Skip to content

Commit c0da745

Browse files
committed
fix missing krylov option
1 parent 425a1e4 commit c0da745

File tree

1 file changed

+9
-5
lines changed

1 file changed

+9
-5
lines changed

sklearn/linear_model/tests/test_logistic.py

Lines changed: 9 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -195,7 +195,8 @@ def test_predict_iris():
195195
assert np.mean(pred == target) > .95
196196

197197

198-
@pytest.mark.parametrize('solver', ['lbfgs', 'newton-cg', 'sag', 'saga'])
198+
@pytest.mark.parametrize('solver', ['lbfgs', 'newton-cg', 'sag', 'saga',
199+
'trust-ncg', 'trust-krylov'])
199200
def test_multinomial_validation(solver):
200201
lr = LogisticRegression(C=-1, solver=solver, multi_class='multinomial')
201202
assert_raises(ValueError, lr.fit, [[0, 1], [1, 0]], [0, 1])
@@ -247,7 +248,8 @@ def test_check_solver_option(LR):
247248
assert_raise_message(ValueError, msg, lr.fit, X, y)
248249

249250

250-
@pytest.mark.parametrize('solver', ['lbfgs', 'newton-cg', 'sag', 'saga'])
251+
@pytest.mark.parametrize('solver', ['lbfgs', 'newton-cg', 'sag', 'saga',
252+
'trust-ncg', 'trust-krylov'])
251253
def test_multinomial_binary(solver):
252254
# Test multinomial LR on a binary problem.
253255
target = (iris.target > 0).astype(np.intp)
@@ -1233,7 +1235,8 @@ def test_n_iter(solver):
12331235
assert clf.n_iter_.shape == (1, n_cv_fold, n_Cs)
12341236

12351237

1236-
@pytest.mark.parametrize('solver', ('newton-cg', 'sag', 'saga', 'lbfgs'))
1238+
@pytest.mark.parametrize('solver', ('newton-cg', 'sag', 'saga', 'lbfgs',
1239+
'trust-ncg', 'trust-krylov'))
12371240
@pytest.mark.parametrize('warm_start', (True, False))
12381241
@pytest.mark.parametrize('fit_intercept', (True, False))
12391242
@pytest.mark.parametrize('multi_class', ['ovr', 'multinomial'])
@@ -1694,7 +1697,7 @@ def test_logistic_regression_path_coefs_multinomial():
16941697
Cs=3, tol=1e-3)],
16951698
ids=lambda x: x.__class__.__name__)
16961699
@pytest.mark.parametrize('solver', ['liblinear', 'lbfgs', 'newton-cg', 'sag',
1697-
'saga'])
1700+
'saga', 'trust-ncg', 'trust-krylov'])
16981701
def test_logistic_regression_multi_class_auto(est, solver):
16991702
# check multi_class='auto' => multi_class='ovr' iff binary y or liblinear
17001703

@@ -1737,7 +1740,8 @@ def fit(X, y, **kw):
17371740
solver=solver).coef_)
17381741

17391742

1740-
@pytest.mark.parametrize('solver', ('lbfgs', 'newton-cg', 'sag', 'saga'))
1743+
@pytest.mark.parametrize('solver', ('lbfgs', 'newton-cg', 'sag', 'saga',
1744+
'trust-ncg', 'trust-krylov'))
17411745
def test_penalty_none(solver):
17421746
# - Make sure warning is raised if penalty='none' and C is set to a
17431747
# non-default value.

0 commit comments

Comments
 (0)