-
-
Notifications
You must be signed in to change notification settings - Fork 25.8k
⚠️ CI failed on Linux.pylatest_pip_openblas_pandas ⚠️ #27967
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Comments
CI is no longer failing! ✅Successful run on Jun 20, 2024 |
For record keeping, this looks like a random seed that failed: global_random_seed = 34
def test_minibatch_sensible_reassign(global_random_seed):
# check that identical initial clusters are reassigned
# also a regression test for when there are more desired reassignments than
# samples.
zeroed_X, true_labels = make_blobs(
n_samples=100, centers=5, random_state=global_random_seed
)
zeroed_X[::2, :] = 0
km = MiniBatchKMeans(
n_clusters=20, batch_size=10, random_state=global_random_seed, init="random"
).fit(zeroed_X)
# there should not be too many exact zero cluster centers
> assert km.cluster_centers_.any(axis=1).sum() > 10
E AssertionError: assert 10 > 10
E + where 10 = <built-in method sum of numpy.ndarray object at 0x7f00eaaf0c90>()
E + where <built-in method sum of numpy.ndarray object at 0x7f00eaaf0c90> = array([ True, False, True, True, False, False, False, True, True,\n True, False, False, True, False, False, False, False, True,\n True, True]).sum
E + where array([ True, False, True, True, False, False, False, True, True,\n True, False, False, True, False, False, False, False, True,\n True, True]) = <built-in method any of numpy.ndarray object at 0x7f00eaae8390>(axis=1)
E + where <built-in method any of numpy.ndarray object at 0x7f00eaae8390> = array([[ -0.08411287, -1.35341192],\n [ 0. , 0. ],\n [-10.04085907, 10.04083876],\n ... ],\n [ -9.1038364 , 6.86739558],\n [ -9.66539459, 5.01011406],\n [ -6.894048 , -1.75933572]]).any
E + where array([[ -0.08411287, -1.35341192],\n [ 0. , 0. ],\n [-10.04085907, 10.04083876],\n ... ],\n [ -9.1038364 , 6.86739558],\n [ -9.66539459, 5.01011406],\n [ -6.894048 , -1.75933572]]) = MiniBatchKMeans(batch_size=10, init='random', n_clusters=20, random_state=34).cluster_centers_
global_random_seed = 34
km = MiniBatchKMeans(batch_size=10, init='random', n_clusters=20, random_state=34)
true_labels = array([3, 0, 2, 4, 1, 0, 2, 3, 0, 1, 4, 2, 2, 0, 2, 4, 3, 4, 2, 3, 3, 4,
2, 2, 1, 4, 3, 4, 3, 1, 1, 1, 4, 1, 4,...3,
4, 1, 0, 3, 3, 4, 3, 2, 2, 2, 0, 2, 2, 4, 4, 0, 4, 2, 3, 0, 2, 1,
3, 0, 1, 2, 0, 3, 1, 0, 0, 4, 2, 4])
zeroed_X = array([[ 0. , 0. ],
[ -9.93451852, 5.17769196],
[ 0. , 0. ],
... ],
[ -5.62221677, 0.01380172],
[ 0. , 0. ],
[ -6.95512025, -1.26162786]])
../1/s/sklearn/cluster/tests/test_k_means.py:466: AssertionError |
Let's close since the only failure was test_minibatch_sensible_reassign which should be fixed by #29278 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
CI is still failing on Linux.pylatest_pip_openblas_pandas (Feb 20, 2024)
The text was updated successfully, but these errors were encountered: