls%VFI- z67_f^#VHl&)@GMy`yHvruEJAOQ_jxLGp9w|qM}q@US1Iq5$2Xo_NHI#HC+~G)KmDJ zqM!7?T0#DZW4H5I_WQSQCQ(;k21OiSw3iXcL zT2+=)!l`T9R&lhkF)@Cj1EOu;NJvPWU1o*xraC(Ak|iGSGZqyUoeGU_1Ff`O@|EoW z>)qf-eaV4W!4!X4)U0kjiBTtxE79Jhb1cs`lsY}{=1#av!lA@NFKe|^)uG6B8@QcN+M*}BSBZWOAh;9zWE zv(_7|r+?Ak`_6xU`5Bew=Cl9) zid5>h_kTVS8g~#H%76d2IWZneLN@@9-cDDsI6684{PivtvEdG#c2qvr;o z!zq%vb*9$--E1AVqN1X+tLt#FfhZ(khC623NwxNCq=;zr)7Ye>-u&XGum1k1CnqNr zZ-;!0!8x#Adn^SFrO$BtS0yr|vqR+f!D)&COt0VFPf{~9i}fGV(IwQs8=C`A zAThT&0V)oq$#j)fR7}ipqni^3CT8F4(?HwhF1#2PT`9o1_s$XohDAn-``@D|sj6BH z6}^7Q!xIDlIs2%&kr&=uhi{9WF=kFHDk{3MRou+uq{ckH+LxFKOJd{CR5|{`WIo&0 znHOa;hie0|K0ZFZvq9$BK$=p0`SNA0)uTs`hT-JWJ4%g+4iA5HV;HUq`Hrw6AC46p z82qZTN`wgVr7vX%y-m1JVDP(zV7aBfK%yIS$+u(#c6as zUWB(@wN8+fQBryX8S&*_8_wkPbYeaK0~R(m9499yd){=Np|?-T1s#KSX6s|8=iq~% z?9SU{X=oQEwx70N6c|YblS=N+HExU-Ce|hzaf}xmC^>34H$ORp1;K^}l@S2iP*a^uvK0iNKND-Qvc~Qi}=(=Ma{r}kb zxYQ8&yzvSeJ8xtob|&d&rq_qk`9EwDh+Z8<)+VZMLng>!)=TVpxi4*LWz{!J9{7D? z>)lu$q5W!ankgbCh?v7?q0PVCq#NI!xA0f_S*3S=;842sAs|iX>{A6kY{J)#@@%Oi zIC$F1(lST4+B*0JXYqP%BDci@Sf35X$(?(9@AX|)2sMiIw4?h9VvrXpCo7u)kH4tF@awh3lPmn~Z}U7Zf`~C}?PCKEaJx z;z?HQgzx|S@^FBGfuW_RrzeP|pvm3cy~iW<=2P?0fJ%#rgj~rO@!Q^X-&J#!VX$kK zjhPvX40JnsHP0j@ZlmZF#(-bm&0Dwf>*B{$B?o4+Q$2eMw9A7;vokUV)1`6X5fq1~ zE5Gc^n19%5^IFftFFYrTMu2pGH*!=HW z5H_}sl$S(AM1TJL>7A+DL;zqQL`W7D6;((`NaA|gBZ!PQ1okbiH~r)(Ue_-7s6=|p zOc6iPr0)cv3}QWC*7AOyX1MpeC1=bW9(DwjJl@;eb2*KC?i?L2)cq0|NW;py6Jn?x z@tCVJ&((Fom#C|!$7r=TJ|im&pOmx*_8Q61=XYj$>%RsCF;{!Eeh>3~8Ml=FJ z;Nalk`a^S9my8J~31@r|WD^>)y3{l@B!Z3w`)d$2i9>6xXX_aGv*79^zrdS*?rgo- zZ5~)l_3H15W}2#ZVuLN+up@}XY1RuixsFOtD&O`%qR51VzcL}TfD{%*UVh6W1-~5> zVOLAd`bY&F|H$NP6cTe7-6rF;ZrHN_v%S54aw3(cJoAAnSjxDJr>>^v_x83`*~IeE}A|nlRQ^b%S~8OiNWdmFD5`@#oKq?~{-KusxjwwkgKwuh}WC7~U+pRk(O~ zAM^8>C@Cq04tu%un%t+(8d_VQ>$`1plT%QD@x#JWs3=b#6&>74$^YC`NhSt{*N|Hs z?anvPI9BQe2L>W;HP69ERG}yMGhH28-1HZN{kHQ`XXsj2IF03e6Gg3_;=k)F2zw|E zr*m$XuA6DV?f&oTw1cuOnn_a?@-ewf zZde1Me#pF`;mulM!8uLm12BnbHAXJ+>H_6*@*cXoCb z2G-TRQe<@qS!qci(F9Ays=4@ag>l7SC|4~!8eoRE!fOcc-4h*mvBYklz@?$2k^ z4M;WNWdZUE-Q9JiVO|LqCL-D8yfA64a5RDMW%(F+v#M^;i%qUgDy&;J6S CyWG$K diff --git a/doc/phaseplot-oscillator-helpers.png b/doc/phaseplot-oscillator-helpers.png index 0b5ebf43fefcde3fd62e85bffb157b20178865c6..beceb948b297bcc97ffd35e7cd54a625381d8d1b 100644 GIT binary patch literal 76107 zcmcG0WmuJ6*DaEQ2qMy{ba$78bP3Yk4bmNgAl=QUTdy7#~5=ggXCq!UL)ZmK|w*imJk%qR zoe4wlwyGi+1o5l5nmrU0svhL`i(dlyW>7Dnpd>^Dzqq6xra7xB?%e-4`QCgT|K1no z%cA>9u~o5padxp&?Yxom(T!v6yw!q@hDBj@jk|FZ^C2`uj)XH!oqKzhzEkPFB5u{`Sv5eYZco{P^E5l>^@R z{P)|%$nT-x{`0jujt~?QcpG?m74vtfcaR}I5}O*md_nooa39A8-ayO$cj&nHu$lk) z7(p6gFmNU!r^_iZlD}_J5v@$h&q^0p*RyUcok{mb8kLfdE~HD@OJk7Yf9@8SZEwi89d@QyVM&!VFpvbm15)L?Kb<+FzGeLy}bCr zgeR-ah9%9+sK5t1s;fkkexb&=yK^RV!^g+RHIy?nBt@r??V6aV6kLFbjg8ecHJx2O z!o#DXp^-^}GTpXk;^63ATx?Q{P{Z1{r+WoEA9xCRpsv2YmnJ4Ai%UyMeD3V_+e7uk z!Wh`t;-%WnjBIR1Z9Xr)`}-@=hlGY2?oSqQa&hTdTg#p-H_z4D=)@hh-XHULczQCi zv-kA(2klMdtI)@g2FdZ?!rIu_NJ~qm}#U zlo0dip!GA~T>gpP|pd?M>b+h)PuA$*ii|4)hwT|s^>+=(j zwzjsani`YEG_9SzJI4-J^84$P(zE%xxcxl7 z49_dIczUhi;$pgyk&(C^bwMX5cE|^Xhli`Gt266&y`u*QWFOIR905jHaC|vS7{Ox9S!}_!GX2&2P#5aPY=Am5D3>-`wl2PH-+*tBF*8Sl2UngG z6A^*+etzV@W49!xqznY_2?nR8(sca8TXb{@Y3Z(|rDnUwT&aZfwI4)pad9DopST>? zDx3*7nNLxJ7ZpA*u1M?ae|UO&YC7$BMM_S74$hc@ynI`o?M7L7`PxttOOZ}%y664X z+208{l{u&9r^oLB0Ts?C+BH@S${RaaI5_>=!zpt$R(K0FRvVDW`#UbCG~(D9@VZF5 zIoW<^WNl-k6D&=CU*E5ajQNtVhBCKH^P!<3PRIRs86M||CoT8ZaVNIxT|uN|WaS3E zC?FE|#f3!}%b0TIcYN+eJ0)n_b%IkHo(?z;Q~*lTA~ReO zmWU?ZYx@TCmiTC)w$v^S{3+%0MO9UG!|UB$bx;*#j@ z?yf#|2N^iJpujBdWHUEGJNoYGhz9(;85<-yiG5*5A_WVl3?S4NF^K_+2iRn z$l+jNztFc{y5WHtv6_x$QrBD_FKM`e6htNwo%48qEfpUhukiWv=QzjtY72_T(@s>j zbREZ)_A0Xp^GE4@yO9_Qxp+di-7NFkXArBTuU@^P;^S+c-*UXAwQfGP-u}Bc@s@aN zds{NvVdG+SXsBq0YjQ^&^QFU!wHNPR;`V`HWCSUDb~X{502af($b~#bo2xfsg+_kYd5(4Y2u9g6D@dkPRsGW9WNTaSAWK3*LPbYs zwA%J9ZtyiS@-EotxKUK|R`≷^q95qnF6YqznwGJUormGrf?YEsbdKLa6m}u2o2| z_gW94P_4BlSZZ)I0E6R$*s@#7%p`7bJ_#=_wn`gqW{0FD5V&W5|8{kB`08~AyqI*e zn%Z%1oY;B)W*6y$n-Z}pF-U+WTLW=mk5~8i)vZ2s4WCfGL-H9YC{ECJ3tDP)z5ux# zoMOMAAVe_1{G1$ED6m5#X*|8{eh46wqS`cHV%oGmvYU*g7A*E&9WB_}+ZWnNlaOS) zWk~s3MUyJ=wOO9vW$bLMH zQmq~q67mWGm9WW*$HKxQ^LV8_jX$9w_2TAiBPb|H@BZrOaG^FLibU*uQc>;<%uY{V zUt!0-1^xE+7L>&RCWD?b<6&G->;pl`Je)1B*4DVZUEX&;0;N3oKc#$V2$_h8h?kG= zAQjG?MJya&52XJ^`%ylJy+3fE$p6gFE-cChss7jJ?3>LPxjL7#598zG57#T+H@CNX zhK3^GJoEGOD-m+IpZwm~?2oB!KAtTnA$GslH!uha2`SX{x;;0lsI1%rJ5YSj#>y&^ ztH3s2zY_fIn_$|tH;b2-7c3l{64ki<;Ve_Eq)}Ku;p^_+UIbxb;c!Ae^;>O_JxoT^ zn>Ti55Zk5y}Yz(golG$ z!nBxqQ=(Zfq^^!jYl#%)(-!b#1&ol;l@l&IHmi1t(`B z3a|kBg&&*68F+$gz&k;&^ zkQsPCKS`&shk=krCm^2FV*B zD)4qub8~8do76A5rjcaXM6W`@8$OesO+2ISh{jf_k_e_q#xp zjRGtf)Y>Wlb<%uI2$>j>*UkGhZby9(&ky$}tze64rZ-wZ-G+sS|I_U541tXN&ky!J z;RLT1DQheZ3_1bmz-BXl2U6U_<&2IqZw8i*2O1wAA4rAN`OCO&$5UswI~kRroC8d| zx7>VBa8%GXIT;I9C?+aO5J1-?eot;ti8n#PEx6#{?*xFo%kz4vcd_0cQl!z)&<>ZI z@$m3c$hou~!9zP8&bEV3bpasJY^8;-(s=j-H+O@=U-nI&UqL)+m0-Cb;6|&_$*3># z{qEjgx%E=RfRX#vVf*-a6hKpBxl&mCce^Bi|Nh;#`r+pX)B1Erb1+ldJ31Nx&|%;x z|9#N_x3#r()5Qo+)A;}mfZ0mMeiohA_ml4}}&-~f+ZjOq@-s?_gB0;o~7)r$|H z1#(VKY-i_d^OzftRB$o4ZZN;_STLzmt5s9Sak&<{1mPUjt z%=P5o;SAUQ7p){SyPNv$D-oAigtzM0XLEuIb|GrlraIh>Y8LbO#YQ@&%u>^EdYSYe z_6uDNjg0h+jB?E?!Q5S-;4Zgik39iI2o1G%D$X%0GwElXd##30czMU`v{i z;7_=}--5m|DSas$Jx z9aARtsoDd+)$I=znH>D#+sW)Q2QKE8Dqv6&TH)^cF8u&!hsi1lbpY`;f4!E+-CH|0 zjL6L`$dmaaIq=22h0hHoH;M}N@@#v!^bH3F_xG<9Rr-=rQUEv!6)UT_deJ~QiGV;x zMFsQI-2nqAX9Iy~B)AUJ-YPW80*gNcFt2h$QZR1GsFe?2ne65x+&qe~=KfxYSW&mF zWiz@IZobtw=CB+_MwA-aYKiN0wYO)SgUd~3mn+=eGaC$`fM34DzB|Ixjo;qoUcM;U?^?m zzJelhui<5jv@v$>ofwI&YI?i8__kwr>&L9qS;LJUwOE!sV{s$ieFo8hC*M4=#OZxM zwy1|!Wb0^8mU75w0kjQ*Jv%>_PkK80CT1Ly_mtUmYUp^CntE?XyA{(P6+3?RkWL{| z6)90KM5q8a$sy!RR?9Fa1y!#Ll+(X2b!fw0vsy-Fwgh5-6pR7C{Nmy;=H})AWnQjn z%8?${G10%Zdsg~$zWJ@z0*^);XC>;z(P7GhX7RR&A-9bc;q zVhU2Qq*7DE+1r#63aBz&A1oW`!|yHWbt}cI&ox@x`PnnO^F6_Ia)M+UGXo*Kxd4Oa(ZGYuVS)bSZcEt>cUv8P0evJK8VDU`@T=6&+M5BTnKhLx z+k=T^azo#Pz4F;PxLzP*-NQ03Pi7MLuC~&kcfGxdKMUPBz%4amSbu;+th?$|1{-g; z+(Q(KA?ygMt+Y4Wb$5ov5F^%fmicJyOz()1?pa{Lol9+E+mrx<@S_IPqXu2lEt!Wm z<69rB-kM%<9Ty2lG@y;C`z1y3ONmzRtV(qzt*oGX=K7MTOw{c(Zty-F;LvxQSj>wQ zw|$iB|M`CT;d-4h54P?neFi4s)2-lidT^F>*XN(|lrH9Vs5Co&+qynRfHxOgJ zZkf)r7Pl=g2L6C|dr{_LQ}>dr&VT4U1ZCcNV7rJ67L_cyR#D_FM+5gIOff41CkCdWkS zbR4AkCf!VZ4%d{Ks&Z9tzoDnM^ss|Et|9L-e)sjnxp&T$>hpxL8C(R4^$-7YewApu zIdc9OYD27nWd{rNwHHlsH$%`~Jnws_TbNr&By(R9jVXb&YD!1wl;`2(4Rx=B-P63Z zBu~AWtQgb6Kd{k?fMg@f1v5WaX@900FLTv7(B)IMsk!~+k^IA(PgumYNY^4SCWK5Q z1GnoV5f75&7vAzKe4=AytIKo+8buh)*H`emx9N;g-@MUpyQ!f*C;!HcKS9hF$u<7S z!xL~5jBTYQ3N***iRtCgEtbae>)R~pqwQd!7mY&E*w@`?>FVy`r<o8g?Hx03+J_s?ngREkm$ZoJ9w zGw@eao=X(u6_kx0JKic4Qq^ad=5K~cczN(NB0wTKP}1bjjM&T2{;?`E+|EVujBXOo z7dLh*N_HV4AJ9H(*F(J{Z2Rp|agP)Yi{9AqX4Sgb%pTSm0?yMqXZn3@Os;ijqT54H z4ns-Xr(ezBRIa}XnMuP^?CjIO&A)9{yAaoT(4_6Bqu;3HTSI>QOKc(A^F{XB)0xp% zgp2%QS!D%38v(g-psB&M*C^`Rw5qf@)pm8%ip2^{y5{Y5tW)*;PS2VZY( zzcRHk*F)M=f5hsf+5!G{zVawZ(1WWG4}@vXHs(dowr)=m=g?iHZ4tLqSnEj7*-*v~ zCB35A{GxGZ@3=2WFNStLG)Cq@*UsN7c55r+a`h{aBxm1Xm+H}^Ai(e$8TF?=6V!_; zI7J1}{o%bO!%%D!g7RI&J&DoMgW{F<>LecXgv^omsYLm~Mw_9Ak0mfjOH)3UB4qJ? z$(Hcuj8v>7?}Nl!0mAV0Z$xqxJfsp6$<-FUk)-U zbF^Taq)|~VkffAAQj`YSDU~-0R>9v-uK>2&NY65J6J(=gcCj(>Kv`m6@*UZ7 zr&P-Hf|l{!z(#6V|K>e{J7Y;@NZ#-`Wi%<%<${4`=;-$N`{gF~EXC>rwrfs?I`{7g z@?-0!JGvwJ*9c!t_r78xpLWcC?2pS?93XO(@HNs9zR?vkEu{6au+E7HOB%OYM_u*M zWJho17P6Dot6a#Hc+e`oxlR%cy>Q;%mijm8;eSyAqK2hAK zL*e$Go%xMg+r6-29d<@o&^N*el(T7&Hbq5VeiRJp9-jYRn}1VzU7v-$zocEV+S~b= zx12rl=b!lJ4KJ2%BWf>Re6@}9n<622PY<7|-fRseyTJM=e(KAk>QnkIqqFJlNago| z@!(w#&HhoCL4svtU*K!{EEAdh$jugxbJw8DA4xG-JayN2C1pE`t=l@DF*&a zsVott$B66WNW%axH=ju5Nv*Dr1)CYY2&W63o-WS61zy3sFcta1SXoN{itNv&4g$-9 zeYf}Gi62i)LT!-YZ4(#ex8^LWDf;^ZOZ-;+#_1tUHi439a$fcv0;m(4*2UlYLNTG6*aonE)!HJsv6xEu>#vHUFS+ET?^ATbwG2kL4A)s+sojl!;$K1U@qJ;H zv@`=l6BCa^#90x8t|Ks(_L$WV9T1VZjG#GxQbPE(A$vxg>LgLm_*ZY}@-Z)O8QpPB z9&Sz99;IRdI9i4P9WOAD+dby}p=5EdUOS>nV`8$bKhxu3AUp4xx3_cpYcG6O#zNMZ zSv5t9aCz72nX`ofDO%k1RU_X62om19+8uEXh5hBaJO5fFV}a!}&pPsIA9T-r$;GhX z1IltVz4&pvw=ZU>s3M+iE7|p&bWn}2oNT7b89+!qHAnV6qllp?FFVN(<)D{}^#wHg1Y@$L zV1&)BnOZYK^@jTs2ln(~_~15p8X0R_DVlk$)SG4t5GA5HJ=nrB!bNO1&DFQ=0hAv) zIq9!DwpPWiwL~3nFMAjNWFHl~sQ(U0m9Z@(p~tChvTW~V+XznBlj2h?_jgBXXO;Q~SC-k^}3;oa1Aq4zX zzyMow4#2JNKr=t_47x{I2Cb92eS%M5tfm(aT4z9;%emAht+}EwAAnTnABj*KYRb*a zg}53sW3Ov;wlmIU-xJp4c{tc$!QaeU%vSUW7suahIMALv;3?psBG|R>#-UzKW*Q9( z-*Y%ADCBM5(2#tsw!S4CP5E3v2C9jOp*jC(nEB}X=N89#S*+gM>F|GMH-iwc`rQ)5 zm!7>m^rzhOzhxi~Of)nyS0*5&EzxQe&DNuHeaf|b8EOJp-3P@Bnw4w&azkSq=R7C- zW`o1X5<5m({~31e-=V0fxfY$Nw%JB6XSBXnwDx8*@T&AAM`Vf{ zZgu+tk@lA6B@H@EcoQ%FAh+A4qi3p37-+qk+Nlq;MQX_p1lU*121z!)cjD&O`0CBz zoaboYT@u%WBpKb6v@89@OE7pP6~r-Mx=V#~wA1xB-3t5AVr4zr+%81&)@23*JP#ZM zZ5qWqCQeR$%C|uRKTxZn4}4UyW(cW#I(zziWu8e}}A7e(r1JXi{5V<}^o>^;v@GFH}y*f8T}f?)HUh11NVg zw%#SH)lW^SH*pL5gcwS(=_b2%4~mO4%2y+Gj#^BPPaf>tek$zRA3l(w`eYpuxBx=I zd+5O7C7m08#ZBgGi*;K z7iE^@Yf&3_7IK6-=G+vTBYbtycq7}S;5Y=5+vAU^|nuNFxf)W3pH#`*q-iP+6#$Pqu1mv87<48%gIfT-!7=@;_DG!IvZO9pgw)`9;U zUqTGE0mu?qsrah{UG((aM@)sp)NBzP>d*^1M8IxjWG(Qp zB?l()>yrlnHk?C`)|^u%+;nO0e^C;8>1-W$+5M58v6+JOpYz-|#X4Y3&GL4vCpbt; z3wvemQ~schcyw2M=E1|tl|0~#ALe6VG+jM~DAFz|yG<||-MaOVq`o-VmFxCa`f0?P z@K7}d?*8=v-{Y;gLpDd$#+@Ma5%sBP=L^b1$SgiyPaPbvj8+#^ymVj59NrRQ@z_(^xYiy*~8t)(M`X{PB;Y ztVo`H3}y}>uszOBdLAYwO^3s*CYxH3TB-v(?j5T3%<$Eu&I+y|aiYGqER31xXh)or zzTKuYM^qj{UQIu?VzpApwgu-Hu5jc_<6&D!r)gpKjIK;RDvH7+5tGXqcYdkS7c@VBjIlRPhE%;N9yA@~Xb~t3FQ(&lN4kw)oL8MLC_dmE9?0JZ zsQ1l0Yi(Wdt*NG9m+joX=TzU#6T46bqRO3TT}D;Y@5hd%A{kCltp)Wuoq{@=-d<(c!(#jlHoOc*5~|4UF%CF36xaRdY~ zTSHZMF-vtl^sC85{VPpb{heG=S&>|oJ<;)=9>8K!u{U;d6!q0W=H1ccB|2$Rz#-ut zSxK6qaQaiQcMQVWY=w|y(+ws2G4;mQdK8l+eEF8+yHfAZ!X{^qpW-RE_m=ol&-JQX z&6g3E`OXUgaW`liO~=4olG%?2BYgBO{uk%F^ns@_LzM5iU(P;KVgP_wG_WpjyGt{X%xuJ!CC?aGYlrgXsOuPw9A)dTMEZb%>rZ#=p;O!9~Th}!VupZbA}>* zd*CZ2sx0UV;=>~&ji<8qg=Ksrnk44%LCRHKRitMvi8YZgZgF*ze7U~qgzU&i#B#a! z^{VDmJAh;N4ERMoeB}&|W@dAfguA$RFE^|zRYsaY`k-*0cr%3-JUH3JF_lsO*vxA6 zM+-egyDd@<6^gMugk@!9uK+UDtPDb8^5)F*OTh0v_zK!aq4zAmR7>Xo`q-a9zdq9 zOb}`VN9dnyjy|-CbgxIX@NzUX=M9@VkVR&B2_ed z>Jz0$L`=Tksl#KfSN?Wsr~X>boL8BGk)~CA>Rg=@Q%F{#+(V~-S3<5o@ru)dElyak zAT>~$q*X-8$W_ebRX~liZdoZzbCV@&dZ;ZWZ=Cbf>w?fv2iw-eJctAb|i6g0G-VtrbMU?PK-V$?XgSkFFUe59P472CX!LBB!xst0T9P@^|-}`9z zwMHr&mTg?Z+loS34tDuJwZ#O&^E`}QGlWE9_F*3IWJcy*d|qJ;*IHz) zBK|@zSlk*a9W)V&r6k2isPqr9egOQk1(Jk|k%yQ}ii66~{q4ISrFmy-%~~#*5kDZS zOwH^QhXm-q{5-qwjPk#dz`U@wElxt|&R44UDF9Cjq1y+F_czkTmq7!R*F-RMTEo%1 z&>mWIW$ZGSv}R@!oD}87qOro7vx8yJ`XLOg7AJnXq@=ZN+!oja{1DH>a^_-w zat5yaK#-8RIqV`9H&Z|G&%64|?4U!b6$uD5@Y&zH{w)2(_Qn~G;_N2*Bf#$W;yP)^ zo)17VxxMaiTu$BWCGp$OKr0*ur8_eMH8N7E&-aCP6JK}h=PQ~X*CpWR6O18&hd;{8 zk(MzuC(H`s`cAQf78N}>70av7g7o_mQ(4!>`g?vF6=BVJ=hAd6J3Dz*IaB-GpE|+y z&Eetps%j1cw^DXo2`_+$PB(c`e&pNTm{Wt&E^nu}B$z9d9!@Z?UBWZlJ^Y)Q-RAPl zba}xk323~o9;S_=SSBXfEG`yOFB8!1p>|gd+d=)?TNx?&9AVD^gys+4>EWH@9f4X> z0lJ0RpN4c69D)R7yDJQ18Gue(gxv-pl*{RkBK95)*W>&zTpQE<5bPaCR0!M&$HsPu z0o((KG(nQX6aY~Ds`B_baS)pf_~`>{r(a6)HkH(@!C{WP zvMWfc&e!Mkq(k>PCY&xx94{Vs$1a?F3m##sl26Yt&Km&&n5=|);V*5hECDW(e%hu) zqjH55F1ZW$J;RsnVmzg%k6Ge`xVzmI{b3vLConOKxQE-zCPgowzJUjWsML@LQzryH zjxNJZ^pwxU0)JkK_feDbS4Msx5|aE;Db2kN zqfXy%R)90)oYmMMs%<&qbSiLRMu}S6s)Zfk9?-ZNL=)NHxv@6992jC)1CxHR<;IkN z2D~htaIKTXZ(cvAbPhIttP4NS%RMxjxq3u4tArQ3zqhgEt4;*F2S3TjiEUO~G^+Yg zbuVmxXp|OCWVyzkM!|m<`U9cjc=16R^7n<22Wp>y01%m|C8Dp422lgzdIzT7IH{7{ zNx}ho@8DS3u{8ZoOo{}bE)=NY9pfF?2(Pk@hnMM;Af$g&SCv}B_pLZB!=?v~)?(3( zwQL0W-uzq8c&I3T58Kn1E(SnT;Fz;g=hgJy@tk!o_V6(0ELkOMzn;Z5Ir( z#s_A$h^bzKWAj#Ja`?Dq5wTYWsl}mRYgl{gJ&@)>9Pw24j9PlxSrPNllT9_qayVOT zUtSxEi1msdsnJS6x+tgZ;WRm0{fM+14{5IU6-3t4$w`<%V4|2wH!%777D%F&?#7JD zr*cKR2L> zEt^%EA8YWUIJ6*9_f_y@$3oGRfW#_noyJ6Q7~6~EX&{=+NQ6p6i^%HX^w)pN*?gzs zh7n^QEItt592zwD2`E1^$#ck{d)v0u^A43qvFUK=w1TC3P@CR=!`Q$sg^#*gM6f?h zwJqgS_|L_f$OA6?moe^`E6L)2CME*T($a8Nx^qACIzb>C$Xx)|LjmaCsK~?8S9?2H z0Rb@2*S%Cq58YfUwqO^zLnf+D9Q{y)ZU3!7IX=Y8D`cg)T zUdc`It1D-xl7}=Xtz7~z#orZ0jX&7X8|xSg3TZ}^Utc2w`CvN}c6r6iK-~o}Wl$ZQ zX9#=m&IiXWni`KPWV>OEHxtG-nwz0CJ-wTHVj_;?H=@jjo>r(pXOZ)EUYs^Lvn%>v z`4zUoSCTF&QA^y??FADKoJjtbeR0Kuj9}Q@Fla~4b0tsocS8$cNj+%NojI2`7=%^l z9DZ!pNM1gWSQ^`s}RUM>+cr}L8g;$Rk8Oj)@M<8 zXGbfwCl;OkNF{j7xA8&W=POX(?koLp+2AXvR)APSXS-h=HB6t3mlBLUg>dhB z>OIlG+RyYaP(f^p2t*FVB!7{-ZCf_7gu;GTO_}};bGu`!W`CN~GB!w`S!+QR4d6E{ zjzV0XU!*(l$}bc?EYOqN)$kT#ZBp$4BwSzHh)2TB#ZH;d!1+D}aCG!{32=Q${X~ls z{`6M3wH6XGoA2V7_X@K?&yBGno8&oVrm(`NrsmK6qbKNZK)M}a%S*Xj5&(9riameM zi=VAFWF$ySF-FGxU(Dv0NtUfF1+wGY7ZP^mI>Z>-A3v4ej-X3IYO7?B%yEbEQ?c{(wGn8;& zQlYQI+1zZY`h4R<&J+IcC@78sQjBk@i9Hj4$}3wn&A`#$HOiTVaZH}`^M6Jc!o8NA zT;`LM(VX-o>Mgl5+JFK^y0tjl(j3DD6veM{&b4mUno|9A>&;eK5AJJjTW2dN(@9Zj z)`6*7?Gnfbt7E&47&Q9_dsG-jTC=s|QcDd+wpC;enuODay>I`updX22Vzs*JXQfBF4eiLuVN7Rg|bjf8{N$!}@C z-;-~9NhWSU{~vtryM${>_DMzNno5?+dzZ1%g_;rVc0WC;rgE;t8|gVkuJXcHHgZ=K zB(2|p479a;Z0+HoGb74v57?Q@+Q}PCYZt)nth)vR$W>r%p|* zHQAujyg?|*IUOrCDPv>V>?$NluELM}_pxb~&I zO@Q;)BBw@>{A=K~c1l@n!ETj!w5Ivtpk7^UE)!bqe{reL%n1cxcMCM-}#AIHu@~kxu+x^UO3Q? z?($vUQ7(hfxsu%mW2(AS$B)yXuw3sbf~JL_mXv4bh_!MPQ~89|NkVLa>)~}Ja0#&9 zr2YoEw8_rxb^#^|ywGg&kpmv1pX&?<4!0&p&k|8G^9$Md+;ByIcg9B!w0~?~>QLLF zcSA=z{l{d&HwK?|dhU3#zO+RZn(HISN#EFPC}aJZN{U0X$f*@k?GsqZ zGUXR@Z-7LpOs>Lvt?~v@t=2@w;w`F%8Wj2VyUz;Bo{wTy#y~cNIzE}JQ@rtw_xtDi z&X}(}7^=qP z7p-Jm?W2i$bqLzQmaJQvNlRKY5gpcb_@G`_>f3Mv#0nHNoK=HS9z`Dehd4A#Pd8#Y z)a&+%E77nHAcEH0Y}x)9)EH!g7rk@y;K)Y+Y%eurc)fB-FRbRI@l%%ksx{5Eak#|j zOc~qdM#jgvdye@PiG#+Hm#jdJDaO{((E-+csk^^>iU)3B+Q1Oy_x(F8xQf&Z9G`+N zE-ox;RBuc<%-IZ$g}%Ilh3{ByKD}N!-H157KPfXog@qH;{}3B*-Xkhy00S{hbxQrX z=>J>d!jl-K_@yV|zLfcN$E(F5bga#IqxI0MaSv&`$^;o)*nT)SW89YsJs#ugoI$dr&s8PXVvd~4Iau|1=v zCZF+nas&mRpuK-@#Cv!sdHdmuc@Riq9*-+Zz<&a5hrHGa)9hkc=3Gr?2w(-orw}9^ z*F6S&P%fUnMC1WsiWx1h{UW-oLP7iqoH@j|4hU)^`R*HKgq3=gp1 zSslW;MI+LA-bhUL4SPL1Kj2+loRtZspg_!pqo8PHqvzJ}@bY!@1%Fy}w9i5QyBR!okFONh28!a7O|KMPuZ3?QuL!|SvYd+TydKDw{g%l@R z+{kz!tE_0A%G0UW<40$51XkL_W-T7I$teVXXl_Sn8ymHuCECN^?$%bXMMbMmDuo`D zUUuw1Df7z726PDBp2X9g!+b3GPOtSlxZ~<*>l)8jp+L8&l_i^ps~ljzE%(m))va7UMi(~Kiv+@aB*?fHHIj_`YwRx8-14vkk;db*9w3*_?tQHx4chlp^+c= zr`Y(8?vRQbMN0FGJT^A}EMdJ(@!cgnx4)+Natp(hajUDu0uKjcvF|yseErroC2nok zVY|B9{a>AL{2n)|CgevyTqJ$w3s~Y2x z_4Wj?X0ehxfP}W~V#u8#ed4AffdKI{dFZI5Yr2PnCJ-PM@p^0y!e%HQ_*)^wfSLM6 zGfTg&zNffoi+gt-JO~hHR=yY?1GHeFaAT?Qw;phHs~ubplS-gh>VeX(`}*Qp-K#w` zG?cL+hDT(~yq|%7qi^a9kkPjRN5#2S3PHZ-PG%YFO$Unb?!q(*%>+*^Yhh*%?A4K< z_tUrGlr8M$dD9sb{>OL6_4zL-{&cCTetdp9&-VQe3$8x}Q1ZGfhYKz?Yj}Mb%kraz z7Yp;HQp_xQuLiWuYll*eb)Vv-_W)^z06W92ZZ8J-Wb)0zY!ALh9=>BC59!_YjzzEZ z2QTJ;o#&Rek#0ZRib?5KT@4mtV4dvmV|Y)^);iAfla*a#Am5t;t}b)3a`l(*r$qD zl5=>;LnW&sC^|BQ3aT?5;u-BnM>x~VQSXlkzLw;nXj#3(=ufIWnCYA@j`YlCqi1KY z5MyA&7|Cco^GabqeY!tg^?RMcKLu-T{q>~z9LA7gCs&FCcCA0=>m~Jf|Ne-n!mWZm zM0DM4=|t87TXZRKck~r}O>RO0o!ql+`0ih5V-Ig%6$*#-wQsL8-g6iHI`-c+`-k_Gm-%G78uK0jOpXrZS>Z) z_Me|BRF0-p^!nd2j(bF##YCplyCX&r`iJ2ey;uEKP(TZ9GV=Xw1MixpkB)jP?sdYf z7ZsWh@GsrCxTy>s%>Fr6{;6=0_;C68Tu9;pXcZec(eXDed~fKBPSIajKmaL>5W9E^mzPv}yNqJ|z*(zeM62aF=fVGt%o`5iDWZ_O z@zI6jsPG;ao$`O%=~;e)Be-clOKHd|q#0~wJAI9DHpl>UWI>F^|?fj4OQ zu8k8oGsKpce$s^_B;*j$S!rotiz`GV zl_;^gnbEP!+Mk`p8!Rf`;_ORe(d&B2_{)9Ps2Ws-^T~O8Kr{5Lb4GVqps^257BfAY ztDc|_U^Z+kSoL?--_Np_;mZpHX{{$ULly|W16c_H90%nGlAjBL(@&0o0^Plx4-e^6 z&sn|sUydR?NXl252=v{X18IB}MeA5NJ1`z#$B@49Xm^F6;^*=4({8Nu$)n-)mKrOg zcIW3uJDH~K#3^AXaFtKP1!dsbt&gFYUdSZe9?TOJL0J{lV(#ZTo`5~gj z@6ZF5KPt>El`PknmYqIMSFcfK1>7E7duVFPLOp9=kFzTS^yCUW_C%c|3j98Kp)(kau7s1^m1!w5V= zYL2wHK1^P+MTv8-E8TkFv|G|Ut4_i{19n?1;l<1Q%jz-Aj5wNf{Nnj43bKEeUtf=N3R!*aU94_sjxpMMcChYUb(pSZ9_=VO?Z8a_B!8FT~NgY@2Zuo0c( zhB@$}7~J#UBcl*DojvW2gS+SFE8A~8frKQlN$$>&U&g?i6d3!vd*tXpL z$6K_wX6BdeZ#)pgieY4Q?p$U~@No7c)e>f`oTTZY;t<2K@9!zFKsL2dCBBVI2G(Gp zPGVVKT3%iOZDe`=t#4L(beJ59>2&BKf){Up&@Tu6wB@*ace8||=7DE23a;Q^h!`LcI&xKOc$Q;qPWAhL>=KAE(hx z6QiMZJmFS6?6a%F8yg>%Xf-KK-p%~5FHhpV(;zl;?Ve2;WP@#-$=1#UlFpqwu{#6B z#*uDMjR`!PhTe8Ce>X7bZUM|PY&X1L9EpF19kKHWB3T>&=GJpSzBMGcQhsqN#8uVt7($>S4D~!A}*|^=&#J9!qk2?Vt6PBiIl5B1+rYb*Szvg7Rpj7duIKM_gncM`$`)|~uKkVko*LG;t zhA*=7_2|^qU5(EHWp^UTP{3$+woTf~O@ZnO1TGp>QGFx*wh}Tw+j8^y-^>1F)DH)|u~0*e8B(__tIL>>9x zSfu6j^$1|cJUMx}HM21eF+tykLWRCQrtQffT1q!SGlTeT{aYEzwxe2P=I^JwBv!1MJXTgh?ZEV%aVZ;slxz&fhXZa%rK^?Xjl? zdFK1^DNi1GDq@^wNyg~9#3|oY$%p>Eyz!93X5x@>Uk(Nr7Y0pW8GpwpX1|Mgjrffs z<9p|it(i3L_S%(>Q)AOidDWl#Q)d>yjau<%V`hBL*F^M&x#VK$m4@IjG9j&iukWVz zV53t%^l53UVX5wl`Z+mphUtSYUUn;j-3RKlxn~}TXS!!(@z=D08&BfJw4s3Zl1tF2 z(+`%}nQyZ6G8~t)bHl*^ejwJTPZ;+8LIsf~8;3PVINdG?D7^z3+7T_7H`rTn!=c31 z)rJ92wv|12+-t;{?&<@8S&k{tznT5Q!xJS18D1 z5No;d{wvO*7R=t~X#bobLGaV-9Rep%k$ToR-VrQ1iq5P7ll(`z;v2f|g81ky>V z8h68cQ>GTufMBW;N8rg31Mne=^QfB0u2S#7EO9OYQ!Ua+-VE7 zu?C2;Wts)xO$7~S!MxFgd(B$Jr^jRNTfu1EPWZWr>%DwC-!{JMkEXvgIqM40dBKGk z`;~zW-s>5-X!~G@B^E?2@cSo@dxdRGy_-b!7Yav1e(jGy6k8g_(BdyGx}(S~{h>JD=I-_kZ4<&v|jq-t7Cnu9-D! zeP=4hVt1j)$%D6^0n=Ii8P{V}TA48S{noZFPq#|T$oWQo{w=c+XQWTQveNI_;zT;s zO}{~|%$VohnF$oFu9P7Cw>yZsvAL+$m&CWY{)iT{HTZ+;{zInxGs|(Fxcy^;%iS_| z8hEK7Ao1`lvxj|%qHXds-gfjl%9YFWFa9b?Mo02lC;JXs>B*t_@ox=}BlMVdP$?Ro zV*mWM*>X^r`W7rNcgpU($1ia`8DXE?pR$F?d0Lk8v(i|;Ye9iKk$ZnSD``)Q9kkkN z_lWL4_{F!~PLZTt`;KKM(YkZj8=sDAcV-=h1i1<(IL>M5K$?%r&tH_Pq$j<S;d*#J0#T(=om(Dx;AB3*!!pXhZVYGU2spbvFgsNoi=0BA3Hk-JQZItOG z&Ri!RqhNIk7{D|hMzjTvwPyq6b$CUY7`%x>)Qd1i4T;vN)$EMD zu7aQl4AcGrlbrx7&i9y9{E%c1xfiSWbKe__bt$lEew3QwF4S|zlh@_Yz>WVNy*LCy6tkjwRG2eS)VFcbE^?un(Dgj-;GeCld))1^%>|=$YEDRW*Q3(pQx7y!)buVbwUVmin z5u|1Krib34Pj^RcAFe-p_jx0~fAGU{ia&$u?A3W z7g1Wv9^oHeI7EF3^G$t7^jx6_*K3LRltfx4ucn~Bni18Lyj!x9e$Mwg3CsjJH#k5z z%2l6IV_Q4o3vW_YGWlbqs@<98W59l^y`9Ch>~a`c=2OsPPk^Suq5mP(5X_sxsZ=oi z+FRXXxP7_surcZLH)R^u_O@gQ?JTsp*00Q3^slt>yA!w_$6Sw({kpo`IbGK4Kk=^# zh8u_AlAzt6uQ2tsw9HK#!{vxa2ZTayOz-8A79vDuycp!~Qu5Kp2HnKTuSu@2zH3f+ zl#yRgjEo%=Q5{rx0*N9f$gFn+&!J6WyH#7#%<879l3BKpl6;=b?H%S6zXqa|A(Qib zJVnz}5Fa6M_}xD%Slr@H*=+~|-6(@;$^%f*-?h_Wog4{Mf691TQ>}^2*1>Ef7U8^3 z%d@5H-O=J%s2ls?NIu2yn`q*KLgn4$uU*JY9t#Jtr~nOe2*_gWh`(7t5}?KO!~iu_ zx${%ghxZE#@8gKZ7+e-!4IPp(1)svm0B#%=qYIU`1%&FATb_4xRTU?l0m;zPm+MMw z+k|*bL1G&D>!X9BY^4c)-&ETFK4KJGbV6fqGwVg^2alrpTk04YC%g&!^OMOIZgvQ? zgeO-L`F@67dc%x7^UlA~pWC9=nHSJc{kU+ZiFa@0lY^tX`j%byc(;ee)&FF4D5^&?l)75n(hXM}Fkmuyqs9l)GY=4w#H z7Q>2?N5g6{(9p3l8_dq=}z;w-TPci?co^TB<~cTT_B`(STzDE3P=KA00WwAhHCG>2agjwN#r zzFODz!2%KRw~*+nsrHC<{Z_gm{A=oQ+7Ap=ra21-Ov=r=-(y6sVU=8*v)OM2p?4Tt z7!=sueP(#;s}LS0CPcq?`b1^j+NB_{F|YmB!~0bM%f2wB^K|?Gv8bnQs0LJ{Vp3Lj zCC6UEG$}&+i4d6mqH_L5{h+3ne4(2yrYr9o-f$1wz!N-eCD@Dfv#+C@;kZ`!=7KCpvR zCKXJE7$mDwarAU>;JZmI!;F!d)f@S zauIoPSDPDV0r8lhYT!gEc<3wqf!c_0uVp$n4=+fR$rq%3=)OVM3XIIKEgjuyql9?= zUYX`{&(3z^?BWokf2MMVQAf?g3SB8N`Rv(r_gaWh953-y#YBMnE&GRqoOp&kB&R?B zts}`2IgGybl`*)OmHlU@m{%Op3LFcN@C`tH@vV z=NjwT=gg~9CBe@8z8#$|c@ z_d9Y7MxHQ7GR%e?I?rVklkeKr)raURrK)rtjtZU#dkMI*8c+xvTCoHVR8@JAwihII_CK}ds#gin#V>WKZE;{ zjE${tw$dVXI11W=7003EE4wldqt%m;x@w*{d1rrCkbOd&UG0aann*%^osQ~)A z1S^uQhwm)&eRh}F~$nor@_Tn+oES?9HiDp?RTohXHRx*4s*WJ*I6cNrIZx>S)KnS zkM$H9_)Iqe-C zzdAd=Y;0ICCNd-`cY&nA1*sLVTLdgl$KuKnFp`h>LP#u;b6PedLI8*f?b^g%XOdR? z!&*Ov?y(d!{%qa9Nwmgr>gvUUd0r6`W5v39n#YIV1|R18(sX-WIX5@B&LqSg9Q46$ zERN4=mR2Ozl5M_9c1wOy!R0AbcF|o?x8UjTMTUvymnW&;KViK~D;E_RB_q4Y8y!hI z!)>-7b%$D877Zvbx zw0Wmioy7%aPwhvN8@J@5Qv|FX4g4+mF(bP#s6q_4%HvGgXxCzc1+f% z>nqZ&T6tXK=Z;cGxWi(`+zd-c`|l0|h+-^pAe8qAr-x1T$^C+|8*-3WYA8#<279C;FjptR=BoM{tWd`SMz*~ z`3W_q_lBM_cE~Bio9rvlS#jD4Pi^3wK2$uoAIhl)N0hh`-aLtwEtBD~>iT};n-Wbwu=$vFoH z%&c_woic2Lem(2VV+;EcZXrxeyU`bJHDuV&-8iCRoGUbI2?&_;Ts1*P(xDg$&md*q z8@jrY>F8{3<6-!cZ1!|ihFa3hu5dEL4rR1O7M#rU5B2}cIR)TIb~4Wedj7lcRDrLd zte`WHA<(1p-_OEj6_wTV*UV*|$z?fdiO&gGEY}lW@iTJm0_s^#_KSh>QyP;TG4QD3 z{&(SPNkfdlQ=pu!ppYJE-P+7n^Afr%Yvh~Px6vK!V&=jJMb*z&*IOU; z6z&|X)5Wsnq}m%-xhNi$4S&>NV%@C$FExFYY` zoc&4EUvES0)PJvE!deD}8w(smu7>j&QX=on&D!BVmR8uLlrm%sdAP0$Ox23j5_a~5 zfVZ1*gCnKtY+~i{Fz&qK#fPbJL3kLAyO?%8E!%9>ZCvlJePT@fRtLwwvqtPUlI;!QMc~i+n=n_RXm;fr}KmGoB;- zb1X2M!-I&w;IoF#^KIFEYsER1${$fM;RX@`NjbIrF$>8?ce-d@v56lpbB#~-H$ez^ zb$x9}hDu?6{qn9>FZ0|`aIBi+21%j(fq}{S84YTDyl<%dA*#*k9v}8k3W%0(E_Fht z4g8O6-U8!=A{49eFX7ufenwj=iJ@omni=86{6g&}3DQ&k-VGTp-7d97+A1RK7f!Rl zX#}Mb2*;e(lCk4ePB@?wd?h2|SKB)2|Lb@~EvXOjM9Qrj`CpH6Q-gzVLM)dfAEmn; zk{}=`WtZgjLg25CH5;E<<#0oFSPCR{wyZ+B<3p1sc+HXj8?c|pU3Zy+<4bSs-8FCJ zoAqH?=G&Kz*S{DFg;j=w4f&kf4^cfm&1c#MY{|zSd~IGeC*G+33i+~Sw-hCLc~UQ4 zw_tl&tvhE@X2URke_x#Zf{iX4B*j#`tHqxlLpc}R{R^6+c_Yi;%g0zn_Pck) z&v{IPPo!m|vpgdsQl$x@N)JkWWU-P(HKKOb+cMEi`O`pj!qhW6vIdzh>AKc>_bZ1T zO0|Cwb+pDi{x`uR@bM%UtrgP^=~nXBA?pDHd0L^e%|pg$R$a2C+)Gt@W~CuhAt@UE zBOHS6@!=78Euk0zQ zuu3)%g3lC+Q(rG1n^7!yeAsuHHzU0}CUbT6#5*bY|2lg>Y240UzMqN6lfiKTYm<92 z>2C<_K&8bvL)!C^CG-xF((%AkIk_UEV6t;#O$yiD8E?C}!6X-$NpAeP9U#?ZtnFG` zdp7&dGzgS7vzzY|+OeNV-g~>K^fOppRq-LRM*o2lt)V~BvL1B3ccb^p6^S0olf_Zv zEkN^+#WlD>6xQ|t5L8NP;dhmBFCccco{bEZpN14FKXq~RpmUoX$XW9hq=+L~vjQ%v zWS$@e($Q(l#6+peU@*+I)}|SG>2Ow8h5|4lFZU`u-JUf+Kv#rkpH5z1+CrWrqi0$; zZ2oF){!uD_w)2q%4^~Am7O>GDbCK^8yA$s9E#b)jmI!kUSW9P!pEVV zS)6)^BtzR^gB%}|ir(sF8<%zcTwcwN8H`)}5Koba!Ci*iOXD=1MRKQ|s>nEW@~L?n z?n>Xc)6M61Vt!YTGT!$oZny`fnk%3yX2QggWeK=ckf0103PZmzTI^y|>fmj{1i&~D zb_}lfo2n}PNzHCH2;J{kC=9iuq0j0$XJz#r%=%`n%d=}bC-&;q56?vPdVw7f=wKX? z5~`D1x%q&bPnHJJ6lu7vtLe_3#7xHAC)hkheJ2WOeJx}!4!XE_7&w9f?TtS?57OeN zb_a`h`S}J^bJ_X4uhf%o4UWWW)*r48UT{I|Yj?a=8i8cZkfxBeUtH-_sjnMZXh9Rm z?#-__RthJHVd(64$*@GtuCp^K9U`h3`pa#b`|21phb7g{P#??|Y(#N_t2=ug^SOE3vy4EwdVaDnkZn83Kb1xtyW*69X^3O)O-ePk> zKLC=K8^2$tb*^i3(W)xFI~?!nuj@Z%GMPfA{mPNL9q2>{*ET}imbEgV5`++lgF6$y zO^4zaJC$egU;R*BjEoFB`M>W`i3G`XTtwKNv}AkozrJvH|B@m{C>(>mO+oi4_YQ3HezW)d)fz#I{dw7EXzER>t5v}8EO;bIMMnXQ}|t}A$* z{o??&K#)RKL&vt8VdlMWa!HAhwUP{)MD%g^5i}=#?Z{8+s0DLm>2;Q8E9q!Z=0to= zW2*z-#B4G%nXBt_Y%F(!Oi|0)X;-YCui^C+xvE`@tQ@~;CzzEoV~8N0|2af1fi>+e zGTZt=DCKeGk09WAS-9v6C#?_OBq7Xr{R@ecx^(e|KJ@de@T`x={>py3zvwS zy5w)+;(=g0jG9m1TFD;?2$dhK3fk02}sr%%(UO-HI~W|Jn89)$?_U9ixZ;UYSd+Sf=-8WD@vQe z9*nJ4<~hWoTM_3By{tH`NV!E`VlDaZWc?%>QS#S`)YojBivKPl`aj&+ ziH15QuBC{YM7!X|^{=BE#&W8HAjp31dO{7Myn92zlvvXEo)jyazv@tG!lOy-1W3I{ z5)%Ik9o}zlZZDS8^&ATFoBCZL9q^HMNe|!{gH4_s#_ig7h$1`E8&fi%Gba+FYe=5b zj+*Ry0i+-g8+iz?%beOQKkyQu=!X19gIg+JD<)^4BR6+7-qFSwkg4sy9q80s>B_@j z8;~ww!ibrX7u!Ek*yc6#;8Q1=*EdAIN`&*Jt1|_*Qs^z;yHNYOC)^jF~nqFiGRqRFU5CPkHUazCh?M?RYbD0zTi9-R?gR;%rw}oSugQ z!2{Gy;}?X4UYwIO5F|ZuU4{{OAGFNrsXEIJ4E=DmC;vu!VuITIimp!*X0#^`#}ANqb#)6Bm4@}+A zuyS;*^$7|2Eo3_wpBP?_ooHA-e-Pb+ykJiJWH3z&BXKmSs6YbILx z!nOTLy5b_abdU~v(^kNGn3x`Pa&ZSxb=0i2Hv%;=)!pqyhXuw{OsA$e-kCN%d6VtB z7HW^IA?HnczQm(c(qsX$olNld(h_%#m&q5fe?Ty#RYA7{mHgm}Y2qI8`iD$AQnX0= z+Cb2rTnQoq%*q}?gg5?ppWg0^8G-M7Ta!U(M=v2`n02PrOE@O_XDbjF+pq2$<|O34 zg6F*yQUjwwIrg1E@UW2C-pc&(0^v4#6OL^UC=N}KNj9XX;zCz$aJ%WUZhzYl9I5Fr zW~=*vHq*29Ym8fhwNC=KW(%^XV98RcFdm>0oOb;*IKuXfdte#vY-@8qpuE)`##~&i z7k<;`!y$6TZzK!E)YITrg_J0Vxs1T+xeOVyY|Qqt2J+v8$o;V)L*D0_MNV&Z;XVaC zKsWsVM|d62$Bg%`a+N`GBKNt2}+jjx*f6VH@f47mXFS)LBw_*;-szo zQC5N;hKCms&Th0*kdRl0HG;|KxvFNZN2KH8pTXlR`0mr*61s{BqeS^Q;y!uT~ z884R~BSLX@jkJuHCx%Z?460`e!3DFUKDcSZ{Z(2xBL;Y%qI85f84tOAV3Y&gyR0gi zZXiPNvnn@PDT}1fErTx?+iibVJ`3X3oq_8tJHUS!8a^d^uCRp*t@B>g&QD*v?b*cm ziJ8c4yqEXjpl&%~gp0S}s49e@71_tkkbVB)(c7}Nm4l;vLs&aMm%h)d`MwPUEhlGm z06v|*nVFP7F8OGqw|DtElUfl1G6;XVyOCQ$W@fGnLYXA*K|0n0czZxv6HkG-&UmIY z*=^|zv5ZWJLqXwL0#SkuFRL4Y5~ssYu7pFz`d{v2rwLt)vzQ4 zQ||tB#(Eq-R=afdSzH|Q9DTLi7E@1!GUf7XdM;3Okh!x8>;Mq1l!A8)Vp=izc_#fs zoj;-ISvfclRy>$DASFdcN^xEwDqipH?Ew=K8zAm+2?=blQzM2&x2N&?s;ka*KVc#6 zgP@>~)U~))5R72FHaCcr1U=W^xjM75*R%q?L?xQ;H6)=^$LZ6hWA%ofo}L<~n0l=d z>YcZUA;6loDpO|&q7$6CViB{`6jp#y`feJDF8k-Nl@<83?b_0&wQGL|vi!!P{Fz($ zyE))Z>3VIoCM5YDz^$%MNz^-E{t*Y+eWU;=Q-(>=Mu}ff^wkqWpBjZKirL!4%tnkF z-#ApO46S;%2e7C{OUnwK3kx0n&b@oDH_uYM&gh+-oRCy;!1<5VYy)E1&dx4}Uzph* z3akHY;{1(-B3D8ig7N!H+}WXI%SIEV}SK=-ipYOUNp^K9pu#9sYWf=&|jue zM+_6(FSNYyIDqW8EApuurWQh?AZgde`wdrL^OQa2P?oz@9gTJFhFWx_e0xp94Ud#` z<*tIx9bT%&s_CQYKZh1mcYR=Lcv4VD`$O3I4r);}GE%X~blLR3I7O}H6u_PF@7@)G zJtXo1hxd_iXJ+PtR!?t0h{IBuH-eK>i}Z2%y|)*3q?=r=HH^ib?99qvI@3tbWgHTM z59u3_NLfM~1-9_?wsl6!v2Witv(}sW3ir~So6}vm`)^wol8%**l-@cuYb3)uT04<* zT-$tVqOGPr^(3dkg82UAz)u5^oT0&mNUj|}Tm7(SFpK{2KaJRywQkxew{+u~Gjpd_+*c*}a{^tRnsIIFc1qZ-{7g#Fo~){qF4^$Qyl2$4%1fY9VrVe(;a@@K4_& zWrUxTO<(-5Tgv9m^djY#Eb^pVo8L5BeqnUCMasX=%KGYX2wQ<-L~$~HD8JN5)%sv z_c+h}7}R!=qne*E{D4;x@iQ^kBlMbuLgYu-91> zpxp@z71%#>e^aX?@+)}t$B1t1d8`>4BoMVe$DSME42G}H^d5hFBneq+X+w(`VFmnB zV^LwBNs6rxcsb1b&gF9>{%-azt2<`(M-S9UNR?x(ZpvE35f(kZ>TMZUGq={bs<%l3 zk@+%I_0LA;q0-R%2_!mwf6960E+L^mY))cnIC+d*(gVo&@$ht)o81+qL8)JYC;TZ&&QFXn)0m@ zJq~!)VF<|~#Prt<)%htqsm@@^)Z-Z}116GddEH11y_5=)0x@lghAVkyX?O-T^ItY& zyiX+NBk;rXN5fk97^dr;e=P{OyCUdd|8?N(BWM?+u!R|zND!U$P+B@^-+_PzWW^V& z6*oC8BT{|;8@aH;4=8=D_5FL@<>;k=`Bw7oR&7`!wt)L@G(3*JvnYlnF>%EDvSkC-7Q>NhG5+F1hGgbuUZ%%arXf^T9k|ja9#< z=>6L?e$E6yH)Srba~u#c4%k2VmYx^>Dgw7;=;*8C>gOv-ln>W^0$P3 zcK)s@(#>#uyz8m$m?r)$)#$%Z8U_ex!3nBLKQ}{uQNxDH0Q7&_F8`si`b3r$`L-KfoZmEB1O=9%4s8 zj|M|rgVa!R!1h_0W*yJ?%O--C_PN6iKivHDiex7vh?TapD1re(ZQIF8lBdLHBop-% z-d!YSQSv?3SrxmE|E*uxITA=;Yyfms+}v173TbJfu}qNc{#&(GZC~Wd4(S`Zl)rVo zY|$E2O3bl^UB5Q23Su;_KQyvG51*W4gM91Cc0LXLUuO{yBNQNd0L`DxmoDj`DRwcK6450Rt9jIp7} ze216>9f<90sY&%cfBo{X8ya?2(s!nu?Xtom>DH&e^n)FtvYzK{M>UXnhBXnHQSONH zmk5A4tS2%fA7MT$_UZdm4jSmlReG|`A<~kNVr~IR2kY3WfOVZvZ&B)WJBYY1Tj_8e zRFoz`zE^x$_JTEq(xq~3+OpwU-VFMQW$}%@ouAr_4;%^)*++~37&+#|8t#oc51f^} zl02wQ(L6U+mn|irj)Zv^$>Au(uN`bEQa_Ypq*wQ+6+zq_1au@V7})VJLI*y|Qtx0f z(luaDU&N0%Sr<*<7r9P!;NthMmcS3;ip7vqZk0|G>=<}ySf_dbEA)MG*8x|+~ z@~5Zx^6(2{@2W#v74b&lOTPMk1$!WbL!c?EonO@-*ykaR_I-hJJQQJ(o)2Oo(r<0S z9}B&TmWA3kp9V`y;+e5e;Ynoco3dt%@aV3tTT19!^CgpPi9&WqX@qUmnI|4NZs3&D zZ>n~IQBm92Kpb)XRQ%Y4cGi6J*Q7=2Fz1<1l{0>@;jxymNZWP8RIGDzlQVZ-O^jq& zpN*AE;dN$=0>VskAa11b{kr-m#)-$FhJg}i17ord7bf)ooopx!M}Cp;^M^J>B0j%oFX60bgZ2}e;wk@`yiTR7S2gKGSG>U8WXEDcF%#_M?~;QLp83VO2%qC zIzmYdu&~*#EqgPQ`d|bCu{`!`T1n^O1Wz1mdMw{DRKA@xfvuQ!LMuopr|}md-{N=( zydz6hK-`>|UB78K-F^x>y!!Le#N_1h6nRq@SZSRW zfi0!%p`-KkmM|)&mjmJxYK0Ixk(sfl=sMRfo4#!1H0enG*s8cVHuVOgZ z*ZtvKL;*6gcfPG+1bT`$vyk^j@pwJ9J9C$BK&B(8A%7F3@g5>~L>rp!U1hR~51&fOUB&TLE**m4^I599 z4G2R!xZM+eOu4C1z|%<;V3i!Yo1*@6v6&2f7DJHICgos z+D$>FPIzz_^=EBUXR}05r-IDg5FKd<8q3Mdfb$?l25)wytI749f@aV`G%`N2oTbF5 z=9o}~Ng!oqg^BYXmwZ7X*l~TWA~-%=P;QZ1rhnCOAJxgyKzp$~DgF^Yhl171{1_M4 zrk6lRKd?0Kn)FJz`|W)ua<6G>I5INQM7~G9KSI!f57S1XPQZ|}^7zVuAg9_6M3PF5XH zM<^8w9x?%T5Pb{RFN5u>tEsM@^W)bvKKFKxfETt+*e8SXjx#-jaz_b6ZxEPOnyRh> zxuLb7-iS}%?@>D=OL}w2kaM2x4qEp*C^Yv z>wf@`rYUO?4XwJh{I2oLz9<}5#O3IX6ro1V#{Q%CqI{H<-k3A#P4oAS#7h6xs#B}9 z4}LC;@vPQ*-+j8k_`%-45Cud`$fg>-J_b|hFzeb4bXgfKaTFo) zdd#1s_?Ko$PqiC$m>F!@Lqa&W&!OhVpm_>{){edDmEO*+?VyZ+qotsinM>j73SR(~ z&a9!F`55H>myJn_*A@P+(_XU!{|1&}H2+ph8Nxd@EmtzvIWo%gD53)kQDEfJT=AyD=g{^SkMOPD}sYOu6V3*iAK6k^L&+OV^J?MBVB5=9<-z1&srQ)|NChybO2G zF77=L5U>PPb*_2{OW$qe%@_O==xK1YB1`#n-l4puo)rJneQWQTZ!zj!KjUsA++4@Z z-aXAs6)TX)>Tc2PZ8JjY8|o$z_1q*H2H0Rctm=SD`4=dZ?t{Gh5Pb~VSZIf+^mg3C zza&Hp=DqOGu2#zKfIdd5*(;0wuufyQht%BXi|Oo)w|^S%it;hEf0_~~CT}f#yiTuA z$^aBFrlt$l(b^ApgVb$5zih-Pxt6*GI8nix%D}iY%YPNIvw{n zyLF>`;oaB=1vQuRl5u_?X~iC->N9VVtJIC;C*HmMx9+!x&K+iikdVMTs;u)0GQPVcC>kL$jXYEdYeL@ zUH|l5?T39R@YSv>x^~&v-Kq!stC#48aP z++gaZ9a63@OGG-KkPAY9n+T`&>G7&an)?fKu(ft%(qZkLC{&N`P-f}FQD@Nnm(@3o zr*H6sKV?kH2n}&_w+6u(m~DSpStMK*OT7tXRIitBy)KH2$Sq$5RuRR zIrHZ8=Y$_7l|$2#rS)G%fIffP$O5kP$-$}M8H%mIV1k(M{VK3-1Y!bIjY0!h;5Pus z1{+|LK+5YcGmYjy2=l;)&1`pw)z52i3B+M!9+jQJ+rpI@b&TNR9%ySWaxL*@Fe0+b zsP)H@>!yBzksyLR+kBxBI0gO=0#+In43gJMVR&CN3F%hfu1@DQN(CCcCzTVf-)e*U0~H1Pw9i%BYB$_!;H=kDj4Ry|!TO^Tnf zZH@~t&lbC_hb<8#hbn@mZqMciQ8Ms1sB?_g%1w~*qWAaPxo3}+E-vlmstnb6wI7lR zmnuQ_qtS4&*k@c^E0avm+E72WSS%W;J)SK|BN$00V<6oUK-pW{Jk|;J!S%Mh>8)4y zkUkuk*kunYn<*)U-!3tG5EVVtP+;%s9QwWH#!owzZ=&o&lYf{Qp|}?>)XzW_jGvAM zyzk(c9LM__DzGE;A=t2`o=#8;aMuVJi96y`oF8|2XUT+Td2NfSm5@ygcf7Pmem2EZ z4T3OT5tmcrcf&GDMwNDt*^&saa9>2|SqaJOBr4cH4omd{bMk)xP)835;R52514>v# zGPqIx-0%xoWn$b7KIh?vf>OgN3_UZePgq5+nL2n{k_8?Gg~~fklRAG^-gs7$h;;q8 zGdmfq#BmLK&tX`Z>F4$*?_0g9BN_jbYjWN)t96NtPL!QZGLG1A)&6gfRi$e=EgIEy z*u>Bh7-$7j=!P+0=S0MfwtRBVJi*=_X@|F)f^<9tpdCM<%7>H-1Sfv<-+n79TK$aU zXNvc5gH?-z)k_auOXa+IlYV}RpCD$Vlq_3srZof|4K`4Wzt8;dLs1|nN(&?GVlmjI z|H#SKv?wxC5irG0naMsRZ6~KL$mkekPq1jVGG%nhjZu^4o{T`s2Aq(GJW{uAVTr44$l~1sj1IAJlyPri+*ojfw$#8+LNkMuaWf%&ea_7uBuBW=Ja z7|(rq<_^4_`rt?nwRbmTl+5CUNUkqLazDUC5E|7Y7((BVHfzNn%?i~bpyeW%n>W|# zo!06>m1mGw&Iy*n)5E9ph0dv~;v?eOw?KBKT2A?XQ(q^f`$Yk3FR;sHWn>VBGAfIg zXJzDk4zI5G983<&5!Q=tuDfc4<_5t8Z=Fgayn}!PUjFp1*qdpC<5u&8e4|Ogs{AiV zRA}Uw`{&?3hXCMpPY?eI!cm1>4FSdN>(|2L?p5B=Emzje{;dCq}x6n>$an$jNj5`e~*`9*v5`I*#kgO6}`5I4dRWaJa-8A++65Dk`v zJdHk512h`g_2X*T^pZOJwDbek?Xc@%T7+fSy0FpT7Bn>-%uIR=JwOPgY{lS@CKLY) z6lHHAy;b&~cTNLPeH52WVeCWqrSn6N3ybc^B}KrAeueiV@AtNTzWR1V@@vJhC_&nK zD*@R=63K|CXrtD&WyI*Sz!wdRQGFkp&eI!OP=8XHy1KG%+182W4tcqvT@TchEnIUa z(zVA3OBq9yICX_u#2*G`szS98Qwu4Sllgy7kom+)&bPl1g@CRTK1ce_e_(*~0v_48 z{`DiZ#FVf_NQ6oShZzo zF)jsLI0A$m3@XpN$61o#&Rb}5uSM)k{dxtvTt@QR3h($V_jXC@4866aHSQ;j&M^;G z&3l4x0Lqdpd6(2sEKo$fo;2FJ8EVnptsL(}exxci*z^K(V2VpkHvY?X#jn*3yWWU+ z47;)DTX^qjcbN%&6g3_rjz3br)sUTPWRTrJxiC?E5`hj@+<~lo%SZ}o1#Y7QJ7d5( zAf`v}YmM>M^6cy&R8^~q4#rA{3Jt7&$hY)`E2-JjXDsZUG=BNrFZ&CkmiJ?FV0hN_ zk-10KiOkmund4HxYTzRhiPuO=sbpHG+=lT{qTAt8zV!uVd$AD$wAaI;GSih=M#3~) zSqlw3O>HDQ_R)6G;$&iayiRh!RM(&%^ppvV_$QzTv^^eR{j0P$Fp4W{cUz=Mjej5( z7@?pefqz3UNvePY^HvKEi=OPFUX;{JL#FPp8fK;{E{LSW_IXN>I94BdTE37_EPRdp zWHxm7O0iGRgS3|4?zSI6_F^%m?R>B`)2f5GrNw6N`$e4&YSE;oo@JUV%F6O%cRm)~ z-u_obp2(e}0K3_>jR<__J_@0wzdb9QicAfVJ3u@ut>m+`;82Z`u;F{~jfDIwyDkB3kp5Fh$J0p@Ji1YI0?8*&tzTwL%jKxpE>*GcR^nhT69E%8S(i&Os8_40w zZZDDPs1U24~A5#YDzYg@NfM587Fh3BPX8ilQF->dgG=B2eKwE4}&o;5cyD^&IheYi_Tpm zzI36rmOoOM7!@vLTiUg7XeA%E(s>&3E+SDOu0ViZ7Y&+y4vi>H1wP=VxL#9K7fi*T zHzh7=Y!2fD1wW!f``whQoAm;*L^#5TVCWR&(d6_R%j)f9|GvGw8WNhmG%j_k3~5e# zuWdO!LM&q~$staA(!sw8(1m^~=N*`PQ#bktVYR0>T z*rLqI{rx|$W-u{iW1}Wd6n_*V80oKlN8S;JC9Vz*`@v46c`@a)BvmVM5dRdOK5P_w zX=Y_x|HXdfQ`0|FsHOe^<<5IMb2auUa<1zNG33W!7P_153hd9YuS#0xvDlDP0I)Qq zggZNvdc7kH&kqne0u@54wfdI@wR9NySpal z<~#ejGZhbnX6}uLJM_;?P-LJ2uc0dW&F9>hi#TND3YKCzxS^;j?U881sP!xQ&#IoD zC#0;uzE{b#{3=og)dU#)<-h@HDz{$IA^`@dw^P$$?F4tj0J*@!KUC< z6n>%@DPUT*VoD{G=(M4Jf3Jds9g1+muFJjkT@yqy$;xZYeifp4q8=++`{}Tt-cgP$H}Nljo850>T`gvPPBOutiu9l5CD;Zl@K7; zyKH7h0cq%}h$vCO8D8sD^)wO|q$>ym;UBq8hUaH_3Ad%=vW8aX@Rzv3R%D1{YrWqO zXL-)m!2X$LGRbEzeAht+^x4HOJI2&aCdmrF#Wtq=x8s73l#Z^(5{UK9MxP6HMNk*( zr;tTGFKmo8Ii;<_LB2p{u(~8>GK~!a=d8nx|1gvo&{G4YFDvtHxHwgL0&Bp+LIqir zQCMx6i>?Qm69Hi<6~)N`<<{)T-)a?EeABjBofPMO#e(9QvrKRd{*!QUB)6}sH~hU|yI>_NO> zp!-t!3Pca~5w;V3mE&4odCR$>o8)7J2{KUodkGOYiK0z#b=Yof{_4U`OMgU-j)_-L zGpV3^_0>F~C$u+e;xot6{Y}WOGq)NW=%>=LjbIG@SGZsUP#TORI6icKr;|fvx)J>D zpY72&zQ1+dlL#QdI1gRl__OTZ#N&qCVlmK(TA7e3ae6Qf2{(v>l$}(5ak9U%iorPw zdJq*=4A4mcb111WFZqLe{t5x%C|(Y?sTY9AgjJ&H-h6z(!Sw~^hm($!e%GgU2yW>E zy9+wVT}O^(*l!2n0C5*P=533589>PIgoGfevOl;?Z$ZPSLo(qD^xyrKhFs_ian@g7cOv$U%YK(xReT`BF~W`GwO=*0q(}AkQ^Y=|%kawKgEA}Rt84Wy<);f2 zgh+0J8TUx-xGHoIk5K#aa5Jb9NP+AO@qADcjkg!yZEf1RhrW~TgAARhCk=gdi&)0u zV9z&ODQ)Glm|XdZ#zY>%#Eu9@k!GWIieyNNxxyyK3zDivzgd05-%TIJ_h7pv(&Pg= zC}573VXG_4rF}T8NTGkKq&jU3bhl`d z(G$E{1=&;y7Wpx3 zm*;f}y0e&eOiXyGBJb^B=@t^>2JNO+evo>3Dt9B}%2eLmwhD~8c6$EyeD#2Bhauaa zfwMbO8ra_68156Hsnxpg&8V?OzSQ&*^>;Bj3Hm(Ys&8ATM2E-xmm<~wCx zYYW^=879`^Ka7=rGZ8A-kSKmngI6ZU+n!} z16fKwk%*vHp$J0PgOay%E}zquku4Yi1Oxl#%rmy!NI#b?i6I;H*i`y3?y9#J|Zx+i(p?yL;MuEG*duy9Z-&;{Totq zwt~4YszF)qinFNVll!odL;ykBOJnn#|I?!TZ=$O)5q&n2HY&A$D0x=5s)B>*0mLw` z)oq-wA|1`@lkDWYjdHQ&!|&IJN{})keLeC#O5cSF`2tb=cwiP7ynj;0+Vuiok&2lHM=O_lyo1yT8Fo zUf4F4To-ung={c*QcqdQVQbQjE3Lnw#P#EPZc1r^8t;Ml(g7$79E~xT=Nd%+42`AY zHT0)hjA2FejkH1RC(Pzw?*xJrS8gj%8wP?trrVd=f_yM4v>>asm%U~pNHFHZC(Hh# zb{jK!(-h8s?*E~Gy7=0I0D*uRn1r*77*Fh=_*o{tXT(VhL_GszqgVf% z2Xa`-(HuL(ma1Mu1M$T2pYr0l$*Z)2id&7EiccRLSR1#|4Wd0i9yV$CIus14P@l;V zo8PJuqvUAgjwe~T`t}1W*W?%TaMX;gtz=r)>*tc+6s!lnZywugS0~WYEqhF4 z(jB`lc$M|FP2r{(`Bko`dvkHk&h}k#t`5E&%NW}9E)Fk#{ZuV2Frr{I{9P1r9r;_4 zGRhb!9=g&_5=JfF4_>(Tme}*7Zuf=>ZY|;L8eEFvpPH|#U3|4v$S$8ey?msj>D+0N zR==51n1zPN#f~+i;5`u{jyMb!_vBT-CQQ-nX|2+F$5!QTXOeY9vqFv>tRcFbUpcbd z`=3>d3m+u2}|FGa#Tlk^Z6m1rFOmgYeJk%(r3eap2cx77d%1KimT}yXtsDGLYI%CUcq|_q4u-aIpkS-&&8tV5?S*;s^x}%JQYyieT)_!hBgx})&nF9P)0!OU+_kMZJbqFrwd+#8 zoFt}XTAGpr^%8tk<7{7Y)yNYuKCh&tZr-3WVV}*foHiSDlFEqir}P?a&t3KOXkfpY zuTpaN=DwAHs^%Nj-VPbl1vP2ZB6jkh4{tK^Nn=Dinho5_U0ELT`STj~(V6O|^ScMkV(5LhU6$e@+q?t zWN+fzZN!#^!HAZH8~q^(lc3x%Q_t3h4A!$(vgl`cqbFMX_aEwn3~LE#?nc=PXudoQTm=x%%Sv`0}e-xdYiH|7HhM z?&8{_`}1(q(XlS=Umv|FCS7!5y)_h<)0&qDr^UlM$Itvs%w}-K5!ei7q#JQ!2l9Os z$d7DeXE(QA*l6Wgdwq3Yh^;bMdtxPj%khxJ5B+&1Q8!;olW7F^c;CZV0zLu0L{!X` zZNuLFgL`xKUGcJ5(cijDMo3YKS zGjQ;)u`|Zmdpn$3a9&?H8r~l8hi!W7PVb)^)?3MB_=Yya;-qN&;3jDT;b<=>}}*E zD+6;*ExdTzBNeNiw5x@Ih~y4dT^24vKIyH*aYCQU;S{b!T3Z>MJcaP125Trv9kP=Wry1PNTLpr6qyFox2 z>F)0CMoPLnq`N!s=6QcJ_YXMCz#PtZ$J*-?YwZ`5ya`IPgF7WB6m<^vnne{<_@Or- zEohC?M$J=DE6s{%#%KJzfSEUGT8lS69|GRf(ncLov$U}Y-Bpx8l|AnQk4f1QXE9I~ zl@ozt-`S`eTY(lfGLM#vPU=3=%f%u^HShbV2u-}r)h`IoW;3c6ZZ;nmLHFMSI!Be} zdF{=qV9-9Ao2wexRMf2{s|&y1I{9W38;skww0eXiScZe?9V;&_78~4cLh^Rr$gNc8 zva7LOxo@H!Y`W|kH6c;X5nU*sPec&SkQA}Og$nseuGriNv1;8|oFvJSi=>w()sSYw zHq1h?4k};ukuDv~ZPY23k**h{Z`n}K?F4B2N+xj5{|+g4s8DRRaM8Z^KDo)W{aTA} z5h=WR4e#;s@Z_7S6gO%q*8&N1u!Dm`3s|K~POBcTuT#^ts{*7;i@#CJf((y5Hn86v z3VcsZ+L=w+jI%8F%JLiY5}2wE-x@RF)LE@so<42w>@d1ro10r$ zz#}5+U2G3aSt@I44qwe`NBH@@@$vC_e7qQat1Y2?FvfU%wfg`E22tx}pIt z_xhsrH_iwKR{&x`l^l0MFn|tp#L#py#yAwC z*lZ0u6Xssoh~Nz`Eu}`~zCONIR3c}LRp zLEdos_E)S9o+_icYD*;leLbp_?jSF2{oV3BiQ^76otakeY(x@7KPToiw-8tE=3M z3~$y|_vqrXrr;kQ{}x=hULG$#U|{@COdOzXf9wK=Ln-$b8(z_{Af@81>Z2%={o##! z9gFd*NY3<)rn0^|73z-y5K!L^Op#G@5=0bBNz#%T(PUsLqYx-uKorc=LLs~>ZmrWn zg8(h1bgsrFv+;J$`UrN8>Q{wJEvek6O_{CQpBw{)GBjv5dMi609Y)!Fm&^ygmTd>i zI3*81bk5EPU`Pb$6~%_I{*ov=jv(Ocy zcG;@!*Jlb{F{8u@i^Jf|8IP?GKbhR`Dc~FXAOMjBud1rbb-$bKe!rKGwaoK)D(FX0 zo|Of9At+x=NYLt7jg?`hx|_#`4C(i@IHxYTHOw-v9A)RtHF z!_A#1-|lZ^t)lf)LB@=>^`|~YVo0_EWX*_x_ukopIW$qrLEH2e*(53E)Xo=wJ0aYw zIsK{g?W9^h2i=W(E|uY)-OO3_&Be;kBv1GwI2XS7 zYJM#*+zFt)sqT|pL6?IZX(>aWC$JFHSw1@+uQ0UA)sH!TDXu=5E~0S0kW#74vWVuB zHWV9g*J0&6ELkw>uiR6lfp@`RQz373RMZiPqeO#)G^Po~V}B1|RgPG6QVX{0->&&; zBO6=Wt{txErh3n7vhh zuS^v(FI^w;`vvC%2d?IayJoanwc#p*K@JBz5VYIc9X>?gyUCWy+a1)y4&^be1?xT| zE2w;WppKgo=)OC^jvmmJ-w`(I!`|NMj+W_qy76m4PA{=(y0kK@{UcSWf%VkvDT#(M zW5F8;54{7FzQj||ft=2Asev@Tx~l3kd*g+j)M$QI7L-U|FWKwlQczIPEJ$a{>X?}= zt~>5r+#i&0Y;I0jBf`b+Q%i19ZJN4*5mW!=wy^yRfkj#SK!E9=zCt|MDrYga)l}p74pw z<l{uR4S8KyRxEaU>{#6w_FSQ!C&7^sQZ)=yWn z^(M`@mJOXceKqy8j=Nd@v?HzS`+TYowe`$HlJ68Kd5({QMa9^d zn+t2Gw<~$hO8bU!NjSLzBW8$i&n8;ns6H^T{MlmIXgw<7Nt(|z&dALr0T)?Vhb(eE zo_4FKIhrpi+c|TpUYymA_Zyt{{X?4hG{~^~%=vfet2Ry8X_i*@RuFG^;&ABh_L$Q` zpQ9YKtXB#lt9pvX;&a-V)APv3T_I6eBUnUeS8#^C0sFL~w$|dzP)|>=lqlwp3zd3Z z=;fvT($bRi<+#WlIL2*kZ2o~h`{p11x$Wh~u{xG){H@n@a zU_vSRGS17!8cw~`eDK9v+&=~TP43qdpr?0>stoT@L(J)8a4)U8^3^dh(&<%nfLq3xVr#Mz9x6}Igiawv+; z#tOOoU4OM#YDPs@#ZFK-Vf28rizhLPl6bgL-1(&E1={oQyWDCAj)kBg!lNLFeO#y4 zoZaPxJ(n5z<-y7E6ps`wMdrbE6h`>p>B1YI!2zKRQ7>Vqdw7enKaxv;X(J$vQ#^O<|wmmrxsQd{EE zpCBD3TUzun6M?b4)6v#AT)@nA0XNP#Z^bIB)R|)k1qJ;K2&l5(llK#OrrBI6e42Bn zh)|d}XlXkBaH7Tir=ZUaF%4yg%hlxLXgT}9;!CRG2w^(Q%ctff{%7fadvqrR3R94F zncna$phI#+krwt`!*!Hj?NsoTm5vZ$!7T{f+(GYkLc_o?FKv&c4tDy%;`DA{X<2upAEix%KJ2`?`5iZk_q4)MaZ*C%+M)3?OI4Gr`6on+tQs=p^D zurygcS(uoJ0{0t5M)2JK0!>+$?&Z|KzLENU4`gIdG5llzH5-BQ84Oodk}D70 z#!X3UY!sjJ9uy}}zMg{80uH1(mrRR=Kv{`!PsBsc*Zov0R!Q<8j#kLMM}^ z)9r%3zd0FwExv(&r|f~BDV)1q{E@uJ^Ja65C8QovtUuZv^})5a^>kqj3N0g|`9tn2 zm-Ez}X*v0>M1(i_Cg~ldagDsx8Yk{Zg1-tofswj|CH88d1F9rp6|#ahM~Ecp#vL=+ zoz8{o$Tssy}x1G6#W^?V{zQY$cW5?d6V#i(}P``b|rRhOZ$L3 zuWYg)QT*9`7ylCPcT`sOFJo>%6(EA3dQ$8)MYrzkY3*IK6Uh8^wFX+Zjl4}TwGs5>&rfdf^(9$uUfUi zoOQr3h=6DyN(A!+1Ygk0tNJYT>P zI+pn@Jc5jB+4?M#JznJ=c=^!e;GWJRgaqST_jyIiu(wRJ*%{<=xbm@OWo0EAjZw;= zbHX3W1J4rfI3YtZ=Hu%)4d#}Oja@+OkaJAVj5&UT@Nn-~z?m`?Wt1&UHbDP;-5Dz~ zK+D>CB_h(``VE42nFoiJQ$l(t#%|Az^VZQRxG>(}y@tcEkbf#&&f8Pln(gzi+7NAw z*{fR<Yx}CnOBrNu8>0d5psQa&Nl_bTH6)s_e`Z@F zOdc;+J|3mK;_0&x2e-EJjr<;KZ|7(0_dyzSwbHmzd%e{%0{owTwL;Ca#Ar3It;IeK z^eQy|*-={4$<-f77#WtE$tUsCu#l^%hEV5SVejNq7%PdvLYz1G_lb+GHC-1)=W`2Q zsj9<`3e9+;=8p2z`Qd)_xAqzzSWljzI!h*~^6cGJ)qvf=pmV3sLxVm|uE=H)$$j={ z-s-(KkZZGV_TIj03iw78|1U41OR0tyL0uhjx@pKp;$4SkkbGnBoNT?)jSFFJ0^l~l zz%6mnG-w{YgIn-@{j7livqqOjtvBhKqlKro*h-U6!SmJE&A#lxPtT*^P(c;MZ0MA3 z7U@1~u!u6q(-aiwsYFWDpP(pGY?i1ngjQzm$m@aeny#E*y1atyZK?E+pY3H1-DDJD z!l4GV|FA&5TzrurrskINH4G63STzN(gQ%oB)ymu!w{)N3lj z>h9DIt z1%30Hbe-8XxPpk$(gH!%pc0D>jLs!V- zG5gTA*%jcC{F>Zly_2V2JPBlwY)J|k7lA-rz=ouXvBwV&m){dn0BopysXPE1^$QTT z9QmQt`4^FcKhLT=oB?OPD`#B05I~L{BJy^9#^<**Ru+~w|1eyK#Ofk{zrsreYvF0u z&Lz~CEV+)1$Uy*8MRO|#>+Zy&)uUTeUyf+11+~jb5)qTZd_m;kT&jwWBk3Hy5n{uk zU#fZNV2?b}&I-B5BL2W2#qa%*7JOv%BY5jtlBGq+FwDBXS7f5ZBAxKHE^Xd)+;-rs5K#F|Uh+&8= zxA#>~aJg~Aw?D8o7OGZwaJE@K;dVyp)9n^qpnQmw>E~26l>u&E{Ox<%o8PMPQW?e6 z?W^1YlmWF~uA+jaCa~hjNqSY5rhlXvs}KZa+2Af+ZFf8p#E?CceA}_L*Y6GA%1@VvRRTe z#J)!t&9~K$S(XC7pkaIjh%kN`;bwjq9GLNa$QMHdbFd$ZA7xf zL;ur`DydV^Zr6OHtd(u*obK=s4xIZAbfcL(2ITjoRuR+YXzn#a;nKW+I|YuGm9Q)cxm583_|2M7%W8t7pW)yU`% zZl@Rc*>?{sXBzZV1eCccjE!3@b;nG4TB}`;GLC0wan*pZ-iwS^m&n2Te%3QWyzPnC zeTb^3;=qOurZngIQ%S286zxdJpE3-yi0v_4mWSrKHB%##3T6@5Cc=2JXS?kf%hY#7 z%yjtDl=PG`e61KV4xIa}wQ6kcDov}ZkO|6K-Q}>kqR$fp9-Q@zJ{cGsj&<+hhLB2? z2Hld^Ayt?@XJ~qQQ2&;r5{hlXD@m@=fvgy7yqGOc#>De@5U{P9f@84B;*Xn#lgLfM z+7Y(yR(`lMbYf6Oy7&LN{6K}mp8U+_R{Qq4C1Gb=PUr(1;=MI zkNb?^iBakf?r~v8ATeD1fDmMO)xf@?T zYa-x6bA@($k2s%BCG>KM4vWN}Ck?@Z_4KAU~Qgu32g^WUyou7qx1P_6;T%pZqD_K`FH87 zyUZhXm<{u)>&ALMwemjlM1rN`Afy4Z{xb-d=Sd+7-XK%f<)_iW+#62$s=b6frjuiI zU{WZiC-5?J#J?bsla3C!zo0=HvtKQVZ=xUEUU3or*_|OVL~i*}A?0+w7c6SrHysi3 z!lI2p?m~zq#$2mzrmsF7DzBRqFhy!B^IwHt!02@J4bYAAdJnxXq!}#t|CQy*A!65C z7jO)18NRcPq;KTT1BUj_-0ky?^wG-p*ip~mc+!C|jLmWZs5GI@uNq{F(&`Edl^@xR z0}`K@No{Zx#oi3gClsa2n<}!2*&y&7p$Il+yYHEa$zj0Ml8X?<(>J!~ciyb7N|jk4ynJb1!+X7O_V~HiLGJEqn4a$$Q)FOLnq=y#h6Jbz;BDoxGYam8ZR1P)my$*&yt=scRgH+~F#iud7YtY8#QW1Yo}39N z9kKWo;U%Rd5JD$6q^iLej0P{(nm9=epI7**HVZ*6G;NQG2G|ew!C^Ly`mr-06bvP8S){ z%1ic~5}JJO?VS37Uj9vhH+)olzAmD7Q-AMeVdDMgFPx4;e-~Wa<`R)QJQN=4+*TU+ z#^gZaVXqFd(8tw#Mu;VP`afUy7+W2LB^>-+FXpyex(^R^`qB2D>ns8^G$$M8)zAK| z8*eh)9?1#|{uI;EdOiGI%4fronEH{{@+#`(e-xrK`5)og7@A+=PmxuNOEsh6-!p{Q zJyT!qt@8VEtU#OtAQ?7*AzZk?f2KnEo@LY%&SChjyzE)ad$-H3nqRkP` z&68yn{7xVQOjTxL5OMW7pEwh>PYo%GYvpgHAK41D%0vtT_s?k{Ia$p-Ky5D{vtMhfZO{PdrE%W zJ-B#Z<$gmq*dB{PnRaz>=*G!zfeM@}NnLL#T4Djdy;6Eh5s?l1jic27%c ziTdH+$&l^|Oz5?r@Drj9ImDt;%!eGwf;91G$5}+L!J@n+PQ8tNEL*t8!N_wVy*F{m zHpQGug=4@OouI1)CnC03sgONYVdVIaz`bi7S9D$RZgFy0vWCt*&DJ`F2Xw`idzsRr z4dlms2^Xwg`Ev&BKZY?iR%B58WUmbpk3?yU)(1Zp8sB@xBX@L(nndF*|0L^zlP zy3HUvN7t`+6HjI0Z~PQru6mHaSl8DR(=>-Rd$CDsdQ3Vp`<4-vmju*1)E2+Ocm>?a zF#OIDanK3#NGO69=iM0T?@0{kW(na{azjFh3kNwbr-vCYR&s#Ze)$VM;P5G$BIncm za?JanWYd%Hb}R0rg$~yQ^%~8>fkd1M=4norH4m9CO}B^#=5VI)Ej(4u8Ky4yc7-==8rFOHeka@Fp$Z82YcyW@O~%Gm@LU0*WukGhe39_$ z^MBrxT_rqm>h+U3Dt!iL*K3GuoV@+ODYtqZ$Tw?62Rt-o=Bj`yVwESL{pCQX)Z949B#8GpvQ5iT^&#Ajq4+SX&rry<8XyUaYl07ONIoDjv-DHT z-WuQye`9@B0rA;A%nUDCokj?>r&DWdnavNOIG9po-GG6kb1aFW`P;vXqp*vZh_^i; z5|Ry&aS2DtKy-0XrMTtU2Abp)u!f=MqCpKpk#bvHuRP3E?ap-5z&E%PXMT1w(~= zi;IPEXt!^0(u1&;MRU_Vz1BB)!LYu%)}LN4=RtEG*_{V;3v~w4EC^axI&V=QZJ}e; zrl4_>yMon@@Bg9IUf}@SiK7X^wRAJNnZH1V8YbKDxHO>> zmn(htW=KRrU3NWJyF+92#~<<^3OnD*?%A2>bn^7-r{bD(rC_FD20#A-8WYe#T~79i z`kSp6y6^V1^zM)y--@J07y{DI6k2`xrPS9>p|+?bt_gL)=GVVs_e6fvN~60 zI_`-E_qSiXJ_BecTt4#`JHL^RANEAMZz8lzA9o2-B*bbB+A8w1i6Jfq)ur`Pt>BiY z9lU`sUV%z!`7s<&WO0)&R9cm@o9`0RL_ySg(~kEK_;XNZ#M@eI8swTild}%F4$@T( z*^Fj7@0U)pvtSq<^r97IA^Aip-*p5Bhv$1~Kka-Vyd&_mn-rzLmeP?2u_=K${X}#< zGq!TKR=yxmGaD62Pfk^Rm2R=V7Kaal7FLY7&ajTl^uyd7pVp^8Jr16!sk-6`WV|aZ z2w3WfKNvxwl6kyp!rAo)kSs(zd4^t**;Oj`t5)i>d2l!99iO;YN#xw*WY@lzU^Hi_ zQ2dK4{#B9$bf2{7c56>p9`wqtHOtI<3+`VkD5xXYFt=oXNgIM(t3C+GLi^3@6ZGzc z&qpyJl zJOH-2%5;y-cllMgHtej@1bOM=)ZqU0R53Hx`GMRsS5y!P2*7NGjlORfRhxq)aZQnF z_~UWuLmUUaVmXVH3Ks~zzQG(HY_b29GVMG*H(y>A6)(g;dt9_L8rNEz{KV?^)#R*H z^LgclztVAn4CK?p)5k#vMut%%=L(7V5~B7n{0>)ldnNjNV+n~AD_A|0OPl(Q(cF!X zv$J7E9LzV5_6f5ysqX{E@pGD_hc$We*2}Y1ziu(`XyFZq!cFFCUDaB2T9(e%B_eoG z)M)7?-7JYM>xTnhN(psRM3jFpr z6-+O@5##elU4Biwt(5%Ytx31X+JN#AHWmpZlJWQV!jTq>e9J9nlJV<5j0WmiBQ{5Z zqJ;W`@x?T1-BAnu^U_DgQu`^(|0Q9#f!rMxAT=Pr^_KASkZMlOYmnEP&}6SB31}l2 zQ7C6^U`Mg8b|7-0({84FWi;Uk2$fQx?I^U*5MhBTOqEord5`;#)3?-|BC zQ^|~yC%)n?=%+S9x7+Ns82zk?pFB_*Di1&t7hS2BQ5-qi#}BWcO$?Z8NTxyZXk8oq zbFD&2dL)2&+ni_YI*HgT6=I0I*o4`kNUfogYVeQIqTY^PJ-u{^#wj7bhMH z&3$DP-?BN^+JNrD9tb2WqHbALav_M!qrKIA(4zi{Y}iAKgQRAVMhB3upqQ%T@N2Q$ z*<%tq#1c1qOlpLT!QQ59Z$OjNz}a_GP@F#Dr%xi?}*{Fx~(oBU1&?|sSl3q@ngY{$x8^$`_19)W*KWJSHn3wL4__c01QDW5w zLw&S>8Ki+F5#9-=axd4oW^K#ZUm5o>RMJN{J6DM;uav6k`O6-Fp1@29@GP~ok!roP z_{;U)oAGgr#T!5?=*Q2j?U;8{ZwwhdSMfmrcsUfQJe&5pz9deERULT4P&p|{B1VyR z{^~w!+CG9rda57?HK#?%{pqq_p8-mPqUCHYr)DmIbPBP=Mw;-O^mdFRT47`*r?-1SZ&G66a)B^)SXiCY zXlE3bmbQN+fZ1%J`fu5*y>0pwqK=CpQN8b`6J#)NDvTOV0c3~EfINS zn6DrK$E9cD0K9!QNIS+$ysSTid{C6PdylK^$(_KCC-~palL=|+fhim?hc@0FJZZGL zqZ%*|zfkcWOJuJg;p)vC^oC0j=(tiQ#r2cNCgoik?rRPNG-yENA)hvV6~F05MZ zP1fD%Hv!l8aBSw0uH8dy$5IZZ%qj7y?b}=%+)#YkOAH1aO-7A)k6wEpl=VhJ2F<~B zYa}mZiYE>7)RylHS zq=64ht37XNMa)3F8d*LpEil_yZ3eqQxmt|O(oi_b=}9%O%xtAO1SUf`+aUYc$=(D# zTJ1eL;10s^CvJ|9tsfhvTBbEV&=uz-p|YgItPQCCV@oD1rADj403n@pXMUQjpSqaj zPj@((5i;F8hv7HpcgGtYAgyw*WW+{=rR?=@`mHS|;VEQMOin={VrEYDL9uu$2jly@ z^>LQIm*x{-?gpnDWx43@fMelbf!wsC5u5)c?k^rPkvvz@h2{B4C{gpO&viJo!j*;5YqYQ+)nCYpF z4gKZZ=R|ydtENvAJtq5K_DBG^zYeq=$^IU@By@CKuknTQcxf%4#KtE9XlU}0@g3f^p9N@==T-8jlbH%4bOoC z6L5HUjxrRh$6`I5;sXU}ti4wbdiK9?!PGY~aTJUji}jc5I0-<~HzluJ!xDB(2T%sS zwVt+q34o_v4vU4IfNZc$XrC9+0!Sy*;?ax#!&&1Nu(3+Q-?Z%de#V=1qIW~ z@e@{n@X3No`E}{=d1%px&I;Cd`LLpT|8cLdsxB?(QT+Y+pjdzL+BZXNkx7ZKrIv@y zV7i8L->m@Od-oV$yyersRG=kD3PAG3yBImf;KU{=rdr6W(XtmIh3aq%Zw^&tWl9L?+P&tkG>HC(rYazGwJx^`M`EA)_R z&3Sun-{!S~zbk%tLgMjjug|JBR^8GE+#1U5M#zGhm9^kuT-^g4U?B6!L%kHp9=H8m z3`!vULGW9%Hl@d?y*d>Cs;?}dn?2jOsJ_1QBP73UW@Nq>%FT?#F-|-N0b9HgDNJd< zspPxK*K#>I;FHd%3SXMQ0ghW-4oTWS3j!m*bd-C4HUX-V?2S8K)A!(d5>MU)A0@nemH*}Ov*ahXlxtsq~2%4I_(^;Rc8L?UJ?}6hbtA4*0 zh?3fTvI&jL;_b!QIrTIk3(66fZxi)reL3nFNECNcO_^wj=8wWT;iA zq#7X|>nklq4*uDzBxV{GcPHqsY8;Si%bqF<3EQ;r!-6PZIF~55qDs^MD4I;dLDhsMsGkB^jBQTJlR@3n`#=Xtz3i-h2}hdbK$N=dY-gl!fEs+L{h9!&lbV_pPj? zH6J$>3--Ai`CUR@T^hU@>OJ2QxYW!BfIvtLUDi@{ zcLXZ3f~UGD+*3-l^-yx}0{5DQC74S+v|>$Kwyu%gq0rm=BUsuSyGb>{N| zLP9VY7#Qv|otWPNL^$Np5G+4IsJgNfOXcK=GtDT={HL!3?y&$K%bKpD02CE& zAD`31>WL>20{@8#6k4G%L=bS!(rE6TR;Stw(WT7b!-NOxoW&rd;V+oZOo`+)onNKq;0Hq`cVr* zBJ*byBU@?E_m>=gqWMMudFgm~3;heSDZKY^0wJ1y%pSpPnnz3}05D=Df5`o&I|3r~C8W->i>4JM_jRRbejAB{yXZXQ;~wD@x>z)4lkJz81X3mt%A zV!o<^KKgU{;^Is5f8Oji_3-d;MMco+W<5XM^D_yFf3?x*`;Q;{!Ly9ljisLcf1h^b zH|d557Z(p^A*CQ>oGhzKtA+&MoAUI-4%juj|{< z%Z<7Cx4x@obgQ9WZV0Tx&o?_Zy{(o0*e6G8S6(vJWQAz4Y9U@^G)XXdU_L(ehhj5= zrDA!0{g<*_$I5CIEp}2tNhzS!V=~P_uP+?T1`aTxuXx;Oj-+u*fEMf3eO~*8`CqB2 zEgEw3^I4lq8-Ev~d$*;2@WyNs9V+_?C0>*y^JZ|XDxhZB$xVUg{me-lO#5~ z=xeB|+IhYu<@DT}7k|3#l@ICcIMVU9I6qAqh>Fu9jEy^e-AEoLUs%07ywk69e}7l= z14JQE#<{%i`098#5??;081HW(ECkW{9{ZTjRb=+;%$94924hg-w3U~X5YyBD_Iaaz zVi-N3UpjLNDlv2ormyU{IYX3+NwQUNBvTw(1{ z@a1-soR4NxZ&_YWQ8+T0ovIsGGC++}W+R$0uIy?y10dt^ccbU{gN!?9=hcqrhX8dU z;?8j?Kq`|a3F6bL`vr1sZ7sOdfD(y-CnX~z1hIc|Vq&h^2o+RU{rxNc$?cHd*Vh*g z1?BkOA2+eBSc4B(hGXeDX`hr0f`V7L*q*js z!uQAB?8tP~ckd=(X8et7<(IWx<(MJMSXx}RbgC_X9DL3FPVrg+7^Zz>bW54+{1~AJ z-alU}I~O=OZzSOjuDCbmE;gC85_x}-|4R$|lb+!QdcD*B0hiH!FIIZ3U0FXo90K;d z+vk?Ybxo(`>9s3mEv*rJrzM~2YR1maPGVx>3fC*s&GWRInQ>Nc;C0f?J-i(#1*%@d zehP$QVJ$Lg>u~0c<-^Ul5uqRB6YqJRRhrt(vGLd^9z6qK8c+AG1m*r30AI|yf4fYb zN;&y15FFLgo)6eSeGAaa&bBd@B_e@cMXXj_>Q^AX;2WvMr)C30_lvNY^QT9r%(?F4$w(wE4m zHk*|a-E-&t#4KD)L4fikqv*hP;WSJ}93uD)b({-2#QTC>%zU?W$K&>+Jd{_ViU$1M7#MX!pztoFD!j{7FD#y(Y#uKRW)9)jfOvaecIr-`$Fi#C%*@CY^A=&-#FSp8xYqf-F2{+f^B4a$v^&s5A3wXkSZkqY__sv3+LQCy45=h067jM~A8J&L7 z0{Nak1Gj+*4heXPpnOm~py?{2q3EjNA&o7FUPVsdV6~;AWXs6J_uFCxf%rjpv5zgh zVVtA^EUqh~s9J8wpPcy^g2TfD&Nh;@`v90Su03t%jkqw7WVkX#9@YLtG{LqUS<^)U z6eHPgrc_R{fCN{uqwR}SF$fLzq17DEjK1(rbt|zO-sg`r)_<}9`2Zx~oPw%wIBgLv zO|*<`|J!Oj{lL^rG3~;3+r!#^ac0}6vL=M8 zDw>6yceCLLo3${0kppXs+=X2C>W4zLd{7s88Ch|-Z3`lxP_*+|`f>HU+_H2eo)oPv z;N1Yh35w?QsvHWYt^4pNUPgUk=)62Pc52nAWgcxp(Gv|C7F4T1%~G@zMLjHVM`gF; zZ|(8ohVXK42rRRmUfQp;Q3TUxS_(W~*@Dy`&VCn0r$T+l6v7H;HjuyycR1wY^WF~0 z^hAoW0Zm1k%XphJr&_eS(%^s06>W5?z3JbQ zV9>3z3%@{J)+#YAz@Th5iyB_dwx$5COd)Nq41?^~d?|sO~>0W+?Rr-gkNtp%q zbWjcnHXK0rDvrytkD8M8GuIh2#&s;8SuCt_6|EPc$py~$>i&>sJ2*O??xau5`oWUCo5Q)tep2y#qN9qn zWl8B_7nWkz>sX%2a%@Dve6PF*ZlQQ$4e47I8y!cFiD}FrE*YgR1fir$Qt*KvmQMyfh( zznlX3Ac%J)py=j02xLKlFDSg1I#`0XX|rHg*?7 z*JEk=CGzPvO-xCtZcp$wb<7YpfQxN80+tWg5DKgFBTjDe04bv%A9dg&!rI)5(qM)@~q+VW?e}-U^*klP^==Y zyGu#~1m^PSpq~V7toty98k-`46Q>e2eqRAk8DP)tc5VWlow~8YO0wFFz;Wh-3)0=UOz@^{RfVq|!HPt?W@V zbsT&UZj>ZWyCpn4bM|%fBg?7{$Tm6NN`6S;VBs;%A(TokscwuBl8RDb_k z@SjC9_A_OG+^Dl^8JNuax;ullPjCclg7OXQ185ydfjKQG&<_LT5*AM|!aB5|Yl%fv_(>v3_JmUOaBS zYjJbSJXN2ppq8yw|wfvjpn}9*Ctk&An*H%N}7alOaX7#vxO8 z4?~BLq-Rf@j*>}f+2bA5^&RLk_IK|&0BJB>->i`Ec&+s5<>@0}8`#t+8?8*W9l7aa zXEBlX8JvU(d#Rw#~|h=eu%i50|!SX@i^(Y&t$KdFRaMqAg&mY zFTS*!3ud|lQ8N+M)&;y?tDI?IcY{(W)$?f{Kxoe%o_Fz4>CQ%m5)`kA-|Ay|=hkM{CNg;l+)| zLHtBpqKQajs3xomc)$m4a!FV9_nvoKwXcmc7JT{5-OLdrdZC?)$%%cBLE{}?tx+I) zKP`^J?P+s&Uz)59AUY=O2mMb|1Qy2W&AAz zlmL;38^zcX=AOAdjDEq+IoLLH!jR#C_j)1`dVIb|6p)&9oA?YUJdn@QU8P!ZHQy6A z8p!`S0U5^J{jPo)K8A4&qMXl~z@KKxu>?k-Y3e#13PzG?fmSo)4=mHHe3IM9sAR;#WD}Dm; z#p-61(7RR4f9PHZR=bxtd%A17`$^Sp)%o*NQ-0s-oqK7>bE=FyKL%pl(PyG^vlUuO zrH+@Ubo-ZNs}UFdBt#&OzesOd?>%sW3o=zeHyc38tmnGCGxv~$_I0*roIqkHCi zZzz`foYCnoQ#$|wzhDmM!4r>k`9q&T8Ax@n_Q+C8f=?*wb>8`8c>D~SIyA}t74|Q?N z?RB6kC}3L3`8$UirORy;oxoDqYGsq|8!AnTWiJp4Tjq8H&9R!%5fj?YS)HD&e*pt% ziUqZ^sS+FKr{peVJ>O=BeeE%i*Ck&pSICU~7IbF|#ezh-aO_wS7ZbAZ5FFP1uTINj z9s)uMe}K3Sc^LZ*Y}ZWb+CQS84s6DZh9_)eb1Doj9>x?YRGA-!KUs089~)@Hf~+jI z0H-16-uWo!^BVT5EZ`*{+QG$O#OR5Vrk5%&W8d*E? zqi$SkkRl|L?)a`OcI71z*TFdY@yhyWU0;cu)x9>|jCWPU+!Y>_w*VzR9v^Jo5wXm! z7F8YjrkAaJzOnzu)LTYXwXg5rC@LT&pmZrnNOyw>k^+h-BHi8H2uLUmN`nZ9h_py| zOG$SL(%sE-PtW?PeY_;`4)8f>=!dhQ-9lPUp-5x?S;H z@%_e;M3pwO%ajEZHw>6MZO=_{e+Gx2frr+kh$oU;bJs7m7&}~REYPy1|E zk8~(2xvM$^Rl}(Q)rzUP2u}9>UgXsMY8v|nJxX{fE#mH6anSAUNcV7ckh-*5UT0Vu zMK%zFXx?NSX!3`ot-QgSI1-p-D-k|n%&R~<( zW&4T!ghkjG3LD%ch-fI)Qfc1iH3kBFf>m?K=4$tTx?h}V9f2V(m7KQni&l^=BJ`qi z!#)NPFy?I}-EP1Z8TmE$x5T!|F!pYAJ=*&K_EKyjngG4kmvLg+@6NEv(JwDBt*kVi zj^2O$ma~`>XYkQl>9dA$Ja=9`nNl}-9rfkL^gPW{{J)Q|MC0Rk7Aoe%B=`{Dhw<$T z7`Fd0nl7|yUMG-1yw4!L6CF*co2$T?9U|sN=d}(n?bo^VlD(FvJ#CAJP9573hd0}G zAGI2hcf6wrwh&F0hBX|#uVCZAAvPAy6nN6#)8V4Ps~HLwG@I8PwQEYopv?T{`20C6 zoXhkdp$~`Rtl?o(b`|PL-{njq^Cl0c%CU5< zdV2Sd1_+Gd)r1KPFePD}3qL7lc=IWAZ-Oi4;qRO9%a&QRU#06CK2luB;B5Q3&l-3M}$ZIXS}x02Kq3n$GI7@Jdf{E$}9ED+XgMpdqBSfGJ+A0 z2jL1?c4TrlP`A5dY;s;q{j=F!5EPRv`|0lQ~O4~4sQLH*y@$; zJH!=5->gElBdD@Gpe5XC@y;R>+|~pl8x)7|b{v^&_Lh%Zb=CSUeD5m5QpwWd1kQo; z3jQ`)pT-P`dxTz~p({77H<#mex_F}r^$>3LY_B;z)(gOTqmW4JT_@t6Av5EBN%HdA z>j!^feq&^m!3SU_c(peIpkgHXX&tDx!3(lGdLX&Rd+HRR>Qv)td(Hek@LLtp7e)wcn&D17q?bodH)sDj^QWoFP!s<&^gcVO%QbDq;jW=fJan99Vc3>L0G5k*Wrwm*Gf zsI%-03Q4onJ`NdIVnf?!W#m7^v zx1O1Zaf8*z{+B?6@_}7^ps{>?+^TMEBJ-Q;IxQHi|Kgwz+fP!4-qe$(3nK78P)Qu@K8q4@_rAtf@Q~db_N&?F9_Hn|R5ZMJd zVNo>11S4V>q?}|!)#ct9?Ao3D82Gw3tj+FP)Qda*(AJP5)k0yWQe=@?a{=oBd2Fv$ zV#*VVA3|Q9cz(u@*Mm=+ra$04EZ1m>cxa3`SZ!X*W?lbO^43>%QQB^u==2DDFfb}1 zZRsxgpxa2h&F3vjE<~r+>~Y31VJn^Wafoi-js(?{f@Ep64c5F@paGtRpXidjM^{1v z=P!}ue7Esnr%1ULmD5YG-S20 z*#3rt?EGdMUfCLFTYKcazRPnoJUl5eW|TokvzoCFoyOw?WK-_?pwzH?=@QPhL%4@v zclYFA-JUl1h|0N=RcTHVP3G#Bj2VZ#lym2;6OWbyN8{P2VlOGW=OeZC)h=h6oG{}= zJu|qsy7(HcYwMGp8)h4~W&@R1a+$Urei(gA=Xs9ilGcm0u&J+BReixt(j01xD>VMP z0IH>;6}JawFO&zA(m_`6DW(I^Lhx5XvGO07-xP;lXLb5`B&ZJh4?noI6?s29ij3rSTiV@=wIy-&Eo zGG}3`d%npIunzxy!UKBweQz4y%BhDIGM~6mq`BmxrL$GT}+lCUT*_4W=L*~5pqqO}%B98(~P_8U{~t&7vGCW5EhY>z)*o)z1Rey~hq zlqd2gYVR|&iYaiw+tZLtk@(F7_x!cGAe~`WF{hYXF6yqkthvf02B~liV1Fcs7t}6T zHz~%#pWILqLGo{0QCpglmL1miQvafqO_uR$CO$?4g$)lS&7!vlhxpC!GoA*Fs zMo)%WQ)_4t8&tdJkWF(QDNVaw>Qcx(**F3i!bewj#YUSa#VF~rKOxI(;F?8rg+I~r za_AwOroWXGjx=Y|P!4ZnwfA)0zWTds>K$kbQ1q~guWN7$q6;x)tIb~WHtoWI+Ju{B z++*Rx;MQqc$a~6E5%mN@d`i}?*A!xuHJ4L5^6TuN1)@xvN?i|E(mkN2dd`;B`f1SY z*i9921tAg^uxP4z_VB|^$9GcbeIhHjZ#8-I=TGJN<5sFrp>6b);ZWnwSwq+=Z6D$GU8xwd76p8|t9vZ_GFbJl;dfts8 zAyMrHh#z6`d>Q5YNTj5h?)^;`(!TjuMc@j3|8nhq`KPFr3O6X5t@b=#5wA^R%72u> zt0%LHc(*(4h8aUAYQHDNM5qrZ&L3}Y%Ei>VQ50mK*2RQIHaS;NM*NZWt+rQW4Hb`E zMcdMFk4vj?qI$Ow*`MQ00~{2PMGS}D{4DuVT$yH>lVsYNCk#}N&JDN$P{teJ(@g&RGb;UVKMLQ429*-}r^QCycJh`Yo z%phra`}T(B&pJs^Ch07o2^}rE@XGyLrx=VnN`$grKzUd1cYizUX&ok;%-ry)jbscn4FX`t`{zA_uW=s{>WVvsj=ck;-`sBTay^HZ7&Z@$hWbUdj^T zqj;V+;EKugis?sazV2#O$A1OdM%~-9u-1VYP6)d-YLDn`^a>KB%6I|JBmOV%D;ytt zKDU=VlABuu2?2Eersvl!n}DPERg?&GylUt5M@xmOuXIo8qPJn}1@c|=T*8!Bjv?B( z8GPlNZ!t4tY-EBA`h<)^xD#LG@{a6W*R0#P#<+6$IE3~BtgQ2?r}V^{XU#2Om}O<602jN1JpZ?yf&Z>+W>_ z*%$MZZQG)S!RwLWZp~{Ae~rCagV`gD>gYJLjG^s?VZY$uH4Os;ka+$*S1>L&l0*sb zMAtt)kVNP^p>hdR9KcqRHrg{*30l5)arKSBznh~uthldg)Rr#fVwq%~KJ!huG3ien zn@6?wVu^r-Kmic~pB$!k5L`9Xc>t{-_JKJ;y(&k$g4OEE12qR`b-F=xO2KP1(vW#7 zo~`SB`^}Z7*_pR5V@gYTf@%RqRXCd#EJfs9Au2tN+ zpljb*0v}_Dw>_qI6YcZ#zFQPaodC$y`Um^Jv>wqr| zg?whcEds^3rqYnse1j|ycuBUSh8_h1HO<5A2Fe6=$pjK8E~b{`RFM4y7>hPwUtxEn=4%W(+%fYiAecDrO%qT!K;$lFc>xOwxX8H6mA2<9aOz{#6%_ zdI@S1LeNrG2gLZwDP!h5{bfj(3!dOKK)$vyb1ixOwIf0PpG_B(2m=@fYA7BRERlYK zsA~%dqy~DYz%PerGf2C7qO|MfJ2e$$Jl+zjjApDD7DHLHrz|7Gz7&4n1kFAArrOc6 z6+(6kK8~v2Ud2Q!JW1Kc!sOJ-O?}D4gZ5ZTjtJe*klpQv%Bu6YWmK<=F`^>a-w}aQ z+`ZSHm(UK@47AT1gx_uvpua}^$NA!^7Zj9hzSSR=JG9YUgzm-4mZ-Vju()=GRDnH? zr!5fFTIszF619|>RbT!t(}3LCb8`)CYZB)SJzg z&?t15<@;ZAc{+P&O<-Rk53=7pt(rjdmur7zUjG}eB=^NyhAS9tw>`Wqm1I$9P4y%J zSZ0m!Tr(T2T~Slz&sPq3u5n--KXI{_m!KJbtCGY0-Qr8IEcGq!f5>UwQxeaUVH5!d zR2}_n>VZZ|9|E-&mK1m0jfb#!15f9|TOM0Wx31i|)2;3o&p-qWGx&N6AdGy=s~KI- z&7Cb@%plE|XN~lq-tCb$t?Np}-j7EASDU2jk21gdnYdaz(Rwj|kNJ)rsO#DeTIqI| zGIgc)_vK}LU@(5qQ^;9v)9>RM46fL8rhpXRzbY=A7u1F{k`UWXZ}}*5MPE zeY!{C)1Yu3fMLXmV%@vta0Tpil@2$4FFd`>qHh?E1Q$e;;Rliu>goD1-$O!d-QFFM zGh2Q?##u^e@y1tH^N1J1i*v6dUMaA+tDPN-g5k~OeM|ZIN&U(G)@uINjNdIPw#VrC zl{m2Kt_m4<{%y{X_k9i?Hjhf7x8Ic+eJubp3}5#~67jpz=#ppQ+D}o~YOx>)_rZsl zsp@U1We#uD5ZpXf^COT0YOg&pGl-jN?Fy5>Ck(_#DW4n`7B$S+6C zFW70W==ICL0vyxygs|@|&AlQ<1I|}J(2crd*2F}QCBNO#s3g?#ykk}U;@xeGu|N>J z0|KR%T*ml3n0&>-)D;FWd1Mq#QN7|W{KU@R9y{_>U5Zw12dK=U^-Ujl@nP#@X}!+X z`}>BwW-?jMD44sxMUHXt+w8>zuc*I{b7eP`B=s%oe%`@9^tXs3ii$Xsl9E8x)ZE+K zOKW~Ko!WW~qXKy;wC$ZUndt9nj8099_JFlmp0jEllBOp+cX?0}z$7*<0fR!C)3Tl2 z_4IKKqK|Rf^$OaX^wnQUjny$fYKwjEIv_>EZP0X<{m4N*7&z%wx%Wy(N7_4K>J1EF zRGb9N^@@*#cyq*Wzqu`5V{5^V+$TSu5<60um2l@AjvC*Uu#47hyXA6f$=EQihQIUc z*va_;%m_YxQ?w&;E-p4`Czc(l2)4B}3Kd9NyuOYk;`MUu2aD$naxUz%%*PCFb#>9i zksDF+_@KZzKg7k6fRiN2W4n)4)-dz73g>BKvdU04Fjg)m_;S}#UtvBlD_1;{8B&koJ88od_W@!(+Sr>X#>EPS9NkfaDxm&(Q4d z04fehLV@KHA#4`c1L_ABUB!`jGaZK~o_hR|YQK`g^$GxIdo(KFxq)hU#6-sU_3IqG zpE+pj%H_k3Thp*8k68!-0GIC^X7nn;JW*RcU3s@Hzwpdnn9Qe=?(GiPc`d_ehlb^| zXTn9J7H+Nv2SxbL><{~S?vDPYl!wVfCH~Ek53lONjy!;MO`1}y@++Qnp?%_R%@d5> zrk1{=&Dn1cvcv3;?M$yx%d|`@iLvlFJJ7vNg&OA<>hgEt2*sayUe8!zomo|8YQYY| z5&uwmzQ+H279K#y^n7_9r9E;~vtdMkfznV#!63sxE1Ff+0f884UTeaMJ=)U6WtWTT z2t!Me*K+lC2`qwo|CpSVjc;!cT@xKoX&areo2oRDNvu%#Ajh}@4Qf-f?2SI?^y!u4 zrfgvw!Z(d2A1jA_Ujz@NqoY+fakB2%^OwX)m^Rb?RplLP0jI*ejnWs~Edx1_W(m3W zEH+`t?s;CGm$$PL5=QZRpP1UL&OF72k@HZ$D}1Q#AuiXY-1~q*SL43t(@cX3SR{f*CjO#Uu9f}ec>ta% z37{s#V(%>{2Jt9+C zxD&Q$6AsY^CzE*K7dk$FdIPjX%1>=Kj420OKL8<;ldF%6Df3t}4i1;>o?YJq8YrGA z739S4!#D$!=})M1L`%FE2^Lr|zHpTXB%}9{;tUab{NPVu5}oX-m=ierAr=a_lM-{P z-GHOs*2z5GKTT)h&f8O;?>?a#5zQx}r+1mT!dOzK>v#K(MyXqW!1$ zmMI9PT>tWX7f5IZ*c+Kb#eWY1^TNf6z<`likXO4YihxSd}%Pzq{Y9&$s7z;2^u zdd1#|CA@bzVE5Dl3vg5=vQNoH$Y_#}f%GTe#^wK&8U_c^blnW2#I8Y9i z);m!9Po2$nBp>E7i|sRM!@n%ty+59ZnTc-Hmp-rT&;AgF0u97eU7ACz&D%&Qp+1F-Eq|l=od9)OeREZFF>LC?8HHTHB%E zBgEO)@79@CtVO%F0Dbl(5(z2QszM*I)@RmIRdYQa>p+ADTSGjXeif^t64+5h)D9t@rZHD}e4GkK%0#?jnHp{5h$ zu=Ed~B7k?*1!=qL;CmlnsaLk~-V-Ed7oYETh99hM)qta*{JQ zsPNBkfzVx9Te}BX!6TKeDq#hPwyVzgbk{682Mdc;iUZ9iv;k}O9wr1 z)O%H6K_uNL=W?<01`(#jQk2qE74e3#=|z>pQ4Jb#@WD-u6ZfDc_UIXB&upHyl=5%n z0{dqbQ3nF3>Z*=h92$@dnoO4K-rbZvTB7l%SK{@WYPoR(%je>}XR@JzHiv|M?v$}K zJ_?6i3sfT6qUm>GgW8=bgw>1Lf3DVW85A3ZFc{C zf+ogwuqElh+WtdDJ2?uh6lVeQ#QFO@32HTl1Hljr&_F6_CJQ`X>!8yqCba?8w)qC@9k21n(GGsj6AP&pqn zsguScGZ<^-yQfj_5yjS7xr0SuHNkprjE76tEr8YRK&pm?NOTWCU$)>h3t3&AT3HukNBa(_pU zn0zRy8$_fgaN5~*2iH`)-%nrIEiCr4o$JP^iKH1f9y)_D_Rr*YW4Iu|5{9POmzEkl z62k@91xy5`W1X2WuU&0~!?~I~{>hNuwJkuK0wO-@?97ANG1XsOT-@XG{P0NOF6f52sPHn+{-(&zy+(wnyXoY>~NI&%SLcTBP1H&aqav% z6HlI6goKfe^JR9>QnVS^EH*u*tjX{$7IlWLLEL`5qJ{-a8O+7`LNGQ4_Ao=Gc8G-S zZ~U3-@eB>G<$vKOYF9r0HjBtFEKJ9oY0|>tb&dCh{>P8Xausff; zV=T?f%4PMG*p33QmNlgJ5K%MG`cYoW2|y9askkW1|GTyK)3UpGkAx&jCDj61176&9 z;70queajOh<^w!o`GxIph@rZMyw%#?w5qJ0od985*pQ4;va-z4Csj;0L1f`t)P>_cOh2ynTDD}?-P;@a?%l%k5Ae_mveg`YE{q*whW9Xkw0amI4>BVu$hChrmyM_a z*FYQsLt=a%+&D=%xap?sjSE{|Ll6z7oXzn^)+k=9bk57^A5w0IzL+b!7ELKnuzR~x zne|kMzNeFvuwR~OIuE;?4`HTA)c2~RBgEVCx!r-v5s4epccB-mq(&2LZ zp6&-Sr2{Gq3`?C#Q2bp}pfN*n7qHB|!py)>*YN1%6VD>)LlE2^@s+~VuaSNjXPpq6 z+Kp1nHRc6q7aXL#HMO*T8#Rt?D1(5Af8nOwihS2&UBUS@r`Q^p!IfZKcH=hh8 zvEkj;Ilr7aFf^q6{JDMaIVPm2&@eNH@J+e+fu{&K>j96_bk<(&?hU?|WuUJ7aRXYk zFSy)2qqSXWeBBC6-^>g<@)|+i>YV?P+1qO*aY$!b4;^Z>Qbly#zZCjUS4gp7Q+4cO zelOOWys?b$=T<{P^qL~W!^|NaNC7dCq)wztX+j&ux(j9^K-0l=$U45FzPkjCS$Tm>>1Y#ue{LvMcop60xl96vlup{>>bEGBW zjW_xLvb&AjdFOgmhvyC%v$pUgf#e<0S=Q8;UIVjg_OQwEt_&Swu7`N1qeBmmy7`rW>)b$5#l6eh|V?2tb5V_pHK+z)fu8B3>v@(Wj9VXxE6Fohr{bg>) zl%KUG>aexf7mL?}fmg{Zq{|9F3dQ3LpX*XtOv?5*gQ#5#lecE*?UontwuCDKA9UFR|Jf`V| z2qA>rELp$=JN%%VHZ4=XgjaR1`{qez_*7ECiaA74HHkPy-P0Fl-<(_xi9H{&xPEa| z_~yiJ>Vn)Etfod*F|MS$X8$YY3D%4{5>8v@Mp|5}E&oo>jgGu}5JyhuXqN@#(>-na zkuKGp$SiEW)rD->&UwDA(8fnjPEE-2B0@^TLK+Et3b~@b%k|3e^Q_OLJ%s2?~nHU z-AJl(=j?zUr#$P%$WP^8Br|g|{`oX`HHr{!l~Eg8E!%pEajiuPy$;b}UQO3uBWMKk zuIot;fq&U};qt8Pq?^h4>Sc=F@d2$BB~j;YtaO~401H4suH|qZ121uP!x)3W5PzQL;PT;qNABqiHiJ5hS$@$gY zUuOJCFB>4HE$j=CJ!f$Uuwvf-jBcj}+#k>aPTU24_jJ6ep*-++86l}k1ef*oM<`BW zu+=4|&`%)-5ep(sMM6iCxgykCokP(%2w~Rv=YzMR?SBYry!&>q|Ngf@f!n-xN&psu zv8+M|P|2lS>|O(*!WD$=0u3U@uG7-*3lI)}7mI9MNmoN`{%2q2pnC44Tx$f8h(}UF zD*tDoF))6gmwZVAq{rZn2XioayM9N3FS*TNW>Zfhs1h>e%Es~5=q5dqb00rY`)vtb z#wkLMS|Z+U`gGV`3{ixe*~?OinBy8 z@r$oS>jEe3z9J zSIHWVg1Hwm1#uTXy~jZe)`JjqYk*4LYZxxnZ0$2EnO7Z%O461E7)bl#B}h5WnzaEHas$HQC3hm8pNnXt7#}Gswt%Fm->T= zCI#S_g0JPZDZX#nL^P#=JR6K7$d(gWL%n;-F!Y9^cB}(PDj!X>_@A6u$DFSnxbDwg7xD>!jOJDA&J1UmLQxn% z4ekg<9T}Kk1w>$s9SL73_QIRxa~t+gnhKzbQCD2t9`1eObe}tq#Nu7-;^P8?Ck5hR zn)yQ!0C_R81>Ft9>g*{@i1qC{|MsLLOf>Fr#w6*`(_O($GAQti^eks{hnr|V8DUg z2!HP||BG9Vi}vbl^O1@JW~b=?HFP-^}4Cx(_HJ^7;T-)Km>Zq_HZ z+(5XB@L4M}oRo3~l~vRbUA^ny61dO^1Qt`|sQhspqkz9|AzF zZyJX?p$S+q4w#PvciVoH+FG=H=;*>H7nEI;Y!?*LcH;M`9rtS3`Fw#=6pIDRo9*Af zXp-73y$q6JPeX9x3W1>xyHM5~36A+mrR%OPd(=!NgGIXGebc8bzdKMPz%ig@;6F(Y z_79I_%YS5=$7UKBHih?pzo-xxe;s$`d6%8}f2XHJDsp=6ijFn|tPL7e_#Rh{eO@Hs zrfZE$TB)&^Z<1Nxj?}Y&o2={)JOJiDs%mU*0r5V;O%{wf$FSZ93GLGtSyHTiFv^9h z{8gnw#<<;gXTGLlJ!AZn;?+z%ErvUGPA!Yt1II$YTO(z4DW9w@))!F6;_z4!BPc4b ziNs%QXnl-*q4kxJkE+y(g_g1BW)**1q*Gwi+({OD)R4#EgG#BOF-cwhYk;5vIAHO+ z^@+;}-ip=qy3nyZ)Bpbi9ncdYyGiiWthw4fusZk>`iVF}erghqy_;TDmbd3loO-h9 zKp4FPKrl#z-94eg7t)QKKrp=Ab+#a+emqARkJnN{gNmKX}B@ z2^u~A!a9(n8zcAdf2Ot@t9ww=b9Rtcw*X-!?kOMLLF_f%h{Rmkdw>Apfh^kH^%Rwb z$H#W^LT5bYtAogck!}7O*ok!MU*GNhc>oW7oB3nvicvNE6;mas9@@Fb`%^BaaLNt~ zE_YLa?)=}G;BWeX>m5$E0N+Lm00`N;@hZ&~=&qFlF|RwbhOrHY{;6psOrZEVa}xtO zB_dR<-5@c4X?g-C0^!;d1Ha(Chg8y9NkqMQqYaj6RZ`81LQyVDQ5Om~%Ry8Khk1dB zXlkp~zV|sYj9+O>3f{#$YCoZ4tc^-4 zN-)x1oYi>@^FbH_kSxu~fJzM_Y$v}x`$kXmzaim#@N6x?=)``bE())RaAZx&0-hQt zEfo5(fYYh6e{oyYVQ%3gfZ2__3Zg&%60}PF9hhZ|3s7}Z#PI_{Z3uLjj`*l~YrPdR z|6U$Z)HnaK{MVi<*YST~3igvm=0yMsi zvV#`}7*saLI#i++PDqJqnsU6#FSe%8INqDEkE_T%e(zGB zA#$~ce7lA7z_$p3y`g)RikJ&?dd9PN1Mp0i)ocL&%0Mp8I6Mp|MJZH{RM#1#VW^DF z-_{sn=!QARFWpG@isa@u}aiQD6a@um<-+aC_82bzovzY$-NYu1vZPGg^x%IGU$#_ z`d_O=>g8A7Gc;x`QpFwDBo2y}=hMTg1W+kry5mq3S z=A#+>c1@NUo;=$Jo)M`8&l^SJdF!4_qKyMw`9DWmRyutEWTgRiujg@zA`0RH6u+44 zp)Kc0dF>biBSbzAs@c^x?E zO?)t{E#Y*i=+!5qOpx*B;!xgTM&`Sxwpb9Rb4d8Okh=@Bp660CwGpihm>3>^7>uM05}n{Aqzk11K%L$3cS6BcNzI;5r68 z4|1!(Zk;Rzx(6lhT#|zdGNUv^e^KCx(UoDcHdnE}*%pi^D;`fD*#U(J?#eUAPeibam;QW;an;+OqMX_#se8BBOWVy zg%)WM9C`UdTr^ejc(b87Z(1>&r2pSl3UDlW&VyQY&C8AytQ<{?9}nY#MvlRW^#L?u zw!L$pid*yWkSoO}Vo6grFFQ*ohIJ7a??7m(6_w@6eaE1<;_E<*yauu*vFR;pBA{Hg zqoi&e&&Dc0ZAUUJHzj!?b__eb!$A3$`+<%&>-)Wp$jC$3kdy#1MIVav3z0|(pprM* z!-50@64J>2c0k*)mfM*x`<3bc9RhnzAW}tCQehb%Y!)+ar6lmw1?6yyAYCSCk4Wyn zfKX3>ptVjgh*>cI1>)I=WnYLTqUMHK*p-=&aLf%Wuz14o$)kiR9&-3HzbS?SCwZZ; zUf4zU(u(C8xbxt8ao{QCJG$pf>jb!2o}lEEy%Y;v4A;M)wCbps8x38#ksD(Njny9* zOV9(l>hGqySx;v3k#q3V$<(4l@&V)p1UcKuE4>A5H*X@PPb%n*?q0TnwbuY zfZ7uwIRoK#PU8&5PNqC;`Jv_oOgqq;fl5zSHShWmy~Bj8Uty#cwbP?u4#XWhD63(*Mg40!d%PC+wZ#99{9b~_D7Hfc zc>!F{`47i_A!Uzt|0Ke~aLZXEoXAJIUk==Us*Q)>s@jHyL51VI#dy4Mine``u3py< z8zm@N-qgN7j+1dleF*`J zC$3}mgEroTlBdp<3Bx~u;_{z$<#Jo_EJ!S2=;{Zch4J)g44ZWls!x{UY$%H$^`E0; z297pMFPmjX#>qrR0CBxjyhacymvtcLD=@5&xtSUj!XFOEZ)B4J-z?#~ z6s|m_|9xkX1dSjpGmy|=#r%AZVBF_ee|H{%PMYliNUmEW)`e$I4C%f4tUn1o+|Joy z%NB3)BH-@b{G`iV!TO7sdnk|@;xhNHe)6Ymh5#_cPor)gpWEEHr0hw1eP1oB&5)gE z;yvgVps6qp$FE&agIvb35eqM&7(o3+1+-R^=e`o=jDWJ<-Tx`!|4lD`95#Ilzi2m% zLetXjNg3WA$N$e%mLK4-@Y-7t;v2rD!GA0n4#vRML}}#hgz?glA50y9@I(~iF~bAt zfTj@4WCOqO`^=(6N$)+FixqFg(K_K|BqdI+uNriH#(M+K7awEXTS64~;Ui7s7(t+F zNPt>DJg2b1e8njk1kjC1UQgEl`%O(ZgJ%KvQgG}*2~?Dw3my@56rQ(QDBU3QZlq*I zk^h!4+M2N2{RrfWDHRq#n7z63Q{gUAlkQWgIN)$#-;CC5Gc16C8Vs?VdmnTK0w`enmsnODUsEiu+Z&V`=- zM2J`tMy8WDtw;0tPC6Mxn3UUWx# zg-vkg;R4?Fpv}ZY9davLpszpPwJ~a($0NhM4yj3VA8kD=x&)rW?Ipc=o=*^Wf79|E znvVDn?^1znk_5pL6?Uspzne|!dawY4jACIsS#R(#2>ro?IR|W6IB&uMQm{QM3#$3Y z>2Dz(m2Zeeufebs*G(|X~3lX3bGG^jZ3N0njgg91gn|| zLTl^}56uI*c!jKPO>|emR~(+7=!M)5kwF_Rbsv&G1gM%LvIxZ8 zG}f76|5CqqMGI*Na;x#wKmXL~N=R2j%#24G?W#}j#v)iQ%7m$K_RT34S^$9^!Swp z)TfXJ;#6=TW{u;I#(Ly2Hncoa^kzf5cb0^1TS^04Mo~(qYh@z`OG{gCZ>tV%k8Bo( z-t$%1hJKr5eskb)j#&tlg5fEyYK%)xRi)3qomZNhCiJhAM>!qVi1ui1!}DlGMOIbJezM!`rxBcZzsnwA4%!h=J!Vvs^)~}dLtEST# zv*i%_*>o{Ej#*e8vNYGy-I@iz{ESg)uSup<;Z#efxagVJ@T-Y6)}KKFAVBP+!nM6u z{3945u8I1E#B{G2`2pH$=}eRR9*WrFl=@k2*304Bztyi(*C8??snaW4J7Z;9y;odK z{rL_xZLVY}o2ymnu|Wm0a;MgB*A>9K`K&<}I|8`wOu}pK3r{A8VDPs9yBZ8zv0++c z{j`Ue(84r=@)5xctjXgiH~M~Du0}pCA`=0KcLD5mjo$@byx~^3QkNGv&G_{BXT0j6#??uSV~_`7VcK1p$?j+XH<{!D?)IP><6nf|f~YDI zmHytm%V2^JN+>#soWY$Th-ZSA!S9@0s%~j*G$ZRl`>r?RzTwdd5=2{IbN`|kOS;(( zT5Qo*x4X{n){xv} zh^1<|ybun9A@n#^Vu+vPVM3%C0}S|uFHQ>s9FBZV#DMS>oNKtrcn3%+Aehe+uR=O9 zik?|m>%oHLD&Tg)ve?M#25cJNCvC_erpnDHe}IUDJ^J=5iZODI$)1Z~9SGqg1qN&M zH9Ew^2Xe4Ka9V>&{Yf=>@n_`$6y86ubbvP}(l3KY`-@gsyG_AQ9axaL!bBbs;tNN$ z`zkp_D?c@b#Ap(5k&$5#g1(1cYZCy%kboBzquri6O=-{`dkQZ|qlUo*G*(zr0RsX- zsdNY5g$6NLfo=9nKCTT+)ka-;wKD?T8R6utNP^#MYS{5&im${vKXi#Z(B!IV2n2L) z%Qqr+h2W|kQiA+82gp%Cpx#QQp$#C2gw(~(bN+z!?c*<639@jKs6ow=8?La>EqfOb zDhSoCp?LpX3?8eV;3~>_aG9pF+<1x?!z+*o=(7_?}?!o<3KKV>?b@{ttJ;oN=&Mp3B&$5QLz)J~tk(y4X z$`*uCR|$*ZXKJ)e7pgJ8E)1+Hno6V-OO5o@K&*&UulUg+k_XypjYJq;F-0Vmk9<0vV-s7%w?PbbYc7-pZ%H$cMe7m!vSwG4-M+*=iS!m z_8AZtJ@GWIl)+351l~nH3vttzKza^7xe9)5Pwt$0o64sH&kp!uE9yW3775UhaKiBh zyo$D+|M(zSgG5(5DpJ#TB^_>gg^o1rN?=% zMxcR(V`MsBY?E?4f>0FF*BX?ZcR>+TZIvJ+FL@%ceV&_sbTJeO|5N#ydXEsQ}x zFI2(rYuO_@V1th?AR!2(d(H>krDMa?J9{ ztAY4D50W}rcF|&Wg-5BL`%bXitL^c!*;cZQE_Z9&)7WZRZ6Ero`7Z?onq;9Gy=8nt zA>;Z$MQ8f7F+FdYb}11sFIka7?tQ7kCU@CNh2dV&{3j)kbB$GQeTQ6*JZTi zASe@cO*X2)Z17v^e)%I5(_n&#Tb4&^`KrDf`Y5fEHYnsWf94`(j{jEY`fSG7G3i*J z6g)lSS{!amG4;Jwx6o4~)mv-15&eECYqEj42OIpH3p=5ElW1?PP%jTm@?<%j2)42{grI(Ul$nw7DI=q4?kJjG>Cs2S zwxST{Y0pDr&jp5(o2!@JSVa5z$Cs@rQY$W&P4!j6n?xu+N;M~8#@7x3>`&@_t}o1c zHmi!Vfz4-r;PLhVC*`h3Ee9T{g*x}0OSiii9QqDrQ+;7XPM*ON)py?2Oc_|4mE2qo zCb03CB)^^6s&C36($cO-rQ6mK7mtP<95|uh)hT(sJ)~}3Z@`I7ylGcHV|VV* z@=9JFQ%_ItscSaj!gf{Zy3P>Q5gU&78D;+2l&@G9=c!O~;8?tMVu9YUnt#AoTYff@ zIV{}^#pSg9%xVm_O(8UCcX~Q8(l<&k)$vFhHZRW$HLdHvNbru3ZcIv9z4%3Yb{zjo z%y{3XVstFbJI3oh`~*18<4I))ia1u&HQ0V{0*|j<#qqhh*pA|IvS<1vRg}VcbLz3U z_!Y%u!ME?;y}QEpyvVel4q)P;D!(Kp_aeUK<~C=@R@J&w&!7rAk{>l?dwwYImxb*bJ5HCW}w0^>jeH!6Qx0 z@(-N_MVrUegv?dLHbg|ay1IfwLiU^m=dVneKR~AtadT*zQqNSzc73Cl`w|mgOUBjp zI!`CWnyuWbQ%aa_nH#UmrN7+$?fbA^kuj#@?<042_te(v!NI|_@87W~C@5?MliPZF z0^1FIM=cI?e@aS9&MUxe@=LFfT3DF8t~y${f(o_n+l!ou;S+O9%Vv4DYX7!28F<(R z1_oyOmBjv*3g5f;8Kp(D?xtbsIGV@C#p+peYis(qZ!2#^<#Pr<7ZemsPd3ztl@vQ= z>aKrJzKW`J_3piU_mqh@T510M6UPVsSjn4>S0aLff@F00QKE){etD0Ji-3S$(O)j} zk-q-ir){HR62WAgC|dC-+C!4IHzs8z!$U)Q2Wz9hmmL6(AozfZ$unlTjouFIc z;}y@8p_J%o)ZCY=8@3)ERpDIwH4P1qnwp!%b6@ITUYw)0T-To#$rT|!r3~Rm=?jvP zl@*tj4Q}10S4#0`?ualfZ&ibf<1b-TE4r4Qoo!-f)&PuZcJB)h2Pda6n*f@|zjnHS zNr#6};`ws|qwb{OwY4>IZGtw>p02KDe+&Yf)ghLu?H00EWj1#c5))6G?hq1w&d$ad z&eLqXI6o}}&auaC7oS(#h`Vqu1q$4R6CyP(+ncs zYhQ!`<1^m1huqxUSfu)#@set4@!_01$!TV_4$D!$SN9wK+LaGCH#G(I^(kv-EIJ0_ zQV~A?^2C;{qlmeovGMJs)h3^4#Oc)7*aL3T&@!*{3U^IAyP}a2bJf&W>AeiUIyxph zMn^|KfBo7g^ixie)OarAuo1YyeR|N;r#Jaj*6Sw@bsAWF_MW!2 zwbhl`&cSzcChkmjgCMc%#{1^0p;B{NhXc=*uCJ9ECUyn*`(Hb>la#y$1Z=FtF5Vf? zNNmFG%TA0%Eap|^t_eR~>J$$jUwUC-Ve4jQZP~*=rt6ba9=i%56heeAa~$j3W6%mX1Hu)C`S_BQ`KFc*rob6H~-|Sg!q5D?gCA!|T^lJyvPT z!;Q+Ul3zt35fQhR94f@;uD08pB*n%CCM1x;S4qvsM`UVh3Qy_bi*H^8A)Zt?nFk`j zZBR0FbKQSVptDVcwu#n9B$EVEzi{$%?GA_!A>ElH)qDX~MP{0uuj z>JEKZ<9Aw%%U9n2_u&{y;KP;rrt1p1?JWgWm&#@O%4L!k9(q5W`YyuCiWAGGEhR0D z_DDkF3d&+nseSFld|E)vXw#uZ(O?lO-RUd%MTz5Za`nkr#Kl^=u&^txBp4xf= zub0&e62miGcEspy*}naI<(=r*SXtnG02eM^WL$o^6S(SshL0Ms0Fh679Xsz@-o}W8 zjS(ACPm2N7zqzrISy54OL)6-RKG(CKotw)YIc;O{b3dSzh`4z2u^veSV2dn?dGGs4 zDvGwYvaPMH8QIx~7dp2WJUqm@Wa-kcoo7#-I+VSBZ`-wNVN<40e|%w~bHtvCjq;nm z^*y{27Zk(Vxlg+S{*KAG&#HP=sl(V|5zRaLuItX%mq{8rq< z%(qS)z_g{iCTukaH@9%`azD}M=jMKPK6bD8*%`@+6DBAeI&{bdcnp8PaYOUk_vU$b z1kT(2Uc9Q}LGS5$qQH~Cm8`6y-rU@LJYKW9 zclp-y^K7GmX)4h`!X+qZl11I09s7g6&3bxz`uCr||NZ%VUi4zQe>VTIeeB9p1sIF2 zm;wzDtYj@`6b90oJnRm@l2@tqA%h37gH|ed3h~L=yttSR3Oy z?^}74i%TBJi8cj4Kcxb%7+JV%85=`DTpZuxiyhMDd0#s30(TLK>Bj+YLP$H1V6b4p z0*2k?@4uA-D`e(JK!-eG>^|BQ9$zbJX=w?n@J^mQ`0efOk2jM0zjkiDnd9N%QJ}A` zruOL6RBd2#`kV^aw{R=)F4m<%ikh07KoGGdBXED=CLQPX*LP3fEq{8`o5?nv9c_m| zE_cq_Dg`us!_6FE!7gp!H%Y}phVOgP_hipWZZ_^pO8%fQ{d57iMWCUni3zyfN!i|B z9+d9ZUz0%h&e+r9;BPfX;u| z%x~uq6eM)%(xqQV)KpXwUSC`5;qBdg_@M)^4Q-Zl<3anH&W>Npg`7C*)g4_#R;-KL z+oc)2%whG_M~C_Cfr+cmmTkdjbD8dSQwOGH5$LAtxU8$m#%yIYz~N_Tg6Bi-G3)_&e^ocB3n zoS*0C8R`IG?>*MN))jNkYpy_9X;Cy3d=v--f+qI$vm6BS%o_rMTS0mOe!@PwunxX( z+ka8Em$x#scha#nfJo`sTbo(zv$pBZ*x&~EofqhFHt$dILSzB{Ncv<&d~&y=M?LPMKWNt%o5 zd%B5_k1x0*c3y$IzrQcAa9VSj#XV|%@(d6_M97FND<*h{XM^y+3fk?YHn^`U`a_%UgmtF3qE*z zJa$O-0s&* zhlhty$Kb1FuQYDEO(wIcB1K;RciYcjK~P)^MZ<{CkCsWinf1ETM~$7Y7M*5Gb)H`> z*oB3v(9jU<`P*47v+}Yso#U0(I!lqpL|cZ+w?;-r$tfugi@_qajEp7tgP8Ch@BO{~ z9J5YCSU5PU<{oZtZul-|^tiaW|7~ygSX3{H$jQl7S}2xi4*o>OvUYOnURX#zT&zDk z?Pru%R#vvC-`+Of97+ia2tdrq$*HNUgRKK!II&Qv#IPs)J=hjq1B1?vKrC*L+jA)` z;SJ2GP$FJf9N1V}w~UQN?u_SR5fN$V-D!E=_$@WM=@}aO`}#hwUUH?4W6&t58hnny z=N%J+y)~R>)b5WaN* zi#rge5a*rjI9aMUlm4gZgj_8(HfyC-Rb6duJ{iIRNrzkdBPe0VHTuWgH_mM<+YZ=0V_+Dh|k z8gg8iN!<(ZCa7pGFK1bDJL0c%*z?cNryd#_;=5k){ga!kG+&&t<)yJD=YfCfL_W8D*vb@~9>onW!<)sK!Rj{bf5)EVVxV0xFB4TD`C4KiUUG>PpLbwHObi__ILsnK< zxd+6*ro&?>F@N3e2`UZ)lijA|{=orwbr#r``^USZ$;)pyoElZ;c*BBEe5t9a@rjAH zAO%D!RWMbPkRY(=c;>2y(c*)EDx3ekNWC_aTp|_|Y+mEllA1+QPtVsJ$%HoW=7B1U zdFRapBjpN1wDDY-lBz}U$XqU`WD>D-I^Cf}?jUE+59Z^NlamW9mb{)k4(s+9e0+Rh zukVkgClwS-dqpZ@eX`p5qA@mr*cB;TPK90cXr@dr7_5HIM&NqoIkD^Zdmmq4m1;{O zE%y_It)Ub>5N4l6L=@+>R8;U-4F|OMXUfbMY9cy=aLxufmzm6Gm=+cmxZJO;C#Nr( z?oTBgkCp~0)7;ypplYx>ke!_kQs|@&m9bQ({RP<7PLRB{2UYXRb@nDHCHY#-p7*zV zC6I>4+dYMDwNh;%=scrxskg)46x{K8l#K25vCdS97DfvQUOZk$y4u>>`}?!uBGpP1 zGc&UsnY5wZ$wISzv&Z|Jyzew1XuGt$9{j|!3$Cu7b_+{h6A<*v2tIUR2;P6x*Czw} zCYm+MwsWPWsW}vk$BN5oNl3tHsSn=memQI8em*LCQI*AjHk+ncXs|hu;C}rtV8P>R z(R{Yt4}3&85w9bY>$&moprFDki|reX$}|ZFlkMf5+O5>Jd8_7){M=OC`6>%KwW?t7 z-;{xYfdY#vtL33zuSkCd1+9(C2pa57L1EAOCntwv$H}?TKXp6+gQN@OJ+*w!_mt*k z_cJuet5>gH67fWrmNLP16zrs^tSlxd-w<%r`8ESenl64dHC#=1hrAqCOTj@w5*1nj z@BUJWVV)0^G(Xb7jYW`({y9Chr4|&_y1hGUCI^+NcWzEqTudy#YBBRmPyxReNaxq@ z$SEnO>%5?fv@vmU5^h(AF_4}8*@{RqF*y+tfB3IyUXLy*7C}KlQNbZ0+2B;m|5L*v zlai9`yNR6GwksE1_n?!9g3ib3@L!J_uTsgxBBN7M=o6BXB;<1>^KIPa<>hw{>yL`- zjzBKNL3ZM_Jo9ZD^5t{Io0^)~51U;t3gExO!NJL?sHikrC>Bo2xwzDxj|gLkdE8w> zFXKx}O6;E=u9Ox9Jnw7ZzcxSKnl;`vlo645-P=^&Az~2I)z;K}1%-8TZZu02qqo0b zV$8HMl1$^yVv%9{I9XMa{#S9z-Q@7=T-T`N_StoXXE_!zCeFLPU%n5gX8flQ)JNK6#B zv9XyvOyhGY*VoZ`zp=jlHPZgTipO@nhbN2?>GtC}=vQW-rGQW_f`&z-D_SE*433;QMHZcC6uiOu~Go^asE{E1*disZKhnaX!Qr=< zuYyi>L!raZ@u2raB_^s)5^#au+}7S+xOqWAM#i>16EgXF z>n}(Q>0vP;W0Ooo+3jN*#tzOL&KppC_B=GFi#1#xE~a;8D=2fNQ=VzBb_C)Q5MW_r ze|dU*Fncilg-xsYz20Mc%1_dzf3QA4{~Nu!9pJzEro zRNK;0>cqr%03{VC$8A_CrIWQ=eGp*p?&$75n=>oS^(K`n5YsXzVw%U#Y4!NSX`swkM4!U3=jYJPf5f-P|~$qELFe`C|mlpCOe z*4;WaRi$F_<|jw)o&uGRbyi=DXLlHh)tF-?w204sJDg3w2eY@W?USveW9(Zx<##DO z4h3_+C&5YV{6HiQ2b)NtqN*ycsHiAcqS^RoSl~`lu5fZPvXRL2+QNp^}V!czG z=lzN34zzkH(y~E+qH4}|vOqzu+H#RBMqEK}axY}ptQ!!_Y|u)?LH0%h_{QdZtZj0( zIXGEmvRx~ef4XoD+J~7%cSvDe(%D_f!Ii_>QC6`+3)-R<3<~s8rhNqrG8P0B87(bs zzFM{ASXP*T>Vdmy&yCh{+1_|~^LRgFGu_3}vQ~L@b)2M>RJL>qj~LjVqUeZ-Zx;2i zrXNKq6AK=c9N-b^cke#B0<>31Y&Ar)0sxrNP;!Jn8Uclhvhr7NHq(i`g6^R-K}M-G z0gdv?${0yW$v*&nPIDRU@^r%sEmHxIGsm*>23{D1bo0rIFNW>?^~u|WWhx|}cSut2 zHz6qCtIs=JTtGkn&v(r5bg*CgXlsAQNQeCr$>+x_xc~pVS8&>hrB=%V0LX^|l8fT! zgGRtHQSV`FOoif?*`?&{>^#q={2w_bg=Na&`Oi&SI=VkjM@ujgH;~F--#Q%h>la{y zIlEOA6?SH9GXHrkKk2g;bnVmiUddFx+R*TZ*K;rq1jO^#wm>i5$0FnxH5QFueh)RLnzkj30#>NWf zRiUv(MRb51exrJ0F=-FsbVq(dq!ZfV!w!#u|f3)1<;sb&^Ylg z8UQQL0#M?wi99r{`QdUNG_@K8Rap3JM}b-hII{iX%Z!jf;*W6Nt-gpA?l-4ABwiaa zO3sJ1TLqR|o13d^YwfEFcghYFDQ$9S5aDNpE|;+k@Gdh|u1WJjKZ`yrE!sx-DzU&J zSy!ze;0c{y*o@fppZBLxuDV$Dle4J?zK08ScNMiN8vI^o8LP?dOztZhm(uY)dwtnR zWYyT9V2@%aB_&SIWiyQR{QR%MB&n~%B4Ois_X*e1-Q8=)u8riUbz%Tg9Tv%i5I;kx zAl3j>R zg6>a0dM#KCIxMm^GUu1Ddtgx7aR>wm4jCTztsmA|MlMk+ZKktTwoLXmsm4ARQdBP3 z3}~mOlA?FMe@pV#(QPj}{wT&I+o4 zZZ-@PiXtK+e){>H^wE}-Iv%K|IdnnS9AJB zsK~lT@!PwDNKWwJo4vTFvcx#~6sbKMq1@$F7uP&Y{@zfxr_0_>=Ymw&x}0T0&X$<9 ziKl1wnoxsN0;qW?srd7F-Ub1By$p2YHbLhyiaOj7$G5A#3KpIM)-l08a_&U*@r%Q1 z(}S< zDF*e$zb#`SQ%!1_BEG>!L6Qw|)gQ%4xj3$_v*rIzGT`e}qf)i{h?Yq|uD0^aG)md9D_Bv)C;2LO+3MTJAaCU1C+!axHUJ{%HRUAFAVZ$s~_=GC;2}d$UhvxpVlbR%G?A zaWwd@1o!QWQWo~jZkGoa;~GIo+F{MW8m&xVs{TssA;bA)d3KF@dv(UQI?GVaUWUj3 z?}ING+U#WsennjPs4e|bbs67(W61eS!+U=!l%v6xJUVC%H4;4;8qg-Bm-^L9w>mp% zlyE$&$&n((a{Y0nd(~`%yTUuNb8FpZcg2WrTa;f0J> zS>%p~Z{8Ssx&5jc_@KclmHP$-VORzUe!cb&buBrMWyE71;j=0nJ4oTpQF9#i^w;41 z-GPxIX|U3CSknJR#?m7{^S>@T>SS)M!#s0SA2iyH9f#vR4yIx~7KFkL4o*1Ix z(A5OBI&Iyeb!&SH`KRi%xJMpQ)h3 zJ3e|Lf&+f6=9L5SLr~jki;)hkMS{?3d>t?tS8*XekcfKbuz)Y5^$Q|vEFYWGMTftb z@W2@Q&ktFnjG2{!1?t_cl&aeocQ@cN00zXq4+Mca+?^6E`dkKQnw>&t*-P+Fe^cDfCP(_JRp-L;pRe!Sj(n>CgQw0Ln;2MpV>Bu=dsk7 zk&*Y&)0Ru`Sqim+nTx@qOR9=TjwvqYx@LGN@f&{LCfb}X@z75FlcUb>pwbu>Kh>)x z;yPlat7dIf5XHec+v`&j(tS}S%;1SYQZyYevY+Lg+Z$bFv;FR4x3?)0Jgc_`wbK4Lol_SarbJMJg3&E!S7G5%Ks0OHU%^ zhVQck&^y~Yegz##jyc%bn+^s#Yu@h>qQ_F~d)Y`r?LN%!@-S>uf(?}#o5BgbkF-@J z3|Y&4uqBd!h)Q6=igMHYrkQvJnH#XB_>z?o61^_&Rcp3TenCqP!+Q=d$l}7wwN=j# z6hV|qDHPn*@L-d}LU%i4?y|r(-grEI6tTCNa==oP63S0xPWu@NT8x=|-Pv&us6lc` z_3_c&(TrDX<`#V?)0U%PjXCOB2K!#Zfx|SLlhljO`uZQC^MR0&QoJtSKO=`KN%_iL zG~Uk{L;fwQ@E@0RQdX1(hgFL*?fWj$&Ayd(^)#8h94-=QPsBRmF}IoDIkarYIJ>Rz z9F>){$~#DiRBGEV!LXs~W3t`6xUySG%N1dI-xI?U68m(}^vS07EfgLU+r6vNxj;*+Nf(*#c#F9+wMkUNa9*YpkgJbWMQ7YT)A@GiXqM-Joj zgKMlx8QnB-2aTLAbAp1fZ?a9BkVAB50_t5(N-FllB#riN^kHXk^kmnoO%u{#fc>qY zm|L*CRK2}Xu$TMn<&VZ}<{A@~XF%e7`PQaqW>7 zTdbRRH{cm*whzEdaHYG-ggCG592PRG6pACBiYZ>OJY;d0Nq0oW%Li9fQeUB8PCD4Z z^BdMYk$(zE|4tK+x!-mBMOfu-29x4N{nU)1k~4m_huyF1qEIzK#SGcw>9!0|I^OgX zk2kvj*d8J8wS`XBc72f`Y&{eZP= zIJ39zhc28Ui@Cbj@>i4G9HX!n_XB7%$Y}>_{q?s@0zFcQ^yVIhG^9M-YNNfg1ykLm z@@F@uSJ;oW;RCfl)l-#S@EP6gh;etj4;~tMzaLC+<{&V8)d*(1GWjX;$8K9(M8QYf z8_g)P2b|u#n=sFM(t4qMUB#Ik4W(WMNcM<%np1d3`xxOC|8mH_NMTraRI-{+QV572W(rh_<67aKjaYoJFka49E- zhieSDsWC8LKWH@6J@UPxzNxb`3_AJCx|J%_bk9{Hn7f?Z(ud&dter=~VR*W=#Q$ms z)~uwv40md>>4yiWf+@QkU#vWMwH1nQWUt3=m#aXF2fPEkCHhMC9tcQXpMEA`nP~r{ z80|iXQ-yY1mcAK774M~@BF##V4!)NgJCpd;PeW0k7rdA2>0nc)yM(D_cyZA&SG0ES z$^Koe*54ub_05Cq%UAi+&zglE(HB@};sRTXi8$gGcGqkg?ykrId=q4u5?){`^5&uvP=DE!%r@;uQZaCFGt>KaOO%q zxE|94acXt6PX+To;Vq^=X?Qe*qFRUo#1-{-8nwH3#@v(FImU}IM-dud$;Pa!s3mhq zv@hXwb$O<$`kPFQuraaoC_wl6O4oGq88RZMeLtO0U{DpYOC7G0xvZ}2fH~*n*{#| zlB4(h&Cyp@2fd5F_#F51nk8$W`Z4Vw2)?gZ&18O+@Vk(26!9jsl#`Z$hb~_=CZrAR z0up}cyl_MO(tMWiU|?YwnBiJeioS5NC8N%bpX^>!0dOX|;kD-s&LGBJ=FXAXa55%i z&ZX@UQ)9N{TMEDqNph}ES7IEt0{dxJQ`16OC_93ta~->fGCkskXlUf86A9g?v;U$K zK=4hyx_)Ps{n?6JH34c0W_$b*HCq}`B@_Q-x!XpQ1-6eS&3v~1~e#B6po()I>1+&6lXw9W}lKm3@rV zM!i)?u_Pg1BG+kHOJw$jiUd**Y-_$lM{T>W0=Ti`gPN%R(&uqu$;_?)J5xaie|SmBaKzRJ1k}RSK9fGQ@aR{a~SpmW!og_aU`EA3@>D zZ7zY8wkkmHd!$-iWMZr8pBTJSgN@b_$WA4SH=_1- zO!|YDh$Z(9LhGTm=xVc<;5Cx&=mgS~*z#_5tYCd98buB>eVc)Ubn77@ zIskm4_Xr)X;Cs+8lodPXueA z)mVwD$`7z(@@E~WL!^wNW(XprXB{TL)YYjnXXoZ-F>}RSLVwF+sj)`*Ye2hoYz^$fH%NdMUXU8%UgzW4XTGPKy=0-HXR%~~ zy;}Q}fB|fEJ8ksZXy7+u2!qNp4Wlcsg`2I(Hs4g-n7>XMrg#%i-eZ~p`KZw zr&2gaCSOKVjGLD+=k%&p|57wZY0?k@$T>wQk#4S4CEUIU02?e|_c9_DXHJR7mUVW?7(}Fvs^>HjT;;Kx0YsE7u*Q0VfxYA>DAA`@$|$0l ztc4fev+;PW<%O(S&oyvoJCSh++VN%=v=~aSOkmb~rU4$xZ&X7g zaUyComP|~y|3?22$YhbU;)O64sy6Psvp*)_>KMBgk) zLMvca`^Yk+^?40*YeI({!6^2I`Zz|nH**d%9HR^9WG&ly&o3}Qk@2{&cI9m1;Ahb8ddm{8c1x2IL%=d z=(9Q(zGzkq7g3y)@n;@4##}oA=IXgMz-3-sb2E{(L}b8)0)6m+Ni23RYg9ZraM*Aw zo6S)}92)EOYCU6h^oMQ9&Im-5PU@n>`5T}VM~@y6DRE;EZoyT+-4hmvB}%Yxq8#ODb z5?4&U8x3Zop?HN8x(P7F#z*}Z07wzmM2d+BnN)VuO9gLlnGHh(5y5&#rn`$Z=sAoF zu8Tf62IQ7eeh3l%mJpp^GDyJ2EXUHaocc{81#fmz<>(acF!1Zz;vi1oP7(N2E~Z?q#8rcHB{iW0959ymfq@VT zqT$!q-YsXzx81tsT%PPffA7ce=Vw*&w*To!l;)!G^IPov(+LXm{ZjAoyd;cFOns0_ ze|f|H6Nnu$o~X!EvqoPOKlN+_5a@v1WtN0_WQprm{+(!eEwF$;bUPmC-2mCHJ<+Ij zDlJ(;I}pvqVcO__043JN!_?_*@b;fQ3ierxWx}EYuZ5+6N?Mc3*BYA30E9Wut6?T7 zOz2X(cQ`DR{-;CP{4?f_Bzu*nFtBrNKGd;gO(76a+RXy&qBn&n6@BGYNS8`hz>-hB^P8!Hx9X$*~*E@N!M}hHl zOAEM)3SrerN$gg`NQMAhrToohh`G?03XU%FayPDUi?!dl5>|3C8~*|cZD1)DCNmgj zpvyX{=Pg*=0-Uv-^uCtAgW%5a+&$=jLnA{i+Y~J#A0b(0U;{`cfG;7-^pD(~oS%@iJ>mmH+k0r?9WEvPErpwi4e1`9O4tr;mPrFFf! zk!^AgLG)as#^j1bL2FT7q&@k{$O6zf-V&*UV$O>{8uVSOSn_z-gjvWg}y((}(WczqFo$5x8{uqLGw%mw7dCV#{3Z=)D(-v&0_pw52LxF|A?m2685uz8>r(`Cr;K;*=M*8* zjm(;in|>VA8F?=cA5V-c?|`0l^9VOsEJ6Rjk0N^aO|JMoO{4er`KKG&EN>wDfiNa} z^6#YJWMNla)iDaqP2nbXG<2RxShF)jOsJ?nx$J7vn1y0RHcf$k%IK#=*dHUPIJ*W4~ zabTEWlbLB6oR)=PC52&mndBnD1uBJ`m%wkb*6OQsvr$M5)ZR;vpmPKNvVjTTiwNzZ z`VT-d&Zd()rdO2{>Qetz#ODOXB6}EUwoFCdpQwE4Fns$ePT@1arpU8j{;bEOTeM8J zwsjx@RHP0aw60|Coa}muL%_;Fu~B~cUANLg*!>`Zvm>sTf5Cx+4<|{bXQ_W@KjiC{ z?03V;0y5B)sx}Kug?ltFH-V%`0!r;)WdhJg+Y>$uTvIlf{ur*YWN6^#N752qd_hlQ zfx0z6LS;S>JbOCv%WxxM+%JP<{{waPPqZ+Mtgz~o;-qo&X5xmv)j^y>%jMbSBn+b~ z^9b(7|7!O3?gpmxK%)i#Dk@rDQdgR}x3-gPD>gh?{*$exO^7`^nt^W7pZX+rVP4*U zNBV(5mDCJVhBY(stJ*qahO`NQ+J|ZlQm}m*;>V5ARNiw$SsDG70tN=!K`)9ykUdt@ zMy6q?e}Tp@F)Nl^>r)aFEUFmU9rv-T9$r5(<*wOouUT}bp$7a-QXPZ$#l;3`-?NuQ z|Gj?=V1pv<*_143slsn}khkW+v$#os_h4t}aI$>=G@`yWPM@p$({h099Lzx`e^yW(dZJwBkU2p@d~w;?+}ahp1XR9)P7{{0n#_>%S`;&La7o9Lscf z?thrqhqu*xX^}DK#)IjkzI{5Yl?;aE85;+H-*gG%NkCUWZErGual^}0TyK_Cm61wi4-980gXO{{B9{munyz*f}tu^m3VhwXY*@ zw_EA%SLuz9|nF95rNlG z^^foQJz@MLIt^r`Gkn&IRQHqrR_BdHnjI%k`!wG^Yl^a4_hx#Z8{c8>5~{oLEH(*^pI0>zb4B-y5e{u#jqa4s@u^o5R~?e=Zc16fA z!NRZO}A>J!>gH`+dxmT*T|OxVqvilBKDr z+UFjs_qhL+&q%jLd6H7@ipmH1OjGh z09r~il&Qezn>a}Od4@k=hP4igk2u0hG;3WE5)1%p&E%MXne8b#F2Ij=oga0J!K60lG zEN?|}W2MPEGzXSNo-AtALenTo>v=d`6)b?DJ?x~uIW5d={P%S%g-8PvbGVD}{Vtlc zT3={TJ`nBTA8c8irGVkd<~082_xn3LCQ5q7Yz!5@q>Qj;ttkS*(@duF zR)kSjUtML^yRAJsfx3S(=YN(Q+7Fi=7e{}zJXaz0+T81Sn7nBjCj`uBlF|r^tHokv zx()31I0Ha}uZ_^I*)Jwji1je&u1E44lh52NQ1R4HsOwL@{x39!`SOPdtqpsYcg2bA z;Kuj~x4L*=mZW^+W_f;Dq^H2;%iZ;s5eVh2vlc26xfp{~^`rdUZ$+{zpZxo1exkt8;2xe)_fF6 zmX=fI&hGJ=QxVd=^g73g^-OX!0Mx8=?7X)yNiz>yDdbne#b4>^3qY)%v-y9lRspDw zrGNOOI}PnVa0Fp7&+5Nb)UwwtX3_O-ettBNm)Zt&t8zw`6d>G{uIZX8gy`DEyc&0_ zx10V*0)l~^>Pkyh6FKOqsRv9$Aqh0{0KF_i)g%OTrpK$EJb-xhKZ%(h6A{kUH`B)tZcj|3w^pWO<>AA2M|r{#iUU zSk^U?i6sXQ8g7hoJqn~rCa4l?RCv?TG~rltRHL1LGx%XJS$GYr zUDY0Y=gINQ=`v9qGrJzYq|Ue0Ib&Q7h{morSYU5 zjC743{geittAk*<{Pg;IDPJGKaIBA4V1P5uduM$fW7EKsO|XQ%x&Aip?4ik6gkiQl z6Pt1mDyM5;I>5{7cHG{8X_#GVOwdWIO?IMcAm%y^|V6JV_C&uJW3z z2hPp_JLK|1ZeB2vPCjIzIDo(KQ}>7e-1y?xu`+2RC4G+Mq4QF3aBui{NZObjHc72$ z=I_|I!YJdXLx5HpGUZN+1F2M$9;58g{(~1`m{pl0O$>@aeFes0mEmWjH>am_cJ%n# z9C1otAh>A?MQgEaLx5$1`Ha0&wMkUWq7UGh|1Ykpg>!D;@FyoDgJ)%B<#E{Ua9Z}5 zzD2`^&kzC$WQlBRaN{Fn?q&#I9pJ2^`)6I>oC79YUJqZwM9;nwwUA_a_0Z}@mlRqr zEj6#ytkDGeDG?xbH`UdX0K5VQEQXz|Eyi$@f<0RWMf4C|^Tr`2XlMcKeJF zet_&lP*72K7V9~+JT4S`tAP8T23!-+>G<_3S->MvNy{T9H`VobrP*|qtpq{_wuKkk z&=Z0SaFd7y?QR;jcUNC+wn*rKwg@p})dNv}Gpx0R`(Q)WAKD>TFtws>()P4C7nM~K zs&_%^>jDNAmK@VQLQr_8C;MnH_@SQU&lfcUzWu+5AgQrRiHR5 zMEax3^sWKUMMH{Eaa*;}XCagqqzpgS3Jd`M$Gx??u$djFsSEC;sn^-(?=}JRsqN*y z3UF>Oq_6$zZTDHavEuBBlh4#XLKF~gtzPZVh*Hn1mUCf#v-MF7{f*J|iCw1!DYi0C zzm_6{_Re>k`7e)_mKc3icXTOQaznqfY+#Bf9zr&xWIl^m}0pS5$br z6{6mZtpJ`>=k+llk1jg8+CfE3F=T-OajDuscey8|pSfSRE>g>XVK1D$700sj+k=TZ>rfK zAt6CcPYICf}d3{Bn5r%Wt}aA;1lv+WxkAJaq_7&+WD?Nc)c`(+XehCeC)-j6~Ya& zc+}r$u+PuRa?`^2pPbAvQnl=2VLIO0V<8Zgd*hrgOdNmX0-OXIl;Lh1BFypvrV=;H z8Xg4E{iT&$Dhb*KrjnqcUKeG)mGT|O2h?L6uXd}B{EP$TlgDR>u{SWKTRS*F9n*lz z8r*{j4t}|?Xf}0o58Ru|4bC=d?BBNE{f{C8q(g2{JOSRJ*AlIIhxS@V$i#DT-nc*G zZ^NwzN;V-|;=F=;b@SoY?|DN<+fwCtI6o8Fc!no+*%Lc4^so3-Ut^kgb@fq*JzC5l z&KGgb^UjJ#G3I2zQ*niHp?CPvYKkyyYmfgM*+%T~Y2BH7HRo?I>?y)WLEyH&2RP&r zP2yj6}iEO26sE4!_4gLofCgIc7LM~1po*_A&|8A&txB6W=qcYVh0ZBnV;Mb zz%(l2+mE4;c^4u4pHFCI0qdGgMR}?ma^80D@+98hnRaT3U~=Kz4*GiAXitd8@#tZd zo`g5=eh>@CMnmp?{}_MI&n}6M&S(+a42kYqnOjr+xINjtxzOnfM*GT4nOII}=kMRw zQEmnQ37jYp(34G|#ev2;N`5vu@{M z=hZsiMQu~Y7KONJ-3@r5*TUD}*A(#z(F-R=v2I2%B_BIgNhl2N4gY}4N zw|AqHkm5Lcg|rr46(D$|z8^98;Oyt^rd3+h7?&9F^ds?FX~Bi%%$E`n(P#Rg%HO z$v=|~=&`5nEwzG#hKu>1{abIkrCOhU_ALXaMz_dZQ1iK1a<)`J|6dzuy7&qe7zGRaKzIAlRxlOACE~emRbL6 zdqE=q2ZQM)kWygEp)*Aw80Qosco0_^N+LPxeF~?2eout|v>Ahih(qhs^iyw=D4n|{SJ)Qi8YMyiZX6j%1S)o~VU zZVKhaef%Ce1nYi;3U5v^jSNPNXytUiXEFHY@muTAf4+ZiFpXw5cPDfVwH;1Z8#YAr z1w|7E<|6GRU?#Pwc{fgzf1x6@%tvuqpel-Sa+-nZW6>ZEm*llMW1Kwd^+hXOF!Dqc zHQY347`+Q5q1r|ntJh}Le_b%r{|opM$p8jm2G%;=>zrAv#=Qf4Kj%w_1KS5eBv$oZ zh#urF)~3|STF-lpN)}6GeU6y8xA!>E%vHJgCHZZG`nd_xz?8xt$Rl(6HT0Pc%Bg#} zRp<;>0jGO?Dcp_`ZV0|sQA&KA-+AJY+Y) z$Yyo7w(#zZEyCJFF;XyKE4P3A7z-#`fXApi0e)xpIvT52av9Otw{e#Je{Maq@I^P zPef%A{Dnz-Tr&WN)Pz&sf_wG*+(6z0ad{KZTaJJne?cU6o7&n!g1snw_+$d_Q z8~2_4uDFm?i5_xbjg!F2;z+xrM0yA41QTu~na#QBTM3NrQhvJ1g6iR=Po3c04hdJr z&jW8G;lI^yv@p63SKd8{w2b7YpV31#8LPiTb*w(SPSR{Nympw>LqULdn_*&W34Cn2 z1nNNdY@P2$C0oUhC8s{E&ROeKC9YGn^{&>br=CV1UlLz9)b-CZXlz;4h$+c*F3vm1 znd7Jl7Z*ZJjnyQ=&+&=>@(I2VCml^lmg?C^5F9GqjcAqHQ?UGFiM?a}K^}F)IGcmp zQ23yMOeqwPX!}E?ASw^+s*Kc!&CtIjz<>+Puj|vk%s+G0_mJ_nw_5mp0VDAEs6lbX zMRZH@M>G6L9=DhFdjQ}2tsS#3F+vA*^2p|m;h!EIgwnFIk@f0pnR1d)g?YGjt!7y& zo#$gtb-5Y|(LJb3>R!~ch(FyhIloe_pL)9A`?C>u+%pyhW|ghV`700euC}62{z}h( z57Oy_-a}0{e!New;c^?x5aPiek~1m}-&`3IX-i+9M)HMnt4bqKJq--?0d62pTN+K8 zzpeC0B*dJy5vKf~*{<+Y_C{RkzBL`N;6x}yMDvLO~kC$F^|h=rY>#LuNyNoYFJ)`3-S} z&UM8K{`Vuxf$t*j+|`Vpp|S3jTPRuwwV!~*2b!W^;K^XXwbkBMCz!~Yb47Ik=ZE3m zIB8YilF{r%B^}Ru;u1n}$P|h^zNHSoqKE6n$ z1r9F-2QMJN9pZ1dPoy656mrfVQpJo|{8p#r-t;C!5;=&KKL=G@gR=E_tHnr`zh3sZ zt>dFRA)T|qgUeK!G#RjPfgWfw(v|^yLo52~9AJ*yP{|xDbF@G1!&sX04x`p+ZxxNb zz`;bR^S;?;kw5^R5s6+(ogE>A$mJxz@j$hkRTEX-i9vP)C4#Gayf| zPL;;+T#T<*MQWXnPdREut;a;QH`KQn4slmP3ZZym^n$&B4GcW|V`}E-!pu#IhWpDb ze=|i|k0UWoNIDy~&oDtZcGEkxlkq**i0P@4dI*`Mf{h-yi6pkdtV4G0VcLa`>%a#LQ@6z$~wWC>Wyz61zof!%YwKilC|dB=n;Z`d3fLI zw&P!rM76&eZv@p8)iX|_o!{Hl>7xkEgju)R<;kt)G@OZD-uD`xypx;a2y8Hue@(LN zqOS0l^}O^@R57~x_?`vl$~gfmz-i)YQa75P1DDw)&>837bnhpc7Q3a+NtKUomriHr zV`XY4v0Gc5wD@1cRfG+NjOW)C%L>v|*y$8Z!TOk=rSj}{WuHuhHinmOB^;Xe($>V} z3msQ6EgXU;49tG~&y7G`?e&_rv{0z-M~C>6Bw88X}A-=Zyh`>*3xpgsIa=77T?Smh%-$dPrKNWP>s}P&1Mi%~+n-ebFq@H1#iA35;Z*bucAYh5~ zeV{_Rd}@y{vg0OT@*V{B8l8duROo@dt^=IyodK!A>P|;y%O-W#tKu zoZ9dI5}yBqUk9yLr&q53j^`eNLL$9f!wFBDneR7xOAS>%e#jVOGM<0kt=#nC3_F`r zy-odBs~dW+Azk9=?s1a-Dv$mtRq|v%1P8*QSh;YfO()O_%CRAv@%=HO%q#jz>6T|& zcHOZji$(?ZZY!|x|r9_>f2x%Lm&yyN}Cru3+RX*gxTh=zOcnNl3=+ASW?j*x#nhN*5# z5E>MTTGzor92&aX6@mG1u)S~_;98x3b&!cHR)pi2Hd941;bSC_MY5#^;aIB7}jY1?SG5) zdSsp?uzjvJIpnvQ(4^3J;S~7#C*$^B8;t@ddSQC-;10$I(HRx3XZc(FHBzDa z-?|7Y6?RPSn6FJM^`)|PsY4PZdAAY%_7*MI`4q*tyVmNsb{l4{*bs2>sq*0Ih&v(a zQj~ZQf~kW{qd2&ZM3d5Y$bOnmS4Q)|JncRYnD1NOQpULgZ#~=UzT1ThD?wD4R}77# z{$biHk)4q#v~JJVP~keKy-mEj`VsG$wOW&SRb{kK(CcYumb0B^eq*Zna1PuTS<#e> z;1-Z+H7I*mY&37reupIN8-xs@uPn+KkuHw=4I~t=?@v|!?x~h|NcB zlGP;d^Qgz~wLbNZb8hlVpCq6fP!l#-jJ3t!7L#9JAjy$k+}ZA1lA6Z#c|Zvzt}t;s z9sN8=UGDt&3QCRUaIa>Ty7MF3lp(h~igL6HO?W!S(y{jD(!~wKTyjsU_k@Kr$9Uj7 z(%1X(ez!{ptXvP;E!E*ImAYO-K*Gq$TD~kkTF3M`y>0m>O~J0uEA7TD$Hih{1p$<& zr;IJ|cJ1A?A0fPj3?w4sikmt;jxK2^VG1 zo%@3doK!S=i#)@qm+ED$nz%#|>hkLA_|nO7;k-gW?I#+hoqB75>r)K1y{UWd)LA4! zL(6O2QmtD4kN1K+%GRVSo+k$M>Nae*f)TF?@_gh=zJ0wJ1lrjsmEYvVoZab6Whe_k z?C1^NhUANz>87r!y~NMzuWiG`rM0(dJbW+SpEmgg7(8`In^|n1Eac*v^){bHxE3=e zTvwGC6~%u@XG^WBy1RVe2FinhbQB#$XB247L#Q)LnG(w@4?JJEY5}l^=SN_;mhQ7< zI{if0*%mGR6rX%Zx-wD8uj?dUu*M`NfGQD{Fh#X+HOxC@ev@>vd zsh-Ow7kAAU3C;)4jex1tu-+!e147GkpKR3syfIY6rr#k>h89(9YvGpV2gRs~)C zytyuWEbwO!BAvp5AZ2#}{tCam+`_Zpp25v$I2pJ2hXp z(?%nW_#El%NsLz5hr6ZOn23zyqYp<{L~HMYCeBB|usD2^+3PzNcrkq*z-NLO>u=cY zl(g6(2bYxG7X@ZXb&uIsbK>vpx$u8@R-jH)kX-ncY_T%r@W<5$n)asjOCVF5;23K9 zJ6OQX4&^XdvfvSZmSUU%2cpVfEU+r1{?KsQC*=?Zv#8_cM;}O8RP#UmytT!%V!kGz zsYUX8PezP~Q3a>MF;T;`{NB{J2VDWNX3%5)XgYt>Jz=EoANjYlv(dr>E3?2nCX3JW zDvOAMy5xsf1PA`Q+Hp5id=o#n&w1z0CIm%I>ufwz1NyZf}VuxZ&qf7m8=27@bC)KW}=F;W%ER2psmJRwscrxzBsf zavFHKQ61R=5fG9k^MB0-ZwSk>dP!AdD-Jacl%5j`R?3!qOh;} zo8OC+03)PZQDO;a-)MHlvy|@i$500r|B>6X=`FTwpu5q=e zzL8B-kNw${0_6yD%%cQJEuY%%zzQ8A<9e=qe?j*Z7Z)*4)w}+G&6t93ur$oOz8y4B zFxL5ex-QEeZVh5^-!{n=fuz@_Zl)PdM6V<NHLwEC)jWLsF zifl*Jqe%0Cs@>MY@~j!l1}hJ(__0X}TfQuoiH$9Uq21gz{*flNWR@pzVjvh8&g~ou8%u90vttQMBJmv@LKbq|(;GF7 z(3hjl6E;~IXo_faOMZ1VIg%lfi{j)# zyb#4?*$0jFDw;fGF<6@LD`o6(XQHFg(aP5bZHQ~tk(75>`s-!gaECrKa{oz0tsb|3 zjR%&h5baWRqz}{5D(xa)>VDqu+xpMT^)0Bw z%s%sipK1i}xTOlodg!a+B7G7d-NpA(v8M$XYd{1%Me(J)1qK)x%g0N#W|+k9>k=G> zx_r6t@Jf;stNa!4wAjVT$q68vK;8=smL7k`(RWikd=!E!p{2ffPMQ)i%Po!u%F~=; ztMW1I**dS9`LcGm8w)bV77Cz_bJB0RiT$S2m=W5;kXw)=wJ5QK6HRa zvpsKYosfDNa;_L_Z+%%9AdRsud#*pSpH{$PJT|Sn7ITgv*)jh=t!ZER!3YhQ_;ks) zT0nAZoC`3I!1#Xe4l=Hjr?1tFmU0u!AahN*vm~MYauP9>8doYw$LK5z0h}0DY*-Sf zu11s~r^&}TiDY^LEMV(xgLa%+C)l?xEFCG~oc2tpK3}!ggmlU9tO}(aPA(rYW6PI zJZ}LbEfP8b24l}^lYMaPOWn5F-1($!PLeC-WTQbyM)og2P?mbS~^+qU6kgSoZ*aw5fe{Ch6#_qFU@VsVH zEuVAXw*1~~Kg3o%MznnLM~4f{omNPtyVQ3dP$j_vc8gxQkPwpScn%yuM>;BUPYPtB zUrb{X%{wNV86BZ7fDQGZ%?=lA#vaL}?fykBt8aE<;%|3ac+Z*b-1#)_fu1(J8GPXQ z`@Ko;7|oa8DkPryj%27jQLS+@yJ47^Ex(@J@s(3R!nn=xb$ffaB?M1D zrad8?@naWHkZdzP(5>0%w*JlbQ{$=9-GNfS9egJgG26exw}nmbsk~^=F(8cIh5Lyp zBgSIcD^@V}+*w^{gB0}XRxK_Z`sKbiexcB)l_!DqFOCr^- z$>5q-PS9$GFB6DCq^1TML}AW^bo{sA9u zpUy7hg?bGX%KU8Q(pjh+@0?h360lZd>c>d8)X}4*AA*~{%j>sE**5W-f6Y&EF!fTA zLKl1wL@H}m0^kE&$2~+ojb;|jr`&3Bds{hV$jAcRB57%riazeYM&e9<9eA~DcKzg? zsKv*ZDF2Nr-_w3ymU)*BAkIX^>0YU)?pxgfz+U9@l@v;Yg&E}utdZ0;} z&rX%-EQ2u!DPaC>DnvXZ8NxtH5@d4MB5rO};`fon8i>&%6-OE)$zef($ktZ72Te8I zxC^>Xm92hzQ#oYs;)!e_qe2G_hGkThe$HYp7D0j|j~n5oOZxZJLB@jE0S@*d>P(vX zZ19#-j?`^8dZvti{?B*s#nGcTXljfXuzjWA@G4)!Ak~6~Ah{)u(a9T^lizyJP2mWf zo*D>cl*Kl3{hIAg%{sMv3mT!K=~l<&Gei^V{>=0W`*UMOhzb5Sf6y0#00E?sdGM@(nfKZvU<}#E@Yg#oWcoI%XS?9K<_K>nC1f zz1hLcye!=DSaThNmSh1SS-=zBZ4^N?w3L)o`YQ+@%+cXrHEmNAY&Ah8sjB=kt1To5 zr}s)hxXl;UYVIIi@=b6?%OM~B5;eNJdNLW(FMSq2_0)!j26meqLYS8h#p zUIk~e6BK;IdcW3%WOM;cA@;Fq3^+$FTxaMJ$nLBKp{RyT_wsN)j?H6M9B|knW$oiT zdqcfs)7Zi(Z>@SMv^fR26TsIBPtO`Wm++w$<8d(1yM5jqwFM^T5ti2WWPsL>L&JbK z_xsB`+b6Yh=D8ZTZFrb61q$(kRdHG=)a5M}_d@J%6uV0;EQ4wR>XlV&Nb7xB3ROaI z?`+66PDG@-uxAk!@q@ch|BTEo$>OVtfW;hI=Rq#$ouKMMWVK0B_N$7#)-_%t>LNwK z`VZ4%(u>rdZbqpfRgOw_g!Xo=aHiV845u>FiODKiJ*+)(0%PkN3CK^3q>XH8^TXVYceT<@`OHFC9qJ`dF*q-2CX3U;a2RShcph*V@5v*7E0Fd)^L*p_~2J z*e@mw_G~47Rac%@IPGQo_h%Z%c)03ZzT)I@rh}KOU`a&SdwgVM9NRNc+$l1Wi_fY$ zuET`w=s}i4jh@yDGN)S10M~CdcZ@2gpL?Tw5kA#b-h|gY$mqxt0Ra}AHs36_Fj8cj zn`uB|zZ<5|A(Ei)*~8Kn*@I8|!0pu#f> zBV|Y}px{TeJX|y7O0eq_z?g>3Erpl6w)H@kvJEKcEu{NYYL zb1Nz@hJYM4l)@J8rBPj73O|a z+7&A3NR(vUKXKRQi0`4c20Qqlgtdlbc;Szs3D?J<4;r(l7P<#AM{q!%LC2J>A4_+D zT0xdo!QXXOs$_aG{1dF?+59$tCt98v5|F*I7369GiKNEZs}rM_I$Zx0W&?n>>P1Yc&n{xPrq{JSSvejTI#o-k?vU}oe?hpiJLXdY*6 zjeladx9-kPH3*2^NAf;E)*HH}EK6cZ*K__e97BN56?rpb!}P#ng)ww9Z}z46yG&AaATwEZu1TMSgrB|bsWkjZ}i!rr@_ z`gKd`1X37*!YJ?{U|$47FmAHa;L3w5Hh3kYAd z@_Q0sS|57XhSV!g7LK%HAFf|#X7@|*9kxD#?Q_S0Wf|@n zFrkM!4|zIBWo|thba%c6SJGn1@(a9V@7#(n+GGzs^?7p?^*)1)z$~-Y(n%oRA~^l1 z9ngB~?p}YzlE_kid&XW`9aO1tRe5|Sha3sWX%O)%n&N~c6>Qb${$E}Tv)A#6?Zl5e z9d8FpyU4ZC>9Ao+p#15u70M3?ZTFJF{~y2r*cHeYo_(_`>CYP=@hlx(O$DuQ2@3^$ zdrZD1njLjw<-iR4!)p2B-Q&}qPLK~mpt*W{e3T!DJvTvAzC%bGv|vJ>UK!7FCHeaA zas_Hlq1l@nBQTi!o|U=}{_g3iaoLJTs5P%1PDysL`H=Abe%6*`SD0j@(-;^3 zrMzo&HIBNiQq{wsxOY^}EB<0_YQet4f6o|F^<7 AEM~tA?5e`~X;j#Pkpn7iFDG z=LVI7#UB~%AFepUst_0h9pc)d6N_G;I+sw0jB|*qEhNh28Ug)Tt;_Lp-w}}?3$`zK z@SxCzl#ShRNDB{Ma+8btLee*tbUULDFVDFJeb&fG2|Pu^-~DFv0xFb_X<_5(*tocR_wP3X6nA}slY;}_S6FVIfse1cc{~d2-%CZ} ze1&`Xms67ssRS8d^^TjfxeJL|q*}_GOx!*#8=}+jS!T$qP9k4sbt=!R&S&FElBU}O zPiWo74UH6?-3q77D5C9-Smp@+sD++ey%ajX=W_#6P6JPUGEQcvrE!4W7$Uo4kS8LkmBpQqzYD)*2d82fW`+-!Q{jNtVg%2wI$V(;Dgzu^$I*HvT=SP)C6QB;@6+np{_pCNP z)7wpF(PIzX0fZ5-c1p5sMShLj&R0PYrlljzny=`L1JbHv{#ND_i75VN;W4=Es^Ut2#9twIqMQI;Lt5l3mpkFVeFK9t4P3;K%ukfCBjG& ziOGOu8eGhH58@AL#-9RY!5eTC+LMzw3iHIu118T4=I@>^3x#^U$|$v5uy@dw08#{r z3bBIdAghYRG>{|adm}Jt@pt|uy8YqH#ufoN0DT!hs&Lyz^m3KOrOR)J(I%igI8bM{ z0p9IfXS{vg-QR$+IGpf#c{Z%%I^Xw%hb1o_tEzDzYs*wd_M@;vGp-f8mzdB8=s1`y zcXV_hCyX%HUD%YI(@4eE17m#6&0@ON4XEdjX=y)?XnQ0A>zd>2q&J_tsqoKzo4|a6 zk1Dha6KZ%~lMl%kOjw%xjx}YL&)xbFu6!9Pn+AhDIiAIVdpl7f{_ZGOc@GWahgyr4 zFb()4Vf|;X_oD9fv0SV9Z~Gi|!|qbVdk(v}h*8Wp+vBXbJq(e}PX|^ns_vh4XFH2Q zDSZ7_P)pS@iQtVs60Ip=ut_eEoQ(U9071k+F#7yyrmN&LN@IqonrkoJ`zSiRF=1h! zMAI6EhDydR^YZe3{P;0=M&jt`=zcPbE-Wle%gAW(@3%n^F;@t^QBXO?~+5XSI^*C97d|h62l#<1y+xD@=L&9(Ity4f zcQ^UTUxsq)*lc=_0LiVoZt*^A+-s7c4jqx0v5X1;{q{i~Za<&`M5p-Y5@Cvu5M!&y zxI0NZ99q*>LL=R{|FL2J1QR|J4_~YPeDl_=`wu^EcH4qE9LaD8s`lU`ggXG$k?i4? z%g~UGKR?{BfP866$S;;F6ix~0;t)v00uEj$qPvz~`8xFNBIzr=|zaPL#h6~Lu zxFG#Ay1SFV>(A0T0jThnr=#H!Zj=DpKhK+13%qT?5w@ryAM@58W8vvrtS`53`|GRP zKg;Vu;4YZ{!^@UYi7%RX_u9bZci=)lE>6`qtg(aF;P>jy<4#*Qyv<`6yFE(!IU)j2 zR8;i2^Eoh=O%5=JjbJ{8i0E*l&ta5`)?+TNvNZ+)0WwdTR{O_)MjCXy1wEm01T2HQ zAQfnLZK}Hv1Yan=IPtyMXSD1*l(si>Z2mgpLowpO%DjJFsv(>f6^p;o@+*(ANJo4H z5hSg0Yl?I z(5L+1WE1_vyreR3Q(4+>-^=UVqqmTb1zja&Si(#oUU8Y}nRIZre3^zsPquB<8KmM7 zGbydBkx0A-m<_<%e!9I`1N2TI|3A1^=sOd(z1Gui$Nez&2-x?H$XPiW8YD2y2yJ1i z>i;|FvwbcvE^cFEr|0AZEq2Bf0SkFJPcyqSrhf}eIPmsMf=9U_k;G*9G&k}Ac7}V5 zN77DGwS;IZ6ZLYK+}kf;1-!gGaCz)YDgNvq)AFwb5crRppL^*l&@Uz(5){pj;_P9% zRGAtFU$H;_$`@+F<0;0 z2nYy>jgQA8A?X6ZcPyL1mpm=us)O~0?1azVEggfgq00w(w!V*fr*DX3O{Ra^{#t7O zo-{Hq8A?6q*&~w-_V(l&Q@14a%YQCCA=2b_P)eeC{wpFaL|q;b z4<|Ndd|dWZxPl}WIT_DxN8w{Wtb6EAf@P%A@U^u8*ewqCR;XoXZ_Bn@%HzrJ9~7Yj z-fIu;J?+d&1HG*wgw$UM4v@-rN`JAM(~u=Fq&_prK>SE^#IInL?sWMpdV{#2b3T;1 zB4(VPQ_KCl&d&pFF>Fji{ND_+{+U7%4;RrY{5E)TAL`V02IUBCd6_s-$qKbV zZ?;HK0hkrwnEFO3jsH6C7?~3t&b8IaiG@LSxz(GIrp3RA zD#{su>S2GcJw&({GK4D-V64@F1H3<9awQh&=?*Tw`0xz)UWFX2NTl&_jhDl?91OdnbbtR`-Gyb6^IIBYcfzh4hc0IXQyXL6= zjtce3LjhT)D4H}>w4j@kmvluBqA6q6*4Iolixd;d#38Wk_&Rm%w24=AJDE}(m?~B~ z61R}lAcA;lLtWLxaR4k>6>~HUYxtJLVX{X-?>phwyX+|1fe%3Nj?hk}&L|Hmu9gSt z8w3E_o;?HSm`ur~6L0Lm$aoUGuz+5;M~)uo5O(9290@AL0?Lc42)=8FhP+$M)j*rJ zb0}E?vl8STh)5CXtN(DVKosrG6Y!>N*nF%dwLK|tzZT2;fzFn+~%Z-w8Z`0&>)x7>xPtM+ykB{Y&PI9+vJRlSCJxb?$@~bK)nqNa5ueP9D z3-l<(`@aLT`SaN1p;+-_Vp2vcNA|hDAdDD*1!meyr-}n869zdvC<~wk-M@MhoHBSx z;j-Wb0Yfctjfyg#kbZ$ea=x;H4d|>WSJTg?9~3equhkLXTjN|Q?R z&-f1rF3!j79ck-LU*?{VJ3RK~;?kO_ZK&lN@iXWKjQ}x1UA_Jk-pPHR1hb2yD=i)i z=>gD0cAz~voGd~4Gu7yJ{ouQHz&ax{K7G@lba3KD(VgvKoWSU}?1IDMpZ*!bHP=@Hz9z^Lf`GxK8=VHTc|4+Y0d zh*37jHz9yWjL@_sAquA)J;vB@%0Ii5(QGI_n#u+=1c(X>!$E%)r0*p@t}6r!rP;td zXUlG^8GxA!fQ~8A>v!B(OqHvgS|CN{&PW?YXuNUcAgdf3M3Efm;*u(5-tEGNpg-Fq_nbk=G>hI^>W;<7_Sz+&R>1#+ zxNY@!T6gHK(R~yUrZl&mnWm=jTgDVHK$H$!3z#IRUwLVSyzIsTlZ|WoFK8?n4Hgig zdIe-kTKb4!qj0c_#sN#{YCBodb~McBW!Bx!!Fa;;MIw8NpAgm}jzNaIr4`~G z_ap^R8g8y~7H^%AFFb9y;sFtDyiv^6X{-$qEPJ1XUL{l zNdd*#o%Dxk8w2^bSuH~?kyBa@j3cA*ZM4rIclA0G z;mFUZoZl~TK}^kj6+0|>O`RLMw$=qpYi-g{0*6a0aja(RwXk!`s91Yj9%SLxy5`~< z%y=UHbm$jqh;``?6}|wb6f!C%8@w*B|3NkXu!2~4+JDshtMyNz%viq7E_h{V6-*(I zTDzL{PhX|znIbN$hgB zoU?zTQM~7RSoV*SA}EvbyV>g~l<)Cmi*!}}Q=NN#C-A_XRnzkd6usRT_vZ|c zj&!C2^;eei>Hf3*eX5C7p?&3U zNcEwE_yE7|3xb8I2nFT4$|is6@!ccSzCt9qw)*!LAIQi^AM8wDDSvI>)ynjc67GSB zTwLYaz(Hz%qUBVYt$i}z?8G0Uq!-w>?kGy#FBv$CzK(W1Q55~cxjoxK7e0+Rbke*2 zB*u*(8ERH-Wy~}NJ+{TIGUoHTgzqB;BvkOk)gqa5d)Jr&n4hP57TOMcyy5V;KTy51 ze->h$ys=p3tpfZo06k7tN+B3jXr*F0**HCu(=O_?xV1|KKm~cOe2IMkQQY8xXSv+> zw4WbTy_d=7Bvr*7Lv{s(No&W6r9r0#3Kbtu)c)Z5Nf`t|8PmnBwmDU%6AV%jCyW zU2Q}oNYHp4?Sbu7FeM$T*?mLj7xs;W>igV?;{E}|j-4x~Nv;o2q2Qmbw7^EdG1zr> zMv)!Toc6Xp?I~~JV&=VScJ|o1WFi@Dau-dm!tT2}|1tloxw6qgvV^Lfb$#92^~@5@ zz=VI}?uJY9#bt*~n{@f=(iFk6mhe$G>dRjOcQ$k~;l)#*A0NGAX@2KvouafQvpN~k zlqXKMmnX7NR0aiDK|asmdmUkm2b7qg&tt?{{Eu!@aCwJ0-YCzaOpjDRgZ}j8_q{|O0>qI1(rt>P#K-(-tJc?zdN22u%oWr1 zgok@gJT){qK#K;(BsnRi5o5j>Pi{VgCxibz7w56n(#Q2cI!1z1!RrZi&VH`~(5qBE zOnBC@z=l{`n?bHUJ&EIjMF3_)sq?*;N>qe3{gz1=mxFA5!_$(h#x%!>2T{gZOWnh* z>y?VEIN1B9Hh9Eq(Blj`rHmv$e!Xk>x^el9s6(m?x~eB-@!d;TLR>Ub$kQH|wb>d& z>wTyo!AQkH$buwxe1v;D|1a!xh{`JUb;<^7r{?!=`cE%6sLD0Mw0=}oZG~e?hW{bt zed=UhlW=9^AjquD&-aj!UyC~z2UyQWz@0{>-a%yqWGzX44liJ1)7I15D`nBy)lWU1 zJImI@|JN~c#IyafKKWo_B8npB)V9ogG7}3Th|sDAH$9wcR`UCj)`gsl;$b_gA1L8% zY_x~%Xz`uY14DW$W~q&_0vaWzs})e~d+QL{9Q^j82^rsXKjX~M_P6HM16d-c*>IFcQx6m74#P;?A>lLgW@#d_#q>ISSK zs}VWN@nznpr__pC7yB*66iLL>O3X`7N@)OrCmXWfn2&R(zNIU6z?vKRHi9ZrX)#u! zJF~<1Hdbys-GZP&_;w zK*UDc?js7=9y@3f=&Akv=aWEme7N`906CWh`n^?{a_7MD`*+3ei|LS}P2t}b#7ZR(-_s2iHI6ikVlNTNZ&K#YU03dL=dONy zO_V7C;DC39I&X7_jL}jAkp7G*;Ff>PcoINg-}ICy_KjqARA85Pg5Df;DucX!`B<#- zO+EAOF)0BHtwQ&ko}w|fBn-KE zre^)6gvK%{Fn{PE_Gyf9*Jsa!avm<*!f2NPdcoo$nq0lx25Yw#wM;R5f0~eKx`)G!(wmoi2d4b6F6R@#NRHh_O*g=W0+)&T z!d}@?=zCmu$@R#IzP*Jqcf$C0L_x5hXPK5*rkXY1j|fy`gH^W^2Qya|&KA(~0&vQF zRdSDV20I5H%=<01Ws_VTlA(!mZTAOuhi7A+a8Le7w_?cJNcpu<*oPhyz7J?3i6Qgg zqp`1QrYKogQ>%A;NiB=-tkGA zy@h<-E$XzHCGu$beKn8U5XOcXuV@r1^s2Qw1uwLH4euF+>R3Ty1ST%*UQVqLg&tO> zq#M=f;j~R(`aS=!zwpKGK3Q%8O^!fR#2Wc_4{*DI$xGB~dMZ&Z<(a7jAx~E!z^R)_itF!4hUX=aCwaQd$ zLRVkRqz@EDpE1aDPPvu`6YT9$0o0&a=* zdD0BDFu~%CXd#O~bt8bH|$4u3>ZJo&}J}=H7lUqgF1K*|I*pNP?yY(6Hq+ z@^r5(Th}k%4%3_QHw>%G%tn6vJuD3lsdwMn_Sb)})1k-6?|N*0F!su{UhisEccw)O zavC|(sxPuW(Pg2{QX_p{IqbXKAE=xJg8g$J0nEFlJC8-%>55FK?{rEAaE8q``eMtxrXaGJ=70^ijwLiTkDn(G%DQYTtj0|g(!Flv8z9WnB ztg$lH=#@dvhZ1flkjXCGWVD>lk^?^F+T2O8hIvk>SGDdSctJY8u@^nBwEI)`122-8 z<%8kIbb3oew^#L0mYSk@25>iDDEF&h{#~%poAvKYMShP7aGXag9bEB0FO{6%uQd=6 z*5!E^|H(+qJ1Jb7HDKb;yUhK^t>3?}*#Vb${MoeDD@A3tHYT&0W;(&mP;h}qZ{?w_ z{~{}TtMEA=6*!BxkWMuK30howR~{jvZbmM3h^Ls!aWkgWrmS{U)R5)kBHYim4PeZd zpPkKnJC)@J({(yXugt@QWE>F%#q`IcO@7vs@hoT$i?pw{o+E;YIg|5$Xl&`Sun%9> zX?(3hV$Y3Fe^M&{Nbg6FvVE$cPWM_GjQQ)bor_ms>8&?m7LKnl`ii6AQjs<+0S#8W z^?Z3Qw%Q|15w4U!^zPR26Y@2@nUb8ieF6D5n~7wcQDc~ zAHTBMo{o@Sz4SJ1s;j+Ae07sM81?)9lpw+u@2MAqGm30WsgSHBs*~c6R&kS`-|Yte ziAZ#m09~5BzPA>>ZH`39H-bh9Q9L1Nb8KI_6&~U^NBB}ir|(^x0;sV^Q!yz&i7{bn z72MR|vjg!8NZ^c>mO=>J&Hyy;z4O_JFzN*P8y~lo?DBs7VM_3l=*2b8cSXiy#J3e8 z9Ez77g6I&8u>sQde;9QVge%FyP9e5+()ztb zIWf?sAuR_7Q@%>3seU8UwbbltITZ*{AVHhMKGy?&dyk%Zg!0O-H$^S$h&yc}Uv$dFQdh)BAQ~e*cyH_X@&0Hi zrPxCcmE|EEb?)4>vMe61X3Kv0CpB6!&mhAjPlbcR6<%ANkF&k;2Nv+}Z5!xnufDFI zeQ)3e)OCQ^0(&BRiN4gQ_#!-Os>is7PtB~3BA<5JjV`z*Y?UOq2j&Pk8EinSV|CNK z73l9s$WfWf(+)fb1OQk+euxzmBrWd%_)gKf6M9a!n(=I;ipQyoGCsbc=TC(ae+Jb0 zIi4H!@HR+vEPkIFDqZ}`>sI=zCzKli7@sVL8B4W=%9D_%eIZ!P!GV6lt;SMfgsO5e zMXQqZ$}bV;7tvLKw(32dp~BIE?z?LXo&jOue-iZa4DtWA|C1Pz1|uI*;M8YTg+2|y zoUJTHcn~$!X6o-t(xG2G9hiAx&6k84wyKd_A!6|3dtl&mxH<3G7S{u4+64;_f@ce4 zIv5gzM3@rK-xEZJhpR{kJKTf$d!Vp=RY^7cj|a|<^eaN#3OO+Vs0BeQb2(f!ZMmzk zy+M#kLdx)7^5*A-?p2{&TMAnjt1W68hfu*=lj({sqd%VPFpUgeg~oqnJie-U7hn4B z{z}m<_Xeiyt4t)f(m2cwQ`j8&qWVDlo&317#DkoewC}(U^Cp2oXU-(iVR1*(YG;-@ zbpN3BY&9c+l=SvKlc9N1AxZvy~-}H8H zUa4ogf5u&;iknk}2TvxR&s8(8|9)6_Z)Uj}QVRto9G-j*Z&X{QLI60H%3<`ABhEoe zplNqf%0?p__8TL%pPA%V2R>kShSsFc6j&uU`;@>uUpkd#o_}S7h_$OUM7+Ca7L&P- zgHX3QIo=1q{&Y@llJjnZ)Jpk(|6K_Uo_Hs7^W<=l`Z?#*0@`1+8kR%lLrqydo zfrF!Ee!35njVpys{%_MjG|*wXi0Ay_yN63N6cz=Gu57EPKQEkF{IqdeSgMQga6&f# zKQ99(6i}!u@+^e0!91|*@L~E;?~Q}KAxt$aO^`I)T?))`e{Z!erBrYjR!5jV^s%jc zE+W1%WMOdk-(E$ZeBC&$sLIN#UxynKMrUPr zOdTGWxiZVc4xDfPq8A9bC>7BM5&FEgZ#>{)K4fn8<2^FgWpA?(Y%H`9D774_Z@p0- z+X18rnA;$PBTJ0DDD>?VXC?Khj3gTY2-=yotcY7H{%<18kl}WC9taa89!^L4s&nb9 zhS^oKq_w;POP#$EO=gbvhWRub9F*;4u>b9trr;2Gy^RSGj1yt`2+tHZUeyQaVO6)B zxh#!NrLhoM= z9}=9?L=qj@2{Y&RVJHho6v){2wudOYc#;hd-jy#Jdz=*~gFy&L^b}Y*aIq#U# zNq(?`QVm3v9!XHn$liW3ApC}nVb}-z@?-tuTuIhDw!fP zsad-=UUoDbRXSKxEEZUWe&Z7Y1MU9YR$dkFG6Z!T-Y{MFjh#K>5De4= zr}b|s=2I^?v0i3uVb%9K(xB)?Ie(2jr|Cx(yYV(vwur0n>j3xSyKnU61_|0#>ty1L zOYaRI#mg*ms9bA`Dqw$?9zpwF5pW~0<#U*TdZK;QX%im{S6D=>c6(vchq@sQL%%P{ zn@8+U=G4=UzNuNxGr}2RJuu<5JvB@VMo=wHqtmcW-0uEp-WBx&U%Bi|?RDapW#wcJ zBHesO&L!%JfzgV^B2DpMcBD6p&7R#cd5yrfE1PZUuMNVftp4~*DA$7qt)ql0SGBxsjzjAbwso}y8S04LHKkW4 zTcvWNs%!23dGWEd3ps8&H>M|u+Jl7hG|qA-?MpqinZ6Nig%`yM=LyLVrD!m8)04wqz zFyaoAlTfs|Cs7epMSat*+R>f;#Jr-Q+k7R1e0Mj89{gA_SZ z%nLNNc0b&EaTM}+G`)K_iI zaCDg7O-_3_XV?^rcr!@!i5%Nu`}(KxS!r?Q{(wsjDV}cvd~5gjJ&IxpslP>ETXw3F zoo&8&erS&W;t{J#@Q%o1aDELXwy9%{WujRGE;LGbTEsmkR36@Ky~o<&cC9$SGZ(oc z_^>u1H%38CtpkRpe@@hFz0&idu)4lHPE$Uv#j~=UUw3Q2eM5?TVJtJ@+X{XmLeI`c zv_b9LORoO+560h zWi4%{4w||}O z5x7|S*Q5L1C6fpu0_)Fh9UZQVvs&J-!if@1R^;cUMr4$f2R@Vt`}$z6sn6M_%OVZ0 zaQJ^L_lw~x4(_T*QNOf3)OkZ9&3Nm>QL||jHC8NB=_k|FcKRnJ!CBI;p2T#1v@`sV zI23grQDI+AeiZFTaGM=?V}0FzMNR}c6ER(QMd&6a$uEsqg(I{yq!T4_i;{9{0;u#| zF>DIwwvzQ;Bx!Y&Xp<~t@V=SPeTq7tq_g@^yY$cE@9QTXV!nAndGSv?HQP}5v?)Xp z-Wnx=2<1Uej%Ai9E~;N6@eYy)0zc?xEK>VF@GxE>=;`Ti-`Pl@4eJXb$4-~e|BJh2 zI$itS^vC}r>MDb>?7H{&eQmnc-x|LMgZal-4y}WZqLefWdG1| zKwKA{ohHUqTK_ar%z#OY&l2-6)A42w{m5h*%xoj=>e)Qp*SQsz zOO;W*Aa9zqw2MC_gz64k&6UoVmvUKcg{{%qed=`16dX99X0Oluv&8?ZR2TNo&@wc= z$}1GBFSTzsn*R-Mv1X)m!TXbDe~dJWaPD42xUMT`(i_oE#jKtGCQog=RhIL4tC-yL zmvd3M#_81Zc}pYh7f1W!)l(rOnZb%b2Q1B95Dn|6CVS#9jOr$dQ%(~a-y+se7PVRq z89v_@laGwiTf3MPFZaHU$@ONr+cC2aF7udaS8=7|puf(8IGk*fEp4&NO1nVGK&~KE zR8$W)8_~felI^S46a;Zo?C7gDQ+sVc`~S*9;qUGIX)`Fr$q7tyZ_RukB1$={Ff7F% zYs{a$YLt)aV*0U?4cwTjI}m3CfDq&N4xs$_%SgBA}JwW{udW6cI}UDVrV&I6Is*$M%qk- zORbJdCB$tcX(4NES4S0v7A+Gq7Wz~~+onhz1H&K7u7BF=wK*|UBNFgooz1!Nj{WI2 z42%|#>krWjQhN6J5k^w@vE2T{=^WF+=k<}Xo5MucNiG-0zb1Cs1_Su|(~Cl1T+!qW zrVY5*1GtyC&L0JAxGjl&y+^0b9=vCgwxw6gRwPx7D52{pQjnXV!bS$MM zJm!&v>m*l)TGu`H%VnUF=<X~IY5K#k z`cd+RyOukjg|%ZUcq_Jte=2dhS4G|Uvv!jCHcHn*XTb0e!Y6y%G(Cz~Cf^$r&QTKn z1{d-Zp=UBQM%|Fen%Cfe6%w!57W*?Q>_a!fi(&!Wz1E9?0qhcg?8)cHJX|*)6hNxa z&(n?nRkFRKZT|sA0u{$jdkJ)2h?Ii?nAsQxV?1vzB94tPq(zNk{jzYO9jv_>X@k^e zwUQhrELIrpnaF?AQ$iKO93CAxIyhLIvv{1Dw30kW3q7rlOOb8`;pwg3oNmacu!nk_ zZ-38N_Ds!+3)%BmtKF760FGTkifd`-cs)qrLW+_KQV7_?;D`F`=smF8-{apcXzh-jTDoRa8TEMsrQZh zVrTP7Tgi;$eyqR_qV(^wj=!qo{JOIQiX3jw@GkXT`8g(b5;+WEviC^tSv4G23DlFE z7Af@6kr*IXo#=2OCnKx(np8KAt1iTd-|?MY5RW5nPx&d;XuS3bV9IY3>E&Y*S~%uC zX*ts=DEP|Mr%JmMItO!m8Z{2yGkU7>pesG<4`rLra#;pkM1oD0u&e|RfYr&oq%3zG z8SW!q(M7nmU|))W*XHSNxHtUWg{m<^Uy+mB1l5Qfu+*duMeN!Z5}RzAl={1|uBt9Q zFz{y#Y!)g$j}s*X%;2}YWU-p0X;sjgnwi1E!sX+Dd5HV8jZxpHMOv?aA-P{ z%^X!Knk4V%&&$2GrlzK${QAhy{M{9W9G_;@J%SmUF5ZZz&LDULF4!y`Mq?X)iyKdx zM(Kmc3)q~8H>rGq{O8v))sa~rR*wh1yhpqiEyHLy*};!0NZhqq(SL4StNy)`H<^g@ z?=q99RhFozhT8%52kU-Asu^P7e7~zo1ez}t%oYoa{de91uJhTIJafP ziuZYvr$$nX7??UzyvU#Bzm@cvhxZe%S}pA*2UDkH`-M~ZI9MH`Fp?Y6yd0K<_gVps zjUK5L&CSi{XG2T}TeCqyL4{LRi;JJsTbddhzo#yEPErGX@zkXn9ZpbCnLY$qI1~;K z4^v151qGWtV0c%>C25rhBxtr+kJIq~AP7EycBu+#F5p%3=R`U}thu;7?upKhKV!^ZeQ>RHa5t1EORE5Ei|P02i* zt6hx0c^eKrQLV47M--escZDA<22{w=FE!5D){w`|+P4MorI8T@d+5qgxg$AP5sR6> zxpkM?+RHs)BD|EAmex511w~FO#q=9`!js|(lC_`$A0i*`1+unN6T#UUtVaI9W4tdA zd3-Xx+Nj*P4{8Mzq-+9)#c}6zKfcdur#QT=iP+J|WNqMxNdDNFIP?~O>qHpT7J2k& zH3v4==N-^Kt*%XaUJVP$=Lct1pZPRnKB$TW$V`FPj0foc-Y^TN$*v%_WQ_mSi>JY172(}SjKB{HyrBbReSbsHxNM|$ zfj(yzGqb;G)27 zx1)r45_3l~-u5@>e|>#yhq8Y}woJLI*wxNP%5pS`_r6N{b8%5Q++R!mo~SlWD+>Kl zpzl+%5ZK9 zE|LtyEw-P;t5h!Fc&{KcKTG)6R5(a;-1Hjdn?N_cHJr@Ge>H2ITTtM9(s~WOesRR` zYw>T(Q|tAz+^0{3FFy*_Q?I@JXsUhN+KUTfui-*L&x4^P+7!y+Brc25e#Mmj^&1HY zlvz;N_#8@sQ^Y*#wvk=t>ewa5vIT6zNg}?{Ul$GkpA7l3JodVLaWi({$*{OML3XR_Yl_8X>{Yvb z@D;D!Y%+J68B@W;yc1<5-=_{BV>a$XjvE~HiR0jC5^7}9Ye~w^eyito#Np)R1doJd zywMkVa~tYL!^6YFzz+oj4L#f7ND(b?g`eqjMUat^;r(#huj6%8$4iql8nD3@|oE|~EPXi5a^eQJ*R8rw903{2q5#``Py-GBLoR?J{wPcRe@YrnO zt1DRV{EFR^Wae*`FMujGi`3q6f7j}>K2SPe>cl=yChn=DXsu#C@~+zkPbC(Qv?0FY zc~RKOlln{B^7=(3DurL-*=jA+p@2q5)x}3WP3JIsd!nf#!Rfm$aq^uq>tM$z^Ls6# z)De{Lf)S*Do-P`G!e3XJ>l=|*?d82ETJS(BG_#WH&D?hT(`mkJvMRW^&^FQhOiLFz z4~Jr?S3h#wj)~a^8joffjc~s5wmU20H_eRdyz5|e{tozKe_40Z{`^#J3KHYmY?U!D zsg#nk`qH064Yz0ZqvK*Mq6Hq5{Zh!JA?$~um<t;h54*ax~WYsLk=8*z|4$I0-O?Eh3Aq z*QQn@CDvNyi1g9%zbVB?w|)vZI~2TDM03&#ttp^If?~NdmsVyXcclFRIi$uz>Nr~X z#pb*{tUhxOGGF6PhL@+6rcXvDT7j}!g;`cA$^=}Kn}?SOI(MQ5f^em^IfehyHB<|J zza*5V`b3A9_Sl(@aa4NM3lh`3AXRmkYGK4C+qici=IwV+^Y#I3rJPU$VNK%}aJFz()#AOiT8{LU@uR9%KSw61!7veD?XkS$b1fMd z(Ds|AeC=0v*)OLDHbXA?BZ0*S4OHgQlXI(J6t$ZDyB~)yTwuo9Q zArYHtfgPcm6^i}|)|krByI1><_wUHZ)pG4~QRl!uhnM{xIg*iY1qCxuh&a)4aU~@r zUcFOHW4`!zhg=e6_CZxGIUTW(-)DXZhgbBp6@5@#{9)csd= zP6z$$_V`@#)JKzZ6phIX>5P8=W(r<>FYotO^>%`d!t;!7HqYxnZA(*8xnWDnl6T-W z(Rn+2Gw$_HacibH_ynHf@5o8BlOqVfVKp1Zk0J$A;|;q*LP89H6Ndk^2kUUYZm5vg z{K8BXJOfU`V#Z8t|Ih^YsexB&{ubTimhXwM8tBg@dZ!g86U9S+oY8yuEi~Gl{CWqn zRrT4lv|R{x$yfcScNse~J<0{FEe?B@;H!L6G{Uj8`hIn^R33fN*FBo{5XL)AJob0$ zUu~a!(drjVBkVt#;5OI^=&h&JD`GJ^sG;!ZLihAV&{IHfL9nxu_m&bNG(!~h7Tcgs zCgyR1wYRsAlchpHKv2~nYMU|FH+&o*2H+`}o??1Rb9DYa1=b+T`CWk@)S(X)0lTV* z+I5*Xds)cuifbxo_NkluO1+3s(b0t&)Qv`uuQ5>V5(R7rkFAt=78sFxTMY}L=@w^o z7jI#e9XRUPAKd)Hl*Lsm!vFPwxm;a?O=bsF#$Ej)*!~KA$GX{A5@Z2n?AKBxShJ2) zC!OaKJ*M%-c5hE`aGo$9v1B0oF~62Q!yPyJSgfbtudlCjJ8eoki!;;F4gTpqxU^sg zEfnrav3=&B*5>_9QROsP7tUw29$JIuK2C$)rITPsOIUPqoE)u{16`h;s_E|9CB7T3QM{vs?e(Vz29hmcG6?8-7&Kcml$MWoI<`5~ zZ+6nJp5}?V>*`m=Uj8Hj;ZufnYRmf3HRw4U=M;SJqI0^8{iqEpj+}VQnSM(0{}BIg z-WTIirMk@tN`kkr&d$!ju_o%`!ak$pjG|JY$Z_${Q-BZij3-s&OI`90(~XDbx{66r zE9V$$g zCHuI8IcTrR+C{@37Pn~)?m0DhW@oLryT*QY4<0s@vR+Z)X2%RQSpS&3Qt0~p9rR#4 zuKU>M+auOh!#zEL&yOd5HcL%Y!a4gy@BtkK%|9TTyweptf3s0gtWXFdRU~wA{ZS*K zD|7ELI-Yd|0ymgO))y8ePY2bqB?g$jO+++Zs+)rzVjG<3Uz)h_Iz3B5z07N6>E4w` z#5|_KCvM{;poWN3cW<3F}#xD67n`0~M1DxwdHZS%!0XxRgb^@L%r1(ar9Dli74Ij)YidWkdKQ z#yeJ77L~!&^PF0$=32Nq$qsqi{*k^GYa%WwNHY_J;_*!tJ5Cw*yVrbdUHuun@xc{W zE<#Nf7JYEMj@tB%N**|_-nA6pn|-;hY8n2GZmT<7n%_5qi59vf#vU7!6_Fm-4C)l# zZ-C3YpjdAt!?_Q`vDqVH*3#Hql%&zL&pBt^gh8QF*?~Jd}rB%^zmt-p)-4GW;pI_yZ%!j*fjV+l0Mos zh8m-+BW5O}kXV3?L^$JqyzP!H?iI@ux!uV(wh2TSO$Gq;2CeZQ_)5m<&tW1dXNUW0 zgvAHV=nPX9S+y)FmJ?0NHInEzV_nR4BpXA2P$nIaAu6w%m}hHZ1^TEckpX^9 z6_L?BAOYa=K2`Fa4BDl!B1<~if40V+W}qf&CsEw7F|Js}<>n;Of34Dy$O_^-3slr( z5qnGXW$Ebk%7kVzt;hYmAw$9ddVy4QUZT@u7!5#ld#7&}?RJJ;6MI?^6MV2nYD$!p zC$c~Z%VtfQ;;*KBUuUmmQG?M=qDfh} z0dL_aq=1`Xe^A5{breQhw-*$0`xtr;?&E*lM$*pdty0f9PEy}WJX1!H%0OiC1u_q@ zouA9YL4Yp5$D7W75Yq3TK7XE9*tAc9E@y0FcFm;#r83id^o7nco(u_{1iNc{cxq&a z?fh{(e&**I<_G~Lg{}N?!6X_J@d8}uYb6$WUvoUt6KTqlZxoq3NOT@nQwZC>wb73< zK_D3LbJ?Q{EebXbO{D^;3v}h6O`CtPbB$Miib|r}+Dw@Fp<_WjHF^Hc(;z#>k+UKo z_d(t62eQ9Bb$2mKdUjJe5=KXw=4pX8K1~ys?K5Z>!Ml9>K#c#!;HEwV6Y~woa|k)x z7FI0xv53lpro7E1cGY1P)lm)D9$wIYhT+~5ISaVPy#7qv-E!3E8Tc*$!c-Q{#@mcy z``ONy=D2?Q{hNa!P*Q`A`D~k`d-nRmTyRVK5i!>C{D7-IvB_4O$w$PJ z3(U)60DYf?+SuK4zC>n2HF;{#O_g@q+4$J7Udtm`ad2c&D4K-@2+U5wspQ!ymTglb zO5V)EpvQj7j`eZF<3ozwHVR=l?VEZ+Yr=;b7G!(^xK){Pq8isfIb*|NAC-VwDv#==DxpBmF_?l*`>xZqdqZ)*$oh&hP5xhfvgA~D@eWo zFS)djcC{W6TRv_*C|7T)FTRHb!kTl52?eW+FThD32-Kl#Wg`f~@U91LYvDf;tlxPo zFN$|&JJ{m}dBv)zcPBLH)Mt!tNL#TaQ*k`t#1803HmW%#(=7VDVQ{SB=pP@1wPwQ_ zmf!r1ZmUUmFd3&h6|1c$C+Wyx**lde;S3Oq2G0gOF7dn7gULrCBoXx4R2p2ANVNS~ zx?Fm89FiXM!~>W1rJpjJX~T3m4aLhe!%?Z(c4e-!mN=2y0g%JKNFCSKFnhF+oq+oS zOFV&u7-rZXkT_;pfC;zuiH00d__*LcmXvEKe_Vq2YY;*IQ6-m5+Mmbt_bi45tC{-l zYwk303!Dc%3`c0&ba2O+^5gjr-#6HbLVhX0XB8_-xLC1BeGKFIt~FRR%sObTmW!tm zyWAUvhMGVf@vq8UJ_}1lR0r@;ITK@SEbTu4w~vN;gsUOM^-q$$d{!hmr89)JJm zr7tC=C*ezgp#rBcmEMnZ((s~UK(BXNC$!At!0az>{yMfp>UOh25E)ewFVRdM4UW@t zt1q{PUwvj-!MP@0>PVLZQ|p^C{3=!zR@*H43AnIvY7z9`6@?UemBr)Pc?my?J&X6J zCOIt7VWF^shyh{*&|rY^uWeY!#DsI$)thV-So=01%=T;pArA zj9U?_R;E1hs=TP(tJhd>vdmiG0ak8IiyrNfGDY?(xHHSRlBve*V*#x zh?uE7oB|Xj`tG=ZvjarmhS`F|xt&1HN9!9tNo@ac$$h=tRGQ7tJeo1;stRU~b>r|I z%1}|Ii%8cgh zgmT5QS+#L*=BMrFsiH~mwtIfawIa%2t*u{y;!5N`##9lA@t?Y%>nR}){eh5lJfTf? z#Ez@C{?lfWZkVpNvoe~^{^?9)!gu89Q70ec5P3*fu%pt05I`y8;pH5l7yWMhCEXoA zHkm}&@AOLHS>6fJOyP{-lv?-Kt7K15<65MJlJE;U#Wp+XgBwuKaXAF!+bb|bIU<(x_;vwF0T=&~f!b?Gaq}GKotSR2CS;v(ersc@gx$Mdj=iwmUG_s_StuoC1fVcw z@lmEO=>%;q9=$9)D@SAZpqz#zpl0<*v{W3WJ#57m_z;sQpXA5eA+SjTJ*|!S+jCO| z5#`Z#e&S^qDHPR1eRq2!#XG-tFSd(!eiXa4#lmH2LALSLAqmqVnc+pE%W2&Uj3aM^ zgI$Usn_q2rr0I*-PmGgI;-^=QjQf7Dv@R5=WIw;f`67*vqJN}7-JXpKkbgUplFZnB zKq)M!bkyUnw@YX#@Zo7cOF|_%LtDvqcIin`*rfKG2Z10kdc}78{`r&!=#5q?!bOos zNTpa`h?+i~qH~?8aGo@sp3y*Wh;O8#`OKU*fF9U-CZf!@QP~RxK2)Z1_;)T$#;b;Y zSN4*N9rYpkwD}y$<0s=?PmfU}`JEQjC7x^_VLx=y{AMWG8WJ#KoT_mayG)RapP_*) z9nD8g&uWKE*yc?g!3*;-IS@hu;QpfSyF}QMCl1{hoWg@R_2GkZ{|lw5W2&PP@E8;j z*0jC5V$3Gy@FxeOI#Xq+t&7LB?ojT1ZoZzWgT1t$xuZ=Hc!{qf8^5P>=1ylr-`Lmz z{u?SDu6Td)w||PK+Jc)hCZ=T6OZgYz&iU@cL>6_|*q2+erAw!XVqP4a$e=gnNAge$ z+Mz0<94Px&O2Fw#yT8D9J$(NZxn5hE-m9%dilH^vQ@$~eRM9A@7rJf^bEJ!)Cf_A20?(+%+_3JHi?!+ImFn4t7}>Z zzFNuL_z>Bye*3|p-vXc`AtN+fS0~v;<%!}3N>y~!u_LFAAVMxT+9fTI_%TI7px+Z5 zg?sS@$qNJlW!Ja9?C|`DPhv6J(^ai1Y_wiIsATHptGLs9#%WFBkbv2ge`^Gt4fFU< z_T&IQdAYU^vc(5r`zQrO{Duep_#o?-@s_SC5_pSu`15K zO_~9tG5*)cCLsDqB zUPLP={YUQ=Ua5I(1=kb~90r1GJGJi3{HYPpa$ZE8h^t4t$tu{wqEqeveYXyX*}4p{ z)u*dgb9_`e+!jCkwp~4P^NGbmT#m%+@?-0gnlkzjIyV${OZ1 zO;1`bU)KLA(9D1GV4#w!Ut7s_4!(MzcJX}vrV^Iog+jl@s=mw_HYauwTk@WKT;)Xv*e^p{ zx_*bFoXhE%3KenYKItW4tb%G_{?=dNVAGwwY>FLavD?ER59|1#cWyp{jc4oq z-2>Uq86EHPhisKX4(RA-kAQC4-WTqAyZ-m6M(RGiM9yp)dq<-R7qdWUSx^#;=6Hr< z6A5j3v3>b0n!~X$#ER#!IlF2rRR>OJnJ0yooN*pmO|+{JaI50cKR{Hvq|g3sH9Ti& zl$+_B<0tHFQpyHh$x~631E2K_D-0L3lf_@qEH;_)0Zsd<4Tw=j)j>#fINEtV=Um=l zu(3xEu50YU=LgC=XJ+N!npNxpBFFUtf>CgFvpeegPf1IiO;uUNgTg`52$9s2ZBYqF zUT3=ek9?mE3$8P@K8~!#8A0?k(FbqH%x%BXksGT1_q4c^wFcLj(CSh&xEA~MPWtU- zKf2c)X+k*FG`AC6$si2G9mWke%}{3$roOR(uy&x~r15)Ax39W*rOTdqBr9r>()?o= zlddkfKs|l6B1sPuNiHMB#bg*!d?4S zEEL=@=kn5j7g*aN{gOJU+CzLzuj1Qgjm#B!C4#={r#aW}6dPkaPg+#0JGsS+d zL{=js%^{lHU9mrx?|waekJ*(0QEfb@<<6cTr;aZ8^ZeP4zy|zvo%v@p@n=Qz#Gijd z@Crx8=~@V18CbfC^`~=s_kRhcipv-CRQ=UoOrH>OYI^B|1*V=*HkT&!>PwzZ=ff7c zs`2&Y#yj-By9ecZFwj4@FLDHHeO*H4&7X+GDF0%|3HL@yn_b~Ch0e3>ot?6&t~2TS zcfq4gjDq8@DMpnp(Cwk=^Vc9TgLW*i=;LUtGu*yW14vqc%%t*+NJsD}6-xf9181+x z7BLQL%Qky{ruXnu_f;ClN|sLojg{5im$t(SmDZ(p!*qLOh!$ojVij0^LT8cF#*?qb zT8}iJ|526`>;*~s<9Llag9{Cnp=Y`H6M+~B^g#kUKsA63AZys>Pc_?52p}x5U;N=t zrb6s6lqCFOh3QW{m=UeW=@TusSXyO$DE*fXPvhCm=AFX0IRccYo}o23sL-G5(_!rj?)ObU|v7oZFC82eUgi6wr1 z5wcWym5AWCA7`4~WDEgXFv~f)5)*T2b0pFns3SXpSgGGE=wi1@gLEic-SwyFsrb8B zS%5Ans2=2f2NCG*bfz>R{W_azxNba;s$oA&us#Y@qhOj`aJv!f?V~hY>V~t&XHRCi z{yW3sL!s-h0Hi+uJI`&yAYW+vK}D^iuS>i$Tmu;ZFoKe?hkgJdIs1f@kRKKmPK+$B za-EzX;-OS6R0Qu|^#$bC+Q$#Nl#0)sw{G=fKwd;@s|35c#{-jUYez|WNBFoC!DPsc zN{w?iwB`a?ZgkUh*7%wsj1KD?B5Paq9w>I}@;CTjhS5UDEo%xak}D{8C0P;YU1kp7Oe}_OKdklyo)|02+K{a?pFl{XGDIa`+k&&RptHpMhy0rRn z#y1Lc;f`70uM)J68ok7}yXGxDx&|ulF@V z=s{V7!WnjVlr_02^g?rEq*833-bep)eo_CqE=qJk*poe!IQ^du%xR0UC*X<8yz2R6 zW4Te!t9y$WywdK9k*=7&RvbHIRuSZZz5~l&qXLm_u-F>JwU-96^$gq$Ynb(mjJfgl zj_Il)?gTBrzUe_+((>B^=azpSt{ZRwSRqi@VfqQ(+3wV{kjVz6rAppc-wzb=v(Uo= z2z&>r`19tqX8wac7yUJrit+;20}S{wP3N1NWo#sFGDpg?)J?tP$Kze;P~U~~*!3-X zzW-I#tr+WWrc^~iPU`R0LXmZR>=CyIaT^V|?{#3jVhT;BbNVWtFV z#2=!2ETmg0u*|jRO2lQFHMzO0A#7vTAT(bjnZ!($tH<=f9{ay=iDYZrop{QZzS3 z12O+)I+0WS?Q3ROyVB>}?!A?j> zIj5rs;6eI72$U?K$0=FMilgQ$Rwvg=!^vEDvpYc?wI^nf4=VJ`wLbx4?H zoZmGQ-zVwH+kHhc+R)mrON=c*OOPjKs=xZi%#Rhkk{brzuPfPX@QyXx#cLTl9E(W$ z?>6dsrH4xlE>GV-g$>wnKDXhsu) zoR<$RlNi%g%pS#4)+*?l>MOM+9dBsQ;>RjoGPwEScC7(A9KKX6$Y-Z3VI5mfPEZXQ z!h^v16HiYMPfAgX0cup8pKIlx`-Dg2gesJ7NIrnlp><0^F(Tf$k6~7P zxie=#BN*D+a5@pRxOe{}DZ8^psgumA{21}CVcrG!dLVe#ie?F}#TL2AA{qhlNUGai za|+Bi#f)zzGy&`qf#PChlZ90=#a>AznCNFz!}GZllD=3^7gGPG+h6;gB$$2Q)Rd3@jY6fU{e?Sf-1G*v)L)!~;!DbA^u`tk5TN2n-Uh6;|5RPfs zzbBlxs&GOGZ3_V@+C|pQ5(Uh5eANLn0muAz=3nTfM7*m7?1$f`wi-zFoe(aTPqUv+ zg;Qx1$h`>;{YayHC#+ws_P$6{#d6UA4*B7u+E{tbt&LD@|CijigI0vI-(yzN;+SGX zspnyqYyeLMiYQFd*K#_xBMx;e-J@N(OBUbB;DLIQrnHozq9q~Xht=qg#`idVnU5k= zmJ(`-TjyG-w8_Nl!xtiU;9Z%aEAi@*!;3mo?XOFdg7@hIo*u+gCs&W{Z>qIqz2W#< z`1NO!jzYf97Tf2ZeNP;wQk*f3Us2bIcaO3cKsihElMR?7q@F|aO7p+0ExYlv3(Woz zgJx8vZPHA2y*(D}QEREx>&Pr|4-9XIP z+)xy}C5$#yVEyS~w)c{cn0!}JLaabfPTP)&g!Kw3xDI2D6?2_vVKT^r;ETiGLXmR+ z$;TKR7(_OFFa74!mi9}X8oAEcnmpfj%txS+lHH9MbECpY{}>Tp6cBBX$d#f~vdF3o zX_|9mxO>gM^O!zXA)YtwA~-YBi56fkvaUXkX*TND?0vZGFUm+UJX9V8p(!riu-U+N z{G^NnQjkf)WQ@MDl$HWa00hUC4kW#!6ck zVLcxZ7|8P0XM@T`RQ?kS=@I(EyGL_Fd|$;rbd?&+DY~*i^ zm*4dE1pC$MX{G_NRc}phZCp#Hm5$&Gb(E@2obbk{0L>+xwVLWwkuuoZ$PVq4jI0tw zjFpG1?TiH~mr7Q(3$5=nxC5`^ZTKi86;9IdEmp^C$4)Ok3O|tUSy=_?NiX~S+^LX9 z-5|Aco|=c_Pz!^#mlR<%}f;XE8GH*gyEV;M=?D-82hSFLig=t+(J)+f?s;Gu_+ zT{%9Tv{PrRh{x`aLmgeL9nntGNzZw$HD-OejPAlA_21YMz3V;-rQFhZ(XE4`>$uTT zRvI6pk45U;xHSgsmv`#vWF@t5`ciUFHO#|*#F`?~SdW0A?B{XzCz;{*)+7T>mFYGDuCdn6Af==|J<^xnoRiPVahB zEoR%i7l}U?ZqS;+R1L!+zz<&m3xt!btgL3e4FMQ}8pvzQH8jMz-zHz;K zfrRwfr_20v=_W9#kdb^G@p-`sHxdHeHH1DKRuZ-_;G{wD@l0TgPzIVm>63W8gH^Qk z{iIv59x7x!4qpkBM{{C}US{5)-vGhPi$^ZuJvk?5!bmDtjmNo}k+HE>y^Yqlg^_f= z#I&@u?f$+KUkB_e}f?%S>=5V$Oddbz`nI(*8qQT)T%r;MiqN{G7xvVkZ)&i-Q%;FsE#GP@X7B-x(I(t}B&0-^r9 z6D}@1jhP{(4sg|*+uQYxOD!JfH(QDNvyIO0fVPxGDvH?f?qY8ej1q4g0b5Ph?1+LLP?%RvH@p-TI>{dGZY+Hz}PzVt4rO%UlA@A$V6HUDMY z+@EHWQ+zt8lD>FzHfZhPJV5{c+W8||&!l;8E zc0)b(IALVRhF?ZjVQ~fkk1|pg+L1F4RIS|7M|QSc9p!IV81q}3Q)i|#%}yGj_tlPw z%H=L>DWNO^Th0dQ6LBnc?zlZKXoO3?bBUnONB(92icz4J12VEcFj#vaUm=y-{g{}D z)5gL%6)5JSs;jHFr6hy#*Yn3ewxD6F+sbGc~Hme?5_oq`oO zTlf_E3w=i`Z`QsQvV*D^koI8ce9!s$>#D0Sr@=m(g3^Dyv6CM09X=KDapL=jZ=-eh$RaRU@v$!^6yMY)`vAc_s-Vw|;<~`*f0% zRgHQnq1^s#D`W5%va?;d3UsCiQXt*86U%O7418f=`oX3j#P%$DOv`$I5 zW*_r!?m>)S+Iq?XK#_<20S`p4(W-LXi{9;9*B~!v|5h~*W1`rAL?Jugs20!#$fLQM zT7@8OyyiAu;AQ)0-79*^~1x68s~l}GvvoVc>OE7Z!z~ois=pplx!_6 zjHv!n=E2Orm*77YxducQI2Dzu0GsB(tT2q?Ga_`UAF`?|Ix~UfqW2sfs4#)Y;neKw z9no7KWabZ#FM7)D8y!$;uYGXBz_S#DYno%Wt|S6{Aj{-X`3RAE=u`OVij!=ujD-b_ z^UkR0?b#MFuS zdCQqB*hryOYw`W(a@ev3ru`C@KSv^im-~U1>i+b(`LF`^NTa_(tE4u%BOmu`F)^Id zrm~R@IBxCJ?l(DAoGMN!U9@i6qJsBVv10GOaq{AsEql(& zY$uZSI`?NiY`^Z-qtABBWNtz{@eI)l+XFl>1joiqp+ceRFJWsZQQy~a_s`Ga41v_S z8gn+AS!Un6y#m~WGy$)KYS!^?MX)nrf0Fh^^9=SKG+a(=1JNQm2-`$N8>2fD!58b) zP=$}!4(fYb(9DflVN?C{Z5WT0fneQkuW`{g3S0>U1>AE}r2BP6c3y;e&jyh_Y63Z}%&?W+b2vm-xT2SRJ z&*?R-($|SC=sUm&&L+}qKbC0{j`MF>9s=pxpwGa|cYr$t6tK;s+vmSe`a`{a_+CKz z)*VFPO9#mD>0yh=p_eD&0ZH0#0hNG%?wru}k_b5k?hhK$wV^pV6hhAr&dmopI(1ft zhMi#0`@B~32^qX-4dmiL64gMR9z)n)DB8@y$K>EUI?xjU6~Vy1v6go$Q?gQGgiT|> zi6&UD9%jRRRtI!~_ng0(+TRh8ZVsDsMQ=Xo8{J%szqEdSVka1=n0Pl^4uk*{qloPU z+{T7!g^x*7!R@gy9Rz5GENqK%vFckO9KEZ&uzf<_w?n6m-c5jo^*c}b8Q5?cMWhWZ zjdgw-FR(^3@<*hS506c#MhMKpnf^~%RBz>c3=($ z^jt=(7_J#0i9QK@N9h3eKoqW+bH26B6My9LJA7;gq#Vq1y3Y^Mn!?08T@Do)q&c{t zQvZDOOS3)`Bm52)s$3sKqEiAD5~ZFGfQZp6 z*QSpaX+fxCi<^5VN9taD6`^A$`AEx zF3{#@G9pOPCZ3Lk+5nzO(&_AkDs6yvXF1b21qt&wbKdLh3DUNhDi7crfcLGnp#~F( z`_yUPKr!Fh{fn|Wb<%Q$0pUwltu+M*VM_@h05_|JdqS*- zXZ{o!UkTeGyjICDnM1r-H%MDLl4)|;vAtc=YyB0%P(bIWBiz0mdO*ac`>|mPC<1lQ zFJB@BV4+e5TiIQYD)n5Um`Y1G61y!S{OlC74lr})xN*4wWq8A%PpcC(dQE_#DiR34 zGgtVlHN^Xs%oAC_8s@ZNo7S-#v5D7}XVc2VD9$I-3Z;SK*3v69p@MQ&hB*F;sZ-Ja zs$P>_{q2h41oEoi()wON!qztDE+bL-7r8}Bw@q0Dy3`B8UWVr-PqaH2?HQqr3=? zg8?HaWEe1C8Td!NTGeMsPRI2JR=U>(Xsb~t(Pv=d0nj4{ZuB;O_1z$M)gOvH^j;0l z)MkLUGy*n3zeTnvzBVCIBVVd;L80G++7zj;iUZdM0HdE@f%aWbClZV+0q!nBzM*B) z?Q~_Gk!WS3ixWWY28Zf!PId{Q1!M(xYIJval$BG*4m4PQG(bZuKL?=-xKv(>$oz&h z+zcOp+B~GaKXtC|S(=7c@^W508a}OL0}HySF)=>@tQ9N zPd}SU;rtWN%%r_uJ$MUnJEf7vLXD!8K%{oGB-$%@#vy-OrmlF>`sS6+jQUa!1Aeg7 zG7d19i~mfq?HLIN>o5}C#bb80Kn);p=o0jEI}uos+)D9W>l zkB3RZSf6}N!!oc#J73m`njAaTfF*k2Q&w-av4YCd4iHe5g8*8-u$h>~)Vyq`T6 z+Jk4rY{W;PE4K@|FgwqQy}AAw`krKqK2!+d>wk}2#?FHQVDEsY6kKBd(uSQUI?8O% zCmaFomN55q34h&E4xD+WYduvA8!LqC<8M%GJv*H>26ss7CqxlC%M%a^X8Z^+y=LuE z*0quJ2QV@OSZ`0=Dp#jUf*n@p_V@+qVa+L+6u-KjCYs`jbr$ zjcy=WNDsbzfbiYen15WLAKa?^hva~Y!5388gff|4G?35YXVV7ey;TGng_Cf_D!_N#;=q97vrWU48!N*l@_=&=ty#y=)e zF5g%X8vGMY@@?D-XHf=KBp45obaSN$3`gQ%h>wAWwV)<{+LDsu*7WI7uKHI0Jq$?CQ+!g;~zNI?J!1-gf_@$X%3%x^p}cQYkt0 zCAO&Mci}kS+erruj=$Y=e{QRsxR2Q-E(%h6Ii`NZBf>AZ0P5x=NU!;ay6Q}j=CSRZ zaf{DaCn`X3Ot5v*F=G7S>4vT*@$caBgErlEKjWuyJB}7|+M?o}qY(soPcV=CD(yw^ zj;^E)a*)ALPOKL8abz{#XAId3{apJ3@VU?`Vf%NMH=V%j+t>z!kQM;xZ;p8lZ=}Bh zY^&^ruRt`Ye~i}^?Li{zSYzr*D^xTB?%jun55DbQ?**f90TEfbdC<*&J|iPra=^Fz zMZ6irI8cj%fK2+1ZK(1W`-@%3`FRqmb#SvWH1`3~?)eE`u07Pu?<2XHED!Lzx2UKc z^NOjx_FF{m9WXdS;(9`)?$h8`0rs(b?J?H9bY1VNdwy^tgFWY}&Jv_wD6dAtV}bid z8EK1906pIkgBdc6`f1Rp(_*mb1|~UghO27J6<}ca*))cWJ`trV=%^pOfuta`LQ@M- zJ+&Q+gy>J?8Ak#{eS#uZi?t8WUnt6q`LR{t;Z1BPnKYd7{EGt1M~HOeR7mLq@VSAE zKt!6+le@Y+v2guSaKV*C#Q*C~IK*+EOZeNB%$v9H|Hi~(NM4!MSDN5xHeW5C@`(U# zEEqw>atkj1e@y*lSeD!N#tl;n3QBj2(%p?H2$CX7H%N#mA)SIsHU= z-Q7rczT;ZY^X&h-KJ4RI`vdE`?|WWzj(Lvr{Eb?^z(1nIeiE;=T@~+Mi3`6=@SAkY zJdRtb|F1X$&!VE0Bl^v1B`y&k6nq^bUw(WD!8YQjpqx85C4_w#8CW(xCg{UDDiWjj zvWW|`fc+&@_Mx`pmhgj#d~ld72R>)g+CPylXqh$yNw40NH{swH4P436V>(<+G~|oQ zU9IjEWCxXpI&mpesdA+m4Ekw2aG!b??d_w4Ds+xgc%50?$`AJ1)bytb=iRTTMm=Id z4h8GmUUL_N_EoRUnGt}pWM1!6IHcOV%C(Sm%ARm z+x!>nqOwq|T4DbTy=u-AE3t5T9`x2nGt<$dwUq}{tDyxX;Bt0(Wsap8zP+}4Rr~)q zU;`yv6DI6Y>fCH@y)FCo_j@0nXnoYXP5lmmeW&7uup6lPBMvE7uf>}d@Zt`WhC7Ih zw;k@|G2HW>L>>0VP1AH*t%5x7k@Bs%u}A}mMX={V(|cJ)kWyt4f@(szU05x7q;h3% zmBF(?`$`o=r&UXgVvr=ZLyR^PiFz-m^Wq|&>on!YcWM}_vn~*64z3IRNFcekzDep$ zd&Mm?@vYv}kpMAdYqdd>ETD&^=N_<5#Cc6og5^%uCNvZtG(P!n<=Fk$`AWT(CWV^) ztc`ruvqz-2_Bv=7q=E}_R&1*ZOD0^F41{Qs`1M; zNZ;laAg>_e3*DOkq)PS1!tiBieg5zU{79EuK~GvRMb?jIM3`od?xjyJeql3O$~%=XU_uN;<4J_V z5qFm!fW4vG!k*4qoH-ty<8A_$M&bj7JX+&*w$-WW#|NKy%v!J z%9uAzml=c@${tKsc|JffMW;Sf4paA%<(Q_HUu^Zuc_whP9w<2}skDEXz2(ruRVt|- zvzRM-80Y96?R;sAf!F_dE1BT8 zU;lNZ7enZA??UmwRU%dqR0EnCX@+Za?Jx@$kP)GGMu-?^QO&q!9e(^w&IqL zDOdMj(Wka|%j4HIWgtm0cE-eAThcG@pZ&b}l(UcG(QC9|?~m^s$|;&Mp%<|YAzuhm zzDz+Ac>X6rVkFd>p*8``bHhm!8bdi+-glCw!_1%)^4;|Wt`?g~qCN>}g`O(MsLuuj zi;p`Ve(r|m*|T4{;M`Uhd+uz?nZx{Gj9;JMd zjS78up7E8`J>As5k5S#aU7wK;3cwW#();MPo)N}9@1AbuJplnj z7B+$)e1~fsN<<;J_9pfL*o1z`H{Mq8=C)~TSlv47CN5^6PrV5IFur!v7Y(4dGHEtQ@s1W_e5~7B@Dg# zGdsy)k;I{Yp3Lt0vYT!R*HI{UD-Ut!BiAC?SEkk#_{qtS{xLFmQXjK1Mw?n?PL74c zc7_DPftIs(_zhzT$F8+H!#9GFh|%_+kjdTcPO0s)E)#=KVKQ_9o+18j<48jON*7N7 zk|s&>_M-%;iUzLK5DFcQjKK9ND`$!H3InSM_eehpEhhE=TFkRyb&bjUR>~5YgSTRy z2|dx!@3A37dpqQqE?q#+Qxv7Hor&1sn5(N!e5c=MC5vExbhRC{bb=KTm57&@M zDe4!Hv|D1d|5CxvvVTxxdT*L`Qo~L3#YU1?M90hkn}gfkv{`!lyj1;eSjSMjrdx|W5egXMzOmjMcGKY!+jNt-?EK(89oFae9HX9Uw8IoOx^KbM zcg-3C<1E0Ra&q2&z5FA%ne6|(Y~w6|E_Kk?bA_mztdBeMzHUa%vn}v~s>b69xt53e zIX>~A>HKHhPCFx}an)*bmoqP< zQi!RTs{}8CU0ur}C!Z#FX`Znz z)RtH>V@pXjB+hH=iTzCq{H5Qf_%y!3aXL`qx$5QZq|^_eqivfpjZ6v;s>Yz7$TQL( z3m0K9SqDIm7gDw9>Ix%XqTz%Inc18Ii8WZLWIJPmNP|~E=+_^mz?=skpVG_G$E7{B zwtRv;kjD>O&J&IP-p}8sNnq7}ghkUio>KBI40snNlMkmcO*6ivBVs`#0Iu@8V*cYA zxHon)vONkpe@+ZB5%vpgz3XdNRrlT01h#C%IsoT_qC~_S8+I`N%L-kzLOUvAMQ*>R zEL|pbK|YrmC22$34ef(oi!H4fXlk${eIH-yZ}QxzcKj?gO{=t6B4sjqw$IP5RP)3r zjsF8cgG_~AT}TPT+KS@RFaQGXbj-`HR9 zk~vFN-6F|)Ul#sLQ(d;Gf#$O>dY|Z0WCHz!@K{`>;JxA{7meUyDLrvtJ86}eVg4s@ z=DtY&A+nY=gvCtE3koy%jPtubjp)W34If9y7>rXXaL)ZqHD%6u-O$?SOS?suQ6}Eu z6nH{2Bz4=D0xc_$adGK1S?5*PUj(w((@8zR=Nd*pP)7tViTxY7YtMcQRQRl~hTT%W z##BP;+U|%+=|H%dO7dGQsfPff)1LKI^ZiMUH7SN=V#B@j4rR}cAb(# z%Ge+{wfAcdpPhWZqhozeB$?r|04k>0m)2oP1zz8>&lnJwBv{x0-Df=IlwT`Aph+p= z{Zrsx@$8Mhcq*e~W!pg}6CK|aOL)ZWIBMh(%Li`U2=oeihIX%y3FwePIt()}-lR=0 z9TfEP7sNh$@>tepIg4j}zA*3|Gew3M>~Yoq&KQ!%oE__O7tvZ#s;nt-46qWfYh5v) zpD|~zIr4TF^8T5Q^rlU0^CtPoGckT!^YQU&2yEOv1(MBRgG~F2rN`6hC$&kF<-HSE zi}^F2E=Vc??b}7_NSTi6oN58Smb-W``PSCbqW2t2etzq8dz5P2`?AeTCBUTVo z-U^{iRzTOd+{saGU=cVM0U3{l294SNc1h(=yCmwP;MuG8k|hFt(B}0Xur>RqCm-5N zFWwU?^Ifm^C+9-t4LG^&ReO_l&yjbi5Hj+JBd&gv@=e72ku2z1RZDw*=OoEtO4n68 zZ_Y-;uM#UY_MGCS@!sB?bB;JRmETNv0rw(H-Ln*I--e2Q*Ul?T+VD$!h)3Sy6g02> z$sJ-7t~wiJobpu1=e-Q+e|qgqgR2@!7%p$;T~Z)d2oY}E zT;j-4U?TpzB(m?Y*4{lZ{u`|0HVxI#S0)*@+kCq6;l5m10fULxAM6^fOZw7nJ1a3_ zOHTEyezpg9Ap&p%kyfi-L#Wzr`+#3~KjBz>&Z)|o)GBW{JtC1JzaHrt=A5G>b2Q$j!2@rR9BdB@pMSbKxak7 z1*j^^wO*%3?DZ#S+;A#qtgMYq`Y9>Xa_@Q@%KOfDi(i`y664 zhWBQQT3t;BZ@?c1TbR*&Q#4FM{=3sMmfqL!E?jme&YL1%Z|0lS%pcrl`LZw(uQ` zQVA6u=didL8bVQu8)^_UCS0*UX&!1H3o(ohpKam7jnva>4mG5n1JTmpGC>%#Nq^k< zK*Gemu>9yj_l@|Ips91TdvE>euwIFO8jruy@PEoV58CX6*u88AiLd3E{OChdm^o*^ zm(iD-KGFJ>Z(g&|(;%mPB{n>v-y%bA+HPrxJn0|GPZ7QNNToRJuwA>dFEw?)PYN#& z_XTeoN723dbPcAnn2r~5viys@E?$>(zIr-avuiI+yWcp6-)k5R%KuC8`g{!!F`^Y& zzGgbaNjd+1e7;S(-7G9WmKI&2xZ?l0lw$Le76gqcN^-Eq0z-P?UT;5OgFS-lsFCxY!6dEiOefIqU-YnT@8^VSGP8e$5+MS z0HI02?`)A{?Shs>D>`C&oI~A&}(8h(1hRy=whcY4w4j;WKD>> zcaZUA>lwH&a1(GK(Ohz|!%_<{SU=grdv{NHpK=-9DBzBziE>>m4{+yTD1~=K(wIx}6NJ(&BJCC0S z>Ab!?<%aq}ST|{Rp4yabW3**Dw}Q&44zCQR0 zI;f*rg?^9#tQBwvo?QPizH&74Sj=eB&!jM02~|DyLtwaHx_iRI1J+vzoO3WP-q$ai zg%syt27>4~wu5_T(cFo9Rlpj(<3muFD6xDKg$J`IVh-1GQxuSUg=L;@qq_WZg30+^ zF6)WLC`eZJndzc~Zq-;oWCMLl1?0ON<~7xzn*9E=w3?&SU6DWRkm`oxV)4#nEfMt6 z@b!%g`L`+Ad$LF}>FClU1U!TQ4>|^vrpBb0O8p$y70$W6AK9(Kw(D7_>2V7&S+Igw zUs6`hpD`2!)dM21c(JeDSTyO$7kMnTTGmx&lNF?bRhl1@>Ks4k+q&Ikj-p%|P+ zyO5e`f6m05XEjYVhP;V!;rAdy2u@c;O&ar~Q733v$pu`yvo}qg;WOGgyS`eyW0gHP zeHK;KFuQOkwotrN*^u^*U*hm8@idYO1UQ#y$?ATMNEEg1@A;uU0YBfbD*6l zBdxvjqwZ{?l!CqyI8o!|7n%nU24*z(M04cv$Q5B5v@h zUS_=tC6@sY88ik;p)F*kujju$t{uM(`&_qhKnfhD^zE-op)5R+&-D_`2m)Fs{4P4Vk;~+GKP1 zCl@uf&f1COSRX;r-J80I71Frt$ zG*&)E&(Rlr)_WtgOl@pMh>yfZF6Pz5%-ARHIrEYp>mAn;x|!pi;u(EgoPnmAbwlW; zf{sH1f(L!|{rn-p=WW%-F+xX5xBtG`@%w>l^3#9vjkKfbvu+EVPA_VYN6zj?&mCDc zsJmu>-QHf5U9;intm{xq#STu*hK^spC>E1vSPJs;-$Ri=4##*;fO-P3MZWMysi62t z*udvlQc|flxaBGbiN4-_RF5i&$SYmKR(V7J+s(d^=_lXnlPA%{G55$%LPWH1EE@ z0WKwt|H5SPdOh9+vCIUc2KKny+Wy6X0NkTM*zhke(f(~=$V{~BP>QhW^+;DU>aC_2 z|Kc`PkkZc=A5Z*|J+BF?B_?9j+0wwn2+NGyzWBv2nDR%u0KXpt?Q=nusR_z(=>E_f zLlY?eI2lG8{X^#s%1hYq=7hdg>*X5~r`R#W+PCdte6ABGO=@6+DPAmTcat)J z7V)0cm>l#p{4Fr{j`O?6dtQZg%tlU|=BQhdZ5Ve5Rm#p8TlDRG^hKnpinuSeC5h_a ze0tf8J0)hs3dhyH{(Jy`WV~mggoQH>aFkuE(cf;0I5bXF+r{9{qa{bIm-%7d?{npu zb6%p|sSdms;*Q5Cj$=MXY5;>G5E(&=M!`nyLQ=3d65?^(d;`i?TgnftaXe|_xY?1@ zRT8jh@tF(@z-v(uM;+pxs!fKed(@L&+Kr!mZ>k2{2o^ zWi(cg<6%uX0ND1~hLZ zD~Ir@;O!9`zHMskawdB(E|QW-1vB-W@R`6IuY(wt;q{D7v{s+Oe?@Umbo3EBGAtQe z{_^+n`vhyx6PJdG?a2Wg6i>d^a-K%xGUj}zaZLZELUaAY&Z7ugZ)4YOs`vxes*f+r z$DztknzKKa5cPv-Ygb1dH9JHY!VzoLW;08l!2k0DA)%U^4^xDp--CE;SVIw}-P{|q zLBC-yy9n_7O8&5u@gJ=IkzT6O{3&&VDYG~Ta48T+O;_}?1BHO*;=;wjxNG+@syLtX zli^_NmkPgGXIF~S_zUdPa2_l*tklrkCXV5R5|mfrxU8!O5sb)H-d0hj?SPOyNEr zpWTi#8QiY!ngicOh|X<>*nmknHx|a5u4OBrmfe{ceh1<+Xe0OwCYe%YONu!hHF*Cz zYT5|@-Xps6#@|>dz&n~V3S0$0M%XoIdtO##p_cG<&8bQ1(XLKbd#HgCE91Z2D-420 zDB#c#+LqU0`aMYD9z74y3S1K-@% zPupl%wIU-TR`9>FAjRFlfb{d^pzW(y83vig(1wSGxQE(TzsDcgwOx@D{7_t=KrWmE z3(fh$Hir7f3C0htoh?7Y@k(bazp`rLiM@Wcr@^^A&;Pg{j6F+E|XA zYPcwL%*NcInADAEH+tnm82reMhpUsC(qW$EdsHv=Un1M9M{r!|7-tix5mL{Qh zi{SD#2%H214c77M0?U`|hIl<;_m=N~=M(S8-v>k%e987xM>z7L3>0ld%w!&(O3RBe zFCFJl>f*3=8nr#(8Cw>s=;xp520mI7;%X}YrS zg`k1o{tb+MFzEKaIx`e}HFE#eD|SEu$Hc}uRfW=F)t;{9c^nLC#>B*M16Wb=Y=aLl zdFfZE&e5TEA}A2;d>u1~+b}vtgsDiVkV`4gnSG}-&w_&oxv)Y~dSd^8UW2y7MDGjX zu-xfeS1BhFMvrp#C}Q`Xz0KG%#7_q79?2TlyY#Oo@xcEfj2Rrxa}>bQ&Kn+J!tENz z{Pt!~VE77`bRou8Upg61;_Z~#IU)zcj8c@p88RhtUQa@HZzRU93;PG8zc~&~4m%ta z%!WKu=VsZ-hEf|-LG}x&DR`TfZrfR0KEb`HNQsV!;AZ`b1rA5>V7E+7rF3>G{XAJp zQn}GkIqj8nb$L|p0TV~SV7`62UR371WdK(B;85jd&W(>%4*B`&_$Q}=FDd!Y&t`rX zE@vLl4HpTwMGg>1>WQbX$FhpfMN$-lZ%cWS?3JUt9F**;fcer$8{Bd1(TX^#IsQKSlb1B?8*Re*dN-F;WV5yzb^ zy~NvAYU%zaZZXU*T+P2|JzD(?=bLznn=Dgx7;G7{J_D!{pxW398N<9jK-x&e{a>oFrbp`IB7?F=J-OTE0dq%kAAHE)O^!xhy)URK^uDv)M zp8$M!vSnw)i`InXJ}9A{I%%;Rb!*(Ejw{kMyjQ6E9P9bDCn+oy zrix_EC%SJ7&Kg^EFBp-2yJi2vq`2%-xBKz_ zP59{bk=J=5X4(dy7KNFw z8Xj|QH$iB{43>j)=Hhc#-VDqSaNSEZ*4gR->;vs<+OD9wWyDuKl-fD#;>JQdCG4wq zS)eKxJ1n@pKh4CFXEg&!NpVrW_dbO>N5ajl$2|$rN=93y)`)3eva~~ zdXB-yyTh}MC>`r91aNMcac z3|;Yf_WKFOkAORHT<7`;90ccuiqK99`yxc*$`u?~Y>pkDbvWbfz{wGU{dR74Iy_oU zuW61e!^L(C1!A%x?e|*x1P)%dToXm=LdTL($m=%=%o>Obd!l%$=(q^8#+Wb#5B<;{ zh%vzP7=6O8NmB;`hlR3(o&U$H$Zn?+ZBD~Jc&WkaKQ;Ia+Os=H>2 zo{Y8k{ojwkO89K`fKz=0m!R6lyrQ3Do1&1fpy%a%x^AjRaSIP4Z4&Dj60(?$-){#i zD+IX!I+5GDHG|-UJlYca!HhO`g;v$J=)e z00oQWVqGiE}!My$3$%0=LKXr)+PBn7WyBwLi2L3jkU+x;SjlR=!gmh zNst!X6L=@;IFClFQa(Bns~`{j6cG_oMZ|*Hi^amu{a* zG6^?Sywktt6a#3ODam1)s{1}Rm|!Jd`s6Phqo5R4S*K>Y2SKpzJA zcAW8;kE;`1Xgv1XbqG=&Te{zI?j2n-Yz4GuBXzW1*rH|wrQ^88cFDUo9DI$n zr(0H2wdUC>hn|bJs-PB@%*!pQC$R?;0EI+0IBxMSV z(-dy49X|ujr{vDG9Qpl3Kj~P^_p{i47%4ZKwb(YhGqKHZtjfEeeHZ@u0Z34H5w5y@ z0$575=er%xG&BfkXjEKWgkgS%jlnWdi(@|N7k9frHUK$SssSY(7!q=qjV-u9x6)}0 zy_iYO`n@@-%R{rRm$*yTW@vaa_!qt3QGG0*N5>eZm3h{TYi}QLM1Ci(p`0}hk9O=} zwuhxgJ4MzF7YF-s7jJeYBEWYe$@YZpA(g3Vx7gZUo#arp<@orfnLPRpiihDckU&UR zlox>ttWUj~!M%qV&Lm{qiS6+TxoC&(`VEau#U;q*BWF=6C%M(iEPuuj7Q4P{JTxPH z^$WC*W-yW~@~nBk{3J`jL3|&{glJD0K?ws4ijw_zgG=K`6fQxW|3U47Mda41gdc9r~Tt zan^wO?Us>3fa0D5xyh|&Z$LTzAjW*$X)U&93BZZ}r0`CDNqvHD0Odfp2k{D=57L`^ z7so;J>j}`~b4rkjb(i8%(&mA77q^ff3I|@HnBJh2DhGB*G!0OW=V+39uU8HQbg<3` zsUFS)87-33oWe~w&Q7>G;2s+;eEf4~H8P>_o&M3Eke1Wl-jM_e!qsbvj$MfukzjJ& z1Q>7jDQ;g{NyoE@ksQD%t#c3NDIDav|yw}+O9XJp4O9LI!9y(`AK?&ZRVdV?r z=R^2Ar%)aXpQQr8CX{RDr%8|N)L4v9&V%l?v)1*2pnCx0RCQw9{Z{~T_6xvAZF^hK zk0j9PWMfoo?Eu7-jJj83>j%sS8=~%+i)&iFyI>G-=Tun7_MiM4#9|OWe@!jU(4a%r z|F3Ywvo^3d3?#;8iK>b@+_|78U$yR$m%;?L8pYzY{DTKzI4$;O0GLHV?@=HC5tqEG z!eIzo?b~Lf&3Ljed!{Rt(s*RY-bp!{)+1M){23v_R{UrP?i?biJ9giVF8rd4%Lep& z^gikIr!#zjP6O;AY*(MZ6_?y`vHObK(?tuoRjaH+7A!RIK_1UrUcdTnuCDEzw)M}_ zTaF}j-^43kF8D}IZM*^ePPa3O>>w3%oX`6#4(kD6)VNi3p}Wop25aM~bmNLfAI2#F zwZM#`3rf&wEkFEJrRrm8M%p>xB)BalMJR?n85osfwkuX6&sAs+=IM|MMQ{kBV@r<8 znLoY-0jM1iMC#;pJ8~&qtoO(vAc@idqsW(+{q4Kti#Vxkz?=|!tOu>w1&~4#yUjt= zf$o;=0T$OcT>Cn9@9#ehWWnqQdf4x;akk=hF{OzedpEn37jWz=UleC?K;i=QGrSG+ ze(U;h0s>No8?f(#R`~tFG*g(rw^+9nQz;@5!6Xc&<+Cl8MA3M-U{|RnX{G*QpC9A8 z{j_LkyYc)xgj-@bytr2;0Z{DQNsKlj3FcX-+|G_KN>6e49KUTo5X^jCl+JGKTCi<+;aIV3g z7@cpfcRA0&f^DPBmgfM zCWcc4j#PVBf4V2a^X-66Ns}n)!(@)jzi&Gxi-$pTDG}?fYBmp*G)#q0`Au^>aducc!bEa6@i_n{U^YFACgzU>2S6>v%B`fSufQ zDr+m=0rwdKJuoltZqApe1z%QP#oWH{4uS&D+jhPSwRZeM1Iw6r5{(my%Sh6^mBqUc zIh*-m3NVTZl)bN!-)Q8?X#Vemh}wZCezwRavsR))FGL3?>L-R89P1uAooaSIO$6GO(EVy{dkJiek zF!Gi)PT8*7?2|zN&L0#DYjyE|9570)^-m{80?q<&1pPxsbbtoXe5RRLx&&De6u9W8 zTCy+Ih`|AYz-NJO>SWdRLYAq(*uvPira^=1 z%+Vx_({Bk3d8%R-B-J0BN51x=wH{Y_;FK?VWgOXlGQ`fjZ``2Xo;`GcY6T&-ad$TL zHmwS(44GgQd`X{bU|6LZf~Ejmp0QzY>1NqABy8sX4dY;i%>1^KsYx+k>Xw2@bBY;& z;(3>w>i%16->juLK&JkG%^##B?+L&Hv{a=x)M6f~{q&*q3yEu=4nDWBTRWcBh_wat z3#lQm?90n^g#vnL1%ocnOGyh7I#|0S)HM`UtZqRz5ojFH`LT>_8lk9I`mG&hckk#KT-%eJ@YlfuIk^cMgX?DXAI;`-s5Y+_$v}zJ za@=xxh?~`q+%geEK@9AUDR!Vyk(nX>_uAbz;x#=aC^N7&v9TX$Lw_f$nZ!;zQ@ma@ zELyuDSPIs$zwNq<_p7c0byPhtei&$T01y+n+fSdU$-UO*fUY4-E{rrZP=rwXt+npd zQqVxBZj(T7t?yxFi+p-bvIrm~tHu-OUt3JA|JaaUx&FTcY~}Pf;{QJnKZ?}kbZeRv zoJvI^_x~;^62aKUezC+2Fp`m7tu6fTq|4~g#Vg)1o;*c&a%6|b`p(#Ce^-AasNgOK zYxM6e)i@?-z;xkqx)mKWoUP-j&l1P;x91(a@bMIL3fcb3;Tp)=%oMl<4;-bb(UIbC z4N*19v)v0eL1KY4P-{~+8Z1ijf8f%o1eXp0{LANjrOdS@NkA2x3H_(X>Zb@p{tB9G zN^f7IU)Z@qY{^$Z8HNE11#pQT5e~_de^Vg zviHGr$OWU8np5_G^$rtvUsEslWR&?jQhe%QD_YE{S1CQxlin+R;!L?VKmk@lo&0s^ z<;38Tf~d+3J8!@F(2pe#>3dSLnJ^619NToG)%+TtWLpB1axl=7+2pmWje{8vEU>Zb z%Km4S+-fuPmhYhP|1(VESX3uquvevO?>p z$*TO)$Ae3%2Eg(o>?lYOSQw^StjxYmh)&4V+dGkldP<1o)(e;$`4BfSWbP$`$pK1^FZ%2kYM~!0W@=86*+<~E0@Nv)IE?Y8Qt3kFuL{tI~^sl`S9KWOWu0!e^ zl8lWpcorYs$17KS{}KY%P0K+%m=^b26ikJNybOZ4?K-$7{RMz98-I2FGt1?{9D|P= ze-oEHnrnk}#%dJc3-zGpfGMtbdYcpJNZGDejloM-P`PS5ttv@lLp4zJ1BNS5Z8sg~H!vsg4gX2>P*M`YQ0lVFv_R-H|NEX-u_2<_kaq>o z%lv2&u0MM))|qV6w5ZG!G1~4*?SLa~r6XMrtfygLNy?UAp}G@dCwAp074vBF(zhi% zrtem|?PS%Lr8SM^dmp^hK!%)rEv=RHG+JLr(XB*l@bi?`>}S~fU?X(QtzZaH{y2&p z_HH8}oX66Ut{a?q_mckKIT}nT2M*8R`k5LRw9ORNYH(B9p!6ldX)G`5Cz5^O@n*;0oz-a<~B?Wxy2zUgW7fahOv%jX#^Iv3)GkzE&jptdlY2<{XwSLn;> zfJ0O%bg%f-g@o?WG!m);@3w^GE$sBvMHq$(E=w~*6I3{i)C?EUEdj>#claF(YzI^u zjYhcRG)KAvLg~g%_W(6YA(r#Zma+14&{zjHOt-X$_zMqQ^=u6>p`f)b6A)_1J|q3V z$4)>OKJ%-)yQGQCYygEEysFXLsnwq8YuhmVSiF9T2nAg)f8_G_v!>hGl&?a27Ga`r zMElHeO$#q)TRQ@Nfl1M|=c?j6ql+jI$ejI@_mRvaAJS)3N~|V^>B9P-)%5!39Dy9j z=r4>+0DAn3Q)290CKE(XLgpw`UVOrj(|@EFYpJ6@6~w&n_}wg~o&oY=WYjb7>!V+! z3Nw)r{@?RD&W$(}`smh&wu~vY|62ZLYL!0o#GVHX#g4){O*<=Ft-zR>Jg==h67+g~ z@EGdV2AChL9InFq=dL%X7Do)LNTf_5ui0wkT9deou@^Ip0=-U?EDs4)kR_474jG;7 zLQSE1#^_(RZ`_fZW$eBte2)j!D>KcoL|9~>L#UD9)4h-8!i9{XNyAAEU<4UI}btih#wOBi^S|`VN zRJlP3@C*XNlNO*zdLZ{7y&*G(_3_xsQDVzRq7}xk^kNx-SPX}OmZV5;c1Za8a|&ob zjd*gVN?2gax7mzdgC!q=oE4I7pP+^9c}F0f;g2pD@y+M0t{ z=nIv|R~iAsm~onPNb-LVJog(PCW3-H?MqC@$i=|GYfUx^O7iAGuqkK;zo=MJNH>fh z&EwLLQxC45?O^6dqaF((Lx-zi?P<@ddFo>zYa8fs#{8sGzB)48G1HZU;tJ&`FT*5exE9f!kNi=q#F#M%{ zW20aM2Nc+NO8=Fx2$Q*XC&Ks?hdW6^f+<#;f_x&sKg1PLDMbXAzmppl1ZNI>CNOgM z0L%O7O!W;4582fB85#$Qt@FFr$%2s52Ra-$$m# zW;p-5)2?g=LUPRn(Iu-NPH30pI|uj|?vB-Gu@u=Dd7IEzFP7_(&NjbC?FM@+uj3cR zqVOTWHN2Qz#>B%o-hv4-o3aIG02Xkuxv+9#TtJ^Ow{F44z7D;maDzQ(2%K41Jdo6# zcNk65f}Ca`)V_O-;_;+QAZWCDF!D)9=95vx#7H@UP;7|5oa@ z$;R#fZ390X=3v~J`C3g4z=ZjPNXzM6Y-(oEBAcqo^5R+qOw$RNS$K^g z^tJS!+*xua6Y>+Sc~>cnbyXBTcJEZqEoLJONFxgiHA{~4=%MBU_)uz4@a}beo6dNt z0YA7Q?&r19`9PHmJrtzl7uI8wa*4_F#@0NW5(e0tt=*6FA}5bQdc(+durHagHQ0I{ z8J-7h?32}Q9yf}#9ozNFKIFW;Dx_>Vh?E2fkV;ODI{x9>&=N}}^!M$Dzxo&u%A(te zp5@iGBR)CNPr@7?!(Z>i1q?;8e~OeoS3L)sDQzF4t6xbZk2kuE0$!c%qr3egw`ybU zscJV}fD>OyLguT$ju+~Bugg|2`-D9<@tnb3&|F2A?MO?4+v)2DG;84&yX6es`9A25u1mZ@2(# zVLBK907V7@?;(|lBhLHJiokDOb*Y#`vPjm98*Geu;DoS!PkQP3<)4Wr9E|{bf!2C+ zJ(Io8_X39sLDN|*RTz(E{Kb7M2*a89f48`?6yd~NxhBtl+Md(LUij~-{?%AI9T}sJ z4A3u_Tz4PYT`a|dxKS!~D;RJQqLg-~No5!;Sl5%>Uv*P1RlpaAJI}d0ZxXe|uFe9^ z$Fng9IF(UVCH1iEDI_jbH`q^8uG0Tk zAls-QxOycQYbJ0YXiO1|<}tA8r@^x}vl!vASfD9|`MG60i6A>y(=*NfhrNa}ihA z;HT=h0Ei)9B1QJ`{IhJm>!2Q#ntkU2mFX}EEszoB#yry?hvc4-{wpU3wNP-q5I2b< z)^2>s!@6B}&i`-Sr{^(+9aSdJ&r=7!uhK3%iEO`MJjEo%nE6jDkYq*SQ_M{`t{6E~ zp+_&jpGsH@U>J4i)Vnkq!Sk&jvq0h{cLC^%N+zWKXzHm|m{_Z`U8@0d4C5*6 z9)4A=?;ytD5tx}K90f1gBag!mmO0^m*Y-ZT*+P@SgPOgh{K?@>>Hoco>1<44kcDIX zSr-gp6~JjkojjCqvy5r^Rr=<38COXJ9RJ+{3}<0SP+#~a>CpGDzOUAe<&(ou?cJ9tkIdd~KJp(F!*)U}(?1%!s}&c&~11om7Dzm;hh{s3AADu4}# zt!h3PM6}lzCgT;NAlu(P`1aQmTo5?SdT!+t{@?kv5eNf^QXaqA`U>%Nm@e6X=CgpB z@8LO4Bzq54Y{q7*Log^&o|SNMPf2{R9> z0>o`OKHF&ewdi5$1t)^Uu^+qv?!USX0YEfv#=~&oNXbY2ep*nMB>jBe$Y}fwtin4@ zzn%dKj{L8M>M3>K7m{1fU8h>jmU6(Q0l%$mS^I0lMW{C>1p4X+hhZd^%ggSD6zV6q z1S=+8-lVq{fls4FHi8)V2Xug@WYJCrWkD!{xo9)3tq25IGXh28z&fk}d7X1y>nRE}J$0`+VPhn8biY^T`5yLA0B(FesfGsO z)Dv8!){>gyNrWI9a2_tj6Wc?MjLm?nd0+RF*L~c|IMSmf{k$EM9dc5YiJJId&pt`{9jrpy! z7CycKVrd_ku3a@3eKB!r!w-Frk2K$8XytOzVta!Qb6Zmk9fDxOG~w!U0|bH(tWmR{ zT9a)zGNPCmCJtsPMbCTSU_8_f_OaQWvV1s&o9Zf2Yki(=uuDuY~tC{@N8V?9yu zWn>`jAFubHK9HMaxgTX0?2g@ee_!9vXR(J-`qOk?Q*2B}fRyVkfg`5JA0*d<776Qm zr$>jLr8(UgR@^kv{qx+z>o63_yaDBgOX+E9MiYFT zQCycOUvdw#LgzE}&QTk5(^4XmI<^Nh$A#@yD{`86e#~yx+1c*wkl35gX|3Of{zXB#bUT)^jA^**<1eD6YvTSp;H;+w?Mgg4 zT>C1TaWwP(z#jvxz4f$XUN`<07txHLAZ|vxVi_cb97nrGCGbonX1VLG-~6TRrP?&1 zblv7P&o>*%z_#PJDkN!4Eoc#*&9_;a`!({1Fl z+g?7pcH5jZQIsm0n=jgUXGA){+w(3}{^IfGnSJf|RgAwykB`!>qzj!!c24Ct&Wj?+ zHeLpox;qAlMEKpHd>VOPb`hJIU6dg(b#=f^b*0a3Ky%68Y1XiVUCI4o{)WuI&W008 zc8nZTSV&pDOC3-2B;W`BsgIdli$f~CrW~|a8zh^zXEbi^fRF8*uPPrs{$92N;nw?9e@|IuY57T&37ep4*;YIuBstwZ> z-`Sy>dfXYiU!aQZz*oCe^zN_#ua@VB6nm$cu-7a}OLL}CQ%SJIWkP%F>ej2^s?qxU zf1~>1MLTctlG`qL;4^we1iiRAC6SWfw?q3&i+$hCBrrjW?#TS!1~ExIEpG#?6_yuA ziHB!zzeg_Zaut-QxAAaQt!}krwsNgi{E5!}c46wdeTbpjX4W93vTV8;#ut@>g^F@` zQ)DV(A16!(b2bkB>`TQ@e9AEW#^Wj?s;eGlb$<(cbp4Iu9b#G!atR7T|7<#p?UT_h z9`gc{E$Y+oO$%H#UF5sTDYR}l&8SB4nGPdo9(CLt+cj!(_TuciU~E9|c2W*T^Nv+B zTC-JBVT?AGZo7XjF@ZZ2yCm#djnQBES!U{A&9~cK3)g>)7;7#tzw&Yves*}1XyODv zGS!TZSCaag^H)z@GL-8zW5(;&KjroC0@N<3)O4oPTlE>H7w)S8`LX3E=7m)!^^=rj`p~F-o)GQ?0SC8?YX|Q zRcEz5IMhFXx%c?1J`0bd79&%1JGW~#MQhyk`L3DN*Vy6ViofJ?H1A%pucAwC)|D*Z z^4@Uq#HfAdl$~GLn#e$kw=2XUsmL{BA;VFOvatk^W_&U-ENg3PVPWC#>+#hN%MTc% z1>8^0&YV}yX)_J3p|F!nX+^nDN_P9P`P8{yEB+wDFgg3m;sfR4p#1TYySjh>3-NXH z@C$73K*N2<`zPU!$6c*iB~p8s>i&cGMzpkNjtG-pW1k&4%Q)&YOo_ck?H5d4C}p-} zjcIlHF*7qqm!BkpqbjohKuuO)YU+rZ(QBJH%KmHh0Zn<>H6tNSUESaWJ`0n}^Ak5} zA>&32A`+4{1OMC9YrQ9Ix$8V5gCtzITPI=^Z)H{`NPKM6+PZd@F35lBey__!T(DR}SJF5q3fhexY?ImpVcU5YU^HRVQa z@#4j`PYRjtBBD+n!(o+%`@Yo)Z;#GAiS$w1bQ=oX9Am_&Y}g~cmuW6F=lFbSzeOaO z&a+7d++4#%IUbLzK5n{nV2{~~Za0e;NaqT>;3QM`uTE1#@xEfkO|#39uhx3Cw*3R+ z!vxh8^#Co)o6ujr5vWhvx+3iAi0Y?eKV~PBS3T{_H2oS99Q`;(Bkx0SFg6tx6&@8; z2)L}Os;a(^)_?nUT|hwK$I;@Va;0vq{sP%f3>pw>uZLHQv2wCJG*uR0r^r1aFP|-+ z?H;k+AdnP3=P)2MYQ0htH&g5Fw~ZM#J&4rvNOVIzk*(aROlUIdD!+${qJd(<1mtSJ zjh#3y`v}8lzS{*lN{1S=$&Y&;San@_w4-!lzirxIrYaFw6o;3W#7F;$dr-mt{@de|lhvtpbri|`;$l3C(ChAp z8^1!x`E>s6Z4);Dmc^2vVqtmtVa~HP&+g6K^mH`OvqM>FX;d%-DpQB4$@5tFxGJ)| zVOhfApKP~tc9sJhXblto)1F`MSo*z^|hK`AeNmxXL{GZ3Yd-s@` znSFE$1jj@I|9_obc{tSj8XsFnjG7@!hzzAHi8_QrV`NAX$rxM6lC2P-Gbr0g)=ZWe zq|>DCSei6CCd;vJp<@{(5>v`H)j5`M=)Tjv&;8>*_pdw8JkLD8`OWXUzVGM#%=5h8 z_d_OkULh=B4PRYd?dSe+%gbj`C`skzT4x;{XV#*kqg8Zu(Fi+7$0VPgJ1W}R z5+jvv3FjDXLysIL-@i|s87!k}NMJA+J&e1+{PgBxnd#(hTa!QPSH6A~K&Yv!tE#C9 zBeJMe29*^U5|S}LA2dH!E9K+kW5*blJLHR8=8cOR8$XXM8R_m8({!o~3Ln7R?rE!| z=O6mLj-LB$NBEZeRD+)<)lkq0CUsK#{Etsh0XzC8f<*ZoX_T;nM3TA{%Q<3E0y3sw$lZNW`~Xwzaal4i`Jb zMAlY5X9mBi*|~q9?^oMCVnt0`e)k1E*WWHTko*(D%eV-e@n{cW; zGEY(URgN9or9lznc4S)m_|OGZ7hEBuR0E25Uw+?-Rx}I~c6N3a-M&3;K6LzI`3i45 z4XQ(z6PSVp1qGsFV$H3oQrRUX69M1r>WscFItU1*Cn*2$$C#TkWOUO zaTj}6uaAw5`Ere*va+hhm?7_NeVS)WvghD~Qwy^bQtiYEn(`-}_o)~ZE@qVJonog! zS(sHoqg9~1xbMrTTc!1e2KxG96ze_bs@y9A8I_eX)^z)zH#NQS=*VIkO;Nz?myM+n zcFohLhXu@Fp-OwX>^Fo=MML`+RD&vKYF=I*q2ZTk#>PbKdhq0j55wgPy#^CIHa9o7 zq%o^!sNrE@PY}C7iXa_T6pBElrlw}j4@$MKeH^_VZmSp=bJ$%#EnzT#bvZP&>0MI- zT3R~E2c|2&(>M`yi;9-d+ALpAYz zlvQaZHX;M2T2o&^x%|zI&vD-4>1d9fAJ6A)YPAyitIrG?2UqighWib1Jt)>Y|PEgg|06L zC$x<^8|73JE7~oUNr`|bkn}20TwE+?9I0jR;E;}f(sgBp$rF8)!O9KQJd&E0n%eXa zM~2dCbugsZ*w|fbo7H~(oQ>$tEEOn~o^ayVCP=~8^=`kljnuF1^NA*4#t+OoiT;21 z1}*d|`0q6R@=cLFMKH~1;0_VLb4H)*k;0Z27Zc0M%6KF*GXxZ0e;m0$yrpz(^loS& z(N->ygpV$#-xRsqs_pt4Dt!7y^abVZ+cQramk=wGp+EY`JfnqcvprdcjI$buQ%bwZArb&p%)OYr0p)L-W7^j%G^bK~8XJSlEr)+UPV*k4$-WiuG_n zoVd97;>=*jd1mCDjQ3;muz~ZVEJk(9oIQJ;a8+jiEmkfQk$dF75YYde;!dhcIB%p% z`K*R?PEO7{E?4O8%xeZ5O(=J+Zr}YesA_q77YY^s=bvFT!|*MtmKnkbnh8lBa`Huy z$e@)~b~E8w+rWTiLqh}J+PWDA5wT!pWtFcVOk{Kj3k$#d{kl-^Xok`;F;i31&JSS; z?QeD(<%9>qiHGO!^CKVdOgKdrV&2*pAJDF2$9tCMMl5`N9}rjpl*cTVH25v%&>;uN z^qpOciix?Im?*50h@wy^UNZyqDS%&$j*cw=Y+8Ig;_HxuZR*XNVh;3DSyH$RmORXG z5~thmmz0#mMMl;{eV{lc5-WK6hTG zud5$Rs2U>m;GwRrG`x+?4p|-d9UuFOr1%daS{q2~HWX|Me>$5Bf~dKXDp{D})Y{S< zmRxMeS(_enXfGVi6xq#k!Qm1SFQ+IpTKSxi8Hi4pi>kENUt7WX`#-!K87UK1>k48S zX=Jh}0NSNOVI#8%T9Q9ejIXYNrQ2`S)YR0CS@h2?DhmGlU5S~MRjR1CxD?2kH23wL zPE1N-5tQz!-&&gPr6!&D6@BN<9j|X+CNX>VSgf$1O|+uoSb5_)hO~)^N%O#feN?N;t9VJY?pLBw;qwe`-uo?_k za+wd7Z*L9#-gS;2v2uhD2$}!ykfp}IEhiHXcX5&}f>{vI@LmLjBt$eTq`29C;$4oc zl$20`&6Wb2WC;cRPZ9G8T;N+sNd-mTQBe+5W7s<7z@5k=N%pQb+4soSrWzFgKll3ca2U$hn6tIjSKH<;k$j!_1 z2KymA3)uzoD?b4=f;Wo4e*GE_LgX{C>KHxI9}O598*{mtrYCG{fJo`_`NfF)H3@MU zEi-?AXa>sL%S1#(^fvIOr;}C8liz{Cw~G~#J0UH47XqEF%a36Ihp@FRWVGsCyM2#i zmS*+WWu>K?z$L+4LO8tH*_-$7Va!ub;x5?L3F2`%On|4Mkr8fnzex*k{CTO}zQs)? ztSG3K3E?bp7mfm(!0T1I*WXky2)WB-qDQJc;x2eltdmAZiEtKAKd>=kPR7;EO=9O> zbaoSe{j45VR9FxQa=!h==~pL6vY@^28)(r`H%KHBNJVGo=H3s~)Y58&|2Zf*IsaQ( zsbpkwKSDBFjUSraL@dB-YSL}#DYDZgJTT^qh zV6|^=bEfGgnd#kuF)>k^o}T{KGX7{lR#Nf?oHOzb=J9y@G&O}@K9zP21X`mXGDc2U zFpxij#bCHohrlusPpYf=!_;=E`4m9|vJCFyclRNgj5ObyhnM#%>@bmCO^e*e@|GAvts$&e|5(0DFR+r7N>EQ I*z-633GK?mO#lD@ diff --git a/doc/plotting.rst b/doc/plotting.rst index bfe8f78a1..5bd139c39 100644 --- a/doc/plotting.rst +++ b/doc/plotting.rst @@ -423,6 +423,114 @@ Instead, the plot is generated directly be a call to the :mod:`~control.phaseplot` helper functions. +Customizing control plots +========================= + +A set of common options are available to customize control plots in +various ways. The following general rules apply: + +* If a plotting function is called multiple times with data that generate + control plots with the same shape for the array of subplots, the new data + will be overlayed with the old data, with a change in color(s) for the + new data (chosen from the standard matplotlib color cycle). If not + overridden, the plot title and legends will be updated to reflect all + data shown on the plot. + +* If a plotting function is called and the shape for the array of subplots + does not match the currently displayed plot, a new figure is created. + Note that only the shape is checked, so if two different types of + plotting commands that generate the same shape of suplots are called + sequentially, the :func:`matplotlib.pyplot.figure` command should be used + to explicitly create a new figure. + +* The ``ax`` keyword argument can be used to direct the plotting function + to use a specific axes or array of axes. The value of the ``ax`` keyword + must have the proper number of axes for the plot (so a plot generating a + 2x2 array of subplots should be given a 2x2 array of axes for the ``ax`` + keyword). + +* The ``label`` keyword argument can be used to override the line labels + that are used in generating the title and legend. If more than one line + is being plotted in a given call to a plot command, the ``label`` + argument value should be a list of labels, one for each line, in the + order they will appear in the legend. + + For input/output plots (frequency and time responses), the labels that + appear in the legend are of the form ", , , ". The trace name is used only for multi-trace time + plots (for example, step responses for MIMO systems). Common information + present in all traces is removed, so that the labels appearing in the + legend represent the unique characteristics of each line. + + For non-input/output plots (e.g., Nyquist plots, pole/zero plots, root + locus plots), the default labels are the system name. + + If ``label`` is set to ``False``, individual lines are still given + labels, but no legend is generated in the plot (this can also be + accomplished by setting ``legend_map`` to ``False``. + + Note: the ``label`` keyword argument is not implemented for describing + function plots or phase plane plots, since these plots are primarily + intended to be for a single system. Standard ``matplotlib`` commands can + be used to customize these plots for displaying information for multiple + systems. + +* The ``legend_loc``, ``legend_map`` and ``show_legend`` keyword arguments + can be used to customize the locations for legends. By default, a + minimal number of legends are used such that lines can be uniquely + identified and no legend is generated if there is only one line in the + plot. Setting ``show_legend`` to ``False`` will suppress the legend and + setting it to ``True`` will force the legend to be displayed even if + there is only a single line in each axes. In addition, if the value of + the ``legend_loc`` keyword argument is set to a string or integer, it + will set the position of the legend as described in the + :func:`matplotlib.legend`` documentation. Finally, ``legend_map`` can be + set to an` array that matches the shape of the suplots, with each item + being a string indicating the location of the legend for that axes (or + ``None`` for no legend). + +* The ``rcParams`` keyword argument can be used to override the default + matplotlib style parameters used when creating a plot. The default + parameters for all control plots are given by the ``ct.rcParams`` + dictionary and have the following values: + + .. list-table:: + :widths: 50 50 + :header-rows: 1 + + * - Key + - Value + * - 'axes.labelsize' + - 'small' + * - 'axes.titlesize' + - 'small' + * - 'figure.titlesize' + - 'medium' + * - 'legend.fontsize' + - 'x-small' + * - 'xtick.labelsize' + - 'small' + * - 'ytick.labelsize' + - 'small' + + Only those values that should be changed from the default need to be + specified in the ``rcParams`` keyword argument. To override the defaults + for all control plots, update the ``ct.rcParams`` dictionary entries. + + The default values for style parameters for control plots can be restored + using :func:`~control.reset_rcParams`. + +* The ``title`` keyword can be used to override the automatic creation of + the plot title. The default title is a string of the form " plot + for " where is a list of the sys names contained in + the plot (which can be updated if the plotting is called multiple times). + Use ``title=False`` to suppress the title completely. The title can also + be updated using the :func:`~control.ControlPlot.set_plot_title` method + for the returned control plot object. + + The plot title is only generated if ``ax`` is ``None``. + + Response and plotting functions =============================== @@ -432,7 +540,7 @@ Response functions Response functions take a system or list of systems and return a response object that can be used to retrieve information about the system (e.g., the number of encirclements for a Nyquist plot) as well as plotting (via the -`plot` method). +``plot`` method). .. autosummary:: :toctree: generated/ @@ -481,8 +589,8 @@ returned values from plotting routines. :toctree: generated/ ~control.combine_time_responses - ~control.get_plot_axes - ~control.suptitle + ~control.reset_rcParams + control.ControlPlot.set_plot_title Response and plotting classes diff --git a/doc/pzmap-siso_ctime-default.png b/doc/pzmap-siso_ctime-default.png index 1caa7cadfd014e8c075891676d42ed64aef0d98e..fd8b18eefe2e4c1d870f7d2f8e3f91d2c2349585 100644 GIT binary patch delta 43 zcmcaqcByQFn}UU&v5rDUNl8JmmA-y%Vo5#`r&k;EQ diff --git a/doc/rlocus-siso_ctime-clicked.png b/doc/rlocus-siso_ctime-clicked.png index dff3393714ae21d6707264381593572558fa866f..e7d7a1001f5464b35a4c37d0f25fa4584b5d0eed 100644 GIT binary patch literal 88472 zcmce;cQ}@P{5O74S;>eb$t+YtRyN6sXiK7uGD0?$y(_a+k|HEYNOty$ZaZZQDI+_3 zKd>Oo;g>C-N2ZU@L%!O-)^v>fV)OH$|9Z4j5W8!bJw~EP@Br+1|q{{INw_l7GySiVv zxUsqUsr8DP=x8y&zc`l@Ik(feAf)iBV9N8@8{VK5pu5o{V_p5M$#VE|9;H&gpg{>{`(QBGuo;|@!wD2WeQ%B z=>J@*UX+zA!sovqh22hRY3bW@E$Y4Up_cZm6M2JORvFHkeQt}B zs>;gb9oD(+as0Nwetn75IDMKjs?PZz3D3!bVFq?~+6M_AT&J!EEh_GjGp3`ZjU~Rc zp7mDgy2}~nZ4VO42J9Gi?Fv|(D&?dJs2CWO(h~UV62>7<^B|$QuTRmq+ij|N_pu+h zd7sC`%=`=%mT}@RG&Ia#{Ncv9Yu7e~xbTPw2J5bD>N|JtIK@1B##*$oGB(#Y+!R;y zIcZ6&X&sxqp3dSqmDG;?${F+$Y9+Y0GB&l&!9 zn1&l~tS!II$fyb8^c-m}Ieh5Q^xACG;7ivZ$KBjyg$l<-gBBE7n&cPRhnnIPO$rYW zmzDJ&!N6CBn9L3}SlHUCpE$8)V?M)cpmcLxIM=psa?C>lAA1qt>`~w2Y zYii6j*I8);&*t^nRqn{Q8z5I$8R5Nf>C#}~RLKb)9lDj36*Zf_@81LF$J%+hxJZ=r z94e}++kSX$diVzhDkruyPsHB-N!^37$zL9du^*_|_Cnf`B2_o7LZaQk&ueXv^Sn&p z0Bh)H%SB`1oSYoJLYE^vJUsnlW3ovKpJg`jzewIz=>-(r+}!=M%jaLdIWg@oEh2K8 z-QUMJ(5~Ai?;(Es*{s_%TwZN$ZEd8q!A$JV#`5sV+qb0#W^P~qQFQ0}=El0@D)a8$ zkrGyI3_eOq_*||0V$X?hHzm0JBlgLsUpBk{OY6qpxW2=c6BQ5{W3Do*CuSevMd#C zf5?3_t)W|)!lff>Yc(ncXEZD<1n!K)2Yr^iChIcJg(={*EnSzqfA1cba(qP3?ZHr$ z_%k7Qbev`O5g*eqGU6JTUEY8Aa4^OzkU?3)!(;uPqa&U-ly$N8A+Kp{Wk%`7^VhFm zGjN2fCnP3*X?!Vbvk)2<#wT2|#8WVl+kNlCp#!BW-!s(aGR_E4ksRhmT8@VIc16v* zPj+Sn*-5dRh_lsL$3;b{lOnJNrg%Nw#xrZEqUsK4YipZ^Nvz#YOiZNa-YldjbeZ7E z%*^yp5HQKqtKC>%J*lh9^6<;`s-~uJ1N-V-zkXH+J9)J^t~VU(i+J&Z9piOUO^rg@ z`44mNoA`JigFC;URJFH9-BaOt^yrat$>zrD*^E|7PIo0L?$__%hZwkY-cS)_iNq%O zXwxnEwYOJ$vEc6f&A(+^=p*{phK^PB^~GH`HxHL;Yl&qXE2)g5RHiBzdTwPs`EX>! z;_p{2;fJ!5`F!+U}T`4PW{ha>3~mW=8L z$(0tyJ5MYg{UN4PyE(af>6*tAe}8`lMMcGr9;+@UBCKk~CA73Zs1nJpKg;~~{rfR@$worj~`*X4(oPE#C6-2?lW(St#g`)9db#PcXA^OE{~UCmZ8)|xk{E6`*(1Gw|9+#^H`*g( zV<)a(-(Rvkw3noG@#3zo?(Uh-du>BTOsgO4di(AjIf?i~bJBu>f>oH(kZWr{cMBXm zSnk*)A7mbT$ISoE-|v^Msp{*q(QMy7Q!myOGIEXQp%TwSqp2Uo&13USFC|GQ*mxqp z_{+O3cr%FJjA>HbWZ!vzD~jRNy*>`FHG9@jwUs5|q*t#E@!>W)OeuZE{srRSiweing>X z#-h>acXHFDxx4aVoQh$O9_?KFE$ro^!gCxCis$2gqB*lNmXTOoyzfe`HBlq6(?geM zhX=r{%W=SNk5hlG{I1!>NAr z<{|k>EJ(FE#TKz!zp;nkrlnOs7Y~(;yznVc%fCW?!^n;~uh(U-aaJd` z1rsWk71_p0d+Ar3ii(O_E#czpS$)`YUlu01sk!}&RwoNpgrXvSe8^T7r%E?tKj;a5 zZD~0k?wIn%UOdoB?p~Ztfk`q6>T2Nz4zFyY|GZ3o>QcVckd1<*EY+`du^=Q4{O#& zsLg+E4=!dav+2%l@wy_&vXhxvWn;O?Yo{{R9juCb;onXlbA5GD!kn{uR#sNV;%qjJoKbbv zfDdX=LRBWY97lBoVLI$AoNVmK-4s8khTSo1UGGaoAi?7({V2%Ici!i;s_= zlVfEyBL{30Nn{AF*3i&ULf_fIk~)#mKDay_mxooQb$2P)tte{g!qv&j8dj^qoNMuC zq;7EvvRJ7oR{Bx!@baF$croBupF5LsJOdz>x{J%gYx3>y9rsM=rJ07iZoH|qSPyae z5m=gEbApS(s4{TJ?S)Qr`#;|f_IR#NbYz;=COgAv=SU4H?kD6=4)seEvTfs^y})NJsz zHFA)K#FgR+JcxnN?qfZ6mCx4g3k(VywQyV5I@5Elr%ii5IX{zioqT+LkE)v5&yv;2 zO0SJsPPvVx!P`^Ci=VAyqNDGlEC6Y9adVds^<4-k88EoJ`MkmG@zbX|@4`buXqk8I z3fcx?88wkx)(c6K7(@oV;2_-M1rr%#6)vgKk)7&taa z&~?~0sNX?FvLbG!(h5GGcy~lE=&jr38|sk5QXULosqV5!{E~j z%UcTy3W)Eq$?G-aW%XDZ2=#g zBoOhlIsU}$nd;qV4GlxX6;`M=mueKJtC&uA^iqoKS4uN1WQp@!Irtzr`0TZ7;Ta_> zH2;?Jbm1F)B_18QHha;!g8uxudEw$kVxQoiIY&I63SSFT=eV;K_q_kA+k^x*PQu5J zJ5MXFi|;dF-m^z~sK~^`1nZ95$;m0?aPybn4#c+Wb?vLJ4&H6QG;J)m&|w-WLrIzj z-uc;I?ne-$0>@!H{7U}}XDB7dZIXwFN5?1U!;LSb{XTt?Sz8(m&!26SP2S&p?Vqk3 zs~Pl`K~OxRrGpdQx>Qm-VBPy^7wS+x8oxc7C;hKy~Yye41qkMzO*R5p?qQ4?ajVmd59%{UKOrgdX z$ryh|L(-;8oM%TpYVVf^yAD&uHSw2}lw1c=b5aU8m$DzVN$jC!(tc6VNA4IZ$>UsZ z3*+2cQ9=jKr98e@ZSv8&Q}pj_lVbRtlJ|78w#D--)Z4f7qQM$?tAD`VQ!-5!kdc+nRt$Y<%~> zAMeTu7SzwaM-`yVv-5uKKTi&S0n9x%`2uYhypflhn%ci|AVgz}<3YvsIi_e?S0RGy z@bdbx%isOR7g5f()nQ}p&fPezrcpn71&yDBgVY!jaQ;PlrT0nw%Q%X zdX!$DJIHun_kMv*TF@Fzo5JqHH|>xCo%8Uj7N{w#ZUPC(#61<1&RcW1cv zsZ+FsLJ~B;h^hG(#p-!gTH4yyw4PQB{aqJDhyv$Qn78j1s>0N7&+3#L*x>YB;ud(o zHrp4sxn}-pf~e2L9>cO=pb5Bl|9&}9K)-$a7BbRqB+}n$9;a$;EqGgw11xuDwQrL{ zKdp_sCQUbW=G*zx#)F?j(Su&ht&9J#cXe{=$nMRv<@B6Sy~ZsszYlGKSv9nCintj( z($0Z_fmZ@I>sLn>x^2}@oeJrlb(V~kjMFLrgnsz+DFvn;i+2Bk0|Q_9<5Y<9yxQ&P zbp_C}0`Moy+nWRmD|oGhJ&0}}TTWkj`Ej|`@hor<^0=m;(o)5?_m{=~h#lR>Ud$)$ z7Z^x!hWU4PPUClX6v}6cUJ6^u$pGMq;$(tCn(iShBQxFaM^E6l|7vvpSbAaew{O>5 zh4}f+d*&Cv=F~pWO;trN#*l;HtFL*^{8a6^JC=6u!2{nj0xItAavW~sN9Pt6bT(A# zMWiNU%TDzdFaD@ReLZU4$S$}1D-xL4r^TYGGs}DikIgGAOpofZ$8i(1Q$r0}&h_aZR&!AY;`U6;6og>9=A z%;P**h%KC6I4N_t``X6e-JsF^n;TP`47+y+4GozUt^KXTdQ$Q9R6z3_%?0DArdM3^ zCjMaXZeg{nS2;G&ITGH#r|t7t?9C1@%*)#i0wn~wB?wrGWfQdL&9^3K1>V1YU5~NZ z*w~Qtn(EA=TwY$*`(Q-2$SR96sQF7BiwB=?#|F2xxcl%=bvYZO=m9~ z{L|mhQ}G)6U!{O#aq_hxjTqjxUrB|8vp4N8^Pz#UcDN|2}<1Kfv^0Sl@)(R zfY9=Ifx0eUya;$nNyj0F`KDP~S|YLDJ@)p(p_p|EwjGkTKSBbw@8;RR|N6J1v3Ouw zI=ZlxE3U4`z%nUPE zb&~ha6kg5X@AF(evc8CC`+~odTsYnFZ*DlPMxd&|ttTd)_MN3=TxppR8?b#6Z^_Lkh7oF{e#1`eR_E!}_r{>23$ z$#!OYK=7a@{T&Qf43pgec99%d{-`HdWs(W9Haa=UN2(3mC;PeAT#D0unv6_|hK7dE z+DbBJbTcpZl3Uka@8<^KDnQLOCC4_O~I6K!Z1`aIq~}<|9+mc`2i6E5;Uz z-5elz`D4|a38J7^nH)_?OMAKYi~oLN`~JYpqtU1Ki;F+D?#XX4TP4~x=`W~wNZ}?> zhYBfzpplZ@imT&dvqY zOoV{DEG&V&v9H-TGC7&s z*=`~JGbK4zSwn*gOWxM17u-ivrXi6(lSOfAm-L5YS2--y?s9zlMgova_DwxaKi`kpT0@(aZdmxzX;<7#i*XIq6%UbOl%P zJH=P&+-?|@o-P!lKmgF+PcE4>#md*#)_N;(DH#~B6NEEdrp=D&!+fmZ;lq`v8{Cm! z;3cM9MZjVGRCvmFT{7^2%zm(7yLJ%DYIa`UV3_RWhfYs|(DOVD zvFapO%BT^It~V>p$PgweaWP;;rW+P=J=FMcqwXnV=^k2&9_SFa`+X=sShVmYhbXoh zpDJrDvz8p39;npIx8ufQ+Sg`lWp$WE_$nJvpFgV+Y#qjml-q(JhKSS;3{+mj=@mk# zaC;@Kl`Jg}rk8Hqef#}p;ZRR=vo~mMlqB!(;bB7VP{v)vdMsQfoe+LZtZdO}S^}ez zI;a|mYr2d-3vC{uqT^Jc#Y}>Vo}4PQY8S$a?Qv?=X39-VO+8_1%9~!ipno@}+=%4O z$Vu5&8XO$VFVAmokI6{D?Bbe)@iP#xJL2inp-IcoI-f0+cI)%)yjW+~JeLog;$wnn zEBzyo7sA#yLUVlg z?j0Yq`zgLi!n1=Le^!uMDwg3F{(W)twRj8@Nb$YdJ(8<5loelsi_*GiV~^-IKejPJYX>4 zm^HbXDkfqBtLIyS(+&V3R}&I0jHvM+#e2i${!-CWY=J*>pE{gSfXdJ}?C`|#uU~H^ z3;{Cl63Qbi+tWY&IrKu_?O!uVR7~t)R8$bUV7JF4yL0K2r%%bD+U7wNL{U1mslWm~ zkyw5NNLEo-H=XP$c$=R7nR8>BlBhrHEAyt4S0G;Z^ceJ@;R9~+dU|2jM5Ltdpta=WI-0M|Re`Wqzw$M`IeQEW{t}zIxjSM6-41r1IxuWEqBqPd{{y zpA3~?gxj?rGE!A$r{8=L;c+qLN}%EJ^9Nz^?ma*Iqu32!1Sr{&-3LlerUdsxZBA^h zFT->G@FNH}CacqqGA~k|c`r`&od#;!2wz()-8_Iv=OqZWhKkBo#^CDLZ{J$fuk(qL z(VNRLO`}z+0SQmUPT65=pTa)Be>EdHFXj8qpHowc@prm#$AB@~s71zH^ns=XF>;}9;|6W*FU@W!i$+xdskzhOY{%Li+I$n?rw>&1R0aE#+563FPFF%G%P{SZG9_rC2NP;mJy%vzEV!Bw)dH1 zW51v;aUBlbLhLAqQ{vD+l8xP`dCn37HoSv^qE-x=$W6PDo+!S zm|hZ;g%U|(HQp#@R;D6!8g#RtC<>V^6xZOUK?yAbBEACPU^?@&y0)pQhS-8w6ESy= ziHmbdO1gYIDkNdUDeZ9G-^}!#^^c-XwL)l#p(sD(qobpQ!Z`!ZBXgZyT?~5@LfudJ zG}+Yd*s{a}s;L<1zbri+D`&|RO;7s%{kz^Lr_ubuG)%vX9;G*y+}3T|;xjYtD+*Yc znLF%NSZ7zRY2LjngC~8}VnL|kikr(#9UqLh5S9O-hWKPjq3cxc@+wh@E?zPWAbx!t za)+g(sJDI2iMBp?K;GQ0QR}OVt-}@#&n1Wg8Z2CLPdi4k)7e0muaK{JeWCmIVy`P8 zHC^%5)3&AJZ>d=wYFIaVF1L4TNjzzrAf%Y*)8D>bsE;|;^k(8nUXL$?Dr#s@mCz|_ zX)Q$*VUxdp^Tq@|0Iz2u1g1>1ZR)ARXuE`&4XY5(ss?L{xCp`m zKd}WqW0g#u$)mP4UEnC#^5KmduIg%0+S}XfqP}gaw{W+98Vf$MNhM}#ZqC25x>^%L zll><2Lty1Kwj0$0c4{g(?)W2A)6x0dZcK>Gf))V|(CtMmra1F3)r|u6QJ}_=yBpO+6u4ECOT(Wx@$Sh?rTJY%6 zqk07n2ma2^zLaTnIwQc$K|(SnRu#xTwu{_s zz1Z8gZ&_RNoPX%P9~;!`c9wbBu+WllHm!U7CrSf7df?~;wAaR1KJSNYJ(){TQr>0S_HMoasE)X1@ySfjp)`&CKjg!$N+(6p%vr z=!txkXV61Js^RrKeB=mZTon_OpZEF*qE0L-f|Vnh6Ar^4kg&BP?g=#PR*wcVRx-Qi zgeh7>ED5*C0!px`2`ZZyNH_$fMI4~Bclbt>VIaYgAP_L!ybE1v1O3kkwn6^NpVXP( zQP;leza<2(Ywk1K>dj{JhmNEkv|pU;C7@aHdf( zsYmzFk0pq+VOaG_J>?O^nTB+R88~ejVp!;M96Uti_+@VYfAK$|$+-TwWA49Y-GX=o z;jH91Pd1ZGR@YwV_QylR)_=yvAeeu#f0^AIdT~23ckrMhJr|&fs;La?YhSFCDEDV5 zLMT8eIyF(-A<6+&Nl%ak2GJ?YP2%wkgxZIeOVQpwAeKQe?yHKx@e1p6=dte}Z%otd z*irrWcO4+*o{`1d2c8DPD6`O_t zMZw7#$LQO5L9h6(1W4?ze|H50uF(mMT0pM{w(*ruP6w4woS1<<(WUa!6LbPewKAY0 z#mNnC2l?L2JcnM?Ig{H`|wO$9IC065oKnc@X+YorV+pGR zsf(`HTg!k+$so+ZtCZZB4pQWT*tx#GP6QdC2WB#Q9)WNd=d~d{S+aVINEa=kv|+jG zBFRx&2A#tmC1CKOI!8Gy;j-TjEnmO-LLcf!eJ>}tE=&^>tft#|;_}}PnV#!+;f|T0 zOU{`na9lF5-$uj{em=c&t31PN-3sy}@w>$5hOMow&^oX6qa~<-7-L}`X--3)1#^-m z>pO7{T*|`dH{mR6Ylmv@@?BcG-Bmh@KC72^YahW8Wi&fAfxG}8y%C%UIjE!n&zSJD zCW~fuUMDAaKhs=xS6~s;Q`%hr=Wqts{{34aagB_RR}q;8$nv}6-2dKhND$w*Fx3|h zfmVMEU_j^6{Q`&;mZcvGCqHfH^q6D3X=P=p-LW!1_7Io{L<(yMK5IXscx0+)31iFV zv!%85>uW+p08J^JiHXTHF$FRj>%N!fk})kE9U6It#dmW;GdeHa0e!K9BuXS}ZvT3y zZX_8qgLbaW^RQ!S*{0(InH&c_p?eZ}5L9u<-EruBt+9UcQks5+FxH42K5+=iJwK;RRCJEGmV!~IzrO^%z6DqXvwys72ZQFKS_O0ot;XInA(7eF&2f8;mH1L>`h@hmiOCp;uJ|?$~SX9;9B_H<>?3N5tpg z!1Q<%g#>8eI2`b+p3662arHno<^8+{>D)*(`tw||j*bq;44t)w1xY0PGyP(yC!vH8 z0xQOw*mV}1Wr`a!;Z$^V9J5=z+WON+BBRyd&=SEojSCl;5e*~~XWO>3M4%Krb#iuY znHaxM&gUNi)!G3=`Uub+gy5u}9%}(e_UP8C!~?#$dV;@D3-}O2A|?%%(c7o(;s5^TV?zEO7C7|Cg@Z9|JBasSnP`U8iVsQzxs!oWNu=c5gDuD+Su77`b@fYADr*jeT(BIT+>kpQe zms`dv(5uC7c0)J#h-4sq#d{k2d92#g4Ziy-M?_4Bc`YAco?WO%*^;Y z0f_F6N$I{G(K|V>t`)(74VIq&ljdJu3l2c!G9mgck6qimnKgC$Y#Fe2Vwl)k^!V5q zuWOGz<;?v20fYy!sC*C}1XIPcJo^>>LLts$Vb7P^S}r+`a5x?j2;n}1_7x*(nwBCV zA@Q$G3A9U0FGdWkjpdxKuH+v*gc|nq@tM`1qD(w`m3bOfwieY^9es9Wu@%K#KB$MiOC*1$Ni|JWc$3KNf4=0c_>>gtWSy545cAcX7jmPB5=dxvNTfnNnT98nn2w0`#1T6ii}|JPkiaWgvs@Es4+$PGw=T!0gsLO z75qQ(ZlCgl|8Gh01n*=YsBY*R?(Xg*=g$9+8ymZWd+W^{HZ*Du!`Yr_5%PX<8>F%Wc|7enmx2gv%CJ7CB}&%zTxKSa9puna>)`Tu)d3Mmpow z>(^Ditt5g$;jS>A2ofMhhz~qF#g`nWMdfow;6+Z!;Y4E*R&+6Mv=w{~^OoYCWuF<>^57I6Vc==PnrBjcg_BGEJ%O92P2xx0HTcjgF7 zaD&&LqTQdjjwd1E3?x~vIdR&_DZA1`n39r`P&5({*??M%7tZnf<50?Zw-jP`_KXQZMXe?GVj_`SIYh;sE%_N#0L;7e#PGWo3od4w-dkY~d<$2@p&M=o>YD4r z)Dt@jBZhb!lT_r#$mKcVArv$x&| zb`_vf>C&a$xSbCWDTAJ|PRIu$-J6h|{g_2E>D)nR$;Vd~!4%k`7Tqo8IC$`2K3aBi z@j|C;9%1Vty9IFo#wMgGB;~fNWyg%H$(RUj+qMm@_yi~T zDsFsZN1>}QmIO8-`@8P~hYl%UxbQ8+#UOX_u619@K7R(lN#*@J2Y@UOKZ=YT7#W14Og1^)K#|dx(cczj^bPd*on?hd_ioSw0 zA&?CMYFJ*uAY=?^bih{$-5rje`;P8LWrK3I2TC7jOOW$=rfBDC?+5iR*nM35D@QnzwYUt>wA+CayoqG1g zLr+j=w#76Mp>lwhPlbgxT{w)QOoiYdWbqwBQCczg_LYB4(qiP`n2acqd-%nGp45CZ z2Wjo&h{A%qSk^c_NFdbpA3v^IYwPR1@;jnTGxZ{#JsX+!baQhnAD*>I zDEIaAYx(|NB4Gl-qqF+@4{+21^$?a8m#nOtO5xwX4$vTtzdSlX3S47J#faKi3BzfD zu7))ByBaku8DESS>g7WXe^@JUY$zq)2#_M`e&a6zK|%iuhn(|=Ixcs((P6EiSvKRO z3yy8Dpge$%5#)=UoLq^jJXYRK#JuqZW7wpw_BA3%LH>@FJb=v#T$^OxQp2Nps0{r}GlL>*p#ZCD*4FPEY%MJ<&(rOHHf{jmy#7#{ zrEQ*{i>oZ&5fh7aJ!xZj3oASOsZ}+ZLH(mr^lGFz(Z`xFxLV&ckx=C95h5hc5U_`t z+FtQ17vXV;Y8noIml+%qqJonN1fXV6{&08x&)M@W;5;2vyp;h9|NNtgvC=*m;H$C! zc}oSS(dInZt(5zc2oWa8>I{Km1MYg`n*xkCERg|;;l>}1SXWf&jVmkv?p#zR0IonR z43r?8i6Sg0A|Wfe8r@*VuIR~*6j1gR4ZF6Zq!aoRSa&`(gYigy5Ii-#WaZ`=W{CvO zvCX}-fd{wmij3Y%dT&s$6Mhn0T~+kSBkuEyi;4I=@b%PVzc4=8-9k~@uU+f2pZcxU z&Z*u|ZY0t?sNZg^5O+GJ^rd|o>kCR#@&(Zghn`&FE$bn?WQ6P3h1SSO;Wde+H`7Mu zR~QR+!Qpb5`Vm@Re@bqBu9YBgXAsE1+KF*N3xHm%p{148dCQQrjhslEP;tAIiaW{d zQ{icOcAO+e?Uq3q(?AIG@Mh1PJLd~Hf3Nx{<9f=4Ls*DJSQuGlfy0OWl;iFG96hz$ zt;uKp4h%zIB`$9m%UHRi0{u{284N~?a<8`0f4`a7Oz zO8l`kO;ZeewgnF#a4nU>?zSvK2#_DSP%9D9fT~BiH;cCsOA5x4xzpUR1&Ris zMso3cY{U5WF&qEP#zvjJ{I+9qI6g&~%K$;hO<`vzmX!Q>V~DZ?ll=1wTOezsEud4| zugs0wYfI}w`EPD%IU0~St1w=`@%#60oI^>h6A4S6VfB<3c;KrixNwjC(V+2^{6S_K z^&a!esbplRz%=MPz+eej3Mfznq6~E68y6RMULs+EqtZfe_Fo2y9+0v1_@irUC0H(4%ETq^-o5)m28%{^Xy$bG#wl~8t|Hq0T;5iOKPl6(A5k@& z2v9*=MlAp8-O&R$8e-m-bp0<2dSNh8HLR>sQMDbIX}0aVGeiqzeW*U#4-L4?LOkK! zI~tt#`2IW`hQqEkwC{eN1I%8Q?D2f;DhgmfqpPZPOFwHg0wcdje z<{KC9tAXI2}D~WN=p=g9xZWWOxzOALgiM&RmS$>J6p|rWJ`Ya3=LT zO4MtQ8_35TC+IN|Af6^-(x^_*<&s7Tl~ z798ssR(yF&r0Mz);f~A5e2R}J!_3?Z3GvrYd($)p@jr+N_T!rHRr+4{$nuHp4z4DT z{IXRcjvjwSei7&4?7QAj8u`*sV%59TT1`u9I|PIgO$~5H+$1L1Pbaw&NhJs)HHO`+ zJ(TCEue0ULMBWDG0ld5v)fauJQHV(bO^QH0xC1OlLSzCUI)ii~DkKqpCV8ULA|r=vM%*zeS}qn zK0_%oKW{GTSliH`ijG4F$hE)!o}DErAa*6?I7ABqL6lE-oOX>=;BO2}*;)Z9vEs?G z2nqf+>%`n#mYw&jCM3KJ1Jn}BQ_d$xL`H6*3)+Iy2w3;YDvEBru@J^G4Smn(?RjO)3K1woqMGHoLZeLs%~`6wNYqb_$EUB#5oFJN2)eQe8H^k?TLEngvP$G94ig$OzQx7`-7brW zGs0sFJWz(wkDScQ91`n44S5i4fLsZ{427=j%(kc4LM@w$$f%OaAS_ZQojbWH3;CK9 zvf>UNXautYw8$GU6zO-O#&$e@YdX#TOr=?;>c`J6(5`=3o4!8!u3hJis7^t_HgvOrTW_NDETPuRs41Dl zaS1Uk+@j^Ky^DPB=^C@*|5RImeV__aeml}Bb&=Z*h#wEMPo{M#L@v;OHhcSo}oN^%nVJE0qFI$HyMC8#&Pj*}} zxRTMH2+$8Blo%^`huElR&YmSR(#TO15%I=kpDO6c&qLb2U&8F5`Uxr@9Jhn!FY-sr zK!90UC<^uH)tfgI;Jp3}84{Pmg3hIEg$3u}@UhP0JK8d47l|=+Ap@BOVjUAbNQtWq zr|{nVI`kDF9&nexzA+Or18^Vo#XD89Nm!~Ge+REm3qF&rIe99#Y;k&>tAV1}1@2aYj#X#J976PMHc+srTxF$kC&Wfc#+Ek?$t^H32@LB4C}qS*s_` zk%7NRHg3kAg6Y4nsQ(sDFW@L|!O00+Q;CX5cFzpf;QXu7S>~5^GQe^~22AAf9wYI{ zBdTW+=?Al*lcsaayg6u?_Qc#yE`&6)|MQ`AkCZ*&1-v{w30KQ3N3eLaH_UgL9gmh_|qp(RHL3bAZibB ziJ0<_AHVWu>*%5f;8_63ARfxwXfvpug;bzwZ=dOBHX`@Sp`hk*6)iP&{9)q|#1GLe zN!(kpe|?qXNkNszk!(LwpOl>JmmpBMZ5d)vR7TWbwD+E(?P??^l0O4pLeTAgU;9nj zBJ8;Eg#{PlV6K$sniMv4Ki-#sSS8WHTZJSiwV?!MXq_9QqT+^8T0K1&yMgK zKM*-r*Szj+Q2j|lQC5R_HmZ2nL5VwDuoF02yl&4MRd@U>b46uk@_TK>rC&;r8PkTD zyJ+mv`D`I>Vq`=Dph8gxV$9yMjC9|=%N?Da_v`EH8CUCmJ0K<=y0J6Aek| zKs+J=g`Gru;5ZNhs_RMl)0c1{AMZ-gk`-&>L#;)B>>nOJ_M2ysS+&KI9e9^0Y8O*= z@4P%HFE0L#cS|gAc8i4yQMtBk>0O97k&GcEI5xIF(><@++%fS}H#C7r|Fo%+P*h|&hF%vdr8N2)Wgf7!W``1x!n>S@AZ{d}6wTjd;aT#gc* z$D+K^NJJ^I1!w)Z`S>V^Qv^h?4;I$ZU@KQw*Ask^J_!QMEG!ik;yj4uV?c1on#;!J z+@U9gmv4sy0S&ct0!c|pSi~HrUG@jaeaa@k?OVVj1_1}-PiN=k5bvlsm%`ceKLRjD zTz+9=$e}+&5Npf2V3GUPp9zBw>IJ3G6yyXa!%5H+V1%)@N2JpDA{ zuqA4_^|=hGL46>G7jk!YLehKoH)!y}XZDS26jK3=q{Z;l$3HnAb?y(CMG{3eXO{##ESz&Hj%6Ke_q&p7ibiRoMrwy;cHhHO{m&n zvw;bGq&6DVNx!<^6*V=KW?7x4*T%6d(5)c4&38!CsVBDNUsw{0Y2fmQ9mj&()!A3~ z?yQxKO+a{fcn!s?v&;eTNw7n?-~{|0TwGZAI{XH;ky({nP_X_++a82B5aFxm^*5rJ z^5cp9^?m%tsW;D@?%a_^<0pm^%O2-ILSky2@<(q=zPfOTnXqQczW_1Aui ze8K+-X2|dj+mk=#-~NWFrL&VdO;;=Vj~xqiHi&wNuiE{Qs!T~w56sBOXq{>pMam2B zZ0Y|f{b&9zh#OAMz(e6htwW=N4)2F+qF`$c8LOu0`Z4?z<(B_XR?ZtM9{zG_XkGsN z47>2y9vy_XafS;G8XDa82MI1|;(n&AtgNAA?Dw6&cZ~Y7ehy+J8PWz- zmZOydKgG9>g7KjcgY*&ugcl&73}vJ!^b0%{ysUgF|Je}+W%P(C(ekJS0sYkX?PH@# z+b<0>7BX8+KbTkjV}n+NX`=;OP=bx>hA^>ayU8-Wv*+8@V_7 zvWPt=Fy@s5gcLX-eB;u&%a^HN>Kq$mVNPW#l&!Y{?!o#C0Byq&g7Mt9SFrnmdm;GZ zr6Z7;aq=4diLOQE@+wZkbLIr*r@j)PfhC}R=1fG*O%DK02+m_?&c_13;S#i9=QyoE z=s9IezVuOb0ZLqU9qi+Hu|;BLX3GufL(u~L(OY;)cc~zj;*#pXj$qj@>(cP+F{ah9 zplTDex);tRUa%-Y#L(_tQu}!ss0cCx9Ro}T#h}2+9glHyL)_NC?l<%ha)^&L;hZ&y zx@WJXg0{enS#mF_3wWSqoT-O~D|L5n@LOR1iP9OWGS)%z$}6QPm&p>@Lb0$JG!Ir2Ewagf@Vn;G%(<-9wa zWp=Uz2h7bmu>OCAraR}gL^6omdgzR zK|!)|O?^%TP|dZD)^cprX5k1wmb4b4pZ0WPX=Y|7zLnu}q{Qh!IMpu{y*$4CbiMf`s zc`1iqweLk;x18{O3Xu$KS5BFfjii<@tW?ktBv_rg*xt`zmxCfThs-HigD@no3x~~evVp3)b|1r8C4J?|q~%S6 zXpA;EdR5Hldmy_31 zQ&NuKxRF$te3Xx!juIAR0Khm->z#kmbw`c^QL^4!T~3mKRKy~#Hp%S1{&{f5;7vm` z4L**eyd1LX*qQ{)Tp}}-j3LT7C`TFeZ}39b+9jyqV9ZJ6AIpvGqEi`6$z!GKg=!Ad z2QrXD>6%_%qwWT2Ykd2_ZNU$GEpgI?oyQHeILsRq5j+$>A}>yGN1E_r3X2`>$Bo2RKvw`eom*JqE98Z8Bj?TEb zt-haK|2JBSL=v3OXFJ>a_rskjRr-E2r&qrRIujUpEw6-HdPRHtZe$Lzy}?ShaBs!# z;h12OVI<;Pu9GinEN4$BD>t{c`eBODGf^|YCKZg~MOy|>b?+w#;PgZL0ng|VivRYF zQgSPNo2G-F;$&oGP9H4;l#jLs$z3qEE`S5}iBXKtK7t>idvJOg0AYlj_d&J0Y0g_@`N7rsx z_OZy~EImPZ$~bb`lyov8NK7v12ELk#n~I7`Nk=EFn|u(X)7;$L|0ok@-{4ZcPzaOo zZfM=o$;uaapWHhSg9T#BkdbX6KKM}&@nXCm>{<`QM3;_IVk)*AkV^z@mu4t|7 zVqxKtlVeAVlx)dEcx0j4QN7sm5_MHu8H;)4W8WBQyb|VEYj5w4;Od{bs*!cSO>l$= z&;*{23QkI`?{p0;<%(%oSlQis9Vd_BRF*(=z5rT_Jxn4wJ3FJ=#(M!1qEW^<`*51Z z>!zO7)1!Kj04*fq;X@zPTuAmAE}>XtsK+BCBX-fJ6RS<)d-Wlyem-^NwQlOm=N;~X zSpE!q_l`Zv#0Y_73_00|62*?VL1n6P_`QZhMY4EB}#m<#cGo9Y7#L+)iR;izfr=cB2^L&m$ia==f z6;=uH#)@|rQ$K(AuCA&gvFiI7tY`M(^;kG%w^Cq7kPw7rbi5i_nWpP~7zcXssscS6 z$7nsj^Hc!dv;(_g%TnAX3keJ3ROhu1>FIRPv%;PyTmtOGW6S+zlLc4=7Q;~>(G?ij;pJye&5yIFckD6&Suta6Fxh%+(aD^4mA@ zcoN>GNUQ=2`=oQ!Sai(_X=gtZ{<_&Gc{Ckpf1l*mA8YIfrgR7kBnKhV83QVB;ht|YCa(DC2;uVDNRjf z6B8a3RbnyZGOJ7~XSDk@4HK^gWBTNV@`qvfWAKHyk++mC?Tes33I=3h8I`3L3-Kkq za0jm%f;)KhK-wq5pxN4bpLp8i$9-CBFjlJW?nUQo5K9t+yz0b@Ak2(@D+mWJfA~Mt zY&j989MAgw8$^4#vHDU_a5TrPzgp1@zIaW_-t+vbXZ!7>h!gFw&-Bw=G%Tf02Qm2e z^z@vJx|1mIV1aYqEX@*#8KJ4Dyg+l^1j!B#JZIGO8fsW$3ub?!v&T@Bi#9LE&dy zZ=v!a0g{o5mlWFSmS>%2#t#zsXwR`)m11C^IS}Tmimn?IUS4&=+IswP+CFGOFaWla zg7g?5Q^3KOpYY_{5>!dXT{ZgT85MU&sn_QF#k?CIVCp(CITX07@l|6CR3VX3aU;?m zsGAy~nN)#|Y5tN=@ZiBOHwp^msDX<>W^`DW+2No+e#{)jcfwTyPl9e5;Y0)FQn`%k~l3ONI;}<{`0?Ry6$)^`?q}? z*<>f#N>-8;GRiC&8QC(DErdvvWG1A@ij0sVSy7Ueq@obYmV|^Pky7t*_59w?=lSCq zp4|6!eaCqo>*QkBCIktFVYSjVxCybQsBqviF#*|v7UTvMb|dgCBxpdB;D<~CFuD~P zCw~Y>61i!zCb=0jW#;r{=KD%+oX1wi6SxQn4{&Q4#|>I2S-V8p8C9U-w(TgPl3xGqX=`0Hf~R zzWnm?%_wD<7(?kcZ!W$&6P(5N1RoLFSh!5u8Cs5%n1NoS6r==;Wk}CmAWDZ59VMyM zT{eAV_7uIT>feI%d4Nlhj%3Jt(b1)eCj6uTx?40b3pvq;|J6c4B$NY@f9Ov7_!Jue z4-Y%GsEo1vF*{Ix8g#!iDMDT3=x7j@IweCUEi3E)_SSG$3yPH4z&9XeK*#s?AMs>=aCccuMv)H-eNSg+C!Te{ zs+_G3&?OYHJH2XgUQ<$1HaSS=*41&L=hG?Zp8LHC42r_ZVZ}L4T@4x_I+}+^4{c|~ zs|VJN(>)?zG-*H?rTjQd&{7%2I2_R@1C+VJXZP6+WYTO;f?(+r{o_RkvF}hiWzqFfh`m zrS@miVNFV{{H@OUg$fbnYq^z8smmW|Mjx4%?<4AeclQHOuN}@A!WO;V_xaGKr}~_( z{VHAmae=s;#upbCQ})<4n~jdi5)MU;Qtn+oR=LH84<3A;63SafZ-GaOWF;nt+f)@b z-wvKX->92uiA{!Q;hOz*05T1{`Z_J)D+tB{pM$#j9|(GPzqfbU%P95n^F?(?>QGi~ zYBI)C24aqW7C+JAAYJDzg?@Lvr~y=f zU~h4j0pf?|sy3^DMlj%^W>7LpophR)5gYzpbD%1oP`G9y5ew1_HbAOSJ7r{6spT~X9%wfq(o7Lhtre`&wFYN~5H5TI zee&2oVJ)&i_E#~Ab~J*xyHCBSY9d-8TmV8ai-(*&>#BWH@nSQHs7PYpRNVLY1%SWe zAG=4;$q=%Uamm#0vk|}-m*hMf;1E#-;_U#MSet2h((s1^Iz}hfJmHJ`$Ch)?jVo8e ztE=VGE}z(K-W%-WQ$A!62*wlK&bf2vo_BTe9n~~4X2&ndGZTl%>$5^$>dPtY^t8)k zAaYT*6@T}(qt?CKu4+eI4UV4<3-iG)*bZZhi*|UpMxO6rivnN2zh|Ess|Jyq3dEnJ z>0<3FX^rccXt`Q{tps%CsLmO?hoH#D#f(}6bv>Z-g||y6h7d5Ls&L0%l-=on-m*J) zPT4$Z0{rqwrcF!494d$k%P*JQ6E1;cf^89J!wo6Q=%^^APHid@Br;!8!ngnHddYL+ zQTGN~9}_VWR#fDIanXN{r*uVAR#q0~4@M0de2l}>ymO0-LGQ@MNHrZ!bK*iDs7o@;Nw8)T-x0hzAA-waQ_M09!q1 z4SOjx0Q~C| zoRz?UtAFE^-1W+(s+~@wOQX1#fR>Lhx+4@Dud~8ZfHe+)KN>q;^VLA;baCSYrs6B_ zD;A~0c0sBWQB!0#`H2BtLm7kW;Tk6=;ANaa*>Y8JR+Y|irpw>00OA_Pzf;K2zf7C% zXp3rk6OJ1^g3H!_PZa@Ng{EvVdAIi54e)3HLqLp2p+Xx}fpSFA{e1KF>zrwd31?XW zpd(OnY3&YA)0OiM0OlZ_B4{^T+b>tn!IAJ-WO~#WK{LJAO135F03@-d-^T$k{0az6rfT-vlSHFc$uU~5FA?|_4-ix+hhR&ZjO*@E#y3l zw2W%Tsg9@_%BCYi_MVmQXFc5s-~|}#8Mc-EsAd$r-i-%}u`q~3vn z>FVG2ac40Fo&W!`nhbRc#O!{nayJrD|Ke_XyzmlOxr?(iQJ&zp?h8s(=)7%q$9QAY zuYXx%-$&c;0`8ws+QYcTH0v*eWMw27fFDux zW~i{djH|VnrY3Av1Bj|K z)NuI1QD$};%6D~s!n-7iBfRN~06TOq(grcL5Faa^Xp}PAuBe!PZ?B!1nN}JXPXaD% zAcb2~7maanV2Pl^H~leNO(#X*lAAXNef;j`bo}_psZr4X1Tl4NDZi?!SFCUX3>nWt zfl3bTJ7*a|NHw4@0aDb8h@k}7w)*oXWfhrFHOT;xArw2rdw%cr4B3I%tbw0SmJVJ9 zpn*gNG7?}IVh1}Mlul>-bcLWaXlwFr8t7-u0JLhO|_ETB<(| zSD06Em)%K)BOKn}i`WY&4^=?rK{yXe;j8S74hET58~vI*(a;k^IlvMBK8AZiMyJnA)PgqQcTSDkmLH}52;WB&^W$@7v+Pzp zLm^!5F`M~wD#)9C(caL~E`^MVo)w5}Lf&{68+h#~C?~Ki3Gph_t>EXpQ@0?b*#WD? zzfPf<4d*X`V&KBS!zTJ5T)^RNPMtHqY=n}-^F@(8JdRJw_MjX@4y3;TTx=1CfPnzW z=K`af)*s45N2j5q6Ky*14gWmY_B8q9)YO3zGs83IL7L!r!}o`zswd1~d#psN9+5Ia zWY!d^C|vY+q};#r13($n2Awl$(WyiY&nucA?u zJbd_mhnRIVR0qU{D&BN}F=&t9c075U6W_-onU#MwAcrI>46-s=*Dey*H(nsiqNH&^ zyo8_~SQ+?LA}oWPYlPBEySR4(F<`Jw+FpQnzjvbj={T3D%rRUrNY;IUXJpCDy>eJSY?9`xIR0isM7egF(K>7aKZWO$L=T#xq!E6@Ez{R-V8 zWd5fPo(E3?_yiXk_&6eOjx>%acp~@;iVK2Uhk=mjQJ@e)--qK890^!qI1W$~e^&(t zk_4S|UU|8XSsF7q2O|Cm1P3A~O4`*V*cuvLDMnW~zX{O@q5-;L?9x;L6p%8eHG`uC zs|-4bio4&lRzew!IKu#*KZ=OdDOjRQFacIdBUtre{n!f}?{9GSK|=?YA9n6sSh?^> z7IHFs0l2h*tp1OZ3M&^+ec_&J6u^$hhV3n7aG0H$nFON{Q4Rc&=k83ITeU7X0^$V} zmW%*p3HK%Hk@(zP0dz@d@CZXW3VzT?85smc5vq2xi?L(Ecjo(^{{5^aW_o`qq(6oD zBI65?5D|&;-Etzykw%9?kx^tl;(pFx#vf+l=mh_ZglGarFhux#we>DyL`C67%+6}n z;I9I(1JcH6k!KrDn;1kl;C9A-5R{ee6`r2<(&-Jgo>Px+b0ReUl9FCJ^zEn)C;ZQMqXm4-%3`X@EmxuNg_ ztw00dy^B|gO)!#(-9_O7q-0rC@CeeYfulesj!HIYJ-CZgA@yIi1h7)>!`=iPLcEFN z5zQue3t>3*0Px|0Ieu)5?!E3w+VD|I3@;IJDDLj>>UBkk_2)9$kh`B1aE%ZH9vf3lbC?Tx7FAa|rlf%)Y_g z(Kop5B9gT5adBCI@_4B7p~tCWzj$ibqx{84X3!*qKD|Uf= zH0&XSm!){rS?v*Ib`#R`Gr@7WTOY^2uc@q$1p|n8jSj#5thnJ$7-mOIeYe6SWGE3R z&vUmaH6w$z>b<^&I|x2O;_w$?I0ajph=_6+k5K_$IrbA^(2BGCurlB;RCYM>34K+j ztWW&flN7XoSejYhAq}IGY79_IAGX^GECDSBycaX~o&SP9!hr(_1ZbZoRxEr8DPf6a zz!Gq8rKLaL`j~q0ScVEal2@l5WsXACP4t2Qd|3g+yi7{X7agqi0@4RjIM6LZ0vnd3 zG^b{Iw~yd@OGW*H#1PDCdT-xLrwSr!4(A0n-9Y#a~g z$0nx=4E8xdljo_$rlF#CJDNEH-7`&83$2|Bx*HU|xdU^_kczO(C+#e17XUVM*X9?pnA7y?vRFh>svyRg~y38 zLX&=f_9Q<0k89`qE8|azOsvFLD{`eR4%nVRWJnB!?)NiOioR)>i?So!;ww#6js#jf z%Nmc=R@1#u8=+T+4g>}D_|rHxzOa+vd?3QvSvWCq>LE;E1^(a8ke8K}Nu4=amT7V} zaUb$#p)^2|fQW~Yy2Uu?Kw_>(@57*lY7cUof5^MY=5e|7&NGn^vP0ci*n7K8E^#Q1k zFZFO|$VhSKTq1J>P9(VA1qB3}Xk~8<+alWLC95{ZI;86tv4{*20;<(jVI`%l|6G(! z3lFj9UaL&L_KV$jds z0X`O@;+iEskA5E>L?Tk;#WYYRT{gJ?U(?-w)O^4|HB>xje}3VFX6^>e7*42=o$CRvtY5 zEnEpWeLU3Y@Qigy81R{UgUDo_@3k;BrNBJ}p};UhwfpC!3vR5CtP3 zF8-o$@>zR31y@MNG;TY1olb_8n6O8|>oItAIs}}>5s!o!*`*^#%bR|_u%7AMfAF9v z4NYmKz*Y~2yKXbW<4yLjVj3f3NVNRtocQXz+Or9%avJ5-4iORT_1?Y+5NOah(j%%x zteyi+q@w<{J0>LrK{oG?z!X_(C=MB=jtbUS@)gzts>j3^zcZ(tEKsK6EK+@;zt=80 z>yF_KMIu#-khw8axzfYnf`bXZF8?8(((WAG7#J;u>fdj64agl5qFemVQhmSeW|8;U zAZk75K)~IV8NN3K(|`Y#cYjGAh|_=0%SzK0O1b`(gRiK&|07tbF`|V?)>J0s(>lpdh98 zN9K^JhEOxkY?Ev9+S;>Syhi73;O4{``=%3uV(+N&oenZ33n{&&7RxhPyY$Q`t;MP0 zMt%)W9kdGjp#mW8A!#lMJ9rg1wT%N(GiG~W&Uk2RSTCr*300qeIf$uOdT=sN&U`exHqw}3)w_^%T%t|FHiSNUcP>@y@KON>9l#?k^P_# zzhnYMLTfDm7cI(30Is>6O^LqSk`HbNQR&yDAM?$Yj*=YH=}3T5i`xptone}is21t> zTIsdYdb|ngh!&IS9hPZim-4-iy@R?9wc1l)0XOm0Q$?OFZ1xB1df(|T%9X@p4<%D~-g^(c7QR3MvLpF9`8%d->saayD1^(L)zv>6v?9`ywa>^5A0L zcW_v5Vv3QyiyCp7jh)tqmv zS&l1EKEkQ0xt&#MJ6mHh;kt>Aj%Hb)2e^x(5?usQx8tY*3gUW8dZq-|E)EvLiwsPx z*q2vlApPiFrjyTiVI>Hg?mx+rp! zlDCc*j@o(f8Xo&{;3O9E!1r9&rhaGc1&ODR9v-OkbENEPxdmweIx|$U*VNL?ce%hB zkKp6ma}9>Y6c`5hZV6s&blXC5ask#GxB>9@hI7Y>OO>!}YUF+W?7W0&GiU)m^lUp= z+;rqa|e6P*=x<264D^{fQm6KjyVZp2~P$a>^&QUA{t04Z=ibZ=iVRtA3w6lmcd95eFnr)DYi3!;PTi|3Rmv+|p z5xp6Gd?e1er)_O#+Ct0F%MpE>n3(%;6Y0YK@SDqBlg`v%J0Efe-1#$b`rNJE_j0ye zqO2f0Z0av27k|dqy)tKrC&ubT- z8K}bT1mOoWE2~rOk0DGA!0ti2enGQ(3T{DSb{V|t#Uld&|1;5nI8*5fY&nMMI4q>% zwy)bzLC~^mcdj*|zTG3CHxd{W1ls9U9nE+*4sH!AtF1(~|7=*<0ZJqX5oSbQ6)*ym4asPI$QR_hB+dkPzMh_{* z7#gPStYjqM(eBrd`T6ZZnF(Qxsv#E|0V4Jolv#t`uf0~Hbe7rdvAg1hE6$yi=H;-# z02kb2Ni?Fd@$nSW>;gFCKOOO(b$cFZ>t(~4;Qcb+c%6P(u%BTCc&wqA5!{0ifCQj+Ss~~tI`lwXlCYd7WrseLG&%hww0bJr~2B| zeeGR!NZakkGcAE!iG7!@A`AMP{9CsN*s=Td9q8-(&>p zjKUjLJ%T{N-`FZBq;)X;7e9CAOZYR@)G47fX zIH~6!uK)aLV6z6kNY~GADP^_x(cf1Advo81yOxn3y96ySZcCTPKaBE@_5CP8$Bbs4D5a@K2*67}$nFTY4cXR=%Fy!HAGGU^$pkL*_NNb-gB|wlHc3>sXSrxpTj+FLPnw482S@Gk-nsUrrUic- zLv_DpBHYjdSnW=6TvilG2_-;rMh?pIeETX1i{Z zVV#kqqacJK#B39E{%7s3M_^hbq2PY?>fPYrCA6ccwNaW8h*_yY+~1%XA*PfKqq9Mi zEi}JR`^%7r4GSOK3?Tu)+w{FYIW`N&|5;n)!kKab{D}9xeZtVN3114RdTsi=Z5(v& zaMlhV+t$y4z8inlrc*%du+a=aI1(f^Ns}eo+%%(Lu?FiI)`GLyUo8gjJZ1E`+2YeE zcA(Zei8*5<0{GDZ%vj6J%p|5Yy2)k61$|=%Y=BlV`^hKEUV$h`CK2!gT9hiL6$s&e zk8}o~u}93*e0EV1Juz3M&)dC=sM(kFVS{Z&I%8MxUoBPZUp2z(-tz;*zfu^&HPt;h zs9g3_Z#(NNaO2jiOVGOzDH?@gTM4P%!w4n;C8aZOcgKRjAS}f|?_*$BMy8~pZUbX+ zVT%w6sVhaAgpp@tT{@ zo1onW?Ysx_`oX=`(EOlvZpB>yAm|E@P+L~xtEYAbbSl5R#q?~B20Pj-jjEZ)OV#l4 z=Xf+tHy(@j9m{h_?mxHd!ILbbw1Im6sW;Sy!NGN!zl{LMp;?vo8GS4^&yV3$62Bd` zK8x8yW<+t9?kAo_!IOiH7y=3)#ukCh1Qb;}b}k+zQm~fRdm=syWgTLAfvaz|M?O6t zT>SV3fSo3hocEMBXqXH@C1O|63t}ov*U^{`X$ruEn3##A2EOFY3n+mBQ^WOwIda+% zL&0jq=x}cQIQ5$1U!No5KrNkV)dqwd-fn~w<;6!}mINlB z3>IY{E7wJ+3{)PQz~h1wh1W3;Jwnr!)6(#Zp^`?y1U3TZiqjo_jKz;1hd#@CNJi+( zCZAZk(%~EhE6Zmyot`fmVhkDzVg^cB3=zC1%(ZiQ-Wo&|M>D^8Hj7bcAX(7)P|gt# z)eq!t@4{A1em9oUyG?8+!Ho^si_#}`&#j7cO59Sz{|PH2a4GC(DdrN^)PJSyt<|}|4@D;`171owM1a9=y=XizhEy-R?6X$O*57TqiOey z;2Ml;JSxrstpH41?Nd~b*#U_Su6DY~8JeUTtA#16$B&*RQQlBPv?{yjf zcKL|P&%R9oB`eZ4Bv~3o$;;xut$w}g>dJZW=^l0*F>}t)uZt9pf|3jDIKcvM#1 zSA|MvIisO<)sd76RXeYBP6B~tpbTNvYJn*TR&vx>(%don^q2|>bPExtdx_|CS_l+@ z{S_`VxiA2(DoSPO+lJBza8H%S8`Z$iDHa~exQTb=78e%_OG`6jl@Oj%Yt@vy^Cq2_ za3mpR#8Nh?+pGETSlVR2o$H%>Zv_YKBhQc3^PH~>T}X*iCjm-rg-WvBn{C^+cmjb< z(D{u7>^B~|RILhpxamfn996E?P39Sui6F4*PhV%c3t*HX;xCW{`9bGmI%0%s5QN~CUDlMKTY%*vP;y8m{=|tB zh=Dn^?4?_*S<>1cw7hg|;YjsN*~|QjzsW}}d1PyPLR)D!Z*B+U_QeBURYF;fZ3A>D zX8W$wocR8jj!kf29yO=4OvjO_l%VCP7lxrXyUeq}nH0 z>K+02InJN|>;7}B^1T;=DUp2Wp!W-il7X1e`}GSd+tgBAl_5YPl^Q+;&jFFFI*s6e zEE}l5+%30(oIW!D?29Qj$g+$s&IzF-=3Wz|CjlG~(Q2rWafd>4L_pY}ev)QdGYB`^ z=^r&|2+uCo<_=*sk6F*C47V{z#|supMhENp`5Ka8YwHa3wN4uBmHK;Ds!Kt9ymfkf z-a8|BX;3aUxOepx6#CHBWTfd@rTxYo*T1Zw1;*)B?zofpTM~Av&K31 zSXZH=LpyY!p!*$-ZEHbT!EY_aKX0vXtc_S}{fv9_ws@-r4FjUI4sOqXy<&#f3MbX~ zl;5;lBrU_ge*JoAaj!~+;>Dm=ns6qd=bKQ3;Xx3Yt@E<1+}xMI0Oz8UAqMZ@Y{CQ@ z6`|Kw=uZD5zzA)=9CvbhIt__HPSDfg!yeH{mHq#Qywx zqvvHvANY<7{a5v&&`Ov+gb?>l?8nXgKW4_uQI`qBClS(c&i0x#?00&4FRDjKD1E#r zyDk>;3X`j~ghj3W9(d^{_|;+d-Qe4Wg#{MuJfu+*;cTWd6!er4VyVN&i6c~m@s(V< z=;cs|kIt?x5XpK_s1jr|)+J)}*g=U_FW=M1Ya+bzcxKqwh$z0H@EUX>5s?lRB5D^r zls42k3o;i_(iG?>5%K-9gVaZmVh02OnK`|ejbsVObcLl$)O{Pk`;cBkGYNVW?JN*m zVPRp4QxAuyet!KfB75%dP1fJj!&jIq0uOCJZJVmR%U<2psZZ$6KUg8eYy1e@h(s1P zr2-ZSGy#Hp_H>H~_}sCyPXkGdo&bL>-n`vjRDFeojK6Hdnn!Xz*PoQwck{hhj=5GD zE>I(**SBiU5Z4KC1jvh|OE&P5i7i=fbhG8w1xF;o?-}`rR4|hx9S`LyFk&Lm7ZO*5 z{AeN91a&za4kIF=s85Eht0{@Q{jJ^R;8aoYd;5=u7 zC$)D|^SK1F)pI7Xy(?i3Ricl54aCnq4ES84qSNXuL;MO%%1+kw{PSaF1swQh5J}+2 z`O?&$e_lRBa{zh>xNv6Yancilm>FuKYKPEoHgco4IrHuwad8hl+CS7(R0PqE;P2*<;esduDNnB;e#oVvO~b1MDk&$_4Btg0&#H0@)2>KOAKMV0AG6 zq#MVDPR?w7y5f`FGP|yJaE<5j`Cm>kfcxJpVOYsN+x_sAgWDyi5mY?$?PJQzSS6TG z!13h5nPX#fnEo8pBM{0m4V*46DpJ!L%T$ehJ_Zd&UgIbPg6{rbapa;sM#VgnLdl&Fofz^KmN`gwW^9q=MDT8J z)KrrJ&x!rgKf{J!hna(fb%+(waCI80@oo9))qwTf8;79BRd%lyj%@BR-*NBnwAkAf z2BBe#Sf2&^3w?(YgC?-kiBdi`);Ck(TD~aebd#gjLia^j!0L^rdmGWnzg2%Y+g}cE?Q>hlBK%*4E0i8&HIc*ja|h5#A#5+%yM+(HH-upa`7N z_9SLaP+!W2N&_k6kibafrBEGCskPy{o1#g`4D+a>(0SSw~yFFhLHLSO@oJEb}G&kUa5WDKc8 z%g=5-zow1Gx27iW8TCUFk~St>Jjz&c~->aMDi9fm!={>(vR@&%f@^+ZX5cXWUoR zNqoIvbxELP`Lh($r&CX~O6MgsO#bD>Ku;8NXP4DhO*F zPX?uMMzz?A38anpojb0I&A*&nLWGCh>;{O2Tk`4uX&IZgLbjUwQWfKpd!};nvomrs z*bdd>ra1YrKVX1y{3ilnLWIN3r6+v7-B&``AQ%EgQ9`UPXPFF5Ia%;ixcWh&L*9lu z7d=V#k>1naoHn04`OxY}8IdY9vVmh zj<(#Ez~iE@pRi@N?Fz!1!PX#R)oj#xXaQ0jK8&zhLT6X4KY_ZUxYyuNmT2-powCE~ zd?qCUJ=Vtwq67pj6-hH=p{!^WDkVafg6<4z1UyLWLwJM9vAb|rW2Pa(Ke1RXJYScJ zak+$0N(6FR=f}n4MdcFHg_S?A^=NDZ5y&42*!A~iIkqwckzJKq$xvd-N?vQ^a|@AB2HL7@T!PW0nood6oA|UP?x~amDfw_>$Cox zha0GjRrelr{0HDF>-_Ob>v1A<+{7TByoVDisYvfka}U6lC{uFn&{%pJRP%=G)xj0l zrxg`Ah*8r--)wk|;&HQm4SwvmYy;XDBQZg2(?RUV zw8cRY#_3Wk3RnWY{e97JW?y%cL9vR2H7^tEgFt)5@>2iv@?UY(2dt5T zK4YReb(lGUh+>k%%-x>PHa!SH0-#OO>@&WxB9u;tC66-i=F$ZgJV7QSmXC43m6$bd z+?m~)V3^9Z`J5eX)U(*{zFYr1*}*Fl#|1eVu1{Z&NH4fD2nq7~O>s0`w8SV;fFXH( z9(a;G%8BSx-g`axwH2T-5nC1Cc4{rKLPv`qDPGodw#Y=q2Nh|!3Ar$G7WS2_NGd61 zB!<*d|8Frx8&|CVHgLJX9^dv|Lq=un2AoYB8b~O~E7$}9^o&3X_D3yc7R-uWbj>J) zJL%@_!Ea-%<805KRBK^k(*ih(Wn`YbxQ|m_D8#^i$)<@^V2~5uxLO4V|RP z^xQn}R&H+ij~yx~d%UmSH&^rHM4M#3U5*ifLIo|ZGB^RNbp|=O^f`a8PgVhg6n+zv zl(c9YLF)KR=?(meItgs@n?Dg~iV*0K-Ty9<868z zptv)7--of)h|His6E1SCBX9093`W*v&(JCs?+^`y5mnjuFruxBid;O(u5;V^`}=#kJ1{ryDTJ9Q-igWv_#5)9-ozc-DpG_Z2@8p+n(B)`n3Y<4 zTJ)8PM2>GhtM~P1h70PB-@itu4$@Zn@Zxr?er=7Jjc9F(Y>jTTPoA;!O+pa?3vsqG zLWWw}UBA&*Cg>Dss*Mv+0EqRF5kE>)mXKpWsFC#`K2Cn;-JQM|oee8z>0WreC#e^Aoa#wH#D^%(a>Oc{a6l&tFg7isH&k}$!M(KOWmy=tv>(?5s_iFhAL#3+ zo5n*P`%F3b(xQOoGv;kw?|V7DJbQ-%R(c{ME<8`W-$Umllz`wv!}BT;E*?qvGIrANS?0%*Yorxx*gVqzIAXLympMHtheREG|}UQHz|H1t`*TDByFr?^kiVd3ZeEE}7y zl!PeXlO$I5(B%eS#T$n*YRWpg=I76@o!`9!(tbqvKTElrDP0G7xHDHOwu<%mH?7j$ zXE3?lvzG8l;_NNsj_&(8)|BFKAfI|j zxI;xnePv*r1J%Xix7EDt3d;46P6@ebc_W#ORxvX12;1Z|3@pPx^G5OG^k6^(SocSn z301+nYndL(t1|mqtxZ3OVqVVXrxiArIX`v64`A@I!2ZJJZ-`LY8D7!;0Fq#J5s znTDQ1h}1wtX>r!i6Ea&d=N1hL60N7MxT+&o9hzQ&NPXog4n*Hz`t!~cKRDyGCe3xW zG9|TZ?%yA7*ODK&D`VF4g;zL|Jaqu7|5g7ny6;JH!{gPzuWs9PR!)tc9kM(7E9BS0 zds9W~gBk~E)CZ$J?r(`tIeeXvj{D%XPg!{b0!E@q+hA zmZVL?;ewxk{xC1M9kZ~yx+7`jT*Ghcva+qJ1<5Wsi>7LuktZtTaR$qjn2~LMw^^D2 zbM5HSupwoJ7*!6$c*2*9r~QH>7aphW!&95~Z>JNy^)WcdXjbGZE$#j%Y_@`Blt{=Hmw(9Vd!z7y#r$0`K}L z6*(C`6p6*486~x1w&CT(L;@3P8WbCs+ZR(!k?umE;Fsj%If{GZ@XGG3@69XG!Ze-5 z(FT%G!p@dA0g01t#pBPP(=_~q(%8B-McmNw`0?XrLJ#+GIBGfOe~oEbYgkm(64n2z zZ>n}~>WE*}R0J-5SQ`RGw_#1&ryY65#p>PMF z{RH&d-o{dT`}VtULHL1d*QvayCX{RYf3^AXaI|17ToVNBWCB-NIhCs#zonMvLX3&d z7A5f7b6vH{9Yejh_}rXGG)ASpmL`k>}mwU!y4dHoU1cXaG~C zalC_t(t6QDn#(Ot)50RnO;73fIdx_#aTI_t^Me~3q=9#&#UW)alX4}xgJk+u5m3|^3?zPWejudsOA#|lM=u|SU(3XVTp(XU zB!H{lR*HMi+rWx{v+(B;T)jW#9El04o-hZBsxkN zW+A?y>a|+Ea8yJAK+x^_)6&nE)>`=kF6?aD{eb%>wAt{SOalqc{y$avq0nSuZ`tNPE8**u3IO*eq10XSYBbp72RBMyd6s4f(`o6_Nt$udnAU&-It6<`z$_}auC8;M4XPV z5?OOw{l9llozmVl(^)BrC17D7SdS2_+jtES5hp>IBB-u@eniS?qG32TV9WjBgZskW z&5u}FiE&?e--m2LcDh1+Z=RQxavUki$p@x(BbOK}hg#qRiH=bO$4r1VvOR75PqiQj z947oJD73rLEV1aV+yv=gbyqlM2;d;3=*>O zFffBCl2v{GemMHY?txR4lJOMOOxv|8XXwj+wDN!O zyQM*Ls%HFz(LUV0ig&{*EsXGQugM z9h>}YTez7)LO`>M^93}G_xC}%NM@DLwJYb+_G;qe;Ee@diHV7UR2sE2z?#NVN53LhgE-*3q-N6Vbq&=iPvbAP>;Mik|>tyG?4ejhU zD`CNc=?}61CqcX@(UO4aE?$VE7uJ5|a4n8?3*Fo2 zkeO~Qo|+%@=kc*}QO`*%u(BnjMHZQ`0GtPrEhqoXk4G`FwePM43td!`AJ3=hX;U?! zN8CY}&QQ-o^P27VPos4b>F-!~Pm1p!)MhGtMlHO1uAhL`jtmr5wBwbmti#2QUbzTHuuf|3w-4su?BU*7hdSD#!(NIFb>0k>*`4n%Rv~q7+4S&$qcp)@+pjP zKtz0R^&;T~N3KixFV(b{Q)U?syL!YNmad#8^-3OhcGe2es7#VoQi=oF=A4y$1lSB@ zmUIFp)lz9MQJD}X`&7M6(T;?Jx5SLD@!u>$X$A_+a>0xY^4ME12JYeL%00k+IcU z_%SES+QA2$YBzoCCfrB?EJ6<$UYy(>M%61Ryl-FD=h(PZC}hM(CCz~xKkCW?1U-^V z=mm^!QZc)0u$){!U7yXF2(wr>&6T0~=z%$dFJxZic~2yAX1^RsZ%;d~urOaxEOBjg zO%RLxX3D)lvTQ@$;snSH215ld)5Py=c3|FnayZsACFg_{%49;`4oDy%nazhX`!QJm zT>~bbHP)0D58xH-j(-Mf0(#y3(3rw>@REB)LH4T243&LS=Rw^<-u+8g)GoSTPsVri zAKcMrWodaZIL4t8LPZ3uRBdC6a;I;cNf8E1y5qTO5HNx5CoSTUXN(PDGoTht+48gmcZ#UF_Cy63U&WUX^ zRvJguJvhni?6%8$$Z@-G$7HN4iF|W2Gr3M5PS>jnUgHJ@!#S%EhjESzOcr*YkLb7+UvZ@-8zu zb{6`_c9CcF_&a0-)($0Lgp$_0BtA1r+pj7~7@Fa5>J+O-O~?pM&d~fb*kAfL?qMK3 zoD)tXGb7+FAJHcUP##ga^%@5@`t;Hxv0JubH6^~}sx#YxLkCU=n@>L62|Cu>PJevP zVx5Fk4EOn?I73n0wM~ z?A*EY1m#sWXn`>`N$)FUdd3(Cs8dkv1NyzZ6S0BD6c?vvt2vy+p_u60x| z_%|HeeRAwc!>12%lXZdR$+PVLRRW@?>v_|5+Z*Duw@oiQ;-(_5QzQ{#9*4-#We()V zBJu@a1u%=s&yUv}xTsL__GhCJ!R^LOlHR*lcVExOxxbelb>j4FFLRuA`m3VDsq#j= zFnBTfZQLK6ND!%tWNpT`++w=dIV6FVA<3!E4iQ~7|Qp+0f$K-;n+0qy^j6Z zi{*fXjZ6iCf@*#RnrvujZzv;VhzRApHz%2?UnE};3VvT9%e$|Uc3L#G>u6?KGA_&` z(EVS{jCjv9e6kkb#^2w+BqctbS%?Yj1mTIrmw-X%Kz%k)iPX+IBuF84CpbqJ9a z+9j;)zJZXAbkX}`C^5P9u$TY=T=Uk^APN@a9Tle*M^%GWa)_HB#rDMVPd9d2()^4w z7nRT1p&^jIC|zg0Ob<{bFq7lF%*zw3`z`qUmh34u!L4H~@kpa8j`Dnyk|K2H|@ zUjOiI#^UGCde3QU-JtD^K2{zxhIt++Kv_3H?LtZv`O1 zqtEL#|6+)!3@ZzAo%9nD*E#^~Q${=H_RfBNYifj3g;@iY_qkyudVA5!8jSIpC#WPP zCEu9YEAkk6tj;5D^ZLs7)2ux0P^=v&Gw&S(4+(m!`_OKz;&YAsAl(kB?!=K~q_RYb zq8L3ve_)FO0#B3pR3mz4wGJKXD9Q>0Q}BH~!PN}4gt2N@JF+s+px-Tu)68RrG{QWr zy!U@q*Abjs*(Pk%9~cF-zR%j@07s8Iu;faKTc-*=7+v1}=?mVAbyMo!xM%b~J40Idj=tid_OJsR}%^oO#h zcPYAqIWoKX+DpM_*1vgK1*;LVl%`5aP)iCN4Fhv4#D(7HVOOgY@b}M#r;Cc^b!`KK z&O6B}*H2(EnANG1)zVOVbVc)uIK~){#CaNZs1kf*2=YwgjuK#P;59bx%SRrQB}27Vc&dcD){h6DINw8sTu99Fz=F2hI>gh) zef?Ht{fvbkD4;P$qUw(KvGSn4S!5Ga0+O-s>tN#<&lWep{C48AlZ5u(aF7=L{D=w5 z7*0iE#RHPynBb65dEKrZ`J+);sC!{&*0(E#$1-Hn4sMrAJ!WitV4EkZVLg8O1QE=4 z$H1=de*wbCMLp(df3vtci6j#Pz*uGx(`S?|l)156XQx9;df^9XoL?!2$b<+VKvRPl z`#103KP;K&Qwyyttx9*~LJS?EF`R;fgH7$)q1i#0Qq;hl-SR#VXXpYd?z9%6Nya5` zwEP!t{JSoZMA0rVS|65qdt8yp=gH5anZA*>9PXo-Qt^d!>{7FXWsq5)i$LUf-@?J= z_I+9O1%u|8{_y4HJeZAwUEWHnOz zd243hu8ni*SY^jAiKM2aAUZ7mNin_&PdoalvqL;Hh3<}m5neJG{ef4R_|+~WhV|%Q z7l2p;OD>$u5D$7@U&JL#6qpmfrFBna87`KVmLA=v4dnL@OH%-yrOJP=Be8qm=n|9h z`4V|)0*DY$sR~H1ficN+C!Ii3fDe68TM7$zb|X+}bVI!A1nP89Ig{J!PV=fkG#6jv2!m zEjC7BF#sTYBFaA>Ua|EZKbEF2lqkdrv`^7U(70;fC3dwrY>7cDUs7VHf~!ihtom1ZZ9s4kdb zg|`CQ9ag_@gRzIfppAz3#5goO>s z*cjDbW~onu=Jj4CFVLsp_1R*J&|;7=#CG`**jp9erupx~n^>O56-jIfU>0WLM=LuI ziYjLtzHMo4dc8yA0i7Ua`KnIzhFf$5^{;H9O z{?sC-Pd~kXZ)F@%#ijurDeJKyFKMpZY&CMMt5A2!wX_~5K6orT2BvV z9WTHPK;b2&q{w3p4YArMAfUxLHa93Hc^LqPThO`*Xl?TZHT)o~C?||nampJTC!hYV zrT^aprxtQ)CyRaCUf2>`qIC+f?Z&#KtB!zrBUMpixp3}@2&g7UxI+5`W~R=CDaNc__>z((~}5P zqCKN}{lwBM+1JEOQt*s91)WzB=%7J!&%V(x`*|PAVCYniwj1Cyfj?4;o4Dwp(Wr6C z>U(A6Lr#F`7W=0m{9-&#U|#hn?w~Y zaro?!|41V|PZ`-Ax&NsWyNB{#wxevH>^3to-P>07QIQGxKy5RJqaBIHjiV+4UyU`+ z*=p+r!(tm_9|^_S4xWxQ5w$PM)L#$Vud|{$CFW+Lmzv=JyTor%8hKh6{m{wUeQ1Ih z1Ou;r$@>o=^*hmseOdn^^2U7C=0|eHykx2b!9pF}~dVk{^n;dp zV%U{ovF6dEeRs~6W6S{v{>R65OC5V$H~aQ8#>^4{h5)%eD2+v~P2gyFnHfikBO1^q z3apt$6e3WTRmw@X`vq^T45ab;C~uPFJDp7tjQF76%j$n+i5!K$tLOPG%8zLyeJAJa zf>P+Op)pSFpb_)*tSp<_ds++#arE|V{&~7}`SIpEvZ!W}MvqBN@7)GGbH;K2l%_0vRwlX(HHTI~wg@j~<(Ac?@up*TgE zf#MK|;WnKX6ekEVshjXbR`xi=qUgN=ZhF3WNONBjU_(Sy)F!CJ?)_B3z$IV|rM~Yd zv!52OZJYxKlBz?7!PuxW9=#INFAi^Oz2{Hbg#Chh3y4!vX{jVu=ZC+4#{S0Rto=RI zxM5S-IdmHT`SjaOO4caF93As+&rRZ~DX2z!6r-YVNav>hKc2n=n#=zE|DzO1B8iNw zO0r9mM9Io5M0QF-Mud=1S=nV(LN*E6Qg%`#+1VkKCr(F5wKNNSc;F}}O_a8s@ zuPN$0tL4i|EbSY-pFfo zSVeZ^NbcC+85CHvyaBkd_@2MP4)uVpdSPn3>QQprA@)TI|Je;8S&G|_f1H2TcJ9;; zFY*?w@Vs3*Zn*e6syq-}MyBHCW54P7{}M8~m7&QZPOYERd+LmtA@XCMNiMY>tES z@Wlf0Z<9`d+=2gM&n8=p1_+qc5VUubHf0_gQuv@)%374XR%d#I2ynz)4({K*JTB!I zy8>|9oCjfHVHgk$+ponSQWr({+5+YR0+74bI0p_8^DTiG!fb{2OhB0-RkLEyL`RNv zBDmUPV|s(lcw@Q4Zhdv>*bUG1pSJ5}(E`d+Xw5@Le?A+-|I`$sI6gJC$MN>t^Py#J zf6N=L_77@3iy*rzZ`t?mxf)M|HQi>gE)og=42g!oIo7wyJZat=7XiAgt+eUKcIQi+ z+NWM8FVm4&Qo;;Hw`Aj4NK;Y9S!+$uTPxRc|B^<_#g4zjNgus7HJ%s|NOzKhqp)vlrq zgQ%3aBM9aU#}9vN0xAoJ1*@f%?$XU;8(vR)uE_bRVaRD_uE6ZuynHoC{w&K=41PP_ z_F`KedIXSN$joUtlpYK^6Xgq^fZ(YpnC(~Le3Y8B!|3ucK)lE1IvFlkeTg7oqQx7h&W9y-R* zNmCP(Gp)zilt=9RLCf=w-TIizpPO6QSIQ^uc}L?L+2^{tF8h+3sTf6lA|oTOmD7K* z!21(KEj9a|9!hsy^qJac4@Yo;hlScBpQR`-kKT(GDzb3>3c-l>x{n`UjOtYGCFd&W zXj0?3qPqw1&jSP)w^>3dS5eaFv1$~BkYm8CV7Xqd5|H26nB`cj9jh;Fq);6}x+l3Z zk=JUW(g@)A?H97u%AM|>>K@B2_~ZY#(QmD@0nhwW{=CQOB>8h0s;a$3&a(&>VKcr| zj!473xCwfH|2@@8)@nWT`G?4F2%wQ4*})HW~O15KFFbfDwZ*WV757zGJShJz*G zcifBS2Vf6Ce3Iw2WhZnf76Az$)!<{uT)c~B6)YHuWRxA1Vu@HRv0gu(e^egsD$I|b ziq)Tnz8FF754Q7iQ8)aj1ryWS8IHONcOk3*fDDZdObK`mTwG&ONZWR)D3FLEKd>xR_h~F`5I!MR=@Z7w_m>wp%f4k3g@S?tF?O1qje0SlNLjhIvH%M1_1MZwtb%;{^v#4bE<$*a zRmN9vH4!5*_iOA|g-ZmmS9NRaZU_+2jE6aq~CIWl~GhlOm*4>2}(lQ z}xIpQ|6Np}zik>8Rxo;WSMh{yTZDb|;^L2j?*@S00%#Gc()dM=8FY z?lfltrEJ15-UXBZroDTyI15Hxids86U2-AoZ{Mh8diT+eRuyzlVx)z{9i6SyrR<_o z;q6_c4p&S~iIp^eoM8h5(1xN7qT>`XJc>o3PX;gqJ`EATm7@+g)?65Lzp(6KwdMeE zLH~A&+DC?Sbx3-h+oq=&Xlkxi&0WxI`}HD;P%AvrCss#yDRJqnq@NaNl?T2DVIsF4 z#ZCN~=(u1E3U=+*y|ceSJN#+aH5v>KuzDw6V9MbXeIqGlEOvp?LWAQm4TCt=(i_qW zmQom$IQ(B^2GAm6g(yxaP?d;x%|o}G5`h&oFEyawK)^N1!X*QPB*)hooZomp-#260 zs+LM`S@3LKRWOPmq=8y_(F#+a^^WsisI)1no?d{!Si|r_>aFcj{S9qv1{GcNua&6`JWp!MqFD+fnM>r4ElVULuOaY5ftD|iF# zvX1CZt38!u{3>=7=V8TZzemBk z8{RrbE?d~wekouCky>sF8BC5csv_)CRxOWxzRK~K5zv&OVGO>@t+jTzeU<;?JOmW% zt~>c{zJ%^@zSS=VXRa0o$H&$mp5fYhR%UHugT2>@^y;VqlVbP+0Jk}mfPj0U=Tr6V zlk;^}^pqB=@u=+oMoXv;ZdhL3C*eSe?+)Ui;=3zij$P>7F#iKH0>lbz4$svhTy!_p z03>TD`|!r1E&)G+#6>C9Q|>+5LYLUoWldn)kYGYhoDfW7?FAzk@EriURdlyZ!9M{( zK7?jJ97VOOcdtO+Uq2t+!>RE92m|Df3L4nO0+6h>jpZoy*&FJZ!G9GT;o+fxpn1z{ z0|i?w98!7<-8Uidnzf$k#H9-{pLpoKu=NV(SE|6VC1pp2$2GQSx(#hy2N<$t)S1!q^(D^Pi6Vv zg6x5MO?)@|Zy0)6x_Rw{1&>M#f0JzOL@q^uk2vS?Raz-KwrRu67zfzX?^qO=e?Ml-@G}2z7O>t z`k%BB(}Vp>vX(+(}E%bi_@=5%{|?(7siZX#p*IWPo z5SL2?^5U9)+ZzlS2L#XDknVk96pL=qDwc@Z)VG95H*`qcZTe3CS=8JemD}Cc#*Nh< zU;I>KQ-sb)yS3%~R9|TTT8kzLMFPPJ-b~W7EnskKB~$5DjzvZZM8^cW1?mQIg9(l# zycvCNbE=Z)bE1O>1tQ+lNezK=Y|R4wiys9SM-DVL0|O?6OBpBxUZ1mPtSdVqML`oP z4}uX&5A@uQ&}uW%QE$C~ne86{&4BfILMtnny=RAo zJoXB`o7rUKI-2a|wgg7S$Zb}xB$u8WZ!*KYh+d|)+wZWr-IKFqk6hZ~*8ij?O3BMm zzKd@SL1(zJB)y>!J`xIqkUL<}ENW-@Ot(jH|HhY7JKu>LckQ_i zPmNHA-b;;hml(TBebc0MZFHREnbmk|OU#jD!6 zNtC(4-$DYC5#09Zb1U$VP=^qi|J~^=u){M)dC=HkrJnQ5cQUEJIUxiL-?pNM?i}qW znv;7%cSn`~p;&=|fk_5yBR0j;*6*_dNbRkyRsqzNWp`JwA*aA3-U^~gbSazBSO7>M zAW%OO7^;aY5Gp7{Wr6R;;uyZE!Y-@A;_0JpwA!^-u4Rsrt_(s*s^9g6Wzj|S;MvF$ zy3-H>0HNR&`+zUi z5LENKnX2tz)SL&r8F$(DSX|+D+m>GcN*so>Av?d7x<GjzVvde8v z&ZzjhVjWC=4l)QmJvhbDV)fK;gk)6awin8%MGQf&Cl)}lcap8nNWa_at+aX5CR!-O zMu*(qZac1Wd%)!?|L;38B-z+%d-w3gwZ*T}@6PB{NNh-Ik!^PuUOMudjlNj)XH8Ug zqk`G7->h|O?rw|IM)FS{ZKB@1m6~#3^lGeZ$^ps{T_3W@Q(K*7B2Up!tnvk8FhE#| z@c1bsdzC6X{uqHbzeRR>E-ejR4CZdXdS&k(Qhdl=!IPx#9p!&D6(bH`U~Orh%TFKb zHmUuy_(u16h>FD0#||T3mH4hdA}%r}GxtdMsb~6xHufh6TZ~=}IXd{={Rcb#eR@~U zh{foTi89H}(^tE0P^fHWPtTW+BYz;;Ly0zT7_hVW9ANvddF%S+_qvE8L{*`#{#sk* z5L~d&SB6ufnIFryI{T}xax{~Q|G>|Ia2cteE`aHt5PyL;v7r`_ofqvg6RB;LK3IM6 z?qT*YMA1TJK$2zNWZPdBgo+Jn8%Vwi*re1{3d{|QZ_8Is{?p#ecAWR)qUw2jdnbSW zAU;*SdpSU%!P}qAGMPX0zR$`a3*?d6apsw*MRU@*Ftd@I=o_Tla^y28aiXiGeH_0D zXux7)V|=9}G`{IxXk4bhZlqM9ld-o%IhFtO$Jfdk_civrY|~XuGk2Py)%FdwoT_3ZjvMjar^tIFP3&K`p0e6cyI zj2vp6Mz^0w--^{m)+K3Hh`cspS@Kxx@W?#mwuWYd9A*q4&)tXuhkv|E4E& zh~TbZzpnqeOB(7YhwK;YC zZX-)qdB>k9RO6Dvb{MSD^-k(KLrGRG3<=0R1bRbP1i7I60mJ_S?6yLNRNlYysmfLy zLTGt`eL|&-J4noyEtKvA@^Ue?6!jOAQziZs^q1?ug*JA@ zEw`pVo)LVduDA8zBnc~Sq)ua+1~W3rI(Zq-Shd_QVrj|6yr3&>SVP8S-!YHh%%txF z*JEYP~e6qQ(52h}BX#bB8d09<;}B2^x_b~|l7R=PVJNVlo3 zyz!{5%2Ff~l1tXeENRw4f;GAYp|xhAfsplIA=-Y|{P%)2=xR-?K$D8~Nal@v)xrtv zUu=*^{zx&wiF9q(o+H~HoPScmLd|_tZul>b67j@=#+pX&()qLZ2=QH@f2k?T+F8Z0 ziHe$eb#R@FHRJOxxgYADCQN|ou%)edU)1+k5c|QCfG+;Br6m=H5g^Y@5HrSbV3<0~ z_BHv)6%6a`!4j-AJ*9UTiIWU04Ei1l^gT`H2qysQ9txco^y%MGKEYUO8J~XwzmA&C zv-g}+CqEn}aLV_X%LCQ#j%gA^N!6L82-9N_2FQ(aOum=V+;J&1}`Y9h`2I9b(aEceq-ZS}!B_ z0tc^`c1BQ1@U7I-l$B_5XMTjKf5=ax0iB9&-o@pFYPl3-fk69TcTW;l8qih^UHmb2 z>x<)5YV3`31n5n?kT7batm8p}QO1kJ!9;zfzw9pdj8(z+4v3r=0z+Z~z*!~uSsV&$ zt8NyN29hh_w=Y(iRtI6`t#wOb5eQV$E=*7o$(3E^)RcjT~);ET_sHI zf@Ue9@9(b>p~tz>ZciOlJLxa$PDpO7&h3|$j>9L+1s97!VRe7!!5W70e)aWkj}_ab zv@}1+$?P#rHn+7!Smh1YVPxFf{PpW;CLhlJr7yR|N_$b*A>rT8N)y&$>=A?0vWv?5 z<79WyxkJ0TSZnEgtIs&chScpFSOT$RYH$CTR>luVd-=|-50c8u<7On)ae}syZ~D^( z5aA=B>rXhx+kC6NXl20nD+1(}b*ATtTj?1|$mMCHtzJ8+t)a6=`V6RyOZ>p6u@F{k z_mPt)^~0;bb%5kA>jBX4>9W4j-LjGFn^;;~>S=qyHmmj2bB$7k0U z%8j+SnNI|tg^UiP*8vBl)W=M_@wm@2dWdwI)kFX_cAL*Iu8BYEOG~{~XZ5a$$vw3R ziyJo}r`<#Xu!0%;KdJzVWWeb}V~xTAF%vqSXeHjTIJp(5|72@@#6(32tI+BFb^H#8 z^Z21@AmME~e+aJfo7{&*2Eid}JX+S4et!jF5dw9IYlR$MiL8YgTGo+ags zYgCla>z8|jY#K;pUps`sLip6FAmTB^ExzX=k%Y=ukH8cZXUbQ^h`Ag5420Z$6+)|3 zLLm1Kb|)3n()iAL3%QYXWEpO5oCCIzK_kS7bRgFMkst3C2Lr^h`@#Ry=IENV3zr?5 z9&FLE6r6(65V#h2m2%_r!8>OHDfz2DQjp@ujZFJj8no%zQ zqg;&Wn8%qtMv$q2{r8%78#zhfSy5KE20y?Nh(WGwV{Mw)!in@N(e;0bzu5t={`JXz zA0!utsY{*HS-(iqNR z^{?N)J+TTKR0Hw=0?%&cuQe*ir1?lAa9%61%_JBrFgB8rphwB)%t%Y41XM`kdL$mN zt)AUco5Y~#o-&GHeL~m3MN7#6fMu(Y*5S5X72n2@vyd46Tb8Jo!YBbHG|NfQ@Bqf} z{4WSc+&ONshduQEH5Vwf)!rT6!k`f6laTDzPSrbGI>GFW(2wH!2h<&K@dK{=Dl41I^ z!}?;#22=UMopK5|QDR4m@PVRNmlR6hYIxdC19HL*Ok9IV3cwM-txF`{ZGCXhDV1+G6?1REZ815&zrAI5 zS->{{uc?Or57<z#X`1x;=PXXpz+z{P9vw}&5P*4n7}q+yH@-$deTgTt^3i3+6Q*R^Cjdq zuzfMYc!}Yo>EPF)O{ayb;?^dvWA736KugWs+xZ=WLxzaWhXRE~|B+%9<*W7ONOm&Z zZO?@)1R}|~10a&XxeChNd%5DgwSocnboZ|lVBotUwrPa*B&O{#J^lXaGW*7m$M-iQ zvDFGvzaN=K=WXIt<$I)fbLhhk))V&RfY|{#Af_3zF$}O|oa7ir9d#mW(Lj@axW5mmjkoT7>+;+!u}6eACYg1!4bdk=VW$=!ZXFp!gAGq-D|uR zcN*GL5(%(BfF%;`InL|?59rMM`iw{wxFjMQ-eOBKbcb6S=Lm)yU^_|%xHMp*gxeA0 zl%71i?nG1x*fA_D2N3Cc_bI#p=brJZ{-$e;xe`W5LRbV1OT38FgSURMim}X7$N26= z2S?4O8C-z~sTo?F9r`48APd0RyOrMQ560`m##hkIp`=$Am9JS75XvVp0UH1$gc%a; z51#0ILVH2fCaBx+F9qEo&8R_`9Pu!S!5FMj#q|2r^k9JT>J_aO-d(JxqmK{oAp=U< zkNIH$_!aV}JeHz7h)#=;Fqua0(TVj~cY)N;4exmB%k2+805bg2jUN=|;?0D6A-zQh z=ux5t(q&#$dSat=+Vf%@7K{P0zzNQY9@s8p7}q#b4Qdq^6M%B_A2x})KLL_~{Kp;x z7*%LZIvgP+1ZT?zv0m%4&fN!)GVV?|MQ2uFrb0l9q0hx^=oC+{>_Yn#~+1g zsWMUCkA?nUl8B{XS`@tKkTA1W%}F*{7F?KC=9iEm-ZquKwW-_mag9+{nuEa&X57=R z9dG^gG7sV_{xNR6;Y##mW_eGci44WVz9P)@5sS?}f=>;z)~+I8-~0n?r;S6oBRu|4 z@vc-yeR|a!O{y;p?w&jd%A6b0P@?tvUP1P|ntffEXezJ)bCW0B{Es1xc2vlQn<{FJ z;=!3KMGB((Mn*=?A$*S0D-^)*BP?8!q2$~Xa3G%f1^e<>-!%EynOnnk5j%>8Tw>93 z^|_7DZA^_-6cIikJsy9RadWpqr<04qaV~$2Lw=OG|$+^Y|@U zYac<=iNAsL;s;#RWLSt4U;7vLpjpe`WUl|FmFO*Q=osDB=i+KVh4IX0-7eh@U>AN! zw9Hpp*;KDQJ)r2`u8O=F*<+CwMa0=azoZwnUktKz4AWSko}WA!x72-uN%+moAO+1} zddjM}J|p{o#;G91WL=uZIRNQs25_^(?f$;<0R@51gMA{5C^&aG1yHP`I6M>h~ z_U^d;xk7#yu&};Q0vIyd4wpQ8S)2ay<*tGu)Q;U$HIYUAnn@I-KcB5sm2aNJ^h>uk z;$US(jqDm0sYdj(t{?FU;2ONi>KlFBR%3P$hn7}`&`l7z=6*>^nw3k@&z@Bw1kAr5 zVYcT#JprnFm_95bqQGLL(WVH+0x2b9UYS2vckJ9rC=4KHsedj_B4|@2YfJ^V=V zYgZQ)%wxd62$lfvJ?XVdxPc;fKzh4#QSSJc%Xo1>l#$6=N|!A)*bc7rZ%9EW7j0Vq zxE_O!g|#meT@vm4z$Wv+PiK@Ip%`47vhgmJzD0Vg`Hk$=%a>Kap9$6rC*};Ug*6Wj z+81F*AqKl#pht#nXKJZoPVt-QD(8wyC#~~OfWVf#mIqg-y{_-1zHO=8TVLYbZ0{)9FChHq@OiT<886pDJ zA;N&N4N06PnC|rL9W2Oiw(qrV8I(tkLa&Vi^t!pK4^PVY=7Cp(Egv7w-`^iv|A)_? zvjXZz2i=@Mgj}TbTSX3asxKwnLc(HVf^KwV5t3oN8@M}3uQiUCcU#5ER8Tt7avurf-e9*9N<);5%q{oy$0;fi+;P{Ck~V=~O5e)S#=|7QN;O;2v8 zq_AS;V-h`!(_w7D%&EDObN&L{7<9xsDOMU_qP|ia=s>mllAsUv=b7HEFl~oU3L={w zQ1!Nq0^EnZ7xDs@d68{jm^jJ*i$Nl_JC%tC!>f!S-$sAE@2I|D_E629Ic??Y@`aXM zFm&@h5~7mKQ(w1?8i?H&`KMrFBy(FDj)Idd=SF~32lnA@28B>BNPUIS!-Tz;+p z%~5a_H$Hl&D669y!Sp<8e(g(}xsD0si0?dkkGSX!1hw&6Tv=Y9>LhdY1lqwH^@#SF zh*#5PC~d$k6N*Ss@z`Vv7xRw2_vxddg=V9Pyq2zs=U*t$A){8m=d_r>BZdL$k+8>%S7?&J%B zEYOWy)pL}faiyh=TNwqsWjI|a&Zph$I!sZ|bxU(PSeK4!F7%wn^cy z3%`(%@j?lA>z%ET(d^iPBazl` z|JYhMiKQ2sET*dN}goE6mD&;KCo z*rVo<8)vuA9^uO(e^4o4VNdmFKfth>qz1F2M9)NeWFAa=?68m!5%cebQHL=a3_^xO;u_w1KM#iQ#P)H0s`^}XDWVC?XbDc9+|FSysNM2gKLCJ@ zSG9@gv19QF*J~L01fj|adsFW@g@2+u9fR$AeRLzowz$V0bYFE*-cZfE)rrahDv3}K zz8g6;txH$7(V8k1u|MN+2v&r5TJ3Q(&4;8U|5$KEW59&BUkKBMj5ZPVlP3(XzE_vH zZf9*yR=%Ot`+>#ksC=T`#WgXq$|f9d2Z!A#shEtN=NgU^))2&WrM8@t^VQeaCzEv; zC0{FYR`^p$ECbP~dI*gOF_c0$Qy&B=bW`G9y#I-dh8U;KIVPQRC#H%r8Jkxe|a zs~Fq%p+3L(h_Emzu2CVT6o(kyJE;QwEjl)go&foAaPXnQfuD_50OYmP#{?tXReys6 zyC6rCjVcU7%LR83EM|vAGtVEol6BND@-etb8~APjDrO zum(j5Q6z+wsQ75>h);(r9-bropb#f27WG<4gx>$**JR#P*!YSg6EJfyvM!gU4r*+w zAD@S4Js!vqAhL1!+Z`Y=u&ylr_3N9x&pzR~EkD)8oo*p8qygCm@;^!^B%$O(+85NQ zJlDoWTi*LPPwx(yja_(my|)|&Kj2N)xd-QQM&L=JE!h0e8poR|i@URG;I(j+RRMdVBIBIo&IqM~suSw}RL2LmNQ#LSPBq#%t$Th{ z9iFuj%E58hFKTUx>DLt>==wi{C<|`g(2GFT*@{{%U zGRsE*TNj(&g$wua)KMJ((25qK&We^pOmq}Z@y-?*IlILM< zxZh^!4KHU(0V7NXM~~*E%c($M%0c^W#s#7}$;PXMPq*E!2zf5g>=#znu;D@f;5xOZ zbBbG3gb&W_abDuiQ^_h(ffLLm&w-A@s{A4bsZ!^b!e0-T5n%Il)Kc!IfgpEi zs#-k)y+(u8J3`nL51Sy`jc{#e-uwmLao6DU)N^cvah>$2wQF_tU0U@r24p2;KZf8T zh^+}9`$HYg>RWfXFH}VB`yyM=3&N7E%?UcAW%rPvASC#lJ{U%{?$8&3Bu75#mTF;O zBpF}K4R^$-6(w+M2L75~zBW3UDJ(4Pi6IyIIka?;d3H6G81~L6pSb14X6 zmSZcC`k&GE!9Y5)4qzyLcEVbQR`DjL^d}2*$`t+;!W9h)dsHq-@~uxnWT)T=NLDpd zT}@3RrVQH)x)h0&(`E7F$B&zhfC}dxcKE%k5+m%t&;T*Wh_v2tBKbz*Fgz>Wv0@|Q zG=#AcZyFYtq;Ssw*Q|F~1!iY!>kI3;yZd@cOxY$(olN`oq0`cB=>#JUhI4rVj05Zv zW7m)I@!hz{;^hO?>gFQ_va5yiV5lVJHKR->I=f%1r%yyXV(_g9E+1Y80ynFf5 zve%vx{0K5ep8u@9kgi2+e5M)^hMKl6f-ggUDRS(5N@piwJSL*GE(;%XY#Kx*B}8C# zV+l0@C@>fPWoRL!XkNsgRe{?QB3nS2wRd(ZG{2H|6Zbv;#JBSD3r7v4+9FG86A8JX zPqw5b9zYtIj<_cvBgAN4YKzA!^uL@!%))qYEKXg+khtsB+7h*q3}wNI$hrMd^#nj4 zJR}zGLI=%pHGJ7V>4OMU%F<;y6zHy>Nps0JimZ|>dWvj;3D|1pl1XO$)4wa88rw< z01;D(^p#P$AdU2%*88SJE&3vO(2H;pUQ|_mD4YA!>HnX2LP&0CjLR=U`UCP?Yy(>5 zj-0R?BnMCqXwaf{8BI;T*)%X5kTe8a!J>uO69~fbuHpwpPaCSNyZXEGW731^eD#Bq z&f2gWoc+_{LXKu0xXvi`5HJzui}cJVAAdrn0&#%*O306mDyvEO2HKj%V35+sET2I6xQx=~1Rh`$AV(XKL?LS(1@r z?rxWrkKYy(2<#7_jlzu^H+m+PzCHc8GT&Ui_wxyjRQFuSMlji*E8J@rpOLX09*zH2 zfB-XwwL-8R5yIE#k3J?CCqfF;GI|qAiDHXwB?f}DGK6Ef%ixdr{paU#kAq*b&PSh$ zo3~rb=O@nZljjC+pJRC@<_)vV47@rhjJalBLjQ}v+9AjF2(Yxj#0~?bcVW0Dx(GZ& zSVo`h8o5y1Nh^a$s2QYB(#k-#XgAq)j8+DR$$URS_XqC>*W+L`Zuuw>v%{F|hq`r* z&B5BHoVyP${tU_~o;V6~pFQRlw(ho5A|hwz>GN`P&Hc-AbM58G&%vNLK7a54l_F*Q zd?L(rUz&qDijM-X=l0uRj?qi7>_U)J znDQW1>+meJ5?Q)p2*UXn8*ug!agVz1W})#t+d9w3Uk@7Ic0~lf8Ri^N8p&Utay;fs zdWTK|;s*k&k`Oq1=#<~jyz57vrg7YoTx>Y{DDCscjcBj7FbR7_e8-8m9^BppD;BOJ zB*pUM!p7CHCLfal4YgU`i2*UGFSy@foV|e6o+|ue5u52eX6RepoX&E zBSSgWU%nH}&~t>bDtt@8qIIIjXRXcb_RDAHua`+|dV&7D`b7EZ{kgzDa&1h5M_ka5 zX5M*@>115Z?3}`X-%4H};x??=lk)+npy*&?3o>qj*<+Diy@QOjKG`m=65MLBXP3skbc7`A zWS8=)9lB>A2q2Q8aSi~cNP~!zI4hA_k(gW${tRCgZ1{+@Pq{O6;`q0bxk@Xsv;QTM zT@d!!yrR z4!*Pl74;G=8U(n~BO$+zSb$Jxs5=_01HrCsAwoK2?7ZAhCe7l z_dbezaY%;dq1~_%2Hx;`IO0My1fWB}{-YT>-}AS0w@Iuk81S~mfJh8^q|?^cleuY0 zNU;S%k9!LTFa-VYauFC)i40c(49mcGJMJ38FC0_!ZqF#?i+@?Gkw{{dlcvea%A!GT z4bk)gU`B2!dqtx{HJuDWI5znN{-;;@mjkf{h7JfUhP9J4EUKD|W-$vz_6ZNwJo4v% zp53^mmVR}ZZ_TcEL3?(|O^e>{Eqp+~CML)|ua(?H55OY9lCz6?D-1)n?^)-OJdBAK zWDKMyXw~e}r46@dcd&#tK;R445Q}95RPX3USTHETiYF0cQ=J=$dkV9Q&C8PrPE$WM z-&!)Q-bJ?izi`5QJ?ko=sZR%YQ(3=Eb4}%tor0b$&GXgwRXQ11ba6?7;0JzB#B}HK z1MeU%`CR_Y2VEAxF1^IlJ(dkNo9@~gMe(^L20{@7Vj;dP8cen?%Bs4VtK;s-<9wJi>{Z)jZ{~q`S;IUp^oZay@8Bxzr zgyKRX;AO-r4qV4=m8IWJA)7+^rgvPS^#77M__=8*zc(i;&3To=jDp^xgzd034A8;D3rm96>M9>vws zEo_;?AZ1s^d_r%_hdrkj<*7baL9{3#a$p~jgO*uWXyoJ_z+{E#*%pUmusHnn9bFZr zEUavZfq6Eix*P8b@>xN|!_nIP`;I(iJpE}T%R}mhP7&E?=?{#swgGcJRz-Dop1Xd1 z^P_QBP0bdcFW8fF3ayD){_WB7kh#uA_dSTqz!~iaQ+)icq(xyIk&3<-7%`?ci;VS2 znM3VrTmEZ7DLFxC5(u0{qR(sQM$oFkE{MNoJ5Z3%v0+C9+q5i^LJ>6->JYBYTOB9W zK_a1yh0J_>-s3~-ErT>t#ukDTTVCOIL{}b8wGL5^>;a8;hS=MDx%!!DC7sAq706|w z0m_k;@VMV+BAFF|CkE4!RcoGOf!<`URt{A|x4)XrVRwf%@J2Z#n8warGpFG>qQ82|%VDGgxY zKRX&oOmLBeU!DXf43O|m9J%-V(*%FnQExr_nWkFp1r`aI&}G~fV;rmQ_p5(eL(r6GZo>mW`3K91{a;hNy0y4I( z=sMbSFnRy&Sq|uI!a}QuhksMZ2A?Fxl}Fal6hnVRphyqSAe$KBLwg}LBcelY#es6c z-?Qv%l;{1vP`T7rWt-xAT+TwR}uEn2;Y^bEiyS`yR&bW+yjiu1pHlcCII2oCPF@~I!bj{=Tp$--pL zGok0PyM!g>+;L*I!BZh(WH0^^Vxn$lt_^~~5MTu<)_HK-OKwWpa5686D<)@Px%)ME zv|);aXoT(oQoQRMRXY^l!hfX_FkF5M{&UGd#VDy-a{BXs+tUW@l5iSifRu>J1HhpLrN}%^wzLKxa@^ z=3c9|*o5^e_4Qcl9a3H&3GqemZLpTXGvtTtgTgFFpGuEPx<{8qk%nkj?M{r(|{ zg}9?$^Rrw`y#?<1sIBTjdT=Ww4twrh+ReCOM3dW*HVvwUbQ)h$v#EB%)9MmU7@oE0 z1uneXFyE`z#zgnsd9`n0-@#12OX*r@#`pu)f!|Q?R7i<@&97|x8Rrdz@wuF%eK@1Y zm)`*?{Z>v>{k+{(;_q?DmScjqMAdHrOpHUDRvw2$Ylx?#omfxp+i4gsnEd*6s6-BU z3t7Ynsgl9fLMt-^$8-gt+VS~8Y>OpwarW%lV=f`p3oj?#?I%19k$8duB?qsi;!8w` z;p@Q#T!J{XM5G_CXgo?nrwj#NQ_}^kXNGpZrR^4&&0aBvk?ja4LXUYF13Y9w@z|+b zJ?b!s`(azBbp4UVXk&{HEgpAvoI0xJHatkXKJ#?h>s`A%Ry|y?vwI{jr5l;d+bgR$ zxIY?DIDYT%K<@M1uDm6{5BL~^*-q{$a_s{6h;8%&leXy(%8C7)#9%RX%d2Y;DG4x-)y_#m zl7)5Czw%?u(fScHtizDnq1`gZ#{DTu+<*h1bySQ)_DdV}TA1__JN_QyYa7^%57|e|j<^lLdS& z234HWlP@o?+o1>`F1_@q5HyL%Xg~Qju2a)dxaJ^NW?-%g0{RUU!c}b>)7Qy z%JiNFqw-eE`In6hKYYE|L8QdQ9W?ePt68`f$3tdeuzpS+yW_^lOsZUB$0*+Zfa&mq_e=tj}UImcjpS7RtUHm zY>d#dYXuSco|Lp-&{1!k?t7K7XASyqyso7()Xu(dkrfl#|P* z`;X*6PuF78jq&7gH<8mGBaPP@fpgY{?kgv5Pd)z?BTWKVWL|~8o>x4uxV%DhIyF4u zR$Z|4(gk$`iBL4u$awg*;Z3P*XE*D=lnd=xg55fD47NT1_Jy|?*93ok*68Z2WC$L& zt*eZpC^1FcP<;2i93TKNG73`RkJZjeCt$Ji!>cZ(M$DBx)Ig`lEy)EB^!{)3xcC&e zWPpkiKdsC!xxVpvjkTk|obXnW>c?k^ya6J%tlcL=6YX*4=BY4*-yx40WWn>~`&|!H z_VaBvzSB?kntJ8|Ma$v{3p}7ZISE}TKBrc3)QAgSL5az003KCEU&&S{B;|Vl0Zh= zMA`k4)l21IHv_>f$?NFoR5|?CK&-upb7`NoOQz`! ztTOq;U)=zrjL4)Si(Ywvm{*VOgDo5)UbO$vvEnMfmsS{sEjrzk$Vq+}a0+MdkK22` z%n59)=R@Nl0y4zDd$dRL{7DmnuzJ0v#gpwbh2fy$g4Y}Ui>Iq?=p3os}_`-mJ z?`<-Ejh+EiY*9h%NHtI0Y#;Z5@7rch_D`PfPP^7H0{1sg%Vs}Wb+2h{WKXnS1)CM_ zix!n__?vIF$v+bULU5GECkh|iAngldyuOsX3?*7>$Z?yH${m{Hyz8N9eLs{fc8EPm z)9jT=oigiZL*&ka*meR}AmhmRqf9`jcm0F6%4Jt7^Kf}*H_7qE)Q?Djh|rdRjfXAS9JT)6Wq zZe?jl_xOCXC{dQQiZNga>P4elIBwh5Bck>~Silz%E~29ETU*gE01qN7?=Mdt-`zL| zoc50d1C;DUo|a5J_DQZqW}Cpg2{P)!c)%F;bVB#ilAVFg6$ro@9U+3N{$W93*p_N_ zDda3=JR=^8lC2Xc7K~?GY0q^~R(&Eki_t*H?3gppX*(#Twj8ils&#^*QjU8(Zy$es zv;F-^nZqWt3)8(J+{3yzmrl6N#C6-v+Z;#hR^Ur}AK7Hk(!8H9aFk#J52q>=@ zA^lHko;U0OW_x$#?}5)}!jzI>NL2b1yoN+-O#Dcq(k#$O7oD1}0hpG4dBu#@NSf|~ z=9!Y8*g7q8cWaCqPn&z-R(KV$dNZx?&F$%Zn5>Skt^R{}u4CO29u&q*IEC2!Q3SKg zmJd&Alb>ce0^b+~$75Go`E4~CE4eXHhalX-Nyp$bQF(^L*VU?q?VAK=W%G)QDZ_Z1 zSK}{NE&AR*{^F3Pw=Sda&W)9`PYl<0{G~mKcr!8ObwQ3i<; zNn1sqP2i;gEsw?o+C0CN+p$C9gxGms2v5olc2066BkKEy6GsTkbzXMZT3H!z9?joJ zybrV+hC&U`Xl2ZQ+;DSaMSo8Mt;YcNm)P5lTx%GT#Y}cxl4aFrKdUGOg}%Gu^-K6K}~)_9S*%5!n|c^n(-t@wdEw$2W^F5E3IY zPOo6u&4mZAl+Y7Yfrp0&(QzT6_N~mU(bv-fJowV!c;oQ$9B~1)!q1^5(VJq3`AoCL5>^UO7GnKQ%Mg>PR-?FHCKSokn44B(bw zj-fjVVgtECW}jE~LhRKs4l?6j{V?{h-`CFQ6+Wf&Eau+EVuN=0wd*|7`- zM8^#=3s6@>#85r0?pEh=4BR%l2NGsY2t$)jQ1I6yEE-yD=@E#_{&YoB0((S~%jbX$ z_)DN_0{|>=qLDf1pe5an2bHIfT|BP*ACmZ;My|Mc%O*1Bzu313-_a4zk5QVm?*({y z;~9Mj%uY}_{=AiQJOo$|yM_N~$pQKwb?{%me=w>Zke!9-rO)WTY&z4AM>i0l`OMtM z$gd)Y9rA2_5>yz7FDR|6ksp#6!u*c4qEc?+2V~nI zJ$3xjkI)p%_e?<_yd0N90s||MqD7F>sU2o{2q7|8?nX!LDwuG_y!oLIp;6tRa`^ZT zeCFRo1`{*@NLY@&`&XCQPTwEeGs64{oEqN7cazq(i5k3Kw1h#+(9jUg2C}oNyZio% z5e+L&`|cwRq&+0krKNMSXS8}_X*XdT3=HO^M-G0k$AW&Q%!`9Vpz*zW@omj}w6#c+ z?emhSdc31Pw_7_b!pf_83oZ)Y%o7;MfVgAugB_tn7={l2Pr;HgyZYD6`K10dIQ?lj zF?&O(ud=@^b&GBH+k(+!EKLAx=Vx~z)y`Wj^#M|N20x|$poWPAvXY0gk8eKYi5(eg zpNIsa7QtGtfw3L9Y(n8MY(xY*eBr}uES3AWJYlLm{s+)}q*ew71;t}l0JEOY3#nrQdVYkj0)9gF z{87xp3417eu~?V$W!r!nf-*Hu>=a4t7{6V!M9#H?Sw_|X;X`QtP+9O;unr@5i0~jo zRpQl|a6xgF@E4S`2~m(%vpcrVC`eDphX&Y6NFf{-C3T;=+xU+EaDvmdliM`!Xlyb0 z9a?#r;6^h|AUWUmH2etCOtKmK---C_U8(b43+(l^?fd5Zc|RvP(FXcYWg}|57V5JE zDf!?bsKye4e)aAK{Vhl+3x#gA*{x2e5BbpiKW+3|bhnW$fg@IC`KHZ<>U%uUSo({N8 z{FBUa^52p>k#kFAS4EBCdqm>ip|QDKh9>iW(R!mtnH0b+u${{;v02kZ)|Gq8L@ z0Z^8WFS($gfUtlgHxnlt5HAr0#cb5^4>79NDPO)w7@?uo6?gglqi~;&lT)Gjfy?BG zO#ti=X?3*F8%jJw&O6x41^M_r6cu25UAx;LztuYNd}mx*g|x>n;XjA>N~BIWuk`m< zMBMw8D)mb4%$Z96kJs~QWnc^kD+EtU#O-s(fUKe=0Yio#ypO@-`afyHe`%3^o!eM( zguxg)7RL64g*3mSR?#bM-M0IA`MC_nWZk{au8m!J9|ZO&tHdlpnlUnGJv#R;g68tS z$AHyHG(=y4EuTZ;09LTr3lD#J0ltBW?xK+3ZLX578-#}jQv?z4;04b>d``}z_6TGK zGvK20n4$3SlwKc_mWMfzNX@k#8HfjrI#uAE4o457g=C1k85|7&Z6enWl-JiBZ6p^1 zg~PT>{EK`OP6lzExPT~+mHmGi#!VJ{W(GV;1Ipd+k_^QEe&nwf{_f)Ly|2#<_n!jN zgDyo9qUpkdJaIi-Yr@jfD0;azO3jyrFXK`bQU3+arvfCtYlat6sQQhq^eV8MnM!3eJZro1&KJ2>j5or|#gzA+$nB znF|cEHqhCnju8)1khhuHPpMbkJ!GgpXrhDN7Ca=IhnsjGGM^m0;y;-tI9^0EfeA0a zlRM(jr@D#-k30r;@jdCER+ro8R>zLpT;->6y$A7zWTWje>zrf=NCe=}$Wv_Y9rU7g z4aPQ*65d*D0mE1fbOn5*oZ%+8F}$HH0awJ(Nn5!sJooe=m5N!<@EV^l{Rql_rF}ys zy%ld5T(CCEG(XVkMJnC#>QJiD@DyzVTJ-;_d+%tj`#*m8gUV=-QKGDjhM7WHk<1WD z_AI5y$Sk3ZY*9vLLQ)|!C1fY5s}xB#ErhZ%@5igY_qqSQ&-wlJyH4kO&iA@1pU?aK z8qeorJqHik+kX%HkYgsQhA_f>vnN;Kpn%pavGvQT2WnRU1{`pjMR5#Riug2{G`>Pq zR{Qlg@Owfxo5nMI+yzB=`%1_y%;PNg@VmPQs;1s|kNz0g`1+>lC=l(>-weFknC)uu z-6@#n5J$(VPrp2{dA4u7r-GX!h?NoIo30ZD{gzHqSH3Nn$-SRZ|$m6c{ zaK07GMb`y+FHY;yP7ai&t0fAoV-hryTz!O22@=nn3d3YPB0SPS9BA~MMrIdaIM6dO z;g~KX3Iw$LaHw^pR;K)*n{~o?pWUh_^Ho1lMNswAOhG;}+FPyI`Gx-`E?^kO`3rcbbNZVUw{Mw+mr zPY&_s<=AkIc;Qe1xz7$e%iy@EKKtb^fx#A)Hm^A%O7Yik9H`)SJRD_M_>g|cMF?2z z06Gq@fl#5?vfEG{M-Vyrg4-F;Huwr{vj&Ms~K;E#|n5S;Py7#7MHR8)1peSa> z^9S2s*t}n8!DtlTz$(Amh|fT+(R)BMlJ)HOW0(uUiDS|2y2!n|_LWV>!!MI|bVyPy zG{UUY6Ec3AJdssEYd+Ud(3|zz5~KFQ)8zubmSdC2S=T6GdtCe{>aMOziH|Zzncp995rk6^GClZf*lv;no?OJ-6_KP~ZIr zyCfvMO)0xfU)rhFWmC)PPSizhc{XuYQ8sqTQ2?*Y0T z#ev0V=lnLlERvk~c}QTlex;-bx9=z0S~ZmC$Vn2$q>aZyoB zrXo|!j=S~M$|0aApupTa&_#>irswGGy7U!gmJJC7d67mpb4|W1QpJp$J(Sq2Ob5vO z$gm7v#wpIscMja&S)I2MkDz_tLoZaZ6Yx-kV8!vdlH_jLTBQ&+bbVIhi8l?R;8#XN z?XP}0t<{c(vR7JK$l+BYQe~km@cjJb!|4|jo2$!d75~(0lo;C8jh7XS;HRqR+_r~1 z8TH7-ggD#%Uive8lN?)QKoI~(!lNP$68i0}x)a=Se(oqo(s1; zQ`=H~+13236V#3v!*Kl7)lWco?es=~G@UXjeS7_%*p8ic)I%1UDws5Dt&OFAN~#`< zfdI!m;}VAFBq2^mWLLe*Rxo1}6@8E@38D$1nQH(Kak2;gN}JkfCN2&Dv5P92rknRfl9}M~` z%efE8@_e^_9s94zf%PnQ+k7c8U!r>Djs?wb+kH6LXXG)2Kot+uoF6~~0^0N#YYb-7 z8Jt^d;1tN@eI)0)rvfSccEr8B`RsOMa%^mDAgfIdN9`-Ss6l-TJ^@2$Sjphz--}N( zOYT5NA8?ACKR9Y3{ip>p~7NavM-vs+khmZahd; z1i?VERH1}&7&)hFTsgN~xzp!y_uAr1OqA=H$NLUlTYEHg|FbcJ!$-om7ZcI<#)M$7 zAYlOJ5;eDwP)e7qze|MHrMJ5*2BDikXF@N=uBsD9A z^4(1^f`|tK9wbL#AL4fr+SzB$d8=?FcOa9Sn;Wi4rT6KB)m~2+SN6Q)b zJ5?^!F?Op8)mB!4UMJck1o`SkaVGkcEj zfn9bk=dmhjlKXI%_)a_1r*$VsH@{Uwl#hmG-#^!+Evbm5)f^z2n-y}v|MxJt_Es))ZZYC>t!(7-&9rF0;dbO6{t;BH&%IiGB~XlxqbO_*o@0=h1o%ilw7Gk z=r7j&q!jJz>h0vFTZQO)q+#4TswVe}#Z9|wvi(15-$mz5nc<3lE1G-ayk;|EkMCQI zN7fXH7Db{*sR=~m()$i!w%kB_o+*Tx4rZHffZ&HbOG4HkWru_#Qp^*UlI_06qP`7; zB&hUU2Qht&-Q(0OLEr#njTv|N%AO{s9z;GVQiNCpwPJT+l1iQ-#9kHWJF?+>LqYsc z1O#Okk?YP+eRnL8^2Lx{*a@tf-j_nV0;+=4Curyqs?+)vepl9^uLEc7snS53?!U&U zSgshkQZ5~d)2Cocv@fn_wYcJFU5}0Y>-H~wN6a@Qg-a%USVu-hBgF$*BNaQJiDm?}a z5bsAp=hDKDJ=E~o|8aSF2y``xFZcYN#GJN@nMNzFzSKm-Otd3@M8$)l_FES2`tW7y z>kRw!yBbV>Yhc_difr^fxHO@C5lM>iM?tYGZrAW;2e47d#DtlzM8X~wb=!@D@wLBK zc{b&h?Wy=k9;H2l@1#Tf*n}NZ~U; z#~_hFsB1v5i3cW}x}OH2ns{zk>}aed&Ze$Qts(0#F*!#Y!i3hPB=h}D+rvn4@hbE@ z!>NHryn(PCVxkH|5HQ^sq#K~whi?z~xIkBZAhL#FqCV!D6^C{Jh#Ty0Z+_FqBqe#y zla<)Rv3GEOf^VCPAWuTky_U8+g$J(%Q;TpgxSiSYUMVL6xm*bSpZ;;2a0Oadez{s~Nlaeu*=#)~^fYm|yNWsHGvO^I@pZ%@OZ>x+Uc!jDW;=3&Qd&=c+*O zm#8aX=EVMPIs5!ta4^z_2BiEx4ZFfO*I=g09({N$l2aN9Cp!^N7TDn^7z>m~hpH*A zzuy`zS%iUzci!b^1^J4~AZzn=Ar9;mRQ5-Y^31Q{Rwl!+5gP+M2wWI4ar6ug;~mKT38|{{t;!zMqhob8Nt^a9u+UrE311?wt#tt~?IjsRmRGSp=X z|4G@@O=a|1$w)57Pg_TEjkainaQQ}t022k&*~f-L`L%4IW`DW5cPp ze7M^2EVfA-D70#VK!#Zcbt?K><CjRm9r{m#+x<1-uU9l+^`VQFRpxOZAICb}R(YlvKA9l1D4mw`) z>**ew2>ws{Ydx0j+I-3;vzU9`S9kjdr7w*zPCC=d>?)%@I<(6vE zRPSEdgc2I|)2pr+7e)tjV%!Ga%H=RHVRs|WoEOFe!dk{Bw}!J1zKNVRl3~%3CZw(% z(%jz-1OkJsZk1dZ^{9Y%;}GG;a<_fO$$QLR{&MiTyyKl`@=WCSY13ViectaozI|2g zDu|PLR`D>YhENTiezTq8rnx18V?X})-Ev!-W^CN5SU%`Mwx&tfOC znU%F~v?kaqxm*Beu}@WNcAl*@G=`|b!QcRr$cjAfR5`r~VwURc18u-&z+m+Q;gaaW z*mkCbi|+^z5>jC#LJ!K|M)OUKozQ_QeCpy-K2x=YnVAZvuoSg^+zWIMeh#gy`N8Je@Dq8XL-rUNk z-HRZ~N6`%6tV_SZ440TgAqsn_nj!m!VGcQ^a6U49*e5A1?Rl)Xs}-u}LH(qg|4bec zk}%Z**!sj4^>%us!@9VWvh(-`#caz_Y>xQ z#(&{LX2Y&sW{fb+prk_?{r1d}CqG@GaK^Zpdzr`a*OM=Ktqzi8&CvX_2yw@7*1&2V z49`J6Gd|1-_aPWsuy`GrF_jpsDiZj+ml#}+OwLCT^w50lMJsWU16XH24Pi3WJh%4j zo>wUXU~B$%-5rBnfY%dTH^evxQ2ap%ylQQwq7dW5x#qH8`wbp^_(+_0bL&VfA>>Q{ z&F-~;)CBHa5Vsf#vwOJWA*MM44n~eKeN>m3XTA!b#?GZVZ+JOGzp2dTI>V0&>0L}0@ z4K!6z?vgl4m%?L-6z1sJL*-w_soGZ?(uZY3RKNh!bzpMzZB8%XuQYrw$J?q4An2}^S zNRX8?^SfLwARdEL)xSRE`o*p=7DR=RgfJM=LI;vij{v@Ua);jvxPov?qg;}38Z^cj z!Z3(quWROsKp?_Vni{t71>*Ve!dpNz1(-H~p8nX+OI{exL_(<$t0g5drsA=%#Hp@E zVNrz<_Vam9AoDvg(Uvc!{=G!`4RGw)J3CZ(zfDucB##0p!0yBhr!x5<>{Osy`uQ^w zZ{ZUJs;E{P+4j92!N$Pi@dgI>llVV zZ&d!TtE<9(tiBaa4|B8jj*hlwZeUD+2dS8L?*6Fxs?kAeI}=@f!|T072_qO{uq#A| zA2=a=e9cm}ruXvmRl!7jo^AOp7srj$HABY^xa~Hh^axf?XqRpsnQ#)XQE~t*0XKfl z$n<%m9v&GLq&u~5;8+)YQ!}(N0Pro$K4dk5e?~diRi-|tiWLd!i;4oBRoU3SEx{Tu z>V^7~?i)U!q9C4NsvPJ6zQSrs3`bvUd@ne`hCE>n=SL?llpr=pVX>bv6Z84N3nJB~ zd*AG}RCUZ(Wdhm(dXg~tM4b9J`_9%BdQSL(M761v&7tE!M}h+aiZ{qbi7?uKNO~=h z72NuFUq$-L@&@+d@#4xjryv9uajSH1AmT9*U^O|AjRWRc~$5>r9121}B^Q_5gg{$ga;l(@*{XCCOqK zFAW-R&#K?4a}Ab@4du_yC(S{?z!C^2Av9@+dv`X7uQL-pVK$ZR0ehT);4LO4{sgA0 zIJasM>W+IDyz}ka!v7hxKJT;lrGfzc*HH6uHD>@WRuKO{R+g7X+IEdc&I^zP5t%L^ zQv~C(SghH&{%=9Q4!G^dvOgn$i7{+KNqGiWwSKPI1&34>J}BC7Qxa$v9U(+w_=SoU zEG%%zH9W38;K}gIQB`yA*-{P?B}TH%0e|WG46v|sa+-Sb#tC}Ef4vImnXeShvCkWL zm^A$8-|^ezfav)l`WB4z;iQVEPpzbqVYGpX_F!gx?w2`w@pZ+62aE<+w-f<(*ju?n z-3^;CNr&aaqztquL9!RVtotXFdwlACqa6_-`>iaOb(rAHx5Xq(`p(DDz9LC0^OI_} zzBQV13SYWfhQw(E!IAOpc*ICDhVYF_CBLI~`poW!3DmwR(4lS@6B85N{_S0Tdbj8C zUO}idK*Z!bQ!+&od%vSY#T2!CS+lgS-Vi|`NEr(gCKytgv>ebn_Tl@b6v)IrjU{S! zhjgKg!YoZ_vPq+h!MLk|f(mp!bhJKyeghT_d~d5FT^Uw3Y}f#0Ie*?pl{sNZbwvA3 z{Is@g+jbbNd#zwO_^*bNd*De8;xZs7!UPivpZ!VRQ?inhWTFS)33C3TPeHs}1MUwP zIngb`%tR(MAvP7h1V9D&1%JIH59bGN;I2NSw%m1J6<7X%asuBA2m&MOt zpUi(=ezmX=P<<<8lfdN1TdCcb6%H~r@p|?QkG_`sUG-)`F6lT8Z)0M)!Bar-0HMSi z$=ulP3QrpKwAq4AO=9hQ|Ue%Kb)yY<|GlkyT@er0j7R0x1~Csad329` zDqRb&KABd6EM>1W-A;0tyY5`ofWwsVNNvU&HSa^FDwKj8WypT9i1vVz%qwm>xp zk%1iJX!~0AC`DcCdF-W(yT%>B*Z;b;g zlq>ioFiwQalSo9o^@rsfN2V{5vLG^2z&Y@pb%Zq%j!-L_Q@tp2?1F_V8rKMP5%g;1 zug;bVW<4{+$O(_JPXe7I3roJ3vD+v=2QrsMTB4z)%{8&9v2g;qrqpC60xX$8uZesF zGVk)JEA_P6S{e_lsx02>Doq-|BI+t2!ETFF6_p^FCInd<0^@egtd3IQv%lbrB9cu} zw$LJih*7}IK;-1I#;&weA?@qNP!(oz&F?CidPMDlQ2=igR~CaU!G0jiS<6uJ-CtF` zqWfT+0Z@9xNeE~UL;V3P!ln0U&f7BsRo27y75=+-?RsZ3XnSA1`#Y?)XG_tvoXh{1 z_6nUSj5PWK)L86H;SF$^JOBB0N`-GDi9baZLy12TtM|*Xl(K^wDb8Q_tFtp$ZtNHp{Ai?V{kMKEI-9X^;0Q(;*W0jxYE-*l%s24#j@8^Pml;E30y!Vz9di0*ESv2*xXl7!mBb1qnGE^8m53I7 zmvaEG9m3f|n2w4g-=#&5i;JtVzFx)5Vy)5Z%5`f3K9)I}*1puns9mk3S#pvffLFs} z0r;d#HP>2u(cF}uv7+DBX+{jnq{z4^yNun)LQ_Rj(G5f<;J65%@4?{;jte*&2K%tI z2+HNoq~epl`KlG(XJIAI{s@ZLtaTLILUwo#z_&n^^3nU0d<|oh3t(N1`SD@{>2U;) zJ9Ix~>vxtBEw;nSPr8G;7wvB_h^)By*snq0{LR#_;1DWzvbaMLcmHq8O(o$?7_Vt? z=Nd19H~9a!Hrq)w*57slij7A>^XRji`Mo>U?N^&{Slb_4Im#5NI*APP7qL^^y7;(c zW|aT%a8Kly2N=eLGF4#sOFjnO;Qj(~Wj)fK=i+yn_g-12L$YSHRRrp42oOTdMTZ21 z|7e9u1mmP>wv%pYX=zZXomAF(o*O`YaEo{&f~I0OSz-`D7-qbMP{qdr{S$9Q#)b<# zFDU4cc~n?Zr~1?kl1fe2?Z@}vV8&G0tdA2ck*aSIjtLDzSQrC9zJ_6U6hY$bN0M$G zwN4Sdp%K4j9wkpE+7rkuzFl#KkQV)6pNuH4q;@TH^?Q+5fEP{{N8kt`p7Vu~ck8Tv z+?L!ygLw?l`sExJIfx&YU~y4HqDE;i$6cZoTtZA-_q zoRdIP*GD&He(dalPZ-uc{Bf8(p{<%!oW$K3ip5@UBhlbAF@RaT`Q`!e7APrQ5q94i z^xVGM#+36)D0lP8BgjF-kanmd%ZabcHom*ZEJx z#rq$lUG2XIH~?1O+q&!UxIz;VTWOah&bbc}+0ds@NWut!etMoNrQS^Bs|a|%Gkgj; z9|$D=i|lvs!XBI`;Nyt2!DQOlO+VT8N=ZTBrTlBq0d;X5hGSyoVR~122J5xf0htW| zw1{}tcWGWS;nn&zG|;)!a^08XigsA)O4Z3Z*<=&ZkFOBxa5Qtv^Y==pj|$=;+8^7a z^56pz=@+r8Z?c;w)g@vo8rgBH)tiYuiSN$I$sxH}#!=a<00h6g2|n9&=gn7~2-m<5 zdV4=9f4^Ie31U|qtN(R(=Ot!aHL~-?&_SDm1nsPl_bjNhu}T64WeSsDX9iw_ zgYg*J2h>wVJ|4&>>^Oe)OeF~@huf#TT6DF4Zouo?5u+ZLYBf1th(P05U2PfL5v7`G z^YcSz@o9`UC8#y>ZNg8<52Y!QVFT{&r4O47ph^`pp1oGe0UWKapVH)FL)jsOc{bq9 z)4raP|9J!H^C6r&ZW`pPKKOupHlwm~snF&v01<>Z(RUjRPG3Y~AY73M`9 z=rQ9Qy#Lte^{KmNP>!mijsiZQaqNJNB+zaToYvphK4qGcM?xc_C00FpRsyxlE-tm5 zz>D%NtJA(&zYsNoxi$YmtvPlUCGy@&>^5TDnjj$NCjbn*D{xRV9CVJCKSy`*FDRsZOA_=@6Wov_rhNFv%-mhn!R^mH4XJh`i zH@k{XY1Ljdc_{)I0o~=fq)8Nh0QrEYr28%JukD`*^Vj^=@ZjXGIEIMAlJE1sb_CQQ zbZQH{P36@yfD8bgQ#Y~$R13hgyK?UBT!EiF(Ywcrj?0H33<4t!xT4hx8C4&Is%8?$ z9j>Vqog4?h0-@&Duj9w&Yh6-?7_~NwS==0|pj-5?O=Xta9Mh^dvu)q%Q>Ra3s`@Uw zrrS4>-w*sKEs=J|sNpJquq5!GVT5u&?i|9;XlCobXC619tJo4(#CuQ&M}W&Y#wPYU zPy}c;p?XEV6}PuW+r_1D=t&idaR7(l#sE7Nv3f>fcLZP+0ZKVEdY1*UnFkK+Iu~{X zdV37tE=`VZu!$*gV`_5oLVzj%gUlU1j5mfC)YBrUpRa;R05fjYr^HVpN)Ui96v!P93qRu+|1#_fhcxbEy+wy?R(uw=gsmrdy*Amg!orN=YEVMO7&Ef# zpl7tPQ7)o|p(q-uNA)&^S@RF+pZJ08!hqMq;$W*Dm6Y(0c#$~|#hoW*)3y%ZK|N1> z#s4G~hX_?p)X)>xtm{y)?(*2Oy9e>JfSVicPvX+Du^=Om$PjX?{ol0WgkItj1zLM| zcr{8rLYQ(cFF~@3$uh9K5fh*M$TA-mz2?-nDv zd8qe*Godm>bsY%Ck;cFLRq|Q9WSrL~qch8UF!=gsBpqIqT`@05B#9W9$d--la zhXIBF?GCvN&qAmYK`Wz1A5hqo!B~*OcpC&NB7}p7nhLwdV)GS_iuJv(DRiqi)DVNL z8@TMd#ww(jpwDtBUf1##F3&@#d|9fExH6}`7 zg>*4dPEI_n_h(B-JGNW5CBK*TM~eq{p0KgV3!(;wh*vaW_jf67`LmL<;|5BS{`8nu z0GHT}i;wR;3Un;)tgruq^2LQ7cSG3bPF&&$o(qhS)I*M2ILb^F#zP*uUAH(QRV5Ic zn)X%C!a}s&rqBC*$j z>X#20gyDd9e-n>Ft$F^*%PSIV8rg9uOPk-u;F`_A*j6{W0C?(pzb0mW{-Uw8FQp}y z;yNk?nkBI9`^_o#l2s`O$mhZW0uY$xrEg2>Uu+?)>#exIV9_U$m47YbZ(fZ^azuhC zaQY-d)8!zAQx8`HJ*e6SfeQ2z|C^+TaVlCr^c6W{a2*1wM``9ImzJ|UiYpeE*@m>Q zh3+HmS?goD6?{T4BEHe_$?-hH014uUJF|D!n#6Mr>;aHAXlBPQIhp9|^C|FaHIL6~ zS!k-2x91!Z^}L@+5x;_i6eJL9#X8|vGu`DbG|*K5)`Q`A2R36vcHT6azw*lq9wx2S zfO)knW|VSq{nrotw{PD*o91-4FE|d&pFOaS;Dy%#*Oo^0p(;RdKP4RzodM@A;CHB? zNABltMnV}LWyj>hAY=w&>X2~LE)kKqXZK2-mvnMQyzXoM+oXx~x((im0cI!)R4U@74M{Sbtz3%o&&_R481Z+mt162x5%h<-e2{xTv5!IlPw zhA4vMXXGLJY{Er}P=li;CP^j5!yvCng6(DYeKEFjg=yp_^(Jlna;-Y>oh7-g@sW` zfB^)Z#y}d7))0lp`qV%z2N}%`L-RejGY~kyy04AX32PC|0>vLWH7<5*jH>hi`k;2? zKkF4%?9{7(3f*5K7>K1UdL`7exh;C&W3V}%|10sz1{o?|!^?t-YJOpXd*K%Rb1x4F z!gCCDb+mAkey+h82Zx(-;w<^Lxjyn*oAGgtR8@l?W{U@kjlsZz6x#oFS7@+NQEDv@ zofl^Zz>(yk8x1bX5f)AlYd{Fm82OglMIZzkw6Z|f^YZ4Cv3acTvGs+Y1lPKH-1jWf zq{Rng2X_sm$xZbL9ax|F`WZC@!>4#zzeEkQuNOYCwFtnlk6W7<6LST1=}l9HpNLoZ zD;`1i_!x_#8p=;7gEgKOsp*F{*bpBb3K|ly^S(yHb{)PB+&hGeJoEET^GW8@hM2b! z4Baf&w%}0B?oHu@=)n>!+Nzt=)?8GP_OF0rfX9#LOHV`igb5BWGVsrT*xVa0h4#_b zK!LLfyqI0#J`yk7+7ri*4~ey?u`=`we@1jx0n_-PN401pFdd0}@U6Cd*}s#+b{)zM zT(bmk@N5R~BZvgnYEPvh09jhU4l`bB8of2=u*I zqPk5Dx)GS8Pn+&*WeZClrsw3kk5q+9tHIDzHB)b+t|NW~39;u7+pX>Aw<0<6d}mzK zAeF7d;mg(2ug;(t03yOC@}}bX;A9^ZKz-g8DR~>KW}9WUzh*xKWQ-j04c)51`w)W%DXq#z#&}CZBcl-X_OL;QaUR5GXs8|4UrxoQ zL*eF7(d(V2rlAok{8h>8n^vh?yqgNuZDo)Rs9daCHw*NCMYV^@epS>UE_MDjn=vK! zt$RH_A>fOO6!DC>4}XE0B0-QTkf;vCnw&rX^RDHwZ^Acp09qv8Udi&QR_Dj)g803? z^qFsWwB)x%f(cVWGPNzEDK1cgYhl%r=%i+aYiI*)s!GXdF`NV^Zv|zeQ?4mI>HXP& zC%TCSa5wH*tv|T-a7PlfH7BPK(-z=m#2!3s5!n0#%0~QQuu;tNH-$_v{|s*iWj~zc z5SR}5MnI1BBdXtE!0iCA<@Ff!PC4gWU{P?w%zk#I0zfzgkJhhjvQP=$zEJPW}` z6Uz6+4T-7>*;+V;#2W|F6ot$RhRLKY9Kc$SQ~y7l*TtLX2TmzS3fE`)>M2T z>|s#X7>4ncJYAVw& z7gqjpK>*Rya-x=15AXRDK7j$nm#D@Q?6MUm0sqO#$-vfM;*DUaNst|IHei{TL?iw}z54Hud{h17 zqkwE#q(K5#3iI~kJSEQV3|k^n4gyy$qqD*ihckpNS!{TALAu-fkkckJeMbD!?_Ch%$F#ONJz@74Sa65$nO@rZ{%#*R7 z9wv!!)1k&1DLSW>8Me<(Ps91Kir7q}x#GsYOr8RJi&I>UpIKwx*eX($Wwsi*=7Olf zz)<=F_wDGg*xkrZq#@VpVy+Js09(US4Ka<>jvB1rn~c*&;&=vvi_Sk@2(3TarhR(U$FW-q+1?pgKZZI0XBQ*dE^nN5o$AkqM7Xp(-Rz7e^HI45a+&s9xR&?tfyY%W2TlZ`O0N{~Gte zt6P%0tE_+s85|M4js|WMt9%_#HYzp^)8q73Vgsw!AgcA>9P4Vpi>I-hS)3tmjX3^wfZ5H!?CjFg7xR1nkie)vhKNbd|wx&#<0; z2m}DaW-G-mky>IZ^9fPOd@OB*ee@$WKK!Oum|QwZ|m!T16ex&x&JYCaItHWrpU zSZfhNjo}Rln}isL0d*OVkdWH5J_dP%u1}ws|HShjM+IbF;UPd;hf))PvHs2vAA(>b zgxRPMY)sha%G?iUfwiHf%Ki3BD4Ik=!Fi2Z=+qYzB*126sk9HzqkhxWU$Y}kChCSf zy9E2XkKk)@3(0InPGVEMh$#kZof138wrm#t+Eozzy|b~-P+%K>(vj{r3oCOjh?qQVDc zwA1-qtrwmaiC=j0+eXa8%G)-*V)A5c!Uvx8Ibg%pg=K&=}B+=XyAPC_e4_w?|~S5 z?(nqasxu3CRt#DLAAl_3o$=@J%rM87vZL%E0P`AXYjGD~Mo{u~zEL#5px+L#+{4n~ z4pIEHBKH>8D=|ueXUC7HGU|yF_TjFms1Uf-+5X*)P{F5`wlbuz&Gu7xQLIN{r^OjE zJw5%;0f8m~c>$M3*NT-?%@=i8Tq1glzk}o8Zm|WafM-HHODF{|ko3!)=lhaz0)l}{ zjiKSSb%3ryLdxVA*w=0h2M@@^JgmlWMGEw@_m#V)i)!GZ|!xr5)C)+nGb<_R)Ru=E5#+LL4QrMaMF(0>+p8^KPLr;4fTBF5gEp zPJ*aJhkZijQtjz}ZwtM2?~HS87wt<;CS|KYIY_K@jCq7Nq=Fa-hi3&p2NmoxG90NG@wMKJ}mo5T9~4B>Q3!bJIJC{#`m~GSL-$KL7Y+ zi!!KY@|z&(Y7=A!_XJ|#))ewjN zc{$Im+2y#FEdV;RJ?aQQ1mq_m5};_cKYa?Yf#t?U`idso!o-hzL_P#4Ug;fAkbk>` zYLCQTX=ZCC^*L?F-AN1(l%qaCksT}>kG;!z zGUSOQB%$5K!h5smo#7DoF5&W(;cK_yLu8XI4h3e4Rw_8bzXL^Z;Wu~W?IJY;7Xz8& zJh@0;JOo(@COQHXV&3=M^|=!%x1F*!p4G@d&3jb+@I{lc8Zw3!Qh_YLKH;m=#K96Sy{de=?4`BXok3y)EWe5;J(6eE(0H?OYNR2C}v@U zMTS}(I`@G;?HVarYWl{pEFLsDrWBr6&%sTU>^i_fx5^5(5ez#0J0P2_J5p%_2vzV^ zf&A$K0LNhwLrFrCIDQtS)8SOWFK92&rXs4xDCW>BcA6%autW{hwbo_Y8uq+sPUy$p zEI)j9i1#48(M)ZJxl%v)mhd%X%2q>cQvXI1`X66p)sTUp%eDp8?c;oCfVj9U+TJjG zzZJZ$eO)s2rbIAc`mFCin8W~zkhmADO#yjghHc{ZTL*bRYKs#V-Xw}5dg(Kw{T2QU zu@G%tP8&?5##>Dth{rZhh0OfH;1ZB41|l_$<9VN9vUKelR_)a<81QMHLRZOGeb}+ z?jKTkM>_e?0K7~20H|R%;&UQVSTB;9?F9DoE;x6Yk^A!0MhIr={omUZh8$<6^i{7c zR5#oVK~>l9>HF1FYDxT2d!acX2VlzNlt=kXxS!gU=&1gs+1@5JO+DUUw>3AqLLUs9 zB1r5z5Ia~deCnu|aG06@oh1Q_HrxJkau^eV8JRkWa~9VogjO{E!^X|rD|1a~0a5;- zm!8AO_z1XLCr{tJDs_cob+Qg%2+ebxdP7YE-f8Y`Zja!rZjR38k5Lc&v*g3w*iA1{qpHbD?!%)?|=J=Y-i5gO}LoL$h#VMNM+VmdynyN5>+LLfpF zf0OUzv@+vF{=zsnVOUhHkXbpJP`xOy&=GDa6j1sT{xT)M|VEM#`*Hwr12Hzt}QaTMQ`z6^@{{ zlTFxQC?5Vd9|JvpSiz5^~>Y;CAc0|*jy zRy6qu=>s3yQo#B4Z4*oOUvViDz6~c^G+Qr}d52NR-0zL~@cPHl*v~|mtnrPpt?eOd27s1)=ioNsv82E~(jJ1wXq4`980zk)p->Gfk4P?Fv8b0-+ zohN;Lxo~Uac??wV78V8_<1>011;g96wg6oE_`9ISBQlWaB{NG)Zr~7UNmk?Fb#X5O zj2yTnOAjBx5y4|7W=A?)6|mrmUD;|Jx4W*H9rNpJAI=^I!v|a!4vih%$se;yeFeS$ z29*E=S6H62Mej*cM0TH5_i%HwLIFN7J~K6iq%4i9WFPt7-4uf0!V18ElDDi(3e79f zPcje`lJwmcb;GXm#YPw9n%dDYp@K*8a~sq2;3gj^gp(d=R@MFIeqC&$78Wa25E1hd z=}3=^096>0tR6`F4!JyqCUsc4WstTH?322bAL0fcYR~A(ERBv3gfl21Zj4UX^-tJt zJ_eq_;u{y~8$l8eaAPahu-9Rf^NIERX`3R5;ulp2+6yuRGj0Fc28ha`#V~CAvxfg4=AI>M${xNb4J`&nKe{1TG4@3qeH4isDicXw)2q_6f z5&nGGmB1E$lbijJx#JDjLuOGCGaBe;@#=BMo~4a{K$S;Ek)eP_;>-YYnb>*|2?x9x z7+PLpA*+QXBIIT68NK<4)Ra=TYa6yA9E5hM~56 z#pEsMVmB2iDp%bF=^*!^sACYck(rxIKmP3ZhUFgx%M7^QY$lIi5kH49%GCp&LCb069j$ki4+S2(4SK|p zi%!jF^1jkg&i7WW2Qr5OJrg2KT;0)25zY$eEKm?)9kFs#@~546RypBYz)s@d=>Ri? zB!DLhCH?Zu7E&^LR5Tni`~<4iZke=db;cldl%WTdr~6=h|4d?kt;p&<=6GHCVCg&ifT>${s6sD%dP z9|jM~fZ5qDE6a&PV7IG3Hm&fcmb>|@IkzRl#DYMsIUY!l!gLjvSdp}Saddq52P3RP zxM9;}=pTKW7P7F#0W{#LZbXeV81!|t6phzxF&kF1rpPNSa<;53<<>Vj;L9$)mkLUqdt3VRM(q7(G9G4Wyle z@}65-F8NNon*b?w{UMjkpOKP`6gs{W0o*tf`=>iBuK|U|k&3rfpLCK8q9z0;De-Y$ z!G#9GjM?%uf>Uu@**pT#w*k>G9nXpB^`e~;Q*wuKD>c%8M(qW>@;tF zLsp>C8Sa+n7hu~I)h}KBXFVw@p(r9w4bYPHa5A7VhQ4fd-(yLs+LcWRl*0|Bl=;>Q zH(p_i?EaoQ7!xNISAHu}{E;k11gy!sP_RwL75J>Kp8rq))$=1rj?3S#HXr#2gEgFo z#sDyp(gc5&{%HB+nU^&;ma8VWl7aT5w4@M&D8Y9Ne5W6f`6ZOanfYSKk((QNd=h-; z+tT@jglLgXd%wI>g0j$Q6`}3gB1yrOWsqTxDBwF)fa6Y`GA>B!11A32prl%B0c+^ zcZkl>5R7Kuu$X2Zj){z=v>WiGN#t>lOYgazPvlXNgeMWMGk$X9-SWwEzwO{@HyQa zyK_%J7tljEj`{T++*$&n30kA^HxPo39iBC%dg}uwKV{_P2#Idf0W<*o8(=GW;~F0H ze#WTQLI3exFonV2832R|BMtOckl%SL7yOA)KiS}SW9YD?e=?5`y*!t0Eis~OFJsY? z#yN>e3^(L0;g=YIof1^$ZJCyv_uf2*iWffyB77EC9|0g!#B>GBhd=%vSyccC(899q z&*TpRO@KzO+;7uk)QQl!ocSAeMKE8A&W7?MTcv?W_IqujqK~1?B57t&%tJ`d(Ek9`f7NlQJmR z$$#Q+g;4|lg(=o<2Zf*fZVgFR3i)AySz8z=^yD|cTlfF|J;BrmmFYV9k@tjs@y(h^ z`9+c*{0X~>i=70j#Wut* z(rR7vo4d9uDuqc|>Y8mtp$g+wCgmZ-A%&tog8KdUpNR!@gLA`Texc(&UuD58Gv zucttdLsY>$O#T=nJIR5t`kLOQ?%sZg{V4I$S8&L~jnTa9OUHY1`We)Tg+g#?=l5IMF95H{uiU^eE=B%h5Wa3NYZi zb_CD(?+?!#`&dYWa+Y8h6S^x?y5w?%6D<(Ja*};XnHY2Opqj6YAC12U<>i+{2 Cil@#1 literal 86011 zcmce;X*iba8$SA)G7lj{8A?(Kp^TYIDncqDnTL=egfdS_5>go>4P=!NLSz;eQb`J# zhh&~-_W87a|9$Lldw<#v>sYN8uh)HF_jR4q{eyk+1{v;Av z56u?*&EYSd1NfJ$o0`7cIVWp34>K1l(it;1=c`U`S8dJt-K|_)ZJit?MWsb0MEI|` zxjDPaiHSM<-(Mi=Dmt3sJ3p!|c8p>Tlm4w_T`!5SwuT`2Ym2A^jwG<7T| zQ>77Nc~Aeyp8z<;1OwmG1?j#lJS!yEjwczGdC3l~mr-!~fv)i;K0>3mr}tzusTh+5a%AVX&^b zxweW~sc~)N-ve3vyLJUGkGT|0wWMsY7Znw;gxBc2YSl0EJ-RU7A)WcFtIODX{*{TE zswz1pIhpRcbJL%XF`IdNdv{G!CbGi&mM zU%a5AX6Bu<>zGwJ%g(ezMtrE|CmWU^SMu#SBpoW|voew$to9z9acYU^)|m;8K1s`1Fq zojZla#MHI4n2i0_uRl*uf0mj`7OA)*thhFH?EJ-x$1?TARy;}Nz0Us4!(tf`A)mXt z?kz2OUj316_Qiokwa2BXyuZoYA+MmIpWbAN9Lo|bp_#=WQ;$#bqYNC6dP1|agZFuK zUZY<(dQYjCOL3>qPsf(6h2U3_upo)|Pfqn#1+%DLJ;HNi z?u+^<>`(MbLCf*>{6?o>mbX~ar|0+Adrf{&*L!1hs?bPuD9fPDb(VV#pu{r(wE6c2QQ^LT)jJ>nV1D{imN#0xhYVoVsWAb(Lry|$kv|qa? z?1_?(?(8($_3(84#ING|^78V$1(Ta2d+x`^)^-MUFMX7z5eR;smiFnUk=NqHo>zLA z<_jK0Mg!_fD_c)#Y6_AE_!Fz)z0@1pI61MpF<#Iubg95`k9kfU`?hV-Yf}j&{1ut)l`H&2ft}4bZ|Uuw#3FHy^g1(h zk3{_4wUxFqq0G$8fu-sG=Y@rFoi~Obx2zOSf8?p(Tx;HBQKk7}mv8Cp9JTEAJ2mvA zrY6Jo9XkYrSzHw2==z$te6TyQA4-SOwP3AWejg>lb zgjLm=&fmw!=lHJZsH0vBQE6#HGoR!qqh7uge(N!5JoMw=hKBkNi(L&nQd&k(SW8PX zMT=ctr*7Pk#hbMJG&y+B?2Sd)gOrWAbU`_}gm0~_O*h73>HM)vLW$B&Lc4eG&UI8$ zRMZl_vrAiPeeQKxH%`Iv7rI*$(rnhOk0jQk_i4_|&c@I7aqJ?Cii_i#`Klony|Cc^ zwY61k%w7I(!D&5~QWruKhskk;kxz3ZtaAGggWAQ5&yF{ zgcEz7r0A32Tx2xUR<`lb?fUiTT$|?m-D^YA!BO?2bNzgqae{mHM59R##qs&AUAv!{ zsG+#>d-vC_E-kcL^RzAlpiODENj|jblY%$b<+thc z_3Kwv$CBw2_Y)HS6>-5YER+-FYBp49EuhX)qR*v>Mj)pB zLn!afE1wj9Da?I7c6Z1rwN|_%r}@^GD}onId=5XOdOwnuSf?TO;rMI41G!Bv$W4zO zqcA9P+0*MR^E^8{s?(#}XCR1K(bPBV%^M+7o&02pqwar9@$20UwEiTbF5(?Frb3mX ze*DlMaz*c7-dHSCvMI~G{7j?S2mgKJPeyv0!#O>@6ANQMkI^hI`fQeMu9h`UGBPq! zl5Fkl-gl=T$Q+f=la*nWK1Rvf>a8?)AH6CP#9yu9RhFj4Q{zdz1l z*<11Zo6F&8X=w%>|72uTV02V2an)N&jCFnBkvj7%HkNuM03q?A2*C^8Zua{Z)iB?<8$<%SFf(MUG^~Z^yD&G>*KtJ z(;;$YEtrKA=kCaH+SYdD?j(AOQfgivJ4Q3{BGWaTUs_ru9TL~pym7FHT)n*&PMkPF zA{D!jtJ>M^mynQfM)6u~ZmhfV%9GIDD(&*k+umGmnfOq)HYkRF6@45%hz=nkDH-2< zF4ET0l9Gag;zy1}?bD97(RnT|uDFFHikQXe7mMrPRz(yQlebgQYZO*)3CIpU-0{w# z3P^}qF(ooMnDS$d%sK3%Z!Zp1#@cgrm)K*9NIiFmzD}2EPqtwa~+qw~KDiqMmsY4~;{B-gSVw0k!^6`dFJHc-ig4Jko8i_zOdyKC-(#}= z=OW-&sF7%`WV1q0%wBD+j)||PTkkwoZjmA>i^le2juT*7ae07k4OLzpqpcX$lCG^C z?(5#)HHlNsiK(8xF2qhZymM03nfj0Bhfe?_AKi0z#(44N=#O11bIpkw_Wq;aSyt4{ zMz0}LX-6`s;q5NJ~itudgolrzJWjoRgU! zC;?zL$3Xs(Yr}jeJUsg0!^6ku3s^iAc-<#D!-x`pnVG2u8p5MEs7mi&TSPtRB8z4}6frb3yF8n06QUXr92{)hEGvG4&#Pb2 z!i?5RpOL@e?eYB&`$kPR<#>JO&Vs-^fBw9O==6=&vr-3toiAPdFln~FG7k(?8i3)* ziIaKe%$cRR7VYWc?scZahYyR#YyK#?A(`9kv-m3%#XUvC$yI3Ix2btONq{9k ziao?iXCF_Bb0_EJNhK-VV7+|#G7dfn5dG=1xeqJ~AM8!>X0^`UPD}@Y{M1&v>5lFV z4yI5Fw19-`DLhUkTeof723kPT*Vp&?=g+XsjmgauAQrn>HgR@pZ!z*@do4Py4eV8l zf3!vD(4no`N9VsKS)A6;IA&wB_fv{eB(QMZ;LP@f!_o!@21^Yl8-bBZ8(bqJBcAiE z7q6|%*@B;lE$t`)M*jW#cll6LVybS&6c~hmnk_NozK>(?cyA1B^1_ zuigY!n3iL>PWJ>claqGy>zzNZEX=O@LbvHkKVWZ7*9R}6IkdjIXwhBjBjdMGqWx7W zCp(xuz*)i4Y??Y(jZC}7JSU2p&pYb4n%Y4b#>R|u>2+@|7vI(t+O3=M008$8(~!2p zG-VMsI(`0{?LTyjDe|r1^5jwn4@OKad$V$Ks=q1QxG8jd;A;<+^aT6<(=YDdt}%ZL zEKT(yV7ZEKL)m@2T@7%FK=TB6nJrGYHKh>%YY73BPQG2!C)-laA|Xj*DNrlkmSgg7 z>aox|@Neb&F)?Av{QNmNIRw+O40N!z9|c3?N2A?MurYp?s0R<&U4|cf+<)`tjje+R zKpaMV48hwJQ?&8z^{5^hd#SPWzz0RWw|Gt-KVE%TN<4PULH$fU;u~3C=$_iOYgZjc z`t_L~7LjM@E#t(H#yba*>->?rFk#j zgXQAHuK_guy}^yXo6R*ZRQLhQ(W7+r^-p3t|ID*xyD^$sV10%{@*$LgP@@&Y6)^Ye zyN5746qb5|8l5)RhLuj~>2dTkjoQ`$KQ{j@?Px84dc{zkgA|j^G2kAu2w4mc!6{9p!A9Qm%|LGs1 z^rIAYm3>su1QsTK@%%RXPgN12A+!?%q3kZ+ziNu3KAZUeH~HlM2ZiSU(~nT8`kr|S zOv#BvO7>l`^&Y*{{eDc5UCr#ul`E&#d1YNF(fu{-f@+jR=1OT66jkGu6~x94o0&~3 zLJ{h_XzV?$#?HY3{bSdjJyZlgd;k8u_0`3t{>Xl`pV`$Vg$f?A%1Q5Gd8j%5MxyGr zw)^h!9+ew@ck%M|Z2)1jwf)mme-Ge4|NN8f&~fDD`Tfjqy*4&i!t6dH$-ZQ7Bme*|iuS+T@+_isGv<210 z5_Vj20VGXqW@ZNBMjTZDk6$O}M(JYdLVlKjq9QL{2st{f=jQt2aOVPOS+I_<FH^mjPr#H?e_6h_S)LbdBex{KMZ^-3~;Pze=NO4 zKvb0JqVbKvyvY==30Vvm<&5*@0QOgGZKsf9m=D)Af5(l+#;!y}DO<@n+??7;YI9tWQ-jn@Mrw6K#C!_U&Q7Gfd?J z8hxpuys9Q9e1Aqq&tAF|j+rt{5;9q9Gx0k*Q8KG_CEt*kFNGT`qv^ENj`w!R1`?`9 zyB|>Y-*?h(pLO|jjt@jKtB>|l-0_pLJDA=S4RM#O%{1gr#6Er;L6AUw42-}P+Uvx; zdGhKN{ml=&Vr6R*j>Y3gu1F=w7Hocr^sP>60rD7Heg9q#<kA#8{Sng6 z(3Th&8C72B_M(GRk+7(mUW$KZujkL7Jb!L!$b-(Rrl}Uzl|G4KJ%?8Crrzw_O{Yn#gnC89~b`5G#Q#rbSe!C z3?#>J#$ovMzI}bQd-EQ!7ZkIqK^L>ht`8^AoKZ6}+QI9)WG3@ii{#%jQY~G!d;;&vnK1xpPyV3RgScF_N62IQ6|BeG_zkznZ0`pkvv(dy?FBI?`ug)ZCwU z337^8Ed=%BXQ!K99!~L+`cBkFn~^IcJ6*^ywOq*W-&Z>QHrItkM3UwgI~IP1!tdW+pJ;BKtNscl!G!r>6E=(5Aox zZwko?qME8B9F>w13EjlYvwAirF_Au1hsN~liwbZEXXnrT?i=7VeL#Dv=nxN1@9~`q z;_Cqpr6ApnjO-_H##AM}7{8nxw~;8P{rA@fI>oVG#-MvaU<=2OAMd$y;El4jHuEfx z+F3$Ri@tw95Go4+<%t6h&>8^kgZR(JcX-oFki>``0x0aq@v-!s9Y{ET;X>+@CnR)* z#cn^PcUON(9E&MoH};vo0EAAxef##?k&(3!q$`t#HAW^TK4QQ{B_%PW>f8p$rNyz# zbu9MV^d(e@C&G7@-;|c}LY9s@r0(wFVKM)w6-qR9Y(ovyH#wVP5fN8Hh4)SU=N~%v z;+K7b?{CSHZxU@8i$W4SWd`Y7$}?69YI zp}X{97pX}lSRk33bHdy_JlB?{%t~;CXBRdJ0Ayidu>=k}jkDWZ9zcQZUqW|?j)|$d zGT>hy>wNZXbZspS32-nDA35zQ5d`uECEpS%xw_lCuR3h|P(=odYMO1NcLhKoS-xQe znlYgI=9H~TtOQ!_C8rPD{FbWt#HFMtU$x%Z*zg_l0IDtnQTjaMwlwbK7hXK^-d@Y( zD}-N*+Iu^pOcPCJ8gHce{bg(%%6@1qaX;7Pf0K`Tp|a2F>D@vBu>#4vI<7WKHuFnJ zu<{(a8aE_CNZw~&8t2<>larSRThK8viG*G~_N$ol?Afy@+iF6pu;Dvb)H(b1TK@^D z!-p}@Xil9vwKODMCOf{^UmN)hM~Y}ALS)?~|+GMez?>XA<8D#pLO4wMJ@uD3dj&6T&~aGR0j@O(l;li9mjg|=Kbw4$d) zMcc8W+4>@$>+@|n_HA#rcWh_aQUZC8fc@z{n_#nS1n{?37$({!Y?Bar&K_r(DG1+I z-`x%LheEQmmjZysA69?-_^G%F1y?tkRi;HFV2PG8P`Wy?8+Zv#D~fNehdOtH!e3$j z+c`@#6oBZ^WncVZV4yyxaTq@{@@iK}Jd0`_=6(IEtkQqi7W%@)?r%GwC-Pf{*K6$1 z3^syIl}6TkX)18Bc!zuOV|>GnPyI=E>MeHx%O)N5a{u0~wA4ev%EO~^>((tufLM10O)Dr zm)cUF)sxq*P3QIBxqG+d>SlPwh}(Vi>IcNxaCLND7&DMKbV!A83n1FwR!udXSRL;u z&@Rpzcb6wqhN@AwvA#-6A~aa@e8YMu6t{IV2<}*H0YB0T(3c5?GV=+6&$N7ekd&m*uV_ezZt?u> z+xyF%?d_)pS?gbS7>aPrq_@=uTDqvPUeOm*!?6t#)ja&M>nM{ncTMn6F*C z)-&x{*mviEGnD3j0)#wmH)J?=>{!d2SNb9+Ft=uxp&J3`_#0-PIDVWG!&-9qdPG>5 z*@js3$+Tt3n{1-7;g97#`g$sYmH;Ne>=KWu_Eq_PSn<(a4e~4Jj^i8}-+jb>L90b^iw@HrA|HWzIy>+r=mZ`m?!wf15x+4#ks41xey({;>u~1U713#M( z`V_jPWo5U+n{wUQ07&ftZeZL1+m`I!BP8?`-Y0MhKII^mR#yy;gGD?nr}6rA%;o+)cC?4N`G)y7HD*yI3`0QQV@EY z=kj1|4$hoy*~149dSI@gL~4mMju(_rG%e_Kp?6ItWb>lC|z}AU}iq{s`Y7Jo?E?Gv&J(yvGv4eN`-9+Y0ySXpE#r^ zx0RGAz~DHPB4$+RKR4$F9t?-I@rOrht$g?F42E2Pv)_g!;adK7llwU7mZSN>`oo70 zx5L9{uWVvF{B6@VHHxI(`u^$urq+JmTE5w}=+d|E-}^Aitao)m_TAX7;)E(ApAV&}1o=FWq9VGfGK~tfE4DdjOpd;vHYqiAbu?S3si*P3eLs~lZlQRtyAPEN z)SfQuRa;$c3T>4m-0I7)6()g<@0v`P&*Ehv7E?v|1XHN{zDJiF;}?8T3+|I$5d=s1 zD=3X!ym*m1v1v)u$9#^gb9GeJpWf9CM-r%xx~%lbkFAYKF0jgZ@NT!%k3@V0q3 zhgX=AB5RMKe`pG|&IXCS z&fjew4b~CDp019La<%!PQ>RbwGFkrj;z?A4fTbg!vMLQ>G}SjX5mqPI#eGC5U?@d? zLD~V93lzU-xFRldzt8qL%hW~sty$bpPSyep-zO|=x)ujVV;SCcvP5SrnPsJvDf%vc)SHYvt<4-MdAO(mqGrH z0EGDROg-%U{>SguiLAj}v#ML$#|g7L_~}dAam}5z1*P)`;l>kYTfr}Po-bFVa_`wF z@|C0gv65Ogh@i!&zSH{=p{KeTaijBC!$z5j48M$wj7BFY2(@>+nXznl%>)$vfo^)r z$?iu-6Yu{9^t@B%=DYf(mkG~NP*9Ks^3%kJMdP=w!&*c7qVv*;f4r{CmZ@nU;*PL{ z%+;6=t3Y5An-SM7_8|rR9#DWE3ft?;#g7O>u%*2NK!dQDvAForJFD&TCCaXQc*FoL zuw|S-t@m1ArOS79oGRj4>2M8T%O%I65cq5NA3Zv;f!DpCk@Ya6d9Of>q8}P`qYd5= zoKnniMSrE$pUo$&t%btw-c1@}9<4tt3(Q{M+`QMND2Z^^p2O~Gm!022P)vM{AjsVS zIO`s%Gm>SeUg#1#ihVAdxLCGwfpGP~iGIFw;IX}WHR-z^N|CT(hsK?b@Rg&LJRnvh zL{$Z@mBu|jrHPu|mIh2Z!P#0A5T;TqnEjTHU6JA@Y_8cW#3;Ibn}&gbL338cf|eIT z_!O}T&L;YF!7LCx2#z3p;J~aQNJ=lsp4{5ZjCMOWH+R&dNAI3ED8a==`;BX|CQ=bq z?fLcwy-wSSwuuH`5!%jjWGoz(F;?N!pGuV6ZfQiB9g%rOH zSv13~e0-58=MqTWio60E;-5c%_P_8-PXIulfDj02Fi&}wC^LtL?D=haru=`2B@slH zpvL__(@6jCTGy=;2gwrB4vC9HNSe52ApXDaC`Tx(!cE#s-ne?|AC8Zw8h}@-UNBIEba~L7a9v{XtEpXEiXCfO>(s!2Gfj@m7ozFJR{5?8)43y+a=-@@* z0C=uZiHW26M@C0SD~4y`3DRZd%W?)sJ;{IW=H^yD;4VQDslOP6>sp;%d2*S_+F4B%(!l{5^(G(N&-%SmE%98#F>SYVbL*-Sg`Rc+r z;iJr6va;HPeTr{R?wX|E8T8AMnna{)2mnsFY?YO&LmnnZ2ROQcfCO%%7S6Ol6JbUG z@Dui8D+=O;?ntXU!4lCVy%&qS)!?dk-5fpWJ)77ajQqm8U!i=yH1JB%NU8p(3ZlEk z#|}YK#bNyASPN1CwboRM`@=u2FkKYDIx5?*-AHY-Xih%LA8ZNx7>ID(*!&Mjx81)v&nM{EK3$0Dg;y()5!{^xpMGQBFz zYrR(&eWp2XGLW*bkLm%)ZpC|og^5{>$yrrZMNo@tKr+b45iebh*_Q*6y6kS|%a=6p z!oYk8SWGBg)z!zLBZ_y346NO>5J97Wwz~&3NctJ$;#&X5mQ|lriz`k})FfiRaEt-1 zlyG2Jwr?NFwXf;p(O*4FBOxbu2X9)Lc{e|cYKi0hw;kh9gDc)Sbd(RzMkgkQL&GAB z)*pJ1kCl}8a9}`rFy***?tJ`?QSB^$@RQ6;M$A&QnY&>>cwS#BUa1a{2PkKY#wP@bNXvq@81@!Zd)CftX5Oetzo9mvt$jZ?7oGQmaSu)*$e;m5q(! z&eJD)uLL;4(FZB>4H?s0!j6S9nIZC!yU+>&3brPM&w;_g8)ueg=j7g>6=wfY>LWj! z)YjTcyhr3?Ae|D*rk%b0`jK~VdWGs7O-)H!>A;!yme*Z|+Y&8+aMVtprh~Ow;$WDm z7dhdf{Sk67Jqf?aNiD69FpVJdFqccW-Kp`&<}PPJE{_Q(FM#(}cd9M-&!0byojgz) zs;SO~Qu^3qbSUeqmmnemxuY;3r-73&BQuqpbJ@aTx4F4_HX;+G7~gPY$DrKlpo2h8 zicU%4%lmS_s~qRkrHDWJBvBY+fC&lv=tw{z_=NEGL`S&fjqJiU`lHn7`p}k;!}47G z((;wix2zYuM}xt&J4(r$9#DKX;2wB73Yc;@Ea!r z-mj&#wU#|dl0@K}pFy`^Z3QW^UU-OUWVv}d}+tD}8_$cm%4uadP{J0hN>5OE7pqRp{mNR=-~V*YLT^@ zkRu3}dbBMo6wTMqPstHUB7+X(@ziiw>ynB?k||>9DZ%Vu5yOctx6U;~Y6R3;SXA_u z-YYc^4{4YUpKMo)@JdH-vJ-l4c2v(R3zATNJECp3l=+pBMIv;2f{8v6wmTs|vDq=c zphmwf`7R^rh+`+F0^Qu=BFyxlt)+Q}2Z2wVyL}c9%Kffu$$_&9Nx0EV%tUU})1Coh z)=1k?X8I7-k89)MIBW9yY|gh++eRt4$vA`&Sb@RRbG?_D1b;90pX(O6KdlG!p4)P- zE>5bSIz^l8*+)x2YsJU1R;bOMC6X9S4Okovh+e)slb^0W|yyh_$mF-TR)v6?aj@}k!L_3Z)v}M`?mi5 z6Sn&-V(Kj$RW1H3`ylXyBR+);0xKAz;!gUM=9JkbG3iYaD+on#U;Y$Pm1C+1{Se&0 zpYEd3H7ZPG{L0hc&T04JTpPIWi&sT#l|cY)<4bop-*2;}oe?LhjwdgZ2PpePTJ1q- z8HkVQ;Mjf!l}q~{s%D&jnwGXDnC18U&Ahz4MsYH+Z)+ezM3>QF4|(*6gMo?ZQ_=X! z{ODFr&VoV;hC>`KN7Lx8frx&#%Xif)FPysx?_WiP1Eo&^%c%5doZ8#ZUaTa&Ov4Ze z+f~-N71#hoB&Q$x^aM~l!~N(d;v+yNkych$r$L?w$OqL7*-=7UjJsX)<;z*Z7V#X2R#*6k21Z5W6<0J1G;#m>BtK|J zb@lbM+cyt8iMP$m+?WwWDIPtj-iaIxIkXBfzvTwW_V~%00B1s<`MDaR4$dXJ6&Wpo ze};Vgcmjx!os(0No?e<$%((jVXBNUP{rXiG_Y+#h3_l~U*C1BbNVx;y5Hmommd>4u zt7DQ-mC4}v9Ju(V8n!{MrAJiAy>VcRezXYOP_FKW9 zetQFA=~K|bv^y3xOjcO+vWyu`r)MMgS|Ds%ji}6Y5Z@YU|3ka)3jRbgn{Y$nHvSd! zFr1Dm?k&BQNm)tfuThyI9VNf_yUVi=A9hN_i}W1!TMvQ%06sw!BCJG|C+OU&;EF7} zt%C#bm5QF;qqg=Pe0=KX&ar_>2Wrt6?VqsY#XFWd6I9z@VV={N5Goc2GNA&#@>#@} z;)AKPx?gQg&GPyOB6x<3KW%@1|Ew`HLS%4(p1pa)1bwGqU8XVwn&)d;8A}=0AqI3- z+$kvA%@H2^kRs>!t_lbSF#11#{Tc|IqPJ8vK;H(|uy?PGVFInw6KDu)9;Kqa!%iUH z;^22op;cEJp`>7(14*f-Js80J1%L@kTjNqY3)_iowqej&=H$tf`fsO(U5et8Fp(Z! zJ0!uyaJQogn+V88{lPf$-aV$F)dpKrj3@&822nHj^+zfhf0Z%trZ_-CP&_20;ROBA zN4ysSfq+AyqMV&EE9K>+*+5<%o=ZB}CkrLObN>9XBTc;@3aRQ<&eW^wb?$*&4NJ(_ zL5T%Al0Qq}{rjv$dVUEh#oc@M?0Np04(A%%$&fHyZkJzaDM9sm6Eporj2)Y5Ty-l> zQMz`@t(KAC8gqh}Fejv$9Z9@~jV8rp772)7Q7hdNL^#2r7qn;w`t{; zJZ+ys0}k!q3hNDAAB>p;lzVct)rF6>NWoW>vH2%xP#LLHkPJ9bI+rfV?>vg+s-Oyz=~r!MoOyP&R1nr9i4paNB+a3rj<;6yxJZP2BuElTQ_pnY!Gl&C zWgx($azr6%A8XaF`9NSLiI2__svRs=r14SLB@nA*;8*3bUKgpLNTg{G70D}nr}wIc zxSms5st5{VbiMULix7v$y!fT;oFF@QJC1Z|9HhyOl2VAC``?9h2Qu^GVu^zNtwMbe6j_W);ysQhF*4WB5l z<{c!IP~b3bSzj>Mc@ij`>+{%0s`GpH8 z*1u-Eo$*So(gsqDlmzRlK}u1LSe_QUqmDna$qX~yPt|-pMq3ax>+O+oPQ^vFTmU@CjUVLfkn) zOg|eOo?Yt3U}r{ZNkmnz>1#fCQ_v+S#N)%i`6vwy3_M9q4VaF&Zoh;~fi~+<@wH~z z+@_;QNQN@)#HFzit@LAO&M*?$x0HwwE8A@HCz1MBt~n$&-2$H=S_R+(Xbg_2G8&Hm zsn$}kV93Rsm#->(6X%W)uy{0cB$$PWTySzWuds6BCRfIJ@HUJ@95DXi;MYYiif(c{ zF`mE^*C$>HvCt@=Wq)5>{N?M{zP8e%A!)Wag35xdW?;qPF56()skpl4GM^Z}EPO{5 zxbK_Yb)C*x=qHB`9Wve?USn=HqkHe(J&8$wxGJa_G7>_P@e1Au49L5W(d<*wdejs6 z!PPrBovJil3sJVa_wEIh$*_@CIeKl{V9aXhPy=$KMx#8%>=Se8S0OPAfGmIS!b zoKk%<^5;+G&s>|M?V)M5xU%Ie^Orh2*3x0G5lp&=-~!U-Bu(oraZQ#QXW1d9;BLaj zdlspM`O_QU|IPK}(<9Aob=}rh`t9xkb~;eK;D7%;jkUwoj@05}9+Wk^n!wScJ3*F^ z{|r(J2-iu=}%b%nt3b55!_aB*3ryK}xk7Vb8!cL2E>1&e2*Z;(7``X#`|Er}(9~ z8DYghHQa9YCOeyjUG1QLl+%?fQ>)&xDYS8W@^C9r3@(bj{b=69xV==R1T?fjhMaKN ziM0ShRS}JS_WnILVX8ecx~lMifEcmQzw@xDiYq8EgdOjjo}T^79B|qo_`}+KOa7O(OG&Zamz7MWGp|2Z!^E^;Yrgm0Sjoz;!!M}N6y` zD)KonhYjZ{uO0HyT94i1hU>Osk{5#V9e>Gr!|hwD5%a}t2_!Ho#--#P`-1%ZUO3s{ zf+saJs)!pgJs4^g#0|nhMOS&7;=^}(PdGYGyiGa}5Q|y&9Pg+L6*Th3vE*O`qCW?ITR2QGRt`>8IY`S-YbU}hjihQqI>)DJZrKJY8VVWzDwo$^}~pa z5fMd9P2kRfp`jJ49gZNUGy=YCUthg?b=KIp^vR;Jcz^w>yb&$0*r@nkga{C!hk^t| z`9zpVP{DtZ+(rMZ^0Nz)H#a`9%l6)FwL?~Os-ZzcG}Zz(9b{Xs9Xl92?`)F}X2ErW zEe;6}8=$rO7(T3gEFp+)3rs#|pp@Ht?=-HfsJwa{ds48G%jZQif3UcU4+hKc@o_2= z!RaA9k%Z2TEL~cn5Mr}n22##cD%i81{VP>YBl7{$%66#BZ{JElhd@#qzY{L=X6l85 zOait*91qo;Cvzfh?4(uJxCF2S0wtEwma?lIGPFu;`bcTGBp>3)je{XMX`W&eT#w%P|17`s8O%U_az;c4@HEROBtFoacE4x-Zc~FD(|1h1ts>W*tbf! zBX_IS?y@`EosO`hEJOLYGJx8Hz|n_0$n^T(GPTmHfNd-#4C+k$qE7|`L;yf#U3uE+ z0A%yY@K~n_`0UJ#3z4nN{2mIB019M$cu@AS7Gb@i4v?DtNZgfb6kEbV;ree@gqZ*_ zay&d%5329sq1vGc!2wywD1XG>VAHGOx^Ph^CipSMoJsG`Qm`L##=JK%P;ifqMl_a3 zrveug%@Cm_WLaL`kLBh5CaVR8nYlyS^lG@XhqO|Uo7^=_gE-B!J^5|m6i95q-Ylcv z7F!8Jq(ur8PU4x?^=x1@422R)Mg$vpFw;OmbPNsYa`YLPLUZ}YU!8uTYHt42gzeTj zcB1chKKW=sIyNru_q>9iMgW!&2`Jwt+2MWU z0j6h{w;$x7&s~ac7}Vt6hb~kgrH15$Jnx=1Bu3Zio{r4yETw zi94ifh{5!{i5*|fbM(1PItvR6_s|x_4sFg-gZ22*Q<_ngPX&AkRDrPoF4&mF7K;=s z%ueuwpI2|4ct$3^+%xJX=f~7)kCMR@6q6q}!3JSIQyjf3i%S56^b98o*u=Z?2XoZ{eDggJTl#BO4m zWEqb?+^8`>WGNAELS>z<0_WiXvjQulR4V1j0t838`#wMB8kLy9HqZyc7H# zjU4T4JFD0QRhlt(FP&k|S;Bo+$(na7>qOI@^@BPZcKoen<{*v`CArFvhZ0GQ9&+ip zg$$r%)|7DA)$vuUol1+_XC*e^uEU47q1B;;P9i9||I87T2Y~;uk^cL0PF9wdrVw=% z4g4{V2>}F2!}*&Xxkz9Aj`bz!QE+KxUlc!yXfn6T_hoEu@)<2$rw@<_&u=iNWQsV!#=dU{a19zo?Bhv35+0pEh65A8`|+tW z_1@`a?;$EXaW0P6HHWz)0A@{f?C!3q0iV5d{6)tU8U($QMHMMN&TopTvC#kfAh@Zd zH${erS7C&s;h_^`Bgk4d^d>PbZt9ZZ9{m0;gQv@utlo0}cVhf8>u_>3?pql*-7*>e!#bHl<6(o&u{34tKh;0LS-bKix&$_8FMv-s-Pal`j8v& zM%KoSVMhVYN;v#kXrPoK2u;ou%En�rxS6Vu3Yq^>d4$xh$@CK?Ly~&4RCjXG|zg zhHfKOQ7_PK;qq{~@WFU;wiIJ0?hZLjSWWUSw1l#MW?Sv%OFm8Y-iClt)k`DaYlDsk z3o#Vr4tJ-9H2vj)-7@tW1}EPAuF=F zvI5ADUl{Aion2mtbp&5oejyfioE!jf*0+=FY6WlIN0%EvgnLMkU$X7nM9b*6;PxU( zh_4S<4dASRg%j5*uw9BRx=8n!UcJhIyLpPXN?ZcL;(InK84Ea+`C0fegxS?pvf7T} zKB?sNC6PzjY`(Fl;Y{PizZh)$D25hcp+*hdRDmWUJz(ONjAaBw z_@m5Rl@7@fu#Aj^ABcLXT^n*Kii(df8Y5R4f}#r5cMIO5Pz;Pb8njxt)B@w&0QP9Z zNM;X6r<_Pg+g|X92#cPhM;bXr=tv4Z&>qruWpipRQi_{vt||602E-_{BLRR>LfM>4 zoShg1xz_wc?s2paJr6-R6p*Na^X_0=S=n-Z-#!z<#mpzA=#-DU+T|Mp7BXTw02yX; z2W>{`2p@NIo4c!)Qez%3sir9`@bL8dyCjflK#g#7`fv7H$L z=s)hM&=gP>02@mpjHfYNFiRja!h27nqP-3uop{VkaStL+@lW=du)#+?KDtWhv06G2 zTC)hiLc-mE1&yg%-F^G_oBwN&pPzpy%$u5;`sj?)DJ`vqL|H+7M8#AtUApunbSn!8 z2*O(UL8*ZD~xC3(azM|E5mvZBJHD+-Mq>(s+B@*qKHy&JhF!4Y25VwWaHnWKLf z!ckdz%Kejq=&rt771nd=+*2lX%9ITB$;6-NXMT?|9CU@I1uX^6H_8eKnIxnUeEE$k z(f8HP`iAM!3qc!+j*aC+z9l&0#$Hz!m#D{&fvWI)SVP zLMp&Cpl9TL#Y2o}6EJnQgxB#eJX9A#YTR-9B9;lOELo%1z2Q{D?zcgyXep`j-tU*2)0 z2`TL4;wlG@^RNGXadH14NlD4)F~3B&ylUlU54*OGJxY<}j(#dkh#vHz;P#|m2aYu1 zKW|m&T*qUvCIDOTi)^D?Q>*{E@Cq!g^ol)1A8B-Rvho8Q!N|v;hDD2ZYD0$L4_+!^ zWfP#}^IhtFyI5dlzy)m1e}4Z3eW9AB=4N%|P-z6NI5>pVm zkUtiPLUVV2*Y-;oVmVIhP#aY{jvmrT*dw*GKM)qt?ml?+V9!**HWCHqJ+e)31Os^Q zG=p>TNIM4ODjb%GK;Ndi2RJ6Il~idEKjVEw-ZTgi4xhY(YtXp#aa98)4%Yu{8v`{S zdGO(BzHY{OFl3@QfLTk#B{t9L==7Z3c{RL-931HQLoYV)XyE>`p|={EnsXXdg3%`j z&TT3X#T+GZ; zn*%>WqeAgETIY8Ep+silu~vbgU)|s5Bq7n0vQWXwOT48zKr2;MRs2*=fPSvcog_q) zE%Yi7yT5zt3Zjbx##dYs_$Hh^5y?RtOG}ZAfy)5TAn9@Cv;|7GFH^r1`{ds4pYNp<536mVUigDKB&mDj6RW5ias&PzK z(fRwP6%=sdqC64fAc9`z=6zNL2k^8i40YfssDiL)fjd<{ndpdc^y88jP~dI>O7ol_ zul7trH$^%E*)i0w@Ey9FnL)r22tln$XaNBvq+NsUl%gJclLw9y$Tw^Q=p}J+x9{F% zD2s%%jHZfo@pmWsyV22GzqPfk=0)OgtcdtMUsVYCH}I~Nqj05hjoP!eQK(X>Eh8K| zKC93Kw2T;WkgGx!#LU3srbfQ_PTYJE||X}tk(m8R#!56^)}2in>FW0HIc zTp_5U=dAMG^rg2$*O1UU;?zYvC;*$Y@|@W(J8sdVu)>bCe*4n1ZTs2gbn$ekOAoT1 zdG+1FdcxB2ujj6w_;guXfM2Aa@ ztCyE3HXQC0drm)XreG)uX|mc^P9s zGE@A&=KeVni;Ig_R5!VN5m7+5R>?Ronz6G$98bQf86dZJaIgxb0C5OBK|`br@IZ(; z@ii@AVnjs;I4dp+vj^7pVaT82+#^Ao6z5_nL}uIn)NE+kEd7jU ziIr^F@A(yfYW~8*Cg7|HnD}}y|Nir5rs!PRUI;bMa2W=Fk6(|h?cRH2unBjYMnLjw zInd1m1i7THvqshiA^Qr;qj|M&b{RP<*P&xZ`-55L=H`|L3=p^_M&b%B))y$&Dw^k$ zV*#Qao`-k2iFUS^0tX^0M1{NJc*G2DPLYI~CQ3PIXau58zfjp3*K>ft1{mL;4*|!6 ztV7r#{@|$qS+Gov!N$r8mo3Z1d=9b~*x~_u3O#9Z@G=o9(R+nQ@(dXqo&)j49ShJn z+|46nGsHuAgzwB~Y$6E(yf<~KW8#MMyPKUFAw;|D6^o#x1?dC%z05&I&K>d5hONW9 zusQS6>PZ@4EgozknP!5m&mmjHyNO4x7&}S-kaZo>)Oj(2r@YlQG*GCW#S^zKYF{G;6wZQm_&hGh_}QQA!~} z!KFsEEu??{{nwi{s+!=pSi>-6&{77i=#D_&A+FT;->bN+l=u8OB}gekVt7!WX4j!i zz0rJH#eMr|59qy~I(;dXT!0b~Uggq+Bku9x5rBK(gWwqy&A}{!XsI!M1hddAphGidePa^|We?yr@?JR^g&BKCD&%RvoW~Hh8{ugIcc zlWdA8*_$LGL?kODNmh1|-}CN#zQ6N0e>go(c;EMHT-S45R!4>ru*Dq+$=0DJ({_s& zz!@oXxxWhFkj3fmzw{WSBuZy7O-0^&=!yW7x#vzlYqBB-Jz!&F({8_bAXLHITMkGF zQAhAO851S+x%1~w=sakw^9O1;JDVS=a?Jx$^~p}zn+}j*w(%AvYVkv89=8o70f;7Z zeBy%cYI;fh)K}-OXjicgSl(~4`UFQH&U;wdIOm}W`Sr;(KQFIMSZlO45aI=F-GHit z)FKnRW22%VHwgoR0P~M$`T%mA?lzT5vf+KrTm8T@gU0^crv_j@w;^c-B%4P&^_ZJE z#Oz3%S5<68c=$rx1_D6EP^?xC3W4n3nnU_djSg%r+Vo&MVbXQj8kPc6Oy+BeGdqD})` zhfvT_=T0nNEumz7s748JGqZC-=ODxN0mIM~1(}rNh|A3WFnY+;5CDk+4a$@X{hpqk z=9)BfH>~m%lI6XVkp5My!s?v;v>25g1XYV}xf?gJ-1oxQyx>|Urw-7-u}QQX4+ASWkhSq=|Ah|%_;`uPJmVqv!U$A-N3 z?2kzWet=^2?y0@%OREWVaT-)Gw?mUw-6I{{OjPu85o-F`dUCW>b1KJ{)SV3q;&Y!q z)H~R))q8dma0xw#0ArnV|C-?dgt048fu(A%6fLs2Yx>%f#57A(|ft}D; zv7_IEs{S61UEl7tMR9x%0BZm(aK6Vn@9fDVY~3rQi1)>y5HlxsVL}X!wcUxIfSWt@#up%UOY?+9!9j3=Q%!qp! z+U1~Jc@YpN$S_hEl)S`)#mdRq^pzHAYw{2dqiDto+6~_*0ayjwsFn-9d~vWW7%rw-SrY}k$r3Io)#NvV;JjWhZimW#@1Srs26R4E=qEM!-I$K2nE9~o=jA1== z2GVLM!557fyY#lPIKqiV_QJ5mi!V^5Y37Q=_B}r*7d?q|iJG*TFQ5fTB*Iz?x$qOc zgGh=BB7#_Ie)5?~LU4kmyt8UHNcan(Km2|8g*$bq;BC&@^B3zCm|)O-6`ZyBe(>YSiZ)@dI3tp$I} z3EW5)F9;ZHY-|iiL$igBB#JVaI*2gaH_Onv?bkhTBp7X17m?>|FMD%w4aRI#s%Ycg z(~m);^pD^PfWeulph&Y26%NDI48awozk3ioW?tNfU33RR8{8XMjRcgQyBVRL15%%0IAsa-9o`-AGH~-mrVD-o789yP-<170;Q1u?MmAc0Xe`;J3f6F*+U))6 z7YIv%Ne}^v%&+QpH}B1%a-ubMpd6Mf9RADrNZN%8OesNHENFXa!H@x+I!Kkuto2O3 zSL?7=5Pc+MT6luhmyWO#vNA~ah{O3#TTe^Is%wu=v|2jR3Zbnwq-#X?!hia)60|u= zygJ&Hp1|l)Su!fDNwgtj1Hd^|#mKz@2lO(~S~nm~0i-qTAwhWmI6JV+7!?rjgjZOZ z@!}Xvv(S-CJ)_EpzJ>5Wg(!7C4%vEqjWI#u$}hEzLI01Wm*ijW$Iei3?c5mzvB751 zkUS$He<2Z%9HE$IfqTIqWn_14#Wuw`^QrQNWK`H8J%KBMbog^TPw*}Ao&Biuo#3=V zkTLq1!=-!b5sC~MEtvinmp(py!c2~R1kB_P^z3-XNz3E*=4ZeGp{NF$BkC=h(24^Q zID(?Ry#N}{&2)6QXmGcTR|pM0N*!k*Dbm7Yr&%LsdHHfnD)X7-P_4`WtxUSUZ9{r! zi(j3~?fIZx(gzZTD4zgiKno5z3Z2=n2KKjW{%8`=e)H_EdC7r(J4b)AVp$wI3G}hZ z3vBP`7}im~r(Ks@c#WU5m1=%Q559Tym1}$tbXh5J3*qoeDp@f;r`T&#aCq@<=C?g9 z06`E0*~cHt!RqlD2#<-r&~aUX23q~m;!;LJceVFBcq_tvbnsBG zF79rELO>=IVne9RUS1^>tB|4ko|IGtl7M9gj4Bw1T@tmCbEz>Xtv^ab5s(UFD-r2+wSTZ)@o&3W z1fS0Q5RqT)Uy(%SBJlbKw83F4Mw=3QII3pdN>Meel-s;cer=X_L@d z!I;86TyKPzbKl?J8v%rb#XEv#uJ#?O^|KGN?4a0FHQCJ1SvSYP+ffwrK^8alTC zwR9qAq&9#$?naBjavT!y@O6xGNV$5`yLabY2aEu^qv1g{wy?N(*yE!D6D}lxTzpC>gF zW^HEXd*DK;9zl~c8mpIxm_Ln|dxV!EDz<4@?MaYlagj3bJtD@3gyai+T%e}}=S7^1 zt6q7l7VoT%U=!V{SbBE`9RQ49l_>|1FdcXw08=>+-1Q$d(0dtcH+>G ztC&2>MO@h`bVJSZLi_J%=At#{}Hp z({E%_P`=w~eB(TWzmAep;7Oa8+A8U~lo8ThSH9t8*Zq^zMUP!_aG>(tH*^Erh%d^{ zXvIwnvO*lo9*5q7ua`&O7h_#lFkc|WP3(h|DpsRRld}(^J>XY$x6tDo+`1z>`hZRTiMN4NuEb6S9onkQI(nn1})eUkUR0r?{ z^m**E?C?DRRAYJ@~Uq_xdl zgzzr(APSg?ww{c4K^TevCm{-ns_*l-Z(%bhL;nRP@adMcfBiMMe)KfU9zLzDtr}Hw z3PczLS}DDQ)`4C~eC;UxIJsydaMZS-x8gos`!PwuVrkwTw2nuu3CQ_8d-Br7_m55h z!EXObHqVA@6QCPZXeUp_%l3Z`h8pfoW*&TkXoZQub~U@w7lwk6#=|PK`L)v~f3UNs z_A02Ug_{0pZE2wpS-qc!C?v?U$$#sn@8A3{ek*aZmpf4YqO)1u0eSUIs`2I+Od$n)_=$tmITd#LxxP;i2 zA01LpPL9XYrc!NJiI50i-|*QfG*hAVz~XP3{C+mxb3#fsuUJdxHh+E7bdT!*Wz6WR zY+p|gH4M+4E`3-VXr=Y^^xQS&VI3fu;(>4)ISyebKrtCtn!{+r}~K@@&0Uz6IKt4jr8*U+!=xu5BV! zHiR5b-7?B|luzSY$#+%Fl=ma@jahaoe|Y7nrC(enKGF6}d54M}9&?+OPJKH~h@ZSt z3a^$Lqb~pm&kLm#DkWg=72VsQ;d~gEegwq)L$!ty9ziOi%@>U196Sw;dywAayoL`@ z7LX8cwsrQD7c4+fI6OJcs~8ZJ%~cHr7>-+%E~i-hPZZLm zC^$=KriG(e1IYX9W!Xm24Vta@oeESs+(a(n+UYeh}s63fZ z)~ZPLiebB%TYJ`2XL6CFr;`1N6!L_ZsV}6Da@p&iWt`2R+du8{tiu)wWR=%icQO!x zmW(jLrt5|v^6U-$&n?AF2$}_ZCmim2q%Hl_UJHyvA?47zs~SI5xF(a>tYAO#UcdT* z>Rvs(at-l2PH&EF(PkB&3c88JZuB`hMg@F=Gcy1&h%&-@Z^I=bID<>05r@f@?`)5i}V z$ah6bKC>%&{`^k1#>f^B(YQeg)+g^(G3)=tZ0cq|w(N~+BJy|5P(7IEQo0(vHe~P< zLdk~wW`VesfW+iv9-Qf|PNopw1B}G;Cu($nHJCV2uggKN50D>V58))PH1X;Ev19)5 zrTpQ6`E{xOBmSL+V-SW2vqsCNZwGhhM*HziIiZ(-0)kRGWk9?ETK} zp%S=bxEC__}~m)~DWO-YH(vdIj4gSG8G?<&k79$BNhapT=- z?aeQ4S_>9^ef>mMl=-FdrDfULL;(>20Xj65CXPuNwDGs;r9Ml9zANhB^q&qjly)$V z3U)s)tVZW@%(DvVX2ef|!Slj3CNNG!Fc>P!yh@hn-#O4vBlDx>oQGBN|K&4K@}qU2 ztl4*Xk&2myg6NldLyxeUt_Zq7%7y=w{oq>0@;P3Ej|ks}FObBi`8GM9bQSc}^fV|= zl~dt8$hROGG%c<76@FxR`AKIJ>*sjBOcmVZ=-#-|_pynon$@=kOAI9* zhK449@yJY_Wp?b8mfrR7(V9{+uYM7V1Q%V7ug?1~Hz#&&c4&);lUxip$-CWqS;g46 z-@kAOYYVb5d1vPr2Cv45H}mXSJ-lHt{oT6%v%ejdkYIoCoP{n3lZ(ilR5dF7U?u}y z^od#p38L0IKO7*Bliel!lh^kmB=!`T4nT0+jep7lh|U7c{9%9vi<3Rni@Zq6fP&mByz9`Z!n#cr-{QRDz>jNoiQhJovwEJZlbmqiDWI9ON;Y%e;5rl1obk)SRN zSIsLbVu#rnBHt7I^gmo>P~34Hy*^EUU@9q7n>BwQKbPdgeU{_z4EYWg!GMK-PB3ZT z1*BtkMBd8GtmfIb553x90xW?dqfn!0Ub+$GSseBCn6AKVzAz zSrW8TQYGSJySnsnu^#%&_Ih1VP&_i}4=4PJ>dY1Fqsvlk5}Tpg5%*QEsq{x}0Z!BV zz`lmM5lz&okksH%9sPKt2SbN4>`+HRbIJk0ny__;a$(dDW*OYw(tR$AYBqIG3 zw~Tz~ZcU1?6|<#-HkxtCs#hM>?qoEP?Ftv-jJCa)?vNGAFGL9!UXohs*6G(Z@- zV$dJ(rm>MI?;M39%%|n;?`1{!LaB z>cC^*$@KD^fwTdO3iS>VL4f8AWEqhTMq2sk20>HcD<{XIqjTS~A5&g=)~U&-c8%_H zAR{0}3b)Pt3N%tX?hGXzM+1mPIY&)@_@e2ldi&zB(a;J*M)C^Nqrn4hI~ydIl9cD~ zdh1N}U6ue6mP!ggZeu@d z^+4l(#n1Fw=*UCD=T zlrx~H9C<*uO%@Ub^c@(i5rCjpSbI#pGr6JUKoazCulLTGCqhx@I6EH(r%%5tk{Vp= z8pXc9u79|^7IHOL6o##szg71vnEw%u{4!>l=u~D~;g!R(ey%zE+MhypeC_i2I!fs8 zGc%?i+^vsr65v|epB1!TC`gUEs{RS*@}6u1_MYfQ3E*fJ=xYi#KNcyG^3Sp;!3JXj zJT<#v&PH)fm_lNM4=d0RVYApEMD7qUV`9F-`tvKUQaf`qa(ta6=hzrrd&@w}b$Br^_oT&Z ztNc^d-Tn!tSvKz`2P&Pf`bB}BVcR$ZfCrLL)Z>?Q{vd2gnC`e?^eUub>NU9vRZhco zIl>=^feWCSiSTmJn{#-YBQV>33lDx7W9rQb6p`SRfYHt&a*&`xd|_|_a7@hh=y&V6 z0B)Q}BR)Y>i}cNzym~8IMXd9vM$6r+@TkhbEf?m}metfE0)fsD*p$I7IP#0B}Urun^C_48{!m=e9g|>{&+k z5G8D!S~wXp7MsSjORO(!W;kBKCi#$0bZFU5@Y7nD;-}v&!_q;=&2(=VoIhWlHj1PJ zgnM6D_>1p|_~q{@OV-4>a)Yu`-o#`uda!=<*_oHVBdL!VPQgM zG$fB$6zKJnK8F9ahg$2D^j+cTwY4>Cb1v|s;X@blvG6&}MUEXyRAnM&=i$ubJ#b*+ zC0{G>!zZV^OnN0kXZ}{Q2gnHQ-&}J23{_Qu05$L55pvglz8Up#ejpF8hY)M@Pfo%6 z{pu!@P$J=PXa_@M%J`n^7QfKzHLEB+(|ao2y!~k!`P$kWUgHa_ktc`Be3=5a2yr?2 z`8L+()FqX-wkAjl8@Wh=oW#*Us9AOur)%$LzanQtyW4-+ZYxj!1bYUefG=tYDI`0o zcng3&M2Cy&ksu;qtHveaB*mvmhcX2~zzPzO1BlUP#50Ez=;n117m$O6X;xXuzA%UB zW*f8nPlGE~(Cuu(0Yg>^2n+s1+^x{y2G)wiJ)6>P4gH7qZ#gF#iIO1OM|@-{M$26L zqVlCQ3ZL@49g(J$S3Bxd*MJbQKZR}bME*DW zQy^5rgcqia-8LWPV60Uq!u6=c@PmVp`(GZQ}{ws9= z)sXPm5n6I436@04*H=ca>J>$d{20<7(I}?6%Cps{ESF-#n0E?90IQAtDkMC&3Q|PzRwbgk-X|^EZMQC$;`YMU$g4G-X887`I_di$;M|-6`HjYZ-*;CP!oo8 zvz&&r09{yLN=pszJzJf9%m1K<3_m0C7`i=@aT-MMG}btGOtW*Vcn@*`Q&Akiiy1!u z97Qlt)DxXzxcr!YB&24Sr`bmMU;X;Ap`6 z`pYP^Z>PAynkMP=N265Jwt0&J4f+f8420AH5jvRg0pIy=W5%xdsgjwGT#tS}BE={U zH=4d{%$;OUdS@wtl8%_U0b(exdo3|Gwgz?A%a<p|ud9{S)JV)WA|r?Oh7<8pN)EXOXwul6vFQPSVK4qw9DTDBI;>So*xA z9f;PQ#YrBP?r<{<6KP#p9~&PRmAj5U2ECMqGGp;+bI{3%KWl3|rNauky3Rx-J~q~n zoiAc|c=*Yd;8_VMSVXVdfS&}Uj&1|$WFU7qCx|nakjHpg@=kM!4mbPA`b8zO+@s)$9hUW!&phw_tp}%X4+->U0dDs+&bX*r`DN*xr*0$LcV18NazBc#QeD2Wjy8c!jGy?^m!UqnR zx75Od1S$xNR6`AJl@_IAc>VYVJ>3LR6u_Ooa4Dho6v7NrZe}Qi;JQL&yi9xjEU0A{ zlVpsg6QRpRt^8)DC_6hum1}B?c|MvC;p0B!J1zP4sszt1^+=kj-&wvO1*9C}1zp|y zZLi{>tb-4lm{tQ+1-Dzx&4ZcDOiX?NY5$Xa6ugoEgo9rnoUjSgEtnoqxNIAXqSm-X zhG5cTgL%oxwWD?9msw#DLI$M&Q4awKGm_d)0!B-1Aawpv$Nr-~cKfQfnj_-F7skib z4#B5GKY#vwviN6?4@B2i=zuaioBDS*`@x*>x=~m#A8?)Mw;X&>;0a{03)j!7RlRmO z#?`-OA&vuxmG9u(`^Q@hnTlOaU-c4X%h|IJPk(+KdUTONvlFOaOFxUCKhzB%vSMw_ z=Lox{iD&==?tFNn!#*2uGeWHB?zIKF%-Hy5x`rz<3`?(n2*$v&rnm#9HyROd+I`7ygsAKk)!n>J$tt2Mh}n5aCuoXsvbzSW{v*D@J2PE z)}bUp*IV}}!QwADb=2$M1F)M#gu9+roNgplFcoh=}E74vD>b8lPN4It!*0@UmC zmlq8~Z;3sC5(u)93j~lrGzwy(U?Kq<0HQ(i2ufR&HPty8Q!5RJ`{#Zgi2W&a`EB^? zje$z`tM_I!Y|x|Of7lvp^gdVhB>?H`)5h|Fo31myjTg7iuq#|U>;pbqnnhWd6-*Oc zD)6@oy<^SkoREF~5aIA0-QC}Gj{nbJ62pmLcb1ntbHt&yzli)hx%5`V<=p8|@9cnfWQ=c|6O zr1+*aczTxWvwR2y!c-VktT^S>j|9Q~@$6&S{wpaOdt0~EBMaZ;P>FaEbJ0mr zanl1CgV<32@ys}sfr$`N<#j=Hs9OmIi`FApX&7$rNh`cK%}PJKi%f&YulF*;A6o|! z5mOF3j8`|1r;CBjC>!`ZtD$D1ZYv(GGO#yu`S7Xq2$isxb%g2FwR8xGgYuqZXq9d% z5#E`aTJLzXe3Gjz2mw=i@ehMW9`D(9Ce{5QUM1f1E;>WJR&Z>)=pwNmb{*OU3ziqn zMlo4)N-3mlxc?Ebf>M`=qy!d$ZX9-mf8OvKr6dGG9N8!~6jVRx{8bp&0ouZn{x2G@ zClA5-4YgxM{B|M3fBrTV1KxWg@h*3c?223~*lANvw|dVQ!=VItzOMeQx@2o>)-UNF zl9Iwp1R$Z{CidqYr^+38GPu>TmFK?|hX)7CqauL`2N7NsLNz$NiD)Ja)@=Ir1vNC^ zp?mx&j)}yLU3NV1)Sgrj_)iRb*IEm$w2hk}I}Js6WCVtC!Cy$ysGlymQ?DZHj8Ai@%wq2&5%ys`V)7l=pbH9e( zNUy?dp_D?I5Fa1Q&6?W5an~$rdV1QLheLJmee2|PqHw@G!}ZUZ??-BO z3MVN5I3{r+bW>EQ-(et?;P0(5-|h`Y0@GSzCYR3khRyk!u>TCQFdFx~Jpgn@4>E>d}dwA8B98VDm?x#^r1t!JRU0v4FKG$*pi-Zk1<3Z z)(QwDzuu=v2ay%IsrWw#P*!GFRMV?3Q~#W>-Q*_Zmk*toIlL%w86x47sN;WEEdMtO z817_DQNSQdjTD3EW>K_=05H&zPu%A7a))zwSPqH0Dtlhj5H zVb`{*SxOuKnC3C4Rk0!Nb<$| zMu2zj>w3cbH?It|Hqf#E^=(@7cc`v}69;V=6nyCNg$ykTZ@662?yGgXMdI}NrKLGh zb3mA8S>S|_C%mW1j7nh`iI6~m8m`Cd0lGt?Yj|OZbjQN)*TBJmSD5UOvnlXU@l098 zfoPo1*L%$Ly|^Q^mD^AXz=B<+oq$~If-b}&oT{XX) zoYCxl`*-kR>8I%Ol6iz>p$&sT7XK2GG{9O2%J4A#jWN&w3k844@a@}|jK(dH5t3Vr z6LhCbjpZC)=Vd}ch5Zj^H2L}S_x4ldQ5iqdOI{L^F9%V&pvF-TtL|(3M@?<}&TLdZ z`1$iPrsh=}xt?WV-yjCS6hLZQOJiIc{AXXD-a*bOeHa>{K8+h1=tF*_-vPSrj*i+D zE?w3j&;UML2l5ydoMyk&`ts2(ZG(2iBvK?X!Z~%z*0seQ#$vVG4EBAgYJFV!Xq+gs z3d0_%?VI0#uA47(5MJL}zOB$rjh4yY{m=NUnn$iEPA7-x@LVaX4r|F#&?SaCNHJ3=JGw z5wtW2(>QF?ncbt8*F$9E$c4#6y@K)vXc!TubLlvmCE_o2RiRHn-M!1s3!_$|@;9zR zm?MAb;cI|g76Cti<#S?%kVKe%vnZyLs=KI%d- z1;_;$J>;Sjch9FCdVm5SR0kOetyfc;IHBOIx>?@Vx(4|2e6a(57Gh{fy&Fq%+oIKuKE%OGma6&4}H$piUfL$ z&_;BTxELVYgz}dV|H4p=wAOo@70`Ob&8M%}orfLooby|NX9L-V!d;kow#_CH* zxouhJgcUDkUteEb%nY!V(PCCX1#=UV$0t>LIY6e_XC-l}K4AK{u3n^XqakBMlGo6=T1d3A2ZB`WO)E9w~T8 zZbb;dMTQ}n?8M;J|18m*eut~-Zss<=c~im6F;XOkL@&>Zc6}tfWb4uG!f^A88odrQ zJcLOR7bv`pc6RW|Dq)BGnx7}rc<)Te8%b;5PacN_%<^wP-FPXxF`5EIuQv7k_bn?!QxT5{7&CQCaJCU7t^5kt(_8i%GkhjpgbwCQAQJm1E3}8MpeS(qaln5 zN83;66%49=vEhyY%+xhHYBhK4-;%|d3@-=~^a1^6wCa{oI_Rw})lA_2OHIUNh5+4c ztEc)U22HzfE+D~?NV)+wR>Au!q``uiS-}&x{}T(+irRkd_?#$KwS4W6ExB>AjCsfE z-wHAw3iPHHA2=@DL0A`lG<+|(IN@VN_!Hczfn6!`d{O^`ip8{$7y+6Kaw?oks1&e6 zg&W7bwPMturbZ?D`}c3zBZufH{3$by5O<*hX+IKud?764yP^##NVx9-hg7v+bUzbX51-ob+c2s7os z0ccnv*x4FiR0(lqQ&Vpg`AkjP#_5vu&2d{W=Hs5}1O5ubUcYZVo4Rz#yjL2$k`@qA z5L$BVs_5aV2v(iAz{&&`%AMv;Hmn%6{EGSOpo1QGm#s;OX0IYg7N<)+KwY{M+EtSl1gF$ynZ);dOr`IgdTl%R&mn>bOw@zKya*8? zGKqw#m+V`YWnHDWJUM#$QpuS5g**A=+|6R>0>HW>jyZ`42|#`EL^1$jMk;++6#>BC zNl~iL2R^F<(}ot36s5J{Fq8&eyVb>uw=0GDfiA16hMd-AKem2?C5M5_zO!rP!w-tQ z;+X?*BrZO^n}N!vH5-a_C0;B}C|2jxUQOycQ&$Ks?D{sp3ho7$E0h>mfLfWI7s+Ta z+Yg{BcOcO;YCP$&z*lH5S_&!{QT~EKZlHOK9ulV?HXT8Evu9z{Bn0rnH-um}yAAl^ zeR)LrfRk`?>5eC-@~bHWh$Li0Z6jlN@1-qnXo10X)|ogxv6K1fHH!Wd9Wj(agliL^ z3_>DXcbs~JP}0iE>eE+uB!bHwRz3?MQ?*GJ)ot>@8%}$EvB-*+|0XX!{!n=4 zJO&{Q3`C%r28f8TDk9&D%tIeGKa7_z-8=6M7#F0+8Qu@u{-r?OM%(Ws^+=gcWm>u^ z>P8uax=;a^U{oY$&;4`^co9m_%|?zXEKWQdgLI9{#hHOU+wWR81uLcGZ~NO~<6`*x z%>mZUZyNap1j1C=?jg}7Tkl=$8!WB=b#W+D5V=JFrai&$-yof(@-ahT2Ces+$sW>| zXtx6=c-HL1xKIQo(OKY(f!qOVFuVrb;2PreJ}W(%`w+mbqx13%l=Vs&frJwu67f$x z4m>CqP>-PO!MP~(+uN1S2d7TFLBc7TTF9_*<6xKvnn%up884#9l5x8MTCx1iL6uYw$>Ekt{u zxc+rDR4DGKMC=YGHCKxm8Wz}WVP>wde|)prfiWV$^KFo<*TtUAc}10mw{G8#TR8Do z0bRgzD&Bj+9rqzKu!IsS^Cm8utdBqT*+0d$#}RyHy5qt?y}@5UJc;0SpP%d3z4qL= zITKlJ)0Jz}dv&IA>UrhO%7Gi#mc_UO?=pJ7QfKBKK5_p>l=1XF+A%&q7Z!3%L6I8T z&U{sR8x7gjFJkX|FE|br7MCp#TJ_%FXLKQTb?qOEz?TA8VxDnLuG z$T6w}Dl=CPMPj~+ikMp4OF_&`+=Q9!6BBl2Z$rfVwFc2h6xnAZOkvIYIPBmt%A-I^ z{&TY-sWQYm!ZU$W^?++YUZYJ~>V1YM?x!Bt?rjFOzUAoD{qHRpBT=a+G6;XmmGp8z z6Cb;po0@9jT_FpU+lC9ABqA=ZJjRc2Xeaj8q1Z82E_Cnw{Co)vkxI*}ySMTkzT~{; z!lA~Kr=yizhx)9|&B@N3IWs2_a34)wKrKmu#?4*oPCdpG?zzwYpn1$4+;H|Cn>0*p z%e=~uNdZjP&B(Zgg(I~-etLghfiH?jRFnnt^JK26mwP8^EVHw+a*K+()GrVHH^tCc zw60Nve$9KMtmlr^W<%M%J8Skfmp~(GIB@x>A2Nh@9%VBxz;)LVthpC8j9yC_juyZH zU0EHrY4?H=mnP%+6ZDpzM!!vgvbC<_wQCZXL(BGJeYJ%9@9@=AOJh-*W9|Ey75Vlv z((JWrJy0;-sMvL16bshBLR!L8O5^QsVW~;7he+ z*%O4X&gBvm0fyd2C+@pt4wp0i<8kNtZ<@Fz0lnsJuXT}0Eb&_XRW>A!tT4!;a<*4) z=io5BUVAT`6ngtBr^d^0M3S;?p0gMQ!NSD3DJBbD1bW{FtG^leIECh@uaXztRZ{PD zn-l`pom}MQpicqjil7Zy6xdFIAKhP~FxP4PHFmNy_Qj2R>1V!dI!U*uXvm2;VIZuj zXf@o11qB;0DS0lqZrL8?e^gXd!eC_2WKicsc*tv-dJ$q^EHaqa)?|@z!#hZm-eF64 zw*gRqc0V*_8q16nA&HN)x%l%RUD<9&-GlB&E~Y$2G^wJ8$7;OKX&K)U9uKN0LDcPg z%qi}t5@kt~RcJA%PSE&jNpnB?Tx6d4n{yafxZk_RLzg5Bc&xJ+b;{J#6e-{Qx7`7> zxlCdD^Rl(YdAEP;^!Z~&`{3p4*sEU_J?Fl6r0)Efocr<8gvMoT*OSo*qj3DBm-g`z zW^nAj!eW5R!4ESX{mePwaCi8m{elgO0{6$5C)b>j@YMZr=7rxNrEcqH_v<~CfiMeu zd0@P3zyW>4#nuLvM(0VBJy8eD=I*+ZqO?(oKQ}IAb`(tsMU)C!`-;}!g9zKYu{<47 z%qf5sg4h+xdJ!x?qHyQ91%FApTPDI1BX=LCBDJ)%wBK>f>nTrhm?vJVyBnDwk=Qg!qBZ+lL{0?jyFw?vh*P8Dryc+|0AGTO(99LD=8W zpp2whavHZMHrCb+z3;R)-3HA(GQx{9YmdGfk5nw`QTy&s&`21UUZph2+lCB}g`*Z? zTnIT;6`?OkK8EH1xeF#eM)VZq_CMI(ja`LgEq8*OZ|DC$5_5>s!p@rQO{u|T$hs_* zJ^WR@D8Q*xU0t2n&X?{I*c+u>zZT$r!gYiMd&w0Tf-bzJ1?7~Z?E7sj_kNcN3SyoHm6iqAGZj5 ziZPriAP(@017hnP!cht^*!Hv60U&-j5dnt`%!-33dTvr#_PoIMNL+XLFC#&A3}4Lo zEjhen--lAQm&fiim@%vQ`1lx~5qSZLU})7QDN)fVwbEc(o)IL(g~1YrLWdZR{;JQ2 zFG{C3Ts=kz2%6ux2bc<-)|!tF=Y|}&w4U}pd6VHtp@3t>Tv~qqU6m6J!RK;SAo_yl z0$|}powbvble&v@YS3()`sve|6NboN)7Rvy7ct|Y!dNFE6XG^GcMgFOw#Dn0P+5}OzV>krt%?aA7>z#rUZv2#0|AiNa%$kZCA@>(Wxt+z~7m$k>tT!+GljdS<1@)P1}dy=5w~ z*}i~gCJgh!KrVZ?bH&^K8fF>mI?U=242ZLfEaB0kv;$3s-v!8d`1d~^9kM`H;dvLa z1V}DXHK1(AarptLl8bY~_#r7fuzGq)ZI>k+Cta{Pzzq=D4KD?OI7_lsBJUfcQV>mY zp;*Ngv&!skWDTS7a~q!C!@zaq3hQ66qHPtlh^Fg1^l$axwFPTMo)Y7@b>imD%B<8! zcvF3kPn4Yj5(s{J%Z=lSXRf(w^zy{yuSD$OIVphskx_*oNlYK%W}RYmZG&}3xp4?e zr!!3vr&KbKoYZ91oMK_oU@P{)sB03@B?@iS7`#<>X-{@vu@UMl_?~N>ci=ZJ?sBIH z)Xn$r4{KjQ96*uYc^tZu51tws8rBSyUpFXhg{4*I7!>ek_%P38Jp4CRoJkM4U!jSo zPR{LGKlf)n<@qGqD+KU`;A~aS)jz{z@}h1YgVSs`=5_XezL_jUXZPdb0hbUZg)9c1#93`~nx zv%qA8pZiSaGDvCM0fviZ$EBr9FRAR0BWK?_QrXAf%em3^3K!G^nr{O-AtGMx*Ob_jxKuGJSKMJ<@Fhp_)s}`b8vCgIPXAfV;J3l!`*u> z%+!|=vD=D;JrY+p10M&R!TnoHJ+CJWgnE98DpoceyQwqTdIu>Rok0}_$8D+$l7inpSivHCXT91#$9N zViTurilvZ$d)RaQ=+J>5!i6fSw0+K}T%kelW_4$y13Yc69w-~1Z~l2Y=$ue(+`EYJ z90!Ve5hQ-%00g{<-YUh#fRfC#dgyeg8|ondZ)A*5{ch-PeLuMv>ivQ|@Ix7pZ6;Oz zBlH1K2|DR#FDjbFc} zeNRk6%=0RWik`hn+zR{E<)5m=BpK zAWXm^h}b*%TIJrpgZNJ!yB6Jp4-uPT)IGO_gnKGBF)?Cg@)&Ks2r)briN!V-FHZE^ z*GdG`=4Y=XXeSkyT+Q#+lepFb8T+el-e|B;K$fuc$Dc%n*m?SR<;YPs8VV=an%MFZ z9#IPJA}%#ja@}v7J;bemfLBZ-8M&gO*MZZXoq=jFnxi>iZ->)J;D;ELF>CaWVq zI1m~7;jJq|%Hj6{Msfn+?YXvV%hMNPHFy#-Gc%PtTD55W+Q!2?2VT^gJ<;m=aH{{y zmoM=ajraEM*%P4k0<)FLn_s?d9Wd@iQLc!cgLW2$+e-(vICBonyoh{nVlp*@1{Wpf zv%l+2tS|4%cw-~~?-V8He)U22#?ob?x>HHjSy*&-#B6&Fhf8yHg#t;J5D|xKa4_wHT0oXzQ@$|@>v zo+@@XKrM!`rCo`sP_bmp7lnNxJ$`k(XBwWwpZX8=sA4!V87mP;o4>)6Tnh0{%9XSBy^SQ1D-n&L#XRE;d zb;oA$#DtKiwDZrA@!cJvk9CJL$YNn1_Pg7UuF!KQ5Ke^%{hV<5%+B1bVzwQx-S2!= zXXd%j0@=Obw;?IqiTy&4-O;`< zf{}|8fm@JM-@zqa(EDhX#U84OY^@}17d&({b$|demKABh#w!{b^*;56)fiCnod^-@fv(V1Yrqjx$U z!EuF8>i&1lV+|9diRssWS0Xn!u>6&w!+q@Y*P~+LgL=yM=Y0$i@lAF=4E6(~8q5Bu zk?Zle@=Y)K{k%L--0=JNyO7$C!3bFdEG5; zao+EJ$RT#Lr+TjcEMnsDEp_1WfJafk;;cfcRbe7bT;Sn>XlPUO@*L}XPN}LAvClXX zKxuYAaA7htf@PQj^Y3=N zFizSGI-1D!2i^$~08D@5#(MPzp-x-DH2dw2^A=hVJKrhec4Wi#nvfvy<97)Ndd z&)NN$u$=S8?|rs*nw6u8Mf$E7tlVfu%OdQx?8_gTqWJAt6fhS8ga+D(UB^7(rNMha zKY`$1ZpKd{7cl;yKJ@DwI^5zI)d~qWV2zb^?}K@~XWg$< z9mWV5L||;${1lR(jQ+r~`t|Eq zjR-wjypQon7b3J!j6WRMpC679HXU>wRZL0wcqu!!cxWc`PS@A3d#~gpOao4=^UsgH zM-sJzgAh=7A=9b~bDL0WBM6=lb&y-;{vX^_1M{qblnX*QQD zx{lh!z0wb?+?Y>q;(3R--O*z+9$Tw0pDQIh+fJD)3rA4({LyL_{>hQXmKOT2S4(Y! z?z3&C%=KUvz{P~Nxl8B0(}(J7*GZ$@+5z>C`(L|~jG`MbD0$?{n`nfkyfS%jD>ed~ z2PwK|r`GAy^%JfZLsd7C?uo3G05o90OpS$xIu0~Iaq;`pN)@0pl2!Wj!LZ+Z!8VX!s)_-Y})e$RNoypmK-fF8?E(LV~~|(kJ3rL zs1R?Zb6^~^%KL)+7p5{!9?eu_%B*|E`uz;^{5K4%%(@)L0g$Fk8WdoC)y+RO^Rgfe za)p0l;tO7puXb)S;`FbUGD|R*?E)=;2}@r*cA}u+k!#nk z3~^sP=(NQ~h>j$V43xT1gIo+`l=WPo0TdC)_&NOkcSOPv{2z=sGs~Sulh?{`Hhd~< zMV>M$>#cw!N8dzxB~NG_+Eb(B;c9n+fHuy zYDe7HPlzpZyf=cH=x9~G_c5?`1b8zwbu@cZR^OMnIZMnUQe2HpyfZX2q_@uT4?F=L z1cwto2hJlR>)%a|Xo*DV0m?fJR?w1~7p5@9xSw4aIiA=)=jZ;wVO=3b}be+c>e>N3N)KAy46Q zg=X+U+yRKacw1ED=DvxeVDGg}H2Fs}1p3R|=m2UW_5E8>(Y7C7a9O*h;gBbK&fnLE zWh4+c0=^6Viv?<2+(Nk1i6^a=uG8t?pJlEnzaOlknYp=NHv_}gt!N#r>Te01sK3YP zk41|(L7R`uXOp$L#l_uv=e~`P?>T-vse8F;>?-c62P$Tp{79e;QAr1Z2E~bp1XlhD zQYek{;8f3vl2dykADi`}^+bMs9pq6}|LTB#XsB z@J4~B^U*k$@%PHs)#~Fv!S9mO&`QxU$@8Sp1g4CE=)m9tP>=qQx|`%tH###JQ3zl8 z^od?!U>D<$y29Se*nqfN@z1Mz&&sJFqjtbD&_$padeZnzH(T4#kOrDf^f;sK$%?N^ z(*R@9*FQmY0AlR$zhYVA8M_YVf3e-v#F`)b$?c*DBh8njzY|GLpacvBqpby|iP^;+ zFIRv(5Tvks0@K-)($A+UPz|7SB>?vh8DIQNBBR7>Wj4Avu_#E_-XlBY!Z)b=h@Hh1 z#I#)@syS-jIyLAnAEm;CwjXe@PRijAH)_V3V+hw1xa?$P!{d=bK0!kjaQ?o5=hgSq z`p9i{^)3MBkKqMqN$@u8cK*CXvqW3)g!2|Mw|r6V`$RR55u@h8h44_&*J}@79KMNP z1~4#AMm>WE;~ub`Lt(?W$Cp>((e+Tb|HspJfMeOW|KFlQl1rv2w6W+Ca5@) zt}%b5(AmwB>N4PetKg)7^RU=y=6m<0cod(-ds<<<8Tl<+&ZhTezU_|Cn1MB@vH2}#aG<2&f#)1&n@n|p{9 zckiBqhfTc(8A>`(?$c72PQ%P{y8m-$=doS4TSJ9Gg}HJbqzeF?C}Ri$?yTrB(_iL~ z57OhHE65;%q$lSgokASsp+bpm2q}SgrsN-QaZ|<)3lNw$HU-`@E-ttiB~R=?Z$3A6 zZb~j1c#t?<02C?+c;9)pTEMLHh@V``+0{MpYX=2wgwZTiMy7!A{}UTpYVTw2Vi+f~ zyNIQU96W2c5#9SmL6Yy8j%?(j+k_WfYD;(T3l3n}+`f2Ijtkcx0Bp;9q>?zotQ6WNN zl7g6D>?WLb;IHvRzPz;DhAJX*SGR4E#Z^z7?w4ark-{ByEE zXVdN?I!#CC5yUou3|O04I(zXIAZvhK8hI82NHFz-)3Db*^Y8EAD3|<~<7OqqNaC#l zzQdgT)o`qy6WPCiXrJ-oiHD-$ytTAi?`<=kOoTCB(j;FmjC-+2*L*?y*pP`C`DKo?~->mQg`gxU}?{t1AKFYn-rV&iZr=+$> zC+^Z2IY3e|2?-~KlL!k=AOq^hM-Y3ry9Ay59*BEZFD?kw65*tK`H~-5ltAmThY{2a zbq0VGG?oFT97vXhD=-D^4+>A`N}OUDwHnFdr=h-oBTeW5s;H-l!(D4 zW=RjC(CKz&amW^mn%X|%k(A+zaCUqZEj_&u>~6wGy)Zot=ol-Tlh$TS^JQ_4dQ_pf zZ*g*l{E3Mk2x2!P z0rNowA6XCi!^K2)yl%zQZ#_S7-e+BGs9qXU4w-_Gm~HujK2_fG%G-}vR1gs`)724>Qq~j-VcWca9wWxlZu4C@hT{wE*B;xR!`HdYOi>;oo*`Af0WvOV zibMV`kOpu<)f0H>_e--*M|D;gIZ1wh#V!VF+>f8jHIu)IZY+7B&-*KP(T(|664Ucl z{x{Z_CQVrPNb5cbcJQ5InB5cVp;2_AJU1PnB3C0u2AhH{LKTL)9rqUjc!Ix`IDB|> zr0Pqv2hFpyl4wpLJQK%nVMqmpX4r7(6hba*fVKgnFf}!J%xj1_SqW2vpUfBH51;`3 zTJFJYy!h_?R3~sOlt?E^mRfop`+GtR*(oqyJtUN_28TEXUly6B*usp^{O|}RAUOQT z2#;(HF-4~h5So~8g~OHzfUc;JA1c}pvw~N0Xz+6xwtZJlZ)RXdgWvPn)xN){HJ(L( zNR{+DYh8^xr8!xB(N)1i~S?5Bks(J}AOOThh-7!O<6m@O+i zd;66-gpr9}FZEuQ!dLY>V}2%!0_G}|{(v#@mLYpl!G8x>2YbQ#-t+~Wbf+{lhBhlM zP~fa5);lu3%cp9$XdU@2G#FE|Q9^6TaMF`K>H6;@UcWB!8feK*b5>1rN)*1vNj~bl z|D+-&ZfJe~i??fG=npOoCkaYm#))p$%jB^86EfRmgAy~I6>%4pondUNx=OPpTga)i z{6zYJzFo=>W$W0+R#v~wYw#IUu8i}Nl6@_?eadLuTNHb1drkM@+qUY(@i<(oQ&sQT zMOz!lOloTIroAyN*OG?2@IOohgApLlAZA8@U!dob_A?Pzw-n~Zx>a26Y9X0)w7P>$ zX!@~(GDYJj?0rAE&13Ce0vSQI$%pU|#kJ|^d#g#N@piI)ysJy&XR;*u_(=RF9B~TG zMfV-sowwy4RwGvlQz`vCA~K@l-x(h5wR*aA!)Fi6lt21Y!_(()+40tWXFOc#c}Yq# zCuZc#ueqVL^(opL5iBMg;wDPen!GbYlA=f5-yfiR{!5~o`Nc1%k0XXoxEi0Ij0(`7 zoQ}Q36m@CT_U+wh57PUd=<`RS9HT=m^hkjUe?_`Uq^i|OW2GlLp+oU;Ntvg)`{`vf zgdx|rwQ76o;61$c4a<|$ytnr;P)*L%w2&s($6A=j;^P!tkC5qqJ9w{deRJmt_w}SW z1)k>%)ywWy=^|@?Hg^s<2P$NuGz6|p;nqw}*?A*M@#zUF1sX9Fxfk4#!vl1;cD65Enpx?QoK))$~FYsd{DeFhFqgU-D z^I|;UuiyPu+xR{)xQ{e*u)UA@YLj+8)A6<6vMAH90DT}i$3Oo#w2a5Y|F z=pLUw*cup|?Iahay6Vy!B|T&~f6I`AB}k6_T3@)f9AEk}DN`e1G7= zx4p8yzO2?6liKQk%Q!boKTe^@^`mXYNf8ra(=p>OE3GV?*}%}x=Y^^4YI z?%NzK?QM+?&dsUUy8XR9JTGQ_Ac34|+v}JjwFPHZvhOQOMIY(N`Cq8$`}HaL^3yCh zRY?A4gr8sBe^XhYi;+>uG)kPG3jGg8gaU9P19>OZrvUhfJ{4pf?#_SZH*t{>IZayE zP3MA1)OFiP6A6WbAKY9)Ao1;+kfe+yu*NDOTR7DUdn$_03n#KU?AoHYElW zKU-bzd%eWEk9u%u%GZ*2Sm_uePBAN|3GKc+@e+y-wRwrM{nj#^a z5HRU8U$!t8EP^|KWx1+&aB6he%H~ObTw>Y%#YGPkRa&3*DN@co?XqPnd^C?TOiNo^ z+0w&-?RIat?<>nqrrTF)UT)o284!y6F^oIT${IVj?OgNl`uuvK$w!|0e#tvWx%HHA zw1c)T&E$5k=%>()xiO!Zg=6{E1d1c+sDO(}?#z~PG9$pJ5FUDyoKl^WR~be?rl{rd z3l}Gf9-WV+00vwBs?*Ls6=Vm*x9FF zwRqcis&+BmH>Z`R`+P-ky=8r+g*7OTckzuH>^ej%>-Fb$G8ID`#mZufZxk>})V`?G ze7Y_U5oHC&FGI->!m&oSZ#pU@dfLQ<5_`4d3?lb^QGb*>m`+^NO33UblB_f-^uVzYuYl8lEmZtdxQ2_ zCNUYo%W-2Qh0rg~B#)%c{N^3>T~>V3o?s`z!{J^*Wrpy56(}%(i9G7CfyS98x)C?+ z(e}mKBD7WU2?=%RZ1PJ=Lhj$+4#3ZUSo&+lb#}{J+a$!2BYAI*oy`{oSvdG!@;9OfXR5zlmg7!!Gy3zJv##Kkx z|E4TkY(BHgl>fFkH5JX*H9l=-9s3rHh=8aXKva0~9!8a9fx3A`S30+w&ldV36+|}q zaRqFe>`T6RDcw3XWQ7I?PI1rH!VBE3!%Pnk;phO8hoS-Oj|r+J+-(7!?XfMi%*tlpzwHX; z8LGVWw3dhiDu>vccukS$lJSEEh-FO#*8%!ld2PHxe9`F%2VdE~jD`rJCf~X>^vU0! z$I-SU|3`V8g!ISOJhSofV&ml}vBw#xuR1O>yG3PVHsX~&CxJR~x*bhzF@kS{baQ&I za*t@hG=LHk#zOw5DlWL7QO(0_XuULt;uJ*!N(E2|1Z(x7TO`qG?b|r525-wuiSsBE ztZ9hG567_%9uq|`REq#_F9CBW;yEFhhs<&hF^&XTlvt_+$%E(-JKN*URBROH_i(C^ zkwf*OziYx3UXWAN{6J-bQ5M_T7(?Dg;&UyNA98J=Exb_iYcpvvdVL|~rDZ|E?-{3%kaat~!$ zjXtlw94JZ~7t}&j#<7Wsr}3fCAtIWr#h1t7wm?|t_|En3RV(bV_wK1dT!2Agbk+_I z(Z%|V->)SvbKzLxr>na)>ASw1&}Z-E^$@)?6Wyk_oDStjfseuu`3*m&39G}8@u|XSViEZ*NE)Gz-GnWPZ%S) z8dC}iSj4JU4&Vrz%5|&QLR>8Pp~~4=S=F7De-ClVI8*yn`M&NS`SIgteG&{#C}l~0 zz^__HD4Sjo8OEqTfT@A_-vn6-<~Cw>N%oxsixveAj*hpYwm!?wK8ii$cjk`%Po2y9 zYyi&CL||5#eQ_F+3r20kJ&N!-3-lI8n`#$8IkP9UW`B<^d&q@UUD3wrE4h@FOH87 zFGD8`APc<8BYa|Dec)teOW*kH0hRC%*q2Ixrb1yZTXRrz?VBc`6Xo0VYk0=gq=n@5 z8DH&@TrmF4-HFM`go+S~I7s7QW4uS5$E0 zuSf7Z=&GAYbZ;C!is4dlVz&16MImDhPl!k@op2p)OFtR^@L@gC4dUi6?PoV~rx2@L z82a4*REVY~H=N`%xW)M2+eBqZG?c^)kxEo2gT!7S4G@=#6Y?0P4YnI#OM?3kBzDF^ z^=1VIhid{2I8MM4`^={C4gv@u;tnh4o?bVr1gIboJTp`f&zN%+&)=-krtf(>uQ4y}UZ>hl~IMbV34yln$P zC(o%9uz5l0BkUT1Iqy46WC+pgKz^DsmLLosnZAZ?(apn$kSCcP)G zYk@of*zcaeF0uB*VQmvw7Z{%wfK~*LBweS6#Kt+jvVE~#arNv<=lYT{lu6YyD@A`} z5_W_Yo!a@FlE~6yhK4#2Sl7USN%@CRjL#-C=?nG33jSgcxJ^r0o`r%HP6~d|o#El( z1a=G#93KtA$-$6^qZsT?M4pJ1vshaf3xBs8+5z0p{D_}M!9k$ub>jPW)Bq3Hi%UPN z95}n51fi@T5DPqAG_F|H5T?O+rGh&IC=Yb&XsUrlKp^nR=Fr4i2V#KBdKu*_h4L-V z%lHv}-+!b6+l7M^r2fTbw;`)@D|q}1ZTBhzjo0UlZ=TvkFTbBOD?n6fz|eq63>@QK zVu0N6kk%2uTIyq15RkR4G*zu^0UN2pFZ}0cs~~|narQ4X6bYG7{h>=~Aq%LHCnfb|nvPTN~I0J>GNx?+W37BW_;q>n}M?IW|GQ#(Zvxodjlh)TS6?-%&<2arsCv z(rp4?y4ACWZ420Vh@lj5FkpiO@vaPPUKnDp3W@gqb;+Q+rH8S4BK_7Sh#G-V$+cXv zvfADELzyLNc&atphXqjlLJz9zlI|gd;7$j!QNkL~fCirQC@*gth$irecq-r#5s-s} z6)h%y5jb8kKhR6UP5ga@rZc;%OCPJ9L_+0;JAVV;9kS7tbrkeCv`Bt{!9^3?IH{=! zBrRzq-=SXtOA+`Pwj~ro0$8r-rV1hu?}so2dem)@SfFW`T{<8k!5AlbHg-WUN%r-w zMJPhTK{O7ZG+tr?!1?c}F6=a7HthYR>%KbInS$guM2)&9Flk{u5(wE)-r886I8r;{ zPyPp$U2BnNcW4&~{&2a@z@Z`txFZ-%w7)BqP~+faW5NGfOYkUkNE3sE72se4IHT#C zP-iUsxmQ)5zWR-Ze&B}eAR7fxRRS!>{R(J$N^Jd)81bheNgA@lY4)X2VH40TO`kuv zbzJzn@pZdBWHB!o$Q!A8YD(N?2|^-k$q9()B{^>0zWs8i@O}pB>hZZ7BOVt#U)+t| zn3CHvJU#H|dlUM59HNp}i(5smp+HROE9P9Bl45{HiZumM0wl6XC{HD$iT8)g(5OlHz%~l zgb&N(8-RdmseLwHU^}|v=pQw<#I&`Pp9ouP+-KhXBkG1lPvfX_EaDSj+7H#p6ol%R zPjT_B<`621?cCfuNg>+VLhy3yxXt1UX6&l!pA?odP#<=JG!8&96PbED7ncwWIH;XO z*iPykQc?uEd?r$EF!R+bkGcu>B$Q&eF|d;{r{e_v1vP^~+v>1K5&|`uF-v6(g!MiY zdd5YXNh8O_IUcVwk>3EJM?r_bQ94Qxz&id1TxM@UqFq8r$I<8sT!LRSCQd5XUtOoa zX?S?c0@5h{?JxvA4iSw!ka0LNoJQNyMcpJrE#mkVEf8$Di@8HDqnEHwqjj({jQxUo zjz~5$H0&)Z^8GQHm)2Pj!mjAdz&`#$(ALl#>?Pi_q`+PCBiN?Em62kB6$TO!^EUX< z-w|p5_>oAqLE0(~?R|Yea%q6}86%?sm@_N~CjWBFi&$J9q6b6YiHLEW6P;WwKju6k zUJ3^@yHqwfXbRGSOWKj7loj!~u#goo`S82WCh?(bhg=$2%S3!43?aXMw(ZIPT2*I? z$_iEE`u47_l<;-LV7Nddg_~jcdjGN!!3)vVedPaP_S&W}EH`89I6jE-g!DfFWd6j& z{I^jGQsUX3cBY7pP&B5lKa7fqcvMz)y>0~4f-Y?9>h7kk>faVM>^S~ebg$9Fq$GMW zHROv#ejNlmPD*-ByJH-WuA?|4|{?@xhU zOU4}PYip!Ou$uvvCz0v1VHf}`577YFQ$h)jgnd%=0j;b2ks=uvhI`-T$_C(qBbrl& zC#wt1Zj}MNt3TDgl({+J%ZU*xkV0-V3|9F z6O2pngCa?sLm7+AWmC|8lfix=S$3y>#`Ea-&Kr4bM18Q2Hl_+C?d!Ks7G~ZbYzgsH zx%c2fX<9pL0!9mN#To;FJ1wI*zH*;pnxW(Kyp7V1@laD$4oK;RrGDv9^E;a%VkRZ^GcF(4B#z=aqFeG_19*{LejK_%R?WUW zQGK`JXfg#>D$<0w86uQKq)7ly(56Nq=}U;vah5?#yFssKaY&k;uFeGf<~|#LC`Mo) z!4YlUy`9>c7c6qA(%(fduw#!CYw2%Z>Y{FVOu3uK)sTuvPpJ9w2llwXf4recFK`KL}Z>o}Rj(7di;jyGf2* zH<3vQiLt$V3(z8>kw=GHY*PfE6qsV{rdw-KBOcC>f2O4P|2EFn0jm_6#2)^71D>Z~ zAo-Efdy0VG+T3e{1pAMo-8~`35s^vcf@WTZC)PBL9$#pHW3&!k&2Q`N<^DYH)yso@O=Z4BNVUzQ}DU*%kB-s!!O|7#~h!FoJ^!e=Qxq?6M6%eH%=*v zz%hrQVMz|Uf?Q3^c-VE@&cnPL)jNc$fWjQ%P<9!o3JQTJrXF{)ZlVMxrVvi4fogvX z`ori=UB*~k)={Gh52G;_k}5bRE>ZUL(xU=nEv{H1kj;- z?|9Ui$(*N=88=s)yrE_XABOYJ`A4D0yv$=YNHpr}NM2v&Z z%+=NPwe+j>^<7=Bpm?A9e$Ti8bAU=I3)}=xijA46JnhZj0P-Aci{a;dVJY-uxG;-F zdvxyQ+~ijY-snb(7PghX_|QGI3lT-GZ&WuNt?on+5$kvTXxh*KG_iyC_1fVPhx zl@d$SV`X#FS?i9fhrcs_!8-hoDG1jq_7cE;5U&`?K_Yd;^ooF304f0cPR=`y!s6og z->V=X9XzX088 zx8MK7tGopyu6bykDG1yFK@KTpeN}S&i^%V|xuv+;7b2*DBeRxPeNJg2YalVaqhRH; z8A$aS69#lkAO-biJkUNsH>y9l!bk@262RI?4mOQT_w+Aruh&#?7_B<)y1%SBs2@x@ z!KKVsOnUFDohP#6ht1Ee!1e}2iOt1aQcO&<;80X`kIG+iy;=k!9G+(;KFk##8nJ6H z=~KL^SgBVyy-A|MN;3CJ|1QARfehFJ#He3<7J@iW^7w&telP@CKOIpM_}$u{_-LJN zG^EcJr-2Sxni1#|!lk8glMp!OkC4aOffx6yL6C|Q!aeC`|70V|MJOwz?*3+lq|n5K zgd*cgloxz5=$uq7EWSTkzRW=+R2Vr$n&`XgKVf$-TeRE*t(`l=h@lxbOxuu`Z3};W zBPoezslBI%)1iInguT7}DVyk_4C2%Ob3 zr`?l`84bgB;u{irhKu_%$?dd30>5P1=iFyL9L5wAO88j-s@Qi^fJektPf5a+kSjZx zU>a|c_~s-+F9~)3;ED&jnbwLsU%!53Wt=DS4}Lv3_yv_5X`!NjxkB0?HXbD+^uExF z*7w}WlE82|a)=eDA!z`Rb84mdNvviCFKH2)Fp)&2Lq}w0-%C4YTe4L-Wtj{|ngzZ# z15bi}8)zCNkXVk4>-_gc%`y74Wf)heRPQumhbp8fk(k-p>2 zo3_XQyK7ng^XGm*!XQP@UO2t#5>bplWg&Qrfil^UF3p&g$D6w&_iJ%5>-8>208z=1AT%`bGqYmM@Orj z+k>=Xwi^wG1@{vZAzT+hUg%BS2xH%ruiI#da{%&z9u2PFqX=R_&p0^042-F8Pv$lJ zb>PiVz!8HfN?UdYBJ5Uh=T3``$tnmak?S}}LPl6|&-usU9!WQWeGNVowuCFu@b(5C z@RIYEhh=@0erEhJFTVE$`tzJzpV!K6Zig|@jSvob;CT7c-#PL(h)t$=(}?LcHLbx0j2_|&C_q}g_O_cT`#Q3 z>FE~t7Y>r1Oe}m$Jwmv&${Hw6y->I@kQu+_`pC#X^*A91{EM^d$)~`040bb=YPONR zV_|hB@!7^k=JGCi&Z5&Wy`4VI&p`(kgTO@zL83H07%Att9EP_|xH_ZH?d=F_U_&C^ zlIJMA zx}QwFD~vSL#p-Drov`u=4~X)U?7_u~l-&bO(V0aBy+CNVJ6s_#TJnj;G=q^Dc=Ala z%Am$W`;6EYEI?tQF1N_!nl!qn8%lMSd9 zeLAiN{9gph9ULBEGGnN}Kn>RA@}4vY9|nSxSWk%6CZtx^6{|e?w$V|3-BDoje(1vV zJmh}eTD=_|Drd*h+UR8FK|ChK^ia+tR-qX-k)B2O*`Hdqqu*2lfHI-Mv$syb7kKg& zb%h2u+-qOsGd~=Osw0lftFI8Skv~f91((JFZbdRRAVUOYVNi30eP$lQQVtWvVT}4` zXDO8E)ciSXy(2Ri{gu0Y_$ zQ-KBwVOmJhNu+=ph9c6OE+TjPSm^<0@5SY(>#`fy;qShRE$G}KWdyc-LGwOB(KcV{ zPpUadog#JfS`ug|Ic%o zj#KjT>$Yh?v7tWSWh5nq#&!!cj8Uo0a{S9=Egp%dv>&u)n&&Y~k_@eDTr6`wnFXeZO#2R%?K z5AkD4SPG(XTiv{odK0$Bff9g+IXm3_DgcykKYpOqZOfX2Ey3zTA6N|tbg?n44rif& z$4Dn!%i7t>puWCovsJl@OO6gKKO1(EP3nNPj&aqQ#~-COh;NxXX=uh(I|3V`+~IHA z1lAkR2c}asp$YiqL-9ai()dp;3tzoUFMq8tXQQp%Ak@GVyh9eJ%`ApJd zT&W;xbJk8>mZ`xub&%WiJRG!bjBF zdNleF$O6=Ibag~B8#;R&I4~iNYtVbF4?@Q6Sm;1c`7&JMNYV#vGbpN+z0+V?02L8{ z6e7YN4Kuha*~+!_V#*J``=?a7vmFzwfWpE;^6(+oFGK(2ihxLp7-%Plk%}(t=kiWspErwq%KeI!Z_AjgiP$%kE!mMPfANP4GgcTy&vR)pC zgGE5TC20jd9igZm7~qTi3hEq}HF)gQ{QMY=ye=Dx3Z;Cl$jmFpTJJa*Yl<9Q_|MPQ z&=V2DgpCEWfQdLY!hFvD#*V&{F*gho!lUn$SVcWM28(t8jO5_qfm&Zbrh!$J1U=!? zg^HdDRd`i`wRLYS%z*;(h;)!0|4moE{U35 zTSuqhvW>9TfJc(*`M49Egt8cPAL8Q;_#|mh|1^J(co9sM+rh~xc)3NmIj}G99rzp;u*yNaY`sEZiB?0Fr%D0>4^Oj z$N)IurWCt;D4*~h;BW}|;}nIE8R)ju-4qWrY7LE@`z`qbp&oy#KaN4p(>NM)w-28D zzq}9RZKF&})u0^t_KgVfBW^BODxsO*S?|GOFBQmuf0OfCUzWCVwdwJtJw8?YuJmYC1 z3nHyG1lC}?Clnc_rJlW)6^eTzfmh{?4(z#m0!j(f4=+Lqh=y2PVW)N(xcp7~g3>xQ z*Vt5_O(XN*k4BujR`sblIpH#vH`H@){h{3yfTPF#$9>D61#~I1Ci{}*Z@*REcwew) zGKogTV$HZo`e|-`%&}76b%jLEa%OaD|Gb$t=Esj8r(n4H`|#Ms!k!7V-de@e$KiWH znv@{W&3pIQB@B;}sqs5CFGQM?Slv-PLiS#qmG3uBWXNFY#Sp3+{E5-3}=;w!G@Zh7U7xk?Ihx zwT65E%_=U-`5s1EA0H*qrb2pH@=KtW>P{FfsKwOr;N&iohXTU$Sw z3cTo`PH;R6o38VmBB-pmxH#4pv~cNK4*=Zk7z|ZA@dgocpCn`q?)ulg-n1aiv+i!e zXSTfc9>V4qyei!jC`iN^_11htoj9b&>EV8WZ$qS)Z@h6T;4;E0J@gwdDDA*@7<<|` zesN6=BU=YfC7N+;0+)o2SfnY}-2t&Q;E{_4uVi=F5KZBtT++y>UTLBF|2F@N2t0oo zbHk@V0d67*+!;SZSCk441J%FKxL8du6Y3dGJNQ;|4h|}TDiSMP_ z>^=M}8|hp)*QffZf=3=Q_RPCtr$KBHI!;|jV8P-bDI`x47WQc;7ogvuE*T@mr{$ud z3xxQSVE>Vp685F?p1}LFEzQjtJA4f+K);jVx_BkBH(NXVIfzG8Ls*?Ao}LfZ5b+(| z{KN=tp&#VPF8$~8I!}&>=BfPu1%?2F*64toCr`+5rx0Zy^zFdrNmGBVq{-CK)VOrt zLNoZE^owZf5iQYbmGw1DXK&<%B`Iw@h<47)kEOL^gRgbmA8@}>K9u z4YcSBi;AR3dKp{pf&NQ*$+#cxJR;lUi2drATndjQhOoJH`6ZIn~1lN zqHB%NBqDZuMvl+osV-gUI* zG>(RR{qX+%84CTHMZrLVa~zh&lfhMh*`)y%`f$bqPlccD!sfzusMfWdwAWV_cf1jz z%bk7Tlzw=v)hyUFE9#=;AYcz3`5Q2k6N)k1*`_TOy|g%{0f6-V9np4Aj@!?GiZL~| z2nY%8O0ZlYS~A;I3|>#T;wNz_`gqmZTO)%8T7AGv0GR70=N%ThaF2|C{!5XvhpaKO zq&4|}7iJS6Vq_J*$U5)F)d)0RZZK@@F!{L~7|M+2Wu>KA-x}I})}f-sP+$_m4&fY1 zqr~6@{8{rA5Sv z`mqKkm@h!*h-&@@Ls;TEv7_8b4B;lJedpebpZXGcEsz1Mx2^tfVQ3@>mn||^AnEF~ z4ZB*_3kZEIxN{DO?AAv0U1~LQ1crr>z>6vB!0p94s^T=3hpyVb}9%+_{q@Nk^( z8eO;mzZ5MgrP-in`w65hfGb8`^(6=Qh*!kPtrb2om3{5|n~!_NF=V@#S&6N|rm!t^ zPmBpj(x}d}yICYt&jKmv^sGw@v$)}=N~yaIa(-9QYucad&jo; zuFasy-q`eFp=O)U^U>ksOxJN+##&$@;fgJJwsa}z%+o|_prN3=8ORuj7lQGs;Zio# zIn%fn#^O;VeALoDx#drCy_IB`LgF?;`=E7P&HC;E6qkoce!k@gLXKYZ;w0m_A~8j8 z8KAVXre;fIKR7T9&02C#zC?gMP6M>IdmM${MnLFOB} z@V-B`hR<}%M9w|c&bE4Il&wSlmv?3cpGu91z-+;kA*~FDp4@DO=0e~$4$|Dgpv{atRg+hf5o)h_M zU!pD}*DOu|$W94b*z>GiNS@1j@&qZ&=yNa#q#CkKaYe;wa5RVJiRe&B{0FCP?`$9x zX~a-qp;IhJ-gXl)X#0=^tFiEwau5-EJRSCy;jhVsn(4?u^Dy^2Eu zsKevKBhZ|MD2oxgE3cW;d&dQIaoI!X%yZWp?oqL|F{7;SOka5os;hdpN4^`kjl-qU zJ@Ar|&^h-^;BWcQ4P3y;*V@Dz2W7!|X&LYukTcmB1Q#+WbXm+NxmY6D&CL*#MjiRB~t}gC>-wHTl>g3c_ zjPH1$B8@`yf$P}hWafsK_(8bVm8^oq9-9R%CMj8soshK9h0+9A3!x#Lk*cs6JzJblH_W?nwnm%|oTl5aKwjXf=xUJw)Ljp< zVbEEoM*P(KcUW_j^vBRI~qD z;*Z|~a0Tb-O_|Uuha#vupDN!AIq^bbsPdpt7aNH65|5e7#2qElWS`yMH8RtBzZkCw zv4T_#rHnNDM$uh8(9VI@(#J=E1hd&8`vdz7?$?!`jX9C7!z_BiYs!jI;~dA}u=`3U zuR@f;`RCf%fvRcxY^#_A%)vo@S`>{{Up(e>AwFr?%jU>e)#h6_wtm0bsxqpLIwPC;I*>&|X2s&j#{d<5UggqW zD5LO;VCSoC3PB!3Wendotd`|pro&`YDUc(%-yQdCk>60b^4!!PZ-CI^Xz0<_A*giff~ z_DXEM@OA*08%$mH{AKL}Y=%S<%#DUDZL}Z)s1H)ya3g{@V<4lAb_4`Q;vaF!bne7F zQd6+ZXsyQn7vl6J4{^FfzE#4XLRU4<-~9O1GHPu6nJOp(A|nCM8WQ)YVE}R}N4iwA z3|(Gb#6<&i5JEhO+fvvDsJjt$5*9MkI0KIjFK)P>1&PlfT*E;2SECJysE{zHT?uMC?FX~99!D`HQAWq@d{rHxIP&*h+m+<*AZ-?;Q+uC!S6kVkJK5x3pO zPVLbLRv1`Jm@yg10#f7dh$lpC-}kwQt5K`N?}NbOtB0?zYUgz1D4f5=%j6T-U00a9 zhj;l)<0Fiwg}}~hp^g_?>#z&Abz`SY-e_>%yrqQ2jnWV!LR#P2Q3cd+pZ_+FG<#|) z6o29e4s77l+1vqX1ZZo#pPGMN0Us!g=FbgL$dMryVrt&z@@pgXh#wQs&Mf3n*dH># z*3OMINiE}BVZ1&o9Cu#4@i`C31=u~LB1B>R#{7kaV8bq9VWhYyv-a)`e1u>JApgW` zT=cpkV~oQXX1<~DgZyUc9X2&i7waDk2KIhZWIquKmhPWE@rc>sf(B(DZe70TGl@ z`+hW`i4AWcN=~E&m~sG!0Uq#Nq%4D2c{t|sM``#CAhw7#IwtUa1)SC(OlYL%q9d5e zX^JM|WOH)QLG|UDO)LiC%X&j)pG1;t#<7h={1sPDmCK*dDM~8k=>p_iiO_q#PhVEQL|;I&hrf zVn=Qcw57l%VE{*J9l__lH3ux~e1jNWP70K)E!wvkmU7o1N)Wx!d-EJhELSF`l-L)` z?#gp{B0!0rSd=tyGH-4mQlmYi7&Be{phT(@cm9=(zyKI!rJnWdj!}1g+HeUV9b~-H zQO6*8fp7D9`UH%HpeYfoAZXSC>`$II=ET116-Izi{bA2k11zPctNS@P+#mDot6%(z z%MHg#oS+dvJK3U<8>zu$W@#iJTTk_}i);D^1>_-H=8*E174iop3YITQB{;2te&T~b zj=33@Cji|L?SvRTqIi^+7VvpX*j?-%_&ro-*=>VOiShCApJ%*gl_mOoACu%LP^d(I zJYcIo^9to2iXRfWm3gr29Okuum+)1xdUp(Sr=qU@3aH`3X$BiU5qs_0bG#Sd)uW&g1RN}6Wt)B zcF)e*9+~6gyZF=pj9rrB@D&FKf)FNQg9jNcBs_Qk{~bl3_NyC?R|^v3AaT&L$&`N! zh$dH^62~Keu-EVRps)5_+;^RD9Qs5xPOkKL&%Q7Bu5&Hxl|0?##Kp?GA5~q*=Zp@U z*BIUF8o|8#R1>7YxU)?U9YVnTZMC(-!265=kf;nLTZWk{s0UT z`0XWxp{i6+??k^+NYdU_Gtz94A|SZ&ng;LM><8=jBGMQ#1G#c#))6a+V8Hs&bmdRZ zFQe%vfcz(zkEFU%L9hj^w*7Rq<7$F7d(}HJ^I|VPJ5b{8Xahn#0waS#HxcxWc)R}D z86vof7=EyiARj$=q!J=scW>H2QU164N`V0*$?gq;IyW$!kf%-ytj+cg-3hD%gmf<} z`^%b|8oSI{HzriW1t;aY-?y~XnbRKf-5t+Yxz@MiTly36iZ_F4>wh_Zs7!9UPR$EI zBO#qB6x9SwW_}j>5L>IB(*1rsQ1tI;%+R0 z?puh?z%Q+T5!FR<2?tvLV<&0cW+DJAnVjd!1pk40?$g*1jC0&-yOdv%9zkt>PNi$1 zZ<0%;NF$WuC3Dr{L|J^kTIVR9c8UA68Tr&kjCUnqL~8yo#SX^rRX<741t4kj>AtOL zx;bf|`Gk}YV<#4Me0=GwSZv?hty_TtA#+EtfrtFv6NTvq;)z@;p_YODN8?{xNhP4K z+Cm~^NZ|J=L?%zjK^F#iQi(c6u+?uOH2yagz;b9Kn2{_=gc0VRDQB1bC~zDCYsl`Y z`EeX(Tm(0e{iZ}IR4dYVU0D$Q0Y{SC;NeQ|&CH*Fo@mF?29{ZJWC3s|Fdl@OVlD9n z)_a-8$HfJM`yj@A?&JoPQVYg&)^jyZz%U_*;Re*0b(dcT8EU>qL-FKE(VYC;@+zF1 z=ynL=4$;WnZR0}!<<1Kn3-Lr{(rrhG%;D$QpvSYZ8=g1BZBdXwYU!NOPdRhu)m=UI zPmKZS@FDdSgIbasizMx!nI*U}JS*DkiZ}ys3!xJunr%J?KX?em<E27v<@IXK3hBaFYL|m=WVh>B$RxwFvml-*Old^~j5M1=F#vj2tB04T|Q}}(XXgk?Cv~-Xq zkoux*X}HtKhnFwEIeBidU$Hgh1>K>H38V6PgW_o`IZtglps)sUbTmZb5Fv2_=M8-d zzjDV;CK{LKet3w`!@&}q<+8MG>(-h;QrV|xa-se?N8>TF8O}l#B$M6o zC<|hy04%`Aq6=gP!=Vaw*j zfIvdqH4Uvbv*J=~bQV=LRENH}{3(fq$N<744iFJGhS!j8!Wjd@1ChOqMkZTlhtuht z#J+F&`j{{)YBQo)ZGPbO(_>P7&=$8Xw&p+{W4+aukKqwBJJy=j9XTd*E7pbie!Kct zW2b}$*nm)U!4rHGFE$B$h)#Z|a>3$GBL-SPL=Be-!w zw#ZYas1&!190S#1P8K3ahg9j%PnBWfre@PfvU`m2u2^5%p(}t9u z*Cyh&)-EMyq1V%CKK33W4nrpe|1$x>42eP z$EcGANH)%KBC%?JN9*{UwDZr8aV<@*%4z;UsZR;Dm=JyvXQ5VzbSegLY!GI9JPqWi zEma~|fUrC%D)M3#1;QbQRCXW>R_=yrt$40mjF-DR5&I$rHfb0+rxNnH003K0R8ynS zhyD|(TJ?cQXE)@(KI|wB8Co!UL*mqD>A>`@^G6;=C+)6L^!+A2yLWr{E?f6T#XjY0 zlb+|~ z460n)a(q<2Yxk*>H6K-#yrte$}k2yVmqVF>dx4-Cwr&YkI_t8_XmR!SmwS0PKX6y8t6>&;aoCVBQc+@mi)D!1=n)m6fAEQUIzx)SkR1sQ}9Zih$OHyIr;oQ0+g` z%|Y0k)6b9mK&&sGXF3k!8ZkP#y)$C7QQqOb8;3)KwX-1;O4SEB6bMW1b2h^&1Lbh>l=`i=18DsDn?r{@mf)oP&?4*&y-ccS&jfgO!=113m z>ZiREnOeRP?u6bumoWPapAMiddfTFl8!$1>AI1T7p;*=~h8j#lQsPsup7y)*I=C4_ zOL#G(MlbslczPU!c1`{d`JIu;#QXqY9T4h(iu+QeQ|+pi(^0Ud_8xj`)q>@NF_10R z6a{|}W`f$u`A-dOP#|pp9Adipi(fxjvX}C#9^E=Ib#JmSz}J1<2S=qGSMgw1o?&BE z-wuivhyKf^k`Kr!dYxU2yAmKoguaik4?lh!h*0xxuo)m#;awKRB*nrV|4#q?(4-qC z)(svJj@#sL_}bW=6Bc?04&hveoUO;T9*NJl5-VIiJw>rErmJr$R~-0F!e|QADQL0J zcWl8l*#+d6XaZ4y#bj`CBv}pP20$bcL%ROOn2<2wfD>`r%IMXh`ydSPGVKQ-51;Ea zRzner<{dgB;JLmcPpRfK2$E5R84#UXbzwJ@CVE~w2mFm-}v0FQ_?>hNLV5=`o+1V$^xRSS zPM~IRfeeB)FzEX{K8FM|4D5Am>ghvbFyU=LhP>O~tEqxtt0r8Rb2(yO?SL+lE^ymN z+*J9XzmQ^Zjz_@@Gff%J`FAN3RtjvHR5wzPDTs{xWMT;&iAY=F95_03_} zd}<*6L15gDo%;kSTbRA_Ea=3_KX1|G3t@RhOSNRS>H8giMpDDFW= zQD*Za!>%@XeR|k+_5m9O>BRPMqU_p!;q{AMw}cbnm$%ZwUwp~g*|{lg z*bjv5E>|OJJ_^QC&)26=XOSa3!=&&}U~N?Rf>xHcslcAW0Ym);r#2esqtr)_9<7N> zR3t%vB0F^b-3vN}uX+)k>r*UIESWVE+W-ysg^#QaZnEF@!NJ290#PJH&1=TT$f93E z^MN%I=(dLQ6zw3?qG~FWbt>`tB6m9Ey6A9(Kmmk~gm$E5Xm-$dt%Q4W?T6^tN_x)s zl36v&k7sU`rb>KcPi&e~X-Dn}W?Mgp7V|0*58RUuf0>U#Gw&@V9q)=|tQKd`Wq@!2 zWE9itUI7N`5F`2quvx?uJXw+Bwi5SGq0$8bgdrz2s0`{f?uuHxOdDjPND^Lno3^KX z>cTdW{feXk!?{-rvj@)&u#b$E4|PD@Bv~;61OCGFC1gdQ2%0F#k3xA4+^pxsdHX;< zIwP=_n393iVpNzo;vc0mUA)z}eucZSe=T(zy~CSDkCrt#G&chkH)(YrduH15tfaOF z_RB1~em1wYr30t5DS%(3Y@=P*#AS2vq=;%RVy!u;N_u_FY{bWv8XWy>^Nlm%3kU&F z^RB!s2Zj=5L^tbP6liL!6I@YF&o&qIOrYb(+$Wq(K)yj~nO^CV5B+fY7#w^EfGH7d z7HvAUkDi@p_Db^qK0LB84#1E?>z;0}s%+Y~F zGEATlT->_NocQXkQkH%OaytMc0!zk~iKj})KEmknrIAoH$oV0FqcBk52ZZ-4uk$_) zI!&(*gcdsl=uD3>Mg>zcl99jEwer)R9Wb(z%MFU745dp|n^yn{uh%c$15wy@$ zU{g#c+)ZGosZg^La$*Ab6=_oSYOoSGfSE)4oVOu%99G-+sbst_s791_2kn#=1aK^I z{3Pv+=|)c19oPTNF8K1whE*-xl~3?oLv@E+Wo&#LWFPI8EzFgdx}hnDcAtQM_wEg| zmPZM{A0wS&5{yIgs@AAa`(9^FUUQOdcxL}N=ljC@mmMY3qr1Ga@;R7XuY^-0)d@*> z%H~vQV2%lsF#7={JoNVV_V{?$>|wut`{S8qhp#1w^h~!`P^xT2h4^s^s+Jx^^ z@YjyS#2bynM=@@eIO*=biT`Lv*l7_YcHqDb+~Y{25ky?nP+sx&>r|YsLt8OLgiECR ztL4mF^(W$#-L_JV7f(7LWFQkr^_epaGde_A&_tOi$5APxa_icH-YtBezD}1}zMJyD z6r>*Gucip~ z_l<;D?>I0kHcnsiF*d_6+ZjtGvlN00b2^5jijhSlbUrvh{jzi(C`DFy5L zM{_m*zvkXFn#=VK1N~8ns1TA+=6NnuN|}d9lu+hbB1I9QLYYGdAyX=3N-9(4BuSD~ z5|V97l4L&DQ~z_;`Eb6Rb-tXvT6?dxcU%14=e?i%zNY(th{KQZd$C1qn!p3#c;Q{Y z3CJ;UIqP^?95mKJt$!z^;o|vl9yEdo&)hV_PZweh&K6M|b!G>?ug0x&4VXd@cPJ|z za+>v|`Uj@G!Tba9#Rd$}MZ{b9=SM%S2?xA+gn9t9rM9$dx%Jr7DXEJL{uBH6`41ZG z(~(nA@VEZ$%DZDX-J2cgiD8ZnP1@_Ge6@Se!9N{W=#aGerq6MN^`NYJH_3PwRY>c z>TbTZuKdCJek~6U|H0E#X&+M}r}__IEPgC?8o(Hydoke2q7**)%ZO9ArT^2hq+R(z zW>u~fORWuMM*_!>YCd)Er;=NBdOpUSM$XoU@3pHSFmio@t#Bn0y)U}ZQ$XoUTM^ai zv?Ii8iEWgf?{ND~{_63lJtr7&3@S1ORmL|RS`CH}eJ2DKYBg`VT*{8$A7dGv2gNyZ z;vG&m=yJ8AC48|g$lv_Wh&M+?!A4BaWM#gC&qS-Ge&eLx7qb;kGtB}guCf7o<*~Y? zGpk-1+dupAi^qJ^!YhB|s$u;oSctp32M(m&zW65OJ#>YRLtKmRACJ z5orHuOo=#i&uB==QM6*P+87uzTbRGpC)fvh1aSh|ETAlm^MXH4Sd@>Q0l)+#1a~%3 z@IgbZpIeW$E4EIjzJhxqLtWIplS7Id6x=?cKFfe)uC$m;Za*p-|Gec@Lq{E_5_nU& za~u5^t(aH*1DFSm6)Yx_>+{UdTKT_;teU%UtKj9cr27nShjS(KwnWhURW#i$DLG>l z_0~A4#OHKYzy<}HZysk)bDujDxGbSAS$o#^?2pe^=4fC20>8nUG^Q9pUAGfHijLWf zSu9UsY=PpLH$fZk5Pb!eJE(EgChK^6esVl_(eX1Rh=!glGsEENR-tc~yFEhxLrp-< ze^QiC13p%6K%sTOw2pOYK)nv~jVZ1epfhkA z+KPwRx>Y;k8Patr0IV_`&eQ;PKE7ij&Kdu-Pr8z3zAY=@T3zseNpX6hRkP;Qu z@fPAaLCdo}2q-)z9E@RT)UD82plyana!OuCl;oi-EeCNrV<8Ai2|}WtP5T|mzT?1U zabhgJzHFbI8^g;^CP(TsBH{PNB_O`N+tQIKsChN{1efQF0;y$iUDyi|R_fU9rfcxI zeF_M4X8XfyX-Vq8k~#mAldx&3R$_i3yI=KysQyvAFP`=^qti33x87r)JS^;)Fx|Gw z)6!1gkdu{#r4Tb_Vpkx<6EG~Rxi0^L_4S~j(fgU87?Zc3VMK;t;Buo)D5TRn;Ff7& zIjy$k|1!w3yBlSO!K96JyHE7bv(~qkkeLCc=;9SHLl7llLWj%__brMzxhu<^58FF9 z&|rM+=Y)DAe9!ssw=s9!zYuD=TR?xf_4?#&|H&F3s#9_2$Y(K8>jQ(`m!E4pWb8GY zZ(Qs-H%G&IzvSWbw<0kaM}z!#{Ip!&I-jb;?Q#bk3nU683>hgd$KtpCJgby1sr)T< z-^)E0ixiiN9;>V*b6WgLVw2f1thW8}h0086i8VqmA{EW88>Y_i{kmVq_4eYz@8Hxb zB(d)PO320{@!iL;gz4RKx>{bBhTVs^&}?9MWleBRV%*y+p?Ahca0?Z~6`^B{oXwC> zc4&rU*aPu>{*%ERzZmhd>f~TcjV8d6)Y^*UhJB$4-?p){V+V^G8u^zTM-ZI}w?n_x z52f0M%UgRpH{geTy?1bb`%B(Cu4#G`$Fi=g6kHGdp@iS~Gc;+WPW7r#5%15(Y-YhM zM|;eU3_Bf;FHqHc#1`N4K~J53VPOGWab0po1zQj!=2svRJP;;Beq@uh9dif>Ampp< z7{4eXDG6*aWQg+bCaKe81lSrQWs;fIIdZOTbJO4yR_>Y{5ix)U4tkQ#5os_Dc*eL! z2FV~(?kscFnjKOPXz8qQ&v+Cgh5~pxI`Ud8X@h1SV|r~wz(F5_XAA%K1tUjO8ubwu zmYlq)@z3QI6%*enz@%|*ZE){AX*782M*eBJJhuMF>3K!bGHQxRuJalSzxWl;GR_f> zH4z+hvCZp_*tr;_W~p1;clo%%7iiMk&sc+v$R#2*x~A0Z0aZMmZy&ib^~L^5xtWqQ zN`4_JBQbjwyY=czrp3`ATd{Hj-Q2}6G#-KxPHu{LNeMKDTw-Xe(6gg0fw~ymfDX8* z9NaKT0>FjiUp!8=1x<_=oCGm=OeoF*ch?ykF|u46@kpf87e)jOqF0#0SvMG*&w`x1_~ z*YF&=@xaoE0FmCQ4U@*GXoQ2E`>zIY@%?l}EU?VZ9(OVU@ndlB(PrmO4idz{Fju zw_?YPjU|tZV=-TdHIaV9gNhnU_HK_P1C4)jZ*sx`y*iVKo(|axjtd&mAkpAh&HLGV zAA79&8#~E2ivF;uYdR|u!V@E2;3n4PAMrYY8h9eHISY$CPE=j+I%fU_d#XY=31u38 z6g{yK@B9410@kp1I30Za{Y-*AX$>Sa^DwUi)j`JuPBf9xybH}J`tid7sTjgRLSqB( zgVE=?IXS2rANZgD-Qo4gZT9H`>(`sSGh3eE#eMoACPmF^wZ$R~tpwISOgd+85BdVj zJvKaQqVKCaZ`x`n3v8H(g*eNfd_NJY7Hcq{%h}AMprDW+y7@TC<*gs=#zuSYCOcV( zaya%oO+7MuM&cUF%N1#N5&_WYqj=lsea_1Dp3&A`xgkxk<&U zvNRZq_qe-ioow^SDLGWz`-5m-O0M}}*>qe`fQPHcPrGzt2*Ux#1?ZBG` z)K6eiUBiqjXx$;LOESYKgN#;!{=ow%4^gNlE*b-7pR+M#*!MJ*Q?x#IYKLnKk z&D6))0rlbp@|6_+mBR<$uD2?u*Jf6MNU411J7=Lf56(sZ0JVoz@>f1i&|r-$7;}i$ z@t4!vooou_*g$t(Y;r%VqD59_PKOTAhT3$q}aFfz1M zjrPE?W8HVkHYu!v-pRw%++0s6fGi>dB+Vwyh7jZ+Ll=!#G-PP~ zW!0~z6`dw-*IH@az2U^qj-)T(-$c3#9qE6bPj9N%DInPm)tj0ES&hx_WQKY*`+>OA zdPfl_7&t$F;lc?B7n^`r2O6yZ;n3<1w2#*~fnV``-mVWY;gC!!Vm`03h(?R|JsI#A zKaOiCcm$LvSl_)!YS!QQJEl#TAle+lwc-K|x;1G*&^I851xpW+jR1ugW&3g)HI&;R zE$Pl?MGO3so3Vx4w+-XktDJdv9LiAQLE=iY$-aG?KsZQ=*LwUg{r2qUJgu@Xp3paH zbm__8IKt-v}c(=ZBSMM!)v-aT+@rV6r{g5fEfFfXLPIjD$*r6f}xhs3+P z;&br%nuT5_pI-i$zjW!prtey{QJ6J5E?x~aOBW$jkGfboCbct2iGpJR8WBYGrd=2n z5#>zLVpJi#o_XB2&1fbeYdqn#x*MMz`YcpuTzItcI;?ByZLb0lL8Aq`GPILf7Bt1I zP__|8H>VfG9%3jnjDoEOp%F)F8Pa5`aBCB+BVE?%@Hovx}?QLwY>8@?$RBn*za3wqW7k4NbIO zZs-$lWC}OerDE)a_m+TCN%xDl;Ai4i@@AYi8w05b=d6P0f_&0Ji5MV(f+ktv)ZUe#2Uz? z@C(HgbY3%BZumu5+)HhUtOXy4IUEA%+uwI8Og5b-{J*JlXz4YuiQ zEu)jfw_`0K3eU$;dtt2SfRH=TfWuU)2jUy#0^bI*3F>D*x*Nc5Bv}M|cfrsh?g$yL z@Q&Bo$%1poFQ_zLGd$OrxeCN29XY8#8m0U_J~qekKZWe|FcOtHkgkc;HW_Oho6BrM z;aKMV^gf>&ZN@zag2Vor7%#(#1EI{uXRkcw)4l?z-f_7o1p@`z7@QFj8uH*;&^o49 zP}hG5o#zLY>=Et{3#y!sc&c*RFiLplqq`dsY~`)=aE{Lq>T^N^3!gy#N92I<(W4!* zkUwe^p43gLK{R7K$stAVJKi}cK*mD~M_{ofYfy=|2aF;=cmP?{ z^ht4OUz;I<0#H_E4m#s#aYot6I#I|`Jz1-bxT=L<2nVPxQ`O(J34VR_RdDK~cYx8P z|3`m4lUVj4yWP8Y1Ht;wE@=j&M-XEvb}{?RyfV7mCM13^}5c-FuL z0dZf?Ik`kE$`a%`i$z2vTfc3A8!K#)K1~nb6v>aI^Id;%lp@IWtmysAwZgF~8QRQi zGsYgk6G`w25PBu0rM1(QPO1FxyQQ~po=&-#&y-nC-UtP$^md^OwP#Um@qD4s97*|& zLk!XkWiHdz{2ItDjIB+68Mp#M0i*5Y%Z%YQ=AG;(k+aa?t%Gt1&qHi^nFO6;=p?Ee zn|C)$xiF;5uHp1b2=fk0MeiQ|bc@>Eu~jP0vKb;@kj9C$VH!%u?tuMw1zpdaktMm$ zp!`6xL)Ug|-^B|(ktRr|25#o+DjvnAfiw`@lW=yFe+@*Jfu?H}utf-Q!`MQ!4jqaP zuQUb@j3~yeM*#qU5CU>-PXIJY4?{%^^N-alfx{<@nH#ZM6|4d}10p-@6( z^@fKXp!TP$S{KHT_aZZ{0rqRWhFKkuy;ysDv!nE7pGDx@vj@9spa-Yhmik`w|JwDH zW5{vIRN@1~)mZk(nIFLoa2uclDv08_@%N8rL6WShve>q>O$&+2hzW2TJo*qVBS8R< z=py51hOMKZzZ$k0zZ;{LB$P&Ew9SFa{;<{L4IA-vGb_F*gt2%PHgJd02cp~} zu?Cqg_;HwEAix^;O+xw_xGE8!kelw$fl?~oDj6Qw zh4sUTB#mNg=El3oXTOJ4g%)$vmva>{`0mk{Nu2VX8SUb-97Xqsk#{v@wnV6!ui*ps z5#f|fJ)5x&^w(c!V|2==w}j4LgIsqMf1u~IcyXDHePFJ})}YMH%lc2Q?NoW8oQ!T5s!g_Dabe-xXM_0E|HsrYK;7i+?S0J8 z8ss)^aIYd}vS$MGw7w8vu61d{Xoe2ua6OV6%0z!Js_;flLo|MXd;*V53~7!KqA+)_3Od$A?}qlVcOPtcG*8Je!) z{pU)O{UC{A=iz%wg?2*C4?h*W92lSAPd?=CALH57C>U8{O0#zDrbk z2}kHAiNq#EhGp@xPkDmIqcY>YMU;R14a!1l1mb?dM|-rD0DRl$~tGytg40o%bP zp*Pc17fOtZtEq814&6M0eL%o4FcuMqqRNdlFl~c4C4da|J59s3YZVv>4?MkThzSL= zN{geAl$5(Jv)b_?bl`{OOJ>00+s0x>WSK-Nc8cZjY=mbO0}wgI`9yzcVnd zf%}pH85IY>XOa4Vqq{F%%0@w5g;p=44@*vPi$E?6Z8k5snMe7PeaWv6*hBEMCbEI4e$>9opMwmwZt9*Y&-r&dEvh zx_eW#_ZsDH@siaRT#A*SxGL;ye#o{g^kmOF?NK%_10^*>e(%BU2L`sgS@ro_o##uw z(Xgt*gwpOV*r~SW(q@zKfu7lmpNBiJAC3$0xcHpV_)gC9AzuJ3ukJ{`p}Tvb>(JAG z_ACM4Whks#5)#w9*F|M-UPrOFlTSeedaQg7pFCFV*dWb(YxQmV1D25Ka4Y*WSa~>S zm6RCzape#rHcXrMukuuA@n1%ZcOrqa8%YO2Dm+lH3}6of^Vlnq+OJ=;Z~7*$15kwN z_zGg7UP>;;)27-H6%3#*gqDc$Dqn!Bti)?8PGHOqt-ea1QoHs;y3dlXMBRP~j;_=} zp$LuIu}HE0W-N;%d*vxb+1vAt^NzlZUhahO6lqEcqt?&$vHlfvytb6$!jAqs&S(`d z?E`Ls{v>Rk8*4ai$)8j6pm~tWmI3xG=eUsVo=3b?PnT$mg!Gh({2G* zN#3nl)SVYLFfnb_g^pGq6iNB=YXw;F!hm4w9- z1i!$*P@JN#$l3JYe|PgmWMi~eW4-G;w|#8k>Tlj0fbR>r_Hp@9nWwq$w9aXzMN&Uw zL3(gd=g7esX*&c-oyKBGfz4h#|KaCvLQ_tmKv-kb-({yDl^ECIq;~RT-hiW6P7y$^ z?5~g4)s{+U0sX^{&zliEFTnM%Lxh6XCAOCqC>B5o-WaXyuJd}&m!{|Z@H6OM4%OmE zvai&bH-S7$d+dDo?s}mftiprS*+RX;jQSPl2to+90~9wLmo+X)YIDFm5qfk`NJyx$ z@)_vRtc(n*XEv`BMb6*AW5%V{@`66Qb*K&|u&c!=Nh?<_<}h@`Uf!qT&XP@?`w0AgU1AdB=miDBSO`V?cApHKF14;i>0fM z+|tkWwv|{zzAqNa9T4S>s3T2MtLP6Pmx9=DAytRvhwNpdFeduQMPffgmrGk%?`KPg zVv~23OqYgzz{)iYdVoL9dh*0Hv!g{5K{^PL)xh0k=)M~7d&6(vk#qHSy-2TuVs8Ia)OfL;^WpkZPS) zWPnjid-n1XvaAd)e)&okCCJVIFacY6@n%4Ooqq1wquojw=Zj%gN7@}m?$~{785;|4 zDcmNXxYt<1*FvlS6EMGc+XCgmw&yo}yc)nIAko-%)3&~9i>>qdwJS<>y{8~3g38w7 z!iWGKIYyt;oQWQj=XVl{5r{h!!{S}4F|2=0bL#+aPk(Bo17QI`-R5KU!3K6!Mb6Ks z&G#W75f1`JSOI6dpLD@02t6K4cBcOuyNDxrY5#VSty>4C6yLg(jd$}|cc#4E6S!yh zZqj(PxE%Nl7#`;u)3bB=+<(qn=aycv>{xY^7m+~T-iih1!`JD)mrv0<=<4R`%92RI zL-me{RO1Esrq`lqWDigrx1=84nAytIdw3{Ut`Nr+uwt82%?BGjIH82Z!7+L6SBB#O zFeT7HI0$TBuKka-;%pw4lTXqy*Z?ZVCyc&ikBHnTSc}*lnr;Fa2DBE1$KHI|XtG$% zwfDl2j^JmZXACGec~LF7qa95T9n9Huc^^?2=GiT#h*)l}P zkj#~vL4%YLuON3 zdjO*R@egHU1-eW5ngBmhh*6EuR-`SMfIR`g4v^Eer$pe?m9K;s13IsL+zk+?RYdLJ z)OPOZaH?-EGEL|wfj8K#92653ZAh^b!CK!I-4WXEdDrJduRQSv8|>gv2T5X+cqzE2 z8t^h88iM;{9h<6~+k?js%h*8A02Q<_Zljjpxl`NX_knxxjyDXvM$2f^lJ5G=b9bY8 zrI>XDh>Oj5;?6ay{?N2*r#lZSZor~0;G5WcZE2)eh07Nb((EY5o#?tS?%DYiz#i2S zZbsid>H0Lv@&2#sy6jyA#`JM5*>@=h?5$ARqbO2Qz*4JWQBz>!wwamFZAgGH5l_f} zdKwf|`N!0qOX-&yb9i_<_HjgpRbVT$h+GnYc!T4|!?pNJ#+5*XG-Hayr+|E-q(`Mg z7zzMTqp<@~9y9KROSu@`0i|Z->Y{jr3|_$Tz8cHllh(X3*9*QL3kazB>a6~7^{rjP zl!H7Fy;)kO|Gb>6@>&5ga@dh_MJ7ZqMLv{n9_Wa6QY5-e=g$0nxPA0qL>J$}KG10F zt3)m(&Jv>K_DUFXef5L^05ip^Koj|U4<8p`?skKPkct7?EBMU+UJ+p=X zoIO4n&^ax1+#9ZXU>{=sXsk7wB_pG(yGftzj+>b5M`Qs7dFtx7lBn1MgfZzsA7i*v zsj&x+0Z~!WXYBRBv8DIz+fZeZ{%%M(vqKmJ0jdhEOez<`2=u=A0?ONIQ|mQ`~7yAxWvOI^vgi%#UZ**aB4=R)%e8YBk(TXhEof@*=W zuK%zbI&L&ZUgx7hPo@Vf`!q?Upco>U9%F6sk23w-XA;n_RR zci72>%H;u%!@7BKXt@o~4908mVBD@wCEe7`i$)3-jKR?t9N4wW(twe))T=5@iRmlu6-l>xz zI?`aCf(y~tw?aI0Ku1nm`bXXF(>g%_d*p!q58x{S|Ki_KD8(VSIWZL>eO0{mB%NH^nU_UIl$*P5 zcr`hQ^w*7?tLUDYRrzv$=mjgB47E->2L7$XfKEGXsg{d_Lj~_6Zl`(=P6X99Zp-ql zW3NYlM3NbiaPxiM4Fd?I!lvaobD@w2kcHp)pmZ+_;51_mIa0lD481PU1bBlPkukiH z#lv>a9`GK}*#o3bQrTHq?H7M3IW)|<;VRR*V7re?ucnpoD%tJYP^V{kC#TeoZyklz z1|&R51+5mQi~e6jiOvSMIv>quhf>oHuLgiHikz>W-jdFU2VQpM{?!supz1iA1F>e- z*8L&rM*oS&>5ZSOxOsae->=3*oF=6$L4G)>!|8^7_s9iUmHC8(9DCZ{VNifT7vNMh zs+8{Uy;zUHG+i(R3U`Nn95QYR=Nuxkk8AZHw7*stzuYP@3K*#mW9~`LbfjKSbHyf+vXf)Ih0jp@@SSR0#W>*<-928Fce9?m;DbW>ZoOb@grMNj zHj}ODWCEn#zXoZAwN?f%M{FZ7G|)q10ThBnKs4~S>9ma<&qF=A@pf2eC(vmW3Q^I% zldwaPQ;xWGkAa}(UZ{!Z%vZ`sAIvQI4L{U?tQG7-kKB60Fl1t8ckF8EdjDQ{jH@&j(CiHs zjqhV)_3)nJ*`a?F{21MwxFu4Hv65Z_S*u88Lrs(PtFRV1M^=Rv$TcK2%={4dtgUP z9D2Vv?x`y*b``Laa~5`9mPg%o!**n-eqhg6DUN9~=g zif)Sq^hxJ9<^DZNco6odn@^|zoCR5#bEtKwe8RKf@ z!uJYjxoZQKhXZ)o!b!i6bBoT4Tpv;abGkS^UwY5?HBK(Rn*5R#y{``ZXyPp^lgUemQdf1CV_DcVg9clFM*5waqOzV~+*g5% zxa1k5n+dRH>PU^~`{>Y6Isnk>pM>-6pzFp&7Q6N?4jh&OX=EL~RcxF`Az9IfVabm1>X~PSqR|hf(b!t&1H1{s5LT$Qp}+cu~5Tya7iae z1vDn^5_ko+TbvH&z7IqVd$ff5x2jA#d{zEYMb3mW7WRK-B+eBgQgkwbKx*NyMp>tb3$iB0$A|8btQl|Z9N~`E ze7O_WPBkN=IGeb_xJE1%$jue%s=uDvr{C^tjmF+WNqo?kEgW-cy+aFV@8T+D~Q0jFK|NzXQCClhghk9Kp3#CWg9th22ue zo4Uqk079uifP?3c8U(`^$%#OlhpQAqtIZgT&(uit(9Ntbl__t4^8`B?wn`RkU!+yf zIt&&sc_rAARqUGfy2+tAV$}=`=@W(=UY2koH1obn1G(t!#xeNdU zrWL$vp1XTXHd#1boUuoasUUjq<*98eOvJ~J0|7Gy*(~SxyT_3P>6 zm?jWjmO`w>4$)br?cE6&+)6g72;*Jjw^MtgKTag<5IR$Z_W=hIS$sF&sEn&fCZos$ zRE6T{P1+u8bQqkv4NyWN!5=R2gqa1sU`+D1;7)ayPho6Cfq_K{R~nixh=R%4yO~&V z_|pFUzi-eH*eGe+(dS=VH|qj-!GHz?zjNfoxflvt;?(==Dx_QByH-<3ZT~ofULu-T3DuO@&%M%r4Rn6-X^b&M{b$(y^q2GprCs~oxxMxqw zn;c6xDOLHI58z9Ntpr4B@O@Lr>v93{EHyU59jb;ts@pFMF~Pu$>_(^#%5H3<=&0p( zB7TGlR0y^v*27?RLb5xoq70uhW26RCcq3uVadZK@tD*)1zx->v2G`ADxia5Pb{m2$ zdFWQRqy)$Y#oBc9A{{J&_Z_K%E7MKH1z%AQ4G)X)T73`(F9umyfdg`C<2>`& z1);?+xeE;K;r~V$Hl!hlB~+&izH~zD#xPASkY+eI$Wlh=Pvm}vAmaI4eeVu=7qDr# zD@9WG-hifM9XQ1>r$c{$Rf&!6k@7rcCI;{>ZSdoxQ=6s(sw@gkKFuMf7SkeD1j61N zh{ER1xW$(24Ds=KlHZ$Y@o@DbmcVZ%0U3}3dSF{`<@{(KuFo)&`$D=N;#)U8h;4uw z!Brm0QJqKPEO?UmO<2~k{p4kyCU(SbMgfQw`^GCJl#%)t6HMX~J6N8edTWwFz|L@I z$7a0^5i(>&(w#dR?@X-`#Dt4%>grDO4>G$`^)W)>H$Iqm4@wUNwowu#o!7{&ikd_k z=4+hl&^`mFGF`7*(YpaCD7qP>BZe3J!N3i8)B$;6{TO&kxXZDTlWZFV;3dT{ioFrx zkR5-jIDg2)zWVE*CF7^R9^bc@!C98vVn-h}h|K-u_}XnnHxJGKY?YFtTMp_S3{_Kc zO-dN4O-Hx7Jsji42bW8Y^Wq;K)W-qA zlL!2TB#{O^0hPR`z!1XpR>6IPzKW^qPP@Q;Smk?CjLW6#>Jq0U|(N;vB;gqH54p%q;j6m1H!6;NF1gGCiimH&c z*~6w|44MS&&p{IgF^i6pf1UUfC^CV{2KL>!OU1UzA0N7v2VbOt?imUCODdvord>8J zBQ9YR$xeWWd=T&PNxxh*$$QG-&*_mW3M7*EUhw74OZvIG;ih!=a7h%e@5Y8`)~=^| zZh+Hl3J%`GBZm#0mvcj|`u<=!9@mcq)6?KDz4fbI;<9{c~5ZSSwt zK-Yo>iJO9c43FY%&N0?`;pL`Guf@5g)JWy!gP2YL)%(fz?bePR*Amq|Tj%!0m7Wr`<)#{M3i=JdOj2mXgGRjI^hdC`kN5nZcNfpc0E%)tBrDqX@gH zeSE$3BRy?r9=JnACfb)XD^+>+x5A&&sh*bB<^Pnov2#z&Nf(!fNgXIAt5=pL2P^uP zzLyMJPCR*z!0oG7kIk6yN_|*eLUl$kMz#s4NTR$sS8QYdX<|r6a}@K-3+D?+#aif1 zN_!%@Ed#jFJ+yKw0LQmn8a)QC16L+d&o>r(d3wVArRpdCR}$^LFj0PNZxk+jh~B?+ z9kUF^QgU=p06-9dQyW>+vg2p|APNnnwH;6-T6x@S8JxNnfK`lSQ%z=BnO9eHJ<5VZ zX=s&syiHl3wpH=Y6JXzQ{{Sl^i`}vECag61_#@X^BzwtV1EBI;obmx@=X>IlUS*U0 zgVD+wP%g1wHxp+o)}f{>b_Xma-efMeZQii>+kNGCh&zq(o<|6?>_-Jdna4b-di;2b z$)A-Gng3g-zPF|64C)ce0P@*0ii??QW_@dfqO7yJ(;Xvum_x-|Y9|o0fv)0G&CefOZ0Q;EOQS^jZV8CEac+2~jQ^luEfhA^z~=)>zitfmf(@tVF+#X!N|Vr$si zr}L5YkF8M{|Fmt2*+DME*1Wp9&Hp(*|7J7|W0RAPczoxN`Sn6MTS8XZT2Fc30&`a^ z=lH6qzrUX~eY$UDsjnxPezWn+{Gl`@YivZ8X)@Wt!Md`SBeDejl2>KcuiyED5Q8SQ z4w+54mGUkh;W(rqh$nqQ81%BBq`!N>ReF@~ex z*zO%zwX(c04qcKs%Q}(Ky^Gi=ZO6sMCAJT_%vRg{eo$@Y;$xQ35oX=?>qMOWLD z)KvQzEw#l-WZ_#wA?yHzjdfdRUtjz3kmYhP`GT=gIW;xu>lqk|(pMIT$LlvL+bOjx zPw(nJvt-)Jjs?`|(v+9|r;7mj{;plStq5VlP3*Rq4e}p6h=QfWK{m+*t^5Mwm`X=w zo@>AAbI;LHoN z+}Cuf7oQROm_qNUd{3pI>Bt>=Fdi8}JwFku4!!F`*U9gY%3hDNAHC=_hlQcFk< zIq9>py$%VYh|EIOgi99+DI#wkxI?q6$)U_F@hflX%4DI0Um|9F`0TI!{(Y{cx#ZMG zc{28*Sd9yp#CDwsc(;eF^P+@z=cD}ql6vjQb?Es>zBvT~MX)(I^SEvce`jr%ZA~j{ zV8Ay8j?Dnz(@~>$$W8%>hH3A*ozbp7R?JPEv7h!pu+=63b0{&W$s!JOcE98S7{7 z*OR*nDPI6plRFa#7d$Dz-d4fFfCB=SA)w_fHcD=0(>?UwC&=bT`QJXu^#TZe=6* z>&(ndf%M6`y369WRBQ@XN>Xco`gEs9M(}_R>fXj^k*=1^#w8at_T;k9t0}4-Vmrd0x_^kv0q;ktu$FwUbq|+{-_uR+tGnFm?2j z^hpdR55KwxFQ=hY4Q%{i#@vIf7rYNucV-i!jD3|TWRoa_%fy!sK;(K#O2xQL-4ql| zsNa}04gDyOKeX?s{k&n@K87o`6x>-r2L^EzDS?NSm&gKGP`d-s#b8)EoEkt@X7}Zm zacX9K0oB}uLQCR%AYQ})L`IoFJKy4LWIj#4y(=}isiQ~Nl$lA;Xpk59JguSJv?<_toR-=veeoXTcNK;XROOTi>*0m=p{|{Vc50lEd%Kfe=S60%qh)| zC0*PbDbQ$9Kp3U(8SKESJM;_KW^zYwS8A6(jYgJ7%PfP5+1vAwzJM(LgNyIj;#VPM zWbr?P!GWA zkc1uDH@6z)+w}LG&Q7H9Uk0!0s85~mxupG$9ptL_20GnmfPBHvP`0=H@28JXObid+ zTdIvY98ShK3t!#;hbb<0x9KyRjH7s3KnA3nNJ^Ttbdf8a39SaZEm^G%?;h}Gq(x<{ zk2K2bLPdcp-tJe(b$k+5Q*uek$#vME7dG4gfj)MtL1Oo9Sg=j3&1~Nluw`UXBl;&u z7BQqFEEn-S^$OKf>no>U?Sc4xNA>bdA*iy!Un89u^@4y1LF&vKLyMm|_OqM2#AHTc z;YJKLfD2K4FcBfy1-yhL?)Z-GZiL1~omND<8Fkd%O{?iW%pq6N#5J)a)CM*M@o$Hg z8!Z>tAm*=XU|6it#5)a&HuwXrB6zr?uME!#M4OKNoHT3R{wpb}(FVfxhG)+LO*9R{ zY}K<>cLh2lAr7hzh)42A)`}7F6x1^p%qvMRwk=>$rW#vj;T7mdiYAUUS$v6N*O+Wa zX2pF=zl;c00@Wt=BEd=#{YME`8|s8j5mBsNslER8nJo^WXTM!z zKJgy>-H*o2me{>U0^}e;v}umaHQJCiGbeafoWL+pjZi4K`5$|ZFjvoa723eVN%23s z)Kh)2!p@fQRSs!f2w+LD9yj@zQ4=O-1D^lZYuWR(z%i`I8I>=_D1O2&{seY%>v=%qA#61@kCEu*y5=y3Xh`yQM^lA%?<-sp-+TH0R$Bw8%qY*q%U z8|kvpE(-WG;aZ2cHjI9mavR3?qjTYgd02Jfyy9RzXeM7a{PM_)R1Kc?9K(AFzogsb z@#wLl>EPUV#G7Ffror}JeA3xcv-=P&bpVTm+bH|gQHS901Lz8c7?bk5Gt4hk1#F+B z$OtY!Yu(l9D$Q=_uV2W|9nA+P<LyeKXo^Xz^yG|sta+U!)W=v3lJWf0I}n{;0Lt9sra=!26-em~i)q{9_pvLw zZ#K74+yYNC&-+#1h|B=&?JAUT3Q`BqRs6oyNLX!x^5-;?=R6Wbj`m#w3I^O0EnDu_ znRs%yLRYBh_ov7tlbkAmYz& z5AF%YL+}fD<%Y%BrN)$Hs4(zN1@{iXbXd?@LE9|*QP3dmPNkegB(0D&2B|Pj69s^zL!17$P_!->LWs^M^H+RA75Bqz~=d62z!NYr40I9b*qb>Js_%80!7x|GF+7 zmufA=ga53>mPNUa-^Ihko*@O z(~$r3>!?y~=LvFUZ1y;<$cc}WCn%o-zvp_sAw(YkUh51TxPX~s0l~PsMy;7tuH}=j zZ6ogBVQ@w;lhNl+q|uPKFqX$6R~B?BAvwgcA(e^*k2G=0;J$yDTL zhtd^W{I-!2Oe#JC0>GRN?&+HYYebJ<07&t*p!)=|F;(Dxksb~Yv}}K_DF0anzV%4W zdVDPf@>EPi2NnHh@+=$03M((q_62N1m-6S!m5pDfyc<>k%RqJ2k9G-5+n&J{jLY#y zhvv3RY=>xhMk4SGwTu_WYL-tfPAjj-RnN7#4`?dSGvT;Xk?0n(l7fOY1*(PJ^=L1E z#Nqkq_km)nUV#O&|~W|Kpkc|M8bu+}7wj{NYvDu|x{~(pJ}3 Kd!S-<`TqdjHfACK diff --git a/doc/rlocus-siso_ctime-default.png b/doc/rlocus-siso_ctime-default.png index 636951ed5a8fbc7ac478b5ccb3ad2d9f88386115..8a1984316508b81ac06f49cb4e31c981e68d2a90 100644 GIT binary patch literal 81315 zcmdq}cQ}^)A3u&?viC@+L{?-gA!S`=3rRwfW-mG-cP=sMO=ByrE@Q0cja3Qy*>0bcGB~q&#Na& zSM%MX>@Mu6oA`D^_;jx=`}WFB9A!&=nYMo)EUlh(kEKX&A$^`*&yC`4y0>@wx`F@4 z6I0;=A#8?XoD8AlG(!bur#GVNY5)7*NXajx$N&3l*EvJVczho}W_L@2S^d8s7Q20n zW*=$y|M|_W{~!Nwb?xkM!|W3o-`(Foe`8Bs8xfsNSt=EkJX`VS(-E=Vy94!vZ>;{~ zjI${7+S2{@Qm~dFeY4#9*TVA9KYuREG6g4DdhH$=rqz`E5J-;P_l!dC5Rd9glR=OT zk1P}AE7R!G(t|#WuTw+Y9hg?Us_i)I4sgp@Qq{=H-aC3xdiC4cxIs$(Wl~sp`0T@J zAJND2ckkb?J{zYJhTm&Ex98lsa|4rIub<`QY)RZLCRVAoKCH&DQQ4d zl>h$y^IYsYuc>_1+xtNIzuzvynQH%b*Eck{_4_V`US7MiOx)g%16L(i4&L;5WH?0a zNHXHM;XPf(Jv=+Z|>tGP&&aIHleB#6jCGSPa{QUe!?G9h} z#diO;T%2F3*!bt*cq*d01r{O}OeG0eJ<5q57EZO70_cd|u-MYx8Ow^Y7l;2=K+7 zuQ^L~*u_OgKjmQLg9p6AA|g2#qwg&G<4dH0v~WJMjtQ;;4-OJsu{S!41{aIG@$-{#{*NU0ULIZvO5rywz#t@7wNj|Ni~P z$jzb=7Sf_L!GQ<=j%U<57I2X1uFo}z(g$e!OIsAZob-v^aX_bhxlV>*BQ-f$h=284 zgPxHQ$8j;vkv{Kfkuzt`MEQA)zTe{hXZ(1&p&0SK;;|I(#-1KtfspvMHJ`a){x$3N zx$Z(2Q3KVL$1@wEsXjMHe*ECbGCqtoX&O`8SlP1FdCNfc&|8;&eZRR|sqwgByjCNv z>I{Xg{I*j)nfjTxeAeevMYFQ9w07M}&cNFCC!+k4Q&SDf=O0eT8~6-u*2?a<8Rx$?e577+TMQMc z*mHL1M)$|Ky6IMKE1!gjI@_UHPZNvsw{H_kJJtTS$0hnK5v!>u%&|va{>{)kE@u}% zKUIMdgN6a_ie>8El9IwqHEglNjT3nl`Ybz?wJs~~kmF$*IWz6W{qyHf_WI$a1xA@t z^;mv2eNG1ItlZpPow;W=CvN58*~xlvhIHugVZp;sZWGIWx!%qY+T(~fjpvx!l`Sa)MyA82Bgi=>~#u`&MR#I<`jGV*jw~KVY>)BVm zadmJ(olbyN2XX&COC|jxseiv@MwsX9DlRS_!LIn3-p|C!dMljY@9y}5SGuuy zQ|_4(y)$Qatl&P2hptlWlqp|Mm#uf~R1)x4o<^}x--?cAvX$j&9F9}d?{QwrZ%86X z>OP~5zxndd!opyTVqbukAiL`7Agg~wW~$#d1C<3%)R*hxq**DRht9QYilj>C!eP`* zsAXP5OS0l@cmFzUt6(5S2jgtO1_RW2M34BG1aBwElC@HJ1b(jEj=k(RhD?2 z`^#f)-sE_o;?3pZ;nCRAQimr;B8^W@)-EqA`7PJ*OK%+>s0zjxs7R$V)r{4uFY@vl zh>Q2ZH+4Kb_LeW?xC|!uul=|=GlE9pYkcx#T6sAizMz;CooAArW|BSo>4;3#sC!O9 zH)&Z#%QBA}>n%tp&@4SaVYRW%v0z)A%Hp@1)8%t_@+yaC>AL+D6K^f5R;WPP7E;=S=5R0U; zZTt4wg*^WqybXhc;r#Wd%ICHio0u?6_%08ICq-9$-S^RBu$ubM;^I(sD5K|8@z~7d z>(;P?#`vQrEwSnSd%^yHQ`flvIk%>$ zjLbIhi-xexy-xiXjncP$-4!xz<-2gQI$!eM-MegGJqk13_H%h1eE04h9m##+*U7=v zd-t{y&B%YP!5Pz)s zIOVThYb!@|9ilDwul6m4oYkijSnBhZ=_>bKy)p6S=j9RH_2iBIVQCpof%UUH6Z9It zeEIUcd+)w|+NAg&KkUhksRsi#{^o6nOMd?T{V*whaq%jdP5}5osQ>TRLX(Fw(*i;v z@h*Pz$s;M=Q)X{I%*@DAs4E{hKrgWF;f1c0{qYW4h3>*s!;wdPmAZV_wU*Ty+=Qj1 zV%C-$)OKOrQ6aY-w4U;Udf)NK+EBkm6h6w1%_synP7flO#PYr-TG;@ zj9)1A4vFbMPznqSqp_&)+mX7lHs*$wLd*hMlBpyYQ9W&GnixUjZ31r!3n^zr^IZDN zcZlC{Y+vGSptsCkXzS}^0buc6U8GMH5fwe#oG4ZO?mFv$*UA8`8eMozV0yYBG5b7c z>$s_1+76G5jtYp1>Mm~tQqr3AeC_MA^gNiNy=owsU=09Lt>6^0xVUH+ckJ4=B|(|- zsos)K-id$H{uKiv%76*dmZcHsdnZ+th?csEgb-HSQk8^I>qLJN^{_-UoNfxulq4?J?$HD%4_wJF_R-#EW zp)x)c8>{{sF1*T@=`c=(@m?kmb$xwRFsyfa8g@ADd*9p~x-vtRzoA%NeaV)GX6x3i z)e8IM<*mm)K9uEQn&4AwyI7i^&mowgx9o3k|5TQhL4^Gg%}$XtfGZ$FjVo97`Tfb@ zM|&DXi(W*1`RU2{xaKXgS+&;q4l0}ceZYSz&G3aXO>_Q{dNWh`_~hiMk015dQa9%P z9~p|xEDy&GkGE%NY~h;mFmpb=awYHWhC;Rbuw-FBmuk@|P3ffJ5BK&iPgJa5v?#gC z{2w?Sxn+?1HyM+RsDRqf25K>=y>oVUgISp=n@G3s+(|1eyw+76{_2$+9{cUYL>l?R zg12K;wEVS`lahX@hvB~q6GeXilmnhrqJ9AyP{dz=OyDokB9T&b=S65fNHtZLUj3k zIZx$UXq-JO#CLs!{oMKU!$8fONNb~3>mts5rI8K%{=CPI9UC7XuLKr6s}Vjm(sXON zBhN3iIY}nt$rI{S3>2=dI<2a!l76#MR*&!{UteG1C#XZofop4PTgK{KF5>m2t;(Zi zdR%sj*d`ZXqJt&){W>qj8lp@ie=_!w?qww`qzK=x8Z)* z*ZtNO3oGiD%9m7ZtomCd@=AlyZ>jQ1=NK@%+PbdQvJ6C7tqGPd z7UT{7%uLk*iBMKnp21_*6qA16(sIVllA4-Y>Dmysj3M?;I zEnWC}dihVLTA6h4x-&szfNi(rmH!nd-WolE_Az&Hd>jBtV`F2bci%i8!9}sco`a#> zRK5*CL7VU%87PFkd-pbTQBb?boDfS68h^}ZB$jsm$x!rIs(*^!6C(nW>(S^4CQwOH zYDTCDY@oMj<(T9hq0!0w%pOYC_?V(nqDAv#s4j|_n*@D${8-o>QzY$CwUfdvR^M?= zf)ModSj+)ZNQ-Z}j!DpjnHgb{Eh2vB#$KsP;8#%m4x9hp}RJ4(Ho7bIsww1b_RzXxH%T_ivFn)xTo9B_uWr zdoB{3SubdeARS$0-ijb$T3N<7Yr3^%Wq*uhBNJ%(767auS5#7CWlszL#0Nv7ML&M}^k$szN?-t%8%eXScU7-hp`S!=#6JoQQ zG#eS34skMwq^%H49TLQ$cs@cGdH*9YEa3l53u$AMC6pEX#I9hk|1Z>%{}h`4pXf0E zfA`8^O5Zm}oL7pi`Sy)Rej77SSmfg6|86pkiX=c~lD);u%*?v0WJ0_U)R^ z&dzT#HU1}W?EpF!5)~Ew{yBo-3#o^+ErupwgX)uG0lO7&qJyI&8NB_m(S_Ph{$qHH zKY!#ueg2%G9Ea|X$q7E7WA~4@p=xX%b4$za->aa8;Xp0Hz&hK&&p&G$8|fS!9n)2E zB0hC@GsZOpW3R=>bbb1?DN-v)>h#+Xrw?~_hSWL4PoQ>eW+G~D~ekAA&dR%{o*tO z_I0D~foz+KE%<(CRgTS94bQ6Yx|Nol&4_Lq-*nE#DzE#u4%DdU&!6w)h^#Iz_Y7bQ z%088s{_GhYM>P)TJkwiSfH}T_wR2s z{uQe_aq3h!dU@?Xk2uwe3+#G5Lzk7^R_5%MeaamSM23zYJ^Bdf^805JDMCxIan#+F zmp1b=eWKmq{K~+BSIs+1G94#F-P4vcW-Nu>F}H7XVxyC#lK=;_y$`d8653wy*RLjj z{``62&70a99vjQ@p|w?0{Ep5a-p@ZT8)kQ~pSF@cYG82I$w~72=Sq}-{rU45Z~bD2 zx&9rCv~r+R(r1sV1BmRp-It0989!$Ev9)!0G|5WG-(L-?$W+CKA0V!j*+&QYp*yE6 ztH#I09vkgOV+$72ja3)ssIq-Eu-d<&N+%GcxNHCZtspE=^iGxZvV@Y^7hH{%=>K@G zHCL=L9^G|o#vc!P@A;2A_wC!#($a!S&Q?CGBrVw>WI^=~qY53a$bFRIg^9!)b1Bt7 zX{=IaKZyA$D=Qn|;xoLxIo9TNm+ZcMpK``v|w1?trc2cINal8+pTvUYMTFh4k3 zySaLanVFdwffmx-;^N{nm6WVb%YEGAJwV(6;3Z1DELiFXN^YADT${4U?=fFh1&!{t3D%Fn72M#L{jo4e9Ju@?t7PZp$^RmE>rGie&VDp^%&WiOb1RE}__$O5k zUI1ZP(tK*6(<&VD3c(}*lMl{+*xUH=BNyL&-B?}<0V?Oh?J{M5I7|~m0Xecx5wrFB z_3QKxi+IOpJ=bO%H0Y`T0B;`_Ss&zIrx+a_1z#Yv;)da>kr82c506=>8oP3}<*gH)}JlTeog`&bKJezKZi@q6wy`SZQ%_{rO1*izz7Rk)4}cpQahU^Uh(p z0|%ncr}}b1!PGl)WOE|@xs5PeX*3Ul-A?rszdpybzFxC=a)oc4*UQ_Rf<(-;2l}EZ z{_EGlAq4jC-|y6LgM-guO^oGUN{Y^eZpz$j$M3!eTNq zy5{EF0H6{jFDfJ-H#4J8(4#7|jDu{AvX?Orv*BSQw}CEzmxIy^Xz?-t1cgsdPR2)X ziK6m2NU9uk#U|W}dTjjgfs^C&*08FzwS(9ugRV-%FaG-VOV9cJJ9>M5i+7jl&$p&% z;|+Pj0;{Y8$Z6{O`YcQ|l%aAWjB{Yf^(sT-uTu7>=r6m0;+_jdAG%WaJ693MQqH-(lQqJ0bFsi;j;2W zjfc}!A8b55c}Nff2nvT5Nnl)c&)6*@K8CE;yf+gP0!Kzh91MhpTzSJkefkt1ci_MQ z#(PKKKHDa#qOt=z_mRZj*XLQy&CT%wjIX<*6B5{YRlF`Yxnqg(sA~GkyeXFFxk|90 zXA}&7jE%MT_s4;m+|5a3qORg)O>L!pViZYK22}jfbVE)OL>c_~(%Gq*-4WK~!7II~ zmzKA|#@2Qd-p+GnG)aIX^5xkE7Q787P{huVfjVxh+C-_-iNf#ZQ_64OzWtKZnA(Gv z!vD(8f{UGylB2PXH4_Wuyw0=s_B0?tQT1>s$fMVUe_VxlNIV9>;f6kmd z+3}8%KImZ-p0DMeQ$ZCQAX*`pSy;j;p(<6Tx|1L!hW0eN@=6?Deneyaz(yf?aKTIQ zA%&8fTAakG+<`AyC)lDiy}!Tfof5fIvge+YS=<@uY6R)1_}5)QEkFgOVnzZ2%Xeb|n?-Cup6p=NA;aBXG&TZO-xk1D^8uI}ti4Xexn`x7TN zySuv&+4obwW5sfU#r|Dgodue%0bO4iOAR;4u0!8L-QQf0DBIh+-Jr}6SPDaEEaCZ>{!b`__8u5Z4vAC#qPc~m8U zG3nOfC!Vlc67JojhnfJP2aU*C`QdlZz-<9;P-30Qr~IYEYX$@AZ0Wme#4!z}lP)I6 zDeT{0EY_5q8s6bpm!jfbnJ;JR^1aXPcc-Z+a@uIcG{&=%&lFRr0_xJs7ESp4Ks2fbXKM`Mr4X{PQeQU_CMXlQ1> zU(6#!nCd+Le;1d1RDHlN8oqqtWTMeDRY?zYu5q84zn`2O-0R$cUXd<`Yf%_E{=Kp1 zi(|n|`YYFs^|djz@Yb=K69y`w(6L^A)D}#5QS|R(ufM_`+EB89=Yl7ttGm0Am;%^S zmC902a9|(>h8N*m)J4gZ7yT5zM_6_B>@fIvcI=2*loyO`cijWKu`~C36Ly8n2okFH_B<*RMCj@{^D*@!#-+ z7x}`4ayVK&wt+0iHT5)F3}XvO{ps%&d-cz#0}N(ugelv$iJTk;Zl<&eV4G(!QH=UfNvpRw6(D@ zFfyifP7pHYn}PxxA0LZ0wO$7~16hv}-_^H^rAN-IqPjz5^g(!TC=d{hA-d^gqE-;5H z2^<(%U#|n8cyjvE?Qx9*fldK>5|IYSj%i48HC$PJxWF-`aD0A#o-j;+k4PxUYh@E> z#KgtPXgRqS#X*E#LXuThzM1B2o7YO7lbbCafn{T!a> z%#XWAcVWp%ek~P)gEo-x>W;0Oi<$oPB$Qm(85WP(m%g5Msj`1P2#VQ%)6L`npGo#f zG5Lr(g>!)^w}6QWwcz{r?|=ZWJjV0~>w*X*w0ZO9BF|YtK=v364&7SDZQ}|A(jixA z96rndp`lo;ckp*%zYe6C9%se3&b>Ei`8=&_e(ntX_*=1Jg_(wy7Kj)n^3tVW6-_{i zH�=vFThj%vZI%)3mbj#f0cKT{{0UyYLxxwl5nNRKy zvCOkFp`GzaUFC)1L6O%Pbq&@dF`|O|L%5~ zc^>yh_fb|BPQGTPTMb+s$jh9+FKF?Gl3!(UMBF(nf|a9(P);amA3qumv#!(TwvK6< znRN-?i!^)$&*)!?YvD|k{O{kt!RsiS^Me|WrWq3E6XZ#^&xhTitOGF0efEpC;o*s? ze>OUrFA0(K1@m@))l`Evd4LY`jf4)zEuWkrGr5j^+<|S5?M0uOHyXGlQj0LnF}uPQ z`+Yn#=O2gAV$;(D7I({A%JPAZKyMY`eP=e{^6Tu`v(=Pd_V&9T*@6dR&tAE5g~a9# zdnF%NFyncUkg|ALboCnIXyD@Q40-hQDGfY^Bju;WI2)Urqq3h>gIq$mOjsTN6OX zA)1Yag`^$>_20QlHw#mbqTLgse!1(%qCrfJ#hH~eg;EBUSfIb3KK{#kuj@c11vn7M z;-jpr3z0`_>;;8{G#fn_xIqcSS#|`G(*l}DZ*0{RGF6Jz#O{;iYQ90k*PIV1ANKiY zbaJ?dyZfH2zrSzUYx5VPXS{btuz;fCsc|}aY~1V)hRRe?C2aXHo3{Rb)}&^UXIvz| zOXX)9Vgqe>;Jv_Nq6w&=Y=(6a>hIE(PfeQ1aq(ree{Hrr4`+{5nco@SVqY`gs>Yh! zLW8mOCf#3 zB%^v_wDotE7B6@jkRc~0XMhb4N*t3Be_>)`f+L&(RQvsNG#v;zFyps(S0?he`KN_V zclk_wmBMe-o@p-Y>M|1+6=h^yE*L0NZ~u6Kkt)$H%_s|Eco^{BT|MTl+qc)?5!QZ^ zfBN((1|p&tZSCz8!Bqi6L$*b|&Q(IEPMi?xQDohrEWCDgkT*CXVo)OX`m(cfb7%k% zI$#GQVTe)+P>G0$EH6Qiew2N4cS4{Ssiv{|$M;Nw)Or{H)o#0*BQV@IB2kGxfK3g- ztf~=M9h>8M4e+e1&+WPNtjqIYm8gGTo^ zq0?qcI0rux)IO+rl);R3%(bT3xyT|nAaDDf!=bROrQTCVUBN!F)j1WL6vnWRFHSeY zkBNmP9qb~&D(bcxfAjnIZQs9(kJQicspgn$=c@AITTgl2Q>OdGh`^2jxw6SE&tOh_ z!w!7e5}GgfjDly^rc1fM-HT-p9*hR#4zM#D85j&uTu+7=VXJD$a zc6DWY`0ye7nQJe>9H2@3k0INh$r1#L2T`Z1nItpT$Ue);0`ZB6^svnQEFdK%CG6p* z#2X|%`sdG^8794B$FwyxC=kI=vuYds>{y_5<(IL=sGE^3qt}m+NbBuBGNplRWLXsz zW-=WJD43PP7pH@LZH@)>yPMeQK-+nEc`ZElC)&9!&)7WcaD-b3BVKjW>nPq3HhH+7 zWxs7MT-XhD2HV!KcZXmk2POn4_em#Fd6L3{%v|f`n+DI>k+3<))vyF+fare}817 z2WQ&ks9O;K=8e1tw~LR@!Ko-Ad3^r zr}ECmfUQP${P%BdtbK$%kLn*U-w$tUKQuP7DcigV>;8>DGy+s;Pr>aDA*PZ#Zf>uv zKcE7cnQEw<8VldP)mif^HmAGGVP!}uO9lSh(NQpdO!6*GKgRZ|ECL%u;v-4=458jZ z6U2j<`IVjLT!g(Kz!f#D|5$+&&uRaDdbEQ-i%0&W4S{Sy?d`_}TIEgTKL-(t+>RYP z}!OYxL4Q z2C6{PGbsdh_VQ4qP!h2nI0Sv-6vytWb+B=eB!=q7e1Ez^~hFq6kPv|EY7-#bbB5inp zQc;5fU^|X7;&|{7Wbl9mI%!5*%V0F4HC9(w$H(#?rV}9Ze|NYT%7Py0q>%CSsm^%Q zgPS*rCBsm6C@`PwEji_xMStfVN`|Z(rKh1;8A-X1q#0l=zJ=*PVK*}rvn=BqfUu>= zB6zlX_XU@imv2eFXkcKVnfV!$02I3hBM2rU2owa95Vos(l3SJ$0E#5cKKk8pVElx% zxi{^h9u}K2af*%#9ToYpU>hFXhDJs^mB>Ff=KpEI`LAD}U0h4l6DBAtsY28+uT$5j zf`x^p+CknH2C2>b&23C!cl|5pQ{I?*Ry8#@Z=Ng3F_HND_iy~ooB4WPBD@XnL3)36 zWGi|6`0&n(xAXPKQ2!G{+>WHMyPKCCY<^AcfF=jr zfhYUy`STmgf6t#kALq*+}YuH*Pf6E!< z7Rfz`Jj9LPy7l^b{LkvPS$jNX%_l~e?prj3Lb1Udcod};RA>9@QEn~^oY))tDJ2q_ zKNsA6@F1jSknOQ@wYIJ(W7pC-4w!wV*T+`= zpArS>3gi%P1)(9ym}{=S%^vZcv)YjlwCaCeCTDl(j0`?$cW|8<(17Y39T%s2#x^vZ zEeI}Z!;25^&Gm$DzP$QmKtvPQ@aoFM*Oxix_b)%c9975hy6^fEqun3mEY_LG5r$tn zp^kwlkSf>zt>R*tDrKH*zA(%>!+6#}Uth<`*GE{KZzM=8Ta&qxPKYb&)%jLFC=f~y z^?@Q0N(CTkYB~f~^rfSt?$}bG;j3%YmT5J0_UJSa^dh#FGu6;p+5r!7nroTsPC73S zZCTgY=7NkQ^s_3*f}tNR$pU$7QxIby*=q?NubnI9BGX|Yczh_8m85NOD{>nSYhzV3 zo}n2914d+yrqb$q^HNh;GLU#g)VHL>M4cB~cFbhn@Yr@W)*sVW8_F}J1eQwv`j_T8 zY*BU3a&u$x;ekTIw?S8XL2l1o{Fom zkk$p(HBDrW6urTpQB>sF#W$3IC@!y(D+#$kxrqfEGcHks6s8MetrH7F;67o!&bp9g zS@>0%tgqDQ3MQyaCxtt)1QP5}Nr^`;=CC>S10}R`9RLuro0}XSu8sUQYN^7is;VOH z#WT#Y!vnLP3TLKLv8@aYAc-6|X6Atx zR)>)&tEN_wHVfX}4kPB?Q7*TPA!pM>YAhh!$D67huQoO3qmp}G(&l3Cf{9~czQNCg zgp8YPTz%d-k?`>0j^kCXVK!i#+vGASm?=bAzL25?Acj57%sg&l5(Y?xp|WqE$oK}_ z#@Z0lB{8f5=t9(C2Z{SL<~FYe7KRokxfVHNwHRO&X?S_PYpWAJPQ2HEs03QnZMC2;hLT+?GExmOzbjWAsN)v6oG-Zd6>!|T?ZT4 zrbV;N+m~_UX|2p3x_UP7GVi6SEu}VS3qW=8&7-c$5AWW)hwhB$e)sO(h&d<4Sj6oR zUr;z%w0&l~`QaxVFbtyUDdRl3D8nmu^6#0|Q3NXwODM~+a|$P)1m zLs>R4plxVOfjSwH`$b3v=F9-+6P8~46 zRN(6D5>&t*L+WwX(Uoqz&b{vnhGLF9F|t7%#+rxbYRL|r4EBJHYQ^N1ga?j||6}$& zm-{NFrkqizTHf0vU?;o5$#`Zg4#p88l66M>&JgtG=OuBZec{?{IVa8uA{?#swx+<{TEU;v}9T%G*Jese*Bli^v%uZV4p&V>hTv&iyP z50sp8YqNR6*n(iuH=fJimvqd)fSatj>lQsj=qA{185tRR`ued^;o^jwap37fU9~oZ zvJc)WE8!*R2J0$nYOGI;if!^nVNStGtS;DN!D9I_3%Y^*>#ZeMf1A6R-D;wW9kyM+ zk6Q;P#Ihs%t!`subM$(CovoaHs%qI#l!#2(Nn_)X6Pfy1FS^{ z`TCJpxAlbK5OT~RVv`!Lkn#DawJcA_Xtjo=WlCGp0S-U|1j=ZTRmpabm0{-RL5S7KQ@cK)pB-=iYKTq`JDw)EiiCFh zo{sv*o#cWxU4 z|J5<=2i{&@=r+U!UVS(S@d|k|?V|@0?9B9@e2U-+_}|0Mbcq&(o{zl~P+bwYGpX4P z5Z&!z|Ts`tBglAh4_4|AIU*VLOwf z6hhb#I)u4UZ(RPxi*RaNTBu0~n$b?$m}Gb0oWl51?)WWHb>zm6fN_r=?L0?K*RGz| zISfh3+Du_rw0B{*RF4(lMcdb}Tz77aPEI;Gf&1A`Y~Q+7!^+C)TPMa{Z6IHjSWQ&6 zxn$zYyzFPs^v1=AAQ;_DY;?5NmxnI0JSNA&478wD9ON^o-l_&UoER9`Y7nMgrIV(x z7vPsZ%6r?z9;qcJApw1TJLdYZ<>W&TfMbn zyU5pGekMv)sfgDDLv@`lIKW4Hme<{+_ zX5t!2xj@pn_w(lkS6=RdGrehF;XgN zm08A153I6_iii;FgUD)4*meOb<%iNwPag^mhMFF~Wx1Bp=VKN!3czrHVEPZ0wN+>~ zLXYm!L}2h{l4^L(t8}fS2O)+CE|TF`wtxB*1X};%7lnkF7-^t_R{O7=H|PtPU-cDs zY12e)#52C-?cKIXpZ6I(zcx=;6=JT{(uZF1&CSmrx3pv#FjzTFl9iKtHRV$Ut_+qO z>UhH~u-6&*NA7xb4X7siCX}itPo4lal3+rGKKR_iU^OcN8!;)VaAXye8EP-~JA9XY zKb|{MYG<_XgkJ~?#%YfjA`RGnfpDo4gmgFU`2~RuwZrXJqm9j`ePVFe-n}QDeP!id zTOPDz6fcv`ZSF=GXVr1QHAmVPEh@d5+}ni2J+i9R!?OdRE|K@Cj=ym&wm>pO$#Z7l z{!czg1o(N#lUQl-;)`jIaOMfo5mzN%0XaXA)IPt}OW=$sg%{1)&ayn!ws&*uU?ITD z*}AxZp_^V*r1WCqk-$JLJfq|1puoCq-v;LeufG$fa??4E(gQjfZe51`Gcz+!88=v% znX8->T;40%k?DZPxkHt=h6RH11MQEv?|)%(QO~@&PC0}P!o>b@1s5RZm5kZReV1HZ z8t?+|{HNWEtzUONG8T868K`3Ro`Eqb)aNb({m6T9l77_-2#%9M+q9MYzXGG+5kc0^ zHeb8j%T&x$8FC#qCu#lHsdcGWxbWOM=gwdVn)Eh3dU!;qUg(_Tp#h$)j;g^?i-1}d z#=T6h?GvgGSD=^!aFre&^Xcz@dD_B)flOj??af)}Oc=5xwwrW>_J9&rJg6^=13YZx z>b}TGwjko5)90~nqfNnB9yq|FkHwr3J;e`d&}l$sLGi&M!j4pUC<>)o()PQ>s}M8} zBKZ2k=Oe~1{?V#y6FLUERbOAPU_qS%s~n0w8+l0l5>-HatLMMJ3jub{o}pC8)DR|l z=5d5(hTq?jVE5HXMw@YQaWU=0U`39d{p)$g-~R*N3~Xc~z6#y$cUA~kqbnpT@Oq>S zGJsVA`Xv&_ZPdtgxt3-3<7ryVkurfz@ko9HNEJ#)TDyaFVK;T2wIFd;iX-oiWnMUn z5~YDLxH;&ab_ztTM}Msk@Up!5#4^G*8^xL1K8-|(Z#KL#`xV*gl?s>|JL8e5FO{mx>Htl;4Ih5diKB(-2s||1;wt<#WAFmjgwH5~z7nYQ;fb{j{>!;SqE0XTs)DCG&m zjE){NrLLFqk_bW`d-m*6cw*#t{CInqc^{fm+Vkg!#U2dI9~x%PXpcxsON);~W{X&` z0&};)>d>NQIf!#K!8Too9msT`0r`SmgT#Rp^hkCy?t!FN^w+3;jvr@-vR|#BN)V6a zY5Fa85RZT-$v-xvXq)pT!WiB+sFAZeIN*KR5Ujm95-0x6I)cRnSB z@6Fq{WJxX|85tQ{8tY@nTJqC-2GN>A%2<_~^AV%5DG8rD`7Pn=iN_&)Sh2ex&k%KV zv0_3ZBGh0M7p1QOP9eTf`TJ@{Ru(-VI26gLIqEG8)Hp$ta_pLia0r4!A#X+>n&%+S zPmq?>RN5L@x#=r_I7mJDX#L1C7Dvng79hvsuTO@Lu+5oN;KzkU@& zlF&A%;A?P;eU!txXvOp;h3)6|nDz9WUY7MIAaSY1UrADXQRa#Qp;6w zd`xLblCi39&(M|IyO)@?FJB08yck<~=z!!4)u4*`tb1^u7y!(~`zs?Z7SL9RVMp?3 zwJo2IXgYVJi7mTkuoA!bbniNJBs_FB_Bi!p$CwEgKkEtif&E0*rn0g!cE$Aowa_87 zm}*OFHgOazW-c}Y;ZGEH?( znMxj)Q6EsT!u~*GVK-m}A*Ay*@|VSgwS_K@vxSI+#=X0Cy8*F9#3^=$NG1eA9e{rk z`TX)t*tmE?y1KgGIzhz3ptSeF8NegXznSw!zz}wK0v|1eQ z=m}f%>=K+vy?a;v;>C-m^*^SAn-_-r#0W|zT)vM(2rLi!^0gD3bg*$>_I@)7?k_A| zN?;3u9)L8^rkU^yHEy4`@$%L}4AxY2e&I3kHRtZlpOEK)eMm4HCMG~JPMda)&3dBs z^S?g%4@+NiZ5llWM?9kMTMo?3yllH?o5PlUbXPELwDwJ+wsaD4I18NBMsd^Y{QT-f zK}r$;oS|i;GB1OnmusPu(`8wV*Tm8;?~ku@c8n{QQs@B~+3}2kiIUBVP?} zZEC7QG=#jzq!bD+dhLg|CEfXUj7S48km(RqthQf6c&Sd?;ETh!sMkS0xP&T<_Z(m-0G~Xja}n39*L?DE;(XC$qO3cIp2!B5mi=8e0$Lm<<2<`5F8Lf(F^s z5eql&Qw6OiLO7;@14;f2Q6Vx(RNCu~KHFIqDeg_am?0yy5KV=on0PV8ZESw;vzw6){qb zj*Xp#lYqz{2m|Kd1fRqwm2;Zf(9;o`z*LF^4S4wiC+xO@%fS%CpY7YS3k$iy^aSpk zxx&OxZsA&7fUFXFjQ{PECn6(1S&6C#z~6+uPR?kD)@9RxC>=1C+me0b_F!Cvn3NPU zdxb9jT;#o6QFdKERk#PpV6~46_gZ{&Qoxp|cN)JYoK~qaI$z7P9#Is1l|xRp+$Q{-GOBj zwRY} ztoMfaZw=GH zMg*tm@=p%HB38QCKF*d_V^DnsUCWg=WvXo>&Cw& z$fW5xIn3aMA>F_0anJxCse-8iuLEITj3|iHAs*#;uE-|W_4M@Q?-syb=3lO)MWT1c zWnbU;oP?q+EG^ML!4Zg>@H*tVFQw-AA8>A z)MvO_YlyI*>&o0{#Cwh>pi;xLmB0XYJ|(^7Q|o1Gv*-|EP3Ja|dWzgAF?NVgtiVD5 z&OuisKFtQu8|8%UiGl~P(%5c<@|=_N5r_m7T_>5&`Vq0w>Ot3muJfreX2Wqq;a()g zN^=*swcKNWq6Q#E!1B<6Kk+7$<0?!w93(&hKK9B#zqCiciJ&pg|7qr!)cm}x^W_%1 z7;i%wJ}d(f1G)VbuCE`A-J0HbfvglVp%6Gi6k_qLa1<{Vd>xf~SNzYM=RwrS&Je9h z)dNaObhnx~7h-i0Oh6`H{0;-w?f)DL#{nM5nmEHlC*WGri$4PM-z;%rGn|#*@++kh z(&m^scuDQfT6_#jEOvOvxqoRvUZgCFA_0>Ffw1k6r#LHkl*3seDvfcuuw!gK^f5;} z0w2J#P{(oAc=B7`d>bnGtdow)Xz%O{$6()5ZA{umwS~hGp;6 zU#{{rT0N;b6vwKD@KFH&9lNqBiaGWlL^=c^QflR+b776`tDUgf00bbweS3RpJ9JA( z!zKr%(@J&o>`C>TaWq+A;3e4LX5*+V&pIasT$AWzu!{gvv4~O$+)5j0XveriND&MU zht2RwAdav8U6c;MOK98H)=-Pjc0d+DSj2z}AFRPZS17D0*Ja+}Gyq!Hfs^0QJ!l(m)RMGxrW{ zN#bq5#|k*VdpaG$1|>+qWiJ~vFlzQcRaF`QKJ~YgoP;pCtLnGTZw7(=36 z0?K5xYX!;dz?wmI_`n2Mu{{U>Jo+ zGsC3|LMrU8oETTsah#4>T&UfKFb!ec=Gz^qtbo^yibWb05SBO(bnyJF$*iv;A)J=< zMyYxfTgWZh!hsaJubgn}79~tlLRg9X7Z)9^o@E>~tVHC%ptK%-;@-Qz;ozQoOi)Dx z1>6s>vGrej%2PKspHq@&e-Pq7POI=kQ>H>#VfK<8k4~f10km9gmDWPOgO9Fib&CjtCr};&XDO zc0KPB;h@K7HdG-vT5?tLaYcpN&i2U;xW?5!IEnyI2N44F(c*Izc}d7`q+J=+NrT=i z@YZsWBP7)MuU7roywog{uz0(|uj?*RMp;B8n-bm_gakw^2XN#H%Yp?HXs$EP?tssJ zt;ahr$j-}a8%?l)aLP?+cE~`GDl02VMkh`TKbLw8KC6>qw(wvmrpEL=#Sg2a*Sl`H z8d+GB=3ZeVTgz`l&I7^z;vNiR=gIXL6A}bhx3*7XGQ}jIBG@ki_6)__o97jUB z$74k!F7;ZbGB<&r ziI!*a4lyr$;EzU*331v8xunRSz7v;~+aUy3<<|C&s!rgEaKmW0o;8I^V&3zQ#3>BS1=Onzp~H$XI7hDqZ3YnNkC{mdK7wM zKwFs8xMfe`APYXlNL`XE7Yds%k6B3KW zoPnuTk>;I1bvhz>NdWPwf0(q8VmJL4OHKd93=09~6cUv-1uh-{lOd;5H}-E==vEPAKQyUi#|b+7jq}N3p>r=8oa)1PKqw>)apEK zVZl_n5ucZnQ+IFg`Sibr(4NuX7@oB*xMMF}^^_gElm5Ct;=qnF*A*z-N7>kB-tL^0 zVd|6r(paZw(iHz9QBYedSVJUKi}T$-SO$Cv>7~%dLD|wy8{#4`A&C#BduW0f9mgJn z=YW%KZEayo)P!cTZBrlVT1mW6SKOZOpaJSRCb||6ls8~U)J~v4#7bv z+bJq~K2om8498WlVTe@Qciv^kRtyNB7QlS1%m0wn0ZeRJ`1sAjfxqz4r4K>t_pTp3 zedg}lV%d2se{Y|(>kq~`IVv=s-4r+}r0MpYVf3E)?eh-tsV{;enAcSgz*`1B`|8{M z{re4YXySOoIhvatj&)zY+@7gsyY!zO!B@$)2VyVYIBk>E@j)f&Un?pJu+W5W&(f;X zu~JszqZvZJnz;NwM7;+*)@}Pgei>!&jF8zjn^fjyrpzQHqNS2ivRC# zvV}@zWhE;l$*SZcTuEp8Ng)T6DdecZM-$3a>P4 z-Td$<^x^UyP8N6X-wmR()BL`~KoN)#+_GKp_;C02WY6llS=FfH5lsFqzxLE7?XkRi z@3hJ7G)?btfuS41=0{H@+_gC*A9k!W*DD*{HRRgyDJlOK9(i0?gW6mwUH(;k7Vd`D{l8rug*RoKJnE)%dVhg{ zp20r1XIuGS{+y1F78F@OU$#v+7Ntyb*H?6Hcn@(yhZsGm#>Wa%bY0)9`|;E^*r=(B z`^rDuvyp$WTw)mo5OUAI-NWBwDHF36+*GPX!7iVO-ZhF zk^Wb&IVw1ECmGGMTD``ex4Xh#49M{3s!iLq(qi5m4K~YUkKzq{yamS`f2|o|L!}+_ zAi+ogm+^&Zq1&elhvdBlgn4A4*kYfA?jnM@3fN zrf0a6c<+m&)yB8Y+eY6$Kgh9IvPn1=NTj69O5<;bET29VO?JSR?+oF;XWxnrHA{T(*seD2bT47YR9EJ zN2;Rtbhi|JRxN$i*nRm)C6mW7>6UF5ySv_o6qj{7D-oYH>?n_Cc|j|YAqjuQtMYC4 z$-eRaIQm4nF7MSQ5VXUzbD>D-7VJ}avU!t?mksWb(KtPNvzR#TYU0$aA9`O+@15S7 zT>x>3t{=0^vOX@!x@xv~s3M^@g1YOALz#-7(O0nBd)Kx+;`({vhWC73wtb1KFXNSK z>fWzB2G{m?cWp6EKYPSZ$KJeTw!{Ga8t%7l}4xYZI?Mg98;}`qix3LtJ1RODW zw^`YAe1`S5tntD9KD7>c@Y6sdD1CUM5V;euzoBnj$?Gx;NCfRC^m}hO;-2%6xFV!o zIY1$_cHcUBAR-?rpSjtL@1&(kDzaah4C8@fVBfRiWJD8L${H21_6?C(3Rr~+gZ`<>->dYPX!(mB7e^P) zRsCF^xMHIFMr_2)V7i6^E}BjKvp+^hLqLe4m}$42@bH?9sNFPQ5WpB)y|({ch*|JV z>tJ8QpWzI}W0{`kp}9W()ca6rgW%V8XGZjEfIs^O+7NdHn(w?w_kU=vD+A8r8lS(i zRAv&$24&is`DHEb?M#{G#U~jPv=UnC+(ZFRL9T$#n&G)MA?~klSq_4VxMX1%uS=Y9 z*+Cm$wd@$b*NgX|cD7>?P2*gxTi9Ju>$oP~)Qn`0Q1?4wC&~PgR_Hj+Bsy)vAur zbY*8}6Ia8>+uO)j{p!OiiA!!fQ;>ywkwB_=>L5qS-@Q3Xh1GyimYB4w^Rsy&Jd4~3 z4i(cA!0R5b0gg05x2-*@DMp~r&wUmNto2q}oRK-B{IiseHaisX?xlan~>vJ@3Pl;bSh6TX+W7c7l3o49iTubM&{&y-r5UYW0yLL*GLJR*tmIeY~P4ie_pAw z={5RG6a}S={R2xmY<9kRs}5ahJ0I6@;EeI!y-r?FAOonbO~uc;Z(mDsV1phjuPTS* z7U*P|fe$68Z)|hiO0Quv?9XT*8zx%~#HI#`6jjBXJ-!Hxgtvwj(K5h#F*<+2oW(P( zyE0Z6Jul&4d93Un=DjTS`f8vaFlQwGSU#}h?13_|)Lo_*`3^1)){KE8v$Yk&P!bl* zMrB4D=U`nG#Z7PAg(-N_z!Gs0jVL2B}uZ#F0X$$2ptv2PWynGy$$1?jothiXmlA5I~r#@QlG8AXH;4%ycBeLm;MU=kZ$gl+j9& z?7*Kr{)Z26E)JIt>9=av#TRrseH$661mTi#R;&fH4);N~AZ0S13dF4W)WR%-)CFk9 zOj){gcyS+`ZhxXvs^qj9GY@{5vM}Y#%9JR==aYua#Gvx3c&@~-Ih$k%JSQhzKd%gw z%Q#-Lw61+p-OjQ0S!k3F(9CwdY#wejr`2 z!*@*VC}B54okSgtLdhgR6_ga4_e7-nISKaAnt4i2C)H!{ivgI?w+`OL~iCFw*~Ur?e1c|AiSYB8J&~+Cv0aZqHFUBA*^A& zLit57=>UI8*e&eW*7>*KOeXPenCAg6lYAm-jnF^8mKI7p+5=$YlYJpvx}Uook!J&s z8ni!=Pn4Q*d~g<@>?)yl3VFOd^bMVImy5zFkpk1|GhpZ`3`Dj~e(i{gJ17VLDCGS)Jw{d~HU z{e9bLGU5<1=8IfAyD9lSsP_syhxTcbyZX@l(Ruztk~0J4FF-i^Ru^_9 zgo5G@u1wVcHVGQQ_U8hunFleX{EKcvjwbmINgm%G`Qj6|y_W+e07s=vvd9r%vz%nZ zK==zO!zA42{rghqR)FFn9$#+iWY0{Ql3DWZ-AGU-_%-AaN2pxm&did)V+gOClA;5D zAdyHPJ~t><+Pyuh+%M0Hc}A^Bm95vS-Qw=)kX;u4M8O%kxh6#u|G(Eej!ofGw{rvn ztBfA7os6dR4kyn9_m(Q477m`BOnaBsykMa0@L3k{tAmcheX;x{ zhgL=E;^FPdN>?L>A>l^bSW;3FY4?x2M7zmsDgXG3$4iI@NazH!VI>|7G3hz(Kxu#~ z2;oMIvh`BP8pRz8WQD13hLglYJZOQ8AOrjb>IF~dlQ85Ftns@pLV@Tk8oo3Hzx;rG z6UE~C*tvI#7hU(YjZQ=I08_)a@o|BTLLuIsV_@@R-a5y$gybw1@GLDX^;F?4OE>4g zy)^N6(pbE6<+CZK`IF*uTb*&)0^&n0K%9@rufzom<0#*F_C4r(Mn zJQp-FBCR8p3E>%U>ic=&N&PjJcRlj}3 zJv<-cKWUpjNN&(?JnVERVtdq*Q&J$A4S~r)ZI7|B-KGhL{`W!LQbOMNUr9OxI&y%R zd-l}l+Yh=*CmIZFyx>=gw6WS!ZGDMcS((A^nw_%sthI;j?b9T9&JNUaAWo8LMKhsS z>)d1l#Mx}dZ`Za5wuibsWCN;cB*f`!~jj=<1xi(#@%Z@)xJvY{%X!V-{*Ba=#bu=a4z(H^Im7| z6}hIu%WsYXny5r}0jLa8Ake&dsVp`IBQwRvXD11@{xY#RK0&guKqf@E9I=2e@Tiu< z!zt(%FuirH2prU7|R+S)WXJ7akR__LW2BH^^EFm#5TaOz@j%CtX1G^%^wA@ZB&%pJG zmlG&>NH-&0ictjGzU=yVcqXVbj}G^<4PyARNr#-C8|G*Boc5RcpDi{fRt=q%v;Khp z5IIY1(h<1LRTh4?5cU#dDq}-GC}KFHrV#tdPg0h{s;a0Zv@bFJy$_cW962LHI(_uw za=2Hap(GkfRWLTc85p!hLF1V-Q~UB#{5^C zV^4eq4_E12$TakPSoJRMD^M{MhxYmm^Nn=0p}q8*9N<00sfNoQ0{xIbH^I-{0j=%v z(m$c{dG05rhC8qB<)pq!ELV=g9i(;c&;Hm7{LElL5Y5K~^cL=^9GO%^QKZ0Gz&YnR zU+lQxI8V+9;YT5Z#iRqSjb(>4>LH9w^iY^g{;XFZB1h2Nd)z+&xdej=$)CxA1LWKS znxkl-Wk6CAh&m7&&_9(w=2>Y37$5MubnyrMYB$kaMklI-bh1b&drwaf3au>4jQb;G zm6N>=xD#+akr)<Jo+k@&>Wfq zXS_7vx;Q_3U4HQs_#0?5G1XgeusoHG!Q{#DfDRpw+-BuoryG`LlL;wzD{_|V0xFsP zo*p~q@*Oz-WvMHNVXjto`|_%|ssgXuA-S196^P?x0h|L5h!;p{I5ryL zH2|zE>D>-d9ONP(WWvJ2ik24thE3jrH=eM7h%`YL0_@<+;@^q5>zcaEm3W`>0+$v; zKhQy4T;wq(jC|JQ$<5Lb--*_pVLeg^DK3sVzHjuP5Xci>If6@JT7NY?X=5wC_)|T3 zDz$Jy_m$qCuV3CU$tYbN6*TfvNC%7vD&w61=kz}!OKyV`ejUuPbsw_%RM<8yTB0Ygoe0U$z(aT)<; zJK?sJ7$4gAkez)SMd_8Uu>|}IBv5e~2z3}RVEYZjae}K$5VtH6QULhH-JGg%6D2bn zu-O*=;53Q0ED0^T)Gaj;joU>+xgj!u<{QdPf}xW@82#0(FC`uGUru%8e0M7iGq%7k7QU&j?L}@`+^$))-%XC>TdaQr~cZ_TnW7d87LZw zp~qtjKXmeBX8gF>dgu=kis-hyg-AV)~?6qT%5sC92DJm)w5{^B7Xoq)DFIz`* zGw<&SRF)8DS&gh9B8jYJDe=nEUmXn30tPKcgo+)j z9zgh!g9V%lY608_H*dckQy_}UgY7*W^&M>e_Yn3Lf);vQHP3FDm3^HRE~JMf5?(J$CfN-&VJ=;1rHK3Y^3OcZ7+7P~=u3LGG#Puy{rQ{^qZ zyf%C^zy3kJU4&~U*pKLg&Si}2jsnUG^o;?l~CVp0~e-48>TxV zBevcq@hXKbb_6Q{463iP#ivvZ6%g7>;GobmkT9o~77t*!sa{`~f9+Nil{Kn8m)gS? ztKuj5lxPv*ij$MA^Sum6i}*kI2Z9vnJJGO71_xYE8jc(*Fzf8v;kXCFoVtti91JO7_lS z5)7Ts(Y}vVwEGAB!=R_d0j3H!lUKqGVZOnI_Z~bru{-HjeRm7(_fw_*Nt)|pS^fsU zv&QkOISS1XLXo)5BIC2}v)ZTY%<($Pqae{ zWuv7a_IJOkjVxxK8pc*#Rg4e$h-l~9cX45tKoUUgMvZo}fS zN{rLIWs1m{R2byd%!|Y&ExG#f?b}1wpD9nhn%H^xnQyM#!3c5H5{{kESs|JNsm^jb z%n4y{1f!|7Q-Dp49%(U|cum2IgX@<(6o)~(VVI33Y=NZ~utL`7ORCHJ>HJ2F(RTOL z`q!^D5PQ*BPQ>?sEkcS@6O)qI_D@{UPz@qEDjVvnhUb@^3o%C{9D6ja=N4v1vDbj1 zsLv1k`o1&?#p0NBGpEhU%0(O4rC~VVP!dQcS)b`s+U+NSVMm>CKKyY|!#}O7c<+0?rUZ$D+?V@yrG~Nr8Q;KYxMlO^&_|Qn zYoQXJ)YqdgOsZa@l@~T{ve$W}8@}{+q*UK@=}jX9#ndT%1B2*zg$^XpLfgQRoy;A) zCrN&p+@OddjD;jQ7m01SL^+1)y-RHovU;*Rb1h;L096C)!F?!M+JHVB*_hB)`fG(Z zzj~$J7lF&OURxWe;z8lJy3oyZQ8y$0sl~yA zF~G{s&+sJ~+;cnd8I3t)8Ouh5Fv`ZR^}67M8gW^$2&r$duO2Fz2&Knof~^$toioZc zq3uUwml3E0Bl8hJU_Pa4pIWSxe$N`J23_R`S!vH_e25dm1$C$@a5VADtNmrqn$LaP zNNzg(BP*)>Fv?Q(-waGK?tg!}u*(!!?3PvRRT%KJAs@hv;DJfuwbtV-g3Zm()hY@t zr#*=K!QMe*n4b&w>#?=Bm&DbJ3x#Ca<<>c3Qs#|XJr0G1Le>?OJ_Kk$(dKSh1Qk5) zOUYk7E)cOmWemDXvffl6N}Ht0!ODccitF%lY6F%uDbE88Iv8b<0X5QL_5LiC z6pF5U+g?Z{&*;XXTE#B|0|T^x;Mgtvznv3}K+750c>W!L4GhbOuEu>w?=$t$ach>v z{PGxt=;^Pnf~E<~m)3UqKCb;Ps}tAYTnN|P<2Ev#8){7&Qcy9L8yWHdy$StEU#OiZ3@*9P=CGf^v`7t-!E=y9D|7*{Ao~ zmb)V1<#346#>8|C;C)G5u*U_R3!P2Bni##0^6}W%tznVA-Met9Wb+(0OZlD|pBR3d|&cBc4 zEhkR{G@l?}f3HbiqoVA_jl4du#E^S~#0I2`k4^_4vqGIKnfsmvIshs(0&hw(iq_TK z`+*A}#3HME1+^XH4R3L0XiTczc=gcu%GYaT1Lj}LKRnu>6Z#SQ)5|^{9@{abz!~Hj*-sxNXn%3s3KV@e=s8gmiw5`pv={{6kh+0RdMWzqS4^PnN zfCPehO}|)p6FbATV@()&o;a*QzUuAnLU5E&U6i6i@@65vnQ=qN;u#$895zZnb! z9!>+|_CjJ(P$H~HGhL})8d{_-m-5mdo_?lLuqWd~QfO?(wEH8rIR_rD z_%SxdFII+nL+vqpEEI;eQ!{F?R>m);%C-MDZSr34)`|h?qQcD#;-6Fa3eIOEqz;!h zo-tKPEQ~5S$o6MuM(^2@^J-j0yykQ?uo2z^I#N8BM0e1`|4$kMp1^{?l=Tdd>?2*PSmqM1csl)Cu)LHjmOgCAJO`j%Ju z(jHpjE^xKxiNd|Dbdzicf0Z6*V`DQlHKnUqYI`@#)7IY3#`OgR4X!gv!Z!AQ{bVvV zcN-Roaf@&<8JBiO-QFN#wr%tLnd?6n=@Cf%IMeN}hQ!XJi# zgan-c{qP+BY-J|ICr>+~iXwiwid&7q`ux9R3XC2AUEuN(6OPqoKK2Wdd?1t25mK3n zK785-O)udODT}_Ji6)YQHC}~?DGyVhkNIVwV1u^L=)u0m(?d&!QL2zMSYhYHsfriU zQ}292PfX}St;#j<`LhiML;A_l=qdhM#PUuG*_L>jGH2t^F{egUDkB;_9@U*fPftK{@2<7%HUroBJye z{EL<*#@0Y)<3=)bB381!T`)ng4U4i!%Yz6kY}2Y9SjoP;(voXAbSNkjL6_FqeZ=~> znEUtF0v$w<9i|iX_2`>PG!^{PYt|gI+RuodAL(-Q{S%%tW538UDBLo{@mr_9=!X9X z8j=m)#_ooSV`R97ZAmQ9!;PH`O@xP;ty!@jYdl!e1`!6s+LH;>42}iMAsJfXAjv+) zw})SV!X!6+A_9W)rNyEZtenenK(?o7k(S9XjYX8M=c)ARZlAz3Z2W+Rg>AF$X%h5} z08J`0@H+4n#E*_LSLCw+398E8KL@4auHe=JQGuK&2!GHbz%=;UW2${bmk6+RGoU)x zH%U8|X)c`m?k$>VJnW{9j!2RTxgA-|PP;2V!s1NObZ0MdwZA`}!lycS4mmCyvAbEg zq85(cc^q?CTXP^0j^6NRWBZ6*1)$7-#vmkwVdUrs-i$^CwG=6f0<6YpE7&Un&vD+b z+|}2xw0mo2{1ARx%^@9NFbXqiN2*vu45G^eayQG4GOq}?&qbg%tZH`x)Z%fb*N+9?x|5&dEYSz?_YsSUgoms|T(aB7+gviZ=kXhI7YXTy`M> zzmHo9XlZHHhsU4Uo^0|ktz`r!yNBu zS{y0q)tDP)+L$gjmy((qVV3zhUhe?Pp1oSEuJkQW6wgiGPe@p6YzC-fh$r!opFDYz zyJs+0_GSM79Zi~8_s{}r4!wOdbha`^kGT?b7W5mKdWFL2B(?Qfpj33^A${O%<` z=Vl0e&~)>uC0#jY1-dR&C;yv^-RX#yYI~OpbX;SvS!ZdLXW_Pt7e2W&#c1-@_h}#W z-rQ7IoWFSUm(DB7`qm)Z>|abAY&s5b;bHC^oes~YXrjG<8v)B#i`=x<|F(uX215mN z`&kLF0?-TVD8?gz@xNRvgwU5gG>JN9g^-+WGc`D6jV&!tzi*x|it3@B+fos48OU0z z_c(5ca&>M-*Phc+^} zJxH>TiB~yd=a69G$g`5fbs=d9K#t|LLxuLQdanfUcz_RtndSm+;sg3}oy@>b40qrA zKLj|{H;OjTdF_=Cz1jAQHuA<^0}alF>yA3#!en~Z4?QYlW+X@e5F(OWzrx-$?L$2E z|GDq?8X47==(+D8`7LL6a9@(9C96N9qo@@tD6GAx4n6`#g6Nh=`>@uZOlPaB==ok2aMV zUoG6vXi*?l*%<17fY>X^z(2hc15fbgN`wEjiW+aFfU5Et>Hl#i)9F9cLnuG4P$&lI zCf8*nDh@S*2q4l-;9_z@W;7-_@G35iT`TG4=jCNNN$GTgx#-WNvj$~y_D~x8312_a#s2b7r3-NxI;INqefX{73|e=_ z;h7i5qKc-`f?Rk641n#CoD4Gs)%twAs=?S#(9v;y@-p8kuauJh{{HjBX0U*wU&YIG zBtgj;y&WDRgoMiO-x|}Yr5e^|KU@2qO#p$K;;^}ehwMMn| z4>2NqgoK454X|zvIq_e@-2R+xNasfCa`yMq(eZKH=`ie_`|m-K=yKjLnl@R(BYBcR zFbl6d5?pleE*&RGiAVwBNF~J;P%&SZ7P}1)k`MO*tazONtn?80Za4SBwsWmhmSuh? z*uk7PKi@pxSymDs`_dHhL=z;fjGcTOjjb(6>7fMrYA?=_90T+O6$7|5!RtoqU&MQg z;)4bUYX3fni6s?6AwpL6_#uS4>a_hJ@>>ppEHKqb#FZ!v+lJNi;3VT&%lD&J$T!0k z%wPWCUs9yRF&;F~o227KIYB0%kff`|=2p4cd_3li&@G_jxYdy%BbLT`L%ke>Q`ls7 zje{oA>M4&`23YIkZhBqPDylcxvS-n+ZpovF`|NHf_Z`6I2)t^u-x2RY+PVVN0PAaT z?`B(>-)(XvT7Fk!Hx~TC1UCequcudca~Xdnf&obcja|8zt0{k-8#QsUGK2{~0|V=R z!0-sLdtCe&iKl1Ij72LLLq^`}yZV24Br_;BQ1AbDor2y$Hi~7!o1>VF4nBL3#|Y>R zmR!gVQ0_qWp}e6ZlALe{!Ao$9Am{I_iC>8j3)SKK ziw`Xh^m*grsFtrTF6{jy@@W0gS;=R@6X;<6bH<^R;l;)j1LT1+dEgG%Z9VU6i}akZ zW<&c8BrH@mF<42FY58)CcX@Eyk;P~@$v8Nnr@=EWgBx^twc_ayC-5%AN@Lk-`P)lH z<~u*SFl_a5&|ydr2EeKsyn-%4|LP=v#pyR0tLfpuGdt<@I_WXfV%iBsAuj*j(?%jIVp=ccj$ zc95yygp}da-<2YUkn=GrI7+3PW#T7{1l))}fki0ffp($50aL5dl&r0kD5Ix-^-cT$Rudn3}~NT@XvzS-1< zb-%X{ZEJ)y4g${a--BC6D#e8txcV*Y7o4+4 zn!~2T=5xza`pO%)wXSjS`C?&_ySwbmoRj||*d%mF2Iu{qoT0*0{i+Cpd%}LE-<44# zg&WZ3Bdd%FZ6UqM(Zt$1ddai8w`p)7!ho?lK2V~dpn!FG2U1bFFJBBTlj>6nPVZcl zGrPX`KL5d|Ae@}Ki}~?&Vi|ff6(o}B=?e?8^@O;|Uve@SyH`)qSDd2oBe=&C>>WuJcW&R2UURSxmNG{?Q|jd(L)bbVa>^ zKN0u4+`}sA3i05fAzNBH7oyb6oxAbn-!$8X9tS;t{fGC?g$iA&_?Ln5JZh5V^|JIi*<3jT|m!$(%X@jS$yQRWnuLTA#AfH@*4#Ye?f@sCR?l6aLtupMQ&DcApFrTP-n$@MA%U-|uVG}(65fs2 zCQT!w5Ba?#(>`h6mE#3Taua`xCz=qv;DDl%KKDYiQF++1z(iYCKw*>)=6jM4w1N^) z{S8~)_kN238tl^H8hQR7H}7S*0x}yVS)Q{eIzl%+<=dFaT=%wZ{AsZOdo|Xaq2Qyd zgZ%8^x0i3(XvN*mk~T_k^FWZpFgaY&oy|1tzLRh9*s{rp^IW3J+?QRYK%2tgdvx0=YhD*l96t`mjujCTUpyY%y$di1>j-U9hK{|k9YQ)iG^Lyx2Zn%545_*uM&#!+_5PMRr4Qwry|><=yc|c4k8Aj`e*_u zly7k~&j2OPlJzNa;E-lj{P2qi1*{cdm6boIyE*W&V5dUaCp$~Z+UGw*IHfUwfEoyr zxhuZcz=F(-e9xC2XWrB^HsHm*7R!lt@s_Hu$D3_K|72{1M@ydxf_Nh@N1($3nZeQf z!DfIpc;xS(wBoZ?7NT9zevM5weX$mSPyhZc)Oqj?@=WG%dkc$eeK+KBrC{zv@F6^f z@`F!7``J5GsSoGn<%K>xzAhAbcVVg%mLRfqKT?ftjEx(j9qQ6nZ`-#2n?nmU=7=6h zufR0WWXu4Ia!v4SAC`iElm+9iRe`}S9Y{JLKV4irYZUUs2tw*K+TK(|shZkJ( z-nfZk1Ow~FAfdcNGK_kGL;+ys-A?1hnr~pLsORUXBz3Y!?;qY-_&TdjksTO)W?E7O z*be%NRHn)NH*koopnX4l;_(BX@5Yl%R0hfht>?Z=y@C~rmtvA8f29GtQmCK~h?m&ZK^x$Bd>y`Q;01f=M!d`G}17y!1 zRH~0U^pB$@-+Foc$-BJwGIWqkoNw612QYf8up#xpB@}MSTZOh>43my0oxU1i7A?~Jpux3Ug{^8?)FuQI4vQX&@7Fn@Tqo(L$ zP_=N+zzaV4&d|t+)qW-xWIW;&C2b(w-%U+xg!nAFd*?WIwUPx1B%I)dO}#Lp`H40Z zeE{@AdoJ!pwkl#!&>!fezO;F=CdC4LR?>>#$(r5CY5E(QI^CD|K}$77c0pkZgp1K3 z8k{uA8zEgdBz`PotF{Qol6-X`f*fOU0>|^-v)=v>M}PTVhzq|nrzDC?n8SO3q-8K2 zR}@0bxicjoBP4144Gagb9z#?ZnxuZ^%`>NOilV5ij2}P9UWW4n4J_ScA^jl7W0*rZ z_y;HD#=K~4p+UXMgXeZKOg)-fc!CVq1Jf2rkjCsId(t0WAbB3E510VLTg@wHAdTs6 z&(Aa744ZDs&8|usks?tYg1HsT84 zda@3gd`u{j@coT0`Y+t!;f&)tDZKLSmaUSvtiEA=1AD#dZiJm3R-{apPa-UzGAZIv zvI!D4*-$|dVc}3t5wJv(?-P)L8$Ekz8@{n%Bk|O8yO}jn&OSSPRt#`ck?92GYRQio z1h?uN8%H3&353xqSI6f#2l!`Tsq1~Xk&uB$QTXtBB!UD8)eh9C>I6`-^mGSPp$bBm(YeH3|V2&^!AL$=DIeDgKm;WTBzg;_NVAda<)AWLY^k4_sy@ zp}1T7RbYuvYV2a7sq&WaJQWiTH>3oqhJ{~GRQZI^KxpEm3d+K4Z(}JEi)|GY#A#+X zCUPtH#7@q6UpHeZnI8uRD3)CUYt1K-0%Wq~1rzDxTx0EmylS&Kgh zxfZ9j!WiT-0*v1j{ODj+l|Sn0s<`%(6TWYj{N0$~1fsdgjGt&g_E2C=AA$-ByWBv8 za#OJsq>Vl4?a)sS@3R?U=wl$i0F;7%jPTH9-u!BJ1C-FQ(G{K;+-F{5n{zlfd*}>S zO_8N8;OIL#I(S3OrHSTi_f#jXvPc{e1Sy84is?NM6eA$o#u z-LSx}shv{|yX9Ye?zvZF!|OZorQ;G`SJaHW(QI~L!9d4{PcM7cMtx7Yte@a8!7tIY zOY!=|1eaIY+8U|L4@JK$_)M*dWITSmlCq^?W<#o8b}gT=3LS(l@2ucJ#!4W&0{{Q& zv%*19mf=Gh9kmvsOItH*E}f$wT6U^EaG@RFx;TvY3=n>ZFVX4{fJN8i_sbC1r9j{$ zQ((N)7QPSj^Cb^kG7y=BS#fW{N;g2o*1yl+0-tHx8aw??Tl9+gd5ZV#Iy6mhdu*(( z=|I>D9su0YssrnwA~ZK={I`+eVcV@vr&_2<=(LNI!%n{=TBXml_(vc@Hhx{jzC2TU zo2sgzh!Y0A)x2-+pN@-(i9u9lq{;eFxFuA#Z>hinRm)C*27vSrg z?83(4-TCs~h)l$a=@^UkR%s@UH`nFy!n=~7uf1yM;@XAL$#BJ!v0IgYY}jka6o1T$ z6pzm1PQov2j7EpBmTv5tcSq!|L+%X^LY{fE!`}p;wABY+#^lGKWn7vcBlTUlLsu8|6ZBt{p;+`6!QWd zc082tqWdi@()03oR2qOYHqTXoSVDd`L*z$cR_hc{P{*XxMoqEM1FFi~!x$YAX2gnV z3sLm<26%ppTV1<%sl&Qc*#37)>#0M}|F$EV@A%WSoSe8tTj9zgNWwK%(R~bOwOikwms%ATtu>#Uc{_fP}OaMQ;^KZ6GKOqWZoId=mGiExV z4`*io{yi-6afxNii<)Te6!bOswgn-i`PrgnMpL8ieYDAtoFT#x!i36+nGkMjvZ>iB z%&_P}@naz6M>?~(b;0(J_+a@G$L+?l04Kis7tZ|Lbk>N*?H zEbL1@pStv|R35=#FzsLhGM|+Mhz8Z|$IJm`P9QGKVN@d9`qOzLv*r42^5x%RfKq6Y zo2>hVz!czm1QhmjPp|Con!MvUx)h`zd)XrSX0c1&7m%A>Ww`;W2nRo6|CVF8BA|syfA9+k zqyx={uNU`F{i5@8>!kA^BdYCh?egRVp-IpS^(sC zBO}f=21B@9sqMp%eVOJT6W$`S9a77Y-muXQ*!)n$ur{8w$zbl$ScOt0ArCJ)sj2qF zUQ1(rC&WF+pEiA}1i5oHDM`H`ZBL`?>QJ(|854b0Sq|uY&>!`e3L)13iSVq<80i`C zU~i=tVGSce4oEbDK0uP2nJi>F$z-A(`OCSSvr0$my#m7Sw)vde1-erHJKHshx9|s+ zQa|s92j}I``su-j6!i>U&XAqwYx0#I2^Oa8@Sk(HDR}Ar!5LDtpva)7+;l6XqBT}q zJ8u<+&@l?S4+x+TnGL+)iq2$ncx?!}rK9c!kS!omJkvX1|B+SqzL z(u+|Q;#ZV}%_Oqz0+Up;d}d>8`Bp=l{rh!lYK&9WVv+JVsS>9lLBX?``8zc?niDdh%t%iM zX-g0{{q5lchMj*G0zlD8uN|2OKEHAMn8(YL``)0!M$eYfZ%mBVy$k^Sn&EnTq42gf zwunN(&yT?Z9cfk;8xRn}%KcM?X-aTc0NBEdB$u&!SI`&Dk^?ul(HfTKjsLA>><<%! zqS4l?e;E<55zy%J8S7^5;%~3^!Y}}7>g6-KpW$Kxn?maPq)PeF`tf($-6&a)9&K0M z=CF$_5=S`l(d4|fn{Qma?}A<%m)^Hme3|A3FJpn$R#nlb$Pca0wIto7e3+ znD^y$Ww1?e>_iWv_0;Lg0(+KG{Uui4{I{vh7VG z;^GgQw0 z02L8b3^^Q>YDgNXfdd8D+sUm>fCaCx@%c6$UMJDB>x(cM7hTF1wg>4KEoF!=tS7r9 z$C;TNG`flp3=Ibb39_1trv`{S6DRf5$EA3T8q^z|Y) zb}})?ZyBn(-Qv%rD^6BFxh*0cj?2U{bVcE?$JFFMZam~fTL?g%mD{23;iA1-`QVk} zRTck1a`rb+L^+-X4@dFa~gtG}fjgD#^On^Ve5Hw1S}@gac@klH|NVQi#=9D2gcg*sNw+ zs#%%0_d!sh`mS+y`LR3Aj$3IzPN*kqpEe6Yjg-@~C}6vw5!5ylnSc_BH~`aKLAb?8 z7wfUFdwtL0)rS%#d%f13NOybLjYrEj?NIYCswAeMekCRGj`!7jyt>pQOx$k_5IP++ z>IW;-NfYLL8<*5pV$(728eCxBl7$RUeDvMLoT zmBH%*cR&#(FF3XpLfJIpha}y-VOcF3`okGKp7&S)uedZ`oXH&KD4}^@{;Zi~j#6 z?mY^np$F{zx1mRLRlb;H7jWark5{kpF6;PT1i&2lTQ6|+rvV13Uysy(-Dq%{6Jn8^ z3^!A!hgW1`X+hoewie)-SlKUK-D>mA6AQ~0yF4fQKD|!=_WdKmxC|PC-iYx!(4&g8zdEFe<4{Rj3qY%v%{$onD0Exey#HR z!k4N6%`vc-#UZ=JW#WsI5m<&6HW9e=m)sqgzcLE^GwLJ-h=2pTzadWNi`JD)CD-S=?6lql zE_mifvx{cFt}0Y>r_5dasIo43ja9oD@YhQN*k4Z^@pvhL4dU!dLeGzu%F@y@2r;0W z3{OC&0yqPG7x_mJ3uAso`-c8jZ_7GJAxY{n7GaX6x;0 zmuA(Mn7{~bII#4BZ`?QTNSzKPD=UjnN(&@tBszmSfwvx>o&!)=qy5D@sd?s%T&xfh zWGTeID=Qm{R8v?A$cnFX2hVIj_^$BADdwyrdHHSblud4sgvgbC5TWU8U8{Aim`7vN z_az?c!(R`s=6R({oxND@b4SQvWsFFMh2PJ_UFlJb^0Kn4kCns7_c03jN9i9du#lv5 zJG5EN`41oztL%5BL~1V&6Lv*SfM6X}3#$dtG@y16WgHYc&+5I1N_~^6YV3sngfHCr zUL*IC0A@`!?@_23Dr(Wz`!4Y6RTOp=my+ROD$3Z;L1*k$&cdghH6H~K_ym!^?7}T9 z;!W%l6ckK4zYMYBaJow)+w|G#1J_wL9548;;v`s*T=2=F<2zMHf9dTS*}IoN9{RO0 z@$J!M?sHG#tRMcG$>>!Lci@;*DChDUSLL8(d-N?Vx$-ONW*2QbrE~h2NB;X*VaYSe z8=3ixD6%3m8<;QsQi+4QkR*cqvmXOZ$De8M=Eeg$lR2W=-Qy$;lfO3^OSSNZ*2z{=>ctpTB={mR!qT(gk^38?B&o zld6xifMLS!b>d64$?+S^Mby?BuV+`|)`+JI7?4pn%sgT}*D-KWxk!9z4*&c9u0JYr z{whaVg19Cd4XoyeX5_2JF8Ud{d@dph6K$em!?h)}wo#?ZLhW1pI4qY2&>Q*7?j5!q zh0Hiz`aLy`J7qymWw{hb&>r#nqno*@-;UfK=HZMO!G8f_YxhG3q{*BXM`!Y0y`L7^ z`{3s$NJhy<9F4n@laTN*GtxuMh$SI40144O<+}8$&3E@MtU?*2XuETStxvCj)Dn#( zG1~r^0V*UDkmS_%$o}*0A4S3ymQo+N@9w^`*6`-mlLg|tUMzRj)20AGK1uT})f_~K z->2q3OEX;Zl3E!IlInK+Pi6g`{9Wn3&l{{iYjADB*2}4QYGc0eC9V6hA5V5LIcq*L z*V^}q((a{1GvS{5&OpHUQI%U-p7EZvZg=^O)rzBP0`3!SzM`DJm>K8)sX%Jqt1WMf zvvm6S$MMogQ=NnQ+H!SDTwN@B%qG#6j5s76Up3%g&FitR?&vh*l<|RD$)sFbX$${` z^LrgsjQ5C_cOIcOJm!nl@lml#g-Idd!T!ECb1D$4_>H$R(fYfsN&*9U)Mjq)q-3s= z^R;2*j&!Gox&=|xoc`N_+E(Q3Fowm~=QT0h9YsR%bLK$dHaRFDiTln=ch+9tY0B-?G ze^1v^_k)`jk0nB5s+Zc`#ozxmK+JN}qg%&OS(E(MHr;$rP16>?Ccxvq?vO;$r z)xxcVonvAjc23pa;d?B_Ag*kYe0KWW!3)FQP|?3onO^%r_WXy4@Nir^>_A7cL2ng_ zOv2QMUuf}h?PcCM53~@{KQy8M_mBlKN#ap3BFc>W;&z35ik96wCuf6rc+!g^h+?v{ zA;60ihCMx)~RGCnBKNhldp;A7(Lv z1|VAp`YA$aq1AvcR$GEQsAc38lR6FmylsEVAC%u)D&D+k-JpY|WtGp#kUW{)UV?4w zaYlsPw|f;0lQFzZ&uk3Vzss0w=%G+PFa5ak`kj91 zw~N=U9x>3?JG9UZdW(g|@85NF;6mRwt85EEDx{&ol?+^od~pb^2Qdt2A2C39XpTGW zyvC44DIg#~qUy2w0Vr=8;-H{?1WSs0S9||{er8GNt}B2_PmOz)`x-L2zLdE3*K_NS z$Q6@ja0EY+F~li>Zh!u#!qVo&LF2`vVV3u=gQ!b4jAcce3PP*t_JMGFZS`CJIGDUq zM}Y+Ht)i~A=Vs;e3b8+W|KaD`kPZ^4B2_KLX`e&1npQX-1~VF%skcLPMO2Lonjte| z3RMZwvZmULjNl`Yu#Am_BW^4oZo=q`jhv^F@oNbkXCRsxHWS$0QJbG50F^G%xM_^#TG zej|JAs-W-)7qs)^L0?1y0+Pz-kEu+5-1jgir_OG^#t!k={ReyJEb9Nm`?fQsfA+7rBC+CYAIJT1(S2Bc)><-P4yN*%#qkUcGv;iI zmm@nrjA8W;x(u(MZ`Ng4n@3P3$yUh6k1yW0OZEG?8;=#SVsHsT8WMN>%(V~7f$rtO zEp@+CpxA|iXFH&2Br8Kaj@5p5%FD%pA;G8xD^11huVJ@&nj8KFi1FybgOZURN8*gr z?gmByx}y=;0BeMI8RJ@@_nUgJDJ>$FCy z5mu42-AOD&3J-HA|2Izo#$uC-aXQN1=#{x>>!b}w&Adlw{JI!=I}Ep#95ePO4ssw%b6C@{%xc6VhNL`ArP$y0ar|WoS>!KAY$(HqA3A zlmfpD53}VN9YQ|I0l)dyRDqt%+k<}=-ncG*b0yg6GKx+oc zQvLkfxQvb?65`eh~r_L)}>Lh$lKfC<2-(MR9@gQRb6I1%MO7`v!9lp5uH+ALj69$?j z-UC~;k6#QlWy%ZVCjC0H3mN5?fZ9eSUDOO>_~r^w6;}!R)GJX3;rDN(|7?2J7QoEhyk(B z7k@U){mM~ZOCf+597W69PbQo|6Aio5G!hJlZuyOpT07R+KnE4;+#pBQRann)fz2%~ z9}B$|P6gu#P$+;+vSxUsIBd_=eYqTI*(N0MY@|9+WDmy$(*HHhkPX%hv0hbwG`c+J zQ`S}N2!m|$`6dPH&gY9;i4AbN-hZ(k%BXa0I{%Ra+o&mvO=xFw&v*9sA3if7E-sF# zvheDY#Lprwo6)N!d3RiY&dk365Q;W*5G@U$l62;wjLsQ^B|)_YOyMp9Awd@c(}5A2 zjI>601mVO0CnH1(Dz3saO_m72><1qQNMgkEH1-#HEJ^-_Et#|m;?#3keOt-vB--9d zpJ4?Oo7h=7yT@m?Fm)B>-&qXBOscgATewCBnejZ;JL$)WV&k_0Ccc{ZbOPmAI%Tb$@$7E}72dl=M^tNoVXgqVAi z4|_QdwOYQ#X10eAi~z($UoiIlJKoB>H<+92=ch#U6^O`io>&AYhw+1y7g!4D8tEvw z_=crPi=G#! z*okZoc?iz7C_s~lxp6piU|L~e4#kr~+!o63luJMMj-80Vc{B6OqRV+t)Pj`0g}y(7 z6_dWMPa3s0VQv5DuUd!aOcVicWCU$-!DI1aS_dr&Aw-B$ivRLOWM8CLRP5{eRu@6w zXAOitx=QGf+(gxj~?_bpULr`&zZ|#LAW?%Xv2TSoHHb();lL?ThL7*Zc-q{ zdrTNrD$}}kf<1T25M0vS+Z%b4M*j5r}Hvua$K)~(n4H{G70w1V4UF4)Ir$6 z1L^YWE0;ZUMA#WO_lA4Os9&8uRprMG9qa3chFaX~|77^@!ZaQu;33{-l%18gVhsf* z8$dtmxVkZ?29hx-P$4g3WemoU)fY30U^XdWQ?ad!O?1oskwx&_%vC3Pm#$@345okk z{bVCyR5-&rbSN)MtCl9Vo5U%?sZa??#o%#7;PJ*@I}p8wQbF(k<9sR&FD)bpb5o(p z5#%6FKSv2>4FN<5uwZW3fB6i+`$O#K_^>-_p(C4$boH@1v|fT*J>>Nn-Z=gM$`p!< zEdU@VFE(95QrfQjt2VK?WiK!IuS^meY-&2%U$N`kLlv!7;5g)ik&FfRIdVJ6(UVq01_t_^I(7KMxt;oU&9DG;!mFBQ2#dII(m<4B%}rt8pS zta+%>gRB@;cxRz8Zni^G6;yT+M}%nOZIJqhHVvR!wOfq5NokK*qWU*I8=P4y<4wy< zRVxcs>tNR={XY=N`mVw=qaTx!>1!n*PcFIFQbjp(^yq=(wUNSS_{3cm&<409w} z*OZ)qsDp1c9UYkeAY^>_OkV1*<*1xmMPQ+iZJvItRG&;3_v)h_M>{#A2txmcv!2d? z9P_q?kM&3N^)FZbO{&tqF9vmq(rN46XMwtjii=ZIh+=Wt3ymNi3R+8eOfgK28D}^? zCpMzT7D+(mKx+)&r=Cp)&rKpuDR)7j;T2N&gufJ*OrDkd0QDUO!){+ZxmcQZgdVjn zPD0cVI1`}8Atm^K^EUCR>^5D)Xge?!grrxc$2J`KZR6mubEkc_^czjZ3t?-2=A*A6 zA(3SDz}GbpetMD54`6X~<218BY(EUQ}sz|*+T;(z|phR#NTKGS4eVD-#A%Tq@4WJr*!)l_>2-xL2 zdMK$|FXl6)`?+u_JKdA7`{KLzC@EDs6`rLcM(&|Gh(|^tpc1;8)8zF zQCmnKR+>pOvgTao;9)aCQj3`U$glE zzSz1TpEAtQH1h>M@Rtt7>r;l`VA5^2`wD6>6u>W?Wb)@PJZL`%uJ4v}?C{0)fK96K zSMJ%Pj#>_XdDPHr+$p?4*U>Ki1RQl8NtYk27QiBuTPzr`7JRD8u&8gOR=W6ed*xK{ zuDggVBN!_Qg~CmbYu4pihPG%S?VF}@0PqR-UP(?!lagp`%)#W=b{V)wF*pY8`{S%m z<)zYFACxC+8n(GqA6@%*cZs+RxD+sCn_~_Za-|I8^hVkpVEEk#SVcrToQs5e!r&?_ zI{2w^WFIPd>Zs~x*4c?IhG0pED{#BQF0HH1&9QOgDQJ z>5q(xBA#GOHC4%s_yUOs(Ocl;s}Q80Qd}2r!xVa#j54s`TU$rmY5on|NQ5{8)AoG?)|{~jgTc_kFv+~F?&RPLJo$RVAX=J zos+^XG!$>!lI$I~>4840t?cFAf`NIEg)JzS_UL}+b?to?jQa*@lfTD~?KFd|2YVmB z+z%Zct9fqh)Lk{~3iA{;u!tW=QrRGv%@yBHoajJ`xh>VMtFlOGWbEEaC)}=|Yxt|Ye8cSWCn}%oHO%I4 z9{f`>XqZCYxF7pt$)AViZmiT+B_H|+?TkF@n_)95TC?FQeTwqTJE@|*Xum{l3O8b8 zm~rR?^n~_*9#8G<7I)5@pL`D@oGK4k&%x^d!H2rT5uAP(9ryCiE_yY>xpGev$g>8XK8E*qW@s3sg z4z722_i*#WJ{W}H1?-QzNB}X(i_hi;7p|LJo^{m4pnc%dO+ax_i!tCl4L~d~8mfS} z8@soV9CnndcrO~4E-fT>I)ax0WCpn7X#GWDVCW*WWk_WO_A&Y$Yk0&FuP()J-hTem zKQT#})Lcxo5ADBx1^gx=BW;uwHbKdC+{+S;*&v7(!aEuo8fL1EiC{YU735-w^?Qx2 zaW~&&UcDjUO+w;1iE8ufdQKl70XluTF}zMyJrC|CL`8(+Ld86!`Nb=A>kKX;;$!{J zl;@|oDl|vY`=G6YvQjUn79bxAMHiPJ+0oi(U(xe|2`0?gh*tqM- znk%=V6G~5Td%n?9S&8QcU+>PHPifnqnlRlq^^%xSF1_tw4jft} z3*%+#-E>Tzj0*3Al`)qAaY|4dymcG@xVu^2UnMhp$L3)R1%Rfi;SF_f@wa5mFaPLT z?GXSk?pMk6s!|~mn?>0fA+Y(}DBDk4?}i6}Uq!qJ&RRkfn_G)y2albYR3BeIpT!8; z6ytGdSaPd2M75ere0YW=1)2n%lF=A@6cEH_t0Pd08Acs>Z0vlGpn5|Z>S>Qxk6TAE zM&!Wx^D~m6Nl+Fl``wZES8PHq)i$*EN;z1{aF704Q7wF9!d-7)vX1mdZ$CqV2jjvm1ECj= z_E6nPN&=>LZA`9|k(XAn3F>{)8lYFh+98HV2$wMCY3(&N)m5RXXg1_|4~z))YN@&6 zr(}}WqA`#7!&}FW6A}y<@s|T=`bX(M?D17rQeqCR-T&37BM^jiqbfog0G-NX|Wf8Idl`YSVLkI?QX~Fr~E&%FxR#;*M4!36=VlrDA+#3izRfTNr(d81Z@!n;Vz4tXIn({< ztH6+QODHf&+bcczG^WW4yWm+TcUqqm1Xs{7X=KD?pX@wvuTWG-NCi%y`%!#NGhjxg zxvOrre>n%5>q*mTIWA02HQBA_GD=QC5KBJ4+mC}&efonkk^H(P{MiXs#|sYwAPNUE z7w<8CEfOLCfT&^(GJDv^EM8x){BJ}=B^Vw^mE-4p1?8zkeS1} z2oM(a&S$wOc_GL(GW2>4-XyoTgf;VIs@q6*g}K?})8o2)5at14Bgz2?(6}V_Iwgq;6NJ@h1EVUt$Ie_FL(rwzl zj6*kSv-w<-dX1#rgQ%N+rkhQ##u@M4!O7&J9eecZc9aG?1(1e9VkIasc2O*QaDgK} zh%G>CG~n(I!CMV%8+TNJAZTAav|%F$2T^cSV$RW2cfqcZ)baf!Bc}3{_e!U4W?GFX z{xv-3#En{io(vBTUWIA~;T}++csCBC9s-JJ7d)d$1pC8bj=Z%J4F(l2K!8Upx&H5s z1^2^jgz7(X9XJq?nm@ZL=Pb!y!!EEbG;WJ&242_PAxB*$^n`;?$r5F!=Dvw9YQ?O| z6NzI`@uiW2za53+)+$Gbit#|4ase)SbHy=edb>X4QS z>L3=RV3UAA$0#45<(Q7GsjJ&~zsHtyH9(LPZjp!|HNMX=r#{nU&?0O;&GWwer99A9 z(oaBtgWl;^4l?n&vUkLxPz`F^x+4~iRVI6f;0;Kyt4DQCr4893bvIF>V%Y20cq71u2~Qdd>R;#ru|L70VBG+8gGNR>Npp6xe_egZD(bR6Oe}m>3KMVz3?uR1Pw5!kFyYC}10K^?4S(ME9+~OHfJ0O9(o1%DdAoDJdsaXEjb)M!ulU0JXYs=wTqOuccP!Z)TqNb4w59(g;>sj95Qa)ecdXofBf!&{yS`E7Ifx{X?8^W z>jx6^Am{2J76M=*bO8r5j(nWsIQnoNszHW}-V>8Vd?!3xFSBpgjL@*EQ7Q~9ItcO| zCeYCZ&ch6%kRxDLCDsfkgXeAOJrxew7|tXR?~hJO?L{%EEcF1_N}i2r*nf(E_++}2 zVFZ>1Bcv(QDcLr0gk>^$kX32w^16o$7r@-h%O~{GSbo? zI$dNnUBzf4%e|~56QKGcG6vL7V_#lga==vW5C9ZleNX}-Z^X8zRtF|n- z3zG=SX|q31LBTiL!uj)Xe(BG`5{^d^E)`XJF6R0$_uV)ya}7oA%={8HpMGp*@B(pp z-SUp`ATV5Or zUlQB61~nUs+70Uyo8e`#yI=x^CWU4;OSPP0E(Bx(0RJ@9&)$l?hm+ zkqf*CLjtw>ztDC>{Gg$Yx1U%=O@$N6$&QtcIh2*2cI$#7UR%mA33cD|y$sz!vBTTm z$v-6LyWwRj)e+}VOAwq56yd~??%{g~$(FYh5}-mQy5;-tZ~r&aiDDky zxl^M9aa#JIGvGkZit9FJ`Y3c2oX^?Futf|8wv*ugM)Z!8#$9?&~J zV)+t-36Qu!It)a%4!{Ij^O3ah65D7_oo0P2E6_QK#6bTsS_u(TtlFP zkER3>u*JZ7#|p+-hpVhBF6wtd9z1RaR$f^jT@jgrkfoQuRK zAZ|T9hirU-G0J+phwrLWEEGf|+O7BYe(Z4vgK6lPAD(4Ckj8@3-zf5@SbLgIVFi@I z_Cmm&s?8n7((9m~0c@A@{Jxj%gZiX$eMv2_O^|gibzwe7)ny zkM3fTTmwD7s%>cRH6=LJ5RcF{e;HCoRMzPHcLAH1eSQzT^A?lq(5d=2cGU&3ppMPI zpNpY29X_Xsccz8ed~;a4!v^2ZPTZ(!{t=j_qIxJKa2@AdDjoH+clvm)Pv6%s1<0AuJ?(~gB$A&_9W3Jg+9BpV2 z0K{aQhU*AqupQZoEOk0CwGWnc?Kq9|+_pE)@{zSJs%w8W4yO7&$9~oYHrk%tJ>pwF z^k>1|@H{SVs6Ua)LCk9VIsh=^q(NtmbQ?6F_!2;s9x3eoBFp@Px|YJRdZUE(xgB4; zWU$L%$Y=Q-*#Wc(I(ERZSXuJETY~P>U81576FLsB*2{^FUxy;X#XhLVK@qA# z1dE_m6=^A}p;y7Y+rd9@af1Pjj(f8HWj>O7I(2R#R|s-&^Y&m?Uh7lbZ`~PBC}wiM zkY)#02sH}1w=AIZg)Zz1Rna%DY8G!m~$^_GzSc9mp7XCxi5WAQls4c)~|Tdrw3v3|-uc$=iXo z0|BPur#o}mmA)fA1VJRAnea@23G^SKd57Dj)A`#BCcGm}ERi_{n+qlCQ`;`JZYuVF z2NT9#<;gGTJAvxg@5~3X2`$Z(6)q5I%VwO<$x{2bAJ@7VTx$U(1ex~aZW40D`*A{3 zAL27NSVyg@Ixo3C?(a(PouKwu`Ey#xVNE-KrIZHO;ks=~v@G`4Z(hHqu(9(VX^F}|fx>D`YT0Uz0VvrZR+&JWVHme9yYVfC`CrWzWqbo%+ z)5{6!#u>#(EevG&aJ3QjnuVnLw=qUpo)C+vcT!C%8O?CjgT8EuF>Dr>h7+sYMevL5 z-eXBu=Bc?At0k7F2esanY!L&{kl_)P8`eLm30{nz7mDz<%WvPjNegV;f^muxW6fu` zU;@|s_o!)^fgC!?)s$=kCXU_q!tK+uNG(!~gMY=rxlLi1 z5hy!M9$=KfSYiIu{k^ZC?OC@~@oHLD1K2bC!@q2|fb2_Fdu2Zk&s00fz_0Kb9DR~m zgd0~VHa5htX)s@5M`EHaN~aT2Px7H;Mud__l`F0ToUGsF1JDtG1v8$RB$yyM78;N% znJv7fVDQ{i%S3q{b(t*|Y%V)dQ$JeH$<98DQ0Wa#dHMM{`iVd(HxFoQ9DMCkTHm%? z9`EFe&1zb?t^WRgLbg4T@sN+vQeU=Cq9SpAby$yRo3Lz7(IWV}?qwH;TGY_jsrOAy zMCIH3yM z9b^7i{Ml~8_i=yy>;&qwNO}4AG4>4`@=WMqGKd_<;F#vYKgimT?K2FLuf%+UZu_Lz z*aI2zs*JK-!0bJ;#7k7SGjfi~EH6(8M~IhMl}zMeEGoL#gf`X?s6X5-keg%|kA6q= z+t3)~gK%hBZnhY_xb=9xS#bRjX^)tZ#!~3KOZ|3EN^0uiJ6H=Xjn4w40ESyA za4-Pmc3bMB;Lh)nZ@&S_0A5`05N8CjHMI4LO;!L3<&%FD*ofh3+ZpH3Yj^<-GNb~z z9{s6BG(x0KNwl#m?k+q1DOOjAz59s%Z_oW#Kat2OD&y+E{KOmt(;9AdGAsnQx{Wd7 zh)}FBi8i#z-W9zktQr%KnI%r8m(VrI-$Qd>I7aR(4@>E7~cKdC-!W zQsw<)!WJ8cjQ)yOzE!hO}4i zdF%FzKkcW>GSF^1qliI(+2?j3)C(6TPJOKd0_(x-;d;`=Kq-_1VA}EV-!?Q1^&NXB zq0<(59#5E~xzR##sI(w$08-gVU(A^3?=VPJaA;pYPk z-^ke=Y2p-oIQ5Zgl+on^^>vkT)K4Ug9>nSCTw5g&do8LH+>mto(PPKr+PrJCU_>yu z{H>lhLIo@Y1co`IeO~a8qSkPR84r3}v8ppcEb>&y^f^#5P^t>4BdGY4I{LC!l->?2{n?B8$yhH$byefo{!rQ*NI0N~c6}hjsvF!aZK0ba-y#z#>gQFunz3AD9Kze!c zBI*fCyrf3w5LI6MZ>3qUt+%L`KZGg;38wl;+N8g>?+_qWLp5&vqkcbCipZT&+|y-Q za3rr9eO&9BNn9w<^5A7-QYLC-kWC<3M;n2yNeMI)xUIC`FX`>Gs~eDIg>tXXrU%u> znyTj<4o_(>2sq7^ejjq{YSKU&ZT4EFXe%K7xK&X_!tDt{Mus}m`){p5o5OEL&3Y%9 z+OOx3teS>0hj%SQV9AIT$?;x)){pPyds zCRLEUrNw@y5sho$TB9A4ynaE}>Sj@2P2J z*7t{|;{9iXBLA5S(PyDM{E*Od=#VA}PRE2y5Ej5_^#$GXLRbe9*s< zmdF(_c|P}Hz21>U4DQ?S~I6 z=xxBA3_kIVx0#Zy>JGZFG_m8?JGtrh!Ygyz4o^lkRBo*YkAoJ;{tNJu#Fog=?RrlV zkQfe$AOc(tGzhK-1_Ew@4oOMt3%$D`&_tmn=Iok#rHU0A=%{VVl|Rl0bq@m6*vz{< z=rf8`6vT6%hLu9A78|NQ73J9*q`K2eG%^OYXMH^G1s35-mlK9kAg?E_RT3yWI#*KU zh=>3`tu}u_tjlV5>L*%GokV&C5NhJ?gts;faBbNS{=+#hSN!}l*%r2mN8Gh~!PU8x zr-3dH^898@*2cI)H!ehb2?_Sl7e4?_2IK?RyHe^dixv(1Bf?}6+_&3p*(*hpheZW| zZgNTCCN$>w^Rl1H*r1{WE3h_B11#33D*sd^#BJT*G=Ii__6)YmuVKiVDII!L;Jxt! zFqV(ICARUCeHMoZyUYlkgGCS+-M`k}+q<@K@42B8lRQYjfbb(%1a1QSB3w1_0Q7Od z0ZNWlFJ^$yo>JW9ea1}u)|H{MvJ0Nd6*-h`O6%=0_GhxcKBD)}?c-`qSoTZr7-f6S zC9WaXHLPRVS6<^VD}qJ8ld- z>GZGP0iF4$H4!nUGgj2W{~~yLQQ5Tq$|kzRgObxr98oI5;S(3?Yztu@Bmh4OYp7fs zG$M2lABJ)*eCM-6^wn6_fI{HVhpwf=y%Hz!&4V`YIL@fPJounJaH#C|o?3=d?a5Rx=)Ke@7pcg~9Qv_H6`;DaT2}cZQ?fzW zBVmQ*@%nwcM^%u*gP@0;6%Ia8Tzewl8nCCrU!mmW;ba0>4T=!eH888D3 zyh#?`-ic-hEWa*_iHd#(&`5c_V;HgcR=CBFzEAD^p2hku67y^yKhpSY&~oa3Rbd=% z$=k0p)o6Hw%)V5Z?P^yp?3o~?X~5UtURY;E%%UP9-wPfbMb5wnsy}Z4LL@cD-$ za&nuYu_CZ}Y7-_;^z>MD4>%Q^`21&q40D_@X@UOaUJ(b)={}fsj;03j*sxlIl#G2dHD1^RAt!k<;OVkC>?ou|$m3uafie-_ zHFIRwN0bbpV;S;>|9&ixTzr+beu{Q(X|lJrQNJOvsn{eBw90ChYbo^oc}S<$js8o+ zcXTUS!;(0wZT~1GC|Gf<%_E!pnd*CRD$ zvvKNgbL04Uw(X3$L3RBrul%@nHUu^_4e+nHuifeh|)3c<+u zwx=8JbT?{sB5gvqQJv#0bBW{M{fVcqD_ybgcnPrA@~`^ALs!kvSa)Ci9~($>HIp{z zsu_BzJYEnGSsb?w%k6MIEke)9R-tExkfwLZ(S~Z!d6$iJ5`BiL-`$4b_qrFwpc zom!m)`ow2%9nI{HPO8Ri;Rg>KkLIIeWrmkXc5(4vOMV77Kagd#%)Kr-++o<_$_rgh zcBOoj?&~B}isyzmiw1-G(S;jYr~;syDdrcq#k92F#R`rH|S|~L3q$Rdnu;ed*mC$0yUAVu)%$#!i=@$>P}QuR{90M`{134MtuL` zg$ilN_tIkWArJzfM^QmBgu@-fQN-clz`@>q9fkt@g5VXKU1ndBWIJwr>=WS&GZA!Y zN9;7Yaxj??b?B$DLDXm5ngVK1DI~C@IP0(1*V1+Tr*mFj?}|LV(y{j4-ofwg0MUu* zNqF~$mqXJ8!~riUBO~CX#*Nf4sBfRONC2mES*xn*URY7#duZ*xL#5|`kF|@ne_wrN z|9y+Hgr!`=`?_(}nfw8RyuPb1(AS7+z`PLqhL%Di2T;yYiB29=^jnmJJ3DXTuFyMmsyFJ$a}MbbmfAw>HMoK4c|TuF$u>p3n)|v;<*9z8|BAH; z-UR2VU!OZGJ-Cl{%pGh6jDrBK%)N6cwLpsCaijL-3EJ*saT_@eKy(1DiHnSq+X})t zta{lEquoOPf_2w=mhT($whXa2a`I$()}*}zXHd^XpW&}2OqhUvy{pZy1yN{PsrzGi z)%KyTohaenw22rTQJC!|KiKkbuHbXfcwDF&4qCqwGtobTM`cwZGlt+sIe?^yH|kOcG=X^q)Cm#L}z` zM{N7))f09uE(o5~Psn)nur_*lWqR`u-B*Xha&mL+TW|0-Ll$%PUq&T7tkpMJj$v?b z+g^WQ7O+CVQ8m;tsw^oJt`@84KzDb(U{jDla^v+VN?7Qe;n!>` zmcIs-@Xlc(4aTe07d9y!;&&m60b)dx*tc&jW<;DxxfpUV3!{@z7J}n}u$qiVYEqnG zLh}-mlj0p#nZiO{VHOQnIVHyZ>f^EAce>y8|Cy!h?|X({1ITQJHq$MVefySp8#bfZ zIH#bNRk$2@^Y+4qg1#Hg9!|w)5)O8DSKme{Ca>?ml(u2p(yW-`o%4g8rzbO-C^-gjU=~WCd@L(3T*K{2RLZvoAQLTKUc+CvrV2Fri zdN6#~Adyx2OeoK{yET*-2B9X<+{@IOX!| zbOjcAoK5lq`ki2~TJ+tMf?23>ry|=}w`vy6QIcQs5!E8L&2L}obyG#KVVi?&!u&{B zx@&=;z$8#E`qH(qi^StYyo|b=6>=?!v zWgCU|!~xm(s`xU(EWe+1nC+^x9X+cXX1}4?0H6b`0V@J%5Q!Y#Uy; z{+6~dpw(aA(-R_Aw+r%3KQ?{zoturTk51Sg1gr35LHdHDMQIQGE(N1jNWx?ewQ7xd z{!2)XK<7h2b(WXmP%(Od?i@+z2n5=S?7!S2Ikf|K^@*u;vj>rH8kG63_{rBnke`;5 zBRDYn5t{Oyto%km)#7GZq%h!b^%V=vHY&KaAaMamg(-fm#;s`Q{_9_fHa1DAH$!WO zsM1Q`YNVF@HsAF5QfbcAgZ^hx_9vYbf`-uz;(EVV${!&OK9Cq*hNR;7{HUSeLCRCc z6Fq92#V`#CwKGO++%IN<-2^*+U1@&Az%H{(SNpyGzLFF?`|3xn>vJC(|LN{pk7N}{ z5Rh$dXjt^sfE$|=e6`d3b0>A_&009W)Uf)m!y~M@UQArPWla<;<*?i1X@G(M?Te~| zSe{@KAixZ)RJc9?1AUl!rjfB9kEwFDIDa7PmRTSyv?ouVRE-u@ zWk@S6y`cHJ4^w*Z2hAa=2O}+`4jsU*+;ei<6pW($=STLB9Fug{?VA2kRTUVu+<4gc zL^#=?F-?uC^gt8=D1+WI?Ay@}NEWtNG9LwOV`XRhlAi*cuqi;w{>}U zrud9w;&f*Fp=6cnzez>j1tKCelih{058bd@j-63znt`F~lYNCX=^0_EI{c* zgEZZShK!m!)B>^g?c%$T+Of`eCXchL*N8};$|dZ+vEo1!INgc6n(p^*zvedx$@D3_wV0}txY<-194c%KCnSi zkbVKJ6jan=<$LSyFNhV z55JGo$LgXb{14=Z$tZpEnT@VsGEnp_`mJOq3xXN?clwKiIyseG+q_CPezmLYxiO$H zhLU@50pI{V>G={bCv=ows}Pp^jc6Hp;wGxFPf zkkF;oGpf04v^@R$_pe{D=O|{m1{C0}Ivc;7I4j4(7>qh*dTQVR)J*lqX1B-a^gQ>P zR(|H@{F0htm-qVBEx%&cx{$nEr-2Fth-(}l!i&eviw5CjpJqA~(6FBQzvf)es^Uk9L~Diwr6-xYy0GuKCP#ys5&Mu{Qfvlkn zFtnV$R)d)(=$8m{x=W2Hqy+_m^pyN4f$CaEp!I%25`n(z*OfObPf}BaY(y*nsEV8` z3bWDWiI#^7b_0>oAb~HYXjL&XL@-+*TeF@DyuXf96^jZZpZo8y1O#Q@MMn@v8M#Z0b?SPJOIWjSB1 z_+@NsTJE(m-D3Rd*DTgA8k)&e3H}R6=K^?6`mjj?u#u6_^2t$QeVXACg(rj_TrAoY zID8Q|z{v0U4ewLyxL>R+TFCbOX?)Q3x522vZ8loZ^0fB1uvgbhz2m=!+d>M7G&Ozh zP%!WpF8ql(CkG&jzP)yIfw`@^F&$wn9IzLPjcz8At$%mkm%O3jOSTjS|CcBlS zHFJFv!YtGz;AweEXOG{{OU?}jzXRFkx-N7M4LMi6PQv|#lKcPSSK#jhutpWh_R-E77##f2hys!nIMr*`~BaQnR{}?wi8^JGtYKt{lH*!`Eeru-H zG&qTX9)N;wGx3bJMEE`YdZd%>8T|A_^vdwbuxaa4TbI90P?1%sJepXSv~OnatfTO< z^2D*%2Kkd(DBzKXNoD~`b3Z?Y7z}kH1!o+TlHGJw&Hx?We~K0C$`G@BO_X@Y+&|YS z`uVu7?jPZNRkmZ$r*p%|6h~ECz!e)uNB)gA_v82at9()5m>9glLLGN-!?C@3LhS38 z_+%T0v^yyp)p`$jvC(_RRHP)&sxQHaTK05B-$L$v~C2MRR9^c{U{E@*${TzbM1 z|Gbl%3hrDu>nq)|J^h&0bj>wJpXYg84s}0^75|yJa5o`$OwG!QA8;k4-zA1~sZ1~! z;4oq{x&h}%IAo8eI0HzU<_QKrp9`x`PjbG>+%q_5llyh9R;qn&SLh*L3)u_4815>d zFNMf$;E`i@1rnkB9>NklVQQ)dgt+FV}Y5gINRmh@S#kF0iOj*cLKD&r5qNWaG4d-$;G!Q>`v-+YqLz zi$(wbldy?Za~abdF*fx?b__;2V!~WZ3+o~%2vE&;!B38fcjdMGzRNLOuQ+Fsx}~*5 z%h|ldB#J}N@bdx9gU981wp5S04+7XGsZedro>4=%4oVdhpjt#whj&9^J`&+B!wlp+ zDVN3l0vT5VP{?GyezH9gigK)k@V?y;R)H1LLOEDHJOhMj4IqT5L(=<4WN`n%?T4=O zfQyUx6R1zu@8bzNvZcgo`*jP>I}hJfPw(XS>)schUnzCfEu6#uk|%xtGr7QF&+pUq zlP(&E4mB{+9lT8iPY~Oq9nVF6g$tyl2spwk9RRJSUIG zQ`N*!g{6MOr8FsCTHKUayk-|}cG#jp22zE45ECjijvZ@{a=Xu_eOu7$_mAz%lkE(@ z8r9_uc8Fe??KbuKY|hZ_c%CP2v1Sw&Bm&_8;WRi%*8*1rJbgrsJGaO7?O5HqA36h< zN(Ib4HD5-aFJkohWlptIBJ@m3gx;e%sJ7CMyi}94!MR9+x)9IZ@~G~AnnwM{zi6bD zl%k+HYCe1e)eP!2{XCvh8b|>kq_RC2{W5Gv!Py_aO51>7L4*sah)|S3^ZD0UVZ;x? zJAoOMtZ=cZlJIMidD|Oqu~-|-`e}0^s$shgb8+7+7rQT88h)`GaSR$2dSmv1p+#CH zbCXcw>kiwg)q9^$n{QPfxlCzt+DZ7OtPo{BNF7A$1Xa>!3Pbbg^|3B)2Q8S`n{(aCjjHUpi^@t?aY{@&)|4l&%RJ5Qa1090H(ki%VDsHEo|x$}5{ z?n3tT{FS|BG_3ZUR;xG$Q*Dzo47;%B%K_oohhDwV&!Cd8)YUAo8ns3i0H%`O6YR(4 zWo}Lz11xz{B5;~t8mTMIE|0&|e4^PD|6aobN zP!(srb9(XedPV=c)^%kinyeavm_>%rq_tuJps5JXgY@D$7>vBU={Qp+o_PB$D zU;lSijDy1A0}(|zmS1i2o-fLnz_>7!B7e& z!GZNr=7|te*wDj}p%&Q+)5Ba!i;vH5UhzAVcrcL?Gt${-xlgbC%V%q6=EN|mTkTA* zXjJJ5_la7h%zC};xRU8s(-&XU)J->;1=Vt-`!`%aG&SBwt=Ml6F=eU@t&(gzixiTE zK@tJ;uNMcw0)UUT! zHDwa!*%|L>f9>4VeLqspIQfcixum{@VSO7f`=c0DT8WMQyUJy+UW$zo>i?RyDnisN ze(BVMo9TIPueO$-pT<{tZLHc~oA(3Y{@_^q1KW;_V)nC8)$O)?W2wo>dD_Gz@u!|@k*IDcP$o8DY|uYa`e~K z)))S5g?a-W%^4MaOzYgv$K=zhKsC0!A-xy~jSX^`}M=+Gf7KM_1A zkP+Iuc%o%R8vxQ|AkCylW{nfODm~0bqY=&E{}8Bnb9^vzhw8yy?OZBYDVP(I0h8(@ z52K6nJM`Eaj&L!3cC1?7{w$ljOs*`zu{IoEsD_Pcs5*jXoo#$mq?pXTBS|^xkMyo_ z8xn}U%qQc}aEAzhK zm{qc>1MNc_%AZJ{efah&Te}8Vo}_BNNzZ;~C#MMcOMuZlUgzZGP?;OMKf-+6`xDAx zK(H_>%v%Af48#aK8_Hk*r>5qniU`y^&cam>&Z=269Jo8Ek0GUJBD#wOT~4?pNId+= z$XzL~3kSy(+FKSO8p6R#=(I?>>5w5gXy`XEuWn+~>3Z%Z_gxL{$92PZ@O3R-{pk7N zxrb4>jgf)A38GA)Z3zkDith8OB7D(~X~(qmlk)3+P>VUtc-(8~Ocyv^o_6&MI#O#% zV?!zTPE}4RFDUzPo&(5xCCX-9Y_c1%81UO`R)_%)&NA2(NAqufP0^Zd2hh~$RGQ~T zfnVEwniE5bpq|msQo*St7j*?;2S|8?^(Y2cfMALjA8e{z7{Y)^5;)tSxDlue$!eqq zD=p7_%|r{rf5_kA5P~bDHA%ifQmD}=L;7Uonc0mWh83Rk0&TW*Z;o7boU-PTR+~%p zh8HzWE5Ad%%4oRaOsFVxODEPbH1M1h(=5@T%Fw9%Qb67Qbo03QhjgK%#Wtb)WMySt zCWZe^Hi4=L70EwX$=TS!20=ga0(v6<{NTG2G@ktGm+rY$M8j!Cd)c@kI%LbHO_w3$ z@C`fifm)|ntJxMZPMq#!o-R6j&~NyjWNzWUrU_3pSgMB1lS7D&#>>)HsK=g#ska_U z0ynzde*9UGz1h)v=Jf}YgvgG!?MGXKSn%oPFTuCS2C4I9mH-t_-qqJrm7^&igl!}o zzTm&jyFON}0L%hj3HepD|2cL5nfJx^%F9Ct776(Fp3?DunE)@X-TR@|0!j+q?6rF( zu|!n;Yg5E-VpHgds?i{X1}g^zDFWlpK>WOXtCOoVinf zW#UVsLU6=l2@&&ldU~LY(W&QNtRNct4U$Iz$Pj%l{-S#mB0@q}wfEV}Qwwc>G(ernL|{B1#N;4<0klC>fno__!EFmBaEhU9qdk#e z0zoQ-g$WCG(%GgL_9FBU$8vVYF_ag`ZwI)FlsT_!IpH~;UJv5J875Pt~GeiyWWL`LfodP(+KT>kc7GZEe3rAvE~~)WjGo8s{X1 zR`{WjNPw0v^3zx-m`Rf|CaLk=6k?E!=G)hwIf_0BF%Ma;N)L(%bi` z0SB`%Q2OuvMEGstNAh1$0#1unb(C*s(f^FU*6+_taMCu-peOs-R*CkT49dcnHGN8r zc#JG-TC6sr)MHZ!X5cCCQVw!l)_Xb|o`7?L&PS;~s_Y`BA3p!xaZ9`Oj=OuNn%HqZguaKF+}rxWg+kd!tF5-*@Z5p2 z-SS+_o4>w+)rDc$E`$Dt0J>(>4-b?=S*XGKVMX3N=K$2hZRA5*&`0UryDwu5f>>1w z`ZFcp%^-oWrZ8KWrfCL86`-1HUAuv3Df-Mw2=p8z6sZZlJfr8c>)Uy0tIf|IvPv%D zhXtLJ>6KcKBR^tb@K9l*4CmNIhIC7hC03j;3}@ou*edR`#>2;hdFcNZWHlCOKN zzxKiLd<;!q3jw;!Zf8x;`K2vdnv@|8Fo~GTNNm3_MexO_weK!VhUO+qxYLVw1?whcliQfRHNUIx!EDbY_j;P-QAu-tSVtAr*_T z$j5{4UOCCYvhnieduif{dUefk=hY}d0CO<*kY<`p422(OcfWYkjG-S0ixBw)lJr6I zJvPSDigPvUqA6wDz$+i2S;W5`2dS^q#Vem#_9p9@DA-AG8tmM$c@0v&NNg8y39M;W z`DAg6n5lY9?ZM$rMFEM;&?8tY;g&GB-SlX?!yXC(Jg;r-EOzW9U^R~c&GY7;NpOYV zj@!Y&JnInU3A;nR((G=`mISv=B7YRVEkEXl&DV{1bT>x|5E|sp9WG?UNO#$8Ct-u7 zJytE-dD?!ns^Y$OLq))%N@kux(?faVx)EqD&;q@LExvrb|At^~47X_<#)=oUzPI!S{`wav*6|c0{vQnqjfbq8OH+MQ`FGC zaXpx6PoM687E_I)qu$A7()-j4NXydGsbyV01++WV{l6I5@Hc*~FH^7q1wk(3R1%-p z6GnLf%TxNUVs01@_1^^1^C8sWQ>E_~)Zah^NOJgwDBT_Oyf_4wqqJw%;F!RW@nf22 z36P0r4VfHnLeyW{k0sntXJeCMc$<~CxBL$qmL!ZsfUAQj$Sr0%0hGJpd@OTHVxi75 zc>3+5JTwpSHb^=ovCbIO0>l-+;BZCr`x%WCg>SeKi3?xPHQQ!-5szI$lh1018o_;# zfZ0gAG7k;|`x}~s{$&gv9F~%(o1jp~{JO=X%jXF+SGIS@X2#%qTIX>A0`|rs1{bg0 zO}Tb1WvUR1l2de!4}pAOBV}`}x&{%(p;miK@vVYE9}3P29!?2DI3n&s)ocf+ASgzF z@&t97+=`1Mgr!^8ENTasqo3t=B3S^99-YdU86oL!_~_`N;emqW0p`M_pJ6pJFrY9LRHOdK((1sbsb!fkU?EnJ+ zx{e!G{JW^`v7AYLq_NqRTJ7}U7a-}r_yr9%h`a&Fox!5&mKZZwV8SZWCgfm=jy%V> z!py`3kJR=&R<$|NlG4)pQ{P>M!A25)Ll5mO#Gl;TxPdV^@IINmv<9Drnnjy`jc^a- zs1O7r*^B6Y;Fu?KO&}iwdI&5LbAUoIQ3Kzc%nbS`Cq!k?!t{D*Y#lc<-M>*HYfjJA z#77J2`T&3W7xRZ?o&T%uOv7sK+jqYZ%D5^rR!YiL$`GQEqLPqgh@=b|ibQf3xhYdb zq9Sr@GDSq0OS6a+sf1F>O-PDD>HqoiJjZ^skG)^)SNl1{_)zhij`0p*K4-&f$72bhj19OeQ(jY* zId{93m>3*97KZ;{i|n2^ebw^$qQ%+|Y9=~_lo9YhinbsC6K>0C?zx7$4)`=x=oyBO zyxjjno1Sf%=yi~34L%zY=sQnv3DAelSsjxez$*o$U>yp7%xdoI5`5UYF%4yN`{O>Y z!;zNJln62k5tfn=g-XvW#y@PTuwmiCY>3bK3x6Wahc&&w#nBTkxL{S(;4f8Z$W~{2 z0sRYeO8<8rUS3|%50fgFU!2(QlBIDK(=AZUoMR1!0TrK{>T;2fRUDaXZ(h9Gft^Di zB~vn{7)`v~t;6&n1KCBJkO5xz{yrSQfUcrz_*>IzVL$|P-naCF;(qBJL-(pqcQ)e* zlGiajH&-meWa-wL#u!63$}ng@e*E|tyB=@_+M~9TTkLE#V}=tb+{4|@v1W(wd5sj7 zuGGuB@JhiTaBs5D2Pf4uEFJB=J|_5%s#@cRMTJ$XtP|1d;f`;Sct*IklYjqXo7pi- z=MLh4;%(Jx;?+m0(z9}5;o(*oDG5yq$ruk>;ppSh-*#X(;2}Kh%_972S#b#(cKzk2 z>0|rh8vvgPmja>Ei}aHhz^i)P92Tm=O1YES2Pmu!ynUCywG+wN#?Zy)}zh8_vnb3D8hDik44plbei zVHwLYogS^Fj=VorOTVL<40oN_Y<>3d6bD=XZ@{oK2OgFgQqi8}P3RY3LyFzbl^=zf zd|YAH^bz^L0npeI&+fzEo*g`LqZX*$Kp=f=*OWdI1_sQd%Uk1?%up5!7x8h(C4ht#*kwr61CuCj4(FTrkKSJ86ua~O z>DDCC>#!jubQg{<>pfttAP97RGq)49R?)|AXX0jvMLi5NvMTmGxTkmeiTP9wO$B3F z1ilqUowX1>^6z@3u6*@5CoEpq4U4Hsv7-Le6w9c9?iU%$QecN1?znL%D>rFt7>_VO z<%^@O^DMme3g44z4Xb*i7s z;`gkW)r0v3;|H6B(1L*nSi6Wht!7DU^@I?fIp4o|P?&+|XNQH=_7`l2Fs81E|Hwcf zz3H!^hi~k@@nYF&*s5;0^Hbv)RAy>rwAs029R;AvsMZJGZXW#pXIV-c1`u$x(RlB@ zuNfP?MJp&9-kFE5`!K=!ojv=Cw(?!dA7U~7!l>Ne9C{96sM=lFdTMrD6Y~Adx({R?Td!~ArC6599R#OaeMQik1*Bhds#}rWKnF<0jXgh zdj0gY2tTRui6jCGve;I;J1y#AQ$LzbCzuX7)pr$QzHv3TgAPWt%){<}59I*Nv>My$ zIU|M-=iMeQb1!7n%69_;mW8>!>OOX~`dU;p&!$q|S4xYA8>&I2dYm9gWs=-F zy9H8a#u4O{PH7qg@-?CwD-2WDFgJ0Xl}Qr}B`?eS)^El6$rKs*>g$>sYn4y6#kixk z{>hBf``qbLL1igOP=#57 zi+~Z_0SZa(faqu6jR@_xP^U1_vX_fcK}3BFlNyhcXDJUpQR0w6zx%7sKYE0Y{>sDq zanL;;|4{lzQrcb`7`G?HCRaFcKL6gsHye|gAnP!pFro$8A&ozEs1+m@n*SZkild$> zs2Xe-_{s4J%mX%bx~ivJL=V?VIQQSLjiU>&xil@V>oCee9T%Rjk?Qy$yE6uef=z*n4 zvfSXvlvwYXe3kZw3(Noza?N=CWfyG*2a>U`njU%b&a$Y<<4SSgYg^<6r?U9^$TQJ@ z$i9lcQzDD?4yjQg63NYWPmGtoyRzVd$VRei@KsMI*zd8pmCIa^&Qh*;?m4W~a+bU2 zCrI&IX3T=2ny7Wojh1IxatfA;F&iW9M{TD$@-r4q5i}-?!{LxBDo|26^xSFnWd7cM zW*24-JajV@w?xsZ+*@(_%o*p|3MOHd5C)kv{IBnCqA<+VTzSx$b50*t9`6!R;ry|H z1c0XtB@X-!f}HJaVZ&shH2yRLnf!L1@gcS@VtUN?}l#lD2k<4-nzYd5EQYw+1N~J9lVid?_RcY^#|)!_bcni_@!bWb{5_ z(e{r0$@uB=wQMqo#Jb}3=r$0EA+oSBQPicFgUh{avHsJ+qer#f?>b=bZv$YsUHces zL=|6Ff$j;ID;R`nueqf(!Gevsu56-pqy0Hq0M;nxWZBYa*`0rZ6`S;4wu zRl)+X%*OUS@PX;Zx7L3X0~UB4>%{rRBdk^Mve_{meMb434<|>6Buvj{9bxo?*@j%0 z{-Ln2K6AD1K)7)&`7Igw(MdD()vH&^Pda~Kyc^{<;6*3eW?^9@c_6c7+3@-IU(|;j zf-FW0!=+g#c>X7il-*N`qh|5pgA1?RzdKnAgRnnmMAGt>g_4JUHBeWH#^M!)%jP6zoYjb=q zl;iS`*Gi}8_FPysQ|^lA>|VjkCdn4-&0ZV~tAS1GYz|VcbFqUF$o?f?sTg3=dFz!< z9V)$ABcw;iUfFfP1c2%5ajO;gb@thUS_=vvJ=^jtW0%wvF2H)gchTaWJNNu_dt#ioC8dw8#llGzzsuM->rNQB0vBjLNv(= zki>>Qh+#h1U-sp`v-#44X0f)bb28K9jggV~Gk>QEK#sn)&)b-P{^|EAA&FJ$ONRr| zlTZh%l|Q;{GWbaO-M`y#UH^Hqfwq%IU2%cBqO1(6eFcMuT4ceC`IAVfI3)*!1w?!{ ze4$gCHF7n3l!ERa88R0}AP2^nLIU~qi+KN=W%V03ZE~W+lB}!$ch=zBy{lhW?lJkZ z-gA)Zg?;TQc=gV@bw9pBEn*;SX{swW`WmAm1-;|2mnTZ8H3TtYOy5_wCr6$7mJ6hb zmig!iDk+*_g;g`?7Qu-X5|d5tnSS>+VsdbOtg{HYMMiVG$mczOek^`v?7T?WWY3;W znNz_4W91?T`~^Y55R4jKjvWXo1$OABH*Kl)1oUXPwV9$ASdKLXk6*lir;!{@VrGCE znw!oHl%u^1HmaRnN#ciemJLxg4cQu3SS^Gu{G4b#a}?LQx>}t%xCy7A?lA{?U_77` zTQTWB^F0L$L@?Ee8EraRsp9%jec>7@P7D%Y;kA-XuiGm)j40EU^FB5YpQC{C+wR2Zvw0JNwHaR_^wH)rq>x^CLP zl7g=;eo&JKZ@L^rr^F_eodv62KEBL;a}rM2!*=ipk6J2)ylb1CiueMG_^i|0K@nKm z3JX5up!_D`Q0MaRF|8b(U^5M7mzn?m>zv~vU-emYeJf18{h>@|Zka%$aC>MJwW5`O z`<)-IjA?eG2>Pb8w;BYwrLf$8XL#Yiw6w@inXafE*1M0;{~T;zi;}_ouPxz6uh54 zb=th({UzfIO(qK7G;r9gjy5acykYahe~1y)tWmoKIr!9m)rnEv`pLh{{Owjd_To=L zf)=tt1yqC4(aY>&p9-yz3fL?0b|=Y~$rC67bp}dKr|KVkRz&F@3wwL6SfpFnc=9;*6%#j zomrnWUFTJ+*gBU1`W-X!D-?gmJ5H-|r~Id%zL&((qH>*8+6$96 z7?e`vi~?q;qD_ zm@Q1dMQ0+bCV(mJ$GQAA^WWG-*pjaz?Pxal)jGs;Tf*K1^emhsftn-^+-RmjCP^V2 zOJ){FabJ7`H2hgwq<%5rB!U5<=s2KVxeYd8c7q#xe>Tum@hOYuE{`+1k zYCRw4bD^qPE>C&K<19RHP+J#g@dt+0@c}M1jNSQGUA8AA}RkADp#ndw>a0M0~a-0sNroo zOm57#r>Fo95HmJpcT_+^W;FK`3OT0j<6OTYlMx$_ck8&6|Hc>46Q2E?fSp@l($b!q zCtBMJVFhkpRAOS`S9y8)(y(r$Ky0|u=7Vab5%&Bl{Cp-Zb(=0L_7{;VtYtE315=~^ zftsLby?S8Ol?-3Ynd+)JZ6TZ2a_Cw}^-3?U<`9RRY=IqKZz8ebv>v<#r6@KP#jLFfQ`#rCVu%M^da1eB z{!Cv><=-PHB3mmlk$Lq>DGaQTatJ`MP zkfQ%k_HZln!;g|~r?}52#*f=m99Z4e^AB=Tzx*m_uQ0` zc>D81!%xzh!n0;f&?veU*Q@xNo-DdQ-$R{SU`i}Sf>iR^)ZEjaDv$9H6qI9OVQ1aZ z2FzYCb>EVnETL1LtEjmz{@Br@=81#)Ahhp-Yhcu%1Ys?3ZIESfu{ls)UhC$B_st*? z1o*^~Jg)JsWvX}YlBGYL>#lnrD+o^C7*Kh)#($n$trqmBW94|2JGjOip_ z7T5+S9Bd=gTlMdW4g~>A^p@y{ohn$xPV`m|X<6^_Lp^3#K=H+%_}{id>!VazoKE1x z2JZ=ot3*y@TIBerN*OSo`2?%}4R|z?HkN)QrZNHi?^H z9GRD%ffYp=zqUHSRIv?RG?AlI+M1$XG`ei-U1c#9cJ#9QF_LKOLD&iH**I-6>p!S@ zw^arisEnSqv_FG&_=uVtmIR$Vnf!Wrtn+^)td?rO7mG%ZLPssUiOJEzyu3@_f7BnI zT~K&!K7x%y5xGa!pxo10bn~$FS9|tC{jpaz1!P~C+mVck3G(PAdW;VLh&+V(;!5Q) zfRGS!S`*VNH}rp7RV6W*@;o|X!$ZOwGZFntZ}v(>oH?`Gs+;_=6N%3+sM1OR%+)^^ zS{X&9jQ`$WHA)VC<+Q0Q^*ZgqFb$pn6Cj$Xyyyo&;l$e6`n{Eg!2+PW$%{HU!&sKN zRf73$b&XUV?jkbSU%!4`uNjg@Q*!3`XvRNe7?jvCmXTN!2+OkT?pJz6xcTzXSo*}a z8RBPf^bJ8r!JukDpG3^AJlRjFprmIt4pBB3Zm-v^(I5w)1mw|z;t@_;OFFfid_Q|g z`Z4|%GU0%deZC}LS}5W|kW!_Za1$vfLz0+K5y-{)1!gaGn6DqLe#$NbsW|fjYA~j( ztefagPKV7lStmrRxtWz*c0zofz)_x?e_r{FCql*Y4Tlm@D>`r~kbZh8<%^Ywsp z3cdGI`Vu~AR0)5In%1}EsavQ9v0vBs``k<)>=sh5*Ly!LD%G}`v&Lt@cD6yVYi8OW zztmO4Kv1ysmy>{-kz|lbMmlN-n$g7TjvD31XMcgO^hNzxwjnKAsHE~=+svL?ye{vF zf>Z{aj(v?{6AEJ|kld>mVR|xV=)h2`{eyTuttqNU4(Oe-4kK)GkB<$?nY?!h2M%Mu z8Hv5j)xdl&ju{o3?v*p~^XqvXmolB&k5%5}GX+qlWw^?*;v+ex$o!dqbd*O)&zDWoOq z(-UqiCIEo9uvfD@-yJUEETo);uYbTj%F^gObEI3}9t{o}hK9;?oy@8P7wxY*;Ig|? z9CmvxK-Jl!(8gh;%AvGd)Vz0h@@t^=}hF2MQ7*YsYYkDcc9)o)~^v1{~c=@!mv9(1qby;bg z?yXDE2(#+%wE0^i7N%}^x7}>jKN8&zO5R7fU-t z;E1D`!qAG~K)JK9T0~1?{Vp1wHKj?0uWohUWW06qphwznWbpNs_v2>|k?nd4?|KMV znLT+^7M%(qMKgnzm_3)tBaBcF?ttZIA2-8H0f7nABB$qy14AAJ8A+3qe{GInvVAHt zvJD=(oT|3Ew+7F@t}@QRz%l;{rY3HfA6yULmAX0b!`t?oM|O}zPULOkWD9yuJxw{p z>atgDhaFD(aSlXBh_HMb(^S`iMZ_+;rNjlKa7>x1y2V#)(nxRPeIx(L6EM{Q*^-%9 zf&_~|2WemvO4po?(OdD1AzF9N%+??~5u&Ew9!S0raHouTS0$xuyK`+mMD1Gyd z2bHy+}T>y8cobCDSC9bwqq#%8#1so^TwMzL(P&)VCq5Gg~Z6O=s$hvs@VGpfo%yJ;;n-NV{4 zc<5=bcNbrpsoOK1ka>C81Ep-4$@}!63-nt3EY|#3nD=wS83 zsX|nr(bp8m%DBQlSNaB1ol;ww&6pvU(`HzElf~vGtm=;G*=3iK#Oo^8gnpl)9X!Va zo!$#s3lw_hnTGH3y)!DlpZH*1aZzf6R?gB=1YE^YbgVcyQ??g#JuwcZtd+_z6y z^3`)pU!`d=7wXGqlzsiH!YHrVe^}DChs$@6V2_rq9Ryy!?)#Tz60;v=T|@7T{(ZTs zCJezGIVO7$T)YJr+GV+c^d(f8 zk}Y{NjJ_|;Z|k%4+5J0LF2LnC*OAC9Z}37;463=u)#8QR`Rw-X+h^=;LogL)uhhgD zHiN8bai7I4K0pH&T4=d^pYS%=r?=+i%~3JgH=Lrm>Lg^^S$yw&-cEtgs}_>Z zwqn1L#yZ&#Pp+vM3)=J6C?QM)=#>Y^{?fqh_re z3}`w3*D=SZ(13~E0b=$J@xhs2}=TE=FPs& z936`)$u^wVAy=m%a-_9l<%&Y`Zo~Jz&8JOc_udFX)-HO4Dei^lhs~U<=kHatZ8J?< zBK^xD_4TEwLjjL|YY3bQ&dmW8D%)&y_Pk!Yz`^KL`UKUn>kK11!eDDM*sRj6>VIf6 z#29u(IlR2N(Y;DKBJ-}>LhJe{Q{#VKrp2rj^K-cixxdbA-etTkI51Gns>hAwxj%pH z>(&t0bn(m?Y3>nV8?olz^Lu5;TbBv>s{`L|2Fx<4U!bt~s_fEUv@@ZUz+|bqgFfBMv!%H~51K#y29UvJ7c%^m$XVXn zxpj76q9`z17gQ>-}iyaOjDX&KHz3zuHL=;57>Wxcz{)f_*mO zN8W+oM%-KWZ%}2>xSxQm*RKH0X|Rl>@$H0`K~{U_kw25ZURbOB^TEU@m(?yV8O%sw z_At2e<2virwlupmmX!Y5dFqs!sK51AKOh=`0R=Fw#Gmf6ZhLtw8gTl$cU&Qcj#rD~Si+z-TFV4c)_x0Dp#Z&F%tmVuO;b%slwWUVL*syi570 z@hwenC$LKLGRXC_{QOj==}IrEN?U$yA~@dI{i=n>owF)ocxKOzGOf#VsnpzWy_{AQ z`SjaA70lWp&7^Nn22L%)Hc!=azxP*91{zoRax$Zu^Q7;_e$VK!_>wTPpMSwNvu->l zlXdomFJC@{V>Zg8snP8l&pw{}67_tSPjmI+9Oscb*E{=Xq*@&xlR|f1L>&29y|@Kl z`vlc%iN$O5s~Uc0BwxFF^%A8&RtTeNM=|35kn8hn#JH_Zo|Yx~B_$8wkQG6?Ny7&& z!!z8cOuvVF%Y4f|ul}mmZntgzP$m80!+*a3napY5WyDsZgryLA;yf}I3CErK{Au#n z)WXZZH(A-9&1;#Vacj6OR$0;3+@;J9hJf+Bg4q87$x<&P-MI1|vPsBM2PrvV7L&f6 zfW}`{!%m=8xxBUcNBg82O9|e?ul`mG-iKpUXle5u>Y`OT|I7X zvH$XtG8Tc1w&(t#8^-&Zf6aE*d;5m9w=lc6LK7n;6A{NgF(nllHP_ExQykw`a)~&7 z{msaQIY#4UbL#*?CS&JH20IuY9>9z2_3vGtr@tdbcZJUIpDjP0r{2ILY8|fDfU8-z zwW%E%pBE;zOIV<7+ikv?M#IVIL=mU&elTPUL?`$^3=qE#Tsy}ff0;DNHQ>j{SmBwZRCVbyhDp*egY+8_U^D zj`~&zvIk4VsUD%$rMqec56X8x^jqzNFM)_PX49snL0x$J=HSSqmR#5ijkn0fR6lx) zrzeG0caR9-CR`7|f5hm$Xhlgz5a1_Go}6~v1&-&0;q(6*S;C$%QLj@cg0Mi=@UL+h zest#I#mR5HzBrb&&gqh1w8nm&cyd>lEMGolp^3V;n)bkf(kr8Y=wiX`AL$2s#hQJX zDG7BfYAI|JtN<(p+LpEEC)nSshc*Ph(Kmn6V7x|9+4!<%Yx~Te!s^4JU+pD_C{hJ! zk}(9L%7*@4r(l&8CjZ(fS#0%caklzcmDHv)aDJJ8VRHm>QvQ=0yuGAbK$fxL((Hlx z?)eq9FiIFY2=y=gJHe0!zlfP0hPB#$4qOwQY|KQaVoONrcWUOqbT9MRs&2!oZa$}~ z6KfH9gZ$j>pPz0C`=<>C$^cze_47KEbdqU3t;=AgC;AdbR>sVma0aYRZfWjH;o&ShCWB|yo0+!% z{gSKJ5XyucVOHry>$As0oQrB2a;sff9m%^-hhqNQ6^%$dmXam?&H2`+3L}z|wmz!q z@YN7aY~w_`9FuP_POl~;Xs;@@o)wkVMj}Yu{1y6?2&4z$+jwMj{EuEBf{;^VcAZkQMdSVGapt+sJB1;GjNxCQi|P$XPcvApbY|; zAQ3|7CIBi#K%oz-#>Q2D_+YYZS>^H9he_B^oh#H)z zt{-cKix50l!k4w?39G1+e6n!&@K)|YKe}}7TER-V#s`akZ5Kx4+-q2A!2Yna6z0zE zDEGJG<*pqe9fG|u|DS@Z?eVd9A%q*8aGl?(_tz`-G(9OP`1W5qRt;r%EpstYYPaiX{EbyuhMU65Y1k#yxusqoe-#zRk+L z6aByG*sQ{bI_T$}1FE17?CB(G$?EE`(K172`cv`4aR#L(^b{q!l*B(jJ98l0Vwq~& z)^9(^gV6nXl>379&8n2uVoN)yVam;o)hY%njf#g>jVQXbqz!np3}gm)S*&ozRw)fy zNb!o3!ux97n|tyCCKN%2*%4Nh5OXlHmgDCm^Ll<=@8w@CHbqmf!UPd;EIin>ot^LH zSc zt)~-2I_$U}tyUV>bgM{Tc4N$rlzvoF{xD4S4mb=A=)On!Sewx8q%~xlh1Ewa4d)3{ zA2>iy>&lhKtdpFcaWZpA+-)JTLVQ97g5(IOZ=PfB!CFG^#@D;V)&yVyjs|$aa<_3b z#*CjGFNqbg)Q@M{sZhUy+#ML29)4flQ04B2r@}jvZGE*X#^>(PYlkluWVk~KX51?L z{r3w8Gf(ymGvTh}qD!r?y&@A%q+;DR%xjIWPe)L8hC1NJFh!~!-tf;d^8WSx zZDT`nOJ@l=Wzxot3D?g=&^MGeRgJFwbgPERt<%F}qh@7y?7gytd@E{tWGry=9kH@= z%-H|)bl>s+*6m+zr(=J6HxBC(302PH=g;@z7})_*q|E2a<`w(~z12I`Y2W!?6~@b? zP=#e=XkIq3)zBX(Uq4)9c;FkJ-cTj~HwrQxM;9-(+6l{kA2aGbqbuhHrfxr&!56~8 z6T6HBS17aSc!&1ZERP_T29M0GC0;?u^tanm(*E^kqj%>H6O1_)KwKJEm1*RW*cuDL z%Bxc6k&bjwTr(9~X@ozEjnD*Ezey_@Tt zSfU$OYb_i)^|Z4bU3l8m_S_G-qbtTEUq4@PY(t8w zgk=GyBYpIqVU?w@AbI}0>zdJDjt`mh#Ut|Iu0z>N-B*QLJOp_n_$ega%&DkldSHx6 zF$M1Xv^!lRpe^H4YPhX|DT0`NL8C-oZ9P7=!rZKD_x-P3GeaA<9au5LohY3e_s$RS z8T4JV=`W{!0)RdBQM$cuX{Y?`^2hR)OQ4`FzhZu|hnY@@(}Q4bxh*qgPkwJ~ydF9< z;h%r{xsEm^&fT%^%HFs)O-@6y>+7%1(-sVO>Wv|Poysw0?nReViJ;`9&8ES`?lehB%6 zA-?acI=_N)%J=9ew`8-dS1Au{n3gm|+fTN~67&n(?TlsBeA8zjD~kw|b|=g#4AAdk ze12QV-}u-u_3^f9r{*g)R?q6W<3Xjdo7?53Z%0^5%=nL_>U#N|yyV2cYV2!0QT!h1 zo>P*8QvRQb<3Nc9{~#OKvxDT%kL>(E|H#s#@Wwr@Cr*9Wrkr%%^%kaQ!feHSf;DKsHefv`Wkun1VoWrGgi%aXxFx^w99^9Q?m;f z%{g{C8 z5%CF7dhXL>B;(z1t2BdlV#nK)J}L+o8VlmKww3VqMVO#Jd9(ieahKzUUP{TozQ+CD zrEtZ6BG^5sYtM#eHQ$5L|ETb>-gr0FW-(Gm9X*mVqzi)fz(D!i^cny~`~g_@V`_vL zhcjE3JK+H2I=XeSDhPY|8TGDG<9ml@@dXBIpdDgk-D`m1yR==iU~(vGSz&Ftpb1Lm z4r&m*$`$CKPj30v3taS-SB>H0GC4JkBftOitBZeq32A(C@|W-1aIY@H6AuJXBH3eWlB*#O2C5-|F=xDJDm;$rG^IP!>N^_AM7T(+- zC;9xsJ(qqOk-6$Pj}KyZ_0ck0MdN#49;=J9B~BSn;{WZqi9`E;Ig$VW{77g^oAuJ@ VFx$`xh7$f~Zfa$6(b!@8{{Rmm*;oJo literal 81401 zcmd?R_dA#EA3y#gGRw-y-U?X_Dp^UQgk)!hgsg<@Eh&fyYKXRUDtJ<=kxhk&nsG2=jaw%PFfO)wB?wlx;}|S9!w&U z4N`B$f7#p7H;RAk_dH_kdCJw^)7#p^j&#D>)6Ln{)A_s&zn7iI#q+K%yQSo%78fBg76_UZki?+NhAhq;{Rk%lpmibk&#Hp)Kv|9?oL*E z-!(rMFtf4$obN!&RAsJV?}J1`JCU5LA|^#-hl9gac05uD&J!>9nEUX|KY{#RCT`+wYDqHji?96&^WQ{&DegwT17oJNqxbyZCo} z*)Wn(O(jEj$2QsswH~>bdAy_uwSWIAQl?9$`QIPpH{K_|@!x;7i&3TI|L-T>u!Yg8 z;BVn)ZtdF48cciwes4xEPTKk3?~6DLNc#UiIm21@3F*QAzQu<4;Ox56i{mvi^l$Ai zW=AozMn*-|%Fw&?m$Cl2bnu=|#l)GJP{Zf_`ptVR_`?U=H&)xNWjF*qV#~|R^MW=4 zTgE&l`$~6bPi#$moaQV3?d*MBW-@&5u~wltMe;~%e6TPxjh2?y>~eb$@75@x;a(-* z-#Y?-XYn2JKbZIJdq>t%O!ZQXpVZ>a#`=tdi%Zi(?PQs~dnxbfuy?ty{_U=AstQ=S z|MAED4hP*cXRfygOkb>9R9@+6zj5=X;Hoks^&sE+5TCAz2~C6=Sy*lG+REZc%DFU? z{I7X=vi`*P=;&;Hpudxrj&3fc-G8%2mV4V=Ln`&B`^Cj~+eJJ#~tu zYe9K=G(q>N!S^3OYJYruTwgX_XvML)db!Ot$^Q@TKr4iNbQRA z^!`eGcT!X5^5O#Mw?=JJUL9f(Dr$>}pfoS@q-j@LasJ%RLrsAvVZ1Nzo6Dw6n?B=? z9)&kMuBGp9^>y+AB)jj+6WoBlQSO4wI)ipQ278|?Oe~8YqMk2Q&G%1OVgFbT03o;!%!x@LY%3rgbR8;-&@niIHQ6VY@ zUSXqL3)ZAVet#s%RE~=#%=R?Kuph(YjBgzimX?lFoNHida4DAVX=)Ezzxd((d;V)= zHTlZt+S5evX>&d;>{YXrHxm*L-_jE4DfiBu~s<~moeUTq0l9}l7( zVA!&Si8T7HEw%34_`7>Tet#wf^q=0cwX=(t4)~$nFg~AC=6d+>;npI*(Uy3TR_^^C z;f!k2r3}xfR{H(F?M@ds8pnI);=uByxyjFYVTuc%PC2cA3!&oWzkK;}!w*lXWq(J< zt2+|4enp@3x9PmlA7Gw#`P+6i%~|f%*(haUVomkL6Gxw0u8GgBtc?osEmQ9l7Z>y> zy=!1#a3kpN;~>*~opsaoZ}Qd0^7Her)LQY!9s0vD=UZ7PH?Xn3c+A9Pd;Du#VIiR~ z;w&-;mitIzxp0vRu|gY5aT}UfV`8GsrNk~>x-_~xp3dIYY`KwJ^;f*7(oa5KQ+V`k z%I?-bi_-xCzg~+ORd~C6ttcJk9BP04Jhw_qTtXsR>!ILdoqK`_2?^R=8z0lxZyB6E zP18O2SZQIW8npnvN@BV@;iS?rugT8>t4fU2H>%fqt3^snOVz~_Z}J@Ux?yB-`N&dQ z^>onMgk?h3(KzM^HPxR#f41Np8!A?B)5=$&QB#6!U?wyWWiwBv4l9CR#?d8e5W=$g__RB*N?3$*g zoR{&iBLbY9orU9+{yupb6j&Y9<8@s_=<@H5qsPvk6-v2thdFkp@{e_4Ky_-+QdAKC zj~_oCR8|Ib22`7o(hgj@%B|#o`|Z1TFG?yp9E9oXZ{*_fN(63v&x&Klb5e*k`*ZK( z58?EczH!Y!1+QVa|YZyH$!B%;#XIG1)gvc*=;W4dp@ zS_|Kcjk2->zy40-CakXq$|);XI|n^}^axkIce!s|=_pF?l{R~`V$vO$Y)6A?le~xHcqH-zM_Q=b#s8RoznGwVKMMp=A zwDKqi-d*jqTw@g&W$1ch%7vs2c!>$w+$e{P~1MxlV?#WHhU$dPaB)7M!Bc zbW5puY*Uj44iv}6FX@fYkPtF7Ms7tPU1LMRc&nMOmEV8bS#ETggZ+eI;aS)Z*ge zN!jyl@&gSuHNmrHPYteO(+_Q&Idg_Frtx#JYx=B-qoX($u;}OK%bZ+X$!kG{1D=;I zW#r{C(brR_^CYoXW!nr}!u?#WIX&P5r+&|f0 z&aU(LV&ecR_0YR}2OZ9zuZ>b(wSN2d?cfDhKQ5&|d2u;TtKp0!V-M#p?Zb!b^V7iN~#|_Mnm-3K^%cI zmj=l07Zk9#6myB4Of&bGT3a1gw)B|F+4t2g!$4fm)Kq*mXill^-8&l(59a1LzJb}l zIffFVVq(dC<0`WUs#eM@{qNbGJ4XlXbd&WCh1xO4Se}ECeCxAOH#CJ?UcY7{pGHL> zNd|?ms2K)4y~rJf8Z@%>`>}H6WO-;PIjJUSV=-uC3Ki<+%%jJT=TNOjviR0^5W7ms zBwbTj&Bs@iS#})85qkAGgDXHj1-Y$)Y`n#4l2)r>2Kq*+Oid0_RMy!+Uj zM3L71dy;iB^a`lY@v^H5P(y9=GVr93@7?`LN__wYS6pjD#| zT&6AjzxP)q2U>mToumG@l``*1XMOE3^*{2tuK6^%sZWgT~ z!+HJt)YO?vlZv}`?P^`OG%+dt=_Pfh?A549;ExX?xJ%VNnh*6U$V2uPZ=Vh@W;k-> zh^}~|K;kMsf}Etly%mRQ7~5^BmLZUo+*)W``s2rW#g)kdpLV~m1!;d6N-MSy_4X z!oUe%-vhzQ$6t}c&HZ$_K2G;x^(<@ z+L`)KXK_53Etl%ptzqGt_mk8#;Nqb+js+h>pd|L$1xsS ztll`ZK4!U2i7Mizz^&lF^l~+5@D&-|re>`}N zfPh2a#>a67+dp-64WnqAx^s_>jrriuVvq6#Y}@$by0Q7XMp*S~Yqh$I%e36YNWbF7 z>b!%4LruovsM*Pa_TitM&zF9j3@RJWC$QuCkMwn#lZtZ`yg{q(z$}BW#nKx#{#tHm zzntC1$~yEWQG$b)H_|jGvewGjDEdy@WPLvYY;lV|-!r0gjg6@bdae=MIT9P^b%L1D zY8%lrQ8F39AXE$u*&-t&XN`gujGjDs!bmYkoQ`3vlftE++t$}-HUf`rzunho?my*Z zX?E#2)}4csvo6Q1_(pOv)pd=6xA{${3=JdGH&(}erV6_W{$ja0%wFO(#R)9i9YAm4 z`$L3&>(=4fq5Ag|3qH$Z$+hm>MC}~@g)>F`y*U(WHty!3_Zf#@n&y;v{$T#(xR(Ht zIexv*r%nY1Dy8}U+_}0ouyN?`-@mh{90x}ih?uq1_5jx8y@-+Wn$8IGh+2El1d`mg!Hqn)H<<|L3UFNIC6ukO7 zI;!s)Xe-?Q#JYU8J|9 z+<5DN$>v%ax?!pJPSX&%r#&bhbfx~4Gm&9pQfoqGq4eD$9{ zq1N)Id&9Bs9tE%`yOcS9VPT=VRC2y$P^4fQK zI9e=xW__i4BlT8dB2%7m#S1wZ=4jhaIhmMTzl7JXMwK4w-eiiraXQp}$2Kj^Po14Z z#B!{Uo?I91I&8ueX+2vPIi*SnG`v5_AN~KOm4CngzoFUuzx=@sdAuru_3qrj z7a1K6H8RJuqYe`fpVp3tQO&BL=SD)prlkHmMKaB%cYA>;L*Ri)purPfNO z!Iplg#<5UPS=rJj&h-d~8g=vnKQrs|PTG4qR56XrEMz68=X@0T!&Rh`n|*hnPtPv< z-*|0{wtPfSkI7cfq@j3X!MCHcGvdx2&MWGfS6ro;AmV{+?AW<8L|sr7_mv&B?ex;o z%lwR_dYRNRDf@Hh;?vT$rngh&8FTMtH?g$jGZ1I>@bJjYKcw{?Rqj4iwV?sO-)kol zRG8U{d#``{W{)0k%pmgf_{o!5m6eCO>Pe(4>VhC_ZroJGy<3v(n5Zf6_=L*Ns8MgD zZA`j;#)KxfJLc7^J+|l09hOS2cPVc6)zpiy=8&NegOc@oanaT1P>2etzrP>7lvt0- zCX~fbj+Z_avD0EzZr{C&BPg?fKTTE#M*)_kc+^#ESnW&=%~fMb;Iy8kSL@r@*dh=8 z`7q=**vM|#@cum`K7rTwyTGkmwJ_-C>w40Q$MxrJc!H{CYux*BxzJBSAQC0r%0nki5Z#{keP>|r4 zB^=%53g-r(s<^&1Qny&_(qEUd``qB1kM8Ny5ye#tIjMnva=e|PpEaVX z4tkXGC%3v!ewO{z-7Rf4ZP6^xeYO<6RLZi79({aex||_uD-Uy(lZy)oYr*V>Ztmhj zZ0*DXIjL%;e@0M5gi=iBuF8cAIkN%6?^s3TbjfZ9Q;?InaYs!~P7(`?1ra)Qi08mP zsqBdWbmI)e=W~tHflQDxeb$%9=Kwu83E1tCTk(tbx9_2^AbPcqg~LA{r)#*lyqNvq z?C3}?Kw*)~PTXEizT~8rpK%T+ZcI&8RaKu#DtFOe@z3Y8{NXhYd(@s93?Cd=-U@9B zO0%w^;pX)AsFalLqvPWvrQ>PZJBnw0<5W+cWWfDhBY3Cg$&*p9Z9~;EY6ystk`g^R z>Fnw4O(#9wi4UCeirUNOTDd|ZLC9+aV1kg^@!+4c6N3$Mymq@?bxxSrmwH>rX5ElnE*vVKma&e zxVj*ddBc#^Kvh6XTice_vf+5$cT^-Gl2^sWIEXwwJw0kx2kK>Th5**xO3lAdOdJLy z-Q#UnAMQc_E?qeeGM9jm&?fr&8Y>x?5B$>744cEq0;~DXy}Mf*%_3&lXXx!M-_+DZ zsPCswv+kQ?|9N?|!?CbrrfMa8r2^lAYs5W_lj3X$L(Ibeli!o!a`tm%)zy?Afy<6w}bvRexZDE#A|8WQ-{n zk3@5SBEKCBl~!Qy-o0J*R}P>$S5zoYPVD8pjtZxpUn{qJx9q`#<<33eYl9%cE$!`5 zjW)GQOA1^0lq#G{q0iw-66~H7>K+3TQ9`QRf_p0!kSlBip5mUHL;SbqQJL-=h`ay( zu15&Y+U9yB;6D(%jxS$ma}2q>THPNQ&&UocZ2kE0BS=tVjC2(>6s3Cyy$Nutsja<9 zfPz3J1UQv^f3NsA=;aaN4Dnm@)D#8U(r3!Tp&i~;a3{wj^{wQE!UOVoCVy)|kECtj z(X-9~IyKAl<3sby#Ks*S9u^ts{Pf9LA)fzJ9?FsR%~HI?6X+ESsz8xI^(9> zDJeS}G&F|I^#rL{gJ~igZ9)cS20X~$qt?|$&?yA2Dl`nwS`=C2dYgQEaa`1_!zMXB zJLHfxW@cq=A{>la@cA(7+jbK}8&eCu@{;0e z+qp>G2Ry0aEi|A+Z>FN6oU_}P3dJIX;8a{X2WT%zqNxISI$5-OD+kr>-JIJk;hY?_ zwbfRxc8w?c-xi|0Yh|3%b=y9;k@lf}^d_pU;b&IKg3-_H3l(|e&Y4^|5<5chCmU#; zL`e>9hvNTza#9@@%+0ZELkW$eNA*sfDj2=EPPQYt73@HT+GJ6?e#-0cQ-c?GC~h3j zUi8N@O%7D^ITmuFjT3!U>!E3p((}%%b93%Qdk~DLhU6xba-69@sxANP*_r_c+*Y`` zRFux+`m{rS;gW;hmO(tw;6qU$|MZN{s|qt)qXaSKgcN-ZAO)kG0o~whfL;Y~KzZY+ zu$64`d|vx51-U-@bAHF!5o?akSQZXGzGgzjCDl0PRz{v}j=k`+^i_P`XXkx*46M~= zQ_C!|vZ!aOtH0Q48e5M&)K`Sv)$;CLq~Y@;I23>bMdtUusE5$jPzZrQKP^x;svGk_ zDc6{^OT2T3Hm0md|e=5%y) zAg?$VCi$`G?8qn+z(z}5#Z?htL|0-V3TKyXEc&iH+Y`9( z<x&3(tTwd>aw2jYf?tO+0h`dUvXUGZ{EOHPE=fF#NYpXm1O+gBE3GGkxc zGRw6Kh8T!9;^@2mnKXf<2&!%6<>i&~-teix`yZYT7cNi=5ZLh0p+l|aH4~Srzc2W5 zAM)KsUw{AcW2#f9PCb_@hlPqNcfpy8<=VpCxJE%2Utdo9g3Fy-IlR;3GBX9S@?gT5 zxw+E$2MbiY{7#V9pjEid4IjaQ!@|BQDx%HHk5gV(P@0QAIoNTOuQ46`Urm^K2v(D3 zLthnFe-vt=Po)L=`9be#D^JgDjg5`yDFjH+AF8?Au8>%Uae45NN$Nas#*lh9?GJ0p6Z)p}s zdnj-(wYdg{VFertO)JKBxvD~m{PN|C+fW@P0TD>S(a|&&e}6u|othd31Pd2ox_To} z;Hi+T`yiHo_wL=Hdz+p29nS6EMBTN@#l>|PJF>1JHzKU_U2~#@(LcRy z@32MC+9eo374!FI%!|?r-$k|AvoLQN&fC)CoBLXYKbR1*Q4+!p#E%37RLbNHLeFph z{d*5uPE=&%W~}EPal`iu)Ab)uD(@2Je(><&P}Rz`8T0fk;qCsJ>Yeqigx`Dc>))j}?gf{frKTxeIpbPJY3cST2EL|&)wThZ-0oass#!vedSOvXTRjjL#TUpSUA1J> z(k%Spy$-(t$>pkpg^K@)?3|{W8WJG%TfcP;y2l@*wUecW;J!nihJu2l6Rr8@qTq+# zUb-YZJ@EgcOPtp=2xV)qHq2d&T%K;A4MK6qh{Badn-cREtP``1yRoqWzT#3}yJm~g z`~UGaG&KA)0L*Ky0`vEp#>ky7RHApAVNPRyu)8<%8v>O_8#9!}tmm&5GaH|OHpJYcF zlcJUpTt8GZ)|$-nC~*{L5t7~Tqcx6t8B|=^m{vOzHaH2XY(XI^Do@UThX=wal-ed5 z-Vd@e0#_LK&cV&SO{qGW(h%Dl{*yw$-#r$7Q-vq4Cope+LORaq=;Tyd zsuO>>6?zOnoB5wgwG0)YUbV}t-@bi&-`B@2zZlXx6X zOrVM#5#+2t(W4N3anaQpP3(dG`4(B8X!>S%+}iJF54RSPU%!5x=v3|FhY7<<^yL&^iJvAPQC~;0}Y)=-sLYi z!b`KP!vbKb->LT~D$=L6ZRY0?D|z{n6lpE9XAebOvyj0qQfT3FEcbpSLVzUQevKX@ z)ozvCvSmwMb@7GX%_Kqqx5_gPS0a9 z->LJze*1#cLOhqI=4OJA42CgCU4A*c_nl6eIU|}9yfKNcB|3Tk_HPs2xmi!1>=-hg-hN#J zbdXkh$*9toV+-p8=@v(8&VqshD-*W!=g)tio`%4x za{m0z3X5E;_})UNz&pV|Afy^Uw-AF9)*yT7gX{%G==@~sSg;NOqw!^APB7T6&n zQ6B``HT-Vk@#w9e$T?KmgMvBrPzJZJv}dFZ>!!Two%cyEUsK)+GY_49Gvixsom(6)uB%Zq-Q>u8 z4FEz2CUMOyMZE9gBc;oS=6t#W2B2y~jh2e0jPZuwGV^!*Zt`~b4v-QB;bpoc!DF|@18aJ7SPO|PLz zt%uuyq;X|oU-us$MM&d^Q7DX)j#yg@Kw@~`*-6Ro@TItSN&zvA$kgj%oL=RJto!tb zA{oiSwxHy)S`K4x0{(yx_+YST<$${b8y24TvbEU;>upg2PN(!8k*I(t#C%7(txp| zOu$8?e2mSP=Q^N7s(nL}D0SW*30fA_K2Fyfn9cr`lkdWFMUhoqG7bSlrxyXmTt=b^ z1fFbbYXdxjBS1iQoD)Ql+}&l7s&OBz331q}Z2z{sz4?N7qyxN*ycb>uF|S)%7=I3* zfLZRJPt6zS1(KZ6XpjvE2doR$3facp`qD5B1v#p#=CNb7Acpc6Xlyt(Loje~a-#c4 zEfi&u8<(1N+r-2~P3&4BdL({9n)?0YBkDGK5@-@@gZYIEyEr0Eif_z(|9<7~yvHtf z8IipE^eCK?IoPxrY>FMbbj|)E*dgiQoUBI}&8wBK9`d4a6fXa+_gryp6bm=c_Jg!d%=o;&~v#xQa{O#mdo9 z>vkWY9>gqA_AO=~pFMwGd|Zt~WYu}gX(nqtVdy^K?ss*>uoELl9_9T~wrua-z9m{j zYhZ5o#2n0J%cTt(v=9T>=a@7_HJT#@zUmrt|qS-kUDT2WT z-}rm?c>a93zgj3SBSS*}H#g_*T8Ls%yYfD2Uss`8R8*98o-uJ!GQ=(--6AR~$_V1z z>6qs|V_~h&^5W-a>^`1dnUt5v#25@nkz`K|#HkPFb^~Y7zzPSBt@!mu!l(J**O1!U z+S92{?QLy9Jt5W{z^`@V^Mq@Oy#p9qGU%0WEJ^q+vj|iP?rhEKgMR8!s_0^VumgTT zZnqS z?n1rhtMVf58RRl=C5x;8VHsSjmPM=PuDfC<4exTjOb1Of|JxUcGB8`o$wNp8pUomQ z)9kah(Ctp7$_m?;2A#iV-gX8{a(Nx~29)-$&N*YJ=sZaYW6HPoyWzm^;oL$VqS9CO z`JRp#Iu)@Z#b?d0ef)9l*%BBufB5~95)MjAN~V4`SH0BRw}UmZqI)U!posx|EH7XF z^y!m&z=}qep29v{3CT4ZmUakB`n5slE-Hn-@c_c zmrB-sCZrFct$t!5^Ti9P%wCh@uCCJh`uc)_7hE=D<;(kd3uS#3d7&jDbwp^#6&2i1 zpFYJpg?Bn0L9sSysy$oKqe2~hN7MEEdDXLLN6NnX%^lw{Gh-_fn38w&Mgq5zmCma>OsxvB zxG%}1l$|+RIP=WTrJDk-{SC`H9j}{BROmn5*2J;XZ?k~9=Ff?ViTcl< zIY?F;>uZ`PPEayRK4iHtM@2z*w*Bo}^$UI#V&Y71DD}D`X=`=}vBl(p0pl4%>_gec z6+&=@R*4J7?Ft`X3~?ilNJf35VF)9FnMqG*EF-Ncp654@Ffs4SJacr?WoeXk{m2~$ z+$CB%#Nr{upRC&%QHV5YsfjViFa}v05_OrZ^FFQy8(B!3 zHtYJaqJ+R+-fuP?Qb(27TvusmU=R+q0XI`I*Tf~;T2^Q*Ni3FWj?U7&baE>;CDi$zC^p(zCGIXy4D@ayNYN?Vz~GFuU>5f!AAL4+f|GY440lPhs9evK7XO~b2XS4 zQZVo^ZqxE1&x4quns}m(z5QmWjC%c5y;Bx>fu@2;dl4QpXb^II^+RsXjsf5(92^|M z$3Y<^bk{v2sI>0j*E?hWnZk89G z%gV-JC|#A-Kb%(AL9GgV27h5&*==Dun>>!*V%I4Br+o%}<|ta9Csr?PPO?L!di_b) zT{_mM24xw4uSq3q-(H1Dl|j#BnZ17-bXd3fZ*4c4U+NhrHHK`W66B2XUHrqgapIWy z_wCn&a07p)`z4I)Q5ga3U<(X+mCGtCGela$7(=1p8R>B0jcX1AmUh|cEzh{kRO=x# zA|CDnq|2xWH&RpS@a!&*zq{}yw2%#Q)Z>%sI$w;tVVI+v0S?pAY?`q1_veP!g(mB6 zM5B^pSU?0>`@wS+=s--iRixaiH##+c$7~>LSZc^zTeFu z23mnn%l$j3|I`4o5xghpH&}X7sC-qUP4qY2`pAFeej%w~9oLspUVgBv-k3Gd_@A92 zo=6KNm5IhNS?eK^7H)6Pq{hQR*$lyZP{E~NYWGtE&b?0WG=L*o-n_ZmEBkjX@Gf-X zG?v@gNAd&yEQne`=Y||Y-};A@mJ+nsfHJ>(;=1V*Mxuq8Nz97J3WW2+8j(wxOlt-9 zqJ1F%FpG#eI6EW=umRBq?Lyp@6BEOwpW;`El4G9y8Gd3o_(vL}=>DfiFG=zwydo(d>y;`GPk z2&hrxfuOUiQUeHU_H|8>haORAzjrX%Q}+5|9Xu(~1d-!IdX*M&P~J0ax42&ZO0SeI z{UWzbQx|>|{6d(i#l1%6O*VN}xV|?+y$aBTMH6;PwLerBteu?9X6$CCrU-wz9cE-$ zEx#l?4aEKMs=f|>aDM0>di!CHi!%JCZzBAJY6Sb_$K(c`o}Mo>g>-dXM<>*p142T{ zHTF+GJfT@HCHY->RakhW(7~w$?dxbPcSx-j_>6|1-%4cH2<%j2V-BO&TRMX6OrSX# zOR}NFN~SCU0V~|o0YDcuP`ifs51y_7bM&wreS~-U{E@pWD};iLP8aTVFCMa3?Z}*Z zj+bC-K4B{|1%E;Ta?UAsy(`EZ{r>&?ml#9vMU`@JcBW{}hj9`*h+XNfR|mVy1~yJ> z<2o6FE>t%X6Imy$ovD@fA49v5)=h0Ia*=q^@6wE@&&UUxZM)D0-QX%f9K{>}qneD8 z5^uL`#$uiGzLBQuT<+)E+TXmXTU}Mu(9j?Zi0|(+o^-u1Gd8|rY9azs0#)cqgPlH| z)i0HHEABzBa$@L$`Dj8?lIXV7eJRI7W1?p)IqBe|eVS-%59+z1B^K~~ zPtW#*YhwVn;C~ty{BY2rk6c^wf)c`u8YAoPe)@SQ=iCMCOKKiUnD7zg75E{&z2jW; zk$c025}2w77}DF5J%`VsgA&>@o(fb8qg}xVq1nLr_+-@k6KXcxZz5HwktI76Q;FOi z!e8c9{`;RDxxrpg5;+D1ky-!-OMOSy(X&Y$#V=n5qrg6K)_!WBmerx|f6$-YtU@eb zZ+c4`d918tE0HAAW8aKoff_Q0APWqlp#@*-J)H4aD_M!ox;k>?tZ?s4@e9pD;fxuL zmie`2WFU*ESs2a$$^npLX0L7?(>gF$ZjxV6kn!;cfse4ywy?^?ih&*4eEE=DSjdWE zhC8#k8Sorjz_`NrcWP`B|2Gyh!7UdklNEL8tgfY`rfzC>m-Tbdf}#Q^1Beu(AuKE` zb=r!|bD@IqJBBPhGmu`60V*(N5XyusKRPx>MuOKNtE435kF%wV9y`XYYzP%L17AvC zk7Aqk;>A`VI}j@x9?sf)NyMH&(6iV+wz%JA?82_gcRVkU+Q!yV_w6}hpQ4~7UU27* zLebkj+-3WdT!$AW1L>jn0|R`8gZ+LmyCObN`YR7Z#0Swk{80abX$g}W25yGS5)Fg_ zfwq{1o)oNUzFXGsf+tZku`rB!^vPyc8K)2=LOS(#srif3+6}_YQ1BgDOhNcjSnof5 zdj13*^Z};e!QDH)BuqVhx)ZWJ?c$LKs8wj4Ox5jA=oBvBXI6?tZ$WFjk}Uk08rj7s z+1V7cQA@i>x6{(Tx>XDg4)Q|)uG`xX4m=TxnyJ_vkJf-3FAt2u)D5{&%RV+^ zRT?o8jK6>XzE#g6f}2NFj~+eRXV>|H9SQ=HP`8gix{|2+105fy4-M_LYLh$rGiLfxF z3auq)_n1a1EB~h}_Co?~v88nzkxfq*!=VML? zs2AYF2La`?hM_wQQGl^{0Lz1EL%bfP+{k-^U=$Ya70q)RLP(MtQaSuaYbIr#$1JWD zbDKe0fBpKk&-S!D2R#$hqeUCI2wEO~FEQ=tl;5|nXsoX~D=Q1Gu$jlBMbP7G&s(Z)@eZU^;YKXp@eOQD`&8k0k85N@#Ez57Hm+scYRvlnfZ zh&FsLkN88>0n#hM><^Map~Q7(-*&r9~g! zFJ*_^21)zDogm3p8+;HDAW&QAX_@Urm5Axo%I!uHi!hjwiJ-4<$vg>-NHgH&87X$y ztv62d5|c7o+S*yBtx^Pf;khyDaanz2{(tMV8LAgusDlK`-c=%4A=!#`C9V+I3h8!FzCT-5M90Xd#*vmVl zrH|_9=wwGRu@X|v5)TP@lG(l%TO(B40Sh=};qV+78!e_#L}D!Y)-C5}V`nrpHUlbz zH_#}h?dbq~;Naoevf|rlBMXiX{`D^HP^z2kqkox;?AtUas6+Ihn&)YHJ%C`048F5L z5hX?IXY~V{svbO`fVhA4^WUc^l%IWFpKt&M@h55}$gR7I7$=?SJpJ-Q?>;0S$w-ho zp`VjhGY(k@0(--e?0LXckU>O=Al|>MsMsD!;LiAeCT-`j%)lm8BzWmb3F$}Xa0sllg9JOrGkgB{tcK5k=>UMWQRFL<@hGuG)+9D4q3WE>s z0Dm~Yyga*zh=?8^RlN+6=!G`=Nt6SWtmNXjj(RbXzQ58LHyU>;^LWdS=k<)fZ1UGS z9V2uehc()mc&kwfP$15(O&yL*9?Bx7jt)H-m|Hu5W7pB!8-vh5jZ1NuT~A5T-M{`y zaE*kdrCnR?6j%JKo|u13mbTQeu(0@K>U4nua!2RV$@R~@Q(i5$`Qev~W?j~yFJ&0H zO2Wf{H-FUH+S*{+EUKOiWnW+I_!IT~ad)I-5m>nf1qYNu!(BnH0m;9$x14K0S@f@LM`ohyh49aX{XRik?ul#sq z2kO_|gWg+lpuxY9OG8}a`f`9jXzvr&@$}ob39C=2Xq_-!S)bG@v)n*4mm3xGJ~1 z*_j?iD_ra0RUfxC$Jws$K6zI#+-41*D>LOj7u0n|B@lb-`W1dZCP%GYScp=zXaNIZ*HpZwnc*d zZ=x887>LndExmNB z8R10`ZcL*|Y|83zAP~dtBpqfLxmcp<>DZ+r=!wG2ub(Y2%F_u@pxrW+vj4BhYT@~E zTyNT?$MtSv0X#5buaM_nA16yKE!zL=IhozN!_v}tNvg$u4=9l}1Ezby!XiinN)gUK zdth_CCIxU84l#a{XG{U6Q=IgF_ zek-{Y!9P}JbnBmgbsbfsh7E*35*h#ZN7ow;JK5S&U^0<<#dqW$6oux~DZCJz(J!&V zaiU@9X?Xf!+hHujJr%RkJ3#WFaCdzC$Wq`Nf?B0^?y6s@v7Ov@1M$;)A`3B?%Z;dR z*uYF&3H4i4N8>B>Bm!3m(i|h`EZnPTpj-89sZ$m4FwHRv((Fm^zw!P|xmU)^myF?z z=GB2`o*cB_msJe-HyoE_lQ5+=nW|6VBLIc1gl!7-vL8z&Eog zGcdD#JPc_-Rn^+E5vDPZ{dnH!Em>bOMqH3}jI>62F2Y4~sL59Dh%i(5|Jpct zIHSNfp&n#`wN0xVH&t*bA_4}p3IVMbXUaFLQ7iJcKN_Y)A0{Mb+6+yiWhErA6nF2b zm%#`Y@@*)uP(h&pI0snrY^8#R1#r}7wy-^th*)f+r9`AzP*h?15nMNf>8vu8{T4M|>F~w%PQ@BG6%EWhma=+t2XKcH{TC0wa55-`kQHyYeJkLru?d(jH z*}KS=rT)@ruA`-6}Na(?)ywVs)FeIdnCnp|~ z%Up(kL<^*GG^ffSyW@u^jD(}vQSK*wWN!mD;XcTz*?x`1oX9Osw!eINKhVCQ{Cfp; zNc|v~G~?vrl9CN*q|jA>E71PrD_%G(-q^wpCyTJUpo|mmPKdvNuQ&@+0qTHYyu+yp zP7V$gS6A2D8f=`KEIecb3^y4F1PxM?QSnz7viTB+B8g1wUyY)l5Vfb$37xI4s^+ zyLjD>Lo{Re-&6Yf;Zlc&u10M6XC^?tat;Vsrgu`){Ioj^U>zov(7Ixb?QqO-QMwiP zEVi0a0rzw(8sv7d6J*<*W7xtOzk8O22g?4M3xzs^RI4~#$*Uus&8p+4MUI) zDnSGzm)2^0iR(`aYbz_29lCcXTgHA}X}H@!ZbAKK%%d-8V=dIUByjCO@O{QNZ{Eh?MQud8gY4BR0GTwRd{=WEv&FRy=&}xDNMs}k$iz5Q@O_!jw9_}Ls+2IF zgUGP;xw+*|hdns2c#B1k2jMP*1-y!4*Mo|P^`I8O3p6a;t7nej!9oBeL`a_bVorn; z(SRX^>&;xu?r=b4T<}g}cK3wPO?u|oz)A0V?*h}O&l3@7AVNh%3iv-aP627zeV%9Z z1Q~GE;p~)VwQH?1^hjnWD1A&}r^7vjF3b?`R%i{$-F^ESVJW^EcYOfFLNGaynxjXX z^XE&5klVR)%?_UN$oQj}QbBvQ$d!MPl!)2~jVEUC`+Bfi#+75gK zM9UXMVM5s-Z%>bc1i;UD#bi7}695#FPMyn%D@UP}y#MqGVUYJgq;M8+Tmka%l7UXg zy?BjN@mhF16^GboD_V=lRy6NT3S@#wyLL(feff!Ii^tRzbpqD z5g9b&c>vRXR2b99>e!JzVWHM%lQ%fRx1m6cFJJKKz15;dX+?1i#bR!xIpOca+KT|| zyUu=_`SHUcm2qMR5KE!2tX2c>o>Wq40~{K#$z z)#n!D{y~Ru>}h0tFtSiT=0S+j=8s+t%mBih4X;Wyjm%-t3dvJK_Ci((mBGwLUw-f2 zh>Q#Ys1{Z|yBAR<9XJBb0uf+H_{NjkM z%sP*E3rK3gs^SlKj-L0E2V$v#$p|_O`3d8!#E4E+Rh2Qru3;RMvqu)fobcNAYRlhyI^&Tmi@(MnqbURbliU`5o+jodflVP{z*K?8 z?K5FEKnt7((+m&=jyr^(jC~KVOmCWJqlHa#43{=pb&l6&#VOGyw??F|O`da?Sl^-g zgwl6kNOdW`fc9yVZ5-}@PM_E!NI;&l7|UH~s8DCwVm zVk*}~*X&+`W(d6X_IZ^U;@rw} z;8iB28_*zl40gZvbTr;eLXZ#Zp1_j(Y$})rYcypi@^%m%%u9|5wiz;&skm8g3Q;kZ zV?w=#wgdN@7%IWq(-eMYF8rvGk0vS$1sLe!bbkQq3AhzJ%1sS6dAbMXwhM$43N|D% zh(T8*n7+^X5W!p`Kqr?XIouob>hmiYs3|F`M~*b+&mivsjTs+>>~Pe$9kilbVb zv9Xog4seqxss)IL#4bUrn1?TVGuR=o_xrGgc^pIoZipqM(1%T3UpBzP!*?Bv<1>>p zt1PB{m3lE;^N|aUleJt5Cf)EVCgzC@b#6Fh7|4n@k(S=f?yU#{z7<1P=(R8~veMjN zyK}!Xol0{0t3ya0+lKdbAGWs6(4`2#szHo#w-f25M?wg!{xdiNisB~z&!wSuCPZ8D z@l+)g1dmea)^WJ*D`FVoh&jyCA$8a~JFfOE0a_&(ATNMN8*N8ItvI9|rUt-!c% z;=5_Y{hiT`UB3B8VL%Xxw7R-F3^om88oJS!T2BaSlugbHwt70iWiJ6nYU(qbNH=al zQe>~}4z?IQ3k%-4sRk}&X&{As2B0kq5{lR4kJqem=O$Fj_;>;1cg(v+R$M^#urHJS zzs>m!yV&4pXK@}N{5U|QsCuR%n++TRlp1t!R09GZ!2x!AD;sxQ6sJ1oYRui63c`O9 zcIp5Za7{l?(L}@>!+?$8(nJbBz;b&elT9m;UaYiWKy>lrJwRi@H>#Z}RBv!B%*413EbCw3*pbeI_Et0+cr3{ae>nM7B=b4RLOV@ zB)gAn9qTtIpk%QtU$B+gi|J_>(&yiWFkJ@S6pGZ%$88j14;vX7eZI;4FX%}wp#Gid z1aFAXHyAHkq3_e8X}yyE#)fAG-w!vVIv$Ij!+pD1OfaR zG0Xy4kEo}3OVMIO_(;jFvGu~XpRSM$oYn zcn*jwTtQgSYbmv+UiecX;vY2gXx41UAl@FK z1W)V=Qx%C&-&Qq(^R_+lK?RIAn7A2ccrOPZz%)|b`?w8(71{P_KkIaC#7j6H#Zj^b zzut6-%r&(9L`%oy(d|xv(l|3&7IziCU^W;d%tkI{ZTX*1U&3?;YBAENt|=US;!tgn za{_m7aHjV!8b>S@%?cNmS+)ijQHK6v`_#MML*MV@XI}hpHRCeXH)r0rJ%?^@q*n)o z%vR`l(jL=gd}gcJ-J*Nvg_>OvTcQc)wnxwSZ4L*$gUE1LlI`g4&t9JYhpO)Y$FgtZ zzR4zgl@*H0451P-%P6U=j3^~rS=k90Sq&p0MI~EV*}Ia2GO}q&RuW}>zpLjxzVGs zsZ!2euS?pp3dMO?a!%nMhcyM5J8|VeEC(x2sS^k^_vC(Y+&6eb)wmn9?qjyMc2F97 zr~z4@+J`?McVdts1>siZj@@1iX%21@?d`I1mL`t#h%gHQC5kEo!-gAl`+~c+nMw?x zfDwoH?5nr0UXd~1pjCpw57;Ju&)*m?b(*VfpVcr5heaP<{V~ow{3BJpZIs-+=5t;R zH`Pv^Q`WwvRG+tOJvaI3urYO>`^BwWy51YUY41|6K2X)i-5E7Cmadzw3p;9nMF&90AiTM!;&$6-Bsh?OA3rJ|2>G$J zQWo+dq`;^)`TF4p=xaipd0#PXaG&8m|BAj6TnH2tP-7o`JynUp1dXPfX?d#3Fi=Dc zUe+#^-{zL*|4v)4E`11KP_*T?FfrRO5M;@aIel%q-|VEVL(y8GdExH7CTkTbgD!s&Dr`c69yPtV_vdLS1)BezvyZ!(ej!pN^gbL-XZcg^G3 zq)c+x6NCO_6+_M-UouNMQ7(x*2gFguE*c2Eg#v}BhKoU~CUpuWy_4=al8szzoKek$ zNS6pQ1+-OI@!|pG)L@VZ{%*Ww%~uMtEZ7*X0Z<5&d-aQ2v8w;T^{@HSV|q*CtAhgk zfA;O)GBc1CAvOZsQ0_v6-jben$r?r&0}0TcMh{T{&zt6i{TV6}$hWbOL;fG*Y+k?{|?7aa|J9 z3&IZpHV?9{o6HlR$Ii+iYYW3fuU|Y<$AP)@-qyJ(o{6NQ^?IRFSrtmA*_T?$ucQ1= zHSa0hz12 z$-x6qHcB5!=f+G?s*zJ!QL!()c|5a?WEs)lZ;Hq&;yDR!Bpee$1C82T56R~5*%5)> zTZoKNjENeU&jVe^h^`oKE9Bl75(~xY6BUAtXY|G@9L|=@Jl`hnVsK<$d$Gd1Bh8O} z(iZo%qnfjYUR(l3oG=;@0AX|*njZg z=BVc4jNz|Q6AlXMAi_Gn4*a?@H92|6$fzewQ{g`WymN4+)ctcV>6$e4aPbvFvX@zF z4P_6yjWWGMpIn=Mx$#oRwr&blyPBflqK1M5bNfuweb}ba%(;#?MT8Wu=TVGQKYa3l zPRjG{{F`RMqq4>poe5a!bk{!uJCc;aOwANa0@1~v2T>^MJ!rY`J*g^!fa1;^zA zWasuS9v4@4-6WP;C_K>hH%OFOoI)@9S*VuVp8b88G#bJ?KvVu zh;&3Wi+gT-h~DT{3g0M~p}VeNQo2Jy^Xk%%SFL#c1x0N?>#cb!GDVG5?}WYocwpFH za^AP@`V*oTUby*pQEuBwF;Xf_Jv*GQrLH;rXgA?=1(aJDLJb=h5nYBR;QZ`XLd!J% zl{T&ppcGy<2t>mbQ3uaI+eiEgc*xq?8XCWoQ1P+!8)I7BuCZ5MUag=P{_Tkm##S6Y zEUh*(lhD=`nXp=}Ci7aZuIZ-Q{cSN_&AdXx=t3Hh`LH~~bZ4|(inlp^T5g*~$@>Rw zZoF{sj9sc2*MXHBwmVo=0LtgXQm2UU=2uU}SEuLoR{u`;y5$OO<|VVN+8e>N zK4R%N7ApDcZJ&HqfU<)x2>b4{d$}24O~gk9-pjLoaCX<>-_rNsmOBtmF<=zpmb33xI3NZdf1?~#vwvCPq36{&X6Foj(ocJ^*I@98yj*M>yGzZ zmb>|^dH-!-UY~A1)TeZ)?DLG;L1m9z_SVw1`p5%-HNZ{-RHdWk3SrL7%xvBe`30T@@9N7`QYHFhUehPMpNQ}rggu4up zinuczznfj)ra}#Xegsy>!FT)5$@D+6N%`Y&!>5u};5+#+MHTH8kRrImc$^;`&1eFR z7&JU=2`Qk)S|}bZCOTYL`}gk$x&bZC10gE5q6-SGEJ`E$!(6I|#h#xXNXu(Z$Ek={N3X4=oxhYc{)BPRrElW^n{zk{fYt;|9WdI@4` zd*j=vMT|S?9b9Z)+uDj7Lb9Q-f~T4kyd|tEM|`mNBMu3GSJtDeL&=4s7Ah}7q}E>W zU6yD1xtY#y_L$eW*D>CPPA9Qe=b!1wnk2mQglNWjFsOUdywtJEMwVuID_PyKF#H4c zoqMOwl#!WvuKyC=&i~(LNw?)Jm>Jkx%UnjnMrO4S9U>!Kh?+wm?aBuBVC(^=`NUb_ zBcN72Jw3<1YMB0xK0fiye+8BR@ryjArepF44$vbyC^$ISm0|C=iMg`h*G2x-2euTv zWG4+-*2gs{mEG^#nWhi;f@j0og7+64ZK8qEyMN)GHH9UoDpN3BscvVL$j*k+t@eenq;abeY4 zsp99?valE`o=p#2zXDj5FxtRtP=}C^a3rpFw>iIfoF1?heIk?sJMlvN3!0p76@YdP z5fh?>_1tf{Q2^vt0})lKMzj7cc73N=<&h)EK>G(>fB!!IfPZl4U$7PYR#3Bc4iCo& zYsZlKwiao-xW64Ou(abEtacfQzgAFXdqAcnBUS958W_q?aV0MtC=duCuuF)9aI{Xk z!)pcKRp?%gpxK4?)Ah5;oB-!9Rrn>Fpb71;;AvE_oC^CBs53)SO|!iERe6|(6uew{ znwz|S4&z#JwxSYFJ2Z`mjnh~Q_~(as5!6_xA(#u)i{t$T%^3Scs#ADKl9pBB(04!; zJC0!lcu@KDHNEMQr`Iqy* z)kSVOz1GE-x~XY*PDaeMkuHL9LE^`W=}e*~sixvkN2rT~AQx^YDbP=zob`UHVy z2GC<1F973!(oH*~c`w4NtwtH=avQT)h!jgPT*e&ZGvj=4y6-W;7kZn9NEpO?*Za8( zo>R(Jx10b0Cb^~dv8as?VY{Mu7&a+=JQ=*ns%UeG2IvWn*7itdjfyY%jeD#{^xEvjW;W-N;1!=(t2snjw|6Kl?Sgv+u5eP;8Wek zFDaAkXzDMPtQUs%23ej+132UD&5hQ0?oV(&WrzFz8LvPxD5{b#;;Me!FI)N2BMMZo23;D&Fx zdE2cmF9Y3* zu1z;#!COh}#o+Ltw_b1<&=G<6c#W771-6qK#7DkqxT8+xwC$#o5j-2qB+9V-O#fFc<}$4fYyD%-b2C z|2W>_8#ox8E=T=LQ>Cz$xxnuct#2elilrAau0WXemgK^J1F;#DA9^AuOd>h8>G0z> zUS~q`4T!nCfjh5HNAPUjsup80p?Eau_DFk3f2ej~0AC16i1Q3Hd(iBfTU%s*y%N~c zl*n2Rq*&R>VX)`^v4;k0iCOBq`kJXMh>~oQ!{#Xj z4ARBnhYy7W>%D!+8ICdCbVTViZ+9HGB#ur-pmWP23!9wGo`7HL7Rw{EPp%ri`1A4} zh7QHlw{f|@t3uzyMnC3C3bzuAHO!`97Qax;&w>a-ln!gm(ndMzrFRkhg!_^Lxy%ux zX7{E~pD`F;<(h2_t*v6h^`pgg&mpo75@i@6$4p$H4-XMD&Uf6IR*1VDZUVuLm=Vr) z0e!zGB!*3xnjnM#PzaR;i;Wf()@}%x!H$Pdu zt&NNX9tF@_5CE8M%&G`Qjueu)2|XSt6m5@`&aeqZFm#zLnhtJLJrWQGLZruX)z&oQ zgg)2+AZ#FNI{W)00Gg1B0^L~D<_a$SovVLbU{gP)38<;of1H{B$t%VIc{E5AiQZ4Z zRzg|B4t5!92Ha9tOJIlm^yN###C+}~>v>a76uA_}O%T9Z2q{`s%2tby31bkjTKf}l zh@!^xf``L*=qZY~-!dTbXb5-yU>$BFb%~{a5Qgm;`Ffx4Bw{y0JscfiyNMJP>^30+ zzW^t*1$*g>up!5cDQ1F5k-g6EbJ(>5N<6}COem|-odAad@0;<2Rz{76$ZUaNOVon_ zcWE>B6S#hVpPeZs3lnsm+h787C7@a&ks2`x;7*Yj08|T=7~RK1OQwzqrqP0Rs{`vJ z(f7l>XNUci{*->#Z~m*vIvi>D50#jZce6t$?pf(?Y6J5}xyKYIzLUi5pPbm&J+|P_ zC>Dp}32mC|QxON#hE|-I-Wfgmy(Ht)R@<2SPHN>r@&h~8%O0hNo#8}B1Idx#T7Fg* zB}i~uE9KCHs~Lbf9DkF;GmhBD41@b%esO)^Fd$`#4n_pXx~_p?{kHfwDMBh{LRv*7 z7I=F3TV@98`83KcjLS*8hC@qoe0ImY?~LNhr=Ntq{NvWSt=;UuRMKLA(&rd{F;+eZIDwbWDu~*e(QdyZn@q4}mYW z@TfNirFiUUVgE70;Fs5eW^XgcGQu5@rqcv>qS}kFKNN8W=~ogZEeO#Irhe8JQc4`K zWbvN(giymDczB`ZwQ#@-ej#F!EDMak(KNKO$Hc_IfT`hkgQ3y!#nmf9h4|kN^R0j+ z-BOrYoFRKj`0(Z&Hx=}wxGq36;yj^15dL`#*CdS=O(mt-x&wi(w8mka_Y)%Ke+m0G zNUjHsu5%zV(&GLW1}aFZq1S`#-MKv4BonfEXwhL3hpdP>04{rUbk=2_pogxvZv~i+ zDJQJp0B$p=$HJ7Zg87k5bTBO*uO1ya(CNKlAf$V#_5&L`L{@Kxy{13zD8B~7>3<5X z(3_|jCtmu11;FQ{n=%0%hXc5!$D>6UGCQ7_WS#Ax6bo?=pdCU)$@*T+gBUq9#10;` z2(O&}{+%^a>$*C_Fy@R@m8y{XE7X@xurDu)GL0VATvk_v2oq-j3gxEUWQIoMIcy@* z61ykSeqMNUb~o3pn>T}zjSqvGygX-7u{=5-bZRhyh})FoTyKp&ufFGs>N`4bsMO*D zdpkQ>E}bR&&$OGgZLayWrVtBgdkm#JP4?jUl0l$&sRCv<#%*@{9Fc#;?57CB&1R=E zGyu*M0S&JZC!NZ6%~R0{wdvD9J=5GIq;nTJ%Z@(Xi9dX_vQB?OY51G z0Kn}pdw7o(ZR$%X`D60@4uYQ=39`C)rg<*Q3qK&DM$!(>3sFpa9`I8hVP(?IL>3@Z z3XeM?S)geddgqd5xQhtE`AX!vLoY@@sZcegI82{&VrDb)^J1Wd2+@U_28^@tY6_RL z$gLxV48Io_X?r#!Liju_xw5Kq@-3C1GnLgE;*q?&LB@bnI+Fg0oP<_}=dHWZ?mKGY zMz*$D27b$^gMt-p`HT{yYa3tb9Gz8uvro2Wwn!Tr_{r=Z`*MXS@*>f_j= zcK0yM#Xknhq=1;vA>LCwVGDTW2n}*%9D?-1Oara3uh~b*-yIX`$E-pddFrlqom^ef z{;eh)d#}wA1PZ$8^UnK*Z+?RK0V3_B@J-6J=ay!MbaTx*y#uZ&rJbVJEZ_ps7JnGj zeXXEzVY3Zwg>mt~w3d~X)!~7R>VHsE88_mlUV3BbXWbh4_48-ibS%bba4rKQiD*ii z{@0ihj_jL)yOnLc_GU7~GUd*T9FnjIA|EVA7nUgN@yrkQln%P^(G*MWYxlpr{IVmz z{xdxe!v3^?bH_{~4-|w#UUsosnaH+|gbx+);N$KsADW(GazWJ9Rong@Ml<+M0EQ4L z9&-U9Y+=^e3$+PLBp!B_?=n_|Pq}i4rahwmIKT?L^=Ih*_K^&~)ZVeJ;FUT3K) zrwqye;IaXOV1_|fC7{J}{}uUva_9!!Ip6?0zUtadZLta#?3WFq6@=dPNP7Eb641Bu zD+}kFdZa+4x+UMbC46qSth99eS00()Dp%gz^1ge0X;%dTUA<1)uX3=nH)-Y~+>uS^ z;V+=9uCCJd17B9Q7KEu~^cf`IS!_@dR_J=@jdZuY=)45!p}!2lO%T^SfmiS_f$rV9 z{wa{hKwd8}Pz5?p(6xBej^0xwgIEZ^7uXOSc8JP4mkubMcEhv6JjLFPT>@aT5hYno zQ!vD(i4BX2knRFyPa{Big?nQ@QlKvJievWb&2>peMM4-A#AN1hgZ?1b66c)2K#nFa z#gjS~*Pv~L8qpGC)ds^Wx{ET&YOHyLi5IbArgz|i<=7OJWth!;7V`~32ya`K(L+in z^Sx6)i+13&5>74VA2F=iT=iP0I>19Nbct#~G!<5@VW5OY0AUnQvM%g6pX;o&ZZ#ym z&;LpLhq3gL6ZENOln_}U-AqGHU0y^EW%!97MY`#3 zXT@9;N58(%AjKY4*!G!jm;B9trAYO4By0wRyj@)O9K7L8deca+gVvK2O!l&BC&G#E zGV6Lnx>UcT-b*=x-7wo-mtC$M)~e!$TggE0>xK9>R|PNzt}je|ODh$$5N_;HDdxKP zU4_Ppz;R=dvPU}~jCl)jjD7D*X$8@#`MnJFJ9`9@Z6KF$e7pYn`B}fY?GK#)DuDrw z86uec@!0Vm;XqpZzeOVsSQ(N^+Y@RRu_fYDlLVj*)Rnm3tz)jazE=o%*-mOyU)7g3 zEVemu40~PTQdfzzU_|p{_=FgUkSQs~u+dc;&a|T^0>BSt3p0dJ?8Ekac{LwGnEn2Q zdai<3eJ`_TePJT{$!pV*%XQ~uX!ke}&LMsM_OO)*-K?$<-5I1g;ZjkX=-Wu`TklXLbA_o&tI=~`zfD5mIty7^*+#^XdmBt*w$ z&2~r|Ld?oolK``L&aL!xq)wpy6evFJjiwksoAtBd-ku&Ih>NePZgbr88qFCdAE-H? z5E`EI0YwEZE@zj^y`x`?e`+}Fk&}DwtShroWj4PtK#v$ks{BnLAuvX82aT#HcnO2G9PPiH6tTHrMlwNaA-9R-1a47eJz>HNZW$6~^!6g(QKy_{HuJ0$ls z21_LBa@BlItngnceaGqO>S_?a7yT_BUMIiLNx^@qS$iZ{c_ok_(U@laf>o=MI(DN~ zpF%OXZ2Dz=E7SGgmn=8q;QW&80R&hJ?jc0nhaU{WuWy~@N7rd616YmB%;?})hP~;5 zW+XE?;%iY}!pjBF7a15Ei#m$(Vv2+!1K|#icBy`A4Hz^%==X#E0ov?zDfY;NtuHCX-OPGw>h@(@(#L7F!^a+!cL-_TjVwj{2-xt z*WJBoTT=X+sO#s%=&E62D;H;DJxU{(GSg7VPtIF!rQ}85ZKR;neQJ4Q*p!EbzE~|o z6(^P?&T;@68DxK}xwyNwy`!r zveB<_Cr3w(fBFB5+4xR;O1pWsyUP^+B)O}e@4dlu!&r_HE#c;K6*}HZT zLy$_$?fwgKx+bf0Yn2%{HI>;6k&t!hJHAKwmBCUGAFV;Zt49|<9HD+BVWx{T=)oF9 zB2qM}JjDvXf@A=HEZ|A&iY4eoixA4itfnS;We1kxAZsdaa9AhnQv2JTQSmxikk+40 zH2IXi3 z|3lz(C=s}25&s%)H&tnJ0!uovp%Ya4EqhC&c%O^lv5eBD*{c}ZCfNo zWtdzphC_geAj)0lOFxNCk%T#DTatH!g8tIVn%bjLVoTRglyHvmgmF!FBLwT8+^%qZ z>@>R;U71u+t@jM4A6YQ<(`R$7o3F48^q2t(L})xxGTbNNFITG?efQ4b%rMnW6 zl3K`O4;sx)jupm~#bMb5oh8hFqz7UQ|N6<(56(DPTBaE|DzW-amGJ-S_!yrbKQ_e@ zxpJB*gc(dyuwY9+n_}sB8LrvVJOGZiGC?=N;+JhK7}^6aC_KX zS{M#YoajeBGqg^JWlpFuG`PKG5V6n7-=VmNLjHNOdFY(<2Qw zMKpoS5exQglDOW=1|;4)eBRKHP{Ar%acmawA1V@#c%wzvF&vFq%(4Z4B1SlB=3KFs z3)};a^7S^}SS46rBBP`v?#EASjTl!qgz}XaX=z2GB!~BGR31Fv(#>_9L>lon=3{so zUA9a|jY}-2r7jDPzyBV77hZMT+E7v)e-#%)fdC+kw5MfuVQG{a<|=TwkVu~t$pvCX zv^|5(G*%cc5Ags1ubqPQl-H3f8Do;FUXb3H z7%)T?Lz?YNem3S4IEF6;`Vt!38#9`~!GPt`2ogUW#K!ICi3DCYd&B!iIc^B;k|ytqgTXIk0(F40@IxnV4cI52yM#sPi6@^SyPhFpa3AgZ9?J!fL5*lJ}?Sf z+7keA|K3nH^!m*5IyL$nTKVNaiZ$8FqqQ3xA z+Ve)}OYG_PE}rD1=>1G_j3RjQ?Li z85C-$#3=Ugif*r)m>=w(s8_i@V@vjFDpTZi_4_;;{1iKoqy!T|3sB+a&zHuK#_2Xo zbqnB3i72*2V3Z^UYvx~>%7PpaO=r-VcPauY;B~G;b($Ib`J5>y5m#{d)q{fCLCUh& z#$lmN!!@#^Kc<-O0L=_Jl{x9Yzy8uw*b`6g2C<75u<_>f3)AJ0#6`zelD0S*u_FL31TkbRY zdx!-9$BtkTSUVww!@fLE455VP81OXGXtW>;>w53aKtayprdh(Ub^fu6Gg%vnK*gV4 zR=ZrOMXsE-`)031s~fH_*cHiu%7d6Gg8nCIPzk7Ss4BU*+?g4o1_%{~c^RI#m>J8tUyPXV^PWGPcqtG=URIOw*%aAMmn z%hi3UZ!>R1cjM=}aSR&@4R#Yx45OoKG-e;vW5P}UpYNVPNL^SgBH$Mft>&d^Wmz3^ zIY34Ny~)fq-hsUdW3C$J;YH$6mU{p`pDXGe4n;!ntEsPgce@kt2gDZ>C|iP#c?Q4TN` z?2P{=8Cr0co0#426mVK`OTmxHvv1#+M@P+j<dR@L<(GQz$MiPgJ297vwpaXEcE=B4~+suIi2;>*VSLq@=-=FP+O8C*8F?se8x- zMmUaol}go(9oXoeneJdpY*L!P_87y6i0PCPyj$PoQAI;PZK}~UQN+q<1dzgp_X`j% z((r(MgClI%E;=~p@e{10Jg;sZyq}9cZj0YP?C4Ph#{k;{zGwiFu16jW`>qU~ zO6xlQUvQgY0(?Ei7t3_3WZ}=4XQ(%U4N3mf%uRIM`qk+Eh=;8@_X2I^CK99`G@nI* zVNyE8HQQ7?UfFpM3crV0Svzv4R-r~?;7L7v>d5?F}WZ$m+{DKcU9jCvL@ z>$wE>0qD*|TI+~&*~DV6mDPuaR%wPR%h|gfjQ>Kf&}k43$duRTbtzCoSxdzle0CvZ zSX_Qg75b0nT=??CoCbpPJ8|9Bvmzis_&I;&m4!zJdV`Mg+LV>?Y{b1hGS4P zIhf4?FzdPJ`VTScz!5?dW@RL(+>f*7YVxtJSqw)WeDCqe+GJ$LHHA$hb1=LWBR-o= z0kJ6nl@E9VI7r-9u+T%?tG^=+P<yO_O z*VExe%Nn6E^*RK(bjT$(lf9P6^v9&_yD7*N+^VN)ACtqPe<7}zShiihD~^{IS06mC zgcPg6&HPQ|=zN%NFXr zTVwfmhnceqSTF+S#8$3kgDoF%m41tmfPE#w79GHn-tI0tIiQT%nb*rJcWt`AFkINbM^So&uuwJ(^dmE?sgph z-z!Ih_2l>VT^0enz7ya)+&O?%G_cP7NnRcjauU%0VEfnq3&jWGT4W;Ll=}AV+i?Q9 z2m*jFC_FUnDHS!Kgm1QwHDUPM-TJzFo3>VP&kpgZ^r&o0GKqVl>Gj8^S=Hd)+{`#G zTJfl8BndLV^%ox%ts#EW4Bq@@RgC-i9zYEGmfC%CI5_jMM7J<=YjlgpF$&n0@6I^h z(FuiXEAW)AV5=Lk5&6`%|MCa7X(D&-EQ&1g+4ms-OM;Gv39_EhPo7a6RZpJqo`;Fh?h8T{ckdTsGN$ zoXt#IFD}x=Z~4seq^0wh(V*;|%s0je5E)5_uQ9JQsj5Wtrck9Ue!h|25cAGBAn3;=*2>3MGnx z{6w_Ea8TnI3FQS?l7XyiR$@;KV(BEn#mF}xE^kBduz zv>UdbFl9?QXO0$BzzAH=R|(QJJ4p}A6o~MwDCsN2?E?y$2>NoWWhLmRV{;{t{}YPC zr$z)&g!??t{_`^v@tl_4pS2Mh^jbRZ5Pu61d86pvh!8}8m9$1#=RU*03_OH*-?s4a zAs>x3_b@5s#!+nR#F_`SEJL6MG}Zclw%Ua-!$gi}(D3E=7##dkW8P6~!v6vRGV&^> zb^vNe@5M3G-fUBomnR`4F{p-xVjO7X(LWHeF;R7(9SCDCv_Uy8SvP6FW{pjtdR_jLCiSzb0cM%nS`hS?>;AD?ANn+|dsxIA5|B`y#YGD7gV29>+m$jq$YPA0+C^9+5Mt+v7Q>ZS^fo8tGEt@~E|!_L5FIc60Z5|Y zZUGHB`a(P$z^f>G9;UPZ?O`BT{qr~M@TWiJXF?>srDe^79kB=p!|oYTQ$HD9nMC@5 z-N3Y1;EZ5!SPJ*Xl|aaNv-9o&7vq^ZbayAf1fZ}kJ_o%-#O=}xRd?IWi~3$u6C>hB z{7)GhLv_!q`tD5?Vn}%i@G!GUc-yz&&u!InN8owgnc4ROrbyp}r)YAphQQR#kyzF~ zBM4X$N(8Y;B}$*z+4JO)rP~R-7ANPjmg4Y zYEo&VibubR@zFtp)!tiL8b?ymTL5N=#ZY^oldIe|P}C76+ZC;dzpj7B&?1Kea!|tTuPaSNhMy7~ej@H4x@>3Gpz%*K_zIB^O)_ z1{F|#AY{R@^;-IF4q?U~!;Ie_t2HvPSr9v@p&IC#_B`w7=Xatf6CxQ18po0%n{Dtf zBD+IdUscMJeu487D&=0yF33w@%qtuB@~O6bx!N-TQR2QevJ9K9 z)fd`42q%nG$Ho%5*reb+u3o*@E>{j6Q86V8 zb{;}2URchCJU+Mxu~Lq(Y61o+7Jqa8*}LN+UBF6qD|thw1Pu>%tiTI% zYUu!oM^rEHjZ<`!uzM*0=jgqm{^Q#>lldCA3Ugv{ii}$l5^uReD|W?Sqf?~|x=#tK zo`{EeD{zpmsE1fG=&?8E*g4MAqw=rYoDNNm%ugq?Os}*R=bjNn6th|s7QKrjA8iv& zi}id%Asn=rv;c;wB7(lpEWR1ilY=Zr-rQ^>g7jBz-f$tIm9GP<+*jtM04pqFe^K`l zd%*J7a^YWRi$t zZji=~rb0a=F%seunDxTYKaTgq=qP=Vk9XnIr*nqqp0TN6nW_-K7ZPwNS&;P53t@tN z(S$43QA@fPZQ&b9rdEB#j$C|n{3qZ7d-g~d9$+X3X{!^B{{}$&0M~|CKwuet zvKQZo1c?Y~{CA`kyOod(htSC5Kqzi1E6-paiG8grVFYXqeS*h{EoIjh7;mJQqkrJd zH~C|`1 zZxS$lu{cIjgxogW+`7z}0&)uL98m#DYGR_9|K*)UVBfvspNLMt8lgXaHSfIhnj|Po1HEA3)2Hvvy!$phhX&Cj8!`WYClo)aX~cYLr$Wmsl)(NF$%3Q5vtW z7@YzFOmOV2yXu7R=ybk+|NMu77)Rx!e~J8f$11=Be$md+I__gT3nv89n<7q;P*4#kJAbrHKB~nkt+tfsEWngLs^n@^BTO-KG zLM%t*Q=Hn#8#+~yklMV4GIbm@LYOu95sJ1!@aLnRBjP}kAscL{hHyb>I~@W?@;>HG zI0F`edKR-k_9+>$TVv%P#G!z=Fr>C=hzL>`=bIxJ%lv0W>x5~~#T~%FO@(OE?>*g&5E?g zyqr{1Ii#V%1V>_aqWxFnGQkMSkJJ-ngX1_eiV1%W9)x^C3tMJfGz;roeJX zk>?zHQre;O#gEi9Y9U(Wyj$SNf2mCW03amOgKpfsQRC4>kth|!5Y2GM^saP_xF6y! zH9jTd%|@m>i9*y5fITT#?FQE-0z2`Y$JnHH9cmr!9_|Wol;yJ~06~P`Pfnbbq!lE< z_TDLrB_A3=lqjHa7V|40V2L{c100%TlQM@AyaZ@-fR~DyG4EidMU^hwo*b?%&UqF` z9#B=o1>h@BpV~+8^kMS>jARzYwZtXpxR1q6jnas_QYVSf1npknlV3Iz_Vceqi??~P4tZe5hg#bWj~^#i6Chj(m@hbM4EPW; z_?k5kio)*h%NYcCw>p%XW-3WOG2J(~dGSt;r z)c_}=#jUcG!mLiKMgt2A6#Ky&>D3!CF2X9aN^>0y`#Wh^e`NL@iNAd~;^adO4*QZR ziP8zh6vcgIeG$D8fk!XB`utn6`SZ;_U#?cqdwoZ%yxd;9tUcpv_3Rm5ls|HE_O?bO zyKez00t<=!0t4$7_U_`0*Z9ml+Z!cyXuI?R169(Mnqz;ILYPC;GFl($-qEo=89#Uq z{!L=N7C4F!H9?ANhjteTWxf~4!pqP&u_crhNdZq9f0x@~R!}C=G!YeY;exSZCgRtQ zDa~Wk_@vAQ3pmlMs{HziwG%`NgQMH_dtPMLJg41OyE8ctyd^_QWRum#q7{(>rFi)Z z12E)()d_(KNMwopZbAyaS}(AAsJLBE5oP|t(O3ktLkhB||9sOO^wFKYZrJ0ZaY~^_ zmd#Di@B`VWEByG5clln%E<|VxFk#~&bvIANMoWZxa)(`Q9J_CJ8IpQ9J1CeZojLRO zfEpWcolt-J;Ddd3l9x1hX3TrM(N2XBgy3IK$v-Fw3KBWNY8lLEtd{!Tu(uWCz!0RZ z$2@dg2w8QV?8@SJJJ=k>m0b;5UPUF)^m!ph6EqLMHq_i*4;*34GEIHotr{+in&7>$ zG7?+h_gM_lr&jTV{kp+rb{QPKF6l*-(; z{TLka$=hbGK$U{fl(sZ%y&=Axsws=vU_B9aTiegYC*Af_it~G(q==hPTpbfw7p%bo z^l|Vi4n3r`_K{WnUbbg(&hkfTpuRf_92o3&~_ek6KyfDjS3)3y{ zE@XabZ<};C?C0DA?Rxg*lcuH-V9Vx|m>zZ>o}$N=i#@O=Z!>h*Y3Jdily*BhBwrgG zF@P8EwCmXJi!Fq}uwal#h|zu*c+NCozm0>fLrABWQI5xl8LMmcBsAX0Wc%xjS+jEJ zsOVLc3t~HP8*jD2P7UGflkA1wea9J*DA-J_8+=~;XEzu@m#5F1D)%5V76ZhNfg9zQ zunP{#)b02s`Vu0P>+|gFH7A1&(Knws#njyG-Q92ZkV>CFfA{xnw3a$gGLpp@VcJ%s zfv%Ov8B(Kh(mLXSTq1-F0<~dbpqk9}xZYS~^W&oy%ryX5sX7+Q{r>#C>ydz76K8~= zW&omO*gi4XX>`skR?O3Q<` z-$XLw@m_cF)Ye@__l`b((jkbZ@AXHYrTkIS%n@s9X)!T}w#kNRH9R`v4*22Kuuo#w zu8jD4(KK&zl)eyVOo3=0PzS*1rg=_yLPE+M?5cS05`AA*ml>E*xwYMj*Hklq`#kH8 zKst}F?*VXuaMUAPu-AY6;nE8NS-o=y%S8-7Uxzycrk~@FVdeLzHtCJ;EP)Jo+CdyAgqAosxB@55||MiG$q-L%JeyGkg!Sybl>C(M_L zmPfCYb{BQW0@zV4P0dg{V-MW9C@vWD^-6cSO+bD3N?tG@P0JYWi_<=N-2x3EJ4$#| zgHrccjD7!*(^u&w1&dtSFP{v?qgjT>wReNPAmm7aT={2lUlD>eYzG7t4Bj4UX%@Or zl&pzIlz+;@Hj`zXyT**Q3|bD8V1P&!(fNd zId}h6Mr#Uws+$ITy0Pt%1`A^$yA1`t4*EWmPnAXRZROg28m{3Ob5w2swZEx19~j2n2Z@r*mKGzLH1 zoOz15 zm7ke*e0A6jhL?aKnYs&7OSBCgG?TL}z5pJM0^`0ll!Zs_R@=h`+lkOP5lW#+gR2PJ z=%O6!@~s1M=!$xRPmzI(<3D17=6YkwO=BPTw=?GfV7Lc78=1Y{IEGCOdpNncF7o}b zr}<6$>^>G>BDBUV?@{2bw$Dg?0;GYQcZNoTu?u7V=sBU?LNPgMeEaJaAoMUSJrWKQ zQoH9B>9LINEjn60fWol1qrDX0sjoB32j)dbC``NI!aW~wQycgeY-5OZ*;;5q@kSihizr;hIi zY}ZslEo00CrU_}RT~wp-PP5u;JBv#M2xC&_0yJLPea{D`AL;J^b1U{`g$|R`)+7Af z+$QoFA=cbxiQdy6_u})T9RYX-6%;r)BK`eIb~b{$AwVM%Jv$bj-w>H5MN-dOUhElF z*;r7S|2tJM5z1wWA=i5>lxyyLPQiFducdD3#Utw99w6um)=9RW9Z$c<$)w2-q`&` z9MM~ZHT1nQxxfpI*G@kJ`-dQ@5u`x3?qGkGAN%?MGb6B&2m_c^1Qd{<$}_O^sY&F@B_HqSv}mpxdBi3 z0rw^PA-+A@M(9x>%)RBLWe#j8V<!(^;5G1pN0vd| z;h3z9%(oI5QBi7G?x_mRwO#!D?&(zGF#}B`6*f6>UVPM&(eAo}}K7L)TJ+yl2B5 zT)`++t^FP#35~7C2K;)sJW8!nF3fws1P;*$$H+#ieYv2ZeI+mKjCY_@K@smlbL|1aRVXi9v3mP?(rkwPQo~kpPbl0iU)?j-Vdj~ zE0V-6QHG@hBYzk-UkjYz8L2a_`N@H*?)Rt7>S(d;D|HjW$mBdZMn_S+?4Xy5)x3%j zCqd+&eA?Du%@RNAsQ=xQ1PM994@B^S8A7h+$Tofymu+<#63ea#-RLX1GFG)d8W;PE$JiF1BCa84MgaQYriU?O|^a$1c9D-&CN)L1Dd0gmv2;@uf0}_ooTKdc zYdj(k5qR~UK*$&|**iLi*zZhAhFkWmu zrV%d7Tg)i1_Dy@fOIHeTDu{oHm53eSu$NmDYOZc9)~<6QGo{DR5|=EFh;Y@fF5Ttt z#c(gR-~h;4->GU$jnSoZW=J=^yEdQUp(rSm`cUo<4r0!@h^~4(--D zydAh%3C#rTve@#8Eh(TCh-fvy=|qm4Xu2OOW`W0F9VNEhMK6wf312%JCBI2stH|%w zhuKuPg-TsU&*J-U0+Oj0au{)^*kQ%X*cv(Q;pL@{AR)lDuniOIAB~1u4$M{&8%e*W z2l8XS8-c}~*s4noTm;gD<;1{0Ttxna7L*M&*w06Byu|8>kH4e&ubU9LwQg=jcCl{Q z_lV2)!9it`_sVqHe7;w;Lw76pXv34W1qCwFPD3Li8hl-;sTjHC(vom~hTQx7tz)mM9qIVeG}Bgx3@AZYV@0 zXsHOG1vFK&Tq@zg=4C|Rg&;&SNE$G|qJ1m(n&of52Q(Gsbqs^U@+VQ12)qWlK2~B_ zYj2jvjf3yCULsl0J2>37^Sa{j4cZcOuQvu?7cCaljZ{k7j^ zl&dp|!SuTpsrku4{_Zeh2tli;MsLqXL-UIChh!GwCHpGXn)!|hn_=l zO)Rl6PRG!z9n0=+IjOy=P`1x_I}#hP#2vY}u69*Y;^2H2TTrW=$d)f|s$o{}u7# z9t-%%Ml$h`vm~P9D_T@D*&siUf@38#yHwqvrfgn zdovAZg6;U$rAfVq*i=oL-Rk{Lwd{6ki_u2vism{fJLgMh9-N$*m zyB3~jObncF{q?QFR8CVQ)o+!@MeUJ+({hqhhV-&3=@8X&bit}zR?Nl8v$3+{qXDZ^ z_~$2`1{R+GnvdH-Qm#`Mvz<>IsiY~B{kg9i>2#2tnO*k2$Fnegx?qH2gw@RmFAK6h z8l`^~NvEF8Yt1kSkCCGfRdfGcHpd+le;Yz+!T4K z1VfamRQGO#Ot1x{zi!=*06?saBE^T*!39C&bs(+@+$Ru2V5jxqd*-|Xm%LC0Nz9#l z*&l?HBe?{+ePrgf6pu(rO6D(H6r1LRxrr7{*ptpi7^ugI=--vQ*p=BI@Z;0gIzAS% zA3uI%j?FGo#S83rx6>Wi7*Qz?VTfi7S@k>hrubLUVm;-P1+k2myG(!kjulO|)IqsE!<_e9JqN%*gxkEK2M?5G^)a@}Tc`Ql{tgA8stF+q!7Q6Wd@2EY+kiND|f~R+2@DAgisJD|9nY-|K@BYahg9$ENAOy zVI0*~`Fs4M$^2C&Kcu%~ZtLvqlyKVcO1C#F3TBpM+_38Qmzx#SL^mywZ}ED7RhE%7?GSfY>?xSP%o2>7S~9nyP5zB*OAE*9Wn#g98}eQl)Db*}07^D+geS8r3_jE@T; zxn}27ZqUo!*jO87_HG4$AJ(E}J*!f9UDX&HSmQ)xy=8S>cE!k#`a~#-6k4>XrUkFBn4*RIi>CI!)}#1Lf6UV}DUAhdh3iMT7WkNMN7 zYEaKTR$1Exa0c2PSFD$?y&N$+QcLWT#!0x3jJw%@rOLC)!57@zSTMgl;AABlY|J(2 zKyNwe+@+Y93w`&iR%oG?dj0#wotfGFw7d*diS6+mn?jgZTQ;f>@f`Ztw%0EEWqtVG z5P^}DFqNi>!M8+&k(w{TveI&aeMMA6fao@)l+`M-KSj1pQFw67ozO*YtI`+GY z?os8MqP=4v3=& z!sTUqI}zxwmT`a5Z>$8O5g3E&fNLX8PZ}z6aD&Kuf-Z-+cR}l52LiI}fJ!%2j;zh> z<*Sb`Wr7MvPAU{1j*3SCx;x`sW-YgEI#?cC0|5-5m1HyU-x4Dh+Tgfwh&(i8klCW zMCwsGGD@n=!)3KJ+PjN2SpKkK-op?F55l9?9f}U{B0*?_mV}6w0GvcX{+PT(UxGY8 zLG7M>BS|OgLCHht*^w01!gfsQD)2D$wa{C_Pl5IY510TqDk`=R*>9Ni{{}Zu#B1!U zxHx{je3mA072I7=R+I%INe#8DaA6+Pxh7&0TcLV%?z7oaP3ZW_#i~onI?*PZT zZR5U4B_ylJjFOB*2_XuZAtOmfW(ZLT2^CR7A}M=Qsca=tl1d0AdnPL(6`9}f>UqEK z_>SXwkM|j>`~Ls0ah|_*UIzJmulTs!;9}Dfoi1PF40H!#5P$=k#wcTcAb~KaAXX0; zl9aSG$)U#}mRgKENyQI=c8?z+n**7*;+$!Z|soImI$ z0zhv;#gXa)fhTpKEO$g)=iMEjoPHPZQNAiI4=UYqF+S`wnt4Y9=S7o)R7P&@wKnGx z+jurZ-6RD~oFG^v2>Xpj2%B8{_L|`26H(VT1N#ksK>&^|dhJZaq_}63e;Wg z_B9AIbMl)wZCQ2XFztRGw zKvCl%*L~IC{nz297leC2%7hw_EQLE8~r^*GPH2PrUeW(Zwu$SL%rPHyJQaO5P`xDAVdPt`1H@ZU4t#j z%Tkm+0Akf7tHjyP8cj5btm!;c8E!eBX^C1}r$kedpPO+o%yLnH%)d$+2DWjG$3lD! zh$lRSTP|u{M1zIA>~|ZZ*Gga4Pp=wDTTB1wlUdgU`agxnL2NKpOe@7 zC=L~8?lywAzcTFOH{X){hHqt>4;s+W?L3RA8!pmPrj*dmWHgw=evnvPURFkntPbc2 zyUWkFoQ=uc+EH@$#kxXe=);C$kDLz6x`{K-6HW|pGWY~=uCRNON!)(m<3iNZQ#&tWe@)@BoLR2die~vXo_3l{n|Zfmf4DJ(I9uki#cKG$0=VoYSR%V&^_(E3U5Wt;}>`vsX)d zQRrnUrV}PiHZ#UD5r9}>=~oLZ(t3C+LO>osixV&ro}`lE8E|sYB2rPX6iC-d!Nu2f z^aTy{fPVw(My#ad5Ipu=-b|%2|KxtvM3_)HPMqc3rhdo46Qu0z)ml@Euj>Jbt zb~t$KYHerZ?>N6S?+LJu`1f(I2LVy9mJsE9dHLlQlh{l{)u3PE6a)|p;0567#zhIv z8M1BUz^d+GyIeO!-8kbt)kg(3726tXePS8H1>nAt`(H?1vs0G~RKh1CGl2j$n(m>Z zkQ}^dhoe6+wt8-Wy)x8t>9b|<;q8q3#VNl87N0g=WDH`$NW8&nzGVr29K_e&Q?aRW za5Ag`SkRxm@;8|zoaw*4)>VFf1DTU1^I|%Dr)Cu`+h&2}V50~Mbrp&VS3u{_hxbn& zym+x9XOr!L*LUY9SC%RVL4#G-DlJdj#urla>xf2akPk*=La4W3&jNRVwUP7a5&TV1 zI(x9))5l0Xep>U{Ww6s@i$wkR!s&VvVJSP;H!;O~|<@EL%;RMXUaR}i|JpBPY0 z^J3NLFq9Eo8x|1gc+7&ueE~2K+Yze@>a^NJV-DS}r4F0!%HJkuR-w|up2g+K6{3(J z{XaiMZg9+J+MMwcK)w@r$~3JN>H`?ZY)wct!K$Ncv z<{ukms$%lu2Ftlu>;x9FHthU+h{o--@K;sT<7g+r!EN5GiA@_kDC_s#hEL_tq1DUZ z&Ma@wEdf6?=NDB|1=KAc2N4Carx>-4Mi37L4j8;B6_B0ykoXIKPOHmXtO%%I_4ft5 z@HZOYTe7jKBymFos@t}g*e3_ z&B5-*r%JWkhUyng1tIBSqT}RD`*Md2X3MzSyp3>!)B1$JEzBxar?X3ub}HRajY^nR`$}A2^l$#tf6w?$b}d8J=ls=)|dj zZfX?;KbYGBK2;;#5gM@cmx0Jq)7j^akAp5ip|Pbox;{pX){_jVf^tIzOXuaul&JFB z`rWhM3gAuPb_I+TbaUfoo|ir+oW5YPNkI)MxX_d`(FKDdUJX49$?`*54S8<5y?XG* zprBT2pPJ6pJjfy<7fqs~4S0z3cEGEAUE_@EgU_zMC#;*8=Wkp7-S~5HrjZq6ot+J> zBkJw9lAiUNY2J2lJ742_7wrplt_#~2-i1Aysn}Epji%$7GeX!AD5G5c(1&&3Vocff zHtM>PPa>(w-ahQ+T3c5V(K)dlN_f@BUsw}$)gd2$N4OE&_>G1beYK8~W+b8ss`@ie z1yY$0m!OEc*3H}GEp_)W;toTYl-~kc^ud{fB8!X~S^tszYNM@sbE6|8-rvW)lY|r+ zqY?7P^5C-;{sBi}eDl(vPZA1XCP?GPdh?7$!Sz{`=p+qm0ybG;QGN@Ip44(o%CZq# zai`#K&@R3sy!@@`XqCtbun6C;PG}!`eRd_{Dvu2P93uR%zg`3)rTRHAR(0fS;y}PP zTRs}GJ^usCHl@k!(eG^2IO~d9V7lLq^cqL=TW#Qdh%*#98L<{Czj`f{SDw@F3MgBx zxA$vp+p{)^hQW|Is*2Q~g}wte8Yo&iC*ELuIh3wY&If{fLK^l<$&W1i!#_HU2Y z{q-@o#1_NUIRKyN2r&y$dZVWqdN7!Ip(ViY_=UUi8*WUXbEc+R0WxxObXfWjVp5`Z z--5)$3VI8ie7};mRLv+L%MjJ2+xIp}RNXG-a)Pl7=cT@vu}vv0wJ70WIy=2G|D`hG zq(mqLizJazvqa2Cfxw9{TLimh-UdGq_n7v4F zd5jx{A>_oFir^zVXef26?}DWY;+(?Ii^%_AKv+a7EU=Ju40iS|OZ%g;ISC;bzTH!z z18MaNWj;uE@B@<5a=0^$)H4m5CVv>WEu33Bb&yUz5N6_kN`}qug5VgjKYp!TIuNMa z;5|3R4`oQ8hHB@iN3*!m76I?&4|^Ive!BrbQcS%mM7wr8CG5K_GPi13d3`cW*okG&B?fahG|H<-KY<0ZSm)yF8?PdUARi3V0K->O`h zHkI`Rc)E?nyfAj7Q^SP{GHPUI1FwR{kPgOa=6L_~a{tAfiQWfo73xE%^a1kWZxHVi zuekl?=B+_UazH#idsRmRd#yX}Ly*D8_363MWMiClrh#Tl!vWQWBPdW;pG9~px`PQe zFLcCe5?MS%9U~A(pa8g%yquecO-Wq?_MlFj!5VJZQ2RI2rlCu7fg0C69^`ywF&cJ~ zJb4yVb5{BMj@Pabqy~tDv4)`X*R#^nAhm+jdD7CzdS3%(8#gV{q(Rze6jlh84@5y$ z95_B)E~uXoR#rWS*hHch37`6m8Q({JU%7MR%Y)jQZ@Ul+83Sf-k-+4mg``%->H|%m zRypXyOOP8N#v^}VXn|d6)Cb;1aDh_FJ80-$b4#=df0t!n#&wTGN9~f$!nJVdsg5sF zMcs>aNC=rAcC4M^?4tNxZj3FIpW^yNb?#QUWH5nx7U~BpaG0nh zvUL+pOLdQgmccmBt>o|bd2=<8GrU7YP}Fg|!aKP*=RUSLtq=)R1MU5M0+#Zp*4E|~ z`ugpsJ-M^n6-jR-`uO?fSrn9@*{80{#W$ib)hrPCOUs^<7tx{RiBNZ(@QA6{)uDC` zJ`9%t!;9RnWFO@fWNU=*_2{^)b;A%cWN6(V>=FrLg18S9JcXJn~)S$w&LBbId+j31uOgPMKRA`Kmr`YJ0NR_N=ys~5IE0GAv17Y8cgI2 zy&jC#Ln>rCTgp>*VOAW79~7AX+TPG%HN{Bmf^m!ULB5Sx5700n|L2~o`G(Yn0!&#( zm-ayJxjr7fY zY82^Yf?sRCkTgU9Xh=)NIzJuB3E@{+6E73AVCcmyroF$(IlDzu-qz;QmcG-aoxn1Q zp%HUR0m7o*2^^FiOM!wqQqEIb@Vv3MsM?jAo1iWgeRDgL4s0zlX^^WywilKq(EwJ1+Wu&-id788p?6+)D8SvXmVP{T8dV92 znS|t0RcRF%8*pjI|8!&qXcty!Rt%jMC$G0w<*43rt$r;SMJG${31Hd^cQ6{LP%YW_To_5r))2)k~$Cwomy} z4g!M!$WsI|S6z-xFca4^iCF|eU^KJqDDvuGV{`*W_5FI9Q^+TDHGOy;kMueRZ|4>(^CJ4AL&9y|oCP3uP`g<@sF{ z&H7nwvFP-sJ8RgddXw&7T%>2Y0T;&6N}U64ztBeT@Q~q(INW=DhIt6AfHW6~ZkzgB zTa78q=5hyDcD6EC8cFi!+U?=8gIn`5X8D>?`6AoyIhMt_If34&FsLME3%U; z<0KXU{RCQKFx^eb%gf8Q@v%nme6bo_h&hbL>Xv~?vIZXb+Uz}^!4c_#Y;-%h^ouv@ zeo_?(?B2s@vj3&Y-A#rlQTu29<`l{RY$)wqPXT=wSZ@!!0xSxyZIW~ijf@L#du4zU zno%Q>aFMec^&m%MHrLvQ=J_(lDVvFBE4R=E3yjIN{3bGhCgiRlqyxIgGi_9iA=S9+ zDHLSKJd&S`w~Dh%e5(yK7ja(ZIJW#0JDMtD5E-+PdDer@MB#hf9&dE#l&Z<)ACueL zZ++Uv!2nZUN=gbEs@LJzJ50)|og>r~J;lEnIlDe!IRkRIp>X+I7<_|1wuoMTs_Y3L?ezf3B-GuYyDRglS>~SuBj_1igg$M zPZ40^#p|7<4$uU#4bcUj_Z-tyo}Wi*U)5U0CqH`O?t^jX@ut)Znbu%sx2gNX)!X#jLTkh3w(BjYZp z12^j4A;ZA&IFO(I)S0f<6!n-jDy;5dvY$k((*FbS^V~*&Uk?lN1gqxAVG%a8&!!O;f3=I-H=u^X*0i+hO5?XC&6cx)Nl(?f>TWIZGa3LFGgYi6CF#J=V`59#3Q>g9y_95}COhR2i^VAf=CRvU{e<2?-f;7jcFbMWrB3L$RU0KD^^EKwgXYqhD)QffgecwhDWw z&_rZ_Z5XO&K6xV1?|2Slbs<5=3&M5pEK6;9{P@$uwUJDh(ciut^$>u@uUpsh5)@8jaB!%J2fQ>D zo26xBT4K_g9B#x{V^-movDJ425$1feB)w%cL!h2B{Hhb@H*iLol5a5O3zilfi(sR= ziWCueOqx6N_P2ivi;MSs+V}Y3L$gwD3{ge9C71nI9~tS4+_Fzz?PCa5CT_32?@NtB zcGv%bGB_(0xD(Bl+}yBD^pM}e$te$p3jaMw14-mAA)!PFxE z!IRtS=hGL?(FXefBQ_N}3bYy(8zu1N$xzck-$DemOwz8!Mr9=ld~$3!l~6<-fNcj| zHQeXrs0eJz9(T+n9DAnv)uNs*LE^ ziu+kvsshJnJc)NkLq5=Phw+1>zsxOhqp~bX^6vMQ;x}M__Z7J__+UYxfAz;3XE+vbQ9ZeSZ}!TT(KD+2)K?IEyoxrDkR8>F@!@I^jUm?~`sPHw6Q zpT^|IJ$8Q^8cIcxo|l&=SvVXmv~}{!gV|FO!y1Y6@33jf;5@VdL133rG{MY- z?g?!tz=(2_2lwyC>U_}HgfEF&J_u6H(UxqREWwepPvPK)z|`SfQ#$QgW$1b!cP(l{ z9o7d}pX>cc(pyAFpT4t)Ng23H>qF1q3ri&M^vjK@Ox(u&jJBXj?)IOdvVcD41)62$P#>c(yi0WQ}6KMBTKIzJ`}r`_82w|=7YB|cL|Xj z*Qi;P9hP#8A7mDK*zEmr12s7YCEy0a02=dbgSm$r7#L2X9S>r{Ga;CO%6bVHt1L?I zHje)u07GzE&KsKxCF<9EcC3zTkNi8B*vLitT|K|wO;**s@>PKtv^1|GA!lj|J%sbw zvw& z7wGUX$|l#yV6BLdPzas$nIJR@IqKCeY|6CoF5^K0IV|j_?X(9bj@?F8>pm_mkcVO% z{3{MlzwZf_TUgo=M0#9ickPS^aSL(uo_YjA=&F<_0 z0mSfSHMAKsH<$ zC=1*Lj}q#idq2X5x=td+wXmH5-4i%^S6|6D?%deekwCOyzQT@N3++5u_4>Cj@Nxi( zwJyCt3x$*Q@i;|#?_Q)7*wSy!G zkR<`_J*H6l;zg30BT!0*Afe5|{N>%ehP5MjCycS1nfkmJm;R>4xyYD8K8D=k(fV%f^HG2>eT|r!1NFMck>DS5ng3`vV>5;O@PJ){?LXdy|~!3et23zueLew(Ep0Rdv^FfE&Suwb~uj5MojJ- z8W|Ni@e`9l0p{APhxPXQ&FJ_VGLOyS4|B|RK}Kfy7_D%ZZMu=jm)pfG*b7K%E2Lgpa|OpuIYdey1QV@&O`i$aG)FplicE2;kWG-v}RB zx4r`(N-Ef_l6>LU{yf(yhH9S@2zXaIl4ywb23=p)>ySqU?{y+0n&G_#$%=fF>rB;nOTHqT$UcCW# ze#Br(lLH|MQFOzxGGvU&G+oW5`IyHU+aqC9lloIEp(l|(LTK*6mj&x*6L|yZ+_zh& zk;RYEiGg;{+)!3UdP=7Waxe@`l=eo*jUfdD@j)=$LVE&i*V-W98G^}WMB=OaCD45G zJ~(O$u{E^yQwos)3Nh-sHntd7TaM9vPs46B$V4j8dNH7xG38&K5{tuW(BEB8I`xQy z%AwDltNG7jtg8BI+ttI7|I9%VgSgdolNHzFR*$tKmUt8^PsFsxQ%bl1UyAFFB`Y0U zdpGFiU;jM~vqDOyA0!w)M}>iJ8^pDZb_#h6KD@paiepbp?)|>M^1GWc+6kN{tR;jsx%{%vMu|%+^K5sA z;+EZq-cDF3jV0>--(w655}YXO?=jeFp-;#%(_b27`VJ+(RB(4^r?#L>tQsHT%69!>FPI|_Rks9y?q7l zT24}M6GmjqS?Hx6`53AT#fHK7`a8Q}L|A=~FGPY`A7LmsG_o!X!bAEJwFb<1u(g&h zCNV3I(A-2u!TL&9_(DK&d^-3zHsgVS+MnOBh@u{8k@F@O?kq3t zNM7g~K4NK!EU#&(4$f59MsJ@crFdjrJBfZ1Rx4!D1bKv5GS7RNe$k({Mie6 zh=U>dQlSgt$@bb%9)zf^d3_xddnMxL95)aofrffZP#+F>>}7muuyy#Z*nP6NCnx~; z3A;)W5S^?2yn6q2G*cZ`ZH%aPYIj=y?#WV4xL z2b2?9tpCKoK}>|jN1v`7p5sD+mIvP(lnQEOkWC<3 zGi8PWPsOS3Lb2E5zu+P=E?^9f0_7gt9hW@}S9UG_w8$A^>AL%*zxPpOt(_8=ov-gb z={bc6ApN*iNfpUPhoh{6_U72o25scsiE{Jcas}LlBOGN;kkmF>7A>{(>3qlLa59+; zzySV8okJ^NlJngCxc?)0ya%oc0+_qA0seG~>>?8#_n!CFLCqZWaR#Ohq{x9nr0{dl(&FNn}9fp5b# zOf=cq*gnSK*5DzrT@;i7n$gGGKXA8BTsIQQyyq}Ipc10({=6fUQaf1bzvAEg>@s$V z6lZozZLx1q=yu6 zPP9n~IC7m|*oUk$$avPvN8o9TYuzz`=q0f&Hg*&6z$P}g9c&0YClCv8Km66>JH8W# z8PuL1J^Y^0doOJLA)$9~Cq_k=j^2xzz+7cz%xAvd8&Yj0CN55-X*g%$pHzWf0KXiv z8jMR^RbiobtdVe*k9BJPzQUWu_C(fm0QBIZ&~Kr)0qb_H?$7bqm%WQltUbR=?|j@d z`1)8Q<3NByg}nHJFE@A`v`86IdMF^ZWO#4MzO#pN9pn=UaM_uxK`;F?3*5^;cdeXlDaq2j*vwod zCCX%c$J(+VEW!q;W)X}2^lY$h9Z+^e4#Oh>HU`dWL{kv!GLt)RsrGpnl3oFX8eJpt z)}pu>cowOU$g;Aq6s7w;piJU&1l2jS*-}n)d64HH!YEM;;;41U$4X0Z-umg0uL3VL z$++I<{9XiUa``Cm!fQTQ8(I7MFRpOht^jmBIvVW3BjDF}yAA3>MG00w#)uQ5Sof9X zi}Pkzt#a%~l9$?(kud%-8M0<-6ZzHPy~&V~nZ<%yM}tVR&yI?lmEGLETet}VqulMr zpuRqQdmG;ARE%+tK=_d>LQ*PVx+h%qJ6k9mfCID{ubzp-fRCz~=Oc+eu*^mb4)nAy z{Ys+to72dk>e~RKWsg^{jRo_5Ec;)3M7umNkqSOrnVmcZ=0sKr5etO^1lZ$cvC*^b zNjOyqUmSEZu3jz)6*MGnrN2y(?Bi6W#%%DEtHM9`^Vrd3(YG7cDJf6%n|_JW^BZ8r z{S3$HZpEKbk%$AV$`P$^Wl4L`m)NR(w_%L1IgSL(?|;Yo0%0io(=Zg z4kGVf&sxe-XNr~dZbS$^grorYQCMRj^-eBHX(YmwcZ=U25l2?hl`A9%0cX<|CX<%G zKmYpS43@M^SjQ}yXG|Y4Xx+*n)MdXfqO)Mt`0RqAvgr`~N5orWed!{VbCmW%=76y)#7G@kZ61!RMwqa1JW2p;9pxk!BTF7ij#^nKrJ&W_j z0qDKhD`wVGuredc@&9zWG`))__jqUtKg;?)SI9T}I%5^4LZ(+%CNEotKEbv3IBwSo zjJ)PV$$9yt1i)%ggs8relyR>CjsraHpI3!~oUcMA;=BIZ?U~a5rodCGViS}ABavHt zUx3BqJ8BX#ud1r5o^f8%);#~es_-blb{m0c7Q{^YM$G~#TKRz3aFnK$*e`<^mG)8Y z2_W9uN4iHvjw-M15&{U}EPVp!rM&j);z1ov<25g)U)n!mn5r&snadWnInlw$PlTbU zY>mq93=>>bZo+OS7$uYprA56)sK^qs)X3ORz~&bf>k5d^)-j~8#`+TQNeGlaoYpKX zC`fCzz;J=OH_u#XpjZUIw|=q(x%4Iu7IXgB%q=~HNXPe33%7QcoXD|il*EIw0NmT# z*TJz5T>I}&I|%u(S;+@@Nyf)g1URiu+`fYCBL9jC(V%2xbiA&G2*e*4-Wq@NBG2Q7 zmnhaZQ04|2=cnu&7q42%@7=o^ZuYBIBW+6f7$6lp+fM@+9Hc151~vPz;{inJc*Kl%(^d18n&r@KgAWIRmIvjTX}wi zjQY;gieH?HL91{c*ybzXR|>tG%>Hj1LJ#|(HEc7ExcHA!LM8?gPBplSjv6Bf2@#+} zgF->1AI1p|qT79Qm=Jt@ixoKgU}@>~xPM~gQ}@UMPAqo}oLjG?lt{g4gX3C>`upf6 z07B?w^U?&-?`O)bXLa?1EDL-YH3j0OkMsc$$ijdZs3CHUNjIXj#lX~5L~Ei*J-^*q zUSK^@1xZNUl*kUX;=thViI>s8eQ3`r_%HPSNICO^UB(&Sl9nRwT7CU~ER#3~7kJxA zwq&R5rB_AVKw5!$A2qyUkgE!rCo;)n9~mk%0-0?ZH+l$P6>u#yP$<@Ve(t@2whFat z%X}Kzs@h1t-YI|hs!;9AEH3_Ey#4f9SQ%CbA0#6$PU;*C|hnlVh)PN zC~8N!^o)!kwbQpYCL)bPGrl=W1F0zvwijEk*c~_3y}2WUWmCWk*MfVF7`?bsNaSM6 zPP4KlO21oNhYIaM&;oFP+dMl1Edor!F%du3P*V|!6COL%?~-RMHgj^mf_3z2@+3k+ z!9B;?H35z~cZdSMFEuqaNAU{oc3g^biLQpj#%@kBTg?#^DYKW|e20A7qoK8q{s-q7 zvW~L?>+zQXL8BZ<+MR-dN?%>NPl=IjbUQ%YL;P5r@WtxUL-wcbT6 zLH&rP|L$Qm!(xM6sc(}tIAn59E~qj6;fu`4-C}+Y&?i2-Zg#YjlIt2U5ojlLD!zfz zk4s4Cnwn`LEqU@wDN!KHQ1W_}CwlFGHhS^l6nSH7uh*jj@9qf^0ey+5(Wb zKsWO#qAYGbl8^UgRwiP=UXiv!4+7hrSl&-0COKMW+$`2FW8N#u2KkO14`+B*Mlt^jW@uRLw> z@j#d$kTKlATY>_IeL$~>iDd{3QV*%^U0#aLBX7c^>5An-tLNe4gQ7as1!9PGy7jH^ zf&wq(hj`qmeJ?THnhLf;P6Ie-Kx<_WGstZP;T%?duTjS7bg<3{10qux#;+l*)x~8Z z_C+?hD%a8rhD}Pyc7uNXl;MIVqR{v+t~qp-={LdbJH2deiGg(W69qbw;ffNALV+ke zCj~S1QqGEA6VK6G1B&&3iq%@gBg0qlODQTtlbeYU%CE+AM%sSdv zRml)7D4als;2ttmHZm88Ix@Tn%;FMqw?N~b$XR;NI zC<~jAS%ISksyKz24|^~;kTc15OnBZ`nHHrcT;)`%&HS(KpWh>srw-92WE~GWc5Wvi zGaAV^dktC>&qd^adT9Ag1{?eR>MWgd zYq(|^@ORDfpH&M}AA0h19{X^k-ZA3aWq}3^u_h4Ph$JOwH6RxWpck5Z_dDJLK8p7B zu0YY^Z`mBb4miQWq9@DcDSQ%ibacisk`L88sMt1)?%_};2A+e+;HhD^e2q{kD5@7v zeir{g;$R488@B63D3MjdH0FOmkOJ%H@+v5At4KuT;5DJ7KtzNS5h^sAps)Z45ZxU~ z_(yk`3H0o3Sm*NxxQkp=?d;s47C`^$6{7hUkk>tK>aCK$OIFxm3b zc~f`a^WxOpk-bX|=8Ju|1X00w2kL7J5{1G}J~NDj$%G#ldiuM}O^(fAcE|0an<4_>>NKnE(1$Xu%|0 z=RG0?Za$P9sqXQ<~x+>?UHz?|rfRYNhuCzyIJ6S6xEY=JE}d(?8cQ)|}q( z#giIY8?}Q6_4S)#wLP&pi40?OreI@}!xo%htXTajI5~MVi^|G0cFBU7z!SjJ00ZAT zi>iY}Qo|%bfEie+aDBp^cd&XK&PqI{xsER{uHLcmU5B~{S>)^XKLW1$Juz5BS=uC{z-nNDtA zM(MZJPO?E&6=mr8X@ZylD8CwnV+&;L^;Smm3*9d|n?v5MrK z&CVL08aKc2GhbA6RkZOgPwLgfXPU=q9zA4ue!8)v@C{arQQ}{eqQf&TqchKMGoJkS z7_bZ0K<@*wELsa_-K0}O$^BgG~U zaX26@p-~6Lb%<+|!KFXlPrWB*J3g8`4C&^2Rl7VSy*yv<@76!EwGg8C;lCSwy}9gw zd!v$vv>#?HZHH6S_6U}{1T`MC9x{TC5*$z9$jcG(AkGEcoxjc>x+~&08@%xVG6k-`R2ZO(sb_qpu1&ix7@T zrr?qPn=_D_m$x2ix-RUv9sK)9E^rz=S-K-(hw|ZRSaZ&)DFY5+Nn(oivPLPP*zG@Km%syN|qS{6-z$ zqqJgd?fTZ@I^V!|?USwl%qv>|i4$KWH?68Ta7~puX;{WD!Y8Q~vLu*m>g#nzUEP&w z_t&D$@40Ey_%A05_X_0XPe)loVa`FaDenA-Z?Dqoro^mPwxW($n<2(KzPO%&p~|UP z?Y0)CfGc0Pun^1r7C7L}+ka>mv}z0jrQ)|vP~HTZmwV-zTzo%7r1uzPz6xa(!a)(l zS7#ha4gZ!$&kwYXu(Y9cSij{~!|22W0w>^lQ9E^NI5v~I;b!khSa`ac78 z;_1n#&faCh`MmpWuA#_n{db>m0pI|2ZD+>I;rluBMOW|fKcbZ5*8O8|Tmq40iG&Y5 zy~g{#RyZMGZe6(sB|dh!!fe+$^siu%WJpN1-o-IPN+9$~{TMt!bTXo%q-)kbWs08R zIp*QQ`U#N>k>BuUp*qy>{a{QZ;ceRzZEXXeIB*G&D)v{a1~WMJBEvS;;S+Jjq| z+HNWi`2ve0NAJ_8J}r--A;F7=5b;Zv`ugi^aTk(?RmbX^@<^)D* z2b1Cf)U-9kzVD)I_7q1a!x|N{)%J$OW({>(7|aOG4nSvxE$aqBofeytd@U?aToj!A zy*qFp!Oux1sUV5sX=f4X5=aj8%-wMtx3EiKbwi&vqEi?H9>KzOMvm1tP z$_mf|6vf~;PzLBwY8)h?>Wh_vJmdCuyFp4yNj)ROK08Nw-o-M7XhzsbRnG!}kP2E~AijNL~wZ zbH2|{JD=6@{ybKU*CYgPfP=x7xo8eM3q$3DsaXD%N>^LoMD9-K?7h%WyZr4~{LQ>r zo3`(70{&LYOfU3Slsa}-p>DvQ!Qg3NaolI0Dx}VbGzshwd%X(B7zV+-S_iKc=;Z!_ zc}?*TgJ7G|m(GayT`0{yKs!YOo~rkJo_jZ0yi@x#y>8#BUh~Mv(j|e@yJ6kJtk~j~ zdI<)!Ke3gpcuyxtlF_-peGD#ZW&YKS@#Hiy_e(H}E=qptyzadaGw$T^S9M(_)u z+H{=ur(h~q}Z0Zq>UtwKRkwWIHI9AK&UERXL;QD||L+U%tTF@5|li>gmTzo$7r-*U`i8uP! zV!ids_=5rm%UndAdiD%fv0F@5|8CNV4mIYlp%)UFnl3q;v$5{W&wpkv+)Xyf9YbC_ z;7WLz+YI^xb`vvUlfz*XP0Sq^gY3}_X8=jlJSjLg-M!hb!iFQdHFWS!X6)dGMx((> zZt>ut?yldL2Fv19>p`UfkIcPt&jHHs8(4xTk>CV`cwKM6!#2m+$~J)PK(8f zc7DI{0otU_yjs4>^38Bnh;r|+S_4mzZdvSz8iZUB4rF9(>t`OtemgDWYR&N1`|o=N zd!8uMCg)=A%5w!Qdt57mv!i6xiY);a1^9ppatJ-8u=2{&b0S($gYzG*xfWT1;Uk-9L68X^YyH@Ujo ztdjaZmq%kvnb1cW_EC-7PZ&B*pPRmPMbP1K{UxKH^w}76J_ra0?1r{5j|N;3@buv} zk?Q{vC;Wh2sccX1WcR(mb{=M#h9;4zrYoy+s<@MUcFR581Y$W@nVI!n49-Oo)PGSV&ml4n;nyVd)??Sz=?&~^Zl^zJtt6!%?K^faZ2I)t z>-tgYsgIen(zjhWD5TLsiLy^|5I7P4lI!c#n=3wxDd*^9)B>jchep}v5~FX=g{zdO z+$@0T5rG_leNOy%#>2@;W`?(mje#~i`s*1+2H})A;nmappV~D29#FG%s+y zA0*K!XbDQBlpW;3!5}U@+W*R78r(`y6!+Yca6zGfU}wmvu%e0m9GrpdaZY*kD{vVm z7s(Ym05l?A;6sOMu77)IRY>1kxj&e%JMmHtYeuD#QEafKyvgNLv)^padT;k| z04lB?B2fLYAP|&t?$uSkuDfr>H+<`3RL!vCpyX{_X>r)Hx@^$17hPRusL-&+9yJ8^ig@5euf%bn1EHN|LeltAN-}C zq3Le%!Vg#J{b;oIXi`}*zLooWX06uL;-y;~2RnEVaU?=tgxGPJBFZ0RWCQ0xdhy1> zAHDE4WPCaK|E;{67|Z~EeTrNa54hgj!w(3qK^Z~wBZ=KOfkc81J_nHoGvhrR8{lgN_la6$;Fe}w{(_s28`YhVP40Hy%#4VC%{FXX3qTus)Ar$dNKNI_4@9 zzsm1DTYl)MrTO7&NEGxP|8qXi;ChM3R^7>l8hn*4r`BEEQ2J~I2pk4l4*(B%@O}*K z(p%etI8A#W1zsTNR(PoTE<*Td6JF{YpK8O>N5GEDpAD*@s;dnZ4CApn>4&}lUVdFu zffNttzic(=5w4(egM1V5v)ejfmq9;`BF^w^P6e6(-Rvth)>Mr%?os!4?^`O9Eei}= zWpBo78q`wh_w}CH`!s32uz6~pF}k80(T}N*j;u{QI}=t3EDCdd`Y<=)M6&?HSp_xr zZjQL~sb?C3mwklRd^3+bC&o8fySwVet;5_P1FzlVmfAReXJ0;S3dF8~hbQfFB~U_d zA8rv$QGui9`2JCZKW$^t{P0b$+)Nx6;WLhme+;bib1EJ$<8PK zWK1{@v}<|_RYgw8$_^k{rg_q16HsNWh7MGJ^uRwgwFiv^9k2O81eL|w9pc-0RxT0L z$Bl)NM^e+Z_Jx@3N#fzt)2}r2bqnWC8fnjLSik;Yu2CB3G-=+~ToHp<1IDr(3VITD zGXwn(S>b+ENH~YD8@##vj7sO{9T`VNw{1}X|C{1xYyWKO<0ySzsKTRQWBx-fFE*9a z7vXj8zYL=jtY+qVK(A~aM;cqH*gxB`-(rGib> z4Wun1N#Jbz^P@YSjVo4~o|rmhw>j|(-`0Y{ltf=44Cc(3SY3+LiSTCUy-DpS4kS-b zT_tF9(;=BnW>jKj0{Z0$W1v@B`NB8Q&**04w3^a4YqNiw*cFr$?VPJ`aQ?kjONYFJ zC*=pi(hh%)<@wXq)m2uJ4ZOzgI8;TL>xRHZH||oq+}oMpeBxyD{`tXcZ8_gH2edd_ z!W43YnZ~|Gk<%4yhymhFgq07{OMDhM6c1O&OJH82qV(wO!B60OBGAm_j{<`7uub*% zJ&(jxdT4dFPjHuayAo3`k_5DzYM=H__8u|SOXgQOZ6|FidQ49TGY1*nM!xf?Z8?0z z$cRRnLTweqaln6Bf%-sp%*&i8mF$>Hb~Y=^ozBu|Loo|aVfmdtym~n$UqQ7(2!>gS z>GNjOBolxoy6Ga2Y@noXuCWTGb?E+kNv9;<5SzjYc{(l(j5w!mMnTF!Y)F<6*S{7G zDteMMhK`iD3QuT=Bcc{@{1w&Zo8hZK>`eNPC*5Mm`5-bN$T^YN5WVbAzn&hbtjOn9 z0hd<~hoE3jaLNrUzIK9~xx<|%9devFV#yMMc^i|DJ4`&M2M%Elbbz*J762Kd&&6+) zUh){;-tE6LMrl*Lna<~%vS88R8^G!J1A;~9<|jih^+C@|?0W_EZ4%P)>w)cn{6&`t zQ3Wn8hy^cxKRtAIABbtzlXgxJq&6fgZ3wBJo)c1sUg z?;%(Ee0^%6Tsw9j3g*Sd#h_23Up{>jJ0Z540TdIlK|=q6su@#1Rd z5mSy}rHE%$g<@f_0@mb}94+HTI|N77WhUzMrns}+LkK;@u^b;^y!y&POvynCb~@gV z;IsQ+8bP2AyhuhT4;3#OqQ_%zPk{%tJKnMFtpo!wHO#gbIkB+%GPmJF#jP;drG!N~ zX#DS%k%aURfUt03TBK0tMV8lU7}EW=u13 z#(8zWt9R0jAAq49xxgukTOBcaxRRrQL;o~y1vi1Voy-)eb$KX%Odu*FW?2|ul9<>H zr-2%K5Z=Dur!j_IWWyfxpFj#IQ8k@TRAkZN;l{OdJm73`lYRcZSE}<)(JGF$$W!@X ze~u8PD30X?n%7ZCDzfLeaX~#=;U}hf6oKEE2BJa<1k!uIjwA0J#2`1+Y?Q~c48nnl z#~muh#enPpXwk7K9M8LmfZ@SpSwO%Koc`>rfgcGN5O7)|O1+lz@jt3R;pV z>FCJ}7w+ff9fDRBUlvyv9_#H}%vfzisdxB0+xEcjgbT+hl>Mffst1i;4=gb~`YS)w zvCAH31~-r%`GIevzkR1$Pn?+uy$!dWB1)6wn2W5+P_95J43!_WIoI$Gv2i&2LyHZ` zziDcUVktJemT~{Sh||0E{clFxWF2CJcjRZ13p(Vt;1C`cfzDU9l41g1W87EsML`&yEmIMrVr=PdeZtvl5b^ACMAe*+6Y4L%!Jt8N!9L-og+A#{YJUn5Zq z;~CN%$ar{CRFVtD$$>3Qtnw|P@I-M48RTw}OTvd&fMA<&D|mx&=-2p_D>NGZg?W4P znC%ZFeK0=MQ@b8+#eur0dL?chqqPb`kddrr@pv|WX#HiCuO4!a6DcoGYUIW^h#}>x z7N8fwCD2sDnh|v972kj3uhvkIwX)4QnW6f%-9WUP&d~>-DS-&^^fd!~U5)P>sIh)Z zt?mq(Eokq=hbA7;$S<+bWNPM_=YS*Q1CYZ0}woVHdvhhxOMo%f{SI36F4ym3?}dYa{{?sA;9nb~on{ z5;XzclWatKfjssh-u<}R8if3C7e1{R_oO<<9fEtLtIT~BvX%c|jO_LW9o7rjbO}Jy zaVk9%394eGBtS#{kwzhdU9hGTj?rV)n?1fQrFsm=5~49aoE9@CQy$H z5U@86F}QeB^#_d3Ez&?BoL;KPEm8d|1x zckkyjV+(-gV6`}HZfty&(EoOwMCtAOdo0T$-5?ia6)z>KG5up)AwGJ4zZI$vY;kNq zwgX>%cbY|(yz&+9Qzs$Dpa-mXUl!N--tKekHx14WuZfQ0t=v`hn?9U551JaVz!x6z z#u){)Ur15LcZ9&VsjaQ-VWHH~#24x$jjcN(_fvQrN%zHH_}GNVgC{Sgs7R{aUN8ue z&o{!u`(cTedM~^vkFi+cYSBe%O#OvzJw3eV^C~mJMk3Wx!j;twA1BS!2yFlT_x}Ri zI*REJYzr65a6V;k4;R!Cef>*Vt}ywNnOI1O1eJloO;zYT5p#otcc7&3?Lbbr2KhaE zwnRQq@{r~JH%ereUqAf`#U!a|L7Yw`<`2m_UIq0Uw1$R;MY6}gLs)Q>hhLdi=QdD! zAjJWZf`npoJh6*Q{9<{<-A7!{*kGYEh4rOl_Cu)WG0D{ibBX#A<{s` zq$G-p3XP;_BqT+HAwz??}9Z9+&w#yX#yea_4Oxz5Y8FE92*U?+|6mM&=RmEF=Jo1(R`;-9Uv;jQo;p+D`%6# zMpNHic9O};{Hx@#nCQhU1{UOo74hg^9~^GTzMip9B)Su5ch#_7teecRi~CSE+;&tZdxU|ZId=`{1zQ|M#}$^q0Bzmty)k_*JsU`&6~=`cOjK* z_QH)COEdjl`ds3M?V>=IGbg{uEuQvS^*W@R+>JEBS|u+(HN$l zl%-~))^O){r0e+2%CJ31A+%dsvci4kc(1+Q<&<}O7<;M**UhN*${V6Xyh7pu%y*vs z+w@3%TQwKMM6Kr>P_nH$O74vEGfvTT^Y$Kvi#k+zQsS+dazvs}Md+Nw>6gg-aB@-$ zR=mPyOCf$+e{T4TE#wBEXA9~brNBhwcpAOct zJ3hN;4D7w%w-`UMIi1>#hfvrEk(|ap-mPhrQe^AtjH*qmKsH1JVL(zuF$O9Cs^mK& z1Ayrgurqm$|HQ=GVIwcXQfc*#f20#2&$Eth0?kZs|GB!4IfyL5>2`cqUks@D7q~&_ zgZ_!m8$y^oDapfcn*Rnsvpi~Nokx2%5mW8_sT(;q%72;NPR?o|ra3WmTviwsZ=VtP!zFm4!&dLT1Y!UyQ7m!h`n zvnSRZC?O#s?8ndp2qHjIihaZaMS~540?RJOUg$VF3cG<=MwO!;uvSJDWAuDmz57|L z+$3ZcdISRXvPT}^XU&2JZ;^X4CwhTm8y?1qJPX})t;e9wn0zf)o2>kG>sa1NW=LNQ z_Ho|tP$A{|rf-9`LHUK^2WO#^UGf;#F2ZKVx^)V=zmUz@y#E?j9&eB@duD9PvCqK3 z5qdor@0mhVeb)4sYA;vE#G8DVyFxm@2-b^KI@rAnIt3cQ+y~NQ66(^AGysu7K*;a` zZ|-XiiaQzoCEikVTWM`Y*INZ!V3@3|Zsx9);Q!<4)5|`8dvIOR7;eBXI1!oz3{kg`(k2xHoZ(e-FBeL-DUc1 zz+|ycvEVg;^$Il!dcjDW)_vzYqTv)$+`9Rfm3H)%Lqi^vH&`9zO{GMma9JV3}t~6YFTDTx0a#xy2zcWQyO-_^? zhYb1MtDA$PZ{-gI8`I)xldGvpT{TH5Tai;kH6jQ8{P_b9 zy)_2C8wa((WU0AiQ94nFG-*@HO+I;zfo364Z6Li)`ZLoJKqFGrb-FmM2wBYlam6qc zVS&`L@n)YxC{8Mb&ZDfBX>IM7W0Gk8#>s*Kg;7QIU_4-an~* z1ZM6}nUK`@&4)QG=z8wRu;iTC6!XCHdXln?Dd|z4&DXXgOdsM=E%AqCdkXuLwDE3{ zXsf8ur118+WU3ZrfxY;0laERBIYrUh_^Uyx~3_ zRU7xrav)pfydyegO&nm)iVM3@t;{?SZ;lDRA7)ktFU#D&WhM-Y0wOAYn`SPZsPzf@ zQdka%d6_o$b9cyFql`L5SA;g7ynU}3O)Bohtio>_P$dWMh>!&ZN)~-7;ot+-woYYF zJ+Je2Z?rmGiFeTlGdTlK8^Sb(EjtE&!!p zDYEG6Kv>NAy#Vx|qwt+#9(s&aGM3rcXG{h@co09eJwTYtI~POF?`4K`1h)J1em;=b zyh@F5qzKc5P7VJ4ii=y*?XfvgFZ1I+(Zc4t|F(?09un&SMZLjt_(|y9y;q`E4Pk5+ z5k?Xng#hv*wbtBQWPwwI?Ku&m2r@adqZWO2ce%&bmFORCy|Lh*^PKn5)o2M;@ z@`i%%Jegh`Q9A-40Ky}$YO@l-D*GmC+^DfyIw!il>XK4R-?=PDFGj3N+R2SPcNBr_ zUy?Tw1SXSru}|MD)1>4{mxWyhvFCKh;Yo(>#=|5T~o6aRW_4??2ZvHKXqT&WiJk}&HVZ2o%iMZPCPiRU&(CE@`>=9xyazAzTZPxc1fBa%lpSC>M5(baQ^wrRVRJeSL zjs|ku#CjQzQ6YuRtIqlKy?5M-2SIA~iTNl3Nyd|*k*I|LzOMIX>%DSR+e}!JOLvmZ z(m$*?z9VKpH(bh8S^WLRKlg+gGYt@DR-MugH{-t&8Lb`qi#!RhYlNv|iMN4IaE#Q;R| zHsN4v)->g={uy1^GzQC`(>Mhk>_#LC?*M9k-AR=HCU zH5rE+O!JzPA#Od+c7>c}Oa#^!(;X6P&ul$Utl(%~MURlysSPIW(gydu_V<|fxXs`h z%QO60cTN|`wK5H`bXcKS@FZpJ_N+2wgXkR~5_Qew@dq>hZj?%2ACr7El~)|bQg2f4Y#aPIuH zp8Y#vzCa>AIbJpaxg83Sg$oy&OnxE~>P{!RCg`7=g9ifck|y0CZ&GYg+&}FJ_0~Z$ z`FHa#^sXhte(X*lF|Swlz4y}%ieIl~^22uS=6z_m>XOQg=j9XUJf)(Ed5~0c^1SfL z$Q1>>_ZnVEb4`WZ2I{>eZtrv;adKPlkk03^Myx3Z?CeuHV6wC-n2JsPN7ObGjy*un zc;%mL0f(?kC$GCplXn4@eZC~^wPtAN-}0RPKfU`8EhstH_A3QZjD}B6_sfKz;~W=y zsm1pP8G`08>$$=QF1L+qAx>I5<*KYFfl7RD%79OL@EgN65a| z^swij*f4cq>?XwkdDi^jWr_i9Yx5GWlR$X|7xN^mPOYwzy0!5G%=~Jh|GwNrg z&%~5o;py@mHWD8V{dfv{o|a!bf!+&>54`9HQp<<7_>fs7UAL)13k(gq0Q()vibbh`Pav# z4B~y7sZ1LDev6j3OL$A))hy_2BK=1lo9ny7hvD^xy1QJ_q4adN&MCsj#NEB$shyOd zOw-3Iahr;HTJ;CdUdXv4Ijep>n^NwXm0ggjU#Sd|6K@@3``00d>+qOpTG~iB)O2EP zxgs#bx3S;KjQbDk-~DmNZ4(~1Keu4UzO0noTt&tZk~*|6 zbQE+1W))UGqTbI9jgGtN479-or^b=?_;HoR1DGqfEV?mqArebK^uJWb#C|Aqq(P7U zcQz)lC)Y#%)6+yq7wH3JSf4$V_WYBso}So#h7FUR;I#30zMAH5?81Hf15tMNe_C_E zoD#W%m_%lC&XL#%SebNRb&rq|aUDyHmqzfsbQ`r-hjqvy`J*;t7?5K&UaRuaJG~4p ziZY@9-Y8?TxEW4tD%APxWft~dl3c_t{0Mk43X`2oep%wyk6U>`_=mS$-lA?62Hq>a zqR(YI1o9O!`V7;6o=XOwOI0h#66>xxVG>euP1T1O|2vsg5&FZ1Md>uzhEXiV;y!dt zzvJH`P!?6%hoJ#>qC^0MAuy7u%)Gts#J$&K&l>3KpR5@Pvm}!fhx*NG`80 zVSkhQ+0((l@dYe}hYQPBpYfUWeXnEeT3Ih)tRT&cSA8NTGt5pA?zZcKx*A-5 zy$PPPkKbuRguET^uE>$e7=Cy8P;R5qM-}zy_aWMPEEq(*iUOS^npM;RuA9T4c0|7L zyCvZ@lm4V*0Nd|Elc@y%D}}=%w102*2iYA(NR^DO zt*uSI42Zd|aCgDM|1yuHK!xo$_0$eZvTa)y#6GX-&4hO@xIFyc^}wq;pHi2hDSz z8vw%bxxReHAPvY!{vq(d0c9c8()#Qto*LlN!Y|8)_Es=lH}Jokt-WAm_~iTA%MwqN z)iqU9=cP(Lfxgm`a}n!U9DmIBASp6pw@KqnqGO+Djaro+a_@CJ)g}8bR5`2d2S`0U z?clRLbqmPkuHkljzA<64Ye2)V^}B*#+}H&s?)Qj{eSq~aDxfb|BP7#1Up5uPJ;*nc zno04Hu3f(fEW@^5>DIBQ;vU- zle=+u1llVo+27I)_qkP8iPKS&dX^3gU>hCtI5Wk8QR`OhJ5`*m!!~+w+r4%Z^Ll`F zMvUPI&Hjrx$nmrIVLg#)s7-q(fO=vh()j(OBI;VMbS(9*={j*VC(bq|PSw%2U zL3i#_7R|3L>Zwt^QFM7KDkOO>_wY!&#rDr>E`1EPJA$@vm~R!Ue{BU}5*2A~B=(FX zHE?&@eOjBOXKDI#od+18M(^~g{Ae>lnq2UeMpZIV7E!xT+{f(Yq3}Mg6KG{px@Sn9YxjVK|XC&+aV=I1GjO{*@>*n<=&5bdS5=49!XGpvS1WC_Tm>()VS z;>)~KO&}Wux`!|1Y4i3#0&C6tgvVLn84SIllNEZ3C31MUtlZYe2%SWu*5;FAgiUn29S_21~hm4z@jh8c@T}KuVHid?V z|A|-b4#@5~b}$tavG%iol6GwE`fc(M;frbOp7R(W$dTbrkGvOpATF-0{NFAyA$Nyy zy}^k*j%=ER_W_V#l#S`~^^aHNZDy1Jn7iwmhgZgWPWL|)a!36@+AF@~;6AA(`f|XU z^gDFA3{jI}^scjph3x-|<#W!9<=jj+5u3-!r~--H*HjJJEq#t3f;)s5`q~SbrnODq zl2$*Xr>93|4^o_As4W4}M3zCw)^u-8u;DDul zViq-BsM*fUPx#baTG!;y zR+QY_G`E7t^7>HkkK0dvz;TH%1u+=sZlTToQ;JY)$HJ0!4&Vmi(huZS`KLwn0R245 z)FyS+dubFGn%0J3T+x>!zof%`dt~rzt{IcrH_~|ktV8rag7+A(d5K*QG>)2YUp5Xz z)W8J}cvv}3Rwv40amzRq8%R>YJB5#HZKYD6{8reNq9ukJOIwu~kILFbyaeT4O z7Z*hib9CjH;6U4b@|UMFv6q&v3GJ3?RJbhfr?xDT-WXVaNnExI;0b6a=Deu`-W7L) zQ01pcS^Gpb{y4z8R>8ofa}~M#!*+(66wi>K5Oe(n?k3K;>AH2po(>S1@kZ5MZ6|nW z+6;LSD4Cp{eAgvOh{x60{agl9BK8~$r>59D$sH_!2>=2{M#!3l+%T?Xy4Rg`#4{s6zQ^AkDR-j#?}qDBEEh*C)=h?cBbx=I6<1OIn|2M3-RbW3zInHydB5_oB{KioXV1KP+T%{rtOxe*O7x}-by<-5?&i@c3sO># z#U9Ol^K5PX7blmzBaioH9NV8OW3}q;_5ht~dy`AXl1c{!x5c&f-+nFnF#d4jZih>= zZ#C^n(!8(S8dmnMvEkzwR=@kh;MaX7om6Po$ee}gk28q#>SDzNuaTJXjv zsYeEBXo$4W^}C24S+>g<(+y32B;dB8N+evjx#i*(t| zXkzl6;*>gj1d<@XX+@vGr9v%wA2P2Qq4)B#`HB^Tj69x5qmXR=Ax@9Iy)5x)O{eXk z)zZ>0EtmHCd`O~S2s-wmV%b4K>7?2wvft>^+mssi*m;(`nC+W0+IPhYivzAszZ2Qw zPDW&^msGDh#6E*(H-kp9UKM~P=%F;~Yp0w&XklYtNY9hud?GRokelAO|MAVoMYO2l zO3-M&zeDaaz5T~L%_dK##}!zXVZ|xxLqBb8*NRjbb%Ds9Kd(HdY-i3R|B66geCRg5 zD~T|n{m`6$w%=amfs$R4gJlC21~C2LXka!sx3Y?lm}-@3dsFGkEJDmtSu!qT8YWG^ zfSoX0T4-v7_7HaJ(U~>Nj&IO@8Srzv?SXkUtIrS%k<;U_oxF+(oiAMHE(5kVr1Uxg z?14^7viqb=60!CqZ%M*Si9+ie)Bi0){;>y>a|TS;iy7e4uf^e4la~@_9aI?{1;9Q_h`pJ)VxLTUKA5$&%X%m=_2iF-fHEO>lKRHe&FGRDok2w!AI> z;Z4@}gxR7K_zuE>;m+h#j@?&%Ogx-$fn!`t)-? zymG~gLVnGnfD;<$=A)4U^9NwIeA8{ibyXJJ)ZOX>c%}0?@#X3>6fe>F>(0yV@7B3u z74Hjs!e;vzYnsTjQAjK@MNv6EG0ll89`vOczw?OrTd{`?=MG|<3+}V>#6|uzVhlaj z*0;8{E@B@=Q``(&TOtAVGtion)C?c*(kx2Z3;?Pe+qrEUdzfpS7 zT<2(=FrXf3Z^6?8Rz<iep=Sa!+EsMOW+Y2YJ2%JNcLuHjjT#b~U_<4z5*c8vgSpjsV%&>r7M>=bw^dzL+V~sy^XTDNSkjBQ%T5rr3Ql23a3ZC(!S;Vm zMJPa&)BXE1Nn}~5Q&Nr$a+vEwdeqLN*S`&V?RgHhCDRcc_L=3=H?S}TmR_XC%f!6Y zRxE2UjZxk(OeW&`i<;g3Gm$GYv04~@ZR=bYvAI^MDpujA%(2pmiM!_*y61HClL{|Y zXbOJ6$fvPA$Sbhx-FAN04WMc z*yRW~XJd7%k1id9Sij9~=0%IDk}`YVwbS^1aoT`72BH^>8QbpsOy$zx zDVYHH^k5=bk-gWAUu6pZ<=q2&mt3&4X?vr?PvC`1Z%ulu#{6sBK`JoaJp9^N9@&z4%4J)!4mK16V;**ZpFU z?)uP_loU2hb``cR0%+CG)b}?@F-X_BDs#*~RZ${6Rv#0p?G!U1_Od&c<$SX@Z0(0J z2X8;<Lp6g%P9HVP00dpF8A?wg>M<5f`9@(0NZ@L-l>(e{yRg8p9oe1x8=_uWF( zPq`X*PwysvKL6peMQ+a$yB{pVP#E#2j~dbOd;(NU%$_~KX?iBzt~gJ#cjPelqpxF`BJ z=#2on-;J5)02!b8wfaJ{o8bEZCUl#}BgK$aTn;M*E(c4z4fsK>X?__)wp{

8Z11gNdt{+OS#MN7 zMBA?(+mb-5z6g$1nDU>UW!|h=#`x(Vg2H)vZIyR3k$W`USgo8esUHp7v%TFrrH6<` zw)A9E?f;sUN4ZVAqg2e`=8sF`NwUYd)29-}tA&a=5S zttk>X2RTzcK~bVBQ&q0TCvkLBtBfLnS;wKFTp$2+abQ_a{4#{7{>wl$WV%Vq19gPA z6a%m-pGci9CrH!8PH+}fUw8dmOK@ii{RzE#Y`MMxiU4ODO^J$tZg7tP^u`8GLSYb< zGapVOx>o*@bXiI?UyWYM^A?!`&U)%AiD|#-kNgwl{v6U#?dHTB6wD8~?2a!AyoKEh zRlHBdaaWyHzn9!;&UAeRsE*jMetEdoy~99)2@j=u_Y4sX57&8Q z-nwOu`hnnvno~vG)X138b_KYFtAcPe7Q!WE?m_rB45RCa9FP|L>$)@Yp%1+N# zwM40=ABA?C6EjykuB_jje`y}nbITkj8IOdQjMl|;YFfd<9i zo-hrhx1T8KYzxKr<&ud#I9})aGRXBZGw1%Km23707&Z+j5~0Mh`L#0rCwR}CYc{?{X*$8s2S^l&Km}s**H#B z3@ONQFQ5=k9k;j|X%LXf8f;sctZIvT7bWo3RI?uUedmuHbxXO*A3t-31({gir%ip#KD8k7Rs-vA}g(LMEgzn4?~j%A8}Q4`>{j z!9EO#?-XBjjr>0YT9U}Q0f_}HXA~%%0e67RQBoTd9_VnEGkJ_iC0HbkuRrw+!{@3}r4S8P-;6M_+oxkh1@x^=##*HB;5wEhzS=AzihUCQ0XCgUYf zHg(K0?t>pSSy8LgPd=QAKZOT@V4kZFYsXo~1wR4;oT;134=3EY(2QZ!`t{p4R{-O( zN=Y^3Tl}@{=Svbghg%p6>sv9lX3M7up+#DV0?r&CKKk?A(BaR9E|VGx@(Gl>@2snR z5{Zb*%d=fhUf$OaIW`Ntq)hfR-m^^Ii6CCYOeK?Jj`cxAIF}is{JQfdZ6fXFcLr%L z+&2QBYiW^=+P%=|T%>r;VMN5#pA4wNYrzq(gCd+sg#0JV%fOB7;a0WgR)~$lS$DuE z1z2pYkkC-^8IRvDCd4UHZr(BYQYIvA(1D_!H3SXKUQ;c7)*-rQ^x^`dk$d$5sYO3; zAb*(F0zFONcYn_$ykreNd#CBD>oC|kfmM_~Mv!1B0XM5@J>iaAW)d#*EO5~xN=Yhw zN@#g*v;D5&%j|8Pz>Y*iz+xRBf6SA)tn+lb+IhD?tU-Q%kFWh_6gzW=Ico7aFABmZuFDNiCOeO+%+;1vCR_YgOE*T=`M^XS(l_BiquODqscTCW~ z^Amhzk%99ZB#jk+NH)h7J(v9N!&J|Z!bQ|v{@a|E4l}1tmkpe){ciY(E3sy$ZgUT| z)-Su4%z>!x1>F%yc>l+!AJ^!QhU2fr5#ojIOGABQj7dhZWvRuX;(0wbG2%S5ArCy6 z`0brRdyfUmhTo{^*G5t4B8cwX|pKe7QXx_&k+?`x}sErRF#4#)IKmYSnova0*+@AmRL0?M&n0H3N zzh_Wfku|a(D$g9!R%IZW+`Bz?Q#QF*=~#xl#>BZgqWXWh)2{hP7KUnpi~BP-OU7pk z8l})G^(H1)5$M*Gzn%EpwFhg1=FU!E3#J>6e;TsY)YDsY`2r#V=z|DiXfWX?+SR(1 zc)u@0nl_4(rwwp$=}ioPUK}v^mBehu%Y)7=^K>>&weLYZi}Cmc?}yb$rky6%6m97s zxadTA>K`KEd4^)*K|#mKpWN6ozf(5|djK`QukT@g@cHRlrtA5M>+;&#Qlg$oIish? zd3`>LO_mvx1b8GSm`%>2z}(^50RP>ZD>~#*#bBs)ii>lq_q1bib9%s)SZ2kh=FH+uSI<~ig^Esl47Lz?&6v|ZEpo0)!#Tc4x{{wE-V!j6ZJ%$`V2 zEZD&KiSL*S?5GjEk>PPo`#(K@O(q!yCr`@F@Yii>*HOQ2rJcCG-Pqz2r>)SUA#=*M z(|i@M=OyL0-!B>-9^R6~V?<0${8M28VBPEXH}5B&Z0bBtTe_NlF)P#hf!Mig&9%kc zQ1`%x6~32)GG_z;;YXFMAY?LQsZ6}k0?(1yF^saa+DPy8bUX?$L!c$5?V(GEpNp}B|98CjOj_h7rb=c; zM4+1MRi~DEF**akS_j?3w}1e$F2uE`Ch#hT<5w}_ zHb)&?<)w%+ZO(p@8pXoyk%EFknj%UM%$v-PQ(Oh_e9&;2 z8TzIw>dBH}%M-gGdWK`?jK&344RP$l|B z3i^-B%8$g)B_*#7i(mh8*eOVnGBI{XSFHqa5W|<+-QZOOscHM}Dob3B1P=h-aBAov zo^@dHR2t@Rd(doh7h0d7LCKekp_G`)Ar0HBNq3~@J#2uR^ml(_CB{XO?$u3Ps}XG` zMDVjI?+CbGfx|`&e0Jc@I?}mq!ph2lkn1ITMJz8x^8)p=)}}HJ@_3IBPLkT!5h>|( zQ$6o@+6x$3U=@9sCUPAPFVaxtMCarS9T*?*`V!Ps@z64R#v+5-(;; zt%Jci1Lg`A77ZBBT$!n)2W_h?M(!C&F9Uz@P{~$$^(|=&te2NL)i4Nx(jrqWx!L8} z(wKRaU-j?65CGw~P{+oPMxU?6ofHBy2gJb0ii&qp8P#XT*U1gZh8v!O1*2hk}@XXSYlflpEZb zWa@avxO=Oku5qPC<5t&?Uj_6TsJubSvUuf{VQwNWtWvy@e`Oc#VF${OxMQ)rJv;FA zHi7knIjpgEPP8p65DaGyJDH^}mt6nXIw{ZE(xG>;R!87h$A5$D?UX5I!MrQ~i*hn^0i#FxxXoQiGVs6v{4mj1FrWp{E#4qSDl z!&VVTUm>aTT~P`$?{qv)E$|#FA&h|aGlcRbv1zWLVb*XO@uDZPpDx3cpE@ByL4g13 z1+xXX%Yz!a6%GK44|n(2OYNO&J{ zCTHz{fY~_^Z;(8&_R32UsG+enWf^|z&Ty}48_=_^XfB@KZ(cJS=DsrPT`z1RDAva)z7SMKV}HRu8kvuP3Lr;z37Yfz2|SA@JOO%EG{qkvKfDaCieQ z=Ojel5GXQHsG+l)BY@i7NPzZr@=5_TZS6ly6o2`pdHNQrz_?rLSmk(pw6{f$afbhd z#G*9ogWSK#nhvv%%Bu0ytFe$o(i-Y4iYAi}FB;Ny=}2=Fv!lIiba25?1X7D5-^F`; z;QWA`=46-Jy~_ia))El&Oa5dMGp0cAoxucxfU^z1(cYQs^xp0({MUg*iR*hy@pfQG zJb(3kuVKr7dMO|+*~AAI{@vB(MG4``+ed#@aFA@HS1Ju-M}oo-KnB7+e_mkOMUA0z zTRrv$0`Z{huzT->NiTHLUW$wC7B_c0te4T@;W&C>!>oAr!d}Q&I{gBEA?A+jL)>IY z4=5+NO?@MDQw2H$pPhc*U(7Qewc`l~gjD>m*>8Kf!a$hOgOQQ2{kRy?6}1r&)i>x^yVFFUF1FIdR9w-|+uE#|APsU!7kjG!2s2kAHdQE+r~T z1z=`rnpyTV;x-Gd&y2SZKYcIod_sphoB6sBDgK{!lgC;m*ARcM`z$Xn*NCMa)oS~C zqucS(HvWnvA{t+sy6dKR&v8r)zLIvi6lg3)v6-1cOXL63wDOw;EnV22(qm`l*N&rx z^db32ty>%qQ-baWW4$;{{r{zBKUMFZq18{?9&y8mQagAxs_N=k$(tXZ%t%N457wG~ zx+qfnTGkCHUIe>2#Is&XRwYa39=RQ4^4K6fo3Pg2-4>DMC!r$@2ApI2+F2CxUuCd> z4Dg_ay2(s@w}rt{_wn}`PH3CQ z8lGFNarK!cfQ|N6DW~(_p!oXx-Jabdt~USEEdx;T^t?z+y4NVq_VWKay*dEVmbG3d z0^C6_2iIBwKakmA2u?xUpQ+o9%LCiMPH~DycvwR#YZXEH+H>s>bw&vDCl#aNLJk&8%KhUAhc>u0Xie&I(xyPvhwRS{Z}b3E<{9kMea8!OO>P8OOIpw%%lA?r0P` zj?u(sLSn%YtL^=L;Y+bcXq2~2PFS%6GYUJfB?nlWyJ{&aGk`rN>UMR278l`#npKNp zNBuXsoBT=5k8}asu6lDoKBX|;~V zvTwGi!eK?@ZXV3bHj@wUeRRc$e476QVlllUg(5el(PRAr=@4aJ4pKX*@8*B}GzN&A zX!{Dk*Tqye*oy#6+YM-{dI>gYFwKe0>==QgpKx;qRxkP^Hxikd_e2nRf^r5gYZISL zr>1!)PPFF=Kzoq#?}S;cec;N%!%yyGO|WsJkvV6$CpF{T%^mmHcG|wuxF8H14k2jF zUi+`J=iU6yBGlj|*O@=PotOW*)wUdx55EX2qhJ%nS0;oT=fw|C&b+D}U_zgJ4&j8K z?9|q)nC4*oR1+WwrYdE41B?TpS=$nzrhUfk)o1s@^Z(6f`sr{Qd63YOFowrc#fInu z&T*dEsP(iET0>;#BpE;)a`9^@N(CIq=c`z+!nZy=v$Gxpm-~Q9^s9Tyb{_KXNC*lz zM5!3J*5b}jEh^pQ!|hN1Dta$^gL7!ZRO4451EexDf6L%$k<5iYs%5+%Djm{gRyD!n z1I!XC6$Kn5rVwVF7fa|kMs6n_aCl62X=8yj8J$xZOe#m@T4-!FN52fb7k;L`EB z5aGiF#ZGBgo(RaOVi;rDuM)YTs6u>-*IGJ0(DOZ>-{B+7mH*UzMH$^<^FSF50sSAm zF@1uXL|NFRe{1yptt1fh-~5$MHss=?SXn~6gf|{CJB3&ofMn4nyt@mz@YqY{0F?Z3 zuO~YN0uCE{Qdp4dwDa)6V0ixl9pQD9tUZ}*y0#dO!#w-?M+>oMuBgG@WNddiU`;I+bji+h5gHI7;w_T4)tTTG)q2}SMja&eQa(MUy+XGlEb%OhT3 zQ-Ek46n}w^hVqb=8h^MOCBusbFIOEHKh06faLVZTwV^C^(l4NITQ4TBN|bY~yT}!d zCCG3pLknE0ov6hV}2zY*q-jFdLT1Hgk^&BKsbCweqy2)_ZXy^rr^ zfn+-IqL2>_bIEf+wJPr zQAYq9k+GK+Qdho&>@P#&81BA6+%wg-Q$uCdGOvti-#pG$dXC;L0F) zz@R6$&yU9vF#&OzI1p`oR*C?f;m}+>*l@7dSo99%RfcmBiC2TpJxSEiO4%JyMuI6k zUjFX9gz3(=o>kd8NX<5xbDkJOwT2I|N)!e7|KO1^1pA{W)Wx2FS>k)XIT?VH5CI4r zazEac6KK^@7*SO<^>&^XZ}_%N7a(c!QkF3thdCDiwRx7PfyJoB$Xk#1DC&IY!KO5)`&cnpZHR6^31UMs*k+L)@rB}CIX=k z0WD1g_9YKtlY69+3pZU0Ck>oxx?5BY*Qcl9tqHKmU~6l)xqN*XDq5YP;Ph5@_P$js z^w-^y53kP_5BgXSnP@N=wrr;DgM|$ZfvPHk=o~x{v69`9rx*Y*YyrF@OrbWTT>Njq z3wv!&jcSa6@~^>5AH1{yk+!dw)U!NBi&ag$-*7BKiyvl{IG-N|sCWb0-N zteEp%L$1Vsrvd}Z4Gq4)n6xOY8wmB+5bS~eAwOD9J_GI;jI*y_b)$&@0y-!5Th{1% zV|q&Fj%dIbu0PzgSO5^%HC8K#-)=ps0@CoiqQN58uu!Q5ED2KxH?(v2E81 zWt4HVi0U0QF*4F92?LplfJ9QW6YT$4XX6R#KkV1MVth6T*dfX|vE>o1jU;#0L%P{O2FCN8am9x1AIyA%z_Qmf#_XL4 zAp3wCU%J;_SaR9I3td+XEpUVVca1~!Q!)PRt0x!jO%inrtacWAJsY8ExYB64sCtKU zYbPz^scFN|d+?5%4c#<=#SKuf;n#uZ3nBPfybsUYEOpWNAcP_yAOPA$kRnTKPr}V7 z^lv9{|B}sbe#&*d`e%t^s=e^VFJ}@=U9}=!wB&jxasK=x0rmi@W-B;_3*&?w_LKej zMP*JJ%wO@0l!L*jM4j;SVpalH0$@UySKabXPbLY~E2WW7ylLFWO4_2Guf706{t4Lh zTO7Icli$BzU;NyVpxDx`0`(-=lKTSAs^si}AtyMHpz6=(Mz$|#ZOQ22Ct=pmVVyB# zj$3zQEq;J8o}cGu4A_#&D~-I8`)@`;QiIwCh7)ah++zZ(Wa6C7((w`nBIqpddP^it z&-`;OqPPQ@SXBh7l^c|s8Mj^@RP`?@85t4^!z~v(BIsxTKU!Sp@TP$8t5px%Qt6%4 z$+?9pjbm~PNG!7c!#sKtjnxXvjodUF-&;de}vr zX2PLldlBkyaq#Q{AH0VKc+3Ane!Eceba^SXmL(aZ`)BW9+|Gr@Y`cL|vA0fSE|_>R zKtD+-ppm3LvSRY_$GeqzD{5>ru~E-(FHC7J*G z^cFNOy&QZ|lC17nHoqXtoh_t~?D(ij5RsL!oH05%8D4JLEnlD`&#`$q?hQw$fmC69 zNzWaJXJ*UsLDY=%V@GKJ@#B)3TwCG{4z2Xdx~2F zmbI9oFeOW!W~Nx0)Z8__V<>%nNGSgntDi`yu!{XhPxd9iQa9X_L4P z%PTHJ)nxnso7!2|NxZk(pT_5N2ItP-tNJ$HMW_y^$tp?`h|5jO<`q33=eUDQwfkF$ zfRY>EX(YX+P8r3}fW4qUMc#DQnkK3vRzsr_^)=BhP__#hm2u|I|4I`2!Vv6E4>j=H zAx{MS{?(xb*a@5+KTsRu^!N$bu%W?KeVH)MPF_$}A8K zdM7auY_GjN!lEQ)o71Cvc}QCZP!wHwOnn=aY3He)c?GYT9tgD5P=8*euuntK9yB3D zXI7=}x;vo~XH?KdJ3-Vr`i`GUMFrTZl$5K2BO{9<>g>f zIv1+f0oG-AY?Xgcv0vUqhU=kJD${^dOw_8k(|Byc#?HO~1*IDqFYs8up<o^ja`i-*8fJm946}zy98na50EC1j z96G}Hjwds$3MhF6F#aEG?BM~o;&N72gXp8D!?iD3*CGuVOgbEu^nDC$cf3x{8~_YnHs2@>U2`;^8tNDm3LJ0A7I)wt z2Mi>XBw5&)@BrKJ<$Y%lv77A1kv+GvZ7=3{3vZFIW#q!;Z8T+U1&HBUIc&zD)M~Gm z4xklff~8oX@|E*7Q{J%b#dCU%rhJ6oHUsW2X9?e@YpaD6RIbJQ+W1OYyN$QD6&X=mTnR>;td z)>n2wYU18wPI*Tj31=ys#HuGJlOwQSweiJ=7@v(oN?XXF#v+~a&&?KJ z(d+G~ReKBkpk-xf$&Hox@VxGZ^|t!^kU#o^QKdEo*nE zNy&n6ugUY@5+|n-_{(5Wd2gmYY2>lj-n1oQXpNC1&_|)5i8_;-pm^xjy`HM&K(miu zGH7H+pkRZ0$G;{$ z^6;*z&G^yRF<-?Ie&E$xNQ!lIPaphz>b3OmA$Yk7!6i)_leAE1J_KM^7T)hfQ1v9# z*@h3@x3ITCWl+o6^Z(_nF>u+nyhUChk&E%XMI$v=e)J6ItJDA~0a5HrYFgxU*I_Qv z395W_IM*VW?c}JW9Qd&^m;0U!F!zaoX#!jsPoP-W6vK(N##`rh)ryXp*~en1slU(e zL4QpLbUQA!)34DF98>)TBI#YfG7K1#bYP$UY9e|I8N-LTIcX5|g6PVC&SzAwX}i*O zG2NV?@yW{Kh8Q6p3|FPUAU`9=lfIqomh6{(1v!&(wke+S+#AZQ?!_*-QO`)eK){4{ zv9iC`%U1VmkpfFcF(eM9L}lqkIo#ut#s>q80jVDU>lSCpNX}=I;6(`@E*&3uB8xrA zZd=EDoMw-#CHSxPS0!xe6P`{H0W~#yZYZ-qTXP=C+22iTDZsau}s$Roul!)BtaC-1xl{AGd-O?FGfXQW}^j z+f>JXz3TgVd*}2o4tRc-k_3>W5ALeogf19(7eVa;uu%a(Y2=2(6)J2}IFj|*Bx=}) z{tYEJ%L-4Y|AY;NrN1ujPG&|(SZX9X_$N;W=e)y-st)P8uup*)k6xQ{bhTX~tD!sZ zRWO{5F}SMz*z0sqkZ=ttMgRoscm|$!0QwWe5-Dn>G&kyLSn@AHmXI*LR7Ll$G?4hr zDk^TDppLNIXPjuGX}7($x|bkWC5~Xa&)e2aMbHL|zKpluuqeb}{H^WPg`tNu0yZ!y zNjH>>LU3y_fHncsO=@BeNB6W&yUlxVaSTnSSXV57_!vhw`;}_*SD`ZO)hhZguCe)b zVBaIA+L}0c{3<~0o<)kzAMO1{=p_9?;RDD&&8aLUfZY#c(Z8`SQs_y5v5<;K0V%Al z(3WNEfXMq8!on^eS%E_XSVri}4GWq;w$aOGJ6avXt^-lUwgt5MBx1_(1yo6^wc_Cp z-)}`=lRa__Hcf*&QSLx3amve1@o$;V?krR1_h!0_iUvWBn!(PyFMXR47XxxK}qd`i!JkcK?sz_wPQbQ2iI5Crw$ z5`j7f0o+!QLkXC0Z%?HF#Oa__w8!t+{L%fxN(Phoy zE1yTGh~>O!Hws&ulE|=-^Bo7tgPVQnW%k-q>$3pxz!EB9T2^txr0Ou>6xWMTI%?NR zHVoAj^J7fG<@a}eMAc%8DLtpM-w1l5W&w^d;Wff*E~!35;snH#l z8ld0MPZF2ea_I#UN;KBD3mF3HKWZHBxYYRHab}6=gVLBi`aWwIex;f58_-i`{wgHZ zS^DLD4Whb2hn1t=o2}yP`|&j{l8!0^p1rVD*%PDEkf-jd zs&>rEB)&t!2*Z^-0;OZee$dH)p@uup`c2E_s)9`stAb#RF#39nDL2OxyKi2%LBWH4 z1vJ)Tod^0J(=$H)up4+TEVynp?29fCCm)~pNdFm$5;?xoyLuKAIXwf1@H&&;$U0vt z-6PLO4)tGo?eFRtQ|Ud455m+TCMnlcz-13T=zI9@-5le~mp^mAKfJTMwj>Z6C+I%l z_t)yq{=jki?lC^WAJWcd8-hH~$X_?nODl$Ne(}pU@8Ab|Rg&TR^I?hC zR-MRs3hD3aQXU)lBqZWZhoO(pcLS@+%$=_z1hUck8ib+%fo`ZV)qM*QIe~j1=(-P!nhoB_3n`BrY9^W`zskM7!tcZ3D@4{_YP z56vGGd{R3(^D?5TT_2L@XJ+|enDD!G*g3LhafYoe_*{VIdS6rF%}+_nB^wD}9u2$Q z|M%`4!1$g%=aYT${c^*{>GaH}?bUgWl`2*O_6uq2w+1Bf17=e>hkjMLuYS~72S_(a zBB-oCcWbC;b_G4icWoI~G<=RDe8?kpx*&ozc#(q1jbA2I=EN~ikJHVC`uZOlV7O^N9JI^}p-ch3FNT@__x&dTdN=eGhSgV+2z&MBq~r0jUK zNl2Xa9#8Z&5LLSlrN^Fh>z&O^m#!!G6`t+a$W%vR7bV0z%n$mcjTEGz8IcVw`p2<9 z>)Cnx#1>ofheMy~qn7>5t)~uG!cM-nmheXNsqHbZ<47@%~9~;S;~=<|NUkscu@+ZA(?_+ap++ z?PXuYcmjA?Oe~$Pqz41*5&{DnGp)nOf@W`7I}L6Qe9wqrC{dRn!<1Veeb_a=vZ9=s z*6~kz?EJ-{Q<5{U)r-5BMfhA^OM2I6KI7*rbp#vpQf2ObUWV`Omq|B7e$fkGCm(Xb zzjd2Lk53Ia5s?~jUoGdUB&0F)Hx>F^9(gm*?UXLGx##?jgYym!cD;at64Huv2#6vnAk9w+K}tXx6hsh7VUZ36=@5{TG$={wSd?BQ zMH-}5I+pG__kMqUXU?3N@64PXXJlsIc;4r|^V#dV9^+AAJin{%-WEX)A$U9S9N(l3QMCMgj6mK-ila-UTQ8itpS7MMIsc^2g>F3fLCq|-4Zc;*m zrV>mr8A-E8bMy9VAFj8u8+1E}&=k3ZM2h$xP+XiN_;YY5c6&7S{qPF6*Ksq+ZMM8% z{xM_Q>Bo~RR*S9XFiR+@9sEGc7CgtJmhmJJp=5;YPHnKOCW1!%qJKkun`sD2-3@z-=fh_69MoOg`dTmpfVPG)cl*-qE1cn67k zS+SM*Ehbv5>;(clTHBcXLSEKL06?n_2J<|8FA}PbJu5iYK_nt;} z-XswCX1{({{-XFcr9enw#%jv3M!z;M1~;sgAgZMgOxUCDHTsreJRW0rdm&1;rN!9D zfABQFq+(f;x}L5%xcH`1UTMb|@!4*@MyxlGbK*j=tLWu#E7*@#wW^fj{->u3Y*9Zd zM^3yG7ARWD?wf)0*0ctA6bnVODB-Teb;h2mWh3lsT2A5z(Vvbq@af#TiU5(I0LKS2 zgAJ@5JfbD4;x#J8O>z4^E2q$Y{vaQFc7?qw?SsL!r}uRk_4d>Vr#79b4b~sxC4f`z z5PUD!S4+>E#zy8Mn1j z;pB7F&E>(BRQ<&YKVkQNhHIz+%XN0yq0U}9P+k{^KzQ0f!rJMca+kGO;Z{6f>?46O7X3B-Uwb8 zBe_^y$tyih-VoxyGKR zHzICb8pM9JXo)AtA2wFZ&5VWwKGmc~RP{v(pTt3e<++L0*PmFOH89@mU#+J~-#F>g z>a4d!5`SGb8vQdVb}OdCgHxcyihcZV6V4T^kim%IqQ|no`}z#Nnd2}vyoP1LuL+3K zZXb(?i1hX&-Kf-oJL115!Ht|YDkl!=X3)pt=D{c>iBy~9=C-NTM{p6lFZ&;#D!pY8!?S1 ziwSh{p(8zc{vX?tbTmhr4?htGW(CEV+o$?Fw5T&|4e6NQmeW;bJ&Ap@kWM47Ys>1R zcw&El{z>Tw-RlpxU30J2)@bn@XWF9k4a=9R_N0&3n`Y+bgr2q2Y;JA+{Q1*t z@ptAQ_xV)Yv5M6IGpw7mA0U%-9z8nA30w+iyhH>9C+?d!Nn(|=X*60GMmuJmzLlaP z4=stjwKxzt`8IQJ&Q97+66Kv)353n>6xm#xcM19A=|#sy?zP~4&(r1Fiz4kjo08Jp z;l}gx^0i|&SVM+9SDnqN*%4I+uS>rUCBJ3}Prb6o2LEEh|+2MMuqp?14EDap7T@UDNC9KrF5gxpts zv$Av4M$vt%aj7)DbDpxXAxC^2bER*HzfWkZ(x0K6JebZ-2Lt22`XSG+2Ob(C%X>QCGMhu2 z7BOK&d|Yf&2)~DQ)E7xMxrG~6>?_@z1@yLi8I#d{4&7u zf31McVe#zQ#+vV0GH7ttxUOLrf6GhpN!-Teyrk%%)IdujxW&e7;SJH10?WVO>GRcI z>0Z$(uF1eh_~Vsenhd-;-qM@!TFJYZ2%l~3?tw~wdxtjv{zJT9SjUp`eh-0_M_Vpt zv@PWkXemB%_TZRNLRUmeVsa}PL7(qZ6f4FVf=Opb$KNzh>~u*7-{+E&nC)#O5ExxR zDoVYsG?@J2B>}-}!jWuAFYBkt2OM@Qc0YO5RepfX%UCQ*#Y8_fu{NDKsjV|!ACAJN zq%*JPZe|h~nrL?Ci~Y##9QF9wRp`WUuN0$h^Ejxlg?i1-()rt4wU%-;Z}xK``h_Hm zIaJ|8tkGt}fHUd<;}sp5aqpa*pFydmpv@q!MgrUKkNZjC+v*`1t}5rmE~yY@bdI)t z|9U7&pdd4S~yGe7|U1hs_>PBDS#b6RD~ z!0-LNwrkgf)&=c-yi1^KYFr-1>PxK=zDQO^h&t{fg2;m~y;Yxqt(RlCgv;@RH#n(5j;y-XsuQZSd-I5@`UqeuYZX(7or z%PJ;mrP)yk(|BKq$gF=sB^}a!rKA^Ys- zOS7pP5G^Y%?{6Q}y6K=j<74~oN3^qfQ(H&m-_wWU*j2Sx^9D!aKv6>0xb6OBk}5Aj z)Nbul-)A(OpkQSmo@7FlQZ-g@VX)h(k@buCeGMtDCibHSxhC?XS_qoxzf1JgDnp5y zt;{L*eX~vvwZ_`A%t?~NZrSqXK2u7HkdE8AU2$hb%baa1cz}jc{R;KuAEi#BS(N9| z6HKEKQOe5o(rL$<`;nyV$Gnk>@qJd-wjaM_MXxkB#jZ}C4OXH~)F@w}bFD5hjB|&` z@K72jQvRK|JmY{#iyo1EP{;n;huDwZ$q=fzpV1B1ln9-zd(Q3cUJi=&ezdc4qln|i zwqwT4uhtnYBNBJF+wi#05`Lua{ou!|XPi-TvJl99Sb$a&cRPNcGw6$cdw!{Z^XeeR zQOj`b{!29i&hiMFf!pusX*)$uv=GH2Ba6bdE-wmMm}|p}z0}AJOMag*o?DtW= zwgk$Q4aVuot>LIa>+}yRmrgeZWX$gpRHIx!;bR_F#2NBjFV!*`QhjD3{K%zCXY>P4 zu3bh|Ry4t&Vr1H>EWczo6QT+KM1bhP>^6N)i3s)O;hK`pGqn|^d!ZBKS>ci<#I4g0grPR{*T2f_muHFO zyzdwNg>n2=`IY&>(=g97CmZS?-d5CjTpW5SlI?XTLq*Ko1@$B%RdMYcBbr{$Seo_RmBV=F2ghYfv5*M(yk zDQB>~tI4CH`30T}RBw*QB6qQ`hPG!Ag(GZo){Xl7HFT6k8I zLE=m2%7=i?HRY_97GA8a&#}gZTDjIZ zN|+e;OUEZASmG6A8!L4^e%p6`Z9*`y*uU?C)G5}|^l@cEVEpI#(wj17brAgi;Qi{c z_|iEVP~NNl$h%Y$VaXW)t)K$(IimOD>*fGL3MP6vr^d^u`p63u~Lu2uxZE~>)>%u z3z`(^wjRouMc$LqGTk_h?8P{myH*uTrj{`t6F(867rcsFe~RIVBK2EuEh5BN-7ZV& z-^WrWsj>_fh|HWnoVIfO=CZ8ovAyte)W(Zh+9j&;PO^Ax#Ip+Pn8mL*|K?UjwKnZ|r+CB` zesfplip}oW@OV+Q`_QvIYV=5;!ogEl)qdi9ygP$LR-Zz7-sV=ja{%FlEb z8y3L-WuCJB%VlxZU$B(x z9p%)GDydPx6uTD0yG z-v2U_#FxX~TK8p9GBK%HSX}#YJj*X_q7@`y)y)V|A5<-NkUXX~P%9a`&&D;kwo+ZW zg8rf$3k0`aq=9KR3YF6PS&5p8>MrOp-qb7HMk<@;<>rR)XlK3q@Iggh{#;WK`8?>| z?ja4B8e!{I0s4r}Bw=)4rdyr3^W3}mctx1Qlf#|QSy`=poT)E~{Tko%XkQ>9c?z`F z_X!EkliqvoHP?#tbaa|AEn&*4s@pK2f{Kdx<-*#?R7qDYef|5+&caaV7iD*BN(fta zvWkl*g@zK(b*FX&T%@LXuTgJb85XzLp%J%k! z*$*~6U?<)we{z{A98SUf+d3RaMME>QSkiqb0)O{qvZ$T;_Cha!{rhaLpmr5O!gU6K zI#zR?NjNd_fAyc7E*B0C4*tMq1WVt<-*j1WaB&4THr|bii9ygwAg_x}dI`sJYwS9@ zOcYgDCuL-?ws&-dgoJD$#Z8w1JM#qUXyA0j#KtxekV{Q1#-L)FrddTq;vVJcMgufy z(a8tiI7CSB&eI2J)m$;`NSZVl{Gda-OUV!;))e(*ZQ53j=ux z*&XXQ0B`~JTh+uOH~HOrq|7>&C~xV`V7|eY@-Rivu zLb5uVLkZpz^3T|s&z>YG6pPQNI46qQ(E~RnoIxzoe!S+JWf#3h0+urSMUhpycYFf~ ziqyI~Xe2Drst=e3txVJ<1GhW$$LUVd5}uTbzCPXMu*@z|@MnGf#Go5Xbf8pzRoIdg zHWId6>d#H%L)&-*BRb!xGSbMtx}`4@d7+`90U>p`@cA4OQD2@OzddS0@pLQw%&n?K zSVP(`^$%!XYk2tj_?!xkc^#De(k>qYUIb42;6Xeu-leFC6fp;8plygVaC*dPmtT>C zRSn=N@qlu8FyEkTBoH-U*x2ygy5&NC;}CR3szE|p+Bj*iWNcM6tU@R&E8`h@s+}Ak4_7;L^MBv}6qL6m0}CbR&Yde888nck7P-)jE-x#47Z=w8 z*sP@6)>Lah&SU@$_Y5MK#Cb19=;DFlUh|`;t82E$_f#0XnETqbX8$<%?9oxfz)MW+ zpgVK0>fpN!_ZQl z4%nIi$ijf{;jkUBDJDqiC%F<|ylB03O2f#g z3I+hKA$7D;3Pjn6;bDEafZI&8l7z`V0jy!-QV`?+2+RMM424T?;sg+9LE^w_#m#dM z%PA_l8_uL5KXV^a9!47$SYUmJjh8nZ-ZF%$kf!N%qyc*2cP0sNozwX4$xHA+2Hg;6 z@!qBsO^yJ3-PT;P!{+Y?{17xLqf1pFV|wXU+K*Q)dfcZrp9v78ZzN`*8_u^*r4AyCfGcngRY31cTqg#xh$~XgWdjbA8zw^LjrHX*V`DK!+qOK0aQ! zkB%J^3l&o{H(I{duH zF0=am2>TR7`XDn4yDaHk=GCu<@J}T7=n*Z9^b$fhFAmm#z@>8`4Naijvt5p3SLcxu z)r(olZVMlSaHvoQG5Zglm+w7P;+*4)G!Zv6? zY)|u8;vpoX$EgifL#7@7Y$tnm?2O>jNK=LS0_KDCs!#wxHd6;TG%6-h?pp#$s()OD zOu%loDu0|rNMfs+q&N59LEr*a5f!L%KrzJ_*{fg-LQz(Ql=98<&na-_Ce)kc{||NN ee^#_^o#7#6^@299&Zr~cqpYAVUwHS)oBsl_x;>=; literal 44066 zcmb@ucQjnl`z}6uXOtj}UL$Hm@1sTpL6GPq(Yxrq_mUtHJ&4|dAUeYc(QEWBLiFh6 z?#btS?_J;f$GvO)*6$CCnK`r1KKs1;d7t-rpCd|BU6}}<1|I@}5Is^+(1JkF10fK! zC0uOqj?l>58u%sVrl{|x?fBZw!_4IsZbpWrUizOd&Lth&Vg6E|2+!X>LF+=^J70DD@Lm;IIj}+u|JTrFYJv_Bv zUE=KTeW!mi+JZyzD@XR8&mLPeBbS3y5CP6oXVA*_(BG0upO#7k=a}ed=HMNvJ}w@& zy?NGw!SCnSNy7G4s`u!gpKg9@n90h>nDe7~D>2l-5WXr(914ZwG9euI=jb3zsK2+2 zk|AW^twKzvd?lp)&UD*gDgYxyB4P^OnlOVeo|p++LqzWo}ozB!x(yuaRS7W4n81Ddlw> zuJ<4GvLxix)>8DR@@$_k;W9}_fqAObzg1!NJm{u+YGSgts|kfd0}~UW9uXt<(b3VS z)%s3b1@D=;xbPpO?R=`RsMh}`_5dDPkGh`G^4C8;1oif+NZwu@@j6azxoL8xoZVdR zWyU*BSE0Ey!d{e9LaG98{a?O(Da)K>iijlDZ}XR;4(}MrQ$}mp6_ThgJeV_X3Aj1O z$y168Hsn<{HD&BcU`Xifg!>+T=g@C*=XoF~*uhT-zQd92yYk>B-Lds90VQ|)Or0$$ zJw0)OR+PkU1IFu`#(Cl5%1Y!)cMK^71!kIB_+#EiOv}LxXM|fnPrYopt_1z%R$;b- zYn+DkIc5kB2{we4ojur$nu3A?0$K1oH9Fp&B4JL#{r>&?+11fd=59Yf;eyYe)Q@Z# z25>1u(wAlZqKjUebcEFW5V9ytQc}`}-zB9GNVea}T{s+W`XDW1u>(zUs@U^v2p(yIKV*Q32~;VA}yLOj4B&9 zXzUi6?*>YV@$&I0gUFn$G)cJJYhwWC>x?4ja6-~~ETtMabbxbY?%s}TYna_!os0Tk zi8{3WofMvu0cY85+LM+%`XSgmIM~Awa253E9XlGNqV>Y2iaW-{|GeAT|H%^~|Lebc zb1wZnkU(082DIwxYEh>p2r->_s4{~e1w40OGJq5wY2X|R9et9@{k(G^TPAx|G@e%Q zHKE6LdA$n^>AXEvx%r}PZfCYWVfEu?n!Wlo*5yno;0m6FN?XDBT%Ux$d&uNsyQ z{rTnLcE>*C@f3Yn`gYJzP}jgLEN6(?Vw%sS3q8ySkZ ztl{DW_74qtz-YnZ*1K(K6&|53-T|z5d^VaB*!b;UmDgP)GES-mZ^x`2@;bI{S2Q(% zXhs|y*;cmnu(7kd2&cz^$!K#@%z;fYy1XZgdq6mjp@O?b%GY|vEPZ{fogx0FWWXM5 zDpVLqU+xG(+BdTU;?K@Jl@qjebty;3#xge=;^-v4K0d(2!CBo%ckBW8Uchldvias> zo0E^Pt;n`9y1crYw7a|8esG|#FIbkb{ntny9TEh4Vn#-6Sy@?(_myjCr zT&Gli(BW(tF|~Q%X+OAa<=h2sS*(=LiRoN}^BK6D#N_1A7N1k&-bzV?ljAa_R|MF^u*kpLQy%?$%D7wp|K|LIfUh}_h*sG2 zba&p~q3NK9_Nk6esK|mR28Tu#;w{@_SUnL;6q=Tn#!pQcZ?Va4V`gSHY*RN3g3w}s zKw*%Bg$1Kjud-)%zDdApn6b>Do*2SN7S;Y`2kY9n!khpXSJuwXF5MM}7=~Lq5$$(* zA{IX}Imyhyfm2*uoaw*gTJZU^`Q~7zI?{b_;ZK9RB`zlVj}HPEd@aXh@pKa5!NKTu zKfiQ4`?!wYj3_gh^~BzdjEQmm7NDg?rdy^T^dw!_Y`HVce#46lE{OwjS|Yum=f3Hj zQx}ov(SXS893=%sXcz(2N^S&wXW8?bjJJi`m2LEr^d$B3?zHNe;$e#cw{(1MS6{}i zl@sWR02m|beF!awvbw*$*`6_KB!HZspX;}H3!Uuz3;|FNg5vuB>8t-Tffy;%(M9`Uoi$YVf)qjQ8kFBow-JGu#gR4kx9wP zL(Y#jCFq+#$buXwVq;^I5pFDTI4n=H{7yr&z=V29~CPbb8=6sWZf|AmFs=^2W zQoABsZfK(M%H-Y1P-yn3H>pYuSXy;%O4kZwhnt&AN8&&W0R>y1lbvO--Nceq5JYt1 z$(PF!3>lO`P8oh9%C|SyVo?g6M(#gf&4JuKyvv*z9gXkM5sYQ1qeH<#7S#|Mis>-$ zQ7Ar)Rw*y331pYX_I6of$SFt=*{2?cHLr=N$jCaeFfpC#7yTtHAJWim)*54W0;to| zL(aR6J;_ilSjpGACjxd6F9!#5>zl`d7YFJ)XiF$ud!O*fh7=b7p2S{r7YbV7xrvWe zRaa1uQ8wxSr8rD!OMu2A_*qZXozzCy&b{wFCeG0g_R|moE<@6+Rth z8E9$-w)$PJ0PJ;`t;VQ&?`Caf)echK+E?m1>y002Do>tt(>gXU?`q;Q88JF}KtiFn zc~jd-*&vB#2he-WIV(qeXK-%&_DviGFa}@kIt(0J)_0x2;R>#Rowe*1yf^L~&XosQ zJ7}U*uSo*tf)-9h8;&9m05d<0HOs;yJw7p+{ughP`v1!0{(mBb|BqoT{WA#m|%#b5lJ6L5zcXy)%;lBeMv<(eor>CdY z7r|$;fS$B3XsQ;B4vctWr@l(c%!~s>WB=UOBVzTSs6{+trquO+|3cEvJkA?o-h(UdjsnZ(l+U(OlfZ>;8h42OUL*|BLeeKd$iq z!kn9V(R`P~s9-6T5yW)S;o;aG5ei^5=*qKZ8;(SgMPG7|TM>hq5~K_a3GX;G;LJ%4 z65Ri8Y~_j&9%KI(&)vq&D!)s2R#sLB1e=IvZKDV^0K7S2iZzgpjSV348Q>}V7u%IA z{QS`Sx@GN|9t&HCzVE(czWcs*_B?L{QpNF>yZ=P>M^;56U6B+oVV&Nlrq3JV|NYBT z-sg>waOES&Zn4P?-~nY5<-H4g237{ z%+X;pg?eJP{EY4jBN|RG|ByntC3@3m^0T*e(#)<6s`iK&2NL_6Hg;R7+d|E}YD_50 zh`(WeTaa)}Fo+yJH&}`)9S`(i$lM}zk}!ox(?&n(j2R3+Q0u3rwNY#b+uL+}oyP#h$Zs=;#J?8?6xedvcq*Gjb?1k$w<45i}k zPSn3sRz?*3*=+8P;JZ2MdrS!0e+4PMf^F?mnn?mnO+H$HB>#5-5k5ApsDZ)~&9UhR zl^Sg1=E$xwZ|>9$Qd7QSO2E%BQ8h0@{?`xTE5C0vZS?me((0D=qiDLwcix;i&@bZj zv$MgOcUs<3Jj62c(n#k_?R=+bW#hNM9@ZrCShwu|(JT3k7 z!wg>_RpSo{fo+J+_~>Q*agF@aQQ)(hw@DPazmoJHDiLr^D5)s=BCtpJ`I%Zn|IN!( zAV^D6RO08Be#k;>`Ojyj_Ap(Ox4%V=$E<>NdLsu7E;Dpx!J8RcXn@3!aQ6BqH8?6K zz%y`ldJoxOy|MX@dP0PHaY5j#_LQyhOE^esXY@4a?4eKwP*RV6dZu1r&WbL55!%Zy zDAeivqi?3_a5ir`@i{hut*dfTC{!fx-#pA>lzNtblU7&Fy!du-vN5rY1lyRSiRL|_ zORH_nIv&hP6)+&sr7_D@2Muo*{cw}<4)!xBj_vCj zz>f3zr+>(hGcb2`xoTy^rwCD3aa2+gVw7cOV?%yXQ3lc~BUuEv+b3S(G8xCBR-P$R z>(Typ3%OHm1KKh^9t5>E*fB(W*IqQ}(jnazmklB+K+gD&)B*&99O^sR-9<2@XuQ07 z0i{w5ku{jfFE!nL>Kg}!Sg1csEE)s8&Vr~>DOT^oYKa09s>Cjb=6XPQx3GY?R`NuPO1^&P`kEqogpXt*;S|#*j zn`!9qZQP_7sG0Kni*SHo)azx`tLs#0@;)elhdPwDhgCHGm7bOJb-=0l_ErgfY&_IO z;NO9fkJWsP0(mhbu^Nh>9pXT;|J-ZeoqGXZfA~nYu!WTI02i!s`Y)`QHs4e~me|dj zVE}t{W$@lL3|Xs0aML73LX)@Nd|EzAbFkz1oa($cG%@}kIONkAZTrRGC9hOB7OS(p zY@IO)y}gtocq}~=uyE;L#Y4id`vWLyn?smacLOo-&ks`Faiw>apiloc^bE_)9m)6>0U$)ROq zuH)&4ca(Srr73I%HKk6og*erwRu7GvgfSTG`a?#{F(AKwaPL0%z}()W$B9aGr)SD< z(j)Rm4MXZ^)&IJG2t9lF8zsQ4y#3zyX~Zfl z5E-J%zEh2SE+B~ao+M5wM<)`bfH%iCbte-y%(0IMd#-W?q$qKiZbH3LYF|UGR3Ua( z_IxZGLv}!ik_QM_Nb2eg>iFpdWab7w8Jw5?pBy+?TJL^lFLgR}Co`>kh2&Ju@ym&p zLg*Rqe->&yo$Z6sz_n{ZZAWCR)ffao*-l%ojmRq;r|@1scK%t53-vsozrzR?oII0T-tLfG38kd zou%#m3WJ!wm>^!wD6o}xreM1e{Hg&uKC_xPHV zN5m*EfH{z4pr4@<@hu0Zcju0m{UuL*QfXOO5H((}&>Jj===VJ(QC0sgaTpXxpzT&{ z#?O=EQJIOZ4+}`Hs>M)dG!j>AMR7Wg(AxcPij2bPL?|)_SkF8iJ_r?(E`CD#^z>*6 zj#K$6!!^;HtzGmTNrMm+gwqtbS%ijqVpl$f$eb-<#L`RA*woF;=K`$Mu&{^y(50ou zPRuBjjN!1!yn6nec40O(0zZyaTf6ff8Y`x8Dr9nEV!3Y0_@A_9-W`3EW&0ovsC+OP z+lN3R=>KB+{HyZnG3CG?*+0%^|HYCet6RRV>#R;{kTCJ6Mwz50xO#}Hi;o!-1`avW z1r43vFtV2oW5>D$4wDw!RuHFD1c!8+WSU5=-cj#H_u)rOr`fOez2Cpfsi_e{fIKVD2xSxz zp}GakbvA>KGKPsVW)`61IsGNljmqZTKYoa!qxmN*2RqJArjqQRU5)H~u=>u=Y<}uf zO#X(F&y8N5{{C#o$qJu)DBQ8VA!UrK;qC8*@n5tOZ|TdcekY)@iun2qe1Y!ry391{Sum(x>nhsp5Rfx-r4CwO_A3*?a$;88=IK5E`*n(#vY=^?s~`L~1y4MqQ&kDda z5%Wx_$UCa{Rc_xj8|fA0rn$Q*`ntBN;i5$fmk7F=NgK|@tM8t5AG#vdEQ|uD(Hb}g z;)8@JnLtpMHv78DQ>nMi6p6Ur91>E`KL_=gqG5>Iizr9dqgn#+$j8M`RhwPAz}{P4 zOULM*cK(b##6umq@F7=3k_mT~AuBrgMa$Ty#3_;N4z>^$6vYYS1ge#BBNac`O1C-{ z!k=n80wvlc2_aU)={{Ei^5_WatYNJH_tT#=SC+2C8!e4Bdi2?eS+f7y8kJ8gghj7? z&kdTYm}<)Os7e${SOHo`0cy*lIr(KhV`QbVNeSxm59tsQ`ugeG4|McPyFS0WBWk?T z9B`p6lil96XbCT`7mc^?DL}ydbFAGQ(FTKr==|V7eASFGF%Nb9uX3>`-l)B-@PYtgOzI13fzS8 zc)rmV<}NGOTVc$<|Bt7TbUVXrXrA;IkBhUtL6N(t?D*Bqyn=WO-O2D|4iWSARoYzP zTGlr*3_M+5hDgljZ{UTt0X|iji}c(Q3A72vosv zY9_E_Cd7U|rR6SiOwmD?Egy`{=u=9blsH|u_WFXpNXI27UwV{4Iknna8NU=3SC~22 z^1EeT#pgGPRh%xeS}P8Va*}>*qfGUO?;G05Klg3OwKbNHUQmAW4Je|n6Bj&Ln}D|; z)vS*p?vF5|`c|)mX(Pm2?lQR~<$aw?9eZ}>puzJxz0Yag$>%QFyNPhpAqQ;8OKBkj zu3{*}saYqE?}W0W&*g*6c&o(Qz{Nu^W7}HsaQ4-ZSG|!W3U-OE=Wl%qPjQfF_>cN$ z+sBigKp60p`lla$_`rBi`kNQ)ib0BOn#@D&ckenGr7Y`X9aH1N(q3iKJ8EfhPR>iy z;71K_%{8%~%Et|cN;C0na6x_C@Y z<~4aHO4)YH907e8-qHsIbWWsPCcFnnTxww>Jvf${yEoFBe0E;@qF!uL zL?^yA_fQzAh)#bIfg?&s040DjI$TncF^qmyH*SCjJ1Ne#xEoB(+6uP@aQ2AQJ+q}v z)o9P==s(ye;pyrnbwN9m%=sI6KLPDW8PSV(L@v&cUA*&)=t+ECDdbnt55}Zc>5z+O zmxSD9M0z9%u6HlP%&DYTMzOf!_vk->Fjianp>ACJp?S>w#Fuiu+a z#(3Yh3u6(c_^1WVWKMb}i5eAZl{YCNiY(@IcsUBa5emH_-LK{ACf8ITNOtTzn@D^? z90?9mT~`r+WI&8acHJ2U=V}z85IGM)XdTtA#w6r3XlpI zWenC`0qB7jr#5XO^~~GaJ_I_7Oto{Sj0u5Yg@^S-THjla$8@rFzhgY>i#_(X%lS4I zjfze%8!$31#7=E*Oe;2%R2ZrNa1L4(rI@;_sae|f3t<|Gb+VAJ;l94w7*|-$&w|Zo zD25s6clHLEMpHyYnLJ6G2(zvvdQVx7s7-bvjCG+OoNIP@5WL2WYd|zhtbrS>#t=D< zHrQga3lpyuV)HNGoNpX!B#?zH^^6>R$R>@bwJI3XwU={A8uJ37%P)5C#}+lxxxvre zWNqSC#@p@;e4Ym}v>D;eXiL9O-R0TImeS6x)qQa5H!nsG8r+;H@;{|!^~#6+^$alJ zrO$d7d$X(~pV&Zx3c@zMNz?Y5D{)R%bTy4QCs^C@0NpT6`Pos>qxgJvHu6rpIv@b- zxy1>+Cki$Ep`2gxs>s#bCUorY$FTde#1Y<~TDWiNGp<5a5UD zy;8vV`a;tC5!acoKhncJ$c%bUTA+I1pg%&1MOY;~F))=?%ks;Lteg}?l*lijwH~^C za>r~WQh)A2t7E$DPaj@`<||8KfE&yz?42=sM2$racw59MCV16Xj}z@&Vi@x39U19- z?X=m{Pa4VNYk}B3h82}*>To%iP;{FREOFPzB-6FYxI3PnT%U9XAI+t7S@`U||Akc+ z*QN2KG`5^Of*~QxuVRr&+bW-y<#%KKiMOy1MoWlIqE-(T^iU9RoPX_V>Gt zRuc{8Bf+$JmerGslAcw_wNw-^)`rzBSMU*AIK|?7sHwZn$gPQPaU5J&+ zw>7zzja4y2it^!wij=LtPgmDDD{Sx09&V%xHZZgFSWkbeZ~S;VZ4l~9AI^a(_6HXo za{o2EnT;y-MOYmnlckfz2cS+Zr((8G7Ch z!6TeT!zy_djT}@LeKnSHvY0BrseD#1)X37-X**P!I?Ggp%%+yTxlM`$s11dfPG(Ak zB{-qX!bR&uo|>`vsG5G@&CrvZtFVEdu${mRw)|CQl^-mg++TGP(080k71DgsbW%>Xo9i?6w~8AZTSgRKX>eRQ~?Oez<4{}pRSXLnppJrG2@2@$^9b5~qH_wb84P3L>gqteB$~%8x~K=Uv4=^T(?AjQ3;9*UsOxVha7m z!e-fzyMI5{;`frJeuz!*xwd4!ho5kAu+X?A%e=4$`nqf?mnnr7ON7`%-k+HRtx)QP26s;MSK~g*4&*qZjw$X%RsT*Ms1T^g zGH-zS5rT?8!?sl81N=JDS=SOYh{a_Xun7F6EW0}4P{*BkP*O>Q?)-4DT43jzb*2JFhr$i?oTVk#UKn-u_R;7&iGI$%j;KN4-LpFYiDuQ;^*wSQF0!;LFyE>*OcuYsRH{nN))PzT6?yP}#or6TL)_%lfReGEz-+V}=Aub4A2*lmO z!^lfkNgzO^beU&-)+LO3wjB33k5N+*&Tiwi9k8^`5~-=`G>d4()zj3dltD$kj9!6| z`9=S%Y3&yAIK>Ty38hD!|I+4nMfQ6@(_Pd-`$QowRy6EgR&TicHn?5pi5 z?FQ$ZX=^NJ|2Se9I-Z(6g$EzqJq|o_>__)=%|*#eplu>2$2R~tB0&`uD`3Lpl(4V>sO~mTr zH>JkjPK{Rzg`?A#_pp^uixPtpp(r}i!{_|BTl1H#hrG6RUNH-HSlLL^o_5?H)YGH) zr>(xM$ONqCjJ#9~RSo|B$c(o_#TU(fLnSg{#o(VX^bZ$5}J zQji<`LDT?IiTKWBP~Jyb=@6i_9gw~*C4x(@a^ir*-w`h;v?LIlNBKdGwf&+A*(9j8 zqUZ@+cdflvX4MCtVtwOE`h(}QeckAD0*ws2ALhPHRe}7tWunep|03en@Ll}<2j)X9 ztOsz^Ey2k8>4cAher1sa#C|9vvha-F(- z^Upgk5Lk~hb@4C)7dp)q;QT-Wew{DQ$D9;%ro%D%80cV;R5lNvlQKG-?-^8z$lF($ zj(x{hMyICY?(!SMX}GVjf^nwiimq}ur}C*vXndGypr86uc{U6J@pU^=VO9P*zC{Qn z*k5@jZ~Em6l;8zr*wv!r^XXLWFdR!ZiNDljd#Kvm7-41Ryr`#Kb*(1kE-6U_+8B_f z!SB~j6Z`srUT-bohZ=%@1h+E{`iWon8*JpMb4P^-o;A?9^l3p?!;^5eHZs(c1Z>*_ zCnbVy&TdB1!>7eU9ahz52I_Sd4kj-7=-+cPg;Y+-2+pWsdBOU!+gN@^;N5`ojL;SF zkTK{!14o|#4_l{ox-tZM=yi4yUtKgxlZmggC#fAGC(y?`LBQ4$0%*IW4yb*FK&f9% zCUoOv6>Xt0k0P~jW?3@(0wr(#5Aax`Q}thG3M=F5Fkxx*_aBUpW%T+Q?jv?GB32s?ripXPaz_N=q_D zzLkNiB-B*F;1~+ji!$S{4n24?qZD;=F#Y7$BZ*w3V$~#Z{(>k#D|x8Ye5An}{rmXr z*G3Wqk`x$0MM>h{*pZk+!qtL<<<|)4BUk%iDR6TGi-$UUqmhL zrCVjwPM3tQjjUiJS01j2p#*sn(>mufb4RAH85Nyd_;IUeu|cHCSETjU51$Jxck@u+ zc2a&Q{~Et1>l?4i725o)I|#_qW)mK1`c2Ep{YPx@*0HMn2#F)7^`@qStDZ9YgcP@U zJ+?shcX;)4E(GQl7P(r*{IB{bU^4!5^Jb)@_kd{+nP%hrwXofpTU;|*neS1DWqmwc zOO(wQ;hH>7t2twuqs5O2Lo)Haz-x?5xF2DpFYrq>4i7S1KVjU3>P|tcCTtYV&6!Vj z=VOYBI8i<@{VG#57gyJLIvOUb9TjH`hYKee1Umf&aXj2AuqC|cf>@L&bS$X(b z5e1c)X*OQP?lp;{K6n4nEpQu(1S0mDWXdCrxF6R$JsCJJ(g} z4Ow>)%kn*Zgy`uB9@?}3j*;G>A!U2}@+Ntfd?U)q@aEr2$RPml)alg0+seo$0WP?B zkL_RL4lNQ!>rwIZ(#ene?IOwodjpxGnwp!3S4`DG@#n$do3FAN5OX5#j7{*_`v+uG z%_TVdhQN#?r=WldhtE*938krl?s9y#5Y1&XSL&;dFLssPzrKH*4Vqc)G*t6h*RgR% zQh|1Q`)3?>aotfr|7~0(!KccvGE!~gNS4|D$p?Ew=GDP>yw$UVl)t{m*)BdYe@@9l zhW@lzz|5)kQ`a_?j>sofi{S4zAzD9slQD8bLMeoq=WX zYvVO=r}h9>>nv=s#*zdb9o?Hn0d875Q*~VUz-eiJ=NR`G@6$>V!UtgX`+(<|kh8-Q z{UX+fFO_FjM2W>~h|tViS2v})v16m&1$zvtnn8v?>QfZ+s1P_l=l&%8<@oA%eov25 zES&_UO&yJD!I!bq(>}~$tA{IZAM zqifjnX-uU5`8yC~E_pKcNR0*>osdfCsLi`!h*TYK*bTUJLLwBnvuB2$!h15Cm(L4E zte`NM?+9MbR13@Va$Q5wYHD-mSt?+k-K!2z^T-w6$~c)R1(NN$ z2_2U0DnFkTXh8>~LF89Md?XYSP|kvb+7s1iTnG{kJ;<_q;>Xxb|JYw8A3RLoUIkw@ zYAAkC&g#R}1nm_57j~isc_Es=o?Az8$bcL5-m>l(OaGhOJwj}ZR^SdLmU#vp9Ru*0 zOm-RitHJbcYV043w8(@TGo8M$v+yVP*_$LVS6)%ZMRqm#gJxyj4z^Z-5S)2U!kEv% z$4wm{Td|bCHK1tq!%rKGY-HdbT1!xCUnyDpf4Q9#RakNHZHl>Cf#XdrLv$oAi8R2X zw#xJ7l>5r9mJlHC8mI5K*9)>D%1XFQyHvE}Ur6|ESDip2(A08lZxSIyF6pO?H3EuZ z>|Hxn{a)nNs;L~EajQ68l-WbaHV)5c=pPajA$%EMRD2U7hq?e_0j1>1`4f5!^2FIg z1+>GGxP+9Fg{d_Q1?8ExME?LC_~7piGmtCSrhajv?Jyaq0LWCw!T-%@&lTRkDggR) zrdF|(g=PeB-vJ(mJ!LbX>lwcfsP}*#wb@(e z%BJDcGJFV?QP(jAs>W)=K#vy!oz!GmOfeJpz_he=08w{4pD@tKgO!PcEa5z7k*+LK zPiVHGqlwe?h=4bLfHNaLAW}cJSeDWV{7ne}&8WKmBMbC`279;(a!CB$9oNO_pf{J% zR;*R&fcE!dfodW&5ScT$)Tk(jw}odO@O!(Hzq#RnhT|G+k&e6P&fZQZ(7ih+A8u;& zZssyPQDFC1nXC27jq-*(5_yYz?rG;xk{65)@oj0tjlkbF${Jb~KwVg&waBbXiSuP4 z&eH;+6VK+>NRVF#1-_c#=EJ2w>1a`xk8jIe85}|R*#h%9=(x&|t1_AGLVJ51-ygh* z*fe-fn{~B?DQx*{1+c{yXzpIFzs|}j;cH585&^To>vyj}qc&Yv9n^cZAwFa)moK~_ zTV2pCvF}OvKOV(|s_5^D)YI(xy9R)tR!ltK=0z z+BPqOhQYie;i-A39BHHyNDce|y$V^4bd(1GsL&R^Nn=o^y8ghc{UZGEV;OF8l;Hvg zaGZEJQ180!n6zbe7PWSK$fW$aD&Qlb3W+iyNQxQe1@x?bDK5~{J(jNP2yXkrrD