Skip to content

⚠️ CI failed on Linux.pylatest_pip_openblas_pandas ⚠️ #27967

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
scikit-learn-bot opened this issue Dec 16, 2023 · 3 comments
Closed

⚠️ CI failed on Linux.pylatest_pip_openblas_pandas ⚠️ #27967

scikit-learn-bot opened this issue Dec 16, 2023 · 3 comments

Comments

@scikit-learn-bot
Copy link
Contributor

scikit-learn-bot commented Dec 16, 2023

CI is still failing on Linux.pylatest_pip_openblas_pandas (Feb 20, 2024)

  • test_minibatch_sensible_reassign[34]
@github-actions github-actions bot added the Needs Triage Issue requires triage label Dec 16, 2023
@scikit-learn-bot
Copy link
Contributor Author

scikit-learn-bot commented Dec 17, 2023

CI is no longer failing! ✅

Successful run on Jun 20, 2024

@thomasjpfan
Copy link
Member

thomasjpfan commented Dec 20, 2023

For record keeping, this looks like a random seed that failed:

global_random_seed = 34

    def test_minibatch_sensible_reassign(global_random_seed):
        # check that identical initial clusters are reassigned
        # also a regression test for when there are more desired reassignments than
        # samples.
        zeroed_X, true_labels = make_blobs(
            n_samples=100, centers=5, random_state=global_random_seed
        )
        zeroed_X[::2, :] = 0
    
        km = MiniBatchKMeans(
            n_clusters=20, batch_size=10, random_state=global_random_seed, init="random"
        ).fit(zeroed_X)
        # there should not be too many exact zero cluster centers
>       assert km.cluster_centers_.any(axis=1).sum() > 10
E       AssertionError: assert 10 > 10
E        +  where 10 = <built-in method sum of numpy.ndarray object at 0x7f00eaaf0c90>()
E        +    where <built-in method sum of numpy.ndarray object at 0x7f00eaaf0c90> = array([ True, False,  True,  True, False, False, False,  True,  True,\n        True, False, False,  True, False, False, False, False,  True,\n        True,  True]).sum
E        +      where array([ True, False,  True,  True, False, False, False,  True,  True,\n        True, False, False,  True, False, False, False, False,  True,\n        True,  True]) = <built-in method any of numpy.ndarray object at 0x7f00eaae8390>(axis=1)
E        +        where <built-in method any of numpy.ndarray object at 0x7f00eaae8390> = array([[ -0.08411287,  -1.35341192],\n       [  0.        ,   0.        ],\n       [-10.04085907,  10.04083876],\n       ...     ],\n       [ -9.1038364 ,   6.86739558],\n       [ -9.66539459,   5.01011406],\n       [ -6.894048  ,  -1.75933572]]).any
E        +          where array([[ -0.08411287,  -1.35341192],\n       [  0.        ,   0.        ],\n       [-10.04085907,  10.04083876],\n       ...     ],\n       [ -9.1038364 ,   6.86739558],\n       [ -9.66539459,   5.01011406],\n       [ -6.894048  ,  -1.75933572]]) = MiniBatchKMeans(batch_size=10, init='random', n_clusters=20, random_state=34).cluster_centers_

global_random_seed = 34
km         = MiniBatchKMeans(batch_size=10, init='random', n_clusters=20, random_state=34)
true_labels = array([3, 0, 2, 4, 1, 0, 2, 3, 0, 1, 4, 2, 2, 0, 2, 4, 3, 4, 2, 3, 3, 4,
       2, 2, 1, 4, 3, 4, 3, 1, 1, 1, 4, 1, 4,...3,
       4, 1, 0, 3, 3, 4, 3, 2, 2, 2, 0, 2, 2, 4, 4, 0, 4, 2, 3, 0, 2, 1,
       3, 0, 1, 2, 0, 3, 1, 0, 0, 4, 2, 4])
zeroed_X   = array([[  0.        ,   0.        ],
       [ -9.93451852,   5.17769196],
       [  0.        ,   0.        ],
       ...     ],
       [ -5.62221677,   0.01380172],
       [  0.        ,   0.        ],
       [ -6.95512025,  -1.26162786]])

../1/s/sklearn/cluster/tests/test_k_means.py:466: AssertionError

@lesteve
Copy link
Member

lesteve commented Jun 20, 2024

Let's close since the only failure was test_minibatch_sensible_reassign which should be fixed by #29278

@lesteve lesteve closed this as completed Jun 20, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

4 participants