@@ -459,51 +459,6 @@ def __init__(self, sample_weight=None):
459
459
else :
460
460
self .constant_hessian = False
461
461
462
- def gradient (
463
- self ,
464
- y_true ,
465
- raw_prediction ,
466
- sample_weight = None ,
467
- gradient = None ,
468
- n_threads = 1 ,
469
- ):
470
- # Be graceful to shape (n_samples, 1) -> (n_samples,)
471
- if raw_prediction .ndim == 2 and raw_prediction .shape [1 ] == 1 :
472
- raw_prediction = raw_prediction .squeeze (1 )
473
- if gradient is not None and gradient .ndim == 2 and gradient .shape [1 ] == 1 :
474
- gradient = gradient .squeeze (1 )
475
-
476
- # gradient = raw_prediction - y_true is easier in numpy
477
- gradient = np .subtract (raw_prediction , y_true , out = gradient )
478
- if sample_weight is None :
479
- return gradient
480
- else :
481
- return np .multiply (sample_weight , gradient , out = gradient )
482
-
483
- def gradient_hessian (
484
- self ,
485
- y_true ,
486
- raw_prediction ,
487
- sample_weight = None ,
488
- gradient = None ,
489
- hessian = None ,
490
- n_threads = 1 ,
491
- ):
492
- # easier in numpy
493
- gradient = self .gradient (
494
- y_true , raw_prediction , sample_weight , gradient , hessian
495
- )
496
- if hessian is None :
497
- hessian = np .empty_like (gradient )
498
- elif hessian .ndim == 2 and hessian .shape [1 ] == 1 :
499
- # Be graceful to shape (n_samples, 1) -> (n_samples,)
500
- hessian = hessian .squeeze (1 )
501
- if sample_weight is None :
502
- hessian .fill (1 )
503
- else :
504
- np .copyto (hessian , sample_weight )
505
- return gradient , hessian
506
-
507
462
508
463
class AbsoluteError (IdentityLink , BaseLoss , CyAbsoluteError ):
509
464
"""Absolute error with identity link, for regression.
0 commit comments