Closed
Description
n,p = 2194, 12277
X = np.random.normal(0, 1, (n, p))
y = X[:,1] + X[:,2] + np.random.normal(0,1, n)
l1 = LassoLarsCV(n_jobs=1).fit(X,y)
print(l1.coef_)
l = LassoLarsCV(n_jobs=-1).fit(X,y)
print(l.coef_)
OUTPUT
>>>
>>>
[ 0. 0.91122441 0.88051206 ..., 0. 0. 0. ]
multiprocessing.pool.RemoteTraceback:
"""
Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py", line 94, in __call__
return self.func(*args, **kwargs)
File "/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py", line 853, in _lars_path_residues
X_train -= X_mean
ValueError: output array is read-only
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/usr/lib/python3.4/multiprocessing/pool.py", line 119, in worker
result = (True, func(*args, **kwds))
File "/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py", line 104, in __call__
raise TransportableException(text, e_type)
sklearn.externals.joblib.my_exceptions.TransportableException: TransportableException
___________________________________________________________________________
ValueError Wed Apr 15 14:14:46 2015
PID: 4123 Python 3.4.0: /usr/bin/python3
...........................................................................
/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py in _lars_path_residues(X_train=memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]]), y_train=array([ 1.3232542 , 0.84262663, -2.62905025, ..., 1.62472897,
-1.45902494, -5.00504709]), X_test=array([[-0.31256648, -0.8413869 , 0.46347277, .... 1.21977537,
-1.12781956, -1.12695671]]), y_test=array([ -1.91413301e-02, -7.90822410e-01, -2.1...2352138e-01, -2.06750561e+00, -3.79778359e-01]), Gram='auto', copy=False, method='lasso', verbose=0, fit_intercept=True, normalize=True, max_iter=500, eps=2.2204460492503131e-16)
848 X_test = X_test.copy()
849 y_test = y_test.copy()
850
851 if fit_intercept:
852 X_mean = X_train.mean(axis=0)
--> 853 X_train -= X_mean
X_train = memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]])
X_mean = memmap([-0.01531417, 0.02889734, -0.01592266, ..., 0.00315228,
-0.00060194, 0.01170645])
854 X_test -= X_mean
855 y_mean = y_train.mean(axis=0)
856 y_train = as_float_array(y_train, copy=False)
857 y_train -= y_mean
ValueError: output array is read-only
___________________________________________________________________________
"""
The above exception was the direct cause of the following exception:
Traceback (most recent call last):
File "/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py", line 518, in retrieve
self._output.append(job.get())
File "/usr/lib/python3.4/multiprocessing/pool.py", line 599, in get
raise self._value
sklearn.externals.joblib.my_exceptions.TransportableException: TransportableException
___________________________________________________________________________
ValueError Wed Apr 15 14:14:46 2015
PID: 4123 Python 3.4.0: /usr/bin/python3
...........................................................................
/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py in _lars_path_residues(X_train=memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]]), y_train=array([ 1.3232542 , 0.84262663, -2.62905025, ..., 1.62472897,
-1.45902494, -5.00504709]), X_test=array([[-0.31256648, -0.8413869 , 0.46347277, .... 1.21977537,
-1.12781956, -1.12695671]]), y_test=array([ -1.91413301e-02, -7.90822410e-01, -2.1...2352138e-01, -2.06750561e+00, -3.79778359e-01]), Gram='auto', copy=False, method='lasso', verbose=0, fit_intercept=True, normalize=True, max_iter=500, eps=2.2204460492503131e-16)
848 X_test = X_test.copy()
849 y_test = y_test.copy()
850
851 if fit_intercept:
852 X_mean = X_train.mean(axis=0)
--> 853 X_train -= X_mean
X_train = memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]])
X_mean = memmap([-0.01531417, 0.02889734, -0.01592266, ..., 0.00315228,
-0.00060194, 0.01170645])
854 X_test -= X_mean
855 y_mean = y_train.mean(axis=0)
856 y_train = as_float_array(y_train, copy=False)
857 y_train -= y_mean
ValueError: output array is read-only
___________________________________________________________________________
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/donbeo/Desktop/prova.py", line 31, in <module>
l = LassoLarsCV(n_jobs=-1).fit(X,y)
File "/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py", line 999, in fit
for train, test in cv)
File "/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py", line 666, in __call__
self.retrieve()
File "/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py", line 549, in retrieve
raise exception_type(report)
sklearn.externals.joblib.my_exceptions.JoblibValueError: JoblibValueError
___________________________________________________________________________
Multiprocessing exception:
...........................................................................
/home/donbeo/Desktop/<stdin> in <module>()
----> 1
2
3
4
5
6
7
8
9
10
...........................................................................
/home/donbeo/Desktop/prova.py in <module>()
26 y = X[:,1] + X[:,2] + np.random.normal(0,1, n)
27
28
29 l1 = LassoLarsCV(n_jobs=1).fit(X,y)
30 print(l1.coef_)
---> 31 l = LassoLarsCV(n_jobs=-1).fit(X,y)
32 print(l.coef_)
33
34
35
...........................................................................
/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py in fit(self=LassoLarsCV(copy_X=True, cv=None, eps=2.22044604...normalize=True, precompute='auto', verbose=False), X=array([[-0.31256648, -0.8413869 , 0.46347277, .... -0.35100295,
-0.9267396 , 0.63928884]]), y=array([-0.01914133, -0.79082241, -2.15777265, ..., 1.62472897,
-1.45902494, -5.00504709]))
994 delayed(_lars_path_residues)(
995 X[train], y[train], X[test], y[test], Gram=Gram, copy=False,
996 method=self.method, verbose=max(0, self.verbose - 1),
997 normalize=self.normalize, fit_intercept=self.fit_intercept,
998 max_iter=self.max_iter, eps=self.eps)
--> 999 for train, test in cv)
cv = sklearn.cross_validation.KFold(n=2194, n_folds=3, shuffle=False, random_state=None)
1000 all_alphas = np.concatenate(list(zip(*cv_paths))[0])
1001 # Unique also sorts
1002 all_alphas = np.unique(all_alphas)
1003 # Take at most max_n_alphas values
...........................................................................
/usr/local/lib/python3.4/dist-packages/sklearn/externals/joblib/parallel.py in __call__(self=Parallel(n_jobs=-1), iterable=<generator object <genexpr>>)
661 if pre_dispatch == "all" or n_jobs == 1:
662 # The iterable was consumed all at once by the above for loop.
663 # No need to wait for async callbacks to trigger to
664 # consumption.
665 self._iterating = False
--> 666 self.retrieve()
self.retrieve = <bound method Parallel.retrieve of Parallel(n_jobs=-1)>
667 # Make sure that we get a last message telling us we are done
668 elapsed_time = time.time() - self._start_time
669 self._print('Done %3i out of %3i | elapsed: %s finished',
670 (len(self._output),
---------------------------------------------------------------------------
Sub-process traceback:
---------------------------------------------------------------------------
ValueError Wed Apr 15 14:14:46 2015
PID: 4123 Python 3.4.0: /usr/bin/python3
...........................................................................
/usr/local/lib/python3.4/dist-packages/sklearn/linear_model/least_angle.py in _lars_path_residues(X_train=memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]]), y_train=array([ 1.3232542 , 0.84262663, -2.62905025, ..., 1.62472897,
-1.45902494, -5.00504709]), X_test=array([[-0.31256648, -0.8413869 , 0.46347277, .... 1.21977537,
-1.12781956, -1.12695671]]), y_test=array([ -1.91413301e-02, -7.90822410e-01, -2.1...2352138e-01, -2.06750561e+00, -3.79778359e-01]), Gram='auto', copy=False, method='lasso', verbose=0, fit_intercept=True, normalize=True, max_iter=500, eps=2.2204460492503131e-16)
848 X_test = X_test.copy()
849 y_test = y_test.copy()
850
851 if fit_intercept:
852 X_mean = X_train.mean(axis=0)
--> 853 X_train -= X_mean
X_train = memmap([[ 1.00577915, -1.05126903, 1.30304231, ... -0.35100295,
-0.9267396 , 0.63928884]])
X_mean = memmap([-0.01531417, 0.02889734, -0.01592266, ..., 0.00315228,
-0.00060194, 0.01170645])
854 X_test -= X_mean
855 y_mean = y_train.mean(axis=0)
856 y_train = as_float_array(y_train, copy=False)
857 y_train -= y_mean
ValueError: output array is read-only
___________________________________________________________________________
>>> >>>