197
197
< div class ="pytorch-left-menu-search ">
198
198
199
199
< div class ="version ">
200
- < a href ='https://pytorch.org/docs/versions.html '> 1.9.0a0+gite2cb357 ▼</ a >
200
+ < a href ='https://pytorch.org/docs/versions.html '> 1.9.0a0+gitdfbd030 ▼</ a >
201
201
</ div >
202
202
203
203
@@ -654,7 +654,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
654
654
< span class ="k "> return</ span > < span class ="n "> module</ span > < span class ="o "> +</ span > < span class ="n "> class_name</ span >
655
655
656
656
657
- < div class =" viewcode-block " id =" is_tensor " > < a class =" viewcode-back " href =" ../generated/torch.is_tensor.html#torch.is_tensor " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
657
+ < span class ="k "> def</ span > < span class ="nf "> is_tensor</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
658
658
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch tensor.</ span >
659
659
660
660
< span class ="sd "> Note that this function is simply doing ``isinstance(obj, Tensor)``.</ span >
@@ -671,19 +671,19 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
671
671
< span class ="sd "> True</ span >
672
672
673
673
< span class ="sd "> """</ span >
674
- < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span > </ div >
674
+ < span class ="k "> return</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ,</ span > < span class ="n "> torch</ span > < span class ="o "> .</ span > < span class ="n "> Tensor</ span > < span class ="p "> )</ span >
675
675
676
676
677
- < div class =" viewcode-block " id =" is_storage " > < a class =" viewcode-back " href =" ../generated/torch.is_storage.html#torch.is_storage " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
677
+ < span class ="k "> def</ span > < span class ="nf "> is_storage</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> ):</ span >
678
678
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if `obj` is a PyTorch storage object.</ span >
679
679
680
680
< span class ="sd "> Args:</ span >
681
681
< span class ="sd "> obj (Object): Object to test</ span >
682
682
< span class ="sd "> """</ span >
683
- < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span > </ div >
683
+ < span class ="k "> return</ span > < span class ="nb "> type</ span > < span class ="p "> (</ span > < span class ="n "> obj</ span > < span class ="p "> )</ span > < span class ="ow "> in</ span > < span class ="n "> _storage_classes</ span >
684
684
685
685
686
- < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
686
+ < div class =" viewcode-block " id =" set_default_tensor_type " > < a class =" viewcode-back " href =" ../generated/torch.set_default_tensor_type.html#torch.set_default_tensor_type " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ):</ span >
687
687
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default ``torch.Tensor`` type to floating point tensor type</ span >
688
688
< span class ="sd "> ``t``. This type will also be used as default floating point type for</ span >
689
689
< span class ="sd "> type inference in :func:`torch.tensor`.</ span >
@@ -704,10 +704,10 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
704
704
< span class ="sd "> """</ span >
705
705
< span class ="k "> if</ span > < span class ="nb "> isinstance</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> ,</ span > < span class ="n "> _string_classes</ span > < span class ="p "> ):</ span >
706
706
< span class ="n "> t</ span > < span class ="o "> =</ span > < span class ="n "> _import_dotted_name</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
707
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span >
707
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_tensor_type</ span > < span class ="p "> (</ span > < span class ="n "> t</ span > < span class ="p "> )</ span > </ div >
708
708
709
709
710
- < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
710
+ < div class =" viewcode-block " id =" set_default_dtype " > < a class =" viewcode-back " href =" ../generated/torch.set_default_dtype.html#torch.set_default_dtype " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
711
711
< span class ="sa "> r</ span > < span class ="sd "> """Sets the default floating point dtype to :attr:`d`.</ span >
712
712
< span class ="sd "> This dtype is:</ span >
713
713
@@ -735,9 +735,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
735
735
< span class ="sd "> torch.complex128</ span >
736
736
737
737
< span class ="sd "> """</ span >
738
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span >
738
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_default_dtype</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> )</ span > </ div >
739
739
740
- < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
740
+ < div class =" viewcode-block " id =" use_deterministic_algorithms " > < a class =" viewcode-back " href =" ../generated/torch.use_deterministic_algorithms.html#torch.use_deterministic_algorithms " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> use_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> ):</ span >
741
741
< span class ="sa "> r</ span > < span class ="sd "> """ Sets whether PyTorch operations must use "deterministic"</ span >
742
742
< span class ="sd "> algorithms. That is, algorithms which, given the same input, and when</ span >
743
743
< span class ="sd "> run on the same software and hardware, always produce the same output.</ span >
@@ -848,7 +848,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
848
848
< span class ="sd "> ...</ span >
849
849
< span class ="sd "> RuntimeError: index_add_cuda_ does not have a deterministic implementation...</ span >
850
850
< span class ="sd "> """</ span >
851
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span >
851
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_deterministic_algorithms</ span > < span class ="p "> (</ span > < span class ="n "> mode</ span > < span class ="p "> )</ span > </ div >
852
852
853
853
< span class ="k "> def</ span > < span class ="nf "> set_deterministic</ span > < span class ="p "> (</ span > < span class ="n "> d</ span > < span class ="p "> ):</ span >
854
854
< span class ="sa "> r</ span > < span class ="sd "> """This function is deprecated and will be removed in a future release.</ span >
@@ -876,7 +876,7 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
876
876
< span class ="k "> return</ span > < span class ="n "> are_deterministic_algorithms_enabled</ span > < span class ="p "> ()</ span >
877
877
878
878
879
- < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
879
+ < div class =" viewcode-block " id =" set_warn_always " > < a class =" viewcode-back " href =" ../generated/torch.set_warn_always.html#torch.set_warn_always " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> set_warn_always</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> ):</ span >
880
880
< span class ="sa "> r</ span > < span class ="sd "> """When this flag is False (default) then some PyTorch warnings may only</ span >
881
881
< span class ="sd "> appear once per process. This helps avoid excessive warning information.</ span >
882
882
< span class ="sd "> Setting it to True causes these warnings to always appear, which may be</ span >
@@ -886,13 +886,13 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
886
886
< span class ="sd "> b (:class:`bool`): If True, force warnings to always be emitted</ span >
887
887
< span class ="sd "> If False, set to the default behaviour</ span >
888
888
< span class ="sd "> """</ span >
889
- < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span >
889
+ < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _set_warnAlways</ span > < span class ="p "> (</ span > < span class ="n "> b</ span > < span class ="p "> )</ span > </ div >
890
890
891
- < div class =" viewcode-block " id =" is_warn_always_enabled " > < a class =" viewcode-back " href =" ../generated/torch.is_warn_always_enabled.html#torch.is_warn_always_enabled " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
891
+ < span class ="k "> def</ span > < span class ="nf "> is_warn_always_enabled</ span > < span class ="p "> ():</ span >
892
892
< span class ="sa "> r</ span > < span class ="sd "> """Returns True if the global warn_always flag is turned on. Refer to</ span >
893
893
< span class ="sd "> :func:`torch.set_warn_always` documentation for more details.</ span >
894
894
< span class ="sd "> """</ span >
895
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_warnAlways</ span > < span class ="p "> ()</ span > </ div >
895
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _get_warnAlways</ span > < span class ="p "> ()</ span >
896
896
897
897
< span class ="c1 "> ################################################################################</ span >
898
898
< span class ="c1 "> # Define Storage and Tensor classes</ span >
@@ -1100,9 +1100,9 @@ <h1>Source code for torch</h1><div class="highlight"><pre>
1100
1100
< span class ="k "> del</ span > < span class ="n "> _torch_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _tensor_docs</ span > < span class ="p "> ,</ span > < span class ="n "> _storage_docs</ span >
1101
1101
1102
1102
1103
- < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1103
+ < div class =" viewcode-block " id =" compiled_with_cxx11_abi " > < a class =" viewcode-back " href =" ../generated/torch.compiled_with_cxx11_abi.html#torch.compiled_with_cxx11_abi " > [docs] </ a > < span class ="k "> def</ span > < span class ="nf "> compiled_with_cxx11_abi</ span > < span class ="p "> ():</ span >
1104
1104
< span class ="sa "> r</ span > < span class ="sd "> """Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""</ span >
1105
- < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span >
1105
+ < span class ="k "> return</ span > < span class ="n "> _C</ span > < span class ="o "> .</ span > < span class ="n "> _GLIBCXX_USE_CXX11_ABI</ span > </ div >
1106
1106
1107
1107
1108
1108
< span class ="c1 "> # Import the ops "namespace"</ span >
0 commit comments