-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathXnnpackUtils.h
331 lines (307 loc) · 13.8 KB
/
XnnpackUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
#pragma once
#ifdef USE_XNNPACK
#include <cstdint>
#include <ATen/core/Tensor.h>
#include <ATen/native/xnnpack/Common.h>
using xnnpack_operator = at::native::xnnpack::Operator;
namespace at::native::xnnp_utils {
/*
* Return shape in the same order as the memory format
* e.g. channels_last will return NHWC instead of NCHW
*/
std::vector<size_t> get_mem_format_aware_shape(const at::Tensor& in);
/*
* Input is always int8_t, output can be [int8_t, uint8_t].
* input + offset = output
* int8_t + 128 = uint8_t
* int8_t + 0 = int8_t
*/
template <typename PT>
void q8_copy_int8_weight_and_add_offset(const at::Tensor& in, at::Tensor& out);
template <int kSpatialDim>
Tensor convert_conv_weights_to_channel_last_tensor(
const at::Tensor& src,
int groups,
bool transpose);
/*
* Series of create wrapper functions to call xnn_create_[de]conv* functions.
*/
C10_ALWAYS_INLINE
enum xnn_status xnnp_create_convolution2d_nhwc(
uint32_t pad_top,
uint32_t pad_right,
uint32_t pad_bottom,
uint32_t pad_left,
uint32_t kernel_h,
uint32_t kernel_w,
uint32_t stride_h,
uint32_t stride_w,
uint32_t dilation_h,
uint32_t dilation_w,
uint32_t groups,
size_t group_input_channels,
size_t group_output_channels,
size_t ip_chan_stride,
size_t op_chan_stride,
int8_t izp,
float ip_scale,
int8_t kzp,
const float* k_scales,
const int8_t* kernel,
const int32_t* bias,
int8_t ozp,
float op_scale,
int8_t op_min,
int8_t op_max,
uint32_t flags,
xnn_operator_t* op,
bool per_channel,
bool transpose) {
/* Symmetric quantization forces kzp = 0 */
TORCH_CHECK(!kzp, "XNNPACK Q[SC]8 conv kernels expects kernel zero point to be zero."
"But got: ", kzp);
if (transpose) {
TORCH_CHECK(!per_channel, "XNNPACK Q[SC]8 does not have a per channel deconvolution!");
return xnn_create_deconvolution2d_nhwc_qs8(
pad_top, /* uint32_t output_padding_top */
pad_right, /* uint32_t output_padding_right */
pad_bottom, /* uint32_t output_padding_bottom */
pad_left, /* uint32_t output_padding_left */
kernel_h, /* uint32_t kernel_height */
kernel_w, /* uint32_t kernel_width */
stride_h, /* uint32_t stride_height */
stride_w, /* uint32_t stride_width */
dilation_h, /* uint32_t dilation_height */
dilation_w, /* uint32_t dilation_width */
groups, /* uint32_t groups */
group_input_channels, /* size_t group_input_channels */
group_output_channels, /* size_t group_output_channels */
ip_chan_stride, /* size_t input_pixel_stride */
op_chan_stride, /* size_t output_pixel_stride */
izp, /* int8_t input_zero_point */
ip_scale, /* float input_scale */
k_scales[0], /* float kernel_scale */
kernel, /* const int8_t* kernel */
bias, /* const int32_t* bias */
ozp, /* int8_t output_zero_point */
op_scale, /* float output_scale */
op_min, /* int8_t output_min */
op_max, /* int8_t output_max */
flags, /* uint32_t flags */
nullptr, /* xnn_caches_t caches */
nullptr, /* xnn_weights_cache_t weights_cache */
op); /* xnn_operator_t* deconvolution_op_out */
}
if (!per_channel) {
return xnn_create_convolution2d_nhwc_qs8(
pad_top, /* uint32_t input_padding_top */
pad_right, /* uint32_t input_padding_right */
pad_bottom, /* uint32_t input_padding_bottom */
pad_left, /* uint32_t input_padding_left */
kernel_h, /* uint32_t kernel_height */
kernel_w, /* uint32_t kernel_width */
stride_h, /* uint32_t subsampling_height */
stride_w, /* uint32_t subsampling_width */
dilation_h, /* uint32_t dilation_height */
dilation_w, /* uint32_t dilation_width */
groups, /* uint32_t groups */
group_input_channels, /* size_t group_input_channels */
group_output_channels, /* size_t group_output_channels*/
ip_chan_stride, /* size_t input_channel_stride */
op_chan_stride, /* size_t output_channel_stride */
izp, /* int8_t input_zero_point */
ip_scale, /* float input_scale */
k_scales[0], /* float kernel_scale */
kernel, /* const int8_t* kernel */
bias, /* const int32_t* bias */
ozp, /* int8_t output_zero_point */
op_scale, /* float output_scale */
op_min, /* int8_t output_min */
op_max, /* int8_t output_max */
flags, /* uint32_t flags */
nullptr, /* xnn_caches_t caches */
nullptr, /* xnn_weights_cache_t weights_cache */
op); /* xnn_operator_t* convolution_op_out */
} else { /* per_channel */
return xnn_create_convolution2d_nhwc_qs8_qc8w(
pad_top, /* uint32_t input_padding_top */
pad_right, /* uint32_t input_padding_right */
pad_bottom, /* uint32_t input_padding_bottom */
pad_left, /* uint32_t input_padding_left */
kernel_h, /* uint32_t kernel_height */
kernel_w, /* uint32_t kernel_width */
stride_h, /* uint32_t subsampling_height */
stride_w, /* uint32_t subsampling_width */
dilation_h, /* uint32_t dilation_height */
dilation_w, /* uint32_t dilation_width */
groups, /* uint32_t groups */
group_input_channels, /* size_t group_input_channels */
group_output_channels, /* size_t group_output_channels*/
ip_chan_stride, /* size_t input_channel_stride */
op_chan_stride, /* size_t output_channel_stride */
izp, /* int8_t input_zero_point */
ip_scale, /* float input_scale */
k_scales, /* const float* kernel_scale */
kernel, /* const int8_t* kernel */
bias, /* const int32_t* bias */
ozp, /* int8_t output_zero_point */
op_scale, /* float output_scale */
op_min, /* int8_t output_min */
op_max, /* int8_t output_max */
flags, /* uint32_t flags */
nullptr, /* xnn_caches_t caches */
nullptr, /* xnn_weights_cache_t weights_cache */
op); /* xnn_operator_t* convolution_op_out */
}
}
/*
* Series of reshape wrapper functions to call xnn_reshape_[de]conv* functions.
*/
C10_ALWAYS_INLINE
enum xnn_status xnnp_reshape_convolution2d_nhwc(
xnn_operator_t op,
size_t batch,
size_t in_h,
size_t in_w,
pthreadpool_t pt_pool,
bool per_channel = false,
bool transpose = false,
uint32_t adj_h = 0,
uint32_t adj_w = 0) {
if(transpose) {
TORCH_CHECK(!per_channel, "XNNPACK Q[SC]8 does not have a per channel deconvolution!");
return xnn_reshape_deconvolution2d_nhwc_qs8(
op, /* xnn_operator_t deconvolution_op */
batch, /* size_t batch_size */
in_h, /* size_t input_height */
in_w, /* size_t input_width */
adj_h, /* uint32_t adjustment_height */
adj_w, /* uint32_t adjustment_width */
nullptr, /* size_t* output_height_out */
nullptr, /* size_t* output_width_out */
pt_pool); /* pthreadpool_t threadpool */
}
size_t workspace_size = SIZE_MAX;
size_t workspace_alignment = SIZE_MAX;
if (!per_channel) {
return xnn_reshape_convolution2d_nhwc_qs8(
op, /* xnn_operator_t convolution_op */
batch, /* size_t batch_size */
in_h, /* size_t input_height */
in_w, /* size_t input_width */
&workspace_size, /* size_t* workspace_size */
&workspace_alignment, /* size_t* workspace_alignment */
nullptr, /* size_t* output_height_out */
nullptr, /* size_t* output_width_out */
pt_pool); /* pthreadpool_t threadpool */
} else { /* per_channel */
return xnn_reshape_convolution2d_nhwc_qs8_qc8w(
op, /* xnn_operator_t convolution_op */
batch, /* size_t batch_size */
in_h, /* size_t input_height */
in_w, /* size_t input_width */
&workspace_size, /* size_t* workspace_size */
&workspace_alignment, /* size_t* workspace_alignment */
nullptr, /* size_t* output_height_out */
nullptr, /* size_t* output_width_out */
pt_pool); /* pthreadpool_t threadpool */
}
}
/*
* Series of setup wrapper functions to call xnn_setup_[de]conv* functions.
*/
C10_ALWAYS_INLINE
enum xnn_status xnnp_setup_convolution2d_nhwc(
xnn_operator_t op,
const int8_t* inp,
int8_t* outp,
bool per_channel = false,
bool transpose = false) {
if(transpose) {
TORCH_CHECK(!per_channel, "XNNPACK Q[SC]8 does not have a per channel deconvolution!");
return xnn_setup_deconvolution2d_nhwc_qs8(
op, /* xnn_operator_t deconvolution_op */
inp, /* const int8_t* input */
outp); /* int8_t* output */
}
if (!per_channel) {
return xnn_setup_convolution2d_nhwc_qs8(
op, /* xnn_operator_t deconvolution_op */
nullptr, /* void workspace */
inp, /* const int8_t* input */
outp); /* int8_t* output */
} else { /* per_channel */
return xnn_setup_convolution2d_nhwc_qs8_qc8w(
op, /* xnn_operator_t deconvolution_op */
nullptr, /* void workspace */
inp, /* const int8_t* input */
outp); /* int8_t* output */
}
}
/*
* Series of wrapper functions to call xnn_create* and xnn_setup*
* functions for linear
*/
C10_ALWAYS_INLINE
enum xnn_status xnnp_create_fully_connected_nc(
size_t input_channels,
size_t output_channels,
size_t input_stride,
size_t output_stride,
int8_t input_zero_point,
float input_scale,
int8_t kernel_zero_point,
float kernel_scale,
const int8_t* kernel,
const int32_t* bias,
int8_t output_zero_point,
float output_scale,
int8_t output_min,
int8_t output_max,
uint32_t flags,
xnn_operator_t* fully_connected_op_out) {
/* Symmetric quantization forces kzp = 0 */
TORCH_CHECK(!kernel_zero_point, "XNNPACK QS8 linear kernel expects kernel zero point to be zero."
"But got: ", kernel_zero_point);
return xnn_create_fully_connected_nc_qs8(
input_channels, /* size_t input_channels */
output_channels, /* size_t output_channels */
input_stride, /* size_t input_stride */
output_stride, /* size_t output_stride */
input_zero_point, /* int8_t input_zero_point */
input_scale, /* float input_scale */
kernel_scale, /* float kernel_scale */
kernel, /* const int8_t* kernel */
bias, /* const int32_t* bias */
output_zero_point, /* int8_t output_zero_point */
output_scale, /* float output_scale */
output_min, /* int8_t output_min */
output_max, /* int8_t output_max */
flags, /* uint32_t flags */
nullptr, /* xnn_caches_t caches */
nullptr, /* xnn_weights_cache_t */
fully_connected_op_out); /* xnn_operator_t* fully_connected_op_out */
}
C10_ALWAYS_INLINE
enum xnn_status xnnp_reshape_fully_connected_nc(
xnn_operator_t fully_connected_op,
size_t batch_size,
pthreadpool_t threadpool) {
return xnn_reshape_fully_connected_nc_qs8(
fully_connected_op, /* xnn_operator_t fully_connected_op */
batch_size, /* size_t batch_size */
threadpool); /* pthreadpool_t threadpool */
}
C10_ALWAYS_INLINE
enum xnn_status xnnp_setup_fully_connected_nc(
xnn_operator_t fully_connected_op,
const int8_t* input,
int8_t* output) {
return xnn_setup_fully_connected_nc_qs8(
fully_connected_op, /* xnn_operator_t fully_connected_op */
input, /* const int8_t* input */
output /* int8_t* output */
);
}
} // namespace at::native::xnnp_utils
#endif // USE_XNNPACK