-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy path_state_dict_utils.py
799 lines (699 loc) · 27.8 KB
/
_state_dict_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
# mypy: allow-untyped-defs
import copy
import io
import math
import weakref
from collections.abc import Mapping, MutableMapping
from typing import Any, Callable, cast, NamedTuple, Optional, TYPE_CHECKING, Union
import torch
import torch.distributed as dist
import torch.nn.functional as F
from torch.distributed._functional_collectives import AsyncCollectiveTensor
if dist.is_available() or TYPE_CHECKING:
from torch.distributed import distributed_c10d
from torch.distributed._shard.sharded_tensor import ShardedTensor
from torch.distributed.tensor import distribute_tensor, DTensor, Replicate
from torch.distributed.tensor._utils import compute_local_shape_and_global_offset
def _identity_func(
obj: torch.Tensor,
pg: Optional[dist.ProcessGroup],
device: Optional[torch.device],
companion_obj: Any,
) -> torch.Tensor:
return obj
def _all_gather_sharded_tensor(
sharded_tensor: "ShardedTensor",
pg: Optional[dist.ProcessGroup] = None,
device: Optional[torch.device] = None,
) -> torch.Tensor:
if pg is None:
pg = distributed_c10d._get_default_group()
world_size = dist.get_world_size(pg)
shards = sharded_tensor.local_shards()
dim_0_size = sharded_tensor.size()[0] # type: ignore[index]
tensor_numel = sharded_tensor.size().numel() # type: ignore[union-attr]
chunk_size = math.ceil(dim_0_size / world_size) * tensor_numel // dim_0_size
pg_device = (
distributed_c10d._get_pg_default_device(pg) if device is None else device
)
if shards:
local_tensor = shards[0].tensor.flatten()
if local_tensor.device.type != pg_device.type:
local_tensor = local_tensor.to(pg_device)
num_padding = chunk_size - local_tensor.numel()
if num_padding > 0:
local_tensor = F.pad(local_tensor, [0, num_padding])
else:
local_tensor = torch.zeros(
chunk_size, dtype=sharded_tensor.dtype, device=pg_device
)
tensor = torch.empty(
chunk_size * world_size,
dtype=local_tensor.dtype,
device=pg_device,
)
dist.all_gather_into_tensor(tensor, local_tensor, group=pg)
tensor = tensor.narrow(0, 0, tensor_numel).reshape(sharded_tensor.size())
return tensor
class CompanionMismatch(Exception):
pass
def _iterate_state_dict(
iter_object: Any,
sharded_tensor_func: Callable,
dtensor_func: Callable,
tensor_func: Callable,
*,
pg: Optional[dist.ProcessGroup] = None,
device: Optional[torch.device] = None,
cpu_offload: bool = False,
companion_obj: Any = None,
ranks_only: tuple[int, ...] = (),
type_check: bool = True,
non_blocking: bool = True,
) -> dict[str, Any]:
"""Iterate through the state dict, applying the given functions to each tensor type.
Args:
iter_object (Any): the target state_dict.
sharded_tensor_func (Callable): the function to apply to ShardedTensor
dtensor_func (Callable): the function to apply to DTensor
tensor_func (Callable): the function to apply to Tensor
pg (Optional[dist.ProcessGroup]): process group passed to tensor functions
device (Optional[torch.device]): device passed to tensor functions
cpu_offload (bool): whether to offload the tensors to CPU memory. This option is ignored
if a companion_obj is supplied.
companion_obj (Any): A companion object to the state dict. If this object
is supplied, we attempt to copy the tensor to the companion object.
ranks_only (Tuple[int, ...]): if this tuple is empty, all ranks will
have the same state_dicts. Otherwise only ranks that in ``ranks_only``
have the same state_dicts. Other ranks will get empty state_dicts.
type_check (bool): check if the instance data type is a supported type
that can be saved by DCP. The current supported data types are
torch.Tensor, DTensor, int, float, str, list, dict, None.
non_blocking (bool): whether to use non-blocking copy when copying to the companion object.
"""
# TODO: should we use pytree?
cpu_device = torch.device("cpu")
if isinstance(iter_object, ShardedTensor):
ret = sharded_tensor_func(iter_object, pg, device, companion_obj)
elif isinstance(iter_object, DTensor):
ret = dtensor_func(iter_object, pg, device, companion_obj)
elif isinstance(iter_object, torch.Tensor):
ret = tensor_func(iter_object, pg, device, companion_obj)
elif (
isinstance(iter_object, (int, float, str, bytes, io.BytesIO))
or iter_object is None
):
ret = iter_object
elif isinstance(iter_object, dict):
if companion_obj is not None and (
not isinstance(companion_obj, dict)
or set(companion_obj.keys()) != set(iter_object.keys())
):
msg = (
""
if isinstance(companion_obj, dict)
else f"{set(companion_obj.keys())=} {set(iter_object.keys())=}"
)
raise CompanionMismatch(msg)
ret = {
key: _iterate_state_dict(
value,
sharded_tensor_func,
dtensor_func,
tensor_func,
pg=pg,
device=device,
cpu_offload=cpu_offload,
companion_obj=companion_obj[key] if companion_obj is not None else None,
ranks_only=ranks_only,
type_check=type_check,
non_blocking=non_blocking,
)
for key, value in iter_object.items()
}
elif isinstance(iter_object, (list, tuple)):
if companion_obj is not None and (
not isinstance(companion_obj, (list, tuple))
or len(companion_obj) != len(iter_object)
):
raise CompanionMismatch
ret = [
_iterate_state_dict(
v,
sharded_tensor_func,
dtensor_func,
tensor_func,
pg=pg,
device=device,
cpu_offload=cpu_offload,
companion_obj=companion_obj[idx] if companion_obj is not None else None,
ranks_only=ranks_only,
type_check=type_check,
non_blocking=non_blocking,
)
for idx, v in enumerate(iter_object)
]
if isinstance(iter_object, tuple):
ret = tuple(ret)
elif not type_check:
ret = copy.deepcopy(iter_object)
else:
raise ValueError(f"Unexpected value type {type(iter_object)}")
if not ranks_only or dist.get_rank(pg) in ranks_only:
if isinstance(ret, torch.Tensor):
if cpu_offload and companion_obj is None:
ret = ret.to(cpu_device)
if companion_obj is not None:
if isinstance(companion_obj, DTensor):
assert isinstance(ret, DTensor)
companion_obj._local_tensor.copy_(
ret._local_tensor, non_blocking=non_blocking
)
else:
companion_obj.copy_(ret, non_blocking=non_blocking)
ret = companion_obj
else:
ret = {} if isinstance(ret, dict) else None
return ret
def _gather_state_dict(
state_dict: dict[str, Any],
*,
pg: Optional[dist.ProcessGroup] = None,
device: Optional[torch.device] = None,
cpu_offload: bool = False,
ranks_only: tuple[int, ...] = (),
type_check: bool = True,
) -> dict[str, Any]:
"""
Given a state_dict, this API gathers all the ShardedTensors or DTensors in
the state_dict.
Args:
state_dict (Dict[str, Any]): the target sharded state_dict.
pg (Optional[dist.ProcessGroup]): the process group that is used to
gather ShardedTensor. Note that gathering a DTensor will use
the DeviceMesh. So this argument will be ignored when gathering a
DTensor.
device: (Optional[torch.device]): the device that is used to
perform allgather for ShardedTensor. Note that gathering a DTensor
will use the DeviceMesh. So this argument will be ignored when
gathering a DTensor.
cpu_offload (bool): whether to offload the tensors to CPU memory. The
default value is False.
ranks_only: (Tuple[int, ...]): if this tuple is empty, all ranks will
have the same state_dicts. Otherwise only ranks that in ``ranks_only``
have the same state_dicts. Other ranks will get empty state_dicts.
type_check: (bool): check if the instance data type is a supported type
that can be saved by DCP. The current supported data types are
torch.Tensor, DTensor, int, float, str, list, dict, None.
Returns:
The gathered state dictionary.
"""
def sharded_tensor_func(value, pg, device, companion_obj):
# ShardedTensor does not seem to record the original device type.
# So if the tensor is moved to CPU, we won't know the original type.
# As a result, we have to rely on the user to tell us the correct one.
cpu_device = torch.device("cpu")
output_tensor = _all_gather_sharded_tensor(value, pg, device)
local_shard_device = (
value.local_shards()[0].tensor.device
if value.local_shards()
else cpu_device
)
if output_tensor.device != local_shard_device:
value = output_tensor.to(local_shard_device)
else:
value = output_tensor
return value
def dtensor_func(value, pg, device, companion_obj):
if value.device != value.device_mesh.device_type:
value = value.to(value.device_mesh.device_type)
# FSDP all_gather: [Shard(0)] -> [Replicate()]
# HSDP all_gather: [Replicate(), Shard(0)] -> [Replicate(), Replicate()]
# 2D FSDP + TP all_gather:
# - [Shard(0), Shard(n)] -> [Replicate(), Replicate()]
# - [Shard(0), Replicate()] -> [Replicate(), Replicate()]
placements = [Replicate() for _ in value.placements]
value = value.redistribute(
device_mesh=value.device_mesh,
placements=placements,
)
# Call `wait()` to force the tensor to be synchronous with respect
# to the main stream.
# See the discussion in https://github.com/pytorch/pytorch/pull/117799.
value = value.to_local()
if isinstance(value, AsyncCollectiveTensor):
value = value.wait()
return value
return _iterate_state_dict(
state_dict,
sharded_tensor_func,
dtensor_func,
_identity_func,
pg=pg,
device=device,
cpu_offload=cpu_offload,
ranks_only=ranks_only,
type_check=type_check,
)
def _offload_state_dict_to_cpu(
state_dict: dict[str, Any],
*,
ranks_only: tuple[int, ...] = (),
type_check: bool = True,
) -> dict[str, Any]:
"""
Given a state_dict, this API offload all the tensors to CPU memory.
Args:
state_dict (Dict[str, Any]): the target state_dict.
pg (Optional[dist.ProcessGroup]): the process group that is used to
gather ShardedTensor. Note that gathering a DTensor will use
the DeviceMesh. So this argument will be ignored when gathering a
DTensor.
ranks_only: (Tuple[int, ...]): if this tuple is empty, all ranks will
have the same state_dicts. Otherwise only ranks that in ``ranks_only``
have the same state_dicts. Other ranks will get empty state_dicts.
type_check: (bool): check if the instance data type is a supported type
that can be saved by DCP. The current supported data types are
torch.Tensor, DTensor, int, float, str, list, dict, None.
Returns:
The gathered state dictionary.
"""
ret = _iterate_state_dict(
state_dict,
_identity_func,
_identity_func,
_identity_func,
pg=None,
device=None,
cpu_offload=True,
ranks_only=ranks_only,
type_check=type_check,
)
return ret
@torch.no_grad()
def _copy_state_dict(
state_dict: dict[str, Any],
copy_state_dict: dict[str, Any],
non_blocking: bool = False,
type_check: bool = True,
) -> dict[str, Any]:
"""
Copies all tensors in a given state dict into a different state_dict with the
same structure. Additionally, a copied state dict with the same value references
is returned. Editing the keys on this state dict will not affect the
passed in copy_state_dict (but the value references are the same).
.. warning::
It is expected by this function that state_dict and copy_state_dict share
the same structure and data types.
.. warning::
The current supported data types are
torch.Tensor, DTensor, int, float, str, list, dict, None.
Args:
state_dict (Dict[str, Any]): the target state_dict.
copy_state_dict (Dict[str, Any]):
The state dict we are copying into. This state_dict must have exactly
the same structure as the source `state_dict`.
non_blocking: (bool): Whether copy ops should be performed asynchronously
type_check (bool): check if the instance data type is a supported type
that can be saved by DCP. The current supported data types are
torch.Tensor, DTensor, int, float, str, list, dict, None.
Returns:
State Dict copy
"""
return _iterate_state_dict(
state_dict,
_identity_func,
_identity_func,
_identity_func,
pg=None,
device=None,
cpu_offload=False,
ranks_only=(),
companion_obj=copy_state_dict,
type_check=type_check,
non_blocking=non_blocking,
)
@torch.no_grad()
def _create_cpu_state_dict(
state_dict: dict[str, Any], pin_memory: bool = False, share_memory: bool = False
) -> dict[str, Any]:
"""
Given a state_dict, create another state_dict with the same structure and elements.
However, all tensors in the returned state_dict are new tensors on CPU. These
tensors can be placed on pin_memory or share_memory based on the provided arguments.
.. warning::
Setting both `pin_memory` and `share_memory` to True significantly increases the
latency of this method because of the nuances which require us to register memory
as pinned directly as opposed to relying on the pin_memory cache allocator. This
option should only be used for long lived tensors which are required to be shared.
This is not the case as long as at least one of `pin_memory` or `share_memory` is
set to False.
"""
def tensor_func(
obj: torch.Tensor,
pg: Optional[dist.ProcessGroup],
device: Optional[torch.device],
_: Any,
) -> torch.Tensor:
if len(obj.size()) == 0:
return torch.tensor(0, dtype=obj.dtype)
if share_memory:
t = torch.empty(*tuple(obj.size()), dtype=obj.dtype)
t = t.share_memory_()
if pin_memory:
def unpin_memory(t):
succ = int(torch.cuda.cudart().cudaHostUnregister(t.data_ptr()))
assert succ == 0, (
f"Unpinning shared memory failed with error-code: {succ}"
)
weakref.finalize(t, unpin_memory, t)
succ = int(
torch.cuda.cudart().cudaHostRegister(
t.data_ptr(),
t.numel() * t.element_size(),
1, # lines up with 'cudaHostRegisterPortable'
)
)
assert succ == 0, (
f"Pinning shared memory failed with error-code: {succ}"
)
return t
elif pin_memory:
return torch.empty(*tuple(obj.size()), dtype=obj.dtype).pin_memory()
else:
return torch.empty(*tuple(obj.size()), dtype=obj.dtype)
def dtensor_func(
obj: DTensor,
pg: Optional[dist.ProcessGroup],
device: Optional[torch.device],
_: Any,
) -> DTensor:
if len(obj.size()) == 0:
return obj
if obj.device != torch.device("cpu"):
ret = cast(DTensor, obj.to(device="cpu"))
else:
ret = copy.deepcopy(obj)
ret._local_tensor = tensor_func(ret._local_tensor, pg, device, None)
return ret
ret = _iterate_state_dict(
state_dict,
_identity_func,
dtensor_func,
tensor_func,
pg=None,
device=None,
cpu_offload=False,
ranks_only=(),
type_check=False,
)
return ret
def _check_state_dict_similarity(
state_dict: dict[str, Any],
compared_state_dict: dict[str, Any],
) -> bool:
"""
Given two state_dicts, check if the structures are the same. And
if a [key, tensor] pair exist in one state_dict there must be
the a corresponding pait, [key, other_tensor], in the other state_dict,
where tensor and other_tensor have the same size and dtype.
Return the check result.
"""
def tensor_func(
obj: torch.Tensor,
pg: Optional[dist.ProcessGroup],
device: Optional[torch.device],
companion_obj: Any,
) -> torch.Tensor:
if companion_obj.dtype != obj.dtype or companion_obj.size() != obj.size():
raise CompanionMismatch
return obj
try:
_iterate_state_dict(
state_dict,
_identity_func,
_identity_func,
tensor_func,
pg=None,
device=None,
cpu_offload=False,
ranks_only=(),
companion_obj=compared_state_dict,
type_check=False,
)
except CompanionMismatch:
return False
return True
class _TensorInfo(NamedTuple):
size: torch.Size
dtype: torch.dtype
def _broadcast_tensors(
full_state_dict: dict[str, Any],
local_state_dict: dict[str, Any],
keys: list[str],
device: torch.device,
pg: Optional[dist.ProcessGroup] = None,
) -> None:
if pg is None:
pg = dist.distributed_c10d._get_default_group()
pg_device = (
device
if device.type in {pg_device.type for pg_device in pg._device_types}
else pg._device_types[0]
)
tensors: list[torch.Tensor] = []
for key in keys:
if dist.get_rank() == 0:
full_state = full_state_dict[key]
assert isinstance(full_state, torch.Tensor)
full_tensor = full_state.detach().to(pg_device)
else:
tensor_info = full_state_dict[key]
full_tensor = torch.empty(
size=tensor_info.size,
device=pg_device,
dtype=tensor_info.dtype,
)
tensors.append(full_tensor)
if (local_state := local_state_dict.get(key)) is None:
continue
local_state_dict[key] = (
(local_state, full_tensor)
if isinstance(local_state, DTensor)
else full_tensor
)
if len(tensors) > 1:
dist._broadcast_coalesced(pg, tensors, 500, 0)
else:
dist.broadcast(tensors[0], src=0, group=pg)
if pg_device != device:
for key, full_tensor in zip(keys, tensors):
if (local_state := local_state_dict.get(key)) is not None:
local_state_dict[key] = (
(local_state[0], full_tensor.to(device))
if (
isinstance(local_state, tuple)
and isinstance(local_state[0], DTensor)
)
else full_tensor.to(device)
)
_distribute_tensors(local_state_dict, keys, device, pg)
def _distribute_tensors(
local_state_dict: dict[str, Any],
keys: list[str],
device: torch.device,
pg: Optional[dist.ProcessGroup] = None,
) -> None:
if pg is None:
pg = dist.distributed_c10d._get_default_group()
for key in keys:
_local_state = local_state_dict.get(key, None)
if _local_state is None or torch.is_tensor(_local_state):
continue
local_state = _local_state[0]
full_tensor = _local_state[1]
shape, offset = compute_local_shape_and_global_offset(
full_tensor.shape, local_state.device_mesh, local_state.placements
)
slices = [
slice(cur_offset, cur_offset + cur_shape)
for cur_shape, cur_offset in zip(shape, offset)
]
if local_state.is_meta:
# Use .clone() here rather than view to clone and return only the sliced portion, minimizing memory access and cost.
local_tensor = full_tensor[slices].detach().clone()
# TODO: currently, we cannot handle strided sharding if the dp dimension is not even. For example,
# one of the case that is not yet supported is when placements = (Shard(0), _StridedShard(0, sf=2)).
ret = DTensor.from_local(
local_tensor,
local_state.device_mesh,
local_state.placements,
shape=local_state.shape,
stride=local_state.stride(),
)
else:
ret = local_state
# Copy full_tensor[slices] into local_state.to_local() to reduce memory footprint.
ret.to_local().copy_(full_tensor[slices])
local_state_dict[key] = ret
def _broadcast_state_dict(
full_state_dict: dict[str, Any],
local_state_dict: dict[str, Any],
device: torch.device,
pg: Optional[dist.ProcessGroup] = None,
strict: bool = False,
cpu_offload: bool = False,
) -> None:
# Broadcast from rank0's `full_state_dict` to all ranks' `local_state_dict`.
# If strict is True, any keys in `local_state_dict` but not in `full_state_dict`
# will be removed from `local_state_dict`.
ret = {}
if dist.get_rank() == 0:
for key, value in full_state_dict.items():
if not torch.is_tensor(value):
ret[key] = value
elif value.dim() == 0:
ret[key] = value.cpu()
else:
ret[key] = _TensorInfo(value.size(), value.dtype)
broadcast_list = [ret]
dist.broadcast_object_list(broadcast_list, src=0, group=pg)
ret = broadcast_list[0]
# Gather values
keys = []
local_state_dict_keys = set(local_state_dict.keys())
global_keys = set()
for key, value in ret.items():
global_keys.add(key)
if not isinstance(value, _TensorInfo):
if key in local_state_dict:
local_state_dict[key] = value
continue
if dist.get_rank() == 0:
ret[key] = full_state_dict[key]
keys.append(key)
# Broadcast every tensor to avoid OOM for now.
if len(keys) >= 1:
_broadcast_tensors(ret, local_state_dict, keys, device, pg)
if cpu_offload:
for key in keys:
local_state_dict[key] = local_state_dict[key].cpu()
keys.clear()
if strict:
if missing_keys := (local_state_dict_keys - global_keys):
for key in missing_keys:
local_state_dict.pop(key)
if keys:
_broadcast_tensors(ret, local_state_dict, keys, device, pg)
if cpu_offload:
for key in keys:
local_state_dict[key] = local_state_dict[key].cpu()
def _distribute_state_dict(
full_state_dict: dict[str, Any],
local_state_dict: dict[str, Any],
device: torch.device,
pg: Optional[dist.ProcessGroup] = None,
) -> None:
# Full_state_dict = True, broadcast_from_rank0 = False here. Each rank has
# full_state_dict. Skip the broadcast in ``_broadcast_state_dict`` and
# distribute tensors in each rank
for key, value in full_state_dict.items():
if key not in full_state_dict:
continue
if not torch.is_tensor(value):
local_state_dict[key] = value
elif value.dim() == 0:
local_state_dict[key] = value.cpu()
else:
assert isinstance(value, torch.Tensor)
local_state = local_state_dict.get(key, None)
if local_state is None:
continue
elif isinstance(local_state, DTensor):
local_state_dict[key] = distribute_tensor(
value.detach().to(device),
local_state.device_mesh,
local_state.placements,
)
else:
local_state_dict[key] = value.detach().to(device)
# These APIs are from torch.distributed.checkpoint.
# TODO: We should consolidate the code here as some not all modules can depend on
# DCP.
PATH_ITEM = Union[str, int]
OBJ_PATH = tuple[PATH_ITEM, ...]
FLATTEN_MAPPING = dict[str, OBJ_PATH]
STATE_DICT_TYPE = dict[str, Any]
CONTAINER_TYPE = MutableMapping[PATH_ITEM, Any]
def _traverse_state_dict(
state_dict: STATE_DICT_TYPE,
visitor: Callable[[OBJ_PATH, Any], None],
) -> None:
"""
Invoke ``visitor`` for each value recursively in ``state_dict``.
Mapping, list, and tuple will be flattened and other value types are treated
as the terminal values and will invoke ``visitor``.
"""
def _traverse_obj(path: OBJ_PATH, value: Any) -> None:
if isinstance(value, Mapping):
for k, v in value.items():
_traverse_obj(path + (str(k),), v)
elif isinstance(value, (list, tuple)):
for i, v in enumerate(value):
_traverse_obj(path + (i,), v)
else:
visitor(path, value)
for key, value in state_dict.items():
_traverse_obj((str(key),), value)
def _flatten_state_dict(
state_dict: STATE_DICT_TYPE,
) -> tuple[STATE_DICT_TYPE, FLATTEN_MAPPING]:
"""
Flatten ``state_dict`` made of nested dicts and lists into a top level dictionary.
Use ``unflatten_state_dict`` to revert this process.
Returns:
A tuple with the flatten state_dict and a mapping from original to new state_dict.
N.B. The new keys are derived from the object paths, joined by dot.
For example: ``{ 'a': {'b':...}}`` results in the key `a.b`.
"""
flattened: STATE_DICT_TYPE = {}
mappings: FLATTEN_MAPPING = {}
def flat_copy(path: OBJ_PATH, value: Any) -> None:
new_fqn = ".".join(map(str, path))
if new_fqn in flattened:
raise ValueError(f"duplicated flatten key {new_fqn}")
flattened[new_fqn] = value
mappings[new_fqn] = path
_traverse_state_dict(state_dict, flat_copy)
return flattened, mappings
def _set_element(root_dict: STATE_DICT_TYPE, path: OBJ_PATH, value: Any) -> None:
"""Set ``value`` in ``root_dict`` along the ``path`` object path."""
cur_container = cast(CONTAINER_TYPE, root_dict)
def extend_list(lst: list[Any], idx: int) -> None:
while len(lst) <= idx:
lst.append(None)
for i in range(1, len(path)):
prev_key = path[i - 1]
key = path[i]
def_val: Union[CONTAINER_TYPE, list[Any]] = {} if type(key) == str else []
if isinstance(cur_container, Mapping):
cur_container = cast(
CONTAINER_TYPE, cur_container.setdefault(prev_key, def_val)
)
else:
extend_list(cur_container, prev_key)
if cur_container[prev_key] is None:
cur_container[prev_key] = def_val
cur_container = cur_container[prev_key]
key = path[-1]
if type(key) == int:
extend_list(cast(list[Any], cur_container), key)
cur_container[key] = value
def _unflatten_state_dict(
state_dict: STATE_DICT_TYPE, mapping: FLATTEN_MAPPING
) -> STATE_DICT_TYPE:
"""Restore the original nested state_dict according to ``mapping`` and the flattened ``state_dict``."""
nested: STATE_DICT_TYPE = {}
for key, value in state_dict.items():
_set_element(nested, mapping[key], value)
return nested