diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index 587190401c61e..7a6ac7777cb39 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -24,7 +24,6 @@ "DummyClassifier", "ElasticNetCV", "EllipticEnvelope", - "EmpiricalCovariance", "ExtraTreeClassifier", "ExtraTreeRegressor", "ExtraTreesClassifier", diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py index 4ffab8af5ceea..34193166dc928 100644 --- a/sklearn/covariance/_empirical_covariance.py +++ b/sklearn/covariance/_empirical_covariance.py @@ -99,7 +99,7 @@ def empirical_covariance(X, *, assume_centered=False): class EmpiricalCovariance(BaseEstimator): - """Maximum likelihood covariance estimator + """Maximum likelihood covariance estimator. Read more in the :ref:`User Guide `. @@ -131,6 +131,18 @@ class EmpiricalCovariance(BaseEstimator): .. versionadded:: 0.24 + See Also + -------- + EllipticEnvelope : An object for detecting outliers in + a Gaussian distributed dataset. + GraphicalLasso : Sparse inverse covariance estimation + with an l1-penalized estimator. + LedoitWolf : LedoitWolf Estimator. + MinCovDet : Minimum Covariance Determinant + (robust estimator of covariance). + OAS : Oracle Approximating Shrinkage Estimator. + ShrunkCovariance : Covariance estimator with shrinkage. + Examples -------- >>> import numpy as np @@ -148,7 +160,6 @@ class EmpiricalCovariance(BaseEstimator): [0.2818..., 0.3928...]]) >>> cov.location_ array([0.0622..., 0.0193...]) - """ def __init__(self, *, store_precision=True, assume_centered=False): @@ -191,8 +202,7 @@ def get_precision(self): return precision def fit(self, X, y=None): - """Fits the Maximum Likelihood Estimator covariance model - according to the given training data and parameters. + """Fit the maximum liklihood covariance estimator to X. Parameters ---------- @@ -206,6 +216,7 @@ def fit(self, X, y=None): Returns ------- self : object + Returns the instance itself. """ X = self._validate_data(X) if self.assume_centered: