@@ -476,7 +476,7 @@ def fit(self, X, y):
476
476
477
477
478
478
class LabelSpreading (BaseLabelPropagation ):
479
- """LabelSpreading model for semi-supervised learning
479
+ """LabelSpreading model for semi-supervised learning.
480
480
481
481
This model is similar to the basic Label Propagation algorithm,
482
482
but uses affinity matrix based on the normalized graph Laplacian
@@ -546,6 +546,16 @@ class LabelSpreading(BaseLabelPropagation):
546
546
n_iter_ : int
547
547
Number of iterations run.
548
548
549
+ See Also
550
+ --------
551
+ LabelPropagation : Unregularized graph based semi-supervised learning.
552
+
553
+ References
554
+ ----------
555
+ Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
556
+ Bernhard Schoelkopf. Learning with local and global consistency (2004)
557
+ http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219
558
+
549
559
Examples
550
560
--------
551
561
>>> import numpy as np
@@ -559,16 +569,6 @@ class LabelSpreading(BaseLabelPropagation):
559
569
>>> labels[random_unlabeled_points] = -1
560
570
>>> label_prop_model.fit(iris.data, labels)
561
571
LabelSpreading(...)
562
-
563
- References
564
- ----------
565
- Dengyong Zhou, Olivier Bousquet, Thomas Navin Lal, Jason Weston,
566
- Bernhard Schoelkopf. Learning with local and global consistency (2004)
567
- http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.115.3219
568
-
569
- See Also
570
- --------
571
- LabelPropagation : Unregularized graph based semi-supervised learning.
572
572
"""
573
573
574
574
_variant = "spreading"
0 commit comments