|
| 1 | +#include "perf_precomp.hpp" |
| 2 | + |
| 3 | +using namespace std; |
| 4 | +using namespace cv; |
| 5 | +using namespace perf; |
| 6 | +using std::tr1::make_tuple; |
| 7 | +using std::tr1::get; |
| 8 | +// detectors/descriptors configurations to test |
| 9 | +#define DETECTORS_ONLY \ |
| 10 | + FAST_DEFAULT, FAST_20_TRUE_TYPE5_8, FAST_20_TRUE_TYPE7_12, FAST_20_TRUE_TYPE9_16, \ |
| 11 | + FAST_20_FALSE_TYPE5_8, FAST_20_FALSE_TYPE7_12, FAST_20_FALSE_TYPE9_16, \ |
| 12 | + \ |
| 13 | + AGAST_DEFAULT, AGAST_5_8, AGAST_7_12d, AGAST_7_12s, AGAST_OAST_9_16 |
| 14 | + |
| 15 | +#define DETECTORS_DESCRIPTORS \ |
| 16 | + ORB_DEFAULT, ORB_1500_13_1, \ |
| 17 | + \ |
| 18 | + AKAZE_DEFAULT, AKAZE_DESCRIPTOR_KAZE |
| 19 | + |
| 20 | +enum { DETECTORS_DESCRIPTORS, DETECTORS_ONLY }; |
| 21 | +CV_ENUM(Feature2DType, DETECTORS_DESCRIPTORS, DETECTORS_ONLY) |
| 22 | + |
| 23 | +typedef std::tr1::tuple<Feature2DType, string> Feature2DType_String_t; |
| 24 | +typedef perf::TestBaseWithParam<Feature2DType_String_t> feature2d; |
| 25 | + |
| 26 | +#define TEST_IMAGES testing::Values(\ |
| 27 | + "cv/detectors_descriptors_evaluation/images_datasets/leuven/img1.png",\ |
| 28 | + "stitching/a3.png") |
| 29 | + |
| 30 | +static inline Ptr<Feature2D> getFeature2D(Feature2DType type) |
| 31 | +{ |
| 32 | + switch(type) { |
| 33 | + case ORB_DEFAULT: |
| 34 | + return ORB::create(); |
| 35 | + case ORB_1500_13_1: |
| 36 | + return ORB::create(1500, 1.3f, 1); |
| 37 | + case FAST_DEFAULT: |
| 38 | + return FastFeatureDetector::create(); |
| 39 | + case FAST_20_TRUE_TYPE5_8: |
| 40 | + return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_5_8); |
| 41 | + case FAST_20_TRUE_TYPE7_12: |
| 42 | + return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_7_12); |
| 43 | + case FAST_20_TRUE_TYPE9_16: |
| 44 | + return FastFeatureDetector::create(20, true, FastFeatureDetector::TYPE_9_16); |
| 45 | + case FAST_20_FALSE_TYPE5_8: |
| 46 | + return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_5_8); |
| 47 | + case FAST_20_FALSE_TYPE7_12: |
| 48 | + return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_7_12); |
| 49 | + case FAST_20_FALSE_TYPE9_16: |
| 50 | + return FastFeatureDetector::create(20, false, FastFeatureDetector::TYPE_9_16); |
| 51 | + case AGAST_DEFAULT: |
| 52 | + return AgastFeatureDetector::create(); |
| 53 | + case AGAST_5_8: |
| 54 | + return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_5_8); |
| 55 | + case AGAST_7_12d: |
| 56 | + return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_7_12d); |
| 57 | + case AGAST_7_12s: |
| 58 | + return AgastFeatureDetector::create(70, true, AgastFeatureDetector::AGAST_7_12s); |
| 59 | + case AGAST_OAST_9_16: |
| 60 | + return AgastFeatureDetector::create(70, true, AgastFeatureDetector::OAST_9_16); |
| 61 | + case AKAZE_DEFAULT: |
| 62 | + return AKAZE::create(); |
| 63 | + case AKAZE_DESCRIPTOR_KAZE: |
| 64 | + return AKAZE::create(AKAZE::DESCRIPTOR_KAZE); |
| 65 | + default: |
| 66 | + return Ptr<Feature2D>(); |
| 67 | + } |
| 68 | +} |
| 69 | + |
| 70 | +PERF_TEST_P(feature2d, detect, testing::Combine(Feature2DType::all(), TEST_IMAGES)) |
| 71 | +{ |
| 72 | + Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam())); |
| 73 | + std::string filename = getDataPath(get<1>(GetParam())); |
| 74 | + Mat img = imread(filename, IMREAD_GRAYSCALE); |
| 75 | + |
| 76 | + ASSERT_FALSE(img.empty()); |
| 77 | + ASSERT_TRUE(detector); |
| 78 | + |
| 79 | + declare.in(img); |
| 80 | + Mat mask; |
| 81 | + vector<KeyPoint> points; |
| 82 | + |
| 83 | + TEST_CYCLE() detector->detect(img, points, mask); |
| 84 | + |
| 85 | + EXPECT_GT(points.size(), 20u); |
| 86 | + SANITY_CHECK_NOTHING(); |
| 87 | +} |
| 88 | + |
| 89 | +PERF_TEST_P(feature2d, extract, testing::Combine(testing::Values(DETECTORS_DESCRIPTORS), TEST_IMAGES)) |
| 90 | +{ |
| 91 | + Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam())); |
| 92 | + std::string filename = getDataPath(get<1>(GetParam())); |
| 93 | + Mat img = imread(filename, IMREAD_GRAYSCALE); |
| 94 | + |
| 95 | + ASSERT_FALSE(img.empty()); |
| 96 | + ASSERT_TRUE(detector); |
| 97 | + |
| 98 | + declare.in(img); |
| 99 | + Mat mask; |
| 100 | + vector<KeyPoint> points; |
| 101 | + detector->detect(img, points, mask); |
| 102 | + |
| 103 | + EXPECT_GT(points.size(), 20u); |
| 104 | + |
| 105 | + Mat descriptors; |
| 106 | + |
| 107 | + TEST_CYCLE() detector->compute(img, points, descriptors); |
| 108 | + |
| 109 | + EXPECT_EQ((size_t)descriptors.rows, points.size()); |
| 110 | + SANITY_CHECK_NOTHING(); |
| 111 | +} |
| 112 | + |
| 113 | +PERF_TEST_P(feature2d, detectAndExtract, testing::Combine(testing::Values(DETECTORS_DESCRIPTORS), TEST_IMAGES)) |
| 114 | +{ |
| 115 | + Ptr<Feature2D> detector = getFeature2D(get<0>(GetParam())); |
| 116 | + std::string filename = getDataPath(get<1>(GetParam())); |
| 117 | + Mat img = imread(filename, IMREAD_GRAYSCALE); |
| 118 | + |
| 119 | + ASSERT_FALSE(img.empty()); |
| 120 | + ASSERT_TRUE(detector); |
| 121 | + |
| 122 | + declare.in(img); |
| 123 | + Mat mask; |
| 124 | + vector<KeyPoint> points; |
| 125 | + Mat descriptors; |
| 126 | + |
| 127 | + TEST_CYCLE() detector->detectAndCompute(img, mask, points, descriptors, false); |
| 128 | + |
| 129 | + EXPECT_GT(points.size(), 20u); |
| 130 | + EXPECT_EQ((size_t)descriptors.rows, points.size()); |
| 131 | + SANITY_CHECK_NOTHING(); |
| 132 | +} |
0 commit comments