Skip to content

Commit 9eb6f11

Browse files
embanderaglemaitre
andauthored
DOC Ensures that sklearn.metrics._classification.accuracy_score passes numpydoc validation (#21441)
Co-authored-by: Guillaume Lemaitre <g.lemaitre58@gmail.com>
1 parent ec1248a commit 9eb6f11

File tree

2 files changed

+7
-2
lines changed

2 files changed

+7
-2
lines changed

maint_tools/test_docstrings.py

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -94,7 +94,6 @@
9494
"sklearn.linear_model._ridge.ridge_regression",
9595
"sklearn.manifold._locally_linear.locally_linear_embedding",
9696
"sklearn.manifold._t_sne.trustworthiness",
97-
"sklearn.metrics._classification.accuracy_score",
9897
"sklearn.metrics._classification.balanced_accuracy_score",
9998
"sklearn.metrics._classification.brier_score_loss",
10099
"sklearn.metrics._classification.classification_report",

sklearn/metrics/_classification.py

Lines changed: 7 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -177,7 +177,13 @@ def accuracy_score(y_true, y_pred, *, normalize=True, sample_weight=None):
177177
178178
See Also
179179
--------
180-
jaccard_score, hamming_loss, zero_one_loss
180+
balanced_accuracy_score : Compute the balanced accuracy to deal with
181+
imbalanced datasets.
182+
jaccard_score : Compute the Jaccard similarity coefficient score.
183+
hamming_loss : Compute the average Hamming loss or Hamming distance between
184+
two sets of samples.
185+
zero_one_loss : Compute the Zero-one classification loss. By default, the
186+
function will return the percentage of imperfectly predicted subsets.
181187
182188
Notes
183189
-----

0 commit comments

Comments
 (0)