When sample weights are negative, the probabilities can come out negative as well: ``` >>> rng = np.random.RandomState(10) >>> X = rng.randn(10, 4) >>> y = rng.randint(0, 2, 10) >>> sample_weight = rng.randn(10) >>> clf = RandomForestClassifier().fit(X, y, sample_weight) >>> clf.predict_proba(X) array([[ 0.56133774, 0.43866226], [ 1.03235924, -0.03235924], [ 1.03235924, -0.03235924], [ 1.03235924, -0.03235924], [ 1.03235924, -0.03235924], [ 1.03235924, -0.03235924], [ 0.98071868, 0.01928132], [ 0.56133774, 0.43866226], [ 1.03235924, -0.03235924], [ 1.03235924, -0.03235924]]) ```