|
| 1 | +import numpy |
| 2 | +import matplotlib.pyplot |
| 3 | +import pygad |
| 4 | + |
| 5 | +cluster1_num_samples = 10 |
| 6 | +cluster1_x1_start = 0 |
| 7 | +cluster1_x1_end = 5 |
| 8 | +cluster1_x2_start = 2 |
| 9 | +cluster1_x2_end = 6 |
| 10 | +cluster1_x1 = numpy.random.random(size=(cluster1_num_samples)) |
| 11 | +cluster1_x1 = cluster1_x1 * (cluster1_x1_end - cluster1_x1_start) + cluster1_x1_start |
| 12 | +cluster1_x2 = numpy.random.random(size=(cluster1_num_samples)) |
| 13 | +cluster1_x2 = cluster1_x2 * (cluster1_x2_end - cluster1_x2_start) + cluster1_x2_start |
| 14 | + |
| 15 | +cluster2_num_samples = 10 |
| 16 | +cluster2_x1_start = 10 |
| 17 | +cluster2_x1_end = 15 |
| 18 | +cluster2_x2_start = 8 |
| 19 | +cluster2_x2_end = 12 |
| 20 | +cluster2_x1 = numpy.random.random(size=(cluster2_num_samples)) |
| 21 | +cluster2_x1 = cluster2_x1 * (cluster2_x1_end - cluster2_x1_start) + cluster2_x1_start |
| 22 | +cluster2_x2 = numpy.random.random(size=(cluster2_num_samples)) |
| 23 | +cluster2_x2 = cluster2_x2 * (cluster2_x2_end - cluster2_x2_start) + cluster2_x2_start |
| 24 | + |
| 25 | +c1 = numpy.array([cluster1_x1, cluster1_x2]).T |
| 26 | +c2 = numpy.array([cluster2_x1, cluster2_x2]).T |
| 27 | + |
| 28 | +data = numpy.concatenate((c1, c2), axis=0) |
| 29 | + |
| 30 | +matplotlib.pyplot.scatter(cluster1_x1, cluster1_x2) |
| 31 | +matplotlib.pyplot.scatter(cluster2_x1, cluster2_x2) |
| 32 | +matplotlib.pyplot.title("Optimal Clustering") |
| 33 | +matplotlib.pyplot.show() |
| 34 | + |
| 35 | +def euclidean_distance(X, Y): |
| 36 | + """ |
| 37 | + Calculate the euclidean distance between X and Y. It accepts: |
| 38 | + :X should be a matrix of size (N, f) where N is the number of samples and f is the number of features for each sample. |
| 39 | + :Y should be of size f. In other words, it is a single sample. |
| 40 | + |
| 41 | + Returns a vector of N elements with the distances between the N samples and the Y. |
| 42 | + """ |
| 43 | + |
| 44 | + return numpy.sqrt(numpy.sum(numpy.power(X - Y, 2), axis=1)) |
| 45 | + |
| 46 | +def cluster_data(solution, solution_idx): |
| 47 | + """ |
| 48 | + Clusters the data based on the current solution. |
| 49 | + """ |
| 50 | + |
| 51 | + global num_cluster, data |
| 52 | + feature_vector_length = data.shape[1] |
| 53 | + cluster_centers = [] # A list of size (C, f) where C is the number of clusters and f is the number of features representing each sample. |
| 54 | + all_clusters_dists = [] # A list of size (C, N) where C is the number of clusters and N is the number of data samples. It holds the distances between each cluster center and all the data samples. |
| 55 | + clusters = [] # A list with C elements where each element holds the indices of the samples within a cluster. |
| 56 | + clusters_sum_dist = [] # A list with C elements where each element represents the sum of distances of the samples with a cluster. |
| 57 | + |
| 58 | + for clust_idx in range(num_clusters): |
| 59 | + # Return the current cluster center. |
| 60 | + cluster_centers.append(solution[feature_vector_length*clust_idx:feature_vector_length*(clust_idx+1)]) |
| 61 | + # Calculate the distance (e.g. euclidean) between the current cluster center and all samples. |
| 62 | + cluster_center_dists = euclidean_distance(data, cluster_centers[clust_idx]) |
| 63 | + all_clusters_dists.append(numpy.array(cluster_center_dists)) |
| 64 | + |
| 65 | + cluster_centers = numpy.array(cluster_centers) |
| 66 | + all_clusters_dists = numpy.array(all_clusters_dists) |
| 67 | + |
| 68 | + # A 1D array that, for each sample, holds the index of the cluster with the smallest distance. |
| 69 | + # In other words, the array holds the sample's cluster index. |
| 70 | + cluster_indices = numpy.argmin(all_clusters_dists, axis=0) |
| 71 | + for clust_idx in range(num_clusters): |
| 72 | + clusters.append(numpy.where(cluster_indices == clust_idx)[0]) |
| 73 | + # Calculate the sum of distances for the cluster. |
| 74 | + if len(clusters[clust_idx]) == 0: |
| 75 | + # In case the cluster is empty (i.e. has zero samples). |
| 76 | + clusters_sum_dist.append(0) |
| 77 | + else: |
| 78 | + # When the cluster is not empty (i.e. has at least 1 sample). |
| 79 | + clusters_sum_dist.append(numpy.sum(all_clusters_dists[clust_idx, clusters[clust_idx]])) |
| 80 | + # clusters_sum_dist.append(numpy.sum(euclidean_distance(data[clusters[clust_idx], :], cluster_centers[clust_idx]))) |
| 81 | + |
| 82 | + clusters_sum_dist = numpy.array(clusters_sum_dist) |
| 83 | + |
| 84 | + return cluster_centers, all_clusters_dists, cluster_indices, clusters, clusters_sum_dist |
| 85 | + |
| 86 | +def fitness_func(solution, solution_idx): |
| 87 | + _, _, _, _, clusters_sum_dist = cluster_data(solution, solution_idx) |
| 88 | + |
| 89 | + # The tiny value 0.00000001 is added to the denominator in case the average distance is 0. |
| 90 | + fitness = 1.0 / (numpy.sum(clusters_sum_dist) + 0.00000001) |
| 91 | + |
| 92 | + return fitness |
| 93 | + |
| 94 | +num_clusters = 2 |
| 95 | +num_genes = num_clusters * data.shape[1] |
| 96 | + |
| 97 | +ga_instance = pygad.GA(num_generations=100, |
| 98 | + sol_per_pop=10, |
| 99 | + num_parents_mating=5, |
| 100 | + init_range_low=-6, |
| 101 | + init_range_high=20, |
| 102 | + keep_parents=2, |
| 103 | + num_genes=num_genes, |
| 104 | + fitness_func=fitness_func, |
| 105 | + suppress_warnings=True) |
| 106 | + |
| 107 | +ga_instance.run() |
| 108 | + |
| 109 | +best_solution, best_solution_fitness, best_solution_idx = ga_instance.best_solution() |
| 110 | +print("Best solution is {bs}".format(bs=best_solution)) |
| 111 | +print("Fitness of the best solution is {bsf}".format(bsf=best_solution_fitness)) |
| 112 | +print("Best solution found after {gen} generations".format(gen=ga_instance.best_solution_generation)) |
| 113 | + |
| 114 | +cluster_centers, all_clusters_dists, cluster_indices, clusters, clusters_sum_dist = cluster_data(best_solution, best_solution_idx) |
| 115 | + |
| 116 | +for cluster_idx in range(num_clusters): |
| 117 | + cluster_x = data[clusters[cluster_idx], 0] |
| 118 | + cluster_y = data[clusters[cluster_idx], 1] |
| 119 | + matplotlib.pyplot.scatter(cluster_x, cluster_y) |
| 120 | + matplotlib.pyplot.scatter(cluster_centers[cluster_idx, 0], cluster_centers[cluster_idx, 1], linewidths=5) |
| 121 | +matplotlib.pyplot.title("Clustering using PyGAD") |
| 122 | +matplotlib.pyplot.show() |
0 commit comments