@@ -92,7 +92,7 @@ def _validate_params(self, set_max_iter=True):
92
92
raise ValueError ("max_iter must be > zero. Got %f" % self .max_iter )
93
93
if not (0.0 <= self .l1_ratio <= 1.0 ):
94
94
raise ValueError ("l1_ratio must be in [0, 1]" )
95
- if self .alpha < 0.0 :
95
+ if not isinstance ( self , SGDOneClassSVM ) and self .alpha < 0.0 :
96
96
raise ValueError ("alpha must be >= 0" )
97
97
if self .learning_rate in ("constant" , "invscaling" ):
98
98
if self .eta0 <= 0.0 :
@@ -1611,10 +1611,10 @@ def partial_fit(self, X, y=None, sample_weight=None):
1611
1611
self : returns an instance of self.
1612
1612
"""
1613
1613
1614
- self . alpha = self .nu / 2
1614
+ alpha = self .nu / 2
1615
1615
self ._validate_params ()
1616
1616
1617
- return self ._partial_fit (X , self . alpha , C = 1.0 , loss = self .loss ,
1617
+ return self ._partial_fit (X , alpha , C = 1.0 , loss = self .loss ,
1618
1618
learning_rate = self .learning_rate ,
1619
1619
max_iter = 1 ,
1620
1620
sample_weight = sample_weight ,
@@ -1688,8 +1688,8 @@ def fit(self, X, y=None, coef_init=None, offset_init=None,
1688
1688
self : returns an instance of self.
1689
1689
"""
1690
1690
1691
- self . alpha = self .nu / 2
1692
- self ._fit (X , alpha = self . alpha , C = 1.0 ,
1691
+ alpha = self .nu / 2
1692
+ self ._fit (X , alpha = alpha , C = 1.0 ,
1693
1693
loss = self .loss , learning_rate = self .learning_rate ,
1694
1694
coef_init = coef_init , offset_init = offset_init ,
1695
1695
sample_weight = sample_weight )
0 commit comments