diff --git a/sklearn/gaussian_process/_gpc.py b/sklearn/gaussian_process/_gpc.py index 2c9c0ef483d4f..9f6ed460c4ad5 100644 --- a/sklearn/gaussian_process/_gpc.py +++ b/sklearn/gaussian_process/_gpc.py @@ -555,6 +555,10 @@ def optimizer(obj_func, initial_theta, bounds): Attributes ---------- + base_estimator_ : ``Estimator`` instance + The estimator instance that defines the likelihood function + using the observed data. + kernel_ : kernel instance The kernel used for prediction. In case of binary classification, the structure of the kernel is the same as the one passed as parameter diff --git a/sklearn/tests/test_docstring_parameters.py b/sklearn/tests/test_docstring_parameters.py index 6d79149ca0832..4f2c43f61d97f 100644 --- a/sklearn/tests/test_docstring_parameters.py +++ b/sklearn/tests/test_docstring_parameters.py @@ -229,7 +229,7 @@ def test_fit_docstring_attributes(name, Estimator): assert hasattr(est, attr.name) IGNORED = {'BayesianRidge', 'Birch', 'CCA', 'CategoricalNB', 'ElasticNet', - 'ElasticNetCV', 'GaussianProcessClassifier', + 'ElasticNetCV', 'HistGradientBoostingClassifier', 'HistGradientBoostingRegressor', 'KernelCenterer', 'KernelDensity',