Skip to content

DOC Linear regression doc update #21258

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions sklearn/linear_model/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -536,10 +536,11 @@ class LinearRegression(MultiOutputMixin, RegressorMixin, LinearModel):

n_jobs : int, default=None
The number of jobs to use for the computation. This will only provide
speedup for n_targets > 1 and sufficient large problems.
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
``-1`` means using all processors. See :term:`Glossary <n_jobs>`
for more details.
speedup in case of sufficiently large problems, that is if firstly
`n_targets > 1` and secondly `X` is sparse or if `positive` is set
to `True`. ``None`` means 1 unless in a
:obj:`joblib.parallel_backend` context. ``-1`` means using all
processors. See :term:`Glossary <n_jobs>` for more details.

positive : bool, default=False
When set to ``True``, forces the coefficients to be positive. This
Expand Down