diff --git a/sklearn/svm/_base.py b/sklearn/svm/_base.py index ea9b52ba4ef89..16e482a177ee9 100644 --- a/sklearn/svm/_base.py +++ b/sklearn/svm/_base.py @@ -861,11 +861,9 @@ def _fit_liblinear(X, y, C, fit_intercept, intercept_scaling, class_weight, Stopping condition. random_state : int or RandomState instance, default=None - The seed of the pseudo random number generator to use when shuffling - the data. If int, random_state is the seed used by the random number - generator; If RandomState instance, random_state is the random number - generator; If None, the random number generator is the RandomState - instance used by `np.random`. + Controls the pseudo random number generation for shuffling the data. + Pass an int for reproducible output across multiple function calls. + See :term:`Glossary `. multi_class : {'ovr', 'crammer_singer'}, default='ovr' `ovr` trains n_classes one-vs-rest classifiers, while `crammer_singer` diff --git a/sklearn/svm/_classes.py b/sklearn/svm/_classes.py index d21e8523cac2c..0750e5a4c1ae2 100644 --- a/sklearn/svm/_classes.py +++ b/sklearn/svm/_classes.py @@ -89,14 +89,12 @@ class LinearSVC(BaseEstimator, LinearClassifierMixin, properly in a multithreaded context. random_state : int or RandomState instance, default=None - The seed of the pseudo random number generator to use when shuffling - the data for the dual coordinate descent (if ``dual=True``). When - ``dual=False`` the underlying implementation of :class:`LinearSVC` - is not random and ``random_state`` has no effect on the results. If - int, random_state is the seed used by the random number generator; If - RandomState instance, random_state is the random number generator; If - None, the random number generator is the RandomState instance used by - `np.random`. + Controls the pseudo random number generation for shuffling the data for + the dual coordinate descent (if ``dual=True``). When ``dual=False`` the + underlying implementation of :class:`LinearSVC` is not random and + ``random_state`` has no effect on the results. + Pass an int for reproducible output across multiple function calls. + See :term:`Glossary `. max_iter : int, default=1000 The maximum number of iterations to be run. @@ -300,11 +298,9 @@ class LinearSVR(RegressorMixin, LinearModel): properly in a multithreaded context. random_state : int or RandomState instance, default=None - The seed of the pseudo random number generator to use when shuffling - the data. If int, random_state is the seed used by the random number - generator; If RandomState instance, random_state is the random number - generator; If None, the random number generator is the RandomState - instance used by `np.random`. + Controls the pseudo random number generation for shuffling the data. + Pass an int for reproducible output across multiple function calls. + See :term:`Glossary `. max_iter : int, default=1000 The maximum number of iterations to be run. @@ -522,11 +518,10 @@ class SVC(BaseSVC): .. versionadded:: 0.22 random_state : int or RandomState instance, default=None - The seed of the pseudo random number generator used when shuffling - the data for probability estimates. If int, random_state is the - seed used by the random number generator; If RandomState instance, - random_state is the random number generator; If None, the random - number generator is the RandomState instance used by `np.random`. + Controls the pseudo random number generation for shuffling the data for + probability estimates. + Pass an int for reproducible output across multiple function calls. + See :term:`Glossary `. Attributes ---------- @@ -728,11 +723,10 @@ class NuSVC(BaseSVC): .. versionadded:: 0.22 random_state : int or RandomState instance, default=None - The seed of the pseudo random number generator used when shuffling - the data for probability estimates. If int, random_state is the seed - used by the random number generator; If RandomState instance, - random_state is the random number generator; If None, the random - number generator is the RandomState instance used by `np.random`. + Controls the pseudo random number generation for shuffling the data for + probability estimates. + Pass an int for reproducible output across multiple function calls. + See :term:`Glossary `. Attributes ----------