Closed
Description
In light of #6697
Should we have aBaseEstimatorCV
class defining the required parameters (likeresults_
,best_estimators_
) as an interface attribute that can be overwritten?- Should the parameter still be called
results_
and notsearch_results_
- Let's call itcv_results_
would be more representative of what it holds.
TODO
- calibration.py:class
CalibratedClassifierCV(BaseEstimator, ClassifierMixin)
- covariance/graph_lasso_.py:class GraphLassoCV(GraphLasso):
- feature_selection/rfe.py:class RFECV(RFE, MetaEstimatorMixin):
- linear_model/coordinate_descent.py:class LassoCV(LinearModelCV, RegressorMixin):
- linear_model/coordinate_descent.py:class ElasticNetCV(LinearModelCV, RegressorMixin):
- linear_model/coordinate_descent.py:class MultiTaskElasticNetCV(LinearModelCV, RegressorMixin):
- linear_model/coordinate_descent.py:class MultiTaskLassoCV(LinearModelCV, RegressorMixin):
- linear_model/least_angle.py:class LarsCV(Lars):
- linear_model/least_angle.py:class LassoLarsCV(LarsCV):
- linear_model/logistic.py:class LogisticRegressionCV(LogisticRegression, BaseEstimator,
- linear_model/omp.py:class OrthogonalMatchingPursuitCV(LinearModel, RegressorMixin):
- linear_model/ridge.py:class RidgeCV(_BaseRidgeCV, RegressorMixin):
- linear_model/ridge.py:class RidgeClassifierCV(LinearClassifierMixin, _BaseRidgeCV):
@amueller @jnothman @MechCoder @vene @GaelVaroquaux @agramfort
Metadata
Metadata
Assignees
Labels
No labels