diff --git a/doc/modules/neural_networks_supervised.rst b/doc/modules/neural_networks_supervised.rst index 388f32e7c6925..100b4105be93d 100644 --- a/doc/modules/neural_networks_supervised.rst +++ b/doc/modules/neural_networks_supervised.rst @@ -146,7 +146,8 @@ See the examples below and the docstring of .. topic:: Examples: * :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py` - * :ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py` + * See :ref:`sphx_glr_auto_examples_neural_networks_plot_mnist_filters.py` for + visualized representation of trained weights. Regression ========== diff --git a/sklearn/neural_network/_multilayer_perceptron.py b/sklearn/neural_network/_multilayer_perceptron.py index 5175247204fb8..cc419b57f2410 100644 --- a/sklearn/neural_network/_multilayer_perceptron.py +++ b/sklearn/neural_network/_multilayer_perceptron.py @@ -800,6 +800,9 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron): - 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba + For a comparison between Adam optimizer and SGD, see + :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py`. + Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. @@ -810,6 +813,9 @@ class MLPClassifier(ClassifierMixin, BaseMultilayerPerceptron): Strength of the L2 regularization term. The L2 regularization term is divided by the sample size when added to the loss. + For an example usage and visualization of varying regularization, see + :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_alpha.py`. + batch_size : int, default='auto' Size of minibatches for stochastic optimizers. If the solver is 'lbfgs', the classifier will not use minibatch. @@ -1293,6 +1299,9 @@ class MLPRegressor(RegressorMixin, BaseMultilayerPerceptron): - 'adam' refers to a stochastic gradient-based optimizer proposed by Kingma, Diederik, and Jimmy Ba + For a comparison between Adam optimizer and SGD, see + :ref:`sphx_glr_auto_examples_neural_networks_plot_mlp_training_curves.py`. + Note: The default solver 'adam' works pretty well on relatively large datasets (with thousands of training samples or more) in terms of both training time and validation score. diff --git a/sklearn/neural_network/_rbm.py b/sklearn/neural_network/_rbm.py index ec819790c5f73..e3814f45d3633 100644 --- a/sklearn/neural_network/_rbm.py +++ b/sklearn/neural_network/_rbm.py @@ -127,6 +127,9 @@ class BernoulliRBM(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstima >>> model = BernoulliRBM(n_components=2) >>> model.fit(X) BernoulliRBM(n_components=2) + + For a more detailed example usage, see + :ref:`sphx_glr_auto_examples_neural_networks_plot_rbm_logistic_classification.py`. """ _parameter_constraints: dict = {