-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathoptimization.py
486 lines (424 loc) · 17.2 KB
/
optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
# mypy: allow-untyped-defs
import copy
import logging
import operator
import time
from collections import defaultdict
from collections.abc import Iterable
from enum import Enum
from typing import Any, cast, Optional
import torch
import torch.fx as fx
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.mkldnn as th_mkldnn
from torch.fx.node import Argument, Target
from torch.fx.passes.shape_prop import ShapeProp
from torch.nn.utils.fusion import fuse_conv_bn_eval, fuse_linear_bn_eval
__all__ = [
"matches_module_pattern",
"replace_node_module",
"fuse",
"remove_dropout",
"extract_subgraph",
"modules_to_mkldnn",
"reset_modules",
"MklSubgraph",
"gen_mkl_autotuner",
"use_mkl_length",
"UnionFind",
"optimize_for_inference",
]
def _parent_name(target: str) -> tuple[str, str]:
"""
Splits a qualname into parent path and last atom.
For example, `foo.bar.baz` -> (`foo.bar`, `baz`)
"""
*parent, name = target.rsplit(".", 1)
return parent[0] if parent else "", name
# Works for length 2 patterns with 2 modules
def matches_module_pattern(
pattern: Iterable[type], node: fx.Node, modules: dict[str, Any]
):
if len(node.args) == 0:
return False
nodes: tuple[Any, fx.Node] = (node.args[0], node)
for expected_type, current_node in zip(pattern, nodes):
if not isinstance(current_node, fx.Node):
return False
if current_node.op != "call_module":
return False
if not isinstance(current_node.target, str):
return False
if current_node.target not in modules:
return False
if type(modules[current_node.target]) is not expected_type:
return False
return True
def replace_node_module(
node: fx.Node, modules: dict[str, Any], new_module: torch.nn.Module
):
assert isinstance(node.target, str)
parent_name, name = _parent_name(node.target)
modules[node.target] = new_module
setattr(modules[parent_name], name, new_module)
def fuse(model: torch.nn.Module, inplace=False, no_trace=False) -> torch.nn.Module:
"""
Fuses convolution/BN and linear/BN layers for inference purposes.
Will deepcopy your model by default, but can modify the model inplace as well.
"""
patterns = [
(nn.Conv1d, nn.BatchNorm1d),
(nn.Conv2d, nn.BatchNorm2d),
(nn.Conv3d, nn.BatchNorm3d),
(nn.Linear, nn.BatchNorm1d),
]
if not inplace:
model = copy.deepcopy(model)
if not no_trace or not isinstance(model, torch.fx.GraphModule):
fx_model = fx.symbolic_trace(model)
else:
fx_model = model
modules = dict(fx_model.named_modules())
new_graph = copy.deepcopy(fx_model.graph)
for pattern in patterns:
for node in new_graph.nodes:
if matches_module_pattern(pattern, node, modules):
if len(node.args[0].users) > 1:
# Output of conv/linear is used by other nodes
continue
first_layer = modules[node.args[0].target]
bn = modules[node.target]
if not bn.track_running_stats:
continue
if pattern[0] in [nn.Conv1d, nn.Conv2d, nn.Conv3d]:
fused_layer = fuse_conv_bn_eval(first_layer, bn)
else: # nn.Linear
fused_layer = fuse_linear_bn_eval(first_layer, bn)
replace_node_module(node.args[0], modules, fused_layer)
node.replace_all_uses_with(node.args[0])
new_graph.erase_node(node)
return fx.GraphModule(fx_model, new_graph)
def remove_dropout(model: nn.Module) -> nn.Module:
"""
Removes all dropout layers from the module.
"""
fx_model = fx.symbolic_trace(model)
class DropoutRemover(torch.fx.Transformer):
def call_module(
self, target: Target, args: tuple[Argument, ...], kwargs: dict[str, Any]
) -> Any:
if isinstance(self.submodules[target], nn.Dropout):
assert len(args) == 1
return args[0]
else:
return super().call_module(target, args, kwargs)
return DropoutRemover(fx_model).transform()
def extract_subgraph(
orig_module: nn.Module,
nodes: list[fx.Node],
inputs: list[fx.Node],
outputs: list[fx.Node],
):
"""
Given lists of nodes from an existing graph that represent a subgraph, returns a submodule that executes that subgraph.
"""
new_graph = fx.Graph()
env: dict[fx.Node, fx.Node] = {}
for input in inputs:
new_node = new_graph.placeholder(input.name)
env[input] = new_node
for node in nodes:
new_node = new_graph.node_copy(node, lambda x: env[x])
env[node] = new_node
new_graph.output([env[output] for output in outputs])
new_graph.lint()
return fx.GraphModule(orig_module, new_graph)
mkldnn_supported = [
nn.Conv2d,
nn.Linear,
nn.BatchNorm2d,
nn.ReLU,
nn.MaxPool2d,
nn.AvgPool2d,
nn.AdaptiveAvgPool2d,
torch.relu,
torch.transpose,
torch.sigmoid,
F.relu,
F.avg_pool2d,
F.adaptive_avg_pool2d,
]
# These are operators that may not be convertible into MKLDNN ops (e.g. the
# args are scalar values). Thus, we only include them in the subgraph if their
# arguments are already in MKLDNN.
# TODO: Determine whether this can be removed after type inference.
mkldnn_supported_unknown = [operator.add, operator.mul]
mkldnn_map = {
nn.Conv2d: th_mkldnn.MkldnnConv2d,
nn.Linear: th_mkldnn.MkldnnLinear,
nn.BatchNorm2d: lambda a, _: th_mkldnn.MkldnnBatchNorm(a),
}
def modules_to_mkldnn(nodes: list[fx.Node], modules: dict[str, nn.Module]):
"""
For each node, if it's a module that can be preconverted into MKLDNN,
then we do so and create a mapping to allow us to convert from the MKLDNN
version of the module to the original.
"""
old_modules: dict[nn.Module, nn.Module] = {}
for node in nodes:
if node.op == "call_module":
assert isinstance(node.target, str)
cur_module = modules[node.target]
if type(cur_module) in mkldnn_map:
new_module = mkldnn_map[type(cur_module)](cur_module, torch.float)
assert isinstance(new_module, nn.Module)
old_modules[new_module] = copy.deepcopy(cur_module)
replace_node_module(node, modules, new_module)
return old_modules
def reset_modules(
nodes: list[fx.Node],
modules: dict[str, nn.Module],
old_modules: dict[nn.Module, nn.Module],
):
"""
Maps each module that's been changed with `modules_to_mkldnn` back to its
original.
"""
for node in nodes:
if node.op == "call_module":
assert isinstance(node.target, str)
cur_module = modules[node.target]
if cur_module in old_modules:
replace_node_module(node, modules, old_modules[cur_module])
class MklSubgraph:
def __init__(self, fx_graph: fx.Graph):
self.fx_graph = fx_graph
self.nodes: list[fx.Node] = []
self.start_nodes: list[fx.Node] = []
self.end_nodes: list[fx.Node] = []
def gen_mkl_autotuner(example_inputs, iters=10, warmup=1):
"""
This generates a heuristic that can be passed into `optimize_for_inference` that
determines whether a subgraph should be run in MKL by running it with the example_inputs.
Example usage:
heuristic = gen_mkl_autotuner(example_inputs, iters=10)
fast_model = optimization.optimize_for_inference(model, heuristic)
"""
fx_model = None
old_modules = None
def use_mkl_heuristic(graph: MklSubgraph) -> bool:
nonlocal fx_model, old_modules
input_nodes = graph.start_nodes
if fx_model is None:
fx_model = graph.fx_graph.owning_module
old_modules = graph.fx_graph.old_modules # type: ignore[attr-defined]
ShapeProp(fx_model).propagate(example_inputs)
sample_inputs = [torch.randn(node.shape) for node in input_nodes] # type: ignore[attr-defined]
output_args = cast(list[fx.Node], [node.args[0] for node in graph.end_nodes])
submodule = extract_subgraph(fx_model, graph.nodes, input_nodes, output_args)
def benchmark(f):
for _ in range(warmup):
f()
begin = time.time()
for _ in range(iters):
f()
return time.time() - begin
mkl_time = benchmark(
lambda: [
i.to_dense() for i in submodule(*[i.to_mkldnn() for i in sample_inputs])
]
)
reset_modules(
submodule.graph.nodes, dict(submodule.named_modules()), old_modules
)
no_mkl_time = benchmark(lambda: submodule(*sample_inputs))
return mkl_time < no_mkl_time
return use_mkl_heuristic
def use_mkl_length(graph: MklSubgraph) -> bool:
"""
This is a heuristic that can be passed into `optimize_for_inference` that
determines whether a subgraph should be run in MKL by checking if there
are more than 2 nodes in it
"""
return len(graph.nodes) > 2
class UnionFind:
def __init__(self, n):
self.parent: list[Optional[int]] = [None] * n
self.size: list[int] = [0] * n
def make_set(self, v: int):
self.parent[v] = v
self.size[v] = 1
def find(self, v: int) -> int:
par = self.parent[v]
if v == par:
return v
assert par is not None
self.parent[v] = self.find(par)
return cast(int, self.parent[v])
def join(self, a: int, b: int):
a, b = self.find(a), self.find(b)
if a == b:
return a
if self.size[a] < self.size[b]:
a, b = b, a
self.parent[b] = a
self.size[a] += self.size[b]
def optimize_for_inference(
model: torch.nn.Module,
pass_config: Optional[dict[str, Any]] = None,
tracer: type[fx.Tracer] = fx.Tracer,
) -> torch.nn.Module:
"""
Performs a set of optimization passes to optimize a model for the
purposes of inference. Specifically, the passes that are run are:
1. Conv/BN fusion
2. Dropout removal
3. MKL layout optimizations
The third optimization takes a function `use_mkl_heuristic` that's used
to determine whether a subgraph should be explicitly run in MKL layout.
Note: As FX does not currently handle aliasing, this pass currently
assumes nothing aliases. If that isn't true, use at your own risk.
"""
default_pass_config = {
"conv_bn_fuse": True,
"remove_dropout": True,
"mkldnn_layout_optimize": {"heuristic": use_mkl_length},
}
if pass_config is None:
pass_config = {}
default_pass_config.update(pass_config)
if default_pass_config["conv_bn_fuse"]:
model = fuse(model)
if default_pass_config["remove_dropout"]:
model = remove_dropout(model)
if default_pass_config["mkldnn_layout_optimize"] is False:
return model
if not isinstance(default_pass_config["mkldnn_layout_optimize"], dict):
raise RuntimeError("mkldnn_layout_optimize config is not a dict")
if "heuristic" not in default_pass_config["mkldnn_layout_optimize"]:
raise RuntimeError("Heuristic not found in mkldnn_layout_optimize config")
use_mkl_heuristic = default_pass_config["mkldnn_layout_optimize"]["heuristic"]
cur_tracer = tracer()
fx_graph = cur_tracer.trace(copy.deepcopy(model))
fx.GraphModule(cur_tracer.root, fx_graph)
modules: dict[str, nn.Module] = dict(model.named_modules())
class MklSupport(Enum):
NO = 1
YES = 2
UNKNOWN = 3
# Inserts to_mkldnn and to_dense around every node we want to be a MKLDNN node.
# If the op is in `mkldnn_supported` then we always treat it as a MKLDNN node.
# However, if it's in `mkldnn_supported_unknown`, then we only treat it as
# a MKLDNN node if its inputs are MKLDNN nodes.
for node in list(fx_graph.nodes):
supports_mkldnn = MklSupport.NO
if node.op == "call_module":
cur_module = modules[node.target]
if type(cur_module) in mkldnn_supported:
supports_mkldnn = MklSupport.YES
sample_parameter = next(cur_module.parameters(), None)
if sample_parameter is not None:
assert (
sample_parameter.dtype == torch.float
), "this pass is only for torch.float modules"
assert sample_parameter.device == torch.device(
"cpu"
), "this pass is only for CPU modules"
elif node.op == "call_function":
if node.target in mkldnn_supported:
supports_mkldnn = MklSupport.YES
elif node.target in mkldnn_supported_unknown:
supports_mkldnn = MklSupport.UNKNOWN
if supports_mkldnn != MklSupport.NO:
if supports_mkldnn == MklSupport.UNKNOWN:
if not any(arg.target == "to_dense" for arg in node.args):
continue
with fx_graph.inserting_before(node):
mkldnn_args = fx.map_arg(
node.args, lambda n: fx_graph.call_method("to_mkldnn", (n,))
)
node.args = cast(tuple[fx.node.Argument], mkldnn_args)
with fx_graph.inserting_after(node):
dense_x = fx_graph.create_node("call_method", "to_dense", (node,))
node.replace_all_uses_with(dense_x)
dense_x.args = (node,)
# Does pre-conversion of all modules into MKLDNN (when possible)
old_modules = modules_to_mkldnn(list(fx_graph.nodes), modules)
fx_graph.old_modules = old_modules # type: ignore[attr-defined]
# optimizes all a -> to_dense -> to_mkldnn -> b patterns into a -> b
for node in fx_graph.nodes:
if node.op == "call_method" and node.target == "to_dense":
prv_node = node.args[0]
users = list(node.users)
for user in users:
if user.op == "call_method" and user.target == "to_mkldnn":
user.replace_all_uses_with(prv_node)
fx_graph.erase_node(user)
if len(node.users) == 0:
fx_graph.erase_node(node)
num_nodes = len(fx_graph.nodes)
uf = UnionFind(num_nodes)
def get_color(n):
if hasattr(n, "color"): # Current node is part of a MKL subgraph
return uf.find(n.color)
if hasattr(n, "start_color"): # Current node is input to MKL subgraph
return uf.find(n.start_color)
return None
# This code is to find each MKLDNN subgraph. Each MKLDNN subgraph consists
# of input nodes (which are only `to_mkldnn` calls), output nodes
# (`to_dense` calls), and intermediate nodes, which are run entirely on
# MKLDNN layout tensors.
#
# Specifically, this code does a flood fill on a directed acyclic graph
# (DAG), starting from each possible "start node" (i.e: `to_mkldnn` nodes).
# If every node only had one input, this would be sufficient. However, in
# the case that a node has multiple inputs coming from different start
# nodes (i.e. colors), we need to join these 2 colors into 1. That's done
# using a Disjoint Set Union.
for cur_idx, node in enumerate(fx_graph.nodes):
if node.op == "call_method" and node.target == "to_mkldnn":
node.start_color = cur_idx
uf.make_set(cur_idx)
elif node.op == "call_method" and node.target == "to_dense":
assert get_color(node.args[0]) is not None
node.end_color = get_color(node.args[0])
else:
cur_colors = [
get_color(i)
for i in node.all_input_nodes
if isinstance(i, fx.Node)
if get_color(i) is not None
]
if len(cur_colors) == 0:
continue
assert not any(i is None for i in cur_colors)
cur_colors = sorted(cur_colors)
node.color = cur_colors[0]
for other_color in cur_colors[1:]:
uf.join(cur_colors[0], other_color)
mkldnn_graphs: dict[int, MklSubgraph] = defaultdict(lambda: MklSubgraph(fx_graph))
for node in fx_graph.nodes:
if hasattr(node, "color"):
mkldnn_graphs[uf.find(node.color)].nodes.append(node)
if hasattr(node, "start_color"):
mkldnn_graphs[uf.find(node.start_color)].start_nodes.append(node)
if hasattr(node, "end_color"):
mkldnn_graphs[uf.find(node.end_color)].end_nodes.append(node)
# Now that we have all the subgraphs, we need to decide which MKLDNN
# subgraphs we actually want to keep in MKLDNN.
for graph in mkldnn_graphs.values():
if not use_mkl_heuristic(graph):
for node in graph.start_nodes + graph.end_nodes:
prv = node.args[0]
node.replace_all_uses_with(prv)
fx_graph.erase_node(node)
reset_modules(graph.nodes, modules, old_modules)
mkldnn_conversions = 0
for node in fx_graph.nodes:
if node.target == "to_mkldnn" or node.target == "to_dense":
mkldnn_conversions += 1
logging.getLogger(__name__).info("mkldnn conversions: %s", mkldnn_conversions)
fx_graph.lint()
result = fx.GraphModule(model, fx_graph)
return result