-
Notifications
You must be signed in to change notification settings - Fork 24k
/
Copy pathremote_module.py
753 lines (618 loc) · 30.5 KB
/
remote_module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
#!/usr/bin/python3
# mypy: allow-untyped-defs
import collections
import io
import sys
import types
from collections.abc import Iterator, Mapping
from typing import Any, Callable, Optional, TypeVar, Union
import torch
import torch.distributed.rpc as rpc
from torch import device, dtype, nn, Tensor
from torch.distributed import _remote_device
from torch.distributed.nn.jit import instantiator
from torch.distributed.rpc.internal import _internal_rpc_pickler
from torch.nn import Module
from torch.nn.parameter import Parameter
from torch.utils.hooks import RemovableHandle
__all__ = ["RemoteModule"]
_grad_t = Union[tuple[Tensor, ...], Tensor]
# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use
# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be
# the type of the subclass, not the looser type of `Module`.
T = TypeVar("T", bound="Module")
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE = (
instantiator.instantiate_non_scriptable_remote_module_template()
)
_REMOTE_MODULE_PICKLED_ATTRIBUTES = (
"on",
"device",
"is_device_map_set",
"is_scriptable",
"generated_methods",
"module_rref",
)
_SerializedRemoteModule = collections.namedtuple( # type: ignore[misc]
"_SerializedRemoteModule",
_REMOTE_MODULE_PICKLED_ATTRIBUTES,
)
# These attributes are mostly from RemoteModule's parent class and are intentionally not pickled.
# A new attribute of RemoteModule should be either in _REMOTE_MODULE_PICKLED_ATTRIBUTES
# or _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING.
# Otherwise, it will not be pickled.
_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING = (
"training",
"_parameters",
"_buffers",
"_non_persistent_buffers_set",
"_backward_hooks",
"_backward_pre_hooks",
"_is_full_backward_hook",
"_forward_hooks",
"_forward_hooks_with_kwargs",
"_forward_hooks_always_called",
"_forward_pre_hooks",
"_forward_pre_hooks_with_kwargs",
"_state_dict_hooks",
"_state_dict_pre_hooks",
"_load_state_dict_pre_hooks",
"_load_state_dict_post_hooks",
"_state_dict_pre_hooks",
"_modules",
# The two attributes below are generated methods, not available at pickling time.
"forward_async",
"forward",
)
# RPC handler.
def _instantiate_template(module_interface_cls, enable_moving_cpu_tensors_to_cuda):
instantiator.instantiate_scriptable_remote_module_template(
module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
def _create_module(module_cls, args, kwargs, device):
module = module_cls(*args, **kwargs)
if not isinstance(module, nn.Module):
raise ValueError(
"Expect `module_cls(*args, **kwargs)` returns an instance of <class nn.Module>, "
f"but it returns an instance of {type(module)}."
)
module.to(device)
return module
def _create_module_with_interface(
module_cls, args, kwargs, device, module_interface_cls
):
module = _create_module(module_cls, args, kwargs, device)
if module_interface_cls is not None:
module = torch.jit.script(module)
return rpc.RRef(module, module_interface_cls)
def _param_rrefs(module_rref, recurse) -> list[rpc.RRef[Parameter]]:
ret: list[rpc.RRef[Parameter]] = [
rpc.RRef(param) for param in module_rref.local_value().parameters(recurse)
]
return ret
def _raise_not_supported(name: str) -> None:
raise ValueError(f"Method ``{name}`` not supported for RemoteModule")
class _RemoteModule(nn.Module):
def __new__(cls, *args, **kwargs):
# Use __new__ for logging purposes.
torch._C._log_api_usage_once("torch.distributed.nn.api.remote_module")
return super().__new__(cls)
def __init__(
self,
remote_device: str,
module_cls: type[nn.Module],
args: Optional[tuple] = None,
kwargs: Optional[dict[str, Any]] = None,
_module_interface_cls: Any = None,
):
"""
RemoteModule instance can only be created after RPC initialization.
It creates a user-specified module on a specified remote node.
It behaves like a regular ``nn.Module`` except that the ``forward`` method is
executed on the remote node.
It takes care of autograd recording to ensure the backward pass propagates
gradients back to the corresponding remote module.
It can be shared across processors using `RPC framework <https://pytorch.org/docs/stable/rpc.html>`__,
without incurring any overheads of copying the actual module,
which is equivalent to an :class:`~torch.distributed.rpc.RRef`
pointing to the remote module.
The arguments of ``forward_async`` and ``forward`` are the same as
the ``forward`` method of the module returned by the ``module_cls``.
Apart from ``forward_async`` and ``forward``, no other methods are supported from nn.Module for now.
Particularly, to create a hybrid model, typically the local modules should be
created outside of remote modules, rather than as submodules of any remote module (by calling ``add_module``).
Hybrid Example:
>>> class HybridModel(nn.Module):
>>> def __init__(self) -> None:
>>> nn.Module.__init__(self)
>>> self.remote_embedding = RemoteModule(...)
>>> self.local_linear = nn.Linear(...)
For example, if ``module_cls`` returns an instance of ``nn.Linear``,
that has ``forward`` method signature, ``def forward(input: Tensor) -> Tensor:``,
the generated ``RemoteModule`` will have 2 methods in signature of
``def forward(input: Tensor) -> Tensor:`` and
``def forward_async(input: Tensor) -> Future[Tensor]:``.
.. note::
If the remote module is placed on a cuda device,
any input CPU tensors will be automatically moved to the same cuda device,
and GPU tensors are returned over the wire according to the device map of the remote worker on TensorPipe RPC backend.
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The device can be a local device or a remote device specified by one of the following remote
formats:
1. "rank:<rank>/<device>" (ex: "rank:0/cuda:0").
2. "<worker_name>/<device>" (ex: "trainer0/cuda:0").
In addition, the device field can be optional and the default value is "cpu".
module_cls (nn.Module): For example,
>>> class MyModule(nn.Module):
>>> def forward(input):
>>> return input + 1
>>>
>>> module_cls = MyModule
args (Sequence, optional): args to be passed to ``module_cls``.
kwargs (Dict, optional): kwargs to be passed to ``module_cls``.
_module_interface_cls (type, optional): The TorchScript interface type for the module
to be created. The type object should be decorated by @torch.jit.interface.
If not provided, the generated RemoteModule is not torchscript-able.
Warning, this is an experimental API and susceptible to frequent changes.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_cls``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_linear_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>> input = torch.randn(128, 20)
>>> ret_fut = remote_linear_module.forward_async(input)
>>> ret = ret_fut.wait()
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
"""
super().__init__()
enable_moving_cpu_tensors_to_cuda = self._prepare_init(remote_device)
# Default arguments preparation.
args = args if args is not None else ()
kwargs = kwargs if kwargs is not None else {}
if _module_interface_cls is not None:
# Users reply on this field to know if this generated RemoteModule is TorchScript-able.
self.is_scriptable = True
# Instantiate template on remote side.
fut = rpc.rpc_async(
self.on,
_instantiate_template,
(_module_interface_cls, enable_moving_cpu_tensors_to_cuda),
)
self._init_template(
_module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
# Instantiate template on remote side.
fut = rpc.rpc_async(
self.on,
_instantiate_template,
(_module_interface_cls, enable_moving_cpu_tensors_to_cuda),
)
# Create the module on the remote side.
fut.wait() # Ensure remote_module_cls is available on remote side.
# TODO: We need to change this to rpc.remote, and make it async (see the else branch below).
# For that we need to be able to apply _module_interface_cls to the RRef returned by rpc.remote
# See https://github.com/pytorch/pytorch/issues/58098 for more context.
self.module_rref = rpc.rpc_sync(
self.on,
_create_module_with_interface,
(module_cls, args, kwargs, self.device, _module_interface_cls),
)
else:
self.is_scriptable = False
self.generated_methods = (
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE._generated_methods
)
# Create the module on the remote side.
self.module_rref = rpc.remote(
self.on,
_create_module,
(module_cls, args, kwargs, self.device),
)
self._install_generated_methods()
self._check_attribute_picklability()
def remote_parameters(self, recurse: bool = True) -> list[rpc.RRef[Parameter]]:
"""
Return a list of :class:`~torch.distributed.rpc.RRef` pointing to the remote module's parameters.
This can typically be used in conjunction
with :class:`~torch.distributed.optim.DistributedOptimizer`.
Args:
recurse (bool): if True, then returns parameters of the remote
module and all submodules of the remote module. Otherwise,
returns only parameters that are direct members of the
remote module.
Returns:
A list of :class:`~torch.distributed.rpc.RRef` (``List[RRef[nn.Parameter]]``)
to remote module's parameters.
"""
return rpc.rpc_sync(self.on, _param_rrefs, args=(self.module_rref, recurse))
def get_module_rref(self) -> rpc.RRef[nn.Module]:
"""Return an :class:`~torch.distributed.rpc.RRef` (``RRef[nn.Module]``) pointing to the remote module."""
return self.module_rref
@torch.jit.export
def __getstate__(self):
raise RuntimeError(
"Cannot pickle RemoteModule in python pickler. RemoteModule can only be pickled when using RPC"
)
@torch.jit.export
def __setstate__(self, state):
raise RuntimeError(
"Cannot unpickle RemoteModule in python pickler. RemoteModule can only be unpickled when using RPC"
)
def register_buffer(
self, name: str, tensor: Optional[Tensor], persistent: bool = True
) -> None:
_raise_not_supported(self.register_buffer.__name__)
def register_parameter(self, name: str, param: Optional[Parameter]) -> None:
_raise_not_supported(self.register_parameter.__name__)
def add_module(self, name: str, module: Optional[Module]) -> None:
_raise_not_supported(self.add_module.__name__)
def apply(self: T, fn: Callable[[Module], None]) -> T: # type: ignore[return]
_raise_not_supported(self.apply.__name__)
def cuda(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.cuda.__name__)
def ipu(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.ipu.__name__)
def xpu(self: T, device: Optional[Union[int, device]] = None) -> T: # type: ignore[return]
_raise_not_supported(self.xpu.__name__)
def cpu(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.cpu.__name__)
def type(self: T, dst_type: Union[dtype, str]) -> T: # type: ignore[return]
_raise_not_supported(self.type.__name__)
def float(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.float.__name__)
def double(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.double.__name__)
def half(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.half.__name__)
def bfloat16(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.bfloat16.__name__)
def to(self, *args, **kwargs) -> T: # type: ignore[misc, return, type-var]
_raise_not_supported(self.to.__name__)
def register_backward_hook( # type: ignore[return]
self, hook: Callable[[Module, _grad_t, _grad_t], Union[None, _grad_t]]
) -> RemovableHandle:
_raise_not_supported(self.register_backward_hook.__name__)
def register_forward_pre_hook( # type: ignore[return]
self,
hook: Union[
Callable[[T, tuple[Any, ...]], Optional[Any]],
Callable[
[T, tuple[Any, ...], dict[str, Any]],
Optional[tuple[Any, dict[str, Any]]],
],
],
prepend: bool = False,
with_kwargs: bool = False,
) -> RemovableHandle:
_raise_not_supported(self.register_forward_pre_hook.__name__)
def register_forward_hook( # type: ignore[return, override]
self,
hook: Union[
Callable[[T, tuple[Any, ...], Any], Optional[Any]],
Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]],
],
prepend: bool = False,
with_kwargs: bool = False,
) -> RemovableHandle:
_raise_not_supported(self.register_forward_hook.__name__)
def state_dict(self, *args, **kwargs):
_raise_not_supported(self.state_dict.__name__)
def load_state_dict(
self,
state_dict: Mapping[str, Any],
strict: bool = True,
assign: bool = False,
):
_raise_not_supported(self.load_state_dict.__name__)
def parameters(self, recurse: bool = True) -> Iterator[Parameter]:
raise ValueError(
"Method ``parameters`` not supported for RemoteModule. Please use ``remote_parameters`` instead."
)
def named_parameters( # type: ignore[return]
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[tuple[str, Parameter]]:
_raise_not_supported(self.named_parameters.__name__)
def buffers(self, recurse: bool = True) -> Iterator[Tensor]: # type: ignore[return]
_raise_not_supported(self.buffers.__name__)
def named_buffers( # type: ignore[return]
self, prefix: str = "", recurse: bool = True, remove_duplicate: bool = True
) -> Iterator[tuple[str, Tensor]]:
_raise_not_supported(self.named_buffers.__name__)
def children(self) -> Iterator[Module]: # type: ignore[return]
_raise_not_supported(self.children.__name__)
def named_children(self) -> Iterator[tuple[str, Module]]: # type: ignore[return]
_raise_not_supported(self.named_children.__name__)
def modules(self) -> Iterator[Module]: # type: ignore[return]
_raise_not_supported(self.modules.__name__)
def named_modules(
self,
memo: Optional[set[Module]] = None,
prefix: str = "",
remove_duplicate: bool = True,
):
_raise_not_supported(self.named_modules.__name__)
def train(self: T, mode: bool = True) -> T:
return self.module_rref.rpc_sync().train() # type: ignore[operator, union-attr]
def eval(self: T) -> T:
return self.module_rref.rpc_sync().eval() # type: ignore[operator, union-attr]
def requires_grad_(self: T, requires_grad: bool = True) -> T: # type: ignore[return]
_raise_not_supported(self.requires_grad_.__name__)
def zero_grad(self, set_to_none: bool = True) -> None:
_raise_not_supported(self.zero_grad.__name__)
def share_memory(self: T) -> T: # type: ignore[return]
_raise_not_supported(self.share_memory.__name__)
def extra_repr(self) -> str: # type: ignore[return]
_raise_not_supported(self.extra_repr.__name__)
def _prepare_init(self, remote_device_str: str) -> bool:
"""Prepare the initialization and returns whether to enable automatically moving CPU tensors to CUDA devices."""
# Sanity check.
assert rpc._is_current_rpc_agent_set(), "RemoteModule only works in RPC."
remote_device = _remote_device(remote_device_str)
self.on = (
remote_device.worker_name()
if remote_device.worker_name() is not None
else remote_device.rank()
)
self.device = str(remote_device.device())
agent = rpc._get_current_rpc_agent()
# If the device map of the remote worker is set,
# then enable moving any input CPU tensors to the same cuda device.
self.is_device_map_set = bool(
agent._get_device_map(agent.get_worker_info(self.on)) # type: ignore[arg-type]
)
# ``enable_moving_cpu_tensors_to_cuda`` is less strict than ``is_device_map_set``:
# If ``enable_moving_cpu_tensors_to_cuda`` is true, but the device map is not set,
# then any CPU tensors can still be moved to a cuda device to run forward,
# but the output must be moved back to CPU before being sent over the wire.
enable_moving_cpu_tensors_to_cuda = torch.device(self.device).type == "cuda"
return enable_moving_cpu_tensors_to_cuda
def _init_template(self, module_interface_cls, enable_moving_cpu_tensors_to_cuda):
"""Instantiate template on local side."""
generated_module = instantiator.instantiate_scriptable_remote_module_template(
module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
self.generated_methods = generated_module._generated_methods
def _check_attribute_picklability(self):
"""Check if all the attribute has explicitly defined whether to be pickled (i.e., picklability)."""
for k in self.__dict__.keys():
if (
k not in _REMOTE_MODULE_PICKLED_ATTRIBUTES
and k not in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING
):
raise AttributeError(
f"Attribute {k} must be either in ``_REMOTE_MODULE_PICKLED_ATTRIBUTES`` or "
"``_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING``."
)
def _install_generated_methods(self):
for method in self.generated_methods:
method_name = method.__name__
method = torch.jit.export(method)
setattr(self, method_name, types.MethodType(method, self))
@staticmethod
def init_from_module_rref(
remote_device: str,
module_rref: rpc.RRef[nn.Module],
_module_interface_cls: Any = None,
):
"""
Besides the constructor, a RemoteModule instance can also be initialized given a module RRef.
This alternate initialization method can be particularly useful if we want to create multiple
RemoteModule instances that share the same underlying module and reduce memory consumption.
Moreover, this also provides a workaround for passing script RemoteModule over RPC,
which is not supported. The recommended way is as follows:
1. the sender creates a RemoteModule;
2. the sender sends its ``module_rref`` over RPC;
3. the receiver calls this method to initialize another RemoteModule using the same ``module_rref``.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>>
>>> remote_module1 = rpc.rpc_sync(
>>> "worker1/cpu",
>>> RemoteModule.init_from_module_rref,
>>> ("worker1/cpu", remote_module1.get_module_rref()),
>>> )
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The device can be a local device or a remote device specified by one of the following remote
formats:
1. "rank:<rank>/<device>" (ex: "rank:0/cuda:0").
2. "<worker_name>/<device>" (ex: "trainer0/cuda:0").
In addition, the device field can be optional and the default value is "cpu".
module_rref (RRef[nn.Module]): The module reference shared by both the caller and
the created remote module.
_module_interface_cls (type, optional): The TorchScript interface type for the module
to be created. The type object should be decorated by @torch.jit.interface.
If not provided, the generated RemoteModule is not torchscript-able.
Warning, this is an experimental API and susceptible to frequent changes.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_rref``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
"""
# NOTE: if a new attribute is added to this class, also need to add it
# to ``_REMOTE_MODULE_PICKLED_ATTRIBUTES`` for pickling/unpickling.
remote_module = object.__new__(RemoteModule)
enable_moving_cpu_tensors_to_cuda = remote_module._prepare_init(remote_device)
if _module_interface_cls is not None:
# Users reply on this field to know if this generated RemoteModule is TorchScript-able.
remote_module.is_scriptable = True
remote_module._init_template(
_module_interface_cls, enable_moving_cpu_tensors_to_cuda
)
else:
remote_module.is_scriptable = False
remote_module.generated_methods = (
_NON_SCRIPTABLE_REMOTE_MODULE_MODULE._generated_methods
)
remote_module.module_rref = module_rref
remote_module._install_generated_methods()
remote_module._check_attribute_picklability()
return remote_module
class RemoteModule(_RemoteModule):
"""
A RemoteModule instance can only be created after RPC initialization.
It creates a user-specified module on a specified remote node.
It behaves like a regular ``nn.Module`` except that the ``forward`` method is
executed on the remote node.
It takes care of autograd recording to ensure the backward pass propagates
gradients back to the corresponding remote module.
It generates two methods ``forward_async`` and ``forward`` based on the
signature of the ``forward`` method of ``module_cls``. ``forward_async``
runs asynchronously and returns a Future. The arguments of ``forward_async``
and ``forward`` are the same as the ``forward`` method of the module
returned by the ``module_cls``.
For example, if ``module_cls`` returns an instance of ``nn.Linear``,
that has ``forward`` method signature: ``def forward(input: Tensor) -> Tensor:``,
the generated ``RemoteModule`` will have 2 methods with the signatures:
| ``def forward(input: Tensor) -> Tensor:``
| ``def forward_async(input: Tensor) -> Future[Tensor]:``
Args:
remote_device (str): Device on the destination worker where we'd like to place this module.
The format should be "<workername>/<device>", where the device field can be parsed as torch.device type.
E.g., "trainer0/cpu", "trainer0", "ps0/cuda:0".
In addition, the device field can be optional and the default value is "cpu".
module_cls (nn.Module): Class for the module to be created remotely. For example,
>>> class MyModule(nn.Module):
>>> def forward(input):
>>> return input + 1
>>>
>>> module_cls = MyModule
args (Sequence, optional): args to be passed to ``module_cls``.
kwargs (Dict, optional): kwargs to be passed to ``module_cls``.
Returns:
A remote module instance which wraps the :class:`~nn.Module` created by the
user-provided ``module_cls``, it has a blocking ``forward`` method and an
asynchronous ``forward_async`` method that returns a future of the ``forward`` call
on the user-provided module on the remote side.
Example::
Run the following code in two different processes:
>>> # xdoctest: +SKIP("distributed")
>>> # On worker 0:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>> from torch import nn, Tensor
>>> from torch.distributed.nn.api.remote_module import RemoteModule
>>>
>>> rpc.init_rpc("worker0", rank=0, world_size=2)
>>> remote_linear_module = RemoteModule(
>>> "worker1/cpu", nn.Linear, args=(20, 30),
>>> )
>>> input = torch.randn(128, 20)
>>> ret_fut = remote_linear_module.forward_async(input)
>>> ret = ret_fut.wait()
>>> rpc.shutdown()
>>> # On worker 1:
>>> import torch
>>> import torch.distributed.rpc as rpc
>>>
>>> rpc.init_rpc("worker1", rank=1, world_size=2)
>>> rpc.shutdown()
Furthermore, a more practical example that is combined with
`DistributedDataParallel <https://pytorch.org/docs/stable/nn.html#torch.nn.parallel.DistributedDataParallel>`__ (DDP)
can be found in this `tutorial <https://pytorch.org/tutorials/advanced/rpc_ddp_tutorial.html>`__.
"""
def __init__(
self,
remote_device: str,
module_cls: type[nn.Module],
args: Optional[tuple] = None,
kwargs: Optional[dict[str, Any]] = None,
):
super().__init__(remote_device, module_cls, args, kwargs)
def _remote_module_receiver(
*remote_module_pickled_attrs,
):
"""Deserializes a RemoteModule."""
serialized_remote_module = _SerializedRemoteModule._make(
remote_module_pickled_attrs
)
m = object.__new__(RemoteModule)
m.__dict__.update(serialized_remote_module._asdict())
# Unpickling the attribute `module_rref` must invoke RRef's `_deserialize()` method.
m.module_rref = rpc.PyRRef._deserialize(m.module_rref)
# Install generated methods when unpickled.
for method in m.generated_methods:
method_name = method.__name__
method = torch.jit.export(method)
setattr(m, method_name, types.MethodType(method, m))
return m
def _remote_module_reducer(remote_module):
"""Serialize a RemoteModule."""
pickled_attrs = {}
for k, v in remote_module.__dict__.items():
# Pickling the attribute `module_rref` must invoke RRef's `_serialize()` method.
if k == "module_rref":
pickled_attrs[k] = v._serialize()
elif k in _REMOTE_MODULE_PICKLED_ATTRIBUTES:
pickled_attrs[k] = v
# Check if unpickled attributes are all in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING.
elif k not in _REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING:
print(
f"The new attribute ``{k}`` of RemoteModule is ignored during RPC pickling. "
"To pickle this attribute, please add it to ``_REMOTE_MODULE_PICKLED_ATTRIBUTES``. "
"Otherwise, please explicitly add it to ``_REMOTE_MODULE_ATTRIBUTES_IGNORE_FOR_PICKLING``.",
file=sys.stderr,
)
return (
_remote_module_receiver,
tuple(pickled_attrs.values()),
)
def _recursive_script_module_receiver(
recursive_script_module_serialized,
):
"""Deserializes a RecursiveScriptModule that does not contain a script RemoteModule."""
f = io.BytesIO(recursive_script_module_serialized)
m = torch.jit.load(f)
return m
def _recursive_script_module_reducer(recursive_script_module):
"""Serialize a RecursiveScriptModule that does not contain a script RemoteModule, and raises an error otherwise."""
if hasattr(recursive_script_module._c, "module_rref"):
raise RuntimeError(
"Passing a script RemoteModule over RPC is not supported. Please create a RemoteModule in the sender, "
"send the `module_rref` to the receiver, and create a new instance on the receiver end by passing this `module_rref`."
)
f = io.BytesIO()
torch.jit.save(recursive_script_module, f)
return (_recursive_script_module_receiver, (f.getvalue(),))
_internal_rpc_pickler._register_reducer(RemoteModule, _remote_module_reducer)
_internal_rpc_pickler._register_reducer(
torch.jit.RecursiveScriptModule, _recursive_script_module_reducer
)