|
338 | 338 | Applies a 1D average pooling over an input signal composed of several
|
339 | 339 | input planes.
|
340 | 340 |
|
341 |
| -.. note:: |
342 |
| - pad should be at most half of effective kernel size. |
343 |
| -
|
344 | 341 | See :class:`~torch.nn.AvgPool1d` for details and output shape.
|
345 | 342 |
|
346 | 343 | Args:
|
|
349 | 346 | tuple `(kW,)`
|
350 | 347 | stride: the stride of the window. Can be a single number or a tuple
|
351 | 348 | `(sW,)`. Default: :attr:`kernel_size`
|
352 |
| - padding: implicit zero paddings on both sides of the input. Can be a |
353 |
| - single number or a tuple `(padW,)`. Default: 0 |
| 349 | + padding: implicit zero paddings on both sides of the input. Can be a single |
| 350 | + number or a tuple `(padW,)`. Should be at most half of effective kernel |
| 351 | + size, that is :math:`((kernelSize - 1) * dilation + 1) / 2`. Default: 0 |
354 | 352 | ceil_mode: when True, will use `ceil` instead of `floor` to compute the
|
355 | 353 | output shape. Default: ``False``
|
356 | 354 | count_include_pad: when True, will include the zero-padding in the
|
|
376 | 374 | :math:`sH \times sW` steps. The number of output features is equal to the number of
|
377 | 375 | input planes.
|
378 | 376 |
|
379 |
| -.. note:: |
380 |
| - pad should be at most half of effective kernel size. |
381 |
| -
|
382 | 377 | See :class:`~torch.nn.AvgPool2d` for details and output shape.
|
383 | 378 |
|
384 | 379 | Args:
|
|
388 | 383 | stride: stride of the pooling operation. Can be a single number, a single-element tuple or a
|
389 | 384 | tuple `(sH, sW)`. Default: :attr:`kernel_size`
|
390 | 385 | padding: implicit zero paddings on both sides of the input. Can be a
|
391 |
| - single number, a single-element tuple or a tuple `(padH, padW)`. Default: 0 |
| 386 | + single number, a single-element tuple or a tuple `(padH, padW)`. |
| 387 | + Should be at most half of effective kernel size, that |
| 388 | + is :math:`((kernelSize - 1) * dilation + 1) / 2`. Default: 0 |
392 | 389 | ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
393 | 390 | to compute the output shape. Default: ``False``
|
394 | 391 | count_include_pad: when True, will include the zero-padding in the
|
|
407 | 404 | size :math:`sT \times sH \times sW` steps. The number of output features is equal to
|
408 | 405 | :math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.
|
409 | 406 |
|
410 |
| -.. note:: |
411 |
| - pad should be at most half of effective kernel size. |
412 |
| -
|
413 | 407 | See :class:`~torch.nn.AvgPool3d` for details and output shape.
|
414 | 408 |
|
415 | 409 | Args:
|
|
419 | 413 | stride: stride of the pooling operation. Can be a single number or a
|
420 | 414 | tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
|
421 | 415 | padding: implicit zero paddings on both sides of the input. Can be a
|
422 |
| - single number or a tuple `(padT, padH, padW)`, Default: 0 |
| 416 | + single number or a tuple `(padT, padH, padW)`. Should be at most half |
| 417 | + of effective kernel size, that is :math:`((kernelSize - 1) * dilation + 1) / 2`. |
| 418 | + Default: 0 |
423 | 419 | ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
424 | 420 | to compute the output shape
|
425 | 421 | count_include_pad: when True, will include the zero-padding in the
|
|
0 commit comments