import numpy as np import matplotlib.pyplot as plt import pandas as pd # Improting the dataset dataset = pd.read_csv('Position_Salaries.csv') X = dataset.iloc[:, 1:2].values y = dataset.iloc[:, 2].values # Splitting the dataset into training set and test set print(X) """from sklearn.cross_validation import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0) """ # Feature Scaling """from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test - sc_X.transform(X_test) """ # Linear Regression from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X, y) #Polynomial Regression from sklearn.preprocessing import PolynomialFeatures poly_reg = PolynomialFeatures(degree = 4) X_poly = poly_reg.fit_transform(X) lin_reg_2 = LinearRegression() lin_reg_2.fit(X_poly, y) print(X_poly) # Visualizing linear regression result """ plt.scatter(X, y, color = 'red') plt.plot(X, lin_reg.predict(X), color = 'blue') plt.title('T or B') plt.xlabel('Position') plt.ylabel('salary') plt.show() """ # Visualizing polynomial regression result """plt.scatter(X, y, color = 'green') plt.plot(X, lin_reg_2.predict(poly_reg.fit_transform(X)), color = 'yellow') plt.title('Truth or Bluff (Polynomial Regression)') plt.xlabel('Position') plt.ylabel('salary') plt.show() """ # print(lin_reg.predict(6.5)) print("Polynomial:") print(lin_reg_2.predict(poly_reg.fit_transform(6.5)))