Skip to content

Commit fa7327b

Browse files
committed
Updates with issue #21088
1 parent 61a3259 commit fa7327b

13 files changed

+78
-28
lines changed

doc/about.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -85,8 +85,8 @@ citations to the following paper:
8585
If you want to cite scikit-learn for its API or design, you may also want to consider the
8686
following paper:
8787

88-
`API design for machine learning software: experiences from the scikit-learn
89-
project <:arxiv:`1309.0238`>`_, Buitinck *et al.*, 2013.
88+
API design for machine learning software: experiences from the scikit-learn
89+
project, Buitinck *et al.*, 2013. :arxiv:`1309.0238`
9090

9191
Bibtex entry::
9292

doc/conf.py

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -48,6 +48,7 @@
4848
"add_toctree_functions",
4949
"sphinx-prompt",
5050
"sphinxext.opengraph",
51+
"doi_role",
5152
]
5253

5354
# Support for `plot::` directives in sphinx 3.2 requires matplotlib 3.1.0 or newer

doc/modules/clustering.rst

Lines changed: 6 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -544,10 +544,9 @@ graph, and SpectralClustering is initialized with `affinity='precomputed'`::
544544
<http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.19.8100>`_
545545
Andrew Y. Ng, Michael I. Jordan, Yair Weiss, 2001
546546

547-
* `"Preconditioned Spectral Clustering for Stochastic
547+
* "Preconditioned Spectral Clustering for Stochastic
548548
Block Partition Streaming Graph Challenge"
549-
<:arxiv:`1708.07481`>`_
550-
David Zhuzhunashvili, Andrew Knyazev
549+
David Zhuzhunashvili, Andrew Knyazev :arxiv:`1708.07481`
551550

552551
.. _hierarchical_clustering:
553552

@@ -1705,7 +1704,7 @@ cluster analysis.
17051704
* Peter J. Rousseeuw (1987). "Silhouettes: a Graphical Aid to the
17061705
Interpretation and Validation of Cluster Analysis". Computational
17071706
and Applied Mathematics 20: 53–65.
1708-
`doi:10.1016/0377-0427(87)90125-7 <:doi:`10.1016/0377-0427(87)90125-7`>`_.
1707+
:doi:`10.1016/0377-0427(87)90125-7`
17091708

17101709

17111710
Advantages
@@ -1805,7 +1804,7 @@ number of points in cluster :math:`q`.
18051804
`"A Dendrite Method for Cluster Analysis"
18061805
<https://www.researchgate.net/publication/233096619_A_Dendrite_Method_for_Cluster_Analysis>`_.
18071806
Communications in Statistics-theory and Methods 3: 1-27.
1808-
`doi:10.1080/03610927408827101 <:doi:`10.1080/03610927408827101`>`_.
1807+
:doi:`10.1080/03610927408827101`
18091808

18101809

18111810
.. _davies-bouldin_index:
@@ -1882,12 +1881,12 @@ Then the Davies-Bouldin index is defined as:
18821881
"A Cluster Separation Measure"
18831882
IEEE Transactions on Pattern Analysis and Machine Intelligence.
18841883
PAMI-1 (2): 224-227.
1885-
`doi:10.1109/TPAMI.1979.4766909 <:doi:`10.1109/TPAMI.1979.4766909`>`_.
1884+
:doi:`10.1109/TPAMI.1979.4766909`
18861885

18871886
* Halkidi, Maria; Batistakis, Yannis; Vazirgiannis, Michalis (2001).
18881887
"On Clustering Validation Techniques"
18891888
Journal of Intelligent Information Systems, 17(2-3), 107-145.
1890-
`doi:10.1023/A:1012801612483 <:doi:`10.1023/A:1012801612483`>`_.
1889+
:doi:`10.1023/A:1012801612483`
18911890

18921891
* `Wikipedia entry for Davies-Bouldin index
18931892
<https://en.wikipedia.org/wiki/Davies–Bouldin_index>`_.

doc/modules/decomposition.rst

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -341,13 +341,13 @@ components is less than 10 (strict) and the number of samples is more than 200
341341

342342
* *randomized* solver:
343343

344-
- Algorithm 4.3 in
344+
* Algorithm 4.3 in
345345
`"Finding structure with randomness: Stochastic algorithms for
346346
constructing approximate matrix decompositions"
347-
<:arxiv:`0909.4061`>`_
347+
<https://arxiv.org/abs/0909.4061>`_
348348
Halko, et al., 2009
349349

350-
- `"An implementation of a randomized algorithm for principal component
350+
* `"An implementation of a randomized algorithm for principal component
351351
analysis"
352352
<https://arxiv.org/pdf/1412.3510.pdf>`_
353353
A. Szlam et al. 2014

doc/modules/ensemble.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1210,8 +1210,8 @@ Finally, many parts of the implementation of
12101210
<https://statweb.stanford.edu/~jhf/ftp/stobst.pdf>`_
12111211
.. [R2007] G. Ridgeway, "Generalized Boosted Models: A guide to the gbm
12121212
package", 2007
1213-
.. [XGBoost] Tianqi Chen, Carlos Guestrin, `"XGBoost: A Scalable Tree
1214-
Boosting System" <:arxiv:`1603.02754`>`_
1213+
.. [XGBoost] Tianqi Chen, Carlos Guestrin, "XGBoost: A Scalable Tree
1214+
Boosting System" :arxiv:`1603.02754`
12151215
.. [LightGBM] Ke et. al. `"LightGBM: A Highly Efficient Gradient
12161216
BoostingDecision Tree" <https://papers.nips.cc/paper/
12171217
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree>`_

doc/modules/grid_search.rst

Lines changed: 2 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -538,9 +538,8 @@ since it has reached the last iteration (3) with the highest score:
538538
Optimization <http://proceedings.mlr.press/v51/jamieson16.html>`_, in
539539
proc. of Machine Learning Research, 2016.
540540
.. [2] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, A. Talwalkar,
541-
`Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
542-
<:arxiv:`1603.06560`>`_, in Machine Learning Research
543-
18, 2018.
541+
Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization
542+
, in Machine Learning Research 18, 2018. :arxiv:`1603.06560`
544543
545544
.. _grid_search_tips:
546545

doc/modules/kernel_approximation.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -246,8 +246,8 @@ or store training examples.
246246
.. [VVZ2010] `"Generalized RBF feature maps for Efficient Detection"
247247
<https://www.robots.ox.ac.uk/~vgg/publications/2010/Sreekanth10/sreekanth10.pdf>`_
248248
Vempati, S. and Vedaldi, A. and Zisserman, A. and Jawahar, CV - 2010
249-
.. [PP2013] `"Fast and scalable polynomial kernels via explicit feature maps"
250-
<:doi:`10.1145/2487575.2487591>`_
249+
.. [PP2013] "Fast and scalable polynomial kernels via explicit feature maps"
250+
:doi:`10.1145/2487575.2487591`
251251
Pham, N., & Pagh, R. - 2013
252252
.. [CCF2002] `"Finding frequent items in data streams"
253253
<http://www.cs.princeton.edu/courses/archive/spring04/cos598B/bib/CharikarCF.pdf>`_

doc/modules/linear_model.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -934,7 +934,7 @@ to warm-starting (see :term:`Glossary <warm_start>`).
934934
935935
.. [6] Mark Schmidt, Nicolas Le Roux, and Francis Bach: `Minimizing Finite Sums with the Stochastic Average Gradient. <https://hal.inria.fr/hal-00860051/document>`_
936936
937-
.. [7] Aaron Defazio, Francis Bach, Simon Lacoste-Julien: `SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. <:arxiv:`1407.0202`>`_
937+
.. [7] Aaron Defazio, Francis Bach, Simon Lacoste-Julien: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives. :arxiv:`1407.0202`
938938
939939
.. [8] https://en.wikipedia.org/wiki/Broyden%E2%80%93Fletcher%E2%80%93Goldfarb%E2%80%93Shanno_algorithm
940940

doc/modules/model_evaluation.rst

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -563,8 +563,8 @@ or *informedness*.
563563
Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples,
564564
and Case Studies <https://mitpress.mit.edu/books/fundamentals-machine-learning-predictive-data-analytics>`_,
565565
2015.
566-
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. `ExSTraCS 2.0: description and evaluation of a scalable learning
567-
classifier system <:doi:`10.1007/s12065-015-0128-8`>`_, Evol. Intel. (2015) 8: 89.
566+
.. [Urbanowicz2015] Urbanowicz R.J., Moore, J.H. ExSTraCS 2.0: description and evaluation of a scalable learning
567+
classifier system :doi:`10.1007/s12065-015-0128-8`, Evol. Intel. (2015) 8: 89.
568568
569569
.. _cohen_kappa:
570570

doc/modules/neural_networks_supervised.rst

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -184,7 +184,7 @@ Algorithms
184184

185185
MLP trains using `Stochastic Gradient Descent
186186
<https://en.wikipedia.org/wiki/Stochastic_gradient_descent>`_,
187-
`Adam <:arxiv:`1412.6980`>`_, or
187+
Adam :arxiv:`1412.6980`, or
188188
`L-BFGS <https://en.wikipedia.org/wiki/Limited-memory_BFGS>`__.
189189
Stochastic Gradient Descent (SGD) updates parameters using the gradient of the
190190
loss function with respect to a parameter that needs adaptation, i.e.

0 commit comments

Comments
 (0)