|
| 1 | +#include <opencv2/dnn.hpp> |
| 2 | +#include <opencv2/imgproc.hpp> |
| 3 | +#include <opencv2/highgui.hpp> |
| 4 | + |
| 5 | +using namespace cv; |
| 6 | +using namespace cv::dnn; |
| 7 | + |
| 8 | +#include <iostream> |
| 9 | +#include <cstdlib> |
| 10 | +using namespace std; |
| 11 | + |
| 12 | +const size_t inWidth = 300; |
| 13 | +const size_t inHeight = 300; |
| 14 | +const double inScaleFactor = 1.0; |
| 15 | +const Scalar meanVal(104.0, 177.0, 123.0); |
| 16 | + |
| 17 | +const char* about = "This sample uses Single-Shot Detector " |
| 18 | + "(https://arxiv.org/abs/1512.02325) " |
| 19 | + "with ResNet-10 architecture to detect faces on camera/video/image.\n" |
| 20 | + "More information about the training is available here: " |
| 21 | + "<OPENCV_SRC_DIR>/samples/dnn/face_detector/how_to_train_face_detector.txt\n" |
| 22 | + ".caffemodel model's file is available here: " |
| 23 | + "<OPENCV_SRC_DIR>/samples/dnn/face_detector/res10_300x300_ssd_iter_140000.caffemodel\n" |
| 24 | + ".prototxt file is available here: " |
| 25 | + "<OPENCV_SRC_DIR>/samples/dnn/face_detector/deploy.prototxt\n"; |
| 26 | + |
| 27 | +const char* params |
| 28 | + = "{ help | false | print usage }" |
| 29 | + "{ proto | | model configuration (deploy.prototxt) }" |
| 30 | + "{ model | | model weights (res10_300x300_ssd_iter_140000.caffemodel) }" |
| 31 | + "{ camera_device | 0 | camera device number }" |
| 32 | + "{ video | | video or image for detection }" |
| 33 | + "{ min_confidence | 0.5 | min confidence }"; |
| 34 | + |
| 35 | +int main(int argc, char** argv) |
| 36 | +{ |
| 37 | + CommandLineParser parser(argc, argv, params); |
| 38 | + |
| 39 | + if (parser.get<bool>("help")) |
| 40 | + { |
| 41 | + cout << about << endl; |
| 42 | + parser.printMessage(); |
| 43 | + return 0; |
| 44 | + } |
| 45 | + |
| 46 | + String modelConfiguration = parser.get<string>("proto"); |
| 47 | + String modelBinary = parser.get<string>("model"); |
| 48 | + |
| 49 | + //! [Initialize network] |
| 50 | + dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary); |
| 51 | + //! [Initialize network] |
| 52 | + |
| 53 | + if (net.empty()) |
| 54 | + { |
| 55 | + cerr << "Can't load network by using the following files: " << endl; |
| 56 | + cerr << "prototxt: " << modelConfiguration << endl; |
| 57 | + cerr << "caffemodel: " << modelBinary << endl; |
| 58 | + cerr << "Models are available here:" << endl; |
| 59 | + cerr << "<OPENCV_SRC_DIR>/samples/dnn/face_detector" << endl; |
| 60 | + cerr << "or here:" << endl; |
| 61 | + cerr << "https://github.com/opencv/opencv/tree/master/samples/dnn/face_detector" << endl; |
| 62 | + exit(-1); |
| 63 | + } |
| 64 | + |
| 65 | + VideoCapture cap; |
| 66 | + if (parser.get<String>("video").empty()) |
| 67 | + { |
| 68 | + int cameraDevice = parser.get<int>("camera_device"); |
| 69 | + cap = VideoCapture(cameraDevice); |
| 70 | + if(!cap.isOpened()) |
| 71 | + { |
| 72 | + cout << "Couldn't find camera: " << cameraDevice << endl; |
| 73 | + return -1; |
| 74 | + } |
| 75 | + } |
| 76 | + else |
| 77 | + { |
| 78 | + cap.open(parser.get<String>("video")); |
| 79 | + if(!cap.isOpened()) |
| 80 | + { |
| 81 | + cout << "Couldn't open image or video: " << parser.get<String>("video") << endl; |
| 82 | + return -1; |
| 83 | + } |
| 84 | + } |
| 85 | + |
| 86 | + for(;;) |
| 87 | + { |
| 88 | + Mat frame; |
| 89 | + cap >> frame; // get a new frame from camera/video or read image |
| 90 | + |
| 91 | + if (frame.empty()) |
| 92 | + { |
| 93 | + waitKey(); |
| 94 | + break; |
| 95 | + } |
| 96 | + |
| 97 | + if (frame.channels() == 4) |
| 98 | + cvtColor(frame, frame, COLOR_BGRA2BGR); |
| 99 | + |
| 100 | + //! [Prepare blob] |
| 101 | + Mat inputBlob = blobFromImage(frame, inScaleFactor, |
| 102 | + Size(inWidth, inHeight), meanVal, false, false); //Convert Mat to batch of images |
| 103 | + //! [Prepare blob] |
| 104 | + |
| 105 | + //! [Set input blob] |
| 106 | + net.setInput(inputBlob, "data"); //set the network input |
| 107 | + //! [Set input blob] |
| 108 | + |
| 109 | + //! [Make forward pass] |
| 110 | + Mat detection = net.forward("detection_out"); //compute output |
| 111 | + //! [Make forward pass] |
| 112 | + |
| 113 | + vector<double> layersTimings; |
| 114 | + double freq = getTickFrequency() / 1000; |
| 115 | + double time = net.getPerfProfile(layersTimings) / freq; |
| 116 | + |
| 117 | + Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>()); |
| 118 | + |
| 119 | + ostringstream ss; |
| 120 | + ss << "FPS: " << 1000/time << " ; time: " << time << " ms"; |
| 121 | + putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255)); |
| 122 | + |
| 123 | + float confidenceThreshold = parser.get<float>("min_confidence"); |
| 124 | + for(int i = 0; i < detectionMat.rows; i++) |
| 125 | + { |
| 126 | + float confidence = detectionMat.at<float>(i, 2); |
| 127 | + |
| 128 | + if(confidence > confidenceThreshold) |
| 129 | + { |
| 130 | + int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols); |
| 131 | + int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows); |
| 132 | + int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols); |
| 133 | + int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows); |
| 134 | + |
| 135 | + Rect object((int)xLeftBottom, (int)yLeftBottom, |
| 136 | + (int)(xRightTop - xLeftBottom), |
| 137 | + (int)(yRightTop - yLeftBottom)); |
| 138 | + |
| 139 | + rectangle(frame, object, Scalar(0, 255, 0)); |
| 140 | + |
| 141 | + ss.str(""); |
| 142 | + ss << confidence; |
| 143 | + String conf(ss.str()); |
| 144 | + String label = "Face: " + conf; |
| 145 | + int baseLine = 0; |
| 146 | + Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine); |
| 147 | + rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height), |
| 148 | + Size(labelSize.width, labelSize.height + baseLine)), |
| 149 | + Scalar(255, 255, 255), CV_FILLED); |
| 150 | + putText(frame, label, Point(xLeftBottom, yLeftBottom), |
| 151 | + FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0)); |
| 152 | + } |
| 153 | + } |
| 154 | + |
| 155 | + imshow("detections", frame); |
| 156 | + if (waitKey(1) >= 0) break; |
| 157 | + } |
| 158 | + |
| 159 | + return 0; |
| 160 | +} // main |
0 commit comments