Skip to content

cuda memory error thrown by torch. #150048

@Corey4005

Description

@Corey4005

🐛 Describe the bug

Hello, I am receiving a Error 2: out of memory error after installing torch on WSL2:

Python 3.12.3 (main, Feb  4 2025, 14:48:35) [GCC 13.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
/home/user/another/lib/python3.12/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:109.)
  return torch._C._cuda_getDeviceCount() > 0
False

I installed pytorch on my machine using a virtual environment and then the 12.4 command

python3 -m venv ./new
pip3 install torch torchvision torchaudio

Here is the output from nvidia-smi:

Image

Here is the output of collect_env.py:

python collect_env.py
Collecting environment information...
/home/user/another/lib/python3.12/site-packages/torch/cuda/__init__.py:129: UserWarning: CUDA initialization: Unexpected error from cudaGetDeviceCount(). Did you run some cuda functions before calling NumCudaDevices() that might have already set an error? Error 2: out of memory (Triggered internally at /pytorch/c10/cuda/CUDAFunctions.cpp:109.)
  return torch._C._cuda_getDeviceCount() > 0
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 24.04.1 LTS (x86_64)
GCC version: Could not collect
Clang version: Could not collect
CMake version: Could not collect
Libc version: glibc-2.39

Python version: 3.12.3 (main, Feb  4 2025, 14:48:35) [GCC 13.3.0] (64-bit runtime)
Python platform: Linux-5.15.146.1-microsoft-standard-WSL2-x86_64-with-glibc2.39
Is CUDA available: False
CUDA runtime version: Could not collect
CUDA_MODULE_LOADING set to: N/A
GPU models and configuration:
GPU 0: NVIDIA RTX A4000
GPU 1: NVIDIA RTX A4000
GPU 2: NVIDIA RTX A4000
GPU 3: NVIDIA RTX A4000

Nvidia driver version: 572.60
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                       x86_64
CPU op-mode(s):                     32-bit, 64-bit
Address sizes:                      46 bits physical, 48 bits virtual
Byte Order:                         Little Endian
CPU(s):                             20
On-line CPU(s) list:                0-19
Vendor ID:                          GenuineIntel
Model name:                         Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz
CPU family:                         6
Model:                              85
Thread(s) per core:                 2
Core(s) per socket:                 10
Socket(s):                          1
Stepping:                           7
BogoMIPS:                           7391.99
Flags:                              fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ss ht syscall nx pdpe1gb rdtscp lm constant_tsc arch_perfmon rep_good nopl xtopology tsc_reliable nonstop_tsc cpuid pni pclmulqdq ssse3 fma cx16 pdcm pcid sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm abm 3dnowprefetch invpcid_single ssbd ibrs ibpb stibp ibrs_enhanced fsgsbase bmi1 avx2 smep bmi2 erms invpcid avx512f avx512dq rdseed adx smap clflushopt clwb avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 xsaves avx512_vnni md_clear flush_l1d arch_capabilities
Hypervisor vendor:                  Microsoft
Virtualization type:                full
L1d cache:                          320 KiB (10 instances)
L1i cache:                          320 KiB (10 instances)
L2 cache:                           10 MiB (10 instances)
L3 cache:                           19.3 MiB (1 instance)
Vulnerability Gather data sampling: Unknown: Dependent on hypervisor status
Vulnerability Itlb multihit:        KVM: Mitigation: VMX unsupported
Vulnerability L1tf:                 Not affected
Vulnerability Mds:                  Not affected
Vulnerability Meltdown:             Not affected
Vulnerability Mmio stale data:      Vulnerable: Clear CPU buffers attempted, no microcode; SMT Host state unknown
Vulnerability Retbleed:             Mitigation; Enhanced IBRS
Vulnerability Spec rstack overflow: Not affected
Vulnerability Spec store bypass:    Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:           Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:           Mitigation; Enhanced IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS SW sequence
Vulnerability Srbds:                Not affected
Vulnerability Tsx async abort:      Mitigation; TSX disabled

Versions of relevant libraries:
[pip3] numpy==2.2.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] triton==3.2.0
[conda] Could not collect

Versions

Can you help me understand how to solve the memory error?

Also, I recieve the similar error when I try to install tensorflow. I am wondering if there is something wrong with my system set up for WSL2.

cc @peterjc123 @mszhanyi @skyline75489 @nbcsm @iremyux @Blackhex

Metadata

Metadata

Assignees

Labels

module: windowsWindows support for PyTorchmodule: wslRelated to Windows Subsystem for LinuxtriagedThis issue has been looked at a team member, and triaged and prioritized into an appropriate module

Type

No type

Projects

Status

Blocked

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions