|
719 | 719 | }
|
720 | 720 | ],
|
721 | 721 | "source": [
|
722 |
| - "# select the first two columns from the origional dataset\n", |
| 722 | + "# To learn more about .resample (https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.resample.html)\n", |
| 723 | + "# To learn more about Offset Aliases (http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases)\n", |
| 724 | + "\n", |
| 725 | + "# Uses resample to sum each decade\n", |
723 | 726 | "crimes = crime.resample('10AS').sum()\n",
|
| 727 | + "\n", |
| 728 | + "# Uses resample to get the max value only for the \"Population\" column\n", |
724 | 729 | "population = crime['Population'].resample('10AS').max()\n",
|
| 730 | + "\n", |
| 731 | + "# Updating the \"Population\" column\n", |
725 | 732 | "crimes['Population'] = population\n",
|
| 733 | + "\n", |
726 | 734 | "crimes"
|
727 | 735 | ]
|
728 | 736 | },
|
|
765 | 773 | "# apparently the 90s was a pretty dangerous time in the US\n",
|
766 | 774 | "crime.idxmax(0)"
|
767 | 775 | ]
|
768 |
| - }, |
769 |
| - { |
770 |
| - "cell_type": "markdown", |
771 |
| - "metadata": {}, |
772 |
| - "source": [ |
773 |
| - "### Step 10. Find out which Year over Year delta was " |
774 |
| - ] |
775 |
| - }, |
776 |
| - { |
777 |
| - "cell_type": "code", |
778 |
| - "execution_count": null, |
779 |
| - "metadata": { |
780 |
| - "collapsed": false |
781 |
| - }, |
782 |
| - "outputs": [], |
783 |
| - "source": [] |
784 |
| - }, |
785 |
| - { |
786 |
| - "cell_type": "markdown", |
787 |
| - "metadata": {}, |
788 |
| - "source": [ |
789 |
| - "### Step 11. How many items were orderd in total?" |
790 |
| - ] |
791 |
| - }, |
792 |
| - { |
793 |
| - "cell_type": "code", |
794 |
| - "execution_count": 279, |
795 |
| - "metadata": { |
796 |
| - "collapsed": false |
797 |
| - }, |
798 |
| - "outputs": [ |
799 |
| - { |
800 |
| - "ename": "AttributeError", |
801 |
| - "evalue": "'int' object has no attribute 'max'", |
802 |
| - "output_type": "error", |
803 |
| - "traceback": [ |
804 |
| - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", |
805 |
| - "\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)", |
806 |
| - "\u001b[0;32m<ipython-input-279-dc545c79125f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mcrime\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Violent'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;31m# crime.apply(f, axis=1)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
807 |
| - "\u001b[0;32m//anaconda/lib/python2.7/site-packages/pandas/core/series.pyc\u001b[0m in \u001b[0;36mapply\u001b[0;34m(self, func, convert_dtype, args, **kwds)\u001b[0m\n\u001b[1;32m 2218\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2219\u001b[0m \u001b[0mvalues\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masobject\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2220\u001b[0;31m \u001b[0mmapped\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmap_infer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mvalues\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mconvert\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mconvert_dtype\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2221\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2222\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmapped\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0misinstance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmapped\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mSeries\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
808 |
| - "\u001b[0;32mpandas/src/inference.pyx\u001b[0m in \u001b[0;36mpandas.lib.map_infer (pandas/lib.c:62658)\u001b[0;34m()\u001b[0m\n", |
809 |
| - "\u001b[0;32m<ipython-input-279-dc545c79125f>\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(x)\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mf\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmax\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m-\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mcrime\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'Violent'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mapply\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mf\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;31m# crime.apply(f, axis=1)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", |
810 |
| - "\u001b[0;31mAttributeError\u001b[0m: 'int' object has no attribute 'max'" |
811 |
| - ] |
812 |
| - } |
813 |
| - ], |
814 |
| - "source": [ |
815 |
| - "f = lambda x: x.max() - x.min()\n", |
816 |
| - "\n", |
817 |
| - "crime['Violent'].apply(f)\n", |
818 |
| - "# crime.apply(f, axis=1)" |
819 |
| - ] |
820 |
| - }, |
821 |
| - { |
822 |
| - "cell_type": "markdown", |
823 |
| - "metadata": {}, |
824 |
| - "source": [ |
825 |
| - "### Step 12. How many orders have more than 1 item?" |
826 |
| - ] |
827 |
| - }, |
828 |
| - { |
829 |
| - "cell_type": "code", |
830 |
| - "execution_count": null, |
831 |
| - "metadata": { |
832 |
| - "collapsed": false |
833 |
| - }, |
834 |
| - "outputs": [], |
835 |
| - "source": [] |
836 |
| - }, |
837 |
| - { |
838 |
| - "cell_type": "markdown", |
839 |
| - "metadata": {}, |
840 |
| - "source": [ |
841 |
| - "### Step 13. How much was the revenue for the period in the dataset?" |
842 |
| - ] |
843 |
| - }, |
844 |
| - { |
845 |
| - "cell_type": "code", |
846 |
| - "execution_count": null, |
847 |
| - "metadata": { |
848 |
| - "collapsed": false |
849 |
| - }, |
850 |
| - "outputs": [], |
851 |
| - "source": [] |
852 |
| - }, |
853 |
| - { |
854 |
| - "cell_type": "markdown", |
855 |
| - "metadata": {}, |
856 |
| - "source": [ |
857 |
| - "### Step 14. How many orders were made in the period?" |
858 |
| - ] |
859 |
| - }, |
860 |
| - { |
861 |
| - "cell_type": "code", |
862 |
| - "execution_count": null, |
863 |
| - "metadata": { |
864 |
| - "collapsed": true |
865 |
| - }, |
866 |
| - "outputs": [], |
867 |
| - "source": [] |
868 |
| - }, |
869 |
| - { |
870 |
| - "cell_type": "markdown", |
871 |
| - "metadata": {}, |
872 |
| - "source": [ |
873 |
| - "### Step 15. What is the average amount per order?" |
874 |
| - ] |
875 |
| - }, |
876 |
| - { |
877 |
| - "cell_type": "code", |
878 |
| - "execution_count": null, |
879 |
| - "metadata": { |
880 |
| - "collapsed": true |
881 |
| - }, |
882 |
| - "outputs": [], |
883 |
| - "source": [] |
884 |
| - }, |
885 |
| - { |
886 |
| - "cell_type": "markdown", |
887 |
| - "metadata": {}, |
888 |
| - "source": [ |
889 |
| - "### Step 16. How many different items are sold?" |
890 |
| - ] |
891 |
| - }, |
892 |
| - { |
893 |
| - "cell_type": "code", |
894 |
| - "execution_count": null, |
895 |
| - "metadata": { |
896 |
| - "collapsed": true |
897 |
| - }, |
898 |
| - "outputs": [], |
899 |
| - "source": [] |
900 | 776 | }
|
901 | 777 | ],
|
902 | 778 | "metadata": {
|
| 779 | + "anaconda-cloud": {}, |
903 | 780 | "kernelspec": {
|
904 |
| - "display_name": "Python 2", |
| 781 | + "display_name": "Python [default]", |
905 | 782 | "language": "python",
|
906 | 783 | "name": "python2"
|
907 | 784 | },
|
|
915 | 792 | "name": "python",
|
916 | 793 | "nbconvert_exporter": "python",
|
917 | 794 | "pygments_lexer": "ipython2",
|
918 |
| - "version": "2.7.11" |
| 795 | + "version": "2.7.12" |
919 | 796 | }
|
920 | 797 | },
|
921 | 798 | "nbformat": 4,
|
|
0 commit comments