-
-
Notifications
You must be signed in to change notification settings - Fork 26.2k
Closed
Closed
Copy link
Labels
Description
Describe the bug
When upgrading to scipy 1.16, fitting a LogisticRegression raises a deprecation warning:
DeprecationWarning: scipy.optimize: The `disp` and `iprint` options of the L-BFGS-B solver are deprecated and will be removed in SciPy 1.18.0.
The documentation page of scipy.minimize mentions this double deprecation.
Steps/Code to Reproduce
python -Wd
>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>> X = np.array([[1], [0]])
>>> y = np.array([1, 0])
>>> LogisticRegression().fit(X, y)
DeprecationWarning: scipy.optimize: The `disp` and `iprint` options of the L-BFGS-B solver are deprecated and will be removed in SciPy 1.18.0.
opt_res = optimize.minimize(
Expected Results
No deprecation warning
Actual Results
See above
Versions
System:
python: 3.12.4 (main, Jul 25 2024, 22:11:22) [Clang 18.1.8 ]
executable: /Users/vincentmaladiere/dev/inria/skrub/.venv/bin/python
machine: macOS-14.0-arm64-arm-64bit
Python dependencies:
sklearn: 1.7.0
pip: None
setuptools: 80.9.0
numpy: 2.3.1
scipy: 1.16.0
Cython: None
pandas: 2.3.1
matplotlib: 3.10.3
joblib: 1.5.1
threadpoolctl: 3.6.0
Built with OpenMP: True
threadpoolctl info:
user_api: openmp
internal_api: openmp
num_threads: 8
prefix: libomp
filepath: /Users/vincentmaladiere/dev/inria/skrub/.venv/lib/python3.12/site-packages/sklearn/.dylibs/libomp.dylib
version: None