Deep Learning with Python & TensorFlow

PyCon SG 2016

#pyconsg

Ian Lewis Developer Advocate - Google Cloud Platform Tokyo, Japan

+lan Lewis @lanMLewis

PyCon JP 2016 Everyone's different, all are wonderful.

Deep Learning 101

Input Hidden Output(label)

pixels(

How do you classify these data points?

Neural Network can **find a way** to solve the problem

$v[x] \Rightarrow vector$

m[x][y][z] => matrix

t[x][y][z][?][?]... => tensor

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \text{softmax} \begin{bmatrix} W_{1,1}x_1 + W_{1,2}x_2 + W_{1,3}x_3 + b_1 \\ W_{2,1}x_1 + W_{2,2}x_2 + W_{2,3}x_3 + b_2 \\ W_{3,1}x_1 + W_{3,2}x_2 + W_{3,3}x_3 + b_3 \end{bmatrix}$$

Breakthroughs

The Inception model (GoogLeNet, 2015)

From: Andrew Ng

DNN = a large **matrix** ops

a few GPUs >> CPU (but it still takes **hours/days** to train)

a supercomputer >> a few GPUs (but you don't have a supercomputer)

You need **Distributed Training**

Growing use of deep learning at Google

What's the scalability of Google Brain?

"Large Scale Distributed Systems for Training Neural Networks", NIPS 2015

Inception / ImageNet: 40x with 50 GPUs

RankBrain: 300x with 500 nodes

TensorFlow

What is Tensorflow?

Google's **open source** library for machine intelligence

tensorflow.org launched in Nov 2015

The second generation

Used by many production ML projects

Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

- Flexible, intuitive construction
- automatic differentiation
- Support for threads, queues, and asynchronous computation; <u>distributed runtime</u>
- Train on CPUs, GPUs

Operates over tensors: n-dimensional arrays

Using a flow graph: data flow computation framework

- Flexible, intuitive construction
- automatic differentiation
- Support for threads, queues, and asynchronous computation; <u>distributed runtime</u>
- Train on CPUs, GPUs

Core TensorFlow data structures and concepts...

- **Graph**: A TensorFlow computation, represented as a dataflow graph.
 - collection of ops that may be executed together as a group
- Operation: a graph node that performs computation on tensors
- **Tensor**: a handle to one of the outputs of an Operation
 - provides a means of computing the value in a TensorFlow Session.

- Constants
- Placeholders: must be fed with data on execution
- Variables: a modifiable tensor that lives in TensorFlow's graph of interacting operations.
- Session: encapsulates the environment in which Operation objects are executed, and Tensor objects are evaluated.

Operations

Category

Element-wise math ops Array ops Matrix ops Stateful ops NN building blocks Checkpointing ops Queue & synch ops Control flow ops

Examples

Add, Sub, Mul, Div, Exp, Log, Greater, Less... Concat, Slice, Split, Constant, Rank, Shape... MatMul, MatrixInverse, MatrixDeterminant... Variable, Assign, AssignAdd... SoftMax, Sigmoid, ReLU, Convolution2D... Save, Restore Enqueue, Dequeue, MutexAcquire... Merge, Switch, Enter, Leave...

Supyter

Distributed Training with TensorFlow

Distributed Training with TensorFlow

CPU/GPU scheduling

Communications

Local, RPC, RDMA

32/16/8 bit quantization

Cost-based optimization

Fault tolerance

Distributed Training

Model Parallelism		Data Parallelism	
Sub-Graph	 Allows fine grained application of parallelism to slow graph components Larger more complex graph 	Synchronous	 Prevents workers from "Falling behind" Workers progress at the speed of the slowest worker
Full Graph	 Code is more similar to single process models Not necessarily as performant (large models) 	Asynchronous	 Workers advance as fast as they can Can result in runs that aren't reproducible or difficult to debug behavior (large models)

Cloud Machine Learning (Cloud ML)

Fully managed, distributed training and prediction for custom TensorFlow graph

Supports **Regression** and **Classification** initially

Integrated with Cloud Dataflow and Cloud Datalab

Limited Preview - cloud.google.com/ml

Cloud ML

Jeff Dean's keynote: <u>YouTube video</u>

Define a custom **TensorFlow** graph

Training at local: 8.3 hours w/ 1 node

Training at cloud: **32 min** w/ **20 nodes** (**15x** faster)

Prediction at cloud at 300 reqs / sec

Tensor Processing Unit

ASIC for TensorFlow Designed by Google 10x better perf / watt 8 bit quantization

https://www.tensorflow.org/ https://cloud.google.com/ml/

http://bit.ly/tensorflow-workshop

