@@ -80,12 +80,7 @@ TEST(Reproducibility_AlexNet, Accuracy)
80
80
Mat sample = imread (_tf (" grace_hopper_227.png" ));
81
81
ASSERT_TRUE (!sample.empty ());
82
82
83
- Size inputSize (227 , 227 );
84
-
85
- if (sample.size () != inputSize)
86
- resize (sample, sample, inputSize);
87
-
88
- net.setInput (blobFromImage (sample), " data" );
83
+ net.setInput (blobFromImage (sample, 1 .0f , Size (227 , 227 ), Scalar (), false ), " data" );
89
84
Mat out = net.forward (" prob" );
90
85
Mat ref = blobFromNPY (_tf (" caffe_alexnet_prob.npy" ));
91
86
normAssert (ref, out);
@@ -105,17 +100,17 @@ TEST(Reproducibility_FCN, Accuracy)
105
100
Mat sample = imread (_tf (" street.png" ));
106
101
ASSERT_TRUE (!sample.empty ());
107
102
108
- Size inputSize (500 , 500 );
109
- if (sample.size () != inputSize)
110
- resize (sample, sample, inputSize);
111
-
112
103
std::vector<int > layerIds;
113
104
std::vector<size_t > weights, blobs;
114
105
net.getMemoryConsumption (shape (1 ,3 ,227 ,227 ), layerIds, weights, blobs);
115
106
116
- net.setInput (blobFromImage (sample), " data" );
107
+ net.setInput (blobFromImage (sample, 1 . 0f , Size ( 500 , 500 ), Scalar (), false ), " data" );
117
108
Mat out = net.forward (" score" );
118
- Mat ref = blobFromNPY (_tf (" caffe_fcn8s_prob.npy" ));
109
+
110
+ Mat refData = imread (_tf (" caffe_fcn8s_prob.png" ), IMREAD_ANYDEPTH);
111
+ int shape[] = {1 , 21 , 500 , 500 };
112
+ Mat ref (4 , shape, CV_32FC1, refData.data );
113
+
119
114
normAssert (ref, out);
120
115
}
121
116
#endif
@@ -136,10 +131,7 @@ TEST(Reproducibility_SSD, Accuracy)
136
131
if (sample.channels () == 4 )
137
132
cvtColor (sample, sample, COLOR_BGRA2BGR);
138
133
139
- sample.convertTo (sample, CV_32F);
140
- resize (sample, sample, Size (300 , 300 ));
141
-
142
- Mat in_blob = blobFromImage (sample);
134
+ Mat in_blob = blobFromImage (sample, 1 .0f , Size (300 , 300 ), Scalar (), false );
143
135
net.setInput (in_blob, " data" );
144
136
Mat out = net.forward (" detection_out" );
145
137
@@ -152,7 +144,7 @@ TEST(Reproducibility_ResNet50, Accuracy)
152
144
Net net = readNetFromCaffe (findDataFile (" dnn/ResNet-50-deploy.prototxt" , false ),
153
145
findDataFile (" dnn/ResNet-50-model.caffemodel" , false ));
154
146
155
- Mat input = blobFromImage (imread (_tf (" googlenet_0.png" )), 1 , Size (224 ,224 ));
147
+ Mat input = blobFromImage (imread (_tf (" googlenet_0.png" )), 1 . 0f , Size (224 ,224 ), Scalar (), false );
156
148
ASSERT_TRUE (!input.empty ());
157
149
158
150
net.setInput (input);
@@ -167,7 +159,7 @@ TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
167
159
Net net = readNetFromCaffe (findDataFile (" dnn/squeezenet_v1.1.prototxt" , false ),
168
160
findDataFile (" dnn/squeezenet_v1.1.caffemodel" , false ));
169
161
170
- Mat input = blobFromImage (imread (_tf (" googlenet_0.png" )), 1 , Size (227 ,227 ));
162
+ Mat input = blobFromImage (imread (_tf (" googlenet_0.png" )), 1 . 0f , Size (227 ,227 ), Scalar (), false );
171
163
ASSERT_TRUE (!input.empty ());
172
164
173
165
net.setInput (input);
@@ -180,7 +172,7 @@ TEST(Reproducibility_SqueezeNet_v1_1, Accuracy)
180
172
TEST (Reproducibility_AlexNet_fp16, Accuracy)
181
173
{
182
174
const float l1 = 1e-5 ;
183
- const float lInf = 2e-4 ;
175
+ const float lInf = 3e-3 ;
184
176
185
177
const string proto = findDataFile (" dnn/bvlc_alexnet.prototxt" , false );
186
178
const string model = findDataFile (" dnn/bvlc_alexnet.caffemodel" , false );
@@ -190,7 +182,7 @@ TEST(Reproducibility_AlexNet_fp16, Accuracy)
190
182
191
183
Mat sample = imread (findDataFile (" dnn/grace_hopper_227.png" , false ));
192
184
193
- net.setInput (blobFromImage (sample, 1 , Size (227 , 227 )));
185
+ net.setInput (blobFromImage (sample, 1 . 0f , Size (227 , 227 ), Scalar (), false ));
194
186
Mat out = net.forward ();
195
187
Mat ref = blobFromNPY (findDataFile (" dnn/caffe_alexnet_prob.npy" , false ));
196
188
normAssert (ref, out, " " , l1, lInf);
@@ -212,7 +204,7 @@ TEST(Reproducibility_GoogLeNet_fp16, Accuracy)
212
204
inpMats.push_back ( imread (_tf (" googlenet_1.png" )) );
213
205
ASSERT_TRUE (!inpMats[0 ].empty () && !inpMats[1 ].empty ());
214
206
215
- net.setInput (blobFromImages (inpMats), " data" );
207
+ net.setInput (blobFromImages (inpMats, 1 . 0f , Size (), Scalar (), false ), " data" );
216
208
Mat out = net.forward (" prob" );
217
209
218
210
Mat ref = blobFromNPY (_tf (" googlenet_prob.npy" ));
0 commit comments