-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathfbgemm_utils.h
408 lines (347 loc) · 11.7 KB
/
fbgemm_utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#pragma once
#include <ATen/Tensor.h>
#include <ATen/native/quantized/PackedParams.h>
#include <ATen/native/quantized/cpu/EmbeddingPackedParams.h>
#include <c10/core/QScheme.h>
#include <c10/util/irange.h>
#ifdef USE_FBGEMM
#include <fbgemm/Fbgemm.h>
C10_DIAGNOSTIC_PUSH_AND_IGNORED_IF_DEFINED("-Winconsistent-missing-destructor-override")
#include <fbgemm/FbgemmFP16.h>
C10_DIAGNOSTIC_POP()
#include <fbgemm/QuantUtils.h>
// The struct for the packed weight matrix (PackBMatrix) and the corresponding
// column offsets used for the fully connect layer, which are both prepared in
// the prepacking step to save the computations in the inference. Note the
// column offsets include the sum of the B columns as well as the scalar term
// B_zero_point * K, whereas the row offsets created by
// PackAWithQuantRowOffset/PackAWithIm2Col/PackAWithRowOffset are only the sum
// of the A rows. The column offsets are needed for the asymmetric quantization
// (affine quantization) of input matrix.
// Note that in JIT mode we can think of a way to fuse col_offsets with bias.
struct TORCH_API PackedLinearWeight : public LinearPackedParamsBase {
PackedLinearWeight(
std::unique_ptr<fbgemm::PackBMatrix<int8_t>> w,
std::optional<at::Tensor> bias,
std::vector<int32_t> col_offsets,
std::vector<float> w_scale,
std::vector<int32_t> w_zp,
c10::QScheme q_scheme)
: w(std::move(w)),
bias_(std::move(bias)),
col_offsets(std::move(col_offsets)),
w_scale(std::move(w_scale)),
w_zp(std::move(w_zp)),
q_scheme(std::move(q_scheme)) {}
std::unique_ptr<fbgemm::PackBMatrix<int8_t>> w;
std::optional<at::Tensor> bias_;
std::vector<int32_t> col_offsets;
std::vector<float> w_scale;
std::vector<int32_t> w_zp;
c10::QScheme q_scheme;
at::Tensor apply(
at::Tensor input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_relu(
at::Tensor input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor& apply_out(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point,
at::Tensor& output) override;
at::Tensor& apply_relu_out(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point,
at::Tensor& output) override;
at::Tensor apply_with_input_q_dq_qweight_dq_output_fp32(
at::Tensor input,
double input_scale,
int64_t input_zero_point) override;
at::Tensor apply_with_input_q_dq_qweight_dq_relu_output_fp32(
at::Tensor input,
double input_scale,
int64_t input_zero_point) override;
at::Tensor apply_dynamic(at::Tensor input, bool reduce_range = false)
override;
at::Tensor apply_dynamic_relu(at::Tensor input, bool reduce_range = false)
override;
std::tuple<at::Tensor, std::optional<at::Tensor>> unpack() override;
std::optional<at::Tensor> bias() override {
return bias_;
}
static c10::intrusive_ptr<LinearPackedParamsBase> prepack(
at::Tensor weight,
std::optional<at::Tensor> bias);
private:
template <bool ReluFused>
at::Tensor& apply_impl(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point,
at::Tensor& output);
template <bool ReluFused>
at::Tensor apply_with_input_q_dq_qweight_dq_output_fp32_impl(
const at::Tensor& input,
double input_scale,
int64_t input_zero_point);
template <bool ReluFused>
at::Tensor apply_dynamic_impl(at::Tensor input, bool reduce_range = false);
};
struct TORCH_API PackedLinearWeightFp16 : public LinearPackedParamsBase {
PackedLinearWeightFp16(
std::unique_ptr<fbgemm::PackedGemmMatrixFP16> w,
std::optional<at::Tensor> bias)
: w(std::move(w)), bias_(std::move(bias)) {}
std::unique_ptr<fbgemm::PackedGemmMatrixFP16> w;
std::optional<at::Tensor> bias_;
at::Tensor apply(
at::Tensor /*input*/,
double /*output_scale*/,
int64_t /*output_zero_point*/) override {
TORCH_INTERNAL_ASSERT(false);
}
at::Tensor apply_relu(
at::Tensor /*input*/,
double /*output_scale*/,
int64_t /*output_zero_point*/) override {
TORCH_INTERNAL_ASSERT(false);
}
at::Tensor apply_dynamic(at::Tensor input, bool reduce_range = false)
override;
at::Tensor apply_dynamic_relu(at::Tensor input, bool reduce_range = false)
override;
at::Tensor& apply_dynamic_out(
const at::Tensor& input,
at::Tensor& output,
bool reduce_range = false) override;
at::Tensor& apply_dynamic_relu_out(
const at::Tensor& input,
at::Tensor& output,
bool reduce_range = false) override;
std::tuple<at::Tensor, std::optional<at::Tensor>> unpack() override;
std::optional<at::Tensor> bias() override {
return bias_;
}
static c10::intrusive_ptr<LinearPackedParamsBase> prepack(
at::Tensor weight,
std::optional<at::Tensor> bias);
void set_bias(std::optional<at::Tensor> bias) override;
private:
template <bool ReluFused>
at::Tensor& apply_dynamic_impl(const at::Tensor& input, at::Tensor& output);
};
template <int kSpatialDim = 2>
struct TORCH_API PackedConvWeight : public ConvPackedParamsBase<kSpatialDim> {
PackedConvWeight(
std::unique_ptr<fbgemm::PackWeightsForConv<kSpatialDim>> w,
std::optional<at::Tensor> bias,
torch::List<int64_t> stride,
torch::List<int64_t> padding,
torch::List<int64_t> output_padding,
torch::List<int64_t> dilation,
int64_t groups,
uint8_t transpose,
std::vector<int32_t> col_offsets,
std::vector<int64_t> kernel,
std::vector<float> w_scale,
std::vector<int32_t> w_zp,
c10::QScheme q_scheme)
: w(std::move(w)),
bias(std::move(bias)),
stride_(std::move(stride)),
padding_(std::move(padding)),
output_padding_(std::move(output_padding)),
dilation_(std::move(dilation)),
groups_(groups),
transpose_(transpose),
col_offsets(std::move(col_offsets)),
kernel(std::move(kernel)),
w_scale(std::move(w_scale)),
w_zp(std::move(w_zp)),
q_scheme(q_scheme) {}
std::unique_ptr<fbgemm::PackWeightsForConv<kSpatialDim>> w;
std::optional<at::Tensor> bias;
torch::List<int64_t> stride_;
torch::List<int64_t> padding_;
torch::List<int64_t> output_padding_;
torch::List<int64_t> dilation_;
int64_t groups_;
uint8_t transpose_;
std::vector<int32_t> col_offsets;
std::vector<int64_t> kernel;
std::vector<float> w_scale;
std::vector<int32_t> w_zp;
c10::QScheme q_scheme;
at::Tensor apply(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_relu(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_dynamic(
const at::Tensor& input,
bool reduce_range) override;
std::tuple<at::Tensor, std::optional<at::Tensor>> unpack() override;
static c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>> prepack(
at::Tensor weight,
std::optional<at::Tensor> bias,
torch::List<int64_t> stride,
torch::List<int64_t> padding,
torch::List<int64_t> output_padding,
torch::List<int64_t> dilation,
int64_t groups,
bool transpose);
const float* GetBiasData(at::Tensor* bias);
void GetQuantizationParams(
float act_scale,
float out_scale,
std::vector<float>* output_multiplier_float,
std::vector<float>* act_times_w_scale);
torch::List<int64_t> stride() const override {
return stride_;
}
torch::List<int64_t> padding() const override {
return padding_;
}
torch::List<int64_t> output_padding() const override {
return output_padding_;
}
torch::List<int64_t> dilation() const override {
return dilation_;
}
int64_t groups() const override {
return groups_;
}
bool transpose() const override {
return (bool)transpose_;
}
private:
template <bool ReluFused>
at::Tensor apply_impl(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point);
};
// PackWeight: Convert the weight from uint8 to int8.
inline void convert_uint8_int8(
int len,
const uint8_t* src_uint8,
int8_t* dst_int8) {
for (const auto i : c10::irange(len)) {
dst_int8[i] = static_cast<int8_t>(static_cast<int32_t>(src_uint8[i]) - 128);
}
}
// UnpackWeight: Convert the weight from int8 to uint8.
inline void convert_int8_uint8(
int len,
const int8_t* src_int8,
uint8_t* dst_uint8) {
for (const auto i : c10::irange(len)) {
dst_uint8[i] =
static_cast<uint8_t>(static_cast<int32_t>(src_int8[i]) + 128);
}
}
namespace at::native::fbgemm_utils {
template <int kSpatialDim = 2>
fbgemm::conv_param_t<kSpatialDim> MakeFbgemmConvParam(
int N,
int C,
int M,
const std::vector<int>& image_shape,
int groups,
const std::vector<int>& kernels,
const std::vector<int>& strides,
const std::vector<int>& pads,
const std::vector<int>& dilations,
const std::vector<int>& output_padding = std::vector<int>(kSpatialDim, 0),
bool transposed = false);
// TODO: Remove functions below when ChannelsLast3d is ready.
Tensor MakeStridedQTensorCPU(
const IntArrayRef& sizes,
const IntArrayRef& strides,
const TensorOptions& options,
QuantizerPtr quantizer);
Tensor MakeEmptyAffineQuantizedChannelsLast3dTensor(
int64_t N,
int64_t C,
int64_t D,
int64_t H,
int64_t W,
const TensorOptions& options,
double scale,
int64_t zero_point);
Tensor MakeEmptyPerChannelAffineQuantizedChannelsLast3dTensor(
int64_t N,
int64_t C,
int64_t D,
int64_t H,
int64_t W,
const TensorOptions& options,
const Tensor& scales,
const Tensor& zero_points);
Tensor ConvertToChannelsLast3dTensor(const Tensor& src);
template <int kSpatialDim = 2>
Tensor TransposeConvTensorUnpackConversion(const Tensor& src, int groups);
template <int kSpatialDim>
Tensor ConvertConvWeightsToChannelLastTensor(
const at::Tensor& src,
int groups,
bool transpose);
} // at::native::namespace fbgemm_utils
#endif // USE_FBGEMM
struct TORCH_API PackedEmbeddingBagWeight : public EmbeddingPackedParamsBase {
PackedEmbeddingBagWeight(
at::Tensor packed_w,
std::vector<float> w_scale,
std::vector<float> w_zp,
int64_t bit_rate,
c10::QScheme q_scheme,
int64_t version)
: packed_w(std::move(packed_w)),
w_scale(std::move(w_scale)),
w_zp(std::move(w_zp)),
bit_rate_(bit_rate),
q_scheme(q_scheme),
version_(version) {
if (!this->packed_w.is_contiguous()) {
this->packed_w = this->packed_w.contiguous();
}
}
at::Tensor packed_w;
std::vector<float> w_scale;
std::vector<float> w_zp;
int64_t bit_rate_;
c10::QScheme q_scheme;
int64_t version_;
at::Tensor unpack() override;
static c10::intrusive_ptr<EmbeddingPackedParamsBase> prepack(
at::Tensor weight);
int64_t bit_rate() const override {
return bit_rate_;
}
int64_t version() const override {
return version_;
}
at::Tensor embeddingbag_byte(
const at::Tensor& indices,
const std::optional<at::Tensor>& offsets,
bool pruned_weights,
const std::optional<at::Tensor>& per_sample_weights_,
const std::optional<at::Tensor>& compressed_indices_mapping,
bool include_last_offset,
bool is_embedding_op) override;
at::Tensor embeddingbag_4bit(
const at::Tensor& indices,
const std::optional<at::Tensor>& offsets,
bool pruned_weights,
const std::optional<at::Tensor>& per_sample_weights_,
const std::optional<at::Tensor>& compressed_indices_mapping,
bool include_last_offset,
bool is_embedding_op) override;
};