Skip to content

scipy.minimize(method=’L-BFGS-B’) deprecation warning for iprint and disp arguments #31731

@Vincent-Maladiere

Description

@Vincent-Maladiere

Describe the bug

When upgrading to scipy 1.16, fitting a LogisticRegression raises a deprecation warning:

DeprecationWarning: scipy.optimize: The `disp` and `iprint` options of the L-BFGS-B solver are deprecated and will be removed in SciPy 1.18.0.

The documentation page of scipy.minimize mentions this double deprecation.

Steps/Code to Reproduce

python -Wd

>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>> X = np.array([[1], [0]])
>>> y = np.array([1, 0])
>>> LogisticRegression().fit(X, y)
DeprecationWarning: scipy.optimize: The `disp` and `iprint` options of the L-BFGS-B solver are deprecated and will be removed in SciPy 1.18.0.
  opt_res = optimize.minimize(

Expected Results

No deprecation warning

Actual Results

See above

Versions

System:
    python: 3.12.4 (main, Jul 25 2024, 22:11:22) [Clang 18.1.8 ]
executable: /Users/vincentmaladiere/dev/inria/skrub/.venv/bin/python
   machine: macOS-14.0-arm64-arm-64bit

Python dependencies:
      sklearn: 1.7.0
          pip: None
   setuptools: 80.9.0
        numpy: 2.3.1
        scipy: 1.16.0
       Cython: None
       pandas: 2.3.1
   matplotlib: 3.10.3
       joblib: 1.5.1
threadpoolctl: 3.6.0

Built with OpenMP: True

threadpoolctl info:
       user_api: openmp
   internal_api: openmp
    num_threads: 8
         prefix: libomp
       filepath: /Users/vincentmaladiere/dev/inria/skrub/.venv/lib/python3.12/site-packages/sklearn/.dylibs/libomp.dylib
        version: None

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions