|
| 1 | +<html> |
| 2 | + <head> |
| 3 | + <title>Visualization of Mandelbrot and Julia sets with NumPy and HTML5 canvas</title> |
| 4 | + <meta charset="utf-8"> |
| 5 | + |
| 6 | + <link rel="stylesheet" href="../build/pyscript.css" /> |
| 7 | + <script defer src="../build/pyscript.js"></script> |
| 8 | + |
| 9 | + <style> |
| 10 | + .loading { |
| 11 | + display: inline-block; |
| 12 | + width: 50px; |
| 13 | + height: 50px; |
| 14 | + border: 3px solid rgba(255, 255, 255, 0.3); |
| 15 | + border-radius: 50%; |
| 16 | + border-top-color: black; |
| 17 | + animation: spin 1s ease-in-out infinite; |
| 18 | + } |
| 19 | + |
| 20 | + @keyframes spin { |
| 21 | + to { |
| 22 | + transform: rotate(360deg); |
| 23 | + } |
| 24 | + } |
| 25 | + </style> |
| 26 | + |
| 27 | + </head> |
| 28 | + <body> |
| 29 | + <b> |
| 30 | + </b> |
| 31 | + <div style="display: flex; flex-direction: row; gap: 1em"> |
| 32 | + <div> |
| 33 | + <div style="text-align: center">Mandelbrot set</div> |
| 34 | + <div id="mandelbrot" style="width: 600px; height: 600px"> |
| 35 | + <div class="loading"></div> |
| 36 | + </div> |
| 37 | + </div> |
| 38 | + <div> |
| 39 | + <div style="text-align: center">Julia set</div> |
| 40 | + <div id="julia" style="width: 600px; height: 600px"> |
| 41 | + <div class="loading"></div> |
| 42 | + </div> |
| 43 | + </div> |
| 44 | + </div> |
| 45 | + |
| 46 | +<py-env> |
| 47 | +- numpy |
| 48 | +</py-env> |
| 49 | + |
| 50 | +<py-script> |
| 51 | +from pyodide import to_js |
| 52 | + |
| 53 | +import numpy as np |
| 54 | + |
| 55 | +from js import ( |
| 56 | + console, |
| 57 | + document, |
| 58 | + devicePixelRatio, |
| 59 | + ImageData, |
| 60 | + Uint8ClampedArray, |
| 61 | + CanvasRenderingContext2D as Context2d, |
| 62 | +) |
| 63 | + |
| 64 | +Magma256 = np.array([ |
| 65 | + [0x00, 0x00, 0x03], [0x00, 0x00, 0x04], [0x00, 0x00, 0x06], [0x01, 0x00, 0x07], [0x01, 0x01, 0x09], [0x01, 0x01, 0x0b], |
| 66 | + [0x02, 0x02, 0x0d], [0x02, 0x02, 0x0f], [0x03, 0x03, 0x11], [0x04, 0x03, 0x13], [0x04, 0x04, 0x15], [0x05, 0x04, 0x17], |
| 67 | + [0x06, 0x05, 0x19], [0x07, 0x05, 0x1b], [0x08, 0x06, 0x1d], [0x09, 0x07, 0x1f], [0x0a, 0x07, 0x22], [0x0b, 0x08, 0x24], |
| 68 | + [0x0c, 0x09, 0x26], [0x0d, 0x0a, 0x28], [0x0e, 0x0a, 0x2a], [0x0f, 0x0b, 0x2c], [0x10, 0x0c, 0x2f], [0x11, 0x0c, 0x31], |
| 69 | + [0x12, 0x0d, 0x33], [0x14, 0x0d, 0x35], [0x15, 0x0e, 0x38], [0x16, 0x0e, 0x3a], [0x17, 0x0f, 0x3c], [0x18, 0x0f, 0x3f], |
| 70 | + [0x1a, 0x10, 0x41], [0x1b, 0x10, 0x44], [0x1c, 0x10, 0x46], [0x1e, 0x10, 0x49], [0x1f, 0x11, 0x4b], [0x20, 0x11, 0x4d], |
| 71 | + [0x22, 0x11, 0x50], [0x23, 0x11, 0x52], [0x25, 0x11, 0x55], [0x26, 0x11, 0x57], [0x28, 0x11, 0x59], [0x2a, 0x11, 0x5c], |
| 72 | + [0x2b, 0x11, 0x5e], [0x2d, 0x10, 0x60], [0x2f, 0x10, 0x62], [0x30, 0x10, 0x65], [0x32, 0x10, 0x67], [0x34, 0x10, 0x68], |
| 73 | + [0x35, 0x0f, 0x6a], [0x37, 0x0f, 0x6c], [0x39, 0x0f, 0x6e], [0x3b, 0x0f, 0x6f], [0x3c, 0x0f, 0x71], [0x3e, 0x0f, 0x72], |
| 74 | + [0x40, 0x0f, 0x73], [0x42, 0x0f, 0x74], [0x43, 0x0f, 0x75], [0x45, 0x0f, 0x76], [0x47, 0x0f, 0x77], [0x48, 0x10, 0x78], |
| 75 | + [0x4a, 0x10, 0x79], [0x4b, 0x10, 0x79], [0x4d, 0x11, 0x7a], [0x4f, 0x11, 0x7b], [0x50, 0x12, 0x7b], [0x52, 0x12, 0x7c], |
| 76 | + [0x53, 0x13, 0x7c], [0x55, 0x13, 0x7d], [0x57, 0x14, 0x7d], [0x58, 0x15, 0x7e], [0x5a, 0x15, 0x7e], [0x5b, 0x16, 0x7e], |
| 77 | + [0x5d, 0x17, 0x7e], [0x5e, 0x17, 0x7f], [0x60, 0x18, 0x7f], [0x61, 0x18, 0x7f], [0x63, 0x19, 0x7f], [0x65, 0x1a, 0x80], |
| 78 | + [0x66, 0x1a, 0x80], [0x68, 0x1b, 0x80], [0x69, 0x1c, 0x80], [0x6b, 0x1c, 0x80], [0x6c, 0x1d, 0x80], [0x6e, 0x1e, 0x81], |
| 79 | + [0x6f, 0x1e, 0x81], [0x71, 0x1f, 0x81], [0x73, 0x1f, 0x81], [0x74, 0x20, 0x81], [0x76, 0x21, 0x81], [0x77, 0x21, 0x81], |
| 80 | + [0x79, 0x22, 0x81], [0x7a, 0x22, 0x81], [0x7c, 0x23, 0x81], [0x7e, 0x24, 0x81], [0x7f, 0x24, 0x81], [0x81, 0x25, 0x81], |
| 81 | + [0x82, 0x25, 0x81], [0x84, 0x26, 0x81], [0x85, 0x26, 0x81], [0x87, 0x27, 0x81], [0x89, 0x28, 0x81], [0x8a, 0x28, 0x81], |
| 82 | + [0x8c, 0x29, 0x80], [0x8d, 0x29, 0x80], [0x8f, 0x2a, 0x80], [0x91, 0x2a, 0x80], [0x92, 0x2b, 0x80], [0x94, 0x2b, 0x80], |
| 83 | + [0x95, 0x2c, 0x80], [0x97, 0x2c, 0x7f], [0x99, 0x2d, 0x7f], [0x9a, 0x2d, 0x7f], [0x9c, 0x2e, 0x7f], [0x9e, 0x2e, 0x7e], |
| 84 | + [0x9f, 0x2f, 0x7e], [0xa1, 0x2f, 0x7e], [0xa3, 0x30, 0x7e], [0xa4, 0x30, 0x7d], [0xa6, 0x31, 0x7d], [0xa7, 0x31, 0x7d], |
| 85 | + [0xa9, 0x32, 0x7c], [0xab, 0x33, 0x7c], [0xac, 0x33, 0x7b], [0xae, 0x34, 0x7b], [0xb0, 0x34, 0x7b], [0xb1, 0x35, 0x7a], |
| 86 | + [0xb3, 0x35, 0x7a], [0xb5, 0x36, 0x79], [0xb6, 0x36, 0x79], [0xb8, 0x37, 0x78], [0xb9, 0x37, 0x78], [0xbb, 0x38, 0x77], |
| 87 | + [0xbd, 0x39, 0x77], [0xbe, 0x39, 0x76], [0xc0, 0x3a, 0x75], [0xc2, 0x3a, 0x75], [0xc3, 0x3b, 0x74], [0xc5, 0x3c, 0x74], |
| 88 | + [0xc6, 0x3c, 0x73], [0xc8, 0x3d, 0x72], [0xca, 0x3e, 0x72], [0xcb, 0x3e, 0x71], [0xcd, 0x3f, 0x70], [0xce, 0x40, 0x70], |
| 89 | + [0xd0, 0x41, 0x6f], [0xd1, 0x42, 0x6e], [0xd3, 0x42, 0x6d], [0xd4, 0x43, 0x6d], [0xd6, 0x44, 0x6c], [0xd7, 0x45, 0x6b], |
| 90 | + [0xd9, 0x46, 0x6a], [0xda, 0x47, 0x69], [0xdc, 0x48, 0x69], [0xdd, 0x49, 0x68], [0xde, 0x4a, 0x67], [0xe0, 0x4b, 0x66], |
| 91 | + [0xe1, 0x4c, 0x66], [0xe2, 0x4d, 0x65], [0xe4, 0x4e, 0x64], [0xe5, 0x50, 0x63], [0xe6, 0x51, 0x62], [0xe7, 0x52, 0x62], |
| 92 | + [0xe8, 0x54, 0x61], [0xea, 0x55, 0x60], [0xeb, 0x56, 0x60], [0xec, 0x58, 0x5f], [0xed, 0x59, 0x5f], [0xee, 0x5b, 0x5e], |
| 93 | + [0xee, 0x5d, 0x5d], [0xef, 0x5e, 0x5d], [0xf0, 0x60, 0x5d], [0xf1, 0x61, 0x5c], [0xf2, 0x63, 0x5c], [0xf3, 0x65, 0x5c], |
| 94 | + [0xf3, 0x67, 0x5b], [0xf4, 0x68, 0x5b], [0xf5, 0x6a, 0x5b], [0xf5, 0x6c, 0x5b], [0xf6, 0x6e, 0x5b], [0xf6, 0x70, 0x5b], |
| 95 | + [0xf7, 0x71, 0x5b], [0xf7, 0x73, 0x5c], [0xf8, 0x75, 0x5c], [0xf8, 0x77, 0x5c], [0xf9, 0x79, 0x5c], [0xf9, 0x7b, 0x5d], |
| 96 | + [0xf9, 0x7d, 0x5d], [0xfa, 0x7f, 0x5e], [0xfa, 0x80, 0x5e], [0xfa, 0x82, 0x5f], [0xfb, 0x84, 0x60], [0xfb, 0x86, 0x60], |
| 97 | + [0xfb, 0x88, 0x61], [0xfb, 0x8a, 0x62], [0xfc, 0x8c, 0x63], [0xfc, 0x8e, 0x63], [0xfc, 0x90, 0x64], [0xfc, 0x92, 0x65], |
| 98 | + [0xfc, 0x93, 0x66], [0xfd, 0x95, 0x67], [0xfd, 0x97, 0x68], [0xfd, 0x99, 0x69], [0xfd, 0x9b, 0x6a], [0xfd, 0x9d, 0x6b], |
| 99 | + [0xfd, 0x9f, 0x6c], [0xfd, 0xa1, 0x6e], [0xfd, 0xa2, 0x6f], [0xfd, 0xa4, 0x70], [0xfe, 0xa6, 0x71], [0xfe, 0xa8, 0x73], |
| 100 | + [0xfe, 0xaa, 0x74], [0xfe, 0xac, 0x75], [0xfe, 0xae, 0x76], [0xfe, 0xaf, 0x78], [0xfe, 0xb1, 0x79], [0xfe, 0xb3, 0x7b], |
| 101 | + [0xfe, 0xb5, 0x7c], [0xfe, 0xb7, 0x7d], [0xfe, 0xb9, 0x7f], [0xfe, 0xbb, 0x80], [0xfe, 0xbc, 0x82], [0xfe, 0xbe, 0x83], |
| 102 | + [0xfe, 0xc0, 0x85], [0xfe, 0xc2, 0x86], [0xfe, 0xc4, 0x88], [0xfe, 0xc6, 0x89], [0xfe, 0xc7, 0x8b], [0xfe, 0xc9, 0x8d], |
| 103 | + [0xfe, 0xcb, 0x8e], [0xfd, 0xcd, 0x90], [0xfd, 0xcf, 0x92], [0xfd, 0xd1, 0x93], [0xfd, 0xd2, 0x95], [0xfd, 0xd4, 0x97], |
| 104 | + [0xfd, 0xd6, 0x98], [0xfd, 0xd8, 0x9a], [0xfd, 0xda, 0x9c], [0xfd, 0xdc, 0x9d], [0xfd, 0xdd, 0x9f], [0xfd, 0xdf, 0xa1], |
| 105 | + [0xfd, 0xe1, 0xa3], [0xfc, 0xe3, 0xa5], [0xfc, 0xe5, 0xa6], [0xfc, 0xe6, 0xa8], [0xfc, 0xe8, 0xaa], [0xfc, 0xea, 0xac], |
| 106 | + [0xfc, 0xec, 0xae], [0xfc, 0xee, 0xb0], [0xfc, 0xf0, 0xb1], [0xfc, 0xf1, 0xb3], [0xfc, 0xf3, 0xb5], [0xfc, 0xf5, 0xb7], |
| 107 | + [0xfb, 0xf7, 0xb9], [0xfb, 0xf9, 0xbb], [0xfb, 0xfa, 0xbd], [0xfb, 0xfc, 0xbf], |
| 108 | +], dtype="uint8") |
| 109 | + |
| 110 | +def mandelbrot(width: int, height: int, *, |
| 111 | + x: float = -0.5, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: |
| 112 | + """ |
| 113 | + From https://www.learnpythonwithrune.org/numpy-compute-mandelbrot-set-by-vectorization/. |
| 114 | + """ |
| 115 | + # To make navigation easier we calculate these values |
| 116 | + x_width, y_height = 1.5, 1.5*height/width |
| 117 | + x_from, x_to = x - x_width/zoom, x + x_width/zoom |
| 118 | + y_from, y_to = y - y_height/zoom, y + y_height/zoom |
| 119 | + |
| 120 | + # Here the actual algorithm starts |
| 121 | + x = np.linspace(x_from, x_to, width).reshape((1, width)) |
| 122 | + y = np.linspace(y_from, y_to, height).reshape((height, 1)) |
| 123 | + c = x + 1j*y |
| 124 | + |
| 125 | + # Initialize z to all zero |
| 126 | + z = np.zeros(c.shape, dtype=np.complex128) |
| 127 | + |
| 128 | + # To keep track in which iteration the point diverged |
| 129 | + div_time = np.zeros(z.shape, dtype=int) |
| 130 | + |
| 131 | + # To keep track on which points did not converge so far |
| 132 | + m = np.full(c.shape, True, dtype=bool) |
| 133 | + for i in range(max_iterations): |
| 134 | + z[m] = z[m]**2 + c[m] |
| 135 | + diverged = np.greater(np.abs(z), 2, out=np.full(c.shape, False), where=m) # Find diverging |
| 136 | + div_time[diverged] = i # set the value of the diverged iteration number |
| 137 | + m[np.abs(z) > 2] = False # to remember which have diverged |
| 138 | + |
| 139 | + return div_time |
| 140 | + |
| 141 | +def julia(width: int, height: int, *, |
| 142 | + c: complex = -0.4 + 0.6j, x: float = 0, y: float = 0, zoom: int = 1, max_iterations: int = 100) -> np.array: |
| 143 | + """ |
| 144 | + From https://www.learnpythonwithrune.org/numpy-calculate-the-julia-set-with-vectorization/. |
| 145 | + """ |
| 146 | + # To make navigation easier we calculate these values |
| 147 | + x_width, y_height = 1.5, 1.5*height/width |
| 148 | + x_from, x_to = x - x_width/zoom, x + x_width/zoom |
| 149 | + y_from, y_to = y - y_height/zoom, y + y_height/zoom |
| 150 | + |
| 151 | + # Here the actual algorithm starts |
| 152 | + x = np.linspace(x_from, x_to, width).reshape((1, width)) |
| 153 | + y = np.linspace(y_from, y_to, height).reshape((height, 1)) |
| 154 | + z = x + 1j*y |
| 155 | + |
| 156 | + # Initialize z to all zero |
| 157 | + c = np.full(z.shape, c) |
| 158 | + |
| 159 | + # To keep track in which iteration the point diverged |
| 160 | + div_time = np.zeros(z.shape, dtype=int) |
| 161 | + |
| 162 | + # To keep track on which points did not converge so far |
| 163 | + m = np.full(c.shape, True, dtype=bool) |
| 164 | + for i in range(max_iterations): |
| 165 | + z[m] = z[m]**2 + c[m] |
| 166 | + m[np.abs(z) > 2] = False |
| 167 | + div_time[m] = i |
| 168 | + |
| 169 | + return div_time |
| 170 | + |
| 171 | +def create_canvas(width: int, height: int, target: str) -> Context2d: |
| 172 | + pixel_ratio = devicePixelRatio |
| 173 | + |
| 174 | + canvas = document.createElement("canvas") |
| 175 | + ctx = canvas.getContext("2d") |
| 176 | + |
| 177 | + canvas.style.width = f"{width}px" |
| 178 | + canvas.style.height = f"{height}px" |
| 179 | + |
| 180 | + canvas.width = width*pixel_ratio |
| 181 | + canvas.height = height*pixel_ratio |
| 182 | + |
| 183 | + ctx.scale(pixel_ratio, pixel_ratio) |
| 184 | + ctx.translate(0.5, 0.5) |
| 185 | + |
| 186 | + ctx.clearRect(0, 0, width, height) |
| 187 | + |
| 188 | + el = document.querySelector(target) |
| 189 | + el.replaceChildren(canvas) |
| 190 | + |
| 191 | + return ctx |
| 192 | + |
| 193 | +def color_map(array: np.array, palette: np.array) -> np.array: |
| 194 | + size, _ = palette.shape |
| 195 | + index = (array/array.max()*(size - 1)).round().astype("uint8") |
| 196 | + |
| 197 | + width, height = array.shape |
| 198 | + image = np.full((width, height, 4), 0xff, dtype=np.uint8) |
| 199 | + image[:, :, :3] = palette[index] |
| 200 | + |
| 201 | + return image |
| 202 | + |
| 203 | +def draw_image(ctx: Context2d, image: np.array) -> None: |
| 204 | + data = Uint8ClampedArray.new(to_js(image.tobytes())) |
| 205 | + width, height, _ = image.shape |
| 206 | + image_data = ImageData.new(data, width, height) |
| 207 | + ctx.putImageData(image_data, 0, 0) |
| 208 | + |
| 209 | +def draw_mandelbrot(width: int, height: int) -> None: |
| 210 | + ctx = create_canvas(width, height, "#mandelbrot") |
| 211 | + |
| 212 | + console.log("Computing Mandelbrot set ...") |
| 213 | + console.time("mandelbrot") |
| 214 | + array = mandelbrot(width, height) |
| 215 | + console.timeEnd("mandelbrot") |
| 216 | + |
| 217 | + image = color_map(array, Magma256) |
| 218 | + draw_image(ctx, image) |
| 219 | + |
| 220 | +def draw_julia(width: int, height: int) -> None: |
| 221 | + ctx = create_canvas(width, height, "#julia") |
| 222 | + |
| 223 | + console.log("Computing Julia set ...") |
| 224 | + console.time("julia") |
| 225 | + array = julia(width, height) |
| 226 | + console.timeEnd("julia") |
| 227 | + |
| 228 | + image = color_map(array, Magma256) |
| 229 | + draw_image(ctx, image) |
| 230 | + |
| 231 | +draw_mandelbrot(600, 600) |
| 232 | +draw_julia(600, 600) |
| 233 | +</py-script> |
| 234 | + |
| 235 | +</body> |
| 236 | +</html> |
0 commit comments