-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathQuantizer.h
279 lines (238 loc) · 9.02 KB
/
Quantizer.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
#pragma once
#include <c10/core/QScheme.h>
#include <c10/core/MemoryFormat.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <c10/util/intrusive_ptr.h>
#include <c10/core/ScalarType.h>
#include <c10/core/TensorOptions.h>
#include <ATen/Tensor.h>
#include <ATen/TensorUtils.h>
#include <ATen/core/QuantizerBase.h>
#include <cmath>
#include <memory>
#include <utility>
namespace at {
/**
* UnknownQuantizer is a placeholder quantizer for functions that implement
* quantization in a two step process. First a tensor is allocated but with
* unknown quantizer, and then the quantization kernel decides what the final
* quantizer will be.
*/
struct TORCH_API UnknownQuantizer : public Quantizer {
explicit UnknownQuantizer(ScalarType scalar_type)
: Quantizer(scalar_type) {}
Tensor quantize(const Tensor& tensor) override;
Tensor dequantize(const Tensor& qtensor) override;
Tensor& dequantize_out(Tensor& rtensor, const Tensor& qtensor) override;
QScheme qscheme() const override;
bool equalTo(QuantizerPtr other) const override;
};
/**
* UniformQuantizer is the parent class for all uniform quantizers.
* These quantization scheme will map float value uniformly to
* the quantized value. For example, affine quantizer is
* the most commonly used scheme in this category.
*/
struct TORCH_API UniformQuantizer : public Quantizer {
explicit UniformQuantizer(ScalarType scalar_type) : Quantizer(scalar_type) {}
};
/**
* NonUniformQuantizer is the parent class for all non-uniform quantizers.
* These quantization scheme may map float value non-uniformly to the quantized
* value. K-means quantization is a representative example in this category.
*/
struct TORCH_API NonUniformQuantizer : public Quantizer {
explicit NonUniformQuantizer(ScalarType scalar_type) : Quantizer(scalar_type) {}
};
// There is also StochasticQuantizer which is uniform but not affine
/**
* AffineQuantizer uses affine transformation to do quantization.
*
* For quantize:
* Y = clamp(round(X / scale + zero_point), min, max)
* For dequantize:
* X = (Y - zero_point) * scale
*/
struct TORCH_API AffineQuantizer : public UniformQuantizer {
explicit AffineQuantizer(ScalarType scalar_type) : UniformQuantizer(scalar_type) {}
};
// Note that we will not have Symmetric Quantizer in backend to reduce
// complications in quantized kernel implementation.
/**
* PerTensorAffineQuantizer stores a scale and a zero_point, which is used for
* all the values in the Tensor.
*/
struct TORCH_API PerTensorAffineQuantizer : public AffineQuantizer {
explicit PerTensorAffineQuantizer(ScalarType scalar_type, double scale, int64_t zero_point)
: AffineQuantizer(scalar_type),
scale_(scale),
zero_point_(zero_point) {}
Tensor quantize(const Tensor& tensor) override;
Tensor dequantize(const Tensor& qtensor) override;
Tensor& dequantize_out(Tensor& rtensor, const Tensor& qtensor) override;
QScheme qscheme() const override {
return kPerTensorAffine;
}
double scale() const {
return scale_;
}
int64_t zero_point() const {
return zero_point_;
}
bool equalTo(QuantizerPtr other) const override {
if (!other.get() || other->qscheme() != kPerTensorAffine) {
return false;
}
auto* other_per_tensor_affine =
static_cast<PerTensorAffineQuantizer*>(other.get());
return scalar_type() == other_per_tensor_affine->scalar_type() &&
scale() == other_per_tensor_affine->scale() &&
zero_point() == other_per_tensor_affine->zero_point();
}
private:
const double scale_;
// We use int64_t for consistency with Python
const int64_t zero_point_;
};
/**
* PerChannelAffineQuantizer is the same as PerTensorAffineQuantizer
* except that we have an independent scale and zero_point parameter
* for each channel.
*
* Also note that per channel quantization is mostly applied to output channels
* of weights since per-input channel of weight quantization or per-channel
* quantization for activations can't be efficiently supported in most of
* processors since it requires each multiplication result within a single
* dot-product to have a different scale.
*/
struct TORCH_API PerChannelAffineQuantizer : public AffineQuantizer {
explicit PerChannelAffineQuantizer(
ScalarType scalar_type,
Tensor scales,
Tensor zero_points,
int64_t axis)
: AffineQuantizer(scalar_type),
scales_(std::move(scales)),
zero_points_(std::move(zero_points)),
axis_(axis) {}
QScheme qscheme() const override {
return kPerChannelAffine;
}
Tensor scales() const {
return scales_;
}
Tensor zero_points() const {
return zero_points_;
}
int64_t axis() const {
return axis_;
}
Tensor quantize(const Tensor& tensor) override;
Tensor dequantize(const Tensor& qtensor) override;
Tensor& dequantize_out(Tensor& rtensor, const Tensor& qtensor) override;
bool equalTo(QuantizerPtr other) const override {
if (!other.get() || other->qscheme() != kPerChannelAffine) {
return false;
}
auto* other_per_channel_affine =
static_cast<PerChannelAffineQuantizer*>(other.get());
return scalar_type() == other_per_channel_affine->scalar_type() &&
scales().equal(other_per_channel_affine->scales()) &&
zero_points().equal(other_per_channel_affine->zero_points()) &&
axis() == other_per_channel_affine->axis();
}
protected:
Tensor scales_;
Tensor zero_points_;
const int64_t axis_;
};
/**
* PerChannelAffineFloatQParamsQuantizer is the same as PerChannelAffineQuantizer
* except that it expects both scale and zero point to be floating point values.
*
* This quantizer uses the kPerChannelAffineFloatQParams qscheme which is a variant of
* kPerChannelAffine.
*
* The quantize equation in this case looks like -
* Xq = (Xf - zero_point) * inv_scale, where inv_scale = 1.0/scale
*
* Note: Usage of floating point zero point is useful in cases where 0 doesn't need to
* be exactly represented in the quantized space. We can get additional precision by
* using floating point values for zero point.
*/
struct TORCH_API PerChannelAffineFloatQParamsQuantizer : public PerChannelAffineQuantizer {
explicit PerChannelAffineFloatQParamsQuantizer(
ScalarType scalar_type,
Tensor scales,
Tensor zero_points,
int64_t axis)
: PerChannelAffineQuantizer(scalar_type,
scales,
zero_points,
axis) {}
QScheme qscheme() const override {
return kPerChannelAffineFloatQParams;
}
Tensor quantize(const Tensor& tensor) override;
Tensor dequantize(const Tensor& qtensor) override;
Tensor& dequantize_out(Tensor& rtensor, const Tensor& qtensor) override;
bool equalTo(QuantizerPtr other) const override {
if (!other.get() || other->qscheme() != kPerChannelAffineFloatQParams) {
return false;
}
auto* other_per_channel_float_qparams =
static_cast<PerChannelAffineFloatQParamsQuantizer*>(other.get());
return scalar_type() == other_per_channel_float_qparams->scalar_type() &&
scales().equal(other_per_channel_float_qparams->scales()) &&
zero_points().equal(other_per_channel_float_qparams->zero_points()) &&
axis() == other_per_channel_float_qparams->axis();
}
};
// This is an internal utility function for getting at the QTensorImpl,
// You should only use this for writing low level
// setters/getters for QTensorImpl fields; otherwise, you should use
// the low level setters/getters that were implemented using this.
// This may be called repeatedly, so make sure it's pretty cheap.
TORCH_API QTensorImpl* get_qtensorimpl(const TensorBase& self);
// double and int64_t are because of the native function API, we only have these
// argument types right now in native functions
TORCH_API QuantizerPtr
make_per_tensor_affine_quantizer(
double scale, int64_t zero_point, ScalarType scalar_type);
TORCH_API QuantizerPtr make_per_channel_affine_quantizer(
const Tensor& scales,
const Tensor& zero_points,
int64_t axis,
ScalarType scalar_type);
TORCH_API QuantizerPtr make_unknown_quantizer(ScalarType scalar_type);
// Create a Quantized Tensor given arguments for normal Tensor and a quantizer
TORCH_API Tensor new_qtensor(
IntArrayRef sizes,
const TensorOptions& options,
QuantizerPtr quantizer);
TORCH_API void set_quantizer_(const Tensor& self, ConstQuantizerPtr quantizer);
TORCH_API Tensor from_blob_quantized_per_tensor_affine(
void* data,
IntArrayRef sizes,
IntArrayRef strides,
std::function<void(void*)> deleter,
const float scale,
const int64_t zeroPoint,
const TensorOptions& options);
TORCH_API Tensor from_blob_quantized_per_tensor_affine(
void* data,
IntArrayRef sizes,
std::function<void(void*)> deleter,
const float scale,
const int64_t zeroPoint,
const TensorOptions& options);
TORCH_API Tensor from_blob_quantized_per_channel_affine(
void* data,
IntArrayRef sizes,
std::function<void(void*)> deleter,
const Tensor& scales,
const Tensor& zero_points,
const int64_t axis,
const TensorOptions& options);
} // namespace at