-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathtest_public_bindings.py
601 lines (563 loc) · 25.2 KB
/
test_public_bindings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
# Owner(s): ["module: autograd"]
import importlib
import inspect
import json
import logging
import os
import pkgutil
import unittest
from typing import Callable
import torch
from torch._utils_internal import get_file_path_2 # @manual
from torch.testing._internal.common_utils import (
IS_JETSON,
IS_MACOS,
IS_WINDOWS,
run_tests,
skipIfTorchDynamo,
TestCase,
)
log = logging.getLogger(__name__)
class TestPublicBindings(TestCase):
def test_no_new_reexport_callables(self):
"""
This test aims to stop the introduction of new re-exported callables into
torch whose names do not start with _. Such callables are made available as
torch.XXX, which may not be desirable.
"""
reexported_callables = sorted(
k
for k, v in vars(torch).items()
if callable(v) and not v.__module__.startswith("torch")
)
self.assertTrue(
all(k.startswith("_") for k in reexported_callables), reexported_callables
)
def test_no_new_bindings(self):
"""
This test aims to stop the introduction of new JIT bindings into torch._C
whose names do not start with _. Such bindings are made available as
torch.XXX, which may not be desirable.
If your change causes this test to fail, add your new binding to a relevant
submodule of torch._C, such as torch._C._jit (or other relevant submodule of
torch._C). If your binding really needs to be available as torch.XXX, add it
to torch._C and add it to the allowlist below.
If you have removed a binding, remove it from the allowlist as well.
"""
# This allowlist contains every binding in torch._C that is copied into torch at
# the time of writing. It was generated with
#
# {elem for elem in dir(torch._C) if not elem.startswith("_")}
torch_C_allowlist_superset = {
"AggregationType",
"AliasDb",
"AnyType",
"Argument",
"ArgumentSpec",
"AwaitType",
"autocast_decrement_nesting",
"autocast_increment_nesting",
"AVG",
"BenchmarkConfig",
"BenchmarkExecutionStats",
"Block",
"BoolType",
"BufferDict",
"StorageBase",
"CallStack",
"Capsule",
"ClassType",
"clear_autocast_cache",
"Code",
"CompilationUnit",
"CompleteArgumentSpec",
"ComplexType",
"ConcreteModuleType",
"ConcreteModuleTypeBuilder",
"cpp",
"CudaBFloat16TensorBase",
"CudaBoolTensorBase",
"CudaByteTensorBase",
"CudaCharTensorBase",
"CudaComplexDoubleTensorBase",
"CudaComplexFloatTensorBase",
"CudaDoubleTensorBase",
"CudaFloatTensorBase",
"CudaHalfTensorBase",
"CudaIntTensorBase",
"CudaLongTensorBase",
"CudaShortTensorBase",
"DeepCopyMemoTable",
"default_generator",
"DeserializationStorageContext",
"device",
"DeviceObjType",
"DictType",
"DisableTorchFunction",
"DisableTorchFunctionSubclass",
"DispatchKey",
"DispatchKeySet",
"dtype",
"EnumType",
"ErrorReport",
"ExcludeDispatchKeyGuard",
"ExecutionPlan",
"FatalError",
"FileCheck",
"finfo",
"FloatType",
"fork",
"FunctionSchema",
"Future",
"FutureType",
"Generator",
"GeneratorType",
"get_autocast_cpu_dtype",
"get_autocast_dtype",
"get_autocast_ipu_dtype",
"get_default_dtype",
"get_num_interop_threads",
"get_num_threads",
"Gradient",
"Graph",
"GraphExecutorState",
"has_cuda",
"has_cudnn",
"has_lapack",
"has_mkl",
"has_mkldnn",
"has_mps",
"has_openmp",
"has_spectral",
"iinfo",
"import_ir_module_from_buffer",
"import_ir_module",
"InferredType",
"init_num_threads",
"InterfaceType",
"IntType",
"SymFloatType",
"SymBoolType",
"SymIntType",
"IODescriptor",
"is_anomaly_enabled",
"is_anomaly_check_nan_enabled",
"is_autocast_cache_enabled",
"is_autocast_cpu_enabled",
"is_autocast_ipu_enabled",
"is_autocast_enabled",
"is_grad_enabled",
"is_inference_mode_enabled",
"JITException",
"layout",
"ListType",
"LiteScriptModule",
"LockingLogger",
"LoggerBase",
"memory_format",
"merge_type_from_type_comment",
"ModuleDict",
"Node",
"NoneType",
"NoopLogger",
"NumberType",
"OperatorInfo",
"OptionalType",
"OutOfMemoryError",
"ParameterDict",
"parse_ir",
"parse_schema",
"parse_type_comment",
"PyObjectType",
"PyTorchFileReader",
"PyTorchFileWriter",
"qscheme",
"read_vitals",
"RRefType",
"ScriptClass",
"ScriptClassFunction",
"ScriptDict",
"ScriptDictIterator",
"ScriptDictKeyIterator",
"ScriptList",
"ScriptListIterator",
"ScriptFunction",
"ScriptMethod",
"ScriptModule",
"ScriptModuleSerializer",
"ScriptObject",
"ScriptObjectProperty",
"SerializationStorageContext",
"set_anomaly_enabled",
"set_autocast_cache_enabled",
"set_autocast_cpu_dtype",
"set_autocast_dtype",
"set_autocast_ipu_dtype",
"set_autocast_cpu_enabled",
"set_autocast_ipu_enabled",
"set_autocast_enabled",
"set_flush_denormal",
"set_num_interop_threads",
"set_num_threads",
"set_vital",
"Size",
"StaticModule",
"Stream",
"StreamObjType",
"Event",
"StringType",
"SUM",
"SymFloat",
"SymInt",
"TensorType",
"ThroughputBenchmark",
"TracingState",
"TupleType",
"Type",
"unify_type_list",
"UnionType",
"Use",
"Value",
"set_autocast_gpu_dtype",
"get_autocast_gpu_dtype",
"vitals_enabled",
"wait",
"Tag",
"set_autocast_xla_enabled",
"set_autocast_xla_dtype",
"get_autocast_xla_dtype",
"is_autocast_xla_enabled",
}
torch_C_bindings = {elem for elem in dir(torch._C) if not elem.startswith("_")}
# torch.TensorBase is explicitly removed in torch/__init__.py, so included here (#109940)
explicitly_removed_torch_C_bindings = {"TensorBase"}
torch_C_bindings = torch_C_bindings - explicitly_removed_torch_C_bindings
# Check that the torch._C bindings are all in the allowlist. Since
# bindings can change based on how PyTorch was compiled (e.g. with/without
# CUDA), the two may not be an exact match but the bindings should be
# a subset of the allowlist.
difference = torch_C_bindings.difference(torch_C_allowlist_superset)
msg = f"torch._C had bindings that are not present in the allowlist:\n{difference}"
self.assertTrue(torch_C_bindings.issubset(torch_C_allowlist_superset), msg)
@staticmethod
def _is_mod_public(modname):
split_strs = modname.split(".")
for elem in split_strs:
if elem.startswith("_"):
return False
return True
@unittest.skipIf(
IS_WINDOWS or IS_MACOS,
"Inductor/Distributed modules hard fail on windows and macos",
)
@skipIfTorchDynamo("Broken and not relevant for now")
def test_modules_can_be_imported(self):
failures = []
def onerror(modname):
failures.append(
(modname, ImportError("exception occurred importing package"))
)
for mod in pkgutil.walk_packages(torch.__path__, "torch.", onerror=onerror):
modname = mod.name
try:
if "__main__" in modname:
continue
importlib.import_module(modname)
except Exception as e:
# Some current failures are not ImportError
log.exception("import_module failed")
failures.append((modname, e))
# It is ok to add new entries here but please be careful that these modules
# do not get imported by public code.
# DO NOT add public modules here.
private_allowlist = {
"torch._inductor.codegen.cuda.cuda_kernel",
# TODO(#133647): Remove the onnx._internal entries after
# onnx and onnxscript are installed in CI.
"torch.onnx._internal.exporter",
"torch.onnx._internal.exporter._analysis",
"torch.onnx._internal.exporter._building",
"torch.onnx._internal.exporter._capture_strategies",
"torch.onnx._internal.exporter._compat",
"torch.onnx._internal.exporter._core",
"torch.onnx._internal.exporter._decomp",
"torch.onnx._internal.exporter._dispatching",
"torch.onnx._internal.exporter._fx_passes",
"torch.onnx._internal.exporter._ir_passes",
"torch.onnx._internal.exporter._isolated",
"torch.onnx._internal.exporter._onnx_program",
"torch.onnx._internal.exporter._registration",
"torch.onnx._internal.exporter._reporting",
"torch.onnx._internal.exporter._schemas",
"torch.onnx._internal.exporter._tensors",
"torch.onnx._internal.exporter._torchlib.ops",
"torch.onnx._internal.exporter._verification",
"torch.onnx._internal.fx._pass",
"torch.onnx._internal.fx.analysis",
"torch.onnx._internal.fx.analysis.unsupported_nodes",
"torch.onnx._internal.fx.decomposition_skip",
"torch.onnx._internal.fx.diagnostics",
"torch.onnx._internal.fx.fx_onnx_interpreter",
"torch.onnx._internal.fx.fx_symbolic_graph_extractor",
"torch.onnx._internal.fx.onnxfunction_dispatcher",
"torch.onnx._internal.fx.op_validation",
"torch.onnx._internal.fx.passes",
"torch.onnx._internal.fx.passes._utils",
"torch.onnx._internal.fx.passes.decomp",
"torch.onnx._internal.fx.passes.functionalization",
"torch.onnx._internal.fx.passes.modularization",
"torch.onnx._internal.fx.passes.readability",
"torch.onnx._internal.fx.passes.type_promotion",
"torch.onnx._internal.fx.passes.virtualization",
"torch.onnx._internal.fx.type_utils",
"torch.testing._internal.common_distributed",
"torch.testing._internal.common_fsdp",
"torch.testing._internal.dist_utils",
"torch.testing._internal.distributed.common_state_dict",
"torch.testing._internal.distributed._shard.sharded_tensor",
"torch.testing._internal.distributed._shard.test_common",
"torch.testing._internal.distributed._tensor.common_dtensor",
"torch.testing._internal.distributed.ddp_under_dist_autograd_test",
"torch.testing._internal.distributed.distributed_test",
"torch.testing._internal.distributed.distributed_utils",
"torch.testing._internal.distributed.fake_pg",
"torch.testing._internal.distributed.multi_threaded_pg",
"torch.testing._internal.distributed.nn.api.remote_module_test",
"torch.testing._internal.distributed.rpc.dist_autograd_test",
"torch.testing._internal.distributed.rpc.dist_optimizer_test",
"torch.testing._internal.distributed.rpc.examples.parameter_server_test",
"torch.testing._internal.distributed.rpc.examples.reinforcement_learning_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_agent_rpc_test",
"torch.testing._internal.distributed.rpc.faulty_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.jit.dist_autograd_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test",
"torch.testing._internal.distributed.rpc.jit.rpc_test_faulty",
"torch.testing._internal.distributed.rpc.rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc.rpc_test",
"torch.testing._internal.distributed.rpc.tensorpipe_rpc_agent_test_fixture",
"torch.testing._internal.distributed.rpc_utils",
"torch._inductor.codegen.cuda.cuda_template",
"torch._inductor.codegen.cuda.gemm_template",
"torch._inductor.codegen.cpp_template",
"torch._inductor.codegen.cpp_gemm_template",
"torch._inductor.codegen.cpp_micro_gemm",
"torch._inductor.codegen.cpp_template_kernel",
"torch._inductor.runtime.triton_helpers",
"torch.ao.pruning._experimental.data_sparsifier.lightning.callbacks.data_sparsity",
"torch.backends._coreml.preprocess",
"torch.contrib._tensorboard_vis",
"torch.distributed._composable",
"torch.distributed._functional_collectives",
"torch.distributed._functional_collectives_impl",
"torch.distributed._shard",
"torch.distributed._sharded_tensor",
"torch.distributed._sharding_spec",
"torch.distributed._spmd.api",
"torch.distributed._spmd.batch_dim_utils",
"torch.distributed._spmd.comm_tensor",
"torch.distributed._spmd.data_parallel",
"torch.distributed._spmd.distribute",
"torch.distributed._spmd.experimental_ops",
"torch.distributed._spmd.parallel_mode",
"torch.distributed._tensor",
"torch.distributed._tools.sac_ilp",
"torch.distributed.algorithms._checkpoint.checkpoint_wrapper",
"torch.distributed.algorithms._optimizer_overlap",
"torch.distributed.rpc._testing.faulty_agent_backend_registry",
"torch.distributed.rpc._utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.dlrm_utils",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_disk_savings",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_forward_time",
"torch.ao.pruning._experimental.data_sparsifier.benchmarks.evaluate_model_metrics",
"torch.ao.pruning._experimental.data_sparsifier.lightning.tests.test_callbacks",
"torch.csrc.jit.tensorexpr.scripts.bisect",
"torch.csrc.lazy.test_mnist",
"torch.distributed._shard.checkpoint._fsspec_filesystem",
"torch.distributed._tensor.examples.visualize_sharding_example",
"torch.distributed.checkpoint._fsspec_filesystem",
"torch.distributed.examples.memory_tracker_example",
"torch.testing._internal.distributed.rpc.fb.thrift_rpc_agent_test_fixture",
"torch.utils._cxx_pytree",
"torch.utils.tensorboard._convert_np",
"torch.utils.tensorboard._embedding",
"torch.utils.tensorboard._onnx_graph",
"torch.utils.tensorboard._proto_graph",
"torch.utils.tensorboard._pytorch_graph",
"torch.utils.tensorboard._utils",
}
errors = []
for mod, exc in failures:
if mod in private_allowlist:
# make sure mod is actually private
assert any(t.startswith("_") for t in mod.split("."))
continue
errors.append(
f"{mod} failed to import with error {type(exc).__qualname__}: {str(exc)}"
)
self.assertEqual("", "\n".join(errors))
# AttributeError: module 'torch.distributed' has no attribute '_shard'
@unittest.skipIf(IS_WINDOWS or IS_JETSON, "Distributed Attribute Error")
@skipIfTorchDynamo("Broken and not relevant for now")
def test_correct_module_names(self):
"""
An API is considered public, if its `__module__` starts with `torch.`
and there is no name in `__module__` or the object itself that starts with "_".
Each public package should either:
- (preferred) Define `__all__` and all callables and classes in there must have their
`__module__` start with the current submodule's path. Things not in `__all__` should
NOT have their `__module__` start with the current submodule.
- (for simple python-only modules) Not define `__all__` and all the elements in `dir(submod)` must have their
`__module__` that start with the current submodule.
"""
failure_list = []
with open(
get_file_path_2(os.path.dirname(__file__), "allowlist_for_publicAPI.json")
) as json_file:
# no new entries should be added to this allow_dict.
# New APIs must follow the public API guidelines.
allow_dict = json.load(json_file)
# Because we want minimal modifications to the `allowlist_for_publicAPI.json`,
# we are adding the entries for the migrated modules here from the original
# locations.
for modname in allow_dict["being_migrated"]:
if modname in allow_dict:
allow_dict[allow_dict["being_migrated"][modname]] = allow_dict[
modname
]
def test_module(modname):
try:
if "__main__" in modname:
return
mod = importlib.import_module(modname)
except Exception:
# It is ok to ignore here as we have a test above that ensures
# this should never happen
return
if not self._is_mod_public(modname):
return
# verifies that each public API has the correct module name and naming semantics
def check_one_element(elem, modname, mod, *, is_public, is_all):
obj = getattr(mod, elem)
# torch.dtype is not a class nor callable, so we need to check for it separately
if not (
isinstance(obj, (Callable, torch.dtype)) or inspect.isclass(obj)
):
return
elem_module = getattr(obj, "__module__", None)
# Only used for nice error message below
why_not_looks_public = ""
if elem_module is None:
why_not_looks_public = (
"because it does not have a `__module__` attribute"
)
# If a module is being migrated from foo.a to bar.a (that is entry {"foo": "bar"}),
# the module's starting package would be referred to as the new location even
# if there is a "from foo import a" inside the "bar.py".
modname = allow_dict["being_migrated"].get(modname, modname)
elem_modname_starts_with_mod = (
elem_module is not None
and elem_module.startswith(modname)
and "._" not in elem_module
)
if not why_not_looks_public and not elem_modname_starts_with_mod:
why_not_looks_public = (
f"because its `__module__` attribute (`{elem_module}`) is not within the "
f"torch library or does not start with the submodule where it is defined (`{modname}`)"
)
# elem's name must NOT begin with an `_` and it's module name
# SHOULD start with it's current module since it's a public API
looks_public = not elem.startswith("_") and elem_modname_starts_with_mod
if not why_not_looks_public and not looks_public:
why_not_looks_public = f"because it starts with `_` (`{elem}`)"
if is_public != looks_public:
if modname in allow_dict and elem in allow_dict[modname]:
return
if is_public:
why_is_public = (
f"it is inside the module's (`{modname}`) `__all__`"
if is_all
else "it is an attribute that does not start with `_` on a module that "
"does not have `__all__` defined"
)
fix_is_public = (
f"remove it from the modules's (`{modname}`) `__all__`"
if is_all
else f"either define a `__all__` for `{modname}` or add a `_` at the beginning of the name"
)
else:
assert is_all
why_is_public = (
f"it is not inside the module's (`{modname}`) `__all__`"
)
fix_is_public = (
f"add it from the modules's (`{modname}`) `__all__`"
)
if looks_public:
why_looks_public = (
"it does look public because it follows the rules from the doc above "
"(does not start with `_` and has a proper `__module__`)."
)
fix_looks_public = "make its name start with `_`"
else:
why_looks_public = why_not_looks_public
if not elem_modname_starts_with_mod:
fix_looks_public = (
"make sure the `__module__` is properly set and points to a submodule "
f"of `{modname}`"
)
else:
fix_looks_public = (
"remove the `_` at the beginning of the name"
)
failure_list.append(f"# {modname}.{elem}:")
is_public_str = "" if is_public else " NOT"
failure_list.append(
f" - Is{is_public_str} public: {why_is_public}"
)
looks_public_str = "" if looks_public else " NOT"
failure_list.append(
f" - Does{looks_public_str} look public: {why_looks_public}"
)
# Swap the str below to avoid having to create the NOT again
failure_list.append(
" - You can do either of these two things to fix this problem:"
)
failure_list.append(
f" - To make it{looks_public_str} public: {fix_is_public}"
)
failure_list.append(
f" - To make it{is_public_str} look public: {fix_looks_public}"
)
if hasattr(mod, "__all__"):
public_api = mod.__all__
all_api = dir(mod)
for elem in all_api:
check_one_element(
elem, modname, mod, is_public=elem in public_api, is_all=True
)
else:
all_api = dir(mod)
for elem in all_api:
if not elem.startswith("_"):
check_one_element(
elem, modname, mod, is_public=True, is_all=False
)
for mod in pkgutil.walk_packages(torch.__path__, "torch."):
modname = mod.name
test_module(modname)
test_module("torch")
msg = (
"All the APIs below do not meet our guidelines for public API from "
"https://github.com/pytorch/pytorch/wiki/Public-API-definition-and-documentation.\n"
)
msg += (
"Make sure that everything that is public is expected (in particular that the module "
"has a properly populated `__all__` attribute) and that everything that is supposed to be public "
"does look public (it does not start with `_` and has a `__module__` that is properly populated)."
)
msg += "\n\nFull list:\n"
msg += "\n".join(map(str, failure_list))
# empty lists are considered false in python
self.assertTrue(not failure_list, msg)
if __name__ == "__main__":
run_tests()