diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index d094a661ea654..bc24431e6abb1 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -47,7 +47,6 @@ "SplineTransformer", "StackingClassifier", "StackingRegressor", - "TheilSenRegressor", "TransformedTargetRegressor", "TweedieRegressor", ] diff --git a/sklearn/linear_model/_theil_sen.py b/sklearn/linear_model/_theil_sen.py index a5a695f2bc3ae..579f0afa3997c 100644 --- a/sklearn/linear_model/_theil_sen.py +++ b/sklearn/linear_model/_theil_sen.py @@ -255,7 +255,7 @@ class TheilSenRegressor(RegressorMixin, LinearModel): A random number generator instance to define the state of the random permutations generator. Pass an int for reproducible output across multiple function calls. - See :term:`Glossary ` + See :term:`Glossary `. n_jobs : int, default=None Number of CPUs to use during the cross validation. @@ -295,6 +295,18 @@ class TheilSenRegressor(RegressorMixin, LinearModel): .. versionadded:: 1.0 + See Also + -------- + HuberRegressor : Linear regression model that is robust to outliers. + RANSACRegressor : RANSAC (RANdom SAmple Consensus) algorithm. + SGDRegressor : Fitted by minimizing a regularized empirical loss with SGD. + + References + ---------- + - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 + Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang + http://home.olemiss.edu/~xdang/papers/MTSE.pdf + Examples -------- >>> from sklearn.linear_model import TheilSenRegressor @@ -306,12 +318,6 @@ class TheilSenRegressor(RegressorMixin, LinearModel): 0.9884... >>> reg.predict(X[:1,]) array([-31.5871...]) - - References - ---------- - - Theil-Sen Estimators in a Multiple Linear Regression Model, 2009 - Xin Dang, Hanxiang Peng, Xueqin Wang and Heping Zhang - http://home.olemiss.edu/~xdang/papers/MTSE.pdf """ def __init__( @@ -394,6 +400,7 @@ def fit(self, X, y): Returns ------- self : returns an instance of self. + Fitted `TheilSenRegressor` estimator. """ random_state = check_random_state(self.random_state) X, y = self._validate_data(X, y, y_numeric=True)