diff --git a/sklearn/linear_model/_omp.py b/sklearn/linear_model/_omp.py index b3c4381ad13aa..620e0505703de 100644 --- a/sklearn/linear_model/_omp.py +++ b/sklearn/linear_model/_omp.py @@ -332,7 +332,7 @@ def orthogonal_mp( default) this value is set to 10% of n_features. tol : float, default=None - Maximum norm of the residual. If not None, overrides n_nonzero_coefs. + Maximum squared norm of the residual. If not None, overrides n_nonzero_coefs. precompute : 'auto' or bool, default=False Whether to perform precomputations. Improves performance when n_targets @@ -493,7 +493,8 @@ def orthogonal_mp_gram( default) this value is set to 10% of n_features. tol : float, default=None - Maximum norm of the residual. If not `None`, overrides `n_nonzero_coefs`. + Maximum squared norm of the residual. If not `None`, + overrides `n_nonzero_coefs`. norms_squared : array-like of shape (n_targets,), default=None Squared L2 norms of the lines of `y`. Required if `tol` is not None. @@ -625,7 +626,7 @@ class OrthogonalMatchingPursuit(MultiOutputMixin, RegressorMixin, LinearModel): default) this value is set to 10% of n_features. tol : float, default=None - Maximum norm of the residual. If not None, overrides n_nonzero_coefs. + Maximum squared norm of the residual. If not None, overrides n_nonzero_coefs. fit_intercept : bool, default=True Whether to calculate the intercept for this model. If set