|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Model Specification for 1st-Level fMRI Analysis\n", |
| 8 | + "\n", |
| 9 | + "Nipype provides also an interfaces to create a first level Model for an fMRI analysis. Such a model is needed to specify the study specific information, such as **condition**, their **onsets** and **durations**. For more information, make sure to check out [Model Specificaton](http://nipype.readthedocs.io/en/latest/users/model_specification.html) and [nipype.algorithms.modelgen](http://nipype.readthedocs.io/en/latest/interfaces/generated/nipype.algorithms.modelgen.html)" |
| 10 | + ] |
| 11 | + }, |
| 12 | + { |
| 13 | + "cell_type": "markdown", |
| 14 | + "metadata": {}, |
| 15 | + "source": [ |
| 16 | + "## Simple Example\n", |
| 17 | + "\n", |
| 18 | + "Let's consider a simple experiment, where we have three different stimuli such as ``'faces'``, ``'houses'`` and ``'scrambled pix'``. Now each of those three conditions has different stimuli onsets, but all of them have a stimuli presentation duration of 3 seconds.\n", |
| 19 | + "\n", |
| 20 | + "So to summarize:\n", |
| 21 | + "\n", |
| 22 | + " conditions = ['faces', 'houses', 'scrambled pix']\n", |
| 23 | + " onsets = [[0, 30, 60, 90],\n", |
| 24 | + " [10, 40, 70, 100],\n", |
| 25 | + " [20, 50, 80, 110]]\n", |
| 26 | + " durations = [[3], [3], [3]]\n", |
| 27 | + " \n", |
| 28 | + "The way we would create this model with Nipype is almsot as simple as that. The only step that is missing is to put this all into a ``Bunch`` object. This can be done as follows:" |
| 29 | + ] |
| 30 | + }, |
| 31 | + { |
| 32 | + "cell_type": "code", |
| 33 | + "execution_count": null, |
| 34 | + "metadata": { |
| 35 | + "collapsed": false |
| 36 | + }, |
| 37 | + "outputs": [], |
| 38 | + "source": [ |
| 39 | + "from nipype.interfaces.base import Bunch\n", |
| 40 | + "\n", |
| 41 | + "conditions = ['faces', 'houses', 'scrambled pix']\n", |
| 42 | + "onsets = [[0, 30, 60, 90],\n", |
| 43 | + " [10, 40, 70, 100],\n", |
| 44 | + " [20, 50, 80, 110]]\n", |
| 45 | + "durations = [[3], [3], [3]]\n", |
| 46 | + "\n", |
| 47 | + "subject_info = Bunch(conditions=conditions,\n", |
| 48 | + " onsets=onsets,\n", |
| 49 | + " durations=durations)" |
| 50 | + ] |
| 51 | + }, |
| 52 | + { |
| 53 | + "cell_type": "markdown", |
| 54 | + "metadata": {}, |
| 55 | + "source": [ |
| 56 | + "It's also possible to specify additional regressors. For this you need to additionally specify:\n", |
| 57 | + "\n", |
| 58 | + "- **``regressors``**: list of regressors that you want to include in the model (must correspond to the number of volumes in the functional run)\n", |
| 59 | + "- **``regressor_names``**: name of the regressors that you want to include" |
| 60 | + ] |
| 61 | + }, |
| 62 | + { |
| 63 | + "cell_type": "markdown", |
| 64 | + "metadata": {}, |
| 65 | + "source": [ |
| 66 | + "## Example based on dataset\n", |
| 67 | + "\n", |
| 68 | + "Now for a more realistic example, let's look at a TVA file from our tutorial dataset." |
| 69 | + ] |
| 70 | + }, |
| 71 | + { |
| 72 | + "cell_type": "code", |
| 73 | + "execution_count": null, |
| 74 | + "metadata": { |
| 75 | + "collapsed": false, |
| 76 | + "deletable": true, |
| 77 | + "editable": true |
| 78 | + }, |
| 79 | + "outputs": [ |
| 80 | + { |
| 81 | + "name": "stdout", |
| 82 | + "output_type": "stream", |
| 83 | + "text": [ |
| 84 | + "onset\tduration\ttrial_type\tresponse_time\tcorrectness\tStimVar\tRsponse\tStimulus\tcond\r\n", |
| 85 | + "0.0\t2.0\tincongruent_correct\t1.095\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 86 | + "10.0\t2.0\tincongruent_correct\t0.988\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 87 | + "20.0\t2.0\tcongruent_correct\t0.591\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 88 | + "30.0\t2.0\tcongruent_correct\t0.499\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 89 | + "40.0\t2.0\tincongruent_correct\t0.719\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 90 | + "52.0\t2.0\tcongruent_correct\t0.544\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 91 | + "64.0\t2.0\tcongruent_correct\t0.436\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 92 | + "76.0\t2.0\tincongruent_correct\t0.47\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 93 | + "88.0\t2.0\tcongruent_correct\t0.409\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 94 | + "102.0\t2.0\tincongruent_correct\t0.563\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 95 | + "116.0\t2.0\tcongruent_correct\t0.493\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 96 | + "130.0\t2.0\tcongruent_correct\t0.398\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 97 | + "140.0\t2.0\tcongruent_correct\t0.466\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 98 | + "150.0\t2.0\tincongruent_correct\t0.518\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 99 | + "164.0\t2.0\tincongruent_correct\t0.56\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 100 | + "174.0\t2.0\tincongruent_correct\t0.533\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 101 | + "184.0\t2.0\tcongruent_correct\t0.439\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 102 | + "196.0\t2.0\tcongruent_correct\t0.458\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 103 | + "208.0\t2.0\tincongruent_correct\t0.734\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 104 | + "220.0\t2.0\tincongruent_correct\t0.479\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 105 | + "232.0\t2.0\tincongruent_correct\t0.538\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 106 | + "246.0\t2.0\tcongruent_correct\t0.54\tcorrect\t1\t1\tcongruent\tcond001\r\n", |
| 107 | + "260.0\t2.0\tincongruent_correct\t0.622\tcorrect\t2\t1\tincongruent\tcond003\r\n", |
| 108 | + "274.0\t2.0\tcongruent_correct\t0.488\tcorrect\t1\t1\tcongruent\tcond001\r\n" |
| 109 | + ] |
| 110 | + } |
| 111 | + ], |
| 112 | + "source": [ |
| 113 | + "!cat /data/ds102/sub-01/func/sub-01_task-flanker_run-1_events.tsv" |
| 114 | + ] |
| 115 | + }, |
| 116 | + { |
| 117 | + "cell_type": "markdown", |
| 118 | + "metadata": {}, |
| 119 | + "source": [ |
| 120 | + "So, the only things that we need to specify our model are the onset and the stimuli type, i.e. **column 0** and **column 5 or 7**. Those we can get with the command:" |
| 121 | + ] |
| 122 | + }, |
| 123 | + { |
| 124 | + "cell_type": "code", |
| 125 | + "execution_count": null, |
| 126 | + "metadata": { |
| 127 | + "collapsed": false |
| 128 | + }, |
| 129 | + "outputs": [], |
| 130 | + "source": [ |
| 131 | + "import numpy as np\n", |
| 132 | + "filename = '/data/ds102/sub-01/func/sub-01_task-flanker_run-1_events.tsv'\n", |
| 133 | + "trailinfo = np.genfromtxt(filename, delimiter='\\t', dtype=None, skip_header=1)\n", |
| 134 | + "trailinfo = [[t[0], t[7]] for t in trailinfo]\n", |
| 135 | + "trailinfo" |
| 136 | + ] |
| 137 | + }, |
| 138 | + { |
| 139 | + "cell_type": "markdown", |
| 140 | + "metadata": {}, |
| 141 | + "source": [ |
| 142 | + "Before we can use the onsets, we first need to split them into the two conditions:" |
| 143 | + ] |
| 144 | + }, |
| 145 | + { |
| 146 | + "cell_type": "code", |
| 147 | + "execution_count": null, |
| 148 | + "metadata": { |
| 149 | + "collapsed": true |
| 150 | + }, |
| 151 | + "outputs": [], |
| 152 | + "source": [ |
| 153 | + "onset1 = []\n", |
| 154 | + "onset2 = []\n", |
| 155 | + "\n", |
| 156 | + "for t in trailinfo:\n", |
| 157 | + " if 'incongruent' in t[1]:\n", |
| 158 | + " onset2.append(t[0])\n", |
| 159 | + " else:\n", |
| 160 | + " onset1.append(t[0])\n", |
| 161 | + "\n", |
| 162 | + "print onset1\n", |
| 163 | + "print onset2" |
| 164 | + ] |
| 165 | + }, |
| 166 | + { |
| 167 | + "cell_type": "markdown", |
| 168 | + "metadata": {}, |
| 169 | + "source": [ |
| 170 | + "The last thing we now need to to is to put this into a ``Bunch`` object and we're done:" |
| 171 | + ] |
| 172 | + }, |
| 173 | + { |
| 174 | + "cell_type": "code", |
| 175 | + "execution_count": null, |
| 176 | + "metadata": { |
| 177 | + "collapsed": true |
| 178 | + }, |
| 179 | + "outputs": [], |
| 180 | + "source": [ |
| 181 | + "from nipype.interfaces.base import Bunch\n", |
| 182 | + "\n", |
| 183 | + "conditions = ['congruent', 'incongruent']\n", |
| 184 | + "onsets = [onset1, onset2]\n", |
| 185 | + "durations = [[2], [2]]\n", |
| 186 | + "\n", |
| 187 | + "subject_info = Bunch(conditions=conditions,\n", |
| 188 | + " onsets=onsets,\n", |
| 189 | + " durations=durations)" |
| 190 | + ] |
| 191 | + } |
| 192 | + ], |
| 193 | + "metadata": { |
| 194 | + "kernelspec": { |
| 195 | + "display_name": "Python [default]", |
| 196 | + "language": "python", |
| 197 | + "name": "python2" |
| 198 | + }, |
| 199 | + "language_info": { |
| 200 | + "codemirror_mode": { |
| 201 | + "name": "ipython", |
| 202 | + "version": 2 |
| 203 | + }, |
| 204 | + "file_extension": ".py", |
| 205 | + "mimetype": "text/x-python", |
| 206 | + "name": "python", |
| 207 | + "nbconvert_exporter": "python", |
| 208 | + "pygments_lexer": "ipython2", |
| 209 | + "version": "2.7.13" |
| 210 | + } |
| 211 | + }, |
| 212 | + "nbformat": 4, |
| 213 | + "nbformat_minor": 2 |
| 214 | +} |
0 commit comments