Closed
Description
The following tests are failing, when trying to have a py3.6 on the CI:
_______________________ test_gpr_interpolation[kernel4] ________________________
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
@pytest.mark.parametrize('kernel', kernels)
def test_gpr_interpolation(kernel):
# Test the interpolating property for different kernels.
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
y_pred, y_cov = gpr.predict(X, return_cov=True)
> assert_almost_equal(y_pred, y)
E AssertionError:
E Arrays are not almost equal to 7 decimals
E
E (mismatch 100.0%)
E x: array([ 1.9363794, -2.7942843, -2.4075474, -0.2947012, 3.0977077,
E 7.7698931])
E y: array([ 0.841471 , 0.42336 , -4.7946214, -1.676493 , 4.5989062,
E 7.914866 ])
gpr = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,
optimizer='fmin_l_bfgs_b', random_state=None)
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
y_cov = array([[ 9.00541863e-11, 2.38742359e-11, -7.78754838e-12,
-1.06723519e-11, -4.91695573e-12, 9.47864010... [ 9.47864010e-12, -1.84314786e-11, -9.46442924e-12,
8.85336249e-12, 3.63939989e-11, 7.31432692e-11]])
y_pred = array([ 1.93637936, -2.79428431, -2.40754743, -0.29470122, 3.09770773,
7.76989309])
/io/sklearn/gaussian_process/tests/test_gpr.py:53: AssertionError
_________________________ test_lml_improving[kernel3] __________________________
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
@pytest.mark.parametrize('kernel', non_fixed_kernels)
def test_lml_improving(kernel):
# Test that hyperparameter-tuning improves log-marginal likelihood.
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
> assert (gpr.log_marginal_likelihood(gpr.kernel_.theta) >
gpr.log_marginal_likelihood(kernel.theta))
E AssertionError: assert -111269784349.14124 > -48.880110953374277
E + where -111269784349.14124 = <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None)>(array([ 4.60517019, 6.90775528, -11.51292546]))
E + where <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None)> = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None).log_marginal_likelihood
E + and array([ 4.60517019, 6.90775528, -11.51292546]) = 10**2 * RBF(length_scale=1e+03) + 0.00316**2.theta
E + where 10**2 * RBF(length_scale=1e+03) + 0.00316**2 = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None).kernel_
E + and -48.880110953374277 = <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None)>(array([ 0. , 0. , -11.51292546]))
E + where <bound method GaussianProcessRegressor.log_marginal_likelihood of GaussianProcessRegressor(alpha=1e-10, copy_X_train=T... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None)> = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,\n kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,\n optimizer='fmin_l_bfgs_b', random_state=None).log_marginal_likelihood
E + and array([ 0. , 0. , -11.51292546]) = 1**2 * RBF(length_scale=1) + 0.00316**2.theta
gpr = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,
optimizer='fmin_l_bfgs_b', random_state=None)
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
/io/sklearn/gaussian_process/tests/test_gpr.py:75: AssertionError
_______________________ test_predict_cov_vs_std[kernel4] _______________________
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
@pytest.mark.parametrize('kernel', kernels)
def test_predict_cov_vs_std(kernel):
# Test that predicted std.-dev. is consistent with cov's diagonal.
gpr = GaussianProcessRegressor(kernel=kernel).fit(X, y)
y_mean, y_cov = gpr.predict(X2, return_cov=True)
y_mean, y_std = gpr.predict(X2, return_std=True)
> assert_almost_equal(np.sqrt(np.diag(y_cov)), y_std)
E AssertionError:
E Arrays are not almost equal to 7 decimals
E
E (mismatch 100.0%)
E x: array([ 6.5705842e-06, 6.5445791e-06, 5.8582603e-06, 5.0646414e-06,
E 6.5141087e-06])
E y: array([ 0.078642 , 0.0816751, 0.0748455, 0.0798408, 0.0814949])
gpr = GaussianProcessRegressor(alpha=1e-10, copy_X_train=True,
kernel=1**2 * RBF(length_scale=1) + ... n_restarts_optimizer=0, normalize_y=False,
optimizer='fmin_l_bfgs_b', random_state=None)
kernel = 1**2 * RBF(length_scale=1) + 0.00316**2
y_cov = array([[ 4.31725766e-11, 2.48689958e-11, 1.17097443e-11,
3.24007488e-12, -5.03064257e-12],
[ 2...89646e-11],
[ -5.03064257e-12, -3.79429821e-12, 9.15179044e-12,
2.35189646e-11, 4.24336122e-11]])
y_mean = array([-1.06857149, -3.2405798 , -1.51121271, 1.24148886, 5.27415799])
y_std = array([ 0.07864202, 0.08167515, 0.0748455 , 0.07984077, 0.08149491])
/io/sklearn/gaussian_process/tests/test_gpr.py:182: AssertionError