-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcnn_my.py
59 lines (38 loc) · 1.94 KB
/
cnn_my.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Artificial Neural Network
# Installing Theano
# pip install --upgrade --no-deps git+git://github.com/Theano/Theano.git
# Installing Tensorflow
# Install Tensorflow from the website: https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html
# pip install tensorflow
# Installing Keras
# pip install --upgrade keras
# Part 1 - Data Preprocessing
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPool2D
from keras.layers import Flatten
from keras.layers import Dense
# Initialize the CNN
classifier = Sequential()
# Step 1: Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
# Step 2: Pooling
classifier.add(MaxPool2D(pool_size = (2,2)))
# Add a second convolutional layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPool2D(pool_size = (2,2)))
# Step 3: Flattening
classifier.add(Flatten())
# Step 4: Full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
# Compile the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2: Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255, shear_range = 0.2, zoom_range = 0.2, horizontal_flip = True)
training_set = train_datagen.flow_from_directory('dataset/training_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')
test_set = train_datagen.flow_from_directory('dataset/test_set', target_size = (64, 64), batch_size = 32, class_mode = 'binary')
classifier.fit_generator(training_set, samples_per_epoch = 4000, nb_epoch = 10, validation_data = test_set, nb_val_samples = 1000)