-<?xml version="1.0" encoding="utf-8"?><feed xmlns="http://www.w3.org/2005/Atom" ><generator uri="https://jekyllrb.com/" version="3.7.3">Jekyll</generator><link href="https://pytorch.org/feed.xml" rel="self" type="application/atom+xml" /><link href="https://pytorch.org/" rel="alternate" type="text/html" /><updated>2020-12-02T01:29:38-08:00</updated><id>https://pytorch.org/</id><title type="html">PyTorch Website</title><subtitle>Scientific Computing...</subtitle><author><name>Facebook</name></author><entry><title type="html">Prototype Features Now Available - APIs for Hardware Accelerated Mobile and ARM64 Builds</title><link href="https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/" rel="alternate" type="text/html" title="Prototype Features Now Available - APIs for Hardware Accelerated Mobile and ARM64 Builds" /><published>2020-11-12T00:00:00-08:00</published><updated>2020-11-12T00:00:00-08:00</updated><id>https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds</id><content type="html" xml:base="https://pytorch.org/blog/prototype-features-now-available-apis-for-hardware-accelerated-mobile-and-arm64-builds/"><p>Today, we are announcing four PyTorch prototype features. The first three of these will enable Mobile machine-learning developers to execute models on the full set of hardware (HW) engines making up a system-on-chip (SOC). This gives developers options to optimize their model execution for unique performance, power, and system-level concurrency.</p>
0 commit comments