@@ -660,6 +660,10 @@ def load_breast_cancer(*, return_X_y=False, as_frame=False):
660
660
Features real, positive
661
661
================= ==============
662
662
663
+ The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
664
+ downloaded from:
665
+ https://goo.gl/U2Uwz2
666
+
663
667
Read more in the :ref:`User Guide <breast_cancer_dataset>`.
664
668
665
669
Parameters
@@ -687,33 +691,34 @@ def load_breast_cancer(*, return_X_y=False, as_frame=False):
687
691
data : {ndarray, dataframe} of shape (569, 30)
688
692
The data matrix. If `as_frame=True`, `data` will be a pandas
689
693
DataFrame.
690
- target: {ndarray, Series} of shape (569,)
694
+ target : {ndarray, Series} of shape (569,)
691
695
The classification target. If `as_frame=True`, `target` will be
692
696
a pandas Series.
693
- feature_names: list
697
+ feature_names : list
694
698
The names of the dataset columns.
695
- target_names: list
699
+ target_names : list
696
700
The names of target classes.
697
- frame: DataFrame of shape (569, 31)
701
+ frame : DataFrame of shape (569, 31)
698
702
Only present when `as_frame=True`. DataFrame with `data` and
699
703
`target`.
700
704
701
705
.. versionadded:: 0.23
702
- DESCR: str
706
+ DESCR : str
703
707
The full description of the dataset.
704
- filename: str
708
+ filename : str
705
709
The path to the location of the data.
706
710
707
711
.. versionadded:: 0.20
708
712
709
713
(data, target) : tuple if ``return_X_y`` is True
714
+ A tuple of two ndarrays by default. The first contains a 2D ndarray of
715
+ shape (569, 30) with each row representing one sample and each column
716
+ representing the features. The second ndarray of shape (569,) contains
717
+ the target samples. If `as_frame=True`, both arrays are pandas objects,
718
+ i.e. `X` a dataframe and `y` a series.
710
719
711
720
.. versionadded:: 0.18
712
721
713
- The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
714
- downloaded from:
715
- https://goo.gl/U2Uwz2
716
-
717
722
Examples
718
723
--------
719
724
Let's say you are interested in the samples 10, 50, and 85, and want to
@@ -989,6 +994,7 @@ def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True):
989
994
Returns a tuple of two ndarray of shape (n_samples, n_features)
990
995
A 2D array with each row representing one sample and each column
991
996
representing the features and/or target of a given sample.
997
+
992
998
.. versionadded:: 0.18
993
999
"""
994
1000
data_filename = "diabetes_data_raw.csv.gz"
0 commit comments