Skip to content

some GP tests failing on py3.6 #16013

Closed
Closed
@adrinjalali

Description

@adrinjalali

The following tests are failing, when trying to have a py3.6 on the CI:

_______________________ test_gpr_interpolation[kernel4] ________________________

kernel = 1**2 * RBF(length_scale=1) + 0.00316**2

    @pytest.mark.parametrize('kernel', kernels)
    def test_gpr_interpolation(kernel):
        # Test the interpolating property for different kernels.
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_pred, y_cov = gpr.predict(X, return_cov=True)
    
>       assert_almost_equal(y_pred, y)
E       AssertionError: 
E       Arrays are not almost equal to 7 decimals
E       
E       (mismatch 100.0%)
E        x: array([ 1.9363794, -2.7942843, -2.4075474, -0.2947012,  3.0977077,
E               7.7698931])
E        y: array([ 0.841471 ,  0.42336  , -4.7946214, -1.676493 ,  4.5989062,
E               7.914866 ])

gpr        = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,
                         optimizer='fmin_l_bfgs_b', random_state=None)
kernel     = 1**2 * RBF(length_scale=1) + 0.00316**2
y_cov      = array([[  9.00541863e-11,   2.38742359e-11,  -7.78754838e-12,
         -1.06723519e-11,  -4.91695573e-12,   9.47864010... [  9.47864010e-12,  -1.84314786e-11,  -9.46442924e-12,
          8.85336249e-12,   3.63939989e-11,   7.31432692e-11]])
y_pred     = array([ 1.93637936, -2.79428431, -2.40754743, -0.29470122,  3.09770773,
        7.76989309])

/io/sklearn/gaussian_process/tests/test_gpr.py:53: AssertionError
_________________________ test_lml_improving[kernel3] __________________________

kernel = 1**2 * RBF(length_scale=1) + 0.00316**2

    @pytest.mark.parametrize('kernel', non_fixed_kernels)
    def test_lml_improving(kernel):
        # Test that hyperparameter-tuning improves log-marginal likelihood.
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
>       assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
                gpr.log_marginal_likelihood(kernel.theta))
E       AssertionError: assert -111269784349.14124 > -48.880110953374277
E        +  where -111269784349.14124 = <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T...     n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None)>(array([  4.60517019,   6.90775528, -11.51292546]))
E        +    where <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T...     n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None)> = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None).log_marginal_likelihood
E        +    and   array([  4.60517019,   6.90775528, -11.51292546]) = 10**2 * RBF(length_scale=1e+03) + 0.00316**2.theta
E        +      where 10**2 * RBF(length_scale=1e+03) + 0.00316**2 = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None).kernel_
E        +  and   -48.880110953374277 = <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T...     n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None)>(array([  0.        ,   0.        , -11.51292546]))
E        +    where <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T...     n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None)> = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,\n                         optimizer='fmin_l_bfgs_b', random_state=None).log_marginal_likelihood
E        +    and   array([  0.        ,   0.        , -11.51292546]) = 1**2 * RBF(length_scale=1) + 0.00316**2.theta

gpr        = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,
                         optimizer='fmin_l_bfgs_b', random_state=None)
kernel     = 1**2 * RBF(length_scale=1) + 0.00316**2

/io/sklearn/gaussian_process/tests/test_gpr.py:75: AssertionError
_______________________ test_predict_cov_vs_std[kernel4] _______________________

kernel = 1**2 * RBF(length_scale=1) + 0.00316**2

    @pytest.mark.parametrize('kernel', kernels)
    def test_predict_cov_vs_std(kernel):
        # Test that predicted std.-dev. is consistent with cov's diagonal.
        gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
        y_mean, y_cov = gpr.predict(X2, return_cov=True)
        y_mean, y_std = gpr.predict(X2, return_std=True)
>       assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
E       AssertionError: 
E       Arrays are not almost equal to 7 decimals
E       
E       (mismatch 100.0%)
E        x: array([  6.5705842e-06,   6.5445791e-06,   5.8582603e-06,   5.0646414e-06,
E                6.5141087e-06])
E        y: array([ 0.078642 ,  0.0816751,  0.0748455,  0.0798408,  0.0814949])

gpr        = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
                         kernel=1**2 * RBF(length_scale=1) + ...      n_restarts_optimizer=0, normalize_y=False,
                         optimizer='fmin_l_bfgs_b', random_state=None)
kernel     = 1**2 * RBF(length_scale=1) + 0.00316**2
y_cov      = array([[  4.31725766e-11,   2.48689958e-11,   1.17097443e-11,
          3.24007488e-12,  -5.03064257e-12],
       [  2...89646e-11],
       [ -5.03064257e-12,  -3.79429821e-12,   9.15179044e-12,
          2.35189646e-11,   4.24336122e-11]])
y_mean     = array([-1.06857149, -3.2405798 , -1.51121271,  1.24148886,  5.27415799])
y_std      = array([ 0.07864202,  0.08167515,  0.0748455 ,  0.07984077,  0.08149491])

/io/sklearn/gaussian_process/tests/test_gpr.py:182: AssertionError

Metadata

Metadata

Type

No type

Projects

No projects

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions