Skip to content

Commit 8c44bdc

Browse files
committed
Pushing the docs for revision for branch: master, commit 3e7a7ca7fa6620afc68f2454c373c069be57dbf3
1 parent 9623281 commit 8c44bdc

File tree

870 files changed

+2560
-2546
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

870 files changed

+2560
-2546
lines changed
0 Bytes
Binary file not shown.
0 Bytes
Binary file not shown.
-10 Bytes
-10 Bytes
-101 Bytes
-101 Bytes
169 Bytes
169 Bytes
-78 Bytes
-372 Bytes
-159 Bytes
176 Bytes
101 Bytes
227 Bytes
227 Bytes
10 Bytes
10 Bytes
-192 Bytes
-192 Bytes
-47 Bytes
-47 Bytes
-241 Bytes
-241 Bytes
-34 Bytes
-34 Bytes
-183 Bytes
-145 Bytes
-145 Bytes
-74 Bytes
-261 Bytes
-224 Bytes

dev/_sources/auto_examples/applications/plot_model_complexity_influence.txt

Lines changed: 14 additions & 14 deletions
Original file line numberDiff line numberDiff line change
@@ -226,53 +226,53 @@ main code
226226
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
227227
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
228228
verbose=0, warm_start=False)
229-
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.025983s
229+
Complexity: 4454 | Hamming Loss (Misclassification Ratio): 0.2501 | Pred. Time: 0.026515s
230230

231231
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
232232
eta0=0.0, fit_intercept=True, l1_ratio=0.5, learning_rate='optimal',
233233
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
234234
power_t=0.5, random_state=None, shuffle=True, verbose=0,
235235
warm_start=False)
236-
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.019869s
236+
Complexity: 1624 | Hamming Loss (Misclassification Ratio): 0.2923 | Pred. Time: 0.020718s
237237

238238
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
239239
eta0=0.0, fit_intercept=True, l1_ratio=0.75,
240240
learning_rate='optimal', loss='modified_huber', n_iter=5, n_jobs=1,
241241
penalty='elasticnet', power_t=0.5, random_state=None, shuffle=True,
242242
verbose=0, warm_start=False)
243-
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.015165s
243+
Complexity: 873 | Hamming Loss (Misclassification Ratio): 0.3191 | Pred. Time: 0.016972s
244244

245245
Benchmarking SGDClassifier(alpha=0.001, average=False, class_weight=None, epsilon=0.1,
246246
eta0=0.0, fit_intercept=True, l1_ratio=0.9, learning_rate='optimal',
247247
loss='modified_huber', n_iter=5, n_jobs=1, penalty='elasticnet',
248248
power_t=0.5, random_state=None, shuffle=True, verbose=0,
249249
warm_start=False)
250-
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.014327s
250+
Complexity: 655 | Hamming Loss (Misclassification Ratio): 0.3252 | Pred. Time: 0.015009s
251251

252252
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
253253
kernel='rbf', max_iter=-1, nu=0.1, shrinking=True, tol=0.001,
254254
verbose=False)
255-
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000364s
255+
Complexity: 69 | MSE: 31.8133 | Pred. Time: 0.000365s
256256

257257
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
258258
kernel='rbf', max_iter=-1, nu=0.25, shrinking=True, tol=0.001,
259259
verbose=False)
260-
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000648s
260+
Complexity: 136 | MSE: 25.6140 | Pred. Time: 0.000651s
261261

262262
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
263263
kernel='rbf', max_iter=-1, nu=0.5, shrinking=True, tol=0.001,
264264
verbose=False)
265-
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001112s
265+
Complexity: 243 | MSE: 22.3315 | Pred. Time: 0.001118s
266266

267267
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
268268
kernel='rbf', max_iter=-1, nu=0.75, shrinking=True, tol=0.001,
269269
verbose=False)
270-
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001570s
270+
Complexity: 350 | MSE: 21.3679 | Pred. Time: 0.001582s
271271

272272
Benchmarking NuSVR(C=1000.0, cache_size=200, coef0=0.0, degree=3, gamma=3.0517578125e-05,
273273
kernel='rbf', max_iter=-1, nu=0.9, shrinking=True, tol=0.001,
274274
verbose=False)
275-
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001833s
275+
Complexity: 404 | MSE: 21.0915 | Pred. Time: 0.001818s
276276

277277
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
278278
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -288,7 +288,7 @@ main code
288288
min_samples_leaf=1, min_samples_split=2,
289289
min_weight_fraction_leaf=0.0, n_estimators=50, presort='auto',
290290
random_state=None, subsample=1.0, verbose=0, warm_start=False)
291-
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000190s
291+
Complexity: 50 | MSE: 8.3398 | Pred. Time: 0.000192s
292292

293293
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
294294
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -297,7 +297,7 @@ main code
297297
min_weight_fraction_leaf=0.0, n_estimators=100,
298298
presort='auto', random_state=None, subsample=1.0, verbose=0,
299299
warm_start=False)
300-
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000268s
300+
Complexity: 100 | MSE: 7.0096 | Pred. Time: 0.000273s
301301

302302
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
303303
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -306,7 +306,7 @@ main code
306306
min_weight_fraction_leaf=0.0, n_estimators=200,
307307
presort='auto', random_state=None, subsample=1.0, verbose=0,
308308
warm_start=False)
309-
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000429s
309+
Complexity: 200 | MSE: 6.1836 | Pred. Time: 0.000426s
310310

311311
Benchmarking GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
312312
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
@@ -315,10 +315,10 @@ main code
315315
min_weight_fraction_leaf=0.0, n_estimators=500,
316316
presort='auto', random_state=None, subsample=1.0, verbose=0,
317317
warm_start=False)
318-
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000948s
318+
Complexity: 500 | MSE: 6.3426 | Pred. Time: 0.000935s
319319

320320

321-
**Total running time of the script:** ( 0 minutes 24.433 seconds)
321+
**Total running time of the script:** ( 0 minutes 24.892 seconds)
322322

323323

324324

dev/_sources/auto_examples/applications/plot_out_of_core_classification.txt

Lines changed: 29 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -356,46 +356,46 @@ maximum
356356
Out::
357357

358358
Test set is 878 documents (108 positive)
359-
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.81s ( 531 docs/s)
360-
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.81s ( 530 docs/s)
361-
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.82s ( 529 docs/s)
362-
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.85s ( 519 docs/s)
359+
Passive-Aggressive classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.913 in 1.74s ( 553 docs/s)
360+
Perceptron classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.921 in 1.74s ( 552 docs/s)
361+
SGD classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.925 in 1.75s ( 550 docs/s)
362+
NB Multinomial classifier : 962 train docs ( 132 positive) 878 test docs ( 108 positive) accuracy: 0.877 in 1.78s ( 540 docs/s)
363363

364364

365-
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.41s ( 723 docs/s)
366-
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.41s ( 722 docs/s)
367-
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.42s ( 722 docs/s)
368-
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.45s ( 717 docs/s)
365+
Passive-Aggressive classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.946 in 5.36s ( 730 docs/s)
366+
Perceptron classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 5.36s ( 729 docs/s)
367+
SGD classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.945 in 5.36s ( 729 docs/s)
368+
NB Multinomial classifier : 3911 train docs ( 517 positive) 878 test docs ( 108 positive) accuracy: 0.885 in 5.40s ( 724 docs/s)
369369

370370

371-
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.99s ( 758 docs/s)
372-
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 9.00s ( 758 docs/s)
373-
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 9.00s ( 757 docs/s)
374-
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 9.03s ( 754 docs/s)
371+
Passive-Aggressive classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 8.88s ( 768 docs/s)
372+
Perceptron classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 8.88s ( 768 docs/s)
373+
SGD classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.938 in 8.88s ( 767 docs/s)
374+
NB Multinomial classifier : 6821 train docs ( 891 positive) 878 test docs ( 108 positive) accuracy: 0.899 in 8.92s ( 764 docs/s)
375375

376376

377-
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 12.56s ( 777 docs/s)
378-
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 12.56s ( 776 docs/s)
379-
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 12.56s ( 776 docs/s)
380-
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 12.60s ( 774 docs/s)
377+
Passive-Aggressive classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.964 in 12.38s ( 788 docs/s)
378+
Perceptron classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.950 in 12.38s ( 788 docs/s)
379+
SGD classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.958 in 12.39s ( 787 docs/s)
380+
NB Multinomial classifier : 9759 train docs ( 1276 positive) 878 test docs ( 108 positive) accuracy: 0.909 in 12.42s ( 785 docs/s)
381381

382382

383-
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.66s ( 745 docs/s)
384-
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.67s ( 745 docs/s)
385-
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.67s ( 745 docs/s)
386-
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 15.70s ( 743 docs/s)
383+
Passive-Aggressive classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.51s ( 753 docs/s)
384+
Perceptron classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.51s ( 753 docs/s)
385+
SGD classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.951 in 15.51s ( 752 docs/s)
386+
NB Multinomial classifier : 11680 train docs ( 1499 positive) 878 test docs ( 108 positive) accuracy: 0.916 in 15.55s ( 751 docs/s)
387387

388388

389-
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 19.25s ( 759 docs/s)
390-
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 19.25s ( 759 docs/s)
391-
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 19.25s ( 759 docs/s)
392-
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 19.29s ( 758 docs/s)
389+
Passive-Aggressive classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.966 in 19.09s ( 766 docs/s)
390+
Perceptron classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.956 in 19.09s ( 766 docs/s)
391+
SGD classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 19.10s ( 765 docs/s)
392+
NB Multinomial classifier : 14625 train docs ( 1865 positive) 878 test docs ( 108 positive) accuracy: 0.926 in 19.13s ( 764 docs/s)
393393

394394

395-
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 22.45s ( 773 docs/s)
396-
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 22.46s ( 773 docs/s)
397-
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 22.46s ( 772 docs/s)
398-
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 22.49s ( 771 docs/s)
395+
Passive-Aggressive classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.954 in 22.39s ( 775 docs/s)
396+
Perceptron classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.957 in 22.39s ( 775 docs/s)
397+
SGD classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.949 in 22.39s ( 775 docs/s)
398+
NB Multinomial classifier : 17360 train docs ( 2179 positive) 878 test docs ( 108 positive) accuracy: 0.932 in 22.43s ( 774 docs/s)
399399

400400

401401
Plot results
@@ -526,7 +526,7 @@ Plot results
526526

527527

528528

529-
**Total running time of the script:** ( 0 minutes 24.442 seconds)
529+
**Total running time of the script:** ( 0 minutes 24.438 seconds)
530530

531531

532532

dev/_sources/auto_examples/applications/plot_outlier_detection_housing.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -158,7 +158,7 @@ risk of over-fitting the data.
158158

159159
plt.show()
160160

161-
**Total running time of the script:** ( 0 minutes 4.472 seconds)
161+
**Total running time of the script:** ( 0 minutes 4.390 seconds)
162162

163163

164164

dev/_sources/auto_examples/applications/plot_prediction_latency.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -372,10 +372,10 @@ main code
372372
benchmarking with 100 features
373373
benchmarking with 250 features
374374
benchmarking with 500 features
375-
example run in 3.68s
375+
example run in 3.73s
376376

377377

378-
**Total running time of the script:** ( 0 minutes 3.678 seconds)
378+
**Total running time of the script:** ( 0 minutes 3.735 seconds)
379379

380380

381381

dev/_sources/auto_examples/applications/plot_species_distribution_modeling.txt

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -65,7 +65,7 @@ References
6565

6666
Area under the ROC curve : 0.993919
6767

68-
time elapsed: 7.43s
68+
time elapsed: 6.75s
6969

7070

7171

@@ -247,7 +247,7 @@ References
247247
plot_species_distribution()
248248
plt.show()
249249

250-
**Total running time of the script:** ( 0 minutes 7.438 seconds)
250+
**Total running time of the script:** ( 0 minutes 6.754 seconds)
251251

252252

253253

dev/_sources/auto_examples/applications/plot_stock_market.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -340,7 +340,7 @@ Visualization
340340

341341

342342

343-
**Total running time of the script:** ( 0 minutes 37.610 seconds)
343+
**Total running time of the script:** ( 0 minutes 10.336 seconds)
344344

345345

346346

dev/_sources/auto_examples/applications/plot_tomography_l1_reconstruction.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -164,7 +164,7 @@ contributed to fewer projections than the central disk.
164164

165165
plt.show()
166166

167-
**Total running time of the script:** ( 0 minutes 9.142 seconds)
167+
**Total running time of the script:** ( 0 minutes 9.290 seconds)
168168

169169

170170

dev/_sources/auto_examples/bicluster/plot_spectral_biclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ representation of the checkerboard structure.
106106

107107
plt.show()
108108

109-
**Total running time of the script:** ( 0 minutes 0.816 seconds)
109+
**Total running time of the script:** ( 0 minutes 0.863 seconds)
110110

111111

112112

dev/_sources/auto_examples/bicluster/plot_spectral_coclustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ the biclusters.
9393

9494
plt.show()
9595

96-
**Total running time of the script:** ( 0 minutes 0.229 seconds)
96+
**Total running time of the script:** ( 0 minutes 0.219 seconds)
9797

9898

9999

dev/_sources/auto_examples/calibration/plot_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -159,7 +159,7 @@ Plot the data and the predicted probabilities
159159

160160

161161

162-
**Total running time of the script:** ( 0 minutes 0.273 seconds)
162+
**Total running time of the script:** ( 0 minutes 0.266 seconds)
163163

164164

165165

dev/_sources/auto_examples/calibration/plot_calibration_curve.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -214,7 +214,7 @@ but not where it is transposed-sigmoid (e.g., Gaussian naive Bayes).
214214

215215
plt.show()
216216

217-
**Total running time of the script:** ( 0 minutes 2.115 seconds)
217+
**Total running time of the script:** ( 0 minutes 2.179 seconds)
218218

219219

220220

dev/_sources/auto_examples/calibration/plot_calibration_multiclass.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -204,7 +204,7 @@ would have resulted in a similar decrease in log-loss.
204204

205205
plt.show()
206206

207-
**Total running time of the script:** ( 0 minutes 0.649 seconds)
207+
**Total running time of the script:** ( 0 minutes 0.646 seconds)
208208

209209

210210

dev/_sources/auto_examples/calibration/plot_compare_calibration.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -147,7 +147,7 @@ Plot calibration plots
147147

148148

149149

150-
**Total running time of the script:** ( 0 minutes 2.543 seconds)
150+
**Total running time of the script:** ( 0 minutes 2.491 seconds)
151151

152152

153153

dev/_sources/auto_examples/classification/plot_classification_probability.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -113,7 +113,7 @@ a result it can identify only the first class.
113113

114114
plt.show()
115115

116-
**Total running time of the script:** ( 0 minutes 2.410 seconds)
116+
**Total running time of the script:** ( 0 minutes 2.456 seconds)
117117

118118

119119

dev/_sources/auto_examples/classification/plot_classifier_comparison.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -153,7 +153,7 @@ set.
153153
plt.tight_layout()
154154
plt.show()
155155

156-
**Total running time of the script:** ( 0 minutes 8.113 seconds)
156+
**Total running time of the script:** ( 0 minutes 7.999 seconds)
157157

158158

159159

dev/_sources/auto_examples/classification/plot_digits_classification.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -120,7 +120,7 @@ This example is commented in the
120120

121121
plt.show()
122122

123-
**Total running time of the script:** ( 0 minutes 0.749 seconds)
123+
**Total running time of the script:** ( 0 minutes 0.757 seconds)
124124

125125

126126

dev/_sources/auto_examples/classification/plot_lda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ Shows how shrinkage improves classification.
8686
shrinkage Linear Discriminant Analysis (1 discriminative feature)')
8787
plt.show()
8888

89-
**Total running time of the script:** ( 0 minutes 5.707 seconds)
89+
**Total running time of the script:** ( 0 minutes 5.795 seconds)
9090

9191

9292

dev/_sources/auto_examples/classification/plot_lda_qda.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -200,7 +200,7 @@ plot functions
200200

201201

202202

203-
**Total running time of the script:** ( 0 minutes 0.397 seconds)
203+
**Total running time of the script:** ( 0 minutes 0.394 seconds)
204204

205205

206206

dev/_sources/auto_examples/cluster/plot_adjusted_for_chance_measures.txt

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -46,21 +46,21 @@ value of k on various overlapping sub-samples of the dataset.
4646
Out::
4747

4848
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=100
49-
done in 0.042s
49+
done in 0.040s
5050
Computing v_measure_score for 10 values of n_clusters and n_samples=100
51-
done in 0.061s
51+
done in 0.059s
5252
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=100
53-
done in 0.440s
53+
done in 0.433s
5454
Computing mutual_info_score for 10 values of n_clusters and n_samples=100
5555
done in 0.050s
5656
Computing adjusted_rand_score for 10 values of n_clusters and n_samples=1000
5757
done in 0.062s
5858
Computing v_measure_score for 10 values of n_clusters and n_samples=1000
59-
done in 0.081s
59+
done in 0.078s
6060
Computing adjusted_mutual_info_score for 10 values of n_clusters and n_samples=1000
61-
done in 0.284s
61+
done in 0.283s
6262
Computing mutual_info_score for 10 values of n_clusters and n_samples=1000
63-
done in 0.067s
63+
done in 0.064s
6464

6565

6666

@@ -171,7 +171,7 @@ value of k on various overlapping sub-samples of the dataset.
171171
plt.legend(plots, names)
172172
plt.show()
173173

174-
**Total running time of the script:** ( 0 minutes 1.322 seconds)
174+
**Total running time of the script:** ( 0 minutes 1.301 seconds)
175175

176176

177177

dev/_sources/auto_examples/cluster/plot_affinity_propagation.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -118,7 +118,7 @@ Plot result
118118

119119

120120

121-
**Total running time of the script:** ( 0 minutes 0.693 seconds)
121+
**Total running time of the script:** ( 0 minutes 0.647 seconds)
122122

123123

124124

dev/_sources/auto_examples/cluster/plot_agglomerative_clustering.txt

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ percolation instability.
111111

112112
plt.show()
113113

114-
**Total running time of the script:** ( 0 minutes 2.914 seconds)
114+
**Total running time of the script:** ( 0 minutes 2.877 seconds)
115115

116116

117117

0 commit comments

Comments
 (0)