forked from dpkp/kafka-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproducer.py
267 lines (223 loc) · 9.86 KB
/
producer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from __future__ import absolute_import
import logging
import time
from Queue import Empty
from collections import defaultdict
from itertools import cycle
from multiprocessing import Queue, Process
from kafka.common import ProduceRequest, TopicAndPartition
from kafka.partitioner import HashedPartitioner
from kafka.protocol import create_message
log = logging.getLogger("kafka")
BATCH_SEND_DEFAULT_INTERVAL = 20
BATCH_SEND_MSG_COUNT = 20
STOP_ASYNC_PRODUCER = -1
def _send_upstream(queue, client, batch_time, batch_size,
req_acks, ack_timeout):
"""
Listen on the queue for a specified number of messages or till
a specified timeout and send them upstream to the brokers in one
request
NOTE: Ideally, this should have been a method inside the Producer
class. However, multiprocessing module has issues in windows. The
functionality breaks unless this function is kept outside of a class
"""
stop = False
client.reinit()
while not stop:
timeout = batch_time
count = batch_size
send_at = time.time() + timeout
msgset = defaultdict(list)
# Keep fetching till we gather enough messages or a
# timeout is reached
while count > 0 and timeout >= 0:
try:
topic_partition, msg = queue.get(timeout=timeout)
except Empty:
break
# Check if the controller has requested us to stop
if topic_partition == STOP_ASYNC_PRODUCER:
stop = True
break
# Adjust the timeout to match the remaining period
count -= 1
timeout = send_at - time.time()
msgset[topic_partition].append(msg)
# Send collected requests upstream
reqs = []
for topic_partition, messages in msgset.items():
req = ProduceRequest(topic_partition.topic,
topic_partition.partition,
messages)
reqs.append(req)
try:
client.send_produce_request(reqs,
acks=req_acks,
timeout=ack_timeout)
except Exception:
log.exception("Unable to send message")
class Producer(object):
"""
Base class to be used by producers
Params:
client - The Kafka client instance to use
async - If set to true, the messages are sent asynchronously via another
thread (process). We will not wait for a response to these
req_acks - A value indicating the acknowledgements that the server must
receive before responding to the request
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
for an acknowledgement
batch_send - If True, messages are send in batches
batch_send_every_n - If set, messages are send in batches of this size
batch_send_every_t - If set, messages are send after this timeout
"""
ACK_NOT_REQUIRED = 0 # No ack is required
ACK_AFTER_LOCAL_WRITE = 1 # Send response after it is written to log
ACK_AFTER_CLUSTER_COMMIT = -1 # Send response after data is committed
DEFAULT_ACK_TIMEOUT = 1000
def __init__(self, client, async=False,
req_acks=ACK_AFTER_LOCAL_WRITE,
ack_timeout=DEFAULT_ACK_TIMEOUT,
batch_send=False,
batch_send_every_n=BATCH_SEND_MSG_COUNT,
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
if batch_send:
async = True
assert batch_send_every_n > 0
assert batch_send_every_t > 0
else:
batch_send_every_n = 1
batch_send_every_t = 3600
self.client = client
self.async = async
self.req_acks = req_acks
self.ack_timeout = ack_timeout
if self.async:
self.queue = Queue() # Messages are sent through this queue
self.proc = Process(target=_send_upstream,
args=(self.queue,
self.client.copy(),
batch_send_every_t,
batch_send_every_n,
self.req_acks,
self.ack_timeout))
# Process will die if main thread exits
self.proc.daemon = True
self.proc.start()
def send_messages(self, topic, partition, *msg):
"""
Helper method to send produce requests
"""
if self.async:
for m in msg:
self.queue.put((TopicAndPartition(topic, partition),
create_message(m)))
resp = []
else:
messages = [create_message(m) for m in msg]
req = ProduceRequest(topic, partition, messages)
try:
resp = self.client.send_produce_request([req], acks=self.req_acks,
timeout=self.ack_timeout)
except Exception:
log.exception("Unable to send messages")
raise
return resp
def stop(self, timeout=1):
"""
Stop the producer. Optionally wait for the specified timeout before
forcefully cleaning up.
"""
if self.async:
self.queue.put((STOP_ASYNC_PRODUCER, None))
self.proc.join(timeout)
if self.proc.is_alive():
self.proc.terminate()
class SimpleProducer(Producer):
"""
A simple, round-robbin producer. Each message goes to exactly one partition
Params:
client - The Kafka client instance to use
async - If True, the messages are sent asynchronously via another
thread (process). We will not wait for a response to these
req_acks - A value indicating the acknowledgements that the server must
receive before responding to the request
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
for an acknowledgement
batch_send - If True, messages are send in batches
batch_send_every_n - If set, messages are send in batches of this size
batch_send_every_t - If set, messages are send after this timeout
"""
def __init__(self, client, async=False,
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
batch_send=False,
batch_send_every_n=BATCH_SEND_MSG_COUNT,
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
self.partition_cycles = {}
super(SimpleProducer, self).__init__(client, async, req_acks,
ack_timeout, batch_send,
batch_send_every_n,
batch_send_every_t)
def _next_partition(self, topic):
if topic not in self.partition_cycles:
if topic not in self.client.topic_partitions:
self.client.load_metadata_for_topics(topic)
self.partition_cycles[topic] = cycle(self.client.topic_partitions[topic])
return self.partition_cycles[topic].next()
def send_messages(self, topic, *msg):
partition = self._next_partition(topic)
return super(SimpleProducer, self).send_messages(topic, partition, *msg)
def __repr__(self):
return '<SimpleProducer batch=%s>' % self.async
class KeyedProducer(Producer):
"""
A producer which distributes messages to partitions based on the key
Args:
client - The kafka client instance
partitioner - A partitioner class that will be used to get the partition
to send the message to. Must be derived from Partitioner
async - If True, the messages are sent asynchronously via another
thread (process). We will not wait for a response to these
ack_timeout - Value (in milliseconds) indicating a timeout for waiting
for an acknowledgement
batch_send - If True, messages are send in batches
batch_send_every_n - If set, messages are send in batches of this size
batch_send_every_t - If set, messages are send after this timeout
"""
def __init__(self, client, partitioner=None, async=False,
req_acks=Producer.ACK_AFTER_LOCAL_WRITE,
ack_timeout=Producer.DEFAULT_ACK_TIMEOUT,
batch_send=False,
batch_send_every_n=BATCH_SEND_MSG_COUNT,
batch_send_every_t=BATCH_SEND_DEFAULT_INTERVAL):
if not partitioner:
partitioner = HashedPartitioner
self.partitioner_class = partitioner
self.partitioners = {}
super(KeyedProducer, self).__init__(client, async, req_acks,
ack_timeout, batch_send,
batch_send_every_n,
batch_send_every_t)
def _next_partition(self, topic, key):
if topic not in self.partitioners:
if topic not in self.client.topic_partitions:
self.client.load_metadata_for_topics(topic)
self.partitioners[topic] = \
self.partitioner_class(self.client.topic_partitions[topic])
partitioner = self.partitioners[topic]
return partitioner.partition(key, self.client.topic_partitions[topic])
def send(self, topic, key, msg):
partition = self._next_partition(topic, key)
return self.send_messages(topic, partition, msg)
def __repr__(self):
return '<KeyedProducer batch=%s>' % self.async
class ConsoleProducer(SimpleProducer):
def run(self, topic):
import readline
while True:
try:
self.send_messages(topic, raw_input())
except EOFError:
break