diff --git a/maint_tools/test_docstrings.py b/maint_tools/test_docstrings.py index 50678eb78a204..f6b5b2f8f515c 100644 --- a/maint_tools/test_docstrings.py +++ b/maint_tools/test_docstrings.py @@ -30,7 +30,6 @@ "sklearn.cluster._optics.compute_optics_graph", "sklearn.cluster._spectral.spectral_clustering", "sklearn.compose._column_transformer.make_column_transformer", - "sklearn.covariance._empirical_covariance.empirical_covariance", "sklearn.covariance._graph_lasso.graphical_lasso", "sklearn.covariance._robust_covariance.fast_mcd", "sklearn.covariance._shrunk_covariance.ledoit_wolf", diff --git a/sklearn/covariance/_empirical_covariance.py b/sklearn/covariance/_empirical_covariance.py index bea05ac0279e5..631423da242f6 100644 --- a/sklearn/covariance/_empirical_covariance.py +++ b/sklearn/covariance/_empirical_covariance.py @@ -49,19 +49,18 @@ def log_likelihood(emp_cov, precision): def empirical_covariance(X, *, assume_centered=False): - """Computes the Maximum likelihood covariance estimator - + """Compute the Maximum likelihood covariance estimator. Parameters ---------- X : ndarray of shape (n_samples, n_features) - Data from which to compute the covariance estimate + Data from which to compute the covariance estimate. assume_centered : bool, default=False - If True, data will not be centered before computation. + If `True`, data will not be centered before computation. Useful when working with data whose mean is almost, but not exactly zero. - If False, data will be centered before computation. + If `False`, data will be centered before computation. Returns -------