|
| 1 | +""" |
| 2 | +
|
| 3 | +To run this benchmark, you will need, |
| 4 | +
|
| 5 | + * scikit-learn |
| 6 | + * pandas |
| 7 | + * memory_profiler |
| 8 | + * psutil (optional, but recommended) |
| 9 | +
|
| 10 | +""" |
| 11 | + |
| 12 | +from __future__ import print_function |
| 13 | + |
| 14 | +import timeit |
| 15 | +import itertools |
| 16 | + |
| 17 | +import numpy as np |
| 18 | +import pandas as pd |
| 19 | +from memory_profiler import memory_usage |
| 20 | + |
| 21 | +from sklearn.datasets import fetch_20newsgroups |
| 22 | +from sklearn.feature_extraction.text import (CountVectorizer, TfidfVectorizer, |
| 23 | + HashingVectorizer) |
| 24 | + |
| 25 | +n_repeat = 3 |
| 26 | + |
| 27 | + |
| 28 | +def run_vectorizer(Vectorizer, X, **params): |
| 29 | + def f(): |
| 30 | + vect = Vectorizer(**params) |
| 31 | + vect.fit_transform(X) |
| 32 | + return f |
| 33 | + |
| 34 | + |
| 35 | +text = fetch_20newsgroups(subset='train').data |
| 36 | + |
| 37 | +print("="*80 + '\n#' + " Text vectorizers benchmark" + '\n' + '='*80 + '\n') |
| 38 | +print("Using a subset of the 20 newsrgoups dataset ({} documents)." |
| 39 | + .format(len(text))) |
| 40 | +print("This benchmarks runs in ~20 min ...") |
| 41 | + |
| 42 | +res = [] |
| 43 | + |
| 44 | +for Vectorizer, (analyzer, ngram_range) in itertools.product( |
| 45 | + [CountVectorizer, TfidfVectorizer, HashingVectorizer], |
| 46 | + [('word', (1, 1)), |
| 47 | + ('word', (1, 2)), |
| 48 | + ('word', (1, 4)), |
| 49 | + ('char', (4, 4)), |
| 50 | + ('char_wb', (4, 4)) |
| 51 | + ]): |
| 52 | + |
| 53 | + bench = {'vectorizer': Vectorizer.__name__} |
| 54 | + params = {'analyzer': analyzer, 'ngram_range': ngram_range} |
| 55 | + bench.update(params) |
| 56 | + dt = timeit.repeat(run_vectorizer(Vectorizer, text, **params), |
| 57 | + number=1, |
| 58 | + repeat=n_repeat) |
| 59 | + bench['time'] = "{:.2f} (+-{:.2f})".format(np.mean(dt), np.std(dt)) |
| 60 | + |
| 61 | + mem_usage = memory_usage(run_vectorizer(Vectorizer, text, **params)) |
| 62 | + |
| 63 | + bench['memory'] = "{:.1f}".format(np.max(mem_usage)) |
| 64 | + |
| 65 | + res.append(bench) |
| 66 | + |
| 67 | + |
| 68 | +df = pd.DataFrame(res).set_index(['analyzer', 'ngram_range', 'vectorizer']) |
| 69 | + |
| 70 | +print('\n========== Run time performance (sec) ===========\n') |
| 71 | +print('Computing the mean and the standard deviation ' |
| 72 | + 'of the run time over {} runs...\n'.format(n_repeat)) |
| 73 | +print(df['time'].unstack(level=-1)) |
| 74 | + |
| 75 | +print('\n=============== Memory usage (MB) ===============\n') |
| 76 | +print(df['memory'].unstack(level=-1)) |
0 commit comments