diff --git a/sklearn/tree/_classes.py b/sklearn/tree/_classes.py index c0b1192eafc32..0a3aad9736dad 100644 --- a/sklearn/tree/_classes.py +++ b/sklearn/tree/_classes.py @@ -589,11 +589,11 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): Parameters ---------- - criterion : string, optional (default="gini") + criterion : str, optional (default="gini") The function to measure the quality of a split. Supported criteria are "gini" for the Gini impurity and "entropy" for the information gain. - splitter : string, optional (default="best") + splitter : str, optional (default="best") The strategy used to choose the split at each node. Supported strategies are "best" to choose the best split and "random" to choose the best random split. @@ -634,7 +634,7 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): the input samples) required to be at a leaf node. Samples have equal weight when sample_weight is not provided. - max_features : int, float, string or None, optional (default=None) + max_features : int, float, str or None, optional (default=None) The number of features to consider when looking for the best split: - If int, then consider `max_features` features at each split. @@ -679,7 +679,7 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): .. versionadded:: 0.19 - min_impurity_split : float, (default=1e-7) + min_impurity_split : float, default=1e-7 Threshold for early stopping in tree growth. A node will split if its impurity is above the threshold, otherwise it is a leaf. @@ -713,7 +713,7 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): presort : deprecated, default='deprecated' This parameter is deprecated and will be removed in v0.24. - .. deprecated :: 0.22 + .. deprecated:: 0.22 ccp_alpha : non-negative float, optional (default=0.0) Complexity parameter used for Minimal Cost-Complexity Pruning. The @@ -755,6 +755,10 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): :ref:`sphx_glr_auto_examples_tree_plot_unveil_tree_structure.py` for basic usage of these attributes. + See Also + -------- + DecisionTreeRegressor : A decision tree regressor. + Notes ----- The default values for the parameters controlling the size of the trees @@ -770,10 +774,6 @@ class DecisionTreeClassifier(ClassifierMixin, BaseDecisionTree): split. To obtain a deterministic behaviour during fitting, ``random_state`` has to be fixed. - See also - -------- - DecisionTreeRegressor - References ---------- @@ -1073,7 +1073,7 @@ class DecisionTreeRegressor(RegressorMixin, BaseDecisionTree): presort : deprecated, default='deprecated' This parameter is deprecated and will be removed in v0.24. - .. deprecated :: 0.22 + .. deprecated:: 0.22 ccp_alpha : non-negative float, optional (default=0.0) Complexity parameter used for Minimal Cost-Complexity Pruning. The