@@ -52,7 +52,7 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):
52
52
53
53
Parameters
54
54
----------
55
- estimator : object
55
+ estimator : estimator instance
56
56
A supervised learning estimator with a ``fit`` method that provides
57
57
information about feature importance
58
58
(e.g. `coef_`, `feature_importances_`).
@@ -89,19 +89,22 @@ class RFE(SelectorMixin, MetaEstimatorMixin, BaseEstimator):
89
89
90
90
Attributes
91
91
----------
92
+ classes_ : ndarray of shape (n_classes,)
93
+ Unique class labels.
94
+
95
+ estimator_ : estimator instance
96
+ The fitted estimator used to select features.
97
+
92
98
n_features_ : int
93
99
The number of selected features.
94
100
95
- support_ : array of shape [n_features]
96
- The mask of selected features.
97
-
98
- ranking_ : array of shape [n_features]
101
+ ranking_ : ndarray of shape (n_features,)
99
102
The feature ranking, such that ``ranking_[i]`` corresponds to the
100
103
ranking position of the i-th feature. Selected (i.e., estimated
101
104
best) features are assigned rank 1.
102
105
103
- estimator_ : object
104
- The external estimator fit on the reduced dataset .
106
+ support_ : ndarray of shape (n_features,)
107
+ The mask of selected features .
105
108
106
109
Examples
107
110
--------
@@ -363,7 +366,7 @@ class RFECV(RFE):
363
366
364
367
Parameters
365
368
----------
366
- estimator : object
369
+ estimator : estimator instance
367
370
A supervised learning estimator with a ``fit`` method that provides
368
371
information about feature importance either through a ``coef_``
369
372
attribute or through a ``feature_importances_`` attribute.
@@ -439,26 +442,29 @@ class RFECV(RFE):
439
442
440
443
Attributes
441
444
----------
445
+ classes_ : ndarray of shape (n_classes,)
446
+ Unique class labels.
447
+
448
+ estimator_ : estimator instance
449
+ The fitted estimator used to select features.
450
+
451
+ grid_scores_ : ndarray of shape (n_subsets_of_features)
452
+ The cross-validation scores such that
453
+ ``grid_scores_[i]`` corresponds to
454
+ the CV score of the i-th subset of features.
455
+
442
456
n_features_ : int
443
457
The number of selected features with cross-validation.
444
458
445
- support_ : array of shape [n_features]
446
- The mask of selected features.
447
-
448
- ranking_ : array of shape [n_features]
459
+ ranking_ : narray of shape (n_features,)
449
460
The feature ranking, such that `ranking_[i]`
450
461
corresponds to the ranking
451
462
position of the i-th feature.
452
463
Selected (i.e., estimated best)
453
464
features are assigned rank 1.
454
465
455
- grid_scores_ : array of shape [n_subsets_of_features]
456
- The cross-validation scores such that
457
- ``grid_scores_[i]`` corresponds to
458
- the CV score of the i-th subset of features.
459
-
460
- estimator_ : object
461
- The external estimator fit on the reduced dataset.
466
+ support_ : ndarray of shape (n_features,)
467
+ The mask of selected features.
462
468
463
469
Notes
464
470
-----
0 commit comments