-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathtest_runtime_estimator.py
199 lines (182 loc) · 7.35 KB
/
test_runtime_estimator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
# Owner(s): ["module: unknown"]
import unittest
from dataclasses import dataclass
from typing import Any, Callable, cast, Union
import torch
from torch import nn, optim
from torch._subclasses.fake_tensor import FakeTensorMode
from torch.distributed._tools.runtime_estimator import RuntimeEstimator
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_utils import run_tests, skipIfTorchDynamo, TestCase
from torch.testing._internal.distributed._tensor.common_dtensor import (
ModelArgs,
Transformer,
)
@dataclass
class ConvArgs:
image_size: int
num_classes: int
class SimpleCNN(nn.Module):
def __init__(self, conv_args: ConvArgs):
super().__init__()
image_size = conv_args.image_size
num_classes = conv_args.num_classes
self.image_size = image_size
self.conv1 = nn.Conv2d(3, 32, kernel_size=5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
self.conv3 = nn.Conv2d(64, 128, kernel_size=3)
self.conv4 = nn.Conv2d(128, 256, kernel_size=3)
self.fc1_size = self._calculate_fc1_size()
self.fc1 = nn.Linear(self.fc1_size, 512)
self.fc2 = nn.Linear(512, 256)
self.fc3 = nn.Linear(256, num_classes)
def _calculate_fc1_size(self):
size = self.image_size
size = (size - 5 + 1) // 2 # conv1 and pool
size = (size - 5 + 1) // 2 # conv2 and pool
size = size - 3 + 1 # conv3
size = (size - 3 + 1) // 2 # conv4 and pool
return 512 * size * size
def forward(self, x):
x = self.pool(nn.functional.relu(self.conv1(x)))
x = self.pool(nn.functional.relu(self.conv2(x)))
x = nn.functional.relu(self.conv3(x))
x = self.pool(nn.functional.relu(self.conv4(x)))
x = x.view(-1, self.fc1_size)
x = nn.functional.relu(self.fc1(x))
x = nn.functional.relu(self.fc2(x))
x = self.fc3(x)
return x
class TestRuntimeEstimator(TestCase):
def _train_step(
self,
model: nn.Module,
optimizer: optim.Optimizer,
inp: torch.Tensor,
):
out = model(inp)
loss = out.sum()
loss.backward()
optimizer.step()
optimizer.zero_grad()
def _measure_actual_cuda_time(
self,
func: Callable,
args: tuple[Any, ...],
) -> float:
warmup_iters, actual_iters = 2, 5
start_event = torch.cuda.Event(enable_timing=True)
end_event = torch.cuda.Event(enable_timing=True)
for _ in range(warmup_iters):
func(*args)
start_event.record()
for _ in range(actual_iters):
func(*args)
end_event.record()
torch.cuda.synchronize()
measured_time = start_event.elapsed_time(end_event) / actual_iters
return measured_time
def _runtime_estimate(
self,
estimate_mode: str,
func: Callable,
args: tuple[Any, ...],
) -> float:
# Optimizer init step
func(*args)
runtime_estimator = RuntimeEstimator()
with runtime_estimator(estimate_mode_type=estimate_mode):
func(*args)
return runtime_estimator.total_runtime
def _init_model_and_args(
self,
model_type: str,
model_args: Union[ConvArgs, ModelArgs],
bsz: int,
) -> tuple[nn.Module, optim.Optimizer, torch.Tensor]:
dev = torch.cuda.current_device()
if model_type == "Transformer":
model_args = cast(ModelArgs, model_args)
with torch.device(dev):
model = Transformer(model_args)
optimizer = optim.Adam(model.parameters(), lr=1e-2, foreach=True)
inp = torch.randint(
0, model_args.vocab_size, (bsz, model_args.max_seq_len), device=dev
)
elif model_type == "CNN":
model_args = cast(ConvArgs, model_args)
with torch.device(dev):
model = SimpleCNN(model_args)
optimizer = optim.SGD(model.parameters(), lr=1e-2, foreach=True)
inp = torch.randn(
bsz, 3, model_args.image_size, model_args.image_size, device=dev
)
else:
raise NotImplementedError("Only Transformer and CNN is supported")
return (model, optimizer, inp)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_transformer_runtime(
self,
):
"""Runs a basic GPT-2 model"""
vocab_size = 8192
bsz, seq_len = 8, 1024
model_args = ModelArgs(
n_layers=4,
n_heads=12,
vocab_size=vocab_size,
max_seq_len=seq_len,
dim=768,
dropout_p=0.1,
)
args = self._init_model_and_args("Transformer", model_args, bsz)
actual_runtime = self._measure_actual_cuda_time(self._train_step, args)
with FakeTensorMode():
fake_args = self._init_model_and_args("Transformer", model_args, bsz)
benchmark_estimate = self._runtime_estimate(
"operator-level-benchmark", self._train_step, fake_args
)
roofline_estimate = self._runtime_estimate(
"operator-level-cost-model", self._train_step, fake_args
)
benchmark_accuracy = actual_runtime / benchmark_estimate
roofline_accuracy = actual_runtime / roofline_estimate
print(
f"Actual: {actual_runtime} Benchmark Estimate: {benchmark_estimate} Accuracy: {benchmark_accuracy}"
f"\n Actual: {actual_runtime} Roofline Estimatee: {roofline_estimate} Accuracy: {roofline_accuracy}"
)
# No accuracy check for benchmark in CI as it is highly variable
# self.assertAlmostEqual(benchmark_accuracy, 1.0, delta=0.2)
# self.assertAlmostEqual(roofline_accuracy, 1.0, delta=0.3)
@skipIfTorchDynamo("https://github.com/pytorch/pytorch/issues/115653")
@unittest.skipIf(not TEST_CUDA, "CUDA not available")
def test_conv_model_runtime(
self,
):
"""Runs a simple CNN model"""
num_classes = 100
bsz, img_sz = 256, 128
model_args = ConvArgs(img_sz, num_classes)
args = self._init_model_and_args("CNN", model_args, bsz)
actual_runtime = self._measure_actual_cuda_time(self._train_step, args)
with FakeTensorMode():
fake_args = self._init_model_and_args("CNN", model_args, bsz)
benchmark_estimate = self._runtime_estimate(
"operator-level-benchmark", self._train_step, fake_args
)
roofline_estimate = self._runtime_estimate(
"operator-level-cost-model", self._train_step, fake_args
)
benchmark_accuracy = actual_runtime / benchmark_estimate
roofline_accuracy = actual_runtime / roofline_estimate
print(
f"Actual: {actual_runtime} Benchmark Estimate: {benchmark_estimate} Accuracy: {benchmark_accuracy}\n"
f"Actual: {actual_runtime} Roofline Estimatee: {roofline_estimate} Accuracy: {roofline_accuracy}"
)
# No accuracy check for benchmark in CI as it is highly variable
# self.assertAlmostEqual(benchmark_accuracy, 1.0, delta=0.2)
# self.assertAlmostEqual(roofline_accuracy, 1.0, delta=0.4)
if __name__ == "__main__":
run_tests()