-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathtest_c10d_spawn_gloo.py
246 lines (207 loc) · 8.53 KB
/
test_c10d_spawn_gloo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Owner(s): ["oncall: distributed"]
import copy
import os
import tempfile
from test_c10d_spawn import _torch_dist_nn_available, TestDistributedNNFunctions
import torch
import torch.distributed as c10d
import torch.nn as nn
from torch.testing._internal.common_cuda import TEST_CUDA
from torch.testing._internal.common_distributed import requires_gloo, skip_if_lt_x_gpu
from torch.testing._internal.common_utils import (
run_tests,
skip_but_pass_in_sandcastle_if,
TEST_WITH_DEV_DBG_ASAN,
TestCase,
)
# Fails on Python-3.9, see https://github.com/pytorch/pytorch/issues/51619
class DistributedDataParallelSingleProcessTest(TestCase):
def setUp(self):
self.rank = 0
self.world_size = 1
self.file = tempfile.NamedTemporaryFile(delete=False) # noqa: P201
def tearDown(self):
try:
os.remove(self.file.name)
except OSError:
pass
def _test_base(self, net, inp, check_allclose=True):
store = c10d.FileStore(self.file.name, self.world_size)
c10d.init_process_group(
backend="gloo", store=store, rank=self.rank, world_size=self.world_size
)
process_group = c10d.distributed_c10d._get_default_group()
if inp[0].is_cuda:
device_ids = [torch.cuda.current_device()]
else:
device_ids = None
ddp = nn.parallel.DistributedDataParallel(
copy.deepcopy(net), device_ids=device_ids, process_group=process_group
)
net_opt = torch.optim.Adam(net.parameters(), lr=0.001)
ddp_opt = torch.optim.Adam(ddp.parameters(), lr=0.001)
for i, j in zip(ddp.parameters(), net.parameters()):
self.assertTrue(i.allclose(j))
for _ in range(10):
net_out = net(*inp)
ddp_out = ddp(*inp)
net_out.sum().backward()
ddp_out.sum().backward()
net_opt.step()
ddp_opt.step()
if check_allclose:
for i, j in zip(ddp.parameters(), net.parameters()):
self.assertTrue(i.allclose(j))
@requires_gloo()
def test_cpu(self):
self._test_base(nn.Linear(2, 2), [torch.randn(30, 2)])
@requires_gloo()
@skip_but_pass_in_sandcastle_if(not TEST_CUDA, "At least 1 CUDA GPUS needed")
def test_cuda(self):
self._test_base(nn.Linear(2, 2).to(0), [torch.randn(30, 2).to(0)])
@requires_gloo()
@skip_but_pass_in_sandcastle_if(not TEST_CUDA, "At least 1 CUDA GPUS needed")
def test_rnn(self):
# This test is inspired by the bug reported in
# https://github.com/pytorch/pytorch/issues/36268
BATCH_SIZE = 12 # Divisible by 2, 3, 4
INPUT_DIM = 256
OUTPUT_DIM = 256
HIDDEN_DIM = 256
N_LAYERS = 3
SEQ_LEN = 100
class Net(nn.Module):
def __init__(self, input_dim, hidden_dim, output_dim, hidden_layers):
super().__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.output_dim = output_dim
self.hidden_layers = hidden_layers
self.lstm = nn.LSTM(
input_dim, hidden_dim, hidden_layers, batch_first=True
)
self.h2o = nn.Linear(hidden_dim, output_dim)
def forward(self, x, y):
self.lstm.flatten_parameters()
h_t, _ = self.lstm(x)
output = self.h2o(h_t)
loss = nn.functional.mse_loss(output, y)
return loss
net = Net(INPUT_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS).to(0)
inp = [
torch.randn((BATCH_SIZE, SEQ_LEN, INPUT_DIM)).to(0),
torch.rand((BATCH_SIZE, SEQ_LEN, OUTPUT_DIM)).to(0),
]
# Not checking result allclose as the parameter inconsistency exist
# prior to this change. See #37079
self._test_base(net, inp, check_allclose=False)
# Skip dev-asan as torch + multiprocessing spawn have known issues
if not TEST_WITH_DEV_DBG_ASAN:
class TestDistributedNNFunctionsGloo(TestDistributedNNFunctions):
# Test Common Ops First.
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_broadcast(self):
self._test_broadcast("gloo")
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_reduce(self):
self._test_reduce("gloo")
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_allreduce(self):
self._test_allreduce("gloo")
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_all_gather(self):
self._test_all_gather("gloo")
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_all_to_all(self):
self._test_all_to_all("gloo")
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_all_to_all_single(self):
self._test_all_to_all_single("gloo")
# Test Ops only supported in GLOO.
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_gather(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(
store=store, rank=self.rank, world_size=self.world_size, backend="gloo"
)
device = torch.device(f"cuda:{self.rank}")
x = torch.ones(5, 5, device=device) + self.rank
x.requires_grad = True
tensors = torch.distributed.nn.gather(x, 1)
if self.rank == 1:
for i, t in enumerate(tensors):
self.assertEqual(t, torch.ones(5, 5, device=device) + i)
elif self.rank == 0:
for i, t in enumerate(tensors):
zeros = torch.zeros(5, 5, device=device)
self.assertEqual(t, zeros)
y = torch.sum(torch.stack(tensors), axis=0)
z = y.sin().sum()
z.backward()
# Test gradient
x_s = 3 * torch.ones(5, 5, device=device)
self.assertEqual(x.grad, x_s.cos())
@requires_gloo()
@skip_if_lt_x_gpu(2)
@skip_but_pass_in_sandcastle_if(
not _torch_dist_nn_available, "torch.distributed.nn is not available"
)
def test_scatter(self):
store = c10d.FileStore(self.file_name, self.world_size)
# This is required because these functions calls directly to the .dist and needs
# the world to be initialized
c10d.init_process_group(
store=store, rank=self.rank, world_size=self.world_size, backend="gloo"
)
device = torch.device(f"cuda:{self.rank}")
x0 = torch.ones(5, 5, device=device)
x1 = torch.ones(5, 5, device=device) + 1
x0.requires_grad = True
x1.requires_grad = True
y = torch.distributed.nn.scatter([x0, x1], 1)
if self.rank == 1:
self.assertEqual(y, 1 + torch.ones(5, 5, device=device))
elif self.rank == 0:
self.assertEqual(y, torch.ones(5, 5, device=device))
z = y.sin().sum()
z.backward()
# Test gradient
if self.rank == 1:
x0_s = torch.ones(5, 5, device=device).cos()
x1_s = (2 * torch.ones(5, 5, device=device)).cos()
self.assertEqual(x0.grad, x0_s)
self.assertEqual(x1.grad, x1_s)
if self.rank == 0:
self.assertEqual(x0.grad, torch.zeros(5, 5, device=device))
if __name__ == "__main__":
run_tests()